
Durham E-Theses

Constrained quantum optimisation for customer data

science

MIRKARIMI, PUYA

How to cite:

MIRKARIMI, PUYA (2025) Constrained quantum optimisation for customer data science, Durham
theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/16256/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/16256/
 http://etheses.dur.ac.uk/16256/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Constrained quantum

optimisation for customer data

science

Puya Mirkarimi

A thesis presented for the degree of

Doctor of Philosophy

Department of Physics

Durham University

United Kingdom

May 2025



Constrained quantum optimisation for
customer data science

Puya Mirkarimi

Abstract

One of the potential use cases of a quantum computer is to solve combinatorial

optimisation problems more efficiently than is possible with the most advanced

classical computers. Combinatorial optimisation problems that appear in in-

dustry often involve a large number of constraints. This thesis investigates

algorithmic techniques that improve the performance of quantum optimisation

algorithms in solving problems with constraints. We test these techniques on

customer data science problems.

We study an alternative penalty method for encoding constraints in Ising

Hamiltonians, which can be applied to various quantum algorithms. This

method only introduces linear terms to the Ising Hamiltonian, allowing for

more efficient use of hardware resources than the standard quadratic penalty

method. These efficiency improvements are particularly beneficial for near-

term devices with a limited number of qubits that are sparsely connected.

We analyse the impact of using this alternative encoding method on the per-

formance of the quantum approximate optimisation algorithm and quantum

annealing applied to example problems in customer data science. Our results

are based on numerical simulations and experiments on quantum hardware.

We introduce a new variant of the quantum approximate optimisation al-

gorithm that improves its ability to solve problems with constraints. In this

variant of the algorithm, the strengths of penalty functions are associated

with additional variational parameters, allowing them to take different val-

ues in each layer of the quantum circuit. We perform numerical simulations

of multiple variants of the quantum approximate optimisation algorithm and

compare their performance.
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Chapter 1

Introduction

A quantum computer is a device that can leverage the properties of quantum

mechanics to solve certain problems in a fundamentally more efficient way than a

computer that behaves according to classical physics. The idea of quantum com-

puting was independently proposed by Paul Benioff [3; 4], Yuri Manin [5] (according

to [6]), and Richard Feynmann [7] in the early 1980s. At the time, it appeared that

classical computers could not simulate all quantum mechanical systems efficiently,

and it was suggested that a machine that operates according to quantum mechanics

would be able to do so. However, it was not clear whether quantum computers

could be experimentally realised.

Since then, the theoretical potential of quantum computing has become more clear

with the discovery of quantum algorithms that produce speedups relative to their

classical counterparts. The classic example is Shor’s algorithm [8], which can factor

an integer in an amount of time that scales polynomially with the number of bits

required to represent it. There is no known polynomial time classical algorithm

for this problem. The proposal of Shor’s algorithm in 1994 demonstrated that

quantum computers could be used to solve useful problems that are thought to

be classically intractable, and this sparked a great amount of interest in quantum

computing. Soon after, Lov Grover proposed a quantum algorithm for searching

an unstructured database that produces a quadratic speedup over the best classical
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1. Introduction

strategy, which is brute force search [9]. This quadratic speedup was later shown to

be optimal [10]. Grover’s algorithm can be applied to various problems, including

combinatorial optimisation problems, in which the goal is to minimise an objective

function that can take a finite but very large number of possible solutions [11].

Meanwhile, significant experimental advances have been made in the develop-

ment of quantum computers. Various hardware platforms for quantum computers

are being explored, including superconductors [12; 13], trapped ions [14], neutral

atoms [15], and photons [16]. A range of quantum devices are now commercially

available and can be accessed on cloud platforms [17]. Claims of a quantum ad-

vantage in solving certain artificial problems [12; 16] and in simulating quantum

systems [18] have been made. Recently, experimental implementations of quantum

error correction have demonstrated that the logical error rates of quantum com-

putations can be reduced by distributing quantum information across a quantum

computer in a way that produces redundancy [19; 20].

It is hoped that further scientific progress in quantum hardware and algorithms will

lead to a demonstration of a quantum advantage for combinatorial optimisation.

To date, there has been no experimental demonstration of a quantum computer

solving a combinatorial optimisation problem that cannot be solved classically in

a reasonable amount of time [21]. However, recent evidence of a scaling advantage

in approximate optimisation has been presented [22]. Combinatorial optimisation

problems are ubiquitous in industry, and applications of quantum optimisation have

been explored in a variety of fields, including finance [23; 24], molecular biology [25],

material design [26], and air traffic management [27]. In this thesis, we consider an

application of quantum optimisation in customer data science.

A common feature of combinatorial optimisation problems found in industry is that

they often involve a large number of constraints [28]. A constraint is a feature of a

problem that makes certain solutions undesirable. In commerce and retail settings,

the number of constraints can be in the tens or hundreds [29; 30]. These constraints

arise from both strategic and operational considerations. Therefore, to produce
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1. Introduction

the most value from quantum optimisation in a commercial setting, we require

quantum algorithms that can outperform classical alternatives for problems that

are significantly affected by constraints. This motivates the aim of this thesis, which

is to develop and analyse algorithmic techniques that allow quantum optimisers to

more efficiently solve problems that include constraints.

This thesis is organised as follows. In Chapter 2, we provide a background on

quantum optimisation and define the example customer data science problems that

we consider in this thesis. In Chapter 3, we investigate how linear Ising penalty

functions can be used to encode Hamming weight constraints in quantum optimisa-

tion algorithms. We discuss the benefits and shortcomings of this method compared

to other approaches. An important practical consideration is the sensitivity of lin-

ear Ising penalties to their penalty strengths, which we examine for problems with

a single constraint and problems with many constraints. In Chapter 4, we numer-

ically simulate two different quantum optimisation algorithms and study the use

of linear Ising penalties. This allows us to determine the impact that this penalty

method has on the performance of algorithms and how this is affected by changes

in the penalty strengths. In Chapter 5, we perform experiments with linear Ising

penalties on a quantum annealer. Our results in this chapter demonstrate the

effectiveness of the linear method in making efficient use of the limited physical

resources that are available on current quantum devices.

In Chapter 6, we introduce a new variant of the quantum approximate optimisa-

tion algorithm that can perform better in solving problems with constraints. This

variant introduces additional parameters to the quantum circuit that allow penalty

strengths to be changed between layers. We evaluate the performance of this al-

gorithm in numerical simulations and perform a comparison against other variants.

Finally, we provide the conclusions and outlook of our work in Chapter 7.

The data and code that support the findings of Chapters 3–5 are available at [31;

32]. In Chapter 6, the problem instances of [31] are used.

3



Chapter 2

Background

In this chapter, we provide a summary of prior work that underpins this thesis

and introduce the key concepts that we use. We begin by introducing the Ising

model and relating it to the quadratic unconstrained binary optimisation (QUBO)

problem. We then provide explanations of how computations are performed in gate

model quantum computing, adiabatic quantum computing (AQC), and quantum

annealing (QA). We also describe the quantum approximate optimisation al-

gorithm (QAOA) and simulated annealing (SA), which are algorithms for com-

binatorial optimisation problems. After that, we introduce the promotion canni-

balisation problems that we base our work on and discuss existing methods for

encoding a problem’s constraints in quantum optimisation. Finally, we define the

performance metrics that are used in this thesis and outline the numerical and

experimental methods that we use.

2.1 Ising model and quadratic unconstrained binary

optimisation

The Ising model is a classical representation of n magnetic spins si = ±1 that have

pairwise interactions and interactions with an external magnetic field [33]. The

4



2.1. Ising model and quadratic unconstrained binary optimisation

energy of a configuration s ∈ {−1,+1}n is given by the Hamiltonian function

HI(s) =
n∑

i=1

hisi +
n−1∑
i=1

n∑
j=i+1

Ji,jsisj , (2.1)

where J ∈ Rn×n is a strictly upper-triangular matrix that represents couplings and

h ∈ Rn represents local fields. Throughout this thesis, n refers to the number of

variables or qubits. Recall that the Pauli operators are represented in matrix form

as

σx ≡

0 1

1 0

 , σy ≡

0 −i

i 0

 , σz ≡

1 0

0 −1

 . (2.2)

A quantum version of the Ising model for n qubits can be defined by replacing the

spin variable si in Eq. (2.1) with the operator

σz
i = 1

⊗i−1
2 ⊗ σz ⊗ 1

⊗n−i
2 , (2.3)

which applies the Pauli-Z operator σz to the ith qubit and the identity operator

12 to all other qubits. This gives the Ising Hamiltonian

HI =
n∑

i=1

hiσ
z
i +

n−1∑
i=1

n∑
j=i+1

Ji,jσ
z
i σ

z
j . (2.4)

Finding the ground state of an Ising Hamiltonian is NP-hard, and many combin-

atorial optimisation problems of interest can be efficiently mapped to this prob-

lem [34; 35]. The Ising Hamiltonian can be directly encoded on many types of

quantum computers, and this gives rise to various quantum algorithms for minim-

ising HI .

Often, it is more natural to formulate an optimisation problem in terms of binary

variables x ∈ {0, 1}n than spin variables. Through the mapping σz
i 7→ 1 − 2xi, the

problem of finding the ground state of HI is equivalent to the QUBO problem

find : arg min
x

f(x) =
n∑

i=1

aixi +
n−1∑
i=1

n∑
j=i+1

bi,jxixj . (2.5)

That is, the bitstring x∗ that minimises the QUBO objective function f(x) is the

same bitstring that appears in the ground state |x∗⟩ of HI . The linear and quadratic

term coefficients a and b in f(x) are related to h and J through the equations

Ji,j = bi,j

4
(2.6)

5



2.2. Gate model quantum computing

and

hi = −ai

2
− 1

4

n∑
j=1,j ̸=i

bi,j . (2.7)

The QUBO objective function is often expressed in terms of a single upper-triangular

matrix Q ∈ Rn×n as

f(x) = xTQx =
n∑

i=1

n∑
j=i

Qi,jxixj . (2.8)

where Qi,j = bi,j ∀j ̸= i and Qi,i = ai. We use the formulation of Eq. (2.5) in

this thesis because it explicitly separates the linear and quadratic terms, which is

convenient for our discussion.

2.2 Gate model quantum computing

Just as there are different mathematical models of classical computation, such as

the Turing machine [36] and the circuit model [37], there are also different models

of quantum computation. The most common model for quantum computing is the

gate model, which is also known as the quantum circuit model [38; 39; 40]. In the

gate model, a computation involves the initialisation of qubits to a predetermined

state, the operation of quantum gates that represent unitary transformations, and

the measurement of qubit states. This model has a strong analogy to the cir-

cuit model of classical computing and is universal for quantum computing [40].

The gate model uses discrete variable encodings and processes data in discrete

steps, making it a form of digital quantum computing. Another example of digital

quantum computation is measurement-based quantum computing [41; 42], in which

qubits are prepared in a highly entangled state and the computation progresses by

sequentially performing measurements on each qubit.

The general expression for a pure state of a single qubit is

|ψ⟩ = a0 |0⟩ + a1 |1⟩ , (2.9)

6



2.2. Gate model quantum computing

Figure 2.1: Diagram of the Bloch sphere. The pure state |ψ⟩ of a single qubit is
represented as a point on the surface of a unit sphere.

where the probability amplitudes a0, a1 ∈ C are normalised: |a0|2 + |a1|2 = 1. This

can be rewritten as

|ψ⟩ = eiγ
(

cos
(
θ

2

)
|0⟩ + eiφ sin

(
θ

2

)
|1⟩
)
, (2.10)

where γ, θ, φ ∈ R are related to a0 and a1. The factor eiγ can be ignored as it is a

global phase that does not have observable effects. Writing the state in this form

allows it to be visually represented as a point on a unit sphere, where θ is the polar

angle and φ is the azimuthal angle. This is known as the Bloch sphere, which is

shown in Fig. 2.1.

Here, we will introduce the quantum gates that are used in this thesis. The Hadam-

ard gate

H ≡ 1√
2

1 1

1 −1

 (2.11)

takes a qubit from a computational basis state to an equal superposition state. For

example, H |0⟩ = 1√
2
(|0⟩ + |1⟩). All quantum gates are unitary matrices and are

therefore invertible. The inverse of the Hadamard gate is itself: HH = 1. We

7



2.3. Adiabatic quantum computing

consider the single-qubit rotation gates

RX(θ) ≡ exp
(

−iθ
2
σx

)
=

 cos
(

θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos

(
θ
2

)
 (2.12)

and

RZ(θ) ≡ exp
(

−iθ
2
σz

)
=

e−i θ
2 0

0 ei θ
2

 , (2.13)

which correspond to rotations by an angle θ about the x-axis and z-axis of the

Bloch sphere respectively. The only two-qubit gate we consider is the rotation gate

RZZ(θ) ≡ exp
(

−iθ
2
σz ⊗ σz

)
=



e−i θ
2 0 0 0

0 ei θ
2 0 0

0 0 ei θ
2 0

0 0 0 e−i θ
2


. (2.14)

This gate introduces a phase of e−i θ
2 if the two qubits are in the states |00⟩ or

|11⟩ and a phase of ei θ
2 if they are in the states |01⟩ or |10⟩. Together, these

quantum gates form a universal set [43], which means that any unitary operation

on any number of qubits can be approximated to arbitrary precision by a circuit

composed of these gates [40].

2.3 Adiabatic quantum computing

An interesting property of qubits is that they can be rotated from one state to

another in a continuous fashion, whereas a classical bit can only be flipped between

the states 0 and 1 by discrete operations. This allows for models of quantum

computing in which qubit states evolve continuously in time, which are collectively

referred to as continuous-time quantum computing [44]. Two closely related types

of quantum computation that fit into this category are AQC [45] and QA [46; 47;

48; 49]. AQC and QA work by constructing a target Hamiltonian HT that encodes

the solution of the computational problem we wish to solve in its ground state.

The task then becomes to find the ground state of this Hamiltonian.

8



2.3. Adiabatic quantum computing

In both AQC and QA, transitions between computational basis states are in-

duced by a driver Hamiltonian HD. A common choice is the transverse-field driver

Hamiltonian

HD = −
n∑

i=1

σx
i , (2.15)

where σx
i = 1

⊗i−1
2 ⊗ σx ⊗ 1

⊗n−i
2 applies the Pauli-X operator σx to the ith qubit.

AQC and QA begin by preparing the system in the ground state of HD. For the

transverse-field driver Hamiltonian, this is the state

|ψ(t = 0)⟩ = 1√
2n

2n−1∑
j=0

|j⟩ = |+⟩⊗n , (2.16)

where |+⟩ = 1√
2
(|0⟩ + |1⟩). This initial state gives an equal probability amplitude

to all computational basis states. Alternative protocols exist that use other initial

states. For example, in reverse annealing protocols, the system is initialised to

a particular computational basis state, which may be an educated guess of the

solution to the problem [50; 51; 52; 53].

In the AQC model, the system evolves according to a time-dependent Hamiltonian

H(t) = A(t)HD +B(t)HT (2.17)

from an initial time t = 0 to a final time tf . A(t) and B(t) are control functions,

which are time-dependent real numbers satisfying A(0) ≫ B(0) at t = 0 and

A(tf ) ≪ B(tf ) at t = tf . In this thesis, we consider the case where the target

Hamiltonian HT is the Ising Hamiltonian HI , which is given in Eq. (2.4). The

total Hamiltonian is then

H(t) = A(t)HD +B(t)HI . (2.18)

A particular choice of A(t) and B(t) is called an annealing schedule. A common

choice in numerical work is the linear annealing schedule

A(t) = 1 − t

tf
, B(t) = t

tf
. (2.19)
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2.3. Adiabatic quantum computing

We note that AQC with a linear annealing schedule does not reproduce the quad-

ratic speedup of Grover’s algorithm for unstructured search but using a more care-

fully chosen schedule does [54]. AQC operates in a closed system, and the dynamics

are therefore described by the Schrödinger equation

∂

∂t
|ψ(t)⟩ = −iH(t) |ψ(t)⟩ . (2.20)

Note that in this equation and throughout this thesis, we set ℏ = 1 for convenience.

AQC relies on the adiabatic theorem, which was developed for discrete spectra

in [55], according to [56]. The theorem ensures that a system that is prepared

in the ground state of the initial Hamiltonian H(0) = HD will remain in the

ground state of the instantaneous Hamiltonian H(t) throughout the duration of

the evolution with arbitrarily high probability, provided that certain conditions

are met. This means that AQC prepares the ground state of HI with high fidelity,

thus producing the optimal solution to the problem. There are many versions of

the adiabatic theorem that each impose different conditions on the form of H(t).

A commonly used approximate version of the adiabatic theorem that applies to

Hamiltonians defined by Eq. (2.18) and Eq. (2.19) requires that the total anneal

time tf is large on the time scale set by 1
g2

min
, where gmin is the minimum spectral

gap between the ground state and the first excited state of H(t) [57]. Rigorous

versions of the theorem give different scalings of tf with gmin. A summary of

different adiabatic theorems that can be applied to AQC can be found in [56].

In Fig. 2.2, we visually depict the distinction between gate-based quantum com-

puting and AQC. In both models, the computation begins with the initialisation

of qubits to some state, such as |00 . . . 0⟩, and ends with the measurement of some

or all of the qubits. In the gate model, the time-evolution is determined by a se-

quence of unitary transformations that are performed on the qubits. In AQC, the

time-evolution is instead determined by a time-dependent Hamiltonian and obeys

the Schrödinger equation. It has been shown that any quantum circuit can be

simulated by a time-dependent Hamiltonian in physically realistic settings with at

10



2.3. Adiabatic quantum computing

Gate model Adiabatic quantum computing
Digital Continuous-time

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

∂
∂t |ψ(t)⟩ = −iH(t) |ψ(t)⟩

H(t) = A(t)HD +B(t)HT

|0⟩

|0⟩

|0⟩

|0⟩

Figure 2.2: Diagrams illustrating how a computation is performed in the gate (left)
and adiabatic (right) models of quantum computing.

most a polynomial overhead [58; 59], making AQC a universal model for quantum

computing.

While AQC is a useful model for theoretical and numerical work, its experimental

implementation is more challenging than for the gate model. This is because AQC

requires the system to remain coherent for a period of time that is long enough to

ensure adiabaticity. This is impractical on real-world devices because interactions

with the environment produce decoherence, and its effect becomes more prominent

as the anneal time is increased. In gate-based quantum computing, quantum error

correction codes can be used to correct errors introduced by unwanted interactions

with the environment as well as other types of errors [60]. If certain physical

requirements are met, quantum error correction can be used to suppress the logical

error rate to arbitrarily low levels [61; 6; 62]. See [63] for an introduction to quantum

error correction in the gate model. Quantum error correction codes for AQC have

been proposed, but they require high-order interactions that are experimentally

impractical [64].
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2.4 Quantum annealing

QA is a protocol that generalises AQC by removing the requirements of adiabaticity

and closed system dynamics1, which makes its experimental implementation more

feasible. Devices called “quantum annealers” that physically implement quantum

annealing have been created and are commercially available [13]. In the regime

where the conditions for adiabaticity are not met, the theoretical guarantees of

the adiabatic theorem no longer apply. However, other theoretical tools have been

developed for the diabatic regime. It has been shown that coherent annealing with

a schedule that monotonically increases the strength of HI relative to HD can

only decrease the expectation value of HI [65]. Hence, while a measurement of

the final state may not produce the optimal solution, it produces better solutions

than random guessing on average. In some situations, it has been found that

annealing faster can benefit performance by taking the system through a path of

diabatic transitions ending in a state that has a large overlap with the ground

state [66; 67]. Various works have explored ways in which the QA Hamiltonian can

be altered to produce an energy spectrum that allows diabatic transitions to be

used advantageously [68; 69; 70].

QA is often treated as a metaheuristic because of the fact that it does not have the

guarantee of producing the optimal solution. When the anneal time is short enough

that multiple anneals can be performed, a common strategy is to generate many

sample solutions with the quantum annealer and pick the best found solution. Note

that the energy of a solution to an Ising problem can be evaluated in quadratic

time, making it efficient to compare the quality of solutions and identify the best

one.

While the AQC model allows for different types of driver and target Hamiltonians

in Eq. (2.17), current quantum annealers are limited in the types of Hamiltonians

they can implement. The flux qubit devices manufactured by D-Wave Quantum
1Note that AQC and QA are sometimes defined differently elsewhere in the literature.
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Inc. are the most advanced quantum annealers that are currently available [71].

D-Wave quantum annealers implement an approximation of the Hamiltonian given

in Eq. (2.18) with a transverse-field driver Hamiltonian (Eq. (2.15)) and an Ising

Hamiltonian given by

HI =
n∑

i=1

hiσ
z
i +

∑
i,j∈χ

Ji,jσ
z
i σ

z
j , (2.21)

where χ is the set of qubit pairs (i, j) that are physically coupled on the quantum

processing unit (QPU) [72]. The values of the local fields hi and couplings Ji,j

can be programmed, allowing for different problems to be expressed. Since D-

Wave quantum annealers are restricted to implementing the transverse-field Ising

model Hamiltonian, in practice, they are used for specific use cases. This includes

solving combinatorial optimisation problems and performing quantum simulations

of Ising-like systems [73]. In contrast, gate-based quantum computers are suitable

for solving a larger variety of problems.

D-Wave quantum annealers and other superconducting qubit quantum devices that

currently exist do not support couplings between arbitrary qubits. For example, the

qubits in the D-Wave Advantage quantum annealers are coupled according to the

“Pegasus” topology [72]. The Pegasus topology couples each qubit to a maximum

of 15 other qubits. Often, the connectivity graph of the problem of interest (referred

to as the “logical graph”) cannot be directly mapped onto the graph representing

the connectivity of the physical qubits (referred to as the “working graph”). In

other words, the set χ may not contain the necessary pairs of qubits to allow a

particular Ising Hamiltonian to be directly encoded.

To overcome the issue of limited qubit connectivity in QA, a common approach is to

map each logical qubit to a chain of ferromagnetically coupled physical qubits such

that the chains of qubits support the necessary couplings [74; 28]. This mapping is

called a minor embedding because the graph representing the Ising Hamiltonian of

the original problem is a minor of the graph representing the physical qubits. By

picking the strength of the ferromagnetic couplings within the chains to be strong
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(a) Logical graph (b) Minor embedding

Figure 2.3: (a) Logical graph of an example Ising problem, where nodes represent
variables and edges represent couplings. (b) Minor embedding of the logical graph
in (a) onto a square lattice working graph, where nodes and edges represent physical
qubits and couplers respectively. Chains of physical qubits are labelled and coloured
the same way as the logical variable they represent. Grey nodes and edges in (b)
represent unused qubits and couplers respectively.

enough, the qubits in each chain will take the same value in the ground state. To

demonstrate this technique, we show an example of a logical graph in Fig. 2.3(a)

and a minor embedding of it onto an example working graph in Fig. 2.3(b). Note

that in this example, the physical qubits in the working graph have at most four

couplers available, whereas the variable labelled 3 in the logical problem is coupled

to five other variables. Therefore, it would not be possible to directly map the

logical graph onto the working graph in this example.

Despite being ferromagnetically coupled, the physical qubits in a chain can some-

times produce different measurement outcomes, which is called a chain break. In

these cases, a post-processing algorithm can be applied to interpret the values of

the affected logical variables. An example is to take a majority vote of the values

of the qubits in the chain [75].
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2.5. Quantum approximate optimisation algorithm

2.5 Quantum approximate optimisation algorithm

2.5.1 Standard QAOA

The QAOA is a hybrid quantum-classical optimisation algorithm based on the gate

model [76]. The quantum circuit used in the QAOA produces a very similar time

evolution as QA. In this circuit, the qubits are initially transformed from the state

|0⟩⊗n to the state

|ψ0⟩ = H⊗n |0⟩⊗n = 1√
2n

2n−1∑
j=0

|j⟩ (2.22)

by applying a Hadamard gate to every qubit. This is the same as the initial state

in QA, given in Eq. (2.16). Then, p layers of gates are applied to the qubits and the

final state is measured. In the lth layer of gates, the system evolves according to

the Ising Hamiltonian HI for a duration specified by an angle γl and then according

to a mixer Hamiltonian HM for a duration specified by an angle βl. This is done

by applying the phase separator unitary

UI(γl) = e−iγlHI (2.23)

and then the mixer unitary

UM (βl) = e−iβlHM . (2.24)

In the standard formulation of the QAOA, the mixer Hamiltonian is

HM = −
n∑

i=1

σx
i , (2.25)

which is the same as the QA driver Hamiltonian in Eq. (2.15). The unitaries UI(γl)

and UM (βl) can be constructed with quantum gates using the relations

UM (βl) =
n⊗

i=1

RX(−2βl) (2.26)

and

UI(γl) =

 n∏
i=1,j>i

RZiZj (2γlJi,j)

( n⊗
i=1

RZ(2γlhi)
)
, (2.27)
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2.5.1. Standard QAOA

where

RZiZj (θ) ≡ exp
(

−iθ
2
σz

i σ
z
j

)
(2.28)

is the rotation gate RZZ(θ) applied to qubits i and j.

After applying p layers of phase separator and mixer unitaries, the system is meas-

ured in the computational basis, returning some classical solution. The state of the

system immediately before measurement is

|γ,β⟩ = e−iβpHM e−iγpHI . . . e−iβ1HM e−iγ1HI |ψ0⟩ , (2.29)

which is parameterised by 2p angles γ and β. The probability of a solution x being

measured is |⟨x|γ,β⟩|2. To relate the QAOA circuit to QA, we can set γl = A
(

ltf

p

)
and βl = B

(
ltf

p

)
. Then, the QAOA circuit becomes a discretisation of the QA

time evolution. Hence, the adiabatic theorem implies that γ and β can be chosen

such that a measurement of |γ,β⟩ yields an optimal solution with arbitrarily high

probability, provided that p is large enough to maintain adiabaticity.

Running QAOA circuits with enough layers that the adiabatic theorem can be

applied does not typically produce desirable results on current quantum hardware.

This is because decoherence and other sources of noise become dominant processes

at the large circuit depths that are required. As a consequence, experiments on

current hardware are limited to small values of p. Since performance is highly

dependent on the choices of γ and β, these angles are typically treated as variational

parameters to be optimised classically, making the QAOA a variational quantum

algorithm [77]. In this context, the structure of the QAOA circuit described by

Eq. (2.29) is referred to as an ansatz. At each iteration of the variational algorithm,

the QAOA circuit is run many times and the average objective value ⟨f(x)⟩ of the

sampled solutions is calculated. The classical optimiser then updates the values of

γ and β and repeats the process to minimise the cost function ⟨f(x)⟩. To avoid

confusion, throughout this thesis, we refer to the function that is minimised by the

classical optimiser in the QAOA as the cost function and the function corresponding

to the original optimisation problem as the objective function f(x).
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2.5.2. Multi-angle QAOA

A performance guarantee that applies for any number of layers p is that adding an-

other layer to the QAOA circuit cannot increase the expectation value ⟨γ,β|HI |γ,β⟩

if γ and β have optimal values [76]. This is because the unitary transformation of

a QAOA circuit with p + 1 layers can be made to match that of a circuit with p

layers by setting all of the angles in the extra layer to zero and copying all other

angles. While this suggests that a good method for improving the performance of

the algorithm is to increase the number of layers, experiments on noisy quantum

hardware show a drop in performance beyond a certain number of layers due to

the effects of noise becoming more prominent as more layers are added [78]. Even

in the ideal case where there is no noise, adding more layers can make it harder

for a classical optimiser to find the optimal values of the circuit parameters within

a limited number of circuit evaluations, which can make performance at higher

values of p worse in practice.

A major challenge for the practicality of variational quantum algorithms is the

barren plateau phenomenon, where the gradients in the cost landscape vanish ex-

ponentially with the problem size [79; 80]. In the presence of a barren plateau,

an exponentially large number of measurements of the quantum circuit would be

required to identify a direction in the parameter space that minimises the cost

function. Barren plateaus have been observed for the QAOA applied to certain

problems [81; 82].

2.5.2 Multi-angle QAOA

After the introduction of the QAOA, a large number of variants have been pro-

posed to improve the original algorithm. These are reviewed in [83]. Some QAOA

variants change the structure of the algorithm’s ansatz. An example of this is the

multi-angle quantum approximate optimisation algorithm (MA-QAOA), which was

briefly introduced in [84] and was further investigated and given its name in [85].

This variant of the QAOA changes the ansatz by assigning a different variational

parameter, or angle, to each rotation gate in the phase separator and mixer unit-
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2.5.2. Multi-angle QAOA

aries. As far as we are aware, all prior works on the MA-QAOA have been based

on the MaxCut and Weighted MaxCut problems, which can be formulated as Ising

Hamiltonians with only quadratic terms. For these problems, the phase separator

unitary only needs to implement couplings, not local fields. However, since we are

interested in Ising Hamiltonians that contain both quadratic and linear terms, we

provide a more general definition of the MA-QAOA ansatz that also allows for local

fields in the phase separator unitary.

The MA-QAOA ansatz can be defined by replacing the phase separator unitary in

Eq. (2.23) with

UI(γl) =
∏

i,j,Ji,j ̸=0

e−iγl,i,jJi,jσz
i σz

j
∏

i,hi ̸=0

e−iγl,i,ihiσ
z
i (2.30)

and replacing the mixer unitary in Eq. (2.24) with

UM (βl) =
n∏

i=1

eiβl,iσ
x
i . (2.31)

With this ansatz, γ = (γ1, . . . ,γp) contains a variational parameter for each

nonzero coupling and each nonzero local field per layer, and β = (β1, . . . ,βp) con-

tains a variational parameter for each qubit per layer. Hence, for an Ising Hamilto-

nian where every possible coupling and local field is nonzero, the total number of

parameters is pn(n+3)
2 , compared to 2p parameters in the standard QAOA ansatz.

The motivation behind the MA-QAOA is to improve the performance of the al-

gorithm at a constant circuit depth by increasing the number of variational para-

meters. This is particularly useful for experiments on near-term devices, where

good performance can only be attained at low circuit depths due to the presence

of noise in the devices and the inability to circumvent this with quantum error

correction. Indeed, numerical and experimental studies have demonstrated im-

proved performance of the MA-QAOA compared to the QAOA at constant circuit

depths when solving weighted and unweighted MaxCut problem instances [86; 87].

Although introducing more variational parameters gives the classical optimiser a

more fine-grained ability to control the cost function, it can also make the classical
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optimisation task more challenging [85]. In fact, the MA-QAOA has been found

to be extremely prone to the barren plateaus phenomenon, even when the ansatz

has a single layer [88]. For problem graphs that have symmetries, some of the

parameters in the MA-QAOA can be removed without significantly affecting per-

formance, indicating that there can sometimes be undesirable redundancy in the

parameters [89].

2.6 Simulated annealing

QA is often viewed as a quantum analogue of SA, which is a classical stochastic

algorithm for combinatorial optimisation [90]. SA is based on the physical process

of annealing in metallurgy, where a metal is quickly heated to a high temperature

and then slowly cooled to a new state that has fewer defects than the initial state

and therefore has a lower energy. Following this analogy, the objective function of

the optimisation problem is often referred to as the energy E(x) instead of f(x),

and the aim is to minimise E(x).

The SA algorithm starts in some arbitrary initial classical state x. Similarly to QA,

transitions between different classical states are induced with a strength that is

swept from an initially large value down towards zero. SA differs to QA in that the

transitions are induced by thermal fluctuations rather than quantum fluctuations.

Specifically, each iteration of the algorithm considers a transition from the current

state xcurrent to a random neighbouring state xnew. If, for example, the neighbour-

ing states are those with Hamming distance one, xnew can be selected by flipping

a random bit in xcurrent. The probability of performing the transition is given by

the acceptance probability Paccept(Ecurrent, Enew, T ), where Ecurrent = E(xcurrent),

Enew = E(xnew), and T is a parameter called the temperature. Transitions to

states with lower (higher) energies are said to be downhill (uphill).

The temperature parameter controls the probability of accepting uphill transitions.

For T > 0 and Enew > Ecurrent, we must have some nonzero acceptance probability
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Paccept > 0 to allow the algorithm to escape local minima by exploring higher-

energy states. As T tends to zero, Paccept should tend to zero if Enew > Ecurrent,

and Paccept should tend to some positive value otherwise. This makes it less likely

to accept uphill transitions as the temperature drops. A common choice of Paccept

is

Paccept (Ecurrent, Enew, T ) = min
{
1, e−

Enew−Ecurrent
T

}
, (2.32)

where min selects the element with the minimum value. This choice satisfies the

requirements above and has two additional properties of interest. One of these is

that Paccept = 1 when Enew ≤ Ecurrent. That is, downhill transitions are always

accepted. The other property is that uphill transitions are less likely to be accepted

when Enew − Ecurrent is increased. These two properties are not essential for the

algorithm to work, but are common in implementations of SA.

At each iteration of the SA algorithm, the temperature parameter T is updated

according to an annealing schedule. The schedule is chosen such that T starts at

some large value in the first iteration and decreases until reaching T = 0 by the

final iteration. Therefore, the algorithm becomes increasingly more selective in

accepting uphill transitions, and the extent of the search becomes more localised.

When T = 0, SA reduces to a local search algorithm and only performs downhill

transitions [91]. It has been proven that the final state converges to the globally

optimal state as the total duration of the annealing schedule is increased [92].

However, the time required to guarantee a large probability of reaching the optimal

state is usually longer than the time required to perform an exhaustive search of all

states [93]. In practice, SA typically finds optimal or low-energy states in shorter

timescales, where there is no theoretical guarantee of convergence to the optimal

state. Thus, SA is usually used as a heuristic algorithm that samples good but not

necessarily optimal solutions, much like QA.
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2.7 Promotion cannibalisation problems

The optimisation problems considered in this thesis are simplified forms of a cus-

tomer data science problem faced by retailers when planning to promote products

with temporary price reductions. The goal of a product promotion is to generate

additional revenue from sales of the product; however, it can also have the undesired

effect of reducing revenue for other similar products. For example, a promotion

of one brand of toothpaste may generate new sales for that brand at the partial

expense of other brands’ sales. This phenomenon is called cannibalisation [94; 95],

and we will refer to cannibalisation arising from product promotions as promotion

cannibalisation. When two similar products are promoted concurrently, the over-

all bilateral cannibalisation can result in minimal new sales and possibly even a

net reduction in revenue. Therefore, one goal of promotion planning for retailers

is to minimise the total revenue loss due to cannibalisation between concurrent

promotions.

One way to model promotion cannibalisation is to consider the average amount of

cannibalisation between pairs of products that are promoted at the same time and

express this as a matrix C. In this model, the matrix element Ci,j represents the

average loss of revenue from sales of a promoted product i due to a simultaneous

promotion of product j. The phenomenon of promotion cannibalisation occurs pre-

dominantly between substitutable products [D. C. Hoyle and R. Williams, personal

communication, 14 April 2025], which are products that consumers usually use for

the same purpose. Hence, the amount of promotion cannibalisation between two

products is typically nonnegative and is usually zero if the products are in different

categories. Based on this, we make the assumption that C is nonnegative, that is,

Ci,j ≥ 0 ∀i, j. This assumption is applied throughout this thesis.

One of the example problems that we consider is to find a promotion plan for

one fiscal year that minimises the total amount of cannibalisation between pairs

of products that are promoted in the same fiscal quarter. The promotion plan,
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which selects the products that are promoted in each quarter, must satisfy various

constraints that are imposed by the retailer. In this example, we consider three

sets of constraints:

C1. Each quarter must have A products promoted.

C2. Each product must be promoted between Bmin and Bmax times by the end

of the year.

C3. The same product cannot be promoted in two consecutive quarters.

In practice, there may be a larger number of constraints that a retailer would want

to implement. We refer to this example problem as the four-quarter promotion

cannibalisation problem (4Q-PCP).

Optimisation problems are typically mathematically formulated as an objective

function followed by a set of constraints. The task is to find a solution that minim-

ises the objective function while satisfying the constraints. Common examples are

linear programming, where the objective function and constraints are linear in the

variables, and quadratic programming, where the objective function is quadratic

and the constraints are linear [96; 97]. The 4Q-PCP can be expressed as the binary

quadratic programming problem

find : arg min
x

f(x) =
4∑

q=1

np∑
i=1

np∑
j=1

λqCi,jxi,qxj,q (2.33)

subject to :
np∑
i=1

xi,q = A ∀q, (2.34)

Bmin ≤
4∑

q=1

xi,q ≤ Bmax ∀i, (2.35)

xi,q + xi,q+1 ≤ 1 ∀q ≤ 3 ∀i. (2.36)

Here, a solution x specifies a promotion plan, where xi,q = 1 (= 0) if product i is

(not) promoted during fiscal quarter q. There are n = 4np variables, where np ∈ Z

is the total number of products. The seasonal scale factor λq ∈ R quantifies the
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expected volume of total sales in a particular quarter. This problem has 4np + 4

constraints to satisfy in total. Eqs. (2.34), (2.35), and (2.36) represent the sets of

constraints C1, C2, and C3 respectively. By comparing Eq. (2.33) with Eq. (2.5), we

note that the quadratic coefficients in the objective function are equal to λq(Ci,j +

Cj,i). Hence, while C is often asymmetric, there is no loss of generality if we assume

it to be symmetric.

Another example problem we consider is the two-quarter promotion cannibalisation

problem (2Q-PCP), which is concerned with finding the optimal promotion plan

for two consecutive quarters. This problem can be expressed as

find : arg min
x

f(x) =
2∑

q=1

np∑
i=1

np∑
j=1

λqCi,jxi,qxj,q, (2.37)

subject to :
np∑
i=1

xi,q = A ∀q (2.38)

xi,1 + xi,2 ≤ 1 ∀i. (2.39)

Here, we do not have the constraints C2 as, apart from the trivial cases where

all or no products are promoted, they are effectively already implemented by the

constraints C3 when the problem has two quarters. There are n = 2np variables

and np + 2 constraints in this version of the problem.

Finally, the simplest formulation of the problem that we consider is the single-

quarter promotion cannibalisation problem (1Q-PCP). In this problem, we only

consider a single fiscal quarter, and there is a single constraint of the type C1

on the desired number of promotions. The corresponding quadratic programming

problem is

find : arg min
x

f(x) =
np∑
i=1

np∑
j=1

Ci,jxixj (2.40)

subject to :
np∑
i=1

xi = A. (2.41)

There are n = np variables in this formulation.

The objective functions of these problems are in QUBO form and can be converted

to Ising form using Eq. (2.6) and Eq. (2.7). Taking the 1Q-PCP as an example, a
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C matrix with a single pair of nonzero elements C1,2 = C2,1 = 1 substituted into

Eq. (2.40) would produce a QUBO objective function containing a single quadratic

term with coefficient b1,2 = C1,2 +C2,1 = 2. Hence, the objective function would be

f(x) = 2x1x2. In Ising form, this would correspond to J1,2 = 1
2 and h1 = h2 = −1

2 ,

which gives the Hamiltonian HI = −1
2σ

z
1 − 1

2σ
z
2 + 1

2σ
z
1σ

z
2 .

2.8 Quadratic penalty method

As discussed earlier, quantum optimisation algorithms are particularly suitable for

solving QUBO problems. The objective functions of the promotion cannibalisation

problems we have described are already in QUBO form. However, this leaves out

the problems’ constraints, which are not considered in QUBO. Therefore, some

technique must be used to ensure that the quantum algorithm provides solutions

that satisfy the constraints.

The promotion cannibalisation problems that we have defined feature two different

types of constraints. The constraints C1 are examples of linear equality constraints,

which take the general form
n∑

i=1

µixi = k, (2.42)

for some coefficients µ ∈ Rn and constraint value k ∈ R. The constraints C2

and C3 are linear inequality constraints. These take the general form

lmin ≤
n∑

i=1

νixi ≤ lmax, (2.43)

for some coefficients ν ∈ Rn and constraint values lmin, lmax ∈ R. All of the

constraints in our example problems are on the Hamming weights of the bitstrings

because the coefficients µi and νi are either one or zero. The term Hamming

weight refers to the number of bits that are equal to one. Hamming weight equality

constraints such as the constraints C1 are also referred to as k-hot constraints as

they only allow k binary variables to be equal to one.
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The standard method for encoding constraints in quantum optimisation is the

penalty method [34; 35]. In this approach, constraints are incorporated into the

objective function through the addition of penalty functions that sufficiently raise

the objective value of solutions that are infeasible (i.e. do not satisfy every con-

straint) so that the solution with the lowest objective value is feasible. This method

is also used in classical quadratic programming [96]. For the general linear equality

constraint given in Eq. (2.42), the most common penalty function used in quantum

optimisation is the quadratic penalty function

P (x) = α2

(
n∑

i=1

µixi − k

)2

, (2.44)

where α2 ∈ R is the quadratic penalty strength. By squaring the brackets, we

ensure that P (x) contributes some positive value when the constraint is not sat-

isfied. Therefore, as long as α2 is chosen to be large enough, adding P (x) to the

objective function implements the constraint. Aside from the ability to rescale the

function by changing the penalty strength parameter α2, this penalty function has

two desirable properties that are satisfied for all α2 > 0:

P1. P (x) = 0 if x is feasible.

P2. P (x) > 0 if x is infeasible.

The quadratic penalty method has some drawbacks that can severely inhibit the

performance of a quantum optimiser. After expanding out the brackets in Eq. (2.44)

for a quadratic penalty, we find quadratic terms with nonzero coefficients for all

pairs of variables involved with the constraint. Therefore, encoding this as a

Hamiltonian on a quantum computer requires all-to-all couplings between the as-

sociated qubits. Most quantum devices that are currently available to use do not

support all-to-all couplings between the physical qubits, meaning that many Ising

Hamiltonians of interest cannot be directly mapped to the hardware.

Various methods have been developed to resolve the issue of not being able to

directly map an Ising Hamiltonian to the physical qubits. In the gate-based setting
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of the QAOA, the quantum states of qubits can be swapped with a quantum gate

called the SWAP gate. This allows for any two logical qubit states to be routed

through the physical qubits so that they can be coupled [98; 99; 100]. The downside

of the SWAP network scheme is that it increases the circuit depth. Previous work

has produced optimised SWAP networks for the QAOA, taking into account the

physical capabilities and limitations of current QPUs [99; 101]. In QA, SWAP

gates are not available, so minor embedding is used instead. See Sec. 2.4 for a

description of minor embedding. Typically, O(n2) physical qubits are required to

minor embed a graph onto the hardware graph of a D-Wave annealer [28].

In addition to requiring all-to-all couplings between the relevant qubits, another

drawback of the quadratic penalty method is that it will typically reduce the ef-

fective dynamic range of qubit interactions. The quadratic penalty for the con-

straints C1 can be written as

P (x) = α2

( np∑
i=1

xi,q −A

)2

. (2.45)

for a given quarter q. Expanding out the brackets gives

P (x) = α2

 np∑
i=1

(1 − 2A)xi +
np−1∑
i=1

np∑
j=i+1

2xixj +A2

 . (2.46)

After mapping this to an Ising Hamiltonion with xi 7→ (1 − σz
i )/2, we get

P = α2

np−1∑
i=1

np∑
j=i+1

σz
i σ

z
j

2
+

np∑
i=1

(
np

2
−A

)
σz

i + np(np + 1)
4

− npA+A2

 . (2.47)

Now, the couplings and local fields that are contributed to HI can be read off as

Ji,j = α2/2 and hi = α2(np/2 − A). As one might expect, the magnitudes of J

and h increase with the magnitude of α2. Additionally, the magnitude of h is

proportional to the absolute difference |np/2 − A|. In other words, the quadratic

penalty introduces strong local fields if the desired constraint value (number of

promotions A) is far from half of the number of variables in the constraint (number

of products np).

In QA, there are physical limitations on the range of values in J and h that can be

implemented. Because of this, the device implements a normalised Ising Hamilto-
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nian

H̃I = 1

N
HI , (2.48)

where N is a normalisation factor that is usually chosen to be the minimum value

that satisfies all physical constraints on J and h. A penalty that introduces coup-

lings and local fields with large magnitudes is therefore undesirable, as it will often

result in a larger normalisation factor N , reducing the effective dynamic range of

the qubit interactions representing the unconstrained part of the problem.

Large couplings and local fields associated with a penalty function can also be

detrimental in the QAOA, even though there is no direct physical limitation on

size of the rotation angles that can be implemented in the unitary e−iγkHI . The

reasoning is that large interactions would risk rotating the phases by angles greater

than 2π, which are effectively the same as rotations by less than 2π. Hence, despite

it being possible to rotate phases by arbitrarily large angles, there is a limit beyond

which no benefit is gained from attempting larger angles. This sets limits on the

range of values of γl that are useful to consider, which is similar to the effect of

having a physical dynamic range.

To encode inequality constraints with quadratic penalties, slack variables are gener-

ally required. Slack variables are auxiliary variables that are used to turn a penalty

function for an equality constraint into a penalty function for an inequality con-

straint. They do not represent variables in the original problem. In the 4Q-PCP,

4⌈log2(∆ + 1)⌉ binary encoded slack variables s ∈ {0, 1}4⌈log2(∆+1)⌉ are required

to encode the four constraints C2, where ∆ = Bmax − Bmin is the range of the

constraints. For cases where ∆ + 1 is a power of two, the penalty function takes

the form

P (x, s) = α2

 np∑
i=1

xi,q +
log2(∆+1)∑

j=1

2j−1sj,q −Bmax

2

. (2.49)

The term
∑log2(∆+1)

j=1 2j−1sj,q gives the problem variables xi,q some “slack” by allow-

ing the terms inside the brackets to sum to zero for any range of values of
∑np

i=1 xi,q

that satisfies the inequality constraint. For the constraints C3, slack variables are
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not needed as there are only two variables involved in each constraint. Quadratic

penalties of the form

P (x) = α2xi,qxi,q+1 (2.50)

can be used to encode these constraints.

2.9 Alternative methods for encoding constraints in

quantum optimisation

Various other approaches to encoding constraints in quantum optimisation al-

gorithms have been proposed. These alternative methods intend to avoid some

or all of the drawbacks of the quadratic penalty method and therefore produce

better performance. In Chapter 3, we introduce an alternative penalty method

involving only linear Ising terms. In this section, we provide a summary of some

alternative methods for encoding constraints that are not considered in the rest of

this thesis.

In QA, one approach is to engineer a constraint-preserving driver Hamiltonian HD

that drives transitions between feasible states, but never from a feasible state to an

infeasible state [102; 103]. The constraint-preserving driver Hamiltonian should be

designed so that its ground state in the feasible subspace is a superposition of all

feasible states. Then, after initialising the system to this superposition state, QA

can be performed without ever leaving the feasible subspace. This method does not

require the addition of penalty functions or any other terms to HI , thereby avoiding

all of the difficulties of the penalty method. Furthermore, it offers a natural way of

restricting the search space to the feasible region, which, depending on the problem,

can significantly reduce the number of states that are considered.

Although this approach is theoretically appealing, it is difficult to physically real-

ise constraint-preserving driver Hamiltonians in QA. This is because they require

multi-body interaction terms, which are more challenging to experimentally im-
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plement than the bit flip terms σx
i in the standard driver Hamiltonian given in

Eq. (2.15). It has been suggested that a more experimentally feasible route towards

implementing this approach may be to combine it with a parity-based encoding

scheme that requires hardware that supports 3- and 4-body interactions [104; 105].

For some constraints, mathematically formulating a suitable constraint-preserving

driver Hamiltonian is a challenging task in itself. Another challenge is that in

an open system, errors can occur, and there is no longer a guarantee that the

system will remain in the feasible subspace [106]. So far, there has been no ex-

perimental demonstration of constraint implementation with a suitably engineered

driver Hamiltonian on a quantum annealing device.

Building on the idea of encoding constraints in the driver Hamiltonian, Hadfield et

al. proposed a generalization of the QAOA called the quantum alternating oper-

ator ansatz, which can be used to similarly restrict the search space to the feasible

region [107]. In this extension of the QAOA, the phase separator and mixer unit-

aries do not necessarily need to correspond to time evolution under a fixed local

Hamiltonian. They are therefore written as UI(γl) and UM (βl) instead of e−iγlHI

and e−iβlHM . This generalisation allows for more efficient implementations of mix-

ers that preserve constraints. Numerical results show that using the XY-model

ring or clique mixers to implement k-hot constraints outperforms the quadratic

penalty method [108; 109]. These mixers can currently be implemented on gate

model quantum computers, but they come at the cost of a larger circuit depth

than the standard QAOA. An advantage of the gate model setting is that error

correction can be used to prevent the system from leaving the feasible subspace

due to noise [106].

Another approach to encoding constraints in QA uses sets of Ising terms called

“gadgets” that are designed to interface with each other and have ground states

that satisfy certain properties [110; 111; 112]. Some of the qubits in the gadgets rep-

resent variables in the original optimisation problem, while other qubits represent

ancillary variables that are used to implement the desired properties. The gadgets
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are combined to form a larger Ising problem that encodes the original optimisation

problem, and the properties of each gadget ensure that the constraints are satisfied

in the ground state. Previous work on this approach has been specifically tailored

to the Chimera graph, which is the hardware graph of old generations of D-Wave

devices. By tailoring the design of the gadgets to the hardware, it is possible to

avoid the need for minor embedding. The use of ancillary qubits means that there

are still more physical qubits required than variables in the original problem, just

like with minor embedding. For certain problems, the gadget-based approach can

be more efficient in terms of the number of physical qubits and dynamic range

requirements when compared to the quadratic penalty method with minor embed-

ding. To apply this approach to different hardware topologies or different types of

constraints, new gadget designs are needed.

For inequality constraints, there are various methods that make more efficient use

of resources than the standard method of using quadratic penalties with slack

variables, which is used in Eq. (2.49). One alternative method, referred to as un-

balanced penalisation [113], uses an expansion of a decaying exponential as the

penalty. This is a heuristic method in the sense that it does not always satisfy

property P1 of a penalty function. The benefit is that it avoids the use of slack

variables, which reduces the total number of variables required to encode the prob-

lem compared to approaches using slack variables.

Another way to encode inequality constraints is the iterative quadratic polynomial

method [114]. In this approach, a linear system of equations is formulated and

classically solved in order to determine whether a penalty function with no slack

variables can encode the desired constraint. If such a penalty function is found,

it can be used. If it is not found, a new linear system is solved to determine

whether a penalty function with a single slack variable exists for the constraint.

Slack variables are repeatedly added until a suitable penalty function is found by

solving the linear system. This process can find penalty functions using fewer

slack variables than the standard approach with a quadratic penalty. When there
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are multiple constraints defined over shared variables, the master-satellite method

can be used to complement this approach [114]. This reformulates some of the

linear systems to take advantage of the fact that infeasible states that are already

penalised by one penalty function do not need to be penalised again by other

penalty functions. This relaxation in the requirements of the linear systems can

produce penalty functions with even fewer slack variables.

Some methods implement constraints without encoding them in a Hamiltonian or

a set of quantum gates. An approach that can be used in gate-based settings is to

make use of quantum Zeno dynamics to restrict the evolution of the system to the

feasible subspace through repeated projective measurements [115]. This method

extends the circuit depth and uses auxiliary qubits. It likely requires quantum

error correction to be effective. Another approach is to enforce constraints in

the classical component of an iterative quantum algorithm such as the recursive

QAOA [116]. In these algorithms, variables are iteratively fixed to reduce the size

of the problem. The rules for fixing variables can be constructed in a way that

satisfies the constraints.

2.10 Performance metrics

We use various metrics to measure the performance of algorithms, which we define

here. For a quantum algorithm that produces the state |ψ⟩ before measurement,

we define the success probability

PS =
∑

x∗∈X∗
|⟨x∗|ψ⟩|2 , (2.51)

which indicates the probability of measuring an optimal solution. X∗ denotes the

set of optimal solutions. We similarly define the feasible probability

PF =
∑
x̃∈X̃

|⟨x̃|ψ⟩|2 , (2.52)

which is the probability of measuring a solution from the set X̃ of solutions that

satisfy all of the problem’s constraints. While PS and PF can be calculated in sim-
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ulations, these quantities can only be approximated when sampling an algorithm a

finite number of times. For experimental runs of quantum and classical algorithms,

we refer to the fraction of sampled solutions that are optimal as S and the fraction

of samples that are feasible as F .

A useful metric to assess the quality of a particular solution x is the approximation

ratio

R = 1 − f(x) − fmin
fmax − fmin

, (2.53)

where fmin and fmax are the minimum and maximum objective values of the con-

strained optimisation problem respectively. When x is feasible, i.e. satisfies all

constraints in the problem, R ranges from 0 in the worst case (f(x) = fmax) to 1

for optimal solutions (f(x) = fmin). We refer to the numerator of the fraction in

Eq. (2.53) as the residual energy Eres:

Eres = f(x) − fmin. (2.54)

2.11 Numerical and experimental methods

This work made extensive use of the Python programming language [117]. We

used the Python libraries NumPy [118] and SciPy [119] for computationally

intensive calculations and Matplotlib [120] to produce plots. All linear fits were

obtained using the implementation of the weighted least-squares method in

scipy.optimize.curve_fit. PyQUBO [121] was used for formulating QUBO

and Ising problem instances.

Gurobi Optimizer [122] was accessed through the GurobiPy Python interface and

used to find optimal solutions of problem instances as well as their minimum and

maximum objective values. We note that Gurobi operates at an adjustable nu-

merical precision, which can lead to minor differences in results depending on the

software version and solver parameters that are used. Throughout this thesis, we
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used Gurobi version 10.0.2 with a single thread and the default values of all other

solver parameters.

The C matrices used in our numerical analysis of the 1Q-PCP and the 2Q-PCP

in Chapters 3, 4, and 6 were generated by selecting symmetric off-diagonal matrix

elements Ci,j = Cj,i uniformly at random from the interval [0.1, 1.0). We set all

main diagonal matrix elements Ci,i to 0. According to this method, we generated

10,000 C matrices corresponding to different problem instances for each number

of products between 6 and 18. Each instance was assigned a unique ID, which we

sometimes use to refer to individual instances. Each ID is specified by the number

of products in the instance, followed by an underscore, followed by a zero-based

index number. For example, the ID 9_12 refers to the thirteenth instance with

nine products. We have used the same C matrices for the analysis of the 1Q-PCP

and the 2Q-PCP.

The C matrices used in the experimental tests on the D-Wave annealer in Chapter 5

were generated in a similar way by randomly selecting symmetric off-diagonal

from the interval [0.1, 1.0) and setting the main diagonal elements to zero. These

matrices were also made sparse by setting some of the off-diagonal elements equal

to zero. To do this, we chose a minimum number of nonzero elements per product,

and matrix elements Ci,j were randomly selected and set to zero if both products i

and j had more than the minimum number of nonzero elements. This was repeated

until every matrix element had been considered. In the context of C matrices, we

use the term “connectivity” to refer to the number of nonzero cannibalisation in-

teractions a particular product has with other products. For the D-Wave runs on

the 1Q-PCP, we generated 10,000 C matrices with 100 products and the minimum

connectivity for each product set to 3. Since some products end up with more than

the minimum number of nonzero elements, the average connectivity is ≈ 3.4 for

these instances. We generated another 10,000 C matrices for the D-Wave runs on

the 4Q-PCP with 10 products. For these matrices, the minimum connectivity was

set to 5 and the average connectivity is 5.1.
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The majority of the simulations and intensive computations used for this thesis

were performed on the Hamilton high performance computing cluster at Durham

University. The SciPy function expm_multiply was used to simulate QA by

discretising the time evolution in the manner that is described in [65]. For sim-

ulations of the QAOA, the qasm_simulator backend in the Qiskit SDK [123]

was used to simulate quantum circuits without noise. We used Qiskit version

0.25.2. The implementation of the QAOA in Chapter 4 differs to the implementa-

tion of the QAOA and its variants in Chapter 6. For the simulations in Chapter 4,

the constrained optimization by linear approximation (COBYLA) method [124]

provided in scipy.optimize.minimize was used as the classical optimiser for the

QAOA, whereas the simultaneous perturbation stochastic approximation (SPSA)

method [125] provided in qiskit.algorithms.optimizers.SPSA was used for the

simulations in Chapter 6. Further details of the two different implementations of

the QAOA are specified in Sec. 4.6 and Sec. 6.4.

The QA experiments in Chapter 5 were conducted on the Advantage_system6.3

QPU [72], which is a D-Wave Advantage quantum annealer. The D-Wave Ocean

SDK [126] was used to interface with the annealer. In each run, 1,000 solutions

were sampled by the annealer. We used the find_embedding function in Ocean to

calculate minor embeddings before problems were submitted to the annealer. The

find_embedding function takes a seed parameter as input, which determines the

resulting embedding. We set this parameter to a unique value for each problem

instance for all experiments other than those for the 1Q-PCP using the quadratic

penalty method, where the first 100 instances’ minor embeddings were reused for

the rest of the problem instances to save computation time. Chain strengths were

calculated using the uniform_torque_compensation function in D-Wave Ocean

with a prefactor of 1.414, which is the default behaviour in Ocean. Chain breaks

were resolved by a majority vote strategy [75], which is the default behaviour in

Ocean.

For QA experiments on the 1Q-PCP using the quadratic penalty method,
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where the objective function is fully connected, we considered using the

find_clique_embedding function instead of find_embedding. However, we

found that although this heuristic provided more efficient minor embeddings, using

find_embedding resulted in better performance of the annealer on average. We

explain why we believe this happens in Sec. 5.2.2.

In Chapter 5, simulated annealing runs were performed using the sampler

SimulatedAnnealingSampler, which is provided in Ocean. The solver was set to

sample 1,000 solutions with a seed of 0. All other solver parameters were set to

their default values.
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Chapter 3

Encoding constraints with linear

Ising penalties

The majority of the results in this chapter have been published in [1] and some of

the results have been published in [2].

3.1 Introduction

In QA and the QAOA, the standard approach to encoding constraints is the quad-

ratic penalty method [34; 35]. Quadratic penalty functions can make the interac-

tion graph of the Ising Hamiltonian much more dense and introduce large energy

scales to its energy landscape. This can negatively impact the performance of a

quantum optimiser, especially on near-term devices that have many physical lim-

itations [127]. Overcoming these physical limitations requires new strategies that

address issues that are not typically a concern in classical optimisation. A par-

ticularly important issue to overcome in QA is that problems often need to be

mapped to quasi-planar hardware graphs using strategies such as minor embed-

ding [74] or parity encoding [104; 128], which introduce large overheads. Some

progress has been made with new encoding strategies, such as the domain-wall

encoding [129; 130; 131], which can reduce connectivity when used for one-hot en-

codings. Other efficiency improvements have been made with the development of
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new methods for encoding constraints, such as those mentioned in Sec. 2.9.

In this chapter, we consider the use of a penalty method that involves only linear

Ising terms and study how it can be used to encode linear equality Hamming weight

constraints of the form given in Eq. (2.34). Our work is based on the promotion

cannibalisation problems introduced in Sec. 2.7, but it generalises to many other

problems. Previous works have suggested this penalty method in various different

contexts [24; 132; 133]. Unlike the quadratic penalty method, the linear Ising pen-

alty method does not change the Ising Hamiltonian’s connectivity. Furthermore,

the energy scales introduced by the linear method are often smaller than those in-

troduced by the quadratic method. Because of these reductions in resource costs,

theoretical arguments can be made for a better performance of quantum optimisa-

tion with the linear method than with the quadratic method. However, while the

quadratic penalty method can always exactly implement a given constraint, there

is no such guarantee for the linear Ising penalty method. Thus, the linear Ising

penalty method is more applicable to certain problem types than others. We find

that the customer data science problems that we consider are well suited for the

linear method.

3.2 Linear Ising penalty method

In classical computing, penalty functions that are linear in x are sometimes used [134].

To satisfy property P2, non-Ising operations, i.e. mathematical operations that do

not appear in Eq. (2.4), are required. For example, the linear equality constraint

given in Eq. (2.42) can be implemented with the linear penalty α1 |
∑n

i=1 µixi − k|,

which makes use of the non-Ising operator | · |. Computing using non-Ising opera-

tions in quantum optimisation introduces the challenge of encoding the operation

as a circuit or Hamiltonian. de la Grand’rive and Hullo [135] showed that the

QAOA can be extended to implement non-Ising linear penalties for inequality con-

straints by computing max(·), which is another non-Ising operation. However,
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their approach comes at the cost of requiring ancillary qubits and a more complex

circuit.

We consider the use of linear Ising penalty functions, which are linear penalty

functions that do not contain non-Ising operations. Such a penalty function would

not contribute any couplings and may require weaker local fields than the quadratic

penalty method. This is particularly desirable in quantum optimisation as it avoids

increasing the number of couplings in the objective function and can be more

efficient with the hardware’s dynamic range [132; 136], which are the two main

drawbacks of the quadratic penalty method. By not using any non-Ising operations,

we ensure that the penalty function can be implemented on quantum hardware

without requiring an encoding that introduces new couplings and ancillary qubits.

However, the removal of non-Ising operations requires giving up on property P2 of a

conventional penalty function, which means this penalty method does not produce

the desired ground state in HI in all cases. In other words, this penalty method

is generally inexact in the sense that for some problems, there is no value of the

penalty strength that ensures that the penalised objective function has a feasible

optimal solution. We argue that despite this, it is worth pursuing this penalty

method for problems that it is well-suited to as it allows problems to be encoded

on current quantum hardware with a smaller physical overhead than other methods.

This type of linear penalty method has been previously suggested for QA in the

contexts of portfolio optimisation [24] and quantum machine learning [133], but

neither of these two studies analysed this approach beyond making the observation

that it can be used to encode the problems considered.

In [132], Ohzeki developed a method for implementing constraints with linear terms

in quantum optimisation by taking the partition function of a QUBO objective

function and applying a Hubbard-Stratonovich transformation [137; 138]. Although

the mathematical motivation in Ohzeki’s work is different to what we present here,

the resulting algorithm is effectively the same as applying linear Ising penalties.

Later works have applied the method introduced by Ohzeki to other problems,
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including problems with inequality constraints [139; 136; 140]. Much of our work

builds on Ohzeki’s work and subsequent studies using Ohzeki’s method. It has

been observed that the method described by Ohzeki does not have the theoretical

guarantee of being able to exactly implement all hard constraints [139]. We quantify

the prevalence of problem instances that cannot be exactly constrained with this

method in Chapters 4 and 5 and identify a problem structure that reduces the

likelihood of this occurring in Sec. 3.3. In Chapter 4, we analyse the performance

of the linear Ising penalty method in closed systems and study how the dynamics are

influenced by the choice of penalty strength parameters, which has not been done

in previous work as far as we are aware. When sampled solutions are infeasible,

a post-processing step has been proposed that produces feasible solutions from

infeasible solutions using the fewest number of bit flips possible [139]. In Sec. 3.5,

we propose a different strategy of selectively switching some linear Ising penalties

to quadratic penalties until feasible solutions are sampled.

For the general linear equality constraint given in Eq. (2.42), the corresponding

linear Ising penalty is

P (x) = α1

(
n∑

i=1

µixi − k

)
, (3.1)

where the penalty strength α1 can be positive or negative. The equality constraints

that we consider, such as those in Eq. (2.34), are Hamming weight constraints. The

linear Ising penalty for one of the constraints in Eq. (2.34) is

P (x) = α1

( np∑
i=1

xi,q −A

)
. (3.2)

In the Ising formulation, this corresponds to local fields of −α1/2 on each variable,

up to an unimportant constant offset of α1A. In the rest of this thesis, when using

the term linear penalty, we refer to linear Ising penalties of the form in Eq. (3.2)

rather than linear penalties with non-Ising operations, which are used in classical

computing.
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3.3 Problems that are suitable for the linear Ising

penalty method

As mentioned in Sec. 3.2, some problems cannot be exactly constrained with the

linear penalty method with any value of the penalty strength. Therefore, it is

important to identify problems and problem structures for which there is a high

likelihood that a given instance is amenable to the linear penalty method. In this

section, we identify a property of the promotion cannibalisation problems we have

defined that we claim makes them able to be constrained with linear penalties more

often than for random QUBO problem instances. We further offer some guidance

as to how to identify whether the linear penalty method is suitable for a given

problem or not.

We only consider constraints on the Hamming weight of solutions, for which the

corresponding linear Ising penalty is also a function of Hamming weight. A useful

visualisation is a plot of the objective function f(x) or penalty term P (x) against

the Hamming weight w(x) of solutions x. We plot P (x) against w(x) for the

quadratic and linear penalty functions for the constraint
∑6

i=1 xi = 2 in Fig. 3.1(b)

and Fig. 3.1(e) respectively. Due to the squaring of the term in the quadratic

penalty function P (x) = α2

(∑6
i=1 xi − 2

)2
, the function is always positive when

w(x) ̸= 2, which makes it clear that this penalty function can always create a

feasible optimal solution for a large enough value of α2. However, the linear penalty

function P (x) = α1

(∑6
i=1 xi − 2

)
is a line with a gradient α1 on this plot and is

negative for all infeasible solutions with Hamming weights w(x) > 2 when α1 is

negative. It therefore has the undesired effect of lowering the objective value of

some infeasible solutions.

Since we assume that the matrix C is nonnegative, the QUBO objective function of

the 1Q-PCP only has quadratic terms with nonnegative coefficients. This produces

a structure in the problem that can be seen in Fig. 3.1(d). The lower envelope of
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Figure 3.1: Objective values f(x) of every possible solution x plotted against the
Hamming weight w(x) for (a) an example QUBO instance with both positive and
negative quadratic term coefficients and (d) an instance of the 1Q-PCP. The min-
imum value of f(x) for each Hamming weight is plotted in a darker colour and
lines connecting these points are shown to guide the eye. (b) Quadratic and (e)
linear penalty functions P (x) for the equality constraint

∑6
i=1 xi = 2 are similarly

plotted. (c) The constrained objective function after adding a quadratic penalty
to the objective function of the QUBO instance shown in (a). (f) The constrained
objective function after adding a linear penalty to the objective function of promo-
tion cannibalisation problem instance shown in (d). Figure adapted from [1].

the plot of f(x) against w(x), i.e. the minimum objective values at each Hamming

weight, increases monotonically with w(x). In other words, for every solution with

some Hamming weight w, there exists another solution with Hamming weight w−1

that has the same or lower objective value. This is true not only for this particular

instance, but for all instances of the 1Q-PCP. To prove this, assume there exists

a solution xa with objective value f(xa) and Hamming weight w, where f(xa) is

strictly less than the objective values of all solutions with Hamming weight w− 1.

We can flip one of the variables of xa from 1 to 0 and get another solution xb

with a Hamming weight w − 1. Since the 1Q-PCP QUBO objective function does

not have any terms with negative coefficients, flipping a variable from 1 to 0 can

never increase the objective value. Hence, it must be that f(xb) ≤ f(xa), which

contradicts the proposition that f(xa) is strictly less than the objective value of all

solutions with Hamming weight w−1. Therefore, solutions with a Hamming weight
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3.3. Problems that are suitable for the linear Ising penalty method

w cannot have an objective value that is strictly less than the objective value of

all solutions with Hamming weight w − 1. The same is true for the 2Q-PCP and

4Q-PCP when considering the Hamming weight of the variables for a particular

quarter while the other quarters’ variables have fixed values because the objective

functions have no cross terms between different quarters.

The monotonic relationship between the Hamming weight and the minimum ob-

jective value makes this problem particularly amenable to the linear Ising penalty

method. We plot f(x) against the Hamming weight of x for a 1Q-PCP instance

with six products in Fig. 3.1(d) and for another six-variable QUBO instance with

both positive and negative quadratic term coefficients in Fig. 3.1(a). If we want

to implement the constraint
∑6

i=1 xi = 2 for both of these problems, the penalised

objective functions must have minimum values at w(x) = 2. For the promotion

cannibalization problem, we only need to penalise the solutions with Hamming

weights less than two because of the fact that the minimum value of f(x) is mono-

tonically increasing with w(x). A linear penalty (shown in Fig. 3.1(d)) achieves

this, but it also has the undesired effect of lowering the objective value of solu-

tions with Hamming weights greater than two. However, the monotonic structure

means that these higher Hamming weight solutions have large existing objective

values, which is often enough to compensate for this. Therefore, we claim that

the linear penalty method is more likely to be able to produce the correct optimal

solution for random instances of the 1Q-PCP than for a random QUBO instance

without this structure. We find that for this instance of the promotion cannibaliz-

ation problem, the linear penalty method is successful in producing a constrained

objective function, which is shown in Fig. 3.1(f). For the other QUBO problem

instance, there does not exist any value of α1 that produces an optimal solution

with a Hamming weight of two, so the quadratic penalty method is used instead

(Figs. 3.1(a)–3.1(c)).

Indeed, the claim that the nonnegativity of the quadratic term coefficients in the

objective function makes it more amenable to the linear penalty method can be
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3.3. Problems that are suitable for the linear Ising penalty method

verified numerically. We have generated 100 QUBO instances with 20 variables

that only have quadratic terms with coefficients selected uniformly at random from

the interval [0, 1), and we have generated another set of 100 instances where the

coefficients are selected from the interval [−1, 1). We have performed a search

strategy on all these instances to find the value of α1 up to a precision of 10−5 for a

linear penalty that implements the constraint
∑

i xi = 5. For the instance set with

nonnegative quadratic term coefficients, we find that a value of α1 that implements

this constraint can be found for all 100 instances. However, for the instance set

involving both negative and positive quadratic term coefficients, the search could

only find a value of α1 that implements the constraint for 10 out of 100 instances,

up to the specified precision. We also performed this analysis on another set of

instances that have quadratic term coefficients selected randomly from the interval

[−1, 0). For this set, a value of α1 implementing the constraint could only be found

for 5 out of 100 instances. This is because nonpositive quadratic term coefficients

do not produce the monotonic structure seen in Fig. 3.1(d).

The monotonic structure in Fig. 3.1(d) does not guarantee that the linear penalty

method is successful for all instances of the 1Q-PCP. Adding a linear function

to another function can be thought of as applying a vertical shear. Therefore, a

linear penalty function can only produce the desired optimal solution for a given

objective function if the lower envelope in a plot of f(x) against w(x) can be

vertically sheared such that the minimum value is at the desired Hamming weight.

This is the case for the lower envelope in Fig. 3.1(d) because both its value and its

gradient are monotonically increasing with w(x). However, in general, the gradient

of this line is not necessarily monotonically increasing for all 1Q-PCP instances.

There exist some 1Q-PCP instances for which a given Hamming weight equality

constraint cannot be exactly implemented with linear penalties.

Looking beyond the example of the promotion cannibalisation problem, we can

identify some features that make a given problem more suitable for the linear

penalty method. One desirable feature, as we have identified above, is that the
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3.3. Problems that are suitable for the linear Ising penalty method

variables involved in the constraint do not appear in quadratic terms with negative

coefficients in the objective function. This ensures that the minimum objective

value is monotonically increasing with the Hamming weight of the variables in

the constraint, which makes it more likely that a linear penalty can implement

the constraint exactly. We note that this is based on the assumption that the

constraints are functions of Hamming weight. For constraints that are not functions

of Hamming weight, e.g. general equality constraints given by Eq. (2.42) with

coefficients µi that can take values other than 0 and 1, our reasoning would not

apply. Whether linear penalties are suitable for constraints that are not Hamming

weight constraints is a question that could be answered in future work.

Another desirable feature would be that the constraints do not need to be imple-

mented exactly. I.e. if they are soft constraints instead of hard constraints. Then,

the fact that the linear penalty cannot produce the exact constraint value would

not be important as long as a close enough constraint value can be produced. In

this case, the structure of the objective function may not matter as much. For the

same reason, the linear penalty method may be particularly useful for inequality

constraints, but we have not studied this. A drawback to using linear penalties for

inequality constraints is that without introducing quadratic terms, slack variables

cannot be used to ensure that all feasible states have the same amount of penalty.

This means that a linear penalty would change the objective value of some feasible

states with respect to the objective value of other feasible states that have different

Hamming weights, which changes the optimisation problem being solved.

Another aspect to consider is that the linear penalty method is most useful when

applied to a few constraints acting on many variables, rather than many constraints

acting on a few variables. This is because the main benefits of the linear penalty

method, which are reducing the connectivity of the logical graph and making more

efficient use of a limited dynamic range, are more prominent when applied to a

constraint involving a large number of variables. Furthermore, if there are fewer

constraints encoded with linear penalties, it is easier to tune the penalty strengths
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3.4. Constraint dependence on linear penalty strength

because there are fewer of them in total. As an example, the linear penalty method

could theoretically be applied to the constraints C1 and the constraints C2 in

the 4Q-PCP. There are four constraints C1 acting on np variables each and np

constraints C2 acting on four variables each. In a real-world scenario where np is

significantly larger than four, it makes more sense to use linear penalties for the

constraints C1 than the constraints C2 for the reasons we have just mentioned. This

is why we only consider applying the linear penalty method to the constraints C1

in this thesis. To make the most of the linear penalty method’s ability to reduce

the number of required couplings, it should be applied to constraints acting on

variables that are sparsely connected in the logical graph of the objective function.

An example problem where we do not expect the linear penalty method to always

be effective is the knapsack problem, which has a linear objective function and a

single linear inequality constraint. This constraint differs from the constraints C1

in that it is not a function of the Hamming weight and is not an equality. If a

linear penalty could implement this constraint, the penalised objective function

would be trivial to solve as it would be entirely linear. Assuming that the linear

penalty strength could be tuned in polynomial time, this would render the NP-hard

problem trivial and thus show that P = NP. This result would be unexpected, so it

is more likely that the linear penalty method is not always effective for this problem

or the penalty strength cannot always be tuned in polynomial time. We note that

typical knapsack problem instances are known to be easy [141], so it is possible

that the linear penalty method works well for some instances, and potentially most

instances, without requiring that P = NP. In fact, creating hard knapsack problem

instances is an active area of research [142].

3.4 Constraint dependence on linear penalty strength

While both the quadratic and linear penalty methods introduce a single penalty

strength parameter per constraint, the two methods exhibit different behaviours
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3.4. Constraint dependence on linear penalty strength

as their penalty strengths are changed. In this section, we study their behaviours

in the context of the 1Q-PCP, which has a single constraint (Eq. (2.41)). For the

quadratic method, if the penalty strength α2 is too small, it will not be successful

in producing a feasible ground state in HI . This is because infeasible states that

have low objective values are not given a large enough energy penalty to leave the

ground state manifold. On the other hand, if α2 is much larger than necessary, HI

will have a feasible ground state, but the performance of some quantum algorithms

in finding the ground state will be hindered. A physical reason for this is that

the energy scales associated with the penalty function increase with α2, and this

effectively reduces all other energy scales in HI after normalisation. Fig. 3.2 shows

an example of this behaviour in simulations of closed-system QA. The feasible

probability PF increases with α2 and remains elevated at large values, whereas the

success probability PS rises, peaks, and then falls. For a given problem instance,

there is an optimal value of α2 that produces the maximum success probability

Pmax
S of measuring an optimal solution. There is typically a broad range of values

of α2 that produce good performance, which can be seen in Fig. 3.2(a).

For the linear penalty method, the penalty strength α1 directly relates to the value

of the constraint that is implemented, i.e. the value of A in Eq. (2.41). As shown

in Fig. 3.3(a), decreasing α1 increases the Hamming weight w of the ground state

of HI . All instances of Ising problems that have a linear penalty of the form in

Eq. (3.2) applied exhibit this monotonic relation between α1 and w. This is because

negative local fields reduce the energy of states in proportion to their Hamming

weights. For a desired value of A, the linear penalty strength α1 should be tuned

such that w = A. For each problem instance, there will be different upper and lower

limits on the range of values of α1 that accomplish this. Sometimes, this range is

small. This can be seen in the short lengths of some of the bars in Fig. 3.3(a).

In comparison, when using the quadratic penalty method, there is only a lower

limit on α2 values that produce a feasible ground state in HI . For some problem

instances, there does not exist any value of α1 that produces the desired ground
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Figure 3.2: (a) QA success probability PS after an anneal with duration tf = 10
normalised by an estimate of the maximum success probability Pmax

S as a function of
the penalty parameter α2. Results come from simulations of closed-system quantum
dynamics. Each point is an average over 100 instances of the 1Q-PCP with np = 12
products. Error bars represent the standard error in the mean, and the blue shaded
region contains the 5th to 95th percentile values. Note that Pmax

S is estimated for
each instance separately by taking the maximum PS value over the plotted values
of α2. Hence, Pmax

S is different for each instance. (b) Same as (a) with the y-axis
showing the probability PF of measuring a feasible state instead. Figure adapted
from [1].
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Figure 3.3: (a) A plot of the Hamming weight w of the ground state of HI against
the linear penalty strength α1 for five random instances of the 1Q-PCP with eight
products. Each instance is shown in a different colour. (b) The fraction of 10,000
1Q-PCP instances that have a ground state Hamming weight w plotted against
α1 for different values of w shown in different colours. Note that α1 is decreasing
along the x-axes. Figure adapted from [1].

state in HI with the linear penalty method, which is not the case for the quadratic

method.

When choosing α1, a particular value might be able to implement the desired

constraint in the ground state of HI for many instances of a given problem, but
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3.4. Constraint dependence on linear penalty strength

it is typically not possible to select a single value that works for all instances, as

can be seen in Fig. 3.3 for the 1Q-PCP. Therefore, a good value of α1 needs to be

found for each instance individually. The monotonic relationship between w and

α1 means that a good value of α1 can be found efficiently by iteratively decreasing

(increasing) α1 when sampled solutions have too few (many) ones. This strategy

has previously been suggested in [24; 132].

For the 1Q-PCP, we know that α1 must be negative to have any products on

promotion as the unconstrained objective function only contains positive terms. A

good search strategy is to start with some initial guess, such as α1 = −1, run the

optimiser, and double α1 = −1 until the returned solution has the correct Hamming

weight w = A or one that is too large. If w is larger than A, a binary search can

be performed to find a value of α1 that produces the desired Hamming weight. For

an optimiser that always returns the optimal solution, this method finds α1 in a

number of calls to the optimiser that scales logarithmically with the value of α1

that correctly implements the constraint and is closest to the initial guess. The

condition that makes this true is the monotonic relationship between α1 and w.

When only a finite number of optimiser calls are allowed, there is a possibility that

the search terminates before it finds a correct value of α1 if the interval of correct

values of α1 is smaller than the precision of the search. The search can be made

exponentially more precise by increasing the maximum number of iterations. We

give an example of an algorithm that iteratively searches for good values of α1 for

problems with one or more linear penalties in Sec. 3.6. The iterative nature of

the application of linear penalties makes the method a hybrid quantum-classical

technique [143].
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3.5. Applying linear Ising penalties to multiple constraints

3.5 Applying linear Ising penalties to multiple

constraints

It is common for applied optimisation problems to have many constraints. There-

fore, it is important to consider the application of multiple linear penalties and

understand how penalty functions interact with each other. Here, we study this

using the 2Q-PCP. We set the seasonal scale factors in Eq. (2.37) to λ = (1.5, 1.0)T

for the problem instances we consider. We use w1 and w2 to denote the Hamming

weights of the variables associated with the first and second fiscal quarters, respect-

ively, in the ground state of HI . These correspond to the number of promotions in

each quarter. The constraints in Eq. (2.38) require that w1 = w2 = A.

We first consider the case where linear penalties are used for both constraints in

Eq. (2.38), where the penalty strengths for the constraints on the first and second

quarters are denoted as α(1)
1 and α

(2)
1 , respectively. Fig. 3.4 shows how w1 and w2

change with α
(1)
1 and α

(2)
1 for two different instances of the two-quarter problem.

For every possible value of A that allows Eq. (2.39) to be satisfied, there is a region

in Fig. 3.4(a) where the constraint w1 = w2 = A is satisfied. However, these regions

cannot always be found by applying the search strategy outlined in Sec. 3.4 for the

single-quarter problem to α
(1)
1 and α

(2)
1 independently. This is because changes

made to α
(1)
1 impact both w1 and w2, and likewise for α(2)

1 . Therefore, α(1)
1 and

α
(2)
1 cannot be found independently of each other. The monotonic relationship

between α
(i)
1 and wi can still be used to develop a search strategy that finds all

penalty strengths at the same time, such as the one outlined in Sec. 3.6.

In some cases, it is not feasible to simultaneously implement multiple constraints

with linear penalties. This could be either because it is not possible or because the

region of good penalty strength values is too small. It is often possible to resolve

this issue by changing some of the linear penalty functions to quadratic penalties.

Depending on which penalties are made quadratic, some of the advantages of using
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Figure 3.4: Heat maps showing the sum of the first-quarter Hamming weight w1

and second-quarter Hamming weight w2 for instances of the 2Q-PCP with eight
products. Linear penalties are applied to the first and second quarters with penalty
strengths α(1)

1 and α
(2)
1 respectively. The penalty strengths are swept along the x

and y axes. This is shown for (a) the instance with ID 8_0 and (b) the instance
with ID 8_19. A colour bar with more saturated colours is used where w1 = w2

and a less saturated colour bar is used where w1 ̸= w2. Note that α(1)
1 and α

(2)
1

decrease along the axes of both plots. Figure adapted from [1].

the linear penalty method can be maintained with this approach. An example

where this can be used is the instance shown in Fig. 3.4(b), for which we did

not find any combination of α(1)
1 and α

(2)
1 values that satisfies both constraints in

Eq. (2.38) with A = 3. Since our search was conducted at a finite precision, this

implies that the region in which the constraints are satisfied either does not exist

or is very small.

In Fig. 3.5, we consider the same problem instance as in Fig. 3.4(b) and instead

apply a linear penalty to the first quarter only and a quadratic penalty to the

second quarter. With this scheme, we find that there exists an interval of values of

α
(1)
1 for which all of the problem’s constraints are satisfied. In Sec. 5.7.2, there is a

more in-depth analysis of combining linear and quadratic penalties in the context

of the 4Q-PCP. An alternative approach for cases where linear penalties are not
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Figure 3.5: Ground state Hamming weight w1 of the first quarter of a 2Q-PCP
instance with ID 8_19 plotted against the linear penalty strength α

(1)
1 applied to

the first quarter. The second quarter’s Hamming weight is fixed to w2 = 2 with
a quadratic penalty. For this problem instance, we did not find any combination
of linear penalty strengths for which applying linear penalties to both quarters is
successful in creating a ground state in HI that satisfies w1 = w2 = 3. Note that
α

(1)
1 decreases along the x-axis. Figure adapted from [1].

successful in implementing all constraints is proposed in [139], where infeasible

solutions are post-processed to obtain feasible solutions.

3.6 Penalty strength search strategy for multiple

linear Ising penalties

When there are multiple constraints that are being implemented with linear pen-

alties, the variables in the different constraint can interact with each other, mak-

ing the search for α1 values more difficult. This is because changing the penalty

strength for a constraint does not just change the assignment of the variables within

the particular constraint, but it can also change the assignment of other variables

through their couplings. Therefore, the linear penalty strengths cannot be tuned

individually and a strategy to search for all penalty strengths at the same time is

required. We are not sure whether a search strategy that can efficiently find good

linear penalty strengths up to a desired precision exists for the 4Q-PCP. However,

we suspect that the fact that the problem has nonnegative couplings makes it likely
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3.6. Penalty strength search strategy for multiple linear Ising penalties

that such a strategy exists, as in the case of the 1Q-PCP.

As an example of a linear penalty strength search strategy for problems with many

constraints, we outline one such algorithm for the 4Q-PCP in Algorithm 1. An im-

plementation of this algorithm in the Python programming language is used in some

of the analysis in Chapter 5. The function linear_penalty_strength_search at-

tempts to find values of α1 such that Eq. (2.34) is satisfied for each fiscal quarter for

some constraint value A. The algorithm makes use of an exact solver that is called

through the optimiser function, which returns an optimal solution of a problem

with the provided linear penalty strengths. If linear_penalty_strength_search

is successful in finding good values of α1 within the maximum number of iterations

specified by the parameters max_iterations_1 and max_iterations_2, it returns

these values. Otherwise, it returns Null. In principle, one can use a search strategy

that has a similar structure with solvers that are not exact, such as quantum an-

nealing and simulated annealing.

The function linear_penalty_strength_search performs two searches. The first

search, which is performed in lines 10–34 in Algorithm 1, attempts to satisfy the

four constraints using the same value of α1 for each constraint and tuning it such

that the average Hamming weight of the variables of the four quarters is equal to

A. The first search performs a maximum of max_num_iterations_1 iterations.

In each iteration, α1 is increased if the average Hamming weight is larger than A

or decreased if it is less than A. Initially, the amount by which α1 is increased or

decreased by is given by a constant step size step until an upper and lower limit on

the value of α1 is established. After that, a binary search is used to converge on

a value of α1 for which the average constraint value is equal to A in the solution

returned by the solver. Sometimes, this first search finds a value of α1 that not

only produces an average constraint value of A, but also satisfies the individual

constraint of each quarter. In these cases, the search is complete.

In cases where the first search does not produce a solution that satisfies all four

constraints, a second search is performed. This corresponds to lines 38–60 of Al-
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3.6. Penalty strength search strategy for multiple linear Ising penalties

Algorithm 1 Four-quarter linear penalty strength search.
1: function linear_penalty_strength_search(A, max_iterations_1, max_iterations_2)
2: target_num_ones← [A, A, A, A] ▷ Target Hamming weight for each fiscal quarter
3: pen_strengths← [−1,−1,−1,−1] ▷ Initial linear penalty strengths for each quarter
4: prev_pen_strengths← [0, 0, 0, 0] ▷ Array to store previous penalty strengths
5: step← 0.5 ▷ Penalty strength step size
6: steps← [step, step, step, step]
7: num_iterations← 0
8: average_converged← F alse ▷ Flag for convergence of the average Hamming weight
9: high, low ← Null, Null ▷ Variables to store penalty strengths that are too large or small

10: while (not average_converged) and num_iterations < max_iterations_1 do
11: num_iterations← num_iterations + 1
12: solution← optimiser(pen_strengths) ▷ Call solver
13: quarters_num_ones← get_num_ones(solution) ▷ Get an array of Hamming weights
14: av_num_ones← mean(quarters_num_ones) ▷ Average over the quarters’ Hamming weights
15: if av_num_ones < A then ▷ If the average Hamming weight is too small
16: high← pen_strengths[0] ▷ Penalty strength was too high
17: if low = Null then ▷ If a penalty strength that is too low hasn’t been found yet
18: prev_pen_strengths← pen_strengths
19: pen_strengths← pen_strengths− steps ▷ Reduce the penalty strength by step
20: else ▷ Otherwise, perform a binary search
21: prev_pen_strengths← pen_strengths
22: pen_strengths← 0.5× (low + high)
23: else if av_num_ones > A then ▷ If the average Hamming weight is too large
24: low ← pen_strengths[0] ▷ Penalty strength was too low
25: if high = Null then ▷ If a penalty strength that is too high hasn’t been found yet
26: prev_pen_strengths← pen_strengths
27: pen_strengths← pen_strengths + steps ▷ Increase the penalty strength by step
28: else ▷ Otherwise, perform a binary search
29: prev_pen_strengths← pen_strengths
30: pen_strengths← 0.5× (low + high)
31: else
32: average_converged← T rue

33: if quarters_num_ones = target_num_ones then
34: return pen_strengths ▷ If all quarters’ Hamming weights converged to A, we are done
35: num_iterations← 0
36: converged_all = F alse ▷ Flag for convergence of all quarters’ Hamming weights
37: step← 0.1× step ▷ Reduce the step size before the second search
38: while (not converged_all) and num_iterations < max_iterations_2 do
39: num_iterations← num_iterations + 1
40: solution← optimiser(pen_strengths) ▷ Call solver
41: quarters_num_ones← get_num_ones(solution) ▷ Get an array of Hamming weights
42: converged_all = T rue
43: for q ← from 0 to 3 do ▷ For each fiscal quarter
44: if quarters_num_ones[q] < A then ▷ If the quarter’s Hamming weight is too low
45: converged_all← F alse
46: if pen_strengths[q] > prev_pen_strengths[q] then ▷ If we stepped up
47: new_guess← 0.5× (prev_pen_strengths[q] + pen_strengths[q]) ▷ Take midpoint
48: else ▷ If we stepped down
49: new_guess← pen_strengths[q]− step ▷ Take another step down
50: prev_pen_strengths[q]← pen_strengths[q]
51: pen_strengths[q]← new_guess
52: else if quarters_num_ones[q] > A then ▷ If the quarter’s Hamming weight is too high
53: converged_all← F alse
54: if pen_strengths[q] < prev_pen_strengths[q] then ▷ If we stepped down
55: new_guess← 0.5× (prev_pen_strengths[q] + pen_strengths[q]) ▷ Take midpoint
56: else ▷ If we stepped up
57: new_guess← pen_strengths[q] + step ▷ Take another step up
58: prev_pen_strengths[q]← pen_strengths[q]
59: pen_strengths[q]← new_guess

60: step = step× 0.93 ▷ Reduce the step size in each iteration
61: if not converged_all then
62: return Null ▷ Return null if the search failed
63: return pen_strengths ▷ Return the penalty strengths if the search was successful
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gorithm 1. The second search performs a maximum of max_iterations_2 itera-

tions with a step size that is initialised to a smaller value than the step size for

the first search. The main difference is that in the second search, each quarter

has its own value of α1 that is tuned individually. These values are increased or

decreased based on the Hamming weight of the variables associated with each par-

ticular quarter. If the direction in which α1 is being changed is opposite to the

direction of the previous iteration, then α1 is set to the midpoint of the previous

and current values. Otherwise, α1 is changed by an amount equal to the step size

step. At the end of each iteration, the value of step is reduced such that the search

becomes increasingly more precise.

In our runs of this search strategy for the results presented in Chapter 5, we used the

parameter values max_num_iterations_1 = 20 and max_num_iterations_2 =

100. However, the average number of total iterations performed by the search

strategy was ≈ 13 for the problem instances that we were able to find good α1

values for. This implies that much smaller values of max_num_iterations_1 and

max_num_iterations_2 could be used for the 4Q-PCP considered in Chapter 5.

Furthermore, the number of iterations required could be reduced by optimising the

values of step on line 5 of Algorithm 1 and the multiplicative factors on lines 37

and 60. We did not spend much time experimenting with different values.

In parts of Chapter 5, we consider penalty schemes where some of the constraints C1

are implemented with linear penalties and others with quadratic penalties. The α1

search strategy in Algorithm 1 was used in these cases by modifying the function

optimiser such that it always satisfies the constraints that have quadratic penalties

applied1. This is because we know that the quarters with quadratic penalties

applied always have the correct Hamming weight in the optimal solution as along as

α2 is chosen to be large enough. The function linear_penalty_strength_search
1This can be done by either formulating the problem with quadratic penalties that have large

penalty strengths or by directly specifying these constraints to the classical solver if it is capable
of constrained optimisation. In our case, we used Gurobi Optimizer as the classical solver, and we
directly specified the constraints. This approach results in much faster solution times than using
the quadratic penalty method to encode constraints into the objective function.
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returns linear penalty strengths even for quarters that have quadratic penalties

applied, which can be ignored.

Fig. 3.6 shows a demonstration of Algorithm 1 applied to a random instance of the

4Q-PCP with np = 10 products. We set the seasonal scale factors in Eq. (2.33)

to λ = (1.5, 1.0, 1.0, 1.5)T. In this example, the constraints C1 have a target

Hamming weight of A = 4 for each fiscal quarter. We use Gurobi to find the optimal

solution in each iteration and ensure that the constraints C2 and C3 are met. In

a search strategy using QA to sample solutions, the constraints C2 and C3 would

be implemented with quadratic penalties. We set max_num_iterations_1 = 20

and max_num_iterations_2 = 100, though neither of these limits were reached

in this run. The first stage of the search took 6 iterations, which produced an

average Hamming weight of A without satisfying the constraints for the first and

fourth quarters. The second stage of the search took 11 more iterations for all of the

quarters’ Hamming weights to converge to A. We can see that in the final iteration,

the values of α1 for the first and fourth quarters are the same and similarly for the

second and third quarters. This is because of the symmetry in the problem due to

those pairs of quarters having the same seasonal scale factors.

3.7 Chapter conclusions

In this chapter, we have investigated the linear Ising penalty method for encod-

ing Hamming weight equality constraints and made two theoretical arguments for

why the method can lead to better performance in quantum optimisation than the

quadratic penalty method. The first argument is based on the fact that the linear

penalty method does not introduce any additional quadratic terms to the objective

function, and the second is based on considerations of the different energy scales

associated with the two types of penalty functions. The linear penalty method is

not always successful in exactly implementing a desired constraint in the ground

state of the Ising Hamiltonian. However, we have identified a structure in the
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Figure 3.6: Demonstration of the linear penalty strength search strategy in Al-
gorithm 1 on a random instance of the 4Q-PCP with np = 10 products and sea-
sonal scale factors λ = (1.5, 1.0, 1.0, 1.5)T. The target Hamming weight for each
fiscal quarter is A = 4. We plot (a) the linear penalty strength α1 for each quarter
and (b) the Hamming weight w of each quarter’s variables in the optimal solution
against the iteration of the search strategy. The points for the first (blue), second
(orange), third (green), and fourth (red) quarters each have lines joining them to
guide the eye. We use Gurobi to get the optimal solution x with a particular set of
penalty strengths and specify the constraints C2 and C3 so they are always satis-
fied. We use the constraint values Bmin = 1 and Bmax = 2 for the constraints C2.

promotion cannibalisation problems we have considered that results in the linear

penalty method being effective more often. Furthermore, we provided some guid-

ance for determining whether the linear penalty method is appropriate for a given

problem. There may be other structures that make problems more amenable to

the linear penalty method, which would be interesting to explore in future work.

We have studied how changes in the penalty strength of a linear penalty change

the constraint value that is implemented. We compared this with the behaviour of

the quadratic penalty method, where all penalty strengths above a certain value

implement the desired constraint. Our results show that the penalty strengths of

linear penalties typically need to be tuned for different problem instances individu-

ally. For problems with a single linear penalty applied, we have outlined a strategy

that can efficiently find good penalty strengths by exploiting their monotonic rela-

tionship with Hamming weight. We presented another search strategy for problems

that have multiple linear penalties applied, in which case the different linear pen-
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alties can influence each other, making the search for good penalty strength values

more difficult. For cases where one or more constraints cannot be successfully im-

plemented with linear penalties, we have shown that it is sometimes possible to

fix this by using linear penalties for some constraints and quadratic penalties for

others.

The work presented in this chapter forms a basis for Chapter 4, where the quadratic

and linear penalty methods are compared in simulations of quantum algorithms,

and Chapter 5, where quantum annealing experiments are performed with the two

penalty methods. We also consider how the linear penalty method can be combined

with another algorithmic technique for solving constrained optimisation problems

on quantum computers in Chapter 6.
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Chapter 4

Simulating quantum optimisation

with linear Ising penalties

The majority of the results in this chapter have been published in [1].

4.1 Introduction

In this chapter, we perform a numerical analysis of QA and the QAOA solving

the 1Q-PCP, comparing the use of quadratic and linear penalty functions. This

analysis pursues two objectives: first, to understand the behaviour of linear Ising

penalties, and second, to assess their impact on the performance of a quantum

optimiser. All simulations in this thesis are of error-free closed-system dynamics

and assume all-to-all connectivity of the physical qubits.

Real-world promotion cannibalisation problems involve sparse C matrices, which

produce Ising Hamiltonians HI with fewer nonzero couplings when using the lin-

ear penalty method than when using the quadratic penalty method, as discussed

in Chapter 3. For example, a real-world problem may be concerned with 1,000

products that each have nonzero cannibalisation interactions with five other products

on average. Switching from using the quadratic penalty method to the linear pen-

alty method would then result in a ≈ 99.5% reduction in the number of nonzero

couplings in HI . This is because the linear penalty method maintains the sparsity
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of the matrix C in the objective function, whereas the quadratic penalty method

introduces nonzero couplings between all pairs of variables in the 1Q-PCP. Due

to limitations on the sizes of problems we can simulate, all C matrices used in this

chapter are fully connected. Therefore, our numerical results do not reflect any po-

tential performance benefits for the linear penalty method that would come from

the sparsity of C matrices at large problem sizes. The findings in this chapter are

complementary to the experimental results in Chapter 5, where more substantial

improvements are observed when solving larger promotion cannibalisation problems

on a real quantum device.

4.2 Tuning penalty strengths

In this chapter’s simulations comparing the quadratic and linear penalty methods,

we have taken different approaches to tuning the penalty strengths α1 and α2.

This is to reflect the different strategies that would likely be used in practice.

For the quadratic penalty method, we have used the same penalty strengths for

all problem instances. We have tuned this value to produce high success and

feasible probabilities on average. The linear penalty method is more sensitive to its

penalty strength, and using the same value of α1 for all problem instances results

in some problem Hamiltonians that have infeasible ground states, as discussed

in Chapter 3. Therefore, we select the linear penalty strength for each problem

instance individually. This additional tuning means that there is an overhead when

using the linear penalty method that is associated with the α1 search strategy that

is used, such as the one outlined in Sec. 3.6. This overhead should be taken into

consideration when interpreting the results of this chapter.

In Fig. 4.1, we plot the average normalised success probability and average feasible

probability of simulations of QA as a function of penalty strength for three different

sizes of the 1Q-PCP. Note that Fig. 4.1(b) and Fig. 4.1(e) show the same plots as

in Fig. 3.2. As the number of products np is increased, we find that PS peaks at
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Figure 4.1: (a-c) Plots of the QA success probability PS after an anneal with
duration tf = 10 normalised by an estimate of the maximum success probability
Pmax

S and averaged over 100 instances of the 1Q-PCP. The value of the penalty
strength of the quadratic penalty that is applied is changed along the x-axis. We
consider instances with (a) 6, (b) 12, and (c) 18 products. The value of Pmax

S is
estimated for each instance separately and is calculated by taking the maximum of
PS over the plotted values of α2. Hence, Pmax

S is different for each instance. Error
bars represent the standard error in the mean, and the blue shaded regions contain
the 5th to 95th percentile values of PS/P

max
S . (d-f) Similar plots of the probability

PF of measuring a feasible state averaged over the same 100 instances with (d) 6,
(e) 12, and (f) 18 products. Figure adapted from [1].

smaller values of α2 on average. The values of α2 at which PF becomes elevated

are not as significantly affected by changing np. There is a gradual drop in PS as

α2 is increased beyond the value at which PS is maximised. Based on these results,

we have chosen a value of α2 = 2 for our performance analysis because it results in

a good compromise between maximising PS and maximising PF for most problem

instances.

Fig. 3.2 and Fig. 4.1 plot average normalised success probabilities. The normalisa-

tion was performed to avoid skewing the averages in favour of instances for which

the maximum success probability is large. For transparency, we also plot the un-

normalised success probabilities for problem instances with np = 12 products and

their average values in Fig. 4.2. Comparing this to Fig. 4.1(b), we find that the
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Figure 4.2: (a) Success probability PS of QA with a duration tf = 10 plotted against
the quadratic penalty strength α2 for the 1Q-PCP with np = 12 products. This
is plotted for 100 instances of the problem that are each represented by different
colours, with dashed lines connecting each instance’s points to guide the eye. (b)
The probability PS is averaged over the different problem instances. Error bars
represent the standard error in the mean, and the blue shaded region contains the
5th to 95th percentile values of PS . Figure adapted from [1].

average success probability peaks at approximately the same value of α2 regardless

of whether normalisation is performed.

For the linear penalty method, even if α1 is chosen from the finite interval that

implements the desired constraint, the specific choice of α1 within that interval

can have a significant impact on the performance of a quantum algorithm. Fig. 4.3

demonstrates this for an example 1Q-PCP instance. While all choices of α1 in the

yellow and green shaded regions of the plot produce the correct ground state in HI ,

some choices result in significantly better success probabilities than others. It is

possible for QA to have a significant probability of measuring the optimal feasible

solution even when the choice of α1 does not make the ground state feasible. This

is demonstrated by elevated values of PS outside the shaded regions in Fig. 4.3.

This probability will tend to zero as the anneal time is increased to the adiabatic

limit and the probability of measuring the infeasible ground state of HI approaches

unity.

For our performance analysis of the linear penalty method, we use α1 values that

have been selected uniformly at random for each instance from the interval that

produces the correct ground state in HI . This corresponds to taking a random
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Figure 4.3: A linear penalty is applied to a 1Q-PCP instance with ten products
and a constraint of A = 3 promotions. In orange, we plot the success probability
PS of measuring the optimal feasible solution x∗ for QA after an anneal of duration
tf = 200. The penalty strength α1 decreases along the x-axis. In blue, we plot the
energy difference between the desired state |x∗⟩ and the minimum energy eigenstate
of HI that isn’t |x∗⟩. A negative energy difference, highlighted by the yellow and
green shaded regions, indicates that |x∗⟩ is the non-degenerate ground state of HI .
In the green shaded region, |x∗⟩ is the ground state and the energy separation to
the first excited state is maximised. The value of α1 that maximises PS is indicated
by the green dashed line. Figure adapted from [1].

point along the x-axis in the yellow and green shaded regions in Fig. 4.3. Since in

practice the optimal choice of α1 is not known in advance, we have not performed

any further fine-tuning within this region. Therefore, our choices of α1 roughly

correspond to values that would be found by a search strategy such as the one

outlined in Sec. 3.6, and they do not represent the theoretically optimal values. For

some problem instances, no value of α1 could be found that produced a feasible

ground state of HI . This is either because the interval of good values is smaller

than the precision of our search, which was 10−5, or because the interval does not

exist. We did not perform simulations using the linear penalty method for these

instances.

4.3 Analysis of the spectral gap in quantum annealing

One useful measure of the difficulty of solving a problem is the minimum spectral

gap gmin between the ground state and the first excited stated of the QA Hamilto-
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4.3. Analysis of the spectral gap in quantum annealing

nian H. At small problem sizes, the instantaneous energy spectrum of H can be

calculated for different times during the anneal. As discussed in Sec. 2.3, the total

anneal time tf required to guarantee a large success probability increases as gmin

shrinks. For two-level systems, this transition probability was shown to decay ex-

ponentially with g2min by Landau [144] (according to [56]) and Zener [145]. Hence,

larger values of gmin are more desirable in AQC.

Fig. 4.4(a-b) plots the spectral gap g between the ground state and the first excited

stated of H at different times of an anneal for the instance of the 1Q-PCP with

ID 12_0. We compare the use of the linear and quadratic penalty methods with

different values of their penalty strengths. In all cases, HI is normalised using

Eq. (2.48) such that maxi,j(|Ji,j |) = maxi(|hi|) = 10 after normalisation. The

value of 10 was chosen so that the size of the spectral gap at the beginning and

end of the anneal are of similar magnitude. For both penalty methods, we can see

that the size of the minimum spectral gap gmin and its location along the anneal

changes as the penalty strength α2 or α1 is changed. For good choices of α2 and α1,

the energy gap is generally larger when using the linear penalty method than using

the quadratic penalty method in this example. This indicates that AQC would

perform better with the linear penalty method for this problem instance.

The location of gmin is closer to the beginning of the anneal for the linear penalty

method than the quadratic penalty method. One way to improve the performance

of QA is to use an annealing schedule that slows down when g is small [54]. Hence,

the optimal annealing schedule for the two penalty methods would be different

in this case. In our simulations of QA in this chapter, we use a linear annealing

schedule, which has a constant annealing speed throughout the anneal. This serves

as a fair comparison between the two penalty methods as it does not slow down

at any particular point in the anneal. For the QA experiments in Chapter 5, we

used the default annealing schedule of the D-Wave quantum annealer we used. An

analysis of optimised annealing schedules for different penalty methods is a topic

that could be explored in future work.
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Figure 4.4: Energy gap g between the ground state and first excited state at dif-
ferent times t during an anneal of duration tf when solving an instance of the
1Q-PCP using the (a) quadratic and (b) linear penalty methods. This problem
has np = 12 products and a constraint of A = 4 promotions. Different values of
the penalty strength parameters α2 and α1 are used, shown in different colours.
The minimum value gmin of the energy gap is plotted against the penalty strength
for the (c) quadratic and (d) linear penalty methods. Points corresponding to the
penalty strengths used in the upper panels are plotted larger and in matching col-
ours. Note that α1 is decreasing along the x-axis in (d) so that the magnitude
of the penalty strengths in (c) and (d) are both increasing along the x-axes. A
logarithmic scale is used for the x-axis in (c).
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The minimum value of g during the anneal, gmin, is plotted in Fig. 4.4(c-d) for

different choices of penalty strengths. For the linear penalty method, this is plotted

for the range of values of α1 that produce the correct ground state in HI . For the

quadratic penalty method, there is no upper limit to the value of α2 that produces

the correct ground state. Therefore, the lowest value of α2 in Fig. 4.4(c) is the

lowest value that produces the correct ground state in HI and the largest value is

arbitrarily chosen to be 100. Considering that Fig. 4.4(c) uses a logarithmic scale

for the x-axis, we observe that gmin is elevated for a larger range of penalty strength

values with the quadratic penalty method than the linear method. This follows

our previous observations that the quadratic penalty method is less sensitive to

its penalty strength. We find that there is substantial variation in the size of gmin

within the range of values of α1 that produce the correct ground state in HI . This

shows similar behaviour as the results in Fig. 4.3 for diabatic QA.

4.4 Dynamic range comparison

In our simulations of QA, the Ising Hamiltonians were normalised by a factor N ,

as expressed in Eq. (2.48), such that the maximum coupling strength is 1 and

the maximum local field strength is 3. This reflects the finite energy scales that a

physical device can realise. The choice of penalty method can impact the maximum

coupling and local field strengths, which impacts the normalisation factor. We refer

to the normalisation factor when using the linear and quadratic penalty methods

as NL and NQ respectively. As mentioned in Chapter 3, the linear penalty method

uses no couplings and can require weaker local fields than the quadratic method,

which benefits the dynamic range of qubit interactions.

In Fig. 4.5, we plot the average ratio between NL and NQ for the 1Q-PCP instances

we consider in this chapter. For all of the problem sizes we have considered, NQ

is significantly larger than NL on average. We believe that the larger effective

dynamic range when using the linear penalty method can lead to a more efficient
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Figure 4.5: Ratio between the average normalisation factors of H̃I when using the
quadratic penalty method, ⟨NQ⟩, and when using the linear penalty method, ⟨NL⟩,
plotted against the number of products np for single-quarter promotion cannibal-
ization problem instances. Figure adapted from [1].

exploration of the search space. The results in Sec. 4.5 and Sec. 4.6 serve as a good

test of whether this is true.

4.5 Quantum annealing performance

We have calculated the QA success probability PS and feasible probability PF for

different instances of the 1Q-PCP using the linear and quadratic penalty methods,

which we plot against the number of products np in Fig. 4.6. The constraint C1 that

we consider in these simulations is to select A = 3 products for promotion. The grey

dashed line in Fig. 4.6(a) represents the probability of finding the optimal solution

by selecting a solution at random. Since these problem instances have unique

optimal solutions, the probability of randomly selecting the optimal solution is
1

2np . The success probability for every problem instance is above this line for both

penalty methods, indicating that QA is consistently able to increase the overlap of

the quantum state with the optimal state.

For the range of number of products we have considered in the QA simulations,

Fig. 4.6(a) shows that the linear penalty method outperforms the quadratic penalty

method on average in finding the optimal solution. For np ≥ 14 products, there

is no overlap between the distributions of the two penalty methods’ success prob-
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Figure 4.6: (a) The success probability PS of QA using the quadratic (orange)
and linear (blue) penalty methods with an anneal duration of tf = 10 against the
number of products np in the 1Q-PCP. The plot shows the distributions of PS

for the different problem instances alongside bars representing the median values
of the distributions. The grey dashed line represents the probability of randomly
guessing the optimal solution. Note that the y-axis scale and the bin widths of the
histograms are logarithmic. (b) Similar plot for the probability PF of measuring
a feasible state with linear axes scales and linear histogram bin widths. Figure
adapted from [1].

abilities. This indicates that there was not a single instance that was solved with

the linear penalty method and could be solved more efficiently with the quadratic

penalty method at those problem sizes. As the number of products is increased,

the variance in the success probability across different instances shrinks when using

the quadratic method but remains large for the linear method.

In Fig. 4.6(b), we find that for np ≥ 9, the quadratic penalty method is on av-

erage more likely to sample feasible states. The variance of the distribution of

feasible probabilities is much larger when using the linear method than when us-

ing the quadratic method. This indicates that with our penalty strength choices,

the ability of the linear penalty method to effectively implement the constraint is

highly dependent on the problem instance. This explains why the success prob-

ability distributions have similarly large variances for the linear method. Given

the sensitivity of QA performance to the linear penalty strength in Fig. 4.3, it is

possible that PF could be increased for many instances with further fine-tuning of

the penalty strength.

67



4.6. QAOA performance

These simulations are of the ideal regime, where there is no noise introduced by

the environment and qubits are all-to-all connected. Thus, while the advantage

of using fewer couplings with the linear penalty method is more clear when the

hardware does not support all-to-all connectivity, these simulation results indic-

ate that the linear penalty method may also benefit performance on fault-tolerant

quantum devices with high qubit connectivity. This is complementary to prom-

ising experimental results obtained on D-Wave annealers, presented in previous

work [132; 136; 139] and in Chapter 5, where hardware limitations have a promin-

ent effect on performance.

4.6 QAOA performance

We have performed simulations of the QAOA with p = 8 layers. The same problem

instances were used as in the QA simulations in Sec. 4.5. The constraint C1 was

set to have the value A = 3, which is the same as in the QA simulations. For

each problem instance, we have run the QAOA with 80 different initialisations of

the circuit parameters θ = (β,γ), which were classically optimised. We use θ∗ to

refer to the optimised circuit parameters that produced the largest inferred success

probabilities for each problem instance. Our simulations of the QAOA were more

computationally demanding than the QA simulations for a given problem size.

This is largely because of the variational nature of the QAOA, which requires

a large number of quantum circuit evaluations to optimise θ. Due to time and

computational resource limitations, we performed QAOA simulations with up to

np = 14 products instead of 18.

In the simulations presented in this section, each of the variational parameters

in γ and β were initialised randomly within the interval [0, 1). The variational

parameters were optimised by the implementation of the COBYLA algorithm [124]

in scipy.optimize.minimize using a maximum of 100 iterations of the optimiser.

To estimate the average objective value while optimising γ and β, the quantum
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circuit was sampled 1,000 times each time the variational parameters were changed.

After the final iteration, the quantum circuit was sampled 1,000,000 times with

the optimised values of γ and β, from which the probabilities PS and PF were

inferred. To reduce the effect of getting stuck in local minima when optimizing γ

and β, the entire algorithm was repeated 80 times for each problem instance using

different initialisations of the variational parameters, from which a best-performing

run could be identified.

Fig. 4.7 plots the inferred success probabilities and inferred feasible probabilities

against the number of products in the problem. These are plotted for the best found

circuit parameters θ∗ in Fig. 4.7(a) and Fig. 4.7(c) and as an average over the runs

with different initialisations of the QAOA angles in Fig. 4.7(b) and Fig. 4.7(d).

Note that we use the term “inferred” to mean that these values are estimates of

the true probabilities based on a finite number of samples from the quantum circuit.

When averaged over all circuit parameter initialisations, the success probability is

larger than that of random guessing for more than half of the instances at each

problem size, whether the linear or quadratic penalty method is used. However,

the average success probability is worse than that of random guessing for some

instances, particularly at smaller problem sizes. This indicates that the classical

optimiser is able to find circuit parameters that produce better-than-random suc-

cess probabilities more often than not, despite struggling in some cases. When only

considering the best found circuit parameters θ∗, all inferred success probabilities

are better than that of random guessing.

For all values of np we have considered, the linear penalty method produces more

favourable success and feasible probabilities on average compared to the quadratic

penalty method. This is true when only considering the best found circuit paramet-

ers θ∗ and when averaging over different initialisations. The inferred probabilities

of measuring a feasible state with the linear method are typically the same or better

than for the quadratic method. Similarly to the results for QA, the larger vari-

ances for the linear penalty method in Fig. 4.7(d) indicate that the effectiveness of
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Figure 4.7: (a) Plot of the inferred success probability PS of the QAOA with
p = 8 layers and the best found circuit parameters θ∗ after optimising the circuit
parameters with 80 different initialisations. This is shown for the quadratic (or-
ange) and linear (blue) penalty methods against the number of products np in the
single-quarter promotion cannibalization problem. The distributions of PS(θ∗) are
plotted for the different problem instances alongside bars representing the median
values of the distributions. The grey dashed line represents the probability of ran-
domly guessing the optimal solution. Note that the y-axis scale and the bin widths
of the histograms are logarithmic. (b) Same as (a) with PS averaged over all 80
optimised circuit parameters θ for each problem instance. (c) Similar plot for the
inferred probability PF of measuring a feasible state with the circuit generated
by the parameters θ∗ that produced the largest inferred success probability. Axes
scales and histogram bin widths are linear. (d) Same as (c) with PF averaged over
all 80 optimised circuit parameters θ for each problem instance. Figure adapted
from [1].
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the linear penalty method is more variable across different problem instances and

choices of penalty strength than for the quadratic penalty method. Since HI does

not strictly need to be normalised in the QAOA, one might question whether there

is any benefit to having smaller interaction energy scales with the linear penalty

method. Our results suggest that the linear penalty method continues to have ad-

vantages even in the case where there is no physical dynamic range limitation. We

believe that this is because phase rotations of angles larger than 2π have the same

effect as those with angles smaller than 2π, so there is a limit beyond which there

is no benefit to rotating by larger angles. Hence, an effect similar to the physical

dynamic range in QA is produced.

Comparing these results with the QA results, we find that the difference in average

success probabilities between the two penalty methods is smaller for the QAOA

simulations than the QA simulations. We note that QAOA and QA performance

are dependent on the choices of the number of layers p and anneal time tf respect-

ively, so a fair comparison of the two algorithms would require these two parameters

to be chosen in such a way that the effective anneal times are the same. Since the

purpose of our analysis is not to compare these two algorithms, we have not done

this. An interesting direction for future work would be to determine how the per-

formance difference between the linear and quadratic penalty methods depends on

p for the QAOA and tf for QA.

Another factor that is not explored in our analysis is the time that would be

required to execute the QAOA algorithm and how it differs between the two penalty

methods. In real-world problems, where C matrices are typically sparse, encoding

constraints with the linear penalty method would produce fewer nonzero couplings

in HI . Therefore, the quantum circuit to implement the unitary e−iγkHI would

require fewer two-qubit gates, making it more efficient to run the circuit with the

linear method. Another way in which the runtime could differ between the penalty

methods would be if it were easier to classically optimise the circuit parameters

θ = (β,γ) using one penalty method than the other, if such a difference exists.
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4.7 Chapter conclusions

In this chapter, we have performed a numerical analysis of the linear and quadratic

penalty methods. We have studied the behaviour of the penalty methods with

respect to changes in their penalty strengths. The linear penalty method is more

sensitive to its penalty strength, meaning that it is typically necessary to search for

good penalty strength values for each problem instance individually. This results

in an overhead compared to using the quadratic penalty method. However, given

that quantum optimisation is usually concerned with NP-hard problems that are

expected to take exponentially long times to solve, we argue that running the

solver more times is often a good trade-off to make for a better chance of sampling

high-quality solutions.

Our simulations of QA and the QAOA indicate a performance enhancement when

using the linear penalty method over the quadratic method. Given that our sim-

ulations assume all-to-all connectivity of the physical qubits and do not simulate

any errors, this finding shows that the linear penalty method may be useful for

future devices that have low logical error rates and fewer physical limitations than

near-term devices. This is encouraging because one of the main theoretical appeals

of the method, which is to produce more efficient mappings onto sparse hardware

graphs, does not apply in this scenario. The other main appeal of the linear penalty

method is that it can make more efficient use of the available dynamic range, which

we believe is the reason behind its improved performance in these simulations. We

suspect that the relative outperformance of the linear method would be greater at

larger problem sizes, where the dynamic range effects are more prominent and the

problems may be sparse.
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Chapter 5

Quantum annealing experiments

with linear Ising penalties

The majority of the results in this chapter have been published in [2].

5.1 Introduction

In recent years, noisy intermediate-scale quantum devices have become available on

cloud platforms [127; 17], enabling experimental tests of quantum algorithms. The

quantum annealers manufactured by D-Wave are among the most technologically

mature quantum devices that are currently accessible, allowing for tests of larger

problems than what can be encoded on other quantum devices that are available.

D-Wave’s Advantage devices have ≈ 5,000 physical qubits, which means that they

can encode optimisation problems that are larger than those considered in the

simulations in Chapter 4. For a review of the industrial applications of QA, see [28].

In this chapter, we conduct experiments on a D-Wave quantum annealer with the

linear and quadratic penalty methods. For comparison, we also perform SA runs.

We study the 1Q-PCP with np = 100 products and the 4Q-PCP with np = 10

products. For the 1Q-PCP, we consider the case where the constraint C1 is to

choose A = 50 products to promote. While it would be unusual for a retailer

to promote half of their available products in a single quarter, we can imagine a
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more realistic scenario in which the 100 products in the problem are a selection

of products that have been determined to be the most promising candidates for

promotion out of a larger set of available products. In this scenario, the quantum

optimiser is being used to select from these 100 candidate products. The C matrices

we have used for the 1Q-PCP experiments have an average connectivity of ≈ 3.4.

Even at this level of sparsity, all constrained problem instances that we have gener-

ated have optimal solutions with nonzero total cannibalisation. For the 4Q-PCP ex-

periments, we set the seasonal scale factors in Eq. (2.33) to λ = (1.5, 1.0, 1.0, 1.5)T.

We set A = 4 for the constraints C1, and we set Bmin = 1 and Bmin = 2 for

the constraints C2. The C matrices for the 4Q-PCP instances have an average

connectivity of ≈ 5.1, and all instances have optimal solutions with nonzero total

cannibalisation.

5.2 Minor embedding improvements

In Chapter 3, we mentioned that one of the advantages of using the linear penalty

method over the quadratic method is that it does not introduce any new couplings

to HI . This allows us to maintain the sparsity of the unconstrained problem. In

QA on D-Wave hardware, the physical qubits are not fully connected, so HI must

be minor embedded onto the working graph of the annealer in order to facilitate the

required connectivity between the logical variables. See Sec. 2.4 for a description

of minor embedding. By replacing quadratic penalties with linear penalties, HI

will become more sparse and fewer physical qubits will be required in the minor

embedding. One reason why this is desirable is that minor embeddings with shorter

chains of physical qubits are less likely to result in chain breaks, which leads to

better performance in minimising the energy of HI [146; 147]. Another reason is

that for a QPU with a constant number of qubits, reducing the size of the minor

embedding increases the maximum problem size that can be encoded on the QPU.

If the problem size is small enough that multiple problem instances can fit onto the
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QPU, smaller minor embeddings allow for more copies of the problem to be encoded

and solved in parallel, which saves computation time. We have not attempted this

type of parallelisation in our D-Wave experiments.

5.2.1 Single-quarter problem minor embedding analysis

As an example of the improvement in minor embedding efficiency when using

linear penalties, Fig. 5.1 shows two minor embeddings that were calculated by

find_embedding. Both minor embeddings correspond to the logical graph of the

1Q-PCP instance with ID 100_0 embedded onto the working graph of the D-Wave

Advantage_system6.3. In Fig. 5.1(b), the linear penalty method was used to en-

code the problem’s constraint, and in Fig. 5.1(c), the quadratic penalty method

was used. The minor embedding with the linear penalty method uses 189 physical

qubits to represent the 100 logical variables, whereas the minor embedding with

the quadratic penalty method uses 1,282 physical qubits. We expect that this sub-

stantial reduction in the number of physical qubits from using the linear penalty

method should result in better performance of QA on this problem, which we ana-

lyse in Sec. 5.5. We note that the example minor embeddings shown in Fig. 5.1(b-c)

are for one particular problem instance and a particular choice of the random seed

parameter for the find_embedding function. Averaged over the minor embeddings

we used for all 1,000 problem instances in our D-Wave experiments, ≈ 1,290 phys-

ical qubits are used with the quadratic penalty method and ≈ 157 physical qubits

are used with the linear penalty method.

5.2.2 Comparison of minor embedding heuristics for complete

graphs

Since the 1Q-PCP has a single constraint that involves all variables in the

problem, the corresponding quadratic penalty produces nonzero couplings between

all variables. This means that the interaction graph of HI is complete (i.e. fully
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(a)

(b)

(c)

Figure 5.1: (a) Logical graph of a
1Q-PCP instance without any penalty
functions applied. Variables are rep-
resented by nodes. Pairs of nodes
are connected by an edge if there is
a nonzero quadratic term for the cor-
responding pair of variables in the ob-
jective function due to a cannibaliza-
tion interaction between the associated
products. (b) An example minor em-
bedding of the problem instance with a
linear penalty applied onto the working
graph of a D-Wave Advantage QPU.
Here, nodes represent physical qubits
and edges represent physical couplings.
Chains of nodes representing the same
logical variable are in the same colour.
Qubits and couplings that are not used
are coloured in grey. (c) An example
minor embedding of the same problem
instance with a quadratic penalty ap-
plied, resulting in a complete logical
graph. Figure adapted from [2].
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connected) for the single-quarter problem. D-Wave’s Ocean library has a func-

tion called find_clique_embedding that can minor embed complete graphs

onto the hardware graph of a D-Wave Advantage QPU using fewer physical

qubits than the heuristic used in find_embedding. However, we have not used

find_clique_embedding in any of the results presented outside this subsection

because we have found that the quantum annealer performs slightly better on

average when using the find_embedding function, even though it produces less

efficient minor embeddings. We note that while find_clique_embedding is the

more efficient heuristic for fully connected problems such as the 1Q-PCP, it is not

as efficient as find_embedding for the 4Q-PCP, as seen in Sec. 5.2.3.

The reason for the better average performance when using find_embedding be-

comes apparent after overlaying the values of the variables in sampled solutions

onto the minor embedding graph. We visualise this for the lowest energy solutions

sampled using the find_clique_embedding and find_embedding heuristics for a

particular problem instance in Fig. 5.2. In this figure, chains of qubits are coloured

according to the value of the corresponding variable in the solution. In both solu-

tions, roughly half of the chains correspond to variables equal to 0 and half equal to

1. Therefore, the problem’s constraint of placing half of the products on promotion

is close to being satisfied. Looking at the locations of the variables with the same

values, we can see that each colour forms a cluster of qubit chains in such a way that

there is a high degree of connectivity between the qubit chains within each cluster

and less connectivity between qubits belonging to different clusters. In other words,

it appears that qubit chains with more physical couplings between them are more

likely to take the same logical value in the solutions shown in Fig. 5.2. However,

no such structure exists in the objective function of the problem. Therefore, the

choice of mapping of logical variables to physical qubits must be heavily influencing

the sampled solutions. We believe this phenomenon is occurring because the chain

lengths are long and the problem is too large for the quantum annealer to find low

energy states of HI , so the structure of the minor embedding is playing a significant
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(a) (b)

Figure 5.2: (a) A minor embedding produced by the find_clique_embedding
function, mapping the 1Q-PCP onto the D-Wave Advantage hardware graph. The
problem’s constraint was encoded with the quadratic penalty method, resulting in
a fully connected logical graph. Nodes and edges, representing physical qubits and
couplings, form chains that are coloured according to the lowest energy solution
sampled by the quantum annealer. Chains of qubits are coloured blue (orange)
if the corresponding variable in the solution is equal to 0 (1). Edges representing
couplings between two different logical variables are shown in black. Unused qubits
and couplings are coloured grey. (b) A similar diagram showing a minor embedding
produced by the find_embedding function. Note that find_embedding produces
a different minor embedding depending on the value of its seed parameter, and the
example in (b) is for one particular parameter value. Figure adapted from [2].

role in the dynamics of the annealer. Experimenting with different chain strengths

did not solve this problem. We note that while the other solutions in the sample

sets are not shown in Fig. 5.2, all solutions that were sampled for this problem

instance display similar clusterings of variables, with the locations of the clusters

being roughly the same but the value (i.e. colour) of each cluster changing between

different solutions.

For the problem instance shown in Fig. 5.2, the lowest energy solution that was

sampled using find_embedding to calculate the minor embedding has a lower

energy than the lowest energy solution sampled using find_clique_embedding,

despite the fact that find_clique_embedding produces a minor embedding

with fewer physical qubits. This is because the minor embedding produced by

find_embedding happens to place qubit chains in locations that produce a more
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5.2.3. Four-quarter problem minor embedding analysis

favourable solution when the clustering effect occurs. Since we have changed

the value of the seed parameter of find_embedding between different problem

instances, our results using this function include a variety of minor embeddings,

with Fig. 5.2(b) being one example. In comparison, find_clique_embedding

does not take a seed parameter as an input, so the minor embedding shown in

Fig. 5.2(a) is produced for every problem with 100 variables.

5.2.3 Four-quarter problem minor embedding analysis

For the 4Q-PCP, we performed two sets of experiments. In the first set of ex-

periments, we compared the strategy of applying linear penalties to the four con-

straints C1 against the strategy of using quadratic penalties for all constraints. For

the 1,500 problem instances we ran on the D-Wave QPU, the minor embeddings

used ≈ 139 physical qubits on average when using linear penalties and ≈ 168 phys-

ical qubits on average with the all-quadratic penalty scheme. While this shows an

improvement with the linear penalty method, it is not as large of a difference as

what we found in Sec. 5.2.1 for the 1Q-PCP experiments. There are two reasons

why this is the case. Firstly, the 4Q-PCP includes the additional constraints C2

and C3, which we are implementing with quadratic penalties even in the penalty

scheme involving linear penalties. Secondly, the C matrices we generated for these

experiments are more dense than those considered in Sec. 5.2.1 because it is not

possible to generate non-trivial problem instances with highly sparse C matrices at

this problem size. In real-world problems, where a much larger number of products

are considered, the C matrices would typically be much more sparse. Therefore, we

expect the penalty scheme with linear penalties to result in a bigger improvement

in minor embedding efficiency at larger problem sizes. However, we are not able

to get good results from the D-Wave annealer at larger problem sizes due to the

limitations in its performance, even if the problem is small enough to be embedded

onto the QPU.

To quantify how the improvement in minor embedding efficiency from using the lin-
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5.2.3. Four-quarter problem minor embedding analysis

ear penalty method scales with problem size, we have calculated minor embeddings

of 4Q-PCP instances onto the working graph of the D-Wave Advantage_system6.3

at different problem sizes. The C matrices we use here have a constant minimum

connectivity of 3, which means they become more sparse as the number of products

np is increased. In Fig. 5.3, we plot the average chain length after minor embed-

ding against np. The orange data points are for the penalty scheme where all

penalties are quadratic, and the blue data points are for the scheme where the

constraints C1 are implemented with linear penalties. The average chain length in

Fig. 5.3 is well-approximated by a linear fit for both penalty schemes. This indic-

ates that the average number of physical qubits used, which is the average chain

length multiplied by the number of variables n = 5np, scales quadratically with np

for both penalty schemes. However, the gradient of the linear fit is much smaller

for the scheme with linear penalties than the all-quadratic scheme, indicating a

more favourable chain length scaling when linear penalties are used. Specifically,

the gradient of the blue line of best fit in Fig. 5.3 is 0.034± 0.002 and the gradient

of the orange line is 0.258±0.003. This means that the average number of physical

qubits used by the minor embedding is equal to 1
5(0.034±0.002)n2 +O(n) with the

linear penalty method and equal to 1
5(0.258 ± 0.003)n2 +O(n) with the quadratic

penalty method.

In the second set of experiments using the 4Q-PCP, we considered the linear-

quadratic-quadratic-linear (LQQL) and quadratic-linear-linear-quadratic (QLLQ)

penalty schemes, which apply linear penalties to two of the four constraints C1.

The LQQL scheme applies linear penalties to the first and last quarters, and the

QLLQ scheme applies them to the second and third quarters. We compared these

penalty schemes to the all-quadratic penalty scheme. The minor embeddings with

the LQQL penalty scheme used ≈ 154.7 physical qubits on average, compared to an

average of ≈ 167.8 with the all-quadratic scheme on the same problem instances.

With the QLLQ penalty scheme, the minor embeddings used ≈ 155.0 physical

qubits on average, compared to an average of ≈ 168.4 with the all-quadratic scheme
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Figure 5.3: Average chain length after minor embedding the four-quarter promo-
tion cannibalization problem onto the D-Wave Advantage hardware graph against
the number of products np in the problem. We consider the case where the in-
equality constraints C2 introduce one slack variable per product. Hence, there
are 5np logical variables in the problem. The points are averaged over 10 possible
structures of C matrices that are sparse and have a minimum connectivity of 3.
We compare the use of quadratic penalties (orange) and linear penalties (blue) for
the constraints C1, using the find_embedding function to calculate the minor
embeddings. These points are given linear fits. We also plot the average chain
length after minor embedding with the find_clique_embedding function in red,
with the red shaded region representing the regime in which switching to this em-
bedding heuristic would reduce the number of physical qubits used. The green line
represents the case where the problem can be directly mapped to the hardware,
resulting in a chain length of 1. Figure adapted from [2].

on the same problem instances. The reductions in the number of physical qubits

using the LQQL and QLLQ schemes are roughly half of what we observed for the

scheme with linear penalties for all four constraints C1. This is consistent with

the fact that there are half as many variables acted on with linear penalties in the

LQQL and QLLQ schemes.

5.3 Dynamic range improvements

Another advantage of using the linear penalty method over the quadratic method

is that it can lead to a larger effective dynamic range of qubit interactions, as

described in Chapter 3. To make the most of the finite dynamic range available to a

quantum annealer, we aim to reduce the strength of the largest magnitude couplings

Ji,j and local fields hi in HI so that the normalisation factor N in Eq. (2.48) is
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reduced. To determine how significant of an effect the use of linear penalties have

on dynamic range in the problems we have performed our experiments on, we have

calculated the maximum coupling strength max(|Ji,j |) and maximum local field

strength max(|hi|) under different penalty schemes.

5.3.1 Single-quarter problem dynamic range analysis

For the 1,000 1Q-PCP instances that we ran on the D-Wave annealer, max(|Ji,j |) is

≈ 2.21× larger and max(|hi|) is ≈ 1.26× larger when the quadratic penalty method

is used than when the linear method is used. Therefore, switching to using linear

penalties is expected to result in more efficient use of the available dynamic range

by reducing the value of N in Eq. (2.48). We suspect that for this experiment,

this improvement in effective dynamic range does not have as large an impact

on performance as the improvement in minor embedding efficiency discussed in

Sec. 5.2.1.

We used a constraint value of A = 50 promotions for the single-quarter problem

experiments, which is exactly half of the total number of products np. It follows

from Eq. (2.47) that when A = np

2 , the quadratic penalty for the problem’s con-

straint applies no local fields and only contributes to the couplings. As the value

of A is increased or decreased away from np

2 , the strength of the local fields in

the quadratic penalty increases. In comparison, the strength of the local fields re-

quired for a linear penalty monotonically increases with the value of A. Therefore,

the dynamic range improvements from switching to linear penalties may become

more significant at other values of A where the local fields become the dominant

contribution of the quadratic penalty. A particularly favourable case for the linear

penalty method is A <
np

2 , where the local fields become weaker for the linear

penalty method and stronger for the quadratic penalty method. This happens to

be the realistic scenario for promotion cannibalisation problems because retailers

typically promote less than half of their products in any given fiscal quarter.
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5.3.2 Four-quarter problem dynamic range analysis

In the 4Q-PCP experiments where we compare the penalty scheme involving linear

penalties for all constraints C1 to the all-quadratic penalty scheme, max(|Ji,j |) is

≈ 2.66× smaller and max(|hi|) is ≈ 2.25× smaller on average for the scheme with

linear penalties. This improvement is more significant than what we found for the

single-quarter problem experiments in Sec. 5.3.1.

In the second set of 4Q-PCP experiments, where we considered the LQQL and

QLLQ penalty schemes, the use of linear penalties for two out of four fiscal quarters

does not result in as large improvements in effective dynamic range. With the

LQQL penalty scheme, max(|Ji,j |) is ≈ 1.14× smaller and max(|hi|) is ≈ 1.13×

smaller on average compared to the all-quadratic scheme on the same problem

instances. For the QLLQ scheme, there is no change in the value of max(|Ji,j |) or

max(|hi|) compared to the all-quadratic scheme. Therefore, for the constraints C1,

using a combination of linear and quadratic penalties for the set of constraints

is better at maintaining the minor embedding advantages of the linear penalty

method than the dynamic range advantages. However, there may be scenarios with

different types of constraints and objective functions for which this observation does

not apply.

In order to understand why there is an improvement in effective dynamic range with

the LQQL scheme but not the QLLQ scheme, recall that we have used the seasonal

scale factors (1.5, 1, 1, 1.5)T in our experiments on the four-quarter problem. This

means that the unconstrained problem contributes larger Ising terms to HI for the

variables associated with Q1 and Q4 than for the variables associated with Q2 and

Q3. Therefore, adding a quadratic penalty only to the variables for Q1 or Q4 will

produce the same max(|Ji,j |) and max(|hi|) values as adding quadratic penalties to

all four quarters’ variables. It is only possible to reduce max(|Ji,j |) and max(|hi|)

by omitting the quadratic penalties from both Q1 and Q4 variables, which the

LQQL scheme does. Note that this is assuming we use the same quadratic penalty
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strength for all four quarters’ penalties, which is the case in our experiments.

An important takeaway from this is that when faced with an option as to which

constraints to use linear penalty functions for, like in the scenario where we want

to choose between the LQQL and QLLQ schemes, it is important to consider the

affect that the choice has on the effective dynamic range. If the goal is to get the

most dynamic range benefits out of the linear penalty method, the priority should

be to use linear penalties for constraints that act on the variables that are limiting

the dynamic range. These are the variables with either the strongest couplings

or local fields, depending on whether the effective dynamic range is limited by

max(|Ji,j |) or max(|hi|).

5.4 Tuning penalty strengths

The linear penalty method is more sensitive to the value of the penalty strength

than the quadratic penalty method. Therefore, we have used two different strategies

for tuning these parameters in our D-Wave experiments. For the quadratic penalty

strength α2, we considered the performance of a SA algorithm at various different

values of α2 and chose the value that gave the best performance on average. For

the linear penalty strength α1, we used a different value for each problem instance.

These values were selected uniformly at random from the interval of values that

produce a ground state in HI that satisfies the constraint. In practice, when the

boundaries of this interval cannot be computed, a search strategy such as the one

outlined in Sec. 3.4 can be performed to find a value of α1 in this interval using

multiple calls to the optimiser. Although tuning the linear penalty strength requires

more calls to the optimiser than for the quadratic penalty method, we argue that

this extra computation time is justified if the increase in performance from using

the linear penalty method is large enough.
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Figure 5.4: (a) Fraction S of sampled solutions that are optimal, normalised by
the maximum measured fraction Smax, plotted against the penalty strength α2

for a simulated annealing algorithm solving the 1Q-PCP. Each point is averaged
over 200 instances of the problem, which we denote with ⟨·⟩. Error bars represent
the standard error in the mean. The blue shaded area contains the 5th to 95th
percentile values of S/Smax. Note that the value of Smax is calculated for each
instance separately and is a maximum over the plotted values of α2. (b) Same as
(a), with the y-axis showing the fraction F of samples that are feasible instead.
Figure adapted from [2].

5.4.1 Single-quarter problem penalty strength tuning

For the experiments on the 1Q-PCP, we set the quadratic penalty strength to

α2 = 1.2 for all problem instances. We chose this value based on the fraction

S of optimal solutions and the fraction F of feasible solutions sampled by a SA

algorithm as a function of α2, which are plotted in Fig. 5.4 for 200 randomly selected

problem instances. In this figure, S is normalised by its maximum value Smax for

each instance to prevent the instances with large values of Smax from dominating

the average. The figure plots values averaged over the problem instances, which

we denote with ⟨·⟩. Fig. 5.4(a) shows that ⟨ S
Smax

⟩ peaks near α2 = 1.2, which is our

choice of penalty strength. While the large confidence interval indicates that there

are some instances for which α2 = 1.2 is not a near-optimal choice, the fact that

⟨ S
Smax

⟩ reaches ≈ 0.5 implies that S is not far from its maximum value for most

problem instances when α2 = 1.2. In Fig. 5.4(b), we can see that for the majority

of problem instances, α2 = 1.2 produces a large fraction F of solutions that are

feasible.
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Figure 5.5: (a) Fraction S of simulated annealing samples that are optimal plotted
against the quadratic penalty strength α2 for 200 different instances of the single-
quarter promotion cannibalization problem, shown in different colours. Dashed
lines connecting the points for each instance are shown to guide the eye. (b) Plot
showing the average value of S with error bars representing the standard error in
the mean. The blue shaded area contains the 5th to 95th percentile values of S.
Figure adapted from [2].

For the sake of transparency, we plot S for each instance individually and the

average value ⟨S⟩ without normalisation in Fig. 5.5. This is for the same selection

of problem instances as in Fig. 5.4. Comparing Fig. 5.4(a) and Fig. 5.5(b), we see

that both ⟨S⟩ and ⟨ S
Smax

⟩ are maximised at approximately the same value of α2.

5.4.2 Four-quarter problem penalty strength tuning

The 4Q-PCP with 10 products has 44 constraints in total, which are grouped into

the sets of constraints C1, C2, and C3. In our experiments, we used a different

value of the quadratic penalty strength for each set of constraints. These pen-

alty strengths are denoted α
(C1)
2 , α(C2)

2 , and α
(C3)
2 . In principle, each of the 44

constraints could take a unique penalty strength, but tuning 44 parameters would

be much more computationally challenging than tuning 3 parameters. It is un-

clear whether having these extra parameters would be of much benefit given the

similarities in the subproblems that each constraint in a particular set acts on.

In line with the previous subsection, the values of α(C1)
2 , α(C2)

2 , and α
(C3)
2 were

determined based on an analysis of SA on the four-quarter problem. We chose the
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Figure 5.6: Normalised fraction S/Smax of simulated annealing samples that are
optimal when solving the 4Q-PCP plotted against the quadratic penalty strength
for the constraints (a) C1, (b) C2, and (c) C3. Only one quadratic penalty strength
is varied in each plot while the others are kept at the constant values α(C1)

2 = 2.4,
α

(C2)
2 = 0.6, and α

(C3)
2 = 1.2. Each point is an average over 200 random problem

instances. Error bars show the standard error in the mean, and the blue shaded
areas contain the 5th to 95th percentile values. Smax is calculated for each instance
separately and is a maximum over the plotted values of α(Ci)

2 . In (d), (e), and (f), we
show similar plots for the fraction F of sampled solutions that are feasible against
the quadratic penalty strengths for the constraints C1, C2, and C3 respectively.
Figure adapted from [2].

penalty strengths α(C1)
2 = 2.4, α(C2)

2 = 0.6, and α
(C3)
2 = 1.2 because they led to

large fractions of optimal and feasible solutions being sampled on average, which

is shown in Fig. 5.6.

While we cannot expect these SA results to exactly reflect the behaviour of a D-

Wave annealer, the broadness of the peaks in Fig. 5.4(a) and Fig. 5.6(a-c) reassure

us that the results from a quantum annealer would not be substantially impacted

by small changes in the choices of quadratic penalty strengths.
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5.5. Single-quarter problem on a D-Wave annealer

5.5 Single-quarter problem on a D-Wave annealer

We have run the 1Q-PCP on a D-Wave annealer using the quadratic and linear

penalty methods. Recall that the problem we consider involves 100 products and

the constraint is to select 50 products to promote. Out of 10,000 problem instances

that we randomly generated, there are 1,406 instances for which a value of α1 that

produces the correct ground state could not be found. The D-Wave runs in this

subsection were performed on 1,000 instances that were randomly selected from the

remaining 8,594 instances for which the linear penalty method is able to implement

the desired constraint.

We compare the performance of the two penalty methods in experiments on the

D-Wave annealer in Fig. 5.7. In Fig. 5.7(a), we see that the fraction F of sampled

solutions that are feasible is typically larger when using the linear penalty method.

For 117 out of the 1, 000 problem instances, the quantum annealer did not sample

any feasible solutions using the quadratic penalty method. For the linear penalty

method, this occurred for only 4 instances. This result shows that even though the

linear penalty method uses fewer resources to implement constraints by not using

any quadratic terms, it can still lead to more feasible solutions being sampled

because of the benefits that result from the more efficient encoding.

Fig. 5.7(b) shows histograms of the approximation ratios R of the best feasible

solutions sampled with each penalty method. With the quadratic penalty method,

the value of R for the best sample is typically around 0.5 to 0.7, indicating that

the quantum annealer is only able to sample low-quality feasible solutions. In

comparison, the annealer consistently samples solutions with approximation ratios

close to 1 with the linear penalty method. In fact, the optimal solution (R =

1) was found for 541 instances with the linear penalty method. These results

show an example where there is a clear advantage of using the linear penalty

method over the quadratic penalty method. This performance enhancement more

than compensates for the extra optimiser calls required to tune the linear penalty
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Figure 5.7: (a) Histograms of the fraction F of 1,000 D-Wave annealer samples that
are feasible solutions for 1,000 1Q-PCP instances. We compare the use of the linear
penalty method (blue) against the quadratic penalty method (orange) for encoding
the problem’s constraint. (b) Histograms of the maximum approximation ratio R
for the same D-Wave sample sets. To make the shapes of the distributions clear,
we have used different bin widths for the two histograms in (b). The inset zooms
onto the histogram for the linear penalty method so that it is more visible. Figure
adapted from [2].

strength. We suspect that in this example, the primary factor responsible for the

increase in performance with the linear penalty method is the improvement in

minor embedding efficiency.

5.6 Simulated annealing for the single-quarter

problem

We have run the simulated annealing solver in the D-Wave Ocean software library

on the same 1,000 single-quarter problem instances that were used in Sec. 5.5 for the

QA experiments. These runs use the same values of α1 and α2, which were tuned as

described in Sec. 5.4. In Fig. 5.8, we compare SA performance using the linear and

quadratic penalty methods in the same way as Fig. 5.7. Since minor embedding

is not necessary for classical methods, we have run the problem instances without

minor embedding, and we present these results in Fig. 5.8(a-b). We have also solved

the minor embedded problem instances with the same minor embeddings that were

used for the QA experiments, which correspond to Fig. 5.8(c-d). This allows us
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Figure 5.8: (a) Histograms of the fraction F of 1,000 SA samples that are feasible
solutions for 1,000 1Q-PCP instances. We compare the use of the linear penalty
method (blue) against the quadratic penalty method (orange) for encoding the
problem’s constraint. Minor embedding was not performed, and an anneal time
of tf = 20 was used. (b) Histograms of the maximum approximation ratio R for
the same SA sample sets. (c) and (d) Similar histograms for problem instances
that were minor embedded onto the D-Wave advantage hardware graph before
being given to the SA solver. These samples were taken with an anneal time of
tf = 1,000. To make the shapes of the distributions clear, we have used different
bin widths for the two histograms in (d). The inset zooms onto the histogram for
the linear penalty method so that it is more visible.

to empirically study the impact of minor embedding on the performance of the

two penalty methods, which is not possible to do on a D-Wave quantum annealer.

Note that an anneal time of tf = 20 was used for the results in Fig. 5.8(a-b) and

tf = 1,000 was used for Fig. 5.8(c-d). We chose these values so that the problem

was not always easy to solve with both penalty methods.

In Fig. 5.8(a), we see that when minor embedding isn’t performed, the linear pen-

alty method leads to smaller fractions F of feasible solutions being sampled than

the quadratic method. There are 3 problem instances for which a feasible solution
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was not sampled with the linear penalty method, whereas the quadratic penalty

method led to feasible solutions being sampled for every instance. However, there

is a performance enhancement with the linear penalty method when considering

the maximum approximation ratios max(R) in Fig. 5.8(b). The optimal solution

was sampled for 234 instances with the linear penalty method and 0 instances

with the quadratic penalty method. These results contrast with the QA results

in Fig. 5.7, where the linear penalty method enhanced F and produced a more

significant improvement in max(R)

The results in Fig. 5.8(c-d) for SA with minor embedding are much more similar to

those in Fig. 5.7 for D-Wave QA. In Fig. 5.8(c), there is a slight increase in F on

average when using the linear penalty method, although there are 21 problem in-

stances for which the linear method did not lead to any feasible samples as opposed

to 10 instances with the quadratic method. Fig. 5.8(d) shows that with the linear

penalty method, optimal and near-optimal solutions are sampled, whereas with

the quadratic penalty method, the best sampled solutions for each instance have

approximation ratios of ≈ 0.6. These results provide evidence that minor embed-

ding efficiency improvements are a key factor responsible for the outperformance

of the linear penalty method in the single-quarter problem experiments. However,

even without minor embedding, the linear penalty method does produce a mod-

est improvement in the quality of feasible solutions. This indicates that there are

other benefits of using the linear penalty method that can also apply to classical

methods.

5.7 Four-quarter problem on a D-Wave annealer

In this section, we analyse the performance of QA in solving the 4Q-PCP with np =

10 products using a variety of penalty schemes. Recall that we set the seasonal scale

factors in Eq. (2.33) to λ = (1.5, 1.0, 1.0, 1.5)T and the constraints C1 require four

out of the ten products to be promoted in each quarter. The constraints C2 require
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each product to be promoted once or twice, while the constraints C3 do not allow

consecutive promotions of the same product. For the four constraints C1, we either

use the quadratic penalty method, the linear penalty method, or a combination of

both. In all the penalty schemes we consider, the constraints C2 and C3 are

implemented with quadratic penalties. Note that since the constraints C2 are

inequalities, ten extra variables are introduced with the slack variable encoding

used in Eq. (2.49), bringing the total variable count to 50 for this problem.

The C matrices used in this section for the 4Q-PCP have an average connectivity

of ≈ 5.1, making them more dense than those used in the 1Q-PCP. This is due

to the smaller number of promotions per quarter in this problem, which results

in some optimal solutions having zero cannibalization if the C matrices are made

more sparse. Our choice of problem size is limited by the maximum problem size for

which the D-Wave annealer can produce good solutions. In real-world problems, the

number of products and promotions would be much larger, so sparser C matrices

would still result in optimal solutions with nonzero cannibalization.

5.7.1 Comparing the linear and quadratic penalty schemes

We first consider the penalty schemes where the four constraints C1 are all imple-

mented with quadratic penalties or are all implemented with linear penalties. For

6,066 of the 10,000 problem instances we generated, we were able to find values

of α1 that produced a feasible ground state in HI using the penalty scheme with

linear penalties. The search strategy outlined in Sec. 3.6 was used to find the α1

values. For 3,082 of these instances, it was possible to produce a feasible ground

state using the same value of α1 for each of the four linear penalties. In this sub-

section, we consider 1,500 instances that were randomly selected from the 3,082

instances that can be successfully constrained with a single α1 parameter, and we

use a single penalty strength for each of the four constraints C1. As before, the

value of α1 we used for each instance was chosen uniformly at random from the

interval of values that produce a feasible ground state.

92



5.7.2. Using a combination of linear and quadratic penalties

0.0 0.1 0.2 0.3 0.4
F

0

100

200

300

400
Nu

m
be

r o
f i

ns
ta

nc
es

(a)

0.6 0.7 0.8 0.9 1.0
max(R)

0

100

200

300
(b)

Figure 5.9: (a) Histograms of the fraction F of 1,000 D-Wave annealer samples
that are feasible solutions for 1,500 4Q-PCP instances. We compare the use of the
linear penalty method (blue) against the quadratic penalty method (orange) for
encoding the constraints C1. To make the shapes of the distributions clear, we have
used different bin widths for the two histograms. (b) Histogram of the maximum
approximation ratios R for the D-Wave sample sets using quadratic penalties. A
histogram for the sample sets using linear penalties is not shown because max(R)
was equal to one for all but nine of the instances. Figure adapted from [2].

Fig. 5.9 shows histograms of the fraction F of samples that are feasible and the

best approximation ratios max(R) for our QA sample sets. We can see that there

are significant improvements in both performance metrics when switching the four

penalties on each fiscal quarter from quadratic to linear. This is in alignment with

our findings for the single-quarter problem. With the penalty scheme involving

four linear penalties, feasible solutions were sampled for all 1,500 problem instances

and optimal solutions were sampled for 1,491 of them. With the penalty scheme

involving only quadratic penalties, no feasible solutions were found for 22 instances

and optimal solutions were found for only 55 instances.

5.7.2 Using a combination of linear and quadratic penalties

In the previous subsection, we mentioned that there were 3,934 instances for which

we could not find values of α1 for each quarter that led to a feasible ground state

of HI . This is either because no good combination of values of α1 exist or because

our search strategy was not able to find them in the specified number of iterations.

This may occur more often at larger problem sizes or for problems with different
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5.7.2. Using a combination of linear and quadratic penalties

formulations. We propose that when this does happen, linear penalties that are

not correctly implementing the intended constraint can be switched to quadratic

penalties one by one until feasible solutions are sampled. The goal is to maintain

some of the benefits of using the linear penalty method by keeping penalties linear

where possible. In this subsection, we investigate whether this method would work

well in practice.

Due to our choice of seasonal scale factors λ = (1.5, 1.0, 1.0, 1.5)T, the objective

function of the four-quarter problem is exactly the same for the first & fourth

quarters’ subproblems and the second & third quarters’ subproblems. Because of

this, the objective value of a solution is unchanged if the solution is “flipped” by

swapping the promotion plans for the first & fourth quarters and for the second &

third quarters. It can be easily shown that for the constraints C1, C2, and C3, a

flipped solution is feasible if and only if the original solution is feasible. Therefore,

for this example problem, the issue of a misbehaving linear penalty cannot be

resolved by only switching that particular quarter’s penalty to be quadratic because

the flipped solution, which is infeasible, will continue to have a lower energy in HI

than the feasible solutions. Instead, penalties must be switched from linear to

quadratic in pairs. Specifically, the only two combinations of linear and quadratic

penalties for the constraints C1 that can possibly produce a feasible ground state

for instances that cannot be constrained with four linear penalties are those where

the first & fourth quarters or the second & third quarters have quadratic penalties

applied. We refer to these as the QLLQ and LQQL penalty schemes respectively.

Out of the 3,934 problem instances for which we could not find good α1 values for

the scheme with four linear penalties, we found that 2,298 of the instances are able

to be successfully constrained with the LQQL or QLLQ penalty scheme. Following

a similar argument as above where we consider the objective values of flipped

solutions, the two α1 values can always be chosen to be the same in cases where

the LQQL or QLLQ penalty scheme is successful in implementing the constraints.

Therefore, we have used the same value of α1 for each pair of linear penalties in
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Penalty scheme Fraction of problem instances for which
a feasible solution was sampled

All-quadratic ≈ 0.96
LQQL ≈ 0.75
QLLQ 0.60

Table 5.1: Fraction of problem instances for which a feasible solution was found in
at least one of the 1,000 D-Wave samples for the four-quarter promotion cannibal-
ization problem. We compare the penalty scheme of applying quadratic penalties
to all four quarters against the schemes of using linear penalties for the first and
last quarters (LQQL) or the second and third quarters (QLLQ).

our analysis of the LQQL and QLLQ schemes. In the experiments on a D-Wave

annealer, we chose the α1 value for each instance randomly from the interval of

values that produce feasible ground states, as before.

Table 5.1 compares the fraction of problem instances for which a feasible solution

was sampled in our runs on the D-Wave annealer for the LQQL, QLLQ, and all-

quadratic penalty schemes. We find that using quadratic penalties for all four

constraints C1 results in feasible solutions being sampled more often than when

using the LQQL or QLLQ schemes. The LQQL and QLLQ schemes were only

applied to the subset of problem instances for which the penalty scheme was able

to produce a feasible ground state, and the all-quadratic scheme was applied to

all instances in either subset. Since the instances in each set are not the same,

the results for the LQQL and QLLQ schemes are not directly comparable. With

this caveat in mind, we observe that using the LQQL scheme resulted in feasible

solutions being sampled for a larger fraction of instances than with the QLLQ

scheme.

In Fig. 5.10, we compare the best approximation ratios achieved with the LQQL and

QLLQ penalty schemes against those with the all-quadratic scheme. We find that

the approximation ratios are very similar between the different penalty schemes.

This differs from the previous QA experiments, where introducing linear penal-

ties produced significantly higher quality solutions. The mean value of max(R) is

slightly smaller for the LQQL scheme than for the all-quadratic scheme. For the
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Figure 5.10: (a) Histograms of the maximum approximation ratios R of 1,000
D-Wave annealer samples for 1,815 4Q-PCP instances that can be successfully
constrained with the LQQL penalty scheme. We compare the use of the LQQL
penalty scheme (blue) against the all-quadratic penalty scheme (orange). Cases
in which no feasible solution was found are not shown in the histograms. (b)
Similar histograms comparing the QLLQ (blue) and all-quadratic (orange) penalty
schemes for 780 instances that can be successfully constrained with the QLLQ
penalty scheme. Note that in both (a) and (b), the area under the blue histogram
is smaller than for the orange histogram because the LQQL and QLLQ schemes
produced feasible samples for fewer instances than the all-quadratic scheme.

QLLQ scheme, the mean value of max(R) is slightly larger than for the all-quadratic

scheme. However, we must question whether these differences are statistically signi-

ficant. Moreover, the different penalty schemes found feasible solutions for different

subsets of instances, so the instances included in the histograms in Fig. 5.10 are

different for each penalty scheme. Therefore, a more rigorous analysis is required

to compare the subtle differences in performance between the penalty schemes in

a way that is more accurate than what can be inferred from Fig. 5.10.

To perform a more rigorous analysis, we compare the performance on a per-instance

basis in order to avoid comparing results for instances that are more difficult to solve

with results for easier instances. We leave out instances for which one of the penalty

methods being compared resulted in no feasible solutions being sampled. Fig. 5.11

plots the difference in objective values f(x) between the best feasible solutions

sampled using the all-quadratic penalty scheme and the LQQL or QLLQ scheme.

A negative difference in f(x) means that a higher quality solution was sampled with

the introduction of the linear penalties, whereas a positive difference indicates that
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Figure 5.11: Histogram of the difference between the objective value f(x) of the
best feasible sample using the all-quadratic penalty scheme and (a) the LQQL
penalty scheme or (b) the QLLQ penalty scheme. A negative difference (green)
means that the LQQL or QLLQ scheme found a higher quality solution, and a
positive difference (red) indicates that the all-quadratic scheme found a higher
quality solution. There is one instance that is left out of (a) because the difference
in f(x) was zero. Figure adapted from [2].

the all-quadratic scheme produced the best solution. There are 741 instances for

which the LQQL scheme improved the quality of the best solution compared to

the all-quadratic scheme and 592 instances for which the LQQL scheme worsened

the quality of the best solution. For the QLLQ scheme, there are 179 instances for

which the scheme improved the quality of the best solution and 265 instances for

which the scheme worsened the quality of the best solution.

It appears that LQQL scheme had a slight positive impact on the solution quality

whereas QLLQ scheme had a slight negative impact, but it is unclear from this

analysis alone whether these results are statistically significant. To determine this,

we have performed hypothesis tests on the number of times nb that the LQQL or

QLLQ scheme found a lower energy feasible solution, i.e. performed better, than

the all-quadratic penalty scheme and the number of times nw it could only find

higher energy feasible solutions, i.e. performed worse. We ignore one case where

the best feasible solution had the same energy for both penalty schemes. Our null

hypothesis is that the probability of the LQQL or QLLQ scheme producing better

performance than the all-quadratic scheme is the same as the probability of the

schemes producing worse performance. The statistical significance for this null
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hypothesis is given by

p = 1

2nb+nw

nb+nw∑
k=nb

 nb + nw

k

 , (5.1)

where

 n

k

 is the binomial coefficient. This is effectively the probability that

the penalty scheme being considered has happened to perform better than the all-

quadratic scheme at least as many times if there was a 50% chance of it performing

better for any given instance. Conventionally, p < 0.05 would indicate a statistically

significant result that rejects the null hypothesis [148] and confirms that the penalty

scheme under consideration performs better than the all-quadratic scheme. We

can also use this as a test for whether the penalty scheme performs statistically

significantly worse than the all-quadratic scheme. For this, we define p̃ = 1 − p.

A value of p̃ < 0.05 would be a statistically significant result that confirms worse

performance than the all-quadratic scheme.

Substituting the values nb = 741 and nw = 592 into Eq. (5.1) gives p = 2.5× 10−5,

which confirms the statistical significance of our result that the LQQL scheme

finds higher quality solutions for more instances than the all-quadratic scheme.

The values nb = 179 and nw = 267 give p̃ = 1.2 × 10−5, which shows that the

result indicating that the QLLQ scheme finds higher quality solutions for fewer

instances than the all-quadratic scheme is also statistically significant. All of these

experiments were performed at similar times and on the same quantum hardware.

Unless there were significant enough changes in the behaviour of the quantum

hardware between the time that the LQQL or QLLQ runs were performed and the

time that the all-quadratic penalty scheme runs were performed, the differences in

performance are due to the effect that the choice of penalty scheme has.

One may wonder why switching half of the constraints from quadratic to linear

penalties has such a small effect on performance compared to switching all pen-

alties to linear. We suspect that the reason for this is that the dynamic range

improvements from using linear penalties are a significant factor in improving per-
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formance in this example problem, and having a single quadratic penalty on one

of the quarters is enough to eliminate most of these dynamic range improvements,

as detailed in Sec. 5.3.2. For this example problem, the LQQL and QLLQ schemes

are instead more successful in improving the minor embedding efficiency, which we

analysed in Sec. 5.2.3. We expect that at larger problem sizes, both the minor

embedding and dynamic range improvements would be more significant than they

are here and this would lead to a clear performance advantage in using the LQQL

or QLLQ schemes. The expected improvements in dynamic range usage and minor

embedding efficiency also depend on the formulation and sparsity of the problem.

More significant improvements might be observed for other problems with multiple

constraints.

The difference in dynamic range improvement between the LQQL and QLLQ pen-

alty schemes could explain why the LQQL scheme performed slightly better than

the all-quadratic scheme in finding low-energy solutions, whereas the QLLQ scheme

performed slightly worse (Fig. 5.11). It could also be why we found that the LQQL

scheme produces feasible solutions more often than the QLLQ scheme (Table 5.1).

This underscores the importance of taking dynamic range considerations into ac-

count when selecting which penalties to turn linear. While the results in Sec. 5.5

clearly demonstrated the benefits to performance from having more efficient minor

embeddings with the linear penalty method, the results in this section demonstrate

that the dynamic range usage improvements can result in better performance too.

5.8 Chapter conclusions

In this Chapter, we have used a D-Wave quantum annealer to experimentally test

the linear Ising penalty method for encoding constraints in combinatorial optimisa-

tion problems. We have looked at an example promotion cannibalisation problem

involving a single constraint and another example involving multiple constraints.

For both problems, we found that the majority of the instances that we generated

99



5.8. Chapter conclusions

could be exactly constrained with linear penalties encoding the constraints C1.

For the problem with multiple constraints, some of the instances that could not

be exactly constrained with four linear penalties could be exactly constrained by

switching two of the linear penalties to quadratic penalties.

For both the problem with a single constraint and the problem with multiple con-

straints, we observed significant improvements in the performance of the quantum

annealer when using linear penalties instead of quadratic penalties. These im-

provements were demonstrated by increases in the fraction of sampled solutions

that satisfy the constraints and the approximation ratios of the sampled solutions.

The most dramatic improvement was observed in the quality of sampled solutions

for the problem with a single constraint. Encoding this problem’s constraint with

a quadratic penalty resulted in the quantum annealer finding no high-quality solu-

tions for any of the problem instances. Switching to a linear penalty function led to

the quantum annealer finding the optimal solution for more than half of the prob-

lem instances and finding near-optimal solutions for most of the other instances.

In these experiments, we found signs that improvements in minor embedding and

effective dynamic range both contributed to better performance. We note that

there are other methods for encoding constraints that we have not considered here,

and our observation of a performance improvement with the linear penalty method

is specifically a comparison against the quadratic penalty method.

For instances of the problem with multiple constraints that could not be success-

fully constrained with four linear penalties, switching two of the linear penalties

to quadratic penalties resulted in a much smaller difference in performance when

compared to the all-quadratic penalty scheme. We found that there was a small

but statistically significant improvement in the quality of sampled solutions when

the two linear penalties were applied to the constraints that have a larger impact

on the effective dynamic range, despite having a negative impact on the feasibility

of solutions. This suggests that a strategy of focusing on removing the quadratic

penalties that are most detrimental to the dynamic range is worthwhile, which
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is something that can be determined without performing any anneals. At larger

problem sizes, where the minor embedding and dynamic range benefits of linear

penalties are greater, we predict that there would be a more substantial perform-

ance advantage of linear over quadratic penalties.
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Chapter 6

Variable penalty strength

quantum approximate

optimisation algorithm

6.1 Introduction

In this chapter, we propose a new variant of the QAOA for constrained optimisation

problems in which the strengths of penalty functions are varied in each layer of the

quantum circuit. This introduces additional variational parameters and enhances

the algorithm’s ability to find good solutions. We compare the performance of this

variant against other variants of the QAOA when solving the 2Q-PCP in numerical

simulations. We consider the use of quadratic and linear penalty functions in our

simulations. The simulations are of error-free closed-system dynamics and assume

all-to-all connectivity of the physical qubits.
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6.2 Variable penalty strength QAOA

An Ising Hamiltonian that encodes an optimisation problem with a set of con-

straints C using the penalty method can be written as

HI = Hobjective +
∑
c∈C

αcHc, (6.1)

where Hobjective is the Ising Hamiltonian encoding the unconstrained objective func-

tion and αcHc is a penalty for the constraint c ∈ C with penalty strength αc ∈ R.

Hc may take a variety of different forms, such as the quadratic and linear penalties

that were defined in Sec. 2.8 and Sec. 3.2.

We propose a variant of the QAOA that includes additional variational parameters

to control the strength of the penalty terms for each layer independently, and

we refer to it as the variable penalty strength quantum approximate optimisation

algorithm (VPS-QAOA). This takes inspiration from the MA-QAOA [84; 85],

which we described in Sec. 2.5.2, in the sense that it aims to improve performance by

including more variational parameters in the ansatz. The variable penalty strength

ansatz places more focus on the problem’s constraints by associating the extra

variational parameters with the penalty functions. Therefore, we expect it to be

most useful in scenarios where the standard QAOA struggles with satisfying the

constraints.

The VPS-QAOA modifies the QAOA ansatz by replacing the phase separator unit-

ary in Eq. (2.23) with

UI(γl, δl) = e−i(γlHobjective+δl

∑
c∈C αcHc), (6.2)

where δ is a vector of p additional variational parameters that rescale the penal-

ties and effectively allow the penalty strengths to be varied between layers. The

standard QAOA is a special case of the VPS-QAOA where δl = γl ∀l. This means

that with optimal values of the variational parameters, the expected value of HI ,

as defined in Eq. (6.1) with constant penalty strengths, cannot be higher for the
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VPS-QAOA ansatz than for the QAOA ansatz with the same number of layers, as

has been shown for the MA-QAOA [85]. Hence, the guarantee from the adiabatic

theorem of producing an arbitrarily large probability of measuring a ground state of

HI with enough layers of the QAOA, which we discussed in Sec. 2.5.1, also applies

to the VPS-QAOA. It is also guaranteed that the expectation value of HI with

optimal parameter choices cannot increase after adding a layer to the VPS-QAOA

ansatz for the same reason that was discussed in Sec. 2.5.1 for the QAOA.

The number of additional variational parameters introduced in the VPS-QAOA is

typically much smaller than in the MA-QAOA. The total number of parameters

in the VPS-QAOA ansatz is 3p, whereas the MA-QAOA uses pn(n+3)
2 parameters

when the Ising Hamiltonian has nonzero values for all possible couplings and local

fields. In comparison, the standard QAOA uses 2p variational parameters. As

detailed in Sec. 2.5.2, the large number of variational parameters introduced in the

MA-QAOA makes the task of classically optimising the parameters more challen-

ging. Therefore, it may be the case that an ansatz with more parameters than the

standard QAOA but with fewer parameters than the MA-QAOA is preferable in

some situations. This motivates the study of variants like the VPS-QAOA that

introduce new parameters but not as many as the MA-QAOA.

For problems with multiple constraints, it may be beneficial to define the phase

separator unitary as

UI(γl, δl) = e−i(γlHobjective+
∑

c∈C δl,cαcHc), (6.3)

thereby assigning a different variational parameter δl,c to each penalty. This gives

the classical optimiser more fine-grained control over the penalty strengths at the

expense of increasing the total number of parameters to 2p+ p|C|, where |C| is the

number of constraints. It is also possible to use an approach in which similar types

of constraints share the same variational parameter. For example, when solving

the 4Q-PCP, one could define three variational parameters δl,C1, δl,C2, and δl,C3

associated with the penalties for the sets of constraints C1, C2, and C3 respect-
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ively. We do not consider approaches involving multiple variable penalty strength

parameters per layer. Therefore, all of our results concerning the VPS-QAOA use

the phase separator defined in Eq. (6.2).

6.3 Ansatzes considered

In this chapter, we compare the performance of a variety of different QAOA variants

that each have different ansatzes. The ansatzes we consider are those of the stand-

ard QAOA, the VPS-QAOA, the MA-QAOA, and another variant that we refer to

as the two-angle quantum approximate optimisation algorithm (2A-QAOA). We

use circuits with p = 6 layers for all of these ansatzes and also consider a p = 1

version of the MA-QAOA ansatz.

The 2A-QAOA is a variant of the QAOA that we have defined for the purpose

of having a performance comparison that involves a similar number of variational

parameters as the VPS-QAOA. Like the VPS-QAOA, the phase separator unitary

for each layer of the 2A-QAOA ansatz includes two variational parameters, or

angles, γl and δl. The difference is that instead of associating δl with the penalties,

we randomly select half of the couplings and half of the local fields in HI and

associate δl with those. The phase separator unitary for the 2A-QAOA can be

written as

UI(γl) =
∏

i,j∈E1

e−iγlJi,jσz
i σz

j
∏

i,j∈E2

e−iδlJi,jσz
i σz

j
∏

i∈V1

e−iγlhiσ
z
i

∏
i∈V2

e−iδlhiσ
z
i , (6.4)

where E1 (E2) is the set of qubit pairs with labels (i, j) that have nonzero couplings

Ji,j associated with the variational parameters γ (δ) and V1 (V2) is the set of

qubits with labels i that have nonzero local fields hi associated with the variational

parameters γ (δ).

In our simulations of the QAOA and the 2A-QAOA in this chapter, we treat the

penalty strength as an additional variational parameter to be optimised alongside

the other variational parameters. This allows the penalty strengths to be tuned
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Variant Number of layers p Number of variational parameters d

QAOA 6 13
VPS-QAOA 6 18
2A-QAOA 6 19
MA-QAOA 1 96
MA-QAOA 6 576

Table 6.1: Number of variational parameters in different variants of the QAOA
when solving the 2Q-PCP with np = 8 products and n = 16 qubits using quadratic
penalty functions to encode all constraints. Note that our implementations of the
QAOA and the 2A-QAOA involve a parameter that controls the strength of the
penalty functions.

individually for each instance instead of tuning across all instances, as we did in

Chapter 4. We use the same penalty strength α2 for all the constraints in the

2Q-PCP when using the quadratic penalty method. In cases where linear penalties

are used, a penalty strength α1 = −α2 with the same magnitude but opposite

sign is used. This means that in all cases, a single variational parameter is used to

control all penalty strengths. Hence, the number of variational parameters becomes

2p + 1 for the QAOA and 3p + 1 for the 2A-QAOA. Better performance may be

achieved by using different parameters for each penalty or each set of constraints C1

and C3, but we have not attempted this. For the VPS-QAOA and MA-QAOA, the

penalty strengths can already be effectively controlled by the existing variational

parameters in the ansatzes, so we do not need to introduce any more parameters.

In Table 6.1, we compare the number of variational parameters d in the different

variations of the QAOA that are simulated in this chapter. The standard QAOA

uses the fewest number of variational parameters. The 2A-QAOA uses one more

variational parameter than the VPS-QAOA to control the penalty strength. The

MA-QAOA uses significantly more variational parameters than all of the other

variants, even when the ansatz has only one layer. Note that the logical graph of

the 2Q-PCP objective function is not fully connected, and d would be even larger

for the MA-QAOA when solving a fully connected problem.
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6.4 QAOA implementation

In the simulations in this chapter, we have made a variety of modifications to

the implementation of the QAOA compared to the more standard implementation

used in Chapter 4. These modifications are based on the results of previous work

that have shown improvements in performance [149; 150; 151; 86]. We apply these

modifications to all QAOA variants considered in this chapter. Here, we describe

what these changes are.

This first modification is motivated by previous studies that have found that better

values of the variational parameters can be found by providing a different cost

function to the classical optimiser instead of ⟨f(x)⟩ [149; 150]. The modified cost

functions used in these studies give a higher weighting to sampled solutions with

lower cost values. In the implementation used in this chapter, we define the cost

function of the classical optimiser as the average residual energy of the best 20% of

the sampled solutions. In other words, each time the quantum circuit is repeatedly

sampled, we discard the 80% of samples with the highest objective values and

calculate the average residual energy of the remaining solutions. The residual

energy Eres is related to the objective function through Eq. (2.54). This definition

of the cost function gives an incentive for the classical optimiser to increase the

quality of the best sampled solutions at the expense of the quality of the other

samples.

Another change compared to the implementation of the QAOA in Chapter 4 is that

we use the SPSA method [125] instead of the COBYLA method as the classical

optimiser. In each iteration, the COBYLA method evaluates the cost function

at the vertices of a simplex in the parameter space in order to build a linear

approximation of the cost function [124]. This means that for an ansatz with d

parameters, the quantum circuit must be evaluated d+ 1 times in each COBYLA

iteration. In comparison, each iteration of the SPSA method involves evaluating

the cost function at two perturbed positions along a randomly chosen direction
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in the parameter space and calculating an approximate gradient of the cost [125].

Hence, the method requires two circuit evaluations per iteration, regardless of the

number of parameters. This means that more iterations can be performed with

SPSA than COBYLA given a fixed number of circuit evaluations when the number

of variational parameters is large. Indeed, we perform 50,000 SPSA iterations for

each simulation in this chapter, whereas the QAOA simulations in Chapter 4 used

a maximum of 100 COBYLA iterations. The quantum circuit is sampled 1,000

times to estimate the cost value each time the variational parameters are changed

by the SPSA method.

Finally, we have changed the initialisation strategy of the variational parameters

to allow for both positive and negative initial values, inspired by previous work

that has found that the optimal values of the angles βk and γk often have opposite

signs [151; 86]. Specifically, for all QAOA variants, we initialise the angles in β and

γ by selecting each value uniformly at random from the interval [−1, 1). For the

standard QAOA and the 2A-QAOA, the penalty strength α2 is initialised uniformly

at random in the interval [0, 8). If linear penalties are used, α1 is set to −α2. For

the VPS-QAOA and MA-QAOA, we set α2 = 4, although this can effectively be

rescaled by the variational parameters in these ansatzes. A penalty strength of

α2 = 4 was also used in the definition of the cost function for all variants. For the

VPS-QAOA and 2A-QAOA, we initialised the angles in δ uniformly at random in

the interval [−1, 1). In this chapter, each run of an algorithm was performed with

a single set of initial variational parameters for any particular problem instance.

Different random initial parameters were chosen for each instance.

6.5 SPSA hyperparameters

The SPSA optimiser takes two hyperparameters, which can be varied in each it-

eration k. One of these is the perturbation size ck, which specifies the magnitude

of the perturbation that is used to calculate an approximate gradient of the cost.
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6.5. SPSA hyperparameters

The other is the learning rate ak, which sets the scale of the parameter update

step. That is, ak controls how large a step to take in the direction that is assumed

to have a negative gradient. In many implementations of the SPSA, ak and ck are

set to decay according to the schedules

ak = a

(A+ k + 1)α
(6.5)

and

ck = c

(k + 1)γ
, (6.6)

where A is the stability constant, a is the numerator of the learning rate, c is the

numerator of the perturbation size, α controls the decay rate of the learning rate,

and γ controls the decay rate of the perturbation size [152; 123]. We set α = 0.602

and γ = 0.101, which are commonly used values [152; 123]. We use the value

A = 0.1Niter, where Niter is the total number of SPSA iterations, to match what is

used in the PennyLane library [152].

In our numerical work, we set a = c, which effectively leaves one hyperparameter

that needs to be assigned. We have independently tuned this value for each variant

of the QAOA considered in this chapter. To do this, we have simulated each QAOA

variant solving 100 instances of the 2Q-PCP with a and c set to 0.001, 0.01, 0.1, and

1. These simulations used quadratic penalty functions to encode all constraints.

Fig. 6.1 plots the mean value of the SPSA optimiser’s cost function against the

iteration for each QAOA variant and each value of a and c. Solid lines show the

mean costs for the perturbed variational parameters in each SPSA iteration. Points

representing the mean costs for the final unperturbed variational parameters are

also plotted. There is sometimes a large drop in mean cost for the final unperturbed

variational parameters compared to the mean costs of the previous iterations. We

believe this is because small perturbations in the variational parameters near local

optima can have a large impact on performance, which means that the cost for the

parameters at the unperturbed position can be much smaller in some cases.

109



6.6. Performance comparison

We find that for the QAOA, VPS-QAOA, and 2A-QAOA, a value of a = c = 0.01

produces the lowest cost value on average. This is the value that we use for these

variants in the rest of this chapter. Note that the points for the final mean costs

using a = c = 0.01 and a = c = 0.1 in Fig. 6.1(b) for the VPS-QAOA are on top

of each other and have overlapping standard errors. The hyperparameter value

of a = c = 0.01 produces lower mean costs in most of the previous iterations,

which is why we chose to use this value of a and c for the VPS-QAOA. For the

MA-QAOA, a = c = 0.01 leads to better performance on average, so we use this

value for the rest of the simulations of this variant. The MA-QAOA appears to

be more sensitive to the values of a and c than the other variants, especially with

p = 6 layers, where all other parameter values lead to minimal reductions in the

cost function on average.

6.6 Performance comparison

We compare the performance of the different QAOA variants when solving 5,000

randomly selected instances of the 2Q-PCP with np = 8 products in simulations.

The primary motivation is to understand whether the VPS-QAOA variant is useful.

6.6.1 Performance with quadratic penalties

In Fig. 6.2, we plot the average values of various performance metrics against the

iteration of the SPSA optimiser for each QAOA variant listed in Table 6.1. Here, we

have used the quadratic penalty method to encode all constraints in the definition of

the cost function for the SPSA optimiser and in the implementations of the phase

separator unitaries. Fig. 6.2(a) shows that after optimisation of the variational

parameters, the cost function is lower on average with the VPS-QAOA than with

the standard QAOA or the 2A-QAOA, although the differences are small relative

to the final mean cost. The standard errors are small enough to show statistical

significance in this result. This indicates that a modest performance improvement
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Figure 6.1: Average cost function value plotted against the SPSA iteration for
the (a) QAOA, (b) VPS-QAOA, (c) 2A-QAOA, and (d) MA-QAOA with p = 6
layers as well as the (e) MA-QAOA with p = 1 layer when solving 100 instances
of the 2Q-PCP with np = 8 products. Quadratic penalty functions are used to
encode all constraints. The cost function is defined as the average QUBO objective
value of the best 20% of sampled solutions. Solid lines show the mean costs for
the perturbed variational parameters at each iteration. Lightly coloured shaded
regions represent the standard error in the mean but are not visible for most lines.
The mean costs for the final optimised parameters at the unperturbed positions
are plotted as points with error bars representing the standard error in the mean.
Different values of the SPSA hyperparameters a and c are shown in different colours.
Different random initial values of the variational parameters are used for each one
of the 100 instances.
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Figure 6.2: Comparison of the performance of different QAOA variants when solv-
ing the 2Q-PCP with np = 8 products using the quadratic penalty method to
encode all constraints. At each iteration of the SPSA algorithm, we plot the (a)
residual energy of the best 20% of sampled solutions, (b) standard deviation of re-
sidual energies, (c) inferred success probability PS , and (d) inferred feasible probab-
ility PF averaged over 5,000 different problem instances. We consider the standard
QAOA (blue), VPS-QAOA (orange), 2A-QAOA (green), and MA-QAOA (red)
with p = 6 layers as well as the MA-QAOA with p = 1 layer (purple). Solid lines
show the average values for the perturbed variational parameters at each iteration.
Lightly coloured shaded regions represent the standard error in the mean but are
not visible for most lines. The mean values for the final optimised parameters at
the unperturbed positions are plotted as points with error bars representing the
standard error in the mean. Different random initial values of the variational para-
meters are used for each instance. The inset in (c) zooms into the bottom region
of the plot.

could be achieved with the VPS-QAOA compared to the standard QAOA or a

variant with a similar number of parameters, such as the 2A-QAOA.

The MA-QAOA with p = 1 layer achieves a significantly lower mean cost than all

other ansatzes. This agrees with previous results showing that better performance

can be achieved with this ansatz than the standard QAOA ansatz [84; 85; 86].
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The MA-QAOA with p = 6 layers has the second lowest mean cost in the final

iteration, despite the fact that it involves more layers and variational parameters

than the p = 1 ansatz. Interestingly, this variant has the largest difference in mean

cost between the last iteration with perturbed variational parameters and the final

value with unperturbed parameters. This may be because the cost landscape for

the MA-QAOA has the most narrow valleys at its local minima, which would mean

that small perturbations from a minimum would produce large changes in the cost.

The slope of the curve in Fig. 6.2(a) for the MA-QAOA with p = 6 remains steep

until the final SPSA iteration. For the other variants, the slopes of the mean

cost curves become shallow in later iterations, and the majority of the reduction

in the mean cost occurs in the first 10,000 SPSA iterations. This indicates that

the variational parameters of the MA-QAOA with p = 6 did not come as close to

convergence as the parameters of the other ansatzes. Hence, it is likely that the

MA-QAOA with p = 6 would perform significantly better if more SPSA iterations

were used and potentially outperform the MA-QAOA with p = 1.

In Fig. 6.2(b) we plot the mean standard deviation of the cost, which is a measure

of the variation in the quality of the sampled solutions. The final mean standard

deviation is lowest for the MA-QAOA, which shows that this variant is better at

producing solutions of similar quality each time the quantum circuit is sampled.

The 2A-QAOA produces a lower mean standard deviation than the QAOA and the

VPS-QAOA, which have similar values. Therefore, while the additional parameter

introduced in the VPS-QAOA has benefitted performance, it appears that it has

not significantly changed the variation in solution quality.

Looking at the mean success probabilities in Fig. 6.2(c), it is apparent that the

MA-QAOA with p = 1 layer performs drastically better than the other variants,

outperforming the standard QAOA by a factor of ≈ 110 on average with the final

optimised variational parameters. With p = 6 layers, this factor drops to ≈ 54.

The VPS-QAOA and 2A-QAOA show much more modest improvements in final

success probability. Despite the VPS-QAOA producing a lower mean cost than
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the 2A-QAOA, the 2A-QAOA produces a higher mean success probability. The

VPS-QAOA outperforms the QAOA by a factor of ≈ 1.4, whereas the 2A-QAOA

outperforms it by a factor of ≈ 1.6.

In Fig. 6.2(d), mean feasible probabilities are plotted, again showing the best per-

formance with the MA-QAOA variant. This metric also shows a comparatively

large improvement for the MA-QAOA variant when sampling the quantum cir-

cuit with the final unperturbed variational parameter values as opposed to the

perturbed values. The VPS-QAOA has a significantly larger feasible probability

than the QAOA and the 2A-QAOA, which indicates that associating the additional

variational parameter with the penalty strength is particularly useful for increas-

ing the feasible probability. For this problem, the feasible probability is relatively

high for all QAOA variants. For example, the standard QAOA produces a mean

feasible probability of ⟨PF ⟩ ≈ 0.21, compared to a mean success probability of

⟨PS⟩ ≈ 0.0011. For reference, the probability of randomly guessing the optimal

solution is 1
216

≈ 2 × 10−5. In cases where satisfying the constraints is more diffi-

cult, the ability of the VPS-QAOA to increase the feasible probability may become

more beneficial for finding the optimal solution. Therefore, the VPS-QAOA variant

may be more useful at larger problem sizes or for problems with more challenging

constraints.

The fact that the MA-QAOA performs better with p = 1 than p = 6 in terms

of success probability and cost is a demonstration that adding more variational

parameters to an ansatz sometimes hurts performance by making it more difficult

to classically optimise the parameters. In practice, picking the optimal number of

variational parameters to use in an ansatz requires making a compromise between

the ansatz’s expressive power and the difficulty to optimise the parameters. The

point at which the best compromise is made depends on various factors such as the

problem size, number of layers, and the classical optimiser being used. The first

two factors are constrained by the limitations of the quantum hardware being used.

For example, the error rate places a limitation on the circuit depth and therefore
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the number of layers, and the problem size is limited by the number of qubits

available. At larger values of n or p, where there are more variational parameters

in the MA-QAOA than in our examples, it may be best to use an ansatz with

fewer variational parameters than the MA-QAOA but more parameters than the

standard QAOA. The performance of the VPS-QAOA compared to the QAOA

and the 2A-QAOA shows that this variant, or a similar variant involving variable

penalties, is a good candidate for problems with difficult constraints.

We note that more intelligent strategies can be used for the optimisation of the

variational parameters, which may work better for some variants than others. For

example, a strategy has been suggested that optimises the parameters one layer

at a time [153]. This approach begins with a single-layered ansatz and optimises

its variational parameters. Then, a new layer is appended and its parameters are

optimised while the previous layer’s parameters are frozen. This is repeated until

all p layers have been added and have optimised parameters. This strategy may

produce better performance than the results we have presented, particularly for the

MA-QAOA with p = 6, for which it appears that the classical optimiser did not

come close to converging. Another interesting strategy, which could be a direction

for future work, would be to start with the standard QAOA ansatz and continuously

add more angles to the ansatz while using the optimised parameter values of the

previous ansatz as the initial angles for the next ansatz. For example, the standard

QAOA ansatz could be used to provide a warm start for the 2A-QAOA ansatz,

which could be used as a warm start for an ansatz with more angles, and so on.

6.6.2 Performance with linear penalties

We have also performed simulations of some of the QAOA variants with the con-

straints C1 encoded with linear penalties in the ansatz. We have still used the

quadratic penalty method to encode all constraints in the cost function that is

classically optimised. The aim is to assess whether the performance improvements

observed in Sec. 4.6 from using linear penalties carry over to the QAOA variants
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considered in this chapter with the implementation changes discussed in Sec. 6.4.

We have not simulated the MA-QAOA with linear penalties. However, we note

that since the linear penalty method produces Ising Hamiltonians with sparser lo-

gical graphs for this problem, the MA-QAOA ansatz would require fewer variational

parameters in the phase separator unitary. This may benefit the algorithm by mak-

ing the classical optimisation of the parameters easier, which would be interesting

to investigate in future work.

In Fig. 6.3, we plot the mean values of the same performance metrics that are

plotted in Fig. 6.2 for the three different QAOA variants we have simulated with

linear penalties. The mean values with the final optimised variational parameters

for the simulations using all-quadratic penalties are also shown for comparison.

One observation is that the mean values of all performance metrics with optimised

variational parameters are statistically significantly improved by the use of linear

penalties for all three QAOA variants we have considered. This demonstrates

that the linear penalty method can complement other algorithmic techniques for

improving the performance of quantum optimisation algorithms.

Fig. 6.3(c) shows that the VPS-QAOA produced the largest mean success probab-

ility of the three QAOA variants with linear penalties. However, the error bars for

the final value with optimised variational parameters overlap with the error bars for

the 2A-QAOA. In comparison, with all-quadratic penalties, the 2A-QAOA was the

best performing variant. This shows that using linear penalties with variable pen-

alty strengths together is particularly effective. This is supported by Fig. 6.3(b),

which shows that the VPS-QAOA has the largest decrease in the variability of

the quality of sampled solutions from changing quadratic penalties to linear pen-

alties. With all-quadratic penalties, the mean standard deviation of the cost for

the VPS-QAOA is similar to that of the QAOA, whereas with linear penalties it is

similar to that of the 2A-QAOA.

Comparing Fig. 6.3(a) and Fig. 6.2(a), we find that the mean costs drop more sud-

denly in the earlier SPSA iterations when using linear penalties compared to using
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Figure 6.3: Comparison of the performance of different QAOA variants when solv-
ing the 2Q-PCP with np = 8 products using the linear penalty method to encode
the constraints C1. At each iteration of the SPSA algorithm, we plot the (a) resid-
ual energy of the best 20% of sampled solutions, (b) standard deviation of residual
energies, (c) inferred success probability PS , and (d) inferred feasible probability PF

averaged over 5,000 different problem instances. We consider the standard QAOA
(blue), VPS-QAOA (orange), and 2A-QAOA (green) with p = 6 layers. Solid lines
show the average values for the perturbed variational parameters at each iteration.
Lightly coloured shaded regions represent the standard error in the mean but are
not visible for most lines. The mean values for the final optimised parameters at
the unperturbed positions are plotted with circular markers and error bars repres-
enting the standard error in the mean. On separate axes on the right side of each
plot, the mean values for the final optimised parameters when using all-quadratic
penalties are plotted with square markers for comparison. Different random initial
values of the variational parameters are used for each instance.
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all-quadratic penalties. This indicates that optimising the variational parameters

is easier with linear penalties than with quadratic penalties, and ansatzes with

more variational parameters could be used with linear penalties while still being

able to find good values of the parameter values. Furthermore, there are not any

large changes in any of the plotted values in Fig. 6.2 when the final unperturbed

parameters are used instead of the perturbed parameters compared to the data

for the same variants in Fig. 6.2. This may be because the local minima in the

cost landscape are wider when linear penalties are used, which is another reason

to think that optimising the variational parameters is easier with linear penalties.

6.7 Analysis of variational parameters

Here, we analyse the values of the variational parameters for the VPS-QAOA and

the MA-QAOA after they have been optimised with the SPSA method. We use

the data from the simulations using all-quadratic penalties to solve the 2Q-PCP,

which we also analysed in Sec. 6.6.1. We note that while the optimised parameter

values are good in the sense that they produce significantly better performance

than randomly chosen parameter values, they are not necessarily the global optimal

values.

6.7.1 VPS-QAOA variational parameters

In Fig. 6.4(a), we plot the mean absolute value of each optimised parameter in the

VPS-QAOA against the layer l of the ansatz. The reason we take the absolute

value is that otherwise, the averages would be close to zero. It can be seen that

the mean absolute value of βl decreases with l while the mean absolute values

of the parameters γl and δl remain elevated. This resembles the standard QA

schedule, in which the magnitude of the mixer Hamiltonian is reduced over time

compared to the magnitude of the Ising Hamiltonian. This provides some support

to previous findings that indicate that fixing the QAOA parameters based on a
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Figure 6.4: (a) Mean absolute value of the variational parameters βl (blue), γl,
(orange), and δl (green) of the VPS-QAOA plotted against the layer l of the ansatz.
These parameters have been optimised by the SPSA method for 50,000 instances
of the 2Q-PCP with 8 products, using quadratic penalties to encode constraints.
Error bars show the standard error in the mean. (b) Ratio between the mean
absolute values of δl and γl plotted against l with error bars that are propagated
from the standard errors [155]. Dashed lines connect the points to guide the eye.

typical QA schedule can be an effective strategy that avoids the need for variational

parameters [154]. However, we point out that the values plotted in Fig. 6.4(a)

are averages over different simulations and the optimised parameter values for a

particular instance may not necessarily follow this trend.

Fig. 6.4(b) plots ⟨|δl|⟩
⟨|γl|⟩ , which represents the amount by which penalties are scaled

in each layer l. This plot shows that, on average, the magnitude of the penalty

strength is highest in the first layer, then decreases, and then increases again in the

last two layers. The error bars show that these changes are statistically significant.

The fact that the optimised penalty strengths are statistically significantly different

between the different layers is another indication that there is some benefit to being

able to vary the penalty strength. These results indicate that fixing the variable

penalty strengths to be strongest in the initial and final layers could be a good

strategy.
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6.7.2. MA-QAOA variational parameters

6.7.2 MA-QAOA variational parameters

According to [89], it was observed in [156] that optimised MA-QAOA variational

parameters cluster around multiples of π
4 . The analysis in [156] was performed on

the MaxCut problem, in which case there are no local fields in HI . As far as we are

aware, our work is the first to study the MA-QAOA in the context of a problem

that has nonzero local fields in HI . It would therefore be interesting to see if the

clustering of angles around multiples of π
4 can also be seen in the results of our

simulations.

In Fig. 6.5, we show histograms of the frequency density of optimised variational

parameter values for the MA-QAOA with p = 1 layer. Separate histograms are

shown for the parameters in β, the parameters in γ that correspond to couplings,

and the parameters in γ that correspond to local fields. We find that the parameters

β are strongly clustered around multiples of π
4 , agreeing with the results in [156].

The parameters in γ that correspond to couplings show some clustering near the

same areas, but it appears these clusters are centred around multiples of a value

that is slightly less than π
4 . There are also smaller clusters of these parameters at

other values.

The histogram in Fig. 6.5 for the parameters in γ that correspond to local fields

has a more complicated structure than the other histograms. Between −π
4 and π

4 ,

there are many clusters of parameter values. They appear to be periodic, with a

period of ≈ π
28 . There is also a pattern in the relative sizes of clusters. Specifically,

they alternate between having higher and lower frequency density peaks as the

parameter value is changed. Outside the region between −π
4 and π

4 , much of the

structure is lost.

These results show that the clustering of values around multiples of π
4 can be

observed in our simulations for the parameters β, but the parameters γ show a

different pattern. This is likely due to the fact that we are analysing a different

problem to what was analysed in [156] that has nonzero local fields in the Ising
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Figure 6.5: Histograms of the frequency density of variational parameter values
in the MA-QAOA with p = 1 layer after optimisation with the SPSA method
for the 2Q-PCP problem with 8 products. Separate histograms are shown for the
parameters β (blue), the parameters in γ that correspond to couplings (orange),
and the parameters in γ that correspond to local fields (green). The histograms
contain all parameters for 5,000 different problem instances. Note that the y-axis
limits cut off some peaks in order to make the rest of the data more visible. In
particular, the central orange peak has a frequency density of ≈ 16 and the blue
peaks at −π

4 and π
4 have frequency densities of ≈ 10.5.

Hamiltonian. Nevertheless, we still observe a significant amount of clustering in all

variational parameters, which indicates that it may be easier to classically optimise

them by exploiting this structure, as suggested in previous work [89].

We have also analysed the optimised variational parameter values of the MA-QAOA

with p = 6 layers. Frequency density histograms of the parameter values are shown

in Fig. 6.6. The variational parameters for each layer of the ansatz are shown in

a separate plot. Fig. 6.6(a) for the parameters in the first layer looks similar to

Fig. 6.5 for the p = 1 case. In Fig. 6.6(a), there are clusters in the same positions,

but they are less pronounced. The plots for subsequent layers in Fig. 6.6 show much

less structure, although the clustering of the parameters in β is still prominent.

The lack of clustering in Fig. 6.6 compared to Fig. 6.5 may be because SPSA optim-

iser did not get close to the optimal variational parameter values for the MA-QAOA

with p = 6. We also suggested this in Sec. 6.6.1 when noting the apparent lack

of convergence of the mean cost for the p = 6 MA-QAOA in Fig. 6.2(a). It is
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Figure 6.6: Histograms of the frequency density of variational parameter values in
the MA-QAOA with p = 6 layers after optimisation with the SPSA method for the
2Q-PCP problem with 8 products. Different plots are shown for the ansatz layers
(a) l = 1, (b) l = 2, (c) l = 3, (d) l = 4, (e) l = 5, and (f) l = 6. In each plot,
separate histograms are shown for the parameters in β (blue), the parameters in
γ that correspond to couplings (orange), and the parameters in γ that correspond
to local fields (green). The histograms contain all parameters for 5,000 different
problem instances.
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interesting that with a limited number of iterations, the optimiser appears to have

made more progress in optimising the variational parameters of the first layer of

the ansatz than the other layers.

6.8 Chapter conclusions

In this chapter, we have introduced a new variant of the QAOA that we refer

to as the VPS-QAOA, which uses additional variational parameters to implement

variable penalty strengths. We have found that it gives a modest improvement

in performance compared to the standard QAOA in our simulations. While this

chapter is only concerned with the gate-based QAOA algorithm and its variants, the

concept of variational penalty strengths could be extended to the continuous-time

setting of QA in future work. Comparing the VPS-QAOA to another QAOA variant

with a similar number of variational parameters shows that the main strength of the

VPS-QAOA is in increasing the probability of satisfying constraints, which implies

that the variant is particularly suitable for problems that are highly constrained

or have constraints that are difficult to satisfy. We have also demonstrated that

the linear penalty method can be used alongside the variable penalty strength

approach, and this further improves performance in our simulations.

A comparison with the MA-QAOA shows that by using more variational paramet-

ers, the MA-QAOA can achieve significantly better performance than the QAOA

and the VPS-QAOA. However, our results show that the SPSA optimiser struggles

to optimise the MA-QAOA variational parameters as the number of layers is in-

creased, whereas the other variants showed signs of convergence of their variational

parameters with the same number of layers. This implies that for larger numbers

of layers or larger problem sizes, where the MA-QAOA ansatz has more variational

parameters, it may be preferable to use a variant like the VPS-QAOA that does

not introduce as many additional parameters but is still able to outperform the

standard QAOA.
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Finally, we have analysed the values of the optimised variational parameters for the

VPS-QAOA and the MA-QAOA. We have found that on average, the optimiser

chooses variable penalty strengths that are weaker in the middle layers than in

the first and last layers, with the first layer having the strongest penalty strength.

For the MA-QAOA, we have found that the variational parameters in the mixer

unitary cluster around multiples of π
4 , which has previously been reported [89; 156].

The variational parameters in the phase separator unitary also form some clusters

but have a more complicated structure.
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Chapter 7

Conclusions

In this thesis, we have studied algorithmic techniques for improving the perform-

ance of constrained quantum optimisation. The quantum algorithms and example

customer data science problems that our work is based on were introduced in

Chapter 2.

In Chapter 3, we explored the use of linear Ising penalties for encoding Hamming

weight equality constraints. We explained that linear penalties avoid some of the

drawbacks of the quadratic penalty method, which is the standard approach to

encoding constraints in quantum optimisation methods such as QA and the QAOA.

In particular, linear penalties do not introduce any additional couplings to the

Ising Hamiltonian and often involve smaller energy scales than quadratic penalties.

Changing the penalty strength of a linear penalty changes the Hamming weight of

the associated variables in the ground state of the Ising Hamiltonian in a monotonic

fashion. Based on this observation, we outlined a search strategy for efficiently

finding a good penalty strength value for cases where a single linear penalty is

applied. When multiple linear penalties are applied, we explained that their penalty

strengths need to be tuned individually, and we proposed a strategy to do so. In

cases where not all linear penalties are effective in implementing their constraints,

we showed that it is possible to switch some of the linear penalties to quadratic

penalties and produce the desired ground state in the Ising Hamiltonian.
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In Chapter 4, we compared the linear and quadratic penalty methods in numer-

ical simulations of QA and the QAOA. In these simulations, physical qubits were

assumed to be all-to-all connected, which means that there were no minor embed-

ding considerations. Therefore, the main benefit of the linear penalty method in

this scenario is its efficient use of the available dynamic range. We found that for

the problem instances we considered, using the linear penalty method led to a less

severe normalisation of the Ising Hamiltonian than when using the quadratic pen-

alty method, confirming the improvement in effective dynamic range. Our results

showed that QA and QAOA performance benefitted from the use of linear penalties

on average. This is an encouraging sign that the linear penalty method is useful

even when we are not limited by the interaction graph of the quantum hardware.

In Chapter 5, we performed experimental tests of QA on a D-Wave annealer, using

the quadratic and linear penalty methods. We ran experiments with the 1Q-PCP,

which involves a single constraint, and the 4Q-PCP, which involves many con-

straints. The large number of qubits on the annealer’s QPU allowed us to consider

larger problem sizes than those that were simulated in Chapter 4. For both prob-

lems, we observed clear improvements in performance when using the linear penalty

method on problem instances that it could exactly constrain. For the 1Q-PCP, the

difference in minor embedding efficiency between the two penalty methods was

drastic, and this was likely the main reason for the better performance of the linear

penalty method. In our tests with the 4Q-PCP, we found signs that improvements

in the effective dynamic range had a noticeable impact on performance. For ex-

ample, the quantum annealer found significantly higher quality solutions when all

four constraints on the number of promotions per quarter could be implemented

with linear penalties than when only two of the constraints could be. In this case,

the difference in dynamic range efficiency between the two penalty schemes appears

to be more substantial than the difference in minor embedding efficiency.

Our findings indicate that the linear penalty method could play a role in enhan-

cing the performance of quantum optimisation algorithms when applied to certain
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constraints. Future research applying the linear penalties to problems with differ-

ent structures than that of the promotion cannibalisation problems we considered

would be beneficial in identifying the most suitable applications of the linear penalty

method. As quantum computing hardware matures, it would be interesting to test

the performance of the linear penalty method on larger numbers of variables and

on different hardware platforms. Another potential direction for future research is

to determine whether the linear penalty method can be applied to constraints that

are not k-hot constraints.

In Chapter 6, we introduced the VPS-QAOA, which modifies the standard QAOA

ansatz to allow the penalty strengths to be varied between the layers of the quantum

circuit. We found modest performance improvements of the VPS-QAOA over

the standard QAOA in numerical simulations on the 2Q-PCP. Comparing the

VPS-QAOA to another ansatz that involves a similar number of variational para-

meters only shows an improvement in the ability to satisfy constraints, not in the

ability to find optimal solutions. We argue that in scenarios where the constraints

are harder to satisfy, the VPS-QAOA could have an advantage in finding optimal

solutions. We demonstrated that the linear penalty method can be used in con-

junction with the VPS-QAOA and that combining the approaches works well in

practice. We also performed simulations of the MA-QAOA, which is a variant of

the QAOA that has many more variational parameters than the other variants we

considered. Our results showed that the MA-QAOA achieved significantly better

performance than the other approaches. However, we observed signs that the lar-

ger numbers of variational parameters in the MA-QAOA are harder to optimise.

This implies that as the problem size or number of layers is increased, it may be

better to use variants with fewer variational parameters. Hence, variants like the

MA-QAOA may be desirable as they can improve performance without introducing

as many variational parameters.

A clear direction for future work on the VPS-QAOA is to apply it to problems

other than the 2Q-PCP. Since our results showed that the main advantage of us-
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ing variable penalty strengths was in increasing the feasible probability, it would

be interesting to see if the approach is more effective when applied to problems

with constraints that are more difficult to satisfy. The VPS-QAOA ansatz that we

considered in our numerical simulations only introduced a single additional vari-

ational parameter, but it is likely that better performance could be achieved by

assigning different variational parameters to different constraints. Our analysis of

the MA-QAOA showed that it is important to consider the trade-off between the

expressiveness of the ansatz and the difficulty to optimise the variational paramet-

ers, which is in agreement with previous work. A comparison of the VPS-QAOA

and other QAOA variants with different numbers of variational parameters on real

quantum hardware would provide more insight into what the best trade-off is in

practice. As quantum hardware matures and practical limits on circuit depth and

numbers of qubits are pushed further, it is likely that the best choice of ansatz

will change. The concept of variable penalty strengths is not just relevant for the

QAOA—it could be applied in other situations where penalty functions are used,

such as QA.
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