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Artificial intelligence is causing a paradigm shift in the scientific method.

Traditionally scientific discovery has been a task performed by human sci-

entists using diverse processes from mathematical formalisms and mental

representations to abduction and moments of lucky Gestalt shift. After ratio-

nalist pursuits of a logic of discovery waned, accounts of scientific discovery

largely shifted from philosophy over to psychology, with discovery being

increasingly conceptualized as a human psychological process. Yet the ap-

plication of increasingly successful artificial intelligence programs to science

has brought about claims in both philosophy and science that AI is mak-

ing scientific discoveries. In this thesis I will examine several philosophical

conceptions of scientific discovery, particularly Kuhn’s taxonomy of puzzle-

solving versus revolutionary science. Using these definitions, I aim to clarify

the scope of AI’s ability to contribute to scientific discovery. I argue that

the discoveries which AI can make have distinct characteristics that corre-

late with Kuhn’s notion of the puzzle-solving discoveries that occur during

normal science. In contrast, I will argue that AI currently lacks capabilities

necessary for a kind of discovery that I call conceptual discovery. Current

constraints on the scope of AI’s contributions to discovery that I will discuss

include the frame problem, lack of a proper representation language, and in

particular, the challenge of formalizing abductive and analogical reasoning.



v

Contents

Abstract iv

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 What is a Scientific Discovery? . . . . . . . . . . . . . . . . . . 5

1.3 Two Types of Discovery . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Logic of Discovery . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.5 Overiew of AI systems contributing to scientific discovery . . 32

2 AI Can Make Puzzle-solving Discoveries 41

2.1 Existing AI Programs Make Puzzle-solving Discoveries . . . . 41

3 Prerequisites for AI Making Conceptual Discoveries 61

3.1 Formalizing Abductive Reasoning . . . . . . . . . . . . . . . . 61

3.2 The Frame Problem . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 A Proper Representation Language . . . . . . . . . . . . . . . . 66

3.4 Formalizing Conceptual Metaphor . . . . . . . . . . . . . . . . 72

4 Conclusion 85

Bibliography 87





1

Chapter 1

Introduction

1.1 Introduction

Artificial intelligence is bringing changes to the scientific discovery process.

With its ability to process huge amounts of data quickly, AI can outperform

humans in certain tasks that have traditionally been performed by human

scientists. All existing AI programs fall under the category "narrow intelli-

gence", in that they are designed to perform domain-specific tasks with high

efficiency but lack domain-general reasoning. The goal of "narrow" AI is

"creating systems that can perform particular functions that used to require

the application of human intelligence (Kurzweil, 2005, pg.72)." My aim will

not be to evaluate this distinction. Rather, I will investigate the fact that,

within specific domains, AI systems are surpassing human performance at

discovery tasks like classification, hypothesis generation, and pattern detec-

tion. The question I will address is whether the contributions that AI is mak-

ing to these areas can be legitimately characterized as AI making scientific

discoveries.

Headlines like "AI Trained on Old Scientific Papers Makes Discoveries

Humans Missed"(Gregory, 2019) and "Two New Planets Discovered Using

Artificial Intelligence"(Texas, 2019) offer an ever more impressive picture of

the role AI can play in scientific discovery. In China, Yitu Technology’s AI

helps radiologists analyze 1.4 billion CT scans per year to catch early signs of
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lung cancer. Because AI can process many times more data than radiologists

could achieve by hand, it is able to detect patterns that radiologists would

miss (Radiology, 2019). AI has also been utilized to avoid visual biases that

human radiologists are susceptible to, like inattention blindness [Drew 2013]

and satisfaction of search bias [Busby 2017]. AI is quickly developing abilities

that a few years ago were considered distinctly human, like the ability to

read research papers. In California, an AI system called KnIT read 100,000

research papers in a couple of hours and made new discoveries in biology

that were hidden in the information contained in the papers. This discovery

included finding 7 p53 kinases (a type of enzyme that prevents cancer) that

were discovered in the 10 years after the papers were written, and 2 p53

kinases which were unknown to scientists prior to the AI discovering them

(Choi, 2018).

While the “general intelligence” of AI is continually developing, currently

a main factor contributing to the success of AI as a tool for scientific discovery

is its ability to process large quantities of data quickly. Creating an AI sys-

tem that has human-level cognitive abilities is an implicit goal in both "weak"

and "strong" AI development. Yet AI does not need to perform human-like

intellectual exploration in order to produce hugely successful results. Cur-

rent large language models produce meaningful sentences in a way that mir-

rors Wittgenstein’s concept of language games. For instance, in the case of

Wittgenstein’s builder and assistant, the assistant speaks a different language

than the builder and does not understand what “block” or “slab” means, but

learns by trial and error and is able to hand the builder the correct object

when the builder says “block” or “slab”. Wittgenstein says,

The language is meant to serve for communication between a

builder A and an assistant B. A is building with building-stones:

there are blocks, pillars, slabs and beams. B has to pass the stones,

in the order in which A needs them. For this purpose they use a
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language consisting of the words "block", "pillar" "slab", "beam".

A calls them out; — B brings the stone which he has learnt to bring

at such-and-such a call. Conceive this as a complete primitive lan-

guage [Wittgenstein 1953].

The assistant’s ability to complete the task effectively comes from their

ability to learn the contexts in which the word is used. AI is like Wittgen-

stein’s assistant—–it can encode collections of family resemblances and use

these to use a term correctly without understanding what the term means.

With their processing speed, AI systems can carry more blocks and slabs in a

second than any human could carry in a hundred years, and in doing so can

detect more fine-grained patterns than a human can.

Alan Turing said that the question ‘can machines think?’ is “too meaning-

less (Turing, 1950, pg.442)” in and of itself to be discussed. Instead, Turing

proposed an empirical test as a behavioral measure of intelligence in AI sys-

tems. The object of the Turing Test is for an interrogator to correspond with

two entities, and to correctly determine which is a human and which is a ma-

chine. Questions of both an empirical and conceptual nature rise in response

to the Turing test. The first concern is practical and revolves around whether

and how a computer might pass the Turing test. The latter questions con-

cern the legitimacy of the Turing Test: should we conclude that a machine is

intelligent on based on behavioral, empirical grounds?

The question I investigate is whether AI can make scientific discoveries,

not whether they can think. However, these questions could be intertwined

to a degree. My thesis could attempt two different ways of answering the

question “Can AI make scientific discoveries?” First, I could approach this

as a question about the nature of discoverers. This would include questions

like “Who is qualified to make a discovery?”, and “At what point does a

computer stop being a tool (like a microscope) and become more like a dis-

coverer (like a human scientist)?” However, I am going to circumnavigate the
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philosophy of mind question of whether computers can think. Instead, I will

focus on the structure of discovery, treating human discovery as a product

and process with distinct characteristics. The thesis will examine the scope

of AI’s current ability to contribute to these products and processes.

One reason for focusing on questions about outputs is that AI systems

are a black box. Discussing the future of AI from a legal standpoint, Yavar

Bathaee (2018) points out that intent and causation, two important measures

of human conduct, are difficult to apply to neural networks. The decision

making process of the AI can be an impenetrable black box even to the re-

searchers who programmed it (Davoide Castelvecchi 2016). Researchers try-

ing to develop ways to understand the inner working of AI are much like

neuroscientists trying to understand the brain (Castelvecchi 2016). Multi-

layer neural networks are a black box as much as the human brain is, and

like the brain, data is not stored in distinct modules. Instead, information is

diffused across the network, and this makes understanding the information

and how it is used difficult. Castelvocchi says, “Eventually, some researchers

believe, computers equipped with deep learning may even display imagina-

tion and creativity (Castelvecchi 2016).

I will refrain from claiming any association between my discussion and

the "strong"/"weak" intelligence debates. My thesis will not take a stance on

the prerequisites of human intelligence and whether AI can achieve this. In-

stead, I will explore the nature of discovery and what processes it involves.

The question that this dissertation will address is what scientific discovery is

and whether AI can make scientific discoveries under the definition of dis-

covery which I will aim to establish in the next section.
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1.2 What is a Scientific Discovery?

I will first devote a section to developing a philosophically rigorous defini-

tion of discovery that will be the framework for establishing the scope of AI’s

ability to discover. What is a scientific discovery? At first, the answer seems

straightforward; surely a discovery is a realization, a new idea, a eureka mo-

ment. However, the term describes a range of phenomena, and these are

not well organized in the philosophical literature. In very general terms, a

scientific discovery can be described as a “process or product of productive

scientific inquiry (Schickore, 2014)”. The fact that discovery is presented al-

ternately as a process and a product is relevant to my discussion. "Can AI

perform X process?" and "Can AI produce X result?” can potentially be very

different questions. My definition of discovery will treat it as both process

and product, and will evaluate AI’s ability to discover on both criteria.

Scientific discovery can generally be understood as the discovery of natu-

ral kinds combined with theory about those kinds. Somewhat implicit to the

natural kinds thesis is the idea that natural kinds are categories that are found

in nature independent of human perception. There is some debate about this;

for instance although Kripke and Putnam are realists about essences, there

are more intermediary accounts like Rand’s that advocate that natural kinds

are epistemological and based in human perception though they have a basis

in a mind-independent reality. A paradigmatic support of the thesis that nat-

ural kinds are intrinsic to nature is the categorization of species. However,

this runs into a problem because the way that one understands the concept

‘species’ affects decisions about how to categorize. For instance, one could

categorize by an evolutionary perspective, where birds and reptiles are in the

same category because they share a common ancestor, or from a traditional

biological classification perspective, where they are of a different kind be-

cause reptiles and birds belong to different classes of animal. Other options
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for categorization are by ecology or phylogeny. P.D. Magnus says, "A natural

kind is a category that scientists are forced to posit in order to be scientifically

successful in their domain of inquiry (Magnus, 2012, pg.47)".

It will be significant whether my definition of discovery means that some-

thing that exists is uncovered, or means that something new is created. There

is philosophical debate about whether discovery is better characterized as in-

vention. Should “discovery” mean (1) a concrete piece of knowledge which

exists in the world and has been uncovered by scientists as an archaeologist

would discover an artifact or (2) an epistemological development that cre-

ates a new way of structuring reality? Under Francis Bacon’s account, the

external world and internal knowledge are directly linked. The world has

preexisting laws and scientists simply find these laws and give a name and

description to them. Under this realist view, science is progressive and laws

and patterns exist in the data prior to observation. All AI would need to do

to make discoveries would be to find these patterns in the data and describe

them successfully.

More recently, philosophy of science has turned away from strong realism

and the view that discovery is a cumulative process of uncovering objective

truths about the world. Instead, many contemporary philosophers view dis-

covery as an active process in which patterns are created rather than found.

More emphasis is being placed on the role that language, social values, and

existing theoretical frameworks play in shaping discovery [Kuhn 1962].

Though widely less popular in these days than it was in the 19th cen-

tury, realist views of discovery are making a comeback in some areas of AI

research. One example is the BACON system, named after Francis Bacon,

which I will discuss in section 2.

Following the work of Piscopo and Birattari, I will label these two ways of

conceptualizing scientific discovery as inventionist and discoverist (C. Pis-

copo, 2013). Discovery under an inventionist lens will describe discovery as
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something which is created. Under this definition a discovery invents a real-

ity rather than providing a way to conceptualize a reality that already exists.

Discovery under a discoverist lens will describe the realist stance in which

discoveries are cases where an objective truth about the world is discovered

by scientists.

Many philosophical discussions about discovery examine the process by

which theories that explain empirical data are created. However, a neutral

definition may be much less specific; discovery might be called a moment of

successful science. Kuhn makes a distinction between discovery-that (where

a viewer observes a discovered phenomenon) and a discovery-what (a cor-

rect theory about what something is, where a viewer creates a useful way

of thinking about the phenomenon) (Kuhn, 1962, pg. 55). Kuhn says that

both discovery-what and discovery-that are necessary for successful scien-

tific inquiry; it is too simplistic to say that we simply discover a phenomenon

without considering the role of our conceptualization of what we see. Dis-

covering a scientific phenomenon “involves recognizing both that something

is and what it is (Kuhn, 1962, pg. 55)”. For instance, Joseph Priestley discov-

ered the existence of oxygen, but from the conceptual framework of phlogis-

ton theory that he was working from, he assumed oxygen was air with mini-

mal phlogiston. So Priestley’s discovery constituted a discovery-that but not

a discovery-what. If we want to argue that Priestley discovered oxygen, then

this would entail arguing that anybody who first captured an impure sam-

ple of oxygen counts as having discovered it. Under this weaker notion of

discovery, we are not able to attribute the discovery to Priestley, but merely

to that time period. Thus, Kuhn advocates that it is fairly meaningless to at-

tribute discoveries to specific people because they are generally “not isolated

events, but extended episodes (Kuhn, 1962, pg. 52, Schindler, 2015, pg.125)”.

There is much conversation in philosophy about devising a method by

which to decide who is making a discovery and when a discovery is made
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(Hudson 2001, pg. 77). Kuhn’s account allows one way of making this

distinction–we can say that an individual is a discoverer if they make both

the discovery-that and the discovery-what (both being the first to observe

the phenomenon and the first to correctly conceptualize it. However, Kuhn

thinks that this is not a frequent occurrence, and more often a scientific dis-

covery is the product of a scientific community.

A few challenges arise though with the definition of discovery-what. Kuhn’s

account advocates that the discovery-what occurs when a correct conceptu-

alization of a phenomenon is achieved. Here, Kuhn sounds as though he

is taking a more realist standpoint. What is a ‘correct’ conceptualization?

Especially under an inventionist view of discovery, a ‘correct’ conceptual-

ization of a phenomenon means that a theoretical framework is employed

to interpret the phenomenon in a way that is fruitful to scientists’ current

goals. Kuhn says that “scientific revolutions are. . . those non-cumulative de-

velopmental episodes in which an older paradigm is replaced in whole or

in part by an incompatible new one (Kuhn, 1962, pg. 92).” Under his ac-

count, a paradigm is accepted because it is persuasive to scientists, not be-

cause it is inherently closer to some objective truth. Science evolves, but does

not necessarily progress linearly (Kuhn 1962). Under this view, it becomes

hard to understand what it means to have a correct conceptualization of a

phenomenon. Does Kuhn mean ‘correct’ in an ontological sense, or would

a more pragmatic measure like a paradigm being accepted by scientists be

enough to qualify a successful discovery-what?

Similarly, how correct does the conceptualization need to be in order to

qualify? There are many scientists who we consider to have been the dis-

coverers of a phenomenon, even though their account later turned out to be

at least partially incorrect. Schindler (2015) proposes an answer to this. He

proposes that a discovery-what of X requires a

correct conceptualization of X’s essential properties that suffice
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(epistemically) to individuate X at a time t (the time of the discovery-

what), whereby I take essential properties of X to be those prop-

erties of X that are (metaphysically) individually necessary and

jointly sufficient for X (Schindler, 2015, pg. 132).

Schindler proposes that this solves the problem because making the argu-

ment time-dependent means that not all the essential properties need to be

known to individuate X and thus correctly conceptualize X. More properties

may be discovered at a later time, and this does not disqualify the origi-

nal discoverer because they correctly conceptualized X’s properties at a time

when the properties they conceptualized were sufficient to individuate X.

The example Schindler gives is Thomson’s discovery of the electron. Thom-

son is widely regarded as the discoverer of the electron, yet if a discovery

required an entirely correct conceptualization than we would not be able to

consider Thomson the discoverer, because he was not aware of properties of

the electron like wave-like behavior and instead thought of them as corpus-

cular entities of negative charge. Yet intuitively we do want to argue that

Thomson was the discoverer of the electron; he was the first to observe and

conceptualize a negatively charged particle at a time when there were not

known to be any negatively charged particles. Schindler’s account of dis-

covery solves this problem because Thompson’s understanding of the parti-

cle’s properties at time t were enough to individuate the electron at that time

by being individually necessary and jointly sufficient for X. Now, negative

charge would no longer be sufficient for individuating the electron because

we are aware of other negatively charged particles, but in the conceptual en-

vironment of the time it was sufficient.

This distinction meets a challenge if we attempt to generalize it to AI, in

utilizing it to distinguish which of AI’s contributions to science count as dis-

coveries. What is a ‘correct conceptualization’ when an AI system, rather
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than a scientist, is providing the conceptualization? Is there a set of be-

haviours that an AI can perform or a way that it can structure a result in

order to be said to achieve a correct conceptualization? One problem with

this is that the concept of a “conceptualization” has assumptions about hu-

man psychology built into it, and is thus difficult to define in AI terms. AI

does not structure models in terms of laws and theories, as humans do; in-

stead AI uses complex, abstract, black-box models. Newton’s laws of mo-

tion, if invented in the modern day by AI, would not be in the form of simple

laws; they would be abstract computer models that would output extremely

specific results but would not have a conceptual element that humans can

understand. Many of the epistemic values that scientists value, like explana-

tory power, interpretability, simplicity, and generality might be disregarded

by the AI system in favor of a complex, abstract model that yields highly

accurate predictive results. This yields at least two questions that need to

be addressed before we can provide a framework for AI satisfying Kuhn’s

discovery-what requirement.

The second layer of the distinction Kuhn makes is between discoveries-

that which are made before discovery-whats, and discovery-whats which are

made before discovery-thats. The latter, what-that discoveries, occur when

the theory about the phenomena comes into being before the phenomenon

itself is observed. In the example above, a what-that discovery would oc-

cur if a correct conceptualization of oxygen were developed before a sample

of the gas itself was isolated and observed. These discoveries most fit with

Kuhn’s idea of normal science, where the discoveries are predictable and

resemble the process of puzzle-solving. Normal science is not unexpected

or surprising and is a more linear, progressive form of science that aligns

more closely with the assumptions of realist, discoverist accounts like those

discussed above. Filling in missing elements on the periodic table after the

periodic law has already been established is an example of normal science.
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In contrast, that-what discovery is surprising and not progressive. A that-

what discovery is one in which the phenomena is first observed and then con-

ceptualized. The discovery of oxygen discussed above followed a that-what

format; first the phenomena itself was discovered and later a correct concep-

tualization of it was developed. An important thing to note is that Kuhn

does not claim that discoveries-that or that-what discoveries occur without a

conceptual element. In Kuhn’s view our sensory experience is inevitably in-

fluenced by our conceptions. That-what discoveries are different from what-

that discoveries not because they do not have conceptualizations attached

to them, but because the ‘that’ is not predicted or expected by our existing

conceptualizations (Schindler, 2015, pg. 126). Thus a what-that discovery

can overthrow existing paradigms if the conceptualizations which did not

predict the ‘that” are challenged by the new that-what discovery, and the

conceptualizations are connected to a paradigm.

Departing from Kuhn, I will now outline some other philosophers’ treat-

ments of discovery. The goal will be to pick out some essential characteristics

of discovery.

William Whewell (1840) is one of the earlier philosophers to make a dis-

tinction between discovery and other parts of scientific activity. Whewell ad-

vocates that discovery is comprised of three parts: the “happy thought”, the

way the “happy thought” is developed into a hypothesis, and the verification

of that hypothesis. In the later philosophy literature, the process of confirma-

tion is generally distinguished from the initial creation and articulation of a

new hypothesis. Furthermore, later work often focuses on the search for a

logic of scientific discovery, whereas Whewell rejects the idea that discovery

has a method which can be formalized. “No maxims can be given which in-

evitably lead to discovery (Whewell, 1840, pg.186)”. He is interested in the

psychology of the discoverer and the process by which a “happy thought”

becomes integrated into a system of beliefs. Under Whewell’s account, the
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“happy thought" is not the sole cause of the discovery, but rather is the ac-

tivation energy that allows the causal pathway leading to the discovery to

be initiated. Whewell says that it does not make sense to talk about why

the “happy thought" causes the bullet to hit the target, because the “happy

thought" is merely the spark, and the discovery can be attributed not just to

the spark, but to the gun being loaded and pointed at the target (Whewell,

1840, pg.189).

The second element of discovery is the “colligation" of a set of phenomena

into a conceptual system (Whewell, 1840, pg.189). The colligation produces

a new conceptual framework as well as recasting the previous ideas and pre-

viously observed phenomena. It is a two step, iterative process. First, experi-

ments yield quantitative and qualitative regularities and facts, and scientists’

theoretical framework is used to bind together those facts. Second, the theo-

retical framework is clarified and adapted according to the information that

the amalgamation of the new facts yields.

Finally, the third step occurs when the colligation recieves confirmation,

and scientists decide whether the colligation yields a useful and plausible hy-

pothesis. Scientists must decide whether the theoretical framework resulting

from the colligation of the facts is sufficient to explain the phenomena being

considered. This step also involves seeing whether the colligation yielded an

outcome which satisfies epistemic virtues like simplicity, explanatory power,

ability to make predictions, and coherence with the overall theoretical frame-

work (Ducasse, 1951).

Whewell’s account offers a more broad definition of discovery than the

accounts that came later; for him, all three steps are part of the discovery

process while in later accounts only the “happy moment” or the “happy mo-

ment” plus the colligation are elements of discovery, while the verification

exists in the category of processes that occur post-discovery.

Bringsjord (2007) works on establishing a formalization of discovery that
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allows AI to discover proofs in physics. He distinguishes three deductive

tasks that have been attempted to be mechanized:

1. Checking proofs: Decide whether a deduction is sound by looking at

its conclusion and premises.

2. Provide proofs: Given premises and a conclusion, decide whether the

proof follows from the premises and if it does give a proof.

3. Discovering theorems: Starting with some premises, deduct a conclu-

sion that is sound, provide a proof, and have the conclusion be a useful one

(Bringsjord, 2007).

The third task is the one that relates most to the possibility of AI mak-

ing scientific discoveries. However, despite historical attempts to pin down

a logic of discovery, objections from Hempel and others have argued that

the aim of formalizing discovery is misguided, and that discovery involves

local goals and standards for relevance that cannot be captured in a univer-

sal logic, psychological factors like creativity and intuition, and goal-driven,

pragmatic considerations that depend on the context of the discovery in ques-

tion.

In Science and Method, Poincare attempts to describe his own discovery

process, concluding that it is challenging to define. He says,

Discovery. . . does not consist in making new combinations with

mathematical entities that are already known. That can be done

by any one, and the combinations that could be so formed would

be infinite in number, and the greater part of them would be ab-

solutely devoid of interest. Discovery consists precisely in not

constructing useless combinations, but in constructing those that

are useful, which are an infinitely small minority. Discovery is

discernment, selection. . . One is at once struck by these appear-

ances of sudden illumination, obvious indications of a long course
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of previous unconscious work. The part played by this uncon-

scious work in mathematical discovery seems to me indisputable

(Poincare, 1908, pg.79).

Mathematicians’ work consists not in coming up with new mathematical

facts; it is about recognizing the significant facts. Furthermore, it is about

taking an existing set of facts, and seeing them in a new way that reveals

new and interesting relationships.

Pólya emphasizes the inductive, creative nature of mathematical reason-

ing. He says,

Mathematics is regarded as a demonstrative science. Yet it is only

one of its aspects. Finished mathematics presented in a finished

form appears as purely demonstrative, consisting of proofs only.

Yet mathematics in the making resembles any other human knowl-

edge in the making. You have to guess a mathematical theorem

before you prove it; you have to guess the idea of the proof be-

fore you carry through the details. You have to combine obser-

vations and follow analogies; you have to try again and again.

The result of the mathematicians’ work is demonstrative reason-

ing, a proof; but the proof is discovered by plausible reasoning, by

guessing...I do not believe that there is a foolproof method to learn

guessing. At any rate, if there is such a method, I do not know

it...The efficient use of plausible reasoning is a practical skill, and

it is learned, as any other practical skill, by imitation and practice

(Pólya 1954).

From Peirce to the later work of Norwood Hanson, philosophers have

aimed to uncover patterns in the inductive and abductive scientific reason-

ing that underlies discovery. Pierce and Hanson particularly focused on the
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structure of abductive reasoning. The structure of abduction as scientific dis-

covery is as follows, under Hanson’s view:

1. A number of unexplained phenomena are observed.

2. There is a specific type of hypothesis that would make the phenomena

unsurprising. From such a hypothesis, the phenomena would reasonably

follow. Furthermore, a hypothesis of this type would offer some explanatory

power.

3. Therefore, a hypothesis of this type has reasonable support justify-

ing its existence and development. Proposing a hypothesis of this type pro-

vides an explanation for the phenomena, and this justifies it (Hanson, 1960,

pg.104.) Abduction involves forming a hypothesis that does not necessarily

follow from the premises but is deemed probable through analogy and infer-

ence to the best explanation. If I catch a cold after being sneezed on while

riding the metro, I might hypothesize that I caught it from a person who

sneezed on me. Much of scientific and common sense reasoning involves

abduction (Boyd 1981).

Deduction proceeds from general rule to particular consequence:

(1) A =⇒ B

(2) A

(C) therefore B.

In contrast, inductive and abductive arguments are ampliative and estab-

lish new conclusions that were not contained in the premises. For instance,

the following is an abductive argument:

(1) A ∧ B, so (using anecdotal evidence and analogy to similar situations)

perhaps A −→ B.

While induction generalizes a premise, abduction proposes a premise.

For Charles Sanders Peirce abduction is “the process of forming an ex-

planatory hypothesis. It is the only logical operation which introduces any

new idea; for induction does nothing but determine a value, and deduction
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merely evolves the necessary consequences of a pure hypothesis. Deduction

proves that something must be; induction shows that something actually is

operative; abduction merely suggests that something may be (Pierce, 1903).”

Pierce presents abduction as an inverted modus ponens. Abduction is logi-

cally equivalent to the fallacy affirming the consequent:

(1) P −→ Q.

(2) Q.

(3) Therefore, P

In Pierce’s view, we cannot construct new theories by using deduction

and induction alone. Deduction makes implicit consequences of a set of

premises explicit, and induction generalizes what is already suggested by

existing instances. In contrast, abductive reasoning creates novel hypotheses

that are not directly derived from established premises. Pierce says, “Abduc-

tion consists in studying facts and devising a theory to explain them (Psillos

2011).”. Pierce also suggests that abduction involves analogical reasoning.

He says, “Abduction, or the suggestion of an explanatory theory, is inference

through an Icon (Pierce)”, suggesting that abduction proceeds from the phe-

nomenon to be explained and other, more familiar phenomena. For instance,

Einstein reasons abductively that gravitational mass can serve as an explana-

tion for inertial effects by using a simple analogy that highlights the empirical

indistinguishability of the experience of a person inside of an accelerating el-

evator in space versus a person in an elevator at rest in a gravitational field

(Einstein 1917).

1.3 Two Types of Discovery

Kuhn’s well-known description of scientific progression separates scientific

activity into “normal science” and paradigm-shifting scientific revolution(Kuhn,

1962, pg.10). Normal science occurs within an established paradigm, and is
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roughly analogous to puzzle-solving because it involves finding new solu-

tions using the pre-established rules, goals, and methods of the paradigm. At

first glance, this matches the type of discoveries AI systems have historically

been capable of. Successful automated discovery projects like BACON (Lan-

geley et al. 1987) have a structure in which the AI system is fed datasets and

a set of pattern-recognition rules that together constitute a sort of paradigm.

The AI system is then asked to analyze the patterns in this dataset to come

up with new conjectures.

An example is the program ‘Arrowsmith’, which reads through medi-

cal databases and finds connections between the contents of different stud-

ies, such as linking Reynaud’s disease to fish oil as a possible treatment op-

tion.‘Arrowsmith’ reads through medical databases looking for broad inter-

disciplinary links between medical fields. It uncovers patterns that can lead

to entirely new solutions to medical problems. The program is useful bfor

discovering overlap between fields that has gone unnoticed by human re-

searchers. One example is the link between the effect of fish oil on circulation

and Raynaud’s disease that was discovered by Don Swanson in the 1980s

(Swanson, 1986). Swanson was reading a book about the Inuits when he

noticed that it mentioned that the Inuit’s diet was high in fish, and that the

high amount of fish oil likely lead to the Inuits having good blood flow and

blood vessel cold tolerance. Swanson by chance knew that a disease called

Raynaud’s disease causes blood vessel restriction, especially in the cold. The

existing literature contained no direct link between Reynaud’s disease and

fish oil, but both were individually identified in different papers as having

causal relationships with blood viscosity. It occurred to Swanson that fish oil

might improve the symptoms of Raynaud’s disease. He found a number of

research papers on fish oil improving circulation and a number of papers on

Raynaud’s disease causing circulation problems, but there were none sug-

gesting that one could be used to treat the other. He wrote a paper proposing
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that fish oil might be an effective treatment for Reynaud’s disease, and this

hypothesis was corroborated by a later study (DiGiacomo 1989).

The program Arrowsmith replicated Swanson’s discovery and similar dis-

coveries like finding a link between migraines and magnesium deficiency

(Hosanagar 2019; Weeber 2001). Arrowsmith’s process did constitute dis-

covery of an unrecognized correlation that suggested a causal relationship,

but the discovery is a rote one that can be simplified down to a process of

finding a common factor. Raynaud’s disease is causally related to reduced

circulation, and a diet high in fish oil is causally related to increased circula-

tion. The process of generating the hypothesis that fish oil reduces Reynaud’s

symptoms amounts to applying the notion of transitivity. It doesn’t seem to

be a very different activity from something like giving a computer a list of

flowers and their colors and having it return a list of the flowers that contain

the color yellow. Arrowsmith’s process is one of taking a framework and fill-

ing in gaps within that framework through extrapolation, much like chemists

extrapolating new elements from blank spots in the periodic table.

In contrast, scientific revolutions occur when anomalies accumulate that

the existing paradigm is unable to explain, and these anomolies become nu-

merous and pressing enough that a crisis occurs (Kuhn 1962). If a new paradigm

is able to resolve these anomalies and answer the questions that the commu-

nity of scientists find most compelling, then the new theoretical framework

replaces the old, bringing new methods, theoretical commitments, and epis-

temic norms. Kuhn likens paradigm shift to a political revolution or Gestalt

shift (Kuhn 1962). While normal science is like having an empty window

frame in your house and realizing that you have a window in your garage

that perfectly fits that frame, paradigm shift is like realizing that your house

is fundamentally flawed and unable to meet your needs even with renova-

tions. Instead of continuing to make incremental modifications, you recon-

struct it from the ground up with a different foundation.
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Kuhn introduces the idea of the theory-ladenness of observation; that sci-

entists’ conceptual environment shapes their perceptions. Hanson says,

Physical theories provide patterns within which data appears in-

telligible. They constitute a ‘conceptual Gestalt’. A theory is not

pieced together from observed phenomena; it is rather what makes

it possible to observe phenomena as being of a certain sort, and

as related to other phenomena. Theories put phenomena into sys-

tems (Hanson 1969, pg. 90).

Scientists don’t observe raw phenomena; they view phenomena shaped by

the conceptual Gestalt of their paradigm. Under Kuhn’s view, scientific rev-

olutions are a Gestalt shift. Rather than just bringing about new empirical

results, revolutions restructure old and well-known empirical data. This is

why proponents of an old and new paradigm can describe the same phe-

nomena in fundamentally different ways, because the lens of the paradigm

affects their basic experience of the world. The theory-ladenness of obser-

vation is one source of incommensurability, the fact that paradigm shift can

cause characteristics of the old paradigm to be incomparable to the new even

in terms of observations, language, basic theoretical commitments, goals and

methodologies (Kuhn 1970, pg. 94).

Kuhn’s distinction between normal science and revolutionary science is

useful when exploring the scope of AI’s ability to contribute to science. In

normal science, scientists apply existing methods and rules to extrapolate

new conjectures from existing theoretical commitments. This is the sort of

work that current AI systems used in science can outperform humans at in

some contexts. Kuhn says that normal science is a puzzle-solving activity:

Under normal conditions the research scientist is not an inno-

vator but a solver of puzzles, and the puzzles upon which he

concentrates are just those which he believes can be both stated
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and solved within the existing scientific tradition (Kuhn, 1962, pg.

144).

In Kuhn’s view, normal science allows a kind of scientific discovery in which

the discoverer is like a person playing chess or solving a crossword. The

activity of puzzle-solving has a pre-established structure and set of rules and

acceptable methods. There is a familiarity about it; rather than something

new being created, there is an expectation that an answer already exists and

simply needs to be found. An especially interesting point that Kuhn makes

is that a puzzle has to have a solution; that is one of the key things that

makes it a puzzle rather than, for instance, an essay prompt. The solution

is determined by the structure and constraints of the puzzle. In the case of a

table-top jigsaw puzzle, there are infinite ways you could arrange the pieces

but only one correct way to arrange them. With something like a chess game,

it isn’t the case that there is only one correct solution for each move, but the

moves are still constrained by a clear structure and desired outcome. While

the solution to a normal science puzzle may not be "real" or "preexisting" in

a scientific realism sense, but it is real relative to the model of the world that

is described by the puzzle.

For instance, within the geocentric paradigm operating during Ptolemy’s

time, his concept of epicycles was a proper solution to the puzzle-solving ac-

tivity of the time. The existence of epicycles preserved the paradigm’s com-

mitment to Aristoliean notions like geocentrism and uniform circular mo-

tion while also making correct empirical predictions (Kuhn 1962). However,

while this solution was one which exemplified a good solution by the stan-

dards of the existing paradigm, Ptolemy’s epicycles did not correctly capture

an objective structure of the world, and are not a good solution when judged

by the standards, methods, and theoretical commitments of contemporary

physicists.
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An example of this would be the addition of new elements like gallium

and scandium to Mendeleev’s periodic table (Noe, 2002, pg. 33). When

Mendeleev proposed a periodic table in 1869 based on properties that ap-

peared relative to the atomic weights of elements, he noticed that there were

gaps in the table. He predicted that there existed elements with properties

that would fit the pattern of the rest of his table. These elements were not yet

known. This is a case of a Kuhnian discovery-what preceding a discovery-

that. The properties that Mendeleev predicted for the as yet undiscovered

elements turned out to be a good match for the actual recorded properties

of scandium and gallium when physical samples of the elements themselves

were isolated in 1879 and 1875. However, the filling-in of the periodic ta-

ble that Mendeleev did was a good puzzle-solution relative to the existing

knowledge and theoretical commitments of his time. He believed that ele-

ments’ physical properties were determined by their atomic mass. Really, ele-

ment’s physical properties are determined by atomic number–the number of

protons in the nucleus of the atom, which determines electron configuration.

Atomic mass correlated with atomic number, so some of Mendeleev’s pre-

dictions were correct. However, others were wrong, like Mendeleev’s mis-

ordering of cobalt and nickel (Thyssen 2014). Mendeleev’s puzzle-solutions

were good solutions relative to his paradigm, but would not be acceptable to

the standards of contemporary chemists.

Another example of puzzle-solving discovery is the discovery of new ki-

nases by an IBM AI that mined research papers to find kinases that have

potential to regulate p53 proteins and treat cancer (Simonite, 2013). The dis-

covery process consisted of taking the existing conceptual framework of the

papers and explicating new pieces that fit into the puzzle.

The AI system, KnIT, analyzed tens of thousands of research papers about

a protein, p-53, which is known to play a role in suppressing tumors (Chen
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2016). KnIT analyzed patterns in language used in papers about known ki-

nases that help regulate p-53. By analyzing patterns in the descriptions of dif-

ferent kinases in the literature, KnIT was then able to make predictions about

the p-53 regulating ability of new kinases that had been discovered since the

date of the most recent research papers in the dataset it had been trained on.

KnIT was able to correctly identify several new kinases that do help regulate

p-53, by comparing the patterns discovered in the trained dataset to patterns

it found in the description of these new kinases in the new research papers

(Chen 2016).

KnIT’s process resembles Kuhn’s notion of a puzzle-solving discovery.

The AI system absorbed and systematized patterns from the existing research

on protein-kinase interactions, and then used these to extrapolate other re-

sembling patterns that were implicit in scientists’ research papers but not

explicitly recognized by scientists. Scientists then tested these patterns to see

if they were accidental correlations or meaningful connections, and found

that several of them were meaningful. KnIT’s contribution is analogous to

Mendeleev employing the periodic law and existing periodic table to fill in

blank spots and predict the existence of as-yet undiscovered elements.

Kuhn calls the tasks that most scientists perform during their careers in

normal science "mopping up operations (Kuhn 1962, pg. 24)", which in-

cludes (1) gathering facts that the paradigm suggests reveal important ideas

about reality or are especially informative; (2) testing and confirming the

empirical predictions of the paradigm, (3) doing empirical work like find-

ing physical constants and determining quantitative laws, and (4) extending

the explanatory scope of the paradigm by applying the paradigmatic theo-

ries to new phenomena and using that new data to either revise and refine

the paradigm’s theoretical framework or subsume the phenomena under the

theories of the paradigm (Kuhn 1962).

In summary, under Kuhn’s account, normal science involves working
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within a paradigm to apply existing theories, methods, and rules to new

phenomena and in doing so refine and fill in gaps in the paradigm. This

resembles filling in a puzzle, where the puzzle pieces are already in existence

and must be combined in a way that accords with established rules, norms,

and agreement about what an acceptable solution is. A paradigm constrains

and sets standards for what solutions are acceptable, just as rules in a board

game determine what moves and solutions are possible. The paradigm de-

fines the puzzles that need to be solved in the paradigm, the standards for

what good science should look like, the exemplars that acceptable puzzle-

solutions should be modeled after, etc.

These rules include metaphysical commitments (for instance, particles

versus waves, or gravity as a force versus curved spacetime), paradigm-

sanctioned methods, and constraints on what questions can be articulated

within in the paradigm and are considered important within the paradigm.

This puzzle-solving is the sort of activity that AI excels at. Both neural net-

works and algorithmic AI operate as a tool that solve puzzles whose param-

eters are established by the input data that is fed to the AI system. In tra-

ditional algorithmic AI programs, scientists provide explicit inferential rules

as input. In neural networks, scientists train the neural networks on large,

curated datasets that reflect the relevant patterns that they want the AI to

search for.

Kuhn’s latter category, scientific revolution, involves what I will call “con-

ceptual discovery", where anomalies in the observable data lead to a funda-

mental reinterpretation of what questions are relevant for scientists to pur-

sue, what theoretica commitments scientists share, what methodologies are

meaningful, and what puzzle-solutions are acceptable and meaningful. This

is in sharp contrast to the normal science activity of filling in gaps in the exist-

ing paradigm using tools of the paradigm. Under the category of conceptual

discovery fall paradigm shifts like the Copernican revolution, plate tectonics,
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the discovery that genetic information is contained in DNA, and Darwin’s

theory of evolution. In Kuhn’s view, “scientific revolutions are. . . those non-

cumulative developmental episodes in which an older paradigm is replaced

in whole or in part by an incompatible new one (Kuhn 1970, pg. 92).” Mo-

ments of revolutionary science can sometimes be difficult to separate from

normal science; there is not a universal structure that seems to characterize

revolutionary science, and revolutionary discoveries often emerge from and

are founded on discoveries and scientific work that is not revolutionary in the

Kuhnian sense. For instance, the paradigm shift to Einstein’s general relativ-

ity from Newtonian mechanics restructured fundamental assumptions about

gravity and spacetime, but was founded on tools, methods, and mathemati-

cal formalisms established within the Newtonian paradigm.

Because of this overlap, a bit more effort will be required in defining what

I mean by conceptual discovery, as it is not directly equivalent to any term

that Kuhn uses. Darwin’s evolutionary theory, for instance, is an episode that

I will argue counts as a conceptual discovery, yet it did not occur as a result

of any type of scientific crisis, which is one of the characteristics of scientific

revolution that Kuhn describes.

In response to the problems and vagueness with Kuhn’s revolutionary

science, some philosophers have offered alternative definitions. For instance,

Casadevall and Fang (2016) say,

We propose a definition of revolutionary science as a conceptual

or technological breakthrough that allows a dramatic advance in

understanding that launches a new field and greatly influences

other fields of science. The Darwin-Wallace theory of evolution

therefore qualifies as a revolution because it spawned the new

field of evolutionary biology and profoundly influenced diverse

fields, including anthropology, theology, sociology, and political

science, soon after its publication in 1859. The discovery that
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DNA is the transforming principle of heredity and the subsequent

elucidation of its structure also meet our criteria for revolution-

ary science because they launched the field of molecular biology

while transforming the fields of genetics, medicine, and biochem-

istry(Arturo Casadevall, 2016, pg.2).

However, there are a number of ways in which their definition is not suf-

ficient. First, their account seems to come close to a proposal to categorize

scientific discoveries based on the way they are received by members of the

scientific community. Second, there are cases where a puzzle-solving dis-

covery might be considered a "technological breakthrough that allows a dra-

matic advance in understanding." To a materials scientist who is attempting

to engineer a semiconductor or has some other vital need for an alloy with

a low melting point, the discovery of gallium (which Kuhn and others have

categorized as a puzzle-solving discovery) might very well be a technological

breakthrough.

The characteristic of conceptual discovery that I argue makes it deserving

of its own category is not whether it occurs during a time of scientific crisis

or whether it qualifies as a conceptual or technological breakthrough. Con-

ceptual discoveries might occur at a higher rate during periods of scientific

revolution but I will not attempt to draw any equivalencies between Kuhn’s

revolutionary science and the type of discoveries that I will call conceptual

discoveries. Instead, the most important feature of a conceptual discovery is

that it involves a shift not necessarily in the empirical data itself but in the

way the empirical data is conceptualized.

The best illustration of a conceptual discovery that I am aiming to de-

scribe comes from Kuhn’s discussion of a Gestalt demonstration. He says,

The subject of a gestalt demonstration knows that his perception
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has shifted because he can make it shift back and forth repeat-

edly while he holds the same book or piece of paper in his hands.

Aware that nothing in his environment has changed, he directs his

attention increasingly not to the figure (duck or rabbit) but to the

lines of the paper he is looking at. Ultimately he may even learn

to see those lines without seeing either of the figures, and he may

then say (what he could not legitimately have said earlier) that it

is these lines that he really sees but that he sees them alternately

as a duck and as a rabbit(Kuhn, 1962, pg.114).

The key characteristic of conceptual discovery is the Gestalt shift; from ex-

isting lines forming a new picture and from existing scientific information

forming a new paradigm. An indicator of conceptual progress being made

is the appearance of mental models (Brewer 2001) and metaphors. Accord-

ing to Brewer, a mental model is “a conceptual framework that provides an

explanation for a set of phenomena by postulating a structural relation to an-

other more familiar concept (Brewer 2001, pg. 33). Similarly, both Kuhn and

Lakoff and Johnson’s work has suggested that the appearance of metaphors

is also a characteristic of conceptual discovery. Kuhn discusses this, saying

that the logic and puzzle-solving rules that characterize normal science be-

come inapplicable in times of scientific revolution because the fundamental

axioms and rules of a science often change during a time of revolution. In

part, metaphors might arise because there is not yet language to talk about

the new phenomena, and scientists must use the old terms metaphorically in

order to express new ideas. Often the linguistic remains of the old terms then

become embedded in the new theory, as I discuss in another paper.

While puzzle-solving discovery involves using an existing framework to

extend and fill in the framework, conceptual discovery involves making de-

cisions about what the framework should be like. This can involve propos-

ing causal hypotheses to explain observed correlations. It can also involve
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making decisions about how to handle data that is incoherent with the ex-

isting framework. When contradictory data comes in, scientists must decide

whether to use the framework to interpret the data, or use the data to alter

the existing framework. For instance, if astrophysicists discover an exoplanet

that is violating established expectations of planetary motion, they must de-

cide whether to propose auxiliary hypotheses that explain the anomaly (such

as proposing that there is an issue with their measuring apparatus or that the

planet has some special feature that explains its irregular motion) or whether

to alter the existing laws and theories that govern planetary motion. This

decision-making process is a conceptual one, because scientists must consult

their goals, their theoretical commitments, their epistemic values, and their

intuitions. Making decisions about how to revise existing theoretical frame-

works is not governed by the rules contained within the theoretical frame-

work itself.

A useful analogy to describe conceptual discovery is Kuhn’s analogy be-

tween scientific and political revolutions. In a political revolution, one cannot

use the values or institutions of the existing political system to justify moving

to the new political system. Kuhn says,

Political revolutions aim to change political institutions in ways

that those institutions themselves prohibit. Their success there-

fore necessitates the partial relinquishment of one set of institu-

tions in favor of another, and in the interim, society is not fully

governed by institutions at all (Kuhn 1962).

When conceptual changes happen, whether political or scientific, the po-

litical or scientific framework is weighed against a broader theoretical frame-

work. This broader framework contains things like social values, an agent’s
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overall body of epistemic commitments, and knowledge about what prag-

matic functions the framework needs to serve. Conceptual discovery is dis-

tinct from puzzle-solving discovery because it does not follow pre-established

rules or methodologies, but consults the broad framework of scientists over-

all beliefs, needs, and values in order to establish rules and methodologies.

It is useful to distinguish between these two categories of discovery be-

cause the former category, puzzle-solving discovery, is closely aligned with

the current contributions that AI is making to science. The latter, conceptual

discovery, appears to be more aligned with uniquely human abilities. I will

argue that AI can make puzzle-solving but not conceptual discoveries. If AI

can participate in conceptual discovery, it will do so with limited autonomy;

it will be strictly piloted by scientists. These two categories, puzzle-solving

and conceptual discovery are not mutually exclusive; rather, they represent

two ends of a spectrum describing different ways that scientific discovery

can occur. In section 2, I will examine several examples of computer-driven

scientific discovery and discuss how they fit into these two categories I have

explicated.

1.4 Logic of Discovery

I now come to the question about the parameters of artificial intelligence’s

ability to contribute to scientific discoveries. Before addressing this question,

I will first explore the notion of a logic of discovery.

Prior to Popper, philosophers like Descartes, Bacon, and Mill subscribed

to the idea that discovery could be formalized as a set of rational principles

and methods, and that a goal of philosophy should be to uncover these ra-

tional, truth-tracking principles.
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Under this picture, scientific discoveries are instances where rational, method-

ological, schooled inquiry suddenly pays off, not lucky instances that unpre-

dictably strike individuals. One of the motivations for the search for un-

derlying laws of discovery was the observation that certain individuals, like

Einstein and Darwin, seem to be especially good at making discoveries and

it seems intuitive that this skill must hinge on a particular quality of their

minds (Alai 2004, pg. 1). Uncovering the methodology that gives them

this ability would be productive for science because it could provide epis-

temic norms for scientific reasoning. The goal of philosophers like Bacon,

Descartes, and Mill was to uncover normative principles or a rational logic

that characterize successful scientific discovery.

Some discoveries seem highly spontaneous and coincidental, like Archimedes’

‘eureka!’ moment about water displacement upon getting into the bath-

tub (Biello 2006). Furthermore, Kuhn showed that the notion of scientific

progress and what counts as a scientific discovery is paradigm-dependent,

and as paradigms shift, so do scientists’ beliefs about what methods are epis-

temically virtuous and which scientific discoveries should be treated as ex-

emplars. If there were a logic of discovery, then discovery would be reduced

to following the rules of that logic, and scientific research would be a much

more measured and steady process, rather than making leaps and jumps of

success and experiencing paradigm shifts (Alai 2004). At the very least, there

would be clear qualities and methodologies that make one scientist’s rea-

soning, or scientific method, better than another. Instead, norms for scien-

tific discovery appear to be context-dependent and incommensurable (Kuhn

1962).

So there is a kind of predicament; on one hand it seems that there must

be methods and norms that characterize virtuous scientific discovery, but on

the other hand, there are a number of reasons to believe that there cannot be

universal normative principles that govern the process of scientific discovery.
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That there is a logic of discovery is no longer a widely supported view

in epistemology. In The Logic of Scientific Discovery, Popper famously argues

that

the act of conceiving or inventing a theory seems to me neither to

call for logical analysis nor to be susceptible of it. . . the question

how it happens that a new idea occurs to a man—whether it is a

musical theme, a dramatic conflict, or a scientific theory—may be

of great interest to empirical psychology; but it is irrelevant to the

logical analysis of scientific knowledge (Popper 1959, pg. 31).

This quote generally captures contemporary philosophy’s view on the notion

of a logic of discovery. Following Quine’s advocacy of a naturalized epis-

temology, discussion on the nature of scientific discovery have come from

psychology more than from philosophy.

Yet, as AI systems contribute more to processes of scientific discovery, it

seems that questions about a logic of discovery should make a comeback in

order to investigate the scope of what components of the discovery process

can be formalized. The inauguration of AI as an essential contributor to sci-

entific research necessitates a new question: ‘To what extent can a formal,

computational system make scientific discoveries?’ For a computer to make

discoveries requires a formalism of the discovery process.

Reichenbach says that the goal of epistemology is to construct “thinking

processes in a way in which they ought to occur...or to construct justifiable

sets of operations which can be interrelated between the starting-point and

the issue of thought processes (Reichenbach 1938).”

Reichenbach distinguishes between discovery and justification, claiming

that the above-mentioned aim can be achieved for the context of justification,

but not for the context of discovery; justification can be subjected to logical,
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normative analysis, but discovery can only be understood as a psychological

process. Reichenbach says,

The act of discovery escapes logical analysis; there are no logi-

cal rules in terms of which a “discovery machine" could be con-

structed that would take over the creative function of the genius.

But it is not the logician’s task to account for scientific discover-

ies...logic is concerned only with the context of justification (Re-

ichenbach 1956).

Popper similarly says,

My view of the matter...is that there is no such thing as a logical

method of having new ideas, or a logical reconstruction of this

process. My view may be expressed by saying that every dis-

covery contains ‘an irrational element’, or ‘a creative intuition’ in

Bergson’s sense (Popper 1959).

If AI has the capacity to produce laws, explanatory models, and theories,

then this would suggest the existence of a “logic of discovery", a set of norma-

tive rules that characterize certain successful cases of discovery. This would

not be an exhaustive logic of discovery, because AI only surpasses human

scientists in certain narrow contexts of discovery. However, even though

AI’s contributions to science are narrow, the contributions are still cases in

particular contexts in which a “discovery machine" is generating fruitful hy-

potheses at a faster rate than human creativity is able to. AI systems, even

neural networks, rely on a formal architecture, and thus if AI is able to make

scientific discoveries then this would indicate that some processes of scien-

tific discovery can be formalized.1

1Even though AI sometimes provides that appear creative, and even though neural net-
works are a black box, the underlying mechanism powering AI is still formal and determin-
istic.
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The introduction of AI is creating a chance for an abstract philosophical

question to be investigated empirically, through the investigation of the de

facto discoveries that AI is in fact making (Alai 2004). If this provides evi-

dence that a logic of discovery is possible, the “logic of discovery" will not

be a logic in the Reichenbach sense of a universal set of normative rules that

govern discovery, but in the pragmatic sense of a set of computational for-

malisms that produce useful new hypotheses in practice.

1.5 Overiew of AI systems contributing to scien-

tific discovery

Chess has often been used as a tool to experiment with the abilities and meth-

ods of artificial intelligence. It provides an environment with bounded con-

ditions: 64 squares, 32 pieces, 6 types of pieces, and a set of fairly simple

rules. Despite the simplicity of the setup, there are many different possi-

ble game configurations. Even ignoring the possibility of generating infinite

games by never declaring a draw, conservative estimate put the number of

possible plays at 10120 (Shannon 1950). Questions of how to model these pos-

sible plays, and what characteristics make a chess player successful (whether

human or computer) are very relevant to eventually asking similar ques-

tions about larger systems of laws and configurations, like physics. Many

research programs consider chess to be a drosophila of artificial intelligence

and human reasoning (McCarthy 1997). There is a wealth of research on the

psychology of human chess players and the mathematical dynamics of the

game. This makes it a good medium for comparing human reasoning with

computational inference.

It is significant to note how differently AI and humans approach the task

of winning at chess. Some psychologists use the computer as a metaphor
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for how the human brain functions, and in many cases this comparison is

a useful heuristic tool. In this next section I will explore some of the ways

that this comparison falls apart. It was only a decade ago, in the early 2000s,

that AI chess programs like Deep Blue began consistently winning against

human chess champions (Kasparov 2010). However, Deep Blue can compute

one billion moves per second while psychology studies suggest that the best

human players are only capable of around 500 (Hartston 1996). So, assum-

ing that computing power and some other characteristics together determine

how good a chess player is, it seems that Deep Blue is qualified in computing

power and underqualified in something else, while humans are underquali-

fied in computing power and qualified at something else. Chess-playing AI

programs exhibit an interesting mixture of intelligent and unintelligent be-

havior. For instance, in some games, Deep Blue has made moves which seem

very much like short-sighted blunders that a top human player would not

make whereas in other games Deep Blue has played as though it had an in-

tuitive understanding of the layout on the board. In one game against the AI,

Gary Kasparov said that only a human grandmaster would be able to play

the winning game that the AI had played, but the move it had made that he

praised as being psychologically strategic ended up being due to a bug that

caused Deep Blue to accidentally choose a non-optimal move.

Deep Blue is a traditional algorithmic AI program, in which it has been

programmed with explicit heuristics rather than evolving its own model

through reinforcement learning as a neural network like Alpha Go does.

Thus, Deep Blue’s success is a function of its processing power plus the effi-

cacy of the explicit rules in its programming. In many cases, these rules plus

its processing power allow its evaluation of moves to far surpass a human

player. The cases where it exhibits seeming irrationality are instances where

the rules selected by its programmers fail to be optimal for a particular board
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configuration. For instance, Deep Blue might be programmed to avoid con-

figurations that put its king at risk, but sometimes a move that is non-optimal

with regard to risk can be optimal with regard to the psychology of the op-

ponent if the move is unexpected or follows a pattern that is non-standard in

chess.

In illustrating the above differences, chess can serve as a useful model for

investigating some aspects of how AI’s contributions may be similar to or dif-

fer from humans’ in the realm of scientific discovery. However, chess is not

representative of all discovery contexts. In chess, the rules of the game set

clear parameters on what moves are possible. There is an extremely large,

but still finite set of possible games that can be played, and some of these

game plays are probabilistically better than others relative to the goal of win-

ning the game. Even though there is not objective, foundational justification

for a given move that DeepBlue makes, because the success of each move

depends on the psychology of the human opponent and their ability to suc-

cessfully respond to the move, there is objective data about which board con-

figurations satisfy the objective heuristics that have been programmed into

Deep Blue. For instance, part of Deep Blue’s programming includes weight-

ing of the different chess pieces’ importance, with the queen and king having

a high weight relative to a pawn, for instance. Deep Blue’s programming in-

cludes a rule which tells it to prioritize protecting the higher-weighted chess

pieces. Even non-algorithmic, deep learning AI systems like Alpha Go op-

erate within set parameters and relies on the simple heuristic of making the

move that has the highest probability distribution.

In contrast, scientific discovery involves both setting the parameters and

conducting searches within those parameters. Scientists both formulate the

problem, set the range of acceptable answers to that problem, and iteratively

alternate between searching within those parameters and altering the param-

eters.
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In the following section, I will examine several examples of AI programs

either designed to replicate past discoveries or used in the pursuit of con-

temporary theory generation. For each of these examples, I will analyze the

extent and nature of AI’s ability to contribute to the discovery process.

Before deep neural network technology advanced in the 2010s, most AI

was algorithmic and operated on the basis of explicit programmed rules.

Many of the algorithmic AI systems in science were aimed at replicating the

discovery of empirical laws. Under this category fall programs like GLAUBER

and BACON (Langley et al. 1985). These programs look for numerical rela-

tionships between variables. For instance, GLAUBER takes as input a set

of objects and predicates about particular chemical properties, and from this

extrapolates abstract categories like ‘salt’ and general laws about those cate-

gories (Langley 1985). For example, GLAUBER outputs generalizations like

the fact that an acid and a base neutralize each other in the form of rules like

‘For all x, if x is an acid then it reacts with sodium hydroxide (NaOH) to form

a salt.’

These AI systems are essentially pattern-recognition machines, and their

reliance on inductive reasoning reinvigorates questions about the nature of

inductive reasoning in science. Is inductive reasoning captured by the kind

of activity that GLAUBER engages in?

Hempel argues that the view that theory can be objectively extrapolated

from observation is misguided. He characterizes this as the ‘narrow’ view of

induction, which can be attributed to accounts like the following:

If we try to imagine how a mind of superhuman power and reach,

but normal so far as the logical processes of its thought are con-

cerned...would use the scientific method, the process would be as

follows: First, all facts would be observed and recorded, without

selection or a priori guess as to their relative importance. Second,

the observed and recorded facts would be analyzed, compared,
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and classified, without hypothesis or postulates other than those

necessarily involved in the logic of thought. Third, from this anal-

ysis of the facts, generalization would be inductively drawn as to

the relations, classificatory or causal, between them. Fourth, fur-

ther research would be deductive as well as inductive, employ-

ing inferences from previously established generalizations (Wolfe

1924).

Hempel argues that views like that described above fundamentally mis-

understand the relationship between theory and observation. First, he points

out that scientists do not impartially gather empirical facts; their background

knowledge and intuition necessarily guides the method and selection of ev-

idence. Second, he points out that even selection of a question to investigate

does not sufficiently narrow the method and scope of data collection:

The question as to the causes of lung cancer does not by itself de-

termine what sorts of data would be relevant-whether, for exam-

ple, differences in age, occupation, sex, or dietary habits should

be recorded and studied (Hempel 1966).

Scientists must rely on their local knowledge and background assumptions

in order to select relevant data. Hempel concludes, theories and hypotheses

are “not mechanically inferred from observed “facts"; They are invented by

an exercise of creative imagination (Hempel 1966).”

Popper, too, takes the stance of denying that inductive inference is a philo-

sophically meaningful notion, saying, "Induction, i.e. inference based on

many observations, is a myth. It is neither a psychological fact, nor a fact

of ordinary life, nor one of scientific procedure (Popper 1963, pg. 53)." His

support for the claim that induction is a myth comes from two premises. The

first mirrors Hempel’s: he claims that observations themselves require and
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implicitly have a theoretical framework, and thus it is not possible for a per-

son to start with a set of observations and objectively generate a theory from

them.

This observation makes salient the fact that, in cases of the inductive AI

systems like GLAUBER, a theoretical framework is being fed to the AI sys-

tem as input. The data that GLAUBER takes as input is already selected

and represented by scientists, and thus includes a theoretical framework.

GLAUBER does not infer from observation to hypothesis; it infers from pre-

programmed theoretical framework and structured, selected data to hypoth-

esis. This is a rote puzzle-solving activity.

Popper’s second and more famous objection is that acceptance of theories

should not be based on instances that confirm the theory. Popper proposes

that the problem of induction should be resolved by scientists instead start-

ing with hypotheses, making falsifiable predictions from those hypotheses,

and working to refute those through observation. GLAUBER is unable to

follow Popper’s refutation model as it has no capacity to differentiate be-

tween disconfirming evidence and absence of evidence (Langley 1985, pg.

7). In contrast, chess-playing AI programs like Deep Blue use a search tree in

which they proceed down a path in the tree and backtrack if they encounter

a falsifying result on that path. The way that this path-following and back-

tracking is structured, it essentially amounts to a number of conjectures being

tested and refuted until an optimum conjecture is settled upon (Bolc, 2012).

In contrast to programs like GLAUBER that aim to replicate historical dis-

coveries in science, some AI programs that have proved fruitful in contem-

porary discovery are those that automate lab experiments. Chemists at the

University of Glasgow have made several significant discoveries in chem-

istry by using AI programs to automate chemistry experiments. Designing

AI systems that control the running of the experiments allows more time

for human scientists to focus on larger conceptual aspects of the problem
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they are working on. In addition, it has been found that having AI run the

experiments reduces research costs because the AI programs are on aver-

age better at deciding which experiments to run, leading to less wasted time

and materials. In addition, AI is now being used to read through academic

papers across broad or disparate fields and uncover information that helps

scientists decide what new hypotheses to consider and test experimentally.

One example of an AI that has been used to automate experiments is the

‘Robot Scientist’, Adam, developed in a collaboration between researchers at

Aberystwyth University and Cambridge University in 2009. The program is

comprised of both robotics (arms, grips to clasp flasks and equipment), and a

set of four computers which forms the computing mechanism. The robot can

design experiments based on hypotheses that it has come up with and phys-

ically test the experiments. A Stanford AI researcher observed that the Robot

Scientist was operating at the level of a graduate student. The Robot Scientist

is said to be the first machine to make a new discovery in science indepen-

dently of human scientists. Of course, as I discussed earlier the structured

nature of the input data means that scientists’ background assumptions fac-

tor into the output, even if the internal component of the inference process

is performed by the AI independently. Adam’s discovery was new infor-

mation about genes in the genome of Saccharomyces cerevisiae. The program

independently generated a hypothesis, designed experiments to test the hy-

pothesis, and then physically conducted those experiments using its inbuilt

robotics, and developed a conclusion about the results. The researchers then

tested the conclusion to confirm that it was both correct and novel scientific

information.

A final category of discovery task that I will discuss before I move on to

the question of what type of discoveries AI can make is data mining. Given

the ever-expanding breadth of scientific publications as the population of sci-

entists grows much more slowly, there is a niche for computer programs that



1.5. Overiew of AI systems contributing to scientific discovery 39

can go through and find statistical connections between research papers. For

example, in medicine, correlations between health problems and medications

can be examined to discover side effects, and in medical research correla-

tions between certain genes and diseases can be captured. These data mining

AIs usually work on a machine learning framework, either a neural network

which is trained on data sets or a more independent genetic algorithm.

One example of a data mining AI is the Warmr program. Unlike most

data mining programs, Warmr falls under the category of inductive logic pro-

gramming, which is a sort of hybrid of machine learning and logic program-

ming. Inductive logic programming is structured as follows: (1) The program

is provided with background knowledge and a data set comprised of posi-

tive and negative examples. The program will then create a hypothesis in the

form of a set of logical propositions from which the positive examples follow

but the negative examples do not. It differs from many standard data min-

ing programs in that it captures more complex relational structure between

data points rather than simple associations between individual data points.

In capturing more abstract relational mappings, Warmr is analogical rather

than simply associative. In humans, analogical reasoning works by noticing

relational structure and generalizing it, and in doing so sometimes ignoring

more simple direct associations. Warmr was used to make hypotheses about

which chemicals are carcinogenic for rodents using an existing database of

background knowledge and examples (King 2001).
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Chapter 2

AI Can Make Puzzle-solving

Discoveries

2.1 Existing AI Programs Make Puzzle-solving Dis-

coveries

When headlines describe new scientific discoveries that an AI has made,

the AI being described is often a supervised machine learning algorithm

(Hosanger, 2019). Supervised AI programs work with labeled datasets where

each input is already associated with an output, and the AI program ana-

lyzes patterns between the input and output data to generate a function that

can make predictions for new inputs. A supervised AI program works by

taking a database, say, of patients taking prescribed pharmaceutical drugs,

the patients’ known preexisting medical conditions and general information

about their health, and the health problems that they are diagnosed with

from the time of taking the medication through their life. The algorithm

would process this large dataset, and would compute functions that can pre-

dict longterm side effects of different medications.

Overall, this is an example of AI performing a pattern-recognition job

that humans can do, but much faster and more efficiently. Automating pat-

tern recognition tasks has a number of potential benefits, such as allowing
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scientists to focus on conceptual tasks and also simply by conducting more

pattern-recognition analysis than human scientists are practically capable of

doing. The patterns that AI uncovers in such tasks is a discovery in the sense

that it was previously unknown. AI finding that certain types of hormonal

birth control correlate with a higher rate of cancer would likely be labeled a

“discovery” by newspapers. How would philosophers classify it?

For Kuhn, it seems that it would constitute a discovery-that. For Kuhn,

a discovery-that identifies that a phenomenon or correlation exists, with-

out correctly conceptualizing the nature of that phenomenon or relationship.

AI’s discovery that there is a correlation between certain types of hormonal

borth control and increased incidence of cancer would establish that a rela-

tionship may exist, but not what the nature of that relationship is. Discovery-

thats are usually followed by discovery-whats, like chemists trying to con-

ceptualize the chemical mechanism underlying combustion.

So while an AI-discovered correlation between certain hormonal birth

controls and cancer would arguably be new information (even if implicitly

contained in the input data that was fed to the AI program), it would not

count as a discovery-what under Kuhn’s account. A discovery-what would

established by scientists providing a theory that accurately explains the cor-

relation. Another feature of supervised machine learning that constrains the

scope of its contribution to discovery is that the input data is cleaned up and

labeled by researchers before it is presented to the AI program. In this sense,

the task is mechanical: you could replicate it by putting items of a certain

shape on a conveyor belt and having them tumble down into a basket if they

fit a certain shape criterion. Supervised AI is provided with labeled blocks

and tools for reading block shape. Using the training dataset, it adjusts its

model to minimize prediction error. The model that AI generates for the

block-sorting task is entirely determined by the initial architecture that it is

programmed with and the contents and labeling of the training dataset.
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In contrast to supervised and reinforcement learning AI, unsupervised AI

programs uncover patterns in datasets without direct human intervention in

the form of labeling and positive/negative reinforcement (Raza 2018). The

notion of relevance that the AI uses to build the model comes not from ex-

plicit labeling or positive reinforcement, but from the input data itself and the

AI’s similarity metric. In these cases, the notion of relevance that is implicit

in the initial dataset’s representation and the AI’s similarity metric shapes the

types of patterns that the AI identifies. The choice of data and representation

of data in the initial dataset thus influences what types of data clusters AI

generates.

Thus, unsupervised learning is mechanical in the same sense that super-

vised reinforcement learning is. Scientists’ background assumptions are im-

plicit in the initial selection and representation of input data as well as the

AI’s similarity metric, and the AI model merely extrapolates further conjec-

tures from those theory-laden representations and similarity metric.

Another category of AI programs are unsupervised reinforcement learn-

ing programs. There are now various AI programs, such as Google’s Alpha

Go (Hosanagar 2019), that don’t have labeled data sets generated for them

by researchers, but instead do their own labeling of data based on criteria

they iteratively extrapolate from positive reinforcement on training sets. For

instance, while Deep Blue has explicit rules in its algorithm that its program-

mers developed in collaboration with expert chess plays, Alpha Go instead

plays against itself to generate its own model. These types of AI programs

are not limited to playing board games; they have been used in chemistry

and the pharmaceutical industry.

One such AI program is the ‘AI Physicist’ developed at MIT (Wu 2019).

The AI Physicist is designed to imitate the methods human physicists use to

discover physical laws. One of the biggest strengths that makes the AI Physi-

cist unique in comparison to other AIs is that the it is designed to look for
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multiple small theories rather than one large theory. This solves one weak-

ness that other AIs face; many AIs when given a large body of data look

for a single theory that explains the whole data set. With large complicated

data sets like virtual worlds with physical laws, searching for a single gen-

eralizable theory can be inefficient because the data results vary in different

contexts. For instance, (Wu 2019) points out that the dynamics of a double

pendulum are most efficiently formalized by separating the complex system

into two separate domains, the upper and lower portions of the pendulum.

The AI Physicist took the double pendulum’s trajectory as input and was

then able to separate the dynamics into two separate domains, one domain

describing the dynamics of the upper portion and one describing the dynam-

ics of the lower portion of the pendulum (Wu 2019).

The AI physicist is also programmed to include epistemic values like Oc-

cam’s razor, theory unification, and predictive power. These principles guide

the direction of its model generation. It relies on reinforcement learning and

remembers solutions that have worked in the past and applies these to future

datasets. The developers tested the AI physicist on forty artificial worlds

with unfamiliar laws of physics (Wu 2019). Their aim was to see if the AI

would be able to discover the laws of physics for each world by simply ob-

serving the phenomena of each world. The AI physicist was able to derive

accurate laws for 92.5% of the tested worlds.

The AI Physicist’s weighing of epistemic values is a strength of the pro-

gram. An important component of automated discovery is to formalize the

ability to derive multiple coherent theories from one dataset and to be able to

judge how to conduct theory choice based on principles that scientists use. If

the phenomena of a physical world can yield either two complicated theories

that are limited in scope or four more small but simple and explanatory theo-

ries, a good AI needs to be able to make a judgment about whether to choose

the two theories or the four theories to represent the world, and weigh this



2.1. Existing AI Programs Make Puzzle-solving Discoveries 45

decision against other epistemic values.

Aside from the numerous practical applications of AI to discovery pro-

cesses, there has been extensive research conducted by Langeley et. al. (1985)

that aims to design AI systems that can reproduce historical discoveries in

science and mathematics. This research is focused not on developing useful

ways to use AI, but on demonstrating that AI can replicate historical dis-

coveries. Pat Langeley (1985) explores several examples in her 2001 work

The Computational Support of Scientific Discovery, and joins with Herbert Si-

mon and others to publish Scientific Discovery: Computational Explorations of

Creative Processes (1987). Their program has the goal of showing that discov-

ery is a rational process that can be formalized. The first of their programs

was named “BACON” after Francis Bacon, who is often called the father of

empiricism and is a notable advocate of mechanizing the scientific method.

Langeley et al.’s computational discovery project aims to design AI pro-

grams that engage in “heuristic selective search (Langley 1987, pg.5).” Heuris-

tic selective search uses programmed heuristics to selectively narrow down

the number of possible solutions to explore in a large problem space. A prob-

lem space is all of the possible arrangements of data within the constraints of

the domain. For a program searching for the constituents of a chemical reac-

tion that forms water, it might be all of the plausible chemical pathways that

are allowed by the initial setup that the scientists have designed. In chess,

the problem space is all of the ways that chess pieces can be configured on a

chess board over n possible games, where n equals all possible games (Shick-

ore 2018).

The problem space has a set of states; each state is one way that the con-

stituents of the problem space can be arranged within the problem space.

A random layout of chess pieces on a chess board would be one state of

the problem space. The initial state of the problem space is important be-

cause it determines the future states, and the goal state is important because
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it constrains what intermediary states are viable. The programs are pro-

grammed with heuristics that guide the selective search process. This is a

puzzle-solving activity because the goal is to solve the puzzle of how to start

with the initial state and get to the goal state. It is a kind of orienteering

process. The path is constrained by operators which dictate how new states

emerge from the prior state, and path constraints which act as roadblocks to

make the number of available states a finite number (Shickore 2018). To reach

the goal state, the program applies the operators to the initial state, and the

resulting states from that state, until it has eventually explicated all of the

possible states within its search space and found an optimum path that leads

from the initial state to the goal state.

Langeley (2000) claims that scientific discovery can be broadly sorted into

five types of process. First, the generation of taxonomies serves to group

things into basic categories so the categories can be sorted or manipulated.

Elements are sorted into gases or metals, organisms are sorted into genus and

species, and notions of symmetry specify groupings in physics. Then comes

the proposal of qualitative laws, which determine interactions between cat-

egories such as interactions between certain classes of chemicals. Another

stage is the generation of quantitative laws. Finally, structural and process

models, in which descriptive accounts are expanded into deeper mechanistic

or explanatory models. Langeley claims that each of these five stages have

been achieved with AI programs (Langeley 2000). The remainder of this sec-

tion will summarize the progress of Langeley et al.’s programs.

First I will discuss AI that generates useful taxonomies, one of the simpler

stages of scientific discovery according to Langeley. Astrophysicists work to

sort stars into taxonomies by the characteristics that are accessible to us from

the visible light they emit, which is captured by satellites like IRAS. The AI

system AutoClass developed by Cheeseman (1988) was applied to the data

from IRAS to see if it could sort data into useful taxonomies (Langeley 2000,
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pg. 398). The system puts objects into classes depending on the random pre-

established definition of each class. It then updates the descriptions of the

classes based on the objects that it has added. The program adds classes to

the initial programmed number of classes until classes with minimal varia-

tion exist (Langeley 2000, pg. 398). This process yielded 77 classes of stars,

which were then sorted into more high-level clusters by repeating the au-

tomated sorting process on the class descriptions themselves. Because the

result was different from the one commonly used in science and the results

seemed useful (Cheeseman 1989), the results were published in an astron-

omy journal. The main points of interaction between the scientists and the

AI was when the scientists structured and cleaned up the data before feed-

ing it to the system, ran the program a second time on the classes themselves,

and interpreted the results.

The program that Langeley et al. have developed to evaluate qualitative

laws is called GLAUBER. It works by taking qualitative facts and outputting

a set of classifications and some rules about the classes and their members.

For instance, chemical classifications were historically sorted based on their

observable attributes: salts dissolve in water, acids taste sour and dissolve

metals, etc. In addition to this, they were evaluated on how they interact,

such as salts being formed when acids interact with a base (Langeley et al.).

GLAUBER replicates these discoveries and is named after the chemist, Jo-

hann Glauber, who helped discover the interactions between acids and bases.

GLAUBER receives as input sets of predicates, paired attributes, and val-

ues. GLAUBER sorts through its database and searches for cases where

things have the same predicate and value for an attribute (Langeley et al.

1985). When GLAUBER discovers similarities, like multiple objects having

the attribute “tastes sour”, it creates a category labelled with this common

attribute and stores the similar objects in the class. GLAUBER would notice

that the sour-tasting class and the sodium hydroxide reacting class share the
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same attributes and would be combined in a class together, one stored un-

der the taste category and the other under the reacting category. This would

eventually yield the chemicals sorted into the categories that we recognize

ourselves.

Langley et. al. claim that GLAUBER’s results are essentially the results

that early chemists came to themselves when they found the patterns of

salts and acids (Langeley et al. 1985). GLAUBER explicates the pattern in

which acids and alkalis react to form salts, which is essentially the same re-

sult that early chemists achieved. Furthermore, when presented with more

data, GLAUBER comes up with the more complex result that there is a cate-

gory of elements, bases, that react with acids to form salts (Langley et. al.pg

466). If using empirical data and coming up with a qualitative law is suf-

ficient grounds for a discovery, then GLAUBER does seem to be capable of

replicating this early discovery in chemistry.

To prove that AI can replicate the discovery of quantitative laws, Langley

et. al. set one of their BACON programs up to prove Proust’s law of constant

proportions, Dalton’s law of multiple proportions, and Lussac’s law of com-

bining volumes (Langeley et al. 1985). The three laws were precursors to the

atomic masses of the elements being computed. The first law states that for

a chemical compound X, say water, the ratio of the component elements rel-

ative to one another is a constant for that compound X. The second law says

that when two elements form different compounds together, their combined

weight always equals some multiple of their individual weights. The third

law says that gases combine in ratios that are integers when applied to their

volume.

The program BACON searches through a data set to find which variables

are dependent on each other, and in which way. Taking one independent

variable at a time, it computes through and specifies the relationship between

other variables and that variable. It then moves on to another independent
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variable and repeats the process, this time also seeing whether the variable

relates to the conclusion that it drew with the last variable. In the case of

the research that led to the above laws, the independent variables were the

elements and chemical compounds, and the dependent variables were the

ways of measuring those elements and compounds: weight and volume. BA-

CON examines a dataset in which it can see the ingredients and effects of a

chemical reaction and their weights relative to one another. Different com-

pounds with nitrogen (N) and oxygen (O) as their constituents would yield

different weight ratios for weight of O divided by weight of N: NO with re-

spective weights of 1.14 and 1 would yield 1.4, N2O with weights of .57 and

1 would yield .57, NO2 with 2.28 and 1 would yield 2.28. BACON assigns

these numbers as intrinsic properties of the individual compounds (Lange-

ley et al. 1985). Next, BACON would note that the ratios all are divisible

by .57, yielding the integers NO = 2, N2O = 1, and NO2 = 4 (Langeley et al.

1985).

This is equivalent to Dalton’s law of multiple proportions (Langeley et

al. 1985). Carbon forms either CO or CO2 by combining with oxygen in

different proportions. X grams of carbon can react with either Y grams of

oxygen or 2Y grams of oxygen. The two options for grams of oxygen that can

react with X grams of carbon form the ration 2:1. Dalton’s proposal was that

this result represents the fact that one carbon atom can react with either one

or two oxygen atoms. BACON’s discovery process is essentially inductive

reasoning over a data set.

The discovery system DALTON, named after the chemist John Dalton,

creates structural models of molecular reactions. It takes into account two

numbers; the number of molecules of each type and the number of atoms

in each molecule (Langeley et al. 1985). Not knowing how many of each

molecule there are, it begins with one of each molecule and proceeds from

there. If the model faces problems later on in the process the AI will go back
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and alter the initial assumption about the number of molecules.

The information that DALTON receives from the human scientists is akin

to that which a chess-playing AI receives about the rules of chess and the

desired outcome. DALTON is told that it can not violate certain laws, for

instance the law of conservation: that mass cannot be created or destroyed

in a closed system despite any chemical reactions or changes of state. Fur-

thermore, DALTON is programmed with information about the solution it is

searching for. Langeley says, "The conservation operator tells Dalton that the

water molecule must be composed of one h particle and one o particle, and

that the final model must have the form ((h)(o)−→ (ho))(Langley pg. 457)."

The solution in a sense already exists, and DALTON must search through the

possibilities to find an option that does not violate the constraints that it has

been programmed to reject. DALTON operates on a search tree framework,

in which searching involves going down all of the different paths within the

problem space, constrained by certain search heuristics, and backtracking

every time it reaches a dead-end (Langley 1985, pg.457). The process that

Langley describes is identical to a robot mechanically walking a maze and

placing a do-not-enter marker over each path that ended up yielding a dead

end. This process is an effective way to solve a puzzle. But is it a scientific

discovery?

There has been much philosophical discussion about the rationalist ac-

count of scientific discovery proposed by Langley and Simon. Their account

treats discovery as problem solving that occurs with the aim of finding nu-

merical relationships within a data set. Langeley et al. say, “The research is

mainly limited to finding a set of mechanisms that is sufficient to account for

discovery (Langley et al. 1987, pg.4).”

Further, Simon says,
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The claim, then, that the processes of scientific discovery are nor-

mal problem-solving processes is a claim that scientific discov-

ery follows the four principles...First, its basic method is selective

(heuristic) search. Secondly, it uses both general and domain-

specific heuristics. Thirdly, means-ends analysis, a heuristic of

broad applicability, plays an important role in analysis and rea-

soning. Fourthly, effectiveness in discovery depends heavily on

processes of recognition, making use of tens of thousands of pro-

ductions that index memory with familiar and recognizable cues

characterizing common problem situations (Simon, 1992, pg.8).

One piece of the evidence they provide for the argument that the pro-

grams are performing discovery is that the programs are capable of coming

up with new, unobservable properties, and that this amounts to theorization.

Version four of BACON, for example, comes up with values for the conduc-

tance of different wires, but there is no instrument which can directly mea-

sure conductance(Pat Langley, 1987, pg.129). The argument is that BACON

is discovering processes which are not directly measurable/observable and

are thus are theoretical, and therefore BACON is generating theory.

Langeley et al. say

On the basis of the experience with these programs, it seems rea-

sonable to claim that the mechanisms of scientific discovery can,

indeed, be subsumed as special cases of the general mechanisms

of human problem solving. To be sure, there may be essential nov-

elty hidden in those aspects of problem solving that lie outside the

range of the programs. But given the evidence of behavior that we

have reviewed here, bare claims that such novelties exist are not

convincing. There seems to be no present reason to believe that
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any aspects of scientific discovery must remain indefinitely be-

yond the powers of heuristic search, or that the discoveries of hu-

man scientists cannot in time be explained within the information

processing paradigm for problem solving (Langeley et al. 1981).

In the case in which discovery is being defined as puzzle-solving discov-

ery, this seems acceptable. Under the puzzle-solving definition, discovery

means searching for an acceptable solution within a structured framework,

akin to correctly putting together a jigsaw puzzle. However, the functions

performed by BACON, GLAUBER, and DALTON do not seem to qualify as

cases of conceptual discovery. BACON, for instance, works to rediscover

Ohm’s law, which

...relates the current I of an electric circuit to its voltage V and its

resistance R. The law may be stated as I = V/R. In physical terms,

the voltage is associated with the battery used in the circuit, while

resistance is associated with the wire (Langeley 1980).

When computing this relationship, BACON discovers properties that are

implicit in the input data and it does not propose an explanatory theory.

BACON does not provide any knowledge about the nature of conductance

nor what causes the different wires to have different conductance abilities.

Furthermore, although conductance itself is unobservable in this case, the

information about conductance that BACON generates is derived directly

from observable properties that are provided as input. BACON is not really

proposing a new, unobservable property but is just isolating a constant which

already exists as a direct consequence of the observable data (Alai 2004, pg.

24).

Again, with Langley and Simon’s program Stahl, it seems that Stahl’s

results can only be counted as scientific discovery when discovery means

puzzle-solving, not conceptual, discovery. Mario Alai (2004) argues that
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while Stahl yields a correct interpretation of the oxygen reaction, it would

be impossible to conclude that Stahl is actually discovering oxygen theory.

Alai says "Stahl...simply applies [oxygen theory]: it accomplishes what Kuhn

would have called normal science tasks (Alai, 2004, pg.5)." Alai characterizes

this as a simple and mechanical inference process. In contrast, discovery that

occurs outside normal science restructures paradigms rather than perform-

ing mechanical deduction tasks within a paradigm.

I will discuss an overview of some objections that have been raised against

Langeley et al.’s claim that the AI programs above are making scientific dis-

coveries. Critics claim that Langeley et al.’s account is inadequate because

it disregards the social, historical, and psychological elements of discovery.

Taking these factors into account creates a complex picture which Langeley

et al’s account lacks. Another criticism, coming from Donald Gillies, is that

Langeley and Simon’s programs replicate discoveries that have already been

made by scientists but have not managed to discover any new laws(Gillies,

1996. Furthermore, he points out that the programs have not yielded and

results which are actually useful to science.

Another objection, which I touched on earlier in this paper, is that dis-

covery is thought to rely on scientific intuition and creativity, and intuition

and creativity seem incapable of being formalized. Simon responds to this

by claiming that intuition involves scientists using their background knowl-

edge and experience to recognize a new fact. He argues that the apparent

mysteriousness and spontaneity of intuition is not due to the process itself

being mysterious and unformalizable, but instead is merely due to humans

lacking epistemic access to the contents of their reasoning processes. Simon

says,

When pressed for information about the method of solution, the

respondent may reply, "I just used my intuition", or "it’s based

on my experience", or "the answer just came to me". There is no
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reason to doubt the truth of these replies. They are just what we

could expect if the solution were obtained by an act of recognition:

that is, if some cue in the stimulus situation evoked a recognition

of something already familiar in the mind of the respondent, and

thereby gave access to information previously stored in memory.

In my paper I show that recognition is a well-understood process

in psychology that has been simulated effectively by the EPAM

program (Feigenbaum & Simon, 1984). It is also well known that

a person can report what he or she has recognized, but not what

features of the stimulus allowed it to be discriminated from other

possible stimuli. The discrimination process is subconscious, hence

not reportable. Recognition is ’intuitive’, or better, intuition is

simply recognition (Simon 1992).

Simon claims that processes which we tend to refer to as “intuition” are

logical processes of recognition that can in theory be modeled computation-

ally.

Another objection against Langeley and Simon is that if their account

purports to resolve the problem of induction, the impossibility of providing

foundational justification for any inductive law, then their account is mis-

guided. Simon (1992) replies that the goal of their account is not to provide

an ultimate logic of discovery that yields true, infallible theories. Rather,

their goal of formalizing discovery is to replicate the fallible human activity

of coming up with laws that fit the data that is observable at a given time.

Under Langeley and Simon’s account, scientific inductive reasoning is re-

duced to the generation of taxonomies, qualitative laws, and quantitative

laws. These tasks are not so much concerned with theory; rather, they are

the fleshing out of details within a theory. Langley claims that the fact that

some of their programs find laws about unobservables means that there is

an element of theorization that the programs achieve. However, Gobet et.
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al. (2017) argue that the discovery of qualitative and quantitative laws can

include discoveries about observables or unobservables but is still a more or

less separate category from theory (Gobet et. al. 2017, pg. 4).

For Gobet et al., "A theory is an underlying explanation, accounting for

a set of observations by means of a causal process. For example, Newton’s

theory of gravitation explains Kepler’s observations by means of a deeper,

causal principle. The theory of evolution by natural selection, conceived by

Darwin and Wallace, explains a wide range of observations regarding organ-

isms’ adaptations, and forms the basis of the modern science of behavioural

ecology (Fernand Gobet, 2017, pg.5)." Though they generally present theory

as a belonging to a separate category than inductively-derived qualitative

and quantitative laws, they do acknowledge that sometimes there is some

overlap between the categories. For instance, Newton’s theory of gravity is

both an empirically-derived law and a theory with explanatory power (Fer-

nand Gobet, 2017). They also point out a distinction between discovery of

a theory that results from direct observation like the discovery that DNA

is a double helix and discovery of a theory that is more conceptual and for

which observing is not equivalent to discovering like Darwin’s theory of evo-

lution(Fernand Gobet, 2017, pg.34).

In later papers, Langley et al. (2006; 2019) have expanded their account of

the components of scientific discovery to include process models, which cap-

ture deeper structural relations rather than just qualitative and quantitative

regularities. These are more explanatory than merely descriptive. However,

Langeley sees these as belonging to the later stages of science, not to the ini-

tial discovery phase.

I will argue that Langeley et al.’s formalisms of discovery are sufficient for

certain puzzle-solving tasks, but not for conceptual discovery. I support Lan-

geley et al.’s argument that the team’s computational discovery algorithms
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are replicating instances of scientific discovery in the form of a problem-

solving activity. However, I replace their premise that scientific discovery

is problem solving with my own premise that problem solving constitutes

one type of scientific discovery. I conclude that the programs that I discussed

above can perform puzzle-solving discovery under the definition I specified

in Section 1, but they cannot perform conceptual discovery. BACON, DAL-

TON, GLAUBER, and STAHL are able to find regularities like quantitative

laws and taxonomies within a theoretical framework, but they are not ca-

pable of making decisions about choice of theoretical framework or able to

interpret evidence to recognize when revisions to the theoretical framework

may be warranted.

Another account that aims to establish the computability of scientific dis-

covery comes from Ioan Muntean (2014) and a study conducted by Schmidt

and Lipson (2009). Muntean defines a type of scientific discovery which

he calls bottom-up discovery and argues that bottom-up discovery is com-

putable. Furthermore, he argues that some level of creativity and autonomy

can be achieved by the computer programs conducting such discoveries. In

particular, his argument focuses on the use of computer programs that are

designed to operate using concepts of biology. Called genetic algorithms,

these programs perform iterative search within a problem space for the best

solution. These programs are structured around the idea of evolutionary con-

straints and organism adaptation. The aim of the research program is to find

a way to generate algorithms that adapt and evolve to changes in domain

constraints.

Mimicking an evolutionary process in nature, genetic algorithms begin

with a population of individuals in an initial state that then either die or

propagate into the next generation according to the processes of natural se-

lection, sexual selection (reproduction of the fittest), recombination, and mu-

tation (Muntean 2014, pg. 3). The program stops when a pre-programmed
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level of success is reached or when all of the individual entities evolve into

to be identical entities. This strategy has been used by Schmidt and Lipson

(2009) to find laws and persisting properties in physics. In their programs,

the individual entities can be mathematical formulas, models, or heuristic

methods. The environment that the individuals exist within is a set of empir-

ical data. When applied to the empirical data environment, some individuals

do not "survive"–they are inconsistent or mathematically unsound. In other

cases, an individual fits well with the data and is allowed to survive and are

cross-combined with some other successful individual. In running this type

of program through many iterations, Schmidt and Lipson discovered that

very ‘fit’ individuals come into existence that provide optimal models of the

data (Muntean 2014).

One thing to note is that the automation of scientific discovery I have

described is not achieved without significant involvement of human devel-

opers. The involvement raises some questions: which decisions are auto-

mated and which are being performed by the human scientists? Moreover,

is the work that is being performed by the AI sufficient to qualify the AI as

discoverer? The computational discovery AI programs cannot achieve all

of the activities that are associated with scientific discovery. For instance,

even more autonomous programs like genetic algorithms cannot invent new

instruments for measuring empirical data, change methodologies without a

framework being provided by the programmers, or design experiments. Fur-

thermore, scientific discovery has historically not occupied organized and

premeditated problem spaces. In science performed by humans, part of the

discovery process is deciding what the goal state is and what the and what

the parameters of the problem space are.

Relevant to the question of whether puzzle-solving within pre-defined

parameters counts as scientific discovery is the discovery game Foldit. Foldit

is a platform that facilitates collaboration between non-scientist humans to
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make scientific discoveries as a puzzle-solving activity (Cooper 2010). Foldit

presents users with a 3D model of a protein and challenges them to config-

ure the protein into a structure that uses minimal energy. The user solves the

puzzle, the solution is judged by the energy state of the protein’s configura-

tion, and the user receives a numerical score. In competing to get high scores

in a game that is presented to them as a puzzle to solve, humans with no sci-

entific background are part of a collaboration to discover protein structures

that have not yet been discovered by scientists. Foldit essentially is a highly

productive scientific community comprised mainly of non-scientists, who, if

asked, would not claim to be doing anything more than playing a game.

Yet, despite not being scientists or replicating any of the characteristics

that have been associated with the traditional views of the discovery process

in the philosophy of science literature, these gamers are extremely produc-

tive discoverers who have generated results that have been published in sci-

entific journals (Cooper 2010). The puzzle that is presented to the gamers

is not highly structured; it has vague aims like “find a good configuration

that has a low energy score” and the gamers do not receive any feedback be-

sides a single immediate numerical score (Cooper 2010). The platform has no

goal of educating the players about science. The users are useful for scien-

tific discovery by virtue of their puzzle-solving ability, not their knowledge

of science. So, the gamers are not being trained to be scientists who under-

stand protein structure; instead their role in the platform is identical to that

of an AI that learns by reinforcement learning. They are not communicating

with the scientists, they are not being told why their answer is plausible or

implausible; they are merely being provided with vague constraints and re-

warded more highly for answers that satisfy certain heuristics. Just like in a

neural network and human scientist dynamic, the puzzle-solving computer

is a black box to the human scientist and the human scientist is a black box to
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the puzzle-solving computer. The only information that is being passed be-

tween them is the formal structure of the puzzle, the result, and the reward

for a better result (Khatib 2011).

Like AIs that use evolution strategies instead of reinforcement learning,

Foldit has one method called “evolving” that allows users to work together.

In this system, users join together in groups and share their solutions with

other members of the group. As the solution passes around between mem-

bers of the group, each tries to improve it. If it is successfully improved upon

the new solution is marked as an evolved solution. The solution that the

group submits for scoring is the solution that has the highest overall score,

and it can either be one of the evolved solution or a solution that was gener-

ated by just one member.

Foldit has two main types of puzzles. The first, and more common, type

of puzzle is called a prediction puzzle, where the amino acids are fixed and

the user merely manipulates the way that the protein is structured in 3D.

The second puzzle is a design puzzle, and is a puzzle where the gamers can

actually change the amino acids. The first is like giving gamers a jigsaw

puzzle that can be configured in multiple ways and asking them to find the

most aesthetically pleasing configuration. The second is like having a jigsaw

puzzle that has multiple options for each piece, and allowing a player a little

more freedom in choosing pieces to make the best design.

The interesting aspect of the Foldit platform is that, as is the case with

many current AI programs, entities that have no scientific knowledge are

making incredible scientific discoveries. Most recently, Foldit gamers have

generated the structure of an enzyme that relates to AIDS that scientists have

been in search of for over 10 years (Khatib 2013). The enzyme is a significant

step towards curing AIDS. The time that it took for gamers to come up with

the model for the enzyme was only three weeks.
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Can these Foldit gamers make scientific discoveries? Although these dis-

coverers are not trained scientists, it seems undesirable to deny that they

are discoverers simply because they lack formal scientific training. Whewell

would probably disagree. He says, “previous condition of the intellect, and

not the single fact, is really the main and peculiar cause of the success. The

fact is merely the occasion by which the engine of discovery is brought into

play sooner or later. It is, as I have elsewhere said, only the spark which

discharges a gun already loaded and pointed; and there is little propriety

in speaking of such an accident as the cause why the bullet hits its mark

(Whewell 1840, pg. 189)." While the bullet hitting the mark may be the re-

sult of the previous condition of the intellect, in the case of puzzle-solving

discovery, a good condition of the intellect need not be equivalent to a broad

knowledge or understanding of science. Conceptual understanding is not re-

quired for making a scientific discovery when the discovery in question is a

puzzle-solving discovery as defined in Section 1, not a conceptual discovery.
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Chapter 3

Prerequisites for AI Making

Conceptual Discoveries

In the previous section I aimed to show that AI can perform puzzle-solving

discovery. In this section I will discuss three elements that I will argue are

essential to conceptual discovery. These are abductive reasoning; a represen-

tation language that incorporates fuzziness, paraconsistency, and predicate

logic; and an ability to make and use conceptual metaphors. I will argue that

these are the preconditions to AI making conceptual discoveries and I will

examine the current abilities of AI to satisfy each precondition.

3.1 Formalizing Abductive Reasoning

Abductive reasoning seems to be essential to conceptual scientific discov-

ery. Scientific discovery does not merely involve extrapolating implicit con-

sequences of existing empirical observations, as programs like BACON do.

Instead, scientific discovery often depends on scientists abductively reason-

ing to formulate a theory that provides a plausible explanation for the empir-

ical evidence. This theory may not be a perfect fit for the data. For instance,

Newton hypothesized that gravity explained planetary motion, even though

this hypothesis made imperfect predictions about Mercury’s orbit. Newton

knew that Mercury’s elliptical path was not fixed; it was rotational. This did
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not fit with his hypothesis about gravity, but the theory was still the best op-

tion available to explain the total body of empirical evidence available at the

time (Curiel 2018).

Kuhn does not explicitly discuss abductive reasoning. However, implicit

to his argument is the claim that paradigm shifts, like the shift to the helio-

centric model of the solar system, rely on abductive reasoning, not just induc-

tive reasoning. Scientists use abduction to propose a compelling explanatory

framework for anomalies that the old paradigm is unable to explain, which

can lead to paradigm shift even when the new paradigm is incoherent with

or unable to explain some phenomena. Kuhn says,

Almost from the start of his electrical researches, Franklin was

particularly concerned to explain that strange and, in the event,

particularly revealing piece of special apparatus [The Leyden jar].

His success in doing so provided the most effective of the argu-

ments that made his theory a paradigm, though one that was still

unable to account for quite all the known cases of electrical repul-

sion. To be accepted as a paradigm, a theory must seem better

than its competitors, but it need not, and in fact never does, ex-

plain all the facts with which it can be confronted (Kuhn 1962, pg.

17).

In order for AI to make conceptual discoveries, it will need to be able to

replicate abductive reasoning: application of epistemic values and domain-

specific goals to choose which data are most pressingly in need of explana-

tion and production of an explanatory framework that explains those data

points while also satisfying scientists’ other epistemic commitments. How-

ever, formalizing abductive reasoning in computers is a significant challenge.

There is even contention among philosophers about how to define abduction.
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Even in Pierce’s work, some important characterization of abduction is

left ambiguous, or seems to be approached differently in different parts of

his work. For instance, in one paper Pierce says that “it must be remembered

that abduction, although it is very little hampered by logical rules, never-

theless is a logical inference asserting its conclusion only problematically or

conjecturally, it is true, but nevertheless having a perfectly definite logical

form (Pierce, 1931, pg. 188). Yet in the same paper, his definition seems to

differ and he calls abduction "a flash..an act of insight(Pierce, 1931, pg.180)".

Pierce subtly changes his characterization of abduction over the course of his

career. Kapitan (1992) responds to the differences between Pierce’s earlier

and later work on abduction by suggesting that Pierce actually intended that

abduction should mean a dual process, a generation and then selection of hy-

potheses. Kapitan calls the first part “abductive discovery” and the second

“abductive preference.”

Since acknowledgement of the importance of abduction has spurred AI

research in formalizing abduction, abduction has come to have a number of

slightly differing definitions within the AI literature as well. In most general

terms, AI research in abduction is more in alignment with "abductive prefer-

ence" than "abductive discovery". The number of expert systems that aim to

use abduction for tasks like diagnosis and problem solving are generally set

up with the following structure. The logic-based ones have a theory T that

formalizes the constraints of the domain that the program will be working

in, a number of formulas X for the different effects that might be observed

within the system and the way they might appear, and a set of possible hy-

potheses Y that could explain the effects. The expert system searches for a

formula from the set Y that is consistent with the domain theory and from

which the relevant effect in the set X could logically follow.

Even in the ones that are not logic based, the process can be described as

selective search to choose a theory, rather than generation of new theories.
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For this reason, the abductive abilities of current AI programs are sufficient

for puzzle-solving, where decisions are made within a theoretical frame-

work, but are not sufficient for conceptual discovery, where the theoretical

framework itself is restructured or refined.

3.2 The Frame Problem

Closely related to the need for AIs that can perform abductive reasoning is

the frame problem (Shanahan 2008, 2016). On the AI research side, the frame

problem is concerned with trying to find a way to logically model the ef-

fects of an action without a lot of unnecessary, obvious, or non-effects being

included in that model. On the philosophy side, the frame problem is con-

cerned with how to explain our ability to act based on relevant information

without having to sift through all the non-relevant information. It is also

concerned with how the reasoning process can be streamlined to still result

in the correct effects but not include irrelevant information.

Essentially, the frame problem describes the fact that it is difficult to create

logical formulas that describe the effects of an action without including a

mass of axioms describing what does not change as a result of the action.

Shanahan (2016) explains this with an example.

Take the two following formulas “painting x causes x to be some color”

and “moving x causes x to be in some position”. Let’s say the color of object x

is blue and the position of object x is in the car. Now let’s say the object x has

the actions “painted yellow” and “moved to porch” acted upon it. Common

sense says that the object is now yellow and on the porch. However, Mc-

carthy and Hayes (1969) showed that classical predicate logic successfully

concludes that the object is positioned on the porch, but does not conclude

that the object is colored yellow. This is because the logic itself does not suc-

cessfully represent the fact that the color of object x does not get changed
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by the object x being moved (Shanahan 2016). This common sense principle

would need to be included as separate frame axioms, which would specifi-

cally state that color should not change when the object moves and position

should not change when the object is painted unless there is a specific reason

that a change should occur. However, this is a hugely cumbersome and in-

elegant way of solving the problem. For one, many systems would become

many times their original size if they included frame axioms for every case

where they needed this principle (Morgenstern 1996). Furthermore, it signals

a problem in what logic can accomplish and what it is. It is not really mod-

elling our reality if we need to constantly include external axioms to make

it obey the principles of our reality. Most logicians do not want to think of

logic as a utilitarian structure that is returning the right results only in cases

where masses of frame axioms have been constructed by hand to prop it up

and stop it going astray at every action.

Thus, the solution to the logical frame problem is to find a way to for-

malize the idea that actions should not cause assumed changes to a property

of an object unless there is an explicit reason that the action would change

the property (Morgenstern 1996). The problem with this is that classical logic

allows more conclusions as more axioms are added, and this makes it dif-

ficult to express a law like the idea that most properties don’t change with

most actions, which is a rule that has an unknown number of exceptions. For

instance, in our earlier example, perhaps some avid painter paints a car so

vigorously that the car rolls down a hill.

Though these practical solutions exist, some philosophers consider the

idea that the frame problem that arises in AI research might signal “a new,

deep epistemological problem—accessible in principle but unnoticed by gen-

erations of philosophers (Dennett 1987).” Fodor says, “the frame problem

goes very deep; it goes as deep as the analysis of rationality (1987).” The
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answer to the frame problem seems to lie in finding a way to program a no-

tion of relevance into such programs, but relevance is fundamentally context-

dependent. There is no universal set of axioms that give rise to a flexible,

wide-ranging notion of relevance. Of course, in a very narrow system work-

ing on puzzle-solving discoveries, a notion of relevance that works for the

particular task can be pinned down. For an AI to make conceptual discov-

eries, however, a more flexible formalization of relevance is needed, espe-

cially as true scientific discovery-making is often about discovering relevance

where none was expected. A new scientific theory often arises when some

previously known data takes on a new relevance which gives rise to a new

way of looking at preexisting facts and data (Kuhn 1962). An AI program

that cannot recognize relevance in different contexts will be deficient in one

of the main things science requires.

3.3 A Proper Representation Language

The architecture underlying deep learning AI systems is different from a tra-

ditional logic system as they rely on heuristics and probabilistic reasoning.

There has been some discussion about whether the structure of deep learning

systems is fundamentally different from and irreconcilable with mathemati-

cal and logical language (Desjardins-Proulx 2017, pg. 1).

Some philosophers draw parallels between AI and the cognitive science

concept of System 1 reasoning. In psychology, Dual Process Theory describes

the idea that when reasoning, humans use two systems. System 1 is an intu-

itive gut-feeling system based on patterns learned through experience, and

System 2 is rule-based, systematic reasoning relying on conscious selection of

rules and heuristics (Kahneman 2011). The first process is subconscious and

implicit, whereas the second process is explicit and consciously-performed,
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and can change as we consciously choose different models and axioms to per-

form reasoning with. Further distinctions that have been discussed include

the idea that System 1 is involuntary, unconscious, allows rapid reasoning,

is structured as holistic top-down reasoning, and is not verbal or linked to a

language (Kahenman 2011). System 2 is more general and applicable across

multiple domains, is based on explicit rules and axioms/facts, is oriented

as bottom-up reasoning based on underlying assumptions, and is language

and model-based. Neural networks behave much more like System 1. For in-

stance, a deep learning AI that distinguishes between images of bicycles and

cars will have a first layer that identifies small segments of lines, a second

layer that identifies how two small segments of a line are oriented in rela-

tion to each other, a third layer that identifies more complex shapes based

on the lines relation to each other, and a layer that identifies even more com-

plex shapes from those complex shapes. The idea is to have many layers

and have the first layers analyze very simple patterns and the latter layers

analyze increasingly complex patterns. This method has great potential to

be very useful for modelling or finding patterns in complicated systems that

are beyond the scope of mathematical formalisms and mental models. How-

ever, it is somewhat different from a formal system of logic or mathematics.

Whereas formal logic involves a bottom-up approach with a structure where

a skeleton/foundation which is filled in with consistent theorems, a neural

network is top-down structured entity where unstructured data is analyzed

and a skeleton/foundation is created. The practice of mathematical and for-

mal logic correlates with System 2. The idea of combining formal logic and

mathematical systems with deep learning neural networks would suit the

potential goal of attaining a system that incorporates both of these modes of

reasoning. This would be very useful (and perhaps necessary) for making

scientific discoveries with AI because both of these modes are fundamental
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to scientific reasoning. “Effective scientific reasoning requires [that] individ-

uals must understand how to assess what is currently known or believed,

develop testable questions, test hypotheses, and draw appropriate conclu-

sions by coordinating empirical evidence and theory (Morris 2012, pg. 62).

They show that this coordination especially manifests in a balance between

instinct and explicitly learned models and strategies. Minsky (1986) says,

For generations, scientists and philosophers have tried to explain

ordinary reasoning in terms of logical principles with virtually no

success. I suspect this enterprise failed because it was looking in

the wrong direction: common sense works so well not because it

is an approximation of logic; logic is only a small part of our great

accumulation of different, useful ways to chain things together

(Minsky 1986, p. 167).

In order to unify traditional logic with deep learning, it is necessary to

develop a common representation language that is compatible with both ar-

tificial intelligence algorithms and formal logic systems (Desjardins-Proulx

2017). Furthermore, in order to harness the impressive power of AI to process

data and make predictions, we would require a method for formalizing ex-

isting scientific knowledge that is compatible with AI processing. AI projects

that aimed to formalize inductive reasoning performed on examples and

background knowledge have achieved discovery of new rules(Muggleton et

al. 1994), but the logical representation language that they use is too inflex-

ible to handle the way scientific theories can be partially true, overlapping,

or inconsistent (Desjardins-Proulx 2017). In other cases, inconsistencies can

mysteriously yield useful results, as is the case with Kirchoff’s approxima-

tion of light behaviour moving through an aperture (Vickers 2011). In sum-

mary, AI will not be able to make conceptual discoveries until an appropriate

representation language is achieved.
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Another desideratum that has been suggested is the integration of prob-

ability theory, predicate logic, and fuzzy logic (Proulx et al. 2017). Simple

predicate logic type structure has been used for many expert systems, like

DENDRAL. However, simple predicate logic has its limits. Basic predicate

logic does not allow for a case to be true most but not all of the time unless

the formula explicitly specifies it. The formula “all swans are white” would

be violated if there were a single instance of a black swan. This is problematic

for representing scientific theories because these are a set of rough general-

izations that are only usually true. A structure needs to be added so that a

system retains the formula “all swans are white” even if applying actual val-

ues to its variables occasionally violates it. Yet the system also needs to ac-

knowledge and record that the formula has been violated (Desjardins-Proulx

2017).

By adding a probabilistic element, systems can become more complex and

more representative of the real world. In such a system, formulas in the sys-

tem are weighted based on how likely they are. Application of a concrete

value makes a formula more or less likely rather than true or false. One sug-

gestion for achieving this is with Markov logic (Philippe Desjardins-Proulx,

2017). In Markov logic, logical formulas have weights according to how

likely they are. If a possible world refutes a formula in the knowledge base

the world is not impossible, but just less likely. A possible world is more

likely if it violates less formulas. Another benefit of Markov logic is that it

can accommodate contradicting formulas, which makes it good for integrat-

ing two knowledge bases. Consider the following example.

Suppose we wanted to design an algorithm which could discover how a

specific population of birds has evolved traits to suit their environment after

a staple of their diet, a native berry bush, suffered from a disease and mostly

died off fifty years ago. Some of the first steps we might perform would be to

find a way to create a basic representation of the knowledge we had about the
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environmental pressures on the population, a list of the general phenotypes

of the population, whether various traits are dominant or recessive genet-

ically, and the degree to which environmental pressures encourage or dis-

courage certain traits. Paralleling the example Proulx et al.(2017) gives with

species interactions, I will show how Markov logic is useful for representing

such a system. The first step in our representation would be to suggest that

all organisms have a set of traits, n. Suppose our organism is a bird and one

trait is beak length, a second is diet, and a third is stomach acid composition.

Existing observations might be described by the following rules:

1. First, let’s make one of our axioms be that most short-beaked birds do

not eat sunflower seeds. ∀x(HasShortBeak(x) ⇒ ¬ EatsSunflowerSeeds(x))

2. ∀x (HasLongBeak (x) ⇒ EatsSunflowerSeeds)

3. ∀ x (If HasLongBeak (x) ⇒ ¬ HasStrongStomachAcid(x)).

4. ∀ (HasShortBeak (x) ⇒ ¬ HasStrongStomachAcid(x))

After further empirical study, it turns out that (1) and (4) are not always

true; sometimes short-beaked birds do eat sunflower seeds and have strong

stomach acid. In an ordinary predicate logic system this would be problem-

atic, but using Markov logic the statements would be weighted and it might

emerge as a theorem of the system that some birds have short beaks and do

eat sunflower seeds, and that these birds happen to be the only ones with

strong stomach acids for breaking down the seed shells. Instead of just being

correct, (1) and (4) are only usually correct, and this provides a useful new

refinement of our representation of the bird population.

Markov logic has been used to good effect in several applications of AI to

science. For instance, Yoshikawa (2009) used it in identifying temporal rela-

tions between events. Brouard et al. propose Markov logic as a way to refine

inferences about gene regulatory networks in systems biology (Brouard et al.

2013).

One issue though, which shows that Markov logic alone is not quite enough
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to model systems in science, is that the predicates need to come out either

true or false when actual values are assigned to them. The predicates above

are not very good at seeing spectrums or ranges of traits; they require sim-

ple binary results (Proulx et al. 2017). For instance, with beak length, we

would have to decide on a random length that would be the threshold for

“HasLongBeak” in order for the predicate to be able to return a true or false

value. This could be the downfall of our whole program; suppose we chose a

number that was a bit too high and the predicate returned false even though

there was a significant group of long-beaked birds who hovered just under

the threshold? Perhaps there would be a whole group of birds with elevated

but not threshold-level stomach acid and beak length who would be disre-

garded by the program. The binary requirement is problematic because the

threshold that we choose for a predicate to be true affects what results we

get.

What is needed is a way for the structure of our propositions themselves

to be as flexible and multifaceted as our range of probabilities for them being

true. This is where fuzzy logic is useful. This is generally achieved by using

a zero to one continuum rather than a Boolean result and is known as prob-

abilistic soft logic. In this case beak length would exist on a spectrum rather

than designation of an arbitrary cutoff being required.

A final feature of the representation language needed to express scientific

theories in AI is paraconsistency. In performing reasoning processes on data

sets, an AI program will eventually encounter inconsistencies in its informa-

tion repository. Much research in AI has been done that focuses on eliminat-

ing inconsistencies (Moss and Sleeman, 2012). However, some philosophers

note that capacity for inconsistency can be an unavoidable and sometimes

even a fruitful component os science. In some cases, very successful the-

ories might have inconsistency buried within them. For instance, (Frisch,

2004) says that classical electrodynamics experiences contradictions within



72 Chapter 3. Prerequisites for AI Making Conceptual Discoveries

its four foundational assumptions. Furthermore, he says that any attempts

to fix these inconsistencies leads to serious conceptual problems (Frisch, 2004,

pg. 525). His conclusion is that inconsistencies might be considered accept-

able within science in certain cases. This is not the only example of an incon-

sistent scientific theory being incredibly successful; Kirchoff’s theory of light

diffraction is another example. In order to perform conceptual discovery, AI

systems need to be able to handle inconsistency.

Scientific paradigms are often idealizations that highlight certain ques-

tions and phenomena while obscuring others to make problems more tractable

(Kuhn 1962). For AI to be able to make conceptual discoveries, it must be able

to revise underlying assumptions, even those initially regarded as probable,

and sometimes start from premises that are flawed but potentially useful.

Rigid adherence to only highly probable truths may prevent novel discover-

ies, as seen historically.

An appropriate representation language is an initial precondition for AI

making conceptual discoveries. Integrating all three of these desiderata (para-

consistency, fuzziness, and predicate logic) would be a first step towards cre-

ating such a language.

3.4 Formalizing Conceptual Metaphor

Lakoff and Johnson’s Conceptual Metaphor Theory suggests that metaphor

is fundamental to everyday communication and perception (Johnson et al.

1979). Their research investigates the centrality of metaphor to human thought

and language. They note that prior to their work, Metaphors We Live By,

metaphor was often treated as rather superficial and literary accoutrement

of speech.

This mirrors the current situation in AI research on metaphor and analogy

in AI research. Much of the research that is being done involving metaphors
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in AI is about how we can teach computers to understand metaphors in

speech, in particular in the field of chatbot help-desk AIs that need to form

appropriate responses to metaphorical language used by humans. Currently,

AI research into metaphor is concerned with making chatbot AI programs

respond appropriately to metaphors used in human speech. These lingual

metaphors in speech are just mere figments of the deeper conceptual metaphors

that cause them to pop up in language, according to Lakoff and Johnson. Yet

much of the AI research on metaphor focuses on enabling AI to have the

capacity to translate metaphorical sentences into literal sentences (Massey

2017).

Lakoff and Johnson propose that our conceptual models of the world are

fundamentally metaphorical. The foundational claim of Lakoff and John-

son’s Conceptual Metaphor Theory (CMT) is that

...metaphor is pervasive in everyday life, not just in language but

in thought and action. Our ordinary conceptual system, in terms

of which we both think and act, is fundamentally metaphorical in

nature. . . [metaphors can] create a reality rather than simply to

give us a way of conceptualizing a preexisting reality (pg. 144).

One example of a conceptual metaphor that they give is ‘argument is

war’. In our surface-level language, this conceptual metaphor emerges as a

number of lingual by-products: ‘You attacked the contradiction in my argu-

ment’, ‘I couldn’t defend my argument against your objections, ‘I win every

argument with him’, ‘Don’t shoot down my argument before you hear my

conclusion!’. Lakoff and Johnson make the case that these statements are not

just a literary, verbal comparison between ‘argument’ and ‘war’. Rather, the

‘argument is war’ metaphor is actually embedded in the way we think about

arguments; it cannot be removed without the actual conceptualization of ‘ar-

gument’ being affected. The structure of an argument reflects the metaphor.
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If a certain line of reasoning is not helping us gain ground, we take up a new

line of attack. A view is something to be defended, and a bad argument is

something to be proved false and thus removed from the opponent’s arsenal

(Lakoff and Johnson, 1979 pg. 5).

Lakoff and Johnson point out that the conceptual metaphors that are em-

bedded in society and in scientific communities operate as lenses that shape

the interpretation of new phenomena we encounter. A conceptual metaphor,

by which we conceptualize one concept in terms of another, has the dual

effect of obscuring other facets of a concept. Sometimes the fact that the

metaphor obscures alternative conceptualizations can be quite difficult to

spot. Lakoff and Johnson share Michael Reddy’s example of the metaphor

‘language is a conduit’ (Reddy 1979). Under this metaphor, concepts, knowl-

edge, and meaning are objects. Language is a container that these objects can

be placed into, and communication is the act of conveying these objects to

other people. Reddy proposes that many the lingual expressions we use to

talk about communication and language use this metaphor. A few examples

of such expressions are: ‘How can I get this concept across to you?’, ‘That

was my idea, I gave it to you’, ‘that podcast is always putting new ideas in

my head’, ‘your speech should pack more meaning into less words’, ‘the idea

is good, but it’s really buried under all the dense pedantry’ (Reddy 1979).

It can be difficult to recognize such phrases as having a metaphorical ba-

sis because they are so embedded in our language and culture (Lakoff et al.

1979). The fact that a phrase or concept is metaphorical does not mean that

we are at all aware of the metaphor even when we’re using it. This ‘lan-

guage as conduit’ metaphor would perhaps fit under (MacCormac, 1983)’s

definition of a paraphor because it is so widely established and orthodox

that nobody notices that they are using them. Paraphors are metaphors that

have become so paradigmatic that they are treated as literal and the fact that
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they are metaphors is not acknowledged. As MacCormac says, “By forget-

ting that theories presuppose basic metaphors and thereby by taking theories

literally, both scientists and theologians create myths (MacCormac, 1983, p.

17).” Metaphors may be inevitable in our science and thinking, but it is im-

portant that they be subjected to critical evaluation to analyze the purpose

they serve and what assumptions are entailed by the metaphor. For instance,

the ‘language as conduit’ metaphor assumes realism about the thoughts we

communicate and assumes that language does not alter the ideas that we

communicate (Kudriavtseva 2015, pg. 116). This objectivist view presumes

that language exists to communicate preexisting thoughts, and is character-

istic of our Western societies (Schlesinger 1991, pg. 8; Kudriavtseva 2015, pg.

116; Lakoff et al. 2003, pg. 187). Under the objectivist view, metaphor would

be a superficial act of comparison between two words whose meanings are

already fixed.

However, there is good reason to think that language is context depen-

dent. Lakoff and Johnson give the example with the phrase “Please sit in

the apple juice seat”. However, taken in different contexts the sentence can

give rise to meaning, such as if there is a table set for breakfast with different

glasses of juice at each place and the host is instructing a guest on where to sit

(Lakoff and Johnson 1979 pg. 13). The non-objectivist view is supported in

discussion of science as well; Kuhn says “I would hazard the guess that the

same interactive, similarity-creating process which Black has isolated in the

functioning of metaphor is vital also to the function of [conceptual] models

in science (Kuhn 1970, pg. 415).”

One challenge for the prospect of formalizing Conceptual Metaphor The-

ory is that many of the metaphors that shape science are grounded in pre-

scientific cultural and physical experiences (Lakoff et al. 1979). AI does not

have access to culture or physical experience. The account given by Lakoff

and Johnson runs counter to the sort of foundationalist, rationalist view that
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characterizes much current AI research. Lakoff and Johnson’s account claims

that metaphors are heuristic device that we use to create understanding. Un-

der their account, truth and meaning come from human psychology, culture,

and context-dependent goals, not from any objective foundational source.

Meaning is not disembodied; the truth of a statement depends on the con-

ceptual context in which the statement is applied (Lakoff et al. 1979).

Analogy and metaphor play crucial roles in scientific hypothesis gener-

ation, theory choice, and experimental design, though their essential role

sometimes goes unrecognized. Examples of metaphor in theory-building

can be found in Darwin’s analogy between artificial and natural selection

(Darden 1982) and interpretations of quantum mechanics (Lauman-Lairson,

forthcoming). Even in cases where these metaphors turn out to be wrong,

they are often useful to the theory-making process and can yield empirically

successful theories.

The points I discussed can be summarized as follows: the meaning of a

theory is nontrivially interwoven with its metaphorical and historical context

and a pattern that endures in the building of scientific theories is the use of

metaphor.

If we subscribe to the idea that many conceptual advances in science uti-

lize conceptual metaphors, then being able to make relevant metaphors is an

important competency for AI to have if it is to make conceptual discoveries.

Under Conceptual Metaphor Theory, metaphors are key to conceptual

models (and even to mathematical formalisms in the account given by Henry

Poincare). For instance, Buchdahl says, “the intellectual satisfaction involved

in explanations requires more than the establishment of merely formal con-

nections between laws; but that the theory enables the laws which it explains
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to be ‘visualized’; it traces an analogy, more or less close, between the phe-

nomena expressed by the laws and some other phenomena usually of a me-

chanical nature with which we are familiar in everyday experiences (Buch-

dahl 1964, pgs. 159-160).” This idea of developing new theories by using

metaphor to relate new phenomena to preexisting, visualizable processes

is one that comes up repeatedly in reflective accounts that scientists give

of their work. The accounts always specify that what is being strived for

“must involve. . . picturable physical mechanics. . . processes that can be pic-

tures (Cushing 1991, pg. 341)” and “an explanation which is a reduction to

more familiar notions ((Campbell 1991, pg. 157).” In particular, metaphors

are essential for providing explanations, for in the absence of an understand-

ing of a new phenomenon we must relate it to existing conceptual frame-

works. “That is the essence of metaphor—an unusual juxtaposition of the

familiar and the unfamiliar (MacCormac 1985, p. 9).”

I will discuss some of MacCormac’s categorizations of metaphors and

their uses because it will be useful for creating a more focused discussion

about what kinds of metaphors AI needs to be able to make. MacCormac

discusses three main facets of metaphor which will be useful for my later

sections, as well as a distinction between two different types of metaphor.

These are (1) the strength of a metaphor, (2) the process by which a linguis-

tic metaphor becomes a descriptive, conceptual metaphor, and (3) the di-

rection that a metaphor moves in. I will first discuss Cormac’s argument

about the strength of a metaphor. A metaphor says that two things are sim-

ilar. MacCormac points out that it is not usually the case that a whole ob-

ject/phenomena is similar to a whole other object/phenomena, but rather

that some aspect of one object/phenomena is similar to some aspect of the

other object/phenomena. The similarity is drawn between properties of things,

not things themselves (If such a distinction can even be made!). MacCormac

states that objects or phenomena possess properties, which he calls referents,
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and a metaphor pairs referents from one object/phenomena with referents

of another object/phenomena. The referents can either be analogous of dis-

analogous, and the ratio of the number of paired referents that are similar to

the number of paired referents that are not similar determines the strength

of a metaphor, or its expressive weight. Of course, then the strength of a

metaphor is dependent on how many paired referents each object has that

are not dissimilar, and a correlation could be seen between how many refer-

ents has and the strength of the metaphors that can be made from it, since

more referents will usually result in a low ratio of similar to not similar num-

bers of referents. Furthermore, the number of referents is dependent on what

is known or believed about the object. So, it would actually be the case that

things which less is known about would be easier to make strong metaphors

with. For instance, the metaphor ‘DNA is a computer code’ was very useful

to early descriptions of DNA and engendered a whole species of language

that revolves around the metaphor: “DNA editing”, DNA operator, DNA

copy error”. When less was known about DNA, conceptualizing it in terms

of computing was a useful metaphor. However, as both DNA research and

computing research has advanced, it has been suggested that ‘DNA is a com-

puter’ is no longer a useful metaphor because the number of referents that

are not analogous.

The above demonstrates a case in which the strength of a metaphor can

weaken as the number of referents that the two entities possess increases.

When two entities are viewed through a simplistic lens that reduces their

number of referents it can lead to a stronger metaphor.

The second of MacCormac’s points is a distinction between three types of

metaphor. He describes diaphors to be literary, linguistic metaphors in which

there are not many referents, or there is a low ratio of analogous referents to

disanalagous referents. MacCormac would probably categorize Lakoff and
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Johnson’s classical example ‘Their relationship was a block of ice’ as a di-

aphor. The metaphor draws a comparison between the two entities which de-

scribes a single property of the relationship very well, but it does not achieve

many analogous pairs of referents.

In contrast, an epiphor has a high number and ratio of analogous to dis-

analogous referent pairs. These are the metaphors that really describe phe-

nomena and overturn new ways of conceptualizing things. These are also

the metaphors more associated with science rather than literature and po-

etry, though as MacCormic points out, diaphors do become epiphors and

vice versa.

Finally, there are paraphors. These are metaphors that have become so

paradigmatic that they are treated as literal and their metaphorical roots be-

come obscured. MacCormac calls these metaphors dangerous to science, and

points out that “By forgetting that theories presuppose basic metaphors and

thereby by taking theories literally, both scientists and theologians create

myths. (MacCormac, 1985, p. 17)” This will be a useful idea to note, be-

cause one would expect that AI would be especially susceptible to treating

metaphors as fact; it would be interesting to consider how you would pro-

gram a computer to use metaphorical thinking to draw its conclusions, yet

then not treat as literal the conclusions it has drawn. MacCormac also points

out that many of our paraphors are treated very much as literal facts, ex-

cept when the spotlight of scrutiny is shone on them directly, and then they

figuratively hold up their hands with the defense “I’m just a metaphor!”.

It is important to make the distinction here between epiphors that have

achieved literal meaning and paraphors. Paraphors are not taken literally be-

cause scientific enquiry has determined through empirical investigation and

debate that the metaphor is in fact best understood literally. Rather, para-

phors are cases where a metaphor is so commonly known that it is almost

subconsciously referred to literally during any work in a subject.
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MacCormac’s discussion of the danger of uncritically treating metaphors

as literal revolves around paraphors. However, he points out that not only is

the main paraphoric metaphor a potential problem, but the supplementary

metaphors that accompany that main metaphor pose another risk.

Previous sections have concluded that AI is currently making puzzle-

solving discoveries but not conceptual discoveries. I have argued that con-

ceptual metaphors are an essential part of paradigm shift and abductive rea-

soning.

Crucial to the question of whether AI can make and use conceptual metaphors

is the question of how conceptual metaphors can be formalized. Some recent

studies have been working at the intersection of AI and metaphor, simile,

and analogy to investigate AI’s ability in this area. However, this research

has not extended to include the types of conceptual metaphors that operate

in scientific discovery. Much of the existing research on AI and metaphor is

concerned with linguistic applications. The first program that I will discuss

is a chatbot that assists people in troubleshooting computer issues.

The program MIDAS (Metaphor Interpretation, Denotation, and Acqui-

sition System) was developed by James Martin in the 1990s. MIDAS was

developed to improve a program that answers questions about the operating

system Unix, for users who are experiencing problems with it. MIDAS uses a

map to link concepts in a network of metaphors. A phrase that the program

might come across when interacting with a user is “Okay, I am in Mozilla

Firefox now”. To correctly interpret this statement, MIDAS must know that

’physically occupying a region’ is a conceptual metaphor for ‘using a com-

puter process’ (Barnden, 2008). This is formalized by the metaphor map,

which creates three conceptual metaphors. These are:

4. Physically being inside a space = using a program within a computer.

From this conceptual metaphor come two constituent conceptual metaphors;

namely:
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5. the physical space doing the act of enclosing = the program within the

computer that is being used. And

6. the thing that is being enclosed in the space = the user of the computer

program.

MIDAS would not interpret ‘I am in Mozilla Firefox’ literally because (1)

the program Mozilla is not represented in the program’s database as being

a conceptual space and (2) MIDAS is programmed to prefer to apply con-

ceptual metaphors even if a literal reading of the statement is coherent with

other information in its database.

The real power of MIDAS comes from the fact that it can extrapolate on its

existing map of conceptual metaphors to correctly interpret new statements

that it has not come across before. While it cannot conduct a creative process

in which it creates new parallels between things, it can extend existing links.

The two techniques it uses are similarity extension and core extension (Mar-

tin 1992). The former method works by using existing parallels between con-

cepts, and then inferring that the metaphor that works for one also applies

to the other one. For instance, the computer might come across the phrase

“I am in a phone call” and find in its repository a parallel between ‘phone

call’ and ‘computer program’ that comes from them both being tagged as a

certain type of process that a human can engage in. Taking this knowledge,

MIDAS might take the conceptual metaphor ‘physically being inside a space

= using a program within a computer” and the parallel between phone call

and computer program to conclude that a reasonable conceptual metaphor

is ‘talking on the phone is being inside a physical space’, and that the human

is likely not literally located inside of the phone call, but is merely talking on

the phone.

The second method is core extension. It is called this because it only

works when two concepts are related to one another on a core level, like

a state being the result of an action. Other very direct relationships would
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also work, like equality or ‘if this than not that’. One application would be

to use the link between cause and effect to understand results of actions.

For instance, if a user asks how to get into Mozilla Firefox, the metaphor

interpretation process needed is more complex than just knowing the con-

ceptual metaphor ‘being inside a space = using a program on a computer’.

However, MIDAS can handle this by knowing the aforementioned concep-

tual metaphor and some basic information about physical spaces like the fact

that you can move into and out of them. These are the so-called core con-

cepts; get-into is core-linked to being-inside-of. MIDAS needs to know that

‘get into’ means the action of entering a physical space, and that the result

of the action ‘get into’ would be ‘being inside of a space’. Using these two

things, MIDAS can then reason that the user is asking what action results in

them being inside the space, which equals using the program. The result MI-

DAS would come up with as an interpretation of ‘how do I get into Firefox?’

would be ‘How do I commence using the program Firefox?’ The new concep-

tual metaphor which MIDAS creates is ‘Getting into a space = commencing

use of a computer program’ (Barnden, 2008).

One problem with MIDAS is that the metaphors that a metaphor map in-

cludes is dependent on what metaphors are already in the system and how

the database of mappings was initially set up. It is easy to imagine two MI-

DAS AIs with initial starting definitions and mappings that seem similar to

a human, creating very different results as their evolution spirals out in dif-

ferent directions. It also seems that MIDAS can create mappings between

concepts that are not meaningfully related even though the way they are rep-

resented in MIDAS’ database makes them seemingly similar. The contents of

MIDAS’s initial repository of knowledge could have a significant impact on

what later metaphors it makes.

Representing Lakoff and Johnson’s CMT with computer systems is a com-

plex task, and there are some big differences between the different efforts that
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have been made to achieve this. One issue that comes up is a lack on con-

sensus on what core metaphors should be used and how extensive this set of

foundational metaphors should be. Lakoff and Johnson “claim that a small

set of generalized metaphors structured in a hierarchy provides the frame-

work for metaphor interpretation and creation (Jakubowsky 1999).”

In contrast, some researchers like Tony Veale and Mark Keane, in building

AIs to perform metaphor interpretation, have taken Lakoff and Johnson’s ba-

sis to mean that a very loose, small set of metaphors should be started with,

and a process of “conceptual scaffolding” should be used in place of an exten-

sive starting set of core metaphors. In this approach, the computer interprets

a metaphor in a very broad, vague way, and then this interpretation becomes

more sharp and precise in subsequent steps.

The type of conceptual metaphor theory that needs to be incorporated

into AI research should have the goal of allowing AIs to develop model-

based theories (Brewer 2001). A model-based theory is “a conceptual frame-

work that provides an explanation for a set of phenomena by postulating a

structural relation to another more familiar concept (Brewer 2001, pg. 33).

There is a good deal of discussion in science about the idea that new, rev-

olutionary science occurs by use of metaphors because the old language is

not sufficient for describing the new phenomena and thus must be described

through analogies from more conceptually accessible phenomena. For in-

stance, Buchdahl discusses the importance of explanation and says, "the in-

tellectual satisfaction involved in explanations requires more than the estab-

lishment of merely formal connections between laws; but that the theory en-

ables the laws which it explains to be ‘visualized’; it traces an analogy, more

or less close, between the phenomena expressed by the laws and some other

phenomena usually of a mechanical nature with which we are familiar in

everyday experiences (Buchdahl 1964, pgs. 159-160).” Cushing says, “under-

standing of physical processes must involve picturable physical mechanics
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and processes that can be pictures (Cushing 1991, pg. 341)." The idea that the

generation of new theories requires a conceptual, metaphorical element, and

not just a formalized process using language in traditional ways comes up re-

peatedly in science. Campbell (1991) says that new theories “can be derived

from simplicity and generalization, from an explanation which is general-

ization as well as from an explanation which is a reduction to more familiar

notions (Campbell 1991, pg. 157).” The idea that emerges is that (1) discov-

ering new theories depends upon being able to visualize new phenomena

in terms of more familiar, picturable notions, (2) metaphors are an essential

part of the process of visualizing new phenomena in terms of existing ideas.

I propose that formalizing conceptual metaphor could provide a framework

by which computer discovery process could come to more closely resemble

the process (and thus hopefully the results) of human conceptual discovery

processes.
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Chapter 4

Conclusion

As artificial intelligence plays an increasing role in scientific discovery, ques-

tions arise about the scope of AI’s ability to contribute to scientific discovery.

I have discussed Kuhn’s distinction between the puzzle-solving of normal

science and the conceptual shifts of revolutionary science. In surveying the

current literature on AI’s contributions to scientific discovery, I argued that

AI can make puzzle solving discoveries but not conceptual discoveries. In

section 3, I discussed some of the prerequisites for AI making conceptual

discoveries such as a proper representation language, an ability to perform

abductive reasoning, a solution to the frame problem, and a structure that

takes into account conceptual metaphor theory. Finally, I have make an ar-

gument for why each of these is a prerequisite for AI making conceptual

discoveries, and I have explored the progress that is being made in each of

these areas.
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