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Abstract

Various theoretical and computational techniques were applied to Rydberg ex-
citons in cuprous oxide. The techniques fall into two catagories: top down, and
bottom up. In the first chapter, Floquet theory is applied to a hydrogen-like
model of an exciton to model the ultrastrong driving of the exciton by a mi-
crowave field. This is the top down approach, where the exciton is considered
as an atom and the effect of the crystal is considered only insofar as it alters
the energy levels and dipole transition moments of the atom. This method
is very successful, quantitatively reproducing the experimental results up to
the highest field strengths achievable. We demonstrate how the high energy
exciton states hybridise into a quasi-continuum of Floquet states, and we can
also predict qualitatively the intensity of sidebands on the laser, opening aven-
ues for microwave-to-optical conversion. However, there are places the model
fails, such as in correctly predicting the dependence on the polarisation of the
microwave field. This is the limit of what can be done with models that neg-
lect the effects of the crystal. Beginning the ab initio ’bottom up’ approach,
in chapter 2 we study the effect of point defects on the electronic structure
of Cu2O using density functional theory, with the aim of determining the ori-
gin of experimentally observed photoluminescence peaks. The method is very
successful in determining which defects are not involved in photoemission,
having accounted for many possible sources of erroneous results. However, it
is difficult to make positive assignments as to exactly which peak is caused by
which defect. Finally, in chapter 3, we begin to bridge the two approaches,
studying ab initio the excitations of Cu2O with time-dependent density func-
tional theory. We demonstrate a novel method for estimating the radius of the
1S exciton, and show the effect that a local defect on the localisation of the
exciton and on the excitation energies. These results demonstrate new theor-
etical approaches to understanding of Rydberg excitons, especially in applying
ab initio techniques, which is not currently seen in the field.
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Chapter 1
Introduction

Rydberg atoms are atoms with with an electron excited to a high principle quantum
number, n. In these states, the excited electron orbits far from the nucleus and
core electrons, allowing Rydberg atoms to be treated analogous to hydrogen. Much
work has been done in the last few decades with Rydberg atoms in pursuit of
quantum technologies. The separation between the electron and the nucleus in
Rydberg states gives pairs of Rydberg atoms dipole-dipole interactions 10 orders of
magnitude larger than that of ground state atoms [1, 2]. These tunable interactions
make them one of the centres of the current quantum computing boom, where
they are used to make quantum logic gates between Rydberg atom qubits [3, 4], or
quantum simulators of many-body quantum systems [5, 6].

The same dipoles that make them sensitive to other Rydberg atoms also make
them sensitive to electromagnetic fields. This makes them useful for various non-
linear quantum optical effects, like single photon emitters [7, 8], receivers [9] and
transistors [10, 11]. Parallel to their use as qubits in quantum computing, there
are also ongoing efforts to use their sensitivity to ‘read out’ microwave photons
in superconducting microwave qubits [12, 13, 14]. However, the marriage of these
fields is difficult. Rydberg atoms require ultra-high vacuum chambers with laser
access to cool and trap them, a complex and lengthy process to set up in and of
itself. Superconducting qubits operate in dilution fridges in the dark to maintain
sub-kelvin temperatures in solid state, which is hard to experimentally realise in
the same location.

The fundamental excitation of semiconductors is the exciton, a bound state of an
electron and a hole also resembling a hydrogen atom, and in 2014 Kazimierczuk et
al. [15] observed Rydberg states of excitons up to n = 25 in cuprous oxide, opening
the field of Rydberg excitons. As an alternative platform for Rydberg physics,
Rydberg excitons have a lot of promise, exhibiting similarly strong interactions [16]

1



1. Introduction

and sensitivity to fields [17]. Like superconducting resonators, they are observed
in materials at cryogenic temperatures, with the highest n observed in dilution
fridges [18], making them naturally more compatible.

Excitons were first predicted in the 1930s under two different schemes by Fren-
kel [19] and Wannier [20]. The Frenkel exciton is tightly bound and is typically
seen in the context of molecules as the bound state of occupied and unoccupied
molecular orbitals [21]. In contrast, the Mott-Wannier excitons seen in semicon-
ductors can have extended wavefunctions due to the relative mobility of conduction
electrons and valence holes in crystals. This latter form of exciton exhibits energy
levels analogous to a hydrogen atom, and they were first observed in the 1950s [22]
in Cu2O. Cuprous oxide is particularly suited to supporting Mott-Wannier excitons
because of the exceptionally free particle-like behaviour of the electron and hole
(discussed in chapter 3). Whereas in most semiconductors exciton energy levels
are rarely seen above n = 3 [23], excitons in Cu2O have been seen up to n = 30,
with radii in excess of 1 µm [18].

The theory of Rydberg excitons is usually approached by analogy to Rydberg
atoms, studying their wavefunctions from Mott-Wannier theory like atoms in a va-
cuum chamber and forgetting about the crystal environment. This has proven suc-
cessful, and can be used to understand effects like large optical non-linearities [24,
25] and inter-exciton interactions [16]. In chapter 2 of this thesis, I explore the
limits of this ‘top down’ approach by applying it to the ultrastrong driving of Ry-
dberg excitons by a microwave field. It performs remarkably, reproducing well
many experimental results up to the strongest fields applied, and provides useful
insight into the experiment. However, as discussed in the chapter, we find corners
where the lack of a microscopic treatment of the crystal environment limits the
performance of this type of model.

In chapter 3, we take the ‘bottom up’ approach, where we study ab initio the physics
of native defects in Cu2O, long-known to have a significant effect on the Rydberg
exciton series [26, 27, 28]. There are many methods in condensed matter physics for
studying the electronic properties of solids, but by far the most popular is density
functional theory (DFT) [29], which is the approach taken in this work as well.
There have been several previous studies on defects in Cu2O with DFT [30, 31],
as it is of interest to the solar cell community, however despite seeming a simple
material, it has proven resistant to naive applications of DFT. Here we present
the most thorough DFT study of defects in Cu2O to date, combining fragmentary
knowledge from previous works with new insights to identify which features caused
by the defects are robust and which are spurious effects of theoretical limitations,
an attention to detail not usually seen in the study of defects in general [32, 33,

2



1.1. Background on Rydberg excitons in Cu2O
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Figure 1.1: An example absorption spectrum of a laser by Cu2O, showing some
of the peaks of the nP Rydberg exciton series. The phonon-mediated absorption
background is shaded in red.

34, 35, 36].

Chapter 4 begins to build the bridge between these two regimes. There are sev-
eral methods that can be used to extend DFT (a ground state theory) to excited
states, and so study excitons from a purely ‘bottom up’ perspective. Due to its
exploratory nature, this study uses time-dependent DFT (TDDFT), the simplest
approximation beyond DFT, to make the first steps in this direction. These meth-
ods have previously been applied to excitons [37], and to defects [38], but in this
work we apply them for the first time to the defect-exciton interaction in Cu2O.

1.1 Background on Rydberg excitons in Cu2O

Cuprous oxide has a band gap of Eg = 2.18 eV between the uppermost valence band
and the lowermost conduction band. The exciton formed by the excitation between
these two bands is called the yellow exciton series after the colour of laser required
to excite it. There are other colours of exciton that are studied in Cu2O [39], but
in this work we only consider the yellow exciton series.

In the Mott-Wannier theory of excitons, each state can be labelled, like hydrogen,
by its principal quantum n, angular momentum l, and z-component of orbital
angular momentum m. Aside from the low lying states (n < 4), the states’ energies
follow a Rydberg series with a quantum defect,

Enlm = Eg − RX
(n− δl)2 (1.1)
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where RX is the Rydberg constant, and δl is called the quantum defect. Whereas
in hydrogen the l states are (almost) degenerate, for the exciton in Cu2O (as well
as Rydberg states in other atoms) the Rydberg energies are shifted by a different
δl for each l, which are determined by fitting to experimental spectra [40], an effect
arising from the non-parabolicity of the valence band [41].

The valence band in cuprous oxide has a character dominated by copper D orbitals,
and so has even parity. As such, it is dipole-forbidden to excite from the valence
band directly to an even parity exciton, such as nS or nD states. Single photon
absorption experiments show no excitations of nS or nD states, demonstrating
that l is a good quantum number for this system. The same experiments show
excitations of nP and nF states, with the coupling to nF states several orders of
magnitude smaller than for nP states. Therefore, to a good approximation, single
photon absorption experiments only excite the nP exciton series, an example of
which is shown in figure 1.1. Even though the excitation of the 1S exciton is dipole
forbidden, the excitation of the 1S exciton and an even parity phonon is allowed.
This absorption process is of similar strength to that of the P series excitons, and
so the nP Rydberg series sits on a large absorption background.
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Chapter 2
Ultrastrong driving with

microwaves

2.1 Background

At the forefront of modern quantum physics is the ever stronger interaction between
light and matter. The coupling of the two marries the two biggest fields in quantum
physics, with far reaching applications in quantum communication [42, 43, 44],
simulation [45, 46], computation [47], and chemistry [48, 49]. To maximise the
interaction, one can either increase the strength of the electromagnetic field, so
that it drives the matter harder, or increase the electric dipole of the matter, so it
responds more to the light.

One approach to the first strategy, known as cavity QED, is to place the matter
in what is called an optical cavity (figure 2.1) by sandwiching it between two (typ-

Figure 2.1: A diagram of an optical cavity made of two mirrors coupled to an
atom (or artificial analogue). The resonant frequency of the cavity, ν0, matches
the transition frequency between the ground, |g⟩, and excited, |e⟩, states of the
‘atom’. Photons are lost from the cavity at a rate Γ.
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2.1. Background

ically Bragg) mirrors. Alternatively, in circuit QED, artificial atoms are coupled
electrically to a superconducting resonator [50]. Either way, the field is confined
to a small mode volume, which greatly increases the strength of the field at the
resonant frequency, ν0, and can result in quantum light interacting with quantum
matter. Outside of resonators, strong classical electromagnetic fields can also be
used to drive quantum systems, which have been shown to exhibit optical non-
linearities like high-harmonic generation [51].

To address the second strategy, common quantum systems with large electric di-
poles include superconducting ‘flux qubits’[50], optomechanical devices [52], and,
of particular note to this work, Rydberg atoms [53, 6]. Rydberg atoms provide an
excellent platform for light-matter coupling because the transition dipole moments
between neighbouring states in Rydberg atoms scales as n2 for principal quantum
number n. Since this scaling derives from the n2 scaling of the Bohr radius, the
scaling also exists for Rydberg excitons [54, 25].

It is also much easier to fabricate and cool semiconductor-Bragg mirror stacks
than to work with individual trapped atoms. Because of this, much work is be-
ing done at the moment on semiconductors in optical microcavities, where the
exciton and photon hybridise to form quasi-particles called exciton-polaritons.
Exciton-polaritons have been observed to form Bose-Einstein condensates [55],
with interesting applications including quantum computing [56], and novel kinds of
lasers [57], and can exhibit topological effects [58]. Many groups are now studying
cuprous oxide in microcavities, as part of the emerging field of Rydberg exciton-
polaritons [59, 60, 24, 61], which can exhibit large optical non-linearities useful for
things like quantum information processing.

To categorise the level of coupling between the light and the matter, several
thresholds are used as milestones. The are usually defined (see fig. 2.1) in terms of
the bare energy gap of the atom (or analogue), hν0, the rate of loss of photons from
the cavity, Γ, and the Rabi frequency Ω of the atomic transition. The Rabi fre-
quency is a common quantity in atomic physics quantifying the coupling strength
between a transition and a field, given by

Ω = ⟨g| D̂ · E |e⟩ /ℏ (2.1)

where |g⟩ and |e⟩ are the ground and excited states, D̂ is the dipole operator, and
E is the electric field∗. The strong coupling (SC) regime is said to be reached
in cavities when the Rabi frequency for the electromagnetic field of zero photons,
called the vacuum Rabi frequency, Ω0, exceeds the decay rate but not (yet) the

∗This definition is for a classical electric field, an approximation which is always valid for the
strong microwave fields considered in this thesis.
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bare transition frequency, or ν0 > Ω0 > Γ [49, 62, 63]. In this regime, the atom
begins to coherently exchange a photon many times with the cavity before it is lost
spontaneously to the environment [64]. Analogous to the SC regime, the strong
driving (SD) regime for classical driving fields occurs when ν > Ω > Γ, where hν
is the energy gap of the driven transition, Ω is the Rabi frequency, and Γ is the
decay rate of the system.

When the coupling to the electromagnetic field approaches or even exceeds the
transition frequency, one enters the regimes of ultrastrong (Ω > 0.1ν) and deep-
strong (Ω > ν) coupling/driving [49, 62, 63], where the commonly used rotating
wave approximation (RWA) breaks down. This results in extreme quantum ef-
fects [65, 62] and complex dynamics instead of simple Rabi oscillations [66], with
consequences for quantum computation [67, 68], materials [48, 49, 69], and microwave-
optical conversion [70, 71]. Reaching these thresholds requires a large electric dipole
and also small energy spacings. Conveniently, the energy gaps between Rydberg
(and Rydberg exciton) states scales as n−3, while the electric dipole moments scale
as n2, so the threshold field strength decreases as n−5 with increasing n. Moreover,
because the state widths are comparable to the state separations, many trans-
itions can be ultrastrongly driven at the same time with a single microwave field,
something that is impossible in atomic systems [53].

In previous works [54, 25], Rydberg excitons were coupled to a weak microwave
field and the results could be understood with a perturbative model for the change
in susceptibility. Nevertheless, giant non-linear effects were observed [25], with
implications for microwave-to-optical conversion. This chapter follows the work
done in Brewin et al. [72], where the ultrastrong driving of Rydberg excitons by a
microwave field was experimentally demonstrated and theoretically modelled. The
focus will be on the modelling I did based on Floquet theory [73], a common method
for going beyond the RWA, with just enough experimental details to understand
what we are comparing the model to. In that work, we studied the effect of a strong
microwave field on the exciton absorption spectrum and the intensity of generated
sidebands on the laser, and achieved excellent agreement between the theoretical
model and experimental data. The success of the model allows us an understanding
of the system that cannot be gained from direct measurement, which is discussed in
detail in that work and here. For example, it shows parts of the exciton spectrum
reach Ω/ν ∼ 4, well into the deep strong driving regime.
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ωp

ωm

Cu2O at 4 K

FPE

detector

striplineantenna

m
p

β

Figure 2.2: A diagram of the critical parts of the experimental setup. The probe
laser at optical frequency ωp passes through a thin film of Cu2O, kept at 4K in a
cryostat, creating excitons. The amount of transmitted light is measured on a de-
tector. A stripline antenna driven with a microwave signal ωm applies a microwave
field across the Cu2O. The polarisation of the probe laser field Ep is at an angle
β to the polarisation of the microwave field Em. A Fabry-Pérot etalon (FPE) is
inserted to resolve the sidebands on the transmitted light.

2.2 The experiment

The experiments were run by Liam Gallagher, Jon Pritchett, and Horatio Q.
X. Wong and their mechanics have been detailed in various experiment-focussed
works [25, 74]. Here I will give the basic overview required for a reader of this
thesis, to give the idea of the system we are trying to model.

Figure 2.2 shows a diagram of the experiment. The probe laser is monochromatic at
a wavelength of λ ≈ 571 nm. The intensity in the sample is ∼ 20 µW mm−2, which
when accounting for the spot size, is less power than used for the probe laser in [75],
allowing us to neglect the effect of inter-exciton interactions. It is incident on a thin
slice of Cu2O, 55 ± 10 µm thick, inside a cryostat at ∼ 4K. The stripline antenna
(detailed in [54]) is driven at ωm = 7 GHz by a microwave signal generator, which
both alters the probe laser absorption spectrum, and generates new sidebands on
the laser light at even multiples of ωm. The absorption spectrum is measured by
comparing the light transmitted through the sample, T (ωp), to a reference taken
without the sample, T0(ωp), to get the optical depth αL = − ln(T (ωp)/T0(ωp)).
The Fabry-Pérot etalon, used to resolve the sidebands, has a finesse of 44.5 ± 0.7
and a free spectral range of 60.1±0.2 GHz. A example of the output from scanning
the spectral range of the FPE with the microwave field on and off is shown in figure
2.3. The intensity of the carrier signal (ωp/2π, zero detuning) is seen in the broad
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Figure 2.3: An example of a scan over the spectral range of the Fabry-Pérot etalon,
with zero detuning corresponding to ωp/2π. The data labelled ION is the intensity
of the light for Em = 170 V m−1, and the data labelled IOFF was taken under no
microwave field. At zero detuning the intensity of the carrier signal is measured.
The two peaks either side of the central peak are the ±2ωm ‘second order’ sidebands,
only present when the microwave field is switched on. At higher microwave field
strengths, fourth order sidebands can be seen.

central peak, and the second order sidebands (ωp ± 2ωm) are seen either side.
The data labelled ION is the intensity of the light for Em = 170 V m−1, and the
data labelled IOFF was taken under no microwave field. At higher microwave field
strengths, 4th order sidebands can also be observed. While the features are broad,
the frequency width of the transmitted light is actually very narrow. By measuring
the transmission of a laser through the etalon, it was determined that the width
of these features is introduced almost entirely by the etalon itself. Note that the
higher frequency ‘blue’ sideband has a different intensity to the lower frequency
‘red’ sideband; in general, the intensity of the sidebands is not symmetric. The
intensity of all the peaks was extracted by fitting Lorentzians to the etalon output
spectrum.

2.3 Theory

2.3.1 Floquet Theory

Before beginning the theory proper, I want to give a short introduction to Floquet
theory, on which the theory heavily relies. I will give an explanation here that
should suffice for this work, but more in depth guides can be found elsewhere if
needed [76, 73].
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It is very common in quantum physics to encounter time-periodic Hamiltonians,
Ĥ(t), most notably for oscillating electric fields, as in this work. We can separate
the Hamiltonian into a static part and a time periodic ‘interaction’ part, as

Ĥ(t) = H0 +HI(t) = H0 +HI(t+ T ), (2.2)

where the interaction part has periodicity T = 2π/ω. The static part H0 we take
to have a complete set of eigenstates, {|j⟩}, that span the Hilbert space of possible
solutions. The Schrödinger equation for these Hamiltonians,

iℏ
∂

∂t
|ψ(t)⟩ = Ĥ(t) |ψ(t)⟩ , (2.3)

is known to have solutions of the form

|ψ(t)⟩ = exp(−iEt/ℏ) |ϕ(t)⟩ (2.4)

where |ϕ(t)⟩ = |ϕ(t+ T )⟩ is periodic with the same period as the Hamiltonian.
This result is known as Floquet’s Theorem, the states |ψ(t)⟩ we will call Floquet
states∗, and the vectors |ϕ(t)⟩ we will call the Floquet mode. Although E has the
units of energy, the time dependent Hamiltonian does not conserve energy, and so
E is called the quasi-energy. Just like all differential equations, the solution we will
find for the model will be a linear combination of these particular solutions. Note
that the number of independent Floquet modes is not limited to the dimension of
the Hilbert space in which we are working (spanned by the exciton states). For
integer N ,

|ψ(t)⟩ = exp(i(E +Nℏω)t/ℏ) exp(−iNωt) |ϕ(t)⟩ = exp(iE′t/ℏ) |ϕ′(t)⟩ (2.5)

defines a new Floquet mode |ϕ′(t)⟩ for the same Floquet state solution, with quasi-
energy E′ = E+Nℏω. Therefore each solution comes with an infinite set of modes
with energies spaced by ℏω.

We can use the periodicity to write |ϕ(t)⟩ as a Fourier series,

|ϕ(t)⟩ =
∞∑

N=−∞
fN exp(iNωt) |ϕN ⟩ (2.6)

where the vectors |ϕN ⟩ do not depend on time. We can expand |ϕN ⟩ in the basis
{|j⟩} such that

|ϕN ⟩ =
∑

j

fj;N |j⟩ , (2.7)

|ϕ(t)⟩ =
∞∑

N=−∞

∑
j

cj;N exp(iNωt) |j⟩ , (2.8)

∗Different sources call them different things. Shirley [73], something of a father of this kind of
physics, calls something else a Floquet state, but sadly no one else agrees with him [77, 76, 78].
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where cj;N = fNfj;N . Similarly, the components of the Hamiltonian,

Hjk(t) = ⟨j| Ĥ(t) |k⟩ , (2.9)

we can expand as

Hjk(t) =
∞∑

N=−∞
HN

jk exp(iNωt). (2.10)

Substituting these results into the Schrödinger equation and pre-multiplying by
⟨j|, we obtain

∞∑
N=−∞

cj;N (E −Nℏω) exp(iNωt) =
∞∑

N ′=−∞

∞∑
N ′′=−∞

∑
k

HN ′′
jk ck;N ′ exp(i[N ′ +N ′′]ωt).

(2.11)

Because we require the equality to hold at all times t, and exponentials of different
frequencies are orthogonal, we can individually equate the terms in exp(iNωt).
These terms appear on the left when N ′′ = N − N ′, thus, after some simplifying,
we find the set of coupled equations

∞∑
N ′=−∞

∑
k

[
HN−N ′

jk +N ′ℏω δNN ′ δjk

]
ck;N ′ = E cj;N . (2.12)

This defines an eigenvalue problem with a new, infinite-dimensional, time-independent
Hermitian operator which we will call the Floquet Hamiltonian,

⟨j;N | F̂ |k;N ′⟩ = F(j;N),(k;N ′) = HN−N ′

jk +N ′ℏω δNN ′ δjk (2.13)

with rows indexed by the double indices j and N , and columns by k and N ′,
written in the basis of product states |j;N⟩ = |j⟩ exp(iNωt). Its eigenstates and
eigenenergies are the Floquet modes and their quasi-energies. Its infinite size is an
echo of the non-uniqueness of the Floquet modes. While it has an infinite number
of eigenvalues, simply changing where we start counting (changing the index N →
N+M) yields for the same state (cj;N+M ) a shifted eigenvalue E → E+Mω. This
symmetry is broken when, in doing the actual calculation, we truncate N at some
finite value. However, for large enough Nmax, it is a good approximation.

2.3.2 The Hamiltonian

The theory in this section was developed with great help from Robert Potvliege,
who has since published a paper on the general concept [79]. In this section I will
distil the key points of the theory and apply them to Rydberg excitons in cuprous
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ωm=

Valence Band

Energy

10S
10FGHz
10P
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Figure 2.4: A diagram of the Hamiltonian of the model. A ladder of bare excitonic
states are included, whose energies and widths are derived from experimental meas-
urements, along with a ground state representing the valence band. The |nP⟩ states
are coupled to the valence band by a weak, optical frequency laser field (dotted
arrow), and excitonic states that differ in angular momentum by ∆l = ±1 are
coupled by a strong microwave field of frequency ωm = 7 GHz (solid arrows).

oxide. The goal is to model the case of an ensemble of excitons coupled to a strong,
homogenous, microwave field,

Em(t) = 1
2ϵm

[
Em exp(−iωmt) + E∗

m exp(iωmt)
]
, (2.14)

and probed by a weak laser field,

Ep(x, t) = 1
2ϵp

[
Ep(x) exp(−iωpt) + E∗

p(x) exp(iωpt)
]
, (2.15)

where the probe (microwave) electric field has amplitude Ep(x) (Em), polarisation
vector ϵp (ϵm), and angular frequency ωp (ωm). Both fields are linearly polarised,
and at an arbitrary angle β relative to one another. Because, in our case, the
probe field is sufficiently weak (as discussed in section 2.2), the exciton density is
low enough that we will neglect inter-exciton interactions and consider just one
exciton. The appropriate Hamiltonian for this exciton, as described in figure 2.4,
can be thought of as the sum of a set of field-free energy levels (the horizontal lines),
the weak probe field coupling the valence band to the nP states (dashed arrow),
and the strong microwave field coupling states of opposite parity (solid arrows),
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written respectively as

Ĥ(t) = ℏ
N∑

j=1

(
ω(j) − i

Γ(j)

2
)

|j⟩ ⟨j|

− ℏ
2

N∑
k=1

[(
Ω0k exp(−iωpt) + Ω∗

k0 exp(iωpt)
)

|0⟩ ⟨k| + h.c.
]

− ℏ
2

N∑
j,k=1

[(
Ωjk exp(−iωmt) + Ω∗

kj exp(iωmt)
)

|j⟩ ⟨k|
]
. (2.16)

The N excitonic states, labelled |j⟩, have energies ℏω(j) and full width half max-
imum (FWHM) ℏΓ(j), where |0⟩ labels the ground state (representing the valence
band) with ω(0) = Γ(0) = 0. The abbreviation ‘h.c.’ stands for Hermitian conjugate.

Keen readers will notice that the complex energies ω(j) − iΓ(j)/2 on the diagonal
of the Hamiltonian makes it non-Hermitian. Normally, to account for the decay of
the exciton, we would have to solve the Lindblad master equation for the above
Hamiltonian with real energies, and introduce the decays as jump operators. How-
ever, as seen in [79], under the weak probe approximation the same result can
be obtained by solving the von Neumann equation for the above non-Hermitian
Hamiltonian.

The Rabi frequencies between the states |j⟩ and |k⟩ are given by

Ω0k = Ep ⟨0| D̂ · ϵp |k⟩ /ℏ, (2.17)

Ωjk>0 = Em ⟨j| D̂ · ϵm |k⟩ /ℏ, (2.18)

with D̂ denoting the dipole operator. The dipole approximation is easily justified
for the microwave field since the wavelength of the microwave field (∼ 1 cm) is
much larger than a Rydberg exciton (≲ 1 µm). Since the scale over which the laser
field varies is much larger than that of the valence band, we also drop the spatial
dependence of Ep. While, in general, the field amplitudes can be complex, in this
work we take them to be real, so moving forward we will use Ωjk = Ω∗

kj .

The energies and widths of the |nP⟩ states and the Rabi frequencies Ω0k coup-
ling the excitons to the valence band were obtained from one-photon excitation
experiments on our source, described in section 2.3.8, and are zero if |k⟩ /∈ {|nP⟩}.
Though F-state resonances were observed in single-photon experiments [80], since
the crystal is not perfectly spherically symmetric, they were very weak and the
coupling was hard to measure accurately, so we assume ⟨0| D̂ · ϵp |nF⟩ = 0. The
energies of the S, D and F states were obtained from two-photon excitation exper-
iments [40]. Both even- and odd-parity states could be measured in two-photon
experiments since the process for even parity excitation involves dipole absorption
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and quadrupole emission, and the odd parity excitation process involves quadru-
pole absorption and dipole emission, resulting in similar strength signals [81]. The
Rabi frequencies Ωjk between excitonic states were calculated from the wavefunc-
tions of a Wannier-Mott model [41, 16] by Valentin Walther, the details of which
and of their dependence on β (or lack thereof) presented a significant challenge and
are described in section 2.3.7.

The first simplification we can make to the Hamiltonian in equation 2.16 is to trans-
form to rotating coordinates. Under a unitary transformation Û(t), a Hamilto-
nian Ĥ(t) transforms as Ĥtr = ÛĤÛ † + iℏ ˙̂

UÛ †. If we choose to transform to
coordinates where all basis vectors except |0⟩ rotate with the probe laser, using
Û = |0⟩ ⟨0| + exp(iωpt)

∑
j>0 |j⟩ ⟨j|, our transformed Hamiltonian becomes

Ĥtr(t) = −ℏ
N∑

j=1
(ωp − ω(j) + i

Γ(j)

2 ) |j⟩ ⟨j|

− ℏ
2

N∑
k=1

[
Ω0k

(
exp(−2iωpt) + 1

)
|0⟩ ⟨k| + h.c.

]

− ℏ
2

N∑
j,k=1

[
Ωjk

(
exp(−iωmt) + exp(iωmt)

)
|j⟩ ⟨k|

]
. (2.19)

Now, since ωp is several orders of magnitude larger than ωm, we can make the ro-
tating wave approximation, neglecting the rapidly oscillating terms in exp(±2iωpt),
so that

Ĥtr(t) = −ℏ
N∑

j=1
(ωp − ω(j) + i

Γ(j)

2 ) |j⟩ ⟨j|

− ℏ
2

N∑
k=1

[
Ω0k |0⟩ ⟨k| + Ωk0 |k⟩ ⟨0|

]

− ℏ
2

N∑
j,k=1

[
Ωjk

(
exp(−iωmt) + exp(iωmt)

)
|j⟩ ⟨k|

]
. (2.20)

2.3.3 Schrödinger equation

We will now solve the Schödinger equation for the state |Ψtr⟩ = Û |Ψ⟩ of the system,

iℏ
d
dt |Ψtr⟩ = Ĥtr |Ψtr⟩ . (2.21)

Decomposing the wavefunction into the basis of excitonic states, |Ψtr⟩ = ∑N
j=0 cj(t) |j⟩,

we can write equations of motion for each of the coefficients cj . Initially, we take
the population of the valence band to be 1, and the population of all other states
as 0. Under the weak probe approximation, we can assume the population of the
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valence band is never meaningfully reduced from |c0|2 = 1, so up to a global phase
we can set c0 = 1. We find that the rest of the coefficients are governed by the set
of coupled, linear, first-order differential equations

iℏ
dcj

dt
= −ℏ

(
ωp − ω(j) + i

Γ(j)

2
)
cj − ℏ

2Ωj0

− ℏ
2

N∑
k=1

Ωjk

[
exp(−iωmt) + exp(iωmt)

]
ck. (2.22)

These equations prompt us to look for Floquet-like solutions,

cj(t) =
∞∑

N=−∞
cj;N (t) exp(iNωmt). (2.23)

The coefficients are written as functions of time here, as opposed to constant in
equation 2.8, because in the real system the laser field is switched on at some time
t0, as opposed to infinitely in the past. However, on physical grounds, we would
expect after some time the system to reach a steady state, where the coefficients
cj;N (t) become constant in time. This gives the boundary condition for our solution.
Combining this with equation 2.22, and equating the terms in equal frequencies,
we find

ℏ
(
ωp − ω(j) + i

Γ(j)

2 −Nωm
)
cj;N + ℏ

2

N∑
k=1

Ωjk

[
ck;N+1 + ck;N−1

]
= −ℏ

2Ωj0δN,0,

j ∈ {1, ...,N }.
(2.24)

If we take cj;N to be the elements of the column vectors cN , and Ωj0 to form the
column vector Ω, we can recast these equations in block-matrix form, such that

ℏωpI −



...
V A2 V

V A1 V

V A0 V

V A−1 V

V A−2 V
...







...
c−2

c−1

c0

c1

c2
...


=



...
0
0

−ℏΩ/2
0
0
...


, (2.25)

or more compactly still,

(ℏωpI − F ) |c⟩ = |d⟩ , (2.26)
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where

V = −ℏ
2



ΩVB;VB ΩVB;5S ΩVB;5P . . . ΩVB;20F

Ω5S;VB Ω5S;5S

Ω5P;VB Ω5P;5P
...

... . . .
Ω20F;VB . . . Ω20F;20F


, (2.27)

AN = ℏ


Nωm 0 . . . 0

0 ω5S − iΓ5S +Nωm 0
... . . . ...
0 0 . . . ω20F − iΓ20F +Nωm

 , (2.28)

and I is the (in this case infinite-dimensional) identity matrix. The matrix F is
indeed the Floquet Hamiltonian. To solve this matrix equation, we must truncate
it to some finite N ∈ {−Nmax, Nmax}, chosen such that the desired observables are
converged to an appropriate tolerance. In this work, Nmax = 15 was considered
converged because any increase in Nmax changed the resulting absorption of the
probe laser by less than 0.01 in optical depth. After setting it up correctly, the
matrix equation is then straight-forwardly solved for the coefficients cj;N by a sparse
matrix solver. The python code that was written for this is available at [82], and
uses the sparse.linalg package from the python library Scipy.

2.3.4 Absorption

To calculate the absorption of the laser by the excitons [83], we need the suscept-
ibility, χ(ω). Taking the medium to be homogeneous and isotropic, near the probe
frequency it is approximately given by

P (ω) ≈ ϵ0χ(ω)Ep (2.29)

where P (ω) is the polarisation field near the probe frequency, and ϵ0 is the permit-
tivity of free space. We now make the assumption that, near ωp, and after sufficient
time that the system is in a steady state, the polarisation is dominated by just a
few frequency terms. We therefore make the time-domain ansatz

P (t) = ϵ0ϵp
[
P±p exp(±iωpt) + P±m

±p exp(±i[ωp ± ωm]t)

P±2m
±p exp(±i[ωp ± 2ωm]t) + ...

]
(2.30)

where PNm
p (P−Nm

−p ) is the amplitude of the polarisation field at the frequency
(−)ωp + (−)Nωm. All of these terms are near ωp since ωm << ωp.
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2.3.5. Sidebands

We can calculate the polarisation field near the probe frequency from the wave-
function of the exciton as

P (t) = nd ⟨Ψ| D̂ · ϵp |Ψ⟩ ϵp, (2.31)

where nd stands for some effective number density of excitons. As discussed in
section 2.3.8, however, since we can only extract the quantity nd| ⟨0| D̂ · ϵp |nP⟩ |2

from measurements, in practice we do not need to calculate nd. Expanding equation
2.31 with |Ψ⟩ = Û † |Ψtr⟩ and equation 2.23, we find

P (t) =
∑
N

(
c∗

0;N exp(−iNωmt) ⟨0| +
∑
j>0

c∗
j;N exp(i[ωp −Nωm]t) ⟨j|

)
D̂ · ϵp

∑
N ′

(
c0;N ′ exp(iN ′ωmt) |0⟩ +

∑
j′>0

cj′;N ′ exp(−i[ωp −N ′ωm]t) |j⟩
)
ϵp. (2.32)

Since c0;N = δN,0, and most of the dipole matrix elements are zero, this simplifies
to

P (t) = ϵp
∑
N

∑
j>0

[
cj;N exp(−i[ωp −Nωm]t) ⟨0| D̂ · ϵp |j⟩ + c.c.

]
. (2.33)

If we equate terms in equal frequencies in equation 2.29, we find that, rather neatly,
at the probe frequency,

χ(ωp) = nd
ϵ0Ep

∑
j

⟨0| D̂ · ϵp |j⟩ cj;0, (2.34)

where we get cj;0 from solving equation 2.25. This allows us to calculate the
absorption per unit length of the probe laser,

α(ωp) = 2ωp
c

Im
[√

1 + χ(ωp)
]
, (2.35)

where c is the speed of light in vacuum.

2.3.5 Sidebands

Now, notice that in equation 2.33, P (t) also oscillates at frequencies −Nωm away
from ωp. One might suspect that the excitons will generate additional fields at
these frequencies that we can detect in experiments. In fact, careful analysis of
equation 2.24 will reveal that cnP;N = 0 for odd N , so the polarisation field only
oscillates at even multiples of ωm away, just as we only observe even sidebands on
the probe laser in the experiment! This led us to identify the amplitude of the
polarisation field of the excitons at the sideband frequencies with that of the probe
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Figure 2.5: A diagram of the Floquet Hamiltonian. It describes different total
states of the exciton and the microwave field. States of the exciton with N photons
in the microwave field couple to the dipole-allowed states of the exciton with N −1
(N + 1) photons in the field by absorbing (emitting) a photon from (to) the field.
Negative photon numbers are allowed because the photon number is understood to
be relative to some large total number [73].

sidebands. Since we only measure the intensity of the sidebands, ISB(ωp, ωm, N),
we write

ISB(ωp, ωm, N) = η

∣∣∣∣∣ nd
ϵ0Ep

∑
j

⟨0| D̂ · ϵp |j⟩ cj;−N

∣∣∣∣∣
2

, (2.36)

where η is a constant of proportionality to account for the fact that we do not know
the collection efficiency of the sideband light (see section 2.2). Here, N selects the
order of the sideband, for example N = 2 would be the second-order blue sideband,
or N = −4 would be the fourth-order red sideband. We take the coefficient of −N
in equations 2.36 so that ISB(ωp, ωm, N) is the intensity of the sideband Nωm

greater than the probe frequency. We could absorb the other constants into η,
however the quantity like the one in equation 2.34 is more convenient to calculate
as it is ultimately independent of Ep and of nd (see equations 2.44 and 2.57). As
seen in section 2.4.4, this assignment gives good agreement with the data. While
2.31 is only strictly true at the probe frequency, we measure the sidebands in the
experiment to follow the polarisation of the carrier laser, lending further credibility
to this assignment.

2.3.6 Floquet State Contribution

A useful consequence of casting equations 2.24 into block-matrix form is it reveals
the Floquet Hamiltonian, F . The Floquet Hamiltonian defines a new, infinite-
dimensional, time-independent system, related to the original time-dependent Hamilto-
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2.3.6. Floquet State Contribution

nian. The AN matrices on the diagonal, with energies ℏ([ω(j) − iΓ(j)/2] + Nωm),
describe a ladder of field-free excitons plus N photons in the microwave field, as
seen in figure 2.5. We have not formally quantised the electric field, however, it
can be shown [73] that the full second-quantised theory reduces to the system
described by a Floquet Hamiltonian in the limit of large photon number, where
N is relative to the total number of photons. We will label these product states
|j;N⟩ = |j⟩ exp(iNωmt), and they form the larger, time-independent basis which
describes the Floquet interpretation of the system. They are then coupled, via V ,
to the appropriate state |k,N ± 1⟩ on an adjacent rung of the ladder, so that

⟨j;N |F |k;N ± 1⟩ = −ℏΩjk

2 , (2.37)

where the N+1 (or N−1) state can be read as the exciton emitting (or absorbing)
one microwave photon. This also gives clarity to the minus sign in equation 2.36,
as the fewer photons are in the field, the more the exciton must have absorbed and
so oscillates faster. The eigenstates of F , which we call Floquet states (also called
dressed states), can be thought of as the underlying structure which the probe
laser is coupling to. Using this concept, we will consider the contributions from
the different Floquet states, which we will do by diagonalising F in equation 2.26.
Since F has complex energies on the diagonal, it is non-Hermitian, so it will have
different left and right eigenvectors for each quasi-energy Eq. We will denote them
|Lq⟩ and |Rq⟩, respectively, so that ⟨Lq|F = Eq ⟨Lq| and F |Rq⟩ = Eq |Rq⟩, and
such that their inner product ⟨Lq|Rq′⟩ = δqq′ . Aside from at possible exceptional
points (which I did not encounter in any of my calculations) we can decompose F
as

F =
∑

q

Eq |Rq⟩ ⟨Lq| . (2.38)

We can also write their completeness relation,

I =
∑

q

|Rq⟩ ⟨Lq| . (2.39)

Substituting these into equation 2.26, and left-multiplying by ⟨Lq′ |, we find

⟨Lq′ |c⟩ = ⟨Lq′ |d⟩
(ℏωp − Eq′) . (2.40)

Left multiplying by |Rq′⟩ and summing over q′, we find that we can write the
coefficients of the state of the exciton, cj;N , in terms of the Floquet states as

|c⟩ =
∑

q

|Rq⟩ ℏ ⟨Lq|d⟩
(ωp − Eq) , (2.41)
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2.3.7. Polarisation Dependence

where we relabel q′ → q. If we write the components of the eigenvectors in the
|j;N⟩ basis as ⟨Lq|j;N⟩ = L

(q)
j;N and ⟨j;N |Rq⟩ = R

(q)
j;N , equation 2.34 becomes

χ(ωp) = nd
ϵ0Ep

∑
j

⟨0| D̂ · ϵp |j⟩
∑

q

R
(q)
j;0

∑
k L

(q)
k;0ℏΩk0/2

(ℏωp − Eq) . (2.42)

Rearranging the sums into the most convenient order and rewriting Ωk0 in terms
of the dipole for symmetry,

χ(ωp) = −nd

2ϵ0
∑

q

1
(ℏωp − Eq)

∑
j

R
(q)
j;0 ⟨0| D̂ · ϵp |j⟩

∑
k

L
(q)
k;0 ⟨k| D̂ · ϵp |0⟩ , (2.43)

and similarly for the sidebands,

ISB(ωp, ωm, N) = η

∣∣∣∣∣ nd

2ϵ0
∑

q

1
(ℏωp − Eq)

∑
j

R
(q)
j;N ⟨0| D̂ · ϵp |j⟩

∑
k

L
(q)
k;0 ⟨k| D̂ · ϵp |0⟩

∣∣∣∣∣
2

.

(2.44)

This form of the susceptibility gives a clear way to think about the workings of
the system: the interaction of the exciton with the strong microwave field creates
an underlying structure of broad Floquet states with Lorentzian line shapes which
the laser couples to (remember Eq is complex); the coupling from the valence band
to each state is a sum of its overlap with the excitonic states (R(q)

j;0) weighted by
their couplings to the valence band (which in this case is only non-zero for |nP⟩);
and the coupling from each state back to the valence band is a sum of its overlap
with the excitonic states (L(q)

j;0) weighted by the valence band coupling to them.
Figure 2.12 demonstrates this way of understanding the experiment. The python
code available in [82] also has the option to solve the system from this Floquet
eigenstate approach.

2.3.7 Polarisation Dependence

While the model used here does not account for the effect of the crystal structure
directly on the exciton, the Rabi frequencies (defined in equation 2.18) remain
dependent on the angle β between the probe and microwave electric fields. De-
pendence on β is an important point of comparison between the model and the
experiment, and in this section I outline how it was treated theoretically.

The Wannier-Mott theory of excitons is a common way to describe Rydberg ex-
citons [84, 16]. Indeed, in this model, it was used to calculate the dipole matrix
elements between pairs of excitonic states, ⟨j| D̂ · ϵm |k⟩. It results in spherically
symmetric wavefunctions, |Ψnlm⟩p, which can therefore be separated into radial
and angular parts, so that |Ψnlm⟩p = |Rn

l ⟩ |Y l
m⟩p. The subscript p indicates that
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2.3.7. Polarisation Dependence

the quantum number m, the z-component of the orbital angular momentum l, is
defined with respect to the polarisation direction of the probe field ϵp. In general,
the choice of z direction is arbitrary, and we could also define the wavefunctions
with respect to the microwave field direction as |Ψnlm⟩m = |Rn

l ⟩ |Y l
m⟩m. However,

assuming that the laser excites from the valence band into only the m = 0 state, in
experiments we measure the value of the dipole matrix elements ⟨0| D̂ · ϵp |ΨnP0⟩p,
so we are constrained to work in the probe basis. If we denote {xm, ym, zm} the
Cartesian coordinates in the microwave system, where zm is parallel to ϵm, then the
microwave Rabi frequency between two states |Ψnj ljmj

⟩p and |Ψnklkmk
⟩p becomes

Ωjk>0 = Em ⟨Ψnj ljmj
|p zm |Ψnklkmk

⟩p /ℏ. (2.45)

The coordinate inside the inner product ⟨Ψ| z |Ψ⟩ indicates that the coordinate is
integrated over. This cannot be evaluated directly, since the wavefunctions are in a
different coordinate system to the operator zm. We express the states in the probe
coordinate system in terms of the states in the microwave coordinate system as

|Rn
l ⟩ |Y l

m⟩p = |Rn
l ⟩
∑
m′

dl
m,m′(β) |Y l

m′⟩m , (2.46)

where d
lj
mj ,m′(β) is the Wigner small-d matrix [85]. Transforming to spherical

coordinates,

Ωjk>0 = −eEm ⟨Rnj

lj
| r |Rnk

lk
⟩ ×

∑
m′,m′′

[dlj
mj ,m′(β)]∗dlk

mk,m′′(β) ⟨Y lj
m′ |m cos θm |Y lk

m′′⟩m ,

(2.47)

where {r, ϕm, θm} are the spherical coordinates in the microwave system, aligned
such that θm is parallel to ϵm. In essence, the states are initially aligned with
the probe field, we rotate them to align with the microwave field, we evaluate the
microwave dipole, and then we rotate back.

Figure 2.6 compares the β-dependence of the effect of the microwave field on the
absorption spectrum, ∆αL (defined in equation 2.58), between this theory (red
line) and experiment (red dots). As seen in the figure, equation 2.47 greatly over-
estimates the dependence on β. A scheme where the valence band couples equally
to all the |nP,m = {1, 0,−1}⟩ states was tested, but gave similarly poor angle de-
pendence, so the most likely reason is that the spherical symmetry of the Wannier-
Mott wavefunction does not properly capture the symmetry of the crystal. In Jon
Pritchett’s thesis [74] a tensor treatment of the susceptibility is carried out, and it
is shown to be compatible with no angle dependence. We use this fact to motivate
the rather crude approximation

Ωjk>0 =

−eEm ⟨Rnj

lj
| r |Rnk

lk
⟩ , if |lj − lk| = 1,

0, otherwise,
(2.48)
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Figure 2.6: The dependence of the change in laser absorption on the relative po-
larisation angle between the microwave and laser fields. This data is taken at laser
detuning ℏωp = E11P and microwave field strength Em = 688 ± 5 V m−1. The red
points show the experimental data, whose errorbars were too small to see. The
solid red curve shows the model with Rabi frequencies defined in 2.47, and the
horizontal black line shows the model with Rabi frequencies defined in 2.48.

removing the righthand side of equation 2.47 altogether, but maintaining the se-
lection rule that ∆l = ±1. The result is show as the black line in figure 2.6.

2.3.8 Background absorption

In the experiment, the absorption due to the excitons sits on top of a large back-
ground due to excitations of a low-lying nS state and a phonon. Though the nS
exciton is even parity, the parity of the phonon makes this process dipole allowed.
The precise way to model this effect is an ongoing area of research [86, 87] and bey-
ond the scope of this thesis, so for this project it was removed from experimental
data. In [88], a function is used to fit the background absorption coefficient

αbg(E) =

αPh(E) + αU(E) E < Ẽg

αcont E ≥ Ẽg
, (2.49)

where Ẽg is the effective band gap energy, the point at which the exciton series
smooths out into a continuum, and E = ℏωp is the energy of the laser. The
contribution due to the relevant nS + phonon processes is given by

αPh(E) = α
Γ−

3
1Sy(E) + α

Γ−
4

1Sy(E) + α
Γ−

3
2Sy(E) + α

Γ−
3

1Sg(E), (2.50)
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2.3.9. Model parameters

where the terms αy
x(E) give the absorption from each exciton x and phonon y pair.

The labels y and g are for the yellow and green exciton series, respectively. Each
process only switches on when energetically allowed, so are modelled by

αy
x(E) =

A
y
x

√
E − (Ex + Ey) E > Ex + Ey

0 E ≤ Ex + Ey

, (2.51)

with Ay
x the amplitude of each process. The square-root dependence comes from

the density of states of the phonons. The second term in the below-band gap
contribution is the Urbach tail

αU(E) = cU exp{(E − Eg)/EU}, (2.52)

a phenomenological term that gives an exponential smearing of the continuum into
the band gap, with amplitude cU and width EU. This smearing has been shown
to originate in charged impurities in the crystal, the small, inhomogeneous electric
fields of which ionise the high n excitons [89]. The continuum term, αcont(E), is
described functionally in [88], however in this project the experimental data did
not extend far above the continuum, so αcont was treated as constant.

In the microwave-field free case, the Rydberg exciton part of the absorption, αEx,
was modelled with a sum of asymmetric Lorentzians

αEx(E) = 1
L

∑
nP

AnP
γnP + qnP(E − EnP)
γ2

nP + (E − EnP)2 . (2.53)

Here, AnP is the amplitude of the Lorentzian, γnP = ℏΓ(nP)/2 is the half width
half maximum in energy, qnP is the asymmetry, EnP = ℏω(nP) is the energy of the
exciton resonance, and L is the depth of the sample. The asymmetric lineshape
of the absorption peaks comes from the non-radiative decay of the excitons via
phonon emission. Taking the phonon energies and amplitudes from [88], the rest
of the parameters were fit all at once to the single photon excitation data. The full
absorption spectrum, with the background function obtained from this fit shaded
in red, is shown in figure 2.7.

2.3.9 Model parameters

The n = 6 to n = 15 P exciton energies and widths were taken directly from a
fit to the data in figure 2.7. The S, D, and F energies and widths from n = 6 to
n = 11 were fitted from 2-photon absorption spectroscopy [40]. The energies were
extended to n ∈ {5, . . . , 20} by fitting them to Rydberg series, Eg − Ry/(n− δl)2,
with a shared Rydberg constant Ry and an l-dependent defect δl. The P widths
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2.3.10. Microwave field calibration

were extended by fitting them to a 1/n3 scaling law plus a constant, cP. Because
there is additional broadening in the 2-photon spectrum due to the SHG pump
laser, the S, D, and F widths were fitted to a 1/n3 scaling law but with the same
constant cP. Details of these fits are in [40].

The dipole moment per unit volume, nd ⟨0| D̂ · ϵp |nP⟩, can also be obtained from
fitting. From [90] we know that, absent of the microwave field, the linear suscept-
ibility due each nP exciton can be modelled as

χ
(1)
nP = 1

2ϵ0
|nd ⟨0| D̂ · ϵp |nP⟩ |2

E − EnP − iγ(nP) . (2.54)

Assuming χ(1)
nP << 1, a reasonable assumption given the small effect of the excitons

on the absorption, we find from 2.35 that

αnP = ωp
2ϵ0c

|nd ⟨0| D̂ · ϵp |nP⟩ |2 γnP
(E − EnP)2 + γ2

nP
(2.55)

is the contribution to the absorption from each P state, or, with the laser on
resonance with the P state,

αnP = ωp
2ϵ0c

|nd ⟨0| D̂ · ϵp |nP⟩ |2

γnP
. (2.56)

If we compare this to the on-resonance Lorentzian contribution from each P state in
equation 2.53 then we find that the square modulus of the dipole matrix elements
per unit volume are given by

|nd ⟨0| D̂ · ϵp |nP⟩ |2 = 2AnPϵ0c

ωpL
. (2.57)

Helpfully, the fact that we calculate these quantities per unit volume means we do
not need to estimate a value for nd in equations 2.43 or 2.41. All the parameters
used in the model are available to download at [82].

Unfortunately, equation 2.57 does not give us any information about the phase
of the matrix elements. This problem has arisen before, in fitting the 2-photon
absorption data to a sum of complex poles [40]. To explore the significance of these
phases, sets of phases were generated from a uniform random distribution, and
the variation in the results of the model are discussed in section 2.4.3. In short,
because they had little meaningful effect on the absorption spectra (fig. 2.14), we
make the arbitrary decision that all such matrix elements are positive real wherever
the absorption spectra are discussed in this work.

2.3.10 Microwave field calibration

All but one of the parameters that enter the model are measured in experiment
or derived from some more fundamental theory. Unfortunately, there is no way
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Figure 2.7: Experimental exciton absorption spectrum, with the fitted phonon
background function shaded in red. For comparison with theory, this background
is subtracted from the total absorption.

to measure the amplitude of the microwave field at the medium without affecting
the experiment. Finite element electromagnetic simulations of the antenna found
the field strength was very sensitive to the presence of metallic components inside
the cryostat [54, 91]. It was also found that the transmission and reflection of
the microwave signal through the antenna was poorly correlated with the field
strength, so it could not be measured that way either. Therefore, the microwave
field strength in the sample was calibrated by fitting the model for small values
of Em, where the model reduces to the perturbative model in [25]. By fitting only
to small values of input power, we can test the model at strong fields without any
free parameters. This was done by fitting across the energy spectrum the change
in absorption

∆αL = α(Em)L− α(Em = 0)L, (2.58)

where L is the thickness of the cuprite sample. In total, eight ∆αL data sets were
used to fit the model. One of these fits is seen in figure 2.10a. The best fit values of
the microwave field strength are plotted against the square root of the input power
to the microwave antenna in figure 2.8. The limits of the error bars displayed in fig.
2.8 represent the value of the electric field for which the chi-squared value of the fit
doubled over the chi-squared value at the best fit electric field strength. The best
fit line through figure 2.8 gives a calibration factor of 43.5 ± 0.3 V m−1(mW)−1/2,
within the error bar of the value calculated in [25], and in reasonable agreement
with the simulation in [54]. The slight difference from [25] and smaller error bar
comes from using more points in the fit. It was measured that the output power
from the antenna was linear with input power, so this calibration was used for all
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Figure 2.8: The best-fitting microwave electric field strength for ∆αL (eq. 2.58)
at small input microwave powers is plotted against the square root of the power.
The errorbars on the best fit field are where the chi-squared for that fit doubles
(the errorbars on the input power are too small to see). The linear fit allows us
to extract the calibration factor of 43.5 ± 0.3 V m−1(mW)−1/2 between the power
input to the antenna and the peak field strength at the sample.

input powers.

2.4 Results

2.4.1 Absorption Spectra

The absorption of the probe laser by the Rydberg excitons for varying microwave
field strength is compared to predictions of equation 2.35 in figure 2.9. The ab-
sorption spectra are offset in optical depth by Em/100 to show six different mi-
crowave field strengths, as indicated on the righthand y-axis. As the microwave
field strength increases, absorption at the peaks reduces and absorption between
peaks increases, turning the high n exciton peaks into a broad absorption con-
tinuum. Qualitatively, this effect is reproduced well in the theory curves. Across
the range of field strengths, the same peaks disappear in both the experimental
and theoretical spectra, with the continuum in both growing to include all peaks
above 9P at Ep = 688 ± 5 V m−1, the maximum field strength applied in the ex-
periment. Unlike similar experiments on atoms [92], we do not observe obvious
Stark shifts or Autler-Townes splittings of the peaks. In those systems, the states
are narrow compared to their energy spacing, so there is a significant perturbative
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2.4.1. Absorption Spectra
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Figure 2.9: Plots of the (a) experimental and (b) theoretical absorption spectra at
different microwave field strengths, Em. Each spectrum has been offset in optical
depth by Em/100 to indicate the microwave field strength it was taken at, shown on
the righthand y-axis. The dashed vertical lines show the positions of the zero-field
nP resonances.

regime in which a state is coupled to exactly one other, and where the AT splitting
(i.e. the Rabi frequency) is bigger than the linewidth. In our system, with large
linewidths comparable to the energy separation between states, the (ultra)strong
driving threshold is crossed even at low field strengths, where many states are
coupled together at once, resulting in more complicated behaviour.
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2.4.2. Floquet states

To compare quantitatively the experimental and theoretical absorption spectra,
figure 2.10 shows the effect on the absorption by switching on the microwave field,
defined in equation 2.58. The subfigures (a), (b) and (c) show, respectively, a
small value of Em where Ω << Γ, the threshold of strong driving (Ω ∼ Γ), and
the maximum field strength achieved in the experiment (Ω >> Γ). In the low
field regime, where the model reduces to the perturbative model in [54, 25], the
agreement is excellent. While this is a useful result, it is somewhat expected, since
this is where the microwave field strength was calibrated. Remarkably, the model
maintains near quantitative agreement across all applied microwave fields. The
agreement is best at the nP peaks, and reproduces well the expanding envelope of
∆αL. It should be stressed here that once the microwave field strength is calibrated
against the data at low powers (Em < 80 V m−1), there are no free parameters in
the model. For comparison, the perturbative model in [25] predicts ∆αL = −6 for
the maximum field strength at ℏωp = E10P, much larger than the actual size of the
absorption peak, indicating we are well beyond the perturbative regime.

There are some discrepancies between the model and the experiment. Asymmetry
can be seen in the nP peaks in the experimental data even with no microwave
field applied. This asymmetry is well-studied and known to be a result of the non-
radiative decay via phonons [86, 87]. However, modelling this effect is complicated
and not easily compatible with this model. There are ways to introduce asymmetry
into the peaks parametrically, for example adding an additional imaginary part to
the matrix elements appearing in equation 2.41, however it is not obvious that this
will have the desired effect on the physics of the system once the microwave field
is switched on. The lack of asymmetry can explain some of the weaker agreement
between nP peaks. However, there are still spurious features in the theoretical
spectra not present in experiment, for example the two peaks that emerge between
8P and 9P, or the splitting of 10P into two peaks. These discrepancies are likely
caused by inaccurate state structure and Rabi couplings in the model. Indeed, it is
possible that the unusual smoothness of the experimental spectra when compared to
the theoretical spectra is caused by additional broadenings of the S, D, and F states
that are not accounted for in this model, as discussed in section 2.5.1. Nevertheless,
the level of agreement gives strong evidence that the model is correctly capturing
the essential physics of the system.

2.4.2 Floquet states

The Floquet state picture of the model provides powerful ways to understand the
results seen in the experiment. Figure 2.11 shows a Stark map of the real part of the
eigenenergies of the Floquet states, Re[Eq], and how they change with microwave
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Figure 2.10: Comparison between the experimental (filled circles) and theoretical
(solid lines) values of the change in absorption ∆αL as a function of laser energy.
Three different values of microwave field strength are shown spanning the perturb-
ative (a), strong (b) and deep strong (c) driving regimes. The dashed vertical lines
show the positions of the zero-field nP resonances.
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Figure 2.11: The real part of the eigenenergies of all the Floquet states in the
region near ℏωp = E10P. The density of states is very high due to the inclusion of
N ∈ {−15, . . . , 15}. The periodicity that can be seen at Em = 0 V m−1 comes from
the excitonic structure repeated at ±Nℏωm. Above perturbative field strengths
(Em < 50 V m−1) there is significant state mixing leading to large energy shifts
and many state crossings. Only some of these states couple to the valence band
and so contribute to probe laser absorption, as shown in figure 2.12.

field strength in the region near ℏωp = E10P. At Em = 0, we reproduce the
zero-field exciton, with copies of it periodically at Nℏωm either side for each N ∈
{−15, . . . , 15}. As the field strength increases, the states mix together and no longer
correspond to pure excitonic states. The perturbative region, where the change in
state energies is mostly linear, is confined to Em ≲ 100 V m−1 on the low energy
side of the map, and Em ≲ 50 V m−1 on the high energy side. This demonstrates
how strong and ultrastrong driving, characterised here by non-linear response of
the state energies and many state crossings, occurs at much lower field strengths
for higher energies, where states are closer together and coupling strengths between
them are greater.

Not all of the Floquet states couple to the valence band, however, so it is difficult to
tell from figure 2.11 what the absorption spectrum would look like. From equation
2.43, we can see that only states with a non-zero |nP⟩ component can contribute
to the absorption. To visualise this, in figure 2.12 is plotted in grey the real part
of the Floquet eigenenergies, Re[Eq], against Em, with their opacity given by

aq =
∑
n,n′

R
(q)
nP;0

[
L

(q)
n′P;0

]∗
. (2.59)

The choice here not to multiply aq by the dipole matrix elements, as would be
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2.4.2. Floquet states

natural looking at equation 2.43, is so that the high energy states are still visible,
otherwise their small couplings to the valence band compared to the low energy
excitons would make them impossible to see. The orange and green curves show
where the nP to nD transitions enter the strong (ΩnP,nD > ΓnP) and deep strong
(ΩnP,nD > ΓnP, |EnP−EnD|) driving regimes for each n. The theoretical absorption
spectrum at Em = 688 V m−1 is shown above the Stark map. This plot gives
immediate clarity to what is happening in the experiment. For low energy excitons
(7P and below) the coupling to neighbouring states is small and the energy gap to
them is large, so they do not mix significantly. One can see |7S; +1⟩ and |7F; 0⟩, the
two closest visible states to |7P; 0⟩, are gaining some 7P character at the highest
field strengths, though not enough to produce peaks in the absorption spectrum.
The 8P exciton is at the threshold of strong driving at the highest field strengths.
It is isolated enough from nearby states that it is beginning to undergo Autler-
Townes splitting, something that does not happen to any other field-free exciton
states. Also, its mixing with nearby states leads to a reduction in its 8P character,
which decreases the height of its absorption peak. The two states on the low-energy
side of 8P are labelled |8S; −1⟩ and |8S; +1⟩ at zero field, and they couple strongly
enough to |8P; 0⟩ at the maximum field strength to produce peaks in the absorption
spectrum. The 9P exciton enters the strong driving regime and is on the threshold
of deep strong driving at the maximum field strength. It is exchanging several
microwave photons before decaying, evidenced by the fact that we can see many
nearby states that have significant 9P character. However, there is still a state
that is mostly |9P; 0⟩, giving rise to a large peak at ℏωp = E9P. This is not true
of the rest of the |nP; 0⟩ states. Even at moderate field strengths, the coupling
between them and states near and far is so strong that there are no states left with
a dominant contribution from a single |nP⟩ state. The resulting forest of states
that all couple to the valence band is what gives rise to the absorption continuum
observed in the experiment.

To give an example of how many states contribute to absorption at a given probe
laser energy, the quantity

bq = Im
[

1
(ℏωp − Eq)

∑
j

R
(q)
j;0 ⟨0| D̂ · ϵp |j⟩

∑
k

[
L

(q)
k;0
]∗ ⟨k| D̂ · ϵp |0⟩

]
(2.60)

is shaded in red for laser energy ℏωp = 2.171 eV, as indicated by the solid vertical
line. Notice how many states contribute significantly to the absorption. This is due
to the large energy width most of the states (which is not plotted, for readability)
meaning they can interact with the laser even when far off resonance. Of course, the
states that are closest to the laser in energy contribute the strongest, but because
the contribution is mediated by the coupling to the valence band, even distant
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Figure 2.12: The real part of the eigenenergies of the Floquet states are plotted
to show how the underlying structure of the exciton changes with microwave field
strength. The Floquet states’ opacity is given by their overlap with the zero-field
|nP⟩ states (eq. 2.59) to demonstrate how much the they contribute to the laser
absorption. The absorption spectrum at Em = 688 V m−1 is shown in the top plot
for reference. The Floquet states also have a width to them, which is not shown.
To give an idea of the importance of the width, the states which contribute to the
absorption at the indicated laser energy (ℏωp = 2.171 eV) are shaded in red, with
deeper reds showing greater contribution. Above the orange curve, the nP to nD
transitions enter the strong driving (ΩnP,nD > ΓnP), and above the green curve the
same transitions enter the deep strong driving regime (ΩnP,nD > ΓnP, |EnP −EnD|).

states near 8P and 11P contribute. While the change in contribution is due mostly
to states changing in coupling to the valence band, they are also changing in width,
so can couple to the laser when further off-resonant.

Although we cannot treat this system as a two-level one, it is still useful to calculate
the deep strong driving regime condition for some of the transitions to compare it
to other strong coupling and driving systems. For example, we find that for the
11P to 11D transition we enter the deep strong driving regime for field strengths
above 300 ± 2 V m−1. The point where all pairs of nP to nD transitions cross
the strong and deep strong driving threshold is shown by the green curve in figure
2.12. At the highest fields applied, we can reach a deep strong driving parameter
of up to U = Ω13P,13D/ν13P-13D ∼ 4 for the 13P to 13D transition, significantly
exceeding parameters of U = 1 [53] and U = 2.1 [66] in other strong driving
works. The strong driving threshold, where the Rabi frequency is larger than the
state linewidth, shown in orange in figure 2.12, is reached at a similar microwave
field strength. This is because the state linewidth (FWHM of 40 µeV for 11P) is
comparable to the energy separation (E11D − E11P = 58 µeV).
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Figure 2.13: A heuristic for how much of the wavefunction oscillates at less
than frequency |N |ωm, when ℏωp = E12P. The yellow region shows where
X(N, Em) < 0.68 and the green region is where X(N, Em) < 0.95, as defined
in equation 2.61.

It is not clear from figure 2.12 how significant high-N states are in the wavefunction
for a given laser energy, or in other words, how many microwave photons may be
exchanged in the system. To investigate the extent of mutiphoton transitions, in
figure 2.13 I plot for ℏωp = E12P contours of the quantity

X(N, Em) =
∑

−N<N ′ <N

∑
j>0 |cj;N ′ |2∑

N ′
∑

j>0 |cj;N ′ |2
, (2.61)

which measures how much of the wavefunction (excluding the valence band) os-
cillates at a frequency less than |N |ωm. This is a proxy for microwave photon
transitions, since to populate a |j,N⟩ state, at least N transitions must occur. We
can see that even at the highest field strengths, most of the wavefunction consists
of states |j,N < 3⟩. However, a significant amount of the wavefunction is made up
of states all the way out to N = 8, indicating at least 8 microwave photons are
exchanged before the exciton decays, at the highest field strengths. The system
must therefore be well beyond the validity of the rotating wave approximation,
justifying our Floquet state-based approach.

With this many transitions involved, we may question whether ionisation could
become significant, though it is not included in the model. Ionisation in excitons is
analogous to ionisation in atoms since the conduction band acts like the continuum.
Experiments on dissociating Rydberg excitons with static fields have shown the
required ionisation field strength to follow an n−4 trend [93, 94, 95]. Applying these
results to this system, the ionisation field at n = 11 would be 6000 V m−1, an order
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2.4.3. Phases of the dipole matrix elements

of magnitude larger than the largest field applied in our experiment. However, our
field is not static, and so it is possible to ionise the exciton by absorbing multiple
photons in a row [96]. Experiments on ionisation of hydrogen atoms in microwave
fields reveal an n−5 scaling when the microwave frequency is less than the level
spacing, as it is here, resulting in ionisation at much lower field strengths [97].
Comparing the binding energy (in frequency units) of the 12P exciton, 117 GHz,
to the frequency of 8 microwave photons, 54 GHz, it is unlikely that the 12P exciton
would be ionised by the field. At ℏωp = E15P, the 95% contour of X(N, Em) reaches
out to N = 17 at Em = 688 V m−1. The binding energy of the 15P exciton is only
93 GHz, less than 17ωm = 119 GHz, implying that ionisation could have an effect
on the very high energy part of the exciton series. Unfortunately, extending the
model to include ionisation to a continuum via an arbitrary number of microwave
photons is significantly non-trivial [98], and was beyond the scope of this thesis.

2.4.3 Phases of the dipole matrix elements

As discussed at the end of section 2.3.8, we do not have access to the phase of the
dipole matrix elements ⟨0| D̂ · ϵp |nP⟩ between the valence band and the nP states,
seen in equation 2.57. With 16 different nP states in the model (n = 5 to n = 20),
the parameter space is too large to systematically explore. Therefore, to investigate
how important a role these play in the laser absorption spectrum and the intensity
of the predicted sidebands, 100 sets of matrix elements {⟨0| D̂ · ϵp |nP⟩ exp(iθn)}
were generated, with each θn chosen from a uniform random distribution on [0, 2π).

Figure 2.14 shows the theoretical probe absorption spectra for two such sets of
phases and how they vary with microwave field strength. These two sets were
chosen here as they produced the two most distinct spectra of the phases tested.
As one can see, little meaningful difference is made to the absorption spectrum
by the choice of phases. The broad absorption continuum still forms at the same
energies and at the same field strengths. The lack of response at the 6P and
7P energies is unaffected. Almost all of the new peaks that appear at high field
strengths appear at the same energy with the same amplitude, like those between
7P & 8P and those between 8P & 9P. The biggest difference is near the peak
corresponding to 9P, where the peak has moved to higher energy in the top plot,
though this difference is still small. Given the relative lack of dependency of the
absorption spectrum on the phases of the matrix elements, they were (arbitrarily)
all chosen to be positive real in sections 2.3.10, 2.4.1 and 2.4.2. However, the choice
of phase had a very strong effect on the predicted intensity of the sidebands.
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Figure 2.14: Plots of the theoretical absorption spectra at different microwave
field strengths, Em, for two different sets of randomly chosen phases of ⟨0| D̂ ·
ϵp |nP⟩. These two choices of phases gave two most different spectra, indicating
the absorption spectra is not significantly dependent on phase. Each spectrum has
been offset in optical depth by Em/100 to indicate the microwave field strength it
was taken at, shown on the righthand y-axis. The dashed vertical lines show the
positions of the zero-field nP resonances.
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2.4.4. Sidebands

2.4.4 Sidebands

In figure 2.15, the intensity of red and blue sidebands in the experiment at a
selection of laser detunings are compared to the predictions of the model for each
of the different sets of phases (see section 2.4.3). Almost all sets qualitatively
reproduce the shape and quantitatively reproduce the onset of the sideband rollover
over an order of magnitude in field strength and nearly three orders in intensity, for
both the second- and fourth-order sidebands. It is also a significant improvement
over the perturbative model used in [25], which could not predict rollover, nor
fourth order sidebands.

The intensity is largely phase-independent near lower energy excitons, since they
have relatively small couplings to neighbouring states and the energy gap to them
is much larger than the microwave energy. This means that an exciton created
through, say, the 8P state is overwhelmingly likely to decay through the 8P state,
described by the | ⟨0| D̂ · ϵp |8P⟩ |2 term in equation 2.44, which has no dependence
on phase. Conversely, the intensity is very phase-dependent for higher energy laser
detunings. As the exciton states get closer in energy it is more likely that an
exciton created in one nP state decays through another, introducing cross-terms
⟨0| D̂ ·ϵp |nP⟩ ⟨0| D̂ ·ϵp |n′P⟩ exp[(i(θn −θn′)] to equation 2.44, which are dependent
on phase.

Looking at figure 2.15, one can see for any given energy some of the lines quantit-
atively reproduce the experimental data points, providing good evidence the model
is capturing the essential physics of the system. It is therefore important to check if
there is a common choice of phases, corresponding perhaps to the phases in reality,
amongst the random sampling that quantitatively fit to many sidebands at once.
Figure 2.16 shows an example of one choice of phases, namely, the set of phases
that best-fit for fig. 2.16a, the second-order blue sidebands just below ωp = E12P.
These phases also fit well to the sideband data just below ωp = E11P (fig. 2.16b)
for both the second- and fourth-order sidebands. However, the fit is poor for the
corresponding red sidebands. Recall from equation 2.36 that η is a free parameter
as well, and its value accounts for a rigid vertical shift in fig. 2.16. Unfortunately,
looking at figure 2.15, we can see that for the required factor of 10 reduction in η

for the red sidebands to fit as well as the blue sidebands, there are no curves that
would fit the blue sidebands near ωp = E12P. This is the same of all the choices of
phase that were studied: no phases fit more than a few different sideband data sets
at once. It is likely that due to the energy dependent absorption background, the
phases of the matrix elements are energy dependent too, though in precisely what
way is not obvious. Analysis of the phases in that way was considered beyond the
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Figure 2.15: The intensity, expressed in counts per second, of second (colour)
and fourth (black) order red- and blue-detuned sidebands for theory (lines) and
experiment (points) at four different probe laser detunings. The vertical lines in
the insets show where in the exciton spectra each set of sidebands was taken: (a)
2.17061 eV, (b) 2.17091 eV, (c) 2.17125 eV, (d) 2.17137 eV. Each theory curve is
obtained with a different, randomly-chosen, set of phases for the valence band to nP
dipole matrix elements, ⟨0| D̂ · ϵp |nP⟩, since these phases could not be determined
from experiment.

scope of this thesis.

As mentioned in section 2.3.5, there is also an unknown prefactor η to the sideband
intensity due to a lack of knowledge of the collection efficiency of the light in the
experiment. Given that the data near 8P is largely phase independent, due to its
relative isolation from other states, η = 7.0 × 1012 W m−2 was obtained by fitting
the average theory curve there to the data.

2.5 Extensions to the model

The model developed in this work does not include the effects of inter-exciton
interactions. While the probe laser in the experiment was kept to an intensity
below where interactions would be relevant, there is interesting work in the field
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Figure 2.16: The intensity, expressed in counts per second, of second (colour)
and fourth (black) order red- and blue-detuned sidebands for theory (lines) and
experiment (points) at four different probe laser detunings. The vertical lines in
the insets show where in the exciton spectra each set of sidebands was taken: (a)
2.17061 eV, (b) 2.17091 eV, (c) 2.17125 eV, (d) 2.17137 eV. The theory curves are
obtained for the choice of phases for the valence band to nP dipole matrix elements,
⟨0| D̂ · ϵp |j⟩, that minimise the residuals in (a). This is an example of how I found
no choice of phases that fit many sideband data sets at once.

studying dependence on Rydberg exciton density [99]. Since the van der Waals
interaction energy between two excitons is in the microwave regime as well [16],
this kind of experiment could be combined with a strong microwave field to explore
tunable interactions between two Floquet systems, which could be understood by
extending this model.

We do not include the possibility of ionisation in the model either. Extending the
model to include ionisation in a complete and self-consistent way is unfortunately
very complicated [98], as it requires a basis that can express both the discrete
states of the exciton and the continuum of states in the conduction band. A
simple method was discussed that adds a small number of ‘conduction band states’
with some effective coupling to the exciton states, but this would add many free
parameters to the model in a poorly defined way, so it was not pursued.

The discrepancy in the relative polarisation dependence of the two fields between
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2.5.1. A possible broadening of the excitonic states

theory and the experiment discussed in section 2.3.7 provides an interesting avenue
to continue this work. A simple initial route could be to replace the spherical
harmonics of the Wannier-Mott wavefunction with cubic harmonics, with the idea
that they would better suit the symmetry of the crystal. The orientation of the
crystal with respect to the two fields is also not included. It seems likely that the
correct polarisation dependence will derive from a complete analysis of the exciton
in these three different bases.

The phonon-mediated absorption background is only modelled phenomenologically
in this work. If one were to find a way to model more completely the exciton’s
interaction with phonons, it would give a way of introducing the asymmetric width
of the nP excitons [86, 87]. It would also have a significant effect on the decay
widths of the other excitonic states, which are currently derived from 2-photon
experiments that do not interact with the background [40]. Furthermore, it would
introduce an energy-dependent phase to the valence band to nP couplings, which
could be a solution to the phase problem in the sidebands. This would be a valuable
addition to the model indeed.

2.5.1 A possible broadening of the excitonic states

At one point in the project data for the full-width-half-maximum of the excitonic
states were misused as the half-width-half-maximum of those states, an increase in
the experimentally measured widths by a factor of 2. Along with as some changes
in the fitting of the 2-photon excitation data, the model was evaluated with the
widths for the S, D, and F states 1.5 to 3 times too large. Interestingly, this led to
significant improvement in comparisons with experimental data. Figure 2.17 shows
the theoretical absorption spectrum for these artificially large widths, along with
the experimental spectra for reference. Qualitatively it resembles the experimental
spectra much more closely. The additional peaks that appear on the shoulders of
the 8P and 9P peaks in the theoretical spectra in figure 2.9 do not appear here,
just as they do not appear in the experiment. The absorption continuum is also
much smoother, though still not as flat as in experiments. Figure 2.18 shows the
change in absorption at Em = 688 ± 5 V m−1 for the artificial widths against
experiment. The quantitative agreement improves as well. The most dramatic
improvement is that the change at 6P and 7P is the correct magnitude. There
is also some improvement in the change at 9P. This could indicate that there is
additional broadening of those states in the experiment above the widths measured
in the 2-photon experiments [40].
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2.5.1. A possible broadening of the excitonic states
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Figure 2.17: The probe absorption spectra at different microwave field strengths
for (a) the experiment, and (b) the model with artificially large widths for the S, D,
and F states. Each spectrum has been offset in optical depth by Em/100 to indicate
the microwave field strength it was taken at, shown on the righthand y-axis. The
dashed vertical lines show the positions of the zero-field nP resonances.
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Figure 2.18: Comparison of the change in absorption ∆αL as a function of laser
energy between the experiment (filled circles) and the model with artificially large
widths for the S, D, and F states (solid lines). The dashed vertical lines show the
positions of the zero-field nP resonances.

2.5.2 Future experiments

Figure 2.19 shows the predicted absorption spectra for field strengths up to Em =
1400 V m−1. Unsurprisingly, the absorption continuum broadens, including states
8P and above. Features near 7P begin to couple strongly enough to the valence
band to show as peaks in the absorption of the laser, indicating even states at
those energies are participating in strong driving. Future experiments that can
achieve higher field strengths, for example with superconducting resonators, could
probe this extreme limit. Perhaps if ultrastrong driving (USD) and ultrastrong
coupling (USC) physics can be done at lower Rydberg principal quantum numbers
then poorer quality samples can be used, improving the scalability of technologies.

2.6 Conclusions

We have constructed a model for the effect of a strong microwave field on an
ensemble of non-interacting Rydberg excitons in Cu2O, probed by a weak laser
field. Using Floquet theory, we have solved for the steady state of the system,
something not previously done in excitons. The model qualitatively reproduces
the absorption spectra of the probe laser and quantitatively reproduces the effect
of the microwave field on the spectra up to field strengths 16 times larger than the
perturbative limit [25], a remarkable result for a condensed matter system with
no free parameters. We can be confident that, instead of ionising the excitons,
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Figure 2.19: The theoretical laser absorption spectra for microwave field strengths
above those of the experiment. Again, each spectrum has been offset in optical
depth by Em/100 to indicate the microwave field strength it was taken at, shown
on the righthand y-axis. The dashed vertical lines show the positions of the zero-
field nP resonances.

high principal quantum number states are hybridised together into a dense forest
of dressed ‘Floquet’ states, forming a broad absorption continuum. This does not
occur in atomic systems [53] due to the non-radiative broadening of excitonic states
allowing many states to be coupled with the same field. The continuum maintains
a strong coupling to the microwave field, as shown by the measurements of the
microwave-induced sidebands. Many excitonic transitions cross well into the deep
strong driving regime, with couplings strengths in excess of 4 times their energy
separation. At the highest field strengths there are significant processes involving
the exchange of at least 8 microwave photons before the exciton decays.

The sidebands generated on the probe laser by the microwave field are also well
reproduced, even quantitatively at lower laser energies. Despite a complicated
dependence on unknown phases at high energies, the model qualitatively reproduces
for both the second and fourth order red and blue sidebands the shape and intensity
of the sideband rollover, and quantitatively predicts the field strength it occurs at,
across the exciton spectrum. This is a significant result as it is at the core of
optical non-linearities that can be used for microwave-optical conversion [25]. The
near-quantitative agreement means that this model can be used to predict the
behaviour of devices used for microwave-optical conversion well beyond the linear
regime and deep into the ultrastrong driving regime, maximising the exploitation
of the Rydberg mediated microwave-optical nonlinearity.
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Chapter 3
DFT study of defects in Cu2O

3.1 Background

In the study of Rydberg excitons there is a problem: that the exciton spectra
from different samples differ significantly in the heights of the absorption peaks
and the number of resolvable peaks. Though they vary, the spectra which show
the highest-n exciton peaks are all seen in natural samples, despite the unknown
growth conditions. However, samples of such quality are rare. Work is currently
being done on the growth of synthetic cuprite [95, 80, 26] to address this problem
and improve potential scalability of cuprite-based quantum technologies.

To test the quality of a sample directly, its Rydberg exciton series must be meas-
ured, a lengthy experimental process, which affects turn-around time for feeding
back to growth techniques. One method that has been devised to test for sample
quality is by looking at the photoluminescence (PL) spectrum [100, 101, 80]. Pho-
toluminescence is a technique where the crystal is illuminated by a laser with energy
equal to the band gap, Eg, and the (off-axis) emitted light is spectroscopically re-
solved. It was noticed [80] that the PL spectrum in synthetic samples contained
significant emission of energy less than Eg that the high-quality natural samples
did not, leading to the hypothesis that whatever causes the emission also causes
the degradation in the exciton spectra.

Naturally, the pure crystal cannot emit photons with less energy than Eg, so the
cause must be defects in the crystal structure which introduce local electronic
states in the band gap, called defect states. Electrons can then relax from the
conduction band into the defect states, or out of them into the valence band, and
emit the lost energy as photons. The defect states can also trap charge locally, and
charged defects in Cu2O are currently being studied for their effect on Rydberg
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3.1. Background

excitons [95, 89, 26, 27].

The photoluminescence spectrum of Cu2O has been studied many times over its
history, and 4 main peaks have been documented [27, 80, 89, 101, 100, 102, 28,
103, 104], at 1.2 eV, 1.35 eV, 1.5 eV, and 1.7 eV, as shown in the sketch in figure
3.1. It is commonly reported in the field that the peak at 1.35 eV is due to the
copper vacancy, VCu, where a single copper atom is missing from the lattice. The
peaks at 1.5 eV and 1.7 eV are commonly attributed respectively to V +

O and V 2+
O ,

the different charge states of the oxygen vacancy. Good justifications for these
assignments could not be found. Many authors cite Ito et al. [103], a thorough
early study of the effect of Cu2O growth techniques on the PL spectrum. However,
they do not offer any justification either.

Ito et al. in turn cite Bloem’s study from 1958 [104] for the assignments, shown
in figure 3.1. In Bloem’s samples the heights of the peaks at 1.5 eV and 1.7 eV
were always in the same ratio as each other, and disappeared in the samples grown
in high oxygen pressure. Under the assumption that the only significant native
defects were VCu and VO, he therefore assigned the peaks at 1.5 eV and 1.7 eV to
V +

O and V 2+
O , and the large peak at 1.35 eV to the remaining defect, VCu. He did

not speculate on the origin of the peak at 1.2 eV, and few other authors pay it any
mind either.

These arguments are no longer supported by the available data. For example, the
samples in Ito et al. [103] have the heights of the 1.5 eV and 1.7 eV peaks in a
variety of ratios, including their natural sample showing a bright peak for 1.7 eV
and no peak at all at 1.5 eV, suggesting they come from different defects. Density
functional theory studies [105, 106, 30] have shown that a host of native defects
can form under various growth conditions, and so there is no longer a reason to
assign the ‘leftover’ peak to VCu.

The initial aim of this project was to attempt to provide a theoretical basis for
the defect assignments of the photoluminescence lines using density functional the-
ory (DFT). DFT is an ab-initio method for calculating the electronic properties
of matter and is ubiquitous in condensed matter physics and quantum chemistry.
Standing on over 60 years of theory development [107], there are now many soph-
isticated out-of-the-box DFT codes built for high performance computing. In this
work we make use of CASTEP [108], which specialises in periodic solids.

To keep the scope of the project manageable, we restricted ourselves to the study
of native point defects in Cu2O. Since the 4 PL peaks are consistent across many
different samples, synthetic and natural, we did not study extrinsic defects, i.e.
atoms other that copper or oxygen. The simplest point defects are the copper and
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Figure 3.1: A sketch of an example PL spectrum showing the 4 main peaks com-
monly observed, with the defect assignments made by Bloem [104].

oxygen vacancies, VCu and VO, where a single atom is missing from the lattice, and
the anti-sites, CuO (OCu) where a copper (oxygen) atom is in the usual place of
an oxygen (copper) atom. Next are the interstitials, Cui and Oi, where a copper
or oxygen atom is inserted into the stoichiometric lattice. For each species of
interstitial atom there are two different stable arrangements, labelled tetrahedral
and octahedral, after the way they coordinate with neighbouring copper atoms.
Finally, we also studied the split copper vacancy, V split

Cu , a defect complex made of
two copper vacancies and an interstitial copper atom half way in between. While
other defect complexes have been studied in the context of some effects [109, 110],
we concentrated this work on point defects for simplicity. However, we include
V split

Cu as it has been the topic of much discussion around DFT and defect states in
Cu2O [30, 106, 31, 111].

While in the literature only one geometry for V split
Cu is mentioned, in the course of

this work we studied two. While all individual copper atoms in the material are
symmetry equivalent, nearest-neighbour pairs are not. If the two copper atoms
removed were not bonded to the same oxygen atom, it forms a slightly different
defect to one if they shared an oxygen atom. Only the former case is studied in the
literature [30, 106, 31, 111]. We will denote the former defect V s,1

Cu and the latter
V s,2

Cu , which gives 10 different defects in total.

This is far from the first study of defects and defect states in Cu2O. Defect states
in the material have been of great interest to the semiconductor community mainly
in the context of solar cells. In 2009, Soon et al. [106] modelled all the point defects
as well as the split vacancy with PBE-DFT in 2×2×2 supercells. They found that
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3.2. Theory

the interstitials produced defect states in the band gap, and the copper vacancies
gave some empty states right at the Fermi level, which can be seen as perturbations
of the valence band in their band structures. Scanlon et al. [30] investigated the
copper interstitials and vacancies in more detail under HSE-DFT, a more intensive
method, to look for more complex exchange-driven behaviour, and this time found
defect states well into the band gap for the copper vacancies. However, due to a
lack of computing power, these results suffer from under-convergence with various
DFT parameters. We expand on that in this work, and demonstrate issues in such
studies. In 2013, Isseroff and Carter [31] revisited Scanlon et al.’s study of the cop-
per vacancies with updated hardware. They found that the defect state attributed
to VCu was indeed a convergence error causing the valence band maximum (VBM)
to rise above the rest of the valence band, and that with proper k-point sampling
it returned to its bulk behaviour. However, they found V s,1

Cu still gave a state in the
band gap.

This work builds on the accumulated knowledge of these fragmentary studies to
provide a complete and thorough theoretical investigation of defect states in Cu2O.
In particular, we identify which features caused by the defects are robust and which
are spurious effects of theoretical limitations by studying how the band structures
change with supercell size and exchange-correlation approximations, an attention
to detail not usually seen in the study of defects in general [32, 33, 34, 35, 36].
By the end, we are certain what does not cause photoluminescence, and cautiously
make new assignments of the emission lines based on our results.

3.2 Theory

In this section I will give an overview of Density Functional Theory (DFT). This
will not be a complete tutorial of DFT, as it is easily read about in many of other
sources [29, 112], but I want to cover it in a way that makes accessible the parts
that are relevant to this thesis.

To begin, if we want to model the properties of a solid, we need its many-body
wavefunction, Ψ(r1, ..., rN ; R1, ...,RM ; t) (for N electrons and M nuclei, suppress-
ing their spins), which is a function of all of its electron positions ri and nuclear
positions RI . With the wavefunction, we can calculate everything there is to know
about the solid, and to find it, we have to solve the many-body time-dependent
Schrödinger equation,

iℏ
∂

∂t
Ψ(r1, ..., rN ;R1, ...,RM ; t) =

Ĥ(r1, ..., rN ; R1, ...,RM )Ψ(r1, ..., rN ; R1, ...,RM ; t). (3.1)
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3.2.1. Born-Oppenheimer Approximation

The non-relativistic Hamiltonian for all the electrons and nuclei in a solid can be
written

Ĥ = −
∑

i

ℏ2

2me
∇2

i + 1
2
∑
i ̸=j

e2

4πϵ0|ri − rj |
−
∑
i,I

ZIe
2

4πϵ0|ri − RI |

−
∑

I

ℏ2

2MI
∇2

I + 1
2
∑
I ̸=J

ZIZJe
2

4πϵ0|RI − RJ |
. (3.2)

where me is the electron mass, e is the electron charge, MI is the mass of each nuc-
leus, and ZI is the atomic number of each nucleus. Reading it from left to write,
it is made of the sum of the kinetic energies of all the electrons (T̂e), the electron-
electron Coulomb interaction (V̂ee), the electron-nuclear Coulomb interaction (V̂en),
the kinetic energy of all the nuclei (T̂n), and the nuclear-nuclear Coulomb interac-
tion (V̂nn). In this chapter, we will look only for ground state properties, and so
consider only the time-independent Schrödinger equation

ĤΨ(r1, ..., rN ; R1, ...,RM ) = EΨ(r1, ..., rN ; R1, ...,RM ) (3.3)

where the ground state is the eigenstate with the smallest eigenenergy, E , which is
the ground state energy.

3.2.1 Born-Oppenheimer Approximation

The wavefunction for a macroscopic solid involves N = 1024 particles, each in 3
dimensions, so it is a 31024-dimensional object. To make any progress, we are going
to have to make some simplifications. The first simplification we can make, called
the Born-Oppenheimer approximation, is that the nuclei are so much heavier than
the electrons that they are effectively stationary on electronic time scales, so as the
nuclei move the electrons remain in the instantaneous ground state of the nuclear
potential. This makes the problem separable into electron and nuclear parts,

Ψ(r1, ..., rN ; R1, ...,RM ; t) ≈ Ψelec
R1,...,RM

(r1, ..., rN ; t)χ(R1, ...,RM ; t). (3.4)

The electronic Hamiltonian is therefore

Ĥe = −1
2
∑

i

∇2
i + 1

2
∑
i ̸=j

1
|ri − rj |

−
∑
i,I

ZI

|ri − RI |

= T̂e + V̂ee + V̂en (3.5)

where we have adopted Hartree units e = ℏ = me = 4πϵ0 = 1 for simplicity. To
find the electronic wavefunction we solve the electronic Schrödinger equation

ĤeΨelec
R1,...,RM

(r1, ..., rN ; t) = E(R1, ...,RM )Ψelec
R1,...,RM

(r1, ..., rN ; t) (3.6)
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3.2.2. Density Functional Theory

for eigenenergy E(R1, ...,RM ) as a function of nuclear positions (again, suppressing
spin). The nuclear positions therefore lie on a potential energy surface,

VNuclear(R1, ...,RM ) = E(R1, ...,RM ) + Vnn (3.7)

where

Vnn =
∫

V
dR1 . . . dRM V̂nn|χ(R1, ...,RM ; t)|2 (3.8)

is the nuclear-nuclear energy term. The ground state geometries of solids are the
minima of this potential energy surface.

3.2.2 Density Functional Theory

The wavefunction for the electrons is still a ∼ 31024-dimensional object. If we study
periodic systems, via Bloch’s theorem we can reduce N to the number of particles
in the unit cell, as we will see later. However, if we were to discretise even the unit
cell into just 10 points along each axis, we would still need 1000N floating point
numbers to store the wavefunction, which at 4 bytes each exceeds the total amount
of data storage in the world after 7 electrons. This is the problem that DFT tries
to solve, by considering not the electron wavefunction but the electron density

ρ(r) = N
∑
σi

∫
V
dr2 . . . drN |Ψ(r, σ1, r2, σ2, . . . , rN , σN )|2, (3.9)

where we explicitly write the spin of each electron, σi, have dropped the labels on
Ψ for convenience. The normalisation of the density is therefore∫

V
drρ(r) = N. (3.10)

Of course, we also lose a lot of information from the wavefunction by integrating
over all-but-one of the variables, crucially including ways to calculate total energy
and impose Pauli exclusion. Most of the work done in DFT is to replace everything
that is lost in the transition from wavefunction to density.

3.2.3 Hohenberg-Kohn Theorems

Underpinning the mathematics of density functional theory are the theorems of
Hohenberg and Kohn. Attentive readers may worry that one of the things lost
from the many body electron wavefunction approach is uniqueness. It is not un-
reasonable to imagine two different potentials, that would produce two different
ground state wavefunctions, leading to the same ground state density. Fortunately,
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3.2.3. Hohenberg-Kohn Theorems

the first Hohenberg-Kohn theorem will dispel these fears. The first theorem states:

HK 1: If two potentials, v1(r) and v2(r), lead to the same ground state density,
then v1(r) − v2(r) must be a constant.

Of course, only gradients of potentials are physically meaningful, so two potentials
that differ by a constant define the same physical potential, or in other words, the
external potential is uniquely determined by the ground state density (and vice
versa). We can therefore write the potential as a functional of the density, v[ρ](r),
and the density as a functional of the potential, ρ[v](r). The second HK theorem
states:

HK 2: There exists an energy functional E[ρ], such that the density ρ(r) that min-
imises E[ρ(r)], subject to the constraint that

∫
V drρ(r) = N , is the true ground

state density of the many-body system.

We can write the energy of the many-body electron system as a density func-
tional,

E[ρ] = F [ρ] + Een[ρ]

= F [ρ] +
∫

V
drρ(r)ven(r) (3.11)

where

F [ρ] = min
Ψ→ρ

⟨Ψ| T̂e + V̂ee |Ψ⟩ (3.12)

is the minimum energy, over all wavefunctions that integrate to ρ, of the kinetic
and electron-electron potential operators. Taking the minimising wavefunction to
be Ψ[ρ],

F [ρ] = ⟨Ψ[ρ]| T̂e + V̂ee |Ψ[ρ]⟩

= ⟨Ψ[ρ]| T̂e |Ψ[ρ]⟩ + ⟨Ψ[ρ]| V̂ee |Ψ[ρ]⟩

= T [ρ] + Eee[ρ] (3.13)

which defines the kinetic energy functional, T [ρ], and the electron-electron inter-
action energy functional, Eee[ρ]. Taking the two HK theorems together, since T [ρ]
and Eee[ρ] have the same functional forms for all densities (known as universal
functionals), and ven(r) uniquely determines the energy functional, the minimum
of E[ρ] must be unique for each ven(r), so E[ρ] is all we need to find the exact
ground state density.
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3.2.4. The Kohn-Sham auxiliary system

Finding T [ρ] and Eee[ρ] is the holy grail of DFT. However, they have not yet been
found. The remainder of this theory section will be about the various strategies
adopted to best approximate these functionals that are computable in reasonable
time frames.

3.2.4 The Kohn-Sham auxiliary system

A great breakthrough in the hunt for approximations of both T [ρ] and Eee[ρ] that
enforce Pauli exclusion was the development of the Kohn-Sham auxiliary system.
The idea is to recast the system of many interacting electrons in the potential of
the nuclei into a system of the same number of non-interacting ‘electrons’ (called
Kohn-Sham (KS) orbitals) in the effective potential of all the KS orbitals and
nuclei [112, 29]. Crucially, this can be done in a way where the orbitals sum to the
same density as the fully-interacting system. It is a matter of intense debate how
closely KS orbitals and their eigenenergies map onto real electrons [113, 114], but
in this thesis we will consider the KS orbitals as good approximations for electrons,
and will refer to them as electrons interchangeably.

The wavefunction of the auxiliary system is constructed from a Slater determinant
of all the orbitals to ensure it is antisymmetric. From that wavefunction, the
electron density can be shown to be expressed in terms of the orbitals as

ρ(r) =
∑

i

fi|ϕi(r)|2 (3.14)

where ϕi(r) is the i-th Kohn-Sham orbital, and fi is the orbital’s (fractional) oc-
cupancy, ranging from 0 if it is unoccupied to 2 if it is doubly occupied. The use
of fractional occupancy is simply to smooth convergence.

In non-magnetic materials with an even number of electrons in the unit cell, a
common, accurate approximation is that all occupied orbitals are doubly occupied,
which makes accounting for spin much easier. Pure Cu2O meets these criteria, as
do most of the defects, so we will do our derivations here under that assumption,
neglecting the spin labels on the orbitals (starting with equation 3.14). However,
there are a few defects which introduce an odd number of electrons into the cell for
which we must use spin-DFT, a good summary of which can be found here [115].
Spin-orbit coupling can be introduced via the pseudopotential, discussed later.

The density is used to calculate Een[ρ] as above, and can also be used to calculate
the most common approximation to Eee, called the Hartree energy,

EH = 1
2

∫∫
V
dr′dr

ρ(r′)ρ(r)
|r′ − r|

, (3.15)
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3.2.4. The Kohn-Sham auxiliary system

which is the classical Coloumb energy of a charge distribution. Note that in periodic
systems it is more efficient to evaluate EH in reciprocal space. Also, now that we
are working with single particle states, it is simple to calculate the total kinetic
energy of the KS system, Ts[ρ], as simply the sum over the kinetic energies of each
electron,

Ts[ρ] = −1
2
∑

i

fi

∫
V
dr ϕ∗

i (r)∇2ϕi(r). (3.16)

Putting all the above pieces together would not yield the same energy as the in-
teracting system, and so would give the wrong ground state density. Namely, the
Hartree approximation to the interaction energy neglects the exchange interaction
(and includes a self-interaction error), and we have lost terms known as correlation
that come from electron density in one place affecting how the electrons inter-
act with the density at another. All this missing energy is bundled up into the
exchange-correlation (xc) energy functional, Exc[ρ], which is defined as

Exc[ρ] = E[ρ] − (Ts[ρ] + EH[ρ] + Een[ρ])

= T [ρ] + Eee[ρ] − (Ts[ρ] + EH[ρ]). (3.17)

Thus the exact total energy can be expressed in terms of the KS orbitals as

E[ρ] = Ts[ρ] + Eee[ρ] + Een[ρ] + Exc[ρ] (3.18)

= −1
2
∑

i

fi

∫
V
dr ϕ∗

i (r)∇2ϕi(r) + 1
2

∫∫
V
dr′dr

ρ(r′)ρ(r)
|r′ − r|

+
∫

V
drven(r)ρ(r) + Exc[ρ].

(3.19)

However, knowing the form of Exc[ρ] would mean one could calculate the exact
total energy, so it is believed to be at least as hard as solving the full interacting
system. The form of the exact exchange functional is known, though computa-
tionally expensive, however the correlation functional is unknown, therefore clever
approximations must be made for the xc-functional to keep computational costs
down without sacrificing too much accuracy [116] (a huge research field in its own
right). Many xc-functionals have been developed that span the range of compu-
tational cost and accuracy. The ones used for this work are discussed in section
3.2.6.

Finally, we must find the orbitals which minimise the total energy under the con-
straint that each orbital is normalised such that the density integrates to N . We
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3.2.4. The Kohn-Sham auxiliary system

can do this by introducing Lagrange multipliers ϵi to E[ρ], and minimising instead

G[ρ] = E[ρ] −
∑

i

ϵifi

∫
V
dr|ϕi(r)|2. (3.20)

Taking the functional derivative of G[ρ] with respect to each orbital and setting it
to zero,

0 = δG[ρ]
δϕ∗

i (r) = δE[ρ]
δϕ∗

i (r) − ϵiϕi(r)

= −1
2∇2ϕi(r) +

[ ∫
V
dr′ ρ(r′)

|r′ − r|

]
ϕi(r) + ven(r)ϕi(r) + vxc(r)ϕi(r) − ϵiϕi(r)

= −1
2∇2ϕi(r) +

[
vH(r) + ven(r) + vxc(r)

]
ϕi(r) − ϵiϕi(r), (3.21)

where

vH(r) =
∫

V
dr′ ρ(r′)

|r′ − r|
, (3.22)

and

vxc(r) = δExc[ρ]
δρ(r) (3.23)

define the Hartree and exchange correlation local potentials respectively. Note that
this derivation holds only for approximate exchange-correlation energies that are
explicit functionals of the density, as opposed to, for example, functionals of the
orbitals. Rearranging, and collecting the potential terms together into the Kohn-
Sham potential, vKS(r), we obtain the single particle Kohn-Sham equations,[

− 1
2∇2 + vKS(r)

]
ϕi(r) = ϵiϕi(r), (3.24)

from which the KS orbitals are found. Since vKS depends on all the orbitals via
the density, the solutions to this equation must be found self-consistently, meaning
that the true solutions are the orbitals which sum to a density which produces a
KS potential whose solutions are the same Kohn-Sham orbitals.

We can now naïvely imagine the arc of an algorithm for KS-DFT:

1. Make an educated guess∗ at the ground state density ρ(r)

2. Calculate the potential vKS(r)

3. Find the KS orbitals for vKS(r) from the one particle Schrödinger equation
∗There are many ways of doing this, and they are all beyond the scope of this thesis.
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3.2.5. Periodic systems and Bloch’s theorem

4. Calculate the ground state density from the orbitals

5. If the change in the density over each cycle is smaller than some threshold,
stop. Otherwise, return to step 2

This algorithm is fine in principle, but would in practice take a long time and may
not converge. Hence, we must be cleverer and make use of the total energy. The
actual procedure followed in DFT codes like CASTEP is much more complicated
and involves taking the functional derivative of the total energy with respect to the
orbitals, so that one can take decreasing steps in energy to the ground state much
more efficiently. As one might expect, there are also many choices of algorithm
which trade on speed and accuracy [117], the discussion of which is beyond the
scope of this work. Also note that the energy minimum is unique only if there are
no stable magnetic states. This is not a problem if we assumed double occupancy
of orbitals, but in cases where we cannot (such as defect cells with odd numbers of
electrons), it is wise to solve the system several times from random starting points
to explore the different minima the system can fall into.

3.2.5 Periodic systems and Bloch’s theorem

Up until this point the theory we have discussed can be applied to any system of
electrons. In this work, however, we are particularly interested in cuprous oxide,
which is a periodic system, and we can use this to make significant progress in
solving for the KS orbitals. The first step we can make is in recognising that a
sufficiently large crystal is very well approximated by an infinite crystal, where the
potential vKS must be periodic, such that

vKS(r) = vKS(r + L) (3.25)

for any real space lattice vector L of the crystal lattice, given by

L = n1a + n2b + n3c, (3.26)

where for the Cu2O cubic cell of side-length a the vectors a = ax̂, b = aŷ, and
c = aẑ and ni are integers. We can also define the spatial frequencies, called
reciprocal lattice vectors G, over which VKS is periodic, as

G = m1a∗ +m2b∗ +m3c∗, (3.27)
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where mi are integers and the vectors a∗, b∗, and c∗ are for the cubic cell simply

a∗ = 2π
a

x̂, (3.28)

b∗ = 2π
a

ŷ, (3.29)

c∗ = 2π
a

ẑ. (3.30)

We have already seen in chapter 2 that solutions to periodic Hamiltonians take
a particular form. While in time-periodic systems the result is called Floquet’s
theorem, in space-periodic systems it is called Bloch’s theorem, and it tells us that
the solutions to equation 3.24 take the form

ϕk
i (r) = exp(ik · r) uk

i (r) (3.31)

where uk
i (r) is periodic with the same periodicity as VKS and k is called the quasi-

momentum, also known as the crystal momentum, or k-point. These Bloch wave-
functions obey the orthonormality condition∫

V
dr ϕk

i (r)ϕk′∗
i (r) = δ(k − k′) (3.32)

such that orbitals at different k-points are orthogonal to each other. Since the
density is made of the squared norm of the orbitals, it too will have the periodicity
of the potential. We use these facts to impose periodic boundary conditions on
uk

i (r) and ρ(r), reducing our problem greatly from infinite size and infinite electrons
to one unit cell and only the electrons in the unit cell.

Again, like the quasi-energy, the quasi-momentum has units of momentum but is
not conserved (only the momentum of the electrons plus the ions is). Unlike in
chapter 2, where there were discrete eigenenergies corresponding to the discrete
exciton spectrum, the infinite number of electrons in an infinite crystal correspond
to an effective continuum of allowed quasi-momenta when condensed down into the
periodic unit cell (addressed in more detail in section 3.3).

As before, we can show that the k-points are not uniquely defined. Since uk
i (r) is

periodic in L, we can expand it as a Fourier series,

uk
i (r) =

∑
G

cG
ik exp(iG · r). (3.33)

Choosing to represent the orbitals with the basis of plane waves in this way is
actually a significant choice amongst DFT codes. Many molecular DFT codes
use a basis of atomic orbitals, but most crystal codes including CASTEP prefer
plane waves, as they better describe highly delocalised states and are not biased
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to any regions of space. Using 3.33, we could recast the orbitals, for any choice of
reciprocal lattice vector K, as

ϕk
i (r) = exp(i[k + K] · r) exp(−iK · r) uk

i (r)

= exp(i[k + K] · r)
∑
G

cG
ik exp(i[G − K] · r)

= exp(i[k + K] · r)
∑
G′

cG′
i,k+K exp(iG′ · r) = ϕk+K

i (r) (3.34)

where G′ = G − K is simply a re-indexing of the sum by moving the origin of the
infinite crystal lattice. Therefore, the orbitals ϕk

i are only unique in k modulo 2π/a
in each direction; all possible electrons are contained within a reciprocal-space box
−π/a < kx,y,z < π/a, called the first Brillouin zone∗. Finally, it follows that the
construction of the density from the orbitals in equation 3.14 becomes

ρ(r) =
∑
i,k

fk
i |ϕk

i (r)|2 (3.35)

where k indexes the quasi-momenta in the first Brillouin zone, i is the band index,
and fk

i is the occupancy of the i-th band at the k-th k-point.

3.2.6 Exchange-Correlation Functionals

There are many choices in Kohn-Sham DFT for the approximate exchange-correlation
energy functional, Exc[ρ], which vary greatly in computational cost and the results
they produce. The simplest are the local functionals, whose potentials at r are only
a function of the density at r, making them very fast to compute. For example the
local density approximation (LDA) is defined as

Exc[ρ] =
∫

V
dr ϵHEG

xc [ρ(r)] ρ(r), (3.36)

where ϵHEG
xc [ρ(r)] is the exchange-correlation energy per particle of the homogeneous

electron gas (HEG). The LDA performs reasonably well in infinite crystals, match-
ing phonon frequencies and bond lengths to within a few percent [118] (usually a
few percent too short), and works best in systems with smoothly varying densities
which are most like the HEG.

A small step above strictly local functionals is a category known as the generalised
gradient approximation (GGA), defined by

Exc[ρ] =
∫

V
dr ϵxc[ρ(r),∇ρ(r)]ρ(r), (3.37)

∗The other Brillouin zones are all the other possible boxes
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for a choice of function ϵxc which depends not only on the local density but also on
the gradient of the density. Many options for ϵxc have been developed, but by far the
most popular for solids is that of Perdew, Burke and Ernzerhof (PBE) [119]. This
is the one we make the most use of in this work. Without excessive computational
cost, it gives good structures to within a few percent, and more accurate binding
energies than LDA, which will be useful for studying the binding of defect states
to defect sites.

Both functionals also significantly underestimate the band gap. This is expected, as
even the exact KS potential would underestimate the band gap due to the derivative
discontinuity [120, 121, 122], which causes the eigenvalues of the unoccupied bands
to differ from their true values by a constant, even for the exact KS potential. In
fact, there is no mathematical guarantee that the eigenenergies of the orbitals have
any physical meaning at all aside from the highest-occupied orbital. Nevertheless,
quite surprisingly, the KS eigenenergies provide a good approximation to actual
excitation energies of the system [123], which is why band structures from KS-
DFT are used all over solid-state physics (including in this work).

While PBE provides an excellent baseline for calculations, exchange and correlation
are inherently non-local effects, so it is unlikely that physics that depends strongly
on exchange and correlation can be captured in a (semi)local functional of the
density. For this reason, KS-DFT is often extended to what is called generalised
Kohn-Sham (GKS) DFT. Without wishing to dive too deep into details, in this
scheme, instead of the exchange-correlation energy being an explicit functional of
the density, it is a functional of the orbitals. Then, when you take the functional
derivative of the energy to find the KS equations,

δExc[{ϕ}]
δϕ∗

i (r) = V̂xcϕi(r) (3.38)

defines the operator xc-potential that acts on the orbitals, as opposed to a local
potential that multiplies the orbitals. Allowing for operator potentials widens the
scope of possible potentials but often comes at considerable computational cost.

The relevant GKS scheme to this work is called Hartree-Fock. First, recall that
in the KS scheme the wavefunction |Φ⟩ is constructed from a Slater determinant
of the orbitals {ϕi}. Instead of using the classical approximation for Eee, the full
quantum mechanical electron-electron interaction energy then expands as

Eee = ⟨Φ| 1
|r′ − r|

|Φ⟩

= 1
2

∫∫
V
dr′dr

ρ(r′)ρ(r)
|r′ − r|

− 1
2

∫∫
V
dr′dr

ρ(r′, r)ρ′(r, r′)
|r′ − r|

, (3.39)

ρ(r, r′) =
∑

i

fiϕi(r)ϕi(r′) (3.40)
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where ρ(r, r′) is the 1-body reduced density matrix. The first term is the familiar
Hartree energy, EH, and the second term is called the Hartree-Fock exact exchange
energy, EHF

x . Note that the density-density term in the Hartree energy, ρ(r)ρ(r′) =∑
i,j ϕ

∗
i (r)ϕi(r)ϕ∗

j (r′)ϕj(r′), resembles the numerator in the HF exchange energy
with the coordinates of two orbitals exchanged. Compared to just EH in regular
KS-DFT, one can see that this form of Eee corrects for the self-interaction error,
and, as the name implies, includes the exact exchange interaction energy. From the
functional derivative of EHF

x with respect to the orbitals, we find the Fock exchange
operator is given by

V̂xϕi(r) = −
∫

V
dr′ ρ(r, r′)

|r′ − r|
ϕi(r′). (3.41)

It is tempting, then, not to include a correlation correction at all, an approach
called Hartree-Fock (HF) theory. It turns out that the correlation effects missing
in HF theory are important. Hartree-Fock greatly overestimates the band gap of all
materials, and in fact cannot describe metals at all, since it encounters a divergence
in the derivative of the single particle energy when a single particle is at the Fermi
energy, and gives zero density of states at the Fermi energy for the homogeneous
electron gas.

The underestimation of band gaps by local functionals and the overestimation by
Hartree-Fock led to the development of hybrid functionals, which try to combine the
successes of both methods. Care should be taken in choosing a hybrid functional,
as parameterisations of them are often done to fit a particular observable in a
narrow class of systems, making them no longer ab initio. It is therefore possible
to do much more computationally expensive calculations for less reliable results.
All hybrid functionals split the exchange energy into a fraction α of HF exchange
and a fraction 1 − α of a density functional approximation, and the correlation
comes entirely from the density functional approximation. For example, Exc for
the PBE0 functional is

EPBE0
xc = αEHF

x + (1 − α)EPBE
x + EPBE

c . (3.42)

The functional we employ in this work is that of Heyd, Scuseria, and Ernzerhof,
called HSE06 [124, 125]∗. To arrive at HSE06, the exchange energies in PBE0 are
first split into short- and long-range parts, as

EPBE0
xc = αEHF;SR

x (ω) + αEHF;LR
x (ω) + (1 − α)EPBE;SR

x (ω)

+ (1 − α)EPBE;LR
x (ω) + EPBE

c . (3.43)

∗HSE03 is the same functional but the original 2003 paper [124] had a mistake in the screening
length parameter, so it should not be used.
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where 1/ω is the length at which the transition from short- to long-range occurs.
Numerically it was observed that the long-range exchange energies EHF;LR

x (ω) and
EPBE;LR

x (ω) are small and almost exactly the same size, so the long range HF
contribution cancels with the −α contribution from PBE. The HSE xc energy is
therefore defined as

EHSE
xc = αEHF;SR

x (ω) + (1 − α)EPBE;SR
x (ω) + EPBE;LR

x (ω) + EPBE
c , (3.44)

where the so-called screened Hartree-Fock energy takes the form

EHF;SR
x (ω) = −1

2

∫∫
V
dr′drρ(r′, r) erf(ω|r′ − r|)

|r′ − r|
ρ′(r, r′) (3.45)

where erf is the error function. Helpfully, the screening of the exact exchange
dampens the singularity from pure HF at the Fermi level, which allows it to treat
states near the Fermi level more accurately. The mixing fraction α = 1/4 was
determined ab initio from perturbation theory [124], making this functional more
generally applicable than some other hybrids, and the parameter ω = 0.2 Å−1 was
found to be a good fit to several observables across many different semiconduct-
ors [124, 125].

3.2.7 Pseudopotentials

Another computational trick used in DFT that I will quickly discuss is pseudopo-
tentials. One could perform the calculation including every electron in the unit cell,
known as an all-electron calculation. However, from chemistry we know that only
the valence electronic states will involve themselves in bonding, and what we call
the ‘core’ electronic states will be, to a very good approximation, atomic. For this
reason, most DFT codes work under the frozen core approximation, where they
solve for the states of an isolated atom of each atomic species in the cell and reuse
the solutions for the core electrons inside some cutoff radius rc in the full solution.
In this work, a core of helium was used for oxygen, and a core of argon was used
for copper.

However, the speed up for plane-wave basis codes (such as CASTEP) is much
more significant than just using fewer electrons. We can use the idea of valence
and core electrons to calculate an effective potential for the valence electrons which
reproduces the effect of the core electrons together with the nuclear potential. This
will not result in exactly the same orbitals for the valence electrons as in an all
electron code, but it can be done in a way where the orbitals are exactly the same
outside the cutoff radius rc, where all the bonding and interesting physics occurs.
When we do this, the typical rapid oscillations that electron orbitals do near the
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nuclei smooth out significantly, requiring far fewer plane waves in equation 3.33 to
describe them. Figure 3.2 shows an example of this. The great reduction in the size
of the basis set we have to use for the calculation comes with a speed up of several
orders of magnitude. This method had lots of issues in early DFT calculations,
but was only really fixed by 2016 when they became as accurate as all-electron
methods [126].

There are two dominant schemes in CASTEP for generating pseudopotentials.
Norm-conserving pseudopotentials (NCP) [127] require that the charge inside rc

integrates to the same value as in the all-electron case. Ultrasoft pseudopoten-
tials [128] relax this constraint in order to achieve, as the name suggests, smoother
wavefunctions still. Ultrasoft pseudopotentials are much more complicated to con-
struct and to apply, but the time spent on doing so is worth it for the reduced
basis set in the case of local functionals. For non-local functionals, it is much faster
to use NCPs. In this work we used CASTEP’s internal on-the-fly pseudopotential
generator for both ultrasoft and norm-conserving pseudopotentials, using PBE for
the atomic calculation.

3.2.8 Spin polarisation and spin-orbit coupling

Most DFT codes including CASTEP have the option whether to consider the effect
of spin. However, as mentioned previously, since Cu2O is not a magnetic material,
the two spin channels are expected to be degenerate, so we can save computational
resources and perform the calculation for half the number of electrons with the
understanding that each band will be doubly occupied.

However, when there is an odd number of electrons (such as for a copper vacancy),
or we wish to include spin-orbit coupling , the calculation must be spin-polarised.
However, very briefly, if the calculation needs to be spin-polarised (such as if there
is an odd number of electrons) the orbitals are also labelled by their spin and the
system is solved twice, once for each spin. The KS potential then also includes a
contribution dependent on the spin density. A good introduction to the details can
be found here [115].

Under PBE, this always resulted in one of the doubly occupied bands straddling
the Fermi level and becoming half occupied. However, the HF exchange energy
is divergent at the Fermi level, causing significant spin splitting, which can be
unphysical [129]. This plays a role in several of the defects, and must be taken into
account when drawing conclusions from the HSE results.

Most of the calculations in this work were performed without spin-orbit coupling.
The initial aim of the project was to establish whether or not a particular defect
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Figure 3.2: An example of a pseudopotential and its pseudo-wavefunction. The
dashed line shows the rapidly oscillating valence orbital (top) resulting from the
1/r nuclear potential (bottom), and the solid line shows the smoothed valence
orbital (top) that comes from the pseudopotential (bottom). The pseudopotential
is designed so that both are the same outside the cutoff radius rc.

produced a defect state in the band gap, with little emphasis placed on its exact
energy. Since spin-orbit coupling makes a correction of ∼ 0.1 eV to orbital energies,
it was considered unlikely that it would affect the existence of a defect state, and
so to save on computational cost it was not included.

To understand the effect it could have on the specific energies of the defect states,
some of the calculations in this work include spin-orbit coupling. There are two
methods for introducing spin-orbit coupling to calculations. The first is through
relativistic DFT, and the second is with an appropriate pseudopotential. Fortu-
nately, the second method is simpler, much faster to compute, and just as accur-
ate [130] for our applications. For the spin-orbit calculations in this work, we use
the CASTEP on-the-fly spin-orbit pseudopotential generator, using PBE for the
atomic calculation.
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3.3 Convergence with parameters

As discussed in section 3.2.5, the KS orbitals each have an associated k-point k,
and their periodic part can be decomposed into a Fourier series with wavevectors
for each reciprocal lattice vector G. While in principle there is a continuum of k-
points and an infinite number of reciprocal lattice vectors, in practice we can only
compute finitely many things. It is important that we include enough of each that
our calculation is accurate but no more or it will take too long. The canonical way
that the Brillouin zone is sampled for integration is with a Monkhorst-Pack (MP)
grid [131], which in the cubic lattice is a regularly spaced cubic grid. Mathematic-
ally,

ρ(r) =
∫

BZ
Ψ∗

k(r)Ψk(r)dk ≈
∑
{k}

Ψ∗
k(r)Ψk(r)∆k (3.46)

where the sum that approximates the integral is over the k-points in the MP grid,
and ∆k is the spacing between them. Once the self-consistent ground state density
and potential have been found with a sufficient sample of k-points, the potential can
be used to obtain the ground state orbitals at any desired k. The largest G-vector,
Gcut, included in the Fourier series is traditionally referred to by its energy,

Ecut = ℏ2

2me
G2

cut, (3.47)

known as the cutoff energy.

Figure 3.3 shows how the total final energy of a DFT calculation for the unit cell
of Cu2O in CASTEP changes with MP k-point grid density and cutoff energy. The
change in energy of the Cu2O unit cell is of order meV above a 7 × 7 × 7 MP
k-point grid, which for this work we consider well converged. The total energy is
similarly converged for Ecut = 1100 eV for the ultrasoft pseudopotentials used with
PBE. The norm-conserving pseudopotentials that must be used for HSE06 require
a higher cutoff of Ecut = 1600 eV to be converged to meV total energy because they
are less smooth than ultrasoft pseudopotentials. Unfortunately, due the available
computational resources, such a high cutoff under a non-local functional was not
feasible, so we had to settle for Ecut = 1000 eV, as well as a reduced k-point grid
sampling of 4×4×4. This converged the energy difference between the VBM and the
conduction band minimum (CBM) to within 1 meV, indicating (but unfortunately
not guaranteeing) that the band structure has stopped changing in a material way.
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Figure 3.3: The convergence of the final energy of the Cu2O unit cell for ultra-
soft pseudopotentials. Top: plot shows how the final calculated energy changes
with the length of the Fourier series used to represent the orbitals, which is tradi-
tionally measured with the energy of the highest frequency component, called the
cutoff energy. Bottom: the dependence on the density of k-point sampling. The
Monkhorst-Pack grid method samples the Brillouin zone in a regular cubic grid,
and the x-axis shows the side length of the cube.
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Figure 3.4: The high symmetry point labels in the first Brillouin zone for the
primitive cubic lattice (the lattice for cuprous oxide). The Γ point is at k = (0, 0, 0).
Band structures in this thesis follow paths along the red lines. The points R, M, and
X represent k = (1, 1, 1) π/a, k = (1, 1, 0) π/a, and k = (1, 0, 0) π/a, respectively.

3.4 DFT on pure Cu2O

3.4.1 Band Structures

One of the most central tools used in condensed matter physics for understanding
the electronic structure of a material is the band structure. Most of the results in
this chapter are presented in that form, so it is important to know how to read
one. The general idea is that we would like to show how the eigenenergies, ϵki , of
the electrons, ϕk

i (r), vary as a function of quasi-momentum, k, and band, i. The
accepted solution is to plot the eigenenergies along a path through k-space. This
path is found to be most illuminating if it follows piecewise some of the highest
symmetry lines in the crystal, taking corners at the high symmetry points. Figure
3.4 shows the points of interest for a primitive cubic lattice such as Cu2O. The
point Γ always represents k = 0 in all space groups, and is the most important
point to study for us because in Cu2O it is where the band gap occurs, so is where
exciton physics is determined. The points R, M, and X represent k = (1, 1, 1) π/a,
k = (1, 1, 0) π/a, and k = (1, 0, 0) π/a, respectively. By symmetry, all the other
high symmetry points are equivalent to these ones.
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Figure 3.5: The band structure of a single Cu2O unit cell under the PBE xc-
functional. Occupied bulk states are shown in green, while unoccupied bulk states
are shown in yellow. The dotted line denotes the Fermi level. The band gap,
Eg = 0.499 eV, is at the Γ point, making Cu2O a direct-gap semiconductor. Note
that Eg as given by PBE-DFT is less than the experimental gap.

3.4.2 Perdew–Burke–Ernzerhof

Figure 3.5 shows an example of a band structure of Cu2O produced with CASTEP
under the Perdew–Burke–Ernzerhof (PBE) xc-functional, through the path X-R-
M-Γ-R. Each Kohn-Sham orbital forms a different curve, sometimes also called a
band. The occupied orbitals making up the valence band are shown in green, while
the empty conduction band states are in yellow, with the Fermi energy marked by
the dashed horizontal line. The smallest energy separation between an occupied
and unoccupied orbital, called the band gap, Eg = 0.499 eV, occurs between two
points at the same k, making cuprous oxide a direct band gap semiconductor.
It is important to note that the band gap given by PBE-DFT is less than the
experimental band gap of 2.18 eV. Inaccurate band gaps are a problem inherent
in Kohn-Sham DFT, as mentioned in 3.2.6. Such a significant underestimation of
the band gap by PBE-DFT indicates that Cu2O is a strongly correlated material.
Despite this, PBE-DFT is known to reproduce well the shapes and orderings of
bands, and so these are the things we are trying to extract from our simulations.

We can also learn a lot from the curvature of the bands. For a free electron,

E = ℏ2k2

2m , (3.48)
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so we can identify the second derivative with the mass,

m = ℏ2
(

d2E

dk2

)−1

. (3.49)

This is called effective mass. Since it is proportional to the inverse of the curvature,
the flatter a band, the higher the effective mass of the electron, and the more loc-
alised the state. The effective mass can even be negative, as it is at the top of
the valence band. This is interpreted as a positively charged, positive mass qua-
siparticle, i.e. the hole. Bands that are parabolic around Γ are most like free
electrons, and their orbitals are delocalised across the crystal. This immediately
provides an intuitive understanding for why Cu2O is such a good platform for Ry-
dberg excitons: the conduction electron and valence hole are nearly-free almost
until the Brillouin zone edge in multiple directions, unusual for common semicon-
ductors [132, 133], allowing for long range interactions akin to a free space hydrogen
atom.

3.4.3 HSE06

Figure 3.6 shows the band structure for the pure Cu2O unit cell under HSE06.
As expected from a hybrid functional, the biggest difference from PBE is the size
of the band gap. Here, EHSE

g = 1.60 eV, comparable to the experimental gap
Eg = 2.18 eV, but unsurprisingly not exact. The increase in band gap mostly
comes from a constant increase in energy of the CBM, but without a change to its
shape, giving confidence that we can still draw conclusions about exciton physics.

Scanlon et al. [30], the first to study Cu2O defects with HSE-DFT, found a band
gap of EHSE

g = 2.12 eV by changing the fraction of HF exchange from α = 0.25 to
α = 0.275. One must be careful when tuning functionals to produce experimental
results. Given the systemic problems DFT often has with band gaps, there is no
guarantee that a more accurate band gap will lead to better accuracy in any other
property of the material. For this reason, we choose to keep the mixing fraction
and screening length at their default values, and not put excessive weight on the
quantitative results we achieve with HSE06 and instead focus on their qualitative
nature.

3.5 Supercells

In order to study defects in Cu2O in DFT, we need to construct larger cells that
which contain multiple copies of the Cu2O unit cell, called supercells. A j × k × l
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Figure 3.6: The Cu2O unit cell band structure under HSE06. Occupied bands are
in green and unoccupied bands are in yellow. The band gap is 1.60 eV.

supercell is a cuboid cell j unit cells wide, k unit cells deep, and l unit cells tall. If
we were to naively introduce a defect into the 6-atom Cu2O unit cell, for example
a copper vacancy, we would introduce that vacancy into every periodic copy of the
unit cell and create a crystal of Cu3O2, but placing the defect in a supercell dilutes
it into a bulk crystal structure.

For a baseline of comparison, figure 3.7 shows the band structures for pure Cu2O
under PBE in a 2 × 2 × 2 and 3 × 3 × 3 supercell, and under HSE06 in a 2 × 2 × 2
supercell. There are several differences from the single unit cell to pay attention to.
With increasing supercell size, the number of electrons increases (48 atoms worth
in 2×2×2, 162 atoms worth in 3×3×3), creating many more bands. At the same
time, the bands become much flatter and undergo an effect called band folding.
Since the edge of the Brillouin zone occurs at π/a, when we make the cell twice as
big on each side, we make the Brillouin zone twice as small on each side. One could
imagine that the R point in the 2 × 2 × 2 supercell occurs halfway along the Γ −R

line in the single unit cell. This makes the bands appear flatter, but the curvature
is unaffected since the change in k along the k-point path is half as much as well.
Also, due to the symmetry of k-space, bands are reflected from the new boundaries
back into the Brillouin zone, adding yet more bands to the band structure.

Due to the condensing of k-space in supercells, the k-point sampling required for
the same accuracy can be reduced as well. The scaling is actually very simple: for
a supercell of N ×N ×N unit cells, we need only a K/N ×K/N ×K/N k-point
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MP grid. Therefore, the k-point grids for the 2×2×2 and 3×3×3 PBE supercells
were a 4×4×4 MP grid and a 2×2×2 MP grid respectively. For the HSE 2×2×2
supercell we used 2 × 2 × 2 k-points, which coincides with the k-point density that
Isseroff and Carter [31] needed to find a defect state in the band gap for the split
copper vacancy under HSE06.

3.6 The Defects

3.6.1 Searching for defect states

We are now ready to model the defects. Experimentally, the fractional deviation
from stoichiometry in a sample is of the order 10−5 [134], which is equivalent to 1
point defect per ∼ 104 unit cells. This level of dilution is not achievable with the
resources available for this project. However, for the correct physics, the defects
need only be dilute enough to not ‘feel’ the effects of neighbouring defects. To
investigate where this dilute limit lies, we model each type of defect under PBE in
a 2 × 2 × 2 and 3 × 3 × 3 supercell, and under HSE06 in a 2 × 2 × 2 supercell. As
will be seen, the decay on this finite-size effect can be inferred from the difference
between the PBE results for the two sizes of supercell with and without the defect,
and varies significantly between defects. Unfortunately, since HSE06 is a hybrid
functional, it is much more expensive to compute, and so we were not able to run
calculations under HSE06 for 3 × 3 × 3 supercells, but the convergence of the PBE
band structure with supercell size can often be used to infer the behaviour of HSE
in a larger supercell.

As a reminder, the goal of this modelling is to look for defects that introduce states
in the band gap, so that we can identify candidates for the photoluminescence lines
in experiments. As discussed in section 3.2.6, however, DFT does not accurately
reproduce band gaps, so we cannot directly compare the energies of the states with
the energies of the emissions. Furthermore, differences in band energies are only
a zero-th order approximation for excitation energies, as discussed in chapter 4.
Therefore, we are looking for any state which falls within the band gap as calculated
for the given functional in the bulk crystal.

In all the defect supercell bandstructures the states deep into the valence and
conduction bands will look much denser than in the pure crystal. This is because
in the pure crystal the high degree of symmetry causes many of the bands to be
degenerate. However, the defect breaks symmetries in the crystal, leading to small
splittings of most bands into several states. These kinds of perturbations will not
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make a significant difference to the behaviour of Cu2O, especially not from the
perspective of excitons and photoluminescence.
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Figure 3.7: Band structures for pure Cu2O in supercells. From left to right: PBE band structure in a 2 × 2 × 2 supercell; PBE band
structure in a 3 × 3 × 3 supercell; HSE06 band structure in a 2 × 2 × 2 supercell. Occupied states are shown in green and unoccupied
states are shown in yellow. The dotted line denotes the Fermi level.
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Figure 3.8: Band structures for the octahedral form of the oxygen interstitial, Ooct
i . From left to right: PBE band structure in a 2×2×2

supercell; PBE band structure in a 3 × 3 × 3 supercell; HSE06 band structure in a 2 × 2 × 2 supercell. Occupied bulk states are shown
in green and unoccupied bulk states are shown in yellow. The dotted line denotes the Fermi level. The occupied defect states are shown
in blue and the unoccupied ones are shown in red.
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3.6.2 Oxygen interstitials

To begin with the most positive results, the band structures for the two geometries
of the oxygen interstitials are shown in figures 3.8 and 3.9. The occupied bulk
states are shown in green and the unoccupied bulk states are shown in yellow.
The occupied defect states are shown in blue and the unoccupied defect states are
shown in red. Both geometries for these interstitials show clear defect states in the
band gap across both supercell sizes and for both PBE and HSE xc-functionals.
The robustness of these results is stark when compared to the other defects. Both
geometries also produce 3 well localised spin-degenerate states in the gap, 2 oc-
cupied and 1 unoccupied, which are easily understood as the 2P electrons of the
additional oyxgen atom.

As can be seen for Ooct
i (fig. 3.8), the unoccupied defect state remains deep in the

band gap for the 3 × 3 × 3 supercell. Along with the fact that it is so flat, meaning
it is very well localised, we can be confident it is not a consequence of neighbouring
defects interacting with each other but a genuine, additional, local electronic state
that would exist in the dilute defect limit. The two occupied defect states for Ooct

i
are degenerate with the VBM at Γ. Across all three calculations the defect had no
effect on the band gap, lending further evidence that the states would not move in
relation to the band gap in the dilute limit.

In contrast, figure 3.9 shows that all three defect states introduced by Otet
i exist

firmly inside the bulk band gap and would produce two distinct photoluminescence
lines in experiments. All three states localise further from the 2 × 2 × 2 supercell
to the 3 × 3 × 3 supercell under PBE, and their similarity under HSE suggests they
would do the same. The band gaps in the 2 × 2 × 2 supercells are slightly larger
than their bulk values, but in the 3 × 3 × 3 supercell the band gap returns to the
bulk PBE value, so we can assume the same for HSE.
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Figure 3.9: Band structures for the tetrahedral form of the oxygen interstitial, Otet
i . From left to right: PBE band structure in a 2×2×2

supercell; PBE band structure in a 3 × 3 × 3 supercell; HSE06 band structure in a 2 × 2 × 2 supercell. Occupied bulk states are shown
in green and unoccupied bulk states are shown in yellow. The dotted line denotes the Fermi level. The occupied defect states are shown
in blue and the unoccupied ones are shown in red.
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Figure 3.10: Band structures for the octahedral form of the copper interstitial, Cuoct
i . From left to right: PBE band structure in a

2 × 2 × 2 supercell; PBE band structure in a 3 × 3 × 3 supercell; HSE06 band structure in a 2 × 2 × 2 supercell. Occupied bulk states
are shown in green and unoccupied bulk states are shown in yellow. Occupied defect states are shown in blue and half-occupied ones
are in purple. The dotted line denotes the Fermi level.
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3.6.3 Copper interstitials

The copper interstitials, both in the octahedral (figure 3.10) and tetrahedral (figure
3.11) arrangements, produce similar distortions from the bulk structure, so we will
discuss them together.

Under PBE, for the 2×2×2 supercell, a half-occupied state appears at Eg = 0.32 eV
for the octahedral arrangement and Eg = 0.34 eV for the tetrahedral arrangement,
well within the bulk band gap at Γ. The state has a very wide dispersion, indicating
a large extent in real space, and so a large finite-size effect. Comparing these band
structures to the bulk crystal, we also see that the CBM is missing, so we could
think that these defect states are simply a perturbation of the CBM that would
return to bulk behaviour in the dilute limit.

Interestingly, the defect states are somewhat robust to increasing the supercell
size, indicating that this state could exist even in the dilute defect limit. The band
increases to Eg = 0.42 eV for octahedral and Eg = 0.40 eV for tetrahedral for the
3 × 3 × 3 PBE supercell, still less than but closer to the bulk band gap. Comparing
again to the bulk 3 × 3 × 3 PBE supercell band structure, a band appears at the
bottom of the conduction band which could be the bulk CBM returning to its bulk
behaviour. One can imagine two scenarios for the dilute limit under PBE: the
defect state rejoins the conduction band as the bulk CBM; or the state remains in
the band gap and the bulk CBM emerges from the conduction band. A further
study of the 4 × 4 × 4 supercell would be needed to distinguish between these two.

The HSE analysis gives us a different angle to understand these defects. The half-
occupied state predicted by PBE is split by Hartree-Fock exchange into a lower
occupied spin state and an upper unoccupied spin state. The occupied spin states
are 0.93 eV and 0.98 eV above the VBM for Cui

oct and Cui
tet respectively, and the

unoccupied ones not only resemble the bulk CBM but are exactly the HSE bulk
gap above the VBM.

Our interpretation of these results is that the interstitial copper atoms provide an
additional, local binding of one of the CBM states, leading to a local state in the
band gap, near in energy to the CBM, which extends over several unit cells in real
space.
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Figure 3.11: Band structures for the tetrahedral form of the copper interstitial, Cutet
i . From left to right: PBE band structure in a

2 × 2 × 2 supercell; PBE band structure in a 3 × 3 × 3 supercell; HSE06 band structure in a 2 × 2 × 2 supercell. Occupied bulk states
are shown in green and unoccupied bulk states are shown in yellow. The dotted line denotes the Fermi level.
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Figure 3.12: Band structures for the simple copper vacancy, VCu. From left to right: PBE band structure in a 2 × 2 × 2 supercell; PBE
band structure in a 3 × 3 × 3 supercell; HSE06 band structure in a 2 × 2 × 2 supercell. Occupied bulk states are shown in green and
unoccupied bulk states are shown in yellow. The dotted line denotes the Fermi level. The simple copper vacancy does not exhibit defect
states in the band gap.
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3.6.4 Copper vacancy

The band structures for the simple copper vacancy for 2 × 2 × 2 and 3 × 3 × 3
supercells under PBE and for the 2×2×2 supercell under HSE06 are seen in figure
3.12. The occupied states are shown in green and the unoccupied states are shown
in yellow. Across all three band structures, we see VCu does not introduce a clear
electronic state in the band gap. In the smaller supercell under both PBE and
HSE06 we see that VCu perturbs the valence band such that the VBM becomes
slightly peaked. Were we only to look at the eigenvalues at the Γ point, it would
be easy to believe that a defect state has appeared in the band gap just above
the valence band. However, when we dilute the defect further in the 3 × 3 × 3
supercell under PBE, we see the structure return to be identical to the valence and
conduction bands in the bulk crystal (fig. 3.7), demonstrating that the peaking
of the valence band is merely a finite-size effect caused by an unphysical effective
density of defects. Given the similarity between the PBE and HSE upper valence
bands in the 2 × 2 × 2 supercell, we can be confident that HSE is not introducing
new physics which is absent from the PBE level of analysis, and that the peak in
the valence band under HSE is also a finite-size effect.

Across all three band structures we also see that the top of the valence band is
partially unoccupied. This is expected, since the removal of a copper atom leaves
an odd number of electrons. Under PBE the VBM is spin degenerate and half
occupied, but under HSE the top state is actually only of one spin channel, a
consequence of the spin splitting caused by Hartree-Fock exchange near the Fermi
level. Neither effect would produce photoluminescence lines of energy less than
Eg, but they are responsible for much of the p-type conductivity observed in the
semiconductor literature on cuprous oxide [135].

3.6.5 Split copper vacancies

Aside from the simple copper vacancy, there are two important copper vacancy
complexes know as split vacancies. They are formed of two nearest-neighbour cop-
per vacancies, with an interstitial copper atom placed at the midpoint between
the two vacancies. Up to symmetry, there are two distinct choices to place the
nearest-neighbouring copper vacancies: two copper atoms bonded to different oxy-
gen atoms, or two copper atoms bonded to the same oxygen atom.

Under PBE, the band structure for the first split copper vacancy (where the copper
atoms were bonded to different oxygen atoms) , seen in figure 3.13, looks very
similar to the simple copper vacancy and the second split copper vacancy. The
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3.6.5. Split copper vacancies

only difference is that the VBM for V s;1
Cu is raised at R to the same energy as

at Γ in the 2 × 2 × 2 supercell. The VBM mostly restored to that of the bulk
in the 3 × 3 × 3, but even if this persists in the dilute limit it will not have an
effect on the photoluminescence. Like the other copper vacancies, the VBM also
becomes partially unoccupied, contributing to native p-type conductivity, but not
to photoluminescence.

Under HSE, a defect state appears in the band gap 0.35 eV above the valence band
maximum. The band is very flat and well localised, and only exists for one of the
spin channels. This is in excellent agreement with Isseroff and Carter [31], who
found a defect state with only one allowed spin with a peak in the density of states
0.57 eV above the VBM. The difference in energy is perhaps due to the lack of
spin orbit coupling in this work. The fact that this state only exists for one spin
channel suggests a similar concern as for the copper interstitials. As discussed in
section 3.2.6, hybrid functionals like HSE struggle to accurately treat partially-
occupied states, since they encounter divergences in the derivative of the energy
at the Fermi level, so this defect state could be an artefact. However, the other
two copper vacancies have a partially-occupied VBM and do not exhibit such an
artefact under HSE, which encourages us to believe the defect state for Vs;1

Cu is
physical and due to some physics captured by HSE not present under PBE.

78



3.6.5.
Splitcopper

vacancies

X R M R

2

3

4

5

E 
(e

V
)

X R M R

2

3

4

5

E 
(e

V
)

X R M R3

4

5

6

7

E 
(e

V
)

Figure 3.13: Band structures for the first form of the split copper vacancy, V s,1
Cu . From left to right: PBE band structure in a 2 × 2 × 2

supercell; PBE band structure in a 3 × 3 × 3 supercell; HSE band structure in a 2 × 2 × 2 supercell. Occupied bulk states are shown in
green, unoccupied bulk states are shown in yellow, and unoccupied defect states are shown in red. The dotted line denotes the Fermi
level.
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Figure 3.14: Band structures for the second form of the split copper vacancy, V s,2
Cu . From left to right: PBE band structure in a 2 × 2 × 2

supercell; PBE band structure in a 3 × 3 × 3 supercell; HSE06 band structure in a 2 × 2 × 2 supercell. Occupied bulk states are shown
in green and unoccupied bulk states are shown in yellow. The dotted line denotes the Fermi level. The second form of the split copper
vacancy does not exhibit defect states in the band gap.
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3.6.6. Oxygen vacancy

The band structures for the second form of the split copper vacancy , V s,2
Cu (where

the two copper atoms were bonded two the same oxygen atom), for 2 × 2 × 2 and
3 × 3 × 3 supercells under PBE and for the 2 × 2 × 2 supercell under HSE06 are
seen in figure 3.12. Across all three band structures, as with VCu, we see V s,2

Cu does
not introduce a clear electronic state in the band gap. In fact, the effect of the
defect on the bulk structure is similar to that of VCu, but here the peak in the
VBM is only seen under HSE. One difference from the simple copper vacancy is
that the CBM has separated from the conduction band, breaking its degeneracy
at the high symmetry points with the second-lowest conduction state. However,
since the degeneracy is almost completely restored in the 3 × 3 × 3 supercell, we
can safely conclude that this is a finite size effect. Given the similarity in the HSE
case, we can also conclude that the split CBM would rejoin the conduction band
proper in the dilute defect limit. Just like the simple copper vacancy, V s,2

Cu partially
depopulates the valence band, which does not result in photoluminescence peaks
but does cause p-type conductivity.

3.6.6 Oxygen vacancy

Figure 3.15 shows the supercell band structures for the oxygen vacancy, VO. This
defect presents no defect states in the band gap across the three levels of analysis,
and so could not produce the photoluminescence lines seen in experiment. In fact,
VO significantly opens the band gap to Eg = 0.78 eV (PBE, 2 × 2 × 2) by flattening
the CBM, however, it does return to Eg = 0.56 eV in the 3 × 3 × 3 supercell.
While it is hard to be certain how dilute the defect would need to be for the gap to
return to its bulk value, we can be certain that larger supercells will not introduce
states inside the band gap if they are not seen in these artificially high defect
concentrations.

The behaviour of the defect is qualitatively similar under HSE, with a greater
flattening of the CBM leading to an enlargement of the gap to Eg = 1.83 eV. With
a shape very similar to that of the PBE CBM in the 2 × 2 × 2 supercell, we expect
this effect also to lessen with increasing supercell size. Regardless, as for PBE,
given that there is no additional physics that would give rise to photoluminescence
at extreme defect densities, none will arise in the dilute limit.
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Figure 3.15: Band structures for the oxygen vacancy, VO. From left to right: PBE band structure in a 2 × 2 × 2 supercell; PBE band
structure in a 3×3×3 supercell; HSE06 band structure in a 2×2×2 supercell. Occupied bulk states are shown in green and unoccupied
bulk states are shown in yellow. The dotted line denotes the Fermi level. The oxygen vacancy does not exhibit defect states in the band
gap.
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3.6.7 Anti-sites

3.6.7.1 Copper replacing oxygen

The copper anti-site CuO introduces a myriad of defect states in the band gap, as
seen in figure 3.16, though most of them are degenerate with the VBM or CBM at
Γ. At the PBE level, there is one (doubly spin degenerate) defect state inside the
band gap at the Γ point, and it persists from the 2×2×2 supercell to the 3×3×3
supercell. It also localises significantly in the 3 × 3 × 3 supercell, which suggests
that the state would persist in the dilute limit.

However, CuO also greatly increases the band gap under PBE to 1.05 eV in the
2 × 2 × 2 supercell. In the 3 × 3 × 3 supercell the band gap relaxes to 0.72 eV,
suggesting a very slow convergence to the dilute limit, even slower than the copper
interstitials. Since the defect state goes from 0.17 eV below the CBM at 2 × 2 × 2
to 0.12 eV below at 3 × 3 × 3 supercell size, it is not clear whether in the dilute
limit it would become essentially degenerate with the CBM. At the HSE level, the
inclusion of Hartree-Fock exchange splits the states by spin, such that 3 states
could produce meaningful photoemission. However, given how slowly this defect
converges to the dilute limit in the PBE data, it is not possible to draw meaningful
conclusions about how much of the HSE behaviour is a finite size effect.

The perturbation of the VBM that has been labelled as a defect state in the 2×2×2
PBE band structure is seen to return to bulk behaviour in the 3 × 3 × 3 supercell.
The perturbation of the VBM is larger under HSE06, and has a component of
spin-splitting at the edges of the Brillouin zone, but it is very similar in shape to
the perturbation under PBE, so there is no strong reason to believe it is would not
return to bulk behaviour in the dilute limit.

3.6.7.2 Oxygen replacing copper

The oxygen anti-site OCu, seen in figure 3.17, produces remarkably similar results
to V s;2

Cu . The rest of the conduction band separates slightly from the CBM while
retaining its delocalisation, and like V s;2

Cu it returns to bulk behaviour in the 3×3×3
supercell. The separation of the CBM looks very similar at the HSE level, and we
expect it to return to bulk behaviour in the dilute limit as well.
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Figure 3.16: Band structures for the copper anti-site, CuO. From left to right: PBE band structure in a 2 × 2 × 2 supercell; PBE
band structure in a 3 × 3 × 3 supercell; HSE06 band structure in a 2 × 2 × 2 supercell. Occupied bulk states are shown in green and
unoccupied bulk states are shown in yellow. The dotted line denotes the Fermi level. The occupied defect states are shown in blue and
the unoccupied ones are shown in red.
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Figure 3.17: Band structures for the oxygen anti-site, OCu. From left to right: PBE band structure in a 2 × 2 × 2 supercell; PBE band
structure in a 3×3×3 supercell; HSE06 band structure in a 2×2×2 supercell. Occupied bulk states are shown in green and unoccupied
bulk states are shown in yellow. The oxygen anti-site does not produce defect states in the band gap.
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3.6.8. The effect of charge

Also like V s;2
Cu and VCu, the removal of a copper atom removes one electron from

the VBM. Copper has an odd number of electrons, whereas oxygen has an even
number, so OCu leaves one electron unpaired. The absense of 10 copper d electrons
allows space for the new oxygen valence electrons to sit below the VBM, unlike
in the oxygen interstitials, where they are the highest energy occupied orbitals.
The band gap in the PBE 2 × 2 × 2 supercell opens slightly to Eg = 0.59 eV, but
returns to the bulk value in the 3 × 3 × 3 supercell. The band gap under HSE
opens to Eg = 1.66 eV, so even if the peak in the VBM were to persist in the dilute
limit it would not produce photoluminescence lines below the band gap energy in
experiment.

3.6.8 The effect of charge

Since much work is being done at the moment on the effect of charged defects
on Rydberg excitons [26, 27], it is important to understand the stability of these
defect states to the effect of adding or subtracting electrons. We computed the band
structures of each defect under PBE in both supercell sizes for {N − 2, ..., N + 2}
electrons, where N is the neutral number of electrons. For the oxygen interstitials,
we found all 3 defect levels shifted rigidly up for each additional electron and
down for each removed electron, indicating that the different charge states of these
defects could show distinct peaks in the PL spectrum. The shift was ∼ 0.5 eV for
Otet

i (pushing the unoccupied defect level above the CBM) and ∼ 0.2 eV for Ooct
i .

For every other defect, we found a change of ±2 in the number of electrons had
no effect on the band structure. Unfortunately, due to the significantly increased
computational cost and unstable convergence of HSE, we did not have time to
investigate the charge states under HSE. This would be important for future work
especially in the case of the copper interstitials and V s;1

Cu , where the defect level
predicted by HSE could be dependent on HSE’s treatment of the half-occupied
defect state.

3.6.9 Spin-orbit coupling

As mentioned in section 3.2.8, most calculations in this work were performed
without spin-orbit coupling. This was to save on a 4x increase in computational
cost, as it was not expected to have an effect on the existence of any defect states.
It does, however, have an effect on the placement of the defect states within the
band gap.

Figure 3.18 shows the band structures with spin-orbit coupling for pure Cu2O in
the unit cell, Oi

tet (2×2×2), and Cui
oct (2×2×2), compared to their band structures
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3.6.9. Spin-orbit coupling

without spin-orbit coupling. One can see the effect of spin-orbit coupling on the
unit cell is to split the degeneracy of the upper valence band, resulting in a band gap
∼ 0.2 eV smaller than that without spin-orbit coupling. In the defect supercells,
the change in the band gap changes the energy at which the defect state appears
within the band gap, raising the defect level by ∼ 0.1 eV for Oi

tet and lowering the
defect level of Cui

oct by ∼ 0.2 eV. However, it has almost no effect on the defect
state itself. The fact that the upper defect state for Oi

tet crosses the CBM at Γ is
not a cause for concern. Since the curvature of this band is high in the 2 × 2 × 2,
it will flatten out closer to its average energy in the dilute limit (as seen in figure
3.9). Given the size of the shift in defect level energy, an additional error bar of
±0.1 eV should be applied to calculations without spin-orbit coupling.

All three calculations are performed under PBE and only up to the 2 × 2 × 2
supercell, since the calculations are prohibitively expensive otherwise. Since spin-
orbit calculations involve different pseudopotentials, the zero-energies are not the
same as for calculations without spin-orbit coupling. Therefore, both sets of band
structures are plotted here as their energy differences from the Fermi energy, to
make them easily comparable.
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Figure 3.18: The effect of spin-orbit coupling on band structures. From left to right: Pure Cu2O in the unit cell; Oi
tet in a 2 × 2 × 2

supercell; Cui
oct in a 2 × 2 × 2 supercell. All four calculations were under the PBE xc-functional. Occupied bulk states are shown in

green and unoccupied bulk states are shown in yellow. The dotted line denotes the Fermi level. The occupied defect states are shown
in blue, the unoccupied ones are shown in red, and half-occupied defect states are shown in purple. The grey states depict the band
structure of the cell without spin-orbit coupling, for comparison.
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3.6.10. Formation energies

VCu V s;1
Cu V s;2

Cu VO Cuoct
i Cutet

i Ooct
i Otet

i CuO OCu

∆HF ,
eV 0.48 0.80 1.59 2.47 2.30 2.67 0.20 -0.24 6.17 2.07

PBE
2 × 2 × 2 No No No No Yes Yes Yes Yes Yes No

PBE
3 × 3 × 3 No No No No Maybe Maybe Yes Yes Yes No

HSE06
2 × 2 × 2 No No Yes No Yes Yes Yes Yes Yes No

Table 3.1: The enthalpy of formation of the defects studied in this work, along with
whether or not the given level of theory predicts a defect state in the band gap.
The energies are calculated from the energies of the pure and defective 3 × 3 × 3
supercells under PBE.

3.6.10 Formation energies

To assess how bright the photoluminescence from each defect would be, we need to
know their relative concentration in the crystal. The formation enthalpy, ∆HF (D),
of a neutral defect D, tells us how easy or hard it is to form the defect in the
perfect crystal, where ∆HF (D) < 0 indicates a preference to form the defect and
∆HF (D) > 0 indicates a barrier, and so should give us a heuristic for concentration.
In general, it is given by

∆HF (D) = ED − EP +
∑

i

ni(µelem
i + ∆µi), (3.50)

where ED is the energy of the supercell with a defect, EP is the energy of the perfect
supercell, and ni is the number of added (negative ni) or subtracted (positive ni)
atoms of species i and chemical potential µelem

i . The additional term ∆µi changes
the chemical potentials depending on growth conditions, and other authors take
this into account in their analysis [30, 106, 31]. For simplicity, in this work we
do not include this effect, and set ∆µCu = ∆µO = 0. The elemental chemical
potentials µelem

Cu and µelem
O are obtained from the energy per atom of the ‘natural’

state of the elements, in this case O2 and metallic Cu. For consistency, their
geometries were first optimised under PBE, giving a lattice constant of 3.63 Å for
Cu and a bond length of 1.21 nm for O2, resulting in µelem

Cu = 1680.93 eV/atom and
µelem

O = 436.80 eV/atom.

Table 3.1 shows the formation enthalpies as calculated from the 3×3×3 supercells
under PBE. They are in reasonable agreement with literature [106, 30], keeping in
mind the lack of charge and growth conditions analysis. Many of the formation
enthalpies can be intuitively described from a chemistry perspective. Since CuO
is a more stable copper oxide than Cu2O, it is easiest to add oxygen atoms or
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remove copper atoms, so the oxygen interstitials and copper vacancies are the lowest
energies and will occur most commonly in a sample. The second split vacancy is
slightly higher in energy than the other two because it is harder to remove the
second copper atom from a given oxygen atom than the first. The oxygen vacancy
and the copper interstitials are a harder class of defect to form as they increase
the ratio of copper to oxygen, moving further away from CuO, and so will be less
common but still noticeable. The anti-sites are significantly more expensive than
their interstitial counterparts as they involve the formation of a defect and the
insertion of an atom into an unfavourable location. The combination makes CuO

prohibitively expensive to form.

3.7 Discussion and conclusions

There is no evidence within our DFT calculations that the oxygen vacancy VO,
simple copper vacancy VCu, second split copper vacancy V s;2

Cu , or oxygen anti-site
OCu give rise to any states within the bulk band gap, nor would produce any
signal in photoluminescence experiments. In fact, given their small perturbations
in 2×2×2 supercells for both xc-functionals and lack of effect on the band structure
of the 3 × 3 × 3 supercell, it is unlikely they would have any effect on excitons
at all in the dilute limit. Therefore, there appears to be no reason to label the
photoluminescence peaks observed in experiments [104, 103, 100, 101, 102, 28]
with either VCu or with VO.

DFT provides strong evidence that the two possible geometries of the oxygen in-
terstitial would result in one (octahedral) or more (tetrahedral) electronic states
midway into the bulk band gap. Their low or even negative enthalpy of formation
indicates they would produce strong emission lines in photoluminescence in defect-
ive samples grown in most conditions. Given how localised these states are, it is
also likely that their energies will be sensitive to the charge state of the defect.
Further analysis of the effect of charge could be fruitful.

We are also confident that the V s;1
Cu defect would produce a defect state in the band

gap, and therefore a peak in the photoluminescence. It’s low formation energy
would make it a common defect, especially in samples grown in copper-deficient
conditions. However, the defect state only supports one electron per defect, as
opposed to the two (spin up and spin down) electrons supported by each level from
the oxygen interestitials, so the V s;1

Cu peak may be somewhat suppressed.

Despite being well under-converged in supercell size in this study, it is quite possible
that the copper anti-site could introduce a defect state into the band gap in the
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3.7. Discussion and conclusions

dilute limit. Nevertheless, its prohibitively high formation energy would prevent it
from contributing any signal to the photoluminescence spectrum.

It is difficult to draw concrete conclusions regarding the copper interstitials. The
effect of the defect is too long range to be properly converged in the 3 × 3 × 3 PBE
supercell, so it is difficult to say whether the half-occupied band is a perturbation of
the CBM or a poorly localised defect state. The much stronger exchange treatment
in HSE06 splits this band by spin and populates fully one of the spin channels,
but hybrid functionals are known to do poorly with metal-like states such as this
one [129]. Given how strongly these defects interact with neighbouring defects, it
is also hard to say whether this splitting would decay to zero in the dilute limit.
If the defect did have a state in the band gap, it is safe to say it would lie near
the bottom of the conduction band and produce photoemission of energy similar
to the band gap energy, ∼ 2 eV.

Now comes the difficult task in science of not just saying what something isn’t,
but saying what it is. Given the trouble DFT has with accurately predicting band
gaps, it is hard to directly relate the energy of the defect to that of a photoemission
line, especially given the error bar of ±0.1 eV from the lack of spin-orbit coupling.
Even if we were to extend the band gap artificially to its experimental value, it is
not clear whether we should keep the defects at their gap above the VBM, at their
gap below the CBM, or something else entirely. Having said that, PBE and HSE
both seem to agree roughly on the fractional position of a given defect state within
the band gap. To achieve more accurate estimates of state energies, one would
have to employ more computationally expensive corrections. Spin-orbit coupling
is a step in the right direction, but ultimately photoluminescence is an excited
state phenomenon, so the most accurate calculations would involve beyond DFT
methods like GW (discussed in chapter 4).

There are 4 peaks commonly observed across authors and samples [104, 103, 100,
101, 102, 28] at ∼ 1.2 eV, ∼ 1.35 eV, ∼ 1.5 eV, and ∼ 1.7 eV, and a fifth small
peak observed by Frazer et al [101] at ∼ 1.9 eV. No one has yet identified clear
trends in peak sizes against growth conditions. Natural samples seem to be more
often dominant in 1.7 eV emission [101, 103], Li et al. [28] and Koirala et al. [102]
synthesise samples that are dominant in 1.7 eV emission, and Frazer et al. [101],
Ito et al. [103] and Bloem [104, 134] synthesise samples with all kinds of emissions
with no obvious pattern. The emissions at 1.35 eV and the emission at 1.7 eV are
usually stronger than the other 3.

Since the oxygen interstitials have the lowest formation energies and the clearest
defect states, we assign the largest two peaks to them. The unoccupied defect state
due to Ooct

i is lower in energy than that of Otet
i , so we will assign the peak at 1.35
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Figure 3.19: A sketch of all the commonly observed peaks in photoluminescence
experiments on Cu2O, and a plausible assignment of the defects which cause them.

eV to Ooct
i and the peak at 1.7 eV to Otet

i . Since the defect level for Ooct
i rises by

about 0.2 eV for each added electron, this assignment also admits an interpretation
of the peak at 1.5 eV as (Ooct

i )−, and the peak at 1.7 eV as having a contribution
from (Ooct

i )2−. Why different growth conditions would favour one geometry of an
oxygen interstitial over another is left for future work.

The peak at 1.9 eV, as the highest energy observed peak, we assign to the copper
interstitials, the only neutral defects studied that could produce a peak that high.
That peak is always the weakest of the 5 (where it is even visible), reflecting the
higher formation energy. While there is a slight difference between the octahedral
and tetrahedral arrangements in the spin-splitting under HSE, the average energy
of the defect band is very similar and the behaviour of these two defects under
PBE is very similar, so we assign them to the same emission line.

The peak at 1.2 eV we assign to the first split copper vacancy, V s;1
Cu . The average

energy of its defect state in the band gap under HSE would suggest it would give
the lowest energy PL peak, and similar to that of the Ooct

i . Additionally, there
is a low energy barrier for this defect to move and become instead VCu or V s;2

Cu ,
which produce no photoluminescence, and the defect state itself supports only one
electron per defect site, hence why this peak is weak amongst all samples and
growth conditions. The same is not easily said of any of the other defect-emission
candidates.

It is important to stress that this is by no means a conclusive assignment of the
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3.7. Discussion and conclusions

photoluminescence lines, only a plausible one, especially given the lack of spin-orbit
coupling. Much stronger conclusions could be drawn from excited state calculations
with HSE, as the difference between KS orbital eigenenergies are only a zero-th
order approximation to the actual excitation energies.
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Chapter 4
Excitons in DFT

4.1 Background

In chapter 2 we used a phenomenological model to study excitons in cuprous oxide,
and how they behave in strong driving fields, and then in chapter 3 we used DFT to
study ab initio the ground state properties of cuprous oxide and its various native
defects. The obvious questions then arise: can we use DFT to study excitons in
cuprous oxide ab initio? How do they interact with defects? Unfortunately, DFT
is only formulated for ground states of materials, and as mentioned in the previous
chapter, Kohn-Sham orbitals and their energy differences only provide a zero-th
order approximation to excitations. To study excited states like excitons, we must
extend beyond DFT.

Beyond DFT methods have been used to calculate the binding energies of many
bulk semiconductors [136] and 2D materials [137] from first principles, as well as
for more complex phenomena like dispersion relations [138]. There have also been
several studies of Cu2O with these techniques [139, 140, 141], all aimed at the
binding energy of the 1S exciton. However, there have been no studies of the
excitations of defects in cuprous oxide, nor do the studies make use of supercells of
Cu2O.

In this chapter, we want to take the first steps into this corner of exciton research,
to explore what kinds of things we could learn from ab initio studies of excitons
in Cu2O and how they interact with defects. The work is by no means a complete
study, and is designed to open avenues for future research in this area. We present
a method for estimating the radius of the exciton by exciting supercells of the
material, as well as analyse real-space plots of the electronic densities, something
rarely seen in literature.

The rungs on the ladder of increasing theoretical and computational complexity
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4.2. TDDFT Theory

above DFT are time-dependent density functional theory (TDDFT) [142], the GW
approximation [143], and the Bethe-Salpeter equation [144]. The latter two, while
they strive for greater accuracy and allow for more detailed analysis, are compu-
tationally much more expensive that the first. TDDFT is computationally the
simplest and so is most appropriate for exploratory work like this. Furthermore,
we will be working with linear response TDDFT, a kind of first order perturbation
theory in the time-dependent potential that is exciting the system. Such approx-
imations are necessary to make working with excited states in large supercells
computationally tractable.

4.2 TDDFT Theory

In this section I will introduce only the concepts of TDDFT which are necessary for
understanding the results in this chapter. A thorough and mathematically rigorous
tour of TDDFT can be found elsewhere [142].

4.2.1 Runge-Gross theorem

The Hamiltonian for the problem that TDDFT is trying to solve is the same as
DFT in equation 3.5, but this time for a time-dependent external potential,

Ĥ = T̂e + V̂ee + V̂ext(t), (4.1)

where the external potential V̂ext(t) = ∑
i v(ri, t) is a scalar potential acting on the

various electrons. This potential can be thought of as the same as for the ground
state system before some time t0, at which point the perturbation is switched on,
such that

v(r, t) = ven(r) + θ(t− t0)δv(r, t) (4.2)

where δv(r, t) is the perturbing potential and θ(t − t0) is the step function. As
with DFT, we would like to work with the time-dependent density, ρ(r, t), formed
from the wavefunction, rather than directly with the wavefunction. Luckily, the
Runge-Gross theorem states [142]:

RG: Two densities, ρ(r, t) and ρ′(r, t), evolving from a common initial many-body
state Ψ0(t0) under the influence of two different potentials v(r, t) and v′(r, t) ̸=
v(r, t) + c(t) ∀ t > t0, will start to become different infinitesimally later than t0.
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4.2.2. Linear response

Therefore, there is a one-to-one correspondence between densities and potentials,
allowing us to write the time-dependent potential v[ρ](r, t) as a functional of the
time-dependent density, and so construct a time-dependent density functional the-
ory. It is possible to take the time dependent density and potential and solve
self-consistently for the time dependence of the Kohn-Sham orbitals. This scheme
is known as real-time TDDFT [145], and is usually reserved for electron dynamics
in molecules because of its high computational cost. Instead, we will employ a
method called linear response, which enables us to look for resonant frequencies
for the exciting potential and the resulting effect on the density purely in terms of
ground state properties of the material.

4.2.2 Linear response

Consider the functional Taylor expansion of the density ρ(r, t) in powers of the
perturbing potential δv:

ρ(r, t) = ρ0(r) + δρ(r, t) + δ2ρ(r, t) + . . . . (4.3)

For a weak perturbing potential, such as the probing laser field used for exciton
spectroscopy in Cu2O, we can consider only the first order change in density, given
by

δρ(r, t) =
∫ ∞

−∞
dt′
∫

V
d3r′χ(r, t, r′, t′) δv(r′, t′) (4.4)

where

χ(r, t, r′, t′) = δρ(r, t)
δv(r′, t′)

∣∣∣∣∣
v0(r)

(4.5)

is called the density-density response function. This is the key quantity in linear
response theory. A physically intuitive way to think about the response function
is it tells you how the density at one point and time, (r, t), changes due to a small
perturbation to the density by a potential at another point and time, (r′, t′). We
find the full response of the density by adding up all the perturbations over all
space and time. Naturally, to respect causality, χ(r, t, r′, t′) = 0 if t < t′.

Taking the Fourier transform of χ(r, t, r′, t′), the response function can be expressed
in the basis {|Ψn⟩}, the many-body eigenstates of Ĥ, as [142]

χ(r, r′, ω) = lim
η→0+

∑
n

[
⟨Ψ0|n̂(r)|Ψn⟩ ⟨Ψn|n̂(r′)|Ψ0⟩

ω − Ωn + iη
− ⟨Ψ0|n̂(r′)|Ψn⟩ ⟨Ψn|n̂(r)|Ψ0⟩

ω + Ωn + iη

]
(4.6)
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4.2.3. KS linear response

where n̂(r) is the density operator and Ωn are the eigenenergies of the eigenstates
|Ψn⟩. Of course, we cannot find the states |Ψn⟩ or their energies, but the point of
this result is to show that the density-density response function has poles at the
exact excitation energies of the many body system, so if we can find χ(ω) some
other way, we can find the resonant frequencies of the system.

4.2.3 KS linear response

We can do exactly the same as the interacting system for the Kohn-Sham system.
Since vKS[ρ](r, t) can be expressed as a functional of the density, and vice versa,
the first order change in vKS[ρ](r, t) can be expressed as

δvKS[ρ](r, t) = δv(r, t) +
∫
d3r′ δρ(r′, t)

|r − r′|
+ δvxc(r, t). (4.7)

This allows us to define the KS density-density response function

χs(r, t, r′, t′) = δρ(r, t)
δvKS(r′, t′)

∣∣∣∣∣
vKS[ρ0](r)

(4.8)

such that the first order density difference can also be calculated from

δρ(r, t) =
∫
dt′
∫
d3r′χs(r, t, r′, t′) δvKS(r′, t′). (4.9)

Substituting equation 4.7 into equation 4.9, we can find a recursive expression for
the change in density,

δρ(r, t) =
∫
dt′
∫
d3r′χs(r, t, r′, t′)

[
δv(r′, t′)

+
∫
dt1

∫
d3r1

{
δ(t′ − t1)
|r′ − r1|

+ fxc(r′, t′, r1, t1)
}
δρ(r1, t1)

]
(4.10)

where

fxc(r, t, r′, t′) = δvxc(r, t)
δρ(r′, t′)

∣∣∣∣∣
ρ0(r)

(4.11)

is called the xc-kernel, which we will discuss later. This means that the change in
density must be calculated self-consistently, as the change in KS potential depends
on the change in density.

The same change in density can also be calculated with equation 4.4. When we
substitute in eq. 4.4, we note that the equality of the two methods for calculating
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4.2.3. KS linear response

δρ must hold for all δv, so we can equate the integrands of both sides. Doing so
gives

χ(r, t, r′, t′) = χs(r, t, r′, t′)

+
∫ ∞

−∞
dt1

∫
V
d3r1

∫ ∞

−∞
dt2

∫
V
d3r2χs(r, t, r1, t1)

{
δ(t1 − t2)
|r1 − r2|

+ fxc(r1, t1, r2, t2)
}
χ(r2, t2, r

′, t′) (4.12)

which relates the interacting response function to the KS response function recurs-
ively. In Fourier space the relation simplifies greatly to

χ−1(r, r′, ω) = χ−1
s (r, r′, ω) − 1

|r − r′|
− fxc(r, r′, ω). (4.13)

Details of this step can be found in appendix A. Analogous to the interacting
response function, the KS response function can be found from the orbitals as [142]

χs(r, r′, ω) = lim
η→0+

∑
j,k

(fk − fj)
ϕj(r)ϕ∗

k(r)ϕ∗
j (r′)ϕk(r′)

ω − ωjk + iη
(4.14)

where fj is the occupancy of orbital j and ωjk = ϵj − ϵk is the difference between
the eigenenergies of the j-th and k-th orbitals.

This gives us a recipe for finding the resonant frequencies and the resulting density
change from ground state properties:

1. Find the ground state orbitals ϕi(r) of the system with DFT,

2. Compute the KS density-density response function from equation 4.14,

3. Use χs and equation 4.13 to self-consistently find the interacting response
function,

4. The poles of your interacting response function in frequency space are the
resonant frequencies, and the effect on the density is given by equation 4.4.

Just like with DFT, the above algorithm is a tool to help think about how TDDFT
works. It would take a long time to converge the interacting response function
and find its poles manually. There are also numerical problems introduced when
trying to calculate δρ from the product of a divergent χ and an infinitesimal δv.
In practice, TDDFT codes construct and solve the Cassida equation (under the
Tamm-Dancoff approximation in the case of CASTEP) to avoid these issues and
find the poles directly [142].
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Briefly, while we have seen that external perturbations at the resonant frequen-
cies of the system cause divergences in the density-density response function, the
external perturbation is, in fact, not required. If the resonant oscillation is set in
motion, the system will sustain it even in the absence of the external field. Us-
ing this fact, equation 4.10 can be rewritten without the perturbing potential, in
frequency space, as

δρ(r, ω) =
∫
d3r′χs(r, r′, ω)

∫
d3r′′

{ 1
|r′ − r′′|

+ fxc(r′, r′′, ω)
}
δρ(r′′, ω). (4.15)

We can see that this resembles an eigenvalue problem, where δρ(r, ω) is an ei-
genvector of the frequency-dependent integral operator acting on the right hand
side. The frequencies for which its eigenvalue is 1 are the solutions and there-
fore the resonant frequencies of the system. This equation, after the definition of
many more intermediate mathematical objects, can be morphed into the Cassida
equation, which is solved for these frequencies. The Tamm-Dancoff approxima-
tion neglects to find the negative solutions which correspond to de-excitations of
the system, resulting in significant computational speed up for little reduction in
accuracy. Further details can be found here [142].

4.2.4 XC kernel

As mentioned above, just as DFT relies on approximations to the xc-potential,
TDDFT relies on approximations to the xc-kernel, which requires a time-dependent
xc-potential first. While these can reach arbitrary complexity in search of ever
greater accuracy, in keeping with the exploratory theme of this chapter, we will use
some quite simple ones. The most helpful is the adiabatic approximation, which
takes the xc-kernel to be frequency (and therefore time) independent, and is simply
given by the ground state xc-kernel,

fxc(r, r′, ω) = fxc(r, r′, 0) = δvxc[ρ0](r)
δρ0(r′) = δExc[ρ0]

δρ0(r)δρ0(r′) , (4.16)

where ρ0(r) is the ground state density. This approximation, like the adiabatic
theorem of quantum mechanics, is exact in the case where the perturbation occurs
slowly enough for the system to be in its instantaneous ground state. There have
been developments in approximate xc-kernels beyond this approximation, but this
is the most common starting place [142]. From here, it is natural to use the PBE
approximation for Exc, in keeping with the use of PBE throughout the previous
chapter.
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4.2.5. Computational details

Supercell size 2 × 2 × 2 3 × 3 × 3 4 × 4 × 4
Triplet excitation energy, eV 0.20 0.23 0.24
Triplet binding energy, eV 0.30 0.27 0.26

Singlet excitation energy, eV 0.35 0.27 /

Table 4.1: The convergence of the first excitation energies with supercell size for the
pure crystal, and their implied binding energies, under PBE. Note the excitation
energies are much smaller than experiment because PBE underestimates the band
gap. We only managed to compute the lowest excitation energy for the 4 × 4 × 4
supercell.

4.2.5 Computational details

To make sure that the excited states are accurate, we must first start with a well-
converged ground state. Since, to zeroth order, we will be exciting an electron
from one orbital to another, we will end up with some half-filled bands, so the
ground state calculation must be spin-polarised. We did not perform spin polarised
calculations for the pure crystal and the oxygen interstitials in the previous chapter,
so before the performing TDDFT calculations we computed these ground states.

The momentum of a photon is many orders of magnitude less than that of an
electron, so excitations do not change the k-point of an electron. Since the band-
gap is at Γ, and hence the lowest excitation, we perform all the following TDDFT
calculations at Γ as well.

4.3 Results and discussion

4.3.1 Pure Cu2O

The first direction we chose to explore is the simplest: we wanted to see what
excitation energies and binding energies linear response TDDFT under PBE would
predict for the perfect crystal. Also, in the same way as the defects, there is a
finite size effect that occurs when exciting a cell which is too small. Exciting one
electron for each unit cell has a strong effect on the rest of the electrons, and also
on the excited state, and would represent an unphysical density of excitons. In this
way, we can use the supercell size to estimate the radius of the 1S exciton.

Table 4.1 shows how the energy of the first few excitations of the pure crystal
converges with supercell size. In the 4×4×4 supercell the lowest excitation energy,
E1

ex, has converged to within 10 meV, which is roughly the point at which the
periodic reflection of the excitation becomes negligible. This gives an implied upper
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4.3.1. Pure Cu2O
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Figure 4.1: The first excited state of the pure Cu2O crystal under PBE in the
2 × 2 × 2 supercell. (a) Isosurfaces of δρ(r). The blue (red) surface contains 90%
of the positive (negative) part of δρ(r), showing where electron density has moved
toward (away from) as a result of the excitation. The green spheres are the copper
atoms and the black spheres are the oxygen atoms. (b) A slice through δρ(r) in
the [110] direction (indicated by the black line), showing the value of δρ(r).
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4.3.1. Pure Cu2O

Figure 4.2: Isosurfaces of the electron density, |ϕk=0
i (r)|2, of the VBM (left, red)

and CBM (right, blue) of Cu2O in the 2 × 2 × 2 supercell. The isosurface contains
90% of the electron density of the band. The green spheres are the copper atoms
and the black spheres are the oxygen atoms.

bound for the 1S exciton Bohr radius of 8.6 Å (half the width of the supercell),
in good agreement with a0 = 5.3 Å from Wannier-Mott style calculations and
experimental measurements [146]. The excitation energies are much lower than
the experimental values (∼ 2 eV) due to PBE underestimating the band gap.
To account for this, we also show the binding energy, EPBE

g − E1
ex, changes with

supercell size. It appears to converge to ∼ 0.25 eV, an overestimation of the
experimental 98 meV [146] binding energy of the 1S exciton, meaning LR-TDDFT
with PBE overestimates the attraction between the electron and the hole. Contrary
to experiment [147], this method predicts the lowest singlet excitation (the 1S
para-exciton) energy to be higher than for the triplet, though it does decrease
significantly with energy to 40 meV above the triplet, as opposed to the observed
10 meV below the triplet. It is possible that the para-exciton has a more severe
finite-size error, but in the large supercell limit converges to a lower energy that
the ortho-exciton; more work is needed on that front.

Figure 4.1a shows isosurfaces of the change in electron density δρ(r) in response
to the excitation in the pure 2 × 2 × 2 supercell. The blue surfaces contain 90% of
the increase in electron density, and the red surfaces contain 90% of the decrease
in electron density, with the copper atoms shown as green balls and the oxygen
atoms as black balls. Figure 4.1b shows a slice of δρ(r) in the [110] direction (along
the x = y diagonal). The first thing to notice is that the excitation is delocalised
throughout the entire cell. This runs counter to the typical intuition of the exciton
as like a hydrogen atom, radiating out from a central point. However, this is not
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4.3.1. Pure Cu2O
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Figure 4.3: The band structure of the tetrahedral oxygen interstitial under PBE in
the 2 × 2 × 2 supercell, reprinted here to help with the interpretation of the excited
states.

unexpected, as in a periodic crystal there is no preferred region of space to localise
the exciton around. Also note that δρ(r) has obvious orbital symmetry around
each species of atom. The excitations on the oxygen atoms resemble a P orbital
gaining a bias in one direction along its axis, and the excitations on the copper
atoms resemble changes between various D orbitals.

These can also be understood from plotting the bands which the excitation occurs
between. Figure 4.2 shows isosurfaces of the electron density for the VBM in red
and the CBM in blue. The CBM closely resembles the positive part of δρ(r),
supporting our interpretation that the first excitation promotes one electron into
the lowest conduction band. However, the VBM does not conform to the same
simple mapping. This is because there are 3 degenerate valence bands at the Γ-
point (where the excitation takes place), so there are actually 3 degenerate lowest
energy excitations from a linear combination of the three bands to the CBM. For
a similar reason, the valence band plotted in figure 4.2 does not neatly resemble
atomic orbitals like the CBM does, since at Γ the three bands have the same
eigenvalue, so the bands can be any linear combination of the three eigenvectors.

It is well known that the degeneracy at the top of the valence band is lifted when
introducing spin-orbit coupling, which leads to the energy difference between the
‘yellow’ and ‘green’ exciton series [146]. It also plays a role in the energy difference
between the ortho- and para-exciton [146, 148, 39]. While spin-orbit coupling was
not included in these calculations for simplicity, its inclusion is an obvious next
step to take and could improve results in regards to the singlet excitation and the
interpretability of the bands involved in the excitation.

We also notice that the change in electron density is quite small. Since charge is
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4.3.2. Tetrahedral oxygen interstitial

Excited state Orbitals Triplet or singlet Energy, eV
1 Lower defect → upper defect Triplet 0.18
2 Lower defect → upper defect Triplet 0.24
3 Lower defect → upper defect Triplet 0.24
4 Lower defect → upper defect Triplet 0.28
5 VBM → upper defect Triplet 0.30
6 Lower defect → CBM Triplet 0.32
7 Deep valence → upper defect Triplet 0.35
8 Deep valence → upper defect Triplet 0.38
9 Lower defect → CBM Triplet 0.38
10 VBM → upper defect Triplet 0.43

Table 4.2: The first 10 excited states of Oi
tet in the 2 × 2 × 2 supercell.

conserved, ∫
unit cell

d3r δρ(r) = 0, (4.17)

but we can still define a metric for the total amount of displaced electron compared
to the ground state,

∆n = 1
2

∫
unit cell

d3r |δρ(r)| (4.18)

, which in general is quite different to zero. One might expect, since we are exciting
an electron from one orbital to an orthogonal one, that ∆n ∼ 1, but in practice
they seem to be a lot less than one. This is because orthogonal orbitals will have
different phase in the same regions, but can still have similar amplitudes, and so
density. For the first excited state of the pure 2 × 2 × 2 supercell, ∆n = 6 × 10−4,
because the valence and conduction bands share much of the same space.

4.3.2 Tetrahedral oxygen interstitial

With all the work done in the previous chapter modelling defects in CASTEP,
and in this chapter studying excited states in CASTEP, it makes sense to see the
effect of a defect on the excited states. With limited time, we could only study
in sufficient detail one defect, so the tetrahedral oxygen interstitial was chosen as
it has 2 clear defect levels in the band gap (one to trap holes and one to trap
electrons) which are predicted under PBE.

Table 4.2 shows the first 10 excited states in the 2×2×2 supercell. Looking at the
band structure for this defect (reproduced in figure 4.3) the first few excited states
are naturally between the occupied and and unoccupied defect levels, with the VBM
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Figure 4.4: The first excited state of Oi
tet in the 2×2×2 supercell. It is between one

of the lower defect states and the upper defect state. (a) Isosurfaces of δρ(r). The
blue (red) surface contains 90% of the positive (negative) part of δρ(r), showing
where electron density has moved toward (away from) as a result of the excitation.
The green spheres are the copper atoms and the black spheres are the oxygen atoms,
and the pink circle highlights the interstitial oxygen. (b) A slice through δρ(r) in
the [110] direction (indicated by the black line), showing the value of δρ(r).
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4.3.2. Tetrahedral oxygen interstitial

Figure 4.5: Isosurfaces of the electron density, |ϕk=0
i (r)|2, of (a) the upper defect

state; (b) a lower defect state; (c) a VBM; (d) the CBM of Oi
tet in the 2 × 2 × 2

supercell. The isosurfaces contain 90% of the electron density of the band. The
green spheres are the copper atoms and the black spheres are the oxygen atoms.

→ defect and defect → CBM above them. The degeneracy between the two lower
defect states is broken because TDDFT calculations must be spin-polarised (not
shown in the band structure), causing the first 4 excited states to have slightly
different energies. Interestingly, even though the band gap (EPBE

g = 0.5 eV) is
unchanged by the defect, the VBM → CBM exciton was not one of the 10 calculated
excited states. Its absence means that the defect has pushed the energy of the
exciton from 0.23 eV to greater than 0.43 eV, significantly decreasing the binding
energy.

Figure 4.4 shows the first excited state of Oi
tet in the 2×2×2 supercell, between one

of the lower defect states and the upper defect state, along with a slice through the
[110] direction. Compared to the defect-free crystal, this excited state in strongly
localised, with most of δρ(r) concentrated on the interstitial oxygen and the tet-
rahedrally coordinated copper atoms. This is unsurprising, given the localisation
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Figure 4.6: The fifth excited state of Oi
tet in the 2 × 2 × 2 supercell. It is between

the VBM and the upper defect state. (a) Isosurfaces of δρ(r). The blue (red)
surface contains 90% of the positive (negative) part of δρ(r), showing where electron
density has moved toward (away from) as a result of the excitation. The green
spheres are the copper atoms and the black spheres are the oxygen atoms, and the
pink circle highlights the interstitial oxygen. (b) A slice through δρ(r) in the [110]
direction (indicated by the black line), showing the value of δρ(r).
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4.4. Conclusions

of the orbitals involved, shown in figure 4.5. In fact, what is surprising in how
much the electron density changes away from the defect given how local the two
defect orbitals are. This is an example of the many-body effects that resist a simple
KS band-to-band interpretation of excitations in solids. Among other things, the
polarisation created by the movement of the excited electron can have long range
effects on other electrons. Due to the high degree of localisation of both bands, for
this state ∆n = 0.13, much higher than in the pure crystal, which is a theme with
the excited states of the defect cell.

Figures 4.6 and 4.7 show the fifth and sixth excited state of Oi
tet in the 2 × 2 × 2

supercell. The fifth excitation is between the VBM and the upper defect state,
and is a state the exciton could end up in if the electron became trapped in the
upper defect state. It is highly localised around the interstitial oxygen, which
could indicate that an exciton would be pinned to the defect site. Strangely, it is
very similar to the first excitation state, with slightly lower ∆n = 0.08 implying
it is less localised. The sixth excited state, between one of the lower defect levels
and the CBM, represents the hole from an exciton becoming trapped in the lower
defect state of Oi

tet. It resembles the first and fifth excited states, with its principle
difference being an even greater degree of localisation at ∆n = 0.2. Again, an
exciton which found itself in this state would be pinned to the defect site.

4.4 Conclusions

We have demonstrated a novel method for estimating the radius of excitons based
on supercell convergence, which achieved good agreement with experimental meas-
urements and Mott-Wannier models. In doing so, we have also shown the import-
ance of appropriate supercell choice for excited state calculations, especially when
it comes to excited states above the first. Another novel result is that we can un-
derstand some of the properties of the excited states by studying real-space plots of
the bands that are involved in the excitations, something rarely seen in the excited
state literature.

We have shown how the localised defect states of oxygen interstitials can cause
a localisation of the exciton, perhaps opening the way for experiments that pin
excitons to defect sites. Surprisingly, the presence of the oxygen interstitial has
a strong effect on the energy of the 1S exciton, even though the defect does not
significantly disturb the valence band maximum or the conduction band minimum,
which could have consequences for an exciton that encompasses such a defect even
if not trapped by it.
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Figure 4.7: The sixth excited state of Oi
tet in the 2 × 2 × 2 supercell. It is between

one of the lower defect states and the CBM. (a) Isosurfaces of δρ(r). The blue
(red) surface contains 90% of the positive (negative) part of δρ(r), showing where
electron density has moved toward (away from) as a result of the excitation. The
green spheres are the copper atoms and the black spheres are the oxygen atoms,
and the pink circle highlights the interstitial oxygen. (b) A slice through δρ(r) in
the [110] direction (indicated by the black line), showing the value of δρ(r).
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4.4. Conclusions

Lots of exciting work can be done in this area. It is clearly important that the
Oi

tet should be studied in a 3 × 3 × 3 supercell to see the full extent of the trapped
exciton and the convergence of the excitation energies. All the other defects that
exhibit defect states in the band gap could also have varied and interesting effects
on the exciton. Indeed, it may be true that even defects that do not produce pho-
toluminescence have an effect on the exciton series, as is supected from annealing
results [80].

The inclusion of spin-orbit coupling could have significant effects on excitations in-
volving the valence band. Moreover, other authors have had success with TDDFT
using hybrid xc-kernels like HSE06 [141], and the improved band gap of such func-
tionals could enable more direct numerical interpretation of results. Further up the
computational ladder, it would eventually be interesting to see what results GW
or Bethe-Salpeter calculations would give for defect-exciton interactions.
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Chapter 5
Conclusion

In this thesis, we have studied Rydberg excitons and defects in Cu2O with a variety
of theoretical and computational techniques. In chapter 2, we pushed the limits of
the usual ‘top down’ theory of Mott-Wannier excitons by applying it, in conjunction
with Floquet theory, to the ultrastrong driving of Rydberg excitons by a microwave
field. The model performed well, reproducing many experimental results even at
the highest experimentally-applied field strengths. We have come to understand the
flattening of the nP absorption peaks at high n not as ionisation of the excitons,
but as the formation of a quasi-continuum of hybridised excitonic states. Here,
many states enter ultrastrong and deep strong driving all with the same microwave
field, something not observed in atoms due to the large energy widths of Rydberg
excitons. The continuum maintains a strong coupling to the microwave and laser
field, as evidenced by the generation of strong sidebands on the probe laser, opening
avenues to microwave-to-optical conversion using cuprous oxide.

The strength of the sidebands is also reproduced well, capturing the onset and shape
of the rollover in intensity across the exciton spectrum for both the second and
fourth order red and blue sidebands, and for low n the agreement is quantitative.
This is a significant result as it is at the core of optical non-linearities that can
be used for microwave-optical conversion. However, the sidebands are one area
we start to see shortcomings of the Mott-Wannier approach. Without a detailed
theory for the excitation process of the excitons, we do not have access to the phases
of the couplings between the nP excitons and the valence band, which limits the
model’s predictive power for the sidebands. A theory of the interaction between
the excitation of the phonon background and the exciton series would also allow
for treatment of the asymmetry of the nP absorption peaks, another limit of the
top down theory approach. In the future, it would be interesting to see an ab initio
condensed matter approach to this problem.
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5. Conclusion

The other significant part of the Mott-Wannier model that is limited by a neglect
of the underlying crystal is in the dependence on the polarisation of the fields.
The spherical harmonics predicted by Mott-Wannier theory were shown to give a
strong dependence of the effect of the microwave field on the polarisation angle,
however in experiment the dependence was close to zero. Future work could make
use of replacements for spherical harmonics, such as cubic harmonics, that are more
compatible with the symmetries of the crystal, but it is likely that the symmetries
will demand a more radical change to the exciton wavefunctions. Progress on this
front would also have positive effects on the theory of interactions between Rydberg
excitons.

In chapter 3 we studied Cu2O from the bottom up using a careful and thorough
application of DFT, in order to predict which defects cause which spectral lines
in photoluminescence experiments, a key technique in characterising Cu2O sample
quality for Rydberg excitons. This project was broadly successful, firstly in determ-
ining that the simple copper and oxygen vacancies, to which all the PL peaks are
assigned throughout the literature, are almost certainly not responsible for photoe-
missions below the band gap. Furthermore, we conclude that oxygen interstitials
must be responsible for some of the PL peaks, and make tentative assignments of
which ones they are.

Beyond these findings, our conclusions are less concrete. The copper interstitials
seem like they could produce higher energy PL peaks below the band gap, and so
one peak is assigned to them. However, the states associated with these defects
extend over several unit cells such that they are clearly not in the dilute limit even
in 3 × 3 × 3 supercells, something to be investigated in future work. The first
split copper vacancy is assigned to one of the PL peaks, but only displays a defect
state in the band gap under the HSE06 xc-functional. This could be as a result
of the problems HSE has treating the semi-metallic valence band introduced by
the defect. Future work might investigate charge states or excited states of this
defect under HSE, to check whether it remains in the band gap when occupied by
an electron.

Finally, in chapter 4, we began to make connections between the atomic and solid
state approaches to Rydberg exciton theory by studying excited states with time-
dependent DFT. We found this approach to be very promising. The excitation
energy of the 1S exciton, like the defect states, was sensitive to supercell size, and
using this fact gave a good estimate for the radius of the exciton. We also found
it illuminating to see 3-dimensional representations of the excited states, and how
they related to the representations of the valence and conduction bands predicted
by ground state DFT.
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5. Conclusion

Following the excitations of the pure crystal, we then explored how a defect with
a localised defect state (Oi

tet) would effect the excited states of Cu2O. We saw
that excitations to or from the defect states localised the excited states, potentially
enabling the engineering of defects to pin excitons to desired sites. Further studies
could expand this analysis to the rest of the native defects, more excited states,
larger supercells, and higher level approximations. Quantitative assignment could
even be made of the photoluminescence peaks through excitations of the defect
states.

Rydberg excitons provide a unique opportunity for the marriage of atomic physics
and quantum condensed matter in one system. We have learnt a lot about the
successes and limits of each approach in cuprous oxide, and seen ways in which
they can each benefit from advances in the other. Going forward, I hope new
avenues for quantum technologies emerge from a more complete understanding of
this system built of a union of these two fields.
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Appendix A
Transforming the Dyson-type

equation into frequency space

Here we will transform the Dyson-type equation (eq. 4.13) into a relation between
the response function inverses (eq. 4.14). The first step is to use the fact that the
density-density response functions and xc-kernel depend only on the time differ-
ences, t − t′. The response functions and the xc-kernel can then be replaced by
their Fourier transforms,

χ(s)(r, r′, t− t′) =
∫ ∞

−∞
dω χ(s)(r, r′, ω)eiω(t−t′),

fxc(r, r′, t− t′) =
∫ ∞

−∞
dω χ(s)(r, r′, ω)eiω(t−t′). (A.1)

The Dyson-type equation then becomes, after some rearranging,∫ ∞

−∞
dω χ(r, r′, ω)eiω(t−t′) =

∫ ∞

−∞
dω χs(r, r′, ω)eiω(t−t′)

+
{∫

V
d3r1

∫
V
d3r2

∫ ∞

−∞
dω χs(r, r1, ω)

∫ ∞

−∞
dΩ χ(r2, r

′,Ω)

∫ ∞

−∞
dθ fxc(r1, r2, θ)eiωte−iΩt′

∫ ∞

−∞
dt1e

it1(θ−ω)
∫ ∞

−∞
dt2e

it2(Ω−θ)
}

+
{∫

V
d3r1

∫
V
d3r2

∫ ∞

−∞
dω χs(r, r1, ω)

∫ ∞

−∞
dΩ χ(r2, r

′,Ω)

∫ ∞

−∞
dt1 e

iω(t−t1)
∫ ∞

−∞
dt2 e

iΩ(t2−t′) δ(t1 − t2)
|r1 − r2|

}
. (A.2)

Using the fact that ∫ ∞

−∞
dt ei(ω−Ω)t = δ(ω − Ω), (A.3)
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A. Transforming the Dyson-type equation into frequency space

we can reduce greatly to∫ ∞

−∞
dω χ(r, r′, ω)eiω(t−t′) =

∫ ∞

−∞
dω χs(r, r′, ω)eiω(t−t′)

+
{∫ ∞

−∞
dω

∫
V
d3r1

∫
V
d3r2χs(r, r1, ω) χ(r2, r

′, ω) fxc(r1, r2, ω)eiω(t−t′)
}

+
{∫ ∞

−∞
dω

∫
V
d3r1

∫
V
d3r2 χs(r, r1, ω)χ(r2, r

′, ω) 1
|r1 − r2|

eiω(t−t′)
}
. (A.4)

We can see that the same Fourier transform is being applied to the left- and right-
hand sides of equation A.4. Therefore, we can equate the Fourier components, and
find that

χ(r, r′, ω) = χs(r, r′, ω)

+
∫

V
d3r1

∫
V
d3r2χs(r, r1, ω) χ(r2, r

′, ω)
{
fxc(r1, r2, ω) + 1

|r1 − r2|

}
(A.5)

To remove the integral operators we make use of the inverse density-density re-
sponse function, which has the property∫

V
d3r′ χ(r, r′, ω)χ−1(r′, r′′, ω) = δ(r − r′′). (A.6)

Multiplying both sides first by χ−1(r′, r3, ω) and integrating over r′, we get∫
V
d3r′ χ(r, r′, ω)χ−1(r′, r3, ω) =

∫
V
d3r′ χs(r, r′, ω)χ−1(r′, r3, ω)

+
∫

V
d3r1

∫
V
d3r2χs(r, r1, ω)

{
fxc(r1, r2, ω) + 1

|r1 − r2|

}
∫

V
d3r′ χ(r2, r

′, ω)χ−1(r′, r3, ω), (A.7)

and after simplifying,

δ(r − r3) =
∫

V
d3r′ χs(r, r′, ω)χ−1(r′, r3, ω)

+
∫

V
d3r1 χs(r, r1, ω)

{
fxc(r1, r3, ω) + 1

|r1 − r3|

}
. (A.8)

Next, multiplying both sides by χ−1
s (r4, r, ω) and integrating over r, we get∫

V
d3r χ−1

s (r4, r, ω)δ(r − r3) =∫
V
d3r′

∫
V
d3r χ−1

s (r4, r, ω)χs(r, r′, ω)χ−1(r′, r3, ω)

+
∫

V
d3r1

∫
V
d3r χ−1

s (r4, r, ω) χs(r, r1, ω)
{
fxc(r1, r3, ω) + 1

|r1 − r3|

}
. (A.9)
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After simplifying once,

χ−1
s (r4, r3, ω) =

∫
V
d3r′ δ(r4 − r′)χ−1(r′, r3, ω)

+
∫

V
d3r1δ(r4 − r1)

{
fxc(r1, r3, ω) + 1

|r1 − r3|

}
, (A.10)

and after simplifying again,

χ−1
s (r4, r3, ω) = χ−1(r4, r3, ω) + fxc(r4, r3, ω) + 1

|r4 − r3|
. (A.11)

Simply rearranging and renaming the position variables arrives us at equation 4.14,
or

χ−1(r, r′, ω) = χ−1
s (r, r′, ω) − 1

|r − r′|
− fxc(r, r′, ω). (A.12)
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