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ABSTRACT 
The widespread availability of the Internet and the ease of accessing written content have 

significantly contributed to the rising incidence of plagiarism across various domains, 

including education. This behaviour directly undermines academic integrity, as evidenced by 

reports highlighting increased plagiarism in student work. Notably, students tend to plagiarize 

entire paragraphs more often than individual sentences, further complicating efforts to detect 

and prevent academic dishonesty. Additionally, advancements in natural language processing 

(NLP) have further facilitated plagiarism, particularly by using online paraphrasing tools and 

deep-learning language models designed to generate paraphrased text. These developments 

underscore the critical need to develop and refine effective paraphrase identification (PI) 

methodologies. 

This thesis addresses one of the most challenging aspects of plagiarism detection (PD): 

identifying instances of plagiarism at the paragraph-level, with a particular emphasis on 

paraphrased paragraphs rather than individual sentences. By focusing on this level of 

granularity, the approach considers both intra-sentence and inter-sentence relationships, 

offering a more comprehensive solution to the detection of sophisticated forms of plagiarism. 

To achieve this aim, the research examines the influence of text length on the performance of 

NLP machine learning (ML) and deep learning (DL) models. Furthermore, it introduces 

ALECS-SS (ALECS – Social Sciences), a large-scale dataset of paragraph-length paraphrases, 

and develops three novel SALAC algorithms designed to preserve semantic integrity while 

restructuring paragraph content. These algorithms suggest a novel approach that modifies the 

structure of paragraphs while maintaining their semantics. The methodology involves 

converting text into a graph where each node corresponds to a sentence’s semantic vector, and 

each edge is weighted by a numerical value representing the sentence order probability. 

Subsequently, a masking approach is applied to the reconstructed paragraphs modifying the 



 v 

lexical elements while preserving the original semantic content. This step introduces variability 

to the dataset while maintaining its core meaning, effectively simulating paraphrased text.  

Human and automatic evaluations assess the reliability and quality of paraphrases, and 

additional studies examine the adaptability of SALAC across multiple academic domains. 

Moreover, state-of-the-art large language models (LLMs) are analysed for their ability to 

differentiate between human-written and machine-paraphrased text. This investigation 

involves the use of multiple PI datasets in addition to the newly established paragraph-level 

paraphrases dataset (ALECS-SS). 

The findings demonstrate that text length significantly affects model performance, with 

limitations arising from dataset segmentation. Additionally, the results show that the SALAC 

algorithms effectively maintain semantic integrity and coherence across different domains, 

highlighting their potential for domain-independent paraphrasing. The thesis also analysed the 

state-of-the-art LLMs’ performance in detecting auto-paraphrased content and distinguishing 

them from human-written content at both the sentence and paragraph levels, showing that the 

models could reliably identify reworded content from individual sentences up to entire 

paragraphs. Collectively, these findings contribute to educational applications and plagiarism 

detection by improving how paraphrased content is generated and recognized, and they 

advance NLP-driven paraphrasing techniques by providing strategies that ensure that meaning 

and coherence are preserved in reworded material. 
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CHAPTER 1: INTRODUCTION  
 

1.1. Introduction 

Plagiarism detection (PD) and paraphrase identification (PI) are crucial tasks in natural 

language processing (NLP), which provide computational tools and methodologies to analyse 

textual data and recognise language patterns. PD and PI aim to maintain academic integrity and 

verify the content's originality in the digital evaluation age. This evaluation provides easy 

access to information, content, and online paraphrasing tools, which create an opportunity to 

simplify or explain the text in different ways. They rewrite the text without affecting its 

meaning. This method of text paraphrasing could be useful in academic aspects; however, it 

has negative impacts on education, as represented by plagiarism. Students may paraphrase the 

original text and present it as their work using auto-paraphrasing tools. 

Thus, the need to develop effective approaches to detect plagiarism and identify 

paraphrases has become more important in academia, journalism, publishing, and other fields 

where innovation, novelty, and originality are respected, especially with the noticed increase 

of plagiarism in these fields (Elkhatat, 2023; Alsallal et al., 2013; Clough & Stevenson, 2011; 

Mihalcea et al., 2004; Cohn et al., 2008; Sánchez-Vega et al., 2013; Becker et al., 2023). 

Plagiarism is the act of using others’ work or ideas without acknowledgement by verbatim 

copying or paraphrasing (Shoyukhi et al., 2023). Verbatim copying is a direct copy of a source, 

while paraphrasing involves rewriting the source content in one’s own words. 

PD approaches fall into two primary categories, namely intrinsic and extrinsic (Ehsan et 

al., 2019). While intrinsic approaches are used to identify inconsistent segments of text, 

extrinsic methods can detect paraphrased text and exact verbatim copying by matching 

suspicious segments in a text to the sources (Jirapond Muangprathub et al., 2021). In other 

words, intrinsic methods rely on the internal analysis of a document without directly comparing 

it to extrinsic sources. This analysis checks the text's general coherence, vocabulary, sentence 

structure, sentence length, and punctuation to create a profile of the author’s writing style. Thus, 

variations from this profile could be a sign of possible plagiarism. This method requires a large 

amount of training data in order to generate accurate author profiles; however, inaccurate 
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results are expected when the authors change their writing style or when several authors have 

similar writing styles, making it difficult to accurately identify the true author. 

In the case of extrinsic plagiarism detection methods, they retrieve related text from a large 

collection of already published materials, including scholarly papers, published works, and web 

content. Then, compare it to the suspicious text considering different levels, from words and 

phrases to whole documents. It could be relatively simple and straightforward to implement, 

especially in detecting direct copying or verbatim plagiarism, which led to missed cases of 

paraphrasing or rephrasing plagiarism.  To enhance extrinsic plagiarism detection approaches, 

the PI must be involved. 

Hence, PI is a fundamental aspect of extrinsic plagiarism detection approaches that aim to 

identify texts reflecting the same meaning. PI involves evaluating the semantic similarity 

between different fragments of text regardless of how they are worded or structured. Therefore, 

PI is crucial for PD as well as for numerous NLP tasks such as machine translation (Thompson 

& Post, 2020), information retrieval (H. Li & Xu, 2014), summarisation (Chali & Egonmwan, 

2024), and question answering (Barron-Cedeno & Vila, 2013; Y. Yang et al., 2015; Ben 

Aouicha et al., 2018). One common approach to PI is the use of alignment-based methods, 

which compare pairs of text to identify similarities at the word or phrase level (A. Gupta et al., 

2018). It includes implementing neural language models, such as encoder-decoder 

architectures or transformer-based models to learn semantic representations of sentences and 

assess their similarity (Razaq et al., 2024). 

In this thesis, a contribution is made to the field of PI by detecting paraphrased text within 

paragraph-length and paragraph-level paraphrasis, which involve sentence reordering, 

splitting, and/ or joining, using state-of-the-art transformer models. Additionally, the inter-

sentence and intra-sentence relations are taken into consideration to create a large-scale 

paragraph-level dataset called ALECS-SS. After that, the large language models (LLMs) are 

examined in terms of their ability to distinguish between the auto-paraphrased text and the 

sources. 

An overview of this thesis's subject is provided in this chapter. First, Section 1.1 defines 

the scope of the research. This contributes to the clarification of the research motivation in 

Section 1.2 and the research problem in Section 1.3. The objectives of this thesis are then 

covered in Section 1.4. The research questions are presented in Section 1.5. Then, in Section 
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1.6, a summary of the scientific contributions is provided. Lastly, Section 1.7 presents the thesis 

structure. 

1.2. Research Scope 

PI can be seen as a kind of text classification task, which is when a model takes a text segment 

as input and assigns one or more predefined labels to describe the content. The number of 

classes can vary depending on the type of classification: multiclass, binary, or multilabel. In 

multiclass classification, the text is assigned to one class out of many, while in binary 

classification, it is assigned to one of just two classes, which are paraphrased or non-

paraphrased in PI. Multilabel classification allows a text segment to have multiple class labels 

assigned to it at the same time (Wu, 2022).  

While considerable research has been dedicated to the PI task, the majority of existing 

studies concentrate on developing a paraphrase detection algorithm taking sub-sentence level 

or sentence-level into consideration, ignoring the paragraph-level. According to Kowsari et al. 

(2019), there are four levels of scope in the text classification system that can be used: sub-

sentence level, sentence-level, paragraph-level, and document-level. 

PI at the paragraph-level has received less attention, primarily due to the absence of a 

suitable dataset, presenting a significant challenge and requiring substantial time investment. 

This thesis seeks to fill this gap by concentrating on exploring intra-sentence and inter-sentence 

relationships in paragraphs. Firstly, it investigates the impact of text length on the ML and DL 

models’ results. This is followed by employing SALAC and state-of-the-art DL models known 

for their capacity to analyse and paraphrase lengthy text, resulting in the creation of a 

paragraph-level dataset called ALECS-SS. The examples of sentence-level and paragraph-level 

paraphrases are illustrated in Table 1.1. ALECS-SS offers an opportunity to analyse cutting-

edge classification algorithms for distinguishing between paragraphs written by humans and 

those generated through automated paraphrasing techniques. The primary objective of this 

research is to contribute to the field of PD. To achieve this, ALECS-SS comprises text from 

various academic subjects, including economics and sociology, sourced exclusively from 

paragraph-length extracts of Wikipedia articles. Then, reorder each paragraph’s sentences 

based on their semantic relationships by implementing and examining three innovative 

algorithms. After that, reconstructed paragraphs are paraphrased using LLMs to create the 
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ALECS-SS dataset. Following this, both human judgments and automated metrics are 

employed to assess how well SALAC performs across the selected domain. This dataset is then 

used to train PI algorithms that could distinguish between human-written and auto-paraphrased 

paragraphs. 

Table 1.1 The examples of sentence-level and paragraph-level paraphrases 

Paraphrasis type Text 

Sentence-length  

 

Source: Considering the goal of obtaining universal health care as part of Sustainable 

Development Goals, scholars request policymakers to acknowledge the form of healthcare that 

many are using. 

Sentence-level paraphrases: Considering the importance of obtaining universal health care as 

part of Sustainable Development Goals, scholars request policymakers to acknowledge the form 

of healthcare that many are using. 

Paragraph-length 

 

Source: Considering the goal of obtaining universal health care as part of Sustainable 

Development Goals, scholars request policymakers to acknowledge the form of healthcare that 

many are using. Scholars state that the government has a responsibility to provide health services 

that are affordable, adequate, new and acceptable for its citizens. Public healthcare is very 

necessary, especially when considering the costs incurred with private services. Many citizens 

rely on subsidized healthcare. The national budget, scholars argue, must allocate money to the 

public healthcare system to ensure the poor are not left with the stress of meeting private sector 

payments. 

Sentence-level paraphrases: Considering the importance of obtaining universal health care as 

part of Sustainable Development Goals, scholars request policymakers to acknowledge the form 

of medical care that many are using. Scholars state that the government bears a responsibility to 

provide health services that are affordable, adequate, new and acceptable for its citizens. Public 

medical care is very necessary, especially when considering expenses incurred with private 

services. Many citizens rely on subsidized medical care. The national spending plan, scholars 

argue, must allocate resources to the public healthcare system to ensure the poor are not left with 

the pressure meeting private sector payments. 

Paragraph-level paraphrases: Many citizens rely on subsidized medical care. Public medical 

care is very necessary, especially when considering expenses incurred with private services. 

Scholars state that the government bears a responsibility to provide health services that are 

affordable, adequate, new and acceptable for its citizens. Considering the importance of 

obtaining universal health care as part of Sustainable Development Goals, scholars request 

policymakers to acknowledge the form of medical care that many are using. The national 

spending plan, scholars argue, must allocate resources to the public medical care system to ensure 

the poor are not left with the pressure meeting private sector payments. 

1.3. Research Motivation 

The growing reliance on the internet provides convenient access to textual content and tools 

for creating paraphrases. Students often exploit these resources to present someone else's ideas 
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or work as their own. This type of plagiarism puts academic integrity and intellectual property 

at risk for several reasons. Firstly, it weakens innovation and originality. In other words, it 

compromises the principles of originality and creativity, which are vital to intellectual and 

scholarly endeavours. It impedes the production of new knowledge as well as the expansion of 

research and scholarship. Secondly, undermining academic objectives as education aims to 

develop abilities in critical thinking, research skills, and the ability to produce new knowledge. 

Plagiarism avoids these goals by encouraging students to skip the real learning process. It 

lessens the importance of tests and assignments since they are no longer trustworthy measures 

of a student's knowledge and abilities. In addition, plagiarism threatens the trust and credibility 

that support academic institutions. If academic work is not authentic and reliable, it 

compromises the integrity of the entire educational system. This could have long-term impacts 

on people's and institutions' reputations. Moreover, impeding equitable assessment, it is 

impossible to fairly assess someone's knowledge and abilities when they are plagiarised. 

Educators, assessors, and employers find it difficult to fairly evaluate the skills of students or 

researchers who turn in plagiarised work. Meritocratic values in academics and the workforce 

are compromised by this, finally, restraining advancement in research and reducing it. 

Plagiarism hinders the progress of research since it allows for false claims of authorship. This 

could mislead the scientific community, waste funds on fruitless research projects, and impede 

actual progress in the field. 

To uphold the principles of integrity, authenticity, and intellectual honesty in the seeking of 

knowledge, it is imperative to prioritise addressing academic plagiarism. Working within the 

academic education sector, I dedicated my research efforts to the identification of paraphrased 

text, a pivotal aspect of PD. This undertaking is not only central to maintaining the credibility 

of educational institutions but also holds significant relevance in various domains of NLP, such 

as machine translation, information retrieval, and text generation.  

In terms of machine translation, where the identification of paraphrases involves finding 

equivalent terms in different languages, this process enhances the quality of translated text. It 

becomes essential to ensure that the translated material accurately captures the intended 

meaning of the source content. 

The identification of paraphrases also proves crucial in information retrieval systems. By 

recognising paraphrased variations of user queries within the document corpus, these systems 
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can provide more comprehensive search results. This contributes to an improved user 

experience, facilitating efficient access to relevant information. 

Moreover, natural language generation (NLG) systems aim to generate diverse and 

coherent sentences, and the ability to identify paraphrases helps prevent the generation of 

redundant or repetitive content. This enhances the overall effectiveness of NLG in creating 

meaningful and varied textual outputs. 

1.4. Research Problem 

The availability and growth of tools and NLG models that are used to paraphrase text could 

enhance machine translation, information retrieval, and summarisation for NLP downstream 

tasks. In addition, paraphrasing can be employed to assist comprehension and writing skills 

development. On the other hand, paraphrase generation could undermine academic integrity if 

it is misused by students seeking to plagiarise existing work. In educational contexts, 

occurrences of academic plagiarism have increased, as it has been detected in diverse student 

tasks, spanning reports, assignments, projects, and beyond (Elkhatat et al., 2023). According to 

Alsallal et al. (2013), one of the worst types of research misconduct is academic plagiarism, 

and it has a negative impact on academic integrity. 

Plagiarism is defined as using someone’s written work without giving a reference to the 

source or claiming the ideas are taken from the work of others (Maurer et al., 2006). The 

copying of many words from the source, regardless of giving a reference, is also considered an 

act of plagiarism (Bär et al., 2012). The modification of sentences in such a way that the original 

structure of the sentences without acknowledgement is used by the author also falls into the 

category of plagiarism. According to Ventayen (2023), the current state of artificial intelligence 

(AI) models makes it possible to create highly coherent and contextually suitable paraphrasing, 

raising concerns about the potential for generating plagiarised material. In addition, Becker et 

al. concluded that it is difficult to differentiate artificially paraphrased text from human-written 

text (Becker et al., 2023). This introduces potential risks related to academic dishonesty and 

plagiarism, with possible significant academic and legal consequences, as highlighted by 

(Foltýnek et al., 2019). 

The opportunities for engaging in technologically enabled academic misconduct are 

growing, and with them are the tools for spotting and stopping it. The development of these 
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tools has been an active field of study in computer science and NLP, including PI as a way to 

detect plagiarism. 

Paraphrased text is an output text that preserves the meaning of the input text in other forms 

of text (A. Gupta et al., 2018). Bhagat and Hovy defined paraphrasing as a means of conveying 

the same meaning but with different sentence structure and wording (Bhagat & Hovy, 2013). 

These definitions count verbatim as a non-paraphrased case. Formally, let us have two different 

texts, A and B. If the information, φ, that can be derived from A can also be inferred from B 

and vice versa, then A is a paraphrase of B (Formula 1): α represents a given domain or 

background knowledge (Burrows et al., 2013) 

(Α	⋀	α	|	φ) 	⟺	 (	Β	⋀	α	|	φ)    Formula 1.1 

From these definitions, it is obvious that PI is implicitly part of PD. Both PI and PD have 

assumed tremendous importance for academic institutions, researchers, and publishers for the 

preservation of academic integrity (Bach et al., 2014). PI is a method that aims to measure the 

degree of similarity of sentences and phrases with the source and verify the semantic 

similarities between sentences (Das & Smith, 2009; Fernando & Stevenson, 2008). PI also 

helps determine whether two pieces of text carry the same meaning, which plays a vital role in 

natural language applications such as information retrieval (H. Li & Xu, 2014), answering 

questions (Barron-Cedeno & Vila, 2013; Y. Yang et al., 2015; Ben Aouicha et al., 2018) and 

other NLP downstream tasks mentioned previously. 

Attempts to solve the problem of PI in past studies were focused mainly on comparing 

words in sentences (Wan et al., 2006; Vrublevskyi & Marchenko, 2020), or sentence to sentence 

(Nguyen et al., 2019; Devlin et al., 2019) or phrases in sentences (Arase & Tsujii, 2021). These 

studies achieved robust results. However, comparing each sentence in the suspicious document 

to all sentences in the source documents is not efficient for long texts. Moreover, they focus on 

paraphrased texts at the sentence-length and sentence-level paraphrases (Ganitkevitch et al., 

2013; R. Yang et al., 2019; Prentice & Kinden, 2018; Hu et al., 2019), and paragraph-level (He 

et al., 2020; Asghari et al., 2021) , but utilise sentence-level paraphrase methods only. These 

approaches consider the meaning of each sentence independently; they do not determine any 

semantic relationships between sentences, which is harder to achieve and more valuable than 

sentence-level paraphrasing because it considers the diversity across multiple sentences beyond 

the lexical and syntactic diversity of a single sentence. This holds practical significance as it is 



 8 

a necessary skill that needs to be cultivated and applied in educational tasks, such as citing the 

work of others. In addition, according to Foltýnek et al. (2019), plagiarists reuse paragraphs, 

not sentences, the most frequently. Thus, the need to provide insight into the efficient 

paragraph-level detection algorithms is clear, and it is one of this thesis objectives. 

Paragraph-level paraphrasis includes sentence reordering, sentence splitting, and/or 

sentence merging. The initial work in this area is presented in (Al Saqaabi et al., 2022), where 

ML and DL algorithms are applied to detect paraphrasing (focusing on the paragraph-level), 

details in Chapter 5; however, this work is limited by the fact that very few suitable datasets 

are available for this type of research. Thus, a new dataset must be created to investigate 

detection algorithms’ efficiency in recognising auto-paraphrased text at the paragraph-level, as 

detailed in Chapters 4 and 5.  

This research targets the introduction of a new approach to create a paragraph-level dataset 

(Chapter 6), after proving that detecting paraphrased text at the paragraph-level is more 

accurate and robust compared to detecting paraphrased text at the sentence-level (Chapter 5). 

Paragraph-level paraphrases detection considers both inter-sentence and intra-sentence 

relationships, which guarantees that the text's meaning remains unaffected (Chapters 5 and 6). 

Moreover, this work examines the efficiency of state-of-the-art transformer learning models in 

detecting auto-paraphrased text at the paragraph-level (Chapter 8). 

1.5. Research Questions (RQ) 

The research questions are formulated based on the research problem and the specific gaps 

found in the literature (Chapter 3). It focuses on how to detect paraphrased text and distinguish 

between the source and auto-paraphrased text at the paragraph-level. This is achieved by 9 sub-

questions under the umbrella research question: 

o RQ: How can the effectiveness of machine learning and deep learning paraphrase 

identification algorithms be affected by the variety of text length and paraphrasis 

levels? 

To assist in addressing this broad research question, the following sub-research questions are 

developed: 
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o RQ1: How does the length of a piece of text affect the accuracy of the paraphrase 

identification approach used? 

This question is considered the cornerstone, as answering it will highlight the importance of 

detecting paraphrasing at the paragraph-level rather than focusing solely on sentences. This RQ 

aims to explore the impact of text length on the performance of PI methods. The findings from 

this RQ will help refine PI strategies for texts of different lengths. This RQ is addressed in 

Chapter 5. 

o RQ2: What features are most effective for paraphrase identification across different 

levels of paraphrasing and varying text lengths? 

This RQ investigates the types of features that contribute most effectively to PI across different 

levels of paraphrasis, including sentences and paragraphs. It aims to determine which features 

are best suited for each paraphrasis level and how they can be combined to improve overall 

detection accuracy. This RQ is addressed in Chapter 5. 

o RQ3: Which of the three novel paragraph-level paraphrasing algorithms (SALACs) 

proposed preserves the source paragraph's meaning most effectively? 

After determining the most appropriate text length for PI as a result of RQ1 and RQ2, the next 

RQs investigate in deep the PI at paragraph-length and paragraph-level paraphrasis. RQ3 

compares the accuracy of three novel paraphrasing algorithms through both human and 

automatic evaluation while ensuring that the source paragraph's meaning is preserved. This RQ 

is addressed in Chapter 6. 

o RQ4: Is there a correlation between the similarity score assigned by human evaluators 

and the automatically generated coherence score used for paraphrase generation by 

the paragraph-level algorithms (SALACs)? 

This RQ examines the relationship between coherence scores assigned by human evaluators 

and those generated automatically. By exploring this correlation, the research aims to evaluate 

the reliability of automated coherence scoring systems and their alignment with human 

judgment. The findings will provide insights into the consistency and validity of automated 

metrics for assessing textual coherence. This RQ is addressed in Chapter 6. 
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o RQ5: Is there a correlation between the automatically generated paraphrased 

paragraph’s semantic similarity score and the human-written paragraph’s semantic 

similarity score? 

This RQ examines the relationship between the semantic similarity scores generated 

automatically for paraphrased paragraphs and human-written paragraphs. The aim is to 

highlight whether the semantics of the text are affected after applying the paraphrasing 

approach. This RQ is addressed in Chapter 6. 

o RQ6: How does the paraphrasing quality of SALAC algorithms vary across multiple 

domains? 

 This RQ investigates whether the performance of the SALAC algorithms remains consistent 

when applied to texts from different domains or if there are noticeable variations in 

paraphrasing quality. Since domain-specific language characteristics may influence the 

effectiveness of paraphrasing, this analysis aims to determine whether the algorithms can 

generalise well across various text types. By comparing paraphrases generated for texts from 

multiple domains, the author will assess whether domain-specific nuances affect coherence and 

semantic preservation. This RQ is addressed in Chapter 7. 

o RQ7: Are there domain-specific challenges in paraphrase quality as perceived by 

human evaluators? 

While automated evaluation metrics provide an objective assessment of paraphrase quality, 

human evaluation remains crucial in understanding the perceived coherence and faithfulness 

of paraphrased texts. This research question explores whether human evaluators identify 

specific challenges when assessing paraphrases from different domains. Factors such as loss of 

meaning or decreased readability may be more prominent in certain domains than others. By 

analyzing human feedback across multiple domains, the author aims to uncover recurring 

patterns and challenges that might limit the generalizability of the SALAC algorithms. These 

insights will contribute to refining the models and improving their adaptability across diverse 

text types. This RQ is addressed in Chapter 7. 



 11 

o RQ8: How effectively can autoencoding models discriminate between the source 

(human-written) and machine-paraphrased text generated by the paragraph-level 

method, without requiring a direct comparison between the two? 

This RQ explores the effectiveness of autoencoding models in distinguishing between source 

and auto-paraphrased texts at the paragraph-level. The objective is to evaluate the capability of 

these models to detect structural and lexical changes introduced through the novel paraphrasing 

approach. This RQ is addressed in Chapter 8. 

o RQ9: How effectively can state-of-the-art autoregressive models discriminate between 

the source (human-written) and machine-paraphrased text generated by the 

paragraph-level method, without requiring a direct comparison between the two? 

This RQ investigates the effectiveness of state-of-the-art autoregressive models in 

differentiating between source and auto-paraphrased texts at the paragraph-level. The aim is to 

assess the models' ability to capture and respond to structural and lexical modifications 

introduced during paraphrasing, comparing the findings to the result of the RQ6. This RQ is 

addressed in Chapter 8. 

To address most of these questions, a dataset that satisfies appropriate requirements should 

be available. For the first two research questions (RQ1 and RQ2), ML and DL methods are 

applied in two of the most common datasets in the PI domain, namely, Microsoft Research 

Paraphrase Corpus (MSRP) and Webs Crowd Paraphrase Corpus 2011 (Webis-CPC-11). The 

result of this study highlighted the need to create a dataset consisting of paragraph-level 

paraphrases. To solve this problem, three algorithms are developed and joined with transformer 

models, then their outputs are evaluated by human and automatic metrics (RQ3-RQ7). For the 

last two research questions (RQ8 and RQ9), detecting algorithms are applied to classify 

whether a paragraph is human-written (source) text or auto-paraphrased text, utilising state-of-

the-art LLMs.  

1.6. Research Objectives (RO) 

To address the research questions mentioned above, the author has set the following objectives: 
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• RO1: To investigate how the text length affects the classification algorithm’s results in 

the PI task. Accordingly, short texts refer to sentence-length samples, mid-length texts 

to paragraph-length samples, and long texts refer to full documents, also sentence-level 

and paragraph-level paraphrases are considered. This addresses RQ1 and it is explored 

in Chapter 5. 

• RO2: To select which hand-crafted features and word embedding are more effective on 

sentence-length and paragraph-length text in terms of PI task. This focuses on RQ2 

(described in more detail in Chapter 5).  

•  RO3: To create an extensive dataset that consists of paragraph-level paraphrases using 

state-of-the-art transformer models. This dataset aims to serve as a valuable resource 

for subsequent applications in NLP and is intended to answer most of the research 

questions of this thesis, specifically RQ3-RQ9, as further explained in Chapters 5-7.  

• RO4: To develop three novel algorithms that aim to generate paragraph-level 

paraphrases by altering the paragraph structure while preserving its semantics. 

Furthermore, investing the LLM’s capabilities to modify the paragraph lexically 

without affecting its meaning. This is essential for addressing RQ3-RQ5, as discussed 

in Chapters 5 and 6. 

• RO5: To assess the generalisability of the SALAC algorithms across many domains by 

analysing their paraphrasing quality in a variety of domain contexts. This investigation 

seeks to find out whether specific domains present greater challenges for automatic 

paraphrasing and whether the algorithms consistently preserve meaning across 

different text types. The study aims to determine if human evaluators recognise 

particular domain-specific difficulties that may not be entirely reflected by automated 

evaluation metrics. Understanding these variations will yield significant insights into 

the adaptability of the SALAC algorithms and their effectiveness in generating quality 

paraphrases across various domains. This addresses RQ6 and RQ7, which are explored 

in Chapter 7. 

• RO6: To assess techniques employing cutting-edge DL models for the identification of 

paraphrased text at the paragraph-level, aiming to improve PD methods. This is crucial 

in addressing RQ8 and RQ9, as discussed in Chapter 8.  
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1.7. Research Contributions 

This thesis contributes to the domain of PI by highlighting the impact of text length and 

handcrafted features on the PI ML and DL approaches. Then, constructing an extensive dataset 

containing paragraph-level paraphrase samples. These samples are generated using cutting-

edge transformer models, then evaluated by human and auto metrics. After that, the study 

delves into the exploration of detection algorithms. The anticipated outcomes of this research 

aim to support PD methods employed in the educational sector. Furthermore, the dataset has 

the potential to provide advantages in other domains, including machine translation, 

summarisation, and data augmentation. 

Contributions are as follows: 

• This research presents a novel framework that investigates the impact of text length and 

paraphrasing levels on PI. By separating dataset samples based on text length and 

paraphrasing levels (sentence, paragraph, or passage), then feeding them into ML and 

DL models. The methodology integrates multiple models and features into a cohesive 

system, analysing their performance across subsets. Chapter 5 investigates RQ1 and 

RQ2. 

• This study also enhances the efficiency of ML and DL algorithms by eliminating the 

need to compare each sentence individually. This leads to improved detection accuracy 

and F1-score, even when dealing with the complexities of paragraph-level paraphrasis. 

Chapter 5 investigates RQ1 and RQ2. 

• This research contributes, to the best of the author's knowledge, by building the first 

large-scale paragraph-level paraphrases labelled dataset (ALECS-SS) from diverse 

Wikipedia domains, specifically designed for PI tasks. The dataset is extensive, 

containing a significant number of labelled samples, and serves as a valuable resource 

for the research community. Chapter 6 investigates RQ3 and RQ5. 

• Three novel algorithms (SALACs) for reordering the sentences of a source paragraph 

without altering its meaning are developed, taking into account both intra- and inter-

sentence relations. These approaches are necessary because traditional paraphrasing 

techniques often fail to maintain the semantic integrity of a paragraph when sentences 

are reordered. By addressing this issue, the proposed algorithms ensure that the 

semantic similarity to the source paragraph is preserved. Both automatic and human 
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evaluations demonstrate that these algorithms can successfully reorder sentences while 

maintaining the meaning of the source paragraph, making them valuable tools for 

paraphrase generation. Chapter 6 investigates RQ3 and RQ5. 

• The generalisability of SALAC algorithms is assessed in different domain contexts to 

evaluate their adaptability and robustness across various disciplines. This assessment is 

essential, as the quality of paraphrasing might vary based on domain-specific linguistic 

complexities. This study offers deeper insights into the impact of language 

characteristics on paraphrase generation through the integration of human evaluation, 

inter-annotator agreement analysis, and readability metrics. The results indicate that 

although SALAC algorithms successfully maintain semantic integrity and coherence, 

enhancements are required to tackle domain-specific issues. Chapter 7 examines RQ6 

and RQ7. 

• Building on the current trends in NLP focused on detecting AI-generated text, this 

research takes a novel approach by specifically targeting the identification of 

paraphrased paragraphs generated using LLMs. A significant computational effort is 

applied to process and analyse the results, providing new insights into the effectiveness 

of detecting paraphrased content at the paragraph-level. This contribution offers a 

deeper understanding of how LLMs are effective in paraphrase detection, making it a 

valuable advancement in the field. Chapter 8 investigates RQ8 and RQ9. 

1.8. Thesis Outline 

• Chapter 1: Introduction: This chapter outlines the research problem, discusses the 

motivations behind the study, defines its scope, and presents the research questions, 

research objectives, and contributions. 

• Chapter 2: Background: This chapter provides an overview of the main technical 

concepts relevant to the research. It introduces key methods in natural language 

processing, including conventional machine learning, deep learning, and large language 

models, to establish the theoretical foundations of the study. 

• Chapter 3: Literature Review: This chapter reviews related work with a focus on 

plagiarism detection (PD) and paraphrase identification (PI). It highlights the main 

approaches, discusses their strengths and limitations, and identifies the research gap 

that this thesis seeks to address. 
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• Chapter 4: Methodology: This chapter outlines the methodology used to address the 

research questions of the thesis, discussing various data sources and the selected 

detection algorithms. Following that, the performance evaluation metrics, ethical 

considerations and the research's conceptual framework are presented. 

• Chapter 5: A Paraphrase Identification Approach in Paragraph Length Texts: This 

chapter focuses on analysing the text length in terms of affecting the accuracy of ML 

and DL algorithms. The experimental study applied on short, mid, and long text as in 

sentences, paragraphs, and documents, respectively. In addition, it explains which 

features are more suited for each text length. The chapter includes sections on pre-

processing, feature extraction, classification approaches, as well as the results and their 

discussion. 

• Chapter 6: Dataset Creation and Evaluation: This chapter presents an in-depth analysis 

of the creation of the ALECS-SS dataset. It details three algorithms designed to reorder 

the sentences in paragraphs. Following this, the chapter explains the masked approach 

used to lexically modify the paragraphs before the dataset evaluation, which 

encompasses both human and automatic assessments. The chapter concludes with a 

thorough discussion that addresses the research questions 3,4, and 5 proposed in this 

thesis. 

• Chapter 7: Multi-Domain Evaluation of Auto-Paraphrase Generation at Paragraph-

Level: Insights for Education and Plagiarism Detection: This chapter explores the 

validity and adaptability of SALAC algorithms across many disciplines 

by evaluating their effectiveness in generating high-quality paraphrases in diverse 

domain contexts, which will be utilised in assessing the PI approaches in the next 

chapter.   The study examines the influence of domain-specific linguistic variants on 

paraphrase quality, coherence, and semantic preservation through the analysis of both 

human and automated evaluations. The findings highlight the strengths and limits of 

SALAC algorithms, emphasising their relevance in educational contexts while 

identifying areas for enhancement to boost their robustness across various domains. 

• Chapter 8: A Comparative Study on Identifying Human-Written vs. Machine-

Generated Paraphrases Using Pre-Trained Models and Paragraph-Length Texts: This 

chapter seeks to explore the efficacy of both autoencoder-based and autoregressive 

LLMs in differentiating human-written paragraphs from those that have been machine-

paraphrased. In contrast to Chapter 5, where detection algorithms operate by comparing 
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two texts—the source and the potentially paraphrased version—this chapter focuses on 

training LLMs to independently classify human-authored and machine-paraphrased 

text without relying on paired comparisons. This shift in methodology emphasises the 

models' ability to discern patterns and nuances intrinsic to the text itself, thereby 

addressing a more challenging and realistic scenario in PI tasks. 

• Chapter 9: Conclusion: Summarising the main contributions and findings in this thesis. 

Finally, the workflow of the thesis is illustrated in Figure 1.1. 

 

Figure 1.1 Thesis summary workflow 
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CHAPTER 2:  BACKGROUND 
 

2.1. Introduction 

This chapter presents a comprehensive background which is critical for gaining a thorough 

understanding of the subject matter discussed throughout this thesis. It outlines the main 

theoretical background and provides brief definitions of the concepts related to the NLP 

approaches: 2.2. Text Pre-processing, 2.3. Text Representation, 2.4. Machine Learning, 2.5. 

Deep Neural Network and 2.6. Transformer Learning Models. 

From the computer science point of view, NLP is a field of study and application that 

investigates how computers can interpret and modify natural language text in order to perform 

useful tasks (Chowdhury, 2005) . NLP approaches consist of learning and understanding words 

and recognizing the patterns in which they occur (Yin To et. al.., 2020). There is a wide range 

of NLP applications in a variety of sectors of study, such as sentiment analysis, question 

answering, plagiarism detection, semantic similarity, and paraphrased identification. These 

important applications could be trained as text classification tasks. 

Text classification aims to automatically classify documents or texts into predefined 

categories according to their content (Kowsari et al., 2019). Text classification can be divided 

into two main branches supervised and unsupervised approach. According to Gupta (2011), 

information about the right classification provided by an external mechanism is vital in a 

supervised approach, whereas an unsupervised approach does not need an external reference. 

Another significant point of text classification is the number of categories that are considered 

in the task. Let us suppose that we have a set of documents defined as:  

𝐷 = {𝑑!, 𝑑", … , 𝑑#} 

A set of categories is defined as: 

𝐶 = 	 {𝑐!, 𝑐", … , 𝑐$}	Where	𝑛 > 𝑚 
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If each document in D is mapped to only one label in C, this is called a single-label 

classification. Otherwise, it is referred to as multi-label classification (Vijayan et al, 2017). In 

this thesis, PI is implemented as a single label classification task where C = {0,1}  

2.2. Text Pre-processing 

Written text needs to be pre-processed before being used for classification purposes. This step 

generally aims to remove uninformed, or noise (misspelling, slang, etc.) content before 

converting the text into numerical data. Pre-processing steps include many techniques that 

should be selected depending on the data used and the nature of the problem. Firstly, it splits a 

string of text into distinct words, phrases, symbols, or other meaningful elements called tokens. 

Then, removing irrelevant punctuation and stop words, which are commonly used words like 

{'a', 'in', 'the', 'about'}. There isn't a single list of stop words that applies to every NLP task; in 

this thesis, the stop words list constructed by natural language toolkit (NLTK) in Python is 

used.  

Additionally, the process involves normalization, which is converting all letters to a lower 

case, then lemmatizing each word. As some words can appear in various forms (e.g., singular 

and plural noun forms) while conveying  the same semantic meaning, lemmatizing replaces 

each word to its meaningful root form depending on its context and part of speech (Korenius 

et al., 2004). In the pre-processing stage, each word stem to be represented by its base form; 

for instance, the base form of the word 'kindness' is 'kind'. The WordNet Lemmatizer that uses 

WordNet's built-in morphy function is implemented in this thesis, which returns the word 

unchanged if it does not exist in WordNet. 

2.3. Text Representation 

After cleaning the text, a crucial step called text representation is applied, which converts 

unstructured text into a structured feature. In this step, the text is represented by numerical 

vectors that enable the machine to understand and analyse the text and then extract useful 

information from it. In NLP, there are different approaches to vectorizing text, such as bag-of-

words (BOW) which is a traditional method, and word embedding (Mikolov et al., 2013) and 

transformer models (Patil et al., 2023) which are deep learning-based representations. In the 

next subsections, the text representation methods utilized in this thesis are explained. 
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2.3.1. Traditional Methods 

Bag of Words (BOW) 

 The BOW model represents a text using its individual words (1-grams), ignoring their order.	
It generates a vocabulary from a corpus of documents and tracks the frequency of each target 

word (Z. Liu et al., 2023).	This simple model is easy to create and represents text through 

vectors with a fixed dimension, corresponding to the length of the vocabulary featured across 

all target documents. It generates flat vectors resulting in the loss of the source text structure, 

including sequences and word order. Enhancing BOW with n-grams (commonly 2-grams and 

3-grams) adds depth to the representation, allowing the model to capture more contextual 

information and nuanced patterns within the text compared to using only single words. For the 

classification task, it considers documents to be similar if they exhibit a comparable distribution 

of specific words (Guozhu & Liu, 2018). Consequently, it does not account for the semantic or 

contextual aspects of the text. 

Term Frequency-Inverse Document Frequency (TF-IDF) 

The most common BOW technique is called TF-IDF, where TF refers to the number of times 

each text word appears in a document, and IDF refers to the number of times that word appears 

in the corpus. This results in the important terms being given more weight. In essence, words 

that are used more often are given less weight, while words that are used less often are given 

more weight. It helps to figure out how important each term is in a document. The main 

limitation of TF-IDF is that it fails to consider the similarity between words in a document 

because it treats each word as an independent index. Moreover, TF-IDF has a high sparse 

dimensionality. To reduce dimensionality, it is necessary to remove irrelevant features while 

keeping features that are important to achieve the target task (Forman,2003). This leads to the 

development of more complex models called word embedding. 

2.3.2. Deep Learning-based Representation 

Word embedding involves mapping each word to an N-dimensional real-valued vector (Bengio 

et al., 2000). Thus, words appearing closer in a vector space are expected to have similar 

meanings. In other words, words that are commonly found together in related contexts within 

a corpus tend to have vectors that are closer to each other. Several pre-trained models of word 
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embedding have been proposed to convert single words into interpretable inputs for ML 

algorithms such as Word2Vec (Mikolov et al., 2013), GloVe (Pennington, Socher and Manning, 

2014), FastText (Bojanowski et al., 2017) and the state-of-the-art transformer language models. 

These models, such as bidirectional encoder representations from transformers (BERT), 

applied a dynamic embedding technique where each word is represented based on the entire 

input sequence resulting in allowing the word's vector to vary depending on its context.  

In this thesis, word embedding and sentence embedding methods, namely Word2Vec and 

Sentence-BERT (SBERT) (Reimers & Gurevych, 2019) are applied to calculate sentence vector 

(Chapter 5), BERT or a sub-version of it (Chapters 4-6). 

Word2Vec 

Word2vec is the most popular word embedding method developed by (Mikolov et al., 2013). 

It is semantically distributed representation of words into fixed-length dense and continuous-

valued vectors based on a vast corpus of literature (Mikolov et al., 2013). This representation 

is generated by a three-layer neural network that considers the context of the word. The words 

and their surrounding contexts are mapped into a reduced-dimensional space, typically around 

300 dimensions, with each word being associated with a vector (Church, 2017). Semantic 

similarities are gauged by measuring cosine distances within a reduced-dimensional matrix 

generated by Word2vec. These distances produce values ranging from -1 to 1, with values 

closer to 1 indicating stronger semantic similarity. There are two methods for training 

word2vec, which are continuous bag-of-words (CBOW) and Skip-Gram (Hunt et al., 2019). 

Simply, the CBOW model aims to predict a word based on its preceding words, whereas Skip-

gram predicts words that are likely to appear near each word. In addition, the number of the 

neighbour's words that are considered during training can be controlled by adjusting a 

parameter called a sliding window (Suleiman et al., 2017). 

Bidirectional Encoder Representations from Transformers (BERT) 

 BERT embeddings represent an important advancement in NLP, especially in understanding 

the context and meaning of words in a sequence. In contrast to conventional word embedding 

methods like Word2Vec, which produce fixed representations for words, BERT generates 

contextualised embeddings. This means that the representation of a word changes depending 
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on its surrounding words, which allows for a deeper understanding of its meaning in different 

contexts. 

One of the defining features of BERT embeddings is their bidirectional contextualization. 

Unlike models that read text in a single direction, BERT processes sequences simultaneously 

from both left to right and right to left. This approach allows the model to capture the full 

context of each word, resulting in more accurate representations (Devlin et al., 2019). 

Furthermore, BERT employs a method called WordPiece tokenization. This technique breaks 

down words into smaller sub-word units, which helps the model effectively manage rare words 

and improves its ability to generalise across different word forms. This feature solved the out-

of-vocabulary limitations commonly encountered in conventional DL word embedding 

methods. 

Moreover, the foundational structure of BERT is founded on the transformer model which 

uses self-attention mechanisms to determine the relative importance of words in a given 

sequence. BERT improves its understanding of the text by giving more weight to important 

words and less weight to less important ones, resulting in enhanced contextual embeddings and 

contributing to BERT's overall effectiveness in NLP tasks (Devlin et al., 2019). 

The method of obtaining sentence embeddings from BERT starts with correctly formatting 

the input text. This involves inserting special tokens, namely the [CLS] token at the beginning 

and the [SEP] token at the end of the sequence. The [CLS] token serves as a collected 

representation of the entire input sequence, encapsulating the sentence's overall semantics. The 

extraction of sentence embeddings involves accessing the output associated with the [CLS] 

token. This token is represented as a dense vector that captures the full meaning of the input 

sequence by aggregating information from all the processed tokens. While the standard 

approach is to use the representation of the [CLS] token, alternative methods, such as 

calculating the mean or weighted sum of all token embeddings, can be utilised depending on 

specific task requirements (Devlin et al., 2019). 

Sentence-BERT (SBERT).  

SBERT is a modified version of the pre-trained BERT model that leverages Siamese and triplet 

network architectures to produce semantically meaningful sentence embeddings (Reimers & 

Gurevych, 2019). In a Siamese network, two identical neural networks are used to generate 
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embeddings for different inputs, enabling the comparison of their similarity in a shared space. 

A triplet network extends this approach by comparing a text, a similar (positive), and a 

dissimilar (negative) inputs. This technique optimises the embedding space to minimise the 

distance between similar pairs and maximise it between dissimilar ones, which helps the model 

learn to produce embeddings that reflect the semantic relationships between sentence 

pairs.  These embeddings are then compared using cosine similarity, which measures the angle 

between two vectors to determine their degree of similarity, regardless of their magnitude 

(Reimers & Gurevych, 2019). This method improves efficiency in sentence comparison tasks, 

making it suitable for applications like semantic search and PI. Subsequent research has 

explored both interpretability (Opitz & Frank, 2022) and efficiency improvements through 

layer pruning (Shelke et al., 2024), showing that SBERT continues to evolve while remaining 

widely used. 

Specifically, SBERT uses a pooling strategy to generate a fixed size embedding from the 

BERT model's output. While BERT produces contextualised embeddings for each token in a 

sequence, SBERT pools these embeddings into a single vector representing the entire sentence. 

Common pooling techniques include calculating the mean or maximum of the token 

embeddings, ensuring that the final embedding encapsulates the entire semantic information 

while preserving computational efficiency. 

2.4. Machine Learning 

ML is a major area within artificial intelligence (AI) that involves developing statistical models 

and algorithms that enable computers to analyse data, learn from it, and make decisions. Unlike 

traditional programming, which relies on explicit instructions to perform tasks, ML models 

extract patterns from data to generate insights and draw valid conclusions. Common methods 

employed in ML include decision trees, support vector machines (SVM), logistic regression 

(LR), k-nearest neighbours, and neural networks, with the choice of method depending on the 

specific requirements and characteristics of the task. In PI, the goal is to assign input data to a 

predefined category or label. Therefore, the success of a model heavily depends on the quality 

and quantity of data, as well as the selection of relevant features. In this thesis, SVM and LR 

are applied for the experiments discussed in Chapter 5. 

SVM	
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SVM is a supervised ML approach that is widely used for classification tasks. It operates as a 

non-probabilistic linear binary classifier, meaning that it aims to find the optimal boundary that 

best separates the data into two categories. The key idea is to identify a hyperplane that 

maximises the margin between the two classes, ensuring the best possible separation of data 

points (Vapnik, 2013).	 Figure 2.1provides a visual summary of SVM, illustrating support 

vectors, hyperplanes, and margins. 

 

Figure 2.1 SVM 

SVMs can handle non-linear classification problems using kernel functions, which 

transform the input data into higher-dimensional spaces. This transformation allows the SVM 

to find a linear hyperplane in the transformed space, even if the original data is not linearly 

separable. Common kernel functions include linear, polynomial, and radial basis functions, 

which are exponential in nature. By translating the data into a higher-dimensional vector space, 

SVMs can effectively distinguish between classes that are otherwise inseparable in the original 

lower-dimensional space (Saputro et al., 2019). 

LR 

Despite its name, LR is not a regression algorithm but a classification algorithm, frequently 

employed for binary classification tasks such as PI and PD. LR utilizes a logistic function to 

support ML processes that classify binary outcomes. This method is particularly effective in 

scenarios where the goal is to distinguish between two distinct categories or classes. By 

applying the logistic function, LR models can predict the probability of a particular outcome 

based on input variables. This approach is widely used to identify and analyse relationships or 
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comparisons between different variables, providing clear insights into how changes in one 

variable may impact the likelihood of a specific outcome (Hunt et al., 2019). 

Shallow Neural Network 

Neural networks consist of nodes (neurons) that work together, mimicking the interconnectivity 

of the human brain, representing a single-layer perceptron as in (Dagan et al., 1997) or a multi-

layer perceptron (MLP) as in (Ruiz & Padmini, 1997). The number of layers selected depends 

on the task where single-layer perceptron is used for its ease of implementation and multi-layer 

perceptron is more advanced (Korde, 2012). If the neural network has one hidden layer, it is 

called a shallow neural network, as in Figure 2.2. 

 

Figure 2.2 The basic structure of the neural network  

2.5. Deep Neural Network 

Unlike traditional ML methods that rely on manually crafted features, DL algorithms can 

automatically learn complex patterns from raw data inputs (Figure 2.3). This ability is 

particularly useful for handling unstructured data like images, audio, and text. Additionally, 

while ML models are generally easier to interpret and require fewer computational resources 

compared to DL models, DL excels in tasks where complex patterns and large datasets are 

involved. However, DL models typically demand significant computational power, often 

necessitating specialised hardware such as GPUs or TPUs due to their complex architectures 

and intensive training needs. Both ML and DL are rapidly advancing fields, driving innovations 
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across various sectors and enabling more sophisticated applications in AI, particularly in tasks 

involving classification like PD and PI. 

 

Figure 2.3 An overview of the difference between extracting features in traditional ML and DL. The 
Figure adapted from Turing.com1.  

The most fundamental architecture of deep neural networks that consist of more than one 

hidden layer are the recurrent neural network (RRN) (Servan-Schreiber et al., 1988) and 

convolutional neural network (CNN) (Lecun et al., 1998). Although CNNs were originally built 

for image processing, they have also been effectively used for text classification (Yin & 

Schütze, 2015). RNNs are powerful sequence models, and they represent one of the most 

widely used neural network architectures for language	processing (Yin To et.al, 2020). Long-

Short-Term Memory (LSTM) (Hochreiter & Jürgen, 1997) and gated recurrent units (GRUs) 

(Chung et al., 2014) are developed to leverage the shortness of RNN, which is losing long-term 

dependencies (Plesiak et al., 2020). The ability of DL algorithms to model complicated and 

non-linear relationships in data is critical to their effectiveness (LeCun et al., 2015) Generally, 

each neural network design has unique benefits and is chosen according to the particular needs 

of the required task. 

 

1 Turing.com. (n.d.). Ultimate battle between deep learning and machine learning. Retrieved April 7, 2025, 
from https://www.turing.com/kb/ultimate-battle-between-deep-learning-and-machine-learning 

https://www.turing.com/kb/ultimate-battle-between-deep-learning-and-machine-learning
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2.6. Transformer Learning Models 

In contrast to RNNs and CNNs, transformer models have revolutionised NLP by introducing a 

groundbreaking modelling paradigm that eliminates the need for recurrence and relies 

exclusively on a specialised form of attention known as self-attention with an encoder-decode 

architecture (Figure 2.4). Vaswani et al. (2017) emphasise the significance of the attention 

mechanism in their paper, stating that self-attention is a mechanism that connects various 

positions within a sequence to generate a representation of the sequence (Vaswani et al., 2017). 

While recurrent models process data sequentially, the transformer uses self-attention 

mechanisms (orange blocks in Figure 2.4) to assess and weigh the importance of each word in 

a sequence relative to all other words simultaneously. This allows the model to capture long-

range dependencies and relationships within the data more efficiently. By avoiding recurrence, 

transformers can parallelise computations across the entire input sequence, significantly 

enhancing processing speed and scalability, particularly for tasks involving large datasets and 

long sequences. Thus, as this thesis study focuses on paragraph-level paraphrase identification 

with a large dataset, transformer models were implemented, and the results were analysed in 

Chapters 5 and 6. 

In terms of the encoder, it is responsible for processing input sequences by extracting 

features and capturing the relationships across the sequence to create a comprehensive 

representation of the input data (Cho et al., 2014). On the other hand, the decoder uses similar 

mechanisms to generate output sequences based on the encoded representations received from 

the encoder (Cho et al., 2014). From Figure 2.4, it is important to recognise that the decoder is 

employed for generating word predictions, whereas the encoder is utilised for acquiring textual 

representations or embeddings.	 

Additionally, transformer models aggregate knowledge from pre-trained data networks. 

This innovative approach to transfer learning eliminates the need to train the model from 

scratch with vast amounts of data (Arase & Tsujii, 2021). This approach leads to splitting the 

model into a body and a head. The body is responsible for learning general features from the 

input data, and these learned patterns are not specific to any task but can be applied across 

various tasks. The head, on the other hand, is a task-specific network that uses the features 

extracted by the body to perform particular tasks, such as classification. Therefore, the head is 

customised to meet the specific requirements of the task at hand; for example, in a classification 
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task, the head might be a fully connected layer that outputs class probabilities. As a result, the 

model can identify patterns using a smaller amount of data and previously acquired knowledge 

(Z. Yang et al., 2019). The transformer models used in this thesis (Chapter 6 and Chapter 7) are 

explained in the following sections. 

 

Figure 2.4 Self-attention with an encoder-decode architecture sourced from (Vaswani et al., 2017) 

2.6.1. Auto-encoder LLMs 

LLMs such as BERT, robustly optimised BERT pretraining approach (RoBERTa), and long-

document transformer (Longformer) consist of encoder-only transformer infrastructure trained 

using a bidirectional approach that considers both the left and right contexts of each token 

simultaneously. This is achieved through the masked language modelling (MLM) objective. 

MLM is a crucial technique used in training auto-encoder language models. In MLM, a 

portion of the input tokens in a sentence is randomly masked after tokenizing the input text. 

These selected tokens are replaced with a special [MASK] token, a random token, or left 

unchanged, according to a predefined probability distribution (usually 80%, 10%, and 10%, 

respectively). Subsequently, the model analyses this modified input and attempts to predict the 

original tokens. This process allows the model to learn contextual representations of words by 

considering tokens on both sides of the masked token to make predictions. By predicting the 
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masked tokens based on the surrounding context and through iterative training on large text 

corpora, the model learns to develop deep contextual embeddings. Thus, the model reconstructs 

the corrupted input with accurate and contextually relevant representations, capturing both 

syntactic and semantic variations in language. 

Bidirectional Encoder Representations from Transformers (BERT) 

BERT was introduced in 2018 by researchers from Google AI. It is a pre-trained transformer 

language model. It is a context-based model that reads the entire input sequence while 

considering both the left and right contexts (Devlin et al., 2019). Thus, the generated vectors 

capture contextual information from both directions. Additionally, BERT utilises WordPiece 

embeddings consisting of 30,000 tokens to tokenise input sequences. Each sequence starts and 

ends with special tokens ([CLS]) and ([SEP]), respectively. During the training stage, BERT 

employed a next-sentence prediction task where the model is given pairs of sentences and 

learns to determine whether the second sentence contextually follows the first in the training 

dataset. Moreover, BERT utilised MLM in a static manner (Figure 2.5),	the positions of the 

tokens to be masked were determined during the preprocessing stage and remained fixed for 

the duration of training. The model aims to predict these masked tokens by considering the 

surrounding context (Devlin et al., 2019). 

BERT architecture is available in two versions: BERT-base and BERT-large, each tailored 

for different scales of tasks and data. The BERT-base configuration includes 12 layers, each 

layer having 768 hidden states, distributed across 12 attention heads, and totalling 110 million 

parameters. In contrast, BERT-large is designed with 24 layers, each layer containing 1024 

hidden states, spread across 16 attention heads, and comprising a total of 340 million 

parameters. These variations in architecture enable BERT to accommodate a range of 

complexities and requirements in NLP tasks, from standard applications to those demanding 

larger-scale processing and understanding. 

A Robustly Optimised BERT Pretraining Approach (RoBERTa) 

It is built on BERT's structure as an enhanced version realised by Facebook. RoBERTa includes 

several adjustments to the pretraining process, resulting in improved performance on 

downstream tasks compared to BERT. This involves increasing the size of the training dataset, 

increasing the batch size, and removing the next sentence prediction task (Y. Liu et al., 2019). 
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Additionally, RoBERTa uses a dynamic masking process (Figure 2.5), which differs from 

BERT's static masking strategy. In this dynamic method, a different mask is applied each time 

a sequence is fed into the model during training. This change helps the model gain a more 

comprehensive understanding of the text. 

  

Figure 2.5 Static and Dynamic masking approaches 

The Long-Document Transformer (Longformer) 

It	 is developed with a novel approach to process long documents and text sequences, 

overcoming the drawbacks of traditional transformer models like BERT and RoBERTa. These 

models struggle with processing long sequences due to their full self-attention mechanism. 

Longformer addresses this limitation by introducing several significant changes that enable the 

model to handle long-range dependencies efficiently. Specifically, Longformer replaces the 

dense, full self-attention mechanism used in standard transformers with a sparse attention 

mechanism. This modification allows Longformer to attend to a fixed number of tokens 

regardless of input length resulting in significantly reducing computational and memory 

requirements.  

Moreover, Longformer integrates global attention with sliding window attention to balance 

the capture of both local and global dependencies. Global attention allows specific tokens to 

attend to others across the entire sequence while sliding window attention enables each token 

to focus on its immediate context within a local window (Beltagy et al., 2020). This approach 

enforces sparsity in the attention matrix by applying masks: local tokens are restricted to 

attending only to nearby tokens within their window, while global tokens maintain access to 
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all tokens and are equally accessible to them. These features make Longformer an ideal choice 

for our research, particularly in evaluating its efficiency for paraphrase generation and the 

identification of long texts, such as paragraphs. 

2.6.2. Autoregressive Language Modelling 

An autoregressive language model is a type of statistical model used in NLP that predicts the 

probability of a sequence of words or tokens based on the previous tokens in the sequence.	The 

fundamental principle behind autoregressive models lies in their sequential prediction 

capability. Each token's prediction depends on the model's internal state, which encapsulates 

information from previous tokens. This iterative process continues until the entire sequence is 

generated or a predefined stopping criterion is met. There are two manners of token prediction: 

forward or backward product (Figure 2.6). In Forward product, given a text 

sequence X=(X1,⋯,XT), the probability of the entire sequence X is the product of the 

probabilities of each word Xt given all the previous words (Equation 2.1).  

𝜌(𝑋) = ∏ 𝜌(𝑋!|𝑋"!#
!$% )                                          (2.1) 

Alternatively, the backward manner predicts each word based on all subsequent words in 

the sequence, starting from the last word Xt, Equation 2.2. 

𝜌(𝑋) = ∏ 𝜌(𝑋!|𝑋&!)%
#                                              (2.2) 

 

Figure 2.6 Token prediction in autoregressive models 

 Modern advancements such as transformer-based models like GPT have significantly 

enhanced the effectiveness of autoregressive language modelling by employing self-attention 
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mechanisms to capture long-range dependencies more efficiently. Autoregressive language 

models play a pivotal role in advancing various NLP applications, offering robust solutions for 

generating coherent text and understanding the intricate structures of natural language 

sequences. 

Generative Pre-training Transformer Models (GPTs)  

GPTs specialise in predicting the subsequent token within a sequence. Their self-attention 

mechanism employs forward autoregressive causal self-attention, allowing the model to focus 

solely on tokens preceding the current one and preventing future tokens from influencing the 

prediction. This feature makes GPTs particularly suitable for tasks involving generation. In the 

next paragraphs, a brief background on the latest developed GPTs, including ChatGPT is 

reported. 

ChatGPT 

ChatGPT revolutionised conversational AI when it was introduced in November 2022. This 

advanced language model, based on OpenAI's GPT-3 architecture, demonstrated remarkable 

proficiency in understanding and generating text, quickly attracting a vast user base within 

weeks of its launch. With its ability to understand context, generate human-like responses, and 

adapt to diverse conversational styles, ChatGPT set a new standard for chatbots and virtual 

assistants. Additionally, researchers are exploring its capabilities in NLP tasks (see section 

Chapter 3).  

For more details, GPT-3 is huge, trained with 175 billion parameters using a vast dataset 

comprising 45 Terabytes of text (Brown et al., 2020). Developers noticed that increasing the 

model parameters improves its ability to understand natural language. Moreover, GPT-3 

learned from multiple sources, such as web pages, scaling in three dimensions: model size, 

pretraining data, and pretraining computation. This enables it to perform well on unseen tasks 

without requiring specific training. 

GPT-3.5 

 Building upon the success of GPT-3, OpenAI later produced GPT-3.5, an improved iteration 

that addressed certain limitations of its predecessor in terms of following user instructions and 

avoiding generating harmful text. Additionally, GPT-3.5 offered enhanced performance and 
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fine-tuned capabilities, further solidifying OpenAI's position at the forefront of NLP research. 

Furthermore, GPT-3.5 was trained on both code and text.  

GPT-4 

OpenAI continued to push the boundaries of AI with the release of GPT-4 in March 2023. This 

advanced iteration of the GPT series represented a significant leap forward in artificial 

intelligence capabilities. Unlike its predecessors, GPT-4 integrated not only text but also image 

inputs, significantly expanding its utility across diverse domains. This integration allowed 

GPT-4 to process and generate responses based not just on textual data but also on visual 

information, enhancing its ability to understand and interact with multimodal inputs in various 

applications. 

2.7. Summary 

This chapter outlined the theoretical background of this research, beginning with the role of 

NLP and its applications in tasks such as classification, plagiarism detection, and paraphrase 

identification. It then reviewed text pre-processing and representation methods, moving from 

traditional approaches like Bag-of-Words and TF-IDF to more advanced embeddings such as 

Word2Vec and SBERT. Machine learning techniques, including SVM and logistic regression, 

as well as shallow and deep neural networks, were discussed. Finally, the chapter examined 

transformer-based models, including BERT, RoBERTa, Longformer, and GPT, which represent 

the current state of the art. Together, these foundations provide the methodological basis for 

the previous work discusees in the following chapter and the novel proposed methods in the 

rest of this thesis. 
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CHAPTER 3:  LITERATURE REVIEW 
 

3.1. Introduction 

The ongoing wave of technology innovations and easy access to vast amounts of information, 

content, and paraphrasing tools have affected education and academic integrity. In other words, 

it leads to increased plagiarism, which has a direct negative impact on education, journalism, 

publishing, and other fields. Consequently, the research to cope with the challenge and detect 

verbatim and obfuscation plagiarism is growing under the PD and PI fields.  

This chapter is broken up into sections and covers the studies and datasets that are currently 

available in the two domains of PD and PI. The classification methods for PD and PI are 

reviewed in Section 3.2, with a focus on existing studies addressing both intrinsic and extrinsic 

plagiarism. It mainly explores the approaches and models used specifically for identifying 

paraphrases at both the sentence and paragraph levels. These methods are categorised into 

traditional ML techniques and DL approaches, including neural networks and transformer-

based LLMs. Additionally, the datasets are evaluated based on whether they are constructed of 

sentence-level or paragraph-level paraphrasis considering the text length and other factors, 

Section 3.3. It is worth noting that most recent efforts focus on auto-generated and paraphrasing 

at the sentence-level while less work investigates the paragraph-level paraphrases and 

paragraph length as demonstrated by the existing work review provided towards the conclusion 

of this Chapter. 

3.2. Classification methods for PD and PI 

3.2.1. Plagiarism Detection (PD) approaches 

Plagiarism could be defined as using someone else's written work without citing the original 

author or claiming that the ideas are your own (Maurer et al., 2006). Plagiarism may further 

involve the use of considerable chunks from the source without citing the source (Bär et al., 

2012). Plagiarism also includes sentence modification where the author uses the original 

language pattern without giving credit to the source (Ventayen, 2023). Thus, the detection of 
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plagiarism presents a challenge, requiring advanced methodologies and technologies to 

identify instances of textual duplication accurately. 

According to  Ehsan et al. (2019), PD methods are divided into two main categories which 

are intrinsic plagiarism detection and extrinsic plagiarism detection methods. The intrinsic 

method is implemented to detect parts of the text that are inconsistent, while the extrinsic 

method can match suspicious passages in a text to the source(s) detecting exact verbatim 

copying and paraphrased text (Jirapond Muangprathub et al., 2021). In the following sections, 

the published research under each of the plagiarism types that employed NLP techniques is 

reviewed.  

3.2.1.1. Intrinsic Plagiarism Detection Methods 

 Each author has a unique style of writing texts. From this fact, analysing the writing style of 

an author is used as a technique to detect potential plagiarism within a document. It mainly 

doesn’t require the availability of a document repository; however, sometimes the document 

can be checked for stylistic changes by comparing it to prior work by the same author. The 

features are extracted by checking the author's unique writing style and fingerprinting. Mostly, 

researchers implement the stylometry concept and/or semantic feature to the text segments. 

Stylometry is the statistical examination of literary style differences between authors (Saini et 

al., 2021) , which includes, for example sentence length, word frequencies, and sentence 

structure. While the semantic feature considers information that represents the vocabulary 

richness and the semantic context of the document (Cheng et al., 2011). This quantitative 

characteristic can be used to identify similarities and variations indicating plagiarism with 

different techniques such as n-grams, Vector VSM, stylometric features, and MLP networks 

(Manzoor et al., 2023). Then, compare the stylistic signature of each document fragment to 

each other throughout the document or to the estimated signature of the original author using 

metrics like cosine similarity, ML or DL models (Bensal, 2013) (Manzoor et al., 2023). 

In terms of n-gram overlap approaches, the gram could be represented by sequential 

patterns of characters or words. (Bensalem et al., 2014) divided each document into fragments 

using the sliding window technique. Then, every n-gram’s frequency is determined by taking 

into account how often it appears in every fragment to build an n-gram class document model. 

This method is a supervised classification-based approach that is examined on three datasets to 
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identify if the fragments are original or plagiarised by applying ML algorithms. Other work 

focused on leveraging the semantic connections among words to reveal hidden patterns by 

considering the term frequency, seeking to identify notable variations in the writing style of a 

document (Oberreuter & Velásquez, 2013). Moreover, (Polydouri et al., 2020) extracted 11 

features, a collection of statistic and stylometric features, after splitting each document into 

segments. Then they applied ML classifiers utilising the Scikit-Learn python library, 

concluding that the random forest classifier brings the highest F1-score when applied to a 

balanced dataset compared to other classifiers. A balanced dataset refers to a dataset where 

each class or category of data is represented in approximately equal percentages. Furthermore, 

(AlSallal et al., 2019) integrated deep latent semantic and stylometric analyses features to 

identify the author even though the lack of the reference collection. They examined their 

method on a corpus of English novels with an MLP approach resulted in a high accuracy, 

namely: 97%. 

3.2.1.2. Extrinsic Plagiarism Detection Methods 

Extrinsic PD methods rely on comparing a suspicious document to a set of documents selected 

from a large reference collection. This process involves retrieving all related documents of 

digital resources including web articles and datasets. These retrieved documents are referred to 

as candidate retrieval or resource retrieval which serves as the basis for comparison in the 

detection process. This phase requires to be accurate in a way that minimises computational 

overhead without missing a related document. Next, in order to determine which portions of 

the source documents are comparable to which portions of the suspicious document, the 

comprehensive data analysis phase conducts thorough pairwise document comparisons (Chang 

et al., 2021). Notably, the second phase (data analysis) cannot identify source documents 

missed in the first phase (candidate retrieval) (Hagen et al., 2015) which is considered as a 

limitation of extrinsic PD methods. 

A lot of work has been done to enhance one or both of the extrinsic plagiarism phases: 

candidate retrieval and data analysis. In the case of improving the candidate retrieval stage, 

(Ehsan & Shakery, 2016) implemented a topic-based segmentation algorithm approach that 

considers the keywords to segment the texts into fragments. Then another model was applied 

to retrieve documents with the most similarity segments to the suspicious passages. This 

approach of considering the term or keywords resulted in missing some of the related 
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documents when the author uses synonymous words. To address the limitations of previously 

mentioned approaches, (Roostaee, Sadreddini, et al., 2020) proposed a fusion model that 

combines concepts and keywords in the candidate retrieval phase. With more focus on dropping 

the candidate retrieved documents size, they had expanded their research by designing a 

knowledge-base word-embedding and local weighting technique that took into consideration 

the synonyms, plural and singular forms, or other tenses of a word. (Roostaee, Fakhrahmad, et 

al., 2020).  

In the context of data analysis, the researchers clarified what type of re-used text they 

intended to detect which is mostly verbatim plagiarism or paraphrased text. In this section, a 

brief overview of existing work in detecting literal plagiarism is offered, while the next section 

covers the research that has been done on obfuscated plagiarism as it recently received more 

focus from researchers. The objective is to review the techniques proposed in the fields of PD 

and PI within a single section, to highlight the research gaps that this thesis aims to address. 

The research of detecting verbatim plagiarism mainly focuses on extracting the degree of 

overlap between the suspicious and candidate documents (Sánchez-Vega et al., 2013). The 

early research compared each sentence in the suspicious document to all the sentences in the 

resource documents (Karen & Park, 2002). This led to missing the cases where a student copies 

a part of a sentence. To overcome this limitation, researchers break down the sentences into 

fragments or words (Lancaster & Culwin, 2004) looking for partial overlap between suspicious 

and resource documents. The most efficient method in this scenario was the use of n-gram 

matching that breaks a text into all of its unique words and counts the number of times each 

word appears  (Krisztián et al., 2002). Then distance metrics are used to determine how similar 

texts are to one another such as Euclidean and Cosine distance.	To improve the result, (White 

& Joy, 2004) implemented a pre-processing step by stemming words and removing stopwords 

and/or common words.  

The most recent works applied TF-IDF and WordNet which detect minor changes and 

modifications additionally to the exact copy thus we discussed them under the PI approaches 

section. According to Barron-Cedeno & Vila (2013) and Vila et al. (2014), the modification 

includes change of word order, addition or deletion and change of modality counts as a type of 

paraphrasing. 
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3.2.2. Paraphrase Identification (PI) Approaches 

PI as a main part of extrinsic PD measures the lexical, syntactical, and semantic features of 

natural language concentrated on one or more granularity levels. Word-level where words are 

compared to determine whether two words are synonyms (Border, 1997), sentence-level using 

the sentence as the unit of comparison (Yin & Schütze, 2015), and hybrid of word-level and 

sentence-level (Agarwal, 2018). These studies are mainly examined on MSRP, Quora Question 

Pairs (QQP) and PAN datasets. Less research was conducted on the paragraph-level where 

terms and concepts were used for measuring semantic meaning and intra-sentence relations 

due to the absence of an appropriate dataset. This literature review is focused on traditional and 

trend techniques that are used to recognise paraphrasing showing that there is a critical gap in 

the existing literature of paragraph-length and paragraph-level paraphrases identification 

studies.  

Various types of PI methods can be categorised according to the underlying techniques and 

methods used. Traditional ML techniques such as logistic regression, decision trees, and SVM 

use labelled paraphrase data to train models with manually constructed features or 

representations. In addition, the use of neural network designs for PI is becoming popular 

which includes models such as Siamese networks, RNNs, LSTM, and CNNs. Moreover, 

transfer learning techniques are emerging as the forefront approach in NLP, where they use 

massive datasets to fine-tune transform language models that have already been trained to 

capture the language words and phrases contextualised representations such as BERT, 

RoBERTa, Longformer, ChatGPT, and GPTs. Accordingly, this section is divided into three 

subsections which are ML methods, neural network methods, and transfer learning methods. 

It's worth mentioning that some works might belong to multiple categories concurrently. 

Nevertheless, they are mentioned under the most appropriate section to avoid needless 

repetition. 

3.2.2.1. Machine Learning (ML) 

A more straightforward, comprehensible, and computationally efficient solution is provided by 

traditional ML techniques, which are frequently used for PI. In some of these works, features 

are extracted by considering lexical features by utilizing the BOW techniques like n-gram 

overlap features (Ferreira et al., 2018), metrics like Bleu (Ji & Eisenstein, 2013; Wan et al., 
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2006), syntactic features, and semantic features from external knowledge such as the lexical 

database. It organises words into sets of synonyms and provides semantic relationships between 

them like WordNet (Nguyen et al., 2019). 

Lexical and Syntactic Approaches 

(Cordeiro et al., 2007; João et al., 2007) implemented experiments that extract lexical features 

from text, by applying a variety of metrics such as Bleu, Sim, word simple n-gram overlap, and 

edit distance which calculates how many characters or word insertions, deletions, and 

replacements are required to change one string into the other.  They evaluated the experiments 

on the MSRP and the Knight and Marcu Corpus (KMC), where the paraphrased sentence is a 

shortened or summarised version of the original one. The Sim metric presented the highest 

accuracy (ACC) after removing the equal and quasi-equal samples from the dataset (Cordeiro 

et al., 2007). For more investigations on the metrics’ efficiency, they defined two types of 

paraphrasing, which are symmetrical paraphrasing (SP) and asymmetrical paraphrasing (AS). 

Symmetrical sentence pairs contain the same information, while in asymmetrical paraphrasing, 

at least one sentence has more information (João et al., 2007). The result showed that the Sim 

metric is efficient for AS, while the Logisim metrics, based on the theory of exclusive lexical 

links between pairs of short text, is better for SP. Rather than implementing a specific threshold 

value to do binary classification, these metrics also were fed as text features extracted from the 

Webis-CPC-11 dataset, which has longer text samples, to a classifier such as SVM and k-

nearest neighbours (Burrows et al., 2013). Regardless of the accuracy of these models, the Sim 

metric is suitable only for short texts, because of its demands on computing time. 

As the mentioned BOW  method addresses each word independently leads to a shortcoming 

in recognizing the word order, synonyms, and sentence structure which are vital textual features 

in PI (X. Wang et al., 2018). Thus, researchers include syntactic features that consider structural 

similarity such as parsing and dependency features.  

(Ferreira et al., 2018) conducted a study that combined the lexical and syntactical features. 

In detail, they measured the lexical features from a BOW, and syntactic features from the 

resource description framework based on dependence tree. It mainly tackled two specific 

issues: sequences with the same meaning, but different terms, and the word-order problem. 

Additionally, they evaluated different ML algorithms, namely RBFNetwork, BayesNet, C4.5, 

and SMO on short text and the results concluded that RBFNetwork and BayesNet algorithms 
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outperform others, with accuracies of 75.13% and 74.08%, respectively, ACC measures the 

method’s performance discussed in more detail in Chapter 4. Despite the fact that it did not 

improve overall outcomes, it significantly recognised the meaning of sentences that shared the 

same words but in a different order. 

(Wan et al., 2006) designed an approach that considered 17 syntactic dependency features, 

to examine their effects on the accuracy of different ML algorithms, namely naive bayes 

learner, decision tree, SVM, and K-nearest neighbour, to indicate dissimilarity between a pair 

of sentences. They claimed that dependency and N-gram features enhanced the classifier to 

recognise falsely paraphrased cases. In addition, avoiding lemmatisation in the pre-processing 

step was shown to keep the signs of differences in meaning and focus between sentences. 

However, more of the correctly paraphrased cases were identified as negative, decreasing the 

overall accuracy of the approach. They evaluated their experiment on a partial MSRP because 

some cases led to stopping the parsing script. To leverage the limitations of this study, (Ji & 

Eisenstein, 2013) considered the same features of (Wan et al., 2006) and implemented them on 

the whole MSRP corpus. Additionally, they developed a metric that computed the 

discriminability of features between sentences, called term frequency kullback leibler 

divergence (TF-KLD). It counts the probabilities that appeared on paraphrased and non-

paraphrased sentences, to re-weight features before factorisation, to obtain latent 

representations of the text. It outperformed TF-IDF by 4% in ACC and 1% in F1-score on 

MSRP, both of each are measure the method’s performance discussed in more detail in Chapter 

4. Moreover, they combined other features, such as unigram and bigram, overlapping fine-

grained features with TF-KLD, which raised the ACC from 72.75 to 80.41. TF-KLD improved 

discriminatively distributional features while reducing others. However, the main drawback of 

TF-KLD models is their inability to assign weights to words that are unseen in the training 

corpus. 

(Ji & Eisenstein, 2013) and (Wan et al., 2006) noted the need for more investigating on 

another dataset to consider long text such as paragraphs, however these studies examined only 

on the MSRP corpus, where the maximum length of a sentence is 36 words (B. Dolan et al., 

2004). In addition, using dependency trees to solve problems restricted an approach to single 

sentences (Nguyen et al., 2019).  
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Knowledge-Based and Graph Approaches 

Some researchers preferred using ontology-based methods for detecting conceptual 

relationships and recognising unseen words. These type of methods considers the semantic 

relationship between different units of texts by utilizing dictionaries in a form of graph-based 

models (T. Zhang et al., 2019). HowNet and WordNet are the two commonly used dictionaries 

for ontological relationship which provide textual analysis and similarity comparison between 

different fine-grained texts (Eisa et al., 2015). 

(Ul-Qayyum & Wasif, 2017) suggested an approach called ParaDetect to demonstrate the 

improved impact of taking WordNet into account. They implemented SVM with semantic 

heuristic features provided by WordNet to identify paraphrasing. Two techniques are examined, 

namely monotonic alignment as longest common subsequence and non-monotonic alignment 

based on part-of-speech (POS) and BOW. The results show that non-monotonic alignment 

features that supported by WordNet were better than monotonic alignment. However, the result 

is affected negatively by the high lexical similarity of training samples that leads to classifying 

true paraphrases as non-paraphrased cases. Additionally, it examined on MSRP which consists 

of sentence length and sentence-level paraphrases as discussed in section 3.3 below.  

Furthermore, the ontology-based methods involved in the fuzzy-semantic method which is 

a detection approach focused on sentences restructuring within given texts. Many studies 

implemented fuzzy-sematic techniques for the calculation of sentence similarity index 

(Alzahrani & Salim, 2010), (D. Gupta et al., 2014) and (Ezzikouri et al., 2017). The sentences 

matching with original text were given score “1” and ones different from the source were 

assigned “0”, while the values in the range of “0” and “1” indicate partial presence in the set 

(Alzahrani & Salim, 2010). In detail, words that occur within the synsets, sets of synonymous 

words, of each other in the WordNet are assigned a fuzzy value of 0.50. The overall fuzzy 

similarity between similar sentences is then calculated using word-to-word similarity values. 

Moreover, (Mohebbi & Talebpour, 2016) built graphs from the WordNet database with POS 

tags and used maximum matching parameter for the calculation of the similarity index. They 

reported the ACC of the proposed method to be 76.88%. In the same context, semantic role 

labelling (SRL) was proposed by (Osman et al., 2012) where WordNet and POS were applied 

for calculating the word similarity scores. The SLR method was useful for phrases and words, 

but they failed to determine the similarity index for relatively large sentences (T. Zhang et al., 
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2019). To cope with this issue, structure-based methods were developed by (Vani K & Deepa 

Gupta, 2017), which compare the text in a paragraph-by-paragraph manner. Although these 

techniques are helpful for identifying paraphrases based on grammatical structures, they did 

not take brief sentence structures and word-by-word analysis into account (Alzahrani et al., 

2011). In addition, it evaluated on sentence-level paraphrases corpora namely: plagiarised short 

answers (PSA) and PAN corpus respectively, discussed in section 3.3 below. 

From another perspective, the application of graphs for the representation of such 

relationships was described to be useful for comparing textual features involving grammatical 

structures, sentence order, and word arrangements within sentences (Chae et al., 2013), and 

converting unstructured text into structural data (Momtaz et al., 2016). (T. Zhang et al., 2019) 

proposed graph-based method considered the term frequency and author keywords to construct 

graph nodes capturing the hierarchical document structure. The maximum common subgraph 

was used for measuring the similarity of two graphs. This similarity was used to identify the 

documents with similar themes but using different topic words. Indeed, the corpora used in this 

experiment were created manually, with certain limitations due to manual data handling and 

the exclusive focus on the Chinese language. Moreover, (Momtaz et al., 2016) developed a 

graph-based approach for similarity detection in Persian texts. They created a graph from the 

unique words in the sentences where each word was represented into a node with edges linked 

it to 4 words before and after it. After constructing the graphs, they applied an iterative method 

to identify nodes (words) with similar characteristics. Graphs with comparable numbers of 

nodes were marked as similar, and the PlagDet score—a comprehensive metric that combines 

precision, recall, and granularity to evaluate plagiarism detection performance—was then 

applied to determine the similarity level based on the number of similar graphs found in the 

texts. They evaluated their PD model on two Persian alignment datasets. They showed that 

their graph-based model could detect plagiarism with 90% Plagdet score on PAN2015 and 87% 

on PAN2016. However, it has a notable limitation which is the investigated documents should 

be used with specific lengths resulted in restricting its applicability to texts of varying lengths. 

In other words, it cannot be implemented to documents with various lengths. Additionally, the 

developed approach was tested only on Persian documents, thus there is a need for testing 

across different languages as well considering paragraph-level paraphrases. Furthermore, 

(Momtaz et al., 2016) used solely graphs without consideration of the application of neural 

networks for the detection of text-based plagiarism. The proposed graph-based approach could 

be enhanced by combining it with the convolutional neural network, which could offer a better 
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accuracy level in terms of detection of similarity scores in words, phrases and sentences within 

different types of texts, as shown by some other research cited in the next section. 

Word Embedding and Semantic Representation 

From different viewpoints, some researchers take the advantage of word embedding pre-trained 

models into consideration. These models convert each word into a vector to understand its 

meaning and identify paraphrases that convey similar meanings but may have different 

wordings or structures. From this perspective, (Vrublevskyi & Marchenko, 2020) concatenated 

the word embedding features with dependency tree features to show that this combination can 

be useful for identifying paraphrases. In the same context, (Nguyen et al., 2019) developed an 

algorithm based on external knowledge and word embedding. They have applied the 

continuous bag of words CBOW and Skip-Gram models to extract interdependent features 

based on pre-trained word embedding, namely word2vec. CBOW predicts a target word based 

on its context, and Skip-Gram does the opposite, predicting context words according to the 

target word. As a part of the methodology, more features were also included that help to 

measure semantic relatedness based on external knowledge resources such as WordNet. 

Features extracted from short sentences with and without pre-processing step. Then, SVM is 

involved for the classification task. It examined on MSRP, SemEval and P4PIN datasets 

achieving high ACC 84.17, 83,73, and 95,22, respectively, showing that word embedding 

offered a new approach to the PI task, obtaining excellent results by addressing the traditional 

approaches' semantic similarity problem (C. Zhou et al., 2022). 

Furthermore, (Kenter & de Rijke, 2015) focused on word2vec and Glove semantic sentence 

representation. Specifically, they extracted the sentence features by word alignment and word 

embedding beside the saliency weighted semantic graph. They mainly measured the semantic 

similarity at the sentence level ignoring the importance of the word order in the PI task. 

Although applying word alignment to extract syntactic and semantic relations between words 

of the sentence and feeding them into the SVM model as features yielded significant results, 

(Kenter & de Rijke, 2015) indicated that their approach exhibited limitations when applied to 

text exceeding sentence length. Moreover, findings highlighted that concatenating of pre-

trained word embedding models obtain better scoring than WordNet-based approaches. 

As implementing word embedding shows enhancement of PI methods results, (Vrbanec & 

Meštrović, 2020 ; Vrbanec & Meštrović, 2021) conducted two studies on different models of 
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sentence semantic representation such as word2vec, Glove, USE and Fast-Text Their 

experiments were done on three datasets namely MSRP, Webic-CPC-11 and C&S. Because of 

the pairs of sentences that are semantically unrelated and very similar lexically, no specific 

model outperforms others on all datasets, however USE provides high ACC and F1-score on 

Webic-CPC-11 and C&S. These studies didn’t take into consideration the paragraph-length or 

paragraph-level paraphrases. 

3.2.2.2. Neural Networks 

DL has several advantages over conventional ML techniques in the areas of PD and PI. DL is 

superior to traditional methods at identifying intricate patterns and representations in large 

datasets.  This feature makes it possible for DL models to identify minute details in written 

content, leading to enhanced accuracy in detecting instances of plagiarism and paraphrasing. 

Furthermore, in comparison to conventional ML algorithms, DL architectures like RNNs and 

transformers may efficiently exploit contextual information and semantic linkages across 

phrases and texts, enabling more sophisticated analysis. 

In the PI field, researchers employ DL models to detect semantic similarity mainly in short 

text highlighting the efficiency of DL models over ML on PI tasks. (Hunt et al., 2019) compared 

the accuracy of two ML models with three different deep neural network models. Their results 

illustrated that all DL models' accuracies outperform LR and SVM models. The lowest ACC 

of DL models was obtained by Siamese NN (~62), while the best ACC is (~82) from LSTM. 

Furthermore, (Yin & Schütze, 2015) proposed a LR classifier and a new architecture of the 

CNN model called BI-CNN-MI that applied different sizes of filters on whole and parts of 

sentence pairs building similarity metrics. The main purpose was to detect paraphrases that 

only can be recognised at the sentence-level. However, they concluded that removing sentence-

level features did not have a significant effect on the overall results when calculating all four 

lower levels of granularity using N-gram features (n = [1,2,3,4]). Rather than implementing 

different sizes of filters as a feature extractor and similarity metrics, (Yin et al., 2016) presented 

the Attention Based Convolutional Neural Network (ABCNN) to extract semantic features 

considering word-level and phrase-level. Attention is used to learn counter-biased sentence 

representation. In addition, word2vec is used to represent each sentence vector at the initial 

step. According to Yin et al. (2016), ABCNN may show a better result if training it on a large 
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dataset, which is examined on a small dataset namely MSRP. In addition, (X. Zhang et al., 

2017) developed a CNN model considering the word, phrase, and sentence semantic measuring 

levels. Text is represented in a parse tree where the node is the word embedding vector. Then 

CNN with dynamic filter and MLP are examined resulted in the CNN model can deeply 

recognise the relation between sentences. This model relied on a highly accurate parser thus it 

is not appropriate for processing long texts (Nguyen et al., 2019).  

In general, CNN is efficient for PI tasks because of its filter technique which can be used 

as a feature extractor on multiple levels of granularity (word, phrase, N-gram and sentence). 

On the other hand, CNN needs a huge dataset for training while the existing paraphrase datasets 

are small, so most of the researchers pretraining their models on an unlabelled text called 

unsupervised pre-training. This pre-training leads to avoiding overfitting (Yin & Schütze, 

2015); however, it demands more resources (X. Zhang et al., 2017). 

(R. Yang et al., 2019) suggested a RE2 model construction of N-blocks which starts with 

encoding sequences after representing it in a word vector. Then, an alignment layer is involved 

to measure the semantic similarity between the current word and its equivalent on the 

corresponding position of the second sentence. (B. Li et al., 2021) ignored the word order and 

took advantage of word alignment information that uses monolingual alignment tools. They 

considered the unsupervised pre-training method on RE2. Their results outperform the (R. Yang 

et al., 2019), however their approach examined on short sentences at the word-level by 

considering the QQP dataset where its mean sentence length is 6 words as discussed later in 

section 3.3.  

In addition, (Chi et al., 2020) utilised an available NLP toolkit to extract the dependency 

features from pairs of sentences. These features show the relationships between parent and 

child nodes in a dependency tree, categorizing them into two groups based on whether they are 

shared or unique across both sentences. This categorization is aimed at representing the 

similarity and dissimilarity between the sentences. Subsequently, neural networks leverage 

these features to predict the classification outcomes. Their approach yielded improvements of 

1% in ACC and 2% in F1-score compared to methods employing dependency features for 

detecting sentential paraphrases. They evaluated their method on the MSRP dataset, which 

consists of short text. 
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In terms of applying graphs with neural networks, (Huang et al., 2019) developed a novel 

graph-based neural network outperformed other graph neural network (GNN) models for the 

classification of textual information in the areas of consumption of memory, extraction of 

nuanced features from the text in a better way and supporting the online testing. They have 

used the small text windows, focused on the extraction of key text features from the small text 

windows rather than building the graphs from the whole corpus. The issue with the graph built 

for the whole corpus is that they used so many edges and nodes which not only consume a lot 

of memory but also are not able to catch nuanced information from the individual sub-text 

within the main text. This was possible due to the application of the message passing 

mechanism (MPM) which enabled the collection of information from adjacent text nodes and 

updating information embedded in the original nodes. 

Hence, the (Huang et al., 2019) methodology of building graphs from the given text based 

on the graph-based neural network coupled with the MPM technique can come in handy in 

processing the natural language. Another important strength of GNN model developed by 

(Huang et al., 2019) is that it used all words within the text as nodes and creates a link between 

the texts using the MPM tool, which is better at connecting the words and paragraphs within 

each in order to extract the fundamental features of text compared to other GNN models. 

However, the GNN model was developed using the small windows in texts and tested on three 

non-binary classification datasets. Thus, it needs to be validated specifically on PD and PI 

tasks. 

(X. Liu et al., 2020) Utilised the tensor graph convolutional networks as a tool for the 

classification of textual material, and focused on extraction of semantic, syntactic, and 

sequential information based on the contexts of texts. As part of the methodology, they built 

the tensor graph convolutional networks for extraction of sequential information, followed by 

development of intra-graph propagation which was mainly employed for aggregation of 

information from the adjacent nodes within a single graph. After this step, the inter-graph 

propagation was constructed to create the sequential relationship and harmonisation between 

the constructed graphs. After extensive experiments on classification benchmark datasets 

excluding PD and PI datasets, they found that the proposed tensor graph neural network 

effectively represented, harmonised, and integrated information from various graphs, 

outperforming other sequential learning models in learning different textual features (X. Liu et 

al., 2020). 
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Heterogenous graph neural network (HGNN) as used by (Huang et al., 2019) and (X. Liu 

et al., 2020) was efficient in extracting the lexical, syntactic, and semantic features of the text 

represented them on its edges. Additionally, it considered the co-occurrence of words and 

sentences represented them in different types of nodes. These characteristics of HGNN lead to 

achieved high performance in text classification, especially in document clustering which tends 

to determine the document theme. However, it's noteworthy that these approaches have not 

been examined in tasks related to PI possibly due to the limited availability of datasets 

containing long texts required for this task. 

Although these studies discussed in this section were done on more than one of public 

paraphrase dataset, they did not take into account the variation in the number of words in each 

sample, nor the type of paraphrasing applied to different datasets. More importantly, they 

consider typical samples as paraphrased cases that do not state the paraphrase definition 

provided in Chapter 1. 

3.2.2.3. Transformer Models 

Another related strategy in a DL setting is transfer learning, in which the machine gathers up 

knowledge from a trained data network. This novel way of learning eliminates the method of 

training the model from scratch with an enormous amount of data (Arase & Tsujii, 2021) like 

in RNN and CNN models. The model can therefore recognise a pattern using a small number 

of data samples and previously learned information. 

Transfer Learning and BERT 

The most common transformer model which is also now used as a baseline in classification 

tasks is BERT. It builds with the aim of overcoming the limitation with sentence representation 

models that are based on a unidirectional encoder. BERT consists of an encoder only that was 

trained by implementing an MLM and next sentence prediction (NSP) (see Chapter 2). BERT 

is fine-tuned for particular downstream tasks after pre-training on a vast corpus of text data by 

adding an additional output layer. Its pre-trained knowledge is adjusted through this fine-tuning 

process to meet the unique needs of tasks such as PI. It has been demonstrated to achieve high 

outcomes on a wider array of sentence-level and token-level NLP tasks. Specifically in the PI 

task, it evaluated on MSRP with 89.30% and on QQP with 72.10% of F1-score (Devlin et al., 
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2019). This high result raises the machine prediction ACC to be closer to human performance. 

This efficiency of BERT attracts researchers to explore it.  

(Ko & Choi, 2020) implemented multi-task learning to enhance the BERT model's 

accuracy on the PI task. They additionally applied a whole word mask rather than the original 

mask which is a sub-word mask. They compared their study to others that used sentence vector 

representation, showing that BERT outperformed them. As the BERT model presents a generic 

representation for NLP tasks, (Arase & Tsujii, 2021) considered phrasal paraphrase to develop 

a transfer fine-tuning called PPBERT. At the input layer, the phrase alignment runs to obtain a 

set that contains pairs of spans for each source and targets sentential paraphrase pair. By 

applying mean-pooling, the representation of these pairs is generated and then concatenated to 

be represented by a single vector. To keep focusing on the efficiency of this representation 

method, a simple classifier was selected. It evaluated on many sentence pairs modelling tasks 

including PI. The PPBERT's result on MSRP doesn't outperform (Ko & Choi, 2020), however 

this method is cost-effective because it only relies on paraphrases having phrase alignments. 

Furthermore, (Xu et al., 2020) created a model called Lexical, Syntactic, and Sentential 

Encoding that extracted the dependency structure of paired sentences by applying Stanford 

Parser and the sentential and lexical features by using BERT. These features were fed into the 

relational graph convolutional networks (R-GCNs) in order to obtain the sentence vectors 

needed to determine the semantic similarity of the sentences. They improved the F1-score by 

1.0 on QQP and 1.7 on MSRP over the (Devlin et al. 2019). However employing this approach 

is not feasible for paragraphs due to its reliance on the Parser tool, which is optimised for 

shorter texts at the sentence length (Nguyen et al., 2019). In a corresponding situation, (Shree 

& Jayita, 2023) examined the efficiency of BERT as a classifier model compared to ML 

models. Specifically, they applied TF-IDF for feature extraction and then inputted these 

features into BERT, SVM, and an ensemble model. The ensemble model combined predictions 

from Random Forest, Naive Bayes, and SVM classifiers using a majority voting approach. 

Their findings revealed that BERT yielded superior ACC and F1-score compared to the top-

performing ML classifier, surpassing it by 14% and 7%, respectively. 

Variants of BERT 

As observed, BERT surpasses alternative sentence representation models by producing a 

contextual vector representation. This capability allows it to differentiate word meanings across 

diverse contexts, rather than assigning equal importance to each word irrespective of context 
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(Devlin et al., 2019). Consequently, this breakthrough in DL has led to the development of 

many other transformer models based on BERT's foundation, which focuses on optimizing the 

architecture of the BERT model to make it more efficient and effective, such as DistilBERT, 

RoBERTa, and the lite BERT for self-supervised learning of language representations 

(ALBERT) models.  

DistilBERT was created by reducing the number of BERT’s parameters by 40%. The model 

becomes more lightweight and computationally efficient while still retaining the essential 

knowledge learned during training, 97%. This reduction in parameters helps in speeding up 

inference by 60% and reducing memory requirements making the model more practical for 

deployment in resource-constrained environments (Sanh et al., 2020).  

In regards to  RoBERTa, (Y. Liu et al., 2019) proposed several enhancements on BERT 

which include training on a significantly larger dataset, increasing from 16GB to 160GB of 

training data. They also introduce a dynamic masking pattern, departing from BERT's static 

masking approach, where different masks are applied to the input tokens in each training 

iteration. This dynamic masking scheme encourages the model to learn more robust 

representations by preventing it from relying too heavily on specific masked tokens during 

training. Additionally, RoBERTa replaces the NSP objective with a strategy that involves 

training on full sentences, omitting the NSP component. Furthermore, RoBERTa trains on 

longer sequences, enabling the model to capture more comprehensive contextual information 

during training. These adjustments collectively aim to enhance the robustness and effectiveness 

of the RoBERTa model compared to its predecessor, BERT. Consequently, RoBERTa's 

performance on MSRP and QQP exceeds that of BERT by 1.9% and 0.9%, respectively which 

are same to the results obtained by ALBERT. 

In terms of ALBERT, it factorises the embedding parameters by decomposing them into 

two smaller matrices. These matrices are then shared across all tokens, significantly reducing 

the total number of parameters required for embedding. By combining factorised embedding 

parameterization and cross-layer parameter sharing, ALBERT achieves a substantial reduction 

in the number of parameters compared to traditional BERT models. In addition, ALBERT uses 

sentence order prediction (SOP) as an alternative objective of NSP during pre-training. It learns 

to understand the contextual relationships between sentences and effectively captures the flow 

of information within a document. This helps the model generate more coherent and 

contextually relevant representations (Lan et al., 2020). 
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Researchers investigated these models within the realms of PI and PD as word embedding 

models that convert each word or sentence into a vector and/or a classifier models. (Vrbanec 

& Meštrović, 2023) compared the efficiency of BERT-base models on detecting plagiarism in 

the form of paraphrases evaluated on three PI corpora: MSRP, CS, and Webis-CPC-11, further 

elaboration on these corpora is provided in section 3.3. Their method focused on sentence 

representation using different approaches such as TF-IDF, word embedding models and 

transformer-base models. They represented each sentence into a vector and then used similarity 

or distance measure to detect paraphrased pairs such as cosine similarity where these 

embeddings can be paired to assess similarities between texts. They concluded that cosine 

similarity is the most efficient metric and the BERT family of models, including BERT, 

RoBERTa and DistilBERT, is highly effective in identifying short text. According to Incitti et 

al. (2023), Transformer models generate word embedding vectors that are significantly 

influenced by their context, thus effectively conveying semantic content.  

Further work, (Reimers & Gurevych, 2019) developed SBERT which produces semantical 

sentence embeddings by utilizing Siamese and triplet network structures. Its performance was 

examined on many NLP tasks including PI by considering the MSRP dataset. The results of 

SBERT outperformed other word embedding models including Fast-text, Glove and BERT 

Embeddings in the PI task. In addition, (W. Wang et al., 2019) built StructBERT that introduced 

novel linearization strategies to incorporate language structures during pre-training. By 

leveraging both word-level and sentence-level ordering, StructBERT captures sequential 

dependencies more effectively. As a result, it outperformed most previous models across 

various natural language understanding tasks. Specifically, it surpasses BERT by 3.3% in the 

F1-score on the MSRP dataset and by 2.3% on QQP. 

From another perspective, (Hany & Gomaa, 2022) examined how the combination of 

different types of similarity techniques can improve the ML classifier accuracy. They 

specifically integrated three categories of similarity scores: string similarity, embedding 

similarity derived from BERT, and semantic similarity utilizing WordNet and spaCy 

algorithms. They employed 168 string similarity techniques from the Abydos library, including 

Levenshtein similarity and Damerau-Levenshtein similarity. Additionally, they utilised eight 

of word embeddings from pre-trained models in the sentence transformers library, such as 

BERT-base-nli-mean tokens and all-mpnet-base-v2. Finally, they applied linear SVM as a 

classifier. They concluded that the more features and similarity algorithms are used, the more 
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advantageous the outcomes will be in the PI task. A related study, (Muneer et al., 

2025)investigated the effectiveness of various classification methods in distinguishing between 

manually and auto-paraphrased sentences using both synthetic and real-world corpora. They 

proposed three sentence-level benchmark datasets for artificial paraphrases, and one based on 

real-life texts. The classification task was approached using traditional ML algorithms and 

transformer learning models where the DL models were excluded due to data limitations. The 

highest performance was achieved by integrating similarity features from traditional 

techniques—such as N-gram overlap, WordNet-based measures, and Kullback-Leibler 

divergence—with Sentence Transformer embeddings. These combined features were used as 

input to the ML classifiers, and the evaluation, conducted via ten-fold cross-validation, 

revealed that manual paraphrases remain significantly more challenging to detect, although 

some machine-generated paraphrases also proved comparably difficult. 

In terms of reducing the model complexity, (Raffel et al., 2020) developed text-to-text 

transfer transformer model (T5) which could be recognised as a hydride model of bidirectional 

and auto-regressive models, however its architecture and primary usage make it more closely 

related to the bidirectional models. This transformer model provided a unified format that 

simplified the implementation of various NLP tasks. In detail, the same model architecture, 

training procedure, and decoding process can be applied to all tasks making the model more 

fixable. The text-to-text paradigm allows the researcher to view each task as converting input 

text into target output text which makes it easier to adapt the model to different types of 

problems without having to apply adjustments that are particular to each task. They evaluated 

T5’s performance on a wide variety of English-based NLP problems including the PI task. The 

result on MSRP is 92.8% which surpassed BERT by 3.5% but fell short of StructBERT by 0.8% 

in terms of F1-score. 

Advanced and Generative Models 

In the same context, (Palivela, 2021) implemented T5 as a paraphrase generation and 

identification model. Firstly, they increased the data diversity by eliminating pairs that share 

over 60% of unigram elements or have very little semantic similarity from the used datasets 

(QQP and MSRP) before training the paraphrasing model. They configured the PI model 

hyperparameters using the paraphrase model hyperparameters in a way that avoided the need 

to retrain the model. They achieved 87.17% and 82.05% ACC on QQP and MSRP respectively, 

through determining the semantic similarity between sentence pairings after extracting their 
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sentence vectors. In addition, XLNet is an autoregressive model developed by (Z. Yang et al., 

2019). This model is different from BERT because XLNet uses permutation language 

modelling while BERT implements MLM. XLNet maximises the expected probability over all 

possible permutations of the input sequence. This indicates that it trains on various 

permutations of the input sequence considering both the tokens that precede and follow each 

token in the sequence. The result of implemented XLNet on PI outperformed the BERT on two 

of the primary PI datasets. In particular, XLNet achieves an F1-score of 92.3% on QQP and 

90.8% on MSRP, surpassing BERT's scores by 1% and 2.8%, respectively.  

Despite the numerous benefits of pre-trained large models over traditional DL, they still 

face limitations such as struggling to adapt to new tasks without task-specific training. As a 

result, researchers have shifted their attention to creating more sophisticated models like 

generative LLMs which can handle unseen tasks without the need for task-specific training 

such as GPTs. Consequently, GPTs become state-of-the-art in the fields of AI and NLP. These 

models, especially the ChatGPT, have shown remarkable capacity in understanding and 

generating human-like text in a variety of tasks. Thus, GPTs significantly influenced the 

landscape of NLP and continue to be at the forefront of research and development in NLP. 

These models have advanced capabilities in generating text that is fluent, detailed, and 

exceptionally natural in tone making it increasingly challenging for faculty members to 

differentiate between human-written and AI-generated content (Abd-Elaal et al., 2022). Due to 

this ability of GPTs, the researcher focuses on exploring detecting auto-generated text over 

utilizing GPTs as tools for identifying auto-paraphrases. For instance, (Alamleh et al., 2023) 

developed a method to differentiate human text from machine-generated text using handcraft 

features and an ML classifier. Specifically, they implemented TF-IDF and 11 of ML classifiers 

including SVM, feedforward neural network and BERT. TF-IDF features capture the 

importance and relevance of individual terms within a given text. They concluded that random 

forest provides the best ACC with 93.50% on distinguishing between human-written and 

ChatGPT generated text. For further clarification, (Elkhatat et al., 2021) highlighted the 

difficulties the auto-generated detecting tools have when trying to distinguish AI-generated 

content, particularly when using more sophisticated LLMs to create the text. Thus, (Perkins et 

al., 2023) employed prompting techniques, utilizing OpenAI's tool namely GPT4 through 

ChatGPT Plus, to generate 22 unique experimental submissions, aiming to examine the 

challenge of the AI detectors identifying AI-generated content. They concluded that the 
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Turnitin AI detection tool only detected a mean proportion of 54.8%, despite the fact that AI 

methods were employed to generate 100% of the material content for all submissions. 

Additionally, several studies have suggested a significant decrease in ACC when text is 

paraphrased using automated tools (Anderson et al., 2023; Weber-Wulff et al., 2023; Krishna 

et al., 2023; Mitchell et al., 2023). Stated simply, detecting auto-paraphrased content is more 

challenging than detecting auto-generated text. 

In terms of PI, there has been limited research conducted with the aim of detecting text that 

has been paraphrased by humans or machines. (Kim et al., 2024) conducted an assessment of 

BERT, RoBERTa, and ChatGPT across various classification tasks, including PI. Their 

methodology involved the application of these models to the QQP and MSRP datasets. The 

outcomes of their investigation revealed that ChatGPT exhibited the lowest ACC and F1-score 

on both datasets, whereas RoBERTa achieved the highest performance scores. In detail, they 

argue that even the most basic BERT model performed much better than ChatGPT in 

recognising sentences that are semantically identical, with a margin of 24% in ACC and 17.7% 

in F1-score on MSRP and 2% in ACC and 0.7% in F1-score on QQP. Thus, ChatGPT performed 

best in simpler text structures, such as user questions in the QQP, where it can accurately 

identify similarity with results that are comparable to BERT-base accuracy. However, 

ChatGPT's performance significantly decreased on the more complex MSRP dataset, 

particularly when contrasted with the fundamental BERT model. When analysed by class, 

ChatGPT performed as accurately as BERT-base in the “paraphrased” class, but it performed 

noticeably worse in the “Not Paraphrased” class, suggesting that it is not sensitive to semantic 

distinctions between sentences. This study presents a thorough examination of ChatGPT's 

performance on PI task, notably does not acknowledge how the length of the text and the level 

of paraphrases affect the outcome. To enhance the RoBERTa performance on PI, (Amin et al., 

2023) implemented a method which combines the prompt tool explanation of the similarity of 

sentence pairs to the RoBERTa classifier. The result showed that the combination of ChatGPT 

and RoBERTa provided better results than implemented RoBERTa individually on binary 

classification tasks. Expanding on the challenges of paraphrase detection, (Kartelj et al., 2025) 

conducted a comprehensive study employing a diverse set of classification models on datasets 

encompassing varying text lengths, ranging from single sentences to full-length documents. 

The corpora used in this research consist of human-written texts from various domains and 

their corresponding paraphrased versions generated by GPT models. Interestingly, human-

authored texts tended to be longer in terms of both word and sentence count, while GPT-4 
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occasionally produced longer outputs when the original human-written input was very brief. 

Their approach incorporated advanced feature extraction techniques tailored to identify 

paraphrasing patterns, utilizing BOW and character-level n-grams as input features. A total of 

19 classifiers were tested, alongside a commercial detection system called ZeroGPT. Results 

showed that the classifiers achieved high ACC across conditions, with a minimum ACC of 

95%, attributed to the distinct output patterns of ChatGPT's autoregressive generation model. 

From our point of view, one work (Wahle, Ruas, Kirstein, et al., 2022) has been done to 

detect auto-paraphrased text at paragraph-length but at sentence-level paraphrasis using 

SpinnerChief, BERT and GPT3 models. They implemented eight machine classifiers on their 

datasets concluding that the best F1-scores were extracted by implementing auto-regressive 

models (T5 and GPT3). 

Therefore, DL holds the potential for developing more accurate and advanced PD systems 

that can adapt to the subtle differences in language and deceptive paraphrasing techniques. 

However, all the work mentioned in this chapter focused on sentence-level paraphrasis that 

occurs in short text and showed robust results. Addressing the effect of text length on 

paraphrase identification and developing a detection algorithm for paragraph-level paraphrases 

are two of the main contributions of this thesis. 

Table 3.1 Outline of previous studies in PI 

Source Method Features Classifier Dataset 

Wan et.al, 2006 ML 
17 Features 

Include BLEU and N-gram 
overlap 

SVM MSRP 

Ul-Qayyum and 
Altaf, 2012 ML Semantic-heuristic Features 

POS SVM MSRP and X1999 

Cordeiro et.al, 
2007 ML 10 metrics include Bleu, Edit, N-

gram overlap and Sum Threshold MSRP and KMC 

Vrublevskyi, and 
Marchenko, 2020 ML 6 Features include Bleu, 

dependency tree and IDF SVM MSRP 

Kenter and De 
Rijke, 2015 Hyprid ML and  DL 

Word2vec 
Glove 

Saliency weighted 

Non liner 
SVM MSRP 

Ferreira et al, 
2018 ML BOW 

dependency tree BayesNet MSRP 

Ji and Eisenstein, 
2013 ML TF-KLD, 

TF-IDF and Wan 2007 Features Threshold MSRP 

Vrbanec, and 
Meštrović, 2020 Hybrid ML and DL 

Semantic sentence representation 
includes Word2vec Fast-Text and 

Glove 
Threshold MSRP, C&S and 

Webis- CPC-11 

Vrbanec, and 
Meštrović, 2021 Hybrid ML and DL Word2vec and Glove Threshold MSRP, C&S and 

Webis- CPC-11 
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Nguyen et.al 2019 Hybrid ML and DL Name Entity 
Word2vec SVM MSRP, SamEvel 

and P4P 

Zhang et.al, 2017 DL CNN 
Fully 

connected 
layer 

MSRP 

Yin et.al, 2015 DL Bi-CNN-MI LR MSRP 
Yin et.al, 2016 DL ABCNN LR MSRP 

Devlin et.al, 2018 DL BERT - MSRP 

Aruse and Tsujii, 
2021 DL PPBERT 

Fully 
connected 

layer 
MSRP 

Ko and Choi, 
2020 DL Paraphrase-BERT - MSRP 

Palivela, 2021 TM Word Embedding (T5) Threshold QQP 
MSRP 

Xu et al., 2020 DL (GCN and 
BERT) 

contextual features: 
combination of position encoding 
(syntactic structure information 

)and syntactic features 

Fully 
connected 

layer 

QQP 
MSRP 

Hany & Gomaa, 
2022 Hybrid Approach 

string similarity, semantic 
similarity and embedding 

similarity 
Linear SVC MSRP 

Muneer et al., 
2025 Hybrid Approach 

Combining similarity metrics 
from traditional techniques with 

embeddings generated by the 
Sentence Transformer model 

ML 

MSRP 
subset of QQP 
Artificial case 

paraphrases corpora 
Article Rewrite 

Corpus 

Kartelj et al., 
2025 Hybrid Approach bag-of-words and character-level 

n-grams 20 classifiers 
PhD abstracts from 

different 
universities 

3.3. Datasets 

The task of identifying paraphrases requires a dataset. It is the model's instructional resource 

where its collection contains both paraphrase and non-paraphrase examples. This aids the 

model in learning the linguistic patterns and the various ways that the same concept can be 

expressed. Additionally, the dataset's function goes beyond model training to include a model 

evaluation that is accomplished by using a subset of the dataset called the test set or validation 

set. This assessment process highlights the model's strengths and weaknesses in terms of its 

capacity to identify paraphrases. Moreover, the dataset makes it possible to compare several 

models consistently and helps to improve the model. By examining the model's performance 

on the dataset, the researcher can spot its weaknesses and make necessary improvements. 

Furthermore, the researcher can determine which models perform best for the PI task through 

analysing the outcomes of multiple models tested on the same dataset. In other words, a dataset 

is essential for developing and optimising PI models. It serves as the foundation for the 

development and enhancement of these models. Thus, in this section a review of various PI 
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datasets is offered. This review is based on the type of paraphrases, the length of the text, train 

and test sets size, and whether the datasets were manually or artificially created. However, 

corpora that are not in English are excluded, as this thesis aims to provide solutions for 

detecting plagiarism and paraphrases in English text. 

The primary datasets utilised for training and assessing PI algorithms are mostly 

constructed of sentence-length and sentence-level paraphrasis that consider only intra-sentence 

relations, such as Microsoft Research Paraphrase Corpus (MSRP) (Dolan & Brockett, 2005), 

Quora Question Pairs (QQP)2 (Puvvada et al., 2017), PAN (Potthast, Barrón-Cedeño, et al., 

2010) and (Potthast et al., 2011) Plagiarised Short Answers (PSA) (Clough & Stevenson, 

2011), Paraphrase for Plagiarism (P4P)3 (Barron-Cedeno & Vila, 2013), which expanded with 

negative samples crating (P4PIN) (Sánchez-Vega et al., 2019), and Webis Crowd Paraphrase 

Corpus (Webis-CPC-11) (Burrows et al., 2013). The following paragraphs present an in-depth 

analysis of these datasets, as well as several less commonly used datasets primarily created for 

PI or PD. 

The MSRP corpus consists of 5801 pairs which have been manually categorised as either 

paraphrase, meaning the sentences convey the same or very similar meaning, or non-

paraphrase, meaning the sentences convey different meanings, and split into a train set and a 

test set (Dolan & Brockett, 2005). The data was collected from online news sources using 

heuristics to identify candidate document pairs and sentences. Each sample in this dataset 

consists of less than 35 words which makes it not suitable for investigating the paragraph length 

paraphrases task (Dolan & Brockett, 2005).  

In terms of QQP, question titles from a website where users post enquiries and get responses 

are separated into groups for duplicates and non-duplicates which also consist of short text and 

sentence-level paraphrasis samples. Even though it is a large dataset (over 400,000 question 

pairs) that makes training DL models in PI possible, it includes slang, mathematical formulas, 

abbreviations, typos, etc. which can all be considered noise. Interestingly, even though the 

extensive QQP dataset contains labels generated by humans, these labels were not specifically 

designed for PI tasks. They were released as part of the PAN workshop series focusing on PD 

 

2 https://www.kaggle.com/c/quora-question-pairs/ 
3 https://clic.ub.edu/corpus/en/parafrasi-en# 
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(Puvvada et al., 2017). Furthermore, the average length of its text is just 6 words, which limits 

its usefulness in detecting plagiarism at paragraph-length.  

When it comes to PAN4, it is a plagiarism analysis, authorship identification, and 

obfuscation detection dataset. It is a set of documents that are frequently utilised for research 

evaluating authorship attribution techniques and PD algorithms. PAN released many versions 

such as PAN-pc-10 which considers different languages to meet the demands of researchers 

working in multilingual research and AN-PC-11 corpus that represents automatic plagiarism. 

Moreover, PAN is intently designed to include a variety of plagiarism styles, including exact 

copying, paraphrasing, and obfuscation, in order to evaluate the performance of various PD 

methods. Additionally, PAN’s samples are often manually annotated to identify the portions 

that have been plagiarised as well as the plagiarism type that has been applied to each sample 

(translating from a Spanish or German source document, or by randomly relocating words and 

replacing them with a comparable lexical term) (Potthast, Barrón-Cedeño, et al., 2010). 

Although it consists of a wide range of text documents including articles, essays, news articles, 

and academic papers, it consists of sentence-level paraphrases highlighted the purpose of 

creating this dataset, which is identifying plagiarised portions of text within documents and the 

corresponding source (resource retrieval in PD). In more detail, let’s suppose we have a set of 

potential source documents (D) and a set of suspicious documents (Dq) that may contain 

plagiarised portions.  Text fragments from documents (d) within D were randomly selected and 

used in some of the documents in Dq in order to simulate plagiarism. In the case of PAN-PC-

10, there are approximately 70,000 plagiarism segments in Dq, 40% verbatim plagiarism 

content while the rest employed different obfuscation techniques, including paraphrasing. Most 

of these plagiarism cases are created artificially by computing tools. Only 6% of it was written 

by humans via Amazon Mechanical Turk (Potthast, Barrón-Cedeño, et al., 2010). While in 

PAN-PC-11 the number of cases that are manually or automatically obfuscated is increased to 

represent 71% of the dataset with 8% paraphrased manually (Potthast et al., 2011). 

As the PAN dataset was mainly created to evaluate PD algorithms, (Barron-Cedeno & Vila, 

2013; Sánchez-Vega et al., 2019) extracted only positive and negative paraphrased examples 

of PAN-PC-10 for the PI task, respectively. (Barron-Cedeno & Vila, 2013) selected pairs of 

source and plagiarised fragments that are less than 50 words in length end up with only 847 

 

4 https://pan.webis.de/index.html 
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paraphrase pairs. Additionally, they annotated linguistic units including words, phrases, 

clauses, and sentences with 20 paraphrase tags which represent the paraphrase distribution into 

P4P corpora. They were aiming to produce a resource that covers all possible forms of 

paraphrasing that could occur. To make this dataset useful in PI, (Sánchez-Vega et al., 2019) 

including the negative paraphrases samples of PAN to P4P called it P4PIN. 

From another perspective, (Clough & Stevenson, 2011) created a PSA dataset which is 

specially produced for plagiarism detection in an academic context (Computer Science). The 

authors asked participants to wilfully reuse another document in a way typically viewed as 

inappropriate. There are four different levels of plagiarism in this corpus namely: near copy, 

light revision, heavy revision, and non-plagiarism. The dataset includes a total of 95 

publications that display varying degrees of plagiarism in length 200 – 300 words including 

only 19 paraphrased examples. These documents are compared to five original documents that 

were obtained from Wikipedia. Although it consists of long text, it represents sentence-level 

paraphrases. In addition, it is recognised as a small dataset which makes it unsuitable for 

training a deep-learning model. 

In relation to Webis-CPC-11, (Burrows et al., 2013) provided 7859 text which was 

paraphrased by Mechanical Turk crowdsourcing. The corpus consists of 4067 accepted 

paraphrased pairs, meaning that one piece of text is a paraphrase of the other and 3792 non-

paraphrased pairs. The samples were randomly selected from about 7000 books that were 

provided by the Gutenberg project. The text length in this data set is largely varied from 

sentence-length to a long article-length which could be considered as a drawback (see Table 

3.2).  In terms of paragraph length, Webis-CPC-11 has in total of 1339 positive and negative 

samples that were paraphrased at paragraph-level and labelled by humans. Most of these 

datasets have a limitation on their size which makes training neural or Transformer-based 

models difficult. To solve this limitation, many of datasets have been created using a variety of 

techniques for the PI task such as PARADE and PPDB.  

PARADE was created of computer science concepts from online user-generated flashcards 

and employed clustering techniques to categorise term definitions into groups. They selected 

one as the source and labelled the other as a paraphrased text, utilizing a four-label system for 

manual annotation (He et al., 2020). Another noteworthy resource, PPDB, constituted an 

extensive automatic collection of paraphrases, totalling 220 million pairs (Ganitkevitch et al., 

2013). In a different way, (Kanerva et al., 2021) collected text automatically from two separate 
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sources: headlines from news addressing the movies or TV episodes, and alternate Finnish 

subtitles for the same movies or TV programs. They then labelled this collected text manually. 

Moreover, (Hu et al., 2019) constructed a dataset by featuring sentence-level paraphrasis 

generated through machine translation. This involved translating the text into another language 

(Czech) and subsequently translating it back to the original language (English). Thus, the 

quality of the paraphrased generated text was affected by the efficiency of the translation model 

used. Although these sources were created with a huge number of samples making training DL 

models possible for the PI task, they didn’t consider the paragraph length or paragraph-level 

paraphrases. 

Despite the differences in style and content quality of the mentioned datasets, they all 

consist of sentence-level paraphrases or have limitations on their size which makes them not 

suited for PI at the paragraph-level paraphrases.  

Recently, a few datasets with paragraph length texts have been created; however, the type 

of paraphrasing utilised remains focused on intra-sentence level paraphrasis, consequently 

addressing within-sentence semantics, that ignores inter-sentence semantic associations. 

(Asghari et al., 2021) proposed HAMTA, a Persian (aka, Farsi) monolingual plagiarism 

detection corpus. They implemented paraphrasing techniques to extract content from the source 

papers (Wikipedia documents) and then insert it as plagiarised fragments into the suspect 

documents. The length of documents varies between 30-300 words. They applied three 

paraphrase operations, namely Random Text Operations, Semantic Word Variation and POS-

preserving Word Shuffling. These operations generate intra-sentence level paraphrasis. In a 

more recent effort, (Kurt Pehlivanoğlu et al., 2024) introduced ParaGPT, a large-scale 

paraphrase dataset comprising 81,000 machine-generated sentence pairs. This dataset includes 

27,000 synthetic reference sentences produced by ChatGPT, with paraphrases generated using 

three large LLMs: ChatGPT, GPT-3, and T5. All paraphrases operate at the sentence-level, and 

the dataset emphasises lexical and syntactic diversity. The use of synthetic reference sentences 

was a deliberate choice, allowing for a controlled and reproducible setup where all reference 

inputs are consistently generated. However, since the source sentences are also artificially 

generated, the dataset is unsuitable for training plagiarism detection models. Instead, it is 

primarily used to analyse the paraphrasing capabilities of various LLMs and highlight their 

performance differences. In the same context, (Wahle et al., 2021) constructed a paraphrase 

dataset by paraphrasing content drawn from Wikipedia, academic theses, and arXiv articles. 
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Unlike (Kurt Pehlivanoğlu et al., 2024), which employed autoregressive generation models, 

Wahle et al. relied on autoencoder-based LLMs for paraphrase generation. Although their 

dataset was built from full paragraphs, the paraphrasing process focused solely on intra-

sentence relations by paraphrasing each sentence independently. 

On the other hand, (Lin et al., 2021) and (Qiu, 2022) explored paragraph-level paraphrasis 

through sentence reordering after back-translating the text. They note the potential errors 

introduced by relying on automated translation, especially when using synonyms that lack 

contextual validity (Prentice & Kinden, 2018). These studies (Lin et al., 2021; Qiu, 2022) used 

graph models to determine the optimal sentence order of paraphrased text, neglecting source 

sentence relationships and impacting semantic coherence. 

To sum up, most of the datasets in PI and PD were created by applying different algorithms 

to paraphrase each sentence independently. This type of paraphrasing is less common among 

plagiarists as they tend to paraphrase a paragraph by using sentence reordering, splitting and/or 

merging with consideration of the paragraph’s meaning. Thus, the research presented in the 

current thesis aims to overcome these limitations by using Sentence Order Prediction (SOP) on 

the source text, generating three distinct sentence orders per paragraph based on intra-sentence 

and inter-sentence semantic similarities. Paraphrased paragraphs are then created using 

advanced Transformer-based models rather than back-translation approach. Notably, this thesis 

introduces the first dataset for PI training that incorporates paragraph-level paraphrasis through 

Transformer-based models, see Chapter 6. 

Table 3.2. Key numerical features of primary corpora in PD and PI. 

Corpora Size Positive negative Words Max Mean 
Type of 

paraphrase 

Primary 

task 

MSRP 5801 3900 1091 211,206 34 19.29 Sentence-level PI 

QQP 404,351 149306 
63% 

255045 
400,000 272 6.7 Sentence-level 

duplicate 

detection 

problem 

SAP 100 62 38 - 300 - sentence-level PD 

PAN-PC-

10 

 

27073 

documents 

and 68 558 

60% include 

exacta copy 

and 

40% 

without 

plagiarism 

- 5000 - 
34%: at 

paragraph-

length (50-150) 

PD 
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plagiarism 

cases 

Obfuscation 

plagiarism 

the rest is (300-

5000) 

PAN-PC-

11 
26 939 

82% 

61 064 

plagiarism 

cases 

18% - 1150 - 

35% at 

paragraph-

length, the rest 

longer 

PD 

P4P 847 847 0 - 50 - sentence-level PI 

P4PIN 6708 0 6708 292,050 90 44.58 - PI 

Webis-

CPC-11 
7520 4067 3453 4,928,055 4993 320.34 

Sentence-level 

and paragraph-

level 

PI 

HAMTA - - - - 300 - Sentence-level PD 

 

3.4. Summary 

This it underscored the advancements achieved by researchers in PI and PD, highlighting the 

robust experiments done to tackle these tasks. However, a notable gap remains in the literature: 

the majority of the existing studies primarily concentrate on sentence-level paraphrasing. 

Although these studies offer significant insights, they overlook the complexity involved in 

identifying paraphrases at the paragraph-level. This offers an opportunity to explore the 

effective application of ML and DL algorithms in paragraph-level paraphrasing tasks. 

The limitation in the existing research can be linked to the absence of suitable datasets that 

facilitate such investigations. The datasets utilized in published research often lack the required 

structure for evaluating paragraph-level paraphrases, as previously mentioned in this chapter. 

This obstacle has probably restricted the advancement of more sophisticated methods for PI 

and PD at the paragraph-level, hence underscoring the necessity for expanded research efforts 

and improved dataset availability in this field. This thesis aims to bridge the gap between 

sentence-level and paragraph-level paraphrase identification through innovative 

methodologies and a new comprehensive dataset. 

The following chapter outlines the methodology employed in this thesis, explaining how it 

contributes to and enhances the fields of PI and PD.  
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CHAPTER 4:   METHODOLOGY 
 

4.1. Introduction 

This thesis focuses on emphasizing the importance of detecting the need for a dataset 

comprised of paragraph length content and paragraph-level paraphrases. The development and 

construction of such a dataset represent one of the key contributions of this research. Moreover, 

the thesis analyses the ability of LLMs such as auto-encoder and GPTs to distinguish between 

paraphrased paragraphs, rather than solely focusing on the identification of paraphrased words 

or sentences. This shift in focus from sentence-level to paragraph-level analysis is essential for 

understanding the broader context in which large models operate, significantly enhancing 

plagiarism detection's effectiveness. 

In this chapter, an explanation of the research methodologies employed to address the 

research questions and achieve the outlined objectives is provided. The chapter begins with a 

thorough description of three datasets that have been collected from different domains and are 

utilised in the experiments conducted throughout this thesis (sections 4.2.1, 4.2.2, and 4.2.3). 

This is followed by a brief discussion of the methodology adopted to create the ALECS-SS 

dataset (section 4.2.4), including the specific processes and criteria that were followed to ensure 

its relevance and effectiveness. Furthermore, the implemented classification methods and the 

evaluation metrics are reported in section 4.3 and section 4.4, respectively. Additionally, the 

ethical considerations that were carefully taken into account during this research are explained 

in section 4.5. Finally, the chapter concludes with a detailed outline of the overall process and 

the experimental framework of the research, as described in section 4.6. This final section 

serves to integrate the various parts of the thesis and provide a clear roadmap for understanding 

the experimental approaches and their outcomes. 
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4.2. Datasets 

4.2.1. MSRP 

The MSRP is a significant dataset in the field of NLP, specifically designed for the purpose of 

identifying paraphrases. This corpus, created by Microsoft Research, has become an essential 

resource for assessing different models and algorithms that aim to identify semantic similarities 

between sentences. The numerical details of this dataset are provided in Chapter 3. 

An important characteristic of the MSRP is its focus on sentence length, where pairs usually 

consist of sentences that have similar lengths. This component is critical for ensuring that the 

dataset provides an unbiased foundation for model evaluation since it eliminates biases induced 

by notable variations in sentence length. The balanced length distribution allows for a more 

accurate assessment of a model's ability to identify paraphrases based on semantic similarities 

rather than outer-layer text length differences. Additionally, human annotators labeled sentence 

pairings to ensure the dataset's annotations were highly trustworthy.  This robust annotation 

strategy elevates the dataset's status as a valuable resource for training and evaluating 

paraphrase identifying algorithms. The MSRP has made a significant contribution to NLP 

research by defining a consistent baseline for PI tasks. It is commonly used to evaluate a wide 

range of models, from basic ML approaches such as Support Vector Machines (SVMs) to more 

complex neural network architectures. Improvements in model performance on the MSRP are 

frequently reflective of advances in the field of paraphrase detection. Thus, this dataset is used 

to evaluate the performance of the implemented algorithms for PI in this thesis (Chapters 4 and 

7). 

4.2.2. QQP 

The QQP is one of the largest publicly available resources for paraphrase identification and has 

been widely adopted as a benchmark in NLP research. It is distinguished for its collection of 

questions of varying lengths and formats, reflecting the diverse ways in which users pose 

questions on the platform. This dataset, obtained from the Quora platform, provides a reliable 

baseline to evaluate algorithms that attempt to determine whether pairs of questions are 

paraphrases of one another. While QQP originates from Q&A forums, where users may 

duplicate questions or provide semantically overlapping answers, the underlying task of 
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determining whether two texts convey the same meaning through different wording parallels 

the challenge of paraphrase-based plagiarism. The numerical details of this dataset are provided 

in Chapter 3. 

The QQP dataset is distinguished for its collection of questions of varying lengths and 

formats. This variety reflects the various ways users pose questions on the platform, presenting 

a unique challenge for models trained to recognize paraphrases. Because of variations in 

question length and structure, models must be able to detect semantic equivalence across a 

wide range of question formats, complicating paraphrase recognition. 

The annotation process for the QQP dataset is very similar to the MSRP, it was performed 

by human evaluators. This dataset is extensively utilized to evaluate diverse models, and 

enhancements in model performance on the QQP often indicate advancements in accurately 

recognizing semantic similarities between questions. This dataset is employed in this thesis to 

evaluate the results in Chapter 8. 

4.2.3. Webis-CPC-11 

This dataset, created by the Webis research group, is a crucial resource for evaluating 

algorithms that detect semantic similarities or paraphrases between documents. Additionally, 

expert annotations further boost the dataset's reliability, ensuring high standards of accuracy 

and consistency in its labeling. Detailed statistics concerning the dataset are provided in 

Chapter 3. 

A key characteristic of the Webis-CPC-11 dataset is its diverse range of document lengths 

and sources, providing a richer and more varied evaluation context for algorithms. Unlike many 

datasets that focus on short, uniform sentence structures, Webis-CPC-11 includes short, mid 

and long texts, challenging models to manage complex variations in length and structure. This 

variety prevents models from developing biases toward specific text types, allowing for a more 

comprehensive evaluation of their paraphrase detection capabilities.	Thus, the Webis-CPC-11 

dataset is utilised to measure the effectiveness of the paraphrase detection algorithms at 

different levels of text length in this thesis (Chapter 5). 
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4.2.4. ALECS-SS  

 The ALECS-SS dataset represents one of the primary contributions of this thesis. After 

thoroughly evaluating ML and DL models using the previously discussed datasets, MSRP and 

Webis-CPC-11, the results demonstrated that these models perform better when dealing with 

texts in the paragraph length range (refer to Chapter 5). Nevertheless, a notable limitation was 

the size of these datasets, which restricted the models' performance evaluation, especially for 

longer texts. To address this gap, the ALECS-SS dataset is created, a significantly larger 

collection of texts that specifically focuses on paragraph length and paragraph-level 

paraphrases content (Chapter 6). 

The development of this comprehensive dataset was enabled by advancements in LLMs, 

which can comprehend and paraphrase text with capturing the broader contextual meaning. 

These models made it possible to create human-like paraphrases that capture both meaning and 

structure effectively. The state-of-the-art LLMs are implemented to ensure that the generated 

paraphrases are both high-quality and diverse, a process that is detailed further in Chapter 6. 

The methodology involved assessing the semantic similarity between sentences within a 

paragraph and then reconstructing them based on the source’s sentence order probability while 

accounting for inter-sentence relationships, resulting in alterations to the syntactic structure of 

the paragraphs. Then, a masking technique was applied to paraphrase individual words, thereby 

modifying the paragraph’s lexical composition. Despite these changes, the process crucially 

preserves the underlying semantic meaning of the paragraphs, ensuring that its core message 

remains intact. 

In addition to the dataset's creation, an evaluation process was conducted to rigorously test 

the quality of the generated paraphrases (see Chapter 6 and Chapter 7). This evaluation ensured 

that the paraphrased content closely mirrored human-written text semantically. ALECS-SS is 

later used in Chapter 8 to assess the ability of various models, including LLMs and regression-

based models like GPT, in distinguishing between machine-generated paraphrased texts and 

human-written paragraphs. This dual evaluation not only showcases the quality of the dataset 

but also highlights the strengths and limitations of current paraphrase detection models when 

applied to more complex, longer texts. 
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4.3. Text Classification 

PI is commonly recognised as a binary classification task within the field of NLP, where an 

algorithm analyses text inputs and returns a binary output of either 0 or 1. In this task, the model 

is presented with two text samples, designated as Text A and Text B, and assesses whether they 

convey equivalent semantics. If the model identifies Text B as a paraphrase of Text A, it assigns 

a value of 1; otherwise, it returns a value of 0. This fundamental approach is clarified in Chapter 

1, which introduces the concept and its significance in NLP. This conventional binary 

classification approach is appropriate for models created with the MSRP, QQP, and Webis-

CPC-11 datasets, each comprising three essential elements: Text A, Text B, and a label denoting 

whether the texts are paraphrases. This approach represents the standard scenario in PI tasks, 

as outlined in the literature review (Chapter 3). It has been widely adopted for evaluating 

paraphrase detection models across various datasets. 

However, with the recent advancements in text generation technologies, a new scenario has 

been introduced in PI research. In these new challenges, the algorithm is tasked not only with 

identifying paraphrases but also with distinguishing between the source text and the 

paraphrased text. This adds a layer of complexity since the model must differentiate between 

source and paraphrased content without offering pair information. Both the traditional and the 

newer scenarios are explored in this thesis: the first is examined in Chapter 5, while the latter 

is investigated in Chapter 8. By addressing both approaches, this thesis offers a comprehensive 

analysis of PI in the context of modern NLP challenges. 

4.4. Evaluation Metrics  

In PI, evaluating model performance is crucial for illustrating their effectiveness in 

distinguishing between paraphrased and non-paraphrased text. A variety of evaluation metrics 

are employed to assess the ACC and robustness of PI models. These metrics offer a quantitative 

evaluation of the model's effectiveness in identifying paraphrases, considering many factors 

including precision, recall, F1-score, and overall accuracy. A thorough analysis of the key 

evaluation metrics in the context related to Paraphrase detection is presented below, 

highlighting the categorization of samples into two groups: positive and negative. The 

definitions of these categories are as follows: 

• True Positive (TP): Cases where the model correctly identifies a paraphrase. 
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• True Negative (TN): Cases where the model correctly identifies a non-paraphrase. 

• False Positive (FP): Cases where the model incorrectly labels a non-paraphrase as a 

paraphrase. 

• False Negative (FN): Cases where the model fails to identify a paraphrase and labels it 

as a non-paraphrase. 

4.4.1. Accuracy (ACC) 

ACC is a commonly used evaluation metric for PI models that represents the ratio of correctly 

predicted samples to the total number of samples. It considers both paraphrased and non-

paraphrased samples within the dataset and is often its main metric examined. 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =	 𝑻𝑷#𝑻𝑵
𝑻𝑷#𝑻𝑵#𝑭𝑷#𝑭𝑵

     ( 4.1) 

ACC is especially advantageous when the dataset has an equal split in paraphrases and non-

paraphrases, as it provides a quick assessment of the model's overall performance.  In cases 

with imbalanced datasets, when non-paraphrase pairs overwhelm paraphrases, ACC might be 

misleading. A model that consistently predicts “non-paraphrase” for any sample may achieve 

a high ACC, despite its failure to correctly identify paraphrases, which is a critical aspect of 

the task. 

4.4.2. Precision (P) 

Precision measures the percentage of true positive samples to the total samples the model 

classifies as positive. Essentially, precision reflects the model's confidence in its positive 

predictions, making it a crucial metric in situations where false positives (incorrectly 

identifying non-paraphrased text pairs as paraphrases) incur a high cost. 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =	 𝑻𝑷
𝑻𝑷#𝑭𝑷

     ( 4.2) 

Precision is required in scenarios like PD when misclassifying unrelated text as a 

paraphrase can yield substantial consequences. Nonetheless, high precision alone may be 

problematic if the model shows overboard conservatism in identifying paraphrases, leading to 

the missing of many true paraphrase samples, which is where recall comes into play.  
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4.4.3. Recall (R) 

Recall, or sensitivity, measures the percent of true paraphrases correctly detected by the model 

relative to the total actual paraphrases in the dataset. It illustrates the model's ability to 

recognise paraphrase pairs, making it crucial in situations that failing to detect a paraphrase 

(false negatives) could result in substantial costs. However, a model with a high recall may also 

produce a high number of false positives due to its overly eagerness in predicting paraphrases. 

Therefore, recall makes sure that fewer paraphrases are missed; however, it must be balanced 

with precision to prevent the overall prediction accuracy from being affected. 

𝑹𝒆𝒄𝒂𝒍𝒍 = 	 𝑻𝑷
𝑻𝑷#𝑭𝑵	

      ( 4.3)  

4.4.4. F1-score 

F1-score combines precision and recall into a single metric in a way that balances the trade-

offs between them. It is especially advantageous in datasets that are imbalanced, as it 

guarantees that neither precision nor recall are disproportionately prioritised, as both false 

positives and false negatives must be considered. 

𝑭𝟏 = 	𝟐 ∗	 𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧∗𝐑𝐞𝐜𝐚𝐥𝐥
𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧#𝐑𝐞𝐜𝐚𝐥𝐥

     ( 4.4) 

The F1-score is beneficial for understanding the model's performance when both 

identifying and avoiding paraphrase pairs are equally important. 

In this thesis, the primary focus is placed on the F1-score due to the imbalanced nature of 

the datasets used for classification experiments. In these situations, the F1-score provides a 

balanced measure that considers both precision and recall. Unlike ACC, which can be 

misleading in imbalanced datasets, the F1-score ensures adequate accounting for both false 

positives and false negatives. 

While this research primarily uses the F1-score to evaluate the models' performance, other 

evaluation metrics like ACC are also reported. This provides for an in-depth evaluation of the 

algorithms, particularly in comparison to previous research. Many existing works in the field 

tend to prioritise ACC, often neglecting the importance of the F1-score in scenarios where the 

dataset is imbalanced. By including both metrics, this thesis aims to provide a more nuanced 
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comparison with prior works, highlighting the significance of using the F1-score alongside 

ACC to better assess model performance. 

4.5. Ethical Considerations 

In this research, ethical considerations were rigorously followed throughout the process of 

establishing the ALECS-SS dataset. The dataset consisted of Wikipedia text and was labelled 

by university students. Informed consent was obtained from all participants, with a clear 

explanation provided regarding the project's purpose, their role in the labelling tasks, and the 

intended use of their contributions. Participation was entirely voluntary, and assurances were 

given that opting out would not affect academic standing. To protect privacy, all contributions 

were anonymised, with no personally identifiable information linked to their work or disclosed 

in the final dataset. According to the Durham University ethics committee, formal ethical 

approval was not required for this study. 

To ensure fairness and protect the interests of the students involved in the labelling process, 

the tasks were carefully balanced with their existing academic commitments. The labelling 

tasks were structured to be intellectually stimulating and beneficial to their research skills, 

without imposing an excessive burden on their time. For PhD students participating outside 

formal academic requirements, proper recognition of their contributions was provided, and they 

were credited accordingly. 

To address potential bias, the students were provided with thorough training to ensure 

consistency and objectivity in the labelling process. The dataset was carefully monitored for 

any signs of bias, and efforts were made to minimise it throughout the project. Recognizing the 

potential for misuse, clear guidelines for the dataset's use were established, and its limitations 

were acknowledged in the thesis (Chapter 6). 

4.6. Conceptual Framework 

The research goal is to detect and identify paraphrased text at the paragraph-level, addressing 

a gap identified through the literature review in Chapter 3. Selecting an appropriate research 

methodology is important and must align with the particular issue being investigated. Based 

on the thesis objectives and research questions, the research framework is structured to begin 

with experiments that incorporate handcrafted features from texts of varying lengths into ML 
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and DL models, utilizing widely recognised datasets for PI tasks, such as MSRP and Webis-

CPC-11, Figure 4.1. These experiments follow a binary classification approach, where two 

texts are compared to generate a label (Chapter 5). The findings from these experiments 

underscored the need for a paragraph-level dataset which used for examining the detection 

algorithms in Chapter 8, Figure 4.2.  

 

Figure 4.1 Flowchart of a study that is explained in Chapter 5 

 

Figure 4.2  Flowchart of a study that is explained in Chapter 8 
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Figure 4.3 ALECS-SS dataset creation process Chapter 6 

Subsequently, it is created through a complex process using Wikipedia content Figure 4.3, 

called ALECS-SS (Chapter 6). This new dataset is then used to evaluate state-of-the-art models' 

ability to differentiate between machine-paraphrased and human-written paragraphs. These 

experiments are also applied as a binary classification task, taking a single paragraph as input 

and returning a label (Chapter 8) Figure 4.2. The MSRP and QQP datasets are also employed 

for this purpose.	The overall experiments architecture of the thesis is shown in Figures 4.1, 4.2 

and 4.3. 

4.7. Summary 

The existing research has primarily focused on short texts and sentence-level paraphrasing. 

However, recent advancements in LLMs have made it possible to analyze the context and 

semantics of longer texts. In this thesis, the focus is on studying paragraph-level paraphrasis, 

taking into account both intra-sentence and inter-sentence relations. To address the research 
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gaps identified in Chapter 3, a series of experiments were conducted, and their methodologies 

are summarized in this Chapter. 

The initial phase of the research involved the implementation of various ML and DL 

classification algorithms. These experiments highlighted the limitations of existing datasets, 

particularly in training transformer models, underscoring the need for a new dataset. 

Subsequently, the datasets used in the study were introduced,	 followed by a detailed 

explanation of the development of ALECS-SS. 

After the dataset is created, several classification methods are applied to differentiate source 

paragraphs from the machine-paraphrased text at the paragraph-level. The experiments 

demonstrated high ACC, particularly in detecting challenging cases of auto-paraphrased 

samples, where the proportion of paraphrased tokens was minimal. This performance 

highlights the effectiveness of the developed models in handling complex paraphrase 

identification at the paragraph-level. The following chapters discuss these experiments in more 

detail. 
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CHAPTER 5:  A PARAPHRASE 
IDENTIFICATION APPROACH IN 
PARAGRAPH-LENGTH TEXTS 

 

5.1. Introduction 

When students submit their work, institutions must ensure that it is free from plagiarism. Given 

the limitations of human capabilities in terms of scalability, such as the time required for 

thorough checks and maintaining consistency, ML and DL techniques are employed for tasks 

like plagiarism and paraphrase detection. Plagiarism as mentioned in the introduction refers to 

the use of another person's written work without proper citation or presenting others' ideas as 

one’s own (Maurer et al., 2006). In some cases, even when a reference is provided, extensive 

word-for-word copying from the source is also deemed plagiarism (Bär et al., 2012). 

Additionally, rewriting sentences while maintaining the source structure without proper 

attribution is categorised as plagiarism as well.	On the other hand, paraphrasing is the process 

of conveying the same meaning as the source but using different text structures and vocabulary 

(Bhagat & Hovy, 2013). This definition sets paraphrasing apart from verbatim reproduction, 

which involves copying the text exactly as it appears and is clearly not considered paraphrasing. 

As such, paraphrasing presents a significant challenge in the realm of PD. Detecting instances 

of paraphrasing requires sophisticated techniques, as it involves recognising when ideas are 

expressed in a new form but still closely mirror the source. Consequently, identifying and 

addressing paraphrasing is often regarded as one of the most complex aspects of PD. 

Generally, efforts to tackle the issue of PI have concentrated on comparing individual words 

within sentences (Vrublevskyi & Marchenko, 2020; Wan et al., 2006), analysing phrases within 

sentences (Arase & Tsujii, 2021), or contrasting entire sentences with one another  Nguyen et 

al., 2019). While these methods have yielded solid results, they are not well-suited for 

processing longer texts. Specifically, comparing each sentence in a potentially lengthy 

suspicious document to every sentence in the source texts proves to be an inefficient approach, 

highlighting the need for more scalable solutions in PI. 
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Given the challenges associated with detecting paraphrasing, the objective is to create a 

method specifically designed to identify paraphrases at the paragraph-level. This approach 

shifts the focus from analysing individual sentences to treating entire paragraphs as the 

fundamental units of comparison. By examining paragraphs as cohesive blocks of text, this 

chapter aims to streamline the detection process and improve efficiency. Instead of comparing 

every sentence in a document to all sentences in the source material, the current study will 

evaluate the overall structure and meaning of paragraphs. This will not only simplify the 

detection process but also enhance the accuracy of identifying paraphrasing, aligning with the 

complexities discussed in the previous chapters. 

In this chapter, ML and DL classification models are implemented. The classification 

models operate by processing two pieces of text simultaneously and determining whether they 

convey the same information. If the texts are semantically equivalent, the model outputs a '1'; 

if they are not, it returns a '0'. The primary objective of this experiment is to explore how the 

length of the text influences the model’s effectiveness in accurately detecting paraphrasing, 

providing insights into the scalability and sensitivity of the ML and DL models’ performance 

in terms of the PI task. To investigate this, the dataset samples are categorised based on their 

length, organising them into distinct groups.  

Specifically, ML approaches that primarily rely on handcrafted features are implemented, 

alongside advanced DL models for sentence representation, such as word2vec and SBERT. 

These methods are chosen due to their proven effectiveness in PI tasks (see Chapter 3). It is 

important to acknowledge that while transformer-based models are highly effective, they 

present significant challenges, particularly in terms of time consumption, computational 

resources, and high memory usage. Given these limitations, the focus of this work is on 

alternative approaches that have consistently yielded strong results in the past. The goal is not 

only to leverage these established methods but also to enhance and refine them for improved 

performance. In doing so, this chapter aims to strike a balance between model efficiency and 

accuracy, building on prior successes while addressing the limitations of more resource-

intensive models. 

For the purpose of this study, the following definitions are provided: 

• Sentence-level paraphrasing: Refers to the scenario where the meaning of a single 

sentence is paraphrased into exactly one other sentence, as seen in MSRP. 
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• Paragraph- level paraphrasing: Refers to the paraphrasing of a block of text consisting 

of multiple sentences, where the paraphrase may involve a different number and/or 

order of sentences. This can be observed in datasets like the Webis-CPC-11. 

• Passage-level paraphrasing: Refers to the paraphrasing of a multi blocks of text, where 

the paraphrase may involve a different number and/or order of blocks. (This type is out 

of this thesis’s scope) 

• Sentence-length level: Defines a short text length, consisting of fewer than 50 words. 

• Paragraph-length level: Represents a mid-length text, typically around 100 words, 

which is considered the average length of a paragraph (Larock MH et al., 1980). 

• Passage-length level: Refers to a longer text that spans more than a single paragraph, 

containing 150 words or more. 

With these definitions in mind, the primary research questions (RQs) for this chapter are 

formulated accordingly. 

• RQ1: How does the length of a piece of text affect the accuracy of the paraphrase 

identification approach used? 

• RQ2: What features are most effective for paraphrase identification across different 

levels of paraphrasing and varying text lengths? 

5.2. Method 

Previous research has explored various pre-processing techniques, such as the removal of stop 

words and word lemmatisation (Wan et al., 2006), as well as similarity measures like cosine 

similarity, soft cosine, and Euclidean distance (Vrbanec & Meštrović, 2021). Additionally, 

studies have examined the use of pre-trained word embedding models (Vrbanec & Meštrović, 

2020) in the context of PI tasks. Building on this foundation, the influence of input text length 

on the accuracy of ML and DL models in determining the optimal number of words necessary 

to convey sufficient semantic information is investigated in this chapter. Specifically, this 

experiment aims to address whether shorter texts, such as individual sentences, medium-length 

texts like paragraphs, or longer texts consisting of multiple passages or extended paragraphs, 

provide the most meaningful semantic detail for ML and DL models to effectively identify 

paraphrases. Furthermore, the study explores which features are best suited for paraphrase 

detection across varying text lengths and paraphrasing levels. It is investigated whether certain 
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types of features are more effective for identifying paraphrases in shorter sentence-based inputs 

compared to those found in longer paragraph-based texts. The analysis is designed to uncover 

the relationship between text length, semantic content, and feature selection in improving 

model performance on PI tasks. 

5.2.1. Dataset 

In this experiment, the focus is placed on two widely used datasets in the field of PI: the MSRP 

and the Webis-CPC-11. These datasets serve as benchmarks for evaluating PI models. 

However, it is important to note that they differ significantly in terms of the distribution of their 

labelled categories. 

MSRP is known for being imbalanced, meaning that the dataset contains a disproportionate 

number of positive and negative samples. Specifically, 67% of the samples in MSRP belong to 

the positive class, indicating that the majority of the text pairs in this dataset are labelled as 

paraphrases. This imbalance can affect model training, as the classifier may become biased 

toward predicting the majority class. 

On the other hand, Webis-CPC-11 offers a nearly balanced dataset, with 51.75% of the 

samples being acceptable paraphrased pairs and 48.25% classified as non-paraphrased pairs. 

This balanced distribution allows for a more even representation of both classes, which can be 

beneficial for training models that need to generalise well across both paraphrased and non-

paraphrased instances.  

Most PI experiments to date have primarily focused on the MSRP, which is composed of 

sentence-level paraphrases. As a result, the majority of research in this area primarily evaluates 

sentence similarity, which limits the scope of findings to relatively short text segments. 

However, in real-world applications, paraphrasing often occurs at a higher, more natural level, 

such as paragraphs (Wahle, Ruas, Foltýnek, et al., 2022), as is more commonly seen in the 

Webis-CPC-11. This makes Webis-CPC-11 a valuable resource for studying paraphrase 

detection beyond the sentence-level, offering a more realistic reflection of paraphrasing in real-

world scenarios. 

A key point of comparison between the MSRP and Webis-CPC-11 datasets is the difference 

in text length, which plays a crucial role in this study. While MSRP limits its scope to sentences 
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with a maximum length of 36 words (Figure 4.1. a), the Webis-CPC-11 dataset contains 

passages that can reach up to approximately 1,000 words in length (Figure 4.1.b). The 

substantial variation in text length within the Webis-CPC-11 corpus provides an opportunity to 

investigate how text length influences the performance of ML and DL models in PI tasks. This 

range allows for a deeper analysis of how different lengths of text impact model accuracy and 

effectiveness.  

 

Figure 5.1 The X-axis represents the number of words in a given text, whilst the Y-axis represents the 
number of samples in MSRP (a) and Webis-CPC-11 (b) 

To fully explore the impact of text length on model performance, the Webis-CPC-11 dataset 

has been further divided into three sub-corpora based on text length: short, medium, and long 

(as discussed in section 5.3.4 below) after implementing pre-processing techniques. This 

stratification allows for a systematic investigation of the effect of different text lengths on both 

traditional ML models and DL models, with the aim of identifying the optimal length of text 

for effective PI. 

5.2.2. Method of Feature Extraction 

For this study, the focus is on selecting the most relevant features for PI that can effectively 

transform text into numeric representations. The features chosen for this task are those that 

have been widely used in previous research, as discussed in Chapter 3, including TF-IDF, 

BLEU, dependency trees, N-gram overlap, and Word2Vec (Cordeiro et al., 2007; João et al., 

2007; Hunt et al., 2019; Ji & Eisenstein, 2013; Kenter & de Rijke, 2015; Nguyen et al., 2019; 

Vrbanec & Meštrović, 2020; Vrbanec & Meštrović, 2021; Wan et al., 2006). Each of these 

features has proven effective in capturing different aspects of text similarity and structure. 
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However, it is important to note that most of the prior studies have mainly utilised the 

MSRP, which is focused on sentence-level paraphrasing. In contrast, this research shifts the 

focus to a more complex task: paragraph-level paraphrasing, as seen in the Webis-CPC-11 

dataset. By moving beyond sentence-level comparisons, this study aims to explore how 

features perform when applied to longer text segments, where the relationships between 

sentences and the overall structure of the text play a more significant role. Thus, the use of 

paragraph-level paraphrasing presents new challenges and opportunities for improving the 

accuracy of PI tasks, especially when compared to the sentence-level paraphrases found in the 

MSRP dataset. 

5.2.2.1. Bleu and N-gram overlap features. 

The BLEU metric, originally developed to automatically evaluate the quality of machine 

translation systems (Papineni et al., 2002), operates by comparing a translated text against a 

reference source text. It does this by calculating the overlap of N-grams, which are continuous 

sequences of words, between the two texts. Then, João et al. adapted this metric for use in PI 

tasks (João et al., 2007). In this adaptation, the BLEU score is computed by counting the N-

gram overlaps between two sentences, where N is set to 4. This is expressed mathematically in 

Equation 5.1, where Cn represents the ratio of matching N-grams to the total number of N-

grams in a given sentence. 

𝑪𝒏 = ∑ 𝑪𝒐𝒖𝒏𝒕𝒎𝒂𝒕𝒄𝒉	(𝒏𝒈𝒓𝒂𝒎)
𝑪𝒐𝒖𝒏𝒕(𝒏𝒈𝒓𝒂𝒎)𝒏𝒈𝒓𝒂𝒎                  (5.1) 

Equation 5 .1 captures the N-gram overlap feature, which is integral to implementing BLEU 

for PI tasks. BLEU for PI is further modified by introducing the brevity penalty (BP) factor, 

which adjusts for variations in sentence length, as shown in Equation 5.2. 

𝐵𝐿𝐸𝑈>?>@AB? = 𝐵𝑃 ∗ [∏ 𝐶CD
CEF ]

&
'            (5.2) 

This adaptation of BLEU has been successfully applied in several studies to measure 

paraphrase similarity and has demonstrated effectiveness comparable to more complex 

methods, such as those based on dependency tree structures (Vrublevskyi & Marchenko, 2020; 

Wan et al., 2006). However, in this study, the focus remains solely on BLEU for a few reasons. 

One key reason is that while dependency tree features have been shown to perform well on 

shorter text segments, they are less effective when applied to longer texts (Kenter & de Rijke, 
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2015). Given that this research explores PI across a range of text lengths, including short, 

medium, and long passages, BLEU’s simplicity and adaptability make it a more suitable choice. 

Moreover, Equation 5.1 is implemented to extract N-gram overlap features, allowing for a more 

efficient and scalable approach to PI over varying text lengths. 

5.2.2.2. Word2vec 

Word2Vec is a powerful word embedding technique that transforms words from a vast corpus 

into fixed-length, dense, continuous-valued vectors. The primary advantage of these vectors is 

that cosine similarity can be used to measure the degree of semantic similarity between words. 

Essentially, words with similar meanings will have vectors that are closer in their 

multidimensional space, while words with different meanings will be further apart. This vector-

based representation is generated through a neural network model that considers the 

surrounding context of each word, enabling it to capture not just the word’s meaning, but also 

its relationship with other words in the corpus. 

There are two primary methods for training Word2Vec models: CBOW and Skip-Gram 

(Hunt et al., 2019). CBOW predicts a target word based on the surrounding context, while Skip-

Gram does the reverse by predicting the context words from a target word. In this study, a pre-

trained Word2Vec model with 300 dimensions is used, where each word is represented as a 

300-dimensional vector. Although these models are inherently designed to represent individual 

words, they are often extended to represent entire sentences or documents by aggregating the 

vectors of all the words within the text. A common approach to achieve this is by taking the 

mean of the word vectors across the text. However, as noted in (Kenter & de Rijke, 2015), 

averaging word vectors does not always provide an accurate representation of a sentence or 

passage, particularly in cases where one text contains terms absent from the other. 

To address this issue, instead of calculating the mean of word vectors, the vectors of all 

words within the text are summed to generate a more robust representation of the entire text. 

This method, known as sent2vec (Pagliardini et al., 2018), is utilised to enhance the overall 

text representation and is expressed mathematically in Equation 5.4, where d represents the 

vector dimensions and n represents the number of words in the paragraph: 

	𝑠𝑒𝑛2𝑣𝑒𝑐 = 	∑ ∑ 𝑤GHC
H

?
G       (5.4) 
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The next step involves determining the similarity between the vector representation of the 

source text and the paraphrased text. While cosine similarity was used in previous studies by 

(Vrbanec & Meštrović, 2020; Hunt et al., 2019) to measure the degree of overlap between two 

vectors, a different approach is adopted in this study. Instead of using cosine similarity, the 

vector of the paraphrased text is subtracted from the vector of the source text. This subtraction 

provides a measure of the distance between the two vectors, reflecting the degree to which the 

meaning of the paraphrased text overlaps with or diverges from that of the source. By focusing 

on the differences between the vectors, this method offers a precise understanding of the 

semantic similarity between the texts, capturing subtle shifts in meaning that may be missed 

by other approaches. 

5.2.3. Classifier 

In this chapter, several ML algorithms commonly applied to PI, treated as a binary classification 

task, have been tested. Algorithms such as LR and SVM are evaluated for their performance in 

determining whether a pair of texts represents a paraphrase. While multiple algorithms are 

explored, only the best-performing models are reported in detail in the following sections. 

Furthermore, to incorporate cutting-edge approaches known for achieving high accuracy 

across various NLP tasks, the performance of the SBERT model is also examined in this study. 

SBERT is a state-of-the-art DL model specifically designed to produce high-quality sentence 

embeddings, and it has demonstrated superior performance in multiple downstream tasks, 

including paraphrase detection. Here, SBERT is applied not just to sentence-level paraphrasing 

but also to more complex paragraph-level paraphrasing, with an emphasis on how text length 

influences its effectiveness. The study investigates SBERT's capabilities across different text 

lengths, ranging from short sentences to longer passages, to assess its adaptability and accuracy 

in capturing semantic relationships across varying text sizes. 

5.3. Experiment 

To investigate how text length influences the accuracy of using individual or combined features 

in ML and DL models for PI, this study utilises two datasets: the MSRP and the Webis-CPC-

11. MSRP is selected for its focus on short texts, while Webis-CPC-11 offers a diverse range 

of text lengths, making it ideal for a more comprehensive analysis. 
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The samples from Webis-CPC-11 are first pre-processed to remove empty entries and pairs 

where the source and paraphrased texts significantly differ in length. Additionally, identical 

text pairs are excluded to align with this work’s definition of paraphrasing, as outlined in 

Chapter 1. According to this definition (referenced in formula 1.1 in Chapter 1), two texts in a 

pair must differ in wording but retain the same meaning. After these adjustments, the dataset is 

renamed Webis-CPC-21, following the naming convention of the original dataset, where “11” 

refers to the year of creation, 2011. This new dataset reflects the adjustments made to ensure it 

adheres to the study’s criteria for paraphrasing. 

Tables 5.1 and 5.2 illustrate the Webis-CPC-11 and Webis-CPC-21 datasets. The total 

number of Webis-CPC-11 samples is reduced by 3,989 after removing identical and highly 

similar samples. Similarity is measured using TF-IDF, followed by cosine similarity to assess 

the similarity between text pairs. All samples with 90% or greater similarity are removed. 

Notably, these samples included both positive and negative labels, as outlined in the original 

paper on Webis-CPC-11, which indicated that samples are labelled as negative not only when 

relevance is lacking but also when excessive similarity is present. As a result, both highly 

similar positive and negative samples are removed to create Webis-CPC-21.  Moreover, these 

tables provide numerical information for each dataset, detailing the total number of short, 

medium, long, and extra-long samples, as well as the positive and negative labels within each 

category. 

Table 5.1: Number of positive samples (i.e., true paraphrase) and negative samples (i.e., non-
paraphrase) in Webis-CPC-11. 

Category Positive Negative Total 

Webis-CPC-11 4067 3453 7520 

Short text 978 339 1317 

Mid text 1207 705 1912 

Long text 331 287 618 

Extra long 1506 2091 3597 

Next, Webis-CPC-21 is divided into three subsets based on text length: short, medium, and 

long texts. The short text subset includes samples with up to 50 words, while the mid-length 

text subset covers texts between 51 and 150 words, consistent with the typical length of an 

English paragraph, which averages around 100 words (Larock MH et al., 1980). The long text 
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subset includes samples with 151 to 500 words. This stratification allows for a more detailed 

analysis of how different text lengths impact model performance. Notably, the category of 

extra-long text is excluded from this study because its lengths ranged from 500 to over 1000 

words, exceeding the maximum length considered by state-of-the-art models in this 

experiment, which is 500 tokens.	 Additionally, analysing texts with variations in length 

exceeding the 500-word range is deemed unnecessary for the objectives of this experiment. 

MSRP, on the other hand, is retained in its original form due to its focus on short texts, with 

most samples containing fewer than 40 words. Although MSRP only includes short text data, 

it is widely used in state-of-the-art paraphrase identification research, making it a valuable 

point of comparison for this study. Even though the comparison between MSRP and Webis-

CPC-21 is not entirely equivalent due to differences in text length, including both datasets 

allows for insights into how models perform across varying text lengths. 

Both the MSRP and Webis-CPC-11 datasets consist of paraphrased and non-paraphrased 

text pairs, labelled as positive and negative, respectively. Table 5.2 provides a breakdown of 

the number of positive and negative samples in each dataset. 

Table 5.2: Number of positive samples (i.e., true paraphrase) and negative samples (i.e., non-
paraphrase) in each category. 

Category Positive Negative Total 

Webis-CPC-11 4067 3453 7520 

Webis-CPC-21 2690 841 3531 

Short text 931 227 1158 

Mid text 1085 254 1339 

Long text 446 154 600 

Extra long 228 206 434 

MSRP 3900 1901 5801 

5.3.1. Pre-processing 

Pre-processing in this study involves both cleaning the data and converting it into a vector 

format before it is passed into a classifier. The data cleaning phase includes several steps aimed 

at enhancing the quality of the input text. First, irrelevant punctuation and common stop words 
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are removed. Stop words are frequently occurring words like “a,” “in,” and “the”. Since there 

is no universal stop-word list that applies to all NLP tasks, this study employs the stop-word 

list provided by NLTK in Python. 

In addition to removing stop words, all text is converted to lowercase to ensure uniformity, 

as capitalisation is not essential for most NLP tasks. Following this, the words are lemmatised, 

a process that reduces each word to its root or base form, depending on its context and part of 

speech. Lemmatisation helps retain the semantic meaning of words while simplifying them to 

their most fundamental form. For this task, the WordNet Lemmatiser is used, which leverages 

WordNet’s built-in “morphy” function to identify the root form of each word. If the word is not 

found in WordNet, it remains unchanged. This method ensures that the text is in its simplest 

and most meaningful form, allowing the classifier to focus on relevant patterns and 

relationships between words. 

5.3.2. Feature Sets 

Since the focus is on evaluating how different features perform across various text lengths, 

experiments are conducted for each feature—TF-IDF, Bleu metric, sent2vec, and N-gram 

overlap—both individually and in combination. These experiments are applied to the original 

dataset, the modified dataset, and the sub-datasets with different text sample lengths. 

5.3.3. Baseline Model’s Result 

The findings reported in (Burrows et al., 2013) established the ground truth for the Webis-CPC-

11 dataset. Specifically, the dataset's precision is 81, ACC is 84, and recall is 90. Although 

(Burrows et al., 2013) did not directly report the F1-score, it has been computed using the 

equation reported in section 4.4 of this thesis, yielding an F1-score of 85. These performance 

metrics are derived from the results of (Burrows et al., 2013), where ten distinct metrics are 

used as features for a k-nearest neighbour ML algorithm. 

5.3.4. Results and Discussion 

The evaluation of different features across various datasets reveals distinct performance 

patterns in PI tasks, particularly concerning text length (Table 5.3). In the Webis-CPC-11 

dataset, the TF-IDF feature demonstrates superior performance, achieving the highest ACC of 
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87% and an F1-score of 82%. This suggests that statistical methods such as TF-IDF are highly 

effective in capturing important word-frequency relationships. Conversely, the Sen2vec model 

shows moderate success, with a 64% ACC and a 63% F1-score, indicating that while semantic 

representation has value, it may not completely capture the subtleties within this dataset that 

contains highly similar samples in both categories of label (positive, negative). Interestingly, 

the combination of all features results in a marginal improvement, with an ACC of 66% and an 

F1-score of 65%, which implies that for a variety length of text in Webis-CPC-11, combining 

features does not significantly enhance the model’s overall performance. 

After modifying the Webis-CPC-11 dataset by excluding identical samples and pairs with 

notable differences in length to create Webis-CPC-21, a significant improvement in results is 

observed. Specifically, exceptional performance is achieved by semantic-based features like 

Sen2vec, with an ACC of 80% and an F1-score of 88%. Strong performance is also 

demonstrated by N-gram overlap, which yielded an ACC of 83% and a 90% F1-score, 

indicating its effectiveness in capturing structural relationships between paraphrases, 

particularly within this dataset. However, when all features are combined, the ACC decreased 

slightly to 79% while the F1-score remained high at 88%. This suggests that although feature 

integration provides comprehensive coverage, it may weaken the advantages of individual 

features, particularly for long text category. Overall, the dataset modifications and the less 

variety in text-lengths subsets samples size contributed to improved results compared to the 

original Webis-CPC-11. 

Table 5.3: ACC and F1 results for BLEU, TF-IDF, Sent2Vec, N-gram overlap, and All Features across 
six datasets. Bold = highest per feature; underline = highest per dataset. 

Dataset Bleu TF-IDF Sen2vec Ngram_overlap All Features 

Evaluation ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 

Webis-CPC-11 57 72 87 82 64 63 56 68 66 65 

Webis-CPC-21 77 87 78 87 80 88 83 90 79 88 

Short text 77 82 78 87 79 88 77 82 79 88 

Mid length 81 89 83 90 84 91 85 91 85 91 

Long text 73 84 73 84 75 89 78 86 75 85 

MSRP 67 80 71 80 72 82 69 81 71 81 

In the case of short texts, such as those found in the Webis-CPC-21 dataset, both TF-IDF 

and Sen2vec exhibit strong performance, with accuracies ranging from 78% to 79% and F1-
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scores from 87% to 88%. These results indicate that statistical features like TF-IDF, as well as 

semantic representations, are particularly well-suited for short-text PI. Notably, combining all 

features in this case maintains similarly high results, with an ACC of 79% and an F1-score of 

88%, indicating that a combination of features can capture diverse characteristics of short texts 

without significant performance trade-offs. 

When analysing mid-length texts, Sen2vec and N-gram overlap emerge as the top-

performing features. Both achieve high ACC (84-85%) and F1-scores (91%), indicating that 

semantic and structural features are particularly effective for texts of moderate length. In this 

case, combining all features yields results similar to those obtained from using the N-gram 

overlap feature alone, with an ACC of 85% and an F1-score of 91%. Generally, all features 

show high ACC and F1-scores, ranging from 81% to 85% and 88% to 91%, respectively. Thus, 

mid-length text is more effective for identifying paraphrases. 

For long texts, the results indicate a slight to high decrease in performance across all 

features compared specifically to the mid-length texts. Sen2vec continues to perform best, with 

an ACC of 75% and an F1-score of 89%, emphasising that semantic representations are crucial 

for capturing the meaning of longer texts. However, combining all features results in a drop in 

both ACC and F1-score, suggesting that the combination may not provide a substantial 

advantage for longer text samples, where semantic representation is more critical. 

In the MSRP dataset, which primarily consists of short sentences, both Sen2vec and TF-

IDF perform almost similarly, with accuracies around 71-72% and F1-scores of 80-82%. This 

demonstrates that for sentence-level paraphrasing, both statistical and semantic features are 

highly effective. The combination of features, in this case, does not show significant 

improvement, achieving an ACC of 71% and an F1-score of 81%. This suggests that for short-

text datasets like MSRP, individual features can perform as well as the combined methods, 

possibly due to the limited variation in sentence structure and content. 

Furthermore, the results for each feature on the MSRP dataset are notably worse compared 

to those achieved on the short text category within the Webis-CPC-21 dataset. This discrepancy 

suggests that the superior results observed on Webis-CPC-21 may be because the text samples 

in MSRP are even shorter than those in the short text category of Webis-CPC-21, 36-50 words, 

respectively. 
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In terms of examining SBERT as a state-of-the-art transformer model for the PI task, the 

results in Table 5.4 indicate a mixed performance across different datasets and text lengths. For 

the Webis-CPC-11 dataset, SBERT achieves an ACC of 78% and an F1-score of 83%. While 

this reflects an improvement over individual features like N-gram overlap and Sen2vec, which 

achieved 56% and 64% ACC and F1-scores of 68% and 63% respectively, SBERT falls short 

of outperforming traditional ML features such as TF-IDF, which achieved 87% ACC.  

In contrast, the Webis-CPC-21 dataset shows better results for SBERT, with an ACC of 

79% and an F1-score of 88%. This performance closely aligns with Sen2vec (80% ACC and 

88% F1-score) and N-gram overlap (83% ACC and 90% F1-score), indicating that SBERT is 

affected by the diversity of text lengths present in Webis-CPC-21. Despite this, combining all 

features from earlier models produced similar results, suggesting that SBERT performs 

comparably to these semantic and structural features in handling various text lengths. 

SBERT demonstrates remarkable performance on short and mid-length texts. For short 

texts, it achieves 89% ACC and 94% F1-score, outperforming previous methods like TF-IDF 

and Sen2vec, which both peaked at 79% ACC and 88% F1-score. Similarly, for mid-length 

texts, SBERT reaches the same 89% ACC and 94% F1-score, surpassing earlier results from 

features like N-gram overlap and Sen2vec, which maxed out at 85% ACC and 91% F1-score. 

These results highlight SBERT’s effectiveness in capturing semantic and contextual 

information in shorter text segments, making it highly suitable for sentence and paragraph-

length and paragraph-level paraphrases. However, SBERT struggles in detecting Long-

paraphrased text, achieving only 69% ACC and a 79% F1-score. These figures are notably 

lower than the performance of Sen2vec, which achieved 75% ACC and 89% F1-score. This 

suggests that SBERT's ability to handle longer passages is limited compared to semantic-based 

models, which excel in conveying the meaning of extended text segments. 

Finally, in the MSRP dataset, which consists of short sentences, SBERT performs well, 

achieving 72% ACC and 82% F1-score. This result mirrors the performance of the Sen2vec 

model, indicating that SBERT is well-suited for sentence-level paraphrase identification but 

does not significantly outperform simpler models on short-text datasets. 

In summary, the experiments reveal that text length plays a crucial role in the performance 

of PI models. Semantic-based features like Sen2vec excel in capturing the meaning of longer 

texts, while statistical features such as TF-IDF are better suited for shorter text segments. 
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Combining multiple features tends to yield better results, particularly for mid-length texts, but 

for very short or long texts, individual features often perform more effectively. These findings 

underscore the importance of choosing features that align with the specific text length to 

optimise the performance of PI models. 

Table 5.4. The results of SBERT across multiple datasets, with accuracy (ACC) and F1-scores reported 
for each.  

Transformer model SBERT 

Evaluation ACC F1 

Webis-CPC-11 78 83 

Webis-CPC-21 79 88 

Short text 89 94 

Mid Text 89 94 

Long Text 69 79 

MSRP 72 82 

Additionally, SBERT shows strong performance in short and mid-length text categories, 

surpassing traditional feature-based models in these cases. However, its effectiveness drops 

when applied to longer texts, where methods like Sen2vec may be more suitable for handling 

extended passages. This suggests that while SBERT is highly capable in some PI tasks, 

especially those involving shorter text (short and mid-length text), it may not be the best option 

for longer documents, emphasising the need for model selection based on text length in 

paraphrase detection tasks. 

For more investigation, the results in Table 5.3 show a notable improvement over the 

baseline system for the Webis-CPC-11 dataset, which serves as the primary dataset for this 

study due to its diverse range of text lengths and paraphrase types. The achieved F1-score of 

90% represents a 5% increase in F1-score on the Webis-CPC-21 dataset when considering the 

N-gram overlap feature. Moreover, the accuracy on the Webis-CPC-11 dataset surpasses the 

baseline by 3%, while the F1-score is slightly lower by 3%. However, it's crucial to emphasise 

that these results are achieved with just one feature (TF-IDF) as opposed to the baseline system 

that employed 10 different features. This demonstrates that the approach, even with fewer 

features, can deliver competitive and efficient performance, particularly in handling the 

dataset's varied text lengths and representing paragraph-level paraphrases. The ability to 
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achieve strong outcomes with a restricted feature set emphasises the model's robustness in PI 

tasks. 

Furthermore, previous studies have employed pre-trained word2vec models with cosine 

similarity or soft cosine measures, considering the mean of the all-words vectors, for the MSRP 

and Webis-CPC-11 datasets (Vrbanec & Meštrović, 2021). In contrast, the approach taken here 

involves converting each piece of text into a single vector by summing all the word vectors 

within the text and then subtracting the paraphrased sentence vector of the source sentence 

vector (V1-V2). This method captures the overall semantic substance, thus representing the 

comprehensive meaning of the text. As demonstrated in Table 5.5, this proposed method yields 

better results than using cosine similarity or soft cosine measures with Sev2vec on both the 

MSRP and Webis-CPC-11 datasets. 

Additionally, it is thought that SBERT would do better than the ML and DL methods used 

in this chapter because it had been trained on a large unsupervised text dataset and could handle 

up to 512 tokens, which is longer than the text in the sub-categories. Although SBERT requires 

more computational resources and power to operate, it performs better only for the Short and 

Mid text sub-categories, as well as for its equivalent on the MSRP dataset (Table 5.5). On the 

contrary, the results for Webis-CPC-11 and Webis-CPC-21 show a decrease in ACC of 9% and 

4%, respectively, when implementing SBERT. For the Long text sub-category, SBERT’s 

performance declines significantly compared to the method that relies solely on the N-gram 

overlap feature. This comparison highlights the limitations of using transformer models like 

SBERT. Unlike these models, which demand significant GPU power and high memory 

capacity, the method employed does not require such extensive resources. Additionally, ML 

and handcrafted features provide a more straightforward and accessible alternative to state-of-

the-art models that require pre-training and specialised equipment, which is not always easily 

accessible.  

Finally, it is observed that the efficiency of both ML and DL models improves when the 

text length is balanced, neither too short nor too long. Therefore, feature engineers must 

account for the text length when extracting features from text segments. By carefully 

considering text length, model performance can be enhanced, ensuring greater effectiveness 

across varying text lengths. 
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Table 5.5 Word2Vec on MSRP and Webis-CPC-11 dataset with different measure, v1and v2 refer to the 
text 1 and text 2 vectors respectively, bold font represents the highest ACC and F1-score 

Source Measure 
MSRP Webis-CPC-11 

ACC F1 ACC F1 

(Vrbanec & Meštrović, 2021) Soft cosine (v1, v2) 71 82 52 67 

(Vrbanec & Meštrović, 2021) Cosine (v1, v2) 69 80 52 67 

Proposed method (v1- v2) 72 82 64 63 

5.4. Summary 

This chapter addresses RQ1 and RQ2 by investigating the impact of text length on model 

performance when measuring the semantic similarity between different texts and identifying 

which features are most effective for short, mid, and long text lengths. The experiments 

conducted demonstrate that mid-length texts are particularly adept at conveying the semantic 

meaning of natural language compared to both short and long texts. To assess this, three distinct 

features are considered following the preprocessing of the text. The experiments utilised two 

datasets that differ in terms of text length and types of paraphrases. 

Overall, no single feature emerged as the best performer across all categories. Nevertheless, 

mid-length texts consistently achieved the highest ACC and F1-score, both when analysing 

each feature separately and when examining combinations of features. Additionally, results 

indicate that long texts generally yield better performance than short texts and, surprisingly, 

even surpass the performance of state-of-the-art transformer models in some cases. 

Given the findings of this study, there is a significant need for a new dataset specifically 

dedicated to mid-length texts. The research highlights that mid-length texts are particularly 

effective in capturing semantic meaning and achieving high ACC and F1-score. However, the 

existing datasets do not provide an adequate representation of mid-length texts, which 

constrains the ability to fully explore and optimise DL models for this text length. A new dataset 

with a robust collection of mid-length texts would not only address this gap but also advance 

research in PI by extending the focus beyond sentence-length and sentence-level paraphrases. 

This dataset would enable more detailed investigations into paragraph-length and paragraph-

level paraphrases, allowing for a deeper understanding of how DL models perform with longer 
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text segments and leading to more refined and effective PI methods. In the next chapter, details 

of a novel method for creating a such dataset are provided and evaluated.  

  



 90 

CHAPTER 6:   DATASET CREATION AND 
EVALUATION 
 

6.1. Introduction 

Paragraph-level paraphrasis involves several transformations, including sentence reordering, 

splitting, and/ or merging, in addition to sentence-level paraphrasis. These processes modify 

the text both lexically and semantically while preserving its original meaning, adding 

complexity to paraphrase detection at this level. The combination of these changes makes it 

more challenging to maintain coherence and meaning, requiring more sophisticated methods 

to detect and evaluate paraphrased content accurately. Foundational work in this area is done 

by Al Saqaabi et al. (2022), who developed an algorithm specifically to detect paraphrasing at 

the paragraph-level (Chapter 5). However, their study is limited by the absence of suitable 

datasets, which is crucial for advancing research in this domain. The lack of these resources 

caused obstacles to further investigation of PI at the paragraph-level, particularly given the 

increasing significance of advanced LLMs that facilitate the processing and generation of 

lengthy text. 

Given that no publicly available datasets currently address paragraph-level paraphrasing 

with the integration of LLMs, this thesis seeks to bridge that gap by addressing sentence 

reordering in a more systematic manner. Inter-sentence diversity is ensured by implementing 

three different algorithms based on an LLM. Specifically, this research applies the SOP from 

the ALBERT re-training model (Lan et al., 2020). In this approach, reconstructed paragraphs 

are generated based on the semantic and contextual relationships between the source sentences. 

This technique ensures the preservation of the paragraph's meaning despite significant 

transformations in the sentence structure. 

To further diversify, the output text is lexically paraphrased using three different 

Transformer-based LLMs, each employing varying levels of MLM probabilities. These models 

are included because they are assessed based on their ability to generate paraphrased text that 

is challenging for humans to distinguish (Wahle, Ruas, Kirstein, et al., 2022). This approach 

generates multiple paraphrased versions of each source paragraph, contributing to the creation 

of the ALECS-SS dataset. The ALECS-SS dataset serves as a significant resource for 
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examining the complexities of paragraph-level paraphrasing, offering a diverse range of 

samples for model training and evaluation. 

According to Ventayen (2023), artificial intelligence models are capable of generating 

paraphrased text that is both highly coherent and contextually accurate. While these capabilities 

present numerous advantages for NLG, they also pose significant challenges in the realm of 

academic integrity and content originality. The potential for AI-generated paraphrased text to 

be misused for producing plagiarised material is a growing concern. Becker et al. (2023) further 

emphasise that the sophistication of these models makes it increasingly difficult to distinguish 

between artificially paraphrased content and text written by humans (Becker et al., 2023). 

In light of these challenges, the development of a large-scale paragraph-level paraphrase 

dataset is not only beneficial but essential. Such a dataset is critical for training DL models 

capable of reliably detecting paraphrases, which represents a key step in identifying 

plagiarism—particularly in cases where AI systems generate paraphrased versions of source 

text without proper attribution, thereby converting paraphrasing into a form of plagiarism. 

ALECS-SS responds to this need by providing approximately 27 paraphrased versions of each 

source paragraph, encompassing a range of paraphrasing intensity as measured by the number 

of shuffled sentences and the proportion of altered tokens. This breadth makes ALECS-SS 

valuable not only for advancing PI but also for pedagogical purposes. For instance, it can offer 

students graded examples of paraphrasing appropriate to their level of progress or support 

formative feedback by flagging paraphrases that remain overly close to the original text and 

suggesting deeper reformulation or improved coherence. By leveraging ALECS-SS, this thesis 

seeks to strengthen paragraph-level paraphrase identification and to contribute to safeguarding 

the integrity of written content. 

Given the focus on creating and evaluating a large-scale dataset for paragraph-level 

paraphrases, the research questions explored in this chapter are as follows: 

o RQ3: Which of the three novel paragraph-level paraphrasing algorithms (SALACs) 

proposed preserves the source paragraph's meaning most effectively? 

o RQ4: Is there a correlation between the similarity score assigned by human evaluators 

and the automatically generated coherence score used for paraphrase generation by 

the paragraph-level algorithms (SALACs)? 
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o RQ5: Is there a correlation between the automatically generated paraphrased 

paragraph’s semantic similarity score and the human-written paragraph’s semantic 

similarity score? 

6.2. Methodology 

The ALECS-SS dataset is developed by collecting paragraphs from social science domains 

retrieved from Wikipedia. Articles related to linguistics and law are excluded due to their 

paraphrasing requirements, such as requiring the models to be specifically trained in legal 

language. Following this selection process, the dataset comprises 391,205 paragraphs, each 

ranging from 50 to 151 words in length, aligning with the average paragraph length in English 

(Larock MH et al., 1980) (refer to Figure 6.1), and includes a minimum of three sentences 

(refer to Figure 6.2). This sentence requirement ensures that the paraphrasing methodology, 

which is based on inter-sentence semantics, is distinct from sentence-level approaches utilised 

in other datasets. The primary objective of establishing ALECS-SS is to develop a dataset for 

training state-of-the-art NLP models to differentiate between human-written and machine-

paraphrased texts to detect plagiarism in academic writing at the paragraph-level. 

 

Figure 6.1 The ALECS-SS dataset described by the number of samples according to the word count in 
the paragraphs. 

 

Figure 6.2 The ALECS-SS dataset described by the number of samples based on the count of 
sentences.  
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6.2.1. Inter-Sentence Paragraph Coherence Score 

Evaluating sentence similarity and generating coherence scores has been extensively studied. 

Coherence is commonly defined through methods such as entity analysis (Elsner, M. & 

Charniak, E, 2011) and word co-occurrence analysis (Soricut & Marcu, 2006). Recently, LLMs 

have incorporated these tasks into their training processes. For example, BERT utilises NSP, 

while ALBERT employs SOP. This study employs SOP, as ALBERT demonstrates better 

performance in terms of measuring document coherence (Shen et al., 2021). It considers inter-

sentence semantics and generates a coherence score based on the sentences’ semantic vectors 

that represent the validity of the order between two sentences (Lan et al., 2020). In more detail, 

SOP is designed to predict whether one sentence logically follows another, integrating this task 

into ALBERT's training to enhance its understanding of contextual relationships between 

sentences. This framework operates by converting sentences into semantic vectors, which are 

then used to determine the probability of sentence order, resulting in a coherence score. This 

score is instrumental in assessing document coherence and improving text generation. 

6.2.2. SALAC Algorithms 

In this method, each paragraph is transformed into a fully connected directed graph (G) (refer 

to Figure 6.3) with sentences (S1 to Sn; where n refers to the total number of sentences in the 

graph G) acting as nodes, as in Equation 6.1: 

 

Figure 6.3: fully connected directed graph 

𝑉(𝐺) = {𝑆!, 𝑆", … , 𝑆#}     (6.1) 
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To achieve this, each sentence is first converted into a semantic vector that incorporates 

contextual information, utilising the ALBERT model. These sentence semantic vectors are then 

processed through the SOP framework. The output from the SOP framework provides a 

probability (P) indicating the likelihood of placing the i-th sentence (Si) before the j-th sentence 

(Sj) within the paragraph. Equation 6.2 details this probability, which is referred to as the 

coherence score or semantic score in this thesis. The coherence score is used to determine the 

weight of the edge connecting the nodes in the graph. 

𝑃%&'@𝑆() , 𝑆(
*A = B'+,,.,

)/*
)0*C    (6.2) 

It is noteworthy that the coherence score from sentence S1 to sentence S2 is not necessarily 

the same as the score from S2 to S1. This distinction is crucial, as it reflects the directional 

nature of sentence relationships within the paragraph. 

Three algorithms are then implemented to reorder the sentences within a paragraph, with 

each algorithm proposing a path that visits each node exactly once, aiming to maximise the 

coherence score of the paragraph. After determining the optimal path, the sentences within the 

paragraph are reordered accordingly. Subsequently, human evaluation is conducted to interpret 

nuances in meaning, judge the relevance of sentence reordering, and understand how well the 

paraphrased content preserves the semantics of the source.  

6.2.2.1. Inter-Sentence Reordering  

Consider a fully connected directed graph G (refer to Figure 6.3) where nodes represent the 

sentences of a paragraph and edge weights are determined by the SOP probability. The 

objective is to generate a Hamiltonian path that visits each node exactly once without repetition 

(Dirac, 1952). It's important to highlight that in fully connected graphs, there are n! possible 

unique paths, where n is the number of sentences. To address this, three algorithms are 

developed, each proposing an optimal sentence sequence based on the semantic relationships 

between the source’s sentences. 

Algorithm SALAC1 

This algorithm prioritises nodes based on the strength of the coherence scores, which are 

represented as the weights of the connections in the graph. The flowchart in Figure 6.4 outlines 
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the steps and conditions considered by SALAC1 to determine the optimal sentence order. For 

example, in a paragraph consisting of four sentences, as illustrated by the graph matrix in 

Figure 6.5, a coherence score of 0.7 indicates strong relationships between S1 and S2, as well 

as S2 and S4. Consequently, the generated path must ensure that S1 precedes S2, and S4 follows 

S2, placing S1 before S4. Other sentences can be inserted between these nodes without 

changing their established relationship. Additionally, the weakest coherence score in this 

scenario is 0.4, with other scores varying between this weakest value and the strongest. Notably, 

the diagonal values in the matrix are set to 0 to exclude paths from a sentence to itself. 

 

Figure 6.4: SALAC1 flowchart algorithm 

 

Figure 6.5: SALAC1 graph matrix example, scores in bold represent the strength coherence score while 
underlined scores represent the weakest coherence score 
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The first step, as illustrated in the flowchart (Figure 5.4), involves considering only the 

sentences connected by the strength of the coherence scores, such as S1-S2-S4 in the example. 

Following this, it is verified whether the path is complete or if there are any sentences not yet 

included. All coherence scores (graph edges) considered in the previous step are then removed, 

reducing the strength coherence score from 0.7 to 0.6 in this example. Subsequently, sentences 

linked by the updated strength coherence score are selected and inserted into the path based on 

their relationships with the sentences already in the path, taking into account their parent and 

child connections. In some cases, a node may have the same edge weight to all other nodes in 

the graph, allowing it to be positioned at any location in the path. For instance, in this example, 

S3 is connected to all sentences with a coherence score of 0.6, so it can be placed at the 

beginning, middle, or end of the path. 

Another scenario shown in the flowchart occurs when a sentence has a strong connection 

to the second sentence in the path but a weak connection to the first sentence. In such cases, 

the sentence is treated as a parent to the second sentence (indicating it should be inserted before 

the second sentence) and as a child to the first sentence (indicating it must follow the first 

sentence). 

Algorithm SALAC2 

SALAC2 examines all possible paths in the graph and selects the path with the highest 

coherence score. For instance, if the path S1-S3-S2-S5-S4 is considered, where S1 is the first 

sentence of the source paragraph followed by S3, S2, S5, and S4 in sequence, the coherence 

score is calculated by summing the coherence values of the edges connecting each sentence to 

the subsequent one in the path (refer to Equation 6.3). Based on this calculation, SALAC2 

identifies and suggests the optimal path with the highest paragraph coherence score. 

𝐶𝑂𝐻 = ∑ 𝑃%&'@𝑆() , 𝑆()1!A#2!
)      (6.3) 

Algorithm SALAC3  

SALAC3 evaluates all unique paths within the graph and identifies the path with the highest 

coherence score. It calculates this score by considering the relationships between parent nodes 

and their child nodes, Equation 6.4. Unlike SALAC2, which computes the coherence score by 

summing the weights of edges between each sentence and the one immediately following it, 
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SALAC3 measures the paragraph’s coherence by aggregating the weights of all edges from a 

node to all subsequent nodes within the path. This approach allows SALAC3 to provide a 

different perspective on the overall coherence of the paragraph. 

𝐶𝑂𝐻 = ∑ ∑ 𝑃%&'#
*0)1!

#2!
) @𝑆() , 𝑆(

*A    (6.4) 

The SALAC algorithms generate three reconstructed paragraphs for each source paragraph, 

with one reconstructed paragraph produced by each algorithm. In the following section, the 

process for lexically paraphrasing each reordered sentence while considering intra-sentence 

relations is described, resulting in multiple paraphrased versions for each source paragraph. 

6.2.3. Intra-Sentence Masking (Paraphrasing)  

To build a dataset for paragraph-level paraphrasing, three state-of-the-art LLMs are employed 

as paraphrase-generation tools. Specifically, BERT (Devlin et al., 2019), often used as a 

baseline in NLP research, RoBERTa (Y. Liu et al., 2019) an extension of BERT designed for 

handling longer documents, and Longformer (Beltagy et al., 2020) developed primarily for 

long documents, are utilised. These models take as input the paragraph’s sentences that have 

been shuffled by the SALAC algorithms. To increase the diversity of the ALECS-SS dataset, 

different levels of MLM probabilities are applied across all three LLMs. MLM involves 

masking specific words in the input sequences and prompting the model to predict the most 

likely words for text completion based on the semantic context (refer to Chapter 4). To ensure 

that the paraphrased content remains accurate and avoids the generation of incorrect 

information, named entities and punctuation marks such as brackets, digits, currency symbols, 

and quotation marks are excluded during the paraphrasing process. 

The selection of transformer models is guided by their relevance to the task and their 

capacity to process text of varying lengths. Key factors influencing this selection included 

model architecture, the ability to capture contextual relationships, and suitability for handling 

paragraph-length text. These criteria ensured that the chosen models effectively addressed the 

specific challenges associated with paragraph-level paraphrase generation. In particular, 

models incorporating masked language prioritised, as this feature is essential for modifying the 

lexical layer of text segments. BERT is included as a baseline due to its extensive use and 

strong performance in sentence-level PI tasks (Chapter 3), serving as a reference for evaluating 

the performance of models designed for longer text segments. RoBERTa is selected for its 
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improved training methodology and dynamic masking strategy, which enhances contextual 

representations compared to BERT, as demonstrated in Chapter 3. Longformer is chosen for its 

capability to process extended text sequences while retaining the MLM approach. It was 

developed to mitigate the limitations of traditional transformers, which struggle with long text 

sequences due to the quadratic complexity of self-attention mechanisms. Longformer 

integrates a sliding window attention mechanism. This enhancement enables efficient linear 

scaling, allowing for the effective processing of significantly longer texts. Its ability to capture 

both intra-sentence and inter-sentence semantics makes it particularly beneficial for paragraph-

level NLP tasks. Unlike other long-document transformers, Longformer optimises 

computational efficiency while preserving strong contextual representations, making it a 

suitable model for paragraph-level paraphrase generation and identification. 

6.3. Dataset Evaluation 

6.3.1. Human Evaluation 

Manual evaluation studies are a standard practice in NLG tasks, often used to verify the 

effectiveness of the methods applied (Birch et al., 2009; Hämäläinen & Alnajjar, 2021). In this 

research, a human evaluation method is employed, as detailed below, to carefully assess the 

output generated by the SALAC algorithms. 

The main objective of the evaluation is to assess the semantic similarity between the 

generated paragraph and the source paragraph. This ensures the preservation of the source text's 

meaning, even when the syntactic structure of the sentences is changed. Thus, the analysis is 

conducted to achieve this objective, focusing on identifying semantic differences that may arise 

due to sentence reordering. A random sample of 100 source paragraphs and their paraphrased 

versions generated by each SALAC algorithm is selected from the ALECS-SS dataset. In 

details, the process of selecting the 100 paragraphs from Wikipedia for the evaluation phase 

followed a structured procedure. First, paragraphs are extracted from psychology-related 

articles to ensure topical consistency and to provide text representative of academic content. 

These paragraphs are then filtered to retain only those containing at least three sentences and 

falling within the average range of paragraph length, thereby excluding very short or unusually 

long passages. The filtered set of paragraphs is incorporated into the ALECS-SS dataset. From 

this pool, a random selection algorithm is applied to ensure unbiased sampling, and 100 
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paragraphs were chosen to form the evaluation subset. This number was chosen based on the 

median sample size commonly used in NLG evaluations (van der Lee et al., 2021). Then, each 

paraphrased paragraph is reviewed by three independent evaluators to enhance the reliability 

of the evaluation as recommended in the evaluation literature (Van Enschot et al., 2017; Potter 

& Levine-Donnerstein, 1999). The evaluation process is based on majority voting, meaning 

that the final semantic similarity score between the source paragraph and the reconstructed 

paragraph is determined by the consensus of at least two out of the three evaluators. This 

method is designed to ensure an unbiased and accurate reflection of the output’s quality. 

A total of six evaluators is selected for this task, each highly proficient in written English 

and possessing a high level of education. This level of proficiency is considered essential given 

that the texts are drawn from Wikipedia articles, which are intended for a general readership 

rather than for domain experts. Specifically, the evaluators are therefore instructed to compare 

the semantic content of each generated paragraph with its source, focusing on whether meaning 

is preserved despite the structural changes introduced through sentence reordering. The 

decision not to use expert evaluators is deliberate, since the aim of the study is to assess 

paraphrasing quality at the paragraph-level rather than disciplinary accuracy, and the SALAC 

algorithms are designed to generate paraphrases without regard to text domain, as they are not 

fine-tuned or trained on specific disciplines but developed as a general framework for 

paragraph-level paraphrasing. Moreover, prior studies have shown that expert judgments often 

introduce bias and variance, making them less representative of general readers (Amidei et al., 

2018b; Belz & Reiter, 2006). Thus, this human evaluation provides strong evidence that the 

SALAC algorithms maintain semantic integrity while producing syntactically distinct 

paraphrases. For more details, see Appendix A. 

According to van der Lee et al. (2021), it is acknowledged that complex concepts, such as 

semantic similarity, cannot be sufficiently represented by a singular arbitrary rating. Instead, a 

more sophisticated approach, specifically a 5-point Likert scale, is considered suitable, as 

suggested by (Amidei et al., 2018; Potthast, Stein, et al., 2010). Therefore, the participants are 

instructed to assign a score to each reconstructed paragraph using a 5-point Likert scale, with 

each point on the scale representing a defined value of semantic similarity. The scale is 

designed as follows: 

• 5: Almost identical: The paragraph is nearly a perfect match to the source, with only 

negligible differences. 
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• 4: Very similar: The meaning is very close to the source, with only minor alterations. 

• 3: Similar: Major changes to the meaning are present, but the general context is 

retained. 

• 2: Dissimilar: Significant changes to the meaning make it noticeably different from the 

source. 

• 1: Extremely different: The paragraph bears little to no resemblance to the source, 

with substantial changes in meaning. 

The University’s ethics committee approved the experiment, ensuring adherence to ethical 

standards, and the evaluation process took approximately three hours to complete. 

6.3.1.1. Inter-Annotator Agreement (IAA) Correlation.  

 The classification of IAA values, as outlined by (Landis & Koch, 1977), is crucial for 

determining the reliability of the evaluations (Table 6-1). IAA values less than 0 are considered 

poor, indicating that the annotators' ratings are not consistent and may even be worse than 

random chance. When the IAA value falls between 0 and 0.2, the agreement is deemed slight. 

This range suggests minimal agreement between annotators. Values between 0.2 and 0.4 

indicate fair agreement: although there is noticeable consistency in the annotators' ratings, it is 

not particularly strong, highlighting the need for improvement. Moderate agreement, 

represented by IAA values between 0.4 and 0.6, shows a decent level of reliability: annotators 

are moderately consistent, suggesting that while their evaluations are reliable, there is still room 

for enhancement. Substantial agreement is observed when IAA values lie between 0.6 and 0.8; 

this range indicates a high level of consistency among annotators, implying that their ratings 

are reliable and trustworthy. Finally, IAA values exceeding 0.8 denote almost perfect 

agreement. Such high values reflect an exceptionally high consistency among annotators, with 

their evaluations being nearly identical. 

In NLG, Amidei et al. (2018) suggested that an acceptable range for IAA falls between 0.3 

and 0.5, with higher values being more desirable. To evaluate the consistency among annotators 

in this study, the kappa (k)coefficient is applied as a statistical test for IAA. This test is 

conducted across groups of three evaluators assessing various generated paragraphs. The 

analysis revealed an acceptable IAA correlation of k = 0.32, in line with expectations for 



 101 

complex tasks like evaluating semantic similarity.	Amidei et al. (2018) noted that IAA tends to 

be lower in tasks involving language complexity, such as semantic similarity assessments. 

Table 6.1: Data from (Landis & Koch, 1977) 

 

Despite the initial IAA score, the correlation significantly improved to k = 0.81 when the 

5-point Likert scale ratings are grouped into two broader categories based on their definitions: 

scores of 1 and 2 are combined into one group (Group A), and scores of 3,4 and 5 are combined 

into another group (Group B). This grouping highlighted a stronger consensus (k = 0.8) among 

evaluators when considering broader distinctions in their assessments. This notable rise in 

agreement is likely due to the binary conversion process, since most evaluators gave scores 

between 3 and 5 (see Table 6.2). By grouping these scores, the conversion made the evaluation 

criteria more straightforward, which helped minimise variation and resulted in a greater level 

of agreement. This approach reflects the naturally subjective aspect of human comprehension, 

as individuals often interpret semantic subtleties in different ways. 

6.3.2. Automatic Evaluation 

Two methods are employed to calculate the coherence score of the generated paragraphs, used 

to evaluate the outputs of the SALAC algorithms. The first method focuses on the direct 

relationship between consecutive sentences in the path (i.e., the paragraph), where the 

coherence score is calculated based on the link between a sentence and the one that immediately 

follows it. The second method takes a broader approach by evaluating the overall coherence of 

the paragraph. This method calculates the total coherence score by summing the relationships 

between each sentence and all the sentences that follow it within the paragraph. Both methods 

aim to provide a comprehensive assessment of the paragraph's structural coherence. 

When humans read, they are more likely to notice the coherence between consecutive 

sentences, as described in the first method. This method evaluates how each sentence 
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transitions to the next, which directly affects the readability and flow of a paragraph. Readers 

typically process text linearly, making the connection between adjacent sentences critical for 

maintaining smooth and logical progression. 

However, the second method, which considers the coherence of each sentence in relation 

to all subsequent sentences, provides a more holistic evaluation of the paragraph’s structure. 

While it may not be as immediately noticeable to the reader, it plays a significant role in 

ensuring the paragraph maintains consistency throughout. This method captures deeper, more 

complex relationships between sentences, which helps to create a coherent overall narrative, 

especially in longer paragraphs. As this thesis considers a paragraph's coherence as a whole, 

the second method is more aligned with the broader context and organisation of ideas, making 

it particularly effective for evaluating the overall flow and meaning of the text. 

In essence, while the first method excels at measuring sentence-to-sentence coherence, the 

second method offers a more comprehensive view of how well the entire paragraph holds 

together, which is essential for maintaining thematic and semantic consistency across multiple 

sentences. Thus, the second method is applied and considered in this chapter. 

Generally, the analysis of the data collected from both human and automated evaluations is 

conducted from three distinct perspectives. First, the effectiveness of the paraphrase-generating 

algorithms (SALAC1, SALAC2, and SALAC3) is assessed to determine their operational 

accuracy and to identify which algorithm performed most accurately. Second, the correlation 

between the coherence scores assigned by human evaluators and those generated automatically 

is examined to understand how well automated metrics align with human judgment. Third, the 

relationship between the similarity score of the paraphrased paragraphs and the similarity score 

of the original human-written paragraphs is investigated to evaluate how closely the generated 

paraphrases match the source content. The findings from this analysis are discussed in the next 

section. 

6.4. Results and Discussion 

6.4.1. SALAC Algorithms Efficiency 

The comparison of the algorithms' performance, as shown in Table 6.2, provides insights into 

their effectiveness based on human evaluations that produced 300 scores per algorithm. 



 103 

Table 6.2: Distribution of 300 votes of the scores given by human annotators (with 1-5 ranging from: 
1=’extremely different’; 5= ’almost identical’) 

Score 1 2 3 4 5 A B 

SALAC1 1% 9% 27% 24% 39% 10% 90% 

SALAC2 3% 15% 24% 28% 30% 18% 82% 

SALAC 3 3% 13% 21% 23% 40% 16% 84% 

For “Extremely different, Score 1” ratings, SALAC1 demonstrates superior performance, 

with only 1% of paragraphs falling into this category. In contrast, SALAC2 and SALAC3 each 

have 3% of paragraphs rated as extremely different semantically from the source, indicating 

that SALAC1 better preserves the meaning of the source text. 

In terms of “Dissimilar, Score 2” ratings, SALAC2 produces the highest proportion at 15%, 

compared to SALAC3's 13% and SALAC1's 9%. This suggests that SALAC2 often results in 

paragraphs with greater deviations from the source material compared to the other algorithms. 

For “Similar, with major changes, score 3”, SALAC1 and SALAC2 have similar 

proportions, with 27% and 24% respectively, while SALAC3 has a lower rate at 21%. This 

reflects a moderate level of similarity with significant alterations across all algorithms. 

Regarding “Very similar, Score 4” results, SALAC2 achieves the highest proportion at 

28%, whereas SALAC1 and SALAC3 are close, at 24% and 23% respectively. This indicates 

that SALAC2 is somewhat more effective at maintaining similarity with minor changes 

compared to SALAC1 and SALAC3. 

In the category of “Almost identical, Score 5”, SALAC3 led with 40% of paragraphs rated 

as such, slightly surpassing SALAC1, which has 39%, and SALAC2, which has 30%. This 

highlights the superior ability of SALAC1 and SALAC3 to closely mirror the source text. 

For further analysis, the scores are grouped into two categories according to their 

definitions “A” (dissimilar) and “B” (similar), SALAC1 achieves 10% of paragraphs in the 

“A” category and 90% in the “B” category. SALAC2 shows a slightly higher proportion in 

category A (18%) and 82% in B, while SALAC3 have 16% in A and 84% in B. Although all 

algorithms primarily yield paragraphs in the “B” category, indicating similarity, SALAC1 and 

SALAC3 show higher proportions of similar paragraphs compared to SALAC2. Nevertheless, 

SALAC2 consistently maintains a high degree of alignment with the source meaning. 
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In summary, SALAC1 emerges as the most effective algorithm in preserving the source 

meaning, as evidenced by its high percentage of “similar” ratings and low percentage of 

“dissimilar”, closely followed by SALAC3. SALAC2, while still effective, tends to generate 

outputs with more divergence from the source meaning compared to the other two algorithms. 

This difference may be attributed to the number of shuffled sentences processed by each 

algorithm, as SALAC2 often alters a greater proportion of the sentence order in the paragraph 

(see Figure 6.6). 

 

Figure 6.6 Shuffled sentence distribution for each algorithm. Colour indicates the number of shuffled 
sentences, with darker shades representing fewer shuffles and lighter shades representing more. The 

figure highlights variation in shuffling behaviour across different algorithmic settings. 

6.4.2. Correlation of Human Ratings and Automatic Coherence Scores. 

The relationship between the coherence scores assigned by human evaluators and those 

generated automatically is examined, as presented in Table 6.3. To quantify the strength and 

direction of this relationship, the Pearson correlation coefficient is utilised. This statistical 

measure is commonly employed to assess how closely two variables are related, producing a 

value that ranges from -1 to 1. A value of -1 indicates a perfect negative correlation, meaning 

that as one variable increases, the other decreases. Conversely, a value of 1 reflects a perfect 

positive correlation, where both variables increase in parallel. A value of 0 indicates no 

correlation between the variables. This method provided insight into how closely aligned the 

human-assigned coherence scores are with the automatically generated ones, offering a clearer 

understanding of the system's reliability in mimicking human judgment. 
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Furthermore, the number of sentences within a paragraph plays a crucial role in determining 

the paragraph's overall coherence score. This score is calculated based on the coherence 

between individual sentences within the paragraph. For instance, if we have a paragraph with 

7 sentences, each having a coherence score of 4, the total coherence score would be 24. On the 

other hand, a paragraph with only 4 sentences, but with a coherence score of 6 for each 

sentence, would have a total score of 18. This can be misleading because, despite the second 

paragraph having a lower total score, its sentences are more coherent than those in the first 

example. Thus, it is decided to account for the number of sentences when assessing the 

correlation between the automatic paragraph coherence score and the human-evaluated score. 

Interestingly, as the number of sentences increased, the correlation between the automated and 

human-evaluated coherence scores improved, as shown in the results for paragraphs with seven 

sentences in Table 6.3. Moreover, the correlation also improved when the total coherence score 

is divided by the number of sentences, providing a more accurate reflection of the overall 

coherence by normalising for paragraph length. This adjustment helps mitigate the misleading 

effects of higher sentence counts on the total score. 

In detail, the results in Table 6.3 show that the Pearson correlation values indicate varying 

levels of agreement between the coherence scores assigned by human evaluators and the 

automatically generated scores across different SALAC algorithms. For the 5-point Likert 

scale, SALAC3 shows the strongest correlation (0.157) across all samples, while SALAC1 and 

SALAC2 present weaker correlations (0.050 and 0.003, respectively). However, when focusing 

on samples with seven sentences, SALAC1 and SALAC3 display significantly higher 

correlations (0.409 and 0.427, respectively), suggesting that these algorithms are more effective 

with longer paragraphs, while SALAC2 remains relatively low at 0.055. 

When scores are grouped, SALAC3 continues to outperform, with correlations of 0.181 for 

all samples and 0.435 for seven-sentence samples. SALAC1, however, exhibits an even 

stronger correlation in the seven-sentence category, reaching 0.698, which reflects its 

consistent ability to preserve the meaning across these specific paragraph lengths. 

Examining coherence scores relative to the number of sentences, SALAC1 and SALAC3 

show similar correlations (0.231 and 0.230, respectively) across all samples, but both increase 

markedly in the seven-sentence category, with SALAC1 at 0.665 and SALAC3 at 0.470. 

SALAC2, while the weakest overall (0.163 for all samples and 0.280 for seven sentences), 

performs better in this category than with others. 
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Table 6.3: Correlation of coherence scores between human-written paragraphs to generated shuffled 
sentences paragraphs 

 Pearson Correlation 

Scores All samples Samples with 7 sentences 

algorithm SALAC1 SALAC2 SALAC3 SALAC1 SALAC2 SALAC3 

5-point Likert 
scale 0.050 0.003 0.157 0.409 0.055 0.427 

Correlation for 
A/B grouped 

scores 
0.103 0.078 0.181 0.698 0.135 0.435 

Correlation for 
A/B grouped 

scores / number of 
sentences 

0.231 0.163 0.230 0.665 0.280 0.470 

Minimum 
coherence score 

between sentences 
0.797 0.032 0.625    

Maximum 
coherence score 

between sentences 
0.457 0.051 0.507    

Building on the previous analysis of coherence scores, the effect of the highest and lowest 

coherence scores between sentences in the generated paragraphs is further investigated. This 

analysis focused on the influence of both the strongest and weakest sentence connections. By 

examining these maximum and minimum values, more detailed insights are gained into how 

varying sentence relationships impact the correlation between human-evaluated coherence 

scores and automatically generated coherence scores. Specifically, the coherence score 

between sentences highlights a significant contrast: SALAC1 demonstrates the highest 

correlation in terms of considering only the minimum coherence score in the paragraph (0.797), 

significantly outperforming SALAC3 (0.625) and SALAC2 (0.032). When looking at the 

maximum coherence score, SALAC1 and SALAC3 are more comparable (0.457 and 0.507, 

respectively), while SALAC2 again lags behind at 0.051. This decrease in correlation, when 

considering the maximum score, can be attributed to the fact that these algorithms primarily 

focus on sentences linked by the highest coherence score when shuffling the paragraphs' 

sentences. As a result, the maximum score is almost always present in the generated paragraphs, 

offering limited variation in coherence. In contrast, the minimum coherence score plays a more 

significant role in differentiating the overall coherence of the paragraph. It is the fluctuations 

in the weakest sentence connections that make a more noticeable difference in the correlation 
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between human-evaluated and algorithm-generated coherence scores, thus providing a better 

measure of coherence consistency. 

In summary, these results suggest that SALAC1 and SALAC3 excel in ensuring a 

consistently strong correlation by considering only the minimum coherence scores of 

paraphrased sentences. Additionally, they generally offer a better correlation, particularly with 

seven-sentence paragraphs. SALAC2 consistently shows weaker performance across most 

metrics. 

6.4.3. Correlation of Machine-Paraphrased and Human-written Coherence 

Scores. 

Assessing the correlation between the coherence scores of generated paragraphs and their 

corresponding human-written paragraphs is crucial, especially when producing paragraph-

level paraphrases based on source human-written content. This comparison provides insight 

into how well the paraphrasing algorithms preserve the semantics of the source material. To 

achieve this, two methods are applied, as outlined previously in the automatic evaluation 

section 6.3.2, to measure the coherence score of the source paragraphs. These scores are then 

compared to the coherence scores of the generated paragraphs for each algorithm. 

As illustrated in Figure 6.7, the Pearson correlation coefficients for SALAC1, SALAC3, 

and SALAC2 are 0.89, 0.80, and 0.69, respectively. This demonstrates that SALAC1 and 

SALAC3 have stronger correlations with the human-written coherence scores than SALAC2. 

The higher correlation for SALAC1 and SALAC3 suggests that these algorithms are more 

successful in preserving the semantics of the source text. Notably, these results are achieved 

using the second method, as described in section 6.3.2, which takes into account the cumulative 

relationships between sentences, proving to be more effective for all algorithms compared to 

the first method outlined in section 6.3.2. This further emphasises the importance of 

considering broader sentence relationships when evaluating paragraph semantics. 
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Figure 6.7: Correlation between the generated paragraph (SALACs output) to the human-written 
paragraph (source). 

6.4.4. Mask Applied Method 

Utilising the MLM approach, SALAC’s output paragraphs are rewritten using three different 

language models, namely: BERT, RoBERTa, and Longformer, at masking rates of 15%, 20%, 

and 30%. The main objective of this method is to modify the lexical content of the paragraphs 

while preserving their original semantic meaning. This allows the generation of paragraph-

level paraphrases, where both the structure and vocabulary of the paragraph are changed while 

the meaning remains preserved. As a result, 27 paraphrased texts are paraphrased at the 

paragraph-level of each source, exhibiting variations in syntax and lexical choices while 

maintaining the meaning of the source paragraph (Figure 6.8).  

 

Figure 6.8: Each LLM (BERT, RoBERTa, Longformer) generates three paraphrased paragraphs for each 
input paragraph 
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The differing masking rates provide different levels of modification to the text, evaluating each 

model's capacity to preserve semantic integrity despite substantial changes in syntactic 

structure. The Pearson correlation coefficients are computed to measure the alignment between 

the coherence scores of the paraphrased and source paragraphs, as shown in Figures 6.9 – 6.17. 

In the case of BERT, the correlation between source and paraphrased paragraphs remained 

relatively strong at lower MLM rates. Specifically, Pearson correlation values peaked at 0.802 

and 0.775 for a 15% masking rate in the SALAC1 and SALAC3 outputs, respectively (Figures 

6.9 and 6.11). However, as the masking rate increased to 30%, the correlation diminished 

significantly, reaching a low of 0.472 in the SALAC2 output (Figure 6.10). This trend indicates 

that BERT's ability to maintain the coherence and semantic integrity of the source text 

diminishes as more words are masked. 

RoBERTa, in comparison, demonstrated a somewhat weaker correlation overall. At the 

15% masking rate, RoBERTa achieved its highest Pearson correlations of 0.715 in the SALAC1 

output (Figure 6.12) and 0.547 in the SALAC3 output (Figure 6.14). However, similar to 

BERT, the performance declined as the masking rate increased, with the correlation dropping 

to a low of 0.382 in the SALAC2 output at 30% masking (Figure 6.13). This significant decline 

suggests that RoBERTa struggles more with maintaining semantic coherence as the text is 

increasingly altered, particularly in cases like the SALAC2 output, where extensive sentence 

reordering occurs. 

Longformer, by contrast, exhibited the strongest performance across all masking rates. At 

the 15% MLM rate, Longformer achieved the highest Pearson correlations of 0.835 and 0.793 

in the SALAC1 and SALAC3 outputs, respectively (Figures 6.15 and 6.17), reflecting a strong 

preservation of coherence between source and paraphrased paragraphs. Even at higher masking 

rates, Longformer maintained relatively high correlations, with the lowest correlation being 

0.533 in the SALAC2 output at 30% masking (Figure 6.16). These results suggest that 

Longformer is more robust in handling high masking rates while still effectively preserving the 

semantic consistency and coherence of the source text. 

These findings indicate that LLMs can maintain paragraph semantics more effectively at 

lower masking rates but become less reliable as the degree of masking increases. In detail, 

SALAC1 produced constructed paragraphs conveying almost the same source meaning, 

SALAC3 following it, and SALAC2 remains behind. Thus, implementing each model with a 
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low level of mask resulted in a small impact on the paragraph semantics (SALAC1 correlation 

to the source is 0.888 after applying the Longformer with 15% mask probability, becoming 

0.835).  

Furthermore, the findings underscore that while all models exhibited a decline in 

performance as the masking rate increased, Longformer demonstrated greater resilience, 

consistently maintaining higher correlation values than both BERT and RoBERTa. This is 

especially evident in scenarios that involve more significant textual modifications, such as 

those seen in the SALAC2 output. The superior performance of Longformer could be attributed 

to its unique attention mechanism. Unlike BERT and RoBERTa, which employ a standard self-

attention mechanism, Longformer utilises a sliding window attention approach that allows it to 

efficiently capture dependencies over longer text spans. This attention structure likely provides 

Longformer with an advantage when handling more substantial changes in the paragraphs, as 

it enables the model to preserve semantic consistency across larger and more complex 

paraphrasing tasks. 

 
Figure 6.9 Correlation between the paraphrased paragraph generated by BERT and the human-written 
(Source) paragraph seen in SALAC1 outputs 

 
Figure 6.10 Correlation between the paraphrased paragraph generated by BERT and the human-written 
(Source) paragraph seen in SALAC2 outputs 
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Figure 6.11 Correlation between the paraphrased paragraph generated by BERT and the human-written 
(Source) paragraph seen in SALAC3 outputs 

 

Figure 6.12 Correlation between the paraphrased paragraph generated by RoBERTa and the human-
written (Source) paragraph seen in SALAC1 outputs 

 

Figure 6.13 Correlation between the paraphrased paragraph generated by RoBERTa and the human-
written (Source) paragraph seen in SALAC2 outputs 
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Figure 6.14 Correlation between the paraphrased paragraph generated by RoBERTa and the human-
written (Source) paragraph seen in SALAC3 outputs 

 

Figure 6.15 Correlation between the paraphrased paragraph generated by Longformer and the human-
written (Source) paragraph seen in SALAC1 outputs 

 

Figure 6.16 Correlation between the paraphrased paragraph generated by Longformer and the human-
written (Source) paragraph seen in SALAC2 outputs 
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Figure 6.17 Correlation between the paraphrased paragraph generated by Longformer and the human-
written (Source) paragraph seen in SALAC3 outputs 

6.5. Summary 

To facilitate the transition from sentence-level to paragraph-level paraphrasing, three 

algorithms are designed: SALAC1, SALAC2, and SALAC3. Each algorithm employs a unique 

approach to reorder the sentences of a paragraph based on the source inter-sentence relations. 

This results in paragraphs that differ in structure from the source while conveying the same 

semantics. Subsequently, LLMs are utilised to generate various lexically paraphrased 

paragraphs, taking into account the intra-sentence relations, maintaining the source meaning of 

the text. BERT, RoBERTa, and Longformer are employed with different levels of masking to 

simulate the reality of plagiarism, which entails semantically rewriting the paragraph through 

a range of lexical and syntactical modifications. Thus, the ALECS-SS dataset consists of 27 

paraphrased versions of each source paragraph.	 

This chapter also addressed three of the thesis’s research questions. The evaluation study 

demonstrated that the SALAC algorithms effectively restructure paragraphs without 

compromising their semantic integrity. Meanwhile, the masked approach, which paraphrases a 

predefined percentage of words, modifies the lexical content while preserving the source 

meaning. This method produced paraphrased content at the paragraph-level that is semantically 

consistent with the source. Longformer, in particular, excelled in capturing the overall context 

of paragraphs, generating more accurate paraphrased outputs in terms of maintaining the text 

coherence and semantics. 
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Although the SALAC algorithms exhibit a promising capacity for paraphrasing, additional 

evaluation is required to evaluate their overall efficacy. A key consideration for further 

investigation is the impact of the text domain on the quality of automatically generated 

paraphrases. Variations in domain-specific vocabulary, writing style, and contextual nuances 

may significantly impact the performance of algorithms. Consequently, an in-depth assessment 

is required to examine how these characteristics influence paraphrase quality across various 

domains. The next chapter will delve deeper into this issue, analysing the domain-specific 

problems and their ramifications for the robustness of SALAC generated paraphrases. 
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CHAPTER 7:  MULTI-DOMAIN EVALUATION 
OF AUTO-PARAPHRASE GENERATION AT 
PARAGRAPH-LEVEL: INSIGHTS FOR 
EDUCATION AND PLAGIARISM DETECTION 
 

7.1. Introduction 

Paraphrase generation and identification have been extensively explored in NLP, particularly 

within educational applications such as automated grading, content generation, and PD. Early 

research primarily focused on sentence-level paraphrasing, utilizing datasets like the MSRP 

(Dolan & Brockett, 2005) and QQP (Puvvada et al., 2017), which facilitated advancements in 

ML and neural network-based PI. However, these datasets are limited in their texts which 

excluded multi-sentence contexts, overlooking critical aspects such as inter-sentence 

coherence, structural variation, and semantic fidelity. These elements are essential for 

educational applications and PD. According to Foltýnek et al. (2019) and Astila (2019), 

plagiarism at the paragraph-level is more prevalent than at the sentence, phrase, or word level, 

reinforcing the need for more advanced approaches. 

The shift to paragraph-level paraphrasis has introduced additional complexities including 

sentence reordering, merging, and/or splitting while preserving both inter- and intra-sentence 

relationships. The emergence of Transformer-based models such as BERT (Devlin et al., 2019), 

RoBERTa (Y. Liu et al., 2019), and Longformer (Beltagy et al., 2020) has enabled the 

processing of longer text segments, making paragraph-level paraphrasing feasible. These 

models have demonstrated strong performance in tasks requiring deep semantic 

comprehension, particularly when coupled with algorithms designed to enhance structural 

coherence. For example,(Shen et al., 2021) demonstrated the effectiveness of the SOP task 

implemented in ALBERT (Lan et al., 2020) for structural refinement. Despite these advances, 

challenges in NLG persist. Research by (Hashimoto et al., 2019) has highlighted the limitations 

of automated evaluation metrics, which often fail to capture key aspects such as coherence, 

fluency, and semantic fidelity. Consequently, human evaluation remains indispensable, 

particularly in paraphrasing tasks, where maintaining semantic accuracy and structural 
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consistency is crucial. However, human judgment itself can be influenced by the linguistic 

characteristics of domain-specific texts (Schmidtova et al., 2024). 

The impact of domain-specific text complexity on NLP and NLG tasks is well established, 

with studies showing that linguistic structures, terminology, and readability vary significantly 

across disciplines (Hashimoto et al., 2019; Schmidtova et al., 2024). Research on readability, 

domain adaptation, and linguistic diversity suggests that models trained on general-domain 

corpora often struggle when applied to highly specialised texts (Fei et al., 2023; Alvero et al., 

2024). For instance, in machine translation the preservation of domain-specific terminology is 

critical. (Yasmin et al., 2022) indicated that translation in specialised domains suffer from a 

lack of parallel in-domain data making it difficult to maintain accuracy and fluency in technical 

texts. Additionally, translation models trained on general datasets often fail to capture the 

semantic nuances of specialised terminology leading to misinterpretations in human evaluation 

(Castilho & Knowles, 2024). Similarly, general-domain summarization models often produce 

misleading or factually inaccurate summaries when applied to domain-specific content, 

reducing the reliability of the generated text (Afzal et al., 2023). In paraphrase generation, it is 

necessary to investigate how domain-specific challenges impact the adaptation of general 

models across different domains. 

In the field of paraphrase generation, a notable contribution to paragraph-level paraphrasis 

research is the ALECS-SS dataset, introduced in Chapter 6. This dataset incorporates texts from 

multiple domains ensuring a diverse representation of linguistic structures. By applying 

SALAC algorithms to manipulate text structure and Transformer-based models to refine lexical 

choices, Chapter 6 demonstrated that these methods effectively preserve semantic meaning 

while introducing structural diversity. However, the human evaluation conducted in Chapter 6 

is restricted to the Psychology domain leaving unexplored how these techniques would perform 

across other disciplines. Given the variability in terminology, writing style, and semantic 

structures across domains, the question of generalizability remains open. This is particularly 

important in educational settings where diverse nature subject matter requires adaptable 

paraphrasing techniques that can accommodate a range of academic disciplines. 

Despite advancements in paraphrase generation research, a gap remains unexplored in how 

these methods perform across domains with distinct linguistic complexities. Domains such as 

Anthropology and Economics, for example, incorporate specialised terminology and longer, 

more complex sentence structures, which may pose additional challenges for both human 
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evaluators and automated paraphrasing systems (Bayerl & Paul, 2011). Research in NLG 

(Clark et al., 2021; Artstein, 2017) underscored the impact of domain-specific characteristics 

on human evaluation. However, these studies have not specifically investigated paraphrase 

generation or the relationship between domain readability and paraphrasing quality. 

Readability metrics such as the Flesch Reading Ease (Kincaid, 1975) and the Gunning Fog 

Index  (Gunning, 1952) are useful for assessing sentence complexity, word structure, and 

comprehension difficulty. These metrics are particularly relevant for educational applications, 

where clear and accessible content is essential. 

This chapter addresses these gaps by exploring the effectiveness of SALAC algorithms 

combined with Transformer-based models in generating coherent and semantically accurate 

paraphrases across multiple domains, considering variations in writing styles, vocabulary, and 

domain-specific conventions. The ALECS-SS dataset, introduced in Chapter 6, has 

significantly enhanced the paragraph-level paraphrasing field produced by integrating 

Transformer-based models with SALAC algorithms. By emphasizing sentence reordering and 

semantic coherence, these methods have improved the ability to maintain contextual integrity 

across long text segments. However, their generalizability across diverse domains remains 

insufficiently examined. 

Ensuring reliable paraphrase generation (Chapter 6) and identification (Chapter 8) requires 

evaluating the applicability of these methods across different disciplines, as academic and 

educational contexts frequently involve submissions from various subject areas. The ALECS-

SS dataset incorporates multi-domain content and employs innovative techniques for sentence 

reordering and paraphrasing. Despite the promising results, human evaluation of these 

approaches has so far been limited to a single domain (Chapter 6), raising questions about their 

performance when applied to texts from different academic disciplines. A more comprehensive 

understanding of their effectiveness across diverse domains is essential to enhance robustness 

and adaptability in educational applications. 

To bridge this gap, the evaluation of paraphrasing methods is extended in this chapter to 

multiple domains, including Anthropology, Economics, Sociology, Archaeology, and 

Management. Additionally, coherence and readability metrics are introduced to assess how 

linguistic complexity influences annotation reliability and the performance of SALAC 

algorithms. Accordingly, this chapter addresses the following research questions (RQ): 
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o RQ6: How does the paraphrasing quality of SALAC algorithms vary across multiple 

domains? 

o RQ7: Are there domain-specific challenges in paraphrase quality as perceived by 

human evaluators? 

This study advances the development of a reliable and generalizable paraphrasing method 

at the paragraph-level expanding their applicability to multi-domain NLP tasks. By evaluating 

the generalizability of SALAC algorithms in a multi-domain context, this chapter provides a 

broader validation of their effectiveness in paraphrase generation. While previous studies 

(Chapter 6) primarily focused on a single domain (psychology), this study extends the 

application of SALAC algorithms across multiple disciplines to assess their adaptability and 

robustness. The findings indicate that the approach successfully preserves semantic integrity 

and coherence across domains, although variations in performance arise	due to domain-specific 

linguistic complexities. Through the integration of human assessment, IAA analysis, and 

readability metrics, this study provides deeper insights into how linguistic characteristics 

impact paraphrase generation and quality perception. The results further validate the 

applicability of SALAC algorithms in educational contexts, while also underscoring the 

necessity for refinements to address domain-specific challenges. Beyond enhancing paraphrase 

generation systems, this research contributes to the broader educational objective of promoting 

originality and mitigating plagiarism in academic and professional settings. 

7.2. Methodology 

To evaluate the effectiveness of SALAC algorithms integrated with Transformer-based models 

in paragraph-level paraphrasis generation, this study adopts a multi-domain approach. 

Particular emphasis is placed on applications in education, PD, and paraphrase quality 

assessment. The methodological framework remains consistent with the original study 

(Chapter 6), ensuring comparability of findings while extending the scope to incorporate 

human assessments across diverse domains. By expanding the evaluation beyond a single 

domain, a more comprehensive understanding of paraphrase generation performance is 

achieved. Human evaluators are engaged to assess the quality and coherence of generated 

paraphrases, allowing for insights into domain-specific variations. This approach not only 

validates the effectiveness of SALAC algorithms but also highlights their adaptability to 

varying linguistic and contextual characteristics across domains. 
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7.2.1. Dataset Selection   

The foundation of this study is the ALECS-SS dataset, which consists of paragraph-level 

samples sourced from multiple domains, including Psychology, Anthropology, Economy, 

Archaeology, Sociology, and Management. These domains exhibit variations in linguistic 

complexity, structural composition, and lexical diversity, providing a robust basis for 

evaluating the adaptability of the proposed approach. In this chapter, the terms 'domain' and 

'discipline' are used interchangeably. Notably, ALECS-SS comprises text extracted from 

Wikipedia, adhering to paragraph-length constraints of 50–150 words, with each sample 

containing 3–7 sentences. Wikipedia articles, collaboratively authored on a wide range of 

topics, represent a common source of content frequently plagiarised by students (Wahle, Ruas, 

Foltýnek, et al., 2022). Additionally, Wikipedia serves as an initial reference in instances of 

academic misconduct (Özşen et al., 2023) making it a highly relevant and practical resource 

for this research. 

While the original study (Chapter 6) conducted evaluations using 100 samples from a single 

domain (Psychology) per algorithm, the present research extends this scope by incorporating 

paragraph samples from multiple domains within the dataset. This broader, multi-domain 

approach is essential for assessing the efficacy of paraphrasing techniques in educational 

contexts and for improving PD across different disciplines. 

7.2.2. Paraphrase Generation 

The paraphrase generation process adheres to the methodology outlined in the original study 

(Section 6.2). To reorder sentences within paragraphs, SALAC algorithms are employed, 

leveraging coherence scores derived from the SOP feature of the ALBERT model. The 

SALAC1 and SALAC3 are specifically considered, as they have demonstrated the most 

effective results, as reported in Section 6.2. These algorithms primarily reconstruct the 

paragraph by modifying its syntactic structure while preserving its semantic integrity. This 

approach is particularly crucial in plagiarism, where the challenge lies in altering the structure 

of a text while retaining its core meaning. It ensures that paraphrased outputs maintain 

semantics, making them suitable for educational content and robust PD.  
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7.2.3. Human Evaluation   

To assess the quality of paraphrased text across multiple domains, a human evaluation study is 

conducted. A total of 200 paraphrased paragraphs (100 per algorithm) is randomly selected 

from five domains, distributed equally across them, following the approach described in 

Section 6.3.1. The specific topics covered within each domain are outlined in Appendix A. The 

domains selected for this study—anthropology, economics, archaeology, sociology, and 

management—were chosen to ensure coverage of a broad spectrum of the social sciences. The 

choice was motivated by the requirement of aligning with the intended application of ALECS-

SS in educational, while also ensuring sufficient textual diversity to test the generalizability of 

PI methods. While the dataset cannot claim to be exhaustive of all possible domains, the 

balanced design provides a reasonable and transparent approximation of domain diversity 

within the social sciences. The sample size is determined according to the median sample size 

commonly used in NLG evaluations (van der Lee et al., 2021). Each paraphrased sample is 

scored using a 5-point Likert scale (detailed in Chapter 6), defined as follows: 

5: Almost identical   

4: Very similar, with only minor changes to the meaning   

3: Similar, with major changes to the meaning   

2: Dissimilar, with significant changes to the meaning   

1: Extremely different   

The evaluators are university students with advanced proficiency in English. Given that the 

dataset comprises Wikipedia text intended for a general audience, domain-specific expertise is 

not required for the evaluation as explained in section 7.3.1. Additionally, the ALBERT model 

employed in this study is not fine-tuned for domain-specific text, aligning with the objective 

of assessing paraphrasing techniques in their generalised form. This ensures that the findings 

remain relevant to applications that do not rely on domain-specific tuning, such as PD systems 

in educational settings. 

7.3. Result and Discussion 

To ensure a reliable evaluation of semantic similarity, IAA is assessed using the kappa 

coefficient, which is widely regarded as the standard measure for evaluating annotation 

reliability (Gehrmann et al., 2023). The categorisation of IAA values follows the framework 
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proposed by (Landis & Koch, 1977), as referenced in Section 7.3.1. Notably, (Amidei et al., 

2018) suggested that an acceptable range for IAA falls between 0.3 and 0.5, with higher values 

being indicative of greater reliability. Additionally, Van Der Lee et al. (2019) reported that 

human evaluation IAA scores typically hover around 0.61, while (Amidei et al., 2018; Artstein, 

2017) highlighted the challenges posed by linguistic complexity, which often results in lower 

IAA scores for tasks such as semantic similarity evaluations examined in this chapter. 

For the Psychology domain (detailed in Section 7.3.1), 100 samples per algorithm are 

evaluated by six participants yielding IAA scores of 0.32. While this value is relatively low, it 

aligns with the inherent complexity of the task. However, a significant increase in IAA is 

observed when Likert scale ratings are consolidated into binary categories (Group A: 1 and 2, 

Group B: 3, 4, and 5), resulting in an IAA score of 0.81 ( Table 7.1). Extending the evaluation 

to include 200 samples from five additional disciplines (Anthropology, Economics, 

Archaeology, Sociology, and Management) similarly demonstrated improved IAA scores when 

adopting binary grouping, with values ranging from 0.56 (Moderate) to 0.72 (Substantial). 

However, an exception is noted in the Anthropology domain, where lower agreements are 

likely influenced by linguistic complexity and text length. 

Table 7.1 The IAA results 

Domain 5-likert scale Categorised score (A, B) 

Psychology 0.32 0.81 

Anthropology 0.07 0.13 

Management 0.06 0.56 

Sociology 0.17 0.67 

Economics 0.21 0.65 

Archaeology 0.18 0.72 

The considerable increase in agreement following binary conversion is attributed to the 

simplification of evaluation criteria. Given that most evaluators assigned scores within the 3–

5 range, grouping these ratings reduced variability and led to a higher level of consensus. This 

methodological adjustment is consistent with the subjective nature of human comprehension, 

where individuals may perceive semantic nuances differently. The observed trend aligns with 

the results presented in Table 7.4 (Section 7.3.3). Nevertheless, the Anthropology domain 

remained an outlier, displaying lower agreement levels. This discrepancy may suggest that the 

generated texts in this discipline lack sufficient variation to elicit consistent evaluations 
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(Celikyilmaz et al., 2021). A more detailed analysis of potential influencing factors will be 

conducted in subsequent sections to further examine this anomaly. 

7.3.1. Statistical Analysis of Annotator Reliability   

A statistical test for measuring the Anthropology evaluator’s reliability is conducted by 

implementing the Kruskal-Wallis test which is suitable for data with ordinal scales. Ordinal 

data refers to a type of categorical data where the categories have a logical order or ranking, 

but the differences between the categories are not necessarily equal or meaningful. In this study, 

the scores (5 to 1) represent a ranked order of similarity, where 5 means “almost identical” and 

1 means “extremely different”. These scores indicate levels of similarity, but the intervals 

between the scores are not necessarily equal (i.e., the difference between 5 and 4 may not be 

the same as between 3 and 2).  

The Kruskal-Wallis is used to determine whether there are significant differences between 

the medians of two or more evaluators. In this case, the p-value for the Anthropology domain 

is 0.028. Since the p-value is less than the common threshold of 0.05, this indicates a 

statistically significant difference between the evaluators of the Anthropology domain samples. 

In other words, the test suggests that at least one participant has a median value that is 

significantly different from the others. However, while the test indicates that differences exist, 

it does not specify which specific groups differ, requiring post-hoc testing (e.g., Dunn’s test) to 

identify the exact source of the differences. Dunn’s test performs pairwise comparisons 

between groups using ranks and corrects for multiple comparisons. This test was readjusted the 

alpha value taking into consideration the number of pairwise comparisons, which is 3 in this 

case (Equation 7.1):  

𝛼	 = 0.05 3⁄ = 0.0167     (7.1)  

The result is shown as a matrix (Figure 7.1) which indicates no significant difference 

between the evaluators’ ratings. The significant result from the Kruskal-Wallis H-test, followed 

by the lack of significant findings in Dunn's post-hoc test, could be indicative of a false positive. 

It occurs when an initial test shows significance, but subsequent testing fails to confirm it, 

suggesting that the significant result is due to random chance rather than a true underlying 

effect (Bland & Altman, 1995). 
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Figure 7.1 Dunn's post-hoc test results 

7.3.2. Text Characteristics and Readability Metrics   

An analysis of text characteristics is conducted to examine their influence on annotation 

consistency across different domains. Variations in text length and keyword density are 

considered to understand their impact on evaluation reliability. The findings, presented in Table 

7.2 indicate that the average text length ranged between 610 and 731 characters and between 

96 and 107 words. Among the domains, Anthropology exhibited the longest texts which is 

likely a contributing factor to its lower IAA scores. Additionally, keyword density is assessed 

by calculating the number of unique words present in the source texts of each domain. 

Anthropology is identified as the most complex domain, containing 940 unique words, 

followed by Sociology (912), Management (910), Economics (884), then Archaeology (869). 

It is noteworthy that Psychology has the highest number of unique words due to differences in 

sample size, with 200 source texts compared to 40 in other domains. 

Table 7.2. Text length and Keyword in each domain. 
Domain Average text length by characters Average text length of words Keywords 

Psychology 667 100 2756 

Anthropology 731 107 940 

Management 671 99 910 

Sociology 658 100 912 

Economics 640 99 884 

Archaeology 610 96 869 

This finding motivated an assessment of the readability of the evaluated texts across 

domains. Readability refers to the ease with which a text can be read and understood, depending 

on its linguistic characteristics (Richards et al.,1992).To quantify readability, several 

commonly used readability metrics are employed (Lenzner, 2014; Crossley et al., 2011; 

Themistocleous, 2024; Inojosa et al., 2023), including the Flesch Reading Ease (FRE), Flesch-

Kincaid Grade (FKG) level, Gunning Fog Index (GFI), Simple Measure of Gobbledygook 



 124 

(SMOG) Index, Coleman-Liau Index (CLI), and Automated Readability Index (ARI). Each 

metric assesses text complexity based on linguistic features such as sentence length, word 

length, and syllable count, providing insights into the relative difficulty of understanding texts 

across different domains. 

FRE measures the general readability of text which ranges from 0 to 100 where the lower 

score indicates harder to read (Kincaid, 1975), see Equation 7.2. According to Themistocleous 

(2024), FRE can be used in education and content creation. FKG is closely related to the FRE, 

this metric expresses the result as an educational grade level (Flesch, 1979), where higher 

scores signify greater text complexity, Equation 7.3. 

𝐹𝑅𝐸 = 206.835	 − 1.015	 ×	9 '()*	,(-.!
/0.!0.1	,(-.!

	: − 84.6	 × 9/2334530	,(-.!
'()*	,(-.!

:  (7.2) 

𝐹𝐾𝐺 = 0.39	 9 '()*	,(-.!
/0.!0.1	,(-.!

	: + 11.8	 × 9/2334530	,(-.!
'()*	,(-.!

: − 15.59   (7.3) 

Furthermore, the Gunning Fog index is calculated which takes into consideration the 

percentage of complex words (words with three or more syllables) and the average sentence 

length (Gunning, 1952). A text that receives a higher grade is more difficult to understand, 

Equation 7.4. While the SMOG assesses readability by analysing polysyllabic words, providing 

accurate results for texts suited to academic and professional contexts (McLaughlin, 1969), 

Equation 7.5. 

 𝐺𝐹𝐼	 = 0.4	 A9 '()*	,(-.!
/0.!0.1	,(-.!

	: + 100	 × 9,(67308	'()*9
'()*	,(-.!

:B   (7.4) 

 𝑆𝑀𝑂𝐺 = 1.043	F𝑃𝑙𝑜𝑦𝑠𝑦𝑙𝑙𝑎𝑏𝑖𝑐	𝑊𝑜𝑟𝑑𝑠	𝑐𝑜𝑢𝑛𝑡 × :;
/0.!0.10	,(-.!

+ 3.1291 (7.5) 

Additionally, the CLI use characters per word and sentence length instead of syllables, 

facilitating computational simplicity (Coleman & Liau, 1975), Equation 7.8. Finally, the ARI 

assesses readability by analysing characters per word and words per sentence, yielding a grade-

level score (Smith & Senter, 1967), Equation 7.9. These metrics collectively offer a thorough 

evaluation of text comprehensibility for specific audiences or the public. 

 𝐿	 = 	9,<4)41!0)	,(-.!
'()*	,(-.!

	: × 100      ( 7.6) 

𝑆 = 9/0.!010	,(-.!
'()*	,(-.!

	: × 100     (7.7) 

 𝐶𝐿𝐼	 = 0.0588	 × 	𝐿	 − 0.296	 × 	𝑆	 − 15.8   (7.8) 
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/0.!010	,(-.!
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Table 6.3 shows the results of implementing the readability metrics on the text samples 

involved in the human evolution from each considered discipline. For FSE, lower scores signify 

greater difficulty, whereas for FKG, GFI, SMOG, CLI, and ARI, higher scores indicate texts 

that require a higher grade level for comprehension. Firstly, the notable closeness in measures 

between Psychology-1 and Psychology-2 in Table 7.3 is attributable to their common domain, 

as both samples originate from psychology-related texts. Metrics show equal scores such as in 

FSE or exhibit minor variations of 0.3 or less (e.g., CLI scores of 14.5 versus 14.4), indicating 

the consistent linguistic structures, vocabulary, and writing styles characteristic of the same 

domain. These results underscore the efficacy of these metrics in identifying and quantifying 

nuanced distinctions, while also demonstrating their capacity to differentiate texts more 

effectively across diverse domains characterised by significant linguistic variance. 

Regarding other domains in Table 7.3, Anthropology exhibits the lowest FSE score (30.3), 

indicating that it is the most challenging to understand based on this criterion. In contrast, 

Archaeology achieves the greatest FSE score (48.9), signifying that it is the most 

comprehensible domain within the given categories. The discipline of Economics shows a 

notably high FSE score of 44.6, indicating its relative ease of readability. Psychology, 

Sociology, and Management have moderate FSE scores between 35.9 and 41.2, indicating texts 

of intermediate readability within the reported domains. The FKG results further underscore 

these insights. Archaeology receives the lowest FKG score (11.3), indicating that the material 

requires comprehension at an approximate 11th-grade reading level. Inversely, Anthropology 

demonstrates the highest FKG score (14.4), signifying that readers require a comprehension 

level of 14 or above. Psychology, Sociology, and Management demonstrate mean scores of 

roughly 13, signifying intermediate difficulty. 

A similar pattern appears in the GFI, with Anthropology achieving the highest score (15.7), 

thus confirming its status as the most complex domain. On the contrary, Archaeology yields 

the lowest GFI score (12.9), indicating its relative simplicity. The SMOG scores support this 

trend, identifying Anthropology as the most difficult (15.7) and Archaeology as the least 

difficult (13.0). Both indices underscore the linguistic complexity of texts in Anthropology 

relative to other disciplines. The CLI and ARI further verify these conclusions. In the CLI, 

Archaeology receives the lowest score (12.8), whilst Anthropology has the highest grade (15). 

Simultaneously, ARI categorises Archaeology as the least complex domain (13.6) and 
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Anthropology as the most complex (16.5). The consistent results across multiple criteria 

underscore the increased complexity of texts in Anthropology, which may have affected the 

evaluators' level of agreement, as illustrated in Table 7.1. 

Table 7.3. The readability scores for each domain are presented (Bold = Most Complex, underlined = 
Easiest), with lower scores indicating easier readability and higher scores indicating greater difficulty, 
except for the FSE, where the reverse is true. 
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FSE 36.7 36.7 30.3 35.9 41.2 44.6 48.9 

FKG 12.9 13.1 14.4 13.3 12.7 12.2 11.3 

GFI 14.7 14.8 15.7 15.1 14.4 14.5 12.9 

SMOG 14.8 15.1 15.7 15.2 14.3 14.2 13.0 

CLI 14.5 14.4 15.0 15.1 14.2 13.5 12.8 

ARI 14.9 15.2 16.5 15.9 15.3 14.7 13.6 

The analysis identifies distinct patterns in readability IAA across different domains. 

Anthropology texts typically have higher difficulty levels as indicated by their readability 

scores classifying them among the most complicated materials in this study. This observation 

corresponds with the comparatively low IAA of 0.13 (as seen in Table 7.1) implying that the 

complexity of texts in this domain may contribute to increased variability in human 

interpretation. This observation aligns with prior research indicating that more complex 

domains pose greater challenges in maintaining consistent evaluations (Biber et al., 1998; 

Bayerl & Paul, 2011). Conversely, Archaeology showing lower readability scores in the above 

table leads to characterised by a higher IAA of 0.72, signifying that its texts are more 

comprehensible and yield consistent interpretations among evaluators. Other fields, including 

Management, Economics and Sociology, have a moderate level of complexity regarding 

readability, resulting in intermediate IAA scores of 0.56, 0.65 and 0.67, respectively. This 

suggests that texts in these fields strike a balance between linguistic complexity and 

interpretability. 

In summary, Tables 7.1 and 7.3 demonstrate an inverse relationship between text readability 

and semantic similarity assessment, a consistently observed trend across all domains examined 

in this study. Even though earlier studies in psychology have found conflicting results (Chapter 

6), the general trend is still strong across the domains discussed in this investigation.  



 127 

7.3.3. SALAC Algorithms’ Performance Across Domains   

To expand upon the observations made in Chapter 6, where text is extracted from a single 

domain, the analysis in this study is extended to five distinct domains. The primary objective 

is to evaluate the effectiveness of the proposed SALAC algorithms across multiple domains. 

Similar to the previous approach, 300 scores are assigned by evaluators for each algorithm, 

ensuring consistency in evaluation. The distribution of human-assigned scores across domains 

is observed to reveal notable patterns regarding the performance of SALAC1 and SALAC3 

(Table 6.4). 

In Psychology, the majority of ratings are concentrated in scores 4 and 5, which indicate a 

high degree of similarity to the source text. SALAC1 received 24% at score 4 (very similar) 

and 39% at score 5 (almost identical), while SALAC3 achieved 23% and 40%, respectively. 

This distribution indicates that a strong perception of semantic similarity is maintained in this 

domain. A similar pattern is observed in Archaeology, where 30% of ratings for SALAC1 are 

assigned to score 4, while SALAC3 received a substantial 41% at score 4, confirming that 

SALAC1 and SALAC3 alter paragraph structure while preserving semantic meaning. In 

Economics, 48% of ratings at score 5 are assigned to both SALAC1 and SALAC3, indicating 

a strong consensus on paraphrase quality within this field. Given that a score of 5 represents an 

almost identical meaning, these results suggest that the paraphrased texts remain highly faithful 

to the source. Similar trends are identified in Sociology and Management, where a greater 

concentration of ratings is observed at scores 3 (similar with major changes in meaning), 4, and 

5. In contrast, Anthropology displays a broader distribution of ratings, with a significant portion 

of responses falling into score 2 (30% for both SALAC1 and SALAC3), which indicates 

dissimilarity with significant changes in meaning. This variability is attributed to the 

complexity of the language used in this domain, as discussed in a previous section.  

A key observation is the consistent trend across all domains, where both SALAC1 and 

SALAC3 receive a higher proportion of ratings in Group B (scores 3, 4, and 5) compared to 

Group A (scores 1 and 2). In Psychology, 90% of the ratings for SALAC1 fall within Group 

B, while SALAC3 receives 84%. Archaeology displays a similar pattern, with 89% of 

SALAC1’s ratings and 83% of SALAC2’s ratings categorised in Group B. Even in 

Anthropology, which exhibits the most variability, the proportion of ratings in Group B remains 

higher than in Group A, at 62% for SALAC1 and 63% for SALAC2. This trend reinforces the 
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overall effectiveness of the SALAC algorithms in maintaining semantic similarity across 

different domains. These results emphasise that, despite variations in domain complexity, both 

algorithms perform effectively across all domains. The consistently higher proportion of 

ratings in Group B suggests that human evaluators generally perceive the paraphrases as 

semantically similar, with relatively few cases classified as dissimilar (Group A). The high 

percentages of scores 4 and 5 further confirm that the majority of paraphrased paragraphs retain 

the core meaning of the source text. This further supports the adaptability of the SALAC 

algorithms in paraphrase generation across diverse academic disciplines while also 

highlighting the importance of domain-specific factors that may influence the IAA of 

evaluating paraphrased text. 

Table 7.4. Distribution of human-assigned similarity scores for SALAC1 and SALAC3 across domains. 
Scores range from 1 (extreme dissimilarity) to 5 (almost identical). Group A (1–2) represents low 
similarity, while Group B (3–5) represents semantically consistent paraphrases. 

 Score 1 2 3 4 5 A B 

Psychology 
SALAC1 1% 9% 27% 24% 39% 10% 90% 

SALAC3 3% 13% 21% 23% 40% 16% 84% 

Anthropology 
SALAC1 8% 30% 22% 17% 23% 38% 62% 

SALAC3 7% 30% 25% 20% 18% 37% 63 % 

Economics 
SALAC1 14% 8% 15% 15% 48% 22% 78% 

SALAC3 8% 7% 15% 22% 48% 15% 85% 

Archaeology 
SALAC1 3% 8% 32% 30% 27% 11% 89% 

SALAC3 5% 12% 23% 41% 19% 17% 83% 

Sociology 
SALAC1 3% 9 % 20% 33% 35% 12% 88% 

SALAC3 5% 15% 20% 30% 30% 20% 80% 

Management 
SALAC1 12% 8% 28% 27% 25% 20% 80% 

SALAC3 8% 17% 22% 33% 20% 25% 75% 

All Domain 
SALAC1 7% 12% 24% 24% 33% 19% 81% 

SALAC3 6% 16% 21% 28% 29% 22% 78% 

While there are instances where human evaluators perceive the paraphrased paragraphs as 

dissimilar in meaning to the source for both algorithms, the majority of scoring aligns with the 

confirmation of semantic similarity. To highlight the differences in efficiency between 
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SALAC1 and SALAC3, two columns are inserted to the right of Table 7.4, categorising the 

scores based on their definition into two groups (A = 1,2 and B = 3,4,5). The results indicate 

that the performance of both algorithms remains close across all domains, with the greatest 

variation observed at 7% in Economics and Sociology, followed by 6% in Psychology, 5% in 

Archaeology and Management, and the lowest variation in Anthropology at 2%. However, 

when considering all domains collectively, the overall variation remains low, represented by 

2%. These findings further confirm the effectiveness of the SALAC algorithm in producing 

paraphrased paragraphs that restructure content while preserving semantic meaning across 

various domains. 

7.3.4. Correlation Between Human and Automated Coherence Scores 

Across Domains 

The correlation between the coherence score assigned by human evaluators and the 

automatically generated coherence score is investigated across two collections, as presented in 

Table 7.5. The Pearson correlation coefficient is employed to quantify the strength and direction 

of the relationship between these two variables, producing values ranging between -1 and 1. 

The results of both algorithms are compared by treating the samples retrieved from the 

Psychology collection as an independent category, while the remaining samples from the 

previously mentioned domains constitute a separate collection. This approach aims to examine 

whether domain diversity affects the correlation between human ratings and automatic 

coherence scores. The number of samples in both collections is equal, with each comprising 

200 instances. 

The findings indicate that the number of sentences in a paragraph influences the correlation 

in both collections. This effect is demonstrated by normalising the coherence score of a 

paragraph by its sentence count. In the Psychology collection, the correlation for SALAC1 and 

SALAC3 increases from 0.05 and 0.16 to 0.23, respectively. Similarly, in the multi-domain 

collection, SALAC1 and SALAC3 show an increase from 0.14 and 0.06 to 0.15 and 0.16, 

respectively. The strongest correlation is observed when considering the lowest coherence 

scores between sentences in both collections. This finding aligns with the primary objective 

of SALAC1 and SALAC3, which prioritise reordering paragraph sentences based on the 

highest coherence scores, leading to minimising the occurrence of low-coherence sentence 

pairings. 
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Table 7.5. The Pearson correlation between the coherence score assigned by humans and the 
automatically generated coherence score for one domain (Psychology) and Multi-domain collections. 
The best correlation is highlighted in bold font. 

 Pearson correlation 

Collection Psychology Multi-domains 

Algorithm SALAC1 SALAC3 SALAC1 SALAC3 

5-point Likert scale 0.05 0.16 0.14 0.06 

Coherence score/ number of 

sentences 
0.23 0.23 0.15 0.16 

Minimum coherence score 

between sentences 
0.80 0.63 0.51 0.67 

Maximum coherence score 

between sentences 
0.46 0.51 0.22 0.20 

These results confirm that the presence of even a single low-coherence sentence pair 

significantly influences the paraphrased paragraph semantics, which is observed by human 

evaluators’ ratings. The correlation between human-assigned and automatically generated 

coherence scores is evident across both collections, highlighting a consistent pattern in the 

performance of the algorithms. This consistency suggests that the proposed methods remain 

effective despite variations in text domains. The observed discrepancies between the two 

collections may be attributed to the linguistic characteristics of each domain, which likely 

influenced the evaluation process, as discussed in previous sections. 

7.4. Summary  

This chapter provides a comprehensive evaluation of SALAC algorithms and Transformer-

based models for paraphrasing across multiple domains, addressing the limitations of prior 

work that focused exclusively on psychology (Chapter 6). By incorporating texts from 

Anthropology, Economics, Archaeology, Sociology, and Management, the research highlights 

the generalizability of these methods while uncovering domain-specific challenges. The 

research questions are addressed through findings that demonstrate the effectiveness and 

adaptability of	SALAC	algorithms across multiple domains, despite challenges introduced by 

domain-specific linguistic complexity. The results indicate that	SALAC	 algorithms exhibit 

effective performance in preserving the semantic meaning of paraphrased text while altering 

its structure across all domains, demonstrating consistent performance across domains. 

However, certain domains, such as	Anthropology, present unique challenges due to their higher 
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lexical density and linguistic complexity, which are reflected in lower AA	scores and higher 

readability metrics.  

The evaluation methodology developed in this study integrates human annotation 

consistency, statistical analysis, and readability metrics, providing a robust framework for 

assessing paraphrasing techniques in multi-domain contexts. The use of IAA and binary scoring 

systems proved essential for ensuring reliable evaluations, especially in linguistically complex 

domains. Readability analysis further demonstrated the significant influence of text 

characteristics on annotator agreement and coherence evaluations, offering new insights into 

the interaction between linguistic complexity and paraphrasing performance. 

Despite the strong performance of SALAC algorithms, the findings emphasise the need for 

domain-specific optimisations to handle specialised texts effectively. While the algorithms 

performed well overall, the linguistic complexity inherent in fields such as Anthropology 

impacted both human evaluations and algorithmic outcomes. These results suggest that further 

refinement of paraphrasing methods is necessary to address the challenges posed by highly 

specialised domains. 

Future research can build on this work by exploring the potential of fine-tuning LLMs in 

domain-specific text to complement SALAC algorithms, particularly for domains with unique 

linguistic requirements. By advancing the evaluation of paraphrase generation techniques in 

multi-domain contexts, this study contributes to the development of more robust and adaptable 

solutions for real-world applications. 

To advance the progress of the work accomplished in this chapter, it is essential to evaluate 

the effectiveness of DL models in distinguishing between machine-paraphrased text and 

human-written text at the paragraph-level, particularly given these models' ability to handle 

longer texts. This evaluation and comparative analysis will be explored in the following 

chapter. 
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CHAPTER 8:  A COMPARATIVE STUDY ON 
IDENTIFYING HUMAN-WRITTEN VS. 
MACHINE-PARAPHRASED AT 
PARAGRAPH-LEVEL  

 

8.1. Introduction 

PI as a component of PD, has been significantly expanded with the advancements in LLMs, 

which are capable of processing lengthy texts and paraphrasing sentences, paragraphs, and 

even long documents efficiently (J. Zhou & Bhat, 2021). Consequently, PI no longer focuses 

solely on comparing pairs of texts; it now includes distinguishing between human-written 

content and machine-paraphrased text. 

In this chapter, state-of-the-art pre-trained models are employed as detection algorithms for 

identifying human-written and auto-paraphrased content at the paragraph-level. These 

paragraphs are paraphrased using SALAC algorithms and MLMs, (Wahle, Ruas, Kirstein, et 

al., 2022) demonstrating that LLMs can rewrite text in ways that are difficult for humans to 

recognise as machine-paraphrased text. Thus, two research questions are investigated in this 

chapter which are  

o RQ8: How effectively can autoencoding models discriminate between the source 

(human-written) and machine-paraphrased text generated by the paragraph-level 

method, without requiring a direct comparison between the two? 

o RQ9: How effectively can state-of-the-art autoregressive models discriminate between 

the source (human-written) and machine-paraphrased text generated by the 

paragraph-level method, without requiring a direct comparison between the two? 

Although few studies have been conducted on identifying machine-paraphrased text 

(Wahle et al., 2021; Becker et al., 2023), these experiments focus on sentence-level 
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paraphrases. In this chapter, the efficiency of pre-trained models in distinguishing human-

written and auto-paraphrased at paragraph-level is investigated. 

8.2. State-of-the-Art Prior Research 

Recent research on detecting machine-generated text has gained considerable attention caused 

by advancements in artificial intelligence, particularly the development of large pre-trained 

language models, as discussed in Chapter 3. Similarly, the concentration on detecting machine-

paraphrased text has been raised, although the majority of existing studies have been focused 

on sentence-level paraphrasis, even when addressing paragraph-length texts. 

This section discusses prior works that align with the study in this chapter.	 Early 

investigations focused on detecting paraphrased text generated by online tools like SpinBot, 

which paraphrased Wikipedia paragraphs. Then, six word-embedding models are used to 

extract features from the text, and these features are input into five ML classifiers (Foltýnek et 

al., 2020). To expand on this work, research papers from arXiv and theses by English language 

learners are extracted and paraphrased using tools such as SpinnerChief-DF and SpinnerChief-

IF. The key difference between these tools is the percentage of content’s words paraphrased _ 

SpinnerChief-DF altered 12.58% of the text, while SpinnerChief-IF changed 19.37%. Then, 

text-matching software and eight LLMs are employed to detect paraphrasing text (Wahle, Ruas, 

Foltýnek, et al., 2022). 

Following these studies, Wahle et al. developed a dataset in which LLMs are implemented 

to paraphrase each sentence within a paragraph, with a 15% mask probability. Three LLMs are 

then evaluated for their ability to detect sentence-level machine-paraphrased text (Wahle et al., 

2021). Additionally, human performance is compared with the LLMs efficiency in 

distinguishing between human-written and machine-paraphrased text that was generated using 

the SpinnerChief tool (50%), BERT (15%), and GPT. They concluded that humans had 

difficulty identifying auto-paraphrased text of the source. In particular, the ACC of detecting 

paraphrases generated by autoencoding models varied between 48.28 % and 84.48% (Wahle, 

Ruas, Kirstein, et al., 2022) 

This chapter focuses on evaluating the effectiveness of autoencoding and autoregressive 

LLMs in detecting paragraph-level paraphrases, setting it apart from previously discussed 

works that primarily concentrate on sentence-level paraphrasis. However, the findings of these 
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earlier studies are taken into consideration, particularly those that emphasised the ability of 

LLMs such as BERT, RoBERTa, and Longformer to generate paraphrased text that is 

challenging to differentiate from human-written content.	Furthermore, the use of a low masking 

probability to paraphrase a smaller percentage of words is taken into account, as previous 

studies have demonstrated that text paraphrased by SpinnerChief-IF, which alters 

approximately 19% of the words, is more easily distinguishable than text paraphrased by 

SpinnerChief-DF, 12.58%.  

8.3. Methodology 

8.3.1. Dataset 

In this chapter, the task of discriminating between human-written and auto-paraphrased text at 

paragraph-level is addressed, which begins with considering the ALECS-SS dataset. The 

ALECS-SS dataset is developed to address the lack of available paragraph-level paraphrases 

datasets, and then categorised into nine subsets (see section 8.4.1). It is primarily designed to 

assess the effectiveness of pre-trained models in detecting different levels of machine-

generated paraphrased paragraphs. To facilitate this, sentences within the paragraphs are 

rearranged, then 15%, 20%, or 30% of the tokens are paraphrased. These percentages are 

specifically chosen based on research indicating that most online paraphrasing tools paraphrase 

approximately 15%-19 % of the input text (Wahle, Ruas, Foltýnek, et al., 2022). Additionally, 

the dataset is enhanced by incorporating paraphrases at 20% and 30%, further increasing its 

diversity by representing the same content in varied textual formats. This expanded ALECS-

SS, serves as an excellent resource for training LLMs to comprehend and capture diverse 

language patterns and variations. 

8.3.2. Classification Algorithms 

In the evaluation of PI, several state-of-the-art pre-trained models are examined, utilising their 

default hyperparameter settings. These models include BERT, RoBERTa, Longformer, GPT-3, 

GPT-3.5, and GPT-4. The models previously employed for paraphrasing are considered as 

detection models, following the findings of Zellers et al. (2019) and Wahle et al. (2021), who 

observed that the most effective model for detecting automatically generated text is often the 

same model used to generate it. While their research focused on detecting fake news and 
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sentence-level paraphrasing, this study is extended to paragraph-level paraphrasing. 

Furthermore, state-of-the-art generative models are analysed to investigate their classification 

capabilities and compare their performance to the models previously used for paraphrasing. 

When employing encoding models such as BERT, RoBERTa, and Longformer for 

classification tasks, modifications to their architecture are often necessary to transition from 

language encoding to classification. These models, initially designed to generate token 

embeddings and contextual representations, output hidden states for each token in an input 

sequence. For classification, a common approach is to extract the representation of the [CLS] 

token, which serves as a summary of the input sequence. This [CLS] representation is then 

passed through a fully connected (dense) layer, acting as a classification head that maps the 

representation to the target output classes (Figure 8.1). Additionally, a dropout layer may be 

introduced to mitigate overfitting and improve generalisation. The final layer typically applies 

a softmax activation function for multi-class classification or a sigmoid activation for binary 

classification, converting the dense layer’s outputs into probability distributions for class 

prediction. Alternatively, instead of relying solely on the [CLS] token, an average (mean 

pooling) of all token embeddings can be computed across the sequence, allowing the model to 

capture a more comprehensive representation that incorporates information from all tokens, 

potentially improving classification performance. 

The implementation of GPT models for classification tasks requires careful prompt 

engineering to ensure the task requirements are met. As outlined in the OpenAI documentation, 

the structure and clarity of the prompt significantly impact the model's performance. Thus, 

constructing a well-formulated prompt is crucial for effectively utilising GPT models in various 

tasks. Thus, numerous studies have been conducted to investigate the influence of prompt 

engineering on the results of NLP downstream tasks (as discussed in Chapter 3). However, the 

majority of these studies have focused primarily on auto-generated content or paraphrased text 

at the sentence-level. In contrast, this study moves beyond sentence-level paraphrasis, 

concentrating on distinguishing between human-written and machine-paraphrased text at the 

paragraph-level. This shift enables a more comprehensive exploration of how GPT models 

process complex text structures and variations, offering new insights into their capacity to 

identify nuanced paraphrase patterns across larger textual segments. 
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Figure 8.1The architecture employed for sequence classification utilizes an encoder-based 
transformer. 

In the field of classification, there are three primary strategies used to guide a model's 

response: zero-shot, few-shot, and chain prompting. Zero-shot prompting involves assigning 

tasks, such as concept or class recognition, that the model has not encountered during training. 

In this approach, the model makes predictions based on auxiliary information, such as 

descriptions, relationships between known and unknown classes, or semantic embeddings, 

without the use of labelled samples (Kojima et al., 2022). This method proves particularly 

useful for scenarios where labelled data is scarce or unavailable. 

In contrast, few-shot prompting aims to improve the model's efficiency by reducing the 

need for extensive labelled data during training. By leveraging the model's prior knowledge or 

applying meta-learning techniques, the model can quickly adapt to new tasks or classes with 

only a minimal amount of labelled data (Reynolds & McDonell, 2021). This approach 

facilitates quicker and more resource-efficient training, making it especially beneficial in 

domains where data is limited. 

Furthermore, chain prompting involves breaking down a complex task into a sequence of 

smaller prompts. Each prompt addresses a specific subtask, and the output from one prompt 

serves as the input for the next, creating a step-by-step process. This structured approach 
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ensures that the model generates focused and coherent responses, making it particularly 

effective for multi-step problems requiring logical progression (Shao et al., 2023). 

In Section 8.4.2, the results of applying both zero-shot and few-shot approaches to the 

ALECS-SS dataset are presented. The findings offer valuable insights into the performance of 

the models in detecting various levels of paraphrasing, highlighting their effectiveness in this 

classification task. 

8.4. Results and Discussion 

8.4.1. Efficiency of Autoencoder LLMs in Classification 

To answer RQ8, the performance of three autoencoding classification models in NLP is 

evaluated: BERT, RoBERTa, and Longformer. This evaluation is carried out using the ALECS-

SS subsets, in which each main category is paraphrased by an LLM with varying levels of 

MLM set at 15%, 20%, and 30%. As a result, the ALECS-SS dataset is composed of Human-

written paragraphs and nine paraphrased subsets as in Table 8.1. 

Table 8.1 ALECS-SS dataset subsets used for paraphrase identification (PI). Paragraphs are paraphrased 
using BERT, RoBERTa, and Longformer with masked language modelling (MLM) at 15%, 20%, and 
30%, representing the proportion of text paraphrased. 

Subset Model MLM Level 

1 

BERT 

15% 

2 20% 

3 30% 

4 

RoBERTa 

15% 

5 20% 

6 30% 

7 

Longformer 

15% 

8 20% 

9 30% 

In addition to considering paragraphs, each sentence is paraphrased independently to 

evaluate the performance of LLMs in detecting machine-paraphrased sentences. This approach 

is particularly relevant as most prior research has primarily concentrated on assessing the 

performance of LLMs on sentence-level paraphrased text within the two datasets previously 

discussed, namely MSRP and QQP. 
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Table 7.2 provides a comprehensive comparison of the three MLM, namely: BERT, 

RoBERTa, and Longformer, evaluated across the different subsets of the ALECS-SS dataset. 

These subsets are identified based on the model used for paraphrasing (ALECS-SS(BERT), 

ALECS-SS(RoBERTa), and ALECS-SS(Longformer)) and the varying levels of mask 

probabilities: MLM 15, MLM 20, and MLM 30. This table presents the F1-micro scores for 

each model across the subsets, along with their average (AVE) performance across all subsets 

within each category. The F1-micro score aggregates the counts of true positives, false 

positives, and false negatives across all classes before calculating precision and recall, ensuring 

that equal weight is given to each instance regardless of its class affiliation. This framework 

facilitates an overall perspective on model performance instead of concentrating on specific 

classes. The results underscore the differences in efficiency among the models, revealing 

significant variations in their classification capabilities. 

In the first section of Table 8.2, which focuses on paragraphs paraphrased through the use 

of BERT, it is observed that RoBERTa achieves the highest overall performance, with an 

average score of 93.2. This result indicates that RoBERTa surpasses both BERT, which attained 

an average of 92.5, and Longformer, which scored 91.3, in terms of effectiveness. Upon further 

analysis of the individual subsets, RoBERTa's performance in recognising human-written and 

paraphrased paragraphs at MLM 15, MLM 20, and MLM 30 is reflected in its F1 micro scores 

of 87.0, 95.4, and 97.2, respectively. RoBERTa's superior performance can be largely attributed 

to its advanced architecture, which represents an enhanced evolution of BERT to handle long 

text, providing it with a competitive advantage in this context. BERT's performance also 

remains notably strong, especially in the MLM 20 and MLM 30 subsets, although it lags 

slightly behind RoBERTa by a small margin. It could be suggested that this is because BERT 

is utilised to generate the paraphrased text within these particular subsets. Although 

Longformer achieved remarkable results, its performance is lower than that of BERT and 

RoBERTa.  

In the analysis of the ALECS-SS(RoBERTa) subset, it is observed that RoBERTa attains 

the leading average score of 97.5, closely followed by Longformer with 97.3, while BERT lags 

significantly with a lower score of 95.2. RoBERTa has outstanding performance across the 

subsets, achieving remarkable scores of 96.2, 97.9, and 98.4 in identifying segments 

paraphrased at MLM 15, MLM 20, and MLM 30 levels, respectively. In the MLM 15 subset, 

Longformer exhibits performance that is comparable to that of RoBERTa. However, it lags 
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slightly behind in the MLM 20 and MLM 30 subsets. Compared to RoBERTa and Longformer, 

BERT performs adequately but falls short in the MLM 15 subset due to its lower fraction of 

paraphrased tokens. These findings indicate that both RoBERTa and Longformer demonstrate 

strong capabilities in processing lengthy documents, effectively distinguishing between 

human-written and machine-paraphrased paragraphs by identifying subtle lexical and syntactic 

variations. 

In the ALECS-SS (Longformer) category, Longformer achieves the highest performance, 

with an average score of 94.5, exceeding RoBERTa's 92.3 and BERT's 89.6. In detail, 

Longformer achieves F1-micro scores of 90.0, 95.4, and 98.3 in the MLM 15, MLM 20, and 

MLM 30 sets, respectively, demonstrating its robust capacity to handle lengthy contexts and 

extensive sequences, particularly when paraphrasing is generated by Longformer itself. In a 

similar vein, RoBERTa has solid performance, particularly in the MLM 20 and MLM 30 

subgroups, although it does not achieve the highest scores obtained by Longformer. In contrast, 

BERT particularly struggles to detect paraphrased paragraphs with a low percentage of 

paraphrased tokens. 

In summary, the results indicate that RoBERTa consistently outperforms in distinguishing 

between paraphrased and human-written paragraphs across two ALECS-SS categories that are 

generated using BERT and RoBERTa.	 This confirms the effectiveness of RoBERTa, as 

mentioned in other work (Wahle et al., 2021). Furthermore, as noted by Zellers et al., the 

effectiveness of a classifier is significantly influenced by the language model utilised for 

generating the paraphrased text (Zellers et al., 2019). Similarly, Longformer demonstrates 

exceptional capability in managing long contexts, surpassing other models in detecting 

paraphrased paragraphs generated by Longformer itself and nearly matching RoBERTa's 

performance on datasets paraphrased using the RoBERTa model. This is attributed to the fact 

that Longformer is primarily built on the RoBERTa checkpoint, with additional training on 

longer documents and the use of different attention mechanisms. For BERT, it lags behind both 

RoBERTa and Longformer in performance; nonetheless, it achieves comparable results in 

identifying paragraphs paraphrased with BERT. 

 

Table 8.2 F1-score of implementing detection algorithms on the different subsets of ALECS-SS 
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Paraphrasing model ALECS-SS (BERT) 

Dataset /classifier MLM 15 MLM 20 MLM 30 AVE. 

BERT 86.2 94.4 97.1 92.5 

RoBERTa 87.0 95.4 97.2 93.2 

Longformer 84.2 93.4 96.4 91.3 

Paraphrasing model ALECS-SS (RoBERTa) 

Dataset /classifier MLM 15 MLM 20 MLM 30 AVE. 

BERT 91.5 96.3 97.8 95.2 

RoBERTa 96.2 97.9 98.4 97.5 

Longformer 96.2 97.7 98.2 97.3 

Paraphrasing model ALECS-SS (Longformer) 

Dataset /classifier MLM 15 MLM 20 MLM 30 AVE. 

BERT 83.3 89.4 96.2 89.6 

RoBERTa 87.1 93.1 96.9 92.3 

Longformer 90.0 95.4 98.3 94.5 

A more detailed analysis is conducted to assess the performance across all categories, with 

particular attention to subsets that had been paraphrased by other models (see Table 8.3). In 

general, RoBERTa and Longformer show comparable performance, highlighting their similar 

effectiveness in processing longer texts.	However, Longformer performed better than the others 

in identifying both human-written and machine-paraphrased text produced by other models 

(ALECS-SS (BERT) and ALECS-SS (RoBERTa)), with RoBERTa following closely in 

categories (ALECS-SS (BERT) and ALECS-SS (Longformer)) and BERT ranking last in 

performance on (ALECS-SS (RoBERTa) and ALECS-SS (Longformer) subsets. 

Table 8.3 Presents the results, including the AVE values from Table 8.2. AVE* refers to the average of 
all results obtained by the classifier. AVE** represents the average of results achieved by the classifier 
when applied to ALECS-SS subsets that have been paraphrased using other models. 

Classifier 
ALECS-SS 

(BERT) 

ALECS-SS 

(RoBERTa) 

ALECS-SS 

(Longformer) 
AVE* AVE** 

BERT 92.5 95.2 89.6 92.43 92.4 

RoBERTa 93.2 97.5 92.3 94.33 92.75 

Longformer 91.3 97.3 94.5 94.36 94.3 

To align with previous research, a comparison is made between the results of the current 

study and earlier studies that utilised a dataset sourced from Wikipedia and paraphrased using 
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MLM15 with Longformer (Wahle et al., 2021). The primary methodological difference lies in 

their approach of paraphrasing each sentence independently, focusing solely on intra-sentence 

relations, which led to lexical differences between the paraphrased paragraphs and the source 

text. In contrast, the ALECS-SS dataset features paraphrased paragraphs that differ both 

lexically and syntactically from the source text, as it considers both intra-sentence and inter-

sentence relations during the paraphrasing process. In this comparison, both datasets are 

paraphrased using Longformer with a 15% mask probability. Table 8.4 shows other work 

results to this study, focusing on the performance of BERT, RoBERTa, and Longformer in their 

ability to differentiate between human-written text and text paraphrased through LLMs.	
Performance metrics, assessed using the F1-micro score, clearly indicate that the present study 

outperformed previous research, with all classifiers showing improved results.	In particular, 

the BERT classifier in this study recorded an impressive F1-micro score of 83.4, significantly 

surpassing the 69.4 scores reported in prior studies.	 Likewise, both the RoBERTa and 

Longformer classifiers demonstrated superior performance, achieving F1-micro scores of 88.3 

and 90.1, respectively, which exceed the 82.1 and 86.0 results reported in earlier research.	
These improvements emphasise the effectiveness of LLMs in discriminating between machine-

paraphrased paragraphs and human-written paragraphs without relying on information from 

the source text. Although changes in paragraph structure can pose challenges for classifiers that 

primarily rely on lexical variation, the modifications applied at both the syntactic and lexical 

levels, while preserving the overall meaning, unexpectedly enhanced the performance of LLMs 

to detect paraphrased paragraphs. Additionally, this finding is particularly relevant to real-

world plagiarism practices, where plagiarists often preserve the overall paragraph structure 

rather than merely rewording individual phrases or sentences (Foltýnek et al., 2019). 

Table 8.4 F1-score comparison on the PI task: this study (ALECS-SS, paragraph-level) vs. Wahle et al. 
(2021, sentence-level). 

Classifier Current study Wahle et al. 2021 

BERT 83.4 69.4 

RoBERTa 88.3 82.1 

Longformer 90.1 86.0 

The performance of LLMs on sentence-level paraphrasing and sentence length is subjected 

to further investigation (Table 7.5).	To carry out this analysis, sentences within the paragraphs 

of the ALECS-SS dataset are separated to emulate the sentence-level paraphrasis seen in the 
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MSRP and QQP datasets (outlined in Chapter 3).	Subsequently, a comparative analysis is 

performed to evaluate the performance of classifiers, namely BERT, RoBERTa, and 

Longformer, across various datasets. The variations in classifiers’ performance are underscored 

by the F1-micro score percentages, which are used as the primary performance metric to 

illustrate how effectively these models functioned when applied to distinct text datasets.  

Table 8.5 Results on paraphrase identification (PI) for sentence-level paraphrases datasets (F1-score).  
*Data from (Devlin et al. 2019), **Data from (Y. Liu et al. 2019) 

Classifier/ Dataset ALECS-SS MSRP QQP 

BERT 65.1 89.3* 72.1* 

RoBERTa 65.6 91.2** 73.0** 

Longformer 67.5 - - 

The result in Table 8.5 shows that a notable decline in performance scores is observed 

across all three models when evaluated on the sentence-level paraphrases of ALECS-SS 

dataset, attributed to the difficulty posed by the need to identify machine-paraphrased 

paragraphs without access to the source text for comparison.	By contrast, in the experiments 

carried out using the MSRP and QQP datasets, the classifiers are simultaneously provided with 

both the source and the paraphrased text, facilitating the identification of paraphrases and 

yielding improved performance.	The additional observation revealed that LLMs exhibited 

superior performance with paragraph-length texts in comparison to sentence-length texts. This 

is attributed to the fact that longer texts offer more comprehensive contextual and semantic 

information, thus enhancing the models' effectiveness in PI. These findings further corroborate 

the results presented in the experiments discussed in Chapter 5.		

8.4.2. Efficiency of Generative Pre-trained Transformer Models in 

Classification  

The state-of-the-art models introduced by OpenAI are examined, with particular attention 

given to ChatGPT, which is based on the architectures of GPT-3.5 and GPT-4, in addition to 

three models that have been specifically fine-tuned on the ALECS-SS dataset.	 OpenAI 

recommends evaluating ChatGPT’s inherent performance before engaging in fine-tuning, as it 

is anticipated to deliver superior results in certain tasks without the need for additional 

adjustments.	Nevertheless, the focus of this experimental evaluation is placed on assessing 
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GPT models' classification capabilities, rather than examining their potential for text 

generation.	As noted by (Anderson et al., 2023; Weber-Wulff et al., 2023; Mitchell et al., 2023), 

identifying automatically generated text is generally less challenging than detecting machine-

paraphrased content.	Therefore, the goal of this study is to assess the effectiveness of these 

advanced models in performing classification tasks and to evaluate their performance in 

comparison to models that have been fine-tuned specifically for the ALECS-SS dataset. 

The findings presented in Tables 8.6 and 8.7 reveal that ChatGPT's performance lacks 

consistency and proves to be less effective, especially when applied to classification tasks 

related to PI.	Despite OpenAI's expectations, ChatGPT did not deliver consistent results in this 

area.	Conversely, the models fine-tuned on the ALECS-SS dataset achieved significantly high 

F1-micro scores using only a few hundred samples, demonstrating their robustness and 

efficiency in executing classification tasks effectively. 

Specifically, Table 8.6 illustrates the outcomes of using ChatGPT as a classifier model to 

differentiate between human-written and machine-paraphrased paragraphs.	The results in Table 

8.5 provide a comparison of the performance of various ChatGPT models on targeted prompts, 

evaluated using the F1-micro score.	ChatGPT-3.5 exhibits varying performance based on the 

prompt engineering method. When the prompt is generated by ChatGPT, the F1-micro score is 

64.2, while it increases to 72.0 for the prompt engineered by the author.	Both prompts instruct 

the model to return a value of 0 for human-written paragraphs and 1 for machine-paraphrased 

paragraphs. However, the second prompt, created by the author, provides more detailed 

instructions regarding the task compared to the prompt generated by ChatGPT: Additionally, 

ChatGPT-3.5-turbo, across its two versions (0613 and 0125), records F1-micro scores ranging 

from 40 to 60 for both the “Zero Shot” and “Few Shot” prompts.	Notably, ChatGPT-4 lags with 

an F1-micro score of 18.5 for “Zero Shot” and 41.4 for “Few Shot.”.	These findings support 

OpenAI's suggestion to prioritise the use of GPT-3.5 over GPT-4. 

 

 

Table 8.6.  Zero-shot and Few-shot results for the paraphrase identification (PI) task at paragraph-
level 

Model Prompt F1-score 
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ChatGPT3.5 
Generated by ChatGPT 64.2 

Created by the author 72.0 

ChatGPT3.5-turbo-0613 
Zero Shot 40.2 

Few Shot 60.3 

ChatGPT3.5-turbo-0125 
Zero Shot 53.1 

Few Shot 53.4 

ChatGPT4 
Zero Shot 18.5 

Few Shot 41.4 

The results presented in Table 8.7 demonstrate that the fine-tuned GPT models surpass the 

performance achieved when these models are implemented without tuning.	The F1-micro score 

increases dramatically to reach 93.7 and 96.0 by considering only 800 samples for training the 

models.	While OpenAI recommends beginning with 100 samples for initial training, our 

findings indicate that utilising 800 samples significantly improves the model’s ability to 

distinguish between machine-paraphrased and human-written paragraphs.	 It is argued that 

using more than 100 samples is essential for fine-tuning the models, particularly considering 

the complexity of this task, which requires generating predictions without the advantage of 

directly comparing two texts.	This approach guarantees a more robust adaptation to the task, 

enhancing the model's performance and the overall outcomes.	Notably, the results of the fine-

tuned GPT models outperform those achieved by the autoencoder LLMs employed during the 

paraphrasing stage.	The fine-tuning and evaluation of the GPT-3.5-turbo models are conducted 

using 800 randomly selected samples from the ALECS-SS dataset, while the autoencoder 

LLMs results (Table 7.2) are derived by utilising the entire dataset. 

The results for the GPT models are obtained by considering the most challenging text, 

where only 15% of the tokens had been paraphrased.	In line with OpenAI's recommendation, 

the GPT-3.5-turbo versions are considered, as GPT-4 currently unavailable for fine-tuning by 

individuals.	The ability of the Davinci model is further investigated, as it is intended to serve 

as a replacement for earlier GPT models specifically trained for classification tasks. However, 

a weak result of 48.9 is presented.	Based on the results obtained, fine-tuned GPT-3.5-turbo 

models are advocated over autoencoder LLMs for detecting plagiarism and identifying 

paraphrased paragraphs.	 However, it must be acknowledged that the fine-tuning and 

implementation of GPT models entail considerable expenses. 

Table 8.7. Fine-tuned GPTs results for the paraphrase identification (PI) task on ALECS-SS 



 145 

Model F1-score 

gpt-3.5-turbo-1106 96.0 

gpt-3.5-turbo-0125 93.7 

Davinci 002 48.9 

8.5. Summary 

This study has conducted an extensive investigation into PI utilising several advanced models, 

specifically focusing on the differentiation between human-authored and machine-generated 

paraphrased content at the paragraph-level. The ALECS-SS dataset, which provides a diverse 

range of paraphrased paragraphs both lexically and syntactically, is utilised to analyse the 

performance of various LLMs in terms of PI. A comparative assessment is conducted between 

auto-encoding models, such as BERT, RoBERTa, and Longformer, and autoregressive models, 

including GPT-3.5 and GPT-4.  

Significantly, fine-tuned versions of GPT-3.5-turbo outperformed the auto-encoding 

LLMs in the task of identifying paraphrased paragraphs, even when required to make 

predictions without direct access to source texts for comparison. This is especially evident 

when fine-tuning is performed with small datasets (up to 800 samples), as opposed to the 

limited sample (100 samples) fine-tuning suggested by OpenAI. 

The results highlighted several significant findings: Initially, fine-tuning GPT-3.5-turbo 

substantially enhanced classification performance, attaining F1-micro scores of 93.7 and 96.0, 

which greatly exceeded the results of prior studies utilising MLMs. The job of PI is notably 

difficult when a minimal fraction of tokens is paraphrased, as evidenced by experiments using 

15% paraphrased text of the ALECS-SS dataset. Despite this, the optimised GPT models 

exhibited strong performance, confirming their proficiency in managing the task even in 

challenging conditions.  
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CHAPTER 9:  CONCLUSION 
 

Given the ease of access to textual content online, the advancements in LLMs and online 

paraphrasing tools, which can produce sophisticated paraphrases, this thesis presents novel 

methods and analyses for detecting paraphrased text at the paragraph-level in Chapters 4,5,6 

and 7. This focus is particularly relevant, as paragraph-level paraphrasing is more commonly 

employed by individuals attempting to commit plagiarism (Foltýnek et al., 2019). 

9.1. Revisiting RQs 

This thesis investigated paraphrase generation and identification at the paragraph-level, 

addressing the overarching question of how text length and paraphrasis type influence the 

efficiency of ML and DL approaches. 

To respond to RQ1 and RQ2, the initial approach to detect paragraph-level paraphrases 

content is introduced in Chapter 5, where the significance of this detection is thoroughly 

examined. By considering text length and the available datasets, experiments employ both ML 

and DL methods. In these experiments, handcrafted features that are demonstrated to yield 

robust results in prior research (see Chapter 3) are extracted from each subset of the datasets. 

The samples are categorised according to text length and paraphrasing level. The experiments 

in this thesis focus on English text, specifically targeting text with an average paragraph length 

of 50 to 150 words. The findings indicate that short text segments do not provide sufficient 

information for comparing the semantic equality of two segments, resulting in low performance 

for both ML and DL methods within this category. Conversely, longer text segments often 

contain excessive semantic information, which can confuse the ML and DL models. Mid-length 

texts (paragraphs) offered the most reliable basis for PI, with handcrafted features such as TF-

IDF and n-gram overlap proving effective. SBERT achieved strong results on short and mid-

length inputs but struggled on longer texts, demonstrating the practical trade-offs between 

approaches.  

Building on this, Chapter 6 introduced the ALECS-SS dataset and the SALAC algorithms 

to answer RQ3-RQ5. The ALECS-SS dataset has been artificially established with the 

assistance of LLMs. This innovative approach enables the generation of diverse and 
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contextually rich paraphrased texts, which addresses some of the limitations associated with 

traditional corpus construction methods. By leveraging the capabilities of LLMs and SALAC 

algorithms, the dataset is designed to provide a wide range of paragraph-level paraphrases that 

maintain semantic equivalence while varying in linguistic structure and lexicalisation. This not 

only enhances the dataset's robustness but also facilitates more comprehensive analyses and 

experiments in the field of PI. In addition, three innovative SALAC algorithms are created to 

reconstruct paragraphs while preserving their semantic integrity. Following this reconstruction, 

a masking technique is utilised to modify the text lexically while maintaining its source 

meaning. These methods take into account both inter-sentence and intra-sentence relationships 

within the source text. The combination of algorithms and techniques generates paraphrased 

content that maintains the meaning of the source text, effectively preserving the semantic 

relationships and contextual subtleties. The research seeks to improve the quality and diversity 

of generated paraphrases by the implementation of these methodologies, hence facilitating 

more effective PI and analysis. Subsequently, both human and automatic evaluation procedures 

are conducted on the generated paraphrased paragraphs showing that sentence reordering 

combined with lexical masking could generate coherent paraphrases while preserving meaning. 

Human evaluation confirmed the validity of these algorithms, while coherence scores provided 

further evidence that automatic metrics can approximate, though not replace, human 

judgments. 

To address RQ6 and RQ7, Chapter 7 extended the analysis to multiple domains, showing 

that although the SALAC algorithms generalise well across disciplines, paraphrase quality is 

influenced by domain complexity. The study also revealed an inverse relationship between text 

complexity and IAA: more complex texts produced greater variability in human judgments, 

whereas clearer texts with shorter words, simpler structures, and concise sentences led to higher 

agreement. The consistency between automatic and human evaluation further confirmed the 

reliability of the algorithms across domains, highlighting both their strengths and the need for 

sensitivity to domain-specific challenges. Finally, to respond to RQ8 and RQ9, Chapter 8 

focuses on a classifier tasked with distinguishing between human-written and machine-

paraphrased text. This shift in focus is motivated by the advancements in LLMs which have 

demonstrated the ability to generate human-like text. The growing sophistication of these 

models necessitated the exploration of classification techniques capable of distinguishing 

between human-written and machine-paraphrased paragraphs, as this has become a critical area 

of study in response to the evolving capabilities of LLMs and the rapid growth of generative 
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AI. In this classification task, the classifier is fed one paragraph at a time, generating a score 

of 0 if the text is written by a human or 1 if it is a machine-paraphrased version. Notably, this 

task is more challenging, as the algorithm must decide without prior information. Additionally, 

both sets of paragraphs are originally written by humans, while the paraphrased versions alter 

a specific percentage of the text tokens and the text structure. In this thesis, three LLMs: BERT, 

RoBERTa, and Longformer are used to paraphrase 15%, 20%, and 30% of the SALAC outputs. 

The results of these experiments are analysed in depth, leading to several significant insights. 

Firstly, the finding confirms the impact of text length on the efficiency of DL classification 

models. Moreover, it highlights the effect of the masking probability percentage applied during 

the paraphrasing stage on the results of the experiments. Furthermore, the findings underscore 

the efficiency and differences between the implemented autoencoding and autoregressive 

LLMs. Generally, this chapter demonstrated that both autoencoding models (BERT, RoBERTa, 

Longformer) and autoregressive models (GPTs) are capable of distinguishing human-written 

from machine-paraphrased text. Together, these findings highlight the robustness of paragraph-

level PI compared to sentence-level approaches and show its practical relevance to PD. 

9.2. Limitations 

The study is subject to several limitations that shape the scope of its contributions. The first 

concerns the domain restriction of the ALECS-SS dataset, which was constructed primarily 

from social science texts such as psychology, sociology, and economics. Thus, this focus limits 

the generalisability of the findings to disciplines with different writing conventions, such as the 

sciences. A further limitation relates to dataset size and sample variety. Although ALECS-SS 

is both novel and considerably larger than existing sentence- and paragraph-level resources, it 

is composed solely of machine-paraphrased paragraphs and does not yet include real cases of 

academic plagiarism. Human evaluation also presents challenges: while the study engaged 

Durham University students from a range of academic backgrounds with strong English 

proficiency, the inclusion of domain experts could provide deeper insight into discipline-

specific demands. In addition, each sample was assessed by only three participants, and 

increasing this number to five or more would likely yield more reliable and robust results. 

Finally, computational resources further restricted the scope of the work, as transformer 

models, particularly GPT-based systems, were only partially explored due to the high cost of 

training and fine-tuning at scale. 
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9.3. Future Work 

Future research should address these limitations in order to strengthen and extend the 

findings. A clear priority is the expansion of the ALECS-SS dataset to incorporate additional 

domains beyond the social sciences and real-world paraphrase plagiarism cases, particularly 

technical and scientific writing where paraphrasing practices and stylistic conventions differ. 

Extending ALECS-SS to multilingual contexts would also enhance the applicability of PI 

methods to global academic settings. Complementing this, human evaluation would benefit 

from broader participation, both in scale and in domain specialized, to mitigate bias and 

produce more reliable and representative judgments. 

On the algorithmic side, combining structural methods such as those embodied in SALAC 

with the expressive power of fine-tuned generative models offers a promising avenue for 

generating paraphrases that are both natural and meaning-preserving. At the same time, the 

rapid evolution of generative AI presents both challenges and opportunities. The increasing 

fluency of models such as GPT-4 and GPT-5 will make plagiarism harder to detect, yet these 

same models could be harnessed as evaluators, detectors, or data generators. Beyond the 

technical challenges, there is scope to embed paragraph-level PI methods more directly into 

educational integrity systems and publishing workflows. Such integration would not only aid 

detection but also serve a pedagogical role, supporting students in developing sound 

paraphrasing practices by offering feedback on their work. 
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APPENDIX A 
Details of section 6.3.1: Human Evaluation 

The evaluation was conducted by six postgraduate researchers at Durham University, where 

English is the primary language of instruction. All evaluators were highly proficient in written 

English, with two being postdoctoral researchers in computer science and the remaining four 

in the final years of their PhD programmes: two in English, one in computer science, and one 

in Statistic. The evaluators were between 28 and 33 years old, comprising three men and three 

women. Prior to the evaluation, all participants provided informed consent and were given a 

clear explanation of the task requirements, along with illustrative examples to serve as training 

and ensure consistency in their judgments. Although not domain experts in psychology, their 

advanced level of education, disciplinary training, and language proficiency were deemed 

sufficient for assessing semantic similarity and coherence in paraphrased paragraphs. The text 

covers cognitive theory, clinical disorders, developmental processes, social/psychosocial 

factors. 

Details of section 7.2.3: Human Evaluation 

The evaluation was carried out by twelve undergraduate students in the final year of their 

studies at Durham University, where English is the primary language of instruction. The 

participants represented a range of disciplinary backgrounds, including four from computer 

science, five from statistics, and three from English. The group comprised seven men and five 

women. Before beginning the evaluation, all participants provided informed consent and 

received a clear explanation of the task requirements, together with illustrative examples to 

serve as training and to promote consistency in their judgments. The samples spanned a range 

of social science domains: anthropology focused on human cultural evolution and 

anthropological theory; economics addressed banking, finance, and regional economic 

development; archaeology examined material culture and labour in past societies; sociology 

explored language, social identity, and social movements; and management considered labour 

relations and organizational practices. 


