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Abstract 

Sewage treatment works (STWs) are essential for urban sanitation but remain 

important sources of ecological pressure on river systems. Previous studies often 

lacked suitable controls, particularly for small datasets, or assessments of pollutant 

bioavailability and ecological risk. This study conducts a national-scale, multi-

decadal assessment of STW impacts on river water quality across England, using 

long-term Environment Agency monitoring data and multiple statistical approaches. 

Both metal (calcium (Ca), magnesium (Mg), cadmium (Cd), copper (Cu), nickel 

(Ni), iron (Fe), zinc (Zn), and manganese (Mn)) and non-metal (stream temperature, 

biochemical oxygen demand (BOD), chemical oxygen demand (COD), nitrate, 

phosphate, pH, suspended solids, and specific conductance) determinands were 

evaluated. Paired upstream–downstream and control site comparisons were used to 

assess local impacts and results were used to assess the impact of difference 

treatment technologies between sewage treatment works. The cumulative impact of 

sewage treatment discharges was assessed by examining the impact of discharge on 

chlorophyll-a concentration and the exceedance relative to water quality standards. 

The wider impact of the sewage treatment works discharges was assessed by 

comparison with river water quality data from all rivers across England using 

principal component analysis.  

The results showed that:  

• STW discharges had a significant impact for all determinands except COD 

and suspended solids, and while for BOD, pH, nitrate, specific conductance, 

and suspended solids the impact of STW discharge is significantly 

decreasing, the impact on phosphate concentrations was significantly 

increasing. 

• STW discharges significantly increased the concentration of Ca, Mg, Cu, 

and Mn in the receiving river, but decreased the concentration of Fe and Zn. 

Equally, STW discharges significantly increased the bioavailable 

concentration of Zn, Mn, and Ni, but not the bioavailable concentration of 

Cu. 
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• The impact of STW discharges did significantly differ between types of 

secondary treatment, and tertiary treatment did significantly reduce the 

impact of STW discharges on the phosphate concentration. 

• The combined impact of STW discharge did not change the probability of 

eutrophication incidents in the receiving rivers.  

The principal component analysis has shown that for non-metal water quality 

determinands from STWs’ the discharge was a dominant control on water quality 

across English rivers, for metals, STW discharges were not the dominant control 

and mining, and industrial discharges were more important. 

 

Keywords: 

sewage treatment works, river water quality, bioavailability, ANOVA, 

eutrophication, chlorophyll-a, principal component analysis, Water Framework 

Directive 
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Chapter 1: Introduction 

1.1 Introduction 

Sewage treatment works (STWs) are essential for managing wastewater and 

mitigating human impacts on aquatic ecosystems (Adam et al., 2021; Delgado et 

al., 2024; Pereao et al., 2021). Despite advances in treatment technologies, STWs 

continue to discharge effluents that alter the physical (Neal et al., 2005; Wang et 

al., 2022), chemical (Millier and Hooda, 2011; Roberts and Cooper, 2018), and 

biological properties (Lee et al., 2023; Mills et al., 2024) of receiving rivers. These 

changes impact critical water quality indicators, including temperature, 

biochemical oxygen demand (BOD), chemical oxygen demand (COD), pH (Parmar 

and Bhardwaj, 2013; Liao et al., 2015; Najafzadeh et al., 2019); and the 

concentrations of metals like Cu (Cu), Zn (Zn), and Ni (Ni) (Udayakumar et al., 

2011; Zhang et al., 2023). Understanding these impacts requires comprehensive 

statistical analysis and pattern recognition techniques. Despite extensive research, 

key knowledge gaps remain in understanding the impacts of STWs on rivers, these 

are: 

i) Lack of appropriate comparison - few studies investigate whether water 

quality changes in STW-influenced rivers significantly differ from what 

would be expected for rivers, i.e. the studies lack controls. Without such 

comparisons, it is difficult to determine whether observed changes are due 

to STW discharges or broader environmental factors. Some studies 

assessing the impact of sewage treatment works (STWs) on water quality 

have focused solely on effluent discharge points without incorporating 

upstream-downstream comparisons or unaffected control sites. For example, 

Naji et al. (2021) investigated microplastic concentrations in effluent and 

sludge from wastewater outlets in Bandar Abbas, Iran, without comparing 

them to upstream concentrations. Martín et al. (2012) analysed 

pharmaceutical compounds in influent, effluent, and sludge from Spanish 

STWs, but not the concentration in the receiving waters prior to effluent 

discharge; and Menzies et al. (2019) measured dimethyl ammonium 

chloride (DEEDMAC) levels in effluent and sludge from 41 U.S. STWs and 

once again did not include upstream or non-impacted reference sites. 
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Consequently, although these works document pollutant concentrations 

within STWs and their immediate outflows, they do not clarify how those 

levels compare to baseline or unaffected conditions in the river ecosystem. 

ii) Limited dataset - Few studies are based on large-scale dataset analysis, i.e. 

the number of replicates is small. Neal & Robson (2000) presented an 

analysis of river water quality in eastern UK rivers, based on data collected 

from 1993 to 1999, which highlighted seasonal trends and pollutant inputs 

to coastal environments, such as Chlorophyll event analysis. However, they 

only included 15 sampling sites. Neal et al. (2005) evaluated nutrient 

dynamics and sewage effluent impacts on phosphorus concentrations based 

on relatively limited datasets, comprising monthly to bi-monthly 

measurements from only six small STWs over approximately 16 months in 

the upper Thames Basin. Similarly, Jarvie et al. (2002) monitored nutrient 

chemistry and biological indices across fewer than 10 sites in the upper 

Thames Basin over approximately two and a half years at weekly intervals, 

also without explicitly defined pairs or control sites. Although a small 

number of national- or regional-scale studies exist (Rothwell et al., 2010; 

Comber et al., 2022), they generally did not evaluate correlations among 

different determinands or explicitly quantify the direct impact of STW 

discharges on downstream waters. Much of the literature still relies on 

single-river case studies—for instance, Bubb and Lester (1994) examined a 

60-km reach of the River Stour to assess downstream metal concentrations 

influenced by STW discharges, and Cooper and Hiscock  reported trends in 

the River Wensum under the EU WFD but provided only a broad overview 

without in-depth inter-determinand analysis. These examples underscore 

the need for more comprehensive and controlled datasets in water quality 

research, which the current study addresses through extensive, long-term 

monitoring at numerous paired sites and the rigorous use of control rivers. 

iii) Concentration is not the same as impact; studies have focused on changes 

in concentration rather than impact. This difference takes two forms. Firstly, 

the complex mix of chemicals coming from STW discharges may interact, 

for example, limiting metal bioavailability. Second, an impact measured at 

the point of discharge may not persist in the wider catchment. 
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This thesis aims to address these gaps by assessing the impact of STW discharges 

on receiving rivers for a range of water quality determinands.   

1.2 Aims and Objectives 

This study aims to evaluate the influence of STWs on river water quality across 

England, with a particular focus on both metal and non-metal determinands, 

nutrient-driven eutrophication, and the bioavailability of trace metals. By 

integrating long-term monitoring data, statistical modelling, and regulatory 

frameworks, the research seeks to identify the ecological implications of STW 

discharges and inform future pollution management strategies. 

The specific objectives are: 

• To quantify the impact of STW discharges on non-metal water quality 

determinands, including temperature (T), biochemical oxygen demand 

(BOD), chemical oxygen demand (COD), nitrate (NO3-), phosphate (PO43-), 

suspended solids (SS), specific conductance (κ), and pH. Chapter 2 

addresses this through comparative analysis of upstream and downstream 

sites, incorporating control river pairs and exploring the roles of STW 

characteristics and hydrological covariates. 

• To assess the role of STW effluents in contributing to nutrient enrichment 

and eutrophication, with a focus on chlorophyll-a (Chl-a) and silicon 

dioxide (SiO₂) as indicators of algal growth. Chapter 4 expands the analysis 

to include incident-based evaluation of eutrophication risk, using both 

concentration and frequency metrics of Chl-a exceedance. 

• To investigate the downstream changes in the concentrations of eight key 

metals -- calcium (Ca), magnesium (Mg), cadmium (Cd), copper (Cu), 

nickel (Ni), iron (Fe), zinc (Zn), and manganese (Mn) and bioavailability of 

Cu, Zn, Mn and Ni. Meanwhile, how STWs influence their transport and 

ecological risks. Chapter 3 conducts a spatially resolved analysis of metal 

distribution and evaluates treatment efficacy across different STW types. 

• To explore pollution patterns and ecological risks of bioavailable metals 

across England, using principal component analysis (PCA) and the M-BAT 

model. Chapter 5 generalises the findings beyond paired sites to a national 
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scale, assessing Risk Characterisation Ratios (RCR) and highlighting spatial 

hotspots of concern. 

1.2.1 Process-type classification used in this thesis 

Activated sludge plants are analysed separately from other secondary biological 

treatments because they differ mechanistically (suspended biomass with 

controllable sludge age and aeration in activated sludge versus attached-growth 

systems with lower biomass inventories and shorter effective contact times) 

(Márquez et al., 2022). These differences are expected to produce distinct effluent 

signatures (e.g., typically lower BOD and suspended solids but more oxidised 

nitrogen where nitrification is established) and, therefore, potentially different 

downstream impacts (Ramin et al., 2022). Accordingly, secondary treatment is 

separated into secondary activated sludge (SAS) and secondary biological (SB) 

throughout the thesis. Tertiary configurations are also distinguished as tertiary 

activated sludge (TAS) and tertiary biological (TB) where information is available. 

Where differentiation between STW types was not possible due to lack of 

information, this constraint applies only to tertiary treatment processes; separation 

of SAS from SB was retained.  

1.2.2 Explanatory inference is prioritised 

To test whether, and by how much, STW discharges affect determinands, and 

decomposing effects by Type, Year, Month and Pair. Accordingly, analysis 

variance (ANOVA) was used to test the significance of main effects and 

interactions, to accommodate covariates (distance, altitude, percentile flow) in a 

paired design, and to report factor-level effect sizes—η² for ANOVA factors—

together with coefficients for covariates. Principal component analysis (PCA) was 

employed to summarise multivariate structure with interpretable loadings and to 

reduce collinearity among determinands. Modern machine-learning approaches 

(e.g., random forests, gradient boosting, neural networks; for dimensionality 

reduction, t-SNE/UMAP) were not prioritised because the objective is explanation 

rather than prediction; factor-level effect sizes are required; and transparency for 

regulatory interpretation (WFD/EQS) is essential.  

Together, these chapters contribute to a comprehensive understanding of how 

STWs affect riverine ecosystems, providing evidence to support targeted 
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interventions under regulatory frameworks such as the Water Framework Directive 

(WFD) and to help ensure compliance with Environmental Quality Standards 

(EQS). 

1.3 Non-metal determinands 

STWs influence water quality by altering nonmetal determinands such as 

temperature (T), BOD, COD, nitrate (NO3
-), phosphate (PO43-), SS, specific 

conductance (κ), and pH. These parameters are critical indicators of aquatic 

ecosystem health (Whitehead et al., 1981; Kumar and Reddy, 2009; Lemessa et al., 

2023). Nevertheless, effluent releases can alter physical and chemical 

characteristics—such as temperature or suspended solids—in receiving rivers, 

causing localised environmental stress (Dickenson et al., 2011). 

The ecological implications of these changes are substantial. Below, the impact 

of STW discharge on the key water quality determinands in the receiving rivers was 

reviewed.  

1.3.1 Temperature (T) 

Water temperature is a fundamental property of river water (Webb, 1996). However, 

given human-induced climate change, there is a concern that river water 

temperature will increase in a warming climate (Albini et al., 2023). Warmer river 

waters will have multiple impacts, influencing the growth and performance of a 

range of aquatic organisms (Kedra, 2020). Warming of river water can lead to both 

acute and chronic impacts on fish, for example, Brown trout (Salmo trutta), which 

face a mortality risk at stream temperatures exceeding 24.7 °C (Krause et al., 2005). 

Beyond ecological concerns, warmer river water also has economic (Dottori et al., 

2018) and social consequences (Lamborn and Smith, 2019). It can negatively affect 

industries such as tourism (Knoll et al., 2019) and energy (Paltán et al., 2021), as 

higher water temperatures reduce the efficiency of river water used for cooling in 

thermal power generation, including nuclear reactors (Fricko et al., 2016). 

According to Heberling et al. (2015), once river temperature exceeds 23 °C, each 

additional 1 °C is associated with a 1.5% increase in water-treatment costs.  

The main focus of recent studies on river temperature has been the impact of 

anthropogenically induced climate change (Gooseff et al., 2005), and numerous 
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modelling studies have suggested rising stream temperatures as a result (Morrill et 

al., 2005; Woltemade and Hawkins, 2016). Arnell (1998) estimate that river 

temperatures would rise by 1.6 °C in summer and 1.8 °C in winter; Hondzo and 

Stefan (1993) had predicted a rise in surface water temperature by 1.9 to 2.2 ℃; 

and Van Vliet et al. (2013) found that the water temperature increase on average by 

0.8 – 1.6 for 2071–2100 relative to 1971–2000. For the USA, Kaushal et al. (2010) 

analysed stream temperatures for 40 major rivers and showed significant, long-term 

warming trends for 20 rivers, which were significantly correlated with air 

temperature. In Japan, Ye and Kameyama (2017) found that between 1981 and 

2016, 42% of 153 sites were warming faster than the air temperature. However, 

Worrall et al. (2022) found that over a 45-year period since 1974 for 263 catchments 

across the UK, the mean river temperature was well buffered against changes in air 

temperature – a 1℃ rise in air temperature resulting in 0.37 ℃ in mean stream 

temperature. 

The impact of STWs as a driver of anthropogenic warming of streams and 

rivers has received less study than the impact of climate change (Kinouchi et al., 

2007). Relatively warm water can come from several anthropogenic sources, 

including thermal power stations, land use and land-use change, urban paved areas, 

and urban wastewater. Wilson & Worrall (2021) demonstrate that sewage effluent 

can be utilised for heating, as it was, on average, 2.2°C warmer than the receiving 

water. Effluent normally occurs around the residential area, which might be relevant 

to the population. Thermal energy from effluent has been mentioned to be recovered 

under certain climate conditions, and this might be a method to reduce carbon 

emissions (Hawley and Fenner, 2012). Therefore, continued population growth in 

developed countries is likely to be a driver of rising stream temperatures.  

In England, final sewage effluent temperatures must meet conditions agreed in 

site-specific discharge permits, which usually take the form of a maximum 

compliance limit, which no temperature sample should ever exceed, and a risk 

assessment to ensure water quality of the receiving water body does not deteriorate 

and that it meets its target quality standard. Temperature standards for rivers in 

England permit a 2 or 3 °C increase or decrease in relation to ambient river 

temperatures, as the 98th percentile of annual surface water discharges 
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(Environment Agency, 2014). Although final sewage effluent is regulated, it is 

typically warmer than the receiving waters. 

 

1.3.2 Biochemical oxygen demand (BOD) 

Biochemical Oxygen Demand (BOD) is a critical indicator of water quality. When 

BOD and levels exceed permissible standards, it leads to several issues, including 

challenges for drinking water treatment, harm to aquatic life, and plants (Kulkarni, 

2016). The EU has set guidelines for BOD of 3.0 to 6.0 mg/L, aimed at protecting 

fisheries, aquatic life, and domestic water supplies, which would be impacted (Akan 

et al., 2012). High BOD is typically associated with problems in aquatic ecosystems 

(Susilowati et al., 2018), such as fish illness (Sharma et al., 2022), a decline in 

macroinvertebrates, and a decrease in fish and crustaceans (Dyer et al., 2003).  

Human activity is the primary driver of increased BOD. A US study conducted 

in Virginia, USA (Zipper et al., 2002) reported that land use, geology, and 

landscape features were associated with elevated median BOD values between 

1978 and 1995. While changes in land use driven by human activity can increase 

BOD levels, geological structure and landscape characteristics also contribute 

meaningfully to spatial variation in BOD concentrations (Zipper et al., 2002). 

Research comparing groundwater and freshwater BOD levels has revealed the 

impact of agriculture on the organic matter in groundwater. Groundwater affected 

by livestock activities exhibits a BOD of approximately 3.7 to 11.6 mg/L, while 

groundwater impacted by cultivation shows a BOD of 1.3 mg/L. Elevated BOD 

levels observed in groundwater affected by agriculture stand in clear contrast to the 

lower concentrations typically found in freshwater environments, which range from 

0.4 to 0.8 mg/L (Kim et al., 2003). Population growth, leading to increased water 

depletion, is another contributing factor to high BOD levels (Kamarudin et al., 

2020). Wastewater discharge also plays a significant role (Ooi et al., 2022; Fitriana 

et al., 2023; Subramaniam et al., 2023). In contrast, wet weather events can also 

drive BOD spikes due to the mobilisation of pollutants. For example, Mulliss et al. 

(1997) documented a five-fold increase in mean BOD concentrations during storm 

conditions, with peaks reaching 115 mg/L, largely attributed to combined sewer 

overflows and surface runoff at the onset of rainfall. These findings suggest that 
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BOD pollution can arise from both hydrological extremes – low flows that limit 

dilution and high flows that transport accumulated organic matter into receiving 

waters – depending on local infrastructure and land use. A model of organic matter 

breakdown in landfill leachate confirmed that higher rainfall and temperatures 

contribute to increased BOD (Bhatt et al., 2016).  

In the 17th century, industrial development and a population boom led to the 

discharge of large volumes of untreated wastewater, causing severe environmental 

problems (Whelan et al., 2022). The widespread adoption of sewage treatment 

plants in the latter half of the 20th century, including the gradual replacement of 

trickling filters with the more effective activated sludge process in larger facilities, 

mitigated point source pollution (Johnstone and Horan, 1996; Whelan et al., 2022). 

The European Urban Wastewater Treatment Directive (UWWTD, 1991), which 

established wastewater discharge standards based on population equivalence (PE) 

-- a parameter for characterising industrial wastewaters, also known as unit per 

capita loading or equivalent person-- played a crucial role in reducing BOD and 

promoting the recovery of aquatic habitats (Johnson et al., 2019). Modern 

wastewater treatment, which incorporates primary and secondary treatment stages, 

can remove up to 85% of BOD from the effluent (Sonune and Ghate, 2004). More 

recently, Freeman et al. (2018) highlighted aerated wastewater treatment systems 

capable of removing up to 90% of BOD. Further advancements in BOD removal 

techniques continue to emerge. For instance, advanced oxidation processes applied 

to municipal wastewater have demonstrated a reduction in BOD from 8 mg/L to 2 

mg/L within 60 minutes, and photocatalytic treatment using TiO₂-MMT has 

achieved a reduction from 9 mg/L to 4 mg/L in just 35 minutes (Pamuła et al., 2022). 

In England, sewage treatment plants must not exceed either a maximum 

concentration limit of 25 mg/L (Johnson and Mara, 2005) or a BOD limit, or 

achieve a minimum percentage reduction of 70-90% compared to the incoming 

wastewater (Del Solar et al., 2005). BOD is considered compliant if either of these 

conditions is met. There's an additional, stricter limit of 50 mg/L O2. Exceeding this 

limit is not necessarily a complete failure if the minimum percentage reduction is 

achieved, but such situations still have a negative environmental impact and must 

be reported to the Environment Agency (EA). 
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1.3.3 Chemical oxygen demand (COD) 

The COD is a measure of the amount of oxygen required to chemically oxidize and 

break down organic in water (Akan et al., 2012). It was developed to provide a 

more immediate measure of oxygen demand in contrast to BOD which takes 5 days 

to measure.  

COD is a crucial indicator of water quality and its impact on aquatic life 

(Towrqseno et al., 1992; Chaudhry et al., 2022). High COD levels have been 

observed to lead to: a decline in fish species (Sarkar and Islam, 2020); aesthetically 

displeasing darker water coloration (Yang et al., 2019); foul odours (Novita et al., 

2019); and increased greenhouse gas (GHG) emissions (Medeiros et al., 2023; 

Hernaningsih et al.).  

Elevated COD levels are often associated with areas of human activity (Kotti et 

al., 2005; Chaudhry et al., 2022). Anthropogenic activities, such as land use 

changes involving reclamation, agriculture, and urbanization, directly contribute to 

increased COD. A study of the Hun River in China (2009-2010) found higher COD 

levels at sampling points located near areas of intensive land use, classifying the 

water quality as among the worst in China (Wang et al., 2013). Conversely, research 

has also demonstrated a negative correlation between forest and agricultural land 

cover and rising COD levels (Rather and Dar, 2020). Xu et al. (2020) identified 

sewage outfall as the primary driver of high COD during the dry season, while 

agricultural runoff was the key factor in the wet season.  

The industrial revolution and population growth led to severe COD pollution, 

as effluents aggravated water quality issues: water quality reached its nadir in 1940 

(Burton, 2003). However, with increasing awareness of environmental concerns 

and advancements in innovation and development, various techniques have been 

employed for COD removal.  

Regulatory measures such as the Environmental Protection Act 

(https://www.legislation.gov.uk/), the WFD (https://environment.ec.europa.eu/), 

and the Environmental Permitting (England and Wales) Regulations 

(https://www.legislation.gov.uk/) have contributed to reducing COD. In addition to 

regulations, the activated sludge process, invented in the early 20th century, has 

https://www.legislation.gov.uk/
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proven effective in removing 85% to 95% of organic matter, e.g., a 96% removal 

rate (The Environmental Protection (Duty of Care) Regulations 1991). Other 

technologies have also achieved greater than 80% removal of COD: membrane 

bioreactors (MBRs (Trouve et al., 1994)) and anaerobic sludge blanket (UASB) 

Yetilmezsoy and Sakar, 2008).  

There has been research into the impact of high COD levels from STW discharge 

on receiving waters. However, research in this area often focuses on a single river 

with a limited number of sampling points and short study durations. For instance, 

Maphanga et al. (2022) only analysed three sites of municipal COD discharge on 

the Crocodile River to assess pollution spatial distribution and areas requiring 

improved treatment. Similarly, Iloms et al. (2020) examined data from January to 

September 2017 on the Vaal River in South Africa, highlighting concerns about 

high COD levels in municipal effluent and their impact on the Vaal River's 

biodiversity. 

In England, meeting the discharge standard is mandated, regardless of whether 

the minimum percentage reduction falls within the range of 70% to 90%, or if the 

concentration limit is set at 125 mg O2/L. Even if the effluent concentration exceeds 

the maximum compliance threshold of 250 mg O2/L, as long as the minimum 

reduction requirement is fulfilled, it does not constitute a maximum failure.  
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1.3.4 Nitrate (NO₃⁻) 

Nitrate serves as an indicator of water contamination (Chowdhury et al., 2003), 

closely linked with the use of nitrogen-based fertilizers (Bijay-Singh and Craswell, 

2021). Nitrate, a major end product of nitrification in the nitrogen cycle, can pose 

environmental risks when its concentrations become elevated. Excess nitrate can 

lead to eutrophication and hypoxia, adversely affecting fish, altering ionic balances, 

and disrupting algal communities (Sahay et al., 2006; Chen et al., 2011; Kocour 

Kroupová et al., 2018).  Nitrate from wastewater impacts human and animal health, 

being linked to methemoglobinemia, cancer, thyroid gland enlargement, diabetes 

mellitus, and obesity. Methemoglobinemia occurs when nitrate exposure oxidizes 

Fe²⁺ to Fe³⁺, disrupting oxygen transport (Camargo and Alonso, 2006; Parvizishad 

et al., 2017; McNulty et al., 2022). Nitrogen can also contribute to aquatic 

ecosystem acidification, particularly through nitrification when pH exceeds 5.6 

(Rudd et al., 1988). Additionally, increased nitrogen fluxes due to human activities 

over the past four decades, leading to 6- to 20-fold increases in discharges to the 

North Sea, have exacerbated eutrophication, resulting in algae blooms in coastal 

waters (Smith, 2003). For inland water, algal blooms lead to foul odours and 

environmental damage, consequently raising environmental treatment costs 

(Maqbool et al., 2016). 

Anthropogenic activities often result in high nitrate emissions, posing risks to 

both the environment and human health. Agricultural practices, particularly 

nitrogen overuse, contribute to elevated nitrate levels, with nitrate's instability 

leading to its seepage into groundwater (Schaller, 1991). Wastewater discharge has 

been linked to eutrophication, reducing oxygen levels in water and soil, hindering 

nutrient absorption in mangroves, and posing risks to human health (Agraz-

Hernández et al., 2018; Xu et al., 2018). To mitigate these risks, converting nitrate 

into non-toxic nitrogen gas (N2) is considered the most effective approach for water 

treatment method (Meng et al., 2023). 

When investigating the various causal factors contributing to the rise in nitrate 

(NO₃⁻) concentrations, it is crucial to consider the impact of effluent from STWs 

on the environment. Studies have highlighted the role of STWs in increasing nitrate 

concentrations in receiving waters. For instance, Spahr et al. (2024) found that 

STWs significantly contributed to elevated nitrate (NO₃⁻) levels in streams within 
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Southwest Ohio, with the highest concentrations observed in watersheds receiving 

effluent discharge. Their findings suggest that STWs are a major driver of nitrate 

pollution, particularly during baseflow conditions when effluent can constitute a 

substantial portion of streamflow. Research has also shown that upgrading STWs 

can lead to improvements in water quality by reducing nitrogen levels in receiving 

water bodies. For example, a study focusing on two rivers dominated by wastewater 

demonstrated that the upgrade of STWs resulted in decreased nitrogen 

concentrations and overall improvements in water quality (Wang et al., 2020). 

These findings underscore the significance of considering the impact of effluent on 

nitrite levels and the environment when assessing factors contributing to nitrite rise. 

In the UK, there is a legal limit of 50 mg/L for nitrate concentration in drinking 

water, consistent with the guideline value set by the WHO. Water companies are 

tasked with monitoring and treating water sources to ensure compliance with this 

standard, as stipulated by the Environment Agency (https://www.gov.uk/). 

Additionally, Nitrate Vulnerable Zones (NVZs) designate areas at high risk of 

nitrate leaching, prompting the implementation of specific regulations for farmers 

operating within these zones (Nitrate vulnerable zones, 2018). It is essential for 

farmers in NVZs to adhere to these regulations to mitigate the risk of nitrate 

pollution and protect water quality in affected areas. 

 

1.3.5 Phosphate (PO43-) 

Phosphate is vital for the biological growth of algae and aquatic plants (Jalali and 

Jalali, 2016). However, excessive amounts can pose risks to water bodies, as they 

contribute to triggering algal blooms, oxygen depletion in the water, and aquatic 

life mortality (Schaum, 2018; Abdulwahid et al., 2023). These algal blooms, caused 

by excessive phosphate, can also produce toxins harmful to both humans and 

animals. 

Major sources of phosphate pollution include agricultural runoff from fertilisers, 

effluents from STWs, industrial discharge, and aquaculture waste (Rao and Prasad, 

1997; Sileika et al., 2002; Dumont et al., 2005; Maqbool et al., 2016; Ye et al., 

2017; Nathanailides et al., 2023). Effective management of these anthropogenic 
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sources is essential to mitigate phosphate pollution and its ecological consequences 

(Lewis et al., 2011). 

Human activities are the primary contributors to phosphate pollution, and treated 

wastewater from STWs plays a crucial role in altering riverine phosphate levels, yet 

research on this aspect remains limited. For instance, a study on the Enoree River 

examined the effluent from four STWs, highlighting that phosphate concentrations 

remained elevated downstream of the Taylor STW, despite a decrease compared to 

upstream levels (Andersen et al., 2014). Spahr et al. (2024) found that STWs 

contributed to phosphate concentrations being 30 times higher than background 

concentrations, though this study focused on a limited number of watersheds with 

only two upstream STWs. 

In the UK, there is no specific drinking water regulation for phosphate, but its 

management falls under the EU WFD, which aims to achieve good ecological status 

for all water bodies. One relevant regulation is the Detergents (Amendment) 

Regulations 2016 (https://www.legislation.gov.uk/), which limits phosphate 

content in standard dishwasher detergent dosages to 0.3 g/L to help reduce 

phosphate pollution in surface waters. 

 

1.3.6 pH 

pH serves as a critical indicator of water quality (Dong et al., 2015). For drinking 

water, maintaining a pH range of approximately 6.5 to 8.5 is considered safe, as 

extremes in either alkalinity or acidity can have adverse health effects (Arhin et al., 

2023). However, pH values can vary significantly across different industrial 

discharges (Odjadjare and Okoh, 2010). In aquatic environments, the abundance of 

species like Macrobrachium rosenbergii has been found to correlate with water pH 

levels. Acidic water conditions, with pH levels lowered to mildly acidic (6.4 ± 0.5) 

or acidic (5.4 ± 0.2), can adversely impact their feeding, survival, and growth, with 

implications for their larval development (Liew et al., 2022). Similarly, in 

horticulture, plants are typically cultivated in mildly acidic environments, with a 

pH range of 5.5 to 6.5 considered optimal for leafy greens (Gillespie et al., 2020; 

Alexopoulos et al., 2021).  
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The discharge from anthropogenic activities often exhibits varying pH levels, 

which can pose challenges to environmental management and may be difficult to 

address. For instance, pH values outside the range of 6 to 9 can suppress the activity 

of microorganisms crucial for wastewater treatment, potentially leading to damage 

to treatment equipment and lower water quality at discharge (Gaya et al., 2014). 

Additionally, pH plays a critical role in the removal of remazol red dye and 

associated COD; for example, at a pH of 4, reductions of red dye and COD are 

reported to be 91.24% and 71.13%, respectively (Yuniawati and Rahmayanti, 2023). 

Achieving the desired pH levels can contribute to resolving certain environmental 

issues by enhancing the physicochemical conditions for pollutant removal. 

Specifically, pH influences the ionisation state and solubility of organic pollutants 

such as PAHs, thereby improving their adsorption and degradation efficiency. It 

also affects the generation and stability of reactive species in advanced oxidation 

processes, contributing to the reduction of COD levels in industrial wastewater 

(Alhothali et al., 2021). 

There is a paucity of studies addressing pH levels in effluent, despite its critical 

importance to the water environment. A study conducted in Algeria monitored daily 

inflow and outflow from a STW between 2016 and 2019 to assess whether treated 

wastewater quality met WHO and CCME permissible standards (Guasmi et al., 

2022).  

Although the WFD does not establish a specific pH requirement for rivers and 

other water bodies in England, pH levels remain a crucial factor in assessing their 

overall ecological health. The EA ensures that these water bodies meet good 

ecological standards in accordance with the guidelines outlined by the WFD 

through the 2016 Environmental Permitting Regulations. 

 

1.3.7 Suspended solids (SS) 

Suspended solids (SS) are fine sediment particles in water and pose a long-term 

challenge in wastewater treatment due to their impact on aquatic ecosystems 

(Bilotta and Brazier, 2008; Quinteiro et al., 2015). Their presence can degrade 

water quality and disrupt aquatic habitats, making effective removal essential for 

environmental protection (Abeyratne et al., 2023). 
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Suspended solids originate from various anthropogenic activities, particularly in 

industries such as food processing and oil refining (Roccaro et al., 2014). For 

instance, starch factories generate large amounts of suspended solids, but due to the 

high cost of wastewater treatment, untreated effluent is often discharged (Pidgeon 

and Ness, 2006). Palm oil mill effluent (POME) contains fine cellulosic materials, 

oil, and water, which can pose challenges for conventional biological treatment 

systems (Dominic and Baidurah, 2022). In addition to their environmental impact, 

suspended solids can lead to biofilter clogging, reducing treatment efficiency (Cui 

et al., 2021). The potential for biofouling necessitates the implementation of 

effective treatment methods to ensure compliance with discharge standards. 

Various techniques have been explored for SS removal, including biologically 

activated membrane bioreactors (BAMBi), which adjust retention times to 

eliminate non-biodegradable particles (Ravndal et al., 2015), and sand filtration 

(Fernandes del Pozo et al., 2022). 

Although the WFD does not prescribe a specific standard for suspended solids, 

their concentrations are considered important indicators of hydromorphological and 

physico-chemical pressure. The Freshwater Fish Directive proposes a Guideline 

Standard of 25 mg/L (annual mean), which is not mandatory but is used as a 

reference for managing continuous discharges from activities such as mining and 

quarrying. While exceedance of this threshold does not in itself imply failure to 

meet “good” ecological status under the WFD, it may indicate environmental 

concern in naturally low-turbidity systems such as chalk streams. 

 

1.3.8 Specific conductance (κ) 

Specific conductance, known as Conductivity, is an important water quality 

determinand, which proves to have positive relationship with turbidity, BOD and 

COD (Pathan and Shinde, 2022) and it thought to have strong relationship with 

water contamination (Odjadjare and Okoh, 2010; Mainali and Chang, 2021). In 

wastewater monitoring, conductivity is widely used to indicate pollution levels by 

detecting significant changes in ion concentrations (Bersinger et al., 2015; 

Bondarenko et al., 2016; Mortadi et al., 2020; Wu and Brant, 2020). Studies have 

observed substantial increases in Specific conductance at downstream sites and 
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final effluent points, reflecting elevated ion concentrations due to STW discharges 

(Andrianova et al., 2014; Chusov et al., 2014; Bondarenko et al., 2016). 

In this study, both upstream and downstream sampling points are used to directly 

evaluate the impact of STWs on water quality. WFD does not set specific standards 

for electrical conductivity, but it is used to support water body typology and indicate 

potential anthropogenic pressures. Low alkalinity waters typically show values 

below 70 µS/cm, moderate between 70–250 µS/cm, and high alkalinity waters 

exceed 250 µS/cm, reflecting underlying geological conditions. Significant 

deviations from these background ranges may indicate environmental concern. 

 

1.4 Eutrophication – Chlorophyll (Chl -a) and Silica (SiO2) 

Eutrophication, characterized by excessive nutrient accumulation (e.g., phosphate 

and nitrate), is driven by agricultural runoff, urban stormwater, and STW discharges, 

introducing nitrogen and phosphorus into aquatic systems (Withers et al., 2017; 

Roberts and Cooper, 2018; Smith et al., 2020). These inputs can trigger harmful 

algal blooms, reducing water clarity, depleting oxygen, and disrupting aquatic food 

webs, leading to biodiversity loss and economic impacts (Heisler et al., 2008; 

Graham et al., 2015). 

Chlorophyll concentration serves as a key indicator of algal biomass and 

eutrophication, providing insights into nutrient enrichment and ecosystem health 

(Kim et al., 2020). A widely used threshold of 15 µg/L identifies chlorophyll 

incidents, signalling ecological disturbances such as algal blooms (Bowes et al., 

2019). This threshold is critical in regulatory frameworks for setting water quality 

targets and assessing eutrophication risks. 

Diatoms, an essential phytoplankton group, require silica to form their frustules 

(Kröger et al., 1999). Adequate silica availability supports diatom dominance (Yool 

and Tyrrell, 2003), which helps maintain water clarity (Marella et al., 2020) and 

sustains productive food webs (Harvey et al., 2019). However, eutrophic conditions 

often lead to silica depletion (Schelske and Stoermer, 1971), promoting harmful 

algal blooms and ecosystem imbalances (Wurtsbaugh et al., 2019). 
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Monitoring chlorophyll concentrations over time helps evaluate nutrient impacts 

from STW effluents and assess the effectiveness of mitigation strategies. Integrated 

approaches, including advanced STW nutrient removal, improved land-use 

practices, and public awareness campaigns, are essential for managing 

eutrophication and maintaining ecological balance. 

 

1.5 Metals 

Metal concentrations in aquatic environments are often reported as dissolved 

concentrations, but only a fraction of this—known as the bioavailable 

concentration—is directly accessible for biological uptake and toxicity. 

Bioavailability is influenced by water chemistry parameters such as pH, dissolved 

organic carbon (DOC), and Calcium (Ca), which can alter metal speciation and 

interaction with biota (de Paiva Magalhães et al., 2015). Therefore, relying solely 

on dissolved concentrations may still misrepresent ecological risk. 

Metals such as Cadmium (Cd), Copper (Cu), Nickel (Ni), and Zinc (Zn) are 

recognized for their toxicity to aquatic ecosystems at elevated concentrations 

(Emenike et al., 2022; Chen et al., 2023). These metals can persist in the 

environment, bioaccumulate in organisms, and disrupt ecological balance. 

However, the bioavailability and toxicity of these metals are influenced by water 

quality parameters such as pH, DOC, and Ca, which modify their behaviour and 

ecological impact (Di Toro et al., 2001; Heijerick et al., 2003). 

While Ca and Mg are essential nutrients, they regulate the bioavailability of toxic 

metals, competing for binding sites on aquatic organisms (de Paiva Magalhães et 

al., 2015). STWs have been identified as sources of metals, particularly Cd and Ni, 

due to variations in sewage treatment efficiency and combined sewer systems 

(Chon et al., 2012). 

Previous studies have explored heavy metal impacts on rivers and estuaries but 

have often been limited in spatial or temporal scope. For example: Molloy and Hills 

(1996) focused on industrial pollution trends in the Firth of Clyde, assessing Zn, 

Manganese (Mn), Iron (Fe), Cu, Lead (Pb), and Ni, but did not evaluate STW 

influences. Similarly, Bubb and Lester (1995) demonstrated that sewage effluents 
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increased Cu, Cd, Fe, Pb, and Mn concentrations in the River Yare, UK, and 

enhanced metal complexation, but their analysis was limited to sediment-phase 

accumulation and did not assess bioavailability or downstream water column 

variation linked to STWs. Chon et al. (2012) examined metals in the Aire-Calder 

catchment and identified STWs as primary sources of Cd and Ni but found minimal 

contributions of STWs for Pb and Hg. Metals such as Cd, Cu, Ni, and Zn are highly 

toxic to aquatic organisms, even at trace concentrations (DeWitt et al., 1996; Wang 

et al., 2020). Once released into rivers, these metals bioaccumulate in aquatic 

organisms and bio magnify through the food web, posing risks to top predators, 

including humans (Izegaegbe et al., 2020). Elevated metal concentrations can also 

alter ecosystem functions, disrupting nutrient cycling, microbial communities, and 

overall ecological balance (Dong et al., 2021). Additionally, high metal levels 

contribute to degraded water quality, increasing turbidity and sedimentation, which 

can impact drinking water sources, recreational activities, and aquatic habitat 

sustainability (Birch and Olmos, 2008). 

This study expands on prior research by focusing on eight metals—Ca, Mg, Cd, 

Cu, Ni, Fe, Zn, and Mn—to assess their concentration changes downstream of 

STWs and their bioavailability in receiving waters. Bioavailability, which 

determines the fraction of metals available for biological uptake, is a crucial factor 

in assessing ecological risk (Hering et al., 2010). Unlike total metal concentrations, 

bioavailable fractions provide a more accurate indication of potential toxicity. 

Excessive metal concentrations interfere with nutrient cycling and biological 

functions in aquatic organisms, leading to adverse effects such as reduced growth, 

reproduction, and survival rates. Bioaccumulation further amplifies these risks 

across trophic levels, ultimately impacting higher predators, including humans. 

To mitigate ecological risks, regulatory frameworks such as the WFD and EQS 

establish permissible concentrations for metals in effluents. For instance, the UK 

EQS limits for Cd, Cu, Ni, and Zn are 0.05 mg/L, 0.5 mg/L, 0.5 mg/L, and 2 mg/L, 

respectively.   

By integrating bioavailability models with long-term datasets, this study aims to 

provide a comprehensive assessment of metal impacts and inform management 

strategies for achieving ecological health standards in aquatic systems.
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1.5.1 Calcium (Ca) 

Calcium plays a pivotal role in regulating water hardness, buffering capacity, and 

pH levels  (Harvey et al., 2019; Weyhenmeyer et al., 2019). It also plays a crucial 

role in modulating metal bioavailability and toxicity by competing for binding sites 

on aquatic organisms, thereby reducing the uptake of toxic metals such as Cu and 

Zn (Allen and Janssen, 2006). Additionally, calcium supports ecosystem stability 

and biodiversity, as many aquatic species rely on specific calcium-to-metal ratios 

for physiological functions (Wang et al., 2014; de Paiva Magalhães et al., 2015). 

STWs influence calcium concentrations through their treatment processes, often 

using calcium-containing compounds (e.g., lime) for pH regulation and 

precipitation (Hering et al., 2010; Liu et al., 2011). As a result, effluent discharge 

can elevate calcium levels in receiving waters, altering water chemistry and 

buffering capacity (Bourg and Loch, 1995). While increased calcium levels can 

help mitigate acidity and metal toxicity, excessive inputs may also impact metal 

mobility and solubility, affecting their transport and bioavailability downstream 

(Miranda et al., 2022). 

Calcium also plays a role in metal sedimentation and nutrient cycling. Elevated 

calcium concentrations can reduce metal bioavailability by forming insoluble 

complexes or precipitates, limiting their uptake by aquatic organisms (Peters et al., 

2014). Conversely, fluctuations in calcium levels may disrupt ecological dynamics, 

particularly for species that require stable calcium concentrations for survival 

(Allen and Janssen, 2006). The interaction between calcium, pH, and DOC further 

influences metal solubility and toxicity, with higher calcium concentrations often 

leading to reduced metal solubility under neutral to slightly alkaline conditions 

(Romkens et al., 1996; Tsui et al., 2006). 

Understanding calcium dynamics in aquatic systems is essential for developing 

effective pollution management strategies and ensuring compliance with regulatory 

frameworks such as the EU WFD. By linking calcium concentrations to water 

quality and ecosystem health, this study aims to provide insights into the broader 

implications of STW operations on river ecosystems. 

There is currently no specific EQS standards or discharge limit set for Ca in the 

UK. However, calcium plays a key role in determining water hardness, which in 
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turn affects the behaviour and toxicity of various pollutants, particularly metals. 

WHO notes that water with hardness values of 200 mg/L or higher (measured as 

calcium carbonate) may lead to scale formation, whereas water with hardness below 

100 mg/L can be more corrosive to pipework. 

 

1.5.2 Magnesium (Mg) 

As an essential element in aquatic ecosystems, magnesium plays an important role 

in regulating water chemistry and influencing ecological processes (Pleshchitser, 

1958; Novak et al., 2020). As a major contributor to water hardness, magnesium 

interacts with other metals and ions (Atouei et al., 2016), regulating their solubility, 

mobility, and bioavailability (Berthon et al., 1983; Blaquiere and Berthon, 1987). 

These interactions are crucial for understanding the dynamics of aquatic ecosystems 

and their susceptibility to pollution, especially in receiving waters affected by 

STWs (Ling et al., 2017; Anggayasti et al., 2023). 

STWs influence magnesium levels through wastewater composition and 

treatment processes. Magnesium hydroxide, commonly used for pH neutralization 

and chemical precipitation, can increase Mg concentrations in effluent discharges 

(Hering et al., 2010; Devlin et al., 2019; Fouda et al., 2021). Once released into 

rivers, these elevated Mg levels modify water chemistry, enhancing buffering 

capacity and mitigating the effects of acidic discharges (Bourg and Loch, 1995). 

However, excess magnesium may also alter metal speciation and transport, 

influencing the mobility of contaminants such as Cu and Cd (de Paiva Magalhães 

et al., 2015). 

Magnesium has a dual role in metal toxicity regulation. It can reduce metal 

bioavailability by competing with toxic metals such as Ni and Zn for binding sites 

on aquatic organisms, thereby lowering their toxicity (Allen and Janssen, 2006). 

Additionally, Mg interacts with DOC to form complexes, influencing metal 

transport downstream (Peters et al., 2014). However, at excess concentrations, Mg 

can disrupt ionic balance, potentially affecting osmoregulation and physiological 

functions in aquatic organisms (Fagerbakke et al., 1999; Mooney et al., 2020). 

The role of magnesium in pH stabilization and metal speciation has significant 

implications for pollution risk assessment and water quality management 



21 

 

(Semerjian and Ayoub, 2003; Cotruvo et al., 2017). Higher magnesium 

concentrations can reduce metal solubility and toxicity under neutral to alkaline 

conditions, improving water quality (Brown and Markich, 2024). However, in 

ecosystems with disproportionately high magnesium inputs, ecological balance 

may be disrupted, requiring targeted management strategies (Mooney et al., 2020). 

Despite its importance, the role of magnesium in modifying metal toxicity 

remains underexplored compared to other water quality parameters. This study aims 

to assess the influence of STW discharges on Mg concentrations in receiving rivers 

and evaluate their ecological consequences. By linking Mg levels to key water 

chemistry parameters and ecosystem health, this research provides insights into 

STW-related aquatic pollution and contributes to sustainable water resource 

management. 

In the United Kingdom, there are no specific EQS standards or discharge limits 

established for Mg in surface waters. However, magnesium, along with calcium, 

contributes to water hardness, which can influence the behaviour and toxicity of 

various pollutants. 
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1.5.3 Cadmium (Cd) 

Cadmium is a highly toxic, bioaccumulative heavy metal and a priority pollutant 

due to its severe ecological and health risks (Emenike et al., 2022). Even at trace 

levels, cadmium disrupts biological processes, reduces biodiversity, and 

accumulates in sediments and aquatic organisms, magnifying its toxicity through 

the food web (Taylor, 1983; Zhao and Marriott, 2013; Andresen et al., 2016). 

Cadmium exposure disrupts enzyme activity, ion regulation, and reproduction in 

aquatic organisms (Paquin et al., 2002). Chronic accumulation leads to toxic effects 

across trophic levels, including risks to human health via contaminated fish and 

water (Ali et al., 2024). 

Cadmium contamination in aquatic ecosystems is largely attributed to industrial 

discharges (Shrestha et al., 2021), mining operations (Chan et al., 2021), 

agricultural runoff (Jiraungkoorskul et al., 2016), and sewage treatment works 

(STWs) (He et al., 2025). The limited desorption efficiency of cadmium from 

sewage sludge suggests that STWs may not fully remove dissolved cadmium during 

conventional treatment processes (Choi and Yun, 2006). Additionally, cadmium can 

remobilise from sediments under changing redox conditions, further complicating 

its management (Phaenark et al., 2024). 

Cadmium bioavailability, which determines its ecological impact, is influenced 

by pH, water hardness, and DOC (Wang et al., 2019). Under acidic conditions, 

cadmium solubility increases, leading to greater toxicity to aquatic organisms 

(Bourg and Loch, 1995). Conversely, high Ca and Mg concentrations in hard water 

can reduce cadmium’s toxicity by competing for binding sites on organisms (de 

Paiva Magalhães et al., 2015). DOC also plays a role by forming cadmium 

complexes, which reduce immediate bioavailability but facilitate long-distance 

transport (Peters et al., 2014). 

To mitigate cadmium pollution, regulatory frameworks such as the European 

Union’s Urban Wastewater Treatment Directive (UWWTD) and EQS have 

established stringent discharge limits (0.05 mg/L in the UK). Compliance requires 

advanced treatment technologies such as chemical precipitation, ion exchange, and 

adsorption using activated carbon or biosorbents (Oliveira et al., 2007). Recent 

innovations, including constructed wetlands and enhanced biological processes, 
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offer alternatives for cadmium removal, though efficiency varies depending on site-

specific factors (Plaimart et al., 2024). 

 

1.5.4 Copper (Cu) 

Copper is an essential trace element but becomes toxic at elevated concentrations, 

posing risks to aquatic ecosystems (Nor, 1987; Kiaune and Singhasemanon, 2011). 

Its persistence in water is enhanced by complexation with inorganic ions (e.g., 

sulfates, chlorides) and organic ligands (e.g., humic substances), making it difficult 

to remove via conventional wastewater treatment (Sarathy and Allen, 2005; 

Constantino et al., 2015). This persistence is a major concern, particularly in STWs, 

urban runoff, industrial discharges, and diffuse sources like agriculture and from 

antifouling paints (Steiner and Boller, 2001; Sidondi et al., 2024a). 

Copper bioavailability is strongly influenced by pH, DOC, and water hardness 

(Di Toro et al., 2001). Under acidic conditions, copper remains highly soluble and 

toxic (Bourg and Loch, 1995), whereas DOC complexation reduces bioavailability 

by binding copper into stable organic forms (Peters et al., 2014). Additionally, 

higher water hardness (Ca and Mg levels) mitigates toxicity by competing for 

biological binding sites (de Paiva Magalhães et al., 2015). 

Elevated copper levels interfere with respiration and ion regulation in fish by 

damaging gill membranes, leading to reduced survival, growth, and reproductive 

success, particularly in sensitive species like salmonids (Heijerick et al., 2003; 

Jonsson, 2023). Copper also bioaccumulates in lower trophic organisms (e.g., 

plankton, benthic invertebrates) and biomagnifies through the food web, impacting 

higher predators, including birds and mammals (Allen and Janssen, 2006). 

Environmental policies, such as the WFD and UK EQS, set copper limits at 28 

µg/L for freshwater and 3 µg/L for saltwater (Comber et al., 2008). However, STWs 

remain a major contributor due to the ineffectiveness of standard filtration and 

precipitation methods in removing dissolved copper (Hutchinson, 2003; Chon et al., 

2012). 

To address these challenges, recent advances in wastewater treatment focus on 

bioavailable copper removal rather than on the total concentration. Techniques such 
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as enhanced filtration, adsorption using activated carbon, and constructed wetlands 

show promise but require site-specific optimization (Rafiu et al., 2007; Plaimart et 

al., 2024). Understanding copper dynamics in river systems is crucial for improving 

management strategies and ensuring regulatory compliance to protect aquatic 

ecosystems. 

 

1.5.5 Nickel (Ni) 

Nickel is a transition metal that occurs naturally but is influenced by human 

activities (Heijerick et al., 2003; Jonsson, 2023). Industrial discharges, mining 

activities, electroplating and alloy manufacturing, agricultural runoff, and STWs 

are major sources of nickel contamination in water bodies (Kumar and Dwivedi, 

2021; Parades-Aguilar et al., 2021). Despite STW treatment efforts, nickel often 

remains in dissolved or particulate forms, influencing its bioavailability and 

environmental persistence (Simpson et al., 2014). 

Nickel toxicity disrupts ecosystem functions by interfering with nutrient cycling 

and biodiversity. It impairs reproduction, survival, and enzyme activity in aquatic 

organisms, leading to oxidative stress and cellular damage (Naz et al., 2023). Nickel 

also bioaccumulates in organisms, with long-term exposure posing risks through 

biomagnification up the food chain (Ali et al., 2024). 

The bioavailability of nickel is influenced by pH, redox conditions, and DOC 

(Peters et al., 2014). Acidic conditions increase nickel solubility and toxicity, while 

higher pH and water hardness (Ca and Mg presence) reduce bioavailability by 

competing for biological binding sites (de Paiva Magalhães et al., 2015). DOC 

forms complexes with nickel, which can decrease immediate toxicity but enhance 

downstream transport (Worrall et al., 2019). 

To mitigate nickel contamination, EQS limits nickel concentrations in 

freshwater to 20 μg/L in the UK. However, compliance remains challenging due to 

residual nickel in STW effluents (Hutchinson, 2003). Optimised treatment methods 

such as ion exchange, adsorption, and biological filtration have shown promise, yet 

site-specific variations affect their efficiency (Oliveira et al., 2007; Plaimart et al., 

2024). 
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This study integrates bioavailability models with long-term datasets to refine 

nickel risk assessments and enhance pollution management strategies.  

1.5.6 Iron (Fe) 

Iron (Fe) is a naturally abundant element in freshwater ecosystems and plays a 

critical role in biogeochemical cycling. It primarily exists in two oxidation states: 

ferrous iron (Fe²⁺), which is soluble and bioavailable, and ferric iron (Fe³⁺), which 

is insoluble and forms precipitates under oxic conditions. This oxidation-reduction 

cycle, influenced by pH, redox potential, and dissolved oxygen levels, determines 

the mobility, bioavailability, and ecological effects of Iron (Bourg and Loch, 1995). 

Iron enters aquatic systems through natural processes such as rock weathering, 

soil erosion, and groundwater discharge. However, anthropogenic activities, 

including STWs, mining, and industrial operations, elevate iron concentrations (He 

et al., 2025). STWs contribute iron through the use of iron salts (e.g., ferric chloride, 

FeCl₃) in phosphorus removal, leading to iron-enriched effluents (Matthiessen et 

al., 1999). Once released, iron can remain dissolved in anoxic conditions or 

precipitate as ferric hydroxide [Fe (OH)₃] in oxygen-rich environments, forming 

rust-coloured deposits in sediments. 

Excessive iron in aquatic ecosystems can affect water quality and ecosystem 

health in several ways: 

• Increased turbidity and sedimentation: Ferric precipitates reduce water 

clarity, alter sediment composition, and smother benthic habitats, affecting 

invertebrate and fish populations (Plaimart et al., 2024). 

• Photosynthesis inhibition: High turbidity limits light penetration, disrupting 

phytoplankton growth and reducing oxygen production (Hutchinson, 2003). 

• Oxygen depletion: Microbial oxidation of Fe²⁺ to Fe³⁺ consumes dissolved 

oxygen, exacerbating hypoxic conditions, particularly in stratified water 

bodies (Worrall et al., 2019). 

• Formation of iron-organic complexes: Dissolved organic carbon (DOC) 

binds iron ions, reducing immediate toxicity but enhancing downstream 

transport, potentially affecting distant ecosystems (Peters et al., 2014). 
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The toxicity of Iron to aquatic organisms depends on environmental conditions. 

Under anoxic or acidic conditions, Fe²⁺ remains soluble and highly bioavailable, 

leading to potential toxicity through osmoregulatory and respiratory interference 

(Price et al., 2022). In contrast, neutral or alkaline conditions promote Fe³⁺ 

precipitation, reducing immediate toxicity but contributing to sediment pollution. 

The WFD and EQS recommend dissolved iron concentrations below 1 mg/L 

(Comber et al., 2008) to minimize iron-related ecological risks. Achieving 

compliance requires effective STW operations, advanced iron removal 

technologies, and continuous monitoring to track seasonal fluctuations in iron levels. 

 

1.5.7 Zinc (Zn) 

Zinc is an essential trace element for biological functions, but excessive 

concentrations in aquatic systems pose toxicity risks to organisms and disrupt 

ecological balance. Zinc contamination originates from industrial discharges, 

agricultural runoff, urban wastewater, and STWs (He et al., 2025). Conventional 

STW processes struggle to remove zinc effectively, as dissolved Zn²⁺ ions persist 

through primary and secondary treatment (He et al., 2025). While advanced 

treatment methods such as electrocoagulation and adsorption (e.g., chitosan, 

activated carbon) improve removal efficiency, cost and operational complexity 

limit widespread adoption (Plaimart et al., 2024). 

Excess zinc in freshwater systems can significantly alter water chemistry, 

microbial diversity, and aquatic fauna. It tends to adsorb onto sediments or form 

complexes with organic and inorganic ligands, reducing its mobility and altering its 

downstream bioavailability (Peters et al., 2014). Elevated zinc concentrations have 

been shown to disrupt microbial communities, leading to decreased diversity and 

impaired nutrient cycling and other essential ecological processes (Matthiessen et 

al., 1999). Furthermore, zinc can interfere with enzyme activity, osmoregulation, 

and metabolic functions in aquatic organisms, resulting in reduced growth and 

reproduction rates in fish and invertebrates (Naz et al., 2023). Over time, zinc can 

also bioaccumulate in lower trophic levels and bio magnify through the food web, 

posing health risks to top predators, including humans who consume contaminated 

fish (Ali et al., 2024). 
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To mitigate zinc pollution, the WFD and EQS set dissolved zinc limits at 10.9 

µg/L to minimize aquatic toxicity risks.  

1.5.8 Manganese (Mn) 

Manganese is an essential micronutrient for aquatic organisms and plays a crucial 

role in enzymatic processes and metabolic functions. However, manganese can 

become toxic at elevated concentrations, affecting aquatic ecosystems and posing 

risks to human health. Manganese contamination in rivers can arise from natural 

processes such as rock weathering, as well as anthropogenic sources, including 

STWs, industrial effluents, and mining activities (He et al., 2025). Due to its 

complex geochemical behaviour, manganese presents considerable challenges for 

water quality management. 

In STW effluent, manganese predominantly exists in the soluble form Mn²⁺, 

which remains bioavailable under anoxic or low-oxygen conditions (Matthiessen et 

al., 1999). Oxidation and Precipitation: In oxygen-rich environments, Mn²⁺ is 

oxidized to Mn³⁺ and Mn⁴⁺, forming insoluble manganese oxides that precipitate as 

sediments (Plaimart et al., 2024). This precipitation process increases turbidity and 

sedimentation, potentially smothering benthic habitats. Complexation with Organic 

Matter: Manganese can form complexes with dissolved organic carbon (DOC), 

enhancing its transport downstream while modulating its bioavailability (Peters et 

al., 2014). Adsorption to Particles: Manganese ions can adsorb onto suspended 

sediments and clay particles, further influencing their distribution and ecological 

impact (Muliwa et al., 2019). 

The behaviour and bioavailability of Mn are dependent on environmental 

conditions. In STW effluents, Mn is predominantly present as soluble Mn²⁺, which 

remains bioavailable under anoxic or low-oxygen conditions (Matthiessen et al., 

1999). Under toxic conditions, Mn²⁺ is oxidised to Mn³⁺ or Mn⁴⁺, forming insoluble 

oxides that precipitate and increase turbidity (Plaimart et al., 2024). Mn also forms 

complexes with DOC, which modulates toxicity and facilitates downstream 

transport (Peters et al., 2014), and may adsorb onto suspended particles such as clay, 

further affecting its mobility (Muliwa et al., 2019). Acidic pH enhances solubility 

and toxicity, while higher temperatures accelerate redox cycling (Bourg and Loch, 

1995; Worrall et al., 2019). 
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To safeguard aquatic ecosystems and human health, regulatory frameworks such 

as the WFD have established EQS for Mn. In the UK, concentrations in surface 

waters are generally required to remain below 0.3 mg/L to ensure compliance and 

minimise ecological risk. 

 

1.6 Bioavailability and STW Influence on Metal Dynamics 

While total metal concentrations provide a baseline for monitoring, 

bioavailability—defined as the fraction of metals available for uptake by 

organisms—determines actual ecological risk (Peijnenburg et al., 1997; Vaananen 

et al., 2018). Key factors influencing bioavailability include pH, water hardness, 

and DOC (de Paiva Magalhães et al., 2015). 

STWs discharge a complex mix of nutrients, organic matter, and residual metals, 

which may alter the water chemistry of receiving rivers (Srivastava et al., 

2022).These chemical changes can directly influence metal bioavailability through 

two main mechanisms. First, elevated levels of DOC downstream of STWs may 

bind with metals to form stable complexes, thereby reducing their immediate 

toxicity to aquatic organisms  (Van Veen et al., 2002). Second, STW effluents can 

lower pH, particularly in soft or poorly buffered waters, increasing the proportion 

of free ionic metal species, which are more bioavailable and toxic (Worrall et al., 

2019). These combined effects complicate metal speciation and transport and 

underscore the importance of bioavailability-based assessment in evaluating STW 

impacts. 

Despite recognition of the importance of bioavailability, considerable 

knowledge gaps remain. Most existing studies focus on localised river sections, 

with limited assessments conducted at the catchment or national scale. Additionally, 

there is insufficient research on how STW discharges influence bioavailable metal 

concentrations under varying environmental conditions. Furthermore, the 

frequency with which metal concentrations downstream of STWs exceed 

bioavailability-based EQS thresholds remains unclear, raising important questions 

for regulatory policies. 
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1.7 Thesis Structure 

This thesis is organised into five main chapters, each addressing specific aspects of 

how STWs affect river water quality in England: 

• Chapter 2 evaluates the impact of STW discharges on non-metal water 

quality determinands, including temperature, BOD, COD, nitrate, 

phosphate, pH, suspended solids, and Conductivity, while considering 

geographical variation and STW characteristics. 

• Chapter 3 investigates the influence of STW discharges on dissolved metal 

(Ca, Mg, Cd, Cu, Ni, Fe, Zn, Mn) and bioavailable metal (Cu, Zn, Mn Ni) 

concentrations, with attention to spatial patterns, STW characteristics, and 

bioavailability. 

• Chapter 4 examines the role of STW discharges in nutrient enrichment and 

eutrophication, focusing on chl-a, SiO2, and the frequency of eutrophication 

incidents. 

• Chapter 5 expands the analysis to the national scale, assessing spatial and 

temporal patterns of bioavailable metal pollution and exceedances of EQS 

using the M-BAT model. 

• Chapter 6 provides a synthesis of the findings, highlighting the overall 

significance of STW discharges for riverine water quality, outlining study 

limitations, and identifying directions for future research. 

Collectively, these chapters provide a comprehensive assessment of the 

ecological and chemical implications of STW discharges, supporting the 

development of effective pollution management strategies under the WFD and EQS. 
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Chapter 2: Non-metal Determinands1 

2.1 Introduction 

This chapter analyses stream temperature (T), biochemical oxygen demand (BOD), 

chemical oxygen demand (COD), nitrate (NO3
-), phosphate (PO43-), pH, suspended 

solids (SS), and specific conductance (κ) in river waters to understand whether 

discharges from STWs have had an impact. These determinands have a direct or 

indirect impact on river water quality and their impacts have been reviewed in the 

previous chapter. The hypothesis proposed was that, if a STW discharge had a 

significant impact on river water quality (e.g., stream temperature), then the value 

of the determinand in the receiving river would be different downstream of the 

discharge. However, with every catchment having a different background river 

water quality, the comparison was performed as the difference between the 

upstream and downstream of the STW discharge. Furthermore, a water quality 

determinand, such as stream temperature, may be expected to change downstream 

anyway, and so the comparison upstream and downstream on a river reach with a 

STW’s discharge must also be compared to changes across river reaches without a 

STW discharge. 

Key questions of this chapter are then: 

• Does the final sewage effluent discharge from STWs cause a significant 

change in the concentration, or value, of water quality determinands? 

• If STWs discharges cause a difference to river water quality can these 

differences be explained by differences between the size and nature of the 

STWs? 

 

1 The majority of this chapter has been accepted (pending minor revisions) into Ecohydrology. 
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2.2 Approach and Methodology 

The approach of this study was to consider the impact of discharges from STWs for 

a range of determinands while controlling for influence of the difference between 

years, months and control river reaches for a range of STWs. If significant impacts 

are demonstrated then the effect of each STW is compared to its properties of the 

sewage works to assess whether treatment approaches, technologies or the scale of 

the works influences its impact on receiving waters.  

 

2.2.1 Study data 

In this study, 21 years (2000 to 2020) of river water quality data from English rivers 

was used. All the water quality data used were collected by the Environment 

Agency (EA) – the UK government`s environmental protection agency in England. 

The monitoring of the EA includes chemical oxygen demand (COD); biochemical 

oxygen demand (BOD); river water temperature (T); suspended solids (SS); pH; 

specific conductance; nitrate concentration (NO3
-); and orthophosphate 

concentration (PO4
3-). Note that within this study BOD is henceforward referred to 

as a concentration where it is a rate or capacity, i.e. it is decline in concentration of 

dissolved O2 over a period of 5 days. In addition to the water quality data from the 

river monitoring points above and below discharges and for control rivers, data 

measured in the final effluent discharge were also examined for comparative 

purposes although not included in the statistical analysis for this chapter. The 

analytical methods used by the EA are detailed by the UK government’s Standing 

Committee of Analysts (http://standingcommitteeofanalysts.co.uk/).  

Only routine water quality monitoring data were included in this study and data 

collected as part of unplanned reactive monitoring for the investigation of statutory 

failures were excluded as they would have biased analysis in favour of an impact 

of sewage discharges because they increased frequency of sampling at the time of 

suspected high sewage discharge. Further, only monitoring sites with at least 20 

measurements over at least 20 years were included.  

 

http://standingcommitteeofanalysts.co.uk/
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STW and Control Pairs 

The study identified all monitored STWs discharges where the stream temperature 

of the final sewage effluent had been measured. Stream temperature was the most 

widely sampled of the determinands of interest and so this gave the largest initial 

dataset from which suitable sites could be selected.  For each of these discharges, 

the nearest monitoring points on the receiving river were then examined. River 

water monitoring sites were chosen if a pair of river water monitoring sites could 

be found where one of the sites was upstream of the STW discharge and the other 

was downstream of the STW discharge. Further, pairs of sites were chosen if the 

two monitoring sites were on the same river and no identifiable stream, or other 

discharge, had joined the receiving river in between the two river water monitoring 

sites. These paired monitoring sites, one upstream and one downstream of the STW 

discharge are henceforward referred to as STW pairs (Figure 2.1).  

It could be expected that river water quality would change downstream 

regardless of the presence or absence of a STW discharge and that any pair of 

sampling sites upon a river would be different. Therefore, all river water monitoring 

sites in England, where water quality had been monitored between 2000 and 2020, 

were examined. Pairs of sites were selected where they were up and downstream of 

each other without any known discharge between or any known stream joining the 

monitored river. Henceforth, these pairs of monitoring sites are known as Control 

pairs (Figure 2.1). In each case, the Control pair was chosen such that it did not 

have a common monitoring site with any STW pair. It would be hypothesized that, 

if STW discharges are changing a water quality determinand then the river water 

quality differences in STW pairs will be greater than that for Control pairs.  For 

both the control and STW pairs river water quality determinand differences were 

calculated where an observation was made on the same day – it was not possible to 

pair data at a sub-daily level. If there was only one determinand value for a pair on 

a particular day, be that a STW or Control pair, then that pair was excluded from 

further analysis. 



33 

 

 

Figure 2.1 STW pair and Control pair. 

Through this process, 442 STW and 419 Control pairs were initially identified 

from the stream temperature records. Visual inspection of the distribution of the 

STW and Control pairs shows no apparent bias in the location of the pairs (Figure 

2.2). When completeness of data and determinands other than stream temperature 

was considered then the number of pairs that could be considered was smaller 

(Table 2.1). Once the number of pairs that could be matched for being sampled 

upon the same day then there were more pairs for pH than for stream temperature 

and the lowest number of pairs were for COD. Wherever available, the final effluent 

data for the STW within the each STW pair was also extracted from the EA WIMS 

database, but this final effluent concentration data was only ever used for 

comparison purposes and not used within the statistical analysis. 

       

  

 

 

 

 

 

 

 

(a) STW pairs                                                            (b) Control pairs 

Figure 2.2. Spatial distribution of STW and control site pairs.  
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Table 2.1. The number of pairs, both STW and Control, that could be included in 

this study. 

Determinand STW Pairs Control Pairs 

Temperature (°C) 256 168 

BOD (mg O2/L) 168 100 

COD (mg O2/L) 40 24 

Phosphate (mg P/L) 317 232 

Suspended solids (mg/L) 180 169 

pH 202 150 

Nitrate (mg N/L) 73 45 

Specific conductance (µS/cm) 255 187 
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Covariates 

Any difference between pairs of monitoring points, whether control or STW pairs, 

could be due to the physical arrangement of the pair, e.g., some water quality 

determinands can be expected to change downstream, with or without the presence 

of a sewage discharge. Therefore, if determinands could be expected to change 

downstream then the greater the distance between monitoring points the greater the 

expected difference in the water quality determinands. If the distance between 

monitoring points within a Control or STW pair could make a difference, then this 

study needs to show that difference due to the presence of a STW discharge is 

independent of the distance between monitoring sites in a pair. Therefore, the 

Euclidean distance between the monitoring points within each pair, both STW and 

Control pairs, was calculated and included as a covariate in the analysis.  

Equally, it could be expected that for some determinants, e.g. stream temperature, 

the value of the determinant would be lower at higher altitudes to account for the 

physical relationship between monitoring sites within each pair, the altitude above 

sea level of both upstream and downstream sites for all pairs was included as a 

covariate in the analysis.  Finally, river water quality determinands are known to 

vary across the hydrograph and so to control for differences in flow conditions at 

the time of each sampling flow the nearest river flow gauging station to each pair 

was located. River flow records for the UK were taken from the National River flow 

Archive (www.nrfa.ac.uk). If the nearest riverflow gauging station was on the same 

river as the Control or STW pair, then its flow record was downloaded. However, 

river flow would be expected to differ just because of the catchment area and 

location across the study region. So, to make pairs comparable with respect to their 

flow records at the time of water quality measurement each flow record was 

converted to its percentile flow record and then it was the percentile flow (percent 

rank) that was included as a covariate in the analysis. Therefore, three covariates 

were included in the subsequent analysis – Euclidean distance between monitoring 

points; altitude of the upstream and downstream monitoring points; and the 

percentile riverflow at the time of sampling. The visual inspection of the covariates 

between the pairs suggested no systematic bias in site selection (Table 2.2). 

However, sub-sampling necessary for each determinand may alter this selection.
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Table 2.2. Mean properties of the covariates for the Control and STW pairs.  

                      Type 

 Control STW 

Euclidean distance (m) 1519 1823 

Upstream altitude (m_asl) 107 89 

Downstream altitude (m_asl) 81 81 

Percentile flow (%) 51 52 
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2.2.2 Statistical analysis 

Data from STW and Control pairs were evaluated using analysis of variance 

(ANOVA), incorporating four factors. The first factor, known as the Type factor, 

differentiated between STW and Control pairs. The Year factor accounted for the 

year of data collection, spanning from 2000 to 2020, creating 21 levels. The Month 

factor represented the month in which data were collected, adding another 12 levels 

to the model. Lastly, the Pair factor captured the variance between individual pairs, 

with the number of levels varying depending on the determinand under 

consideration and not uniformly distributed across the Type factor levels (refer to 

Table 2.1). The study design ensured that sample sizes were adequate for testing 

the significance of these factors and their interactions, with the Pair factor nested 

within the Type factor.  

The primary objective of this investigation was to rigorously test all factors. 

ANOVA was initially performed without covariates, followed by a subsequent 

analysis including them. 

Before conducting ANOVA, data distribution was tested for normality using the 

Anderson–Darling test, with log transformation applied as needed. Data 

distribution was then assessed with a QQ plot, and outliers were selectively 

removed, ensuring no more than 5% of the dataset was excluded. Unless stated 

otherwise, significance thresholds were set at a 5% probability, equating to a 95% 

confidence interval for the effects being non-zero. The impact of each statistically 

significant factor and its interactions was quantified using η2, which measures the 

contribution of each factor to the observed variability in the variable. Additionally, 

if consecutive factors such as Year and Month were statistically significant, their 

trends were tested using a linear model.  

The second aim of this study was to assess the reasons behind any significant 

difference caused to the receiving water caused by the individual STWs. Firstly, the 

main effects for each water quality determinand for each STW were correlated 

against each other with the aim of understanding whether an STW which shows a 

large impact for one determinand shows large effects for other determinands, eg, if 

an STW has a large, demonstrated impact for nitrate upon its receiving river then is 

it also likely to have a large impact for BOD, etc. The correlation analysis was 
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enhanced by the use of principal component analysis (PCA). Correlation analysis 

was used in conjunction with PCA because the PCA requires that the main effect 

for all determinands were available for an STW, whereas correlation analysis 

requires that only the two determinands to be correlated are available for a specific 

STW, i.e. correlation analysis has access to larger sample size than the PCA. The 

PCA was performed on z-transformed data and principal components with an 

eigenvalue ≥1 was considered for examination. Secondly, to discern the varying 

impacts of individual STWs, the results from STW pairs were classified into a 

binary outcome: the presence or absence of a significant effect for each determinand. 

The frequency of significant effects for each STW type was based on the 

characteristics of each STW using a Chi-squared test. Each STW was categorised 

by their treatment capabilities, including the presence or absence of secondary, 

tertiary, nitrogen removal, and phosphorous removal processes. Furthermore, the 

secondary treatment was subdivided as either secondary activated sludge (SAS) or 

secondary biological treatment (SB), and tertiary treatment was divided into tertiary 

activated sludge (TAS) and tertiary biological treatment (TB). The second approach 

was to  use linear regression to compare the effect scale for each STW pair with the 

population equivalence (PE) and dry weather flow (DWF) of each STW. The PE 

and DWF of each STW being continuous variables, were excluded from the Chi-

squared tests. The significance of these comparisons was determined based on a 5% 

probability threshold for the regression coefficients being greater than zero. 

All statistical analyses were performed using RStudio v 4.3.1.
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2.3 Results 

An outline of the average final effluent concentration is given in Table 2.3 and in 

each case, except pH, the downstream mean value was greater than that observed 

upstream (Table 2.3). Therefore, a priori and independent of the relative magnitudes 

of discharge, it might be expected that STW final discharge will increase the 

concentration in the receiving river.  

Arithmetic means were calculated for upstream, downstream and final effluent 

concentrations for each determinand using all available monitoring records. Mean 

values were used to characterise long-term central tendency and to enable 

comparison across site types and with effluent quality. They are not intended to 

characterise short-term variability or extreme discharge events. 

 

2.3.1 Impact of STW discharges 

The study has a large dataset for each determinand and with four factors the design 

is sensitive enough to find small significant differences. The smallest percentage 

difference found to be significant was for pH which showed a -0.4% decrease over 

the average upstream concentration, and the greatest difference was observed for 

phosphate (79%). The main effect, represented by the difference between the STW 

difference and the Control difference as shown in Figure 2.3, when divided by the 

average upstream value of the wastewater treatment plant, is used to assess the side 

effect of the sewage treatment (Table 2.3). 

For all the determinands, except COD and suspended solids (Table 2.3), the Type 

factor was statistically significant, and the Type factor explained between 0.4% and 

10% of the original variance in the datasets. Figure 2.3 illustrates that mean 

concentration differences in STW pairs consistently exceed those in Control pairs 

for most determinands, confirming the Type effect (see also Table 2.3). The 

strongest contrasts occur for phosphate and nitrate, while COD and suspended 

solids show no systematic separation. (Note that given that pH= 𝐥𝐨𝐠𝟏𝟎[𝐇
+]then a 

statistically significant decrease in the value of pH is an increase in [H+] in the 

receiving river). 
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The Year factor accounted for a small amount of original variance in the datasets, 

with its most significant impact observed in the COD determinand, where it 

explained approximately 4% of the original variance in the dataset. Meanwhile, the 

interaction term Type*Year provided limited explanatory power regarding the 

original variance across all determinands (Table 2.4). However, from the 

perspective of this study the important term is not the Year factor rather the 

Type*Year interaction, i.e. has the significant impact observed for STW changed 

over time? The Type*Year interaction was significant for BOD, Phosphate, pH, 

Nitrate, and Specific Conductance (Table 2.4). For temperature, COD, and 

suspended solids there was no significant change in the impact over time. For BOD, 

Phosphate, pH, nitrate and specific conductance there was a significant Type*Year 

interaction, and these interactions were further analysed by significantly testing the 

trend over time by STW and Control. Figure 2.4 highlights that the STW–control 

gap changes over time for BOD, phosphate, pH, nitrate and specific conductance, 

but not for temperature, COD or suspended solids. For BOD, phosphate, pH and 

specific conductance the apparent improvement reflects deterioration in the controls 

while STW pairs remain approximately stable (Table 2.5), whereas for nitrate the 

impact declines because the STW effect reduces over time with no corresponding 

trend in controls. Table 2.5 shows that for BOD, Phosphate, pH and specific 

conductance there would be a decrease in the effect of STW on the receiving water 

over time, but in each case, it was because the water quality of the Control pairs 

was getting worse and there was no long-term change in the STW pairs. So, for 

BOD, Phosphate, pH and specific conductance, any long -term change in impact of 

STW discharge is due to the worsening of the context and not due to improvement 

in the treatment. For Nitrate the improvement in the impact was due to declining 

impact of STW in a context where there was no significant trend in the Control 

pairs. 

The month factor explained less than 2% of the original variance in the data sets, 

and Type*Month explained little of the original variance - less than 0.2 % (Table 

2.4). As above, and with respect to this study, the more important term was the 

Type*Month interaction, i.e. does any difference between STW and Control types 

persistent across the seasonal cycle? Temperature, suspended solids, and pH were 

found to be significant (Table 2.4). Temperature decreases during March, April, 
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May, and November for STW pairs. Suspended solids decrease in February, while 

pH levels drop from May through September for STW pairs. Temperature, 

suspended solids, and pH all showed significant seasonal trends in STW pairs, 

emphasizing the need for seasonal considerations in water quality management. 

Figure 2.5 indicates seasonality confined to temperature, suspended solids and pH: 

the STW–control difference reverses in March–May, June and November for 

temperature, in February for suspended solids, and from May to September for pH; 

in other months the direction of the STW effect is unchanged and effect sizes remain 

small (<0.3% variance explained). 

The Pair factor was statistically significant for all determinands, explaining 

between 0.05% and 48% of the original variance in the datasets, with its influence 

being most important for Nitrate and least significant for Phosphate (Table 2.4). 

The Type*Pair interaction was significant for all determinands except COD and 

Nitrate, accounting for less than 12% of the variance. The highest impact was 

observed for Specific conductance, while Phosphate explained the least variance 

(Table 2.4). For all determinands studied in this Chapter, a summary of the mean 

difference of each Pair set in each Type greater than 0, equal to 0 and less than 0 

has been shown in Table 2.7. The table presents the number of mean difference 

values for various water quality determinands categorised into greater than zero 

(>0), equal to zero (=0), and less than zero (<0), for Total, STW, and Control groups. 

Notably, the pair numbers for STW and Control do not have a one-to-one 

relationship, meaning the same pair number cannot be used to compare differences 

between STW and Control. Figure 2.6 shows substantial between-pair 

heterogeneity, with the widest spread for nitrate and specific conductance (Pair η² 

≈ 0.48 and 0.40, respectively) and minimal spread for phosphate (η² ≈ 0.0005). Pairs 

are ordered from the lowest to highest overall mean difference, showing that some 

pairs have positive values while others are negative, consistent with the counts 

summarised in Table 2.7. The figure presents the main effect of Pair across both 

Types. Consistent with Table 2.4, the Type×Pair interaction was significant for all 

determinands except COD and nitrate, with the magnitude and, in some cases, the 

sign of the pair-level differences differing between STW and Control, as reflected 

in the Type-specific counts in Table 2.7. 
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In Table 2.7, Phosphate has the highest total number of pairs (549), while COD 

has the lowest (64). Phosphate has the highest number of pairs where mean 

difference was greater than zero (285), followed by Specific conductance (246) . 

The STW group generally has a higher number of total observations compared to 

the Control group for most determinands. Phosphate has the highest number of 

observations greater than zero in the STW group (193).  

The number of differences equal to zero is relatively small across all 

determinands, indicating that most differences are either positive or negative. A 

priori, it would be expected that the proportion of STW pairs significantly 

different from zero would reflect the Type effect, which is true for all the 

determinands.  
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Table 2.3. Summary of the dataset and results for the analysis of impact of STW discharge. The significance of the impact of STW discharge for 

each determinand is stated as Yes if it was significant at a probability < 0.05 of being zero. The main effect (%) is main effect for each 

determinand for the Type factor. Values are compared to the mean for the upstream values for the STW pairs for that determinand (Main effect 

presented as the difference for STW minus the difference for the Control, which has been illustrated in Figure 2.3). N represents the total number 

of observation sampling points recorded at different times. N (without outliers) refers to the count of these pairs after removing outlier values. 

Determinand (unit) N N without  

outliers 

Mean 

upstream 

concentration 

Mean 

downstream  

concentration 

Mean 

Final effluent 

Type  

Significant 

Main effect Main effect (%) 

Temperature (°C) 23933 23033 10.8 10.91 13.3 Yes 0.12  1% 

BOD (mg O2/L) 13865 11351 2,26 2.37 8.88 Yes 0.07 3% 

COD (mg O2/L) 2135 1808 28.16 26.88 55.54 -- 0.18 0.6% 

Phosphate (mg P/L) 28760 22131 0.39 0.62 4.95 Yes 0.31 79% 

Suspended solids (mg/L) 14595 12090 15.5 16.2 14.4 -- 0.08 0.5% 

pH 16919 15632 7.83 7.82 7.43 Yes -0.03 -0.4% 

Nitrate (mg N/L) 6067 4781 5.63 6.54 15.37 Yes 0.75 13.3% 

Specific conductance 

(µS/cm) 

6722 10431 731.55 781.73 891 Yes 5.00 0.6% 
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Table 2.4. The summary of the linear model for each determinand. The significance for each determinand is stated as Yes if it was significant at a 

probability < 0.05 of being zero. η2 indicates the extent to which a factor contributes to the observed variability in the variable. 

Determinand Type Year Type*Year Month Type*Month Pair Type*Pair 

Sig η2 Sig η2 Sig η2 Sig η2 Sig η2 Sig η2 Sig η2 

Temperature (°C) Yes 0.01 Yes 0.003 --  -- Yes 0.01 Yes 0.002 Yes 0.23 Yes <0.01 

BOD (mg O2/L) Yes 0.01 -- -- Yes 0.003 -- --  --  -- Yes 0.29 Yes 0.02 

COD (mg O2/L) -- -- Yes 0.04 -- -- Yes 0.02 --  -- Yes 0.30 -- -- 

Phosphate (mg P/L) Yes 0.04 Yes 0.0001 Yes 0.0007 Yes 0.0003 -- -- Yes 0.0005 Yes 0.0009 

Suspended solids 

(mg/L) 

-- -- Yes 0.003 -- -- -- -- Yes 0.002 Yes 0.11 Yes 0.02 

pH Yes 0.02 Yes 0.003 Yes 0.004 -- -- Yes 0.001 Yes 0.34 Yes 0.08 

Nitrate (mg N/L) Yes 0.10 Yes 0.03 Yes 0.01 Yes 0.01 -- -- Yes 0.48 -- -- 

Specific conductance 

(µS/cm) 

Yes 0.004 Yes 0.01 Yes 0.003 --  -- -- -- Yes 0.40 Yes 0.12 
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Table 2.5. The gradient of the trend over the entire study period for each 

determinand that showed a significant Type*Year interaction (Figure 2.4(a)-

2.4(b)). Where not significantly different from zero, zero is given, otherwise the 

gradient is quoted with the standard error on that slope. Improvement is stated as 

Yes when the impact of STW significantly decreases with time. With respect to the 

control. 

 STW Control Improvement? 

BOD (mg O2/L) 0 0.004±0.002 Yes 

Phosphate (mg P/L) 0 0.001±0.0002 Yes 

pH 0 0.001±0.0005 Yes 

Nitrate (mg/L) -0.03±0.01 0 Yes 

Specific conductance (µS/cm) 0 0.02±0.01 Yes 

 

Table 2.6. The months of the year when the difference due to STW pairs was the 

opposite of the Type difference shown in Figure 2.5(a)-2.5(b). 

Determinand Months where difference is reverse 

Temperature (C) March - May, June, November 

Suspended solids (mg/L) February 

pH May – September 
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Table 2.7. Number of mean difference values for each determinand categorised by type. 'N' represents the total number of mean difference values 

recorded. ‘>0' indicates the number of mean difference values that were greater than zero, '<0' represents the number of mean difference values 

that were less than zero, and '=0' denotes the number of mean difference values where the difference was not significantly different. (Figure 

2.6(a)-2.6(b)) 

Determinand 
Total STW Control  

N >0 =0 <0 N >0 =0 <0 N >0 =0 <0  

Stream temperature (C) 424 222 37 165 256 139 26 91 168 83 11 74  

BOD (mg O2/L) 268 109 63 96 168 75 37 56 100 34 26 40  

COD (mg O2/L) 64 31 13 20 40 19 10 11 24 12 3 9  

Phosphate (mg P/L) 549 285 47 217 317 193 13 111 232 92 34 106  

Suspended solids (mg/L) 349 160 52 137 180 76 22 82 169 84 30 55  

pH 352 157 41 154 202 83 27 92 150 74 14 62  

Nitrate (mg N/L) 118 73 3 42 73 49 1 23 45 24 2 19  

Specific conductance (µS/cm) 442 246 21 175 255 143 9 103 187 103 12 72  
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Figure 2.3. The main effects plot for the Type factor for the difference (diff). The values are presented as the marginal mean with the 95% 

confidence limits on that mean.  
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Figure 2.4. The main effects plot of the Type*Year interaction. The values are presented as the marginal mean with the 95% confidence interval. 
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Figure 2.5. The main effects plot of the Type*Month interaction. The values are presented as the marginal mean with the 95% confidence 

interval. 
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Figure 2.6(a). The main effects plot of the Pair factor. The Pairs are ordered from the lowest to greatest values of the difference. The points are 

the marginal mean with the 95% confidence interval.   
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Figure 2.6(b). The main effects plot of the Pair factor. The Pairs are ordered from the lowest to greatest values of the difference. The points are 

the marginal mean with the 95% confidence interval. 
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2.3.2 Importance of covariates 

In this study, the covariates considered included Euclidean distance, upstream 

altitude, downstream altitude, and percent rank flow. With respect to the Type 

factor statistical significance was unchanged for temperature, BOD, pH, Nitrate, 

and specific conductance, irrespective of the inclusion of covariates (Table 2.8). 

For COD, including covariates made the Type factor significant, with Euclidean 

distance being the important covariate. The COD dataset is the smallest in the study 

(Table 2.3), so results for some sites may have distorted the analysis, which is 

corrected by including the covariates. Conversely, for phosphate, the Type factor 

became insignificant when covariates were included, with both Euclidean distance 

and downstream altitude being important. 

None of the covariates changed significance for BOD, suspended solids, or 

specific conductance. All covariates for temperature were significant, but their 

inclusion did affect the status or magnitude of the Type factor. Whenever Euclidean 

distance was significant, it positively correlated with the difference in the pairs, 

meaning the difference increased the further apart the pairs were. Similarly, when 

significant, upstream altitude was positively correlated with the difference across 

pairs. Conversely, percent rank flow was only significant for temperature, where 

differences declined with increasing percentile flow. When downstream altitude 

was significant, it had contrasting effects: for Nitrate, there was a positive 

correlation, while for Temperature, there was a negative correlation. 
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Table 2.8. The coefficient for each factor of each determinand and for each of the covariates. It will be marked as dark grey if it was significant 

at a probability < 0.05 of being zero. For the covariates, For the covariates, significant effects (p < 0.05) are highlighted in grey, and the 

coefficient values indicate the direction and magnitude of the effect. 

 Type Year             Month Euclidean 

distance (m) 

Significant 

up_altitude 

(m asl)  

Significant 

down_altitude 

(m asl)  

Significant 

Percent rank 

Significant 
 Without 

covariate 

With  

covariate 

Without 

covariate 

With  

covariate 

Without 

covariate 

With  

covariate 

Temperature (°C) -0.21 3.60 0.01 0.03 -- 0.002 0.001 0.11 -0.19 -0.09 

BOD (mg O2/L) 0.51 2.12 -- -- -- -- -- -- -- -- 

COD (mg O2/L) -- 12.2 -0.22 -- 0.31 -- 0.000 -- -- -- 

Phosphate (mg 

P/L) 
3.01 -- 0.001 -- 0.04 0.003 -- 0.006 -- -- 

Suspended solids 

(mg/L) 
-- -- 0.0002 -- -- -- -- -- -- -- 

pH -0.37 0.01 -0.007 -0.006 -- -- 0 0 -- -- 

Nitrate (mg/L) -0.35 2.72 0.47 1.17 0.35 -- 0.001 0.08 0.003 -- 

Specific  

conductance 

(µS/cm) 

34.29 47.95 0.67 -- -- -- -- -- -- -- 
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2.3.3 Impact of the nature of the STWs 

The efficacy of two distinct secondary treatment methods employed within 

STWs— Secondary Treatment (secondary activated sludge treatment (SAS) and 

secondary biological treatment (SB)); and Tertiary treatment (tertiary activated 

sludge (TAS)/ tertiary biological (TB)) in the STW– was tested by a series of Chi-

squared tests (Table 2.9; Figure 2.7 – Figure 2.12). The results are defined as: 

Main effect: The main effect is defined as the difference observed for different 

types of treatment. Specifically, for secondary treatment, the main effect is 

quantified as SAS−SB, and for tertiary treatment, it is calculated as TAS−TB.  

Positive: Indicate that the difference between the treatments effectively reduced 

the value of the contaminant, meaning downstream values are lower than upstream. 

This is the desired outcome as it signifies that the treatment is working to remove 

or reduce the pollutant.  

Negative: Indicate that the difference between the treatment was ineffective, or 

possibly that the condition worsened, as downstream values are higher than 

upstream. This could occur due to various reasons such as insufficient treatment 

capacity, suboptimal operation conditions, or external factors affecting the 

treatment process. 

pH, and nitrate all showed statistical differences in both secondary and tertiary 

treatment (Table 2.9); Stream temperature, Specific conductance showed a 

statistical difference in Secondary treatment, while COD and phosphate showed a 

statistical difference in tertiary treatment. However, for BOD and suspended solids, 

neither secondary nor tertiary treatment showed a statistical difference. Significant 

results could be a positive or negative impact of that treatment on the water quality 

determinand. Of those showing a significant impact of either secondary or tertiary 

treatment the stream temperature impact of STWs was lower for SB than SAS 

(Table 2.9; Figures 2.7), i.e. a switch to biological treatment (SB) would decrease 

the impact of STW discharge. 

While for BOD there was no significant impact of the differences between 

treatment types, tertiary treatment did make a significant difference for COD, TB 

made the impact of the STW worse than TAS (Figure 2.8). For the nutrient, 

Phosphate impact was significantly higher for TAS relative to TB, but type of 
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secondary treatment made no significant difference; similarly for Nitrate where 

TAS lowers impact relative to TB, and the SAS has lower difference compared to 

SB. 
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Table 2.9. Results of Chi-squared test for each determinand relative to technologies present at the STW. SAS = secondary activated sludge; SB = 

secondary biological; TAS = Tertiary activated sludge; TB = tertiary biological. It was significant when at a probability (P) < 0.05 

Determinand (unit)  SAS SB P Main effect 

(SAS-SB) 

TAS TB P Main effect 

(TAS -TB) 

Stream temperature (oC) Positive 415 1432 <0.05 0.26 95 122 0.15 

 

-- 

Negative 1071 1987 233 233 

BOD (mg O2/L) Positive 823 593 0.2 -- 65 77 0.2 -- 

Negative 325 267 29 50 

COD (mg O2/L) Positive 87 95 0.3 -- 5 0 <0.05 -3.0 

Negative 105 91 1 53 

Phosphate (mg P/L) 

 

Positive 3349 1801 0.34 -- 199 205 <0.05 

 

-0.06 

Negative 1232 700 200 356 

pH 

 

Positive 1094 1587 <0.05 

 

-0.07 62 95 <0.05 

 

0.11 

Negative 191 517 125 54 

 Suspended solids (mg/L) Positive 1181 1163 0.72 -- 63 84 0.40 -- 
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 Negative 667 639 268 425 

Nitrate (mg N/L) Positive 913 496 0.02 -0.35 13 94 <0.05 

 

-0.1› 

Negative 150 113 1 129 

Specific conductance (µS/cm) Positive 890 729 <0.05 20 49 68 0.90 -- 

Negative 334 163   112 164   
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Figure 2.7. Effect of secondary treatment on mean stream temperature differences 

between upstream and downstream locations. Results are shown for STW pairs 

with activated sludge (SAS) and secondary biological treatment (SB), presented 

as marginal means with 95% confidence intervals. 

 

 

 

 

                 

 

 

 

 

 

 

 

 

 

Figure 2.8. Effect of tertiary treatment on mean COD differences between 

upstream and downstream locations. Results are shown for STW pairs with 

tertiary activated sludge (TAS) and tertiary biological treatment (TB), presented 

as marginal means with 95% confidence intervals. 
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Figure 2.9. Effect of tertiary treatment on mean Phosphate differences between 

upstream and downstream locations. Results are shown for STW pairs with 

tertiary activated sludge (TAS) and tertiary biological treatment (TB), presented 

as marginal means with 95% confidence intervals. 

 

 

Figure 2.10. Effect of secondary and tertiary treatment on mean pH differences 

between upstream and downstream locations. Results are shown for STW pairs 

with secondary treatment: activated sludge (SAS) or secondary biological (SB); 

and tertiary treatment: tertiary activated sludge (TAS) or tertiary biological (TB), 

presented as marginal means with 95% confidence intervals. 
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Figure 2.11. Effect of secondary treatment on mean Conductivity differences 

between upstream and downstream locations. Results are shown for STW pairs 

with activated sludge (SAS) and secondary biological treatment (SB), presented 

as marginal means with 95% confidence intervals. 

 

 

 

 

Figure 2.12. Effect of secondary treatment on mean Nitrate differences between 

upstream and downstream locations. Results are shown for STW pairs with 

activated sludge (SAS) and secondary biological treatment (SB), presented as 

marginal means with 95% confidence intervals.
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Nitrate and Phosphate removal in Secondary Treatment and Tertiary treatment 

In both secondary and tertiary treatment stages, there are differences in nitrate and 

phosphate removal at STWs. For secondary treatment, it was found that there was 

no significant difference in nitrate removal between SAS (Secondary Activated 

Sludge) and SB (Secondary Biological Treatment) systems (Table 2.10). However, 

phosphate removal showed significant differences depending on the type of 

secondary treatment, except at sites measuring pH and suspended solids, where no 

notable differences were observed (Table 2.10). 

In terms of tertiary treatment, the presence or absence of tertiary treatment had 

a significant impact on nitrate and phosphate removal (Table 2.11). Chi-square tests 

indicated a statistically significant association between tertiary treatment and 

phosphate removal. Additionally, significant relationships were observed at sites 

measuring stream temperature, phosphate concentration, and specific conductance 

for nitrate removal. These findings suggest that tertiary treatment plays a crucial 

role in improving phosphate removal, while it does not affect nitrate removal in 

most cases.
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Table 2.10 Results of Chi-squared test for each determinand relative Nitrate and Phosphate removal in Secondary treatment. It was significant 

when at a probability (P) < 0.05. 

Determinand (unit) Nitrate Removal SAS SB P Phosphate Removal SAS SB P 

Stream temperature (oC) 

Yes 0 0 NA Yes 905 1219 <0.05 

No 2725 4758 No 1820 3539 

BOD (mg O2/L) 

Yes 0 0 NA Yes 637 842 <0.05 

No 1802 2943 No 1165 2101 

COD (mg O2/L) 

Yes 0 0 NA Yes 201 166 <0.05 

No 411 471 No 205 305 

Phosphate (mg P/L) 

 

Yes 0 0 NA Yes 1217 1506 <0.05 

No 3377 5858 No 2160 4352 

Suspended solids (mg/L) 

 

Yes 0 0 NA Yes 909 908 0.50 

No 2183 2237  No 1274 1329  

pH 

 

Yes 0 0 NA Yes 599 1208 0.56 

No 1893 3915 No 1294 2707 

Nitrate (mg N/L) 

Yes 0 0 NA Yes 191 315 <0.05 

No 414 1790 No 223 1475 
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Specific conductance (µS/cm) 

 

Yes 0 0 NA Yes 478 957 <0.05 

No 1201 3123 No 724 2166 

 



64 

 

Table 2.11 Results of Chi-squared test for each determinand relative Nitrate and Phosphate removal in Tertiary treatment. It was significant 

when at a probability (P) < 0.05. 

Determinand (unit) Nitrate  

Removal 

With tertiary Without    

tertiary 

P Phosphate 

Removal 

With     

tertiary 

Without 

tertiary 

P 

Stream temperature (oC) 

Yes 0 1738 <0.05 Yes 807 931 <0.05 

No 140 8066 No 2246 5960 

BOD (mg O2/L) 

Yes 0 1342 1 Yes 751 591 <0.05 

No 1 4890 No 1319 3572 

COD (mg O2/L) 

Yes 0 1 1 Yes 44 370 <0.05 

No 277 979 No 233 610 

Phosphate (mg P/L) 

 

Yes 0 146 <0.05 Yes 1128 1411 <0.05 

No 2539 9719 No 2720 7145 

Suspended solids (mg/L) Yes 0 1 1 Yes 685 1623 0.001 

 No 1674 4457  No 989 2835  

pH Yes 0 1 1 Yes 867 1567 <0.05 

 No 1515 5959  No 648 4393  

Nitrate (mg N/L) Yes 0 1 1 Yes 381 443 <0.05 
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 No 734 2437  No 353 1995  

Specific conductance (µS/cm) Yes 0 61 <0.05 Yes 517 1349 <0.05 

 No 1279 4466  No 762 3178  
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2.3.4 Impact of population equivalence and dry weather flow 

The difference across STW pairs for BOD, nitrate, pH, and specific conductance 

showed significant relationships with population equivalence (PE) (Table 2.12). 

For BOD and nitrate, positive correlations were found. Specifically, BOD and 

nitrate show an increase in impact of 0.04 mg O₂/L and 0.04 mg N/L per 1000 

people, respectively. In contrast, pH and specific conductance exhibit negative 

relationships with PE. 

All determinands, except suspended solids and pH, show positive correlations 

with dry weather flow (DWF, in thousands of cubic meters per day). Both BOD and 

nitrate have positive relationships with both population equivalence and dry 

weather flow. However, pH and suspended solids show negative correlations with 

DWF. Specific conductance, while showing a negative correlation with PE, exhibits 

a positive relationship with DWF.  

DWF is a constant for a particular STW, so the observed relationships are not 

about changing flows but rather about the differences in the determinands due to 

the size of the varying flow levels among different STWs. Even though the models 

are statistically significant, the r² values for BOD and nitrate were small (0.03 and 

0.04, respectively), so they explain only a small proportion of the variance in the 

data.
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Table 2.12. Summary of the significance of STW discharge impacts on river water quality determinands. Significance is also assessed for 

Population Equivalence (per 1,000 population) and Dry Weather Flow (per 1,000 m³/day). Effects are stated as ‘Yes’ if significant at a 

probability of < 0.05 of being zero. 

Determinand 
Population equivalence Dry weather Flow 

r2 
 

Sig Coefficient Sig Coefficient  

Stream temperature (oC) -- -- Yes 0.001 0.004  

BOD (mg O2/L) Yes 0.04 Yes 0.02 0.03  

COD (mg O2/L) -- -- Yes 0.0007 0.005  

Phosphate (mg P/L) -- -- Yes 0.002 0.004  

Suspended solids (mg/L) -- -- Yes -0.003 0.02  

pH Yes -0.002 Yes -0.006 0.01  

Nitrate (mg/L) Yes 0.04 Yes 0.15 0.04  

Specific conductance (µS/cm) Yes -0.006 Yes 0.03 0.004  
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Population equivalence and Dry weather flow correlation plot 

Based on the overall analysis of PE and DWF, a strong positive correlation was 

found between the two variables, with a Pearson correlation coefficient of 0.88. 

This indicates that as both PE and DWF increase, the overall impact on the 

receiving water bodies also significantly increases (Figure 2.13). Figure 2.14 

illustrates the scatter plots of Population Equivalence (PE) against Dry Weather 

Flow (DWF) for eight water quality determinands, including stream temperature, 

BOD, COD, phosphate, suspended solids, pH, nitrate, and specific conductance. 

These plots provide insights into the relationships between urbanisation (as 

measured by PE) and key water quality indicators. 

 

 

Figure 2.13 Scatter plot of Population Equivalence (PE) vs. Dry Weather Flow 

(DWF) for STWs with available PE and DWF data. 

 

However, the relationships between PE and DWF vary across the determinands 

(Figure 2.14): 

• BOD (panel b) shows the strongest positive correlation with PE. 

• Phosphate (panel d) and COD (panel c) also show positive correlations 

with PE, although these are weaker than for BOD. COD levels follow a 

similar trend, but the correlation is less pronounced. 

Conversely, several determinands exhibit little to no change in DWF despite 

rising PE, suggesting weak or absent correlations: 
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• Stream Temperature (panel a) remains relatively constant with increasing 

PE. 

• Suspended Solids (panel e) show no clear relationship with PE. 

• Specific Conductance (panel h) also shows minimal variation with PE. 

A notable trend is observed in the relationship between PE and nitrate (panel 

g), which displays two distinct patterns.  

pH (panel f) displays several different trend lines with increasing PE and DWF. 

Phosphate (panel d) also shows several values at PE = 0. 
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(a) Stream Temperature (b) BOD (c) COD (d) Phosphate 

  
 

 

(e) Suspended solids (f) pH (g) Nitrate (h) Specific conductance 

Figure 2.14. Scatter plot of Population Equivalence (×1000 people) vs Dry Weather Flow (×1000 m³/day)
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In summary, while some determinands, such as BOD and phosphate, show 

strong positive correlations with PE and DWF, others like temperature, suspended 

solids, and specific conductance exhibit minimal change despite increasing 

population pressures. Nitrate concentrations display a more complex relationship, 

with distinct trends at different levels of PE. 
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2.3.5 Inter-determinands correlation 

A pairwise evaluation was performed to understand the degree of association 

between the impact of STW discharge on the determinands. That is, if a STW shows 

a significant impact for one determinand does it show a significant impact for any 

others? The correlation matrix is shown in Table 2.13. It shows the correlation 

coefficients and probability values (p-values) between various determinands. 

Stream temperature has significant correlations with phosphate, nitrate, specific 

conductance and COD. BOD significantly correlates with COD and suspended 

solids. COD has significant correlations with phosphate, suspended solids, pH, 

nitrate, and specific conductance. Phosphate significantly correlates with nitrate and 

specific conductance. Suspended solids show significant correlation with pH. pH 

significantly correlates with Nitrate, and Specific conductance. Nitrate significantly 

correlates with specific conductance. These relationships help analyse the impact 

and interdependence of different water quality determinands, essential for 

understanding the overall effect of sewage treatment works (STW) discharges on 

water quality. 
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Table 2.13. Summary of inter-determinand correlation coefficients. Correlation coefficients range from −1 to 1 and are shown alongside their 

corresponding probability values. Coefficients with p-values < 0.05, indicating statistical significance, are highlighted in grey. 

The correlation coefficient and p-values between two determinands 

Determinand (unit) Stream  

temperature (oC) 

BOD  

(mg O2/L) 

COD  

(mg O2/L) 

Phosphate  

(mg P/L) 

Suspended  

solids (mg/L) 

pH Nitrate (mg N/L) Specific  

conductance (µS/cm) 

Stream  

temperature (oC) 

 0.10 0.16 0.46 -0.15 0.15 0.40 0.37 

BOD (mg O2/L)   0.70 0.12 0.52 -0.07 0.08 0.03 

COD (mg O2/L)    0.57 0.61 -0.35 0.57 0.50 

Phosphate  

(mg P/L) 

    -0.06 -0.10 0.91 0.84 

Suspended  

solids (mg/L) 

     -0.20 -0.06 -0.12 

pH       -0.22 -0.24 

Nitrate  

(mg N/L) 

       0.90 
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2.3.6 Principal components analysis 

By merging datasets for each determinand there were 168 data that could be 

considered across all determinands for all STW pairs. Three out of eight 

components had eigenvalues > 1 (Table 2.14) and these three components together 

explained 84% of the original variance. The contribution table on the components 

shows that the first component was correlated with Nitrate, Phosphate, Specific 

conductance and COD; the second component was correlated with Suspended 

solids, BOD and COD; and the third component was correlated with pH, 

Temperature and BOD.  

 

Table 2.14. Loading of each determinand on each principal component with 

eigenvalue > 1. 

Determinand PC1 PC2 PC3 

Stream temperature (oC) 0.25 -0.24 -0.53 

BOD (mg O2/L) 0.19 0.51 -0.37 

COD (mg O2/L) 0.42 0.39 -0.03 

Phosphate (mg P/L) 0.48 -0.20 -0.04 

Suspended solids (mg/L) 0.10 0.60 -0.06 

pH -0.16 -0.21 -0.74 

Nitrate (mg N/L) 0.49 -0.19 0.10 

Specific conductance (µS/cm) 0.47 -0.23 0.16 

Eigenvalue 3.55 2.05 1.12 

Percentage of variance explained 44% 26% 14% 

 

The graph of the scores on the first two components shows a contrast with rivers 

plotting either on a trend along PC1 or trending along PC2, which is either 

dominated by a change in nutrients or by a change in COD/BOD (Figure 2.16). 

However, the constraint of merging the data so that all data were coming from the 
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same pair at the same time means that only 7 STW pairs within 4 rivers could be 

included in the analysis. Two of the STW pairs (River Alt D/S/Fazakerley Brook; 

and River Bela at Milnthorpe) plot along PC1; and the other STW pairs vary along 

PC2 (Figure 2.15).  

 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15. The scatter plot of the scores on PC1 and PC2. 

 

Figure 2.16. The loadings on PC1 and PC2. 
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2.4 Discussion   

In this chapter, the impact of STW discharge on water quality has been 

demonstrated. A number of previous studies have shown the impact of STW 

discharge on receiving waters for the determinands considered in this study. For 

example, Kinouchi (2007)and Wilson & Worrall (2021) have highlighted the 

thermal effects of STWs, though the broader implications on water quality are less 

emphasized. This study, however, has extended the range of determinands, 

allowing for intercomparison (e.g., Table 2.13). The approach here utilized a clearer 

and more robust experimental design, employing control river reaches to better 

isolate the effects of STWs. This design allowed for a more comprehensive 

evaluation of spatial and temporal factors affecting river water quality, enhancing 

the reliability of our findings compared to earlier studies. Furthermore, the number 

of sites and rivers considered in this study was far larger than in previous studies, 

providing a more extensive dataset for analysis. 

This study shows differences from the patterns observed by Mellal et al. (2024), 

suggesting a more complex interaction between STW discharges and river 

chemistry. Mellal et al.(2024) evaluated treated petroleum wastewater from a single 

site, focusing on seasonal variation in pH, temperature, phosphate, hydrocarbons, 

and COD. In contrast, this study also tests BOD, nitrate, and suspended solids, using 

a dataset spanning from 2000 to 2020, covering a larger time span and including 

more wastewater treatment plants. Additionally, control measures have been 

introduced, making the impact of the wastewater treatment plants on the river more 

straightforward; at the same time, this study includes 442 pairs of STW sites and 

419 Control sites, which are more than in other studies.  

Iloms et al. (2020) measured temperature, pH, BOD, COD, TDS, EC, and 

salinity concentrations at seven sampling sites, including wastewater treatment 

works (WWTW) inflows, effluents, and potable water sources from the Vaal River 

between January and September 2017. Barrenha et al. (2018) assessed the impact 

of one wastewater treatment plant (WWTP) on a river by analysing six sites 

between March 2011 and September 2013 and again from November 2013 to 

November 2014. Akinwole et al. (2021) studied five sites along Big Walnut Creek 

during September and October 2019 and February 2020, focusing on tertiary treated 
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effluents and their impact on physiochemical determinands and microbial biomass. 

These studies were limited in terms of temporal coverage, the number of sites, or 

the range of parameters analysed. The current research builds upon these works by 

encompassing a broader temporal range, analysing additional water quality 

parameters, and employing control measures to provide a more detailed assessment 

of the impacts of wastewater treatment plants on river systems. 

Mellal et al. (2024) demonstrated that treated wastewater discharged from a 

petroleum refinery met regulatory standards and was of higher quality compared to 

raw influent water. Their study employed an artificial neural network (ANN) model, 

a machine learning-based approach, to predict water quality indices (WQI) with 

high accuracy using parameters such as pH, temperature, phosphate, and 

hydrocarbons. However, their analysis did not include upstream and effluent mean 

values. The current research addresses this limitation by providing a detailed 

comparison of these values (Table 2.3). While Iloms et al. (2020) analysed 

concentrations from various industries, they did not investigate temporal trends. 

This research extends the scope by examining yearly (Table 2.5) and monthly 

(Table 2.6) trends for each determinant, offering a more dynamic understanding of 

water quality changes. Pedro et al. (2018) identified no significant interaction 

between season and sampling sites but noted significant main effects. By 

incorporating characteristics ofSTWs) such as population equivalence, dry weather 

flow (Section 2.3.4), and treatment types (Section 2.3.3), this study provides a more 

detailed perspective on the factors influencing discharge quality. Akinwole et al. 

(2021) reported significantly higher microbial biomass at STW outfalls, whereas 

the current analysis examines a broader range of covariates (Table 2.8), offering a 

comprehensive assessment of STW impacts. 

The inter-determinands correlations and relationships with STW characteristics 

provide deeper insights into the mechanisms affecting water quality. For instance, 

the positive relationship between temperature and nutrients (Table 2.13) suggests 

that higher water temperatures are associated with increased concentrations of 

phosphate and nitrate, likely due to accelerated microbial metabolism and enhanced 

enzymatic activity in warmer conditions, which promote nutrient cycling (Jarvie et 

al., 2010). This finding aligns with Kinouchi (2007), who noted thermal impacts on 

river ecosystems, though our study extends this to nutrient dynamics across a 
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broader spatial scale. This pattern may also reflect thermal effects of treatment 

processes, as aeration in activated sludge systems can elevate effluent temperatures 

(Makinia et al., 2005), while background temperature variation in control sites is 

largely driven by climatic and seasonal factors. In contrast, BOD’s correlation with 

COD and suspended solids, but not with specific conductance or nutrients, implies 

significant organic pollution and particulate matter; however, the lack of significant 

relationship with nutrient levels or conductance indicates that organic pollution may 

not directly influence these parameters. This contrasts with Iloms et al. (2020), who 

observed stronger BOD-nutrient linkages in industrial effluents, possibly due to 

different pollution sources in their Vaal River study. Such differences may arise 

where primary sedimentation or secondary biological processes are insufficient to 

fully remove organic matter, while in control reaches elevated BOD can equally 

result from diffuse sources such as manure, leaf litter, or soil-derived organic 

carbon. Conversely, COD’s associations with nutrients, specific conductance, and 

suspended solids suggest that areas with high COD often exhibit higher nutrient 

concentrations, suspended solids, and greater conductivity, pointing to overall poor 

water quality influenced by various pollutants. This is consistent with Akinwole et 

al. (2021), who linked high COD to organic loading in tertiary-treated effluents, 

though our larger dataset reveals a more widespread pattern across diverse STWs.  

The scale of STWs, as measured by PE and DWF, further shapes these patterns. 

A strong positive correlation between PE and DWF (Table 2.12) indicates that as 

both increases, the overall impact on receiving waters rises, with higher PE closely 

associated with increased organic load, a key indicator of wastewater pollution. 

This supports findings by Barrenha et al. (2018), who noted increased organic loads 

with population size, though their single-site study lacked the spatial resolution of 

our 442 STW pairs. For BOD and nitrate, positive correlations with PE suggest that 

as PE increases, the differences in these determinands due to STWs also rise, 

reflecting greater organic and nitrogen loads. However, this influence diminishes 

for larger STWs as population size grows, suggesting a potential threshold effect 

where the impact of larger facilities becomes less notable. At lower PE values, 

nitrate concentrations are largely influenced by diffuse agricultural runoff (e.g., 

fertiliser and manure inputs), whereas at higher PE levels, effluent volumes and 

limited nitrogen-removal efficiency in many STWs result in stronger correlations 
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with DWF, reflecting the increasing contribution of sewage discharges to riverine 

nitrate loads. This shift likely reflects the increasing contribution of sewage 

treatment works to nitrate levels in more urbanised areas, where higher population 

densities lead to greater nitrogen loads in rivers, a pattern consistent with Jarvie et 

al. (2010), who observed significant STW impacts on nutrient levels in populated 

rural catchments. The stronger DWF-nitrate link at higher PE may result from 

increased effluent volumes from urban STWs, which overwhelm natural dilution 

and amplify nitrogen delivery during baseflow conditions. 

DWF dynamics add complexity: pH and suspended solids show negative 

correlations with DWF, indicating reduced concentrations as flow increases, which 

may be driven more by environmental or operational factors within STWs (e.g., 

dilution or sedimentation) rather than flow alone. This aligns with Wilson & 

Worrall (2021), who attributed pH variability to buffering capacity rather than flow, 

though our study extends this to suspended solids dynamics. Specific conductance, 

despite a negative correlation with PE, exhibits a positive relationship with DWF, 

suggesting its concentration is influenced by factors beyond population equivalence, 

such as increased wastewater discharge volumes, industrial effluents, or 

groundwater contributions that vary with DWF. This finding diverges from Mellal 

et al. (2024), who linked conductance primarily to refinery effluents, highlighting 

the diverse industrial influences in our multi-site analysis.  

Other determinands reveal additional environmental influences. Stream 

temperature likely reflects external factors such as seasonality or weather, 

consistent with seasonal models by Jarvie et al. (2010), who emphasised climatic 

drivers over sewage inputs. Suspended solids are more influenced by runoff, land 

use, or natural sediment transport than by population density or sewage flow, a 

pattern also noted by Akinwole et al. (2021) in catchment-scale studies. Suspended 

solids at control sites are strongly influenced by diffuse sources such as soil erosion 

and storm runoff, whereas elevated levels downstream of STWs can also reflect 

insufficient sedimentation in primary clarifiers. Specific conductance variations are 

likely tied to geological factors or industrial effluents rather than sewage discharge, 

supporting geological controls identified by Iloms et al. (2020). A notable shift in 

nitrate patterns, from agricultural runoff dominance at lower PE to STW 

contributions at higher PE, highlights the increasing role of urbanised areas with 
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greater nitrogen loads. The variability in pH may stem from changes in wastewater 

treatment, river buffering capacity, or other environmental conditions, a complexity 

also observed by Monea et al. (2020), who linked pH to treatment processes. 

Phosphate variations at low PE suggest influences from agricultural runoff or non-

sewage sources, consistent with Jarvie et al. (2010), who emphasized diffuse 

pollution sources. These findings underscore the complex interplay of STW 

discharges and environmental factors, providing a foundation for targeted 

remediation strategies, particularly in managing nutrient enrichment and organic 

pollution. In addition, many STWs without chemical dosing or enhanced biological 

phosphorus removal show incomplete phosphate removal, explaining residual 

phosphorus in effluents. 

These insights have practical implications for water quality management. The 

temperature-nutrient link suggests that thermal regulation at STW outfalls could 

mitigate eutrophication, while the PE-driven organic load highlights the need for 

upgraded treatment in urban areas. The DWF-dilution effect on pH and solids 

implies adaptive monitoring during flow variations, and the conductance-flow 

relationship underscores the importance of source tracking in industrial regions. 

Future research should explore treatment technology impacts and long-term 

ecological responses, building on this study’s foundation. Although this study does 

not mention water discharge innovation, it provides a more detailed and useful 

analysis of the impact of wastewater treatment plant discharge. Despite the 

advances made with this study, there remain constraints. When the intercomparison 

was considered (e.g., PCA – section 2.3.6), the PCA requires all the data to be 

sampled together for all determinands on the same date for the same site. This 

constraint gave rise to PCA where only a limited number of STWs could be 

considered. In this context, all seven sites grouped into two directions, either impact 

varying for nutrients or varying with respect to BOD/COD. Consequently, this 

would mean that STWs are impacting the receiving waters for only one of two 

reasons, which could imply that remediation efforts need to be targeted accordingly. 

Similarly, there was a lack of specific data on the techniques used at each STW 

site, which has limited the ability to fully assess the impacts of different tertiary 

treatments. However, this study has provided new insights into how secondary and 

tertiary treatment processes differ. For example, for temperature treatment, there is 
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a significant difference between different secondary treatment methods. 

Specifically, the temperature difference for SB (secondary biological treatment) is 

smaller compared to SAS (activated sludge secondary treatment), suggesting that 

SB is more effective in minimizing temperature changes (Figure 2.7). For 

phosphate treatment, the phosphate difference for TAS is smaller than for TB, 

showing TAS is more effective in treating phosphate. These contrasts highlight how 

specific treatment processes shape effluent quality: TAS plants with chemical 

precipitation achieve more effective phosphorus removal, while higher temperature 

shifts under activated sludge systems likely reflect the greater energy inputs from 

intensive aeration. Additionally, it is important to determine whether tertiary 

treatment is necessary to meet the discharge standards. Larger or more densely 

populated areas may challenge existing treatment capacities, leading to variations 

in treatment effectiveness. Dry weather conditions typically reduce the volume of 

water in sewage, potentially increasing the concentration of pollutants and 

presenting different treatment challenges. For instance, it is essential to understand 

how dry weather affects the biological treatment stages, as it may lead to reduced 

efficiency in nutrient removal due to higher concentrations of ammonia or organic 

matter. 

This chapter has analysed key water quality determinants such as stream 

temperature, Biochemical Oxygen Demand (BOD), and Chemical Oxygen Demand 

(COD), observing their significant impacts on river ecosystems. However, it has 

not addressed other water quality determinands. Chapter 3 will focus on metals. 

The analyses presented in this chapter demonstrate how discharges from sewage 

treatment works (STW) influence a range of water quality properties that may 

contribute to secondary effects on eutrophication, potentially leading to enhanced 

nutrient enrichment. Overall, while STW processes clearly influence effluent 

composition, control sites demonstrate that diffuse sources such as agriculture, 

catchment geology, and urban runoff remain critical drivers of water quality, 

underlining the need for integrated management of both point- and non-point 

pollution sources. Chapter 4 will examine the impact of sewage discharges on 

eutrophication in more detail.
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2.5 Conclusion 

The objectives of this chapter were: 

• Does the discharge from sewage treatment works (STWs) affect the 

concentration of water quality determinants in rivers? 

• Can differences in river water quality due to STW discharges be attributed to 

the specific nature of the STW plants? 

 

This chapter has shown that: 

i) For all determinants, except Chemical Oxygen Demand (COD) and 

Suspended Solids, there was a significant change due to the presence of 

an STW discharge. 

ii) Over the period of the study period there has been a notable yearly 

decrease in the impact due to Biochemical Oxygen Demand (BOD), 

Phosphate, pH, Nitrate and specific conductance from STWs.  

iii) Different treatment types present at works did make a significant 

difference to the impact of the works on the receiving water, though this 

was not always positive. 

iv) Tertiary treatment significantly improves Nitrate and Phosphate 

removal, while secondary treatment methods (SAS and SB) show no 

notable difference in nitrate removal but impact phosphate removal at 

most sites. 

v) For all determinands the impact of an STW did increase with the size of 

the works, as measured by dry weather flow and population equivalence 

increase. 

vi) Principal Component Analysis (PCA) showed there were two types of 

STW with respect to their impacts – impacting BOD/COD/SS or 

impacting nutrients. 

This study highlights the potential for improvements in wastewater treatment 

technologies to mitigate pollution effectively without compromising water quality.  
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Chapter3: Metal determinands 

3.1 Introduction 

This chapter examines the impact of STW discharges on metal concentrations in 

rivers, specifically focusing on Ca, Mg, Cd, Cu, Ni, Fe, Zn, and Mn. These metals 

were selected due to their environmental importance and potential ecological 

impact. The concept of bioavailability is central to understanding the ecological risk 

of metals. Bioavailability refers to the fraction of total metal present in the 

environment that is in a form that can be absorbed by aquatic organisms, thus 

directly influencing metal toxicity. Several factors play crucial roles in determining 

metal bioavailability, including metal speciation, water hardness, pH, and DOC. 

Metal speciation, which refers to the different physical and chemical forms of a 

metal, is a key determinant of bioavailability, as different forms have varying levels 

of accessibility to organisms (Di Toro et al., 2001; Heijerick et al., 2003). Metals 

such as Cd, Cu, Ni, and Zn are known for their toxicity to aquatic life at elevated 

concentrations (Emenike et al., 2022; Chen et al., 2023; Naz et al., 2023), while Ca 

and Mg, though essential nutrients, can influence the bioavailability and toxicity of 

other metals (Allen and Janssen, 2006; Wang et al., 2014; Nys et al., 2018). 

Monitoring these metals is essential for assessing pollution levels, understanding 

water chemistry interactions, and evaluating ecotoxicological risks (Nys et al., 

2018). 

For this reason, understanding the factors that influence metal bioavailability and 

toxicity in receiving waters is crucial. Metal pollution presents a considerable threat 

to the global environment. Once metals enter an ecosystem, they can cause long-

term toxic effects on organisms and the environment, a phenomenon known as 

chronic metal ecotoxicity (Paquin et al., 2002). With the increasing severity of 

environmental pollution, understanding chronic metal ecotoxicity has become more 

critical than ever (Rainbow, 2002). The WFD requires European member states to 

ensure that all inland and coastal waters achieve "good" water quality status. EQS 

are used to meet this requirement, defining the concentration of chemicals in the 

water environment below which no adverse effects on aquatic life are expected 

(Hering et al., 2010).  



84 

 

The toxicity of metals, as confirmed by EQS, is influenced by factors such as 

water hardness, pH, and DOC (Heijerick et al., 2003). These parameters are crucial 

because they modify the bioavailability of metals, which in turn affects their 

toxicity to aquatic flora and fauna (Price et al., 2022). By competing with harmful 

elements like Cu and Zn for binding sites on organismal surfaces (e.g., gills, cell 

membranes), water hardness—which is mainly regulated by Ca and Mg 

concentrations—reduces their bioavailability (de Paiva Magalhães et al., 2015). 

Similarly, pH influences metal speciation, with acidic conditions increasing metal 

solubility and thus their bioavailability and toxicity (Bourg and Loch, 1995). DOC 

can form complexes with metal ions, potentially reducing their immediate 

bioavailability while facilitating their transport downstream (Peters et al., 2014). 

Chapter 2 has shown that pH is significantly lowered in receiving rivers by the 

presence of STW discharges. Peters et al. (2014) have shown that DOC plays a 

critical role in binding metals, reducing their bioavailability, and thus lessening 

their toxic effects on aquatic life. Additionally, Worrall et al. (2019) demonstrated 

that DOC concentrations increase in receiving rivers due to STW discharges. 

Given the complexity of factors such as water hardness, pH, and DOC in 

influencing metal bioavailability, it is crucial to assess how these parameters are 

altered by STW discharges and how these alterations subsequently affect metal 

toxicity. Assessing metal bioavailability, rather than solely relying on total metal 

concentrations, provides a more accurate and ecologically relevant measure of 

pollution risk in aquatic systems. This study investigates how STW discharges alter 

key water chemistry parameters, including pH, DOC, and hardness, and 

subsequently influence the bioavailability and toxicity of metals such as Cu, Zn, Ni, 

and Mn. Understanding these dynamics is crucial for assessing ecological risks and 

informing regulatory frameworks, such as the European Water Framework 

Directive, which aims to achieve good ecological status in all water bodies (Hering 

et al., 2010). This study aims to explore these dynamics in detail, focusing on 

whether sewage effluent causes measurable changes — Cu, Mg, Ca, Cd, Zn, Fe, 

Mn, and Ni — in water quality and metal concentrations, and what role 

environmental and operational variables of the STW play in these changes. Studies 

have highlighted the presence of heavy metals in sewage discharge and their 

environmental implications. For instance, Rafiu et al. (2007) reported significantly 



85 

 

elevated concentrations of Cd, Pb, Mn, Zn, Cu, and Ni in water samples collected 

near STW, highlighting their contribution to downstream pollution. Similarly, 

Oliveira et al. (2007) investigated the removal efficiencies of metals such as Cd, 

Cu, Pb, Hg, Mn, Cr, and Zn in biological wastewater treatment, emphasising the 

variable performance of treatment processes in reducing metal loads. These studies 

underscore the importance of understanding how STW operations and 

environmental factors influence heavy metal concentrations, providing a 

foundation for the present investigation. 

As identified in Chapter 2, previous studies of the impact of sewage on receiving 

waters have often been limited. For example, Bubb and Lester (1995) examined the 

impact of final effluents on the receiving waters of the River Yare in the UK, 

demonstrating that sewage effluents significantly increased metal concentrations --

Cu, Cd, Fe, Pb and Mn -- and facilitated metal complexation – Cu, Cd, Fe, Pb and 

Mn in the receiving waters, which had been mentioned in another study of Bubb 

and Lester (Buss and Lester, 1995), however, this was for only one river. Chon et 

al. (2012) analysed metals in the Aire-Calder catchment, identifying STWs as the 

primary sources of Cd and Ni, though their contribution to Pb and mercury (Hg) 

was minimal.  

To study the bioavailability of metals in sewage effluent, several investigations 

have highlighted the environmental impacts of sewage discharge.  Matthiessen et 

al. (1999) (2008) investigated the impact of STWs effluent on metal concentrations 

in UK rivers, focusing on Cu and Zn. The study utilised Environment Agency water 

quality data from 1995 to assess compliance with Predicted No-Effect 

Concentrations (PNECs) and evaluated the effectiveness of bioavailability-based 

approaches for regulatory compliance. Their findings indicated that Cu and Zn 

exceedances varied significantly depending on the assessment tier used. For Cu, a 

relatively small percentage of samples exceeded the PNEC, but most exceedances 

were also associated with background concentrations, suggesting that natural 

sources played a role. For Zn, exceedance rates were higher, particularly in areas 

with soft water, where existing EQS may be overly conservative. The study 

highlighted the limitations of traditional hardness-based EQS assessments and 

emphasised the importance of bioavailability corrections to improve regulatory 

accuracy. By demonstrating that metal exceedances were context-dependent, this 
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research contributed to the development of more refined water quality compliance 

strategies. 

Building upon these studies, this research aims to address their limitations in 

temporal scope, range of metals considered, and ecological relevance. While 

Matthiessen et al. (1999) and Comber et al. (2008) provided valuable insights, they 

overlooked key metals like Mn and Ni, and the short monitoring periods hindered 

long-term trend analyses. By including Mn and Ni in addition to Cu and Zn, as 

highlighted in the UK River and Lake Assessment Method 

(https://www.wfduk.org), this study seeks to provide a more comprehensive 

understanding of metal bioavailability in sewage effluent. Mn plays a key role in 

redox-sensitive processes that influence metal mobility, while Ni is classified as a 

priority pollutant under international water quality standards due to its toxicity to 

aquatic life. By analysing Cu, Zn, Mn, and Ni over a 21-year period (2000-2020), 

this research addresses these gaps and investigates how variations in STW 

operations influence their downstream bioavailability. Unlike Comber et al. (2022), 

which primarily focused on compliance with EQS and demonstrated that 

catchment-scale contamination often drives metal pollution more than STW 

effluent, this study takes an ecologically relevant approach by directly assessing 

bioavailability and its implications for aquatic life. This focus improves upon the 

primary scope of earlier studies and provides insights into the long-term trends and 

risks associated with metal pollution in freshwater ecosystems.   

This chapter poses the following questions: 

• Does the final sewage effluent discharge from sewage treatment works 

cause a significant change in the concentration of metals in the receiving 

river? 

• If sewage treatment work discharges result in differences in river water 

quality, can these differences be attributed to variations in the size and 

nature of the STW? 

• How does the discharge from STWs affect the bioavailable concentrations 

of key metals (Cu, Zn, Mn and Ni) in downstream river sections compared 

to upstream levels? 

• For which metals is the bioavailability significantly reduced by the STW? 

https://www.wfduk.org/


87 

 

• What factors significantly influence the variance in bioavailable metal 

concentrations? 

 

3.2 Approach and Methodology 

The approach of this study divides in two with the consideration of dissolved metal 

concentrations first and then their bioavailability. The work of this chapters builds 

on the same systematic approach to assess the impact of STWs discharges on 

various water quality determinands as developed in Chapter 2.  

3.2.1 Study data 

This chapter utilizes 21 years (2000 to 2020) of data for the elements Ca, DOC, pH, 

Mg, Cd, Cu, Ni, Fe, Zn, and Mn. For the M-BAT model also requires pH, DOC and 

Ca concentration data. All sourced from the Environment Agency (EA) in England. 

The analytical methods and data quality constraints employed are consistent with 

those detailed in Chapter 2.  

3.2.2 STW and Control Pairs 

Chapter 3 advances the investigative framework established in Chapter 2, which 

identified and analysed monitored discharges from sewage treatment works and 

their impact on rivers. The methodology remains consistent: for each STW 

discharge, the proximate river monitoring points were scrutinized, and pairs of sites 

were carefully chosen based on their positions relative to the STW discharge, 

ensuring no additional streams or discharges influenced the data in between. As 

with the previous chapter, a control group of river monitoring sites—known as 

'Control pairs’-was selected to account for natural variations in water quality and to 

provide a baseline for comparison. These control sites were deliberately chosen to 

ensure no overlap with the STW sites, providing a clear demarcation for assessing 

changes attributed solely to STW discharges. The hypothesis remains that if STW 

discharges significantly alter water quality determinants, this effect will be reflected 

in a greater difference in the measurements between upstream and downstream sites 

in STW pairs compared to Control pairs. 

Continuing with the established protocol from Chapter 2, observations made on 

the same day were compared, excluding any pairs lacking concurrent data. By 
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applying this consistent methodology to the analysis of the new determinant in 

Chapter 3, the same rigorous approach from Chapter 2 was maintained.  Chapter 3 

advances the investigative framework established in Chapter 2, which identified 

and analysed monitored discharges from sewage treatment works and their impact 

on rivers. The methodology remains consistent: for each STW discharge, the 

proximate river monitoring points were scrutinised, and pairs of sites were carefully 

chosen based on their positions relative to the STW discharge, ensuring no 

additional streams or discharges influenced the data in between. As with the 

previous chapter, a control group of river monitoring sites—known as 'Control 

pairs'—was selected to account for natural variations in water quality and to provide 

a baseline for comparison. These control sites were deliberately chosen to ensure 

no overlap with the STW sites, providing a clear demarcation for assessing changes 

attributed solely to STW discharges. The hypothesis remains that if STW 

discharges significantly alter water quality determinants, this effect will be reflected 

in a greater difference in the measurements between upstream and downstream sites 

in STW pairs compared to Control pairs. 

In Chapter 2, 442 STW pairs and 419 Control pairs were initially identified based 

on-stream temperature records. Visual inspection confirmed that these pairs were 

evenly distributed across locations, indicating no apparent spatial bias. However, 

when considering data completeness and additional determinands beyond stream 

temperature, the number of pairs that could be analysed for dissolved metal 

concentration was smaller (Table 3.1). Their locations are represented in Figure 3.1. 
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Table 3.1. The number of pairs, both STW and Control, that could be included in 

this study. 

Determinand STW Pairs Control Pairs 

Ca (mg/L) 11 9 

Mg (mg/L) 3 12 

Cd (µg/L) 22 18 

Cu (µg /L) 91 54 

Ni (µg/L) 28 21 

Fe (µg/L) 23 17 

Zn (µg/L) 22 19 

Mn (µg/L) 16 14 
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Figure 3.1(a). Location of STW and Control pairs for each metal determinand. 

Ca Mg 

Cd Cu 
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Figure 3.1(b). Location of STW and Control pairs for each metal determinand. 

Ni Fe 

Zn Mn 
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Covariates 

As discussed in Chapter 2 (Section 2.2.2), certain water quality determinands can 

naturally change downstream, regardless of the presence of sewage discharges. To 

account for this and ensure that any differences between control and STW pairs are 

attributed to STW discharges rather than the physical arrangement of monitoring 

sites, four covariates were incorporated into the analysis: 

Euclidean distance between monitoring points within each pair (both STW and 

control) was included to control for the expected changes in water quality 

determinands as a function of distance in the ANOVA. Altitude of the upstream and 

downstream monitoring points were considered, as certain determinands, such as 

stream temperature, are known to vary with elevation. Percentile riverflow at the 

time of sampling, derived from river flow records from the National River Flow 

Archive (NRFA), was used to account for variability in flow conditions. The flow 

records were converted to percentile flow to ensure comparability across different 

catchments and locations. These covariates were included to isolate the effect of 

STW discharges on water quality from geographical and hydrological factors. 

Visual inspection of the covariates indicated no systematic bias in site selection 

(Table 2.2), though sub-sampling for individual determinands may affect the final 

analysis. 
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Bioavailable metal concentration 

Due to the complexity of directly measuring bioavailable metal concentrations, a 

predictive model was used to estimate the bioavailable metal concentration from 

measured dissolved metal levels (https://www.wfduk.org/ ). For this, the UK’s 

Metal Bioavailability Assessment Tool (M-BAT), a simplified model based on each 

metal's Biotic Ligand Model (BLM) (https://www.wfduk.org/), was employed. The 

M-BAT uses the measured concentration of the metal and calculates the 

bioavailable concentration of that metal based upon the pH; and the DOC and Ca 

concentrations measured in the same sample. The M-BAT was used to predict the 

bioavailable metal concentration for each of Cu, Zn, Mn and Ni, and then calculate 

the risk characterization ratio (RCR). The RCR was calculated by comparing the 

predicted bioavailable concentration of each metal under site-specific conditions 

with the Environmental Quality Standard for Bioavailable Metals (EQSbioavailable). 

An RCR greater than 1 indicates a potential risk due to exceedance of the EQS.  

Given the prerequisite of simultaneous measurement of DOC, pH, Ca, and the 

metal of interest within a single sample for bioavailability and RCR calculations, 

the number of viable sample pairs was substantially diminished in comparison to 

those available for dissolved metal concentration analysis. Table 3.2 gives the 

number of samples and STW and Control pairs for which bioavailable metal 

concentration and RCR could be calculated. 

https://www.wfduk.org/


94 

 

Table 3.2. The number pairs and samples for each metal that could be considered 

within the M-BAT. 

M-BAT Samples Samples (without outliers) STW Pairs   Control Pairs 

Cu (µg/L) 3202 3042 8 9 

Zn (µg/L) 3016 2530 8 8 

Mn (µg/L) 1206 1076 4 8 

Ni (µg/L) 2945 2645 7 8 
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3.2.3 Statistical analysis 

In this chapter, ANOVA was employed for the analysis of the concentration data 

for the dissolved metal concentration and the bioavailable metal analysis just as 

outlined in Chapter 2, Section 2.2.2. For the dissolved and bioavailable metal 

concentration data the impact of sewage effluent on the receiving the ANOVA was 

performed with four factors—Type, Year, Month, and Pair—where the factors are 

defined as in Chapter 2. Further this ANOVA of the dissolved and bioavailable 

metal concentrations was analysed first without and then with covariates (Euclidean 

distance between pairs, upstream altitude, downstream altitude, and percentile 

flow).  

To meet the assumptions of ANOVA, data distribution was assessed using the 

Anderson-Darling test (Anderson and Darling, 1952). Where necessary, log 

transformations were applied to normalise the data. Post-transformation, the data 

distribution was checked using a QQ’ plot, and outliers were selectively removed, 

ensuring no more than 5% of the dataset was excluded. 

Because the dataset for bioavailable metals is considerably smaller than that for 

the dissolved metals it would not necessarily be a fair comparison to compare 

between the results for the bioavailable metal concentration to the dissolved metal 

concentration. So, for those samples where there was a sufficient information to 

calculate a bioavailable metal concentration the ANOVA was repeated using the 

dissolved metal concentration data only for those samples where there was a 

sufficient information to allow the calculation of the bioavailable concentrations. 

The same factors and interactions were considered as for previous analysis. 

Therefore, there is an additional comparison, i.e. not only do we consider whether 

there is a difference between Control and STW pairs for those sites where there was 

sufficient information to calculate bioavailable metal concentration, but also that 

the same difference be observed for the dissolved metals at those sites. 

To understand the impact of the STW treatment processes on dissolved metal 

concentration, and as in Chapter 2, a Chi-squared test was conducted to assess the 

effectiveness of STW processes, determining whether treatment outcomes varied 

significantly across categorical variables. Differentiation between tertiary types 

was not possible in this chapter owing to incomplete metadata; this limitation 
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applies only to secondary processes. Correlation was used to test the relationship 

between PE, DWF, and the concentration differences in metals. 

For bioavailable metals, correlation was performed to explore the relationship 

between bioavailable metal concentrations and the concentrations of Ca, DOC, 

dissolved metals, and pH. The significance and coefficients for each factor were 

derived using a General Linear Model (GLM). The coefficient for each factor 

represents the proportional change in bioavailable metal concentration per unit 

change in the corresponding factor. Specifically, these coefficients quantify how 

much the concentration of bioavailable metals (e.g., Cu, Zn, Mn) changes when the 

concentration of Ca, DOC, or pH varies by one unit. For instance, a negative 

coefficient for pH indicates that a decrease in pH leads to a decrease in bioavailable 

metal concentration, while a positive coefficient for Ca suggests that higher Ca 

concentrations are associated with higher bioavailable metal concentrations. 

Finally, PCA was used to examine patterns in both the dissolved metal 

concentrations, and separately, the bioavailable metal concentrations and prior to 

PCA a correlation analysis was performed.  
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3.3 Results 

3.3.1 Dissolved metal concentrations 

A summary of the average dissolved metal concentration at the upstream sites and 

the average final effluent concentration is shown in Table 3.3. 
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Table 3.3. Summary of the dataset and results for STW discharge impact analysis. The significance of the impact (p < 0.05) is marked as "Yes" for 

each determinand. The main effect (%) represents the difference in values for STW pairs compared to upstream means, excluding control 

differences (illustrated in Figure 2.3). N is the total number of recorded pairs, and N (without outliers) excludes outliers. Upstream, downstream, 

and final effluent refer to their respective mean concentrations. 

Determinand  N N without outliers upstream downstream final effluent Type Significant Main effect Main effect (%) 

Ca (mg/L) 192 140 76.27 77.62 73.24 Yes 1.1 1.4 

Mg (mg/L) 210 160 8.00 12.67 17.56 Yes 0.03 0.38 

Cd (µg/L) 509 509 0.20 0.18 0.21 -- -- -- 

Cu (µg/L) 6522 5263 3.19 4.21 7.88 Yes 0.18 5.6 

Ni (µg/L) 884 884 4.63 6.13 65.29 -- -- -- 

Fe (µg/L) 937 721 96.20 66.19 249.30 Yes -4.30 -4.5 

Zn (µg/L) 972 766 49.60 33.64 58.46 Yes 0.65 1.3 

Mn (µg/L) 511 379 112.61 160.82 137.09 Yes -5.0 -4.4 
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Correlation analysis of dissolved metal concentrations 

Significant correlations (Table 3.4) were found between: Ca and Mg (0.57), Ca and 

Cu (0.41), Cd and Ni (0.57), Cd and Zn (0.92), and Ni and Zn (0.59) – Table 3.11. 

Mn has positive correlation with all other determinands. These relationships suggest 

that these determinands may share common pollution sources or exhibit similar 

geochemical behaviours, indicating that changes in one could potentially predict 

changes in another. 
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Table 3.4. Summary of inter-determinand correlation coefficients. Correlation coefficients range from −1 to 1 and are shown alongside their 

corresponding probability values. Coefficients with p-values < 0.05, indicating statistical significance, are highlighted in grey. 

Determinand 

(unit) 

Ca (mg/L) Mg (mg/L) Cd (µg/L) Cu (µg/L) Ni (µg/L) Fe (µg/L) Zn (µg/L) Mn (µg/L) 

Ca (mg/L)  0.57 -0.06 0.41 0.06 -0.37 -0.08 0.20 

Mg (mg/L)   0.004 0.33 0.09 -0.25 -0.007 0.18 

Cd (µg/L)    -0.12 0.57 -0.03 0.92 0.15 

Cu (µg/L)     0.34 0.009 -0.15 0.27 

Ni (µg/L)      0.19 0.59 0.48 

Fe (µg/L)       0.01 0.23 

Zn (µg/L)        0.19 
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Impact of STW discharges on dissolved metal concentration 

The mean final effluent concentrations for most determinands, except for Ca, are 

higher than their respective mean upstream concentrations (Table 3.3). Furthermore, 

the mean downstream concentrations of Ca, Mg, Cu, Ni, and Mn are higher than 

their corresponding mean upstream concentrations. 

The Type factor was statistically significant for all metals except Cd and Ni 

(Table 3.3 & Table 3.5, Figure 3.2)), explaining less than 28% of the original 

variance in the datasets (Table 3.5). The Type factor was most important for Ca (28% 

of original variance explained) and least important for Zn (1% of original variance 

explained). The largest impact was observed for Cu, which showed a 5.6% increase, 

followed by Fe (-4.5%) and Mn (-4.4%). Mg had the smallest main effect. 

This study focuses on the interaction of Type*Year rather than the individual 

effects of the Year factor alone. The year factor explained a portion of the variance 

for all metals except Mg and Cd; among them, Ca explained 63% of the original 

variance, and other metals explained less than this value (Table 3.5). The key 

interest lies in whether the observed impacts for the Sewage Treatment Works 

(STW) have changed over time.  

For Mg, Cu and Ni there was a significant Type*Year interaction but there was 

no significant interaction for Zn. For Cu, the STW pairs showed a decrease when 

compared to Control pairs, which is an improvement in the impact of STW 

discharge (Table 3.6, Figure 3.3 – Cu difference). For Ni, the STW pairs showed 

an increase over time, but showed no improvement in the STW discharge (Table 

3.6, Figure 3.3 – Ni difference). Due to the instability and absence of data in certain 

years (such as the missing data for Ca) (Figure 3.3), the overall coherence of the 

dataset is compromised. This inconsistency makes it more challenging to analyse 

annual trends and reduces the reliability of the study's conclusions. 

Figure 3.3 illustrates the predicted marginal means for each metal, based on the 

ANOVA model, with a particular focus on the Type*Year interaction. This plot 

highlights how the effects of STW vary over time, presenting the predicted values 

for both Control and STW sites. The error bars represent the 95% confidence 

intervals, providing a measure of uncertainty around the predicted means. Figure 
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3.3 emphasizes the yearly variations in metal concentrations and shows how STW 

influences these concentrations compared to Control sites over the study period. 

Appendix 1 provides a detailed breakdown of the Type*Year interaction, 

presenting the marginal means and 95% confidence intervals for Metals differences 

across years. The Ni difference for STW sites shows a steady increase over the 

study period. The Cu difference for STW sites indicates a slight decline with minor 

variations, and the Mg difference for STW sites demonstrates a consistent decrease 

across the years. 

Month factor explained less than 23% of the original variance in the datasets and 

Type*Month explained an even smaller proportion of the original variance (less 

than 6% - Table 3.5). As above, and with respect to this study, the more important 

term was the Type*Month interaction, i.e. does any difference between STW and 

Control types persist across the seasonal cycle?  

In this study, Cu, Ni and Mn showed a significant Type*Month interaction 

(Table 3.5). For Cu, the predicted values for STW pairs from January to December 

were higher than Control pairs (Table 3.7; Figure 3.4 – Cu difference); for Ni STW 

pairs showed higher values from January to May, and Control pairs showed  higher 

values than STW pairs from June through December (Table 3.7; Figure 3.4 – Ni 

difference ); Mn showed that from November to December the values for STW 

pairs were higher than those for Control pairs (Table 3.7; Figure 3.4 – Mn 

difference).  

Figure 3.4 illustrates the predicted marginal means for each metal, based on the 

ANOVA model, with a particular focus on the Type*Month interaction. This plot 

highlights how the effects of Sewage Treatment Works (STW) vary across months, 

presenting the predicted values for both Control and STW sites. The error bars 

represent the 95% confidence intervals, providing a measure of uncertainty around 

the predicted means.  

To further explore the monthly trends, Appendix 2 offers a more detailed 

breakdown of the Type*Month interaction. The values shown in Appendix 2 

provide additional insights into how the differences in metal concentrations evolve 

across months, contributing to a deeper understanding of the seasonal dynamics at 

play. 
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The Pair factor was statistically significant for all determinands except Cd, 

explaining between 28% and 89% of the original variance in the datasets, with its 

influence being most important for Ni and least important for Cu.  

The Type*Pair was only significant for Cu, which accounted for 0.01% of the 

original variance (Table 3.5).  

A summary of the mean difference of each Pair greater than 0, equal to 0 and 

less than 0 is given in Table 3.8. A priori, it would be expected that the proportion 

of STW pairs significantly different from zero would reflect the Type effect. 

However, for Mg and Zn, the mean value at STW sites is lower than that at Control 

sites when considering only positive differences.  

Figure 3.5 illustrates substantial between-pair heterogeneity in the concentration 

differences for the selected metals and metalloids, with a widespread observed for 

Ni (Pair η² = 0.89) and Mn (η² = 0.51), and a narrower spread for Cu (η² = 0.28) 

and Cd (non-significant). The points are ordered along the x-axis by the overall 

mean difference across both Type groups, from lowest to highest, and show both 

positive (downstream increase) and negative (downstream decrease) values. 

Notably, the position of points on the x-axis does not necessarily correspond to the 

magnitude of their mean differences along the y-axis. For example, some points on 

the left side of the x-axis have higher y-values than those on the right side, reflecting 

the mixed effects observed across different pairs. This highlights the complex 

nature of STW impacts on metal concentrations across various sites, as quantified 

in Table 3.8. Note: This is not a cumulative distribution function (CDF), but a plot 

showing the ordered mean differences across pairs. 
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Table 3.5. The summary of the ANOVA for each determinand. The significance for each determinand is stated as Yes if it was significant at a 

probability < 0.05 of being zero. η2 indicates the extent to which a factor contributes to the observed variability in the variable. 

Determinand Type Year Type*Year Month Type*Month Pair Type*Pair 

Sig η2 Sig η2 Sig η2 Sig η2 Sig η2 Sig η2 Sig η2 

Ca (mg/L) Yes 0.28 Yes 0.63 -- -- Yes 0.23 -- -- Yes 0.54 -- -- 

Mg (mg/L) Yes 0.04 -- -- Yes 0.07 -- -- -- -- Yes 0.35 -- -- 

Cd (µg/L) -- -- -- -- -- -- Yes 0.01 -- -- -- -- -- -- 

Cu (µg/L) Yes 0.04 Yes 0.009 Yes 0.01 -- -- Yes 0.005 Yes 0.28 Yes 0.01 

Ni (µg/L) -- -- Yes 0.27 Yes 0.03 Yes 0.06 Yes 0.06 Yes 0.89 -- -- 

Fe (µg/L) Yes 0.02 Yes 0.11 -- -- Yes 0.05 -- -- Yes 0.38 -- -- 

Zn (µg/L) Yes 0.01 Yes 0.11 -- -- -- -- -- -- Yes 0.46 -- -- 

Mn (µg/L) Yes 0.05 Yes 0.27 -- -- Yes 0.08 Yes 0.06 Yes 0.51 -- -- 
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Table 3.6. The gradient of the trend over the entire study period for each 

determinand that showed a significant Type*Year interaction. Where not 

significantly different from zero, zero is given, otherwise gradient is quoted the 

stand error on that slope. Improvement is stated as Yes when the impact of STW 

would be significantly decreasing with time with respect to the control. 

 STW Control Improvement? 

Mg (µg/L) -0.26 0 Yes 

Cu (µg/L) -0.22 0 Yes 

Ni (µg/L) 0.32 0 No 

 

 

Table 3.7. Months where STW-predicted concentrations were greater than 

Control-predicted concentrations for each determinand. 

 

Determinand STW predicted > Control predicted 

Cu (µg/L) January – December 

Ni (µg/L) January – May 

Mn (µg/L) November – December 
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Table 3.8. Number of mean difference values for each determinand for each pair categorized by type. 'N' represents the total number of mean 

difference values recorded. ‘>0' indicates the number of mean difference values that were greater than zero, '<0' represents the number of mean 

difference values that were less than zero, and '=0' denotes the number of mean difference values where the difference was not significantly different. 

Determinand 
Total STW Control  

N >0 =0 <0 N >0 =0 <0 N >0 =0 <0  

Ca (mg/L) 20 12 4 4 11 7 1 3 9 5 3 1  

Mg (mg/L) 15 6 4 5 3 1 1 1 12 5 3 4  

Cd (µg/L) 40 12 19 9 22 8 9 5 18 4 10 4  

Cu (µg/L) 145 59 42 44 91 42 22 27 54 17 20 17  

Ni (µg/L) 49 14 22 13 28 8 15 5 21 6 7 8  

Fe (µg/L) 40 27 5 8 23 16 3 4 17 11 2 4  

Zn (µg/L) 41 14 13 14 22 6 6 10 19 8 7 4  

Mn (µg/L) 30 13 7 10 16 8 3 5 14 5 4 5  
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Figure 3.2. The main effects plot for the Type factor for the difference. The values are presented as the marginal mean with the 95% confidence 

limits on that mean. NB. The y axis for each metal is different. 
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Figure 3.3. Main effects plot based on ANOVA-predicted marginal means for metal differences across months. These values represent the 

estimated marginal means for each Type*Year combination, averaged across the levels of other design factors (Month, Pair), and are not raw 

observed data 
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Figure 3.4. Main effects plot based on ANOVA-predicted marginal means for metal differences across months. These values represent the 

estimated marginal means for each Type*Month combination, averaged across the levels of other design factors (Year, Pair), and are not raw 

observed data.  
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Figure 3.5(a). The main effects plot of the Pair factor. The Pairs are ordered from the lowest to greatest values of the difference. The points are 

the marginal mean with the 95% confidence interval.   
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Figure 3.5(b). The main effects plot of the Pair factor. The Pairs are ordered from the lowest to greatest values of the difference. The points are 

the marginal mean with the 95% confidence interval.  
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Importance of covariates for dissolved metal concentrations 

The inclusion of covariates (length, upstream altitude, downstream altitude, and 

Percentile flow) resulted in changes to the significance and coefficients of the 

original factors (Type, Year, Month, Pair) (Table 3.9). Specifically, after including 

the covariates, the significance of Type, Year, Month, and Pair changed, with the 

coefficients of these factors also being altered. For instance, Percentile flow had a 

significant effect on Cd, Cu, and Fe, with coefficients of -—0.0002, -0.02, and -

0.23, respectively, while Euclidean distance, upstream altitude, and downstream 

altitude showed no significant effect on the dissolved metal concentrations. 
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Table 3.9. The significance and η2 for each factor of each determinand. The significance and coefficient for each of the covariates was assessed 

at a probability < 0.05 of being zero. 

Determinand Type Year Month Pair Euclidean  

distance (m) 

up_altitude  

(m asl) 

down_altitude 

(m asl) 

Percentrank  

Significant 

Sig η2 Sig η2 Sig η2 Sig η2 Sig coefficient Sig coefficient Sig coefficient Sig coefficient 

Ca (mg/L) Yes 0.001 -- -- Yes 0.33 -- -- -- -- -- -- -- -- -- -- 

Mg (mg/L) Yes 0.69 Yes 0.62 Yes 0.37 -- -- -- -- -- -- -- -- -- -- 

Cd (µg/L) Yes 0.01 Yes 1 Yes 0.05 Yes 0.05 -- -- -- -- -- -- Yes -0.0002 

Cu (µg/L) Yes 0.008 Yes 0.06 Yes 0.01 Yes 0.19 -- -- -- -- -- -- Yes -0.02 

Ni (µg/L) Yes 1 Yes 1 -- -- -- -- -- -- -- -- -- -- -- -- 

Fe (µg/L) Yes 0.02 Yes 0.08 Yes 0.04 Yes 0.18 -- -- -- -- -- -- Yes -0.23 

Zn (µg/L) Yes 0.04 Yes 0.09 Yes 0.03 Yes 0.33 -- -- -- -- -- -- -- -- 

Mn (µg/L) -- -- Yes 0.02 Yes 0.04 Yes 0.25 -- -- -- -- -- --   



114 

 

Impact of the nature of the STWs on the dissolved metal concentration 

The Chi-squared test results showed that there was only a significant difference 

between activated sludge secondary treatment (SAS) and secondary biological 

treatment (SB) for Fe and Cu (Table 3.10). In both cases the presence of SB 

treatment is more effective for Fe and Cu removal (Figure 3.6). 
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Table 3.10 Results of Chi-squared test for each determinand relative to technologies present at the STW. SAS = secondary activated sludge; SB 

= secondary biological. It was significant when at a probability (P) < 0.05. 

Determinand  SAS SB P Main effect (SAS-SB) 

Ca (mg/L) 

Positive 0 7 -- -- 

Negative 0 23 

Mg (mg/L) 

Positive 0 0 -- -- 

Negative 0 11 

Cd (µg/L) 

Positive 0 4 -- -- 

Negative 0 16 

Cu (µg/L) 

Positive 134 803 0.0001 0.5 

Negative 407 1008 

Ni (µg/L) 

Positive 1 12 -- -- 

Negative 1 16 

Fe (µg/L) 

Positive 32 116 0.004 28 

Negative 67 115 
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Zn (µg/L) 

Positive 0 8 -- -- 

Negative 3 18 

Mn (µg/L) 

Positive 0 24 -- -- 

Negative 0 24 

 

 

 

Figure 3.6. Secondary treatment difference for Cu and Fe. The main effects and the 95% confidence limits are plotted – they are quite small 

relative to the plot size. 
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Impact of population equivalence and dry weather flow on dissolved metal 

concentrations 

As discussed in Section 2.3.4, a positive correlation exists between population 

equivalence (PE) and dry weather flow (DWF) (Pearson correlation coefficient of 

0.88), indicating that increases in both variables significantly impact receiving 

water bodies (See Figure 2.13).  

While previous analyses focused on the overall relationship between PE and 

DWF, this chapter examines the relationship between individual determinand 

concentrations and PE and DWF (Table 3.11). For Ca and Ni, increase PE led to a 

decrease in metal concentration, while Zn was positively correlated with PE. With 

respect to DWF then Fe was negatively correlated while both Mg and Cu showed 

positive correlation.
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Table 3.11. Significance of the impact of STW discharge on each determinand, Population Equivalence (rPE), and Dry Weather Flow (DWF). A 

result is marked as "Yes" if the impact was statistically significant at p < 0.05 (i.e. the probability of the effect being zero is less than 5%). 

  

  

  

 

 

 

 

 

  

 

 

Determinand 
Population equivalence (PE/1000) Dry weather Flow (DWF/1000) 

r2 
Sig Coefficient Sig Coefficient 

Ca (mg/L) Yes -0.39 -- -- 0.47 

Mg (mg/L) -- -- Yes 19.11 0.69 

Cd (µg/L) -- -- -- -- 0.008 

Cu (µg/L) -- -- Yes 0.28 0.10 

Ni (µg/L) Yes -0.002 -- -- 0.08 

Fe (µg/L) -- -- Yes -4.83 0.04 

Zn (µg/L) Yes 0.42 -- -- 0.30 

Mn (µg/L) -- -- -- -- 0.003 
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Principal components analysis of dissolved metal concentrations 

By merging datasets for each determinand there were 387 data that could be 

considered across all determinands for all STW pairs. Three out of eight 

components had eigenvalues > 1 (Table 3.12) and these three components together 

explained 76% of the original variance. The contribution table on the components 

shows that the first component (PC1) was correlated with Zn, Cd and Ni; the second 

component (PC2) was correlated to Ca, Mg and Cu; and the third component was 

highly correlated with Fe and Mn. The graph of the scores on the first two 

components shows a quasi-orthogonality with STWs plotting on trends along PC1 

or trending along PC2. After data processing there was data for 16 STWs. One STW 

appears distinct - Nent North of Crookbank – with variation dominantly along PC1 

and nearly orthogonal to all other STWs (Figure 3.7). 
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Figure 3.7. PCA score and loading for the first two principal components (PC1 and PC2). The list of sites with their corresponding numbers is 

as follow: 1 — Chess Stream, Park Farm; 2 — Cressbrook Pool Outfall; 3 — River Derwent at Carricks Picnic Site (Ruffside); 4 — Glenridding 

Beck at A592; 5 — Lydden at Lydlinch; 6 — River Nent north of Crookbank Cottage; 7 — Owlands Wood Dyke at Cornmill Farm; 8 — 

Pennington Brook at Black Harry Bridge; 9 — River Gipping upstream of Horseshoe Weir; 10 — Rainworth Water at Robin Dam Bridge; 11 — 
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River Alt above Altmouth Pumping Station; 12 — River Amber at Dalebank; 13 — River Roe at Gaitsgill; 14 — Rookhope Burn at Eastgate; 15 

— Strine Brook at Longford Footbridge; 16 — Threlkeld EA Flow Station.
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Table 3.12. Loading of each determinand on each principal component with eigenvalue > 1. 

Determinand PC1 PC2 PC3 

Ca (mg/L) 0.06 -0.57 -0.19 

Mg (mg/L) 0.11 -0.52 -0.18 

Cd (µg/L) 0.53 0.20 -0.30 

Cu (µg/L) 0.12 -0.47 0.33 

Ni (µg/L) 0.54 -0.04 0.19 

Fe (µg/L) 0.08 0.24 0.66 

Zn (µg/L) 0.54 0.21 -0.27 

Mn (µg/L) 0.34 -0.20 0.42 

Eigenvalue 2.58 2.13 1.39 

Percentage of variance explained 32% 27% 17% 
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3.3.2 Bioavailable metal concentration 

A summary of the bioavailable concentrations for each metal is shown in Table 

3.13. For metal bioavailability, the presence of STW discharge had varied impacts 

across metals. Zn exhibited a significant decrease in main effect (-258% compared 

to Control), indicating that the increase in Zn concentrations downstream of STW 

sites was smaller than the natural variation observed in control sites. For Mn, the 

bioavailable concentrations increased (main effect of 21%), suggesting a notable 

contribution of STW discharge to downstream Mn levels. Similarly, Ni showed a 

modest increase in bioavailable concentrations (main effect of 13%). For all metals 

for which bioavailable concentrations could be calculated, except for Cu, the Type 

factor was significant but explained no more than 2% of the variance in the original 

dataset (Figure 3.8 and Table 3.14). Except for Zn, all bioavailable metals had 

higher mean concentrations in STW pairs than in the Control pairs (Figure 3.8).  

The Year factor was significant for all metals, explaining no more than 10% of 

the original variance (Table 3.14). Additionally, the Type*Year interaction was 

only significant for Cu, although it explained only 0.2%. The yearly trends for the 

bioavailable concentration of Cu with STW pairs showing a significant decrease at 

the rate of -0.004 µg /L per year, while the Control pairs exhibited an increase at 

the rate of 0.003 µg /L per year, i.e. the impact of STW discharge for Cu was 

diminishing with time through the study.  

The Month factor was significant for Cu, Zn, and Ni, contributing to less than 4% 

of the variance in the original dataset. However, the Type*Month interaction was 

insignificant for all bioavailable metals, so the seasonal differences were not 

analysed further. 

The Pair factor accounted for no more than 35% of the original variance, with 

the highest contribution observed for Zn, explaining 35% of the original variance. 

In contrast, Ni and Cu contributed minimally to the variance, and the effect was not 

significant for Mn. Additionally, the Type*Pair interaction was found to be 

insignificant for all bioavailable metals.
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Table 3.13. Summary of the dataset and results for the analysis of the impact of STW discharge for each Bioavailable metal. The main effect (%) 

is the main effect for each determinand for the Type factor. Values are compared to the mean for the upstream values for the STW pairs for that 

determinand. N represents the total number of pairs recorded at different times. N (without outliers) refers to the count of these pairs after 

removing outlier values. Main effect = Mean STW bioavailable concentration difference – Mean Control Bioavailable concentration difference. 

Bioavailable 

metal(unit) 

N N (without outliers) Mean 

upstream  

Mean 

Downstream 

 

Type Significance Main effect  Main effect (%) 

Cu (µg/L) 3202 3042 0.16 0.162 -- -- -- 

Zn (µg/L) 3016 2530 5.92 8.97 Yes -15.3 -258 

Mn (µg/L) 1206 1076 27.62 28.52 Yes 5.83 21 

Ni (µg/L) 2945 2654 0.97 0.95 Yes 0.13 13 
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Table 3.14. The summary of the General Linear Model for each determinand Bioavailable metal. The significance for each determinand is stated 

as Yes if it was significant at a probability < 0.05 of being zero. η2 indicates the extent to which a factor contributes to the observed variability in 

the variable. 

Bioavailable 

metal (unit) 

Type Year Type*Year Month Type*Month Pair Type*Pair Dissolved  

concentration 

Type*Dissolved 

concentration 

Sig η2 Sig η2 Sig η2 Sig η2 Sig η2 Sig η2 Sig η2 Sig η2 Sig η2 

Cu (µg/L) -- -- Yes 0.02 Yes 0.002 Yes 0.006 -- -- Yes 0.008 -- -- Yes 0.61 Yes 0.06 

Zn (µg/L) Yes 0.02 Yes 0.10 -- -- Yes 0.04 -- -- Yes 0.35 -- -- Yes 0.93 Yes 0.01 

Mn (µg/L) Yes 0.02 Yes 0.004 -- -- -- -- -- -- -- -- -- -- Yes 0.66 Yes 0.02 

Ni (µg/L) Yes 0.005 Yes 0.02 -- -- Yes 0.003 -- -- Yes 0.03 -- -- Yes 0.92 Yes 0.008 
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Comparison of Type effect between bioavailable and dissolved metal 

concentrations 

Due to differences in the size of the dataset size used for analysing the dissolved 

and bioavailable metal concentrations, the dissolved metal concentration data was 

re-analysed only for those samples where the bioavailable metal concentration 

could be calculated. The effect of Type on bioavailable metal concentrations was 

compared to that for dissolved metal concentrations in the same set of samples 

(Figure 3.8). In this analysis, the Type factor was significant for all bioavailable 

metals, except for Cu. Among the metals, Zn showed the largest difference between 

the Control and STW samples. 

When comparing the bioavailable metal concentrations to the dissolved metal 

concentrations, similar patterns were observed between the two sets of data, 

indicating that the Type effect (STW vs. Control) generally followed a similar 

pattern for both bioavailable and dissolved metals. 

• For Mn and Ni, the bioavailable concentrations increased downstream of 

the STW discharge, consistent with the observed increases in their dissolved 

concentrations. 

• For Zn, the bioavailable concentration decreased in the STW impacted 

waters, mirroring the reduction observed for dissolved Zn. 

• For Cu, while the dissolved concentration increased downstream of the 

STW, there was no significant difference in bioavailable Cu concentrations 

between STW and Control. 

These results suggest that, for most metals, the bioavailable concentration 

closely align with dissolved metal concentration patterns, except Cu, where the 

increase in dissolved levels was not accompanied by a corresponding increase in 

bioavailability. 
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Bioavailable concentration and its relationship with pH, Ca, DOC and Relevant 

dissolved metal 

In the statistical analysis, correlation was performed to explore the relationships 

between bioavailable metal concentrations and variables such as Ca, DOC, 

dissolved metal concentrations, and pH. In Table 3.15, the bioavailability of each 

metal (Cu, Zn, Mn, and Ni) was measured on the same day, along with pH, Ca, and 

DOC. A negative correlation was observed between all bioavailable metals and 

DOC, except Mn. Zn, Mn and Ni exhibited a negative correlation with Ca, while 

all bioavailable metals showed positive relationship with pH. 

When comparing the effects of Ca, pH, and DOC on bioavailable metal 

concentrations, it appears that pH and DOC have a more substantial impact on 

bioavailable metal concentrations than Ca. For instance, the pH coefficient for Mn 

is 9.42, meaning that an increase in pH by one-unit results in a increase in 

bioavailable Mn concentration by approximately 9.42 units. This positive 

relationship reflects the increased solubility of Zn at higher pH levels. Similarly, 

the DOC coefficient for Zn is -0.73, showing a similar inverse relationship, while 

the Ca coefficient for Zn is only 0.43, indicating a relatively weaker effect of Ca on 

Zn concentration. 

Similarly, although the pH coefficient for Cu is 0.06 and the DOC coefficient 

for Cu is -0.01, the Ca coefficient for Cu is just 0.0002, which is considerably lower 

in comparison to the effects of DOC and pH.
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Table 3.15. The summary of the General Linear Model for each determinand Bioavailable metal with Ca, DOC, pH and relevant dissolved metal. 

The significance for each determinand is stated as Yes if it was significant at a probability < 0.05 of being zero. η2 indicates the extent to which a 

factor contributes to the observed variability in the variable. The coefficient quantifies how much the concentration of the bioavailable metal 

changes. 

Bioavailable metal (unit) Ca DOC pH Dissolved concentration 

Sig η2 Coefficient Sig η2 Coefficient Sig η2 Coefficient Sig η2 Coefficient 

Cu (µg/L) Yes 0.12 0.0002 Yes 0.12 -0.01 Yes 0.23 0.06 Yes 0.38 0.03 

Zn (µg/L) Yes 0.43 -0.02 Yes 0.01 -0.73 Yes 0.04 0.64 Yes 0.75 0.27 

Mn (µg/L) Yes 0.001 -0.11 -- 0.003 0.08 Yes 0.03 9.42 Yes 0.61 0.35 

Ni (ug/L) Yes 0.01 -0.002 Yes 0.001 -0.05 Yes 0.09 0.39 Yes 0.75 0.24 
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Figure 3.8 Type difference of dissolved metal and bioavailable concentration. The values are presented as the marginal mean with the 95% 

confidence limits on that mean. NB. The y axis for each metal is different. 



130 

 

RCR proportion 

Table 3.16 displays the proportions of the Risk Characterisation Ratio (RCR) 

calculations that exceeded 1 for each bioavailable metal under site-specific 

conditions. An RCR greater than 1 indicates that the metal’s bioavailable 

concentration surpasses the Environmental Quality Standard (EQSbioavailable), 

suggesting potential environmental risks.  

For Mn and Ni, the RCR never exceeded 1, indicating that these metals do not 

pose an environmental risk at the sites analysed based on bioavailable 

concentrations. Cu and Zn were observed to have RCR greater than 1 in this study, 

a proportion of 0.22 and 0.004, indicating a potential risk due to exceedance of the 

EQSbioavailable at some sites. 

This summary allows for a comparative evaluation of the environmental risk 

across different metals, with Zn showing the highest likelihood of exceeding 

environmental safety thresholds in the locations studied. 

 

Table 3.16. Summary of RCR. N represents the total number of sampling points 

recorded at different times. 

Bioavailable metal(unit) N of RCR N of RCR >1 Proportion of RCR >1 Median RCR 

Cu (µg/L) 3042 11 0.004 0.13 

Zn (µg/L) 2530 559 0.22 0.37 

Mn (µg/L) 1076 0 0 0.12 

Ni (µg/L) 2654 0 0 0.18 
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Inter-determinand correlation for bioavailable metal concentrations 

Before conducting the PCA analysis, correlations between bioavailable metal 

concentrations on the same day were analyzed (Table 3.17). Cu showed a 

significant negative correlation with both Zn and Mn, with correlation coefficients 

of -0.23 and -0.11, respectively. Conversely, Cu exhibited a significant positive 

correlation with Ni, with a value of 0.37. Zn had a significant positive correlation 

with Mn and Ni, with values of 0.10 and 0.09, respectively. Additionally, Mn 

displayed a significant positive correlation with Ni (0.32). Overall, the bioavailable 

metals were significantly interrelated, with particularly strong relationships 

observed between Cu and Ni, as well as Mn and Ni. 

 

Table 3.17. Inter-determinand correlation coefficients (range: -1 to 1) and their 

corresponding p-values.Coefficients with p-values < 0.05, indicating statistical 

significance, are highlighted in grey. 

Determinand 

(unit) 

Cu (µg/L) Zn (µg/L) Mn (µg/L) Ni (µg/L) 

Cu (µg/L)  -0.23 -0.11 0.37 

Zn (µg/L)   0.10 0.09 

Mn (µg/L)    0.32 
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Principal components analysis of the bioavailable metal concentrations 

A total of 497 data points were used in the PCA analysis for bioavailable metal 

concentrations, consisting of 249 STW samples and 248 Control samples. Among 

the four principal components, two had eigenvalues greater than 1 (Table 3.18), 

explaining 68%, 70.5%, and 68% of the variance for the entire dataset, STW sites, 

and Control sites, respectively. The contribution of each component reveals that Cu 

and Mn concentrations primarily influence the first component, while the second 

component is strongly associated with Mn. 

As shown in Figure 3.9 the Control samples exhibit a tighter clustering, 

reflecting a more consistent and lower bioavailability of metals under natural 

conditions, with less variability in metal behaviour in the absence of significant 

STW discharge. Despite this, the distribution of STW and Control samples overlaps 

considerably, which can be better seen in the separate PCA scatter plot of STW 

(Figure 3.10) and Control (Figure 3.11), with Control samples occasionally 

extending beyond the boundary defined by the STW data points.  

The loadings of the bioavailable metals on PC1 and PC2 (Figure 3.9) indicate 

that as one moves to the right along PC1, certain metals, such as Ni, are more 

associated with higher bioavailability in STW samples. In contrast, metals like Cu 

appear to contribute more to explaining bioavailability in the Control group, as 

reflected in their positioning along PC2. 
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Figure 3.9. The scatter plot of the scores and loadings on PC1 and PC2 for all sampling sites. 
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Figure 3.10. The scatter plot of the scores on PC1 and PC2 for STW sampling sites. The list of sites with their corresponding numbers is as 

follow: 1 — Bentley Brook at A636 Road Bridge; 2 — Hole Brook, PTC River Darwen; 3 — River Derwent at Carricks Picnic Site (Ruffside); 4 

— River Derwent upstream of Blanchland STW; 5 — River Alt above Altmouth Pumping Station; 6 — Pearl Brook below Horwich ETW; 7 — 

Rookhope Burn at Eastgate; 8 — Rookhope Burn upstream of Rookhope STW; 9 — North Killingholme Main Drain downstream of Killingholme 

SW; 10 — River Glenderamackin upstream of Gategill Beck; 11 — Threlkeld EA Flow Station; 12 — River Dove above confluence with River 

Dearne; 13 — River Erewash downstream of Kirkby in Ashfield STW; 14 — River Erewash at Pyebridge; 15 — Seymoor Drain at Cottam; 16 — 

River Amber at Dalebank; 17 — River Amber at Hockley Quarry Footbridge; 18 — River Wye at Ashwood Quarry; 19 — Strine Brook at 
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Longford Footbridge; 20 — Bobs Brook downstream of Lower Gornal STW; 21 — River Gipping upstream of Horseshoe Weir; 22 — Old Park 

Watercourse at Whistley Bridge; 23 — North Stream at Eastry; 24 — River Dever at Bransbury; 25 — Hog Dyke at Raunds Farm Bridge 

upstream of A45 Road Bridge. 
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Figure 3.11. The scatter plot of the scores on PC1 and PC2 for Control sampling sites. The list of sites with their corresponding numbers is as 

follow: 1 — Barney Beck upstream of Old Rake; 2 — Beverley Brook at Motspur Park, downstream of Road; 3 — Bowling Beck at Lingwell Gate 

Lane; 4 — Daddry Shield Burn upstream of Quarry Level; 5 — Daddry Shield Burn downstream of Middle Level; 6 — Daddry Shield Burn 

upstream of Middle Level Portals; 7 — Downstream of Large Spoil Heap; 8 — Fosse Gill at Turner Bridge; 9 — Great Eggleston Beck at Middle 

End Bridge; 10 — Gunnerside Gill upstream of Bunton Lead Level; 11 — Honeycrook Burn at Ford, Tony’s Patch; 12 — Honeycrook Burn at 

Whinnetley Farm Road Bridge; 13 — Hudeshope Beck downstream of Marl Beck; 14 — Hudeshope Beck at Road Bridge upstream of Marl Beck; 

15 — Lee Moor Beck at A61 Bridge; 16 — River Leven at Bense Bridge; 17 — River Leven at East Angrove; 18 — Middle Tongue Dike at 
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Paradise Farm; 19 — River Nent at Caplecleugh; 20 — River Salwarpe at Porters Mill; 21 — River Caldew at Mosedale Bridge; 22 — River 

Cary downstream of North Barrow Brook; 23 — River Esk at Ruswarp; 24 — River Lemon downstream of River Sig confluence; 25 — River Sig 

upstream of River Lemon confluence; 26 — Rookhope Burn just upstream of Ripsey Breakout; 27 — Rookhope Burn upstream of Rookhope STW; 

28 — Rushyford Beck 200 m downstream of tributary Windles STW; 29 — Settlingstones Burn upstream of Newburn Burn at Footbridge; 30 — 

Shildon Burn at Road Bridge to Pennypie; 31 — Stony Burn downstream of Stonyburn Bridge; 32 — Tathal Brook at Lodge Farm Footbridge; 33 

— River Allen at Hindley Wrae Ford; 34 — River West Allen at Blueback Bridge; 35 — West Beck at Stone Bridge. 
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Table 3.18. Loading of each determinand on each principal component with eigenvalue > 1. 

Determinand PC1 PC2 

 Total STW Control Total STW Control 

Cu (µg/L) 0.69 -0.34 0.69 0.07 0.75 0.07 

Zn (µg/L) -0.54 -0.46 -0.54 -0.43 -0.30 -0.43 

Mn (µg/L) 0.02 -0.35 0.02 -0.72 -0.57 -0.72 

Ni (µg/L) 0.48 -0.75 0.48 -0.54 0.11 -0.54 

Eigenvalue 1.40 1.55 1.40 1.32 1.28 1.32 

Percentage of variance explained 35% 39% 35% 33% 32% 33% 
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3.4 Discussion   

Sewage treatment works have been extensively studied for their role in influencing 

downstream water quality, particularly in relation to compliance with 

Environmental Quality Standards (EQS) for trace metals. Comber et al.  analysed 

data from over 600 sites across the UK using the BioMet bioavailability model. 

Their findings indicated that, after accounting for bioavailability, compliance rates 

for metals such as Cu and Zn exceeded 95%. The local impacts of STW discharges 

on downstream metal concentrations were quantitatively minor; for instance, 

median increases in Cu and Zn concentrations were 19% and 33%, respectively, 

both remaining below EQS thresholds (p < 0.05). These findings suggest that, while 

localised impacts were limited in magnitude, catchment-scale contamination, with 

widespread EQS exceedances in upstream areas, remains a critical issue that 

requires broader management interventions. However, while Comber et al. (2022) 

primarily focused on trace metals and applied a bioavailability-driven compliance 

framework, this study expands the scope to include a wider range of 

determinands—Cu, Ni, Ca, Mg, Zn, Cd, Fe, and Mn. Each determinand was 

analysed for yearly and monthly trends relative to control sites, along with 

covariates such as river length, altitude, and percentile flow. The nature of STWs 

was also examined for its influence on metal concentrations, highlighting its 

potential to mitigate or exacerbate downstream impacts. 

Recent large-scale analyses, such as Comber et al.(2022), examining over 600 

STWs sites across England, found minimal local impacts for many contaminants 

but confirmed STW-driven elevations in metals like Ni and Mn, reinforcing the 

need for site-specific assessments beyond catchment-wide trends. This chapter’s 

inclusion of a 21-year dataset (2000–2020) and multiple rivers addresses limitations 

in earlier studies, such as Matthiessen et al. (1999) and Comber et al. (2008), which 

focused on shorter monitoring periods for Cu and Zn compliance, overlooking key 

metals like Mn and Ni. The observed temporal trends—e.g., decreasing annual 

differences for Cu and increasing for Ni—provide novel insights into long-term 

dynamics. These trends align with the WFD’s emphasis on sustained monitoring of 

metal concentrations to assess ecological status, highlighting the need for targeted 

WFD interventions to mitigate ecological risks. 



140 

 

 

In line with these studies, Buss and Lester (1995) investigated STW discharges 

on the River Ivel and reported increased Cd, Cu, Fe, and Mg concentrations 

downstream. Building on this, Bubb and Lester (1995) highlighted the role of DOC 

from effluents in influencing metal bioavailability through significant metal 

complexation in receiving waters. These findings underscore the importance of 

considering both concentration changes and bioavailability in assessing STW 

impacts, providing a foundation for the current study.  

These findings on the role of DOC in influencing metal bioavailability 

observations are supported by Peters et al. (2014), who demonstrated that DOC 

forms complexes with metal ions, reducing immediate bioavailability while 

facilitating downstream transport, a mechanism likely relevant to the current 

findings. Meanwhile, the relationship between dissolved and bioavailable Cu 

concentrations, where increased dissolved Cu levels do not consistently increase 

bioavailability, may be influenced by competition from Ca and Mg for biotic ligand 

sites, as supported by Väänänen et al. (2018)  using the UKTAG M-BAT to evaluate 

metal uptake. For Mn and Ni, the rise in both forms suggests heightened ecological 

risk, particularly in soft-water regions, while Zn’s lower bioavailability despite 

higher dissolved levels aligns with Hargreaves et al. (2018)’s findings on ligand 

binding in sediments. This framework integrates bioavailability corrections to 

improve the accuracy of EQS and highlights the need for site-specific risk 

assessments. 

While bioavailability provides a more ecologically relevant measure of metal 

toxicity, its relationship with dissolved metal concentrations is not always linear. In 

this study, Cu showed a significant increase in dissolved concentrations 

downstream of STW discharges, yet its bioavailable concentration remained largely 

unchanged. This suggests that complexation with DOC or other competing ions, 

such as Ca²⁺ and Mg²⁺, may have reduced its bioavailability. In addition, treatment 

processes that do not effectively remove DOC may enhance metal–ligand 

complexation, reducing apparent bioavailability despite elevated dissolved loads 

(Wood et al., 2011). Conversely, for Mn and Ni, both dissolved and bioavailable 

concentrations increased, indicating a higher risk of ecological impact. Such 
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patterns may reflect limited removal efficiencies for Mn and Ni in conventional 

biological processes, while diffuse sources such as urban runoff and catchment 

geology can further elevate background concentrations in control sites. 

Zn presented a contrasting trend, where bioavailable concentrations were 

significantly lower in STW-impacted waters compared to control sites, despite 

higher dissolved concentrations. This suggests that Zn may have been strongly 

bound to organic ligands or particulates, reducing its bioavailability. Control sites 

with higher suspended solids from diffuse erosion may also promote Zn adsorption 

onto particulates (Marttila et al., 2013), indicating that both effluent chemistry and 

catchment processes influence its availability. The results indicate that SB is more 

effective for Fe and Cu removal, whereas SAS shows better performance for Mg. 

These findings highlight the importance of considering both dissolved and 

bioavailable fractions when assessing the environmental impact of STW discharges. 

Regulatory frameworks based solely on dissolved metal concentrations may 

overestimate or underestimate actual ecological risks depending on site-specific 

conditions. This pattern is consistent with Hargreaves et al. (2018)’s sediment 

studies, which found Zn binding to organic matter reduces its ecological availability. 

The discrepancy between dissolved and bioavailable Zn underscores the need for 

bioavailability-based EQS, as advocated by the Environment Agency’s tiered 

framework, to accurately reflect site-specific risks. 

Further advancing the understanding of bioavailability, Vaananen et al. 

(Vaananen et al., 2018) emphasized the importance of bioavailability in ecological 

risk assessment and highlighted the use of tools like the UKTAG M-BAT in 

England to adapt EQS for metals, such as Cu, Mn, and Zn, based on local water 

chemistry. This approach is particularly relevant this study, as M-BAT’s hardness 

and DOC adjustments could explain the observed Cu and Zn bioavailability patterns, 

enhancing the precision of EQS compliance assessments across diverse UK river 

conditions. 

The study also draws on the work of Crane et al. (2010), who evaluated Cu and 

Zn removal efficiencies across three biological wastewater treatment processes: 

Activated Sludge (AS), Trickling Filters (TF), and Membrane Bioreactors (MBR). 

Their findings demonstrated that AS achieved the highest Cu removal (99%), 
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followed by TF (84%) and MBR (47%). For Zn, TF outperformed AS and MBR, 

with removal efficiencies of 84%, 68%, and 50%, respectively. MBR’s poor 

performance was attributed to long sludge retention times (SRT > 40 days), which 

produced organic molecules that chelated metals, preventing adsorption. These 

findings provide a baseline for this study’s comparison of SAS and SB processes, 

where SB’s superior Fe and Cu removal may reflect enhanced biological reduction 

under anaerobic or low-oxygen conditions. The variability in removal efficiencies 

aligns with Oliveira et al. (2007)’s observations on biological treatment 

performance, suggesting that process optimization could further reduce 

downstream metal loads. 

In comparison, this study evaluates the performance of SAS and SB treatment 

processes for a broader range of metals, including Cu, Ni, Zn, Cd, Fe, Mg, and Mn. 

The results indicate that SB is more effective for Fe and Cu removal, whereas SAS 

shows better performance for Mg. These contrasts reflect underlying process 

mechanisms: SB may enhance reductive removal of Fe (Lies et al., 2005) and Cu 

(Huang et al., 2015) under low-oxygen biofilm conditions , whereas SAS maintains 

higher Mg removal through greater aeration and cation exchange (Uludag-Demirer 

and Othman, 2009; Jiang et al., 2013). Furthermore, this study incorporates 

bioavailability assessments, highlighting the relationships between metals and 

environmental factors such as pH, DOC, and Ca. By analysing temporal (monthly 

and yearly trends) and spatial variations (upstream vs. downstream), and calculating 

RCR values for environmental risk assessment, this study provides a more 

comprehensive evaluation of wastewater treatment impacts, extending the scope of 

the work carried out by Crane et al. (2010).  

The inclusion of bioavailability assessments builds on Crane et al. (2010)’s focus 

on removal efficiency, revealing that SB’s effectiveness may also mitigate 

bioavailable metal risks, while SAS’s Mg focus could stabilise hardness-related 

effects. Temporal and spatial analyses further align with Worrall et al. (2019)’s 

findings on DOC-driven metal dynamics, suggesting that STW design influences 

both concentration and ecological impact over time. 

The 21-year dataset enhances trend detection compared to shorter studies like 

Matthiessen et al. (1999), while the 16-site limitation, driven by data availability, is 
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mitigated by Chapter 5’s broader scope, potentially validating localised findings 

across England. This chapter considered more determinands over a longer time 

period (2000 to 2020) and across more rivers than any previous study. Further, there 

was always a control, and the STW design allowed for factors such as year and 

month to be accounted for. Although this study examined water quality data from 

across England, the constraints of the rigorous experimental design and the 

requirement that all determinands be measured coincidentally meant that only 39 

STW sites could be included (figure 3.10). While this chapter was limited to 

studying impacts where data allowed, Chapter 5 will adopt a different approach, 

considering all English river data and comparing them to the final effluent from 

STW discharges to assess whether broader impacts can be discerned. Overall, the 

findings emphasise that STW design and operational processes are key 

determinants of effluent metal profiles, but control sites highlight the parallel 

importance of diffuse inputs from agriculture, geology, and urban runoff, 

necessitating integrated management approaches. 
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3.5 Conclusion 

i) All determinands, except Cd and Ni, showed significant changes in the 

receiving river due to STW discharges. For Ca, Mg, Cu, and Mn, 

concentrations increased in the receiving river, while Fe and Zn 

concentrations decreased.  

ii) The annual trend for the difference made by STW discharges showed a 

decrease for Mg and Cu, but an increase for Ni. 

iii) Different secondary treatments impact the removal of Fe and Cu; SB is 

more effective than SAS at removing metals. 

iv) Larger STWs have a greater impact on receiving waters. PE affects 

changes in Ca, Ni, and Zn concentrations, while DWF influences Fe, 

Mg, and Cu. 

v) Principal Component Analysis (PCA) identified two types of STWs 

based on their impacts: one type affecting Zn, Cd, and Ni, and the other 

type impacting Ca, Mg and Cu.  

vi) STW discharges significantly impacted bioavailable Zn, Mn, and Ni, 

while bioavailable Cu remained unchanged despite increased dissolved 

concentrations. 

vii) Zn showed the highest proportion of samples that had RCR > 1 and so 

exceeded their environmental quality standard.
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Chapter 4: Non-metal Determinands -- National scale impact of 

STW discharge on English rivers 

4.1 Introduction 

The purpose of Chapter 4 is to study the broader impact of sewage treatment works 

(STW) discharges on nutrient pollution, specifically focusing on their potential 

leading to eutrophication (Preisner et al., 2021). The process of eutrophication is 

defined by an excessive accumulation of nutrients, such as phosphate and nitrate, 

in aquatic ecosystems, which can lead to the overgrowth of algae and aquatic plants 

(Bhat and Qayoom, 2021). The over-enrichment of water can lead to detrimental 

algal blooms, lower oxygen levels, and deteriorate water quality, all of which will 

pose serious threats to aquatic biodiversity, ecosystem health, and the water-based 

economy (Withers et al., 2014). Chlorophyll concentration is regarded as the test 

of  algal biomass in aquatic systems (Spaulding et al., 2024). Elevated 

concentrations of chlorophyll typically indicate nutrient enrichment (Howell and 

Benoit, 2021), often linked to sewage effluent discharges (McLaughlin et al., 2021). 

Monitoring chlorophyll concentrations provides critical insight into the extent to 

which nutrients from STWs stimulate algal growth (Bennett et al., 2021).  Diatoms 

are one of the main aquatic plants and their growth requires silica to construct their 

frustules – a silica-based cell wall (Kröger et al., 1999). So, along nutrient, silica 

concentrations should be considered when assessing eutrophication potential (Lim 

and Lee, 2017).  

As this study showed in Chapter 2, the discharge from STWs normally caused 

an increase in downstream stream temperature, Nitrate, and Phosphate 

concentrations, with the increases being 0.01%, 79%, and 13.3%, respectively 

(Table 2.3). Although there has been considerable research on nutrient pollution 

and eutrophication, the precise role of sewage treatment works (STW) discharges 

in contributing to increased nutrient levels (Albini et al., 2023) and subsequent 

increases in chlorophyll concentration remains unclear. This chapter addresses that 

knowledge gap by providing a data-driven analysis to clarify the impact of STW 

effluents on nutrient pollution and consequent changes to aquatic ecosystems. 

Specifically, it investigates how elevated concentrations of nitrogen and 
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phosphorus, resulting from STW discharges, influence key ecological parameters 

such as chlorophyll-a levels, primary productivity, and the overall health of aquatic 

communities. By linking nutrient concentrations to observable ecological changes, 

this study aims to refine our understanding of the role of STWs in driving 

eutrophication processes and their broader implications for water quality 

management and conservation strategies.  

Beyond chlorophyll concentration, this chapter examines the broader effects of 

STW effluent by integrating discharge data with river water quality measurements, 

aiming to uncover potential correlations between effluent discharges and changes 

in key water quality indicators (Wallace et al., 2016). Combining these datasets is 

crucial for understanding the full scope of STW impacts on water bodies, as their 

interactions with natural processes can be complex. This analysis builds on Chapter 

2’s findings, focusing on several water quality parameters—stream temperature, 

biochemical oxygen demand (BOD), chemical oxygen demand (COD), nitrate, 

phosphate, pH, suspended solids, and specific conductance—which are key 

indicators of water quality and provide a foundation for evaluating nutrient-related 

effects on river systems. 

The chapter investigates whether STW discharges contribute to eutrophication 

by examining questions related to three key questions: 

1.  Chlorophyll Concentration: Does the discharge from STWs lead to an increase 

in chlorophyll concentrations, indicating higher algal growth?  

2.  Threshold Exceedance: Do these increases in chlorophyll concentration 

surpass specific ecological thresholds that signal a risk of harmful 

eutrophication?  

3.  Does the effluent from STW impact the river from a wider version? If so, what 

river is polluted the worse by what determinand? 

4.2 Approach and Methodology 

This chapter builds upon the previously discussed methods in Chapter 2. The study 

focuses on evaluating the impact of nutrient discharges from sewage treatment 

works (STWs) on water eutrophication. So, the primary objective is to determine 

any significant impacts of these discharges on river water quality.  This evaluation 
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is conducted across multiple years and months, considering different control 

sections of rivers associated with a variety of STWs. If significant impacts are 

identified, the effect of each STW is further analysed in relation to its characteristics, 

such as treatment approaches, technologies, and the scale of operations, to assess 

their influence on the receiving waters. This analysis follows exactly that for 

Chapter 2 but is now focused on two new determinands – Chlorophyll (Chl-a) and 

SiO2, key for understanding the impact on eutrophication. These determinands are 

essential for understanding how nutrient pollution contributes to algal blooms and 

changes in aquatic ecosystems. The analysis also explores the relationship between 

these determinands and other environmental variables, such as nitrate, phosphate, 

and temperature, which are crucial for understanding eutrophication dynamics and 

which been analysed in Chapter 2.  

Unlike for Chapter 2, impact of STW discharges on eutrophication should also 

consider events and not just concentration. Chlorophyll incidents were judged to 

have occurred when chlorophyll levels exceeded 15 µg/L (Bowes et al., 2019), a 

common threshold used to assess algal biomass.  In this Chapter, Chl-a events were 

analysed as binary outcomes where an event “incident” (Chl-a > 15 µg/L) and “non-

incident” cases (Chl-a < 15 µg/L), enabling a comparison of the frequency of 

eutrophication events between STW-impacted and control sites, as well as between 

upstream and downstream of each type.  

To further understand the wider impact of STW discharges, river and final 

sewage effluent data were analysed by PCA to identify patterns among non-metal 

determinands and understand how STW discharges impact the broader river system.  

4.2.1 Study data 

In this chapter, the study utilizes 21 years (2000 to 2020) of river water quality data 

from English rivers, collected by the Environment Agency (EA)—the UK 

government’s environmental protection agency in England. The water quality data 

includes measurements for chlorophyll-a and silicon dioxide (SiO₂), which are key 

additional indicators for assessing eutrophication. This data was collected from 

river monitoring points located above and below sewage treatment works (STWs) 

discharges, as well as from control rivers. Additionally, data measured in the final 
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effluent discharge were examined for comparative purposes, although they are not 

included in the statistical analysis for this chapter. 

For the Principal Component Analysis (PCA), the same determinands as in 

Chapter 2 were considered. However, unlike Chapter 2, which analysed specific 

pairs of determinands, this chapter jointly utilizes the full range of available SiO2 

and Chl-a data from 2000 to 2021 to ensure a comprehensive analysis. 

The data regulation and selection criteria applied in this chapter are consistent 

with those in Chapters 2 and 3. Only routine water quality monitoring data are 

included, while data from unplanned reactive monitoring—conducted to investigate 

statutory failures—are excluded to prevent bias. Additionally, monitoring sites are 

only included if they have at least 20 measurements over a span of 20 years or more. 

In analysing the impact of STW discharges on SiO2 and Chl-a concentrations and 

events, this chapter utilises the same data source as in Chapters 2 and 3. The study 

utilizes 21 years (2000 to 2020) of river water quality data from English rivers, 

collected by the Environment Agency (EA)—the UK government’s environmental 

protection agency in England. The water quality data includes measurements for 

chlorophyll-a and silicon dioxide (SiO₂), which are key additional indicators for 

assessing eutrophication. This data was collected from river monitoring points 

located above and below sewage treatment works (STWs) discharges, as well as 

from control rivers. Additionally, data measured in the final effluent discharge were 

examined for comparative purposes, although they are not included in the ANOVA 

within this chapter. 

For the Principal Component Analysis (PCA), the same determinands as in 

Chapter 2 were considered. However, unlike Chapter 2, the PCA was performed on 

all river water data and effluent data. 

STW and Control Pairs 

The selection of STW and Control pairs for the analysis of eutrophication 

determinands in this chapter follows the same methodology as outlined in Chapters 

2 and 3. Specifically, pairs were chosen where one monitoring site is upstream and 

the other is downstream of a sewage treatment works (STW) discharge, ensuring 

that no other discharges or streams join the river between these sites. These pairs of 

monitoring sites are referred to as STW pairs. Similarly, Control pairs were selected 
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where the monitoring sites are also upstream and downstream of each other but 

without any known discharge or stream joining the river between them, and without 

sharing a common monitoring site with any STW pair. 

In keeping with the established methodology, observations made on the same 

day are compared to maintain consistency in the analysis. Any pairs lacking 

concurrent data on the same day are excluded from further analysis. This chapter 

focuses on analysing eutrophication determinands while preserving the 

comparative analysis framework set out in previous chapters. 

The initial identification of 442 STW pairs and 419 Control pairs from the stream 

temperature records, as described in Chapter 2, remains consistent and was used in 

this chapter for the study of eutrophication (Table 4.1; Figure 4.1). As before, any 

available final effluent data for the STWs within each STW pair are extracted from 

the EA WIMS database, although this data is used for comparative purposes only 

and not included in the statistical analysis. 

 

Table 4.1. The number of pairs, both STW and Control, that could be included in 

this study. 

Determinand STW Pairs Control Pairs 

Chl-a (g/L) 22 9 

SiO2 (mg/L) 26 19 
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Figure 4.1. Location of the STW and Control pairs for each determinand considered in this chapter. 

Chl-a STW Chl-a Control 

SiO2 STW 
SiO2 Control 
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Covariates 

In this eutrophication study, covariates such as the Euclidean distance between site 

pairs, upstream and downstream altitudes, and percentile flow will continue to be 

utilized to ensure a more robust analysis. By accounting for these factors, the study 

aims to isolate the effects of sewage discharge more effectively, thus enhancing the 

reliability and precision of the findings. 

 

Binomial analysis 

Chlorophyll (Chl-a) events were analysed using a binomial approach, where Chl-a 

concentration data were categorized into two distinct groups: 

• Incident: Cases where Chl-a concentrations exceeded the eutrophication 

threshold of 15 µg/L, indicating a potential algal bloom or high 

eutrophication risk. 

• Non-Incident: Cases where Chl-a concentrations were at or below 15 µg/L, 

representing lower eutrophication risk. 

The binomial analysis enabled the comparison of the frequency of these events 

in different conditions: 

• STW-Impacted vs. Control Sites 

To assess whether STW discharges were associated with a higher frequency of 

eutrophication events compared to control sites. 

• Upstream vs. Downstream Comparisons 

To evaluate how Chl-a concentrations changed from upstream to downstream in 

relation to STW discharges and whether STWs contributed to significant 

downstream eutrophication effects. 

The statistical significance of differences in event frequencies between groups 

was determined using a Chi-square test. Additionally, estimated marginal means 

were calculated to compare Chl-a levels between STW and control groups, 

controlling for potential confounding variables. Differences were deemed 

significant if the p-value was less than 0.05 and if the confidence intervals of the 

marginal means did not overlap. 



152 

 

4.2.2 Statistical analysis 

The primary approach was to assess the impact of STW discharge on receiving 

rivers using the same ANOVA as described in Chapter 2. The difference in 

concentration of SiO2 and Chl-a for the paired data were tested to the factors: Type, 

Year, Month, and Pair. Before conducting the ANOVA, outliers were removed, and 

data distribution was examined using the Anderson-Darling test. The ANOVA was 

performed without and then with covariates. Significance thresholds were set at a 

5% probability level, corresponding to a 95% confidence interval for non-zero 

effects. The magnitude of each statistically significant factor, or interaction, was 

quantified using η², which measures the contribution of each factor to the observed 

variability in the variable. 

The second objective was to assess the reasons for significant differences in 

receiving waters caused by the processes of the individual STWs. As in Chapter 2, 

the main effects of each determinand were considered using Chi-square analysis to 

assess the frequency of significant effects across different types of sewage treatment 

works (STWs). In addition to the Chi-squared analysis, linear regression was used 

to evaluate the impact of Population Equivalent (PE) and Dry Weather Flow (DWF) 

on the impact of STWs, i.e. the calculated main effect for each STW pair was 

compared to PE and DWF. The significance of these comparisons was determined 

based on a 5% probability threshold for the regression coefficients being greater 

than zero. 

 

Analysis of chlorophyll (Chl-a) events 

For Chl-a concentrations in UK rivers, thresholds for algal blooms typically range 

from 15 µg/L to 100 µg/L (Bowes et al., 2019). This analysis specifically focused 

on chlorophyll-a concentrations exceeding the threshold value of 15 µg/L, which 

indicates potential eutrophication events.  

Firstly, Chi-square test was applied to compare the proportion of measurements 

above the 15 µg/L threshold compared to the STW and Control pairs both up- and 

downstream. Secondly, binomial regression was used to test the impact of the Type 

factor on the probability of an event over 15 µg/L. 

 



153 

 

Principal Component Analysis 

A PCA was performed for all non-metal determinands as listed in Chapter 2 without 

pair control. This PCA was not restricted to just the data from the STW and Control 

pairs but was performed on all English river and final effluent data within the WIMS 

database. This data consisted of all samples where determinands were measured on 

the same sample for any river or stream in England and for any STW final effluent 

as long as they were sampled as part of routine monitoring. The PCA was conducted 

on z-transformed data, and principal components with an eigenvalue ≥1 were 

considered for examination. To assess the influence of sewage treatment works 

(STW) discharges on the receiving river, principal component analysis (PCA) was 

conducted separately on the river water data, the final sewage effluent data, and the 

combined dataset. 

All statistical analyses were conducted using RStudio v4.3.1. 
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4.3 Results  

As discussed in previous chapters, the average concentrations of Chlorophyll-a and 

SiO₂ at upstream, downstream, and final effluent points highlight important trends 

in water quality. The comparison between upstream and downstream 

concentrations at STW sites shows that downstream levels for both Chlorophyll-a 

and SiO₂ are higher than upstream, suggesting an increase potentially linked to 

effluent discharge from sewage treatment works (STW). 

The main effect, however, represents the difference between the changes 

observed at STW sites and those at Control sites (i.e., STW - Control), rather than 

simply comparing upstream and downstream concentrations. The main effect (%) 

expresses this difference as a percentage of the upstream STW concentration. For 

Chl-a, the main effect percentages range from -6.15% to -1.38%, indicating that the 

increase in downstream Chl-a concentrations at STW sites is small relative to the 

upstream levels. In contrast, the main effect percentages for SiO₂ range from -11.08% 

to -4.34%, reflecting a more substantial proportional increase relative to the 

upstream SiO₂ concentrations at STW sites. 

This distinction emphasizes that the observed differences in downstream 

concentrations are not only influenced by the STW effluent itself but also by how 

these changes differ compared to Control sites, helping to contextualize the impact 

of STW discharges on downstream water chemistry.
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4.3.1 Impact of STW discharges  

As in the previous study, a four-factor design was employed to analyse Chlorophyll 

and silica (SiO₂), allowing for the detection of even small significant differences. 

The main effect (%) is calculated as described in Chapter 2, representing the relative 

impact of the STW, by dividing the main effect by the mean STW upstream 

concentration.  

In this chapter, SiO₂ shows a significant relationship with the Type factor (Table 

4.2, Table 4.3), whereas Chl-a does not. This is reflected in Figure 4.2, where 

overlapping error bars suggest that the Type factor for Chl-a does not show a 

significant difference between STW and Control sites. Despite the lack of 

significance for Chl-a, the main effect ranges from -6.15% to -1.38%, and for SiO₂, 

from -11.08% to -4.34%. The Type factor for SiO₂ indicates a significant decrease 

in silica concentrations at STW sites relative to Control sites. 

For the Year factor, SiO₂ accounts for 2% of the variance, with a significant 

Type*Year interaction explaining 4% of the variance (Table 4.3). Chl-a, on the 

other hand, does not show statistical significance for either the Year factor or the 

Type*Year interaction. Figure 4.3 illustrates the year-to-year changes for both Chl-

a and SiO₂. For SiO₂, significant separation between STW and Control occurs in 

2000 and 2001, but the differences in most years are minimal. Chl-a shows similar 

trends with less fluctuation. Note that Control sites showed relatively high SiO₂ 

differences prior to 2003 but exhibited a marked decline thereafter, whereas STW 

sites remained comparatively stable across the study period (Figure 4.3). 

Regarding the Month factor, Chl-a shows a 0.4% variance, while SiO₂ shows no 

significant variance (Table 4.3). However, the Type*Month interaction is not 

significant for either of the two determinands. In Figure 4.4, although September 

and November for SiO₂ show significant differences, most months show 

overlapping error bars, indicating no distinct separation between STW and Control 

for both determinands. 

For the Pair factor, SiO₂ explains 4% of the variance, with a significant 

Type*Pair interaction (which explains 5% of the variance0 (Table 4.3). In contrast, 

Chl-a shows no significant variance for the Pair factor. Figure 4.5(a) shows that the 

differences in Chl-a between STW and Control sites vary across pairs but remain 
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within overlapping confidence intervals. This indicates that the TypePair 

interaction for Chl-a is not significant, suggesting that the influence of STW 

discharges on chlorophyll concentrations is relatively consistent across sites and not 

strongly dependent on pair-specific conditions. For SiO₂, Figure 4.5(b) illustrates 

the variability in differences across individual STW and Control pairs, with some 

pairs showing pronounced positive or negative deviations. This heterogeneity in 

pair-specific responses underpins the significance of the Type*Pair interaction, 

indicating that the effect of STW discharges on SiO₂ concentrations is not uniform 

across sites but depends strongly on local conditions. Table 4.4 confirms this 

asymmetry, with 27 of 45 SiO₂ comparisons being positive compared with 15 

negative and 3 non-significant. This heterogeneity in pair-specific responses 

underpins the significance of the TypePair interaction, indicating that the effect of 

STW discharges on SiO₂ concentrations is not uniform across sites but depends 

strongly on local conditions. 
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Figure 4.2. The main effects plot for the Type factor for the difference. The values are presented as the marginal mean with the 95% confidence 

limits. 
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Figure 4.3. The main effects plot of the Type*Year interaction. The values are presented as the marginal mean with the 95% confidence limits. 
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Figure 4.4. The main effects plot of the Type*Month interaction. The values are presented as the marginal mean with the 95% confidence limits. 
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Figure 4.5(a). The main effects plot of the Pair factor. The Pairs are ordered from the lowest to greatest values of the difference. The points are 

the marginal mean with the 95% confidence interval. 
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Figure 4.5(b). The main effects plot of the Pair factor. The Pairs are ordered from the lowest to greatest values of the difference. The points are 

the marginal mean with the 95% confidence interval. 
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Table 4.2. Summary of the dataset and results for the analysis of impact of STW discharge. The significance of the impact of STW discharge for 

each determinand is stated as Yes if it was significant at a probability < 0.05 of being zero. The main effect (%) is main effect for each determinand 

for the Type factor. Values are compared to the mean for the upstream values for the STW pairs for that determinand (Main effect presented as the 

difference for STW minus the difference for the Control, which has been illustrated in Figure 4.1). N represents the total number of pairs recorded 

at different times. N (without outliers) refers to the count of these pairs after removing outlier values. 

Determinand (unit) N N  

(Without  

outliers) 

Mean 

upstream  

concentration 

Mean 

downstream 

concentration 

Mean 

Final effluent 

Type Significant Main effect Main effect (%) 

Chl-a (µg/L) 1546 1257 9.43 ± 0.74  10.73 ± 0.99 8.63 ± 7.12 -- [−0.58, −0.13] [−6.15%, −1.38%] 

SiO2 (mg/L) 1333 1189 8.30 ± 0.07 8.58 ± 0.06 11.31 ± 0.17 Yes [−0.92, −0.36] [−11.08%, −4.34%] 
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Table 4.3. The summary of the linear model for each determinand. The significance for each determinand is stated as Yes if it was significant at a 

probability < 0.05 of being zero. η2 indicates the extent to which a factor contributes to the observed variability in the variable. 

Determinand Type Year Type*Year Month Type*Month Pair Type*Pair 

Sig η2 Sig η2 Sig η2 Sig η2 Sig η2 Sig η2 Sig η2 

Chl-a (µg/L) -- -- -- -- -- -- Yes 0.004 -- -- -- -- -- -- 

SiO2 (mg/L) Yes 0.04 Yes 0.02 Yes 0.04 -- -- -- -- Yes 0.04 Yes 0.05 
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Table 4.4. Number of mean difference values for each determinand categorised by type. 'N' represents the total number of mean difference values 

recorded. ‘>0' indicates the number of mean difference values that were greater than zero, '<0' represents the number of mean difference values 

that were less than zero, and '=0' denotes the number of mean difference values where the difference was not significantly different. (Figure 4.4) 

Determinand (unit) 
Total STW Control  

N >0 =0 <0 N >0 =0 <0 N >0 =0 <0  

Chl-a (g/L) 31 15 2 14 22 10 2 10 9 5 0 4  

SiO2 (mg/L) 45 27 3 15 26 15 1 10 19 12 2 5  
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4.3.2 Importance of covariates 

When all covariates were included in the analysis, Type became a significant factor 

for both determinands. Similarly, Year continued to show significance for both 

determinands. Month became significant specifically for Chl-a, but after accounting 

for the covariates, Pair was significant only for SiO₂. Importantly, none of the 

covariates were significant for SiO₂. In contrast, for Chl-a, Euclidean distance, 

upstream altitude, and downstream altitude were significant. Among these, 

upstream altitude had a notable effect: for each unit increase in upstream altitude, 

Chl-a increased by 0.018 g /L (Table 4.5). 
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Table 4.5. The η2 values for each factor and the coefficients for each covariate. Significance was indicated for values with a probability < 0.05 of 

being zero. 

Determinand Type Year Month Pair Euclidean  

distance (m) 

up_altitude (m asl) down_altitude  

(m asl) 

Percentrank  

Significant 

Sig η2 Sig η2 Sig η2 Sig η2 Sig coefficient Sig coefficient Sig coefficient Sig coefficient 

Chl-a (µg/L) Yes 0.02 Yes 0.06 Yes 0.03 -- -- Yes 0.000 Yes 0.02 Yes 0.000 -- -- 

SiO2 (mg/L) Yes 0.008 Yes 0.03 Yes 0.05 Yes 0.40 -- -- -- -- -- -- -- -- 
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4.3.3 Impact of the nature of the STWs 

As previously discussed in Section 2.3.3, the efficacy of two distinct secondary 

treatment methods (SAS vs. SB) was assessed using Chi-squared tests (Table 4.6; 

Figure 4.6). The main effects, representing the differences between treatments, 

followed the same pattern as outlined earlier: positive values indicate successful 

pollutant reduction, while negative values suggest ineffective treatment or 

worsening conditions. 

 

Table 4.6. Results of Chi-squared test for each determinand relative to 

technologies present at the STW. SAS = secondary activated sludge; SB = 

secondary biological. It was significant when at a probability (P) < 0.05. 

Determinand 

(unit) 

 SAS SB P Main effect (SAS-SB) 

Chl-a (µg/L) Positive 111 147 0.0005 -0.375 

Negative 62 163 

SiO2 (mg/L) Positive 12 35 0.92 -- 

Negative 27 89 

 

  

Figure 4.6. Effect of secondary treatment on mean chlorophyll-a (Chl-a, g/L) 

differences between upstream and downstream locations. Results are shown for 

STW pairs with activated sludge secondary treatment (SAS) and secondary 

biological treatment (SB), presented as marginal means with 95% confidence 

intervals. 
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4.3.4 Impact of population equivalence and dry weather flow 

As previously discussed in Section 2.3.4.2, a strong positive correlation was 

identified between PE and DWF (Pearson correlation coefficient of 0.88), 

highlighting their significant combined impact on receiving water bodies (Figure 

2.13). While the earlier analysis emphasized the overall relationship between PE 

and DWF, this chapter delves deeper into the specific relationships between 

individual determinand concentrations and these variables (Table 4.7). PE shows a 

negative relationship with Chl-a, and DWF shows no statistical significance to Chl-

a. When both PE and DWF were considered in explaining changes in Chl-a 

concentrations, the model only accounted for 1% of the variance. PE shows no 

significant relationship with SiO₂, while DWF shows a positive relationship with 

SiO₂. When both determinands were included in the model, it explained 2% of the 

variance in SiO₂ concentrations (Table 4.7). 

Figure 4.7 presents scatter plots showing the relationships between PE and DWF 

with Chl-a (a) and SiO2 (b). The patterns in both plots are similar, with dots 

clustering around lower values of PE (0 to 100) and DWF (0 to 30).  
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Table 4.7. Significance of STW discharge effects on determinands, Population 

Equivalence (per 1000 population), and Dry Weather Flow (per 1000 m³/day). A 

result is marked as "Yes" if the effect was statistically significant at p < 0.05. 

Determinand 
Population equivalence Dry weather Flow 

r2 
Sig Coefficient Sig Coefficient 

Chl-a (µg/L) Yes -0.01 -- -- 0.01 

SiO2 (mg/L) -- -- Yes 0.01 0.02 

 

 

 

 

(a) Chl-a (b) SiO2 

Figure 4.7. Scatter plot of Population Equivalence (x - axis) VS Dry Weather 

Flow (y – axis) 
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4.3.5 Chlorophyll events 

In this section, chlorophyll data has been analysed based on Type, Pair, Year, and 

Upstream or Downstream locations. The probability of chlorophyll concentrations 

exceeding 15 µg/L in the Upstream and Downstream of the sewage treatment works 

(STW) and Control sites is provided below (Table 4.8). 

 

Table 4.8. Proportion of chlorophyll events (Chl-a concentration > 15  µg/L) 

relative to location on the stream reach. 

Pair Upstream Downstream 

Control 0.112 0.120 

STW 0.113 0.119 

 

Chi-Square of the incident data 

Two Chi-squared tests were conducted for the analysis: one comparing the STW 

and Control, and the other comparing the upstream and downstream sites between 

the STW and Control. 

The first comparison evaluates the Upstream and Downstream sites of the 

Sewage Treatment Works (STW) against the Upstream and Downstream sites of 

the Control. This analysis examines whether there is a significant difference in the 

proportion of chlorophyll concentrations exceeding 15 µg/L between the two 

locations. A Chi-squared test was applied to determine if the combined values from 

the STW (Upstream and Downstream) differ significantly from the combined 

values of the Control. The P-value was 0.98, indicating no significant difference 

between the STW and Control sites (Table 4.9). 

 

Table 4.9. Proportion of chlorophyll incident (value >15) based on STW and 

Control. 

 Incident number Non-incident number Whole number Proportion 

Control 839 6378 7217 0.98 

STW 1599 12181 13780 
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The second comparison was separate tests for the Upstream and Downstream 

sites. The Upstream site of the STW was directly compared to the Upstream site of 

the Control, and the Downstream site of the STW was directly compared to the 

Downstream site of the Control. This method assessed whether there was a 

significant difference in the proportion of chlorophyll exceeding 15 µg/L at each 

specific location (Upstream vs. Upstream, and Downstream vs. Downstream). The 

P-value for the Upstream comparison is 0.87, and for the Downstream comparison 

is 0.93, indicating no significant difference between the STW and Control for both 

the Upstream and Downstream sites (Table 4.10). 
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Table 4.10．Proportion (Pr) of Chlorophyll Incident (Value > 15 µg/L.). Based on Upstream and Downstream Comparisons of STW and 

Control. 

 Upstream  Downstream  

 Incident number Non-incident number Whole number Proportion Incident number Non-incident number Whole number Proportion 

Control 375 2977 3352 0.87 464 3401 3865 0.93 

STW 827 6478 7305 772 5703 6475 
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Binomial regression of Chl-a incidents 

When considering only the effect of Type there was no significant effect (Table 

4.11), indicating that there is no strong evidence of a difference between STW and 

Control sites in the overall chlorophyll incidents (Table 4.11). 

 

Table 4.11. Proportion of chlorophyll incident (value >15) for Chi square. 

 Predicted probability Confidence interval 

Control 0.03 0.01~ 0.04 

STW 0.04 0.03 ~ 0.06 
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4.3.6 Principal components analysis 

In the previous sections, PCA was conducted on paired sampling points located 

upstream and downstream of sewage treatment works (STWs). In this section, PCA 

is applied to all river data, final effluent data, and their combined dataset from the 

2002 dataset for England. 

By merging datasets for each determinand on the same day for PCA analysis, 

6,348 (5512 with catchment information) river data points, 236 effluent data points, 

and 6,584 combined data points are identified. This section will analyze river 

sampling points, effluent sampling points, and their combined data using PCA.  

 

River data from all years 

Three out of eight principal components had eigenvalues > 1 (Table 4.12), and these 

three components together explained 62% of the original variance. PC1 was mainly 

influenced by COD and BOD, reflecting the impact of organic wastes in freshwaters; 

PC2 is mainly influenced by Phosphate and Nitrate, reflecting the impact of 

nutrients in the water; and PC3 is mainly influenced by pH (Table 4.12). 
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Table 4.12. Loading of each determinand on each principal component with 

eigenvalue > 1. 

Determinand PC1 PC2 PC3 

Stream temperature (oC) 0.08 -0.28 -0.04 

BOD (mg O2/L) 0.60 0.31 -0.15 

COD (mg O2/L) 0.65 0.26 -0.06 

Phosphate (mg P/L) 0.29 -0.58 0.18 

Suspended solids (mg/L) 0.18 0.05 0.21 

pH -0.11 -0.10 -0.65 

Nitrate (mg N/L) 0.25 -0.60 0.22 

Specific conductance (µS/cm) 0.15 -0.22 -0.27 

Eigenvalue 2.06 1.68 1.23 

Percentage of variance explained 26% 21% 15% 

 

The PCA plot (Figure 4.8) illustrates the projection of different river sampling 

sites onto the principal components, with each point representing a site. Clusters of 

points indicate sites with similar profiles based on the variables contributing to PC1 

and PC2, while dispersed points indicate differences. PC1 is primarily influenced 

by COD and BOD, meaning that sites with high PC1 scores have elevated 

concentrations of these organic pollutants. PC2 is mainly influenced by phosphate 

and nitrate, indicating that sites with high PC2 scores have higher nutrient 

concentrations. Rivers such as the Alt and Ribble, with high PC1 scores (right side), 

are heavily affected by organic pollution, while rivers such as the Ribble and Lune, 

with high PC2 scores (upper side), are characterized by high nutrient levels. In 

contrast, rivers clustered in the lower left corner have low scores on both PC1 and 

PC2, indicating relatively low levels of organic pollutants and nutrients. 
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Figure 4.8. PCA and loading plot for River Sampling Points.
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Final effluent data from all years 

In the previous chapters, final effluent data was only used to perform an illustrative 

comparison with Upstream concentration values. In this chapter, Final effluent data 

are directly used and analysed as they represent the end member for demonstrating 

the wider impact. Determinands in Chapter2 for whole England has been collected 

and merged without Pair control. Same day data has been merged. 236 data have 

finally been found. 

For these 236 data PCA analysis, three out of eight components had 

eigenvalues >1 (Table 4.13) and they explained 71% of the original variance. PC1 

is medium highly positive to BOD and COD, showing, as with the above PCA, that 

PC1 is controlled by presence of organic wastes; PC2 mediumly relates to 

Phosphate, Temperature and Nitrate, presenting the nutrients impact; and PC3 

highly positively relates to pH, and mediumly negatively relates to Nitrate. 



178 

 

Table 4.13. Loading of each determinand on each principal component with eigenvalue > 1. 

Determinand PC1 PC2 PC3 

Stream temperature (oC) 0.03 0.52 0.27 

BOD (mg O2/L) 0.54 -0.12 -0.16 

COD (mg O2/L) 0.56 -0.09 -0.15 

Phosphate (mg P/L) 0.26 0.56 -0.17 

Suspended solids (mg/L) 0.35 -0.23 -0.10 

pH 0.14 0.09 0.79 

Nitrate (mg N/L) -0.21 0.46 -0.46 

Specific conductance (µS/cm) 0.36 0.34 0.10 

Eigenvalue 2.78 1.64 1.17 

Percentage of variance explained 35% 21% 15% 
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Plotting the data by sampling site (Figure 4.9), PC1 has higher BOD and COD 

loading, so rivers having higher score on PC1 have more organic pollutants in the 

final effluent. PC2 mediumly correlated with Phosphate, Stream temperature and 

Nitrate, which means the rivers possessing higher score on PC2 have higher nutrient 

determinands in the final effluent. Figures 4.8 and 4.9 appear to show three end-

member mixing system where all the final effluent and river samples can be 

described by three end-members, and those three end-members would be: 

• High PC1, low PC2 – this would represent the high suspended solids and 

high organic wastes end member. 

• Low PC1 – the low concentration end-member for all determinads.  

• High PC2 – this end-member would represent the nutrient end-member. 
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Figure 4.9. PCA for Final Effluent Sampling Points. 
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Combination of River data and Final effluent 

For this section, three out of eight components had eigenvalues >1 (Table 4.14), 

which explained 63% of the original variance. PC1 is correlated with BOD, COD, 

and Phosphate; PC2 is related to Phosphate and Nitrate; and PC3 is highly related 

to pH and mediumly correlated with Stream temperature. 

 

Table 4.14. Loading of each determinand on each principal component with 

eigenvalue > 1. 

Determinand PC1 PC2 PC3 

Stream temperature (oC) 0.18 0.39 0.47 

BOD (mg O2/L) 0.54 -0.39 0.18 

COD (mg O2/L) 0.59 -0.35 -0.09 

Phosphate (mg P/L) 0.42 0.45 -0.19 

Suspended solids (mg/L) 0.20 -0.12 -0.18 

pH -0.10 0.13 0.71 

Nitrate (mg N/L) 0.29 0.55 -0.31 

Specific conductance (µS/cm) 0.16 0.20 0.27 

Eigenvalue 2.26 1.57 1.18 

Percentage of variance explained 28% 20% 15% 
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The overall PCA plot on the top panel shows the projection of different water 

samples (river water and sewage) on the principal components (Figure 4.10). Most 

river water samples cluster in the lower-left corner of the plot, indicating low scores 

on both PC1 and PC2, thus reflecting lower levels of organic indicators (BOD and 

COD) and nutrients. In contrast, data from final sewage effluent are more widely 

distributed, with many scores high on both PC1 and PC2, indicating higher levels 

of organic waste indicators (COD, BOD) and nutrients (Nitrate, Phosphate). The 

PCA plot for sewage data is shown in Figure 4.9, and the PCA plot for river data is 

shown in Figure 4.8. Both of them illustrate the variation in samples, with arrows 

indicating the contribution of each determinand. 
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Figure 4.10. PCA for both River data and Final Effluent Sampling Points. 
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4.4 Discussion 

This chapter's purpose was to understand the wider impact of sewage effluent upon 

receiving rivers and specifically whether the increased flow of warm, nutrient-rich 

water from sewage treatment works would lead to increased eutrophication. The 

study built upon results in previous chapters but had to add a consideration of 

chlorophyll and silica. 

This study analysed 22 STW pairs and nine control pairs for chlorophyll, and 26 

STW pairs and 19 control pairs for SiO₂ (Table 4.1). The Type factor for SiO₂ was 

statistically significant, indicating that the difference between STW and Control for 

silica concentrations is meaningful (Figure 4.2 and Table 4.2). And the main effect 

for SiO₂ indicates that STWs contribute to a measurable decrease in silica 

concentrations, with a proportional change ranging from -11.08% to -4.34% relative 

to upstream concentrations. 

In contrast, the Type factor for Chl-a did not result in significant differences 

between the STW and Control pairs for chlorophyll. The overlapping confidence 

intervals in Figure 4.1 suggest that there is no statistically significant distinction 

between the STW and Control.   

Even though statistical significance was not detected, certain time periods or 

locations may exhibit more pronounced effects. Like in this study, for Chl-a, the 

main effect ranges from -6.15% to -1.38%, suggesting minimal and non-significant 

changes when comparing STW and Control sites. The downstream increase in Chl-

a concentration at STW sites may be more influenced by local nutrient conditions 

rather than a direct effect of STW discharges. The observed pattern may reflect 

variation in nutrient-removal efficiency across STWs, where plants lacking 

advanced phosphorus or nitrogen removal processes contribute more strongly to 

local enrichment, while those with tertiary treatment exert weaker effects. In 

contrast, control reaches may be more affected by diffuse inputs from agriculture 

and urban runoff, which can sustain elevated chlorophyll even in the absence of 

direct effluent discharges. Additionally, silica availability may indirectly impact 

Chlorophyll-a levels, particularly where diatoms—a major contributor to 

chlorophyll biomass—depend on silica for growth.  
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So, long-term monitoring to reveal trends that clarify the influence of STW 

discharges on chlorophyll and SiO₂ levels is important. Based on the analysis, the 

Type*Year variance suggests that the trend in SiO₂ concentrations varies between 

STW and Control sites over time, and the significant interaction indicates that the 

yearly changes in SiO₂ differ between the two groups, possibly reflecting an 

increasing impact of STW discharges on SiO₂ concentrations in receiving waters. 

Since SiO₂ is typically not removed during wastewater treatment, effluent inputs 

may alter riverine SiO₂ concentrations by dilution or by shifting nutrient 

stoichiometry. Conversely, the decline in control sites may reflect enhanced diffuse 

inputs of nitrogen and phosphorus from agriculture, which lower the Si:N ratio and 

create conditions of potential silica limitation. Note that the significant decline in 

control SiO₂ differences after 2003 (Figure 4.3) may not be directly attributable to 

STW regulation but could reflect broader catchment processes. Agricultural inputs 

of N and P have been reported to increase during this period, which may lower the 

Si:N ratio and enhance the potential for silica limitation, particularly for diatom 

growth. While there is no clear evidence of a widespread post-2000 decline in silica 

concentrations in UK rivers, nutrient enrichment and changing nutrient 

stoichiometry have been noted as important drivers of ecological 

change(Makareviciute-Fichtner et al., 2024). This suggests that the observed 

control SiO₂ behaviour may be linked to diffuse nutrient pressures in addition to 

regulatory changes under the WFD. 

For Chl-a, the Month factor was significant, indicating that chlorophyll 

concentrations fluctuate seasonally. However, the Type*Month interaction was not 

significant, suggesting that the trends in chlorophyll concentration are consistent 

across both STW and Control Sites (Table 4.3).The near balance between positive 

and negative Chl-a differences (Table 4.4) suggests that while some STWs may 

stimulate downstream algal growth through nutrient enrichment, others may reduce 

concentrations via effective nutrient removal, dilution, or site-specific factors. This 

bidirectional influence explains the lack of a significant overall effect. By contrast, 

for SiO₂, both Figure 4.5(b) and Table 4.4 show a consistent skew towards positive 

differences, with 27 of 45 pairs exhibiting downstream increases compared with 

only 15 negative and 3 non-significant cases. This alignment between the graphical 

and tabular results reinforces the significance of the Type*Pair interaction, 
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indicating that STW discharges more frequently elevate SiO₂ concentrations, 

though the magnitude of change varies across sites. 

Several studies have addressed eutrophication by monitoring changes in 

chlorophyll concentrations in water bodies. For instance, Slijkerman et al. (2014) 

studied 11 locations (834 data points) from November 2011 to May 2013 along 

Bonaire Harbour, analysing dissolved inorganic nitrogen, phosphate, and 

chlorophyll levels. While this study is similar in scope, it did not specifically 

examine the impact of STW effluent on nutrient levels or chlorophyll. In contrast, 

the key focus of this study was to assess STW discharge as one of the primary 

anthropogenic influences. Does STW discharge impact chlorophyll concentrations? 

Is there a relationship between chlorophyll and other determinants such as nitrate, 

phosphate, and temperature? This study analysed chlorophyll data from 2000 to 

2020, with 1546 samples collected from paired sites identified in Chapter 2 within 

the UK. 

In another study, Bowes et al. (2012) noted a peak in chlorophyll levels that 

coincided with a decrease in silica concentrations. Their research examined changes 

in chlorophyll-a, nitrate, phosphate, and temperature in the Thames basin. Bowes 

et al. (2012) reported that peaks in chlorophyll and reductions in silica ceased at 

temperatures between 15°C and 21°C. However, their study did not focus on the 

impact of STW discharges on receiving rivers, nor did it investigate the 

interrelationships between chlorophyll, silica, nitrate, phosphate, and temperature. 

Moreover, they did not report chlorophyll incidents related to eutrophication. In 

contrast, this study has explored chlorophyll incidents and their influence on 

different water types, as well as their upstream and downstream effects relative to 

STW discharges. 

Oliveira & Goulder (2006) examined STW impacts in their study of three 

streams and six sites in North Yorkshire, conducted from May to June 2000. They 

found that high volumes of STW effluent had a mild impact on micro-algal epilithic 

communities, coupled with an increase in inorganic nutrients and oxygen demand. 

Their study focused on sites upstream and downstream of STW outfalls and 

analysed epilithic community similarities between different bacterial groups. 

However, their study did not include control data or multivariate analysis, which 
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limits the robustness of their conclusions. In contrast, this study included control 

data and employed multivariate analysis, making the results more reliable. 

Alternatively, this study considered the composition of the final sewage effluent 

for these key determinads in the context of all English rivers (Figure 4.9). 6584 data 

and their composition of the year 2002 have been considered. There is not enough 

time within this thesis to explore all the implications of these results, but several 

implications are worth raising. This result would mean that river water composition, 

only with respect to the determinands considered, was actually controlled by 

sewage effluent; in effect, river water is dilute sewage.  

Above all that, in this study, PE and DWF were considered to see the STWs’ 

nature on eutrophication determinands. Chlorophyll shows a significant 

relationship with population equivalence, exhibiting a negative correlation 

implying that as the population equivalence of the sewage treatment works (STW) 

decreases, the concentration of chlorophyll increases. The negative correlation 

between PE and chlorophyll may indicate that smaller STWs, often lacking 

advanced nutrient-removal processes, exert proportionally greater influence on 

local eutrophication, whereas larger facilities with tertiary treatment achieve more 

consistent nutrient control. At the same time, control sites in agricultural catchments 

may maintain high nutrient loads independent of PE, explaining the weaker 

associations observed for SiO₂. In contrast, population equivalence is insignificant 

for SiO₂. However, dry weather flow (in thousands of cubic meters per day) has a 

significant impact on SiO₂ concentrations, consistent with previous findings 

regarding dry weather flow (Grout et al., 1999). The scatter plots (Figure 4.7) 

illustrate the relationship between Population Equivalence (PE) on the x-axis and 

Dry Weather Flow (DWF) on the y-axis for both Chlorophyll and SiO₂. In both 

plots, there is a cluster of points with relatively low PE and DWF values, with a few 

points extending to higher PE values, indicating that as the population equivalence 

increases, the DWF also tends to rise, though the relationship appears non-linear 

and somewhat scattered. However, this interpretation should be treated with caution, 

as diffuse agricultural runoff, livestock wastes, and urban stormwater remain 

important nutrient and organic matter sources in control sites, and their 

contributions may overlap with or mask the role of STW discharges. Furthermore, 
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it would imply that there is no role for other sources of nutrients or organic wastes, 

e.g., agricultural runoff. 

 

4.5 Conclusion 

This chapter has shown that: 

i) There was no significant impact of sewage discharge on the chlorophyll 

concentration of receiving rivers. 

ii) The inclusion of covariates suggested that there was a possible significant 

increase in Chl-a concentration due to sewage discharge. 

iii) The trend in the impact of sewage discharge on SiO2 suggests that STW 

discharges will significantly impact receiving rivers in the future. 

iv) SAS (secondary activated sludge) is more effective than SB (secondary 

biological treatment) in reducing chlorophyll in receiving waters. 

v) The comparison between final effluent and receiving river composition 

shows that English rivers could be considered as dilute sewage discharge.  

 

 

 

 

 

 

 

 



189 

 

Chapter 5: Metal Bioavailability and Pollution Risk -- National 

scale impact of STW discharge on English rivers 

5.1 Introduction  

Due to their environmental persistence, heavy metals can have a considerable 

impact on river ecosystems (Zhao and Marriott, 2013; Emenike et al., 2022), disrupt 

aquatic life (Grove and Sedgwick, 1998), and pose long-term environmental and 

health risks (Ali et al., 2019). These metals (such as Cd, Cu were deposited into the 

UK environment after the peak mining in the 19th century (Grove and Sedgwick, 

1998), often accumulating in riverbeds and bioaccumulating in organisms, thereby 

affecting biodiversity (Bryan and Langston, 1992). Other sources of heavy metal 

pollution include industrial discharges, ongoing mining activities, agricultural 

runoff, and sewage treatment works.  For example, industrial activities  are an 

important source of heavy metal contamination in water bodies  (Hutchinson, 

2003).Rapid industrialisation, large-scale agricultural and urban development have 

increaseed the heavy metal burden  on aquatic ecosystems (Phaenark et al., 2024). 

Sartorius et al. (2024) found that the mine discharge increaseed the downstream 

heavy metal concentration, and it had a detrimental impact on the ecosystem 

(Sartorius et al., 2024). Over time, exposure to high concentrations of heavy metals 

has toxic impacts on aquatic species, affecting reproduction, growth, and even the 

economy. For instance, higher concentrations of heavy metals can enter the food 

chain, impacting human populations that rely on rivers for drinking water or fishing 

(Ali et al., 2024). Similarly, heavy metal pollutionaffects the economybased on 

water recreational activities, such as sailing and fishing, etc (Sidondi et al., 2024b). 

The purpose of this Chapter is to explore the broader impact of heavy metals and 

bioavailable metals in the river ecosystems across England. This chapter builds on 

the work presented in Chapter 3, which focused on demonstrating the direct impact 

of STW discharges on the receiving river immediately downstream of the discharge. 

This chapter expands the analysis to encompass all river sampling data from 2000 

to 2020, providing a more comprehensive view of heavy metal contamination 

nationwide. For this purpose, principal component analysis (PCA) is used to 

identify patterns and relationships within river water quality data from across 
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England. The dataset is divided into two categories: river data and sewage discharge 

data and then analysed in combination. 

In Chapter 3, bioavailable metals were studied within STW pairs and Control 

pairs. For this chapter, all river sampling data from 2000 to 2020 are analysed using 

the M-BAT model to estimate bioavailability across England, showing STW 

discharges in the context of overall river water quality.  

This chapter focuses on identifying broader patterns of pollution and the factors 

influencing the concentrations of bioavailable metals across various regions. The 

specific research questions were: 

• What are the dominant sources and compositional characteristics of 

bioavailable metals at a national scale, and how do they compare to the 

patterns identified in more localised STW-impacted sites (Chapter 3)? 

• To what extent do STWs contribute to bioavailable metal exceedances at the 

national scale, and how does their influence compare to other regional 

factors after demographic and spatial normalisation?
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5.2 Approach and Methodology 

The aim of this chapter was to explore the broader impact of STW on metal 

pollution in rivers. Two approaches were used: 

• A principal component analysis was performed using all river data for 

metals and the same determinand data for metals in the final effluent. This 

analysis was conducted to determine whether final effluent from STWS was 

a source to rivers at all scales.  

• The bioavailable concentration was calculated for all metals that are 

compatible with the M-BAT model. This was done for all English river sites 

where sufficient data were available to apply the model. 

 

5.2.1 Study data 

For the analysis of total metal concentrations, data were downloaded from the 

Environment Agency, covering the period from 2000 to 2020. This dataset includes 

measurements of Ca, Mg, Cd, Cu, Ni, Fe, Zn, and Mn, and was divided into two 

categories: samples of river water and samples of STW final effluent. 

Data for Principal Component Analysis (PCA) 

PCA was performed to examine pollution patterns and assess whether STW 

discharges contribute to river metal concentrations at a national scale. The dataset 

for PCA included: total metal concentrations in river water, and metal 

concentrations in STW final effluent. The approach used all available river 

sampling points across England. 

Data for Bioavailable Metal Analysis (M-BAT Model) 

The bioavailable metal analysis focused on Cu, Zn, Mn, and Ni. These metals use 

the same river dataset as the total metal concentrations but were further refined by 

merging them with site-specific data on pH, dissolved organic carbon (DOC), and 

Ca recorded on the same day and at the same location. 

RCR greater than 1 

To assess potential heavy metal contamination, a threshold of Risk Characterisation 

Ratio (RCR) ≥ 1 was applied, following established regulatory guidance (WFD-

UKTAG, 2014) . An RCR greater than 1 indicates that the bioavailable 
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concentration of a metal exceeds its Environmental Quality Standard 

(EQS_bioavailable), implying a potential risk to the aquatic environment. Only 

samples meeting this criterion were included in subsequent analyses. Within this 

subset, linear models were constructed to evaluate the relationships between 

bioavailable metal concentrations and key water quality parameters, including pH, 

DOC, Ca, and the corresponding dissolved metal concentrations. 

Spatial attribution and data Normalisation 

Spatial Attribution of Sampling Points 

To enable the aggregation of monitoring data at the administrative county level, 

spatial matching was performed in R using the sf package. STWs sampling points, 

recorded by their easting and northing coordinates, were converted into spatial 

objects using the OSGB36 coordinate reference system (EPSG:27700). County 

boundary shapefiles were similarly transformed to the same projection to ensure 

consistency. 

Each STW sampling point was assigned to the corresponding county using a 

spatial join operation (st_join with st_intersects). Where necessary, nearest-

neighbour matching (st_nearest_feature) was applied to associate sampling sites 

located near county boundaries with the nearest county centroid. This approach 

ensured that every sampling point was consistently attributed to a single 

administrative unit. This spatial allocation to counties facilitates regional analysis 

of pollution patterns and enables subsequent integration with county-level socio-

environmental indicators, such as population density and the spatial distribution of 

STWs. 

Acquisition of County-Level Attributes 

County-level demographic and geographic attributes were obtained from the Office 

for National Statistics via the UK Government's Geoportal. The datasets included 

total population and total area (in km²) for each county. Spatial joins were used to 

associate each county polygon with these attributes. 

Aggregation and Normalisation of Monitoring Data 

Following spatial attribution, the metal monitoring dataset was aggregated at the 

county level. For each county, the number of monitoring records exceeding a Risk 

Characterisation Ratio (RCR) threshold of 1 was calculated for each metal of 
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interest (e.g., Cu, Zn, Ni, Mn). These exceedances were summarised into county-

level totals. 

To enable meaningful comparisons across counties of differing sizes and 

populations, the exceedance counts were normalised: 

• Per Capita: the number of RCR exceedances per 1,000 population. 

• Per Area: the number of RCR exceedances per square kilometre (km²). 

Normalised exceedance metrics were calculated by dividing the total number of 

exceedances by the respective county population or area and scaling as appropriate. 

It is acknowledged, however, that the population data represent entire 

administrative regions and may not spatially coincide with the precise locations of 

RCR exceedances. This potential spatial mismatch should be considered when 

interpreting per capita results.
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5.2.2 Statistical analysis 

The purpose of this chapter was to investigate the relationships between water 

quality determinands and to identify key pollution patterns across study sites in 

England, focusing on total and bioavailable metal concentrations. 

To achieve this, two main statistical approaches were applied: 

Principal Component Analysis (PCA) 

PCA was employed to explore overall pollution patterns and identify groups of 

correlated determinands. The analysis aimed to identify the primary pollution 

components affecting various river sites. The steps involved standardising metal 

concentrations to account for differences in units and magnitudes, extracting 

principal components (PCs) to identify dominant pollution factors, interpreting 

high-loading determinands to assess their potential sources (e.g., STW discharge, 

natural inputs), and mapping high-PC locations to visualise spatial pollution trends 

in English rivers. 

Bioavailable Metal Assessment (M-BAT Analysis) 

To evaluate the ecological risk of bioavailable metals, the following statistical 

analyses were conducted:  

Pearson correlation analysis examined the relationships between bioavailable 

metal concentrations and key water quality parameters, including pH, DOC, and Ca. 

Used a significance threshold of p < 0.05.  

Risk Characterisation Ratio (RCR) calculation - computed the proportion of sites 

where RCR >1, indicating potential ecological risk. Comparison of dissolved vs. 

bioavailable metal concentrations: Visualised differences and trends to understand 

the variability in metal bioavailability. 

Prior to analysis, all predictor and response variables were standardised by z-

transformation (centred to a mean of zero and scaled to a standard deviation of one). 

This step ensured comparability of effect sizes across variables and stabilised 

interpretation of interaction terms. 

Linear regression models were subsequently applied to investigate the influence 

of water quality parameters on the bioavailable concentrations of metals (Cu, Zn, 

Mn, Ni). The independent variables included pH, dissolved organic carbon (DOC), 
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Ca, and corresponding dissolved metal concentrations (Cu, Zn, Mn, Ni). To account 

for potential interaction effects, two-way interaction terms (pH*DOC, pH*Ca, 

DOC*Ca) were incorporated into the models. 

Separate models were developed for each metal, and analyses were conducted 

across two datasets, firstly, the full national dataset; and, secondly, the subset 

comprising observations where the Risk Characterisation Ratio (RCR) was ≥ 1. 

Model evaluation was based on regression coefficients, p-values for significance 

testing, and partial R² values, which indicated the proportion of variance uniquely 

explained by each predictor or interaction term. 

This modelling framework allowed the identification of both primary predictors 

and context-dependent interactions influencing metal bioavailability across spatial 

and contamination gradients. 

All statistical analyses were performed using RStudio v 4.3.1.
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5.3 Results 

A summary of river and sewage data from 2000 to 2020 is provided in Table 5.1 

(Figure 5.1(a) – Figure 5.1(d)). For river data, Cu has the most records, followed 

by Fe, Ni, Zn, Cd, Mn, Ca, and Mg. In contrast, for sewage data, Fe had the most 

records, while Mn, Ca, and Mg have limited data availability. This limitation will 

impact the subsequent principal component analysis (PCA) analysis.  

In addition to total sample counts, the table also presents the range of sample 

numbers per site, highlighting the variation in monitoring intensity across locations. 

For instance, Cu was measured at river sites with sample counts ranging from 1 to 

372, and at sewage sites from 1 to 380. 

Although data availability is uneven, particularly in the sewage dataset, all eight 

determinands were retained for PCA analysis to ensure consistency with the river 

data and allow comparative interpretation. However, the limited sample size for Mn, 

Ca, and Mg in the sewage data may reduce the robustness of the multivariate 

patterns derived from these variables. 
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Table 5.1. Summary of each determinand for the whole data number. 

Determinand (unit) N of river data Per Site samples range (river data) N of sewage data Per Site samples range (sewage data) 

Ca (mg/L) 66365 1-248 188 1-20 

Mg (mg/L) 42265 1-248 189 1-20 

Cd (µg/L) 109431 1-301 3421 1-198 

Cu (µg/L) 611355 1-372 5311 1-380 

Ni (µg/L) 150119 1-301 3739 1-198 

Fe (µg/L) 166926 1-343 7833 1-382 

Zn (µg/L) 139112 1-309 2828 1-198 

Mn (ug/L) 67632 1-329 665 1-99 

N of PCA data 19393 1-204 20 1-10 
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Figure 5.1(a). Map each determinant for river sampling data and final effluent data.

Ca (river data) Ca (effluent data) 

Mg (river data) Mg (effluent data) 
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Figure5.1(b). Map each determinant for river sampling data and final effluent data.

Cd (river data) 
Cd (effluent data) 

Cu (river data) 
Cu (effluent data) 
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Figure5.1(c). Map each determinant for river sampling data and final effluent data.

Ni (river data) Ni (effluent data) 

Fe (river data) Fe (effluent data) 
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Figure5.1(d). Map each determinant for river sampling data and final effluent data.

Zn (river data) Zn (effluent data) 

Mn (river data) Mn (effluent data) 
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5.3.1 Inter-determinand Correlation 

The correlation matrix (Table 5.2) demonstrates that significant positive 

correlations (p < 0.05) exist between most pairs of metals, with the exceptions of 

Mg vs. Cd, Ca vs. Cu, and Mg vs. Zn. Among the strongest correlations, Cd and Zn 

show the highest association (r = 0.84; p-values < 0.000), followed by Ni and Mn 

(r=0.68; p-values < 0.05), Ni and Zn (r=0.65; p-values < 0.05), and Cu and Fe 

(r=0.61, P-values < 0.05). Overall, significant correlations ranged from r = 0.02 to 

r = 0.84. In contrast, no statistically significant correlation was detected between 

Mg and Cd, Ca and Cu, or Mg and Zn.  
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Table 5.2. Correlation coefficients between determinands (range: -1 to 1) and their corresponding p-values.Statistically significant coefficients 

(p < 0.05) are highlighted in grey. 

 

 

 

 

 

 

Determinand (unit) Ca (mg/L) Mg (mg/L) Cd (ug/L) Cu (ug/L) Ni (ug/L) Fe (ug/L) Zn (ug/L) Mn (ug/L) 

Ca (mg/L)  0.22 0.04 -0.01 0.02 0.06 0.02 0.09 

Mg (mg/L)   0.01 0.02 0.12 0.06 0.01 0.17 

Cd (µg/L)    0.19 0.33 0.15 0.84 0.17 

Cu (µg/L)     0.56 0.61 0.52 0.48 

Ni (µg/L)      0.39 0.65 0.68 

Fe (µg/L)       0.37 0.40 

Zn (µg/L)        0.43 
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5.3.2 Principal Components Analysis 

In this chapter, all river data including the river and sewage data of Ca, Mg, Cd, Cu, 

Ni, iron, Zn, and Mn from 2000 to 2020 England were collated. All the data was 

merged on the basis of being sampled on the same day at the same site: A total of 

19393 river data points were found, which include 1151 sites on 95 rivers. In 

contrast, for the final effluent data, there were only 20 data points, which include 8 

sites on 4 rivers. Note that the PCA dataset was constructed per site and included 

only those dates where all selected determinands were available for that site. That 

is, the date-determinand matching was done separately for each site, rather than 

requiring a common date across all sites. For example, at Site A, only dates with 

complete values for all 8 determinands (Ca, Mg, Cd, Cu, Ni, Fe, Zn, Mn) were 

retained; this filtering was repeated per site. The final PCA dataset of 19393 river 

data points thus represents the combined total across all sites after this filtering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. The location of the sampling sites that could be included in the PCA. 

 

The map (Figure 5.2) shows the spatial distribution of the sites across England 

that could be used in the PCA. The distribution highlights the coverage of the 

dataset, ensuring a comprehensive assessment of metal contamination patterns in 

relation to STWs.  
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Figure 5.3. Location of the sewage sites that could be used in this PCA. 

The map (Figure 5.3) displays the geographical distribution of the sewage 

treatment works (STW) included in the PCA analysis, i.e. where all the metals were 

analysed together on the same day. As can be seen from Figure 5.3, it is rare that 

all metals of interest are sampled simultaneously at the same site, which limits the 

spatial coverage and comparability of the dataset. The spatial distribution suggests 

a concentration of studied STWs in northern and southwestern England, 

highlighting regional differences in effluent characteristics and potential influences 

on receiving water bodies. 
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River data from all years 

Three out of the eight components had eigenvalues greater than 1, collectively 

explaining 73% of the original variance. PC1 explains 42% of the variance and has 

the highest loadings from Ni, Cu, and Zn. PC2 accounts for 16% of the total 

variance and has the highest loading for Mg, followed by Ca and Mn. PC3 accounts 

for 15 % of the original variance, and Ca has the highest loading, followed by Fe 

(Table 5.3).
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Table 5.3. Loading of each determinand on each principal component with eigenvalue > 1. 

Determinand PC1 PC2 PC3 

Ca (mg/L) 0.04 -0.44 -0.53 

Mg (mg/L) 0.07 -0.55 -0.42 

Cd (µg/L) 0.32 0.49 -0.49 

Cu (µg/L) 0.42 -0.11 0.34 

Ni (µg/L) 0.46 -0.07 0.06 

Fe (µg/L) 0.35 -0.21 0.32 

Zn (µg/L) 0.47 0.35 -0.25 

Mn (µg/L) 0.4 -0.28 0.11 

Eigenvalue 3.32 1.29 1.17 

Percentage of variance explained 42% 16% 15% 
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The PCA biplot of PC2 vs PC1 (Figure 5.4) shows the relationships between 

metal determinands and their contributions to the principal components. PC1 is 

predominantly influenced by metals such as Mn, Fe, Cu, and Ni.  

PC2 appears to reflect a gradient between natural water chemistry and 

anthropogenic metal enrichment. It is defined by a contrast between positive 

loadings for Cd and Zn—often associated with anthropogenic sources such as urban 

runoff or industrial discharge—and negative loadings for Ca and Mg, which are 

typical of natural background water chemistry. Thus, PC2 differentiates between 

sites with elevated anthropogenic contamination (high Cd and Zn) and those with 

more geochemically buffered water (high Ca and Mg).  

Figure 5.4 suggests that there are four to five distinct sources of metals in rivers 

and one common source. The common source plots at the origin and then a series 

of apparent mixing lines with other sources being presented by high positive values 

of PC2; high negative values for PC2; and then several potential high PC1 sources. 

Figure 5.4 then appears as a series of mixing lines spreading out from the origin. 
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Figure 5.4. PCA plot and loading for PC1 and PC2. The list of rivers with their corresponding numbers is as follows:1--Avon, 2--Duddon, 3-- 

Eden, 4-- Ouse, 5--Solent, 6--Adur, 7--Aire, 8--Aln, 9--Alt, 10--Annas, 11--Arun, 12--Avon, 13--Axe, 14--Blyth, 15--Brue, 16--Bure, 17-Camel, 

18--Cober, 19--Colne, 20--Coquet, 21--Crake, 22--Crouch, 23--Cuckmere, 24--Dart, 25--Derwent, 26--Derwent, 27--Don, 28--Eden, 29--Ehen, 

30--Ellen, 31--Esk, 32--Exe, 33--Fal, 34--Fowey, 35--Frome, 36--Gannel, 37--Hayle, 38--Heddon, 39--Helford, 40--Holywell Stream, 41--
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Hornsea Mere, 42--Humber estuary, 43--Itchen, 44--kent estuary, 45--Leven, 46--Lune, 47--Medway, 48--Mersey, 49--Mount's Bay, 50--Nene, 

51--Orwell, 52--Otter, 53--Ouse, 54--Par, 55--Parrett, 56--Plym, 57--Portreath Harbour, 58--Red, 59--Ribble, 60--Roach, 61--Rother, 62--

Rother, 63--Seaton, 64--Severn, 65--Sid, 66--Skelton Beck, 67--Solent, 68--St Austell Bay, 69—Stiffkey, 70--Stour, 71--Tamar, 72--Tamar, 73--

Taw, 74--Tees, 75--Teign, 76--Test, 77--Thames, 78--Torridge, 79--Trent, 80--Trent, 81--Tweed, 82--Tyne, 83--Ure, 84--Ure, 85--Wallington,86-

-Wampool, 87--Wansbeck, 88--Waveney, 89--Weaver, 90--Welland, 91--Witham, 92--Wye, 93--Wyre, 94--Yare, 95--Yealm.) 
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Final effluent data from all years 

Among the eight principal components analysed, three had eigenvalues greater than 

1, collectively explaining 82% of the total variance (Table 5.4). The first principal 

component (PC1) accounts for 39% of the variance, with the highest positive 

loading for Mn, but with high negative loadings for Ca and Mg. The second 

principal component (PC2) explains 25% of the variance, with the highest loadings 

on Zn, followed by Mn. The third principal component (PC3) accounts for 18% of 

the variance, with the highest loadings on Cu, followed by Mg, as shown in Table 

5.4. 



212 

 

Table 5.4. Loading of each determinand on each principal component with eigenvalue > 1. 

Determinand PC1 PC2 PC3 

Ca (mg/L) -0.56 -0.11 -0.23 

Mg (mg/L) -0.56 0.19 0.18 

Cd (µg/L) 0 0 0 

Cu (µg/L) -0.48 0.23 0.42 

Ni (µg/L) 0 0 0 

Fe (µg/L) -0.26 -0.13 -0.81 

Zn (µg/L) -0.06 0.73 -0.19 

Mn (µg/L) 0.27 0.59 -0.2 

Eigenvalue 2.49 1.57 1.16 

Percentage of variance explained 39% 25% 18% 
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The PCA biplot of PC2 vs. PC1 (Figure 5.5) illustrates the relationships between 

metal determinands and their contributions to the principal components. PC1 is 

primarily driven by metals such as Mn, Fe, Cu, and Ni. PC2 reflects a compositional 

gradient between anthropogenic enrichment and geochemical background 

conditions, with positive loadings for Cd and Zn—indicative of potentially 

untreated or industrial waste inputs—and negative loadings for Ca and Mg, which 

are commonly associated with natural water hardness. Sites with high PC1 scores 

exhibit generally elevated metal concentrations, while those with high PC2 scores 

are characterised by enhanced levels of Cd and Zn and reduced Ca and Mg. Figure 

5.5 represents a single mixing line, with the dominant variation being in the 

concentrations of Fe, Mn, Cu, and Ni, rather than in Ca, Mg, Cd, or Zn. 

Sites such as Horwich STW generally exhibit higher PC2 scores, indicating 

elevated levels of Cd and Zn, while Browney STW is associated with higher 

concentrations of Cu and Ni. In contrast, Walton Le Dale STW is characterised by 

elevated levels of Fe and Mn. These patterns highlight site-specific variations in 

effluent composition, reflecting differences in wastewater treatment processes and 

potential sources of metal contamination in the influent water (Figure 5.6). 
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Figure 5.5. The scatter plot of the final effluent scores on PC1 and PC2. 
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Combined data from all years (rivers + final effluent) 

Among the eight determinands analysed, three principal components had 

eigenvalues greater than 1, collectively explaining 73% of the total variance (Table 

5.5). The first principal component (PC1) accounts for 42% of the variance, with 

the highest loadings on Zn (0.47), followed by Ni (0.46), Cu (0.42), and Mn (0.40), 

indicating strong associations with metals linked to industrial discharges. The 

second principal component (PC2) explains 16% of the variance, with the highest 

loadings on Mg (0.55) and Ca (0.44), reflecting geogenic contributions likely 

associated with natural background waters. The third principal component (PC3) 

accounts for 15% of the variance, with the highest loadings on Ca (0.53), followed 

by Cd (0.49) and Mg (0.42). 

 

Table 5.5. Loading of each determinand on each principal component with 

eigenvalue > 1. 

Determinand PC1 PC2 PC3 

Ca (mg/L) 0.04 0.44 0.53 

Mg (mg/L) 0.07 0.55 0.42 

Cd (µg/L) 0.32 -0.49 0.49 

Cu (µg/L) 0.42 0.11 -0.34 

Ni (µg/L) 0.46 0.07 -0.06 

Fe (µg/L) 0.35 0.21 -0.32 

Zn (µg/L) 0.47 -0.35 0.25 

Mn (µg/L) 0.4 0.28 -0.11 

Eigenvalue 3.32 1.29 1.17 

Percentage of variance explained 42% 16% 15% 

 

It is perhaps not surprising that the PCA biplot of PC2 vs PC1 for the PCA 

performed on the combined river and STW dataset (Figure 5.6) appears very similar 

to that of the river data only PCA (Figure 5.4), as the combined dataset dominantly 

consists of the river data. However, what is clear is that the STW data plots at the 
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apex of the trends in the river data implying that STW final effluent is a common 

endmember for river metal concentrations.
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Figure 5.6. PCA and loading plot for both River data and Sewage. 
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5.3.3 Metal bioavailability 

This section aims to assess the bioavailability of four metals (Cu, Zn, Mn, Ni) 

(Figure5.7) in aquatic environments across England and so assess the importance 

of sewage effluent in comparison to other sources of pollution. 

Summary data analysis of bioavailable metals 

The number of samples and sites for which the bioavailable metal concentration 

could be calculated are detailed in Table 5.6, and Table 5.7 shows the data without 

the STW upstream and downstream data used in Chapter 3. 
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Table 5.6. Summary of the dataset N represents the total number of sampling points recorded at different times. 

Bioavailable metal(unit) N N of Sites Median RCR Proportion of RCR >1 Dissolved concentration 

Cu (µg/L) 33756 1546 0.1 0.001 0.175 ~ 430 

Zn (µg/L) 20148 1477 4.28 0.67 0.5 ~54600 

Mn (µg/L) 10542 1708 0.13 0.16 10 ~ 12200 

Ni (µg/L) 33673 1443 0.15 0.03 0.5 ~ 181 

 

Table 5.7. Summary of the dataset without the sampling sites that were previously included in Chapter 3. 

Bioavailable metal(unit) N without sampling points in Chapter 3 N of Sites Median RCR Proportion of RCR >1 Dissolved concentration 

Cu (µg/L) 33328 1455 0.1 0.01 0.175 ~ 430 

Zn (µg/L) 19723 1389 4.34 0.67 0.5 ~54600 

Mn (µg/L) 10262 1642 0.13 0.17 10 ~ 12200 

Ni (µg/L) 33201 1359 0.15 0.03 0.5 ~ 181 
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Among the metals for which the bioavailable concentration could be calculated, 

Zn had a median RCR of 4.28, which is the only bioavailable metal with a median 

RCR above 1, while Zn showed the highest proportion of samples with RCR >= 1 

(67%). Cu showed the lowest proportion of samples with RCR >= 1 at 0.1% (Table 

5.6). When the STW upstream and downstream data used in Chapter 3 were 

excluded from the analysis (Table 5.7), the proportion of Cu samples exceeding 

RCR >1 increased from 0.001 to 0.01 compared to the full river dataset analysis 

(Table 5.6), representing a tenfold increase.  The increase in Cu exceedances after 

removing STW upstream and downstream sites indicates that these locations likely 

influenced metal concentrations, possibly through dilution or localised retention 

effects. This finding suggests that STW effluent primarily affects water quality at a 

local scale rather than driving widespread contamination across the entire river 

network.
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Figure 5.7. Locations of monitoring sites for each determinand at which M-BAT 

was used to calculate bioavailable concentrations.  

 

Analysis of bioavailable metal concentrations using the M-BAT model framework 

(Table 5.8) incorporated z-transformation of all predictors and response variables 

to enable cross-parameter comparability of effect sizes. Statistically significant 

relationships were identified between bioavailable Cu, Zn, Mn, and Ni and key 

water chemistry variables, including pH, dissolved organic carbon (DOC), Ca, and 

the corresponding dissolved metal concentrations. 

Comparison with the more localised STW-impacted dataset in Chapter 3 (Table 

3.15) reveals both consistencies and divergences in predictor strength. Dissolved 

metal concentrations remained the dominant explanatory variable across all metals, 

with consistently high partial R² values (e.g., Zn remained stable at 0.92–0.98, and 

Cu increased from 0.62 to 0.76), highlighting a robust and scale-independent 

relationship between dissolved and bioavailable metal fractions. 

a) Cu 
b) Zn 

 

c) Mn 

 

d) Ni 
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In contrast, the explanatory power of other water chemistry variables declined at 

the national scale. For example: 

• The partial R² for Zn and DOC decreased from 0.0054 in Chapter 3 to 

0.0002 in Chapter 5. 

• For Ni, the partial R² associated with DOC increased modestly from 0.0053 

to 0.0220, while the contribution of Ca remained relatively stable (0.0018 

to 0.0022). 

• The influence of pH became less pronounced, with partial R² values for Cu 

and Zn declining (Cu: 0.012 → 0.0001; Zn: 0.0007 → 0.0001). 

At broader spatial scales, DOC, Ca, and pH appear to exert weaker predictive 

effects compared to those observed under more localised STW influences. By 

contrast, dissolved metal concentrations consistently explained the majority of 

variance in bioavailable metals, reinforcing their importance in both local and 

national assessments. 

Overall, the findings from Chapter 5 confirm that dissolved metal concentrations 

are primary predictors of bioavailable metal risk across spatial scales, whereas the 

predictive roles of pH, DOC, and Ca exhibit greater context dependency. These 

correlations were undertaken to clarify the relative influence of water chemistry 

determinands on bioavailability and to evaluate whether the effects of pH, DOC, 

and Ca on bioavailable metal concentrations identified in Chapter 3 at site-specific 

STW and control locations are also evident at the national scale, as examined in 

Chapter 5. The observed context dependency suggests that while some predictors 

exert strong universal influence, others are modulated by catchment-specific factors, 

supporting the chapter’s aim to identify both generalisable trends and regionally 

contingent mechanisms in bioavailable metal distribution. 
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Table 5.8. The summary of the regression analysis for each determinand Bioavailable metal. The significance for each determinand is stated as 

Yes if it was significant at a probability < 0.05 of being zero. Partial R² indicates the extent to which a factor contributes to the observed 

variability in the variable. 

Bioavailable 

metal(unit) 

pH DOC Ca Dissolved 

concentration 

pH*DOC pH*Ca DOC*Ca 

Sig partial R² Sig partial R² Sig partial R² Sig partial R² Sig partial R² Sig partial R² Sig partial R² 

Cu (µg/L) Yes 0.0001 Yes 0.0011 Yes 0.0014 Yes 0.7637 Yes 0.0000 Yes 0.0000 Yes 0.0006 

Zn (µg/L) Yes 0.0001 Yes 0.0002 Yes 0.0001 Yes 0.9803 Yes 0.0001 Yes 0.0000 Yes 0.0001 

Mn (µg/L) Yes 0.0464 Yes 0.0010 -- 0.0015 Yes 0.5458 Yes 0.0192 Yes 0.0088 Yes 0.0001 

Ni (µg/L) Yes 0.0102 Yes 0.0220 Yes 0.0022 Yes 0.7103 Yes 0.0052 Yes 0.0164 Yes 0.0014 
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Comparison between the mean dissolved concentration and the mean bioavailable 

metal concentration 

Figure 5.8 shows that bioavailable metal concentrations (BioCu, BioZn, BioMn, 

BioNi) are consistently lower than their corresponding dissolved metal 

concentrations (Cu, Zn, Mn, Ni). Specifically, the bioavailable concentrations are 

approximately 15% for Cu, 50% for Zn, 20% for Mn, and 30% for Ni of the 

dissolved concentrations. Note that the narrow 95% confidence intervals suggest 

that the variation within each group was low, and that the large sample size and 

consistent data quality contributed to high precision in the estimated means. 

One key finding is that Zn has the highest bioavailable fraction (50%) compared 

to the other metals, suggesting that Zn remains more available in river systems 

despite variations in water chemistry. In contrast, Cu has the lowest bioavailable 

fraction (15%), likely due to strong complexation with dissolved organic matter, 

which limits its free ion availability. Similarly, the relatively low bioavailability of 

Mn and Ni (20% and 30%, respectively) suggests that their speciation is influenced 

by sorption to particulates or precipitation of carbonates. These differences 

highlight that bioavailability is not solely dictated by total dissolved metal 

concentrations but also by chemical interactions that govern metal partitioning. 

The distinction between total dissolved and bioavailable concentrations is 

crucial when assessing the risks of metal pollution. Metals with a higher 

bioavailable fraction, such as Zn, pose a greater potential for biological uptake and 

toxicity, even at lower total concentrations, whereas metals like Cu may be less 

bioavailable despite higher dissolved concentrations. These findings emphasise the 

importance of assessing both dissolved and bioavailable fractions when evaluating 

the ecological risks of metal pollution, particularly in regulatory frameworks that 

consider bioavailability in water quality standards. 
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Figure 5.8. Comparison of dissolved metal concentration mean & bioavailable metal concentration mean. The values are presented as the 

marginal mean with the 95% confidence limits on that mean. 
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RCR greater than 1 subset 

Regression analysis was conducted on the high-risk subset (RCR ≥ 1) to evaluate 

the influence of pH, dissolved organic carbon (DOC), Ca, and dissolved metal 

concentrations on the bioavailability of Cu, Zn, Mn, and Ni (Table 5.9(a); Table 5.9 

(b)). Number of the sampling points and number of sites are presented in Table 5.9 

(a). All metals showed statistically significant relationships with at least some 

predictors, although not all covariates or interaction terms reached significance. 

pH emerged as a stronger driver of bioavailable metal concentrations in the RCR 

≥ 1 subset compared to the full dataset. It was particularly important for Mn (partial 

R² = 0.36) and, to a lesser extent, for Ni (partial R² = 0.04). These values were 

substantially higher than those observed at the national scale, highlighting the 

amplified role of acid–base conditions under high-risk contamination scenarios. 

DOC remained a statistically significant predictor for all metals, although its 

explanatory power varied across different metals. It contributed moderately to Cu 

(partial R² = 0.02) and Ni (0.07) but had minimal influence on Zn (0.0007) and Mn 

(0.003). The increased partial R² for Cu and Ni relative to the full dataset suggests 

that DOC-mediated complexation may be more relevant at highly contaminated 

sites. 

Ca showed metal-specific effects. It remained a significant predictor for Zn, Mn, 

and Ni, but not for Cu. For Mn (partial R² = 0.05) and Ni (0.02), Ca contributed 

more strongly to the high-risk subset than in the whole dataset, implying a possible 

role of ionic competition or precipitation processes under elevated metal burdens. 

Dissolved metal concentration continued to explain the greatest variance for Zn 

(partial R² = 0.98) and Cu (0.80), affirming its dominant role in predicting 

bioavailable fractions. However, its explanatory power was reduced for Mn (0.27) 

and Ni (0.50) compared to the full dataset, suggesting that additional environmental 

factors gain influence at high-risk sites. 

Interaction terms (pH*DOC, pH*Ca, DOC*Ca) generally exhibited higher 

partial R² values in the RCR ≥ 1 subset than in the full dataset. For Mn and Ni, 

interactions between pH and DOC or Ca explained an additional 2–5% of the 

variance, indicating that interactive chemical processes are more pronounced in 
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high-contamination settings. However, not all interactions were statistically 

significant, particularly for Cu (pH*DOC, pH*Ca) and Zn (pH*Ca).
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Table 5.9(a). The number of RCR >= 1 metal and its linear model relationship with pH, DOC, Ca and Dissolved metal. N represents the whole 

sampling number, and N of sites represents the number of sites. 

Bioavailable 

metal(unit) 

N N of sites pH DOC Ca Dissolved 

concentration 

    Sig partial R² Sig partial R² Sig partial R² Sig partial R² 

Cu (µg/L) 336 79 

 

Yes 0.0064 Yes 0.0195 -- 0.0044 Yes 0.7953 

Zn (µg/L) 13457 

 

415 

 

Yes 0.0002 Yes 0.0007 Yes 0.0006 Yes 0.9773 

Mn (µg/L) 1721 

 

103 

 

Yes 0.3564 Yes 0.0034 Yes 0.0453 Yes 0.2722 

Ni (µg/L) 940 

 

89 

 

Yes 0.0358 Yes 0.0745 Yes 0.0169 Yes 0.4986 
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Table 5.9(b). The number of RCR >= 1 metal and its linear model relationship with pH, DOC, Ca and Dissolved metal. N represents the whole 

sampling number, and N of sites represents the number of sites. 

Bioavailable metal(unit) pH*DOC pH*Ca DOC*Ca 

Sig partial R² Sig partial R² Sig partial R² 

Cu (µg/L) -- 0.0013 -- 0.0004 Yes 0.0091 

Zn (µg/L) Yes 0.0001 -- 0.0000 Yes 0.0001 

Mn (µg/L) Yes 0.0279 Yes 0.0545 Yes 0.0027 

Ni (µg/L) Yes 0.0064 Yes 0.1219 -- 0.0036 

 

 

 

 



 

 230 

Spatial distribution of sites with RCR > 1 

The spatial distribution of those sites where RCR >= 1 is shown for each metal in 

Figure 5.9, while Figure 5.10 displays the locations of all sites where RCR ≥ 1 for 

any metal. These maps should be compared to Figure 5.7, which shows all the sites 

where sufficient data were available to calculate the bioavailable concentration. 

This comparison illustrates that the risk from bioavailable metal concentration is 

geographically restricted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9. The red points are sites where RCR > 1, and the grey points are sites 

where RCR <1.
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Figure 5.10. The location of all sites where RCR > 1 site for all metals. 

 

 

 

 



 

 232 

Assessment of RCR Exceedance Across Study Areas for Bioavailable Metals 

The spatial distribution of sites shown in Figure 5.10 may represent population 

density, with a greater number of sites having RCR > 1 in areas of higher density, 

and therefore more STWs. To make a fairer comparison the sites were matched to 

English council districts based up on their coordinates. The table below (Table 5.10) 

summarises the distribution of areas where RCR > 1 for four different metals: 

• Zn: Poses the least concern among the four metals, with 79.6% of council 

districts showing RCR  1, indicating a relatively low pollution risk across 

most regions. 

• Ni: Stands out as the most prevalent contaminant, with only 48.1% of 

council districts having an RCR  of 1, making it the most significant 

concern in terms of pollution. 

• Mn and Cu Exhibit similar patterns, with approximately 70% of council 

districts (73.3% for Mn and 71.7% for Cu) having an RCR  of 1, indicating 

moderate pollution levels. 

These results highlight that Ni contamination is the most widespread issue, while 

Zn poses the least risk.  

 

Table 5.10. Proportion of council districts with RCR  1 for bioavailable metals. 

Bioavailable metal Total RCR  1 Percentage RCR  1 

Cu (µg/L) 138 99 71.7 

Zn (µg/L) 137 109 79.6 

Mn (µg/L) 135 99 73.3 

Ni (µg/L) 135 65 48.1 

 



 

 233 

Risk Characterisation of Bioavailable Metals 

Spatially Normalised Exposure 

To enhance comparability between council districts, site-level RCR > 1 

exceedances were aggregated per region and normalised by both the population of 

each county and the area of each county using a single composite metric: the per 

capita per km² ratio. This indicator reflects the demographic exposure burden 

relative to the spatial density of pollution, providing a more equitable basis for inter-

regional comparison. If sewage effluent were the only source of RCR > 1, then we 

would expect an even distribution of RCR occurrences per population density. 

Summary statistics for all metals for all council districts are given in Tables A1 

to A4  

To evaluate whether the spatial distribution of RCR > 1 exceedance events 

deviated significantly from an even demographic-based expectation, a chi-square 

test was conducted for each bioavailable metal. The total number of observed 

exceedances was compared against the expected counts, which were calculated by 

proportionally distributing the national total of RCR > 1 events based on the 

population of each administrative area. 

Results, summarised in Table 5.11, indicate that for all four metals—Cu, Zn, Mn, 

and Ni—the observed distributions differ significantly from their expected values 

(χ² ranging from 1,868 to 404,823, all p < 0.000). This statistical significance 

suggests that RCR > 1 occurrences are not evenly distributed across regions in 

proportion to their population sizes.
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Table 5.11. Summary of Chi-square Test Results Comparing Observed and Expected RCR > 1 Exceedance Counts for Bioavailable Metals. 

Bioavailable metal Total Population Total RCR > 1 (observed) Total RCR > 1 (expected) χ² P value 

Cu (µg/L) 53718496 336 336 1868 < 0.000 

Zn (µg/L) 52650096 13457 13457 404823 < 0.000 

Mn (µg/L) 53788296 1721 1721 12926 < 0.000 

Ni (µg/L) 51688200 940 940 53815 < 0.000 
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Spatial Allocation of Sewage Treatment Works (STWs) by County 

While raw RCR > 1 exceedance maps (Figure 5.11(a) – Figure 5.11(b), left column) 

visually align with areas of higher STW counts, particularly in the Southwest and 

Northwest, this apparent association diminishes when demographic normalisation 

is applied (right column). Normalised exposure burdens (RCR per 1,000 capita per 

km²) display a much more even spatial distribution, and no clear correlation is 

observed between STW density and population-adjusted risk levels. This suggests 

that STWs, while necessary for explaining point-source discharges, are not the sole 

drivers of spatial exceedance patterns. Instead, regional variation may reflect 

differences in population vulnerability, dilution capacity, local hydrochemistry, or 

diffuse sources beyond STW discharges. However, it is acknowledged that the 

population figures used in the normalisation process refer to entire administrative 

regions, which may not spatially coincide with the exact locations of RCR 

exceedance. In some cases, high RCR values may occur in upstream or rural areas 

with limited local population, while the overall population of the region is 

dominated by urban centres unrelated to the contamination site. This potential 

spatial mismatch should be considered when interpreting population-normalised 

exposure burdens. 

To visualise spatial patterns, choropleth maps were generated showing the 

distribution of normalised RCR exceedances across counties. Additionally, bubble 

maps were created, where the bubble size represented the number of STW facilities 

within each county. Maps were produced using the tmap package in R, with 

consistent symbology and log-transformed classification intervals to accommodate 

skewed data distributions 

.
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Figure 5.11(a). Comparison of Raw RCR >1 (left column) and Population-Normalised Exposure Burdens（right column） 
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Figure 5.11(b). Comparison of Raw RCR >1 (left column) and Population-Normalised Exposure Burdens（right column）
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While the per capita per km² ratio provides a normalised view of population-

level exposure intensity, it is also valuable to examine where different bioavailable 

metals co-occur in exceedance across the same regions. Among the 96 counties 

where at least one RCR > 1 observation was recorded for any metal, only six 

counties—Cornwall, Cumberland, Shropshire, Rochdale, Rotherham, and Devon—

exhibited exceedances for all four bioavailable metals (Cu, Zn, Mn, and Ni), as 

indicated by non-zero RCR > 1 ratios for each metal (Table 5.12). 

This geographic overlap was identified using proportion-based exceedance 

metrics, which normalise the number of RCR > 1 observations by the total number 

of observations for each metal in each county. This approach ensures fairer inter-

regional comparisons, accounting for potential variation in data availability or 

monitoring effort. 

 

Table 5.12. Proportion of sampling records with RCR > 1 for each bioavailable 

metal in counties exhibiting multi-metal exceedance. Ratios are calculated as the 

number of exceedance records divided by the total number of observations 

permetal and county. 

Area Cu_RCR_Ratio Zn_RCR_Ratio Mn_RCR_Ratio Ni_RCR_Ratio 

Cornwall 0.14 0.26 0.01 0.08 

Cumberland 0.13 0.52 0.04 0.04 

Devon 0.01 0.19 0.02 0.09 

Rochdale 0.18 0.30 0.13 0.33 

Rotherham 0.05 0.35 0.10 0.06 

Shropshire 0.03 0.70 0.01 0.07 
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Figure 5.12. The areas which show RCR > 1 for all bioavailable metals.
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5.4 Discussion 

While previous studies, such as those by Comber et al. (2022), have undertaken 

large-scale assessments of bioavailable metals at national levels, particularly 

focusing on the upstream–downstream dynamics of STW effluent, there has been 

limited research that integrates population-based exposure with spatial pollution 

density across multiple regions and decades. Most studies have focused on the types 

of heavy metals and their spatial and temporal distributions. For example, Barak 

and Mason (1989) examined the concentration changes of Hg, Cd, and Pb in Eastern 

England, finding that small towns contributed metal contaminants downstream. 

They also observed that high flows could dilute heavy metal accumulation in 

aquatic systems. Their study, conducted between September and November 1987, 

included 15 water samples and 40 sediment samples per site across four study sites. 

Similarly, Dawson and Macklin (1998) highlighted the importance of 

understanding the chemical speciation and mobility of heavy metals—Pb, Zn, Cu, 

and Cd—in river sediments, influenced by the physico-chemical environment. 

Their research involved 16 samples collected in October 1994, with two sites 

resampled in February 1995. Zhao and Marriott (2013) found that heavy metal 

concentrations in floodplain sediments decreased with increasing distance from 

former mining sites, primarily due to dilution and the breakdown of meta-coarse 

particles into finer sediments.  Near mining sites, heavy metals were associated with 

coarser sediment grains, whereas further downstream, they were bound to finer 

particles. Additionally, flooding could alter pH conditions, facilitating the 

remobilisation and translocation of heavy metals. Rowland et al. (2011) conducted 

a study in north-west England, collecting data every four weeks from 18 February 

2008 to 31 March 2010. They observed low concentrations of Ni, Cd, and Pb in the 

rivers, with seasonal and flow-dependent variability primarily driven by diffuse 

sources. Their findings also highlighted compliance with environmental quality 

standards. However, unlike these studies, this research encompasses data from 

across England for multiple decades (2000 to 2020) and includes multiple metals. 

Thus, this study provides a broader and more comprehensive perspective, offering 

insights that extend beyond the spatial and temporal limitations of previous studies.  

For bioavailability studies, most analyses of heavy metals typically focus on a 

single river, or a specific area affected by anthropogenic activities. Beane et al. 
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(2016) investigated historic mining at Wheal Betsy in southwest England, 

collecting 12 sediment samples from Cholwell Brook. Their study found that metal 

concentrations, particularly for Pb and Cd, significantly exceeded the EQS set under 

the WFD. Lead concentrations in stream sediments were up to 76 times higher than 

the Canadian sediment guidelines' "Probable Effect Level." Additionally, they 

observed a decline in benthic invertebrate species richness near the mine site, with 

Pb and Cd identified as the primary causes of ecological impact. Their analysis also 

revealed that the main mine drainage admitted was the most significant source of 

metal contamination, contributing approximately 50% of the total metal load in the 

area, and up to 88% for Ni. Mano and Shinohara (2020) utilised a bioavailability 

model to investigate the acute toxicity of Ni on Daphnia magna. Their study, 

conducted in five non-polluted rivers in Japan, involved exposing Daphnia magna 

to varying concentrations of dissolved Ni while observing changes in mobility and 

mortality. They determined that the Effect Concentration (EC50) ranged from 0.52 

to 4.0 mg/L, while the Lethal Concentration (LC50) ranged from 0.62 to 5.3 mg/L.  

While the studies above did not consider the influence of sewage effluent on 

metal bioavailability in rivers, Comber et al. (2022) directly addressed this issue. 

Their study analysed water quality upstream and downstream of over 600 STWs 

across the UK using the BioMet bioavailability model (https://bio-met.net/), which 

incorporates site-specific parameters such as pH, dissolved organic carbon, and Ca 

to assess compliance with Environmental Quality Standards (EQS) for trace metals. 

They found that accounting for bioavailability significantly improved compliance 

rates with EQS values and concluded that while the local impact of STWs was 

generally limited, catchment-scale contamination remained a concern. 

However, the primary focus of Comber et al. (2022) was on regulatory 

compliance rather than a detailed investigation into the broader hydrochemical and 

ecological implications of STWs’ discharges. In contrast, the current study extends 

this analysis by incorporating additional water chemistry parameters and employing 

statistical techniques, such as Principal Component Analysis (PCA) and Linear 

Modelling (LM), to evaluate the broader environmental consequences of 

wastewater inputs on riverine systems.  

Väänänen et al. (2018) conducted a comprehensive review on the role of metal 

bioavailability in ecological risk assessment (ERA) for freshwater systems, 
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highlighting advancements in science and regulation across different countries. 

They emphasised that traditional risk assessments based on total metal 

concentrations may lead to either underestimation or overestimation of ecological 

risk, as the bioavailable fraction primarily drives metal toxicity. Their review 

explored the integration of bioavailability-based methods into environmental 

regulation, noting that while countries such as the USA and Canada have adopted 

site-specific bioavailability models (e.g., BLMs) for water and sediment assessment, 

European implementation has been more gradual, with tools like the UKTAG Metal 

Bioavailability Assessment Tool (M-BAT) becoming more widespread. 

Väänänen et al. (2018), however, identified significant gaps in the assessment of 

metal mixture toxicity and sediment contamination within Europe, as well as the 

absence of bioavailability-based regulations in countries such as China. A similar 

situation applies to the UK, where water quality standards are still based on total 

dissolved metal concentrations. They concluded that future efforts should focus on 

developing streamlined bioavailability assessment tools, establishing regulatory 

guidelines, and enhancing training for environmental practitioners to ensure 

consistent application of bioavailability in risk assessment frameworks. 

Despite the valuable contributions of these studies, none have included as many 

determinands or spanned such a long temporal period as the current research. 

Unlike Chapter 3, in which sewage treatment works were directly linked to 

individual monitoring sites, the scale of the dataset in this chapter precluded a paired 

control analysis. Nevertheless, this broader-scale approach enables the 

identification of spatial patterns and regional trends in bioavailable metal exposure, 

offering important insights into the cumulative impact of wastewater discharges on 

freshwater ecosystems across England. 

From the inter-determinand correlation (Section 5.3.1), Cd and Zn’s high 

association indicate a likely shared source or similar geochemical behaviour. This 

correlation is consistent with industrial processes, as Cd is frequently found in Zn 

ores and is released during metal smelting and mining (Shiel et al., 2010). Industrial 

sectors such as electroplating, battery manufacturing (Wang et al., 2021), and 

smelting operations (Danczak et al., 2020) contribute to this pattern, where both 

metals are simultaneously discharged into the environment and exhibit similar 

mobility (Lei et al., 2020). Mg and Cd, Ca and Cu, or Mg and Zn suggests differing 
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geochemical behaviours and sources. While anthropogenic activities often 

introduce Cd and Cu, Mg is predominantly derived from natural sources such as the 

weathering of dolomite and serpentine (de Obeso et al., 2021). Similarly, the weak 

correlation between Mg and Zn may be attributed to differences in their solubility 

and transport mechanisms in aquatic environments (Santos et al., 2023). Overall, 

the results highlight the interplay between natural and anthropogenic influences on 

metal distributions. The strong associations between certain metals, such as Cd-Zn 

and Ni-Cu, suggest common pollution sources, whereas the lack of correlation 

among others indicates the presence of multiple contributing factors. These findings 

emphasise the importance of source identification for effective pollution 

management, warranting further investigation into industrial emissions and natural 

geochemical processes. 

The PCA results based on combined datasets of river monitoring and sewage 

effluent proved the relationships from the inter-determinand correlation, which 

indicate that Ni, Cu, and Zn are the dominant contributors to PC1, suggesting shared 

compositional characteristics between sewage discharges and metal-enriched river 

sites. However, the observed clustering also reveals that sewage effluent samples 

occupy a relatively narrow range in PCA space compared to the broader variation 

seen in river data. This suggests that while STW discharges may contribute to the 

overall metal signature in rivers, additional sources or in-river processes likely 

influence spatial variability (Figure 5.4 & 5.5); And itreflects the limited capacity 

of most STWs to remove dissolved trace metals during conventional treatment, 

meaning that downstream signatures largely depend on effluent volume rather than 

specific removal processes, while control variability arises from diffuse geological 

and land-use drivers. 

Furthermore, the M-BAT-derived RCR analysis highlights regions where 

bioavailable metal concentrations exceed regulatory thresholds, offering a spatial 

perspective on potential contamination risks. While some alignment exists between 

high RCR regions and areas of greater STW density, this relationship weakens after 

normalising by population and area. This spatial pattern suggests that wastewater 

discharges are one of several contributing factors, alongside other localised sources 

such as historic mining, agricultural runoff, and background geochemistry. In 

particular, elevated Ni and Cd risks in certain upland regions are more consistent 
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with legacy mining and mineralised geology than with STW density, whereas Zn 

hotspots often coincide with intensive agricultural areas where manure and fertiliser 

inputs act as diffuse sources. 

This study expands upon previous findings by providing a spatially normalised 

assessment of bioavailable metal risks across England. The M-BAT-derived RCR 

analysis identifies several regions where concentrations exceed regulatory 

thresholds. While some alignment exists between these regions and areas with high 

STW density, the relationship becomes less apparent after normalisation by 

population and area. This indicates that although STW discharges contribute to 

local metal burdens, they are unlikely to be the sole driver of exceedances. Instead, 

a combination of factors—including historic mining, land use, agricultural runoff, 

and regional geochemistry—appears to shape spatial metal risk patterns. Moreover, 

it should be noted that the population figures used for normalisation refer to entire 

administrative regions, which may not spatially correspond to the specific locations 

of RCR exceedance. This spatial mismatch may affect the interpretation of 

population-normalised exposure burdens, particularly where high RCR values 

occur in sparsely populated upstream areas. 

One limitation of this study is that while M-BAT provides a useful framework 

for bioavailability assessment, it is only valid for a subset of metals (Mn, Cu, Ni, 

Zn); therefore, it cannot be applied to other metals. Additionally, a regression 

analysis was initially used to identify key individual predictors of bioavailable 

metal concentrations. Subsequent models incorporating interaction terms between 

covariates (e.g., pH*DOC, pH*Ca, DOC*Ca) revealed that these interactions, 

although often secondary to main effects, contributed additional explanatory power, 

particularly under high-risk conditions (RCR ≥ 1). This highlights the importance 

of considering both direct and interactive effects in understanding the drivers of 

metal bioavailability (Table 5.8 & Table 5.9). Future studies incorporating more 

comprehensive geochemical models, such as the Biotic Ligand Model (BLM), 

could improve our understanding of bioavailability in complex riverine 

environments. 

The findings presented in this chapter have important implications for 

environmental policy and river basin management. By expanding the analysis 

beyond STW–Control site pairs to a national dataset, this study offers a broader 
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perspective on the drivers of bioavailable metal exposure. Although STWs 

contribute to localised metal inputs, the spatial patterns of population-normalised 

RCR values indicate that STWs are not the primary determinant of regional risk 

distributions. Instead, catchment-scale factors such as background geology, legacy 

contamination, diffuse pollution, and hydrochemical variability play substantial 

roles. For example, in Table 5.12, the co-occurrence of multiple metals exceeding 

risk thresholds in these counties highlights potential zones of cumulative 

contamination pressure, possibly influenced by a combination of legacy mining, 

industrial activity, and contemporary discharges from STWs. These spatial patterns 

underscore the importance of integrated, catchment-scale approaches that address 

both historical and contemporary pollution sources in assessing and managing 

ecological risk. From a treatment perspective, the findings also highlight the need 

to evaluate how advanced processes (e.g., chemical precipitation, filtration, or 

adsorption) might reduce specific bioavailable metal fractions that conventional 

biological treatment does not address.These results underscore the importance of 

integrated management strategies that address both point-source and diffuse inputs, 

and reinforce the value of bioavailability models, such as M-BAT, in informing 

risk-based water quality standards within frameworks like the Water Framework 

Directive.  
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5.5 Conclusion 

i) Final effluent from STWs is a plausible source of trace metals in rivers, with 

evidence of compositional similarity for key metals.  

ii) Dissolved metal concentrations consistently emerged as the strongest 

predictors of bioavailable metal levels, regardless of spatial scale or 

contamination severity.  

iii) Demographic normalisation indicates that the influence of STW discharges 

on RCR exceedance patterns is minimal despite their localised contributions. 

iv) Bioavailable metal contamination shows pronounced regional disparities, 

shaped by a combination of historical, geochemical, and anthropogenic 

factors beyond STW discharges.  
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Chapter 6: Conclusions 

Discharges from sewage treatment works (STWs) are an essential part of urban 

infrastructure but can pose considerable risks to river ecosystems. While many 

studies have explored the effects of STW discharges on receiving water bodies, this 

thesis has conducted a national-scale and multi-annual analysis of the impact of 

STW discharges across a wide range of determinands—both non-metal and metal—

on rivers. This study considered more determinands over more sites and in more 

statistically rigorous manner than previous studies. 

This research was guided by aims introduced in Chapter 1: to evaluate the 

influence of STW discharges on river water quality across England, with particular 

emphasis on both metal and non-metal determinands, eutrophication indicators, and 

bioavailable trace metals. Through the integration of long-term monitoring data, 

and statistical models, the study sought to assess the ecological implications of these 

discharges and to inform pollution management strategies aligned with frameworks 

such as the European Water Framework Directive (WFD) and the UK 

Environmental Quality Standards (EQS). These aims, first introduced in Chapter 1, 

are systematically addressed and evaluated in the subsequent chapters.   

• Chapter 2: Impact on non-metal Water Quality Determinands 

Aim: To assess the effect of STW discharges on common water quality 

determinands such as stream temperature, BOD, COD, nitrate, phosphate, 

pH, suspended solids, and specific conductance. 

• Chapter 3: Impact on Metal Concentrations 

Aim: To evaluate how STW discharges affect dissolved and bioavailable 

concentrations of metals (e.g., Cu, Zn, Mn, Ni) in river systems. 

• Chapter 4: Contribution to Eutrophication 

Aim: To determine if STW discharges promote eutrophication through 

increased chlorophyll-a and nutrient concentrations. 

• Chapter 5: National-scale Metal Pollution Patterns 

Aim: To assess whether STW discharges contribute significantly to 

bioavailable metal exceedances at the national scale compared to regional 

sources. 
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• Chapter 6: Synthesis and Conclusions 

Aim: To synthesise the findings from the preceding chapters, highlight the 

overall significance of STW discharges for river water quality, discuss study 

limitations, and identify directions for future research.Collectively, the findings 

demonstrate that STW discharges significantly impact river water quality and the 

wider river network. 

 

6.1 Impact of non-metal determinands 

• The impact of STW discharges on receiving rivers was significant for all 

determinants except COD and Suspended Solids. 

• Over the study period (2000 – 2022), a decrease in STW-related impacts 

was observed for BOD, pH, nitrate, specific conductance, and suspended 

solids, while for phosphate concentrations there was a significant rise in 

STW-related impact over the study period. For, Temperature and COD there 

was no change in the STW-related impact over time. 

• The type of treatment used in STWs played a significant role in controlling 

the impacts of STW discharge on receiving waters, with some types of 

treatment proving less favourable than others. 

• While tertiary treatment is effective in reducing phosphate levels, secondary 

methods such as secondary activated sludge treatment (SAS) and secondary 

biological treatment (SB) show minimal differences in nitrate removal but 

significantly improve phosphate removal. 

• STW size, as indicated by dry weather flow (DWF), was associated with 

greater impacts on all determinands, whereas population equivalence (PE) 

did not show a consistent relationship with the determinands being 

considered. 

• Principal component analysis (PCA) showed that STWs could be 

categorized into two impact types: one focused on BOD, COD, and SS, and 

the other on nutrient-related determinands. 
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6.2 Impact of metals and bioavailability shown in study pairs 

• Except for Cd and Ni, all analysed determinands were significantly affected 

by STW discharges. Ca, Mg, Cu, and Mn showed elevated concentrations 

downstream, whereas Fe and Zn demonstrated reductions. 

• Over time, the effect of STW discharges on Mg and Cu concentrations 

significantly declined, whereas their impact on Ni concentrations 

significantly increased. 

• The efficiency of metal removal varied between secondary treatment types; 

SB was more effective than SAS in reducing Fe and Cu concentrations. 

• The magnitude of STW impact on river water quality increases with plant 

size. Specifically, PE was linked to changes in Ca, Ni, and Zn, while DWF 

influenced levels of Fe, Mg, and Cu. 

• From PCA analysis, STWs were differentiated into two impact types—those 

contributing mainly to Zn, Cd, and Ni pollution, and those affecting Ca, Mg, 

and Cu. 

• STW discharges significantly impacted bioavailable Zn, Mn, and Ni, while 

bioavailable Cu remained unchanged despite increased dissolved 

concentrations. 

• Zn showed the highest proportion of samples that had risk concentration 

ratio (RCR) > 1 and so exceeded their environmental quality standard. 

 

6.3 Eutrophication 

• STW discharges have no significant effect on the chlorophyll concentrations 

of the receiving waters. 

• The inclusion of covariates indicated a possible significant effect of sewage 

discharge on increasing Chl-a concentrations. 

• Trends in the influence of sewage discharge on SiO₂ indicate that future 

impacts on receiving rivers may become more important. 

• Compared to SB treatment, SAS demonstrated greater effectiveness in 

lowering chlorophyll levels in downstream waters. 

• Analysis of 2002 data indicates that the chemical composition of receiving 

rivers in England closely resembled that of final effluent, implying that 

many rivers could be considered as dilute sewage effluent. 
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6.4 Impact of STW metal discharges on the wider English river network 

and national-scale bioavailability situation 

• Final effluent from STWs is a plausible source of trace metals in rivers, with 

evidence of compositional similarity for key metals.  

• Dissolved metal concentrations consistently emerged as the best predictors 

of bioavailable metal levels, regardless of spatial scale or contamination 

severity.  

• Demographic normalisation indicates that the influence of STW discharges 

on RCR exceedance patterns is minimal despite their localised contributions. 

• Bioavailable metal contamination shows pronounced regional disparities, 

shaped by a combination of historical, geochemical, and anthropogenic 

factors beyond STW discharges. 

 

6.5 Study limitations 

This study was designed to address three key knowledge gaps outlined in Chapter 

1: the lack of appropriate comparisons in study design, the limited scale of existing 

datasets, and the tendency to focus on pollutant concentrations rather than 

ecological impact. While significant progress was made, several limitations remain. 

First, although upstream-downstream site pairings were used to provide 

appropriate control conditions—an improvement over many prior studies—paired 

data availability varied across determinands. For some parameters, limited paired 

samples may have reduced statistical power and restricted the detection of smaller 

or less consistent effects. 

Second, the study utilized one of the most extensive datasets currently available, 

addressing the issue of small-scale sampling noted in previous work. However, 

access to critical metadata such as STW treatment type and population equivalence 

(PE) was constrained due to the inaccessibility of key data sources following Brexit. 

As a result, some analyses—particularly those evaluating differences among 

treatment processes or load-based assessments—could not be conducted or were 

excluded beyond Chapter 3. 
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Third, while this research went beyond simple concentration reporting by 

assessing bioavailable metals and EQS exceedances, it could not fully evaluate the 

ecological consequences of chemical mixtures or downstream pollutant dynamics. 

These limitations stem from data availability and the complexity of capturing in-

situ chemical interactions and transport processes at a national scale. 

In summary, although this study advances the field by addressing previously 

overlooked aspects of STW impacts, it remains constrained by data pairing 

limitations, treatment process metadata gaps, and unresolved challenges in 

assessing long-range and interactive ecological effects. These findings underscore 

the need for improved infrastructure data transparency and further research into 

catchment-scale pollutant behaviour. 

6.6 Future work 

Building on the findings and methodological framework of this study, several 

directions for future research are proposed. These fall into three main categories: 

(1) enhanced data analysis for source attribution, (2) integration with experimental 

data and emerging contaminant monitoring, and (3) scenario-based modelling to 

inform management and policy development. 

6.6.1. Advanced Data Analytics and Source Attribution 

Future work could apply more sophisticated multivariate techniques—such as 

Principal Component Analysis (PCA)—to further unravel the complex structure of 

pollution sources. PCA offers the potential to differentiate between overlapping 

geogenic, anthropogenic, and legacy industrial signals, particularly in regions 

where multiple inputs obscure attribution. Building upon PCA outputs, targeted 

end-member analysis could be employed to define representative pollution 

signatures, allowing clearer identification of dominant contributors to metal and 

nutrient concentrations. In addition, incorporating chemical speciation and isotopic 

data would enhance source discrimination and improve understanding of pollutant 

behaviour and bioavailability under different environmental conditions. 

6.6.2. Integration with Experimental Monitoring and Emerging Contaminants 

The current framework could be extended through integration with field work data. 

For instance, coupling field observations with laboratory-based chemical speciation 
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experiments would offer a more detailed view of bioavailability and ecological risk. 

Furthermore, as monitoring programs expand, the analysis could be broadened to 

include emerging contaminants such as pharmaceuticals, microplastics, and 

endocrine-disrupting compounds—key pollutants that pose growing threats to 

aquatic ecosystems but are often omitted from routine surveillance. 

 

6.6.3. Scenario-Based Modelling and Policy Applications 

Finally, future studies could incorporate scenario-based modelling to assess the 

potential outcomes of different management interventions. Using the spatial models 

developed in this study as a foundation, simulations could explore the effectiveness 

of upgraded treatment technologies, tighter effluent standards, or alternative 

nutrient removal strategies. These models would provide valuable tools for 

regulators and policymakers seeking evidence-based strategies to improve river 

water quality under changing environmental and socio-economic conditions. 
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Appendix Table A1. Cu: RCR > 1 Site-Level Exposure Metrics by Region.This table presents site-level exceedance statistics for bioavailable Cu 

across English council districts. Included metrics are the number of sites exceeding the RCR > 1 threshold, total monitored sites, population, 

area (km²). The final column reports the per capita per km² ratio, reflecting spatial-demographic normalised exposure intensity. 

 

Area Exceed_Site_Count Total_Site_Count Population Area_km2 PerCapita_per_km2_Ratio 

Blackpool 1 3 141000 33.560 0.000 

Cheshire East 1 4 400500 1168.795 0.003 

Cornwall 27 71 572000 3573.835 0.006 

Croydon 1 4 390500 85.995 0.000 

Cumberland 9 46 274000 1560.000 0.000 

Darlington 1 18 618800 198.812 0.000 

Devon 2 50 814400 6578.755 0.008 

Doncaster 2 16 308700 567.277 0.002 

East Sussex 1 14 546900 1721.902 0.003 

Essex 1 15 1506300 3459.960 0.002 

Halton 1 12 128600 80.375 0.001 

Herefordshire 1 13 187600 2180.535 0.012 

Hillingdon 1 2 304800 115.522 0.000 
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Isles of Scilly 1 1 2100 13.575 0.006 

Kingston upon Hull 1 6 266500 70.984 0.000 

Kirklees 1 4 433400 405.307 0.001 

Milton Keynes 1 7 288200 309.327 0.001 

Plymouth 5 21 264700 81.991 0.000 

Redcar and Cleveland 1 12 136600 248.289 0.002 

Rochdale 3 13 224100 156.240 0.001 

Rotherham 1 29 266200 289.186 0.001 

Shropshire 1 36 324700 3188.263 0.010 

Somerset 1 26 573100 3462.370 0.006 

South Gloucestershire 1 8 290700 500.484 0.002 

Stockton-on-Tees 1 4 197000 205.217 0.001 

Westmorland and Furness 10 55 227600 3667.000 0.000 

Wolverhampton 1 4 264000 69.466 0.000 

Wrexham 1 8 135100 506.884 0.004 
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Appendix Table A2. Zn: RCR > 1 Site-Level Exposure Metrics by Region.This table provides exceedance data for Zn, a metal generally showing 

lower regional risk. Metrics follow the same format to allow consistent comparison. 

 

Area Exceed_Site_Count Total_Site_Count Population Area_km2 PerCapita_per_km2_Ratio 

Bath and North East Somerset 6 17 192400 348.612 0.002 

Birmingham 1 7 1142500 269.027 0.000 

Bracknell Forest 1 6 125200 108.234 0.001 

Bradford 5 17 547000 368.387 0.001 

Bristol 1 4 470,000 111.321 0.000 

Cambridgeshire 2 21 680400 3056.066 0.004 

Cornwall 50 71 572000 3573.835 0.006 

Cumberland 21 41 274000 1560.000 0.000 

Darlington 12 18 618800 198.812 0.000 

Derby 5 18 261100 78.270 0.000 

Derbyshire 16 26 796800 2549.661 0.003 

Devon 12 50 814400 6578.755 0.008 

Doncaster 6 16 308700 567.277 0.002 
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Dudley 1 8 323600 97.265 0.000 

Durham 105 145 521300 2231.233 0.004 

East Riding of Yorkshire 1 8 343100 2409.308 0.007 

East Sussex 2 14 546900 1721.902 0.003 

Gateshead 4 15 196200 147.489 0.001 

Gloucestershire 1 20 646600 2683.579 0.004 

Halton 3 11 128600 80.375 0.001 

Herefordshire 1 12 187600 2180.535 0.012 

Isle of Wight 3 6 140900 379.786 0.003 

Isles of Scilly 1 1 2100 13.575 0.006 

Kirklees 1 4 433400 405.307 0.001 

Leeds 1 5 809000 550.578 0.001 

Leicester 1 7 366000 73.589 0.000 

Leicestershire 1 13 712600 2087.261 0.003 

Lewisham 1 3 299800 34.352 0.000 

Lincolnshire 1 14 769500 5950.271 0.008 
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Liverpool 1 1 357700 112.981 0.000 

Luton 1 4 224800 44.068 0.000 

Manchester 1 5 549900 111.896 0.000 

Milton Keynes 2 7 288200 309.327 0.001 

Norfolk 1 14 918400 5374.494 0.006 

North Northamptonshire 3 6 360400 993.518 0.003 

North Somerset 3 8 573100 373.572 0.001 

North Yorkshire 10 27 618800 8054.935 0.013 

Northumberland 13 39 321600 5032.156 0.016 

Nottingham 5 25 319600 75.870 0.000 

Nottinghamshire 6 19 826300 2087.469 0.003 

Oxfordshire 1 28 726500 2608.130 0.004 

Peterborough 2 18 769500 341.527 0.000 

Plymouth 5 19 264700 81.991 0.000 

Reading 1 6 173200 41.326 0.000 

Rochdale 6 14 224100 156.240 0.001 
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Rotherham 10 28 266200 289.186 0.001 

Salford 1 5 270800 97.967 0.000 

Sandwell 1 3 341700 85.221 0.000 

Sefton 1 7 279700 153.865 0.001 

Sheffield 4 11 554400 366.749 0.001 

Shropshire 20 33 324700 3188.263 0.010 

Solihull 3 10 216700 177.542 0.001 

Somerset 2 24 573100 3462.370 0.006 

Southend-on-Sea 2 4 321000 44.408 0.000 

Staffordshire 2 7 877900 2628.223 0.003 

Stockport 1 6 295200 125.536 0.000 

Sunderland 1 7 274200 136.155 0.000 

Surrey 1 9 1205600 1667.758 0.001 

Swindon 1 13 233700 227.716 0.001 

Telford and Wrekin 2 11 185800 291.803 0.002 

Torbay 3 12 139400 65.488 0.000 
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Wakefield 1 5 353800 337.270 0.001 

Walsall 6 13 284300 104.027 0.000 

West Sussex 4 17 885100 1996.349 0.002 

Westmorland and Furness 16 47 227600 3667.000 0.000 

Wigan 1 6 329800 188.329 0.001 

Wiltshire 1 7 513400 3258.226 0.006 

Wolverhampton 2 3 264000 69.466 0.000 

Worcestershire 1 17 604900 1743.230 0.003 

York 1 10 201700 275.330 0.001 
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Appendix Table A3. Mn: RCR > 1 Site-Level Exposure Metrics by Region As above, this table summarises regional exceedance metrics for Mn . 

It enables comparison of exposure burden across districts accounting for both population size and land area. 

 

Area Exceed_Site_Count Total_Site_Count Population Area_km2 PerCapita_per_km2_Ratio 

Blackburn with Darwen 3 6 154900 139.386 0.001 

Blackpool 2 3 141000 33.560 0.000 

Brighton and Hove 2 7 276300 85.542 0.000 

Cornwall 5 60 572000 3573.835 0.006 

Coventry 3 19 343300 99.799 0.000 

Cumberland 3 51 274000 1560.000 0.000 

Darlington 1 18 618800 198.812 0.000 

Derby 1 20 261100 78.270 0.000 

Derbyshire 4 28 796800 2549.661 0.003 

Devon 3 50 814400 6578.755 0.008 

Doncaster 5 12 308700 567.277 0.002 

Durham 21 126 521300 2231.233 0.004 

East Riding of Yorkshire 1 7 343100 2409.308 0.007 
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East Sussex 4 24 546900 1721.902 0.003 

Essex 2 23 1506300 3459.960 0.002 

Gateshead 1 13 196200 147.489 0.001 

Isle of Wight 1 5 140900 379.786 0.003 

Kent 1 33 1578500 3543.664 0.002 

Kingston upon Hull 1 6 266500 71.000 0.000 

Knowsley 1 1 155000 86.258 0.001 

Leicestershire 1 25 712600 2087.261 0.003 

North East Lincolnshire 1 4 157200 190.562 0.001 

North Lincolnshire 2 6 169900 849.080 0.005 

Redcar and Cleveland 4 17 136600 248.289 0.002 

Rochdale 4 14 224100 156.240 0.001 

Rotherham 5 28 266200 289.186 0.001 

Salford 1 9 270800 97.967 0.000 

Sandwell 1 3 341700 85.221 0.000 

Sheffield 1 14 554400 366.749 0.001 
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Shropshire 1 35 324700 3188.263 0.010 

Slough 1 4 158300 32.202 0.000 

Staffordshire 1 5 877900 2628.223 0.003 

Stoke-on-Trent 3 14 258000 92.989 0.000 

Telford and Wrekin 1 10 185800 291.803 0.002 

Wakefield 1 8 353800 337.270 0.001 

Walsall 3 10 284300 104.027 0.000 

Warwickshire 1 21 599200 1974.139 0.003 

West Sussex 2 15 885100 1996.349 0.002 

Wigan 4 7 329800 188.329 0.001 
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Appendix Table A4. Ni: RCR > 1 Site-Level Exposure Metrics by Region. This table details the distribution of RCR > 1 exceedances for Ni, 

including region-specific exceedance probabilities, exposure per capita, and spatial intensity per km². 

 

Area Exceed_Site_Count Total_Site_Count Population Area_km2 PerCapita_per_km2_Ratio 

Bath and North East Somerset 1 16 192400 348.612 0.002 

Birmingham 1 6 1142500 269.027 0.000 

Blackburn with Darwen 2 6 154900 139.386 0.001 

Central Bedfordshire 1 4 295500 709.158 0.002 

Cheshire East 1 4 400500 1168.795 0.003 

Cornwall 19 56 572000 3573.835 0.006 

Cumberland 3 40 274000 1560.000 0.000 

Derbyshire 1 26 796800 2549.661 0.003 

Devon 7 49 814400 6578.755 0.008 

Durham 5 149 521300 2231.233 0.004 

Hampshire 1 5 1406200 3675.415 0.003 

Herefordshire 1 11 187600 2180.535 0.012 

Isle of Wight 1 6 140900 379.786 0.003 
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Leicestershire 2 13 712600 2087.261 0.003 

North Lincolnshire 1 5 169900 849.080 0.005 

Nottinghamshire 1 21 826300 2087.469 0.003 

Plymouth 4 18 264700 81.991 0.000 

Redcar and Cleveland 1 12 136600 248.289 0.002 

Rochdale 5 9 224100 156.240 0.001 

Rotherham 3 30 266200 289.186 0.001 

Sandwell 2 3 341700 85.221 0.000 

Shropshire 2 33 324700 3188.263 0.010 

Solihull 3 11 216700 177.542 0.001 

Somerset 1 22 573100 3462.370 0.006 

South Gloucestershire 2 8 290700 500.484 0.002 

Southend-on-Sea 1 4 180600 44.408 0.000 

Suffolk 1 14 763400 3823.292 0.005 

Telford and Wrekin 2 11 185800 291.803 0.002 

Trafford 1 7 235500 108.001 0.000 
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Walsall 6 14 284300 104.027 0.000 

West Northamptonshire 1 8 426500 1374.391 0.003 

West Sussex 1 16 885100 1996.349 0.002 

Westmorland and Furness 2 47 227600 0.000 0.000 

Wigan 1 6 329800 188.329 0.001 

Wiltshire 1 7 513400 3258.226 0.006 

Wolverhampton 1 3 264000 69.466 0.000 
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Appendix Figure 1. The main effects plot of the Type*Year interaction. The values are presented as the marginal mean with the 95% confidence 

interval. 
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Appendix Figure 2. The main effects plot of the Type*Month interaction. The values are presented as the marginal mean with the 95% 

confidence interval. 


