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Abstract

The aim of this thesis is to study word maps on the symmetric group, with appli-

cations in the study of spectral properties of random regular graphs.

We establish that, if w ∈ Fr is not a proper power, then Eφn∈hom(Fr,Sn) [χ (φn(w))] =

O
(

1
dimχ

)
as n→∞, where χ is any stable irreducible character of Sn.

We use this to prove that random sequences of representations of Fr that factor

through non–trivial irreducible representations of Sn converge strongly to the left reg-

ular representation λ : Fr → U
(
`2 (Fr)

)
, for any non–trivial irreducible representation

of dimension ≤ Cnn
1
20

−δ
.

An immediate consequence is that a random 2r–regular Schreier graph depicting

the action of r random permutations on n
1
20−δ–tuples of distinct elements in [n] has

a near optimal spectral gap, with probability → 1 as n→∞.
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1 Introduction

A d–regular graph on n vertices Gn,d with adjacency matrix AGn,d has n real eigenvalues,

d = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −d,

with λ1 = λ2 if and only if Gn,d is disconnected and λn = −d if and only if Gn,d is

bipartite. We denote by λ (Gn,d) = max
|λi|6=d

λi, the second largest eigenvalue and d−λ (Gn,d)

is the spectral gap. The Alon–Boppana bound [Alo86, Fri03, Nil91] dictates that, for fixed

d and growing n,

λ (Gn,d) ≥ 2
√
d− 1− o(1),

so that d− 2
√
d− 1 is the asymptotically optimal spectral gap for graphs of fixed degree

d. Graphs Gn,d that satisfy λ (Gn,d) ≤ 2
√
d− 1 are called Ramanujan and graphs Gn,d

that satisfy λ (Gn,d) ≤ 2
√
d− 1 + ε are called weakly Ramanujan.

The main aim of this thesis is to address the following question.

Question 1.1. Are random regular graphs on N = N(n) vertices weakly Ramanujan with

high probability? That is, as n→∞, with N(n) ≥ n, does

P [a random regular graph of fixed degree on N(n) vertices is weakly Ramanujan]→ 1?

The model of random regular graphs that we study is that of Schreier graphs of the

symmetric group acting on k–tuples. Given an action of a finite group G on a finite

set X and elements g1, . . . , gr ∈ G, one obtains the 2r–regular Schreier graph, denoted

Sch (Gy X, g1, . . . , gr), with vertex set X and, for each vertex u, an edge between u and

giu for each i ∈ [r]
def
= {1, . . . , r}. Choosing g1, . . . , gr i.i.d. uniformly random yields a

random 2r–regular graph. We are particularly interested in analysing the spectral gap of

the random Schreier graphs in the case of G = Sn and whereby X is the set of k–tuples

of distinct elements of [n]. The main outcome of this thesis, Theorem 1.13, is that in this

random model, the answer to Question 1.1 is yes, for N(n) = nn
1
20−δ .

Our approach is a study of word maps on the symmetric group, where results obtained

can be used as input to a new method detailed in [CGVTvH24] for proving strong conver-
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gence of random permutations in high–dimensional representations, from which one can

deduce statements regarding the spectral gap of the related random Schreier graphs.

1.1 Motivation

1.1.1 Spectral gaps

In general, we are interested in regular graphs with spectral gap as large as possible.

Such graphs have some desirable properties which we describe here. Given any graph

G = (V,E) and a subset S ⊆ V, define e(S) to be the number of edges between S and

V \S. A d–regular graph on n vertices, Gn,d, is an ε–expander if

h (Gn,d)
def
= min

S⊆V, |S|≤ |V |
2

e(S)

|S|
≥ ε.

The number h (Gn,d) is called the Cheeger constant of the graph Gn,d. Intuitively, a large

Cheeger constant means that every subset of the vertices is well connected to its comple-

ment. Graphs of fixed degree on a large number of vertices with a large Cheeger constant

are therefore sparse (they have few edges) but well connected, which is a desirable property

for applications in e.g. computer science. Observe that e(S) ≤ d|S|, so that h (Gn,d) ≤ d.

Graphs with Cheeger constant similar to d are therefore good expanders and the follow-

ing inequality, which can be seen in e.g. [AM85], relates the Cheeger constant with the

spectral gap.

Theorem 1.1. For any d–regular graph on n vertices, Gn,d, we have

h (Gn,d) ≥
1

2
(d− λ (Gn,d)) .

So the spectral gap can, in some sense, be viewed as a measure of how well connected

a regular graph is and one sees that a larger spectral gap yields a larger lower bound on

the Cheeger constant. Indeed, if Gn,,d is Ramanujan, then h (Gn,d) ≥ d
2 −
√
d− 1, which

is not far from the best possible expansion. Therefore, explicit constructions of graphs

with a large spectral gap are of interest and group theoretic methods have proven fruitful

in this endeavour.
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1.1.2 Previous results

We further motivate this thesis by highlighting some important previous results. We begin

by discussing previous results in spectral graph theory, with a focus on constructions of

graphs using the symmetric group, before discussing some important previous results in

the context of strong convergence of representations of free groups, particularly those that

factor through permutations.

Expander graphs using the symmetric group

It was conjectured by Alon [Alo86] that ‘most’ d–regular graphs on a large number of

vertices are weakly Ramanujan i.e. a randomly chosen d–regular graph on a large number

of vertices is weakly Ramanujan with high probability, although it was not specified how

to choose a random d–regular graph. Friedman [Fri08] proved Alon’s conjecture in a

breakthrough monograph making use of random Schreier graphs.

Theorem 1.2 (Friedman). Let Gn,d = Sch (Sn y [n], σ1, . . . , σr) be a random 2r–regular

Schreier graph. Then Gn,d is weakly Ramanujan asymptotically almost surely (a.a.s.),

that is, for any ε > 0,

P
[
λ (Gn,d) ≤ 2

√
2r − 1 + ε

] n→∞−→ 1.

Remark 1.3. Friedman’s theorem thus confirms that the answer to Question 1.1 is yes, for

N(n) = n.

A simpler proof to Friedman’s theorem was later given by Bordenave [Bor20] and a

substantially simpler proof of a very similar statement (ε = 1) was also given by Puder

[Pud15]. In fact, Puder’s approach has the added benefit that it is applicable to the

generalised conjecture of Friedman for non–regular graphs (see [Fri03, Section 5]). This

conjecture concerns random n–lifts of a fixed base graph Ω, and Puder’s approach is used

to prove a nearly optimal upper bound on the second largest eigenvalue of such a random

graph. This generalised conjecture was later resolved in full by Bordenave and Collins in

[BC19] as an application of the strong convergence theorem proved therein (we will discuss

strong convergence in more detail very shortly).

Questions remain about expansion properties of random Cayley graphs of the symmet-

ric group – these are denoted Cay (Sn, S) where S = {s1, . . . , sr} ⊆ Sn is some random gen-
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erating set for Sn and they are equivalent to Sch (Sn y Sn, s1, . . . , sr) . One can also con-

sider these random Cayley graphs as the random Schreier graphs Sch (Sn y [n]n, s1, . . . , sr) ,

using the notation

[n]k
def
=
{
k−tuples of distinct elements in [n]

}
.

Friedman’s theorem is the case k = 1. In [FJR+98], it was shown that for any fixed

k ∈ Z>0, a random 2r–regular Schreier graph Gn,d = Sch (Sn y [n]k, σ1, . . . , σr) has a

uniform (not necessarily near–optimal) spectral gap asymptotically almost surely. Later,

using a remarkable novel approach to strong convergence, Chen, Garza–Vargas, Tropp

and van Handel [CGVTvH24] gave a shorter proof of Friedman’s theorem and they also

extended their method to show for each fixed k, these random 2r–regular Schreier graphs

are weakly Ramanujan asymptotically almost surely1, thus confirming that the answer to

Question 1.1 is yes, for N(n) = nk with k any fixed positive integer.

As we mentioned before, to answer such a question for random Cayley graphs of the

symmetric group, one would need to prove Friedman’s theorem in the case of Sn acting on

n–tuples. As far as we know, the best result in this direction is the following, see [Kas05].

Theorem 1.4 (Kassabov). There exist L, ε > 0 such that, for any n, there exists an ex-

plicit generating set Xn ⊆ Sn, of size ≤ L, such that the Cayley graphs

{
Cay (Sn, Xn)

}
n≥1

form a family of ε–spectral expanders.

In the case of a random generating set of fixed size, it is not known whether these

graphs are weakly Ramanujan – it is not even known if they have a uniform spectral gap.

Our Theorem 1.13 can, in some sense, be viewed as an advancement in the effort to bridge

the gap between the result in [CGVTvH24] for Sch (Sn y [n]k, σ1, . . . , σr) with k fixed

and the result for Sch (Sn y [n]n, σ1, . . . , σr) result that would resolve these unanswered

questions for random Cayley graphs of the symmetric group.

1The statement for the spectral gap of random graphs in their case follows immediately from their result
on the strong convergence of random representations that factor through permutations, in the same way
as our Theorem 1.13 follows immediately from 1.14, as described in §1.2.3.
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Strong convergence

Before giving the definition, we describe the intuition behind strong convergence, which can

also be described as ‘strong asymptotic freeness’ for the random matrix models described

here. What strong convergence implies is that, as the size of the random system grows, the

interactions between the images of the generators in the random matrix model become

increasingly decorrelated. In the limit, the algebra they generate no longer exhibits a

group–like structure (in this thesis, this would be that of the symmetric group) with some

degree of commutativity, but actually approximates the freely independent behaviour of

the generators in the left regular representation. In our case, the idea is to try and

show that large, randomly chosen, independent permutations behave freely with a high

probability.

Definition 1.5. Given a sequence of random, finite dimensional, unitary representations

{πn : Fr → U (Nn)}n≥1, we say that πn strongly converges to the left regular representation

λ : Fr → U
(
`2 (Fr)

)
a.a.s. if, for any z ∈ C [Fr], for any ε > 0, we have

P
[∣∣∣∣ ‖πn(z)‖ − ‖λ(z)‖

∣∣∣∣ < ε

]
n→∞−→ 1. (1)

The norms here are operator norms, see §5.1.1. If this condition holds, we will write

πn
strong−→ λ.

Strong convergence for random (and non–random) representations of discrete groups Γ

can be analogously defined but, in this thesis, we are particularly interested in strong con-

vergence of random representations of free groups, particularly those that factor through

permutations. The relevance of such representations to analysing the spectral gap of

random graphs will be discussed later. There are results regarding strong convergence of

other discrete groups which we will also touch on briefly later and, for a survey on strongly

convergent representations of discrete groups, we direct the reader to [Mag25b].

The first instance of strong convergence of random representations of Fr that factor
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through Sn was given by Bordenave and Collins [BC19]. They showed that

std ◦ φn
strong−→ λ, (2)

where φn ∈ hom (Fr, Sn) is chosen uniformly at random (i.e. by mapping each generator to

a uniformly random permutation, see §1.2.2) and std is the (n− 1)–dimensional standard

representation of Sn. As we mentioned before, to illustrate the power of this result, they

use this to resolve the generalised conjecture of Friedman on random lifts of fixed base

graphs, see [BC19, Section 1.5]. In [HM23], Hide and Magee use this in the context of

random covers of hyperbolic surfaces, showing that a random n–degree cover of a finite–

area, non–compact (i.e. ‘cusped’) hyperbolic surface X has no eigenvalues below 1
4 − ε

a.a.s. (other than the eigenvalues of X), an analogue of Friedman’s theorem and further

illustrating the power of strong convergence of random representations of Fr factoring

through even relatively low–dimensional representations of Sn.

The work of Bordenave and Collins followed the breakthrough paper of Haagerup

and Thorbjornsen [HT05], who gave the first example of a strongly convergent random se-

quence of representations of Fr by use of GUE matrices and Collins and Male [CM14], who

proved the strong convergence (almost surely) of random representations of Fr factoring

through unitaries (via mapping each xi to a Haar random unitary ui).

1.2 Main results

The main original results of this thesis are presented in this section. They can be divided

into three subsections, each of a different flavour. The first of these subsections contain

the main results of the author in [Cas25a] and the latter two contain the main results of

the author in [Cas25b]. The main results of this thesis are Theorem 1.6, Theorem 1.12,

Theorem 1.13 and Theorem 1.14.

1.2.1 Projection formulas

Classic Schur–Weyl duality due to Schur [Sch27, Sch01] asserts that, in End
(

(Cn)⊗k
)
,

GLn (C) and Sk generate full mutual centralizers of one another, when GLn acts diagonally
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and Sk permutes tensor coordinates. This gives a decomposition

(Cn)⊗k ∼=
⊕

λ`k, l(λ)≤n

V λ ⊗ Sλ, (3)

where each V λ is the irreducible representation of Sk corresponding to λ ` k and Sλ is the

irreducible representation of GLn corresponding to λ. This relates to a formula obtained

earlier by Frobenius [Fro00], giving the Schur polynomial expansion of the power sum

symmetric polynomials. Indeed, if g ∈ GLn has eigenvalues x1, . . . , xn and σ ∈ Sk has

cycle type µ, then the bitrace of (g, σ) on (Cn)⊗k, that is, the trace the endomorphism of

(Cn)⊗k obtained by applying σ and then g, is given by

btr(Cn)⊗k (g, σ) = pµ (x1, . . . , xn) , (4)

where pµ is a power sum symmetric polynomial,

pµ(x1, . . . , xn) =

l(µ)∏
i=1

 n∑
j=1

xµij

 .

Combining (4) with (3) yields the expansion

pµ =
∑

λ`k, l(λ)≤n

χλ (µ) sλ,

where χλ is the character of V λ and sλ is the Schur polynomial corresponding to λ.

The analogous results in the case of Sn acting diagonally on (Cn)⊗k were obtained by

Jones [Jon94] and can be expressed using the partition algebra, Pk(n). When n ≥ 2k, Sn

and Pk(n) generate full mutual centralizers of one another in End
(

(Cn)⊗k
)
, leading to

the decomposition

(Cn)⊗k ∼=
⊕

λ`l, 0≤l≤k
V λ+(n) ⊗Rλ,

where Rλ is the irreducible Pk(n) representation corresponding to λ and V λ+(n) is the

irreducible Sn representation corresponding to

λ+(n) = (n− |λ|, λ) ` n,

12



see §2.1.2.

We use a refinement of this existing ‘Schur–Weyl–Jones duality’ due to Sam and Snow-

den [SS15] (considered also by Littlewood [Lit58] in a slightly different context), construct-

ing a subspace

Ak(n) ⊆ (Cn)⊗k

on which the inherited action of Pk(n) descends to an action of C [Sk] (via the natural

restriction map R : Pk(n) → C [Sk] , see (17)) and whereby σ ∈ Sk permutes tensor

coordinates. Ak(n) also inherits an action of Sn from (Cn)⊗k and we denote the associ-

ated representations by θ and ρ respectively. These actions commute, making Ak(n) a

C [Sn × Sk]–representation, with decomposition

Ak(n) ∼=
⊕
λ`k

V λ+(n) ⊗ V λ (5)

for n ≥ 2k. Our main result below is an explicit formula for the orthogonal projection

Qλ,n, from (Cn)⊗k to each irreducible block Uλ+(n)
∼= V λ+(n) ⊗ V λ, for each λ ` k. For

each λ ` k, we will write dλ
def
= dimV λ (and similarly dµ

def
= dimV µ for any irreducible

representation V µ of S|µ|).

Theorem 1.6 ([Cas25a, Theorem 1.1]). For any k ∈ Z>0, for any λ ` k and for any

n ≥ 2k, there exists a Sn × Sk–subrepresentation

Uλ+(n) ⊆ Ak(n)

such that

a) Uλ+(n) is irreducible and satisfies

Uλ+(n)
∼= V λ+(n) ⊗ V λ,

and

b) the orthogonal projection

Qλ,n : (Cn)⊗k → Uλ+(n)

13



is given by

dλ+(n)(−1)k
∑
τ∈Sk

χλ(τ)
∑
π≤ι(τ)

(−1)|π|

(n)|π|
P strict
π , (6)

where

〈
P strict
π (ei1 ⊗ · · · ⊗ eik) , eik+1

⊗ · · · ⊗ ei2k
〉

=


1 if j ∼ k in π ⇐⇒ ij = ik

0 otherwise,

ι : C [Sk] → Pk(n) is the natural inclusion map (as in (18)) and ‘≤’ is the natural

partial ordering on set partitions (as in §2.1.5).

Theorem 1.6 has the following corollary, detailing how one can compute the irreducible

character χλ
+(n)(g) by instead computing the trace in (Cn)⊗k of g ◦ Qλ,n.

Corollary 1.7. For any g ∈ C [Sn] , σ ∈ C [Sk],

btrUλ+(n)
(g, σ) = χλ

+(n)(g)χλ(σ). (7)

In particular, taking σ = Id, we have

dλχ
λ+(n)(g) = btrUλ,n (g, Id)

= trUλ,n(g)

= btr(Cn)⊗k (g,Qλ,n) .

1.2.2 Word maps

The intended application of Theorem 1.6 is the study of word maps on the symmetric

group. This topic has been addressed in e.g. [Pud14, PP15, HP23] (as well as in [MP19,

MP22]) for other compact groups). Given a word w ∈ Fr = 〈x1, . . . , xr〉 and a compact

group G, one obtains a word map

w : G× · · · ×G︸ ︷︷ ︸
r

→ G

by substitutions. For example, if w = [x1, x2] and g, h ∈ G, then w(g, h) = ghg−1h−1 ∈ G.

We are particularly interested in the case G = Sn.
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One can equivalently think of the image of a word map in Sn as the image of w un-

der some homomorphism φn ∈ hom(Fr, Sn), whereby one fixes a basis x1, . . . , xr for Fr

and sets w(σ1, . . . , σr) = φn(w) by choosing φn(xi) = σi. Where we refer to a w–random

permutation, we refer to a random permutation obtained by choosing i.i.d. uniformly ran-

dom permutations σ1, . . . , σr ∈ Sn and evaluating w(σ1, . . . , σr) (equivalently, evaluating

φn(w) – this is the perspective we will adopt when we consider random representations of

Sn obtained by composing such a random φn with a fixed representation of Sn).

Determining the distribution of w–random permutations is, in most cases, highly non–

trivial and a natural starting point is to consider, for each w ∈ Fr,

Ew (#fix)
def
= E

σ1,...,σm∈Sn
[#fixed points of (w (σ1, . . . , σm))] .

Puder and Parzanchevski [PP15] give sharp asymptotic bounds for the expected number

of fixed points in terms of the primitivity rank of w, an algebraic invariant of w introduced

by Puder in [Pud14]. A word w ∈ Fr is said to be primitive in a free group if it belongs

to some basis of that group and the primitivity rank π(w) of a word in Fr is defined by

π(w)
def
= min

{
rkH : H ≤ Fm, w ∈ H, w not primitive in H

}
.

If no such subgroup exists, then we set π(w) =∞. The quantity Crit(w) is defined as the

number of subgroups H ≤ Fr with w ∈ H, w not primitive in H and rkH = π(w).

Theorem 1.8 ([PP15, Theorem 1.8]). For any w ∈ Fr,

Ew (#fix) = 1 +
|Crit(w)|
nπ(w)−1

+O

(
1

nπ(w)

)
.

In [HP23], Hanany and Puder generalize this to all stable irreducible characters of

Sn. These are the family of irreducible representations of Sn corresponding to Young

diagrams λ+(n) where λ ` k is fixed. It is now well–known that the expected stable

irreducible character of a w–random permutation is a rational expression in n, this follows

by combining [Nic94, LP10] with [HP23, Proposition B.2], see also §2.1.2. Alternatively,

this fact can also be seen immediately from (57).
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Theorem 1.9 ([HP23, Theorem 1.3]). For any k ∈ Z≥2, for any λ ` k and for any w ∈ Fr

that is not a proper power or the identity,

Ew
(
χλ

+(n)
)

= O

(
1

nπ(w)

)
.

Moreover, they conjecture2 the much stronger bound:

Conjecture 1.10. For any k ∈ Z≥0, for any λ ` k and for any w ∈ Fr

Ew
(
χλ

+(n)
)

= O

(
1(

dλ+(n)

)π(w)−1

)
.

Remark 1.11. That this conjecture holds for k = 0 is completely trivial and the case for

k = 1 (i.e. where V λ+(n) = V (n−1,1) is the (n − 1)–dimensional standard representation)

follows from Theorem 1.8. The conjecture is also known to be true for words w with

π(w) = 1 (i.e. for proper powers) and this follows from [Nic94] and [LP10, Section 4].

The remaining cases of interest are therefore k ≥ 2 and π(w) ≥ 2. The main result of

this section is below, obtained using the projection formula in Theorem 1.6 and a method

referred to as combinatorial integration. Theorem 1.12 solves one aspect of Conjecture

1.10, confirming the conjecture for π(w) = 2 and thus for F2. Perhaps more importantly,

it is powerful enough to be used to prove the results stated in §1.2.3.

Theorem 1.12 ([Cas25b, Theorem 1.5]). For any k ∈ Z≥2, for any λ ` k and for any

w ∈ Fr that is not a proper power or the identity,

Ew
(
χλ

+(n)
)

= O

(
1

dλ+(n)

)
= O

(
1

nk

)
.

1.2.3 Strong convergence and spectral gaps

This section details the main results to be proved in §5. We use that Ew
[
χλ

+(n)
]

is both

rational in n and is = O
(

1
dλ+(n)

)
for large n to show that random representations of Fr

2In fact, it has recently been conjectured by Puder and Shomroni [PS23, Conjecture 1.2] that the

sharpest bound should be given by O

(
1(

dimV λ
+(n)

)sπ(w)

)
, where sπ(w) is a property of w called the

stable primitivity rank, as introduced by Wilton [Wil24, Definition 10.6], and it is further conjectured by
Wilton that sπ(w) = π(w)− 1, so that the conjecture of Hanany and Puder is a combination of these two
conjectures.
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that factor through high–dimensional representations of Sn (via a random homomorphism

φn ∈ hom (Fr, Sn)) strongly converge towards the left regular representation of Fr. It then

follows that a large family of random Schreier graphs are a.a.s. weakly Ramanujan. Some

motivation for these results is described in §1.1. For any integers r, k > 0, define Gr (n, k)

to be the collection of 2r–regular Schreier graphs Sch (Sn y [n]k, σ1, . . . , σr) , where [n]k

denotes the set of all k–tuples of distinct elements in [n].

Theorem 1.13 ([Cas25b, Theorem 1.2]). Fix any integer r > 1 and let α < 1
20 . For any

sequence of positive integers (kn)n≥1 with kn ≤ nα, let (Gn)n≥1 be a sequence of random

2r–regular Schreier graphs, where for each n ≥ 1, Gn ∈ Gr (n, kn) is obtained by choosing

r i.i.d. uniformly random permutations, σ1, . . . , σr ∈ Sn.

Then, for any ε > 0,

P
[
λ (Gn) ≤ 2

√
2r − 1 + ε

] n→∞−→ 1.

The case α = 0 is exactly Friedman’s theorem (see §1.1) and the collection of Schreier

graphs Gr (n, n) is the collection of Cayley graphs of Sn, so proving the above result for

α = 1 would show that random Cayley graphs of Sn are a.a.s. weakly Ramanujan. Never-

theless, Theorem 1.13 is the first result showing that the Schreier graphs constructed using

random permutations acting on tuples of distinct elements have near–optimal spectral gap

with high probability, in the case where the size of the tuple is allowed to grow with n.

Our proof of Theorem 1.13 relies on the remarkable new approach to strong convergence

detailed in [CGVTvH24], as well as the additional criterion for temperedness of arbitrary

functions on finitely generated groups Γ with a finite fixed generating set (an adaptation

of the classical notion of a tempered representation) given by Magee and de la Salle in

[MdlS24].

We are interested in the cases whereby the representations πn = ρ ◦ φn, where φn ∈

hom (Fr, Sn) is random and ρ : Sn → End (V ) is a representation of Sn of dimension N(n).

The power of strong convergence in this setting is that, since the convergence must hold

for every z ∈ C [Fr], it allows us to prove results like Theorem 1.13, which require (1) to

hold only for specific elements of C [Fr] .
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For example, proving Friedman’s Theorem is equivalent to showing that

P
[∣∣∣∣ ‖πn(z)‖ − 2

√
2r − 1

∣∣∣∣ < ε

]
n→∞−→ 1 (8)

where

z = x1 + x−1
1 + · · ·+ xr + x−1

r (9)

and πn = std ◦ φn, with φn ∈ hom (Fr, Sn) uniformly random (i.e. obtained by uniformly

randomly choosing a permutation σi ∈ Sn for each i and mapping xi 7→ σi). This is

because, if ρ : Sn → End (Cn) is the defining representation of Sn, then

ρ
(
σ1 + σ−1

1 + · · ·+ σr + σ−1
r

)
is the adjacency matrix of the graph Sch (Sn y [n], σ1, . . . , σr) and 2

√
2r − 1 = ‖λ(z)‖

in this case. We consider the orthogonal complement to the Sn–invariant vectors in Cn

to account for the trivial eigenvalue 2r, which, in the case of ρ above, is the standard

representation.

More generally, for any k ∈ Z>0 we define

ρ̄n,k : C [Sn]→ End
(

(Cn)⊗k
)
,

the kth tensor power of the defining representation. We then define

ρn,k : C [Sn]→ End (Vn,k)

to be the restriction of ρ̄n,k to the orthocomplement to the Sn–invariant vectors, Vn,k ⊆

(Cn)⊗k and define a random sequence of unitary representations of Fr, {πn,k
def
= ρn,k ◦

φn}n≥1, with φn ∈ hom (Fr, Sn) uniformly random as before.

In this language, Bordenave and Collins [BC19] proved strong convergence to the left

regular representation λ : Fr → U
(
`2 (Fr)

)
a.a.s. for the sequence of random representa-

tions of Fr, {πn,1}n≥1, i.e. where the random representation factors through std. They

extend their results to show strong convergence a.a.s. for {πn,2}n≥1. With the new ap-

proach in [CGVTvH24], strong convergence a.a.s. for {πn,k}n≥1 for any fixed k was proved
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but using a very different approach. We adopt and extend this new approach to prove our

final main theorem below.

Theorem 1.14 ([Cas25b, Theorem 1.9]). For any α < 1
20 , for any z ∈ C [Fr] and for any

ε > 0,

P

[
sup
kn≤nα

∣∣∣∣ ‖πn,kn(z)‖ − ‖λ(z)‖
∣∣∣∣ < ε

]
n→∞−→ 1.

Corollary 1.15. 3For any α < 1
20 , for any z ∈ C [Fr] and for any ε > 0,

P

 sup
ρ

dim ρ≤Cnn
α

∣∣∣∣ ‖ρ ◦ φn(z)‖ − ‖λ(z)‖
∣∣∣∣ < ε

 n→∞−→ 1.

where the supremum is over all non–trivial irreducible representations of Sn.

Remark 1.16. Theorem 1.13 follows immediately from Theorem 1.14 by taking z = x1 +

x−1
1 + · · ·+ xr + x−1

r . Theorem 1.14 is a much stronger statement, and it is certainly not

necessary to prove such a statement to prove Theorem 1.13.

1.3 Other related works

As we have previously discussed, the most closely related works with respect to the

word maps section of this thesis are the results of Puder, Puder–Parzanchevski and

Hanany–Puder [Pud14, PP15, HP23], as well as earlier works of [Nic94, LP10], all of

which consider word maps on the symmetric group. Some of these results were obtained

through somewhat algebraic arguments, whilst the approach in this thesis is of a more

analytic/combinatorial nature.

Compact groups

Word maps on other finite/compact groups can be considered in a similar context and there

are many related results to be seen in e.g. [Voi91, MŚS07, EWPS24, MP19, MP22, PS23].

One takeaway from these works is that, in many cases, the character statistics are rational

functions of the parameter n, a fact which is exploited in [CGVTvH24], in which it is

detailed how one can prove the strong convergence of random representations of free

3This corollary and its proof in §5.2 were suggested to me by Ramon van Handel, for which I am
especially grateful.
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groups that factor through representations of compact groups using this simple fact and

some additional ‘soft’ arguments. To demonstrate the power of their method, prior to the

results of this thesis, they use the asymptotic bound given by Hanany and Puder [HP23]

(Theorem 1.9 in §1.2.2) to prove that the analogue of Theorem 1.14 holds for any fixed

k. In [MdlS24], Magee and de la Salle extend this method and, using as an input an

asymptotic bound for the expected stable irreducible character of a w–random unitary

following from [MP19, Mag22, Mag25a], they prove an analogue of our Theorem 1.14 for

random representations of Fr factoring through unitary matrices in non–trivial irreducible

representations of quasi–exponential dimension, with a slightly worse constant (α < 1
42

4),

but which holds almost surely.

Discrete groups

In addition to the asymptotic statistics of φn ∈ hom(Fr, Sn) that are considered in this

thesis, one can equally consider the asymptotic statistics of φn ∈ hom (Γ, G) for discrete

groups Γ and compact groups G. Of particular interest is, for example,

E
φn∈hom(Γg ,Sn)

(#fix(φn(w))) ,

where Γg is the fundamental group of a surface of genus g and w ∈ Γg. Although the

expression in this case is not a rational expression in n, precise asymptotics can still be

obtained for the Laurent expansion (see [MP23]) and, very recently, Magee, Puder and

van Handel in [MPvH25] have extended the methods of [CGVTvH24] to prove strong

convergence of the related random representation of Γg using the Laurent expansion.

Results for other discrete groups are, as yet, unclear and similarly for other compact

groups, more on this in §6. We include this discussion here to highlight the importance of

such expressions for asymptotic statistics of w–random group elements and the role such

expansions play in these new methods for proving strong convergence, as well as their

relevance in geometric settings.

4This was later improved anyway to α < 1
3

in [CGVvH24].
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2 Background

2.1 Preliminaries and notation

2.1.1 Representation Theory

For a thorough introduction, we direct the reader to the textbooks by Fulton and Harris

[FH04] or Serre [Ser77], for example. Given a representation (ρ, V ) of a finite group G,

we will denote by V ∨ its dual representation, where if {vi} is a basis for V, V ∨ is the

vector space with basis {v̌i}, where v̌i(vj) = δij . We will write the decomposition of a

representation into irreducible representations as

V ∼=
k⊕
i=1

V ⊕aii , (10)

where the Vi are the distinct (non–isomorphic) irreducible representations of G. This

decomposition is unique up to isomorphisms of the isotypic components, V ⊕aii . Given a

decomposition V ∼=
⊕
V ⊕aii of an arbitrary representation V of a finite group G, we define

PVi
def
=

dim(Vi)

|G|
∑
g∈G

χVi(g)g ∈ C[G], (11)

a central idempotent in the group algebra whose image ρ (PVi) ∈ End(V ) is the projection

from V on to the Vi–isotypic subspace.

We denote [n]
def
= {1, . . . , n} and throughout this thesis, e1, . . . , en ∈ Cn will be the

standard orthonormal (with respect to the standard Hermitian inner product 〈., .〉) basis

of Cn so that the set {
ei1 ⊗ · · · ⊗ eik : ij ∈ [n] for j ∈ [k]

}
is the standard basis for (Cn)⊗k . Given a multi–index I = (i1, . . . , ik) , we will write

eI
def
= ei1 ⊗ · · · ⊗ eik ∈ (Cn)⊗k

and similarly ěI denotes ěi1 ⊗ · · · ⊗ ěik ∈
(
(Cn)∨

)⊗k
. Given a representation ρ : G →

End(V ) and a subgroup H ≤ G, we will write ResGHV or V ↓H for the restriction of V to

H and, given a representation U of H, we will denote by IndGHU the induced representation
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of G.

2.1.2 Symmetric Group

We denote the symmetric group on n elements by Sn = {bijections [n] → [n]} together

with function composition. Where we refer to an inclusion of the form Sm ⊆ Sn, for m ≤ n,

unless specified otherwise, we refer to the subgroup consisting of permutations in Sn which

fix the elements {m+1, . . . , n}. In this case, we may also refer to an inclusion S′n−m ⊆ Sn,

which refers to the subgroup consisting of permutations that fix the elements {1, . . . ,m}. It

can be shown (see [Hum96] for example) that Sn is generated by transpositions of adjacent

elements,

Sn ∼= 〈(12), (23), . . . , (n− 1 n)〉 .

These are the Coxeter generators, denoted si = (i i+ 1) for i = 1, . . . , n− 1.

A Young Diagram (YD) λ is an arrangement of rows of boxes, where the number of

boxes in each row is non–increasing as the row index increases. If λ is a YD with n boxes

and l(λ) non–empty rows of boxes, then we write λ ` n (or |λ| = n) and we say that the

length of λ is l(λ). We can write this as λ =
(
λ1, . . . , λl(λ)

)
, with λ1 ≥ · · · ≥ λl(λ) > 0 and

λ1 + · · · + λl(λ) = n. There is a notion of inclusion for Young diagrams λ and µ, where

|µ| ≤ |λ|. Informally, we say µ is contained inside λ if we can obtain λ by adding boxes to

µ (equivalently, removing boxes from λ to obtain µ). More formally, if µ =
(
µ1, . . . , µl(µ)

)
and λ =

(
λ1, . . . , λl(λ)

)
, then µ is contained in λ if l(µ) ≤ l(λ) and for each i ∈ [p], we have

µi ≤ λi. Where µ is contained in λ, we define the skew diagram λ\µ to be the diagram

consisting of the boxes that are in λ, but not in µ. There is a natural bijection between

distinct isomorphism classes of irreducible representations of Sn and Young diagrams λ `

n, for example see [FH04, Chapter 4] or [VO05]. As such, we label every irreducible

representation of Sn by its corresponding YD λ, and denote this representation by V λ.

With this and (10), we can write every representation V of Sn uniquely in the following

way

V ∼=
⊕
λ`n

(
V λ
)⊕aλ

,

where aλ ∈ Z≥0 for each λ ` n. We will denote the character of V λ by χλ.
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Remark 2.1. The characters of the symmetric group are integer valued (see [Ser77, p. 103]

for example). Consequently, all representations V of the symmetric group are self dual,

meaning that V ∼= V ∨, since

χV ∨(g) = χV (g) = χV (g).

Recall that we denote by dλ
def
= χλ (Id) = dimV λ. A standard tableau or Young tableau

of shape λ ` n is a labeling of the boxes of λ with the integers 1, . . . , n, in which every

integer appears exactly once and the numbers are increasing both along the rows and

down the columns. The set of standard tableau of shape λ is denoted by Tab(λ) and it is

a fact that |Tab(λ)| = dλ. The content, cont (�), of a box � in a YD λ is defined by

cont (�) = column index of � − row index of �.

Given T ∈ Tab(λ), we define a content vector (c1, . . . , cn) ∈ Zn, where ci is the content

of the box labeled i. Then we have the following proposition of Vershik and Okounkov

[VO05, Proposition 6.2].

Proposition 2.2. There exists an orthonormal basis {vT }T∈Tab(λ) of V λ in which the

Coxeter generators si act according to the following rules:

� If the boxes labeled i and i+ 1 are in the same row of T , then sivT = vT ;

� If the boxes labeled i and i+ 1 are in the same column of T , then sivT = −vT ;

� If the boxes labeled i and i+ 1 are in neither the same row or the same column of T ,

then si acts on the two dimensional space spanned by vT and vT ′ (the Young tableau

obtained from T by swapping i and i+ 1) by the following matrix

 r−1
√

1− r−2

√
1− r−2 −r−1

 ,

where r = ci+1 − ci.

From now on, for each λ we will fix such a basis of V λ, and refer to this as the

Gelfand–Tsetlin basis.
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Stable irreducible representations

For any fixed k ∈ Z>0 and any λ ` k, we define a Young diagram λ+(n) = (n− k, λ) ` n

for any n ≥ k + λ1. This gives rise to a family of irreducible representations indexed by

{λ+(n)}n≥k+λ1 and we denote the collection of all such families by Ŝ∞.

These representations appear naturally in the representation theory of Sn since their

characters form a linear basis for the polynomial ring Q [η1, η2, . . . ], whereby ηi : Sn → Z

satisfies ηi(σ) = #fix
(
σi
)
. For example, std, which corresponds to (n − 1, 1) ` n, is

expressed as η1− 1. A more thorough discussion of this can be found in [HP23, Appendix

B].

2.1.3 Hyperoctahedral Group

We give an overview of the hyperoctahedral group, Hk, viewed as a subgroup of S2k, and

its representation theory. This brief introduction comprises of a summary similar to that

of Koike and Terada in [KT87]. A very thorough introduction to this topic can be found

in [Mus93]. There is an injective group homomorphism

ψ : Sk → S2k (12)

whereby each Coxeter generator si = (i i+1) is mapped to ψ(si) =
(
2i−1 2i+1

)(
2i 2i+2

)
.

We will write

Sψk = ψ (Sk) ≤ S2k

and the hyperoctahedral group is then defined to be the following subgroup of S2k:

Hk =
〈
ψ (Sk) , s1, s3, . . . , s2k−1

〉
∼= ψ (Sk)nD, (13)

where

D =
〈
s1, s3, . . . , s2k−1

〉
≤ S2k.
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For each i = 0, 1, 3, . . . , 2k − 1, define a representation ρi of D by

ρi (sj) =


1 if j ≤ i

−1 i < j.

(14)

Then, given an irreducible representation V λ of Sk, define an irreducible representation

W λ,∅ of Hk via (13) – Given h ∈ Hk and we have h = ψ(σ)δ and the character χλ,∅

of W λ,∅ is given by χλ,∅(h) = χλ,∅(ψ(σ)δ) = χλ(σ). We can also define an irreducible

representation of Hk from ρ0, by extending ρ0 by letting ψ (Sk) act trivially. We denote

this representation of Hk by W ∅,(k) and we define

W ∅,λ = W λ,∅ ⊗W ∅,(k), (15)

with character given by χ∅,λ = sign(δ)χλ(σ).5

Given any i = 1, 3, . . . , 2k − 1, define ji
def
= i+1

2 and define two subgroups of Hk,

Hji =
〈
ψ (Sji) , s1, s3, . . . , si

〉

and

H ′k−ji =
〈
ψ
(
S′k−ji

)
, si+2, si+4, . . . , s2k−1

〉
,

where S′
k− i+1

2

is defined as in Section 2.1.2. These are obviously isomorphic to smaller

index hyperoctahedral groups, and we get the following theorem (see e.g. [Mus93, Theorem

4.7.7]) using the ‘Wigner–Mackey method of little groups’.

Theorem 2.3. With the subgroups and representations defined as above,

a) for any i = 1, 3, . . . , 2k−1 and Young diagrams µ ` ji, ν ` k−ji, the representation

Wµ,ν = IndHk
Hji×H

′
k−ji

[
Wµ,∅ ×

(
W ν,∅ ⊗W ∅,(k−ji)

) ]

is an irreducible representation of Hk;

5This construction only works with ρ0 since it is ψ (Sk) invariant, but does not work for more general
ρi.
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b) the set {
Wµ,ν : (µ, ν) |= k

}
constitutes a complete set of representatives of the equivalence classes of irreducible

representations of Hk, where (µ, ν) |= k denotes an ordered pair of Young diagrams

µ, ν with |µ|+ |ν| = k.

Remark 2.4. In the case of µ = ∅, it is easily seen that dim
(
W ∅,ν

)
= dν , the dimension of

the irreducible Sk representation, V ν .

2.1.4 Möbius Inversion

Here we give definitions and results that are needed for our description of the Weingarten

calculus in Section 2.1.6. Most of the details can be found in the foundational paper of

Rota [Rot64]. A poset (P,≤) is a set P with a partial order ≤. In general, we will simply

write P in place of (P,≤) in reference to a poset, unless it is necessary to be explicit. A

lattice is a poset in which the maximum and minimum of two elements is defined and they

will be called the join and meet respectively. We denote the join of two elements x, y

by x ∨ y and we denote the meet of these two elements by x ∧ y. Let P be a poset and

x, y ∈ P. A segment [x, y] is defined as follows:

[x, y]
def
= {z ∈ P : x ≤ z ≤ y}.

Open and half open segments are defined similarly. We say that a poset P is locally finite

if every segment contains finitely many elements. The Möbius function µ(x, y) of a locally

finite poset P is defined inductively in [Rot64, Proposition 1]. For a segment [x, y] of a

poset P , we first set µ(x, x) = 1. Then, assuming µ(x, z) is defined for all z ∈ [x, y), we

inductively define

µ(x, y) = −
∑
x≤z<y

µ(x, z). (16)

The Möbius inversion formula below is given in [Rot64, Corollary 1].

Theorem 2.5 (Möbius Inversion Formula). Let (P,≤) be a locally finite poset and let
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r : P → C. Suppose there exists a p ∈ P such that x � p =⇒ r(x) = 0. Then, if

s(x) =
∑
y≥x

r(y)

we have

r(x) =
∑
y≥x

µ(x, y)s(y).

2.1.5 The Partition Algebra

Jones [Jon94], and independently Martin [Mar94], initially developed the partition al-

gebra in relation to statistical mechanics and it has since been used to develop various

formulations of Schur–Weyl duality. We write

Part ([n]) = ({set partitions of [n]}, ≤) ,

where π1 ≤ π2 if π1 is a refinement of π2, meaning every block of π1 is contained in a

block of π2. In this setting, Part ([n]) is a lattice. Given π ∈ Part ([n]), we write i ∼ j to

indicate that i and j belong to the same block of the partition.

Remark 2.6. Given this partial ordering, one can find the Möbius function for partitions

using the inductive definition (16). Suppose π1 =
{
S1, . . . ,Sl

}
consists of l subsets and

that π2 is a refinement of π1, with each subset Si of π1 splitting into a further mi subsets,

T1, . . . , Tmi . So π2 consists of
∑

imi = m subsets. Then

µ(π1, π2) = (−1)m−l
l∏

i=1

(mi − 1)!,

see [Rot64, Section 7].

The number 1 ≤ s ≤ 2k of blocks of π ∈ Part([2k]) is the size of the partition, denoted

|π|. The partition algebra Pk(n) is the C–linear span of Part ([2k]) , with a multiplication

described using partition diagrams as follows. For each π ∈ Part ([2k]), we construct

a diagram with 2k vertices, drawn in two rows of k, labeled from 1, . . . , k on the top

row and from k + 1, . . . , 2k on the bottom row. An edge is drawn between two vertices
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whenever they are in the same subset of π.6 Obviously, any such diagram also defines

some π ∈ Part ([2k]). The product π1π2 is computed as follows, let x be an indeterminate.

1. Identify the bottom row of vertices in π1 with the top row of vertices in π2 to obtain

a diagram with 3 rows of k vertices.

2. Let γ be the number of connected components of this diagram with vertices in only

the middle row.

3. Add edges between any two vertices in the same connected component, if there is

not already an edge.

4. Remove the middle row of vertices and any adjacent edges to vertices in the middle

row to obtain a new partition diagram. Label this diagram π3.

5. Define π1π2 = xγπ3.

Example. For k = 3, π1 =
{
{1, 2}, {3, 5, 6}, {4}

}
and π2 =

{
{1}, {2, 4}, {3, 6}, {5}

}
,

then π1π2 = x
{
{1, 2}, {3, 4, 6}, {5}

}
. Diagrammatically,

× = x

If C(x) is the field of rational functions with complex coefficients, the partition algebra

Pk(x) is the C(x)–linear span of Part ([2k]). With the multiplication as described above,

this is an associative algebra, with identity element:

. . .

. . .

For each n ∈ C, we define the partition algebra Pk(n) over C as the linear span of

Part ([2k]), with x replaced by n in the multiplication described. For most choices of n,

this is a semisimple algebra.

6The diagram for π1 ∧ π2 is obtained by removing any edges in the diagram of π1 that are not present
in that of π2. The diagram for the join π1 ∨ π2 is obtained by adding all edges of π2 to π1, and then
completing every connected component.
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Theorem 2.7 ([MS93]). The partition algebra Pk(n) is semisimple for any n ∈ C, unless

n ∈ Z ∩ [0, 2k − 1].

Proposition 2.8 ([Mar96, Proposition 1]). The following elements generate Pk(n) :

� Id =
{
{1, k + 1}, . . . , {k, 2k}

}
� Si,j =

{
{1, k + 1}, . . . {i, k + j}, . . . , {j, k + i}, . . . , {k, 2k}

}
for i, j = 1, . . . , k

� Ai =
{
{1, k + 1}, . . . , {i}, {k + i}, . . . , {k, 2k}

}
for i = 1, . . . , k and

� Ai,j =
{
{1, k + 1}, . . . , {i, j, k + i, k + j}, . . . , {k, 2k}

}
for i, j = 1, . . . , k.

There is a surjection

R : Pk(n)→ C [Sk] , (17)

whereby Si,i+i 7→ si and Ai,Ai,j 7→ 0 and a corresponding algebra injection

ι : C [Sk]→ Pk(n), (18)

where, for σ ∈ Sk,

ι(σ) =
{
{1, k + σ−1(1)}, . . . , {k, k + σ−1(k)}

}
.

It is corresponding in the sense that R ◦ ι is the identity map on C [Sk]. Indeed, if

σ = si1 . . . sim , then it is not hard to see that ι(σ) = Si1,i1+1 . . .Sim,im+1, so that

R(ι(σ)) = si1 . . . sim = σ.

Intuitively, each permutation in Sk corresponds to some matching of the two rows of

vertices in the diagram. Henceforth, any reference to the inclusion or restriction between

C [Sk] and Pk(n) will reference maps (17) and (18).

2.1.6 The Weingarten Calculus for the Symmetric Group

Here, we describe the method for integrating over Sn outlined by Collins, Matsumoto and

Novak in the short survey [CMN21], in the languages to be used in this thesis. The first
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goal is to explicitly compute

w
def
=

∫
Sn

eg(i1) ⊗ · · · ⊗ eg(ik)dg ∈ (Cn)⊗k ,

with respect to the Haar measure. We write

w =
∑

1≤j1,...,jk≤n
(αj1,...,jk) ej1 ⊗ · · · ⊗ ejk

and define, for each π ∈ Part([k]), a linear functional πstrict : (Cn)⊗k → C where, for each

I = (i1, . . . , ik),

πstrict (eI) =


1 if j ∼ l in π ⇐⇒ ij = il

0 otherwise.

(19)

In general, there exists a g ∈ Sn such that

eg(i1) ⊗ · · · ⊗ eg(ik) = ej1 ⊗ · · · ⊗ ejk , (20)

if and only if the multi–index I = (i1, . . . , ik) and the multi–index J = (j1, . . . , jk)

‘define the same partition’ i.e. there is exactly one partition π ∈ Part ([k]) for which

πstrict (eI)π
strict (eJ) = 1. In this case, there are exactly (n − |π|)! permutations g ∈ Sn

satisfying (20), leading to the following proposition.

Proposition 2.9. The coefficient αj1,...,jk of ej1 ⊗ · · · ⊗ ejk in w is

∑
π∈Part([k])

πstrict (ei1 ⊗ · · · ⊗ eik)πstrict (ej1 ⊗ · · · ⊗ ejk)
1

(n)|π|
, (21)

where (n)|π| = n(n− 1) . . . (n− |π|+ 1) is the Pochhammer symbol.

This can be alternatively formulated using Möbius inversion, as in [BC10, Theorem

1.3 and Proposition 1.4]. Define the linear functional πweak : (Cn)⊗k → C , where, for

each I = (i1, . . . , ik),

πweak (eI) =


1 if j ∼ l in π =⇒ eij = eil

0 otherwise.

(22)
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Obviously,

πstrict (ei1 ⊗ · · · ⊗ eik) 6= 0 =⇒ πweak (ei1 ⊗ · · · ⊗ eik) 6= 0

and in fact,

πweak =
∑
π1≥π

πstrict
1 . (23)

Using Theorem 2.5, we obtain the formula

πstrict =
∑
π1≥π

µ(π, π1)πweak
1 (24)

and can thus rewrite (21) as

∑
π1,π2∈Part([k])

πweak
1 (eI)π

weak
2 (eJ) Wgn,k (π1, π2) ,

where Wgn,k is the Weingarten function for Sn, given by

Wgn,k(π1, π2) =
∑

π≤π1∧π2

µ(π, π1)µ(π, π2)
1

(n)|π|
.

It is a simple observation that

Wgn,k(π1, π2) = O

(
1

n|π1∧π2|

)
. (25)

Equivalently, one can reformulate this as follows: for any multi–index I = (i1, . . . , ik) and

multi index J = (j1, . . . , jk), we have

∫
Sn

gi1j1 . . . gikjkdg =
∑

π1,π2∈Part([k])

δπ1(I)δπ2(J)Wgn,k(π1, π2), (26)

where δπ1(I) = πweak
1 (eI) and gij is the matrix coefficient of g acting diagonally on (Cn)⊗k

(i.e. ρ̂(g)ij , with ρ̂ defined as in §2.2.1). This is the form of the Weingarten calculus that

we use in §4.3.
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2.2 Schur–Weyl–Jones duality

2.2.1 Duality between Pk(n) and Sn

Given π ∈ Part ([2k]) , define a right action of π on (Cn)⊗k by

〈
(ei1 ⊗ · · · ⊗ eik)π, eik+1

⊗ · · · ⊗ ei2k
〉

=


1 if j ∼ k in π =⇒ ij = ik

0 otherwise.

(27)

Extending linearly gives (Cn)⊗k a right Pk(n)–module structure and defines, for each

π ∈ Pk(n), an element

Pweak
π ∈ End

(
(Cn)⊗k

)
,

where Pweak
π (v) = vπ. We will denote the map π 7→ Pweak

π by

θ̂ : Pk(n)→ End
(

(Cn)⊗k
)op

.

Remark 2.10. We have

Pweak
π =

∑
J,I

πweak (eJ ⊗ eI) (ěJ ⊗ eI)

via the canonical isomorphism End
(

(Cn)⊗k
)
∼=
(
Čn
)⊗k ⊗ (Cn)⊗k , where the sum is over

all multi–indices J, I of size k. We also define P strict
π ∈ End

(
(Cn)⊗k

)
by

〈
P strict
π (ei1 ⊗ · · · ⊗ eik) , eik+1

⊗ · · · ⊗ ei2k
〉

=


1 if j ∼ k in π ⇐⇒ ij = ik

0 otherwise,

noting that

P strict
π =

∑
J,I

πstrict (eJ ⊗ eI) (ěJ ⊗ eI) .

This is the form used in the statement of our main theorem.

Now, (Cn)⊗k is also a left Sn–module, as the kth tensor power of the defining repre-
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sentation of Sn. Denote this representation

ρ̂ : C [Sn]→ End
(

(Cn)⊗k
)
,

so that, for any τ ∈ Sn and basis vector ei1 ⊗ · · · ⊗ eik ∈ (Cn)⊗k , we have

ρ̂(τ) (ei1 ⊗ · · · ⊗ eik) = eτ(i1) ⊗ · · · ⊗ eτ(ik).

Schur–Weyl–Jones duality asserts that these actions generate full mutual centralizers of

one another in End
(

(Cn)⊗k
)
.

Theorem 2.11 ([Jon94]). For n ≥ 2k, where Pk(n) acts via θ̂ and Sn acts via ρ̂,

1. Pk(n) generates EndSn

(
(Cn)⊗k

)
2. Sn generates EndPk(n)

(
(Cn)⊗k

)
.

2.2.2 Simple Modules for the Partition Algebra

For each λ ` k, recall the notation λ+(n) ` n for the Young diagram given by (n− k, λ),

defining a family of irreducible representations of Sn for each n ≥ λ1. Given any YD µ,

we denote by µ∗ the YD obtained by removing the first row of boxes (with this notation,

(λ+(n))
∗

= λ). Martin and Saleur [MS93, Corollary 4.1] showed that the simple modules

over Pk(n) are parametrized by Young diagrams of size ≤ k. We define

Λk,n
def
= {λ ` i : i = 0, . . . , k}.

Theorem 2.12. When Pk(n) is semisimple7, the set

{
Rλ : λ ∈ Λk,n

}
constitutes a full set of representatives of the isomorphism classes of simple Pk(n)–modules.

So, for each λ ∈ Λk,n, there is a simple Pk(n)–module Rλ. These can be constructed

inductively as is described in e.g. [Mar96, Section 1.3]. Using double centralizer theory,

7In fact, they subsequently show that this classification holds in the non–semisimple case.
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the following decomposition follows from Theorem 2.11.

Theorem 2.13. For each k ∈ Z>0, for every n ≥ 2k, as a (Sn, Pk(n))–bimodule,

(Cn)⊗k ∼=
⊕

λ∈Λk,n

V λ+(n) ⊗Rλ.

2.2.3 Schur–Weyl Duality for Sn and Sk

We now present the refinement of Schur–Weyl–Jones duality due to Sam and Snowden

[SS15, Section 6.1.3.] which is important for our construction of the projection Qλ,n. This

construction was also considered by Littlewood [Lit58] in a somewhat different language

to the one used in this thesis. For each 1 ≤ j ≤ k, define the jth linear contraction map

Tj : (Cn)⊗k → (Cn)⊗k−1 ,

where

Tj (eI) = ei1 ⊗ · · · ⊗ ėij ⊗ · · · ⊗ eik ,

using the notation

ei1 ⊗ · · · ⊗ ėij ⊗ · · · ⊗ eik
def
= ei1 ⊗ · · · ⊗ eij−1 ⊗ eij+1 ⊗ · · · ⊗ eik .

We also define

Dk(n)
def
= 〈ei1 ⊗ · · · ⊗ eik : i1, . . . , ik pairwise distinct〉 ⊆ (Cn)⊗k .

Definition 2.14. We define a vector subspace

Ak(n)
def
= Dk(n) ∩

k⋂
j=1

Ker (Tj) ⊆ (Cn)⊗k .

This space is clearly invariant under the inherited action of Sn and we denote this repre-

sentation

ρ : C [Sn]→ End (Ak(n)) .
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Definition 2.14 can be reformulated as follows. Define a function

pn : Part ([2k])→ Z≥0

where pn(π) is the propagating number (see [Mar96, Definition 5]) of π – it is the number

of elements of π that contain at least one element i ≤ k and at least one element j with

k + 1 ≤ j ≤ 2k. Such elements correspond to connected components in the diagram of π

with at least one vertex from each row. Two obvious properties are:

� For any π ∈ Part ([2k]) , 0 ≤ pn(π) ≤ k;

� If pn(π) = k then π = ι(τ) for some τ ∈ Sk.

Let

Ik(n)
def
= 〈π : π ∈ Part ([2k]) , pn(π) ≤ k − 1〉C ⊆ Pk(n) (28)

be the ideal generated by all π ∈ Part ([2k]) with propagating number ≤ k − 1. So, Ik(n)

is the kernel of the map R : Pk(n)→ C [Sk] (recall (17)) which yields the isomorphism

C [Sk] ∼= Pk(n)/Ik(n).

Then we also have

Ak(n) =
⋂

π∈Ik(n)

ker
(
Pweak
π

)
,

the subspace of (Cn)⊗k annihilated by Ik(n). The inherited action of Pk(n) on Ak(n) thus

descends to an action of C [Sk] and this action permutes tensor coordinates. We denote

the associated representation

θ : C [Sk]→ End (Ak(n)) ,

i.e. θ(σ)(w1 ⊗ · · · ⊗ wk) = θ̂
(
ι
(
σ−1

))
(w1 ⊗ · · · ⊗ wk) = wσ−1(1) ⊗ · · · ⊗ wσ−1(k). Defining

the representation

∆ : C [Sn × Sk]→ End (Ak(n))

by ∆(g, σ)
def
= ρ(g)θ(σ) = θ(σ)ρ(g), we get a decomposition of Ak(n) into irreducible
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subrepresentations8

Ak(n) ∼=
⊕
λ`k

V λ+(n) ⊗ V λ. (29)

3 Obtaining projection formulas

The goal of this section is to prove Theorem 1.6, the material is largely unaltered from

[Cas25a, Sections 3 and 4.].

3.1 Overview of Section 3

Given the decomposition

Ak(n) ∼=
⊕
λ`k

V λ+(n) ⊗ V λ,

we use the central idempotent PV λ ∈ C [Sk] (see (11)) to project

ξ
def
= (e1 − e2)⊗ · · · ⊗ (e2k−1 − e2k)

to the irreducible block V λ+(n) ⊗ V λ. Writing

ξnorm
λ

def
=

θ (PV λ) (ξ)

‖θ (PV λ) (ξ)‖
,

in §3.2, with θ : C [Sk] → End (Ak(n)) as defined in §2.2.3, we show that θ (PV λ) (ξ) is

non–zero for any λ ` k, so that the definition of ξnorm
λ makes sense and implying that the

Sn×Sk representation generated by ξnorm
λ , denoted by Uλ+(n), is isomorphic to V λ+(n)⊗V λ

itself.

What did not work?

As is the case in the analogous setting of U(n) and Sk×Sl acting on the mixed tensor space

(Cn)⊗k ⊗
(
(Cn)∨

)⊗l
(see the construction given by Koike [Koi89] and further detailed in

8This decomposition follows from the discussion in [SS15, Section 6.1.3], detailing that the only irre-
ducible representations appearing in the decomposition of Ak(n) are those annihilated by Ik(n). From the
construction detailed in [Mar96, Section 1.2 and Section 1.3], these are exactly those indexed by Young
diagrams of size k.
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[Mag25a, Section 2.2]) one may expect to be able to show that

Vλ+(n)
def
= 〈ρ(g) (ξnorm

λ ) : g ∈ Sn〉 ∼= V λ+(n). (30)

Were this to be the case, one could consider ξ̌norm
λ ⊗ ξnorm

λ ∈
(
Vλ+(n)

)∨ ⊗ Vλ+(n)
∼=

End
(
Vλ+(n)

)
and project this to EndSn

(
Vλ+(n)

)
. This projection is exactly

∫
Sn

ρ(g) (ξnorm
λ )∨ ⊗ ρ(g) (ξnorm

λ ) dg (31)

and, by Schur’s lemma, we observe that this must be some multiple of the identity map

on Vλ+(n). Extending this by 0 on the orthocomplement of Vλ+(n) in (Cn)⊗k then yields a

scalar multiple of the orthogonal projection from (Cn)⊗k → Vλ+(n).

One could then compute (31) explicitly using the Weingarten calculus for the sym-

metric group, yielding an explicit formula for this projection.The main obstacle to this

approach is that, in general, Vλ+(n) is not irreducible, with multiplicity dependent on λ

and expressed in terms of Kostka numbers and Littlewood–Richardson coefficients, which

are not easily computed.

The work around

To work around this difficulty, we use two key properties of ξ:

� ξ belongs to the sign–isotypic subspace of Ak(n) for the action of D ∼= S2 × · · · × S2

(see §3.3.2 for the details) and,

� For any σ ∈ Sk, θ (σ) ρ (ψ(σ)) (ξnorm
λ ) = ξnorm

λ (i.e. that ψ(σ)ξ = ξσ). Here, ψ :

Sk → S2k is as defined in §2.1.3, we note that this is not the obvious inclusion

obtained by adding k fixed points.

In §3.3.1 and §3.3.2, we use the first observation to show that, in the restriction Uλ+(n) ↓S2k×Sk

, the irreducible block V λ+(2k) ⊗ V λ has multiplicity 1 and that ξnorm
λ is contained in this

block. This implies that the S2k ×Sk representation generated by ξnorm
λ , denoted Uλ+(2k),

is exactly isomorphic to V λ+(2k) ⊗ V λ.

We use the first observation again to show that ξnorm
λ is contained in the

(
W ∅,λ ⊗ V λ

)
–

isotypic subspace in the restriction Uλ+(2k) ↓Hk×Sk . One of the main technical challenges
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here is to show that this isotypic subspace always has multiplicity 1. This is done in §3.3.3

using the Gelfand–Tsetlin basis of V λ+(2k) ⊗ V λ.

Once we have this, it is relatively straightforward to show that the ψ (Sk)× Sk repre-

sentation generated by ξnorm
λ is isomorphic to V λ⊗V λ and we use the second observation

to show that (31) is a multiple of the orthogonal projection Qλ,n : (Cn)⊗k → Uλ+(n). This

is done in §3.3.4.

To complete the proof of Theorem 1.6, it remains to evaluate (31) explicitly using the

Weingarten calculus and we do this in §3.4.

3.2 Dimension of Ak(n)

We digress briefly to find a recursive formula for the dimension of Ak(n), when n ≥ 2k+1.

Lemma 3.1. For any λ ` k and for any n ≥ 2k, the projection ξλ of ξ to the V λ–isotypic

component of Ak(n) is 6= 0.

Proof. The projection of ξ to the V λ–isotypic component of Ak(n) is

ξλ
def
= θ (PV λ) (ξ)

=
dλ
k!

∑
σ∈Sk

χλ(σ)
[
vσ(1) ⊗ · · · ⊗ vσ(k)

]
.

Observe that, for σ 6= τ, we have

〈θ(σ)(ξ), θ(τ)(ξ)〉 =

k∏
i=1

〈
vσ(i), vτ(i)

〉
= 0,

since at least one of these factors must be zero. So, {θ(σ) (ξ) : σ ∈ Sk} is a linearly

independent set of vectors and, as a sum of these vectors with non–zero coefficients, ξλ is

non–zero itself.

This yields the proposition below, which details how to construct a subspace of (Cn)⊗k

that is isomorphic to V λ+(n) ⊗ V λ.

Proposition 3.2. When n ≥ 2k, for any λ ` k, we have an isomorphism of representa-
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tions of Sn × Sk,

Uλ+(n)
def
=
〈

∆ (g, σ) (ξλ) : g ∈ Sn, σ ∈ Sk
〉
C
∼= V λ+(n) ⊗ V λ.

Since

Ak(n) =
⊕
λ`k
Uλ+(n),

then, alongside Lemma 3.1, it is clear that

〈∆(g, σ) (ξ) : g ∈ Sn, σ ∈ Sk〉C = Ak(n).

Now, consider the subspace Bk+1(n) of (Cn)⊗k+1,

Bk+1(n)
def
= Dk+1(n) ∩

k⋂
j=1

ker(Tj) ⊆ (Cn)⊗k+1 .

Restricting

Tk+1 : (Cn)⊗k+1 → (Cn)⊗k

to

T̂k+1 : Bk+1 → (Cn)⊗k ,

it is obvious that Im
(
T̂k+1

)
⊆ Ak(n). It is also clear that Ak(n) ⊆ Im

(
T̂k+1

)
, since

T̂k+1 ((e1 − e2)⊗ · · · ⊗ (e2k−1 − e2k)⊗ e2k+1) = ξ.

The inclusion Ak+1(n) ↪→ Bk+1(n) gives an exact sequence

0→ Ak+1(n) ↪→ Bk+1(n)
T̂k+1→ Ak(n)→ 0,

from which we obtain a recursive formula for the dimension of Ak+1(n):

dim (Ak+1(n)) = dim (Bk+1(n))− dim (Ak(n)) .
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Now, Bk+1(n) ∼=
⊕n

i=1Ak(n− 1)⊗ ei. To see this, consider the vector space

Aik(n) = 〈ei1 ⊗ · · · ⊗ eik : ij ∈ {1, . . . , i− 1, i+ 1, . . . , n}, ij all distict〉 ∩
k⋂
j=1

ker (Tj) .

Then, for each i = 1, . . . , n,

Aik(n) ∼= Ak(n− 1)

and there is an obvious isomorphism

n⊕
i=1

Aik(n)⊗ ei ∼= Bk+1(n).

From this observation we see that dim (Bk+1(n)) = ndim (Ak(n− 1)) , which yields the

formula

dimAk+1(n) = n dimAk(n− 1)− dimAk(n). (32)

The dimensions of Ak(n) for k = 0, . . . , 10 are in the table below, expressed as a polynomial

in n.

Table 1: The dimension of Ak(n) as a polynomial in n for fixed k
k dim (Ak(n))

1 n− 1

2 n2 − 3n+ 1

3 n3 − 6n2 + 8n− 1

4 n4 − 9n3 + 22n2 − 13n+ 1

5 n5 − 12n4 + 43n3 − 49n2 + 18n− 1

6 n6 − 15n5 + 71n4 − 122n3 + 87n2 − 23n+ 1

7 n7 − 18n6 + 106n5 − 245n4 + 265n3 − 136n2 + 28n− 1

8 n8 − 21n7 + 148n6 − 431n5 + 630n4 − 491n3 + 196n2 − 33n+ 1

9 n9 − 24n8 + 197n7 − 693n6 + 1281n5 − 1351n4 + 819n3 − 267n2 + 38n− 1

10 n10 − 27n9 + 253n8 − 1044n7 + 2338n6 − 3122n5 + 2562n4 − 1268n3 + 349n2 − 43n+ 1

3.3 Identifying a Projection Map

We first normalize ξλ – the norm||ξλ|| = 〈ξλ, ξλ〉
1
2 is easily computed:
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〈ξλ, ξλ〉 =

〈∑
σ∈Sk

dλ
k!
χλ(σ)

[
vσ(1) ⊗ · · · ⊗ vσ(k)

]
,
∑
τ∈Sk

dλ
k!
χλ(τ)

[
vτ(1) ⊗ · · · ⊗ vτ(k)

]〉

=

(
dλ
k!

)2 ∑
σ∈Sk

∑
τ∈Sk

χλ(σ)χλ(τ)
〈
vσ(1) ⊗ · · · ⊗ vσ(k), vτ(1) ⊗ · · · ⊗ vτ(k)

〉
=

(
dλ
k!

)2 ∑
σ∈Sk

χλ(σ)2
〈
vσ(1), vσ(1)

〉
. . .
〈
vσ(k), vσ(k)

〉
=

(
dλ
k!

)2

2k
∑
σ∈Sk

χλ(σ)2

=
2kd2

λ

k!
.

We will write

ξnorm
λ

def
= ξλ
||ξλ|| =

(
k!

2kd2
λ

) 1
2 ∑
σ∈Sk

dλ
k!
χλ(σ)

[
vσ(1) ⊗ · · · ⊗ vσ(k)

]
=

(
1

2kk!

) 1
2 ∑
σ∈Sk

χλ(σ)
[
vσ(1) ⊗ · · · ⊗ vσ(k)

]
.

3.3.1 Restricting from Sn to S2k

We write the decomposition of V λ+(n) ↓S2k
into irreducible representations of S2k as

V λ+(n) ↓S2k
∼=
⊕
µ`2k

(V µ)⊕cµ . (33)

There are ‘branching rules’ for irreducible representations of the symmetric group, see

[FH04, p. 59] for example. One can observe that the multiplicity of V µ in (33) is zero,

unless the YD µ is contained inside the YD λ+(n). In this case, the multiplicity is the

number of ways of labeling the skew YD λ+(n)\µ with the numbers 1, . . . , n− 2k, so that

no number is repeated and the numbers are increasing both along each row and down each

column. Using this rule:

� if µ ` 2k with µ1 < k, then V µ has multiplicity 0 in (33), since then |µ∗| > k,

meaning µ∗ is not contained within λ;

� if µ ` 2k has µ1 = k, then V µ has multiplicity zero, unless µ = λ+(2k) and
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� the multiplicity of V λ+(2k) is 1 – the skew diagram λ+(n)\λ+(2k) is exactly one row

of n− 2k boxes.

These observations imply the following proposition.

Proposition 3.3. For any λ ` k and n ≥ 2k, we have

Uλ+(n) ↓S2k×Sk= Uλ+(2k) ⊕ U⊥λ+(2k),

where

Uλ+(2k)
∼= V λ+(2k) ⊗ V λ (34)

and

U⊥λ+(2k)
∼=

⊕
µ`2k, µ1>k

(
V µ ⊗ V λ

)⊕cµ
.

3.3.2 Finding the S2k × Sk representation generated by ξnorm
λ

We will use the Gelfand–Tsetlin basis of Uλ+(n) to show that ξnorm
λ ∈ Uλ+(2k), which leads

to Proposition 3.5. We need to show that ξnorm
λ is orthogonal to the subspace U⊥λ+(2k).

Consider the subgroup

D =
〈
s1, s3, . . . , s2k−1

〉
≤ S2k ≤ Sn,

which appeared in §2.1.3 and notice that, for each i = 1, 3, . . . , 2k − 1,

ρ(si) (ξnorm
λ ) = −ξnorm

λ , (35)

so that

∆ (si, Id) (ξnorm
λ ) = −ξnorm

λ .

We write ξnorm
λ in the Gelfand–Tsetlin basis:

ξnorm
λ =

∑
T1,T2

βT1,T2 (vT1 ⊗ vT2) , (36)

where

T1 ∈ Tab
(
λ+(2k)

)
and T2 ∈ Tab (λ)
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or vT1 ⊗ vT2 represents a Gelfand–Tsetlin basis vector of one of the subspaces

V µ ⊗ V λ

where µ ` 2k and µ1 > k. In this case we will have

T1 ∈
⋃

µ`2k, µ1>k

Tab(µ)

and

T2 ∈ Tab(λ).

Lemma 3.4. For all µ ` 2k with µ1 > k and for any T̃2 ∈ Tab(λ), if T̃1 ∈ Tab(µ) then,

in (36), we have

βT̃1,T̃2
= 0.

Proof. Fix any T̃2 ∈ Tab(λ) and consider any vT̃1
⊗ vT̃2

where

T̃1 ∈
⋃

µ`2k, µ1>k

Tab(µ).

Since µ1 > k, out of each of the k pairs {1, 2}, {3, 4}, . . . , {2k− 1, 2k}, there must be at

least one pair, say i and i+ 1, in which both elements appear in the first row of boxes of

T̃1. So by Proposition 2.2,

(si, Id)
(
vT̃1
⊗ vT̃2

)
= vT̃1

⊗ vT̃2
. (37)

We look at the coefficient of vT̃1
⊗ vT̃2

in

(si, Id)
∑
T1,T2

βT1,T2 (vT1 ⊗ vT2) .
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If T2 6= T̃2, then, for any choice of T1,

〈
(si, Id) (vT1 ⊗ vT2) , vT̃1

⊗ vT̃2

〉
=
〈

(sivT1) , vT̃1

〉〈
vT2 , vT̃2

〉
︸ ︷︷ ︸

=0

= 0.

So now suppose that T2 = T̃2 and let

T1 ∈ Tab(λ+(2k)) ∪
⋃

µ`2k, µ1>k

Tab(µ),

with T1 6= T̃1. If T1 is not of the same shape as T̃1, then clearly

〈
sivT1 , vT̃1

〉
= 0,

which implies 〈
(si, Id)

(
vT1 ⊗ vT̃2

)
, vT̃1

⊗ vT̃2

〉
= 0.

If T1 and T̃1 are of the same shape, then there are 3 possibilities for the positions of the

boxes labeled i and i+ 1 in T1:

1. If the boxes labeled i and i+ 1 are in the same row of T1, then sivT1 = vT1 .

2. If the boxes labeled i and i+ 1 are in the same column of T1 then sivT1 = −vT1 .

3. If the boxes labeled i and i+ 1 are in neither the same row or column then we have

sivT1 =
(
r−1vT1

)
+
(√

1− r−2
)
vT ′1 , where r and T ′1 are as defined as in Proposition

2.2.

In any of the above cases, we have

〈
sivT1 , vT̃1

〉
= 0.

This is because T1 6= T̃1 and, in the final case, we also have T ′1 6= T̃1. The above observa-
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tions imply 〈
∆ (si, Id) ξnorm

λ , vT̃1
⊗ vT̃2

〉
=
∑
T1,T2

βT1,T2

〈
(si, Id) (vT1 ⊗ vT2) , vT̃1

⊗ vT̃2

〉
= βT̃1,T̃2

〈
(si, Id)

(
vT̃1
⊗ vT̃2

)
, vT̃1

⊗ vT̃2

〉
.

Using (37), this is exactly

βT̃1,T̃2
.

But (35) implies that the coefficient of vT̃1
⊗vT̃2

in ∆(si, Id)ξnorm
λ is −βT̃1,T̃2

, implying that

βT̃1,T̃2
= 0.

Proposition 3.5. When n ≥ 2k, given any λ ` k, we have

〈
∆(g, σ) (ξnorm

λ ) : g ∈ S2k, σ ∈ Sk
〉
C

= Uλ+(2k).

Proof. This follows from Proposition 3.3 and Lemma 3.4, since Lemma 3.4 implies that

ξnorm
λ ∈ Uλ+(2k).

3.3.3 Constructing W ∅,λ ⊗ V λ inside (Cn)⊗k

We will show that ξnorm
λ is in the

(
W ∅,λ ⊗ V λ

)
–isotypic subrepresentation of Uλ+(2k) ↓Hk×Sk

and that this subrepresentation has multiplicity one, so that

〈
∆(g, σ) (ξnorm

λ ) : g ∈ Hk, σ ∈ Sk
〉
C
∼= W ∅,λ ⊗ V λ.

We write the decomposition

Uλ+(2k) ↓Hk×Sk∼=
⊕

(µ,π)|=2k,ν`k

(Wµ,π ⊗ V ν)⊕c(µ,π,ν) . (38)

By definition, ξnorm
λ must be orthogonal to any component of this decomposition with

ν 6= λ. Moreover, by (35), for any generator si of D, the element (si, Id) ∈ Hk × Sk and
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∆(si, Id) (ξnorm
λ ) = −ξnorm

λ . The only irreducible representations of Hk ×Sk for which this

property holds for every generator si are representations of the form

W ∅,π ⊗ V ν ,

where π ` k and ν ` k. Combining these observations implies that ξnorm
λ is orthogonal to

any subrepresentation that is not isomorphic to

(
W ∅,π ⊗ V λ

)⊕c(∅,π,λ)
,

where π ` k. With the observation that for any σ ∈ Sk,

θ(σ) (ξnorm
λ ) = ρ

(
ψ
(
σ−1

))
(ξnorm
λ ) ,

it follows that ξnorm
λ belongs to the

(
W ∅,λ ⊗ V λ

)
–isotypic component in the decomposition.

It remains to show that this isotypic component has multiplicity one. A first attempt would

be to use the branching rule given by Koike and Terada in [KT87].

Proposition 3.6. Denote by sµ a Schur polynomial, fi the elementary symmetric poly-

nomial of degree i and pj the jthcomplete symmetric polynomial. Then, given π ` 2k,

ResS2k
Hk
V π ∼=

⊕
(µ,ν)|=k

(Wµ,ν)⊕d
π
µ,ν ,

where the multiplicity dπµ,ν of each Wµ,ν coincides exactly with the coefficient of sπ in the

product (sµ ◦ p2) (sν ◦ f2). That is, dπµ,ν satisfies

(sµ ◦ p2) (sν ◦ f2) =
∑
π

dπµ,νsπ.

Following this proposition, we write

Uλ+(2k) ↓Hk×Sk∼=
⊕

(µ,ν)|=k

(
Wµ,ν ⊗ V λ

)⊕dλ+(2k)
µ,ν

(39)

and the following lemma is immediate from the preceding discussion.
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Lemma 3.7. With dπµ,ν defined as in Proposition 3.6 , for some κ
λ+(2k)
∅,λ satisfying 1 ≤

κ
λ+(2k)
∅,λ ≤ dλ

+(2k)
∅,λ ,

〈
∆(g, σ) (ξnorm

λ ) : g ∈ Hk, σ ∈ Sk
〉
C
∼=
(
W ∅,λ ⊗ V λ

)⊕κλ+(2k)
∅,λ

, (40)

as representations of Hk × Sk.

The aim is to prove the following proposition.

Proposition 3.8. The multiplicity d
λ+(2k)
∅,λ of W ∅,λ in the restriction of V λ+(2k) from S2k

to Hk is exactly 1.

We do not know how to use Proposition 3.6 effectively, since, in general, it is difficult

to compute

(s∅ ◦ p2) (sλ ◦ f2) .

Using that s∅ is the constant function and f2 = s(1,1), our task reduces to showing that

the coefficient of sλ+(2k) in the Schur polynomial expansion of

sλ ◦ s(1,1) (41)

is indeed one. This plethysm can be evaluated in the special cases whereby |λ| ≤ 3, see for

example [COS+22, Theorem 5.3] and in some other special cases of λ ` k (for example,

when λ = (k) or λ = (1, . . . , 1), see [COS+22, Section 5.3]). To our knowledge, there

is no simple expression for (41) for every λ, and even the task at hand of evaluating

just one specific coefficient in the Schur expansion does not appear to have an obvious

straightforward approach.

Instead, we will construct theW ∅,λ–isotypic subspace of V λ+(2k) ↓Hk using the Gelfand–

Tsetlin basis and, in doing so, we will see that the multiplicity must be one. Recall that

the character of W ∅,λ is χλχρ0 , so that the generators of D act on W ∅,λ by multiplying

elements by −1. Which is to say that the W ∅,λ–isotypic subspace of V λ+(2k) ↓Hk must be

contained in the sign–isotypic component of D in the vector space V λ+(2k). Denote by

V
λ+(2k)
D,sign

def
= sign− isotypic component of D in V λ+(2k),
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so that (
W ∅,λ

)dλ+(2k)
∅,λ ⊆ V λ+(2k)

D,sign . (42)

Our method is as follows:

1. We will show that V
λ+(2k)
D,sign is a Hk–submodule of V λ+(2k) ↓Hk ;

2. Then we will construct V
λ+(2k)
D,sign using the Gelfand–Tsetlin basis of V λ+(2k);

3. In doing the above step, we will see that V
λ+(2k)
D,sign has dimension dλ, so that (42)

implies that V
λ+(2k)
D,sign = W ∅,λ and that d

λ+(2k)
∅,λ = 1.

Define

TabD,sign

(
λ+(2k)

)
def
=
{
T ∈ Tab

(
λ+(2k)

)
: T has exactly one representative from each of {1, 2},

{3, 4}, . . . , {2k− 1, 2k} in the first row of boxes
} (43)

and the associated subspace

〈
vT̂ : T̂ ∈ TabD,sign

(
λ+(2k)

)〉
⊆ V λ+(2k).

Proposition 3.9. For any λ ` k,

V
λ+(2k)
D,sign ⊆

〈
vT̂ : T̂ ∈ TabD,sign

(
λ+(2k)

)〉
.

Proof. Let

T̂ ∈ Tab
(
λ+(2k)

)
\TabD,sign

(
λ+(2k)

)
and suppose, towards a contradiction, that u ∈ V λ+(2k)

D,sign is such that

〈
u, vT̂

〉
= α 6= 0.

Since λ+(2k) has k boxes in the top row and T̂ /∈ TabD,sign (λ+(2k)) , there must be some

i ∈ {1, 3, . . . , 2k − 1} for which the boxes labeled i and i + 1 are both in the top row.

Then si = (i i + 1) acts trivially on vT̂ by Proposition 2.2. Using the same reasoning as
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Lemma 3.4, if T̂1 6= T̂ , then
〈
sivT̂1

, vT̂

〉
= 0. So then

〈
siu, vT̂

〉
=
〈
u, vT̂

〉 〈
sivT̂ , vT̂

〉
=
〈
u, vT̂

〉
= α.

However, since u ∈ V λ+(2k)
D,sign and si ∈ D, we must have

siu = −u,

which obviously implies that 〈
siu, vT̂

〉
= −α,

contradicting the fact that α 6= 0.

Proposition 3.10. For each λ ` k, the space V
λ+(2k)
D,sign ⊂ V λ+(2k) is a Hk–submodule.

Proof. Let h ∈ Hk, u ∈ V
λ+(2k)
D,sign and δ ∈ D. Since D is normal in Hk, we have

δ(hu) = hh−1δ(hu)

= h(h−1δh)u

= sign
(
h−1δh

)
(hu)

= sign(δ)(hu),

so that hu ∈ V λ+(2k)
D,sign .

For any µ of any given size, say µ ` l, we define an injective map

Ψ : V µ → V µ+(2l),

where Ψ(vT ) corresponds to the Young tableau of shape µ+(2l), in which the labels of the

boxes in the positions of µ+(2l)∗ are double the corresponding label in T, and the top row

of boxes contains the labels (in order) 1, 3, . . . , 2l−1. By a slight abuse of notation, we will

label this Young tableau by Ψ(T ), so that Ψ (vT ) = vΨ(T ). For example, with µ = (2, 1),
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1 2

3

Ψ7→ 1 3 5

2 4

6

and
1 3

2

Ψ7→ 1 3 5

2 6

4

For each λ ` k and for each T ∈ Tab(λ), define

ZT
def
= 〈DΨ (vT )〉 ⊆ V λ+(2k). (44)

We must establish some extra notation for the remainder of this section. For a given Young

tableau T of any shape, if the boxes labeled i and i+ 1 are in different rows and columns,

then we will now denote by T ′{i,i+1} the Young tableau of the same shape obtained by

swapping the labels i and i + 1. If we also have j 6= i, i+ 1 and j + 1 6= i, i+ 1, with the

boxes labeled j and j + 1 in different rows and columns, then we denote by T ′′{i,i+1},{j,j+1}

the Young tableau of the same shape obtained by swapping the labels i and i+1 and then

the labels j and j + 1. The Young tableau

T
(m)
{i1,i1+1},...,{im,im+1}

is defined in the obvious way. If T is a Young tableau of shape µ ` l, we will write

T\{l} for the Young tableau of shape µ′ ` (l − 1), the YD obtained from µ by removing

the box labeled by l in T and keeping all other boxes and labels the same. We define

T\{l, l − 1, . . . , l − j} inductively in the obvious way.

Lemma 3.11. Let λ ` k and T, Ṫ ∈ Tab(λ). Then, if T 6= Ṫ , ZT ⊥ ZṪ .

Proof. By Proposition 2.2, any v ∈ ZT must be written as a linear combination of vT̃ such

that, if a box � ∈ λ has label x ∈ [k] in T , then the corresponding box �̃ ∈ (λ+(2k))
∗

has

label either 2x or 2x − 1 in T̃ . The same is true for any element u ∈ ZṪ . Since T 6= Ṫ,

there is a box � ∈ λ labeled x in T and y in Ṫ with x 6= y. So any v ∈ ZT is written as a

linear combination of vT̃ as described and then, since x 6= y, we cannot have v ∈ ZṪ .

Lemma 3.12. For every λ ` k,

〈
vT̂ : T̂ ∈ TabD,sign

(
λ+(2k)

)〉
⊆

⊕
T∈Tab(λ)

ZT .
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Proof. We will prove this (for each basis vector of the LHS) by induction on the number

of even elements in the top row of T̂ ∈ TabD,sign (λ+(2k)) . Denote by

qE,T̂

the number of boxes with an even label in the top row of any Young tableau T̂ ∈

Tab (λ+(2k)) and suppose that

T̂ ∈ TabD,sign

(
λ+(2k)

)
is such that qE,T̂ = 0. Then, in T̂ , all of the boxes in (λ+(2k))

∗
must have an even label.

Let T ∗ ∈ Tab(λ) be such that

Ψ (vT ∗) = vT̂ ,

which implies that

vT̂ ∈ ZT ∗ ⊆
⊕

T∈Tab(λ)

ZT .

Now suppose that

T̂ ∈ TabD,sign

(
λ+(2k)

)
is such that qE,T̂ > 0 and that, for any T ∈ TabD,sign (λ+(2k)) with 0 ≤ qE,T < qE,T̂ , we

have vT ∈
⊕

T∈Tab(λ) ZT . Suppose that the first even label in the top row of boxes of T̂ is

j and let T̃ = T̂ ′{j−1,j}. Then we also have

T̃ ∈ TabD,sign

(
λ+(2k)

)
so that

vT̃ ∈
〈
vT̂ : T̂ ∈ TabD,sign

(
λ+(2k)

)〉
.

Moreover, qE,T̃ = qE,T̂ − 1, so, by the inductive hypothesis, vT̃ ∈
⊕

T∈Tab(λ) ZT .

Since the ZT are pairwise orthogonal, there is exactly one T ∗ ∈ Tab(λ) such that

vT̃ ∈ ZT ∗ . By Proposition 2.2, we have

sj−1vT̃ =
(
r−1
)
vT̃ +

(√
1− r−2

)
vT̃ ′{j−1,j}

,
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where r is as defined in the proposition. This shows that

(
r−1
)
vT̃ +

(√
1− r−2

)
vT̃ ′{j−1,j]

∈ ZT ∗ ,

which implies that

vT̃ ′{j−1,j]
∈ ZT ∗ .

But T̃ ′{j−1,j} = T̂ , so we have vT̂ ∈ ZT ∗ ⊆
⊕

T∈Tab(λ) ZT .

Lemma 3.13. For any λ ` k, the sign–isotypic component of D in
⊕

T∈Tab(λ) ZT is

exactly V
λ+(2k)
D,sign .

Proof. Since
⊕

T∈Tab(λ) ZT ⊆ V λ+(2k), the sign–isotypic component of D in

⊕
T∈Tab(λ)

ZT

is obviously contained in V
λ+(2k)
D,sign . On the other hand, by Proposition 3.9, V

λ+(2k)
D,sign must

be contained in the sign–isotypic component of D in

〈
vT : T ∈ TabD,sign

(
λ+(2k)

)〉
,

which, by the previous lemma, must be contained inside the sign–isotypic component of

D in
⊕

T∈Tab(λ) ZT .

For each T ∈ Tab(λ), we denote by ZD,sign
T the sign–isotypic subspace of D in ZT .

Proposition 3.14. For any λ ` k and for any T ∈ Tab(λ), ZD,sign
T is one dimensional.

To prove Proposition 3.14 we introduce some additional notation and prove three

intermediate lemmas. For each λ ` k and for each T ∈ Tab (λ), for each i ∈ {1, . . . , k−1},

define

Z
(i)
T

def
=
〈
D(i)Ψ

(
vT\{k,...,k−i+1}

)〉
,

where

D(i) def
= 〈s1, . . . , s2k−2i−1〉 .
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Define

D(i)
⊥

def
= 〈s2k−2i+1, . . . , s2k−1〉

and also

Tab
(
Z

(i)
T

)
=
{
T̂ ∈ Tab(µ) : µ ` (2k − 2i),

〈
z, vT̂

〉
6= 0 for some z ∈ Z(i)

T

}
.

Then, for each i ∈ {1, . . . , k}, we introduce a map

Φλ
T,i : Z

(i−1)
T →

⊕
µ`2k−2i

V µ

whereby

Φλ
T,i

(
vT̂
)

= vT̂\{2k−2i+2,2k−2i+1}

for any T̂ ∈ Tab
(
Z

(i)
T

)
and Z

(0)
T is understood to be ZT .

Lemma 3.15. For any λ ` k, T ∈ Tab(λ) and for any i ∈ {1, . . . , k− 1}, the map Φλ
T,i is

a D(i)–module homomorphism.

Proof. To prove this lemma, we need to show that Φλ
T,i

(
sjvT̂

)
= sjΦ

λ
T,i

(
vT̂
)

for any

T̂ ∈ Tab
(
Z

(i−1)
T

)
and for any j ∈ {1, 3, . . . , 2k − 2i− 1}. To this end, fix any such T̂ and

j.

There are three possibilities for the positions of the boxes labeled j and j + 1 in T̂ . If

they are in the same row/same column/neither the same row or column, then this is the

exact same relationship between the boxes labeled j and j+1 in T̂\{2k−2i+2, 2k−2i+1}.

In the first case we have

Φλ
T,i

(
sjvT̂

)
= Φλ

T,i

(
vT̂
)

= sjΦ
λ
T,i

(
vT̂
)

and, in the second case,

Φλ
T,i

(
sjvT̂

)
= Φλ

T,i

(
−vT̂

)
= −Φλ

T,i

(
vT̂
)

= sjΦ
λ
T,i

(
vT̂
)
.

In the case where these two boxes are in neither the same row or column, the contents of

the boxes labeled j and j+ 1 are always the same in both T̂ and T̂\{2k− 2i, 2k− 2i− 1}.
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Also in this case,

Φλ
T,i

(
vT̂ ′{j,j+1}

)
= v(T̂\{2k−2i+2,2k−2i+1})

′
{j,j+1}

.

So then we have

Φλ
T,i

(
sjvT̂

)
= Φλ

T,i

( (
r−1
)
vT̂ +

(√
1− r−2

)
vT̂ ′{j,j+1}

)
=
(
r−1
)

Φλ
T,i

(
vT̂
)

+
(√

1− r−2
)

Φλ
T,i

(
vT̂ ′{j,j+1}

)
=
(
r−1
)
vT̂\{2k−2i+2,2k−2i+1} +

(√
1− r−2

)
v(T̂\{2k−2i+2,2k−2i+1})

′
{j,j+1}

= sjvT̂\{2k−2i+2,2k−2i+1}

= sjΦ
λ
T,i

(
vT̂
)
.

The next lemma asserts that Φλ
T,i is injective on the −1 eigenspace of s2k−2i+1 in Z

(i−1)
T ,

so that Φλ
T,i always defines a D(i)–module isomorphism between this eigenspace and its

image.

Lemma 3.16. For any λ ` k, T ∈ Tab(λ) and for any i ∈ {1, . . . , k}, the map Φλ
T,i is

injective on the −1 eigenspace of s2k−2i+1 in Z
(i−1)
T .

Proof. It is easy to see that

ker
(

Φλ
T,i

)
=
⊕
T̂

〈
vT̂ − vT̂ ′{2k−2i+2,2k−2i+1}

〉
,

where the direct sum is over all T̂ ∈ Tab
(
Z

(i−1)
T

)
for which T̂ ′{2k−2i+2,2k−2i+1} is defined

(i.e. still a valid Young tableaux). The −1 eigenspace of s2k−2i+1 in Z
(i−1)
T is exactly

⊕
T̂1

〈
vT̂1

〉
⊕
⊕
T̂

〈
vT̂ −

√
1 + r−1

1− r−1
vT̂ ′{2k−2i+2,2k−2i+1}

〉
,

where the first direct sum is over all T̂1 ∈ Tab
(
Z

(i−1)
T

)
for which 2k−2i+1 and 2k−2i+2

are in the same column and the second direct sum is over all T̂ ∈ Tab
(
Z

(i−1)
T

)
for which

2k−2i+1 and 2k−2i+2 are in neither the same row or the same column (the case where
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they are both in the same row is not possible, since this cannot be the case in Ψ(T ) and

in T̂ , the boxes labeled 2k− 2i+ 1 and 2k− 2i+ 2 are either in the same boxes as in Ψ(T )

or they have swapped with one another).

Clearly, this does not intersect ker
(

Φλ
T,i

)
other than at 0, so Φλ

T,i is injective when

restricted to the −1 eigenspace of s2k−2i+1 in Z
(i−1)
T .

The final intermediate lemma determines the image of Φλ
T,i when restricted to this

eigenspace.

Lemma 3.17. The image of the −1 eigenspace of s2k−2i+1 in Z
(i−1)
T under Φλ

T,i is Z
(i)
T .

Proof. We have

Φλ
T,i

⊕
T̂1

〈
vT̂1

〉
⊕
⊕
T̂

〈
vT̂ −

√
1 + r−1

1− r−1
vT̂ ′{2k−2i+2,2k−2i+1}

〉
=
〈
vT̂\{2k−2i+2,2k−2i+1} : T̂ ∈ Tab

(
Z

(i−1)
T

)〉
=
〈
D(i)Ψ

(
vT\{k,...,k−i+1}

)〉
= Z

(i)
T .

Proof of Proposition 3.14. We can apply the previous three lemmas iteratively to deter-

mine ZD,sign
T . Applying them for i = 1 shows that the −1 eigenspace of s2k−1 in ZT is

isomorphic to Z
(1)
T . Repeating this for i = 2 shows that the −1 eigenspace of s2k−3 in Z

(1)
T

is isomorphicZ
(2)
T . But the −1 eigenspace of s2k−3 in Z

(1)
T is the sign–isotypic subspace of

D(2)
⊥ in ZT . Repeating for each j = 3, , . . . , j = k−1 shows that the sign–isotypic subspace

of

D(k−1)
⊥ = 〈s3, . . . , s2k−1〉

in ZT is isomorphic to

Z
(k−1)
T =

〈
s1Ψ

(
vT\{k,...,2}

)〉
.

Thus, the sign–isotypic subspace of D in ZT , ZD,sign
T , is just the −1 eigenspace of s1

in Z
(k−1)
T . But Z

(k−1)
T is clearly the one–dimensional sign representation of 〈s1〉 , so the
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−1 eigenspace of s1 is just the whole space and we conclude that ZD,sign
T has dimension

one.

By Lemma 3.13, ⊕
T∈Tab(λ)

ZD,sign
T = V

λ+(2k)
D,sign ,

so that Proposition 3.14 implies that V
λ+(2k)
D,sign has dimension dλ. This completes the proof

of Proposition 3.8, which has the following corollary.

Corollary 3.18. For any λ ` k, we have an isomorphism of representations of Sψk ×Sk ∼=

Sk × Sk,

Uλ
def
=
〈

∆(g, σ) (ξnorm
λ ) : g ∈ Sψk , σ ∈ Sk

〉
∼= V λ ⊗ V λ.

Proof. This follows since

W ∅,λ ↓
Sψk

∼= V λ.

3.3.4 Identifying the Projection

Since the irreducible characters of Sk are integer valued, we have an isomorphism of Sk

representations, V λ ∼=
(
V λ
)∨

and subsequent isomorphisms

V λ ⊗ V λ ∼=
(
V λ
)∨
⊗ V λ ∼= End

(
V λ
)
. (45)

Noting that

ψ(σ)ξnorm
λ = ξnorm

λ σ

then implies that

ξnorm
λ ∈ EndSk

(
V λ
)
⊆ End

(
V λ
)
,

when ξnorm
λ is interpreted as an element of End

(
V λ
)

through the isomorphisms presented

in Corollary 3.18 and (45). Then, by Schur’s lemma, ξnorm
λ must correspond to a complex

scalar multiple of IdV λ , so that

ξnorm
λ = cλ

∑
i

wi ⊗ wi ∈ Uλ ⊆ Uλ+(n) (46)
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for some complex scalar constant cλ and any orthonormal basis {wi} of V λ. By Proposition

3.2,

ξ̌norm
λ ⊗ ξnorm

λ ∈
(
Uλ+(n)

)∨ ⊗ Uλ+(n).

There are natural isomorphisms

(
Uλ+(n)

)∨⊗Uλ+(n)
∼=
(
V λ+(n)

)∨
⊗
(
V λ
)∨
⊗V λ+(n)⊗V λ ∼=

(
V λ+(n)

)∨
⊗V λ+(n)⊗

(
V λ
)∨
⊗V λ,

where the second isomorphism is given by permuting the tensor coordinates. Through

these isomorphisms and (46), we write

ξ̌norm
λ ⊗ ξnorm

λ = c2
λ

∑
i,j

w̌i ⊗ wj ⊗ w̌i ⊗ wj . (47)

Let

Q̃λ,n
def
=

∫
g∈Sn

gξ̌norm
λ ⊗ gξnorm

λ dg =
1

n!

∑
g∈Sn

gξ̌norm
λ ⊗ gξnorm

λ ,

where gξnorm
λ = ρ(g) (ξnorm

λ ) and gξ̌norm
λ = ρ∗(g)

(
ξ̌norm
λ

)
= (ρ(g) (ξnorm

λ ))∨ . Then we claim

that

Q̃λ,n =
1

dλ+(n)dλ
Qλ,n,

where Qλ is the orthogonal projection map defined in Theorem 1.6. Indeed, using (47),

we have

Q̃λ,n =
c2
λ

n!

∑
g∈Sn

∑
i,j

gw̌i ⊗ gwj ⊗ w̌i ⊗ wj .

Since Q̃λ,n commutes with Sn, then by Schur’s lemma this corresponds to an element of

CId
V λ

+(n) ⊗
(
V λ
)∨
⊗ V λ,

forcing i = j so that the image of Qλ,n in End
(
Uλ+(n)

)
is

bλ
n!

[
Id
V λ

+(n) ⊗ IdV λ
]
,

which, when we extend by zero on U⊥λ+(n) in (Cn)⊗k , is a scalar multiple of the orthog-

onal projection map Qλ : (Cn)⊗k → Uλ+(n). Comparing traces in (Cn)⊗k shows that

57



dλ+(n)dλQ̃λ = Qλ. This is summarised below.

Theorem 3.19. For any λ ` k, the orthogonal projection

Qλ : (Cn)⊗k → Uλ+(n)

is equal to dλ+(n)dλQ̃λ, where

Q̃λ =

∫
Sn

gξ̌norm
λ ⊗ gξnorm

λ dg.

3.4 Evaluating the Projection

It remains only to compute

Q̃λ =

∫
Sn

gξ̌norm
λ ⊗ gξnorm

λ dg

using the Weingarten calculus for the symmetric group (§2.1.6) and evaluate this as an

endomorphism of (Cn)⊗k . Let z = ξnorm
λ ⊗ ξnorm

λ and denote, for each g ∈ Sn, gz =

ρ(g)ξnorm
λ ⊗ ρ(g)ξnorm

λ , so that Q̃λ and

∫
Sn

gzdg

define the same element of End
(

(Cn)⊗k
)

via the canonical isomorphisms. We begin by

computing, for fixed σ, σ′ ∈ Sk and I = (i1, . . . , i2k), the coefficient of eI in

∫
Sn

g
[
vσ(1) ⊗ · · · ⊗ vσ(k) ⊗ vσ′(1) ⊗ · · · ⊗ vσ′(k)

]
dg. (48)

Using Proposition 2.9, the coefficient of eI in (48) is

∑
π∈Part([2k])

πstrict
(
vσ(1) ⊗ · · · ⊗ vσ(k) ⊗ vσ′(1) ⊗ · · · ⊗ vσ′(k)

)
πstrict (eI)

1

(n)|π|
(49)

and we evaluate these coefficients in the following sections.
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3.4.1 Conditions for πstrict to be non–zero

Obviously, if i 6= j, we cannot have vσ(i) = vσ(j) or vσ′(i) = vσ′(j). So, if π ∈ Part ([2k]) has

any two elements in [k] in the same subset, or any two elements in {k + 1, . . . , 2k} in the

same subset, then

πstrict
(
vσ(1) ⊗ · · · ⊗ vσ(k) ⊗ vσ′(1) ⊗ · · · ⊗ vσ′(k)

)
= 0.

This leaves only π ∈ Part ([2k]) in which every element i ∈ [k] is in a subset with exactly

one element j ∈ {k + 1, . . . , 2k}, or is a singleton. Similarly, the elements j ∈ [k + 1, 2k]

may only be in a subset with exactly one element i ∈ [k] or they are singletons. That is,

π ≤ ι(τ) for some τ ∈ Sk. The only possible candidate for τ is detailed in the next lemma.

Lemma 3.20. Given σ, σ′ ∈ Sk and π ∈ Part ([2k]) , let τ = σ−1σ′ ∈ Sk. Then

πstrict
(
vσ(1) ⊗ · · · ⊗ vσ(k) ⊗ vσ′(1) ⊗ · · · ⊗ vσ′(k)

)
= 0

unless

1. π = ι(τ), or

2. π ≤ ι(τ).

Proof. Fix any σ, σ′ ∈ Sk. Recall that ι(τ) is the partition
{
{1, k + τ−1(1)}, . . . , {k, k +

τ−1(k)}
}
. Suppose, towards a contradiction, that π 6= ι(τ) and π � ι(τ), but that

πstrict
(
vσ(1) ⊗ · · · ⊗ vσ(k) ⊗ vσ′(1) ⊗ · · · ⊗ vσ′(k)

)
6= 0.

Then, by definition, there exists a subset S in π that is not contained inside any of the

subsets in ι(τ). Suppose S contains i ∈ [k] and k + j, where j ∈ [k]\{τ−1(i)} as well (by

the previous discussion, if S contains another element in [k], then

πstrict
(
vσ(1) ⊗ · · · ⊗ vσ(k) ⊗ vσ′(1) ⊗ · · · ⊗ vσ′(k)

)
= 0

and, if S contains only the element i or the element k+ τ−1(i), then S would be contained
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inside one of the subsets in ι(τ)). Then, for any L = (l1, . . . , l2k),

πstrict (eL) 6= 0 =⇒ li = lk+j .

Observe that

vσ(1) ⊗ · · · ⊗ vσ(k) ⊗ vσ′(1) ⊗ · · · ⊗ vσ′(k)

= vσ(1) ⊗ · · · ⊗ e2σ(i)−1 − e2σ(i) ⊗ · · · ⊗ vσ(k)

⊗ vσ′(1) ⊗ · · · ⊗ e2σ′(j)−1 − e2σ′(j) ⊗ · · · ⊗ vσ′(k)

= vσ(1) ⊗ · · · ⊗ e2σ(i)−1 ⊗ · · · ⊗ vσ(k) ⊗ vσ′(1) ⊗ · · · ⊗ e2σ′(j)−1 ⊗ · · · ⊗ vσ′(k)

+ vσ(1) ⊗ · · · ⊗ e2σ(i) ⊗ · · · ⊗ vσ(k) ⊗ vσ′(1) ⊗ · · · ⊗ e2σ′(j) ⊗ · · · ⊗ vσ′(k)

− vσ(1) ⊗ · · · ⊗ e2σ(i) ⊗ · · · ⊗ vσ(k) ⊗ vσ′(1) ⊗ · · · ⊗ e2σ′(j)−1 ⊗ · · · ⊗ vσ′(k)

− vσ(1) ⊗ · · · ⊗ e2σ(i)−1 ⊗ · · · ⊗ vσ(k) ⊗ vσ′(1) ⊗ · · · ⊗ eσ′(j) ⊗ · · · ⊗ vσ′(k).

So, if πstrict
(
vσ(1) ⊗ · · · ⊗ vσ(k) ⊗ vσ′(1) ⊗ · · · ⊗ vσ′(k)

)
6= 0, then either σ(i) = σ′(j), which

implies (σ′)−1σ(i) = τ−1(i) = j, a contradiction or 2σ(i) = 2σ′(j)−1 or 2σ(i)−1 = 2σ′(j),

which is obviously not possible. So, in any case, we have a contradiction.

Refinements of ι(τ) are obtained by either splitting each subset {i, k + τ−1(i)} into

two subsets {i} and {k + τ−1(i)}, or leaving them as they are, which corresponds to

‘deleting’ edges from the diagram, and πstrict
(
vσ(1) ⊗ · · · ⊗ vσ(k) ⊗ vσ′(1) ⊗ · · · ⊗ vσ′(k)

)
can

be evaluated in terms of the number of edges deleted.

Remark. If π is obtained from ι(τ) by deleting p edges, then |π| = |ι(τ)|+ p = k + p.

3.4.2 Evaluating πstrict

Lemma 3.21. Let σ, σ′ ∈ Sk and let τ = σ−1σ′. Then, if π = ι(τ) or π ≤ ι(τ),

πstrict
(
vσ(1) ⊗ · · · ⊗ vσ(k) ⊗ vσ′(1) ⊗ · · · ⊗ vσ′(k)

)
= (−1)|π|−k2k.

Proof. We will prove this by induction on the number of edges deleted from ι(τ). The

base case is where π = ι(τ). In this case, |π| = k. We can write vσ(1)⊗· · ·⊗ vσ(k)⊗ vσ′(1)⊗

· · · ⊗ vσ′(k) as a sum of 22k standard basis vectors eI ⊗ eJ , with coefficients either 1 or
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−1. In this case, πstrict(eI ⊗ eJ) = 1 if and only if, for each i ∈ [k], the ith coordinate in

I matches the τ−1(i) coordinate in J exactly. If this is the case, the coefficient of eI ⊗ eJ

is 1 and there are 2k possible pairings, since for each of the 2k possible I, there is exactly

one J such that πstrict(eI ⊗ eJ) = 1.

Suppose that the claim is true for all π ≤ ι(τ) of size ≤ p and let π ≤ ι(τ) have

|π| = p+ 1. Add an edge e from a singleton j to k+ τ−1(j) to obtain π′, so that π′ ≤ ι(τ)

and |π′| = p, implying that

(
π′
)strict (

vσ(1) ⊗ · · · ⊗ vσ(k) ⊗ vσ′(1) ⊗ · · · ⊗ vσ′(k)

)
= (−1)p−k2k.

For every (I, J) such that (π′)strict (eI ⊗ eJ) = 1, there is exactly one (I, J−) such that

πstrict (eI ⊗ eJ−) = 1, obtained by swapping the (τ−1(j))th coordinate in J− so that it no

longer matches the jth coordinate in I. The coefficient of eI ⊗ eJ− in vσ(1) ⊗ · · · ⊗ vσ(k) ⊗

vσ′(1) ⊗ · · · ⊗ vσ′(k) is −1 multiplied by the coefficient of eI ⊗ eJ , so that

πstrict
(
vσ(1) ⊗ · · · ⊗ vσ(k) ⊗ vσ′(1) ⊗ · · · ⊗ vσ′(k)

)
= −(−1)p−k2k.

3.4.3 Evaluating the projection

Lemmas 3.20 and 3.21 and (49) imply that, for each fixed σ, σ′ ∈ Sk,∫
Sn

g
(
vσ(1) ⊗ · · · ⊗ vσ(k) ⊗ vσ′(1) ⊗ · · · ⊗ vσ′(k)

)
dg

=
∑
I

 ∑
π≤ι(τ)

πstrict (eI)
1

(n)|π|
(−1)|π|−k2k

 eI ,
where the sum is over all multi-indices I that correspond to a basis vector of (Cn)⊗2k, and

τ = σ−1σ′. Since

z =
1

2kk!

∑
σ,σ′∈Sk

χλ(σ)χλ(σ′)
[
vσ(1) ⊗ · · · ⊗ vσ(k) ⊗ vσ′(1) ⊗ · · · ⊗ vσ′(k)

]
,
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we have

∫
Sn

gzdg =
(−1)−k

k!

∑
σ,σ′∈Sk

χλ(σ)χλ(σ′)
∑

π≤ι(σ−1σ′)

(−1)|π|
1

(n)|π|

∑
I

πstrict (eI) eI . (50)

Proof of Theorem 1.6. We take

Uλ+(n) =
〈

∆(g, σ) (ξλ) : g ∈ Sn, σ ∈ Sk
〉
C
∼= V λ+(n) ⊗ V λ.

By Theorem 3.19, the orthogonal projection Qλ,n is the image of dλdλ+(n)Q̃λ,n inside

End
(

(Cn)⊗k
)

. Combining (50) with the character orthogonality formula

1

k!

∑
σ∈Sk

χλ(σ)χλ(στ) =
χλ(τ)

dλ

and Remark 2.10, one sees that this is exactly (6).

For use in the next section, we make some observations about this formula for Qλ.n.

We will denote

Part≤Sk ([2k])
def
=
{
π ∈ Part ([2k]) : π ≤ ι(τ), τ ∈ Sk

}
and write

≤Sk∑
π

to indicate that we are summing over π ∈ Part≤Sk ([2k]) . Then we can rewrite (6) as

≤Sk∑
π

c(n, k, λπ)P strict
π , (51)

where

c(n, k, λ, π) =
dλ+(n)(−1)|π|+k

(n)|π|

∑
τ∈Sk
ι(τ)≥π

χλ(τ).

If π ∈ Part≤Sk ([2k]) , say π ≤ ι(τ), then π is obtained from ι(τ) by splitting a number

of subsets into singletons or, equivalently, by deleting edges from the diagram for ι(τ). We

denote the number of edges deleted by del(π) and note that del(π) = |π| − k, so that if
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π ≤ ι(τ1) and π ≤ ι(τ2), then del(π) is independent of whether we count the edges deleted

from ι(τ1) or from ι(τ2).

Lemma 3.22. If π ≤ ι(τ) for some τ ∈ Sk, then

c(n, k, λ, π) = O

(
1

ndel(π)

)
.

In particular, if π = ι(τ), then this is O(1).

Proof. This follows since dλ+(n) = O
(
nk
)

and (n)|π| = O
(
n|π|
)
.

4 Expected characters of w–random permutations

The goal of this section is to prove Theorem 1.12 and the material is almost exactly the

same as [Cas25b, Section 4].

4.1 Overview of proof

Rather than working directly with the character χλ
+(n), we use Corollary 1.7 so that

instead our task is to compute the bitrace of Qλ,n ◦ w (g1, . . . , gr) on (Cn)⊗k .

Recall that Q2
λ,n = Qλ,n and that, since it is a linear combination of P strict

π , the

action of Qλ,n commutes with the action of any g ∈ Sn on (Cn)⊗k . With this in mind, if

w = x1x2x
−1
1 x−1

2 ∈ F2 for example, what we are actually interested in is

btr(Cn)⊗k
(
g1 ◦ Qλ,n ◦ g2 ◦ Qλ,n ◦ g−1

1 ◦ Qλ,n ◦ g
−1
2 ◦ Qλ,n

)
,

where each gi ∈ Sn.

We compute the expected trace by using the Weingarten calculus for Sn. A key com-

ponent is our refinement of the usual Weingarten calculus for Sn, which uses the fact that

we are operating within Ak(n) to show that the contribution to the trace from all but a

specific family of partitions is zero.

We obtain a combinatorial formula for the trace in §4.3. In §4.4, we construct graphs

from the combinatorial data formula for the expected character. From these graphs we

construct new graphs in which the asymptotic bound for our trace formula is encoded by

the Euler characteristic.
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In §4.5, we prove a variant of a theorem of Louder and Wilton that relates the Euler

characteristic of a graph with the number of immersed w–cycles (see [LW17, Theorem

1.2]) to obtain our final bound for the expected character.

4.2 Expected character as a ratio of polynomials in 1
n

In addition to our main theorem on word maps, we give another formulation for the

expected stable irreducible character of a w–random permutation as the ratio of two

polynomials in 1
n . This formulation is required for the methods in §5.

For any L, k ∈ Z>0, we define

gL,k(x)
def
=

kL∏
c=1

(1− cx)L

 2k∏
j=1

(1− (j − 1)x)

L .
Proposition 4.1. Let w ∈ Fr = 〈x1, . . . , xr〉 be a word in the free group with r generators,

w 6= e. Let k ∈ Z>0 and λ ` k. If l(w) ≤ q, there is a polynomial Pw,λ,q ∈ Q [x] such that,

for n ≥ l(w)k,

Ew
[
χλ

+(n)
]

=
Pw,λ,q

(
1
n

)
gq,k

(
1
n

) ,

with deg (Pw,λ,q) ≤ 3kq + kq2.

The proof of Proposition 4.1 is given in §4.6 and it can be followed from (57).

4.3 Combinatorial integration

Fix a word w ∈ Fr = 〈x1, . . . , xr〉 . We will assume that w is not the identity and is not

primitive and that w is cyclically reduced. We will also assume that every xi appears

at least twice in w. If xj did not appear in w, then we could consider w ∈ Fr−1 =

〈x1, . . . , xj−1, xj+1, . . . , xr〉 and then proceed. If any xj appeared only once, then w would

be primitive and so Ew
[
χλ

+(n)
]

= 0.

We will write

w = f ε11 f
ε2
2 . . . f

ε(w)
l(w) ,

where each fi ∈ {x1, . . . , xr} and each εi ∈ {1,−1}. We will write |w|xi for the number of

j such that fj = xi.
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Suppose that {vp} is an orthonormal basis for Uλ+(n)
∼= V λ+(n) ⊗ V λ. Then, for any

(gx1 , . . . , gxr) ∈ Srn, we have

χλ
+(n) (w (gx1 , . . . , gxr)) =

1

dλ
trUλ+(n)

(w (gx1 , . . . , gxr)) ,

so that

χλ
+(n) (w (gx1 , . . . , gxr))

=
1

dλ

∑
pi

〈
gε1f1
vp2 , vp1

〉〈
gε2f2
vp3 , vp2

〉
. . .
〈
g
εl(w)

fl(w)
vp1 , vpl(w)

〉
.

(52)

For each p, write vp in the standard orthonormal basis of (Cn)⊗k:

vp =
∑
I

βp,IeI .

Recall that Uλ+(n) ⊂ Dk(n), so that we may assume that the above sum is over all

I = (i1, . . . , ik) with all indices distinct. This is an important observation.

We introduce some new notation to avoid the cumbersome general expression for

Ew
[
χλ

+(n)
]
. For each f ∈ {x1, . . . , xr}, we will write

∑
If

in place of ∑
I1
f ,...I

|w|f
f

.

For any pair I, J of multi–indices and ε ∈ {1,−1}, we define

(I/J)(ε) =


J if ε = 1

I if ε = −1.

In our expression, we will simply write (I/J) in place of (I/J)(ε) where it is clear

which epsilon we are considering. To be even more clear, in the sum below, for each fi, if

εi = 1, then the corresponding inner product has eIzfi
on the LHS, where z ∈ {1, . . . , |w|fi}

denotes the number of times fi has appeared in the subword f ε11 . . . f εii . The corresponding
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pair of β–terms has βp,I , with βp,J conjugated. If εi = −1, we swap the positions of I and

J .9

We will write

∏
f,w

β

=

(
β
p2,
(
I1
f1
/J1
f1

))(β̄
p1,
(
J1
f1
/I1
f1

)) . . .
. . .

β
p1,

(
I
|w|fl(w)
fl(w)

/J
|w|fl(w)
fl(w)

)

β̄

pl(w),

(
J
|w|fl(w)
fl(w)

/I
|w|fl(w)
fl(w)

)
 .

With this notation, (52) is equal to

1

dλ

∑
pi

∑
If ,Jf

∏
f,w

β

〈gε1f1
e(
I1
f1
/J1
f1

), e(
J1
f1
/I1
f1

)〉 . . .
. . .

〈
g
εl(w)

fl(w)
e(

I
|w|fl(w)
fl(w)

/J
|w|fl(w)
fl(w)

), e(
J
|w|fl(w)
fl(w)

/I
|w|fl(w)
fl(w)

)
〉
.

(53)

See the example below. Without losing generality, we will always assume that f1 = x1

and that ε1 = 1.

Example 4.2. Suppose w = x1x2x
−1
1 x−1

2 . Then χλ
+(n) (w (gx1 , gx2)) is equal to

1

dλ

∑
pi

∑
I1
x1
, I2
x1
, I1
x2
, I2
x2
,

J1
x1
, J2
x1
, J1
x2
, J2
x2

(
βp2,I1

x1

)(
β̄p1,J1

x1

)(
βp3,I1

x2

)(
β̄p2,J1

x2

)(
βp4,J2

x1

)(
β̄p3,I2

x1

)

(
βp1,J2

x2

)(
β̄p4,I2

x2

)〈
gx1eJ1

x1
, eI1

x1

〉〈
gx2eJ1

x2
, eI1

x2

〉〈
g−1
x1
eI2
x1
, eJ2

x1

〉〈
g−1
x2
eI2
x2
, eJ2

x2

〉
.

We rewrite the inner product terms as products of matrix coefficients – for example,

〈
gx1eJ1

x1
, eI1

x1

〉
= (gx1)(I1

x1
)

1
(J1
x1

)
1

. . . . (gx1)(I1
x1

)
k
(J1
x1

)
k

.

Rearranging and taking the expectation over gx1 , . . . , gxr ∈ Sn, we obtain from (53) that

9We use this notation so that, in the graph construction detailed in Section 4.4,
(
J if
)
j

always represents

the initial vertex of an f–edge and
(
Iif
)
j

always represents the terminal vertex.
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Ew
[
χλ

+(n)
]

is equal to

1

dλ

∑
pi

∑
If ,Jf

∏
f,w

β

 ∏
f∈{x1,...,xr}

∫
g
If ,Jf

, (54)

where ∫
g
If ,Jf

def
=

∫
Sn

|w|f∏
i=1

(gf )(Iif)1
(Jif)1

. . . . (gf )(Iif)k(J
i
f)k

dgf .

For each f ∈ {x1, . . . , xr} and for each fixed collection of multi–indices I1
f , . . . , I

|w|f
f , J1

f , . . . , J
|w|f
f ,

this integral can be computed using the Weingarten calculus for the symmetric group. Us-

ing (26) we have

∫
Sn

|w|f∏
i=1

(gf )(Iif)1
(Jif)1

. . . . (gf )(Iif)k(J
i
f)k

dgf

=
∑

σf ,τf∈Part([|w|fk])

δσf

(
J1
f t J2

f t · · · t J
|w|f
f

)
δτf

(
I1
f t I2

f t · · · t I
|w|f
f

)

Wgn,(|w|fk) (σf , τf ) .

Now we give an improvement over the usual Weingarten calculus that simplifies the above

equation greatly. The benefit of the improvement is that, instead of summing over all

set partitions σf , τf ∈ Part ([|w|fk]) , we show that we need only sum over set partitions

σf , τf that have a specific structure, since the contribution to (54) from the set partitions

without this structure is zero.

To each partition we associate a diagram (in a similar way to §2.1.5) – the diagram

has |w|f rows, each containing exactly k vertices. The vertices in row R are labeled

from (R− 1)k + 1 to Rk, and two vertices are connected if and only if the corresponding

vertex labels are in the same block of of the partition. We will also refer to the diagrams

corresponding to σf and τf as σf and τf where this does not cause confusion.

Lemma 4.3. For each f ∈ {x1, . . . , xr}, if σf has any two vertices from the same row

connected, then

δσf

(
J1
f t J2

f t · · · t J
|w|f
f

)
= 0.

The same is true for τf and I1
f t I2

f t · · · t I
|w|f
f .
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Proof. Since eJ1
f
∈ Dk(n) = 〈ei1 ⊗ · · · ⊗ eik : i1, . . . , ik pairwise distinct〉, if any of the

vertices in the top row of σf are in the same block, then

δσf

(
J1
f t J2

f t · · · t J
|w|f
f

)
= 0.

Repeating this argument for J2
f , . . . J

|w|f
f proves the claim for σf and then repeating it for

I1
f t I2

f t · · · t I
|w|f
f proves the claim for τf .

The next lemma asserts that every vertex of σf and τf must be connected to at least

one other vertex.

Lemma 4.4. For any f ∈ {x1, . . . , xr}, if σf has any singletons, then

1

dλ

∑
pi

∑
If ,Jf

∏
f,w

β


[ ∑
τf∈Part([|w|fk])

δσf

(
J1
f t J2

f t · · · t J
|w|f
f

)
δτf

(
I1
f t I2

f t · · · t I
|w|f
f

)

Wgn,(|w|fk) (σf , τf )

]
= 0.

The same is true when we swap σf and τf .

Proof. Without loss of generality, suppose that the vertex q in the first row of vertices of

σf is a singleton. For all variables in the sum fixed except for J1
f , J

2
f , . . . , J

|w|f
f , assuming

δτf

(
I1
f t I2

f t · · · t I
|w|f
f

)
6= 0,

then the sum is equal to

∑
J1
f ,...,J

|w|f
f

(
β̄p1,J1

f

)
. . .

(
β
p,J
|w|f
f

)
δσf

(
J1
f t J2

f t · · · t J
|w|f
f

)
,

multiplied by some constant coming from the other (fixed) β–terms and the Weingarten

function Wgn,(|w|fk) (σf , τf ) .

Then, for every fixed index
(
J1
f

)
1
, . . . ,

(
J1
f

)
q−1

,
(
J1
f

)
q+1

, . . . ,
(
J1
f

)
k

and every fixed
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multi–index J2
f , . . . , J

|w|f
f satisfying σf , this is (some constant multiplied by)

n∑
(J1
f )q=1

β̄p1,J1
f
.

This is exactly the conjugate of the coefficient of e(J1
f )1
⊗· · ·⊗e(J1

f )q−1
⊗e(J1

f )q+1
⊗ . . . e(J1

f )k

in Tq (vp1) . But then, vp1 belongs to an orthonormal basis for Uλ+(n), and Uλ+(n) ⊂ Ak(n).

In particular, vp ∈ ker (Tq) , so that

n∑
(J1
f )q=1

β̄p1,J1
f

= 0.

Henceforth, we will denote by
?

Part ([|w|fk]) the set of set partitions of [|w|fk] for which

the corresponding diagram has no singletons and has no two vertices in the same row in

the same connected component.

We will write
?∑

σf ,τf

to indicate that the sum is over σf , τf ∈
?

Part ([|w|fk]) .

For any given σf ∈
?

Part ([|w|fk]) (and similarly for τf ), and any collection of multi–

indices J1
f , . . . , J

|w|f
f , we will write

JΣ
f ↔ σf

to indicate that

δσf

(
J1
f t J2

f t · · · t J
|w|f
f

)
= 1.

Therefore, our new expression for Ew
[
χλ

+(n)
]

is

1

dλ

?∑
σf ,τf

 ∏
f∈{x1,...,xr}

Wgn,(|w|fk) (σf , τf )

∑
pi

∑
JΣ
f ↔ σf

IΣ
f ↔ τf

∏
f,w

β

 .

(55)
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This expression can be further simplified using the projection Qλ,n. Consider Example 4.2

– for all terms fixed in the expression except for e.g. p2, the ensuing sum is

∑
p2

(
βp2,I1

x1

)(
β̄p2,J1

x2

)
=
∑
p2

〈
eI1
x1
, vp2

〉〈
vp2 , eJ1

x2

〉
=
〈
Qλ,n

(
eI1
x1

)
, eJ1

x2

〉
=

≤Sk∑
π

c(n, k, λ, π)
〈
P strict
π

(
eI1
x1

)
, eJ1

x2

〉
.

Repeating this and computing the sums over each pi, the expression in Example 4.2 be-

comes

1

dλ

?∑
σf ,τf

≤Sk∑
π1,...,πl(w)

(
4∏
i=1

c(n, k, λ, πi)

) ∏
f∈{x1,x2}

Wgn,(|w|fk) (σf , τf )


∑

σf↔JΣ
f , τf↔I

Σ
f

〈
P strict
π1

(
eI1
x1

)
, eJ1

x2

〉〈
P strict
π2

(
eI1
x2

)
, eI2

x1

〉
〈
P strict
π3

(
eJ2
x1

)
, eI2

x2

〉〈
P strict
π4

(
eJ2
x2

)
, eJ1

x1

〉
.

(56)

The same argument applies for any non–identity, non–primitive, cyclically reduced word

w ∈ Fr.

Definition 4.5. Given, for each f ∈ {x1, . . . , xr}, a collection of set partitions σf , τf ∈
?

Part ([|w|fk]) and a collection of set partitions π1, . . . , πl(w) ∈ Part≤Sk ([2k]) , we write

N
(
σx1 , τx1 , . . . , σxr , τxr , π1, . . . , πl(w)

)
= N (σf , τf , πi) ,

for the number of multi–indices I1
f , . . . I

|w|f
f , J1

f , . . . , J
|w|f
f , with all indices distinct, satis-

fying:

� σf ↔ JΣ
f ,

� τf ↔ IΣ
f ,

�
〈
P strict
π1

(
eI1
x1

)
, e(I/J)f2

〉
= 1,

...
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�
〈
P strict
πl(w)

(
e(I/J)fl(w)

)
, eJ1

x1

〉
= 1,

where (I/J) is used to denote the correct multi–index arising from the β–terms.

With this notation, we have proved the following theorem.

Theorem 4.6. Suppose k ∈ Z>0. For any λ ` k and every cyclically reduced, non–identity,

non–primitive word w ∈ Fr,

Ew
[
χλ

+(n)
]

=
1

dλ

?∑
σf ,τf

≤Sk∑
π1,...,πl(w)

l(w)∏
i=1

c(n, k, λ, πi)

 ∏
f∈{x1,...,xr}

Wgn,(|w|fk) (σf , τf )

N (σf , τf , πi) .

(57)

Combining (57) with Lemma 3.22 and (25), the following bound is immediate.

Corollary 4.7. Suppose k ∈ Z>0. For any λ ` k and every cyclically reduced, non–

identity, non–primitive word w ∈ Fr,

Ew
[
χλ

+(n)
]
�k,l(w)

?∑
σf ,τf

≤Sk∑
π1,...,πl(w)

n−
∑l(w)
i=1 del(πi)n−

∑
f |σf∧τf |N (σf , τf , πi) .

4.4 Graphical Interpretation

We construct a graph for each collection of set partitions σf , τf , π1, . . . , πl(w). This is similar

to the construction of a surface from a matching datum by Magee in [Mag25a]. Indeed,

the graph is essentially the same as the 1–skeleton of the surfaces constructed there.

The graph we construct will be denoted G (σf , τf , πi) . The information in (57) will be

encoded in the properties of G (σf , τf , πi) , allowing us to simplify further by analyzing

the graph rather than dealing with tricky combinatorial arguments. Ultimately, from

G (σf , τf , πi) we will construct a new graph, from which we derive Theorem 1.12.

G (σf , τf , πi) is a graph with 2kl(w) vertices, separated in to k distinct subsets, each

containing exactly 2l(w) vertices. We number the subsets from 1 to k. For each i ∈

{1, . . . , k}, the vertices in subset i are labeled
(
I1
f

)
i
, . . .

(
I
|w|f
f

)
i
,
(
J1
f

)
i
, . . . ,

(
J
|w|f
f

)
i

for

each f ∈ {x1, . . . , xr}.
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Within each subset i, for each f ∈ {x1, . . . , xr} and for each j ∈ {1, . . . , |w|f}, we draw

a directed, f–labeled edge from the vertex labeled
(
J jf

)
i

to the vertex labeled
(
Ijf

)
i
. This

gives a total of kl(w) directed edges. We refer to the ith subset of vertices as the ith

w–loop, see Figure 1.

(J1
x1

)
1

(I1
x1

)
1

(J2
x1

)
1

(I2
x1

)
1

(J1
x2

)
1

(I1
x2

)
1

(I3
x1

)
1

(J3
x1

)
1

(I2
x2

)
1

(J2
x2

)
1 x1

x1

x2

x1

x2

(J1
x1

)
2

(I1
x1

)
2

(J2
x1

)
2

(I2
x1

)
2

(J1
x2

)
2

(I1
x2

)
2

(I3
x1

)
2

(J3
x1

)
2

(I2
x2

)
2

(J2
x2

)
2 x1

x1

x2

x1

x2

Figure 1: Here we have shown how to begin constructing G (σf , τf , πi) with w =
x1x1x2x

−1
1 x−1

2 and k = 2. There are 2kl(w) = 20 vertices, split in to k = 2 distinct
subsets, each containing 2l(w) = 10 vertices each. The vertices on the left (i.e. with the
outer subscript “1”) are the 1st w–loop and the vertices on the right are the 2nd w–loop.
There are k|w|x1 = 6 directed x1–edges and k|w|x2 = 4 directed x2–edges.

For each f ∈ {x1, . . . , xr}, we add an undirected σf–edge between any two vertices(
J jf

)
i

and
(
J j
′

f

)
i′

whenever σf dictates that the corresponding indices must be equal in

order for δσf

(
J1
f t J2

f t · · · t J
|w|f
f

)
to be non–zero. This is illustrated in Figure 2.
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(J1
x1
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1

(I1
x1

)
1

(J2
x1
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1

(I2
x1
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1

(J1
x2
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1

(I1
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)
1

(I3
x1

)
1

(J3
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)
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(I2
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)
1

(J2
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)
1 x1

x1

x2

x1

x2

(J1
x1

)
2

(I1
x1

)
2

(J2
x1

)
1

(I2
x1

)
2

(J1
x2

)
2

(I1
x2

)
2

(I3
x1

)
2

(J3
x1

)
2

(I2
x2

)
2

(J2
x2

)
2 x1

x1

x2

x1

x2

Figure 2: Here we continue the construction of the graph from Figure 1 by adding in
the σx1–edges (in red) and the σx2–edges (in purple). In this example, we have σx1 ={
{1, 3, 6}, {2, 4, 5}

}
∈ Part ([3k]] and σx2 =

{
{1, 3}, {2, 4}

}
∈ Part ([2k]).

For each f ∈ {x1, . . . , xr}, we add undirected τf–edges similarly, illustrated in Figure

3. Finally, for each i ∈ {1, . . . , l(w)}, we add an undirected πi–edge between any two

vertices whenever πi dictates that the corresponding indices must be equal in order for

the corresponding inner product term in Definition 4.5 to be non–zero.

In short, for each collection of set partitions σf , τf , π1, . . . , πl(w), we draw an undirected

edge between any two vertices for which the indices with the same label are necessarily equal

for the conditions in Definition 4.5 to hold.

Figure 4 shows a complete example ofG (σf , τf , πi), with each σf , τf and πi as described

in the examples throughout this section.

Definition 4.8. We will write Ĝ (σf , τf , πi) for the subgraph of G (σf , τf , πi) consisting

of every vertex and only the undirected edges.
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Figure 3: We continue the construction from Figures 1 and 2. We have added in the
τx1–edges (in dark blue) and the τx2–edges (in light blue). In this example, τx1 ={
{1, 3, 5} {2, 4, 6}

}
and τx2 =

{
{1, 4} {2, 3}

}
.
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1
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Figure 4: This depicts G (σf , τf , πi) , where σf and τf are as described in Figures 2 and
3 and the πi are as follows: π1 =

{
{1}, {2}, {3} {4}

}
, π2 =

{
{1, 3}, {2, 4}

}
, π3 ={

{1, 4}, {2}, {3}
}

, π4 =
{
{1}, {3}, {2, 4}

}
and π5 =

{
{1, 4}, {2, 3}

}
.
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4.5 Obtaining the bound

With all π1, . . . , πl(w) corresponding to permutations (i.e. with
∑

i del(πi) = 0), we can

apply [LW17, Theorem 1.2] to obtain the bound of n−k. For the other cases, we need to

prove a variant of this theorem that applies in our case. This section is dedicated to this

task.

4.5.1 Stackings

Given graph morphisms ρ1 : Γ1 → G and ρ2 : Γ2 → G, the fibre product Γ1 ×G Γ2 is the

graph with vertex set

V (Γ1 ×G Γ2) =
{

(v1, v2) ∈ V (Γ1)× V (Γ2) : ρ1 (v1) = ρ2 (v2)
}

and edge set

E (Γ1 ×G Γ2) =
{

(e1, e2) ∈ E (Γ1)× E (Γ2) : ρ1 (e1) = ρ2 (e2)
}
,

where t (e1, e2) = (t (e1) , t (e2)) and h (e1, e2) = (h (e1) , h (e2)) .

Louder and Wilton [LW17] first developed the notion of a stacking of a graph immersion

and we adapt their definitions slightly to suit our case.

Definition 4.9. Let Γ be a finite graph and S a 1–complex with an immersion Λ : S→ Γ.

A stacking is an embedding Λ̂ : S→ Γ×R such that πΛ̂ = Λ, where π : Γ×R→ Γ is the

trivial R–bundle.

Let η : Γ× R→ R be the projection to R.

Definition 4.10. Given a stacking Λ̂ : S→ Γ× R of an immersion Λ : S→ Γ, define

AΛ̂

def
=
{
x ∈ S : ∀y 6= x, if Λ(x) = Λ(y) then η

(
Λ̂(x)

)
> η

(
Λ̂(y)

)}
and

BΛ̂

def
=
{
x ∈ S : ∀y 6= x, if Λ(x) = Λ(y) then η

(
Λ̂(x)

)
< η

(
Λ̂(y)

)}
.
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4.5.2 Bounding expected character

By Remark 1.11, we only need to prove the bound in Theorem 1.12 in the case where w

is not a proper power. From now, assume that w is not a proper power.

For each σf , τf , πi, construct the graph G (σf , τf , πi) from Section 4.4, consisting of

kl(w) disjoint, directed f edges organised into k w–loops and then marking on the blocks

of the partitions σf , τf , πi using undirected edges.

We construct a new graph Γ (σf , τf , πi) by:

� gluing together any vertices that are connected by a σf , τf or πi–edge (and then

deleting the σf , τf or πi–edges),

� if σf and τf connect both the initial and terminal vertices of some collection of

f–edges, we merge these into a single f–edge, see Figure 5.

Lemma 4.11. Given σf , τf ∈
?

Part ([|w|fk]) and πi ∈ Part≤Sk ([2k]) ,

∑
f

|σf ∧ τf | =
∣∣∣E (Γ (σf , τf , πi))

∣∣∣.
Proof. Every block of σf ∧ τf of size p corresponds to some collection of f–edges in

G (σf , τf , πi) of size p, whose initial and terminal vertices have been glued together and

whose edges have been merged in the construction of Γ (σf , τf , πi) . Every f–edge in

Γ (σf , τf , πi) then corresponds to a block of σf ∧ τf .

Lemma 4.12. Given σf , τf ∈
?

Part ([|w|fk]) and πi ∈ Part≤Sk ([2k]) ,

N (σf , τf , πi)� n|V (Γ(σf ,τf ,πi))|.

Proof. Each vertex of Γ (σf , τf , πi) corresponds to a connected component of Ĝ (σf , τf , πi).

Any collection of indices must be equal if their corresponding vertices are in the same

connected component of Ĝ (σf , τf , πi). Clearly, if there were no more restrictions, we

would have

N (σf , τf , πi) = n|V (Γ(σf ,τf ,πi))|.

The lemma follows since we have the additional restriction that within each multi–index,
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each index must be distinct.

So (57) becomes

Ew
[
χλ

+(n)
]
�k,l(w)

?∑
σf ,τf

≤Sk∑
π1,...,πl(w)

n−
∑
i del(πi)nχ(Γ(σf ,τf ,πi)). (58)

[I2
x2

]
1
=[I1

x2
]
2

x1

x2

x1

x2x2

x1

x2

x1

Figure 5: Above we show how to construct Γ (σf , τf , πi) from the graph G (σf , τf , πi)
constructed in Figure 4. We have labeled one vertex to show which vertices of G (σf , τf , πi)
have been glued together in the construction.

Remark 4.13. It is worth noting here why the most obvious approach to obtaining the

required bound does not work. We can ‘complete’ each πi to a permutation π̂i by gluing

together vertices of Γ (σf , τf , πi) according to the additional identifications dictated by the

edges that must be added to πi to construct π̂i. Then, one may observe that

n−
∑
i del(πi)nχ(Γ(σf ,τf ,πi)) � nχ(Γ(σf ,τf ,π̂i))

and seek to apply [LW17, Theorem 1.2] directly. Unfortunately, in gluing the vertices

of Γ (σf , τf , πi) together, one may lose the distinctness property that no two vertices of

G (σf , τf , πi) labeled, say,
(
J if

)
j1

and
(
J if

)
j2

with j1 6= j2, can be glued together, which

would then weaken the bound achieved by applying [LW17, Theorem 1.2]. Therefore, we

proceed with our extension of their result.

Define Br
def
=
∨r
i=1 S

1
i , the bouquet of r oriented circles, labeled x1, . . . , xr and with

wedge point labeled o. Define W to be the graph consisting of a single cycle of oriented f–

labeled edges that, when traversed in an appropriate direction from an appropriate vertex,
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reads out the word w. Then W comes equipped with an obvious primitive (since w is not

a proper power) immersion

Λ : W → Br.

By [LW17, Lemma 3.4], this immersion has a stacking

Λ̂ : W → Br × R.

For each σf , τf , πi, write Γ = Γ (σf , τf , πi) . We have a map

ρ : Γ→ Br

and we can form the fibre product graph

Γ×Br W.

We denote by S the components of the fibre product graph defined by following the

paths in G (σf , τf , πi) which alternate between f–edges and πi–edges. This defines some

partition of wk. The connected components of S are either circles that read out wki or

pieces, which consist of two closed endpoints and a chain of vertices of valence two in

between them. Each piece reads out some subword of wk. The concatenation of the words

spelled out by all the connected components of S is exactly wk and the number of pieces

of S is exactly
∑

i del (πi) .

We have an immersion

Λ′ : S→ Γ

and an immersion

δ : S→W.

By the same argument as [LW17, Lemma 2.5], we have a stacking,

Λ̂′ : S→ Γ× R.

Lemma 4.14. Every vertex in Γ is covered at least twice by Λ′ : S→ Γ.
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Proof. Every vertex v of Γ is constructed by gluing together at least two vertices in

G (σf , τf , πi) , and v is covered by Λ′ exactly once for each vertex in G (σf , τf , πi) that

has been glued in the construction of v.

The connected components of S are then one of the following:

� a circle

� a closed arc: a connected and simply connected union of vertices and interiors of

edges, with both ends closed (i.e. a piece).

If we also define the following:

� an open arc: a connected and simply connected union of vertices and interiors of

edges, with both ends open

� a half–open arc: a connected and simply connected union of vertices and interiors of

edges, with one end open and one end closed,

then the following lemma is immediate.10

Lemma 4.15. Every connected component of AΛ̂′ or BΛ̂′ is either a circle, an open arc,

a half–open arc or a closed arc.

Lemma 4.16. Neither AΛ̂′ or BΛ̂′ contain a circle, a closed arc reading out a word of

length ≥ l(w) or an open/half–open arc reading out a word of length > l(w).

Proof. Let C ⊆ S be a circle, a closed arc reading out a word of length ≥ l(w), or an

open/half–open arc reading out a word of length > l(w), which is contained inside AΛ̂′ .

Then the map

δ
∣∣
C

: C →W

is surjective.

W must contain a vertex x belonging to BΛ̂. Then, the preimage
(
δ
∣∣
C

)−1
(x) contains

a vertex x′ belonging to BΛ̂′ , so that x′ ∈ AΛ̂′ ∩ BΛ̂′ . This implies that Λ′(x′) ∈ V (Γ) is

covered exactly once by Λ′, contradicting Lemma 4.14. To prove the lemma for BΛ̂′ , we

can swap AΛ̂′ and BΛ̂′ in the proof.

10We are especially indebted to Noam Ta Shma for pointing out an error in our original argument for
proving the extension of Wise’s w–cycles conjecture and for his feedback on the correction presented from
this point onward.
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So the connected components of AΛ̂′ are one of the following:

� open arcs that read out words of length ≤ l(w),

� half–open arcs that read out words of length ≤ l(w) or

� closed arcs that read out words of length < l(w).

The main points here are that every connected component has two ends (that are either

open or closed) and that none of the connected components can be too long. Moreover,

we observe that the only closed ends that can be in AΛ̂′ or BΛ̂′ are those that are the

closed ends of pieces in S.

Write

Aend
def
= #

{
ends of connected components of AΛ̂′

}
and

Bend
def
= #

{
ends of connected components of BΛ̂′

}
.

Lemma 4.17. We have Aend ≥ 2k and Bend ≥ 2k.

Proof. Pick any vertex w ∈W such that w ∈ AΛ̂. Then w has at least k preimages δ−1(w)

in S, all of which must be contained in AΛ̂′ . If two such preimages belong to the same

connected component C of AΛ̂′ , then C must either be a circle, a closed arc reading out

a word of length ≥ l(w) or an open/half–open arc reading out a word of length > l(w),

contradicting Lemma 4.16. Thus, there must be at least k connected components in AΛ̂′ ,

so there must be at least 2k ends. Repeating the argument with w ∈ BΛ̂ proves the lemma

for Bend.

Write

Aclosed
def
= #

{
closed ends of connected components of AΛ̂′

}
and

Bclosed
def
=
{

closed ends of connected components of BΛ̂′

}
.

Lemma 4.18. We have

Aend = −2χ+ 2Aclosed
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and

Bend = −2χ+ 2Bclosed.

Proof. We prove the lemma for AΛ̂′ . Each vertex v ∈ V (Γ) is covered by AΛ̂′ once. If v is

covered by a connected component of AΛ̂′ passing through one of v’s preimages in S, then

there must be

deg(v)− 2

open ends of AΛ̂′ that end at the other preimages of v in S, to cover the other edges of Γ

that are incident at v.

Otherwise, v is covered by AΛ̂′ by a closed end of a connected component of AΛ̂′ that

ends at one of v’s preimages. In this case, we count exactly 1 closed end of AΛ̂′ that ends

at one of v’s preimages and exactly

deg(v)− 1

open ends of AΛ̂′ that end at the other preimages of v in S, to cover the other edges of Γ

that are incident at v.

In total, we see that

Aend =
∑
v

(deg(v)− 2) +
∑
u

deg(u),

where the first sum is over v ∈ V (Γ) that are covered by AΛ̂′ by a connected component

passing through one of their preimages and the second sum is over u ∈ V (Γ) that are

covered by AΛ̂′ by a closed end at one of their preimages. This can be rewritten as

∑
v∈V (Γ)

(deg(v)− 2) + 2
∑
u

= −2χ(Γ) + 2Aclosed.

Combining Lemma 4.17 with Lemma 4.18 implies that

k ≤ −χ(Γ) +Aclosed
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and also that

k ≤ −χ(Γ) + Bclosed.

This implies that

2k ≤ −2χ(Γ) +Aclosed + Bclosed ≤ −2χ(Γ) + 2
∑
i

del (πi) , (59)

since the total number of closed ends in S is 2
∑

i del (πi) and each closed end in S can

be, at most, a closed end in AΛ̂′ or a closed end in BΛ̂′ , but not both, since that would

imply that its image in Γ is covered only once by the immersion Λ′ : S→ Γ, contradicting

Lemma 4.14. Combining (59) with (58) proves Theorem 1.12.

4.6 Proof of Proposition 4.1

Let w ∈ Fr = 〈x1, . . . , xr〉 for r fixed. Let m ≤ r be the minimum number of generators

xi1 , . . . , xim such that w can be written using the alphabet {xi1 , x−1
i1
, . . . , xim , x

−1
im
}. So,

up to relabeling the generators, w ∈ Fm = 〈x1, . . . , xm〉 , with m ≤ r.

Beginning with (57), we have

Ew
[
χλ

+(n)
]

=
1

dλ

?∑
σf ,τf

≤Sk∑
π1,...,πl(w)

l(w)∏
i=1

c(n, k, λ, πi)

 ∏
f∈{x1,...,xm}

Wgn,(|w|fk) (σf , τf )


N (σf , τf , πi) .

For each f ∈ {x1, . . . , xm}, for each σf , τf ∈
?

Part ([|w|fk]) ,

Wgn,(|w|fk) (σf , τf ) =
∑

ρf≤σf∧τf

µ(ρf , σf )µ(ρf , τf )
1

(n)|ρf |
.

This is equal to
C1

(n)|w|fk
+

C2

(n)|wf |k−1
+ · · ·+

C|w|fk−|σf∧τf |+1

(n)|σf∧τf |

=
gσf ,τf (n)

(n)|w|fk
,

where gσf ,τf (n) is a polynomial in n of maximum degree |w|fk − |σf ∧ τf |.
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For each π ∈ Part≤Sk ([2k]), we have

c(n, k, λ, π) =
dλ+(n)(−1)|π|+k

(n)|π|

∑
τ∈Sk
ι(τ)≥π

χλ(τ).

Using the hook–length formula, this is equal to

[
(−1)k+|π|

k!

∑
τ∈Sk
ι(τ)≥π

χλ(τ)

]
(n− |π|)(n− |π| − 1) . . . (n− 2k + 1)

(n)λ
,

where (n)λ =
∏k
j=1

(
n− k + 1− λ̌j − j

)
. It follows that

l(w)∏
i=1

c(n, k, λ, πi) =

∏l(w)
i=1 hk,λ,πi(n)

(n)
l(w)
λ

,

where

hk,λ,πi(n) =

(−1)k+|π|

k!

∑
τ∈Sk
ι(τ)≥π

χλ(τ)

 (n− |π|)(n− |π| − 1) . . . (n− 2k + 1)

is a polynomial in n of degree 2k − |πi| = k − del (πi) . Hence,

Ew
[
χλ

+(n)
]

=
pk,λ,w (n)

(n)
l(w)
λ

∏
f (n)|w|fk

, (60)

where

pk,λ,w (n) =
1

dλ

?∑
σf

≤Sk∑
π1,...,πl(w)

∏
f

gσf ,τf (n)

l(w)∏
i=1

hk,λ,πi(n)

N (σf , τf , πi) .

For each collection of σf , τf , πi:

�
(∏

f gf (n)
)

has maximum degree

∑
f

(|w|fk − |σf ∧ τf |) = kl(w)−
∑
f

|σf ∧ τf |,
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�
(∏l(w)

i=1 hk,λ,πi(n)
)

has maximum degree

l(w)∑
i=1

(k − del(πi)) = kl(w)−
∑
i

del(πi),

� N (σf , τf , πi) has maximum degree11

∑
i

del(πi) +
∑
f

|σf ∧ τf |,

so that the degree of pk,λ,w(n) is less than or equal to

2kl(w).

We can rewrite the denominator of (60) using reciprocal polynomials. We have

∏
f

(n)|w|fk

=
m∏
d=1

|w|xdk−1∏
c=1

(n− c)

=nkl(w)
m∏
d=1

|w|xdk−1∏
c=1

(
1− c 1

n

)
.

Similarly,

(n)
l(w)
λ = nkl(w)

 k∏
j=1

(
1 +

(
1 + λ̌j − j − k

) 1

n

)l(w)

.

It follows that

Ew
[
χλ

+(n)
]

=
1

n2kl(w) pk,λ,w (n)

g̃
(

1
n

) =
P̂w,k,λ

(
1
n

)
g̃
(

1
n

) ,

where

g̃ (x) =
m∏
d=1

|w|xdk−1∏
c=0

(1− cx)

 k∏
j=1

(
1 +

(
1 + λ̌j − j − k

)
x
)l(w)

.

The numerator P̂w,k,λ
(

1
n

)
is clearly a polynomial in 1

n of maximum degree 2kl(w).

11This follows from the simple observation that Γ (σf , τf , πi) has Euler characteristic ≤
∑
i del(πi),

regardless of if w is a proper power or not.
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Now assume that l(w) ≤ q, which also implies that m ≤ q. Then g̃(x) always divides

ĝ(x) =

kq∏
c=1

(1− cx)q

 k∏
j=1

(
1 +

(
1 + λ̌j − j − k

)
x
)q .

The sequence λ̌1 − 1, . . . , λ̌k − k is strictly decreasing. Moreover, for any λ ` k and any

j ∈ [k],

1 + λ̌j − j − k ∈ [1− 2k, 0],

so that

ĝ(x)

∣∣∣∣∣
kq∏
c=1

(1− cx)q

 2k∏
j=1

(1 + (1− j)x)

q = gq,k(x).

It follows that Ew
[
χλ

+(n)
]

can be written

Pw,k,λ
(

1
n

)
gq,k

(
1
n

) ,

where

Pw,k,λ

(
1

n

)
=P̂w,k,λ

(
1

n

)
gq,k

(
1
n

)
g̃
(

1
n

) .

This is a polynomial in 1
n of maximum degree

2kl(w) + kq2 + 2kq − kl(w)− kl(w) +m

≤3kq + kq2.

5 Strong convergence for random permutations

The goal of this section is to prove Theorem 1.14 (immediately proving Theorem 1.13),

from Theorem 1.12. The material is entirely based on [Cas25b, Sections 2 and 3].

5.1 Analysis Background

We first present a number of analytic results of Magee and de la Salle [MdlS24] that are

necessary for this section. They will allow for us to extend the methods of [CGVTvH24]

in order to use Theorem 1.12 to prove Theorem 1.14. The key result in the present
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section is Proposition 5.7, see [MdlS24, Proposition 5.2]. This is a new criterion for strong

convergence based on

� the new approach to strong convergence, ‘differentiation with respect to 1
n ’ intro-

duced by Chen, Garza–Vargas, Tropp and van Handel in [CGVTvH24],

� a new criterion for temperdness of arbitrary functions on free groups (see 5.8).

This approach allows one to bypass Pisier’s linearization trick [Pis19] used in previous

arguments for strong convergence by instead considering random walks on the free group.

Our proof of Theorem 1.14 relies on this new criterion for strong convergence, and so §5.2

is devoted to showing that the conditions detailed in Proposition 5.7 are satisfied.

5.1.1 C∗–algebras of free groups

We refer to [NS06] for a thorough introduction.

Definition 5.1. A C∗–algebra is a complex algebra A together with:

1. an involution ∗ : A → A that satisfies, ∀a, b ∈ A,

(a) (a∗)∗ = a,

(b) (a+ b)∗ = a∗ + b∗,

(c) (Ca)∗ = C̄a∗ for any C ∈ C ,

(d) (ab)∗ = b∗a∗

2. a norm ‖ − ‖ : A → R≥0 such that, ∀a, b ∈ A,

(a) A is a Banach space with respect to this norm (i.e. complete)

(b) ‖ab‖ ≤ ‖a‖.‖b‖

(c) ‖a∗‖ = ‖a‖ and

(d) the C∗ identity holds, that is, ‖a∗a‖ = ‖a2‖.

To the free group Fr we associate its group algebra C [Fr] , the collection of elements

of the form

x =
∑
w∈Fr

x(w)w,
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where each x(w) ∈ C and only finitely many are non–zero.

We define a norm on C [Fr] by

‖x‖C∗(Fr) = sup
{
‖π(x)‖op : π a representation of Fr

}
,

where ‖ − ‖op is the operator norm on `2 (Fr). The completion of C [Fr] in this norm is

the C∗–algebra of Fr, denoted C∗ (Fr). The left regular representation of Fr is denoted λ

and admits the reduced norm on C [Fr] by

‖x‖C∗λ(Fr) = ‖λ (x) ‖op.

The completion of C [Fr] in this norm is the reduced C∗–algebra of Fr, denoted C∗λ (Fr) .

We define a trace τ on C [Fr] to be the map

τ(x) = x(e).

This extends continuously to both the C∗–algebras defined above and remains a trace in

both cases.

5.1.2 Polynomials and random walks

Lemma 5.2 ([MdlS24, Lemma 4.2]). For every polynomial P in one variable with bounded

degree, deg (P ) ≤ D and for every integer k ≤ D,

sup[
0, 1

2D2

]
∣∣∣P (k)

∣∣∣ ≤ 22k+1D4k

(2k − 1)!!
sup
n≥D2

∣∣∣∣P ( 1

n

)∣∣∣∣ ,
where (2k − 1)!! = (2k − 1)(2k − 3) . . . (3)1.

5.1.3 Random walks and free groups

Definition 5.3. We call a symmetric (ie µ(g) = µ
(
g−1
)
) probability measure µ on the

free group Fr reasonable if its support is finite, contains the identity element and generates

Fr.
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We denote by (gn)n≥0 the corresponding random walk in Fr. So we write

gn = s1 . . . sn

where si ∈ Fr are i.i.d. according to µ.

The spectral radius ρ = ρ(µ) measures how fast the probability that a random walk

returns to where it started decays. It is equal to the norm of λ (µ) on `2 (Fr), where λ is

the left regular representation of Fr.

Recall that a proper power in Fr is an element of the form ud for u ∈ Fr and d ≥ 2.

Proposition 5.4 ([MdlS24, Proposition 6.1]). For any reasonable probability measure µ,

there is a constant C = Cµ such that

P (gn is a proper power) ≤ Cn5ρn.

Definition 5.5. We denote the subspace of elements of C [Fr] supported in the ball of

radius q by C≤q [Fr] .

5.1.4 Temperedness and strong convergence

The following definition and proposition can be found in [MdlS24, Section 5]. Fix a

generating set of size r for the free group Fr.

Definition 5.6. A function u : Fr → C is called tempered if

lim sup
n→∞

|u ((x∗x)n) |
1

2n ≤ ‖λ(x)‖op

for every x ∈ C (Fr) , where λ is the left regular representation.

The above property is a part of a criterion for strong convergence of random represen-

tations.

Proposition 5.7. Let un : Fr → C be functions, πn a sequence of random unitary rep-

resentations of Fr with finite and non–random dimension. Let εn > 0. If the following

conditions are satisfied:
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� limn→∞ εn = 0,

� we have |ETr (πn(x)) − un(x)| ≤ εn exp
(

q

log(2+q)2

)
‖x‖C∗(Fr) for every q and every

x ∈ C≤q [Fr] , and

� un is tempered and there is a polynomial Pn such that, for every q and every x ∈

C≤q [Fr] , |un(x)| ≤ Pn(q)‖x‖C∗(Fr).

Then, for every y ∈ C [Fr] and for every δ > 0,

P [‖πn(y)‖ > ‖λ(y)‖+ δ] ≤ C (y, δ) εn

for some constant C(y, δ). In particular,

lim
n
P [‖πn(y)‖ > ‖λ(y)‖+ δ] = 0. (61)

To prove that a function is tempered, we can use the following proposition (stated here

for free groups only), from [MdlS24, Proposition 6.3].

Proposition 5.8. Let u : Fr → C and assume that, for every reasonable probability

measure µ on Fr, if (gn)n is the associated random walk on Fr,

lim sup
n→∞

(E |u (gn)|)
1
n ≤ ρ(µ).

Then u is tempered.

Remark 5.9. That this proposition holds for free groups is a result of Haagerup’s inequality

[Haa78, Lemma 1.5], which asserts that free groups with their standard generating sets

have the rapid decay property.

5.2 Proof of Theorem 1.14

The results of this section are almost completely analogous to those of [MdlS24, Section

7]. Throughout, C will denote a constant that does not depend on anything, but that

may change from line to line. We require our bound on the expected irreducible stable

character of a w–random permutation from Theorem 1.12. Fix any integer K > 0 and
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define

Σn,K
def
=
⊕
λ`K

V λ+(n).

We view Σn,K ⊆ (Cn)⊗k , so that

dim (Σn,K) ≤ nK . (62)

The following theorem follows immediately by combining Theorem 1.12 and Proposition

4.1 – recall that, for each λ ` K, we can write

Ew
[
χλ

+(n)
]

=
Pw,λ,q

(
1
n

)
gq,k

(
1
n

) ,

where deg (Pw,λ,q) ≤ 3Kq+Kq2 and that, as a rational function in n, Ew
[
χλ

+(n)
]

= O(1)

for proper powers and Ew
[
χλ

+(n)
]

= O
(

1
nK

)
for non–powers.

Theorem 5.10. For every word w ∈ Fr, there is a rational function φw ∈ Q [x] such that

1. For n ≥ K max (l(w), 2) ,

φw

(
1

n

)
=

1

nK
Ew
[
TrΣn,K

]
.

2. If w is not the identity and l(w) ≤ q, then gq,Kφw is a polynomial of degree ≤ Dq =

3Kq +Kq2 +K.

3. If w is not a proper power then, for all i < 2K,

φ(i)
w (0) = 0.

Otherwise, this holds for all i < k.

We collect some facts about the polynomial

gL,K(x) =

KL∏
c=1

(1− cx)L

 2K∏
j=1

(1− (j − 1)x)

L

in the following lemma.
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Lemma 5.11. Fix an integer L > 0. Then, for every t satisfying

0 ≤ t ≤ 1

2

1

KL2(KL+ 1) + L(2K − 1)(2K)

and every integer i ≥ 0 :

1. 1
2 ≤ gL,K(t) ≤ 1

2. |g(i)
L,K(t)| ≤

(
K2L3 + L(2K − 1)2

)i
3.

∣∣∣∣( 1
gL,K

)(i)
(t)

∣∣∣∣ ≤ (2i)!!2i+1
(
K2L3 + L(2K − 1)2

)i
.

Proof. Fix any 0 ≤ t ≤ 1
2

1
KL2(KL+1)+L(2K−1)(2K)

. That gL,K(t) ≤ 1 follows immediately

from the fact that

|t| < min
{ 1

KL
,

1

2K − 1

}
.

To see that 1
2 ≤ gL,K(t), observe that, in the regime 0 < z < 1

2 , we have (1 − z) ≥ e−2z.

Since

t < min
{ 1

2KL
,

1

2(2K − 1)

}
,

we have

gL,K(t)

≥ exp

−2

KL∑
c=1

Lct+
2K∑
j=1

L(j − 1)t


= exp (−2Lt (1 + · · ·+KL+ 1 + · · ·+ 2K − 1))

= exp

(
−2Lt

(
KL(KL+ 1)

2
+

(2K − 1)2K

2

))
= exp

(
−t
(
KL2(KL+ 1) + L(2K − 1)(2K)

))
≥1

2
,

where the final inequality follows from the fact that

t ≤ 1

2

1

KL2(KL+ 1) + L(2K − 1)(2K)
<

− log
(

1
2

)
KL2(KL+ 1) + L(2K − 1)(2K)

.
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For Part 2, we begin by rewriting

gL,K(t) =

KL2+2KL∏
z=1

(1− bzt)

and then differentiate using the Leibniz rule. The ith derivative is a sum of terms in which

i terms are derived once (so are equal to −bz) and the others are not derived. Each factor

that is not derived is of the form 1 − bzt, which belongs to (0, 1]. So we can bound the

derivative using only the terms that are derived:

∣∣∣g(i)
L,K(t)

∣∣∣
≤
∑

u1,...,ui
distinct

i!
i∏

α=1

buα

≤

KL2+2KL∑
z=1

bz

i

=

KL∑
c=1

Lc+
2K∑
j=1

L(j − 1)

i

≤
(
K2L3 + L(2K − 1)2

)i
.

To prove Part 3, we use that the ith derivative of 1
gL,K

can be written as a product of

(2i)!! terms of the form

±g(α1)
L,K . . . g

(αi)
L,K

gi+1
L,K

,

where α1, . . . , αi ∈ Z≥0 and α1 + · · ·+ αi = i. By Part 2, each term is bounded by

∏
j

(
K2L3 + L(2K − 1)2

)αj
gi+1
L,K

and, by Part 1, this is bounded by

2i+1
∏
j

(
K2L3 + L(2K − 1)2

)αj = 2i+1
(
K2L3 + L(2K − 1)2

)i
,

from which Part 3 follows.

Each w ∈ Fr defines a map w 7→ φw. We extend this by linearity to define a map
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x 7→ φx for each

x =
∑
w∈Fr

x(w)w ∈ C [Fr] .

Then we can prove the following.

Lemma 5.12. For any x ∈ C≤q [Fr], for any i ≤ 2K and for n ≥ Kq,

sup

t∈
[
0, 1

2D2
q

]
∣∣∣φ(i)
x (t)

∣∣∣
i!

≤ h(i, q) ‖x‖C∗(Fr) ,

where

h(i, q) = 4

(
CD4

q

i2

)i
.

Proof. Let P = gq,Kφx. Then P is a polynomial of bounded degree d ≤ Dq and so we can

bound its derivatives using Lemma 5.2 if we can bound P itself. For n ≥ Kq, we have

0 < gq,K
(

1
n

)
< 1, so that ∣∣∣∣P ( 1

n

)∣∣∣∣
≤
∣∣∣∣φx( 1

n

)∣∣∣∣
=

1

nK
∣∣Ex [TrΣn,K

]∣∣
≤
(†)

1

nK
dim (Σn,K) ‖x‖C∗(Fr)

≤
(62)
‖x‖C∗(Fr) .

The inequality (†) follows since the map w 7→ Σn,K (w (σ1, . . . , σr)) is a unitary represen-

tation of Fr for every (σ1, . . . , σr) ∈ Srn. So we have

‖Σn,K (x (σ1, . . . , σr))‖ ≤ ‖x‖C∗(Fr)

almost surely, and since we can bound the trace of a matrix by its norm multiplied by its

size, we can bound ∣∣Ex [TrΣn,K

]∣∣ ≤ dim (Σn,K) ‖x‖C∗(Fr) .
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By Lemma 5.2, for any integer j, we can bound

sup

t∈
[
0, 1

2D2
q

]
∣∣P (j)(t)

∣∣
j!

≤ 22j+1D4j
q

j!(2j − 1)!!
‖x‖C∗(Fr) =

23j+1D4j
q

(2j)!
‖x‖C∗(Fr) ,

which, using Stirling’s formula, is bounded above by

2

(
CD4

q

j2

)j
‖x‖C∗(Fr) . (63)

We then have

φ
(i)
x

i!
=

1

i!

min(i,Dq)∑
j=0

i
j

P (j)

(
1

gq,K

)(i−j)
=

min(i,Dq)∑
j=0

P (j)

j!

1

(i− j)!

(
1

gq,K

)(i−j)
.

Note that i ≤ 2K ≤ Dq = Kq2 + 3Kq +K, so that min(i,Dq) = i. By Lemma 5.11 Part

3 , for t ∈
[
0, 1

2D2
q

]
,

1

(i− j)!

∣∣∣∣∣
(

1

gq,K

)(i−j)
(t)

∣∣∣∣∣ ≤ 22(i−j)+1
(
K2q3 + q(2K − 1)2

)i−j
.

Combining this with (63) we obtain that, in the range t ∈
[
0, 1

2D2
q

]
,

∣∣∣∣∣φ(i)
x

i!

∣∣∣∣∣ ≤ 4 ‖x‖C∗(Fr)
i∑

j=0

(
CD4

q

j2

)j
4(i−j) (K2q3 + q(2K − 1)2

)i−j
≤ 4

(
CD2

q

)i ‖x‖C∗(Fr) i∑
j=0

(
D2
q

j2

)j
,

where the final inequality follows from the fact that k2q3 +q(2K−1)2 ≤ D2
q . Then observe

that, for each j, (
D2
q

j2

)j
(

D2
q

(j+1)2

)j+1
=

(
j + 1

j

)2j (j + 1

Dq

)2

≤ e2,

so that
∑i

j=0

(
D2
q

j2

)j
≤ (1 + e2)i

(
D2
q

i2

)i
, which proves the lemma.
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For each integer i ≥ 0, we define a map

ψi : x ∈ C [Fr] 7→
φ

(K+i)
x (0)

(K + i)!
∈ C.

We want to show that ψi is tempered for each i < K and that it satisfies the polynomial

bound property in Proposition 5.7.

Lemma 5.13. For every integer i with 0 ≤ i ≤ K, there is a polynomial P of degree

4K + 4i+ 1 such that |ψi(x)| ≤ Pn(q) ‖x‖C∗(Fr) for every q and for every x ∈ C≤q [Fr] .

Proof. By Lemma 5.12, for each q and for each x ∈ C≤q [Fr] , we have

∣∣∣∣∣φ(K+i)
x (0)

(K + i)!

∣∣∣∣∣ ≤ h(K + i, q) ‖x‖C∗(Fr) . (64)

Moreover,

sup
q≥1

h(K + i, q)

(1 + q2)4K+4i+1
<∞,

from which the lemma follows.

Lemma 5.14. For any i < K, the function ψi is tempered.

Proof. We will use Proposition 5.8 by showing that, for any reasonable probability measure

µ with associated random walk (gn)n ,

lim sup
n

(E|ψi(gn)|)
1
n ≤ ρ(µ).

So, let µ be a reasonable probability measure, (gn)n the associated random walk on Fr. If

µ is supported in C≤q [Fr] , then gn ∈ C≤qn [Fr] . Then we have

E|ψi(gn)|

≤Ci(1 + q2n2)4K+4i+1P (ψi(gn) 6= 0)

=Ci(1 + q2n2)4K+4i+1P (gn is a proper power)

≤CiCµ(1 + q2n2)4K+4i+1n5ρ(µ)n.

The first inequality follows from Lemma 5.13. Indeed, gn ∈ C≤qn [Fr] , so there is some

constant Ci for which |ψ(gn)| ≤ Ci
(
1 + q2n2

)4K+4i+1
. The final inequality follows from
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Proposition 5.4. It follows that

lim sup
n

(E|ψi(gn)|)
1
n ≤ ρ(µ),

so by Proposition 5.8, ψi is tempered.

The next step is showing that the second condition in Proposition 5.7 holds. We will

need the following lemma.

Lemma 5.15. For any ε > 0, we have supq≥1 h(2K, q) exp
(
− q

log(2+q)2

)
≤
(
C2K20+ε

)K
.

Proof. Fix ε > 0. Given any b > 1, there exists a > 0 such that

log (2 + q)2 ≤ q1/b

for all q > a.

So, for q > a, we have

4
(
CD4

q

)2K
exp

(
−q

log (2 + q)2

)
≤ 4

(
C
(
Kq2 + 3Kq +K

)4)2K
exp

(
−q

b−1
b

)
(65)

which is bounded above by (
C2K20+ε

)K
(66)

for sufficiently large b.12

For q ≤ a, we obtain the bound

(
C ′K2

)2K
by evaluating h(2K, a) and ignoring the exponential term (since it is ≤ 1). This is less

than (66) (when C is large enough) from which the lemma follows.

We will also need the following observation to be used in Lemma 5.16, as well as our

12To see this, differentiate the RHS of (65) to see that the maximum is obtained around q = CK
b
b−1 and

substitute this into h(2K, q).
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proof of Theorem 1.14 – the map

u : x ∈ C [Fr] 7→ τ(x)
φ

(K)
e (0)

K!
∈ C

is tempered. Indeed, if we write dim Σn,K = a0 +a1n+ · · ·+akn
K , one sees that φ

(K)
e (0)
K! =

a0, a constant (in fact, this constant is always (−1)K), and our observation follows from

the fact that x 7→ τ(x) is tempered. Moreover, this map obviously satisfies the polynomial

bound |u(x)| ≤ ‖x‖C∗(Fr).

Lemma 5.16. Let w(q) = exp
(

q

log(2+q)2

)
. Then, for every q ≥ 1, for every n ≥ Kq and

for every x ∈ C≤q [Fr] , and any ε > 0,

∣∣∣∣∣E [Tr
(
Σn,K (x(σ1, . . . , σr))− τ(x)Id

)]
+ τ(x)

φ
(K)
e (0)

K!
−
K−1∑
i=0

ψi(x)

ni

∣∣∣∣∣ (67)

is bounded by (
C2K20+ε

)K
nK

w(q) ‖x‖C∗(Fr) .

Proof. We have

E [Tr (τ(x)Id)] = τ(x) dim Σn,K = τ(x)nK
K−1∑
i=0

φ
(i)
e (0)

i!ni
+ τ(x)

φ
(K)
e (0)

K!

and, since n ≥ Kq, by Part 3 of Theorem 5.10, we have

K−1∑
i=0

ψi(x)

ni
= nK

2K−1∑
i=K

φ
(i)
x (0)

i!ni
= nK

∑
w 6=e

x(w)
2K−1∑
i=0

φ
(i)
w (0)

i!ni
+ τ(x)

2K−1∑
i=K

φ
(i)
e (0)

i!ni

 .
Combining these observations with Part 1 of Theorem 5.10, we see that the LHS of (67)

is equal to

nK

∣∣∣∣∣φx
(

1

n

)
−

2K−1∑
i=0

φ
(i)
x (0)

i!ni

∣∣∣∣∣ .
By Taylor’s inequality, this is less than or equal to

nK

n2K(2K)!

∣∣∣∣φ(2K)
x

(
1

n

)∣∣∣∣ .
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If we further assume that n ≥ 2D2
q , then by Lemma 5.12, this is bounded by

h(2K, q)

nK
‖x‖C∗(Fr) . (68)

If n ≤ 2D2
q , then we can still bound the left hand side of (67) by

(2 dim (Σn,K) + 1) ‖x‖C∗(Fr) +
K−1∑
i=0

|ψi(x)|
ni

by using the triangle inequality. By (62) and Lemma 5.12, this is bounded above by

nK

[
h(0, q) +

K−1∑
i=0

1

nK+i
h(K + i, q)

]
‖x‖C∗(Fr) .

This is less than (68) whenever the constant C is large enough.

By Lemma 5.15, we have

sup
q≥1

h(2K, q) exp

(
− q

log(2 + q)2

)
≤
(
C2K20+ε

)K
and the lemma follows.

Proof of Theorem 1.14. Fix α < 1
20 , say α = 1

20 − ε
′, with 0 < ε′ ≤ 1

20 . For each n, and for

any K ≤ nα, let Πn,K be a random representation of Fr given by

Πn,K(w) = Σn,K (w (σ1, . . . , σr)) .

Then, by Lemma 5.16, for every q and every x ∈ C≤q [Fr] , we have

|ETr (Πn,K(x))− Tn(x)| ≤ εnw(q) ‖x‖C∗(Fr) ,

where, for some ε satisfying 0 < ε < 20ε′
1
20
−ε′ , we have

εn =

(
C2K20+ε

)K
nK

≤
(

C2

n1−(20+ε)α

)K
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and

Tn(x) = dim (Σn,K) τ(x)− τ(x)
φ

(K)
e (0)

K!
+
K−1∑
i=0

ψi(x)

ni
.

By Lemma 5.14, Tn is tempered, since it is a finite sum of tempered functions. Addi-

tionally, Tn satisfies the polynomial bound

|Tn(x)| ≤ Pn(q) ‖x‖C∗(Fr) .

So by Proposition 5.7, with Tn in place of un, ∀δ > 0, and any z ∈ C [Fr] ,

P
[
‖Πn,K(z)‖ > ‖z‖C∗λ(Fr)

+ δ
]
≤ C(z, δ)

(
C2

n1−(20+ε)α

)K
.

For kn ≤ nα, we have

P
[
‖πn,kn(z)‖ > ‖z‖C∗λ(Fr)

+ δ
]

≤
∑

1≤K≤nα
P
[
‖Πn,K(z)‖ > ‖z‖C∗λ(Fr)

+ δ
]
.

(69)

Write A = 1− (20 + ε)α, which is > 0 by our choice of ε. Then the RHS of (69) is equal to

C(z, δ)

(
C2

nA

)1−
(
C2

nA

)nα−1

1−
(
C2

nA

)
 ,

which → 0 as n→∞. So, for any kn ≤ nα,

P
[
‖πn,kn(z)‖ > ‖z‖C∗λ(Fr)

+ δ
]
n→∞−→ 0. (70)

By [MdlS24, Lemma 5.14], there exist y1, . . . , ym ∈ C [Fr] and δ′ = δ′(δ), such that if, for

every i,

‖πn,kn (yi)‖ ≤ ‖yi‖C∗λ(Fr)
+ min(δ, δ′), (71)

then

‖πn,kn (z)‖ ≥ ‖z‖C∗λ(Fr)
− δ. (72)

By (70), we know that (71) holds with probability → 1 as n→∞, so then (72) also holds
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with probability → 1 as n→∞. Therefore,

P

[
sup
kn≤nα

∣∣∣‖πn,kn (z)‖ − ‖z‖C∗λ(Fr)

∣∣∣ > δ

]
n→∞−→ 0.

Proof of Corollary 1.15. By e.g. [Eti14, Lemma 2.8]13, if ρ is a non–trivial irreducible

representation of Sn of dimension ≤ Cnn
α
, then ρ is either a subrepresentation of our

ρn,kn in Theorem 1.14, in which case the corollary is trivial, or ρ′ is a subrepresentation of

ρn,kn (where ρ′ is the conjugate representation obtained by swapping the rows and columns

of the Young diagram associated to ρ).

For any z =
∑

w z(w)w ∈ C [Fr] and any bw ∈ {1,−1}, define zb(w) =
∑

w bwz(w)w.

Since z ∈ C [Fr] , there are only finitely many z(w) that are non–zero, say M . So then

there are at most 2M possible zb and so by a uniform bound, πn = ρ ◦ φn
strong−→ λ a.a.s. by

Theorem 1.14. Indeed, consider φn(w) = w(σ1, . . . , σr) for σ1, . . . , σr ∈ Sn. Then

ρ(z(σ1, . . . , σr)) =
∑
w

z(w)sign(w(σ1, . . . , σr))ρ
′(w(σ1, . . . , σr)) = ρ′(zb(w)(σ1, . . . , σr))

where b(w) = sign(w(σ1, . . . , σr)) and so, by Theorem 1.14, for any ε < 0,

P
[∣∣∣∣ ‖ρ ◦ φn (z)‖ −

∥∥λ (zb(w)

)∥∥ ∣∣∣∣ < ε

]
n→∞
−→ 1 .

Finally,
∥∥λ (zb(w)

)∥∥ = ‖λ (z)‖ by the Fell absorption principle (see e.g. [Pis03, Proposition

8.1]), which proves the corollary.

6 Further questions

We discuss here some interesting further problems on the topics of word maps and expan-

sion properties of random graphs.

13This is a classical fact, but one must inspect the proof of this lemma in [Eti14] to determine that this
still holds for k = kn ≤ nα.
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6.1 Word maps

6.1.1 Compact groups

An immediately obvious future direction is the pursuit of Conjecture 1.10 which posits

that, for any stable irreducible character χ of the symmetric group and for any w ∈ Fr,

then

Ew [χ] = O

(
1

(dimχ)π(w)−1

)
.

The full conjectural picture is discussed in significant detail in [PS23], where it is conjec-

tured that we should actually have

Ew [χ] = Θ̃

(
1

(dimχ)sπ(w)

)
, (73)

where sπ(w) is the stable primitivity rank as defined by Wilton (see e.g. [Wil24]) and Θ̃

means that Ew [χ] = O
(

1

(dimχ)sπ(w)

)
and that, for every w, there exists stable irreducible

χ such that Ew [χ] = O
(

1

(dimχ)sπ(w)

)
and 1

(dimχ)sπ(w) = O (Ew [χ]) , i.e. that this bound is

tight for some stable character(s). It is an open question whether sπ(w) = π(w)− 1 (The-

orem 1.12 asserts that sπ(w) ≥ 1 for words that are not primitive or proper powers) and

establishing such an equality, or indeed (73), or Conjecture 1.10, would all be worthwhile

pursuits.

Similar phenomena can be observed for natural ‘stable’ families of irreducible repre-

sentations of compact groups. For example, for U(n), one may consider the irreducible

representation indexed by the weight

(
λ1, . . . , λl(λ), 0, . . . , 0︸ ︷︷ ︸

n−|λ−|µ|

,−µl(µ), . . . ,−µ1

)

where λ and µ are Young diagrams of some fixed size. It can be shown that the asymptotic

bound for the expected polynomial stable character (in this language, where µ = ∅, so

that the weight is non–negative) of a w–random unitary is controlled by the dimension

and an invariant called the stable commutator length of w, denoted scl(w). For other com-

pact groups, e.g. orthogonal, symplectic, GLn (Fq), natural families of stable irreducible

characters can be defined, as well as other natural stable invariants of words w ∈ Fr, and
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there are partial results and a number of conjectures (again, we urge the reader to consult

[PS23]) in which bounds of the form

Θ̃

(
1

(dimχ)StabInvar(w)

)

(for some appropriately defined stable invariant, denoted StabInvar(w)) are either already

proven or are conjectured.14 Extending the methods of this thesis using Schur–Weyl dual-

ity type results for other compact groups could be a concrete starting point to establishing

bounds of the form

O

(
1

dimχ

)
for certain irreducible stable characters χ (ones that can be isolated through Schur–Weyl

duality techniques) in the unresolved cases. Even developing a version of the Weingarten

calculus for some of these examples for which a version does not already exist, for example

where the group structure and representation theory is not so straightforward, could be

an interesting problem.

6.1.2 Discrete Groups

As we mentioned earlier, in addition to computing E [χ (w(σ1, . . . , σr)] , equivalently, com-

puting Eφn∈hom(Fr,Sn) [χ (φn(w))] , one could equally consider the problem of computing

statistics for φn(w) where Γ is some discrete group and φn ∈ hom(Γ, G) is some uniformly

random homomorphism. A natural starting point, of interest also due to the connection

with the the number of lifts of a geodesic Cw (in the surface) to a closed geodesic in the

degree n covering space, is to compute

Eφn∈hom(Γg ,Sn) [#fix (φn(w))] , (74)

where Γg = 〈a1, . . . , ag, b1, . . . , bg : [a1, b1] . . . [ag,bg]〉 is the fundamental group of the sur-

face (a surface group). Such an expression is not rational in n (see e.g. [MPvH25]) but

one can still determine the large n asymptotics. This can be done by other means, see

[MP23], but can also be done using the projection formula in Theorem 1.6, see [MPvH25].

14In most cases, these asymptotic bounds are conjectures with a lot of supporting evidence, but relatively
few are known to be true.
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Adapting this approach to more general (torsion–free) one relator groups Γ = 〈x1, . . . , xm : r〉

seems viable. In [MPvH25], it is asserted that the expression for (74) needn’t be rational

for the methods of [CGVTvH24] to be extended to prove that a random representation of

the form πn = ρ◦φn for φn ∈ hom (Γg, Sn) strongly converges a.a.s., and this suggests that

obtaining a suitable asymptotic expansion in the case of Γ in place of Γg could determine

that such a random sequence of representations of Γ converge strongly as well, establishing

a large family of groups that have a uniformly random, strongly convergent, permutation

representation. The main caveat to this is, for such an expression to be useful, one would

need to improve on the combinatorial bound obtained in §4.5 of this thesis for words w

in the alphabet {x±1
1 , . . . , x±1

r } with π(w) > 2. It is conjectured that this is possible, but

as yet we do not know how to obtain even a small improvement using the combinatorial

argument detailed in this thesis.

6.2 Random Cayley graphs

As we mentioned before, if Corollary 1.15 were proven to be true for any α ≤ 1, then

one would have established that πn = ρ ◦ φn converges strongly a.a.s. for any non–trivial

irreducible representation of Sn. This would be a very strong statement, however, in

[MPvH25], it is discussed how the left regular representation of Sn fits a certain, reasonably

specific, structural requirement for πn
strong−→ λ, so that it is not necessarily beyond the

realms of possibility.

Note that, if true, this would imply that random fixed degree Cayley graphs of the

symmetric group are a.a.s. weakly Ramanujan, which is a significantly simpler statement,

but one that is also far from known. In fact, it remains an open question whether or not

these random Cayley graphs have a uniform (not necessarily near–optimal) spectral gap.

Kassabov’s [Kas05] result, Theorem 1.4, asserts the existence of fixed degree Cayley graphs

of Sn with a uniform spectral gap as n → ∞, but this question remains an interesting

open problem related to the works presented in this thesis.
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