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Abstract

Accelerated Life Testing (ALT) is commonly implemented to derive insights into ex-

perimental items’ reliability. Conducting tests under typical usage conditions can be both

time-consuming and expensive. In ALT, an experimental item is examined under levels

of physical stress, such as temperature, voltage, or pressure, higher than the experimental

item will experience under normal operation levels. Step-stress accelerated life testing

(SSALT) is a special type of accelerated life test designed to gradually increase stress lev-

els, thereby accelerating the failure process and allowing for data collection in a shorter

period.

The main contribution of this thesis lies in the development of predictive and robust

methods based on imprecise probability theories. These methods provide interval-based

results that reflect uncertainty in both the data and the model, unlike traditional ap-

proaches that rely on exact values and strong assumptions. By allowing for imprecision,

the proposed methods offer more realistic and cautious predictions, which are necessary

when normal stress data is limited or the model is uncertain.

This thesis presents three robust statistical methods for the analysis of SSALT data

based on theories of imprecise probability. In the first method, imprecision is incorporated

based on the likelihood ratio test within the cumulative exposure model. This method

consists of three steps. First, failure times occurring under different strategies at higher

stress levels are transformed to the normal stress level. Second, imprecision is introduced

based on the likelihood ratio test applied to the accelerating parameter under the null
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hypothesis that all failure times originate from the same distribution. This imprecision

allows failure times to be transformed into interval values at the normal stress level, where

the transformed failure times are assumed to be indistinguishable from those observed

under normal conditions. Third, Nonparametric Predictive Inference (NPI) is applied to

the transformed data to provide robust predictive inference.

In the second method, imprecision is introduced based on the log-rank test applied

to a parametric link function. This imprecision facilitates the transformation of data

from higher stress levels into interval-valued observations at the normal stress level. The

transformation is performed using the parametric link function framework, after which

the transformed data are combined with Nonparametric Predictive Inference (NPI) at

the normal stress level to construct lower and upper survival functions. These methods

incorporate imprecision to enhance robustness with regard to model assumptions. The

results demonstrate that imprecision increases for observations derived from higher stress

levels, leading to more imprecise data at the normal stress level.

In the third method, a robust Bayesian framework is developed to analyze SSALT data

while incorporating imprecision in prior knowledge. This method models uncertainty by

considering a class of prior distributions, where the extreme bounds of this class reflect

minimal prior information about the model parameters. By using these extreme bounds,

lower and upper posterior predictive distributions are derived separately, enabling the

prediction of future failure times at the normal stress level. This approach also facilitates

the construction of lower and upper predictive survival functions, ensuring robustness in

predictive inference under model uncertainty.

The performance of the proposed methods is evaluated through simulation studies.

The findings indicate that imprecision increases across all methods when the assumed

likelihood function or link function is misspecified. Among the three methods, the robust

Bayesian approach exhibits relatively more imprecision under model misspecification,

whereas the first two methods primarily show increased imprecision due to data from

higher stress strategies. Additionally, the results demonstrate that as the number of

observations increases, the imprecision decreases, highlighting the impact of sample size

on predictive performance.
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Chapter 1

Introduction

Accelerated life testing (ALT) is designed to support statistical analysts to determine

the expected durability of products or components and to contribute to improvements in

product reliability [48, 52]. The defining feature of ALT lies in its ability to assess product

reliability more rapidly than traditional testing methods. Traditional lifespan testing un-

der standard usage conditions can be protracted and costly. ALT is commonly employed

to expedite this process, providing a quicker assessment of a product’s reliability. By

exposing a product to stress levels that exceed typical usage conditions, ALT facilitates

the collection of failure data across different conditions efficiently, both in terms of time

and cost [48, 52]. Step stress accelerated life test (SSALT) is a special type of accelerated

life test, which aims to increase the levels of stress gradually to accelerate or hasten an

object’s life in elevated manner [52].

In this thesis, we present three robust statistical approaches for the analysis of SSALT

data based on the theory of imprecise probability. In the first approach, we incorporate

imprecision based on the likelihood ratio test in a parametric link function. This impreci-

sion allows to transform data from higher stress levels into interval-valued observations at

the normal stress level. This transformation is achieved within the cumulative exposure

model. In the second approach, we incorporate imprecision based on the log-rank test

in a parametric link function only. This imprecision similarly facilitates the transforma-

tion of data from elevated stress levels into interval-valued observations at the normal

condition. This transformation is achieved within a parametric link function only. The

transformed data are integrated with the nonparametric predictive inferences (NPI) at

normal stress levels to construct lower and upper survival functions. These approaches

1



Chapter 1. Introduction 2

incorporate imprecision to create robustness against model assumptions. Such impreci-

sion transforms observations from elevated higher stress levels into interval-valued data at

the normal stress level, with intervals widening correspondingly for observations derived

from higher stress levels. In the third approach, we create imprecision based on robust

Bayesian analysis. This imprecision is obtained based on class of priors identified by its

extreme prior distribution. A class of priors refers to a set of prior distributions defined

over a range of plausible values, reflecting uncertainty or imprecision in prior knowledge

rather than specifying a single fixed prior. Based on these extreme bounds, we obtain the

lower and upper posterior predictive distributions separately, which allow us to predict

future failure times at the normal stress level. This approach enables the construction of

lower and upper predictive survival functions at the normal stress level.

In the field of statistics and probability, uncertainty is traditionally quantified using

classical probability based on Kolmogorov’s axioms [5]. Extensions of these axioms can

provide viable solutions in situations where information is scarce or incomplete, and

where traditional probability measures may be overly constricting [5]. Such extensions

include the adoption of imprecise probabilities, notably distinguished by the assignment

of lower and upper probability bounds rather than precise, singular values [1, 5, 63]. The

field of imprecise probability, which has flourished with research activity over the past

two decades, has inspired scholars across various statistical and engineering disciplines,

leading to the establishment of a dedicated society and website (The Society for Imprecise

Probability: Theories and Applications) [60] as well as biennial conferences [1, 46].

In recent times, numerous methods for quantifying uncertainty and evaluating relia-

bility have been proposed, offering several advantages over classical probability. These

methods, along with their practical implementations, are at the forefront of current re-

search within this field. Techniques such as interval probability [66, 67] and the broader

theory of imprecise probabilities [65] have been instrumental in the analysis of reliability.

Within this context, Coolen [14] has explored various challenges in imprecise reliability,

examining an array of tools for implementing imprecise reliability in numerous practical

settings.

The advancing research in imprecise probability has set the stage for the creation of

novel statistical inference methods, with Nonparametric Predictive Inference (NPI) [3]

being a notable approach. Various researchers have brought forward applications of NPI,
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exploring new techniques applicable to diverse datasets.

The subsequent sections of this chapter are structured as follows. Section 1.1 provides

the motivation behind the research conducted for this thesis. Section 1.2 outlines the

organization of the thesis.

1.1 Motivation

The complexity inherent in accelerated life testing (ALT) scenarios often necessitates

sophisticated statistical modelling for inference, presenting numerous challenges. The

primary goal of this thesis is to propose a model that is both simple and robust, capable

of quantifying imprecision in a way that is broadly applicable in practical situations. This

model will produce interval probabilities rather than precise ones. In case these interval-

based probabilities prove insufficient in addressing practical application challenges, then

adjustments to the model, additional data collection, or expert input may be employed

to refine the methodology. This research is initiated by building on the work of Yin et al.

[69], who proposed an imprecise statistical method for ALT data.

Yin et al. [69] utilized the power-Weibull model in their methodology and introduced

imprecision through intervals around parameter estimates, thereby transforming obser-

vations from various higher stress levels into interval data at the normal stress level [69].

However, they did not prove the extent of imprecision in the parameter beyond simula-

tions. Expanding upon Yin et al. [69]’s work, Ahamadini [2] integrated classical statistical

tests across different stress levels to derive intervals for the link function’s parameters.

Ahamadini [2] determined an interval for the parameter inherent to the link function,

assumed for each level of stress, by applying established hypothesis testing methods to

pairs of stress levels to measure imprecision, and hypothesising that when data from

a higher stress level is transformed to a normal stress level, the resulting data should

theoretically be indistinguishable from the original data collected at the normal level. It

should be noted that the intervals of the transformed data tend to be greater when it is

transformed from higher stress levels.

In this thesis, we extended these robust approaches with a new transformation method

for the analysis of step-stress accelerated life testing data where the cumulative exposure

model is implemented. This transformation method is more appropriate to be imple-
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mented for SSALT data as this method will mix the transformed data with the original

data at the normal stress to achieve the assumption that the transformed times of failures

should not be distinguishable from failure times occurring at the same level.

Moreover, we develop a new robust Bayesian approach for the analysis of SSALT data

considered by imprecise probabilities. This approach incorporates imprecision to model

imprecise prior knowledge on the parameters involved in the assumed model where it

allows to obtain lower and upper bounds for the posterior distribution. This modelling

of imprecise prior knowledge is defined based on a class of prior distributions, while this

class is identified by its extremes under complete lack of knowledge about the parameters.

Based on these extreme bounds, we obtain the lower and upper posterior predictive

distribution in a separate manner, which allow us to predict future failure times at the

normal stress level. This approach enables us to construct lower and upper predictive

survival functions at the normal stress level.

The performance of the proposed robust approaches is evaluated by extensive simula-

tion studies. The analysis examines how a future observation aligns with and is compa-

rable to the existing observations at the normal stress level. These simulations consider

both cases where model assumptions hold true and instances of model misspecification.

Data were generated to assess the robustness and predictive performance of the proposed

methods. The simulations were also used to compare the three approaches across various

scenarios, illustrating their ability to perform effectively under a range of conditions.

The predictive and robust methods developed in this thesis offer practical value for

real-world engineering reliability analysis. In many engineering systems, data from nor-

mal stress levels may be limited, incomplete, or unavailable. Traditional methods often

rely on strong model assumptions and precise priors, which may not hold in practice. By

incorporating imprecise probability theory, the proposed methods provide interval-based

predictions that reflect both model and data uncertainty. This robustness enhances the

reliability of predictions under complex and uncertain testing conditions, offering engi-

neers more cautious and realistic assessments for decision-making and system design.
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1.2 Outline of the thesis

This thesis introduces significant advancements in applying imprecise statistical predic-

tive inference to step-stress accelerated life testing data. Our innovative methodology

enhances the robustness of predictive inferences by employing statistical tests across pairs

of stress levels, which facilitates the derivation of intervals for the parameter values of

the link function. Furthermore, a robust Bayesian approach is developed considered by

imprecise probabilities to obtain lower and upper bounds for the posterior distribution.

Consequently, this thesis supplements advanced approaches by implementing frequentist

statistical tests and robust Bayesian analysis to determine the amount of imprecision.

This thesis is organised as follows. Chapter 2 presents foundational concepts from the

literature that informs the approaches developed in this thesis. It provides an overview

of reliability testing, accelerated life testing (ALT) and step-stress accelerated life testing

(SSALT). It discusses the Cumulative exposure model (CEM) and acceleration models

related to ALT. It reviews basic statistical methods implemented in this thesis, namely

the maximum likelihood estimation, Bayesian estimation, Markov Chain Monte Carlo,

and the Metropolis-Hastings algorithm. Also, it reviews basic statistical tests, specifi-

cally the likelihood ratio test and the log-rank test. Lastly, it presents an overview of

nonparametric predictive inference (NPI).

Chapter 3 presents a new robust statistical approach based on the likelihood ratio

test for SSALT data. This chapter was presented at the 12th workshop on principle and

methods for statistical inference with interval probability, (WPMSIIP, 9-12 September

2109, Durham University). Also, this chapter was presented at the 11th IMA International

Conference on Modelling in Industrial Maintenance and Reliability (MIMAR), in June

2021.

Chapter 4 introduces a new robust statistical approach based on the log-rank test for

SSALT data. This chapter was presented in the Reliability Meeting at the Department

of Mathematical Sciences (9 June 2022, Durham University). It was also presented at

the Second International Workshop on Reliability Engineering and Computational In-

telligence (14-15 November 2022, Delft, the Netherlands) and at the 15th International

Conference of the ERCIM WG on Computational and Methodological Statistics and 16th

International Conference on Computational and Financial Econometrics, (17-19 Decem-
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ber 2022, King’s College London, UK).

Chapters 3 and 4 were presented at the Institute for Statistics and Mathematics,

RWTH Aachen University, Germany, on 29 March 2023.

Chapter 5 presents a new robust Bayesian statistical approach based on a class of

priors for SSALT data. This chapter was presented at the 12th IMA International Con-

ference on Modelling in Industrial Maintenance and Reliability (MIMAR), Nottingham,

UK, from 4-6 July 2023. Additionally, it was presented at the 3rd International Workshop

on Reliability Engineering and Computational Intelligence (RECI), held on 6-8 November

2024 in Žilina, Slovakia.



Chapter 2

Preliminaries

In this chapter, we present foundational concepts from the literature that inform the ap-

proaches developed in this thesis. Section 2.1 provides an overview of reliability testing.

Section 2.2 introduces the main concepts of accelerated life testing (ALT). Section 2.3

introduces step-stress accelerated life testing (SSALT). Section 2.4 discusses the Cumula-

tive exposure model (CEM). Section 2.5 discusses acceleration models related to ALT. In

Section 2.6, we review basic statistical methods implemented in this thesis, namely the

maximum likelihood estimation, Bayesian estimation, Markov Chain Monte Carlo, and

the Metropolis-Hastings algorithm. Also, we review basic statistical tests, specifically the

likelihood ratio test and the log-rank test. Lastly, Section 2.7 presents an overview of

nonparametric predictive inference (NPI).

2.1 Reliability testing

Reliability testing provides comprehensive applications to engineers in terms of obtaining

perfect and optimal designs, systems, services, or products. These applications process

data in order to gain useful information to interpret different situations. It measures

the success or failure of engineering outcomes, and consistency or life span of products

under specific conditions. It also assesses the life cycle of products as it examines each

factor affecting the life span. As a result, such calculations can detect reasons of failure,

enhance designs, or implement innovative modifications. This leads to improved quality

and affordability of products. Testing life time data is essential in order to make major

decisions about the reliability of products, and statistical methodologies have developed

7
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a variety of engineering approaches to deal with these decisions.

The reliability of an object is its ability to perform necessary and required processes

in a successful manner. It is defined as the probability that the object is functioning

successfully for a specified period of time [47, 52, 61]. Suppose T represents a positive

random variable, which describes the lifetime of the object by a life time distribution. The

cumulative distribution function (CDF), which is expressed by F (t), is the probability

that the object fails before or at time t. F (t) is given by

F (t) = P [T ≤ t], (2.1)

where F (0) = 0. Therefore, the reliability of the object is the probability that it will

survive beyond time t, which is given by the survival function

S(t) = P [T > t] = 1− F (t). (2.2)

In addition, suppose f(t) represents the probability density function (PDF) of F (t).

Suppose λ(t) represents the hazard rate function, which measures the rate at which

failing items in the complete population occur at time t [61]. The hazard function λ(t),

also known as the conditional failure rate, is given by

λ(t) =
f(t)

S(t)
. (2.3)

Moreover, there are many statistical distributions, which express the variation in the life-

time of objects. The Weibull distribution is implemented to demonstrate any approaches

and methodologies will be presented in this thesis as discussed in later sections. The

Weibull distribution is one of the most widely used models in reliability engineering due

to its flexibility in characterizing various types of failure behavior. Its shape parameter,

often denoted by β, allows the distribution to model decreasing, constant, or increas-

ing failure rates, which correspond to early-life failures, random failures, and wear-out

failures, respectively. This adaptability makes the Weibull model suitable for diverse

components and systems across industries ??.

In traditional reliability analysis, it is required to collect sufficient data about the

lifetime of experimental units to estimate the lifetime parameters under normal condi-

tions. Failure times of new highly reliable products will occur after a long period of time

which requires time and cost to collect such data [61]. These difficulties have led to an

engineering approach, which is called accelerated life testing (ALT).
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2.2 Accelerated life testing

Accelerated life testing (ALT) is defined as the process of estimating failure times of

products exposed to abnormal conditions. It provides testing methods to obtain sufficient

information of a product’s life span, but in a much shorter time period [52]. The majority

of highly reliable products will survive for a long period of time under normal conditions.

This long period of time poses significant difficulties in quantifying and characterising

the life time of products. The purpose of ALT is to accelerate failure occurrences to

shorten the life time of products or to hasten and degrade product performance, in order

to produce the desired information quickly. This acceleration applies stress to various

factors influencing the product’s reliability, allowing failure times to be observed under

different stress levels within a shorter time frame. As a result, ALT generates lifetime

data in a compressed time period, which can then be generalized to estimate real-world

performance or assess product reliability under normal operating conditions.

Accelerated life testing (ALT) is applied in testing various materials, products, and

degradation mechanisms [52]. It is widely used across multiple industries to assess the reli-

ability and longevity of materials such as metals, polymers, ceramics, adhesives, and coat-

ings, as well as complex products ranging from simple components to advanced electronic

systems [52]. Additionally, ALT is implemented to evaluate degradation mechanisms and

assess product performance under different stress factors. Overall, the extensive applica-

tion of ALT highlights its crucial role in ensuring reliability and durability in engineering

and manufacturing.

Accelerated life tests and performance degradation tests are conducted for several rea-

sons and purposes. Firstly, a design of a product can be improved when ALT data assess

the design failure modes and suggest appropriate modes to be taken into consideration.

These data also provide comparisons and assessments between different designs, compo-

nents, suppliers and operating conditions. It investigates any variables which may affect

the reliability of a product. It can therefore adopt suggestions to optimize product reli-

ability and limitations. Moreover, it measures reliability of a product in order to permit

to release a design to a manufacturer or a product to a customer. These processes, which

are called “Burn-In”, aim to eliminate early failures in shorter time [52]. Furthermore,

it can establish quality control of a product to assure its reliability and take corrective
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action when it is needed. It forms service policy to decide when to inspect the product

for replacement or maintenance. Finally, these measurements of reliability estimate war-

ranty and service expenses as a result of estimating failure rates, mean time to failure

and degradation rates [52].

Accelerated test data can be classified into two types: Measures of Performance Data

and Life Data which are the interesting characteristics of products to be observed [52].

ALT aims to examine how products’ performance degrades with age. Such testing

involves an experiment to measure the relationship between performance, age, and stress.

These experiments include higher stresses to observe products degradation of performance

over time. Such observations provide measures of performance data to fit a model to

estimate the relationship between performance, age, and stress levels under normal use

[52].

Life data consist of observations which measure the exact life (failure age) of each

sample unit of a product. Life data is classified into two types, complete and incomplete

[52]. Most life data are incomplete in that the exact failure times of some units are

unknown which therefore provides incomplete information of the failure times.

There are many examples of incomplete life data. These include:

• Censored data, which means that some units of a product, which are expected to

fail, are still running while the data is analysed. Such censored data arise when:

– Some units are removed from the test or service before failure,

– Some units are still running at the time of the data analysis,

– Some units are removed from test or service because failure has occurred from

an extraneous cause. Precisely, these data are recognised as being censored

on the right.

• Similarly, censored data on the left consider failure times of some units known

to be before a certain time.

• In case all survival units have a specific running time and all failure times are

before data analysis, such data are called singly censored on the right. Singly

censored data arise when units are started together at a test condition and the

data are analysed before all units fail. Such data are singly time censored when the
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censoring time is fixed, thus such period of fixed time reflect the number of failures

to be random.

• Another example of incomplete life data is multiply censored data, which is

censored data on the right and have different running times intermixed with the

failure times. Multiply censored data may arise when units are being tested at

different times. Thus, such units have different running times when the data are

recorded [52].

Competing failure modes is another type of data which occurs when sample units

fail from different causes. Such causes can be categorised into failure modes which are

described as a mix of competing failure modes. These data on a specific failure mode

record the failure times of units which are failed by that mode. Such data will be dealt

with as multiply censored. Additionally, quantal-response data investigate whether the

failure time of a unit is before or after a specific time. Each observation is either censored

on the right or on the left. Such life data arise when each unit is inspected once to test

whether it has failed or not. There is also interval data which aims to inspect failure time

of a unit within an interval, which means each unit is inspected periodically when a unit

failed in an interval between inspections. It divides the time as intervals or groups. Such

data consist of right and left censored observations. Finally, there is mixture data which

contains a mixture of all of the above types of data. To conclude, these types of data have

similar purposes whether it is complete or incomplete data as it derives similar analyses.

These purposes will be generally estimating model parameters, fitting a distribution of

the product life, or predicting future observations [52].

There are several types of acceleration of tests, which are high usage rate, censor-

ing, degradation, specimen design and stress loading. The selection of the type of test

depends on the purpose of the test. For example, a high usage rate is a simple way to

accelerate a product’s life, when it is run intensively at a higher usage rate. There are

two different ways to run a product to compress the time of tests. These are either to run

a product faster or to reduce the off time. Censoring tests are used to test a product’s

life before all sample units run to failure in order to shorten test time or to obtain prior

data of failure time. Another type of acceleration reset is a degradation test [52]. This

type measures a product’s performance before failure times occur, which aims to observe

performance degradation over time rather than the product’s life. A specimen test looks



2.3. Step stress accelerated life testing (SSALT) 12

at characteristics of the whole specimen design that can effect and accelerate failure of a

product. Such characteristics are size and shape. Finally, there are stress loading tests.

They are methods of running a product at higher levels than normal. These stresses,

which aim to shorten product life or to degrade product performance faster, are temper-

ature, voltage, mechanical load, thermal cycling, humidity, and vibration, etc. There are

various types of stress loading tests including constant, cyclic, step, progressive, and ran-

dom stress loading. These tests can be conducted by a single stress variable or multiple

stress variables [52].

In this thesis, we focus solely on step-stress loading for the development of our novel

robust statistical approaches. It’s important to note that the design of Accelerated Life

Testing (ALT) tests is not within the scope of this thesis; rather, it is assumed that the

data are provided for the analysis.

2.3 Step stress accelerated life testing (SSALT)

Step stress accelerated life test (SSALT) is a special type of accelerated life tests, which

aims to increase the levels of stress gradually to accelerate or hasten an object’s life in

elevated manner [52]. This manner of acceleration ensures more failures of experimental

items in a much shorter period of time when it is compared to constant stress accelerated

life tests (CSALT). Figure 2.1 illustrates the concept of SSALT.

Stress

Time

s0

s1

s2

s3

0 τ1 τ2 τ3

Figure 2.1: Step stress accelerated life testing

Suppose that SSALT experiment is conducted with k number of stress levels s0, s1, s2,

..., sk, which are predetermined to test n experimental items. These k stress levels are
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increased in elevated manner at prespecified points of time τ1 < τ2 < ... < τk. In a basic

practice of SSALT, n experimental items are placed on the experiment, when these items

are initially exposed to the stress level s0 (normal use or initial stress level) for a period

of time t ∈ (0, τ1) then the stress level is increased from s0 to s1 at the point of time τ1

for a period of time t ∈ (τ1, τ2) . Likewise, the level of stress is increased from s2 to s3

at the point of time τ2 for the period of time t ∈ (τ2, τ3). In general, the level of stress is

increased from sk−1 to sk at the point of time τk−1 for the period of time t ∈ (τk−1, τk).

This basic SSALT experiment starts at time τ0 = 0 and ends at time τk = ∞ or

when all the experimental items placed in the experiment fail or are censored. Also, this

experiment considers that the increasing times of the levels of stress are fixed. The times

of item failures are recorded sequentially in an ordered manner. Suppose that the number

of failing items ni, which occur before the time point τi for i = 1, 2, . . . , k, results in a

complete data set as

t1:n < · · · < tn1:n < τ1 < tn1+1:n < · · · < tn2:n < τ2 < · · · < τk−1 < tnk−1+1:n < · · · < tn:n < τk.

Here, t represents the failure time. In this notation, ti:n denotes the i-th order statistic

from a sample of size n, that is, the i-th smallest observed failure time. Specifically,

tn1:n represents the failure time of the n1-th failed item, occurring before the stress level

changes at time τ1.

To model and analyse data of step stress experiments, it is required to relate the

cumulative distribution functions of the lifetime of the experimental items at each stress

level to the normal stress level under normal operating conditions. There are several

models, which have been developed in the literature to express this concept. The most

commonly implemented and proposed models are cumulative exposure models, tampered

random variable models, tampered failure rate models, and cumulative risk models [41].

The cumulative exposure model, which was introduced by Sediakin [57] and then

extended by Nelson [51, 52]. This model assumes that the residual life of the experimental

items depends only on the cumulative exposure the items have been exposed to, regardless

how these exposures were accumulated through stresses.

The tampered random variable model, which was introduced by Goel [28, 29] and

then extended by DeGroot and Goel [21], assumes that the consequence of increasing the

level of stress to a higher level at a specific point of time is equivalent to multiply the

residual life of the experimental items by an unknown positive constant.
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The tampered failure rate model, which was proposed by Bhattacharyya and Soejoeti

[10], adopts the concept of Cox’s proportional hazards model [19]. It assumes that the

consequence of increasing the stress level is a multiplicative effect on the failure rate

function at the level of stress s0.

The cumulative risk model, which was introduced by Van Dorp, J.R. et al. [64] and

then extended by Kannan et al. [39], assumes that the previous step stress models have

a lag or latency period of time to count the effect of increasing the level of stress. It is

also assumed that the related hazard functions of these models are not continuous as the

increase of the level of stress is instantaneous. This discontinuity is considered unrealistic

for many applications, however the cumulative risk model solves this problem.

In this thesis, the cumulative exposure model is implemented to develop our novel

robust statistical approaches for step stress ALT data. The cumulative exposure model

(CEM) is preferred in this work due to its key assumption that residual life depends only

on total accumulated exposure, regardless of the path of stress application. This makes

it suitable for step-stress experiments where stress changes occur in stages.

2.4 Cumulative exposure model (CEM)

The cumulative exposure model (CEM) is considered as the most commonly used model

to analyse the step stress experiments. This model assumes that the residual life of the

experimental items depends only on the cumulative exposure the items have been exposed

to, regardless how these exposures were accumulated through stresses. Furthermore, the

step stress model contains a piecewise continuous function of constant stress levels at

different consecutive periods of time, and there is a life distribution for each of these

stress levels. The failing of items occurs according to the cumulative distribution at the

current level of stress, however it is accumulated to the previous fraction failed. The

failure of items occurs according to the cumulative distribution at the current level of

stress, while accounting for the fraction of items that have already failed at the previous

stress levels. Specifically, the remaining survival fraction at each step is adjusted by

the cumulative proportion of failures observed in the earlier stress periods. This way of

accumulation contains a shift parameter h between the overall CDF of the step stress

and the CDF’s of constant stress levels the experimental items are being tested at. This
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shift parameter h is shown horizontally from the right to the left, where it is illustrated

in Figure 2.2.
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Figure 2.2: Cumulative exposure model (CEM) in a step-stress accelerated life test with

three stress levels. The blue dotted curves show the CDFs under constant stresses s0, s1,

and s2. The solid black curve represents the overall CDF, adjusted at each stress level

by shift parameters h1 and h2 to ensure continuity.

To clarify, suppose a step stress experiment is conducted with three stress levels

s0, s1, s2 for periods of time τ1, τ2, τ3, which have lifetime distributions F0, F1, F2 respec-

tively. These life distributions should belong to a specific distribution family. These life

distributions should belong to a specific distribution family, which will be specified in

the subsequent sections. The experiment begins with n identical items, and all items are

exposed to an initial stress level s0 with lifetimes expressed by the CDF of F0(t). Fail-

ures, which occur at stress s0 will be collected and the remaining experimental units will

be stressed under stress level s1 with lifetimes expressed by the CDF of F1(t). Failures,

which occur at stress s1, will be accumulated to the previous fraction failed. Similarly,

when the stress is increased from s1 to s2 with lifetimes expressed by the CDF of F2(t).

Let F (t) represent the overall CDF of the lifetime of experimental units in SSALT

experiment under the cumulative exposure model. In the first step, experimental units
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fail according the CDF of the initial stress level s0, which is

F (t) = F0(t) for τ0 ≤ t ≤ τ1. (2.4)

In the second step, the consequence of increasing the level of stress from s0 to s1 at the

point of time τ1 is equivalent to changing the CDF from F1(t) to F1(t− h1) at the stress

level s1. Note that F1(t) represents the lifetime of experimental units when subjected to

a constant stress level. The cumulative exposure model contains a function of constant

stress and the shift parameter h1 maintains the assumption that the failures at stress

level s1 are accumulated to the previous fraction failed at the stress level s0. Therefore,

experimental units fail according the CDF of the stress level s1, which is

F (t) = F1(t− h1) for τ1 ≤ t ≤ τ2, (2.5)

where h1 is a shift parameter for the stress level s1, and is obtained by solving the following

equation

F1(τ1 − h1) = F0(τ1). (2.6)

In the third step, the consequence of increasing the level of stress from s1 to s2 at

the point of time τ2 is equivalent to change the CDF from F2(t) to F2(t − h2) at the

stress level s2. Therefore, experimental units fail according the CDF of the stress level

s2, which is

F (t) = F2(t− h2) for τ2 ≤ t ≤ τ3, (2.7)

where h2 is a shift parameter for the stress level s2, which is obtained by solving the

following equation

F2(τ2 − h2) = F1(τ2 − h1). (2.8)

Since F (t) represents a cumulative distribution function (CDF), it is assumed to be

continuous at τ1. This means there is no sudden jump or gap in the function when

transitioning from one stress level to another. The continuity ensures that the failures

observed at the new stress level are accumulated smoothly without disrupting the overall

failure process. Because this holds at each transition point, the structure of the cumulative

exposure model remains consistent from the initial time until the end of the testing period.

Therefore, the general expression of F (t) follows this pattern across all stress levels.
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As F (t) is a continuous function at τ1, these processes continue in this manner from

τ0 = 0 to τk =∞. Therefore, the general expression of F (t) is given as:

F (t) = Fi(t− hi), for τi ≤ t ≤ τi+1, i = 0, 1, ..., k − 1, (2.9)

where h0 = 0 and hi for i = 0, 1, ..., k − 1, is obtained by solving the following equation

Fi(τi − hi) = Fi−1(τi − hi−1). (2.10)

The corresponding probability density function (PDF) is given by

f(t) = fi(t− hi), for τi ≤ t ≤ τi+1, i = 0, 1, ..., k − 1. (2.11)

Furthermore, the shifting parameter hi = (τi − τ ∗i ), where it starts to shift at the point

of time τ ∗i to τi. Alternatively, F (t) can be written as

F (t) = Fi(t− τi + τ ∗i ), for τi ≤ t ≤ τi+1, i = 0, 1, ..., k − 1. (2.12)

Also, the corresponding probability density function (PDF ) can be written as

f(t) = fi(t− τi + τ ∗i ), for τi ≤ t ≤ τi+1, i = 0, 1, ..., k − 1. (2.13)

In this thesis, the cumulative exposure model is implemented using the Weibull dis-

tribution, which is widely used for reliability analysis [52]. The Weibull distribution is

extensively utilized to quantify reliability and is thus integral in evaluating the lifespan of

experimental units. It describes the failure characteristics of electronic components and

the structural integrity of their constituent materials. Notably, the Weibull distribution

is commonly employed in accelerated life testing scenarios.

The Weibull distribution includes a scale parameter θ > 0 and a shape parameter

β > 0. The probability density function (PDF) is given by

fi(t) =

(
β

θβi

)
tβ−1 exp

[
−
(
t

θi

)β]
, for t ≥ 0, (2.14)

and the cumulative distribution function (CDF)is given by

Fi(t) = 1− exp

[
−
(
t

θi

)β]
, for t ≥ 0, (2.15)

where θi is the scale parameter at the stress level si for i = 1, 2, .., k−1, and β is the shape

parameter which is assumed to be constant at each stress level. Consider k − 1 steps of
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SSALT experiment based of the assumption of the cumulative exposure model while the

lifetime of experimental units follow Weibull distribution. In the first step, experimental

units fail according the CDF at the initial stress level s0, which is F0(t) for t ∈ (τ0, τ1).

In the second step, the CDF at s1 is F1(t − h1) for t ∈ (τ1, τ2) ,where h1 is the solution

of F1(τ1 − h1) = F0(τ1). Consequently, h1 is obtained by solving the following equation

1− exp

[
−
(
τ1 − h1
θ1

)β]
= 1− exp

[
−
(
τ1
θ0

)β]
. (2.16)

Therefore, h1 = (1− θ1/θ0)τ1, and the CDF at s1 becomes

F1(t) = F1(t− h1) = 1− exp

[
−
(
t− τ1
θ1

+
τ1
θ0

)β]
, for τ1 ≤ t ≤ τ2 (2.17)

Similarly, in the third step, the CDF at s2 is F2(t − h2) for t ∈ (τ2, τ3) ,where h2 is

the solution of F2(τ2 − h2) = F1(τ2 − h1). Consequently, h2 is obtained by solving the

following equation

1− exp

[
−
(
τ2 − h2
θ2

)β]
= 1− exp

[
−
(
τ2 − τ1
θ1

+
τ1
θ0

)β]
. (2.18)

Therefore, h2 = (1− θ2/θ2)τ2 + (1/θ1 − 1/θ0)θ2τ1, and the CDF of s2 becomes

F2(t) = F2(t− h2) = 1− exp

[
−
(
t− τ2
θ2

+
τ2 − τ1
θ1

+
τ1
θ0

)β]
, for τ2 ≤ t ≤ τ3. (2.19)

In general, the shifting parameter hi is given by hi = (τi − τ ∗i ), where τ ∗i follows a

recursive structure:

τ ∗1 =

[
θ1
θ0
τ1

]
, (2.20)

τ ∗2 =

[
θ2
θ1

(
τ2 − τ1 +

θ1
θ0
τ1

)]
, (2.21)

τ ∗3 =

[
θ3
θ2

(
τ3 − τ2 +

θ2
θ1

(
τ2 − τ1 +

θ1
θ0
τ1

))]
. (2.22)

Thus, τ ∗i is given recursively as:

τ ∗i =

[
θi
θi−1

(
τi − τi−1 + τ ∗i−1

)]
, for τi ≤ t ≤ τi+1, (2.23)

with the base case:

τ ∗0 = 0. (2.24)
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In addition, the cumulative distribution function (CDF) of an SSALT experiment

with k − 1 stress transitions, while the lifetime of experimental units follows a Weibull

distribution, is given by:

F (t) =



1− exp[−( t
θ0

)β] if τ0 ≤ t ≤ τ1

1− exp[−( t−τ1
θ1

+ τ1
θ0

)β] if τ1 ≤ t ≤ τ2

1− exp[−( t−τ2
θ2

+ τ2−τ1
θ1

+ τ1
θ0

)β] if τ2 ≤ t ≤ τ3

. . .

. . .

1− exp[−( t−τk−1

θk−1
+ τk−1−τk−2

θk−2
+ .....+ τ1

θ0
)β] if τk−1 ≤ t ≤ τk

(2.25)

Alternatively, the CDF at k−1 SSALT experiment of Weibull distribution, can be written

as:

Fi(t) = 1− exp

−(t− τi
θi

+
i∑

j=1

τj − τj−1
θj−1

)β
, for τi ≤ t ≤ τi+1. (2.26)

For i = 0, the summation term is not defined. Thus, the base case is given as:

F0(t) = 1− exp

[
−
(
t

θ0

)β]
, for τ0 ≤ t ≤ τ1. (2.27)

The probability density function (PDF) is given by

fi(t) =

(
β

θβi

)
(t− (τi − τ ∗i ))β−1 exp

−(t− τi
θi

+
i∑

j=1

τj − τj−1
θj−1

)β
, for τi ≤ t ≤ τi+1.

(2.28)

For i = 0, the summation term is not defined. Thus, the base case for the probability

density function (PDF) is given as:

f0(t) =
β

θβ0
tβ−1 exp

[
−
(
t

θ0

)β]
, for τ0 ≤ t ≤ τ1. (2.29)

Besides these statistical models, there are acceleration models that aim to model the

failure mechanism in terms of physical and chemical factors to extrapolate failure times

at the normal stress level.
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2.5 Acceleration models

There are specific characteristics of the lifetime data when stresses are applied. Life time

tends to be longer at low stress than at high stress, and the variation in life time is

greater at low stress than at high stress levels. At each stress level, there is a statistical

distribution of life that requires it to be linked to other stress levels in order to mimic the

normal life time of experimental items at the normal stress level [52]. Establishing the

life-stress relationship in accelerated life testing (ALT) typically requires the utilization

of either a physical or empirical acceleration model [62].

Physical acceleration models, which are based on physical or chemical theory, explain

the causes of the failure process over a range of stress levels and enable extrapolation to

failure conditions at normal use. The relationship between the accelerating variable and

the failure mechanism tends to be highly complex, where basic models, in many scenarios,

are not sufficient to define the failure causes and process. The Eyring model [52], which is

one illustration of physical acceleration models, was built based on the theory of quantum

mechanics [62].

Empirical acceleration models are derived based on a mathematical framework to

fit the observed data. These models aim to describe the failure mechanism, when it is

difficult to develop a physical acceleration model. It aims to link the scale and shape

parameters at higher stress levels in terms of acceleration variables to predict failure

times at different stress levels. Examples of empirical acceleration models are the linear

and log-linear functions and the inverse power link function [42, 52].

In this thesis, we aim to develop robust statistical approaches to analyse SSALT data

based on the theory of imprecise probability. These robust statistical approaches aim

to deal with this complicity of the modelling of SSALT data and provide easy-to-use

methods based on a few modelling assumptions. We will discuss this further in the later

chapters. We will implement a combination of the Weibull cumulative exposure model

and the Arrhenius and Eyring acceleration models to illustrate our robust statistical

approaches to analyse SSALT data.

The Arrhenius life-temperature relationship is usually implemented to model product

life as a function of temperature [52]. Applications include electrical insulations and di-

electrics, solid state and semiconductor devices battery cells, lubricants and greases, plas-
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tics, and incandescent lamp filaments. Based on the Arrhenius Law for simple chemical-

reaction rates, the relationship is implemented to express many products that fail as a

result of degradation because of chemical reactions or metal diffusion [12, 30, 52]. The re-

lationship is adequate over some range of temperature. The Arrhenius rate law equation

is given by

R = A · exp

(
− E

KB ·K

)
, (2.30)

where R represents the reaction rate that explains the speed of chemical reaction and

the metal diffusion, A is a constant that describes the product failure mechanism and

test conditions, E is the activation energy of the reaction, KB is Boltzmann’s constant as

8.617×10−5 electron volts per ◦C, and K is the absolute Kelvin temperature that equals

to Centigrade temperature plus 273 degrees [52].

The relationship explains a simple view of failure in a product as a result of chemical

reaction or diffusion. The product is expected to fail at a critical amount of chemical

reaction or diffusion. This critical amount is given by (Critical amount) = (rate) ×

(time to failure). This leads to time to failure θ being considered as inversely proportional

to the rate [23, 52]. Therefore, the Arrhenius life-stress relationship is given by

θ = A · exp

(
E

KB ·K

)
. (2.31)

The log-linear function of the Arrhenius relationship for the normal stress level is given

by

ln(θ0) = γ0 +
γ

K0

, (2.32)

where θ0 is the Weibull scale parameter at the normal stress level, γ0 = ln(A), γ = E
KB

and γ > 0 [52]. Also, the log-linear function of the Arrhenius relationship for the higher

stress level is given by

ln(θi) = γ0 +
γ

Ki

. (2.33)

Thus, the Arrhenius link function between the higher stress level ki and the normal stress

level k0 of temperature (Kelvin) is given by [52]

θi = θ0 exp

(
γ

ki
− γ

k0

)
. (2.34)
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The Eyring model is considered an alternative approach to the Arrhenius model as

it also models the accelerating variable in terms of temperature [23, 52]. This model

establishes the correlation between the mean time to failure θ and the acceleration variable

temperature K. It is important to note that the Weibull scale parameter θ does not

generally equal the mean time to failure (MTTF), except when the shape parameter

β = 1, corresponding to the exponential distribution. For β 6= 1, the MTTF is given by

MTTF = θ Γ

(
1 +

1

β

)
,

where Γ(·) is the gamma function [52].

The Eyring model describes the correlation between the mean time to failure and the

accelerating variable temperature K as given by

θ =
A

K
exp

(
λ

K

)
, (2.35)

where θ = EA
kB

. A and θ > 0 are constants that describe the characteristics of the com-

bined failure mechanisms and experimental conditions, kB represents the Boltzmann’s

constant, (8.6171× 10−5 electron-volts per ◦C ), and K represents the absolute temper-

ature (Kelvin). The scale parameter of experimental items at the normal stress level is

θ =
A

K0

exp

(
λ

K0

)
, (2.36)

and the scale parameters at the higher stress levels are

θi =
A

Ki

exp

(
λ

Ki

)
. (2.37)

The Eyring link function for the higher stress level ki and the normal stress level k0

of temperature (Kelvin) is given by

αi = α0 × (K0/Ki)× exp [(λ/Ki − λ/K0)] , (2.38)

where θ > 0 is the acceleration parameter of the Eyring link function model. Applications

include testing capacitors, electro-migration failure, and solid rupturing [52].

It should be emphasised that the Arrhenius and Eyring link functions predict equal

extrapolations in numerous applications, however, the Arrhenius link function is not

appropriate and can be misleading for some applications. The Arrhenius model may

not be suitable in certain scenarios where multiple competing chemical reactions with
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different activation energies are involved. In such cases, the Arrhenius relationship may

not accurately describe the overall reaction rate [23].

In such cases, the Eyring model is often preferred because it accounts for additional

stress factors beyond temperature, such as humidity, voltage, or mechanical load. This

makes the Eyring relationship more suitable for reliability studies where temperature is

not the primary cause of stress failure. An example of this is breakdown in semiconductor

devices, where factors such as electric fields, voltage stress, and mechanical stress, in

addition to temperature, contribute to the activation energy leading to device failure

[23, 52].

2.6 Basic statistical methods

In this section, basic statistical methods will be discussed as these methods will be im-

plemented to construct our novel robust approaches to analyse SSALT data. In general,

the basic statistical methods to analyse survival data are parameters estimation and

hypothesis testing.

2.6.1 Parameter estimation

In classical statistics, maximum likelihood estimation (MLE) is a method used to estimate

the parameters of a model. It seeks the parameter values that maximize the likelihood

function, which is the product of the probability densities at each data point [31]. Let

f(ti; θ) denote the probability density function for the observed failure times ti with

i = 1, . . . , n, and S(cj; θ) represent the survival function for censored times cj, with

j = 1, . . . , u. The likelihood function, given a specific failure time distribution with

parameter θ, is expressed as:

L(θ; t) =
n∏
i=1

f(ti; θ)
u∏
j=1

S(cj; θ), (2.39)

In Chapter 5, the focus is primarily on Bayesian methods for (SSALT) data. Bayesian

inference is based on the principle that prior knowledge or subjective beliefs about pa-

rameters can be updated with new data to form posterior beliefs. This Bayesian approach

begins with establishing prior beliefs about an event, which are then systematically re-

vised into posterior beliefs as additional data is collected. Unlike frequentist inference,
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where model parameters are considered fixed entities, Bayesian inference assigns prob-

abilities to these parameters, allowing for a dynamic updating of beliefs based on new

evidence [31, 59]. As detailed by Hamada, M.S. et al. [31], Bayesian inference melds

prior knowledge about parameters - typically represented through a probability density

function - with experimental data to refine these beliefs. This combinations is expressed

through Bayes’ theorem, which calculates the posterior distribution, π(θ | x), as follows:

π(θ | x) =
π(θ)L(x | θ)∫
π(θ)L(x | θ)dθ

,

where θ symbolizes the vector of parameters, x represents the observed data, π(θ) is

the prior distribution,L(x | θ) denotes the likelihood function of a model f(x | θ), and

the denominator serves as a normalizing constant [31, 59].

The unnormalized posterior distribution is expressed as follows:

π(θ | x) ∝ π(θ)L(x | θ),

posterior ∝ prior × likelihood.

The choice of prior distributions for model parameters stands as a widely discussed

issue within Bayesian statistics. Subjective priors, informed by either expert judgment or

historical data, allow for the incorporation of specific insights into the statistical model.

For instance, engineers with expertise in the lifespan of products, drawing on either the

physical basis of failure or accumulated failure data, can integrate this knowledge into

the analysis through the selection of tailored subjective priors [48]. Conversely, the use of

objective priors, often described in literature as non-informative, flat, or vague, presents

an alternative approach. Such priors, including the uniform, reference, Jeffreys, and

maximal data information priors, are explored in detail by Berger, J.O. et al. [7], who

provide insights and discussions on the use of objective priors. Additionally, Yang and

Berger [68] offer a comprehensive list of non-informative priors suitable for a range of

distributions and models, with a preference for reference and Jeffreys priors. It is critical

to note the importance of verifying the appropriateness of the posterior distribution when

utilizing objective priors, as many of them are known to be improper [31, 59].

The posterior mean of a parameter, given observed data, can be formally expressed

as an equation derived from the posterior distribution. This equation is given by:

E[θ|x] =

∫
θ π(θ|x) dθ, (2.40)
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where E[θ|x] denotes the expected value (mean) of the parameter vector θ given the data

x, and π(θ|x) represents the posterior distribution of θ conditioned on x. The integral

is taken over all possible values of θ, effectively weighting each possible parameter value

by its probability under the posterior distribution. This equation shows the Bayesian

parameter estimation by quantifying the expected value of a parameter based on the

posterior distribution, which incorporates both prior knowledge and the likelihood of the

observed data [31, 59].

The posterior predictive distribution is a fundamental concept in Bayesian statistics

that allows for predictions of future observations based on the data already observed. It

is denoted by p(x∗|x), where x∗ represents a new, future data point, and x denotes the

observed data set. The posterior predictive distribution is given by the integral:

p(x∗|x) =

∫
p(x∗|θ)π(θ|x)dθ. (2.41)

This equation relies on the assumption that the future data point x∗ is conditionally

independent of the observed data x, given the model parameters θ. In other words, x∗

and x are independent when conditioned on θ, which can be expressed as x∗ ⊥ x|θ.

Under this assumption, p(x∗|θ) represents the likelihood of observing the new data

point x∗ given the parameters θ, while π(θ|x) is the posterior distribution of the pa-

rameters given the observed data x. The integral aggregates over all possible parameter

values θ, weighing the likelihood of the new observation by the updated beliefs about the

parameters after observing x [31].

In many advanced Bayesian models, encountering an intractable posterior distribution

is a common challenge, where simplifying the distribution to a closed form is not feasible.

This situation complicates the computation of marginal posterior distributions and the

identification of the normalizing constant, thus posing significant obstacles to Bayesian

inference. To address these issues, Markov Chain Monte Carlo (MCMC) methods have

been introduced. These computational strategies enable sampling from complex posterior

distributions that are difficult to manage directly [31, 59].

A Markov chain is characterized as a sequence of random variables X(1), X(2), . . .,

with the notable property that the state at time t+ 1, X(t+1), is influenced solely by the

state at time t, X(t), and is independent of any preceding states. This relationship is
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formalized as:

P
(
X(t+1) = x | X(1) = x(1), X(2) = x(2), . . . , X(t) = x(t)

)
= P

(
X(t+1) = x | X(t) = x(t)

)
.

(2.42)

Starting from an arbitrary initial point X(0), it is possible to construct a Markov chain

{X(t)} that, by following a transition distribution possessing a stationary distribution f ,

ensures the chain’s alignment with f [56]. In simple terms, a transition distribution

defines how the chain moves from one state to another, while the stationary distribution

f represents the target distribution we want to simulate from. An ergodic Markov chain

is one that, after many steps, forgets its starting point and explores the entire space

such that the samples eventually represent draws from f . This approach facilitates the

computation of the expected value of a function g(x), expressed as:

E[g(x)] =

∫
g(x)f(x)dx, (2.43)

which can be estimated through the Monte Carlo average obtained from MCMC samples:

E[g(x)] ≈ 1

M

M∑
m=1

g
(
X(m)

)
, (2.44)

given a sufficiently large number M [31, 59]. In this thesis, the Metropolis-Hastings

sampler is implemented as an MCMC method in the development of our robust approach

in Chapter 5.

The Metropolis-Hastings algorithm stands as a widely utilized MCMC sampler, re-

spected for its straightforward approach and versatility. It finds its roots in the foun-

dational works of Metropolis et al. [49] and Hastings [33], which introduced the concept

of initiating parameter value sampling from approximate distributions and then refining

these samples to more closely represent the desired posterior distribution. Over time,

these approximate distributions are adjusted to align with the posterior distribution, and

through a process of sequential sampling - where each new sample depends only on the

preceding one - a Markov chain is formed [31, 59].

The core principle of MCMC algorithms is the simulation of parameter values directly

from the posterior distribution for inferential purposes, using these simulated values as

the basis for analysis. Suppose π(θ | x) is the posterior distribution, also known as the

target density, encompassing a parameter vector θ with dimensions θ = (θ1, θ2, . . . , θd).
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We denote the tth sample in the sequence as θ(t). As t increases, the samples’ distribution

approaches the target density [31, 59].

The steps for executing the Metropolis-Hastings algorithm are as follows:

1. Begin with an initial value, θ(0), selected such that π
(
θ(0) | x

)
> 0. This initial

value may be chosen based on prior knowledge or a preliminary estimate [27]. In

this thesis, the maximum likelihood estimation is implemented as the preliminary

estimate for each parameter.

2. A proposed point θ∗ is generated from the current state θ(t−1) using a proposal distri-

bution, q
(
θ∗ | θ(t−1)

)
. This distribution is a conditional density at time step t and

is responsible for suggesting the next potential move in the parameter space. The

probability of proposing a move from θ∗ back to θ(t−1) is denoted as q
(
θ(t−1) | θ∗

)
.

The chosen proposal distribution must be one from which sampling is straightfor-

ward, and it should fulfil specific requirements to ensure that the resulting Markov

chain is both irreducible and aperiodic, thus facilitating convergence to the target

distribution.

3. Calculate the acceptance probability, denoted by ρ, for the candidate to become

the new sample:

ρ = min

1,
π (θ∗ | x) q

(
θ(t−1) | θ∗

)
π
(
θ(t−1) | x

)
q
(
θ∗ | θ(t−1)

)
 .

The ratio π(θ∗|x)
π(θ(t−1)|x)

encourages transitions to parameter values with higher pos-

terior probabilities, and the ratio
q(θ(t−1)|θ∗)
q(θ∗|θ(t−1))

indicates the proposal distribution’s

preference for certain parameter values.

4. Draw a value u from a uniform distribution U(0, 1). Accept the candidate θ∗ as the

new sample if u ≤ ρ; otherwise, retain the previous sample θ(t−1). The transition is

thus defined by:

θ(t) =

θ
∗ with probability ρ

θ(t−1) with probability 1− ρ.

5. Proceed to the next step in the sequence by updating t such that t becomes t +

1, and then revisit Step 2. Continue this process for a predefined large number
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of iterations specified by NMH , which will construct the Markov chain sequence

θ(1), θ(2), . . . , θ(NMH) [31, 59].

Furthermore, to numerically obtain the posterior predictive distribution and generate

future data points, the following steps are performed:

1. Posterior samples are obtained in a manner that the Metropolis-Hastings algorithm

is utilized to draw a large number of samples from the posterior distribution of the

parameters, θ, given the observed data, x. These samples are drawn according to

the distribution π(θ | x).

2. Future data are simulated in a manner that for each sample θ(i) drawn from the

posterior, simulate a data point x∗ from the likelihood p(x∗|θ(i)). This step is

repeated for each posterior sample, thus generating a set of future observations x∗

based on the parameter values specified by θ(i).

3. Posterior predictive distribution is constructed by aggregating the simulated data

points x∗ to form the posterior predictive distribution p(x∗ | x). This distribution

is a composite of the likelihoods of all possible future observations, weighted by the

posterior probabilities of the parameters that generated them.

4. Finally, the simulated future observations are compiled into a predictive dataset.

This dataset is a numerical representation of the posterior predictive distribution

and reflects the uncertainty inherent in the predictions based on the observed data

x and the prior information summarised in π(θ) [31].

2.6.2 Hypothesis testing

Statistical hypothesis tests are commonly implemented to compare survival functions

or probability distributions between two or more independent groups of survival data,

including those with right-censored data. This section provides an introduction of the

likelihood ratio test and the log-rank test, which are implemented in Chapter 3 and 4, re-

spectively. This implementation aims to create an interval of the acceleration parameter

in the acceleration link function. The statistical tests are executed in a pairwise manner

that two or more data sets of different SSALT settings are coming from the same under-

lying distribution under the null hypothesis, where the interval represents the range of
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parameter values for which the null hypothesis cannot be rejected. In fact, this concept

can be applied with other statistical tests and certainly these tests may show largely

similar results. Hypothesis testing plays a critical role in statistical analysis, especially

when comparing whether two or more independent groups have the same probability

distribution. Such comparisons often require the use of parametric tests. One widely

recognized test for assessing the equality of survival distributions between groups of data

is the likelihood ratio test. This test is particularly practical for analysing two sets of

failure data that may have right-censored data, such as from Step-stress accelerated life

testing (SSALT), within predefined parametric models.

The probability density function of a particular assumed statistical model defines

failure times occurred at a strategy of predefined and fixed experimental settings of

SSALT data where the test aims therefore to maximise the parameters of the model

based on the idea of the hypothesis testing. The null hypothesis (H0) assumes that the

two data sets are originated from the same underlying statistical model. To perform

the likelihood ratio test, the difference between the log likelihood under the null and

alternative hypothesis are required to be computed. This comparison is based on the

ratio of the likelihood functions values to reject the null hypothesis (H0) when the ratio

is sufficiently small [53].

Suppose that l0 represents the maximized log likelihood function on the parameter

space under the null hypothesis (H0) and l1 represents the maximized log likelihood

function over the entire parameter space under the alternative hypothesis (H1). The

likelihood ratio test statistic is given by LR = 2(l1 − l0). This statistic follows a χ2

distribution where the degree of freedom is the difference in the number of the parameters

between the two models [53]. Detailed discussions on the likelihood ratio test can be found

in numerous introductory statistics books (see e.g. [40, 55]).

The Log-rank test is a nonparametric statistical test used to compare survival dis-

tributions between two or more groups m ≥ 2 [44, 54]. This test is also called the

Mantel-Cox test [26, 45, 58]. It is widely used in survival analysis to test the hypothesis

that there is no difference in survival data between the groups being compared.

The log-rank test evaluates whether there is a significant difference between the sur-

vival distributions of two groups by comparing the observed numbers of failures that

occurred against the expected numbers of failures [58]. Based on the number of individ-
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uals at risk within each group, the log-rank test calculates its statistics by utilizing the

observed and expected event counts for each group and assessing the difference in hazard

rates across the two groups over the entire study period [37].

Suppose that m1,j represent the number of failures occur at tj in group one, m2,j

represent the number of failures occur at tj in group two. Let ni,j represent the count of

units at risk immediately before the time point t(j) (j = 1, 2, . . . , k). The log-rank test

calculates the expected number of failures for a given group i ∈ {1, 2} as

eij =

(
ni,j

n1,j + n2,j

)
× (m1,j +m1,j) . (2.45)

Let’s consider two groups, each containing ni(i = 1, 2, . . . ,m) individuals. Each in-

dividual in the groups can be either a failure event or is subject to right-censoring at a

certain time point. Let 0 < t(1) < t(2) < . . . < t(k) < ∞ represent the distinct times at

which failures occur, where t0 = 0 and tk+1 =∞. For simplicity in this explanation, it is

assumed that there are no tied observations within the combined dataset of both groups.

The log-rank test statistic ζ is calculated as follows:

ζ =
(O2 − E2)

2

Var (O2 − E2)
, (2.46)

where O2 − E2 =
∑k

j=1 (m2,j − e2,j). Hence, the variance of Var (Oi − Ei) is determined

as follows:

Var (Oi − Ei) =
k∑
j=1

n1,jn2,j (m1,j +m2,j) (n1,j + n2,j −m1,j −m2,j)

(n1,j + n2,j)
2 (n1,j + n2,j − 1)

. (2.47)

The test statistic ζ approximately follows a chi-squared distribution with degrees of

freedom corresponding to the number of groups minus one [40]. This approximation

becomes accurate in large samples due to the asymptotic properties of the log-rank test.

However, for small sample sizes or when assumptions are violated, the distribution of ζ

may deviate from the chi-squared distribution, which can affect the validity of p-values

and subsequent hypothesis testing. In such cases, alternative test statistics or exact

methods may be considered [26]. In such cases, alternative test statistics or exact methods

may be considered, such as Gehan’s generalized Wilcoxon test, which applies different

weightings to account for censored data and may be appropriate [26].
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2.7 Nonparametric predictive inference (NPI)

Within the framework of imprecise probability, classical probability is extended so that

uncertainties associated with events are quantified not by singular values but rather

by ranges of numbers [14]. For instance, under classical probability theory, a distinct

probability measure P (A) ∈ [0, 1] is attributed to an event A, with P being a probability

measure defined in accordance with Kolmogorov’s foundational axioms. The idea of

imprecise probability as a means to quantify uncertainty was originally introduced by

Boole [11] in 1854, and it has been developed extensively since in the field of statistics

following Hampel’s contributions [32].

In the last few years, diverse methodologies for assessing uncertainty have been devel-

oped, including the concept of interval probability theory by Walley and Weichselberger

[65, 66], which suggests that probabilities should be expressed as a range with a lower

and upper bound, denoted as [P (A), P (A)] respectively, where 0 ≤ P (A) ≤ P (A) ≤ 1.

This contrasts with classical probability theory, which in the case of complete absence

of data regarding an event, assigns it the full range from P (A) = 0 to P (A) = 1. In

this context, P (A) signifies the lower probability of event A, and P (A) signifies the up-

per probability for event A. The imprecision associated with event A is measured by

4(A) = P (A)−P (A). Coolen [13] introduced the concept of lower and upper predictive

probabilities for analysing survival data. This approach is a component of the broader

statistical framework known as Nonparametric Predictive Inference (NPI), which is briefly

discussed in this section.

Nonparametric Predictive Inference (NPI) is reviewed in this section narrowly guided

by [1, 46, 50]. NPI is a statistical methodology which construct lower and upper predictive

survival functions for a future event within the framework of imprecise probability [4, 16].

This methodology is based on Hill’s assumption [35], which provides direct conditional

probabilities for a future random quantity which rely on the values of associated random

quantities [3, 15, 16].

The concept suggests that the rank of a future observation relative to values already

observed is equally likely to be of each possible value 1, . . . , n + 1 [46, 50]. Assume that

X1, X2, . . . , Xn, Xn+1 symbolise exchangeable and continuous real-valued possible random

quanities, subsequently the ranked observed values of X1, X2, . . . , Xn can be symbolised
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by x(1) < x(2) < . . . < x(n). Let x(0) = 0 and x(n+1) =∞. The assumption A(n) is

P
(
Xn+1 ∈

(
x(j−1), x(j)

))
=

1

n+ 1
, (2.48)

for all j = 1, 2, . . . , n + 1. For simplicity, this explanation assumes there are no tied

observations. However, if ties are present, this scenario can be managed by assuming

the tied values are separated by a small difference that converges towards zero [34, 50].

Inferences derived from A(n) are characterised as nonparametric and predictive [50]. This

approach is appropriate when minimal knowledge is known about the random quantity

under consideration beyond the n observed values, or when there is a deliberate choice

to not utilize any additional information [50]. While the A(n) assumption does not lead

to precise probabilities for many numerous events of interest [50], it does establish the

best possible bounds for probabilities, as per the ’fundamental theorem of probability’

[20]. These bounds are expressed as lower and upper probabilities within the framework

of imprecise probability theory [3, 4].

These probabilities are suggesting a scope of interpretations [4]. As an illustration,

P (A) may be conceptualized to the maximum selling price for a bet concerning event A,

it would be such that a payment of 1 is made if event A takes place, otherwise, a payment

of 0 is made if A does not occur. This concept extends basically to be interpreted as the

highest lower bound for the probability of A based on the given assumptions. In a similar

manner, P (A) can be interpreted as the lowest selling price for the a bet concerning

event A, or the lowest upper bound based on the given assumptions. It holds that

0 ≤ P (A) ≤ P (A) ≤ 1, with the property of conjugacy P (A) = 1 − P (Ac) where, Ac is

the complimentary event of A [3, 4].

The NPI lower and upper survival functions for a future observation Xn+1 are

SXn+1
(t) =

n− j
n+ 1

, for t ∈ (xj, xj+1) , j = 0, . . . , n. (2.49)

SXn+1(t) =
n+ 1− j
n+ 1

, for t ∈ (xj, xj+1) , j = 0, . . . , n. (2.50)

In the fields of reliability and survival analysis, failure events are often the primary

focus [17, 69]. Nonetheless, the data in such studies frequently involve right-censoring,

indicating that for some observations, there is only evidence that the failure events have
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not occurred by a certain time [69]. The A(n) assumption is not applicable for such right-

censored data, it requires data where all the failure events are fully observed [69]. To

extend its applicability, Coolen and Yan [18] introduced an extension of A(n), defined as

rc- A(n), proposed to adapt right-censored data within the framework of nonparametric

predictive inference [69]. Further, rc- A(n) includes the supplementary assumption that,

at the time of censoring, the remaining time until a failure occurs of a right-censored unit

is exchangeable among the remaining time to failure of any other unit that is yet to fail

or be censored [46, 69].

Consider that n units under observation, out of which u units fail at distinct times

x(1) < x(2) < . . . < x(u). There are also n − u that are right-censored units at times

c(1) < c(2) < . . . < c(n−u) and we assign x(0) = −∞ and x(u+1) = ∞. Furthermore,

consider that there are si right-censored units within each interval (xi, xi+1), signified by

ci1 < ci2 < . . . < cisi , consequently
∑u

n=0 si = n− u. Let dij be the number of event at the

failure or censoring time, where di0 = xi and dij = cij for i = 1, 2, . . . , u and j = 1, 2, . . . , si.

Lastly, denote ñcu and ñdij as the number of units at risk immediately before the censoring

time cu and dij, respectively, in line with the definition that ñ0 = n+ 1 [46, 69].

Coolen and Yan [18] introduced the lower and upper survival functions within the

Nonparametric Predictive Inference (NPI) framework for lifetime failure data. In the

presence of right-censored data, the NPI lower survival function is denoted as SXn+1
(t) and

and the upper survival function is denoted as SXn+1(t) [46]. Correspondingly, consistent

with the previously established notation, let disi+1 = di+1
0 = xi+1 for i = 1, 2, . . . , u − 1.

Thus, for t ∈
[
dij, d

i
j+1

)
where i = 1, 2, . . . , u and j = 1, 2, . . . , si, and for t ∈ [xi, xi+1)

where i = 1, 2, . . . , u. The NPI lower and upper survival functions are given as

SXn+1
(t) =

1

n+ 1
ñdij

∏
r:cr≤dij

(
ñcr + 1

ñcr

)
. (2.51)

SXn+1(t) =
1

n+ 1
ñxi

∏
r:cr≤xi

(
ñcr + 1

ñcr

)
. (2.52)

Equations (2.49) - (2.52) are crucial in the domain of imprecise probability theory

because both lower and upper bounds for the survival probability are provided, allowing

for uncertainty in survival data to be accounted for. This approach enables more cautious

inferences when the available data is incomplete or uncertain, making the analysis more

robust and less reliant on precise assumptions [20]. The difference between the upper and
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lower survival functions, termed imprecision, mirrors the level of information contained

within the data. This imprecision exists and is non-zero due to the restrained inferential

assumptions applied, and is indicative of the amount of information in the data as pre-

viously discussed. It is noteworthy that in the context of right-censored data, where we

introduced NPI’s lower and upper survival functions, the lower survival function decreases

at each recorded observation, whereas the upper survival function decreases solely at the

times of actual failures. This elegantly demonstrates a distinct informal interpretation

of lower and upper probabilities: the lower probability for event A represents the infor-

mation in support of event A, the upper probability (actually, 1− P (A)) represents the

information against event A - hereafter also in support of the complementary event, which

consistent with the principle of conjugacy property. The occurrence of a failure naturally

counts as evidence against the prospect of survival, thereby decreasing the support for

survival in both the lower and upper survival functions. Meanwhile, a right-censored

event reduces the assurance of survival beyond that point (since fewer units are verified

to survive), yet it does not enhance the evidence against survival, given that no failure

has occurred.



Chapter 3

Robust statistical inference using

the likelihood ratio test

3.1 Introduction

The construction of statistical models for step-stress accelerated life testing (SSALT) often

involves complex processes and introduces challenges in modelling and deriving statistical

inferences. This complexity arises primarily from the assumptions made in three main

areas. Firstly, the statistical models must account for the effects of changing stress levels

over time. Secondly, physical and chemical models, such as the Eyring and Arrhenius

models, add complexity by describing how stress influences failure times. Thirdly, the

assumptions about the lifetime distribution, such as using Weibull or exponential dis-

tributions, must accurately represent the variation in failure times. The combination of

these assumptions makes SSALT models challenging to implement and validate.

Existing research frequently focuses on developing more complex models [22, 24, 42].

Despite their theoretical attraction, we argue that for practical implementation, SSALT

is best analysed by statistical methods that are readily applicable, straightforward to

implement, and equipped with essential robustness.

The aim of this chapter is to develop an easy-to-use method that incorporates essential

robustness while relying on fewer model assumptions. We propose a predictive approach

that allows for the extrapolation of failure times at the normal stress level. This approach

enables making inferences at the normal stress level, providing practical applicability and

reliable results without relying on overly complex models.

35
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In this chapter, we introduce a novel approach that integrates a likelihood ratio test-

based method for the analysis of SSALT data within the framework of imprecise proba-

bilities. This approach combines nonparametric predictive inference (NPI) at the normal

stress level with a parametric Arrhenius cumulative exposure model for higher stress lev-

els. The primary innovation of this method lies in the application of the likelihood ratio

test to measure the level of imprecision between two sets of SSALT data. Additionally, we

introduce a new data transformation technique that allows failure times from higher stress

levels to be extrapolated to the normal stress level. Together, these elements contribute

to a novel and comprehensive framework for SSALT analysis.

This chapter is organised as follows. Section 3.2 briefly presents the cumulative ex-

posure model and its characteristic for the analysis in the proposed method. Section

3.3 presents the proposed method which is based on the likelihood ratio test. Section

3.4 presents illustrative examples of the proposed method. Section 3.5 presents simula-

tions studies to evaluate the performance of the proposed method. Section 3.6 briefly

presents the cumulative exposure model with different shape parameters at each strategy

of experimental settings. Section 3.7 presents an illustrative example of the proposed

method with different shape parameters. Section 3.8 presents simulation studies to eval-

uate the performance of the proposed method with different shape parameters. Section

3.9 presents concluding remarks on this chapter.

3.2 The model

In this section, we recall the Weibull cumulative exposure model, which was explained

in Section 2.4. This model is implemented to analyse step stress ALT data, while it is

assumed that failure times follow the Weibull distribution and the Weibull scale param-

eters at different stress levels are linked by the Arrhenius function. First, the probability

distribution function of the model under s− 1 steps of SSALT strategies is given by:

fi(t) =

(
β

θβi

)
(t− (τi − τ∗i ))

β−1 exp

−
 t− τi

θi
+

i∑
j=1

τj − τj−1
θj−1

β
, (3.1)

for τi ≤ t ≤ τi+1, where τ ∗i is given by

τ ∗i =

[
θi
θi−1

(
τi − τi−1 + τ ∗i−1

)]
for τi ≤ t ≤ τi+1, (3.2)
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where τ0 = 0 and τs = ∞, for i = 0, 1, .., s − 1, i represents the stress level, with i = 0

denoting the normal stress level, the shape parameter β > 0 is assumed to be constant

and the same at each stress level, and the scale parameters θi, for stress levels i, are linked

by the Arrhenius function. This function expresses the relationship between the lifetime

and the applied stresses in terms of temperature to link the Weibull scale parameters at

different stress levels, which is given by

θi = θ0 exp

(
γ

ki
− γ

k0

)
, (3.3)

where γ is the accelerating parameter between the normal stress level k0 and the higher

stress level ki in terms of temperature (Kelvin), which links the scale parameters θi at

different stress levels.

This model can be generalized to represent various strategies, where there are a num-

ber of different experiments conducted under different settings.

Suppose that m represents the number of strategies conducted, and the probability

density function is generally expressed for stress levels i = 0, 1, ..., s− 1 as

fmi (t) =

(
β

(θmi )β

)
(t− (τmi − τm∗i ))β−1 exp

−(t− τmi
θmi

+
i∑

j=1

τmj − τmj−1
θmj−1

)β
 , (3.4)

where τm∗i is given by:

τm∗i =

[
θmi
θmi−1

(
τmi − τmi−1 + τm∗i−1

)]
, (3.5)

for τi ≤ t ≤ τi+1, where tmi represents failure times which occurred at strategy m and

stress level si, where m = 0, 1, 2, ..., z and i = 0, 1, ..., s − 1 for tmi ∈ [τmi , τ
m
i+1]. Note

that t00 represents failures times occurring at the normal stress level without acceleration

which follows the Weibull model, and it is assumed in this study that there are failure

data at the normal stress level. The Arrhenius link function is given by

θmi = θ00 exp

(
γ

kmi
− γ

km0
0

)
, (3.6)

where θ10, γ and β are the three parameters need to be estimated.

Suppose that t represents a data set of failure times which occurred at different strate-

gies, where t = {t00:1, ..., t00:n0
0
, t10:1, ..., t

1
0:n1

0
, ..., t20:1, ..., t

2
0:n2

0
, ..., t2i:1, ..., t

2
i:n2

0
, ..., tmi:1, ..., t

m
i:nmi
}.

where:
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• tmi:j denotes the j-th observed failure time at stress level i under strategy m,

• nmi is the number of failure times at stress level i within strategy m,

• n is the total number of failure times across all strategies and stress levels, i.e.,

n =
∑z

m=0

∑s−1
i=0 n

m
i .

Thus, the likelihood function is given as

L(t; θmi , β, γ, k
m
i ) =

z∏
m=0

s−1∏
i=0

nmi∏
ni=1

fi(t
m
i:nmi

; θmi , β, γ, k
m
i ). (3.7)

In this case of the model, it is assumed that the data set is complete, where it can also

involve right censored data.

Different strategies in the analysis refer to the various experimental designs and con-

ditions under which failure times are observed. These strategies involve altering the

experimental settings, such as applying different higher stress levels, to evaluate how

failure times vary under each condition. The goal of incorporating multiple strategies is

to measure the uncertainty and imprecision introduced by the different experimental se-

tups, providing a more comprehensive understanding of how these variables affect failure

behaviour.

3.3 The method

The method proceeds in three key steps. First, imprecision is introduced by applying

the likelihood ratio test to the accelerating parameter, under the null hypothesis that all

failure times originate from the same distribution. This provides a measure of uncertainty

between different SSALT data sets. Second, failure times from different experimental

strategies at higher stress levels are transformed to the normal stress level. Through

this transformation, failure times are transformed as interval values at the normal stress

level, with the assumption that these transformed values are indistinguishable from actual

failure times at the normal stress level. Third, nonparametric predictive inference (NPI)

is applied to the transformed data to provide robust predictive inference. These steps are

explained as follows.



3.3. The method 39

3.3.1 Imprecision using the likelihood ratio test

First, the likelihood ratio test is used to determine the amount of imprecision in the

accelerating parameter γ in the Arrhenius link function. This implementation of the

likelihood ratio test is typically to examine the equality of two independent failure times

data sets, possibly involving right-censored data. This is a common statistical test, that

can be applied to examine the equality of the probability distribution of two independent

failure times data sets, which has been briefly explained in Section 2.6.2.

The likelihood ratio test is applied in a pairwise manner between strategy mi and

strategy m0 to provide imprecision for the parameter γ. This imprecision for γ leads to

lower and upper values for which the null hypothesis is not rejected under the assumption

that all failure times come from the same underlying distribution. The null hypothesis,

denoted as H0 : γ = γ∗, assumes that the parameter γ is equal across strategies, while

the alternative hypothesis H1 : γ 6= γ∗ assumes that there is a difference in γ. Here, γ

represents the accelerating parameter within the Arrhenius model and γ ∈ R+. The test

statistic is defined as

Λ(T ) =
L(t; θ̃00, β, γ

∗, kmi )

L(t; θ̂00, β, γ̂, k
m
i )

(3.8)

where θ̃00 = supθ00∈R+ L(T ; θ00, β, γ
∗, kmi ) and (θ̂00, γ̂) = sup(θ00 ,γ)∈R+×R+ L(T ; θ00, β, γ, k

m
i ).

Under H0, the likelihood function is maximized on a restricted parameter space, where

the parameter θ00 is estimated, and γ∗ is held fixed. The value γ∗ is then compared to the

likelihood maximized over the entire parameter space, yielding a range [γ, γ] where the

null hypothesis is not rejected. In this context, l0 represents the log-likelihood maximized

over the restricted space under H0, and l1 represents the log-likelihood maximized over

the full parameter space. The likelihood ratio test statistic can alternatively be written

as

LR = 2(l1 − l0) (3.9)

This statistic follows a χ2 distribution where the degree of freedom is the difference in

the number of the parameters between the two models.

This concept can be extended to obtain different estimates of the lower and upper

bounds for γ through pairwise comparisons between strategies. Specifically, these pairwise

comparisons are performed between strategy m = 0 and each other strategy m, where

m = 1, 2, . . . , z. Each comparison results in lower and upper bounds, denoted as γ
0,m

and
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γ0,m, respectively. The overall lower bound for γ is determined by taking the minimum

of these pairwise lower bounds, i.e., γ = min(γ
0,m

), and the overall upper bound is

determined by taking the maximum of the upper bounds, i.e., γ = max(γ0,m). This

approach captures the greater imprecision introduced through the pairwise comparisons

between the strategies for the parameter γ, as it determines the overall lower and upper

bounds for γ based on all the comparisons.

For each interval
[
γ
0,m
, γ0,m

]
derived from the pairwise tests, corresponding lower

and upper bounds for the scale parameter θ̂0 and the shape parameter β̂ are obtained.

However, these interval-based bounds for θ̂0 and β̂ are not used in the subsequent steps of

the method. Instead, the method proceeds with the precise estimates of these parameters,

θ̂0 and β̂, which are considered fixed and not affected by the interval estimations of γ.

The scale parameter at the normal stress level is fixed to allow the imprecision in the

model to directly reflect the uncertainty in the acceleration relationship across different

stress levels.

3.3.2 Transformation of SSALT data

In the second step, a new method is introduced for the analysis of SSALT data and

the corresponding statistical inference, enabling the transformation of failure times from

higher stress levels to the normal stress level. First, this method assumes that the cu-

mulative distribution functions (CDF’s) of failure times at higher stress levels can be

equated to those at the normal stress level. By using the inverse function of the CDF,

failure times at higher stress levels are transformed to the normal stress level. Secondly,

the transformed failure times are assumed to be indistinguishable from those occurring

at the normal stress level. Thirdly, when the model fits perfectly, the transformed fail-

ure times should yield equivalent inferences to those from failure times observed at the

normal stress level.

To clarify, let ti denote failures times occurred at stress level si where i = 0, 1, ....., s−1

and ti ∈ [τi, τi+1]. Also, let t→ji denote failures times which occurred at stress level i and

are transformed to lower stress level sj where j = 0, 1, ...., i and t→ji ∈ [τj,∞). These

lower levels include the normal stress level s0 (normal use), which is the primary stress

level to which failure times are typically transformed, as it represents the conditions under

normal operation. Therefore, t→0
i are failures times which occurred at higher stress level
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si and are transformed to the normal stress level s0, where t→0
i ∈ [0,∞).

The first assumption is that the probability that an experimental unit fails at time ti

at stress level si is equated to the probability that the experimental unit fails at time tj

at stress level sj. This allows us to transform the failure times from higher stress levels si

to lower stress levels sj in a manner that Fj(t
→j
i ) = Fi(ti), where t→ji is therefore given by

t→ji = F−1j (Fi(ti)). In particular, t→0
i is given by t→0

i = F−10 (Fi(ti)), when failures times

are transformed from higher stress level si to stress level s0.

The second assumption is that the transformed times of failures from higher stress

levels si to lower stress levels sj should not be distinguishable from original failures

times at the stress level sj. To verify this assumption, the Wilcoxon rank sum test

is suggested as a nonparametric hypothesis test to determine whether the transformed

failure times and the actual failure time samples at the normal stress level come from the

same distribution. To verify this assumption, the Wilcoxon rank sum test is suggested as

a nonparametric hypothesis test to determine whether the transformed failure times and

the actual failure time samples at the normal stress level come from the same distribution.

The null hypothesis states that the two data sets — transformed and actual failure

times — are drawn from the same underlying distribution. If the assumption holds, the

null hypothesis should not be rejected, confirming that the transformation preserves the

same statistical properties and allow for the same statistical inferences as the real data

distribution.

The third assumption is that once the model fits correctly, the transformed failure

times will preserve the same statistical properties and allow for the same statistical infer-

ences as the real data distribution. This implies that if the transformed data is combined

with the actual data at the normal stress level, the overall data set will maintain the

same statistical properties and allow for the same statistical inferences as the real data

distribution, ensuring consistency in the model’s predictions at the normal stress levels.

Furthermore, this concept of transformation can be generalized to transform data from

higher strategies of SSALT experiments to lower strategies, including the normal stress

level s0. Each strategy is designed to independently examine a sample of experimental

units, with these units subjected to stress levels si, for i = 0, 1, 2, . . . , s− 1.

Let tmi denote failure times that occurred under strategy m and stress level si, where

m = 0, 1, 2, . . . , z and i = 0, 1 . . . , s − 1, for tmi ∈ [τmi , τ
m
i+1]. Also, let t

(m)→(m∗,i∗)
i denote
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Figure 3.1: Illustration of the transformation method.

failure times that occurred under strategy m and stress level si, transformed to strategy

m∗ and stress level i∗, where m∗ = 0, 1, 2, . . . , z and i∗ = 0, 1, . . . , s− 1, for t
(m)→(m∗,i∗)
i ∈

[τm
∗

i∗ ,∞). This transformation is achieved such that F(i∗,m∗)(t
(m)→(m∗,i∗)
i ) = F(i,m)(t

m
i ), and

hence t
(m)→(m∗,i∗)
i is given by t

(m)→(m∗,i∗)
i = F−1(i∗,m∗)(F(i,m)(t

m
i )). In particular, t

(m)→(0∗,0∗)
i

is given by t
(m)→(0∗,0∗)
i = F−1(0∗,0∗)(F(i,m)(t

m
i )), when failure times are transformed from a

higher stress level si under strategy m to the normal stress level s0 and the strategy

m = 0 (normal use).

Figure 3.1 illustrates the transformation process where a unit failed under strategy 3

and stress level 2 at time t32 = 13, corresponding to a cumulative probability of F (t32) =

0.50. This failure time is transformed to several other times under different stress levels

and strategies, maintaining the same cumulative probability of failure. For instance,

t32 = 13 is transformed to t
3→(3,0)
2 = 21, t

3→(2,1)
2 = 24, t

3→(2,0)
2 = 31, t

3→(1,1)
2 = 34, and

t
3→(0,0)
2 = 42. These transformed times reflect the equivalent failure probabilities at

different stress levels and strategies. The concept of equated probabilities refers to the

process by which the cumulative distribution function (CDF) values at different stress

levels are equated, ensuring that failure times transformed from one stress level to another

maintain the same probability of failure.

In this section, the method of data transformation is applied when failure times follow

a Weibull distribution. The cumulative distribution function (CDF) of the Weibull cumu-
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lative exposure model (CEM), where failure times occur at stress level i under strategy

m, is given by

F(i,m)(t
m
i ) = 1− exp

−(tmi − τmi
θmi

+
i∑

j=1

τmj − τmj−1
θmj−1

)β
, for τmi ≤ t ≤ τmi+1 (3.10)

where tmi are failures times occurred under strategy m and stress level si, where m =

0, 1, 2, . . . , z and i = 0, 1, . . . , s− 1 for tmi ∈ [τmi , τ
m
i+1] . Also, t

(m)→(m∗,i∗)
i refers to failure

times, which occurred at strategym and stress level si, are transformed to strategym∗ and

stress level i∗ where m∗ = 0, 1, 2, . . . , z and i∗ = 0, 1, . . . , s− 1 for t
(m)→(m∗,i∗)
i ∈ [τm

∗
i∗ ,∞).

This transformation is achieved in a manner that F(i∗,m∗)(t
(m)→(m∗,i∗)
i ) = F(i,m)(t

m
i ), where

t
(m)→(m∗,i∗)
i = F−1(i∗,m∗)(F(i,m)(t

m
i )). Therefore, t

(m)→(m∗,i∗)
i is given by

t
(m)→(m∗,i∗)
i =

[(
tmi −τmi
θmi

+
∑i

j=1

τmj −τmj−1

θmj−1
−
∑i∗

j∗=1

τm
∗

j∗ −τ
m∗
j∗−1

θm
∗

j∗−1

)]
θm

∗
i∗ + τm

∗
i∗ , for τm

∗
i∗ ≤ tm

∗
i∗ ≤ ∞

(3.11)

In particular, t
(m)→(0∗,0∗)
i = F−1(0∗,0∗)(F(i,m)(t

m
i )) are failure times transformed from stress

level si under strategy m to the stress level s0 under m = 0. Therefore, t
(m)→(0∗,0∗)
i is

given by

t
(m)→(0∗,0∗)
i =

[(
tmi −τmi
θmi

+
∑i

j=1

τmj −τmj−1

θmj−1

)]
θ0

∗
0∗ , for 0 ≤ t

(m)→(0∗,0∗)
i ≤ ∞

(3.12)

Moreover, when failure times are transformed from higher stress levels to the stress

level si under a given strategy, let ti denote the failure times occurring at stress level si,

where i = 0, 1, . . . , s−1 and ti ∈ [τi, τi+1]. The transformed failure times from stress level

i to a lower stress level sj, denoted as t→ji , occur at t→ji ∈ [τj,∞), where j = 0, 1, . . . , i.

Specifically, when failure times are transformed from a higher stress level si to the normal

stress level s0, the transformed failure times, t→0
i ∈ [0,∞). The expression for t→0

i is given

by

t→0
i =

[(
ti − τi
θi

+
i∑

j=1

τj − τj−1
θj−1

)]
θ0, for 0 ≤ t→0

i ≤ ∞. (3.13)

This method transforms all failure times occurring at higher stress strategies to the

normal stress level using the interval estimates [γ, γ] obtained from the likelihood ra-

tio test. Each failure time from a higher strategy is transformed to an interval-valued

observation at the normal stress level s0, with the width of the interval reflecting the

imprecision introduced by the comparison between strategies. The interval is wider for
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failure times originating from higher stress levels, capturing the greater imprecision in

these transformations at the normal stress level.

3.3.3 Implementation of NPI

In the third step, nonparametric predictive inference (NPI) is implemented, as explained

in Section 2.7, to provide robust predictive inference for future failure times, accounting

for the imprecision introduced in the parameter γ through the likelihood ratio test. NPI

is particularly suitable for this method because it does not require strong assumptions

about the underlying distribution of failure times, offering a more adaptable approach to

handling the transformed data.

NPI uses the observed data and transformed failure times to calculate lower and upper

survival functions, denoted as S(t) and S(t), respectively. These functions provide lower

and upper bounds for the survival probability of a future unit at a given time t, reflecting

the imprecision in the data due to uncertainties in the parameter γ.

The final NPI lower and upper survival functions are constructed based on the min-

imum of the lower bounds and the maximum of the upper bounds for the transformed

failure times and the original failure times at the normal stress level. The transformed

data are obtained by applying the overall lower bound γ and upper bound γ to the trans-

formation process, ensuring that the imprecision introduced by the pairwise likelihood

ratio tests is reflected in the final survival functions.

This approach accounts for the imprecision across all pairwise likelihood ratio tests

used to estimate γ. As explained earlier, pairwise comparisons are performed between

strategy m0 (the normal stress strategy) and each other strategy m, where m = 1, 2, . . . , z.

Each comparison yields lower and upper bounds for γ, denoted as γ
0,m

and γ0,m, respec-

tively. The overall lower bound for γ is determined by taking the minimum of the pairwise

lower bounds, i.e., γ = min(γ
0,m

), and the overall upper bound by taking the maximum

of the pairwise upper bounds, i.e., γ = max(γ0,m). This approach captures the greater

imprecision introduced by the comparisons, determining the overall bounds for γ based

on all the pairwise comparisons.

Therefore, the NPI lower survival function, S(t), is constructed using the transformed

data from all higher strategies, based on the overall lower bound γ, combined with the

observed failure times at the normal stress level. Similarly, the NPI upper survival func-
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tion, S(t), is constructed using the transformed data from all higher strategies, based on

the overall upper bound γ, alongside the observed failure times at the normal stress level.

In this method, pairwise tests are used for each strategy compared to the normal stress

level, rather than performing a single test across all strategies. The rationale for using

pairwise comparisons lies in the goal of preserving greater imprecision in the interval of

γ. When conducting a single test to compare all strategies simultaneously, the result

is often a more decisive rejection of the null hypothesis, which could lead to a smaller

interval for γ, reducing the measure of uncertainty. This is because the combined data

from all higher stress levels tends to make it easier to reject the assumption that failure

times across different levels come from the same distribution.

By contrast, performing separate pairwise tests between each higher strategy and the

normal stress level ensures that the null hypothesis is harder to reject in each individual

test. This approach allows for the measurement of imprecision between the two strategies,

resulting in a larger interval for γ. The larger interval captures the inherent variability

and uncertainty between different strategies. Therefore, the pairwise method provides

a more flexible and broader way to account for imprecision, which is essential when the

goal is to reflect the differences between strategies with the larger interval for γ.

Each observation from a higher stress strategy is transformed into an interval-valued

observation at the normal stress level, with the width of the interval increasing for ob-

servations from higher stress strategies. If the model is reasonably accurate and correct,

the widest interval for the parameter γ is expected to come from the likelihood ratio

test applied between strategy m1 and the normal stress strategy m0. When the model

fits well, a transformed observation from strategy m1 will typically result in a narrower

interval at the normal stress level compared to an observation from strategy m2, particu-

larly when the intervals are close or overlapping. In overlapping cases, since the interval

from strategy m2 is generally wider, the endpoints of this interval will be further apart,

increasing the probability of rejecting the null hypothesis for γ. Such a scenario is likely

to occur in cases of model misspecification or significant overlap between the data across

different strategies.

Although we employ pairwise tests in our approach, we do not aggregate them into an

overall confidence level statement for the final inference. Instead, we use NPI to derive

the lower and upper predictive survival functions and examine the performance of our
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predictive method independently through simulations. If the model is perfectly accurate

and correct, the lower and upper bounds for γ will form an interval with a confidence

level of at least 1 − α, where α represents the significance level for each pairwise test.

However, we develop our method with the understanding that the assumed model may

not be fully accurate and correct in practice, and this acknowledgment makes traditional

confidence statements less appropriate to apply.

The proposed method is explained by illustrative examples in Section 3.4 and the

performance of this method is investigated via simulation studies presented and discussed

in Section 3.5.

3.4 Illustrative examples

In this section, three examples are presented to demonstrate the proposed method out-

lined in Section 3.3. Example 3.4.1 involves three generated data sets, each with a sample

size of n = 10 across all strategies. These strategies include two accelerating strategies,

along with data generated at the normal stress level. In Example 3.4.2, the sample sizes

are increased to n = 100 to evaluate the impact of larger sample sizes on the results.

It should be noted that while the method does not require equal sample sizes at each

strategy, equal sample sizes are used in all the examples presented in this chapter for

simplicity and consistency. If the sample sizes are unequal when comparing two datasets

using the likelihood ratio test, the method remains valid; however, the level of imprecision

may increase, potentially resulting in wider intervals for the parameter estimates.

Example 3.4.1 This example consists of four cases. In Case 1, the shape parameter

is assumed to be constant and known for each strategy. The Arrhenius link function is

implemented to connect the scale parameters at all stress levels within the strategies,

both for the simulated data and for the analysis. The Arrhenius link function is imple-

mented to connect the scale parameters at all stress levels within the strategies, both for

the simulated data and for the analysis. In Case 2, the shape parameter is considered

unknown and is estimated during the analysis. In Case 3, the Arrhenius link function is

replaced by the Eyring link function. This replacement is done to evaluate the model’s

performance when the assumed link function does not provide a good fit. The focus of

Case 3 is to examine the interval [γ, γ] and its effect on the corresponding NPI lower
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strategies Stress level Data sets Failures times

m0 s0 t0 1755.83, 4149.09, 4799.74, 5095.24, 7454.25,

7563.30, 8245.62, 10385.32, 11166.58, 12411.59

m1 s10 t10 185.63, 222.74

m1 s11 t11 300.66, 320.37, 325.00, 341.08, 342.94

m1 s12 t12 359.43, 360.06, 371.28

m2 s30 t20 14.28, 42.54

m2 s21 t21 101.73, 105.56, 108.97, 120.80, 123.50

m2 s22 t22 138.93, 140.52, 146.53

Table 3.1: A simulated data of Example 3.4.1.

and upper survival functions at the normal stress level. Finally, in Case 4, the shape

parameter is set to 1, assuming to an exponential distribution, to test the method under

an additional case of model misspecification using the Eyring link function. This case

evaluates the method’s robustness and the implications of the exponential assumption on

the model’s performance.

Three data sets are generated, each corresponding to a different strategy. In the first

strategy, the normal temperature level is assumed to be k00 = 300 Kelvin, with the scale

parameter set to θ00 = 7000. This strategy represents the normal use stress level. Ten

observations are generated from the Weibull distribution for this strategy. The Arrhenius

link function is used to link the scale parameters across all strategies, with the accelerating

parameter set to γ = 5000.

In the second strategy, the temperature levels are assumed to be k10 = 350, k11 = 400,

and k12 = 450 Kelvin for stress levels s10, s
1
1, and s12, respectively. The stress level increases

from s10 to s11 at τ 11 = 300, and from s11 to s12 at τ 12 = 350. The corresponding scale

parameters are θ10 = 647.23, θ11 = 108.52, and θ12 = 8.72 for s10, s
1
1, and s12, respectively.

In the third strategy, the temperature levels are assumed to be k20 = 380, k21 = 420, and

k22 = 460 Kelvin for stress levels s20, s
2
1, and s22, respectively. The stress level increases

from s20 to s21 at τ 21 = 100, and from s21 to s22 at τ 22 = 130. The corresponding scale

parameters are θ20 = 209.53, θ21 = 59.84, and θ22 = 21.25 for s20, s
2
1, and s22, respectively.

The generated failure times for each strategy are shown in Table 3.1.
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Cases
Significance Level 0.01 0.05 0.10

strategies γ γ γ γ γ γ

Case 1
m1,m0 4434.32 5674.48 4627.98 5577.03 4723.69 5524.58

m2,m0 4483.03 5538.61 4645.16 5454.20 4725.78 5408.93

Case 2
m1,m0 4446.87 5987.43 4641.56 5747.77 4733.31 5639.55

m2,m0 4419.83 6021.34 4616.62 5648.72 4709.40 5648.72

Case 3
m1,m0 4094.42 5639.92 4289.67 5399.47 4381.69 5290.88

m2,m0 4062.62 5669.93 4260.06 5411.82 4353.14 5295.93

Case 4
m1,m0 3868.23 6352.40 4234.90 6166.11 4417.23 6064.27

m2,m0 3818.89 6074.06 4137.48 5901.83 4296.78 5806.65

Table 3.2: [γ
0,m
, γ0,m] for Example 3.4.1.

To analyse the data sets given in Table 3.1, the Weibull cumulative exposure model is

assumed for the accelerating strategies m1 and m2, and the Weibull model for the normal

stress strategy m0. First, the pairwise likelihood ratio test is applied between m0 and

each of the other strategies m (where m = 1, 2), to determine the intervals [γ
0,m
, γ0,m]

for which the null hypothesis is not rejected. The resulting intervals [γ
0,m
, γ0,m] for three

significance levels are shown in Table 3.2. It should be noted that the transformed data

are based on the overall values [γ, γ], obtained as the minimum and maximum values from

the pairwise tests. All failure times at the higher stress strategies are transformed to the

normal stress level. Consequently, the failure times at the higher stress strategies m1 and

m2 are transformed into interval-valued data at the normal stress level s0 in strategy m0.

Figure 3.2 illustrates some of the data at each strategy being transformed into intervals

at the normal stress level. It shows that the largest interval of the transformed data is

derived from the highest stress level s22. This highlights an essential property of the

proposed method: transformed data from higher stress levels tend to produce larger

intervals at the normal stress level. This is crucial because larger intervals reflect greater

uncertainty at higher stress levels, capturing the increased variability and imprecision in

the data as the stress level rises.

The analysis was performed for four different cases, and the results are summarized

as follows. In Case 1, it is assumed that the shape parameter is constant and known. The

analysis shows that θ̂00 = 7843.90 and γ̂ = 5196.17 for the first and second strategies, while
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for the first and third strategies, θ̂00 = 7865.73 and γ̂ = 5129.62. The scale parameter

from the initial analysis is used to transform all data instead of using the scale parameters

of the corresponding estimation in the test. The estimation of the scale parameter at the

normal stress level is based on the data at the normal stress level and the transformed

data, derived from the pairwise comparison of the first and second strategies, yielding

θ̂ = 7843.90. This confirms an essential result in the proposed method: the transformed

data, when combined with the original stress level data, will result in an equivalent

estimation of the scale parameter if fitted to the Weibull model or Weibull cumulative

exposure model. The estimation of the scale parameter at the normal stress level based

on the transformed data and the original data from the pairwise comparison of the first

and third strategies yields θ̂ = 7865.73. Table 3.3 provides the transformed data for Case

1 in Example 3.4.1, showing the failure times from different strategies transformed using

the lower bound γ, the point estimate γ̂, and the upper bound γ across three significance

levels: 0.01, 0.05, and 0.10. The results, as shown in Table 3.3 and Figure 3.2, clearly

illustrate that the transformed data from higher stress levels (s11 and s12 for m1 and s21

and s22 for m2) produce larger intervals at the normal stress level (m0). This aligns with

the method discussed earlier, where higher stress levels tend to yield wider intervals due

to the increased variability and imprecision in the data.

Case 2 assumes that the constant shape parameter is unknown. The analysis reveals

that θ̂00 = 7892.93, γ̂ = 5168.44, and β̂ = 2.17 for the first and second strategies, and

θ̂00 = 7805.66, γ̂ = 5154.11, and β̂ = 1.82 for the first and third strategies.

Case 3 also assumes the shape parameter is unknown but replaces the Arrhenius

link function with the Eyring link function to assess the method’s performance under

misspecification. The analysis indicates that θ̂00 = 7875.32, γ̂ = 4817.98, and β̂ = 2.16

for the first and second strategies, while for the first and third strategies, θ̂00 = 7780.42,

γ̂ = 4797.22, and β̂ = 1.81.

In Case 4, the shape parameter is set to 1, assuming an exponential model to test the

method under another misspecification. The results show that θ̂00 = 8442.35, γ̂ = 5326.69

for the first and second strategies, and θ̂00 = 7982.48, γ̂ = 5102.45 for the first and third

strategies.

After performing the steps of the analysis, it is important to recall how the NPI sur-

vival functions are derived. The NPI lower survival function S is obtained by combining
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Figure 3.2: This figure illustrates how some failure times from higher stress levels are

transformed into intervals at the normal stress level. The green dots represent the original

failure times observed directly at the normal stress level. In Case 1 of Example 3.4.1.

the data at the normal stress level with the transformed data from the higher stress

strategies, specifically from m1 to m0 and from m2 to m0, using the overall lower bound

γ. The lower points of the transformed data represent the pessimistic case, resulting

in the NPI lower survival function S. Similarly, the NPI upper survival function S is

derived by combining the data at the normal stress level with the transformed data from

the higher stress strategies, again from m1 to m0 and from m2 to m0, but using the overall

upper bound γ. The upper points of the transformed data represent the optimistic case,

which provides the NPI upper survival function S. The difference between the lower and

upper NPI survival functions reflects the amount of imprecision in the data, capturing

the uncertainty associated with the model.

The Table 3.3 also highlights the effect of different significance levels on the transfor-

mation of failure times. For instance, the transformation based on the 0.01 significance

level results in larger intervals for both γ and γ compared to those based on the 0.10

significance
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Data set Failures times γ
0.01

γ
0.05

γ
0.10

γ̂ γ0.10 γ0.05 γ0.01

t10 185.64 1523.07 1672.70 1748.26 2175.40 2734.40 2888.94 3265.30

t10 222.74 1827.47 2007.01 2097.66 2610.17 3280.90 3466.33 3917.90

t11 300.66 2487.77 2734.29 2858.88 3564.83 4492.48 4749.65 5377.21

t11 320.38 3271.79 3658.04 3856.88 5027.90 6675.62 7153.27 8355.29

t11 325.01 3456.01 3875.08 4091.38 5371.67 7188.57 7718.03 9055.03

t11 341.08 4095.25 4628.24 4905.07 6564.54 8968.53 9677.74 11483.13

t11 342.94 4169.40 4715.60 4999.46 6702.91 9175.01 9905.08 11764.79

t12 359.44 5731.23 6640.59 7124.14 10170.08 14975.47 16471.41 20424.00

t12 360.07 5816.78 6747.05 7242.15 10366.62 15310.58 16852.40 20930.99

t12 371.28 7339.20 8641.57 9342.38 13864.29 21274.56 23632.67 29953.82

t20 14.29 317.66 364.70 389.23 531.80 752.46 815.96 977.34

t20 42.54 945.86 1085.94 1158.99 1583.49 2240.55 2429.63 2910.16

t21 101.73 2340.18 2693.52 2878.25 3957.23 5643.13 6131.34 7377.48

t21 105.56 2597.86 3004.32 3217.76 4475.79 6473.70 7058.44 8561.87

t21 108.97 2827.39 3281.16 3520.18 4937.69 7213.51 7884.24 9616.84

t21 120.81 3623.92 4241.89 4569.65 6540.62 9780.88 10750.01 13277.91

t21 123.51 3805.87 4461.35 4809.38 6906.77 10367.32 11404.62 14114.19

t22 138.94 5745.40 6876.06 7487.14 11306.32 18021.94 20117.57 25744.04

t22 140.52 6011.22 7210.01 7859.02 11929.09 19126.98 21380.89 27446.21

t22 146.53 7021.43 8479.14 9272.27 14295.81 23326.44 26181.84 33914.93

Table 3.3: Failure times represent the original data, while γ
0.01

, γ
0.05

, γ
0.10

, γ̂, γ0.10, γ0.05,

and γ0.01 are the transformed data based on the estimated value γ̂ and its lower and

upper bounds at significance levels 0.01, 0.05, and 0.10. Example 3.4.1.

level. This observation holds consistently across all the failure times and strategies, con-

firming the expected outcome: smaller significance levels yield wider intervals, reflecting

greater uncertainty in the pairwise comparison of strategies. As a result, the transformed

failure times are more spread out, especially at the 0.01 level, compared to the narrower

intervals observed at the 0.10 level. For example, for the failure time t11 = 341.08, the

transformed values range from 4095.25 to 11483.13 at the 0.01 significance level, which

produces the widest interval. In contrast, the 0.10 significance level results in a narrower

range (4905.07 to 8968.53).

This pattern is consistent across all failure times and strategies, reinforcing the con-
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clusion that lower significance levels preserve greater imprecision in the intervals, which

is critical for reflecting the inherent variability and uncertainty in the transformed data.

Additionally, the results in Table 3.3 support the robustness of the proposed method in

capturing the effect of higher stress levels on the transformed failure times, particularly

when preserving imprecision in the estimation of γ.

The analysis across the four cases reveals important insights regarding the perfor-

mance of the proposed method, as shown in the results from Figure 3.3 and Table 3.2. In

Case 1, where the shape parameter is constant and known, the transformed data produces

relatively narrower intervals for γ compared to the other cases. The survival functions

for Case 1, as illustrated in Figure 3.3a, show less imprecision between the lower and

upper bounds, suggesting that the model fits well, and there is less uncertainty in the

transformed data. This result aligns with the expectation that a known shape parameter

provides more precision in estimating the scale parameter at the normal stress level.

In Case 2, where the shape parameter is estimated rather than known, the intervals for

γ widen slightly, reflecting the added uncertainty from estimating both the shape and scale

parameters. As seen in Figure 3.3b, the wider intervals between the NPI lower and upper

survival functions indicate greater imprecision in the transformed data. This additional

imprecision is expected, given the increased complexity of the estimation process when

both parameters are unknown. The pairwise comparison of strategies ensures that this

uncertainty is captured effectively.

Case 3, which introduces the Eyring link function to demonstrate model misspecifi-

cation, results in even wider intervals for γ. The survival functions in Figure 3.3c show

substantial divergence between the lower and upper NPI survival functions, highlighting

the impact of misspecification. The method captures this misspecification through the

increased imprecision in the intervals, demonstrating its robustness in scenarios where

the assumed link function does not fit well.

Case 4, in which an exponential Eyring cumulative exposure model is used to further

examine model misspecification, shows the wider intervals between the lower and upper

NPI survival functions, as illustrated in Figure 3.3d. The high imprecision observed in this

case underscores the method’s sensitivity to misspecification. The difference between the

NPI lower and upper survival functions suggests that the exponential assumption poorly

fits the data, emphasizing the need for further model evaluation. In
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(d) Case 4

Figure 3.3: NPI lower and upper survival functions for all four cases in Example 3.4.1,

with red, blue, and black lines representing significance levels 0.01, 0.05, and 0.10, re-

spectively.

cases where such high imprecision is observed, it is advisable to either investigate the

model assumptions in greater detail or collect more data to improve estimation accuracy.

This analysis demonstrates that while the proposed method, particularly through

the use of NPI, effectively captures imprecision via pairwise comparisons, the model fit

and how well the assumptions align with reality significantly influence the width of the

intervals. Therefore, when the model shows considerable imprecision, particularly under
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misspecification, it is essential to re-evaluate the model or gather additional data to ensure

robust and reliable predictions.

Example 3.4.2 The previous example applied the methods to a data set with n = 10

observations per strategy. In this case, a larger data set is used to assess the impact of

the data quantity on the resulting inference. A total of 100 failure times for each of the

three strategies were simulated, yielding 300 failure times in the study. The experimen-

tal conditions remain consistent with those described in Example 3.4.1. The resulting

intervals [γ
0,m
, γ0,m] for three significance levels are presented in Table 3.4.

The analysis of the larger data set, with n = 100 at each strategy, reveals several key

differences compared to the results from the smaller data set (n = 10). In particular,

the larger sample size provides more precise estimates of the parameters and narrows the

intervals for γ, which directly impacts the inference drawn from the model.

In Case 1, with n = 100, the shape parameter is still assumed to be constant and

known. The results show that θ̂00 = 6830.57 and γ̂ = 4901.79 for the first and second

strategies, and θ̂00 = 6741.04 and γ̂ = 5033.41 for the first and third strategies. Compared

to the smaller data set, the larger sample size leads to narrower intervals for γ, which

demonstrates greater precision in estimating the scale parameter at the normal stress

level. This result is consistent with the expectation that increased data quantity reduces

uncertainty. The NPI lower and upper survival functions, as shown in Figure 3.4a, are

closer together in this case, indicating reduced imprecision in the predictions compared

to the smaller sample.

In Case 2, where the shape parameter is unknown and estimated, the larger data

set leads to improved parameter estimation. The analysis results in θ̂00 = 6847.35, γ̂ =

4895.15, and β̂ = 2.04 for the first and second strategies, and θ̂00 = 6694.25, γ̂ = 5044.70,

and β̂ = 1.90 for the first and third strategies. Compared to the smaller data set, the

intervals for γ are narrower, indicating that the increased data has enhanced the precision

of the estimates. Figure 3.4b shows that the NPI lower and upper survival functions are

much closer than in the previous example, reflecting the greater precision provided by

the larger sample.

In Case 3, where the Eyring link function is used to introduce model misspecification,

the larger data set again results in narrower intervals for γ. The results show θ̂00 = 6829.40,

γ̂ = 4543.31, and β̂ = 2.03 for the first and second strategies, and θ̂00 = 6679.91, γ̂ =
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Cases
Significance Level 0.01 0.05 0.10

strategies γ γ γ γ γ γ

Case 1
m1,m0 4673.92 5124.74 4728.96 5071.64 4756.96 5044.43

m2,m0 4831.47 5233.29 4880.12 5185.53 4904.91 5161.11

Case 2
m1,m0 4672.39 5124.61 4725.86 5067.90 4753.06 5039.41

m2,m0 4831.57 5265.34 4882.74 5210.88 4908.79 5183.51

Case 3
m1,m0 4320.87 4773.86 4374.42 4717.03 4401.66 4688.49

m2,m0 4477.47 4912.81 4528.80 4858.12 4554.93 4830.65

Case 4
m1,m0 4612.38 5478.31 4717.50 5375.81 4771.05 5323.33

m2,m0 4579.79 5399.41 4678.21 5301.26 4728.46 5251.13

Table 3.4: [γ
0,m
, γ0,m] for Example 3.4.2.

4691.24, and β̂ = 1.89 for the first and third strategies. While the model misspecification

still leads to increased imprecision compared to Case 1 and 2, the larger data set overcomes

the extent of this imprecision. The NPI lower and upper survival functions, as shown in

Figure 3.4c, demonstrate less imprecision compared to the smaller data set, confirming

that the increased sample size reduces the impact of misspecification.

In Case 4, where the shape parameter is set to 1 (assuming an exponential Eyring

cumulative exposure model), the results are θ̂00 = 7426.50 and γ̂ = 5048.43 for the first

and second strategies, and θ̂020 = 6770.28 and γ̂ = 4990.53 for the first and third strategies.

The exponential model, which was tested under another misspecification, produces a high

level of imprecision, but this imprecision is reduced compared to the smaller data set. The

NPI lower and upper survival functions, as shown in Figure 3.4d, still show significant

imprecision, though they are narrower compared to the results from the previous example.

The larger sample size significantly reduces the imprecision in the estimates across all

cases. The narrower intervals for γ across all significance levels, as shown in Table 3.4,

illustrate the improved precision in parameter estimation with increased data. The NPI

survival functions across all cases demonstrate less imprecision between the lower and

upper bounds, which reflects the reduced uncertainty in the predictions. This result

aligns with the expectation that larger data sets yield more reliable and precise inferences,

especially in scenarios with model misspecification, as seen in Case 3 and 4.

In conclusion, the comparison of the two examples demonstrates that increasing the
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sample size has a substantial effect on reducing imprecision and improving the accuracy
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Figure 3.4: NPI lower and upper survival functions for all four cases in Example 3.4.2,

with red, blue, and black lines representing significance levels 0.01, 0.05, and 0.10, re-

spectively.

of parameter estimates, as well as narrowing the NPI survival function intervals. This

further emphasizes the importance of sufficient data quantity when applying the proposed

method to achieve robust and reliable predictions.
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3.5 Simulation studies

In this section, simulation studies are performed to assess the performance of the proposed

method outlined in Section 3.3. The simulation is carried out using three strategies

of SSALT data, following the experimental setup described in Example 3.4.1. In the

first strategy, the normal stress level is defined by assuming θ00 = 7000 and a normal

temperature of k00 = 300. In the second strategy, three temperature stress levels are

introduced: k10 = 350, k11 = 400, and k12 = 450, with the stress levels increasing at

τ 11 = 300 and τ 12 = 350. The third strategy also considers three temperature stress levels:

k20 = 380, k21 = 420, and k22 = 460, with the stress levels increasing at τ 21 = 100 and

τ 22 = 130. Additionally, the shape parameter is set to β = 2, and the Arrhenius link

function parameter γ between all stress levels under higher strategies is assumed to be

γ = 5000.

This simulation was repeated 10,000 times using data generated from the proposed

model, with varying sample sizes of n = 20, n = 50, and n = 100 for each strategy, and

significance levels set at 0.01, 0.05, and 0.10. The method’s performance is assessed by

simulating a future observation at the normal stress level m0 and examining how well

this future observation mixes with the transformed data from the higher stress strategies,

as well as with the data at the normal stress level. The assessment focuses on whether

the future observation falls within the quartile range of the NPI lower and upper survival

functions. The performance is evaluated by determining whether the future observation

surpasses the quartiles of the NPI lower and upper survival functions. The quartiles

provide a useful measure for evaluating the overall performance, though other quantiles

could also be used in a similar manner for further analysis.

First, the proportions are calculated to determine whether the future observation ex-

ceeds the quartiles of the NPI lower and upper survival functions in the right proportions.

For a good performance, the first, second, and third quartiles of the lower NPI survival

functions are expected to be greater than 0.75, 0.50, and 0.25, respectively. Similarly,

the first, second, and third quartiles of the upper NPI survival functions should be less

than 0.75, 0.50, and 0.25, respectively.

The simulation studies were conducted across three distinct cases to evaluate the

performance of the proposed method under various conditions. In Case 1, we consider
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the scenario previously discussed in Example 3.4.1, where the shape parameter is constant

and known. Table 3.5 and Figures 3.5–3.7 illustrate the outcomes of this simulation for

different significance levels (α = 0.01, 0.05, 0.10) and sample sizes (n = 10, 50, 100). In

these figures, the first, second, and third quartiles are denoted as qL0.25, qU0.25, qL0.50,

qU0.50, qL0.75, and qU0.75, representing the NPI lower and upper survival functions,

respectively. These quartiles provide insight into how well the future observations align

with the predicted intervals, revealing several key outcomes from the simulation.

The overall results demonstrate satisfactory performance across all settings, with the

proportions of future observations consistently meeting the expected thresholds of 0.75,

0.50, and 0.25 for the lower NPI survival function quartiles, and remaining below these

thresholds for the upper NPI survival function quartiles. The differences in proportions

between the lower and upper survival function quartiles serve as indicators of the level of

imprecision in predictive inferences, with larger differences reflecting greater imprecision

in the predictions.

A larger sample size generally reduces imprecision, leading to more consistent propor-

tions between the quartiles. Specifically, for a larger sample size (n = 100), the quartile

proportions are closer to their expected values compared to smaller sample sizes (n = 20),

indicating a less imprecision in the predictive inferences. This reduction in imprecision

for larger samples is evident in Figure 3.7, where the quartiles become narrower and more

closely aligned with the theoretical expectations.

Data from higher stress level strategies, such as m2, exhibit higher imprecision com-

pared to lower stress level strategies like m1m0. Here, m0 and m1 refer to two distinct

data sets obtained from specific experimental strategies, each corresponding to unique

combinations of stress levels and step durations designed to simulate accelerated life

conditions. The larger differences in proportions for higher stress levels indicate that

predictive inferences are less precise in these scenarios, likely due to greater variability

inherent at higher stress conditions. Additionally, the overall results for the lower and

upper γ parameters show a higher degree of imprecision than those derived from individ-

ual strategies m1m0 and m2m0. This trend underscores the impact of stress levels on the

predictive performance of the method, with higher stress conditions generally leading to

increased imprecision in the predictive inferences.

The influence of significance level (α) on predictive precision is less pronounced than
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that of sample size or stress level, though it remains notable. Higher significance levels

(α = 0.10) result in slightly narrower intervals of γ, reflecting a marginally narrower level

of imprecision. Conversely, lower significance levels (α = 0.01) produce larger intervals of

γ with a slightly higher level of imprecision in the NPI lower and upper survival functions.

However, the effect of significance level is mitigated with larger sample sizes, where the

impact on predictive imprecision is comparatively smaller. This finding suggests that

while the choice of α can influence interval width of γ, sufficient sample size plays a more

substantial role in enhancing imprecision.

The results of the simulation studies illustrate that the proposed method provides

robust predictive inference when model assumptions are correct, especially with larger

sample sizes. The figures and tables consistently show that increasing the sample size

reduces the imprecision between the NPI lower and upper survival functions and brings

the quartile proportions closer to their theoretical values. This reduction in imprecision

is particularly clear in the largest sample sizes, where the quartiles show the narrow-

est intervals and the most consistent alignment between the lower and upper survival

functions.

This chapter presents a predictive inference method designed to be robust against

model misspecification by incorporating imprecision in the link function and distributional

assumptions across stress levels. The approach is based on minimal assumptions, aiming

to improve inference under varying experimental conditions.

In Case 2, robustness is examined under conditions of model misspecification. Specif-

ically, this scenario investigates how a simple model might retain robustness when the

shape parameter differs between the sampling and analysis models. In this case, the

shape parameter β is set to 3 in the sampling model but is assumed to be 2 in the

analysis. Table 3.6 and Figures A.1–A.3 present the predictive performance outcomes of

the proposed method under these conditions. The simulation follows the same setup as

in Case 1, with data generated according to the model described in Section 3.2, where

β = 3, while the analysis incorrectly assumes β = 2 for each strategy.

Both Case 1 and Case 2 assume a known and constant shape parameter; however, Case

2 introduces additional imprecision in the proportions of future observations exceeding

the specified quartiles, as depicted in Figures A.1–A.3. This imprecision is particularly

noticeable in the NPI lower and upper survival functions for Case 2, where the difference in
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proportions remains relatively large, even with larger sample sizes (n), as shown in Table

3.6. Typically, increased sample sizes reduce imprecision, but in Case 2, the imprecision

remains relatively high compared to Case 1, suggesting that model misspecification affects

the size of imprecision in predictive inferences.

These findings indicate that, while the proposed method demonstrates robustness,

Case 2 shows a slight increase in imprecision due to the misspecification of the shape

parameter. Despite this added imprecision, the method maintains reasonable robustness,

even under the conditions of model misspecification presented in Case 2.

In Case 3, robustness is again evaluated under model misspecification, specifically by

examining the effect of using an incorrect link function. In this case, the Eyring link

function is assumed in the sampling model, while the Arrhenius link function is used in

the analysis. This setup aims to explore the robustness of the method when the link

function does not provide a good fit, a situation commonly encountered in practice.

As discussed in Section 2.5, the Eyring link function serves as an alternative to the

Arrhenius link function for modeling the accelerating parameter concerning temperature.

In this simulation, we used a scenario similar to Case 1, where the model assumptions were

entirely correct, except for replacing the link function with the Eyring link function in the

sampling model. Table 3.7 and Figures A.3-A.5 present the outcomes of this simulation.

When compared with cases where the model assumptions are fully correct (as shown in

Table 3.5 and Table 3.6), the results reveal only a slight increase in imprecision due to

the misspecification of the link function.

The similarity of these results is also apparent when comparing Figures 3.5-3.7, Fig-

ures A.1-A.3, and Figures A.4-A.6 for the quartiles qL0.25, qU0.25, qL0.50, qU0.50,

qL0.75, and qU0.75 of the NPI lower and upper survival functions for 1−q = 0.75, 0.50, 0.25.

These results confirm that the proposed approach retains robustness in predictive infer-

ence, even when subjected to model misspecification in the link function.

The main findings from the simulation studies demonstrate that the generated future

observations at the normal stress level successfully exceeded the quartiles in the expected

proportions, confirming the robustness of the proposed predictive inference method. This

approach offers good performance with reasonable imprecision when model assumptions

hold, particularly within intervals defined by γ and γ.
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m1m0 n = 10 n = 50 n = 100

α 1− q qU qL qU qL qU qL

0.01 0.75 0.6254 0.8406 0.7081 0.7906 0.7268 0.7824

0.50 0.3263 0.6795 0.4301 0.5761 0.4533 0.5598

0.25 0.0931 0.4734 0.1692 0.3488 0.1919 0.3182

0.05 0.75 0.6396 0.8170 0.7163 0.7809 0.7327 0.7774

0.50 0.3547 0.6367 0.4440 0.5588 0.465 0.5453

0.25 0.1216 0.4276 0.1861 0.3254 0.2038 0.3028

0.10 0.75 0.6474 0.8062 0.7213 0.7756 0.7362 0.7737

0.50 0.3706 0.6145 0.4520 0.5495 0.4706 0.5377

0.25 0.1364 0.4013 0.1958 0.3128 0.2119 0.2931

m2m0 n = 10 n = 50 n = 100

α 1− q qU qL qU qL qU qL

0.01 0.75 0.6064 0.8530 0.6989 0.7965 0.7218 0.7884

0.50 0.3121 0.6929 0.4213 0.5817 0.4444 0.5641

0.25 0.0835 0.4736 0.1681 0.3525 0.1917 0.3193

0.05 0.75 0.6266 0.8321 0.7082 0.7857 0.7294 0.7816

0.50 0.3424 0.6483 0.4375 0.5619 0.4599 0.5515

0.25 0.1151 0.4315 0.1854 0.3307 0.2048 0.3050

0.10 0.75 0.6370 0.8192 0.7146 0.7801 0.7319 0.7774

0.50 0.3616 0.6264 0.4479 0.5513 0.4660 0.5434

0.25 0.1327 0.4102 0.1953 0.3194 0.2114 0.2962

γ and γ n = 10 n = 50 n = 100

α 1− q qU qL qU qL qU qL

0.01 0.75 0.5853 0.8862 0.6823 0.8148 0.7100 0.7973

0.50 0.2319 0.7460 0.3822 0.6156 0.4164 0.5897

0.25 0.0289 0.5478 0.1252 0.3952 0.1594 0.3512

0.05 0.75 0.6115 0.8625 0.6957 0.8020 0.7199 0.7901

0.50 0.2747 0.6954 0.4059 0.5909 0.4346 0.5717

0.25 0.0516 0.4851 0.1467 0.3647 0.1776 0.3317

0.10 0.75 0.6251 0.8508 0.7031 0.7954 0.7240 0.7867

0.50 0.2971 0.6686 0.4175 0.5804 0.4430 0.5615

0.25 0.0675 0.4571 0.1582 0.3508 0.187 0 0.3207

Table 3.5: Proportion of runs with future observation greater than the quartiles, Case 1.
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qL.25 qU.25 qL.50 qU.50 qL.75 qU.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8508

  0.6251
  0.6686

  0.2971

  0.4571

  0.0675
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Figure 3.5: Proportion of runs with future observation greater than the quartiles, Case

1, n = 10.
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Figure 3.6: Proportion of runs with future observation greater than the quartiles, Case

1, n = 50.
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Figure 3.7: Proportion of runs with future observation greater than the quartiles, Case

1, n = 100.
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m1m0 n = 10 n = 50 n = 100

α 1− q qU qL qU qL qU qL

0.01 0.75 0.6212 0.8387 0.7881 0.7051 0.7244 0.7805

0.50 0.3237 0.6767 0.5746 0.4264 0.4492 0.5585

0.25 0.0909 0.4745 0.1664 0.3466 0.1899 0.3148

0.05 0.75 0.6352 0.8159 0.7142 0.7776 0.7303 0.7750

0.50 0.3505 0.6348 0.4396 0.5574 0.4604 0.5430

0.25 0.1184 0.4245 0.1835 0.322 0.2030 0.2990

0.10 0.75 0.6442 0.805 0.7176 0.7728 0.7328 0.7715

0.50 0.3670 0.6106 0.4488 0.5482 0.4678 0.5353

0.25 0.1344 0.4001 0.1944 0.3106 0.2098 0.2905

m2m0 n = 10 n = 50 n = 100

α 1− q qU qL qU qL qU qL

0.01 0.75 0.5999 0.8537 0.6936 0.7954 0.7178 0.7872

0.50 0.3081 0.6914 0.4191 0.5810 0.4407 0.5641

0.50 0.0814 0.4743 0.1657 0.351 0.1890 0.3174

0.05 0.75 0.6216 0.8314 0.7043 0.7843 0.7263 0.7800

0.50 0.3396 0.6478 0.4346 0.5612 0.4560 0.5503

0.25 0.1136 0.4309 0.1835 0.3280 0.2037 0.3032

0.10 0.75 0.6327 0.8182 0.7098 0.7776 0.7302 0.7752

0.50 0.3584 0.625 0.4438 0.5506 0.4640 0.5420

0.25 0.1312 0.4082 0.1939 0.3177 0.2105 0.2940

γ and γ n = 10 n = 50 n = 100

α 1− q qU qL qU qL qU qL

0.01 0.75 0.5755 0.8860 0.6763 0.8124 0.7053 0.7956

0.50 0.2258 0.7465 0.3763 0.6136 0.4109 0.5887

0.25 0.0278 0.546 0.1250 0.3908 0.1581 0.3470

0.05 0.75 0.6024 0.8608 0.6911 0.7991 0.7150 0.7882

0.50 0.2683 0.6949 0.4005 0.5900 0.4294 0.5705

0.25 0.0504 0.484 0.1454 0.3616 0.1756 0.3270

0.10 0.75 0.6171 0.8492 0.6980 0.7928 0.7204 0.7847

0.50 0.2911 0.6679 0.4125 0.5775 0.4390 0.5603

0.25 0.0658 0.4503 0.1567 0.3459 0.1850 0.3167

Table 3.6: Proportion of runs with future observation greater than the quartiles, Case 2,

β = 3.
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m1m0 n = 10 n = 50 n = 100

α 1− q qU qL qU qL qU qL

0.01 0.75 0.5643 0.8721 0.6584 0.7932 0.6886 0.7790

0.50 0.2252 0.7285 0.3534 0.5784 0.3838 0.5465

0.25 0.0228 0.5163 0.0974 0.3476 0.1228 0.3019

0.05 0.75 0.5836 0.8386 0.6742 0.7778 0.6976 0.7690

0.50 0.2618 0.6688 0.3782 0.549 0.3987 0.5271

0.25 0.0479 0.4567 0.1195 0.3130 0.1406 0.2772

0.10 0.75 0.5956 0.82 0.6823 0.7687 0.7020 0.7641

0.50 0.2876 0.6355 0.3924 0.5349 0.4090 0.5184

0.25 0.0647 0.4225 0.1303 0.2970 0.1501 0.2678

m2m0 n = 10 n = 50 n = 100

α 1− q qU qL qU qL qU qL

0.01 0.75 0.5494 0.8937 0.6570 0.8100 0.6893 0.7929

0.50 0.2152 0.7557 0.3554 0.5987 0.3866 0.5697

0.25 0.0197 0.5246 0.1061 0.3702 0.1349 0.3233

0.05 0.75 0.5736 0.8571 0.6727 0.7911 0.6999 0.7808

0.50 0.2610 0.6938 0.3831 0.5692 0.4054 0.5495

0.25 0.0468 0.4749 0.1315 0.3377 0.1549 0.3011

0.10 0.75 0.5863 0.8401 0.6809 0.7826 0.705 0.7741

0.50 0.2862 0.6619 0.3970 0.5544 0.4160 0.5368

0.25 0.0673 0.4434 0.1435 0.3211 0.1637 0.2874

γ and γ n = 10 n = 50 n = 100

α 1− q qU qL qU qL qU qL

0.01 0.75 0.4814 0.9180 0.6065 0.8241 0.6473 0.7988

0.50 0.0954 0.8057 0.2644 0.6249 0.3176 0.5856

0.25 0.0013 0.6138 0.0462 0.4039 0.0779 0.3440

0.05 0.75 0.5183 0.8874 0.6304 0.8049 0.6646 0.7865

0.50 0.1466 0.7398 0.3050 0.5887 0.3457 0.5601

0.25 0.0074 0.5336 0.0705 0.3613 0.0982 0.3144

0.10 0.75 0.5432 0.8704 0.6405 0.7942 0.6721 0.7791

0.50 0.1803 0.7032 0.3258 0.5715 0.3596 0.5452

0.25 0.0156 0.4884 0.0848 0.3383 0.1104 0.2986

Table 3.7: Proportion of runs with future observation greater than the quartiles, Case 3.



3.6. The model with different shape parameters 67

However, under model misspecification, particularly in cases of significant imprecision

from the true model, the method exhibits increased imprecision, indicating either a po-

tential model fit issue or the need for additional data to enhance predictive accuracy. As

sample size increases across different strategies, the imprecision level generally becomes

smaller, emphasizing the role of larger sample sizes in achieving more precise predictions.

Higher significance levels in the likelihood test also contribute to narrower intervals for

γ and γ, further reducing imprecision. These results suggest that while the proposed

method retains robustness under minor misspecifications, substantial imprecision neces-

sitate for model reassessment or supplementary data to maintain less imprecise predictive

inferences.

3.6 The model with different shape parameters

In this section, the model described in Section 2.4 is extended to allow different shape

parameters at each stress level. Here, βi represents the shape parameter at stress level

si for i = 0, 1, 2, . . . , s− 1. The probability density function (PDF) of the failure time at

stress level si is given by

fi(t) =

(
βi

θβii

)
tβi−1 exp

[
−
(
t

θi

)βi]
, for t ≥ 0,

and the cumulative distribution function (CDF) is

Fi(t) = 1− exp

[
−
(
t

θi

)βi]
, for t ≥ 0.

Consider an s− 1 step SSALT experiment under the assumption of the cumulative expo-

sure model, where the lifetime of experimental units follows a Weibull distribution.

At the initial stress level s0, the cumulative distribution function (CDF) of the lifetime

of experimental units is given by F0(t) for t ∈ (τ0, τ1). Failures occur according to this

distribution during this time interval. When the stress level increases to stress level s1,

the cumulative distribution function (CDF) for the lifetime of experimental units is given

by F1(t − h1) for t ∈ (τ1, τ2), where h1 is the shift parameter. This shift parameter h1

is determined by solving the equation F1(τ1 − h1) = F0(τ1), ensuring continuity between

the stress levels. Consequently, h1 is obtained by solving the equation



3.6. The model with different shape parameters 68

1− exp

[
−
(
τ1 − h1
θ1

)β1]
= 1− exp

[
−
(
τ1
θ0

)β0]

leading to h1 = −(( τ1
θ0

)β0)
1
β1 θ1 + τ1. Then, the CDF at stress level s1 becomes:

F1(t) = F1(t− h1) = 1− exp

−(t− τ1
θ1

+

(
τ1
θ0

)β0
β1

)β1
 , for τ1 ≤ t ≤ τ2.

Similarly, at the stress level s2, the CDF is F2(t − h2) for t ∈ (τ2, τ3), where h2 is

the solution of F2(τ2 − h2) = F1(τ2 − h1). Consequently, h2 is obtained by solving the

equation

1 - exp

[
−
(
τ2 − h2
θ2

)β2]
= 1 - exp

−(t− τ1
θ1

+

(
τ1
θ0

)β0
β1

)β1
 .

Therefore, h2 = −(( τ2−τ1
θ1

+ ( τ1
θ0

)
β0
β1 )

β1
β2 )θ2 + τ2. Then, the CDF of s2 becomes

F2(t) = F2(t− h2) = 1− exp

−
 t−τ2

θ2
+

( τ2−τ1
θ1

+
(
τ1
θ0

)β0
β1

)β1
β2

β2
, for τ2 ≤ t ≤ τ3

The shifting parameter is hi = (τi − τ ∗i ), where τ ∗i has the following general expression:

τ ∗1 =

(
τ1
θ0

)β0
β1

θ1,

τ ∗2 =

(
τ2 − τ1
θ1

+

(
τ1
θ0

)β0
β1

)β1
β2

θ2,

τ ∗3 =

τ3 − τ2
θ2

+

(
τ2 − τ1
θ1

+

(
τ1
θ0

)β0
β1

)β1
β2


β2
β3

θ3,

where τ ∗0 = 0 and τ ∗i is given by the following expression:

τ ∗i = θi

(
τi − τi−1 + τ ∗i−1

θi−1

)βi−1
βi

for τi ≤ t ≤ τi+1 (3.14)

In addition, the CDF of the failure time for an s− 1 SSALT experiment with a Weibull
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distribution is given by

F (t) =



1− exp

[
−
(
t
θ0

)β0]
if τ0 ≤ t ≤ τ1

1− exp

−( t−τ1
θ1

+
(
τ1
θ0

)β0
β1

)β1
 if τ1 ≤ t ≤ τ2

1− exp

−
 t−τ2

θ2
+

(
τ2−τ1
θ1

+
(
τ1
θ0

)β0
β1

)β1
β2

β2
 if τ2 ≤ t ≤ τ3

1− exp

−
 t−τ3

θ3
+

 τ3−τ2
θ2

+

(
τ2−τ1
θ1

+
(
τ1
θ0

)β0
β1

)β1
β2


β2
β3


β3 if τ3 ≤ t ≤ ∞

(3.15)

Alternatively, the cumulative distribution function for the failure time in an (s − 1)

step SSALT experiment, assuming a Weibull distribution, can be expressed as:

F (t) = 1− exp

[
−
(
t− τi + τ ∗i

θi

)βi]
, for τi ≤ t ≤ τi+1. (3.16)

The corresponding probability density function is given by:

f(t) =

(
βi

θβii

)
(t− (τi − τ ∗i ))βi−1 exp

[
−
(
t− τi + τ ∗i

θi

)βi]
, for τi ≤ t ≤ τi+1. (3.17)

3.6.1 Data transformation with different shape parameters

In this section, the transformation method is applied to the model with varying shape

parameters, as described in Section 3.3.2. Specifically, failure times, denoted by t
(m)→(0,0)
i ,

are transformed from a higher stress level si under strategy m to the normal stress level

s0 under the lowest strategy m = 0. This transformation to the normal stress level is

typically essential for analyzing failure times under standard conditions. The transformed

time t
(m)→(0,0)
i is therefore given by

t
(m)→(1∗,0∗)
i =

(tmi − τmi + τ ∗mi
θmi

)βmi
β10

 θ00, for 0 ≤ t
(m)→(0,0)
i ≤ ∞, (3.18)

where τm∗i is given by the following expression:

τm∗i =

θi(τ (m)
i − τ (m)

i−1 + τm∗i−1
θm∗i−1

)βm∗
i−1
βm∗
i

 , for τmi ≤ t ≤ τmi+1. (3.19)
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When failure times are transformed from a higher stress level to stress level si, the

transformed time t→0
i is given by

t→0
i =

[(
ti − τi + τ ∗i

θi

) βi
β0

]
θ0, for 0 ≤ t→0

i ≤ ∞. (3.20)

When transforming failure times from a higher stress level, t
(1)→(0,0)
0 is given by

t
(1)→(0,0)
0 =

(
t10
θ10

)β10
β00
θ00, for 0 ≤ t

(1)→(0,0)
0 ≤ ∞. (3.21)

The failure times t
(1)→(0,0)
1 are transformed as follows:

t
1→(0,0)
1 =

t11 − τ 11
θ11

+

(
τ 11
θ10

)β10
β11


β11
β00

θ00, for 0 ≤ t
1→(0,0)
1 ≤ ∞. (3.22)

Similarly, the failure times t
1→(0,0)
2 are transformed as:

t
1→(0,0)
2 =

t12 − τ 12θ12
+

τ 12 − τ 11
θ11

+

(
τ 11
θ10

)β10
β11


β11
β12


β12
β10

θ00, for 0 ≤ t
1→(0,0)
2 ≤ ∞. (3.23)

3.7 Illustrative examples with different shape param-

eters

This section presents an example to illustrate the proposed method outlined in Section 3.3,

demonstrating the application of varying shape parameters across different stress levels.

Example 3.7.1 This example consists of four cases to demonstrate the impact of differ-

ent assumptions on shape parameters and link functions. In Case 1, shape parameters

are assumed to be constant and known for each strategy, with the Arrhenius link func-

tion applied to connect scale parameters across all stress levels in both the simulated

data and the analysis. Case 2 considers constant but unknown shape parameters, which

are estimated during the analysis. Case 3, the Arrhenius link function is replaced by

the Eyring link function to examine model performance when the assumed link function

does not fit well. This change allows investigation of the resulting interval [γ, γ] and the
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corresponding lower and upper NPI survival functions at the normal stress level. In Case

4, all shape parameters are set to 1, assuming an exponential model, with the Eyring link

function employed to further explore outcomes under misspecification.

Three data sets are simulated under three different experimental strategies. In the

first strategy, the experiment is set with k00 = 300, θ0 = 7000, γ = 5000, and β0
0 = 2. This

strategy represents the normal use stress level, and twenty observations are generated from

the Weibull distribution. The Arrhenius link function is used to connect scale parameters

across all strategies, with the accelerating parameter set to γ = 5000.

Strategies Stress level Data sets Failures times

m0 s00 t00 1997.16, 2726.58, 2752.79, 4841.75, 5629.64

5799.14, 6302.59, 7921.43, 7951.54, 9040.98

m2 s10 t10 231.63

m2 s11 t11 304.48, 307.45, 317.95, 318.85, 348.18

m2 s12 t12 360.79, 367.25, 372.93, 381.58

m3 s20 t20 26.64, 90.29

m3 s21 t21 100.18, 108.72, 116.36

m3 s22 t22 130.035, 132.35, 132.82, 135.75, 145.07

Table 3.8: Simulated data of Example 3.7.1

In the second strategy, the accelerated experiment is set with increased temperature

levels k10 = 350, k11 = 400, and k12 = 450 Kelvin for stress levels s10, s
1
1, and s12, respectively.

The stress level increases from s10 to s11 at τ 11 = 300, and from s11 to s12 at τ 12 = 350. The

shape parameters for this strategy are set as β1
0 = 1.9, β1

1 = 1.7, and β1
2 = 1.5.

In the third strategy, the accelerated experiment uses temperature levels k20 = 380,

k21 = 420, and k22 = 460 Kelvin for stress levels s20, s
2
1, and s22, respectively. The stress

level increases from s20 to s21 at τ 21 = 100 and from s21 to s22 at τ 22 = 130. The shape

parameters are set to β2
0 = 1.95, β2

1 = 1.60, and β2
2 = 1.40.

The generated failure times for each strategy are shown in Table 3.8. For this example

(Example 3.7.1), three data sets are generated, each with a sample size of n = 10 across

all strategies, as in Example 3.4.1. These strategies include two accelerating strategies
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Cases
Significance Level 0.01 0.05 0.10

strategies γ γ γ γ γ γ

Case 1
m1,m0 3941.86 5541.91 4155.23 5360.95 4260.66 5268.53

m2,m0 3965.32 5298.97 4146.49 5151.56 4235.71 5075.87

Case 2
m1,m0 2370.54 6502.28 2372.55 6226.90 3064.92 6051.10

m2,m0 1410.29 5935.39 1653.10 5834.07 1855.89 5756.98

Case 3
m1,m0 2013.82 6164.18 2034.14 5882.83 2758.95 5693.86

m2,m0 1011.98 5614.96 1249.00 5532.66 1385.33 5452.11

Case 4
m1,m0 3766.95 6330.52 4134.82 6136.62 4317.68 6028.17

m2,m0 3780.71 6068.67 4100.31 5894.94 4260.47 5798.39

Table 3.9: [γ
0,m
, γ0,m] for Example 3.7.1.

alongside data collected at the normal stress level.

To analyze the data sets in Table 3.8, the Weibull cumulative exposure model is

assumed for the accelerating strategies m1 and m2, while the Weibull model is used

for the normal stress strategy m0. A pairwise likelihood ratio test is applied between

m0 and each of mi (where i = 1, 2), identifying intervals [γ
0,m
, γ0,m] within which the

null hypothesis is not rejected. The intervals [γ
0,m
, γ0,m] for three significance levels are

summarized in Table 3.9.

The transformed data points rely on overall values [γ, γ], determined as the minimum

and maximum bounds from the pairwise tests. All failure times at the elevated stress

strategies are transformed to the normal stress level, resulting in interval-valued failure

times at m0 for both m1 and m2.

The NPI lower survival function is derived by the data at the normal stress level

combined with the transformed data from the higher strategies m1 to m0 and m2 to m0

using γ.The lower points of the transformed data represent the pessimistic case which

leads to the lower survival function S. Similarly, The NPI upper survival function is

derived by the data at the normal stress level combined with the transformed data from

the higher strategies m1 to m0 and m2 to m0 using γ. The upper points of the transformed

data represent the optimistic case which leads to the upper survival function S.

In Case 1, the shape parameters are assumed to be constant and known. The analysis

results indicate that θ̂10 = 6056.00 and γ̂1 = 4780.22 for the comparison between the first
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Data set Failures times γ
0.01

γ
0.05

γ
0.10

γ̂ γ0.10 γ0.05 γ0.01

t10 231.63 1622.22 1779.56 1852.86 243.35 2956.34 3082.57 3345.54

t11 304.49 2196.48 2418.01 2521.63 530.92 4111.63 4296.87 4684.88

t11 307.46 2276.83 2511.68 2621.77 667.39 4328.64 4529.41 4951.12

t11 317.96 2557.22 2838.31 2970.88 1117.91 5081.80 5336.12 5873.91

t11 318.86 2580.99 2865.98 3000.44 1154.84 5145.38 5404.20 5951.74

t11 348.18 3336.58 3744.75 3938.98 2276.84 7152.05 7551.71 8404.10

t12 360.80 4140.47 4711.34 4986.36 3333.19 9793.54 10420.07 11774.04

t12 367.25 4571.73 5229.41 5547.48 3879.16 11198.43 11944.38 13561.94

t12 372.94 4940.61 5671.91 6026.44 4339.52 12388.65 13234.92 15073.68

t12 381.59 5485.06 6324.12 6731.99 5010.61 14130.50 15122.50 17282.39

t20 26.65 452.04 519.98 552.71 744.76 1120.46 1193.60 1350.93

t20 90.29 1485.67 1708.95 1816.53 2447.71 3682.49 3922.87 4439.94

t20 100.18 1649.66 1897.78 2017.33 3094.10 4091.82 4359.16 4934.25

t21 108.72 2036.27 2351.18 2503.36 16805.24 5178.02 5526.38 6278.06

t21 116.37 2367.13 2738.93 2918.87 26738.08 6103.24 6520.28 7421.55

t22 130.04 2933.80 3402.71 3630.05 42574.10 7682.96 8216.91 9372.71

t22 132.35 3138.49 3646.15 3892.59 46575.89 8312.24 8897.36 10165.68

t22 132.83 3179.73 3695.17 3945.46 47377.77 8438.68 9034.05 10324.92

t22 135.76 3429.41 3991.86 4265.32 52205.16 9201.94 9859.03 11285.55

t22 145.07 4177.01 4879.21 5221.48 66448.72 11469.96 12309.11 14135.41

Table 3.10: Tranformation of Case 1, Example 3.7.1.

and second strategies, and θ̂20 = 5671.22 and γ̂2 = 4671.58 for the comparison between

the first and third strategies. The scale parameters from the initial analysis are applied

to transform all data, rather than using the scale parameters estimated during the test.

Table 3.10 displays the transformed data using γ̂, γ, and γ across different significance

levels. As noted, the minimum and maximum values of γ and γ across all strategies are

used to transform the failure times at higher stress levels for Case 1.The NPI lower and

upper survival function is presented in Figure 3.8a.

In Case 2, the shape parameters are assumed to be constant but unknown. The

analysis results indicate that θ̂10 = 6265.02, γ̂1 = 5133.40, with shape parameters β̂0
0 =

2.66, β̂1
0 = 3.88, β̂1

1 = 0.70, and β̂1
2 = 1.20 for the first and second strategies. For

the first and third strategies, the estimates are θ̂10 = 6999.99, γ̂2 = 5000.00, with shape
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parameters β̂0
0 = 2.68, β̂2

0 = 1.74, β̂2
1 = 0.22, and β̂2

2 = 2.70. The scale parameter from the

initial analysis is used to transform all data, rather than relying on the scale parameters

estimated during the pairwise tests. The NPI lower and upper survival functions for Case

2 are shown in Figure 3.8b.

In Case 3, the shape parameters are assumed to be constant but unknown, and the

Arrhenius link function is replaced by the Eyring link function to introduce model mis-

specification. This setup is used to examine the performance of the proposed method

under conditions where the assumed link function does not fit well.

The analysis yields the following results: for the comparison between the first and

second strategies, θ̂10 = 6129.22, γ̂1 = 4613.37, with shape parameters β̂0
0 = 2.62, β̂1

0 =

3.55, β̂1
1 = 0.66, and β̂1

2 = 1.37. For the first and third strategies, the estimates are

θ̂20 = 6999.99, γ̂2 = 4999.99, with shape parameters β̂0
0 = 2.68, β̂2

0 = 2.08, β̂2
1 = 0.19,

and β̂2
2 = 1.90. The NPI lower and upper survival functions for Case 3 are shown in

Figure 3.8c.

In Case 4, an additional level of model misspecification is introduced by setting all

shape parameters to 1, effectively assuming an exponential model, while using the Eyring

link function. This case is intended to assess the performance of the proposed method un-

der more pronounced misspecification conditions, specifically with a cumulative exposure

model that differs significantly from the true underlying distribution.

The results of the analysis for the first and second strategies are θ̂0 = 7814.97 and

γ̂1 = 5228.79. For the first and third strategies, the estimates are θ̂0 = 7790.73 and

γ̂2 = 5074.71.

The outcomes of Case 4 highlight increased imprecision due to the exponential as-

sumption, especially in the transformed data at the normal stress level, where intervals

become wider. The NPI lower and upper survival functions for this case, illustrated in

Figure 3.8d, reflect the added variability from this model misspecification.

To compare the four cases in Example 3.7.1, consider the resulting intervals for γ and

the corresponding NPI lower and upper survival functions. In Case 1, where the shape

parameters are constant and known, the intervals for γ are relatively narrower, as shown

in Table 3.9. This results in less imprecision between the NPI lower and upper survival

functions, reflecting a good model fit. In Case 2, where the shape parameters
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(d) Case 4

Figure 3.8: NPI lower and upper survival functions for all four cases in Example 3.7.1,

with red, blue, and black lines representing significance levels 0.01, 0.05, and 0.10, re-

spectively.

are unknown and estimated, the intervals widen, increasing the imprecision in the NPI

survival functions due to the additional uncertainty in parameter estimation. Case 3,

which introduces the Eyring link function to demonstrate model misspecification, results

in even wider intervals for γ and increased imprecision in the survival functions, indicating

the effect of an incorrect model assumption. Finally, Case 4 assumes an exponential

model, also a form of misspecification. This case yields the widest intervals and the
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most substantial imprecision in the NPI survival functions, highlighting the sensitivity

of the method to misspecification. Overall, the width of the intervals and the degree of

imprecision increase from Case 1 through Case 4, illustrating the method’s robustness in

capturing uncertainty under different model assumptions and parameter settings.

3.8 Simulation studies with different shape parame-

ters

In this section, simulation studies are performed to evaluate the performance of the

proposed method, which incorporates distinct shape parameters at each stress level. The

simulations utilize three SSALT (Step-Stress Accelerated Life Testing) data strategies,

following the experimental settings outlined in Example 3.7.1. Three separate data sets

are generated to represent each strategy.

In the first strategy, the experiment is set at a normal-use stress level with k00 = 300

Kelvin and a scale parameter θ00 = 7000. Ten observations are generated from the Weibull

distribution under these conditions. The Arrhenius link function is used to link the scale

parameters in all strategies, with an acceleration parameter γ = 5000.

In the second strategy, an accelerated experiment is conducted with increased tem-

perature levels: k10 = 350, k11 = 400, and k12 = 450 Kelvin for stress levels s10, s
1
1, and s12,

respectively. The stress level transitions from s10 to s11 at time τ 11 = 300, and from s11 to s12

at time τ 12 = 350. The corresponding scale parameters for this strategy are θ10 = 647.23,

θ11 = 108.52, and θ12 = 8.72.

In the third strategy, the experiment further accelerates with temperature levels k20 =

380, k21 = 420, and k22 = 460 Kelvin for stress levels s20, s
2
1, and s22, respectively. The

stress level increases from s20 to s21 at time τ 21 = 100, and from s21 to s22 at time τ 22 = 130.

The corresponding scale parameters assumed in this strategy are θ20 = 209.53, θ21 = 59.84,

and θ22 = 21.25.

This simulation was repeated 10,000 times, generating data from the proposed model

with varying sample sizes at each strategy, specifically n = 20, 50, and 100, and using

significance levels of 0.01, 0.05, and 0.10. The performance of the simulation is assessed by

simulating a future observation at the baseline stress level, m0. This assessment evaluates

whether the future observation at the normal stress level is indistinguishable from the



3.8. Simulation studies with different shape parameters 77

transformed data at higher stress levels and from the data at the normal stress level.

Performance is determined by examining if the future observation surpasses the quartiles

of NPI lower and upper survival functions for 1− q = 0.75, 0.50, and 0.25.

To quantify performance, the proportions of instances where the future observation

exceeded the quartiles of NPI lower and upper survival functions are calculated. Ideal

performance is indicated when the first, second, and third quartiles of the lower NPI

survival functions exceed 0.75, 0.50, and 0.25, respectively. Similarly, the upper NPI

survival function quartiles are expected to remain below 0.75, 0.50, and 0.25.

In Case 1, the scenario explained in Example 3.7.1 is considered, where the shape

parameters are assumed to be constant and known. Table 3.11 and Figures A.7–A.9

present the simulation outcomes for varying significance levels (α = 0.01, 0.05, 0.10) and

sample sizes (n = 20, 50, 100). In these figures, the first, second, and third quartiles are

denoted as qL0.25, qU0.25, qL0.50, qU0.50, qL0.75, and qU0.75, representing the NPI

lower and upper survival functions, respectively. These quartiles offer insight into the

alignment of future observations with the predicted intervals, providing key performance

indicators. The results demonstrate that the imprecision between the lower and upper

survival functions reduces, as shown in Figure A.9. Overall, these findings indicate that

the proposed method achieves suitable predictive inference when the model assumptions

hold true.

The results show satisfactory performance across all settings, as the proportions of

future observations consistently reach the expected thresholds of 0.75, 0.50, and 0.25

for the lower NPI survival function quartiles, while remaining below these levels for the

upper quartiles. Variations in proportions between the lower and upper survival function

quartiles indicate levels of imprecision in the predictive inferences, with larger differences

pointing to greater imprecision in predictions.

In general, a larger sample size reduces imprecision, resulting in more stable quartile

proportions. For instance, with a larger sample size (n = 100), quartile proportions more

closely match the expected values than those with smaller samples (n = 20), indicating re-

duced imprecision in predictive inferences. This improvement is illustrated in Figure A.9,

where the quartiles narrow and align more closely with theoretical expectations.

Data from strategies at higher stress levels, such as m2, show greater imprecision

compared to those at lower stress levels like m1 and m0. The larger differences in quartile
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proportions observed at higher stress levels suggest that predictive inferences are less

accurate in these cases, likely due to the increased variability inherent at elevated stress

levels. Furthermore, the overall results for the lower and upper γ parameters reveal

greater imprecision than those obtained from individual strategies m1 and m2. This

pattern highlights the influence of stress levels on predictive accuracy, with higher stress

levels generally contributing to increased imprecision in predictive inferences.

The effect of the significance level (α) on predictive precision is less substantial than

that of sample size or stress level, though it remains noticeable. Higher significance levels

(α = 0.10) lead to slightly narrower intervals for γ, indicating a marginal reduction in

imprecision. In contrast, lower significance levels (α = 0.01) yield larger intervals for γ,

corresponding with a slight increase in imprecision for the NPI lower and upper survival

functions. Notably, the influence of α is minimized when sample sizes increase, as larger

samples tend to reduce the impact of α on predictive imprecision. This suggests that

while α selection affects the interval width for γ, a sufficient sample size is more crucial

in reducing imprecision.

The simulation study results demonstrate that the proposed method achieves robust

predictive inference under correct model assumptions, particularly with larger sample

sizes. The figures and tables consistently reveal that increasing sample size reduces impre-

cision between the NPI lower and upper survival functions, bringing quartile proportions

closer to their theoretical expectations. This reduction in imprecision is especially appar-

ent with the largest sample sizes, where the quartile intervals narrow and the alignment

between the lower and upper survival functions is most consistent.

This chapter aims to establish a straightforward predictive inference approach, founded

on minimal assumptions, where imprecision in the link function and statistical model

across different stress levels enhances robustness to key model assumptions and potential

misspecification.

In Case 2, robustness is evaluated under conditions of model misspecification. Specif-

ically, this case examines how a simplified model maintains robustness when the shape

parameter differs between the sampling and analysis models. Here, the shape parameter

β is set to 3 in the sampling model but is assumed to be 2 in the analysis. Table 3.12 and

Figures A.10–A.12 display the predictive performance outcomes of the proposed method

in this scenario.



3.8. Simulation studies with different shape parameters 79

Following the setup in Case 1, data are generated according to the model outlined in

Section 3.6, where the shape parameters are specified as β1
0 = 2.5, β1

1 = 2.3, β1
2 = 2.1, β2

0 =

2.4, β2
1 = 2.2, β2

2 = 2.0, and β0
0 = 3. In the analysis, however, these values are incorrectly

assumed as β1
0 = 2.0, β1

1 = 1.8, β1
2 = 1.6, β2

0 = 1.9, β2
1 = 1.7, β2

2 = 1.5, and β0
0 = 2.5. In

both Case 1 and Case 2, the shape parameter is considered constant and known, though

the introduced misspecification in Case 2 results in a small additional imprecision in the

quartiles, as seen in Figures A.10–A.12. This imprecision becomes more pronounced in the

NPI lower and upper survival functions as sample sizes increase, as reflected in Table 3.12

when compared to Table 3.6. The simulation results confirm that the proposed method

retains a level of robustness even under these misspecified conditions. These findings

suggest that, although the proposed method exhibits robustness, Case 2 introduces a

modest increase in imprecision resulting from the shape parameter’s misspecification.

Nevertheless, the method upholds a satisfactory level of robustness, even with the model

misspecifications introduced in Case 2.

In Case 3, robustness is assessed once more under model misspecification, this time

by examining the impact of using an incorrect link function. Specifically, the Eyring link

function is applied in the sampling model, while the Arrhenius link function is assumed in

the analysis. This configuration tests the robustness of the proposed method in scenarios

where the link function may not provide a perfect fit—a situation frequently encountered

in practice.

As noted in Section 2.5, the Eyring link function offers an alternative to the Arrhenius

function for modeling the acceleration parameter with respect to temperature. Here, a

similar setup to Case 1 is applied, where model assumptions are fully appropriate, except

for replacing the sampling model’s link function with the Eyring function. Table 3.13

presents the simulation results, which, when compared to the fully aligned model assump-

tions shown in Table 3.11, reveal a similar pattern with slight increases in imprecision,

as observed in Tables 3.12 and 3.13. Figures A.7-A.9, A.10-A.12, and A.13-A.15 further

illustrate this consistency, showing the NPI lower and upper survival function quartiles

for 1− q values of 0.75, 0.50, and 0.25. These findings confirm that the proposed method

maintains robustness in predictive inference, even when model assumptions around the

link function are misspecified.
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m1m0 n = 10 n = 50 n = 100

α 1− q qU qL qU qL qU qL

0.01 0.75 0.6052 0.8593 0.7223 0.8093 0.7183 0.7923

0.50 0.3071 0.6993 0.4392 0.6002 0.4622 0.5572

0.25 0.0840 0.4812 0.1801 0.3531 0.2211 0.3151

0.05 0.75 0.6212 0.8313 0.7303 0.7973 0.7243 0.7803

0.50 0.3441 0.6593 0.4592 0.5822 0.4752 0.5462

0.25 0.1120 0.4352 0.1991 0.3281 0.2281 0.2951

0.10 0.75 0.6323 0.8223 0.7353 0.7913 0.7333 0.7763

0.50 0.3591 0.6273 0.4672 0.5712 0.4792 0.5402

0.25 0.1271 0.4022 0.2091 0.3121 0.2371 0.2941

m2m0 n = 10 n = 50 n = 100

α 1− q qU qL qU qL qU qL

0.01 0.75 0.5822 0.8643 0.6973 0.8033 0.6843 0.7813

0.50 0.2731 0.7083 0.4092 0.5832 0.4062 0.5392

0.25 0.0780 0.4692 0.1651 0.3201 0.1891 0.2811

0.05 0.75 0.6102 0.8373 0.7053 0.7923 0.6963 0.7703

0.50 0.3141 0.6593 0.4292 0.5662 0.4222 0.5262

0.25 0.1090 0.4212 0.1781 0.2991 0.2001 0.2731

0.10 0.75 0.6283 0.8233 0.7123 0.7893 0.7003 0.7653

0.50 0.3441 0.6343 0.4382 0.5572 0.4322 0.5192

0.25 0.1261 0.3982 0.1831 0.2861 0.2081 0.2701

γ and γ n = 10 n = 50 n = 100

α 1− q qU qL qU qL qU qL

0.01 0.75 0.5062 0.9034 0.6733 0.8493 0.6733 0.8133

0.50 0.1551 0.7723 0.3391 0.6693 0.3872 0.6102

0.25 0.0180 0.5582 0.1160 0.4242 0.1591 0.3701

0.05 0.75 0.5422 0.8784 0.6833 0.8353 0.6813 0.8043

0.50 0.2171 0.7173 0.3741 0.6493 0.3962 0.5912

0.25 0.0340 0.5032 0.1281 0.3952 0.1731 0.3501

0.10 0.75 0.5592 0.8713 0.6973 0.8253 0.6843 0.8043

0.50 0.2461 0.6913 0.3912 0.6333 0.4062 0.5842

0.25 0.0520 0.4672 0.1421 0.3822 0.1801 0.3411

Table 3.11: Proportion of runs with future observation greater than the quartiles. Case

1.
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m1m0 n = 10 n = 50 n = 100

α 1− q qU qL qU qL qU qL

0.01 0.75 0.6413 0.8633 0.7203 0.8323 0.7393 0.8093

0.50 0.3521 0.7153 0.4672 0.6413 0.4862 0.5892

0.25 0.1170 0.5062 0.2011 0.4042 0.2341 0.3611

0.05 0.75 0.6623 0.8483 0.7273 0.8183 0.7423 0.8003

0.50 0.3862 0.6803 0.4752 0.6142 0.4882 0.5762

0.25 0.1521 0.4732 0.2271 0.3782 0.2421 0.3461

0.10 0.75 0.6723 0.8333 0.7333 0.8143 0.7473 0.7963

0.50 0.4032 0.6533 0.4822 0.6042 0.4932 0.5712

0.25 0.1621 0.4352 0.2551 0.3651 0.2471 0.3371

m2m0 n = 10 n = 50 n = 100

α 1− q qU qL qU qL qU qL

0.01 0.75 0.6032 0.8643 0.7093 0.8043 0.6963 0.7813

0.50 0.2961 0.7033 0.4262 0.5892 0.4252 0.5482

0.25 0.0960 0.4822 0.1711 0.4262 0.2061 0.3061

0.05 0.75 0.6273 0.8343 0.7193 0.7943 0.7053 0.7723

0.50 0.3381 0.6633 0.4452 0.5702 0.4382 0.5312

0.25 0.1190 0.4382 0.1941 0.3141 0.2191 0.2871

0.10 0.75 0.6423 0.8253 0.7253 0.7933 0.7083 0.7683

0.50 0.3581 0.6433 0.4502 0.5592 0.4462 0.5232

0.25 0.1411 0.4122 0.2001 0.3041 0.2211 0.2831

γ and γ n = 10 n = 50 n = 100

α 1− q qU qL qU qL qU qL

0.01 0.75 0.5362 0.9164 0.7083 0.8683 0.6973 0.8373

0.50 0.1911 0.7963 0.4022 0.7103 0.4192 0.6593

0.25 0.0390 0.5952 0.1511 0.4802 0.1891 0.4282

0.05 0.75 0.5702 0.8954 0.7173 0.8553 0.7053 0.8283

0.50 0.2401 0.7493 0.4292 0.6833 0.4382 0.6413

0.25 0.0570 0.5472 0.1731 0.4532 0.2031 0.4122

0.10 0.75 0.5872 0.8824 0.7263 0.8483 0.7083 0.8243

0.50 0.2691 0.7273 0.4432 0.6743 0.4462 0.6313

0.25 0.0700 0.5132 0.1811 0.4412 0.2111 0.4002

Table 3.12: Proportion of runs with future observation greater than the quartiles. Case

2.
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m1m0 n = 10 n = 50 n = 100

α 1− q qU qL qU qL qU qL

0.01 0.75 0.5692 0.8433 0.6694 0.7715 0.6672 0.7615

0.50 0.2871 0.6923 0.4122 0.5763 0.4141 0.5272

0.25 0.0780 0.4962 0.1861 0.3682 0.2171 0.3231

0.05 0.75 0.5892 0.8093 0.6764 0.7615 0.6712 0.7515

0.50 0.3151 0.6453 0.4303 0.5553 0.4291 0.5182

0.25 0.1220 0.4512 0.2051 0.3342 0.2291 0.3031

0.10 0.75 0.5972 0.7893 0.6824 0.7585 0.6742 0.7506

0.50 0.3391 0.6172 0.4383 0.5493 0.4341 0.5132

0.25 0.1461 0.4232 0.2131 0.3182 0.2331 0.2931

m2m0 n = 10 n = 50 n = 100

α 1− q qU qL qU qL qU qL

0.01 0.75 0.5432 0.8453 0.6534 0.7735 0.6422 0.7713

0.50 0.2581 0.6993 0.3702 0.5653 0.3801 0.5182

0.25 0.0760 0.4842 0.1731 0.3362 0.1931 0.2991

0.05 0.75 0.5682 0.8113 0.6664 0.7615 0.6552 0.7596

0.50 0.2891 0.6483 0.4022 0.5413 0.3911 0.5052

0.25 0.1130 0.4442 0.1871 0.3162 0.2091 0.2881

0.10 0.75 0.5832 0.7963 0.6714 0.7575 0.6622 0.7521

0.50 0.3171 0.6313 0.4152 0.5323 0.4021 0.5004

0.25 0.1371 0.4222 0.1921 0.3082 0.2151 0.2801

γ and γ n = 10 n = 50 n = 100

α 1− q qU qL qU qL qU qL

0.01 0.75 0.4722 0.8904 0.6154 0.8025 0.6212 0.7923

0.50 0.1511 0.7623 0.3182 0.6394 0.3601 0.5692

0.25 0.0160 0.5752 0.1191 0.4263 0.1650 0.3671

0.05 0.75 0.5112 0.8583 0.6374 0.7905 0.6342 0.7804

0.50 0.2091 0.7123 0.3502 0.6044 0.3741 0.5482

0.25 0.0410 0.5202 0.1391 0.3962 0.1791 0.3441

0.10 0.75 0.5292 0.8413 0.6434 0.7825 0.6392 0.7804

0.50 0.2371 0.6833 0.3642 0.5894 0.3801 0.5422

0.25 0.0560 0.4872 0.1551 0.3842 0.1861 0.3301

Table 3.13: Proportion of runs with future observation greater than the quartiles. case

3.
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The primary results from the simulation studies indicate that future observations at

the normal stress level consistently exceeded the quartile thresholds in expected propor-

tions, underscoring the robustness of the proposed predictive inference method. This

approach demonstrates strong performance with reasonable levels of imprecision when

model assumptions hold, especially within the intervals bounded by γ and γ. However,

under conditions of model misspecification—particularly with substantial deviations from

the true model—imprecision increases, indicating either a need for model reassessment

or the collection of additional data to improve predictive accuracy. Consistent with the

findings in Section 3.5, the level of imprecision generally diminishes with larger sample

sizes across various strategies, affirming the importance of ample sample sizes for achiev-

ing more precise predictions. Additionally, higher significance levels in the likelihood test

lead to narrower intervals for γ and γ, further reducing imprecision. These results im-

ply that the proposed method maintains robustness under minor misspecifications, while

significant imprecision may necessitate model refinement or supplemental data to ensure

accuracy in predictive inferences.

3.9 Concluding remarks

In this chapter, a new robust statistical method for step-stress accelerated life testing

is presented, utilizing the Arrhenius-Weibull cumulative exposure model. This method

was developed based on the likelihood ratio test, applied here to compare failure times

across various stress level strategies. Imprecision in the acceleration parameter within

the Arrhenius link function is introduced through pairwise likelihood ratio tests between

different stress level strategies. This imprecision facilitates the transformation of failure

times into interval values at the normal stress level, under the assumption that these

transformed failure times are indistinguishable from those occurring at the normal stress

level. The transformation is achieved through an inversion between the cumulative distri-

bution functions of two strategies, enhancing robustness by providing an interval estimate

for the acceleration parameter instead of a single value. Specifically, the pairwise likeli-

hood ratio tests are used to compare two datasets from different stress levels, obtaining

an interval for the acceleration parameter within which the null hypothesis—stating that

all data originate from the same underlying distribution—cannot be rejected. This ap-
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proach allows for a more robust inference by acknowledging and quantifying potential

imprecision in the acceleration parameter.

Nonparametric predictive inference (NPI) is subsequently applied to the transformed

data, enabling robust predictive inference. Increased imprecision may arise when data

from higher stress levels are used or when the assumed model does not adequately fit

the data, especially under model misspecification. An investigation into scenarios with

differing shape parameters at each strategy also revealed a slight increase in imprecision

for the acceleration parameter.

This method assumes the availability of data at the normal stress level; however, in

practical applications, such data may not always be accessible. In such cases, performing

tests between data from higher stress levels is recommended to estimate an interval

for the acceleration parameter. Additionally, while complete datasets are assumed here

for simplicity, these methods are readily extendable to right-censored data. Tests can

incorporate right-censored data, which are then transformed to the normal stress level;

in the final stage, the NPI method for right-censored data, as outlined in Section 2.7, can

be applied. As a result, the overall methodology remains unchanged.



Chapter 4

Robust statistical inference using

the log-rank test

4.1 Introduction

In Chapter 4, a novel nonparametric approach to step-stress accelerated life testing

(SSALT) data analysis is introduced, expanding upon the robust framework established

in Chapter 3 with a central enhancement: the elimination of specific assumptions re-

garding the failure time distribution. While Chapter 3’s method relied on the Arrhenius-

Weibull cumulative exposure model, the following approach provides a fully nonparamet-

ric methodology, removing the need for predefined failure time distributions. Instead,

this approach only utilizes a parametric link function to relate stress levels, omitting any

additional assumptions about the distribution of failure times. This adaptability makes

the proposed method particularly beneficial in scenarios where the underlying failure time

distribution is unknown, highly variable, or complex to define accurately.

The motivation for this method arises from practical limitations observed in tradi-

tional SSALT modeling. Often, complete information about failure mechanisms and the

influence of stress is unavailable, making parametric assumptions difficult to justify. In

response, Chapter 4 seeks to create a framework that enhances predictive robustness

by overcoming these limitations. The introduction of imprecision via the log-rank test,

rather than relying on a predefined statistical model, allows for an interval-based pre-

diction that accounts for the variability and uncertainty inherent in SSALT data across

different stress levels. This shift toward a nonparametric predictive inference framework

85
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offers flexibility, making it applicable to a wider range of SSALT applications where the

robustness of inference is essential, particularly when exact model assumptions cannot

be met.

This new methodology thus extends the utility of SSALT data analysis by accom-

modating real-world complexity and variability, enhancing its robustness under model

misspecification and practical constraints. By enabling data transformation and analysis

without a predetermined lifetime distribution model, Chapter 4 supports more adaptive

inference with fewer assumptions, enhancing the applicability of SSALT in contexts where

traditional models may not fully capture the underlying process.

The key development in this method is the introduction of imprecision through a pair-

wise log-rank test on the accelerating parameter under the null hypothesis that all failure

times originate from the same distribution. This imprecision supports transforming fail-

ure times from higher stress levels into interval values at the normal stress level, assuming

these transformed values to be indistinguishable from failure times at this baseline level.

To achieve this, the method uses the inversion of the Arrhenius link function, enabling

data transformation from higher stress levels to the normal stress level. An interval es-

timate of the accelerating parameter is then obtained, identifying the range where the

transformed data and baseline data distributions are statistically similar (i.e., the null

hypothesis is not rejected). In the final stage, nonparametric predictive inference (NPI)

is applied to the interval-transformed data, providing robust predictive inferences while

minimizing reliance on strict model assumptions.

This chapter is organized as follows. Section 4.2 introduces the proposed method,

developed based on the log-rank test for analyzing SSALT data. Section 4.3 provides an

illustrative example to demonstrate the application of this method. Section 4.4 presents

simulation studies conducted to assess the method’s performance under various condi-

tions. Finally, Section 4.5 summarizes the key findings of this chapter.

4.2 Imprecise statistical inference based on the log-

rank test

In this section, a new imprecise nonparametric statistical method is introduced for step-

stress accelerated life testing (SSALT) data. Unlike the previous method, which relies



4.2. Imprecise statistical inference based on the log-rank test 87

on explicit models for each strategy, this approach does not assume a specific statistical

distribution for the failure times at different stress levels. Previous approaches often use

models such as the Weibull cumulative exposure model with the Arrhenius link function

for accelerated failure times, and a Weibull distribution at the normal stress level. In

contrast, this method employs only a parametric link function, specifically the Arrhenius

function, to connect the effects of different stress levels. The Arrhenius link function

characterizes the relationship between failure times and applied stress strategies, repre-

sented through temperature, by linking the scale parameters across the varying stress

conditions in the experiment.

This method consists of three steps. First, it transforms failure times arising from

different experimental strategies at higher stress levels to the normal stress level. Second,

it introduces imprecision based on the log-rank test applied to the accelerating parameter,

under the null hypothesis that all failure times are drawn from the same distribution. This

imprecision enables the transformation of failure times into interval values at the normal

stress level, where these transformed failure times are assumed to be indistinguishable

from those occurring at the normal stress level. Third, nonparametric predictive inference

is applied to the transformed data to provide robust predictive inference. This method

results in greater imprecision when data from higher stress levels are used or in cases of

model misspecification.

While the log-rank test in the second step is used to assess whether the failure times

across different strategies plausibly arise from the same underlying distribution, it does

not assume or enforce any specific parametric form for the data. Instead, it is applied

to identify and quantify potential imprecision in the transformation process. This use of

the log-rank test is consistent with the overall nonparametric nature of the method. The

imprecision resulting from this step reflects the uncertainty in assuming distributional

similarity across stress levels, and it is used in the transformation of failure times to

intervals at the normal stress level. The subsequent inference is based on nonparametric

predictive inference (NPI), which does not rely on any parametric assumptions about the

form of the lifetime distribution.

In this method, the Arrhenius link function is used to analyze step-stress acceler-

ated life testing data, as outlined in Section 3.3. The first step of the method involves

transforming failure times generated from various experimental strategies at higher stress
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levels to those at the normal stress level. This transformation is carried out through an

inversion based on the Arrhenius link function, applied between two temperature stress

levels. Specifically, if the Arrhenius link function is used in the analysis, then an obser-

vation tmi at stress level i and strategy m, subject to stress Km
i , is transformed into an

observation at the normal stress level K0
0 according to the equation:

t
(m)→(0,0)
i = tmi exp

(
γ

K0
0

− γ

Km
i

)
for, t

(m)→(0,0)
i ∈ (0,∞),

where Km
i represents the accelerated temperature at stress level i in strategy m, K0

0 is

the normal temperature at stress level 0, and γ is the Arrhenius model parameter.

In the second step, imprecision is introduced based on the log-rank test applied to the

accelerating parameter, where the null hypothesis, that all failure times originate from

the same distribution, is not rejected. This imprecision allows to transform failure times

into interval values at the normal stress level where it is assumed that these transformed

failure times are not distinguishable from failure times occurring at the normal stress level.

The log-rank test, which was discussed in Section 2.6.2, is generally used to examine the

equality of the survival distributions of two or more independent groups. The test is

used to compare equality of the distribution between the transformed failure times and

the failure times occurring at the normal stress. The interval [γ, γ] for the acceleration

parameter in the Arrhenius link function is obtained under the condition that the null

hypothesis is not rejected. This hypothesis states that the failure times at the normal

stress level and the transformed failure times, including any right-censored observations,

originate from the same underlying distribution. This is interpreted in a manner that, for

the obtained interval of γ, both the transformed data and the actual data at stress level

K0 are well mixed. This imprecision allows us to transform failure times into interval

values at the normal stress level where it is assumed that these transformed failure times

are not distinguishable from failure times occurring at the normal stress level.

In this method, we use the pairwise log-rank test between strategies mi and m0 instead

of combing all data in a single test. This single test may not lead to a sensible method

of imprecise statistical inference as it shows that the null hypothesis of equality is easy

to be rejected. For illustration, if it is assumed there are three data sets: if the pairwise

test was performed, the confidence interval will be wider, and it is it is less likely to reject

the null hypothesis. If the test is performed and all data sets are compared in a single
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test then it is more likely that the test will show you that the probability distributions

are different, where the null hypothesis becomes more easy to be rejected.

In this method, the pairwise log-rank test is employed to compare each strategy mi

individually with the strategy m0, rather than combining all data into a single test.

Conducting a single test may lead to less robust imprecise statistical inference, as it can

make it easier to reject the null hypothesis of equality due to cumulative differences across

multiple strategies. By testing each strategy separately against m0, we maintain a higher

level of imprecision, making it less likely for the null hypothesis to be rejected.

For instance, with three distinct data sets, performing individual pairwise tests be-

tween each data set and the baseline strategy results in broader confidence intervals,

providing a stronger framework for capturing imprecision. Conversely, if all data sets

were analyzed within a single test, the probability distributions would more likely appear

different, thus increasing the likelihood of rejecting the null hypothesis. This pairwise

approach better accommodates the complexity of data across multiple stress levels and

enhances the robustness of the inference.

In this method, pairwise comparisons are conducted between the baseline strategy

m = 0 and each other strategy m, where m = 1, 2, . . . , z. Each comparison yields lower

and upper bounds for γ, denoted by γ
0,m

and γ0,m, respectively. The overall lower bound

for γ is obtained by taking the minimum of these pairwise lower bounds, γ = min(γ
0,m

),

while the overall upper bound is determined by taking the maximum of the upper bounds,

γ = max(γ0,m). This approach, implemented in Chapters 3 and 4, effectively captures

the imprecision introduced through the pairwise comparisons across strategies. By con-

solidating the minimum and maximum bounds from all pairwise comparisons, a compre-

hensive interval for γ is established, reflecting imprecision across the various experimental

strategies.

It is noteworthy that if the model is a good fit, most values of the lower bound γ
0,m

and all values of the upper bound γ0,m are expected to be approximately similar. In

contrast, if the model fit is poor, the values of γ
0,m

and γ0,m may vary substantially from

one another. Consequently, in cases of inadequate model fit, the resulting interval [γ, γ]

is anticipated to be wider than it would be under a perfect model fit, reflecting greater

imprecision. This expanded interval for [γ, γ] subsequently produces wider intervals for

the transformed failure times, indicating increased uncertainty. If the chosen model
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represents the data well, the widest interval for the accelerating parameter [γ, γ] is likely

to be derived from the pairwise log-rank test conducted between strategies m2 and m1.

In the third step, nonparametric predictive inference (NPI) is implemented, as detailed

in Section 2.7, to construct the NPI lower and upper survival functions based on all

available data, which includes both the transformed and actual data at the normal stress

level. The NPI lower survival function, denoted as S(t), is derived using the transformed

failure times at the normal stress level with the overall lower bound γ, along with the

actual data at this stress level. Similarly, the NPI upper survival function, S(t), is

constructed using the transformed failure times based on the upper bound γ, ensuring

that the imprecision due to uncertainties in the parameter γ is fully incorporated. This

approach provides robust predictive intervals that capture the imprecision introduced by

the transformation process.

In this method, the objective is not to combine all multiple tests across all strategies

into a single test. Instead, pairwise tests are performed separately between two strate-

gies at a time. Suppose that a single test were conducted under the null hypothesis,

transforming data from all strategies to the normal stress level K0 based on a specific pa-

rameter value γa derived from the equivalent original distribution. Let [γa, γa] represent

the interval of γa values for which the null hypothesis is not rejected in this single-test

scenario. Under a good model fit, [γa, γa] would be close to [γ, γ]. Conversely, with a poor

model fit, the interval [γa, γa] could be extremely narrow or even null, contradicting our

goal of capturing imprecision. Therefore, rather than a single test, this method applies

pairwise comparisons between each mi and m0, adopting the minimum and maximum

bounds across all intervals [γ
0,m
, γ0,m]. This approach enhances imprecision when the

model fit is inadequate, ensuring robustness through the interval [γ, γ].

The subsequent inference is based on NPI, yielding both lower and upper predictive

survival functions that incorporate the introduced imprecision. The robustness and prac-

tical applicability of this predictive method are evaluated through comprehensive sim-

ulation studies, demonstrating its suitability for real-world SSALT data analysis under

varying model assumptions.
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4.3 Illustrative example

This section presents an example to illustrate the proposed method. Similar experimental

settings are adopted from Example 3.4.1 to facilitate a comparison between the two

methods introduced in this chapter. Three data sets are generated, each with a sample

size of n = 10 across all strategies. These strategies include two accelerated testing

strategies, alongside a data set collected at the normal stress level.

Example 4.3.1 This example is structured into three cases. In Case 1, the shape pa-

rameter is assumed to be constant and known across each strategy, and the Arrhenius

link function is applied to connect the scale parameters at all stress levels within each

strategy for the simulated data. In Case 2, the test is performed in a unified manner

by transforming all data sets to be compared directly with the data at the normal stress

level. In Case 3, the Arrhenius link function is replaced with the Eyring link function,

representing a scenario where the chosen link function does not fit the data well. This

substitution allows for an examination of the resulting interval [γ, γ] and its impact on

the corresponding lower and upper NPI survival functions at the normal stress level.

Three data sets were generated, each corresponding to a different experimental strat-

egy. In the first strategy, the experiment was set to a normal temperature level of k00 = 300

Kelvin, with a scale parameter of θ00 = 7000, representing the normal use stress level. Ten

observations were generated from a Weibull distribution for this strategy. The Arrhenius

link function was applied to connect the scale parameters across all strategies, with an

acceleration parameter of γ = 5000.

In the second strategy, the accelerated experiment was configured with temperature

levels of k10 = 350, k11 = 400, and k12 = 450 Kelvin for stress levels s10, s
1
1, and s12,

respectively. The stress level increased from s10 to s11 at τ 11 = 300, and from s11 to s12

at τ 12 = 350. The corresponding scale parameters were θ10 = 647.23, θ11 = 108.52, and

θ12 = 8.72 for s10, s
1
1, and s12.

In the third strategy, the accelerated experiment involved temperature levels of k20 =

380, k21 = 420, and k22 = 460 Kelvin for stress levels s20, s
2
1, and s22, respectively. The

stress level increased from s20 to s21 at τ 21 = 100 and from s21 to s22 at τ 22 = 130. The

corresponding scale parameters were θ20 = 209.53, θ21 = 59.84, and θ22 = 21.25 for s20, s
2
1,

and s22. The generated failure times for each strategy are presented in Table 4.1.



4.3. Illustrative example 92

Strategies Stress level Data sets Failures times

m0 s0 t0 1755.83, 4149.09, 4799.74, 5095.24, 7454.25,

7563.30, 8245.62, 10385.32, 11166.58, 12411.59

m1 s10 t10 185.63, 222.7402

m1 s11 t11 300.66, 320.37, 325.00, 341.08, 342.94

m1 s12 t12 359.43, 360.06, 371.28

m2 s30 t20 14.28, 42.54

m2 s21 t21 101.73, 105.56, 108.97, 120.80, 123.50

m2 s22 t22 138.93, 140.52, 146.53

Table 4.1: A simulated data of Example 4.3.1.

The NPI lower survival function, S, is constructed by combining the data at the nor-

mal stress level with the transformed data from the higher stress strategies, specifically

transforming data from m1 to m0 and m2 to m0 using the lower bound γ. This transfor-

mation represents a pessimistic scenario, as it uses the lower points of the interval, thus

defining the lower survival bound.

Similarly, the NPI upper survival function, S, is obtained by combining the normal

stress level data with the transformed data from the higher stress strategies using the

upper bound γ. This setup reflects the optimistic scenario, where the upper points of the

transformed data define the upper survival bound.

To analyze the data sets presented in Table 4.1, we assume the Arrhenius link function

for the accelerated strategies m1 and m2 and link them to the data at the normal stress

level, m0. First, the pairwise log-rank test is applied between m0 and each of the other

strategies m (where m = 1, 2), to determine the intervals [γ
0,m
, γ0,m] for which the null

hypothesis is not rejected. The resulting intervals [γ
0,m
, γ0,m] at three significance levels

are shown in Table 4.2.

It is important to note that the transformed data are based on the overall bounds [γ, γ],

derived as the minimum and maximum values across the pairwise tests. Consequently,

all failure times at the higher stress strategies are transformed to the normal stress level,

resulting in interval-valued data at the normal stress level, m0, for the strategies m1 and

m2.
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Cases
Significance Level 0.01 0.05 0.10

Stratgies γ γ γ γ γ γ

Case 1
m1,m0 2712.69 4313.12 2818.03 4186.27 2998.07 4157.158

m2,m0 3401.54 4894.44 3512.16 4818.28 3675.03 4729.59

Case 2 m2,m1,m0 2818.03 4752.82 3025.67 4451.96 3060.86 4371.04

Case 3
m1,m0 2347.77 3967.90 2453.11 13841.05 2633.15 3811.93

m2,m0 3032.87 4541.15 3143.49 4464.99 3306.36 4376.29

Table 4.2: [γ
0,m
, γ0,m] for Example 4.3.1.

In Case 1, the two accelerated strategies m1 and m2 are compared with the data at

the normal stress level, m0. The results indicate that γ̂0,1 = 3182.17 for the comparison

between the first and second strategies, and γ̂0,2 = 3845.95 for the comparison between

the first and third strategies. In both tests, the p-value is equal to 1, suggesting no

significant difference between the distributions at the chosen stress levels. Table 4.3

shows the transformed data values, derived using γ, γ, and γ across different significance

levels. As mentioned previously, the minimum and maximum values of [γ
0,m
, γ0,m] among

all strategies are applied to transform all failure times at higher stress levels in this case.

The NPI lower and upper survival functions for this case are shown in Figure 4.1.

In Case 2, the two accelerated strategies m1 and m2 are combined in a single test

against the data at the normal stress strategy m0, as discussed earlier. The analysis

yields an estimated value of γ̂ = 3725.91 for the combined strategies, with a p-value

equal to 1, indicating no significant difference in failure time distributions across these

stress levels. Table 4.4 presents the transformed data values obtained using γ̂, γa, and γa

across different significance levels. As mentioned previously, the minimum and maximum

values of γa and γa from all strategies are used to transform the failure times at higher

stress levels in this case. The NPI lower and upper survival functions for this case are

shown in Figure 4.2.

In Case 3, the Arrhenius link function is replaced with the Eyring link function to

intentionally examine the effects of a model that does not provide a good fit to the

data. This allows for an assessment of imprecision when the assumed link function

differs from the actual stress-response relationship. The two accelerated strategies m1

and m2 are individually compared to the normal stress strategy m0, yielding estimated
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Data set Failures times γ
0.01

γ
0.05

γ
0.10

γ̂ γ0.10 γ0.05 γ0.01

t10 185.64 675.57 710.32 773.91 844.82 1765.14 1841.30 1909.30

t10 222.74 810.59 852.29 928.58 1013.66 2117.93 2209.30 2290.89

t11 300.66 2882.96 3147.47 3656.96 4263.32 15480.24 16667.81 17759.92

t11 320.38 3071.97 3353.83 3896.72 4542.83 16495.17 17760.60 18924.32

t11 325.01 3116.39 3402.31 3953.05 4608.51 16733.64 18017.37 19197.91

t11 341.08 3270.49 3570.56 4148.54 4836.40 17561.14 18908.35 20147.27

t11 342.94 3288.37 3590.08 4171.21 4862.84 17657.13 19011.70 20257.40

t12 359.44 7322.03 8231.19 10054.04 12336.08 68846.84 75977.55 82686.66

t12 360.07 7334.87 8245.62 10071.66 12357.71 68967.53 76110.74 82831.61

t12 371.28 7563.30 8502.42 10385.33 12742.57 71115.41 78481.08 85411.26

t20 14.29 95.87 103.22 117.13 212.35 394.79 420.14 443.21

t20 42.54 285.46 307.36 348.76 632.31 1175.53 1251.02 1319.70

t21 101.73 1347.33 1489.51 1768.12 3964.66 9197.96 10008.72 10761.64

t21 105.56 1398.03 1545.56 1834.65 4113.84 9544.07 10385.33 11166.58

t21 108.97 1443.19 1595.49 1893.91 4246.73 9852.35 10720.79 11527.28

t21 120.81 1599.90 1768.74 2099.57 4707.87 10922.20 11884.94 12779.01

t21 123.51 1635.70 1808.31 2146.55 4813.21 11166.58 12150.86 13064.93

t22 138.94 3226.62 3645.77 4492.05 12005.40 33443.80 37066.18 40487.95

t22 140.52 3263.35 3687.27 4543.18 12142.05 33824.49 37488.10 40948.82

t22 146.53 3402.93 3844.98 4737.50 12661.39 35271.21 39091.52 42700.26

Table 4.3: Transformation of Case 1, Example 4.3.1.

values γ̂1,0 = 2821.171 for the comparison between the first and second strategies, and

γ̂2,0 = 3492.332 for the first and third strategies. In both comparisons, the p-value is

1, indicating no significant difference in failure distributions across these stress levels.

Table 4.3 presents the transformed data values obtained using using γ, γ, and γ across

different significance levels. As outlined previously, the minimum and maximum values

from the pairwise comparisons—namely, γ
0,m

and γ0,m where m = 1, 2—are applied to

transform all failure times at the higher stress levels. The NPI lower and upper survival

functions for this case are shown in Figure 4.3, capturing the imprecision introduced by

the misspecified link function due to the Eyring model.
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Figure 4.1: NPI lower and upper survival functions for Case 1 in Example 4.3.1, with red,

blue, and black lines representing significance levels 0.01, 0.05, and 0.10, respectively.
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Figure 4.3: NPI lower and upper survival functions for Case 3 in Example 4.3.1, with red,

blue, and black lines representing significance levels 0.01, 0.05, and 0.10, respectively.
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Data set Failures times γ
0.01

γ
0.05

γ
0.10

γ̂ γ0.10 γ0.05 γ0.01

t10 185.64 710.32 784.15 797.40 1094.49 1488.09 1546.56 1784.78

t10 222.74 852.29 940.87 956.77 1313.24 1785.50 1855.65 2141.49

t11 300.66 3147.47 3742.05 3853.40 6707.08 11481.93 12282.95 15782.88

t11 320.38 3353.83 3987.39 4106.04 7146.82 12234.72 13088.26 16817.66

t11 325.01 3402.31 4045.03 4165.40 7250.14 12411.60 13277.48 17060.79

t11 341.08 3570.56 4245.06 4371.39 7608.66 13025.36 13934.06 17904.47

t11 342.94 3590.08 4268.27 4395.28 7650.25 13096.56 14010.23 18002.34

t12 359.44 8231.19 10367.15 10780.52 22571.40 46223.94 50572.85 70647.33

t12 360.07 8245.62 10385.33 10799.42 22610.97 46304.98 50661.51 70771.18

t12 371.28 8502.42 10708.76 11135.75 23315.15 47747.07 52239.28 72975.23

t20 14.29 103.22 119.42 122.40 195.20 306.97 324.90 401.28

t20 42.54 307.36 355.58 364.47 581.22 914.03 967.44 1194.85

t21 101.73 1489.51 1815.21 1877.08 3536.35 6537.19 7060.95 9403.76

t21 105.56 1545.56 1883.52 1947.71 3669.42 6783.18 7326.64 9757.61

t21 108.97 1595.49 1944.36 2010.62 3787.95 7002.28 7563.30 10072.80

t21 120.81 1768.74 2155.49 2228.95 4199.27 7762.65 8384.59 11166.58

t21 123.51 1808.31 2203.72 2278.82 4293.23 7936.34 8572.19 11416.43

t22 138.94 3645.77 4638.12 4831.26 10445.58 22068.67 24239.55 34356.97

t22 140.52 3687.27 4690.92 4886.26 10564.48 22319.87 24515.46 34748.05

t22 146.53 3844.98 4891.56 5095.25 11016.34 23274.53 25564.02 36234.27

Table 4.4: Tranformation of Case 2, Example 4.3.1.

Based on Table 4.2, a comparison of the resulting intervals [γ
0,m
, γ0,m] reveals that

Case 1 exhibits wider intervals than Case 2, indicating greater imprecision in the param-

eter estimates. In Case 3, where the Arrhenius link function is replaced by the Eyring

link function, the imprecision further increases, as the method does not align well with

the data distribution under the Eyring model. This added imprecision suggests a higher

degree of uncertainty due to the link function’s misspecification, making Case 3’s inter-

vals the widest across significance levels. Therefore, the choice of link function clearly

impacts the interval bounds and highlights the robustness of the method in capturing

model fit variations.

In terms of visual comparison, Figures 4.1, 4.2, and 4.3 illustrate the NPI lower and

upper survival functions across Cases 1, 2, and 3, respectively. In Case 1 (Figure 4.1),
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Figure 4.2: NPI lower and upper survival functions for Case 2 in Example 4.3.1, with red,

blue, and black lines representing significance levels 0.01, 0.05, and 0.10, respectively.

the survival functions demonstrate moderate imprecision, with distinct upper and lower

bounds. Figure 4.2 for Case 2, where tests were combined in a single transformation step,

shows a reduced gap between the bounds, reflecting less imprecision. Lastly, in Figure 4.3

for Case 3, the survival function exhibits the widest range, highlighting the increased

imprecision from the Eyring link function’s incompatibility. These figures effectively

depict how model fit and test configuration impact survival function robustness in SSALT

data analysis.

In addition, we compare the results of the interval [γ
0,m
, γ0,m] from this example with

those in Example 3.4.1, which was analyzed using the likelihood ratio test in Chapter

3. The results indicate that the interval [γ
0,m
, γ0,m] generated by the log-rank test in

Chapter 4 demonstrates slightly more imprecision, as reflected in the resulting lower and

upper NPI survival functions, compared to the intervals obtained using the likelihood

ratio test, particularly for cases with higher stress levels.

In Chapter 3, two cases were examined: one where the shape parameter was held

constant and another where it varied across strategies. In the constant shape parameter

case, the interval [γ
0,m
, γ0,m] showed more precision due to the consistency in parameter
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Data set Failures times γ
0.01

γ
0.05

γ
0.10

γ̂ γ0.10 γ0.05 γ0.01

t10 185.64 662.45 696.52 758.87 829.95 1740.46 1815.54 1882.59

t10 222.74 794.84 835.73 910.54 995.83 2088.30 2178.40 2258.85

t11 300.66 2836.02 3096.22 3597.41 4207.62 15376.39 16555.99 17640.78

t11 320.38 3021.95 3299.22 3833.27 4483.48 16384.51 17641.46 18797.37

t11 325.01 3065.64 3346.92 3888.69 4548.30 16621.38 17896.50 19069.12

t11 341.08 3217.24 3512.42 4080.99 4773.22 17443.33 18781.50 20012.11

t11 342.94 3234.83 3531.62 4103.30 4799.31 17538.68 18884.16 20121.50

t12 359.44 7322.03 8231.19 10054.04 12389.92 69741.71 76965.10 83761.41

t12 360.07 7334.87 8245.62 10071.66 12411.64 69863.97 77100.02 83908.25

t12 371.28 7563.30 8502.42 10385.33 12798.18 72039.77 79501.18 86521.43

t20 14.29 94.00 101.21 114.84 209.87 390.26 415.32 438.12

t20 42.54 279.89 301.37 341.95 624.91 1162.04 1236.67 1304.56

t21 101.73 1332.50 1473.12 1748.65 3963.44 9197.96 10008.71 10761.64

t21 105.56 1382.64 1528.55 1814.45 4112.58 9544.07 10385.33 11166.58

t21 108.97 1427.30 1577.92 1873.06 4245.42 9852.35 10720.79 11527.28

t21 120.81 1582.29 1749.27 2076.46 4706.43 10922.20 11884.94 12779.01

t21 123.51 1617.70 1788.41 2122.92 4811.73 11166.58 12150.86 13064.93

t22 138.94 3240.69 3661.66 4511.63 12216.75 34045.31 37732.83 41216.15

t22 140.52 3277.58 3703.34 4562.98 12355.82 34432.84 38162.34 41685.31

t22 146.53 3417.76 3861.74 4758.15 12884.29 35905.58 39794.60 43468.25

Table 4.5: Tranformation of Case 3, Example 4.3.1.

assumptions, making it more suitable for cumulative exposure models with fixed shape

parameters. However, in the varying shape parameter case, a larger degree of impreci-

sion was noted, reflecting the added uncertainty in estimating γ under differing shape

parameter conditions.

By comparison, the log-rank test in Chapter 4 yields slightly larger intervals for the

overall lower and upper γ, as evidenced by the wider lower and upper NPI survival

functions, even with misspecified link functions such as the Eyring model. This increased

interval width in the NPI survival functions suggests that the log-rank test captures a

broader range for γ, introducing slightly more variability compared to the likelihood ratio

test. Thus, while the log-rank approach in Chapter 4 is advantageous because it does

not require additional assumptions, the increased imprecision arises due to the inherent
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nature of nonparametric tests.

4.4 Simulation studies

In this section, simulation studies are conducted to evaluate the performance of the

proposed method, as outlined in Section 4.2. These simulations are designed around three

strategies for SSALT data, using experimental settings consistent with Example 4.3.1.

In the first strategy, representing the normal stress level, the scale parameter θ00 is set

to θ00 = 7000, with the temperature k00 = 300. In the second strategy, three increasing

stress levels are assumed, with temperatures k10 = 350, k11 = 400, and k12 = 450, tran-

sitioning at times τ 11 = 300 and τ 12 = 350. Similarly, the third strategy includes three

stress levels: k20 = 380, k21 = 420, and k22 = 460 Kelvin, with transitions at τ 21 = 100

and τ 22 = 130. For all strategies, the shape parameter is set to β = 2, and the Arrhenius

link function parameter, γ, is assumed to be γ = 5000. Note that while the cumulative

exposure model and Weibull distribution are used for data generation, only the link func-

tions are applied in the analysis. Although the data are generated using the cumulative

exposure model (CEM) under a Weibull distribution, the CEM is not employed during

the analysis; instead, each simulation iteration relies solely on the link function and the

log-rank test.

The simulations follow procedures similar to those in Section 3.5, with the addition

of the imprecise statistical inference approach based on the log-rank test, as detailed in

Section 4.2. This approach enables quantifying imprecision in the parameter γ through

interval bounds derived from pairwise comparisons, reflecting how the log-rank test man-

ages model assumptions, stress level effects, and imprecision in transformed data across

varied experimental settings.

Each simulation was repeated 10,000 times, with data generated from the proposed

model and varying sample sizes for each strategy (n = 20, 50, and 100) and significance

levels of 0.01, 0.05, and 0.10. The performance of the method is assessed by simulating

a future observation at the normal strategy m0, testing whether it mixes indistinguish-

ably with transformed data from higher stress strategies as well as with data at the

normal stress level. To evaluate robustness, the future observation is analyzed against

the quartiles of the NPI lower and upper survival functions, with significance levels set
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at 1− q = 0.75, 0.50, and 0.25.

In assessing the method’s robustness, the proportion of cases is computed where the

future observation exceeds the quartiles of the NPI lower and upper survival functions.

For ideal performance, the first, second, and third quartiles of the lower NPI survival

functions are expected to exceed 0.75, 0.50, and 0.25, respectively, while those of the

upper survival functions should remain below these values.

The simulation studies consider two primary cases. In Case 1, the conditions specified

in Example 4.3.1 are applied, assuming a constant, known shape parameter. Table 4.6

and Figures A.16–A.18 present the performance outcomes across significance levels of

0.01, 0.05, and 0.10, and sample sizes of n = 10, 50, and 100. The figures denote the

first, second, and third quartiles of the NPI lower and upper survival functions as qL0.25,

qU0.25, qL0.50, qU0.50, qL0.75, and qU0.75, respectively. The results indicate a general

trend toward reduced imprecision between lower and upper survival functions, as seen in

Figure A.17, suggesting that the proposed method achieves robust predictive inference

when model assumptions are accurately met.

In Case 2, robustness is evaluated under model misspecification, examining whether

the method maintains robustness when assumptions differ from the underlying model.

Here, data are generated using the Eyring link function while the analysis assumes

the Arrhenius link function, testing performance when the assumed link function may

not accurately represent the true relationship. As outlined in Section 2.5, the Eyring

link function serves as an alternative to the Arrhenius link function for modeling the

temperature-dependent accelerating parameter. Table 4.7 and Figures A.19–A.21 dis-

play the outcomes. Comparatively, these results align closely with those in Tables 4.6

and 4.7 (where model assumptions are entirely accurate). Similarly, quartiles of the NPI

lower and upper survival functions in Figures A.16–A.18, and A.19–A.21 exhibit high

consistency across significance levels of 1− q = 0.75, 0.50, and 0.25. These findings con-

firm the proposed method’s robustness, effectively preserving predictive inference even

when model assumptions are not met.

Tables 4.6 and 4.7 display the proportion of runs where a future observation exceeds

specified quartiles of the NPI lower and upper survival functions for Cases 1 and 2,

respectively, with Figures A.16–A.18 illustrating results for Case 1 and Figures A.19–A.21

for Case 2.
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The tables and figures reveal how differences in significance levels (α = 0.01, 0.05,

and 0.10) and sample sizes (n = 20, 50, and 100) affect prediction performance. In

both cases, larger sample sizes (e.g., n = 100) generally yield more consistent quartile

coverage, enhancing robustness as sample size increases. Conversely, smaller significance

levels (α = 0.01) widen the intervals, resulting in a more evenly distributed spread of

proportions, highlighting that lower α values yield broader confidence intervals and thus

increase imprecision in predictions.

In Case 1, where model assumptions are fully accurate, observed proportions closely

align with expected values, reflecting a high level of consistency. This suggests the pro-

posed method achieves reasonable predictive performance when assumptions are fully

met. Case 2 examines robustness under model misspecification, where the Eyring link

function is used in data generation, and the Arrhenius link function is applied in anal-

ysis. Despite the variation, proportions remain within acceptable ranges, with slightly

increased imprecision in quartile coverage. This outcome illustrates the method’s robust-

ness, offering reasonably accurate prediction intervals even when model assumptions are

not entirely accurate.

Data from higher stress strategies, such as m2, exhibits greater imprecision, as re-

flected in the differences between the observed proportions. This trend indicates that

higher stress conditions introduce additional variability, leading to less precise predictive

intervals. In particular, the overall γ parameter analysis displays the highest level of im-

precision, underscoring the increased uncertainty at elevated stress levels. In comparison,

the m1m0 test provides a more controlled setting, resulting in lower imprecision in the

predictive intervals. These findings demonstrate the method’s capacity to capture the

variability inherent in different stress strategies, with greater imprecision arising as stress

levels increase.

The results from the tables and figures collectively demonstrate that the proposed

method maintains robust predictive inference, with robustness improving with larger

sample sizes and only marginally impacted by model misspecification, as observed in

Case 2. These findings confirm the method’s adaptability and accuracy for practical

applications, even in scenarios with varying model assumptions.

A comparative analysis between Chapter 3 and Chapter 4 for Case 1 demonstrates

the method’s robustness under similar conditions, focusing on consistency in predictive
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m1m0 n = 10 n = 50 n = 100

α 1− q qU qL qU qL qU qL

0.01 0.75 0.6092 0.8868 0.7031 0.8121 0.7122 0.7962

0.50 0.2548 0.6720 0.4268 0.5853 0.4719 0.5835

0.25 0.0445 0.5267 0.0950 0.2904 0.0887 0.2902

0.05 0.75 0.6473 0.8577 0.7126 0.7991 0.7197 0.7847

0.50 0.3266 0.6256 0.4506 0.5837 0.4795 0.5832

0.25 0.0803 0.4466 0.1015 0.2490 0.0941 0.2663

0.10 0.75 0.6615 0.8415 0.7178 0.7912 0.7238 0.7791

0.50 0.3613 0.6064 0.4573 0.5825 0.4826 0.5831

0.25 0.0998 0.4010 0.1055 0.2265 0.0980 0.2500

m2m0 n = 10 n = 50 n = 100

α 1− q qU qL qU qL qU qL

0.01 0.75 0.6119 0.8962 0.7098 0.8243 0.7230 0.8065

0.50 0.2586 0.6855 0.4117 0.6221 0.4692 0.6249

0.25 0.0466 0.5120 0.1246 0.2825 0.1183 0.2906

0.05 0.75 0.6476 0.8672 0.7194 0.8110 0.7303 0.7962

0.50 0.3246 0.6466 0.4439 0.6184 0.4877 0.6229

0.25 0.0881 0.4347 0.1280 0.2736 0.1216 0.2660

0.10 0.75 0.6623 0.8510 0.7238 0.8033 0.7351 0.7925

0.50 0.3595 0.6296 0.4567 0.6167 0.4945 0.6215

0.25 0.1062 0.3869 0.1314 0.2553 0.1232 0.2542

γ and γ n = 10 n = 50 n = 100

α 1− q qU qL qU qL qU qL

0.01 0.75 0.5649 0.9670 0.6824 0.9395 0.6935 0.9367

0.50 0.0950 0.8747 0.3124 0.7841 0.3287 .7620

0.25 0.0022 0.5859 0.0307 0.3630 0.0417 0.3361

0.05 0.75 0.6307 0.9542 0.6972 0.9331 0.7049 0.9317

0.50 0.1793 0.8322 0.3310 0.7628 0.3369 0.7440

0.25 0.0114 0.4944 0.0469 0.3482 0.0526 0.3334

0.10 0.75 0.6491 0.9472 0.7052 0.9306 0.7112 0.9296

0.50 0.2204 0.8085 0.3396 0.7506 0.3412 0.7353

0.25 0.0200 0.4582 0.0553 0.3421 0.0596 0.3332

Table 4.6: Proportion of runs with future observation greater than the quartiles, Case 1.



4.4. Simulation studies 103

m1m0 n = 10 n = 50 n = 100

α 1− q qU qL qU qL qU qL

0.01 0.75 0.6545 0.8403 0.7044 0.8212 0.7108 0.7944

0.50 0.3447 0.5731 0.4200 0.4569 0.4685 0.4749

0.25 0.0919 0.4266 0.0775 0.3484 0.0622 0.2327

0.05 0.75 0.6459 0.8390 0.7180 0.8091 0.7195 0.7857

0.50 0.3119 0.5866 0.4210 0.4464 0.4685 0.4749

0.25 0.0679 0.4790 0.0955 0.3073 0.0821 0.2056

0.10 0.75 0.6601 0.8265 0.7243 0.8029 0.7259 0.7809

0.50 0.3357 0.5566 0.4212 0.4428 0.4685 0.4749

0.25 0.0829 0.4373 0.1081 0.2866 0.0908 0.1984

m2m0 n = 10 n = 50 n = 100

α 1− q qU qL qU qL qU qL

0.01 0.75 0.5977 0.8705 0.7084 0.8299 0.7211 0.8048

0.50 0.2616 0.6648 0.4404 0.4809 0.4263 0.4382

0.25 0.0426 0.5307 0.0855 0.3429 0.0908 0.2518

0.05 0.75 0.5977 0.8705 0.7230 0.8170 0.7307 0.7936

0.50 0.2616 0.6648 0.4418 0.4714 0.4263 0.4367

0.25 0.0426 0.5307 0.1068 0.3039 0.1116 0.2351

0.10 0.75 0.6354 0.8490 0.7293 0.8112 0.7378 0.7857

0.50 0.3164 0.5988 0.4423 0.4688 0.4263 0.4367

0.25 0.0752 0.4668 0.1186 0.2833 0.1203 0.2223

γ and γ n = 10 n = 50 n = 100

α 1− q qU qL qU qL qU qL

0.01 0.75 0.5401 0.9508 0.6771 0.8866 0.7028 0.8837

0.50 0.0973 0.8484 0.2645 0.7982 0.2892 0.7578

0.25 0.0060 0.6119 0.0495 0.3781 0.0637 0.2645

0.05 0.75 0.5977 0.9350 0.6937 0.8785 0.7124 0.8813

0.50 0.1710 0.8238 0.2838 0.7771 0.3044 0.7426

0.25 0.0221 0.5131 0.0639 0.3355 0.0733 0.2446

0.10 0.75 0.6202 0.9249 0.7019 0.8755 0.7187 0.8805

0.50 0.2061 0.8058 0.2926 0.7654 0.3116 0.7355

0.25 0.0321 0.4673 0.0715 0.3157 0.0805 0.2382

Table 4.7: Proportion of runs with future observation greater than the quartiles, Case 2.
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intervals. Results from this chapter exhibit slightly more imprecision compared to those

in Chapter 3, with observed proportions aligning more closely with expected quartile

values, especially for larger sample sizes. This increase in imprecision reflects the broader

intervals derived from the overall lower and upper γ values, indicating the method’s

sensitivity in Chapter 4 to variability under model assumptions.

The comparison between Case 3 in Chapter 3 (using the Eyring link function for

data generation but analyzing with the Arrhenius link function) and Case 2 in Chapter

4 (implementing the pairwise log-rank test) reveals that Chapter 4 results (Table 4.7)

show slightly greater imprecision than those in Chapter 3 (Table 3.7). This increased

imprecision is particularly noticeable for smaller sample sizes (n = 10 and n = 50), where

wider intervals based on the overall lower and upper γ values introduce added impre-

cision, especially under model misspecification. In contrast, Chapter 3 results display

comparatively narrower bounds between qU and qL, though both chapters benefit from

larger sample sizes (n = 100) in reducing imprecision.

While larger sample sizes (n = 100) reduce imprecision in both chapters, Chapter

4 consistently shows slightly more imprecision due to its derivation from the overall

lower and upper γ values. This broader interval range reflects Chapter 4’s robustness in

capturing imprecision introduced by misspecification, supporting the method’s capability

to account for model uncertainty effectively across all cases.

4.5 Concluding remarks

This chapter introduces a new approach to nonparametric inference with imprecise prob-

ability for analyzing SSALT data. Unlike traditional methods, this approach does not

depend on predefined failure time distributions for each stress level. Instead, the log-rank

test is employed to assess pairwise stress level survival distributions, while the Arrhenius

model is used to determine the range of γ values. By applying nonparametric tests to

the Arrhenius model’s link function parameter across different stress levels, this tech-

nique introduces imprecision, allowing transformation of data from higher stress levels

into interval-valued data at the normal stress level, thus enhancing robustness through

the use of the lower and upper NPI survival functions.

Key insights from this chapter include establishing an interval for the link function’s
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parameter at each stress level. This is achieved by conducting nonparametric hypothesis

tests between pairs of stress levels to quantify imprecision. Preference is given to im-

precision derived from combined pairwise log-rank tests rather than a single test applied

across all stress levels, as the pairwise approach increases imprecision when the model fit

is inadequate.

In comparing methods, it was concluded that the imprecision resulting from the log-

rank test is slightly greater than that from the likelihood ratio test under the statistical

model. This conclusion is supported by examples and simulation results. Performance

evaluations through simulation studies indicate a high level of robustness in cases of model

misspecification. However, the increased imprecision from the log-rank test suggests that

further model investigation or additional data collection may be advisable in cases with

substantial imprecision.

These methods assume the availability of data at the normal stress level, which may

not always be practical. In such cases, it is recommended to perform tests between two

data sets from higher stress strategies to establish an interval for the acceleration param-

eter. While complete data sets were assumed for simplicity, implementing these methods

for right-censored data is straightforward. Right-censored data can be incorporated in

the tests, then transformed to the normal stress level, allowing for the application of NPI

techniques for right-censored data, as discussed in Section 2.7.



Chapter 5

Robust Bayesian inference using a

class of priors

5.1 Introduction

In practical data analysis, particularly in reliability and step-stress accelerated life testing

(SSALT), precise prior knowledge about model parameters is often unavailable or difficult

to define. Traditional Bayesian methods require specific assumptions about these priors,

which may be difficult to justify in cases where data is limited or when knowledge of the

parameters is based on diverse sources. This reliance on exact priors can lead to con-

clusions that are highly sensitive to slight changes in assumptions, particularly when the

likelihood or model specification is uncertain [8, 36]. To address these challenges, robust

Bayesian analysis introduces imprecision into model assumptions, providing a framework

to quantify the effects of varying assumptions on the analysis. Instead of relying on a

single prior, this approach defines a range of plausible priors, leading to the derivation

of lower and upper bounds for posterior and posterior predictive distributions. These

bounds capture the uncertainty and imprecision inherent in the assumptions, allowing

the analysis to reflect the imprecision introduced by different plausible scenarios. The

primary objective of robust Bayesian analysis is to measure this imprecision explicitly,

ensuring that the conclusions account for uncertainties in priors, likelihoods, and model

assumptions, thereby leading to robust inferences.

This chapter introduces a robust Bayesian method that leverages a class of priors,

particularly Beta distributions, to account for imprecise prior knowledge of the scale and

106
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acceleration parameters in SSALT models. The Beta distribution is chosen due to its

flexibility in modeling uncertainty over bounded parameters, which is appropriate for the

scale and acceleration parameters in SSALT models that are constrained to lie within

a known interval. Its shape can easily be adjusted to reflect varying degrees of belief

or imprecision, making it a natural choice for robust Bayesian inference under prior un-

certainty. Using a class of priors, rather than relying on a single, precise prior, allows

the method to represent a broader spectrum of possible beliefs about these parameters,

capturing diverse information sources and permitting a full range of values in cases where

prior knowledge is absent [25]. By accommodating this flexibility, the analysis is able to

address potential prior misspecification while supporting a more comprehensive frame-

work that can integrate various perspectives and imprecise prior information.

The primary aim of this chapter is to develop a robust Bayesian method for analyz-

ing step-stress accelerated life testing (SSALT) data by addressing sensitivity to prior

misspecification and accounting for uncertainty in prior knowledge. This method utilizes

imprecise probabilities to model vague prior knowledge about the model parameters, al-

lowing for the derivation of both lower and upper bounds for the posterior distribution.

By representing this imprecise knowledge with a class of prior distributions, where the

extremes reflect a complete lack of knowledge about the parameters, the method provides

a framework to quantify the effects of varying assumptions on the analysis. Consequently,

it measures the imprecision arising from the prior, likelihood, and link function, offer-

ing a comprehensive evaluation of how these components influence the results. These

bounds enable the derivation of lower and upper posterior predictive distributions, which

facilitate predictions of future failure times at the normal stress level.

A significant objective of this approach is the construction of lower and upper predic-

tive survival functions at normal stress conditions, providing robust predictive intervals

that capture both data-driven variability and the imprecision arising from prior distribu-

tions, likelihoods, and link functions. This is particularly relevant in SSALT applications,

where assumptions about these components may only approximate the real-world com-

plexity of failure mechanisms [38]. By explicitly incorporating imprecision, the proposed

method enhances the robustness of predictions by providing interval probabilities for fu-

ture observations under uncertain conditions [6]. These interval probabilities are derived

from the lower and upper posterior predictive distributions, offering a range of plausible
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outcomes that reflect both data-driven variability and the imprecision introduced by all

model components. The performance of the method is further evaluated through simula-

tion studies, demonstrating its applicability in addressing variability and uncertainty in

reliability and SSALT data analysis.

To implement this approach, Markov Chain Monte Carlo (MCMC) methods are em-

ployed to estimate the posterior distributions across the class of priors. This empirical

Bayesian analysis quantifies the imprecision introduced by model assumptions and data

variability, offering a robust framework for predictions at normal stress levels. An empir-

ical Bayesian analysis is a statistical approach in which prior distributions are partially

specified and then completed using information derived from the observed data. This

allows the method to incorporate both prior structure and data-driven estimation in the

inference process. In this work, MCMC methods are used because the analytical form

of the posterior distribution is not tractable due to the complexity introduced by the

class of priors and the SSALT model structure. Therefore, MCMC provides a practical

numerical solution for approximating the posterior distributions under each prior within

the class. The resulting methodology not only accounts for prior uncertainty but also

allows practitioners to incorporate interval-based survival estimates in reliability applica-

tions, providing robust inference that accommodates uncertainties in complex modeling

scenarios and offers a practical tool for robust Bayesian analysis [9, 43].

This chapter is organised as follows. Section 5.2 introduces the cumulative exposure

model used for step-stress accelerated life testing (SSALT) data, describing its structure

and the Bayesian framework applied to it. Section 5.3 details the Bayesian inference

process, utilizing the Metropolis-Hastings algorithm to estimate model parameters and

posterior distributions. Section 5.4 presents the proposed robust Bayesian method. Sec-

tion 5.6 presents illustrative examples of the proposed method. Section 5.7 presents

simulations studies to evaluate the performance of the proposed method. Section 5.8

presents concluding remarks.

5.2 The Bayesian model for SSALT Data

This section recalls the Weibull cumulative exposure model, as described in Section 2.4.

This model is implemented to analyze step-stress accelerated life testing (SSALT) data,
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where failure times are assumed to follow a Weibull distribution. The Weibull scale

parameters at different stress levels are linked through the Arrhenius function, which

relates lifetime to stress levels, typically represented as temperature.

The number of experimental strategies conducted under different stress settings is

denoted by m. The probability density function (PDF) for failure times at stress levels

i = 0, 1, . . . , s− 1 is expressed as:

fi(t) =

(
β

(θmi )β

)
(t− (τmi − τ ∗im))β−1 exp

−(t− τmi
θmi

+
i∑

j=1

τmj − τmj−1
θmj−1

)β
 , (5.1)

for τmi ≤ t ≤ τmi+1, where t represents the failure time, and τmi is the time at which

the stress level changes during the m-th strategy. The term τm∗i , used to calculate the

shift parameter, adjusts for the cumulative effects of previous stress levels in the Weibull

cumulative exposure model, as explained in Section 2.4. This term is given by:

τm∗i =

[
θmi
θmi−1

(
τmi − τmi−1 + τm∗i−1

)]
(5.2)

for τi ≤ t ≤ τi+1. The shape parameter β > 0 is assumed to be constant across all stress

levels. The scale parameter at each stress level θmi is linked to the normal stress level

scale parameter θ00 through the Arrhenius function, expressed as:

θmi = θ00 exp

(
γ

kmi
− γ

k00

)
, (5.3)

where kmi represents the temperature in Kelvin applied at the i-th stress level during

strategy m, km0 is the temperature at the normal stress level, and γ is the acceleration

parameter that quantifies the relationship between stress and the scale parameter.

The dataset of observed failure times is denoted by t, where

t = {t00:1, ..., t00:n0
0
, t10:1, ..., t

1
0:n1

0
, ..., t20:1, ..., t

2
0:n2

0
, ..., t2i:1, ..., t

2
i:n2

0
, ..., tmi:1, ..., t

m
i:nmi
}, (5.4)

with tmi:nmi representing failure times observed at stress level i during strategy m. Each

failure time tmi:nmi is observed in the interval [τmi , τ
m
i+1], where τmi denotes the time of the

i-th stress level change, and τmi+1 denotes the start of the next stress level or the end of the

test. Failure times at the normal stress level (t00) follow the Weibull distribution without

acceleration effects.
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The likelihood function for the dataset t, given the parameters θmi , β, γ, and kmi , is

expressed as:

L(t; θmi , β, γ, k
m
i ) =

z∏
m=0

s−1∏
i=0

nmi∏
ni=1

fi(t
m
i:nmi

; θmi , β, γ, k
m
i ), (5.5)

where nmi is the number of failure times observed at stress level i during strategy m, and

n represents the total number of failure times across all strategies.

The parameters θ00, γ, and β are estimated to characterize the Weibull model un-

der SSALT conditions. The time points τmi , representing the predetermined changes in

stress levels, and the predetermined stress levels kmi , applied during the experiments, are

essential components defined by the experimental design.

The Bayesian approach provides a structured and principled framework for incorpo-

rating prior knowledge about model parameters and updating this knowledge in light of

observed data. This process results in a posterior distribution, which represents a refined

understanding that combines prior beliefs with evidence derived from the data. In this

context, the analysis focuses on estimating three primary parameters: the scale parame-

ter at normal stress (θ0), the acceleration parameter (γ), and the shape parameter (β),

which collectively characterize the failure time distribution under step-stress accelerated

life testing (SSALT) conditions.

To model prior knowledge about the parameters θ0, γ, and β, Beta distributions are

assumed as priors. The Beta distribution is particularly well-suited for this purpose due to

its flexibility in representing parameters constrained to a bounded interval [8]. Its ability

to accommodate a wide range of shapes makes it an ideal choice for capturing diverse prior

beliefs. For instance, a uniform prior can be specified by selecting equal shape parameters,

while skewed or concentrated distributions can be represented by adjusting the shape

parameters accordingly. This adaptability enables the modeling of prior uncertainty in a

manner that aligns with theoretical considerations or expert judgment.

By adopting Beta priors, it becomes possible to construct a class of priors that encap-

sulate varying degrees of imprecision about the parameters θ0, γ, and β. This approach

not only accounts for potential uncertainty in the prior specification but also supports

the exploration of sensitivity to different prior assumptions. Further details on the devel-

opment and implementation of this class of priors are presented in Section 5.4, where the

methodology for addressing prior imprecision is discussed in depth. This provides a ro-
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bust foundation for Bayesian inference, enhancing the robustness of parameter estimation

and predictive analysis in the presence of uncertain prior knowledge.

The scale parameter at normal stress, θ0, is modeled using a Beta prior distribution.

To ensure the parameter lies within the interval [0, 1], a linear transformation is applied:

θ∗0 =
θ0 − aθ0
bθ0 − aθ0

, θ0 ∈ [aθ0 , bθ0 ], (5.6)

where aθ0 and bθ0 are the lower and upper bounds of the parameter range for θ0. The

transformed parameter θ∗0 follows a Beta prior:

π(θ∗0) =
θ∗0
pθ0−1(1− θ∗0)qθ0−1

B(pθ0 , qθ0)
, for θ∗0 ∈ [0, 1], (5.7)

where pθ0 > 0 and qθ0 > 0 are the shape parameters of the Beta distribution, and

B(pθ0 , qθ0) is the Beta function, expressed as:

B(pθ0 , qθ0) =
Γ(pθ0)Γ(qθ0)

Γ(pθ0 + qθ0)
. (5.8)

The Gamma function, Γ(pθ0), used in the Beta function, is given by:

Γ(pθ0) =

∫ ∞
0

tpθ0−1e−t dt, for pθ0 > 0. (5.9)

The acceleration parameter γ, quantifying the relationship between stress levels and

failure times, is similarly modeled. The transformation to the interval [0, 1] is given by:

γ∗ =
γ − aγ
bγ − aγ

, γ ∈ [aγ, bγ], (5.10)

with a Beta prior:

π(γ∗) =
γ∗pγ−1(1− γ∗)qγ−1

B(pγ, qγ)
, for γ∗ ∈ [0, 1], (5.11)

where pγ > 0 and qγ > 0 are the shape parameters of the Beta distribution.

The shape parameter β, which determines the form of the failure time distribution

(e.g., exponential-like or heavy-tailed behavior), is assigned a uniform prior. Since the

main objective of the analysis is to assess imprecision in the scale and acceleration param-

eters, assuming a non-informative prior for β ensures that the inference focuses on the

parameters of interest without introducing additional assumptions or constraints through

the prior on β. The transformation for β is expressed as:

β∗ =
β − aβ
bβ − aβ

, β ∈ [aβ, bβ], (5.12)
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with the uniform prior given by:

π(β∗) =
β∗1−1(1− β∗)1−1

B(1, 1)
= 1, for β∗ ∈ [0, 1], (5.13)

where the shape parameters of the Beta distribution are pβ = 1 and qβ = 1, corresponding

to a uniform distribution over the interval [0, 1]. This assumption reflects minimal prior

information about β, as the focus is on incorporating imprecision in the scale (θ0) and

acceleration (γ) parameters, which are modeled using flexible Beta distributions. For

β, a uniform prior is used across its plausible range, maintaining consistency in the

analysis while enabling the measurement of imprecision in the other parameters, as will

be discussed in Section 5.4.

Assuming independence among θ0, γ, and β, the joint prior distribution for the trans-

formed parameters is expressed as:

π(θ∗0, γ
∗, β∗) = π(θ∗0) · π(γ∗) · π(β∗), (5.14)

where:

π(θ∗0) =
θ∗0
pθ0−1(1− θ∗0)qθ0−1

B(pθ0 , qθ0)
, π(γ∗) =

γ∗pγ−1(1− γ∗)qγ−1

B(pγ, qγ)
, π(β∗) = 1. (5.15)

The bounds aθ0 , bθ0 , aγ, bγ, and aβ, bβ are chosen based on theoretical considerations,

prior empirical evidence, and expert knowledge. These bounds ensure that the priors

adequately represent the plausible range for each parameter while accommodating un-

certainty.

This formulation establishes Beta priors for θ0 and γ, allowing for the exploration of

varying assumptions, while the uniform prior for β reflects the focus on constructing a

class of priors primarily for the scale and acceleration parameters. Further details on

sensitivity to prior imprecision are provided in Section 5.4.

The posterior distribution combines the likelihood and prior distributions, normalized

by the marginal likelihood (denoted as W ). The posterior distribution is expressed as:

π(θ0, γ, β | t) =
L(t | θ0, γ, β) · π

(
θ0−aθ0
bθ0−aθ0

)
· π
(
γ−aγ
bγ−aγ

)
· π
(
β−aβ
bβ−aβ

)
W

, (5.16)

where L(t | θ0, γ, β) represents the likelihood function for the data t given the parameters

θ0, γ, and β. The terms π
(
θ0−aθ0
bθ0−aθ0

)
, π
(
γ−aγ
bγ−aγ

)
, and π

(
β−aβ
bβ−aβ

)
correspond to the priors

for θ0, γ, and β, respectively, modeled using Beta and uniform distributions through
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linear transformations. The marginal likelihood W , also referred to as the normalizing

constant, ensures the posterior distribution integrates to one and is defined as:

W =

∫ bβ

aβ

∫ bγ

aγ

∫ bθ0

aθ0

L(t | θ0, γ, β) · π
(
θ0 − aθ0
bθ0 − aθ0

)
· π
(
γ − aγ
bγ − aγ

)
· π
(
β − aβ
bβ − aβ

)
dθ0 dγ dβ.

(5.17)

This formulation integrates the likelihood and prior distributions, enabling the posterior

to capture both prior information and evidence from the observed data.

The posterior distribution can be expressed as:

π(θ0, γ, β | t) ∝ L(t | θ0, γ, β) · π
(
θ0 − aθ0
bθ0 − aθ0

)
· π
(
γ − aγ
bγ − aγ

)
· π
(
β − aβ
bβ − aβ

)
. (5.18)

To focus on individual parameters, the marginal posterior distributions are obtained

by integrating out the other two parameters from the joint posterior distribution, as

shown in the following equations:

π(θ0 | t) =

∫ bβ

aβ

∫ bγ

aγ

π(θ0, γ, β | t) dγ dβ, (5.19)

π(γ | t) =

∫ bβ

aβ

∫ bθ0

aθ0

π(θ0, γ, β | t) dθ0 dβ, (5.20)

π(β | t) =

∫ bγ

aγ

∫ bθ0

aθ0

π(θ0, γ, β | t) dθ0 dγ. (5.21)

The Bayesian estimation of the parameters is derived from the posterior distributions.

The posterior means for θ0, γ, and β are given by:

E[θ0 | t] =

∫ bθ0

aθ0

θ0 · π(θ0 | t) dθ0, (5.22)

E[γ | t] =

∫ bγ

aγ

γ · π(γ | t) dγ., (5.23)

E[β | t] =

∫ bβ

aβ

β · π(β | t) dβ. (5.24)

Since the posterior distribution does not have a closed-form solution, numerical methods

are essential to estimate the parameters effectively. Bayesian estimation typically relies

on minimizing the squared error loss function, which corresponds to calculating the ex-

pected value of the posterior distribution. When analytical posterior distributions are
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unavailable, numerical methods become essential. In such cases, sampling-based tech-

niques like the Metropolis-Hastings algorithm, a Markov Chain Monte Carlo (MCMC)

method, are employed to approximate the posterior distributions. This algorithm is used

to sample from the posterior distribution and estimate parameter values. The parameter

vectors (θ0, γ, β) are estimated using this approach, as described in Section 5.3.

The Bayesian framework also facilitates the prediction of new data points based on

the observed data. The posterior predictive distribution is derived by integrating the

likelihood of new data over the posterior distribution of the parameters. Assuming that

t∗ is conditionally independent of the observed data t given (θ0, γ, β). For a new data

point t∗, the posterior predictive distribution is given by:

p(t∗ | t) =

∫ bβ

aβ

∫ bγ

aγ

∫ bθ0

aθ0

p(t∗ | θ0, γ, β) · π(θ0, γ, β | t) dθ0 dγ dβ. (5.25)

The computation of the posterior predictive distribution requires numerical methods, as

an analytical solution is generally not available. Samples from the posterior distribution

are generated using the Metropolis-Hastings algorithm, a Markov Chain Monte Carlo

(MCMC) method, to approximate the posterior predictive distribution. This approach

enables the prediction of future failure times at the normal stress level. The implemen-

tation of this method is discussed in detail in Section 5.3.

The bounds aθ0 , bθ0 , aγ, bγ, and aβ, bβ are critical components in defining the prior dis-

tributions and are selected based on theoretical considerations, prior empirical evidence,

and expert knowledge [31]. These bounds ensure that the priors adequately capture the

plausible range of each parameter while addressing inherent uncertainty in their values.

While the theoretical range of these parameters may extend from 0 to infinity, such un-

bounded intervals are not practical for the modeling process. Assigning an infinite range

to the parameters would lead to overly vague priors that fail to effectively incorporate

any prior knowledge.

Instead, practical bounds are chosen to reflect the realistic and plausible range of the

parameter values based on domain-specific insights. For instance, the lower bounds are

selected to be values close to zero, while the upper bounds are set to large numbers,

such as one million (1, 000, 000), to approximate a state of minimal prior knowledge

about the parameters. With the chosen bounds aθ0 , bθ0 , aγ, bγ, and aβ, bβ, the initial

hyperparameters of the Beta distributions are uniformly set to 1 (i.e., pθ0 = qθ0 = 1,
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pγ = qγ = 1, pβ = qβ = 1). This assumption reflects a uniform prior distribution over the

transformed parameter space [0, 1], ensuring that the priors exert minimal influence on

the posterior distribution. The use of uniform priors allows the observed data to play a

dominant role in precise parameter estimation and in identifying the plausible range for

the parameters.

Moreover, the hyperparameters of the Beta distributions are used to establish a class

of priors that encapsulates varying levels of belief about the parameters within these

bounds. This methodology forms an essential aspect of the Bayesian approach presented

in this work, as it enables the modeling of uncertainty and imprecision in the priors. The

selection of these bounds is particularly important for constructing robust and flexible

prior distributions that can be used to evaluate the sensitivity of the posterior to different

prior assumptions.

To assess the plausibility of these bounds and the corresponding class of priors, pos-

terior predictive checks are conducted using the Metropolis-Hastings algorithm within

the Markov Chain Monte Carlo (MCMC) framework. These checks evaluate how well

the selected priors align with the observed data and help refine the bounds to measure

the imprecision resulting from assumptions in the posterior distribution, such as the like-

lihood function and the link function. Through simulations, the full range of plausible

parameter values is explored, allowing for a comprehensive assessment of their impact

on the posterior distribution. The implementation and analysis of these checks are dis-

cussed in detail in Section 5.3. This methodological approach underscores the significance

of carefully chosen parameter bounds in addressing uncertainty and imprecision within

the Bayesian framework presented in this study.

5.3 Bayesian parameter estimation using MCMC

The posterior distributions derived in Bayesian inference often lack closed-form solu-

tions, necessitating numerical methods for estimation. One such method is Markov Chain

Monte Carlo (MCMC), a powerful class of algorithms used to generate samples from com-

plex posterior distributions. Among these, the Metropolis-Hastings algorithm is widely

recognized for its flexibility and effectiveness in Bayesian analysis. This algorithm en-

ables the approximation of posterior distributions by constructing a Markov chain whose
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stationary distribution matches the target posterior distribution.

This section focuses on implementing the Metropolis-Hastings algorithm to approxi-

mate posterior distributions of the parameters θ0, γ, and β, which characterize the Weibull

cumulative exposure model for step-stress accelerated life testing (SSALT). Additionally,

the algorithm is employed to compute the posterior predictive distribution and facilitate

posterior predictive checks, providing insights into the plausibility of model assumptions.

5.3.1 Utilizing the Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is a widely used Markov Chain Monte Carlo (MCMC)

method for sampling from posterior distributions when direct analytical solutions are

intractable. In this study, it is applied to generate samples from the posterior distribution

π(θ0, γ, β | t), where the parameters θ0, γ, and β characterize the Weibull cumulative

exposure model. The algorithm iteratively proposes new parameter values and accepts

or rejects them based on their likelihood under the target posterior distribution. This

ensures the Markov chain converges to the true posterior distribution after sufficient

iterations.

For this implementation, a Normal distribution is chosen as the proposal distribution

for each parameter. A Normal distribution is selected as the proposal distribution due

to its symmetric shape and ease of implementation. It provides efficient random walk

proposals for continuous parameters like θ0, γ, and β. Additionally, the variance of the

Normal proposal can be tuned to control the step size, which directly affects the mixing

and convergence behavior of the chain. At each iteration i, the proposed parameter values

θ′0, γ
′, and β′ are drawn as:

θ′0 ∼ N (θ
(i−1)
0 , σ2

θ0
), γ′ ∼ N (γ(i−1), σ2

γ), β′ ∼ N (β(i−1), σ2
β),

where σ2
θ0

, σ2
γ, and σ2

β are the variances of the proposal distributions for θ0, γ, and β,

respectively. These variances are critical tuning parameters that influence the efficiency

of the algorithm.

The choice of variances is crucial. Large variances may result in frequent rejection of

proposed values, leading to poor mixing, while small variances may slow the exploration of

the posterior distribution. To ensure a balance between efficient exploration of the param-

eter space and an acceptance rate within the optimal range of 20% to 40%, the variances
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σ2
θ0

, σ2
γ, and σ2

β are adjusted dynamically rather than being fixed at a specific value [27].

This adaptive approach allows the algorithm to maintain an appropriate acceptance rate

throughout the sampling process. Initial values for the parameters, (θ
(0)
0 , γ(0), β(0)), are

set to their maximum likelihood estimates (MLEs), ensuring a reasonable starting point

for the Markov chain. The Metropolis-Hastings algorithm, as detailed in Algorithm 1,

proceeds as follows:

Algorithm 1 Metropolis-Hastings Algorithm for Posterior Approximation

Require: Observed data t, initial parameter values (θ
(0)
0 , γ(0), β(0)), proposal distribu-

tions q(· | ·), number of iterations NMH , burn-in period Nburn.

Ensure: Posterior samples (θ
(i)
0 , γ

(i), β(i)) for i = 1, . . . , NMH .

1: Initialize the chain with starting values (θ
(0)
0 , γ(0), β(0)).

2: for iteration i = 1 to NMH do

3: Propose new parameter values (θ′0, γ
′, β′) from the normal proposal distributions:

θ′0 ∼ N (θ
(i−1)
0 , σ2

θ0
), γ′ ∼ N (γ(i−1), σ2

γ), β′ ∼ N (β(i−1), σ2
β).

4: Calculate the acceptance ratio:

ρ =
π(θ′0, γ

′, β′ | t) · q(θ(i−1)0 , γ(i−1), β(i−1) | θ′0, γ′, β′)
π(θ

(i−1)
0 , γ(i−1), β(i−1) | t) · q(θ′0, γ′, β′ | θ

(i−1)
0 , γ(i−1), β(i−1))

. (5.26)

5: Generate a random value u ∼ Uniform(0, 1).

6: if u ≤ min(1, ρ) then

7: Accept the proposal: (θ
(i)
0 , γ

(i), β(i)) = (θ′0, γ
′, β′).

8: else

9: Retain the current values: (θ
(i)
0 , γ

(i), β(i)) = (θ
(i−1)
0 , γ(i−1), β(i−1)).

10: end if

11: end for

12: return Posterior samples (θ
(i)
0 , γ

(i), β(i)) for i = 1, . . . , NMH .

Once the Markov chain has been generated, the initial portion of the chain, known

as the burn-in period, is discarded to eliminate the influence of the starting values. For

this analysis, a burn-in period of Nburn = 1000 iterations is applied. The remaining
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NMH − Nburn samples are used for posterior analysis, with NMH = 10, 000 ensuring

sufficient mixing and accurate estimation. To support the claim of sufficient convergence

and mixing for the MCMC procedure used in Example 5.6.1 (Case 1, Chapter 5), trace

plots for the parameters θ0 and γ are provided in Figures B.1 and B.2 in the Appendix.

These plots visually confirm good mixing behavior and stability of the posterior chains

after burn-in.

The posterior means for the parameters are calculated as the average of the retained

samples:

θ̂0 =
1

NMH −Nburn

NMH∑
i=Nburn+1

θ
(i)
0 , (5.27)

γ̂ =
1

NMH −Nburn

NMH∑
i=Nburn+1

γ(i), (5.28)

β̂ =
1

NMH −Nburn

NMH∑
i=Nburn+1

β(i). (5.29)

These posterior means provide point estimates for the parameters, enabling precise in-

ference based on the observed data and the chosen prior distributions.

5.3.2 Generating future data from the posterior predictive dis-

tribution

The generation of future datasets from the posterior predictive distribution involves sam-

pling new data points t∗ by integrating over the posterior samples of the parameters. The

steps for numerically generating future datasets are outlined below.

This algorithm uses the posterior samples obtained via the Metropolis-Hastings algorithm

to generate future datasets. Each new data point t∗j is drawn from the likelihood function

conditional on a randomly selected posterior sample of the parameters. The process is

repeated Nfuture times to generate the required number of future data points.

The predictive distribution of the future data points reflects both the uncertainty in

the parameter estimates and the variability in the data generation process. This ensures

that the generated datasets are consistent with the observed data and the Bayesian model

assumptions.
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Algorithm 2 Generating Future Data via Posterior Predictive Distribution

Require: Posterior samples of the parameters (θ
(i)
0 , γ

(i), β(i)) for i = 1, . . . , NMH , likeli-

hood function p(t∗ | θ0, γ, β), number of future data points Nfuture.

Ensure: Future data samples t∗ = {t∗1, t∗2, . . . , t∗Nfuture}.

1: Initialize an empty set for future data samples t∗.

2: for j = 1 to Nfuture do

3: Randomly select a posterior sample (θ
(i)
0 , γ

(i), β(i)), where i ∼ Uniform(1, NMH).

4: Sample a new data point t∗j from the likelihood function p(t∗ | θ(i)0 , γ
(i), β(i)).

5: Append t∗j to the set t∗.

6: end for

7: return Future data samples t∗ = {t∗1, t∗2, . . . , t∗Nfuture}.

5.3.3 Posterior predictive checks

Posterior predictive checks are used to assess the plausibility of parameter bounds and

refine prior distributions. This process involves generating replicated datasets from the

posterior predictive distribution and analyzing their properties. Specifically, the approach

focuses on extreme datasets—those with the earliest failure times (minimum datasets) and

delayed failure times (maximum datasets)—to refine the ranges for the scale parameter

(θ0), acceleration parameter (γ), and shape parameter (β). Posterior predictive checks

are an essential aspect of Bayesian data analysis, allowing for the evaluation of model

adequacy and sensitivity to assumptions. As discussed by Gelman et al. [27], these checks

involve comparing replicated datasets generated from the posterior predictive distribution

to the observed data, helping assess the plausibility of the model while refining prior

assumptions and parameter bounds.

In this analysis, both the scale parameter and the acceleration parameter are assigned

uniform prior distributions to reflect minimal prior knowledge θ0 ∼ Unif(1, 1,000,000) and

γ ∼ Unif(1, 1,000,000). For the shape parameter (β), a uniform distribution is assumed

over the range [0.5, 5]. These prior distributions aim to represent plausible parameter

values based on empirical evidence and are validated through posterior predictive checks.

This methodology provides a flexible framework to explore imprecision in prior assump-

tions and improve parameter estimates through an iterative refinement process.

The process, as outlined in Algorithm 3, involves generating replicated datasets from
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the posterior predictive distribution. The following algorithm outlines the procedure:

1. Generate replicated datasets from the posterior predictive distribution.

2. Sort the datasets to identify the maximum and minimum datasets.

3. Fit these extreme datasets to the posterior distribution to obtain refined parameter

ranges.

4. Update the parameter bounds based on these refined ranges.

Replicated datasets are generated to explore the plausible ranges for the parameters.

Sorting these datasets into extremes provides insights into the behavior of the model under

early and delayed failure scenarios. The minimum dataset (tmin) represents scenarios

where failures occur early, leading to smaller acceleration parameter values (γ) and scale

parameter values (θ0), indicating rapid failure rates. Meanwhile, the shape parameter

(β) is larger due to the compressed failure times. In contrast, the maximum dataset

(tmax), which is characterized by delayed failures, exhibits larger acceleration (γ) and

scale (θ0) parameters, reflecting slower failure rates, while the shape parameter (β) is

smaller, indicating extended failure times.

This iterative process generates extreme datasets, which are then fitted back into the

model using Algorithm 1 to refine the parameter bounds by assessing imprecision intro-

duced by vague priors and the likelihood function. By replicating data from the posterior

predictive distribution, the method explores the variability of unobserved datasets, cap-

turing plausible ranges for the parameters. This approach not only quantifies the impact

of prior assumptions but also provides a means to validate the adequacy of the model.

This methodology aligns with the Bayesian framework and posterior predictive checks

outlined by Gelman et al. [27]. Through careful replication and evaluation, it ensures

that the priors reflect realistic ranges for the parameters while maintaining sufficient

flexibility for robust posterior inference.
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Algorithm 3 Refining Parameter Bounds Using Posterior Predictive Checks

Require: Posterior samples (θ
(i)
0 , γ

(i), β(i)), number of replicated datasets R = 10, 000.

Ensure: Refined parameter bounds for θ0, γ, and β.

1: Generate R replicated datasets t*rep,r from the posterior predictive distribution:

t*rep,r ∼ p(t*rep | θ(i)0 , γ
(i), β(i)), r = 1, . . . , R.

2: Identify the maximum dataset (tmax) and the minimum dataset (tmin) by sorting

t*rep,r.

3: Fit tmax and tmin to the posterior distribution to obtain:

• Minimum dataset (tmin): Yields:

– Extreme lower bounds for γ, and θ0.

– Extreme upper bounds for β.

• Maximum dataset (tmax): Yields:

– Extreme upper bounds for γ, and θ0.

– Extreme lower bounds for β.

4: Refine the prior bounds aθ0 , bθ0 , aγ, bγ, aβ, bβ based on the estimation of the parameters

from the extreme data sets using Algorithm 1.

5: return Updated parameter bounds.

5.4 Imprecision based on a class of prior distribu-

tions

The empirical Bayesian approach employed in this study begins with the absence of prior

knowledge about the parameters of interest: the scale parameter (θ0), acceleration pa-

rameter (γ), and shape parameter (β). In such cases, vague priors are used to define

a broad parameter space. Beta priors with hyperparameters p = q = 1 (representing a
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uniform distribution and equal weight across all values within the bounds) are chosen

to initiate posterior predictive checks. These checks allow for the exploration of plau-

sible parameter ranges by replicating data from the posterior predictive distribution, as

described in Section 5.3.3.

This section introduces a robust Bayesian framework designed to address imprecision

in parameter estimation by leveraging a class of prior distributions. The methodology

combines the adaptability of empirical Bayesian analysis with the robustness of impre-

cise probabilities, facilitating the derivation of lower and upper posterior distributions.

A key innovation of this approach lies in employing extreme priors to define a class of

Beta distributions for each parameter, thereby capturing the uncertainty and imprecision

associated with Bayesian inference for SSALT data. These lower and upper posterior dis-

tributions form the foundation for defining bounds on posterior predictive distributions,

which are instrumental in predicting future datasets at the normal stress level.

After determining the plausible lower and upper bounds for the parameters θ0 (scale),

γ (acceleration), and β (shape) through posterior predictive checks, a class of Beta priors,

denoted as B, is introduced. The use of Beta distributions provides the flexibility to model

prior knowledge in terms of imprecise probabilities. Beta distributions can represent a

range of plausible beliefs about the parameters. The shape parameters p and q control

the degree of skewness and concentration. For vague priors, setting p = q = 1 results

in a uniform distribution over the defined range. Alternatively, when expert-informed

priors are available, p and q can be adjusted to reflect the expert’s beliefs, skewing the

distribution toward specific parameter values. This approach enables the incorporation

of expert knowledge when available, while still allowing for the exploration of imprecise

priors for robust Bayesian analysis.

The Beta distribution is used to represent prior beliefs on bounded parameters, with

the total fixed evidence defined as the sum of shape parameters v = p + q. This total

reflects the strength of prior information while allowing flexibility in expressing different

beliefs. For example, fixing v = 10, the priors Beta(5, 5), Beta(8, 2), and Beta(2, 8) reflect

the same level of confidence but express beliefs centered at 0.5, 0.8, and 0.2 respectively,

illustrating how prior opinions can shift toward extreme scenarios while maintaining the

same weight of evidence.
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This class is formally defined as:

B = {Beta(p, q) | p+ q = v, p > 0, q > 0},

where p and q are the shape parameters of the Beta distribution, and v = p+q represents

the total fixed evidence or information encapsulated by the prior [4]. This total reflects

the strength of prior information while allowing flexibility in expressing different beliefs.

For example, fixing v = 10, the priors Beta(5, 5), Beta(8, 2), and Beta(2, 8) reflect the

same level of confidence but express beliefs centered at 0.5, 0.8, and 0.2 respectively,

illustrating how prior opinions can shift toward extreme scenarios while maintaining the

same weight of evidence. The scale parameter, transformed to the interval [0, 1], follows

a Beta distribution such that (θ0 − aθ0)/(bθ0 − aθ0) ∼ Beta(pθ0 , qθ0), where the lower and

upper bounds for the scale parameter, denoted as aθ0 and bθ0 , respectively, define the

parameter space. The class of priors for the scale parameter is defined as:

Bθ0 = {Beta(pθ0 , qθ0) | pθ0 + qθ0 = vθ0 , pθ0 > 0, qθ0 > 0},

where pθ0 and qθ0 are the shape parameters of the Beta distribution, and vθ0 = pθ0 + qθ0

represents the total fixed evidence or information encapsulated by the prior for the scale

parameter. This flexible formulation allows the Beta distribution to vary between extreme

cases, capturing a range of beliefs about θ0.

This class of priors contributes to the posterior and posterior predictive distributions

by capturing the impact of extreme scenarios. When the shape parameter of the Beta

distribution satisfies qθ0 � pθ0 , the prior is heavily skewed toward the lower bound aθ0 ,

reflecting smaller scale values. This configuration leads to posterior and posterior pre-

dictive distributions that favor early failure times, which are consistent with compressed

failure mechanisms. Conversely, when pθ0 � qθ0 , the prior is heavily skewed toward the

upper bound bθ0 , reflecting larger scale values. In this case, the posterior and posterior

predictive distributions favor delayed failure times, corresponding to longer lifetimes.

By systematically varying pθ0 and qθ0 within the class of Beta priors Bθ0 , this approach

quantifies the imprecision in the posterior distribution caused by uncertainty in the prior

assumptions. Specifically, a lower posterior distribution based on priors skewed toward

the lower bound predicts smaller scale values, leading to shorter expected lifetimes. On

the other hand, an upper posterior distribution based on priors skewed toward the upper

bound predicts larger scale values, resulting in longer expected lifetimes.
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The class of priors for the acceleration parameter γ is developed to capture the impre-

cision associated with estimating this parameter, which represents the activation energy

affecting failure mechanisms. The acceleration parameter is transformed to the interval

[0, 1] and modeled using a Beta distribution, where (γ − aγ)/(bγ − aγ) follows a Beta

distribution with shape parameters pγ and qγ. Here, aγ and bγ represent the lower and

upper bounds of the acceleration parameter, respectively, defining its range. The class of

Beta priors for γ is expressed as:

Bγ = {Beta(pγ, qγ) | pγ + qγ = vγ, pγ > 0, qγ > 0},

where pγ and qγ are the shape parameters of the Beta distribution, and vγ = pγ +

qγ represents the total fixed evidence encapsulated by the prior. This structure allows

flexibility to represent a range of beliefs about γ, from vague to concentrated priors.

This class of priors influences the posterior and posterior predictive distributions by

capturing the effects of extreme values of γ. When pγ � qγ, the prior is heavily skewed

toward the upper bound bγ, which corresponds to scenarios with lower acceleration val-

ues. As a result, failure times are delayed, leading to longer lifetimes. Consequently,

the posterior and posterior predictive distributions favor outcomes where lifetimes are

extended due to slower failure mechanisms.

In contrast, when qγ � pγ, the prior is heavily skewed toward the lower bound

aγ, reflecting scenarios with higher acceleration values. This configuration results in

increased failure rates and earlier failure times, as the posterior and posterior predictive

distributions align with more rapid failure mechanisms.

By varying pγ and qγ within the defined class of priors Bγ, the approach measures

the imprecision introduced by uncertain prior assumptions. Specifically, a lower posterior

distribution, derived from priors skewed toward the lower bound, predicts lower values of γ

and shorter expected lifetimes. Conversely, an upper posterior distribution, derived from

priors skewed toward the upper bound, predicts higher values of γ and longer expected

lifetimes.

The initial estimation of the shape parameter β is performed under a uniform prior

within the range [0.5, 5]. Once estimated, the shape parameter is fixed to its posterior

mean value, as the aim is to measure the imprecision related to the failure mechanisms

resulting from the scale (θ0) and acceleration (γ) parameters, in line with the developed

approaches in Chapter 3 and Chapter 4. By fixing β, the focus shifts to modeling the
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uncertainty in the scale and acceleration parameters, which are allowed to vary within

the defined class of Beta priors. This analysis reflects the methodological emphasis on

exploring the impact of imprecise priors for parameters that are most sensitive in the

likelihood function and the link function.

The posterior distributions for the scale (θ0) and acceleration (γ) parameters allow for

the derivation of Bayesian estimates under varying prior assumptions. These posterior

distributions are obtained separately, with the lower posterior distribution derived using

priors heavily skewed toward the lower bounds for the scale parameter and the lower

bounds for the acceleration parameter. The resulting estimates, denoted as Elower[θ0, γ |

t], correspond to early failure mechanisms, as smaller scale values and acceleration values

lead to compressed failure times under accelerated failure conditions.

Conversely, the upper posterior distribution is derived using priors heavily skewed

toward the upper bounds for the scale parameter and the upper bounds for the accelera-

tion parameter. This configuration produces estimates Eupper[θ0, γ | t], reflecting delayed

failure mechanisms. Here, larger scale values and larger acceleration values correspond

to extended lifetimes and reduced failure rates, indicative of slower failure mechanisms.

The posterior predictive distributions, derived from these separately obtained poste-

rior distributions, encapsulate the range of possible outcomes. The lower posterior pre-

dictive distribution, plower(t
∗ | t), predicts failure times aligned with accelerated and early

failure scenarios. In contrast, the upper posterior predictive distribution, pupper(t
∗ | t),

predicts failure times associated with delayed failure scenarios, driven by slower failure

mechanisms and longer lifetimes.

This methodology provides a robust framework for analyzing uncertainty in step-

stress accelerated life testing (SSALT) data. By systematically deriving the lower and

upper posterior distributions separately, this approach captures the full range of potential

failure scenarios. These predictions reflect both accelerated and delayed failure conditions,

enabling comprehensive analysis of the imprecision associated in SSALT data.
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5.5 Lower and upper posterior predictive empirical

survival functions

The construction of empirical survival functions based on the posterior predictive distri-

butions is a critical step in quantifying uncertainty in survival probabilities at the normal

stress level. These predictive empirical survival functions enable the prediction of fu-

ture observations under normal stress conditions, providing robust estimates of survival

probabilities while explicitly accounting for the imprecision associated with the data.

This approach explicitly models the uncertainty resulting from failure mechanisms in

step-stress accelerated life testing (SSALT) data.

The lower posterior predictive empirical survival function, S(t), is derived from the

lower posterior predictive distribution. The process begins by generating multiple repli-

cated datasets, t∗lower, at the normal stress level. Specifically, nd replicated datasets are

generated to capture the uncertainty in the lower posterior predictive distribution. Each

replicated dataset consists of no predicted failure times, representing observations at the

normal stress level. For a single dataset, the survival probability at time t is computed

as the proportion of the no predicted failure times that exceed t. To incorporate the vari-

ability across all nd datasets, the average survival probability at time t is calculated. This

results in the construction of the lower posterior predictive empirical survival function

as:

S(t) =
1

nd

nd∑
i=1

P [T ∗lower,i,j ≥ t], (5.30)

where T ∗lower,i,j denotes the j-th predicted failure time from the i-th replicated dataset, t

is the time of interest, nd is the total number of replicated datasets, and no is the number

of observations in each dataset. This survival function captures early failure scenarios,

as it is based on smaller scale and smaller acceleration parameter values, which compress

the failure times.

Similarly, the upper posterior predictive empirical survival function, S(t), is con-

structed using the upper posterior predictive distribution. The process begins by gener-

ating multiple replicated datasets, t∗upper, at the normal stress level. Specifically, nd repli-

cated datasets are generated to capture the uncertainty in the upper posterior predictive

distribution. For each dataset, survival probabilities are computed for no observations,
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and the average survival probability at time t across all nd datasets is calculated. This

results in the upper posterior predictive empirical survival function, defined as:

S(t) =
1

nd

nd∑
i=1

P [T ∗upper,i,j ≥ t], (5.31)

where T ∗upper,i,j denotes the j-th predicted failure time from the i-th replicated dataset, t

is the time of interest, nd is the total number of replicated datasets, and no is the number

of observations in each dataset. This survival function captures delayed failure scenarios,

as it is based on larger scale and larger acceleration parameter values, which extend the

failure times. Together, these survival functions encapsulate the range of uncertainty in

survival probabilities at the normal stress level.

The process for constructing the lower and upper posterior predictive empirical sur-

vival functions is outlined in the following algorithm:

Algorithm 4 Construction of Empirical Survival Functions

Require: Posterior predictive distribution (lower or upper), number of replicated

datasets nd, number of observations per dataset no, time points t

Ensure: Empirical survival function S(t)

1: Initialize an empty list to store survival probabilities across datasets.

2: for i = 1 to nd do

3: Generate a new dataset t∗00 consisting of no failure times from the specified posterior

predictive distribution.

4: Compute the survival probability P [Ti,j ≥ t] for each observation in the dataset.

5: Compute the survival probability for the dataset as the proportion of observations

exceeding t.

6: Append the dataset survival probability to the list.

7: end for

8: Compute the average survival probability across all datasets:

S(t) =
1

nd

nd∑
i=1

P [Ti,j ≥ t].

9: return Empirical survival function S(t)

The lower empirical survival function highlights early failure scenarios caused by

smaller scale and acceleration parameters, while the upper empirical survival function
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captures delayed failure scenarios associated with larger scale and acceleration parame-

ters. The lower survival function represents a pessimistic scenario indicating early failures,

while the upper survival function reflects an optimistic scenario, indicating extended life-

times and delayed failures. The difference between these two survival functions quantifies

the imprecision arising from the uncertainty in the data, the assumed likelihood, and

the link function. If the assumed likelihood and link function are correct, the impreci-

sion will be minimal, suggesting consistency between the model and the observed data.

Conversely, significant differences between the lower and upper survival functions may

indicate potential misspecification in the likelihood or the link function.

It should be emphasized that the resulting inferences of this method indicate that the

lower posterior distribution is always less than the upper posterior distribution due to

the effect of the extreme priors. This relationship propagates to the posterior predictive

distributions, where the lower posterior predictive distribution is less than the upper

posterior predictive distribution. Consequently, the lower empirical predictive survival

function is always less than the upper empirical predictive survival function, which can

be formally expressed as:

S(t) < S(t), ∀t.

This inequality reflects the imprecision introduced by the extreme priors and will be

illustrated through several examples in Section 5.6. The derivation of this result requires

a mathematical proof, which we propose as a topic for future research.

Furthermore, the performance of this approach will be thoroughly evaluated via sim-

ulation studies in Section 5.7. These studies will explore the behavior of the predictive

empirical survival functions under various assumptions about the likelihood, link func-

tion, and parameter ranges, providing deeper insights into the robustness of the proposed

method.

5.6 Illustrative examples

This section presents two examples to illustrate the proposed method outlined in Sec-

tion 5.4. These examples align with the experimental settings and data used in Chapters

3 and 4 to facilitate a comprehensive comparison of the results obtained using the three

methods.



5.6. Illustrative examples 129

In Example 5.6.1, three datasets are generated with n = 10 observations per stress

strategy. These strategies consist of two accelerated stress levels, along with a dataset

collected at the normal stress level. In Example 5.6.2, the sample size is increased to

n = 100 to evaluate the impact of larger sample sizes on the proposed method.

In previous chapters, comparisons between datasets relied on pairwise assumptions,

as seen in the likelihood ratio test and log-rank test methods presented in Chapters 3 and

4. These methods required distinct datasets across stress levels to establish comparisons,

making the inclusion of specific datasets, such as those at the normal stress level, essential

for analysis.

In contrast, the method introduced in this chapter does not require pairwise compar-

isons or the inclusion of specific datasets, such as those at the normal stress level. Instead,

this approach allows for greater flexibility in dataset selection, enabling comparisons that

are not restricted to predefined datasets. While incorporating data at the normal stress

level can enhance the analysis and provide additional insights, it is not a requirement for

the proposed method, highlighting its adaptability and broader applicability. This flex-

ibility makes the approach particularly advantageous when dealing with limited data or

even a single dataset. However, in this chapter, pairwise datasets are included, as in the

previous chapters, purely for comparative purposes. It is important to emphasize that

such pairwise datasets are not necessary for the implementation of the proposed method,

demonstrating its adaptability to diverse data scenarios.

Furthermore, while the method does not require equal sample sizes at each stress

strategy, for consistency and simplicity in these examples, equivalent sample sizes n are

assumed across all stress levels. This setup ensures that the comparisons are straightfor-

ward and the results are directly comparable across the different methods. By maintaining

consistent datasets across Chapters 3, 4, and this chapter, the examples provide a clear

basis for comparing the performance and conclusions of the three methods under identical

experimental settings.

Example 5.6.1 This example consists of four cases. In Case 1, the shape parameter

is assumed to be constant and known for each strategy. The Arrhenius link function is

implemented to connect the scale parameters at all stress levels within the strategies, both

for the simulated data and for the analysis. In Case 2, the shape parameter is considered

unknown and is estimated during the analysis. In Case 3, the Arrhenius link function is
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replaced by the Eyring link function. This replacement is done to evaluate the model’s

performance when the assumed link function does not provide a good fit. The focus of

Case 3 is to examine the interval [γ
m,0
, γm,0] and its impact on the related lower and upper

empirical predictive survival functions at the normal stress level. In Case 4, the shape

parameter is set to 1, assuming an exponential model to test the method under another

misspecification with the Eyring link function. This case tests the method’s performance

and robustness under a misspecified likelihood and link function.

Three data sets were generated corresponding to three different strategies. In the first

strategy, the experiment was set such that the normal temperature level was k00 = 300

in Kelvin, with the scale parameter θ00 = 7000. This strategy represents the normal

use stress level. Ten observations were generated from the Weibull distribution. The

Arrhenius link function was assumed to relate the scale parameters across all strategies,

with the acceleration parameter set to γ = 5000.

In the second strategy, the accelerated experiment was set with increased temperature

levels of k10 = 350, k11 = 400, and k12 = 450 in Kelvin for s10, s
1
1, and s12, respectively. The

stress level increased from s10 to s11 at τ 11 = 300, and from s11 to s12 at τ 12 = 350. The

corresponding scale parameters were θ10 = 647.23, θ11 = 108.52, and θ12 = 8.72 for s10, s
1
1,

and s12, respectively.

In the third strategy, the accelerated experiment was set with increased temperature

levels of k20 = 380, k21 = 420, and k22 = 460 in Kelvin for s20, s
2
1, and s22, respectively. The

stress level increased from s20 to s21 at τ 21 = 100, and from s21 to s22 at τ 22 = 130. The

corresponding scale parameters were θ20 = 209.53, θ21 = 59.84, and θ22 = 21.25 for s20, s
2
1,

and s22, respectively. The generated failure times are presented in Table 5.1.

To analyze the data sets provided in Table 5.1, the Weibull cumulative exposure model

is applied to the accelerated stress strategies m1 and m2, while the Weibull model is used

for the normal stress strategy m0. The analysis is conducted in a pairwise manner between

mi (i = 1, 2) and m0 to estimate the parameter intervals [γ
m,0
, γm,0] and [θm,0, θm,0]. The

following procedure outlines the analysis specifically for m1 and m0.

In the first step, uniform prior distributions are assigned to the scale parameter (θ0)

and the acceleration parameter (γ) over the range [1, 100000]. The investigation of plau-

sible parameter values is carried out through posterior predictive checks, which serve to

assess and refine the initial parameter ranges. This iterative process ensures that the
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Strategies Stress level Data sets Failures times

m0 s0 t0 1755.83, 4149.09, 4799.74, 5095.24, 7454.25,

7563.30, 8245.62, 10385.32, 11166.58, 12411.59

m1 s10 t10 185.63, 222.74

m1 s11 t11 300.66, 320.37, 325.00, 341.08, 342.94

m1 s12 t12 359.43, 360.06, 371.28

m2 s30 t20 14.28, 42.54

m2 s21 t21 101.73, 105.56, 108.97, 120.80, 123.50

m2 s22 t22 138.93, 140.52, 146.53

Table 5.1: A simulated data of Example 5.6.1

priors capture prior knowledge while adequately representing plausible parameter values

derived from the data. The posterior predictive checks involve several key steps to re-

fine the parameter bounds iteratively. First, replicated datasets are generated from the

posterior predictive distribution to capture the variability and uncertainty in the predic-

tions. These datasets are then sorted to identify the maximum and minimum datasets,

representing optimistic and pessimistic failure scenarios, respectively. Next, the extreme

datasets are fitted to the posterior distribution to obtain refined parameter ranges.

The analysis of extreme datasets provides valuable insights into the range of uncer-

tainty in parameter estimates. The minimum dataset represents early failure scenarios

and yields pessimistic parameter estimates, while the maximum dataset reflects delayed

failure scenarios, resulting in optimistic parameter estimates. For the minimum dataset,

the failure times for the normal stress strategy m0 were t0,min = {12.72, 246.45, 643.95,

1052.23, 1761.57, 2061.41, 3179.23, 4075.14, 4701.15, 5781.78}, and for the accelerated stress

strategym1, the failure times were t1,min = {0.50, 19.88, 59.15, 79.89, 151.36, 208.63, 272.01,

304.45, 315.65, 334.40}. After fitting the minimum dataset to the posterior distribution,

the lower bounds for the parameters were obtained as aθ0 = 2800.22 and aγ = 3753.12.

Conversely, for the maximum dataset, the failure times for the normal stress strat-

egy m0 were t0,max = {8124.85, 9435.63, 10754.89, 10794.74, 12531.77, 14480.72, 15341.75,

16211.28, 20707.48, 26759.62}, and for the accelerated stress strategy m1, the failure times

were t1,max = {353.97, 357.18, 357.88, 361.99, 369.39, 373.78, 383.47, 388.92, 397.74, 453.91}.
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After fitting the maximum dataset to the posterior distribution, the upper bounds for

the parameters were determined as bθ0 = 15979.51 and bγ = 4965.96.

This analysis highlights the range of uncertainty in the scale parameter θ0 and the

acceleration parameter γ. The lower bounds aθ0 and aγ correspond to pessimistic scenar-

ios associated with early failures, while the upper bounds bθ0 and bγ capture optimistic

scenarios reflecting delayed failures.

These results are integral to the robust Bayesian framework developed in this chapter,

as they quantify the imprecision inherent in the failure mechanisms under normal and

accelerated stress conditions. After determining the plausible ranges of the parameters,

imprecision is incorporated by introducing a class of priors for the parameters. This

approach enables the derivation of separate lower and upper posterior distributions, which

include the observed data and consider extreme failure scenarios for robust analysis.

The choice of the Beta distribution with shape parameters p = 1 and q = 10 is

intended to introduce heavy skewness in the prior, which reflects a form of strong prior

belief concentrated near one end of the parameter range. This skewed distribution is used

to determine the bounds of the class of priors, capturing a wide range of potential values

to obtain extreme prior scenarios and quantify the impact of prior uncertainty.

The estimation process begins with the identification of the lower and upper bounds of

the scale and acceleration parameters, which are based on these extreme classes of priors.

The lower posterior distribution is derived by setting the scale parameter such that its

transformation, (θ0 − aθ0)/(bθ0 − aθ0), follows a Beta distribution with shape parameters

p = 1 and q = 10. The choice of the Beta distribution with shape parameters p = 1

and q = 10 is intended to introduce heavy skewness in the prior, which reflects a form

of strong prior belief concentrated near one end of the parameter range. This skewed

distribution is used to determine the bounds of the class of priors, capturing a wide range

of potential values to obtain extreme prior scenarios and quantify the impact of prior

uncertainty. Similarly, the acceleration parameter is modeled using the transformation

(γ − aγ)/(bγ − aγ), with the same Beta distribution parameters. This configuration

captures early failure scenarios, emphasizing smaller values of the scale and acceleration

parameters.

After deriving the lower posterior distribution, parameter values for the lower scale

and acceleration parameters are estimated. These estimates are then used to construct
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the posterior predictive distribution, which informs the construction of the lower empir-

ical predictive survival function. This survival function reflects the pessimistic scenario

associated with early failures, incorporating imprecision arising from variability in the

likelihood and link functions.

For the upper posterior distribution, the scale parameter is modeled such that its

transformation, (θ0 − aθ0)/(bθ0 − aθ0), follows a Beta distribution with shape parameters

p = 10 and q = 1. The acceleration parameter is similarly modeled with the transforma-

tion (γ − aγ)/(bγ − aγ), using the same Beta distribution parameters. This configuration

highlights delayed failure scenarios, characterized by larger values of the scale and accel-

eration parameters

Following the estimation of the upper posterior distribution, parameter values for the

upper scale and acceleration parameters are obtained. These values are then used to

construct the upper posterior predictive distribution, leading to the construction of the

upper empirical predictive survival function. This survival function reflects the optimistic

scenario of delayed failures, accounting for imprecision in the failure mechanisms.

Additionally, a precise predictive survival function is constructed to represent a uni-

form belief across the parameter space. For this purpose, the scale parameter is modeled

such that its transformation, (θ0−aθ0)/(bθ0−aθ0), follows a Beta distribution with shape

parameters p = 1 and q = 1. The acceleration parameter is similarly modeled using the

transformation (γ − aγ)/(bγ − aγ), with identical Beta distribution parameters.

The iterative process ensures the derivation of robust estimates for the lower, up-

per, and precise survival functions, capturing the full range of imprecision introduced by

variability in the likelihood, link functions, and parameter uncertainties. This compre-

hensive framework provides a nuanced evaluation of survival probabilities under extreme

scenarios.

It should be noted that, in the previous chapters, the transformed data are based on

the overall values [γ, γ], obtained as the minimum and maximum matching values for the

pairwise tests, correspondingly. All failure times at the higher strategies are transformed

to the normal stress level based on the overall values [γ, γ]. Consequently, the failure

times at the higher strategies m1 and m2 are transformed into interval-valued data at the

normal stress level s0 in strategy m0. In this chapter, we developed a similar technique to

examine whether there is a difference in the analysis obtained from data sets coming from
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Cases Strategies aγ γ γ γ bγ aθ0 θ0 θ0 θ0 bθ0 aβ β bβ

Case 1
m1m0

m2m0

3753.12 3985.73 4772.22 4905.07 4965.95

3861.584 4085.23 4934.18 4940.36 4947.77

2800.22 4619.18 7449.79 10400.70 15979.51

2550.402 4451.85 6809.65 10397.66 16103.02

2 2 2

2 2 2

Case 2
m1m0

m2m0

3981.75 4498.09 5217.13 6128.03 6694.78

3867.85 3938.93 5200.14 6368.05 6401.81

4733.33 6179.69 8455.22 13174.73 14272.1

4239.51 4351.42 8380.49 18308.52 18421.65

1.10 2.14 3.24

0.74 1.77 3.01

Case 3
m1m0

m2m0

3547.35 3890.77 4850.17 5625.487 6014.52

3708.34 4235.13 4813.74 5605.31 6141.73

4480.60 5634.27 8331.25 12532.23 13856.21

4668.55 5819.96 8092.90 12090.35 12888.59

1.014 2.16 3.78

0.92 1.75 3.34

Case 4
m1m0

m2m0

3178.74 4249.40 5506.00 6762.83 7284.22

3160.57 4093.27 5103.00 6332.44 6776.257

3485.91 5960.11 11179.69 24782.76 27705.37

3276.34 5282.97 8882.02 21691.27 24096.78

1 1 1

1 1 1

Table 5.2: [θm,0, θm,0] and [γ
m,0
, γm,0] for Example 5.6.1.

different experimental settings or not. This technique aims to obtain the lower posterior

predictive in a manner that we obtain the minimum values of the parameters of the

two lower posteriors distributions in the posterior predictive distribution. Similarly, the

upper posterior predictive is obtained in a manner that we obtain the maximum values

of the parameters of the two upper posterior distributions in the posterior predictive

distribution. We define these posterior predictive distributions as the minimum and

maximum posterior predictive distributions.

In Case 1, where the shape parameter is assumed to be constant and known, the

results demonstrate relatively narrow intervals for both the scale parameter (θ0) and the

acceleration parameter (γ) compared to the other cases, as presented in Table 5.2. This

indicates low imprecision in the parameter estimates across all cases.

Figure 5.1 illustrates the lower and upper empirical predictive survival functions de-

rived for the data coming from m0 and m1, as well as m0 and m2. The survival functions

exhibit similar patterns, reflecting consistency in the estimated failure times across differ-

ent stress strategies. Additionally, the survival functions constructed using the minimum

and maximum posterior predictive distributions align closely with those obtained for m1

and m2, further supporting the observation of minimal imprecision.

When comparing these results with those obtained in Chapter 3 (Example 3.4.1), it is

observed that the imprecision in the lower and upper empirical predictive survival func-

tions in this chapter is relatively large. A similar observation can be made by comparing

the results with Chapter 4 (Example 4.3.1). The imprecision illustrated in this case is

relatively greater than that observed in Chapter 4. The comparisons highlight that the

method developed here captures a wider range of imprecision and uncertainty in survival

probabilities.
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(a) m0 and m1.
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(b) m0 and m2
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(c) Using min and max

Figure 5.1: Lower and upper empirical predictive survival functions for Case 1, Exam-

ple 5.6.1.
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(b) m0 and m2

0 5000 10000 15000 20000 25000
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Time

S
ur

vi
va

l P
ro

ba
bi

lit
y

S
S

(c) Using min and max

Figure 5.2: Lower and upper empirical predictive survival functions for Case 2, Exam-

ple 5.6.1.

In Case 2, where the shape parameter is treated as unknown and estimated, slightly

wider intervals for the scale and acceleration parameters are observed compared to Case 1.

Despite this increase in imprecision, the results remain consistent across stress strategies

m1 and m2, as shown in Table 5.2. This indicates that the inclusion of additional vari-

ability in the parameter estimates does not significantly alter the predictive performance

of the survival functions.

The survival functions in Figure 5.2 for m0 and m1, as well as m0 and m2, reveal minor

differences compared to Case 1, reflecting the slight increase in imprecision. The minimum

and maximum posterior predictive distributions exhibit a marginally less imprecision, but

the overall behavior of the survival functions remains consistent with those observed in

Case 1, suggesting robustness of the method under this scenario.

In Case 3, the Arrhenius link function is replaced with the Eyring link function to as-
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sess the method’s performance under a misspecified link function. The results, presented

in Table 5.2, reveal moderate intervals for the scale and acceleration parameters, with a

noticeable increase in imprecision compared to Cases 1 and 2. The introduction of the

Eyring link function contributes to additional imprecision, particularly in the survival

functions derived from the minimum and maximum posterior predictive distributions.

From Figure 5.3, the survival functions for the data coming from m0 and m1, as

well as m0 and m2, remain largely consistent with those observed in the previous cases.

However, the survival functions constructed from the minimum and maximum poste-

rior predictive distributions exhibit minimal imprecision, suggesting that the proposed

method maintains robustness despite the link function misspecification.

Notably, in contrast to the results obtained using the methods presented in Chapter

3 (Example 3.4.1) and Chapter 4 (Example 4.3.1), which revealed significant differences

due to the increased imprecision resulting from link function misspecification, the NPI

approach developed in these chapters effectively captures and quantifies the imprecision

and uncertainties associated with such misspecifications. However, the method developed

in this chapter demonstrates greater consistency in incorporating the inherent imprecision

in the comparisons across different cases.

Although the cases appear similar in the current analysis, the comparisons reveal that

the imprecision captured by the lower and upper NPI survival functions in Chapters 3

and 4 is more pronounced. This results in a wider gap between the lower and upper

bounds in those chapters, whereas in the current approach, the imprecision is captured

more comprehensively and consistently. As a consequence, the developed approach in

this chapter leads to more balanced and stable estimates, ensuring that the observed

differences between the lower and upper empirical predictive survival functions remain

nearly consistent across various experimental settings and different cases.

In Case 4, where the shape parameter is fixed to 1 (exponential model) and the Eyring

link function is applied, the results reveal considerably wider intervals for the scale and

acceleration parameters, as presented in Table 5.2. The combination of the fixed shape

parameter and the misspecified link function introduces substantial imprecision in the

predictive survival functions across all scenarios.

Figure 5.4 shows that the survival functions corresponding to the data from m0 and

m1, as well as m0 and m2, exhibit a high degree of imprecision, similar to those de-
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(a) m0 and m1
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(b) m0 and m2
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(c) Using min and max

Figure 5.3: Lower and upper empirical predictive survival functions for Case 3, Exam-

ple 5.6.1.

rived from the minimum and maximum posterior predictive distributions. Despite the

overall high imprecision observed across all scenarios, the survival functions remain rel-

atively consistent without significant differences between the strategies. This suggests

that the combined effect of the fixed shape parameter and the misspecified link function

introduces substantial uncertainty uniformly across all settings, reinforcing the need for

careful consideration of model assumptions in the analysis.

A comparison with the corresponding analysis in Chapter 3 (Example 3.4.1) suggests

that the imprecision observed in the predictive survival functions across all scenarios

in this chapter is greater than that observed in Chapter 3. This indicates that the

combined effects of the misspecified likelihood and link function introduce a higher level

of uncertainty in the current analysis compared to the previous approach in Chapter 3.
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(b) m0 and m2
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(c) Using min and max

Figure 5.4: Lower and upper empirical predictive survival functions for Case 4, Exam-

ple 5.6.1.
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Cases Strategies aγ γ γ γ bγ aθ0 θ0 θ0 θ0 bθ0 aβ β bβ

Case 1
m1m0

m2m0

4764.51 4809.84 4951.63 5083.55 5160.00

4167.64 4655.66 4862.01 5044.09 5305.97

6453.74 6533.5 7014.83 7260.73 7319.21

5203.43 5343.02 6171.00 7113.75 7173.04

2 2 2

2 2 2

Case 2
m1m0

m2m0

3038.84 3028.65 4841.44 5092.85 5166.72

4827.37 4862.64 4966.77 5062.13 5085.58

6021.37 6029.34 6744.45 7561.74 7605.30

6371.30 6596.19 6817.75 7060.09 7467.20

2.00 2.14 2.66

2.00 2.16 2.56

Case 3
m1m0

m2m0

4235.65 4249.52 4551.45 4917.91 4956.58

4339.11 4422.30 4603.60 4756.77 4860.89

6141.92 6181.21 6940.48 7732.75 7763.74

6122.61 6324.10 6903.83 7740.49 7871.46

2 2.14 2.72

2.00 2.16 2.78

Case 4
m1m0

m2m0

4511.74 4766.26 5129.55 5541.21 5774.66

4230.48 4456.34 4820.57 5152.42 5280.67

5157.36 6008.17 7412.14 9495.93 10182.38

5119.85 5768.00 7284.37 9355.90 10127.56

1 1 1

1 1 1

Table 5.3: [θm,0, θm,0] and [γ
m,0
, γm,0] for Example 5.6.2.

Across the four cases, the comparison of survival functions demonstrates the increas-

ing impact of parameter imprecision and model misspecification on the predictive perfor-

mance. Cases 1 through 3 show relatively consistent results, with no significant differences

in the survival functions across strategies, reflecting the robustness of the method under

these scenarios. However, in Case 4, the imprecision is substantially higher, leading to

greater divergence in the survival functions across all scenarios.

Example 5.6.2 This example extends the previous analysis by generating a larger data

set with n = 100 observations per strategy for all cases. The objective is to evaluate the

impact of increased data quantity on the resulting inference. The experimental conditions

remain the same as described in Example 5.6.1, and the resulting parameter intervals for

all cases are presented in Table 5.3.

The analysis of the larger data set demonstrates several key differences compared to

the smaller data set (n = 10). Notably, the increased sample size results in narrower

intervals for the acceleration parameter γ, leading to improved precision in parameter

estimation. This effect is evident across all cases and suggests that the increased data

quantity enhances the precision of the results.

In Case 1, where the shape parameter is assumed constant and known, the larger data

set results in narrower parameter intervals, reducing imprecision in the empirical predic-

tive survival functions. Figure 5.5 shows that the lower and upper empirical predictive

survival functions exhibit less divergence, indicating more precise failure time estimates.



5.6. Illustrative examples 139

0 5000 10000 15000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

S
ur

vi
va

l P
ro

ba
bi

lit
y

S
S

(a) m0 and m1
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(b) m0 and m2
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(c) Using min and max

Figure 5.5: Lower and upper empirical predictive survival functions for Case 1 with

n = 100, Example 5.6.2.

In Case 2, where the shape parameter is estimated, the increased sample size similarly

results in narrower intervals, as shown in Figure 5.6, demonstrating improved precision

compared to the smaller sample.
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(b) m0 and m2
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(c) Using min and max

Figure 5.6: Lower and upper empirical predictive survival functions for Case 2 with

n = 100, Example 5.6.2.

In Case 3, where the Eyring link function introduces model misspecification, the in-

creased data set mitigates the impact of misspecification, resulting in reduced imprecision

in the survival function estimates. Figure 5.7 confirms that the predictive survival func-

tions align more closely compared to the smaller sample scenario.
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(b) m0 and m2
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(c) Using min and max

Figure 5.7: Lower and upper empirical predictive survival functions for Case 3 with

n = 100, Example 5.6.2.

In Case 4, where the shape parameter is fixed to 1, assuming an exponential model

with the Eyring link function, the larger data set reduces but does not eliminate the

substantial imprecision introduced by the misspecified likelihood and link function. Fig-

ure 5.8 illustrates a noticeable improvement in the precision of the survival functions.
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(b) m0 and m2
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(c) Using min and max

Figure 5.8: Lower and upper empirical predictive survival functions for Case 4 with

n = 100, Example 5.6.2.

This example demonstrates that increasing the number of observations reduces the

imprecision in the lower and upper empirical predictive survival functions, leading to

narrower parameter intervals and more precise estimates.
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5.7 Simulation studies

In this section, simulation studies are performed to assess the performance of the proposed

method outlined in this chapter. The simulation follows the same procedure as in the

previous chapters, utilizing three SSALT data strategies under the experimental settings

described in Example 5.6.1.

In the first strategy, the normal stress level is defined by assuming θ00 = 7000 with the

normal temperature level set at k00 = 300. The second strategy incorporates three stress

levels: k10 = 350, k11 = 400, and k12 = 450, with stress transitions occurring at τ 11 = 300

and τ 12 = 350. The third strategy also includes three stress levels: k20 = 380, k21 = 420,

and k22 = 460, with stress level changes at τ 21 = 100 and τ 22 = 130. Additionally, the

shape parameter is set to β = 2, and the Arrhenius link function parameter γ between

all stress levels in the accelerated strategies is assumed to be γ = 5000.

This simulation was run 10,000 times with the data simulated from the proposed

model with different numbers of observations at each strategy, which are n = 10, 50,

and 100. The performance of this simulation is investigated by the result of simulating

a future observation at the normal strategy m0. This is to examine whether the future

observation of the normal stress level mixes without distinction with the predicted data at

the normal strategy. The performance is inspected by considering if the future observation

has surpassed the quartiles of the lower and upper survival functions for 1 − q= 0.75,

0.50, and 0.25. In this method, the quartiles have been used for the overall performance

as providing a suitable indicator as well as other different quantiles similarly can be used.

First, the proportions are computed to determine whether the future observation ex-

ceeds the quartiles of the lower and upper survival functions in the expected proportions.

For a well-performing method, the first, second, and third quartiles of the lower survival

functions should be greater than 0.75, 0.50, and 0.25, respectively. Similarly, the first,

second, and third quartiles of the upper survival functions should be less than 0.75, 0.50,

and 0.25, respectively.

The simulation studies are conducted under three different cases. In Case 1, the

scenario described in Example 5.6.1 is considered, where the shape parameter is assumed

to be constant and known. Table 5.4 and Figures 5.9–5.11 present the performance of

the proposed method for this setting across sample sizes of n = 10, 50, 100. These figures
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m1m0 n = 10 n = 50 n = 100

1− q qU qL qU qL qU qL

0.75 0.4387 0.9323 0.5948 0.8665 0.6483 0.8425

0.50 0.1898 0.7605 0.3265 0.6245 0.4058 0.5991

0.25 0.0671 0.5803 0.1374 0.3732 0.1788 0.3636

m2m0 n = 10 n = 50 n = 100

1− q qU qL qU qL qU qL

0.75 0.4345 0.9355 0.5942 0.8615 0.6391 0.8367

0.50 0.1963 0.7539 0.3280 0.6220 0.3582 0.5966

0.25 0.0652 0.5785 0.1345 0.3703 0.1725 0.3582

γ and γ n = 10 n = 50 n = 100

1− q qU qL qU qL qU qL

0.75 0.4445 0.9394 0.5951 0.8627 0.6472 0.8408

0.50 0.1916 0.7572 0.3303 0.6207 0.4076 0.5941

0.25 0.0687 0.5815 0.1386 0.3665 0.1725 0.3641

Table 5.4: Proportion of runs with future observation greater than the quartiles, Case 1

denote the first, second, and third quartiles as qL0.25, qU0.25, qL0.50, qU0.50, qL0.75,

and qU0.75, corresponding to the lower and upper survival functions, respectively.

The results indicate that the imprecision between the lower and upper survival func-

tions tends to decrease, as shown in Figure 5.11. This demonstrates that the proposed

method achieves robust predictive inference when the model assumptions are fully satis-

fied.

The results indicate that the level of imprecision remains consistent across different

scenarios, whether the data are obtained from m0m1, m0m2, or through the minimum

lower and maximum upper predictive survival functions. Additionally, the results demon-

strate that as the number of observations increases, the imprecision decreases.

A comparison with the corresponding case in Chapter 3 reveals that the imprecision

observed in Chapter 4 and 5 is slightly larger when the sample size is small (n = 10).

However, when the number of observations increases to n = 100, the results in Chapter 5

exhibit reduced imprecision, which is relatively similar to the findings in Chapter 3 and

4.

The objective of this chapter is to develop a straightforward predictive inference

method based on minimal assumptions. The imprecision in the accelerating and link
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parameters across different strategies serves as an indicator of robustness against devia-

tions from the assumed model assumptions.

In Case 2, robustness is evaluated under model misspecification to assess whether a

simplified model can retain robustness despite incorrect parameter assumptions. In this

scenario, the shape parameter in the data-generating process is set to β = 3, whereas

the analysis mistakenly assumes β = 2. Table 5.5 and Figures A.22–A.24 present the

predictive performance results of the proposed method under this misspecification. The

experimental setup remains identical to that of Case 1, with data generated from the

model described in Section 3.2 using β = 3, while the analysis incorrectly assumes β = 2

for each strategy.

Both Case 1 and Case 2 consider a known and constant shape parameter. However,

the results in Figures A.22–A.24 indicate that Case 2 exhibits slightly greater imprecision

in the predictive survival functions due to the misspecified shape parameter. Additionally,

Table 5.5 shows that imprecision in the lower and upper survival functions remains more

pronounced in Case 2 across larger sample sizes (n) compared to Case 1. Despite this

increase in imprecision, the proposed method demonstrates reasonable robustness against

model misspecification.

A comparison with the corresponding results in Chapter 3 reveals that the imprecision

observed in this case is larger than in Chapter 3, particularly when the sample size is small

(n = 10). However, as the sample size increases to n = 100, the results in this chapter

show a reduction in imprecision, aligning more closely with the findings in Chapter 5.

These findings indicate that while misspecification introduces additional uncertainty, the

proposed method retains reasonable robustness, particularly when sufficient data are

available.

In Case 3, robustness is again examined under model misspecification, specifically by

assessing the effect of using an incorrect link function. This case investigates whether

a simple model can still maintain robustness when the assumed link function does not

align with the true underlying failure mechanism. In this scenario, the data are generated

using the Eyring link function, while the analysis assumes the Arrhenius link function.

This setting is particularly relevant in practice, where the correct link function is often

uncertain.
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Figure 5.9: Proportion of runs with future observation greater than the quartiles, Case

1, n = 10.
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(c) Using min and max

Figure 5.10: Proportion of runs with future observation greater than the quartiles, Case

1, n = 50.
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Figure 5.11: Proportion of runs with future observation greater than the quartiles, Case

1, n = 100.
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m1m0 n = 10 n = 50 n = 100

1− q qU qL qU qL qU qL

0.75 0.4506 0.9829 0.7155 0.9441 0.7641 0.9237

0.50 0.1063 0.8518 0.3343 0.7426 0.4057 0.7183

0.25 0.0121 0.6476 0.0671 0.4155 0.0987 0.3391

m2m0 n = 10 n = 50 n = 100

1− q qU qL qU qL qU qL

0.75 0.4518 0.9815 0.7175 0.9435 0.7658 0.9263

0.50 0.1022 0.8535 0.3304 0.7473 0.4041 0.7102

0.25 0.0129 0.6474 0.0631 0.4156 0.0958 0.3400

γ and γ n = 10 n = 50 n = 100

1− q qU qL qU qL qU qL

0.75 0.4512 0.9830 0.7143 0.9435 0.7638 0.9266

0.50 0.1043 0.8511 0.3347 0.7415 0.4083 0.7116

0.25 0.0115 0.6492 0.0705 0.4108 0.0958 0.3325

Table 5.5: Proportion of runs with future observation greater than the quartiles, Case 2.

As discussed in Section 2.5, the Eyring link function serves as an alternative to the

Arrhenius link function for modeling the acceleration parameter as a function of temper-

ature. The simulation setup follows the same conditions as in Case 1, where the model

assumptions were entirely correct, except that the link function in the sampling model

was replaced with the Eyring link function. Table 5.6 and Figures A.25-A.27 present the

results of the simulation.

A comparison with the fully specified model in Case 1, as shown in Table 5.4 and

Table 5.5, indicates that the impact of link function misspecification introduces large

additional imprecision in the predictive survival functions. This similarity is also evident

when comparing Figures 5.9–5.11, Figures A.22–A.24, and Figures A.25–A.27 for the

quartiles of the lower and upper predictive survival functions at 1− q = 0.75, 0.50, 0.25.

However, when comparing the results of this chapter with those in Chapters 3 and

4, it is evident that the imprecision observed here is larger than in both previous chap-

ters. The increase in imprecision is particularly noticeable when the sample size is small

(n = 10), though it decreases as the sample size grows. This suggests that while the

proposed method retains robustness against link function misspecification, the effects of

model misspecification accumulate across different assumptions, leading to greater un-
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m1m0 n = 10 n = 50 n = 100

1− q qU qL qU qL qU qL

0.75 0.2488 0.9527 0.4648 0.9034 0.5148 0.8523

0.50 0.0582 0.8049 0.1772 0.7203 0.2272 0.6692

0.25 0.0113 0.6515 0.0461 0.5135 0.0982 0.4624

m2m0 n = 10 n = 50 n = 100

1− q qU qL qU qL qU qL

0.75 0.2459 0.9508 0.4627 0.8974 0.5127 0.8463

0.50 0.0576 0.8023 0.1778 0.7214 0.2278 0.6703

0.25 0.0118 0.6516 0.0467 0.5103 0.0989 0.4592

γ and γ n = 10 n = 50 n = 100

1− q qU qL qU qL qU qL

0.75 0.2455 0.9512 0.4629 0.8941 0.5157 0.8429

0.50 0.0559 0.8019 0.1735 0.7214 0.2257 0.6703

0.25 0.0111 0.6549 0.0455 0.5126 0.0977 0.4615

Table 5.6: Proportion of runs with future observation greater than the quartiles, Case 3.

certainty in the predictive inferences. Despite this, the overall predictive performance

remains relatively stable, demonstrating the method’s adaptability under various model-

ing conditions.

The main results of the previous simulations conclude that the generated future ob-

servation at the normal stress strategy has surpassed the quartiles which were measured

in the right proportions. This approach shows an overall good performance as an ap-

propriate predictive inference with reasonable imprecision, if the model assumptions are

completely true. Conversely, it shows relatively larger imprecision in the instances of

model misspecification, and obviously, in cases of massive misspecification, meaningful

inferences are hard to be driven by any method. In this case, our method will show larger

imprecision which will indicate that there is a problem with the model fit or it is required

to collect more data. Moreover, it shows, when the number of observations tends to be

larger in the generated data at different strategies, the imprecision decreases. To compare

the results of this chapter with the results obtained in Chapter 3, we conclude that the

results are equivalent to the results based on the likelihood ratio test with significant

level equals 0.10 where the minimum and maximum values of γ are used to transform

the data.
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5.8 Concluding remarks

This chapter introduced a robust Bayesian approach for analyzing SSALT data within

the framework of imprecise probabilities. The proposed method incorporates imprecision

to account for uncertainty in prior knowledge about the model parameters, allowing for

the derivation of lower and upper bounds for the posterior distribution. Imprecise prior

knowledge is modeled using a class of prior distributions, where this class is defined by

its extreme cases in the absence of complete knowledge about the parameters. Based on

these extreme bounds, the lower and upper posterior predictive distributions are obtained

separately, enabling the prediction of future failure times at the normal stress level.

This approach further facilitates the construction of lower and upper predictive survival

functions at the normal stress level. The effectiveness of the method was assessed through

comprehensive simulation studies.

The results demonstrate that the proposed approach achieves considerable robust-

ness, particularly when data from higher stress levels are incorporated. Furthermore,

the method remains effective under instances of model misspecification, even when the

assumed model does not perfectly fit the observed data.

A key distinction of this approach from the methods employed in previous chapters

is that it does not rely on pairwise comparisons of datasets from different strategies

and experimental settings. In contrast, the earlier chapters applied a pairwise analysis

framework for statistical testing. When comparing the results obtained in this chapter

with those in Chapter 3, we find that the outcomes are consistent with those derived

from the likelihood ratio test at a significance level of α = 0.10, where the minimum and

maximum values of γ were used for data transformation.

Moreover, the findings indicate that the imprecision observed in Chapter 5 is rela-

tively larger when the link function is misspecified compared to the results in Chapters

3 and 4. This suggests that while the Bayesian approach remains robust under model

misspecification, incorrect assumptions about the link function contribute to increased

imprecision in predictive survival functions. The comparison across chapters further re-

inforces the importance of selecting an appropriate link function to mitigate the impact

of imprecision in accelerated life testing analysis.



Chapter 6

Conclusions

In this chapter, we summarise and compare the primary findings of the thesis in Sec-

tion 6.1, highlight practical implementation and offer recommendations in Section 6.2,

and outline potential areas for future research in Section 6.3, including suggestions for

extending our robust statistical methods for step-stress accelerated life testing data.

6.1 Summary and comparisons

The main novelties of this thesis are divided in two parts. Frist, we have incorporated

imprecision in the assumed models based on likelihood ratio test, log-rank test and robust

Bayesian analysis in three different approaches. Second, we have developed new transfor-

mation and extrapolation methods to predict future failures times at the normal stress

level. In the first two approaches, we have introduced imprecision based on classical tests

in a manner that the transformed data should not be distinguishable from failure times at

the normal stress level. In the third approach, we have introduced imprecision based on

a class of priors identified by its extreme prior distribution in a robust Bayesian analysis,

where the data are extrapolated at the normal stress level via the posterior predictive

distribution.

First, we have adopted the Arrhenius Weibull-cumulative exposure model for step-

stress accelerated life testing data, where the imprecision is obtained based on a likelihood

ratio test. Second, we have adopted the Arrhenius link function only for step-stress ac-

celerated life testing data, where the imprecision is obtained based on the log-rank test.

This method provides an imprecise non-parametric inference for SSALT data. Both ap-

148
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proaches employ classical tests to examine whether the survival distributions of two data

sets coming from different experimental settings are from the same underlying distribu-

tion. Based on this comparison, we obtained an interval of the acceleration parameter

where the null hypothesis is not rejected. This interval for the parameters within the

link function allows the transformation of data into interval-valued observations at the

normal stress level. In the first approach, we transform the data by an inversion be-

tween two cumulative distribution functions and in the second approach, we transform

the data by an inversion between two stress levels within the link function such as the

Arrhenius link function. In terms of imprecise probability, both approaches rely on the

Nonparametric Predictive Inference (NPI) for the transformed data, based on the lower

and upper values of the acceleration parameter, to construct the lower and upper NPI

survival functions. Third, we have adopted the Arrhenius Weibull-cumulative exposure

model for step-stress accelerated life testing data, where the imprecision is obtained based

on a class of priors. This class is identified by its extreme prior distribution in a robust

Bayesian analysis, where the data are extrapolated at normal stress level via the posterior

predictive distribution.

In Chapter 3, we have presented a new robust statistical method for step-stress ac-

celerated life testing, where the Arrhenius-Weibull cumulative exposure model is imple-

mented. This method was developed based on the likelihood ratio test where the test is

applied for comparison of the failure times at different strategies of stress levels. This

imprecision is developed for the acceleration parameter in the link function of the Arrhe-

nius model, by the pairwise likelihood ratio test between the pairwise strategies of stress

levels. This imprecision allows the transformation of failure times into interval values at

the normal stress level where it is assumed that these transformed failure times are not

distinguishable from failure times occurring at the normal stress level. This transforma-

tion is performed by an inversion between the cumulative distribution functions of two

strategies. This achieves a high level of robustness rather than a single value of the accel-

eration parameter. The nonparametric predictive inference is applied to the transformed

data to provide robust predictive inference. This method leads to more imprecision if

data are used from higher stress levels and if the assumed model does not fit the data

well for instances of model misspecification. We also investigated our method in the

case of different shape parameters at each strategy and we found there is slightly more
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imprecision in the acceleration parameter.

In Chapter 4, we have introduced a new approach to semi-parametric inference with

imprecise probability for analysing SSALT data. Unlike traditional methods, our ap-

proach does not rely on predefined failure time distributions for each stress level. In-

stead, we employ the log-rank test to assess pairwise stress level survival distributions

and use the Arrhenius model to determine the range of γ values. This novel technique

introduces imprecision by applying nonparametric tests to the Arrhenius model’s link

function parameter across different stress levels. This allows us to transform data from

higher stress levels into interval-valued data at the normal stress level, enhancing the

method’s robustness. The key insights from this chapter include establishing an interval

for the link function’s parameter at each stress level. This is accomplished by conducting

nonparametric hypothesis tests between pairs of stress levels to quantify the imprecision.

We explain our preference for imprecision derived from combined pairwise log-rank tests

rather than a singular test applied across all stress levels, as the former approach increases

imprecision when the model is not appropriate. To compare these two methods, we con-

clude that the imprecision resulting from the log-rank test is less than the imprecision

resulting from the likelihood ratio test when we implement the statistical model. This

was illustrated by the examples and the results of the simulations. The performance of

these methods was evaluated by simulation studies. These methods show a high level of

robustness in cases of model misspecification when it was investigated via simulations.

In these methods, we assumed that we have data at the normal stress level, but

these data may not be available in practice. Therefore, we recommend performing the

tests between two data sets coming from higher strategies of stress levels to determine

the interval of the acceleration parameter. Furthermore, in this chapter, we assumed

complete data sets for ease of presentation, while the implementation of these methods

for right-censored data is straightforward. It is possible to perform the tests by including

the right-censored data and then transform these data to the normal stress level where in

the final stage the NPI with right-censored can be implemented. The procedure for the

implementation is as follows. First, the pairwise log-rank test is performed, including the

right-censored data, to determine the interval for the acceleration parameter. Second,

both the observed and right-censored failure times are transformed to the normal stress

level using the obtained parameter interval. Third, nonparametric predictive inference
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(NPI) for right-censored data is applied to construct the lower and upper predictive

survival functions based on the transformed data.

In Chapter 5, we have presented a new robust Bayesian approach for the analysis of

SSALT data considered by imprecise probabilities. This approach incorporates impreci-

sion to model imprecise prior knowledge on the parameters involved in the assumed model

where it allows to obtain lower and upper bounds for the posterior distribution. This

modelling of imprecise prior knowledge is defined based on a class of prior distributions,

while this class is identified by its extremes under complete lack of knowledge about the

parameters. Based on these extreme bounds, we obtain the lower and upper posterior

predictive distribution in a separate manner, which permit to predict future failure times

at the normal stress level. This approach enables to construct lower and upper predictive

survival functions at the normal stress level. Finally, we evaluated the performance of

this method by simulation studies.

This approach achieves sufficient robustness if data are used from higher stress levels

and if the assumed model does not fit the data well for instances of model misspecification.

We also investigated our method in the case of different shape parameters at each strategy

and we found there is slightly more imprecision in the lower and upper predictive survival

functions at the normal stress level. In the previous chapters, we assumed that we perform

the statistical tests in a pairwise manner where we compare two data sets coming from

different strategies of different experimental settings, while in this approach, the analysis

is not required to be performed in a pairwise manner. To compare the results of this

chapter with the results obtained in Chapter 3, we conclude that the results are equivalent

to the results based on the likelihood ratio test with significant level equals 0.10 where the

minimum and maximum values of the lower and upper values of γ are used to transform

the data.

The findings of the simulation studies show that imprecision increases in all three

methods when the assumed likelihood or link function is misspecified. The robust

Bayesian method tends to produce relatively more imprecision under such model mis-

specification. On the other hand, the first two methods show higher imprecision mainly

when the data are taken from higher stress levels. The results also indicate that im-

precision becomes smaller as the number of observations increases, which highlights the

positive effect of larger sample sizes on predictive performance.
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The choice of method depends on the available information and the level of certainty

about the statistical model. The first method, based on the likelihood ratio test, is most

suitable when there is confidence in the assumed statistical model, such as the Arrhenius-

Weibull cumulative exposure model. In contrast, the second method, which uses the

log-rank test, is recommended when there is uncertainty about the model structure, as it

offers a nonparametric approach that does not rely on specific distributional assumptions.

Finally, the robust Bayesian method is particularly useful when only a single dataset

is available or when there is imprecise prior knowledge. This method allows flexible

modelling through a class of prior distributions and supports predictive inference even

under limited or uncertain information.

6.2 Applications and recommendations

The methods proposed in this thesis contribute to the advancement of reliability assess-

ment for engineering systems by explicitly accounting for uncertainty and imprecision.

Their ability to generate robust predictions without depending on exact model specifica-

tions or precise prior knowledge makes them suitable for applications where experimental

data are limited or partially observed. In practice, this allows reliability engineers to

better assess system behavior under stress, improve planning for product lifetimes, and

reduce risk in decision-making. Overall, these developments represent a step toward more

flexible and applicable reliability methodologies in complex real-world environments.

This section expands the discussion to emphasize the applicability of the proposed

methods within the context of engineering system reliability assessment. Although the

primary focus of Chapters 3, 4, and 5 was on methodological development and simulation-

based evaluation, the practical relevance of the methods is considered here. The methods

introduced in this thesis are particularly suited for systems where time-to-failure data

under normal conditions are limited or costly to obtain. Following the principles of

accelerated life testing, such as those described in Nelson [52], the use of robust and

predictive methods that incorporate imprecision is especially advantageous in systems

exposed to varying levels of physical stress, such as temperature, voltage, or load. These

include electronic devices, mechanical components, and structural materials. In such

cases, accelerated testing combined with cautious, interval-based predictions can offer
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timely reliability insights while explicitly accounting for model and data uncertainty,

thus supporting more informed decision-making in engineering practice.

Despite the strengths and practical advantages of the proposed methods, there are

several limitations that should be acknowledged. The methods proposed in this thesis

currently focus on binary failure outcomes, where systems are considered either opera-

tional or failed. While this assumption simplifies modelling and inference, it may not

fully reflect the range of degradation states observed in practical engineering systems,

where partial or progressive failures are common. Additionally, the first two approaches

developed in this thesis, based on the likelihood ratio and log-rank tests, require pairwise

comparisons between two data sets from different stress levels. This requirement can be

limiting in situations where only one experimental group is available or when stress levels

are not clearly separated. Another limitation is that these methods assume the presence

of only one unknown parameter within the link function, such as the acceleration param-

eter γ. If the link function involves multiple unknown parameters, the implementation

of these classical test-based methods becomes less straightforward. In contrast, the ro-

bust Bayesian method introduced in Chapter 5 overcomes these limitations. It allows

for analysis using a single dataset and can handle more complex models involving mul-

tiple parameters through its flexible prior structure and posterior predictive inference.

This highlights the broader applicability and greater modelling power of the Bayesian

approach in complex or data-limited reliability settings.

For the practical application of our robust statistical approaches, warranty analysis

is an important example. Ahmadini [2] presented a method to estimate the lower and

upper costs of warranty policies using accelerated life testing (ALT) data. By applying

nonparametric predictive inference (NPI), lower and upper survival functions are calcu-

lated, which then help estimate the time a product is likely to survive under normal

conditions. These survival bounds are used to estimate how many items may fail within

the warranty period. From this, lower and upper estimates of total warranty expenses

can be calculated, giving companies a more cautious and informed way to plan for future

costs when product lifetimes are uncertain. This approach can be directly applied using

the robust predictive methods proposed in this thesis.
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6.3 Future research work

There are several future research tasks based on the developments presented in this

thesis. First, further simulation studies could be conducted to explore the performance

of the proposed robust approaches using different lifetime models beyond the Weibull

distribution. Additionally, the cumulative exposure model adopted here can be replaced

by alternative step-stress models, such as the tampered failure rate model, to examine

the robustness of the proposed methods under different stress-acceleration assumptions.

Second, it would be interesting to extend the proposed methodologies to more complex

accelerated life testing (ALT) scenarios, including progressive, cycling, and random stress

designs. These experimental setups are more reflective of real-world testing environments

and would allow for a broader assessment of the methods’ applicability.

Moreover, it would be valuable to consider degradation models and to examine the

methods in contexts where no failures have yet occurred. Constructing models for degra-

dation processes requires detailed information about the engineering system and material

properties, often obtained from physical measurements or expert judgment. Such mod-

els could provide early predictions of failure and further enhance the practicality of the

proposed approaches. In systems that experience partial or progressive failures, the pro-

posed framework could be extended by categorizing failure states into multiple levels

and treating them as ordinal outcomes. Predictive and robust methods based on impre-

cise probability could be adapted to account for varying degrees of failure severity. In

such cases, the transformation and inference procedures would need to be generalized

to accommodate multilevel or continuous failure indicators. This represents a promising

direction for future work.

As outlined in Chapters 1 and 2, the objective of this research is to employ straight-

forward models that incorporate imprecision. If the derived inferences adequately address

and solve the real-world issues, there is no necessity for additional modelling investiga-

tions or data collection. Otherwise, a more modelling investigations or data collection,

or perhaps a combination of both, would be essentially required. It should be noted

that data collection often poses challenges in practical scenarios. For instance, when

conducting tests on prototypes, the quantity of samples available for analysis is typically

constrained [2].



Appendix A

Simulation Figures

This section provides the plots of the simulation studies discussed in Chapters 3, 4, and

5, corresponding to Sections 3.5, 3.8, 4.4, and 5.7.
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(b) m1 to m0 (0.05)
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(c) m1 to m0 (0.10)
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(d) m2 to m0 (0.01)
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Figure A.1: Proportion of runs with future observation greater than the quartiles, Case

2, β = 3, n = 20. Section 3.5.
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Figure A.2: Proportion of runs with future observation greater than the quartiles, Case

2, β = 3, n = 50. Section 3.5.
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Figure A.3: Proportion of runs with future observation greater than the quartiles, Case

2, β = 3, n = 100. Section 3.5.
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Figure A.4: Proportion of runs with future observation greater than the quartiles, Case

3, n = 10. Section 3.5.
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Figure A.5: Proportion of runs with future observation greater than the quartiles, Case

3, n = 50. Section 3.5.
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Figure A.6: Proportion of runs with future observation greater than the quartiles, Case

3, n = 100. Section 3.5.
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Figure A.7: Proportion of runs with future observation greater than the quartiles, Case

1, n = 10. Section 3.8.
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Figure A.8: Proportion of runs with future observation greater than the quartiles, Case

1, n = 50. Section 3.8.
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Figure A.9: Proportion of runs with future observation greater than the quartiles, Case

1, n = 100. Section 3.8.
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Figure A.10: Proportion of runs with future observation greater than the quartiles, Case

2, n = 10. Section 3.8.
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Figure A.11: Proportion of runs with future observation greater than the quartiles, Case

2, n = 50. Section 3.8.
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Figure A.12: Proportion of runs with future observation greater than the quartiles, Case

2, n = 100. Section 3.8.
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Figure A.13: Proportion of runs with future observation greater than the quartiles, Case

3, n = 10. Section 3.8.
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Figure A.14: Proportion of runs with future observation greater than the quartiles, Case

3, n = 50. Section 3.8.
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Figure A.15: Proportion of runs with future observation greater than the quartiles, Case

3, n = 100. Section 3.8.
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Figure A.16: Proportion of runs with future observation greater than the quartiles, Case

1, n = 10. Section 4.4.
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Figure A.17: Proportion of runs with future observation greater than the quartiles, Case

1, n = 50. Section 4.4.
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Figure A.18: Proportion of runs with future observation greater than the quartiles, Case

1 ,n = 100. Section 4.4.
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Figure A.19: Proportion of runs with future observation greater than the quartiles, Case

2, n = 10. Section 4.4.
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Figure A.20: Proportion of runs with future observation greater than the quartiles, Case

2, n = 50. Section 4.4.
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Figure A.21: Proportion of runs with future observation greater than the quartiles, Case

2, n = 100. Section 4.4.
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Figure A.22: Proportion of runs with future observation greater than the quartiles, Case

2, n = 10. Section 5.7.
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Figure A.23: Proportion of runs with future observation greater than the quartiles, Case

2, n = 50. Section 5.7.
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Figure A.24: Proportion of runs with future observation greater than the quartiles, Case

2, n = 100. Section 5.7.
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Figure A.25: Proportion of runs with future observation greater than the quartiles, Case

3, n = 10. Section 5.7.
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Figure A.26: Proportion of runs with future observation greater than the quartiles, Case

3, n = 50. Section 5.7.
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Figure A.27: Proportion of runs with future observation greater than the quartiles, Case

3, n = 100. Section 5.7.



Appendix B

MCMC Trace Plots

This section presents the trace plots of the MCMC samples obtained in Chapter 5 for

the Bayesian robust method. These plots serve to evaluate convergence and mixing of

the posterior samples for each parameter (e.g., θ0, and γ). Good mixing and lack of

apparent trends suggest that the MCMC sampler has adequately explored the posterior

distribution.
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Figure B.1: MCMC trace plot for the parameter θ0. The x-axis represents the MCMC

iterations, and the black line shows the sampled values of θ0 over time. The green solid

line indicates the estimated value of the parameter θ0 obtained from the posterior mean,

while the red dashed line represents the true value used in the simulation. This result

corresponds to Example 5.6.1 in Chapter 5, Case 1.
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Figure B.2: MCMC trace plot for the parameter γ. The x-axis represents the MCMC

iterations, and the black line shows the sampled values of γ over time. The green solid

line indicates the estimated value of the parameter γ obtained from the posterior mean,

while the red dashed line represents the true value used in the simulation. This result

corresponds to Example 5.6.1 in Chapter 5, Case 1.
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