
Durham E-Theses

Eventful graphs: the computational complexity of

recognizing and realizing properties in changing

networks

KUTNER, DAVID,CESARE

How to cite:

KUTNER, DAVID,CESARE (2025) Eventful graphs: the computational complexity of recognizing and

realizing properties in changing networks, Durham theses, Durham University. Available at Durham
E-Theses Online: http://etheses.dur.ac.uk/16219/

Use policy

This work is licensed under a Creative Commons Attribution 3.0 (CC BY)

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/16219/
https://creativecommons.org/licenses/by/3.0/
http://etheses.dur.ac.uk

Eventful graphs: the computational

complexity of recognizing and

realizing properties in changing

networks

David C. Kutner

A thesis presented for the degree of

Doctor of Philosophy

Department of Computer Science

Durham University

United Kingdom

March 2025

Eventful graphs: the computational complexity of recognizing
and realizing properties in changing networks

David C. Kutner

Abstract

Graph theory and computational complexity are two foundational fields of

theoretical computer science. Graphs are excellent models of many real-world

systems, but are classically static, whereas the real world changes over time

(by design, by nature, or by accident). This thesis explores the computational

complexity of problems on so-called eventful graphs: that is, graphs which have

in some way been extended to express the changeability of the systems they seek

to model. A recurring theme throughout this work is the increase in difficulty

which results directly from the eventfulness of our models.

The first chapter is an introduction to the thesis, in which we introduce

the general themes of the thesis (namely, eventful graphs and computational

complexity) and informally describe the subjects of later chapters.

Payment scheduling in the Interval Debt Model studies financial networks in

which entities are interconnected by debts and the aim is to compute when they

should pay one another to optimize some objective (e.g., minimize bankruptcies).

Temporal Reachability Dominating Sets: contagion in temporal graphs con-

siders the problem of finding (or preventing) small sets of vertices which collec-

tively reach all other vertices in temporal graphs, a well-studied eventful graph

model in which edges appear and disappear over time.

In Reconfigurable Routing in Data Center Networks, we examine a problem

motivated by new technology in interconnection networks, which enables the

rewiring of data centers on-the-fly to serve fluctuating demands.

Detours and Distractions is an assortment of smaller subchapters on various

topics: Maximal Independent Sets and Boolean Networks examines a general-

ization of a classic graph algorithm through the lens of Boolean Networks (also

well-studied eventful graphs); Better Late, then? Delaying connections in tempo-

ral graphs considers a temporal graph problem motivated by train delays; Partial

Domination delves deeper into some computational complexity questions arising

from Chapter 4; and A nifty Constraint Satisfaction Problem is dedicated to a

proof that a particular combinatorial problem is NP-complete.

Supervisors: Tom Friedetzky, George B. Mertzios, Iain Stewart, and Amitabh Trehan.

i

Acknowledgments

First let me thank my supervisors Tom Friedetzky, Iain Stewart, George Mertzios,
and Amitabh Trehan for their time, insight, and advice over the course of my studies.
Their counsel was invaluable to my development as a researcher and to the writing
of this thesis. I would also like to thank my examiners Thomas Erlebach and Andrea
Marino for their questions and comments.

I would like to thank my collaborators Laura Larios-Jones, Maximilien Gadouleau,
and Anouk Sommer: it was a pleasure and a privilege to work with you, and this thesis
is richer for it. I hope our future collaborations are just as enjoyable and fruitful as
our past ones!

The inhabitants and regular visitors of MCS-SW2 are also due a mention in these
lines: you are the reason I looked forward to coming in to the office for the last three
and a half years. Enjoying one’s work is a rare privilege, and one which I owe in no
small part to you.

I cannot thank my family and close friends enough for their love, their support,
and their patience for my combinatorial ramblings. Last, but certainly not least, I
would like to thank my wife Emma: you are for me formidable, and you are the reason
I looked forward to leaving the office.

iii

Declaration

The work in this thesis is based on research carried out at the Department of Computer
Science, Durham University, England. No part of this thesis has been submitted
elsewhere for any other degree or qualification, and it is the sole work of the author
unless referenced to the contrary in the text.

Some of the work presented in this thesis has been published in journals and
conference proceedings - the relevant publications are listed in Section 1.6.

Copyright © 2025 by David C. Kutner.
“The copyright of this thesis rests with the author. No quotation from it should be

published without the author’s prior written consent and information derived from it
should be acknowledged”.

v

Contents

Declaration v

1 Introduction 3

1.1 What this thesis is about . 3

1.1.1 (Eventful) graphs . 3

1.1.2 Computational Hardness: what is as hard as Sudoku? 5

1.2 The Interval Debt Model . 10

1.3 TaRDiS . 12

1.4 Wiring datacenters . 15

1.5 Detours and distractions . 17

1.5a Boolean Networks . 17

1.5b Delaying Trains . 19

1.5c Partial Domination . 20

1.5d A nifty problem: 1-in-3 . 21

1.6 Organization . 22

2 Payment scheduling in the Interval Debt Model 23

2.1 Introduction . 23

2.2 The Interval Debt Model . 25

2.2.1 An illustrative example . 26

2.2.2 Formal setting . 26

2.2.3 Schedules . 27

2.2.4 Canonical instances . 31

2.2.5 Problem definitions . 32

2.2.6 Discussion of the model . 34

2.3 Our results . 36

2.3.1 Hardness results for Bankruptcy Minimization 36

2.3.2 Hardness results for Perfect Scheduling 45

2.3.3 Hardness results for Bankruptcy Maximization 59

2.3.4 Polynomial-time algorithms . 63

2.4 Conclusion and open problems . 69

3 Temporal Reachability Dominating Sets: contagion in temporal

graphs 71

3.1 Introduction . 71

vi

3.1.1 Problem Setting . 72

3.1.2 Our Contribution . 76

3.1.3 Related Work . 77

3.1.4 Organization . 79

3.2 Classical complexity results for TaRDiS 80

3.2.1 Containment in NP, useful tools, and small lifetime 80

3.2.2 NP-completeness of Happy TaRDiS with lifetime 3 83

Construction . 83

Properties of the construction 84

3.2.3 NP-completeness of Nonstrict TaRDiS with lifetime 2 . . . 85

3.2.4 Algorithm for TaRDiS on Trees 88

Intuition . 88

3.3 Classical complexity results for MaxMinTaRDiS 94

3.3.1 Containment in ΣP2 , useful tools, and small lifetime 94

3.3.2 ΣP2 -completeness of Happy MaxMinTaRDiS with lifetime 3 . 96

Intuition . 97

Construction . 97

Uncovered 2-Gadget (U2G) . 98

Covered 2-Gadget (C2G) . 98

Uncovered 3-Gadget (U3G) . 98

Uncovered 1-Gadget (U1G) . 99

Construction: literal vertices and clause gadgets 99

Construction: X-variable gadget 100

Construction: Y -variable gadget 101

Construction: k . 101

Properties of the construction 102

3.3.3 NP-completeness of Nonstrict MaxMinTaRDiS with life-

time 2 . 106

3.4 Parameterized complexity results for TaRDiS 109

3.4.1 FPT results with a restricted temporal assignment 109

3.4.2 Preliminaries: treewidth and tree decompositions 110

3.4.3 Algorithm for TaRDiS parameterized by treewidth and lifetime 111

States . 112

Signature . 113

Running Time and Extensions 120

3.5 Parameterized complexity results for MaxMinTaRDiS 121

3.5.1 Containment in FPT with respect to treewidth and lifetime . . 121

3.6 Conclusions and open questions . 123

4 Reconfigurable Routing in Data Center Networks 125

4.1 Introduction . 125

4.2 Problem Setting . 127

4.2.1 Hybrid networks, (re)configurations and (segregated) routing . 127

vii

4.2.2 Routing in hybrid networks . 128

4.2.3 The Reconfigurable Routing Problem 129

4.3 Results . 130

4.3.1 The case of δ = 1 . 149

Additional definitions . 149

Hardness of Partial Domination on (toroidal) grids and hy-

percubes . 150

Lunar graph classes . 152

The main result . 154

4.4 Discussion and Future Work . 158

5 Detours and Distractions. 161

5a Maximal Independent Sets and Boolean Networks 163

5a.1 Introduction . 163

5a.2 Preliminaries . 167

5a.2.1 Graphs and digraphs . 167

5a.2.2 Boolean networks . 168

5a.3 Constituencies and districts . 170

5a.3.1 Constituencies . 170

5a.3.2 Districts . 172

5a.4 Reachability of the MIS network . 175

5a.4.1 The MIS network . 175

5a.4.2 Universal configurations . 176

5a.5 Words fixing the MIS network . 177

5a.5.1 Prefixing and suffixing words 177

5a.5.2 Fixing sets . 178

5a.5.3 Permises . 179

5a.6 Permissible and non-permissible graphs 181

5a.6.1 Permissible graphs . 182

5a.6.2 Non-permissible graphs . 183

5a.6.3 The Permissible decision problem 184

5a.7 Conclusions and future work . 185

5b Better Late, then? Delaying connections in temporal graphs. 187

5b.1 Introduction . 187

5b.1.1 Problem setting . 188

5b.1.2 Related work . 190

5b.1.3 Our contribution . 191

5b.2 Preliminary Results . 191

5b.3 Tractability Results . 195

5b.4 Hardness results . 197

5b.5 Discussion and open questions . 205

viii

5c Partial Domination 207

5c.1 Introduction . 207

5c.2 Prerequisites and definitions . 207

5c.3 Known and immediate results . 208

5c.4 Contribution . 208

5c.5 Results . 209

5c.5.1 Tools . 209

5c.5.2 D,H, I are nonempty. 211

5c.5.3 B,C,F,G are nonempty. 213

5c.6 Further questions . 214

5d A nifty Constraint Satisfaction Problem 215

5d.1 Introduction . 215

5d.2 Tricolor Cubic 1-in-3 is NP-complete 217

5d.3 Triangle-free Tricolor Cubic Simple 1-in-3 is NP-complete 219

5d.4 Consequence for 3 Dimensional Matching 227

Bibliography 231

ix

Three Leonards

To make the reading (and writing) of this introduction more pleasant, three Leonards

will accompany us through it (and also make the odd appearance later in this thesis).

The reader interested only in mathematical content will find the distinctive formatting

of these passages useful in skipping them (always as below – with quotations cited as

usual, but almost always gleefully disregarding the original context and meaning), and

the reader principally seeking whimsy with mathematics interspersed may be better

served by other works (e.g., Carroll or Hofstadter). The rather narrow intended

audience for these passages is then the reader who is interested in both the content

of this thesis and some accompanying whimsy.

Cohen, Da Vinci, and Euler meet in Manhattan. Realizing himself the host-est of the

unlikely trio, Cohen unfolds a map to explain their whereabouts.

C. : New York is cold, but I like where I’m living [1, Famous Blue Raincoat]

E. : In America! [2, Letter XV, p. 61]

D. : So these are all rivers?

C. : We call them rivers – Hudson, Harlem, East – that last one is saltwater.

D. (thoughtfully): Between river and river. . . [3, Note 1092] The greatest river in our

world is the Mediterranean river, which moves from the sources of the Nile to the

Western ocean. [3, Note 1092]

E. : The ocean in many places has such rapid currents that it resembles a running

river. [4, Letter XXX, p. 206] But in any case, if those are rivers, then (with visible

excitement) these must be bridges?

D. makes a sketch of the map in his notebook.

D. : I should like to see these bridges!

E. : Me as well! Perhaps we could do so in one trip, never using the same crossing

twice?

C. : Maybe. . . But then you should keep note of what each crossing is – firstly, those

are tunnels (D. and E.’s enthusiasm for them palpably diminishes), this one is a rail

bridge, that one changes direction twice a day, these ones you’d have to cross with

the subway, but the view makes up for the olfactory experience . . .

Some time later, E. has drawn a cleaner version of C.’s sketch (omitting landmass

shapes) and the trio has agreed on an itinerary.

C. (walking behind): “Follow me,” the wise man said. [1, Teachers]

1

Contents

Manhattan

Bronx
New
Jersey

Randalls
& Wards

Brooklyn
& Queens

road intercity railsubwayroad and subway pedestrian

Figure 0.1: Abstracting away the details of Manhattan’s crossings. Top left map [5];
top right map [6].

2

Chapter 1

Introduction

1.1 What this thesis is about

This thesis sits at the intersection of “eventful” graph theory and computational

complexity. We first introduce these two recurring concepts at a high level, and then

go into a little more detail about each of the forthcoming chapters.

1.1.1 (Eventful) graphs

A graph is a computer scientist’s1 second-favorite way of representing the New York

subway. It abstracts away all the unnecessary details - the physical distance between

stops, whether a crossing is a bridge or a tunnel, the names of the trains, and so

on. Only the stations and their interconnections remain – a result not dissimilar to a

subway map.

Graphs classically consist of vertices, edges, and nothing more. For example,

Figure 1.1 shows a small graph G on five vertices and six edges. The manner in which

a graph is drawn is unimportant - the object is the vertices and their connections,

not their positions. Two graphs G and H which can be drawn in the same shape are

called isomorphic because mathematicians enjoy using Greek (literally “iso”, equal,

and “morphic”, shaped). Figure 1.2 shows two other drawings of G, and two drawings

of graphs isomorphic to G. In this work we will often say that G and H are the

same graph, rather than isomorphic to one another, but the distinction occasionally

matters.

v

x

w

yu

v

x

w

u y

Figure 1.1: Two drawings of the same small graph G = (V,E), with V = {u, v, w, x, y}
and E = {(u, v), (u,w), (u, x), (v, x), (w, x), (x, y)}. The manner in which vertices and
edges are drawn, like the fonts, are immaterial – only the relationship between vertices
and edges matter.

1namely, the author

3

1.1.1. (Eventful) graphs

v

x w

yu

b

d c

eav

x

w

y

u Randalls

& Wards

Bronx

Manhattan

Brooklyn

& Queens

New

Jersey

G G H I

Figure 1.2: Two more drawings of the graph G from Figure 1.1, and two graphs H
and I which are isomorphic to G.

Graphs are relevant far beyond rail transport, of course. Myriad real-world sys-

tems – including many things which aren’t networks themselves – can be modeled

using graphs. Although graphs make for beautiful theory and fascinating structure,

they are static, and many of the systems we actually wish to study change. In other

words, the real world is eventful. We shall use the umbrella term eventful graph to

designate a graph which is somehow extended to account for the changeability in-

trinsic in real-world systems. The nature of the events in question is, of course, very

relevant to the exact model applied; for example, these may be:

• changes which may be chosen (e.g., when to pay a debt, or how to wire a

datacenter)

• locally predictable occurrences beyond our control (e.g., the spread of a fire,

disease, or information)

• scheduled events (e.g., trains) – which may themselves be disrupted in unfore-

seen ways.

(A real system may change in many different ways, of course - in which case we

might try to model several kinds of changes simultaneously, or instead focus only on

the most frequent culprit for the system’s dynamism.)

One example of an eventful graph (and, incidentally, the author’s favorite way

to model the New York subway) is a temporal graph. A temporal graph can be

thought of as a static graph with a schedule. Like a static graph, it has vertices and

connections, but the connections appear and disappear over time. Figure 1.3 shows

a small temporal graph G and snapshots Gt of G at different times t. We say that

a vertex reaches another vertex if there is a time-respecting path from the former to

the latter. For example, in Figure 1.3, u reaches y through a path which goes from u

to x at time 1, then from x to y at time 2, and y reaches u through a path which goes

from y to x at time 2, then to w at time 3 and finally to u at time 4. On the other

hand, v does not reach y at all - because no edges leaving v are active early enough

to enable a connection with the only edge into y, which is at time 2.

v

x

w

yu

v

x

w

yu

3 4
1

32, 4

2

v

x

w

yu

v

x

w

yu

v

x

w

yu

G G1 G3 G4G2

Figure 1.3: A small temporal graph.

4

1.1.2. Computational Hardness: what is as hard as Sudoku?

1.1.2 Computational Hardness: what is as hard as Sudoku?

Graph theory’s (much younger) companion throughout this work is computational

complexity theory.

D: It is a useful companionship, for one is not good for much without the other. [3]

A classic problem known to casual puzzlers and devout combinatoricists alike is

Sudoku: given a grid, usually of 9 × 9 cells (some empty, some not), the object is to

write a single digit (the eponymous “su doku”) in each empty cell so that each row,

column, and 3×3 subgrid contains exactly one of each digit between 1 and 9. Sudoku

is closely related to Latin Squares – which, like graphs, are combinatorial objects of

Eulerian (re-)invention [7].

The Leonards sit at a café near Union Square Park, huddled around the final pages

of a newspaper.

D. (pointing): Put before you three or four. [3, Note 798]

E. : Yes, in the fourth row, fifth column - right there!

C. (noting the numbers on the grid in the newspaper): It goes like this: the fourth,

the fifth? [1, Hallelujah]

Later, at the same table, the Leonards are puzzled.

D. : Well this is tricky. It must be three or four, and yet it cannot be either of them.

C. : We must have made a mistake earlier.

E. : It cannot be affirmed. [2, Letter XVII p.70]

C. : You mean there might be a mistake in the puzzle itself?

E. : It must be considered [4, Letter IV p. 92].

C. : Fine – EITHER there is a mistake in the puzzle, OR, we made a mistake earlier.

E. : It cannot be denied [4, Letter LVI p. 39].

C. : Well, I think the puzzle is wrong.

D. : Well, we can call the newspaper –

C. : And who shall I say is calling? [1, Who by Fire] The ghost of you and me? [1,

Is This What You Wanted]

D. : – unimportant; if it is valid, they should have a solution for it, right? And then

we would be able to check it ourselves, so that-

E. : -it cannot be doubted [4, Letter LVII p. 43].

It is generally accepted that Sudoku makes for challenging puzzles[citation needed].

It is also intuitive checking whether a particular solution to a puzzle is correct is easy:

it suffices to verify column by column, row by row, and subgrid by subgrid that all

symbols appear exactly once. Of course, with modern computers, a standard 9 × 9

Sudoku puzzle can be solved quite easily [8]. This is not true for generalized Sudoku

(as illustrated in Figure 1.4). Indeed, if a program which efficiently2 solves Sudoku
2Explained more formally in the sequel.

5

1.1.2. Computational Hardness: what is as hard as Sudoku?

on an arbitrary-sized board were proven to exist, this would entail that P=NP and

thus solve one of the major open questions in mathematics.

P and NP are sets of decision problems. A “problem” as computer scientists

understand the word is essentially a function – a mapping from inputs to outputs.

An input of a problem is called a “problem instance” and the output is then the

answer for that particular instance. If the answer sought is a simple “yes” or “no”

(e.g., “Is the given Sudoku puzzle valid?”), we call the problem a decision problem,

and if the answer sought is not binary (e.g., “Given a Sudoku puzzle, return the solved

puzzle.”) then we call the problem a function problem.

Smaller grid, easier to solve Bigger grid, harder to solve

Smaller grid, very easy to verify Bigger grid, still reasonably easy to verify

Figure 1.4: Sudoku grids of varying sizes and their solutions (puzzles generated with
[8]).

For example, on the top half of Figure 1.4 are three instances to the decision

problem Sudoku3 (which asks if the given Sudoku puzzle is valid). In this case, the

answer to the problem is YES for all three instances, (we call them yes-instances).

We note at this point that verifying that the answer to any yes-instance of Sudoku

is indeed YES is straightforward – if the solution is given. On the other hand, it is

3Computer scientists usually present decision problems in small capitals, as shown here. Some
(but certainly not most) extend this idea to their speech, shouting the names of decision problems.

6

1.1.2. Computational Hardness: what is as hard as Sudoku?

not immediately clear whether all no-instances have some equivalently easy to verify

proof.

Central to the field of computational complexity is the question of what resources

are necessary (or sufficient) to solve (or verify answers to) different problems. Specif-

ically, we are interested in how the resource requirement to solve some problem grows

with the size of the input. Most often, the resource which is of interest is time.

Exponential: y = 2x Polynomial: y = x2

Linear: y = x

Input size x

A
lg
or
it
h
m

ru
nt
im

e
y

Figure 1.5: Illustration of different types of functions’ growth rates.

If the amount of time needed to solve (or, respectively, verify) the problem doubles

any time the input size doubles, we say that the problem is solvable (resp. verifiable)

in linear time, and if the amount of time needed increases by the same factor k any-

time the input size doubles, then we say the problem is solvable (resp. verifiable)

in polynomial time. We generally consider that algorithms which run in polynomial

time are practical, and that ones which require more than polynomial (e.g., expo-

nential) time are not. (Linear, polynomial, and exponential growth are illustrated in

Figure 1.5.)

P and NP are classes of decision problems: P contains all those decision problems

which can be solved in polynomial time, and NP contains all those decision problems

whose solutions can be verified in polynomial time. Note that every decision prob-

lem which can be solved in polynomial time can also be verified in polynomial time

(simply solve the problem from scratch - no proof is needed!) but the converse is not

necessarily true. Therefore, P is a subset of NP. Though it is widely believed that P

and NP are different, a proof remains elusive. More specifically, it is known that if

P and NP are indeed different, then a particular problem called Satisfiability is in

NP but not in P.

Let us return to the example of Sudoku. We would like to know whether there

could be a polynomial-time algorithm for the problem - we suspect this is not the case,

and would like to prove it. We know that Sudoku is verifiable in polynomial time,

so it is in NP. If we were able to prove that Sudoku is not solvable in polynomial

time, this would entail that P ̸=NP - perhaps too ambitious a goal. Enter reductions:

transformations which “translate” between problems, turning instances of a problem

7

1.1.2. Computational Hardness: what is as hard as Sudoku?

Γ into instances of another problem Π, so that yes-instances are mapped to yes-

instances and no-instances are mapped to no-instances. We denote by Γ ≤poly Π the

existence of polynomial-time reduction from a problem Γ to a problem Π. This is

a proof that Γ is “at most as hard” as Π – since the existence of a polynomial-time

algorithm A for Π entails the existence of a polynomial-time algorithm for Γ by first

applying the reduction and then solving the obtained instance of Π using A. This

idea is illustrated in Figure 1.6. In our case, there is a reduction from Satisfiability

to Sudoku [9] – so there can be no polynomial-time algorithm for solving Sudoku

unless P=NP.

Instance I of Γ Instance J of ΠReduction f
from Γ to Π

Algorithm
solving Π

“Yes” (J is a yes-
instance of Π)

“No” (J is a no-
instance of Π)

“Yes” (I is a yes-
instance of Γ)

“No” (I is a no-
instance of Γ)

Algorithm solving Γ

Figure 1.6: A polynomial-time reduction from a problem Γ to a problem Π entails
that if we have an algorithm solving Π in polynomial time, then we get an algorithm
solving Γ in polynomial time.

We can extend this idea to other problems: Graph Coloring asks if a given

graph can be colored “properly” with some number of colors, i.e. whether all vertices

of the graph can be assigned a color so that no two neighboring vertices are assigned

the same color. Precoloring Extension asks the same, but the graph we are

given is precolored – some of the vertices already have a color assigned to them.

These concepts are illustrated in Figure 1.7.

v

x

w

yuu

v

y

v

x

w

yuu

v

y

v

x

w

yuu

v

yx

v

x

w

yuu

v

yx

Figure 1.7: From left to right: a precoloring of G; a proper 3-coloring of G extending
the precoloring; a second precoloring of G (which cannot be extended to a proper
3-coloring); an extension of the second precoloring (which is not proper: w and x
share a color).

A helpful property of polynomial-time reductions is that they can be composed,

and so polynomial reducibility is transitive: if Γ ≤poly Π and Π ≤poly Λ then Γ ≤poly

Λ. This means that if we are interested in showing some new problem (say, Graph

Coloring) is as hard as Satisfiability, we can do this by reducing from Sudoku

(because we already know Satisfiability ≤poly Sudoku)4.

For example, Satisfiability is reducible in polynomial time to Sudoku, and

Sudoku is reducible in polynomial time to Graph Coloring (see Figure 1.8), so

Satisfiability is reducible in polynomial time to Graph Coloring. We can imag-

ine all decision problems as being elements of an enormous set which is (partially)

ordered by these polynomial-time reductions. A problem Π is complete for a set if

it is in the set, and every other problem in the set is reducible to Π - so Π is as
4We could also use Karp’s proof that Satisfiability ≤poly Graph Coloring from 1972 [10],

but this would be less fun as an example because his proof does not use Sudoku (probably because
Sudoku didn’t exist yet [7]).

8

1.1.2. Computational Hardness: what is as hard as Sudoku?

hard as anything else in the set. It is known that Satisfiability is complete for

NP [10]. So, because Satisfiability ≤poly Sudoku, we know that Sudoku is also

complete for NP – since it is in NP, and every other problem in NP can be reduced

to Sudoku in polynomial time (via Satisfiability). Figure 1.9 shows reducibility

among some classic combinatorial problems. Note that some problems in NP are not

in P and are also not NP-complete (unless P=NP, in which case everything collapses)

– the most famous candidate for such a so-called NP-intermediate problem is Graph

Isomorphism.

Much of this thesis is dedicated to proving that problems which we know are in

NP are in fact NP-complete5, or, conversely, dedicated to finding polynomial-time

algorithms for (restrictions of) these problems. NP-intermediate problems also make

an appearance in Chapter 5c.

P T O

bi

aiii

div

ai

biii

civ

ci

diii

aii cii dii

di

aiv biv

ciii

biai ci di

44B

bii

Figure 1.8: Reduction from Sudoku to Precoloring Extension to Graph Col-
oring. First, the Sudoku grid on the left is valid if and only if the precoloring of the
graph in the center can be extended to a proper 4-coloring – the numbers 1-4 corre-
spond to the 4 colors (pink, turquoise, orange, and brown) used in the precoloring,
and the restrictions on placing numbers in the Sudoku grid exactly correspond to the
edges in the graph shown in the center.
Second, the precoloring of the graph in the center can be extended to a proper 4-
coloring if and only if the graph on the right has a proper 4-coloring at all: the
special palette vertices P, T,O,B at the top of the figure must be colored differently
(since they are all connected), and we can assume that P is pink, T is turquoise, O is
orange, and B is brown in a proper 4-coloring. Vertices which are precolored in the
center graph (corresponding to filled-in cells in the grid on the left) are connected to
all the palette vertices of a different color from their precoloring (e.g., ci is connected
to P, T , and B, but not to O, forcing it to be colored orange). Vertices which are
blank in the center graph (corresponding to blank cells in the grid on the left) are not
connected to any palette vertices.

Faced with a hard problem, theoretical computer scientists often restrict the class

of instances considered. For example, now that we know Sudoku is NP-complete,

we might be interested in whether it is computationally hard to solve Sudoku on

specific types of grids. One possibility is to restrict the structure of the instance –

for example, it is clear that if each row and column in a Sudoku grid has at most one

blank, we can easily fill in all these blanks (and check that the solution obtained this

way is correct).

A more granular approach is parameterization: we identify a measure of instances

which, if limited to any constant, allows us to solve the problem in question in poly-

nomial time. We again turn to Sudoku for an example. Intuitively, when few cells

5Meaning we cannot hope to solve it in polynomial time unless P=NP.

9

1.2. The Interval Debt Model

Maximum
Flow

Sudoku

P

NP-complete

NP

Coloring
Graph

Matching Linear
Program

Graph
Isomorphism

(?)

fiability
Satis-Satisfiability

Maximum
Flow

Sudoku

Coloring
Graph

Matching Linear
Program

Graph
Isomorphism

(?)

fiability
Satis-Satisfiability

Figure 1.9: Reducibility among problems in P and NP. An arrow from Γ to Π means
Γ ≤poly Π. Reductions implied by transitivity are not shown.

are empty, it is easy to solve a Sudoku grid – and hence to check whether it has a so-

lution. This can be formalized: there exists an algorithm which, given a Sudoku grid

of size n with k many blank cells, finds a solution in O(kk ·n) time. A parameterized

problem which can be solved by such an algorithm is called fixed-parameter tractable

(fpt), because if the parameter k is set to be any fixed constant (be it 3 or 1000), the

algorithm’s running time is polynomial in the size of the input.

1.2 The Interval Debt Model

The Leonards overhear a conversation at the next table.

Alice: Heya Bob! To help us figure things out, I asked my accountant to meet us here,

she should be –

Bob: Accountant? You only owe me two dollars! You’ve got the whole week to come

up with the money! How much are you paying her to figure this stuff out for you?

Alice: Six dollars, but I don’t see what that has to do with anything. Ah, here she is!

This is Carol, I don’t know if you’ve met.

Carol: We have!

Bob: She’s my accountant too. Which reminds me, I also owe her six dollars. We

said by the end of next week, right?

Carol: Indeed!

Alice: He gets till next week? You gave me two days!

Carol (shrugging): You’re a higher-risk client. To be honest, I don’t see any way you

come out of this without filing for bankruptcy.

. . .

10

1.2. The Interval Debt Model

Carol

Bob

Alice
$4

$6

$4

$4
Carol

Bob

Alice
$4

$6@[7, 10]$2@[1, 5]

$6@[2, 3]

$4

$4

$6$2

Carol

Bob

Alice
$4

$6@8$2@2

$4

$4

Carol

Bob

Alice
$4

$4@7$0

$4@2

$4

$4

$2@3

Figure 1.10: A small financial network. Left: Alice, Bob and Carol each have $4;
Alice owes Bob $2, and Alice and Bob each owe Carol $6. Center: the time each debt
is due is included (e.g., Alice owes Bob $2 which must be paid between the 1st and 5th
of the month). Right: two possible schedulings of the payments among the trio – one
of these is “good”, resulting in only one bankruptcy and one underpaid debt, and the
other is “bad”, resulting in two bankruptcies and three underpaid debts.

Chapter 2 is about financial networks: financial entities interlinked by debts be-

tween them (modeled as a directed graph, because debts are not symmetric relation-

ships). Theoretical works on financial networks study formalizations of this system,

usually centered on some form of the payment question: Who pays whom, and how

much? (We extend this with “and when?”, though most other works do not.)

Previous studies have considered both computational complexity questions: How

hard is it to find a (“good”) answer to the payment question? [11, 12] and game theory

questions: If our vertices are selfish agents, then what strategy will each node use, and

what answer to the payment question do these strategies produce? [13]. Some of these

works also consider bailouts as possible payments: direct cash injections into specific

nodes in the system. The seminal work in this area is Eisenberg and Noe’s [11]. Their

model has been extended in many ways, though these are seldom eventful (in the sense

which we set out in Section 1.1.1). A notable exception is Papp and Wattenhofer’s

study of sequential defaulting in financial networks [14], where the order in which

bankruptcies are announced is highly relevant to the ultimate outcome. At the core

of that model are Credit Default Swaps (CDSs), that is, financial derivatives which

effectively allow entities to bet on one another’s bankruptcies. That work inspired us

to consider the complexity of an eventful model of financial networks which had only

simple debts, and no CDSs, but left entities with some latitude as to when payments

should be made.

The model we consider in Chapter 2 incorporates a temporal dimension to our

questions. Looking at the small network in Figure 1.10, the question of when different

parties can (or do) pay one another has a direct effect on possible outcomes. For

example, if Alice’s debt to Bob was due strictly after her debt to Carol (say, in the

interval [4, 6]) then it would be impossible for Bob to avoid bankruptcy (as in the

“good” scheduling in the top right). Conversely, if Alice’s debt to Carol was due

strictly after her debt to Bob (say, in the interval [6, 10]) then there would not be any

possible scheduling in which Bob is left bankrupt (as in the “bad” scheduling in the

bottom right).

11

1.3. TaRDiS

The Interval Debt Model (IDM) is our contribution. The questions we consider

are all about the aforementioned payment scheduling:

• Bankruptcy Minimization asks if there is a schedule with at most some

number of bankruptcies k, and Perfect Scheduling asks if it is possible to

schedule payments so that no one goes bankrupt,

• Banrkuptcy Maximization asks if there is a schedule with at least some

number of bankruptcies k (because the Bobs of the world are anxious to know

what happens to them in the worst-case scenario),

• Bailout Minimization asks how small a cash injection is sufficient to make a

perfect schedule (with no bankruptcies) possible.

In Chapter 2, we show that all of these problems are NP-complete, in many cases

even on very restricted input instances. On the other hand, we show that Perfect

Scheduling is in P for nicely-structured instances (specifically, when debts are all

directed “away” from someone), and also when we consider a model in which fractional

payments are allowed (so, e.g., Bob can pay Carol three sevenths of a dollar on Monday

and the rest of his debt on Tuesday).

1.3 TaRDiS

The Leonards are in Times Square and have a run-in with The Doctor.

C: Where’s our Swiss friend? Ah, here he is!

E (coughing): I had the strangest encounter – a police box just coughed on me!

(C and D also start coughing.)

Dr. : Very sorry gentlemen, it seems you are infected with my TARDIS.

C: Your what?

Dr. : My TARDIS – big blue box, bigger on the inside, says “Police” on the front,

occasionally becomes a viral infection?

C coughing: Everybody knows that the plague is coming. [1, Everybody Knows]

Dr. : Indeed – the TARDIS is exploding right now [15, S5E12].

v

x

w

yu

v

x

w

yu

3 4
1

32, 4

2

v

x

w

yu

v

x

w

yu

v

x

w

yu

G G1 G3 G4G2

x

ux

ux yyx yu

w

v

x yu

w

v

x yu

w

v

x yu

w

v

x yu

w

v

Figure 1.11: Contagion in a temporal graph. A vertex in snapshot t ∈ {1, 2, 3, 4} is
drawn with its own color, and that of any which can reach it by time t.

Chapter 3 is about contagion in temporal graphs, and in particular about Temporal

Reachability Dominating Sets (or, more briefly, TaRDiSes). A dominating set in a

(static) graph is a set of vertices which “sees” every vertex (illustrated in Figure 1.12),

and a TaRDiS is a set of vertices that reaches every vertex in the graph through

12

1.3. TaRDiS

a temporal path. Figure 1.11 illustrates spread in the small temporal graph from

Figure 1.3.

u

v w

yx

u

v w

x

u

y

u

w

xy

u

v v w

yx

u

Figure 1.12: Different sets of vertices in a small graph, showing “lines of sight” of
each vertex in each set as dashed lines of the appropriate color. {w, x}, {v, y} and
{u,w, y} are each dominating sets, whereas {w, y} is not, because u is neither in the
set nor adjacent to one of w and y.

We note that temporal paths (unlike static paths) cannot necessarily be followed in

reverse: a path from u to v does not entail a path from v to u, even if each connection

is symmetric.

a u v b

c w x d

a u v b

c w x d

1, 4

1, 4 1, 4

33

1, 4

2

2
a u v b

c w x d

4

4 4

22

4

3

1
a u v b

c w x d

1

1 1

43

1

2

2

G

a u v b

c w x d

a u v b

c w x d

a u v b

c w x d

a u v b

c w x d

a u v b

c w x d

a u v b

c w x d

a u v b

c w x d

a u v b

c w x d

a u v b

c w x d

G1

G2

G3

a u v b

c w x d

a u v b

c w x d

a u v b

c w x d

G4

a u v b

c w x d

u

u

u

u

u

a u v b

c w x d

u

u

u

u

u u

w ww

a b

c d

a b

c d

uuu uuu uuu uuu

vuvu

u

w

v

x

vu

a

c

a

c

a

c

a

c

a

c

a

c

u

w

u

w

uuu

uu

b

d

b

d

b

d

b

d

b

d

b

d

c

a u

w x

v b

d

c

a u

w x

v b

d

c

a u

w x

v b

d

c

a u

w x

v b

d c

a u

w x

v b

d

c

a u

w x

v b

d

c

a u

w x

v b

d

c

a u

w x

v b

d c

a u

w x

v b

d

c

a u

w x

v b

d

c

a u

w x

v b

d

c

a u

w x

v b

d

c

a u

w x

v b

dc

a u

w x

v b

dc

a u

w x

v b

d

Figure 1.13: Spread from the vertices {u, v, c, d} in three different temporizations of
the same footprint graph. On the left, any single vertex reaches all other vertices in
the graph; in the center, either u or v suffice to reach all vertices; and on the right, a
set of four vertices is necessary to reach the entire graph.

The temporal graph community has considered a large variety of reachability

problems. These have been studied in the context of network design [16, 17, 18]

13

1.3. TaRDiS

and transport logistics [19, 20] (where connectivity and reachability are considered

positive), and the study of epidemics [21, 22, 23, 24] and malware spread [25] (where

they are not). Another part of the literature on temporal graphs focuses on so-

called temporization problems, in which a static graph (called the footprint) is given

and the task is to find whether it is possible to schedule its edges to achieve some

temporal property. One classic example of such a property is connectedness, i.e.,

every vertex having a path to every other vertex [26]; other properties (also with

various constraints for the schedules which may be allowed) have also been explored

[27, 28, 29]. Different temporizations of the same footprint graph may have very

different reachability properties, as illustrated in Figure 1.13.

The intuition behind TaRDiS is that in a well-connected temporal graph, we would

expect that a small number of vertices can (collectively) reach the entire graph. The

TaRDiS problem asks, given a temporal graph G and an integer k, whether there is

a TaRDiS in G of size at most k.

We also consider the MaxMinTaRDiS problem, a temporization problem where

the desired property is that there is no small TaRDiS (i.e., the aim is to maximize

the size of the minimum TaRDiS). Intuitively, MaxMinTaRDiS asks: “How badly-

connected could any temporal graph with this footprint be?” For example, if G is the

graph at the top of Figure 1.13, then (G, 4) is a yes-instance of MaxMinTaRDiS,

because the temporization shown on the right-hand side of the figure has a minimum

TaRDiS of size (at least) 4.

Our contributions constitute a near-comprehensive study of the complexity of both

problems, in different settings and under different restrictions. Without introducing

too much technical detail, the principal results are the following:

• NP-completeness (or worse6) of TaRDiS and MaxMinTaRDiS even when the

lifetime (total number of snapshots) of the temporal graph is limited to three.

• A proof that one particular variant of MaxMinTaRDiS is exactly the (already

known and studied) static graph problem Distance-3 Independent Set.

• On the parameterized side, fpt algorithms for both problems using parame-

ters combining structural properties of the footprint with the lifetime of the

temporal graph (or, in the case of MaxMinTaRDiS, lifetime of the desired

temporization).

6We show ΣP
2 -completeness of a specific variant of MaxMinTaRDiS; the practical implications

of this result are that we cannot even hope to verify yes-instances of this variant of the problem
in polynomial time (unless some common assumptions fail – in this case the Polynomial Hierarchy
collapsing to the first level).

14

1.4. Wiring datacenters

1.4 Wiring datacenters

The Leonards have just finished going through the Lincoln Tunnel(s) three times on

their tour of the city’s crossings.

E. : Well that was. . . gray.

D. : So unpleasing a sight. [3, Note 1288]

E. : So because it’s – what did you call it? – “rush hour”, the central tunnel is leading

from that side to this one?

C. : All through the evening. [1, Famous Blue Raincoat]

D. : Do you suppose we could change not just the direction, but also the endpoints?

Yes – a floating bridge of sorts! Then it could lead from any landmass to any other!

A ferry cruises past them.

E. : Supposing we had your flotilla of bridges, we would still need to worry about how

to arrange them. . .

Chapter 4 is about choosing a “good” configuration for a graph, some edges of

which can be changed, based on the tasks it needs to perform. The specific motivation

for this research is found in huge facilities full of interconnected computers: data

centers. A data center consists of a large number of computers (servers), which

traditionally would be connected to one another with physical copper cables (or optic

fibers). A relatively recent development is the viability of so-called free-space optics

in this context7: by mounting a mirror on the ceiling, and laser terminals on top of

server racks, it is possible to create optical connections between any pair of servers in

a room. Free-space optics are also being developed at a much larger scale, as shown

in Figure 1.14.

Figure 1.14: Left [31]: NASA’s ILLUMA-T system on the International Space Station
communicates via a satellite, Laser Communications Relay Demonstration (analogous
to our ceiling mirror). Right [32]: NASA’s Low Cost Optical Terminal.

The advantage of this approach is that it allows for rapid reconfiguration; the

top-of-rack terminal can be re-oriented in a matter of milliseconds to nanoseconds

[33, 34, 35], which means that by having just a single laser terminal on each server

rack it is possible to create a direct optical connection between any pair of servers as

and when it is needed. Of course, it is possible to have several terminals on top of

each rack, which would enable several simultaneous optical connections. We are more

7Free-space optics in other contexts have been in use for much longer [30].

15

1.4. Wiring datacenters

specifically interested in hybrid networks, which combine a reconfigurable network

architecture with a traditional fixed data center network. Information that needs to

be sent from one server to another may then be routed either in the fixed cables of the

network, through the free-space optical links, or through a combination of the two.

Hybrid networks can adapt in near-real time to demands, but how hard is it to

choose the right adaptation for some given demands? This is the Reconfigurable

Routing Problem (RRP). Slightly more formally, in this problem: the ceiling mirror

is called a reconfigurable switch; a free-space optical link (server-to-server, including

a “mirror bounce” through the reconfigurable switch) is called a dynamic link; and

our copper cables are called static links.

Previous work on this problem [36, 37, 38] established that it is NP-complete,

and identified some interesting parameters for the problem, such as the number of

terminals on each server rack: ∆S , the switch degree, controls how many connections

each server rack may make to the optic switch, and σ, the segregation parameter,

controls how many times a packet being routed through the network may switch

mediums (e.g., a dynamic-static-dynamic path would be disallowed if σ were set to

1 or less). Similarly, the dynamic link limit δ prescribes the maximum number of

dynamic links any packet may be routed through (so if δ = 1 then a dynamic-static-

dynamic path is disallowed but a static-dynamic-static path is allowed). The results

shown in these works largely would not hold for highly structured networks. However,

real-world data centers are often just that: highly structured [39, 40].

d e f hgb c

Ceiling mirror

a

Figure 1.15: A diagram of a small (8-rack) data center with a physical cable connecting
all racks in series, and a ceiling mirror enabling free-space optical connections between
racks. In the configuration shown, rack b may communicate with rack c either through
a single copper link or through two mirror bounces (through rack a’s terminal).

Consequently, we consider restrictions of RRP to instances where the network has

“realistic” properties. In particular, we expect:

Symmetry: each server has identical hardware, and the “view” of the network from

each server is the same

High connectedness: the network stays connected even if some cables are damaged

Low diameter: for any two servers, there is a “short” path connecting them

Low degree: each server has “few” direct connections to other servers

The problem ∆S-Switched RRP is the restriction of the problem RRP to those

instances where every server rack has exactly ∆S terminals. Figure 1.15, for example,

16

1.5. Detours and distractions

shows an instance of 2-Switched RRP, and not of 1-Switched RRP, since a is

simultaneously maintaining optic links to both b and c. Our main findings are:

• 2-Switched RRP and 3-Switched RRP are NP-complete regardless of the

topology of the static part of the network.

• 1-Switched RRP with σ set to 0 is in P, and 1-Switched RRP is in P if we

restrict ourselves to instances where every pair of servers is connected directly

by a link.

• 1-Switched RRP is NP-complete when the static portion of the network is a

hypercube (a highly structured graph on which the BCube network architecture

is based [40]), even when either σ = 3 or δ = 1.

1.5 Detours and distractions

Chapter 5 presents several different strands of research which we wished to include

but which did not each warrant a separate chapter.

1.5a Boolean Networks

The Leonards gather by The Little Red Lighthouse. A large lever protrudes from the

structure, angled down towards a plaque which reads OFF. Across the water is another

small lighthouse, its own lantern lit.

C: Can you make out what the sign on the front of that lighthouse reads?

E: My eyesight isn’t what it once was. . .

D: Perhaps if we had a looking glass, or more light from our side?

D. flips the lever to ON. The Little Red Lighthouse whirrs with electricity as its

beacon beams across the Hudson. When it reaches the small lighthouse on the other

bank, that one’s lantern goes dark. The Leonards clearly make out the sign on the

front: “Chez Boole”.

D: Do you think we vexed them? Perhaps shouldn’t have – I’ll turn it back off. He

flips the lever back to OFF.

After a beat, the lighthouse across the water comes back on.

Chapter 5a is about a type of eventful graph called a Boolean network (which we

will explain shortly), and maximal independent sets.

An independent set in a graph is a set of vertices which shares no edges, and

a maximal independent set (MIS) is an independent set to which no vertex can be

added. Maximal independent sets should not be confused with maximum indepen-

dent sets, which are those independent sets of maximum size for the graph. Fig-

ure 1.16 illustrates the differences between these concepts. Maximal independent sets

are fundamental objects in graph theory, and there has been a rich line of study into

17

1.5a. Boolean Networks

how different distributed computing models can compute maximal independent sets

[41, 42, 43].

u

v w

x

yz

u

v w

x

yz

u

v w

x

yz

u

v w

x

yz

Figure 1.16: In the cycle graph C6 with vertices {u, v, w, x, y, z}. From left to right:
{u, v, y} is not an independent set, because u and v share an edge; {u,w} is not a
maximal (and hence not a maximum) independent set, because y could be added to
make a bigger independent set; {u, x} is a maximal independent set (no vertex can
be added), but is not a maximum independent set (because there exists a larger one);
{u,w, y} is a maximum (and hence maximal) independent set.

A simple greedy algorithm to find a maximal independent set (MIS) in a graph

starts with the empty set and visits every vertex, adding it to the set if and only

if none of its neighbors are already in the set. In this chapter, we consider (the

complexity of decision problems related to) the generalization of this MIS algorithm

wherein any starting set is allowed. Two main approaches are leveraged: Boolean

networks (which predate our work and ourselves), and the notion of a constituency

in a graph (which we introduced).

A constituency of a graph is a set of vertices that is dominated by an independent

set which is outside the constituency (in the Dominating Set sense). Recognizing

a constituency is NP-complete, a fact we leverage repeatedly in our investigation.

Figure 1.17 illustrates different (non-)constituencies in a heptagon graph.

u

u

u

u

a

g

f

b

c

d

e u

u

u

u

u

uu

u

u

v

a

g

f

b

c

d

e u

u

u

u

u

u

u

u

v

a

g

f

b

c

d

e

b

c a

b

Figure 1.17: In the heptagon graph on vertices {a, b, c, d, e, f, g}: {a, g, f} is not
a constituency, because there is no subset of {b, c, d, e} dominating these vertices;
{g, f, b, c} is not a constituency, because even though {a, d, e} dominate the vertices,
these 3 are not independent – they share an edge (d, e); {b, g, f} is a constituency,
because the independent set {a, c, e} dominates it.

Boolean networks are graphs where each vertex starts true or false (or, ON or

OFF), and vertices successively update themselves based on their neighbors’ values.

This is a simple yet powerful model of computation – for example, the famous Con-

way’s Game of Life is a Boolean network on an infinite grid graph. In other words,

despite their simplicity, Boolean networks are sufficiently powerful to simulate any

system which can be simulated8. Boolean networks may be either synchronous (up-

dates are performed at time t based on the status of each vertex at time t − 1) or

asynchronous (updates are performed by each vertex in turn). Our work is in the lat-

ter setting: we view the MIS algorithm as a sequential update of a Boolean network

8Optionally through Conway’s Game of Life, which is itself Turing-complete.

18

1.5b. Delaying Trains

according to a permutation of the vertex set. A sequence of vertices (a “word”) can

then be thought of as prescribing the ordering of this sequential update, and if the

word leads to a MIS from any starting configuration we say the word is a fixing word

(because after those updates the network is “fixed” in place). At a high level, our

contributions are:

• Showing that it is computationally hard to (a) decide whether it is possible to

reach every MIS from some starting configuration and (b) recognize fixing words

or fixing permutations (permutations are words in which every vertex appears

exactly once).

• Posing (and answering) several questions about those graphs which admit a fix-

ing permutation (permissible graphs). We identify the heptagon as the smallest

permissible graph, and exhibit large classes of permissible and non-permissible

graphs, as well as proving that deciding whether a graph is permissible is com-

putationally hard.

• Extending our study to directed graphs, where we search for kernels, which are

analogous to maximal independent sets in undirected graphs.

1.5b Delaying Trains

The Leonards are not on the platform at Long Beach train station, because the Long

Island Railroad is delayed. Again.

Chapter 5b is about choosing delays in train networks. When there is a disruption,

carefully-chosen delays may be beneficial for certain passengers, who would otherwise

miss some connections. Given a temporal graph (representing all trains in the network

after the disruption) and a set of passengers (each specifying a starting vertex, an

ending vertex, and a desired arrival time), we ask whether it is possible to delay

some of the edges of the temporal graph to enable each passenger’s timely arrival.

We call this problem DelayBetter (DB), and study it along with two variants: in

δ-DelayBetter, each delay must be of at most δ; in Path DB, passengers fully

specify the vertices they should visit on their journey. Our results are:

• On the positive side, polynomial-time algorithms for Path DB, and for DB and

δ-DB on trees (graphs without any cycles). This is then extended into an fpt

algorithm for both problems parameterized by a measure of tree-likeness (the

Feedback Edge Number of the graph) together with the number of passengers.

• On the negative side, NP-completeness of DB and δ-DB even when δ and the

lifetime of the graph are bounded and the graph is planar (can be drawn in the

plane without edges crossing).

19

1.5c. Partial Domination

1.5c Partial Domination

The Leonards are gathered around a CCTV camera at 3rd Avenue and 27th street.

E: I wonder how many of these cameras you would need to see every street corner.

D nodding: Make yourself a master of perspective [3, Note 530].

C: It can’t be that hard, Manhattan’s streets are in a grid.

E: Perhaps, but now suppose you and I owned different street corners, and I wanted

to have cameras (ingenious inventions, I should say) positioned on those which I own

to survey all which I own.

D: Do you suppose that this is any easier for our knowledge of the full area in which

your peculiar estate is embedded?

Chapter 5c is about the complexity of dominating part of a graph. We formalize

this question as Partial Domination: given a graph H, a subset T of its vertices,

and a number k, is there a set D of at most k vertices in T that dominates all others

in T? There is a subtle difference between this problem and Dominating Set with

the graph induced by T in H as its input: we may glean some information from the

structure of H about which vertices to include in D.

Vertex of dominating set D Vertex in target set T to be dominated

Figure 1.18: Top left: the host graph H is a 4 × 7 grid, shown with a dominating set
of size 7. Top right: the target set T (shaded in turquoise) in H can be dominated
with just 5 vertices. Center left: dominating T using only vertices from T requires
7 vertices. Center right and bottom: the induced subgraph H[T] requires the same
number of vertices (7) to dominate, regardless of layout.

We study the complexity landscape of this problem when the “host graph” H is

restricted to some graph class G (for example, the class of all grid graphs). Partial

20

1.5d. A nifty problem: 1-in-3

Domination restricted to G is at least as hard as Dominating Set is with the

same restriction, and at most as hard as Dominating Set restricted to the class of

induced subgraphs of members of G (its “hereditary closure”). The graph H[T] shown

at the bottom of Figure 1.18 is an induced subgraph of a grid, but is not itself a grid

– so it belongs to the hereditary closure of the class of grids, and does not belong

to the class of grids. For example, we construct a class F such that: Dominating

Set is in P restricted to F , Partial Domination is NP-intermediate restricted to

F , and Dominating Set is NP-complete restricted to the hereditary closure of F .

1.5d A nifty problem: 1-in-3

At a gallery showing abstract art.

D. : He made such beautiful figures [3, Note 1285]

E. (gesturing at some pink dots): It is without a doubt the most beautiful solution to

the problem [4, Letter XLII, p. 261]

Chapter 5d is dedicated to a proof that a variant of Satisfiability, Triangle-

free Tricolor Cubic Simple 1-in-3, is NP-complete. A rigorous definition of this

problem variant is incompatible with a concise and informal summarization. A small

illustration of 1-in-3 is shown in Figure 1.19.

u v w

x y z

u v w

x y z

u v w

x y zy

v u

z

w

x

Figure 1.19: A 1-in-3 instance with 6 variables (or vertices) X = {u, v, w, x, y, z}
and 3 clauses (or hyperedges) E = {(u, v, w), (x, y, w), (x, v, z)}. The objective is to
select a set of vertices so that every clause (hyperedge) contains exactly one selected
vertex. Left: {v, y} is a valid solution. Center: {u, z} is not a solution, since the blue
curved constraint {x, y, w} does not contain any of the chosen vertices. Right: {x,w}
is not a valid solution, since the blue curved constraint now contains two selected
vertices.

21

1.6. Organization

1.6 Organization

The remainder of this thesis largely consists of published works or drafts for publica-

tion – in either case, written for a theoretical computer science audience. The curious

reader who wished to get a flavor for the research herein without being exposed to

technical detail has been warned: hic sunt dracones.

Chapter 2 is based on [44], itself an extension of [45].

Chapter 3 is based on [46], an extension of [47].

Chapter 4 is based on [48], which extends [49].

Chapter 5a is an abridged version of [50].

Chapter 5b is based on [51].

Chapter 5c presents work which will hopefully be extended to a full paper in the

future.

Chapter 5d is dedicated to proving the hardness of a specific combinatorial problem.

Joint works Chapter 3 is the result of collaborative work with Laura Larios-Jones,

and will also appear in her doctoral thesis. Chapter 5a is the result of collaborative

work with Maximilien Gadouleau. Chapter 5b is the result of collaborative work with

Anouk Sommer. Each of these is prefaced with a fuller discussion of the author’s own

contributions to the work. All other chapters (including the present one) are solely

attributed to the author and (different subsets of) his supervisory team.

22

Chapter 2

Payment scheduling in the Interval

Debt Model

2.1 Introduction

A natural problem in the study of financial networks is that of whether and where

a failure will occur if no preventative action is taken. We focus specifically on the

flexibility that financial entities are afforded as regards the precise timing of their

outgoings and for this purpose introduce the Interval Debt Model (IDM) in which a

set of financial entities is interconnected by debts due within specific time intervals.

In the IDM, a payment schedule specifies timings of payments to serve the debts.

We examine the computational hardness of determining the existence of a schedule of

payments with “good” properties, e.g., no or few bankruptcies, or minimizing the scale

of remedial action. In particular, we establish how hardness depends on variations in

the exact formalism of the model (to allow some small number of bankruptcies or insist

on none at all) and on restrictions on the structure or lifetime of the input instance.

A unique and novel feature of the IDM is its capacity to capture the temporal aspects

of real-world financial systems; previous work has seldom explicitly dealt with this

intrinsic facet of real-world debt.

Financial Networks Graph theory provides models for many problems of practical

interest for analyzing (or administering) financial systems. For example, Eisenberg

and Noe’s work [11] abstracts a financial system to be a weighted digraph (in which

each node is additionally labeled according to the corresponding entity’s assets). The

authors of that work are focused on the existence and computation of a clearing vector,

which is essentially a set of payments among nodes of the graph which can be executed

synchronously without violating some validity constraints. Their model provides the

basis for much subsequent work in the network-based analysis of financial systems: it

has been adapted to incorporate default costs [52], Credit Default Swaps [53] (CDSs)

(that is, derivatives through which banks can bet on the default of another bank in

the system) and the sequential behavior of bank defaulting in real-world financial

networks [14].

An axiomatic aspect of Eisenberg and Noe’s model is the so-called principle of

23

2.1. Introduction

proportionality: that a defaulting bank pays off each of its creditors proportionally to

the amount it is owed. Some recent work has considered alternative payment schemes,

which allow, for example, paying some debts in full and others not at all (so-called

non-proportional payments). For example, Bertschinger, Hoefer and Schmand [13]

study financial networks in a setting where each node is a rational agent which aims

to maximize flow through itself by allocating its income to its debts. The focus of that

work is on game-theoretic questions, such as the price of anarchy, or the existence,

properties, and computability of equilibria. Papp and Wattenhoffer [54] also study a

non-proportional setting, additionally incorporating CDSs.

Complementing the decentralized, game-theoretic approach is the question of the

(centralized) computability of a globally “good” outcome through bailout allocation

[12] (also called cash injection [55]), or timing default announcements [14], among

other operations. In such works, the prototypical objective is to minimize the number

of bankruptcies; related measures include total market value [12], or systemic liq-

uidity [55]. Egressy and Wattenhoffer [12] focus solely on computational complexity

of leveraging bailouts to optimize a range of objectives, in a setting which incorpo-

rates proportional payments and default costs. Kanellopoulos, Kyropoulou and Zhou

[55, 56] apply both a game-theoretic and a classical complexity perspective to two

mechanisms: debt forgiveness (deletion of edges in the financial network) and cash

injection (bailouts). Notably, in this work the central authority may remove debts

in a way which may be detrimental to certain individuals, but beneficial to the total

systemic liquidity.

Previous research on financial networks has also drawn from ecology [57], statistical

physics [58] and Boolean networks [59].

A central motivation of financial network analysis is to inform central banks’ and

regulators’ policies. The concepts of solvency and liquidity are core to this task: a

bank is said to be solvent if it has enough assets (including, e.g., debts owed to it)

to meet all its obligations; and it is said to be liquid if it has enough liquid assets

(that is, cash) to meet its obligations on time. An illiquid but solvent bank may exist

even in modern interbank markets [60]. In such cases, a central bank may act as a

lender of last resort and extend loans to such banks to prevent them defaulting on

debts [61, 60]. The optimal allocation of bailouts to a system in order to minimize

damage has also been studied as an extension of Eisenberg and Noe’s model [62].

Here, bailouts refer to funds provided by a third party (such as a government) to

entities to help them avoid bankruptcy.

Temporal Graphs Temporal graphs are graphs whose underlying connectivity

structure changes over time. Such graphs allow us to model real-world networks

which have inherent dynamic properties, such as transportation networks [63], con-

tact networks in an epidemic [22, 47] and communication networks; for an overview

see [64, 65]. Most commonly, following the formulation introduced by Kempe, Klein-

berg and Kumar [66], a temporal graph has a fixed set of vertices together with edges

24

2.2. The Interval Debt Model

that appear and disappear at integer times up to an (integer) lifetime. Often, a

natural extension of a problem on static graphs to the temporal setting yields a com-

putationally harder problem; for example, finding node-disjoint paths in a temporal

graph remains NP-complete even when the underlying graph is itself a path [67], and

finding a temporal vertex cover remains NP-complete even on star temporal graphs

[68].

Contributions In this chapter we present a novel framework, the Interval Debt

Model (IDM), for considering problems of bailout allocation and payment scheduling

in financial networks by using temporal graphs to account for the isochronal aspect

of debts between financial entities (previous work has almost exclusively focused on

static financial networks). In particular, the IDM offers the flexibility that entities

can pay debts earlier or later, within some agreed interval. We introduce several

natural problems and problem variants in this model and show that the tractability

of such problems depends greatly on the network topology and on the restrictions

on payments (i.e., the admission or exclusion of partial and fractional payments on

debts).

Our work explores the natural question of whether and how payments can be

scheduled to avert large-scale failures in financial networks. Broadly, we establish

that computing a zero-failure schedule (a perfect schedule) is NP-complete even when

the network topology is highly restricted, unless we admit fractional payments, in

which case determining the existence of a perfect schedule is tractable in general. In-

terestingly, if we allow a small number k of bankruptcies to occur then every problem

variant is computationally hard even on inputs with O(1) nodes. This can be thought

of analogously to Max 2SAT being strictly harder than 2SAT (unless P=NP) de-

spite being a “relaxation”: in Max 2SAT we allow up to k clauses to not be satisfied.

Furthermore, in the setting where we insist not only on payments being for integer

amounts but more strongly that any payment is for the full amount of the corre-

sponding debt, finding a perfect schedule is NP-complete even if there are only four

nodes.

We begin by introducing, first by example and then formally, the Interval Debt

Model in Section 2.2. In Section 2.3 we present our results: in Sections 2.3.1 to 2.3.3 we

establish some sufficient criteria for NP-hardness for each of the problems we consider;

and in Section 2.3.4 we present two polynomial-time algorithms. Our conclusions and

directions for further research are given in Section 2.4.

2.2 The Interval Debt Model

In this section, we introduce (first by example and then formally) the Interval Debt

Model, a framework in which temporal graphs are used to represent the collection of

debts in a financial system.

25

2.2.2. Formal setting

2.2.1 An illustrative example

As an example, consider a tiny financial network consisting of the 3 banks u, v and

w with e30, e20 and e10, respectively, in initial external assets and where there are

the following inter-bank financial obligations:

• bank u owes bank v e20 which it must pay by time 3 and e15 which it must

pay at time 4 or time 5 (note that all payments must be made at integer times)

• bank v must pay bank w a debt of e25 at time 2 exactly

• bank w must pay e25 to bank v between times 4 and 6 (that is, at time 4, 5 or

6).

A graphical representation of this system is shown in Fig. 2.1 (the descriptive notation

used should be obvious and is retained throughout the chapter).

u
30

v
20

w
10

20@[1, 3]

15@[4, 5]

25@2

25@[4, 6]

Figure 2.1: A simple instance of the Interval Debt Model (IDM). Numbers in square
boxes represent the initial external assets of the node (for example, e30 for node u),
directed edges represent debts, and the label on an edge represents the terms of the
associated debt (for example, u must pay v e20 between time 1 and time 3).

Several points can be made about this system: node u is insolvent as its e30 in

initial external assets are insufficient to pay all its debts; node v may be illiquid for

it may default on part of its debt to w, e.g., if u pays all of its first debt at time 3,

or may remain liquid, e.g., if it receives at least e5 from u by time 2; and node w

is solvent and certain to remain liquid in any case. The choices made by the various

banks, in the form of a (payment) schedule, clearly affect the status of the overall

financial system. Note that solvency is determined solely by whether sufficient funds

exist whereas liquidity depends upon when debts are paid and owed.

One may ask several questions about our toy financial system such as: Are partial

payments allowed (e.g., u paying e18 of the e20 debt at time 1, and the rest later)? If

so, are non-integer payments allowed? Can money received be immediately forwarded

(e.g., u paying v e20 at time 2 and v paying w e25 at time 2)? Does v necessarily

have to pay its debt to w at time 2 if it has the liquid assets to do so? We now expand

upon these questions and specify in detail the setting we consider in the remainder

of the chapter. Note that throughout the chapter we use the euro e as our monetary

unit of resource even though, as we will see, we have a variant of the Interval Debt

Model within which payments can be made for any rational fraction of a euro. We

often prefix monetary payments with the symbol e to make our proofs more readable.

2.2.2 Formal setting

Formally, an Interval Debt Model (IDM) instance is a 3-tuple (G,D,A0) as follows.

26

2.2.3. Schedules

• G = (V,E) is a finite digraph with the set of n nodes (or, alternatively, banks)

V = {vi : i = 1, 2, . . . , n} and the set of m directed labelled edges E ⊆

V × V × N, with the edge (u, v, id) ∈ E denoting that there is an edge, or debt,

whose label is id, from the debtor u to the creditor v. We can have multi-edges

but the labels of the edges from some node u to some node v must be distinct and

form a contiguous integer sequence 0, 1, 2, We refer to the subset of edges

directed out of or in to some specific node v by Eout(v) and Ein(v), respectively.

We also refer to the simple undirected graph obtained from G by ignoring the

multiplicity of and orientations on directed edges as the footprint of G.

• D : E → {(a, t1, t2) : a, t1, t2 ∈ N \ {0}, t1 ≤ t2} is the debt function which asso-

ciates terms to every debt (ordinarily, we abbreviate D((u, v, id)) as D(u, v, id)).

Here, if e is a debt with terms D(e) = (a, t1, t2) then a is the monetary amount

(or monetary debt) to be paid and t1 (resp. t2) is the first (resp. last) time at

which (any portion of) this amount can be paid. For any debt e ∈ E, we also

write D(e) = (Da(e), Dt1(e), Dt2(e)). For simplicity of notation, we sometimes

denote the terms D(e) = (a, t1, t2) by a@[t1, t2] or by a@t1 when t1 = t2 (as we

did in Fig. 2.1); also, for simplicity, we sometimes just refer to a@[t1, t2] as the

debt.

• A0 = (c0
v1
, c0
v2
, ...c0

vn
) ∈ Nn is a tuple with c0

vi
denoting the initial external assets

(i.e. starting cash) of bank vi.

We refer to the greatest time-stamp T that appears in any debt for a given instance

as the lifetime and assume that all network activity ceases after time T . The instance

shown in Fig. 2.1, which has lifetime T = 6, is formally given by: V = {u, v, w}, E =

{(u, v, 0), (u, v, 1), (v, w, 0), (w, v, 0)}, D(u, v, 0) = (20, 1, 3), D(u, v, 1) = (15, 4, 5),

D(v, w, 0) = (25, 2, 2), D(w, v, 0) = (25, 4, 6) and A0 = (c0
u, c

0
v, c

0
w), where c0

u = 30,

c0
v = 20 and c0

w = 10. Similarly, the instance shown in Fig. 2.2 has lifetime T = 2 and

is given by V = {u, v, w}, E = {(u, v, 0), (v, w, 0)}, D(u, v, 0) = (1, 1, 2), D(v, w, 0) =

(1, 1, 1) and A0 = (c0
u, c

0
v, c

0
w), where c0

u = 1, c0
v = 0 and c0

w = 0.

u
1

v
0

w
0

1@[1, 2] 1@1

Figure 2.2: An IDM instance for which every schedule is described by four payment
values p1

(u,v,0), p1
(v,w,0), p2

(u,v,0) and p2
(v,w,0).

The size of the instance (G,D,A0) is defined as n + m + log(T) + β, where β is

the maximum number of bits needed to encode any of the (integer) numeric values

appearing as the monetary amounts in the debts. Note that in what follows, we

usually do not mention the label id of a debt (u, v, id) but just refer to the debt as

(u, v) when this causes no confusion.

2.2.3 Schedules

Given an IDM instance (G,D,A0), a (payment) schedule σ describes the times at

which the banks transfer assets to one another via payments. Formally, a schedule σ

27

2.2.3. Schedules

is a set of |E|T payment values pte ≥ 0, one for each edge-time pair (e, t) (note that

no payments are made at time 0). Equivalently, a schedule can be expressed as an

|E| × T matrix S with the payment values pte the entries of the matrix. The value pte
is the monetary amount of the debt e paid at time t. Our intention is that at any

time 1 ≤ t ≤ T , every payment value pte > 0 of a schedule σ is paid by the debtor of

e to the creditor of e, not necessarily for the full monetary amount Da(e) but for the

amount pte. A schedule for the instance of Fig. 2.2 consists of the four payments values

p1
(u,v,0), p1

(v,w,0), p2
(u,v,0) and p2

(v,w,0). Note that, using the above representation of a

schedule σ, we might have a large number of zero payments. Therefore, for simplicity

of presentation, in the remainder of the chapter we specify schedules by only detailing

the non-zero payments. An example schedule for the IDM instance in Fig. 2.2 is then

p1
(u,v,0) = 1, p1

(v,w,0) = 1.

We now introduce some auxiliary variables which are not strictly necessary but

help us to concisely express constraints on and properties of schedules. For nodes

u, v ∈ V and time 0 ≤ t ≤ T , the following values are with respect to some specific

schedule.

• Denote by Itv the total monetary amount of incoming payments of node v at

time t.

• Denote by Otv the total monetary amount of outgoing payments (expenses) of

node v at time t.

• We write ptu,v to denote the total amount of all payments made from debtor

u to creditor v at time t in reference to all debts from u to v; that is, ptu,v =∑
i p
t
(u,v,i).

• The vector A0 = (c0
v1
, c0
v2
, . . . , c0

vn
) specifies the initial external assets (cash) of

each node at time 0. For t > 0, we denote by ctv node v’s cash assets at time t;

that is, ctv = ct−1
v + Itv −Otv.

For clarity, we refer to the starting cash of banks as “initial external assets” and to

liquid assets in general as cash assets. By cash assets ‘at time t’ (resp. ‘prior to time

t’) we mean after all (resp. before any) of the payments associated with time t have

been executed. Cash assets at time 0 are then precisely the initial external assets at

time 0 (possibly supplemented by some bailout, as we shall see later).

We have been a little vague so far as regards the form of the payment values in any

schedule and have not specified whether these values are integral, rational or do not

necessarily equal the full monetary amount of the debt. As we detail below, we have

variants of the model covering different circumstances (with perhaps the standard

version being when payment values are integral but do not necessarily equal the full

monetary amount of the debt).

Recall the example schedule from Fig. 2.2, which we can represent as p1
u,v = 1,

p1
v,w = 1. As we shall soon see, the payments in this schedule can be legitimately

discharged in order to satisfy the terms of all debts but in general this need not be the

case. However, there might be schedules that are not valid, as well as valid schedules

28

2.2.3. Schedules

in which banks default on debts (that is, go bankrupt). We deal with the key notions

of validity and bankruptcy now.

Definition 2.1. A schedule is valid if it satisfies the following properties (for any

debt e, terms D(e) = (a, t1, t2) and node v):

• all payment values are non-negative; that is, pte ≥ 0, for 1 ≤ t ≤ T

• all cash asset values (as derived from payment values and initial external assets)

are non-negative; that is, ctv ≥ 0, for 0 ≤ t ≤ T

• no debts are overpaid; that is,
∑T
t=1 p

t
e ≤ a

• no debts are paid too early; that is,
∑t1−1
t=1 pte = 0.

Given some IDM instance, some schedule and some debt e with terms D(e) =

(a, t1, t2), the debt e is said to be payable at any time in the interval [t1, t2 − 1].

At time t2, e is said to be due. At time t2 ≤ t ≤ T , if the full amount a has not yet

been paid (including payments made at time t2) then e is said to be overdue at time

t. A debt is active whenever it is payable, due or overdue. However, a bank is said to

be withholding if, at some time 1 ≤ t ≤ T , it has an overdue debt and sufficient cash

assets to pay (part of, where fractional or partial payments are permitted; see below)

the debt. If any bank is withholding (at any time) in the schedule then the schedule

is not valid.

So, for example and with reference to the IDM instance in Fig. 2.2, if, according

to some schedule, bank u pays 1 to bank v at time 1 but v makes no payment to w

at time 1 then v is withholding and the schedule is not valid.

Definition 2.2. With reference to some schedule, a bank is said to be bankrupt (at

time t) if it is the debtor of an overdue debt (at time t). We say that a schedule has k

bankruptcies if k distinct banks are bankrupt at some time in the schedule (the times

at which these banks are bankrupt might vary). A bank may recover from bankruptcy

if it subsequently receives sufficient income to pay off all its overdue debts.

Definition 2.3. A bank v is said to be insolvent if all its assets (that is, the sum

of all debts due to v and of v’s initial external assets) are insufficient to cover all its

obligations (that is, the sum of all debts v owes). Formally, v is insolvent if

c0
v +

∑
e∈Ein(v)

Da(e) <
∑

e∈Eout(v)

Da(e).

A bank which is insolvent will necessarily be bankrupt in any schedule.

We will not be concerned with the precise timing of bankruptcy or the recovery

or not of any bank in this chapter.

We now detail three variants of the model (alluded to earlier) in which different

natural constraints are imposed on the payment values.

Definition 2.4. In what follows, e is an arbitrary debt and 1 ≤ t ≤ T some time.

29

2.2.3. Schedules

• In the Fractional Payments (FP) variant, the payment values may take rational

values; that is, pte ∈ Q and we allow payments for a smaller amount than the

full monetary amount of e.

• In the Partial Payments (PP) variant, the payment values may take only integer

values; that is, pte ∈ N and we allow payments for a smaller amount than the

full monetary amount of e.

• In the All-or-Nothing (AoN) variant, every payment value must fully cover the

relevant monetary amount of e; that is, every payment value must be for the

full monetary amount of e or zero. So, pte ∈ {Da(e), 0}.

For example, the instance of Fig. 2.2 has the following valid schedules:

• (in all variants) the schedule above in which p1
u,v = p1

v,w = e1 (all debts are

paid in full at time 1)

• (in all variants) the schedule in which p2
u,v = p2

v,w = e1 (all debts are paid in

full at time 2)

– under this schedule, node v is bankrupt at time 1 as e1 of the debt (v, w, 0)

is unpaid and that debt is overdue

• (in the FP variant only) for every a ∈ Q, where 0 < a < 1, the schedule in

which p1
u,v = p1

v,w = ea and p2
u,v = p2

v,w = e1 − a

– under each of these schedules, node v is bankrupt at time 1 as e1 − a of

the debt (v, w, 0) is unpaid and that debt is overdue.

It is worthwhile clarifying the concepts of instant forwarding and payment-cycles.

We emphasize that we allow a bank to instantly spend income received. Note that in

any valid schedule for the instance in Fig. 2.2, v instantly forwards money received

from u to w (so as not to be withholding); so, the cash assets of v never exceed 0 in any

valid schedule. This behaviour is consistent with the Eisenberg and Noe model [11] in

which financial entities operate under a single clearing authority which synchronously

executes payments. Indeed, in such cases a payment-chain of any length is permitted

and the payment takes place instantaneously regardless of chain length.

Furthermore, and still consistent with the Eisenberg and Noe model, there is the

possibility of a payment-cycle which is a set of banks {u1, u2, . . . , uc}, for some c ≥ 2,

with a set of debts {ei = (ui, ui+1, li) : 1 ≤ i ≤ c − 1} ∪ {ec = (uc, u0, lc)} so that at

some time t, all debts are active yet none has been fully paid and where each bank

makes a payment, at time t, of the same value a towards its debt. As an illustration,

Fig. 2.3 shows three ‘cyclic’ IDM instances, all with lifetime T = 2. By our definition

of a valid schedule, the schedule p1
u,v = p1

v,w = p1
w,x = p1

x,u = e1, forming a payment-

cycle, is valid in all three instances. This is intuitive for Fig. 2.3a, where each node

has sufficient initial external assets available to pay all its debts in full at any time,

irrespective of income. In Fig. 2.3b, we may imagine that the e1 moves from node u

along the cycle, satisfying every debt at time 1. This is a useful abstraction but not

30

2.2.4. Canonical instances

strictly accurate: rather, we should imagine that all four banks simultaneously order

payments forward under a single clearing system. The clearing system calculates

the balances that each bank would have with those payments executed, ensures they

are all non-negative (one of our criteria for schedule validity) and then executes the

payments by updating all accounts simultaneously. This distinction is significant

when we consider Fig. 2.3c in which no node has any initial external assets. A clearing

system ordered to simultaneously pay all debts would have no problem doing so in

the Eisenberg and Noe model and in our model this constitutes a valid schedule. We

highlight that there also exist valid schedules for the instance in Fig. 2.3c in which

all four banks go bankrupt, one schedule being where all payments at any time are 0:

here, no bank is withholding (they all have zero cash assets), so the schedule is valid,

but every bank has an overdue debt and so is bankrupt.

u
1

v
1

w
1

x
1

1@[1, 2]

1@[1, 2]

1@[1, 2]

1@[1, 2]

(a) All nodes start with e1.

u
1

v
0

w
0

x
0

1@[1, 2]

1@[1, 2]

1@[1, 2]

1@[1, 2]

(b) Only u starts with e1.

u
0

v
0

w
0

x
0

1@[1, 2]

1@[1, 2]

1@[1, 2]

1@[1, 2]

(c) All nodes start with e0.

Figure 2.3: Examples illustrating the behaviour of cycles in the IDM. In all instances
shown the schedule in which all nodes pay their debts in full at time 1 is valid.

We use payment-cycles throughout our constructions in a context such as that in

Fig. 2.4. Here, a valid schedule is where all nodes pay their corresponding debts in

full at time t. The effect is that the e1 of cash assets at node u is ‘transferred’ to e1

of cash assets at node v.

u
1

w
0

x
0

v
0

y
0

1@t 1@t 1@t

2@t 2@t

Figure 2.4: Using a payment-cycle to effectively transfer e1 of assets from node u to
node v.

2.2.4 Canonical instances

We wish to replace certain IDM instances with equivalent yet simpler ones. For

example, consider the instance given in Fig. 2.1 but where every time-stamp in the

instance is multiplied by a factor of 100 (so that, for example, the debt from w to v

becomes 25@[400, 600]). This ‘inflated’ instance is in essence equivalent to the original

one but has a lifetime of 600.

31

2.2.5. Problem definitions

Definition 2.5. Let (G,D,A0) be an instance. Then the set of time-stamps {t :

Dt1(e) = t or Dt2(e) = t, for some edge e} is the set of extremal time-stamps.

There is a simple preprocessing step such that we can assume that the lifetime T of

any IDM instance is polynomially bounded in n and m (that is, the numbers of banks

and debts, respectively). This preprocessing step modifies the instance such that

every 1 ≤ t ≤ T is an extremal time-stamp with the process being to simply omit

non-extremal time-stamps and then compact the remaining time-stamps. Observe

that this procedure is such that any valid schedule in the original IDM instance can

be transformed into a valid schedule in the compacted instance so that these schedules

have the same number of bankruptcies, eventual assets and so forth, and vice versa

when the compacted instance is expanded into the original instance. Hence, we need

not consider pathological cases in which the lifetime is, say, exponential in the number

of nodes and debts. Given this restriction, we can now revise the notion of the size

of an IDM instance to say that it is n+m+ β where n is the number of banks, m is

the number of debts and β is the maximum number of bits needed to encode any of

the numeric values appearing as monetary amounts of debts.

Lemma 2.6. For any given IDM instance and any schedule, in any of the FP, PP or

AoN variants, it is possible in polynomial-time both to check whether the schedule is

valid and to compute the number of bankruptcies under the schedule.

Proof sketch. It is possible to iterate over the schedule once and calculate: the cash

assets of every node, and which debts are overdue at each time-stamp. Computing

the set {v|v has some overdue debt under σ} is then straightforward, and the number

of bankruptcies is the cardinality of that set.

It remains to check the validity of the schedule. We can efficiently verify that

there are:

No negative assets: verify that for any u and t, ctu ≥ 0.

No withholding banks: iterate once over the debts overdue at each time. If the

debt e = (u, v, i) is overdue at time t, verify that ctu is insufficient to make a

payment toward e (i.e. ctu = 0 in the FP or PP model, or ctu < Da(e) in the

AoN model).

No overpaid debts: iterate over all debts and ensure payments made with reference

to each are no more than the debt amount.

No debts paid early: ensure pte = 0 for any t < Dt1(e), for each debt e.

2.2.5 Problem definitions

We now define some decision problems with natural real-world applications.

32

2.2.5. Problem definitions

Bankruptcy Minimization

Instance: an IDM instance (G,D,A0) and an integer k

Yes-instance: an instance for which there exists a valid schedule σ such that at

most k banks go bankrupt at some time in the schedule σ.

Perfect Scheduling

Instance: an IDM instance (G,D,A0)

Yes-instance: an instance for which there exists a valid schedule σ such that no

debt is ever overdue in σ; that is, a perfect schedule.

Bailout Minimization

Instance: an IDM instance (G,D,A0) (with n banks) and an integer b

Yes-instance: an instance for which there exists a positive bailout vector B =

(b1, b2, . . . , bn) with
∑n
i=1 bi ≤ b and valid schedule σ such that σ is a perfect

schedule for the instance (G,D,A0 +B).

The problem Perfect Scheduling is equivalent to the Bailout Minimization

problem where b = 0 and to the Bankruptcy Minimization problem where k = 0.

Bankruptcy Maximization

Instance: an IDM instance (G,D,A0) and an integer k

Yes-instance: an instance for which there exists a valid schedule σ such that at

least k banks go bankrupt at some time in the schedule σ.

The problem Bankruptcy Maximization is interesting to consider for quantify-

ing a ‘worst-case’ schedule where banks’ behavior is unconstrained beyond the terms

of their debts.

All of the problems above exist in the AoN, PP and FP variants and are in NP:

for every yes-instance, there exists a witness schedule, polynomial in the size of the

input, the validity of which can be verified in polynomial time (see Lemma 2.6).

Every valid PP schedule is a valid FP schedule whereas not every valid AoN

schedule is a valid PP schedule. In an AoN schedule, a bank may go bankrupt while

still having assets (insufficient to pay off any of its debts) whereas this is prohibited

in any PP schedule as that bank would be withholding. If we restrict the instances

33

2.2.6. Discussion of the model

to only those in which for every debt e, Da(e) = 1 then every valid AoN schedule for

that instance is a valid PP schedule and a valid FP schedule.

We call a digraph G from some IDM instance a multiditree whenever the footprint

of G is a tree. We call a multiditree in which every edge is directed away from the root

a rooted out-tree (or just out-tree). By an out-path we mean an out-tree where the

footprint is a path and the root is either of the endpoints. We take this opportunity

to note that an out-tree is both a directed acyclic graph (DAG) and a multiditree,

but that not every multiditree DAG is an out-tree.

A summary of some of our upcoming results is given in Table 2.1 (with NP-c

denoting ‘NP-complete’ and P denoting ‘polynomial-time’). However, note that there

are other, more nuanced results in what follows that do not feature in Table 2.1.

Also, even though hardness for out-trees entails hardness for multiditrees and DAGs,

we reference a separate result for the latter two settings where that is proven under

different (stronger) constraints for the more general graph class. For example, our

proof that AoN Bankruptcy Minimization is NP-complete on out-trees uses a

construction requiring T ≥ 2, but our proof of Theorem 2.7 has T = 1.

problem out-tree multiditree DAG general case

FP Bankruptcy Minimization ? ? NP-c
(Thm 2.7)

NP-c
(Thm 2.7)

PP Bankruptcy Minimization ? NP-c
(Thm 2.10)

NP-c
(Thm 2.7)

NP-c
(Thm 2.7)

AoN Bankruptcy Minimization NP-c
(Thm 2.12)

NP-c
(Thm 2.12)

NP-c
(Thm 2.7)

NP-c
(Thm 2.7)

FP Perfect Scheduling P
(Thm 2.15)

P
(Thm 2.15)

P
(Thm 2.15)

P
(Thm 2.15)

PP Perfect Scheduling P
(Thm 2.17)

NP-c
(Thm 2.10)

NP-c
(Thm 2.9)

NP-c
(Thm 2.9)

AoN Perfect Scheduling NP-c
(Thm 2.12)

NP-c
(Thm 2.12)

NP-c
(Thm 2.9)

NP-c
(Thm 2.9)

FP Bailout Minimization P
(Thm 2.15)

P
(Thm 2.15)

P
(Thm 2.15)

P
(Thm 2.15)

PP Bailout Minimization P
(Thm 2.17)

NP-c
(Thm 2.10)

NP-c
(Thm 2.9)

NP-c
(Thm 2.9)

AoN Bailout Minimization NP-c
(Thm 2.12)

NP-c
(Thm 2.12)

NP-c
(Thm 2.9)

NP-c
(Thm 2.9)

FP Bankruptcy Maximization ? ? NP-c
(Thm 2.13)

NP-c
(Thm 2.13)

PP Bankruptcy Maximization ? ? NP-c
(Thm 2.13)

NP-c
(Thm 2.13)

AoN Bankruptcy Maximization NP-c
(Thm 2.14)

NP-c
(Thm 2.14)

NP-c
(Thm 2.14)

NP-c
(Thm 2.14)

Table 2.1: Summary of results.

2.2.6 Discussion of the model

We describe here some notable differences (and similarities) of the IDM as compared

with other studied models.

First and foremost, the IDM is a temporal model; the eponymous “interval debts”

are its principal distinguishing feature when contrasted with other financial network

models. The timing of payments, not their allocation to one payee or another, is

the principal question. In fact, in Perfect Scheduling this is the only question.

34

2.2.6. Discussion of the model

As we shall see, under the restriction Dt1 = Dt2 that problem (and its superprob-

lem Bailout Minimization) become straightforwardly solvable in all variants. All

of our hardness results arise from the expressivity of that degree of freedom (the

scheduling of payments sooner or later). Indeed, in Bankruptcy Minimization

and Bankruptcy Maximization that freedom remains, and the problems remain

NP-complete under the same restriction Dt1 = Dt2 . Consequently, the results of other

works which do not have a temporal component [56, 12, 54] do not straightforwardly

carry over to the IDM.

Figure 2.5: A real-life interval debt: this

1978 US government bond is payable be-

tween 2003 and 2008.

We take this opportunity to em-

phasize that interval debts are practi-

cally motivated; in particular, some real-

world debts may be paid neither early

nor late (see, e.g., Figure 2.5).

Non-proportional payments on debts

are likewise nothing new to financial

networks. Recent work has considered

frameworks wherein priorities are as-

sociated with each debt, with higher-

priority debts paid off before lower-

priority debts [56, 54]. In such a set-

ting, the priority of some debt may be

either chosen by a regulatory authority

or left to the individual agents. In the

former case, the hardness of computing

a solution which maximizes utility is of

particular interest, whereas game-theoretic approaches are more relevant in the latter.

Our focus in the present work is solely on questions of computational complexity from

a centralized perspective.

We note that Bailout Minimization and its subproblem Perfect Schedul-

ing remain unchanged as decision problems if bankruptcy in the IDM is redefined

to require proportional payments, or immediate deletion of the bankrupt node. Both

problems fundamentally ask whether a perfect schedule exists; consequently, the man-

ner in which bankruptcy and defaulting are modeled in the IDM are irrelevant. If

there is a perfect schedule σ, then under σ all debts are by definition paid on time,

in full (and hence proportionally). Conversely, if no such σ exists, then a bankruptcy

(however it is modeled) must occur, and we have a no-instance of the respective

problems.

Lastly, we would like to comment briefly on the respective practical value of the

AoN, PP and FP variants. The FP variant is quite intuitive for theoreticians, and

yields our main tractable case. On the other hand, the PP variant realizes the practi-

cal constraint that arbitrarily small transfers are impractical, and may be of interest

where a fungible but indivisible resource needs to be exchanged. Personal commu-

35

2.3.1. Hardness results for Bankruptcy Minimization

nication [69] suggests that, perhaps unexpectedly, the AoN variant may well be the

one of most interest to the finance community. Unlike most other models, the AoN

model has the unintuitive property that a bankrupt bank may retain some assets.

We note that this modelling of bankruptcy is not required for any of our hardness of

tractability proofs in the AoN model.

2.3 Our results

In this section we investigate the complexity of the problems presented above. We

present our hardness results for Bankruptcy Minimization, Perfect Schedul-

ing and Bankruptcy Maximization in Sections 2.3.1, 2.3.2 and 2.3.3, respectively,

and then in Section 2.3.4 show that under certain constraints the problem Bailout

Minimization and its subproblem Perfect Scheduling become tractable.

2.3.1 Hardness results for Bankruptcy Minimization

We begin with our core hardness result.

Theorem 2.7. For each of the AoN, PP and FP variants, the problem Bankruptcy

Minimization is NP-complete, even when we restrict to IDM instances (G,D,A0)

for which: T = 1; G is a directed acyclic graph with a longest path of length 4, has

out-degree at most 2 and has in-degree at most 3; the monetary amount of any debt

is at most e3; and initial external assets are at most e3 per bank.

Proof. We build a polynomial-time reduction from the problem 3-Sat-3 to Bankruptcy

Minimization so that all target instances satisfy the constraints in the statement of

the theorem (the problem 3-Sat-3, defined below, was shown to be NP-complete in

[70]).

3-SAT-3

Instance: a c.n.f. formula ϕ over n Boolean variables v1, v2, ..., vn so that each

of the m clauses c1, c2, ..., cm has size at most 3 and where there are exactly

3 occurrences of vi or ¬vi in the clauses

Yes-instance: there exists a satisfying truth assignment for ϕ.

We may (and do, throughout the chapter) restrict ourselves to those instances in

which every literal appears at least once and at most twice (that is, both vi and ¬vi
appear in some clause, for 1 ≤ i ≤ n) and where no clause contains both a literal and

its negation. We define the size of an instance ϕ to be n.

Suppose that we are given a 3-Sat-3 instance ϕ of size n. We construct an

IDM instance (G,D,A0) as follows. For any variable vi, denote by countvi (resp.

count¬vi) the number of occurrences of the literal vi (resp. ¬vi) in ϕ (of course,

countvi
+ count¬vi

= 3). We build a digraph G with:

36

2.3.1. Hardness results for Bankruptcy Minimization

• a source node si, for each variable vi, so that this node has initial external assets

e3 (every other type of node will have initial external assets e0)

• two literal nodes xi and ¬xi, for each variable vi

• a clause node qj , for each clause cj

• a sink node d.

We then add edges and debts as follows. For every 1 ≤ i ≤ n:

• we add the debt (si, xi) with terms 3@1

• we add the debt (si,¬xi) with terms 3@1

• we add the debt (xi, d) with terms count¬vi
@1 (note that the monetary amount

to be paid is either e1 or e2)

• we add the debt (¬xi, d) with terms countvi
@1 (note that the monetary amount

to be paid is either e1 or e2)

• for every 1 ≤ j ≤ m:

– we add the debt (qj , d) with terms 1@1

– if the literal vi ∈ cj then we add the debt (xi, qj) with terms 1@1

– if the literal ¬vi ∈ cj then we add the debt (¬xi, qj) with terms 1@1.

Fig. 2.6 shows a sketch of this construction (where nodes without any depicted initial

external assets start with e0). The IDM instance (G,D,A0) can clearly be built from

ϕ in polynomial-time.

si
3

xi

¬xi

qjd

3@1

3@1

count¬vi@1

countvi@1

1@1 if vi ∈ cj

1@1 if ¬vi ∈ cj

1@1

Figure 2.6: Construction sketch for an IDM instance from a given formula ϕ. Note
that each of xi and ¬xi owes e3 in total.

We claim that the instance ((G,D,A0), 2n) of Bankruptcy Minimization as

constructed above is a yes-instance of Bankruptcy Minimization (no matter which

of the AoN, PP and FP variants we work with) iff ϕ is a yes-instance of 3-Sat-3.

Before we proceed, we have the following remark. Recall that for each 1 ≤ i ≤ n,

countvi
+ count¬vi

= 3; consequently, countvi
= 2 iff count¬vi

= 1, and vice versa.

For each 1 ≤ i ≤ n, node xi (resp. ¬xi) has a total monetary debt to the clause nodes

of countvi (resp. count¬vi) and a total monetary debt to the sink node d of count¬vi

(resp. countvi
); so, each literal node has a total monetary debt of e3.

37

2.3.1. Hardness results for Bankruptcy Minimization

Claim 2.7.1. If ϕ is a yes-instance of 3-Sat-3 then ((G,D,A0), 2n) is a yes-instance

of Bankruptcy Minimization.

Proof. Suppose that ϕ is satisfiable via some truth assignment X. Consider the

schedule σ for (G,D,A0) in which:

• every source node si pays e3 (at time 1, as are all payments) to the literal node

xi (resp. ¬xi) if X(vi) = True (resp. X(vi) = False)

• every literal node xi (resp. ¬xi) for which X(vi) = True (resp. X(vi) = False)

pays all its debts in full

– as remarked above, this literal node has total monetary debt e3 but, from

above, it receives e3 from si

• every clause node pays its e1 debt to the sink node d

– this is necessarily possible because X is a satisfying truth assignment,

meaning every clause node receives at least e1 from some literal node

corresponding to a literal in that clause set to True by X.

Note that σ is valid in all three IDM variants. The total number of bankruptcies

in σ is 2n: exactly n bankrupt source nodes and exactly n bankrupt literal nodes.

Hence, if ϕ is satisfiable then the schedule σ for (G,D,A0) results in at most (in fact,

exactly) 2n bankruptcies.

Claim 2.7.2. If (G,D,A0), 2n) is a yes-instance of Bankruptcy Minimization

then ϕ is a yes-instance of 3-Sat-3.

Proof. Suppose that we have a schedule σ for (G,D,A0) with at most 2n bankruptcies.

Consider the set of all literals L = {v1,¬v1, v2,¬v2, ..., vn,¬vn} w.r.t. ϕ. Define the

set of bankrupt literals B ⊆ L to consist of every literal whose corresponding (literal)

node is bankrupt within σ. Define X(w) = True iff w ∈ L \ B. We claim that X is

a (complete) truth assignment. Suppose it is not and that X(vi) = X(¬vi) = False;

so, both xi and ¬xi are bankrupt within σ. However, in any valid schedule (no

matter what the IDM variant) every source node si will necessarily go bankrupt and

at least one of the literal nodes xi and ¬xi will go bankrupt. Thus, as we have

at most 2n bankruptcies, our supposition is incorrect. Alternatively, suppose that

X(vi) = X(¬vi) = True; so, neither xi nor ¬xi is bankrupt within σ. But, as

stated, this cannot be the case. So, X is a truth assignment; moreover, σ has exactly

2n bankruptcies with exactly one of any pair of ‘oppositely-oriented’ literal nodes

bankrupt.

Suppose, for contradiction, that X is not a satisfying assignment. So, there exists

at least one clause, cj say, such that every literal in the clause is made False by X.

By definition of X, we have that every literal node corresponding to one of these

literals is a bankrupt node. Any such literal node must receive e0 (as the ‘oppositely-

oriented’ literal node is not bankrupt and receives e3); consequently, the clause node

38

2.3.1. Hardness results for Bankruptcy Minimization

qj receives e0 and is bankrupt. This yields a contradiction as we have exactly 2n

bankrupt nodes (as detailed above).

Consequently, ϕ is satisfiable iff the IDM instance (G,D,A0) admits a schedule

with at most 2n bankruptcies (again, this holds for each IDM variant). This concludes

our proof.

Our next result is perhaps rather surprising in that we restrict to IDM instances

(G,D,A0) where G is a fixed digraph.

Theorem 2.8. For each of the AoN, PP and FP variants, the problem Bankruptcy

Minimization is weakly NP-complete, even when we restrict to instances ((G,D,A0), k)

where G is a fixed, specific digraph with 32 nodes and k = 16.

Proof. We build a polynomial-time reduction from Equal Cardinality Partition

to Bankruptcy Minimization (Equal Cardinality Partition, defined below,

was proven weakly NP-complete in [10]).

Equal Cardinality Partition

Instance: a multi-set of positive integers S = {a1, a2, ..., an} where n is even and

with sum sum(S) = 2k

Yes-instance: there exist a partition of S into two equal-sized sets S1 and S2

such that sum(S1) = sum(S2) = k.

The size of such an instance is nβ where β is the least number of bits so that any

integer ai can be represented in binary using β bits.

Given an instance S = {a1, a2, ..., an} of Equal Cardinality Partition (where

n ≥ 1), we construct the IDM instance (G,D,A0) that is illustrated in Fig. 2.7. Every

appearance of the shaded node p in Fig. 2.7 corresponds to the same single node, that

we refer to as the sink, and thus this instance has 32 nodes in total. We use the

symbol ‘∞’ to denote a suitably high monetary amount (though 2k + n+ 1 suffices)

and T = 10n + 7. Our IDM instance can trivially be constructed from S in time

polynomial in the size of the instance S. We now show that (G,D,A0) admits a valid

schedule with at most 16 bankruptcies iff S is a yes-instance of Equal Cardinality

Partition (no matter whether we are in the AoN, PP or FP variant). Until further

stated, we will work solely within the PP variant and return to the AoN and FP

variants later.

Claim 2.8.1. If the IDM instance ((G,D,A0), 16) is a yes-instance of Bankruptcy

Minimization then S is a yes-instance of Equal Cardinality Partition.

Proof. Suppose that (G,D,A0
e) admits a valid schedule σ with at most 16 bankrupt-

cies. Note that the 14 nodes m1, m3, mA
4 , mA

6 , mA
8 , mA

11, mA
13, mA

15, mB
4 , mB

6 , mB
8 ,

mB
11, mB

13 and mB
15 are necessarily bankrupt in every valid schedule because they are

39

2.3.1. Hardness results for Bankruptcy Minimization

s
2k

m1p ∞@1

m2

m3

∞@1

a1@10, a1@15
...

an@10n, an@10n+ 5

a1@10, a1@15
...

an@10n, an@10n+ 5

a1@[10, 15]
...

an@[10n, 10n+ 5]

mA
4p ∞@1

mA
5

mA
6

∞@1

a1@10
...

an@10n

a1@10
...

an@10n

∞@1

mA
7

∞@1

mA
8

p

∞@1

mA
9

mA
10

mA
11 mA

12
n/2

1@10
...

1@10n

1@11
...

1@10n+ 1

1@11
...

1@10n+ 1

1@11
...

1@10n+ 1

∞@1

∞@1

1@11
...

1@10n+ 1

mA
13 p

∞@1

mA
14

mA
15

mA
16

k@[1, T]

a1@12
...

an@10n+ 2

a1@12
...

an@10n+ 2

∞@1

∞@1

mB
4 p∞@1

mB
5

mB
6

∞@1

a1@15
...

an@10n+ 5

a1@15
...

an@10n+ 5

∞@1

mB
7

∞@1

mB
8

p

∞@1

mB
9

mB
10

mB
11mB

12
n/2

1@15
...

1@10n+ 5

1@16
...

1@10n+ 6

1@16
...

1@10n+ 6

1@16
...

1@10n+ 6

∞@1

∞@1

1@16
...

1@10n+ 6

mB
13p

∞@1

mB
14

mB
15

mB
16

k@[1, T]

a1@17
...

an@10n+ 7

a1@17
...

an@10n+ 7

∞@1

∞@1

d

k@T k@T

Figure 2.7: Construction of an IDM instance (with k = 16) corresponding to the
Equal Cardinality Partition instance S = {a1, . . . , an}. Dashed red edges are
“practically infinite” bankrupting debts.

debtors of debts of monetary amount ∞ at time 1 and no payments are made before

time 10 (these nodes are dashed and highlighted in red in Fig. 2.7 as are the debts

at time 1 of monetary amount ∞). Note also that these nodes can never have any

cash assets at any time and nor can the nodes m2, mA
5 , mA

9 , mA
10, mA

14, mB
5 , mB

9 , mB
10

and mB
14 (as they would otherwise be withholding). Consequently, we can only have

at most another 2 nodes going bankrupt within σ. We begin by showing that one of

{mA
7 ,m

A
12} must be bankrupt and one of {mB

7 ,m
B
12} must be bankrupt (which will

account for all bankrupt nodes).

Suppose that none of the nodes mA
7 , mA

9 , mA
10 and mA

12 are bankrupt in σ. By

considering mA
12 at the times t ∈ {11, 21, . . . , 10n+1}, on at least n

2 of these occasions

mA
12 must have received at least e1 via payments from mA

11 (so as to service all its

debts to mA
7). Consider the first occasion t′ ∈ {11, 21, . . . , 10n+ 1} that mA

12 receives

40

2.3.1. Hardness results for Bankruptcy Minimization

a non-zero payment from mA
11 (note that all payments from mA

11 to mA
12 are made

at some time from {11, 21, . . . , 10n + 1}). There must have been a payment of e1

from mA
10 to mA

11 at time t′ as well as payments of e1 from mA
9 to mA

10 and from

mA
8 to mA

9 at time t′. So, mA
8 must receive at least e1 from mA

7 and mA
11 at time

t′. As mA
11 makes a non-zero payment to mA

12 at time t′, any payment from mA
11 to

mA
7 at time t′ must be for some amount strictly less than e1. Consequently, mA

8

must receive a non-zero payment from mA
7 at time t′. The only way that this can

happen is if there is an overdue debt from mA
7 to mA

8 ; that is, mA
7 is bankrupt, which

yields a contradiction. Hence, at least one of mA
7 , mA

9 , mA
10 and mA

12 is bankrupt. An

analogous argument shows that at least one of mB
7 , mB

9 , mB
11 and mB

12 is bankrupt.

Hence, exactly one of mA
7 , mA

9 , mA
10 and mA

12 is bankrupt and exactly one of mB
7 , mB

9 ,

mB
11 and mB

12 is bankrupt.

Suppose that mA
9 is bankrupt. So, mA

10 is necessarily bankrupt. Conversely, if

mA
10 is bankrupt then mA

9 must be bankrupt also. Consequently, neither mA
9 nor mA

10

is bankrupt and we must have that either mA
7 or mA

12 is bankrupt and analogously

either mB
7 or mB

12 is bankrupt. In particular, s, m2, mA
5 , mA

13, mA
15, mB

5 , mB
13 and mB

15

are not bankrupt.

Let us turn to analysing the flow of resource via the schedule σ. As σ is valid,

we must have that both debts from mA
16 and mB

16 are paid on time with e2k in total

reaching d. The question is: does this resource consist of the e2k emanating from

s or does it consist of resource emanating from s but supplemented with resource

emanating from mA
12 or mB

12? Let us look at the possible debt payments at time 10

(which is the earliest time that payments can be made). In particular, let us look at

payments made by mA
6 to mA

7 at time 10. Note that all payments made from mA
6 to

mA
7 are at a time from {10, 20, . . . , 10n}.

Case (a): An amount of ex > 0 is paid from mA
6 to mA

7 at time 10.

There are two essential sub-cases at time 10:

(i) mA
7 services its debt to mA

8 , which pays e1 to the sink, with perhaps ey ≥ 0

paid from mA
7 to mA

13 and from there to the sink, so that ex− y− 1 ≥ 0 resides

at mA
7 in cash assets at time 10

(ii) mA
7 does not service its debt to mA

8 and pays ex to mA
13 with this payment

immediately going to the sink, so that e0 resides at mA
7 in cash assets at time

10; hence, mA
7 is bankrupt (note that no cash assets can reside at mA

7 at time

10 as otherwise mA
7 would be withholding).

Now consider what happens at time 11. Suppose that we are in Case (a.i). There

must be a payment-cycle involving mA
8 , mA

9 , mA
10 and mA

11 and as n
2 ≥ 1, mA

12 must

service its debt to mA
7 , with perhaps mA

7 paying ez ≥ 0 to mA
13 which is immediately

paid to the sink. The e1 from mA
12 does not supplement the resource emanating from

s but just ‘replaces’ e1 which was ‘lost’ to the sink at time 10. Note that the cash

assets of mA
12 at time 11 are n

2 − 1.

41

2.3.1. Hardness results for Bankruptcy Minimization

Suppose that we are in Case (a.ii). Note that as mA
7 is bankrupt, mA

12 can never

become bankrupt and so must service its debts when required. There are four possi-

bilities as regards what happens at time 11 (bearing in mind the overdue debt from

mA
7 to mA

8):

(1) mA
12 pays e1 to mA

7 which pays e1 to mA
8 which immediately goes to the sink,

with a payment-cycle involving mA
8 , mA

9 , mA
10 and mA

11

(2) mA
12 pays e1 to mA

7 which pays e1 to mA
8 which pays e1 to mA

9 which pays e1

to mA
10 which pays e1 to mA

11 which pays e1 to mA
8 which immediately goes to

the sink

(3) mA
12 pays e1 to mA

7 which pays e1 to mA
13 which immediately goes to the sink,

with a payment-cycle involving mA
8 , mA

9 , mA
10 and mA

11

(4) mA
12 pays e1 to mA

7 which pays e1 to mA
8 which pays e1 to mA

9 which pays e1

to mA
10 which pays e1 to mA

11 which pays e1 to mA
12; that is, we have a payment

cycle involving mA
7 , mA

8 , mA
9 , mA

10, mA
11 and mA

12.

In (1-3) above, the e1 from mA
12 does not supplement the resource emanating from

s but is lost to the sink (as are the ex > 0 at time 10). Note that in (3), the debt

from mA
7 to mA

8 at time 10 is overdue and cannot be paid at time 11 as mA
7 has no

cash assets at time 10; so it remains overdue. In (4), again no supplement is made,

although en2 still resides at mA
12 in cash assets at time 11, and ex > 0 emanating

from s has been lost to the sink.

In both Case (a.i) and Case (a.ii), at time 12, the only possible non-payment-

cycle payments involve s, m1, mA
7 , mA

13, mA
14 and mA

15 but any such payments do

not affect whether the resources emanating from mA
12 or mB

12 supplement the resource

emanating from s. In Case (a.ii.3), the debt from mA
7 to mA

8 at time 10 is overdue

and so must be paid from the cash assets of mA
7 at time 12, if it has any and unless

all of these assets are paid to mA
13. All such payments by mA

7 will immediately go to

the sink.

Case (b): No payment is made from mA
6 to mA

7 at time 10.

Consequently, mA
7 cannot pay its debt to mA

8 and becomes bankrupt. At time 11,

mA
12 must necessarily service its debt to mA

7 and there are four possibilities with these

possibilities being exactly the possibilities (1-4) in Case (a.ii). As before, at time 12,

the only possible non-payment-cycle payments made involve s, m1, mA
7 , mA

13, mA
14

and mA
15 but any such payments do not affect whether the resources emanating from

mA
12 or mB

12 supplement the resources emanating from s. Note that in (3), the debt

from mA
7 to mA

8 at time 10 is still overdue at time 11 and cannot be paid at time 12 as

mA
7 has no cash assets at time 12; so it remains overdue. In (4), again no supplement

is made, although en2 still resides at mA
12 in cash assets at time 12.

So, the resources emanating from mA
12 cannot supplement the resources emanating

from s at any time t < 15. An identical argument can be applied to time 15 so as to

yield a similar conclusion as regards the resources emanating from mB
12 at any time

t < 20.

42

2.3.1. Hardness results for Bankruptcy Minimization

Consider the situation at time 20. With regard to the sub-network involving mA
6 ,

mA
7 , mA

8 , mA
9 , mA

10, mA
11, mA

12 and mA
13 (that is, the sub-network of study above), the

situation is similar to that at time 10 except that there may be additional restrictions

on what can happen given: a possible existing overdue debt from mA
7 to mA

8 (the

debt due at time 10); possible non-zero cash assets at mA
7 ; and possibly reduced cash

assets at mA
12 of n

2 − 1. Note that if mA
7 has cash assets prior to time 20 then this

can be thought of as mA
7 having acquired these assets from mA

6 at time 20; that is,

we are in Case (a) above. Given the fact that the situation at time 20 is a restricted

version of the situation at time 10 where the resources emanating from mA
12 could not

supplement those emanating from s, the same is true again. By analysing each time

t = 25, 30, 35, . . ., we can see that no resources emanating from either mA
12 or mB

12 can

supplement those emanating from s. Hence, in order to secure total cash assets of

e2k at d after time T , we need that all of the e2k resource emanating from s reaches

d; that is, none of it is lost to the sink en route (although some of it might have been

‘replaced’ as per Case (a.i)).

We can now repeat the above analysis except that now we know that we cannot

lose resource emanating from s unless it is replaced as in Case (a.i). This simplifies

things considerably. If mA
7 has ex > 0 at time t ∈ {10, 20, . . . , 10n} (either as cash

assets or from a payment by mA
6 at time t) then it must be the case that mA

7 services

the debt to mA
8 at time t, e1 is lost to the sink and mA

7 retains x− 1 in cash assets.

At time t + 1, mA
12 must service its debt to mA

7 so as to replace the lost e1, with

ex residing at mA
7 in cash assets at time t + 1. Consequently, there can only be at

most n
2 times in {10, 20, . . . , 10n} when mA

7 receives a payment from mA
6 (recall that

mA
6 only makes payments to mA

7 at times from {10, 20, . . . , 10n}). When mA
7 either

has no cash assets or receives no payment from mA
6 at time t ∈ {10, 20, . . . , 10n}, we

either lose e1 of cash assets from mA
12 to the sink (and so we also lose some capacity to

‘replace’ resource emanating from s that is lost to the sink) or we are in case (4) above

and have a payment cycle involving mA
7 , mA

8 , mA
9 , mA

10, mA
11 and mA

12. Analogous

comments can be made as regards the corresponding nodes superscripted B and times

in {15, 25, . . . , 10n+ 5}.

Bearing in mind that none of the resource emanating from s goes to the sink before

it reaches either mA
6 or mB

6 , at least n distinct payments are made from s and these

payments result in at least n payments in total from mA
6 to mA

7 or from mB
6 to mB

7 .

Thus, from above, mA
6 must make exactly n

2 payments to mA
7 and mB

6 must make

exactly n
2 payments to mB

7 . This means that any payment from mA
6 to mA

7 or from

mB
6 to mB

7 must be for an amount from {a1, a2, . . . , an} and we have a partition of

{a1, a2, . . . , an} into equal-sized sets both of whose sum is k; that is, our instance S

of Equal Cardinality Partition is a yes-instance and the claim follows.

Claim 2.8.2. If S is a yes-instance of Equal Cardinality Partition then ((G,D,A0),

16) is a yes-instance of Bankruptcy Minimization.

Proof. Suppose that our instance S = {a1, a2, . . . , an} of Equal Cardinality Par-

43

2.3.1. Hardness results for Bankruptcy Minimization

tition is such that n = 2m and
∑m
i=1 aαi =

∑m
i=1 aβi , where {αi, βi : 1 ≤ i ≤ m} =

{1, 2, . . . , n}. We need to build a valid schedule σ for (G,D,A0) with at most 16

bankruptcies. Let 1 ≤ i ≤ n and suppose that i = αj , where 1 ≤ j ≤ m. The node

s pays its ith debt to m1 (that is, the debt ai@[10i, 10i + 5]) at time 10i and this

payment is percolated all the way down to mA
7 at time 10i. The debt 1@10i from

mA
7 to mA

8 is paid at time 10i with this e1 being replaced from mA
12 at time 10i+ 1

(see Case (a.i) from the proof of Claim 2.8.1 above). We also have a payment cycle

involving mA
8 , mA

9 , mA
10 and mA

11 at time 10i + 1. The cash assets of ai at mA
7 are

percolated down to mA
16 at time 10i+ 2. At time 10i+ 5, we have suitable payment

cycles involving: m1, m2 and m3; m4, m5 and m6; and mA
13, mA

14 and mA
15. We also

have a payment cycle involving mA
7 , mA

8 , mA
9 , mA

10, mA
11 and mA

12 (see (4) from the

proof of Claim 2.8.1 above). An analogous course of action is taken if i = βj , for some

1 ≤ j ≤ m. The resulting schedule is valid and the 16 nodes m1, m3, mA
4 , mA

6 , mA
7 ,

mA
8 , mA

11, mA
13, mA

15, mB
4 , mB

6 , mB
7 , mB

8 , mB
11, mB

13 and mB
15 are bankrupt. The claim

follows.

So, our main result holds for the PP variant of Bankruptcy Minimization.

Note that everything above holds for the AoN variant too, though Theorem 2.12 is a

strictly stronger result for that setting.

Let us consider now the FP variant. As it happens, an argument similar to that

above works within the FP variant although there are more complicated nuances.

Rather than repeat the whole nuanced argument in detail, and given the above com-

plete proof for the PP variant, we only sketch the proof for the FP variant. Henceforth,

we assume that we are working within the FP variant.

Consider the proof of the corresponding version of Claim 2.8.1. The reasoning

that establishes that we must have that either mA
7 or mA

12 is bankrupt and that either

mB
7 or mB

12 is bankrupt holds for the FP variant. Consider payments made from mA
6

to mA
7 at time 10.

Case (a): An amount of ex > 0 is paid from mA
6 to mA

7 at time 10.

There are two essential sub-cases at time 10:

(i) mA
7 services its debt to mA

8 , which pays e1 to the sink, with perhaps ey ≥ 0

paid from mA
7 to mA

13 and from there to the sink, so that ex− y− 1 ≥ 0 resides

at mA
7 in cash assets at time 10

(ii) mA
7 does not fully service its debt to mA

8 but pays ew, where 0 ≤ w < 1, to

mA
8 , which immediately goes to the sink, and ex−w to mA

13, which immediately

goes to the sink, so that e0 resides at mA
7 in cash assets at time 10; hence, mA

7

is bankrupt.

Consider what happens at time 11. In Case (a.i), there must be a payment cycle

involving mA
8 , mA

9 , mA
10 and mA

11 and mA
12 services its debt to mA

7 . The e1 from mA
12

does not supplement the resource emanating from s but just ‘replaces’ e1 which was

‘lost’ to the sink at time 10.

Suppose that we are in Case (a.ii). There are two scenarios:

44

2.3.2. Hardness results for Perfect Scheduling

(1) mA
12 pays e1 to mA

7 which pays e1 − w to mA
8 of which ew′ goes immediately

to the sink and e1−w−w′ is paid to mA
9 ; mA

7 has cash assets of at most ew as

it may be the case that mA
7 also makes a payment to mA

13 which goes straight

to the sink, or

(2) mA
12 pays e1 to mA

7 which pays ey to mA
8 , where 0 ≤ y < 1 − w, of which ey′

goes immediately to the sink and ey− y′ is paid to mA
9 ; also, e1 − y is paid to

mA
13 which goes straight to the sink.

In (1), it must be the case that mA
8 receives at least w + w′ from mA

11 (so as to fully

service its debt to mA
9); hence, mA

11 pays at most e1 − w − w′ to mA
12. In any case,

ex have been lost to the sink with mA
7 gaining ew from mA

12 (with x ≥ w). In (2),

it must be the case that mA
8 receives at least e1 − (y − y′) from mA

11 (so as to fully

service its debt to mA
9); hence, mA

11 pays at most ey − y′ to mA
12. In any case, ex

have been lost to the sink with mA
7 gaining nothing from mA

12.

Case (b): No payment is made from mA
6 to mA

7 at time 10.

At time 11, it must be the case that mA
12 services its debt to mA

7 and then we are

essentially in Case (a.ii) above.

The outcome is that the resources emanating from mA
12 cannot supplement the

resources emanating form s at any time t < 15. An identical argument can be applied

to time 15 so as to yield a similar conclusion as regards the resources emanating from

mB
12 at any time t < 20. The rest of the proof of Claim 2.8.1 holds for the FP variant

and we have that Claim 2.8.1 holds for the FP variant.

The schedule σ described in the proof of Claim 2.8.2 is a valid schedule in the FP

variant and so Claim 2.8.2 also holds for the FP variant. This complete our proof of

the main theorem.

The proof of Theorem 2.8 clearly demonstrates the intricacies of reasoning in our

financial networks. By Theorem 2.8, it follows that each of the AoN, PP and FP vari-

ants of Bankruptcy Minimization are para-NP-hard when parameterized by any

parameter that is upper-bounded by the number of vertices, such as, e.g., the number

of bankruptcies k or the treewidth of the footprint. Note that Theorem 2.8 con-

cerns weak completeness results (in particular, the integers in an instance of Equal

Cardinality Matching appear explicitly as monetary debts in the corresponding

instance of Bankruptcy Minimization).

2.3.2 Hardness results for Perfect Scheduling

We now turn to Perfect Scheduling. Since this is a subproblem of Bankruptcy

Minimization and Bailout Minimization, hardness results in this section also

apply to both of those problems.

Theorem 2.9. The problem Perfect Scheduling is NP-complete for the AoN

and PP variants even when we restrict to IDM instances (G,D,A0) for which: T ≤ 3;

G is a directed acyclic graph with out-degree at most 3 and in-degree at most 3; the

45

2.3.2. Hardness results for Perfect Scheduling

monetary amount of any debt is at most e2; and any initial cash assets of a node are

at most e3 per bank.

Proof. Let us work within the PP variant until further notice. We introduce the

multiplier gadget shown in Fig. 2.8 and use this gadget in our main reduction (the

gadget sits within the blue dotted line). We claim the following.

m0
2

m1

m2

m3

s
2

in

out

2@[1, 3]

2@3

1@[2, 3]

1@[1, 3]
1@[1, 2]

1@1

1@[1, 3]

∗2

Figure 2.8: The multiplier gadget. Intuitively, the gadget “amplifies” payments into
it at time 1 by a factor 2.

Claim 2.9.1. Assume that the node in of the multiplier gadget has initial cash assets

of e1.

(a) In any perfect schedule for the multiplier gadget, if no payment is made by in

to m1 at either time 1 or time 2 then no payment is made by m0 to out at time

1.

(b) There is a perfect schedule σ0 for the multiplier gadget so that a payment is

made by in at time 3.

(c) There is a perfect schedule σ1 for the multiplier gadget so that a payment is

made by in to m1 at time 1 and a payment of e2 is made from m0 to out at

time 1.

Proof. Suppose that no payment is made by in to m1 at times 1 and 2; so m1 receives

no payment at time 1 and makes no payment at time 1. As there is a payment of e1

from m2 to m3 at time 1, there must be a payment of e1 from m0 to m2 at time 1.

Suppose that a payment of e1 is made from m0 to out at time 1. If so then m0 can

make no payment to m1 at time 2 and m1 is bankrupt which yields a contradiction.

Hence, there is no payment from m0 to out at time 1. The statement (a) follows.

Consider the schedule whereby:

46

2.3.2. Hardness results for Perfect Scheduling

• at time 1: m0 pays e1 to m2; m2 pays e1 to m3

• at time 2: m0 pays e1 to m1; m1 pays e1 to m2

• at time 3: s pays e2 to m0; m0 pays e2 to out; in pays e1 to m1.

This yields a perfect schedule and statement (b) follows.

Suppose that there is a payment of e1 made from in to m1 at time 1; so, we can

also make payments of e1 from m1 to m2 and from m2 to m3 at time 1. Additionally,

we can make a payment of e2 from m0 to out at time 1. At time 2, no payments are

made. At time 3, we can make payments of: e2 from s to m0; e1 from m0 to m2;

and e1 from m0 to m1. This yields a perfect schedule and statement (c) follows.

Our reduction is from 3-Sat-3 (again) to Perfect Scheduling. As before, we

assume that all 3-Sat-3 instances are such that every literal appears at least once

and at most twice and that no clause contains both a literal and its negation. Given

a 3-Sat-3 instance ϕ involving n Boolean variables and m clauses, we construct an

IDM instance (G,D,A0) as portrayed in Fig. 2.9 (we omit the formal description

of (G,D,A0) as it can be immediately derived from Fig. 2.9; moreover, we proceed

similarly with other IDM instances that we construct later on). The types of nodes

(source, literal, clause and sink) are as in the proof of Theorem 2.7, although we

have additional so-called a-type nodes, and we abbreviate our multiplier gadget as

a square box with ∗2 inside (note that we have 2n distinct copies of our multiplier

gadget where the node in is taken as ai and the node out as the literal node xi or the

literal node ¬xi, for 1 ≤ i ≤ n; of course, we have m clause nodes, n source nodes, n

a-type nodes and one sink node).

si
1

ai
1

xi¬xi

qj

d

∗2∗2

1@3

1@[1, 3]1@[1, 3]

2@[1, 3]2@[1, 3]

1@[1, 3] if vi ∈ cj1@[1, 3] if ¬vi ∈ cj

1@1

Figure 2.9: Illustration of the reduction from 3-SAT 3 to Perfect Scheduling
restricted to Directed Acyclic Graphs (DAGs).

Claim 2.9.2. If (G,D,A0) is a yes-instance of Perfect Scheduling then ϕ is a

yes-instance of 3-Sat-3.

47

2.3.2. Hardness results for Perfect Scheduling

Proof. Define the truth assignment X via: if, within σ, xi receives a payment of at

least e1 at time 1 then X(vi) = True; otherwise X(vi) = False.

Fix 1 ≤ j ≤ m. We must have that qj pays e1 to d at time 1 and so qj must

receive e1 from some node xi at time 1 or e1 from some node ¬xi at time 1.

Suppose that qj receives e1 from xτj at time 1; in particular, vτj ∈ cj . Hence,

xτj
receives at least e1 from its corresponding multiplier gadget at time 1 and so, by

definition, X(vτj
) = True with the clause cj satisfied by X.

Alternatively, suppose that qj receives e1 from ¬xτj
at time 1; in particular,

¬vτj
∈ cj . Hence, ¬xτj

receives at least e1 from its corresponding multiplier gadget

at time 1. By Claim 2.9.1.a, there must be a payment of e1 made from aτj to this

multiplier gadget at either time 1 or time 2. Consequently, no payment is made by

aτj
to the complementary multiplier gadget (that is, the one with a debt to xτj

) at

either time 1 or time 2. By Claim 2.9.1.a, no payment is received by xi at time 1

and so, by definition, X(vτj) = False with the clause cj satisfied by X. The claim

follows.

Claim 2.9.3. If ϕ is a yes-instance of 3-Sat-3 then (G,D,A0) is a yes-instance of

Perfect Scheduling.

Proof. Let X be a satisfying truth assignment for ϕ. For each clause cj , let vτj be a

Boolean variable whose occurrence in cj , either via the literal vτj
or the literal ¬vτj

,

leads to cj being satisfiable. So, we get a list L = vτ1 , vτ2 , . . . , vτm
of ‘satisfying’

Boolean variables, possibly with repetitions although no variable appears in the list

more than twice and if a Boolean variable v does appear twice then the correspond-

ing literals in the two corresponding clauses are both positive or both negative (of

course, this stems from the format of ϕ as an instance of 3-Sat-3): if the occurrences

are positive then we say that v has positive polarity, with negative polarity defined

analogously. Note that any debt from a literal node to a clause node in our IDM

instance exists solely because of the occurrence of the corresponding literal in the

corresponding clause; in particular, we can never have debts from both literal nodes

corresponding to some variable to the same clause node.

Consider the following schedule σ. At time 1, for each 1 ≤ j ≤ m:

• qj pays e1 to d

• if vτj
appears in L with positive (resp. negative) polarity then xτj

(resp. ¬xτj
)

pays e1 to qj

• if vτj
appears in L with positive (resp. negative) polarity then aτj

pays e1 to

the multiplier gadget which has a debt to xτj
(resp. ¬xτj

).

In addition, for each 1 ≤ j ≤ m, if vτj
appears in L with positive (resp. negative)

polarity then:

• within the multiplier gadget that has a debt to xτj (resp. ¬xτj), we include the

schedule σ1 from Claim 2.9.1.c

48

2.3.2. Hardness results for Perfect Scheduling

• within the multiplier gadget that has a debt to ¬xτj (resp. xτj), we include the

schedule σ0 from Claim 2.9.1.b.

At time 3, for each 1 ≤ j ≤ m:

• sτj
pays e1 to aτj

• if vτj appears in L with positive (resp. negative) polarity then aτj pays e1 to

the multiplier gadget which has a debt to ¬xτj
(resp. xτj

).

Finally, having done the above, add any Boolean variable v not appearing in L to

L and proceed as above with these Boolean variables and assuming that they have

positive polarity (note that the restriction of X to these Boolean variables has no

effect on whether X satisfies ϕ). What results is a perfect schedule.

Given that our IDM instance (G,D,A0) of Perfect Scheduling can be built

from the instance ϕ of 3-Sat-3 in polynomial time, we obtain our result for the PP

variant.

Consider now the AoN variant. As it happens, all of the above schedules are perfect

schedules within the AoN variant and all associated reasoning still holds. Hence, we

have our result for the AoN variant too.

Theorem 2.10. The problem Perfect Scheduling is NP-complete for the PP

and AoN variants even when we restrict to IDM instances (G,D,A0) for which: G

is a multiditree with diameter 6; all debts have monetary amount e1; and there is a

maximum of 6 debts between any pair of nodes.

Proof. We show that, given an instance ϕ of 3-Sat-3, involving n Boolean variables

and m clauses, we can construct in polynomial-time an IDM instance (G,D,A0)

where G satisfies the criteria stated in the theorem so that (G,D,A0) admits a perfect

schedule iff ϕ has a satisfying truth assignment. As usual, we restrict ourselves to

those instances of 3-Sat-3 in which every literal appears at least once and at most

twice and where no clause contains both a literal and its negation. In particular, we

can label any appearance of any literal in ϕ as the first appearance or the second

appearance.

Our reduction is portrayed in Fig. 2.10. There is a distinct variable gadget for each

Boolean variable vi, with 1 ≤ i ≤ n, and a distinct clause gadget, for each clause cj ,

with 1 ≤ j ≤ m. There is one node r. The debts in any variable gadget or involving

the node r are self-evident whereas the debts in a clause gadget are more involved.

• If the literal vi is in the clause cj and this appearance is the first (resp. second)

appearance of vi in ϕ then there are:

– debts 1@10(i− 1) + 1 (resp. 1@10(i− 1) + 3) from bj to aj and from ej to

dj

– debts 1@10(i− 1) + 2 (resp. 1@10(i− 1) + 4) from aj to bj and from dj to

ej .

49

2.3.2. Hardness results for Perfect Scheduling

• If the literal ¬vi is in the clause cj and this appearance is the first (resp. second)

appearance of ¬vi in ϕ then there are:

– debts 1@10(i− 1) + 6 (resp. 1@10(i− 1) + 8) from bj to aj and from ej to

dj

– debts 1@10(i− 1) + 7 (resp. 1@10(i− 1) + 9) from aj to bj and from dj to

ej .

• If the clause cj has 3 literals (resp. 2 literals) then there are:

– two separate1 debts 1@[1, T] (resp. a single debt 1@[1, T]) from aj to ej

and from ej to aj .

The legend in Fig. 2.10 shows the time intervals corresponding to each literal, which

we call the active windows of the literals, and the occurrence of x1 (resp. ¬x2, x6) in

cj in Fig. 2.10 is the first (resp. second, first) occurrence.

r

ui
1

yi wi

1@10i+ 1
1@10i+ 6

1@10i+ 4
1@10i+ 9

1@[10i+ 1, 10i+ 9]

1@[10i+ 1, 10i+ 9]

variable gadget for vi

ajbj
1

ejdj

1@1 1@18 1@51

1@2 1@19 1@52

1@[1, T]
1@[1, T]

1@[1, T]
1@[1, T]

1@1 1@18 1@51

1@2 1@19 1@52

clause gadget for cj = (x1,¬x2, x6)

1@[1,T]

1@[1,T]

1@[10i+ 1,
10i+ 9]

1@[10i+ 1,
10i+ 9]

literal active window
x1 [1,4]

¬x1 [6,9]
x2 [11,14]

¬x2 [16,19]
.
xi+1 [10i+1, 10i+4]

¬xi+1 [10i+6, 10i+9]
.

Figure 2.10: A reduction from 3-Sat-3 to Perfect Scheduling restricted to mul-
tiditrees.

Claim 2.10.1. If (G,D,A0) is a yes-instance of Perfect Scheduling then ϕ is a

yes-instance of 3-Sat-3.
1By having only unit debts in the instance we have that every PP schedule is also an AoN

schedule, and vice versa; for the PP variant we could instead have a single debt 2@[1, T].

50

2.3.2. Hardness results for Perfect Scheduling

Proof. Suppose that there is a perfect schedule σ for (G,D,A0). Consider a clause

gadget, corresponding to the clause cj . There are 4 debts due within each active

window corresponding to a literal in the clause. Suppose that the active windows are

[α1, β1], [α2, β2] and [α3, β3], with β1 < α2 and β2 < α3 (we are assuming that our

clause has 3 literals but the arguments for clauses with only 2 literals run analogously).

If no payment has been received by ej from r by time β1 +1 then: the e1 at bj within

the clause gadget must have been used in σ:

• to pay the debts of bj to aj , aj to ej and ej to dj at time α1

• to pay the debts of dj to ej , ej to aj and aj to bj at time α1 + 1,

if the appearance of the corresponding literal is the first; or

• to pay the debts of bj to aj , aj to ej and ej to dj at time α1 + 2

• to pay the debts of dj to ej , ej to aj and aj to bj at time α1 + 3 = β1,

if the appearance of the corresponding literal is the second (note that the payments

made towards the debts of aj to ej and ej to aj are only partial payments). We have

an analogous situation as regards the interval [α2, β2] when no payment has been

received by ej from r by time β2 + 1. However, if no payment has been received by

ej from r by time β3 + 1 then we obtain a contradiction as the debts from aj to ej
and from ej to aj will have been fully paid and consequently ej will be bankrupt at

time β3. Hence, within σ, there must be a payment of e1 received by ej from r and

this is the only payment made from r to ej . Furthermore, there can be no payment

from ej to r strictly before the time at which a payment is made from r to ej and if

a payment is made from ej to r at the same time that a payment is made from r to

ej then this can be interpreted as no resource leaving or entering the clause gadget,

with the external resource satisfying both debts involving r and ej , which cannot be

the case.

Consider now a variable gadget, corresponding to the variable vi. At times t ∈

[0, 10i] ∪ [10i+ 4, 10i+ 5] ∪ [10i+ 9, T] there must be cash assets of (at least) e1 at

node ui. So, outside the active windows of the literals associated with the variable

vi, there must be at least e1 of cash assets at the node ui. Also, note that the e1

originating at node ui can only leave and return to the variable gadget at some times

in [10i + 1, 10i + 5] or in [10i + 6, 10i + 9] but not both. Consequently, at any time,

there is at most e1 of resource that originated within a variable gadget outside that

particular variable gadget.

Consider the time interval [1, 9]. Within this time interval, the e1 originating at

u1 is the only euro that might be possibly ‘outside’ the variable gadget corresponding

to v1. Call this euro E. Suppose E leaves its variable gadget at some time in [1, 4].

It needs to be back at y1 by time 4 (and will never leave the variable gadget again).

Suppose that E is paid from r to ej , for some j, within the time interval [1, 4]. If the

literal x1 is not in cj then all debts involving only aj and bj and all debts involving

only dj and ej will be due at some time outside [1, 4] and so E is of no use to the

51

2.3.2. Hardness results for Perfect Scheduling

clause gadget for cj . If E is paid from r to ej at time 1 (resp. by time 3) and the

literal x1 is in clause cj as the first (resp. second) appearance then E can be used

to pay the debts from ej to dj at time 1 (resp. time 3) and from dj to ej at time 2

(resp. time 4). Note that E cannot be used to pay the debt from aj to bj at time

2 or time 4 as it would not get back to its variable gadget by time 4. Given that E

leaves the clause gadget by time 4, no more resource either enters or leaves the clause

gadget. Alternatively, suppose that E leaves the variable gadget corresponding to v1

at some time in [6, 9]. Exactly the same argument can be made as that above except

with respect to the literal ¬x1 appearing in some clause or other.

Let us continue with the time interval [11, 19] and the e1 originating at u2. An

analogous argument to that above holds. Note that all clause gadgets that were

previously ‘visited’ by E, above, are now ‘closed’ in that they accept or eject no

further resource. Indeed, an analogous argument to that above holds for every euro

originating at some node ui. As σ is a perfect schedule, every clause gadget must

be visited by some euro originating in some variable gadget and the particular literal

corresponding to the active window during which the euro left its variable gadget

must appear in the clause. Define the truth assignment X via: X(vi) = True (resp.

False) if the euro from the variable gadget corresponding to vi leaves its variable

gadget during the active window [10i+ 1, 10i+ 4] (resp. [10i+ 6, 10i+ 9]) and visits

a clause gadget, with any Boolean variables vi for which X(vi) has not been defined

such that X(vi) is defined arbitrarily. Given the above discussion, it should be clear

that X satisfies ϕ.

Claim 2.10.2. If ϕ is a yes-instance of 3-Sat-3 then (G,D,A0) is a yes-instance of

Perfect Scheduling.

Proof. Suppose that X is a satisfying truth assignment for ϕ. Define the schedule σ

as follows.

If X(vi) = True then at time 10(i− 1) + 1, the euro originating at ui is paid from

ui to yi to wi to r.

• If the clause cj containing the first appearance of the literal xi exists and has

not been visited by some euro originating within a variable gadget then at time

10i + 1, the euro is paid from r to ej and on to dj . At time 10i + 2, the same

euro is paid from dj to ej and on to r.

• If there is no clause containing the literal xi or if the clause gadget corresponding

to the first appearance of xi has already been visited in the schedule σ by some

euro originating within a variable gadget, then do nothing.

• If the clause cj containing the second appearance of the literal xi exists and has

not been visited by some euro originating within a variable gadget then at time

10i + 3, the euro is paid from r to ej and on to dj . At time 10i + 4, the same

euro is paid from dj to ej and on to r.

• If there is no clause containing the literal xi or if there is no second appearance

of the literal xi or if the clause gadget corresponding to the second appearance

52

2.3.2. Hardness results for Perfect Scheduling

of xi has already been visited in the schedule σ by some euro originating within

a variable gadget, then do nothing.

• Our euro at r is paid at time 10i + 4 from r to wi to yi to ui, and is then

available to pass back from ui to yi at time 10i + 6, and back from yi to ui at

time 10i+ 9 – without exiting the gadget.

If X(vi) = False then at time 10i+ 6, the euro originating at ui is paid from ui to yi
to wi to r. (Prior to this, the euro originating at ui passes to yi at time 10i+ 1 and

back to ui at time 10i+ 4 – again without exiting the gadget.)

• If the clause cj containing the first appearance of the literal ¬xi exists and has

not been visited by some euro originating within a variable gadget then at time

10i + 6, the euro is paid from r to ej and on to dj . At time 10i + 7, the same

euro is paid from dj to ej and on to r.

• If there is no clause containing the literal ¬xi or if the clause gadget correspond-

ing to the first appearance of ¬xi has already been visited in the schedule σ by

some euro originating within a variable gadget, then do nothing.

• If the clause cj containing the second appearance of the literal ¬xi exists and

has not been visited by some euro originating within a variable gadget then at

time 10i + 8, the euro is paid from r to ej and on to dj . At time 10i + 9, the

same euro is paid from dj to ej and on to r.

• If there is no clause containing the literal ¬xi or if there is no second appearance

of the literal ¬xi or if the clause gadget corresponding to the second appearance

of ¬xi has already been visited in the schedule σ by some euro originating within

a variable gadget, then do nothing.

• Our euro at r is paid at time 10i+ 9 from r to wi to yi to ui.

Within any clause gadget corresponding to cj , the euro originating at bj is used to

pay the debts corresponding to the literal not addressed by the euro from a variable

gadget. It can easily be seen that σ is valid and a perfect schedule.

The result follows, given that the construction of (G,D,A0) can clearly be undertaken

in polynomial-time.

In all the above results, the input IDM instance is allowed to have unlimited

(i.e., unbounded) total initial assets which might be unrealistic in practically relevant

financial systems. We now show that even in the highly restricted case where there

is just e1 in initial external assets in total, Perfect Scheduling still remains NP-

complete in the AoN and PP variants.

Theorem 2.11. The problem Perfect Scheduling is NP-complete in the AoN

and PP variants even when the total value of all initial external assets in any instance

is e1.

53

2.3.2. Hardness results for Perfect Scheduling

Proof. The following proof applies to both the AoN and PP variants. Our reduction

is a reduction from the problem Sourced Hamiltonian Path defined as follows.

Sourced Hamiltonian Path

Instance: a digraph H and a vertex x

Yes-instance: there exists a Hamiltonian path in H with source x.

This problem can be trivially shown to be NP-complete by reducing from the

standard problem of deciding whether a digraph has a Hamiltonian cycle [10].

Let H be some digraph on the n vertices {xi : 1 ≤ i ≤ n} and w.l.o.g. let x = x1.

In order to describe our reduction, we first describe a gadget, namely the at-least-once

gadget. We have one of these gadgets for each vertex of H and we refer to the gadget

corresponding to the vertex xi of H as at-least-once(i). Our at-least-once gadget can

be defined as in Fig. 2.11 where the value T is defined as 2n+1. Note that the gadget

is exactly the nodes and debts within the blue dotted box and so contains its own

copies of nodes vL, vC and vR and the 4n − 1 debts involving them. The nodes v′
R

and v′′
L are not part of the gadget but are nodes in other gadgets as we now explain.

vL vC vRv′
R v′′

L

1@[1, T] 1@[1, T]

1@T1@T

1@1 1@3 . . . 1@T − 2

1@[1, T − 1]
. . .

1@[1, T − 1]
(n − 1 times)

1@2 1@4 . . . 1@T − 1

1@[1, T − 1]
. . .

1@[1, T − 1]
(n − 1 times)

1@T
at-least-once(i)

Figure 2.11: An at-least-once gadget. Note that as T = 2n+ 1 there are, n e1 debts
owed by vL to vC and by vC to vR.

Set T = 2n+ 1. Our IDM instance (G,D,A0) can be defined as follows:

• there is the at-least-once(i) gadget, for 1 ≤ i ≤ n

• for every edge (xi, xj) of H, there is a debt of e1 from vR of at-least-once(i) to

vL of at-least-once(j) to be paid in the interval [1, T] and a debt of e1 from vL

of at-least-once(j) to vR of at-least-once(i) to be paid at time T

• all nodes have initial external assets of 0 except for node vL of at-least-once(1)

which has initial external assets of 1.

We refer to the single euro of initial external assets as the initial euro. The IDM

instance (G,D,A0) can clearly be constructed in time polynomial in n.

Claim 2.11.1. If (G,D,A0) is a yes-instance of Perfect Scheduling then (H,x)

is a yes-instance of Sourced Hamiltonian Path.

54

2.3.2. Hardness results for Perfect Scheduling

Proof. Note that strictly prior to time T , the only payment-cycles that can exist

within G involve the two nodes vL and vC of some at-least-once gadget or the two

nodes vC and vR of some at-least-once gadget. Note also that within some gadget

there are n debts of e1 from vL to vC needing to be satisfied and n − 1 debts of

e1 from vC to vL. An analogous statement can be made as regards vC and vR.

Consequently, in order to satisfy all debts involving vL and vC within some gadget,

at some odd time in [1, T − 1], the initial euro must be within that gadget so as to

satisfy some debt from vL to vC (by moving from vL to vC). Similarly, at some even

time in [1, T −1], the initial euro must be within the gadget so as to satisfy some debt

from vC to vR (by moving from vC to vR). Moreover, at any time in [1, T − 1], the

initial euro can only satisfy at most one of the debts mentioned above. Hence, given

that T = 2n+ 1, at any time in [1, T − 1], the initial euro must be satisfying exactly

one of the above debts.

Suppose that the initial euro satisfies some debt from vL to vC in some at-least-

once gadget at time t. As the initial euro needs to satisfy one of the above debts

at time t + 1, we need that at time t + 1 the initial euro satisfies a debt from vC to

vR in the same gadget. Also, it cannot be the case that a debt from vC to vR in

some gadget is satisfied by the initial euro before the euro satisfies some debt from

vL to vR in the same gadget. As the initial euro starts at vL in at-least-once(1), our

schedule must be such that the initial euro ‘moves’ through the at-least-once gadgets

corresponding to every node, entering at the node vL and exiting at the node vR.

Consequently, its path within G corresponds to a path x = x1, x2, . . . , xn in H where

every node on this path is distinct and where there is a directed edge from node xi
to xi+1, for 1 ≤ i ≤ n− 1; that is, a Hamiltonian path in H with source x.

Claim 2.11.2. If (H,x) is a yes-instance of Sourced Hamiltonian Path then

(G,D,A0) is a yes-instance of Perfect Scheduling.

Proof. Let x = x1, x2, . . . , xn be a Hamiltonian path P in the digraph H. Consider

the following schedule σ:

• the initial euro is used so as to pay the following debts:

– e1 at time 2i−1 from vL to vC in at-least-once(xi) and e1 at time 2i from

vC to vR in at-least-once(xi), for 1 ≤ i ≤ n

– e1 at time 2i from vR in at-least-once(xi) to vL in at-least-once (xi+1), for

1 ≤ i ≤ n− 1

• for any vL and vC within some at-least-once gadget and at any odd time t < T

when a debt is not being paid from vL to vC using the initial euro, there is a

payment-cycle consisting of payments of e1 from vL to vC and of e1 from vC

to vL

• for any vC and vR within some at-least-once gadget and at any even time t < T

when a debt is not being paid from vC to vR using the initial euro, there is a

55

2.3.2. Hardness results for Perfect Scheduling

payment-cycle consisting of payments of e1 from vC to vR and of e1 from vR

to vC

• for any edge (xi, xj) of H that does not feature in the Hamiltonian path P ,

there is a payment-cycle consisting of payments at time T of e1 from vR in at-

least-once(xi) to vL in at-least-once(xj) and of e1 from vL in at-least-once(xj)

to vR in at-least-once(xi)

• the initial euro is used so as to pay the following debts:

– e1 at time T from vR to vL in at-least-once(xi), for 1 ≤ i ≤ n

– e1 at time T from vL in at-least-once(xi) to vR in at-least-once(xi−1), for

2 ≤ i ≤ n.

The ‘path’ taken by the initial euro within (G,D,A0) can be visualized as in Fig. 2.12

where the debt arrows are tagged with the time of payment. It is clear that σ is valid

and a perfect schedule.

Our main result follows.

vL

vC

vR

vLvC
vR

vL

vC

vR

vL

vC

vR

vL
vC vR

· · ·

vL

vC

vR

at-least-once(1)

at-least-once(2)

at-least-once(3)

at-least-once(4)

at-least-once(5)

at-least-once(n)

2
34

4

5

6

6

7

8

8
9 10

10
2n− 2

2n− 1

2n

1

2

2n+ 1

2n+ 1

2n+ 1
2n+ 12n+ 1

2n+ 1

2n+ 1

2n+ 1

2n+ 1

2n+ 1
2n+ 1

2n+ 1

Figure 2.12: The path taken by the initial euro straightforwardly corresponds to a
sourced Hamiltonian path in the original graph.

Of course, one can obtain additional restrictions on the structure of the IDM

instances for Perfect Scheduling in Theorem 2.11 by looking at NP-completeness

results relating to Sourced Hamiltonian Path on restricted digraphs; however, we

have refrained from doing so (as nothing of any significance emerges).

We can constrain the digraph G of an instance (G,D,A0) of Perfect Schedul-

ing even further in the AoN variant; indeed, so that it is always a directed path of

length 3. The price we pay is that the initial external assets are potentially large.

Theorem 2.12. Consider the problem Perfect Scheduling restricted so that

every instance (G,D,A0) is such that G is a directed path of bounded length.

56

2.3.2. Hardness results for Perfect Scheduling

(a) If, further, T is restricted to be 2 then the resulting problem is weakly NP-

complete in the AoN variant.

(b) If there are no restrictions on T then the resulting problem is strongly NP-

complete in the AoN variant.

Proof. Consider (a). We reduce from the problem Partition defined as follows (and

proven in [10] to be weakly NP-complete).

Partition

Instance: a multi-set of integers S = {a1, a2, . . . , an} with sum(S) = 2k

Yes-instance: there exists a partition of S into two subsets S1 and S2 such that

sum(S1) = sum(S2) = k.

In general, an instance S = {a1, a2, . . . , an} has size nβ where β is the least number

of bits required to express any of the integers of S in binary.

Let S be an instance of Partition of size nb. Consider the IDM instance (G,D,A0)

in Fig. 2.13. Note that the time taken to construct (G,D,A0) from S is polynomial

in nb.

s
2k

v w x

a1@[1, 2]
a2@[1, 2]

...
an@[1, 2]

k@1
k@2

k@1
k@2

Figure 2.13: An IDM instance encoding an instance {a1, . . . , an} of Partition with
sum 2k.

Claim 2.12.1. If (G,D,A0) is a yes-instance of Perfect Scheduling then S is a

yes-instance of Partition.

Proof. Suppose that there is a valid schedule σ for (G,D,A0) that is a perfect sched-

ule. It must be the case that the total amount paid by s at time 1 is ek and that this

payment is immediately paid by v to w and from w to x at time 1. As we are in the

AoN variant, it must be the case that the sum of a subset of integers of S amounts to

k. An analogous argument applies to the payments made at time 2 and the remainder

of the integers in S. The claim follows.

Claim 2.12.2. If S is a yes-instance of Partition then (G,D,A0) is a yes-instance

of Perfect Scheduling.

Proof. Suppose that S1 and S2 is a partition of S such that sum(S1) = sum(S2) = k.

Define the schedule σ so that:

• at time 1: s pays ek to v; if ai ∈ S1, for 1 ≤ i ≤ n, then v pays eai to w; and

w pays ek to x

57

2.3.2. Hardness results for Perfect Scheduling

• at time 2: s pays ek to v; if ai ∈ S2, for 1 ≤ i ≤ n, then v pays eai to w; and

w pays ek to x.

The schedule σ is a valid perfect schedule.

The proof of (a) follows. Now consider (b). We reduce from the strongly NP-complete

problem 3-Partition defined as follows (see [71]).

3-Partition

Instance: a multi-set of integers S = {a1, a2, . . . , a3m}, for some m ≥ 1, with

sum(S) = mk

Yes-instance: there exists a partition of S into m triplets S1, S2, . . . Sm such that

sum(Si) = k, for each 1 ≤ i ≤ m.

In general, an instance S = {a1, a2, . . . , a3m} has size mβ where β is the least

number of bits required to express any of the integers of S in binary.

Let S be an instance of 3-Partition of size mβ. By multiplying all integers by 4

if necessary, we may assume that every integer of S is divisible by 4 as is k. Consider

the IDM instance (G,D,A0) in Fig. 2.13. Note that the time taken to construct

(G,D,A0) from S is polynomial in mβ.

s
m(k + 3)

v w x

a1 + 1@[1,m]
a2 + 1@[1,m]

. . .
a3m + 1@[1,m]

k + 3@1
k + 3@2
. . .

k + 3@m

k + 3@1
k + 3@2
. . .

k + 3@m

Figure 2.14: An IDM instance showing the reduction from 3-Partition to AoN
Perfect Scheduling.

Claim 2.12.3. If (G,D,A0) is a yes-instance of Perfect Scheduling then S is a

yes-instance of 3-Partition.

Proof. Suppose that there is a valid schedule σ for (G,D,A0) that is a perfect sched-

ule. It must be the case that the total amount paid by s at time i, for every 1 ≤ i ≤ m,

is ek+3 and that this payment is immediately paid by v to w and by w to x. Suppose

that the payment at time i by v to w pays at least 4 of the debts due. So, there exists

another time j, say, where the payments made by v to w pay at most 2 debts. So, we

have that either aα + aβ + 2 = k + 3 or aα + 1 = k + 3, for some 1 ≤ α ̸= β ≤ 3m.

This yields a contradiction as the right-hand sides of these equations are equivalent

to 3 modulo 4 whereas the left-hand sides are not. So, at any time i, for 1 ≤ i ≤ m,

exactly three debts are paid by v to w at time i. If 1 ≤ α, β, γ ≤ 3m are distinct so

that debts of monetary amounts aα + 1, aβ + 1 and aγ + 1 are paid by v to w at some

time then aα + 1 + aβ + 1 + aγ + 1 = k + 3; that is, aα + aβ + aγ = k. So, we have a

yes-instance of 3-Partition. The claim follows.

58

2.3.3. Hardness results for Bankruptcy Maximization

Claim 2.12.4. If S is a yes-instance of 3-Partition then (G,D,A0) is a yes-instance

of Perfect Scheduling.

Proof. Suppose that S can be partitioned into triplets so that the sum of the integers

in each triplet is k; so, suppose that aαi
+ aβi

+ aγi
= k, for each 1 ≤ i ≤ m, where

S = {aαi
, aβi

, aγi
: 1 ≤ i ≤ m}. Define the following schedule σ: at time i, for each

1 ≤ i ≤ m, s pays ek+ 3 to v; v pays eaαi + aβi + aγi + 3 = k+ 3 to w; and w pays

ek + 3 to x. The schedule σ is valid and a perfect schedule. The claim follows.

The main result follows.

2.3.3 Hardness results for Bankruptcy Maximization

We now turn to Bankruptcy Maximization.

Theorem 2.13. The problem Bankruptcy Maximization is NP-complete in the

AoN, PP and FP variants even when for an instance (G,D,A0): T = 2; G is a directed

acyclic graph with out-degree at most 2, in-degree at most 3; all monetary debts are

at most e2 per edge; and initial external assets are at most e3 per bank.

Proof. We build a polynomial-time reduction from the problem 3-Sat-3, with the

usual restrictions on instances (see the proof of Theorem 2.7). Suppose that we have

some instance ϕ of 3-Sat-3 where there are n Boolean variables and m clauses. We

start with the chain gadget chain(l), where l ≥ 1, as portrayed in Fig. 2.15 (note

that the gadget is the path of l nodes within the blue dotted box). The key point

about any chain gadget is that in some schedule: if at time 1, node u does not make

a payment to node m1 then u and all the nodes of the chain gadget are bankrupt;

and if at time 1, u pays its debt to m1 then none of the nodes of the chain gadget

is bankrupt. As in our proof of Theorem 2.8, we first work in the PP variant unless

otherwise stated, though the reasoning will apply to the AoN and FP variants as well.

u m1 m2 m3 ml
1@1 1@1 1@1 1@1 1@1. . .

chain(l)

Figure 2.15: The chain gadget. In any valid schedule, either p1
u,m1

< 1 and all vertices
mi are bankrupt, or p1

u,m1
= 1 and no vertices mi are bankrupt.

We now define variable nodes {si : 1 ≤ i ≤ n}, literal nodes {xi,¬xi : 1 ≤ i ≤

n}, clause nodes {qj : 1 ≤ j ≤ m} and a sink node d analogously to the proof of

Theorem 2.7 and include the debts as depicted in Fig. 2.16 so as to obtain our IDM

instance (G,D,A0). Note that the chain gadgets corresponding to the different literal

nodes are all distinct and |cj | denotes the number of literals in the clause cj of ϕ.

Note that because all debts of (G,D,A0) are due at an exact time, rather than

over an interval, reasoning in the AoN variant is identical to reasoning in the PP

variant.

59

2.3.3. Hardness results for Bankruptcy Maximization

si
3

xi

¬xi

qj d

chain(m+ 1)

chain(m+ 1)

3@1

3@1

1@2 if ¬vi ∈ cj

1@2 if vi ∈ cj

|cj |@2

1@1

1@1

Figure 2.16: An IDM instance illustrating the reduction from 3-SAT 3 to
Bankruptcy Maximization, using chain gadgets.

Claim 2.13.1. In any valid schedule σ for (G,D,A0) in which c ≥ 0 variable nodes

si either pay e3 to xi or e3 to ¬xi:

• all n variable nodes are bankrupt

• exactly n literal nodes are bankrupt

• exactly c(m+ 1) chain nodes are bankrupt.

Consequently, this amounts to exactly 2n+ c(m+ 1) bankrupt nodes with any other

bankrupt nodes necessarily being clause nodes.

Proof. Suppose that in the valid schedule σ, si, for some 1 ≤ i ≤ n, pays e1 to a

node from {xi,¬xi} at time 1 and e2 to the other node from {xi,¬xi} at time 1.

Since both xi and ¬xi have e1 at time 1, both must pay e1 to their corresponding

chain gadget; so, none of the nodes of either of these chain gadgets is bankrupt. As

any variable and its negation both appear at least once in some clause of ϕ, exactly

one of the nodes xi and ¬xi is bankrupt at time 2.

Alternatively, suppose that sj , for 1 ≤ j ≤ n, pays e3 to either xj or ¬xj at time

1. So, the literal node to which sj makes no payment is bankrupt at time 1 as are all

the nodes of its corresponding chain gadget.

In any case, we have: n variable nodes that are bankrupt; n literal nodes that are

bankrupt; and c(m+ 1) chain nodes that are bankrupt. This results in 2n+ c(m+ 1)

bankrupt nodes. As the sink node d cannot be bankrupt, the claim follows.

Claim 2.13.2. If ((G,D,A0), 2n+ n(m+ 1) +m) is a yes-instance of Bankruptcy

Maximization then ϕ is a yes-instance of 3-Sat-3.

Proof. Suppose that there exists a valid schedule σ that results in at least 2n+n(m+

1) + m bankruptcies. So, by Claim 2.13.1, every variable node si pays e3 to either

xi or ¬xi and also every clause node qj is bankrupt in σ. The reason a clause node

qj is bankrupt is because there is some literal vi or ¬vi in clause cj but where ¬xi
or xi, respectively, receives no payment from si. Define the truth assignment X on

the variables of ϕ so that X(vi) = True iff xi receives a payment of e3 from si, for

1 ≤ i ≤ n. This truth assignment satisfies every clause of ϕ.

60

2.3.3. Hardness results for Bankruptcy Maximization

Claim 2.13.3. If ϕ is a yes-instance of 3-Sat-3 then ((G,D,A0), 2n+n(m+1)+m)

is a yes-instance of Bankruptcy Maximization.

Proof. Suppose that there is a satisfying truth assignment X for ϕ. Consider the

following schedule σ:

• at time 1, every si pays: e3 to xi if X(vi) = True; and e3 to ¬xi if X(vi) =

False

• if xi (resp. ¬xi) received e3 from si at time 1 then:

– at time 1, it pays e1 to its corresponding chain gadget so as to satisfy all

debts in the gadget

– at time 2, it pays e1 to each clause node qj for which the literal ¬vi ∈ cj

(resp. vi ∈ cj)

• if xi (resp. ¬xi) received no payment from si at time 1 then at times 1 and 2 it

can make no payments

• each qj makes a payment of however many euros it has to d at time 2 (note that

it never received more than e|cj |).

The schedule σ is clearly valid. By Claim 2.13.1, we have at least 2n + n(m + 1)

bankrupt nodes with any additional bankrupt nodes necessarily clause nodes. Con-

sider some clause node qj containing some literal vi so that X(vi) = True. By

definition, ¬xi receives no payment from si at time 1 and so the debt of e1 at time

2 from ¬xi to qj is not paid. Consequently, qj is bankrupt. Hence, we have exactly

2n+ n(m+ 1) +m bankrupt nodes and the claim follows.

Note that the above reasoning clearly holds in the AoN variant (since in the

schedules we consider all debts are paid either in full or not at all) as well as in the

FP variant (since in order for si to bankrupt one of the chains attached to xi and

¬xi it must pay strictly less than £1 to the bankrupt node and hence at least £2 to

the “surviving” node). As the construction of ((G,D,A0), 2n+n(m+ 1) +m) can be

completed in time polynomial in n, the result follows.

Just as we did with Perfect Scheduling in Theorem 2.12, we can restrict

Bankruptcy Maximization in the AoN variant so that any IDM (G,D,A0) in any

instance is such that G is a directed path of bounded length (here 2).

Theorem 2.14. Consider the problem Bankruptcy Maximization restricted so

that every instance ((G,D,A0), k) is such that G is a directed path of length 3. If,

further, T is restricted to be 2 then the resulting problem is weakly NP-complete in

the AoN variant.

Proof. We reduce from the weakly NP-complete problem Subset Sum defined as

follows (see [71]).

61

2.3.3. Hardness results for Bankruptcy Maximization

Subset Sum

Instance: a multi-set of integers S = {a1, a2, . . . , an} and an integer k

Yes-instance: there exists a subset S1 of S so that the sum of the numbers in

S1 is k.

In general, an instance S = {a1, a2, . . . , an} has size nβ where β is the least number

of bits required to express any of the integers of S in binary. Let S be an instance of

Subset Sum of size nβ. By doubling all integers if necessary, we may assume that

every integer of S is at least 2. Consider the IDM instance (G,D,A0) in Fig. 2.17

(for which T = 2). The value A in Fig. 2.17 is the sum of all integers in S. Note that

the time taken to construct (G,D,A0) from S is polynomial in nβ.

u
A

v
k

w

a1@[1, 2]
. . .

an@[1, 2]
1@1

A@2

Figure 2.17: An IDM instance corresponding to an instance of Subset Sum.

Claim 2.14.1. If ((G,D,A0), 1) is a yes-instance of Bankruptcy Maximization

then S is a yes-instance of Subset Sum.

Proof. Suppose that σ is a valid schedule within which there is at least 1 bankruptcy

in the IDM instance (G,D,A0). The nodes u and w are never bankrupt; so, v must

be bankrupt within σ. At time 2, the node v necessarily pays off all of the unpaid

debts to w of monetary amount greater than e1, as it receives sufficient funds from

u at time 2 to do this. Hence, v must be bankrupt at time 1; that is, v does not pay

its debt to w of monetary amount e1 at time 1. As σ is valid, v is not withholding

at time 1 and the only way for this to happen is for v to pay debts to w amounting

to ek. That is, we have a subset of integers of S whose total sum is k; that is, S is a

yes-instance of Subset Sum. The claim follows.

Claim 2.14.2. If S is a yes-instance of Subset Sum then ((G,D,A0), 1) is a yes-

instance of Bankruptcy Maximization.

Proof. Suppose that the subset S1 of S is such that sum(S1) = k. W.l.o.g. let S1 =

{a1, a2, . . . , ar}. Define the schedule σ as: at time 1, v pays the debts a1@[1, 2], . . . ,

ar@[1, 2]; and at time 2, u pays its debt to v and v pays the debts ar+1@[1, 2], . . . ,

an@[1, 2], and the overdue debt 1@1. Note that this is a valid schedule, as no node is

withholding at any time, within which v is bankrupt. The claim follows.

The main result follows.

62

2.3.4. Polynomial-time algorithms

2.3.4 Polynomial-time algorithms

In this section we show that Bailout Minimization in the FP variant is solvable in

polynomial-time and also that Bailout Minimization in the PP variant is solvable

in polynomial-time when our IDM instances are restricted to out-trees. We begin

with the FP variant result.

Theorem 2.15. The problem Bailout Minimization in the FP variant is solvable

in polynomial time.

Proof. A solution to FP Bailout Minimization is a bailout vector B of size |V |

together with a schedule σ consisting of |E|T payment values pte. We describe below

how an instance ((G,D,A0), b) of Bailout Minimization can be encoded as a linear

program (LP), which can then be solved in polynomial time.

Our variables are:

• Bailout variables {B[v]|v ∈ V } (altogether |V | variables),

• Payment variables {pte|e ∈ e, t ∈ [T]} (altogether |E|T variables), and

• Income variables {Itv|v ∈ V, t ∈ [T]}, outgoing variables {Otv|v ∈ V, t ∈ [T]}, and

cash asset variables {ctv|v ∈ V, t ∈ [0, T]} (altogether 3 · |V | · T + |V | variables).

In the below, for a, b ∈ N0, [a, b] denotes the set {a, a+ 1, . . . , b}, and we write [b]

as shorthand for [1, b]. Our constraints are:

• The total bailout is at most b: ∑
v

B[v] ≤ b

• The starting cash assets of a node (at time 0) are its external assets (specified

by A0) plus any bailout it receives. For each v ∈ V :

c0
v = A0[v] +B[v]

• No debt is paid early, and all payments are non-negative. For each e ∈ E and

t ∈ [0, T]:

pte

= 0, if t < Dt1(e)

≥ 0, otherwise

• The income (resp. outgoings) of a node at some time are obtained by summing

over payments into (resp. out of) that node at each time. These then can be

used to compute external (cash) assets at all nodes and times. For each v ∈ V

and t ∈ [T]:

Itv =
∑

e∈Ein(v)

pte (resp. Otv =
∑

e∈Eout(v)

pte)

ctv = ct−1
v + Itv −Otv

• No bank has negative assets at any point. For each v ∈ V, t ∈ [T]:

ctv ≥ 0

63

2.3.4. Polynomial-time algorithms

• Each debt is paid in full within its interval. This guarantees that there are

no bankruptcies in the schedule (and that no banks are withholding, a validity

constraint). For each e ∈ E with D(e) = (a, t1, t2):

∑
t∈[t1,t2]

pte = a

Recall from our discussion of canonical instances in Section 2.4 that we may assume

T is at most 2|E|. Then we have O(nm+m2) variables and O(nm+m2) constraints.

If the largest integer in the input instance ((G,D,A0), b) required β bits to encode,

then our constructed LP has size polynomial in n+m+β. Any assignment to B and

to the payment variables pte satisfying the above is necessarily a perfect valid schedule

for ((G,D,A0), b). As linear programs can be solved in polynomial-time, our result

follows.

Note the limitations of the use of linear programming for other problems. For

Bailout Minimization in the PP variant, proceeding as in the proof of Theo-

rem 2.15 results is an integer linear program, the solution of which is NP-complete in

general. Moreover, we have already proven Perfect Scheduling, the special case

of Bailout Minimization with b fixed to 0, to be NP-complete in the PP variant

through the proofs in Theorems 2.9, 2.10 and 2.11. As regards trying to use linear

programming for Bankruptcy Minimization in the FP variant, it is not possible to

express a constraint on the number of bankruptcies through a linear combination of

the payment variables; indeed, we have already proven Bankruptcy Minimization

in the FP variant to be NP-complete in Theorems 2.7 and 2.8.

For the AoN and PP variants, by restricting the temporal properties of the IDM

instances considered, we obtain tractability of Bailout Minimization, namely when

all debts are due at an exact time.

Theorem 2.16. The problem (AoN/PP/FP) Bailout Minimization is solvable

in polynomial time when restricted to inputs (G,D,A0) such that Dt1 = Dt2 .

Proof. Let (G,D,A0) be an IDM instance satisfying the above. In such an instance,

all debts are due at an exact point in time, rather than an interval. For convenience,

we use Dt as shorthand for either of Dt1 or Dt2 . By definition, for any bailout vector

B (including the all-zero vector) a perfect schedule for (G,D,A0 +B) is one in which

every debt is paid in full and on time. Let σ be the schedule defined by pDt(e)
e = Da(e)

for each edge e, with all other payment variables equal to zero. Clearly, for any vector

B, a perfect schedule for (G,D,A0 +B) exists if and only if σ is a valid schedule (and

hence a perfect schedule).

Moreover, we can efficiently compute a vector B of minimum sum such that σ

is a perfect schedule for (G,D,A0 + B). For each vertex v and time t, compute ctv
under σ for the instance (G,D,A0). Note that if (G,D,A0) does not admit a perfect

schedule then ctv will be negative for some v and t, and σ is not a valid schedule for

that instance (without a bailout). Denote the minimum (again, possibly negative)

64

2.3.4. Polynomial-time algorithms

cash assets of v at any time by cmin
v . Compute bv := max(−1 · cmin

v , 0) for each v, and

let B = (bv|v ∈ V). By construction, σ is a perfect schedule for (G,D,A0 + B), and

σ is not a perfect schedule for (G,D,A0 +B′) for any B′ with sum(B′) < sum(B).

All of our arguments hold in all three variants (AoN, PP, and FP), and the result

follows.

Interestingly, Theorem 2.16 is the only positive result we derive for the All-or-

Nothing setting. We also obtain tractability results for the problem PP Bailout

Minimization if we restrict the structure of IDM instances.

Theorem 2.17. The problem Bailout Minimization in the PP variant is solvable

in polynomial-time when our IDM instances are restricted to out-trees.

Proof. Let ((G,D,A0), b) be an instance of Bailout Minimization so that G is an

out-tree. Suppose that G has node set {ui : 1 ≤ i ≤ n}. We need to decide whether

we can increase the initial external assets of each node ui by bi so that
∑
i bi ≤ b and

(G,D,A0 + B) has a perfect schedule, where B = (b1, b2, . . . , bn); that is, whether

(G,D,A0) is ‘b-bailoutable’ via a b-bailout vector B. Our intention is to repeatedly

amend (G,D,A0) so that (G,D,A0) is ‘b-bailoutable’ iff the resulting IDM instance

is ‘b′-bailoutable’, for some amended b′; in such a case, we say that the two problem

instances are equivalent. We will then work with the (simplified) amended instance.

We proceed as follows. First, identify nodes v for which, at any time t, the sum

of all debts v must pay by time t minus the sum of all debts which could be paid

to v by time t exceeds v’s initial external assets c0
v. We call these nodes prefix-

insolvent. Note that if a node v is prefix-insolvent then under any perfect schedule σ,

we would have I [t]
v + c0

v < O
[t]
v , violating a validity constraint, and hence there is no

such perfect schedule. Also note that every insolvent node is prefix-insolvent (namely

by taking t = T). For any node that is prefix-insolvent, increase the initial external

assets by the minimal amount that causes the node to cease to be prefix-insolvent and

simultaneously decrease the bailout amount by this value. Our new instance is clearly

equivalent with our initial instance. If, in doing this, the bailout amount becomes less

than 0 then we answer ‘no’ and we are done. So, we may assume that none of our

nodes is prefix-insolvent.

Before we start, we make a simple amendment to the debts D: we replace any

debt from node u to node v of the form a@[t1, t2], where a > 1, with a distinct debts

1@[t1, t2]. Our resulting instance, with bailout b, is equivalent to our initial instance,

with bailout b, as we are working within the PP variant. This amendment simplifies

some of the reasoning coming up. Note that it may be necessary to simulate this

operation rather than actually performing it (since if a is exponential in the instance

size then the operation takes exponential time), but that the reasoning which follows

can easily be “scaled up” to deal with non-unit amounts.

Consider a leaf node v and its parent u in the out-tree G. Replace every debt of

the form 1@[t1, t2] from u to v by the debt 1@t2 and denote the revised instance by

(G,D′, A0). Let σ be a perfect valid schedule for (G,D,A0+B) (here, and throughout,

65

2.3.4. Polynomial-time algorithms

we write B to denote some b-bailout vector; that is, some assignment of resource to

the nodes of G so that the total bailout amount does not exceed the total available

b). Define the schedule σ′ for (G,D′, A0 + B) by amending any payment from u to

v of some debt 1@[t1, t2] so that the payment is made at time t2. The schedule σ′ is

clearly a perfect valid schedule for (G,D′, A0 + B). Furthermore, any perfect valid

schedule for (G,D′, A0 +B) is a perfect valid schedule for (G,D,A0 +B). Hence, we

can replace ((G,D,A0), b) by ((G,D′, A0), b), as these instances are equivalent. We

can proceed as above for every leaf node and its parent and so assume that all debts

from a parent to a leaf are due at some specific time only; that is, have a singular

time-stamp and are of the form 1@t. Note also that no node of G is insolvent.

Suppose that we have two leaf nodes v and w with the same parent u. We can

replace v and w with a ‘merged’ node vw so that all debts from u to v or from u to

w are now from u to vw. Our initial problem instance is clearly equivalent to our

amended problem instance (note that we never assign bailout resource to either v or

w as this is pointless). We can proceed likewise for all such triples (u, v, w). Hence,

we may assume that our digraph G is such that: no two leaves have a common parent;

all debts to a leaf node have monetary amount e1 and have a singular time-stamp;

and no node in G is prefix-insolvent.

Suppose that we have a leaf node w that is the only child of its parent node v

whose parent is u (such a node w exists unless our tree is a star – an easy case we deal

with at the end of the proof). We may assume that v has no initial external assets as

we would simply use these assets to pay as many debts to w as possible (in increasing

order of time-stamp); that is, we could remove all these debts from D along with the

corresponding amount from the initial external assets of v. If the result of doing this

is that there are no debts from v to w then we remove w from G and any remaining

initial external assets from v. We would then repeat all of the above amendments

until it is the case that our nodes u, v and w are such that v has no initial external

assets.

By the above, every debt from v to w is of the form 1@t. Let t′ be the minimum

time-stamp for all debts from v to w and let dv be a debt from v to w of the form

1@t′. Consider the debts from u to v: these have the form 1@[t1, t2]. There are

various cases:

(a) there is a debt du from u to v of the form 1@[t1, t2] where t2 ≤ t′

(b) there is no debt from u to v of the form 1@[t1, t2] where t2 ≤ t′ but there is a

debt from u to v of the form 1@[t1, t2] where t1 ≤ t′ ≤ t2

(c) there is no debt from u to v of the form 1@[t1, t2] where t1 ≤ t′.

The nodes u, v and w can be visualized as in Fig. 2.18(d) and the three cases above

in Fig. 2.18(a)–(c).

Case (a): We amend G by: introducing a new node v′ whose parent is u and a new

debt d′ from u to v′ of the form 1@[t1, t2]; removing the debt du from u to v; and

removing the debt dv from v to w. Denote this revised IDM instance by (G′, D′, A0).

66

2.3.4. Polynomial-time algorithms

t1[]t2
t3[]t4

t5[]t6

t7[]t8
t′

(a)

t1[]t2
t3[]t4

t5[]t6

t7[]t8
t′

(b)

t1[]t2
t3[]t4

t5[]t6

t7[]t8
t′

(c)

w

v

u

1@[t1, t2]
1@[t3, t4]

. . .

1@t′
1@t′′
. . .

(d)

w

v

u

v′

1@[t1, t2]
1@[t3, t4]

. . .

1@t′
1@t′′
. . .

1@t′

(e)

Figure 2.18: Cases when a leaf has a parent with one child in our algorithm for PP
Bailout Minimization on out-trees.

Suppose that there exists a perfect valid schedule σ for (G,D,A0 + B). Define the

schedule σ′ for (G′, D′, A0 + B) from σ by: changing the payment from u to v, at

time t where t1 ≤ t ≤ t2 ≤ t′ and covering the debt du, so that the payment is made

from u to v′ at time t (so as to cover the new debt d′); and dropping the payment, at

time t′, that covers the debt dv. The resulting schedule σ′ is clearly valid and perfect.

Conversely, suppose that we have a perfect valid schedule σ′ for (G′, D′, A0 + B).

Define the schedule σ for (G,D,A0 + B) from σ′ by: changing the payment from u

to v′ at time t where t1 ≤ t ≤ t2 ≤ t′ and covering the debt d′, so that the payment is

made from u to v at time t, so as to cover the debt du; and using the e1 received by

v so as to cover the debt dv from v to w. The resulting schedule σ is clearly a perfect

valid schedule for (G,D,A0 + B). Consequently, ((G,D,A0), b) and ((G′, D′, A0), b)

are equivalent and we can work with ((G′, D′, A0), b).

Case (b): Let Du be the set of debts from u to v and let Dv be the set of debts from v

to w. Order the k debts of Dv in increasing order of time-stamp as dv = d1, d2, . . . , dk

where the corresponding time-stamps are t′ = t̄1, t̄2, . . . , t̄k (there may be repetitions).

Suppose that for some 1 ≤ i ≤ k, the number of debts in Du of the form 1@[t1, t2]

with t1 ≤ t̄i is strictly less than i. Consequently, at time t̄i, the debt di cannot be

paid and we necessarily need to give v some bailout amount, ec ≥ 1 say, to cover

the c debts that cannot be paid by v at time t̄i. We do this and reduce the overall

bailout amount by ec. We then delete debts d1, d2, . . . , dc from G and remove the

bailout amount of ec from v. If doing this results in there being no remaining debts

from v to w then we delete w from G. Irrespective of this, the resulting instance

((G′, D′, A0), b′), where b′ = b − c, is equivalent to ((G,D,A0), b). We would then

repeat all of the amendments above and so w.l.o.g. we may assume that we are in

Case (b) and for every 1 ≤ i ≤ k, the number of debts in Du of the form 1@[t1, t2]

67

2.3.4. Polynomial-time algorithms

with t1 ≤ t̄i is at least i. In particular, there are at least k debts in Nu.

Suppose that σ is a valid perfect schedule for (G,D,A0 +B), for some B where v

receives a bailout amount of ec > 0. Suppose further that there is no B′ where there

is a valid perfect schedule for (G,D,A0 + B′) with v receiving a bailout of less than

ec. The reason that v receives the bailout amount of ec is that in the schedule σ, if

we ignore the payments by v that use the bailout amount at v then there are c debts

from d1, d2, . . . , dk that are not paid on time; let us call these debts the ‘bad’ debts.

Note that for each bad debt, there is a debt from u to v that might have been paid at

a time early enough to cover the debt but wasn’t. Let e1, e2, . . . , ec be distinct debts

from Du that might have been paid earlier so as to enable the payment of the bad

debts. Amend the bailout B so that the ec formerly given as bailout to v is now given

to u and denote this revised bailout by B′. Revise the schedule σ so that for each

1 ≤ i ≤ c, e1 of bailout at u is used to pay the debt ei at the earliest time possible.

Doing so results in us being able to pay all bad debts on time; hence, we have a perfect

schedule for (G,D,A0 +B′) where v receives no bailout. This yields a contradiction

and so if there is a bailout B and a valid perfect schedule for (G,D,A0 + B) then

there is a bailout B′ and a valid perfect schedule for (G,D,A0 +B′) where v receives

no bailout funds. We shall return to this comment in a moment.

From the debts of Du, we choose a debt du = 1@[t1, t2], where t1 ≤ t′ ≤ t2, so

that from amongst all of the debts of Du of the form 1@[t3, t4], where t3 ≤ t′ ≤ t4,

we have that t2 ≤ t4; that is, from all of the debts of Du that ‘straddle’ t′, du is a

debt whose right-most time-stamp is smallest. We amend G by: introducing a new

node v′ and a new debt d′ from u to v′ of the form 1@t′; removing the debt du from

u to v; and removing the debt dv from v to w. Denote this revised IDM instance by

(G′, D′, A0); it can be visualized as in Fig. 2.18(e).

Suppose that σ is a valid perfect schedule for (G,D,A0 + B), for some B. From

above, we may assume that there is no bailout to node v in B. Consider the payment

by v to w of the debt dv. If the actual e1 that pays this debt came from the payment

of a debt from Du \ {du} of the form 1@[t3, t4] (where t3 ≤ t′ ≤ t4), then we can

amend σ so that we use this e1 to pay the debt du at the time t′ and use the e1 that

paid the debt du to pay the debt 1@[t3, t4] (at whatever time du was paid – without

loss in the interval [t′ + 1, t2] ⊂ [t′ + 1, t4], since t′ is the earliest time any debt to v

is due); that is, we swap the times of the payment of the debts du and 1@[t3, t4] in σ

except that we now pay du at time t′. If the actual e1 that pays dv came from the

payment of du then we can amend the payment time of du to t′ (if necessary).

Build a schedule σ′ in (G′, D′, A0 +B) from σ by: instead of paying du (at time t′),

we pay the new debt d′ from u to v′; and we remove the payment of the debt dv. The

schedule σ′ is clearly a valid perfect schedule of (G′, D′, A0 +B). Conversely, if σ′ is a

valid perfect schedule of (G′, D′, A0 +B), we can build a schedule σ for (G,D,A0 +B)

from σ′ by: instead of paying the debt d′ (at time t′), we pay the debt du at time

t′; and we use this e1 to pay immediately the debt du. The schedule σ is clearly a

valid perfect schedule of (G,D,A0 + B). Hence, ((G,D,A0), b) and ((G′, D′, A0), b)

68

2.4. Conclusion and open problems

are equivalent and we can work with ((G′, D′, A0), b).

Case (c): Suppose that there is no debt from u to v of the form 1@[t1, t2] where

t1 ≤ t′. This case cannot happen as we have ensured that no node of G is insolvent.

By iteratively applying all of the amendments to the instance ((G,D,A0), b), as

laid out above, we reduce ((G,D,A0), b) to an equivalent instance ((G′, D′,

(A′)0), b′) where G consists of a solitary directed edge and all debts have a singu-

lar time-stamp. The process of reduction can clearly be undertaken in time poly-

nomial in the size of the initial instance ((G,D,A0), b) and the resulting instance

((G′, D′, (A′)0), b′) can clearly be solved in time polynomial in the size of the initial

instance ((G,D,A0), b). Hence, Bailout Minimization is solvable in polynomial-

time.

Our polynomial-time algorithm for Bailout Minimization, and so Perfect

Scheduling, in the PP variant in Theorem 2.17 when we restrict to out-trees con-

trasts with the NP-completeness of Perfect Scheduling when we restrict to di-

rected acyclic graphs or multiditrees, as proven in Theorem 2.9 and Theorem 2.10,

respectively.

2.4 Conclusion and open problems

This chapter introduces the Interval Debt Model (IDM), a new model seeking to

capture the temporal aspects of debts in financial networks. We investigate the com-

putational complexity of various problems involving debt scheduling, bankruptcy and

bailout with different payment options (All-or-nothing (AoN), Partial (PP), Frac-

tional (FP)) in this setting. We prove that many variants are hard even on very

restricted inputs but certain special cases are tractable. For example, we present a

polynomial time algorithm for PP Bailout Minimization where the IDM graph is

an out-tree. However, for a number of other classes (DAGs, multitrees, total assets

are e1), we show that the problem remains NP-hard. This leaves open the intriguing

question of the complexity status of problems which are combinations of two or more

of these constraints, most naturally on multitrees which are also DAGs, an immediate

superclass of our known tractable case.

An interesting result of ours is the (weak) NP-completeness of Bankruptcy

Minimization on a fixed, 32-node footprint graph (with edge multiplicity unbounded)

in Theorem 2.8. It is noteworthy that constantly many nodes suffice to express the

complexity of any problem in NP, and this leads to several open questions. Does the

same hold when integers must be encoded in unary? We know this is true for the

AoN case (as shown in Theorem 2.12). What is the smallest number n such that a

family of n-node (FP/PP) Bankruptcy Minimization instances is NP-complete?

From the other side, what is the largest number n such that any n-node (FP/PP)

Bankruptcy Minimization instance may be solved in polynomial time, and with

what techniques?

69

2.4. Conclusion and open problems

We prove that FP Bailout Minimization is polynomial-time solvable by ex-

pressing it as a Linear Program. Can a similar argument be applied to some re-

stricted version of FP Bankruptcy Minimization (which is NP-Complete, in general)?

A natural generalization is simultaneous Bailout and Bankruptcy minimization i.e.

can we allocate eb in bailouts such that a schedule with at most k bankruptcies

becomes possible. Variations of this would be of practical interest. For example, if

regulatory authorities can allocate bailouts as they see fit, but not impose specific

payment times, it would be useful to consider the problem of allocation of eb in

bailouts such that the maximum number of bankruptcies in any valid schedule is at

most k. Conversely, where financial authorities can impose specific payment times,

the combination of the problems Bankruptcy Minimization and Bailout Minimization

would be more applicable.

Finally, can we make our models more realistic and practical? How well do our

approaches perform on real-world financial networks? Can we identify topological and

other properties of financial networks that may be leveraged in designing improved

algorithms? What hardness or tractability results hold for variants in which the

objective is, instead of the number of bankruptcies, the total amount of unpaid debt

(or any other objective, for that matter)?

70

Chapter 3

Temporal Reachability Dominating

Sets: contagion in temporal graphs

This chapter is based on joint work with Laura Larios-Jones, a PhD student at the

University of Glasgow. Sections 3.2.2 and 3.3.2 are solely attributed to the author,

whereas Sections 3.2.4, 3.4.3 and 3.5.1 are solely attributed to Larios-Jones (these

are included here because of the results’ use in framing the other contributions in this

chapter). All other results in this chapter were written and researched collaboratively.

3.1 Introduction

A natural problem in the study of networks is that of finding a small set of individuals

which together can affect the entire network. This problem is practically relevant in

identifying influential entities in social networks, in gauging the risk of viral spread in

biological networks, or in choosing sources to broadcast from in wireless networks. We

study this problem through the lens of temporal graphs. That is, graphs which change

over time, capturing the dynamic nature intrinsic to many real-world networks.

We formalize the notion of a set of sources which together reach the whole tem-

poral graph as a Temporal Reachability Dominating Set, or TaRDiS. We study the

complexity of the problem of finding a TaRDiS of a given size in a given temporal

graph. Later, we ask: if we can choose when connections between individuals exist,

can we maximize the size of the minimum TaRDiS? That is, for viral spread, can we

guarantee that the entire population will not be contaminated by at most k initial

infections. We refer to this problem as MaxMinTaRDiS.

Our problems sit at the intersection of reachability and covering, which are two

rich classes of (temporal) graph problems. Reachability is a fundamental concept in

temporal graph theory. Temporal reachability and related problems have been the

subject of extensive study since the seminal work in the field by Kempe, Kleinberg and

Kumar [66]. Several works focus on the complexity of choosing or modifying times

to optimize reachability [66, 72, 23, 73, 74], while some consider as input temporal

graphs in which times are immutably fixed [18, 75, 76, 77, 78]. A substantial and

closely related stream of work to ours is the study of temporal connectivity – the

71

3.1.1. Problem Setting

property that any single vertex is, alone, a TaRDiS [74, 18, 17, 79, 80, 66, 26, 81].

In [18], pivotability is introduced to construct some extreme classes of connected

temporal graph. A pivot vertex p in a temporal graph is a vertex reachable from

every vertex in the graph by some time t and which reaches every vertex in the graph

by a temporal path departing after time t. Thus having a pivot is a strictly stronger

property than temporal connectivity. A comparison between our problems and some

others in the literature is shown in Table 3.1.

MaxMinTaRDiS is closely related to the MinMaxReach problem studied by

Enright, Meeks and Skerman [23], in which the objective is to minimize the maximum

number of individuals reached by any single vertex. TaRDiS, on the other hand,

vastly generalizes Casteigts’s [82] notion of J 1∀ connectivity, in which the question

is whether any single vertex reaches the entire network. This framing of reachability

asks what the worst-case spread is from a single source in the temporal graph. In

reality, studied populations are often infected by several individuals. For example,

SARS-CoV-2 had been independently introduced to the UK at least 1300 times by

June 2020 [83]. This, a dynamic population infected by many sources, is precisely the

setting motivating our TaRDiS problem.

Our work is focused on the computational (parameterized) complexity of TaRDiS

and MaxMinTaRDiS, which depends heavily on which formalisation of the problems

is considered. In particular, instantaneous spread through a large swath of the pop-

ulation, while realistic in some computer networks, is inconsistent with viral spread

in a biological system. Further, should multiple interactions between the same pair

of individuals be allowed? Lastly, should it be possible for a single individual to

simultaneously interact with several others?

We consider all combinations of answers to these questions, and in all cases for

both problems: show that the problem is computationally hard in general; identify the

maximum lifetime (number of discrete times which may appear in the input) such that

the problem remains tractable; and provide (parameterized) algorithms. Interestingly,

we also show through a nontrivial proof that MaxMinTaRDiS generalizes the well-

studied Distance-3 Independent Set problem.

3.1.1 Problem Setting

We begin with some standard definitions. We denote by [i, j] the set {i, i+ 1, . . . , j}

and [j] the set [1, j]. Let G = (V,E) be an undirected graph with (u, v) ∈ E. We

say that u and v are adjacent (also neighbours) and that the edge (u, v) is incident

to both u and v. If S ⊆ V is a set of vertices, we say an edge (u, v) is incident to S

if one of its endpoints u or v is in S. For any vertex v ∈ V , the closed neighbourhood

of v is denoted N [V] := {v} ∪ {u : u is adjacent to v}. We say G is planar if it can

be drawn in a plane without any edges intersecting.

A temporal graph G = (V,E, λ) consists of a set of vertices V , a set of edges E

and a function λ : E → 2[τ] \ {∅} which maps each edge to a discrete set of times

where the lifetime τ ∈ N of a temporal graph is the value of the latest timestep. We

72

3.1.1. Problem Setting

Problem Choose such that reach Aim/
motivation

MaxMinTaRDiS times for
edges

no coalition of
k nodes all nodes Minimize

connectivity

TaRDiS nothing a coalition of k
nodes all nodes Assess

connectivity

MinMaxReach [23] times for
edges no single node more than k

nodes
Minimize

connectivity

J 1∀ connectedness [82] nothing a single node all nodes Assess
connectivity

Reachability
Inference [66]

times for
edges

a designated
root node

all “good”
nodes and no
“bad” nodes

Network design

ReachFast [84] edges to
delay

each source in
the designated

set
all nodes Maximize

connectivity

MinReachDelete
[73, 22]

edges to
delete

the specified
coalition

at most r
nodes

Minimize
connectivity

MinReachDelay [73] edges to
delay

the specified
coalition

at most r
nodes

Minimize
connectivity

Minimum Labelling
[74]

times for
edges every node all nodes Maximise

connectivity

TRLP [85] time-edges
to perturb a single node at least k

nodes
Maximise

connectivity

Delay Better (Chap-
ter 5b)

edges to
delay

each specified
start node

its
designated

target
node(s) by

some
deadline

Maximise
connectivity

Table 3.1: Comparison of our problems TaRDiS and MaxMinTaRDiS to problems
in the literature.

refer to λ as the temporal assignment of G. If t ∈ λ(e) then we call the pair (e, t) a

time-edge, and say e is active at time t. The set of all time-edges is denoted E . We

abuse notation and write λ(u, v) to mean λ((u, v)).

For a static graph G = (V,E), we denote the temporal graph (V,E, λ) by G =

(G,λ). We also use V (G), E(G) to refer to the vertex and edge sets of G, respec-

tively, and use Et(G) to refer to the set of edges active at time t, and call Gt(G) =

(V (G), Et(G)) the snapshot at time t. When G is clear from the context we may omit

it. Also, we use the convention that no snapshot is empty, which guarantees τ ≤ |E|.

The static graph G↓ = (V,E) is referred to as the footprint of G.

A strict (respectively nonstrict) temporal path from a vertex u to a vertex v is a

sequence of time-edges (e1, t1), . . . , (el, tl) such that e1 . . . el is a static path from u to

v and ti < ti+1 (resp. ti ≤ ti+1) for i ∈ [1, l − 1]. A vertex u temporally reaches (or

just “reaches”) a vertex v if there is a temporal path from u to v. The reachability

set Ru(G) of a vertex u is the set of vertices reachable from u. When the graph is

clear from context, we may simply use Ru to refer to the reachability set of a vertex

73

3.1.1. Problem Setting

2

u

v

w

x

s

1

1 2

2

2

3

(a) G

v

w

x

s

v

ut = 1

(b) G1

u

v

w

x

s

u

v

w

x

t = 2

(c) G2

u

v

w

x

s

u

v

w

x

t = 3

(d) G3

Figure 3.1: Spread in a temporal graph from source s through snapshots. Vertices
are shaded (half-shaded) when reached from s by a strict (nonstrict) temporal path.

u. We say a vertex u is reachable from a set S if for some v ∈ S, u ∈ Rv(G). A set

of vertices T is temporal reachability dominated by another set of vertices S if every

vertex in T is reachable from S. Domination of and by single vertices is analogously

defined. Strict and nonstrict reachability are illustrated in Figure 3.1. We differentiate

between strict and nonstrict reachability by introducing a superscript < or ≤ to the

appropriate operators. For example, in Figure 3.1, u is in R≤
s , but is not in R<s . Note

that any strict temporal path is also a nonstrict temporal path, but the converse does

not necessarily hold.

Casteigts, Corsini, and Sarkar [78] define three useful properties a temporal graph

may exhibit. A temporal graph is called simple if each edge is active exactly once,

proper if each snapshot has maximum degree one, and happy if it is both simple and

proper. Figure 3.2 provides examples of the different types of temporal graph. For

simple graphs, we define the temporal assignment as λ : E → [τ] for convenience. We

also use these three terms to describe the temporal assignment of a graph with the

corresponding property. Happy temporal graphs have the property that any nonstrict

temporal path is also a strict temporal path. Part of the utility of happy temporal

graphs is that hardness results on them generalize to the strict and nonstrict settings.

We can now introduce our protagonist.

u v

w

xy

1

2

2

3, 5

(a) Not simple, not
proper

u v

w

xy

1

2

2

3

(b) Simple, not
proper

u v

w

xy

1

2

1

3, 5

(c) Not simple,
proper

u v

w

xy

1

2

1

3

(d) Happy (simple &
proper)

Figure 3.2: Four small examples of (non)simple and (non)proper temporal graphs.

Definition 3.1 (TaRDiS). In a temporal graph G, a (strict/nonstrict) Temporal

Reachability Dominating Set (TaRDiS) is a set of vertices S such that every vertex

v ∈ V (G) is temporally reachable from a vertex in S by a (strict/nonstrict) temporal

path.

A minimum TaRDiS is a TaRDiS of fewest vertices in G. We emphasize that, just

as every strict temporal path is a nonstrict temporal path, every strict TaRDiS is a

nonstrict TaRDiS. It is possible that the smallest nonstrict TaRDiS is strictly smaller

than the smallest strict TaRDiS; for example, in Figure 3.2b, there is a nonstrict

74

3.1.1. Problem Setting

TaRDiS of size 1 (namely {u}) but every strict TaRDiS has size at least 2. We now

formally define our problems.

(Strict/Nonstrict) TaRDiS

Input: A temporal graph G = (V,E, λ) and an integer k.

Question: Does G admit a (strict/nonstrict) TaRDiS of size at most k?

The restriction to happy inputs G is a subproblem of both Strict TaRDiS and

Nonstrict TaRDiS.

Happy TaRDiS

Input: A happy temporal graph G = (V,E, λ) and an integer k.

Question: Does G admit a TaRDiS of size at most k?

MaxMinTaRDiS is an extension of our problem in which we look to find a tem-

poral assignment such that no TaRDiS of cardinality less than k exists. As seen in

Figure 3.3, scheduling social events is a natural combinatorial problem. In a simi-

lar manner to how Edge Colouring corresponds straightforwardly to scheduling

meetings between one pair of people at a time to avoid a scheduling conflict, the

MaxMinTaRDiS problem can be thought of as scheduling interactions (potentially

simultaneously) so that the risk of widespread contagion is limited.

Figure 3.3: xkcd#2450 [86] depicts the scheduling of social events to minimize the
risk of contagion.

(Strict/Nonstrict) MaxMinTaRDiS

Input: A static graph H = (V,E) and integers k and τ .

Question: Does there exists a temporal assignment λ : E → 2[τ] \ {∅} such that

every strict/nonstrict TaRDiS admitted by (H,λ) is of size at least k?

Likewise, the variant of this problem in which the temporal assignment λ is re-

quired to be happy is referred to as Happy MaxMinTaRDiS. Note this is not a

subproblem of Strict MaxMinTaRDiS or Nonstrict MaxMinTaRDiS. We will

later show that Happy TaRDiS generalizes Edge Colouring (and hence conflict-

free scheduling in our earlier analogy).

75

3.1.2. Our Contribution

Happy MaxMinTaRDiS

Input: A static graph H = (V,E) and integers k and τ .

Question: Does there exists a happy temporal assignment λ : E → [τ] such that

every TaRDiS admitted by (H,λ) is of size at least k?

In this work, by “each variant” we refer to the Strict, Nonstrict and Happy variants

of the problems.

3.1.2 Our Contribution

Our work highlights the complexity intrinsic to the dynamic behavior of spreading

processes as soon as time-varying elements are incorporated into natural models. At

a high level, we identify the minimum lifetime τ for which each problem is computa-

tionally hard. The existence of hardness results even with bounded lifetime justifies

the need for parameters other than τ to obtain tractability results. We provide a

fixed-parameter tractable (fpt)1 algorithm for TaRDiS with parameters τ and the

treewidth2 of the footprint graph tw(G↓), and show existence of such an fpt algorithm

for MaxMinTaRDiS with parameters τ , tw(G↓), and k.

τ
TaRDiS MaxMinTaRDiS

Strict Nonstrict Happy Strict Nonstrict Happy

1

NP-c
(Cor. 3.7)

Linear
(Lem. 3.8) Linear

(Lem. 3.8)

coNP-c
(Cor. 3.31)

Linear
(Lem. 3.29) Linear

(Lem. 3.29)2

NP-c
(Thm. 3.15)

NP-c
(Cor. 3.50)

3

NP-c
(Thm. 3.12)

∈ ΣP
2

(Lem. 3.25)

ΣP
2 -c

(Thm. 3.42)

≥ 4 coNP-h ∩ ΣP
2

(Cor. 3.28,
Lem. 3.25)

Table 3.2: Computational complexity of our problems and its dependence on τ .

Our results relating lifetime and computational complexity are highlighted in Ta-

ble 3.2, and our parameterized complexity results are summarized in Table 3.3. For

the case of happy temporal graphs, we exactly characterize the complexity of both

TaRDiS and MaxMinTaRDiS with lifetime τ ≤ 3. Both problems are trivially

solvable in linear time for τ ≤ 2. We show NP-completeness of Happy TaRDiS and

ΣP2 -completeness of Happy MaxMinTaRDiS when τ = 3 - even when restricted to

planar inputs of bounded degree.

For MaxMinTaRDiS, membership of NP is nontrivial since the existence of a

polynomial-time verifiable certificate is uncertain. Indeed, the ΣP2 -completeness of

Happy MaxMinTaRDiS indicates no such certificate exists in general unless the

Polynomial Hierarchy collapses. Interestingly, we show equivalence3 of Nonstrict

MaxMinTaRDiS restricted to inputs where τ = 2 and Distance-3 Independent
1We use fpt (lowercase) as a descriptor for algorithms witnessing the inclusion of a problem in

the parameterized complexity class FPT. A full definition is given in Section 3.4.
2Informally, the treewidth of a graph is a measure of its likeness to a tree. A formal definition is

given in Section 3.4.
3Our definition of equivalence can be found in Section 3.3.

76

3.1.3. Related Work

TaRDiS MaxMinTaRDiS

Parameter Strict Nonstrict Happy Strict Nonstrict Happy

∆ + τ
para-NP-h
(Cor. 3.7)

para-NP-h
(Thm. 3.15)

para-NP-h
(Thm. 3.12)

para-NP-h
(Cor. 3.31)

para-NP-h
(Cor. 3.50)

para-NP-h
(Thm. 3.42)

#LEE n/a FPT (Lem. 3.52) n/a

k
W[2]-h

(Cor. 3.7)
W[2]-h

(Thm. 3.15)
W[2]-h

(Cor. 3.17)
co-W[2]-c
(Cor. 3.31)

W[1]-h
(Cor. 3.50)

para-NP-h
(Cor. 3.28)

k + τ
W[2]-h

(Cor. 3.7)
W[2]-h

(Thm. 3.15)
FPT

(Lem. 3.53)
co-W[2]-c
(Cor. 3.31)

W[1]-h
(Cor. 3.50)

para-NP-h
(Cor. 3.28)

k + τ + ∆ FPT
(Lem. 3.53)

W[2]-h
(Thm. 3.15)

FPT
(Lem. 3.53)

FPT
(Lem. 3.62) ??? para-NP-h

(Cor. 3.28)

tw(G↓) + τ FPT (Thm. 3.61) ???

tw(G↓)+τ +
k

FPT (Thm. 3.61) FPT (Thm. 3.64)

Table 3.3: Summary of our parameterized complexity results. Parameters are: max-
imum degree of the footprint graph ∆, lifetime τ , number of (weakly) locally earliest
edges #LEE, input k, and treewidth of the footprint graph tw(G↓). Problems which
are W[1]-, (co-)W[2]-, or para-NP-hard are ones for which there presumably exists no
fpt algorithm.

Set, which is NP-complete [87], in Section 3.3.3. Given the uncertain membership

of NP for the general problem, NP-completeness of this restriction of Nonstrict

MaxMinTaRDiS indicates it is possibly easier than the unrestricted problem.

Having shown τ and planarity of the footprint graph alone are insufficient for

tractability, we give an algorithm which solves TaRDiS on temporal graphs where

the footprint is a tree in time polynomial in the number of time-edges |E| in the

input graph. In addition, we give an fpt-algorithm for TaRDiS on nice tree decom-

positions [88]. This gives us tractability with respect to lifetime and treewidth of

the footprint of the input graph combined. We also show existence of an algorithm

for MaxMinTaRDiS which is fixed-parameter tractable with respect to τ , k, and

treewidth. This is achieved by applying Courcelle’s theorem [89].

3.1.3 Related Work

Reachability and connectivity problems on temporal graphs have drawn significant

interest in recent years. These have been studied in the context of network design [68,

17, 18] and transport logistics [19] (where maximizing connectivity and reachability

at minimum cost is desired), and the study of epidemics [21, 22, 23, 24] and malware

spread [25] (where it is not).

In research on networks, broadcasting refers to transmission to every device. In a

typical model, communication rather than computation is at a premium, and there

is a single source in a graph which does not vary with time [90]. Broadcasting-based

questions deviating from this standard have been studied as well. Namely, there is

extensive study of the complexity of computing optimal broadcasting schedules for one

or several sources [91, 92], broadcasting in ad-hoc networks or time-varying graphs

[93], and the choice of multiple sources (originators) for broadcasting in minimum

77

3.1.3. Related Work

time in a static graph [94, 95]. Ours is the first work to focus on the hardness of

choosing multiple sources in a temporal graph to minimize the number of sources, in

an offline setting.

One metric closely related to a temporal graph’s vulnerability to contagion is its

maximum reachability; that is, the largest number k such that some vertex reaches

k vertices in the graph. In Enright, Meeks and Skerman [23] and Enright, Meeks,

Mertzios and Zamaraev’s [22] works, the problems of deleting and reordering edges in

order to minimize k are shown to be NP-complete. Problems on temporal graphs are

often more computationally complex than their static counterparts [16, 96, 97, 98].

In such cases, efficient algorithms may still be obtained on restricted inputs. In

work exploring disease spread through cattle, Enright and Meeks find that these real-

world networks naturally have low treewidth [99]. Treewidth and other structural

parameters have been used with varying degrees of success to give tractability on

some of these temporal problems [16, 100, 101, 97].

A powerful tool in parameterized complexity is Courcelle’s theorem, which gives

tractability on graphs of bounded treewidth for problems that can be represented in

monadic second order logic [102]. Unfortunately, there are many temporal problems

which remain intractable even when the underlying graph is very strongly restricted,

for example when it is a path, a star, or a tree [16, 96, 97, 98], all of which have

treewidth 1. When this is the case, it is sometimes sufficient to additionally bound the

lifetime of the temporal graph in addition to its underlying structure. This motivates

our use of treewidth in combination with lifetime as parameters for the study of our

problems.

The problems we study generalize two classical combinatorial graph problems,

namely Dominating Set and Distance-3 Independent Set (D3IS). For a static

graph G = (V,E), a dominating set is a set of vertices S such that every vertex is

either adjacent to a vertex in S or is in S itself, and a D3IS is a set of vertices S such

that no pair of vertices u, v ∈ S has a common neighbour w (so all pairs are at distance

at least three). The corresponding decision problems ask, for an integer k, if there

exists a dominating set (respectively D3IS) of size at most (resp. at least) k, and are

W[2]- (resp. W[1]-) complete [103, 87]; that is, even if k is fixed it is unlikely there

exists an algorithm solving the problem with running time f(k) · nO(1). However,

both Dominating Set and D3IS are fixed-parameter tractable parameterized by

treewidth [104, 88]4. Eto, Guo and Miyano [87] show that D3IS is NP-complete even

on planar, bipartite graphs with maximum degree 3. They also show D3IS to be

W [1]-hard on chordal graphs with respect to the size of the distance-3 independent

set. D3IS is also shown to be APX-hard on r-regular graphs for all integers r ≥ 3

and admit a PTAS on planar graphs by Eto, Ito, Liu, and Miyano [105]. Agnarsson,

Damaschke and Halldórsson [106] show that D3IS is tractable on interval graphs,

trapezoid graphs and circular arc graphs.

TaRDiS is exactly the problem of solving the directed variant of Dominating

4In [88], the more general Distance-d Independent Set is called Scattered Set.

78

3.1.4. Organization

Set on a reachability graph [80]. The reachability graph of a temporal graph G is

the static directed graph on the same vertex set as G with as edges those ordered

pairs (u, v) such that u reaches v in G, and is shown to be efficiently computable by

Whitbeck, Amorim, Conan, and Guillaume [77]. Temporal versions of dominating set

and other classical covering problems have been well studied [68, 82, 107, 108], however

these interpretations do not allow a chosen vertex to dominate beyond its neighbours.

Furthermore, many other problems looking to optimally assign times to the edges of

a static graph have been studied [66, 23, 74]. TaRDiS also generalises Temporal

Source, which asks whether a single vertex can infect every other vertex in the graph,

which is equivalent to the graph being a member of the class J 1∀ [82] mentioned

earlier. There has also been extensive research into modifying an input temporal

graph (subject to some constraints) to achieve some desired reachability objective

[82, 84, 73, 85]. Deligkas, Eiben, and Skretas [84] have the objective of modifying λ

through a delaying operation so that each vertex in a designated set reaches all vertices

in the graph; that is
⋂
u∈S Ru = V (G). Molter, Renken and Zschoche [73] consider

both delay and deletion operations to modify λ with the objective of minimizing the

cardinality of the set
⋃
u∈S Ru. Contrast these with our problem MaxMinTaRDiS,

which has the objective of maximizing the minimum cardinality of any set S satisfying⋃
u∈S Ru = V (G).

3.1.4 Organization

This paper is organised as follows. We begin with classical complexity results for

TaRDiS in Section 3.2. This consists of some preliminary observations pertaining to

our problems in Section 3.2.1, which also convey some of the intuition for TaRDiS

and provide tools for later technical results. Here we also consider temporal graphs

with very small lifetime, showing that Nonstrict TaRDiS and Happy TaRDiS

are efficiently solvable in temporal graphs with lifetime τ = 1 and τ = 2 respectively.

In Sections 3.2.2 and 3.2.3 we show that these are the largest lifetime for which the

problem is efficiently solvable in general. Finally, in Section 3.2.4, we show that

TaRDiS is efficiently solvable when the footprint of the temporal graph is a tree.

Section 3.3 presents classical complexity results for our MaxMinTaRDiS prob-

lems. We again begin with some preliminary results in Section 3.3.1 which provide

the scaffolding for our later proofs as well as some easy bounds against which we

compare our more technical results. This section allows us to draw the comparison

between our problems and the classical problems Edge Colouring and Dominat-

ing Set. The remainder of this section includes our proofs of the contrasting results

that Nonstrict MaxMinTaRDiS generalizes D3IS (and is in NP when restricted

to τ = 2), and of the ΣP2 -completeness of Happy MaxMinTaRDiS.

Having established the hardness of both problems in the general case, and provided

an algorithm for TaRDiS when the footprint graph is a tree, we turn to parameter-

ized complexity in Sections 3.4 and 3.5. The majority of these sections focus on the

structural parameter of treewidth of the footprint graph. We give an algorithm that

79

3.2.1. Containment in NP, useful tools, and small lifetime

solves TaRDiS on a nice tree decomposition of a graph in Section 3.4.3. In Sec-

tion 3.5.1 we show existence of such an algorithm for MaxMinTaRDiS by leveraging

Courcelle’s theorem. Finally, we give some concluding remarks and future research

directions in Section 3.6.

3.2 Classical complexity results for TaRDiS

In this section, we establish NP-completeness of each variant of TaRDiS, and char-

acterize the maximum lifetime τ for which the problem is tractable. We also give

an algorithm solving the problem in polynomial time when the footprint graph G↓ is

a tree. A more general algorithm for footprint graphs of bounded treewidth is later

given in Section 3.4.

3.2.1 Containment in NP, useful tools, and small lifetime

We begin this section by showing containment of Strict, Nonstrict and Happy

TaRDiS in NP and introducing the notions of a (weakly) locally earliest edge and

(weakly) canonical TaRDiS. We then show that there always exists a canonical mini-

mum TaRDiS in happy temporal graphs. This allows us to reduce the number of cases

we must consider when solving Happy MaxMinTaRDiS in Section 3.3.2. Finally,

we consider the restrictions of the lifetime to τ = 1 and τ ≤ 2, where Nonstrict

TaRDiS and Happy TaRDiS respectively are easily shown to be efficiently solvable.

We later show that these are the largest values of τ for which these problems are

tractable.

Lemma 3.2. Each variant of TaRDiS is in NP.

Proof. The reachability set of a vertex can be computed in polynomial time (e.g. by

a modification of breadth-first search – see [109, 66, 110]). Therefore, we can verify

whether a set temporal reachability dominates a temporal graph in polynomial time.

We now introduce the notion of a canonical TaRDiS. The following results will

then allow us to make assumptions about the composition of a minimum TaRDiS

when working with proper or happy temporal graphs, or on Nonstrict TaRDiS.

Definition 3.3 ((Weakly) locally earliest, (weakly) canonical TaRDiS). In a temporal

graph G, a time-edge ((u, v), t) is locally earliest if every other time-edge incident to

either u or v is at a time t′ > t. If the weaker constraint t′ ≥ t holds, then we

call the time-edge weakly locally earliest. We say an edge (u, v) is (weakly) locally

earliest if, for some t, the time-edge ((u, v), t) is (weakly) locally earliest. A (weakly)

canonical TaRDiS consists exclusively of vertices which are incident to a (weakly)

locally earliest edge.

In Figure 3.4b, each of {b, d}, {b, c, d} and {a, c, e} is a TaRDiS, but only the

former two are canonical.

80

3.2.1. Containment in NP, useful tools, and small lifetime

Intro to strict/nonstrict/happy

a b

c

3

2

de
1

3

(a) R≤
a ̸= R<

a and
R≤

e ̸= R<
e .

Canonical Happy Eg

a b

c

1

2

de
1

2

(b) {a, e} is not canon-
ical.

Planar D3IS counterexample

a b c

fed

12 3 3

21

1 2

(c) Every TaRDiS is canonical.

Figure 3.4: Three temporal graphs, all admitting {a, e} as a minimum TaRDiS.

Lemma 3.4. In a temporal graph, there always exists a minimum weakly canoni-

cal nonstrict TaRDiS. In a proper temporal graph, there always exists a minimum

canonical TaRDiS.

Proof. We may assume without loss of generality that G↓ is a connected graph. Note

that a weakly locally earliest edge in a proper temporal graph is necessarily a locally

earliest edge. Consequently, for the remainder of the proof, we focus on weakly locally

earliest edges.

Given a TaRDiS S, we can find a weakly canonical TaRDiS S′ by replacing vertices

not incident to weakly locally earliest edges by vertices that are. To see this, suppose

x ∈ S is not incident to a weakly locally earliest edge. Then there exist vertices

u, v ∈ V (G) and time-edges ((x, u), t), ((u, v), t′) such that t > t′. Suppose that t is

the earliest time that this is true for. Then, since all vertices reachable from x must be

temporally reachable from v by a path appending the time-edges ((v, u), t′), ((u, x), t),

Rx ⊆ Rv. Therefore, we can swap x for v without losing domination of the whole

graph. We perform this replacement repeatedly for every such x until we obtain a set

of vertices each incident to at least one weakly locally earliest edge. This is precisely

a weakly canonical TaRDiS.

This gives us a result adjacent to a known result in temporal graph theory: define

a set C to be an S-component if C = Ru for some u and there is no v such that

C ⊊ Rv. Then Lemma 4 from [79] states that, in a temporal graph without isolated

vertices, the number of S-components is at most the number of locally earliest edges.

Corollary 3.5. The number of weakly locally earliest edges upper-bounds the size

of a minimum nonstrict TaRDiS.

We now show that the classical problem Dominating Set is a special case of

Strict TaRDiS. Dominating Set is known to be NP-complete, even on planar

graphs with maximum degree ∆ = 3 (hence para-NP-hard with respect to ∆) [111],

and W[2]-hard with respect to the size of the dominating set [103].

Lemma 3.6. For all positive integers τ and instances (G, k) of Dominating Set,

a temporal graph G of lifetime τ can be found in linear time, where (G, k) is a yes-

instance of Strict TaRDiS if and only if (G, k) is a yes-instance of Dominating

Set.

81

3.2.1. Containment in NP, useful tools, and small lifetime

Proof. The construction of G can be seen in Figure 3.5. We append a path P of

length τ−1 to an arbitrary vertex v in G. The temporal assignment of G is defined as

follows: all edges in E(G) are assigned time 1, and the edges in P are assigned times

in ascending order from v. It is clear that there exists a dominating set of cardinality

k in G if and only if there exists a strict TaRDiS of cardinality k in G.

We note that, in our construction, k is unchanged and the maximum degree of G↓

is bounded by ∆(G) + 1; giving us the following corollary.

Corollary 3.7. Strict TaRDiS is NP-complete, W[2]-hard with respect to k, and

para-NP-hard with respect to ∆+τ , where ∆ is the maximum degree of the footprint

graph and τ is the lifetime of the temporal graph.
Dominating set of larger lifetime.

a

b

c

u

v

w

1

1

1

1

1

1

1

1

a

b

c

u

v

w

v2 v3 vτ· · ·
2 3

(G, k) ∈ Dominating Set (Gτ , k) ∈ Strict TaRDiS⇐⇒

Figure 3.5: Illustration of the construction used to reduce from Dominating Set to
Strict TaRDiS with arbitrary lifetime τ .

We now consider the problems Nonstrict TaRDiS and Happy TaRDiS with

very restricted lifetimes.

Lemma 3.8. Nonstrict TaRDiS can be computed in linear time when τ = 1.

When τ ≤ 2, Happy TaRDiS is solvable in linear time.

Proof. If every edge is active at the same time, every vertex can be temporally reached

by a nonstrict path from any vertex in the same connected component. Therefore, if

τ = 1, we find a minimum TaRDiS by choosing exactly one vertex in every connected

component of the graph.

If a temporal graph is happy and the lifetime of the graph is at most 2, the

footprint of the graph must be 2-edge colourable, and so consist of only paths or

even cycles. Any TaRDiS must include every vertex which has no neighbours. Then,

for any path, we iteratively we choose a leaf, add its neighbour to the TaRDiS, and

delete all vertices reachable from the TaRDiS – until the entire path has been deleted.

We use a similar method on even cycles by simply picking an arbitrary vertex v (by

symmetry equivalent to any other on the same cycle) to be in the TaRDiS. From here,

we find the subgraph induced by removing the vertices reachable from v, giving us a

path to which we can apply the previous procedure.

82

3.2.2. NP-completeness of Happy TaRDiS with lifetime 3

3.2.2 NP-completeness of Happy TaRDiS with lifetime 3

Above, we establish that Happy TaRDiS can trivially be solved in linear time when

the input has lifetime τ ≤ 2 by Lemma 3.8. Here we show that the problem immedi-

ately becomes NP-complete for inputs where τ = 3, even when G↓ is planar.

We give a reduction from the problem Planar exactly 3–bounded 3–SAT,

which asks whether the input Boolean formula ϕ admits a satisfying assignment. We

are guaranteed that ϕ is a planar formula in 3-CNF (a disjunction of clauses each

containing at most 3 literals) with each variable appearing exactly thrice and each

literal at most twice. This problem is shown to be NP-hard by Tippenhauer and

Muzler [112].

Construction

Let ϕ be an instance Planar exactly 3–bounded 3–SAT consisting of clauses

{c1, . . . , cm} over variables X = {x1, . . . , xn}. Let l2i (resp. l2i−1) denote the positive

(resp. negative) literal for variable xi. We also introduce a special literal ⊥ which is

always False. We rewrite every 2-clause of ϕ to include the special literal ⊥ (e.g. the

clause (xi ∨ ¬xj) becomes (xi ∨ ¬xj ∨ ⊥) then (l2i ∨ l2j−1 ∨ ⊥)). Let ϕ′ denote the

new formula obtained by doing this. Note that ϕ′ admits a satisfying assignment (in

which ⊥ evaluates to False) if and only if ϕ admits a satisfying assignment.

Happy TaRDiS Figs

u

w

q1j q2j

q3j

q4jq5j

q6j

3

1
v

1

3 3

1

2

2

w

u

v

32

3

3

ai

p1i

v1i v2i bi

F 1
iF 2

iT 2
iT 1

i

2 1 2

131
3

2 2

3

333

p1i

n2
i n1

i

n1
in2

i

2

l12i

l12i

l22i−1 l12i−1

l22i−1 l12i−1

l22i−1 l12i−1

l22i−1 l12i−1

Figure 3.6: Gadgets and adjacent literal vertices in the reduction from Planar ex-
actly 3–bounded 3–SAT to Happy TaRDiS. Left: the variable gadget for xi,
which appears twice negatively. Right: the clause gadget for the clause cj .

In this construction E(G) = E1 ∪E2 ∪E3; λ is implicitly defined on this basis. We

introduce literal vertices as follows. Iterate over ϕ′: at the ath appearance of each

literal li, create two new vertices lai and lai , and let (lai , lai) ∈ E3. We refer to the set

of all literal vertices as L. We say the vertex lai belongs to the clause cj in which li

appears for the ath time.

For each variable xi, we introduce vertices Vi = {T 1
i , T

2
i , F

1
i , F

2
i , v

1
i , v

2
i , ai, bi}, con-

nected in a cycle labeled as shown in Figure 3.6. Specifically, we have (T 1
i , T

2
i), (F 1

i , F
2
i),

(v1
i , v

2
i) ∈ E1, (ai, v1

i), (bi, v2
i) ∈ E2, and (ai, T 1

i), (bi, F 1
i), (T 2

i , F
2
i) ∈ E3. Then, for

each positive (resp. negative) literal vertex la2i (resp. la2i−1), we add (la2i, T ai) to E2.

Every three literals vertices u, v, w belonging to the same clause cj are connected

with the clause gadget as shown in Figure 3.6. Namely, we introduce the vertices

Qj = {q1
j , . . . , q

6
j }, with (q1

j , q
2
j), (q3

j , q
4
j), (q5

j , q
6
j) ∈ E3, (q2

j , q
3
j), (q4

j , q
5
j), (q6

j , q
1
j) ∈ E1,

and (q1
j , u), (q3

j , v), (q5
j , w) ∈ E2. If, for example, clause cj = (l5 ∨ l17 ∨ l20) is the first

83

Properties of the construction

appearance of l5 and l20 and the second appearance of l17 in Φ, then u = l15, v = l217

and w = l120. If ⊥ ∈ {u, v, w} then we create a special dummy vertex for this clause

and attach it as normal (a new dummy is created for each clause originally on two

literals).

Lastly, we let k = 2m + 2n. This concludes our construction of the Happy

TaRDiS instance (G, k).

Properties of the construction

We will show that G admits a TaRDiS S of size k if ϕ is satisfiable, and that any

TaRDiS is of size at least k + 1 otherwise. It is worth noting that our construction

preserves planarity of ϕ. That is, G↓ is a planar graph.

We now show that the existence of a TaRDiS of size at most k implies that of a

satisfying assignment.

Lemma 3.9. Any canonical TaRDiS of G includes at least 2 vertices from each

variable gadget and at least 2 vertices from each clause gadget, and so has size at

least k.

Proof. Recall that a canonical TaRDiS S by definition is incident only to locally

earliest edges. In the case of G, none of the literal vertices can belong to S, i.e.

S ⊆ V \L where L is the set of literal vertices. For each variable xi and clause cj , no

vertex from Vi reaches any vertex from Qj , and vice versa. Note that, for all j ∈ [m],

every vertex in Qj reaches exactly 4 vertices in Qj , for example Rq3
j

= {q1
j , q

2
j , q

3
j , q

4
j }.

Thus, |S ∩ Qj | ≥ 2, else S would not reach every vertex in Qj . Similarly, for all

i ∈ [n], every vertex in Vi reaches at most 6 variable gadget vertices, so |S ∩ Vi| ≥ 2.

Lemma 3.10. If G admits a TaRDiS S of size k then ϕ is satisfiable.

Proof. Suppose G admits a TaRDiS S of size at most k. We first apply Lemma 3.4,

which allows us to assume that S is canonical. Then, by Lemma 3.9, we have that S

is of size exactly k, and that for all i and j, |S ∩ Vi| = 2 and |S ∩Qj | = 2.

We show that a satisfying assignment X to the variables of ϕ can be obtained from

S. For each variable xi, assign xi = True if T 1
i or T 2

i ∈ S, and xi = False otherwise.

Note that, since S is a canonical TaRDiS, ai and bi are not in S. Hence F 1
i ∈ S or

F 2
i ∈ S if and only if xi = False in our assignment. Suppose for contradiction there

is some clause cj which is not satisfied. Then, under this assumption, the gadget

cj is incident to three literal vertices {u, v, w}, none of which are reached from their

respective variable gadgets. Since S is a TaRDiS, q1
j or q6

j is in S (as u must be

reached from within Qj = {q1
j , . . . , q

6
j }), and likewise q2

j or q3
j and q4

j or q5
j are in S

(as v and w respectively must be reached from within Qj). Hence |Qj ∩ S| ≥ 3. By

applying Lemma 3.9 we get that |S| ≥ 2m+ 2n+ 1 = k + 1, a contradiction. Hence

X must satisfy ϕ.

84

3.2.3. NP-completeness of Nonstrict TaRDiS with lifetime 2

Lemma 3.11. If ϕ is satisfiable then G admits a TaRDiS S of size k.

Proof. Given a satisfying assignment to ϕ, we construct S as follows. We start with

S = ∪i{v2
i }. Then if xi = True (respectively xi = False) under the assignment, add

T 1
i to S (resp. F 1

i ∈ S). Now S has size 2n and a vertex in S reaches the literal

vertices for every literal set to True in the assignment, but none of the clause gadget

vertices.

For each clause cj , there is some literal in cj which is assigned True, and hence

at least one literal vertex incident to Qj is reached from the corresponding variable

gadget. Denote this literal vertex u, and the other literal vertices incident to Qj

(which may or may not be reached from their respective variable gadgets) v and w,

respectively. We add the neighbours of v, w in Qj to S. That is, S = S ∪ ((N [v] ∪

N [w]) ∩ Qj). Now S has size 2n + 2m and reaches: all variable gadget vertices; all

clause gadget vertices; and all literal vertices (since every literal vertex is incident to

a clause gadget). Hence S is a TaRDiS of size exactly k.

Theorem 3.12. Happy TaRDiS is NP-complete, even restricted to instances where

the footprint of the temporal graph is planar and its lifetime is 3.

Proof. We have membership of NP from Lemma 3.2. The construction above produces

an instance (G, k) of Happy TaRDiS from an instance ϕ of Planar Exactly

3–Bounded 3–SAT in polynomial time. Combining Lemmas 3.10 and 3.11 shows

that G admits a TaRDiS of size at most k if and only if ϕ is satisfiable.

This result generalises to both Strict and Nonstrict TaRDiS, giving us NP-

completeness of all variants with bounded lifetime and a planar footprint.

3.2.3 NP-completeness of Nonstrict TaRDiS with lifetime 2

We show hardness of Nonstrict TaRDiS by reducing from Set Cover, which is

known to be NP-complete [10] and W[2]-hard with respect to the parameter k [88].

The Set Cover problem is defined as follows.

Set Cover

Input: Universe U = {x1, . . . xn}, a family S = {si|si ⊆ U} of subsets in U and

an integer k.

Question: Is there a set {si∈I} with at most k elements such that ∪i∈Isi = U?

Given an instance of Set Cover, we build a temporal graph G with vertex set

V (G) = U ∪ S ∪ {aji | ∃xi ∈ U , sj ∈ S : xi ∈ sj}. To this vertex set we add the edges:

• connecting sj in a path at time 1 to all aji for all i such that aji exists;

• connecting xi in a path at time 2 to all aji for all j such that aji exists;

• (sj , sj+1) at time 2 for all j ∈ [1,m− 1].

85

3.2.3. NP-completeness of Nonstrict TaRDiS with lifetime 2

A sketch of G can be found in Figure 3.7. Note that the maximum degree of G is 4.

We keep the same value of k in our construction; that is, we construct an instance

(G, k) of Nonstrict TaRDiS from the instance (U ,S, k) of Set Cover.

Lemma 3.13. Any TaRDiS in G can be reduced to a TaRDiS of the same or smaller

size in V (G) ∩ S.

Proof. Suppose there is a TaRDiS S in G containing a vertex v ∈ V (G) \ S. We have

two cases:

1. v = xi for some 1 ≤ i ≤ n, or

2. v = aji for some 1 ≤ i ≤ n and 1 ≤ j ≤ m.

In the first case, we can swap xi for any neighbour (or delete xi if N [xi] ⊂ S). This

must be a vertex aji for some 1 ≤ j ≤ m. Since the reachability set of aji is a strict

superset of that of xi, S remains a TaRDiS when xi is replaced by its neighbour. This

leaves us with case 2. The reachability sets of aji are equal to the reachability set of

sj for all aji ∈ V (G) \ (U ∪ S). Therefore, we can replace vertices in S with those

corresponding to sets in S without changing the reachability set of the TaRDiS.

Lemma 3.14. The temporal graph G admits a TaRDiS of cardinality k if and only

if (U ,S, k) is a yes-instance of Set Cover.

Proof. Suppose there is a set {sj∈I} of cardinality k which is a set cover of U . Then

we claim the same set S is a TaRDiS in G. If an element xi is in the set sj , then by

construction of G, there is a path from sj to xi via aji . Furthermore, all vertices sj′

for 1 ≤ j′ ≤ m are temporally reachable from any sj . Since all xi appear in at least

one of {sj∈I}, we know that all xi and all sj are temporal reachability dominated by

S = {sj∈I}. What remains to check is that all aji are also reached by a vertex in S.

Each aji is connected to xi at time 2. Therefore, since all xi are reached at time 2

from S, each aji must also be temporally reachable from S.

Now suppose that there is a TaRDiS S of cardinality k of G. By Lemma 3.13, we

can assume that S ⊆ S. Observe that there is a nonstrict temporal path from a vertex

sj that reaches a vertex xi if and only if xi ∈ sj . Hence, a vertex xi is temporally

reachable from some vertex in S if and only if a set sj containing xi is in S. Since

every xi is reachable from some vertex in S, then, S is a set cover.

We note that since we use the same input k for both problems, Nonstrict

TaRDiS is W [2]-hard with respect to k. This proves the following theorem.

Theorem 3.15. For every lifetime τ ≥ 2 Nonstrict TaRDiS is NP-complete and

W[2]-hard with respect to k. This holds even on graphs with maximum degree 4.

We now extend our construction to obtain W[2]-hardness of Happy TaRDiS.

Consider the following construction for a happy temporal graph G′. Begin with the

86

3.2.3. NP-completeness of Nonstrict TaRDiS with lifetime 2

Set Cover Reduction

a21

s2s1 s3 sm

x1

x2

x3

xn

a31

a12

a23

a1n

sj

xiaji

. . .

...
...

. . .

am2

amn

22

2 2

2

2

22

11 1 1 1

1

1 1

2 2

Figure 3.7: Sketch for the reduction from Set Cover to Nonstrict TaRDiS

temporal graph G as constructed earlier in Figure 3.7. Then, for each i, add edges

such that the set {si} ∪
⋃
j a

i
j forms a clique. For each j, we also add edges such

that the set {xj} ∪
⋃
i a
i
j forms a clique. Likewise, add edges so that ∪jsj forms a

clique. Then we order all time-edges arbitrarily such that all edges in each clique

containing edges formerly in E1 are active before the edges in each clique containing

all time-edges formerly in E2. This concludes the description of G′. Observe that G′

is a happy temporal graph, since each snapshot contains just one edge.

Lemma 3.16. The temporal graph G′ admits a TaRDiS of cardinality k if and only

if (G, k) is a yes-instance of Nonstrict TaRDiS.

Proof. We show that a vertex u temporally reaches a vertex v in G if and only if u

also reaches v in G′. Thus, proving that G′ admits a TaRDiS of cardinality k if and

only if G admits a TaRDiS of cardinality k.

Suppose we have a path p from a vertex u to a vertex v in G. We have two cases;

namely, the edges in the path are assigned the same time in G or they are not. In the

former, there must still be a (one-edge) path from u to v in G′ since we have added

edges such that all connected components in either snapshot of G form a clique. In

the latter, we can break p into a path at time one p1 and a path p2 at time two. These

paths can each be replaced by an edge as in the case where p consists of edges which

occur at the same time. Therefore, for every path in G, there exists a path with the

same starting and terminal vertex in G′.

Now suppose we have a path p′ in G′ from u′ to v′. Since we have cliques for each

connected component in the snapshots of G, the path consisting of fewest edges in

G′ from u′ to v′ must consist of at most 2 edges. Suppose without loss of generality

that p′ is the shortest path from u′ to v′. If p′ consists of a single edge, then u′ and

v′ must be in the same connected component of a snapshot of G, thus there exists a

path from u′ to v′ in G. Now suppose that p′ consists of two edges. We know that

v′ and u′ are not adjacent in G′, else p′ would not be the shortest path from u′ to

87

Intuition

v′. Therefore, u′ and v′ must be members of two different cliques in G′. Let w′ be

the vertex adjacent to both u′ and v′ which p′ traverses. Then, since u′ and w′ share

an edge which is earlier than the edge (w′, v′), they must be in the same connected

component of G1. Similarly, w′ and v′ must be in the same connected component

of G2. Therefore, there is a path from u′ to v′ in G. Hence, a vertex u temporally

reaches a vertex v in G if and only if u also reaches v in G′.

Corollary 3.17. Happy TaRDiS is NP-complete and W[2]-hard with respect to k.

3.2.4 Algorithm for TaRDiS on Trees

In this section, we show that each variant of TaRDiS can be solved in polynomial time

on inputs which are trees, even when k and lifetime are unbounded. We introduce

some preliminary notions needed for the algorithm.

In this section, we deal with non-simple temporal graphs; each edge e ∈ E(G) may

appear several times. We define the functions λmin : E → [τ] and λmax : E → [τ]

which return the earliest and latest appearance of an edge, respectively.

In the following we refer to rooted trees. A rooted tree is a tree T = (V,E) with

a special vertex r; the root. A vertex w is a descendant of a vertex v if v lies on

the unique path from w to r. We refer to the vertices neighbouring v which are

descendants of v as its children. If a vertex w is a child of v, then v is its parent.

Similarly, the parent of a parent vertex is referred to as a grandparent. The subgraph

induced by a vertex v and its descendants is referred to as the subtree rooted at v.

The input of the algorithm is a rooted temporal tree G. By this, we mean a temporal

graph whose footprint G↓ is a rooted tree. We define the function C(p) to return the

set of children for a parent vertex p. We refer to the distance of a vertex in the tree

from the root as its depth.

Intuition

We now give a high-level description of how Algorithm 1 works to aid the reader in

following the pseudocode we provide. We initialise a counter k and two empty sets.

The first set S will become a TaRDiS if a TaRDiS of size k exists. The second set M is

a set of vertices which are temporally reachable from those in S or will be temporally

reachable from a later vertex added to S. Roughly, these are the vertices we do not

need to worry about. We refer to them as marked. Vertices not in M will be referred

to as unmarked.

We aim to select the highest possible ancestor from each leaf which covers it. Once

a vertex is selected to be in the TaRDiS, we mark everything temporally reachable

from that vertex and look for a new leaf to work from in the subgraph induced by

the unmarked vertices. We also use marking a vertex to ignore any leaves which will

be reached from an ancestor if their parent is.

88

Intuition

We work from the leaves of G↓ to the root r. At each iteration, we either mark

vertices or reduce the number of appearances of an edge. We continue until the

unmarked graph is a star or empty. The star graph is the complete bipartite graph

K1,l. Its central vertex is a vertex incident to every edge of the graph if l ≥ 1, and is

the sole vertex in the graph otherwise.

If a vertex v with parent p and grandparent g is reachable from its grandparent

using the latest times on the edges (v, p) and (p, g) respectively, it will be reached

by a vertex in S if its parent is. Therefore, we can mark that vertex. If a vertex

v is an unmarked vertex of maximum depth and not temporally reachable from its

grandparent, we must add a vertex in N [v] to S. Finally, if v is reachable from g but

the last appearance of (v, p) is strictly before the last appearance of (p, g), then we

will never use that appearance of (p, g) to reach v. Since we have selected v to be the

child of p such that the time of the latest appearance of (v, p) is minimised, we can

remove the last appearance of (p, g) without changing the reachability of v and its

siblings from g. Figure 3.8 illustrates an execution of our algorithm, in which the first

(respectively second, third, fourth, fifth) iteration satisfies the conditions on line 12

(resp. lines 16, 19, 16 –again–, and 5) of our algorithm. Because the input is a proper

temporal graph the execution is identical for the strict and non-strict settings. We

solve Strict TaRDiS or Nonstrict TaRDiS using the variable s which depends

on the Boolean flag Strict.

Algorithm 1 TaRDiS on Trees
Input: A rooted temporal tree G and a Boolean flag Strict.
Output: A TaRDiS S of minimum size.

1: Initialise S = ∅,M = ∅, and s = 0.
2: if Strict then
3: Set s = 1.
4: while M ̸= V (G) do
5: if G \M is a star then
6: Add the central vertex to S and return S.
7: else Denote by L the set of vertices in V (G) \M at maximum depth.
8: Let p be the parent of an arbitrary vertex from L.
9: Choose the vertex l ∈ C(p) \M which minimizes λmax(p, l).

10: Let g be the parent of p (and hence the grandparent of l).
11: while l is not in M : do
12: if λmax(l, p) < λmin(p, g) + s then
13: Add p to S.
14: Find Rp.
15: Add Rp to M : M = M ∪Rp.
16: else if λmax(l, p) ≥ λmax(p, g) + s then
17: M := M \ {p} (note this does nothing if p /∈ M already).
18: Add all children of p to M .
19: else do λ(p, g) = λ(p, g) \ {λmax(p, g)}.
20: Return S.

Lemma 3.18. The algorithm TaRDiS on Trees always terminates in time O(|E|2),

where E is the set of time-edges in G.

Proof. The algorithm operates by adding vertices to a set S until the whole tree is

marked. Observe that each iteration of the inner while-loop (line 11) results in either

89

Intuition

Input: Iteration 1:r r

r r r

r r r

r r

After iteration 1: Iteration 2: After iteration 2:

Iteration 3: After iteration 3: Iteration 4:

After iteration 4: Iteration 5:
G−M is a star.

After iteration 5:
Return S.

u

vertex in S (note S ⊂M)

u vertex in M

u vertex in V \M

u

Legend

uℓ designated vertex ℓ for
current iteration

r

o q s

7 1, 2 5, 12

ut

yxw

v

z

10, 1112, 16

3, 41, 1514 6, 11

2, 10

r

o q s

7 1, 2 5, 12

ut

yxw

v

z

10, 1112, 16

3, 41, 1514 6, 11

2, 10

p

g

ℓ

r

o q s

7 1, 2 5, 12

ut

yxw

v

z

10, 1112, 16

3, 41, 1514 6, 11

2, 10

r

o q s

7 1, 2 5, 12

ut

yxw

v

z

10, 1112, 16

3, 41, 1514 6, 11

2, 10

ℓ

p

g

r

o q s

7 1, 2 5, 12

ut

yxw

v

z

10, 1112, 16

3, 41, 1514 6, 11

2, 10

r

o q s

7 1, 2 5, 12

ut

yxw

v

z

10, 1112, 16

3, 41, 1514 6, 11

2, 10

ℓ

p

g r

o q s

7 1, 2

ut

yxw

v

z

10, 1112, 16

3, 41, 1514 6, 11

2, 10

5

r

o q s

7 1, 2

ut

yxw

v

z

10, 1112, 16

3, 41, 1514 6, 11

2, 10

ℓ

p

g

5

r

o q s

7 1, 2

ut

yxw

v

z

10, 1112, 16

3, 41, 1514 6, 11

2, 10

5

r

o q s

7 1, 2

ut

yxw

v

z

10, 1112, 16

3, 41, 1514 6, 11

2, 10

5

r

o q s

7 1, 2

ut

yxw

v

z

10, 1112, 16

3, 41, 1514 6, 11

2, 10

5

Figure 3.8: An example of an execution of Algorithm 1.

an increase in size of the set M of marked vertices or removal of an appearance of the

time-edge between parent and grandparent vertices of the vertex in question. Note

that, if there is only one appearance of the edge between parent and grandparent

vertices, a vertex must be added to M . Therefore, there are at most |E| iterations of

the inner while loop. Computing Ru is achievable in linear time when G↓ is a tree.

Thus, each iteration can be completed in time linear in the number of time-edges.

Hence, the algorithm terminates in time O(|E|2).

We let Tv denote the subtree rooted at a vertex v.

Lemma 3.19. For any vertex v added to the set S by the algorithm TaRDiS on

Trees, S ∩ Tv is a TaRDiS of the subtree Tv rooted at v.

Proof. We show that all descendants of a vertex v added to S are temporal reachability

dominated by S∩Tv. For v to be added to S, it must be either the only vertex adjacent

90

Intuition

to all vertices in G \M (and added in line 6), or the parent of a vertex l which is an

unmarked vertex at maximum depth (added in line 13). Therefore, all vertices deeper

in the subtree than l must be in M immediately prior to the addition of v. Note that

the children of v are necessarily temporal reachability dominated by S since they are

adjacent to the vertex v. Therefore, all vertices in Tv are either temporal reachability

dominated by v or in M before v is added to S.

We will now show that all vertices in M ∩Tv before v is added to S are temporally

reachable from a vertex in S ∩ Tv. We claim that, if a vertex u is in M ∩ Tv but not

temporally reachable from (S ∩ Tv) \ {v}, then there is a temporal path from v to u.

Note that u (and its siblings) must be added to M in line 18, else u would have been

added in line 15 and therefore be reachable from S \ {v}. At this point, u must be

a vertex not in M of maximum depth. Since u is added to M by line 18, any edge

from the parent pu of u to a child of pu must be active strictly later (or possibly at

the same time in the nonstrict case) than the last appearance of the edge from pu to

the grandparent vertex gu. This implies that any path reaching pu which traverses

gu must can be made into a temporal path reaching u by appending the edge (pu, u).

Also note that pu is not in M directly following the addition of u to M .

Since we have assumed that u is not a neighbour of v and so pu ̸= v, pu can only

be added to M by being temporally reachable from a vertex in S or in line 18. If the

former is the case, the path from vp to pu must traverse gu to reach pu. This follows

from the fact that u was an unmarked vertex of maximum depth before its addition

to M and that all siblings of u are added to M at the same time. Therefore, vp must

be either an ancestor of u or a vertex of depth at most the depth of u such that the

path from vp to pu traverses an ancestor of pu. Since λmax(u, pu) ≥ λmax(pu, gu) + s,

u must be reachable from vp ∈ S by appending the edge (u, pu) to the aforementioned

path.

Now suppose that pu is added to M by line 18. As before, this gives us that gu is

not in M directly following the addition of pu to M , pu must be an unmarked vertex

of maximum depth previous to its addition to M , and any edge from gu to a child of

gu must be active strictly later (or possibly at the same time in the nonstrict case)

than the last appearance of the edge from gu to its parent. Again, this implies that

any temporal path from a vertex in S to gu which traverses its parent can be extended

to give a temporal path from S to pu and u.

The same logic can be applied recursively: if gu is added to M by line 18, we

recurse to its parent, and if gu is added to M because it is reached by some vertex

in S then this vertex reaches gu, and its descendants down to u. We must eventually

find an ancestor au of u, reachable from some va which is added to S, such that the

temporal path from va to au can be extended to reach u. We know we must find such

a vertex because v is the root of Tv and, if u and all of its ancestors up to a child of

v are marked M by line 18, there is a temporal path from v to u. Since u was an

arbitrary vertex, we can conclude that all vertices in Tv must be temporal reachability

dominated by a vertex in S ∩ Tv. Thus S ∩ Tv is a TaRDiS for Tv.

91

Intuition

Lemma 3.20. For any vertex v added to the set S by the algorithm TaRDiS on

Trees, S ∩ Tv is a minimum TaRDiS of the subtree Tv rooted at v.

Proof. We begin by asserting that the TaRDiS S output by Algorithm 1 is a minimal

TaRDiS. That is, removing any vertex from S results in at least one vertex which is

not temporal reachability dominated by S. We show this by contradiction. Assume

that S \ {v} is a TaRDiS for some v ∈ S. Then, immediately before the addition of v

to S, there is a child b of v which is not in M such that λmax(b, v) < λmin(v, p) + s,

where p is the parent of v. Since the algorithm works from leaves to the root, b

cannot be temporally reachable from any vertices in both S \ {v} and the subtree Tv
rooted at v. Else, b would be in M when v is added to S by the algorithm. Since

λmax(b, v) < λmin(v, p) + s, the vertex b also cannot be temporally reachable from

a vertex in G \ Tv. Therefore, b cannot be temporally reachable from any vertex in

S \ {v}, and S is a minimal TaRDiS.

Now suppose, for contradiction that such a vertex v ∈ S and set S′ exist where

S′ ⊆ Tv is a TaRDiS of Tv and strictly smaller than S ∩ Tv. We assume without loss

of generality that S′ is a minimal TaRDiS.

Consider the set S′ ∩S. If this is non-empty, let R be the union of reachability sets

of vertices in S′ ∩ S. Let T ′ be the subgraph of Tv induced by removing all vertices

in R \ (S′ ∪ S). Since we have assumed that |S′| < |S|, there must be a connected

component T ′′ of T ′ where |T ′′ ∩ S′| < |T ′′ ∩ S|.

Let u ∈ T ′′ ∩ S be the vertex in (T ′′ ∩ S) \ S′ of maximum depth. Observe

that u is not a leaf in T ′′, otherwise it would not have an unmarked child before its

addition to S by the algorithm, and could not be added to S by line 13. Denote by

c the child of u which minimises λmax(u, c). Since u is added to S, we must have

that λmax(c, u) < λmin(u, p) + s, where p is the parent of u, when u is added to S.

Therefore, the path consisting of time-edges ((u, p), λmin(u, p)), ((c, u), λmax(c, u)) is

not a valid temporal path. From here, our goal is to show that any vertex in S′

and not S can be replaced with a vertex in S without changing the set of vertices

reachable from S′. We now have two cases to consider: the case where appearances

of the edge (c, u) have been deleted by line 19 of the algorithm, and the case where

no appearances of the edge (c, u) have been deleted.

If no appearances of (u, c) have been removed by the algorithm, then c cannot be

temporally reachable from p or any ancestors of p. Since we know that u is in S and

not S′, c must be temporally reachable from a descendant c′ of u in S′ \S. We claim

that we can swap c′ with u without reducing the reachability set of vertices in S′.

Suppose otherwise; that there is a vertex w no longer reached by S′ following the swap

of c′ and u. Since we assumed that u was a vertex of maximum depth in S′ \ S, this

contradicts that S ∩ Tu is a TaRDiS of Tu. Thus, this contradicts Lemma 3.19, and

we can swap c′ with u in S′ without reducing the set of vertices temporally reachable

from S′.

Now suppose that there are appearances of the edge (u, c) which have been re-

moved by the algorithm in line 19. Then, a child of c must have been an unmarked

92

Intuition

vertex of maximum depth before the deletion of appearances of (u, c). Call this vertex

b. This implies that b ∈ T ′′ since b cannot be temporally reachable from any vertices

in (Tu ∩ S) \ {u}. If the algorithm were to add c to S in line 13 when b is unmarked,

then c would not be an unmarked vertex of maximum depth in any later iterations

of the while loop beginning in line 4. Before deletion of appearances of (u, c) in

line 19, we must have that λmax(b, c) < λmax(c, u) + s and λmax(b, c) ≥ λmin(c, u) + s.

This implies that there can be no temporal path from p or an ancestor of p to b

using the removed time-edge ((c, u), λmax(c, u)). Following deletion of the appear-

ance λmax(c, u) (potentially multiple times) in line 19, λmax(b, c) ≥ λmax(c, u) +s and

λmax(c, u) < λmin(u, p) + s. This follows from the fact that u is added to S in line 13.

Therefore, there is no temporal path from p or an ancestor of p to b following the

deletion. Since we know that u is in S and not S′, b must be temporally reachable

from a descendant b′ of u in S′ \ S. We claim that we can swap b′ with u without re-

ducing the reachability set of vertices in S′. Suppose otherwise; that there is a vertex

w no longer reached by S′. Since we assumed that u was a vertex of maximum depth

in S′ \ S, this contradicts that S ∩ Tu is a TaRDiS of Tu. Thus, this also contradicts

Lemma 3.19.

In both cases, we have shown that there is a vertex in S′ \ S that can be replaced

by u without reducing the reachability set of vertices in S′. We repeat this with the

vertex at maximum depth in T ′′ ∩S\S′ until either we contradict the assumption that

S′ is a TaRDiS of Tv, or obtain S = S′; contradicting our assertion that |S′| < |S|.

Therefore S is a minimum TaRDiS of Tv.

Lemma 3.21. The set S output by the algorithm TaRDiS on Trees is a minimum

TaRDiS of G.

Proof. If the root r of G is in S as output by the algorithm, then combining Lem-

mas 3.19 and 3.20 gives us the desired result. Suppose r is not in S. Then, rooting

the tree at the final vertex added to S gives the result without changing the vertices

in S.

This gives us the following theorem and corollary.

Theorem 3.22. When the footprint of the graph is a tree, TaRDiS is solvable in

O(|E|2) time.

We obtain a running time dependent only on the number of vertices for simple

temporal graphs, where |E| = |E(G↓)| = V (G) − 1.

Corollary 3.23. When the input temporal graph is simple and the footprint of the

graph is a tree, TaRDiS is solvable in O(n2) time.

In Section 3.4, we give a more general algorithm which solves any variant of

TaRDiS on a nice tree decomposition of the underlying graph. When the footprint

graph is a tree, we have treewidth 1. Our algorithm for TaRDiS on trees runs faster

93

3.3.1. Containment in ΣP
2 , useful tools, and small lifetime

than the tree decomposition algorithm (whose runtime also grows with τ), so this

does not subsume Theorem 3.22.

3.3 Classical complexity results for MaxMinTaRDiS

We now shift our focus to MaxMinTaRDiS, where the objective is to find a temporal

assignment which precludes the existence of a small TaRDiS. For each variant, we

characterize the minimum lifetime such that the problem becomes intractable. A

leap in complexity to ΣP2 is expected because the problem implicitly quantifies twice:

“Does there exist a temporal assignment such that for all sets of vertices of cardinality

at most k−1, the set is not a TaRDiS”, but intriguingly this is only seen with Happy

MaxMinTaRDiS (though we do not exclude it for Nonstrict MaxMinTaRDiS).

Definition 3.24 (ΣP2 - adapted from [113], Definition 5.1 and Theorem 5.15). ΣP2 is

the set of all languages L for which there exists a polynomial-time Turing Machine

M and a polynomial q such that

x ∈ L ⇐⇒ ∃u ∈ {0, 1}q(|x|)∀v ∈ {0, 1}q(|x|)M(x, u, v) = 1

for every x ∈ {0, 1}∗.

Equivalently, ΣP2 is the set of all languages L which can be recognized by a nonde-

terministic polynomial Turing Machine with access to an oracle for an NP-complete

language.5

Arora and Barak [113] note that NP ∪ co-NP ⊆ ΣP2 and that ΣP1 = NP. The com-

plement of a ΠP
i -complete problem is necessarily ΣPi -complete [114]. It is widely be-

lieved that ΣP2 is a strict superclass of NP ∪ coNP. In this sense, Happy MaxMinTaRDiS

is a harder problem than both Strict MaxMinTaRDiS (which is coNP-complete),

and all TaRDiS variants (which are NP-complete as shown in Section 3.2). We show

Nonstrict MaxMinTaRDiS is at least as hard as all TaRDiS variants and at most

as hard as Happy MaxMinTaRDiS, but leave open its exact complexity. Interest-

ingly, this is achieved by proving that the well-studied Distance-3 Independent

Set problem is a subproblem of Nonstrict MaxMinTaRDiS.

3.3.1 Containment in ΣP
2 , useful tools, and small lifetime

Here we give some preliminary complexity results for each variant of MaxMinTaRDiS.

We begin by showing that they are all contained in ΣP2 . We then show that we need

only consider simple temporal assignments when trying to solve MaxMinTaRDiS.

Finally, we draw comparisons between Happy MaxMinTaRDiS and Strict MaxMinTaRDiS

and the classical problems Edge Colouring and Dominating Set respectively,

which allow us to show NP-hardness and coNP-hardness of the respective problems.

Lemma 3.25. Each variant of the problem MaxMinTaRDiS is contained in ΣP2 .
5Classically, the NP-complete language used for the definition is Satisfiability, but we shall

later use TaRDiS for convenience.

94

3.3.1. Containment in ΣP
2 , useful tools, and small lifetime

Proof. A nondeterministic polynomial Turing Machine with access to an oracle for

(Strict/Nonstrict/Happy) TaRDiS can decide whether an instance (H, k, τ)

is a yes-instance of (Strict/Nonstrict/Happy) MaxMinTaRDiS by first non-

deterministically guessing a temporal assignment λ : E(H) → [τ] and then accepting

if and only if (H, τ, k − 1) is a no-instance of (the relevant variant of) TaRDiS, by

using the oracle.

We begin with the observation that we need only consider simple temporal assign-

ments for the input graph.

Lemma 3.26. Let (H, k, τ) be a yes-instance of MaxMinTaRDiS. Then there exists

a simple temporal assignment λ : E → [τ] such that the cardinality of the minimum

TaRDiS on (H,λ) is at least k.

Proof. We begin by supposing, for a contradiction, that (H, k, τ) is an instance of

MaxMinTaRDiS such that any optimal solution is non-simple. Denote such a so-

lution by λ∗. By our assumption, there is at least one edge e∗ ∈ E(H) such that

|λ∗(e∗)| > 1. Let λ be a simple temporal assignment such that, for all edges e ∈ E(H),

λ(e) ∈ λ∗(e). Then, under λ, the reachability set of any vertex v ∈ V (H) is a subset

of the reachability set of v under λ∗. Therefore, a minimal TaRDiS of (H,λ) must

be at most the cardinality of a minimal TaRDiS of (H,λ∗). Since λ is a simple tem-

poral assignment, we have contradicted our assumption. Thus, for every instance of

MaxMinTaRDiS, there exists an optimal solution which is simple.

Lemma 3.27 ([78]). A static graph H admits a happy temporal assignment λ :

E(G) → [τ] if and only if H is τ -edge colourable.

Proof. To see this, we assign each of the times a colour. Then, if the graph cannot be

τ -edge coloured, we cannot assign times to the edges such that no two adjacent edges

share a time. Furthermore, if we can give H a happy temporal assignment, then the

corresponding assignment of colours to edges is a proper edge-colouring.

Happy MaxMinTaRDiS restricted to instances with k = 0 asks only if there

exists a happy assignment λ with lifetime τ for the input graph G. This is equivalent

to the Edge colouring problem with τ colours. Edge Colouring is NP-complete,

even when the number of colours is 3 [115].

Corollary 3.28. Happy MaxMinTaRDiS is NP-hard for any τ ≥ 3, even when

k = 0.

Lemma 3.29. Nonstrict MaxMinTaRDiS can be computed in linear time when

τ = 1. When τ ≤ 2, Happy MaxMinTaRDiS is solvable in linear time.

95

3.3.2. ΣP
2 -completeness of Happy MaxMinTaRDiS with lifetime 3

Proof. If every edge is active at the same time, we have no choice in the temporal

assignment. As shown in Lemma 3.8, we can find the size of the minimum nonstrict

TaRDiS in linear time by counting the number of connected components.

As stated in Lemma 3.8, the footprint of a happy temporal graph with lifetime 2

necessarily consists of disconnected paths and even cycles. In paths and cycles of even

length, there is only one happy temporal assignment up to symmetry. In odd paths,

the optimal ordering is that wherein both edges incident to leaves are assigned time

1. This forces one of the endpoints of these edges to be in a TaRDiS, which is not

the case if they are assigned time 2. Having found a single labelling λ to consider, we

may now return YES if and only if (G,λ, k − 1) is a no-instance of Happy TaRDiS

(which may be decided in linear time applying Lemma 3.8).

Lemma 3.30. For any static graph H, k ∈ N+ and τ ∈ N+, (H, k, τ) is a yes-instance

of Strict MaxMinTaRDiS if and only if (H, k−1) is a no-instance of Dominating

Set.

Proof. We first show that the constant function λ is an optimal one (i.e. one which

maximizes the size of the minimum TaRDiS for (H,λ)). Suppose otherwise, that

we have an optimal temporal assignment λ′ where there exist edges e, e′ such that

λ′(e) ̸= λ′(e′). Then, under a temporal assignment λ(e) = c for all edges e ∈ E and

c ∈ N, all vertices have reachability sets whose cardinality are bounded above by the

size of their reachability set under λ′. Therefore a minimum TaRDiS under λ must

be at least the size of a minimum TaRDiS under λ′. Applying Lemma 3.6, we see

that (H, k) is a yes-instance of Strict MaxMinTaRDiS if and only if (H, k − 1) is

a no-instance of Dominating Set.

Corollary 3.31. Strict MaxMinTaRDiS is coNP-complete, coW[2]-complete with

respect to k, and para-NP-hard with respect to ∆ + τ .

3.3.2 ΣP
2 -completeness of Happy MaxMinTaRDiS with lifetime 3

As stated in Corollary 3.28, Happy MaxMinTaRDiS is trivially NP-hard even for

lifetime τ = 3. Lemma 3.25 gives us that the problem is in ΣP2 . We characterize the

problem’s complexity exactly, showing it is ΣP2 -complete.

We begin by presenting the problem Restricted Planar Satisfiability, which

is ΠP
2 complete [116].

Restricted Planar Satisfiability (RPS)

Input: An expression of form (∀X)(∃Y)Φ(X,Y) with Φ a CNF formula over the

set X ∪ Y of variables. Each clause contains exactly 3 distinct variables, each

variable occurs in exactly three clauses, every literal appears at most twice, and

96

Intuition

the graph GΦ is planar.

Question: Is the expression true?

We also introduce the complement problem co-RPS, which we will reduce from.

co-Restricted Planar Satisfiability (co-RPS)

Input: An expression of form (∃X)(∄Y)Φ(X,Y) with Φ a CNF formula over the

set X ∪ Y of variables. Each clause contains exactly 3 distinct variables, each

variable occurs in exactly three clauses, every literal appears at most twice, and

the graph GΦ is planar.

Question: Is the expression true?

Lemma 3.32. The problem co-RPS is ΣP2 complete.

Proof. Gutner shows Restricted Planar Satisfiability (RPS) to be ΠP
2 -complete

in [116]. Note that they do not state the restriction that each literal appears at most

twice in the lemma stating their result, but this can be seen from their construction.

Intuition

We can imagine problems in ΣP2 as games with two players. In co-RPS the first player

chooses an assignment to variables in X, then the second player chooses an assignment

to the variables in Y . If the resulting assignment to X ∪Y satisfies Φ then the second

player wins; otherwise the first player wins. Analogously, in Happy MaxMinTaRDiS

the first player chooses a happy temporal assignment λ with lifetime τ for the edges

of G, then the second player chooses a set S of vertices in G of size at most k − 1. If

S is a TaRDiS of (G,λ) then the second player wins; otherwise the first player wins.

We perform this reduction by creating gadgets which force the first player to choose

a function λ which is nice. Essentially, λ must assign specific times to certain edges.

This means that if the first player does not do this, the second player can always win.

We can then replicate some techniques from the proof of Theorem 3.12 to encode

clauses being satisfied. The choice of TaRDiS by the second player then encodes a

truth assignment to variables in Y . By allowing a small amount of freedom in the

choice of λ, we allow the first player to encode a truth assignment to the variables of

X. We now give the formal construction.

Construction

Given an instance (Φ, X, Y) of co-RPS, we will produce an instance (G, k, τ = 3)

of MaxMinTaRDiS. The number of clauses in Φ is denoted by m. We denote the

number of variables in X (respectively Y) with nX (resp. nY). The total number of

variables is n. Note that 3m ≥ n ≥ m, so the size of the co-RPS instance is linear in

97

Uncovered 3-Gadget (U3G)

n. Further, we denote X = {x1, . . . , xnx} and Y = {ynx+1, . . . , ynx+ny }. We say that

the literal l2i (respectively, l2i−1) is the positive (resp., negative) literal for variable xi
if i ≤ nx, and the positive (resp. negative) literal for variable yi if nx < i ≤ nx + ny.

We now describe the construction of G and k. The construction of our gadgets

is intended to guarantee that any optimal temporal assignment λ will have certain

properties. First, we define the Uncovered 2-Gadget, Uncovered 3-Gadget, and Cov-

ered 2-Gadget. Each of these is treated in our construction as a vertex of degree one.

The construction for each of these makes use of large values α and β. Let β = 100n

and α = 600nβ + 600n + 2. In particular we require that α >> β >> n, β is even,

and α ≡ 2 mod 12.

Uncovered 2-Gadget (U2G)

This construction is illustrated in Figure 3.9. We use a U2G by connecting it to some

vertex x elsewhere in the construction. The intuition is that a U2G will force the

edge connecting it to x to be assigned time 2, and moreover that a “good” choice

of TaRDiS inside the U2G will not reach (cover) x. Given some such x, we create

vertices y and w and a ladder graph on 2α vertices {u1, . . . , uα, v1, . . . , vα}, with the

edges (x, y), (y, u1), (y, v1), (w, uα), (w, vα). The ladder graph Ln on 2n vertices has

vertex set V (Ln) = {u1, . . . , un, v1, . . . , vn}, and edge set E(Ln) = {(ui, ui+1)|i ∈

[n− 1]} ∪ {(vi, vi+1)|i ∈ [n− 1]} ∪ {(ui, vi)|i ∈ [n]}.

Covered 2-Gadget (C2G)

The construction is very similar to that of the U2G - the only difference is the in-

crementation of the ladder length by 1. Much like a U2G, the C2G will (informally)

force the edge connecting it to the external vertex x to be assigned time 2, but now

any “good” choice of TaRDiS inside the C2G will reach (cover) x. Given x, we create

vertices y and w and a ladder graph on 2α + 2 vertices {u1, . . . , uα+1, v1, . . . , vα+1},

and edges (x, y), (y, u1), (y, v1), (w, uα+1), (w, vα+1).
U2G

y

u1

v1

xw

ul−2

vl−2vl−1vl

ul−1ul u2u3

v2v3

. . .
2 x

2+ x

With l = α:

With l = α+ 1:

Figure 3.9: A vertex x incident to the Uncovered 2 Gadget (U2G) or Covered 2
Gadget (C2G). Left: construction of the gadget where l = α for a U2G and l = α+ 1
for a C2G. Right: depiction of the gadget used in later figures. Note that planarity
is preserved.

Uncovered 3-Gadget (U3G)

Informally, this gadget forces the edge connecting it to an external vertex x to be

assigned time 3, and does not cover x. The construction is illustrated in Figure 3.10.

98

Uncovered 1-Gadget (U1G)

We start with the ladder graph on 2α vertices {u1, . . . , uα, v1, . . . , vα}, and dou-

bly subdivide the edge (ui, ui+1) (respectively (vi, vi+1)) whenever i is even (resp.

odd) with two new vertices ai, bi. We say doubly subdivide an edge (u, v) to re-

fer to the deletion of (u, v) and introduction of two vertices a, b and three edges

(u, a), (a, b), (b, v). We add the vertices y1, y2, y3, w and edges (x, y1), (y1, y2), (y2, y3),

(y3, u1), (y3, v1), (w, uα). We denote the set of internal vertices of the U3G by

VU3G = {a1, . . . , aβ−1, b1, . . . bβ−1, y1, y2, y3, u1, . . . , uβ , v1, . . . , vβ , w}. Internal ver-

tices are highlighted by a red (solid) box in Figure 3.10. We make any vertex not

already of degree 3 in VU3G incident to a U2G.U3G construction

2

2

xy1

y2

y3

2

2

2 2

22

2 2

w u2

v2 v1

u1uβ

vβ vβ−1

uβ−1 uβ−2

vβ−2

. . . 3 x

a1b1

bβ−2 aβ−2

aβ−1bβ−1

Figure 3.10: A vertex x incident to the Uncovered 3 Gadget (U3G). Left: construction
of the gadget; vertices of VU3G are in the red (solid) box. Right: depiction of the
gadget used in later figures. Note that planarity is preserved.

Uncovered 1-Gadget (U1G)

Informally, this gadget forces the edge connecting it to an external vertex x to be

assigned time 1, and does not cover x. For a U1G, we simply create a vertex y

incident to both a C2G and a U3G as shown in Figure 3.11, then add an edge from

y to the target vertex x.

U1G

y

2+

3 x x1

Figure 3.11: A vertex x incident to the Uncovered 1 Gadget (U1G). Left: implemen-
tation of the gadget. Right: depiction of the gadget used in later figures.

Construction: literal vertices and clause gadgets

Exactly 3m literal vertices and m clause gadgets are created. We iterate over Φ, and

for each clause cj we create a cycle on 6 new vertices Qj = {q1
j , . . . , q

6
j }, and make

q2
j , q

4
j , q

6
j each incident to a U2G. Where the clause cj contains the ath appearance

of some literal li in Φ, we create two new literal vertices lai and lai connected by an

edge, and make each of lai and lai incident to a new U1G. We make lai incident to

a vertex from {q1
j , q

3
j , q

5
j }, such that each of these is adjacent to exactly one literal

vertex. Figure 3.12 illustrates this construction. Vertices u, v, w, u, v, w are literal

vertices for which the corresponding literals appear in cj . The intention is that only

nice assignments (like the one shown in Figure 3.12) to the clause gadget need to be

99

Construction: X-variable gadget

considered, and that under a nice assignment any canonical TaRDiS of small size will

include exactly two vertices belonging to the clause gadget.Clause Gadget for MMT

u

w

q1j q2j

q3j

q4jq5j

q6j

3

1
v

1

3 3

1

2

2

w

u

v

2

3

3

22

2

2

2
3

1

1

1

1

2

1

1

Figure 3.12: The clause gadget for clause cj together with an example nice assignment.
If, for example, clause cj = (l5 ∨ l17 ∨ l20) is the first appearance of l5 and l20 and the
second appearance of l17 in Φ, then u = l15, v = l217 and w = l120. The neighbourhoods
of dashed vertices are shown in Figures 3.13 and 3.14 respectively depending on
whether they correspond to variables in X or Y .

X-variable gadget

l22i−1
l22i−11

2

l22i−1l12i−1
l12i−1

1

2 2

2+

2

x1
i x2

i x4
i x5

i x6
i

x8
ix10

ix11
ix12

ix13
i

2+

2+

x9
i

2

l12i l12i1 1
1

x3
ix2

ix1
i x4

i x5
i x6

i

x7
i

x8
ix9

ix10
ix11

ix12
ix13

i

2 22

2
2

2 2

222
2

2

2

31

A B A A

A

AA

B

B

BBB

3 3

Figure 3.13: The X-variable gadget for variable xi together with an example gadget-
respecting assignment; note that either A = 1 and B = 3 or B = 1 and A = 3.
Only in the former case, which corresponds to setting xi to True, does x4

i have a
temporal path to l12i. Here xi appears twice negatively and once positively, hence x9

i

is not incident to a literal vertex. The neighbourhoods of dashed vertices are shown
in Figure 3.12.

Construction: X-variable gadget

The intuition here is that there is a little freedom in the choice of temporal assignment

locally, and that this choice will encode an assignment to the corresponding variable

– this is illustrated in Figure 3.13. For each variable xi ∈ X, we create 13 vertices

{x1
i , . . . , x

13
i } connected in a path, with vertex xpi incident to a U2G if p is even, and in-

cident to a C2G for p ∈ {1, 7, 13}. Lastly we add the edges (x3
i , l

1
2i), (x5

i , l
1
2i−1), (x9

i , l
2
2i),

100

Construction: Y -variable gadget

Y -variable gadget

ai v1i v2i bi

F 1
iF 2

iT 2
iT 1

i

2 1 2

131
3

2 2

3

333

l22i−1l22i−1 l12i−1

l12i−1l22i−1

l12i

l12i

2

ai bi

F 1
iF 2

iT 2
iT 1

i

v1i v2i

1 3 3 1

21 1 1
1 1 1

1 133

2

Figure 3.14: The Y -variable gadget for variable yi together with an example nice
assignment. Note the similarity to the variable gadget in Figure 3.6. Here xi appears
twice negatively and once positively, hence T 2

i is connected to a U2G and not a literal
vertex. The neighbourhoods of dashed vertices are shown in Figure 3.12.

and (x11
i , l

2
2i−1) whenever the appropriate literal vertex exists. Recall that, by the re-

strictions on Φ, at most one of the vertices l22i and l22i−1 exist in our construction for

any input.

Construction: Y -variable gadget

Conversely, the Y -variable gadget leaves no (meaningful) freedom in the temporal

assignment, but does leave some freedom in the choice of vertices to include in a

TaRDiS – again encoding a Boolean assignment to the variable. This construc-

tion is illustrated in Figure 3.14. For each variable yi ∈ Y , we create 8 vertices

{ai, v1
i , v

2
i , bi, F

1
i , F

2
i , T

2
i , T

1
i } connected in a cycle, with vertices v1

i and v2
i incident to

U3Gs and vertices ai and bi incident to U1Gs. Then we add edges (T 1
i , l

1
2i), (T 2

i , l
2
2i),

(F 2
i , l

2
2i−1), (F 1

i , l
1
2i−1) whenever the appropriate literal vertex exists. If vertex T 2

i is

not incident to a literal vertex, we connect it to a U2G. Otherwise, F 2
i is connected

to a U2G.

Construction: k

In order to state k, we first define some auxiliary variables. As stated earlier, the

number of X-gadgets, Y -gadgets and clause-gadgets is nX , nY and m respectively.

We then define:

#lit = 2 · 3m (The number of literal nodes.)

#U1G = #lit + 2 · nY (The number of U1Gs.)

#U3G = 2nY + #U1G (The number of U3Gs.)

#C2G = 3nX + #U1G (The number of C2Gs.)

#U2G = #U3G(2β + 2) + 3m+ 6nX + nY (The number of U2Gs.)

101

Properties of the construction

We now define k:

k = #U2G ·
(
α+ 1

3

)
+ #C2G ·

(
α+ 4

3

)
+ #U3G · (β) + 2m+ 3nX + 3nY + 1

This concludes the construction of the Happy MaxMinTaRDiS instance.

Properties of the construction

We first define the temporal assignments of interest to us.

Definition 3.33 (Gadget-respecting, Nice Temporal Assignment). A happy temporal

assignment λ for the graph G described above is:

• 2-gadget-respecting if every edge (x, y) incident to a U2G or C2G is assigned

time 2 under λ.

• 3-gadget-respecting (resp. 1-gadget-respecting) if every edge (x, y) incident to a

U3G (resp. U1G) is assigned time 3 (resp. 1) under λ.

If λ is 1-, 2- and 3-gadget-respecting, we say that λ is nice.

We will show that a happy temporal assignment λ forG satisfies that every TaRDiS

of (G,λ) has cardinality at least k − 1 if and only if λ is nice. We then show that

there exists a λ such that every TaRDiS of (G,λ) has cardinality at least k if and

only if (Φ, X, Y) is a yes-instance of co-RPS.

Lemma 3.34. For any happy temporal assignment λ on any U2G gadget incident

to x consisting of vertices VU2G = {y, w, u1, . . . , uα, v1, . . . , vα}, if λ(x, y) = 2

• exactly α+1
3 vertices from VU2G are needed to temporal reachability dominate

VU2G;

• no choice of α+1
3 vertices temporally dominates VU2G ∪ {x}.

If λ(x, y) ̸= 2, it is possible to temporally dominate VU2G with at most α+2
4 vertices.

Proof. It is easy to check that there is only one proper 3-colouring of the edges of the

induced graph on VU2G ∪ {x} up to isomorphism. Denote by A the colour of (x, y), B

the colour of (y, u1) and C the colour of (y, v1). Note that all edges (ui, vi) are given

colour A, and the edges on the path u1, . . . , uα (resp. v1, . . . , vα) alternate between

B and C.

Any possible happy temporal assignment then corresponds exactly to one of 6

possible assignments of times {1, 2, 3} to the colours {A,B,C}. From this point, we

abuse notation slightly and denote λ(x, y) by λ(A), λ(y, u1) by λ(B) and λ(y, v1) by

λ(C). By symmetry of the gadget construction, we can always assume λ(B) < λ(C).

If λ(A) = 2, we have λ(B) = 1 and λ(C) = 3; then |Rv| ≤ 6 for all v ∈ VU2G.

Note in particular that Rv1 = {y, v1, v2, v3, u1, u2}, and Rx ∩ VU2G = {y, v1}. Thus

for any TaRDiS S, at least |VU2G|−2 = 2α vertices in VU2G are reached by vertices of

S ∩ VU2G, each of which reaches at most 6 vertices including itself. Recall that α ≡ 2

mod 12. Hence, |S∩VU2G| ≥ ⌈ 2α
6 ⌉ = α+1

3 . Note that, by the same logic, any set of size

102

Properties of the construction

at most α+1
3 reaches at most 2α+2 vertices and hence no such set reaches every vertex

in VU2G ∪ {x} since |VU2G ∪ {x}| = 2α+ 3. Further, the set {v1, u4, v7, u10, . . . vα−1}

is of size α+1
3 exactly and reaches every vertex in VU2G. Conversely, if λ(A) ∈ {1, 3}

then {v1, v5, v9, . . . , vα−1} is a set of size α+2
4 which reaches all vertices of VU2G.

Lemma 3.35. For any happy temporal assignment λ on any C2G gadget incident to

vertex x consisting of vertices VC2G = {y, w, u1, . . . , uα+1, v1, . . . , vα+1}, if λ(x, y) = 2

• exactly α+4
3 vertices from VC2G are needed to temporally dominate VC2G;

• it is possible to temporally dominate VC2G ∪ {x} with the same number of

vertices.

If λ(x, y) ̸= 2 it is possible to temporally dominate VC2G with at most α+6
4 vertices.

Proof. As in the case of the U2G, there is only one proper 3-colouring of the edges of

the induced graph on VU3G ∪ {x} up to isomorphism. We again denote A the colour

of (x, y), B the colour of (y, u1) and C the colour of (y, v1). Since gadget symmetry

is preserved, we also may assume without loss of generality that λ(B) < λ(C). Then

the assignment of the edges on vertices from VC2G ∪ {x} depends only on the value

of λ(x, y).

The dependence of reachability on this choice remains; namely if λ(A) = 2 then

|Rv| ≤ 6 for all v ∈ VC2G and Rx∩VC2G = {y, v1}. Applying the same logic as above,

for any TaRDiS S at least |VC2G|−2 = 2α+2 vertices in VC2G are reached by vertices

of S ∩ VC2G. Hence |S ∩ VC2G| ≥ ⌈ 2α+2
6 ⌉ = α+4

3 . Now {y, u2, v5, u8, v11, . . . uα} is

of size α+4
3 exactly and reaches every vertex in VC2G and additionally reaches x at

time 2. Conversely if λ(A) ̸= 2 then covering VC2G requires at most α+6
4 vertices, for

example {y, u2, u6, u10, . . . , uα}.

Lemma 3.36. For any happy function λ which is not 2-gadget-respecting, (G,λ)

admits a TaRDiS of size less than k − 1.

Proof. Recall that n = nY + nX and n > m. Observe that the number of vertices in

G which are not inside a U2G or C2G is exactly:

#U3G · (4β + 2) + #U1G + #lit + 8nY + 13nX + 6m

= (2nY + 6m)(4β + 2) + 6m+ 6m+ 12nY + 13nX + 16m

≤ 32nβ + 31n.

which is strictly smaller than α
12 ≈ 50nβ + 50n. Even if there exists some λ⊥ such

that every vertex in G not belonging to a U2G or C2G is necessarily included in every

TaRDiS of (G,λ⊥), any such TaRDiS would still have size less than #U2G · α+1
3 +

#C2G · α+4
3 and hence less than k − 1.

103

Properties of the construction

Lemma 3.37. For any 2-gadget respecting happy temporal assignment λ on any

U3G gadget incident to vertex x:

• If λ(x, y1) = 3 then β vertices from VU3G are needed to temporally dominate

VU3G \ {y1}, and no choice of β vertices temporally dominates VU3G ∪ {x}.

• If λ(x, y1) ̸= 3, it is possible to temporally dominate VU3G \ {y1} with at most
β
2 + 1 vertices.

Recall VU3G = {a1, . . . , aβ−1, b1, . . . bβ−1, y1, y2, y3, u1, . . . , uβ , v1, . . . , vβ , w}; the set

of vertices in the red (solid) box in Figure 3.10.

Proof. There are only two possible 2-gadget-respecting assignments for the edges of

VU3G. In any case, for all i ∈ [β], λ(ui, vi) = λ(x, y1). We denote by λ3 the assignment

where λ(x, y) = 3 and λ1 the temporal assignment where λ(x, y) = 1.

It can be manually verified that, under λ3, β vertices are necessary to temporally

dominate VU3G \ {y1}. This is also sufficient: the set {v1, u2, v3, u4, . . . , uβ} is one

possibility. On the other hand, under λ1 there exists a set of size β
2 + 1 which

temporally dominates VU3G \ {y1}, namely {u1, u2, u4, . . . , uβ}.

Lemma 3.38. For any 2-gadget-respecting λ, if for any edge e incident to a U3G

λ(e) ̸= 3 then (G,λ) admits a TaRDiS of size less than k − 1.

Proof. Observe that the number of vertices in G which are not inside a U2G, C2G or

U3G is exactly:

#U1G + #lit + 8nY + 13nX + 6m

= 6m+ 6m+ 8nY + 13nX + 6m

= 18m+ 8nY + 13nX

≤ 31n

which is strictly smaller than β
2 . Even if there exists some 2-gadget-respecting λ⊥

such that every vertex in G not belonging to a U2G, C2G, or U3G is necessarily

included in every TaRDiS of (G,λ⊥), any such TaRDiS would still have cardinality

less than #U2G · α+4
3 + #C2G · α+4

3 + #U3G · (β) and hence less than k− 1. Recall we

assigned k = #U2G ·
(
α+1

3
)

+ #C2G ·
(
α+4

3
)

+ #U3G · (β) + 2m+ 3nX + 3nY + 1, and

that by our choice of β we have β
2 > 2m+ 3nX + 3nY + 1.

Lemma 3.39. Any happy temporal assignment λ such that every TaRDiS on (G,λ)

has size at least k − 1 is nice.

Proof. By Lemmas 3.36 and 3.38, any happy temporal assignment λ such that every

TaRDiS on (G,λ) has size at least k−1 is 2-gadget and 3-gadget-respecting. Observe

that if λ is happy, 2- and 3-gadget-respecting, it must also be 1-gadget-respecting by

the edge coloring constraint. Hence λ is nice.

104

Properties of the construction

We say that a nice function λ encodes a truth assignment to the variables of X, and

define this assignment as follows: let variable xi ∈ X be set to True if λ(x1
i , x

2
i) = 1

and False otherwise. In Figure 3.13, True corresponds to the case where A = 1.

Lemma 3.40. A nice function λ encodes an assignment to X under which Φ(X,Y)

is satisfiable if and only if (G,λ) admits a TaRDiS of size k − 1.

Proof. We first prove the forward direction. That is, if λ encodes an assignment X

to X under which Φ(X,Y) is satisfiable then (G,λ) admits a TaRDiS of size at most

k − 1.

In this case, there is an assignment Y to Y such that Φ(X ,Y) evaluates to True.

We have, by Lemmas 3.34, 3.35 and 3.37, that exactly #U2G · α+1
3 + #C2G · α+4

3 +

#U3G · β vertices are necessary and sufficient to cover all the vertices in U2G, U3G,

C2G and U1G gadgets, and these vertices also reach every vertex adjacent to a C2G

at time 2 exactly. Let S include exactly those vertices.

For each Y -variable gadget we add the vertices v1
i and T 1

i to S, if yi is True in Y,

and vertices v1
i and F 1

i are added otherwise. Further, let S include vertices x4
i and

x10
i from each X-variable gadget. Note that irrespective of how that gadget is labeled

under λ, this choice of vertices is sufficient to reach all vertices not already covered

from some vertex in S within a C2G. Additionally, note that now every literal vertex

corresponding to a literal set to True under the combined assignment to X ∪ Y is

reached from S. Since this is a satisfying assignment, every set Qj of clause gadget

vertices as shown in Figure 3.12 must be incident to at least one literal vertex which

is already reached from S. By symmetry we may assume this literal vertex is u

(otherwise, cycle the labels q1
i , . . . , q

6
i such that it is). Then let S include vertices q3

j

and q5
j . Observe that S is a TaRDiS of size precisely k− 1; all gadget vertices, literal

vertices, clause vertices and variable vertices are reachable from S.

We now prove the other direction. Namely, if (G,λ) admits a TaRDiS of size at

most k − 1 then λ encodes an assignment to X under which Φ(X,Y) is satisfiable.

Recall that, by Lemma 3.39, λ must be nice. Let S be a minimum TaRDiS of size at

most k − 1 in (G,λ). We may assume, by Lemma 3.4, that S is canonical.

Since S is minimum, we have, by Lemmas 3.34, 3.35 and 3.37, that exactly #U2G ·
α+1

3 + #C2G · α+4
3 + #U3G · β vertices in S cover all the vertices in U2G, U3G, C2G

and U1G gadgets. Then at most 2m+ 3nX + 3nY vertices of S are not among these,

and must be sufficient to cover the remaining vertices of G.

We define from S a truth assignment to Y as follows: if vertex T 1
i or T 2

i is in

S, then we assign yi to be True, and we assign it to be False otherwise. We argue

that this assignment together with X necessarily satisfies Φ(X,Y). Note that, since

S is canonical, it must contain at least 2 vertices from every clause gadget, 2 vertices

from every Y -variable gadget, and 2 vertices from every X-variable gadget. All these

bounds must be tight, else S has cardinality more than k − 1.

Suppose for contradiction that Φ(X,Y) is not satisfied by the assignment. Then

some clause cj contains only False literals under the assignment, and at least 3 vertices

105

3.3.3. NP-completeness of Nonstrict MaxMinTaRDiS with lifetime 2

in Qj must be in S, contradicting that at most 2 vertices from any clause gadget may

be in the TaRDiS. Hence there is an assignment to Y satisfying Φ(X,Y).

Lemma 3.41. co-RPS is polynomial-time reducible to Happy MaxMinTaRDiS.

Proof. The construction above can be achieved in polynomial time. We have shown:

• The constructed MaxMinTaRDiS instance (G, k, τ = 3) is a yes-instance if

and only if there is some nice λ such that every TaRDiS for (G,λ) has size at

least k − 1 (Lemma 3.39).

• Every nice λ encodes a truth assignment to X under which Φ(X,Y) is satisfiable

if and only if (G,λ) admits a TaRDiS of size k − 1 (Lemma 3.40).

That is, (G, k, τ = 3) is a yes-instance of MaxMinTaRDiS if and only if (X,Y,Φ)

is a yes-instance of co-RPS.

Theorem 3.42. Happy MaxMinTaRDiS is ΣP2 -complete even restricted to inputs

where τ = 3 and the input graph G is planar.

Proof. By Lemma 3.41 we have that co-RPS is polynomially reducible to Happy

MaxMinTaRDiS. co-RPS is ΣP2 -complete by Lemma 3.32. The reduction above

preserves planarity of Φ. We have containment of MaxMinTaRDiS in ΣP2 from

Lemma 3.25.

3.3.3 NP-completeness of Nonstrict MaxMinTaRDiS with

lifetime 2

Here we consider the restriction of Nonstrict MaxMinTaRDiS to instances with

lifetime 2. We show the problem to be equivalent to the Distance-3 Independent

Set (D3IS) decision problem. We say that two problems X and Y are equivalent if

they have the same language - that is, an instance I is a yes-instance of X if and only

if the same instance I is a yes-instance of Y . Where X has a language consisting of

triples (G, k, τ) and Y has a language of tuples (G, k), we may say that Y is equivalent

to X with τ fixed to some value.

We define the distance d(u, v) between two vertices u, v in a temporal graph to be

the number of edges in the shortest path between them in the footprint of the graph.

Definition 3.43. A distance-3 independent set (D3IS) of a static graph H is a set

S ⊆ V (H) such that for all distinct u, v ∈ S, d(u, v) ≥ 3.

The decision problem D3IS is defined as follows.

106

3.3.3. NP-completeness of Nonstrict MaxMinTaRDiS with lifetime 2

Distance-3 Independent Set (D3IS)

Input: A static graph H = (V,E) and an integer k.

Question: Is there a set S ⊆ V (H) of cardinality k that is a distance-3 indepen-

dent set?

We aim to show that a static graph H and integer k are a yes-instance of Non-

strict MaxMinTaRDiS with lifetime 2 if and only if the same graph H and integer

k are a yes-instance of D3IS.

We begin by showing that existence of a maximal D3IS of size k in a graph H

implies that we can find a temporal assignment λ : E(H) → {1, 2} such that a

minimum TaRDiS in (H,λ) is of cardinality k. Given such a D3IS S of H, we assign

λ(u, v) = 1, when u ∈ S or v ∈ S, and λ(u, v) = 2, otherwise.

Lemma 3.44. Let S be a maximal D3IS of a static graph H and λ be a temporal

assignment of H where λ(u, v) = 1 when u ∈ S or v ∈ S, and λ(u, v) = 2 otherwise.

Then S is a minimum TaRDiS of (H,λ).

Proof. We first show that S is a TaRDiS. We assume without loss of generality that

H is a single connected component. Suppose for contradiction some vertex u is not

reachable from any vertex in S. Note that every vertex in S trivially reaches its

neighbours. So, by construction of λ, u is incident only to edges at time 2. Since we

have assumed that H consists of a single connected component, there must be a static

path in H from each vertex in S to u. Let z be the closest vertex in S to u. Then the

shortest path from z to u must have length 2 and consist of an edge assigned time 1

followed by an edge assigned time 2. Else, S is not maximal. Hence, the shortest path

from z to u is a nonstrict temporal path and u ∈ Rz, contradicting our assumption.

Thus S is a TaRDiS of the constructed instance.

We now show minimality of S. By construction of λ, every vertex v ∈ S is

temporally reachable only from its closed neighbourhood N [v]. No temporal path

originating outside N [v] can include any edge incident to v since any such path must

contain an edge assigned time 2 before the final edge which is assigned time 1. Since

S forms a D3IS, N [u]∩N [v] = ∅ for all u, v ∈ S. Therefore, for (H,λ) to be temporal

reachability dominated, there must at least be a vertex from the neighbourhood of

each vertex in S. These are disjoint sets, so any TaRDiS must have cardinality at

least k. Hence S is a minimum TaRDiS of (H,λ).

Definition 3.45 (Sole Reachability Set). We define the sole reachability set of a ver-

tex v in a TaRDiS S as the set SR(G, S, v) = Rv(G) \ (∪u∈S\{v}Ru(G)). Equivalently,

it is the set of vertices reachable from v and not any other vertex in S.

When G is clear from context, we write SR(S, v) for SR(S,G, v). Note that, in a

minimum TaRDiS, every vertex has a non-empty sole reachability set.

107

3.3.3. NP-completeness of Nonstrict MaxMinTaRDiS with lifetime 2

Definition 3.46. We call a TaRDiS S on a temporal graph G independent if and

only if every vertex in S is in its own sole reachability set under S.

Lemma 3.47. If a temporal graph G admits an independent nonstrict TaRDiS S,

then S is a D3IS in the footprint graph G↓.

Proof. Consider two vertices u, v ∈ S at distance d(u, v) from one another in G↓.

If u and v are adjacent, then u and v reach each other, which would contradict

independence of S. If d(u, v) = 2 then there is at least one vertex w ∈ N [u] ∩ N [v],

and either λ(u,w) ≤ λ(w, v) or λ(u,w) > λ(w, v). So one of u and v must reach the

other. Hence any two vertices in S must be distance at least 3 from one another, the

definition of a D3IS.

Lemma 3.48. If a temporal graph G with lifetime 2 has a minimum nonstrict TaRDiS

of cardinality k, then G↓ admits a D3IS of size k.

Proof. Our proof is constructive; given a minimum TaRDiS S, we show existence of an

independent minimum TaRDiS S∗ of equal cardinality and then apply Lemma 3.47.

First, we justify some simplifying assumptions about G. Since TaRDiS can be

computed independently in disconnected components of G↓, we will assume G↓ is

connected. Further, if E1(G) = ∅ or E2(G) = ∅ we may choose any single vertex from

G to be a minimum TaRDiS which is also independent; hence we assume E1(G) ̸= ∅

and E2(G) ̸= ∅. We also recall that SR(S, x) ̸= ∅ for all x ∈ S by minimality of S.

We construct S∗ by replacing every vertex x in S such that x /∈ SR(S, x) with

some vertex x∗ with the property that Rx∗ = Rx and x∗ ∈ SR(S, x), as follows. Let

y ̸= x be a vertex in S such that y reaches x. The path from y to x cannot arrive

at time 1, else S is not minimal as Rx = Ry and S \ {x} is a TaRDiS. Choose x∗ to

be the closest vertex to x in SR(S, x). We know such a vertex exists by minimality

of S. We claim that the path from x to x∗ arrives at time 1 and so Rx = Rx∗ . To

see this, suppose otherwise. The path must begin with at least one edge at time 1,

otherwise x∗ would be reachable from y. If the path arrives at time 2, then the last

vertex on the path reached at time 1 is closer to x than x∗, and is in SR(S, x). Else,

some other vertex in S reaches x∗.

This concludes our construction of S∗ as an independent minimum TaRDiS. By

Lemma 3.47, S∗ is also a D3IS.

Combining Lemmas 3.44 and 3.48 gives us the following theorem.

Theorem 3.49. Nonstrict MaxMinTaRDiS with lifetime τ = 2 is equivalent to

Distance-3 Independent Set.

Interestingly, the same does not hold for τ ≥ 3. A counterexample is shown in

Figure 3.4c, where the minimum TaRDiS is larger than the maximum D3IS of the

footprint. The Petersen graph also gives us a 3-regular counterexample. We are

108

3.4. Parameterized complexity results for TaRDiS

able to leverage the known results [87, 105, 106] to obtain the following corollaries

describing some (in)tractable cases of the problem when τ = 2:

Corollary 3.50. Nonstrict MaxMinTaRDiS restricted to inputs with τ = 2

remains NP-complete even when restricted to planar, bipartite graphs with maximum

degree 3. Furthermore, the problem is W [1]-hard with respect to the parameter k,

the size of a minimum TaRDiS, and is APX-hard on r-regular graphs for all integers

r ≥ 3.

Corollary 3.51. Nonstrict MaxMinTaRDiS restricted to inputs with τ = 2 is in

NP, admits a PTAS on planar graphs and is tractable on interval graphs, trapezoid

graphs and circular arc graphs.

3.4 Parameterized complexity results for TaRDiS

In Section 3.2, we showed that the variants of TaRDiS are NP-complete and W[2]-

hard with respect to k. This rules out k as a candidate parameter for an fpt algorithm.

We begin by showing inclusion of TaRDiS in FPT with respect to locally earliest

edges and tractability when the input is heavily restricted. We then give an algorithm

which solves each variant of TaRDiS on a nice tree decomposition of the footprint

graph. This generalises the tree algorithm given in Section 3.2.

A problem Π is said to be fixed-parameter tractable (fpt) with respect to some

parameter k if there is an algorithm solving Π in time f(k) · poly(n) (where n is the

size of the instance of Π). The complexity class FPT consists of all problem-parameter

pairs admitting an fpt algorithm.

3.4.1 FPT results with a restricted temporal assignment

We begin with two FPT results that require the temporal assignment to be restricted

in some way to recover tractability of TaRDiS. In the first, we consider Happy

TaRDiS and Nonstrict TaRDiS when parameterized by the number of locally

earliest edges. Following that, we consider Strict TaRDiS when each component

of the input is restricted in some way.

Lemma 3.52. Happy TaRDiS and Nonstrict TaRDiS are in FPT with respect

to the number of locally earliest edges and weakly locally earliest edges, respectively.

Proof. It suffices to observe that any instance with t (weakly) locally earliest edges

trivially admits a TaRDiS of cardinality t (Corollary 3.5). If k ≥ t, we must have a yes-

instance. Otherwise there are
(
t
k

)
possibilities for a (weakly) canonical TaRDiS, each

of which can be checked for validity in polynomial time, giving a runtime
(
t
k

)
·poly(n).

Lemma 3.53. Strict TaRDiS is in FPT parameterized by maximum degree in G↓,

lifetime and k, and Happy TaRDiS is in FPT with parameters lifetime and k.

109

3.4.2. Preliminaries: treewidth and tree decompositions

Proof. Any decidable language consisting of words of length at most some constant c

can be decided in constant time, hence is in P . Any strict temporal path in a temporal

graph G has length at most τ . This entails that, for all v, |R<v | ≤ 2∆τ where ∆ is

the maximum degree of G↓. Hence any strict TaRDiS S in G must satisfy |S| ≥ V (G)
2∆τ .

Therefore, no instance (G, k) satisfying |V (G)| > 2k∆τ can be in the language Strict

TaRDiS. Note that, in a happy temporal graph, we can can apply the property that

τ ≥ ∆. Therefore, both problems restricted as above have constantly many yes-

instances, each of size bounded by a constant.

3.4.2 Preliminaries: treewidth and tree decompositions

We refer the interested reader to Chapter 10 of Niedermeier’s Invitation to Fixed-

Parameter Algorithms [117] for a fuller introduction. Definitions and results in this

subsection are taken or adapted from that work.

Definition 3.54 (Tree Decomposition, Treewidth). We say a pair (T,B) is a tree

decomposition of G if T is a tree and B = {B(s) : s ∈ V (T)} is a collection of subsets

of V (G), called bags, satisfying:

1. V (G) = ∪s∈V (T)B(s).

2. ∀(u, v) ∈ E(G) : ∃s ∈ V (T) : {u, v} ∈ B(s). That is, for each edge in the graph,

there is at least one bag containing both of its endpoints.

3. ∀v ∈ V (G) : T [{s : v ∈ B(s)}] is connected; for each vertex, the subgraph

obtained by deleting every node not containing v in its bag from T is connected.

The width of a tree decomposition is defined to be max{|B(s)| : s ∈ V (T)} − 1. The

treewidth of a graph G is the minimum ω such that G has a tree decomposition of

with ω.

For a given tree decomposition (T,B) of graph G, we denote by Vs ⊆ V (G) the set

of vertices in G that occur in bags of the subtree of T rooted at s. It is a well-known

result by Bodlaender that finding a tree decomposition of width at most ω, if one

exists, is in FPT with parameter ω.

Theorem 3.55 (Bodlaender [118]). For all fixed constants ω ∈ N, there exists a

linear time algorithm that tests whether a given graph G = (V,E) has treewidth at

most ω, and if so outputs a tree decomposition of G with treewidth at most ω.

For ease, we describe our TaRDiS algorithm on a tree decomposition with addi-

tional structural properties.

Definition 3.56 (Nice Tree Decomposition, Join/Introduce/Forget/Leaf Node). A

tree decomposition (T,B) is called a nice tree decomposition if:

• every node of T has at most two children;

110

3.4.3. Algorithm for TaRDiS parameterized by treewidth and lifetime

w

u

v

u v

wv

u v

wv

u

v

w

u v wv

vv

v v

v

wu v

Figure 3.15: Graph P3 and four of its tree decompositions. From left to right: P3;
the trivial decomposition of width 2; a decomposition of width 1; two possible nice
tree decompositions of width 1. Note that every graph admits the trivial tree decom-
position of width V (G) − 1, where there is only one bag B(s) = V (G).

• if a node s has two children sl and sr, then B(s) = B(sl) = B(sr), and we call

s a join node;

• if node s has one child s′ then either:

– |B(s)| = |B(s′)| + 1 and B(s) ⊃ B(s′) (s is an introduce node), or

– |B(s)| = |B(s′)| − 1 and B(s) ⊂ B(s′) (s is a forget node);

• if node s has no children then B(s) = ∅, and we call t a leaf node.

An example of a graph and different tree decompositions of it can be found in

Figure 3.15. It is a known result that a tree decomposition (T,B) of a graph G of

width ω on n nodes can be efficiently processed to obtain a nice tree decomposition G

of width ω. We use this result as given below by Cygan, Fomin, Kowalik, Lokshtanov,

Marx, Pilipczuk, Pilipczuk and Saurabh [88].

Lemma 3.57 (Cygan [88]). If a static graph H admits a tree decomposition of width

at most ω, then it also admits a nice tree decomposition of width at most ω. Moreover,

given a tree decomposition (T,B) of width at most ω, one can compute a nice tree

decomposition of H of width at most ω that has at most O(ωV (H)) nodes in time

O(ω2 max(V (T), V (H)).

3.4.3 Algorithm for TaRDiS parameterized by treewidth and

lifetime

The following gives an algorithm for TaRDiS given a nice tree decomposition (T,B)

of the footprint G↓ of the input temporal graph G. Specifically, it computes the cardi-

nality of a minimum TaRDiS S. Note that we use the word “vertex” when referring to

the original graph and “node” when discussing the decomposition graph. We use the

symbols ≺ and ≻ as place-holders for strict/nonstrict inequalities. More specifically,

in Strict TaRDiS we use < and > in the place of ≺ and ≻ respectively and for

Nonstrict TaRDiS we use ≤ and ≥. By substituting the correct inequalities, it

111

States

can be seen that the algorithm described is correct for each of Strict TaRDiS and

Nonstrict TaRDiS.

Denote by Gs the subgraph (Vs, Es), where Vs (respectively Es) is the set of all

vertices (resp. edges) introduced in the subtree rooted at node s of the decomposition

tree. Intuitively, the algorithm works from leaf nodes to the root node and finds, at

each node s, a partial solution consisting of a minimal TaRDiS S for the subgraph

Gs.

We define the arrival time of a temporal path at a vertex v to be the time of the

final time-edge of the path. For the trivial path from a vertex to itself, we say that the

time of arrival is 0. Similarly, we define the departure time of a temporal path as the

time of the first time-edge in the path. For example, the temporal path consisting of

a single time-edge has the same departure and arrival time. We note that, for a path

to be a strict temporal path, the arrival time at a vertex v must be strictly before

the departure time from v. We allow the arrival and departure times to be equal in

nonstrict temporal paths of any length. We refer to a temporal path from a vertex

v to a vertex u with earliest arrival time as a foremost temporal path. We call the

arrival time of a foremost path the foremost arrival time. A foremost path from a set

of vertices S to a single vertex v is a foremost path from a vertex u in S to v such

that the arrival time of a path from any other vertex in S to v is the same or later.

States

A state of a bag B(s) is a mapping ψ : B(s) → ([0, τ]∪ ⊥) × ([0, τ]∪ ⊥) where

ψ(v) = (ta(v), tp(v)), such that ta(v) ≥ tp(v) if both values are integers and tp(v) = ⊥

only if ta(v) = ⊥. Conceptually, we think of ta(v) as the arrival time of some path

to v from our partial TaRDiS and tp(v) as the time by which we “promise” arrival

of such a path from the eventual full TaRDiS. The purpose of the promised arrival

time is to ensure that all forgotten vertices are temporal reachability dominated by

the TaRDiS. We use it by ensuring that, when a vertex is forgotten, there is a path

arriving at the vertex by its promised arrival time from a second vertex in the bag

which has a promised arrival time before the departure of the path. This means that

if there exists a path from a vertex in the TaRDiS to the second vertex in the bag, we

can append it with the path to ensure that the first is reached by the promised time.

If no path between the vertices in the bag exists, the state can only be valid if the

vertex is actually reached by its promised time from the partial TaRDiS (the arrival

time is at most the promised time). Denote the set of all states of a node s by Ψ(s).

In our definition of a temporal graph, we assume that all edges are active at strictly

positive times. Therefore, in both the strict and nonstrict variants of the problem,

the earliest time any vertex can be temporally reachable from a vertex in the TaRDiS

is 1, unless it is in the TaRDiS itself. Our intention is that, if ta(v) ̸= ⊥ then ta(v) is

exactly the time that v is reached from some TaRDiS vertex. If ta(v) = 0 for a vertex

v in the bag, this corresponds to v being included in the partial TaRDiS S. We use

the notation t−1
a , t−1

p to denote the preimage of the functions ta and tp respectively.

112

Signature

u v
3

0, 0 2, 0

B(s)

V (Gs)

c(s, ψ) = ∞

u v
3

B(s) = ∅

V (Gs)

c(s, ψ) = 1 c(s, ψ) = 0

u v
3

⊥, 2

B(s)

V (Gs)

u v
3

3, 3 2, 2

B(s)

V (Gs)

c(s, ψ) = 1

w x
2 1

u v
3

3, 3 3, 2

B(s)

V (Gs)

c(s, ψ) = ∞

w x
2 1

Figure 3.16: Five example bags, labelled with states and signatures. In the bottom
right example, the infinite signature reflects the fact there exists no TaRDiS reaching
v at time 3 exactly.

That is, t−1
a (x) is the set of all vertices v which are assigned (x, tp(v)) under a state

ψ.

We call a state ψ of a bag B(s) consistent if and only if there exists a set of vertices

S ⊆ V (Gs) such that

• for all v ∈ B(s) \ t−1
a (⊥) the foremost temporal path from some vertex in S

arrives at ta(v) exactly;

• for any vertex w in V (Gs) \B(s) which is not reachable from some vertex in S,

there is a temporal path to w from some vertex u in B(s) with departure time

t such that t ≻ tp(u).

We call such a set S a set that supports ψ of s. Note that, if ta(v) =⊥, then it is

possible to have a valid state where v is reachable from some vertex in S.

Signature

For a state ψ of a node s, we define the signature c(s, ψ) to be the cardinality of

the smallest set S∗ which supports ψ of s. If there is no such S∗, then we say that

c(s, ψ) = ∞. We say that such a set S∗ supports the signature c(s, ψ) if S∗ supports

ψ of s and |S∗| = c(s, ψ). The signature is a data structure with size O(τ2(ω+1))

where ω is the width of the nice tree decomposition of G↓. Note that two bags may

contain the same (possibly empty) set of vertices. Therefore, the signature must be

both a function of the state ψ and of the node s which ψ is a state of. Examples of

the signatures of different states can be seen in Figure 3.16.

We use the convention that the root node r is empty, i.e. B(r) = ∅. Consequently

there is only one possible state for the root node, namely the empty function, and

hence Ψ(r) = {∅}. Therefore, we have a yes-instance of TaRDiS if and only if c(r, ∅) ≤

k. Note that ∅ is always a consistent state for r. It is supported by the trivial TaRDiS

S = V (G).

113

Signature

We now discuss how we iteratively calculate the signature of a state for each type

of node in a nice tree decomposition.

Leaf nodes

We assume that leaf nodes l are empty, so there is only one trivial state, namely the

empty function ∅. The signature of this state for leaves l is c(l, ∅) = 0.

Introduce Nodes

Let s be an introduce node with child s′. Then we must have that B(s) = B(s′)∪{v}

for some v /∈ B(s′). To describe how to find c(s, ψ) for an introduce node s and state

ψ, we must define some new notation.

Let ψ|B(s′) be the restriction of some state ψ of s to the bag B(s′). For a state ψ

and functions g, f , let the state ψta(A)→g,tp(B)→h be defined

ψta(A)→g,tp(B)→h(x) :=



(g(x), h(x)) if x ∈ A ∩B

(g(x), tp(x)) if x ∈ A \B

(ta(x), h(x)) if x ∈ B \A

(ta(x), tp(x)), otherwise.

For an introduce node s with introduced vertex v and state ψ of s, we define av
to be the time of the earliest time-edge in {((v, u), t) |u ∈ B(s) and ta(u) ≺ t under

ψ}. If no such edge exists, let av = ∞. Notionally, this is a time before which v

cannot be reached from a vertex in S unless v is itself in S. We define Rtv to be the

set of vertices that are temporally reachable from v by temporal paths which depart

at a time t′ ≻ t. We use the convention that R∞
w = R⊥

w = ∅ for all vertices w. For a

vertex u in Rtv, define foremosttv(u) to be the arrival time of a foremost path from v

to u which departs at a time t′ ≻ t. An example of a valid state of an introduce node

can be seen in Figure 3.17.

The following lemma finds the signature of a state of an introduce node using the

signatures of the states of it’s child based on 5 possible disjoint cases of the value of

ta for the introduced vertex. In the first, a foremost path arrives at a vertex before it

is required to by the state, so the state must be inconsistent. In the second case, the

introduced vertex is added to the partial TaRDiS and the signature must be one more

than a state of the child whose arrival times are not calculated using paths traversing

the new vertex. The third and fourth cases occur when the introduced vertex could

cause there to be a foremost path from the TaRDiS with an earlier arrival time. In the

third, we deal with the situation where a pair of adjacent vertices both rely on each

other to be reached from the TaRDiS by the time prescribed by the state. In this case,

the signature must be the minimum of the signature of a state of the child such that

each vertex in the pair is separately reached in time and the foremost arrival times

do not traverse the introduced vertex. The fourth case occurs when the introduced

vertex could change the arrival time of a foremost path, and we do not have the

situation described in case 3. Here the signature of the state must be the same as the

114

Signature

u

v

w

x

(0, 0)

(4, 4)

(6, 6)

4

6 u w

x

(⊥, 4)

(⊥, 6)
6

9 9

B(s)

B(s′)
B(s′)

Figure 3.17: A valid state of an introduce node and a state of its child which are
supported by the same partial TaRDiS. Here x is a forgotten vertex.

signature of a state of the child such that the foremost arrival time at the vertices is

found by only considering paths which do not traverse the introduced vertex. In the

final case the state is inconsistent because ta is not equal to the foremost arrival time

of a path from the TaRDiS to the introduced vertex.

Lemma 3.58. Let ψ be a state of an introduce node s with child s′ where v is the

vertex introduced. Define Z to be the set (Rta(v)
v (G) ∩B(s)) \ {u : foremostta(v)

v (u) >

ta(u)}, and define the function f(w) := min{tp(w), foremosttp(v)
v (w)}. Then

1. if, for any u ∈ Rav
v (G) ∩ B(s), ta(u) ̸= ⊥ and foremostav

v (u) < ta(u), then

c(s, ψ) = ∞ (a foremost path arrives before it is prescribed to);

2. else, if ta(v) = 0, c(s, ψ) = 1+c
(
s′, ψ|ta(Z)→⊥,tp(B(s′))→f(B(s′))

B(s′)

)
(the introduced

vertex is added to the partial TaRDiS);

3. else, if we allow nonstrict paths (i.e. if 1 ≺ 1), av = ta(v) and there exists a

nonempty set W of neighbours of v where, for all w ∈ W , ta(w) = ta(v) = λ(vw)

then c(s, ψ) = minw∈W

{
c

(
s′, ψ|ta(Z′)→⊥,tp(B(s′))→f(B(s′))

B(s′)

)}
for Z ′ = Z \ {w}

(a pair of neighbours each rely on the other to be reached on time);

4. else, if ta(v) ∈ {av,⊥} then c(s, ψ) = c
(
s′, ψ|ta(Z)→⊥,tp(B(s′))→f(B(s′))

B(s′)

)
(the

introduced vertex could result in a foremost path with an earlier arrival time);

5. else, c(s, ψ) = ∞ (we have an inconsistent state).

Proof. We begin by noting that for any set S supporting ψ of s if the foremost arrival

time to v from a vertex in S is ta(v), then foremostta(v)
v (u) < ta(u) contradicts that

ta(u) gives the earliest time of arrival from a vertex in S to u. Otherwise, we could

append the temporal path to v from S with the path from v to u to find an temporal

path with an earlier arrival time. Hence, in case (1) of the Lemma, ψ is an inconsistent

state.

We have characterised the value of c(s, ψ) based on the value of ta(v) under ψ.

This gives us four further cases ((2)-(5)) to consider, accounting for all possible values

of ta(v). We show that our calculation of the signature c(s, ψ) is correct for each

possible value of ta(v) for the introduced vertex v. Let S be a set that supports the

signature of the state ψ of node s. That is, it is a set of minimal cardinality such that

t−1
a (0) = S ∩B(s); all vertices w in B(s) \ t−1

a (⊥) are temporally reachable from S by

115

Signature

a foremost path arriving at ta(w); and each vertex in Gs \ B(s) not reachable from

S is temporally reachable from a vertex u in B(s) departing at some time t ≻ tp(u).

Note that, for a consistent state, if there is a forgotten vertex reachable from a vertex

w in B(s) by a path departing at time t ≻ tp(w), the change in tp values ensures that

this remains true in the child states over which we take the minimum value.

In case (2), ta(v) = 0. Additionally, for all u ∈ Rtv, ta(u) ≤ foremostta(v)
v (u) or

ta(u) =⊥, since otherwise we would have case (1). Hence for any set S support-

ing ψ, v ∈ S and all vertices in R0
v are reached by time foremost0

v(u). We claim

that a set S supports ψ if and only if S \ {v} supports the state ψ′ = (t′a, t′p) :=

ψ|ta(Z)→⊥,tp(B(s′))→f(B(s′))
B(s′) of s′. That is, every vertex w in B(s) \ R0

v is temporally

reached by a vertex in S \ {v} at t′a(w) and every vertex in V (Gs) \B(s) that is not

temporally reachable from S \ {v} is temporally reachable from a vertex y in B(s′)

by a path departing at time t′ ≻ t′p(y). It is clear that, if states ψ and ψ′ are valid,

the former statement is true. This is because the value of ta for a vertex in B(s) \R0
v

is the same under both states.

To verify the latter statement, note that if a vertex y′ in V (Gs)\B(s) is reachable

from a vertex y in B(s′) by a path departing at t′ ≻ t′p(y) under ψ′, then the same

must be true under ψ. By construction of a nice tree decomposition, there are no

vertices in V (Gs) \ B(s) that are adjacent to v. Therefore, any path from v to a

vertex in V (Gs) \B(s) must traverse another vertex x in B(s) and depart x at time

t′′ ≻ t′p(x) under ψ′. Thus, if a vertex y′ in V (Gs) \ B(s) is reachable from a vertex

y in B(s′) by a path departing at t′ ≻ t′p(y) under ψ, then y′ must be reachable from

a (possibly different) vertex y′′ under ψ′. Therefore, a set S supports ψ if and only if

S \ {v} supports the state ψ′ = ψ|ta(Z)→⊥,tp(B(s′))→f(B(s′))
B(s′) of s′ and our calculation

of c(s, ψ) is correct.

Intuitively, cases (3) and (4) deal with the cases where the introduction of v

could change the earliest arrival time of a path from a vertex in S to a vertex in

B(s) \ {v}. In case (3) we deal with the possibility of nonstrict temporal paths when

ta(w) = foremostta(v)
v (w) = ta(v) for some vertex w. In this case, a child state wherein

ta(w) =⊥ for every such w may be supported by a set S which does not support ψ.

For this reason, we take the minimum over the signatures of states where the ta value

of each such neighbour is unchanged. A set S supports ψ if and only if there exists

a w ∈ W such that S supports ψ|ta(Z′)→⊥,tp(B(s′))→f(B(s′))
B(s′) . The forward implication

is clear from our description. Now suppose, for contradiction, that S supports only

ψ|ta(Z′)→⊥,tp(B(s′))→f(B(s′))
B(s′) . Then there is either a vertex u in R

ta(v)
v which is not

reached from S at time ta(u) or there is a forgotten vertex which is not reachable

from S or a vertex w in B(s) departing at t′ ≻ tp(w). Neither case is possible, and

thus we have a contradiction.

In case (4), the above does not apply. This is either because we are in the strict

setting or because there is no such nonempty set W , and ta(v) ∈ {av,⊥} under ψ.

Then, for all vertices w in Z = (Rav
v (G) ∩ B(s)) \ {u : foremostta(v)

v (u) > ta(u)},

there exists a foremost path from a set S that supports the state which traverses v.

116

Signature

u w

x

(⊥,⊥)

(⊥, 5)
3

5

B(s)

u w

x(⊥,⊥)

(⊥,⊥)

(⊥, 5)
3

5

B(s′)

Figure 3.18: A forget node with a valid state and its extension to a state of its child
supported by the same partial TaRDiS.

Therefore, any set S which supports ψ must support a child state where these vertices

w ∈ Z ′ have ta value ⊥ and tp is updated as mentioned earlier. In addition, it is clear

that any set which supports ψ|ta(Z)→⊥,tp(B(s′))→f(B(s′))
B(s′) must support ψ. Since we

have not added any vertices to S, the signature of s under ψ must be exactly the

signature of s′ under ψ|ta(Z)→⊥,tp(B(s′))→f(B(s′))
B(s′) .

In case (5) we deal with all remaining possibilities, namely when ta(v) for the

introduced vertex v has a nonzero value and ta(v) ̸= av. Then ta(v) must be strictly

before or after the earliest time-edge ((v, w), t) incident to v such that, for the other

endpoint w, ta(w) ≺ t. Therefore, for any set S that supports ψ, if the foremost

temporal path from a vertex in S to each neighbour w of v arrives at ta(w), the

foremost temporal path to v from S must arrive at a time which is not equal to

ta(v). This implies that the state is inconsistent and must therefore have an infinite

signature.

Forget Nodes

Let s be a forget node with child s′ such that B(s) = B(s′) \ {v}. Let Ψstrong ⊂ Ψ(s′)

be the set of states which extend ψ to B(s′) where ta(v) ∈ [0, τ] and ta(v) = tp(v).

Intuitively, these are the states where our partial TaRDiS already reaches the forgotten

node v by the promised time tp(v), i.e. the promise is strongly satisfied.

Let t′ be the earliest time such that there exists a vertex w in B(s) and a temporal

path in B(s′) from w to v departing at some time t such that tp(w) ≺ t under ψ and

arriving by t′. Let Ψweak ⊂ Ψ(s′) be the set of states which extend ψ to B(s′)

where either t′ ≤ tp(v) or tp(v) =⊥. Intuitively, Ψweak is the set of states where the

requirement that a forgotten vertex is reached by a path departing at time t ≻ tp(v)

is automatically satisfied by a path from w departing at t ≻ tp(w) for some w ̸= v.

That is, the promise is weakly satisfied. An example of a valid state of a forget node

can be seen in Figure 3.18.

Lemma 3.59. Let s be a forget node with state ψ and child s′ where v is the vertex

forgotten at s. Then

c(s, ψ) = min ({c(s′, ψ′) : ψ′ ∈ Ψweak ∪ Ψstrong} ∪ {∞}) .

Proof. We begin by showing that if a set S supports any state ψ′ ∈ Ψweak ∪ Ψstrong of

s′ then the same set S supports ψ. This shows us that the signature of ψ is at most

117

Signature

what we have calculated. Following this, we show that there is no smaller set that

supports ψ and hence that we have calculated the signature correctly.

Recall that set S supports a state ψ of a node s if and only if, under ψ:

• For all vertices u in B(s) \ t−1
a (⊥), the foremost path from S arrives at time

ta(u), and

• for all vertices x in Gs\B(s) which are not reachable from S, there is a temporal

path to x which departs from a vertex w in B(s) at some time t ≻ tp(w).

To start, consider the case where S supports ψ′ ∈ Ψweak. That is, there exists

a vertex w ∈ B(s′) and a temporal path from w to v that departs at some time

t′ ≻ tp(w) and arrives by time tp(v). As a result, any forgotten vertex x temporally

reachable from v by a path departing at some time t′′ ≻ tp(v) must be temporally

reachable from w by a path departing at time t′ by prefixing the path from v to

x with the temporal path from w to v. If ψ′ is consistent, then all vertices y in

B(s′) \ {v} = B(s) that are reachable from a vertex in S are reached by time ta(y) if

ta(y) ̸=⊥. Therefore, the restriction of ψ′ to B(s) is consistent and supported by S.

Now consider the case where S supports a state ψ′ ∈ Ψstrong. Recall that Ψstrong

is the set of states of s′ where ta(v) ∈ [0, τ] and ta(v) = tp(v). If such a state ψ′

is consistent for s′, then v is reached from a vertex in S by time ta(v). Using that

tp(v) = ta(v), we obtain that any forgotten vertex x reachable from B(s) by a path

from v departing at some time t′ ≻ tp(v) is reachable from S as well. Namely, we can

prefix the temporal path from v to x which departs at time t′ with the temporal path

from S to v which arrives by time ta(v) = tp(v). Hence we obtain that ψ is consistent

for s and supported by S.

We now suppose for contradiction that our calculation of the signature is incor-

rect. We have already shown that the signature must be at most |S| for some set S

supporting a state in Ψstrong ∪ Ψweak. Therefore, we suppose that there is a smaller

set S∗ which supports ψ whose intersection with B(s) is exactly the set of vertices

t−1
a (0) under ψ.

Consider the state ψ∗ extending ψ to B(s′) in which ta(v) is the arrival time of

the foremost path from S∗ to v (or ⊥ if there is no such path) and tp(v) = τ . Clearly

ψ∗ ∈ Ψweak ∪ Ψstrong, and S∗ supports ψ∗. This contradicts our assumption that S∗

was smaller than any set supporting a state in Ψweak ∪ Ψstrong.

Join Nodes

Let s be a join node with children s1 and s2.

Lemma 3.60. Let ψ1 = (ta,1, tp,1) and ψ2 = (ta,2, tp,2) be states of the children s1,

s2 of a join node s. We say that ψ1 and ψ2 coincide with the state ψ if

• ψ(v) = (0, 0) if and only if ψ1(v) = (0, 0) and ψ2(v) = (0, 0);

118

Signature

• for i ∈ {a, p} and all v ∈ B(s),

ti(v) =



min{ti,1(v), ti,2(v)} if ti,1(v), ti,2(v) ̸=⊥,

ti,1(v) if ti,2(v) =⊥̸= ti,1(v),

ti,2(v) if ti,1(v) =⊥̸= ti,2(v),

⊥, otherwise.

Then we calculate c(s, ψ) by

c(s, ψ) = min
ψ1,ψ2

{c(s1, ψ1) + c(s2, ψ2) − |t−1
a (0)|}.

where the minimum is taken over all pairs of states ψ1, ψ2 which coincide with ψ.

Proof. We begin by showing that a state ψ of a join node s is consistent if and only if

there are consistent states ψ1 and ψ2 of its children which coincide with ψ. We then

give a proof of correctness of our calculation of the signature.

Suppose that the states ψ1 and ψ2 are consistent for the nodes s1 and s2 respec-

tively and they coincide with the state ψ. Then, let S be the union of sets S1 and S2

which support ψ1 and ψ2 respectively. By our assumption of consistency, all vertices

in V (Gs) \ B(s) are temporally reachable from a vertex in S ∪ B(s) and a foremost

temporal path from a vertex in S arrives at each vertex u in B(s) at time ta(u). In ad-

dition, if any forgotten vertex w which is not reached from S is temporally reachable

from a vertex v ∈ B(s) by a path departing at some time t ≻ tp,j(v) for j ∈ {1, 2},

then w must be temporally reached from v by a temporal path departing at some

time t ≻ tp(v). Therefore, ψ must be a consistent state of s.

We now assume that ψ is a consistent state of s supported by the set S. Suppose,

for a contradiction, that S supports ψ and there are no child states supported by S

which coincide with ψ. There must be states for which ta describes the earliest time of

arrival of a path from S to any vertex in B(s1) and B(s2). Therefore, if there do not

exist states ψ1 and ψ2 supported by S, then there must be a vertex w in Gs1 \B(s1)

or Gs2 \B(s2) which is not temporally reachable from a vertex in S ∪B(s). If this is

the case, then ψ must also be inconsistent. This is because, by construction of a tree

decomposition, the only (temporal) path from a vertex Gs1 \ B(s1) to Gs2 \ B(s2)

or vice versa must traverse at least one vertex in B(s) = B(s1) = B(s2). Therefore,

if there is a temporal path from S or B(s) to each vertex in Gs \ B(s), there must

be a temporal path from S ∪B(s1) and S ∩B(s2) to each vertex in Gs1 \B(s1) and

Gs2 \B(s2) respectively. Therefore, there exist child states supported by S.

The smallest set S that supports a consistent state of s must therefore be the

smallest set that is the union of sets S1 and S2 which support consistent states ψ1,

ψ2 respectively of its children s1 and s2 which coincide. To find the cardinality of

this set, we employ the inclusion-exclusion principle. The only vertices which Gs1

and Gs2 have in common are those in B(s). Therefore, c(s, ψ) = minψ1,ψ2{c(s1, ψ1)+

c(s2, ψ2) − |t−1
a (0)|} where the minimum is taken over pairs of states ψ1, ψ2 which

coincide with ψ.

119

Running Time and Extensions

Running Time and Extensions

We note that for every vertex v in a bag, there are strictly fewer than (τ + 2)2 values

of ψ(v). The number of vertices in a bag is bounded by treewidth ω plus 1. Thus,

there are less than (τ + 2)2(ω+1) states per node. We now explore the running time of

calculating the signature at each type of node. For leaf nodes, the signature can only

be one value; therefore this can be found in constant time. If we have the signatures

of all child states of an introduce node and we want to verify validity of a given state

of that node, we need to compute the value of av for the introduced vertex v, the

reachability set Rta(v)
v and the earliest time of arrival at each other vertex in the bag

from v by a path departing at times t ≻ ta(v) and t′ ≻ tp(v).

The reachability set Rtv(G) can be computed in time O(n2) by a modified breadth

first search algorithm for any v and t. Hence it takes O(τn3) time to calculate Rtv(G)

for every vertex v ∈ V and time t ∈ [τ]. This can be done as a preprocessing step

before we begin working up the tree decomposition.

The earliest time of arrival of the two paths can be computed using a variation of

breadth-first search and thus takes O(ω2) time. The value av is computable in O(ω)

time. In addition, for some cases in Nonstrict TaRDiS we find the minimum signa-

ture of restrictions of the state where we change the value of ta for some neighbours

of v. Assuming all signatures of descendant nodes are calculated, this takes O(ω)

time. Therefore, computing the signature of all states of an introduce node requires

O(ω2(τ)2(ω+1)) time.

For forget nodes, we must compare the signatures of multiple child states. There

areO(τ2) of these extensions for each state of the forget node. In addition, we compute

the earliest time of arrival of a path from any vertex in B(s) to v in the subgraph

induced by B(s) with restrictions on its departure time. This can be achieved by a

variant of a breadth-first search which takes at most O(ω3) time. Thus, finding the

signature of all states of a forget node requires O(ω3(τ)2ω+4) time.

Finally, to compute the signature of the state of a join node, we must compare

the states of both child nodes which coincide with this state. For a given vertex in

the bag of a join node, the number of values of ψ1 and ψ2 which coincide with ψ(v)

are bounded by O(τ4). Therefore, there are O(τ4(ω+1)) tuples of states to consider

when calculating the signature of ψ on s. Therefore, we calculate the signature of a

state of a join node in O(τ4(ω+1) ·ω) time. Note that this dominates the time needed

to generate all possible states for a given bag.

We now combine the lemmas from this section to get the following theorem. We

can find a tree decomposition of width at most a constant ω if one exists in linear

time by Theorem 3.55. Lemma 3.57 states that we can find a nice tree decomposition

of constant width ω given a tree decomposition of width ω in linear time. We can

recursively compute the signature of a given state of a node using Lemmas 3.58, 3.59

and 3.60. We solve TaRDiS by finding the signature c(r, ψ) of the root where the

state ψ is the empty function which gives the cardinality of a minimal TaRDiS.

120

3.5. Parameterized complexity results for MaxMinTaRDiS

Theorem 3.61. The algorithm described takes as input a temporal graph G consist-

ing of n vertices with a nice tree decomposition of width at most ω and solves Strict

and Nonstrict TaRDiS on G in time O(τ4(ω+1) · ω · n+ τn3).

We emphasize that τn3 is polynomial in the input size because τ ≤ E (recall, no

snapshot in a temporal graph is empty). The algorithm allows for edges to be active

multiple times. That is, it is not restricted to simple temporal graphs.

3.5 Parameterized complexity results for MaxMinTaRDiS

Having shown MaxMinTaRDiS is in ΣP2 , finding instances of tractability is even

more surprising than with the variants of the TaRDiS problem. We begin the fol-

lowing result, closely related to Lemma 3.53 which gives us tractability when each

component of the input to Strict MaxMinTaRDiS is restricted.

Lemma 3.62. Strict MaxMinTaRDiS is in FPT when parameterized by maxi-

mum degree ∆ in H and k.

Proof. Recall from Lemma 3.30 that (H, k) is a yes-instance of Strict MaxMinTaRDiS

if and only if (H, k − 1) is a no-instance of Dominating Set. Also, any pair (H, k)

whereH has maximum degree ∆ satisfying |V (H)| > k(∆+1) is trivially a no-instance

of Dominating Set. Applying the same reasoning as in our proof of Lemma 3.53,

we obtain that Strict MaxMinTaRDiS is solvable in linear time when ∆ and k

are bounded. If the input graph has at least k(∆ + 1) vertices then output YES, and

otherwise solve the problem (necessarily of bounded size) by brute-force.

3.5.1 Containment in FPT with respect to treewidth and lifetime

We show tractability of our problems by expressing them in EMSO (extended monadic

second order) logic and applying the variant of Courcelle’s theorem given by Arnborg,

Lagergren and Seese [119]. This result states that an optimisation problem which is

definable in EMSO can be solved in polynomial time when parameterized by treewidth

and length of the formula. The theorem is as follows.

Theorem 3.63 (adapted from [120], Theorem 30). Let P be an EMSO-definable

problem, then one can solve P on graphs G = (V,E) of order n := |V | and treewidth

at most w in time O(fP (w) · poly(n)).

An EMSO formula over a static graph H is a formula that uses:

1. the logical operators ∨, ∧, ¬, = and parentheses;

2. a finite set of variables, each of which takes an element of V (H) or E(H);

3. the quantifiers ∀ and ∃;

4. a finite set of variables which take subsets of the sets of edges or vertices;

121

3.5.1. Containment in FPT with respect to treewidth and lifetime

5. integers.

We make use of the predicates ̸=, =⇒ , ⇐= , ⇐⇒ , ⊆, ∈ and \, which can

be implemented using the above. We note that any formula consisting only of the

first 3 components is a first-order formula (FO). A formula which is first order with

the addition of the fourth bullet point is referred to as an MSO formula. A more

formal definition of an EMSO-definable problem is given by a survey by Langer,

Reidl, Rossmanith and Sikdar [120].

Theorem 3.64. MaxMinTaRDiS is fixed-parameter tractable when parameterized

by lifetime, k and treewidth of the graph.

Proof. The formal definition of EMSO given by Langer Reidl, Rossmanith and Sikdar

[120] requires a weight function bounded by a constant. Our weight function will be

the cardinality of a TaRDiS, which is bounded by k. Since the temporal assignment is

not part of the input, we encode it as a partition of edges into sets which correspond

to the time at which they are active. The EMSO formula is constructed using the

following auxiliary subformulae

• card(k,X) tests whether a set X has cardinality at least k:

card(k,X) := ∃x1, . . . , xk ∈ X :
∧

1≤i<j≤k

xi ̸= xj .

• geq(X1, X2) tests whether |X1| ≥ |X2| for sets X1 and X2:

geq(X1, X2) := ∃k : card(k,X1) ∧ ¬card(k + 1, X2).

• part(S1, . . . , Sτ) tests whether the sets of edges S1 . . . Sτ partition the edges of

H:

part(S1, . . . , Sτ) := ∀e ∈ E : ∨
1≤i≤τ

e ∈ Si ∧

 ∧
1≤j<i

e ̸∈ Sj

 ∧

 ∧
i<ℓ≤τ

e ̸∈ Sℓ

 .

The two right-most brackets can be ignored if we do not require that the tempo-

ral assignment is simple. To enforce a happy temporal assignment, we can add

the requirement that no two edges in the same set share and endpoint. Recall

that tractability of Happy MaxMinTaRDiS is shown with respect to lifetime

and k combined in Lemma 3.62. That is a stronger result than what we have

here since Courcelle’s theorem only gives tractability on graphs with bounded

treewidth.

The following subformulae can be adapted to write TaRDiS in MSO logic.

• mconn(X,St) tests whether the subgraph induced by X in Gt is connected;

in particular, if it is true then all vertices in X belong to the same connected

component in Gt, and if X is a connected component in Gt then the predicate

is true.

mconn(X,St) := ∀Y ⊂ X,Y ̸= ∅,∃y ∈ Y,∃x ∈ X \ Y : xy ∈ St

122

3.6. Conclusions and open questions

• mvconn(v, w, t) tests whether two vertices are in the same connected component

of Gt:

mvconn(v, w, t) := ∃X ⊂ V : v ∈ X ∧ w ∈ X ∧ mconn(X,St).

• mtadj tests whether two vertices v, w ∈ V are adjacent at time t:

mtadj(v, w, St) := ∃e ∈ St : v ∈ e ∧ w ∈ e.

• mpath tests whether there is a temporal path from v to w ∈ V with latest time

τ :

mpath(v, w, S1, . . . , Sτ) := ∃v0, . . . , vτ ∈ V :

v = v0 ∧ vτ = w ∧
τ−1∧
t=0

(vt = vt+1 ∨ a(vt, vt+1, St+1))

where a(v, w, St) can be substituted for mvconn(v, w, t) or mtadj(v, w, St) de-

pending on whether we are testing for nonstrict or strict temporal paths respec-

tively.

• TaRDiS(S1, . . . , Sτ , X) which tests if every vertex is temporally reachable from

X by a temporal path of lifetime τ :

TaRDiS(S1, . . . , Sτ , X) := ∀v ∈ V (H),∃s ∈ X : mpath(s, v, S1, . . . , Sτ).

• mTaRDiS(S1, . . . , Sτ , X) tests whether a set X is a minimum TaRDiS:

mTaRDiS(S1, . . . , Sτ , X) :=∀X ′ ⊂ V (H) : TaRDiS(S1, . . . , Sτ , X)∧

(TaRDiS(S1, . . . , Sτ , X
′) =⇒ geq(X ′, X)).

• MinTaRDiS(H, τ, k) which tests if there is temporal assignment with lifetime

at most τ such that there exists a minimum TaRDiS of size at least k on H:

MinTaRDiS(H, τ, k) := ∃X ⊂ V,∃S1, . . . , Sτ ⊂ E :

part(S1, . . . , Sτ) ∧mTaRDiS(S1, . . . , Sτ , X) ∧ card(k,X).

Therefore MaxMinTaRDiS can be expressed in EMSO and the theorem holds.

Furthermore, we can use the expression to express TaRDiS in EMSO. This, how-

ever, gives a weaker tractability result than Theorem 3.61.

3.6 Conclusions and open questions

In this paper, we introduce the TaRDiS and MaxMinTaRDiS problems and study

their (parameterized) complexity. We show a bound on the lifetime τ and a restriction

to planar inputs combined are insufficient to obtain tractability (Theorems 3.12, 3.42,

and Corollary 3.50) and moreover tightly characterize the minimum lifetime τ for

which each problem becomes intractable. Further, we give an algorithm on a nice tree

123

3.6. Conclusions and open questions

decomposition of a temporal graph which gives tractability of TaRDiS with respect

to lifetime and treewidth of the footprint of the graph. In addition, we show that τ ,

k and the treewidth of the input graph combined are sufficient to yield tractability in

all cases of MaxMinTaRDiS by leveraging Courcelle’s theorem.

These results leave open the following questions:

Question 3.1. What is the exact complexity of Nonstrict MaxMinTaRDiS with

lifetime τ ≥ 3?

Question 3.2. What is the exact complexity of Happy MaxMinTaRDiS with

lifetime τ ≥ 4?

Question 3.3. Is there a structural parameter of the footprint graph (such as treewidth)

which is alone sufficient to obtain tractability for any of the considered variants?

An interesting possible extension of our work would be to find approximability

results for these problems. Another interesting dimension is the comparison of Non-

strict MaxMinTaRDiS and Happy MaxMinTaRDiS when τ is lower-bounded

by a function of the number of edges m. With the constraint τ = m (and requir-

ing that every 1 ≤ t ≤ τ is used) Happy MaxMinTaRDiS becomes a subprob-

lem of Nonstrict MaxMinTaRDiS, and their computational complexity in this

case is an interesting open question. Analogously to t-Dominating Set [121], t-

TaRDiS, in which t individuals must be reached provides a natural generalization

of our problem and the potential for parameterization by t. Recall that, in Strict

MaxMinTaRDiS, it is always optimal to choose the constant function as our tem-

poral assignment λ. It may be interesting to consider restrictions on λ other than

happiness which require the use of a non-constant temporal assignment (as in [81])

to make the problem more interesting.

124

Chapter 4

Reconfigurable Routing in Data

Center Networks

4.1 Introduction

The rapid growth of cloud computing applications has induced demand for new tech-

nologies to optimize the performance of data center networks dealing with ever-larger

workloads. The data center topology design problem (that of finding efficient data

center topologies) has been studied extensively and resulted in myriad designs (see,

e.g., [122]). Advances in hardware, such as optical switches reconfigurable in milli- to

micro-seconds, have enabled the development of reconfigurable topologies (see, e.g.,

[123]). These topologies can adjust in response to demand (demand-aware recon-

figurable topologies) or vary configurations over time according to a fixed protocol

(demand-oblivious reconfigurable topologies; see, e.g., [124]). So-called hybrid data

center networks are a combination of a static topology consisting of, for example,

electrical switches, and a demand-aware reconfigurable topology implemented, for ex-

ample, with optical circuit switches or free space optics (see, e.g., [33, 125, 34, 35]).

An intuitive example of a simple reconfigurable topology is illustrated in Figure 4.1.

b c d e f g h

Ceiling mirror

Servers with top-of-rack steerable free-space optics.

a

Figure 4.1: Basic model of an optical wireless data-center network, as described in
[33, 34, 35]. Practical timescales for reconfiguration vary from milliseconds [34] to
microseconds or nanoseconds [33, 35].

The hybrid network paradigm combines the robustness guarantees of static net-

works with the ability of demand-aware reconfigurable networks to serve large work-

loads at very low cost. Consider, for example, the hybrid network shown in Figure 4.2,

and the configuration shown in Figure 4.3. In the (unaugmented) static network, there

are two possible paths along which a message from node b to node d may be routed:

125

4.1. Introduction

b → f → h → e → d or b → f → e → d. In the hybrid network as configured in

Figure 4.3, the path b ⇢ a → c ⇢ d (among others) is an option1.

A hybrid network.

switch with
switch ports

static links

node with
internal ports
external ports

switch links

a

b
c

g

f

h

e

d

Figure 4.2: A hybrid network.

An augmented network

a

b
c

g

f

h

e

d

An augmented network

a

b
c

g

f

h

e

d

Figure 4.3: An augmented network and its abstracted dynamic links.

Of particular interest to us is the question of how the reconfigurable (optical)

portion of the network should be configured for some demand pattern, formalized by

Foerster, Ghobadi and Schmid [37] as the Reconfigurable Routing Problem

(RRP): in short, given a hybrid network (consisting of a static network and of some

switches) and a workload, we wish to choose a configuration (setting of the switches)

which results in an optimal delivery of the workload.

Crucially, existing hardness results are only valid when the static network is al-

lowed to be arbitrary, which is almost never the case in practice where interconnection

and data center network design is driven by symmetry, high connectivity, recursive

decomposition, and so forth. For example: the popular switch-centric data center

network Fat-Tree [39] is derived from a folded Clos network; the server-centric data

center network DCell [126] is recursively-structured whereby at each level, a graph-

theoretic matching of servers is imposed; and the server-centric data center network

BCube [40] is recursively-structured with a construction based around a generalized

hypercube. (It should be noted that there do exist examples of unstructured data

center networks, such as Jellyfish [127] and Xpander [128] which utilize the theory of

random graphs.) Many (but not all) NP-complete problems become tractable when

the input is restricted to the graphs providing the communications fabric for data cen-

ter networks and other interconnection networks. For example, Hamiltonian paths

are often trivial to find in many interconnection networks; indeed, no finite connected

vertex-transitive graph without a Hamiltonian path is known to exist (the Lovász

Conjecture contends there is no such graph - see Section 4 of [129]). This motivates
1We denote by u ⇢ v the concatenation of a switch link from u to some switch, of the internal

switch connection, and of a switch link to v from that switch.

126

4.2. Problem Setting

our investigation into how the complexity of RRP changes when we restrict to more

structured and realistic networks. The question of the complexity of RRP for specific

network topologies was specifically identified as an area for future work in [36].

In this chapter, we establish for the first time hardness results for RRP that apply

to various specific families of highly structured static networks such as, for example,

the hypercubes. Our constructions are (perhaps not surprisingly) of a much more

involved nature than has hitherto been the case.

4.2 Problem Setting

The decision problem Reconfigurable Routing Problem considered in this chap-

ter is a proper restriction of that presented in prior work [36, 37, 38]. In this section,

we provide technical detail to fully formalize our version of the problem, but also ad-

ditionally provide sufficient framing to briefly review existing results and to identify

the areas strengthened by our contribution.

We adopt the usual terminology of graph theory though we tend to use ‘nodes’ and

‘links’ when speaking about the components of reconfigurable networks and ‘nodes’

and ‘edges’ when dealing with (abstract) graphs. We denote the natural numbers by

N (we include 0 ∈ N) and the non-negative rationals by Q+.

4.2.1 Hybrid networks, (re)configurations and (segregated)

routing

A hybrid network G(S) can be visualized as in Figure 4.2, and consists of a static

network G and some switches S augmenting it. A static network G can be abstracted

as an undirected graph G = (V,E) so that each static link (u, v) ∈ E has some fixed

weight w ∈ Q+ (reflecting a transmission cost) and is incident with internal ports of

two distinct nodes of V . The number of internal ports of some node v ∈ V is then

exactly the degree of v in the abstracted graph G. We denote by S a set of switches

augmenting the static network G with switch links joining switch ports of some switch

to external ports of some of the nodes of V . Every switch link has weight 0 (we say

more about switch link weights momentarily). Every switch s ∈ S has at least two

switch ports.

In general, the number of external ports of the nodes of a static network G = (V,E)

is variable, as is the number of switch ports of the switches of a hybrid network G(S),

and it may be the case that there is more than one switch link between a specific node

and a specific switch. We assume that the switch links describe a bijection between

the external ports and the switch ports; otherwise, there would be some unused ports,

which we can safely ignore.

Given a hybrid network G(S) and a switch s ∈ S, a switch matching Ns of s is a

set of pairs of switch ports of s so that all switch ports involved are distinct. Each

switch matching represents an internal setting of the switch and naturally yields a

set of pairs of external ports of nodes where all such ports are distinct; we refer to a

127

4.2.2. Routing in hybrid networks

set of pairs of external ports obtained in this way as a node matching (note that this

differs from the standard graph-theoretic notion of a matching). An illustration of a

configured hybrid network is shown in Figure 4.3: on the left side, switch matchings

are represented as sets of arcs, and on the right side the corresponding node matching

is shown as a set of dotted lines.

A configuration N is a set of switch matchings, one for each switch. A configuration

straightforwardly encodes the corresponding node matchings. We say that (u, v) is a

dynamic link in the configuration N (we sometimes write (u, v) ∈ N) if (u, v) appears

in any node matching corresponding to N .

We allocate a fixed weight µ ∈ Q+ to each internal port-to-port connection in

a switch s. Although a dynamic link is an atomic entity, it can be visualized as

consisting of a switch link followed by an internal port-to-port connection in s followed

by another switch link. We denote by G(N) the static network G augmented with

the dynamic links (each of weight µ) resulting from the configuration N and we call

G(N) an augmented network. In the augmented network visualized in Figure 4.3, for

example: (a, b) is a dynamic link; (a, c) is a static link; and (e, h) is both a static

link a dynamic link. Note that it is possible that an augmented network G(N) is a

multigraph.

The concepts defined above are driven by reconfigurable hardware technology

such as optical switches, wireless (beamforming) and free-space optics, all of which

establish port-to-port connections, i.e., switch matchings. The survey paper [125]

provides some detail as regards the relationship between the emergent theoretical

models and current opto-electronic technology.

4.2.2 Routing in hybrid networks

Consider again the example shown in Figure 4.3. In the configuration shown, a

message M from c to node e may be routed:

1. via static links only, along the path φ1 := c → b → f → e with weight 3w, or

2. via dynamic links only, along the path φ2 := c ⇢ d ⇢ h ⇢ e with weight 3µ, or

3. via a combination of static and dynamic links, along the path φ3 := c ⇢ d → e

with weight µ+ w.

Depending on the value of µ, any of the paths may minimize the cost to route M :

if µ ≥ 2w then φ1 is optimal; if µ ≤ w
2 then φ2 is optimal; and if µ ∈ [w2 , 2w]

then φ3 is optimal. We may wish to bound the number of alternations allowed

between optic and static links in any path a message takes; we capture this hardware

requirement via a segregation parameter σ ∈ N ∪ {∞}, as introduced in [38], that is

the number of alternations between static and dynamic links. In the fully segregated

case, σ = 0: messages may be routed either by static links only (as in φ1) or by

dynamic links only (as in φ2). In the non-segregated case, σ = ∞ and there is

no restriction on the number of alternations, so any path is admitted. Note φ3 is

128

4.2.3. The Reconfigurable Routing Problem

admitted as a valid path to route M if and only if σ ≥ 1. The dynamic link limit δ,

like the segregation parameter σ, is a restriction on admissible flow-paths. Whereas

σ describes the maximum number of alternations between static and dynamic links

permitted, δ describes the maximum number of dynamic links any flow-path may use.

In particular, when δ = 1 every flow-path must contain at most one dynamic link.

Networks are expected to route many messages (of varying sizes) optimally at the

same time. Given a hybrid network G(S) we represent the set of all demands we

must optimize for as a workload (matrix) D with entries {D[u, v] ∈ Q+ : u, v ∈ V }

providing the intended pairwise node-to-node workloads (each D[u, u] is necessarily

0).

Given a configuration N and u, v ∈ V for which D[u, v] > 0, we route the cor-

responding workload via a path in G(N) from u to v in G(N) so that this cho-

sen flow-path φ(u, v) has workload cost D[u, v] × wtG(N)(φ(u, v)), where the weight

wtG(N)(φ(u, v)) is the sum of the weights of the links of the flow-path φ(u, v) (if G(N)

has both a static link (x, y) and a dynamic link (x, y) then we need to say which we

are using in φ(u, v)). The total workload cost (of D under N) is defined as∑
u,v∈V,D[u,v]>0

D[u, v] × wtG(N)(φ(u, v)).

Our aim will be to find a configuration N in some hybrid network G(S) and

flow-paths in G(N) for which the total workload cost of some workload matrix D is

minimized. In an unrestricted scenario, we would choose any flow-path φ(u, v) to be

a flow-path of minimum weight from u to v in G(N), the weight of which we denote

by wtG(N)(u, v). When σ ̸= ∞ we must also ensure the flow-path has at most σ

alternations. We also have the analogous concepts wtG(φ(u, v)) and wtG(u, v) where

we work entirely in the static network G. Note that we often describe D by a weighted

digraph, which we usually call D′, so that the node set is V and there is an edge (u, v)

of weight w > 0 if, and only if, D[u, v] = w. We also refer to some D[u, v] > 0 as a

demand (from u to v).

4.2.3 The Reconfigurable Routing Problem

We are now in a position to introduce our protagonist:

Reconfigurable Routing Problem (σ) (RRP(σ))

Input: (G,S, µ, w,D, κ): D is a workload matrix for the hybrid network G(S)

with static (resp. dynamic) links all of weight w (resp. µ).

Question: Does G(S) admit some configuration N such that the total workload

cost of D under N (where the number of alternations for any path is bounded by

σ) is at most κ?

As previously alluded to, this setting is more expressive than we require for most

of this chapter, and more restrictive than the exact formalism considered in prior work

[36, 37, 38]: in those works, w and µ are sometimes allowed to be functions of their

129

4.3. Results

endpoints rather than fixed constants. This provides much more expressivity; notably,

their model loses no power when it is restricted to inputs where G is a complete graph

and there is only one switch, since it is possible to simulate any other instance by

assigning prohibitively large weights to any static edges and any pair of switch ports

which should not be usable.

We now turn to the “realistic” networks we mentioned in our introduction. Hence-

forth unless otherwise specified, static link weights are all equal (and normalized to

1) and dynamic link weights are always some fixed constant µ ∈ Q+. Also, there

is a single switch and all nodes are connected to it with identical hardware. This is

both practically relevant and intuitively realistic; see e.g. Figure 4.1. Then the set of

switches S of the hybrid network consists of just one switch, which is fully described

by the number of switch links each node in the hybrid network has, which we call ∆S .

This is closely related to the maximum reconfigurable degree ∆R from [38], which is

an upper bound on the number of external ports per node. The resulting restriction

of RRP can be formalized as follows:

∆S-switched RRP (σ)

Input: (G,µ,D, κ): D is a workload matrix for the hybrid network G(S) with

static (resp. dynamic) links all have weight 1 (resp. µ) (where S consists of a

single switch that every node in G is connected to exactly ∆S times).

Question: Does G(S) admit some configuration N such that the total workload

cost of D under N (where the number of alternations for any path is bounded by

σ) is at most κ?

4.3 Results

Table 4.1 shows a summary of hardness results from previous work as well as our

three main intractability results. In general terms, we obtain NP-completeness for

2-switched RRP and 3-switched RRP on any fixed class of static networks of

practical interest (defined more fully below) and for any value of σ. We then re-

strict our focus (and associated parameters) to the case where the static network is

a hypercube when we establish the NP-completeness of 1-switched RRP(σ = 3)

in this setting; we conjecture that a similar construction can be used to establish

hardness when σ > 3. We also, in Theorem 4.4, show that 1-switched RRP(σ = 0)

is solvable in polynomial time. The cases when σ ∈ {1, 2} remain interesting open

problems. Subsection 4.3.1 is devoted to the case of 1-Switched RRP(δ = 1) (i.e.

any flow-path must contain at most a single dynamic link) which entails at most 2

alternations, and we show this case is NP-complete for hypercubes, grids, and toroidal

grids. The proof in that section is intended to facilitate the task of proving hardness

for other interesting families of networks.

2By using variable µ with prohibitively large weights, it is possible to simulate many switches
with just one.

130

4.3. Results

Result |S| ∆R σ/δ D link weights notes

[36], Theorem 1 Θ(n)
(or 1 2) Θ(n)

any
σ ≥ 2

sparse,
all values

0 or 1

variable;
w ∈ [1, 100n2]
µ ∈ [1, 100n2]

Showed inapprox.
within Ω(log n)

[37], Lemma 1 Θ(n)
1

fixed;
w = µ = 1

All switches
have 3 ports.

[37], Theorem 2

1

G has Θ(n)
components

[38], Theorems
4.1, 4.2

2
any

σ ≥ 0

dense,
values in
poly(n)

G is empty; there are
no static links

Theorem 4.1

sparse,
values in
poly(n)

fixed; w = 1
µ ∈ Θ(1

poly(n))
G ∈ H, where H
is any polynomial
family of networks
(incl. hypercubes,

grids, cycles).
Theorem 4.2

3 fixed; w = 1
µ ∈ Θ(1

log(n))

Theorem 4.6

1

σ = 3 fixed;
w = 1

any µ ∈ (0, 1)

G is a hypercube

Theorem 4.19 δ = 1 G is a hypercube, grid,
or toroidal grid

Table 4.1: Settings for some pre-existing hardness results for RRP. |S| is the number
of switches; ∆R is the maximum number of external ports per node; σ is the segrega-
tion parameter and δ is the dynamic link limit; D is the workload matrix; n denotes
the number of nodes in the instance.

As is standard in NP-hardness proofs, we reduce from known NP-complete prob-

lems to instances of RRP; the challenge is that, due to the expansive scope of our

theorems, we lose several “degrees of freedom” which are used for encoding hard in-

stances in, e.g., [130, 36, 37]. Specifically, we may not make use of varying static or

dynamic link weights to prohibit certain connections, nor encode any features of the

input instance in the topology of the hybrid network G(S). For example, in Lemma

1 [37], many small switches with two feasible configurations each are used to encode

a truth assignment, and in Theorem 1 of [36] “bad” links are given weights of order

Θ(n2). Neither of these mechanisms can be leveraged to obtain hardness in our set-

ting; in this sense, our hardness results are strictly stronger and also harder to obtain

than those from [130, 36, 37]. We are constrained to choose a size for the network G,

and then to encode the input instance in the demand matrix D.

Our first two results hold for a wide class of graph families, which may be of broader

interest for the study of computational hardness in network problems. Rather than

allowing arbitrary static networks in instances of RRP, we wish to force any such

static network to come from a fixed family of networks where a family of networks

H is an infinite sequence of networks {Hi : i ≥ 0} so that the size |Hi| of any Hi is

less than the size of Hi+1. However, we wish to control the sequence of network sizes.

Consequently, we define a polynomial family of networks as being a family of networks

H = {Hi : i ≥ 0} where there exists a polynomial pH(x) so that |Hi+1| = pH(|Hi|),

for each i ≥ 03. Note that given any n ≥ 0, we can determine in time polynomial in n

the smallest i such that n ≤ |Hi|. As an example of a polynomial family of networks,

consider the hypercubes; here, the polynomial pH(x) = 2x. Other examples include

independent sets, complete graphs, cycles, complete binary trees and square grids,

3Technically, we insist that there exists a polynomial Turing machine M which computes Hi+1
on input Hi, for each i ≥ 0, but this definition obfuscates the utility of this description.

131

4.3. Results

among many others. The sweeping generality of having a single construction which

holds for any polynomial family H poses a challenge in our proofs of Theorems 4.1

and 4.2; we require that our constructed network H(S) behaves identically when H

is a connected (or even complete) graph and, at the opposite extreme, when H is

disconnected (or even independent).

Theorem 4.1. For any polynomial family of networks H = {Hi : i ≥ 0}, the problem

2-switched RRP restricted to instances (H,µ,D, κ) satisfying:

• H ∈ H has size n

• the workload matrix D is sparse and all values in it are polynomial in n

• µ ∈ Θ(1
poly(n)) is fixed for all dynamic links

is NP-complete.

Proof. Note that 2-switched RRP as in the statement of the theorem is in NP

as it can be straightforwardly reduced to an equivalent instance of the more general

RRP, which is known to be in NP. We now build a polynomial-time reduction from

the problem 3-Min-Bisection to our restricted version of RRP where the problem

3-Min-Bisection is defined as follows:

• instance of size n: a 3-regular graph G = (V,E) on n nodes and an integer

k ≤ n2

• yes-instance: there exists a partition of V into two disjoint subsets A and B,

each of size n
2 , so that the set of edges incident with both a node in A and a

node in B has size at most k; that is, G has bisection width at most k.

Note that any 3-regular graph necessarily has an even number of nodes. The problem

3-Min-Bisection was proven to be NP-complete in [131] where it was also shown that

approximating 3-Min-Bisection to within a constant factor approximation ratio

entails the existence of a constant factor approximation algorithm for the more general

and widely-studied problem Min-Bisection, which is defined as above but where G

can be arbitrary and where A and B have sizes differing by at most one. Given an

arbitrary instance (G = (V,E), k) of size n of 3-Min-Bisection, we now build an

instance (H,µ,D, κ) of 2-switched RRP. Moreover, we may assume that k ≤ n
3 +46

as it was proven in [132] that every 3-regular graph has bisection width at most n
3 +46.

First, we define a weighted digraph D′ = (V ′, E′) which will encode a description

of our workload matrix D via: there is a directed edge (u, v) with weight w if, and

only if, there is a node-to-node workload of w from u to v. Let n̄ be the size of

the network Hi where i is the smallest integer such that n + 6n2 + 2 ≤ |Hi| and set

H = Hi.

• The node set V ′ is taken as a disjoint copy of the node set V of G, which we also

refer to as V , together with the set of nodes Vc = {xi, yi : −L
2 ≤ i ≤ L

2 }, where

L = 3n2 (recall, n is even), and another set of nodes U of size n̄− (n+ 6n2 + 2);

so, |V ′| = n̄. We call every node of Vc a chain-node. For ease of presentation,

132

4.3. Results

x0x−1 x1x−2 x2x− = x−L
2

x+ = xL
2

.

y0y−1 y1y−2 y2y− = y−L
2

y+ = yL
2

.

Figure 4.4: The graph D′.

we denote the chain-nodes xL
2

and x− L
2

by x+ and x−, respectively, and we

define the chain-nodes y+ and y− analogously.

• The (directed) edge set E′ consists of Eα ∪ Eβ ∪ E1 where:

– the set of chain-edges Eα = {(xi, xi+1), (yi, yi+1) : 0 ≤ i < L
2 }∪

{(xi, xi−1), (yi, yi−1) : −L
2 < i ≤ 0}

– the set of star-edges Eβ = {(x0, v) : v ∈ V } ∪ {(y0, v) : v ∈ V }

– the set of unit-edges E1 which is a copy of the edges E of G, but on our

(copied) node set V and so that every edge is replaced by a directed edge

of arbitrary orientation.

Note that the nodes of U are all isolated in D′ and that |V ′| = n̄ (the nodes of U will

play no role in the following construction). The workloads on the edges of E′ are α,

β or 1 depending upon whether the edge is a chain-edge from Eα, a star-edge from

Eβ or a unit-edge from E1, respectively, where we define α = 24n6 and β = 6n3. If

the directed edge (u, v) has weight α (resp. β, 1) in D′ then we say that (u, v) is

an α-demand (resp. β-demand, 1-demand). The digraph D′ can be visualized as in

Figure 4.4. The grey rectangle denotes the nodes of V , the nodes of Vc appear along

the top and the bottom and the dashed (resp. dotted, solid) directed edges depict

the chain-edges (resp. star-edges, unit-edges). The nodes of U are omitted.

As stated earlier, our static network H is the network Hi ∈ H where |Hi| = n̄.

We refer to the node set of H as V ′ also and we refer to the subset of nodes within

V ′ corresponding to V as V also. Since we are in the 2-swtiched setting, we have

one switch s with 2|V ′| ports so that every node of H is adjacent, via switch links,

to exactly two ports of the switch. Hence, our switch set is S = {s} and our hybrid

network is H(S). It is important to note that for any configuration N , any node of

H(N) can be adjacent to at most 2 other nodes via dynamic links (as ∆S = 2).

As can be seen, we have the graph G = (V,E), the digraph D′ = (V ′, E′) and

the hybrid network H(S) with node set V ′. Although G, D′ and H(S) are disjoint in

terms of node sets, we do not distinguish between, say, the node set V of G and the

subset of nodes V of H. It should always be obvious which set we are referring to.

133

4.3. Results

We proceed similarly when we talk of specific nodes. As ever, we refer to ‘edges’ in

graphs and ‘links’ in networks (but they are really one and the same).

We set the weight of any dynamic link as µ = 1
2L = 1

6n2 and the bound κ for the

total workload cost as κ = κα + κβ + κ1 where:

• κα = 24n6

• κβ = 3n4 + n3

2 + n2

• κ1 = k
2 + 1

8 − 1
4n + k

3n2 .

The values of κα, κβ and κ1 have the following significance.

• Suppose that for every chain-edge (xi, xi+1) (resp. (xi, xi−1), (yi, yi+1), (yi,

yi−1)) of Eα, we force a dynamic link joining xi and xi+1 (resp. xi and xi−1, yi
and yi+1, yi and yi−1) in H(N) and choose a corresponding flow-path serving

this α-demand as consisting of this dynamic link (N is the resulting configura-

tion from our chosen switch matching). The total workload cost of flow-paths

serving α-demands is 2Lαµ = 24n6 = κα.

• Further, suppose that the dynamic links incident with nodes of V in H(N) are

chosen so that we have a path of dynamic links pA from x+ to either y− or y+,

involving the subset of nodes A ⊆ V , and a path of dynamic links pB from x−

to y+ or y−, respectively, involving the subset of nodes B ⊆ V , so that both pA
and pB have length n

2 + 1. That is, we choose the dynamic links so that they

form a cycle C (of length n+ 2L+ 2) in H(N) covering exactly the nodes of V

and Vc. Suppose that for any star-edge (x0, v) (resp. (y0, v)) of Eβ , we choose

the flow-path in H(N) serving this star-edge as consisting entirely of dynamic

links resulting from the shortest path in our cycle C from x0 to v (resp. y0 to

v). The total workload cost of flow-paths corresponding to the star-edges is

4µβ
n
2∑
i=1

(L2 + i) = 3n4 + n3

2 + n2 = κβ .

• Further, suppose we choose the flow-path in H(N) serving the 1-demand (u, v)

(in E1) to be a path of dynamic links within the cycle C of shortest length. If

u and v both lie on pA or both lie on pB then the workload cost of this flow-

path is at most µ(n2 − 1) = 1
6n (1

2 − 1
n), and if one of u and v lies on pA with

the other node lying on pB then the workload cost of this flow-path is at most

µ(n2 + L+ 1) = 1
2 + 1

12n + 1
6n2 . If the width of the bisection of G formed by A

and B is at most k then the total workload cost of flow-paths corresponding to

the unit-edges is at most

(3n
2 − k)µ(n2 − 1) + kµ(n2 + L+ 1) = k

2 + 1
8 − 1

4n + k

3n2 = κ1.

From above, we immediately obtain that if (G, k) is a yes-instance of 3-Min-Bisection

then (H(S), D, µ, κ) is a yes-instance of RRP.

Conversely, suppose that (H,µ,D, κ) is a yes-instance of RRP. Let N be a config-

uration (consisting of a switch matching of s) and let F be a collection of flow-paths

134

4.3. Results

that witness that the total workload cost for the workload matrix D is at most κ. De-

note by N , also, the sub-network of H(N) consisting solely of dynamic links. W.l.o.g.

we may assume that every node of H(N) is incident with exactly two dynamic links of

N (by adding additional dynamic links that we do not actually use in any flow-path,

if necessary).

Claim 4.1.1. If (u, v) ∈ Eα (that is, (u, v) is a chain-edge in D′) then (u, v) is a

dynamic link in N ; so, the total workload cost of the flow-paths serving α-demands

is exactly κα = 24n6.

Proof. Suppose that (xi, xi+1) ̸∈ N (there is an analogous argument for each of

(xi, xi−1), (yi, yi+1) and (yi, yi−1)). So, the flow-path of F serving the α-demand

(xi, xi+1) consists of at least two links and has workload cost at least 2µα (as 2µ is

strictly less than 1 which is the weight of a static link). Hence, the total workload

cost of flow-paths corresponding to the chain-edges is at least κα + µα. Denote the

total workload cost of flow-paths serving the β-demands (resp. 1-demands) by κ̄β

(resp. κ̄1). So, κα + µα + κ̄β + κ̄1 ≤ κ with µα ≤ µα + κ̄β + κ̄1 ≤ κβ + κ1; that is,

with n4 ≤ n3

2 + n2 + k
2 + 1

8 − 1
4n + k

3n2 . This yields a contradiction (so long as n is

big enough) and the claim follows.

Claim 4.1.2. The set of dynamic links N forms a cycle in H(N) covering exactly

the nodes of V ∪ Vc and on which every link from {(xi, xi+1), (yi, yi+1) : 0 ≤ i <

L
2 } ∪ {(xi, xi−1), (yi, yi−1) : −L

2 < i ≤ 0} lies. Moreover, every flow-path of F serving

a β-demand consists entirely of dynamic links.

Proof. By Claim 4.1.1, if (u, v) ∈ Eα then (u, v) ∈ N and the total workload cost of

the flow-paths serving the α-demands is exactly κα = 24n6. Note that because every

node of H(N) is adjacent to at most 2 dynamic links, there are no other dynamic

links incident with a node from Vc \ {x+, x−, y+, y−}.

Suppose that a flow-path of F serving a β-demand consists entirely of dynamic

links. So, the workload cost of such a flow-path is at least µβ(L2 + 1) = 3n3

2 + n.

Alternatively, if a flow-path of F serving a β-demand contains at least one static link

then the workload cost of such a flow-path is at least β = 6n3. Consequently, if at least

one flow-path of F serving a β-demand contains a static link (of weight 1) then the

total workload cost of flow-paths serving the β-demands is at least (2n−1)µβ(L2 +1)+

β = (2n−1)(3n3

2 +n)+6n3 = 3n4 + 9n3

2 +2n2 −n > 3n4 + n3

2 +n2 + k
2 + 1

8 − 1
4n + k

3n2 =

κβ + κ1 = κ − κα which yields a contradiction. Thus, all flow-paths of F serving a

β-demand consist entirely of dynamic links. In particular, N must be connected. As

N is regular of degree 2 then N must, in fact, be a cycle covering the nodes of V ∪Vc.

The claim follows.

By Claim 4.1.2, N consists of a path of dynamic links involving all links from

{(xi, xi+1) : −L
2 ≤ i < L

2 } from x− to x+ concatenated with a path pA of dynamic

links from x+ to either y− or y+ concatenated with a path of dynamic links involving

all links from {(yi, yi+1) : −L
2 ≤ i < L

2 } from y− or y+ to y+ or y− concatenated

135

4.3. Results

with a path pB of dynamic links from y+ or y− to x−, respectively. W.l.o.g. we may

assume that pA runs from x+ to y+ and pB from y− to x−.

We can now recalculate the total workload cost of the flow-paths serving the β-

demands. Suppose that there are p nodes of V on pA and so n − p nodes of V on

pB . We may assume that no nodes of U lie on pA or pB : if any do, then removing

all such nodes from those paths results in a strictly smaller total workload cost. The

total workload cost of the flow-paths serving the β-demands is

2µβ
p∑
i=1

(L2 + i) + 2µβ
n−p∑
i=1

(L2 + i)

= pµβL+ (n− p)µβL+ 2µβ
p∑
i=1

i+ 2µβ
n−p∑
i=1

i

= nµβL+ (p(p+ 1) + (n− p)(n− p+ 1))µβ

= 3n4 + n(2p2 − 2np+ n2 + n)

≥ 3n4 + n3

2 + n2 = κβ (when p takes the value n
2)

as the minimum value for 3n4 + n(2p2 − 2np+ n2 + n) is when p = n
2 .

Suppose that the paths pA and pB have different lengths. From above, the total

workload cost of the flow-paths serving the β-demands is at least 3n4 +n(2(n2 + 1)2 −

2n(n2 + 1) + n2 + n) = 3n4 + n3

2 + n2 + 2n = κβ + 2n. Consequently, we must

have that 2n ≤ κ1 = k
2 + 1

8 − 1
4n + k

3n2 . As k ≤ n
3 + 46 (from [132]), we have that

2n ≤ n
6 +23+ 1

8 − 1
4n + 1

9n + 46
3n2 which yields a contradiction. Hence, the paths pA and

pB each have length n
2 , with the total workload cost of the flow-paths corresponding

to the unit-edges being at most κ1.

Let (u, v) be a unit-edge. From above: if u and v both lie on pA or both lie on

pB and the flow-path serving the 1-demand (u, v) consists entirely of dynamic links

then the workload cost of this flow-path lies between µ and µ(n2 − 1), i.e., 1
6n2 and

1
6n (1

2 − 1
n); if u and v lie on pA and pB , respectively, or vice versa, and the flow-

path serving the 1-demand (u, v) consists entirely of dynamic links then the workload

cost of this flow-path lies between µ(L + 2) and µ(n2 + L + 1), i.e., 1
2 + 1

3n2 and
1
2 + 1

12n + 1
6n2 ; and if the flow-path serving the 1-demand (u, v) contains a static link

then the workload cost of this flow-path is at least 1. In particular, we may assume

that any flow-path corresponding to a unit-edge consists entirely of dynamic links.

Let A (resp. B) be the nodes of V that appear on pA (resp. pB). So, (A,B) is a

bisection of G. Suppose that this bisection has width k + ϵ, for some ϵ ≥ 1. So there

are k + ϵ unit-edges whose corresponding work-flows contribute collectively at least

(k + ϵ)µ(L+ 2) ≥ (k + 1)(1
2 + 1

3n2) = k
2 + 1

2 + 1
3n2 + k

3n2 >
k
2 + 1

8 − 1
4n + k

3n2 = κ1 to

the total workload cost, which yields a contradiction. Consequently, G has bisection

width at most k and we have that if (H,µ,D, κ) is a yes-instance of RRP then (G, k)

is a yes-instance of 3-Min-Bisection. Our result follows as (H,µ,D, κ) can be

constructed from (G, k) in time polynomial in n.

This result significantly strengthens Theorems 4.1 and 4.2 from [38]: there,

RRP(∆R ≥ 2, σ = 0) is shown to be NP-complete when the static network is an

136

4.3. Results

independent set, and the proof does not enable us to restrict the workload matrix D

meaningfully. The main weakness of Theorem 4.1 is its reliance on µ being a poly-

nomial factor smaller than any static link weight. This is actually related to the fact

that a connected 2-regular network, as is G(N) when G is an independent set and

∆S = 2, has diameter linear in the number of nodes n. A network of maximum degree

3, on the other hand, may have diameter logarithmic in n (e.g., a complete binary

tree has this property) and we indeed show NP-completeness of RRP(∆S = 3) when

µ = Θ(1
logn).

Theorem 4.2. For any polynomial family of networks H = {Hi : i ≥ 0}, the problem

3-switched RRP restricted to instances (H,µ,D, κ) satisfying:

• H ∈ H has size n

• the workload matrix D is sparse and all values in it are polynomial in n

• µ ∈ Θ(1
log(n))

is NP-complete.

Proof. As in the case of Theorem 4.1, membership of NP is straightforward. The

problem Restricted Exact Cover by 3-Sets (RXC3) is defined as follows:

• instance of size n: a finite set of elements X = {xi : 1 ≤ i ≤ 3n}, for some

n ≥ 1, and a collection C of 3-element subsets of X , called clauses, where

C = {cj : 1 ≤ j ≤ 3n} and where each cj = {xj1, x
j
2, x

j
3} so that every element

of X appears in exactly three clauses of C

• yes-instance: C contains an exact cover C′ for X ; that is, a subset C′ ⊆ C so that

every element of X appears in exactly one clause of C′ (hence, C′ necessarily has

size n).

The problem RXC3 is NP-complete as was proven in Theorem A.1 of [133]. Let

(X , C) be an instance of RXC3 of size n. We will build an instance (H,µ,D, κ) of

3-switched RRP corresponding to (X , C).

First, we define a weighted graph D′ so as to describe the workload D. Having

built D′, we will orient every undirected edge so that: there is a directed edge (u, v)

with weight w if, and only if, there is a node-to-node workload of w from u to v (we

still refer to the resulting digraph as D′). Consequently, we will need one flow-path

in our resulting hybrid network corresponding to each directed edge of D′ = (V ′, E′).

Our construction proceeds in stages.

• We begin with a complete binary tree T of depth d so that the number of leaves

is 2d with 2d−1 < n ≤ 2d. If the leaves are {li : 1 ≤ i ≤ 2d} then we colour:

every leaf li, where n < i, white; every leaf li, where 1 ≤ i ≤ n, grey; and the

root of T grey. Throughout, if we do not specify the colour of a node as grey

or white then it is coloured black. Note that d = ⌈log2(n)⌉.

137

4.3. Results

(a)

z

(b)

Figure 4.5: Attaching the gadgets.

• For every xi ∈ X , we create a unique node xi and for every clause cj ∈ C, we

create a unique 2-path as follows: there are 3 nodes uj , vj and wj together with

the edges (uj , vj) and (vj , wj) and the node uj is coloured grey.

• For each 1 ≤ j ≤ 3n, if the clause cj = {xj1, x
j
2, x

j
3} then there are edges (xj1, uj),

(xj2, wj) and (xj3, wj).

• To every node coloured grey, we attach a unique gadget consisting of a 4-clique

with one of its edges subdivided by a node, denoted z, so that there is an

edge joining the gray node and the node z; and to every node coloured white,

we attach the same gadget except that we identify the white node and the

node denoted z. These attachments can be visualized as in Figure 4.5a and

Figure 4.5b where the white and gray nodes are as shown.

• There is an edge (r, xi), for all 1 ≤ i ≤ 3n: call these the root-edges.

This completes the construction of the graph D′ which can be visualized as in

Figure 4.6 where the root-edges are depicted as dashed. Note that the number of

nodes in V ′ is N = 6(2d) + 28n+ 4 and the number of edges in E′ is 9(2d) + 43n+ 6,

with 3n of these edges root-edges. Let D′′ be D′ with the root-edges removed. Note

that every node of D′′ has degree 3 except for the leaf nodes of {li : 1 ≤ i ≤ n} and

the nodes of {vj : 1 ≤ j ≤ m}, all of which have degree 2 (we return to this comment

presently). Let E′ = E′′ ∪Eroot where Eroot is the set of root-edges (and so E′′ is the

edge set of D′′). As regards the edge-weights, orient each of the edges of E′ ‘down’

the graph D′ as it is portrayed in Figure 4.6 so as to obtain a digraph and: give each

directed edge of E′′ weight α, where α = 4n log2(n); and give each directed root-edge

of the form (r, xi) weight 1.

Let n̄ be the size of the network Hi where i is the smallest integer such that

N ≤ |Hi| and we fix our static network as H = Hi. We name a subset of nodes of

H as V ′ with the remaining nodes named U . ∆S = 3, so we have one switch s that

has 3n switch ports and every node of H has 3 external ports; so, every node of H

has exactly 3 switch links to s, and S = {s}. Finally, we define µ = 1
2⌈log2(n)⌉ and

κ = µα|E′′| + 3µn(⌈log2(n)⌉ + 3) so as to complete the construction of our instance

(H,µ,D, κ) of 3-switched RRP.

Suppose that (X , C) is a yes-instance of RXC3. So, let C′ ⊆ C be an exact cover

of X . For every (u, v) ∈ E′′, we choose (u, v) to be a dynamic link and ensure that

every node of {vj : 1 ≤ j ≤ 3n, cj ∈ C′} is joined via a dynamic link to a leaf node

of {li : 1 ≤ i ≤ n}. If vj is such that cj ∈ C′ then denote the unique leaf node to

which there is a dynamic link from vj by l̄j . Denote the resulting switch matching

138

4.3. Results

root

. . .

.

.

. . .

.

l1 l2 l3 l4 ln ln+1 l2d−1 l2d

v1 v2 vj v3n

u1 w1 u2 w2 u3 w3 u3n w3n

x1 x2 xi x3n

T

Figure 4.6: The graph D′.

of s as constituting the configuration N . Referring back to our comment on node

degrees above, the dynamic links so added must form a matching in H(N). For any

workload of weight α in D, we choose the corresponding flow-path to consist of the

dynamic link joining the two nodes in question. Consequently, for all of the workloads

corresponding to directed edges of E′′, the total workload cost of the corresponding

flow-paths is µα|E′′|. All of the remaining workloads involve the root and the nodes

of {xi : 1 ≤ i ≤ n}. Any one of these nodes xi is such that the element xi in a

unique clause cj ∈ C′. We choose the flow-path consisting entirely of dynamic links

that routes from the root down the tree T to the leaf-node l̄j and on to vj and,

through either uj or wj , on to xi. This flow-path has (graph-theoretic) length d + 3

and consequently the total workload cost due to flow-paths corresponding to edges of

Eroot is exactly 3µn(d+ 3) = 3µn(⌈log2(n)⌉ + 3). Hence, the total workload cost due

to all flow-paths is µα|E′′| + 3µn(⌈log2(n)⌉ + 3) = κ and (H,µ,D, κ) is a yes-instance

of 3-switched RRP.

Conversely, suppose that (H,µ,D, κ) is a yes-instance of 3-switched RRP and

that N is a configuration and F a set of flow-paths witnessing that the total workload

cost is at most κ.

Claim 4.2.1. It is necessarily the case that every directed edge (u, v) ∈ E′′ is such

that (u, v) is a dynamic link in H(N).

Proof. Suppose, for contradiction, that there is a directed edge (u, v) ∈ E′′ so that

(u, v) is not a dynamic link in N . By construction, the node-to-node workload of α

from u to v contributes a cost of at least 2µα to the total workload cost (note that

the cost of a static link is 1 and 2µ < 1 when n ≥ 3). So, the total workload cost from

flow-paths corresponding to directed edges of E′′ is at least µα(|E′′| + 1). However,

κ = µα|E′′| + 3µn(⌈log2(n)⌉ + 3) and so we must have that µα = 4µn log2(n) ≤

3µn(⌈log2(n)⌉ + 3) which yields a contradiction when n ≥ 210. The claim follows.

By Claim 4.2.1, the total workload cost of flow-paths corresponding to the directed

139

4.3. Results

edges of E′′ is exactly µα|E′′|. Consequently, the total workload cost of flow-paths

corresponding to the directed edges of Eroot must be at most 3µn(⌈log2(n)⌉ + 3).

Given the set of dynamic links as supplied by Claim 4.2.1, the only other possible

dynamic links we might have involve the leaf nodes {li : 1 ≤ i ≤ n}, the nodes of

{vi : 1 ≤ i ≤ 3n} and nodes of U . If we are looking for a path of dynamic links

joining r and any node xi then no matter how we might extend the set of dynamic

links corresponding to the directed edges of E′′, we can never obtain a path of (graph-

theoretic) length less than d+ 3: a path of length d down the tree T from r to a leaf

l followed by a path of length 3 of the form (l, vj , uj , xi) or (l, vj , wj , xi).

We may assume U is not involved in any such path. Any path visiting some node

ū ∈ U can be shortened to a path of the former form by simply removing ū from the

path. This corresponds to a rewiring of the configuration N which decreases the total

workload cost so, for example, the path (r, . . . , l, ū, vj , uj , xi) of length n + 4 can be

shortened to (r, . . . , l, vj , uj , xi) of length n+ 3 by removing the dynamic links (l, ū)

and (ū, vj) from N and adding the dynamic link (l, vj) to N . Clearly this does not

increase the workload cost for any demand.

So, any flow-path corresponding to some directed edge (r, xi) ∈ Eroot and consist-

ing entirely of dynamic links has workload cost at least µ(d+ 3) = µ(⌈log2(n)⌉ + 3).

If a flow-path corresponding to some directed edge (r, xi) ∈ Eroot contains a static

link then the workload cost of this flow-path is at least 1 and 1 > 1
2 + 3

2⌈log2(n)⌉ =

µ(⌈log2(n)⌉ + 3), when n ≥ 24. As there are 3n flow-paths corresponding to directed

edges of Eroot, we must have that every flow-path corresponding to a directed edge of

Eroot consists entirely of dynamic links and has (graph-theoretic) length ⌈log2(n)⌉+3.

Consider the flow-path corresponding to the directed edge (r, xi) ∈ Eroot. Suppose

that the dynamic link (lk, vj) appears on this flow-path (exactly one such dynamic

link does). Note that there are at most n such dynamic links used in the flow-paths

of F corresponding to the directed edges of Eroot. Build the set of clauses C′ ⊆ C by

including every such cj in C′. Consequently, we have a subset C′ ⊆ C of at most n

clauses. Moreover, as we can reach any xi from r by a flow-path of d+3 dynamic links,

every xi ∈ X appears in a clause of C′; that is, |C′| = n, C′ is an exact cover for X

and (X , C) is a yes-instance of RXC3. As our instance (H,µ,D, κ) can be constructed

from (X , C) in time polynomial in n, our result follows.

These results led us to consider the problem 1-switched RRP(σ = k) for k ≥ 0.

By extending Lemma 4.3 due to [38], we show that this restriction leads to a tractable

problem when either σ = 0 or the static network is a complete graph, in contrast with

our NP-completeness results. That result makes use of the dynamic link limit δ -

recall that when δ = 1 every flow-path must contain at most one dynamic link. In

combination with the constraint σ = 0, this entails that every flow path consists of

either a single dynamic link (and no static links), or of one or more static links (and

no dynamic links). The result below is proven via a maximum matching argument in

[38].

140

4.3. Results

Lemma 4.3 ([38, Theorem 3.1]). The problem RRP(σ = 0, δ = 1) can be solved

in polynomial-time when there is only one switch. Moreover, the problem remains

solvable in polynomial-time even if we allow non-uniform weights for dynamic links.

Theorem 4.4. 1-switched RRP(σ = 0) is in P.

Proof. Note that this proof holds even if we allow variable weights for static and

optic links. Because each node v is connected to the switch exactly once, it is not

possible that any vertex is incident to two optic links, and hence impossible for there

to be any path consisting of two or more optic links. Consequently setting δ = 1

introduces no new constraints; in this scenario a flow is permissible with σ = 0

if and only if it permissible with σ = 0 and δ = 1. Hence the input instance of 1-

switched RRP(σ = 0, δ = 1) is a yes-instance if and only the corresponding instance

of RRP(σ = 0, δ = 1) is a yes-instance, and tractability follows from Lemma 4.3.

Corollary 4.5. 1-switched RRP(σ = k) restricted to instances where the static

network G is a complete graph is in P, for any k ∈ N ∪ {∞}.

Proof. IfG is a complete graph with all edge weights equal (without loss take wt(u, v) =

1 ∀(u, v) ∈ E) then without loss under any configuration N , each demand D[u, v] is

routed via the flow-path φ(u, v) of minimum weight, which is either:

• a single static link from u to v with unit weight.

• a single dynamic link from u to v with weight µ.

It follows that setting σ = 0 introduces no new constraints, and then by Theorem

4.4 we have tractability.

Corollary 4.5 rules out the possibility that 1-switched RRP might be NP-

complete for any polynomial graph family H (since such a claim would extend to

the family of complete graphs) unless P equals NP. This leaves open the practically

relevant case where ∆S = 1 and σ > 0 for specific topologies. We consequently

consider the scenario where the static network is a hypercube and the segregation

parameter σ = 3.

Theorem 4.6. For any fixed µ ∈ (0, 1), the problem 1-switched RRP(σ = 3)

restricted to instances (H,µ,D, κ) satisfying:

• H ∈ Q, where Q := {Qd|d ∈ N} is the family of hypercubes

• the workload matrix D is sparse and all values in it are polynomial in n

is NP-complete.

Proof. Note that RRP as in the statement of the theorem is in NP on account of

the numerical restrictions imposed. As in the proof of Theorem 4.2, we reduce from

the problem RXC3. Let (X , C) be an instance of RXC3 of size n. W.l.o.g., we may

assume that n is even. Let m = ⌈log2(3n)⌉ (so, 3n ≤ 2m). Our static network H

141

4.3. Results

is the hypercube Q8m (so, |Q8m| = 28m = O(n8)) and there is exactly 1 switch link

from every node to our switch s.

We begin by defining a weighted digraph D′ = (V,E′) where V is the node set

of our hypercube Q8m. The digraph D′ is to provide a description of our workload

matrix. In order to define the directed edges of D′, we define some specific subsets

of nodes of V . We explain the notation that we use as we proceed. By ‘distance’ we

mean the distance (that is, shortest path length) in the hypercube Q8m and by Vi

(resp. V≤i) we mean the subset of nodes of V that are at distance exactly i (resp. at

most i) from the root node r = (1, 1, . . . , 1) = 18m (in general, we also denote nodes

of V as bit-strings of length 8m).

• Within the nodes of Vm, we define the subset P̃ = {zz̄16m : z ∈ {0, 1}m}

(in general: yz denotes the concatenation of two bit-strings y and z, with zi

denoting the concatenation of i copies of the bit-string z; and z̄ denotes the

complement of the bit-string z). Note that |P̃ | = 2m.

• Within the nodes of V3m, we define the subset C̃ = {(zz̄)312m : z ∈ {0, 1}m}.

Note that |C̃| = 2m.

– For any bit-string z ∈ {0, 1}8m and for any bit-string y ∈ {0, 1}i where

i < 8m, we write ⊕(z; y) to denote the bitwise exclusive OR of z and

08m−iy (so, ⊕(z; y) differs from z on at most the last i bits). For any set

U of bit-strings of length 8m and bit-string y of length i < 8m, we define

U⊕y = {⊕(z; y) : z ∈ U}.

– For any c ∈ C̃, we define

∗ c⊕001 = ⊕(c; 001)

∗ c⊕010 = ⊕(c; 010)

∗ c⊕100 = ⊕(c; 100)

and so we obtain sets of nodes C̃⊕001, C̃⊕010 and C̃⊕100, each consisting

of sets of neighbours of nodes in C̃ (note also that if c1, c2 ∈ C̃ are dis-

tinct then c1 and c2 are at distance at least 6 in Q8m and any node of

{c⊕001
1 , c⊕010

1 , c⊕100
1 } and node of {c⊕001

2 , c⊕010
2 , c⊕100

2 } are at distance at

least 6 in Q8m).

• Within the nodes of V4m, we define the subset X̃ = {(zz̄)4 : z ∈ {0, 1}m}. Note

that |X̃| = 2m.

– For any x ∈ X̃, we define

∗ x⊕01 = ⊕(x; 01)

∗ x⊕10 = ⊕(x; 10)

and so we obtain sets of nodes X̃⊕01 and X̃⊕10, each consisting of sets of

neighbours of nodes in X̃ (note that if x1, x2 ∈ X̃ are distinct then x1 and

x2 are at distance at least 8 in Q8m and any node of {x⊕01
1 , x⊕10

1 } and node

of {x⊕01
2 , x⊕10

2 } are at distance at least 6 in Q8m).

142

4.3. Results

We define the weighted directed edges E′ of D′ as follows. There are three weights:

some β > max { 3n(m+1+2µ)
µ , 3n(m+1+2µ)

1−µ }; some α > 15nβ + 9n2 + 9n; and 1. The

directed edges of Eβ (resp. Eα, E1) all have weight β (resp. α, 1) and E′ = Eβ ∪

Eα ∪ E1.

• The directed edges of Eβ are derived using the structure of our instance (X , C)

of RXC3.

– For each 1 ≤ j ≤ 3n, identify the clause cj ∈ C with the node cj =

(binm(j − 1)binm(j − 1))312m of the subset C̃ of V3m, where in general

bini(j) is the binary representation of the natural number j as a bit-string

of length i (so, in particular, 0 ≤ j < 2i). Henceforth, we refer to these

specific nodes of C̃ as the set of clause nodes C = {cj : 1 ≤ j ≤ 3n}.

– For each 1 ≤ i ≤ 3n, identify the element xi of X with the node xi =

(binm(i− 1)binm(i− 1))4 of the subset X̃ of V4m. Henceforth, we refer to

these specific nodes of X̃ as the set of element nodes X = {xi : 1 ≤ i ≤ 3n}.

For any clause cj = {xj1, x
j
2, x

j
3} of C, there are directed edges (c⊕001

j , xi1),

(c⊕010
j , xi2) and (c⊕100

j , xi3) in Eβ and we refer to the nodes c⊕001
j , c⊕010

j and

c⊕100
j as the associate clause nodes of clause cj or of clause node cj . We define

the associate element nodes of an element or an element node analogously. This

constitutes all directed edges of Eβ .

• We denote by P = {pi : 1 ≤ i ≤ n} a subset of n nodes of P̃ which we refer to

as the set of port nodes. The directed edges of Eα are EPα ∪ EWα where:

– EPα = {(z, z̄) : z ∈ V≤m+5 \ P}

– EWα is an arbitrary orientation of a specific perfect matching M (coming

up) on the nodes of W \ (X ∪X⊕01 ∪X⊕10) where W is defined as V4m ∪⋃3
i=1 V4m−i ∪

⋃3
i=1 V4m+i.

Note that |W \ (X ∪ X⊕01 ∪ X⊕10)| is even and so a perfect matching exists

(recall, we assumed that n is even); however, as stated, we require that our

perfect matching M has a specific property which we describe below.

• The set of directed edges E1 is defined as {(r, xi) : 1 ≤ i ≤ 3n}; that is, as

{r} ×X.

Now for our perfect matching M .

Claim 4.6.1. There is a perfect matching M of W \ (X ∪ X⊕01 ∪ X⊕10) so that if

(u, v) is in the matching then there is no static link joining u and v.

Proof. Define a perfect matching M on W as follows. First, match every node in V4m

with the node v that differs from u in every bit; that is, v = ū.

Consider some node zz̄zz̄zz̄zz̄ of X. Its matched node is z̄zz̄zz̄zz̄z which is either

in X or outside X. Suppose it is the latter. Suppose also that some other node

ww̄ww̄ww̄ww̄ is in X and its matched node w̄ww̄ww̄ww̄w lies outside X. Note that

143

4.3. Results

the distance between the two matched nodes z̄zz̄zz̄zz̄z and w̄ww̄ww̄ww̄w is at least

8. We amend our matching M by removing all matched pairs of nodes of X and

choose an arbitrary matching on the remaining matched nodes (note that there is an

even number of such matched nodes). Any pair of nodes in M is such that there is

no static link joining them and every node of V4m \X is involved in M .

Extend M with a matching so that every node of V4m−1\(X⊕01∪X⊕10) is matched

with a node in V4m+1 \ (X⊕01 ∪ X⊕10). This is possible as |V4m−1| = |V4m+1| and

|V4m−1 ∩ (X⊕01 ∪ X⊕10)| = |V4m+1 ∩ (X⊕01 ∪ X⊕10)|. Further extend M with a

matching so that: every node of V4m−2 (resp. V4m−3) is matched with a node in

V4m+2 (resp. V4m+3). The claim follows.

The digraph D′ can be visualized in Figure 4.7. The rows are intended to illus-

trate nodes in different Vi’s, although the rows labelled V3m−1/3m+1 and V4m−1/4m+1

contain all nodes of V3m−1 ∪V3m+1 and V4m−1 ∪V4m+1, respectively (this is where the

associate clause nodes and the associate element nodes lie, respectively). We have not

shown all directed edges; just enough to give a flavour of the construction. Directed

edges from Eβ are shown as solid directed edges with the directed edges corresponding

to the clause c1 = {x1, xn, x2}, for example, depicted (the grey nodes are the associate

clause nodes in order c⊕001
1 , c⊕010

1 , c⊕100
1 , c⊕001

2 , . . . from left to right). Directed edges

from Eα are shown as dotted directed edges and the grey rectangle contains all nodes

from W involved in directed edges of Eα. The white nodes within this rectangle are

the element nodes and the associate element nodes (that is, the nodes of W that are

not incident with directed edges from Eα). Finally, the dashed directed edges depict

the directed edges from E1 and the port nodes and clause nodes are also shown in

white.

In order to complete our instance (H,µ,D, κ), we define µ to be any fixed (rational)

value in the interval (0, 1) and κ = κβ + κα + κ1 where:

• κβ = |Eβ |
3 (µβ) + 2|Eβ |

3 ((µ+ 1)β) = 3nµβ + 6n(µ+ 1)β

• κα = |Eα|µα

• κ1 = |E1|(m+ 1 + 2µ) = 3n(m+ 1 + 2µ).

Suppose that there is an exact cover C′ = {cji
: 1 ≤ i ≤ n} ⊆ C of X . Let the set

of clause nodes C ′ ⊆ C be {cji : 1 ≤ i ≤ n}. We define a configuration N by choosing

dynamic links as follows.

• For some arbitrary bijection f from P to C ′, {(p, f(p)) : p ∈ P} is a set of n

dynamic links.

• For each clause cj = {xj1, x
j
2, x

j
3} ∈ C′, there are dynamic links (c⊕001

j , xj1),

(c⊕010
j , xj2) and (c⊕100

j , xj3); so, all nodes of X are incident with a dynamic link

as are all associate clause nodes of {c⊕001
j , c⊕010

j , c⊕100
j : cj ∈ C ′}. Note that

these dynamic links result from the directed edges of Eβ incident with the

associate clause nodes of the clause nodes of C ′.

144

4.3. Results

root = r

V1

V2
.

p1 p2
. . .

pn z
. . .

z z
. . .

z
Vm

c1 c2
. . .

cn cn+1
. . .

c3n
. . . V3m

V3m−1/3m+1

V4m−1/4m+1

x1 x2

. . .
xn xn+1

. . .
x3n

. . . V4m

z̄ z̄z̄z̄
V7m

z̄ z̄

V1

z̄ z̄ z̄ z̄

r̄

Figure 4.7: The graph D′.

• All directed edges of Eα result in dynamic links. In particular, there is no

dynamic link from a node outside W to a node inside W except possibly incident

with the element nodes and the associate element nodes; indeed, the element

nodes are already incident with such ‘external’ dynamic links.

• Consider the node x1 ∈ X. The element x1 appears in two clauses of C \ C′, say

ci1 and ci2 . Suppose, for example, that the element x1 appears as the second

element of clause ci1 and as the first element of clause ci2 . If so then include

a dynamic link from each of c⊕010
i1

and c⊕001
i2

to x⊕01
1 and x⊕10

1 . Alternatively,

if, say, the element x1 appears as the third element of clause cj1 and as the

third element of clause cj2 then include a dynamic link from each of c⊕100
j1

and

c⊕100
j2

to x⊕01
1 and x⊕10

1 . Proceed similarly and analogously with all remaining

element nodes of X \ {x1}. On completion of this iterative process, there is

a dynamic link from every associate clause node to a unique element node or

associate element node; that is, these dynamic links depict a bijection from the

associate clause nodes to the element nodes and the associate element nodes.

This constitutes the configuration N .

Consider some β-demand of our workload. For some node cj ∈ C ′, all such

workloads originating at the nodes c⊕001
j , c⊕010

j and c⊕100
j can be served via a flow-path

consisting of a solitary dynamic link at workload cost µβ. For some node cj ∈ C \C ′,

suppose that there is a demand D[c⊕001
j , xi1] = β. This demand exists because the

145

4.3. Results

element xi is the first element of clause cj . As the element xi is the first element of

clause cj , there is a dynamic link from c⊕001
j to a neighbour of xi in {x⊕01

i , x⊕10
i },

which w.l.o.g. we may assume to be x⊕01
i ; hence, the demand can be served via

the flow-path c⊕001
j , x⊕01

i , xi at workload cost (µ + 1)β. Defining other flow-paths

analogously means that we can find flow-paths corresponding to the directed edges of

Eβ the total workload cost of which is 3nµβ + 6n(µ+ 1)β = κβ .

All α-demands can be served via a flow-path consisting of a solitary dynamic link

at total workload cost |Eα|µα = κα.

Consider some 1-demand D[r, xi] = 1. Let the clause cj ∈ C′ be such that xi is

an element of cj ; hence, there is a dynamic link from some port node pj′ of P to

cj and a dynamic link from some neighbour of cj from {c⊕001
j , c⊕010, c⊕110} to xi.

Consequently, there is a static path from r to pj′ of weight m, a dynamic link from

pj′ to the node cj , a static link from cj to the above neighbour in {c⊕001
j , c⊕010, c⊕110}

and a dynamic link from this neighbour to xi. Hence, the demand D[r, xi] = 1 can

be served via a flow-path of workload cost m+ 1 + 2µ with all 1-demands served via

flow-paths at a total workload cost 3n(m+ 1 + 2µ) = κ1. Consequently, our instance

(H,µ,D, κ) is a yes-instance of 1-switched RRP(σ = 3).

Conversely, suppose it is the case that (H,µ,D, κ) is a yes-instance of

1-switched RRP(σ = 3) and that N is a configuration and F a set of flow-paths

witnessing that the total workload cost is at most κ.

Claim 4.6.2. Every directed edge (u, v) of Eα is necessarily such that (u, v) ∈ N

and the total workload cost of flow-paths serving the α-demands is exactly κα.

Proof. Suppose that at least one of the α-demands is served via a flow-path at a

workload cost of more than µα; so, it must be at a workload cost of more than

(1 + µ)α as we cannot traverse a dynamic link followed immediately by another

dynamic link (recall, ∆S = 1) and by Claim 4.6.1, if D[u, v] = α then there is

no static link (u, v). Hence, the total workload cost of flow-paths serving the α-

demands is at least (|Eα| − 1)µα + (1 + µ)α = κα + α. We have that κβ + κ1 =

3nµβ+6n(µ+1)β+3n(m+1+2µ) < 3nβ+12nβ+3n(3n+3) = 15nβ+9n2 +9n < α.

Hence, the total workload cost of all flow-paths of F is strictly greater than κ which

yields a contradiction and the claim follows.

Call the dynamic links corresponding to the directed edges of Eα the α-dynamic

links.

Claim 4.6.3. Exactly 3n (resp. 6n) β-demands are served by a flow-path of workload

cost µβ (resp. (1 +µ)β) exactly; that is, exactly 3n (resp. 6n) flow-paths serving the

β-demands consist of a dynamic link (resp. a dynamic link and a static link). Hence,

the total workload cost of the flow-paths serving β-demands is exactly κβ .

Proof. All β-demands are from a unique associate clause node to an element node.

As ∆S = 1, at most 3n dynamic links can be incident with an element node. So, at

most 3n β-demands are served by a flow-path consisting of a solitary dynamic link.

146

4.3. Results

If a β-demand is served by a flow-path that does not consist of a solitary dynamic

link then the flow-path has workload cost at least (1 + µ)β.

Suppose there are less than 3n β-demands that are served by a flow-path consisting

of a solitary dynamic link. So, the total workload cost of flow-paths serving β-demands

is at least (3n − 1)µβ + (6n + 1)(1 + µ)β = 9nµβ + 6nβ + β. By Claim 4.6.2,

9nµβ + 6nβ + β ≤ κβ + κ1 = 3nµβ + 6n(µ + 1)β + 3n(m + 1 + 2µ); that is, β ≤

3n(m + 1 + 2µ) which yields a contradiction. So, there are exactly 3n β-demands

served by a flow-path consisting of a solitary dynamic link.

Suppose that there is a β-demand served by a flow-path of workload cost neither

µβ nor (1+µ)β. Such a flow-path has workload cost at least γβ where γ = min{2, 1+

2µ}. As before, the total workload cost of flow-paths serving β-demands is at least

3nµβ + (6n − 1)(1 + µ)β + γβ = 9nµβ + 6nβ + (γ − 1 − µ)β. By Claim 4.6.2,

9nµβ + 6nβ + (γ − 1 − µ)β ≤ κβ + κ1 = 3nµβ + 6n(µ+ 1)β + 3n(m+ 1 + 2µ); that

is, (γ − 1 − µ)β ≤ 3n(m+ 1 + 2µ). If γ = 2 then β ≤ 3n(m+1+2µ)
1−µ ; and if γ = 1 + 2µ

then β ≤ 3n(m+1+2µ)
µ . Whichever is the case, we obtain a contradiction. Hence, there

are exactly 6n β-demands served by a flow-path of workload cost (1 + µ)β. Each of

these flow-paths consists of a dynamic link and a static link and the claim follows.

By Claim 4.6.3, each element node x is incident via a dynamic link to a unique

associate clause node of some clause c so that the element x ∈ X is in the clause

c ∈ C. Consider some β-demand served by a flow-path of weight 1 + µ; that is, a

flow-path f consisting of a static link and a dynamic link. By Claim 4.6.2, every

node of W \ (X ∪X⊕01 ∪X⊕10) is incident with a dynamic link incident with some

other node of W \ (X ∪X⊕01 ∪X⊕10). So, no node of W \ (X ∪X⊕01 ∪X⊕10) can

appear on f . Also, no associate clause node is adjacent via a static link to any other

associate clause node. Hence, f must be of the form c′, x′, xi, where c′ is an associate

clause node, of some clause c, that is adjacent via a dynamic link to the associate

element node x′ which is adjacent via a static link to the element node x and where

the element x ∈ X is in the clause c ∈ C. In particular:

• for every xi ∈ X , if xi ∈ ci1, c
i
2, c

i
3, with ci1, c

i
2, c

i
3 ∈ C, then there are 3 dynamic

links incident with a unique node of {xi, x⊕01
i , x⊕10

i } and incident with exactly

one node of each of the sets of associate clause nodes of ci1, ci2 and ci3

• if there is a dynamic link from an element node x or one of its associate element

nodes to an associate clauses node of some clause c then the element x ∈ X is

in the clause c ∈ C.

Call these dynamic links the β-dynamic links. Also, by Claim 4.6.3, the total workload

cost of the flow-paths serving the β-demands is κβ . Our aim now is to show that

there are n clauses with the property that every associate clause node of any of these

clauses is incident with a β-dynamic link incident with an element node. Doing so

would result in our instance of RXC3 being a yes-instance.

Consider some flow-path f that services some 1-demand. Our preliminary aim is

to show that every such flow-path f has weight at least m+ 1 + 2µ.

147

4.3. Results

Suppose that f involves 2 dynamic links. Hence, the structure of f is s∗ds+d or

ds+ds∗, where s (resp. d) denotes a static (resp. dynamic) link and ∗ (resp. +)

denotes at least 0 (resp. at least 1) occurrence (in a regular-language style); recall

that σ = 3.

• If f has structure s∗ds+d then the second dynamic link must be of the form

(c′, x), where c′ is an associate clause node and x is an element node. If the

first dynamic link is not an α- or β-dynamic link then the initial prefix of static

links has weight at least m. Hence, the total weight of f is at least m+ 1 + 2µ.

Alternatively, suppose that the first dynamic link is an α- or β-dynamic link.

– If it is an α-dynamic link and is of the form (z, z̄), for some z ∈ V≤m \ P ,

then the total weight of f is at least i + µ + 5m − i − 1 + µ, for some

0 ≤ i ≤ m; that is, at least 5m− 1 + 2µ > m+ 1 + 2µ.

– If it is an α-dynamic link and is of the form (u, v), for some u,w ∈ W , then

the total weight of f is at least 4m−1+µ+1+µ = 4m+2µ > m+1+2µ.

– If it is a β-dynamic link then the total weight of f is at least 3m− 1 +µ+

1 + µ = 3m+ 2µ > m+ 1 + 2µ.

• If f has structure ds+ds∗ then the first dynamic link must be (r, r̄).

– Suppose that the first sub-path of static links has weight less than or equal

to m with the second dynamic link being an α-dynamic link of the form

(z̄, z). Then the total weight of f is at least µ + i + µ + 4m − i, for some

0 ≤ i < m; that is, 4m+ 2µ > m+ 1 + 2µ.

– Suppose that the first sub-path of static links has weight exactly m with

the second dynamic link not an α- or β-dynamic link. As all nodes of W

are already incident with a dynamic link, we must have that the weight of

f is at least µ+m+ µ+ 4 = m+ 4 + 2µ > m+ 1 + 2µ.

– Suppose that the first sub-path of static links has weight greater than m.

The weight of f must be at least µ+m+1+µ+1 = m+2+2µ > m+1+2µ.

Suppose that f involves 1 dynamic link; so, the structure of f is s∗ds∗. If the

dynamic link is an α- or β-dynamic link then no matter which dynamic link this is,

the weight of f is greater than 3m− 1 + µ > m+ 1 + 2µ. If the dynamic link is not

an α- or β-dynamic link then the weight of f is at least m + µ + 4 > m + 1 + 2µ,

as this dynamic link cannot be incident with any node of W . Finally, if f does not

involve a dynamic link then the weight of f is at least 4m > m + 1 + 2µ. Hence,

every flow-path serving some 1-demand has weight at least m + 1 + 2µ and when it

has weight exactly m+ 1 + 2µ, it takes the form of a static path from r to some port

node of P , augmented with a dynamic link to some neighbour of an associate clause

node, augmented with a static link to the associate clause node, and augmented with

a dynamic link from the associate clause node to some element node. As the total

workload cost of all flow-paths serving 1-demands is at most κ1 = 3n(m + 1 + 2µ),

148

4.3.1. The case of δ = 1

every such flow-path has weight exactly m+ 1 + 2µ and is therefore of the form just

described.

There are 3n 1-demands yet only n dynamic links from a port node to some neigh-

bour of an associate clause node. Hence, these n neighbours of associate clause nodes

must lie on 3n flow-paths. Consequently, these neighbours of associate clause nodes

must actually be clause nodes. Let these clause nodes be C ′ = {cj1 , cj2 , . . . , cjn
}.

Thus, we have that there is a dynamic link from every associate clause node of each

cji
to some element node and we have a subset of clauses C′ = {cj1 , cj2 , . . . , cjn

} so

that every element of X lies in exactly one clause of C′; that is, (X , C) is a yes-instance

of RXC3. The result follows as our instance (H,µ,D, κ) can clearly be constructed

from (X , C) is time polynomial in n.

We emphasize the relevance of the hypercube as a prototypical model of intercon-

nection networks (see, e.g., [40]) and the fact that we obtain hardness here for any

choice of fixed dynamic link weight µ between 0 and 1.

Taken together our results comprehensively establish the computational hardness

of RRP in practically relevant settings. In particular, we establish that the problem

remains intractable in several cases where the demand matrix is sparse, the hybrid

network is highly structured (in fact node-symmetric) and the weights of links depend

only on their medium.

4.3.1 The case of δ = 1

This section is devoted to the restriction of RRP where the dynamic link limit δ is

set to 1 - where any flow-path must use no more than a single dynamic link. We

shall require substantially different techniques from those we have used up until now

so to prove our main result in the remainder of the chapter, which entails that the

problem 1-switched RRP(δ = 1) is NP-complete for various graph classes including

hypercubes, grids and toroidal grids. The intention is that this section provides a con-

venient template for proving hardness of the problem for other practically interesting

classes beyond the ones explicitly considered here.

Additional definitions

We begin with some basic definitions from graph theory. Let G = (V,E) be a simple

undirected graph. We define the open neighborhood of a vertex v to be N(v) := {u :

(u, v) ∈ E}, and its closed neighborhood N [v] := N(v) ∪ {v}. Likewise for any set of

vertices S, we define N [S] := ∪v∈SN [v] and N(S) := N [V] \ S. A dominating set in

G is a set of vertices s such that each vertex in G is either in S or adjacent to a vertex

in S. The domination number of G, denoted γ(G), is the least number of vertices in

any dominating set of G. Dominating Set is the decision problem asking, for input

G and k, whether γ(G) ≤ k.

Where S ⊆ V is a set of vertices in the graph, we denote G[S] the subgraph of G

induced by S. That is, G[S] has S as its set of vertices and as edges exactly those

149

Hardness of Partial Domination on (toroidal) grids and hypercubes

edges of G with both endpoints incident to a vertex in S. Also, distG(u, v) is the

number of edges on the shortest path between u and v in G.

Definition 4.7 (Ball, Sphere). Where G is a graph, we denote BG(v, r) (resp.

SG(v, r)) the ball (resp. sphere) with center v and radius r in G. Formally these

are sets of vertices defined as:

BG(v, r) := {u : distG(u, v) ≤ r}

SG(v, r) := {u : distG(u, v) = r}

We shall also make use of the following (likely non-standard) definitions.

Definition 4.8 (Restriction of decision problems to a graph class). Let Π be a de-

cision problem which takes one or many inputs, exactly one of which is a simple

undirected graph. We denote by Π(G) the restriction of Π to the graph class G. That

is, Π(G) has as yes-instances (resp. no-instances) exactly those yes-instances (resp.

no-instances) of Π where the graph portion of the input belongs to G.

We introduce a new graph problem, which is subtly different from the classic

Dominating Set, and which has the property that it may remain hard even when the

graph portion of the input is highly structured. This subtlety will become important

presently - note that the property is precisely that which we wish to study for 1-

Switched RRP(δ = 1).

Partial Domination

Input: Simple undirected graph G = (V,E); set T ⊆ V ; integer k.

Question: Is (G[T], k) a yes-instance of Dominating Set? Equivalently, is there

some set X ⊆ T with |X| ≤ k such that T ⊆ NG[X]?

Hardness of Partial Domination on (toroidal) grids and hypercubes

We now show that Partial Domination is NP-complete for several graph classes of

interest to us, namely grids and hypercubes. This computational hardness (together

with another graph class property we shall come to later) provides the foundation

for our proof of Theorem 4.19. We note that Dominating Set is trivially tractable

for grids, though the same cannot be said of hypercubes; even γ(Q10) is unknown

[134]. This subsection leverages several results from the literature, which more or less

straightforwardly yield the desired results.

Theorem 4.9 ([135] Theorem 5.1). Dominating Set(Induced subgraphs of grids)

is NP-complete.

Note that the corollary below relies on some subtle properties of the proof applied

in [135] (namely, that the construction provided explicitly describes an embedding

into some grid). It is in general NP-hard, given some graph, to determine whether it

is an induced subgraph of a grid (and also to produce its vertices’ coordinates in a

grid - see [136] and references therein).

150

Hardness of Partial Domination on (toroidal) grids and hypercubes

Corollary 4.10. Partial Domination(Grids) is NP-complete.

We now turn to the other graph class of interest to us - the hypercubes Q. Al-

though it is straightforward to show that every grid is the induced subgraph of some

hypercube, we require for technical reasons that, more strongly, the hypercube in

question is at most polynomially larger than the contained grid. Fortunately, we are

able to rely here on the extensive literature surrounding the so-called snake-in-the-box

problem, which consists in finding large induced cycles in hypercubes. The following

result belongs to that body of work.

Theorem 4.11 (Abbott and Katchalski [137, 138]). For any d ≥ 2, the hypercube

Qd contains an induced path on 77
256 2d vertices. Given d, the coordinates of such a

path may be produced in time polynomial in 2d.

In their work, Abbott and Katchalski state that there is an induced cycle on

strictly more than 77
256 2d vertices, which entails an induced path on exactly 77

256 2d

vertices. The authors do not discuss the runtime of their construction in their work.

However, it is clear from their proof that their description of the induced cycle can

be realized as a recursive algorithm with a runtime as stated in the theorem. Their

result has the following consequence, which shall be useful to us towards proving the

computational hardness of Partial Domination(Q).

Corollary 4.12. For any d ≥ 2, the hypercube Q2d contains an induced grid on

(77
256 2d)2 vertices. Given d, the coordinates of such a grid may be produced in time

polynomial in 2d.

Proof. Given d, produce coordinates of a path P = {p1, p2, . . . , pℓ} of length ℓ = 77
256 2d

in Qd by applying Theorem 4.11. Note that each (node) pi is a bitstring of length d

exactly. Then the set {pipj : i, j ∈ [ℓ]} is an induced grid of size (77
256 2d)2 in Q2d, and

the result follows.

It remains to combine the above results.

Theorem 4.13. Partial Domination(Q) is NP-complete.

Proof. Let (G,T, k) be an instance of Partial Domination(Grids). We assume

without loss of generality that G is an n × n grid (if necessary, by extending G in

some dimension and retaining the same set T). We shall denote each vertex in G by

vi,j with i, j ∈ [n]. Let d = ⌈log2(256n
77)⌉. Applying Corollary 4.12, we may efficiently

produce a mapping from V (G) (vertices of the n × n grid) to V (Q2d). Denote this

mapping f . Let G′ = Q2d, and T ′ = {f(t) : t ∈ T}. Then G′[T ′] = G[T] (so

γ(G′[T ′]) = γ(G[T]) also) and (G′, T ′, k) is an instance of Partial Domination(Q).

The construction of G′ and T ′ is feasible in polynomial time, and the result follows.

A reader interested in showing that some other graph class G (e.g. subcubic

graphs) is hard for 1-Switched RRP may substitute the above for a proof that

151

Lunar graph classes

Partial Domination(G) is NP-complete. As briefly alluded to earlier, this is one

of two properties we shall require of a graph class in the proof of Theorem 4.19; we

turn to the second property presently.

Lunar graph classes

We have chosen to adopt a celestial metaphor to aid intuition, since in defining the

class we make use of spheres, balls, large distances, and vast differences in size. The

reader may find Figures 4.8 and 4.9 helpful in illustrating the definition.

Definition 4.14 (Moon, Planet, Sun). We say a graph G is the moon in some graph

H if:

• There is some set M ⊂ V (H) with H[M] = G. We also call M the moon in H.

• There is some o ∈ V (H) and integer r such that the set P̃ := S(o, r) is a sphere

of cardinality at least |M | and P := B(o, r) is the ball with the same center and

radius. We call P the planet and P̃ the planet surface (or, briefly, surface) in

H.

• N [M] ∩N [P] = ∅ (the planet and the moon are far apart).

• |P̃ | ≥ |M | (the surface is bigger than the moon).

• There is some set S ⊂ V (H) (the sun in H) such that |S| ≥ |N [P]| + |N [M]|

(the sun is bigger than the moon and planet together) and N [S] is disjoint from

N [P] (the sun and planet are far apart). Moreover any node in S is at distance

at least 2r from any node in M (the sun and moon are very far apart).

We continue with an astronomical theme for the naming of the graph class of

interest itself:

Definition 4.15 (lunar graph class). We say a graph class L is lunar in a graph

class H if, for each G ∈ L, there exists some H ∈ H such that G is the moon in H.

We further require that such a graph H (and vertex sets M, P̃ , S within it) can be

constructed in polynomial time from G (which entails that H is at most polynomially

larger than G). We say a graph class L is lunar in itself (or simply lunar) if the

above holds for H = L.

For this definition to be useful, we still need to show that it holds for those graph

classes which we are interested. The previously hypothesized reader interested in

proving NP-completeness of 1-Switched RRP(δ = 1) restricted to, e.g., subcubic

graphs, may find the following a useful blueprint to prove that subcubic graphs are

lunar.

Lemma 4.16. The class of grid graphs is lunar in itself.

Proof. The reader may find the illustrative example in Figure 4.8 helpful. Let G be

some n×m grid (w.l.o.g. n ≥ m, so |G| is polynomial in n).

We shall use the fact that a sphere of radius r ≥ 1 in a grid (which does not spill

over the grid’s boundary) has size 4r.

152

Lunar graph classes

o

1
n

m

m+ r

n+ r

m+ 2r

n+ 2r

n+ 2r + 1

n+ 2r + 2

n+ 2r + 3
2(n+ 2r + 1)

1

Figure 4.8: Illustration of our construction where n = 5,m = 3, r = 4. The 28 × 11
grid contains the 5 × 3 grid as a moon. Marked are: the moon M (square vertices);
o = (n+r,m+r) = (9, 7), together with the planet P = B(o, r) (o and disk and circle
vertices) and its surface P̃ = S(o, r) (circle vertices); the sun S = {(i, j) : i ≥ 16}
(cross vertices).

Let r = ⌈nm4 ⌉. Let x = 2(n+ 2r + 1) and let y = 2(m+ 2r). We choose H to be

the x× y grid. Then we identify:

• The moon: M = V (G) (vertices of the n × m grid are also vertices of x × y

grid).

• The planet: o = (n+ r,m+ r), P̃ = S(o, r), P = B(o, r).

• The sun: S = {(i, j) : i ≥ n+ 2r + 3}.

It is easy to verify that the neighborhoods of the moon, planet and sun are disjoint;

that the sun and moon are at distance at least 2r; that the size of the planet exceeds

that of the moon; and that the size of the sun exceeds that of the moon and planet’s

neighborhoods combined. Since our construction may be carried out in polynomial

time, the result follows.

The x×y grid is an induced subgraph of the 2x×2y toroidal grid, with the notable

property that every shortest path in the former remains a shortest path in the latter.

Applying this fact, the proof above can straightforwardly be adapted to obtain the

following corollary:

Corollary 4.17. The class of grid graphs is lunar in the class of toroidal grid graphs.

Note that the class of toroidal grid graphs is not lunar in itself. We now turn to

the protagonist of this chapter, the class of hypercubes.

Lemma 4.18. The class of hypercubes Q is lunar in itself.

Proof. Note that we reuse some of the notation from our proof of Theorem 4.6. Let

G ∈ Q be some hypercube of dimension d, i.e. G = Qd for some d. We define:

153

The main result

0 d

d+ 1

d+ 2

d+ 3

M

N [M] N [P]

o

2d+ 3

3d+ 3

3d+ 4

3d+ 5

3d+ 6

P̃ N [P]

6d+ 9

N [M]

N [S]

S = N [P] ∪N [M]

Figure 4.9: Illustration of our proof hypercubes are lunar, showing the weights (num-
ber of ones in any vertex label) for different sets of vertices. The midsection of the
hypercube (separating majority-1 vertices from majority-0 vertices) is shown as a
dashed line.

• Let ℓ = 6d+ 9 and H = Qℓ.

• Let M := {05d+9x : x ∈ Qd}.

• Let o := 04d+612d+3 and r = d. Recall we denote the planet P = B(o, r) and

its surface P̃ = S(o, r).

• Let S := {x : x ∈ N [P] ∪ N [M]}. Intuitively, the sun nodes are the reflection

of the neighborhoods of planet nodes and moon nodes.

The illustration in Figure 4.9 will be helpful in verifying the following:

• H[M] = G.

• The sphere P̃ = S(o, r) has cardinality at least |Qd| (easy to see by considering

{o⊕ 04d+9xx : x ∈ Qd}, which clearly contains only vertices at distance exactly

d from o and so is a subset of P̃).

• N [M] and N [P] are disjoint.

• N [M] and N [P] contain only vertices with at most 3d+ 4 ones.

• |S| ≥ |N [P]| + |N [M]| (by applying both two points above).

• N [S] is disjoint from N [M] and N [P].

• Moreover any node in S is at distance at least 2r from any node in M .

Note that Qℓ has size 26d+9 = 29 · (2d)6 which is polynomial in the size of Qd. The

result follows.

The main result

We are now able to state and prove the main result of this subsection.

Theorem 4.19. For any fixed µ ∈ (0, 1), and any graph classes L and G with L

lunar in G, the problem Partial Domination(L) is polynomially reducible to the

problem 1-switched RRP(δ = 1) restricted to instances (H,µ,D, κ) satisfying:

154

The main result

• H ∈ G, and

• the workload matrix D is sparse and all values in it are polynomial in |H|.

Proof. We are given an instance (G,T, k) of Partial Domination(L), with G ∈ L,

a set of vertices T ⊆ V (G), and integer k. We shall produce an instance (H,µ,D, κ)

of 1-Switched RRP(δ = 1). µ is some prescribed value between 0 and 1, as in the

theorem statement.

The graph H, along with vertex sets M, P̃ , P, S, the vertex o, and the integer r,

are obtained by applying the definition of a lunar class. We denote by T ′ the set of

vertices in H to which T is mapped, so that H[M][T] = H[T ′] = G[T].

In order to describe our demands D, we identify some useful sets of vertices in H:

• Target vertices are exactly the set T ′ = {t′1, t′2, . . . , t′|T |}.

• The set of moonlit nodes M̆ = {m̆1, m̆2, . . . , m̆k} is some arbitrary subset of P̃

with cardinality k exactly.

• The set of sunlit nodes S̆ := N [M] ∪N [P] \ (T ∪ M̆).

The intention is that our construction will ensure that, in any configuration N of

interest to us, the moonlit nodes M̆ (resp. sunlit nodes S̆) will be connected by a

dynamic link to moon nodes M (resp. sun nodes S).

Consider a new graph: the complete bipartite graph with S̆ ∪ S as vertices and

S̆ × S as edges. Let ES be an arbitrary maximum matching in this bipartite graph.

Note that |S| ≥ |S̆| by construction, and so |ES | = |S̆| exactly and each sunlit vertex

is incident to exactly one edge in ES . Note that by construction ES ∩ E(H) = ∅,

because none of the sunlit nodes are adjacent to any sun node (by applying a property

of lunar graphs). That is, if (u, v) is an edge in ES then u and v are not adjacent in

H.

Let α = (r+ µ+ 1)|T |. Our demand matrix D is fully described by the following:

• D[u, v] = α for each (u, v) ∈ ES (sunlight demands),

• D[o, t] = 1 for each t ∈ T (moonlight demands), and

• all other entries of D are zero.

It remains for us to define κ. As before, we define this as κα+κ1, with κα = µα|ES |

and κ1 = |T |(r+µ) + |T | − k. We note that α > κ1. This completes our construction

of the instance (H,µ,D, κ).

Claim 4.19.1. If (G,T, k) is a yes-instance of Partial Domination then (H,µ,D, κ)

is a yes-instance of 1-Switched RRP(δ = 1).

Proof. An illustration of an optimal configuration is shown in Figure 4.11. Let X be

a dominating set of G[T] of cardinality k. Denote also by X ′ = {x′
1, x

′
2, . . . , x

′
k} the

corresponding set of vertices in H.

Let N := ES ∪ {(x′
i, m̆i) : 1 ≤ i ≤ k}. Clearly, under N each sunlight demand is

served at cost exactly µα and so all sunlight demands cumulatively are served at cost

|ES |µα = κα.

155

The main result

G

G[T] = H[T ′]

HT

o

SunPlanet

Moon

Sunlight

Moonlight

demands

demands

Figure 4.10: Illustration of the demands described in our reduction, for the instance
(G,T, 4) of Partial Domination(Grid graphs). Nodes of T (and T ′ in H) are shown
as black squares; other nodes of G (and M in H) are shown as boxes. Other nodes
are shown as in Figure 4.8 earlier. Moonlight demands are shown as solid blue curves.
The sunlit nodes S̆ are those in orange shaded regions (note exactly 4 nodes of P̃ are
not sunlit - these are the moonlit nodes M̆). Sunlit demands are drawn as orange
arcs (for clarity, only a few are shown).

Further, the k demands from each node x′
i to o are each served at cost exactly

µ + r (by the path x′
i ⇢ m̆i ⇝r o), and the moonlit demand for each of the |T | − k

other nodes t ∈ T is served at cost exactly 1+µ+r (by the path t⇝1 x
′
i ⇢ m̆i ⇝r o).

The claim follows.

o
Moonlight demands

Moon

Planet

Optic links

Figure 4.11: Detail of an optimal configurationN for the instance shown in Figure 4.10.
Only moonlight demands (solid blue arcs) and dynamic links serving them (dashed
red lines) are shown. Note that all moonlit demands are served at cost exactly κ1.

Conversely, suppose that (H,µ,D, κ) is a yes-instance of 1-switched RRP

(δ = 1) and that N is a configuration and F a set of flow-paths witnessing that

the total workload cost is at most κ.

Claim 4.19.2. Each sunlit node has a line of sight (optic link) to a sun node. For-

mally, every edge (u, v) of ES is necessarily such that (u, v) ∈ N and the total workload

cost of flow-paths serving the α-demands is exactly κα.

Proof. Suppose that at least one of the α-demands is served via a flow-path at a

workload cost of more than µα; so, it must be at a workload cost of more than (1+µ)α

as we cannot traverse a dynamic link followed immediately by another dynamic link

(recall, ∆S = 1) and by our construction, if D[u, v] = α then there is no static link

(u, v). Hence, the total workload cost of flow-paths serving the α-demands is at least

(|Eα| − 1)µα + (1 + µ)α = κα + α. We have that κ1 < (r + µ + 1)|T | = α. Hence,

156

The main result

the total workload cost of all flow-paths of F is strictly greater than κ which yields a

contradiction and the claim follows.

Claim 4.19.3. Each moonlight demand is served at cost at least µ+r. Furthermore,

at most k moonlight demands are served at cost µ+ r exactly.

Proof. Consider some moonlight demand; necessarily it has form D[t, o] = 1 for some

t ∈ T .

We first show each moonlight demand is served at cost at least µ+ r. Suppose for

contradiction that D[t, o] is served at cost strictly less than µ + r. Since t and o are

at distance at least r + 3, the flow-path from t to o must make use of some dynamic

link u ⇢ v at cost µ. The static portion of the path therefore must have cost at most

r − 1, which entails that v ∈ B(o, r − 1) ⊊ S̆ (that is, v is a sunlit node). Applying

Claim 4.19.2 v is connected by dynamic link to some sun node, so u ∈ S necessarily.

Then the path from t to u has length at least 2r, yielding the desired contradiction.

Now observe that D[t, o] can be served at cost exactly µ + r if and only if the

dynamic link t ⇢ m̆ exists, for some m̆ ∈ M̆ . Since |M̆ | = k exactly by construction,

we obtain that this may be the case for at most k nodes in T . The claim follows.

Since κ1 = (r + µ)(k) + (r + µ+ 1)(|T | − k), we immediately obtain that exactly

k moonlight demands are served at cost r + µ and all remaining moonlight demands

are served at cost r + µ+ 1 exactly.

Claim 4.19.4. The set X = {u : (u, v) ∈ N and v ∈ M̆ is a moonlit node} is a

dominating set of H[M].

Proof. Suppose for contradiction that there is some vertex t ∈ T ′ which is neither in

X nor adjacent to any vertex in X. We show that the cost of serving the demand

D[y, o] = 1 is strictly greater than r+µ+2. Denoting arbitrary nodes m′ ∈ N [M], p′ ∈

N [P], p̃ ∈ P̃ , this flow is routed either:

• Via static links only, along a path of length at least r + 3 > r + µ + 1: y ⇝≥1

m′ ⇝≥1 p
′ ⇝1 p̃⇝r o, or

• Via static links and one dynamic link u ⇢ v with:

– v in P̃ , at cost at least r + µ+ 2 > r + µ+ 1: y ⇝≥2 u ⇢ v ⇝r o

– u and v both outside N [P], at cost at least r + µ+ 2 > r + µ+ 1: y ⇝≥0

u ⇢ v ⇝≥1 p
′ ⇝1 p̃⇝r o

– either u or v in N [P]\ P̃ (and the other in S), at cost at least 2r+µ (recall

all vertices in S are distance at least 2r from any vertex in M).

This contradicts our earlier claim (that all moonlight demands are served at cost at

most r + µ+ 1) and the result follows.

157

4.4. Discussion and Future Work

We note that the construction described takes polynomial time, and the main

result follows.

Applying our earlier results on lunar graph classes (Lemmas 4.18 and 4.16, Corol-

lary 4.17) together with Theorem 4.13 we obtain that RRP remains hard even when

the number of dynamic links admitted on any path is limited to 1.

Corollary 4.20. 1-switched RRP(δ = 1)(G) is NP-complete if G is: the class of

hypercubes; the class of grid graphs; or the class of toroidal grid graphs.

We emphasize again the value of hypercubes as a prototypical model of intercon-

nection networks, and additionally note that grids and toroidal grids exhibit addi-

tional properties which may have been expected to yield a tractable setting, such as

planarity and bounded degree. The restriction to δ = 1 in our setting also implies

a restriction to σ = 2 (as 3 alternations along a path would entail a minimum 2 dy-

namic links along the same) but the converse does not hold; we expect that the case

of 1-Switched RRP(σ = 2, δ = 2) can be shown to be intractable through similar

proof techniques, but leave this for future work.

4.4 Discussion and Future Work

Taken together, our results comprehensively establish the computational hardness

of RRP in practically relevant settings. We establish that the problem remains in-

tractable in several cases where the demand matrix is sparse, the hybrid network is

highly structured (in fact node-symmetric) and the weights of links depend only on

their medium. Furthermore, in all of our hardness results, the instrument used to

“express” NP-completeness is the demand matrix D. In the real world, the computa-

tional workload for the network is generally expected to vary significantly with time,

unlike the network’s hardware, which (in addition to its structural properties already

discussed) does not rapidly change. Our results are in this sense closely relevant to

the hardness of the real world reconfigurable routing problem.

We take this opportunity to identify some specific questions we have left open, as

well as several more general avenues for future work in this area. First, it would be

interesting to study the restriction of the problem to cases where ∆S is greater than

1 and µ is a fixed constant. Results in this setting would “bridge the gap” between

Theorems 4.1 and 4.2, and Theorems 4.6 and 4.19. Analogously, there is a gap for

1-Switched RRP on hypercubes between σ = 0 (which is solvable in polynomial

time) and σ = 3 (which is an intractable case). The complexity of the problem with

σ = 1 and σ = 2 remains open for hypercubes (note that results for arbitrary networks

do exist when σ = 2, as shown in Table 4.1). Our Theorem 4.19 in some sense sits

between these two open cases, since the restriction to σ = 1 entails a restriction to

δ = 1, which itself entails a restriction to σ = 2.

Secondly, the present work considers only exact computation. In [36] the authors

establish inapproximability within Ω(logn) for RRP in a more permissive setting

158

4.4. Discussion and Future Work

(making use of variable link weights). However, the empty solution (there are no

dynamic links and all demands are routed through the static network only) is a
logn
µ -approximation for ∆S-Switched RRP on hypercubes. (This follows straight-

forwardly from hypercubes having logarithmic diameter.) It would be interesting

to see what (in)approximability results can be derived in our model with fixed link

weights, with and without restrictions to realistic topologies.

Lastly, parameterized algorithms may provide more fine-grained insights into the

computational complexity of reconfigurable routing. Our Theorems 4.1 and 4.2 estab-

lish that structural parameters of the static network, such as treewidth, are insufficient

to yield fixed-parameter tractable (fpt) algorithms (unless P=NP). However, it would

be interesting to see whether it is possible to obtain an fpt algorithm by addition-

ally parameterizing by the sum of the demand matrix D; some structural parameters

for the digraph representation of the demands, D′; the dynamic link weight µ; or a

combination of these.

159

Chapter 5

Detours and Distractions.

This chapter gathers four works which I contributed to during my PhD which, for

different reasons, I wanted to include in the thesis but felt did not warrant a full

chapter each.

First, in chapter 5a, I present my contributions to research around Boolean Net-

works which I undertook together with Maximilien Gadouleau. This is the only

subchapter of chapter 5 based on work which has been published.

Second, in chapter 5b, I present the result of a joint project with Anouk Sommer,

whom I hosted for a summer research internship in 2024.

Third, in chapter 5c, I present some preliminary findings which extend some no-

tions developed while working on the research in chapter 4, but which are sufficiently

distant from the original setting as to merit their own section.

And fourth, in chapter 5d, I give a proof that a specific Constraint Satisfaction

Problem (CSP) is NP-complete – which also was originally devised to prove a result

for chapter 4 but was ultimately unnecessary for that purpose.

161

Chapter 5a

Maximal Independent Sets and

Boolean Networks

This chapter is based on joint work [50] with Maximilien Gadouleau, an associate

professor in the Computer Science department at Durham. In order to constrain this

subchapter to 23 pages (a pleasant number [139]) while still providing the flavor of the

investigation it is based on, a number of results are presented here without proofs (in

which case the reader is referred to the full published paper [50]), and an extension

to digraphs (Section 7 in [50]) is omitted. Prioritized for inclusion are those proofs

which the author was most closely involved with, and those which are most consistent

with the theme of the thesis: exploring the complexity of eventful graph problems.

5a.1 Introduction

The MIS algorithm A simple greedy algorithm to find a maximal independent

set (MIS) in a graph starts with the empty set and visits every vertex, adding it to

the set if and only if none of its neighbours are already in the set. We shall refer to

it as the MIS algorithm. Because the MIS algorithm always terminates in a maximal

independent set, it has been the subject of a stream of work (see [140] and references

therein).

A core feature of the classical MIS algorithm is that the starting set of vertices is

the empty set. However, the seminal observation of this chapter is that this constraint

can be lifted. Indeed, starting from any set of vertices and visiting each vertex once,

removing a vertex if one of its neighbours already appears in the set, one always

terminates at an independent set. Moreover, starting from any independent set and

visiting each vertex once, one always terminates at a MIS. Thus, iterating over the

vertex set twice is sufficient to obtain a MIS from any starting set of vertices.

As such, the scope of this chapter is the generalisation of the MIS algorithm, where

one can start with any (not necessarily independent) set of vertices, and one can visit

vertices in any order with possible repetitions. Of course, some sequences of vertices

will guarantee reaching a MIS from any starting configuration – we shall call those

fixing words, while others will not, as in Example 5a.1 below.

163

5a.1. Introduction

Example 5a.1. Consider the path on three vertices:

a b c

This graph has two MIS, namely {a, c} and {b}. Starting at the empty set, the MIS

algorithm terminates at {b} if the sequence begins with b (i.e. w = bac or w = bca)

or at {a, c} otherwise (i.e. w ∈ {abc, acb, cab, cba}).

For this graph, abc is not a fixing word: if one starts from the set {b, c}, then one

terminates at {c}. However, acb is a fixing word: if the starting set contains b, then

one terminates at {b}; otherwise one terminates at {a, c}.

Finally, for this graph, the words w = abcabc and w = acbacb are fixing words,

as are any words of the form w = w1w2, where w1 and w2 are permutations of the

vertex set.

Contributions for graphs Below we give a summary of our contributions for the

MIS algorithm on graphs.

When starting from the empty set, the MIS algorithm is able to reach any possible

maximal independent set (if the algorithm goes through the MIS first, then it would

terminate with that MIS). However, the empty set is not the only set with that

property: the full set of vertices also allows that (this time, if the algorithm finishes

with a MIS). In Theorem 5a.7, we prove that deciding whether a set of vertices can

reach every MIS is coNP-complete.

As we showed in Example 5a.1, though iterating over the whole set of vertices

twice is always sufficient to reach a MIS, it is not always necessary. Consequently, we

ask: what are the sequences of vertices which always reach a MIS, regardless of the

starting set of vertices? In Theorem 5a.11, we prove that deciding whether a sequence

offers that guarantee is coNP-complete.

Since the MIS algorithm visits each vertex exactly once, we also consider permuta-

tions of vertices that are guaranteed to reach a MIS: permises. In Theorem 5a.20, we

prove that deciding whether a permutation of vertices is a permis is coNP-complete.

A graph that admits a permis is called permissible. Not all graphs are permissible;

the smallest non-permissible graph is the heptagon. We exhibit large classes of per-

missible and non-permissible graphs. In particular, we introduce near-comparability

graphs and classify them in Theorem 5a.23; they naturally generalise comparability

graphs and can be recognised in polynomial time. We prove that near-comparability

graphs are permissible in Proposition 5a.22. In Theorem 5a.34, we prove that decid-

ing whether a graph is permissible is coNP-hard. There is no obvious candidate for

a no-certificate, so it may be that the problem is not actually in coNP.

In some situations, one can skip some vertices and still guarantee a MIS is reached.

For instance, in the complete graph, one can simply update all but one vertex and

still reach a maximal independent set, from any starting configuration. We prove in

Theorem 5a.18 that deciding whether a given set of vertices can be skipped is coNP-

complete. We also prove in Theorem 5a.19 that deciding whether any vertices can be

skipped is coNP-complete.

164

5a.1. Introduction

Boolean networks Our main tool is Boolean networks. A configuration on a graph

G = (V,E) is x ∈ {0, 1}V , i.e. the assignment of a Boolean state to every vertex of the

graph. A Boolean network is a mapping F : {0, 1}V → {0, 1}V that acts on the set of

configurations. Boolean networks are used to model networks of interacting entities.

As such, it is natural to consider a scenario wherein the different entities update their

state at different times. This gives rise to the notion of sequential (or asynchronous)

updates, by updating the state of one vertex at a time; a word w then gives the order in

which those vertices are updated (with repeats allowed in general). Since the original

works by Kauffman [141] and Thomas [142], asynchronous updates have been widely

studied, both in terms of modelling purposes and of dynamical analysis (see [143,

144] and references therein). The problem of whether a Boolean network converges

(sequentially) goes back to the seminal result by Robert on acyclic interaction graphs

[145]; further results include [146, 147, 148]. Recently, [149] introduced the concept of

a fixing word: a word w such that updating vertices according to w will always lead to

a fixed point, regardless of the initial configuration. Fixing words are a natural feature

of Boolean networks, for two main reasons. Firstly, almost all networks with a fixed

point, and hence a positive asymptotic proportion of all networks, have fixing words

[150]. Secondly, large classes of Boolean networks, including monotone networks and

networks with acyclic interaction graphs, have short fixing words (of length at most

cubic in |V |) [149, 151].

We refer to the Boolean network where the update function is the conjunction of

all the negated variables in the neighbourhood of a vertex as the MIS network on the

graph, i.e. M : {0, 1}V → {0, 1}V with M(x)v =
∧
u∼v ¬xu for all v ∈ V . The MIS

network was highlighted in [152, 153], where the fixed points of different conjunctive

networks on (directed) graphs are studied. In particular, [152] shows that the set

of fixed points of the MIS network is the set of (configurations whose supports are)

maximal independent sets of the graph. It is further shown in [153] that for square-

free graphs, the MIS network is the conjunctive network that maximises the number

of fixed points.

The MIS algorithm can be interpreted in terms of Boolean networks as follows:

starting with the all-zero configuration x, update one vertex v at a time according

to the update function M(x)v =
∧
u∼v ¬xu. Once all vertices have been updated, we

obtain the final configuration y where the set of ones is a MIS, regardless of the order

in which the vertices have been updated. As such, fixing words of the MIS network

correspond to sequences of vertices that guarantee that the MIS algorithm terminates

for any starting set of vertices. The seminal observation of this chapter is that for

any permutation w, the word ww is a short fixing word (of length 2|V |).

Self-stabilization and distributed computing Some of our results may be ap-

plied in the context of distributed computing. Similar to Boolean networks, dis-

tributed algorithms produce an output through local, independent updates of nodes

in a fixed topology. Asynchronous models for distributed computing do not assume a

165

5a.1. Introduction

bound on message delay [41], making them less relevant here. Consequently, we focus

on synchronous models, in which time is discrete and all nodes perform a SEND-

RECEIVE-UPDATE loop synchronously at each time step. The algorithm executed

at all nodes is identical, and the state of some node at time t depends only on the

state of (all nodes in) its inclusive neighbourhood at time t− 1. Some key differences

with the Boolean Network setting are worth emphasizing. For example, in standard

models for synchronous distributed computation: nodes each have an (unbounded-

size) internal state, and may solve arbitrarily hard problems during their UPDATE;

messages sent may differ from the sender’s state; nodes may choose not to SEND

anything at all; and updates occur synchronously.

The problem of finding a MIS has been a focus of much study in this setting,

including in the LOCAL [43], CONGEST [154] and Beeping models [155, 42]. LOCAL

is characterized by its unrestricted message size, whereas CONGEST limits messages

to O(log |V |) bits per outgoing edge. The Beeping model is a significant restriction,

in which nodes can communicate only via beeps (which are indistinguishable) and

silence [156]. We refer the interested reader to [157] for a more complete treatment of

this model’s variants, which also includes a discussion of the distributed MIS problem

in Sections 4.5 and 6.2.

An algorithm or procedure is said to be “self-stabilizing” if it is guaranteed to reach

a legitimate state regardless of its initial state, and additionally will never reach an

illegitimate state from a legitimate state [158, 159]. This notion has been integrated

into the design of distributed algorithms [160] and is explicitly identified as a feature

of the Beeping MIS algorithm given in [155].

Our results do not directly apply to these models; in particular, we assume (and

sometimes exploit) asynchronous and instantaneous updates. That is, each vertex’s

local update is immediately “visible” to all its neighbours. This differs from standard

models of distributed computing, which generally incorporate some transmission delay

(which is typically one unit in synchronous models, and controlled by an adversary

in asynchronous models).

To emulate the MIS network M studied in the present work, it would then be

sufficient for a distributed model to support: asynchronous updates (scheduled by an

adversary or a helper) and instantaneous transmission. We call the minimum length

of time within which each node updates at least once a phase. In the adversarial

setting, our seminal observation translates to the fact that this protocol necessarily

reaches a MIS within two phases from any starting configuration and self-stabilizes. In

the helpful setting, a Permis is an update schedule which guarantees self-stabilization

within a single phase. By Theorem 5a.11, it is coNP-complete to determine whether

some update schedule satisfies this property; by Theorem 5a.20, the problem remains

coNP-complete even if the schedule is guaranteed to contain every node exactly

once; and by Theorem 5a.34 it is coNP-hard to determine whether any such update

schedule exists at all for the given network. If the helpful scheduler is limited to

some subset of nodes, Theorem 5a.18 means it is coNP-hard to determine whether

166

5a.2. Preliminaries

there is a self-stabilizing schedule which uses only that subset of nodes. Furthermore,

Theorem 5a.19 entails that deciding whether there exists any such schedule using

n− 1 nodes (even allowing repetitions) is coNP-hard.

Constituencies The main tool for the hardness results in this chapter is that of

a constituency. A constituency is a set of vertices of a graph that is dominated by

an independent set, i.e. S is a constituency if there exists an independent set I such

that S ⊆ N(I). We believe that the constituency problem is of independent interest

for a couple of reasons. Firstly, this is a natural definition for a set of vertices, but to

the best of the authors’ knowledge, it has not been considered in the literature yet.

Secondly, the Constituency problem asks whether a set S is a constituency. Unlike

problems like Clique, Independent Set or Vertex Cover, the Constituency

problem does not rely on an integer parameter. Nonetheless, Constituency is NP-

complete, while the problem of deciding whether a set is a clique (or independent

set, or vertex cover) is clearly in P. As such, Constituency provides a natural

intractable graph problem whose input does not include an integer. We heavily use

Constituency and its variants in our hardness proofs, and we believe that this prob-

lem could be used more broadly for reductions in the wider graph theory community.

We take this opportunity to mention a related class of problems – so-called exten-

sion problems, in which a designated set of elements must be included (resp. excluded)

in the solution (for example, in a maximal independent set, a minimal dominating

set, or a maximal matching), the size of which is not specified. We refer the interested

reader to [161] and the references therein for an overview.

Outline The rest of the chapter is organised as follows. Some necessary back-

ground is given in Section 5a.2. Constituencies and districts are introduced in Section

5a.3, where some decision problems based on those are proved to be NP- or coNP-

complete. The configurations that allow to reach any possible maximal independent

set are determined in Section 5a.4. Fixing words, fixing sets, and permises for the

MIS network are studied in Section 5a.5. Classes of permissible and non-permissible

graphs are given in Section 5a.6. Finally, some conclusions and possible avenues for

future work are given in Section 5a.7.

5a.2 Preliminaries

5a.2.1 Graphs and digraphs

Most of our contributions will focus on (undirected) graphs. However, when we also

make use of directed graphs in some arguments (particularly pertaining to orientations

of undirected graphs), so we shall view graphs as natural special cases of digraphs.

As such, we give the background on graphs and digraphs in its full generality, i.e. for

digraphs first, and then we make some notes about the special case of graphs.

By digraph, we mean an irreflexive directed graph, i.e. G = (V,E) where E ⊆ V 2\

{(v, v) : v ∈ V }. We use the notation u → v to mean that (u, v) ∈ E. We say an edge

167

5a.2.2. Boolean networks

(u, v) ∈ E is symmetric if (v, u) is also an edge, and oriented otherwise. We will

sometimes emphasize that (u, v) is symmetric by writing it uv instead. For a vertex

v, the open in-neighbourhood, closed in-neighbourhood, open out-neighbourhood and

closed out-neighbourhood of the vertex v are respectively defined as

N in(v) = {u ∈ V : u → v}, N in[v] = N in(v) ∪ {v},

Nout(v) = {u ∈ V : v → u}, Nout[v] = Nout(v) ∪ {v}.

All of those are generalised to sets of vertices, e.g. N in(S) =
⋃
s∈S N

in(s). Clearly,

all notations above should reflect the dependence on the digraph G, e.g. N in(v;G);

we shall omit that dependence on any notation when the digraph is clear from the

context.

For a digraph G = (V,E) and set of vertices S ⊆ V , we call the digraph (S, {(u, v) :

(u, v) ∈ E ∧ {u, v} ⊆ S}) the induced subgraph on S, which we denote G[S]. We

denote G−S the digraph G[V \S]. A path is a sequence of edges v1 → v2 → · · · → vk

where all vertices are distinct; a cycle in a digraph is a sequence of edges v1 → v2 →

· · · → vk → v1 where only the first and the last vertices are equal. A digraph is

strong if for all vertices u and v, there is a path from u to v. A strong component

of G is a subset of vertices S such that G[S] is strong, but G[T] is not strong for all

T ⊋ S. A digraph is acyclic if it has no cycles. An acyclic digraph has a topological

order, whereby u → v only if u ≤ v. For instance, the digraph where each vertex is

a strong component of G and C → C ′ if and only if u → u′ for some u ∈ C, u′ ∈ C ′

is acyclic. If C → C ′ in that digraph, we say that C is a parent component of C;

a strong component without any parent is called an initial component.

We say that two vertices u and v are closed twins if N in[u] = N in[v]. Accordingly,

we say that the vertex m is a benjamin of G if there is no vertex v with N in[v] ⊂

N in[m]. We denote the set of benjamins of G by B(G) and the corresponding induced

subgraph by GB = G[B(G)]. We say that a set of vertices S is tethered if there is

an edge st between any s ∈ S and any t ∈ T = N(S) \ S.

A digraph is undirected if all its edges are symmetric; which we shall simply call

a graph. We then denote N(v) = N in(v) = Nout(v), which we call the neighbour-

hood of v. A strong graph is called connected, and the (initial) strong components

of a graph are called its connected components. In a graph, if u → v, then v → u,

which we shall denote by u ∼ v.

5a.2.2 Boolean networks

A configuration on a digraph G = (V,E) is x ∈ {0, 1}V = (xv : v ∈ V), where

xv ∈ {0, 1} is the state of the vertex v for all v. We denote 1(x) = {v ∈ V : xv = 1}

and 0(x) = {v ∈ V : xv = 0}. Conversely, for any set of vertices S ⊆ V , the

characteristic vector of S is the configuration x such that 1(x) = S. For any set

of vertices S ⊆ V , we denote xS = (xv : v ∈ S). We denote the all-zero (all-one,

respectively) configuration by 0 (by 1, respectively), regardless of its length.

168

5a.2.2. Boolean networks

We consider the following kinds of sets of vertices of, and accordingly configura-

tions on, a digraph G:

1. An independent set I is a set such that (i, j) /∈ E for all i, j ∈ I. (In other

words, Nout(I) ∩ I = ∅.) Every digraph G has an independent set, namely the

empty set ∅. The collection of characteristic vectors of independent sets of G is

denoted by I(G).

2. A dominating set D is a set such that for every vertex v ∈ V , either v ∈ D

or there exists u ∈ D such that (u, v) ∈ E. (In other words, Nout(D) ∪ D =

V .) Every digraph G has an dominating set, namely V . The collection of

characteristic vectors of dominating sets of G is denoted by D(G).

3. A kernel K is a dominating independent set. (In other words, Nout(K) ⊎K =

V .) Not all digraphs have a kernel, for instance the directed cycle C⃗n (with

vertex set Zn and edges (v, v+1) for all v ∈ Zn) does not have a kernel whenever

n ≥ 3 is odd. The collection of characteristic vectors of kernels of G is denoted

by K(G).

4. If G is a graph, then a kernel is a maximal independent set of G, i.e. an

independent set I such that there is no independent set J ⊃ I. Every graph has

a maximal independent set. In order to highlight this special case of particular

importance to this chapter, the collection of characteristic vectors of maximal

independent sets of G is denoted by M(G).

Let w = w1 . . . wl ∈ V ∗ be a sequence of vertices, or briefly a word. For any

a, b ∈ {1, . . . , l}, we denote wa:b = wa . . . wb if a ≤ b and wa:b is the empty sequence

if a > b. We also denote by [w] = {u ∈ V : ∃j wj = u} the set of vertices that w

visits. For any S ⊆ V , the subword of w induced by S, denoted by w[S], is obtained

by deleting all the entries in w that do not belong to S; alternatively, it is the longest

subword of w such that [w[S]] ⊆ S. A permutation of V is a word w = w1:n such

that [w] = V and wa ̸= wb for all a ̸= b.

A Boolean network is a mapping F : {0, 1}V → {0, 1}V . For any Boolean

network F and any v ∈ V , the update of the state of vertex v is represented by the

network Fv : {0, 1}V → {0, 1}V where Fv(x)v = F(x)v and Fv(x)u = xu for all other

vertices u. We extend this notation to words as follows: if w = w1 . . . wl then

Fw = Fwl ◦ · · · ◦ Fw2 ◦ Fw1 .

Unless otherwise specified, we let x be the initial configuration, w = w1 . . . wl be a

word, y = Fw(x) be the final configuration, and for all 0 ≤ a ≤ l, ya = Fw1:a(x) be an

intermediate configuration, so that x = y0 and y = yl.

If there is a word w such that y = Fw(x), we say that y is reachable from x, and

we write x 7→F y. For any two configurations x and y, we denote ∆(x, y) = {v ∈ V :

xv ̸= yv}. An F-geodesic from x to y is a word w such that y = Fw(x), [w] = ∆(x, y)

and wa ̸= wb for all a ̸= b, i.e. w visits every vertex v where x and y differ exactly

169

5a.3.1. Constituencies

once, and does not visit any other vertex. If there exists a geodesic from x to y, we

denote it by x geo7−−→F y.

The set of fixed points of F is Fix(F) = {x ∈ {0, 1}V : F(x) = x}. It is clear

that x ∈ Fix(F) if and only if Fw(x) = x for any word w, i.e. a “parallel” fixed point

is also a “sequential” fixed point. The word w is a fixing word for F [149] (and we

say that w fixes F) if for all x, Fw(x) ∈ Fix(F) (see [149] for some examples of fixing

words). A Boolean network is fixable if it has a fixing word.

5a.3 Constituencies and districts

In this section, we introduce two kinds of sets of vertices, namely constituencies and

districts, and we determine the complexity of some decision problems related to them.

Even though both concepts will be useful to the sequel of this chapter (an intuition

behind the role of constituencies is given in the introduction of Section 5a.5), we

believe that the concept of constituency in particular is a natural property and is

interesting to the wider graph theory community.

5a.3.1 Constituencies

Let G = (V,E) be a graph. A subset S of V is a constituency of G if there exists

an independent set I such that S ⊆ N(I) (note that this requires that S ∩ I = ∅).

The following are equivalent for a set of vertices S ⊆ V (the proof is easy and hence

omitted):

1. S is a constituency of G, i.e. there exists an independent set I of G such that

S ⊆ N(I);

2. V \ S contains a maximal independent set of G;

3. there exists a maximal independent set M of G such that M ∩ S = ∅;

A non-constituency is a set of vertices that is not a constituency. The Con-

stituency (Non-Constituency, respectively) problem asks, given a graph G and

set S, whether S a constituency (a non-constituency, respectively) of G.

(Non-)Constituency

Input: A graph G = (V,E) and a set of vertices S ⊆ V .

Question: Is S a (non-)constituency of G?

Theorem 5a.2. Constituency is NP-complete.

Proof. Membership of NP is known: the yes-certificate is an independent set I such

that S ⊆ N(I).

The hardness proof is by reduction from Set Cover, which is NP-complete [10].

In Set Cover, the input is a finite set of elements X = {x1, . . . , xn}, a collection

170

5a.3.1. Constituencies

Colony is NP-h: reduction from Set Cover

v4v3v2v1

q14

q13

q12

q11

q24

q23

q22

q21

Figure 5a.1: Illustration of the reduction from Set Cover to Constituency (the
set S is the vertices in the dashed box). Here the Set Cover instance has C1 =
∅, C2 = {x1}, C3 = {x2, x3}, C4 = {x4}, with k = 2. Observe that both the Set
Cover instance and the Constituency instance are no-instances.

C = {C1, C2, . . . , Cm} of subsets of X, and an integer k. The question is whether

there exists a subset Y ⊆ C of cardinality at most k such that ∪Ci∈Y Ci = X.

We first construct the graph G on n + mk vertices. G consists of: vertices Qj =

{q1
j , . . . , q

k
j }, for each j ∈ [m]; vertices vi for each i ∈ [n]; edges from each vertex in Qj

to vi, whenever xi ∈ Cj ; edges connecting {ql1, ql2, . . . , qlm} in a clique, for each l ∈ [k].

Let the target set S = {v1, . . . , vn}. This concludes our construction; an illustrative

example is shown in Figure 5a.1.

We now show that if (X,C, k) is a yes-instance of Set Cover, then (G,S) is a

yes-instance of Constituency. Let Y ⊆ C be a set cover of X of cardinality at most

k. We obtain the set I as follows:

I = {qaj : Cj is the ath element of Y }.

Note that every vertex in I exists in G since Y has cardinality at most k (if |Y | = k

then the last subset to appear in Y is its kth element exactly). Further, I is an

independent set, since by construction every vertex qaj is adjacent to some other

vertex qbl if and only if a = b. Lastly, every vertex vi ∈ Y is incident to some vertex

in I; for any i, ∃j : vi ∈ Cj . Then necessarily ∃a : qaj ∈ I, and by construction (vi, qaj)

is an edge in G.

Conversely, if (G,S) is a yes-instance of Constituency then (X,C, k) is a yes-

instance of Set Cover. Let I be an independent set in G which dominates S. By

construction of G, I has cardinality at most k. Suppose otherwise, for contradiction

- then by the pigeon-hole principle there is some clique Cj such that |Cj ∩ I| ≥ 2,

contradicting that I is an independent set. We obtain the set Y of cardinality |I| as

follows:

Y = {Cj : ∃a such that qaj ∈ I}.

We now show Y is a set cover of X. For each i ∈ [n], vi must be adjacent to some

vertex in I; denote this vertex qaj - now by construction xi is in the set Cj , and

Cj ∈ Y .

Corollary 5a.3. Non-Constituency is coNP-complete.

171

5a.3.2. Districts

We make four remarks about constituencies. Let G be a graph, S be a subset

of its vertices, and T = N(S) \ S. First, if G − S has an isolated vertex t, then S

is a constituency of G if and only if S \ N(t) is a constituency of G − t. Second,

whether S is a constituency of G is independent of the edges in G[S]. As such, we

can (and shall) reduce ourselves to either of two canonical types of instances (G,S)

of Constituency (and of course, of Non-Constituency as well):

Complete type: G[S] is complete and G− S has no isolated vertices.

Empty type: G[S] is empty and G− S has no isolated vertices.

Third, S is a constituency of G if and only if S is a constituency of G[S∪T]. Therefore,

we could reduce ourselves to the case where V = S ∪N(S); however, this assumption

shall be unnecessary in our subsequent proofs and as such we shall not use it. Fourth,

if S is a constituency of G then every subset of S is also a constituency of G.

5a.3.2 Districts

A subset T of vertices of a graph G is a district of G if there exists v ∈ V \ T such

that T ∩N(v) is a constituency of G− v. A non-district is a set of vertices that is

not a district. The District (Non-District, respectively) decision problem asks,

given a graph G and a set T , whether T is a district (a non-district, respectively) of

G.

(Non-)District

Input: A graph G = (V,E) and a set of vertices T ⊆ V .

Question: Is T a (non-)district of G?

Theorem 5a.4. District is NP-complete.

Proof. Membership of NP is known: the yes-certificate is a vertex v and a set of

vertices I such that v /∈ I ∪ T , I is an independent set, and T ∩N(v) ⊆ N(I).

The hardness proof is by reduction from Constituency, which is NP-complete,

as proved in Theorem 5a.2. Let (G,S) be an instance of Constituency, and con-

struct the instance (Ĝ, Ŝ) of District as follows.

Let G = (V,E) and denote T = V \ S. Then consider a copy T ′ = {t′ : t ∈ T} of

T and an additional vertex v̂ /∈ V ∪ T ′. Let Ĝ = (V̂ , Ê) with V̂ = V ∪ T ′ ∪ {v̂} and

Ê = E ∪ {tt′ : t ∈ T} ∪ {sv̂ : s ∈ S}, and Ŝ = S ∪ T ′. This construction is illustrated

in Figure 5a.2.

We only need to prove that S is a constituency of G if and only if Ŝ is a district

of Ĝ. Firstly, if S is a constituency of G, then there exists an independent set I of G

such that S ⊆ N(I;G). Then Ŝ ∩N(v̂; Ĝ) = S is contained in N(I; Ĝ− v̂), thus Ŝ is

a district of Ĝ.

Conversely, if Ŝ is a district of Ĝ, then there exists u ∈ V̂ \ Ŝ such that Ŝ∩N(u; Ĝ)

is a constituency of Ĝ − u. Then either u = v̂ or u ∈ T . Suppose u = t ∈ T , then

172

5a.3.2. Districts

Dominion reduction

c

T

S

T ′

d
e



 Ĝ

G

v̂

c′

d′

e′

a

b

Figure 5a.2: Example reduction from a no-instance of Constituency (G,S) to the
corresponding no-instance of District (Ĝ, Ŝ), with Ŝ := S ∪ T ′.

t′ ∈ Ŝ is an isolated vertex of G − t, hence Ŝ ∩ N(t; Ĝ) is not a constituency of

Ĝ − t. Therefore, u = v̂ and there exists an independent set Î of Ĝ − v̂ such that

Ŝ ∩ N(v̂; Ĝ) = S is contained in N(Î; Ĝ). Since S ⊆ V and N(S; Ĝ − v̂) ⊆ V , we

obtain S ⊆ N(Î ∩ V ; Ĝ− v̂) ∩ V = N(Î ∩ V ;G), where I = Î ∩ V is an independent

set of G. Thus, S is a constituency of G.

Corollary 5a.5. Non-District is coNP-complete.

If T is a district of G, then any subset of T is also a district of G. Therefore,

any superset of a non-district is also a non-district. Furthermore, every graph G

has a trivial non-district, namely V . The Non-Trivial Non-District problem

asks whether G has any other non-district. We provide some illustrative instances in

Figure 5a.3. We need only consider sets W with |W | = n− 1. For C4 and C3, we can

by symmetry assume W = V \ {a}, and then for C4 {c} is an independent set which

dominates N(a) ∩ W , whereas for the C3 there are no vertices outside N(a) ∩ W

and hence {b, c} is a non-district. Similarly, for P3, W = V \ {b} is a non-trivial

non-district.

Non-Trivial Non-District

Input: A graph G = (V,E).

Question: Does there exist a non-district S ̸= V of G?

Theorem 5a.6. Non-Trivial Non-District is coNP-complete.

Proof. Since any superset of a non-district is also a non-district, G has a non-district

S ̸= V if and only if there exists v ∈ V such that V \ {v} is a non-district of G.

Therefore, Non-Trivial Non-District is in coNP, where the no-certificate is a

collection (Iv : v ∈ V) such that Iv is an independent set of G− v and N(v) ⊆ N(Iv)

for all v.

173

5a.3.2. Districts

Examples for Non-Trivial Non-Dominion

c

b

d

a

c

a

b

a b c

Figure 5a.3: Some example instances of the Non-Trivial Non-District problem.
C4 (left) is a no-instance, whereas C3 (center) and P3 (right) are yes-instances.

Dominion is coNP-complete even with fancy restrictions

T

S



 Ĝ

G

v̂

a

b

a′

b′

σ′′

Clique on {σ′′} ∪ T ′′

S′

c

d

e
T ′

c′

d′

e′
T ′′

c′′

d′′

e′′

Figure 5a.4: Illustration of the reduction from Non-Constituency to Non-Trivial
Non-District.

.

The hardness proof is by reduction from Non-Constituency, which is coNP-

complete by Corollary 5a.3. Let (G = (V,E), S) be an instance of Non-Constituency

of complete type (i.e. where S is a clique in G) and denote T = V \ S. Let

V ′ = {v′ : v ∈ V } be a copy of V , T ′′ = {t′′ : t ∈ T} be a second copy of T , and σ′′

and v̂ be two additional vertices. For any A ⊆ V , we denote A′ = {a′ : a ∈ A}. Let

Ĝ = (V̂ , Ê) with V̂ = V ∪V ′ ∪T ′′ ∪{σ′′, v̂} and Ê = E∪{vv′ : v ∈ V }∪{v̂s, v̂s′, s′σ′′ :

s ∈ S} ∪ {t′′t̄′′, t′′σ′′ : t, t̄ ∈ T}. This is illustrated in Figure 5a.4.

We first show that Wa = V \ {a} is a district of Ĝ for all a ̸= v̂ (note that

Wa ∩N(a; Ĝ) = N(a; Ĝ)). Necessarily one of the following holds.

• a = s ∈ S.

Then N(s; Ĝ) = {v̂, s′} ∪ N(s;G) is dominated by the independent set {σ′′} ∪

N(s;G)′.

• a = s′ ∈ S′.

Then N(s′; Ĝ) = {v̂, s, σ′′} is dominated by the independent set {s̄, s̄′} where

s̄ ∈ S \ {s} (and so necessarily ss̄ ∈ E).

174

5a.4. Reachability of the MIS network

• a = σ′′.

Then N(σ′′; Ĝ) = S′ ∪ T ′′ is dominated by the independent set {v̂} ∪ T ′.

• a = t ∈ T .

Then N(t; Ĝ) = t′ ∪N(t;G) is dominated by the independent set {t′′}∪N(t;G)′

(or alternatively {t′′, v̂}).

• a = t′ ∈ T ′.

Then N(t′; Ĝ) = {t, t′′} is dominated by the independent set {t̄, t̄′′} where tt̄ ∈

E. (Recall G − S has no isolated vertices in a Constituency instance of

complete type.)

• a = t′′ ∈ T ′′.

Then N(t′′; Ĝ) = {t′, σ′′} ∪ (T ′′ \ {t′′}) is dominated by the independent set

{t} ∪ (V ′ \ {t′}) ∪ S′.

We now show that Wv̂ is a district of Ĝ if and only if S is a constituency of G. We

remark that Wv̂∩N(v̂; Ĝ) = S∪S′. If Wv̂ is a district of Ĝ, then S ⊆ N(I\N [v̂; Ĝ]; Ĝ)

for some independent set I. Therefore S ⊆ N(I ∩ T ;G), i.e. S is a constituency of

G. Conversely, if S is a constituency of G, say S ⊆ N(I;G) for some independent set

I of G, then I ∪ {σ′′} is an independent set of Ĝ such that S ∪ S′ ⊆ N(I ∪ {σ′′}; Ĝ),

i.e. Wv̂ is a district of Ĝ.

5a.4 Reachability of the MIS network

5a.4.1 The MIS network

By identifying a configuration x ∈ {0, 1}V with its support 1(x), one can interpret

the MIS algorithm as sequential updates of a particular Boolean network. The MIS

network on G, denoted as M(G) or simply M when the graph is clear from the

context, is defined by

M(x)v =

0 if ∃u ∈ N(v) : xu = 1

1 if ∀u ∈ N(v) : xu = 0

=
∧
u∼v

¬xu,

with M(x)v = 1 if N(v) = ∅. We then have Fix(M(G)) = M(G) [152, 153].

The MIS algorithm then begins with the all-zero configuration, updates the state

of every vertex in order, and leads to a configuration whose support is a maximal

independent set. In the language of Boolean networks:

• x = 0;

• w is a permutation of V ;

• y = Mw(x) ∈ M(G).

The pivotal role of constituencies for the MIS network can be explained by the

equivalence below (its proof is easy and hence omitted). For a set of vertices S ⊆ V ,

175

5a.4.2. Universal configurations

S is a constituency of G if and only if there exists a fixed point y ∈ M(G) such that

yS = 0.

5a.4.2 Universal configurations

In this chapter, we are interested in removing the constraint on the initial configu-

ration x. This in turn will lead to constraints on the word w, as we shall see in the

sequel. For now, in this section, we are interested in initial configurations x that can

lead to any MIS y.

Say a configuration x is F-universal if every fixed point of F is reachable from x,

i.e. x 7→F z for all z ∈ Fix(F). Clearly, the all-zero configuration is M(G)-universal, as

one can reach any MIS from the empty set. In fact, those fixed points can be reached

by a geodesic. We now classify the universal configurations for the MIS network, which

actually also allow to reach all fixed points by a geodesic. Since the classification is

based on constituencies, the problem of deciding whether a configuration is universal

is coNP-complete.

M-Universal Configuration

Input: A graph G and a configuration x.

Question: Is x an M(G)-universal configuration?

Theorem 5a.7 ([50]). M-Universal Configuration is coNP-complete.

We first characterise the configurations y that are reachable from a given con-

figuration x. For any configuration x on G, we denote the collection of connected

components of G[1(x)] as C(x). Before giving the full statement of the result, we

provide some intuition. Suppose y is reachable from x; we show that y must satisfy

two conditions. First, y cannot “create an edge”: if [w] intersects an edge of G[1(x)],

then it will destroy it. Therefore, any edge in G[1(y)] must be an (untouched) edge of

G[1(x)]. Second, y cannot “empty out” a connected component: in order to update

a vertex v from xv = ya−1
v = 1 to yv = yav = 0, there must be a neighbour a of v such

that ya−1
v = 1. Therefore, for any C ∈ C, yC ̸= 0.

Proposition 5a.8 then shows that these two conditions are indeed sufficient for

reachability, and in fact for reachability by a geodesic.

Proposition 5a.8 (Reachability for the MIS network[50]). Let G be a graph and

x, y be two configurations on G. The following are equivalent:

1. x 7→M y;

2. x geo7−−→M y;

3. every edge in G[1(y)] is an edge in G[1(x)] and yC ̸= 0 for any C ∈ C(x).

Corollary 5a.9 ([50]). The configuration x is M(G)-universal if and only if every

C ∈ C(x) is a non-constituency of G.

176

5a.5. Words fixing the MIS network

In particular, the all-zero and all-one configurations are M-universal for all graphs.

Another consequence of Proposition 5a.8 is that any initial configuration can reach

a fixed point via a geodesic.

Corollary 5a.10 ([50]). For any configuration x, there exists y ∈ M(G) such that

x
geo7−−→M y.

5a.5 Words fixing the MIS network

We now focus on words fixing the MIS network. As we shall prove later, every graph

G has a fixing word. Whether a word w fixes the MIS network does not only depend

on the set [w] of vertices it visits. Indeed, as seen in Example 5a.1 for the graph P3,

the word w = abc does not fix M, while w = acb does fix M. We define Fixing Word

to be the decision problem asking, for an instance (G,w), whether w fixes M(G).

Fixing Word

Input: A graph G = (V,E) and a word w.

Question: Does w fix M(G)?

Theorem 5a.11. Fixing Word is coNP-complete.

Fixing Word is in coNP; the certificate being a configuration x such that

Mw(x) /∈ M(G). Fixing Word is coNP-complete, even when restricted to permu-

tations – which directly implies Theorem 5a.11 (we discuss this in in Section 5a.5.3).

5a.5.1 Prefixing and suffixing words

The seminal observation is that if G is a graph, and w is a permutation of V , then

ww fixes M(G): for any initial configuration x, Mw(x) ∈ I(G); then for any y ∈ I(G),

Mw(y) ∈ M(G). We shall not prove this claim now, as we will prove stronger results

in the sequel (see Propositions 5a.13 and 5a.15).

Following the seminal observation above, we say that wp prefixes M(G) if Mwp(x) ∈

I(G) for all x ∈ {0, 1}V , and that ws suffixes M(G) if Mws(y) ∈ M(G) for all y ∈ I(G).

In that case, for any word ω, wpω also prefixes M(G) and ωws also suffixes M(G).

Clearly, if w = wpws, where wp prefixes M(G) and ws suffixes M(G), then w fixes

M(G). We can be more general, as shown below.

Proposition 5a.12 ([50]). If w = w1:l where w1:a prefixes M(G), wb:l suffixes M(G),

and [wb:a] is an independent set of G for some 0 ≤ a, b ≤ l, then w fixes M(G).

We now characterise the words that prefix (or suffix) the MIS network. Inter-

estingly, those properties depend only on [w]. Also, while deciding whether a word

prefixes the MIS network is computationally tractable, deciding whether a word suf-

fixes the MIS network is computationally hard as it is based on the Non-District

problem.

177

5a.5.2. Fixing sets

Proposition 5a.13 ([50]). Let G be a graph. Then the word w prefixes M(G) if and

only if [w] is a vertex cover of G.

Prefixing Word

Input: A graph G = (V,E) and a word w.

Question: Does w prefix M(G)?

Corollary 5a.14. Prefixing Word is in P.

Proposition 5a.15 ([50]). Let G be a graph. Then the word w suffixes M(G) if and

only if [w] is a non-district of G.

Suffixing Word

Input: A graph G = (V,E) and a word w.

Question: Does w suffix M(G)?

Corollary 5a.16 (following from Theorem 5a.4). Suffixing Word is coNP-complete.

5a.5.2 Fixing sets

Some graphs have fixing words that do not visit all vertices. For instance, if G = Kn is

the complete graph with vertices v1, . . . , vn, then it is easily shown that w = v1 . . . vn−1

is a fixing word for the MIS network. In general, we say that a set S of vertices of G

is a fixing set of G if there exists a word w with [w] = S that fixes M(G).

We first characterise the fixing sets of graphs. Interestingly, those are the same

sets S such that ww is a fixing word of M(G) for any permutation w of S.

Proposition 5a.17 ([50]). Let S be a subset of vertices of G. The following are

equivalent.

1. S is a fixing set of M(G), i.e. there exists a fixing word w of M(G) with [w] = S.

2. For all words wp, ws such that [wp] = [ws] = S, the word wpws fixes M(G).

3. S is a vertex cover and a non-district.

The Fixing Set problem asks, given a graph G and a set of vertices S, if S is

a fixing set of G. In other words, it asks whether the vertices outside of S can be

skipped by some fixing word.

Fixing Set

Input: A graph G = (V,E) and a set S ⊆ V .

Question: Is S a fixing set of M(G)?

Theorem 5a.18 ([50]). Fixing Set is coNP-complete.

178

5a.5.3. Permises

Fixing Set reduction



 Ĝ

G

c

T

S

d
e

a

b

ĉ

dc
ec

ac

bc

cd

d̂
ed

ad

bd

ce

de
ê

ae

be

 Gc  Gd  Ge

Figure 5a.5: Example reduction from a no-instance of Non-District (G,S) to the
corresponding no-instance of Fixing Set (Ĝ, Ŝ), with Ŝ = Vc ∪ Vd ∪ Ve.

c

b

d

a

0

0

0

1

Figure 5a.6: C4 is a no-instance of the Non-Trivial Non-District problem, and
hence also a no-instance of Non-Trivial Fixing Set. For any word w with [w] =
{b, c, d}, Mw(1000) = 1000 /∈ M(C4). By symmetry, no set of three vertices is a fixing
set for M(C4).

Clearly, if S is a fixing set of M(G), then every superset of S is also a fixing

set. Moreover, every graph G has a trivial fixing set, namely V . The Non-Trivial

Fixing Set asks whether G has any other fixing set. Equivalently, it asks whether

any vertex can be skipped by a fixing word.

Non-Trivial Fixing Set

Input: A graph G.

Question: Does there exist a fixing set S ̸= V of G?

Theorem 5a.19 ([50]). Non-Trivial Fixing Set and Non-Trivial Non-District

are the same problem (have exactly the same yes- and no-instances), and consequently

Non-Trivial Fixing Set is coNP-complete.

5a.5.3 Permises

The MIS algorithm doesn’t use any word w to update the state of each vertex, but

instead restricts itself to w being a permutation of V . As such, we now focus on

permutations and we call a permutation of V that fixes M(G) a permis of G. The

Permis decision problem is equivalent to the Fixing Word problem, restricted to

permutations.

179

5a.5.3. Permises

Permis

Input: An undirected graph G = (V,E) and a permutation w of V .

Question: Is w a permis of G?

Let w be a permutation of V , then w naturally induces a linear order on V ,

whereby wi ≻ wj whenever i < j, i.e. wi is updated before wj . Then consider the

orientation of G induced by w: Gw = (V,Ew) with Ew = {(u, v) : uv ∈ E, u ≻ v}.

We see that Gw is acyclic, and that conversely any acyclic orientation of G is given

by some Gw. A simple application of [162, Theorem 1] shows that if w,w′ are two

permutations of V such that Gw = Gw
′ , then w is a permis if and only if w′ is a

permis.

We say that the vertex v is covered by w if for every x ∈ {0, 1}V , yN [v] ̸= 0,

where y = Mw(x). Thus, w is a permis if and only if w covers all vertices.

Covered Vertex

Input: A graph G = (V,E), a permutation w of V and a vertex v ∈ V .

Question: Is v covered by w?

We now give a sufficient condition for a vertex to be covered. Let G be a graph,

H be an orientation of G, and let t and v be vertices of G. We say t is transitive if

for all a, b ∈ V , t → a → b implies t → b in Gw. We say v is near-transitive if there

exists a transitive vertex t such that N [t;G] ⊆ N [v;G]. The following two results

were obtained by leveraging the complexity of from Non-Constituency.

Theorem 5a.20 ([50]). Permis is coNP-complete.

Proof. Membership of coNP is known: the no-certificate is a configuration x such

that y = Mw(x) /∈ M(G).

The hardness proof is by reduction from Non-Constituency, which is coNP-

complete by Corollary 5a.3. Let (G,S) be an instance of Non-Constituency of

empty type and construct the instance (Ĝ, w) of Permis as follows. Let T = V \ S

and T ′ = {t′ : t ∈ T} be a copy of T . Then let Ĝ be the graph with vertex set

V̂ = {v, a, b} ∪ V ∪ T ′, and with edges Ê = E ∪ {sv : s ∈ S} ∪ {va, ab} ∪ {tt′ : t ∈ T}.

Let w be a permutation of V̂ such that v ≻ a ≻ b ≻ T ≻ T ′ ≻ S. This is illustrated

in Figure 5a.7.

We claim that w is a permis of Ĝ if and only if S is not a constituency of G.

Firstly, the vertices in S ∪T ′ ∪ {b} are all transitive and hence the vertices in T ∪ {a}

are near-transitive. Therefore, w is a permis if and only if v is covered. We prove

that v is covered if and only if S is not a constituency of G.

If S is a constituency of G, then let I ⊆ T be a maximal independent set of G (and

hence an independent set of Ĝ as well) such that S ⊆ N(I). Let x = χ(I ∪ {a, b}).

Then yv = 0 (because xa = 1), ya = 0 (because xb = 1), yI = 1 and yS = 0 (because

180

5a.6. Permissible and non-permissible graphs

Permis is coNP-h

vu

means u is before v in w (u ≻ v),

vu

means u ≻ v or v ≻ u arbitrarily.
c

T

S

T ′

d

e



 Ĝ

G

c′

d′

e′

a

b

a bv

Legend:

Figure 5a.7: Illustration of the reduction from Non-Constituency to Permis.

for any vertex u, if xu = 1 and xN(u) = 0, then yu = 1 and yN(u) = 0). Thus

yN [v] = 0.

Conversely, if yN [v] = 0, then for any s ∈ S, yN(s) ̸= 0. Since yv = 0, there is

t ∈ T such that ts ∈ E and yt = 1. Therefore, the set 1(y) ∩ T is an independent set

that dominates S, i.e. S is a constituency of G.

Theorem 5a.21 ([50]). Covered Vertex is coNP-complete.

5a.6 Permissible and non-permissible graphs

We say that G is permissible if it has a permis. As we shall see, not all graphs are

permissible. In this subsection, we exhibit permissible and non-permissible graphs,

and we prove that deciding whether a graph is permissible is computationally hard.

We classified (non-)permissible graphs by computer search, using nauty’s geng

utility [163] to exhaustively generate connected graphs up to 9 vertices. Full results

are available at https://github.com/dave-ck/MISMax/. Here are some highlights.

Of 273194 connected graphs on at most nine vertices, only 432 are non-permissible;

the heptagon C7, 13 8-vertex graphs (including the perfect graph shown in Figure

5a.8), and 418 9-vertex graphs. The Petersen graph is also non-permissible.

We prove the graph in Figure 5a.8 is perfect as follows. First note that four vertices

in the graph have degree 3 and four vertices in the graph have degree 5. The absence

of an induced C5 can be verified manually. There is no induced C7: any subgraph

on seven vertices includes at least one vertex formerly of degree 5 hence of degree at

least 4 in the induced subgraph. Similarly, there is no induced C7; any subgraph on

seven vertices includes at least one vertex formerly of degree 3 and hence of degree at

most 3 in the induced subgraph (C7 is 4-regular).

181

https://github.com/dave-ck/MISMax/

5a.6.1. Permissible graphs

Permisless perfect graph

Figure 5a.8: An 8-vertex perfect graph with no permis.

5a.6.1 Permissible graphs

We now exhibit large classes of permissible graphs.

An orientation of G is transitive (near-transitive, respectively) if all the vertices

are transitive (near-transitive, respectively). Any transitive orientation is necessarily

acyclic. A graph that admits a transitive orientation is called a comparability

graph. The following are comparability graphs: complete graphs, bipartite graphs,

permutation graphs, cographs, and interval graphs. Accordingly, we say that a graph

that admits a near-transitive orientation is a near-comparability graph.

Proposition 5a.22 ([50]). All near-comparability graphs are permissible.

We now give a characterisation of near-comparability graphs below. Recall that

the vertex m is a benjamin of G if there is no vertex v with N in[v] ⊂ N in[m] and that

GB is the subgraph of G induced by its benjamins.

Theorem 5a.23. reduction from Non-Constituency to Permis Let G be a graph.

The following are equivalent:

1. G is a near-comparability graph, i.e. it admits a near-transitive orientation;

2. G admits a near-transitive acyclic orientation;

3. GB is a comparability graph.

Recognising comparability graphs can be done in polynomial time; see [164] and

references therein. In fact, the algorithm in [164] not only decides whether a graph

is a comparability graph, but it also produces a transitive orientation if such exists.

In view of Theorem 5a.23, applying that algorithm to GB not only decides whether a

graph is a near-comparability graph, but it also produces a near-transitive orientation

if one exists.

Any induced subgraph of a comparability graph is a comparability graph. How-

ever, as we shall prove below, any graph is the induced subgraph of some near-

comparability graph. Thus, Proposition 5a.22 shows that every graph is the induced

subgraph of a permissible graph. This entails that the class of permissible graphs

is not hereditary, i.e. it is impossible to characterize permissible graphs by some

forbidden induced subgraphs.

Corollary 5a.24 ([50]). For every graph G, there exists a near-transitive (and hence

permissible) graph H such that G is an induced subgraph of H.

182

5a.6.2. Non-permissible graphs

Composition illustration

P2

P1

P3

1

2 3

4

56

C6(P1, P2, P3, P1, P2, P3)C6

1

2 3

4

56

Figure 5a.9: Illustration of the composition operation.

We now introduce an operation on graphs, that we call graph composition, that

preserves permissibility. Let H be an n-vertex graph, G1, . . . , Gn other graphs, then

the composition H(G1, . . . , Gn) is obtained by replacing each vertex h of H by the

graph Gh, and whenever hh′ ∈ E(H), adding all edges between Gh and Gh′ . More

formally, we have

V (G) = {vh : h ∈ V (H), v ∈ V (Gh)},

E(G) = {vhv′
h′ : hh′ ∈ E(H), v ∈ V (Gh), v′ ∈ V (Gh′)} ∪ {vhv′

h : h ∈ V (H), vv′ ∈ E(Gh)}.

This is illustrated in Figure 5a.9.

This construction includes for instance the disjoint union of two graphs: G1∪G2 =

K̄2(G1, G2) and the join of two graphs: K2(G1, G2). In the special case where only a

single vertex b is replaced by the graph Gb, we use the notation

H(b,Gb) = H(K1, . . . ,K1, Gb,K1, . . . ,K1).

This special case includes adding an open twin (a new vertex b′ with N(b′) = N(b)):

H(b, K̄2) and adding a closed twin (N [b′] = N [b]): H(b,K2). In fact, any composition

can be obtained by repeatedly replacing a single vertex.

Lemma 5a.25 ([50]). Let G = H(G1, . . . , Gn) be a graph composition, where

V (H) = {1, . . . , n}. For all 0 ≤ i ≤ n, let Gi be defined as G0 = H and Gi =

Gi−1(i, Gi). Then Gn = G.

Proposition 5a.26 ([50]). If G = H(G1, . . . , Gn), where each of H,G1, . . . , Gn is

permissible, then G is permissible.

5a.6.2 Non-permissible graphs

We now exhibit classes of non-permissible graphs. As mentioned earlier, the smallest

non-permissible graph is the heptagon; in fact, any odd hole with at least seven

vertices is non-permissible.

Proposition 5a.27 ([50]). For all k ≥ 3, the odd hole C2k+1 is not permissible.

We now give two ways to construct larger non-permissible graphs.

Recall that a set of vertices S is tethered if there is an edge st between any s ∈ S

and any t ∈ T = N(S) \ S.

Proposition 5a.28 ([50]). Let G be a graph. If G has a tethered set of vertices S

such that G[S] has no permis, then G has no permis.

183

5a.6.3. The Permissible decision problem

C7, C7+,C7++

θv̂

α
β

γ

δ

ϵ
ζ

v v̂

α
β

γ

δ

ϵ
ζ

vη v̂

α
β

γ

δ

ϵ
ζ

vηC7 C7++C7+

Figure 5a.10: Graphs C7 (non-permissible), C7+ (permissible), and C7++ (non-
permissible).

Propositions 5a.27 and 5a.28 yield perhaps the second simplest class of non-

permissible graphs. The wheel graph is Wn+1 = K2(Cn,K1).

Corollary 5a.29. For all k ≥ 3, the wheel graph W2k+2 is not permissible.

Clearly, a graph is permissible if and only if all its connected components are

permissible. In particular, for any G, the union H = G∪C7 is not permissible, but is

disconnected. An interesting consequence of Proposition 5a.28 is that permissibility

of a connected graph cannot be decided by focusing on an induced subgraph, even if

the latter has all but seven vertices of the original graph. Indeed, for any graph G,

the join H ′ = K2(C7, G) is not permissible, since the heptagon is tethered in H ′.

Corollary 5a.30. Let G be a graph. Then there exists a connected non-permissible

graph H ′ such that G is an induced subgraph of H ′.

Second, and unsurprisingly, we can construct larger non-permissible graphs by

using a constituency.

Proposition 5a.31 ([50]). Let G be a graph. If there exists A ⊆ V such that G[A]

is not permissible and S = N(A) \ A is a constituency of G − A, then G is not

permissible.

For all k ≥ 3 the odd hole C2k+1 is non-permissible. Consider the graph C2k+1+

by adding a vertex of degree one to C2k+1; as we shall see later it is permissible.

Now add another vertex of degree one to the tail of C2k+1+ to obtain C2k+1++. The

graphs C7, C7+ and C7++ are illustrated in Figure 5a.10. In C7++, the vertex S = {η}

is a constituency and is the neighbourhood of the heptagon; therefore C7++ is not

permissible. Obviously, this reasoning applies to all larger C2k+1++ as well.

Corollary 5a.32. For all k ≥ 3, C2k+1++ is not permissible.

5a.6.3 The Permissible decision problem

We now explore the complexity of deciding whether a graph is permissible.

Permissible

Input: A graph G.

Question: Is G permissible?

184

5a.7. Conclusions and future work

C7

v̂

α
β

γ

δ

ϵ
ζ

vη

Figure 5a.11: The permis of C7+.

As mentioned above, C7+ is permissible; the proof of Lemma 5a.33 below can be

generalised to show that C2k+1+ is permissible for all k ≥ 3.

Lemma 5a.33 ([50]). Any w such that C7+
w is given on Figure 5a.11 is a permis of

C7+.

Theorem 5a.34 ([50]). Permissible is coNP-hard.

5a.7 Conclusions and future work

In this chapter, we have considered the generalisation of the MIS algorithm to allow

for any initial configuration and to use update words that are not necessarily permu-

tations. We have defined many decision problems with respect to this generalisation,

such as:

• Given G and a configuration x, can x reach all MIS?

• Given G and a word w, does w fix M(G)?

• Given G and a set of vertices S, can we fix M(G) by only updating S?

• Given G, is there a word fixing M(G) that skips a vertex?

• Given G and a permutation w, does w fix M(G) (i.e. is w a permis of G)?

• Given G, does G have a permis?

Even though every graph has a fixing word that guarantees terminating at a MIS

regardless of the initial configuration, all the decision problems about the MIS algo-

rithm in this chapter are computationally hard. Additionally, we exhibit broad classes

of graphs with and without permises, and relate these to existing graph classes. We

introduce the class of near-comparability (a strict superclass of comparability graphs,

which themselves encompass interval graphs and bipartite graphs, among others) and

show that all near-comparability graphs are permissible.

This work can be extended in several ways. We give three potential avenues below.

Graph classes. Since our problems are NP- or coNP-hard for the class of all

graphs, it is natural to examine the complexity of those problems when we

restrict ourselves to particular graph classes. The main tool for reductions is

the Constituency decision problem. However, the reductions used in this

chapter did not preserve certain graph classes. For instance, Constituency

remains NP-complete even for bipartite graphs, while Permissible is trivial

for comparability graphs.

185

5a.7. Conclusions and future work

Minimum length of a fixing word. We have investigated the existence of fixing

words, but not their lengths. From our results on prefixing and suffixing words,

we get an upper bound on the minimum length of a fixing word: a+b−1, where

a is the minimum size of a non-district and b is the minimum size of a vertex

cover. We conjecture that the problem of determining the minimum length of

a fixing word is computationally hard. The analogous problem when we can

only start at the all-zero configuration is obviously NP-hard, as this amounts

to determining the minimum size of a maximal independent set.

Permises with bounded diameter. Let w be a permutation of V , and for any

vertex v, let δ(v) denote the maximum length of a path terminating at v in

Gw. Let Ci = {v ∈ V : δ(v) = i}, then V = C0 ∪ · · · ∪ Cd, where d is the

diameter of w. Instead of updating the vertices sequentially according to w, one

can update all the vertices in Ci at once, thus only requiring d + 1 time steps.

As such, the diameter of a permis w measures the time it takes to fix the MIS

network when we allow for some amount of synchronicity. If ∆ is the maximum

degree of G, then G always has a permutation of diameter ∆: partition V into

colour classes C0, . . . , C∆ (since the chromatic number is at most ∆ + 1), then

C0 ≻ C1 ≻ · · · ≻ C∆. This is best possible if G is complete, for instance. We

therefore ask: if G has a permis, then does it have a permis of diameter bounded

by a function of ∆?

186

Chapter 5b

Better Late, then? Delaying

connections in temporal graphs.

This chapter is based on joint work [51] with Anouk Sommer, a student at the Karl-

sruhe Institute of Technology in Germany. Most of the results presented here were

discovered collaboratively in summer 2024 during a research internship supported by

the Deutscher Akademischer Austauschdienst (DAAD) with the title Schnell aber spät:

breaking Deutsche Bahn even more with graph theory.

5b.1 Introduction

In the first half of 2024, punctuality of Deutsche Bahn’s long distance trains was

62.7% [165]. Disruptions to train networks often result in passengers arriving later

than planned or not at all. Whenever a train is late and the passengers of this train

would miss a connecting train, there are two choices: either, the second train departs

on time, meaning that the passengers of the first train miss their connection, or the

second train waits, meaning that the passengers can make the connection, at the cost

of this train now also being late. The problem of deciding whether (and by how

much) such services should wait is the Delay Management problem, well studied in

Operations Research.

Separately, the field of temporal graph theory provides a general, rigorous math-

ematical framework with which to investigate the complexity due to the intrinsically

dynamic properties of certain real-world networks. Briefly, a temporal graph is one

whose edge set changes over time. Much work has been devoted to modification

problems of the form “Given a temporal graph G, apply some (delaying or other)

operations to satisfy some reachability property” (see Table 5b.1), but interestingly

the problem of managing delays to ensure that specific passengers arrive at their des-

tination on time has yet to be studied in this framework. fig. 5b.1 shows a simple

example of a temporal graph illustrating such a scenario.

The present work aims to study the practically interesting problem of Delay Man-

agement through the lens of temporal graph theory. We introduce the decision prob-

lem DelayBetter (or simply DB) which asks, given a temporal graph and a col-

187

5b.1.1. Problem setting

u
1

v
2

w
1

x
2

y
3

z

Figure 5b.1: A temporal graph on 6 vertices. Consider the case where passengers at
each of u, v, and w wish to travel to each of x, y, and z respectively, arriving at or
before time 4. Then delaying the edge from w to x by at least 2 is necessary for the
two leftmost passengers to arrive on time, but entails that the passenger starting at
w cannot arrive at z before time 5.

lection of passengers on its vertices, each with a desired destination and arrival time,

whether it is feasible to delay some edges of the graph to satisfy each of the passen-

gers. We also consider variants of the problem: Path-DB, where passengers must

be routed along specific edges prescribed in the input, δ-DB, where each edge can

be delayed by at most some fixed δ, and δ-Path-DB combines both constraints. We

present (parameterized) tractability and hardness results for these problems, includ-

ing on structurally restricted graph classes.

Problem Operation Restriction Reachability
condition

Additional
inputs

ReachFast [84] Shift (+−) N/A ∀x ∈ S : Rx = V
sources S ⊆ V ,
τ ∈ N to be
minimized

TRLP [85] Shift (+−) up to η edges,
by up to δ each |Rx| ≥ k

designated
source x ∈ V ,
η, δ, k ∈ N

MinReachDelay
[166] Delay

up to η
time-edges by
exactly δ each

|RS | ≤ k
sources S ⊆ V ,
η, δ, k ∈ N

MinReach [72] Delay
up to η

time-edges by
up to δ each

|RS | ≤ k
sources S ⊆ V ,
η, δ, k ∈ N

MaxMinTaRDiS
(Chapter 3)

Choose
time-labels lifetime is τ ∄S ⊆ V, |S| < k :

RS = V
τ, k ∈ N

(δ-)DelayBetter Delay (by up to δ per
edge)

(u, v, t) ∈ D
⇒ v ∈ Rtu

D ⊆ V × V × N
(δ ∈ N)

(δ-)Path DB Delay (by up to δ per
edge)

as above along
specified path

D ⊆
V × V × N × 2E

(δ ∈ N)

Table 5b.1: Comparison of our problems DelayBetter and Path DelayBet-
ter/Path DB to problems in the literature. Rtu (resp. RtS) denotes the set of
vertices reachable from vertex u (resp. any vertex s ∈ S) by time-step t (when t is
the lifetime of the temporal graph, it is omitted).

5b.1.1 Problem setting

We denote [i, j] the integer interval {i, i + 1, . . . , j}, and say a graph is cubic if all

vertices in the graph have degree 3. We now give some definitions from temporal

graph theory.

Definition 5b.1 (Temporal graph, temporal path). A temporal graph G = (G,λ)

consists of a static graph G (also called its footprint, denoted G↓) and a temporal

188

5b.1.1. Problem setting

assignment λ : E(G) → N. The lifetime τ ∈ N of a temporal graph (G,λ) is the

maximum time assigned to any edge by λ, and the time-edges of a temporal graph

E(G) are {(u, v, λ(u, v))|(u, v) ∈ E(G)}. A temporal path is a path in G↓ whose edges

have strictly increasing time-labels, and the arrival time of a temporal path is the

time-label of its last edge.

We take this opportunity to note a more general definition of temporal graphs is

often studied, where each edge may have multiple time labels (non-simple temporal

graphs). Another variant applies a notion of temporal reachability which allows for

the traversal of consecutive edges at nondecreasing (rather than strictly increasing)

times (non-strict temporal paths). For a discussion of these different models (in the

undirected setting only) we refer the interested reader to [78]. Hardness results from

the simple setting generalize to the non-simple setting, and tractability for the non-

simple setting may be applied to the simple setting. In the present work, we focus

exclusively on strict temporal paths and simple (directed or undirected) temporal

graphs.

Definition 5b.2 (Delaying). We say that a temporal assignment λ′ is a delaying of

an assignment λ if λ′(e) ≥ λ(e) for every e. If λ′(e) = λ(e) + δ, we say that e is

delayed by δ in λ′, and that λ′ is a δ-delaying of λ if every e is delayed by at most δ

in λ′ (hence a δ-delaying is also a (δ + 1)-delaying).

We can now introduce our protagonists:

(δ-)DelayBetter

Instance: Temporal graph G = (G,λ), demands D ⊆ V (G)×V (G)×N (, δ ∈ N).

Question: Does there exist a (δ-)delaying λ′ of λ such that for each (u, v, t) ∈ D

there is a temporal path from u to v with arrival time at most t in (G,λ′)?

(δ-)Path DelayBetter

Instance: Temporal graph G = (G,λ), demands D ⊆ V (G) × V (G) ×N× 2E(G)

(, δ ∈ N).

Question: Does there exist a (δ-)delaying λ′ of λ such that for each (u, v, t, P) ∈

D there is a temporal path from u to v in (G,λ′) with arrival time at most t and

footprint P?

We say a temporal graph G is planar if its footprint G↓ is planar, and directed

(resp. undirected) if G↓ is directed (resp. undirected). We use the shorthand DB for

our problems, referring to, for example, 3-DB, Path DB, or DB. For a demand d,

we denote d = (ds, dz, dt). Restriction of, or parameterization by, the lifetime τ is

often leveraged to obtain tractability of temporal graph problems. In our case, we

denote by Tinit the initial lifetime (that of the temporal graph G before delays are

applied), and by Tmax the latest arrival time required by any single demand – that

189

5b.1.2. Related work

is, maxd∈D dt. We call Tmax final lifetime because it upper-bounds the lifetime of

the temporal graph (G,λ′) (after delays are applied): any time-edge delayed beyond

Tmax in some feasible solution could instead be delayed to Tmax instead (or not at

all), since it will not be used by any passengers. For the same reason, we may assume

without loss that Tinit is at most Tmax.

5b.1.2 Related work

Temporal Graphs. As we touched on earlier, modifying (or choosing) λ to op-

timize a notion of reachability is a well-studied problem in temporal graph theory.

Broadly, problems in this paradigm may either aim to worsen or improve the input

temporal graph’s connectedness. Problems in the first category (including MinReach

[72], MinReachDelay [166], and MaxMinTaRDiS from Chapter 3) are typically

motivated by practical cases where spread is undesired, such as epidemics. In the

case of transportation networks, where connectedness is desired, the second category

(which contains ReachFast [84] and TRLP [85]) is of greater relevance. Of course,

if the delays are controlled by an adversary, the opposite motivation becomes relevant

to each problem: is there any strategy for the adversary to disconnect a transporation

network, or facilitate disease spread? A related, but slightly different perspective on

delays in temporal graphs is explored in [167] and [19], who determine how robust

against unforeseen delays a given temporal graph is with and without re-routing of

the passengers, respectively.

There are also some high-level conceptual similarities between the Perfect Schedul-

ing problem from Chapter 2 and the problems we consider here. In both cases, edge

times are chosen to achieve a global property, namely the timely arrival of passengers

or the timely payment of debts. A key difference between the two models is that in

the former, every edge must be used (and some assets may sit unused at their starting

vertex), whereas in the present model every passenger must move from their starting

point to their destination, and some edges may be unused in the solution.

Delay Management. The Delay Management (DM) problem concerns itself with

finding a good delaying strategy in a public transport network to minimize passenger

inconvenience. Usually, this means minimizing the total passenger delay, but other

objectives like simultaneously minimizing the number of delayed trains or the opera-

tional costs have also been studied. In the original problem, as introduced by [168],

passengers stick with their initial routes (as in Path-DB); a popular variant of the

problem allows passenger re-routing (as in DB) [169]. Both settings have since been

the subject of much study, spanning both theory and practice.

On the theoretical side, different models and algorithmic approaches have been

introduced over the years [170, 171, 172, 173, 174]. Due to modeling differences,

studies of the computational complexity of different DM problem variants [175, 176,

177] do not necessarily yield results for our problems. In addition to minimizing

an aggregate function (e.g., total weighted passenger delay [175, 176]) rather than

190

5b.1.3. Our contribution

asking whether some specific set of passenger demands can be satisfied (as we do),

DM problems are commonly formalized using event-activity networks – which are

more expressive than temporal graphs. For example, the definition of DM in [177]

includes headway constraints (where two trains cannot use the same track segment

simultaneously). Several interesting practically-motivated extensions are studied in

this line of work, including a setting with slack times (trains may catch up on their

delay), which makes the problem hard when the rail network is a line [176], and the

incorporation of rolling-stock circulation into the problem [177] – though results in

such settings do not straightforwardly translate into our model. Nonetheless, some

results from these works can be adapted into the our setting; for example, Theorem

6.1 in [175] could be adapted to show that DelayBetter is NP-complete in the

directed setting with Tmax = 3 (we strengthen this in theorem 5b.11). Also, all of

these works consider a directed model (as is natural for rail networks), whereas our

results are proven for both directed and undirected temporal graphs.

On the more practical side, there have been a number of case-studies and data-

driven approaches to this problem [178, 179, 180]. In [181], a model for optimizing

delays in rail and air travel combined is proposed, together with a European case

study. For a more comprehensive overview of the work in delay management, we refer

the reader to [182], [183], and [184]. A related area of research is the Timetabling

Problem, which concerns itself with designing a timetable that is robust against delays.

We refer the reader to [185] for an introduction.

5b.1.3 Our contribution

We introduce the problems (δ-)DelayBetter and (δ-)Path DB, presenting (to

our knowledge for the first time) a temporal graph-theoretic approach to the well-

studied Delay Management problem. On the positive side, we give a polynomial-time

algorithm for (δ-) Path-DB, and tractability for (δ-)DelayBetter on trees as a

corollary. Later, we leverage this algorithm to obtain a fixed-parameter tractable

(fpt) algorithm parameterized by the number of demands and the size of the feedback

edge set of the footprint graph. On the negative side, we establish that Delay-

Better remains NP-complete on inputs with Tmax = 2 in both the directed and

undirected setting (which entails that 1-DelayBetter is NP-complete under the

same constraint). Moreover, we show that the problem remains hard on planar (di-

rected or undirected) temporal graphs with Tmax = 19, even when δ = 10. Our results

provide a first insight into the structural restrictions which do (and do not) suffice to

guarantee tractability of this natural problem. Proofs of statements marked (∗) can

be found in the appendix at the end of the paper.

5b.2 Preliminary Results

We begin with some basic results, the proofs of which may help to familiarize the

reader with the behavior of our problems. We first establish a useful relation between

191

5b.2. Preliminary Results

δ-DB and DelayBetter. Clearly, DelayBetter is reducible to δ-DelayBetter,

by simply assigning a sufficiently large value to δ (e.g., the final lifetime Tmax of the

DelayBetter instance). Interestingly, the converse also holds:

Lemma 5b.3. For any δ ∈ N, δ-DelayBetter is reducible in linear time to De-

layBetter. If the input instance is planar (resp. has bounded final lifetime) then

the same holds for the output.

Proof. We require different reductions for directed and undirected graphs. In both

cases, substitute a gadget in place of each edge in the original instance, and increase

the lifetime of the instance. Both constructions preserve planarity, and the Delay-

Better-instance has final lifetime at most 2Tmax + 2δ+ 1 (directed) or Tmax + δ+ 2

(undirected), where Tmax is the final lifetime of the δ-DelayBetter instance.

We first deal with the undirected case. We begin with a δ-DelayBetter instance

((G,λ), D, δ) having the property that every time is at time 3 or later (if necessary,

this can be achieved by uniformly incrementing all times in the demands and in the

temporal assignment by 2). We then create, for every time-edge (u, v, t), a gadget on

3δ+3 new vertices {uvt, . . . , uvt+δ, u1, . . . , uδ, v1, . . . , vδ, u
′, v′} and δ+1 new demands

{(uvi, v′, i+ 1) : i ∈ [t, t+ δ]}, as shown in fig. 5b.2.

v′

4

u

uv6

2

δ = 3

v

u vuv4

uv5 u1 v1

u2 v2

u3 v3

u′

uv7

2

3

4

5
u

4

δ = 3

v

(uv4, v
′, 5) ∈ D

(uv5, v
′, 6) ∈ D

(uv6, v
′, 7) ∈ D

(uv7, v
′, 8) ∈ D

Figure 5b.2: A sketch of our reduction for undirected temporal graphs for a time-edge
(u, v, 2) in an instance with δ = 3. For readability, edges assigned time 1 in the output
instance are unlabeled.

Now each of the δ + 1 demands into v′ must be routed through a different path.

Because there are δ+1 possible paths in total, some demand (uvi, v′, t) must be routed

through the edge (u, v) – and this entails that λ′(u, v) = i, yielding the desired result

since i ∈ [t, t+ δ] by construction.

We now give the proof for the directed case. Given an instance (G = (G,λ), D, δ)

of δ-DelayBetter, we produce an instance (G′ = (G′, λ′), D′) of DelayBetter as

follows. (For this proof, we use λ′ to refer to the initial assignment of the new

instance, not the delaying of λ.) We first include {(u, v, 2t)|(u, v, t) ∈ D} as demands,

which we call travelers. Next, we replace every time-edge (u, v) at time t with the

gadget pictured in Figure 5b.3, and add the demand (u′, v′, 2t + 2δ + 1). We call

demands introduced in this step hermits, the edge (u′, u) that hermit’s trailhead, and

the edge (u, uv) (resp. (uv, v)) a first-half (resp. second-half) edge. This concludes

the construction.

192

5b.2. Preliminary Results

u′ u uv

v

v′

u v
t

2t+ 2δ + 1

2t+ 1

1 2t (u′, v′, 2t+ 2δ + 1) ∈ D∧

v

u

Figure 5b.3: A sketch of our reduction for directed temporal graphs.

Clearly, if the δ-DB instance reduced from was a yes-instance, then the Delay-

Better instance obtained is also a yes-instance: whenever some edge (u, v) is delayed

by some amount x in the original instance, delay both (u, uv) and (uv, v) by 2x. It

remains to show the converse.

Let λ∗ be a solution to our modified problem with a pareto-optimal time-assignment

of the edges (that is, one such that there is no other solution whose time-labels are

all strictly smaller or equal to those under λ∗).

Claim 5b.3.1. Hermits leave early: if e is a hermit’s trailhead, then λ∗(e) = 1.

Proof of claim: The claim follows straightforwardly from pareto optimality of λ∗,

and the fact that hermit trailheads are used only by the hermit, who can wait at the

vertex u instead of at u′. ■

Claim 5b.3.2. Under λ∗, every first-half edge (resp. second-half edge) is assigned

an even (resp. odd) time.

Proof of claim: Suppose otherwise. We must deal with two cases:

We deal first with the case where the earliest edge violating this claim is a first-half

at an odd time. Let (u, uv) be the earliest first-half edge assigned an odd time (say,

t′) under λ∗. By pareto-optimality of λ∗ is must be that assigning time t′ − 1 to the

edge (u, uv) would stop some demand from being satisfied. This demand cannot be a

hermit because of claim 5b.3.1 – so there must be some traveler arriving at u at time

t′ − 1, a contradiction since our premise for this case was that (u, uv) was the earliest

edge violating the claim.

Suppose instead that the earliest offending edge is a second-half edge (wu, u)

assigned an even time (say, t′ − 1). We again quickly find that this can only be due

to the first-half edge (w,wu) being used by a traveler at time t′ − 2 - again reaching a

contradiction, since this is a strictly earlier odd time assigned to a first-half edge. ■

Claim 5b.3.3. For each time-edge (u, v, t) in the original instance, λ∗(u, uv) ∈

[2t, 2t+ 2δ].

Proof of claim: By construction, there is a hermit demand (u′, v′, 2t+ 2δ + 1). This

hermit must use the edge (u, uv) (since the new vertex uv has no other incoming

edges and v′ is only reachable from uv). The hermit must use this edge no earlier

than time 2t (as this is its original time under λ′) and no later than time 2t+ 2δ (as

the next edge in the temporal path must be at time 2t+ 2δ + 1 exactly). ■

claim 5b.3.2 allows us to recover a time-labeling for our initial δ-DelayBetter

instance by assigning to each the edge (u, v) the time (u,uv)
2 while preserving the

193

5b.2. Preliminary Results

temporal paths of travelers. claim 5b.3.3 entails that this time-labeling does not

delay any edge by more than δ, and the result follows.

Lemma 5b.4. An instance of DelayBetter or Path DB (resp. δ-DelayBetter

or δ-Path DB) may be reduced in polynomial time to an instance of the same problem

with Tmax ∈ poly(n) (resp. Tmax ∈ poly(n+ δ)).

Proof. Given an instance (G, D) of either problem, we identify the set of all explicit

times (directly encoded in the input) as Texplicit := {dt|d ∈ D} ∪ {λ(e)|e ∈ E(G)},

where dt is the arrival time specified by d. Denote |Texplicit| by α ≤ |E| + |D| (this

inequality is strict if any time appears explicitly more than once in (G, D)). We then

may sort Texplicit into an ordered list of times t1 < t2 < . . . < tα.

Shrinking of an interval [ti, tj] to be of size ℓ consists in decrementing all times tj
or greater in the original instance by tj − ℓ − ti ≥ 0. Thus, any edge (or demand)

formerly at time tj is updated to be at time ti + ℓ. Deleting a time interval [ti, tj]

consists in shrinking that time interval to have size 0.

We first deal with DelayBetter and Path DB. Consider the integer intervals

[ti, ti+1]. If any such interval has size greater than |E|, we may without loss shrink the

interval to have size |E| instead. No-instances of both problems are clearly preserved

by the operation. Yes-instances are also preserved: only the relative order of times

assigned to edges matters for a temporal path to exists, and any ordering achievable

in the original instance is also achievable in the transformed instance since at most

|E| unique times are assigned under λ′ in total.

We now deal with δ-DelayBetter. We identify the set of relevant times to

be Trelevant :=
⋃
t∈Texplicit

: [t, t + δ]. Note that this set has cardinality at most

δ · (|E| + |D|), and that it contains all possible times used in any solution λ′. Hence

we then may eliminate every time not in Trelevant (by deleting at most |E| + |D|

intervals) and obtain an equisatisfiable instance with Tmax ≤ δ · α.

In both cases, the procedure clearly runs in time poly(log Tmax + |V (G)| + |D|),

and we obtain the desired result.

Lemma 5b.5. (δ-)DelayBetter is contained in NP.

Proof. Given an instance I = (G, D) of (δ-)DelayBetter and a corresponding

solution, i.e., an assignment λ′ of time-labels (which can delay edges of the initial

assignment λ), we can check in polynomial time whether λ′ is indeed a valid solution

for I as follows.

First, we need to check that the assignment λ′ actually represents valid delays (i.e.,

that no edge was moved to an earlier point in time). To do so, we check in O(|E|)

whether for every e ∈ E we have λ(e) ≤ λ′(e) (for the case of δ-DelayBetter, we

also check that λ(e) + δ ≤ λ′(e)).

It remains to check the demands are met by the assignment. The earliest arrival

time arru→v of any strict temporal path from u to v in the temporal graph (G,λ′)

may be computed in polynomial time (see, e.g. [186]). It then suffices to verify, for

194

5b.3. Tractability Results

each (u, v, t) ∈ D, that arru→v ≤ t, which can be done in polynomial time, and the

result follows.

5b.3 Tractability Results

We begin with a small positive result which can be obtained easily from prior work.

Lemma 5b.6. DelayBetter is solvable in polynomial time when λ is the constant

function 1 and all demands in D have the same source.

Proof. We use the One Source Reach Fast algorithm from [84]: They show that the

time-assignment of their algorithm computes, for a given source v ∈ V and every

remaining vertex u ∈ V , the individual minimum time that v needs to reach u. If

this computed minimum time is at most our demanded arrival time for all demands

(v, u, t) ∈ D, then we have a YES-instance, otherwise we have a NO-instance.

We now turn to the case where passenger demands fully prescribe the path they

must be routed along, establishing tractability through a linear programming argu-

ment.

Theorem 5b.7. Path DelayBetter and δ-Path DelayBetter are both in P.

Proof. Let ((G,λ), D) be an instance of Path DelayBetter (or, let ((G,λ), D, δ)

be an instance of δ-Path-DelayBetter – the proof differs only in a few details).

We begin by introducing some notation. Our proof is for directed and undirected

inputs – we shall use uv to mean the edge (u, v), but in the undirected case uv = vu

whereas in the directed case these are uv ̸= vu. For a demand d ∈ D, we denote by

dP the specified static path in G from ds to dz, and df the final edge of dP , which

is incident to dz and must be at time dt or earlier to satisfy the demand. We also

use tuv as shorthand for λ(u, v), and t′uv for λ′(u, v). Lastly, we define the relation

(u, v) ≺ (v, w), to be true if and only if (u, v) immediately precedes (v, w) in the path

dP for some d ∈ D.

Consider the following linear program:

maximize
∑
d∈D

dt − t′df
, subject to (5b.1)

tuv ≤ t′uv for each (u, v) ∈ E(G) (5b.2)

t′uv ≤ tuv + δ for each (u, v) ∈ E(G) (only for δ-Path-DB) (5b.3)

t′uv ≤ t′vw − 1 for each pair of edges uv and vw such that uv ≺ vw (5b.4)

t′df
≤ dt for each demand d (5b.5)

This LP has {t′uv : (u, v) ∈ E(G)} as its set of unknown variables. The variables

{tuv : (u, v) ∈ E(G)} ∪ {dt : d ∈ D} correspond to given integers fully specified by

the Path-DB instance ((G,λ), D) (and df likewise refers to a specific edge of G).

Claim 5b.7.1. The LP is integral. Meaning: at least one optimal solution of the LP

assigns integers to all of its unknown variables. Moreover, an integral solution may

be recovered from a non-integral solution in polynomial time.

195

5b.3. Tractability Results

Proof of claim:

Suppose otherwise. That is, there is some non-integral solution X to the LP which

is strictly better than any integral solution.

Under X, for some edge vw, t′vw is assigned a non-integer value, say x = y + ϵ

with y ∈ N and 0 < ϵ < 1.

Consider the assignment obtained by instead setting t′vw = y. If this is still a valid

solution to the LP, then this clearly does not worsen the objective (and cannot im-

prove it since we assumed X was optimal). Apply this update iteratively, everywhere

possible, and consider the new solution Y obtained. By our initial premise, Y is still

not an integral solution, and by construction Y has the same objective value as X

and also would cease to be a solution if any of its non-integer variables were rounded

down to the nearest integer.

We again can find some (possibly different) edge vw such that t′vw is assigned a

non-integer value under Y , now y = z + ϵ with z ∈ N and 0 < ϵ < 1.

Consider the assignment obtained by instead setting t′vw = z. Necessarily this

assignment is not a valid solution for the LP (since otherwise we already would have

performed the update). Consequently, there is some constraint which is violated

by the update, which necessarily has form t′uv ≤ t′vw − 1, since all other types of

constraints would remain satisfied if we set t′uv = z. Moreover, t′uv must itself be

assigned some non-integer value (strictly less than that assigned to t′vw) under Y . By

iteratively applying the same logic (and the fact that there are only finitely many

edges) we conclude some edge must be assigned a non-integer value under Y even

though it could have been rounded down to the nearest integer - contradicting a

central property of the assignment Y . We note that our construction for Y may

be performed in polynomial time to iteratively construct an integral solution from a

non-integral one, and the claim follows. ■

Since linear programs are solvable in polynomial time [187], we may first solve the

LP and then (if the solution is not already integral) apply Claim 5b.7.1 to recover

an integral solution. We note here that a modification of Kahn’s algorithm [188] for

topological sorting may be used to compute a solution to this particular LP directly

and more efficiently. A detailed proof would be quite technical and incongruous with

the rest of the paper, so has been omitted.

An integral solution to this LP fully specifies a delaying λ′ satisfying the (δ-)Path

DB instance. Note that: λ′ is indeed a (δ-)delaying of λ (due to eqs. (5b.2) and (5b.3));

enables strict temporal paths along each path specified in D (due to eq. (5b.4)); and

that each of these paths reaches the destination vertex by the arrival time prescribed

(due to eq. (5b.5)). Conversely, it should be clear that any delaying λ′ satisfying

the (δ-)Path DB instance specifies a (not necessarily optimal) solution to the LP. In

fact, the LP allows us not only to decide (δ-)Path DB, but more strongly to solve

its optimization variant.

Since trees are characterized by any pair (u, v) being connected by a unique (static)

path, we obtain the following corollary:

196

5b.4. Hardness results

Corollary 5b.8. (δ-)DelayBetter is in P when the underlying graph G↓ is a (di-

rected) tree.

Next, we are able to extend this result to “tree-like” graphs, by parameterizing by

the size of the instance’s feedback edge set.

Theorem 5b.9. On directed (reps. undirected) temporal graphs, with |FES(G↓)| =

ρ, (δ-)DelayBetter is solvable in time O(ρ! · 2ρ·|D| · poly(n)) (resp. O(ρ! · 3ρ·|D| ·

poly(n))).

Proof. The proofs for directed and undirected graphs differ only in small details, and

those for for δ-DB and DelayBetter are identical (until we apply theorem 5b.7).

Let E′ be a feedback edge set of (the undirected version of) G↓ of size ρ. We

iterate over each of the ρ! possible orderings (e1, e2, ...eρ) of E′, and require that

te1 ≤ te2 ≤ ... ≤ teρ . (Note that if Tmax is small and ρ is large, we may prefer to

iterate over all (Tmax)ρ assignments and obtain an ordering from those.)

In any solution, each demand d ∈ D is satisfied by a strict temporal path from du

to dv using some subset of the edges of E′. In the directed case, specifying this subset

(together with the ordering fixed earlier) fully specifies the path from du to dv; in the

undirected case, it is also necessary to specify the direction taken for each edge. The

journey from one edge in the subset to the next is uniquely determined due to the

fact that it can only use the edges of the spanning tree obtained by removing E′ from

G.

For directed graphs, this means there are at most 2ρ possible paths for each

demand (an edge is either chosen or not), and thus 2ρ·|D| for all demands. For

undirected graphs, we get 3ρ possible paths per demand (an edge (u, v) ∈ E′ is either

traversed from u to v, from v to u, or not at all), and thus 3ρ·|D| for all demands. For

each ordering of E′ and collection of subsets of E′, there is a corresponding instance

of (δ-)Path DB.

In total, it is sufficient to solve ρ!·2ρ·|D| such instances of (δ-)Path DB for directed

graphs, and ρ!·3ρ·|D| instances of (δ-)Path DB for undirected graphs. Since (δ-)Path

DB is solvable in polynomial time by Theorem 5b.7, we obtain the desired result.

5b.4 Hardness results

Our first two hardness results are in the restrictive setting wherein Tmax = 2 and the

initial temporal assignment is the constant function 1. In this setting, the problems

DelayBetter and δ-DelayBetter essentially ask only whether there exists any

λ satisfying our passenger demands; any such λ can be assumed without loss of

generality to have lifetime 2, and could be obtained by delaying all time-edges by at

most 1 - meaning our results hold for any δ ≥ 1.

Theorem 5b.10. On undirected graphs, DelayBetter (and δ-DelayBetter with

any δ ≥ 1) is NP-complete even restricted to instances where Tmax = 2, the initial

temporal assignment is the constant function 1, and the G↓ has diameter 6.

197

5b.4. Hardness results

Proof. Our reduction is from Positive Not-All-Equal Exactly 3SAT [189], an

NP-complete problem taking as input a formula ϕ consisting of triples of variables

(which appear only positively). The formula ϕ is a yes-instance if there is an assign-

ment to the variables such that every triple contains at least one true variable and at

least one false variable.

We shall construct a graph G which admits a temporal assignment λ′ : E(G) →

{1, 2} satisfying all our demands if and only if ϕ admits a satisfying assignment.

Figure 5b.4 may be of use to the reader in following the proof. Solid (resp. dashed)

edges in bold are ones which are necessarily assigned 1 (resp. 2) in any temporal

assignment λ′ satisfying all demands.

mx

sx tx

TFF ′ T ′

my

mz

c c′

λ′(e) = 1

λ′(e) = 2

λ′(e) =?

Figure 5b.4: A sketch of our construction. The vertices sx, tx,mx constitute the
gadget for a variable x, and the vertices mx,my,mz, c, c

′ constitute the gadget for a
triple c = nae(x, y, z).

We shall refer to the demand (u, v, t) as a t-demand from u to v. We begin with

four special vertices F, F ′, T, T ′, with 1-demands from F ′ to F and T ′ to T . Then,

for each variable x in ϕ, we introduce vertices sx, tx,mx and edges from each of these

to each of T, F . We further introduce 1-demands from sx to each of T, F (enforcing

that both edges must be assigned time 1) and 2-demands from each of T ′, F ′ to tx

(enforcing that both of (T, tx), (F, tx) must be assigned time 2). Lastly, we introduce

2-demands from sx to mx and from mx to tx, which together with the previous

constraints, guarantees that λ′(mx, T) ̸= λ′(mx, F).

Next, for each triple c in ϕ, we create vertices c and c′ and a 1-demand between

these, and connect the vertex c to mx by an edge if x appears in the triple c and

introduce a 2-demand from c′ to mx. We also introduce 2-demands from each of T

and F to c.

The intention is that assigning λ′(mx, T) = 1 will correspond to an assignment

of true to x in ϕ, and assigning λ′(mx, F) = 1 will correspond to an assignment of

false to x in ϕ. Suppose that some λ′ satisfies all demands. Then the assignment in

which variable x is set to true if λ′(mx, T) = 1 and false otherwise is a satisfying

assignment of ϕ.

Suppose that ϕ has a satisfying assignment X. Consider the temporal assignment

λ′ in which λ′(mx, T) = 1 and λ′(mx, F) = 2 if x is true under X and λ′(mx, T) = 2

and λ′(mx, F) = 1 otherwise (and all other values of λ′ are as specified in Figure

5b.4). Under λ′, every clause c is adjacent to some pair of vertices mx,my such that

198

5b.4. Hardness results

x = true under X and y = false under X – so the 2-demand from T (resp. F) to c

can be routed through mx (resp. my). It is clear that λ′ satisfies all other demands.

Our result for directed graphs requires a slightly different proof:

Theorem 5b.11. On directed graphs, DelayBetter (and δ-DelayBetter with

any δ ≥ 1) is NP-complete even restricted to instances where Tmax = 2 and G has no

directed cycles.

Proof. The reduction is again from Positive Not-All-Equal Exactly 3SAT.

Given a formula ϕ, we construct a directed graph G as follows: Then, for each variable

x in ϕ, we introduce six vertices sx, sTx , sFx , tx, tTx , tFx and connect them as shown in

Figure 5b.5. Further, we introduce a vertex c identified with each triple c in ϕ, and

create directed edges from c to sTx and from c to sFx .

F

tFx

sx

tx

sTxT

tTx

sFx c2

−

1

2

−
1

−

1

2

2

−

1

Figure 5b.5: A sketch of our construction showing NP-completeness of DelayBet-
ter for digraphs. The vertices sx, sTx , sFx , tx, tTx , tFx constitute the gadget for a variable
x, and the vertex c (together with its out-edges) constitutes the gadget for a triple
c ∋ x. Directed edges in G are solid, whereas 2-demands are shown as dashed arrows
in red. The temporal assignment shown (in blue) is one corresponding to the assign-
ment x=true (− denotes an arbitrary choice).

We now specify the demands for our instance; for each variable x, we have 2-

demands from sx (resp. sTx , sFx) to tx (resp. tTx , sFx), and for each clause c we have

2-demands from c to each of T and F . (All of our demands are 2-demands, and

these are shown as red dashed arrows in Figure 5b.5.) We let the constant function

1 be the initial temporal assignment for our directed graph, and this concludes the

construction of our (δ-)DelayBetter instance (together with specifying δ = 1, if

necessary).

Claim 5b.11.1. Let λ′ be any temporal assignment satisfying all demands in our

construction. Then λ′(sTx , T) = 2 entails λ′(sFx , F) = 1, and λ′(sFx , F) = 2 entails

λ′(sTx , T) = 1.

Proof of claim: Suppose λ′(sTx , T) = 2 for some x. Since all our demands are sat-

isfied, we have that there must be a temporal path from sTx to tTx arriving at time

2. Such a path necessarily leaves at time 1 (since the two vertices are at distance

2). Consequently, λ′(sTx , sx) = 1 and λ′(sx, tTx) = 2. Similarly, we now must have

that the 2-demand from sx to tx is routed through tFx , entailing that λ′(sx, tFx) = 1

199

5b.4. Hardness results

and λ′(tFx , tx) = 2. Applying the same logic a third time, the 2-demand from sFx to

tFx must be routed through F , and the desired claim follows. (The other direction is

symmetric.) ■

Suppose that some λ′ satisfies all demands. Consider the truth assignment in

which a variable x is set to true if λ′(sTx , T) = 2, and false otherwise. Suppose for

contradiction that under this truth assignment, some triple c is not satisfied. Then

either: (a) all variables in c are true under our truth assignment, and leveraging

Claim 5b.11.1, the vertex c cannot reach the vertex F by time 2; or, (b), all variables

in c are false under our truth assignment, and there c cannot reach the vertex T

by time 2. In either case, some demand is not satisfied and we derive the desired

contradiction.

Now suppose that there is some truth assignment satisfying ϕ. Consider the

temporal assignment λ′ in which:

• If x ∈ c and x is true (resp. false) under the assignment, then λ′(c, sTx) = 1

(resp. λ′(c, sFx) = 1), and

• If x is true (resp. false) under the truth assignment, then λ′(sTx , T) = 2

(resp. λ′(sFx , F) = 2) and temporal assignments to other directed edges in each

variable gadget being chosen consistently with the proof of Claim 5b.11.1 to

satisfy demands within the variable gadget, as shown in Figure 5b.5.

• All other edges are assigned times arbitrarily.

Under λ′, c has a path to T (resp. F) through sTx (resp. sFx) if and only if x ∈ c

is assigned true (resp. false). It should be clear that λ′ satisfies all other demands

in our instance by construction, and the result follows.

Having shown that the instance being a tree yields tractability in corollary 5b.8,

we consider the case of planar graphs - a well-studied superclass of trees.

Theorem 5b.12. δ-DelayBetter is NP-complete under any combination of the

following:

• G is planar and has maximum degree 10.

• Either G is undirected, or G is a directed acyclic graph (DAG).

• Either Tmax = 19 and Tinit = 1 (with any δ ≥ 19), or Tmax = 19 and δ = 10.

Proof. Our reduction is from Cubic Bipartite Planar Edge Precoloring Ex-

tension (CBP-EPE). That problem asks, given an undirected graph G (which is

planar, bipartite, and cubic) and a precoloring of its edges P : E(G) → {R,G,B,U}

(indicating red, green, blue, and uncolored edges respectively) whether there is a

proper edge-coloring C : E(G) → {R,G,B} of G such that P (e) ∈ {R,G,B} =⇒

C(e) = P (e). Let A,B be an arbitrary bipartition of V (G), and fix an arbitrary order

on V (G) (so we may refer to the ith neighbor of some vertex).

We shall make use of the following hardness result:

200

5b.4. Hardness results

Lemma 5b.13 (Theorem 2.3 in [190]). Cubic Bipartite Planar Edge Precol-

oring Extension is NP-complete.

Construction Our construction for the directed case is a specific orientation of our

construction for the undirected case. Consequently, we shall describe the directed

construction, which implicitly also specifies the undirected construction – but still

detail explicitly, for example, that edge-gadgets can only be traversed from an A-

gadget to a B-gadget (which is trivial in the directed case).

In our construction, the inclusion of a bold time-edge (x, y, t) essentially dictates

that the edge (x, y) is assigned time t exactly in any temporal assignment satisfying

all demands. To realize this constraint, we introduce a temporal path of length and

duration t− 1 on new vertices xy1, . . . , xyt−1 and x, as shown in fig. 5b.6 and include

(xy1, y, t) in our demands. Note that in the case where t = 1 no new vertices are

created – only the demand (x, y, 1).

yx t txy1 yx:= t− 1 ∧ (xy1, y, t) ∈ Dxy2 · · ·1 2

Figure 5b.6: Our gadget ensuring that bold time-edges are never delayed.

The reader may find the diagram in fig. 5b.7 helpful. We first describe the graph

G′ for our instance of DelayBetter, and then the demands D. (For now, we let the

initial temporal assignment λ be 1 everywhere except for bold time-edges and their

gadgets.)

11

u

A-gadget for u

u1
Ru1

B u1
G

u2
R u2

Gu2
B

u3
R u3

Gu3
B

suR

suG

suB
1

4

7
128

7

4

3

B-gadget for v

9

v

v3R v3Gv3B

v2Rv2B v2G

v1Rv1B v1G

10 14

13

18

17

svB svR svG

uvB

8 12 16

7 8

10 11

13 14

Edge-gadget for (u, v)

uvR

uvG

Figure 5b.7: A sketch of our reduction from Cubic Bipartite Planar Edge Pre-
coloring Extension to DelayBetter. Only bold time-edges are labeled.

For each vertex v ∈ V (G), we create a vertex-gadget consisting of a copy of v and 12

other vertices svB , svR, svG, v1
B , v

2
B , v

3
B , v

1
R, v

2
R, u

3
R, v

1
G, v

2
G, v

3
G (subscripts represent color;

superscript i represents the ith neighbor of v). These vertices are connected differently

depending on whether v ∈ A or v ∈ B, as shown in fig. 5b.7. In a vertex-gadget, we

call spoke edges those edges which are not bold, and blue (resp. red, green) layer the

vertices viB (resp. viR, viG).

For each edge (u, v) ∈ E(G) with u ∈ A, v ∈ B, we also create three vertices

uvB , uvR, uvG. Then if u is the ith neighbor of v and v is the jth neighbor of u, we in-

troduce six bold time-edges (uiG, uvB , 7), (uvB , vjB , 8), (uiG, uvR, 10), (uvR, vjB , 11), (uiG, uvG, 13), (uvG, vjB , 14).

(In fig. 5b.7 u is the second neighbor of v and vice versa.) If P (u, v) is precolored

G under P , then we delete two of uvB , uvR, or uvG, as appropriate, leaving just one

201

5b.4. Hardness results

path from u to v. In fig. 5b.7: u is the second neighbor of the v; v is the second

neighbor of u; and P (u, v) = U .

We make use of three types of demands:

Bold demands as described earlier and shown in fig. 5b.6.

Hermits demands from a vertex in a vertex-gadget to another vertex in the same

gadget. For each vertex u ∈ A we have demands (suB , u3
B , 4), (suR, u3

R, 8), and

(suG, u3
G, 12), and for each vertex v ∈ B we have demands (svB , v, 13), (svR, v, 16),

and (svG, v, 19). (We say hermits have the color of the layer their source or

destination lies in.)

Travelers demands from a vertex in an A-gadget to a vertex in a B-gadget. For

each edge (u, v) in the CBP-EPE instance with u ∈ A and v ∈ B, we add a

demand (u, v, 19).

This concludes our construction.

Correctness

Claim 5b.13.1. If the CBP-EPE instance G,P is a yes-instance, then the Delay-

Better instance (G′, λ), D is a yes-instance.

Proof of claim: We shall construct a delaying λ′ of the initial temporal assignment λ

satisfying all demands in D. Consider a proper edge coloring C of G which extends

P .

First, we do not delay any bold time-edges – i.e., for those, λ(e) = λ′(e). Note

that all bold demands are immediately satisfied under any such labeling.

Let (u, v) be an edge assigned color B (resp. R,G) under C, with u being the ith

neighbor of v and v being the jth neighbor of u. We assign:

• λ′(u, ujB) = 2 (resp. 5, 8)

• λ′(ujB , u
j
R) = 3 (resp. 6, 9)

• λ′(ujR, u
j
G) = 4 (resp. 7, 10)

• (time-edges into and out of uvB , uvR, uvG are all bold)

• λ(viB , viR) = 11 (resp. 14, 17)

• λ(viR, viG) = 12 (resp. 15, 18)

• λ(viG, v) = 13 (resp. 16, 19)

It should be clear that this labeling creates a temporal path from u to v for each

edge (u, v) ∈ G such that the traveler demands are satisfied (via uvB , uvR, or uvG
depending on whether the edge was colored B,R, or G under P).

We now show hermit demands are satisfied as well: because P is a proper 3-

edge-coloring of a cubic graph, every vertex is incident to exactly one edge of each

color.

202

5b.4. Hardness results

In A-gadgets, the hermit starting at suB (resp. suR, suG) has a temporal path to uiB
(resp. uiR, uiG) arriving by time 2 (resp. 6, 10) if the edge from u to its ith neighbor

is assigned B (resp. R,G) under C. The hermit can then (if i ̸= 3) use the bold

time-edges to reach u3
B (resp. u3

R, u
3
G).

In B-gadgets, the hermit starting at svB (resp. svR, svG) has a temporal path to viB
(resp. viR, v

i
G) arriving by time 10 (resp. 14, 18) using the bold time-edges. If the

edge from v to its jth neighbor is assigned B (resp. R,G) under C, then the hermit

can extend this path by using the spoke edges from vjB (resp. vjR, v
j
G) into v. ■

The remainder of the proof is devoted to showing the opposite implication; that is,

if DelayBetter instance (G′, λ), D is a yes-instance (i.e., there exists some delaying

λ′ of λ satisfying all demands in D) then the CBP-EPE instance G,P is a yes-

instance. For some λ′, we say that the traveler from u to v is blue (resp. red, green)

if that traveler is routed through a vertex uvB (resp. uvR, uvG). (If several paths are

possible, one may be chosen arbitrarily - though as we shall see this never happens.)

No traveler has more than one color: each traveler goes through exactly one edge-

gadget, from its starting A-gadget to its ending B-gadget (due to the bold time-edges

enforcing the direction of the edge-gadget).

We make repeated use of the fact that, by construction, bold time-edges are never

delayed. Note that if λ = 1 everywhere including bold gadgets, then these force their

edge to be at exactly the intended time in the delaying λ′.

Claim 5b.13.2. Let u ∈ A. Then there is exactly one i such that λ′(u, uiB) ∈ [2, 4]

(resp. [5, 7], [8, 10]); there is at least one i such that λ′(uiB , uiR) ∈ [6, 8] (resp. [9-11]);

and there is at least one i such that λ′(uiR, uiG) ∈ [10, 12].

Proof of claim: The claim holds as a consequence of the hermit demands. The blue

(resp. red, green) hermit must reach the blue (resp. red, green) layer using at least

one (resp. two, three) spoke edge(s), arriving by time 4 (resp. 8, 12) at the latest and

departing from u at time 2 (resp. 5, 8) at the earliest. ■

Claim 5b.13.3. At most 1
3 of travelers are blue and at most 2

3 of travelers are red

or blue.

Proof of claim: First, suppose over a third of travelers are blue. Then the A-gadget

of some vertex u has at least two travelers reaching different vertices of its green layer

by time 6 (and, necessarily, different vertices of its red layer by time 5). This entails

that at least two of the spoke edges between the blue and red layers in that gadget

are at time 5 or less, which contradicts claim 5b.13.2. Similarly, if over two thirds

of travelers are red or blue, then the A-gadget of some vertex u has at least three

travelers reaching three different vertices of the green layer by time 9, entailing that

the three spoke edges from the red layer to the green layer are at time 9 or earlier

and again contradicting claim 5b.13.2. ■

The following result is obtained through similar reasoning to that for claim 5b.13.2:

203

5b.4. Hardness results

Claim 5b.13.4. Let v ∈ B. Then under λ′, there is some i such that viB−viR−viG−v

is a temporal path with departure time in [9, 11] and arrival time in [11, 13]; there is

some i such that viR − viG − v is a temporal path with departure time in [13, 15] and

arrival time in [14, 16]; and there is some i such that λ′(viG, v) ∈ [17, 19].

Proof of claim: Analogously to the proof of claim 5b.13.2, we need only concern

ourselves with hermits to prove this claim. The blue hermit must travel from the

blue layer to v as specified in the claim (since it cannot make use of any bold edges

outside the blue layer in the temporal path). Similarly, the red hermit must reach v

by a temporal path not using any bold edges in the green layer, and the green hermit

must reach v using some spoke edge from the green layer in the interval [17, 19]. ■

Claim 5b.13.5. Let v ∈ B. Then at least 1 traveler arrives at the B-gadget of v at

time 8; and at least 2 travelers arrive at the B-gadget of v at time 8 or time 11.

Proof of claim: First note that all travelers arriving at the B-gadget come from some

edge-gadget and consequently arrive at a time in {8, 11, 14}. Applying claim 5b.13.4,

there is some i such that any traveler arriving at viB strictly after time 10 would be

stranded there – so the traveler arriving from the ith neighbor of v must arrive at

time 8. Likewise, there is some j different from i such that any traveler arriving at

vjR strictly after time 14 would be stranded there – so the traveler arriving from the

jth neighbor of v must arrive at vjR by time 14 and so at vjB at time 8 or time 11. ■

The proof of the following is similar to that of claim 5b.13.3:

Claim 5b.13.6. At least 1
3 of travelers are blue and at least 2

3 of travelers are red or

blue.

Proof of claim: The proof is similar to that of claim 5b.13.3. If less than a third of

travelers are blue, then some B-gadget has all three travelers arriving strictly after

time 8, contradicting claim 5b.13.5. And if less than two thirds of travelers are red

or blue, then some B-gadget has at least two travelers arriving at time 14, again

contradicting claim 5b.13.5. ■

For some λ′, we say that the traveler from u to v is blue (resp. red, green) if the

temporal path used to route that traveler goes through a vertex uvB (resp. uvR, uvG).

Claim 5b.13.7. The colors of travelers in (G′, λ′) fully specify a proper edge-coloring

of G which is consistent with the precoloring P .

Proof of claim: First, note that the precoloring is consistent with P because precolored

edges in G have edge-gadgets consisting of only one vertex, ensuring that the traveler

is assigned the appropriate color.

Next, observe that Claims 5b.13.3 and 5b.13.6 together entail that exactly 1
3 of

travelers are blue and exactly 1
3 of travelers are red. Moreover, the proof of those

claims holds locally; exactly one of the three travelers leaving any given A-vertex is

blue (resp. red), and exactly one of the three travelers arriving at any given B-vertex

is blue (resp. red). ■

204

5b.5. Discussion and open questions

This concludes the proof that the CBP-EPE instance (G,P) is a yes-instance if

the DelayBetter instance (G,λ), D was a yes-instance.

We emphasize at this point that our construction preserves planarity and that

in the directed case, the footprint contains no directed cycles. We recall that in the

undirected case bold time-edges enforce that travelers can only go from an A-gadget to

a B-gadget once. The maximum degree in the graph is 10 (due to vertices uiG, which

are incident to 4 bold gadgets in addition to 6 normal edges). Note that the proof still

holds if the initial temporal assignment λ assigns time 2 to every non-bold edge in an

A-gadget and time 9 to every non-bold edge in a B-gadget, in which case the largest

delay is of 10 (delaying a time-edge from the green layer of a B-gadget to a B-vertex

v to be at time 19). Consequently, our proof also shows that δ-DelayBetter is

NP-hard for δ ≥ 9.

On the other hand, the proof also holds if the initial temporal assignment is instead

the constant function 1: studying fig. 5b.6 it can be seen that this would still result

in bold time-edges being assigned the intended time under λ′.

We have membership of NP from lemma 5b.5, and the result follows.

5b.5 Discussion and open questions

We show that (δ-)Path DB is in P and that (δ-)DelayBetter is fpt parameterized

by |D| + ρ, where ρ is the size of smallest feedback edge set of (the undirected ver-

sion of) G↓. It seems likely that the techniques used in those proofs could actually

solve a broader family of problems – including, for example, the natural extension of

DelayBetter wherein demands specify a departure time as well as an arrival time,

but also possibly problems which do not specify individual demands as part of the

input. Can dependence on |D| be eliminated from our fpt result? If not, then what

structural parameter is sufficient to yield an fpt result without requiring |D| as a pa-

rameter? A more general question for future study is: what family of temporal graph

modification problems admit an fpt algorithm in the size of the feedback edge set?

Separately, what is complexity of the problems parameterized by fine-grained tempo-

ral parameters (e.g., vertex interval membership width [96]), or by smaller structural

parameters than ρ (e.g., the feedback vertex number)? We note that for directed

graphs, the size of a minimum feedback arc set (the deletion of which leaves a di-

rected acyclic graph, or DAG) is insufficient, since we show in theorem 5b.12 that the

problem is NP-complete restricted to (planar) DAGs.

Another question we leave open is: what is the complexity of DelayBetter re-

stricted to planar inputs with Tmax ∈ [2, 18]? (Our proofs of Theorems 5b.10 and

5b.11 do not preserve planarity, and moreover reduce from a variant of NAE 3SAT,

the restriction of which to planar instances is solvable in polynomial time [191].)

Also stemming from our planar proof is the question of whether δ-DelayBetter re-

stricted to planar graphs is computationally easy or hard for values of δ below 10.

Our proof was aimed at minimizing Tmax while retaining planarity, so we expect that

205

5b.5. Discussion and open questions

some easy adjustments to it might yield hardness for, e.g., δ = 9, but we expect

different techniques are necessary to deal with the case of δ = 1 on planar graphs.

Yet another direction our investigation could be extended is to consider non-simple

temporal graphs. Our hardness results extend immediately to this case, but our algo-

rithms do not – in the non-simple setting, we do not expect our linear programming

approach to work, and it is not even obvious whether our problems would be tractable

restricted to trees.

Lastly, we observe that our results for directed and undirected versions of the

problem are the same. This is particularly surprising because some of our results

require substantially different proofs for each setting. An open question for future

work is then: are there any natural restrictions on the input which entail instances

are tractable in the directed case and computationally hard in the undirected case (or

vice versa)?

206

Chapter 5c

Partial Domination

5c.1 Introduction

Our questions stem from Chapter 4. In that work, it was theoretically interesting

and practically relevant to determine the computational complexity of Dominating

Set restricted to induced subgraphs of hypercubes, but with the subtlety that we

required the full hypercube (i.e. the induced supergraph) to also be in the input. It

was possible, but nontrivial, to prove NP-completeness of this case. This raised the

question: is there a class of graphs such that including the supergraph as a witness

makes finding a dominating set strictly easier? (In the formalism introduced below: is

there some G such that Partial Domination(G) is strictly easier than Dominating

Set(GI)?)

We note here that an adjacent but very different problem of the same name has

been studied, where the input is a graph G together with an integer k and real number

α ∈ (0, 1], and the question is whether some set of k vertices dominates at least α · |V |

vertices [192, 193, 194].

5c.2 Prerequisites and definitions

Throughout this work, we assume P ̸=NP (or our questions become meaningless) and,

more strongly, the Exponential Time Hypothesis (ETH) - though we expect this

second requirement may be unnecessary to obtain our results.

We begin with some basic definitions from graph theory. Let G = (V,E) be

any simple undirected graph. We define the open neighborhood of a vertex v to be

N(v) := {u : (u, v) ∈ E}, and its closed neighborhood N [v] := N(v) ∪ {v}. Likewise,

for any set of vertices S, we define N [S] := ∪v∈SN [v] and N(S) := N [S] \ S. A

dominating set is a set of vertices S ⊆ V such that N [S] = V . The domination

number γ(G) is the least number of vertices in any dominating set of G. The decision

problem Dominating Set takes as input a graph G and integer k and asks whether

γ(G) ≤ k. Where S ⊆ V is a set of vertices in the graph, we denote G[S] the subgraph

of G induced by S. That is, G[S] has S as its set of vertices and as edges exactly

those edges of G with both endpoints incident to a vertex in S. We shall also make

use of the following:

207

5c.4. Contribution

Definition 5c.1 (Induced subgraph/supergraph, hereditary closure). Where T ⊆ V

is a set of vertices in the graph, we denote G[T] the subgraph of G induced by T .

That is, G[T] has T as its set of vertices and as edges exactly those edges of G with

both endpoints incident to a vertex in T . We say G is an induced subgraph of H, and

that H is an induced supergraph of G, if there exists some T such that G = H[T].

Let G be a class of graphs (the object G is formally an infinite set of graphs). Then

we denote GI the family {H : H is an induced subgraph of some graph G ∈ G}. We

say GI is the hereditary closure of G. If G = GI , then we say the G is hereditary.

Definition 5c.2 (Π(G)). Let Π be a graph problem with inputs G,X1, . . . , Xℓ, with

G an undirected graph (possibly with ℓ = 0, in which case Π takes just a graph as

input). We denote Π(G) the restriction of Π to the graph class G, that is, Π(G) has

as instances exactly those instances of Π satisfying G ∈ G.

We introduce a new graph problem, which is subtly different from the restriction

of Dominating Set, as we shall see.

Partial Domination

Input: Simple undirected graph G = (V,E); set T ⊆ V ; integer k.

Question: Is (G[T], k) a yes-instance of Dominating Set? Equivalently, is there

some set S ⊆ T with |S| ≤ k such that T ⊆ N [S]?

5c.3 Known and immediate results

It is obvious from our definitions above that, for any class of graphs G, if Dominating

Set(G) is NP-complete, then Partial Domination(G) is NP-complete. Further, it

is natural and immediate that, if Partial Domination(G) is NP-complete, then

Dominating Set(GI) is NP-complete. Polynomial solvability results propagate in

the opposite direction. As implications, we may write:

∀G : Dominating Set(G) is NP-c =⇒ Partial Domination(G) is NP-c (5c.1)

∀G : Partial Domination(G) is NP-c =⇒ Dominating Set(GI) is NP-c (5c.2)

∀G : Dominating Set(G) is in P ⇐= Partial Domination(G) is in P (5c.3)

∀G : Partial Domination(G) is in P ⇐= Dominating Set(GI) is in P (5c.4)

On the other hand, it is not immediately clear whether the reverse implications

hold. We shall exhibit classes of graphs which prove they do not.

5c.4 Contribution

We define, in Table 5c.1, families of classes of graphs A, . . . , J. Every graph class G

belongs to exactly one of these families of classes depending on the computational

hardness (following directly from the implications above). For example, AΠ includes

planar graphs, EΠ includes grids, and JΠ includes trees. (The class NP-intermediate

208

5c.5. Results

(NPI) contains those problems in NP which are neither in P nor NP-hard, unless

P=NP.)

Observation 5c.3. Let G be a hereditary graph class (i.e. G = GI). Then G neces-

sarily belongs to one of A ∪ D ∪ J as a consequence of eqs. (5c.1) to (5c.4).

Our principal contributions are constructive proofs that each of these families of

classes is nonempty. The intention is that these preliminary findings may help to

motivate further research (see Section 5c.6).

G is in . . . DomSet(G)
is . . .

ParDom(G)
is . . .

DomSet(GI)
is . . .

Example member

A NPc NPc NPc planar graphs

B NPI NPc NPc B (Sec. 5c.5.3)

C NPI NPI NPc C (Sec. 5c.5.3)

D NPI NPI NPI D (Sec. 5c.5.2)

E P NPc NPc grids [195]

F P NPI NPc F (Sec. 5c.5.3)

G P NPI NPI G (Sec. 5c.5.3)

H P P NPc H (Sec. 5c.5.2)

I P P NPI I (Sec. 5c.5.2)

J P P P trees

Table 5c.1: The definition of various families of graph classes. We prove that all
families are nonempty by constructing a member class for each.

5c.5 Results

5c.5.1 Tools

For ease, we shall denote A the class of general graphs, E the class of grids, and J

the class of trees (as these belong to A,E, J respectively).

Definition 5c.4 (Leafing of a graph or graph class). Where G is a graph class, the

leafing of G is the graph L(G) obtained by creating, for each vertex v in G, a new

vertex l(v) adjacent only to v. (This graph may also be defined as the Corona product

of G and K1.) Where G is a graph class, the leafing of G is the class L(G) = {L(G) :

G ∈ G}.

Definition 5c.5 (ℓ-subdivision). For ℓ ∈ N, the ℓ-subdivision of a graph G is a

graph G′ where each edge (u, v) is replaced by the path {u, uv1, . . . , uvℓ, v}. The

ℓ-subdivision of a graph class G is the {G′ : G′ is the ℓ-subdivision of some G ∈ G}

Note that the set of neighbors of leaves in a leafed graph is a dominating set of

minimum cardinality, yielding the following:

Lemma 5c.6. For any graph class G:

209

5c.5.1. Tools

(i) Dominating Set(L(G)) ∈ P

(ii) there is a polynomial-time reduction from Partial Domination(G) to Partial

Domination(L(G))

(iii) there is a polynomial-time reduction from Dominating Set(GI) to Dominat-

ing Set(L(G)I).

Proof. (i) In forming L(G) from G, for every new edge (v, l(v)), at least one of v and

l(v) must be in any dominating set and so any minimum size dominating set of L(G)

has size |G|.

(ii) Let (G,T, k) be an instance of Partial Domination(G). Define the instance

(L(G), T, k) of Partial Domination(L(G)). As L(G)[T] is isomorphic to G[T],

(G,T, k) is a yes-instance if, and only if, (L(G), T, k) is a yes-instance.

(iii) Let (G, k) be an instance of Dominating Set(GI). Then (G, k) is also an

instance of Dominating Set(L(G)I since any induced subgraph of G is an induced

subgraph of L(G). Trivially, (G, k) is a yes-instance of Dominating Set(GI) if, and

only if, (G, k) is a yes-instance of Dominating Set(L(G)I).

Lemma 5c.7 ([196] Theorem 4). Let G = (V,E) be a graph, and for each edge e ∈ E

let an integer s(e) be given. Denote by G′ a graph obtained by a 3s(e)-subdivision of

each edge e ∈ E. Then:

A γ(G′) = γ(G) +
∑
e s(e)

B every dominating set D of G can be transformed in polynomial time (in the size

of G and
∑
e s(e)) to a dominating set D′ of G′ such that |D′| = |D| +

∑
e s(e)

C every dominating set D′ of G′ can be transformed in polynomial time to a

dominating set D of G such that |D| ≤ |D′| −
∑
e s(e)

In particular, for any integer ℓ divisible by 3, the ℓ-subdivision G′ of a graph G has a

dominating set of size |E(G)| · l3 + k if, and only if, G has a dominating set of size k.

We shall make use of the following conjecture, as is common in computational

complexity:

Definition 5c.8 (Exponential Time Hypothesis (ETH)). 3-SAT cannot be solved in

2o(n) time.

The ETH is strictly stronger than P=NP. Note that our line of investigation only

makes sense assuming P ̸= NP - though ETH is not strictly necessary, and we conjec-

ture that our results could be obtained without relying on it. The class QP contains

all decision problems which can solved in quasi-polynomial time O(npolylog(n)).

Lemma 5c.9. The class QP ∩ NP-complete is empty unless the ETH fails.

210

5c.5.2. D,H, I are nonempty.

Proof. If there is such a Π, then reducing a 3-SAT instance ϕ to the problem is doable

in polynomial time (by NP-completeness) and then solving the obtained instance of

Π is doable in time |I|polylog(|I|) (by containment in QP). Then solving ϕ “through”

|I| takes time at most (|ϕ|a)logb(|ϕ|a) ∈ |ϕ|polylog|ϕ| and so 3-SAT is in QP, so ETH

fails.

Lemma 5c.10 ([197]). There is a O(3twn) parameterized algorithm solving Domi-

nating Set, where tw is the treewidth of the input graph.

Lemma 5c.11. If G is a graph with k ≥ 4 vertices of degree at least 3, then G has

treewidth at most k − 1. In particular, for any ℓ ∈ N, (any induced subgraph of) the

ℓ-subdivision of a graph on k ≥ 4 vertices has treewidth at most k − 1.

Proof. Let G be a connected graph (otherwise apply this proof to each component

separately) and let S(G) be the set of k vertices of degree at least 3 in G. Observe

that G− S(G) is a disjoint union of paths. We now describe how to construct a tree

decomposition of the desired width – the reader may find the illustration in Figure 5c.1

helpful. First include S(G) as a bag in the decomposition. Then, for each such path

P = (p1, p2, . . . , pℓ):

• if both endpoints of P are adjacent to vertices u and v in S(G) (possibly with

u = v), then create bags {u, p1, v, pℓ}, {p1, p2, pℓ−1, pℓ}, . . ., moving outward

from S(G) towards the midpoint of P ,

• if only one endpoint of P (without loss of generality p1) is adjacent to some ver-

tex u in S(G), then create bags {u, p1}, {p1, p2}, . . . , {pℓ−1, pℓ}, moving outward

from S(G) towards the the other end of P ,

The largest bag in the described decomposition has size min(S(G), 4). Applying the

fact that the treewidth of an induced subgraph of some graph G is at most that of G,

the result follows.

5c.5.2 D,H, I are nonempty.

Let D be the hereditary closure of the set of graphs obtained by subdividing n-vertex

graphs ⌈2
√
n⌉3 times, where ⌈x⌉3 denotes the least multiple of three which is at least

x.

D :=
{
G subdivided ⌈2

√
|V (G)|⌉3 times : G ∈ A

}
I

Lemma 5c.12. Let D ∈ D. Then the treewidth of D is in O(log2(|V (D)|).

Proof. Let S(D) ⊆ V (D) be the set of supercubic vertices in the graph, (i.e., those

with three or more neighbors) and denote nS = |S(D)|, nV = |V (D)|. Then one of

the following holds:

• nV ≥ 2
√
nS , and consequently nS ≤ log2 nV (applying Lemma 5c.11, we have

tw(D) ≤ nS), or

211

5c.5.2. D,H, I are nonempty.

w
x

y

z

t

v

u

uv1

uv7

uv2

uv6

uv5

uv3 uv4

Figure 5c.1: Illustration of a tree decomposition of a small graph G with |S(G)| = 7.

• every connected component of D is an isolated vertex, a subdivided path, or a

subdivided star graph, and tw(D) = 1.

In either case, we obtain the desired bound on tw(D), and the result follows.

Theorem 5c.13. D ∈ D.

Proof. First observe that D is hereditary. Applying observation 5c.3, we need only

show that Dominating Set(D) is NP-intermediate to show D ∈ D.

Claim 5c.13.1. There can be no polynomial-time algorithm for Dominating Set(D)

unless the ETH fails.

Proof of claim: Suppose there is an algorithm A solving Dominating Set(D) in

polynomial time. That is, there is a constant c so that for any GD ∈ D and kD ∈ N,

A(GD, kd) runs in time O(|V (D)|c) and returns true if and only if γ(G) ≤ kD.

Now let (G, k) be an instance of Dominating Set(A) with n vertices and m

edges. Let GD be the graph obtained by subdividing G ⌈2
√
n⌉3 times, and note that

GD ∈ D. Also, let kD = m · ⌈2
√

n⌉3
3 + k, so that (applying lemma 5c.7) GD admits a

dominating set of size kD if and only if G admits a dominating set of size k. Applying

the construction of GD (which will have size nD = m⌈2
√
n⌉3 ≤ n22

√
n = 22 log(n)

√
n)

and then the algorithm A takes time O(nDc) ≤ O(22c log(n)
√
n) - yielding the desired

contradition: a subexponential algorithm for Dominating Set. ■

Claim 5c.13.2. Dominating Set(D) is in QP.

Proof of claim: We have from Lemma 5c.12 that the treewidth of any graph D in

D is in O(log2(|V (D)|). Combining this result with the Dominating Set algorithm

from Lemma 5c.10 which has runtime O(3twn), we obtain an algorithm with runtime

O(3log2(n)n). ■

212

5c.5.3. B,C,F,G are nonempty.

From claim 5c.13.1 we have that Dominating Set(D) is not solvable in polyno-

mial time, and by applying claim 5c.13.2 and lemma 5c.9, it follows that Dominating

Set(D) is not NP-complete. Consequently, Dominating Set(D) is NP-intermediate.

We now apply this result to populate H and I. First, let H :=
{
G⊕K2|V (G)| : G ∈ A

}
.

That is, H is the family of graphs containing, for each graph G on n vertices (recall

A is the class of general graphs), the disjoint union of G and 2n isolated vertices.

Theorem 5c.14. H ∈ H.

Proof. First observe that HI = A, immediately yielding that Dominating Set(HI)

is NP-complete. Also note that, given any instance of Partial Domination(H),

we may discard all singleton vertices from the instance (reducing the target k as

appropriate if they are in the set T) to obtain a “kernel” instance of size logarithmic

in the size of the original graph. We then may apply a brute-force algorithm to

solving the kernel instance in time polynomial in the size of the original input (and

exponential in the size of the kernel). Applying implication eq. (5c.3) the result also

holds for Dominating Set(H).

We now combine both ideas above: let I :=
{
D ⊕K2|V (G)| : D ∈ D

}
. That is, I

is the family of graphs containing, for each graph G on n vertices from D, the disjoint

union of G and 2n isolated vertices.

Theorem 5c.15. I ∈ I.

Proof. First observe that HI = D, so Dominating Set(HI) is NP-intermediate (ap-

plying Theorem 5c.13). Applying the same logic as in our proof of Theorem 5c.14,

any instance of Partial Domination(H) may be reduced to a “kernel” instance of

size logarithmic in that of the original, and subsequently we may apply a brute-force

algorithm to solving the kernel instance in time polynomial in the size of the original

input. Again applying implication eq. (5c.3) the result also holds for Dominating

Set(I).

5c.5.3 B,C,F,G are nonempty.

Using the results above, it becomes relatively straightforward to prove the following:

• B ∋ B := E ∪ D,

• C ∋ D ∪ H,

• F ∋ F := L(C) (applying Lemma 5c.6), and

• G ∋ G := L(D) (again applying Lemma 5c.6)

213

5c.6. Further questions

5c.6 Further questions

Without assuming P ̸=NP our problems become vacuous; nonetheless, it seems likely

that many of our results could be proven without assuming ETH.

Question 5c.1. Can we remove our reliance on ETH?

Also, we note that the classes we construct in this chapter are not especially

natural, and expect that these have not been of previous interest.

Question 5c.2. Which (if any) natural classes belong to B,C,D,F,G,H, I?

One particularly interesting candidate is the family of hypercubes Q.

Question 5c.3. Is there a polynomial-time algorithm for Dominating Set(Q)?

It is unlikely there is a practical polynomial-time algorithm for Dominating

Set(Q); even γ(Q10) is unkown. See https://oeis.org/A000983 and the discus-

sion therein. On the other hand, it is provable (by leveraging Mahaney’s Theorem

[198]) that Dominating Set(Q) is not NP-c unless P=NP. If the answer to Question

5c.3 is negative, this would provide a first natural class belonging to B (if the answer

is positive, then Q ∈ E, the same as grids).

214

https://oeis.org/A000983

Chapter 5d

A nifty Constraint Satisfaction

Problem

5d.1 Introduction

We are consider restrictions of the Constraint Satisfaction Problem (CSP) 1-in-3.

1-in-3

Input: a formula ϕ consisting of a sequence of triplets of boolean variables X =

{xi|1 ≤ i ≤ n}.

Question: is there an assignment to X such that for each triplet tj ∈ ϕ, exactly

one variable in tj is assigned True?

One way of expressing constraints on ϕ is to consider the hypergraph it directly

describes, as illustrated in Fig. 5d.1. Note that such a hypergraph is necessarily

3-uniform: that is, each hyperedge has cardinality 3.

ϕ = (x, y, z) ∧ (u, v, z) ∧ (u, y, w)

Hϕ = (X, E)

X = {u, v, w, x, y, z}

E = {(x, y, z), (u, v, z), (u, y, w)}

u v w

x y zy

v

Figure 5d.1: A 1-in-3 instance ϕ and the corresponding hypergraph Hϕ. The vertices
y and v are an independent vertex cover of the hypergraph Hϕ, and setting y =
v =true and all other variables false is a satisfying assignment for ϕ.

Note that an equivalent formulation of the problem itself also follows: 1-in-3

with input ϕ asks whether there is an independent vertex cover (IVC) in the 3-

uniform hypergraph Hϕ (i.e., a set S of vertices in the hypergraph such that each

hyperedge intersects S in exactly one vertex), or equivalently whether there is a vertex

cover of cardinality exactly one third the number of hyperedges. Vertex Cover

in (hyper)graphs is a classic combinatorial problem which has been the subject of

extensive study for decades [10, 199, 200]. Closely related is the notion of a perfect

215

5d.1. Introduction

matching in a hypergraph – a disjoint set of hyperedges the union of which is equal to

the set of all vertices in the hypergraphs. This problem, too, has a rich literature (see,

e.g., [201, 202]). 3-Dimensional Matching, which is one of Karp’s 21 NP-complete

problems [10], is a special case:

3 Dimensional Matching (3DM)

Input: sets X,Y, Z, triples T ⊆ X × Y × Z, and integer k.

Question: does there exist a subset S ⊆ T of triples of size k such that the triples

in S are disjoint?

We shall make frequent use of the connection between 1-in-3 and Independent

Vertex Cover for the remainder of this chapter, for example using the statements

“(the vertex) v is (not) in the IVC” and “(the Boolean variable) v is assigned true

(resp. false) in the satisfying assignment” interchangeably.

It is known that 1-in-3 remains NP-complete when restricted to cubic instances:

Cubic 1-in-3

Input: a 1-in-3 formula ϕ in which every variable appears exactly three times.

Question: is there a satisfying assignment for ϕ?

Lemma 5d.1 ([203] Theorem 29). Cubic 1-in-3 is NP-complete.

Note that [203] uses the language of XSAT to describe the problem, stating that

it remains NP-complete restricted to k-CNFl+ (i.e., CNF formulas where variables

appear exactly l times and only positively, and clauses all have size k) for any k, l ≥ 3.

Tricolor 1-in-3 We say that ϕ is tricolor if the chromatic index of Hϕ is three –

so each constraint in ϕ can be assigned a color in {red, blue, green} so that no two

overlapping constraints also share a color. When ϕ is tricolor, each color class of

hyperedges is a matching, so we can draw hyperedges as triangles of the appropriate

color without the risk of ambiguity (as in the center of Figure 5d.2).

x y z

vu w

x y z

vu w

x y z

vu w

Figure 5d.2: Representing hyperedges in a tricolor instance of 1-in-3 as an edge-
colored graph.

We can also optionally omit one of the three edges of the triangle when this makes

the drawing simpler; if (x, y) and (y, z) are green edges, then we know (u, v, w) is a

constraint (as on the right of Figure 5d.2)).

Forbidding triangles A triangle in a hypergraph is a set of three hyperedges which

have pairwise non-empty intersections (see e.g., [204]). In a tricolor hypergraph,

216

5d.2. Tricolor Cubic 1-in-3 is NP-complete

z

xy

x

z′ x′

y′

x

z

y

x

z′ x′

y′

x

z

y

x

z′ x′

y′

z

y

x

z′

x′

y′

Figure 5d.3: Four different drawings of a triangle in a simple tricolor hypergraph.

a triangle necessarily consists of one hyperedge of each color (see Figure 5d.3 and

Figure 5d.14). A triangle-free hypergraph is one in which no subset of hyperedges

forms a triangle. A simple hypergraph is one in which no two constraints have overlap

in two or more variables. Combining these, we obtain that a triangle-free simple

hypergraph is a hypergraph of girth at least 4. That is, its smallest (Berge-)cycle has

length at least 4 [205].

Our problems are then the following:

Tricolor Cubic 1-in-3

Input: a 1-in-3 formula ϕ in which every variable appears exactly three times

and such that Hϕ admits a 3-hyperedge coloring (which may be assumed to be

provided as part of the input).

Question: is there a satisfying assignment for ϕ?

Triangle-free Tricolor Cubic Simple 1-in-3

Input: a 1-in-3 formula ϕ in which every variable appears exactly three times

and such that Hϕ admits a 3-hyperedge coloring (provided), is triangle-free, and

is simple.

Question: is there a satisfying assignment for ϕ?

5d.2 Tricolor Cubic 1-in-3 is NP-complete

Theorem 5d.2. Tricolor Cubic 1-in-3 is NP-complete.

Proof. Membership of NP follows straightforwardly being a subproblem of 1-in-

3. Our reduction is from Cubic 1-in-3, which is known to be NP-complete by

Lemma 5d.1. Denote X123 = {x1, x2, x3 : x ∈ X} and let ϕ123 be the formula ϕ

in which the ith appearance of each variable x ∈ X is replaced by xi. For exam-

ple we may have: ϕ = (x, y, z) ∧ (x, y, w) . . . and ϕ123 = (x1, y1, z1) ∧ (x2, y2, w1)

Note that each variable in X123 appears exactly once in ϕ123. We say that all the

constraints of ϕ123 are colored blue. We now seek to enforce that x1 = x2 = x3.

217

5d.2. Tricolor Cubic 1-in-3 is NP-complete

Enforcing equality Let x ∈ X be a variable from ϕ. Introduce new auxiliary

variables Ax = {axi : 1 ≤ i ≤ 6} and dummy variables Dx = {dx1 , dx2 , dx3}. Then ψ(x)

consists of the following constraints:

Green constraints (x1, a
x
1 , a

x
2), (ax4 , x2, a

x
3), (ax5 , ax6 , x3)

Red constraints (x1, a
x
4 , a

x
5), (ax1 , x2, a

x
6), (ax2 , ax3 , x3)

Blue constraints (ax1 , ax3 , dx1), (ax2 , ax5 , dx2), (ax3 , ax6 , dx3)

Satisfying assignmentsEquality gadget ψ(x)

(a
x
1
, a
x
3
, d
x
1
)

(a
x
2
, a
x
5
, d
x
2
)

(a
x
3
, a
x
6
, d
x
3
)

(x1, a
x
1 , a

x
2)

(x
1 ,a

x4
,a

x5
)

x1

x2

x3

ax1 ax2

ax3ax4

ax5 ax6

dx1 dx2

dx3

(a
x1
,x

2 ,a
x6
)

(a
x2
,a

x3
,x

3)

(ax4 , x2, a
x
3)

(ax5 , a
x
6 , x3)

1

1

1

0 0

0

00

0

1 1

1

0

0

0

1

1

1

1

1

1

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

Figure 5d.4: The equality gadget ψ(x) and its satisfying assignments.

Note that if ψ(x) is satisfied (with exactly one True variable per constraint) then

x1 = x2 = x3 = d1 = d2 = d3, and moreover ψ(x) has a satisfying assignment with

x1 = 1 and two satisfying assignments with x1 = 0. We show the gadget and all

satisfying assignments in fig. 5d.4.

Denote ψ(X) the conjunction
∧
x∈X ψ(x). Then ϕ123 ∧ ψ(X) is a yes-instance of

1-in-3 iff ϕ is a yes-instance of Cubic 1-in-3. Note also that each variable appears

in a blue constraint, a red constraint, and a green constraint, except for dummy

variables, which appear only in blue constraints. We now seek to tie up this loose end

by introducing a gadget which will guarantee that each dummy variable additionally

appears in a green constraint and a red constraint.

Balancing colors Let c be a constraint with c = (x, y, z) and i, j, k ∈ {1, 2, 3} be

integers such that x’s ith appearance is in c, y’s jth appearance is in c, and z’s kth

appearance is in c. Introduce new variables Bc = {bci : 1 ≤ i ≤ 6}. Then η(c) consists

of the following constraints:

Green constraints (dxi , bc1, bc2), (bc4, d
y
j , b

c
3), (bc5, bc6, dzk)

Red constraints (dxi , bc4, bc5), (dxi , bc4, bc5), (bc2, bc3, dzk)

218

5d.3. Triangle-free Tricolor Cubic Simple 1-in-3 is NP-complete

Blue constraints (bc1, bc2, bc3), (bc4, bc5, bc6)

Color-balancing gadget η(c) Satisfying assignments

1

0

0

1

1

1

1

1

1

1

1

0 0

0

0

0 0

0 0

00

0 0

0 0

0 0

dxi

dyj

dzk

bc1 bc2

bc4

bc5 bc6

bc3

(dxi , b
c
1, b

c
2)

(d
xi
,b

c4 ,b
c5)

(d
xi
,b

c4 ,b
c5)

(bc5, b
c
6, d

z
k)

(bc4, d
y
j , b

c
3)

(b
c
1
, b
c
2
, b
c
3
)

(b
c
4
, b
c
5
, b
c
6
) (b

c2 ,b
c3 ,d

zk)

s
Figure 5d.5: The color-balancing gadget η(x) and its satisfying assignments.

Note that any assignment satisfying ϕ123 ∧ψ(X) (and in particular the constraint

corresponding to c in ϕ123), necessarily also satisfies (dxi , d
y
j , d

z
k) (i.e. exactly one of

those 3 is set to True, even though that constraint is not explicit). On the right

side of fig. 5d.5, we show a satisfying assignment to η(c) corresponding to each such

assignment to {dxi , d
y
j , d

z
k}.

Tying things together Denote η(ϕ) the conjunction
∧
c∈ϕ η(c). Then ϕ123∧ψ(X)∧

η(ϕ):

• Is clearly Tricolor and Cubic by construction: each variable appears in exactly

one red constraint , exactly one green constraint, and exactly one blue con-

straint.

• Admits a satisfying assignment if and only if ϕ admits a satisfying assignment.

Consequently, Cubic 1-in-3 ≤poly Tricolor Cubic 1-in-3 and so Tricolor Cubic

1-in-3 is NP-complete.

5d.3 Triangle-free Tricolor Cubic Simple 1-in-3 is

NP-complete

We shall require the following lemma:

Lemma 5d.3. Let H by the 9-vertex hypergraph shown in the top-left of Figure 5d.6,

and let H ′ be a hypergraph obtained from H by the removal of exactly one hyperedge.

Then the set of IVCs of H is identical to the set of IVCs of H ′.

219

5d.3. Triangle-free Tricolor Cubic Simple 1-in-3 is NP-complete

x22x21 x23

x12x11 x13

x32x31 x33

x22x21 x23

x12x11 x13

x32x31 x33

x22x21 x23

x12x11 x13

x32x31 x33

x22x21 x23

x12x11 x13

x32x31 x33

x22x21 x23

x12x11 x13

x32x31 x33

x22x21 x23

x12x11 x13

x32x31 x33

Figure 5d.6: Top left: the 9-vertex hypergraph H. Top center: the hypergraph H ′

(the removal of any other hyperedge results in an isomorphic outcome). Top right:
an IVC of H ′. Bottom, left to right: illustrations of cases (a-c) of our proof.

x22x21 x23

x12x11 x13

x32x31 x33

x42x41 x43

x52x51 x53

x22x21 x23

x12x11 x13

x32x31 x33

x42x41 x43

x52x51 x53

Figure 5d.7: Using Lemma 5d.3. The deletion of either or both of the dashed blue
hyperedges in the hypergraph on the left does not change the set of IVCs. (We
highlight such “simulated grids” in dark green in later figures as well.) Moreover,
any IVC of the hypergraph on the right (obtained from that on the left by adding
the hyperedge (x4

1, x
3
2, x

3
3)) is a superset of either {x5

1, x
4
3, x

3
2} (shown in bold orange

circles), or {x5
1, x

4
3, x

3
2} (shown in dashed purple diamonds).

Proof. Let e = (x3
1, x

3
2, x

3
3) be the deleted hyperedge. Clearly, any IVC of H is also

an IVC of H ′. It remains to show that any IVC I of H ′ is also an IVC of H (for

example). Suppose for contradiction that it is not (i.e., |S∩I| ≠ 1). We must consider

the following cases:

(a) If |e ∩ I| = 3, then in H ′ the hyperedge (x1
1, x

1
2, x

1
3) cannot be covered.

(b) If |e∩I| = 2, then in H ′ the hyperedge (x1
1, x

1
2, x

1
3) can be covered only if x1

3 ∈ I

– but then the hyperedge (x2
1, x

2
2, x

2
3) cannot be covered.

(c) If |e ∩ I| = 0, then in H ′ the two hyperedge (x1
1, x

1
2, x

1
3) and (x2

1, x
2
2, x

2
3) must

together contain three vertices.

In any case, we derive a contradiction, and the result follows.

220

5d.3. Triangle-free Tricolor Cubic Simple 1-in-3 is NP-complete

x1fx1 nx1

fx2

nx2

x3

fx3

nx3

x2

x′3

x′2

x′1

Figure 5d.8: The equality gadget ψ(x). The two possible IVCs for thse gadget are
shown as highlighted with orange circles and purple diamonds, respectively.

x1fx1 nx1

fx2

nx2

x3

fx3

nx3

x2
x′3

x′2

x′1

x1fx1 nx1

fx2

nx2

x3

fx3

nx3

x2
x′3

x′2

x′1

x1fx1 nx1

fx2

nx2

x3

fx3

nx3

x2
x′3

x′2

x′1

Figure 5d.9: The equality gadget ψ(x) by hyperedge color: blue hyperedges are shown
top left, green hyperedges center right, and red hyperedges bottom left. The two
possible IVCs for the gadget are shown as highlighted with orange circles and purple
diamonds, respectively.

221

5d.3. Triangle-free Tricolor Cubic Simple 1-in-3 is NP-complete

We are now ready to prove our main result:

Theorem 5d.4. Triangle-free Tricolor Cubic Simple 1-in-3 is NP-complete.

Proof. The reduction is from Tricolor Cubic 1-in-3, which we showed was NP-

complete in Theorem 5d.2. Our proof here is structured similarly to that one (al-

though each step is somewhat more involved). First, we describe an equality gadget

which can be used to “duplicate” a variable x into three copies x1, x2, x3, which we

then show must all be assigned the same value in any satisfying assignment. Second,

we provide a color-balancing gadget. Lastly, we give some concluding remarks and

justify that the obtained instance is indeed cubic, simple, tricolor, and triangle-free.

Let ϕ be an instance of Tricolor Cubic 1-in-3. We do not actually use the

fact that ϕ is Tricolor and Cubic, but do make use of the (strictly weaker) property

that there is a subset of the constraints in ϕ which contains each variable exactly once

(that is, Hϕ admits a perfect matching). Denote this matching Mϕ.

Denote X123 = {x1, x2, x3 : x ∈ X} and let ϕ123 be the formula ϕ in which the ith

appearance of each variable x ∈ X is replaced by xi. Note that each variable in X123

appears exactly once in ϕ123. We say that all the constraints of ϕ123 are colored red.

We now seek to enforce that x1 = x2 = x3.

Enforcing Equality Let x ∈ X be a variable from ϕ. Our equality gadget ψ(x) is

shown in Figures 5d.8 to 5d.10. The reader is encouraged to make use of the different

figures to verify different aspects of the construction, as needed – for now, Figure 5d.8

should suffice. The equality gadget has 36 new variables specific to x in addition to

the variables x1, x2, x3 already introduced in ϕ123.

It is easy to verify (especially one color at a time, making use of the different

figures):

• That the gadget is triangle-free, tricolor, and simple (and almost cubic; only

x1, x2, x3, x
′
1, x

′
2, x

′
3 are not incident to exactly three constraints in the gadget

- recall that x1, x2, x3 are incident to constraints in ϕ123).

• That the orange assignment (where variables are True iff they are marked with

a bold orange circle) and the purple assignment (where variables are True iff

they are marked with a bold purple diamond) each satisfy the constraints of the

gadget (i.e., are IVCs of the hypergraph).

We now prove a stronger claim:

Claim 5d.4.1. Any IVC for the equality gadget contains the orange vertices, or

contains the the purple vertices. (And consequently contains no other vertices from

the gadget.)

Proof of claim: Let I be an IVC for the gadget. We consider two cases: either x1 ∈ I

or x1 /∈ I. As we shall see, the former must result in the orange assignment and the

latter must result in the purple assignment.

222

5d.3. Triangle-free Tricolor Cubic Simple 1-in-3 is NP-complete

x′1

x′2 x2nx2

x1nx1

x3nx3

x1nx1

fx1

fx2

fx3

fx1

x′3

x′1

x′1

x′2 x2nx2

x1nx1

x3nx3

x1nx1

fx1

fx2

fx3

fx1

x′3

x′1

x′1

x′2 x2nx2

x1nx1

x3nx3

x1nx1

fx1

fx2

fx3

fx1

x′3

x′1

x′1

x′2 x2nx2

x1nx1

x3nx3

x1nx1

fx1

fx2

fx3

fx1

x′3

x′1

Figure 5d.10: The equality gadget ψ(x), drawn “unrolled”. Left to right: hyperedges
of all colors; green hyperedges; red hyperedges; blue hyperedges. The two possible
IVCs for the gadget are shown as highlighted with orange circles and purple diamonds,
respectively.

Figure 5d.11 shows the order in which we may infer other elements of I based

on whether x1 ∈ I (each vertex is marked in superscript with the step in which an

inference about it is made). We implicitly make repeated use of Lemma 5d.3, as

briefly described in Figure 5d.7.

Steps 0-2: obvious from premise.

Steps 3-6: necessarily I contains either purple dashed diamond vertices or brown

dashed circle vertices.

Steps 7-10: similarly, I contains either pink dashed diamond vertices or and cyan

dashed circle vertices.

Steps 11-12: do not depend on dashed choices.

Steps 13-14: depend on dashed assignment for nxi and xi, and the fact that fxi is

always False (i.e., never in I).

Suppose x1 ∈ I. Then all solid orange circle vertices are included in I, and because

of the diagonal green constraints, we have that inclusion of these vertices entails

exclusion of the pink vertices from I (else number 11 and number 7 share a hyperedge).

Hence the inclusion of the solid orange circle vertices in I entails the inclusion of the

223

5d.3. Triangle-free Tricolor Cubic Simple 1-in-3 is NP-complete

1

1

2

3

4 4

6

5

6

7

8

7

8

10

9

10

11

11

1010

x′1

x′2 x2nx2

x1nx1

x3nx3

x1nx1

fx1

fx2

fx3

fx1

x′3

x′1

2

0

0

9

5

12

13

14

14

i2c2

o2

i1c1

o1

i3c3

o3

i1c1

o1

0

1

2

3 3

4 4

6

5

6

7

8

7

8

10

9

10

0

1

2

11

11

1010

x′1

x′2 x2nx2

x1nx1

x3nx3

x1nx1

fx1

fx2

fx3

fx1

x′3

x′1

5

9

3

x′1

x′2

x′3

x′1

12

13

14

14

Figure 5d.11: Inferences about elements of I based on whether x1 ∈ I. Left: x1 ∈ I,
right: x1 /∈ I.

224

5d.3. Triangle-free Tricolor Cubic Simple 1-in-3 is NP-complete

1

1

2

3 3

4 4

6

5

6

7

8

7

8

10

9

10

11

11

1010

i2c2

o2

i1c1

o1

i3c3

o3

i1c1

o1

0

1

2

3 3

4 4

6

5

6

7

8

7

8

10

9

10

0

1

2

11

11

1010

x′1

x′2 x2nx2

x1nx1

x3nx3

x1nx1

fx1

fx2

fx3

fx1

x′3

x′1

2

x′1

x′2 x2nx2

x1nx1

x3nx3

x1nx1

fx1

fx2

fx3

fx1

x′3

x′1
0

0

9

5 5

912

13

14

14

x′1

x′2

x′3

x′1

12

13

14

14

1

1

2

3 3

4 4

6

5

6

7

8

7

8

10

9

10

11

11

1010

i2c2

o2

i1c1

o1

i3c3

o3

i1c1

o1

0

1

2

3 3

4 4

6

5

6

7

8

7

8

10

9

10

0

1

2

11

11

1010

x′1

x′2 x2nx2

x1nx1

x3nx3

x1nx1

fx1

fx2

fx3

fx1

x′3

x′1

2

x′1

x′2 x2nx2

x1nx1

x3nx3

x1nx1

fx1

fx2

fx3

fx1

x′3

x′1
0

0

9

5 5

912

13

14

14

1

1

2

3 3

4 4

6

5

6

7

8

7

8

10

9

10

11

11

1010

x′1

x′2 x2nx2

x1nx1

x3nx3

x1nx1

fx1

fx2

fx3

fx1

x′3

x′1

2

0

0

9

5

12

13

14

14

i2c2

o2

i1c1

o1

i3c3

o3

i1c1

o1

0

1

2

3 3

4 4

6

5

6

7

8

7

8

10

9

10

0

1

2

11

11

1010

x′1

x′2 x2nx2

x1nx1

x3nx3

x1nx1

fx1

fx2

fx3

fx1

x′3

x′1

5

9

1

1

2

3 3

4 4

6

5

6

7

8

7

8

10

9

10

11

11

1010

i2c2

o2

i1c1

o1

i3c3

o3

i1c1

o1

0

1

2

3 3

4 4

6

5

6

7

8

7

8

10

9

10

0

1

2

11

11

1010

x′1

x′2 x2nx2

x1nx1

x3nx3

x1nx1

fx1

fx2

fx3

fx1

x′3

x′1

2

x′1

x′2 x2nx2

x1nx1

x3nx3

x1nx1

fx1

fx2

fx3

fx1

x′3

x′1
0

0

9

5 5

912

13

14

14

Figure 5d.12: Showing individual hyperedges of Figure 5d.11. Clockwise from top
left: dashed “simulated” hyperedges (due to Lemma 5d.3); green hyperedges; red
hyperedges; blue hyperedges.

225

5d.3. Triangle-free Tricolor Cubic Simple 1-in-3 is NP-complete

cyan dashed circle vertices. Symmetrically, the inclusion of cyan dashed circle vertices

in I entails the inclusion of brown dashed circle vertices. Altogether, then, we have

x1 ∈ I =⇒ the entire circle assignment (which is exactly the orange assignment as

marked on the equality gadget).

Conversely, suppose instead that x1 /∈ I.

Then all solid purple diamond vertices are included in I, and because of the

diagonal green constraints, we have that inclusion of these vertices entails exclusion

of the brown vertices from I (else number 11 and number 3 share a hyperedge).

Hence the inclusion of the solid orange circle vertices in I entails the inclusion of the

pink dashed diamond vertices. Symmetrically, the inclusion of pink dashed diamond

vertices in I entails the inclusion of purple dashed diamond vertices. Altogether,

then, we have x1 /∈ I =⇒ the entire diamond assignment (which is exactly the

purple diamond assignment as marked on the equality gadget).

Note we have not (so far) paid particular attention to the vertices x′
i. We began

with x1 ⊕ ¬x1, and obtained x1 = x2 = x3. Additionally, for all i ∈ {1, 2, 3} we have

that xi = ¬nxi and fxi = False. Note that x′
i = xi in both the orange assignment and

the purple assignment. ■

It remains to deal with our variables x′
1, x

′
2, x

′
3, which appear only in red con-

straints for now (all other variables introduced so far appear exactly once per color

class).

Balancing colors For each constraint (or hyperedge) c = (x, y, z) ∈ Mϕ (recall Mϕ

is any perfect matching on Hϕ), introduce the three constraints shown in Figure 5d.13,

colored blue and green. Applying the fact that x′
i = xi, any assignment satisfying ϕ

also satisfies the gadget constraints.

x′1 y′1 z′1

x′2 y′2z′2

x′3y′3 z′3

Figure 5d.13: The color-balancing gadget η(c)

Tying things together It should be clear that the constructed formula ϕ′ obtained

by introducing an equality gadget for each variable and a color-balancing gadget for

each clause in Mϕ is satisfiable (admits an IVC) if and only if ϕ is satisfiable. We

now point out that, in addition:

• ϕ′ is cubic and tricolor: every vertex appears in one blue hyperedge, one

green hyperedge, and one red hyperedge, exactly.

• ϕ′ is simple: the intersection of two constraints is always at most one variable.

We now need only argue that the constructed instance ϕ′ is triangle-free. The

miniature sketch of our construction in Figure 5d.14 may be helpful to follow along.

226

5d.4. Consequence for 3 Dimensional Matching

Equality gadget for x Color-balancing gadget ϕ123 is a red matching

· · ·

Figure 5d.14: A minimal sketch of the different components of our reduction.

We first point out that ϕ123, the equality gadget, and the color-balancing gadget

are each separately triangle-free (this is immediate for for ϕ123 and the color-balancing

gadget, since they do not contain constraints in all 3 colors). It remains to show that

no triangle is introduced when combining them. Suppose for contradiction there is a

triangle in the construction. Then necessarily that triangle includes some red hyper-

edge (u, v, w). However, (u, v, w) cannot be a red hyperedge from ϕ123, because u, v, w

are each copies of different vertices, and appear in equality gadgets for those vertices

(variables of ϕ) together with otherwise nonintersecting blue and green constraints.

On the other hand, if (u, v, w) is a red hyperedge from some equality gadget, then

only one of u, v, w appears in any hyperedge outside of the equality gadget – so there

can be no triangle. We have proven all the desired properties for our instance, and

the result follows.

5d.4 Consequence for 3 Dimensional Matching

It quickly follows from this result that a restriction of 3 Dimensional Matching is

also NP-complete:

Corollary 5d.5. 3 Dimensional Matching is NP-complete even restricted to in-

stances (X,Y, Z, T) such that no three triples in T have pairwise nonempty intersec-

tions, and any two triples in T have an intersection of size at most one.

Proof. Let H = (V, E) with E = R∪G∪B be (the hypergraph of) a Triangle-free

Tricolor Cubic Simple 1-in-3 instance. Note that necessarily, each vertex v ∈ V

is contained in exactly three hyperedges – one of each color. Denote the triple of

hyperedges containing a vertex v by tv. Consider the 3 Dimensional Matching

instance (X,Y, Z, T) with:

• X = R, Y = G, and Z = B, and

• T = {tv|v ∈ V }

This 3DM instance is a yes-instance if and only if H is a yes-instance of 1-in-3 (i.e.,

H admits an IVC). Given an IVC I of H, the set M = {tv|v ∈ I} is a perfect

3 dimensional matching, and conversely, given a (necessarily perfect) 3 dimensional

matching M ⊊ T , the set I = {v|tv ∈ M} is an IVC in H. Moreover, H ′ has no

triangles (else H would as well) and is simple (else H would not be, either), and the

result follows.

227

5d.4. Consequence for 3 Dimensional Matching

We expect (and hope) that these results will be of use in future works in providing

problems to reduce from.

228

Epilogue

D. : Tell me if anything was ever done [3, Note 1365].

C. : It’s over now [1, Stories of the Street].

E. : Thus, he concluded [2, Letter LII, p. 26].

229

Bibliography

[1] Leonard Cohen. Various songs of Leonard Cohen, 1934-2016.

[2] L. Euler. Lettres à une princesse d’Allemagne, sur divers sujets de physique

et de philosophie, volume 1. Hachette, 1842. URL https://archive.org/

details/lettresdeleuleru01eule.

[3] L. Da Vinci. The Notebooks of Leonardo Da Vinci. The Notebooks of

Leonardo Da Vinci. Project Gutenberg, 1888. URL https://www.gutenberg.

org/ebooks/5000. Translation by Jean-Paul Richter.

[4] L. Euler. Lettres à une princesse d’Allemagne, sur divers sujets de physique

et de philosophie, volume 2. Hachette, 1842. URL https://archive.org/

details/lettresdeleuleru02eule.

[5] OpenStreetMap contributors. Screenshot of Manhattan and surroundings re-

trieved from https://www.openstreetmap.org . https://www.openstreetmap.

org, 2025.

[6] Teo F. Kutner. Personal Communication, 2025.

[7] David Smith. So you thought Sudoku came from the Land of the Rising Sun ...

The Guardian, 2005. URL https://www.theguardian.com/media/2005/may/

15/pressandpublishing.usnews.

[8] a-kat.com. Sudokusolver, 2008. URL http://www.a-kat.com/programming/

cpp/sudoku/sudoku.html. Accessible through the internet archive.

[9] Takayuki Yato and Takahiro Seta. Complexity and completeness of finding an-

other solution and its application to puzzles. IEICE transactions on fundamen-

tals of electronics, communications and computer sciences, 86(5):1052–1060,

2003.

[10] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E.

Miller and James W. Thatcher, editors, Complexity of Computer Computations,

pages 85–103. Plenum Press, New York, 1972.

[11] Larry Eisenberg and Thomas H Noe. Systemic risk in financial systems. Man-

agement Science, 47(2):236–249, 2001.

[12] Beni Egressy and Roger Wattenhofer. Bailouts in financial networks. CoRR,

abs/2106.12315, 2021. URL https://arxiv.org/abs/2106.12315.

231

https://archive.org/details/lettresdeleuleru01eule
https://archive.org/details/lettresdeleuleru01eule
https://www.gutenberg.org/ebooks/5000
https://www.gutenberg.org/ebooks/5000
https://archive.org/details/lettresdeleuleru02eule
https://archive.org/details/lettresdeleuleru02eule
 https://www.openstreetmap.org
 https://www.openstreetmap.org
https://www.theguardian.com/media/2005/may/15/pressandpublishing.usnews
https://www.theguardian.com/media/2005/may/15/pressandpublishing.usnews
http://www.a-kat.com/programming/cpp/sudoku/sudoku.html
http://www.a-kat.com/programming/cpp/sudoku/sudoku.html
https://web.archive.org/web/20080521001722/http://www.a-kat.com/programming/cpp/sudoku/sudoku.html
https://arxiv.org/abs/2106.12315

Bibliography

[13] Nils Bertschinger, Martin Hoefer, and Daniel Schmand. Flow allocation games.

Mathematics of Operations Research, 2024.

[14] Pál András Papp and Roger Wattenhofer. Sequential defaulting in financial

networks. In 12th Innovations in Theoretical Computer Science Conference,

ITCS, volume 185 of LIPIcs, 2021.

[15] BBC, 2010. Doctor Who: Series 5.

[16] Eleni C. Akrida, George B. Mertzios, and Paul G. Spirakis. The Tempo-

ral Explorer Who Returns to the Base. In Pinar Heggernes, editor, Algo-

rithms and Complexity, Lecture Notes in Computer Science, pages 13–24,

Cham, 2019. Springer International Publishing. ISBN 978-3-030-17402-6. doi:

10.1007/978-3-030-17402-6_2.

[17] Davide Bilò, Gianlorenzo D’Angelo, Luciano Gualà, Stefano Leucci, and Mirko

Rossi. Blackout-Tolerant Temporal Spanners. In Thomas Erlebach and Michael

Segal, editors, Algorithmics of Wireless Networks, Lecture Notes in Computer

Science, pages 31–44, Cham, 2022. Springer International Publishing. ISBN

978-3-031-22050-0. doi: 10.1007/978-3-031-22050-0_3.

[18] Arnaud Casteigts, Joseph G. Peters, and Jason Schoeters. Temporal cliques

admit sparse spanners. Journal of Computer and System Sciences, 121:1–17,

November 2021. ISSN 0022-0000. doi: 10.1016/j.jcss.2021.04.004.

[19] Eugen Füchsle, Hendrik Molter, Rolf Niedermeier, and Malte Renken. Delay-

Robust Routes in Temporal Graphs, January 2022. arXiv:2201.05390 [cs].

[20] Andrea Marino and Ana Silva. Eulerian walks in temporal graphs. Algorithmica,

85(3):805–830, 2023. doi: 10.1007/S00453-022-01021-Y. URL https://doi.

org/10.1007/s00453-022-01021-y.

[21] Alfredo Braunstein and Alessandro Ingrosso. Inference of causality in epidemics

on temporal contact networks. Scientific Reports, 6(1):27538, June 2016. ISSN

2045-2322. doi: 10.1038/srep27538.

[22] Jessica Enright, Kitty Meeks, George B. Mertzios, and Viktor Zamaraev. Delet-

ing edges to restrict the size of an epidemic in temporal networks. Journal of

Computer and System Sciences, 119:60–77, August 2021. ISSN 0022-0000. doi:

10.1016/j.jcss.2021.01.007.

[23] Jessica Enright, Kitty Meeks, and Fiona Skerman. Assigning times to minimise

reachability in temporal graphs. Journal of Computer and System Sciences,

115:169–186, February 2021. ISSN 0022-0000. doi: 10.1016/j.jcss.2020.08.001.

[24] Eugenio Valdano, Luca Ferreri, Chiara Poletto, and Vittoria Colizza. Analyt-

ical Computation of the Epidemic Threshold on Temporal Networks. Physical

Review X, 5(2):021005, April 2015. doi: 10.1103/PhysRevX.5.021005.

232

https://doi.org/10.1007/s00453-022-01021-y
https://doi.org/10.1007/s00453-022-01021-y

Bibliography

[25] John Tang, Ilias Leontiadis, Salvatore Scellato, Vincenzo Nicosia, Cecilia Mas-

colo, Mirco Musolesi, and Vito Latora. Applications of Temporal Graph Metrics

to Real-World Networks. In Petter Holme and Jari Saramäki, editors, Temporal

Networks, Understanding Complex Systems, pages 135–159. Springer, Berlin,

Heidelberg, 2013. ISBN 978-3-642-36461-7. doi: 10.1007/978-3-642-36461-7\

_7.

[26] Richard T. Bumby. A Problem with Telephones. SIAM Journal on Algebraic

Discrete Methods, 2(1):13–18, March 1981. ISSN 0196-5212. doi: 10.1137/

0602002. URL https://epubs.siam.org/doi/abs/10.1137/0602002. Pub-

lisher: Society for Industrial and Applied Mathematics.

[27] George B. Mertzios, Hendrik Molter, and Paul G. Spirakis. Realizing temporal

transportation trees, March 2024. URL http://arxiv.org/abs/2403.18513.

arXiv:2403.18513 [cs].

[28] Davi de Andrade, Júlio Araújo, Allen Ibiapina, Andrea Marino, Jason

Schoeters, and Ana Silva. Temporal cycle detection and acyclic temporization,

2025. URL https://arxiv.org/abs/2503.02694.

[29] Thomas Erlebach, Nils Morawietz, and Petra Wolf. Parameterized Algorithms

for Multi-Label Periodic Temporal Graph Realization. In Arnaud Casteigts

and Fabian Kuhn, editors, 3rd Symposium on Algorithmic Foundations of Dy-

namic Networks (SAND 2024), volume 292 of Leibniz International Proceedings

in Informatics (LIPIcs), pages 12:1–12:16, Dagstuhl, Germany, 2024. Schloss

Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-95977-315-7. doi:

10.4230/LIPIcs.SAND.2024.12. ISSN: 1868-8969.

[30] Mark Cartwright and Ubisoft Entertainment SA. Lighthouse of alexandria.

Ancient History Encyclopedia, 2018.

[31] Kendall Murphy and Katherine Schauer. NASA’s First

Two-way End-to-End Laser Communications Relay System,

2023. URL https://www.nasa.gov/technology/space-comms/

nasas-first-two-way-end-to-end-laser-communications-system/.

[32] Patrick L. Thompson, Armen Caroglanian, Jeffrey A. Guzek, Stephen A Hall,

Robert E. Lafon, Kristoffer C. Olsen, Daniel A. Paulson, Haleh Safavi, Pre-

drag Sekulic, Oscar Ta, and Mark E. Wilson. NASA’s LCOT (low-cost op-

tical terminal) FSOS (free-space optical subsystem): concept, design, build,

and test. In Hamid Hemmati and Bryan S. Robinson, editors, Free-Space

Laser Communications XXXV, volume 12413, page 124130X. International So-

ciety for Optics and Photonics, SPIE, 2023. doi: 10.1117/12.2653355. URL

https://doi.org/10.1117/12.2653355.

[33] Charidimos Chaintoutis, Behnam Shariati, Adonis Bogris, Paul V. Dijk, Chris

G. H. Roeloffzen, Jerome Bourderionnet, Ioannis Tomkos, and Dimitris Syvridis.

233

https://epubs.siam.org/doi/abs/10.1137/0602002
http://arxiv.org/abs/2403.18513
https://arxiv.org/abs/2503.02694
https://www.nasa.gov/technology/space-comms/nasas-first-two-way-end-to-end-laser-communications-system/
https://www.nasa.gov/technology/space-comms/nasas-first-two-way-end-to-end-laser-communications-system/
https://doi.org/10.1117/12.2653355

Bibliography

Free space intra-datacenter interconnects based on 2d optical beam steering

enabled by photonic integrated circuits. Photonics, 5(3), 2018. ISSN 2304-6732.

doi: 10.3390/photonics5030021. URL https://www.mdpi.com/2304-6732/5/

3/21.

[34] Navid Hamedazimi, Zafar Qazi, Himanshu Gupta, Vyas Sekar, Samir R. Das,

Jon P. Longtin, Himanshu Shah, and Ashish Tanwer. Firefly: a reconfigurable

wireless data center fabric using free-space optics. In Proceedings of the 2014

ACM Conference on SIGCOMM, SIGCOMM ’14, page 319–330, New York,

NY, USA, 2014. Association for Computing Machinery. ISBN 9781450328364.

doi: 10.1145/2619239.2626328. URL https://doi.org/10.1145/2619239.

2626328.

[35] Shaojuan Zhang, Xuwei Xue, Eduward Tangdiongga, and Nicola Cal-

abretta. Low-latency optical wireless data-center networks using nanosec-

onds semiconductor-based wavelength selectors and arrayed waveguide grating

router. Photonics, 9(3), 2022. ISSN 2304-6732. doi: 10.3390/photonics9030203.

URL https://www.mdpi.com/2304-6732/9/3/203.

[36] Thomas Fenz, Klaus-Tycho Foerster, Stefan Schmid, and Anaïs Villedieu. Effi-

cient non-segregated routing for reconfigurable demand-aware networks. Com-

put. Commun., 164:138–147, 2020.

[37] Klaus-Tycho Foerster, Manya Ghobadi, and Stefan Schmid. Characterizing the

algorithmic complexity of reconfigurable data center architectures. In Proc. of

Symp. on Architectures for Networking and Communications Systems (ANCS),

pages 89–96. ACM Press, 2018.

[38] Klaus-Tycho Foerster, Maciej Pacut, and Stefan Schmid. On the complexity

of non-segregated routing in reconfigurable data center architectures. Comput.

Commun. Rev., 49:2–81, 2019.

[39] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, com-

modity data center network architecture. ACM SIGCOMM Comput. Commun.

Rev., 38:63–74, 2008.

[40] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi,

Chen Tian, Yongguang Zhang, and Songwu Lu. BCube: A high performance,

server-centric network architecture for modular data centers. ACM SIGCOMM

Comput. Commun. Rev., 39:63–74, 2009.

[41] Yehuda Afek, Noga Alon, Omer Barad, Eran Hornstein, Naama Barkai, and

Ziv Bar-Joseph. A biological solution to a fundamental distributed computing

problem. Science, 331(6014):183–185, 2011. doi: 10.1126/science.1193210. URL

https://www.science.org/doi/abs/10.1126/science.1193210.

[42] Joffroy Beauquier, Janna Burman, Fabien Dufoulon, and Shay Kutten. Fast

Beeping Protocols for Deterministic MIS and (∆ + 1)-Coloring in Sparse

234

https://www.mdpi.com/2304-6732/5/3/21
https://www.mdpi.com/2304-6732/5/3/21
https://doi.org/10.1145/2619239.2626328
https://doi.org/10.1145/2619239.2626328
https://www.mdpi.com/2304-6732/9/3/203
https://www.science.org/doi/abs/10.1126/science.1193210

Bibliography

Graphs. In IEEE INFOCOM 2018 - IEEE Conference on Computer Com-

munications, pages 1754–1762, 2018. doi: 10.1109/INFOCOM.2018.8486015.

[43] Mohsen Ghaffari. Local computation of maximal independent set. In 2022

IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS),

pages 438–449, 2022. doi: 10.1109/FOCS54457.2022.00049.

[44] Tom Friedetzky, David C. Kutner, George B. Mertzios, Iain A. Stewart, and

Amitabh Trehan. Payment scheduling in the interval debt model. Theoretical

Computer Science, 1028:115028, 2025. ISSN 0304-3975. doi: 10.1016/j.tcs.2024.

115028.

[45] Tom Friedetzky, David C. Kutner, George B. Mertzios, Iain A. Stewart, and

Amitabh Trehan. Payment scheduling in the interval debt model. SOFSEM

2023: Theory and Practice of Computer Science LNCS 13878, page 267, 2023.

[46] David C. Kutner and Laura Larios-Jones. Temporal reachability dominating

sets: contagion in temporal graphs. Journal of Computer and System Sciences,

page 103701, 2025. ISSN 0022-0000. URL https://doi.org/10.1016/j.jcss.

2025.103701.

[47] David C. Kutner and Laura Larios-Jones. Temporal reachability dominating

sets: Contagion in temporal graphs. In Konstantinos Georgiou and Evangelos

Kranakis, editors, Algorithmics of Wireless Networks, pages 101–116, Cham,

2023. Springer Nature Switzerland. ISBN 978-3-031-48882-5.

[48] David C. Kutner and Iain A. Stewart. Reconfigurable routing in data center

networks. Theoretical Computer Science, page 115154, 2025. ISSN 0304-3975.

URL https://doi.org/10.1016/j.tcs.2025.115154.

[49] David C. Kutner and Iain A. Stewart. Reconfigurable routing in data center

networks. In Algorithmics of Wireless Networks: 20th International Sympo-

sium, ALGOWIN 2024, Egham, UK, September 5–6, 2024, Proceedings, page

117–130, Berlin, Heidelberg, 2024. Springer-Verlag. ISBN 978-3-031-74579-9.

URL https://doi.org/10.1007/978-3-031-74580-5_9.

[50] Maximilien Gadouleau and David C. Kutner. Generalising the maximum in-

dependent set algorithm via Boolean networks, March 2024. URL http:

//arxiv.org/abs/2403.17658. arXiv:2403.17658 [cs].

[51] David C. Kutner and Anouk Sommer. Better Late, Then? The Hardness

of Choosing Delays to Meet Passenger Demands in Temporal Graphs. In

Kitty Meeks and Christian Scheideler, editors, 4th Symposium on Algorith-

mic Foundations of Dynamic Networks (SAND 2025), volume 330 of Leibniz

International Proceedings in Informatics (LIPIcs), pages 7:1–7:18, Dagstuhl,

Germany, 2025. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-

3-95977-368-3. URL https://drops.dagstuhl.de/entities/document/10.

4230/LIPIcs.SAND.2025.7.

235

https://doi.org/10.1016/j.jcss.2025.103701
https://doi.org/10.1016/j.jcss.2025.103701
https://doi.org/10.1016/j.tcs.2025.115154
https://doi.org/10.1007/978-3-031-74580-5_9
http://arxiv.org/abs/2403.17658
http://arxiv.org/abs/2403.17658
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAND.2025.7
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAND.2025.7

Bibliography

[52] Leonard C.G. Rogers and Luitgard A.M. Veraart. Failure and rescue in an

interbank network. Management Science, 59(4):882–898, 2013.

[53] Steffen Schuldenzucker, Sven Seuken, and Stefano Battiston. Finding clearing

payments in financial networks with credit default swaps is PPAD-complete. In

8th Innovations in Theoretical Computer Science Conference, ITCS, volume 67

of LIPIcs, 2017.

[54] Pál András Papp and Roger Wattenhofer. Network-Aware Strategies in Finan-

cial Systems. In ICALP 2020, volume 168, 2020. ISBN 978-3-95977-138-2. doi:

10.4230/LIPIcs.ICALP.2020.91.

[55] Panagiotis Kanellopoulos, Maria Kyropoulou, and Hao Zhou. Forgiving debt in

financial network games. In IJCAI-22, 7 2022. doi: 10.24963/ijcai.2022/48.

[56] Panagiotis Kanellopoulos, Maria Kyropoulou, and Hao Zhou. On priority-

proportional payments in financial networks. Theoretical Computer Science,

1014:114767, 2024. ISSN 0304-3975. doi: https://doi.org/10.1016/j.tcs.

2024.114767. URL https://www.sciencedirect.com/science/article/pii/

S0304397524003840.

[57] Andrew G Haldane and Robert M May. Systemic risk in banking ecosystems.

Nature, 469(7330):351–355, 2011.

[58] Marco Bardoscia, Paolo Barucca, Stefano Battiston, Fabio Caccioli, Giulio Ci-

mini, Diego Garlaschelli, Fabio Saracco, Tiziano Squartini, and Guido Cal-

darelli. The physics of financial networks. Nature Reviews Physics, 3(7):490–

507, 2021.

[59] Larry Eisenberg. A summary: Boolean networks applied to systemic risk. Neural

Networks in Financial Engineering, pages 436–449, 1996.

[60] Jean-Charles Rochet and Xavier Vives. Coordination failures and the lender

of last resort: was Bagehot right after all? Journal of the European Economic

Association, 2(6):1116–1147, 2004.

[61] Walter Bagehot. Lombard street: a description of the money market. HS King

& Company, London, 1873.

[62] Marios Papachristou and Jon Kleinberg. Allocating stimulus checks in times of

crisis. In Proceedings of the ACM Web Conference 2022, pages 16–26, 2022.

[63] Bezaye Tesfaye, Nikolaus Augsten, Mateusz Pawlik, Michael Böhlen, and Chris-

tian Jensen. Speeding up reachability queries in public transport networks using

graph partitioning. Information Systems Frontiers, 24:11–29, 2022.

[64] P. Holme and J. Saramäki, editors. Temporal Networks. Springer, London,

2013.

236

https://www.sciencedirect.com/science/article/pii/S0304397524003840
https://www.sciencedirect.com/science/article/pii/S0304397524003840

Bibliography

[65] Othon Michail. An introduction to temporal graphs: An algorithmic perspec-

tive. Internet Mathematics, 12(4):239–280, 2016.

[66] David Kempe, Jon M. Kleinberg, and Amit Kumar. Connectivity and infer-

ence problems for temporal networks. In Proceedings of the 32nd annual ACM

symposium on Theory of computing (STOC), pages 504–513, 2000.

[67] Nina Klobas, George B. Mertzios, Hendrik Molter, Rolf Niedermeier, and

Philipp Zschoche. Interference-free walks in time: Temporally disjoint paths. In

Proceedings of the 30th International Joint Conference on Artificial Intelligence

(IJCAI), pages 4090–4096, 2021.

[68] Eleni C. Akrida, George B. Mertzios, Paul G. Spirakis, and Viktor Zamaraev.

Temporal vertex cover with a sliding time window. Journal of Computer and

System Sciences, 107:108–123, February 2020. ISSN 0022-0000. doi: 10.1016/j.

jcss.2019.08.002.

[69] Audience. Audience participation at the Cambridge LIPNE Workshop on Com-

putational complexity and economic decision making, 2024.

[70] Craig A. Tovey. A simplified NP-complete satisfiability problem. Discrete Ap-

plied Mathematics, 8:85–89, 1984.

[71] M.R. Garey and D.S. Johnson, editors. Computers and Intractability: A Guide

to the Theory of NP-Completeness. W.H. Freeman and Company, United States,

1979.

[72] Argyrios Deligkas and Igor Potapov. Optimizing reachability sets in temporal

graphs by delaying. Information and Computation, 285:104890, May 2022. ISSN

0890-5401. doi: 10.1016/j.ic.2022.104890.

[73] Hendrik Molter, Malte Renken, and Philipp Zschoche. Temporal reachability

minimization: Delaying vs. deleting. arXiv preprint arXiv:2102.10814, 2021.

[74] Nina Klobas, George B. Mertzios, Hendrik Molter, and Paul G. Spirakis. The

Complexity of Computing Optimum Labelings for Temporal Connectivity. In

Stefan Szeider, Robert Ganian, and Alexandra Silva, editors, 47th International

Symposium on Mathematical Foundations of Computer Science (MFCS 2022),

volume 241 of Leibniz International Proceedings in Informatics (LIPIcs), pages

62:1–62:15, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für

Informatik. ISBN 978-3-95977-256-3. doi: 10.4230/LIPIcs.MFCS.2022.62. URL

https://drops.dagstuhl.de/opus/volltexte/2022/16860.

[75] Thomas Erlebach and Jakob T. Spooner. A game of cops and robbers on graphs

with periodic edge-connectivity. CoRR, 2019.

[76] Thomas Erlebach and Jakob T. Spooner. Faster Exploration of Degree-Bounded

Temporal Graphs. In Igor Potapov, Paul Spirakis, and James Worrell, ed-

itors, 43rd International Symposium on Mathematical Foundations of Com-

237

https://drops.dagstuhl.de/opus/volltexte/2022/16860

Bibliography

puter Science (MFCS 2018), volume 117 of Leibniz International Proceedings

in Informatics (LIPIcs), pages 36:1–36:13, Dagstuhl, Germany, 2018. Schloss

Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-95977-086-6. doi:

10.4230/LIPIcs.MFCS.2018.36.

[77] John Whitbeck, Marcelo Dias de Amorim, Vania Conan, and Jean-Loup Guil-

laume. Temporal reachability graphs. In Proceedings of the 18th Annual Inter-

national Conference on Mobile Computing and Networking, Mobicom ’12, page

377–388, New York, NY, USA, 2012. Association for Computing Machinery.

ISBN 9781450311595. URL https://doi.org/10.1145/2348543.2348589.

[78] Arnaud Casteigts, Timothée Corsini, and Writika Sarkar. Simple, strict,

proper, happy: A study of reachability in temporal graphs. Theoretical Com-

puter Science, 991:114434, April 2024. ISSN 0304-3975. doi: 10.1016/j.tcs.

2024.114434. URL https://www.sciencedirect.com/science/article/pii/

S0304397524000495.

[79] Stefan Balev, Eric Sanlaville, and Jason Schoeters. Temporally connected

components. Theoretical Computer Science, 1013:114757, 2024. ISSN 0304-

3975. doi: https://doi.org/10.1016/j.tcs.2024.114757. URL https://www.

sciencedirect.com/science/article/pii/S0304397524003748.

[80] Sandeep Bhadra and Afonso Ferreira. Complexity of Connected Components in

Evolving Graphs and the Computation of Multicast Trees in Dynamic Networks.

In Samuel Pierre, Michel Barbeau, and Evangelos Kranakis, editors, Ad-Hoc,

Mobile, and Wireless Networks, Lecture Notes in Computer Science, pages 259–

270, Berlin, Heidelberg, 2003. Springer. ISBN 978-3-540-39611-6. doi: 10.1007/

978-3-540-39611-6_23.

[81] Esteban Christiann, Eric Sanlaville, and Jason Schoeters. On inefficiently con-

necting temporal networks. arXiv preprint arXiv:2312.07117, 2023.

[82] Arnaud Casteigts. A Journey through Dynamic Networks (with Excursions).

Thesis, Université de Bordeaux, June 2018. URL https://hal.science/

tel-01883384.

[83] O. Pybus, A. Rambaut, COG-UK-Consortium, et al. Preliminary analysis of

SARS-CoV-2 importation & establishment of UK transmission lineages. Viro-

logical. org., 2020.

[84] Argyrios Deligkas, Eduard Eiben, and George Skretas. Minimizing reachability

times on temporal graphs via shifting labels. In Edith Elkind, editor, Proceedings

of the Thirty-Second International Joint Conference on Artificial Intelligence,

IJCAI-23, pages 5333–5340, Macao, 8 2023. doi: 10.24963/ijcai.2023/592.

[85] Jessica Enright, Laura Larios-Jones, Kitty Meeks, and William Pettersson.

Reachability in temporal graphs under perturbation. SOFSEM 2025: Theory

and Practice of Computer Science LNCS, 2025.

238

https://doi.org/10.1145/2348543.2348589
https://www.sciencedirect.com/science/article/pii/S0304397524000495
https://www.sciencedirect.com/science/article/pii/S0304397524000495
https://www.sciencedirect.com/science/article/pii/S0304397524003748
https://www.sciencedirect.com/science/article/pii/S0304397524003748
https://hal.science/tel-01883384
https://hal.science/tel-01883384

Bibliography

[86] Randall Munroe. xkcd: Post Vaccine Social Scheduling, 2021. URL https:

//xkcd.com/2450/.

[87] Hiroshi Eto, Fengrui Guo, and Eiji Miyano. Distance-d independent set prob-

lems for bipartite and chordal graphs. Journal of Combinatorial Optimization,

27(1):88–99, January 2014. ISSN 1573-2886. doi: 10.1007/s10878-012-9594-4.

[88] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel

Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized

Algorithms. Springer International Publishing, Cham, 2015. ISBN 978-3-319-

21274-6 978-3-319-21275-3. doi: 10.1007/978-3-319-21275-3.

[89] Bruno Courcelle. The expression of graph properties and graph transformations

in monadic second-order logic. In Handbook Of Graph Grammars And Comput-

ing By Graph Transformation: Volume 1: Foundations, pages 313–400. World

Scientific, Singapore, 1997.

[90] David Peleg. Time-efficient broadcasting in radio networks: A review. In Inter-

national Conference on Distributed Computing and Internet Technology, pages

1–18. Springer, 2007.

[91] Thomas Erlebach and Alexander Hall. NP-Hardness of Broadcast Scheduling

and Inapproximability of Single-Source Unsplittable Min-Cost Flow. Journal of

Scheduling, 7(3):223–241, May 2004. ISSN 1099-1425. doi: 10.1023/B:JOSH.

0000019682.75022.96.

[92] Andreas Jakoby, Rüdiger Reischuk, and Christian Schindelhauer. The com-

plexity of broadcasting in planar and decomposable graphs. In Ernst W.

Mayr, Gunther Schmidt, and Gottfried Tinhofer, editors, Graph-Theoretic

Concepts in Computer Science, Lecture Notes in Computer Science, pages

219–231, Berlin, Heidelberg, 1995. Springer. ISBN 978-3-540-49183-5. doi:

10.1007/3-540-59071-4_50.

[93] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro.

Time-Varying Graphs and Dynamic Networks. In Hannes Frey, Xu Li, and

Stefan Ruehrup, editors, Ad-hoc, Mobile, and Wireless Networks, Lecture Notes

in Computer Science, pages 346–359, Berlin, Heidelberg, 2011. Springer. ISBN

978-3-642-22450-8. doi: 10.1007/978-3-642-22450-8_27.

[94] Ma-Lian Chia, David Kuo, and Mei-Feng Tung. The multiple originator broad-

casting problem in graphs. Discrete Applied Mathematics, 155(10):1188–1199,

May 2007. ISSN 0166-218X. doi: 10.1016/j.dam.2006.10.011.

[95] Hayk Grigoryan. Problems related to broadcasting in graphs. phd, Concordia

University, September 2013. URL https://spectrum.library.concordia.

ca/id/eprint/977773/.

239

https://xkcd.com/2450/
https://xkcd.com/2450/
https://spectrum.library.concordia.ca/id/eprint/977773/
https://spectrum.library.concordia.ca/id/eprint/977773/

Bibliography

[96] Benjamin Merlin Bumpus and Kitty Meeks. Edge exploration of temporal

graphs. In Paola Flocchini and Lucia Moura, editors, Combinatorial Algorithms,

Lecture Notes in Computer Science, pages 107–121, Cham, 2021. Springer.

ISBN 978-3-030-79987-8. doi: 10.1007/978-3-030-79987-8_8.

[97] George B. Mertzios, Hendrik Molter, Rolf Niedermeier, Viktor Zamaraev, and

Philipp Zschoche. Computing maximum matchings in temporal graphs. Journal

of Computer and System Sciences, 137:1–19, November 2023. ISSN 0022-0000.

doi: 10.1016/j.jcss.2023.04.005.

[98] Nina Klobas, George B. Mertzios, Hendrik Molter, Rolf Niedermeier, and

Philipp Zschoche. Interference-free walks in time: Temporally disjoint paths.

Autonomous Agents and Multi-Agent Systems, 37(1):1, 2023.

[99] Jessica Enright and Kitty Meeks. Deleting Edges to Restrict the Size of an

Epidemic: A New Application for Treewidth. Algorithmica, 80(6):1857–1889,

June 2018. ISSN 1432-0541. doi: 10.1007/s00453-017-0311-7.

[100] Thomas Erlebach, Michael Hoffmann, and Frank Kammer. On Temporal Graph

Exploration. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and

Bettina Speckmann, editors, Automata, Languages, and Programming, Lecture

Notes in Computer Science, pages 444–455, Berlin, Heidelberg, 2015. Springer.

ISBN 978-3-662-47672-7. doi: 10.1007/978-3-662-47672-7_36.

[101] Roman Haag, Hendrik Molter, Rolf Niedermeier, and Malte Renken. Feedback

edge sets in temporal graphs. Discrete Applied Mathematics, 307:65–78, January

2022. ISSN 0166-218X. doi: 10.1016/j.dam.2021.09.029.

[102] Bruno Courcelle and Joost Engelfriet. Monadic second-order logic. In Bruno

Courcelle and Joost Engelfriet, editors, Graph Structure and Monadic Second-

Order Logic: A Language-Theoretic Approach, Encyclopedia of Mathematics

and its Applications, pages 315–426. Cambridge University Press, Cambridge,

2012. ISBN 978-0-521-89833-1. doi: 10.1017/CBO9780511977619.007.

[103] Rod G. Downey and Michael R. Fellows. Fixed-Parameter Tractability and

Completeness I: Basic Results. SIAM Journal on Computing, 24(4):873–921,

August 1995. ISSN 0097-5397. doi: 10.1137/S0097539792228228.

[104] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Fourier

meets Möbius: fast subset convolution. arXiv e-prints, page cs/0611101, Novem-

ber 2006. doi: 10.48550/arXiv.cs/0611101.

[105] Hiroshi Eto, Takehiro Ito, Zhilong Liu, and Eiji Miyano. Approximability of

the Distance Independent Set Problem on Regular Graphs and Planar Graphs.

In T-H. Hubert Chan, Minming Li, and Lusheng Wang, editors, Combinatorial

Optimization and Applications, Lecture Notes in Computer Science, pages 270–

284, Cham, 2016. Springer International Publishing. ISBN 978-3-319-48749-6.

doi: 10.1007/978-3-319-48749-6_20.

240

Bibliography

[106] Geir Agnarsson, Peter Damaschke, and Magnús M. Halldórsson. Powers of

geometric intersection graphs and dispersion algorithms. Discrete Applied

Mathematics, 132(1):3–16, October 2003. ISSN 0166-218X. doi: 10.1016/

S0166-218X(03)00386-X.

[107] M. Verheije. Algorithms for Domination Problems on Temporal Graphs.

PhD thesis, Utrecht University, 2021. URL https://studenttheses.uu.nl/

handle/20.500.12932/41240. Accepted: 2021-08-26.

[108] Tom Davot, Jessica Enright, and Laura Larios-Jones. Parameterised algorithms

for temporal reconfiguration problems. arXiv preprint arXiv:2502.11961, 2025.

[109] Eleni C Akrida, Leszek Gąsieniec, George B Mertzios, and Paul G Spirakis.

Ephemeral networks with random availability of links: The case of fast networks.

Journal of Parallel and Distributed Computing, 87:109–120, 2016.

[110] George B Mertzios, Othon Michail, Ioannis Chatzigiannakis, and Paul G Spi-

rakis. Temporal network optimization subject to connectivity constraints. In

International Colloquium on Automata, Languages, and Programming, pages

657–668. Springer, 2013.

[111] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete

problems. In Proceedings of the sixth annual ACM symposium on Theory of com-

puting, STOC ’74, pages 47–63, New York, NY, USA, April 1974. Association for

Computing Machinery. ISBN 978-1-4503-7423-1. doi: 10.1145/800119.803884.

[112] Simon Tippenhauer and Wolfgang Muzler. On planar 3-sat and its variants.

Fachbereich Mathematik und Informatik der Freien Universitat Berlin, 2016.

[113] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Ap-

proach. Cambridge University Press, Cambridge, 2009. ISBN 978-0-521-42426-

4. doi: 10.1017/CBO9780511804090.

[114] Christos H. Papadimitriou. Computational complexity. Addison-Wesley, Read-

ing, Mass, 1994. ISBN 978-0-201-53082-7.

[115] Ian Holyer. The NP-completeness of edge-coloring. SIAM Journal on computing,

10(4):718–720, 1981.

[116] Shai Gutner. The complexity of planar graph choosability, February 2008.

arXiv:0802.2668 [cs].

[117] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University

Press, England, February 2006. ISBN 978-0-19-171391-0. doi: 10.1093/acprof:

oso/9780198566076.001.0001.

[118] Hans L. Bodlaender. A Linear-Time Algorithm for Finding Tree-

Decompositions of Small Treewidth. SIAM Journal on Computing, 25(6):1305–

1317, December 1996. ISSN 0097-5397. doi: 10.1137/S0097539793251219.

241

https://studenttheses.uu.nl/handle/20.500.12932/41240
https://studenttheses.uu.nl/handle/20.500.12932/41240

Bibliography

[119] Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-

decomposable graphs. Journal of Algorithms, 12(2):308–340, June 1991. ISSN

0196-6774. doi: 10.1016/0196-6774(91)90006-K.

[120] Alexander Langer, Felix Reidl, Peter Rossmanith, and Somnath Sikdar. Practi-

cal algorithms for MSO model-checking on tree-decomposable graphs. Com-

puter Science Review, 13-14:39–74, November 2014. ISSN 1574-0137. doi:

10.1016/j.cosrev.2014.08.001.

[121] Joachim Kneis, Daniel Mölle, and Peter Rossmanith. Partial vs. Complete

Domination: t-Dominating Set. In Jan van Leeuwen, Giuseppe F. Italiano,

Wiebe van der Hoek, Christoph Meinel, Harald Sack, and František Plášil,

editors, SOFSEM 2007: Theory and Practice of Computer Science, Lecture

Notes in Computer Science, pages 367–376, Berlin, Heidelberg, 2007. Springer.

ISBN 978-3-540-69507-3. doi: 10.1007/978-3-540-69507-3_31.

[122] Tao Chen, Xiaofeng Gao, and Chen Guihai. The features, hardware, and ar-

chitectures of data center networks: a survey. J. Parallel Distrib. Comput., 96:

45–74, 2016.

[123] Matthew Nance Hall, Kalsu-Tycho Foerster, Stefan Schmid, and Ramakrishnan

Durairajan. A survey of reconfigurable optical networks. Opt. Switch. Netw.,

41:100621, 2021.

[124] Chan Avin and Stefan Schmid. Toward demand-aware networking: a theory for

self-adjusting networks. ACM SIGCOMM Comput. Commun. Rev., 48:31–40,

2019.

[125] Klaus-Tycho Foerster and Stefan Schmid. Survey of reconfigurable data center

networks: enablers, algorithms, complexity. ACM SIGACT News, 50:62–79,

2019.

[126] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang, and Songwu

Lu. DCell: a scalable and fault-tolerant network structure for data centers. In

Proc. of ACM SIGCOMM Conf. on Data Communication, pages 75–86, 2008.

[127] Ankit Singla, Chi-Yao Hong, Lucian Popa, and P. Brighten Godfrey. Jellyfish:

networking data centers randomly. In Proc. of 9th USENIX Conf. on Networked

Systems Design and Implementation, pages 225–238, 2012.

[128] Asaf Valadarsky, Gal Shahaf, Michael Dinitz, and Michael Schapira. Xpander:

towards optimal-performance datacenters. In Proc. of 12th Int. Conf. on Emerg-

ing Networking Experiments and Technologies, pages 205–219, 2016.

[129] Igor Pak and Radoš Radoičić. Hamiltonian paths in cayley graphs. Discrete

Mathematics, 309(17):5501–5508, 2009. ISSN 0012-365X. doi: https://doi.org/

10.1016/j.disc.2009.02.018. URL https://www.sciencedirect.com/science/

article/pii/S0012365X09000776. Generalisations of de Bruijn Cycles and

242

https://www.sciencedirect.com/science/article/pii/S0012365X09000776
https://www.sciencedirect.com/science/article/pii/S0012365X09000776

Bibliography

Gray Codes/Graph Asymmetries/Hamiltonicity Problem for Vertex-Transitive

(Cayley) Graphs.

[130] Thomas Fenz, Klaus-Tycho Foerster, Stefan Schmid, and Anaïs Villedieu. Ef-

ficient non-segregated routing for reconfigurable demand-aware networks. In

Proc. of IFIP Networking Conf., pages 1–9. IEEE Press, 2019.

[131] Piotr Berman and Marek Karpinski. Approximation hardness of bounded degree

MIN-CSP and MIN-BISECTION. In Proc. of 29th Int Colloq. on Automata,

Languages and Programming (ICALP), pages 623–632, 2002.

[132] L.H. Clark and R.C. Entringer. The bisection width of cubic graphs. Bull.

Austral. Math. Soc., pages 389–396, 1988.

[133] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance.

Theoret. Comput. Sci., pages 293–306, 1985.

[134] OEIS Foundation Inc. Entry A000983 in the On-Line Encyclopedia of Integer

Sequences, 2024. Published electronically at https://oeis.org/A000983.

[135] Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk

graphs. Discrete Math., 86(1-3):165–177, 1990. ISSN 0012-365X. doi:

10.1016/0012-365X(90)90358-O.

[136] Siddharth Gupta, Guy Sa’ar, and Meirav Zehavi. Grid recognition: Classical

and parameterized computational perspectives. Journal of Computer and Sys-

tem Sciences, 136:17–62, 2023. ISSN 0022-0000. doi: https://doi.org/10.1016/j.

jcss.2023.02.008. URL https://www.sciencedirect.com/science/article/

pii/S0022000023000259.

[137] Harvey L Abbott and M Katchalski. On the construction of snake in the box

codes. Utilitas Mathematica, 40:97–116, 1991.

[138] Harvey L Abbott and Meir Katchalski. On the snake in the box problem.

Journal of Combinatorial Theory, Series B, 45(1):13–24, 1988.

[139] Tala Eagling-Vose. Personal Communication, 2025.

[140] Guy E. Blelloch, Jeremy T. Fineman, and Julian Shun. Greedy sequential

maximal independent set and matching are parallel on average. In SPAA ’12:

Proceedings of the twenty-fourth annual ACM symposium on Parallelism in al-

gorithms and architectures, pages 308–317, June 2012.

[141] S. A. Kauffman. Metabolic stability and epigenesis in randomly connected nets.

Journal of Theoretical Biology, 22:437–467, 1969.

[142] R. Thomas. Boolean formalization of genetic control circuits. Journal of

Theoretical Biology, 42(3):563 – 585, 1973. ISSN 0022-5193. doi: 10.1016/

0022-5193(73)90247-6.

243

https://oeis.org/A000983
https://www.sciencedirect.com/science/article/pii/S0022000023000259
https://www.sciencedirect.com/science/article/pii/S0022000023000259

Bibliography

[143] S. Bornholdt. Boolean network models of cellular regulation: prospects and

limitations. Journal of The Royal Society Interface, 5(Suppl 1):S85–S94, 2008.

[144] J. Aracena, A. Richard, and L. Salinas. Synchronizing boolean networks asyn-

chronously. Journal of Computer and System Sciences, 136:249–279, 2023.

[145] F. Robert. Iterations sur des ensembles finis et automates cellulaires contrac-

tants. Linear Algebra and its Applications, 29:393–412, 1980.

[146] Eric Goles. Dynamics of positive automata networks. Theoretical Computer

Science, 41:19–32, 1985.

[147] E. Goles and M. Noual. Disjunctive networks and update schedules. Advances

in Applied Mathematics, 48(5):646–662, 2012.

[148] Mathilde Noual and Sylvain Sené. Synchronism versus asynchronism in mono-

tonic boolean automata networks. Natural Computing, 17:393–402, June 2018.

ISSN 1572-9796. doi: 10.1007/s11047-016-9608-8. URL https://doi.org/10.

1007/s11047-016-9608-8.

[149] Julio Aracena, Maximilien Gadouleau, Adrien Richard, and Lilian Salinas. Fix-

ing monotone boolean networks asynchronously. Information and Computation,

274(104540), October 2020.

[150] Béla Bollobás and Imre Leader. Connectivity and dynamics for random sub-

graphs of the directed cube. Israel Journal of Mathematics, 83:321–328, 1993.

[151] Maximilien Gadouleau and Adrien Richard. On fixable families of boolean

networks. In Proc. Workshop on Asynchronous Cellular Automata, pages 396–

405, September 2018.

[152] A. Richard and P. Ruet. From kernels in directed graphs to fixed points and

negative cycles in boolean networks. Discrete Applied Mathematics, 161(7):

1106–1117, 2013.

[153] J. Aracena, A. Richard, and L. Salinas. Maximum number of fixed points

in and-or-not networks. Journal of Computer and System Sciences, 80(7):

1175 – 1190, 2014. ISSN 0022-0000. doi: http://dx.doi.org/10.1016/j.jcss.

2014.04.025. URL http://www.sciencedirect.com/science/article/pii/

S0022000014000695.

[154] Mohsen Ghaffari. Distributed maximal independent set using small messages. In

Proceedings of the 2019 Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA), pages 805–820, 2019. doi: 10.1137/1.9781611975482.50. URL https:

//epubs.siam.org/doi/abs/10.1137/1.9781611975482.50.

[155] Yehuda Afek, Noga Alon, Ziv Bar-Joseph, Alejandro Cornejo, Bernhard Hae-

upler, and Fabian Kuhn. Beeping a maximal independent set. Distributed

computing, 26(4):195–208, 2013.

244

https://doi.org/10.1007/s11047-016-9608-8
https://doi.org/10.1007/s11047-016-9608-8
http://www.sciencedirect.com/science/article/pii/S0022000014000695
http://www.sciencedirect.com/science/article/pii/S0022000014000695
https://epubs.siam.org/doi/abs/10.1137/1.9781611975482.50
https://epubs.siam.org/doi/abs/10.1137/1.9781611975482.50

Bibliography

[156] Artur Czumaj and Peter Davies. Communicating with beeps. J. Parallel Distrib.

Comput., 130(C):98–109, aug 2019. ISSN 0743-7315. doi: 10.1016/j.jpdc.2019.

03.020. URL https://doi.org/10.1016/j.jpdc.2019.03.020.

[157] A. Casteigts, Y. Métivier, J.M. Robson, and A. Zemmari. Design patterns

in beeping algorithms: Examples, emulation, and analysis. Information and

Computation, 264:32–51, 2019. ISSN 0890-5401. doi: https://doi.org/10.1016/

j.ic.2018.10.001. URL https://www.sciencedirect.com/science/article/

pii/S0890540118301494.

[158] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control.

Commun. ACM, 17(11):643–644, nov 1974. ISSN 0001-0782. doi: 10.1145/

361179.361202. URL https://doi.org/10.1145/361179.361202.

[159] Jukka Suomela. Survey of local algorithms. ACM Comput. Surv., 45(2), mar

2013. ISSN 0360-0300. doi: 10.1145/2431211.2431223. URL https://doi.org/

10.1145/2431211.2431223.

[160] Christoph Lenzen, Jukka Suomela, and Roger Wattenhofer. Local Algorithms:

Self-Stabilization on Speed. In Sándor Fekete, Stefan Fischer, Martin Ried-

miller, and Suri Subhash, editors, Algorithmic Methods for Distributed Co-

operative Systems, volume 9371 of Dagstuhl Seminar Proceedings (DagSem-

Proc), pages 1–18, Dagstuhl, Germany, 2010. Schloss Dagstuhl – Leibniz-

Zentrum für Informatik. doi: 10.4230/DagSemProc.09371.3. URL https:

//drops.dagstuhl.de/entities/document/10.4230/DagSemProc.09371.3.

[161] Katrin Casel, Henning Fernau, Mehdi Khosravian Ghadikolaei, Jérôme Mon-

not, and Florian Sikora. On the complexity of solution extension of opti-

mization problems. Theoretical Computer Science, 904:48–65, 2022. ISSN

0304-3975. URL https://www.sciencedirect.com/science/article/pii/

S0304397521006253.

[162] Julio Aracena, Eric Goles, A. Moreira, and Lilian Salinas. On the robustness of

update schedules in boolean networks. BioSystems, 97:1–8, 2009.

[163] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, ii. Jour-

nal of Symbolic Computation, 60:94–112, 2014. ISSN 0747-7171. URL https:

//www.sciencedirect.com/science/article/pii/S0747717113001193.

[164] Ross M. McConnell and Jeremy Spinrad. Linear-time transitive orientation. In

Proc. 8th ACM-SIAM Symposium on Discrete Algorithms, pages 19–25, 1997.

[165] Deutsche Bahn. Punctuality | Deutsche Bahn In-

terim Report 2024. https://zbir.deutschebahn.com/

2024/en/interim-group-management-report-unaudited/

product-quality-and-digitalization/punctuality/, 2024. [Accessed

19-09-2024].

245

https://doi.org/10.1016/j.jpdc.2019.03.020
https://www.sciencedirect.com/science/article/pii/S0890540118301494
https://www.sciencedirect.com/science/article/pii/S0890540118301494
https://doi.org/10.1145/361179.361202
https://doi.org/10.1145/2431211.2431223
https://doi.org/10.1145/2431211.2431223
https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.09371.3
https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.09371.3
https://www.sciencedirect.com/science/article/pii/S0304397521006253
https://www.sciencedirect.com/science/article/pii/S0304397521006253
https://www.sciencedirect.com/science/article/pii/S0747717113001193
https://www.sciencedirect.com/science/article/pii/S0747717113001193
https://zbir.deutschebahn.com/2024/en/interim-group-management-report-unaudited/product-quality-and-digitalization/punctuality/
https://zbir.deutschebahn.com/2024/en/interim-group-management-report-unaudited/product-quality-and-digitalization/punctuality/
https://zbir.deutschebahn.com/2024/en/interim-group-management-report-unaudited/product-quality-and-digitalization/punctuality/

Bibliography

[166] Hendrik Molter, Malte Renken, and Philipp Zschoche. Temporal reacha-

bility minimization: Delaying vs. deleting. Journal of Computer and Sys-

tem Sciences, 144:103549, September 2024. ISSN 00220000. doi: 10.1016/j.

jcss.2024.103549. URL https://linkinghub.elsevier.com/retrieve/pii/

S0022000024000448.

[167] Eugen Füchsle, Hendrik Molter, Rolf Niedermeier, and Malte Renken. Temporal

Connectivity: Coping with Foreseen and Unforeseen Delays, January 2022. URL

http://arxiv.org/abs/2201.05011. arXiv:2201.05011 [cs].

[168] Anita Schöbel. A Model for the Delay Management Problem based on

Mixed-Integer-Programming. Electronic Notes in Theoretical Computer Sci-

ence, 50(1):1–10, August 2001. ISSN 1571-0661. doi: 10.1016/S1571-0661(04)

00160-4. URL https://www.sciencedirect.com/science/article/pii/

S1571066104001604.

[169] Twan Dollevoet, Dennis Huisman, Marie Schmidt, and Anita Schöbel. Delay

Management with Rerouting of Passengers. Transportation Science, 46(1):74–

89, February 2012. ISSN 0041-1655, 1526-5447. doi: 10.1287/trsc.1110.0375.

URL https://pubsonline.informs.org/doi/10.1287/trsc.1110.0375.

[170] Stefan Binder, Yousef Maknoon, and Michel Bierlaire. The multi-objective rail-

way timetable rescheduling problem. Transportation Research Part C: Emerg-

ing Technologies, 78:78–94, May 2017. ISSN 0968-090X. doi: 10.1016/j.trc.

2017.02.001. URL https://www.sciencedirect.com/science/article/pii/

S0968090X17300414.

[171] Andreas Ginkel and Anita Schöbel. To Wait or Not to Wait? The Bicriteria

Delay Management Problem in Public Transportation. Transportation Science,

41(4):527–538, November 2007. ISSN 0041-1655, 1526-5447. doi: 10.1287/

trsc.1070.0212. URL https://pubsonline.informs.org/doi/10.1287/trsc.

1070.0212.

[172] Géraldine Heilporn, Luigi De Giovanni, and Martine Labbé. Optimization

models for the single delay management problem in public transportation.

European Journal of Operational Research, 189(3):762–774, September 2008.

ISSN 03772217. doi: 10.1016/j.ejor.2006.10.065. URL https://linkinghub.

elsevier.com/retrieve/pii/S0377221706011830.

[173] Lucas P. Veelenturf, Martin P. Kidd, Valentina Cacchiani, Leo G. Kroon,

and Paolo Toth. A Railway Timetable Rescheduling Approach for Han-

dling Large-Scale Disruptions. Transportation Science, 50(3):841–862, Au-

gust 2016. ISSN 0041-1655, 1526-5447. doi: 10.1287/trsc.2015.0618. URL

https://pubsonline.informs.org/doi/10.1287/trsc.2015.0618.

[174] Yongqiu Zhu and Rob M. P. Goverde. Integrated timetable rescheduling and

passenger reassignment during railway disruptions. Transportation Research

246

https://linkinghub.elsevier.com/retrieve/pii/S0022000024000448
https://linkinghub.elsevier.com/retrieve/pii/S0022000024000448
http://arxiv.org/abs/2201.05011
https://www.sciencedirect.com/science/article/pii/S1571066104001604
https://www.sciencedirect.com/science/article/pii/S1571066104001604
https://pubsonline.informs.org/doi/10.1287/trsc.1110.0375
https://www.sciencedirect.com/science/article/pii/S0968090X17300414
https://www.sciencedirect.com/science/article/pii/S0968090X17300414
https://pubsonline.informs.org/doi/10.1287/trsc.1070.0212
https://pubsonline.informs.org/doi/10.1287/trsc.1070.0212
https://linkinghub.elsevier.com/retrieve/pii/S0377221706011830
https://linkinghub.elsevier.com/retrieve/pii/S0377221706011830
https://pubsonline.informs.org/doi/10.1287/trsc.2015.0618

Bibliography

Part B: Methodological, 140:282–314, October 2020. ISSN 0191-2615. doi:

10.1016/j.trb.2020.09.001. URL https://www.sciencedirect.com/science/

article/pii/S0191261520303878.

[175] Michael Gatto, Björn Glaus, Riko Jacob, Leon Peeters, and Peter Widmayer.

Railway Delay Management: Exploring Its Algorithmic Complexity. In Al-

gorithm Theory - SWAT 2004, volume 3111, pages 199–211. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2004. ISBN 978-3-540-22339-9 978-3-540-27810-

8. doi: 10.1007/978-3-540-27810-8_18. URL http://link.springer.com/

10.1007/978-3-540-27810-8_18. Series Title: Lecture Notes in Computer

Science.

[176] Michael Gatto, Riko Jacob, Leon Peeters, and Anita Schöbel. The Computa-

tional Complexity of Delay Management. In Graph-Theoretic Concepts in Com-

puter Science, volume 3787, pages 227–238. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2005. ISBN 978-3-540-31000-6 978-3-540-31468-4. doi: 10.1007/

11604686_20. URL http://link.springer.com/10.1007/11604686_20. Se-

ries Title: Lecture Notes in Computer Science.

[177] Michael Schachtebeck. Delay Management in Public Transportation: Ca-

pacities, Robustness, and Integration. PhD thesis, Georg-August-University

Göttingen, 2010. URL https://ediss.uni-goettingen.de/handle/11858/

00-1735-0000-0006-B3CE-4.

[178] S. Carosi, S. Gualandi, F. Malucelli, and E. Tresoldi. Delay Management in Pub-

lic Transportation: Service Regularity Issues and Crew Re-scheduling. Trans-

portation Research Procedia, 10:483–492, 2015. ISSN 23521465. doi: 10.1016/j.

trpro.2015.09.002. URL https://linkinghub.elsevier.com/retrieve/pii/

S2352146515001891.

[179] Federico Malucelli and Emanuele Tresoldi. Delay and disruption management

in local public transportation via real-time vehicle and crew re-scheduling: a

case study. Public Transport, 11(1):1–25, June 2019. ISSN 1866-749X, 1613-

7159. doi: 10.1007/s12469-019-00196-y. URL http://link.springer.com/

10.1007/s12469-019-00196-y.

[180] Chuntian Zhang, Yuan Gao, Valentina Cacchiani, Lixing Yang, and Ziyou

Gao. Train rescheduling for large-scale disruptions in a large-scale railway

network. Transportation Research Part B: Methodological, 174:102786, Au-

gust 2023. ISSN 0191-2615. doi: 10.1016/j.trb.2023.102786. URL https:

//www.sciencedirect.com/science/article/pii/S019126152300111X.

[181] Geoffrey Scozzaro, Clara Buire, Daniel Delahaye, and Aude Marzuoli. Optimiz-

ing air-rail travel connections: A data-driven delay management strategy for

seamless passenger journeys. In SESAR Innovation Days, 2023.

247

https://www.sciencedirect.com/science/article/pii/S0191261520303878
https://www.sciencedirect.com/science/article/pii/S0191261520303878
http://link.springer.com/10.1007/978-3-540-27810-8_18
http://link.springer.com/10.1007/978-3-540-27810-8_18
http://link.springer.com/10.1007/11604686_20
https://ediss.uni-goettingen.de/handle/11858/00-1735-0000-0006-B3CE-4
https://ediss.uni-goettingen.de/handle/11858/00-1735-0000-0006-B3CE-4
https://linkinghub.elsevier.com/retrieve/pii/S2352146515001891
https://linkinghub.elsevier.com/retrieve/pii/S2352146515001891
http://link.springer.com/10.1007/s12469-019-00196-y
http://link.springer.com/10.1007/s12469-019-00196-y
https://www.sciencedirect.com/science/article/pii/S019126152300111X
https://www.sciencedirect.com/science/article/pii/S019126152300111X

Bibliography

[182] Valentina Cacchiani, Dennis Huisman, Martin Kidd, Leo Kroon, Paolo Toth,

Lucas Veelenturf, and Joris Wagenaar. An overview of recovery models and

algorithms for real-time railway rescheduling. Transportation Research Part

B: Methodological, 63:15–37, May 2014. ISSN 01912615. doi: 10.1016/j.

trb.2014.01.009. URL https://linkinghub.elsevier.com/retrieve/pii/

S0191261514000198.

[183] Eva König. A review on railway delay management. Public Trans-

port, 12(2):335–361, June 2020. ISSN 1866-749X, 1613-7159. doi:

10.1007/s12469-020-00233-1. URL http://link.springer.com/10.1007/

s12469-020-00233-1.

[184] Schöbel, Anita. Optimization in Public Transportation, volume 3 of Springer

Optimization and Its Applications. Springer US, Boston, MA, 2006. ISBN 978-

0-387-32896-6. doi: 10.1007/978-0-387-36643-2. URL http://link.springer.

com/10.1007/978-0-387-36643-2.

[185] Leo G. Kroon, Rommert Dekker, and Michiel J. C. M. Vromans. Cyclic Rail-

way Timetabling: A Stochastic Optimization Approach. In Frank Geraets,

Leo Kroon, Anita Schoebel, Dorothea Wagner, and Christos D. Zaroliagis, edi-

tors, Algorithmic Methods for Railway Optimization, volume 4359, pages 41–66.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. ISBN 978-3-540-74245-

6. doi: 10.1007/978-3-540-74247-0_2. URL http://link.springer.com/10.

1007/978-3-540-74247-0_2. Series Title: Lecture Notes in Computer Science.

[186] Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan Xu.

Path problems in temporal graphs. Proc. VLDB Endow., 7(9):721–732, may

2014. ISSN 2150-8097. doi: 10.14778/2732939.2732945. URL https://doi.

org/10.14778/2732939.2732945.

[187] N. Karmarkar. A new polynomial-time algorithm for linear programming. In

Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing,

STOC ’84, page 302–311, New York, NY, USA, 1984. Association for Computing

Machinery. ISBN 0897911334. doi: 10.1145/800057.808695. URL https://doi.

org/10.1145/800057.808695.

[188] A. B. Kahn. Topological sorting of large networks. Communications of the ACM,

5(11):558–562, November 1962. ISSN 0001-0782, 1557-7317. doi: 10.1145/

368996.369025. URL https://dl.acm.org/doi/10.1145/368996.369025.

[189] Ivan Tadeu Ferreira Antunes Filho. Characterizing Boolean satisfiability vari-

ants. PhD thesis, Massachusetts Institute of Technology, 2019.

[190] Dániel Marx. NP-completeness of list coloring and precoloring exten-

sion on the edges of planar graphs. Journal of Graph Theory, 49

(4):313–324, 2005. ISSN 1097-0118. doi: 10.1002/jgt.20085. URL

248

https://linkinghub.elsevier.com/retrieve/pii/S0191261514000198
https://linkinghub.elsevier.com/retrieve/pii/S0191261514000198
http://link.springer.com/10.1007/s12469-020-00233-1
http://link.springer.com/10.1007/s12469-020-00233-1
http://link.springer.com/10.1007/978-0-387-36643-2
http://link.springer.com/10.1007/978-0-387-36643-2
http://link.springer.com/10.1007/978-3-540-74247-0_2
http://link.springer.com/10.1007/978-3-540-74247-0_2
https://doi.org/10.14778/2732939.2732945
https://doi.org/10.14778/2732939.2732945
https://doi.org/10.1145/800057.808695
https://doi.org/10.1145/800057.808695
https://dl.acm.org/doi/10.1145/368996.369025

Bibliography

https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.20085. _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/jgt.20085.

[191] B. M. E. Moret. Planar nae3sat is in p. SIGACT News, 19(2):51–54, June 1988.

ISSN 0163-5700. doi: 10.1145/49097.49099. URL https://doi.org/10.1145/

49097.49099.

[192] Madhura Dutta, Anil Maheshwari, and Subhas C. Nandy. Partial domination

in some geometric intersection graphs. In Daya Gaur and Rogers Mathew,

editors, Algorithms and Discrete Applied Mathematics, pages 121–133, Cham,

2025. Springer Nature Switzerland. ISBN 978-3-031-83438-7.

[193] Benjamin M. Case, Stephen T. Hedetniemi, Renu C. Laskar, and Drew J. Lip-

man. Partial domination in graphs, 2017. URL https://arxiv.org/abs/1705.

03096.

[194] Csilla Bujtás, Michael A. Henning, and Sandi Klavžar. Partial domination in

supercubic graphs, 2023. URL https://arxiv.org/abs/2305.19820.

[195] David C. Kutner and Iain A. Stewart. Reconfigurable routing in data center

networks, 2024. URL https://arxiv.org/abs/2401.13359.

[196] Miroslav Chlebík and Janka Chlebíková. The complexity of combinatorial

optimization problems on d-dimensional boxes. SIAM Journal on Discrete

Mathematics, 21(1):158–169, 2007. doi: 10.1137/050629276. URL https:

//doi.org/10.1137/050629276.

[197] Glencora Borradaile and Hung Le. Optimal Dynamic Program for r-Domination

Problems over Tree Decompositions. In Jiong Guo and Danny Hermelin, editors,

11th International Symposium on Parameterized and Exact Computation (IPEC

2016), volume 63 of Leibniz International Proceedings in Informatics (LIPIcs),

pages 8:1–8:23, Dagstuhl, Germany, 2017. Schloss Dagstuhl – Leibniz-Zentrum

für Informatik. ISBN 978-3-95977-023-1. doi: 10.4230/LIPIcs.IPEC.2016.

8. URL https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.

IPEC.2016.8.

[198] Stephen R. Mahaney. Sparse complete sets for np: Solution of a conjecture

of berman and hartmanis. Journal of Computer and System Sciences, 25(2):

130–143, 1982. ISSN 0022-0000. doi: https://doi.org/10.1016/0022-0000(82)

90002-2. URL https://www.sciencedirect.com/science/article/pii/

0022000082900022.

[199] Subhash Khot and Oded Regev. Vertex cover might be hard to ap-

proximate to within 2-ϵ. Journal of Computer and System Sciences, 74

(3):335–349, 2008. ISSN 0022-0000. doi: https://doi.org/10.1016/j.jcss.

2007.06.019. URL https://www.sciencedirect.com/science/article/pii/

S0022000007000864. Computational Complexity 2003.

249

https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.20085
https://doi.org/10.1145/49097.49099
https://doi.org/10.1145/49097.49099
https://arxiv.org/abs/1705.03096
https://arxiv.org/abs/1705.03096
https://arxiv.org/abs/2305.19820
https://arxiv.org/abs/2401.13359
https://doi.org/10.1137/050629276
https://doi.org/10.1137/050629276
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2016.8
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2016.8
https://www.sciencedirect.com/science/article/pii/0022000082900022
https://www.sciencedirect.com/science/article/pii/0022000082900022
https://www.sciencedirect.com/science/article/pii/S0022000007000864
https://www.sciencedirect.com/science/article/pii/S0022000007000864

Bibliography

[200] Irit Dinur, Venkatesan Guruswami, Subhash Khot, and Oded Regev. A new

multilayered pcp and the hardness of hypergraph vertex cover. In Proceed-

ings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing,

STOC ’03, page 595–601, New York, NY, USA, 2003. Association for Com-

puting Machinery. ISBN 1581136749. doi: 10.1145/780542.780629. URL

https://doi.org/10.1145/780542.780629.

[201] Viggo Kann. Maximum bounded 3-dimensional matching is max snp-

complete. Information Processing Letters, 37(1):27–35, 1991. ISSN 0020-

0190. doi: https://doi.org/10.1016/0020-0190(91)90246-E. URL https://www.

sciencedirect.com/science/article/pii/002001909190246E.

[202] Hongliang Lu, Xingxing Yu, and Xiaofan Yuan. Nearly perfect matchings in

uniform hypergraphs. SIAM Journal on Discrete Mathematics, 35(2):1022–

1049, 2021. doi: 10.1137/19M1300662. URL https://doi.org/10.1137/

19M1300662.

[203] Tatjana Schmidt. Computational complexity of SAT, XSAT and NAE-SAT for

linear and mixed Horn CNF formulas. PhD thesis, Universität zu Köln, 2010.

[204] Alan Frieze and Dhruv Mubayi. Coloring simple hypergraphs. Jour-

nal of Combinatorial Theory, Series B, 103(6):767–794, 2013. ISSN 0095-

8956. doi: https://doi.org/10.1016/j.jctb.2013.09.003. URL https://www.

sciencedirect.com/science/article/pii/S0095895613000658.

[205] David Ellis and Nathan Linial. On regular hypergraphs of high girth. arXiv

preprint arXiv:1302.5090, 2013.

250

https://doi.org/10.1145/780542.780629
https://www.sciencedirect.com/science/article/pii/002001909190246E
https://www.sciencedirect.com/science/article/pii/002001909190246E
https://doi.org/10.1137/19M1300662
https://doi.org/10.1137/19M1300662
https://www.sciencedirect.com/science/article/pii/S0095895613000658
https://www.sciencedirect.com/science/article/pii/S0095895613000658

	Declaration
	Introduction
	What this thesis is about
	(Eventful) graphs
	Computational Hardness: what is as hard as Sudoku?

	The Interval Debt Model
	TaRDiS
	Wiring datacenters
	Detours and distractions
	Boolean Networks
	Delaying Trains
	Partial Domination
	A nifty problem: 1-in-3
	Organization

	Payment scheduling in the Interval Debt Model
	Introduction
	The Interval Debt Model
	An illustrative example
	Formal setting
	Schedules
	Canonical instances
	Problem definitions
	Discussion of the model

	Our results
	Hardness results for Bankruptcy Minimization
	Hardness results for Perfect Scheduling
	Hardness results for Bankruptcy Maximization
	Polynomial-time algorithms

	Conclusion and open problems

	Temporal Reachability Dominating Sets: contagion in temporal graphs
	Introduction
	Problem Setting
	Our Contribution
	Related Work
	Organization

	Classical complexity results for TaRDiS
	Containment in NP, useful tools, and small lifetime
	NP-completeness of Happy TaRDiS with lifetime 3
	Construction
	Properties of the construction

	NP-completeness of Nonstrict TaRDiS with lifetime 2
	Algorithm for TaRDiS on Trees
	Intuition

	Classical complexity results for MaxMinTaRDiS
	Containment in Sigma 2 P, useful tools, and small lifetime
	Sigma2P-completeness of Happy MaxMinTaRDiS with lifetime 3
	Intuition
	Construction
	Uncovered 2-Gadget (U2G)
	Covered 2-Gadget (C2G)
	Uncovered 3-Gadget (U3G)
	Uncovered 1-Gadget (U1G)
	Construction: literal vertices and clause gadgets
	Construction: X-variable gadget
	Construction: Y-variable gadget
	Construction: k
	Properties of the construction

	NP-completeness of Nonstrict MaxMinTaRDiS with lifetime 2

	Parameterized complexity results for TaRDiS
	FPT results with a restricted temporal assignment
	Preliminaries: treewidth and tree decompositions
	Algorithm for TaRDiS parameterized by treewidth and lifetime
	States
	Signature
	Running Time and Extensions

	Parameterized complexity results for MaxMinTaRDiS
	Containment in FPT with respect to treewidth and lifetime

	Conclusions and open questions

	Reconfigurable Routing in Data Center Networks
	Introduction
	Problem Setting
	Hybrid networks, (re)configurations and (segregated) routing
	Routing in hybrid networks
	The Reconfigurable Routing Problem

	Results
	The case of delta=1
	Additional definitions
	Hardness of Partial Domination on (toroidal) grids and hypercubes
	Lunar graph classes
	The main result

	Discussion and Future Work

	Detours and Distractions.
	Maximal Independent Sets and Boolean Networks
	Introduction
	Preliminaries
	Graphs and digraphs
	Boolean networks

	Constituencies and districts
	Constituencies
	Districts

	Reachability of the MIS network
	The MIS network
	Universal configurations

	Words fixing the MIS network
	Prefixing and suffixing words
	Fixing sets
	Permises

	Permissible and non-permissible graphs
	Permissible graphs
	Non-permissible graphs
	The Permissible decision problem

	Conclusions and future work

	Better Late, then? Delaying connections in temporal graphs.
	Introduction
	Problem setting
	Related work
	Our contribution

	Preliminary Results
	Tractability Results
	Hardness results
	Discussion and open questions

	Partial Domination
	Introduction
	Prerequisites and definitions
	Known and immediate results
	Contribution
	Results
	Tools
	D,H,I are nonempty.
	B,C,F,G are nonempty.

	Further questions

	A nifty Constraint Satisfaction Problem
	Introduction
	Tricolor Cubic 1-in-3 is NP-complete
	Triangle-free Tricolor Cubic Simple 1-in-3 is NP-complete
	Consequence for 3 Dimensional Matching

	Bibliography

