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A New Estimate of the Galaxy Luminosity Function,
Using Machine Learning and a Mock Catalogue

Suttikoon Koonkor

Abstract

A new measurement of the galaxy luminosity function (LF) is presented

over the redshift range 0.05 < z < 2.0 using data from the Physics of the

Accelerating Universe Survey (PAUS). Leveraging the high photometric red-

shift precision (σz/(1+z) ∼ 0.0035) made possible by PAUS’s 40 narrow-band

optical filters, rest-frame magnitudes are derived and the LF is estimated in

multiple redshift bins using the 1/Vmax method. The analysis is supported by

a realistic mock catalogue constructed from the GALFORM semi-analytic galaxy

formation model. To compute rest-frame magnitudes for observed galaxies,

a Random Forest regression model was trained to predict k-corrections from

observable properties. The mock was used to investigate the impact of photo-

metric uncertainties and redshift errors. This revealed that these observational

effects significantly modify the shape of the LF–especially at the bright end.

A detailed error analysis revealed that photometric and photometric redshift

errors dominate the LF uncertainty, contributing errors nearly an order of

magnitude larger than those from large-scale structure across all redshift bins.

Importantly, the observed faint-end turnover in the LF–driven by selection in

the observed i-band–can still be used to constrain galaxy formation models

when the same selection is applied to the simulated data. The resulting lumin-

osity functions in the i-band and other rest-frame bands (u, g, r, z) show good

agreement with theoretical predictions from GALFORM. The LF is also measured

separately for red and blue galaxies, revealing distinct evolutionary trends.

Symbolic regression models developed by collaborators are used to estimate

stellar masses and measured the stellar mass function from both PAUS and

the mock sample. This thesis highlights the value of combining narrow-band

photometric surveys and machine learning methods to probe galaxy evolution
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with precision, and demonstrates the usefulness of mocks to model selection

effects.

Supervisors: Prof. Carlton Baugh and Dr. Peder Norberg

Institute for Computational Cosmology

Department of Physics

Durham University
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Chapter 1

Introduction

The luminosity function (Luminosity Function (LF)) is one of the most fundamental

statistical tools in extragalactic astrophysics. It quantifies the number density

of galaxies as a function of luminosity and provides insight into the underlying

physical processes shaping the galaxy population, such as star formation, feedback

mechanisms, and gas accretion. In theoretical models of galaxy formation, the LF

serves as a critical constraint, sensitive to the efficiency of gas cooling, Supernova

(SN) feedback, and the role of Active Galactic Nuclei (AGN) in suppressing star

formation (e.g. Efstathiou (2000); Cole et al. (2000); Benson et al. (2003).

Early estimates of the galaxy luminosity function were limited by sample size

and redshift coverage. A major breakthrough came from Loveday et al. (1992), who

used the Stromlo-APM Redshift Survey. This marked a step forward in deriving

a well-constrained local LF from over 1,700 galaxies that sparsely sampled over

∼ 4, 300 deg2, and demonstrated the Schechter function’s effectiveness in describing

the LF across a wide luminosity range. Other important advances include the

analysis by Efstathiou et al. (1988), who used the CfA Redshift Survey to refine

statistical methods for LF estimation and highlighted the impact of large-scale

structure on LF measurements, and Marzke et al. (1994), who further explored the

CfA survey data to derive morphological-type-dependent LFs, revealing significant

differences between early- and late-type galaxies. The pioneering study by Lilly
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et al. (1995) then pushed LF studies to z ∼ 1 using deep imaging and spectroscopy

over five small fields (each covering a 10′ ×10′ field) to estimate LF evolution, based

on 730 galaxies. Around the same time, Zucca et al. (1997) used the ESO Slice

Project (ESP) to determine a more precise local LF using over 3,000 spectroscopic

redshifts. Other notable contributions include Folkes et al. (1999), who used the

2dF Galaxy Redshift Survey to explore the LF by spectral type, but over a limited

range of redshift. These studies revealed both the shape and evolution of the

LF, but were constrained by small volumes and limited sampling of large-scale

structure.

A series of photometric and spectroscopic surveys have built upon the early

work by Lilly et al. The Classifying Objects by Medium-Band Observation in 17

Filters (COMBO-17 Survey: Wolf et al. 2003) measured the luminosity function

from a sample of ∼ 25, 000 galaxies using photometric redshifts derived from 12

medium-band filters (with a Full Width at Half Maximum (FWHM) varying from

140 to 310 Å and UBV RI broad band filters covering a total area of 0.78 deg2.

The photometric redshift error was σ68/(1 + z) = 0.03 (about a hundred times

larger than the error on a spectroscopic redshift). Similarly, the Advanced Large

Homogeneous Area Medium-Band Redshift Astronomical (ALHAMBRA survey:

Moles et al. 2008) measured ∼ 600 000 galaxy redshifts using 20 medium-band op-

tical filters (with a FWHM of 310 Å) over a total solid angle of 4 deg2. Despite the

improvement in the luminosity function estimates from these larger samples which

results in a reduced sensitivity to the effect of large scale structure, the photometric

redshifts are still substantially less accurate than typical spectroscopic estimates.

This can lead to the evolution in the measured luminosity function being mis-

estimated, when photometric redshift outliers are assigned to the wrong redshift

bin in the analysis. Large spectroscopic surveys have provided high-precision meas-

urements of the local luminosity function, including the 2-degree galaxy redshift

survey (Norberg et al., 2002) and the main Sloan Digital Sky Survey (SDSS) (Blan-

ton et al., 2003), both with median redshifts around z ∼ 0.1. The deeper Galaxy

2
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And Mass Assembly (GAMA) survey measured the luminosity function in several

broad band filters out to z ∼ 0.5 (Loveday et al., 2012). The Dark Energy Spectro-

scopic Instrument (DESI) Bright Galaxy Survey reaches a similar depth to GAMA

but over a much larger solid angle, pushing the luminosity function estimates out

to z ∼ 0.6 (Moore et al in prep). Other surveys have probed intermediate red-

shifts, but typically adopt a colour selection to target a particular redshift interval

without covering z = 0 (e.g. Davidzon et al. 2013). Some spectroscopic surveys

have sampled a wide baseline in redshift (0 < z < 2) but at the expense of covering

a relatively small solid angle, of order one square degree (Ilbert et al., 2005).

The Physics of the Accelerating Universe Survey (PAUS; (Eriksen et al., 2019;

Padilla et al., 2019) aims to bridge this gap. PAUS uses 40 narrow-band optical

filters to achieve photometric redshift precision of σ68/(1+z) ∼ 0.0035, approaching

the regime of low-resolution spectroscopy∗ (Navarro-Gironés et al. 2024). Covering

over ∼ 50 square degrees, PAUS provides an unprecedented opportunity to measure

the LF with high redshift accuracy over a large cosmic volume and a wide baseline

in redshift. In addition, it enables studies of galaxy properties–including rest-

frame colours and stellar populations–with finer spectral resolution than traditional

broad-band surveys.

Complementing observational advances, recent years have also seen a surge

in Machine Learning (ML) applications across astronomy. ML models are now

routinely used to estimate stellar masses (e.g. Chu et al. 2024), metallicity (e.g.

Acquaviva 2016), classify galaxy morphologies (e.g. Domínguez Sánchez et al.

2018), and improve photo-z estimates (e.g. Bonfield et al. 2010; Pasquet et al. 2019;

Daza-Perilla et al. 2025). In this thesis, we apply machine learning techniques not

only to infer rest-frame galaxy properties but also to understand their implications

for the observed galaxy luminosity and galaxy stellar mass functions.

This thesis presents a new measurement of the galaxy luminosity function using
∗For reference, the target random measurement error in redshift for the Dark Energy Spectro-

scopic Instrument is σ68/(1 + z) = 1.4 × 10−4 (DESI Collaboration et al., 2024).
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PAUS data, interpreted through the lens of the GALFORM semi-analytic galaxy form-

ation model (Cole et al., 2000; Lacey et al., 2016). We exploit a realistic lightcone

mock catalogue (Manzoni et al. 2024) to account for selection effects, photometric

redshift uncertainties, and flux errors. In particular, we emphasise how incomplete-

ness at the faint end–due to the selection band shifting with redshift–can still be

informative when forward-modelling the same selection in the theoretical frame-

work. This work builds upon decades of LF studies, offering a modern perspective

using state-of-the-art observational and theoretical tools.

1.1 Thesis Outline

This thesis is structured as follows. Several chapters include material that was not

part of my original research but are included for completeness, to provide context

for the core results presented in this work. Where applicable, I clearly indicate

which aspects of each chapter reflect my direct contributions.

• Chapter 2 provides an overview of the Physics of the Accelerating Universe

Survey (PAUS), including the survey design and its photometric redshift

performance. While the PAUS photo-z calibration and analysis are not part

of my original work, I independently measured the effective survey areas used

for luminosity function estimation after applying different selection cuts.

• Chapter 3 outlines the theoretical background of galaxy formation and the

GALFORM semi-analytic model. This chapter is also included for complete-

ness and was not part of my original research. It describes the key physical

processes implemented in GALFORM, including gas accretion, star formation,

feedback, mergers, and chemical enrichment.

• Chapter 4 describes the construction of a mock galaxy catalogue using

GALFORM outputs. Although I did not develop GALFORM or the lightcone itself,

I applied photometric flux and photometric redshift uncertainties to the cata-
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logue to match PAUS-like observational conditions. These perturbed mocks

form the basis for my comparison with data. I have added some analysis of

the mock that was not considered by Manzoni et al. (2024).

• Chapter 5 is entirely my work and focuses on the use of machine learning

to estimate rest-frame magnitudes and the background knowledge of the k-

correction.

• Chapter 6 contains the core results of this thesis. I present a new meas-

urement of the galaxy luminosity function in the i-band and other rest-frame

bands using PAUS observations. I quantify uncertainties from photometric er-

rors, photometric redshift outliers, and sample incompleteness, and compare

the measured LFs with GALFORM predictions. I also analyse the luminosity

function by colour and redshift and explore its redshift evolution.

• Chapter 7 revisits the application of machine learning-based stellar mass

estimation using the perturbed catalogue. The machine learning model was

developed by Adarsh Kumar. I use this model to predict stellar masses for the

PAUS dataset and to measure the stellar mass function, which is compared

to theoretical predictions.

• Chapter 8 concludes the thesis with a summary of the main findings and

their implications for galaxy formation models. I also discuss possible direc-

tions for future work.
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Chapter 2

Observational Data: The Physics

of the Accelerating Universe

Survey (PAUS)

This chapter provides an overview of the observational dataset used throughout

this thesis: the Physics of the Accelerating Universe Survey (PAUS). Designed to

bridge the gap between traditional broadband photometry and spectroscopic sur-

veys, PAUS offers a unique combination of wide-area coverage and low-resolution

spectra through its use of 40 narrow-band (Narrow Band (NB)) filters. This capab-

ility enables high-precision photometric redshift measurements essential for study-

ing galaxy evolution and large-scale structure.

We begin in § 2.1 by introducing PAUS and its scientific goals. In § 2.2, we

describe the PAUCam instrument and its NB filter system. § 2.3 outlines the

survey design, including field selection and overlap with ancillary datasets. The

methodology for measuring photometric redshifts is presented in § 2.4, followed

by an assessment of redshift performance and data quality in § 2.5. In § 2.6, we

describe the Monte Carlo technique used to estimate the effective survey area and

its generalisation to various selection cuts. Finally, we summarise the key aspects

of the dataset in § 2.7.
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2.1 Introduction to PAUS

The Physics of the Accelerating Universe Survey (PAUS; (Eriksen et al., 2019;

Padilla et al., 2019)) is a photometric survey designed to tackle some of the most

pressing questions in cosmology–most notably, the nature of dark energy. PAUS

achieves this by providing highly precise photometric redshifts through an innov-

ative combination of Narrow Band (NB) and Broad Band (BB) imaging. By em-

ploying a set of 40 NB filters spanning the optical wavelength from 450 nm to

850 nm, PAUS attains a redshift precision of approximately σ68/(1 + z) = 0.0035

for galaxies brighter than iAB = 22.5 (Eriksen et al. 2019; Alarcon et al. 2021).

This precision bridges the gap between traditional BB imaging–which offers high

depth and wide area coverage but limited spectral resolution–and spectroscopy,

which, despite its high accuracy, is far more observationally intensive. PAUS will

be able to provide cosmological constraints in its own right, for example, by us-

ing combined lensing and clustering analyses (e.g. Eriksen and Gaztañaga 2015c).

PAUS will also provide the best constraints to date on the intrinsic alignment of

galaxies, which is a key systematic in weak gravitational lensing studies. Hence

the PAUS survey has the potential to enhance the scientific value of data extracted

from much larger lensing surveys, such as Euclid (Hoekstra et al. 2017) and Roman

(Wenzl et al. 2022).

Formerly installed at the prime focus of the 4.2m William Herschel Tele-

scope (WHT) on La Palma, the PAU Camera (PAUCam) is a uniquely designed

instrument featuring a large field of view (approximately 1° in diameter in total

with 40’ unvignetted) and a sophisticated filter system. This system, with its 40 NB

filters arranged to cover a broad wavelength range with minimal overlap, enables

the survey to capture low-resolution spectral energy distributions (Spectral Energy

Distribution (SED)s) for millions of galaxies. The innovative design of PAUCam,

which includes technical advancements such as movable filter trays, cryogenic oper-

ations, and a lightweight carbon fibre housing for the camera itself, underpins the
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survey’s capability to deliver high-quality photometric data (Padilla et al. 2019).

The observational strategy of PAUS is specifically optimised to maximise both

area coverage and redshift precision through the number of filters each field is ob-

served in. Each filter tray holds eight NB filters and so each field needs to be

observed five times by moving filter trays in and out. By carefully selecting survey

fields–such as the well-studied Cosmic Evolution Survey (Cosmic Evolution Sur-

vey (COSMOS)) field and various Canada-France-Hawaii Telescope Legacy Survey

(Canada-France-Hawaii Telescope Legacy Survey (CFHTLS)) fields, the survey en-

sures substantial overlap with other deep photometric datasets, which supply the

photometry in other bands. This complementary coverage not only aids in cross-

calibration but also allows the implementation of forced photometry∗ techniques,

further improving the accuracy of the measured fluxes and redshifts (Castander

et al. 2012). The high-density and precise redshift measurements provided by

PAUS are crucial for studies that require an accurate three-dimensional mapping

of galaxies, such as clustering analyses, intrinsic alignment measurements, and in-

vestigations of galaxy evolution (Eriksen and Gaztañaga 2015a,b,c).

In my thesis, the PAUS dataset plays a central role in measuring the galaxy

luminosity function. Accurate determination of photometric redshifts is essential

in this context as errors in redshifts directly translate into uncertainties in distance

and, consequently, in the intrinsic luminosities of galaxies. The exceptional redshift

precision achieved by PAUS minimises these uncertainties, thereby providing a

robust foundation for statistical analyses of galaxy populations. Furthermore, the

ability to obtain reliable redshifts for a large number of galaxies over wide areas

makes PAUS an excellent resource for probing the evolution of galaxies across

cosmic time.
∗Forced photometry is a technique where the flux is measured within an aperture at a fixed

pre-determined position rather than relying on a source detection in the target image. This
approach ensures consistent flux measurements across multiple bands, improves flux estimates for
faint sources, and allows photometry to be extracted even when the source is undetected in a given
band. This process is required for PAUS because narrow-band imaging is noisier than broad-band
imaging.
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2.2 The PAU Camera (PAUCam)

PAUCam is the core instrument of the PAU survey, engineered to deliver high-

precision photometry over a wide field of view. Fig. 2.1 shows PAUCam when it

was installed at the prime focus of the 4.2m William Herschel Telescope (WHT)

based in La Palma, Spain. PAUCam is designed to image an approximately 1°

diameter field, with the central ∼ 40′ remaining unvignetted (see Fig. 2.2(b) and

see also Castander et al. 2012).

Figure 2.1: The PAUCam mounted at the prime focus of the William Herschel Telescope.
Figure taken from Padilla et al. (2019).

The focal plane of PAUCam is populated by 18 Hamamatsu fully depleted

Charge-Coupled Device (CCD)s, each with a resolution of 2k x 4k pixels (see

Fig. 2.2 (a)). These detectors provide high quantum efficiency (more than 75%
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2.2. The PAU Camera (PAUCam)

(a) The PAUCam NB tray. The 8 central detectors
are assigned to the NB filters, while the 10 external

CCDs are covered with BB filters.

(b) The 8 central CCDs are
unvignetted, whereas the 10
external detectors experience
varying degrees of vignetting.

Figure 2.2: The PAUCam filter tray and their optics performance. Images taken from
https://pausurvey.org/paucam/.

across the entire covered wavelength range) and are optimised to achieve a pixel

scale of ∼ 0.265′′ per pixel. This mosaic arrangement of multiple CCD detectors on

the focal plane is essential for capturing a high density of sources simultaneously

within a single pointing. Such a layout underpins the survey’s ability to measure

accurate photometric redshifts and perform statistical studies, such as estimating

the galaxy luminosity function.

PAUCam is a multi-filter system. Fig. 2.3 shows the camera filter system

featuring a set of 40 NB filters designed to cover the optical wavelength range from

4500 Å to 8500 Å. Each NB filter has a full-width at half maximum (FWHM) of

approximately 130 Å and the filters are spaced by roughly 100 Å. This configuration

results in nearly contiguous spectral coverage, allowing for the reconstruction of

low-resolution spectral energy distributions of observed objects. In addition to the

NB filters, a complementary set of 6 BB filters (ugrizY ) is incorporated to enhance

calibration and improve redshift measurements (Castander et al. 2012; Padilla et al.

2019)

10
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Figure 2.3: The filter system and throughput of PAUCam showing the 40 NB filters (130 Å
wide in steps of 100 Å) covering the wavelength range from 4500 Å to 8500 Å together with
the 6 BB filters. The filter curves include atmospheric transmission, telescope optics, and
CCD quantum efficiency. Image taken from https://pausurvey.org/paucam/filters/

2.3 Survey Design

The PAUS is designed to achieve the high photometric precision required for cosmo-

logical studies while covering a statistically significant area. By targeting fields that

have extensive multi-wavelength data, the survey is optimised for both deep photo-

metric analysis and robust cross-calibration with spectroscopic samples. In partic-

ular, the survey focuses on well-established regions, including COSMOS (Scoville

et al. 2007), CFHTLS-W1 and W3 (Heymans et al. 2012; Erben et al. 2013), and

the GAMA G09 fields (de Jong et al. 2013). Fig. 2.4 shows the positions of these

fields and their overlap with ancillary surveys on the sky map. This strategic field

selection ensures that PAUS can benefit from the high-quality broadband photo-

metry and detailed spectroscopic data already available in these regions.

The overall design of the PAUS is structured to balance area and depth. Table

2.1 shows that the deep wide fields collectively cover an area of approximately
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Figure 2.4: A sky map showing observed field positions overlapping with ancillary surveys
on the equatorial projected grid. The grey shaded regions show the MW galactic plane.
PAUS observed in the fields labelled with CFHTLS/W1, CFHTLS/W3, CFHTLS/W4,
and zCOSMOS. Image taken from https://pausurvey.org/pausurvey/fields/.

51 deg2∗ and yield a sample of roughly 1.8 million objects down to iAB < 23

(Navarro-Gironés et al. 2024). Such extensive coverage provides a high galaxy

number density–reaching up to 3 × 104 galaxies per square degree–thereby en-

able precise statistical studies, including analyses of galaxy clustering (Eriksen and

Gaztañaga 2015a,b,c) and the galaxy luminosity function (this work).

Fields W1 W3 G09 COSMOS Total
Area (deg2) 12.04 22.64 15.7 1 51.38
# Galaxies 401 815 792 664 663 535 13 380 1 871 394

Table 2.1: The survey-covered area along with the number of objects with PAUS NB
photometry in the COSMOS, CFHTLS, and Kilo-Degree Survey (KiDS) fields, to a depth
of iAB = 23.0 (Navarro-Gironés et al. 2024).

An important aspect of the survey design is its deliberate overlap with ex-

isting deep photometric surveys. For instance, the COSMOS field offers high-

resolution imaging and comprehensive multi-band data, while the CFHTLS and

KiDS fields provide additional calibration support. This overlap not only facilit-

ates the validation of photometric redshift measurements but also enhances the

overall data quality by allowing for forced photometry techniques that incorporate

precise broadband information (see the next section for more details).
∗we use the different covered areas due to specific masks and selection effects applied for

estimating the luminosity function. See §2.6 for details.
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2.4 Measuring Photometric Redshifts

Measuring photometric redshifts has evolved considerably over the past decades.

Traditionally, redshift estimates in large imaging surveys relied on broadband pho-

tometry, where the SED of a galaxy was sampled coarsely. Early methods employed

template-fitting algorithms or empirical calibrations using spectroscopic training

sets, which, although effective for many purposes, were limited by the low spec-

tral resolution of broadband filters. This resulted in typical redshift uncertainties

of several percent (Ilbert et al. 2006; Moles et al. 2008), which, while acceptable

for many cosmological studies (Hildebrandt et al. 2017; Abbott et al. 2018), were

not sufficient for applications requiring fine redshift discrimination (Eriksen and

Gaztañaga 2015c).

The advent of the PAUS marked a significant improvement by employing 40

NB filters spanning 4500 Å to 8500 Å. This filter set provides a nearly continuous

sampling of the galaxy SED, allowing for the detection of subtle spectral features

and sharper SED breaks. Stothert et al. (2018) shows that the PAUS NB filters

are sensitive to some spectral features including the 4000 Å break or prominent

emission lines (OII, OIII, and Hα).

Spectral Features Rest-frame wavelength (Å) Redshift range
OII 3727 0.21 - 1.28
OIII 4959/5009 0.0 - 0.70
Hα 6563 0.0 - 0.29

D4000N 3850-3950, 4000-4100 0.17 - 1.07
D4000W 3750-3950, 4050-4250 0.20 - 1.00

Table 2.2: The redshift ranges over the PAUS NB filters can detect some common spectral
features. Table adapted from Table 1 in Stothert et al. (2018).

The increased wavelength resolution translates into a dramatic improvement

in photometric redshift precision, with typical uncertainties reaching σ68(∆z)/(1 +

z) ≃ 0.0035 for galaxies brighter than iAB = 22.5.

PAUS leverages this detailed spectral information by using a Bayesian SED

template-fitting algorithm called the BCNz2 code to derive photometric redshifts.
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The BCNz2 code models the SED of each galaxy as a linear combination of con-

tinuum templates and an additional emission line component. By marginalising

over the template coefficients, BCNz2 computes a full probability distribution p(z)

for each galaxy, rather than a single best-fit redshift value. This probabilistic

approach not only provides a measure of the redshift precision but also helps in

identifying potential outliers in the redshift estimation (Eriksen et al. 2019).

2.5 Photometric Redshift Performance and Data

Quality

This section reviews the photometric redshift performance of the PAU Survey.

PAUS delivers significantly higher redshift precision compared to traditional broad-

band photometric surveys. Eriksen et al. (2019) evaluated the photometric red-

shift performance of PAUS by comparing redshifts derived with BCNz2 against

zCOSMOS bright spectroscopic data (zCOSMOS DR3 bright: Lilly et al. 1995).

Recently, Navarro-Gironés et al. (2024) evaluated the performance against spectro-

scopic measurements from established surveys including the Sloan Digital Sky Sur-

vey (SDSS DR16: Ahumada et al. 2020), the Galaxy and Mass Assembly (GAMA

DR3: Baldry et al. 2017), the VIMOS Public Extragalactic Redshift Survey (VI-

PERS: Scodeggio et al. 2018), the DEEP2 redshift survey (Davis et al. 2003; New-

man et al. 2013), KiDs-COSMOS (KiDS DR5: Davies et al. 2014), the 2-degree

Field Galaxy Redshift Suvey (2dFGRS: Colless et al. 2001, the VIMOS VLT DEEP

Survey (VVDS: Fèvre et al. 2013), and the 3D-HST (Brammer et al. 2012). Fig. 2.5

shows the photometric redshift measured using BCNz2 code for data from PAUS

W1, W3, and G09 fields vs. the spectroscopic redshifts available.

Eriksen et al. (2019) provides a full description of the metrics used to evaluate

the photometric redshift performance. Here, we briefly review these metrics for

completeness. The photometric redshift performance from PAUS is quantified using

several statistics based on the quantity ∆z, defined as:
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Figure 2.5: BCNZ2 photometric redshift against spectroscopic redshifts for the PAUS W1,
W3 and G09 fields. The photometric redshift is plotted on the y-axis and the spectroscopic
is on the x-axis. The colour bar represents the number of galaxies. Plot is taken from
Navarro-Gironés et al. (2024).

∆z = zb − zs

1 + zs
, (2.1)

where zb and zs are the photometric and spectroscopic redshifts, respectively. The

photometric precision is defined using the centralised scatter σ68, given by:

σ68 ≡ P [84] − P [16]
2 , (2.2)

where P [84] and P [16] are the 84th and 16th percentile of the ∆z distribution,

respectively. The systematic offset between the photometric and spectroscopic

redshifts is described by the bias, µ, defined as the median of the residual distri-

bution:

µ = median(zb − zs). (2.3)

Finally, following the most recent definition from Navarro-Gironés et al. (2024), a

galaxy is considered an outlier if it satisfies |∆z| > 0.1∗.
∗Eriksen et al. (2019) uses |∆z| > 0.02 in the early demonstration of photometric redshift

performance in the COSMOS field.
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For the data used for measuring the galaxy luminosity function in this work,

the metrics of the photometric redshift performance are shown in Fig. 2.6. The

precision of the photometric redshifts is approximately σ68(∆z) ∼ 0.003 for the

brightest objects in the sample (iAB ∼ 19) and σ68(∆z) ∼ 0.06 for the galaxies

with iAB ∼ 23. The outlier fraction is approximately 20% at the faintest magnitude

bin. Overall, the photometric redshifts show negligible systematic offsets (biases)

compared to previous studies (Navarro-Gironés et al. 2024). This result shows a

good agreement with the early performance found in Eriksen et al. (2019).

(a) σ68(∆z) (b) Outlier Fraction

(c) Bias, µ

Figure 2.6: The performance metrics of the photometric redshift from the PAUS wide fields
(W1, W3, and G09 fields) measured using the BCNz2 code, shown as a function of i−band
magnitude. These metrics include (a) centralised scatter (σ68), (b) outlier fraction, and
(c) bias (µ). Plot adapted from Navarro-Gironés et al. (2024).

In this work, we use the PAUS W1 and W3 fields∗ for measuring the luminosity

function. Fig. 2.7 shows the area-weighted number count distribution as a function

of i-band magnitude for both fields with a magnitude cut at iAB = 23.0† and with

different additional quality selections. The weighting is based on the area covered
∗Production ID 1044 for W1 field and 1045 for W3 field.
†Despite the survey reaching a depth of iAB = 24, reliable redshifts are only available for

galaxies brighter than iAB = 23, as discussed in Castander et al. (2012); Navarro-Gironés et al.
(2024). The samples I accessed from the PAUS database (Prod. ID 1044 and 1045) therefore
include only galaxies brighter than this magnitude limit.
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by all galaxies in the respective fields. The galaxy number counts from both W1

and W3 fields show a good agreement. However, when selecting only galaxies with

redshifts measured using more than 30 NB filters (out of 40), the number counts are

suppressed by approximately 5% to 20% across all magnitude bins. Furthermore,

applying a quality cut that retains only the best 50% of photometric redshifts

results in a more complex scaling. The number counts begin to diverge around

iAB ∼ 21, with the difference increasing toward fainter magnitudes.

Figure 2.7: The object number counts as a function of i−band magnitude with different
quality cuts. This plot is similar to Fig. 2 of Manzoni et al. (2024), but here PAUS W1 and
W3 fields are shown separately. Red colours represent the W1 field, while green colours
represent the W3 field. The number counts here include all objects (grey lines), objects
classified as galaxies (solid lines), galaxies with photometric redshifts measured using more
than 30 NB filters (lines with filled circles), galaxies with photometric redshifts in the best
50% of the sample (dashed lines), and object classified as stars (dotted lines).

2.6 The Effective Survey Area

In this section, we describe the method used to measure the solid angle (effective

area) covered by the PAUS fields, and how this method can be generalised to

account for various selection cuts applied to the data.

We adopt a Monte Carlo (MC) approach to estimate the area subtended by

irregularly shaped observational footprints. In our implementation, a large number
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of random points is uniformly distributed over a two-dimensional spherical surface

encompassing the survey footprint. The area covered by the survey is then estim-

ated by counting the fraction of these points that lie sufficiently close to actual

galaxy positions in the dataset:

Asurvey = Nhit
Ntotal

Arandom, (2.4)

where Asurvey is the estimated survey, Nhit is the number of random points within

a distance threshold dp of any galaxy position in the selected sample, Ntotal is

the total number of random points, and Arandom is the total area spanning by the

random sample.

To validate our area calculation, we applied the method to a patch of random

points that included masks resembling those in the actual observations. These

masks consisted of two main types: (a) circular regions produced by saturated

pixels around bright stars, and (b) rectangular regions associated with filter

completeness. We applied these masks to the random points to reproduce a foot-

print similar to that of the PAUS data, as shown in Fig. 2.8. This setup provides

a close analogue to the real dataset shown in Fig. 2.11. Since the mask dimensions

are known (e.g., the diameters of the circular masks and the widths and heights of

the rectangular masks), we were also able to calculate the covered area analytically

for comparison.

The matching threshold distance dp is defined using the mean nearest-neighbour

separation of the galaxies in the full sample, which we find to be approximately

dp,mNN ∼ 0.00245 degrees. We also tested the impact of the choice of dp on the

estimated areas by varying its value while keeping the total numbers of random

points fixed at Ntotal = 106. As shown in Fig. 2.9, the area estimates remain ac-

curate to within 1% provided that dp lies between 0.8 × dp,mNN and 1.8 × dp,mNN.

Based on this, we adopted dp = 0.00245 degrees for all calculations throughout this

work. This ensures a consistent and adaptive distance scale for estimating the area
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Figure 2.8: Random points (blue dots) with overlaid masked regions used to validate the
Monte Carlo approach for measuring the effective survey area. The two types of masks are
circular (from saturated stars) and rectangular (from filter coverage). This setup mimics
the masking “patterns” in PAUS observations.

across different sample.

Figure 2.9: Estimated survey area as a function of the choice of dp with Ntotal = 106.
Black dots with the solid curve show the estimated areas. The green dotted horizontal line
marks the exact area covered by the random points in Fig. 2.8, with the ±1% error margin
indicated by the shaded green band. The vertical solid black line denotes the mean nearest-
neighbour separation from the PAUS data, while the vertical grey dotted lines indicate the
range of dp values that yield area estimates within 1% accuracy. The horizontal solid black
line corresponds to the area covered by the random points without masking.

We carried out a similar test to assess the impact of the total number of
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random points Ntotal on the area estimation, this time fixing dp = 0.00245 degrees.

To evaluate the stability of the results, we repeated the calculation 100 times and

examined the fluctuations in the estimated area. Fig. 2.10 shows the estimated

area as a function of Ntotal. We find that even with as few as 4 × 103 points,

the area can be estimated to within 1% accuracy, albeit with noticeable scatter.

For robustness, we adopted Ntotal = 106, which substantially reduces fluctuations.

Since the area estimation is only performed once per field and per type of selection

cut (see Table 2.3), this choice does not significantly affect computational efficiency.

Figure 2.10: Estimated survey area as a function of Ntotal with dp = 0.00245 degrees.
Black dots with the solid curve show the estimated areas (repeated 100 times). The green
dotted horizontal line marks the exact area covered by the random points in Fig. 2.8, with
the ±1% error margin indicated by the shaded green band. The horizontal solid black line
corresponds to the area covered by the random points without masking.

Fig. 2.11 illustrates the principle behind the effective area calculation using

the MC technique to handle irregular mask shapes. In each panel, the grey points

represent the uniformly distributed random points across the survey footprint.

The black points correspond to galaxy positions from the selected sample. The red

points make the subset of random points that lie within the matching threshold

distance (dp) of any galaxy–these are counted as “hits” in the area estimation. The
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ratio of red to grey points directly informs the fractional area covered by the galaxy

sample relative to the total sampling region.

Figure 2.11: The area measurement for PAUS W1 (Production ID 1044) and W3 (Produc-
tion ID 1045) fields)

This method is flexible and generalisable–it can be applied to any subsets of

galaxies defined by a given set of selection criteria. For example, one may wish

to estimate the area after applying cuts such as selecting only object classified as

galaxies, requiring that redshift be computed using more than 30 NB filters, or

selecting the top 50% of galaxies based on photometric redshift quality.

Fig. 2.12 illustrates the sky distributions of galaxies in the W1 and W3 fields

for the full galaxy sample and for galaxies with at least 30 NB used for photo-z

measurement. Blue points represent the full galaxy sample, while black points show

the more restricted subsets. These clearly demonstrate how selection cuts reduce

the effective footprints.

To validate the robustness of the area correction, Fig. 2.13 presents the area-

normalised number counts for the W1 and W3 fields under various selection scen-

arios. After applying the appropriate area weighting, the galaxy number counts

remain consistent across fields, confirming that the method correctly accounts for

changes in sky coverage due to selection effects.

The measured effective areas for different cuts are summarised in Table. 2.3.

These values are used throughout this work to ensure proper normalisation in the

galaxy luminosity function.
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Figure 2.12: The area measurement for PAUS W1 (Production ID 1044) and W3 (Produc-
tion ID 1045) fields)

Figure 2.13: The object number counts as a function of i−band magnitude with different
quality cuts. This plot is similar to Fig. 2 of Manzoni et al. (2024), but here shows the
PAUS W1 and W3 fields separately. Red colours represent the W1 field, mean while green
colours represent the W3 field. The number counts here show all objects (grey lines),
objects classified as galaxies (solid lines), objects classified as galaxies with photometric
redshifts measured using more than 30 NB filters (lines with filled circles), galaxies with
photometric redshifts better than 50% of the sample, and object classified as stars (dotted
lines).

2.7 Summary

In this chapter, we presented an overview of the Physics of the Accelerating Uni-

verse Survey (PAUS) and its key role in enabling precise photometric redshift
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Selection Cuts W1 [deg2] W3 [deg2]
Galaxies only 11.178 20.532

Galaxies with > 30 NB 9.334 19.552
Galaxies in best50% 9.032 18.901

Table 2.3: The effective survey-covered area after applying different selection cuts, includ-
ing sample with galaxies only, galaxies with more than 30 NB used to measure the photo-z,
and galaxies in the best 50% photo-z quality sample

measurements for large-scale cosmological studies. We described the design and

instrumentation of PAUCam, highlighting its unique narrow-band filter system and

wide-field capabilities. By targeting fields with extensive multi-wavelength cover-

age, such as COSMOS, CFHTLS W1 and W3, and GAMA G09, PAUS ensures

robust calibration and facilitates the integration of ancillary data.

We discussed the advantages of using NB photometry for redshift estimation,

with the BCNz2 code providing high-precision, probabilistic redshift measurements.

Performance metrics including scatter, bias, and outlier fraction confirm that PAUS

achieve sub-percent redshift precision for bright galaxies and maintains good con-

sistency with spectroscopic redshifts across a wide magnitude range.

Furthermore, we described the methodology used to measure the effective sur-

vey area, including how the MC technique can be generalised to account for various

selection effects. Accurate area estimation is essential for number density calcu-

lations and luminosity function measurements. The approach was validated by

comparing area-weighted number counts across different quality cuts in the W1

and W3 fields.
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Chapter 3

Galaxy Formation Model

Galaxy formation is one of the central topics in contemporary astrophysics, bridging

observational astronomy and theoretical cosmology. Understanding how galaxies

form and evolve within the Universe involves studying processes that operate across

a wide range of spatial scales. Currently, the most widely accepted framework for

galaxy formation is based on hierarchical clustering within the Cold Dark Mat-

ter (CDM) cosmological paradigm (e.g. Springel et al. 2006). According to this

hierarchical model, cosmic structures grow through gravitational instability, be-

ginning with initial small-scale density fluctuations. These small-scale structures

originate from quantum fluctuations during the inflationary epoch and leave ob-

servable imprints as anisotropies in the Cosmic Microwave Background (CMB)

radiation (Guth 1981; Mukhanov and Chibisov 1981;Planck Collaboration et al.

2020). Over cosmic time, these structures progressively merge to build larger sys-

tems, including galaxies, galaxy groups, and galaxy clusters.

Within this hierarchical scenario, galaxies form inside dark matter halos, grav-

itational wells that dominate their formation and evolution (White and Rees 1978).

As halos merge and grow, they accrete gas from the Intergalatic Medium (IGM).

In massive halos, this gas typically heats via shock-heating, forming hot gas atmo-

spheres at roughly the virial temperature before cooling and fuelling star formation

(White and Rees 1978; Cole et al. 1994; Bower et al. 2006). However, at higher
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redshifts and lower masses, gas can remain cool and dense, efficiently cooling more

quickly than it heats, thus accreting onto galaxies without ever approaching the

halo virial temperature–a process known as “cold mode” accretion (Kereš et al.

2005).

Modelling galaxy formation poses significant theoretical challenges due to com-

plex, interconnected astrophysical processes involved such as gas cooling, star form-

ation, supernova (SN) and active galactic nucleus (AGN) feedback, chemical en-

richment, and galaxy mergers (Lacey et al. 2016). To address these challenges,

two complementary approaches have emerged: hydrodynamical simulations and

semi-analytical models.

Hydrodynamical simulations numerically solve baryonic physics alongside dark

matter dynamics to predict galaxy properties, providing detailed insights into com-

plex astrophysical processes at the expense of significant computational resources

(Guo et al. 2016; Ayromlou et al. 2021). Due to their computational complexity,

these simulations are typically limited in terms of exploring extensive parameter

spaces or rapidly comparing with observational data in a fine-grained model calibra-

tion. Hydrodynamical simulations are also limited by resolution resulting in being

unable to directly compute unresolved astrophysical processes (e.g., star formation,

supernova feedback, AGN feedback, and black hole accretion), which require the

implementation of “subgrid” model prescription of these physical processes (Kugel

et al. 2023). Semi-analytic models, in contrast, employ computationally efficient

analytic prescriptions of astrophysical processes within dark matter halo merger

histories extracted from cosmological N-body simulations, enabling extensive ex-

ploration of parameter space and rapid comparisons with observational constraints

(Baugh et al. 2019; Gonzalez-Perez et al. 2014; Lacey et al. 2016; Griffin et al.

2019). Recent comparative studies have shown that despite their simplified treat-

ment of baryonic processes, semi-analytic models can accurately reproduce many

global properties observed in more computationally intensive hydrodynamical sim-

ulations, highlighting their complementary strengths (Neistein et al. 2012; Guo
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et al. 2016; Ayromlou et al. 2021).

Among semi-analytic models, GALFORM, developed at Durham University, stands

out as a sophisticated, widely adopted model (Cole et al. 2000; Bower et al. 2006;

Lacey et al. 2016). GALFORM systematically incorporates critical mechanisms such

as star formation laws based on molecular gas content, variations in stellar Initial

Mass Function (IMF)s, and detailed treatments of AGN feedback. AGN feed-

back, in particular, plays a crucial role by suppressing gas cooling in massive halos,

thereby addressing previously unresolved discrepancies like the overproduction of

luminous galaxies at low redshift (Bower et al. 2006; Griffin et al. 2019).

This chapter focuses on GALFORM outlining its development, key physical mech-

anisms, and application in the interpretation of observational galaxy data. By com-

paring model predictions with observation constraints, astrophysicists continuously

refine physical processes within GALFORM striving for a comprehensive understand-

ing of galaxy formation and evolution.

3.1 Why Semi-Analytical Models?

Semi-analytical models offer a robust framework for understanding galaxy forma-

tion and evolution, providing significant computational advantages over fully nu-

merical hydrodynamical simulations. Due to the inherently complex and multi-

scale nature of galaxy formation, modelling all relevant physical processes explicitly

through numerical hydrodynamics is computationally intensive and often prohib-

itively expensive for exploring a wide range of physical parameters or cosmological

scenarios. Furthermore, many astrophysical processes, such as star formation, su-

pernova feedback, and AGN feedback, occur on scales too small to be directly re-

solved in cosmological simulations, requiring the implementation of uncertain and

parametrized “subgrid” models. These subgrid models introduce realistic galaxy

populations (Kugel et al. 2023). Semi-analytic models, in contrast, employ sim-

plified analytic or phenomenological prescriptions for these processes, providing
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computational efficiency and considerable flexibility in adjusting assumptions or

parameters. This flexibility enables extensive exploration of astrophysical scen-

arios, systematic comparison with observations, and rapid identification of the as-

trophysical mechanisms most important for shaping galaxy properties.

Semi-analytic models circumvent these limitations by using analytic approxim-

ations and empirical prescriptions to describe key astrophysical processes. These

analytic prescriptions are embedded within cosmological dark matter halo merger

trees derived from large-scale N-body simulations, enabling efficient exploration

of extensive parameter spaces and rapid comparison with observational data. An

example of a comparison between the outputs of models can be different semi-

analytical models can be found in Contreras et al. (2013), who shows how different

semi-analytic models populate dark matter halos and predict galaxy clustering us-

ing a common underlying N-body simulation. These comparison shows that some

model predictions are robust to different implementations of the galaxy formation

physics (e.g. such as the number of galaxies ranked by their stellar mass).

Moreover, semi-analytic models offer an inherently flexible approach, mak-

ing it easier to interpret the physical assumptions underlying galaxy formation

outcomes. This flexibility helps researchers isolate and investigate the impact of

individual processes, thus identifying the key drivers of observable galaxy proper-

ties and guiding further refinement of theoretical models (White and Frenk 1991;

Merson et al. 2013).

Additionally, semi-analytic models facilitate the construction of mock galaxy

catalogues, which play a critical role in preparing for and interpreting galaxy sur-

veys. Because of their computational efficiency, semi-analytic models can be imple-

mented in large-volume N-body simulations, enabling the generation of statistically

representative mock galaxy populations that reflect the survey geometry, selection

functions, and cosmic variance (Contreras et al. 2015). These mock catalogues allow

researchers to quantify observational systematics, optimise observational strategies,

and validate data analysis pipelines for cosmological studies (Merson et al. 2013;
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Stothert et al. 2018).

Given these advantages, semi-analytic models remain an essential and comple-

mentary approach alongside hydrodynamical simulations. They allow astrophysi-

cists to test galaxy formation theories systematically and refine their understanding

through direct comparisons with observational data across cosmic time.

Figure 3.1: A schematic overview of GALFORM. Reproduced from Cole et al. (2000).

3.2 GALFORM

GALFORM is a semi-analytic galaxy formation model developed to address complex

astrophysical processes systemically within a hierarchical clustering framework. At

its core, GALFORM uses cosmological N-body simulations to construct merger trees

that represent the hierarchical growth and merging of dark matter halos. These
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3.2.1. Formation and merging of dark matter halos

merger trees serve as the backbone upon which analytic prescriptions describing

galaxy formation processes are implemented.

Fig 3.1. illustrates the overall framework of GALFORM in a comprehensive schem-

atic (adapted from fig 1. in Cole et al. (2000)), highlighting how each astrophysical

process connects with the hierarchical growth of cosmic structures. This schematic

provides a clear visualization of how the analytic prescriptions and the hierarchical

merger trees interact to predict observable galaxy properties. Key components of

the GALFORM framework include (i) the formation and merging of dark matter halos;

(ii) the shock-heating and radiative cooling of gas inside dark matter halos, which

leads to the formation of galactic disks; (iii) star formation in galaxy disks and

starbursts; (iv) feedback from supernovae, from AGN and from photo-ionization of

the IGM; (v) galaxy mergers driven by dynamical friction and disk instabilities in

galaxy disks; (vi) calculation of the sizes of disks and spheroids; and (vii) chemical

enrichment of stars and gas.

The detailed descriptions of the physical processes modelled in GALFORM are

represented in Cole et al. (2000) and Lacey et al. (2016). Here I summarise these

processes for completeness.

3.2.1 Formation and merging of dark matter halos

In the version GALFORM used in this work, halo merger histories are extracted

directly from cosmological N-body simulations. Halo-finding algorithms (such as

Fiends-of-Friends (Davis et al., 1985) and SUBFIND (Springel et al., 2001)) are

applied to identify halos and subhalos at each simulation snapshot, and these are

then linked across time to construct hierarchical merger trees (see for example Ji-

ang et al. 2014). These simulation-based merger trees serve as the foundation upon

which the galaxy formation physics in GALFORM is modelled.

These merger trees track the entire merger history of each dark matter halo,

detailing precisely when halos form, merge, and accrete matter. GALFORM populates

29



3.2.2. Halo finding in simulations

these halos with baryonic matter and applies analytic prescriptions for astrophysical

processes, thus linking halo assembly directly to observable galaxy properties.

3.2.2 Halo finding in simulations

In modern implementations of the GALFORM model, the merger histories of DM halos

are extracted directly from cosmological N-body simulations. To build these merger

trees, gravitationally bound structures–halos and subhalos–must first be identified

in the simulation outputs. This is accomplished using halo finding algorithms

followed by merger tree construction tools.

The initial identification of halos typically begins with a Friends-of-Friends

(FoF) algorithm (Davis et al. 1985), which groups particles based on spatial prox-

imity using a percolation algorithm and fixed linking length which is a specified

fraction of the mean interparticle separation. However, FoF groups can artificially

connect structures through tenuous bridges, leading to over-merging. To resolve

this, substructure finders such as SUBFIND (Springel et al. 2001) are employed.

SUBFIND decomposes FoF halos into hierarchically nested, self-bound subhalos by

identifying local overdensities and performing iterative unbinding procedures. The

most massive of these subhalos is designated the central subhalo, with others clas-

sified as satellites.

Once subhalos are identified at each snapshot, a merger trees algorithm is used

to link subhalos across time. In this work, we use the D-TREES algorithm developed

by Jiang et al. (2014), which robustly tracks the most bound cores of subhalos to

construct coherent evolutionary links, even across snapshots where a subhalo may

be temporarily disrupted or not well identified. This procedure produces a subhalo

merger tree which is then post-processed by the Dhalo algorithm to build physically

motivated halo merger trees. The Dhalo algorithm ensures that halo masses grow

monotonically with time, and that subhalos having passed through a more massive

host retain their identity and association with that host, reflecting the expected
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behaviour of baryons during such interactions.

A study by Gómez et al. (2022) investigated the impact of different halo finders

and tree builders on galaxy formation predictions using GALFORM. They compared

four major combinations of halo finders and merger tree builders: HBT (Han et al.

2012), ROCKSTAR (Behroozi et al. 2013a) - CONSISTENTTREE (Behroozi et al.

2013b), SUBFIND (Springel et al. 2001) - DTREES (Jiang et al. 2014), VELO-

CICRAPTOR (Elahi et al. 2011) - DTREES (Jiang et al. 2014). Each method

varies in how it defines halo boundaries, distinguishes between central and satel-

lite structures, and handles particle unbinding. Despite these differences, the final

galaxy populations predicted by GALFORM were found to be remarkably robust to

the halo finder and tree builder used.

Here, we adopt the SUBFIND-DTREES-Dhalo combination, where halos and

subhalos are found using FOF and SUBFIND, their evolutionary links are built using

D-TREES, and the final merger trees are constructed via the Dhalo algorithm. This

method is consistent with the one used to generate the lightcone mock catalogue

analysed in later chapters (See Chapter §4 for lightcone mock catalogue construc-

tion).

GALFORM generally assumes halos have density profiles approximating Navarro-

Frenk-White (NFW) profiles (Navarro et al. 1997), described by:

ρDM (r)
ρcrit

= δc
(r/rs)(1 + r/rs)2 , (3.1)

where ρcrit = 3H2/8πG, δc is a characteristic density, rs is the scale radius. rs

is related to the virial radius by the concentration, rs = rvir/cNFW (see Navarro

et al. (1997) for the analytical prescription of cNFW and discussion about δc). This

assumption affects several aspects of the model; the gravitational potential defined

by the halo profile influences the hydrostatic equilibrium and cooling rate of hot gas

within halos, and also impacts the sizes of the disk and bulge components formed

from the cooling gas. While the gas is allowed to develop its own density profile,

31



3.2.3. Shock-heating and radiative cooling of gas

the underlying dark matter potential–shaped by the NFW assumption–remains a

key determinant in both thermal and structural evolution.

3.2.3 Shock-heating and radiative cooling of gas

In GALFORM, the treatment of gas cooling closely follows the framework introduced

by White and Frenk (1991). When baryonic gas falls into a dark matter halo, it is

assumed to be shock-heated approximately to the halo virial temperature. This hot

gas forms a quasi-static, spherically symmetric atmosphere surrounding the central

region of the halo. The hot gas then radiatively cools and sinks towards the halo

centre, forming a rotationally supported disk where star formation subsequently

occurs. Note that the final stages of cooling by excitation of the vibrational and

rotational modes of molecules like H2 are not explicitly modelled, but are assumed

to operate on a shorter timescale than the radiative cooling which takes the gas to

10000K.

The cooling rate depends on the gas density, temperature, and chemical com-

position (metallicity). GALFORM calculates the cooling radius, defined as the radius

within which gas can cool on a timescale shorter than the age of the halo. Gas

within this radius is assumed to cool and accrete onto the central galaxy on a free-

fall timescale, while gas outside this radius remains hot and in equilibrium with

the gravitational potential of the halo. The cooling time tcool at a radius r within

the halo is given by

tcool = 3
2
kB

µmH

Tvir
ρgas(r)Λ(Tvir, Z) , (3.2)

where µ is the mean molecular weight of the gas, mH is the mass of hydrogen, kB is

Boltzmann’s constant, Tvir is the halo virial temperature, ρgas(r) is the gas density

at radius r, and Λ(Tvir, Z) is the cooling function dependent on gas temperature

and metallicity. In GALFORM, the gas density profile within the halo is typically

assumed to follow a singular isothermal sphere or a modified form based on more

recent numerical simulations.
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However, recent hydrodynamical simulations (e.g. Kereš et al. 2005) have

shown that this classical hot-mode cooling picture does not always hold, particularly

at high redshift. In denser environments and low-mass halos, the cooling times can

be much shorter than the free-fall time–the time it takes for gas to collapse to the

centre under gravity. In these regimes, the free-fall time, rather than the cooling

time, becomes the limiting factor for gas accretion. Moreover, a significant fraction

of gas may never be shock-heated to the virial temperature. Instead, it accretes

directly along cold, dense filaments in what is referred to as cold-mode accretion.

This process is inherently aspherical and more efficient at delivering gas to the

central galaxy in the early Universe, playing a crucial role in the early buildup of

galactic baryons.

While GALFORM primarily models hot-mode accretion through the cooling flow

paradigm, cold-mode accretion can be approximately captured by treating halos

in which the cooling radius exceeds the virial radius as experiencing rapid cooling.

In such cases, the infalling gas is assumed to accrete on a timescale comparable to

the free-fall time, rather than being shock-heated.

This combined treatment of cooling and free-fall timescales forms a more com-

plete picture of gas accretion and sets the stage for modelling star formation history

of galaxies in the GALFORM semi-analytic framework.

3.2.4 Galaxy mergers

Galaxy mergers are a fundamental process in the hierarchical formation of struc-

ture, driving the transformation of galaxy morphology, triggering bursts of star

formation, and contributing to the growth of stellar mass and spheroids. In GALFORM

mergers are modelled by tracing the dynamical evolution of satellite galaxies after

their host dark matter halos merge, following prescriptions based on gravitational

interactions and dynamical friction (Cole et al., 1994; Lacey et al., 2016).

When two dark matter halos merge, the smaller halo becomes a satellite within
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the larger halo. Subsequently, satellite galaxies lose orbital energy through dynam-

ical friction–a gravitationally induced drag force exerted by dark matter particles

in the host halo–leading eventually to a merger with the central galaxy. The ori-

ginal model of Cole et al. (1994), calculated a merger timescale τmerge using an

analytic prescription derived from the dynamical friction timescale introduced by

Chandrasekhar (1943). In the newer model, GALFORM automatically includes the

effects of tidal stripping of the dark matter subhalo hosting the smaller galaxy on

the dynamical friction rate. This is done by replacing the Chandrasekhar formula

with a modified expression obtained from cosmological N-body or hydrodynamical

simulations (Jiang et al. 2008). The merger timescale is expressed as follows:

τmerge = f(ϵ)
2C

Mpri
Msat

1
ln (1 +Mpri/Msat)

(
rcirc
rvir

)(1/2)
τdyn, halo, (3.3)

where ϵ is the circularity of the satellite orbit, Mpri is the mass of the central galaxy

and its dark matter halo, Msat is the mass of the satellite system, rcirc is the radius

of the circular orbit. The modified parameters are the constant C = 0.43 and

f(ϵ) = 0.90ϵ0.47 + 60, obtained by Jiang et al. (2008).

GALFORM distinguishes between two types of merger based on the mass ratio of

merging galaxies:

• Major mergers, which involve galaxies of comparable mass, disrupt galaxy

disks and result in the formation of elliptical galaxies or spheroids. These

events also trigger intense bursts of star formation, rapidly converting avail-

able gas into stars (see § 3.2.5.2).

• Minor mergers occur when a satellite galaxy merges with a much larger

central galaxy, typically leading to less dramatic changes. Minor mergers

may increase the mass of the galactic bulge, but do not trigger significant

starbursts.

GALFORM explicitly models the morphological transformations resulting from

these mergers, tracking the formation and growth of disks and spheroids (bulges),
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along with their associated stellar populations and chemical enrichment histories

over cosmic time. By coupling the merger-driven assembly of structure with the

regulation of star formation in bursts and quiescent modes, GALFORM captures the

diverse evolutionary pathways of galaxies.

3.2.5 Star formation in galaxy disks and starbursts

In the GALFORM framework, star formation is modelled by distinguishing two primary

modes: quiescent star formation occurring in galaxy disks, and starbursts triggered

by galaxy mergers or disk instabilities. In galaxy disks, star formation proceeds

gradually, governed by empirical laws that relate star formation rates to the mo-

lecular gas content. In contrast, starbursts can occur on shorter timescales and can

lead to temporarily elevated star formation rates, with their intensity regulated by

model parameters such as the star formation efficiency and dynamical timescale.

This dual-mode approach reflects observational evidence that galaxies can exper-

ience both steady and episodic star formation, depending on their morphology,

environment, and evolutionary stage.

3.2.5.1 Star formation in galaxy disks

Star Formation (SF) in galaxy disks is typically modelled using empirical relations

that link the surface density of star formation (ΣSF) to the available molecular gas

surface density (Σmol). GALFORM adopts an formulation inspired by the empirical

star formation law by Blitz and Rosolowsky (2006):

ΣSF = νSFΣmol, (3.4)

where νSF is the star formation efficiency per unit molecular gas mass. In GALFORM,

νSF is treated as a free parameter, calibrated against observed star formation rates

in nearby galaxies, but can vary within a range suggested by the observations.

To determine the fraction of molecular gas (fmol) in galaxy disks, GALFORM

utilizes a pressure-based empirical prescription, based on observations suggesting
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that molecular gas formation is strongly influenced by mid-plane pressure within

the galactic disk (Blitz and Rosolowsky 2006; Leroy et al. 2008). The molecular

fraction is computed as:

fmol = Rmol/(1 +Rmol), (3.5)

where Rmol is defined as a fraction of the molecular gas surface density and the

atomic gas surface density (Σmol/Σatom).

The total Star Formation Rate (SFR) in the galactic disk is then assumed to

be proportional to the mass in the molecular component only as follows:

ψdisk = νSFMmol, disk = νSFfmolMcold, disk. (3.6)

The free parameter νSF is chosen based on a sample of local galaxies, which Bigiel

et al. (2011) find a best fitting value of νSF = 0.43 Gyr−1 with 1σ scatter of 0.24

dex. GALFORM allows the free parameter to be varied within the 1σ as quoted.

3.2.5.2 Star formation in starbursts

Galaxy mergers and disk instabilities can trigger episodes of bursty star formation,

known as starbursts, which are typically associated with elevated star formation

rates compared to the quiescent disk mode. In GALFORM, starbursts occur during

major and minor mergers or when disk instabilities funnel cold gas into the central

regions of galaxies, where it forms stars over shorter timescales. The intensity and

duration of these bursts depend on model parameters, particularly those governing

the burst star formation timescale and the efficiency of gas conversion into stars.

Star formation in bursts is modelled as a rapid conversion of cold gas into stars.

However, the overall efficiency of this process is regulated by feedback mechanisms–

such as supernovae and AGN activity, described in later sections–which can expel

or reheat gas before it forms long-lived stellar remnants. The burst-mode star

formation rate is expressed as:
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ψburst = Mcold, burst
τ∗burst

= νSF, burstMcold, burst, (3.7)

where Mcold, burst is the cold gas mass in the starburst component, νSF, burst is

the star formation efficiency in bursts (a free parameter), and τ∗burst is the star

formation timescale.

The τ∗burst is defined in terms of the dynamical time of the bulge component

formed during the burst:

τ∗burst = max [fdynτdyn, bulge, τ∗burst, min] , (3.8)

where τdyn, bulge = rbulge/Vc(rbulge) is the dynamical time computed from the bulge

half-mass radius and circular velocity. The parameter fdyn sets the proportional-

ity between star formation timescale and bulge dynamical time, while τ∗burst, min

sets a lower limit on the timescale. Both fdyn and τ∗burst, min are treated as free

parameters in the model

This formulation ensures that for systems with long dynamical times, the burst

timescale scales with τdyn, bulge, consistent with observation of starburst galaxies

in the local Universe (e.g. Kennicutt 1998). However, for compact systems with

short dynamical times, the star formation timescale is prevented from becoming

unphysically short by the imposed floor τ∗burst, min.

3.2.6 Supernova and AGN feedback

Feedback processes from supernovae (SNe) and active galactic nuclei (AGN) are

essential mechanisms in galaxy formation models, significantly influencing the prop-

erties of galaxies by regulating star formation rates, gas cooling, and the chemical

evolution of galaxies. GALFORM explicitly includes these feedback mechanisms to

match observational data and prevent known theoretical discrepancies, such as the

over-cooling problem in massive halos.
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3.2.6.1 SN feedback

Supernova (SN) feedback refers to the injection of energy and momentum from

massive stars that explode as supernovae back into the Interstellar Medium (ISM).

In GALFORM this feedback mechanism reheats cold gas from galaxy disks and can

eject it either into the surrounding dark matter halo or completely beyond the

halo’s virial radius, depending on the halo mass and the energy available from

supernova explosions.

The rate of which cold gas mass ejected (Ṁeject) from the galaxy due to super-

nova explosions is modelled to be proportional to the instantaneous star formation

rate (ψ), with a mass loading factor β that follows a power-law dependence on the

galaxy circular velocity Vc, expressed as:

Ṁeject = βψ =
(
Vc
VSN

)−γSN

ψ, (3.9)

where VSN and γSN are both free parameters in the model. The parameter VSN sets

the characteristic velocity scale for feedback, while γSN determines how strongly

the mass loading varies with the galaxy mass. The parametrisation was suggested

by early gas dynamic simulations (Navarro and White, 1993); the values of the

parameters are set by forcing the model to reproduce the local luminosity function.

Gas ejected beyond the halo from the galaxy by supernova feedback is assumed

to be stored in an external reservoir of mass Mres. This gas is not permanently

lost, but is located beyond the virial radius and is allowed to re-accrete into the

halo over time. The rate at which this gas returns to the hot halo gas component,

Ṁreturn, is given by as follows:

Ṁreturn = αreturn
Mres

τdyn, halo
, (3.10)

where τdyn, halo is halo dynamical time, defined as rvir/Vvir, and αreturn is another

free parameter that sets the efficiency of this gas recycling process.

This feedback mechanism plays a crucial role in regulating the gas content

of galaxies, particularly in low-mass systems, and helps GALFORM match observed
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galaxy stellar mass functions and star formation rates (Baugh 2006; Lacey et al.

2016).

3.2.6.2 AGN feedback

Active galactic nucleus (AGN) feedback plays a crucial role in suppressing star

formation in massive galaxies and mitigating the over-cooling problem in high-mass

dark matter halos (White and Frenk 1991; Benson et al. 2003; Bower et al. 2006).

Without this mechanism, models tend to over-predict the number of luminous

galaxies at the bright end of the luminosity function. In GALFORM, AGN feedback

is implemented by inhibiting the cooling of hot gas in massive halos, effectively

shutting down the supply of cold gas required for star formation (Bower et al.

2006; Lacey et al. 2016).

The suppression is based on two physical criteria that must be satisfied simul-

taneously for AGN heating to prevent gas cooling;

• (i) The cooling time of the hot halo gas at the cooling radius, tcool(rcool), must

be longer than the free-fall time ttt(rcool) by a factor set by the parameter

αcool. Specifically,

tcool(rcool)/tff(rcool) > 1/αcool, (3.11)

where αcool is an adjustable model parameter that determines how readily

AGN feedback can switch on (αcool has a typical value of ∼ 1, and this

condition ensures that the gas is in a quasi-hydrostatic regime suitable for

AGN heating).

• (ii) The energy output required to balance radiative cooling, Lcool, must be

less than a fraction fEdd of the Eddington luminosity of the central super-

massive black hole:

Lcool < fEdd LEdd(MBH), (3.12)
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where fEdd is another free parameter, and LEdd(MBH) is the Eddington lu-

minosity corresponding to the black hole mass MBH. fEdd is adopted to be

0.01 in GALFORM based on discussion in Fanidakis et al. (2011).

If both conditions are met, AGN feedback is assumed to completely suppress

further gas cooling from the hot halo, effectively quenching star formation in the

central galaxy. This mechanism is particularly important for reproducing the ob-

served cut-off at the bright-end in the galaxy luminosity function and at the high-

mass end in the stellar mass function.

3.2.7 Supermassive Black Hole (SMBH) Growth

Supermassive black holes are key components in the GALFORM model, as their growth

is directly tied to the regulation of star formation in massive galaxies through AGN

feedback, as mentioned in the previous section. The growth of SMBHs in GALFORM

occurs via two main channels; accretion of cold gas during starbursts, and mergers

with other black holes during galaxy coalescence events (Bower et al. 2006; Malbon

et al. 2007).

The dominant growth mode is through gas accretion during starbursts, which

are triggered by galaxy mergers and disk instabilities. During these events, a

fraction of the available cold gas is assumed to be funnelled toward the central

black hole. This is implemented in the model using a simple scaling relation in

which the accreted black hole mass is taken to be a fixed fraction of the cold gas

converted into stars, and can be described as:

∆MBH = fBH∆Mstars, (3.13)

where ∆MBH is the mass accreted onto the black hole, ∆Mstars is the stellar mass

formed during the bursts (accounting for feedback and stellar mass loss), and fBH

is the black hole accretion efficiency. This efficiency parameter is treated as a free

parameter in GALFORM and it is typically to be less than 0.03, for reproducing the
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observed relation between black hole mass and bulge mass in the local galaxies (see

Fig. 6 in Lacey et al. (2016)).

In addition to accretion, black hole-black hole mergers contribute to SMBH

growth when two galaxies merge. In such events, it is assumed that the central black

holes of the progenitor galaxies coalesce efficiently and instantaneously to form a

single, more massive black hole in the remnant galaxy. Although the timescales for

black hole mergers in reality may be longer and involve dynamical processes such

as dynamical fiction and gravitational wave emission, GALFORM does not explicitly

model these processes and instead assumes that coalescence occurs promptly after

galaxy mergers.

The final SMBH mass is assumed to be the sum of the accreted mass and the

combined mass of the two progenitors. The total mass of the SMBH governs its

Eddington luminosity, which is used in AGN feedback prescriptions to determine

whether gas cooling can be suppressed in massive halos. As such, the evolution of

SMBHs in GALFORM is intimately connected to the thermal state of halo gas and

the quenching of star formation in high-mass galaxies.

3.2.8 Galaxy sizes

Accurately predicting galaxy sizes is a critical aspect of galaxy formation modelling.

In GALFORM, galaxy sizes are computed by modelling the evolution and conservation

of angular momentum for galaxy disks, and by applying energy conservation and

the virial theorem to spheroids formed through mergers or disk instabilities (Lacey

et al. 2016).

Disk sizes: Disks are assumed to form through the radiative cooling of hot

halo gas, which is presumed to initially share the specific angular momentum of the

dark matter halo. As the gas cools and collapses, it retains this angular momentum,

settling into a rotationally supported disk. The disk radius is then calculated by

solving for centrifugal equilibrium in the combined potential of the disk, spheroid,
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and dark matter halo. During subsequent evolution, changes in the gravitational

potential (e.g. due to stellar mass growth or halo contraction) lead to adiabatic

adjustment of the disk size, but without changes in specific angular momentum

(Lacey et al. 2016).

While the assumption of angular momentum conservation is a simplification,

it provides a reasonable approximation and is widely adopted in semi-analytic

models. However, it neglects possible losses of angular momentum due to non-

axisymmetric instabilities, dynamical friction, and misalignment between gas inflow

and the existing disk plane (see e.g. Lagos et al. 2015 for a generalised treatment).

Spheroid sizes: Spheroids (bulges and ellipticals) are formed in GALFORM

through both major mergers and disk instabilities. In both cases, the half-mass

radius of the resulting spheroid is calculated using energy conservation and the

virial theorem. For mergers, the total energy of the system is given by the sum

of the internal binding energies of the progenitor galaxies and their orbital energy

prior to coalescence. The remnant size rremnant is obtained from:

(Mgal, 1 +Mgal,2)2

rremnant
=
M2

gal, 1
rgal, 1

+
M2

gal, 2
rgal, 2

+ forbit
cgal

Mgal, 1Mgal,2
rgal, 1 + rgal, 2

, (3.14)

where Mi and ri are the mass and half-mass radius of progenitor galaxies, cgal is a

structural constant (typically 0.5), and forbit is a free parameter that encapsulates

the orbital energy contribution and is typically in the range 0 ≤ forbit ≤ 1 (Lacey

et al. 2016).

For disk instabilities, the sizes of newly formed spheroids are computed sim-

ilarly by treating the pre-existing disk and bulge as the two progenitor systems.

This approach assumes that the instability event results in an immediate redistri-

bution of mass into a new equilibrium spheroid, again based on energy conservation

(Lacey et al. 2016). A fitting formula analogous to the merger case is used, includ-

ing contributions from the interaction energy between the pre-existing components,

described as:

cbulge
(Mdisk +Mbulge)2

rnew
= cbulge

M2
bulge

rbulge
+ cdisk

M2
disk

rdisk
+ fint

MdiskMbulge
rdisk + rbulge

, (3.15)
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where Mi
∗ and ri have the same descriptions as in Equation 3.14, the dimensionless

factor cdisk = 0.49 for a pure exponential disk and cbulge = 0.45 for an r1/4 -law

spheroid, and a factor fint = 2.0 representing the gravitational interaction energy

of the disk and bulge.

GALFORM also accounts for the adiabatic contraction of the dark matter halo in

response to the condensation of baryons into the central galaxy. This alters the halo

potential and influences both disk and bulge sizes. The size calculation therefore

includes baryonic self-gravity and the dynamical response of the surrounding dark

matter halo (Lacey et al. 2016).

3.2.9 Chemical Enrichment

Tracking the chemical enrichment of gas and stars is a key component of galaxy

formation models, as metal abundances affect gas cooling, star formation, and

the interpretation of galaxy observables such as spectral energy distributions and

emission lines. Although this work does not involve full spectral energy distribu-

tion (SED) modelling or investigate the impact of nebular emission lines on galaxy

photometry, we include this description for completeness and to provide a coherent

overview of the GALFORM framework. GALFORM models the production and distri-

bution of heavy elements (metals) through a simplified but physically motivated

framework that follows the mass and metallicity of gas and stars in different galactic

components over time.

Chemical enrichment in GALFORM is driven by star formation. When stars form

from cold gas in the disk or during a starburst, a fraction of their mass is returned

to the interstellar medium (ISM) via stellar winds and supernova explosions. This

recycled material is enriched with heavy elements synthesised in stars during their

lifetimes. The model assumes instantaneous recycling, where a fixed fraction R of

the stellar mass formed is immediately returned to the cold gas reservoir, enriched
∗The disk and bulge masses in this formula only consider stars and cold gas.
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with metals. The evolution of four different baryon components (hot gas in halos,

rejected gas outside halos in the reservoir, cold gas in galaxies, and stars in galaxies)

are, respectively, described as:

Ṁhot = −Ṁacc + αret
Mres

τdyn, halo
(3.16)

Ṁcold = Ṁacc − (1 −R− β)ψ (3.17)

Ṁ∗ = (1 −R)ψ (3.18)

Ṁres = βψ − αret
Mres

τdyn, halo
. (3.19)

The mass of metals ejected into the ISM per unit stellar mass formed is charac-

terised by the metal yield p, defined as the mass of newly formed metals produced

and released by stars per unit mass locked into long-lived stellar remnants. The

changes in the total mass of metals in the hot gas, in the cold gas, stars in galaxies,

and the reservoir are thus, respectively, governed by;

ṀZ
hot = −ZhotṀacc

MZ
res

τdyn, halo
(3.20)

ṀZ
cold = ZhotṀacc + [p− (1 −R+ β)Zcold]ψ (3.21)

ṀZ
∗ = (1 −R)Zcoldψ (3.22)

ṀZ
res = βZcoldψ − αret

MZ
cold

τdyn, halo
, (3.23)

where MZ
i is the metal mass of each component and Zi is defined as MZ

i /Mi.

While the model adopts a simplified treatment assuming instantaneous re-

cycling and constant yields (e.g. R and p∗), these prescriptions are sufficient to

reproduce key observational trends in galaxy metallicities when combined with

self-regulated star formation and feedback (see Fig. 22 and Fig. 23 of Lacey et al.

2016).
∗These values depend on the IMF used.
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3.2.10 Stellar initial mass function

The initial mass function (IMF) is a fundamental ingredient in galaxy formation

models, describing the stellar masses formed in a given star formation event. The

IMF influences multiple aspects of galaxy evolution, including in principle the rate

supernova feedback, metal production, stellar mass-to-light ratios, and SED of

galaxies.

The IMF is typically represented as a power law or a piecewise power law in

stellar mass, expressed as:

Φ(m) = dN

d lnm ∝ m−x, (3.24)

where m is stellar mass, N is the number of stars formed with the mass range

m,m+ dm, and x is the slope of the power law.

In GALFORM the IMF is treated as a model assumption and can be specified

independently for different star formation mode. In the version of Lacey et al.

(2016), GALFORM adopts two IMF prescriptions:

• Kennicutt (1983) IMF, which has x = 0.4 for m < 1 M⊙ and x = 1.5 for

m > 1 M⊙, is used for the quiescent star formation in galaxy disks.

• A single power law with slope x = 1, referred to as a top-heavy IMF, is used

in starbursts. The two IMF model was introduced by Baugh et al. (2005)

to reproduce submillimetre galaxy counts and the local galaxy luminosity

function.

Because the IMF shapes the mass returned to the interstellar medium and the

yield of metals, it has downstream impacts on both the star formation history and

the chemical enrichment of galaxies. Assumptions about the IMF must therefore

be carefully considered when comparing model predictions with observed stellar

masses, luminosities, and metallicities.
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3.3 Stellar Population Synthesis

In order to predict the photometric properties of galaxies, GALFORM models the

integrated light from stellar populations of varying ages and metallicities. While

the model does not explicitly compute full SEDs, it uses pre-computed Stellar

Population Synthesis (SPS) models to derive galaxy luminosities in a chosen set of

filters. This approach enables comparisons with observational data while preserving

computational and memory efficiency.

The SED at time t contains stars of different ages and metallicities, depending

on the star formation history, and can be calculated as

Lλ(t) =
∫ t

0
dt′

∫ ∞

0
dZ ′Ψ(t′, Z ′)L(SSP )

λ (t− t′, Z ′; Φ), (3.25)

where Ψ(t′, Z ′)dt′dZ ′ is the mass of stars which formed between t′ and t′ + dt′ and

have metallicity in the range between Z ′ and Z ′ + dZ ′, and L
(SSP)
λ (t, Z; Φ) is the

SED of a Simple Stellar Population (SSP) of a unit mass with age t, metallicity

Z, and an IMF Φ(m). Ψ(t, Z) is calculated by summing over the star formation

histories of all progenitor galaxies which merged to form the final galaxy. L(SSP)
λ

is calculated from the luminosity of a single star L(star)
λ (t, Z,m) and it is expressed

by

L
(SSP )
λ (t, Z; Φ) =

∫ mup

mlo
L

(star)
λ (t, Z; Φ)Φ(m)d lnm, (3.26)

where mlo and mup are the lower- and upper- mass cutoff for the mass distribution

of the IMF, typically around 0.1 - 100 M⊙, respectively. The relation between

Lλ(λ) and Lν(ν) is described by λLλ(λ) = νLν(ν).

Before reaching the observer, starlight is attenuated by dust through absorption

and re-emission. Radiation in the UV, optical, and near-infrared (IR) is absorbed

by dust and subsequently re-emitted at IR and sub-mm wavelengths. GALFORM

incorporates a self-consistent model for dust absorption and emission. It assumes a
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two-phase dust medium: dense clouds and a diffuse component. Stars are assumed

to be embedded in the dust. The results of radiative transfer calculation are used

to compute the attenuation by the dust. For a full description of the dust modelling

implemented in GALFORM, the reader is referred to Section 3.9.2 of (Lacey et al.,

2016).

The absolute magnitude MQ is defined as the apparent magnitude that an

object would have if it were 10 pc away. It is related to the Lν(ν) as

MAB,Q = −2.5 log10

∫ dνe
νe

Lν(νe)
4π(10pc)2Q(νe)∫ dνe

νe
gQ

ν (νe)Q(νe)

 , (3.27)

where Q(ν) is the transmission curve for filter Q and gν is the AB reference flux

per unit frequency (Oke and Gunn 1983; Hogg et al. 2002).

To illustrate the predictions of GALFORM relevant to this thesis, Fig. 3.2 shows

the evolution of the i-band galaxy luminosity function across redshifts from z = 0.00

to z = 2.00, sampled directly from GALFORM snapshot outputs. The redshift range

matches that explored in the observational analysis presented in later chapters.

Furthermore, Fig. 3.3 presents the evolution of the i-band LF separately for red

and blue galaxy populations, defined using rest-frame (g− r) colours. Red galaxies

are selected with (g − r)rest ≥ 0.4, while blue galaxies have (g − r)rest < 0.4.

3.4 Limitations of DM-only simulations and baryonic

effects on halo mass

The implementation of GALFORM relies on merger trees extracted from cosmological

N-body simulations that model the evolution of dark matter only. These simu-

lations are computationally efficient and well-suited for generating large-volume

halo catalogues, but they neglect the effects of baryonic physics on the growth and

structure of halos.
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Figure 3.2: The evolution of the i-band luminosity function from GALFORM snapshots
between redshift z = 0 and z = 2.

Figure 3.3: The evolution of the i-band luminosity function for red and blue galaxies from
GALFORM snapshots between redshift z = 0 and z = 2.

In reality, baryonic processes such as gas cooling, star formation, and feedback

from supernovae and AGN can alter the mass distribution within halos. For ex-

ample, radiative cooling and baryon condensation can deepen the central potential
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wells, increasing the total mass of halos (a process often referred to as adiabatic

contraction). Conversely, energetic outflows from feedback processes can expel gas

and cause halos to expand slightly, reducing their effective mass and concentration.

Hydrodynamical simulations that include these effects have shown that baryons

can lead to systematic shifts in halos masses and profiles compared to their dark

matter-only counterparts (e.g. Schaller et al. 2015).

Here, GALFORM does not apply any correction to account for such baryonic

effects on halo mass. The merger histories used by GALFORM are constructed dir-

ectly from DM-only simulations using FoF halo finders and subhalo identification

algorithm SUBFIND, as mentioned in §3.2.2. As a result, the galaxy formation pro-

cesses modelled in GALFORM evolve within a framework where halo masses reflect

purely gravitational collapse in the absence of baryons.

It is important to note that this approximation may introduce subtle differ-

ences in the predicted assembly histories of galaxies, particularly at small scales or

high redshift. Since baryonic effects can shift halo masses and merger rates across

cosmic time, they may influence the timing of gas accretion and galaxy mergers.

However, this approach remains widely adopted in semi-analytic modelling due to

its flexibility and computational efficiency.

3.5 Observation tests of GALFORM

A critical strength of the GALFORM semi-analytic model is its ability to produce

detailed predictions that can be directly compared against observational data,

providing a robust way to test and refine galaxy formation theories. Such com-

parisons play a pivotal role in constraining the theoretical assumptions, physical

prescriptions, and free parameters within the model.

GALFORM has been extensively tested against a broad range of observational

constraints, spanning various cosmic epochs and wavelengths. The observational

data used for constraining GALFORM includes: i) the optical and near-IR LFs at
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z = 0, ii) the HI mass function at z = 0, iii) the morphological fractions at z = 0,

iv) the black hole-budge mass relation at z = 0, v) the evolution of near-IR LF

between z = 0−3, vi) the sub-mm galaxy number counts and redshift distributions,

vii) the far-IR number counts, and far-UV FS and Lyman-break galaxies (Cole et al.

2000; Bower et al. 2006; Gonzalez-Perez et al. 2014; Lacey et al. 2016; Baugh et al.

2019).

After calibration, GALFORM provides several observation predictions based on

model outputs (see Fig. 3.1). In this thesis, I focus on two key tests of GALFORM:

the galaxy luminosity function and the stellar mass function, as these are directly

relevant to the analyses presented in the subsequent chapters.

• Galaxy Luminosity Functions (LFs): GALFORM predicts galaxy luminos-

ity functions across a range of wavelengths, from optical to infrared and sub-

millimetre. The shape and evolution of the LF provide stringent constraints

on star formation histories, feedback processes, and IMF assumptions. The

original model by Cole et al. (2000) showed good agreement with the local

optical LF. Later refinements, including the incorporation of AGN feedback

(Bower et al. 2006) and the implementation of a top-heavy IMF in starbursts

(Lacey et al. 2016), significantly improved the model’s performance at the

bright end and at the higher redshifts, where earlier versions underpredicted

luminous galaxies (e.g. see Fig. 17 in Lacey et al. 2016).

• Stellar Mass Functions (Stellar Mass Function (SMF)s): The stellar

mass function is another fundamental observable that constrains the integ-

rated star formation history of galaxies. GALFORM predictions of the SMF

across redshifts have been compared against observationally inferred stellar

mass functions, providing critical constraints on parameters related to star

formation efficiency, supernova feedback, and AGN heating. For instance,

the inclusion of AGN feedback was essential to reproducing the break in the
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SMF at the high-mass end by preventing excessive stellar mass buildup in

massive halos (Lacey et al. 2016).

3.6 Conclusion

This chapter has outlined the fundamental astrophysical processes incorporated in

the GALFORM semi-analytic model of galaxy formation. The model builds on the

hierarchical growth of structure in cold dark matter cosmologies and implements a

suite of physically motivated prescriptions to simulate gas cooling, star formation

in disks and starbursts, feedback from SNe and AGN, galaxy mergers, black hole

growth, and chemical enrichment. It also includes treatments of galaxy sizes, stel-

lar populations, and photometric properties through stellar population synthesis

modelling.

GALFORM successfully reproduces many observed properties of galaxies, includ-

ing the luminosity and stellar mass functions. These comparisons serve as critical

observational tests and demonstrate the model’s predictive power.

In the next chapters, this model will be applied to generate lightcone mock

catalogues and to interpret measurements of the galaxy luminosity function and

stellar mass function from the PAUS survey data.
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Chapter 4

Building the Lightcone Mock

Catalogue

4.1 Overview

This chapter describes the construction of a mock galaxy catalogue by Manzoni

et al. (2024) to emulate observations from the Physics of the Accelerating Universe

Survey (PAUS), using the methods described in Merson et al. (2013) and Stothert

et al. (2018). The material is presented here for completeness in the thesis, with

some of my own analysis added. The mock is based on the GALFORM semi-analytic

model of galaxy formation, applied to the Planck Millennium (PMILL) N-body

simulation (Baugh et al., 2019). Galaxies are extracted from simulation snapshots

and placed within an observer’s past lightcone using interpolation techniques, en-

abling a realistic representation of a galaxy population across cosmic time.

The primary goal of this lightcone mock is to reproduce the key observational

features of the PAUS dataset, including survey geometry, photometric selection,

and photometric redshift performance. The mock provides a test for validating

measurements of the galaxy luminosity function, photometric redshift performance,

and other statistical analyses.

The chapter is structured as follows: §4.2 describes the construction of the
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lightcone, including the choice of N-body simulation, tiling of simulation boxes,

and the interpolation of halo positions between snapshots. §4.3 presents how in-

trinsic galaxy properties are assigned in the lightcone, including the treatment of

rest-frame magnitudes and physical properties. §4.4 describes the computation of

observer-frame photometry. §4.5 outlines the angular and flux-based survey se-

lection criteria used to mimic the PAUS observational footprint and depth. §4.6

discusses the inclusion of photometric and photometric redshift uncertainties using

noise models and empirical redshift error distributions. §4.7 presents a validation

of the mock against fundamental PAUS statistic, including redshift distributions,

number counts, and colour-redshift relations. Finally, §4.8 summarises the key

components and outcomes of the mock construction.

This chapter provides the basis of subsequent scientific analyses in this thesis,

including luminosity function estimation and rest-frame properties inference.

4.2 Lightcone Construction

4.2.1 Choice of N-body simulation

For our PAUS lightcone mock catalogue we use the lightcone mock catalogue built

by Manzoni et al. (2024) which implements the GALFORM semi-analytical model into

the high-resolution cosmological N-body simulation, the Planck Millennium run

(PMILL; Baugh et al. 2019). Manzoni et al. used the Lacey et al. (2016) version of

GALFORM. The PMILL simulation follows 50403 ≃ 1.28 × 1011 dark matter particles

in a comoving box of side 542.16 h−1Mpc, with a particle mass of 1.06×108 h−1M⊙.

The high mass resolution of PMILL–an order of magnitude better than earlier

Millennium-class runs–allows us to resolve halos hosting galaxies down to the faint

limits probed by PAUS over a wide range in redshift, and to include better resolved

merger histories to allow more accurate predictions of galaxy properties.

The PMILL simulation outputs 271 snapshots (compared to the 60 typically
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available) between z = 127 and z = 0, equally spaced at an average interval

∆a ∼ 0.0037 in scale factor. Such fine time sampling is crucial to locate halos on

the observer’s past lightcone with minimal interpolation error in both position and

velocity (Stothert et al. 2018).

4.2.2 Defining the observer’s past lightcone geometry

Because a single box of length Lbox = 542.16 h−1Mpc only reaches out to z ∼ 0.19,

the simulation boxes are tiled using periodic boundary replications to cover the full

PAUS redshift range (up to zmax = 2.0). The number of box replicas, nrep per axis

required to cover a sufficient volume to contain the survey is given by

nrep =
⌊
r(zmax)
Lbox

⌋
+ 1, (4.1)

where r(zmax) is the comoving radial distance at the maximum redshift of the

survey we want to build the mock and ⌊x⌋ means that the value of x is rounded

down to the closest integer. In total, there is a grid of (nrep + 1)3 box copies.

This number of replicated boxes is typical of what is required when constructing

a full-sky mock catalogue. However, this value can be reduced for smaller solid

angles.

In the case of non full-sky mock, the line of sight direction chosen for the

centre of the survey should not be chosen to align with one of the axes of the box

arrangement to avoid repeating patterns (Merson et al. 2013).

Figure 4.1: The tiling process (with the repetition emphasized by the yellow star). Image
taken from Blaizot et al. (2005).
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4.2.3 Interpolating halo positions between snapshots

Due to the discrete nature of PMILL simulation, halo catalogues are available

only at specific simulation snapshots as described earlier in the previous section.

Halos, however, do not necessarily enter the observer’s past lightcone exactly at

these snapshot epochs. To achieve precise positioning of halos along the observer’s

past lightcone, it is necessary to interpolate their positions and velocities between

simulation snapshots. Here, we follow closely the interpolation method detailed in

Merson et al. (2013).

The interpolation process consists of several steps:

1. Identification of Bounding Snapshots: We first identify the pair of con-

secutive simulation snapshots between which a halo crosses the observer’s

past lightcone. This is done by checking the halo’s position relative to the

observer at successive snapshots and determining between which two snap-

shots the crossing occurs.

2. Interpolating Halo Positions and Velocities: Having identified the rel-

evant snapshots, we apply a cubic polynomial interpolation independently to

each Cartesian coordinate of the halo’s position. The interpolation uses both

the positions and velocities of the halo at the two snapshots. This approach,

following Merson et al. (2013), ensures a smooth and realistic trajectory for

the halo between snapshots and allows an accurate estimate of the halo’s pos-

ition and velocity at the exact epoch of crossing the observer’s past lightcone.

3. Handling Satellite Galaxies: Satellite galaxies within halos have their

own orbital motions, meaning their positions do not follow that of their host

halo centre in a simple way. To accurately capture satellite trajectories,

a simplified two-dimensional polar interpolation around the halo centre is

employed, separately interpolating the radial and angular components of the

satellite’s orbit. Fig. 2 of Merson et al. (2013) shows that this approach
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retains realistic orbital motion and avoids artificial distortions or clustering

artefacts. It is worth noting that Smith et al. (2022) reported unrealistically

large velocities being predicted using a cubic interpolation, leading them to

use a linear interpolation scheme in their DESI lightcone mock catalogue.

For consistency with previous work of Manzoni et al. (2024), we use Merson

et al.’s interpolation scheme for our lightcone mock catalogue.

The linear interpolation technique described above naturally results in a con-

tinuous distribution of halos along the observer’s past lightcone. By accurately

placing each halo at the precise redshift at which its light would reach us today,

this method effectively assembles continuous redshift shells without discrete jumps

or gaps between snapshots. Such continuity ensures a realistic spatial distribution

of galaxies and preserves the accuracy of clustering measurements and photometric

redshift distributions required for PAUS analyses.

4.3 Intrinsic Galaxy Properties in the Lightcone

4.3.1 Physical properties

Once galaxies are positioned on the observer’s past lightcone, they must be as-

signed appropriate intrinsic properties–such as stellar mass, star formation rate

(SFR), and metallicity. In principle, one could attempt to interpolate these prop-

erties between snapshots, similar to the approach used for halo positions. However,

galaxy properties often evolve non-linearly due to physical processes like starbursts,

mergers, and AGN feedback, which can occur on timescales shorter than the snap-

shot intervals (see Lacey et al. 2016 for a discussion of the additional time steps

or substeps used between the simulation snapshots to improve the time resolution

with which some processes are modelled, such as star formation).

Following the approach outlined in Merson et al. (2013), we adopt a pragmatic

solution that avoids potentially misleading interpolation. For each galaxy placed
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on the lightcone at redshift z, we assign it the galaxy properties from the GALFORM

snapshot immediately preceding that redshift. That is, we use the output from the

higher-redshift snapshot whose epoch lies just before the galaxy’s lightcone crossing

time.

This approach ensures that we do not attempt to interpolate through periods

of rapid or complex evolution, such as major mergers, which can significantly alter

a galaxy’s mass and the star formation history between snapshots. Although this

introduces a stepwise approximation in the redshift evolution of galaxy properties,

it is a conservative method that avoids introducing artificial structure or double-

counting progenitors during merger events.

The resulting lightcone catalogue thus contains galaxies with positions inter-

polated smoothly between snapshots, while their physical properties are fixed at

the nearest earlier snapshot. Otherwise, it would require the full calculation using

GALFORM for each galaxy at the epoch at which it crosses the past lightcone. Hence,

this method provides a practical balance between accuracy and computational ef-

ficiency.

4.3.2 Rest-frame SEDs and magnitudes

The one exception to the treatment described above for galaxy properties on the

lightcone is galaxy magnitudes. For historical reasons that were relevant when

GALFORM was devised 30 years ago, the model does not store a spectral energy dis-

tribution for each galaxy. Instead, the spectra read in from the population synthesis

model are converted into mass-to-light ratios for a set of filters specified prior to

run time. These values are combined to return the mass-to-light ratio that would

have been obtained from a composite spectral energy distribution, combining all of

the episodes of star formation, taking into account the look-back times and metal-

licity of the star formation. Note that this emission is purely stellar emission and

does not contain the contribution from nebular emission lines, which are calculated
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separately (Baugh et al., 2022).

These filters can be in the rest or observed frame of the galaxy, which means

that we know the exact k-correction for each model galaxy at the simulation snap-

shots, a fact that we exploit below to build a model to estimate the k-correction.

4.4 Computation of Observer-Frame Photometry

The observed flux of a galaxy at redshift z is calculated by first deriving its lumin-

osity distance, dL(z), based on its comoving position in a flat Universe:

dL(z) = rc(z)(1 + z), (4.2)

where rc(z) is the comoving radial distance. The emitted luminosity per unit

frequency, Lν(νe) is related to the observed flux per unit frequency Sν(νo) via:

Sν(νo) = (1 + z) Lν(νe)
4πd2

L(z) , (4.3)

with the relation between emitted and observed frequency being νe = νo(1 + z),

due to redshifting.

The observer-frame apparent magnitude in a given bandpass R is then com-

puted using the standard AB magnitude definition:

mAB,R = −2.5 log10

[∫ dνo
νo
Sν(νo)R(νo)

Sν,o

∫ dνo
νo
R(νo)

]
, (4.4)

where R(νo) is the transmission curve of the filter R and Sνo is the AB reference

flux per unit frequency.

The observer-frame absolute magnitude of a galaxy can be calculated using

MAB,R = −2.5 log10

[ ∫ dνe
νe
Lν(νe)R( νe

1+z )
4π(10pc)2Sνo

∫ dνo
νo
R( νe

1+z )

]
. (4.5)

We now can calculate the observer-frame apparent magnitude of a galaxy using

mAB, R = MAB,R + 5 log10

(
dL(z)

Mpc/h

)
+ 25 − 2.5 log10(1 + z). (4.6)
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4.5 Survey Selection

To produce a mock catalogue that accurately represents the PAUS observations,

we apply a set of angular and flux-based selection criteria to the galaxies in the

lightcone. These selections mimic the survey geometry, photometric depth, and

quality cuts used in the actual PAUS data reduction pipeline, and are crucial for

enabling a fair comparison between the mock and the real data.

• Angular Mask and Survey Footprint: The central line-of-sight vector

of the observer’s lightcone is looking down the Ẑ ′(X,Y, Z) axis as shown

in Fig. 4.2. The field of view of the lightcone is governed by the angle θ′
r.

Galaxies with position vector r⃗′(X ′, Y ′, Z ′) resulting in θ′ > θ′
r are excluded

from the observer’s lightcone. The solid angle or survey area, Ω, is related to

the opening angle, θ′
r, as

Ω = 2π[1 − cos(θ′
r)]. (4.7)

Table 2.1 shows that the PAUS as made up from the W1, W3, and G09 fields

covers Ωtotal ∼ 50 deg2 of the sky in total. The lightcone mock built by

Manzoni et al. 2024, however, is designed to cover 100 deg2 (equivalent to

θlightcone ∼ 5.66 deg).

Fig. 4.3 shows the side view of the lightcone mock. This lightcone is big

enough to cover the solid angle of the PAUS survey area. One can reduce

the field-of-view of the mock to match any individual field in post processing.

Fig. 4.4 shows the cross section of the lightcone at different redshift ranges,

representing the galaxy positions as seen on the sky.

• Flux limit selection: As mentioned in §2, PAUS is a flux limited survey. To

match the depth of lightcone mock with that of PAUS, we set the magnitude

limit to have a limiting depth of iAB = 23. Manzoni et al. (2024) shows that
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Figure 4.2: Illustration of lightcone geometry showing the central light-of-sight vector
alignment Ẑ ′ and the field-of-view angle θ′

r. Image taken from Merson et al. (2013).

Figure 4.3: RA vs spectroscopic redshift for galaxies in the GALFORM lightcone mock cata-
logue. Each galaxy is plotted with the same symbol size.

the redshift distribution of the lightcone matches that of PAUS, as shown in

Fig. 4.7.

4.6 Flux Errors and Photometric Redshift Errors

We also consider the effect of errors in the galaxy photometry and photomet-

ric redshift estimation on the recovered luminosity function, by perturbing these

quantities in the Manzoni et al. mock catalogue.
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Figure 4.4: The projected 2D positions of lightcone mock galaxies at different redshift
bins, shown at the top left of each panel. Each panel only show RA and DEC positions of
galaxies and each galaxy has the same symbol size.

4.6.1 Flux errors

Photometry errors are assumed to have a Gaussian distribution in magnitude. The

perturbed magnitude in the band labelled by j, mobs
j is obtained by adding a

Gaussian distributed quantity, x, which has zero mean and a variance of σj to the

true magnitude predicted by GALFORM, mtrue
j :

mobs
j = mtrue

j + x. (4.8)

The variance of Gaussian is related to the signal-to-noise ratio in band j,

(S/N)j by:
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σ2
j = 2.5

ln 10
1

(S/N)j
. (4.9)

The signal-to-noise ratio is set to be 5 at the magnitude limit in a given band. The

broad- and narrow-band magnitude limits for the PAUS mock are given in Manzoni

et al. (2024). This model assumes that all galaxies are treated as point sources.

To ensure completeness at iAB = 23 after applying photometric uncertainties, we

start from a deeper sample limited at iAB = 24.

4.6.2 Photometric redshift errors

The photometric redshift code BCNZ2 (Eriksen et al., 2019) was run using a random

sample of 44,725 galaxies from the Manzoni et al. catalogue, to reduce the com-

putational overhead. This exercise gives the distribution of estimated photometric

redshifts as a function of the true redshift, including outliers. We sample this dis-

tribution, in narrow, running bins of the true redshift, to estimate the photometric

redshift for all galaxies in the mock. Using this approach, we have tested that we

can recover the scatter and outlier fraction obtained when running the photometric

redshift code directly as shown in Fig. 4.5. Note that in this exercise we are not

using the emission lines predicted by GALFORM (see Baugh et al. 2022), so the per-

formance of the photometric redshift estimator is somewhat poorer than it would

be for the real data, thus giving a conservative estimate of the errors.

To apply similar photometric redshift errors to the rest of the lightcone mock

galaxies, we use the acceptance-rejection sampling method to reproduce the pho-

tometric redshift error distribution function. We first separate the 44,725 galaxies

into 200 bins, with each bin containing an equal number of galaxies. The cumulat-

ive distribution of the photometric redshift errors of each bin is shown in Fig. 4.6.

The photometric redshift error is then selected randomly using the acceptance-

rejection technique based on the Cumulative Distribution Function (CDF) of the

photometric redshift errors of the redshift bin that the galaxy falls into.
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Figure 4.5: The photometric redshifts obtained using the BCNz code applied to a subsample
of the lightcone mock compared to the true redshifts from the mock.

Our approach of sampling the error distribution rather than trying to model it

using e.g. a Gaussian, is vindicated by the errors above z ∼ 1. At these redshifts,

the fraction of outliers increases substantially, to the extent that it is hard to define

the scatter using the central 68 percent of galaxies (because an increasing fraction

of the central 68 percentile range of estimated redshifts corresponds to outliers). In

these high redshift bins, the photometric redshift errors can lead to a distortion in

the number of galaxies in the redshift bins used to estimate the luminosity function.

4.7 Validation Against PAUS Statistics

The validation of the lightcone mock catalogue is essential to demonstrate that

it reproduces key statistical properties of the observed galaxy populations in the

PAUS. In this section, we follow the methodology and results presented in Manzoni

et al. (2024), who carried out a detailed comparison between the lightcone mock
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Figure 4.6: The cumulative distribution diagram of the photometric errors obtained from
the BCNz code on the 44,725 mock galaxies. The x-axis shows the errors between the
photometric redshift zb and the spectroscopic redshift zs.

and PAUS data. Their work serves as the foundation for evaluating the consistency

between the simulated and observed galaxy distributions in redshift, colour, and

photometric redshift performance.

4.7.1 Redshift distribution and number counts

Manzoni et al. (2024) compared the redshift distribution, N(z), and magnitude

number counts of mock galaxies to those observed in PAUS, applying the same

flux limit. They showed that the mock reproduces the overall shape and amplitude

of the N(z) distribution across W1 and W3 fields. Similarly, the i-band number

counts in the mock agreed well with the observed counts.

In addition to the results from Manzoni et al. (2024), we extend the redshift
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distribution out to z = 2 and apply the apparent magnitude limit to iAB = 23

(compared to iAB = 22.5 in their work). Fig. 4.7 shows the redshift distribution of

the lightcone galaxies compared to that of the data from PAUS W1 and W3 fields.

We also show the effect of the photometric redshift uncertainties on the redshift

distribution by applying a similar photo-z error similar to result obtained from

BCNz code.

Figure 4.7: The redshift distribution from the lightcone mock catalogue compared to that
from PAUS W1 and W3 data. For the mock we show the distribution with the true
cosmological redshifts (black line) and also including the typical photometric redshift errors
(blue curve.)

Fig. 4.8 shows the i-band galaxy number counts of the lightcone mock compared

to the observational data from PAUS W1 and W3. In addition to the galaxy number

counts in PAUS data, we also show the number counts of all PAUS objects, PAUS

galaxies with the best 50% photometric redshift quality, and object classified as

stars, labelled using suffix as “all”, “best50%”, and “stars”, respectively.

These comparisons demonstrate that the lightcone construction and survey

selection applied to the mock provide a faithful representation of the PAUS galaxy

sample, at least at the level of global distributions. This work will carry out

a further validation between the mock and the observed data by comparing the

luminosity functions.
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Figure 4.8: The i-band number counts of the GALFORM lightcone mock compared to that of
the observational data from PAUS W1 and W3 fields with different cuts. The dashed lines
show the galaxy counts after rejecting the 50 per cent of objects which have the poorest
quality photometric redshifts; an increasing fraction of galaxies have poor photometric
redshifts moving faint wards. The dotted lines show the counts of objects classified as
stars; the methodology used to do this was changed by the CFHTLS team at iAB = 21.

4.7.2 Colour-redshift relations

A another key validation test performed by Manzoni et al. (2024) involved examin-

ing the colour–redshift evolution in the mock and comparing it with the PAUS

data. They analysed broad-band (g − r) colour, including the separation of red

and blue populations.

The results showed a good agreement between mock and data in both the me-

dian colours and the spread of colour distribution as a function of redshift after

considering survey uncertainties. The redshift evolution of galaxy colours is well re-

produced, confirming that the model captures the basic trends in galaxy properties

over the considered cosmic time.
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Figure 4.9: The medians of the observed (g-r) colour as a function of redshift for red and
blue populations in the lightcone mock and observational data. Figure taken from Manzoni
et al. (2024).

4.8 Conclusions

In this chapter, we have described the construction of a lightcone mock catalogue

tailored to the Physics of the Accelerating Universe Survey (PAUS) by Manzoni

et al. (2024), using galaxies generated from the GALFORM semi-analytic model and

positioned within the observer’s past lightcone constructed from the Planck Millen-

nium N-body simulation. This mock serves as a synthetic counterpart to the real

PAUS data, enabling us to model survey selection effects, test analysis pipelines,

and interpret observational measurements.

We began by outlining the process of constructing the lightcone, including the

replication and tiling of the simulation volume to cover the full PAUS redshift range

and sky area. Halo positions were interpolated between snapshots to precisely de-

termine their locations on the lightcone, ensuring a continuous spatial distribution

of galaxies and accurate clustering properties.
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Galaxy properties such as stellar mass, star formation rate, and metallicity were

assigned from the GALFORM snapshot immediately preceding the lightcone crossing,

avoiding unreliable interpolation across rapidly evolving periods. Rest-frame SEDs

were constructed from these properties using mass-to-light ratios generated in-

ternally by GALFORM, allowing us to compute observer-frame magnitudes through

redshifting and filter convolution.

Photometric and redshift errors were applied to mimic realistic observational

conditions. We modelled photometric uncertainties with Gaussian perturbations

and introduced photometric redshift scatter using a data-driven sampling approach

based on the BCNz2 estimator. This allowed us to incorporate realistic outliers and

redshift-dependent error distributions.

Finally, we validated the mock against key PAUS observables, including red-

shift distributions, galaxy number counts, and colour–redshift trends. These com-

parisons, largely based on the work of Manzoni et al. (2024), showed good agree-

ments with the PAUS data, supporting the utility of the mock for scientific ana-

lyses. The mock reproduces both the global statistics and redshift evolution of

galaxy colours and magnitudes, forming a reliable foundation for further work,

such as luminosity function estimation and environmental studies.

68



Chapter 5

The Use of Machine Learning for

Predicting the Rest-Frame

Absolute Magnitudes of Galaxies

Machine Learning (ML) techniques have become powerful tools in modern astro-

nomy, as datasets have grown in size and fast computers have become more widely

available. They allow us to analyse large datasets and discover complex patterns

that are often difficult to capture using traditional methods. In particular, su-

pervised ML algorithms are widely used to predict physical properties of galaxies

based on observational data (e.g., Bonfield et al. 2010; Acquaviva 2016; Domínguez

Sánchez et al. 2018; Pasquet et al. 2019; Chu et al. 2024; Daza-Perilla et al. 2025).

One key application is the estimation of rest-frame absolute magnitudes of galaxies

from their observed photometric properties, without relying on model-dependent

spectral energy distribution (SED) fitting. In this chapter, we explore the use of

Random Forest Regression (RFR), a supervised learning method, to predict the

rest-frame absolute magnitudes of galaxies.

For completeness, before introducing the machine learning technique used in

this study–Random Forest–and describing its basic building block, the Decision

Tree, we first explain the concept of k-correction and the conventional methods
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typically used to compute it. The chapter is organised as follows: §5.1 discusses key

aspects of k-correction and its role in measuring the intrinsic brightness of galaxies.

§5.2 outlines the working of a Decision Tree and how it can lead to overfitting.

§5.3 describes how the Random Forest Regression model addresses the overfitting

problem. We also detail the procedure for splitting the sample into training, testing,

and validation sets, as well as the fine-tuning of model hyperparameters using

cross validation. Finally, §5.4 presents the k-corrections and rest-frame i-band

magnitudes predicted using the machine learning approach.

5.1 k-correction

The luminosity of a galaxy is an intrinsic property that is proportional to the

number of stars in the galaxy, their ages, and metallicities (see the review by

Conroy 2013). In galaxy surveys that span a wide redshift range, a given observed

filter samples progressively shorter rest-frame wavelengths of a galaxy’s spectral

energy distribution (SED) as redshift increases. To simplify comparisons across

redshifts, it is common practice to evaluate galaxy luminosities at a fixed rest-

frame wavelength. In this study, we select galaxy samples in an observed band, the

CFHTLS-i band (as measured in PAUS), and estimate the luminosity function at

a fixed reference redshift of z = 0, also in the i-band.

The adjustment between the observed i-band magnitude of a galaxy at redshift

z and the equivalent i-band magnitude in the z = 0 rest frame is known as the k-

correction. A full derivation of the k-correction can be found in Hogg et al. (2002).

Here, we show the final result, given by:

KQR = −2.5 log10

[∫ dνo
νo
Sν(νo)R(νo)

Sν,o

∫ dνo
νo
R(νo)

Sν,e

∫ dνe
νe
Q(νe)∫ dνe

νe
Sν( νe

1+z )Q(νe)

]
, (5.1)

where Sν is the galaxy SED, R and Q are the transmission functions of the observed

and rest-frame filters, respectively, and the integrals are over frequency space in

the observer and emitter frames.
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Figure 5.1: K-correction of a model SED at z = 1 (orange). The SED is plotted in the
observed wavelength frame. The same model galaxy is shown at redshift z−0 in blue. The
vertical difference between each pair of symbols in the same filter indicates the k-correction.

Fig. 5.1 illustrates how the luminosity of a galaxy can be k-corrected when both

the shape of its spectral energy distribution (SED) and its redshift are known. The

k-correction quantifies the difference between the observed and rest-frame fluxes in

a given filter, and depends sensitively on the SED shape. In practice, a galaxy’s

SED can be estimated by fitting empirical templates to the observed photometry

or by generating synthetic SEDs based on assumed star formation histories (and,

more rarely, chemical enrichment histories; e.g., Mitchell et al. 2013). However,

constructing an accurate SED for every single galaxy in a large survey like PAUS

can be computationally intensive, especially given its depth and wide area coverage.

GALFORM predicts the Star Formation History (SFH) and chemical evolution of

the disk and bulge components of model galaxies. It also includes a dust attenuation

model (see Lacey et al. 2016 for details). For each galaxy, GALFORM provides both

rest-frame and observed-frame magnitudes, allowing the “exact” k-correction to be

computed at the redshift corresponding to its lightcone crossing.

Fig. 5.2 shows the distribution of k-corrections predicted by GALFORM as a

function of redshift for all galaxies in the PAUS lightcone mock catalogue down
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Figure 5.2: The “true” k-correction values for galaxies with iAB ≤ 23.0 in the GALFORM
lightcone mock catalogue, plotted as a function of redshift. The shading indicates the
number of galaxies per pixel.

to iAB = 23.0. The distribution exhibits a clear bimodality, with two distinct

populations corresponding to red and blue galaxies (see Fig. 5 of Manzoni et al.

2024 for observed (g − r) colour vs. redshift). The negative branch of the k-

corrections corresponds to blue galaxies.

A simple model for the k-correction would be to fit a parametric function of

redshift to the corrections predicted for the bulk of the red and blue galaxies, tra-

cing the ridges in the galaxy distribution in Fig. 5.2. Although the peaks in the

k-corrections are relatively well defined, there is considerable scatter around the

ridges. As a result, such a simplified model would lead to significant errors in the

k-correction, and in turn in the rest frame i-band absolute magnitude. These mag-

nitude errors can affect the shape of the estimated luminosity function, particularly

at the bright end where the function changes rapidly with increasing luminosity.

To reduce this problem, the k-correction is often computed using multiple

colour bins (e.g. McNaught-Roberts et al. 2014). This strategy reduces the offset

between a galaxy’s true k-correction and the nearest parametric fit by tailoring
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the correction to galaxies with similar colours. However, this method does not

account for the evolution of stellar populations across the redshift interval over

which the k-correction is applied–such as the formation of new stars or the fading

of existing ones (i.e., the luminosity evolution correction). Although this approach

has the practical advantage of producing a k(z) curve, it is not guaranteed that

a given galaxy would remain in the same colour bin at all redshifts, potentially

undermining the accuracy of the correction.

We adopt a supervised machine learning technique–Random Forest Regres-

sion (RFR: Breiman 2001)–to address the k-correction problem. Although we

do not test alternative algorithms here, RFR has been widely applied in astro-

nomy alongside methods such as neural networks and gradient boosting. Com-

pared to these, RFR requires relatively little hyperparameter fine-tuning and can

be trained efficiently without GPU acceleration. While gradient boosting methods

often achieve higher performance, they demand more careful optimisation (Carliles

et al., 2010; Baron, 2019) . For these reasons, we select RFR as a practical and

robust choice, while noting that exploring alternative models could further improve

the k-correction framework.

For our calculation, we train the ML model using the GALFORM lightcone mock

catalogue, where both observed and rest-frame properties of galaxies are known.

The input features consist of 5 broadband photometric magnitudes along with

redshift, and the model is trained to predict the k-correction values of galaxies.

It is worth noting that an evolutionary correction is sometimes applied to the

rest-frame luminosities to account for the changes in the stellar population between

the redshift of lightcone crossing and z = 0 due to ongoing star formation in the

galaxy, as well as the ageing of the existing stellar population. We do not attempt to

make any such correction. Instead, differences in the luminosity function between

redshifts reflect this evolution, as well as changes in number density at a given

luminosity due to galaxy mergers.

73



5.2. Decision Tree

5.2 Decision Tree

A decision tree is a simple yet powerful machine learning algorithm that can be

used for both classification and regression tasks. It works by recursively splitting

the data into subsets based on feature values, aiming to create groups that are

as homogeneous as possible with respect to the target variable. In the case of

regression, the decision tree predicts a continuous value by learning a set of decision

rules from the input features (Quinlan 1986).

The tree starts at a root node, where the entire dataset is considered. At each

internal node, the data is split based on the value of one of the features. The

choice of feature and split value is determined by minimising a loss function, such

as the Cross-Entropy (i.e. log-loss) for classification problems or the mean squared

error (Mean Squared Error (MSE)) for regression problems. These loss functions

determine how well the model can perform by comparing the predictions and the

true value. This splitting process continues recursively until a stopping condition

is reached, such as a maximum depth (i.e. a maximum number of splits made) or

a minimum number of samples is reached in a leaf node. The log-loss is defined as:

Log-Loss = − 1
N

N∑
i=1

K∑
k=1

yi,klog(pi,k), (5.2)

where N is the number of the samples, K is the number of classes, yi,k is set

to be 1 if sample i belongs to class k, else 0 (this method of assigning values to

classes is called “one-hot encoding”), pi,k is the predicted probability that sample i

belongs to class k with ∑K
k=1 pi,k = 1 and 0 < pi,k < 1. However, this loss function

is primarily used for classification problems, as discussed above. For regression

tasks, The MSE is more appropriate, as it directly measures the deviation between

continuous model outputs and the true values. The MSE is defined as:

MSE = 1
N

N∑
i=0

(yi − pi)2, (5.3)

where N is the number of samples, yi is the true value of the sample i, and pi is

the prediction.
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As an example, the mock catalogue from Manzoni et al. (2024) shows that

galaxies can be classified into red or blue populations based on their observed

(g−r) colour, based on the colour cut given by Manzoni et al’s Equation 2. Fig. 5.3

displays the distribution of (g−r) colour as a function of redshift, with the red and

blue populations highlighted as red and blue points, respectively. The location of

the cut is based on a valley in the density of points in the colour-redshift plane.

A decision tree can be trained to classify galaxies into these populations using

3 input parameters (or “features”): redshift, (g − r), and ∆. The auxiliary para-

meter ∆ is introduced to simplify the structure of the decision tree and improve

its visualisation. It is defined as the difference between (g − r) and the RHS of

Equation 2 of Manzoni et al. (2024), defined as:

∆ = (g − r) − 1.7 × redshift − 0.35. (5.4)

Figure 5.3: Distribution of observed galaxy (g − r) colour as a function of redshift for the
GALFORM lightcone mock catalogue. Galaxies are classified as red or blue according to the
colour cut in Manzoni et al. (2024), and are shown in red and blue accordingly.

The example decision tree trained on 713, 622 galaxies from the GALFORM light-

cone mock catalogue is shown in Fig. 5.4. There are 473, 727 blue galaxies and

239, 895 red galaxies to begin with. At the root node (node #0), galaxies with ob-
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served (g − r) greater than 1.1 are classified as red galaxies while the other fail to

satisfy the condition are further to classified in the next node. After the first node,

the model is able to extract 201, 660 red galaxies from the sample. The remaining

511, 962 galaxies are then split at node #1 using the ∆ parameter. This final split

results in a clear separation between red and blue galaxies at the leaf nodes (Node

#2, #3, and #4).

Figure 5.4: Example of a decision tree trained to classify galaxies into red and blue popula-
tions using redshift, (g− r) colour, and the auxiliary parameter ∆ (see text). The training
set contains 713,622 galaxies from the GALFORM lightcone mock catalogue. The sample
consists of 473,727 blue and 239,895 red galaxies, represented as “value” in the lowest line
of each node in the chart. The tree structure shows how the sample is split at each node
to achieve final classification at the leaf nodes.

Decision trees are fast to train and easy to interpret, as shown in this example.

However, a single decision tree tends to overfit the training data, especially if the

tree is allowed to grow very deep. This means that while it may perform well on

the training set, its performance on unseen data can be poor. To overcome this

limitation, ensemble methods such as Random Forests have been developed.

5.3 Random Forest Regression

Although decision trees are powerful and easy to interpret, they tend to suffer from

overfitting. This overfitting leads to high variance, where the model fits the noise

in the training data instead of capturing the underlying patterns. One popular
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method to overcome this limitation is the Random Forest algorithm (Breiman

2001).

A random forest is an ensemble learning method that builds a large number

of individual decision trees during training and combines their outputs to improve

predictive performance. For regression tasks, the final prediction of a random

forest is the average of the predictions from all the individual trees. This ensemble

approach significantly reduces the risk of overfitting and improves the model’s

ability to generalise to unseen data.

Random forest introduce randomness in two ways:

• Bootstrap sampling: Each decision tree is trained on a random subset of

the training data, drawn with replacement.

• Random feature selection: At each split within a tree, a random subset

of features is considered for splitting rather than evaluating all features. This

introduces diversity among the trees and further reduces correlations between

them.

The general structure of a random forest is illustrated in Fig. 5.5. Multiple

decision trees are trained independently, and their predictions are averaged to ob-

tain the final output. This process helps to stabilise predictions and leads to higher

overall accuracy.

In Astronomy, random forests have been successfully applied to a variety of

problems, such as predicting galaxy metallicities (Acquaviva 2016), estimating red-

shifts and stellar masses (Mucesh et al. 2021), estimating star formation rates

(Bonjean et al. 2019), and classifying galaxy morphologies (Fontirroig et al. 2024).

Their ability to handle large datasets, noisy inputs, and complex, non-linear re-

lationships makes them highly suitable for astrophysical applications. Moreover,

in general random forests have comparable performance to other machine learning

methods, such as neural networks (Carliles et al. 2010)
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Figure 5.5: An illustration of Random Forest Regression that is formed of 100 trees. The
output of the Random Forest is averaged over the predictions of each individual tree. Image
taken from Nedjati-Gilani et al. (2017).

Here, we extend the use of random forest to estimate the k-corrected rest-frame

absolute magnitudes of galaxies based on their observed photometric properties.

Instead of relying on traditional model-dependent SED fitting methods, the random

forest learns the mapping between observed-frame magnitudes, redshifts, and the

target rest-frame absolute magnitudes directly from the data, which in this case is

the output of a galaxy formation model.

We train the random forest to learn the mapping between observed-frame mag-

nitudes (and redshifts) and the rest-frame absolute magnitude. The input features

include observed magnitudes in CFHT−ugriz bands and a photometric redshift

estimate. The target value is the k−correction computed for a subset of galaxies

from the lightcone mock catalogue. After training, the random forest model can

predict the rest-frame absolute magnitudes for new galaxies directly from their ob-

served photometry and redshift, without the need for explicit SED fitting, which

requires a set of model assumptions.

Here, the method we chose is the Random Forest Regression (RFR) algorithm
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from the publicly available package RandomForestRegressor from Scikit-Learn

(Pedregosa et al., 2011), as this algorithm has been widely tested in astronomy

(Baron, 2019; Hernandez Vivanco et al., 2020; Hoffman et al., 2021).

In the following subsections, we describe in detail the preparation of the train-

ing and testing data sets, the procedure for tuning the random forest model, and

the method used to validate the model performance.

5.3.1 Training and testing data set

The training and testing datasets for the RFR model are constructed using galaxies

generated by the GALFORM semi-analytic model. In this study, we use the lightcone

outputs from Manzoni et al. (2024). For computational reasons, 250 sub-boxes

(out of 1024) are selected to create the dataset for training the machine learning

model. This means that the overall count of galaxies is about one quarter of what

it should be. By using the output of a galaxy formation model, we do not need

to make assumptions about the form of the star formation history (the model

calculates this) or about the chemical evolution of the interstellar medium or the

dust extinction (again, these are computed in the model).

The observational properties extracted for each galaxy include the observed

magnitudes in the CFHT MegaCam u, g, r, i, and z bands, as well as the observed

redshift, zobs. Additionally, the intrinsic i-band absolute magnitude is retrieved to

compute the target variable.

The target variable for the machine learning model is the k−correction for the

i−band, denoted as ki(z), which is defined as the difference between the observed

apparent magnitude, mi, and the rest-frame absolute magnitude (Mi) after cor-

recting for known distance effects (i.e. taking into account the luminosity distance

for the assumed cosmology):

ki(z) = mi −Mi − 5 log10

(
dL

Mpc/h

)
− 25, (5.5)
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where dL is the luminosity distance, obtained by interpolating a pre-computed

distance-redshift table to save time. The GALFORM model predicts the k-correction

exactly at the simulation output redshifts, as the i-band magnitude can be reques-

ted in the rest and observed frames. The observer frame at the redshift of lightcone

crossing is interpolated between the values at the snapshots either side of this red-

shift (see Merson et al. 2013 for a discussion of this point). The distribution of

ki(z) as a function of redshift for the galaxies in the lightcone is shown in Fig. 5.2.

The input features used for training consist of 6 parameters:

• Observed redshift, zobs

• 5 apparent magnitudes, CFHT-ugriz.

To ensure the quality of the training set, galaxies with redshift zobs < 0.001

are excluded from the analysis, some of these objects could be misclassified as

stars. Additionally, only galaxies with apparent i-band magnitude brighter than

the PAUS flux limit (iAB = 23.0) are selected for training.

The dataset is randomly divided into a training set and a testing set, with

80% of the galaxies used for training and the remaining 20% reserved for testing.

This division allows for the evaluation of the model’s performance on unseen data,

ensuring that the model does not simply memorise the training examples.

The detailed tuning of the random forest model parameters and performance

evaluation are discussed in the following sections.

5.3.2 Tuning the model

Before training the final RFR model, it is important to optimise its hyperparamet-

ers to achieve the best predictive performance (whilst also balancing against a high

computational cost and avoiding overfitting). Each hyperparameter controls a dif-

ferent aspect of how the model builds its ensemble of decision trees. The definition

of each hyperparameter in the RFR model is described below:
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• n_estimators: The number of decision trees in the forest. For example,

Fig. 5.5 shows a random forest with n_estimators = 100. Increasing this

generally improves performance, but with diminishing return for very large

values.

• max_features: The maximum number of features considered when looking

for best split at each node. The choices of max_features includes “nf ” (all

features, or inputs, which is nf = 6 in our case), “sqrt” (square root of the

total features), and “log2” (log base 2 of the total features). The value of

“sqrt” and “log2” after rounding down to the closest integer is the same in

our case. Therefore the final hyperparameter choices are “nf ” and “sqrt”.

Using fewer features increases randomness, helping to decorrelate the trees.

• max_depth: The maximum depth of each individual tree. The maximum

depth can be set to any arbitrary integer with bigger number for deeper trees.

The tree can also be set to grow indefinitely using max_depth = “None”. This

allows a tree to grow until its leaf nodes reach min_samples_leaf. Limiting

the depth prevents tress from growing too complex and overfitting to noise.

• min_simples_split: The minimum number of samples required to split in an

internal node. Increasing this value can make the model more conservative.

• min_simples_leaf: The minimum number of samples required to be at a

leaf node. Setting this to a large value can smooth predictions and reduce

model variance.

• min_weight_fraction_leaf: The minimum weighted fraction of the input

samples required to be at a leaf node. In this study, it is fixed at 0.0.

• max_leaf_nodes: The maximum number of leaf nodes. Setting this limits

the complexity of the trees; in this work, it is also fixed to “None” to allow

unlimited growth.

The original hyperparameter grid considered in this work is shown in Table. 5.1.
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RFR Range Tested Best Values
Hyperparameters

n_estimators [1, 2, 3, 5, 6, 8 ,10, 12, 14, 16, 18, 20, 40
25, 30, 40, 50, 75, 100, 125, 150]

max_features [nf , ‘sqrt’] nf

max_depth [“None”, 1, 2, 4, 6, 8, 10, 15, 15
20, 25, 30, 35, 40, 50]

min_samples_split [2, 5, 10] 2
min_samples_leaf [1, 2, 4] 1

min_weight_frac_leaf 0.0
max_leaf_node “None”

Table 5.1: The hyperparameters for the RFR. The first block of rows shows the tuned
hyperparameters, the range of values or options tested (second column) and the best values
adopted (third column). The lower block of parameters were not varied. The hyperpara-
meter names are explained in the text.

Rather than exhaustively searching all possible combinations, we use a ran-

dom search approach with the RandomizedSearchCV module (Bergstra and Bengio

2012) from scikit-learn. This method randomly samples hyperparameter com-

binations, offering a more efficient way to explore a wide parameter space. If an

exhaustive grid search had been performed, the total number of possible combin-

ations would have been 5,040 (each across 7 folds), making random sampling a

much more computationally efficient alternative. The performance metric used

during tuning is the mean squared error (MSE).

A total of 200 random hyperparameter combinations are sampled and eval-

uated. For each combination, a 7-fold cross-validation is performed, where the

training set is split into 7 parts (see §5.3.3 for details). The model is trained on 6

parts and validated on the remaining part, rotating through all possible splits.

The combination of hyperparameters that yields the lowest-cross-validation

error is selected as the best model. In total, the Randomized Search involved

training and evaluating the model 1,400 times, corresponding to 200 random hy-

perparameter combinations and 7-fold cross-validation for each combination. The

optimised random forest model is then used for further predictions and evaluations.

As a result from the hyperparameter tuning using RandomizedSearchCV, Fig. 5.6
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shows the performance metric (i.e. MSE in this case) against the number of trees

(n_estimator) and Fig. 5.7 shows the performance metric plotted against max-

imum depth (max_depth). Here we show the performance metrics for both the

training (blue dots) and testing sets (orange dots). We find that the perform-

ance of the random forest model changes dramatically at the beginning when

the number of trees and the value of maximum depth increase, but after cer-

tain values the performance does not improve much in terms of accuracy. Despite

RandomizedSearchCV suggesting that 150 trees and maximum depth of 50 is the

best combination (i.e. providing the lowest MSE value), it was found to pro-

duce signs of overfitting. To avoid the overfitting problem, we use Fig. 5.6 and

Fig. 5.7 to manually choose the acceptable combination of hyperparameters. The

final set of hyperparameters used in our RFR model consists of n_estimator =

40 and max_depth = 15 as the model parameters along with max_features = nf ,

min_samples_split = 2, and min_samples_leaf = 1, as shown in the last column

of Table 5.1.

5.3.3 Cross validation

Cross-validation is a model validation technique used to assess how a machine

learning model generalises to an independent dataset. It involves partitioning the

original training data into a set of smaller subsets, known as “folds.” The model is

trained on a combination of these folds and validated on the remaining fold. This

process is repeated several times so that each fold is used once as the validation

set.

The main advantage of cross-validation is that it allows the model’s perform-

ance to be evaluated more reliably than using a simple train-test split. It helps

detect overfitting by ensuring that model performs consistently across different

subsets of the data.

Fig. 5.8 shows an example of 5-fold cross-validation. The training set is divided
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Figure 5.6: The model performance metric during the hyperparameter tuning process
using RandomizedSearchCV. We use MSE as the performance metric and plot it against
the number of trees (n_estimators). The model evaluations during training and testing
are shown as orange and blue dots, respectively. The optimal number trees is chosen to be
40.

into 5 equal parts. For each training iteration, 4 parts are used for training the

Random Forest model (or any machine learning algorithm in general), while the

remaining part is used for validation. This process is repeated 5 times, rotating

the validation set each time. The model’s final performance is then averaged over

all 5 runs. In this work, we use 7-fold cross-validation as described in the previous

section.

Cross-validation is employed both during the hyperparameters tuning stage

and for evaluating the predictive accuracy of the final model. By using 7-fold

cross-validation, we reduce the variability associated with a single train-test split

and obtain a more robust estimate of the model’s generalisation ability.
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Figure 5.7: The same description as Fig. 5.6, but showing MSE as a function of maximum
depth instead. Here max_depth is chosen to be 15.

5.4 Machine Learning-based k-correction

5.4.1 k-corrections and estimation of the rest-frame magnitude

Rather than using a single observed colour to predict the galaxy k-correction, we

use all of the available photometry in the ugriz filters. We use machine learn-

ing to find the relation between observable properties–ugriz photometry with the

redshift–and the k-correction predicted by GALFORM. The RFR is computationally

efficient and its performance is not overly sensitive to the choice of hyperparameter

values. Nevertheless, to find the best RFR model for our problem, we selected

the hyperparameter values using the random grid search technique combined with

k-fold cross-validation to avoid overfitting.
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Random-Forest-Regression k-correction

Figure 5.8: The schematic chart explaining the sample split into train and test
datasets. An example of 5-fold cross-validation is performed for finding hyperpara-
meters, before final evaluation on the test data. Chart taken from https://scikit-
learn.org/stable/modules/cross_validation.html.

5.4.2 The prediction error of the rest-frame absolute magnitude

using the Random-Forest-Regression k-correction

The RFR machine learning prediction of the k-correction is compared to the exact

answer from GALFORM in Fig. 5.9. The error is presented as the difference between

the predicted and true absolute magnitudes. A magnitude difference of zero would

indicate that the machine learning method reproduces the GALFORM answer exactly.

The results are shown for different redshift slices, as indicated by the legend. For

z ≤ 1, there is no bias in the predicted absolute magnitude, just a small scatter

which reaches ≈ 0.05 mag for the brightest galaxies. At z > 1 there is a bias in the

recovered magnitude, with the median differing from zero by up to ±0.2 magnitude.

The scatter is also larger, ∼ 0.1 magnitudes. This sign of the bias means that the

brightest galaxies are assigned an estimated absolute magnitude that is too faint,

while the faintest galaxies in each redshift slice are brighter than they should be.
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Random-Forest-Regression k-correction

Figure 5.9: The performance of the RFR machine learning estimate of the k-correction,
expressed in terms of the difference between the predicted and true absolute magnitude for
each galaxy. The true magnitude is predicted using the exact k-correction from GALFORM.
The solid lines show the median difference between the true and predicted magnitudes.
The dotted lines show the 16th − 84th percentile interval, a centralised version of the 1σ
scatter which is not affected by outliers. Different colours indicate different redshift ranges,
as shown by the legend.
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Chapter 6

The galaxy luminosity function

In this chapter, we present our main results on galaxy luminosity function (LF) us-

ing data from the Physics of the Accelerating Universe Survey (PAUS). The LF is a

fundamental statistical tool for understanding the distribution of galaxy luminosity

and their evolution over cosmic time. Our analysis leverages the high-resolution

photometric redshifts provided by PAUS to estimate rest-frame luminosities and

derive the LF across a wide redshift range.

We begin in § 6.1 by describing the methodology used to estimate the LF via the

1/Vmax technique. In § 6.2, we validate our approach using the GALFORM lightcone

mock, illustrating key selection effects and the role of photometric uncertainties.

§ 6.3 presents the estimated i-band LF from the PAUS W1 and W3 fields, including

a detailed analysis of observational uncertainties in § 6.3.1. In § 6.4, we compare our

measurements with previous LF estimates from the literature. § 6.6 explores the

LFs of red and blue galaxy populations, and § 6.5 investigates the redshift evolution

of the LF. We assess sample completeness and the impact of photometric redshift

quality in § 6.8. In § 6.9, we extend our analysis to the u, g, r, and z bands to

examine wavelength-dependent trends. Finally, we summarise the key findings of

this chapter in § 6.10.
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6.1 The Vmax Methodology

Before introducing the method used to measure the luminosity function, it is useful

to first outline the general behaviour of galaxy populations. The galaxy luminosity

function (LF)–the number density of galaxies as a function of their luminosity–is

commonly described by the Schechter function (Schechter, 1976):

ϕ(L)dL = ϕ∗
(
L

L∗

)α

exp
(

− L

L∗

)
d

(
L

L∗

)
, (6.1)

where ϕ(L)dL is the number density of galaxies with luminosities between L and

L + dL, L∗ is the characteristic luminosity marking the transition between the

faint-end power-low slope and the bright-end exponential cut-off, ϕ∗ is the number

density normalisation constant, and α is the faint-end slope. Fig 3.2 shows the

overall shape of the galaxy luminosity function predicted by GALFORM at different

redshifts. At the faint end, the power-law term (L/L∗)α dominates; the slope α

determines how steeply the LF rises at faint luminosities. For bright galaxies,

the exponential term exp(−L/L∗) dominates; reflecting the rarity of very bright

galaxies.

In this work, we estimate the galaxy luminosity functions using the Vmax meth-

odology (Schmidt, 1968). In a flux-limited sample, the number of sources observed

varies strongly with luminosity (Driver and Phillipps, 1996). At the faint end,

few galaxies are detected because they are only brighter than the apparent mag-

nitude of the selection limit at low redshifts. Thus, although many faint galaxies

are numerous per unit volume, they are only visible over relatively small comoving

volumes compared to brighter galaxies. Conversely, while intrinsically luminous

galaxies can be seen over larger redshift ranges, they are rarer, with their number

density falling off exponentially beyond a characteristic luminosity L∗, as discussed

in Equation 6.1. As a result, the observed number of galaxies therefore peaks

around L∗.
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The Vmax approach corrects the observed number of objects to provide an

estimate of the true, underlying number density of galaxies, by accounting for

the different volumes over which galaxies of varying luminosities can be observed.

The luminosity function ϕ(M), defined as the number density of galaxies per unit

absolute magnitude, is estimated by performing a weighted summation over all

galaxies in a given absolute magnitude bin:

ϕ(M)∆M =
∑

i

1
Vmax,i

, (6.2)

where Vmax,i is the maximum comoving volume over which the i-th galaxy could

have been observed, and ∆M is the width of the magnitude bin.

The value of Vmax for each galaxy is determined by the maximum redshift, zmax

at which the galaxy would still be included in the sample. Starting at the redshift

of observation, z, we can imagine increasing the redshift gradually, adjusting the

luminosity distance and k-correction accordingly until we reach the maximum red-

shift, zmax, at which the galaxy is selected in the sample. At this redshift, the

apparent magnitude of the galaxy is equal to the limit that defines the catalogue,

mlimit:

m(zmax) = mlimit = M + 5 log10

(
dL(zmax)
h−1Mpc

)
+ k(zmax) + 25, (6.3)

where dL is the luminosity distance. An intrinsically faint galaxy therefore has

a smaller zmax than an intrinsically bright galaxy, and hence contributes a larger

1/Vmax weight to the LF.

PAUS galaxies are visible over a wide range in redshift (Manzoni et al., 2024).

Hence, we can divide the volume covered into a series of thin redshift shells to

isolate evolution in the luminosity function. Due to using thin shells in redshift,

most galaxies are visible over the full redshift interval of the shell, z1 < z <2, so

zmax > z2. This means that for most galaxies in each shell, Vmax = Vshell. It is

only for the faintest galaxies that zmax < z2, and these galaxies are only visible

over part of the shell. Note that we know the value of the k-correction at the
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Lightcone Mock

redshift of observation, but we do not know the functional dependence on redshift,

we make the approximation that the k-correction is constant when perturbing the

redshift to find zmax. Effectively this means k(zmax) = k(z), where z is the redshift

at which the galaxy crosses the observer’s past lightcone. Again, this assumption

only affects a small number of faint galaxies in each redshift slice.

6.2 Testing the Estimation of the i-Band Luminosity

Function using the GALFORM Lightcone Mock

Before applying our methodology to observational data, we first validate our ap-

proach using a mock catalogue constructed from the GALFORM semi-analytic model

of galaxy formation. This provides a controlled setting to illustrate key features

of our analysis and to understand how observational selection effects impact the

estimated luminosity function.

To begin, we focus on the estimated luminosity function in a thin redshift

slice at z ∼ 1 to illustrate some features of our analysis. Fig. 6.1 shows various

estimates of the luminosity function from the lightcone mock compared to the

original prediction from GALFORM. The target or “true” luminosity function is the

GALFORM prediction from the simulation box, which is simply a histogram of all the

galaxies in the simulation volume, binned in luminosity, without any consideration

of whether or not the galaxy is bright enough to meet the selection limit in the

observed i-band. Hence, for this prediction, the number of galaxies keeps rising as

the luminosity bin gets fainter (eventually, if we move to a faint enough bin, the

GALFORM luminosity function will turn over due to mass resolution effects in the

N -body simulation in which GALFORM has been implemented). The single curve

labelled GALFORM in Fig. 6.1 is actually a weighted combination of the snapshot

predictions that fall within the redshift shell, with the weight being the redshift

distribution of galaxies at each redshift.

After taking into account the magnitude limit, iAB = 23.0, we obtain the
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Figure 6.1: The impact of selection effects on the estimated luminosity function, shown at
z ∼ 1 for illustration. In the upper panel the blue curve shows the GALFORM LF without
any selection effects. The red points show the LF after applying the observed i-band limit
of iAB = 23. This curve is weighted version (using dN/dz) of the snapshot LFs over the
redshift interval of the shell. The lower panel shows the observed and rest i-band absolute
magnitudes of the model galaxies; points coloured red pass the sample selection. The green
curve shows the LF estimated from the lightcone mock, assuming the exact k-correction
predicted by GALFORM. The grey shading shows the LF recovered using the k-correction
obtained using the random forest and the ugriz photometry.
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red symbols in the upper panel of Fig. 6.1. Rather than showing a sharp cut in

the LF in the rest frame i-band, there is a gradual reduction in the number of

galaxies found as we move to fainter magnitudes. The reason for this is that the

sample selection is in the observed i-band, whereas we plot the estimated LF in the

rest i-band. This point is illustrated further in the lower panel of Fig. 6.1 which

shows the observed frame i-band absolute magnitude (i.e. the absolute magnitude

in Equation 6.3, but without applying the k-correction) plotted against the rest

frame i, down to apparent magnitudes much fainter than iAB = 23. The overall

distribution of galaxies in this plane is plotted in blue, with the (intrinsically) red

and blue populations showing as light blue density enhancements. The galaxies

which meet the observed iAB = 23 selection are coloured red. Galaxies with red

colours make it into the sample over a wider range of rest-frame i magnitude than

blue galaxies.

The estimated luminosity function over the magnitude range of the turn over

is incomplete and is driven by the underlying luminosity function and the colour

distribution of galaxies. Hence, this is still useful information with which to con-

strain galaxy formation models, if the same selection effects can be applied to the

model galaxies, as is the case with our mock catalogue.

In the lower redshift bins, the observed and rest frame i-bands are closer to-

gether in redshift and the turnover at faint magnitudes in the recovered LF is

narrower.

6.3 i-Band Luminosity Function: Estimate from

PAUS

We compare the galaxy luminosity function estimated from the GALFORM lightcone

mock catalogue of Manzoni et al. (2024) with that obtained from observational data

in the PAUS W1 and W3 fields (Navarro-Gironés et al. 2024), using the 1/Vmax

methodology. The GALFORM mock catalogue serves as a baseline to test our lumin-
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Figure 6.2: The rest-frame i−band luminosity function from PAUS data in the W1 field
(green dots) and PAUS W3 field (red dots) compared to that from the GALFORM lightcone
mock catalogue with the Gaussian-like photometric redshift uncertainties (purple shaded
region) and the BCNz-like errors (pink shaded region) between redshift z = 0.05 and z =
2.00. The black solid line represents the “true” luminosity function from the lightcone
mock catalogue (i.e. no photometric and photo-z errors).
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osity function estimates and to reveal the impact of uncertainties and systematic

effects introduced by the survey selection and methodology. These uncertainties–

arising from the photometric errors, Large Scale Structure (LSS) sampling variance,

and photometric redshift (photo-z) errors–are incorporated into the mock catalogue

following the approach described in §4.6, and can be selectively switched on and

off to examine their effects on the recovered luminosity function.

In this analysis, we consider two treatments of photometric redshift errors. In

the first case, we apply errors obtained from the BCNz2 code, which includes the

presence of outliers in the photometric redshifts. In the second case, we mimic

the central distribution of photo-z errors using Gaussian-like perturbations based

on the σ68(∆z) values reported by Alarcon et al. 2021. We deliberately ignore

outliers in this case. This dual approach enables us to explore the impact of low-

quality photometric redshift measurements (or outliers) on the recovered luminosity

function.

Fig. 6.2 presents the rest-frame CFHTLS i-band luminosity function in redshift

slices over the redshift range 0.05 < z < 2.00. In each redshift bin, the black solid

line represents the “true” luminosity function from the lightcone mock catalogue–

this is, the LF including the i-band selection but without any photometric or photo-

z errors. The purple shaded region shows the mock luminosity function when

Gaussian-like photo-z errors are applied, while the pink shaded region corresponds

to the effect of the more realistic BCNz2-like photometric redshift uncertainties,

which include redshift outliers. Observational data are shown using green filled

diamonds for the PAUS W1 field and red solid circles for the PAUS W3.

The comparison in Fig. 6.2 demonstrates how photo-z measurement errors af-

fect the shape of the estimated luminosity function. With Gaussian-like errors and

no formal outliers (i.e. no redshift errors that lie beyond the wings of a Gaussian

distribution), the errors in redshift lead to errors in luminosity but these are small

compared to the size of the luminosity bins used to plot the luminosity function.

Hence, the overall luminosity function fluctuates without a significant change in
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and photometric redshift errors.

shape (purple shading). In contrast, when the more realistic photometric red-

shift errors are applied, including outliers, the shape of the luminosity function is

markedly different, particularly at the bright end, where the break becomes less

pronounced. This occurs because a large error in redshift can lead to a large change

in luminosity which places a galaxy in a different luminosity bin; this can lead to an

appreciable change in the shape of the luminosity function at the bright end, where

the variation of number density with increasing luminosity is rapid. At the faint

end, the number density of galaxies varies more slowly with luminosity, so errors

in luminosity have less impact on the shape of the luminosity function. The error

bars are plotted using the combination of LSS and photometric+photo-z errors

(see §6.3.1).

Up to z ∼ 1 (equivalent to a lookback time of ∼ 8.5 Gyr, more than 60 per cent

of the age of the Universe), the luminosity function predicted from the GALFORM

mock catalogue agrees reasonably well with the observational data from PAUS W1

and W3. At higher redshifts, the introduction of realistic BCNz2-like photo-z errors

improves the match at the bright end. However, discrepancies at the faint end

become apparent from z ∼ 1.0 onward, growing larger at higher redshifts.

We do not attempt to fit a parametric form to the measured luminosity func-

tion, as our goal is to directly compare the observed LF with the mock catalogue

that shares the same selection effects. For instance, fitting a single Schechter func-

tion would require discarding magnitude bins near the turnover at the faint end,

which contain valuable information for testing galaxy formation models.

6.3.1 The errors in the luminosity function due to large scale

structures, photometric and photometric redshift errors.

The uncertainties in the estimated luminosity function are calculated as follows:

(1) large-scale structure or sampling variance errors are estimated using the Jack-

knife method (following Norberg et al. 2009) and (2) photometry and photometric
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and photometric redshift errors.

redshift errors are derived via a Monte Carlo (MC) approach.

We begin with the Jackknife resampling. Fig. 6.3 shows the layout of the

Jackknife regions used for estimating the large scale structure (LSS) errors in the

PAUS W1 field (left) and W3 field (right). In this work we use Nregions = 64 for

both fields.

Figure 6.3: The Jackknife regions used for estimating the large scale structures (LSS) or
sample variance errors in the PAUS W1 and W3 fields. Each field contains 64 regions.

The effect of using different numbers of Jackknife regions is shown in Fig. 6.4.

The plot illustrates how the fractional error (standard deviation by mean) evolves

with magnitude bin for both the W1 (solid lines) and W3 (dotted lines) fields.

In parallel, we estimate the contribution of the photometric and photo-z un-

certainties using a Monte Carlo method. In each MC realisation, galaxy fluxes and

photo-z are perturbed according to their observational errors. By repeating this

process for many iterations, we quantify the scatter in the recovered luminosity

function due to measurement uncertainties.

The results of the MC runs are shown in Fig. 6.5, where the scatter in LF

estimates across iterations is visualised for both W1 and W3. To determine an

appropriate number of iterations, we monitor the convergence of the standard de-

viation in each magnitude bin. As shown in Fig. 6.6, the error estimates stabilise

after roughly 300 iterations. Although this would be sufficient for convergence, we
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and photometric redshift errors.

Figure 6.4: The Large-Scale Structure sample variance error using the Jackknife method
with different number of regions. The solid lines represent the estimates for PAUS W1,
while the dotted lines represent that from PAUS W3

conservatively use 500 iterations in all subsequent analysis.

Figure 6.5: The scatter of the luminosity function after applying the photometric and
photometric redshift at different Monte Carlo iterations. Note that both plots are cropped
around the knee of the luminosity function for better visualisation. All 500 MC iterations
are plotted in both panels.

The total errors in the luminosity function for each magnitude bin is then
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and photometric redshift errors.

Figure 6.6: The change in the luminosity function errors estimated from the photometric
and photometric redshift errors using different number of Monte Carlo iterations. The
y-axis shows the value of Std. after i-th iteration (i.e. this means scatters of all estimated
between 0th and ith) subtracted by the mean of Std. after 500 iterations. Colours represent
the magnitude bins used in the LF estimates, as labelled in the legend.

calculated by combining the Jackknife and Monte Carlo components in quadrature:

σi =
√
σ2

Jackknife,i + σ2
MC,i, (6.4)

where σJackknife,i is the error from the Jackknife error estimation and σMC,i is the

photometric and photo-z uncertainties.

Fig. 6.7 presents a comparison of the fractional errors in the luminosity func-

tion between PAUS data and the GALFORM mock catalogue. In all redshift bins,

the photometric and photo-z errors (plotted as squares) dominate over the Jack-

knife errors (plotted as lines), by roughly an order of magnitude. This confirms

that the main source of uncertainty in the LF measured in this work arises from

observational measurement errors.

We have also investigated the contributions of photometric and photo-z errors

to the luminosity function (LF) estimation separately. Fig. 6.8 presents the frac-

tional errors, analogous to Fig. 6.7, but distinguishing between photometric and

photo-z errors. The results indicate that the photo-z error is roughly an order of
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and photometric redshift errors.

Figure 6.7: The errors in the i−band luminosity function estimate from PAUS data in the
W1 field (green) and PAUS W3 field (red) compared to that from the GALFORM lightcone
mock catalogue (grey) between redshift z = 0.05 and z = 2.00. The Jackknife errors are
plotted as solid lines. Meanwhile, the errors from photometric and photometric redshift
errors are shown as squares.

magnitude larger than the photometric error, while the photometric error contrib-

utes to the LF estimate at a level comparable to that of cosmic variance. This

demonstrates that photo-z uncertainty is the dominant source of error in our LF

estimation.
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Figure 6.8: The errors in the i−band luminosity function estimate from PAUS data in the
W1 field (green) and PAUS W3 field (red) compared to that from the GALFORM lightcone
mock catalogue (grey) between redshift z = 0.05 and z = 2.00. The Jackknife errors are
plotted as solid lines. The errors from photometric fluxes and photometric redshift errors
are shown as circles and crosses, respectively.

6.4 Comparison with Previous Estimates of the

Luminosity Function

Here we compare our estimate of the i-band luminosity function from PAUS with

results from previous surveys. The redshift bins in Fig. 6.9 use intervals to match
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Figure 6.9: The rest-frame i−band luminosity function from PAUS data in the W1 field
(green dots) and PAUS W3 field (red dots) compared to that from the GALFORM lightcone
mock catalogue with the Gaussian-like photometric redshift uncertainties (purple shaded
region) and the BCNz-like errors (pink shaded region) between redshift z = 0.05 and z =
2.00. Other observational estimates of the i-band LF are plotted, as indicated by the key
in the top-left panel; see text for a discussion of the comparison with these estimates.
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those used in the Ramos et al. (2011) estimates discussed below.

Ilbert et al. (2005) measured spectroscopic redshifts for 11, 000 galaxies to

iAB = 24.0 in the VIMOS VLT Deep Survey. The turnover in the Ilbert et al.

LF estimates should appear about 1 magnitude deeper than in the estimates from

PAUS. However, the Ilbert et al. estimate is from a relatively small solid angle

and so does not extend to as bright a magnitude as the PAUS LF estimates. Also,

Ilbert et al. impose a bright magnitude cut of iAB = 17.5.

Ramos et al. (2011) measured the LF from the CFHTLS deep fields, covering

in total just under 3 square degrees to depths close to iAB = 26. These authors

use photometric redshifts, derived from the broad band photometry of CFHTLS.

Hence the scatter and outlier fraction for their photometric outliers are expected

to be larger than for those in PAUS. The Ramos et al. estimates extend to the

faintest rest-frame i-band absolute magnitude of the various estimates, as expected

from their deeper apparent magnitude limit. At the bright end, the estimates from

Ramos et al. are affected by sample variance and the errors in the photometric

redshifts.

Finally, Driver et al. (2012) used the Galaxy And Mass Assembly (GAMA)

survey to measure the LF in many bands. Driver et al. use spectroscopic redshifts.

Their sample is selected in the r band to depths of r = 19.4 and r = 19.8 depending

on the field. We show a low redshift estimate from Driver et al. (top left panel).

The differences in the LFs from the literature and our new estimates can be

readily understood at the faint end as being due to the different i-band cuts applied,

as outlined above. The differences at the bright end mainly reflect the smaller fields

used in Ramos et al. and Ilbert et al., which limit how bright their estimate can

reach. At intermediate magnitudes there is reasonable agreement between the

different estimates.
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6.5. Evolution of the Galaxy Luminosity Function

6.5 Evolution of the Galaxy Luminosity Function

We now focus on the redshift evolution of the luminosity function derived from

PAUS observation. Fig. 6.10 presents the LFs in multiple redshift bins, overplotted

in a single panel for each of the two fields (W1: left panel and W3: right panel).

Here use curves, with the thickness of each curve reflecting the 1σ uncertainties,

to describe the luminosity function.

Figure 6.10: The galaxy luminosity function estimated from the PAUS W1 (left) and W3
(right) fields, focusing on the evolution with redshift. The LFs from the different redshift
slices are plotted on a single panel for each field, as indicated by the legend in the right
panel. Red colours correspond to low redshift and blue colours to high redshift.

The dominant effect with increasing redshift is the progressive shift of the

faint-end turnover to brighter magnitudes. This is primarily a selection effect, as

the observed i-band selection limit corresponds to increasing brighter rest-frame

luminosities at higher redshifts. The turnover also becomes less sharp at high

redshift due to the growing offset between observed and rest-frame i-band. Aside

from this, the faint-end slope of the LFs shows relatively little evolution, remaining

approximately constant across redshifts. There is modest brightening around the

characteristic L∗, near z ∼ 0.5, while at higher redshifts the break at the bright

end becomes less distinct. This is likely due to contamination of photo-z outliers.
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6.6 The Luminosity Function of Red and Blue

Galaxies

To further understand the origin of the evolution observed in the overall luminosity

function, we follow Lilly et al. (1995) and examine the LF separately for red and

blue galaxy populations. Whereas Lilly et al used the rest-frame colour to label

galaxies as red or blue, here we follow Manzoni et al. (2024) and use the observed

(g − r) colour. In practice this means that the dividing line between red and blue

galaxies is a function of redshift, rather than a constant as would be the case for a

rest-frame colour.

Fig. 6.11 shows the i-band LF for red and blue galaxies in redshift slices from

z = 0.05 to z = 2.00. Observational data are shown for both PAUS W1 and

W3 fields. We also plot the corresponding predictions from the PAUS mock, with

a realistic “BCNz” version that includes them. It is important to note that the

redshift error model is based on an i-band selected sample and does not account for

colour dependence in redshift error distributions. The “BCNz” version typically

produces a modest excess of bright galaxies due to the inclusion of outliers.

Qualitatively, the observed and predicted LFs of red and blue galaxies agree.

The turnover at faint magnitudes is arguably less well reproduced for red galaxies

than for blue galaxies, with this difference becoming more pronounced at higher

redshifts.

6.7 Evolution of the Luminosity Function of Red and

Blue Galaxies

To explore the evolution by galaxy colour, Fig. 6.12 and Fig. 6.13 show the redshift

evolution of the red and blue galaxy luminosity functions separately, for the W1 and
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Figure 6.11: The rest-frame i-band luminosity function for red and blue galaxies between
redshift z = 0.05 and z = 2.00. Red and blue galaxy populations are defined based on
observed (g−r) colour. Solid points show estimates from PAUS W1 and W3 fields; shaded
regions show predictions from the GALFORM mock with photometric redshift errors.
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6.7. Evolution of the Luminosity Function of Red and Blue Galaxies

Figure 6.12: The i−band galaxy luminosity function for rest-frame red (left panel) and
blue (right panel) galaxies for multiple redshift bins ranging from z = 0.05 to z = 2, as
indicated by the legend. Here we focus on the PAUS W1 field. The observational estimates
are shown by curves rather than symbols with the width of the curve indicating the 1 − σ
error on the measurement.

W3 fields, respectively. Again, we use curve thickness to represent the measurement

uncertainties.

In both fields, the faint end of the blue LF retains an approximate power-law

shape and shows little evolution at low redshift. In contrast, the red LF shows

stronger evolution at the faint end, with the slope becoming shallower over time.

At intermediate and high redshift, both red and blue LFs exhibit a shift in the

position of L∗ with a stronger shift for blue galaxies. At highest redshifts, the

sharpness of the LF break reduces, particularly for red galaxies, consistent with

the increasing effect of photo-z errors and sample incompleteness.

Overall, these results demonstrate that the evolution of the galaxy luminosity

function from PAUS is driven by a combination of intrinsic population changes

(especially for red galaxies), photometric depth limitations, and redshift error ef-

fects. These measurements also reproduce the expected trend that blue galaxies

dominate the faint end, while red galaxies contribute significantly to the bright

end, particularly at low redshift.
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6.8. The Completeness and redshift quality

Figure 6.13: The i−band galaxy luminosity function for rest-frame red (left panel) and
blue (right panel) galaxies for multiple redshift bins ranging from z = 0.05 to z = 2, as
indicated by the legend. Here we focus on the PAUS W3 field. The observational estimates
are shown by curves rather than symbols with the width of the curve indicating the 1 − σ
error on the measurement.

6.8 The Completeness and redshift quality

We now return to the overall galaxy luminosity function and assess the completeness

and systematic effects that may influence our estimates

One immediate factor to consider is any incompleteness arising from the re-

quirements imposed on the photometric redshift estimation. A galaxy must be

imaged in a sufficient number of narrow-band filters–at least 30 out of 40–to ob-

tain a reliable photometric redshift. During the earlier stages of the PAUS survey,

when the mosaic of camera pointings was still being built up, different regions of

the sky had varying levels of filter coverage due to partial exposure with specific

trays. This raised concerns about potential incompleteness in the redshift sample.

This effect was evident in Fig. 2 of Manzoni et al. (2024), where the number

counts of galaxies with more than 30 narrow-band detections were approximately

90% of the full galaxy sample. Initially, this implied that the LF normalisation

might need to be adjusted upward by a factor of 1/0.9. However, further inspection
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shows that this reduction was primarily due to a different in the effective survey

area–not a deficiency in the galaxy sample itself. As shown in Fig. 2.12 and

confirmed by the number count comparison in Fig. 2.13, the surface density of

galaxies with more than 30 NB detections agrees with that of the full sample once

the correct areas are used to normalise the counts. Hence, the normalisation of the

luminosity function is based on the correct effective area, and no further correction

(e.g. the previous assumption of 1/0.9 factor) for incompleteness is required.

Next we investigate the distribution and mean value of V/Vmax in each redshift

shell. If the sample is a fair sample of the Universe, the mean value of ⟨V/Vmax⟩ =

0.5 ± 1/
√

12N where N is the total number of galaxies in the sample (Peacock,

1999). This error is for a uniform random distribution of points. For N = 20, 000,

the random uncertainty is only ∼ 2 × 10−3. However, the mean values reported in

Fig. 6.14 differ from 0.5 by much larger amounts, suggesting significant deviations

beyond what would be expected from random sampling alone.

The W3 field is just under twice the size of the W1 field. Fig. 6.14 shows large

differences in the mean V/Vmax values returned for these fields. This could reflect

differences due to large-scale structures, which can be seen from the spikes in the

redshift distribution in Fig. 4.7. Nevertheless, the estimate of the LF from the W1

and W3 fields agree quite well with one another.

Another issue could be errors in the k-correction. These could lead to gradients

in the V/Vmax distribution. The k-correction does not affect the Vmax value for most

galaxies, as the maximum volume is simply the volume of the redshift slice used to

measure the luminosity function.

Finally, the V/Vmax could be affected by evolution in the galaxy population.

However, we expect this to be small as the redshift shells used to the measure the

LF are small, and the LF does not evolve substantially between shells.

Another consideration is the impact of what are believed to be low quality

photometric redshifts on the recovered LFs. We have already argued that outliers
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6.8. The Completeness and redshift quality

Figure 6.14: The distribution of V/Vmax for different redshift bins, as labelled in each panel.
Distributions are shown for the mock catalogue (grey histogram), without any errors in the
photometry or photometric redshifts of the model galaxies, the PAUS W3 (blue histogram)
and W1 (red histogram) fields. The labels give the number of galaxies per unit area in
each case and the mean value of ⟨V/Vmax⟩.

affect the shape of the bright end of the LF at high redshift, by applying different

scenarios for photo-z errors to the mock galaxies. Explicitly including redshift

outliers changes the shape of the bright end of the LF recovered from the mocks

and makes it look more similar to the LF recovered from the observations.

We can isolate the impact of low-quality photo-z by applying cuts on the

quality factor (as defined in Equation 16 of Eriksen et al. 2019) and recomputing
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Figure 6.15: The redshift distributions in the PAUS W1 (left) and W3 (right) fields. The
solid line histogram shows the distribution for all galaxies brighter than iAB = 23.0. The
dashed line shows a cut on quality factor which retains the 75 per cent of galaxies with the
best photometric redshifts and the dotted line shows the distribution for the best 50 per
cent of redshifts.

both the redshift distribution and the luminosity function. Fig. 6.15 shows how

these quality cuts affect the redshift distribution of galaxies in both the W1 and W3

fields. Retaining only best 75% or 50% of photo-z estimates results in a sharp drop

in galaxy counts at high redshift. This is consistent with the redshift dependence

of the outlier rate seen in Fig. 2.5, where the fraction of outlier photo-z increases

significantly beyond z ∼ 1.2.

The form of the redshift distribution changes substantially with quality cuts–

not just in amplitude, but in shape. To test whether this effect count be accounted

for by a simple rescaling, we apply normalisation factors to the redshift distri-

butions of the 75% and 50% subsamples. Fig. 6.16 shows the result: even after

multiplying the counts by constant factors (4/3 for best75, 2 for best50), the red-

shift distributions remain systematically suppressed at high redshift compared to

the full sample.

To further quantify the impact of the quality cut on the redshift distributions,

we performed the Kolmogorov-Smirnov (K-S: Massey 1951) test between samples

with different cuts. When comparing two large samples, the K-S test often rejects

the null hypothesis–that the two samples are drawn from the same distribution–

even when the distributions are visually quite similar. As shown in Fig. 6.17, the
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cumulative redshift distributions of galaxies with different quality cuts differ only

slightly by eye, suggesting that they could possibly be drawn from the same parent

distribution. However, the K-S test returns very low p-values (p-value ≪ 0.5) for

every pairwise comparison, as listed in Table 6.1, leading to systematic rejection of

the null hypothesis. For samples restricted to higher redshift selections, the p-values

even drop to zero in all cases. We reach the same conclusion when applying the

Kuiper’s test (Kuiper 1960). These results highlight a limitation of applying such

statistical tests to very large samples: they are overly sensitive to small deviations

and may not be effective as a qualitative diagnostic. In contrast, visual inspection

more clearly shows the divergence in shape at the high-redshift end.

Overall, this analysis confirms that the impact of the quality cuts cannot be

compensated for by adjusting the overall normalisation. Instead, the redshift-

dependent incompleteness indicates that galaxies with low-quality redshifts are

preferentially located at high redshifts and are thus disproportionately removed by

quality cuts.

Figure 6.16: The redshift distributions in the PAUS W1 (left) and W3 (right) fields after
applying simple normalisation factors. The solid line histogram shows the distribution
for all galaxies brighter than iAB = 23.0. The dashed line shows the distribution of the
best 75 per cent of photometric redshifts (scaled by a factor of 4/3), and the dotted line
corresponds to the best 50 per cent (scaled by a factor of 2). Despite this normalisation, a
redshift-dependent suppression remains, particularly at high redshift.

The corresponding effect on the luminosity function is shown in Fig. 6.18.

Removing the worst 25% or 50% of galaxies based on photo-z quality results in no-

ticeable suppression of the LF, especially at faint magnitudes and higher redshifts.
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6.8. The Completeness and redshift quality

Figure 6.17: The cumulative distribution of the redshifts for PAUS W1 (left panel) and W3
(right panel) fields for galaxies with redshifts z < 0.7 with different photometric redshift
quality cuts (solid: no quality cut, dashed: best 75%, and dotted: best 50%, corresponding
to the redshift distribution in Fig 6.16).

K-S test: Pairs (z < 0.7) p-value
W1 W3

Best 100 vs Best 75 2.16 × 10−33 9.84 × 10−33

Best 100 vs Best 50 6.45 × 10−99 3.81 × 10−150

Best 75 vs Best 50 1.86 × 10−90 2.02 × 10−132

Table 6.1: The p-value of the K-S test for each sample comparison for each field. Only
galaxies with z < 0.7 are selected for the test, see Fig 6.17.

These differences become particularly significant from z ∼ 0.8 onward. This trend

is expected, since the galaxies with the lowest signal-to-noise ratios (and hence

lower redshift quality) tend to be the faintest ones in a given redshift bin. While

the faint end is most affected, there is also a modest reduction at the bright end.

Importantly, these effects are not correctable by a simple amplitude rescaling of the

LF–further emphasising the need to understand and model photometric redshift

uncertainties and completeness in a redshift-dependent way.
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Figure 6.18: The i−band galaxy luminosity function for multiple redshift bins ranging
from z = 0.05 to z = 1.95. The LF is estimated for different subsamples of galaxies with
iAB = 23.0: all galaxies, the best 75 per cent of photometric redshifts as ranked by the
quality factor and the best 50 per cent (i.e. discarding half of the galaxies). The LFs
estimated from the lightcone are also shown, for all galaxies, but with different models
for the errors in the photometric redshifts: Gaussian error (purple), BCNz-like errors,
including outliers (red).

6.9 The Luminosity Function in ugrz- Filters

To complement our analysis in the i-band, here we present luminosity functions

estimated in the u, g, r, and z bands. This multi-band view allows us to explore

how the shape and evolution of the LF vary with wavelength. As in earlier sec-

tions, we compare the observational estimates from the PAUS W1 and W3 fields

with predictions from the GALFORM mock catalogue. Both Gaussian and BCNz2-like

photo-z error models are shown.

114



6.9.1. u-band

6.9.1 u-band

Figure 6.19: The rest-frame u-band luminosity function from PAUS data (green: W1, red:
W3) compared to the GALFORM lightcone predictions with Gaussian (purple) and BCNz2-like
(pink) photo-z uncertainties.

The u-band LF (Fig. 6.19) probes the Ultraviolet (UV)-optical transition and

is particularly sensitive to recent star formation. As expected, the faint end is

noisier and less complete, especially beyond z ∼ 1 due to the increasing impact

of the apparent magnitude limit and the blueward shift of the observed bandpass.

Nonetheless, the observed and predicted LFs agree well over the redshift range
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z < 1. At higher redshift, the bright end appears systematically overestimated in

the GALFORM mock when using the BCNz-like photo-z errors.

6.9.2 g-band

Figure 6.20: Same as Figure 6.19, but for the rest-frame g-band.

The g-band (Fig. 6.20) captures both young stellar populations and evolved

stars, offering a cleaner LF than in the u-band. The agreement between the PAUS

estimates and the GALFORM mock is excellent up to z ∼ 1, both in shape and

normalisation. Beyond this redshift, small deviations appear at the bright end,
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again linked to the effect of redshift outliers. Compared to the i-band, the turnover

at the faint end emerges at slightly brighter absolute magnitudes due to increased

k-corrections in the blue bands.

6.9.3 r-band

Figure 6.21: Same as Figure 6.19, but for the rest-frame r-band.

The r-band (Fig. 6.21) shows similarly strong agreement between observation

and model. The bright end remains well constrained up to z ∼ 1.3. The smooth-
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ness of the LF at intermediate magnitudes reflects the increased completeness and

photometric accuracy in this band.

6.9.4 z-band

Figure 6.22: Same as Figure 6.19, but for the rest-frame z-band.

The z-band (Fig. 6.22) LF extends the analysis to redder wavelengths, probing

older stellar populations and being less sensitive to recent star formation. Up to

z = 1, the agreement between PAUS and the GALFORM predictions is excellent. At

the highest redshifts, the effects of redshift scatter and the increased incompleteness
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at faint magnitudes are again evident. The overall LF shape in the z-band evolves

more slowly than in the g-bands, consistent with the expectation that older stellar

populations dominate this part of the SED.

Together, these ugrz-band luminosity functions confirm the robustness of the

LF estimates from PAUS and further validate the predictions from the GALFORM

model across the optical range. Differences at the faint end are driven by varying

completeness limits and photometric uncertainties, while bright-end discrepancies

remain dominated by photo-z outliers. The consistency between bands suggests

that selection effects and systematic uncertainties are well controlled in our analysis.

6.10 Conclusion

In this chapter, we have presented a comprehensive measurement of the galaxy

luminosity function in the PAUS W1 and W3 fields using rest-frame magnitudes

derived from the random forest regression technique. Our analysis focuses primarily

on the i-band LF, but we extended the results across the urgz bands and explored

subsamples defined by colour and redshift quality.

We first described the methodology used to estimate the LF based on the

1/Vmax technique, and validate this approach using the GALFORM lightcone mock

catalogue. This mock provided a consistent baseline to evaluate selection effects,

observational errors, and the impact of photometric redshift uncertainties. By ap-

plying different photo-z error models–including Gaussian and more realistic BCNz-

like errors–we showed how redshift outliers can affect the bright end of the LF,

especially at high redshift.

The rest-frame i-band LF from PAUS is in excellent agreement with the GALFORM

prediction out to z ∼ 1. At higher redshifts, we identified departures at both the

bright and faint ends of the LF, particularly for red galaxies. These discrepan-

cies correlate with increasing photo-z errors and growing incompleteness in faint

galaxy populations. We also analyses the LF for red and blue galaxies separately,
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and showed that their evolution follows distinct paths: blue galaxies maintain a

steep faint-end slope, while red galaxies exhibit a more rapid decline and a stronger

dependence on redshift.

We further assessed the completeness of the sample by examining V/Vmax dis-

tributions and photometric redshift quality. We found that apparent magnitude

cuts and selection based on narrow-band coverage are properly accounted for when

normalising by the correct effective area. However, quality cuts on photo-z es-

timates introduce redshift-dependent biases, which cannot be corrected by simple

global scaling. This underscores the importance of modelling photometric redshift

uncertainty when interpreting galaxy statistic from photometric redshift surveys.

Finally, we extended the LF measurement to the u, g, r, and z bands. These

multi-band LFs show excellent internal consistency and further validate the reliab-

ility of the PAUS data. Across all bands, the key trends observed in the i-band–

particularly the influence of redshift outliers and faint-end incompleteness–are seen

to persist, reinforcing the need for careful modelling of selection effects.

This chapter lays the foundation for subsequent analysis of galaxy stellar

masses and stellar mass functions in the next chapter.
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Chapter 7

The Prediction of Galaxy Stellar

Masses using Broad Band

Photometry

7.1 Overview

Stellar mass is one of the most fundamental properties of a galaxy, reflecting its star

formation history and providing key insights into the physical processes that govern

galaxy formation and evolution. Accurate and efficient estimation of stellar masses

is therefore essential for constructing stellar mass functions (SMFs), investigating

galaxy populations across cosmic time, and testing theoretical models of galaxy

formation.

Traditionally, stellar masses are estimated through spectral energy distribution

(SED) fitting techniques, which compare observed photometry and sometimes spec-

tra with synthetic models derived from stellar population synthesis codes. While

widely used, these methods require assumptions about star formation histories,

metallicities, dust attenuation, and stellar initial mass functions, and can be com-

putationally expensive for large surveys. They also offer limited interpretability,

with the relationship between input photometric features and the derived stellar
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mass often obscured by complex modelling choices.

In this chapter, we explore an alternative approach based on symbolic regression–

a machine learning technique that aims to find compact analytical expressions that

best describe the relationship between input features and target variables. Spe-

cifically, we use the symbolic expressions developed by Kumar et al. (in prep),

who trained models on a perturbed version (i.e. including observational and estim-

ation errors) of the GALFORM lightcone mock catalogue to estimate stellar masses

from a limited set of broad-band photometric features. These expressions provide a

transparent and computationally efficient method for stellar mass estimation, dir-

ectly linking observed magnitudes and colours to stellar mass through closed-form

equations.

My role in this collaborative work focused on preparing the input catalogue

for model training and validation, based on the mock galaxy sample described

in Chapter 4. I applied photometric and photometric redshift uncertainties to

simulate PAUS-like observational conditions, and computed rest-frame magnitudes

for use in computing volumes for the 1/Vmax method. I then applied Kumar et al.’s

symbolic regression models to both the lightcone mock and the PAUS observational

dataset to predict stellar masses and compare them against those obtained using

the CIGALE SED fitting method (Csizi et al., 2024). The resulting stellar mass

functions were used to assess the consistency between theoretical predictions and

observations.

The structure of this chapter is as follows: § 7.2 describes the preparation of

the mock and observational datasets used in this work, along with the symbolic

regression methodology. § 7.3 presents a comparison between the predicted stellar

masses and those derived from SED fitting for PAUS galaxies. In § 7.4, we compute

stellar mass functions using the predicted masses and compare results between the

mock and observational data. § 7.5 summarises the main findings and outlines

their relevance for future galaxy formation studies.
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7.2 Data Preparation and Methodology

This work makes use of the GALFORM lightcone mock catalogue developed by Man-

zoni et al. (2024), which was described in detail in Chapter 4. To facilitate a fair

comparison with the Physics of the Accelerating Universe Survey (PAUS) obser-

vations, introduced in Chapter 2, we applied the survey-specific photometry and

photometric redshift uncertainties to the mock data following the procedures out-

lined in § 4.6 in Chapter 4. These included Gaussian perturbations to broad-band

and narrow-band fluxes, and BCNz2-like photometric redshift errors to the redshifts

of mock galaxies.

The machine learning framework used to predict stellar masses from galaxy

observables was developed by Kumar et al. (in prep), who trained a suite of

regression models on the lightcone catalogue to infer stellar masses from a limited

set of photometric features. My role in this project was to prepare the input dataset

for model training by selecting galaxies from the lightcone with iAB < 22.5 and

within the redshift range 0.00 < z < 2.00. Galaxies were further classified into

red and blue types based on the observer-frame colours, using the colour-redshift

separation defined by Manzoni et al. (2024).

For later 1/Vmax calculations, rest-frame i-band absolute magnitudes were also

predicted for each galaxy using the random forest regression method described in

Chapter 5, which is used to estimate the k-correction based on the galaxy’s photo-

metry and redshift. These rest-frame magnitudes were used to compute magnitude

limits in the estimation of the SMF.

The symbolic regression expressions derived by Kumar et al. were then applied

to both the mock and PAUS catalogues to infer galaxy stellar masses. The final

form of these expressions depends on a small set of input features: redshift zobs,

observed u- and i-band magnitudes, and the (g − r) colour, making them directly

application to both mock and real observational data. The expressions are as
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follows:

Red galaxies:

log(M∗/h
−1M⊙) = 2.738+0.004×u+0.811×(g−r)−0.334×i−0.498×zobs, (7.1)

Blue galaxies:

log(M∗/h
−1M⊙) = 3.524+0.208×u+0.114×(g−r)−0.493×i−0.195×zobs, (7.2)

where M∗ is the stellar mass.

7.3 Application to PAUS Data

To evaluate the performance of the machine learning-based stellar mass predictions

on real observational data, we applied the symbolic regression expressions derived

by Kumar et al. (in prep) to the galaxy catalogue from PAUS. The input features

required for these predictions–photometric redshift zobs, observed u- and i-band

magnitudes, and the observer-frame (g − r) colour–were obtained from the PAUS

production photometry.

Rest-frame magnitudes for PAUS galaxies were computed using the random

forest regression method described in Chapter 5, consistent with the approach used

for the lightcone mock. Galaxies were classified into red and blue types using the

same colour-redshift relation as described in Chapter 4. The appropriate symbolic

regression formula was then applied to estimate the stellar mass for each galaxy.

To assess the validity of these machine learning-based predictions, the res-

ulting stellar masses were compared to those derived from spectral energy distri-

bution (SED) fitting using the CIGALE code. These CIGALE-based stellar masses

were provided as part of the official PAUS production data. The comparison was

performed separately for red and blue galaxies in the W1 and W3 fields.

Fig. 7.1 shows the difference between the predicted stellar mass (from Kumar’s

expressions) and the CIGALE SED-fitted stellar mass, as a function of the reference

124



7.3. Application to PAUS Data

stellar mass logM∗,ref, for red and blue galaxies in both fields. The reference stellar

masses correspond to the CIGALE SED-fitted stellar mass for the PAUS galaxies and

the “true” mock stellar masses for the GALFORM lightcone mock galaxies, respect-

ively. The 2D density histograms show the distribution of individual galaxies from

the PAUS data, while the black solid lines indicate the running median trend, with

the shaded grey region showing the interquartile (25th-75th percentile) range. The

red and blue solid lines represent the mock validation for red and blue galaxies, as

discussed in Kumar et al (in prep). The general agreement between the two meth-

ods is good in the mass range 108 < M∗/h
−1M⊙ < 1011.5, with systematic offsets

generally below 0.1 dex. Discrepancies become more significant at the low-mass

end, where PAUS photometry is less complete, and at the high-mass end, where

sample statistics are limited.

These results show that Kumar et al.’s symbolic regression model provides a

fast and reasonably accurate approximation to SED-based stellar mass estimates,

with significant advantages in computational speed.

How closely should we expect the two estimates of the stellar masses to agree?

The CIGALE and GALFORM models both assume solar neighbourhood stellar initial

mass functions. Nevertheless, there are sufficient differences between the forms

of these IMFs to contemplate applying a correction. For the case of long-lived

stars, galaxies in GALFORM, for which a Kennicutt (1998) IMF is assumed, need

to have their stellar mass reduced by a factor of 0.81 to compare directly with

the masses estimated using CIGALE (see Table B1 from Lacey et al. 2016). This

factor alone brings the red galaxies into better agreement for the two approaches to

inferring the stellar mass. Applying the same correction to blue galaxies actually

makes the correspondence between the two mass estimates slightly worse. The

other differences in model assumptions, namely dust attenuation, treatment of

stellar metallicity and the assumption of the form of star formation history used in

CIGALE are harder to pick apart and contribute to the remaining biases and offset,

and some component of the scatter (for a discussion of some of these points see
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Figure 7.1: Comparison between stellar masses predicted using Kumar et al.’s symbolic
regression expressions and those derived from SED fitting using the CIGALE code, for PAUS
galaxies in the W1 (top row) and W3 (bottom row) fields. Each panel shows the difference
in the log stellar mass as a function of the CIGALE-derived reference mass (for the PAUS
data) or "true" mock stellar masses (for the GALFORM lightcone mock galaxies). The left
and right columns correspond to red and blue galaxies, respectively. Solid lines show the
running median trends for PAUS (black) and mock predictions (red or blue), with shaded
regions indicating the 25th-75th percentile range. The background shows the 2D histogram
density of the PAUS sample. Overall agreement is generally good, with median residuals
below 0.1 dex across most of the stellar mass range

for example Mitchell et al. 2013). It is interesting to note that for low mass red

galaxies, there is a step in the accuracy of the predictions from CIGALE with some

bimodality.

7.4 Stellar Mass Function Estimation

Using the predicted stellar masses derived from Kumar et al.’s symbolic regression

expressions, we estimate the galaxy stellar mass function (SMF) for both the PAUS

observational sample and the perturbed GALFORM lightcone mock catalogue. The

SMFs were calculated in multiple redshift bins between z = 0.05 and z = 2.00 using
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the 1/Vmax estimator described in Chapter 6, this time with a magnitude limit of

iAB = 22.5, to match the limit used when performing the symbolic regression.

The PAUS SMF was computed separately for the W1 and W3 fields, applying

the same redshift and magnitude selection criteria as used for the mock sample.

The mock SMF was derived from the perturbed lightcone catalogue with survey-like

uncertainties applied, ensuring consistency with the PAUS data in both selection

and observations.

Fig. 7.2 presents the stellar mass functions for the PAUS W1 and W3 fields

and the lightcone mock across eight redshift bins spanning 0.05 < z < 2.00. In

each panel, black, red, and green curves correspond to W1, W3 and lightcone

mock, respectively. At low and intermediate redshift (0.2 < z < 1.3, the agreement

between the mock and PAUS measurements is generally good over the mass range

109.5 < M∗h
−1/M⊙ < 11, where both completeness and number statistics are

sufficient. At lower stellar masses, incompleteness in the PAUS data leads to a

suppression of the observed SMF, while at higher masses (M∗ > 1011h−1M⊙) the

fluctuations and deviations become significant.

At higher redshifts (z > 1.3), the SMF from PAUS becomes increasingly in-

complete at lower masses. Nevertheless, the high-mass end in PAUS and the mock

remains broadly consistent.

These results demonstrate that the machine learning-based stellar masses en-

able a consistent recovery of the underlying galaxy stellar mass distribution, provid-

ing further validation of the symbolic regression model for population-level studies.

Moreover, this comparison between observed and mock stellar mass functions

provides a valuable test of the underlying galaxy formation model implemented in

GALFORM. Since the symbolic regression expressions are calibrated directly on the

mock and applied to both datasets using consistent input features, the comparison

isolates differences arising from the galaxy population itself, rather than from the

stellar mass estimation procedure. In future work, this framework can be used to
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Figure 7.2: Galaxy stellar mass functions derived using Kumar et al.’s symbolic regres-
sion–predicted stellar masses for PAUS galaxies in the W1 (black) and W3 (red) fields,
and for the perturbed GALFORM lightcone mock catalogue (green). The “true” SMF ob-
tained from the GALFORM lightcone mock is also plotted as grey dotted lines for reference.
Each panel corresponds to a different redshift bin from 0.05 < z < 2.00, as labelled. The
SMFs are computed using the 1/Vmax estimator with magnitude limits based on predicted
rest-frame i-band magnitudes. The agreement between PAUS and the mock is generally
good over the mass range where completeness is high.

evaluate the performance of semi-analytic models against observational data across

redshift and environment, enabling constraints on the physical process governing

stellar mass assembly.
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7.5 Conclusion

In this chapter, we demonstrated how the galaxy stellar masses were predicted from

broad-band photometry using symbolic regression models. The symbolic expres-

sions were developed by Kumar et al. (in prep), who trained regression models on

a perturbed version of the GALFORM lightcone mock catalogue to estimate stellar

masses from a limited set of observable features: photometric redshift, observed u-

and i-band magnitudes, and the observer-frame (g − r) colour.

We validated the predicted stellar masses by comparing them against SED-

based estimates from the CIGALE code, provided by PAUS production data. The

agreement between the two methods was generally good over the stellar mass range

108 < M∗h
−1M⊙ < 1011.5, with typical residuals smaller than 0.1 dex. We also

constructed stellar mass functions for both PAUS and the mock catalogue using

the predicted stellar masses. The comparison shows good agreement in the inter-

mediate mass regime (109.5 < M∗h
−1M⊙ < 1011) across a wide redshift range, with

deviations at the low- and high-mass ends.

The results presented in this chapter demonstrate that symbolic regression

provides a fast and effective alternative to traditional SED-fitting methods for

estimating stellar masses. The consistent application of the same model to both

mock and real data enables a direct comparison between theoretical predictions and

observations, offering a tool for testing galaxy formation models in future work.
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Chapter 8

Conclusions and Future Work

8.1 Thesis conclusions

The work presented in this thesis has explored the galaxy luminosity function (LF)

across cosmic time using high-precision photometric redshift data from the Physics

of the Accelerating Universe Survey (PAUS). Leveraging both observational data

and theoretical modelling, I have measured the LF in multiple rest-frame bands out

to z ∼ 2, and tested the predictions of a semi-analytic model of galaxy formation,

GALFORM, under realistic observational conditions.

To estimate rest-frame absolute magnitudes required for LF calculations, I

trained a random forest regression model to predict the k-correction directly from

observable quantities, including apparent magnitudes and photometric redshift.

This non-parametric approach allowed k-correction estimates to be made without

relying on galaxy templates, and was validated against true rest-frame magnitudes

in the GALFORM mock catalogue. The same model was applied to PAUS data,

ensuring consistency in the treatment of observed and simulated samples.

The PAUS dataset, with its 40 narrow-band filters and high photometric red-

shift accuracy, offers a new window onto galaxy populations at intermediate red-

shifts. In Chapter 6, I presented the main results of this thesis: a measurement

of the i-band luminosity function in the W1 and W3 fields. These measurements

130



8.1. Thesis conclusions

were performed using the 1/Vmax method in 8 different redshift bins, with a treat-

ment of photometric errors, photometric redshift uncertainties, and completeness

due to photometric redshift quality. In both fields, the luminosity function remains

approximately power-law shaped at the faint end out to high redshift and shows

relatively little evolution across redshift. The turnover also becomes less sharp

at high redshift. There is modest brightening around the characteristic L∗, near

z ∼ 0.5, while at higher redshifts the break at the bright end becomes less distinct.

This is likely due to contamination of photo-z outliers. I further examined the LF

as a function of colour, revealing that blue galaxies dominate the faint end while

red galaxies contribute more at bright magnitudes and low redshift.

To interpret these results, I used the GALFORM semi-analytic model applied to

a lightcone mock catalogue matched to the PAUS survey geometry and selection. I

introduced flux and redshift uncertainties to the mock, allowing a direct comparison

with PAUS observation. This approach revealed that the observed turnover at the

faint end is largely driven by band-shifting of the observed i-band with redshift,

and that redshift outliers systematically smooth the bright-end break, particularly

above z ∼ 1. Despite these observational effects, the shape and redshift evolution

of the LF predicted by GALFORM agrees well with PAUS data within the limits of

observational uncertainty.

In Chapter 7, I extended the analysis to include estimates of stellar mass

functions (SMFs) using a symbolic regression model developed by Adarsh Kumar.

While I did not train the machine learning model, I prepared the perturbed mock

catalogue used in training and applied the trained model to PAUS data to estimate

stellar masses. I then measured the SMF from both mock and observational data.

These measurements are consistent with earlier SMF estimates and provide an

additional constraint on the galaxy formation model.

This thesis demonstrates that high-precision photometric redshift surveys like

PAUS, combined with realistic mock catalogues, can yield accurate and meaning-

ful estimates of the LF and SMF. The ability to resolve redshift evolution in the
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LF while accounting for photometric systematic highlights the importance of this

framework for next generation galaxy evolution studies. Furthermore, the suc-

cessful application of random forest regression for predicting the rest-frame mag-

nitudes and symbolic regression for estimating stellar mass illustrates the potential

of machine learning methods to augment traditional approaches in observational

cosmology.

8.2 Future Work

As mentioned in the previous section that the galaxy luminosity function is a power-

ful observable for testing and refining galaxy formation models. Several promising

directions for future work arise from the results presented here.

First, the measured luminosity function can be more directly incorporated

into the calibration of galaxy formation models such as GALFORM using statistical

emulation techniques. Recent work by Madar et al. (2024) has shown that deep

learning emulators can effectively mimic GALFORM predictions and enable efficient

exploration of its parameter space. Applying similar techniques to constrain the

model using the LF measured in this thesis–particularly across multiple photomet-

ric bands, for distinct galaxy populations (e.g. red and blue), and across redshift

range–offers a route to systematically test the physical prescriptions implemented in

GALFORM and potentially uncover tensions between different observables. A future

study could construct a purpose-built emulator that incorporates both the i-band

luminosity function evolution and its colour-separated components as calibration

targets.

Second, another promising direction would be to revisit the photometric red-

shift measurements for galaxies at z > 1, where a significant fraction of outliers was

observed in the sample. Improving the photo-z performance in this regime would

directly increase the quality of the high-redshift LF. At z > 1.3, key spectral fea-

tures such as the [OII] emission line and the 4000Åbreak are redshifted beyond
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the upper limit of the PAUS NB filter range (8500Å), leaving only weaker features

visible in the observed-frame optical. One avenue for improvement would be to

incorporate longer-wavelength data–such as near-infrared (NIR) photometry from

surveys like Euclid–which could help recover those features and potentially improve

the photo-z measurements in this redshift range.

Third, although this thesis accounted for photometric and redshift errors in es-

timating the LF, the impact of these observational uncertainties on estimated SMF

remains an open question. A future work could implement the same methodology

used to study LF uncertainty (e.g. Monte Carlo and Jackknife methods) to assess

how these uncertainties propagate into SMF estimates.

Finally, improvements to the construction of mock catalogues offer another

fruitful avenue for progress. One limitation of the current mocks is that they do

not include emission lines in the galaxy spectra (hence, the photometry). This is

particularly relevant for narrow-band surveys like PAUS, where emission lines can

have a substantial impact on the observational fluxes and, therefore, on photomet-

ric redshift estimation. Incorporating physically motivated emission line models

into the mock photometry–e.g. by convolving the SFH and gas-phase metallicit-

ies predicted by GALFORM with an HII region model–would make the simulated

catalogue more realistic and allow for more accurate comparison with observed

photo-z distributions. This, in turn, could help improve the fidelity of k-correction

predictions and redshift estimation pipelines.

Together, these future direction will help deepen our understanding of the

connection between observable galaxy populations and the physical processes that

shape them.
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