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A B S T R A C T

Symmetries play a fundamental role in our understanding of nature. While traditionally
described by the theory of groups and their representations, recent years have seen
a vast generalisation of the notion of symmetry, leading to so-called generalised
(or categorical) symmetries in quantum field theory. In this thesis, we examine
the mathematical structure that underlies such generalised symmetries and develop
a representation theory that captures their action on physical observables. We
focus on the case of finite bosonic symmetries in low spacetime dimensions, where
the appropriate mathematical framework is given by the theory of (higher) fusion
categories. We construct higher-dimensional analogues of Ocneanu’s tube algebra
and classify their higher representations using the so-called sandwich construction
(or Symmetry TFT) for categorical symmetries. We provide explicit examples that
include both anomalous group-like symmetries as well as non-invertible symmetries.
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0
I N T R O D U C T I O N

Symmetries provide a powerful tool for our understanding of nature. They reveal the
patterns and regularities that govern the behaviour of a physical system and thereby
reduce the number of variables needed for its theoretical description. They constrain
the ways a system can evolve over time, leading to predictions about future outcomes
of physical processes. The exploitation of symmetry-based principles in the study and
construction of new theoretical models has been one of the driving forces in advancing
our understanding of nature over the past century.

While the concept of symmetry was known to the Greeks, its rigorous mathematical
treatment began during the nineteenth century with the development of group theory
[7]. The latter captures symmetries as certain types of transformations that leave a
given object “invariant”, allowing for the notion of symmetry to be applied not only to
geometrical figures but also to more abstract objects such as mathematical equations
describing the dynamics of a physical system. For example, Newton’s laws of motion
are invariant with respect to Galilei transformations, while Maxwell’s equations of
electrodynamics are invariant under Lorentz transformations. With the discovery of
relativity and quantum theory at the beginning of the twentieth century, we arrived
at our modern understanding of symmetries in fundamental physics [8], according to
which they play the following twofold role in both classical and quantum theory:

1. Given a physical system, identifying its symmetries allows us to simplify the
theoretical description and constrain the dynamics of the system. According to
Noether’s theorem [9], every continuous symmetry leads to a conservation law,
which puts restrictions on the way the system can evolve over time. For example, if
a system possesses a time translation symmetry (meaning that the laws governing
its behaviour do not change over time), the associated conserved quantity is the
energy of the system. In quantum theory, symmetries lead to conserved operators,
which act on and thereby organise the spectrum of physical observables, leading
to selection rules and constraints on possible quantum transitions.

2. In the search for new theoretical models and descriptions of nature, imposing
symmetry principles often constrains and dictates the form that natural laws
can take. This point of view was initiated by the discovery of special relativity
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2 introduction

by Einstein in 1905 [10], who promoted the Lorentz symmetries of Maxwell’s
equations to isometries of spacetime itself. As a result, Maxwell’s equations were
fixed by the requirement to be compatible with the geometry of space and time.
Ten years later, Einstein used the principle of equivalence (i.e. the assumption
that the laws of nature are invariant under local changes of spacetime coordinates)
to derive the dynamical laws of gravity, leading to his celebrated general theory
of relativity [11]. On the quantum side, the implementation of local symmetries
resulted in the development of non-abelian gauge theory and culminated in the
construction of the standard model of particle physics in the 1970s, which dictates
and unifies the structure of the strong, weak, and electromagnetic forces [12].

While group-like symmetries continue to serve as a guiding principle in the search for
new physics beyond the standard model, recent years have seen the discovery of a
new, generalised type of symmetry as described in the seminal work [13]. Although no
longer captured by the theory of groups, these “generalised symmetries” act on and
organise the spectrum of physical observables in a quantum system just like ordinary
symmetries, leading to new selection rules and constraints on the dynamics of the
system. This raises the following question: What is the appropriate mathematical
structure that replaces group theory as a descriptor for generalised symmetries and
how does it act on physical observables in a quantum theory? Addressing this question
in simple cases is the aim of this thesis.

0.1 Motivation

Figure 1

The term symmetry derives from the Greek words sun (mean-
ing ‘with’ or ‘together’) and metron (‘measure’) and initially
referred to two things being measurable or comparable by
a common standard [7]. More generally, the ancient notion
of symmetry used by the Greeks and Romans referred to a
relation between two things that turns their union into a harmonious and balanced
whole. For example, the two sides of the left image in Figure 1 are mirror images of
one another, which makes their union symmetric. On the other hand, the right image
is perceived asymmetric due to the lack of such relation between its two sides.

Figure 2

With the beginning of the seventeenth century, a new notion of
symmetry (sometimes called the crystallographic notion of sym-
metry) developed, according to which symmetries correspond to
certain types of transformations that leave a given object ‘invariant’
in an appropriate sense [7]. As an example, consider the regular
polygon Pn with n edges (the cases n = 3, ..., 6 are illustrated in
Figure 2). We denote by r the transformation that rotates Pn
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counterclockwise by an angle of 2π/n about its origin, and by s the transformation
that reflects Pn about a fixed vertical axis as shown below for the case n = 6:

(0.1)

Clearly, applying either r or s to Pn leaves the appearance of the latter unaltered, which
is why they are called symmetry transformations of Pn. We can obtain other symmetry
transformations by applying r and s repeatedly to Pn in different orders. However, the
resulting transformations are not all independent of one another: Rotating by 2π/n
for a total of n times is equivalent to not rotating at all; reflecting about a vertical
axis twice is the same as not reflecting at all. Furthermore, one can convince oneself
that a rotation followed by a reflection followed by a rotation is the same operation as
a single reflection. Formally, we write these relations as

rn = s2 = 1 , r · s · r = s , (0.2)

where we denoted by 1 the transformation that does nothing to Pn at all. We denote
by D2n the set of all symmetry transformations of Pn that are generated by r and s

subject to the relations (0.2). Formally, we define

D2n := ⟨ r, s | rn = s2 = 1, rsr = s ⟩ , (0.3)

which, as one can check, is a finite set of cardinality |D2n| = 2n. Furthermore, the set
D2n of symmetry transformations of Pn has the following properties:

• We can ‘compose’ any two elements g and h to obtain a new element g · h which
as a symmetry transformation corresponds to the consecutive application of the
transformations g and h.

• We can ‘undo’ the symmetry transformation associated to each element g in the
sense that there exists an element g−1 which is such that the composition of g
and g−1 gives the ‘trivial’ symmetry transformation 1.

The starting point for the development of our modern understanding of symmetries
was the axiomatisation of the above structures underlying symmetry transformations
during the early nineteenth century, which led to the mathematical notion of a group:

Definition: A group is a set G that is equipped with a binary operation · : G×G → G

(called the group multiplication and denoted by (g, h) 7→ g ·h) such that

1. the group multiplication is associative, i.e. (g ·h) ·k = g ·(h ·k) for all g, h, k ∈ G,
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2. there exists a distinguished element 1 ∈ G (called the identity element) such that
1 ·g = g ·1 = g for all g ∈ G,

3. for every group element g ∈ G there exists a unique g−1 ∈ G (called the inverse
of g) such that g ·g−1 = g−1 ·g = 1.

A group G is called abelian if its associated group multiplication is commutative, i.e.
g·h = h·g for all g, h ∈ G. A group homomorphism between groups G and G′ is a map
f : G → G′ such that f(g ·h) = f(g) ·f(h) for all g, h ∈ G. A group homomorphism is
called a group isomorphism if it is a bijection. Two groups G and G′ are said to be
isomorphic (G ∼= G′) if there exists a group isomorphism between them.

The above notion of a group captures the abstract properties that we expect symmetry
transformations to have and puts them into a well-defined mathematical framework.
In general, we distinguish between the following two types of groups:

•

Figure 3

Discrete: A group G is said to be discrete if it does
not contain any limit points, i.e. only consists of isolated
group elements as illustrated in Figure 3. An important
subset of discrete groups is given by finite groups, which
only contain finitely many elements.

•

Figure 4

Continuous: A group G is said to be continuous (or a
Lie group) if its elements can be labelled by a set of real
parameters λi that turn G into a smooth manifold. The
Lie algebra g of G is then defined to be the tangent space
to G at the identity element; g := T1G (see Figure 4). The
usefulness of the latter is due to the existence of an exponential map

exp : g → G , (0.4)

which is a local diffeomorphism from a neighbourhood of 0 ∈ g to a neighbourhood
of 1 ∈ G. As a result, we can write ‘infinitesimal’ group transformations g ∈ G

close to the identity as g = eε for some unique ε ∈ g close to 0, which allows us to
linearise computations inside G. For example, the product of two group elements
eε and eη can be computed using the Baker-Campbell-Hausdorff formula

eε · eη = exp
(
ε + η + 1

2 [ε, η] + ...
)
, (0.5)

where [. , .] : g × g → g denotes the Lie bracket on g. The adjoint representation
of G is defined to be the map Ad : G → Aut(g) that maps a group element g ∈ G

to the differential D1(g(.)) : g → g of the conjugation map g(.) : h 7→ ghg−1.
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Examples of (discrete and continuous) groups that will be used throughout this thesis
repeatedly include the following:

• The set D2n of symmetry transformations of Pn as defined in (0.3) forms a finite
group called the dihedral group of order 2n, which is non-abelian for n > 2. It
contains as a subgroup the finite abelian group Zn, which has a single generator
r subject to the relation rn = 1.

• Given two groups G and G′, we can construct their direct product, which as a
set is given by G×G′ with group multiplication (g, g′) · (h, h′) := (g ·h, g′ ·h′).
According to the fundamental theorem of finite abelian groups, every finite
abelian group A is of the form A ∼= ×n

i=1 Zki
for some n, ki ∈ N [14].

• Given a set X, we denote by Aut(X) the automorphism group of X, which consists
of all bijections f : X → X with group multiplication given by composition. If
X is equipped with additional structure, we often implicitly assume Aut(X) to
consist of only those bijections f that are compatible with this structure in an
appropriate sense. For example, if X is a vector space, we take f to be a linear
automorphism of X, etc.

• For each n ∈ N, we call Sn := Aut([n]) the symmetric group of degree n, which
consists of all permutations of the finite set [n] := {1, ..., n}. This group is abelian
for n = 2 (where S2 ∼= Z2) and non-abelian for n > 2 (e.g. S3 ∼= D6).

•

Figure 5

Let M be a Riemannian manifold, i.e. a smooth manifold
that is equipped with a symmetric, non-degenerate, and
positive-definite 2-tensor (. , .) ∈ T 2M (also called a metric).
The latter allows us to compute the length of any smooth
curve γ : [a, b] → M via the formula

L[γ ] :=
∫ b

a
∥γ̇(t)∥ dt , (0.6)

where we denoted by γ̇ the tangent to the curve γ as illustrated in Figure 5 and
∥γ̇(t)∥ :=

(
γ̇(t) ,γ̇(t)

)1/2. A diffeomorphism f : M → M is called an isometry of
M if it preserves the length of any smooth curve, i.e.

L[f ◦ γ ] = L[γ ] (0.7)

for all γ. We denote by Iso(M) the set of all isometries of M , which (for connected
M) forms a Lie group under composition called the isometry group of M [15].
As an example, consider M = Rn with the standard metric tensor

(v, w) =
n∑
i=1

vi · wi (0.8)
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for v, w ∈ Rn. The isometries in this case consist of the following pieces:

1. Translations: For fixed a ∈ Rn, we denote by fa : Rn → Rn the isometry that
maps x 7→ x+ a corresponding to a ‘translation by a’. Using fa ◦ fb = fa+b,
we see that translations form a subgroup of Iso(Rn) isomorphic to Rn with
group multiplication given by addition.

2. Orthogonal Transformations: Given a square matrix1 R ∈ Mn(R), the map
fR : Rn → Rn that sends x 7→ R · x is an isometry of Rn if and only if

RT ·R = n , (0.9)

where T denotes the transpose of a matrix and n is the identity matrix in
n dimensions. A matrix R satisfying (0.9) is called an orthogonal matrix2.
The set of all orthogonal matrices forms a Lie group of dimension n(n−1)/2
under matrix multiplication which is called the orthogonal group O(n) in n
dimensions. It has two connected components distinguished by det(R) = ±1,
the first one of which forms the so-called special orthogonal (or rotation)
group SO(n) in n dimensions.

Putting the above together, every isometry of Rn can be written uniquely as
f(a,R) := fa ◦ fR for some a ∈ Rn and R ∈ O(n). Their composition is given by

f(a,R) ◦ f(b,S) = f(a+R·b, R·S) , (0.10)

which shows that the isometry group of Rn is the semi-direct product

Iso(Rn) = Rn ⋊O(n) . (0.11)

More generally, we may consider pseudo-Riemannian manifolds such as Rp,q,
which as a smooth manifold is given by Rp+q together with the (not necessarily
positive-definite) metric tensor

(v, w) =
p∑

i=1
vi · wi −

p+q∑
j=p+1

vj · wj . (0.12)

1 Given an arbitrary field F, we denote by Mn×m(F) the set of (n×m)-matrices with entries in F.
Furthermore, we set Mn(F) := Mn×n(F).

2 The term ‘orthogonal matrix’ stems from the fact that matrices obeying (0.9) map orthogonal
vectors to orthogonal vectors. However, this terminology is somewhat unfortunate since there are
matrices which do not obey (0.9) and still preserve orthogonality of vectors (e.g. c · n for any
c ≠ 1). Condition (0.9) in fact ensures the stronger property that the matrix R preserves any inner
product of two vectors, i.e. (R·v,R·w) = (v, w) for all v, w ∈ Rn.
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As before, the corresponding isometry group3 is given by a semi-direct product
Iso(Rp,q) = Rp+q ⋊O(p, q) of translations and generalised orthogonal transfor-
mations. In the case p = d− 1 and q = 1, we call Md := Rd−1,1 d-dimensional
Minkowski space, whose isometry group is called the Poincaré group. Furthermore,
the subgroup O(d− 1, 1) is called the Lorentz group.

• Given a Hilbert space H, i.e. a complex vector space equipped with an inner
product4 ⟨ . , .⟩ : H∗ × H → C such that the induced metric turns H into a
complete metric space, the unitary group U(H) of H is the subgroup of Aut(H)
consisting of all invertible (bounded) linear maps U : H → H obeying

〈
U(Φ) , U(Ψ)

〉
= ⟨Φ ,Ψ⟩ (0.14)

for all Φ,Ψ ∈ H. Equivalently, U ∈ U(H) if and only if U † ◦ U = U ◦ U † = idH,
where the adjoint U † : H → H of U is the unique linear map that satisfies

〈
U(Φ) ,Ψ

〉
= ⟨Φ , U †(Ψ)⟩ (0.15)

for all Φ,Ψ ∈ H. We set U(n) := U(Cn), where Cn denotes the canonical
n-dimensional Hilbert space equipped with the standard inner product. Then,
U(n) is a Lie group of dimension n2, which contains as a hypersurface the
(n2 − 1)-dimensional Lie group SU(n) consisting of those U ∈ U(n) that have
unit determinant, i.e. det(U) = 1.

While the mathematical notion of a group elegantly captures the algebraic properties
we expect symmetry transformations to have, it does not explicitly represent group
elements as symmetry transformations of any specific object. This raises the following
question: Given an abstract group G, in what sense do its elements correspond to
symmetry transformations of some object X? Mathematically, this can be addressed
using the notion of group actions:

Definition: A (left) group action of a group G on a set X is a map ▷ : G×X → X

(denoted by (g, x) 7→ g ▷ x) such that

1. the identity element of G acts trivially on X, i.e. 1 ▷ x = x for all x ∈ X,

3 Since the length functional L from (0.6) is not well-defined for all curves on a pseudo-Riemannian
manifold due to the lack of positive definiteness of the metric, we can define isometries on a
pseudo-Riemannian manifold M to be diffeomorphisms f : M → M that leave the energy

E[γ ] := 1
2

∫ b

a

∥γ̇(t)∥2 dt (0.13)

of any curve γ : [a, b] → M invariant, i.e. E[f ◦ γ ] = E[γ ] for all γ.
4 Given a complex vector space V , an inner product on V is a bilinear map ⟨. , .⟩ : V ∗ × V → C

(where V ∗ denotes the complex conjugate of V ) that is Hermitian (i.e. ⟨v, w⟩ = ⟨w, v⟩∗ for all
v, w ∈ W ) and positive definite (i.e. ⟨v, v⟩ ≥ 0 for all v ∈ V with equality if and only if v = 0).
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2. the consecutive action of two group elements g, h ∈ G is compatible with the
group multiplication in G, i.e. g ▷ (h ▷ x) = (g ·h) ▷ x for all x ∈ X.

Put differently, the assignment g 7→ g ▷(.) defines a group homomorphism G → Aut(X).
We call a set X together with a G-action on it a G-set in what follows. A morphism
of G-sets X and X ′ is a map f : X → X ′ such that

f(g ▷ x) = g ▷′f(x) (0.16)

for all g ∈ G and x ∈ X. A morphism of G-sets is called an isomorphism if it is a
bijection. Two G-sets X and X ′ are said to be isomorphic (X ∼= X ′) if there exists an
isomorphism of G-sets between them.

The above notion of a group action puts the idea of a group G acting on an object X
via symmetry transformations of X into a well-defined mathematical framework. To
each group action ▷ : G×X → X, we can further associate the following:

• Orbits: The orbit of an element x ∈ X is given by the subset

Ox := {g ▷ x | g ∈ G} ⊂ X . (0.17)

We have that Ox = Oy if and only if there exists a g ∈ G such that g ▷ x = y.
The set of all orbits is denoted by X/G and induces a disjoint decomposition

X =
⊔

O ∈X/G
O . (0.18)

The stabiliser of an element x ∈ X is defined to be the subgroup

Gx := {g ∈ G | g ▷ x = x} ⊂ G . (0.19)

If g ▷ x = y, then5 Gy = g(Gx). The orbit-stabiliser theorem (see e.g. [16]) states
that for each x ∈ X there is an isomorphism of G-sets6

Ox
∼= G/Gx . (0.20)

The group action is called transitive if it has a single orbit; Ox = X for all x ∈ X.
This means that for any x, y ∈ X there exists a g ∈ G such that g ▷ x = y.

5 Given a group G, a subgroup H ⊂ G, and an element g ∈ G, we denote by gH := gHg−1 the
conjugation of H by g. Similarly, we denote Hg := g−1Hg.

6 Given a group G and a subgroup H ⊂ G, we denote by G/H the set of all left H-cosets in G. A
left H-coset is a subset of G that is of the form gH ≡ {g · h |h ∈ H} with g ∈ G. Then, G/H is a
G-set via multiplication from the left with elements in G.
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• Fixed Points: The set of fixed points of an element g ∈ G is given by

Xg := {x ∈ X | g ▷ x = x} ⊂ X . (0.21)

The fixed point sets Xg are dual to the stabiliser subgroups Gx in the sense that
there is a bijection of sets

⊔
g∈G

Xg ∼−−→
⊔
x∈X

Gx . (0.22)

Plugging (0.20) into the above then yields Burnside’s lemma [17]:

∑
g∈G

|Xg| = |G| · |X/G| . (0.23)

The group action is called faithful if Xg = X implies g = 1. Equivalently,
the group action is faithful if and only if the associated group homomorphism
G → Aut(X) is injective, meaning that its kernel

ker(▷) := {k ∈ G | k ▷ (.) = idX} (0.24)

comprises only the identity element 1 ∈ G. The group action is called free if
g ▷ x = x for some x ∈ X implies g = 1. Clearly, every free group action is also
faithful but not vice versa.

In general, the kernel ker(▷) of a group action ▷ : G×X → X captures the subgroup
of G that consists of all elements that act trivially on X. Intuitively, this means that
we should not view g and g ·k as distinct symmetry transformations of X if k ∈ ker(▷).
Rather, the set of actual symmetry transformations is given by the quotient

G/ker(▷) =: Ĝ , (0.25)

which is again a group due to the fact that ker(▷) ⊂ G is a normal subgroup7. The
group action ▷ then induces a faithful group action ▷̂ : Ĝ×X → X of Ĝ on X. This
shows that, without loss of generality, we can always assume group actions to be
faithful and to represent honest symmetry transformations of the associated object X.
Simple examples of faithful group actions include the following:

• The dihedral group D2n as defined in (0.3) acts on the n-gon Pn via rotations and
reflections as illustrated in (0.1). This group action is faithful but not transitive.

7 A subgroup H ⊂ G is said to be normal if gH = H for all g ∈ G. It is easy to check that H ⊂ G is
normal if and only if there exists a group homomorphism f : G → G′ such that H = ker(f).
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• The symmetric group Sn of order n acts on the finite set [n] = {1, ..., n} via
permutations. This group action is both faithful and transitive.

• By construction, the isometry group Iso(M) of a Riemannian manifold M acts on
the latter via diffeomorphisms in a faithful manner. When M = Rn, this action
is also transitive, since any two points x, y ∈ Rn are related by a translation.

• By construction, the unitary group U(H) of a Hilbert space H acts on the latter
via linear transformations in a faithful manner. This action is not transitive in
general. For instance, the multiplication action of U(1) = {eiφ |φ ∈ [0, 2π)} on
C leaves the modulus of any complex number unchanged, so that C decomposes
into a continuous union of orbits C = ⊔

r∈ [0,∞) Or with Or = {z ∈ C | |z| = r}.

While the theory of groups emerged as a rigorous mathematical framework for the
description of symmetries during the early nineteenth century, its application to
theoretical physics only began in the early twentieth century, when the idea of
‘symmetry as invariance under certain transformations’ was applied not only to
geometric figures but also to mathematical expressions such as equations governing
the dynamics of a physical system [7, 8]. As a result, the machinery of group theory
could be applied to problems in both classical and quantum physics, leading to new
insights and constraints on the dynamics of a variety of physical systems.

0.1.1 Classical Symmetries

Figure 6

Classical theories are deterministic in the sense that the fu-
ture outcome of physical observables is uniquely determined
by their initial conditions. In other words, classical theories
exhibit no intrinsic randomness and allow for (in principle)
exact predictions of physical quantities. Often, the fundamen-
tal observables are taken to be fields, which, broadly speaking,
correspond to maps

φ : M → N (0.26)

from d-dimensional spacetime8 M into some target space N as illustrated in Figure 6.
In other words, a field φ assigns to each point m = (x⃗, t) ∈ M in space and time a
value φ(m) in the target space N . We denote the space of all such fields by

F := {φ : M → N } . (0.27)

8 In what follows, we use the word ‘spacetime’ to refer to an oriented d-dimensional manifold M
whose coordinates (locally) describe d− 1 directions x⃗ of space and one direction t of time. While
the distinction between space- and timelike coordinates only makes sense if M is equipped with a
Lorentzian metric, the latter will not be essential for the following discussion.
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Figure 7

A (classical) field theory is a mechanism that singles out those
φ0 ∈ F that correspond to ‘physically observable’ configurations of
the field φ. Often, this is done using the principle of least action,
according to which the physical field configurations correspond to
local extrema (or critical points) of a given action functional

S : F → R (0.28)

as illustrated in Figure 7. In other words, the physical field configurations φ0 are
those that solve the equations of motion9

δS

δφ

∣∣∣∣
φ0

!= 0 . (0.29)

We denote the set of all such solutions by F0 ⊂ F and call it the phase space of the
theory. Examples of classical field theories include the following:

• Classical mechanics: The theory of classical mechanics is an example of a
one-dimensional field theory that describes the motion of point particles in space
as a function of time and in the presence of forces. The fields hence correspond
to maps γ : (a, b) → N from a time interval (a, b) to a fixed Riemannian manifold
N that we interpret as “space”. Given a smooth function V : N → R (called the
potential), we can then define the action functional

S[γ] :=
∫ b

a

[m
2 ∥γ̇(t)∥2 − V

(
γ(t)

)]
dt , (0.30)

where, as before, γ̇(t) denotes the tangent to the curve γ and the parameter
m ∈ R>0 is called the mass of the point particle. The equations of motion that
result from varying the action (0.30) w.r.t. γ are then given by

m · ∇γ̇ γ̇ = −grad(V ) , (0.31)

where ∇ denotes the Levi-Civita connection w.r.t. the Riemannian metric on N
and grad(V ) is the gradient vector field10 of the function V . Upon identifying
a := ∇γ̇ γ̇ with the acceleration of the curve γ and F := −grad(V ) with the force
field on N , equation (0.31) simply becomes Newton’s law of motion F = ma.

9 Note that in order for the functional derivative in (0.29) and hence the equations of motion to
be well-defined, one typically needs to impose suitable boundary conditions on the fields, which
specify e.g. the value of φ and its differential Dφ on ∂M and which allow one to discard possible
boundary terms in the variation of the action functional.

10 Given a smooth function f : N → R on N , its gradient is the vector field grad(f) ∈ X(N) on N
that satisfies (grad(f), X) = (df)(X) for all vector fields X ∈ X(N), where (. , .) ∈ T 2N is the
Riemannian metric on N and d denotes the exterior derivative.
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As an example, consider N = R3\{0} with the standard
Euclidean metric and radial potential V (⃗r) = −m ·M/ ∥ r⃗∥.
The corresponding equations of motion are

¨⃗r(t) = −M · r⃗(t)
∥ r⃗(t)∥3 , (0.32)

whose analytical solutions fall into four classes as illustrated
in Figure 8: circles, ellipses, parabolae, and hyperbolae. Figure 8

These describe the possible orbits of a probe particle that moves in the grav-
itational field of a heavy object with mass M ≫ m centred at the origin of
three-dimensional space.

• Maxwell theory: The theory of electrodynamics describes the behaviour of
the electric and magnetic fields E⃗ = E⃗(x⃗, t) and B⃗ = B⃗(x⃗, t) as a function of
space and time in the presence of a charge density ρ and a current density J⃗ . It
is convenient to express the electric and the magnetic field in terms of a scalar
potential ϕ and a vector potential A⃗ as11

E⃗ = − ∂tA⃗ − grad(ϕ) and B⃗ = curl(A⃗) , (0.33)

which ensures that they obey the homogeneous Maxwell equations

div(B⃗) = 0 and curl(E⃗) + ∂tB⃗ = 0 . (0.34)

The potentials ϕ and A⃗ are not unique, however, since redefining

ϕ → ϕ − ∂tλ and A⃗ → A⃗ + grad(λ) (0.35)

for some arbitrary scalar function λ(x⃗, t) leaves both the electric and the magnetic
field in (0.33) unchanged12. We can combine the potentials ϕ and A⃗ into a single
field living on four-dimensional Minkowski spacetime M4 by setting

A := Ax dx + Ay dy + Az dz − ϕdt , (0.36)

11 We denote by grad, div, and curl the gradient, the divergence, and the curl operator w.r.t. the
three spatial coordinates x, y, and z, respectively.

12 The transformations in (0.35) are often called ‘gauge symmetries’. However, since the physical fields
E⃗ and B⃗ are unaffected by these transformations, they do not correspond to genuine symmetries
of the theory but should rather be viewed as redundancies of our chosen description.
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which defines a 1-form A ∈ Ω1(M4) called the connection 1-form (or gauge field).
The electric and magnetic fields can be recovered from the latter via the curvature
2-form (or field strength) F := dA ∈ Ω2(M4), whose components are given by

F =
[
Ex dx + Ey dy + Ez dz

]
∧ dt

+ Bx dy ∧ dz + By dz ∧ dx + Bz dx ∧ dy .
(0.37)

Here, we denoted by d : Ωn(M4) → Ωn+1(M4) the exterior derivative on differen-
tial forms, which satisfies d2 = d ◦ d = 0. This property ensures that the field
strength F is invariant under ‘gauge transformations’ A → A+ dλ, which, using
(0.36), reproduce the transformations in (0.35). Similarly, the homogeneous
Maxwell equations (0.34) follow from dF = d2A = 0. In order to obtain the
inhomogeneous Maxwell equations that describe how the electric and magnetic
fields are sourced by the charge and current densities ρ and J⃗ , we combine the
latter two into a current 1-form

J := Jx dx + Jy dy + Jz dz − ρ dt (0.38)

and define the following action for the connection 1-form A coupled to J :

S[A, J ] :=
∫
M4

[
− 1

2 F ∧ ⋆F + A ∧ ⋆J
]

(0.39)

Here, we denoted by ⋆ : Ωn(M4) → Ω4−n(M4) the Hodge star operator defined
in terms of the Minkowski metric on M4. The equations of motion that result
from varying the above action w.r.t. A are then given by

d ⋆ F = ⋆J , (0.40)

which, using (0.37) and (0.38), can be checked to be equivalent to the inhomoge-
neous Maxwell equations

div(E⃗) = ρ and curl(B⃗) − ∂tE⃗ = J⃗ . (0.41)

Furthermore, applying the exterior derivative d to (0.40) yields d ⋆ J = 0, which
is equivalent to the current conservation equation

∂tρ + div(J⃗ ) = 0 . (0.42)

• Gauge theory: Maxwell’s theory of electromagnetism is an example of a gauge
theory, where d-dimensional spacetime M forms the base space of a principal
G-bundle associated to some Lie group G (called the gauge group). What this
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means is that M is the image of a smooth surjection π : P → M , where P is a
manifold (called the total space) that is equipped with a smooth (right) group
action ◁ : P × G → P satisfying π(p ◁ g) = π(p) for all
p ∈ P and g ∈ G and which locally looks like U ×G as a
G-set for small enough open neighbourhoods U ⊂ M . In
other words, a principal G-bundle attaches to each point
m ∈ M in spacetime a fibre Pm := π−1({m}) that is a
G-torsor in the sense that G acts freely and transitively
on Pm as illustrated in Figure 9. We refer the reader to
[18] for more background on mathematical gauge theory.

Figure 9

The ‘fields’ of gauge theory are (equivalence classes of) gauge fields, which are
connection 1-forms13 A ∈ Ω1(P, g) on the total space of the principal bundle with
values in the Lie algebra g of G. Two such gauge fields A and A′ are considered
equivalent if there exists a bundle automorphism14 f : P → P (also called a
gauge transformation) such that A′ = f∗(A). To each gauge field A we can
associate a field strength F ∈ Ω2(P, g) via15

F := dA + 1
2 [A ∧A] , (0.43)

which obeys the Bianchi identity dF + [A ∧ F ] = 0. Note that, as defined above,
neither the gauge field A nor its field strength F are fields in the sense of (0.26),
since their domain is the total space P rather than the spacetime manifold M .
We can try to cure this by pulling back along a global section s : M → P obeying
π ◦ s = idM , whose existence, however, implies that the bundle P is trivial16 (i.e.
P ∼= M × G). In general, we may hence only be able to patch up M = ⋃

i Ui

into a union of contractible open neighbourhoods with associated local sections
si : Ui → π−1(Ui) ⊂ P , which allow us to define local connection 1-forms

Ai := s∗
i (A) ∈ Ω1(Ui, g) . (0.44)

13 A 1-form A ∈ Ω1(P, g) is called a connection 1-form if R∗
g(A) = Adg−1 (A) and A(Xε) = ε for all

g ∈ G and ε ∈ g, where Rg : P → P denotes the right action of a fixed group element g ∈ G on P
and Xε ∈ X(P ) is the vector field on P defined by (Xε)p := d

dt

∣∣
t=0

[p ◁ exp(t · ε) ] for all p ∈ P .
14 A bundle automorphism of P is a diffeomorphism f : P → P that satisfies π ◦ f = π and
f(p ◁ g) = f(p) ◁ g for all p ∈ P and g ∈ G.

15 Here, the map [ .∧ .] : Ωk(p, g) × Ωl(p, g) → Ωk+l(P, g) is constructed using both the wedge product
∧ of differential forms and the Lie bracket [. , .] on g.

16 If the base space M is contractible (such as M = M4), then every principal bundle P over M is
trivial, and hence admits a global section s : M → P .
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However, these may not agree on local intersections Ui ∩ Uj for i ̸= j, but are
instead related by the formula

Ai = Adg−1
ij

(Aj) + g∗
ij(µG) , (0.45)

where the smooth function gij : Ui ∩ Uj → G is defined by

si(m) =: sj(m) ◁ gij(m) (0.46)

for m ∈ Ui ∩ Uj and µG ∈ Ω1(G, g) is the Maurer-Cartan form17 of G. On the
other hand, the local curvature 2-forms Fi := s∗

i (F ) ∈ Ω2(Ui, g) are related by

Fi = Adg−1
ij

(Fj) (0.48)

on Ui ∩ Uj , so that upon choosing an Ad-invariant positive-definite symmetric
bilinear form18 ⟨. , .⟩ : g × g → R on the Lie algebra g, the following (pure)
Yang-Mills action for the gauge field A is well-defined:

S[A] := − 1
2

∫
M

⟨F ∧ ⋆F ⟩ . (0.49)

Here, we regard the integrand as a 2-form on M by pulling F back along the
local sections si, the choices of which do not matter due to (0.48) and the Ad-
invariance of ⟨. , .⟩. The equations of motion that arise from varying the action
(0.49) w.r.t. A are called the Yang-Mills equations and correspond to non-linear
generalisations of Maxwell’s equations for classical electrodynamics.

For applications in high energy physics, one often chooses four-dimensional
Minkowski spacetime M = M4 to be the base space of a (necessarily trivial)
principal G-bundle for some Lie group G. In the case of electromagnetism,
this is G = U(1), while for reasons nobody really understands the standard
model of particle physics has G = U(1) × SU(2) × SU(3). Upon choosing a
global section of the G-bundle, we may then view the gauge field A and its field
strength F as global forms on M4 as in (0.36) and (0.37), with the difference that
their coefficients are now smooth maps M4 → g into the Lie algebra of G. For
example, in the case of chromodynamics (where G = SU(3)), this yields a total
of dim(su(3)) = 8 so-called gluon fields that are distinguished by their “colour”.

17 The Maurer-Cartan form of a Lie group G is the 1-form µG ∈ Ω1(G, g) defined by

(µG)g := Dg(Lg−1 ) : TgG → T1G ∼= g , (0.47)

where Lg : G → G denotes left multiplication by g ∈ G.
18 If G is a compact Lie group (such as SO(N) or U(N)), there always exists a positive-definite

symmetric bilinear form ⟨. , .⟩ : g × g → R on its Lie algebra which is Ad-invariant in the sense
that ⟨Adg(.),Adg(.)⟩ = ⟨. , .⟩ for all g ∈ G [18].
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As in the case of the examples above, we often consider field theories that are local in
the sense that their action functional is of the form

S[φ] =
∫
M

L(φ,Dφ) (0.50)

for some top-form L ∈ Ωd(M) (called the Lagrangian) constructed out of the fields
φ : M → N and their differentials Dφ : TM → TN . The resulting equations of
motion are then typically given by second-order (partial) differential equations for
the fields φ, such as Newton’s law of motion (0.31) for a particle’s trajectory γ or
Maxwell’s equations (0.40) for the gauge field A. Solutions φ0 to these equations are
then usually constructed via a two-step process:

1. Initial conditions: Given a codimension-one hypersurface
X ⊂ M (interpreted as “space”), we prescribe the initial condi-
tions of the fields to be given by some function ϕ : Xε → N that
solves the restricted equations of motion on an infinitesimal
neighbourhood Xε := X×(−ε, ε) of X (see Figure 10). Figure 10

2. Time evolution: Given an initial condition ϕ, we find a solution φ0 to the full
equations of motion that restricts to φ0 |Xε = ϕ in an infinitesimal neighbourhood
of X. The field φ0 then describes how ϕ “evolves over time” on M .

In favourable circumstances, the restriction map that sends a solution φ0 to its initial
condition φ0 |Xε is one-to-one, giving an isomorphism between the phase space F0 of
physical field configurations and the space of their initial conditions in a neighbourhood
of X. A hypersurface X with this property is called a Cauchy hypersurface19 and
embodies the idea of classical determinism: The time evolution of physical observables
is completely determined by their initial conditions, allowing for (in principle) exact
predictions of future outcomes.

In practice, our ability to describe the dynamics of a physical system by solving its
equations of motion is limited by two factors: First, the system’s initial conditions
may be arbitrary and unpredictable and can only be determined with finite precision
experimentally. Second, for a given set of initial conditions, the equations of motion
may not admit analytical solutions, necessitating the use of numerical simulations
and approximations. In this context, symmetries provide a powerful tool to obtain
qualitative and quantitative constraints on a system’s dynamics that are independent
of initial conditions and that do not require solving the equations of motion explicitly.
Here, by “symmetries of a field theory” we mean the following:

19 If the equations of motion are given by a normally hyperbolic differential operator on spacetime,
then the latter admits a Cauchy hypersurface [19].
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Definition: A classical field theory is said to have a symmetry group G if there exists
a faithful group action ▷ : G × F → F of G on the space of fields that leaves the
action functional invariant, i.e. S[g ▷ φ] = S[φ] for all g ∈ G and φ ∈ F .

The invariance of S under the group action on the space of fields ensures that if φ0

is a critical point of S, so is g ▷ φ0 for any g ∈ G. In other words, the group action
has a well-defined restriction to the phase space F0 of physical field configurations
and hence leaves the equations of motion (0.29) invariant. More generally, we may
consider group actions that shift the action functional by a boundary term,

S[g ▷ φ] = S[φ] + boundary term , (0.51)

since (under suitable boundary conditions for the fields) the latter does not affect the
equations of motion for the fields. Group actions satisfying (0.51) are often referred to
as quasi-symmetries of a field theory. We say that a (quasi-)symmetry is spontaneously
broken by a physical field configuration φ0 if the associated orbit Oφ0 is non-trivial.
This captures the idea that while the laws governing the dynamics of the fields may be
invariant w.r.t. a certain symmetry group, a given solution to the equations of motion
need not be. In this case, we call the stabiliser H := Gφ0 the unbroken subgroup of G,
which captures those symmetry transformations that leave the field configuration φ0

invariant. We say that G is fully spontaneously broken by φ0 if H = 1.

For a field theory with fundamental observables given by fields φ : M → N from
spacetime M into some target manifold N , we typically further distinguish between
the following two types of symmetries:

• External: Symmetries that are induced by symmetries of spacetime M are
called external (or spacetime) symmetries. For example, every automorphism
f ∈ Aut(M) induces an action φ 7→ f∗(φ) on the space of fields via pullbacks.

• Internal: Symmetries that are induced by symmetries of the target space N
are called internal symmetries. For example, every automorphism g ∈ Aut(N)
induces an action φ 7→ g ◦ φ on the space of fields via post-composition.

The utility of (quasi-)symmetries stems from the fact that they are intimately tied to
conservation laws, as captured by the famous Noether theorem [9]:

Theorem: For every continuous (quasi-)symmetry of a classical field theory there
exists an associated conserved quantity Q satisfying d

dtQ = 0.

For local field theories with action functionals of the form (0.50), this result is easily
justified using the following Noether trick (see e.g. [20]): Suppose that a local theory
has a continuous Lie group symmetry G and consider an infinitesimal group action
on the fields parameterised by a Lie algebra element ε ∈ g. Now promote ε to an
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arbitrary Lie algebra valued function on spacetime M . The resulting infinitesimal
change of the action must then be of the form20

δS =
∫
M

⟨ε ∧ d⋆ k⟩ +
∫
M

⟨dε ∧ ⋆ℓ⟩ (0.52)

for some 1-forms k, ℓ ∈ Ω1(M, g∨) valued in the dual space21 g∨ of the Lie algebra and
constructed out of the fields φ and their differentials Dφ. This ensures that S shifts
by at most a boundary term when ε is constant, as required for a (quasi-)symmetry
transformation. Moreover, we must have δS = 0 for any ε once we substitute in a
physical field configuration φ0 ∈ F0 satisfying (0.29), which, after integrating by parts,
implies the current conservation equation

d ⋆ j |φ0 = 0 , (0.53)

where we defined the so-called Noether current j := ℓ− k. This shows that for every
continuous symmetry there exists an associated 1-form current j that is conserved
on-shell, i.e. when the equations of motion are satisfied. In order to obtain from this a
conserved quantity, we integrate the pairing of ⋆j with a constant Lie algebra element
ε ∈ g against a codimension-one submanifold Σ ⊂ M , which yields

Qε(Σ) :=
∫

Σ
⟨ε, ⋆j ⟩ . (0.54)

Upon smoothly deforming Σ into a homologous codimension-one submanifold Σ′ ⊂ M ,
the above quantity changes by

Qε(Σ′) − Qε(Σ) =
∫

Σ′
⟨ε, ⋆j ⟩ −

∫
Σ

⟨ε, ⋆j ⟩ ≡
∫
U

⟨ε, d ⋆ j ⟩ , (0.55)

where U ⊂ M is such that22 ∂U = Σ′ ∪ Σ (see Figure 11) and we used Stokes’ theorem
for the integration of differential forms in the last step. Upon substituting in physical a

Figure 11

field configuration, (0.55) together with (0.53) then implies
that Qε(Σ) = Qε(Σ′) on-shell. In particular, for a spacetime
of the form M = X × R, the quantity Qε(t) := Qε(X×{t})
obeys d

dtQε = 0. By varying ε over a basis {εi} of g, this gives
a total of dim(g) = dim(G) independent conserved quantities

20 Here, the appearance of the Hodge star operator ⋆ defined w.r.t. a spacetime metric on M is purely
conventional to have k and ℓ correspond to 1-forms as opposed to (d− 1)-forms.

21 Given a vector space V over a field K, we denote by V ∨ := Hom(V,K) the space of K-linear maps
f : V → K and call it the dual space of V . We denote by ⟨. , .⟩ : V ∨ × V → K the canonical pairing
between V and its dual space given by (f, v) 7→ f(v). This is the pairing appearing in (0.52).

22 Given an oriented manifold Σ, we denote by Σ its orientation reversal, i.e. the manifold Σ equipped
with the opposite orientation.
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Qi := Qεi as claimed. Examples of internal and external (quasi-)symmetries and their
associated conserved quantities include the following:

• Classical mechanics: The theory describing the motion of probe particles
on a spatial manifold N via their trajectories γ : R → N with action functional
(0.30) has an external time translation symmetry that acts on the fields via
γ(t) 7→ γ(t− ε) for fixed ε ∈ R. The associated conserved quantity is given by

E = m

2 ∥γ̇(t)∥2 + V
(
γ(t)

)
(0.56)

and is called the energy of the probe particle, where V : N → R denotes the
potential function and m is the mass of the particle as before.

For example, probe particles moving on trajectories r⃗(t) in the gravitational
potential V (r⃗) = −m ·M/r (where r := ∥ r⃗∥) of a heavy object with mass
M ≫ m centred at the origin of N = R3\{0} have conserved energy

E = m

2 || ˙⃗r ||2 − m ·M
r

. (0.57)

Without solving the equations of motion, this already allows us to establish a
qualitative relationship between the particle’s position and its speed: the closer
the particle is to the heavy object at the origin, the greater the magnitude of its
velocity. Moreover, the system has an internal SO(3) rotation symmetry that acts
on the fields via r⃗(t) 7→ R · r⃗(t) for R ∈ SO(3) and that yields dim(SO(3)) = 3
independent conserved quantities

Li = m · [ r⃗ × ˙⃗r ]i (0.58)

(where i = x, y, z), which we identify as the components of the particle’s angular
momentum L⃗. Since the latter is perpendicular to both the particle’s position r⃗(t)
and its velocity ˙⃗r(t), the conservation of L⃗ implies that the particle’s trajectory
lies within a two-dimensional hyperplane H (e.g. the x-y-plane) that intersects
the origin and has a normal vector parallel to L⃗. Without loss of generality, we
may hence simplify the variational problem by restricting to those trajectories
r⃗(t) that are confined to H and that have conserved angular momentum L⃗. The
action functional (0.30) then possesses three further quasi-symmetries, whose
infinitesimal actions on the fields are given by

δi r⃗ = ε

m
· e⃗i × L⃗ , (0.59)
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where ε ≪ 1 and e⃗i (i = x, y, z) denotes the standard basis of R3. The resulting
infinitesimal shift of the action is given by the total derivative

δiS = ε ·m ·M ·
∫

d

dt

(
ri
r

)
, (0.60)

which via Noether’s theorem induces the conserved quantities

Ai = ( ˙⃗r× L⃗)i − m ·M
r

· ri (0.61)

that form the components of the so-called Runge-Lenz vector A⃗. The conservation
of the latter then allows us to determine the shape of the particle’s trajectory
explicitly (see e.g. [21]): Consider the inner product

A⃗ · r⃗ ≡ A · r · cos(θ) = L2

m
− m ·M · r , (0.62)

where A := ||A⃗||, L := ||L⃗||, and θ ∈ [0, 2π) labels the angle between A⃗ and r⃗ 23.
Rearranging (0.62) and using the fact that

A2 ≡ A⃗ · A⃗ = 2L2

m
· E + (m ·M)2 (0.63)

then allows us to relate the particle’s distance r from the origin to the angle θ by

r = C

1 + µ · cos(θ) , (0.64)

where we defined the non-negative constants

C := ℓ2

M
and µ :=

√
1 + 2ℓ2

M2 · e (0.65)

with ℓ := L/m and e := E/m. Equation (0.64) famously parameterises conic
sections, which fall into four classes depending on the value of the eccentricity
parameter µ: circles (µ = 0), ellipses (0 < µ < 1), parabolae (µ = 1), and
hyperbolae (µ > 1). This reproduces the classification of possible orbits of a
probe particle moving in the gravitational field of a heavy object as illustrated in
Figure 8. Note that we arrived at this result purely by symmetry considerations.
We often say that orbits with eccentricity 0 ≤ µ < 1 (or equivalently with energy
E < 0) are bound, since they have a finite maximum distance to the origin.

23 Note that since A⃗ · L⃗ = 0, the Runge-Lenz vector A⃗ lies within the two-dimensional hyperplane
that the particle’s trajectory r⃗(t) is confined to. The angle θ = ∡(A⃗, r⃗) hence captures the angle of
the particle’s position vector w.r.t. some fixed hyperplane axis labelled by A⃗.
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• Gauge theory: Given a Lie group G, the theory of gauge fields living on
a principal G-bundle P with action functional (0.49) has external symmetries
given by the isometry group Iso(M) of spacetime M . For example, if M = M4 is
Minkowski spacetime, this is the Poincaré group Iso(M4) = R4⋊O(3, 1) consisting
of translations and generalised orthogonal transformations. The associated
(canonical) Noether currents are not gauge-invariant in general. However, they
can be improved by adding appropriate auxiliary terms as shown by Belinfante
and Rosenfeld [22, 23]. For instance, the so-obtained Noether current associated
to the translation symmetry R4 is given by the (R4)∨-valued 1-form

T (.) =
∑
b

〈
F ( . , b) , F (−, b∨)

〉
− ⟨F ∧ ⋆F ⟩

2 · vol ( . ,−) (0.66)

on M4 [24], where F ∈ Ω2(P, g) is the curvature 2-form of the gauge field and

− ⟨. , .⟩ is the fixed Ad-invariant positive-definite symmetric bilinear form on
the Lie algebra g of the gauge group G that appears in the action (0.49),

−
∑
b denotes a sum over elements of a fixed basis b of R4, where b∨ denotes

the corresponding dual basis w.r.t. the Minkowski metric (. , .),

− vol ∈ Ω4(M4) is the metric-induced volume form on M4.

Note that we can equivalently view (0.66) as defining a symmetric real-valued
2-tensor on M4, which is called the energy-momentum (or stress-energy) tensor
associated to the gauge field.

As an example, consider free Maxwell theory on M4, which is described by the
gauge group G = U(1). The components of the field strength F are given in
terms of the electric and magnetic fields E⃗ and B⃗ as in (0.37). The stress-energy
tensor in this case can be computed to be

T = u dt2 − 2
∑
i

Si dxi dt −
∑
ij

σij dxi dxj , (0.67)

where u and S⃗ denote the energy density and the Poynting vector

u := 1
2 (E⃗2 + B⃗2) and Si := [E⃗ × B⃗ ]i (0.68)

of the electromagnetic field and σ is the Maxwell stress tensor

σij := EiEj +BiBj − δij u . (0.69)

The conservation of T is then equivalent to the continuity equations

∂tu + div(S⃗) = 0 and ∂tS⃗ − div(σ) = 0 , (0.70)
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which say that the rate of change of the electromagnetic energy E(V ) :=
∫
V u d

3x

contained in a spatial volume V ⊂ R3 is given by the flux of the Poynting
vector through the boundary ∂V of V . Similarly, the rate of change of the
electromagnetic momentum P⃗ (V ) :=

∫
V S⃗ d3x contained in V is given by the

flux of the Maxwell stress tensor through ∂V . For instance, an electromagnetic
wave propagating freely in the z-direction of space with wave profile f : R → R
and non-trivial field components

Ex(x⃗, t) = By(x⃗, t) = f(z − t) (0.71)

has associated conserved stress-energy tensor

T =
[
f(z − t) · (dz − dt)

]2
, (0.72)

which allows us to read off the energy density and the non-trivial components of
the Poynting vector and the Maxwell stress tensor as u = Sz = −σzz = f(z− t)2.

0.1.2 Quantum Symmetries

Quantum theories are probabilistic in the sense that the future outcomes of observables
can be predicted only with certain likelihoods from their initial conditions. As a result,
quantum theories exhibit an intrinsic randomness and constrain us to compute at most
‘expectation values’ of physical quantities. Heuristically, given a classical theory of
fields φ, we can promote it to a quantum theory by introducing a ‘measure’ Dφ on the
space F of fields24, which allows us to define and compute probability distributions on
sets of field configurations by evolving suitable initial conditions over time (in analogy
to the classical case). For this purpose, we will use the notation F(M) to denote the
space of fields on a fixed spacetime M and FX := {φ|X} to denote the set of field
configurations restricted to a spatial hypersurface X ⊂ M . Similarly, we will write
SM : F(M) → R for the action functional that evaluates field configurations living
on M . The probabilistic evolution of fields can then be determined via the following
axiomatic two-step process (also called quantisation):

1. Initial conditions: Given a codimension-one hypersurface X ⊂ M (interpreted
as “space”), we take the initial conditions of the fields to be given by some

24 Since the space F of all field configurations is usually infinite-dimensional, the existence of a ‘nice’
measure Dφ on F is far from guaranteed. While mathematically rigorous constructions exist in
special cases (e.g. the Wiener measure in quantum mechanics), the measures used in generic
quantum field theories are typically ill-defined (for instance, one can show that no locally-finite,
strictly positive, and translation-invariant measure exists on an infinite-dimensional vector space
[25]). The following discussion should hence only be viewed as a heuristic motivation for the general
structure we expect quantum field theories to have.
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probability distribution p : FX → R≥0 on the space FX of field configurations
restricted to X. Concretely, we interpret25

P (S) :=
∫

S
Dφ|X · p[φ] (0.73)

as the probability to measure a field configuration that lies in a given subset
S ⊂ FX . Since p (being a probability distribution) is everywhere non-negative,
we can write it as26 p = |Ψ|2 for some complex functional Ψ : FX → C called
the wave functional, which needs to be normalised in a way such that

P (FX) =
∫

FX

Dφ|X ·
∣∣Ψ[φ]

∣∣2 != 1 . (0.74)

Consequently, Ψ may be viewed as an element of the Hilbert space

HX := L2(FX ,Dφ|X
)

(0.75)

of square-integrable complex functionals on FX obeying ∥Ψ∥2 := ⟨Ψ,Ψ⟩ < ∞,
where we denoted by ⟨. , .⟩ the Hermitian inner product on HX given by

⟨Φ,Ψ⟩ :=
∫

FX

Dφ|X · Φ∗[φ] · Ψ[φ] . (0.76)

In fact, any non-zero Ψ ∈ HX\{0} induces a probability distribution on FX via
pΨ := |Ψ|2/ ∥Ψ∥2, so that pΨ = pΨ′ if Ψ′ = λ · Ψ for some non-zero λ ∈ C×. This
motivates the definition of the projective Hilbert (or ray) space

P(H) :=
(
H\{0}

)
/C× (0.77)

as the space of possible initial states of the fields27. We often use the Dirac
notation to write elements of the Hilbert space as |Ψ⟩ ∈ H and the associated
dual vectors as ⟨Ψ| := ⟨Ψ, . ⟩ ∈ H∨. The amplitude of a functional Ψ ∈ HX on a
field configuration φ ∈ FX may then be written as

Ψ[φ] = ⟨φ|Ψ⟩ (0.78)

where ⟨φ| ∈ H∨
X represents the ‘delta functional’ on FX that is peaked at φ.

25 Here, we denote by Dφ|X the disintegration of the measure Dφ to FX , which formally captures
the ‘restriction’ of Dφ onto the space of field configurations living on X.

26 For z ∈ C, we denote its complex conjugate and modulus squared by z∗ and |z|2 = z∗z, respectively.
27 In the following, we will use the term ‘state’ rather loosely to refer to non-zero vectors in H as well

as their image under the canonical projection map H → P(H).
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2. Time evolution: Given a bordism28 between spatial hyper-
surfaces X and Y (i.e. a d-dimensional spacetime manifold M
with an orientation-preserving diffeomorphism ∂M ∼= X ⊔ Y ,
see Figure 12), we define an associated time evolution operator Figure 12

U(M) : HX → HY (0.79)

to be the linear map that sends an initial state |Ψ⟩ ∈ HX to the final state
U(M) |Ψ⟩ ∈ HY defined via the Feynman path integral

⟨ϕ| U(M)|Ψ⟩ :=
∫

F(M) :
φ|Y =ϕ

Dφ · eiSM [φ] · Ψ[φ|X ] . (0.80)

Intuitively, what this means is that in order to obtain the amplitude of the
final state on a field configuration ϕ ∈ FY on Y , we integrate over all field
configurations φ on M that restrict to ϕ on Y , weighted by their amplitudes
w.r.t. the initial state |Ψ⟩ on X. Furthermore, we weight any such φ ∈ F(M)
by the exponential of (i times) the action functional evaluated on φ, the effect of
which can be described using the so-called stationary phase approximation: If we
momentarily reintroduce Planck’s constant29 ℏ by rescaling the action S → 1

ℏS,
then in the limit where ℏ → 0 (which is also called the classical limit) we can
approximate a generic path integral by

∫
F

Dφ · e
i
ℏS[φ] · F [φ] ≃

∑
φ0 ∈F0

e
i
ℏS[φ0]

|Hφ0(S)|1/2
· F [φ0] + O(ℏ) , (0.81)

where Hφ0(S) := (δ2S/δφ2)|φ0 denotes the Hessian matrix of the action S at
φ0 and F is an arbitrary (suitably fast decaying) functional on the space of
fields. This shows that when ℏ → 0, the dominant contributions are given by the
classical on-shell solutions φ0 ∈ F0 of the equations of motion (0.29) as expected.
For finite ℏ, however, one receives additional contributions from so-called off-shell
field configurations, which yield quantum corrections to physical observables
computed from the path integral.

In order for the above construction of initial states and their time evolution to be
well-behaved, we often make the following assumptions about the underlying spaces
of fields and associated action functionals [27]:

28 In order for the gluing of bordisms to be well-defined, one usually equips them with additional
data such as collars around their incoming and outgoing boundary components (see e.g. [26] for
further details). We will not dwell on this technical issue in what follows. We will frequently
use the notation X M−→ Y to denote bordisms from X to Y . Note that, for later convenience, we
pictorially represent bordisms with the incoming boundary X on the right, e.g. in Figure 12.

29 For the remainder of this thesis, we choose units in which ℏ = 1.
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• Additivity: Given two spacetimes M and M ′, the space of fields on their disjoint
union is given by the Cartesian product F(M ⊔ M ′) = F(M) × F(M ′) (and
similarly for lower-dimensional submanifolds X ⊂ M). Furthermore, given field
configurations φ ∈ F(M) and φ′ ∈ F(M ′), we have that

SM⊔M ′ [(φ,φ′)] = SM [φ] + SM ′ [φ′] . (0.82)

• Cutting & Gluing: Given a spacetime M , we
can cut it along a codimension-one hypersurface
Y ⊂ M to obtain a new spacetime M||Y with two
boundary components diffeomorphic to Y as shown Figure 13

in Figure 13. Every field φ ∈ F(M) on M then determines a field φ||Y ∈ F(M||Y )
on M||Y that has the same boundary values on the two components of ∂M||Y

corresponding to Y . We demand that

SM [φ] = SM||Y
[φ||Y ] . (0.83)

• Orientation: Given a spacetime M , we have that F(M) = F
(
M
)
, where M

denotes the orientation-reversal of M . Furthermore, we have that

SM [φ] = −SM [φ] . (0.84)

Using these assumptions, one can check that the quantisation procedure that assigns
X 7→ HX and M 7→ U(M) has the following properties:

• Multiplicativity: Given two disjoint spatial hypersurfaces X and Y , the Hilbert
space assigned to their union is given by

HX⊔Y = L2(FX⊔Y ,Dφ|X⊔Y
)

= L2(FX × FY ,Dφ|X ⊗ Dφ|Y
)

∼= L2(FX ,Dφ|X
)

⊗ L2(FY ,Dφ|Y
)

= HX ⊗ HY ,

(0.85)

where we used the additivity axiom as well as the fact that (under suitable
assumptions) the L2-space of the product of two measure spaces is (isometrically)
isomorphic to the tensor product of their individual L2-spaces [28]. Furthermore,
we assumed that the restricted measure behaves like Dφ|X⊔Y = Dφ|X ⊗ Dφ|Y ,
where the right hand side denotes the product measure on FX × FY . Physically,
the relation (0.85) means that states in composite quantum systems consist of
(superpositions of) product states for the individual components.
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• Functoriality: Given spatial hypersurfaces X, Y , and Z and bordisms X M−→ Y

and Y M ′
−−→ Z, the composition of the associated time evolution operators obeys

⟨ϕ| U(M ′) ◦ U(M) |Ψ⟩ =
∫

F(M ′) :
φ′|Z=ϕ

Dφ′ · eiSM′ [φ′] ·
∫

F(M) :
φ|Y =φ′|Y

Dφ · eiSM [φ] · Ψ[φ|X ]

=
∫

F(M ′ M) :
φ̃|Z=ϕ

Dφ̃ · eiSM′ M [φ̃] · Ψ[φ̃|X ]

= ⟨ϕ| U(M ′ M) |Ψ⟩ .

(0.86)

Here, we first used the additivity axiom (0.82) and then identified M ⊔M ′ with
(M ′ M)||Y , where M ′ M denotes the result of gluing the bordisms M and
M ′ together along Y as illustrated in Figure 14. Similarly,
we identified pairs of field configurations φ ∈ F(M) and
φ′ ∈ F(M ′) satisfying φ|Y = φ′|Y with φ̃||Y for some
φ̃ ∈ F(M ′ M), allowing us to apply the cutting and
gluing axiom (0.83). Since (0.86) holds for all ϕ ∈ FZ and
|Ψ⟩ ∈ HX , we obtain the operator equation30 Figure 14

U(M ′) ◦ U(M) = U(M ′ M) . (0.87)

Physically, this means that we can divide the time evolution of states into steps
(i.e. evolving an initial state from X to Y and then from Y to Z is equivalent to
evolving it from X to Z).

• Unitarity: Given a bordism X M−→ Y and states |Ψ⟩ ∈ HX and |Φ⟩ ∈ HY , we
can compute the complex conjugated overlap

⟨Φ| U(M)|Ψ⟩∗ =
∫

F(M)

Dφ · e−iSM [φ] · Φ[φ|Y ] · Ψ∗[φ|X ]

=
∫

F(M)

Dφ · eiSM
[φ] · Ψ∗[φ|X ] · Φ[φ|Y ]

= ⟨Ψ| U(M †)|Φ⟩ ,

(0.88)

where we used the orientation axiom (0.84) and denoted by Y M†
−−→ X the bordism

that is constructed out of M using the following two canonical operations: Given
any bordism X M−→ Y with boundary ∂M ∼= X ⊔ Y , we can assign to it

30 Here, we see that representing bordisms pictorially with the incoming boundary to the right has
the advantage that the gluing of bordisms interplays nicely with the composition of the associated
time evolution operators as in (0.87).
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1. the dual bordism Y M∨
−−→ X, where M∨ = M as an oriented manifold viewed

as a bordism with boundary Y ⊔X (using Y ∼= Y ),

2. the opposite bordism X M−→ Y by flipping the orientation on M and its
boundary components X and Y .

We then set M † := M∨, which corresponds to ‘turning the bordism M around’
and subsequently reversing its orientation. Since (0.88) holds for all |Ψ⟩ and |Φ⟩,
we obtain the operator equation31

U(M †) = U(M)† , (0.89)

which states that performing the time evolution along M † is equivalent to
reversing the time evolution along M32.

Operators

In general, one can consider time evolutions along bordisms X M−→ Y together with so-
called path integral insertions. Concretely, given a (suitably well-behaved) functional
F : F(M) → C on the space of fields on M , we can contruct an associated operator

U(M ;F ) : HX → HY (0.90)

via the path integral that is weighted by F ,

⟨ϕ| U(M ;F )|Ψ⟩ :=
∫

F(M) :
φ|Y =ϕ

Dφ · F [φ] · eiSM [φ] · Ψ[φ|X ] , (0.91)

where ϕ ∈ FY and |Ψ⟩ ∈ HX . We will typically not distinguish between F and U(M ;F )
and refer to both simply as ‘operators’ in what follows. Furthermore, we are often only

Figure 15

interested in a small subset of operators that have a well-defined
support in M . Concretely, given a submanifold Σ ⊂ M , we say
that a functional F has support in Σ (supp(F ) = Σ) if for any field
φ ∈ F(M) the amplitude F [φ] only depends on the values of φ in
an infinitesimal neighbourhood of Σ (see Figure 15). We often write
FΣ for an operator F whose support is given by Σ. It is useful to think of the operator
F as the assignment Σ 7→ FΣ, which (in favourable circumstances) allows us to obtain

31 Given a linear map f : H → H′ between Hilbert spaces, we denote by f† the adjoint of f , which is
the unique linear map f† : H′ → H satisfying ⟨f(Φ),Ψ⟩′ = ⟨Φ, f†(Ψ)⟩ for all Φ ∈ H and Ψ ∈ H′.

32 Note that (0.89) does not imply that U(M) is unitary in the sense that U† ◦ U = U ◦ U† = id. This
reflects the fact that M may induce a change in topology from its incoming boundary to its outgoing
boundary, so that in general we only expect unitary time evolution to exist for topologically trivial
bordisms of the form M ∼= X × [0, t]. In other words, unitary time evolution is not a built-in
feature of quantum theory but rather a consequence of specific assumptions about the nature of
spacetime, as pointed out in [29, 30].
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a well-defined path integral insertion for any suitable submanifold Σ ⊂ M . As a result,
we can organise the spectrum of operators according to the dimensionality of their
support. In particular, we distinguish between the following two types of operators:

• Local: We say that an operator F is local if dim(supp(F )) = 0, meaning that F is
supported in an infinitesimal neighbourhood of points in M . We denote by O0 the
space of all local operators, which forms a (generally infinite-dimensional) complex
vector space via point-wise addition and scalar multiplication of functionals.

• Extended: We say that an operator F is extended if 1 ≤ dim(supp(F )) ≤ d− 1.
We denote the space of all p-dimensional operators by

Op := {F | dim(supp(F )) = p} . (0.92)

Apart from genuine operators that can be freely inserted on any p-dimensional
submanifold, this also includes non-genuine operators that sit ‘inbetween’ non-
trivial higher-dimensional operators. Concretely, given two p-dimensional op-
erators A,B ∈ Op, we denote by33 HomO(A,B) ⊂ Op−1 the space of all

Figure 16

(p−1)-dimensional operators that can sit at the interface between
A and B. Similarly, given µ, ν ∈ HomO(A,B), we denote by
HomO(µ, ν) ⊂ Op−2 the space of all (p − 2)-dimensional opera-
tors Θ that can sit at the junction between µ and ν, et cetera.
This is illustrated in Figure 16 for p = 2. We will provide

explicit examples of non-genuine operators further below. Note that for each
F ∈ Op, there is the ‘trivial’ interface idF ∈ Hom(F, F ) that corresponds to
inserting the trivial functional34 into the path integral.

A priori, the space Op of p-dimensional operators is again a complex vector
space for p > 0 via point-wise addition and scalar multiplication of functionals.
However, since extended operators often carry a preferred normalisation35, it is
useful to relocate parts of this linear structure to the space O0 of local operators.
Concretely, while we use point-wise addition to define direct sums F ⊕ F ′ of
p-dimensional operators F, F ′ ∈ Op, we interpret expressions such
as λ ·F (with λ ∈ C) as inserting a multiple of the trivial local op-
erator idpF ∈ O0 onto (an arbitrary point on the support of) F as il-
lustrated in Figure 17. This allows us to reduce the linear structure
of arbitrary operators to the linear structure of the vector space O0.

Figure 17

33 Despite the notation, we do not (yet) think of O := ⊔d−1
p=0 Op as a (higher) category due to the lack

of appropriate notions of composition. This will change once we restrict ourselves to topological
operators when discussing generalised global symmetries in Section 0.1.3.

34 Here, the ‘trivial functional’ is the one that maps every field configuration in F(M) to 1 ∈ C.
35 For example, Wilson lines in gauge theory carry a preferred normalisation corresponding to a

choice of character on the gauge group; see further details below.
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As a special case of the above considerations, we can look at bordisms with partially
empty boundary components. For instance, consider a bordism ∅ M−→ X, which
corresponds to a spacetime M with only an outgoing boundary component X. Using
the canonical identification H∅ ∼= C, this induces a linear map

U(M ;F ) : C → HX (0.93)

for any operator insertion F on M , which we can canonically identify with a state

|M ;F ⟩ := U(M ;F )(1) (0.94)

in the Hilbert space HX associated to X. This mapping of operators on spacetime to
states on its boundary is called the operator-state map36. Pictorially, we write it as

(0.95)

If we furthermore assume that X = ∅ (so that M is closed), we obtain a linear map

U(M ;F ) : C → C , (0.96)

which we can canonically identify with a complex number

U(M ;F ) =: ⟨M ;F ⟩ · idC (0.97)

called the correlation function37 of F on M . Pictorially, we write this as

(0.98)

The correlation function on a closed spacetime M with no operator insertions is called
the partition function of M and denoted by

(0.99)

36 In general, this map is not surjective. However, in special cases such as conformal field theory
(CFT), one can use the operator-state map to construct a bijection between operators on spacetime
and states in the Hilbert space [31]. In this case, one speaks of the operator-state correspondence.

37 Despite ⟨M ;F ⟩ being a complex number, it is referred to as a correlation function because it (in
principle) depends on the support Σ of the operator F . Studying ⟨M ;F ⟩ as a function of Σ for
different operator insertions F typically gives rise to a rich algebraic structure and is one of the
main objectives of quantum field theory.
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We can derive general properties of correlation functions using the path integral
prescription (0.91). For instance, repeating the computation (0.88) with a generic
insertion F : F(M) → C leads to the operator equation

U(M ;F )† = U(M †;F †) , (0.100)

where F † : F(M †) → C is given by the complex conjugated functional F †[φ] := F [φ]∗.
In analogy to the orientation axiom (0.84), we often assume that complex conjugating
an extended operator F reverses the orientation of its support Σ, i.e.

FΣ [φ]∗ = FΣ [φ] (0.101)

when dim(Σ) > 0. As a result, we can interpret (0.100) as stating that turning the
bordism M and its extended operator insertions F around and subsequently flipping
their orientation is equivalent to reversing the ‘decorated’ time evolution described by
U(M ;F ). Pictorially, we write this as

(0.102)

where we kept the notation Θ† for local operators Θ ∈ O0. In particular, by restricting
to closed spacetimes M , we see that ‘reflecting’ the operator content of a correlation
function is equivalent to complex conjugation:

(0.103)

As a result, we have that reflection-symmetric correlation functions are necessarily
real-valued (and in fact non-negative since they correspond to the norm of a state
on a reflection-symmetric hyperplane Π in spacetime). In the context of Euclidean
quantum field theory, this is often called the principle of reflection positivity [32–35].

Schrödinger Picture

For practical purposes, it is often useful to work infinitesimally in the neighbourhood of
a given spatial hypersurface X ⊂ M . Concretely, upon choosing a normal direction to
X, we may assume that spacetime locally looks like M ∼= X×R, where R parameterises
the direction of time. If we denote by H := HX the Hilbert space associated to X, we
can then describe the time evolution of states using the operator

U(t) := U
(
X× [0, t]

)
, (0.104)
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which as a consequence of (0.87) and (0.89) obeys

U(t) ◦ U(t′) = U(t+ t′) and U(t)† = U(−t) . (0.105)

Furthermore, we assume that lim
t→0

U(t) = idH, which together with (0.105) implies
that U(t) defines a unitary operator on H for all t. In particular, the time evolution

|Ψ(t)⟩ := U(t) |Ψ⟩ (0.106)

of a state |Ψ⟩ ∈ H preserves probabilities in the sense that ∥Ψ(t)∥2 = ∥Ψ∥2 for all t.
Moreover, the rate of change of |Ψ(t)⟩ can be computed to be

d

dt
|Ψ(t)⟩ = d

dt
U(t) |Ψ⟩

= lim
h→0

(
U(t+ h) − U(t)

h

)
|Ψ⟩

=
[

lim
h→0

(
U(h) − U(0)

h

)
◦ U(t)

]
|Ψ⟩

= (−i) · Ĥ |Ψ(t)⟩ ,

(0.107)

where we defined the so-called Hamiltonian operator Ĥ on H by

Ĥ := i · lim
h→0

(
U(h) − idH

h

)
. (0.108)

Rearranging (0.107) then gives the Schrödinger equation

i
d

dt
|Ψ(t)⟩ = Ĥ |Ψ(t)⟩ , (0.109)

which is the quantum analogue of Newton’s law of motion describing the time evolution
of physical states via a differential equation. The solutions to (0.109) are given by

|Ψ(t)⟩ = e−iĤt |Ψ⟩ , (0.110)

which allows us to identify the time evolution operator with U(t) = e−iĤt. According
to Stone’s theorem [36], we then have that U(t) is unitary for all t if and only if Ĥ
is Hermitian (or self-adjoint) in the sense that Ĥ† = Ĥ. In this case, Ĥ induces an
orthogonal decomposition38

H ∼=
⊕
n

Hn (0.111)

38 More precisely, if Ĥ is a compact self-adjoint operator on H, then the spectral theorem states that
there exists an orthonormal basis of H consisting of eigenvectors of Ĥ with real eigenvalues [37].
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of the Hilbert space into eigenspaces Hn of Ĥ, where each |Ψn⟩ ∈ Hn obeys

Ĥ |Ψn⟩ = En · |Ψn⟩ (0.112)

for some (necessarily real) eigenvalue En ∈ R (called the energy of |Ψn⟩). The set
{En}n of all eigenvalues is called the spectrum of the Hamiltonian, which we assume
to be bounded from below. We call the eigenspace H0 associated to the lowest energy
E0 (if it exists) the space of ground states (or vacua). We say that an eigenspace Hn is
degenerate if dim(Hn) > 1. Determining the spectrum and its associated degeneracies
of a given Hamiltonian is one of the main objectives of quantum field theory.

Figure 18

More generally, we can use the decorated time evolution (0.90)
to construct operators on the Hilbert space from generic path
integral insertions. Concretely, given a functional F whose sup-
port is entirely contained in the spatial hypersurface X, we can
define an associated operator F̂ : H → H via

F̂ := lim
ε→0

U(Xε ;F ) , (0.113)

where we used the notation Xε := X × (−ε, ε). This is illustrated in Figure 18.
Intuitively, the operator F̂ allows us to compute ‘expectation values’

⟨F ⟩Ψ := ⟨Ψ|F̂ |Ψ⟩
∥Ψ∥2 (0.114)

of the functional F w.r.t. the probability distribution pΨ = |Ψ|/∥Ψ∥2 induced by a
non-zero state |Ψ⟩ ∈ H on X. Since, from a physical point of view, we are mostly
interested in measuring quantities that are real-valued, we often restrict ourselves to
functionals F obeying F † = F (which are also called observables). The associated
operators F̂ on H then satisfy

F̂ † ≡ lim
ε→0

U(Xε ;F )†

= lim
ε→0

U(X†
ε ;F †)

= lim
ε→0

U(Xε ;F ) ≡ F̂ ,

(0.115)

where we used (0.100) as well as the fact that X†
ε

∼= Xε. Hence, we see that physical
observables are implemented by Hermitian operators on the Hilbert space. In particular,
this ensures that their expectation value ⟨F ⟩Ψ is real for any state |Ψ⟩. Moreover,
the fact that observables correspond to operators has important consequences for our



motivation 33

ability to measure different observables simultaneously. Concretely, if we define the
variance of an observable F in a state |Ψ⟩ by

σ(F )Ψ :=
√

⟨F 2⟩Ψ − ⟨F ⟩2
Ψ , (0.116)

then the Cauchy-Schwarz inequality for inner product spaces implies the so-called
Robertson uncertainty relation [38]

σ(A)Ψ · σ(B)Ψ ≥ 1
2
∣∣∣⟨[Â, B̂]⟩Ψ

∣∣∣ (0.117)

for any two observables A and B, where we defined the commutator of Â and B̂

by [Â, B̂] := Â◦ B̂ − B̂ ◦ Â. Physically, this means that, given two observables, the
precision with which we can measure both of them at the same time in a given state
|Ψ⟩ is bounded from below by the expectation value of their commutator.

Examples of quantum field theories and their associated spectra of (local and extended)
operators include the following:

• Qubits: A qubit is the quantum version of a bit, which is a classical system
consisting of a single variable s (called spin) that can only occupy two possible
states (denoted + and − and called ‘up’ and ‘down’, respectively). The associated
Hilbert space is H = C2, which is spanned by the two basis vectors |+⟩ :=

( 1
0
)

and |−⟩ :=
( 0

1
)
. The most general form of the Hamiltonian is given by

Ĥ = A · 2 + B⃗ · σ⃗ , (0.118)

where A ∈ R and B⃗ ∈ R3 and we denoted by σ⃗ = (σx, σy, σz) the vector that
contains the three so-called Pauli-matrices

σx :=
(

0 1
1 0

)
, σy :=

(
0 −i
i 0

)
, σz :=

(
1 0
0 −1

)
. (0.119)

Together with the identity matrix 2, these form a basis for the space of all
Hermitian (2 × 2)-matrices. Since the parameter A simply shifts the Hamiltonian
by a constant, we can without loss of generality assume that A = 0 in what
follows. The eigenvalues of Ĥ are then simply given by

E± = ±B , (0.120)

where we denoted by B := ||B⃗|| the magnitude of the vector B⃗. Moreover, the
associated time evolution operator can be computed to be

U(t) ≡ e−iĤt = cos(Bt) · 2 − i sin(Bt) · (⃗b · σ⃗) , (0.121)
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where b⃗ := B⃗/B denotes the unit vector in the direction of B⃗. Using this, we
can compute the expectation value of the spin operator ŝ := σz (which measures
whether the spin s is up or down) in the time evolved state U(t) |±⟩ to be

〈
s(t)

〉
± := ⟨s⟩U(t)|±⟩ = ±

[
1 − 2 · b2

⊥ · sin2(Bt)
]
, (0.122)

where we denoted by b⊥ := ||⃗b⊥|| the magnitude of the transverse component
b⃗⊥ := b⃗ − bz e⃗z of the unit vector b⃗ that is perpendicular to the z-axis in R3.
Physically, this means that if we view the spin s as being aligned along the
z-axis and coupled to a constant magnetic field B⃗, then the latter induces an
oscillation of s whose frequency is given by the magnitude B and whose amplitude
is determined by the normalised transverse component b⃗⊥ of B⃗.

• Quantum mechanics: The quantum theory of probe particles moving on a
Riemannian manifold N can be constructed by introducing the so-called Wiener
measure [39, 40] on the space F of (continuous) paths γ : [a, b] → N . Since
the boundaries of time intervals are points and F|pt ∼= N , equation (0.75) then
implies that the space of states is given by the Hilbert space

H = L2(N) (0.123)

of complex functions ψ : N → C that are square-integrable w.r.t. the Lebesgue
measure induced by the Riemannian metric on N . We usually refer to elements

Figure 19

of H as wavefunctions of the probe particle. Physically, given a
non-zero |ψ⟩ ∈ H, we interpret pψ := |ψ|2/ ∥ψ∥2 as the probability
density to find the probe particle in subregions S ⊂ N as before.
For instance, the state |n⟩ that localises the particle at a fixed
position n ∈ N with probability 1 corresponds to the Dirac delta

function peaked at n (see Figure 19). The probability to subsequently find the
particle at a different position n′ ∈ N after some finite time t is given by∣∣⟨n′|U(t)|n⟩

∣∣2 , (0.124)

where, according to (0.80), the time evolution operator U(t)
now computes an integral over all paths39 γ in N that start at
n and arrive at n′ after time t, weighted by the exponential of
the action functional (0.30). This is illustrated in Figure 20.

Figure 20

39 The fact that the general expression (0.80) for the time evolution operator becomes an integral
over a space of paths in quantum mechanics is the historical reason for the term ‘path integral’.
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As an example, consider probe particles moving along trajectories in N = R3

(or suitable subsets thereof). Typical observables include the position r⃗ of the
particle as well as its momentum p⃗ = m · ˙⃗r. Using (0.113), their associated
Hermitian operators on the Hilbert space H = L2(R3) can be computed to be40

r̂i = ri · and p̂i = −i∂i , (0.130)

where i = x, y, z and ri· and ∂i denote multiplication by and differentiation w.r.t.
the coordinate ri, respectively. As a result, the canonical commutation relations
between the position and momentum operators are given by

[r̂i, p̂j ] = i · δij · idH . (0.131)

Plugging this into (0.117) yields the Heisenberg uncertainty relation [41]

σ(r) · σ(p) ≥ 1
2 , (0.132)

where we assumed that we measure the variances σ(r) and σ(p) of the particle’s
position and momentum along a common spatial direction in a normalised state.

40 For example, the expression for the momentum operator p̂ can be derived as follows (for simplicity
we restrict ourselves to the case of one spatial dimension x): Given a state |ψ⟩ ∈ L2(R), its image
under the momentum operator is defined to have the position space representation

⟨x| p̂ |ψ⟩ := lim
ε→0

∫
y: (−ε,ε) →R,

y(ε) = x

Dy eiS[y] · ψ(y(−ε)) ·mẏ(0) , (0.125)

where we used that, classically, the momentum of a particle on a trajectory y(t) is given by
p = mẏ. For infinitesimal ε, we may approximate any such trajectory by y(t) = x+ ξ

2 ( t
ε

− 1) with
ξ := x− y(−ε), so that ẏ = ξ

2ε
and the action functional (0.30) evaluated on y approximates to

S[y] ≡
∫ ε

−ε

[ 1
2mẏ

2 − V (y)
]
dt ≈ m

4ε · ξ2 − 2V
(
x− ξ/2

)
· ε . (0.126)

Writing ψ(y(−ε)) = ψ(x− ξ), we can then Taylor expand the integrand of (0.125) about ξ and ε as

e− m
4iε

·ξ2
·
[
1 + O(ε)

]
·
[
ψ(x) − ψ′(x) · ξ + O(ξ2)

]
· m2ε ξ (0.127)

(where ′ denotes the derivative w.r.t. x), so that switching integration variables from y to ξ and
substituting in the Wiener measure Dy →

√
m

4πiε
dξ reduces the integral in (0.125) to a series of

Gaussian moments for ξ. Evaluating the latter then gives

⟨x| p̂ |ψ⟩ = lim
ε→0

(
− iψ′(x) + O(ε)

)
≡ −iψ′(x) , (0.128)

which shows that the momentum operator can be represented by p̂ = −i∂x as claimed. Note that
the imaginary multiplicative factor i is crucial to ensure that the operator p̂ is hermitian:

⟨φ| p̂ |ψ⟩ = − i

∫
R
φ(x)∗ ·ψ′(x) dx = i

∫
R
φ′(x)∗ ·ψ(x) dx = ⟨ψ| p̂ |φ⟩∗ , (0.129)

where we integrated by parts in the middle and discarded boundary terms due to the fact that φ
and ψ (being square-integrable) fall off sufficiently fast at infinity.
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Using (0.108), the Hamiltonian can be computed to be

Ĥ = − 1
2m∆ + V (r⃗ ) , (0.133)

where ∆ := ∑
i ∂

2
i denotes the Laplacian and V is the potential function appearing

in the action (0.30). For instance, if V (r⃗) = −α/r with α ∈ R>0, the above
Hamiltonian has an infinite series of negative energy eigenvalues41

En = − mα2

2(n+ 1)2 (0.134)

indexed by non-negative integers n = 0, 1, 2, ... with associated eigenspace de-
generacies dim(Hn) = (n+ 1)2. Physically, these correspond to the bound state
energies of a quantum particle in a radial 1/r potential (such as the electron in
the Coulomb potential of the proton, which together form the hydrogen atom).

•• Gauge theory: Given a Lie group G, the theory of
gauge fields living on a principalG-bundle π : P → M

has a canonical class of line operators that can be
constructed using the notion of parallel transport.
Concretely, given a connection 1-form A ∈ Ω1(P, g)
and a path γ : [a, b] → M in spacetime, we denote by Figure 21

Πγ(A) : Pγ(a) → Pγ(b) (0.135)

the associated parallel transport map42, which is a diffeomorphism between
the fibres Pγ(a) and Pγ(b) that is independent of the parameterisation of γ with
inverse given by Πγ(A)−1 = Πγ(A) (where γ denotes the reverse path of γ) [18].
Under a bundle automorphism f : P → P , it transforms as

Πγ(f∗(A)) = f−1 ◦ Πγ(A) ◦ f , (0.136)

which shows that parallel transport is not itself gauge-invariant (as required for a
valid path integral insertion). However, we can build gauge-invariant quantities
from it by introducing so-called ‘matter fields’. Concretely, given a vector space
V equipped with a linear (left) G-action ▷ : G×V → V , we define the associated
bundle to be the vector bundle over M with total space

PV := (P × V )/∼ , (0.137)

41 The fact that (a part of) the spectrum of a given Hamiltonian is often quantised such as in (0.134)
is one of the historical reason for the term ‘quantum theory’.

42 Concretely, the map (0.135) is defined as follows: Given p ∈ Pγ(a), we denote by γ̃ : [a, b] → P the
unique horizontal lift of γ that satisfies π ◦ γ̃ = γ as well as ˙̃γ ∈ ker(A) and γ̃(a) = p. We then set
Πγ(A)(p) := γ̃(b). This is illustrated in Figure 21.
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where the equivalence relation identifies (p ◁ g, v) ∼ (p, g ▷ v) for p ∈ P , v ∈ V

and g ∈ G. Parallel transport then induces a linear map

ΠV
γ (A) : (PV )γ(a) → (PV )γ(b) (0.138)

which sends43 [p, v] 7→ [Πγ(A)(p), v]. If we denote by V ∨ and V ∗ the dual and
complex conjugate space of V equipped with their natural G-actions, respectively,
the canonical identifications (PV )∨ ∼= PV ∨ and (PV )∗ ∼= PV ∗ then imply that

[
ΠV
γ (A)

]∨ = ΠV ∨
γ (A) and

[
ΠV
γ (A)

]∗ = ΠV ∗
γ (A) . (0.139)

If we now assume that our theory contains matter fields in the form of sections44

φ ∈ Γ(PV ) and φ∨ ∈ Γ(PV ∨), then the scalar quantity

:=
〈
φ∨
γ(b) , ΠV

γ (A)
(
φγ(a)

)〉
(0.140)

is invariant under gauge transformations f : P → P if we simultaneously shift45

A → f∗(A) and φ(∨) → f−1 ◦ φ(∨) . (0.141)

We call the quantity in (0.140) a Wilson line associated to the linear G-space
V with endpoints dressed by the matter fields φ and φ∨. This is an example of
an extended operator that supports non-genuine local operators at its boundary.
More generally, we can consider local junctions

(0.142)

between Wilson lines WV and WV ′ associated to (possibly distinct) G-spaces V
and V ′. By the same reasoning as above, these can be constructed using sections
ϕ of the morphism vector bundle

PV ∨ ⊗ PV ′ ∼= PHom(V,V ′) . (0.143)

43 Here, we use the fact that parallel transport obeys Πγ(A) ◦Rg = Rg ◦ Πγ(A) for all g ∈ G (where
Rg : P → P denotes the right action of g on P ), which makes the map (0.138) well-defined.

44 Given a vector bundle πE : E → M over M , a section of E is a smooth map s : M → E such that
πE ◦ s = idM . We denote the vector space of all smooth sections of E by Γ(E).

45 Here, we use the fact that any bundle automorphism f : P → P induces an automorphism
PV → PV of the associated bundle via [p, v] 7→ [f(p), v].
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If we furthermore assume that V and V ′ are unitary (meaning that (V ∗)∨ ∼= V

as G-sets and similarly for V ′), then (0.139) implies the complex conjugation law

(0.144)

where ϕ† ∈ Γ
(
PHom(V ′,V )

)
is defined by taking pointwise adjoints of linear maps.

This is an example of the general conjugation law (0.101) we typically impose on
extended operators. Finally, we can consider paths γ whose start and end point
coincide (i.e. γ(a) = γ(b) =: m). Parallel transport then induces a linear map
ΠV
γ (A) : (PV )m → (PV )m, which allows us to define the so-called Wilson loop

:= Tr (PV )m

(
ΠV
γ (A)

)
(0.145)

independently of additional matter fields. One can check that this construction
is independent of the choice of base point m of the loop.

As an example, consider a G = U(1) gauge theory with gauge fields given by
connection 1-forms46 A ∈ Ω1(P, u(1)). Upon choosing a local section s : U → P

that trivialises the principal bundle over an open set U ⊂ M , we can pull back
the gauge field to obtain a local one-form As := s∗(A) ∈ Ω1(U, u(1)). Given a
path γ : [a, b] → U that is contained in U entirely, the action of the associated
parallel transport on p := s(γ(a)) may then be written as [18]

Πγ(A)(p) = q ◁ exp
(∫

γ
As

)
, (0.146)

where q := s(γ(b)). Similarly, if we denote by Vn the one-dimensional vector
space C on which z ∈ U(1) acts by multiplication with zn for some fixed n ∈ Z,
the induced parallel transport Πn

γ(A) := ΠVn
γ (A) is given by

Πn
γ(A)(v) = exp

(
n

∫
γ
As

)
· w , (0.147)

where v := [p, 1] and w := [q, 1]. In particular, this shows that for closed γ, the
Wilson loop Wn := WVn associated to Vn is given by the path integral insertion

Wn(γ) = exp
(
n

∮
γ
As

)
≡ exp

(
n

∫
S
F

)
, (0.148)

where the second equality holds if the path γ bounds a two-dimensional surface
S (i.e. ∂S = γ). In this case, we can use Stokes’ theorem to replace the integral

46 Here, we denote by u(1) ≡ iR the Lie algebra of U(1).
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of As over γ by the integral of the pullback dAs = s∗(F ) of the field strength
F = dA ∈ Ω2(P, u(1)) over S. Moreover, since the gauge group U(1) is abelian,
equation (0.48) implies that s∗(F ) = (s′)∗(F ) for any other local section s′

wherever defined, so that we obtain a globally well-defined 2-form on spacetime
M (which by abuse of notation we also call F ∈ Ω2(M, u(1)) in what follows).
This is the 2-form appearing on the right hand side of (0.148). One can check
that it satisfies the integral condition47

1
2πi

∫
S
F ∈ Z (0.151)

for any closed oriented two-dimensional submanifold S ⊂ M . Physically, equation
(0.148) then means that a Wilson loop placed on a closed path measures (the
exponential of n times) the magnetic flux through the surface that it bounds.

We can build non-trivial junctions between Wilson lines by assum-
ing that the theory contains an additional complex scalar field ϕ

of charge k ∈ Z (i.e. ϕ is a section of the line bundle Pk := P Vk
).

In this case, the space of local junctions Hom(Wn,Wm) between Figure 22

Wilson lines Wn and Wm is non-trivial if and only if (m − n) divides k (i.e.
m− n = k · ℓ for some ℓ ∈ Z), since the monomial

ϕℓ :=

ϕ⊗ ...⊗ ϕ if ℓ ≥ 0

ϕ∗ ⊗ ...⊗ ϕ∗ if ℓ < 0
(0.152)

(where ϕ∗ denotes the complex conjugate of ϕ) defines a non-trivial section of
the morphism bundle PHom(Vn,Vm) ≡ Pm−n. This is illustrated in Figure 22.

In addition to Wilson lines, the above example admits yet another type of
operator, which instead of being defined in terms of functionals of the gauge
field is constructed using certain types of ‘boundary conditions’ for the latter.

47 In the case where S is (homotopic to) a 2-sphere S2, this may be checked as follows:
Consider a closed loop γ along the equator of S2 and denote by S± the north and south
hemisphere with boundaries ∂S+ = γ and ∂S− = γ, respectively. As both S+ and S−
are contractible, we can find tubular neighbourhoods U± ⊂ M of S± that trivialise the principal
bundle via local sections s± : U± → P . If we denote A± := s∗

±(A) ∈ Ω1(U±, u(1)), we then have∫
S2
F =

∫
S2

+

F +
∫

S2
−

F =
∫

γ

A+ +
∫

γ

A− (0.149)

by virtue of Stokes’ theorem, which, using (0.146) together with the fact that parallel transport
obeys Πγ(A)−1 = Πγ(A), implies that

1 = Πγ(A) ◦ Πγ(A) = exp
(∫

γ

A+ +
∫

γ

A−

)
= exp

(∫
S2
F

)
. (0.150)

Hence, we see that we must have
∫

S2F ∈ 2πiZ as claimed.
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Concretely, let F ∈ Ω2(M, u(1)) denote the globally defined 2-form
on M that is induced by the field strength of the gauge field as
before. Given a codimension-three submanifold Σ ⊂ M and an
integer n ∈ Z, we can then define an operator Tn with support in Figure 23

Σ by defining the insertion of Tn(Σ) into the path integral to mean that we only
integrate over those (equivalence classes of) gauge fields on bundles over the
modified spacetime M\Σ that satisfy

1
2πi

∫
S2

Σ

F = n , (0.153)

where S2
Σ ⊂ M denotes a 2-sphere that links Σ as illustrated in Figure 23. We

will call the operator Tn as defined above a ’t Hooft operator of charge n in what
follows. Physically, it corresponds to the insertion of a magnetic monopole of
charge n into the path integral. Note that the dimension dim(Tn) = d − 3 of
’t Hooft operators depends on the ambient dimension d of spacetime.

The construction of ’t Hooft operators can be generalised to the case of a non-
abelian compact simple48 gauge group G. The result is that while Wilson lines are
labelled by linear G-spaces, ’t Hooft operators are labelled by linear LG-spaces,
where LG is the so-called Langlands dual group49 of G [43, 44]. In spacetime
dimension d = 4 (where the dimensions of Wilson and ’t Hooft operators coincide),
this can be seen as an instance of electromagnetic duality [45, 46], which relates a
gauge theory based on G to a gauge theory based on LG and exchanges Wilson
and ’t Hooft lines in the process.

Symmetries

While the path integral offers an intuitive approach to quantum theory, its usage
in the explicit computation of state spaces and correlation functions is often highly
non-trivial. In this context, symmetries (again) provide a powerful tool to constrain
the dynamics of a quantum field theory. Concretely, suppose that a theory has a
symmetry group G with associated group action ▷ : G× F → F on the space of fields
F leaving the action functional invariant, i.e. S[g ▷ φ] = S[φ] for all g ∈ G and φ ∈ F .
If the group action restricts to an action on the space of fields FX on some spatial
hypersurface X ⊂ M in spacetime, we obtain an induced action on the Hilbert space
HX of square-integrable functionals Ψ : FX → C via

(
ÛgΨ

)
[φ] := Ψ

[
g−1 ▷ φ

]
(0.154)

48 We say that a Lie group is simple if its Lie algebra is any of the algebras appearing in the Cartan
classification of finite-dimensional simple Lie algebras [42].

49 For instance, one has L(SU(pq)/Zq) = SU(pq)/Zp while LSO(2k) = SO(2k).
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for all g ∈ G and φ ∈ FX . In particular, this G-action is linear in the sense that

Ûg (λ · Ψ + Φ) = λ · Ûg(Ψ) + Ûg(Φ) (0.155)

for all λ ∈ C and Ψ,Φ ∈ HX . Furthermore, we have that

Ûg ◦ Ûh = Ûg·h (0.156)

for all g, h ∈ G. Lastly, one can compute that

⟨Φ|Ûg |Ψ⟩∗ =
∫

FX

Dφ|X · Ψ∗[g−1 ▷ φ
]
· Φ[φ]

=
∫

FX

Dφ̃|X · Ψ∗[φ̃] · Φ[g ▷ φ̃]

≡ ⟨Ψ|Ûg−1 |Φ⟩ ,

(0.157)

where we used the substitution of variables φ̃ := g−1 ▷ φ and assumed that the latter
leaves the measure invariant, i.e. Dφ̃ = Dφ. As a result, we obtain that

(Ûg)† = Ûg−1 , (0.158)

which, together with (0.156) and Û1 = idHX
, implies that Ûg is a unitary operator on

the Hilbert space HX for every g ∈ G. The above then motivates the following:

Definition: Given a group G and a complex vector space50 V , a (linear) representation
of G on V is a group homomorphism U : G → Aut(V ). If V is furthermore a Hilbert
space, we say that such a representation is unitary if Ug is unitary for every g ∈ G.
An intertwiner between two representations U and U ′ of G is a linear map f : V → V ′

such that U ′
g ◦f = f ◦Ug for all g ∈ G. Two representations are said to be isomorphic if

there exists an invertible intertwiner between them. The dimension of a representation
U is given by dim(U) := dim(V ).

Given two representations U and U ′ of G on vector spaces V and V ′, their direct sum
U⊕U ′ is the representation on V ⊕V ′ with diagonal G-action, i.e. (U⊕U ′)g = Ug⊕U ′

g.
It is often useful to consider representations that cannot be decomposed into direct
sums of smaller ones and hence form the ‘building blocks’ for all other representations.
Concretely, we introduce the following notions:

• Indecomposability: A representation is called indecomposable if it is not
isomorphic to a direct sum of non-zero other representations.

50 Although group representations are well-defined on vector spaces over any field F, we will henceforth
restrict ourselves to F = C and assume that every vector space is complex (unless stated otherwise).
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• Irreducibility: A representation U of G on a vector space V is called irreducible
if it does not contain any non-trivial G-invariant subspaces. That is, if W ⊂ V

is such that Ug(W ) ⊂ W for all g ∈ G, then W = {0} or W = V .

Clearly, irreducibility implies indecomposability but not vice versa. The utility of
irreducible representations stems from the fact that the spaces of intertwiners between
them are severely constrained. This is the content of Schur’s lemma [47]:

Lemma: Let U and U ′ be two irreducible representations of G on vector spaces V
and V ′, respectively. Then, any intertwiner f : V → V ′ between U and U ′ is either
zero or an isomorphism, and any other intertwiner is of the form f ′ = λ · f for some
λ ∈ C. In particular, since Uz intertwines U for any group element z in the centre

Z(G) :=
{
z ∈ G | z · g = g · z for all g ∈ G

}
(0.159)

of G, we have that Uz = λ(z) · idV for some group homomorphism λ : Z(G) → C×.

Examples of (unitary) group representations that we will use repeatedly throughout
this thesis include the following:

• Given any group G, there exists a one-dimensional representation on V = C that
sends every group element to the identity map idC. We will call this the trivial
representation of G in what follows.

• Representations of the integers Z on a vector space V can be constructed by
picking an invertible A ∈ Aut(V ) and mapping n ∈ Z 7→ An. For instance,
picking A = ( 1 1

0 1 ) ∈ Aut(C2) yields a two-dimensional representation that is
indecomposable but not irreducible (since ( 1

0 ) ∈ C2 spans a non-trivial invariant
subspace). Furthermore, this representation is not unitary51.

• If G is a finite group, a representation of G is irreducible if and only if it is
indecomposable. According to Maschke’s theorem, every representation of G is
then isomorphic to a direct sum of irreducible ones [14]. Furthermore, by virtue
of Weyl’s unitarity trick52, every representation of a finite group is isomorphic
to a unitary one. For instance, the dihedral group of order eight

D8 = ⟨ r, s | r4 = s2 = 1, rsr = s ⟩ (0.160)

51 Indeed, suppose that there exists an inner product ⟨. , .⟩ on C2 such that ⟨A·v,A·w⟩ = ⟨v, w⟩ for
all v, w ∈ C2. If we fix v := ( 1

0 ) (so that A·v = v), the above implies that ⟨v,A·w − w⟩ = 0 for all
w ∈ C2. However, setting w := ( 0

1 ) (so that A·w = v+w) yields 0 = ⟨v,A·w − w⟩ = ⟨v, v⟩ = ∥v∥2,
in contradiction to v ̸= 0.

52 Concretely, consider a representation U of a finite group G on a vector space V and fix an arbitrary
inner product ⟨. , .⟩ on V . Define a new inner product via ⟨⟨v, w⟩⟩ := 1

|G| ·
∑

g∈G
⟨Ug(v), Ug(w)⟩.

Then, U is a unitary representation w.r.t. ⟨⟨. , .⟩⟩.
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has five irreducible representations 1, u, v, uv and m that send the generators r
and s to the linear automorphisms

1 u v uv m

r 1 −1 1 −1
(
i 0
0 −i

)

s 1 1 −1 −1
(

0 1
1 0

)
(0.161)

and that are unitary w.r.t. the standard inner products on C and C2, respectively.

• If A is an abelian group (i.e. Z(A) = A), Schur’s lemma implies that every irre-
ducible representation of A is one-dimensional. We denote by A∨ := Hom(A,C×)
the set of all such one-dimensional representations, which itself forms an abelian
group (called the Pontryagin dual or character group of A) via point-wise multi-
plication. There exists a canonical pairing

⟨. , .⟩ : A∨ ×A → C× , (0.162)

which (if the group A is locally compact) induces a canonical isomorphism
(A∨)∨ ∼= A between A and its double dual. If A is furthermore finite53, one has
A∨ ∼= A, however, this isomorphism is non-canonical in general. For instance,
if A = Zn = ⟨x |xn = 1⟩, its Pontryagin dual is A∨ = ⟨ x̂ | x̂n = 1⟩, where x̂
denotes the character on A defined by ⟨x̂, x⟩ = e2πi/n.

• If G is a continuous Lie group, we require representations U : G → Aut(V )
of G to be Lie group homomorphisms (meaning in particular that they are
smooth maps between manifolds). It is then often useful to ‘linearise’ such
representations by considering the differential ρ := D1U : g → End(V ), which
defines a representation of the Lie algebra g of G in the sense that

ρ
(
[ε, η]

)
=
[
ρ(ε), ρ(η)

]
(0.163)

for all ε, η ∈ g, where the bracket on the right hand side denotes the commutator
of linear maps in End(V ). Conversely, if G is a simply connected group54 and
ρ : g → End(V ) is a representation of its Lie algebra, then there exists a unique
representation U : G → Aut(V ) of G such that D1U = ρ [48].

53 Since for any finite group A we have a|A| = 1 for all a ∈ A by virtue of Lagrange’s theorem, any
character χ ∈ A∨ on A is automatically valued in U(1) ⊂ C×.

54 We say that G is simply connected if it is path-connected (meaning that there exists a continuous
path between any two points in G) and has trivial fundamental group π1(G) = 1 (meaning that
any closed path in G can be shrunk to a point).
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As an example, consider G = SU(2), whose Lie algebra su(2) is the three-
dimensional (real) vector space of traceless skew-hermitian (2×2)-matrices over
C with basis si := − i

2σi (where the σi denote the Pauli matrices for i = x, y, z

as in (0.119)) and commutation relations55

[si, sj ] = εijk sk . (0.164)

Since we are interested in complex representations of su(2), we can without loss
of generality use the complexification C ⊗ su(2), which is the three-dimensional
(complex) vector space of traceless (2×2)-matrices over C with basis

h := 2isz and a± := i(sx ± isy) . (0.165)

The Lie brackets of these generators are given by

[h, a±] = ±2a± and [a+, a−] = h . (0.166)

It is then a classic result that for each n ∈ N there exists an (n+ 1)-dimensional
irreducible complex representation ρn of the above algebra on a vector space Vn
with basis {vp,q | 0 ≤ p, q ≤ n s.t. p+ q = n} and generator action

ρn(h)vp,q = (p− q) · vp,q ,

ρn(a+)vp,q = q · vp+1, q−1 ,

ρn(a−)vp,q = p · vp−1, q+1 ,

(0.167)

where we set vn+1,−1 = v−1,n+1 := 0 [48]. Since the Lie group SU(2) is simply
connected, each ρn corresponds to a representation Un of SU(2), which can be
identified with the vector space of homogeneous degree-n polynomials

f(z⃗ ) = fn,0 · zn1 + ... + fp,q · zp1 z
q
2 + ... + f0,n · zn2 (0.168)

in two complex variables z1 and z2, on which matrices A ∈ SU(2) act via

(Un(A)f)(z⃗ ) := f
(
A−1 · z⃗

)
. (0.169)

In particular, this representation is unitary w.r.t. the inner product

⟨f, f ′⟩ :=
∫

|z⃗ |2 =1
dΩ f∗(z⃗ ) · f ′(z⃗ ) , (0.170)

55 Here, we denote by εijk the totally antisymmetric Levi-Civita tensor defined by εxyz = 1 and used
the Einstein summation convention according to which repeated indices are being summed over.
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where dΩ denotes the Lebesgue measure on the unit sphere in C2. Furthermore,
the centre Z(SU(2)) = {± 2} ∼= Z2 of SU(2) acts via

Un(± 2) = (±1)n , (0.171)

which shows that Un induces a representation of SU(2)/Z2 ∼= SO(3) if and
only if n is even. This is an example of a non-simply connected Lie group
(π1(SO(3)) = Z2) whose representations are not in one-to-one correspondence
with representations of its Lie algebra so(3) ∼= su(2).

Equations (0.155) – (0.158) show that (under favourable circumstances) the Hilbert
space associated to a spatial hypersurface X ⊂ M furnishes a unitary representation
Û of a global symmetry group G in a quantum field theory. Its interplay with the
time evolution of physical states along bordisms X M−→ Y is given by

⟨ϕ| U(M) ◦ Ûg |Ψ⟩ =
∫
F(M) :
φ|Y =ϕ

Dφ · eiSM [φ] · Ψ
[
g−1 ▷ φ|X

]

=
∫
F(M) :

g ▷φ̃|Y =ϕ

Dφ̃ · eiSM [φ̃] · Ψ[φ̃|X ]

≡ ⟨ϕ| Ûg ◦ U(M) |Ψ⟩ ,

(0.172)

where we used the substitution of variables φ̃ := g−1 ▷ φ and assumed that the latter
leaves both the measure Dφ and the action functional SM [φ] invariant. Since (0.172)
holds for any |Ψ⟩ ∈ HX and ϕ ∈ FY , we obtain the operator equation

[
U(M), Ûg

]
= 0 , (0.173)

which means that the unitary action of G on physical states ‘commutes’ with the
time evolution of the latter along any spacetime bordism M . More generally, we can
repeat the computation (0.172) for a generic path integral insertion F : F(M) → C
and obtain the operator equation

U(M ;F ) ◦ Ûg = Ûg ◦ U(M ;F g) , (0.174)

where F g is the functional defined by (F g)[φ] := F [g ▷ φ] for φ ∈ F(M). This
shows that the unitary action of G commutes with decorated time evolution up to
transforming possible path integral insertions. In particular, if the bordism ∅ M−→ ∅
is closed (so that Û is the trivial representation on H∅ ∼= C), equation (0.174) implies
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that correlation functions are invariant under arbitrary group transformations of their
operator insertions, i.e.

(0.175)

for all g ∈ G. Physically, this puts strong restrictions on the possible forms of
correlation functions and leads to so-called selection rules56 on physical observables.

In the Schrödinger picture, we consider the Hilbert space H = HX associated to a
fixed spatial hypersurface X ⊂ M together with infinitesimal time evolution described
by the Hamiltonian operator Ĥ on H. The commutation relation (0.173) then becomes

[
Ĥ, Ûg

]
= 0 (0.176)

for all g ∈ G, which is the infinitesimal version of the statement that the unitary
action of G on H commutes with time evolution. In particular, if |Ψ⟩ ∈ H is an
eigenstate of Ĥ with eigenvalue E ∈ R, so is Ûg |Ψ⟩ for all g ∈ G. Consequently, the
decomposition of the Hilbert space H = ⊕

n Hn into eigenspaces of the Hamiltonian
induces a decomposition of Û = ⊕

n Ûn into unitary subrepresentations

Ûn : G → Aut(Hn) , (0.177)

which organise states of fixed energy into ‘multiplets’57 of the symmetry group G.
For instance, if Ûn is an irreducible representation of G of dimension greater than
one, the associated energy eigenspace is necessarily degenerate. If this happens for
n = 0 (corresponding to the space H0 of states with lowest energy), we say that the
symmetry is spontaneously broken. Physically, this again captures the idea that while
the laws that govern the evolution of states may be invariant under a certain symmetry
group, a given ground state (or vacuum) need not be. The generalised commutation
relation (0.174) in the Schrödinger picture becomes

Ûg ◦ F̂ ◦ Û †
g = ĝF , (0.178)

where gF := F (g−1) and F̂ denotes the Hilbert space operator induced by a path
integral insertion F as in (0.113). This means that the transformation of an operator
F̂ under the symmetry group G can be computed by conjugating F̂ with the unitary
operators Ûg associated to group elements g ∈ G.

56 Broadly speaking, we use the term selection rule to refer to any mechanism that necessitates
certain correlation functions (or more generally overlaps) to vanish.

57 We often use the term multiplet to refer to irreducible representations (‘irreps’) of a given symmetry
group G. A one-dimensional irrep is also called a singlet.
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Examples of symmetries in quantum systems that lead to degeneracies of states or
selection rules on correlation functions include the following:

• Hydrogen atom: Consider the quantum mechanics of a probe particle of mass
m confined to the potential V (r⃗ ) = −α/r on R3\{0} with α ∈ R>0. As before,
the Hamiltonian is given by the Hermitian operator

Ĥ =
ˆ⃗p 2

2m − α

r̂
, (0.179)

where r̂i = ri · and p̂i = −i∂i denote the position and momentum operators,
respectively. As in the classical case, there are two sets of conserved quantities,
which are now implemented by operators on the Hilbert space. These are

1. the angular momentum operator : L̂i = [ ˆ⃗r × ˆ⃗p ]i ,

2. the Runge-Lenz operator58: Âi = 1
2m [ ˆ⃗p× ˆ⃗

L− ˆ⃗
L× ˆ⃗p ]i − α

r̂ r̂i .

One can check that [Ĥ, L̂i] = [Ĥ, Âi] = 0 for i = x, y, z as required for symmetry
transformations. Furthermore, one can check that L and A (where we dropped
the ̂ for better readability) obey the commutation relations

[Li, Lj ] = iεijk Lk ,

[Li, Aj ] = iεijk Ak ,

[Ai, Aj ] = − 2i
m
εijk Lk ◦H ,

(0.180)

together with L⃗ · A⃗ = A⃗ · L⃗ = 0. Lastly, we have that

A⃗ 2 = α2 + 2
m
H ◦

(
L⃗2 + 1

)
. (0.181)

Since both the angular momentum and the Runge-Lenz operators commute with
the Hamiltonian, we can without loss of generality restrict attention to their
actions on some fixed energy eigenspace with corresponding eigenvalue E ∈ R.
We will further restrict to the case of bound states with E < 0 in what follows.
Upon replacing H by E in (0.180) and rescaling

B⃗ :=
√

− m

2E · A⃗ , (0.182)

one then obtains the commutation relations

[Li, Lj ] = iεijk Lk , [Li, Bj ] = iεijk Bk , [Bi, Bj ] = iεijk Lk , (0.183)

58 Here, we (anti)symmetrised the classical expression (0.61) for the Runge-Lenz vector in order to
turn Â into a Hermitian operator.
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which can be simplified further by introducing

S⃗ := − i

2 (L⃗+ B⃗) and S⃗′ := − i

2 (L⃗− B⃗) . (0.184)

These then satisfy the disentangled commutation relations

[Si, Sj ] = εijk Sk ,

[S′
i, S

′
j ] = εijk S

′
k ,

[Si, S′
j ] = 0 ,

(0.185)

which, by comparing with (0.164), correspond to a direct sum of two copies of the
Lie algebra su(2). As discussed before, irreducible representations of the latter
are labelled by non-negative integers n ∈ N and denoted by ρn : su(2) → End(Vn).
The irreducible representations of the direct sum su(2) ⊕ su(2) are then given by
tensor product representations59 of the form ρn ⊗ ρm [49]. However, in our case,
the integers n and m are not unrelated due to the fact that

S⃗ 2 = S⃗ ′2 (0.186)

(as one can check from the definition (0.184) together with L⃗ · B⃗ = B⃗ · L⃗ = 0),
which, using the fact that the representation ρn obeys

ρn(S⃗ 2) = − n

2 ·
(
n

2 + 1
)

· idVn , (0.187)

implies n = m. Upon rewriting (0.181) in terms of S⃗ and E as

4S⃗ 2 = mα2

2E + 1 (0.188)

and plugging (0.187) into (0.188), we then see that the possible negative energy
eigenvalues are of the form

E = En = − mα2

2(n+ 1)2 . (0.189)

This reproduces the spectrum of bound states in the hydrogen atom from (0.134).
Furthermore, we see that the associated eigenspace degeneracies are given by
dim(ρn ⊗ ρn) = (n + 1)2. Note that we again arrived at this result using
symmetry considerations. The above derivation of the hydrogen spectrum using
the Runge-Lenz operator is originally due to Pauli [50].

59 Given representations ρ : g → End(V ) and ρ′ : g′ → End(V ′) of Lie algebras g and g′, their tensor
product is the representation ρ⊗ ρ′ of g⊕ g′ defined by (ρ⊗ ρ′)(ε+ ε′) := ρ(ε) ⊗ idV ′ + idV ⊗ ρ′(ε′)
for all ε ∈ g and ε′ ∈ g′.
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• Conformal field theory: Consider a two-dimensional theory whose spacetime
is given by the Riemann sphere C• ≡ C ∪ {∞}. Further assume that the theory
has an internal symmetry group given by SL(2,C)/Z2, where

SL(2,C) =
{
A =

(
a b
c d

)
∈ M2(C)

∣∣∣∣ ad− bc = 1
}

(0.190)

acts on points z ∈ C• via so-called Möbius transformations60

A ▷z := az + b

cz + d
(0.191)

with the convention that A ▷∞ = a/c and A ▷ (−d/c) = ∞. In particular, the
above transformations include

◦ translations by choosing A =
( 1 b

0 1
)

with b ∈ C, which sends z 7→ z + b,

◦ dilations by choosing A =
(
a 0
0 1/a

)
with a ∈ C×, which sends z 7→ a2 · z,

◦ inversions by choosing A =
( 0 −1

1 0
)
, which sends z 7→ −1

z .

From equation (0.175), we know that correlation functions of any operator F in
the theory need to be invariant w.r.t. the above symmetry, i.e.

⟨F ⟩ != ⟨FA⟩ , (0.192)

where FA denotes the action of a symmetry transformation A =
(
a b
c d

)
∈ SL(2,C)

on the operator F . For instance, we can consider so-called primary operators,
which are local operators F supported on points z ∈ C• with the property that

(FA)(z) = F (A ▷ z)
(cz + d)2k (0.193)

for some k ∈ Z (called the weight of F ). The condition (0.192) then allows us
to constrain the functional form of correlation functions with one or multiple
primary operator insertions. For example:

− Let f(z) := ⟨F (z)⟩ be the one-point function of a primary operator of
weight k. Translational invariance then implies that f(z + b) = f(z) for all
b ∈ C, so that f(z) = c for some constant c ∈ C. Furthermore, invariance
under dilations implies that a2k · c = c for all a ∈ C×, so that c = 0 unless
k = 0. Thus, we see that one-point functions of primary operators are
necessarily of the form ⟨F (z)⟩ = δk,0 · c.

60 The importance of Möbius transformations stems from the fact that they preserve angles between
vectors in the two dimensional plane. Concretely, if we identify (x, y)T ∈ R2 with z = x+ iy ∈ C,
then the standard Euclidean metric on R2 can be written as dx2 + dy2 = dzdz∗. Applying a
Möbius transformation (0.191) to the latter then shifts dzdz∗ → Ω(z)2 · dzdz∗, where Ω(z) is the
real-valued function Ω(z) = |cz + d|−2. This is why we speak of a conformal field theory.
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− Let g(z, z′) := ⟨F (z)F ′(z′)⟩ be the two-point function of primary operators
F and F ′ with weights k and k′, respectively, evaluated at distinct points
z, z′ ∈ C•. Translational invariance then implies that g(z+b, z′+b) = g(z, z′)
for all b ∈ C, so that g(z, z′) = g(z − z′). Furthermore, invariance under
dilations implies a2(k+k′)g(a2 · (z − z′)) = g(z − z′) for all a ∈ C×, so that

g(z − z′) = c

(z − z′)k+k′ (0.194)

for some constant c ∈ C. Lastly, invariance under inversions yields

1
z2k · 1

(z′)2k′ · c( 1
z′ − 1

z

)k+k′ = c

(z − z′)k+k′ , (0.195)

which can only hold true if k = k′. Thus, we see that two-point functions
of primary operators are necessarily of the form

⟨F (z)F ′(z′)⟩ = δk,k′ · c
(z − z′)2k . (0.196)

Similarly, one can use the invariance of correlation functions under the trans-
formations (0.193) to compute higher-point functions of any number of primary
operators. This is an instance of a theory whose symmetry is powerful enough
to determine the functional form of a large class of correlation functions.

To summarise, we have seen from the above discussion that symmetries in quantum
theory are useful for (at least) the following two reasons:

1. They organise the spectrum of energy eigenspaces of the Hamiltonian into
irreducible representations of global symmetry groups, leading to possible degen-
eracies of ground and excited states.

2. They constrain the possible forms of correlation functions of arbitrary operator
insertions, leading to selection rules on physical observables.

It would be desirable to combine both of the above into a single unified perspective. For
this purpose, we ask the following natural question: Given the unitary representation
Û of a global symmetry group G on the Hilbert space H associated to some spatial
hypersurface X ⊂ M , does there exist a path integral insertion Ug for each g ∈ G

whose induced Hilbert space operator is Ûg? In other words, we require

Ûg
!= Ûg ≡ lim

δ→0
U(Xδ ;Ug) (0.197)

for all g ∈ G, where Xδ = X×(−δ, δ) as before and U(Xδ ;Ug) denotes the decorated
time evolution operator along Xδ as defined in (0.91).
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In the case of a continuous Lie group symmetry G, the existence of the path integral
insertions Ug can be inferred from a quantum version of Noether’s trick. Concretely,
consider an infinitesimal symmetry transformation parameterised by an element ε of
the Lie algbra g of G. Now promote ε to an arbitrary Lie algebra valued function on
spacetime M , which we take to be a bordism X M−→ Y between spatial hypersurfaces
X and Y . Let F : F(M) → C be an arbitrary path integral insertion on M . If we
abbreviate by U(F ) := U(M ;F ) the decorated time evolution along M , then

⟨Φ| U(F ) |Ψ⟩ ≡
∫

F(M)

Dφ̃ · Φ∗[φ̃|Y ] · F [φ̃] · eiSM [φ̃] · Ψ[φ̃|X ]

=
∫

F(M)

Dφ · Φ∗[e−ε ▷φ|Y ] · F [e−ε ▷φ] · eiSM [e−ε▷φ] · Ψ[e−ε ▷φ|X ]

=
∫

F(M)

Dφ ·
(
Û(eε)Φ

)∗[φ|Y ] ·
((eε)F

)
[φ] · eiSM [φ] − iδεS ·

(
Û(eε)Ψ

)
[φ|X ]

=
〈
Û(eε)(Φ)

∣∣ U
[(eε)F · e−iδεS

]∣∣ Û(eε)(Ψ)
〉

(0.198)
for all states |Ψ⟩ ∈ HX and |Φ⟩ ∈ HY , where we used the substitution of variables
φ̃ =: e−ε ▷ φ and assumed that this leaves the measure invariant, i.e. Dφ̃ = Dφ. Now
let us denote by ρ̂ := D1Û the representation of the Lie algebra g that is induced by
the representation Û of G, which is such that

Û(eε)|Ψ⟩ = |Ψ⟩ + ρ̂ε|Ψ⟩ + O(ε2) . (0.199)

Furthermore, we write the transformed path integral insertion F as

(eε)F = F + δεF + O(ε2) . (0.200)

Plugging this into the last line of equation (0.198) and expanding to first order in ε

then yields the identity

i · ⟨Φ | U(F · δεS) |Ψ⟩

= ⟨ ρ̂ε(Φ) | U(F ) |Ψ⟩ + ⟨Φ | U(δεF ) |Ψ⟩ + ⟨Φ | U(F ) | ρ̂ε(Ψ)⟩ .
(0.201)

Now, since ε parameterises an infinitesimal symmetry transformation, we have that
the first order variation of the action functional is given by61

δεS =
∫
M

⟨dε ∧ ⋆j⟩ , (0.202)

61 For simplicity, we assume G to be an honest symmetry (as opposed to a quasi-symmetry), so that
there are no boundary terms appearing in the variation of the action when ε is constant. This is a
special case of the more general transformation behaviour discussed around equation (0.52).
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where j ∈ Ω1(M, g∨) is the g∨-valued Noether current as before. Using integration by
parts in combination with Stokes’ theorem (as well as the fact that ∂M = X ⊔ Y ), we
can rewrite the variation in (0.202) as

δεS = Qε(Y ) − Qε(X) −
∫
M

⟨ε, d⋆ j⟩ , (0.203)

where we denoted by Qε(Σ) :=
∫

Σ ⟨ε, ⋆j ⟩ the Noether charges defined on codimension-
one hypersurfaces Σ ⊂ M as before. Plugging this into (0.201) yields

〈
Φ
∣∣ U
[
iQε(Y ) ·F

]∣∣Ψ〉 − i

∫
M

〈
Φ
∣∣ U
[
⟨ε, d⋆j⟩ ·F

]∣∣Ψ〉 −
〈
Φ
∣∣ U
[
F · iQε(X)

]∣∣Ψ〉
= ⟨ ρ̂ε(Φ) | U(F ) |Ψ⟩ + ⟨Φ | U(δεF ) |Ψ⟩ + ⟨Φ | U(F ) | ρ̂ε(Ψ)⟩ .

(0.204)
Since this equation holds for any Lie algebra valued function ε, we can make progress
by varying the support of ε in spacetime M :

• If we choose ε to be constant along X and zero everywhere else (and we also
assume F = 1 for simplicity), equation (0.204) reduces to

−
〈
Φ
∣∣ U
[
M ; iQε(X)

]∣∣Ψ〉 = ⟨Φ | U(M) | ρ̂ε(Ψ)⟩ , (0.205)

where we restored the notational dependence of U on spacetime M . In particular,
by choosing M = Xδ and taking the limit δ → 0, we obtain

− lim
δ→0

〈
Φ
∣∣ U
[
Xδ ; iQε(X)

]∣∣Ψ〉 = ⟨Φ | ρ̂ε(Ψ)⟩ . (0.206)

Exponentiating this and using the fact that the states |Φ⟩ and |Ψ⟩ were arbitrary
then yields the operator identity

lim
δ→0

U
[
Xδ ; e−iQε(X)] = Û(eε) . (0.207)

Similar results follow from choosing ε to be constant on Y and zero elsewhere.

• If we assume ε to be non-zero only in the interior of M and away from the
boundary, equation (0.204) yields the operator identity

U(δεF ) = − i

∫
M

U
(
⟨ε, d⋆j⟩ ·F

)
(0.208)

also known as the Ward-Takahashi identity [51, 52]. Physically, this is a quantum
version of Noether’s theorem as it implies U

(
(d ⋆ j)m · F

)
= 0 as long as the

insertion point m ∈ M is away from the support of the operator F . More
generally, the insertion of ⟨ε, d⋆j⟩ forces any other path integral insertion F to
transform infinitesimally wherever the supports of ε and F coincide.
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By comparing (0.208) with (0.197), it becomes clear that the path integral insertions

Ug(Σ) := exp(−iQε(Σ)) (0.209)

defined on codimension-one submanifolds Σ ⊂ M and indexed by group elements
g = eε ∈ G with ε ∈ g have the desired property of inducing the unitary representation
Ûg on the Hilbert space upon being placed along a given spatial hypersurface X ⊂ M .
Moreover, they have the following important features (where we take all equalities to
hold as insertions into a given time evolution operator):

1. They are compatible with orientation reversal in the sense that62

Ug
(
Σ
)

= U(g−1)(Σ) , (0.210)

where we used that Qε(Σ) = −Qε(Σ) and (eε)−1 = e−ε for ε ∈ g. Pictorially,

(0.211)

2. If G is abelian, they ‘fuse’ according to the group law of G in the sense that

lim
Σ→Σ′

Ug(Σ) · Uh(Σ′) = Ug·h(Σ′) , (0.212)

where we used that eε · eη = eε+η for commuting ε, η ∈ g. Pictorially,

(0.213)

3. They are ‘topological’ in the sense that

Ug(Σ) = Ug(Σ′) (0.214)

as long as Σ can be continuously deformed into Σ′ without crossing the support
of any other operator insertions F . This follows from the fact that upon choosing
Ω ⊂ M such that ∂Ω = Σ ⊔ Σ′, we have

Ug(Σ′) · Ug(Σ)−1 = exp
(
iQε(Σ) − iQε(Σ′)

)
= exp

(
− i

∫
Ω

⟨ε, d⋆j⟩
)

= 1 ,
(0.215)

62 Furthermore, we have that complex conjugation acts via U∗
g (Σ) = Ug(Σ) in line with the general

conjugation law (0.101) we impose on extended operators.
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where we made use of Stokes’ theorem and the fact that, according to the Ward
identity, we have d ⋆ j = 0 away from the support of the operator F . Pictorially,

(0.216)

4. They ‘act on’ other operator insertions F via linking. Concretely, let S ⊂ M

denote the support of F and let NS be a tubular neighbourhood of S with
boundary ∂NS =: Σ. Placing Qε on Σ then yields

−iQε(Σ) · F = − i

∫
NS

⟨ε, d⋆j⟩ · F = δεF (0.217)

via Stokes’ theorem and the Ward identity (0.208), which exponentiates to

Ug(Σ) · F = gF (0.218)

with g = eε. Pictorially, this means that ‘surrounding’ F with Ug is equivalent
to inserting the transformed operator gF , i.e.

(0.219)

Note that this applies both to local and extended operators.

The above construction of the path integral insertions Ug and their properties relied
on the symmetry group G being a continuous Lie group (and moreover abelian).
However, we can construct the Ug abstractly for any type of symmetry group G using
the properties 1.– 4. above together with the defining property (0.197). That is, given
a decorated time evolution operator U(M ;F ), we simply define the insertion of Ug
to be the result of topologically moving its support towards the boundary of M and
acting on any obstructing operator insertions F with g along the way. Pictorially,

(0.220)

The properties 1.– 4. then ensure that this construction is well-defined (i.e. independent
of the way we choose to move one or multiple insertions Ug towards the boundary).
All in all, the above discussion motivates the following:
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Proposition: A quantum theory has a global symmetry group G if and only if there
exists a collection of operators Ug indexed by group elements g ∈ G and supported on
codimension-one submanifolds Σ ⊂ M such that

1. they are compatible with orientation reversal, i.e. Ug(Σ) = U(g−1)(Σ),

2. they fuse according to the group law of G, i.e. limΣ→Σ′ Ug(Σ) ·Uh(Σ′) = Ug·h(Σ′),

3. they are topological, i.e. Ug(Σ) = Ug(Σ′) if Σ can be continuously deformed into
Σ′ without crossing other operator insertions.

Any such collection then acts on other operator insertions F and the Hilbert spaces
associated to spatial hypersurfaces X ⊂ M via

(0.221)

where we again assume all equalities to hold as insertions into a given time evolution
operator. We will often refer to the Ug as (symmetry) defects in what follows.

The above characterisation of global symmetries in quantum theories in terms of
topological defects has the following advantages:

• It is applicable to both discrete and continuous symmetry groups G that can be
abelian as well as non-abelian.

• It makes no reference to the path integral but is defined entirely in terms of
decorated time evolution operators and correlation functions.

• It allows for straightforward generalisations, leading to the notion of so-called
generalised (global) symmetries.

0.1.3 Generalised Symmetries

The description of global symmetries in quantum theories in terms of topological
codimension-one defects labelled by group elements g ∈ G can readily be generalised
in two orthogonal directions:

1. We can increase the codimension of symmetry defects, leading to the notion of
higher form symmetries. Concretely, we say that a theory has a p-form symmetry
(where 0 ≤ p ≤ d−1) if there exists a collection of codimension-(p+1) topological
defects that fuse according to the group law of some group G. When p = 0, this
reduces to the notion of ‘ordinary’ global symmetries discussed before.

2. We can replace the group G by a more general index set C equipped with a well-
defined fusion rule C × C → C, dropping the assumption that every symmetry
defect has an inverse. This leads to the notion of non-invertible symmetries.
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In the seminal work [13], the authors unified both of the above directions by introducing
the following notion of generalised global symmetries:

Definition: A generalised global symmetry of a quantum theory is a collection C of
topological defects of codimension between 1 and d.

As before, we implicitly understand adjectives such as ‘topological’ to refer to properties
of the defects in C that hold upon inserting them into time evolution operators or
correlation functions. Two comments are in order:

• As in the case of non-topological operators, we can organise the elements of C
according to the (co)dimension of their support. Concretely, for 0 ≤ p ≤ d− 1,
we define the space of p-form symmetry defects by

Cp := {U | codim(U) = p+ 1} . (0.222)

Given two 0-form defects A,B ∈ C0, we denote by HomC(A,B) ⊂ C1 the space
of 1-form defects that can sit at the interface between A and B (which are
also called 1-morphisms between A and B). Similarly, given two 1-morphisms
µ, ν ∈ HomC(A,B), we denote by 2HomC(µ, ν) ⊂ C2 the space of so-called 2-
morphisms Θ that can sit at the junction between µ and ν (cf. Figure 16). By
iterating this procedure we obtain the space

p-HomC(. , .) ⊂ Cp (0.223)

of p-morphisms between two given (p− 1)-morphisms for p = 1, ..., d− 1 (where
‘0-morphisms’ are simply elements of C0, which are also called objects of C). Unlike
in the case of general operators, the above morphism spaces carry additional
structure due to the fact that its element are topological. Concretely, given two
p-morphisms µ and ρ, we can always bring their supports arbitrarily close to
each other to obtain a new p-morphsim µ ◦ ρ, which we call the composition of µ
and ρ. Pictorially, this may be represented as

(0.224)

Mathematically, the fact that we can compose morphisms means that the collec-
tion C = ⊔d−1

p=0 Cp forms a (higher) category (more precisely, a (d− 1)-category63).

63 Broadly speaking, an n-category for n ∈ N is an algebraic structure consisting of a set of objects, a
set of morphisms between objects, a set of 2-morphisms between morphisms, and so on and so
forth up to n, together with various ways to compose these j-morphisms in a reasonable manner.
We refer the reader to [53] for a gentle introduction to n-categories. We note that a 0-category is
simply a set, while a 1-category is a category of objects and morphisms in the usual sense.
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As before, we assume that the top-morphism spaces (d−1)-HomC(. , .) form com-
plex vector spaces, which turns C into a linear category. Furthermore, since we
can bring the supports of two objects A,B ∈ C0 arbitrarily close to each other, C
is equipped with an additional monoidal structure ⊗ : C × C → C that captures
the fusion of topological defects:

(0.225)

All in all, we see that we should expect generalised symmetries in a d-dimensional
quantum theory to form (some version of) a linear monoidal (d− 1)-category C,
which we will call the symmetry category in what follows. Understanding the
precise nature of C in simple cases is one of the aims of this thesis.

• As in the case of ordinary global symmetries, generalised symmetries can act on
other (non-topological) operators via linking. In order to distinguish topological
defects from non-topological operators, we will henceforth use a colour-code
and depict the former using chromatic colours and the latter using black or
gray-scales. A p-form symmetry defect can then link operators of dimension p

and above (which is why it is called a p-form defect in the first place), e.g.

(0.226)

However, it is in general not sufficient to only consider the linking action of
symmetry defects on genuine operators. For instance, consider ‘pushing’ a 0-form
defect A through a local operator O as depicted here in d = 2:

(0.227)

The resulting configuration consists of the linked operator O, which is connected
to the symmetry defect A via a small tube formed by A and its orientation
reversal A∨. If A is invertible (i.e. A = Ug for some group element g), we know
from (0.210) that A∨ is given by U(g−1), so that the fusion of A and A∨ yields the
trivial defect Ug ⊗U(g−1) = 1. For generic A, however, we have that X = A⊗A∨

is distinct from 1, so that the resulting transformed operator AO becomes a
so-called twisted sector operator for the non-trivial defect X. This shows that
the inclusion of twisted sectors is crucial in order to fully capture the action
of generalised symmetries. Understanding the precise nature of this action in
simple cases is another aim of this thesis.
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Examples of (invertible and non-invertible) generalised symmetries that will be used
throughout this thesis include the following:

• Maxwell theory: Consider a pure U(1) gauge theory and let F ∈ Ω2(M, u(1))
denote the global 2-form on M that is induced by the field strength of the gauge
field. The equations of motion and the Bianchi identity then imply that

d ⋆ F = 0 and dF = 0 . (0.228)

As a result, the exponentiated quantities

Uα(Σd−2) := exp
(
α

∫
Σ
⋆F
)

and Vβ(Σ2) := exp
(
β

∫
Σ
F
)

(0.229)

defined on submanifolds Σd−2,Σ2 ⊂ M and labelled by α, β ∈ R/Z, respectively,
yield two classes of topological defects with fusion rules

Uα ⊗ Uα′ = Uα+α′ and Vβ ⊗ Vβ′ = Vβ+β′ . (0.230)

We call the generalised symmetries generated by Uα and Vβ the electric 1-form
and magnetic (d − 3)-form symmetry, respectively. The operators that are
charged under these symmetries are given by Wilson lines and ’t Hooft operators.
Concretely, linking a Wilson line Wn with a symmetry defect Uα and an ’t Hooft
operator Tm with Vβ (where n,m ∈ Z) yields the multiplicative phases

(0.231)

From this it is easy to see that the inclusion of additional matter fields typically
leads to a breaking of higher-form symmetries. For instance, suppose that the
theory contains an additional complex scalar ϕ of charge k ∈ Z, so that the
Wilson line Wk can end on a local insertion of ϕ. As a result, any linking of Wk

with a topological symmetry defect Uα can be undone by ‘sliding’ Uα off Wn, i.e.

(0.232)

so that according to (0.231) we must have e2πiαk = 1, or equivalently α = i/k for
i = 0, ..., k − 1. This is an example of a more general principle: A line operator
that can end on a twisted sector local operator cannot be charged under any
1-form symmetries. In the present case, we see that the inclusion of ϕ breaks the
electric 1-form symmetry R/Z down to the discrete subgroup Zk.
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• Gauge theory: Given a compact connected Lie group G, the theory of gauge
fields A living on a principal G-bundle π : P → M possesses analogues of the
electric and magnetic symmetries discussed in the previous example (the following
discussion is taken from [54]). In order to describe them, consider a closed loop
γ : S1 → M based at m := γ(1) ∈ M . Parallel transport along γ yields a map
Πγ(A) : Pm → Pm, which upon fixing a particular p ∈ Pm can be identified
with a group element gp ∈ G such that Πγ(A)(p) = p ◁ gp. Choosing a different
p′ ∈ Pm shifts gp′ = h−1 · gp · h, where h ∈ G is such that p′ = p ◁ h. As a
result, we obtain a well-defined map Ξγ for every γ that sends the gauge field
A to the conjugacy class [gp] of gp in G. One can check that this map is both
gauge-invariant and independent of the choice of basepoint m of the loop γ.

Now consider a fixed codimension-two submanifold Σ ⊂ M . Given
a conjugacy class [g] ∈ Cl(G) in G, we can construct an associated
operator U[g] with support in Σ by defining its insertion into the
path integral to mean that we only integrate over those (equivalence Figure 24

classes of) gauge fields A on bundles over the modified spacetime M\Σ with

ΞS1
Σ

(A) = [g] , (0.233)

where S1
Σ ⊂ M denotes an infinitesimal 1-sphere that links Σ as illustrated in

Figure 24. We call the operator U[g] as defined above a Gukov-Witten operator
in what follows [55, 56]. In general, it is not topological. However, we can
derive a necessary condition for U[g] to be topological as follows: Consider
linking a Wilson line WV labelled by a linear G-space V with an infinitesimal
Gukov-Witten operator U[g]. The result is given by the multiplicative phase

(0.234)

which generalises the left hand side of (0.231) to the non-abelian case. Since the
Wilson line Wg associated to the adjoint representation Ad : G → Aut(g) can
always end on the field strength of the gauge field64, it cannot be charged under
any topological 1-form defect. In particular, using (0.234) we see that U[g] can
only be topological if

Trg(Ad(g)) = dim(g) , (0.235)

64 More concretely, let F ∈ Ω2(P, g) be the field strength of the gauge field and let s : U → P
be a local section of P over U ⊂ M . Upon choosing two vector fields X,Y ∈ X(M), we can
define a local section FX,Y : U → Pg of the vector bundle associated to the adjoint representation
Ad : G → Aut(g) by setting FX,Y (m) := [s(m), s∗(F )m(Xm, Ym)] for m ∈ U . The transformation
law (0.48) for F under changes of the local section s then implies that FX,Y induces a canonical
global section of Pg, which means that the Wilson line Wg is able to end as claimed.
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which is equivalent to Ad(g) = idg. Thus, we see that the topological Gukov-
Witten operators are necessarily labelled by elements of

ker(Ad) ≡ Z(G) . (0.236)

It is known that in a pure gauge theory this condition is also sufficient, so that
the topological Gukov-Witten operators form an electric 1-form symmetry given
by centre of G [54]. If the theory contains additional matter fields in the form of
sections φ ∈ Γ(PV ) associated to a linear G-space V , then the endability of the
Wilson line WV on φ implies that the electric 1-form symmetry is broken down
to the subgroup of those z ∈ Z(G) that act trivially on V .

In addition to the electric 1-form symmetry, gauge theories also possess a magnetic
(d− 3)-form symmetry, which for a simple gauge group G can be shown to be
given by the Pontryagin dual π1(G)∨ of the fundamental group of G. Its action
on ’t Hooft lines TṼ labelled by linear LG-spaces Ṽ (where LG denotes the
Langlands dual of G as before) can be described using the fact that

π1(G)∨ ∼= Z(LG) (0.237)

which allows us to write down the magnetic analogue of equation (0.234) as

(0.238)

for µ ∈ π1(G)∨. In particular, this is compatible with electromagnetic duality in
spacetime dimension d = 4, which exchanges Wilson and ’t Hooft lines as well as
the electric and magnetic 1-form symmetries acting on them.

• Finite gauge theory: Consider a theory T with an ordinary
global symmetry described by some finite group G. From this,
we can construct a new theory T /G by ‘gauging’ the symmetry
G. If G were continuous, this would mean that we introduce
a principal G-bundle P over spacetime and path integrate over
all (equivalence classes) of gauge fields A ∈ Ω1(P, g) thereon. Figure 25

However, for finite G, the situation simplifies drastically due to the fact that
its Lie algebra vanishes (g = 0), so that there are no non-trivial gauge fields.
As a result, we can gauge G simply by summing over G-bundles P , which can
be characterised in the following manner: As before, the total space P comes
equipped with a projection π : P → M such that G acts freely and transitively
on each fibre Pm := π−1(m) for m ∈ M as illustrated in Figure 25. The principal
bundle can be trivialised over contractible open neighbourhoods U ⊂ M via local
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sections s : U → P , which induce isomorphisms U×G ∼= PU via (m, g) 7→ s(m)◁g.
Now consider an open cover ⋃i Ui = M of spacetime by contractible Ui ⊂ M

together with local sections si : Ui → P . We denote by gij : Ui ∩ Uj → G the
so-called transition functions defined by

si(m) =: sj(m) ◁ gij(m) (0.239)

for m ∈ Ui ∩ Uj , which satisfy the cocycle condition

gij(m) · gjk(m) = gik(m) (0.240)

for all m ∈ Ui ∩ Uj ∩ Uk. Since G is finite and the gij are continuous, the latter
must necessarily be constant, so that we can label the bundle P by a collection
of group elements gij assigned to double intersections Ui ∩ Uj and subject to
the condition gij · gjk = gik. We can represent this pictorially by collapsing the
intersections Ui ∩ Uj down to codimension-one submanifolds labelled by group
elements, which join up at triple intersections Ui ∩ Uj ∩ Uk in a way such that
the product of ‘incoming’ group elements equals the product of ‘outgoing’ ones:

(0.241)

Physically, the above corresponds to inserting a ‘network’ of topological symmetry
defects (also called a background) into spacetime, which specifies the bundle P
up to equivalence. Summing over all principal bundles P is then equivalent to
summing over all possible network configurations (or backgrounds).

In general, the gauged theory T /G possesses a canonical class of line operators
that form the analogue of Wilson lines in a continuous gauge theory. To see this,
consider a closed loop γ : S1 → M based at m := γ(1) ∈ M . In the presence of
a non-trivial background, this loop will generically pierce through a number of
codimension-one symmetry defects that form part of the corresponding network:

(0.242)

Let g1, ..., gn ∈ G denote the group elements in the order that we pierce through
the associated symmetry defects if we follow the oriented curve γ along starting
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at m. Given a linear G-space V , we then define the corresponding Wilson loop
to be the path integral insertion

WV (γ) := TrV (g1 · ... · gn) . (0.243)

One can check that this is independent of the choice of basepoint m of the loop.
Importantly, in contrast to the case of a continuous gauge group, the line operator
WV is now topological and hence defines a generalised (d− 2)-form symmetry
labelled by linear G-spaces V . Using (0.243), their fusion can be computed to be
given by the tensor product

WV ⊗ WV ′ = WV⊗V ′ (0.244)

of G-spaces65, which shows that for non-abelian G the corresponding symmetry
is non-invertible66. This provides a simple example of non-invertible symmetries
that can be constructed via the discrete gauging of finite invertible symmetries67.
It was shown in [5, 6] that for d > 2, the gauged theory T /G contains additional
higher-dimensional topological defects that are labelled by so-called higher G-
spaces, which can be non-invertible even for abelian G (see also [57–59]).

0.2 Overview

Generalised global symmetries significantly extend the traditional notion of symmetries
in quantum field theory. While the latter can be described using the theory of groups
and their representations, the mathematical structures underpinning generalised
symmetries and their action on physical observables are less obvious. The aim of this
thesis is to provide answers to the following questions:

1. What is the precise mathematical structure that describes generalised symmetries
and their properties in arbitrary quantum field theories?

2. How do generalised symmetries act on and thereby organise the spectrum of
other physical observables and operators?

Throughout this thesis, we will restrict ourselves to the case of finite bosonic symmetries,
which allow us to perform explicit calculations and computations. We note that while
the motivation for our work is physical, most of its results are mathematical in nature.

65 Given two linear G-spaces V and V ′, their tensor product is defined to be the linear G-space V ⊗V ′

with associated G-action g ▷ (v ⊗ v′) := (g ▷ v) ⊗ (g ▷ v′).
66 This is due to the fact that any finite non-abelian group G has at least one irreducible representation

of dimension greater than one.
67 Non-invertible symmetries of this type are usually called non-intrinsic, since they can be obtained

from invertible symmetries via ‘topological manipulations’ such as discrete gauging. On the other
hand, non-invertible symmetries which are not of this type are called intrinsic.
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0.2.1 Setup

As alluded to in the Motivation 0.1, we expect general global symmetries to be
described by (some version of) a higher monoidal category. If the symmetries under
consideration are finite and bosonic, it is believed that the appropriate mathematical
structure is given by a (higher) fusion category C (also called the symmetry category
in what follows) [60]. Without going into technical details, we list some of the most
important features of this structure together with their physical significance below:

• Objects & morphisms: As a higher category, C contains both objects and
morphisms of various degrees, which organise the spectrum of topological defects
in C according to their (co)dimension. Concretely, for each p = 0, ..., d−1, there is
a space Cp that contains all topological defects of codimension p+1. The elements
of C0 are called the objects of C (and we often simply write A ∈ C to denote that
A is an object of C). Given two objects A,B ∈ C, we denote by HomC(A,B) ⊂ C1

the space of morphisms between A and B, which capture the topological defects
at the interface between A and B. Similarly, given µ, ν ∈ HomC(A,B), we denote
by 2HomC(µ, ν) ⊂ C2 the space of 2-morphisms between µ and ν, which capture
the topological defects Θ at the junction between µ and ν as illustrated below:

(0.245)

By iterating this procedure, we arrive at the space68 p-HomC(. , .) of p-morphisms
for p = 1, ...d− 1. Given µ ∈ Cp, we denote by idµ ∈ (p+1)-EndC(µ) the identity
(p + 1)-morphism on µ, which corresponds to the trivial interface between µ

and itself. Moreover, we assume that the space (d−1)-HomC(. , .) of so-called
top-morphisms describing topological local defects forms a complex vector space
so that compositions of top-morphisms are linear. All in all, the above means
that C is a linear (d− 1)-category.

• Finite semisimplicity: Given two objects A,B ∈ C, we can define their direct
sum A⊕B to be the symmetry defect whose correlation functions are given by
the sum of the correlation functions of A and B, i.e.

(0.246)

We assume that any symmetry defect A ∈ C can be decomposed into a finite
direct sum of simple (or indecomposable) objects S with (d−1)-EndC(idd−2

S ) ∼= C,

68 More precisely, p-HomC(. , .) is a (d−1−p)-category whose objects are p-morphisms in C, morphisms
are (p+ 1)-morphisms in C, etc.
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where idpS := idid...idS
denotes the identity p-morphism on S. Furthermore, we

assume that there is only a finite number of simple objects S (up to a suitable
notion of equivalence). Similarly, we assume that every p-morphism can be
decomposed into a finite number of simple p-morphisms for p = 1, ..., d− 2. We
define scalar multiples of symmetry defects via the insertion of a multiple of their
identity top-morphism into correlation functions, e.g.

(0.247)

for λ ∈ C. All in all, the above means that C is finite semisimple.

• Monoidality: We assume that C comes equipped with a monoidal structure
⊗ : C × C → C that captures the fusion of topological defects induced by placing
the latter parallel to each other and making their supports coincide:

(0.248)

We denote by 1 ∈ C the monoidal unit w.r.t ⊗, which corresponds to the trivial
codimension-one symmetry defect. We further assume that 1 is simple69.

• Rigidity: We assume that every object A ∈ C has a dual, which is an object
A∨ ∈ C that corresponds to the orientation reversal of A, i.e.

(0.249)

Similarly, we assume that every p-morphism has an adjoint for p = 1, ..., d−2. In
addition, we assume that C is equipped with suitable duality data, which allows
us to ‘bend’ topological defects as illustrated below:

(0.250)

All in all, the above means that C is a so-called rigid category.

• Unitarity: We assume that C is equipped with an involution70 † : C → C (d−1)-op

that acts trivially on objects and p-morphisms for p = 1, ..., d− 2 and antilinearly

69 Physically, this means that there is a unique topological local operator (up to scalar multiplication).
Equivalently, the vacuum sector of the theory is indecomposable, i.e. does not split into multiple
superselection sectors. Relaxing this assumption leads to the notion of a multifusion category.

70 For p = 1, ..., d− 1, we denote by Cp-op the category that has the same objects and q-morphisms as
C for q = 1, ..., p− 1 but p-morphisms given by p-Hom (Cp-op)(µ, ν) = p-HomC(ν, µ) for µ, ν ∈ Cp−1.
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on top-morphisms. Physically, this captures the behaviour of symmetry defects
under spacetime reflections, i.e.

(0.251)

Demanding that † be compatible with the monoidal and rigid structure on C
then turns the latter into a unitary category.

While ideas from category theory have played a role in quantum theory since the
axiomatisation of topological quantum field theories (TQFTs) through Atiyah [61] (see
also [62, 63] for the introduction of higher categories for the description of extended
TQFTs), recent years have demonstrated the utility of higher categorical structures
(and in particular higher fusion categories) for the description of symmetries in generic
non-topological theories. While the mathematical literature on fusion (d−1)-categories
is well-developed for d = 2 (see e.g. [64, 65] for standard references) and an active
area of research for d = 3 (see e.g. [66–68]), a rigorous treatment for d > 2 is more
elusive. For this reason, we will only consider the case d ≤ 3 in detail in this thesis.

0.2.2 Summary

As described in the Motivation 0.1, generalised global symmetries can act on local and
extended operators by linking them inside correlation functions. Concretely, given a
symmetry category C and an (n−1)-dimensional operator F (where n = 1, ..., d−1), we
can act on the latter with C by placing p-form symmetry defects A, γ, ... on codimension-
(p+1) submanifolds that locally look like Rn−p−1 × Sd−n

F , where the second factor
denotes a sphere that links the n-dimensional support of F . In particular, this is
only sensible if p < n. Moreover, since we assume F to be a twisted sector operator
in general, the p-form defects surrounding F will intersect the (n−1)-dimensional
symmetry defects X,µ, ... attached to F along (n−p−1)-dimensional loci Φ, φ,Θ....
This is illustrated for d = 3 and n = 1, 2 below:

(0.252)

Note that for a general symmetry category C, the linking action of symmetry defects
may change the twisted sectors of local and extended operators. This is one of the
hallmarks of non-invertible symmetries – they map untwisted operators to twisted
sector operators and vice versa.
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We can systematise the above discussion by introducing for each n = 1, ..., d− 1 two
types of n-categories that capture (n−1)-dimensional extended operators and their
possible linkings with symmetry defects in C, respectively:

1. n-vector spaces: We can organise the extended operators of fixed
dimension n−1 by introducing an (n−1)-category whose Figure 26

− objects are (n−1)-dimensional operators (that are generically non-topological
and that can be twisted or untwisted),

− q-morphisms are (n− q− 1)-dimensional topological interfaces between
(q−1)-morphisms for q = 1, ..., n− 1 (see Figure 26).

For n = 1, this simply yields a vector space, representing the fact that local
operators carry a linear structure. By analogy, we will call the (n−1)-category
formed by (n−1)-dimensional operators an n-vector space in what follows. We
denote the n-category formed by all n-vector spaces71 by nVect.

2. Tube n-category: We can organise the possible geometric configurations of
symmetry defects in C with which we can link (n−1)-dimensional twisted sector
operators by introducing an n-category whose

− objects are genuine n-dimensional topological symmetry defects72 in C that
label twisted sectors of (n−1)-dimensional operators,

− q-morphisms are to (d−q)-dimensional defects in C placed on Rn−q × Sd−n

together with (n−q)-dim. intersection data for q = 1, ..., n (cf. (0.252)).

We will denote this n-category by n-TC and call it the tube n-category associated
to C in what follows.

We can use the above constructions to describe the action of symmetry defects
in C on local and extended twisted sector operators. Concretely, we claim that the
transformation behaviour of the latter is captured by a suitable notion of representation
of the tube category [1, 2]:

Claim: In a d-dimensional quantum field theory with symmetry category C, twisted
sector operators of dimension (n−1) transform in so-called n-representations of the
tube n-category associated to C, by which we mean n-functors

F : n-TC → nVect (0.253)

from n-TC into the n-category of n-vector spaces (where n = 1, ..., d− 1).

71 Concretely, nVect is the n-category whose objects are n-vector spaces, morphisms are functors
between the corresponding (n−1)-categories, 2-morphisms are natural transformations, etc.

72 More precisely, objects are objects of the loop space Ωd−n−1(C) of C, where for p = 1, ..., d− 1 we
define Ωp(C) := p-EndC(idp−1

1 ) to be the space of p-endomorphisms of the identity (p−1)-morphism
of the monoidal unit 1 ∈ C.
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In essence, this generalises the idea that (local) operators in a quantum field theory
transform in irreducible representations of ordinary global symmetry groups. The
tentative answer to the motivating questions posed at the beginning of this section
may hence be written schematically as

ordinary generalised

symmetries group G symmetry category C

operators representations
of G

representations
of TC .

In this thesis, we will discuss and justify the above in detail in spacetime dimensions
d = 1, 2, 3. Concretely, the main body of the text is organised as follows:

• In Chapter 1, we review finite global symmetries in one-dimensional quantum
systems (a.k.a. quantum mechanics). We discuss finite-dimensional C*-algebras,
which generalise the notion of unitary group-like symmetries and which serve as
a prototype for non-invertible symmetries in higher dimensions.

• In Chapter 2, we review the construction of the tube category, which captures
the action of a fusion category symmetry C on twisted sector local operators in
two dimensions. We describe how its irreducible representations can be classified
using the so-called sandwich construction (or Symmetry TFT ) for categorical
symmetries. Apart from anomalous group-like symmetries, we provide new
examples that include generic Tambara-Yamagami symmetries as well as non-
invertible symmetries of Fibonacci and Yang-Lee type.

• In Chapter 3, we construct the tube 1- and 2-categories associated to a fusion 2-
category symmetry C in three dimensions, which capture the action of C on twisted
sector local and line operators, respectively. We classify their irreducible 1- and 2-
representations using a higher-dimensional analogue of the sandwich construction
and provide explicit examples that include anomalous 2-group symmetries as
well as non-invertible 1-form symmetries. Our construction represents a new
approach to studying the action of generalised symmetries on local and extended
operators in three dimensions in a systematic manner.
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1
O N E D I M E N S I O N

In this chapter, we review the theory of C*-algebras that describe generalised global
symmetries in one-dimensional quantum systems (also known as quantum mechanics).
We discuss the notion of ∗-representations of C*-algebras and provide examples that
include anomalous group symmetries and topological deformations thereof.

1.1 C*-Algebras

Given a quantum mechanical theory T , we are interested in computing correlation
functions of observables O that are inserted into one-dimensional spacetime,

〈
ϕ
∣∣e−i(t−t2)Ĥ ◦ Ô ◦ e−i(t2−t1)Ĥ ◦ Ô ◦ e−it1Ĥ ∣∣ψ〉 .

(1.1)

Here, ϕ, ψ ∈ H are states in the Hilbert space of the theory, Ĥ denotes the Hamiltonian,
and the Oi = O(ti) denote different insertions of the observable O, whose associated
Hilbert space operator is Ô : H → H. In the context of symmetries, we are interested
in the subspace A of those operators on H that commute with the Hamiltonian,

A =
{
a : H → H

∣∣ [a, Ĥ ] = 0
}
, (1.2)

or equivalently those insertions into correlation functions that are topological (as
long as no other operator insertions are crossed). We identify A with the space of
generalised symmetry defects in T . Using the structure of linear operators on a Hilbert
space, we then expect A to have the following properties:

1. Linearity: Given a, b ∈ A and λ ∈ C, their linear combination λ · a + b ∈ A is
given by the linear combination of the respective correlation functions, i.e.

(1.3)

This gives A the structure of a (complex) vector space.
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2. Multiplication: Given a, b ∈ A, their product a · b ∈ A is obtained by colliding
the corresponding topological symmetry defects inside correlation functions, i.e.

(1.4)

This needs to be compatible with the linear structure on A, which turns the
latter into an associative algebra. There exists a unit 1 ∈ A that corresponds to
the identity operator on the Hilbert space.

3. Involution: Given a ∈ A, its adjoint a∗ ∈ A is obtained by complex conjugating
(and thereby reflecting) correlation functions with a inserted, i.e.

(1.5)

This equips A with an antilinear algebra involution that corresponds to taking
adjoints of linear operators on the Hilbert space. In particular, the operator
norm1 ∥.∥ on A is such that ∥a∗ ·a∥ = ∥a∥2 for all a ∈ A.

Physically, the fact that A forms an algebra means that generic symmetry defects a ∈ A
are non-invertible, i.e. do not possess an inverse a−1 ∈ A such that a ·a−1 = a−1 ·a = 1.
Mathematically, we can capture the algebraic structure on A as follows:

Definition: A complex unital associative algebra A is called a ∗-algebra if it is
equipped with an antilinear map ∗ : A → A that satisfies

(a∗)∗ = a and (a · b)∗ = b∗ · a∗ (1.7)

for all a, b ∈ A. We denote by A× ⊂ A the subset of all invertible elements of A, i.e.
those a ∈ A for which there exists an a−1 ∈ A such that a · a−1 = a−1 · a = 1, where
1 ∈ A denotes the monoidal unit of A. We say that an element a ∈ A× is unitary
if a∗ = a−1. We say that a ∈ A is self-adjoint if a∗ = a. A ∗-algebra A is called a
C*-algebra if it is equipped with a norm ∥.∥ : A → R that turns A into a Banach
algebra2 and that satisfies

∥a∗ · a∥ = ∥a∥2 (1.8)

1 Given a (bounded) linear map f : H → H′ between Hilbert spaces, its operator norm is defined by

∥f∥ := sup{ ∥f(ψ)∥′/ ∥ψ∥ | ψ ∈ H\{0}} . (1.6)

2 An algebra A is called a Banach algebra if it is equipped with a norm ∥.∥ : A → R such that

(i) ∥λ · a∥ = |λ| · ∥a∥ , (ii) ∥a+ b∥ ≤ ∥a∥ + ∥b∥ , (iii) ∥a·b∥ ≤ ∥a∥ · ∥b∥

for all a, b ∈ A and λ ∈ C and A is complete w.r.t. the norm-induced metric d(a, b) := ∥a− b∥.
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for all a ∈ A. We note that being C* is a property of a ∗-algebra and not extra data.
Indeed, if A is a C*-algebra, then the associated norm satisfying (1.8) is uniquely
determined by the spectral radius formula [69]

∥a∥2 = sup
{

|λ|
∣∣ a∗a− λ·1 /∈ A×} . (1.9)

An algebra homomorphism f : A → A′ between two (C-)∗-algebras is said to be a
∗-homomorphism if f(a∗) = f(a)∗ for all a ∈ A. Two (C-)∗-algebras are said to be
isomorphic (A ∼= A′) if there exists an invertible ∗-homomorphism between them.

Since for the purposes of this thesis we are only interested in finite symmetries, we
will restrict attention to finite-dimensional (C-)∗-algebras in what follows. In this case,
there is a simple criterion that allows us to check whether a given ∗-algebra is C* [70]:

Proposition: Let A be a finite-dimensional ∗-algebra. Then, A is C* if and only if
the following two equivalent conditions are satisfied:

1. For all a ∈ A, the equation a∗a = 0 implies a = 0.

2. There exists a faithful state on A, i.e. a linear functional Γ : A → C obeying
Γ(a∗a) ≥ 0 for all a ∈ A with equality if and only if a = 0.

As a simple example, consider the algebra Mk(C) of complex square matrices of size
k ∈ N. This is a ∗-algebra if we define the ∗-structure to be the usual conjugate
transpose operation. It is furthermore C* since the trace Tr : Mk(C) → C is a
positive linear functional on Mk(C). In fact, this example essentially exhausts all
finite-dimensional C*-algebras, as stated by the Artin-Wedderburn theorem [71, 72]:

Theorem: Let A be a finite-dimensional C*-algebra. Then, there exist non-negative
integers n, ki ∈ N (with i = 1, ..., n) such that

A ∼=
n⊕
i=1

Mki
(C) . (1.10)

In general, this isomorphism is non-canonical. We say that A is simple if n = 1 (and
more generally semisimple for n ≥ 1).

1.2 C*-Representations

Given a C*-algebra A of symmetry defects, we would like to understand how it acts
on the Hilbert space H of states of a quantum mechanical theory. Mathematically,
this is done by introducing an appropriate notion of representations for C*-algebras:
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Definition: A ∗-representation of a C*-algebra A is a ∗-homomorphism3

U : A → End(H) (1.11)

from A into the C*-algebra of (bounded) endomorphisms of a Hilbert space H (with
∗-structure given by the adjoint of linear operators). We define the dimension of U
to be the dimension dim(U) := dim(H) of the underlying Hilbert space. Given two
∗-representations U and U ′, an intertwiner between them is a linear map f : H → H′

such that U ′(a) ◦ f = f ◦ U(a) for all a ∈ A. We say that U and U ′ are equivalent
if there exists an invertible intertwiner between them. They are said to be unitarily
equivalent if there exists a unitary intertwiner between them. We denote the category
of ∗-representations of A and intertwiners between them by Rep∗(A) in what follows.

As in the case of group-like symmetries, we say that a ∗-representation is irreducible
if the only A-invariant (closed) subspaces of H are {0} and H. We can characterise
the irreducible ∗-representations using (a version of) Schur’s lemma:

Lemma: Let U be a ∗-representation of a C*-algebra A on a Hilbert space H. Then,
U is irreducible if and only if all its intertwiners are of the form λ · idH for some λ ∈ C.
In particular, this implies that two given irreducible ∗-representations U and U ′ are
either unitarily equivalent or have no non-trivial intertwiners between them.

Given two ∗-representations U and U ′ of A on Hilbert space H and H′, respectively,
we can define their direct sum to be the ∗-representation U ⊕U ′ of A that acts on the
Hilbert space H ⊕ H′ via

(U ⊕ U ′)(a) · (ψ + ψ′) := U(a) ·ψ + U ′(a) ·ψ′ (1.12)

for ψ ∈ H, ψ′ ∈ H′ and a ∈ A. Conversely, we can decompose a given ∗-representation
U : A → End(H) of A into direct sums of subrepresentations as follows: Let V ⊂ H
be a closed A-invariant subspace of H and denote by

V⊥ =
{
ϕ ∈ H

∣∣ ⟨ϕ, ψ⟩ = 0 for all ψ ∈ V
}

(1.13)

its orthogonal complement. For a given ϕ ∈ V⊥, we then have that

⟨U(a)·ϕ, ψ⟩ = ⟨ϕ,U(a∗)·ψ⟩ = 0 (1.14)

3 In particular, we require that the unit 1 ∈ A is mapped to U(1) = idH, which is equivalent to
requiring that U is non-degenerate in the sense that U(a)·ξ = 0 for all a ∈ A implies ξ = 0.
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for all ψ ∈ V, which shows that U(a)·ϕ ∈ V⊥ for all a ∈ A. As a result, V⊥ forms
another A-invariant subspace of H and the ∗-representation U decomposes as

U ∼= U |V ⊕ U |V⊥ . (1.15)

By iterating the above, we can sequentially decompose U into smaller and smaller
orthogonal subrepresentations. In particular, if H is finite-dimensional, this procedure
necessarily terminates after a finite number of steps, which yields the following:

Proposition: Every finite-dimensional ∗-representation of a C*-algebra A is fully
reducible, i.e. unitarily equivalent to a finite direct sum of irreducible representations.

For example, up to equivalence, the matrix algebra Mk(C) (where k ∈ N) has a
single irreducible ∗-representation given by the Hilbert space Ck together with the
canonical matrix multiplication action. Similarly, semisimple matrix algebras of the
form A = ⊕n

i=1Mki
(C) have n irreducible ∗-representations, in which the action of

algebra elements (a1, ..., an) ∈ A on vectors ψ ∈ Cki is given by

pri(a1, ..., an) ·ψ := ai ·ψ . (1.16)

Since the above exhausts all finite-dimensional C*-algebras by virtue of the Artin-
Wedderburn theorem, we see that every finite-dimensional C*-algebra A has a finite
number of irreducible ∗-representations Ui. More concretely, upon choosing an iso-
morphism φ : A →

⊕n
i=1Mki

(C), we set Ui := pri ◦ φ. Furthermore, we define

ei := φ−1((0, ..., ki
, ..., 0)

)
∈ A (1.17)

for i = 1, ..., n, which yields a distinguished basis of the centre

Z(A) := {z ∈ A | z · a = a · z for all a ∈ A} (1.18)

that is independent of the choice of isomorphism φ and that consists of so-called
minimal central idempotents obeying

ei · ej = δij · ei , e∗
i = ei ,

n∑
i=1

ei = 1 . (1.19)

Moreover, their images under the irreducible ∗-representations Ui of A are given by

Ui(ej) = δij · id , (1.20)

which yields the following useful relation between irreducible ∗-representations and
minimal central idempotents in A:
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Lemma: In a finite-dimensional C*-algebra, there is a 1:1-correspondence between
equivalence classes of irreducible ∗-representations and minimal central idempotents.

Pictorially, we can represent the central elements z ∈ Z(A) as those topological
operators that can be detached from the one-dimensional line and pushed into an
adjacent two-dimensional ‘bulk’ (and hence have to commute with all other a ∈ A):

(1.21)

In particular, placing a minimal central idempotent ei into the bulk will project onto
those operators that act on the Hilbert space via the ∗-representation Ui.

1.3 Examples

As discussed in the Motivation 0.1, finite global symmetry groups G act on the Hilbert
space H of a quantum system via unitary representations. More generally, since the
physical states are identified with rays in H, we can consider so-called projective
representations of G, which correspond to group homomorphisms

U : G → Aut(P(H)) (1.22)

from G into the automorphisms of the projective Hilbert space P(H) =
(
H\{0}

)
/C×.

More concretely, we say that an invertible map U : P(H) → P(H) is an automorphism
of P(H) if it preserves the so-called ray product

[ϕ]·[ψ] := |⟨ϕ |ψ⟩|
∥ϕ∥·∥ψ∥

(1.23)

between arbitrary states [ψ], [ϕ] ∈ P(H) in the sense that U([ϕ]) ·U([ψ]) = [ϕ] · [ψ].
It is a famous result due to Wigner that any such map is induced by (anti-)unitary
operators on the Hilbert space H [73]:

Theorem: Let U : P(H) → P(H) be an automorphism of the projective Hilbert
space P(H). Then, there exists a unitary (or antiunitary4) operator Ũ : H → H such
that U([ψ]) = [Ũ(ψ)] for all [ψ] ∈ P(H). Furthermore, if Ũ ′ : H → H is another such
operator, then Ũ ′ = eiα · Ũ for some phase eiα ∈ U(1).

In the following, we will restrict attention to unitary symmetries only. Given a
projective representation U : G → Aut(P(H)), we may then choose for each group

4 An invertible antilinear map f : H → H is called antiunitary if ⟨f(ϕ)|f(ψ)⟩ = ⟨ψ, ϕ⟩ ≡ ⟨ϕ|ψ⟩∗ for
all vectors ϕ, ψ ∈ H.
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element g ∈ G a unitary operator Ũg : H → H such that Ug([ψ]) = [Ũg(ψ)] for all
[ψ] ∈ P(H). The composition law Ug ◦ Uh = Ug·h then implies that

Ũg ◦ Ũh = µ(g, h) · Ũg·h (1.24)

for some phase µ(g, h) ∈ U(1), which, in order to be compatible with associativity of
composition of linear maps, needs to obey the 2-cocycle condition

(dµ)(g, h, k) := µ(h, k) · µ(g, hk)
µ(gh, k) · µ(g, h)

!= 1 (1.25)

for all g, h, k ∈ G. The space of functions µ : G×2 → U(1) obeying (1.25) is called the
space of 2-cocycles on G with coefficients in U(1) and denoted by Z2(G,U(1)). Given
another choice of lifts Ũ ′

g obeying Ug([ψ]) = [Ũ ′
g(ψ)], we have that Ũ ′

g = ν(g) · Ũg for
some collection of phases ν(g) ∈ U(1), which shift the projective 2-cocycle by

µ′ = µ · dν (1.26)

with (dν)(g, h) := ν(g) ·ν(h)/ν(gh). Thus, we see that we can characterise projective
representations of G by equivalence classes of 2-cocycles µ, where µ and µ′ are
considered equivalent if they are related by equation (1.26). The space of all such
equivalence classes forms an abelian group, which is called the second group cohomology
of G with coefficients in U(1) and denoted by H2(G,U(1)). From a physical point of
view, elements of this group are often referred to as (’t Hooft) anomalies, since they
capture the possible (controlled) violations of the group law in the action of G on the
Hilbert space of the theory.

In the following, we will use the term unitary µ-projective representation of G to refer
to a collection of unitary operators Ũg on a Hilbert space H that obey the composition
rule (1.24) for some fixed 2-cocycle µ ∈ Z2(G,U(1)). In order to simplify notation, we
will henceforth drop the ˜ and write U(g) instead of Ũg. Without loss of generality,
we will always assume U(1) = idH and that µ is normalised5 in the sense that

µ(g, 1) = µ(1, g) = 1 . (1.27)

A convenient way to construct unitary projective representations of G with a given
2-cocycle µ is using the method of induction. Concretely, given a subgroup H ⊂ G

5 Concretely, given an arbitrary (unnormalised) 2-cocycle µ ∈ Z2(G,U(1)), we can set ν(g) := µ(1, g)∗

and define µ′ := µ · dν. Then, µ′ is normalised in the sense of (1.27) and [µ] = [µ′] in H2(G,U(1)).
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and a (µ|H)-projective representation V of H on a Hilbert space V, we can construct
a µ-projective representation U of G on H := C[G/H] ⊗ V as follows: Let

G/H = {r1H, ... , rnH} . (1.28)

denote the space of left H-cosets in G with fixed representatives ri ∈ G. Using this,
we can define for each i = 1, ..., n and g ∈ G a little group element

gi := r−1
i · g · rg−1 ▷i ∈ H , (1.29)

where we set rg ▷iH := g ·riH. Upon writing the Hilbert space H as a direct sum

H ∼=
n⊕
i=1

riV , (1.30)

the action of group elements g ∈ G on H via U may then be decomposed into blocks
U(g)|i : riV → rg ▷iV defined by

U(g)|i := νg ▷i(g) · V (gg ▷i) , (1.31)

where we defined the multiplicative phases

νi(g) :=
µ
(
g, rg−1 ▷i

)
µ(ri, gi)

. (1.32)

As a result of the 2-cocycle condition (1.25) obeyed by µ, these satisfy

νg−1 ▷i(h) · νi(g)
νi(gh) = µ(g, h)

µ
(
gi, hg−1 ▷i

) , (1.33)

which ensures that U is µ-projective. Furthermore, one can check that U is unitary if
and only if V is. We call U as constructed above the induction of V from H to G6

and denote it by U = IndGH(V ). The induction IndG1 ( ) of the trivial representation of
the trivial subgroup is called the regular µ-projective representation of G.

In the context of the previous subsections, we can recast the above discussion in terms
of C*-algebras as follows: Given a finite group G and a 2-cocycle µ ∈ Z2(G,U(1)), we
can define the µ-twisted group algebra Cµ[G] to be the |G|-dimensional algebra with
basis {eg}g∈G and multiplication law

eg · eh := µ(g, h) · egh . (1.34)

6 One can check that IndG
H(V ) depends on the choice of representatives ri only up to equivalence.
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Equivalently, we can define Cµ[G] to be the algebra of functions f : G → C that
multiply according to the twisted convolution

(f ∗f ′)(g) := 1
|G|

·
∑
h·k=g

µ(h, k) ·f(h) ·f(k) . (1.35)

The equivalence between the above two descriptions can be established by mapping a
function f : G → C to the linear combination

ef := 1
|G|

·
∑
g

f(g) · eg . (1.36)

We can define a ∗-structure on Cµ[G] by setting

e∗
g := e−1

g ≡ µ∗(g, g−1) · eg−1 (1.37)

for all g ∈ G. Since the linear extension of Γ(eg) := δg,1 defines a faithful state7

Γ : Cµ[G] → C w.r.t. this ∗-structure, we see that Cµ[G] is in fact a C*-algebra. It
is easy to convince oneself that its ∗-representations are in 1:1-correspondence with
unitary µ-projective representations of G8. In particular, the number of irreducible
∗-representations of Cµ[G] for a given µ ∈ Z2(G,U(1)) can be shown to be [74]

n = 1
|G|

·
∑

[g,h]=1

µ(g, h)
µ(h, g)

. (1.38)

In the special case where [µ] = 1 ∈ H2(G,U(1)), this reduces to the number |Cl(G)|
of conjugacy classes in the group G.

In general, we know from the previous subsection that the irreducible ∗-representations
Ui are in 1:1-correspondence with minimal central idempotents in Cµ[G]. We can
make this correspondence explicit by introducing for each i = 1, ..., n the character
χi := Tr(Ui(.)) associated to Ui, which has the following properties [75]:

(i) Complex conjugation: χ∗
i (g) = µ∗(g, g−1) · χi(g−1) .

(ii) Twisted class function: χi(g ·h) = µ(h, g)
µ(g, h) · χi(h ·g) .

(iii) Generalised orthogonality: 1
|G|

·
∑
g

µ(g, h) ·χ∗
i (g) ·χj(g ·h) = δij · χi(h)

di
.

(iv) Generalised regularity: 1
|G|

·
∑
i

di ·χi(g) = δg,1 .

7 Concretely, we have that Γ(e∗
f ·ef ) =

∑
g

|f(g)|2/ |G|2 ≥ 0 for all f : G → C.
8 We often denote the category of unitary µ-projective representations by Repµ(G) := Rep∗(Cµ[G]).
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Here, we defined χi(g) := χi(eg) and denoted by di := dim(Ui) the dimension of Ui.
Using the above, one can check that the algebra elements

ei := di
|G|

·
∑
g

χ∗
i (g) · eg (1.39)

are central in Cµ[G] and satisfy the relations (1.19). Thus, we obtain a direct relation
between the minimal central idempotents ei and the (characters of the) irreducible
∗-representations Ui of Cµ[G] as expected.

It is worth noting that two given group algebras can be isomorphic even though the
underlying groups are not. For instance, if Z4 = ⟨x⟩ and Z2 × Z2 = ⟨u, v⟩, then

x 7→ 1 + i

2 · u + 1 − i

2 · v (1.40)

induces a unitary algebra isomorphism between C[Z4] and C[Z2 × Z2]. In fact, we
have that the group algebras of any two finite abelian groups of the same order are
unitarily isomorphic as a consequence of the Artin-Wedderburn theorem. In particular,
they share the same irreducible ∗-representations. More generally, we say that two
C*-algebras A and A′ are Morita equivalent (A ≃ A′) if their associated categories of
∗-representations are additively equivalent (i.e. Rep∗(A) ∼= Rep∗(A′)). For example,
we have that Mk(C) ≃ C for any positive integer k ∈ N.

Starting from twisted group algebras, we can obtain new examples of C*-algebras
by performing ‘topological deformations’ such as the discrete gauging of certain
(sub)symmetries. Concretely, given a quantum mechanical theory T whose symme-
tries are given by Cµ[G], we can try to gauge the symmetry group G by summing
over ‘networks’ of symmetry defects g ∈ G inserted into one-dimensional spacetime.
Pictorially, we have that correlation functions of arbitrary operator insertions O1,O2

in the gauged theory T ′ = T /G are given by

(1.41)

where we defined the ‘generator defect’

eG := 1
|G|

·
∑
g∈G

ν(g) · eg (1.42)

for some (yet to be determined) phases ν(g) ∈ U(1). In order for (1.41) to be well-
defined (i.e. invariant under possible duplicate insertions of the generator eG), we
then require that (eG)2 != eG, which is equivalent to the condition

µ(g, h) != ν(gh)
ν(g) ·ν(h) ≡ (dν∗)(g, h) . (1.43)
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Thus, we see that in order to be able to gauge the entire symmetry group G, we
need its associated ’t Hooft anomaly to be trivial, [µ] = 1 ∈ H2(G,U(1)). In other
words, we can view a non-trivial ’t Hooft anomaly as an obstruction to gauging the
global symmetry group G. For a given µ ∈ Z2(G,U(1)), we may hence only be able
to gauge a subgroup H ⊂ G on which the anomaly trivialises as µ|H = dν∗ for some
ν : H → U(1). As before, the resulting gauged theory T ′ = T /νH is then obtained by
inserting the generator defect

eνH := 1
|H|

·
∑
h∈H

ν(h) · eh (1.44)

into correlation functions. In particular, the Hilbert space of T ′ is given by H′ = eνH ·H,
whereas the C*-algebra of symmetry defects is A′ = eνH ·A·eνH with A = Cµ[G]. More
concretely, we can identify A′ with the function algebra

A′ ∼=
{
f : G → C

∣∣∣∣ f(g ·h) = µ(g, h) ·ν(h) ·f(g)
f(h·g) = ν(h) ·µ(h, g) ·f(g) for all g ∈ G, h ∈ H

}
, (1.45)

whose algebra product is given by the convolution (1.35) and whose ∗-structure is

(f∗)(g) := µ∗(g, g−1) · f(g−1)∗ . (1.46)

For instance, if both µ and ν are trivial, we have that A′ ∼= C[H\G/H] is simply
given by the double coset ring of H in G. If H is furthermore normal in G, we obtain
the group algebra A′ = C[G/H], which captures the ‘leftover’ symmetry defects in G
after gauging H. If H = G, we obtain the trivial symmetry algebra A′ = C.
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2
T W O D I M E N S I O N S

In this chapter, we consider generalised symmetries in two spacetime dimensions that
are described by a fusion category C. We review the construction of the tube category
associated to C, which captures the action of C on twisted sector local operators.
We describe how its irreducible representations can be classified using the sandwich
construction for categorical symmetries. We provide new examples that include generic
Tambara-Yamagami symmetries as well as non-invertible symmetries of Fibonacci
and Yang-Lee type. The discussion is based on work performed in collaboration with
Mathew Bullimore and Andrea Grigoletto [1, 2] as well as the single-author work [4].

2.1 Preliminaries

In this section, we provide some brief mathematical background on the theory of fusion
categories, which describe finite bosonic generalised symmetries in two spacetime di-
mensions (for a more comprehensive review we refer the reader to [64, 65]). Concretely,
given a fusion category C, its objects and morphisms correspond to topological line
defects and their local junctions on a two-dimensional plane, i.e.

(2.1)

Moreover, C comes equipped with a variety of additional structures that capture the
topological nature of symmetry defects, the most salient of which we summarise below:

• Finite semisimplicity: We assume that C is enriched over Vect, meaning that
the morphism space HomC(A,B) is a finite-dimensional complex vector space
for every pair of objects A,B ∈ C such that the composition of morphisms is
linear. Furthermore, we assume that every object A ∈ C can be written as a
direct sum of finitely many simple objects Si ∈ C with HomC(Si, Sj) = δij C, i.e.

A ∼=
n⊕
i=1

(Si) ⊕Ai (2.2)

where Ai = dim(HomC(A,Si)) ∈ N. We denote by π0(C) the set of isomorphism
classes of simple objects in C, which we assume to be finite. In the following, we
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will use ⊕S to denote finite direct sums over a fixed set of representatives S of
elements in π0(C). We can multiply objects in C with finite-dimensional vector
spaces via the (left) multiplication functor1

⊙ : Vect ⊠ C → C , V ⊠A 7→ A⊕dim(V ) . (2.3)

Similarly, one defines the right multiplication C⊠Vect → C, which for compactness
we also denote by ⊙. Using this, we can rewrite the decomposition (2.2) of any
object A ∈ C into simples as

A ∼=
⊕
S

HomC(S,A) ⊙ S . (2.4)

• Dagger structure: We assume that C is compatible with reflection positivity in
the sense that it allows us to ‘reflect’ symmetry defects about fixed hyperplanes
so that reflection symmetric configurations are positive in an appropriate sense.
Mathematically, this is implemented by assuming that C is a †-category:

Definition: A linear category C is called a †-category if it is equipped with
a linear functor2,3 † : C → (C op)∗ acting as the identity on objects so that
(†op)∗ ◦† = IdC . A morphism φ : A → B in C is said to be unitary if φ† ◦φ = idA
and φ ◦ φ† = idB . A linear functor F : C → C′ between two †-categories is called
a †-functor if †′ ◦ F = (F op)∗ ◦ †. Given a natural transformation η : F ⇒ G

between two †-functors, we define η† : G ⇒ F to be the natural transformation
with components (η†)A := (ηA)†′ for all A ∈ C. In this way, the category [C, C′]†

of †-functors between C and C′ naturally becomes a †-category itself.

Pictorially, the action of † can be represented as a reflection of morphisms in C
about a fixed horizontal hyperplane, i.e.

(2.5)

Positivity is the statement that there exists a faithful state Γ : EndC(A) → C on
the endomorphism algebra of every object A ∈ C, which turns EndC(A) into a
C*-algebra for all A ∈ C.

1 Given two finite abelian categories C and D, we denote by C ⊠ D their Deligne tensor product [76].
2 Given a category C, we denote by Cop its opposite category, which has the same objects as C but

reversed morphisms, i.e. Hom(Cop)(A,B) = HomC(B,A). Given a functor F : C → D, we denote
by F op : C op → D op its opposite functor defined in the obvious way.

3 Given a linear category C, we denote by C∗ its complex conjugate category, which has the same
objects as C but complex conjugated morphism spaces, i.e. Hom( C∗)(A,B) = HomC(A,B)∗. Given
a linear functor F : C → D, we denote by F ∗ : C∗ → D∗ its complex conjugate.
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• Monoidal structure: We assume that C encodes the fusion of symmetry defects
given by the parallel collision of topological lines in C. Mathematically, this is
achieved by endowing C with a monoidal structure in the following sense:

Definition: An additive linear category4 C is called monoidal if it is equipped
with an additive linear functor

⊗ : C ⊠ C → C , (2.6)

a distinguished object 1 ∈ C (called the unit) and three natural isomorphisms

α : ⊗ ◦ (⊗ ⊠ Id) ⇒ ⊗ ◦ (Id ⊠ ⊗) ,

λ : (1 ⊗ Id) ⇒ Id ,

ρ : (Id ⊗ 1) ⇒ Id

(2.7)

(called the associator, left and right unitor, respectively) that satisfy the pentagon
and triangle relations [77]. An additive linear functor F : C → C′ between two
monoidal categories is called a monoidal functor if it is equipped with a natural
isomorphism ν : ⊗′ ◦ (F ⊠ F ) ⇒ F ◦ ⊗ that satisfies suitable coherence relations
and it preserves the monoidal unit, i.e. F (1) ∼= 1′.

Pictorially, we represent the monoidal product of objects A,B ∈ C to be the result
of bringing the corresponding topological lines together in a parallel fashion:

(2.8)

The associator then mediates between the two possible ways of bringing three
parallel topological lines A,B,C ∈ C together:

(2.9)

For simplicity, we will often omit associators as well as the left and right unitors
from graphical representations of symmetry defects in what follows. We depict
the monoidal unit 1 ∈ C by the invisible / transparent line and we assume that it
corresponds to a simple object in C, i.e. EndC(1) = C. In particular, this means
that the only genuine topological local operators are given by scalar multiples of
the identity morphism on 1.

4 Broadly speaking, a category is additive if its morphism spaces are abelian groups such that
compositions are bilinear and we can furthermore form direct sums of objects. In particular, there
exists a zero object that functions as the neutral element w.r.t. taking direct sums. A functor
between additive categories is called additive if it preserves direct sums and restricts to group
homomorphisms on morphism spaces.
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As C is also a †-category, we require the monoidal structure to be compatible
with the dagger structure in the sense that ⊗ : C ⊠ C → C is a †-functor and
the associator α and left and right unitors λ and ρ are all unitary. If such a
†-structure exists, it is unique up to (unitary monoidal) equivalence [78]. In this
case, we say that C is a unitary fusion category.

• Dual structure: We assume that C is equipped with a dual structure that
allows us to ‘bend’ topological line defects in the following sense: For each A ∈ C
there exists a dual object A∨ ∈ C (corresponding to the orientation reversal of A)
together with evaluation and coevaluation morphisms

(2.10)

that satisfy suitable zig-zag relations [77]. The assignment A 7→ A∨ then extends
to a functor ∨ : C → C that acts on morphisms via

(2.11)

This functor is compatible with the monoidal structure ⊗ on C in the sense that
it is op-monoidal with tensorator given by

(2.12)

A pivotal structure on C is a choice of natural isomorphism ξ : ∨2 ⇒ IdC. We
say that the latter is spherical if its associated left and right traces agree on all
endomorphisms φ ∈ EndC(A), i.e.

(2.13)

where we omitted ξA from the graphical presentation. In this case, we define
dim(A) := trL/R(idA) ∈ C to be the quantum dimension of an object A ∈ C. We
say that the dual structure is unitary if it is compatible with the dagger structure
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on C in the sense that ∨ : C → C is a †-functor and the associated tensorator
(2.12) is unitary. In this case, the unitary isomorphisms

(2.14)

define a canonical pivotal structure on C. Furthermore, there exists a unique
(up to suitable equivalence) unitary dual structure on C such that the above
canonical pivotal structure is spherical [79]. We will henceforth assume C to be
equipped with the unique unitary dual structure.

2.2 Tube Category

Given a fusion category C, we can associate to it the so-called tube category, which
captures the possible linking configurations of twisted sector local operators in two
dimensions with symmetry defects in C. Concretely, following [80], we define the tube
category TC associated to C to be the additive linear category whose

• objects are given by objects X ∈ C, i.e.

(2.15)

• morphisms between objects X,Y ∈ C form the quotient vector space

HomTC(X,Y ) :=
⊕
A∈C

HomC(A⊗X ,Y ⊗A)
/

∼ (2.16)

(where the sum runs over all objects A ∈ C) of local intersection morphisms

(2.17)

in C subjected to the equivalence relation that is generated by

(2.18)

Physically, the equivalence relation (2.18) means that we should think of the symmetry
defect A as being placed on a 1-sphere by identifying its two ends. Mathematically, it
renders the morphism spaces in (2.16) finite-dimensional. Concretely, let A ∈ C be an
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arbitrary object and consider a decomposition A ∼=
⊕

iSi of A into simple objects Si
(possibly with multiplicities). Let us denote by

ıi : Si → A and πi : A → Si (2.19)

the associated inclusion and projection morphisms, respectively. Upon inserting the
completeness relation idA = ∑

i ıi ◦ πi into (2.17), we then obtain that

(2.20)

If we denote the equivalence class of (2.17) under the relation (2.18) by

〈 AY X
φ

〉
∈ HomTC(X,Y ) , (2.21)

we can rewrite equation (2.20) schematically as the morphism identity

〈 AY X
φ

〉
=

∑
i

〈 SiY X
πi◦φ◦ıi

〉
. (2.22)

In particular, this shows that, as a vector space, HomTC(X,Y ) is isomorphic to

HomTC(X,Y ) ∼=
⊕

[S]∈π0(C)
HomC(S⊗X ,Y ⊗S) , (2.23)

where the sum is over a set of fixed representatives S of elements [S] in the set π0(C) of
isomorphism classes of simple objects in C. Since the latter is finite by assumption, we
see that HomTC(X,Y ) is finite-dimensional as claimed. The composition of morphisms
in the tube category is induced by the vertical stacking

(2.24)

which we denote schematically by

〈 AZ Y
φ

〉
◦
〈 BY X

ψ

〉
=

〈 A⊗BZ X
φ◦ψ

〉
. (2.25)

Furthermore, the tube category possesses a natural †-structure [81] that is induced by

(2.26)



tube representations 87

(where we left the labelling of evaluation and coevaluation morphisms implicit) and
which we denote schematically by

〈 AY X
φ

〉† =
〈 A∨
X Y

φ†

〉
. (2.27)

Since Γ
(〈 AS S

φ

〉)
:= δA,1 ·φ defines a faithful state on the endomorphism algebra of

each simple object S ∈ C, we see that EndTC(S) is a C*-algebra for all S. In particular,
we obtain a C*-structure on the so-called tube algebra

Tube(C) := EndTC

(⊕
[S]∈π0(C)

S

)
(2.28)

originally introduced by Ocneanu [82], which provides an alternative description of
linking configurations of twisted sector local operators in two dimensions.

2.3 Tube Representations

Given a two-dimensional quantum field theory with fusion category symmetry C, it
was proposed in [83] that twisted sector local operators transform in ‘representations’
of the tube category associated to C. By this we mean additive linear functors

F : TC → Vect (2.29)

from TC into the category of vector spaces, which we will simply call tube representa-
tions in what follows. Concretely, any such tube representation F assigns

• to each object X ∈ C a vector space HX := F(X) that describes twisted sector
local operators O sitting at the end of the topological line defect X, i.e.

(2.30)

• to each morphism
〈 AY X

φ

〉
∈ HomTC(X,Y ) a linear map

F
(〈 AY X

φ

〉)
: HX → HY (2.31)

that describes how operators O in the X-twisted sector get mapped to operators
in the Y -twisted sector upon being linked with the symmetry defect A, i.e.

(2.32)
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Given two tube representations, an intertwiner between them is a natural trans-
formation between the corresponding functors. We denote the category of all tube
representations and intertwiners between them by

Rep(TC) := [TC,Vect] . (2.33)

For a given tube representation F , we can use the operator-state map to endow
the twisted sectors HX with an inner product structure5, which we assume to be
compatible with the action of the tube category in the sense that

F
(〈 AY X

φ

〉†) != F
(〈 AY X

φ

〉)†
(2.34)

for all
〈 AY X

φ

〉
∈ HomTC(X,Y ) (where the † on the right hand side denotes the adjoint

of linear maps). Mathematically, this means that we assume F to lift to a †-functor6

F : TC †→ Hilb , (2.35)

which we will call a tube †-representation in what follows. We denote the category of
all tube †-representations and intertwiners between them by

Rep†(TC) := [TC,Hilb]† . (2.36)

Clearly, every tube †-representation reduces to an ordinary tube representation upon
forgetting the underlying Hilbert space structure.

A useful way to classify the irreducible tube (†-)representations of a fusion category C is
given by the so-called sandwich construction. In this picture, we view a two-dimensional
theory T with generalised symmetry C as being attached to a three-dimensional ‘bulk’,
which hosts topological defects that ‘commute’ with all other symmetry defects in C.
This leads to a categorified notion of the centre:

Definition: Given a fusion category C, its Drinfeld centre is the category Z(C) whose
objects are given by pairs z = (U, τU,−) consisting of

1. an object U ∈ C in the fusion category C,

2. a half-braiding for U , i.e. a natural isomorphism τU,− : U ⊗ − ⇒ − ⊗ U whose
components τU,A : U ⊗A → A⊗ U satisfy suitable coherence relations [77].

5 Concretely, consider a 1-sphere S1
ε of radius ε > 0 centred around a local operator

O ∈ HX in the X-twisted sector. Using the operator-state map, this induces a state
|O⟩ε in the Hilbert space associated to the (punctured) S1

ε . Given another X-twisted
sector local operator O′, we then define its inner product with O to be ⟨O|O′⟩ε, which
is independent of ε if we assume time evolution along the radial direction to be unitary.

6 Here, we denote by Hilb the category whose objects are finite-dimensional complex Hilbert spaces
and morphisms are linear maps between them.
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Pictorially, we represent the component morphisms τU,A as ‘crossings’ that tell us how
the object U can be moved across any other topological defect A ∈ C:

(2.37)

The Drinfeld centre is itself a unitary fusion category with monoidal product given by

z ⊗ z′ :=
(
U⊗U ′, τU,− ◦ τ ′

U ′,−
)
. (2.38)

It is furthermore braided, since βz,z′ := τU,U ′ : z ⊗ z′ → z′ ⊗ z defines the components
of a natural braiding isomorphism β satisfying the hexagon relations [77].

The utility of the Drinfeld centre stems from the fact that we can associate to each
object z = (U, τU,−) ∈ Z(C) a tube representation Fz ∈ Rep(TC) as follows [1, 80]:

• To an object X ∈ C, the functor Fz assigns the vector space HX := HomC(U,X)
of local junction morphisms

(2.39)

We will denote the elements of HX by
∣∣ vX U〉 in what follows. If X is simple,

HX is a Hilbert space whose inner product is defined by

w ◦ v† =: ⟨v, w⟩ · idX . (2.40)

If X is not simple, we obtain a Hilbert space structure in HX by decomposing
X into its simple components.

• To a morphism
〈 AY X

φ

〉
∈ HomTC(X,Y ), the functor Fz assigns the linear map

from HX to HY that sends a local junction v ∈ HomC(U,X) to

(2.41)

(where we left the labelling of evaluation and coevaluation morphisms implicit).
Schematically, we write this as

Fz

(〈 AY X
φ

〉) ∣∣ vX U〉 =
∣∣ vX UY

A

φ

〉
. (2.42)

As a special case of the above, we can consider the tube representation := F1

associated to the monoidal unit 1 = (1, id−) ∈ Z(C), which we will call the trivial
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tube representation in what follows. The latter acts on the untwisted sector H1 ∼= C
via the multiplicative factors

(〈 A1 1
φ

〉)
= tr(φ) . (2.43)

It is known that the assignment z 7→ Fz extends to an equivalence

Z(C) ∼= Rep(TC) (2.44)

of linear categories [80, 84, 85]. One can check that the functor Fz associated to
an object z = (U, τU,−) is a †-functor if and only if the components τU,A of the
half-braiding are unitary for all A ∈ C. If we define the collection of such objects to
form the so-called unitary Drinfeld centre Z †(C), this yields an equivalence

Z †(C) ∼= Rep†(TC) (2.45)

of linear †-categories. In particular, the simple objects of Z †(C) correspond to the irre-
ducible †-representations of TC. This may be seen as a two-dimensional analogue of the
fact that the irreducible ∗-representations of a C*-algebra A are in 1:1-correspondence
with its minimal central idempotents, which from a canonical basis of the centre
Z(A) of A. Lastly, using the fact that every braiding on a unitary fusion category
is automatically unitary [86], one can show that Z †(C) = Z(C), which, using (2.44)
and (2.45), implies that every tube representation of a given fusion category C is
equivalent to a †-representation. This may be seen as an analogue of the fact that
every finite-dimensional representation of a finite group is equivalent to a unitary one.

We can visualise the above construction by viewing the two-dimensional theory T
with generalised symmetry C as an interval compactification (a.k.a. a sandwich) of
a three-dimensional topological theory in the bulk called the Symmetry Topological
Field Theory (or Symmetry TFT for short) [87–89]. In the present case, this is the
Turaev-Viro TQFT based on C (whose category of line defects is indeed given by the
Drinfeld centre of C) [90–93]. The latter is equipped with two boundary conditions:

1. A canonical topological boundary condition BC on the left that supports the
symmetry C and that is independent of the theory T under consideration. In
particular, the bulk-to-boundary map is given by the forgetful functor Z(C) → C
that sends z = (U, τU,−) 7→ U .

2. A physical boundary condition BT on the right that depends on the underlying
theory T and that is non-topological in general.

The spectrum of twisted sector local operators O that transform in a given tube
representation Fz associated to some z ∈ Z(C) may then be viewed as the spectrum
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of topological junctions v between twisted sector lines X ∈ C on the left and the bulk
line z stretched between the two boundaries of the Symmetry TFT:

(2.46)

Here, O0 denotes a fixed (and generically non-topological) local operator that termi-
nates z on right boundary. The linking action of the tube category on the operators
O may then be computed using (2.41).

We can offer yet another perspective on the above discussion that uses the notion
of the tube algebra Tube(C) associated to C as defined in (2.28). The latter has the
property that it is ‘Morita equivalent’ to the tube category in the sense that

Rep∗(Tube(C)) ∼= Rep†(TC) , (2.47)

which means that there is a 1:1-correspondence between ∗-representations of the tube
algebra and †-representations of the tube category [80]. One way to see this is by
linking twisted sector local operators attached to simple lines S ∈ C with symmetry
defects U ∈ C that can be pushed into the three-dimensional bulk (and hence form
part of the defining data of an object z = (U, τU,−) ∈ Z(C) in the Drinfeld centre).
We denote the corresponding tube algebra element by

〈 US S
τU,S

〉
=:

〈 zS S〉 (2.48)

in what follows. As a consequence of the hexagon relations obeyed by the half-braiding
τU,−, this then has the property that

〈 AS′ S
φ

〉
◦
〈 zS S〉 =

〈 zS′ S′〉
◦
〈 AS′ S

φ

〉
(2.49)

for all
〈 AS′ S

φ

〉
∈ Tube(C). Furthermore, its algebra involution is given by7

〈 zS S〉∗ =
〈 z∨S S〉 , (2.50)

7 To see this, one again uses that any braiding on a unitary fusion category is automatically unitary,
which implies that the components τU,A of the half-braiding associated to z are all unitary [86].
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where z∨ denotes the dual of z in Z(C). Using the sandwich picture (2.46), it is
then easy to see that the linking action of

〈 zS S〉 on twisted sector local operators O
transforming in a tube representation Fz′ associated to some z′ ∈ Z(C) is given by

∗

(2.51)

where dz := dim(z) and we defined the multiplicative factor8

(2.52)

By letting z and z′ run over a fixed set of representatives of isomorphism classes of
simple objects in Z(C), this yields a square matrix

S : π0(Z(C)) × π0(Z(C)) → C (2.53)

called the S-matrix of Z(C), which has the following properties [65]:

1. It is symmetric, i.e. Szz′ = Sz′z.

2. It satisfies Sz∨z′ = S ∗
zz′ .

3. It is invertible.

In addition, S obeys the so-called (normalised) Verlinde formula

Sxw · Syw =
∑
z

N z
xy · Szw , (2.54)

where ∑z denotes a sum over fixed representatives of elements in π0(Z(C)) and we
defined the (normalised) fusion coefficients

N z
xy := dz

dx ·dy
· dim(HomZ(C)(x⊗ y, z)) . (2.55)

The latter allow us to write the product of the tube algebra elements
〈 zS S〉 as

〈 xS S〉 ◦
〈 y
S S〉 =

∑
z

dx ·dy
dz

·N z
xy ·

〈 zS S〉 . (2.56)

8 Here, we make use of the natural braiding β on the Drinfeld center Z(C) to make sense of the
crossings that appear in (2.52).
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Together with the Verlinde formula, this implies that the linear combinations

eSz :=
∑
z′

1
dz′

· (S−1)zz′ ·
〈 z′
S S〉 (2.57)

define a collection of orthogonal self-adjoint idempotents in Tube(C) that are indexed
by [S] ∈ π0(C) and [z] ∈ π0(Z(C)) [83], i.e. we have that

eSz ◦ eS
′

z′ = δzz′ · δSS′ · eSz and (eSz )∗ = eSz . (2.58)

Using this, we can construct the minimal central idempotents in Tube(C) via

ez :=
∑
S

eSz , (2.59)

where ∑S denotes a sum over a fixed set of representatives of elements in π0(C). In
particular, we see that the minimal central idempotents are labelled by simple objects
z ∈ Z(C), which, together with (2.47), re-establishes the equivalence (2.45) via their
1:1-correspondence with irreducible ∗-representations of Tube(C).

2.4 Examples

We conclude this section by providing concrete examples of fusion category symmetries
and their associated tube categories / algebras. We discuss anomalous group sym-
metries as well as new examples that include generic Tambara-Yamagami symmetries
and non-invertible symmetries of Fibonacci and Yang-Lee type.

2.4.1 Group Symmetry

We begin by considering invertible symmetries described by some finite group G. In
this case, the simple objects of the fusion category C correspond to group elements
g ∈ G that fuse according to the group law of G and whose associator is given by

(2.60)

for some multiplicative phases α(g, h, k) ∈ U(1). In analogy to the one-dimensional
case, we call the collection of the latter an ’t Hooft anomaly, since they describe the
(controlled) violation of associativity in the fusion of symmetry defects:

(2.61)
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In order to be compatible with the two possible ways to fuse four symmetry defects in
different orders, these phases need to satisfy

(dα)(g, h, k, ℓ) := α(h, k, ℓ) · α(g, hk, ℓ) · α(g, h, k)
α(gh, k, ℓ) · α(g, h, kℓ)

!= 1 , (2.62)

which shows that α defines a 3-cocycle α ∈ Z3(G,U(1)). The corresponding symmetry
category is then given by the fusion category C = HilbαG of finite-dimensional G-graded
Hilbert spaces9 with associativity twisted by α. The duals and dimensions of simple
objects are given by g∨ = g−1 and dim(g) = 1, respectively. This symmetry category
is unitary for all G and α.

The tube algebra associated to C = HilbαG is the |G|2-dimensional algebra with basis
vectors

〈 ggx x〉 (where g, x ∈ G and gx := gxg−1) and algebra multiplication

〈 ggx x〉 ◦
〈 hhy y〉 = δx,hy · τy(α)(g, h) ·

〈 ghghy y〉
, (2.63)

where we defined the multiplicative phase

τx(α)(g, h) := α(g, h, x) · α(ghx, g, h)
α(g, hx, h) (2.64)

called the transgression of the ’t Hooft anomaly α (we will henceforth drop the no-
tational dependence of τ on α in order to improve readability). As a result of the
cocycle condition (2.62) obeyed by α, it satisfies

(dτ)x(g, h, k) := τx(h, k) · τx(g, hk)
τx(gh, k) · τ(kx)(g, h) = 1 , (2.65)

which ensures that the algebra multiplication in (2.63) is associative. Using (2.26),
the ∗-structure on the tube algebra can be computed to be [4]

〈 ggx x〉∗ = µx(g) ·
〈 g−1
x gx〉 , (2.66)

where we defined the multiplicative phase

µx(g) := τ∗
x(g−1, g) . (2.67)

As a consequence of (2.65), it satisfies µx(g−1) = µ(xg)(g) as well as dµ = τ̂ /τ , where
we defined the dual transgression 2-cocycle

τ̂x(g, h) := τ∗
(ghx)(h

−1, g−1) . (2.68)

9 In particular, the simple objects of Hilbα
G are given by the one-dimensional Hilbert spaces Cg with

G-grading (Cg)h = δg,hC for g, h ∈ G.
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This ensures that the ∗-structure (2.66) is involutory and compatible with the algebra
multiplication (2.63). All in all, the above allows us to identify the tube algebra
associated to C with the so-called twisted Drinfeld double of G [94–96], i.e.

Tube(HilbαG) = Dα(G) . (2.69)

If α = 1, the latter may be viewed as the groupoid algebra10 C[G//G] associated to
the conjugation action of G on itself.

In order to classify the irreducible tube representations of C = HilbαG (or equivalently
the irreducible representations of Dα(G)), we note that, as a consequence of the
delta-function appearing in (2.63), any such F will decompose into subrepresentations
supported on twisted sectors Hy labelled by elements y ∈ [x] in the conjugacy class of
some fixed x ∈ G. If we furthermore restrict to linking with symmetry defects g ∈ G

that lie in the centraliser Gx := {g ∈ G | gx = x} of x in G, then the linear maps

ρ(g) := F
(〈 g
x x〉) (2.71)

define a projective representation of Gx on the Hilbert space V := Hx with projective
2-cocycle τx(α) ∈ Z2(Gx, U(1)). Conversely, given a pair (x, ρ) consisting of

1. a representative x ∈ G of a conjugacy class [x] ∈ Cl(G),

2. an irreducible τx(α)-projective representation ρ of Gx,

we can construct an associated tube representation F(x,ρ) via induction [74]: To this
end, fix for each element y ∈ [x] in the conjugacy class of x a representative ry ∈ G

such that (ry)y = x (with rx := 1). Using these, we can define

gy := r(gy) · g · r−1
y ∈ Gx (2.72)

for all g ∈ G and y ∈ [x]. If we denote by V the Hilbert space underlying the projective
representation ρ of Gx, then F(x,ρ) acts on the twisted sectors

Hy =

V if y ∈ [x]

0 otherwise
(2.73)

10 Given a finite groupoid G (i.e. a category with a finite number of objects x and all morphisms
g : x → y invertible), we define the associated groupoid algebra to be the linear span

C[G] :=
⊕

x,y ∈ G

C[HomG(x, y)] (2.70)

with algebra multiplication given by composition whenever defined and zero otherwise. We are
often interested in the case where G = X//G is the so-called action groupoid associated to the
action ▷ : G×X → X of some finite group G on some finite set X. Here, the objects of X//G are
given by points x ∈ X with morphism spaces given by HomX//G(x, y) := {g ∈ G | g ▷ x = y}.
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via the non-trivial induced tube actions

F(x,ρ)
(〈 ggy y〉) := κy(g) · ρ(gy) , (2.74)

where we defined the multiplicative phases

κy(g) :=
τy(r(gy), g)
τy(gy, ry)

. (2.75)

As a consequence of (2.65), they satisfy

κy(h) · κ(hy)(g)
κy(gh) = τy(g, h)

τx(g(hy), hy)
, (2.76)

which ensures that F(x,ρ) respects the algebra multiplication (2.63). It is straightfor-
ward to check that F(x,ρ) is a ∗-representation of Dα(G) if and only if ρ is a unitary
projective representation of Gx. Hence, we see that ∗-representations of the tube
algebra form the natural generalisation of unitary representations of group-like sym-
metries. Furthermore, since every finite-dimensional representation of a finite group is
equivalent to a unitary one, this shows that all irreducible representations of Dα(G)
are ∗-representations as expected.

All in all, we conclude that the category of ∗-representations of the twisted Drinfeld
double Dα(G) admits a direct sum decomposition

Rep∗(Dα(G)) ∼= ⊞
[x]∈Cl(G)

Repτx(α)(Gx) . (2.77)

In particular, using (2.45), this reproduces the known classification of simple objects
in the Drinfeld centre of C = HilbαG in terms of pairs (x, ρ) as above [97].

2.4.1.1 Example: G = Z2

As a simple example, let us consider G = Z2 =: ⟨x⟩ with ’t Hooft anomaly α given by
the non-trivial generator of H3(Z2, U(1)) ∼= Z2 with normalised representative

α(x, x, x) = −1 . (2.78)

In this case, the ∗-structure on the tube algebra is given by

〈 xx x〉∗ = (−1) ·
〈 xx x〉 , (2.79)

which admits the following four irreducible tube representations:
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• There are two one-dimensional tube representations F±
1 acting on the twisted

sector H1 = C via the non-trivial tube actions

F±
1

(〈 x1 1〉) = ±1 . (2.80)

• There are two one-dimensional tube representations F±
x acting on the twisted

sector Hx = C via the non-trivial tube actions

F±
x

(〈 xx x〉) = ±i . (2.81)

2.4.1.2 Example: G = D8

As another example, let us consider a non-anomalous dihedral group symmetry of
order eight, which can be presented as

D8 =
〈
r, s

∣∣ r4 = s2 = 1, srs = r−1 〉 . (2.82)

As described above, its irreducible tube representations can be labelled by pairs (x, ρ)
consisting of a representative x of a conjugacy class [x] ∈ Cl(D8) together with an
irreducible representation ρ of its centraliser (D8)x. Concretely, the five conjugacy
classes of D8 together with their centralisers are given by

[1] = {1} , (D8)1 = D8 ,

[r2] = {r2} , (D8)r2 = D8 ,

[r] = {r, r3} , (D8)r = ⟨r⟩ ∼= Z4 ,

[s] = {s, r2s} , (D8)s = ⟨r2, s⟩ ∼= Z2 × Z2 ,

[rs] = {rs, r3s} , (D8)rs = ⟨r2, rs⟩ ∼= Z2 × Z2 .

(2.83)

As there are five irreducible representations of D8, there is a total of 22 irreducible
tube representations, which can be described as follows:

• For x = 1 and r2, the centralisers (D8)1 and (D8)r2 are equal to the full symmetry
group D8, which has five irreducible representations (four one-dimensional and
one two-dimensional one) given by

1 u v uv m

r 1 −1 1 −1
(
i 0
0 −i

)

s 1 1 −1 −1
(

0 1
1 0

)
.

(2.84)
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For x ∈ {1, r2} and ρ ∈ {1, u, v, uv,m}, the associated tube representation F(x,ρ)

then acts on the twisted sector Hx
∼= C dim(ρ) via the non-trivial tube actions

F(x,ρ)
(〈 g
x x〉) = ρ(g) (2.85)

for all group elements g ∈ D8.

• For x = r, the centraliser (D8)r = ⟨r⟩ ∼= Z4 has four irreducible representations
given by its characters ρ ∈ (D8)∨

r =: ⟨ r̂⟩ (where ⟨r̂, r⟩ := i). The corresponding
irreducible tube representations act on the twisted sectors Hr

∼= Hr3 ∼= C via
the following non-trivial tube actions:

F(r,1) F(r,r̂) F(r,r̂2) F(r,r̂3)

〈 rr r〉 (
1 0
0 0

) (
i 0
0 0

) (
−1 0
0 0

) (
−i 0
0 0

)
〈 rr3 r3〉 (

0 0
0 1

) (
0 0
0 −i

) (
0 0
0 −1

) (
0 0
0 i

)
〈 sr3 r〉 (

0 0
1 0

) (
0 0
1 0

) (
0 0
1 0

) (
0 0
1 0

)
〈 sr r3〉 (

0 1
0 0

) (
0 1
0 0

) (
0 1
0 0

) (
0 1
0 0

)
.

(2.86)

• For x = s, the centraliser (D8)s = ⟨r2, s⟩ ∼= Z2 × Z2 has four irreducible repre-
sentations ρ ∈ (D8)∨

s =: ⟨ r̂2, ŝ ⟩ (where ⟨ r̂2, r2⟩ = ⟨ ŝ, s⟩ = −1). The correspond-
ing irreducible tube representations act on the twisted sectors Hs

∼= Hr2s
∼= C

via the following non-trivial tube actions:

F(s,1) F(s, r̂2) F(s,ŝ) F(s, ŝ · r̂2)

〈 rr2s s〉 (
0 0
1 0

) (
0 0
1 0

) (
0 0
1 0

) (
0 0
1 0

)
〈 rr r2s〉 (

0 1
0 0

) (
0 −1
0 0

) (
0 1
0 0

) (
0 −1
0 0

)
〈 ss s〉 (

1 0
0 0

) (
1 0
0 0

) (
−1 0
0 0

) (
−1 0
0 0

)
〈 s
r2s r2s〉 (

0 0
0 1

) (
0 0
0 −1

) (
0 0
0 −1

) (
0 0
0 1

)
.

(2.87)

• For x = rs, the centraliser (D8)rs = ⟨r2, rs⟩ ∼= Z2 × Z2 has four irreducible
representations given by ρ ∈ (D8)∨

rs =: ⟨ r̂2, r̂s ⟩ (where ⟨ r̂2, r2⟩ = ⟨ r̂s, rs⟩ = −1).
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The corresponding irreducible tube representations act on the twisted sectors
Hrs

∼= Hr3s
∼= C via the following non-trivial tube actions:

F(rs,1) F(rs, r̂2) F(rs, r̂s) F(rs, r̂2 · r̂s )

〈 r
r3s rs〉 (

0 0
1 0

) (
0 0

−1 0

) (
0 0

−1 0

) (
0 0
1 0

)
〈 r
rs r3s〉 (

0 1
0 0

) (
0 1
0 0

) (
0 −1
0 0

) (
0 −1
0 0

)
〈 s
r3s rs〉 (

0 0
1 0

) (
0 0
1 0

) (
0 0
1 0

) (
0 0
1 0

)
〈 s
rs r3s〉 (

0 1
0 0

) (
0 1
0 0

) (
0 1
0 0

) (
0 1
0 0

)
.

(2.88)

2.4.2 Tambara-Yamagami Symmetry

As a another example, let us consider a symmetry category C = TYχ,s
A of Tambara-

Yamagami type [98], which is specified by the following pieces of data:

1. A finite abelian group A,

2. a non-degenerate symmetric bicharacter χ : A×A → U(1),

3. a square-root s of 1/|A|.

The simple objects of C comprise the group elements a ∈ A that fuse according to the
group law of A as well as an additional non-invertible defect m that fuses according to

a⊗m = m⊗ a = m , m⊗m =
⊕
a∈A

a .

(2.89)

The non-trivial components of the associator are given by

(2.90)

The dual objects are given by a∨ = a−1 and m∨ = m with dimensions dim(a) = 1 and
dim(m) =

√
|A|. This symmetry category is unitary for all A, χ and s.
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The tube algebra associated to C = TYχ,s
A was computed in [4] and is given by the

2|A|·(|A| + 1)-dimensional algebra that is spanned by the basis vectors

〈 ax x〉 , 〈 my x〉 , 〈 mm m
a

〉
,
〈 am m〉 (2.91)

(where a, x, y ∈ A), whose algebra multiplication is given by

〈 ax x〉 ◦
〈 bx x〉 =

〈 abx x〉 ,〈 my x〉 ◦
〈 ax x〉 = χ(a, y) ·

〈 my x〉 ,〈 ay y〉 ◦
〈 my x〉 = χ(a, x) ·

〈 my x〉 ,〈 mz y〉 ◦
〈 my x〉 = δx,z · χ∗(x, y) ·

∑
a
χ∗(a, y) ·

〈 ax x〉 ,〈 am m〉 ◦
〈 bm m〉 = χ∗(a, b) ·

〈 abm m〉 ,〈 am m〉 ◦
〈 mm m

b

〉
=
〈 mm m

b

〉
◦
〈 am m〉 = χ(a, ab) ·

〈 mm m
ab

〉
,〈 mm m

a

〉
◦
〈 mm m

b

〉
= s

|A|
· χ(a, b) ·

∑
c
χ∗(ab, c) ·

〈 cm m〉 .

(2.92)

Using (2.26), the ∗-structure can be computed to be

〈 ax x〉∗ =
〈 a−1
x x〉 ,〈 my x〉∗ = χ(x, y) ·

〈 mx y〉 ,〈 am m〉∗ = χ∗(a, a) ·
〈 a−1
m m〉 ,〈 mm m

a

〉∗ = s ·
∑
b

χ∗(a, b) ·
〈 mm m

b

〉
.

(2.93)

The associativity of the algebra multiplication as well as its compatibility with the
∗-structure can be checked to hold as a consequence of the character identity

1
|A|

·
∑
a∈A

χ(a, b) = δb,1 . (2.94)

As described in [2, 4], there is a total of 1
2 |A|·(|A| + 7) irreducible tube representations

of C = TYχ,s
A , which can be grouped into the following three categories:

• There are 2 · |A| one-dimensional tube representations F∆
x labelled by group

elements x ∈ A and a choice of square-root ∆ of χ∗(x, x) ∈ U(1), which act on
the twisted sector Hx

∼= C via the non-trivial tube actions

F∆
x

(〈 ax x〉) = χ(a, x) ,

F∆
x

(〈 mx x〉) = 1
s

· ∆ .

(2.95)
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• There are 2·|A| one-dimensional representations F∆
ρ labelled by antiderivatives11

ρ of χ and a choice of square-root ∆ of s ·
∑
c ρ

∗(c) ∈ U(1), which act on the
twisted sector Hm

∼= C via the non-trivial tube actions

F∆
ρ

(〈 am m〉) = ρ∗(a) ,

F∆
ρ

(〈 mm m
a

〉)
= s · ∆ · ρ(a−1) .

(2.96)

• There are 1
2 |A|·(|A|−1) two-dimensional representations Fx,y labelled by distinct

elements x, y ∈ A, which act on the twisted sectors Hx
∼= Hy

∼= C via

Fx,y
(〈 ax x〉) =

(
χ(a, y) 0

0 0

)
,

Fx,y
(〈 ay y〉) =

(
0 0
0 χ(a, x)

)
,

Fx,y
(〈 my x〉) = 1

s
·
(

0 0
χ∗(x, y) 0

)
,

Fx,y
(〈 mx y〉) = 1

s
·
(

0 1
0 0

)
.

(2.97)

Using (2.45), the above gives a list of simple objects in the Drinfeld centre of C = TYχ,s
A

which reproduces the known classification found in [99].

2.4.2.1 Example: Ising Symmetry

As a simple example, let us consider the case A = Z2 =: ⟨x⟩, which admits a single
non-degenerate bicharacter given by χ(x, x) = −1. Hence, there are exactly two
corresponding Tambara-Yamagami categories, which are distinguished by the choice
of s = ±1/

√
2. For s > 0, one obtains the so-called Ising category, which describes the

topological defects in the two-dimensional critical Ising CFT, where x corresponds to
the invertible spin-flip symmetry and m is non-invertible Kramers-Wannier duality
defect [100, 101]. In particular, there are ten conformal primaries (twisted and
untwisted), which organise themselves into the nine irreducible tube representations
of the Ising category (for a concrete description of the different primaries in the Ising
CFT including their conformal weights we refer the reader to [100]):

11 An antiderivative of χ is a map ρ : A → U(1) such that (dρ)(a, b) := ρ(a) · ρ(b) · ρ∗(ab) ≡ χ(a, b)
for all a, b ∈ A. Since χ is symmetric, such a ρ always exists and the set of all antiderivatives forms
a torsor over A∨ = Hom(A,U(1)). This shows that there are |A∨| = |A| antiderivatives of χ.
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• There are four one-dimensional tube representations F±
1 and F±

x that act on the
twisted sectors H1 ∼= C and Hx

∼= C via the non-trivial tube actions

F±
1

(〈 x1 1〉) = 1 , F±
x

(〈 xx x〉) = −1 ,

F±
1

(〈 m1 1〉) = ±
√

2 , F±
x

(〈 mx x〉) = ±
√

2 i .
(2.98)

• There are four one-dimensional tube representations F±
m and F̄±

m that act on the
twisted sector Hm

∼= C via the non-trivial tube actions

F±
m

(〈 xm m〉) = i , F̄±
m

(〈 xm m〉) = −i ,

F±
m

(〈 mm m
1
〉)

= ± e iπ/8
√

2
, F̄±

m

(〈 mm m
1
〉)

= ± e−iπ/8
√

2
,

F±
m

(〈 mm m
x

〉)
= ± e−3πi/8

√
2

, F̄±
m

(〈 mm m
x

〉)
= ± e 3πi/8

√
2

.

(2.99)

• There is one two-dimensional tube representation F1,x that acts on the twisted
sectors H1 ∼= Hx

∼= C via the non-trivial tube actions

F1,x
(〈 x1 1〉) =

(
−1 0
0 0

)
, F1,x

(〈 mx 1〉) =
(

0 0√
2 0

)
,

F1,x
(〈 xx x〉) =

(
0 0
0 1

)
, F1,x

(〈 m1 x〉) =
(

0
√

2
0 0

)
.

(2.100)

Note that any genuine local operator that is charged under the Z2 symmetry generated
by x necessarily forms part of a two-dimensional multiplet that maps genuine to
x-twisted operators under the action of the non-invertible defect m (and vice versa).

2.4.2.2 Example: Rep(D8)

As another example, let us consider a Tambara-Yamagami category based on the
abelian group A = Z2 × Z2 =: ⟨u, v⟩ with bicharacter χ given by

χ(u, u) = χ(v, v) = 1 , χ(u, v) = −1 , (2.101)

and square-root s = +1/2. It was shown in [98] that this is equivalent to the category
Rep(D8) of finite-dimensional representations of the dihedral group of order eight (see
(2.82)), where u and v generate the four one-dimensional irreducible representations
and m is the single two-dimensional irreducible representation of D8 as in (2.84). As
before, the irreducible tube representations associated to C = Rep(D8) may then be
grouped into three different categories:
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• There are eight one-dimensional tube representations F±
x labelled by group

elements x ∈ A that act on the twisted sector Hx
∼= C via the tube actions

F±
x F±

1 F±
u F±

v F±
uv

〈 ax x〉


1
1
1
1


a


1
1

−1
−1


a


1

−1
1

−1


a


1

−1
−1
1


a〈 mx x〉 ± 2 ± 2 ± 2 ± 2 ,

(2.102)

where the index a runs over 1, u, v and uv (in that order).

• There are eight one-dimensional tube representations F±
ρ labelled by the an-

tiderivatives ρ : A → U(1) of χ, which are given by

ρ1 ρ2 ρ3 ρ4

1 1 1 1 1

u −1 1 1 −1

v 1 −1 1 −1

uv 1 1 −1 −1 .

(2.103)

These act on the twisted sector Hm
∼= C via the tube actions

F±
ρ1 F±

ρ2 F±
ρ3 F±

ρ4

〈 am m〉


1
−1
1
1


a


1
1

−1
1


a


1
1
1

−1


a


1

−1
−1
−1


a

〈 mm m
a

〉
± 1

2


1

−1
1
1


a

± 1
2


1
1

−1
1


a

± 1
2


1
1
1

−1


a

± i

2


1

−1
−1
−1


a

,

(2.104)

where the index a runs over 1, u, v and uv (in that order).
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• There are six two-dimensional tube representations Fx,y labelled by distinct
group elements x, y ∈ A that act on the twisted sectors Hx

∼= Hy
∼= C via

Fx,y
〈 ax x〉 〈 ay y〉 〈 my x〉 〈 mx y〉

F1,u

(
[ 1, 1,−1,−1 ]a 0

0 0

) (
0 0
0 [ 1, 1, 1, 1 ]a

) (
0 0
2 0

) (
0 2
0 0

)

F1,v

(
[ 1, 1,−1,−1 ]a 0

0 0

) (
0 0
0 [ 1, 1, 1, 1 ]a

) (
0 0
2 0

) (
0 2
0 0

)

F1,uv

(
[ 1, 1,−1,−1 ]a 0

0 0

) (
0 0
0 [ 1, 1, 1, 1 ]a

) (
0 0
2 0

) (
0 2
0 0

)

Fu,v

(
[ 1,−1, 1,−1 ]a 0

0 0

) (
0 0
0 [ 1, 1,−1,−1 ]a

) (
0 0

−2 0

) (
0 2
0 0

)

Fu,uv

(
[ 1,−1,−1, 1 ]a 0

0 0

) (
0 0
0 [ 1, 1,−1,−1 ]a

) (
0 0

−2 0

) (
0 2
0 0

)

Fv,uv

(
[ 1,−1,−1, 1 ]a 0

0 0

) (
0 0
0 [ 1,−1, 1,−1 ]a

) (
0 0

−2 0

) (
0 2
0 0

)
,

(2.105)
where the index a runs over 1, u, v and uv (in that order).

The fact that the number of irreducible tube representations (twenty-two) for Rep(D8)
is the same as for HilbD8 (see subsection 2.4.1.2) is not a coincidence. Rather, it
follows from the ‘gauge-invariance’ of the Drinfeld centre, i.e.

Z(HilbG) ∼= Z(Rep(G)) (2.106)

for any finite group G, which is an instance of a more general result12 due to Schauen-
burg [102]. More concretely, we can motivate the equivalence (2.106) as follows:

12 Concretely, the result obtained in [102] can be described as follows: Given a theory T with fusion
category symmetry C, we can try to ‘gauge’ a subsymmetry of C by choosing an algebra object
A ∈ C and placing it on a fine enough defect network inside correlation functions of T . The
symmetries of the resulting theory T ′ = T /A are then described by the category C′ = A CA of
A-bimodules in C [103]. In particular, it was shown in [102] that there exists a natural equivalence

Z(C) ∼= Z(A CA) (2.107)

between the corresponding Drinfeld centres. Physically, this may be understood from the fact
that the process of discrete gauging in reversible, so that the (twisted sector) operator content of
T ′ must be a (non-trivial) rearrangement of the operator content of T . In particular, any tube
representation of C must give rise to a tube representation of C′ and vice versa, which, using (2.44),
yields the equivalence (2.107). In the case where C = HilbG for some finite group G, choosing
A = C[G] yields C′ = Rep(G), which, plugged into (2.107), yields the equivalence (2.106). More
generally, one may consider anomalous group symmetries G and gauge non-anomalous subgroups
H ⊂ G, which leads to the notion of so-called group-theoretical fusion categories [64, 104].
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Suppose that we are given an object z ∈ Z(HilbG). By definition, this means that z
corresponds to a pair z = (U, τ) consisting of

1. a finite-dimensional G-graded Hilbert space U = ⊕
x∈GUx ,

2. a collection τ of unitary linear maps τg : U ⊗ Cg → Cg ⊗ U labelled by group
elements g ∈ G such that

(Cg ⊗ τh) ◦ (τg ⊗ Ch) = τg·h . (2.108)

From this, we would like to construct a corresponding object z′ ∈ Z(Rep(G)), which
is again given by a pair z′ = (R,φ) consisting of

1. a unitary representation R of G,

2. a collection φ of unitary intertwiners φS : R⊗ S → S ⊗R labelled by (arbitrary)
representations S of G such that

(S ⊗ φT ) ◦ (φS ⊗ T ) = φS⊗T . (2.109)

To do this, we note that upon decomposing U into its graded components Ux and
identifying Cg ⊗ Ux ∼= Ugx, we can view the linear maps τg as unitary automorphisms
of U that shift the grading according to

τg : Ux → Uxg , (2.110)

where xg = g−1xg. In particular, setting Rg := τg−1 yields a collection of unitary
automorphisms, which as a consequence of (2.108) define a unitary representation R

of G on U . Given another representation S of G on a Hilbert space V , we can define
an associated linear map φS : U ⊗ V → V ⊗ U via

u⊗ v 7→
∑
x∈G

Sx(v) ⊗ ux , (2.111)

which can be checked to yield a unitary intertwiner between the tensor product
representations R ⊗ S and S ⊗ R. Furthermore, one can check that the collection
φ := {φS}S of intertwiners satisfies condition (2.108). If we set z′ := (R,φ), then
the mapping z 7→ z′ establishes the desired equivalence (2.106) between the Drinfeld
centres of HilbG and Rep(G).

We can apply the above construction to our case of interest, G = D8, in order to
obtain an explicit relation between the irreducible tube representations of HilbD8 and
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Rep(D8). Concretely, using the same notation as in subsections 2.4.1.2 and 2.4.2.2,
we arrive at the following 1:1-correspondence:

HilbD8 Rep(D8)

F(1,1) F+
1

F(1,u) F+
u

F(1,v) F+
v

F(1,uv) F+
uv

F(1,m) F+
ρ3

F(r2,1) F−
1

F(r2,u) F−
u

F(r2,v) F−
v

F(r2,uv) F−
uv

F(r2,m) F−
ρ3

F(r,1) F1,v

F(r,r̂) F−
ρ4

F(r,r̂2) Fu,uv

F(r,r̂3) F+
ρ4

F(s,1) F1,u

F(s, r̂2) F+
ρ2

F(s,ŝ) Fv,uv

F(s, ŝ · r̂2) F−
ρ2

F(rs,1) F1,uv

F(rs, r̂2) F+
ρ1

F(rs, r̂s ) Fu,v

F(rs, r̂2 · r̂s ) F−
ρ1

.

(2.112)

2.4.3 Fibonacci Symmetry

As a last example, we consider a symmetry category C with only two simple objects
denoted by 1 and τ , whose fusion rules are given by

τ ⊗ τ = 1 ⊕ τ . (2.113)

The solution to the pentagon equation for the associator in this case takes the form

(2.114)

where the self-inverse (2×2)-matrix A is given by [105]

A =
(

−a 1/λ
−aλ a

)
. (2.115)

Here, a ∈ R is one of the two solutions of the quadratic equation a2 = a+ 1 given by

a± = 1
2
(
1 ±

√
5
)

(2.116)

and λ ∈ C× is a gauge parameter that describes a family of equivalent fusion categories
for fixed a. Up to equivalence, there are hence only two distinct fusion categories
with fusion rules (2.113), which correspond to choosing a = a− and a = a+ and which
are called the Fibonacci (Fib+) and the Yang-Lee category (Fib−), respectively. The
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reason for this (perhaps confusing) notation is that the dimension of the non-invertible
self-dual object τ in each case is given by

dim(τ) = − 1
a

≡

a+ > 0 for Fib+

a− < 0 for Fib−
. (2.117)

Furthermore, since the matrix A is unitary if and only if

|λ|2 = − 1
a
, (2.118)

we see that only Fib+ admits the structure of a unitary fusion category.

The tube algebra associated to Fib± was computed in [4] and is given by the seven-
dimensional algebra that is spanned by the basis vectors

〈 11 1〉 , 〈 τ1 1〉 , 〈 ττ 1〉 , 〈 τ1 τ〉 ,〈 1τ τ〉 , 〈 ττ τ
1
〉
,
〈 ττ τ

τ

〉
,

(2.119)

whose algebra multiplication is given by

〈 τ1 1〉 ◦
〈 τ1 1〉 =

〈 11 1〉 +
〈 τ1 1〉 ,〈 ττ 1〉 ◦

〈 τ1 1〉 = a ·
〈 ττ 1〉 ,〈 τ1 τ〉 ◦

〈 ττ 1〉 =
〈 11 1〉 + a ·

〈 τ1 1〉 ,〈 ττ τ
1
〉

◦
〈 ττ 1〉 = −a ·

〈 ττ 1〉 ,〈 ττ τ
τ

〉
◦
〈 ττ 1〉 = a2 ·

〈 ττ 1〉 ,〈 τ1 1〉 ◦
〈 τ1 τ〉 = a ·

〈 τ1 τ〉 ,〈 ττ 1〉 ◦
〈 τ1 τ〉 = −a ·

〈 1τ τ〉 +
〈 ττ τ

1
〉

+ a2 ·
〈 ττ τ

τ

〉
,〈 τ1 τ〉 ◦

〈 ττ τ
1
〉

= −a ·
〈 τ1 τ〉 ,〈 τ1 τ〉 ◦

〈 ττ τ
τ

〉
= a2 ·

〈 τ1 τ〉 ,〈 ττ τ
1
〉

◦
〈 ττ τ

1
〉

= −a3 ·
〈 1τ τ〉 + a2 ·

〈 ττ τ
τ

〉
,〈 ττ τ

τ

〉
◦
〈 ττ τ

τ

〉
= −a2 ·

〈 1τ τ〉 +
〈 ττ τ

1
〉

+ a3 ·
〈 ττ τ

τ

〉
,〈 ττ τ

1
〉

◦
〈 ττ τ

τ

〉
=
〈 ττ τ

τ

〉
◦
〈 ττ τ

1
〉

= a2 ·
〈 1τ τ〉 − a2 ·

〈 ττ τ
τ

〉
.

(2.120)

Here, we implicitly understand that a = a− for Fib+ and a = a+ for Fib− as before.
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Using (2.26), the ∗-structure13 can be computed to be

〈 τ1 1〉∗ =
〈 τ1 1〉 ,〈 ττ 1〉∗ = −1
a

·
〈 τ1 τ〉 ,〈 τ1 τ〉∗ = − a ·
〈 ττ 1〉 ,〈 ττ τ

1
〉∗ = − a ·

〈 ττ τ
1
〉

− a ·
〈 ττ τ

τ

〉
,〈 ττ τ

τ

〉∗ =
〈 ττ τ

1
〉

+ a ·
〈 ττ τ

τ

〉
,

(2.121)

where again a = a− for Fib+ and a = a+ for Fib−. The associativity of the algebra
multiplication as well as its compatibility with the ∗-structure can be checked to hold
as a consequence of the identity a2 = a+ 1.

Both for Fib+ and Fib−, there is a total of four irreducible tube representations, which
can be described as follows (here, we again take a = a∓ for Fib±):

• There is a one-dimensional tube representation F1 that acts on the twisted sector
H1 ∼= C via the non-trivial tube action

F1
(〈 τ1 1〉) = − 1

a
. (2.122)

This is a ∗-representation for both Fib±.

• There are two one-dimensional tube representations F±
τ that act on the twisted

sector Hτ
∼= C via the non-trivial tube actions

F±
τ

(〈 ττ τ
1
〉)

= x± ,

F±
τ

(〈 ττ τ
τ

〉)
= 1

a
·
(
1 − x±

a

)
,

(2.123)

where x± are the two solutions of x2 + x+ a2 = 0 given by

x± = − 1
2 ± i ·

√
a+ 3

4 . (2.124)

The latter are related by x− = (x+)∗ and x+ · x− = a2. We have that F±
τ are

∗-representations for both Fib±.

13 Although Fib− is not unitary, (2.121) still defines an antilinear involution on its tube algebra.
However, in contrast to Tube(Fib+), the latter is not a C*-algebra.
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• There is one two-dimensional representation F1,τ that acts on the twisted sectors
H1 ∼= Hτ

∼= C via the non-trivial tube actions

F1,τ
(〈 τ1 1〉) =

(
a 0
0 0

)
,

F1,τ
(〈 ττ τ

1
〉)

=
(

0 0
0 −a

)
,

F1,τ
(〈 ττ τ

τ

〉)
=

(
0 0
0 a2

)
,

F1,τ
(〈 ττ 1〉) = λ ·

(
0 0

1 + ia 0

)
,

F1,τ
(〈 τ1 τ〉) = 1

λ
·
(

0 1 − ia
0 0

)
.

(2.125)

Here, λ ∈ C× is a gauge parameter that describes equivalent tube representations.
One can check that these are ∗-representations if and only if

|λ|2 = − 1
a
, (2.126)

which admits a solution only for Fib+ (where a = a− so that −1/a− = a+ > 0).
As a result, we see that the non-unitary Yang-Lee category Fib− admits a tube
representation which is not a ∗-representation.
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3
T H R E E D I M E N S I O N S

In this chapter, we consider generalised symmetries in three spacetime dimensions
that are described by a fusion 2-category C. We construct the associated tube 1- and
2-categories, which capture the action of C on twisted sector local and line operators,
respectively. We classify their irreducible 1- and 2-representations using a higher-
dimensional analogue of the sandwich construction and we provide explicit examples
that include anomalous 2-group symmetries as well as non-invertible 1-form symmetries.
The discussion is based on work performed in collaboration with Mathew Bullimore
and Andrea Grigoletto [1, 2] as well as the single-author works [3, 4].

3.1 Preliminaries

In this section, we provide some brief mathematical background on the theory of fusion
2-categories, which describe finite bosonic generalised symmetries in three spacetime
dimensions (for a more comprehensive account we refer the reader to [66]). Concretely,
given a fusion 2-category C, its objects, 1- and 2-morphisms correspond to topological
surface defects, their line interfaces and local junctions, respectively, i.e.

(3.1)

Moreover, C comes equipped with a variety of additional structures that capture the
topological nature of symmetry defects, the most salient of which we summarise below:

• Finite semisimplicity: We assume that C is enriched over Vect, meaning
that the 2-morphism spaces 2HomC(φ,ψ) are finite-dimensional complex vector
space for all 1-morphisms φ and ψ, such that the (vertical and horizontal)
composition of 2-morphisms is linear. In particular, this means that for any
objects A,B ∈ C, the 1-morphism space HomC(A,B) is a linear 1-category,
which we assume to be finite-semisimple. As a result, we can decompose any
1-morphism φ : A → B into a finite direct sum of simple morphisms σi, which are
such that 2HomC(σi, σj) = δij C. Furthermore, we assume that every 1-morphism

111
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φ : A → B has an adjoint, which is a 1-morphism φ̂ : B → A (viewed as the
orientation reversal of φ) together with unit and counit 2-morphisms

(3.2)

satisfying suitable zig-zag relations, such that ̂̂φ ∼= φ [66]. Using this, we can
define the left and right traces of a 2-endomorphism Θ ∈ 2EndC(φ) by

(3.3)

where we left the labelling of unit and counit 2-morphisms implicit (also note
that trL(Θ) ∈ EndC(A) while trR(Θ) ∈ EndC(B), which means that for generic
A and B the left and right traces of 2-morphisms are not comparable).

As for 1-morphisms, we assume that we can decompose any object in C into a
direct sum of a finite number of simple objects Si ∈ C, i.e.

A ∼=
n

⊞
i=1

(Si)⊞Ai , (3.4)

where each Si is such that idSi ∈ EndC(S) is simple (or equivalently such that
2EndC(idSi) ∼= C) and Ai = dim(2HomC(idA, idSi)) ∈ N. However, unlike in
the case of semisimple 1-categories, the 1-morphism space between two non-
isomorphic simple objects Si and Sj need not be trivial. Rather, we say that Si
and Sj are in the same component if there exists a non-zero 1-morphism between
them. The set of components π0(C) is given by the set of simple objects in C
modulo the equivalence relation of being in the same component1. Alternatively,
we can describe π0(C) as the set of simple objects in C modulo the notion of
‘condensation’ [106, 107]: Given two objects A and B, a condensation from A

onto B (denoted by A ↩→ B) consists of 1- and 2-morphisms

(3.5)

1 This is indeed an equivalence relation due to the fact that every object has an identity 1-morphism,
the composition of two non-zero 1-morphisms between simple objects is non-zero [66], and every
1-morphism has an adjoint by assumption.
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Given a condensation A ↩→ B, the 1-morphism ε := ı ◦ π defines a so-called
condensation monad in EndC(A), meaning that it is equipped with 2-morphisms

(3.6)

that satisfy Ω ◦ ∆ = idε. Physically, we may then view the surface defect B as a
‘condensate’ obtained by placing the monad ε on a defect network on A, i.e.

(3.7)

We say that C is condensation complete if every condensation monad ε on an
object A is induced by a condensation A ↩→ B in the above manner2. Physically,
this means that all surface defects B that we can construct by ‘gauging’ a
condensation monad ε on a surface A as in (3.7) are already included in C.

• Dagger structure: We assume that C is compatible with reflection positivity
in the sense that there exists a dagger structure

† : HomC(A,B) → (HomC(A,B)op)∗ (3.8)

on the morphism category between any objects A,B ∈ C, which allows us to
reflect local topological junctions in C about a fixed hyperplane, i.e.

(3.9)

Positivity is the statement that there exists a faithful state Γ : 2EndC(φ) → C
on the 2-endomorphism algebra of each 1-morphism φ : A → B, which turns
2EndC(φ) into a C*-algebra for all φ. We assume that the higher coherence
data associated to C as a 2-category (such as 2-associators and unitors for the
composition of 1-morphisms) is unitary w.r.t. the above dagger structure. Fur-
thermore, we assume that the latter is compatible with adjoints in C in the sense
that the functor ∧ : HomC(A,B) → HomC(B,A) that maps φ 7→ φ̂ is a †-functor

2 Given any 2-category C, one may construct its so-called Karoubi envelope, which is the universal
category Kar(C) that contains C as well as all possible condensates (and is hence condensation
complete) [106]. As a result, we can often omit condensations from our discussion in what follows,
since they can be added trivially using the Karoubi envelope.
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with unitary coherence data. This turns C into a so-called †-2-category in the
sense of [108, 109]. A 2-functor F : C → C′ between two †-2-categories is called a
†-2-functor if it restricts to a †-functor HomC(A,B) → HomC′(F (A), F (B)) on
the morphism categories between any objects A,B ∈ C.

• Monoidal structure: We assume that C encodes the fusion of symmetry
defects that corresponds to the parallel collision of topological surfaces and their
interfaces. Mathematically, this can be achieved by endowing C with a monoidal
structure in the sense of [110] (see also [111] for a review):

Definition: A monoidal structure on C consists of an additive linear 2-functor

⊗ : C ⊠ C → C , (3.10)

a distinguished object 1 ∈ C (called the unit) and three natural isomorphisms

α : ⊗ ◦ (⊗ ⊠ Id) ⇒ ⊗ ◦ (Id ⊠ ⊗) ,

λ : (1 ⊗ Id) ⇒ Id ,

ρ : (Id ⊗ 1) ⇒ Id

(3.11)

(called the associator, left and right unitor, respectively), whose coherence re-
lations are controlled by modifications

(3.12)
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(called the pentagonator and 2-unitors, respectively). In addition, there exist
so-called tensocompositor 2-isomorphisms

(3.13)

which, together with the above, satisfy suitable coherence relations [110]. An
additive linear 2-functor F : C → C′ between two monoidal 2-categories is called
a monoidal 2-functor if it preserves the monoidal unit and is equipped with a
natural isomorphism ν : ⊗′ ◦ (F ⊠ F ) ⇒ F ◦ ⊗ and a modification

(3.14)

(where we omitted associators) that satisfies suitable coherence relations [110].

Pictorially, we represent the monoidal product as the result of bringing the
corresponding topological symmetry defects together in a parallel fashion:

(3.15)

We will often omit any higher coherence data pertinent to associators, unitors,
and pentagonators from graphical representations of symmetry defects in what
follows. We depict the monoidal unit 1 ∈ C by the invisible / transparent surface
defect and we assume that it is a simple object in C, i.e. 2EndC(id1) = C. We
require the monoidal structure to be compatible with the dagger structure in the
sense that ⊗ : C ⊠ C → C is a †-2-functor and all higher coherence data pertinent
to associators, unitors, pentagonars, and tensocompositors is unitary. In this
case, we call C unitary fusion 2-category.

• Dual structure: We assume that every object A ∈ C has a dual A∨ ∈ C (viewed
as the orientation reversal of A) together with evaluation and coevaluation
1-morphisms as well as cusp and casp 2-morphisms

(3.16)
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that satisfy suitable swallowtail relations [66]. The map A 7→ A∨ then extends
to an op-monoidal 2-functor ∨ : C → C that acts on 1- and 2-morphisms via

(3.17)

A pivotal structure on C is a natural isomorphism ξ : ∨2 ⇒ IdC together with
a modification ΞA : (ξA)∨ ∼⇒ ξA∨ satisfying suitable coherence relations. A
pivotal structure is called spherical if the associated front and back traces of
2-endomorphisms Θ ∈ EndC(idA) agree, i.e.

(3.18)

where we omitted ξA from the graphical notation. In this case, we define the
dimension of an object A ∈ C by dim(A) := TrF/B(id2

A). Similarly, we define
the dimension of a 1-morphism φ by3 dim(φ) := TrF/B(trL/R(idφ)). We assume
the dual structure to be compatible with the dagger structure on C in the sense
that ∨ : C → C is a †-2-functor with unitary higher coherence data and that the
pivotal structure has unitary 2-morphism components.

3.2 1-Twisted Sectors

In this section, we discuss the action of the fusion 2-category symmetry C on 1-twisted
sectors, i.e. local operators attached to topological line defects. We construct the
corresponding tube category and show how its irreducible representations can be
classified using a higher-dimensional analogue of the sandwich construction. We
provide explicit examples that include anomalous 2-groups symmetries as well as
non-invertible 1-form symmetries.

3.2.1 Tube Category

The tube category associated to a fusion 2-category C captures the possible linking
configurations of twisted sector local operators in three dimensions with symmetry
defects in C. Concretely, following [2], we define the tube category TC associated to C
to be the additive linear category whose

3 Here, we use the fact that the front trace obeys TrF (trL(Θ)) = TrF (trR(Θ)) for any 2-endomorphism
Θ [66]. A similar relation holds for the back trace.
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• objects are given by genuine lines µ in the loop space ΩC := EndC(1) of C, i.e.

(3.19)

• morphisms between objects µ, ν ∈ ΩC form the quotient vector space

HomTC(µ, ν) :=
⊕
A∈C

2HomC(A⊗µ, ν⊗A)
/

∼ (3.20)

(where the sum runs over all objects A ∈ C) of local intersection 2-morphisms

(3.21)

in C subjected to the equivalence relation that is generated by

(3.22)

where we left the labelling of unit and counit 2-morphisms implicit.

Physically, the equivalence relation (3.22) means that we should think of the symmetry
defect A as being wrapped on a 2-sphere. Mathematically, it renders the morphism
spaces in (3.20) finite-dimensional. Concretely, let A ∈ C be an arbitrary object and
consider a decomposition A ∼= ⊞iSi of A into a finite number of simple objects Si
(possibly with multiplicities). Let us denote by

ıi : Si → A and πi : A → Si (3.23)

the associated inclusion and projection 1-morphisms obeying ⊕i ıi ◦ πi ∼= idA with
associated inclusion and projection 2-morphisms

Ii : ıi ◦ πi ⇒ idA and Pi : idA ⇒ ıi ◦ πi (3.24)

satisfying the completeness relation id2
A = ∑

i Ii ◦ Pi. Upon inserting the latter into
(3.21), we then obtain the relation

(3.25)
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where we defined the modified inclusion and projection 2-morphisms P

(3.26)

If we denote the equivalence class of (3.21) under the relation (3.22) by

〈 A
ν µ

Φ
〉

∈ HomTC(µ, ν) , (3.27)

we can rewrite equation (3.25) schematically as the morphism identity

〈 A
ν µ

Φ
〉

=
∑

i

〈 Si
ν µ

Ĩi◦Φ◦P̃i

〉
. (3.28)

We can decompose the above even further using the notion of condensation. Concretely,
given a condensation S ↩→ S′ between simple objects S and S′, we have that

(3.29)

As a result, we see that we can reduce the sum in (3.28) to a sum over a fixed set of
representatives S of simple objects modulo condensation. In particular

HomTC(µ, ν) ∼=
⊕

[S]∈π0(C)

[
2HomC(S⊗µ, ν⊗S) / ∼

]
, (3.30)

which shows that the morphism spaces in TC are finite-dimensional as claimed. The
composition of morphisms in TC is induced by the vertical stacking

(3.31)

which we denote schematically by

〈 A
σ ν

Φ
〉

◦
〈 B
ν µ

Ψ
〉

=
〈 A⊗B
σ µ

Φ◦Ψ
〉
. (3.32)

Furthermore, the tube category possesses a natural †-structure that is induced by

(3.33)
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(where we left the labelling of evaluation and coevaluation 1- and cusp and casp
2-morphisms implicit) and that we denote schematically by

〈 A
ν µ

Φ
〉† =

〈 A∨
µ ν

Φ†

〉
. (3.34)

Since Γ
(〈 A
σ σ

Φ
〉)

:= δA,1 ·Φ defines a faithful state on the endomorphism algebra of
each simple line σ ∈ ΩC, we see that EndTC(σ) is a C*-algebra for all σ. In particular,
we obtain a C*-structure on the tube algebra

Tube(C) := EndTC

(⊕
[σ]∈π1(C)

σ

)
(3.35)

(where we denoted π1(C) := π0(ΩC)), which provides an alternative description of
linking configurations of twisted sector local operators in three dimensions [2].

3.2.2 Tube Representations

Given a three-dimensional quantum field theory with fusion 2-category symmetry C,
it was proposed in [2] that twisted sector local operators transform in representations
of the tube category associated to C, which are additive linear functors

F : TC → Vect (3.36)

from TC into the category of vector spaces and which we will again call tube represen-
tations in what follows. Concretely, any such tube representation F assigns

• to each object µ ∈ ΩC a vector space Hµ := F(µ) that describes twisted sector
local operators O sitting at the end of the topological line defect µ, i.e.

(3.37)

• to each morphism
〈 A
ν µ

Φ
〉

∈ HomTC(µ, ν) a linear map

F
(〈 A
ν µ

Φ
〉)

: Hµ → Hν (3.38)

that describes how operators O in the µ-twisted sector get mapped to operators
in the ν-twisted sector upon being linked with the symmetry defect A, i.e.

(3.39)



120 three dimensions

We denote the category of tube representations and intertwiners between them by

Rep(TC) := [TC,Vect] . (3.40)

For a given tube representation F , we can again use the operator-state map to endow
the twisted sectors Hµ with an inner product structure4, which we assume to be
compatible with the action of the tube category in the sense that

F
(〈 A
ν µ

Φ
〉†) != F

(〈 A
ν µ

Φ
〉)†

(3.41)

for all
〈 A
ν µ

Φ
〉

∈ HomTC(µ, ν) (where the † on the right hand side denotes the adjoint
of linear maps). Mathematically, this means that we assume F to lift to a †-functor

F : TC †→ Hilb , (3.42)

which we will call a tube †-representation in what follows. We denote the category of
all tube †-representations and intertwiners between them by

Rep†(TC) := [TC,Hilb]† . (3.43)

Clearly, every tube †-representation reduces to an ordinary tube representation upon
forgetting the underlying Hilbert space structure.

As in two dimensions, a useful way to classify the irreducible tube (†-)representations
of a fusion 2-category C is given by the sandwich construction. In this picture, we
view a three-dimensional theory T with generalised symmetry C as being attached
to a four-dimensional ‘bulk’, which hosts topological defects that ‘commute’ with all
other symmetry defects in C and hence form the centre of C:

Definition: Given a fusion 2-category C, its Drinfeld centre is the 2-category Z(C)
whose objects are given by triples z = (U, τU,−,ΛU,−, ·) consisting of

1. an object U ∈ C in the fusion 2-category C,

2. a half-braiding for U , i.e. a 2-natural isomorphism τU,− : U ⊗ − ⇒ − ⊗ U ,

3. an invertible modification ΛU,−, · : (− ⊗ τU, ·) ◦ (τU,− ⊗ ·) ⇛ τU,−⊗ · with compo-
nent 2-isomorphisms ΛU,A,B : (A ⊗ τU,B) ◦ (τU,A ⊗ B) ⇒ τU,A⊗B that satisfy
suitable coherence relations [112].

4 Concretely, consider a 2-sphere S2
ε of radius ε > 0 centred around a local operator

O ∈ Hµ in the µ-twisted sector. Using the operator-state map, this induces a state
|O⟩ε in the Hilbert space associated to the (punctured) S2

ε . Given another µ-twisted
sector local operator O′, we then define its inner product with O to be ⟨O|O′⟩ε, which
is independent of ε if we assume time evolution along the radial direction to be unitary.
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Pictorially, we represent the components τU,A and ΛU,A,B as ‘crossings’ that tell us
how the object U can be moved across any other topological defects A,B ∈ C:

(3.44)

Similarly to the two-dimensional case, the Drinfeld centre inherits the structure of a
fusion 2-category that is equipped with a canonical braiding.

For the purpose of describing 1-twisted sector operators using the sandwich construc-
tion, we are interested in the genuine topological lines in the four-dimensional bulk,
which form the loop space ΩZ(C) that can be described as follows [112]:

Proposition: The objects in the loop space ΩZ(C) of the Drinfeld centre can be
described by pairs ρ = (ω, Tω,−) consisting of

1. an object ω ∈ C in loop space ΩC,

2. a half-braiding for ω, i.e. a collection of 2-isomorphisms Tω,A : ω ⊗A ⇒ A⊗ ω

indexed by objects A ∈ C that satisfy suitable coherence relations [112].

Pictorially, we again represent the components Tω,A as crossings that tell us how the
line defect ω can be moved across any other topological defect A ∈ C:

(3.45)

We can use the above to associate to each object ρ = (ω, Tω,−) ∈ ΩZ(C) in the loop
space of the Drinfeld centre a tube representation Fρ ∈ Rep(TC) as follows [2]:

• To an object µ ∈ ΩC, the functor Fρ assigns the vector space Hµ := 2HomC(ω, µ)
of local junction 2-morphisms

(3.46)

We will denote the elements of Hµ by
∣∣ vµ ω〉 in what follows. If µ is simple, Hµ

is a Hilbert space whose inner product is defined by

w ◦ v† =: ⟨v, w⟩ · idµ . (3.47)

If µ is not simple, we obtain a Hilbert space structure on Hµ by decomposing µ
into its simple components.
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• To a morphism
〈 A
ν µ

Φ
〉

∈ HomTC(µ, ν), the functor Fρ assigns the linear map
from Hµ to Hν that sends a local junction v ∈ 2HomC(ω, µ) to

(3.48)

(where we left the labelling of evaluation and coevaluation 1- and unit and counit
2-morphisms implicit). Schematically, we write this as

Fρ
(〈 A
ν µ

Φ
〉) ∣∣ vµ ω〉 =

∣∣ vµ ων
A

Φ
〉
. (3.49)

As a special case of the above, we can consider the tube representation := Fid1

associated to the identity 1-morphism id1 = (id1, id2
−) of the monoidal unit 1 ∈ Z(C),

which we will call the trivial tube representation in what follows. The latter acts on
the untwisted sector Hid1

∼= C via the multiplicative factors

(〈 Aid1 id1
Φ
〉)

= Tr(Φ) . (3.50)

It was proposed in [2] that the assignment ρ 7→ Fρ extends to an equivalence

ΩZ(C) ∼= Rep(TC) (3.51)

of linear categories. One can check that the functor Fρ associated to ρ = (ω, Tω,−) is
a †-functor if and only if the components Tω,A of the half-braiding are unitary for all
A ∈ C. If we define the collection of such ρ to form the unitary loop space ΩZ †(C) of
the Drinfeld centre, this yields an equivalence

ΩZ †(C) ∼= Rep†(TC) (3.52)

of linear †-categories. In particular, the simple objects of ΩZ †(C) correspond to the
irreducible †-representations of TC. If furthermore ΩZ †(C) = ΩZ(C), then every tube
representation of C is equivalent to a †-representation.

We can again visualise the above construction by viewing the three-dimensional theory
T with generalised symmetry C as an interval compactification of a four-dimensional
Symmetry TFT, which in this case can be identified with the Douglas-Reutter TQFT
based on C (whose 2-category of surface and line defects is given by Z(C)) [66]. The
latter is again equipped with two boundary conditions:
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1. A canonical topological boundary condition BC on the left that supports the
symmetry C and that is independent of the theory T under consideration. In
particular, the bulk-to-boundary map is given by the forgetful functor Z(C) → C
that sends objects z = (U, τU,−,ΛU,−, ·) 7→ U and lines ρ = (ω, Tω,−) 7→ ω.

2. A physical boundary condition BT on the right that depends on the underlying
theory T and that is non-topological in general.

The spectrum of twisted sector local operators O that transform in a given tube
representation Fρ associated to some ρ ∈ ΩZ(C) may then be viewed as the spectrum
of topological junctions v between twisted line defects µ ∈ ΩC on the left and the
bulk line ρ stretched between the two boundaries of the Symmetry TFT:

(3.53)

Here, O0 denotes a fixed (and generically non-topological) local operator that termi-
nates ρ on right boundary. The linking action of the tube category on the operators
O may then be computed using (3.48).

We can offer yet another perspective on the above discussion that uses the notion of
the tube algebra Tube(C) associated to C as defined in (3.35), whose ∗-representations
are in 1:1-correspondence with †-representations of the tube category [2], i.e.

Rep∗(Tube(C)) ∼= Rep†(TC) . (3.54)

One way to see this is by linking twisted sector local operators attached to simple lines
σ ∈ ΩC with symmetry defects U ∈ C that can be pushed into the four-dimensional
bulk (and hence form part of the defining data of an object z = (U, τU,−,ΛU,−, ·) ∈ Z(C)
in the Drinfeld centre). We denote the corresponding tube algebra element by

〈 U
σ σ

τU,σ

〉
=:

〈 z
σ σ〉 (3.55)

in what follows. As a consequence of the coherence relations obeyed by the half-braiding
τU,−, this then has the property that

〈 A
σ′ σ

Φ
〉

◦
〈 z
σ σ〉 =

〈 z
σ′ σ′〉

◦
〈 A
σ′ σ

Φ
〉

(3.56)
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for all
〈 A
ν µ

Φ
〉

∈ Tube(C). Furthermore, its algebra involution is given by5

〈 z
σ σ〉∗ =

〈 z∨
σ σ〉 , (3.57)

where z∨ denotes the dual of z in Z(C). Using the sandwich picture (3.53), it is
then easy to see that the linking action of

〈 z
σ σ〉 on twisted sector local operators O

transforming in a tube representation Fρ associated to some ρ ∈ ΩZ(C) is given by

(3.58)

where dz := dim(z) and we defined the multiplicative factor6

(3.59)

One can show that Szρ depends on z and ρ only up to condensation and isomorphism,
respectively, so that we obtain a well-defined pairing [113, 114]

S : π0(Z(C)) × π1(Z(C)) → C (3.60)

called the generalised S-matrix of Z(C). The latter has the following properties:

1. It is a square-matrix.

2. It satisfies Sz∨ρ = S ∗
zρ.

3. It is invertible.

In addition, S obeys the (generalised) Verlinde formula

Sxρ · Syρ =
∑
z

N z
xy · Szρ , (3.61)

where the (generically non-integer) coefficients N z
xy ∈ C capture the algebra products

〈 x
µ µ〉 ◦

〈 y
µ µ〉 =

∑
z

dx ·dy
dz

·N z
xy ·

〈 z
µ µ〉 . (3.62)

5 More precisely, equation (3.57) holds as long as z = (U, τU,−,ΛU,−, ·) lies in the unitary Drinfeld
centre Z†(C), meaning that the top components associated to the half-braiding τU,− and the
modification ΛU,−, · are all unitary. We assume that Z†(C) = Z(C) in what follows.

6 Here, we make use of the natural braiding on the Drinfeld centre Z(C).
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Here, ∑z denotes a sum over fixed representatives of elements in π0(Z(C)). Together
with the Verlinde formula, this implies that the linear combinations

eσρ :=
∑
z

1
dz

· (S−1)ρz ·
〈 z
σ σ〉 (3.63)

define a collection of orthogonal self-adjoint idempotents in Tube(C) that are indexed
by [σ] ∈ π1(C) and [ρ] ∈ π1(Z(C)) [4], i.e. we have that

eσρ ◦ eσ
′
ρ′ = δρρ′ · δσσ′ · eσρ and (eσρ )∗ = eσρ . (3.64)

Using this, we can construct the minimal central idempotents in Tube(C) via

eρ :=
∑
σ

eσρ , (3.65)

where ∑σ denotes a sum over a fixed set of representatives of elements in π1(C). In
particular, we see that the minimal central idempotents are labelled by simple objects
ρ ∈ ΩZ(C), which, together with (3.54), re-establishes the equivalence (3.52) via their
1:1-correspondence with irreducible ∗-representations of Tube(C).

3.2.3 Examples

We conclude this section with two examples of fusion 2-category symmetries and
their associated tube categories / algebras. We discuss anomalous group and 2-group
symmetries as well as generic non-invertible 1-form symmetries.

3.2.3.1 Group Symmetry

We begin by considering an invertible symmetry described by some finite group G with
’t Hooft anomaly specified by a (normalised) 4-cocycle π ∈ Z4(G,U(1)). Physically,
this means that we have simple surface defects labelled by group elements g ∈ G that
fuse according to the group law of G with pentagonator given by

(3.66)

In analogy to two dimensions, we denote the corresponding symmetry 2-category
by7 C = 2HilbπG. The associated tube algebra is simply given by the group algebra
Tube(2HilbπG) = C[G], whose ∗-representations are unitary representations of G.

7 We emphasise that this is simply a notation for now. We will discuss the notion of 2-vector and
2-Hilbert spaces in more detail in section 3.3.1.
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We now aim to rederive this result using generalised S-matrices. As shown in [112],
the Drinfeld centre of C has connected components

π0(Z(2HilbπG)) = Cl(G) (3.67)

given by conjugacy classes [g] in G and the loop space given by

ΩZ(2HilbπG) = Rep(G) , (3.68)

so that π1(Z(2HilbπG)) = Irr(Rep(G)) is the set of isomorphism classes of irreducible
representations ρ of G. The generalised S-matrix in this case is simply given by the
(normalised) character table of G, i.e. corresponds to the canonical pairing

S : Cl(G) × Irr(Rep(G)) → C ,
(
[g], [ρ]

)
7→ Tr(ρ(g))

dim(ρ) . (3.69)

In particular, S is a square-matrix due to the fact that the number of conjugacy
classes in G equals the number of irreducible representations, i.e.

|Cl(G)| = |Irr(Rep)(G)| =: n . (3.70)

In order to simplify notation, we fix for each i ∈ {1, ..., n} a representative gi ∈ G of the
corresponding conjugacy class [gi] ∈ Cl(G) as well as a representative ρi ∈ Rep(G) of
the corresponding isomorphism class [ρi] ∈ Irr(Rep(G)) of irreducible representations
of G. Furthermore, we denote by Gi := Ggi the centraliser of gi and by χi := Tr(ρi(.))
the character associated to the irreducible representation ρi (whose dimension we
denote by di := dim(ρi)). Using this, the S-matrix can be written as the (n×n)-matrix

Sij := S [gi],[ρj ] = χj(gi)
dj

. (3.71)

Using the character orthogonality relations

n∑
k=1

1
|Gk|

· χ∗
i (gk) · χj(gk) = δij , (3.72)

1
|Gi|

·
n∑

k=1
χ∗
k(gi) · χk(gj) = δij , (3.73)

one can check that the S-matrix has the following properties:

1. It is invertible with inverse given by (S−1)ij = di
|Gj | · χ∗

i (gj).

2. It obeys S i∨j = (Sij)∗, where i∨ ∈ {1, ..., n} is such that [g(i∨)] = [(gi)−1].
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3. It satisfies the Verlinde formula

Siℓ · Sjℓ =
n∑

k=1
Nk
ij · Skℓ , (3.74)

where the coefficients Nk
ij ∈ C are given by

Nk
ij = 1

|Gk|
·

n∑
p=1

1
dp

· χp(gi) · χp(gj) · χ∗
p(gk) . (3.75)

By plugging (3.71) into (3.63) and (3.65), we may then compute the minimal central
idempotents in the tube algebra to be

eρ = dim(ρ)
|G|

·
∑
g∈G

χ∗
ρ(g) · eg , (3.76)

which reproduces the well-known formula for minimal central idempotents in the
group algebra C[G] labelled by irreducible representations ρ of G [115].

3.2.3.2 2-Group Symmetry

As another example, let us consider a finite 2-group symmetry [116–137], by which we
mean a quadruple G = (G,A, ▷, α) consisting of the following pieces of data:

1. a finite 0-form symmetry group G,

2. a finite abelian 1-form symmetry group A,

3. a group action8 ▷ : G → Aut(A),

4. a Postnikov class representative α ∈ Z3
▷(G,A).

We will often write G = A[1]⋊αG for a 2-group specified by the above data. Physically,
the above means that, in addition to surface defects labelled by group elements g ∈ G,
we also have line defects labelled by a ∈ A which interact with the former via the
group action ▷ and the Postnikov class α:

(3.77)

Furthermore, we assume that G and A have a mixed ’t Hooft anomaly in the form
of a twisted 2-cocycle λ ∈ Z2

▷(G,A∨) on G with values in the Pontryagin dual group

8 We will often abbreviate the action of a group element g ∈ G on a ∈ A by g ▷ a =: ga.
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A∨ = Hom(A,U(1)) (equipped with the dual G-action), which captures the result of
moving a 1-form defect a ∈ A across the junction of two 0-form defects g, h ∈ G [120]:

(3.78)

We denote the corresponding symmetry 2-category by C = 2HilbλG in what follows.
The tube algebra associated to C is the |G|·|A|-dimensional algebra with basis vectors〈 gga a〉 (where g ∈ G, a ∈ A) that multiply according to

〈 gga a〉 ◦
〈 hhb b〉 = δa,hb · εb(λ)(g, h) ·

〈 ghghb b〉 , (3.79)

where we defined the multiplicative phase

εa(λ)(g, h) := ⟨λ(g, h), gha⟩ . (3.80)

As a result of the cocycle condition obeyed by λ, it satisfies

(dε)a(g, h, k) := εa(h, k) · εa(g, hk)
εa(gh, k) · ε(ka)(g, h) = 1 (3.81)

(where we dropped the notational dependence of ε on λ to improve readability), which
ensures that the algebra multiplication in (3.79) is associative. Using (3.33), the
∗-structure on the tube algebra can be computed to be [4]

〈 gga a〉∗ = µa(g) ·
〈 g−1
a ga〉 , (3.82)

where we defined the multiplicative phase

µa(g) := ε∗
a(g−1, g) . (3.83)

As a consequence of (3.81), it satisfies

µa(g−1) = µ(ag)(g) and dµ = ε̂/ε , (3.84)

where we defined the dual 2-cocycle

ε̂a(g, h) := ε∗
(gha)(h

−1, g−1) . (3.85)

This ensures that the ∗-structure (3.82) is involutory and compatible with the algebra
multiplication. If λ = 1, the above algebra reduces to the groupoid algebra C[A//G]
associated to the group action of G on A.
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In order to classify the irreducible tube representations of C = 2HilbλG , we note that,
as a consequence of the delta-function appearing in (3.79), any such F will decompose
into subrepresentations supported on twisted sectors Hb labelled by elements b ∈ [a] in
the G-orbit of some fixed a ∈ A. If we furthermore restrict to linking with symmetry
defects g ∈ G that lie in the stabiliser Ga := {g ∈ G | ga = a} of a, then

ρ(g) := F
(〈 g
a a〉) (3.86)

defines a projective representation of Ga on the Hilbert space V := Ha with projective
2-cocycle εa(λ) ∈ Z2(Ga, U(1)). Conversely, given a pair (a, ρ) consisting of

1. a representative a ∈ A of a G-orbits [a] ∈ A/G,

2. an irreducible εa(λ)-projective representation ρ of Ga,

we can construct an associated tube representation F(a,ρ) via induction [4]: To this
end, fix for each b ∈ [a] in the G-orbit [a] ⊂ A a representative rb ∈ G such that
(rb)b = a (with ra := 1). Using these, we can define

gb := r(gb) · g · r−1
b ∈ Ga (3.87)

for all g ∈ G and b ∈ [a]. If we denote by V the Hilbert space underlying the projective
representation ρ of Ga, then F(a,ρ) acts on the twisted sectors

Hb =

V if b ∈ [a]

0 otherwise
(3.88)

via the non-trivial induced tube action

F(a,ρ)
(〈 ggb b〉) := κb(g) · ρ(gb) , (3.89)

where we defined the multiplicative phases

κb(g) :=
εb(r(gb), g)
εb(gb, rb)

. (3.90)

As a consequence of (3.81), they satisfy

κb(h) · κ(hb)(g)
κb(gh) = εb(g, h)

εa(g(hb), hb)
, (3.91)

which ensures that F(a,ρ) respects the algebra multiplication (3.79). One can check
that F(a,ρ) is a ∗-representation of the tube algebra if and only if ρ is a unitary
projective representation of Ga.
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All in all, we conclude that the category of ∗-representations of the tube algebra of
C = 2HilbλG admits a direct sum decomposition

Rep∗(Tube(2HilbλG)
) ∼= ⊞

[a]∈A/G
Repεa(λ)(Ga) . (3.92)

In particular, using (3.52), this yields a classification of simple objects in the loop
space ΩZ(2HilbλG) of the Drinfeld centre in terms of pairs (a, ρ) as above.

We now aim to rederive this result using generalised S-matrices. To do this, we exploit
the fact that the Drinfeld centre is gauge-invariant, i.e. Z(C) ∼= Z(C′) if C′ is obtained
by gauging a discrete subsymmetry of C [138]. In particular, if C = 2HilbλG , we can
gauge the 1-form symmetry A to obtain a pure 0-form symmetry Ĝ that is given by
the group extension [5, 6, 57–59, 139]

Ĝ := A∨ ⋊λ G , (3.93)

which as a set is A∨ ×G with group multiplication defined by

(µ, g) · (ν, h) :=
(
µ · gν · λ(g, h), g ·h

)
. (3.94)

This symmetry then has an ’t Hooft anomaly that is parameterised by the 4-cocycle
⟨ . , α⟩ ∈ Z4(Ĝ, U(1)) defined by

⟨ . , α⟩
[
(µ, g), (ν, h), (φ, k), (ψ, ℓ)

]
:=

〈ghkψ, α(g, h, k)
〉
. (3.95)

As a result, we can use the discussion from the previous subsection to access the
Drinfeld centre Z(2HilbλG) ∼= Z(2Hilb⟨ . ,α⟩

Ĝ
). Concretely, its connected components

and loop space can be described as follows:

• The connected components of Z(2HilbλG) are in one-to-one correspondence with
the conjugacy classes of Ĝ = A∨⋊λG. To describe the latter, we note that

(µ,g)(χ, x) = (gχ ·
(
µ/ (gx)µ

)
· τx(g) , gx) (3.96)

for any (µ, g), (χ, x) ∈ Ĝ, where we defined the transgression of λ by

τx(λ)(g) := λ(g, x)
λ(gx, g) . (3.97)

As a consequence of the twisted 2-cocycle condition obeyed by λ, it satisfies

g[τx(h)] · τ(hx)(g)
τx(gh) = λ(g, h)

(ghx)λ(g, h)
, (3.98)
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where we dropped the notational dependence of τ on λ for better readability.
Upon defining Ax := {a ∈ A | xa = a} and using the canonical identification

A∨

{µ/xµ | µ∈A∨}
∼= (Ax)∨ , (3.99)

this shows that we can label the connected components of Z(2HilbλG) by equiva-
lence classes of pairs (x, χ) consisting of a group element x ∈ G and a character
χ ∈ (Ax)∨, where two such pairs (x, χ) and (x′, χ′) are considered equivalent if
there exists a g ∈ G such that

x′ = gx , χ′ = gχ · τx(g) . (3.100)

We will denote the equivalence class of (x, χ) by [x, χ] in what follows.

• The loop space of Z(2HilbλG) corresponds to the set of isomorphism classes of
irreducible representations of Ĝ = A∨⋊λG. It is a standard result that the latter
can be labelled by pairs (a, ρ) consisting of

1. a group element a ∈ A, viewed as a character on A∨,

2. an irreducible representation ρ of the stabiliser Ga of a with projective
2-cocycle ⟨λ, a⟩ ∈ Z2(Ga, U(1)).

The corresponding irreducible representation ρ̂ of Ĝ is given by the induction

ρ̂ = Ind Ĝ
Ĝa

(a⊗ ρ) , (3.101)

where we set Ĝa := A∨⋊λGa. Two such pairs (a, ρ) and (a′, ρ′) are considered
equivalent if ρ̂ and ρ̂ ′ are equivalent as representations of Ĝ. More concretely,
(a, ρ) and (a′, ρ′) are equivalent if there exists a g ∈ G such that

a′ = ga , ρ′ ∼= ⟨σg , ga⟩ ⊗ gρ , (3.102)

where we defined the multiplicative factor

σg(λ)(h) := λ(h, g)
λ(g, hg) . (3.103)

As a result of the twisted 2-cocycle condition for λ, it obeys

h[σg(k)] · σg(h)
σg(hk) = λ(h, k)

gλ(hg, kg) , (3.104)

which ensures that (3.102) defines an equivalence relation. We will denote the
equivalence class of (a, ρ) by [a, ρ] in what follows.
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In terms of the above data, the S-matrix associated to Z(2HilbλG) is the square matrix
that is indexed by equivalence classes [x, χ] and [a, ρ] with entries

S [x,χ],[a,ρ] = Trρ̂(x̂)
dim(ρ̂) , (3.105)

where ρ̂ = Ind Ĝ
Ĝa

(a⊗ ρ) ∈ Rep(Ĝ) and x̂ = (χ, x) ∈ Ĝ. Using the character formula
for induced representations

Trρ̂(x̂) = 1
|Ĝa|

·
∑
ĝ∈ Ĝ :

ĝ x̂∈ Ĝa

Tra⊗ρ
(ĝ x̂) (3.106)

as well as the character orthogonality relation

1
|A|

·
∑
µ∈A∨

µ∗(b) · µ(c) = δb,c , (3.107)

we can then compute that the S-matrix can be expressed as

S [x,χ],[a,ρ] = 1
dim(ρ) · |G|

·
∑
g∈G :

gx∈Ga

⟨τx(g), a⟩ · Trρ(gx) · χ(ag) . (3.108)

From this, we find the minimal central idempotents in Tube(2HilbλG) to be [4]

e(a,ρ) = dim(ρ)
|Ga|2

·
∑

x,g∈G :
gx∈Ga

⟨τx(g), a⟩∗ · Tr∗
ρ(gx) ·

〈 xga ga〉 . (3.109)

In particular, we see that they are labelled by pairs (a, ρ) as before, which reproduces
the decomposition (3.92) of the category of tube representations.

3.2.3.3 Braiding Lines

As a last example, we consider a theory that only has a 1-form symmetry described by
some (unitary) braided fusion (1-)category B. Objects b, b′ ∈ B of the latter correspond
to topological line defects that fuse and braid in three-dimensional spacetime:

(3.110)

In particular, the fusion of line defects need not be invertible. The corresponding
symmetry 2-category is given by Karoubi completion C = ΣB := Kar(BB) of the
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delooping9 of B [140]. Physically, this means that the surface defects in C are all
obtained by condensing suitable line defects in B on the trivial surface. In particular,
this means that C is connected10, i.e. π0(C) = 1. Consequently, using (3.30), the only
non-trivial information contained in the tube category TC is which of its objects are
zero objects (i.e. have an endomorphism space isomorphic to the zero vector space).
To answer this, we note that for any b, b′ ∈ B we have

(3.111)

where ∼ denotes the equivalence relation defined in (3.22) and

(3.112)

denotes the (normalised) S-matrix associated to B with db := dim(b). In particular,

(Sbb′ − 1) · idb ∼ 0 , (3.113)

which implies idb ∼ 0 unless Sbb′ = 1 for all b′ ∈ B. Thus, we see that the non-zero
objects in the tube category are precisely those that form the Müger centre

Z2(B) := {b ∈ B | Sbb′ = 1 for all b′ ∈ B} (3.114)

of B. Since Z2(B) is a finite semisimple category, the Yoneda embedding11 gives a
canonical equivalence [141]

Z2(B) ∼= [Z2(B),Vect] ≡ Rep(TC) , (3.116)

which shows that the irreducible tube representations of C = Σ(B) are labelled by
simple objects in the Müger centre of B. Using (3.51), this reproduces the known
characterisation of the loop space of Z(Σ(B)) [140]. Physically, this means that in
order for a topological line defect b ∈ B to be able to end on a local operator, it has
to braid trivially with all other line defects.

9 Given a monoidal 1-category B, its delooping is the 2-category BB which has a single object ∗
with endomorphism category given by EndBB(∗) = B. One can show that if B is a braided fusion
1-category, then ΣB := Kar(BB) is a fusion 2-category [66].

10 In fact, any connected fusion 2-category C is of the form C = Σ(B), where B ≡ EndC(1) [66].
11 Given a linear category D, the Yoneda embedding is the functor #: D → [D,Vect] that maps

D ∈ D 7→ HomD(−, D) . (3.115)

It is a well known corollary of the Yoneda Lemma that # is fully faithful. If D is finite semisimple,
then # is an equivalence [141].
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3.3 2-Twisted Sectors

In this section, we discuss the action of the fusion 2-category symmetry C on 2-twisted
sectors, i.e. line operators attached to topological surface defects. We construct the
corresponding tube 2-category and describe how its irreducible 2-representations can
be classified using a higher-dimensional analogue of the sandwich construction. We
discuss anomalous 2-group symmetries as an example.

3.3.1 2-Vector Spaces

Given that local operators in a quantum field theory generically form a vector space
(or a Hilbert space via the operator-state map), it is natural to ask what type of
mathematical structure describes collections of extended line operators L. In general,
we expect the latter to form (at least) a category L, whose

• objects are distinct line operators L in the theory,

• morphisms between objects L and K are topological local operators
v that can sit at the junction between the corresponding line
operators as illustrated in Figure 27.

Figure 27

The composition of morphisms in L is given by the collision of topological junctions
inside correlation functions, i.e.

(3.117)

We assume that HomL(L,K) (being a space of local operators) is a complex vector
space for all L and K such that the composition operation (3.117) is bilinear. This
turns L into a linear category. Furthermore, we will assume that L is additive in the
sense that we can form direct sums of line operators L and K, which corresponds to
adding their respective correlation functions:

(3.118)

Lastly, for the purposes of this thesis, we will also assume that L is finite semisimple.
Concretely, this means that we can decompose any line operator in L into a direct sum
of finitely many simple lines Li, which are such that HomL(Li, Lj) = δij C. In analogy
to the case of local operators, we will call such L a (finite-dimensional) 2-vector space,
which leads to the following definition [142]:

Definition: The 2-category 2Vect of 2-vector spaces comprises finite semisimple linear
1-categories, additive linear functors and natural transformations between them.
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We can obtain a more concrete description of the 2-category 2Vect by noting that,
up to equivalence, every L ∈ 2Vect is completely determined by its number n ∈ N of
simple objects Li (and is hence equivalent to Vect⊞n). Any additive linear functor
F : L → L′ between 2-vector spaces may then written as

F (Lj) =
n′⊕
i=1

Vij ⊙ L′
i (3.119)

for some collection of vector spaces Vij ∈ Vect, which can be identified with the
morphism spaces Vij ∼= HomL′(L′

i, F (Lj)). Similarly, we can describe any natural
transformation η : F ⇒ F̃ between two additive linear functors F, F̃ : L → L′ by a
collection of linear maps φij : Vij → Ṽij that determine the component morphisms

ηLj =
n′⊕
i=1

φij ⊙ L′
i . (3.120)

As a result, we can think of the 2-category of finite-dimensional 2-vector spaces as
capturing ‘matrices of vector spaces’, which leads to the following model of 2Vect due
to Kapranov and Voevodsky [143, 144]:

Proposition: The 2-category 2Vect of finite-dimensional 2-vector spaces can be
modelled by the 2-category Mat(Vect) whose

• objects are non-negative integers n ∈ N,

• 1-morphisms between objects m and n are given by (n × m)-matrices V with
vector space entries Vij ∈ Vect, with composition given by matrix multiplication
using tensor products and direct sums of vector spaces,

• 2-morphisms between 1-morphisms V and W are given by (n×m)-matrices φ
whose entries are linear maps φij : Vij → Wij between the vector space entries
of V and W . The vertical composition of 2-morphisms f and g is given by
entry-wise composition of linear maps. Their horizontal composition is given by
matrix multiplication using tensor products and direct sums of linear maps.

The above shows that we can view 2Vect as a ‘coefficient system’ for arbitrary fusion
2-categories C in the sense that there exists a ‘multiplication 2-functor’

⊡ : 2Vect ⊠ C → C (3.121)

that acts on objects and 1-morphisms via

n ⊠ A 7→ A⊞n ,

(
m

V→ n
)
⊠
(
A

γ→ B
)

7→
(
A⊞m ⊞ijVij ⊙γ

−−−−−−→ B⊞n
)
.

(3.122)
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Given a category L of line operators, we often assume the latter to be compatible with
reflection positivity in the sense that for each topological junction v ∈ HomL(L,K)
there exists an adjoint v† ∈ HomL(K,L) that captures the reflection of v associated
to complex conjugating correlation functions, i.e.

(3.123)

Using the operator-state map, we can further endow the vector spaces HomL(L,K)
with an inner product structure ⟨. |.⟩, which we assume to be compatible with adjoints
in an appropriate sense. This leads to the notion of a 2-Hilbert space [145, 146] (for a
more recent discussion of higher Hilbert spaces we refer the reader to [147]):

Definition: A 2-Hilbert space is an abelian †-category L enriched over Hilb such that
for all morphisms u, v, w in L we have

⟨u ◦ v |w⟩ = ⟨v |u† ◦ w⟩ = ⟨u |w ◦ v†⟩ (3.124)

whenever both sides of the equation are defined. We denote by 2Hilb the 2-category
of all 2-Hilbert spaces, additive linear †-functors and natural transformations between
them. This is itself a †-category upon defining the adjoint of a natural transformation
η : F ⇒ F̃ between †-functors F, F̃ : L → L′ via (η†)L := (ηL)†′ for all L ∈ L.

The above definition implies that every 2-Hilbert space is in fact semisimple [145],
so that we can decompose any L ∈ L into a finite direct sum of simple lines Li
with HomL(Li, Lj) = δij Cλi

, where Cλ with λ > 0 denotes C as a ∗-algebra with
inner product given by ⟨a, b⟩ = λ · a∗ · b. In particular, if we restrict attention to
finite-dimensional 2-Hilbert spaces, we see that any such L can be characterised by its
number n ∈ N of simple objects together with a vector λ⃗ ∈ Rn>0, whose entries we refer
to as the Euler terms associated to L. Since the latter only ever appear as overall
multiplicative factors (and in particular do not interact with symmetry defects), we
will henceforth omit them from our discussion entirely. This then allows us to model
the 2-category of finite-dimensional 2-Hilbert spaces by ‘matrices of Hilbert spaces’
that form the 2-category Mat(Hilb).

3.3.2 Tube 2-Category

The tube 2-category associated to a fusion 2-category C captures the possible linking
configurations of twisted sector line operators in three dimensions with symmetry
defects in C. Concretely, following [2], we define the tube 2-category 2-TC associated
to C to be the additive linear 2-category whose
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• objects are given by objects X ∈ C, i.e.

(3.125)

• morphisms between objects X,Y ∈ C are given by objects of the 1-category

⊞
A∈C

HomC(A⊗X ,Y ⊗A) (3.126)

(where the sum runs over all objects A ∈ C) of intersection interfaces

(3.127)

• 2-morphisms between 1-morphisms φ : A⊗X → Y ⊗A and ψ : B⊗X → Y ⊗B

form the quotient vector space

2Hom2-TC(φ,ψ) :=
⊕

γ :A→B

2HomC(γ ◦ φ, ψ ◦ γ)
/

∼ (3.128)

(where the sum runs over all γ ∈ HomC(A,B)) of intersection 2-morphisms

(3.129)

in C subjected to the equivalence relation that is generated by

(3.130)

Physically, the equivalence relation (3.130) means that we should think of the symmetry
defects A and B as being placed on a cylinder, on which the 1-morphism γ is wrapped
around the compact S1-direction. Mathematically, it renders the 2-morphism spaces
in (3.128) finite-dimensional. Concretely, let γ : A → B be an arbitrary 1-morphism
in C and consider a decomposition γ ∼=

⊕
i σi of γ into a finite number of simples σi

(possibly with multiplicities). Let us denote by

Ii : σi ⇒ γ and Pi : γ ⇒ σi (3.131)
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the associated inclusion and projection 2-morphisms obeying the completeness relation∑
i Ii ◦ Pi = idγ . Upon inserting the latter into (3.129), we then obtain that

(3.132)

which shows that, as a vector space, the 2-morphism space (3.128) decomposes as

2Hom2-TC(φ,ψ) ∼=
⊕
σ

2HomC(σ ◦ φ, ψ ◦ σ) , (3.133)

where σ runs over a set of fixed representatives of isomorphism classes of simple objects
in HomC(A,B). Since the latter is finite semisimple by assumption, we see that the
2-morphism space (3.133) is finite-dimensional as claimed. The (vertical) composition
of 2-morphisms is induced by

(3.134)

Furthermore, the tube 2-category possesses a natural †-structure that is induced by

(3.135)

where we left the labelling of unit and conunit 2-morphisms implicit. This turns 2-TC
into a †-2-category in the sense of section 3.1.

We can obtain similar constraints on 1-morphisms in the tube 2-category by noting
that, given 1-morphisms γ : A → B and η : B⊗X → Y ⊗A in C, the 2-morphisms

(3.136)
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(where we omitted any unit and counit 2-morphisms) obey

(3.137)

and hence establish a 2-isomorphism of 1-morphisms in 2-TC:

(3.138)

In particular, upon decomposing a generic object A ∈ C into its simple components
A ∼= ⊞iSi (possibly with multiplicities) and denoting by

ıi : Si → A and πi : A → Si (3.139)

the associated inclusion and projection 1-morphisms obeying ⊕i ıi ◦πi ∼= idA, we have

(3.140)

If we denote 1-morphisms of the form (3.127) in the tube 2-category by

〈 A
Y X
φ

〉
∈ Hom2-TC(X,Y ) , (3.141)

then we can write (3.140) schematically as 〈 A
Y X
φ

〉 ∼=
⊕

i

〈 Si
Y X
πi◦φ◦ıi

〉. The composition
of 1-morphisms (and horizontal composition of 2-morphisms) is given by

(3.142)

which we denote schematically by 〈 A
Z Y

φ

〉
◦
〈 B
Y X
ψ

〉 = 〈 A⊗B
Z X

φ◦ψ
〉.



140 three dimensions

3.3.3 Tube 2-Representations

Given a three-dimensional quantum field theory with fusion 2-category symmetry C,
it was proposed in [2] that twisted sector line operators transform in 2-representations
of the tube 2-category associated to C, which are additive linear 2-functors

F : 2-TC → 2Vect (3.143)

from 2-TC into the 2-category of 2-vector spaces and which we call tube 2-representations
in what follows. Concretely, any such tube 2-representation F assigns

• to each object X ∈ C a 2-vector space LX := F(X), which describes the category
of line operators L that can sit at the end of the surface defect X, i.e.

(3.144)

• to each 1-morphism 〈 A
Y X
φ

〉
∈ Hom2-TC(X,Y ) a functor

F
(〈 A

Y X
φ

〉)
: LX → LY (3.145)

that describes how lines and junctions in LX get mapped to lines and junctions
in LY upon being wrapped with the symmetry defect A, i.e.

(3.146)

• to each 2-morphism Θ ∈ 2Hom2-TC
(〈 A

Y X
φ

〉
,
〈 B
Y X
ψ

〉) a natural transformation

F(Θ) : F
(〈 A

Y X
φ

〉)
⇒ F

(〈 B
Y X
ψ

〉)
, (3.147)

whose components capture the topological junction operators that result from
shrinking the line defect γ : A → B associated to Θ (cf. (3.129)) to a point, i.e.

(3.148)
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An intertwiner between tube 2-representations F and F ′ is a 2-natural transformation
η : F ⇒ F ′ between the corresponding 2-functors. Concretely, any such η assigns

• to each object X ∈ C an additive linear functor

ηX : LX → L′
X , (3.149)

which, using (3.119), can be identified with a collection HX of vector spaces
(HX)ij that describe (possibly non-topological) local operators O sitting at the
junction between the simple lines L′

i of L′
X and Lj of LX , i.e.

(3.150)

• to each 1-morphism 〈 A
Y X
φ

〉
∈ Hom2-TC(X,Y ) a natural transformation

η〈 A
Y X
φ

〉 : F ′
(〈 A

Y X
φ

〉)
◦ ηX ⇒ ηY ◦ F

(〈 A
Y X
φ

〉)
(3.151)

that can be interpreted as follows: Using (3.119), we can identify the functor
F
(〈 A

Y X
φ

〉) with a collection V of vector spaces Vij that capture topological local
operators v sitting at the junction between simple lines Ki in LY and simple
lines Lj in LX wrapped by the symmetry defect A, i.e.

(3.152)

Using (3.120), we can then identify (3.151) with a collection of linear maps

⊕
a
V ′
ia ⊗ (HX)aj →

⊕
b
(HY )ib ⊗ Vbj (3.153)

that describe how the local operators O are transformed upon being hit with
the topological junction operators v, i.e.

(3.154)
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We denote the 2-category of tube 2-representations and intertwiners between them by

2Rep(2-TC) := [2-TC, 2Vect] . (3.155)

As in the case of local operators, we can classify the irreducible tube 2-representations
using an analogue of the sandwich construction, which yields an equivalence

2Rep(2-TC) ∼= Z(C) , (3.156)

where Z(C) denotes the Drinfeld centre of C as defined in section 3.2.2. Concretely,
given an object z ∈ Z(C) consisting of data z = (U, τU,−,ΛU,−, ·) (cf. (3.44)), we can
construct an associated tube 2-representation Fz as follows [2]:

• To an object X ∈ C, the 2-functor Fz assigns the 2-vector space (a.k.a. finite
semisimple linear category) LX := HomC(U,X) of line interfaces

(3.157)

• To a 1-morphism 〈 A
Y X
φ

〉
∈ Hom2-TC(X,Y ), the 2-functor Fz assigns the functor

from LX to LY that sends interfaces λ, ξ ∈ HomC(U,X) and their junctions to

(3.158)

where we left the labelling of evaluation and coevaluation 1-morphisms implicit.

• To a 2-morphism Θ ∈ 2Hom2-TC
(〈 A

Y X
φ

〉
,
〈 B
Y X
ψ

〉), the 2-functor Fz assigns the
natural transformation between Fz

(〈 A
Y X
φ

〉) and Fz

(〈 B
Y X
ψ

〉) whose components
are induced by the line defect γ : A → B associated to Θ (cf. (3.129)) via

(3.159)
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We can again visualise the above construction pictorially by viewing a three-dimensional
theory T with generalised symmetry C as an interval compactification of the associated
four-dimensional Symmetry TFT with topological and physical boundary conditions BC

and BT , respectively. The spectrum of twisted sector line operators L that transform
in a given tube 2-representation Fz associated to some z ∈ Z(C) may then be viewed
as the spectrum of line interfaces λ between surface defects X ∈ C on the left and the
bulk surface z stretched between the two boundaries of the Symmetry TFT:

(3.160)

Here, L0 denotes a fixed (and generically non-topological) line operator that terminates
z on right boundary. The linking action of the tube 2-category on the operators L
can then be computed using (3.159).

As before, we can use the operator-state map to endow spaces of local operators with
an inner product structure, which we assume to be compatible with a given tube
2-representation F in the sense that the latter lifts to a †-2-functor

F : 2-TC †→ 2Hilb , (3.161)

called a tube †-2-representation in what follows. We denote the category of all tube
†-2-representations and intertwiners between them by

2Rep†(2-TC) := [2-TC, 2Hilb]† . (3.162)

The sandwich construction then yields an equivalence [4]

2Rep†(2-TC) ∼= Z†(C) , (3.163)

where Z†(C) denotes the unitary Drinfeld center of C as before.

A Note on Condensations

When discussing the action of the fusion 2-category C on twisted sector local operators
in section 3.2, we observed that we could restrict ourselves to considering topological
surface defects up to condensations (cf. equation (3.30)), since the latter become
trivial when being placed on a 2-sphere. It is natural to ask to what extent this holds
true when considering the action of surface defects in C on line operators. To this end,
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let A ∈ C be a surface defect and ε a condensation monad on A, i.e. an endomorphism
ε ∈ EndC(A) together with multiplication and comultiplication 2-morphisms

(3.164)

Given a tube 2-representation F : 2-TC → 2Vect, we then have that

E := F
(〈 1
A A

ε

〉)
(3.165)

is a condensation monad on the 2-vector space LA := F(A) with associated multipli-
cation and comultiplication F(Ω) and F(∆), respectively. Since the 2-category 2Vect
of 2-vector spaces is condensation complete, there exists a (unique up to equivalence)
condensation LA ↩→ LB, whose associated condensation monad is given by E [66]. In
particular, the 2-vector space LB can be identified with the image of the surface defect
B that is obtained by condensing ε on A (cf. equation (3.7)). Physically, this means
that the category of twisted sector lines that F associates to the condensation defect
B is determined by the image of the surface defect A and its condensation monads.

Similarly, we can try to understand the wrapping action of condensation defects using
the condensation monad ε. Concretely, consider the 1-morphism

(3.166)

in the tube 2-category and assume that the intersection interface φ is an ε-bimodule,
meaning that it is equipped with left and right action 2-morphisms

(3.167)

that satisfy the compatibility conditions

(3.168)
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Physically, this means that φ descends to a well-defined intersection interface φ for
the condensation defect B obtained from A via (3.7). Moreover, (3.168) together with
(3.164) implies that the 2-endomorphism

(3.169)

of F
(〈 A

Y X
φ

〉) : LX → LY is an idempotent, i.e. e2 = e. Since the morphism category
Hom(LX ,LY ) is idempotent complete in 2Vect, the idempotent e splits, meaning that
there exists a (unique up to isomorphism) D ∈ Hom(LX ,LY ) together with inclusion
and projection 2-morphisms

I : D ⇒ F
(〈 A

Y X
φ

〉) and P : F
(〈 A

Y X
φ

〉)
⇒ D (3.170)

such that P ◦ I = idD and I ◦ P = e. In particular, we can identify D with the image
of the 1-morphism 〈 B

Y X
φ

〉 under F . Physically, this means that the wrapping action
of the condensation defect B on twisted sector line operators is again determined by
the wrapping action of A and its condensation monads.

3.3.4 Example

As an example, let us consider the case C = 2HilbπG of a finite 2-group symmetry
G = A[1] ⋊α G with a pure ’t Hooft anomaly for the 0-form component G that is
specified by a (normalised) 4-cocycle π ∈ Z4(G,U(1)) (cf. (3.66)). The associated
tube 2-category can be described as follows [2]:

• Its objects are given by group elements x ∈ G.

• The 1-morphisms between x, y ∈ G are non-zero if and only if y = gx for some
g ∈ G, in which case they are given by 〈 ggx x

a

〉 (where a ∈ A) with composition

〈 gghy hy
a

〉
◦
〈 hhy y

b

〉
=

〈 ghghy y

a·gb·τy(α)(g,h)
〉
. (3.171)

Here, we denoted by τ(α) the transgression of the Postnikov class representative
α ∈ Z3(G,A) of the 2-group, which is defined by

τx(α)(g, h) := α(g, h, x) · α(ghx, g, h)
α(g, hx, h) . (3.172)

As a consequence of the (twisted) cocycle condition obeyed by α, it satisfies

(dτ)x(α)(g, h, k) ≡
g[τx(h, k)] · τx(g, hk)
τx(gh, k) · τ(kx)(g, h) =

(ghkx)α(g, h, k)
α(g, h, k) . (3.173)
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• The vector space of 2-morphisms between two 1-morphisms is given by

2Hom
(〈 ggx x

a

〉
,
〈 hhx x

b

〉)
= δg,h · C

[
c ∈ A

∣∣ (gx)c/c = b/a
]
. (3.174)

The vertical composition of 2-morphisms is given by multiplication in A. The
horizontal composition of 2-morphisms

c ∈ 2Hom
(〈 gghy hy

a

〉
,
〈 gghy hy

b

〉)
d ∈ 2Hom

(〈 hhy y

a′

〉
,
〈 hhy y

b′

〉) (3.175)

is given by c ⋆ d = c · gd. The †-structure acts on 2-morphisms via the (antilinear
extension of the) group inversion c 7→ c−1.

• The 2-associator for the composition of 1-morphisms is given by

τz(π)(g, h, k) · α(g, h, k) :[〈 ggx x
a

〉
◦
〈 hhy y

b

〉]
◦
〈 kkz z

c

〉
⇒

〈 ggx x
a

〉
◦
[〈 hhy y

b

〉
◦
〈 kkz z

c

〉]
,

(3.176)

where we defined y := kz and x := hy and denoted by τ(π) the transgression of
the ’t Hooft anomaly π given by

τx(π)(g, h, k) := π(g, h, k, x) · π(g, hkx, h, k)
π(g, h, kx, k) · π(ghkx, g, h, k) . (3.177)

As a consequence of the cocycle condition obeyed by π, it satisfies

(dτ)x(g, h, k, l) :=
τx(h, k, l) · τx(g, hk, l) · τ(lx)(g, h, k)

τx(gh, k, l) · τx(g, h, kl) = 1 , (3.178)

which, together with (3.173), ensures that the 2-associator in (3.176) satisfies
the analogue of the pentagon relation.

In order to classify the irreducible tube 2-representations of C = 2HilbπG , it is useful
to ‘skeletonise’ its associated tube 2-category by identifying isomorphic objects and
1-morphisms. Concretely, this can be done via the following two steps:

1. Given group elements x, g ∈ G, we note that the 1-morphisms

〈 ggx x

1
〉

and
〈 g−1
x gx

τx(α)(g−1,g)−1

〉
(3.179)

admit invertible 2-morphisms

1 :
〈 g−1
x gx

τx(α)(g−1,g)−1

〉
◦
〈 ggx x

1
〉

⇒
〈 1
x x

1
〉
,

α(g, g−1, g) :
〈 ggx x

1
〉

◦
〈 g−1
x gx

τx(α)(g−1,g)−1

〉
⇒

〈 1gx gx

1
〉
,

(3.180)
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which establish an isomorphism x ∼= gx as objects in the tube 2-category. Since
two objects x and y are connected if and only if they are conjugates of one
another, this shows that the isomorphism classes of objects in the tube 2-category
are disconnected and labelled by conjugacy classes [x] ∈ Cl(G).

2. For a given conjugacy class with fixed representative x ∈ G, its 1-endomorphisms
are given by 〈 g

x x
a

〉 where g lies in the centraliser Gx ⊂ G of x. From (3.174), two
such endomorphisms 〈 g

x x
a

〉 and 〈 h
x x

b

〉 are connected (and in fact isomorphic) if
and only if g = h and b = a · d for some d that lies in the subgroup

Ax := {xc/c | c ∈ A} ⊂ A . (3.181)

The isomorphism classes of 1-endomorphisms of x can hence be labelled by pairs
([a], g) with [a] ∈ A/Ax and g ∈ Gx, which compose according to

([a], g) ◦ ([b], h) =
([
a · gb ·τx(α)(g, h)

]
, g ·h

)
. (3.182)

We identify the above as the group law of the group extension of Gx by A/Ax

with extension 2-cocycle given by

[τx(α)] ∈ Z2(Gx, [A/Ax]
)
. (3.183)

To summarise, the skeleton of the tube 2-category associated to C = 2HilbπG decom-
poses into disconnected components labelled by conjugacy classes [x] ∈ Cl(G) with
representatives x ∈ G, whose endomorphism categories are given by12 Hilbτx(π)[Gx].
Here, Gx denotes the finite 2-group whose

• 0-form component is given by the group extension [A/Ax] ⋊[τx(α)] Gx,

• 1-form component is A, acted upon by the 0-form component via ([b],g)a := ga,

• Postnikov class representative is given by

α
(
([a], g), ([b], h), ([c], k)

)
:= α(g, h, k) . (3.184)

12 Given any finite 2-group G = A[1] ⋊α G and a 3-cocycle ω ∈ Z3(G,U(1)) on its 0-form component,
we denote by Hilbω[G] the monoidal †-category whose
• objects are G-graded Hilbert spaces (i.e. direct sums of the one-dimensional Hilbert spaces Cg

with G-grading (Cg)h = δg,hC for g, h ∈ G),
• morphism spaces are Hom(Cg,Ch) = δg,hC[A] with composition given by multiplication in A

and †-structure given by (the antilinear extension of) a 7→ a−1,
• monoidal structure is given by Cg ⊗ Ch = Cgh on objects and a ⊗ b = a · gb on morphisms

a ∈ End(Cg) and b ∈ End(Ch), with associator given by ω(g, h, k) · α(g, h, k) ∈ End(Cghk).
Intuitively, we regard Hilbω[G] as a categorification of the notion of the twisted group algebra
Cµ[G] associated to a finite group G with 2-cocycle µ ∈ Z2(G,U(1)).
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Similarly, any tube 2-representation F will decompose into sub-2-representations
supported on conjugacy classes in G. Upon fixing a particular [x] ∈ Cl(G) together
with a representative x ∈ G and denoting K := F(x) ∈ 2Vect, the remaining data
associated to F then reduces to the data of a monoidal functor

R : Hilbτx(π)[Gx] → End(K) , (3.185)

which we will call a τx(π)-projective 2-representation of Gx on the 2-vector space K in
what follows13. Conversely, given a pair (x,R) consisting of

1. a representative x ∈ G of a conjugacy class [x] ∈ Cl(G),

2. an irreducible τx(π)-projective 2-representation R of Gx,

we can construct an associated tube 2-representation F(x,R) via induction: To this
end, we fix for each y ∈ [x] in the conjugacy class of x a representative ry ∈ G such
that (ry)y = x (with rx := 1). Using these, we define

gy := r(gy) · g · r−1
y ∈ Gx (3.186)

for g ∈ G and y ∈ [x]. If we denote by K the 2-vector space underlying R, then the
2-functor F(x,R) : 2-TC → 2Vect (where C = 2HilbπG) can be described as follows:

• To objects y ∈ G, the 2-functor F(x,R) assigns the twisted sectors

Ly ≡ F(y) :=

K if y ∈ [x]

0 otherwise
. (3.187)

• To a 1-morphism 〈 ggy y
a

〉, the 2-functor F(x,R) assigns

F(x,R)
(〈 ggy y

a

〉)
:= R

([ r(gy)a · κy(α)(g)
]
, gy
)
, (3.188)

where we defined the multiplicative factor

κy(α)(g) :=
τy(α)(r(gy), g)
τy(α)(gy, ry)

∈ A . (3.189)

• To a 2-morphism c ∈ Hom
(〈 ggy y

a

〉
,
〈 ggy y

b

〉), the 2-functor F(x,R) assigns

F(x,R)(c) := R
(r(gy)c

)
. (3.190)

13 Given a finite 2-group G and a 3-cocycle ω ∈ Z3(G,U(1)) on its 0-form component, an ω-projective
2-representation of G on a 2-vector space L ∈ 2Vect is a monoidal functor R : Hilbω[G] → End(L).
We denote the 2-category of ω-projective 2-representations of G by 2Repω(G).
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• The compositor 2-isomorphism

[
F(x,R)

] 〈 ggy y
a

〉
,
〈 hhz z

b

〉 :

F(x,R)
(〈 ggy y

a

〉)
◦ F(x,R)

(〈 hhz z
b

〉)
⇒ F(x,R)

(〈 ggy y
a

〉
◦
〈 hhz z

b

〉) (3.191)

that controls the composition of 1-morphisms (where we set y := hz) is given by

[
F(x,R)

] 〈 ggy y
a

〉
,
〈 hhz z

b

〉 :=

ϕz(π)(g, h) · R
(
φz(α)(g, h)

)
· R([r(gy)a ·κy(g)

]
, gy

)
,
([r(hz)b ·κz(h)

]
, hz

) , (3.192)

where we defined the multiplicative factors

ϕz(π)(g, h) :=
τz(π)

(
g(hz), r(hz), h

)
τz(π)

(
r(ghz), g, h

)
· τz(π)

(
g(hz), hz, rz

) ∈ U(1) , (3.193)

φz(α)(g, h) :=
α
(
g(hz), r(hz), h

)
α
(
r(ghz), g, h

)
· α
(
g(hz), hz, rz

) ∈ A . (3.194)

As a consequence of the cocycle conditions obeyed by τ(π) and α, they satisfy

ϕz(h, k) · ϕz(g, hk)
ϕz(gh, k) · ϕ(kz)(g, h) =

τx(π)
(
g(hkz), h(kz), kz

)
τz(π)(g, h, k) , (3.195)

g(hz)φz(h, k) · φz(g, hk)
φz(gh, k) · φ(kz)(g, h) =

α
(
g(hkz), h(kz), kz

)
r(ghkz)α(g, h, k)

, (3.196)

which ensures that the compositor (3.192) obeys suitable tetrahedron relations.

All in all, we conclude that the 2-category of tube 2-representations of C = 2HilbπG
admits a direct sum decomposition [2]

2Rep(2-TC) ∼= ⊞
[x]∈Cl(G)

2Repτx(π)(Gx) . (3.197)

Using (3.156), this yields a description of the Drinfeld centre of C, which reproduces
the known classification of simple objects in terms of pairs (x,R) as above in cases
where the 1-form symmetry group A is trivial [112]. One can check that F(x,R) is a
tube †-2-representation if and only if the projective 2-representation R is a monoidal
†-functor into the endomorphism category of a 2-Hilbert space K (in which case we
refer to R as a unitary 2-representation). We will discuss and classify the (irreducible)
unitary 2-representations of finite 2-groups in the following section.



150 three dimensions

3.4 Unitary 2-Representations

We have seen in the previous section that the wrapping action of an (anomalous)
2-group symmetry G on twisted sector line operators is completely determined by the
(projective) 2-representation theory of G [1, 148]. In this section, we describe the latter
in more detail and provide a classification of the irreducible unitary 2-representations
and their intertwiners together with a physical interpretation of the associated data14.
The discussion is based on [1, 3].

3.4.1 Background

Given a finite 2-group G = A[1] ⋊α G, we defined a projective 2-representation of G
with 3-cocycle ω ∈ Z3(G,U(1)) to be a monoidal functor

R : Hilbω[G] → End(L) (3.198)

from the ‘twisted 2-group algebra’ Hilbω[G] into the endomorphism category of a fixed
2-vector space L ∈ 2Vect. When the projective 3-cocycle ω is trivial, this is equivalent
to the data of a monoidal functor

R : G → End(L) , (3.199)

where by abuse of notation we used G to denote the monoidal category whose

• objects are given by group elements g ∈ G,

• morphism spaces are given by HomG(g, h) = δg,hA with composition given by
group multiplication in A,

• monoidal structure is given by g ⊗ h = g · h on objects and a⊗ b = a · gb on mor-
phisms a ∈ EndG(g) and b ∈ EndG(h) with associator α(g, h, k) ∈ EndG(ghk).

Even more abstractly, we can view R as a 2-functor

R : BG → 2Vect (3.200)

from the delooping of G into the 2-category of 2-vector spaces such that R(∗) = L
(where ∗ denotes the single object of BG). The 2-category of 2-representations of G is
then defined to be the 2-category

2Rep(G) := [BG, 2Vect] (3.201)

14 We note that the notion of unitary 2-representations of finite groups on 2-Hilbert spaces was
already studied extensively in e.g. [149, 150]. A classification of 2-representations of finite 2-groups
in the math literature can be found e.g. in [149, 151–153].
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of all such 2-functors, their 2-natural transformations and modifications. Similarly,
the 2-category of unitary 2-representations of G is the 2-category of †-2-functors

2Rep†(G) := [BG, 2Hilb]† , (3.202)

where the †-structure on BG acts as the inversion a 7→ a−1 of 1-form elements a ∈ A

(which turns BG into a †-2-category). Clearly, there exists a forgetful 2-functor

2Rep†(G) → 2Rep(G) . (3.203)

3.4.2 Classification

In order to classify the unitary 2-representations of a finite 2-group G = A[1] ⋊α G,
it is convenient to model the target 2-category 2Hilb by the 2-category Mat(Hilb) of
matrices of Hilbert spaces. The data associated to a †-2-functor R : BG → Mat(Hilb)
can then be described as follows:

• To the single object ∗ ∈ BG, the 2-functor R associates a non-negative integer
n ∈ N, which we call n the dimension of the 2-representation R in what follows.

• To the 0-form elements g ∈ G, the 2-functor R assigns invertible (n×n)-matrices
R(g) of Hilbert spaces, which up to equivalence need to be of the form

R(g)ij = δ i,σg(j) · C (3.204)

for some permutation action σ : G → Sn of G on the finite set [n] := {1, ..., n}.
We will abbreviate the action of g ∈ G on i ∈ [n] by g ▷ i := σg(i) in what follows.

• To 1-form elements a ∈ EndG(g), the 2-functor R assigns (n×n)-matrices

R(a) : R(g) ⇒ R(g) (3.205)

of unitary linear maps between the Hilbert space entries of R(g). As a consequence
of (3.204), these then have to be of the form

R(a)ij = δ i,g ▷j · χi(a) (3.206)

for some multiplicative phases χi(a) ∈ U(1) (viewed as a collection of characters
χ ∈ (A∨)n in the Pontryagin dual group A∨ := Hom(A,U(1)) of A), which need
to be compatible with the group action of G on A in the sense that

χg ▷i(a) = χi(ag) (3.207)

for all g ∈ G, a ∈ A and i ∈ [n].
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• For each pair of 0-form elements g, h ∈ G, there exists a unitary 2-isomorphism

Rg,h : R(g) ◦ R(h) ⇒ R(g ·h) , (3.208)

which needs to be compatible with the composition of three group elements
g, h, k ∈ G in the sense that the diagram

(3.209)

commutes. Similarly to above, the 2-isomorphisms Rg,h can then be identified
with invertible (n×n)-matrices of unitary linear maps that are of the form

(Rg,h)ij = δ i,gh▷j · ci(g, h) (3.210)

for some multiplicative phases ci(g, h) ∈ U(1), which due to (3.209) obey

cg−1 ▷i(h, k) · ci(g, hk)
ci(gh, k) · ci(g, h) = χi(α(g, h, k)) . (3.211)

The collection of phases ci(g, h) ∈ U(1) then defines a twisted group 2-cochain
c ∈ C2

σ(G,U(1)n) that obeys dσc = ⟨χ, α⟩, where the abelian group U(1)n is
acted upon by G via the permutation action σ.

To summarise, we can label the unitary 2-representation R of G = A[1] ⋊α G by
quadruples R = (n, σ, χ, c) consisting of

1. a non-negative integer n ∈ N, called the dimension of the 2-representation,

2. a permutation action σ : G → Sn of G on [n] := {1, ..., n},

3. a collection of n characters χ ∈ (A∨)n satisfying χg ▷i(a) = χi(ag),

4. a twisted 2-cochain c ∈ C2
σ(G,U(1)n) satisfying dσc = ⟨χ, α⟩.

This reproduces the known classification of (ordinary) 2-representations of G on
Kapranov-Voevodsky 2-vector spaces [151–153]. In particular, we see that every
(ordinary) 2-representation of G is equivalent to a unitary one. The dual of a unitary
2-representation R = (n, σ, χ, c) is given by R∨ := (n, σ, χ∗, c∗). The trivial 2-repre-
sentation of G is given by = (1, 1, 1, 1, 1).
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3.4.2.1 Irreducibles

A unitary 2-representation R = (n, σ, χ, c) is irreducible if the associated permutation
action σ : G → Sn is transitive. In this case, we can use the orbit-stabiliser theorem
to relate the G-orbit [n] ≡ {1, ..., n} to the stabiliser subgroup

H := Stabσ(1) ≡ {h ∈ G | σh(1) = 1} ⊂ G (3.212)

of a fixed element 1 ∈ [n]. The remaining data associated to R then gives rise to a
one-dimensional unitary 2-representation of H := A[1]⋊(α|H) H as follows:

• Setting λ := χ1 yields a character λ ∈ A∨ that is H-invariant in the sense that
λ(ha) = λ(a) for all h ∈ H and a ∈ A.

• Setting u := c1|H yields a 2-cochain u ∈ C2(H,U(1)) obeying du = ⟨λ, α|H⟩.

Conversely, given a subgroup H ⊂ G and a one-dimensional unitary 2-representation
(λ, u) of H, we can construct an associated irreducible unitary 2-representation R of
G = A[1] ⋊α G via induction:

R = IndG
H(λ, u) . (3.213)

To this end, consider a set of fixed representatives ri ∈ G of left H-cosets in G, i.e.

G/H = {r1H, ..., rnH} , (3.214)

so that r1 := 1 and n = |G : H|. Using this, we can construct the data (n, σ, χ, c)
associated to the 2-representation R as follows:

• By multiplying left H-cosets with group element g ∈ G from the left, we obtain
a permutation action σ : G → Sn via

g · riH = rσg(i)H . (3.215)

This allows us to define for each g ∈ G and i ∈ [n] a little group element

gi := r−1
i · g · r(g−1)▷i ∈ H . (3.216)

• Given the H-invariant character λ ∈ A∨, we obtain a collection χ ∈ (A∨)n of
characters χi(a) := λ(ari) that satisfy χg ▷i(a) = χi(ag).

• Given the 2-cochain u ∈ C2(H,U(1)) obeying du = ⟨λ, α|H⟩, we obtain a twisted
2-cochain c ∈ C2

σ(G,U(1)n) obeying dσc = ⟨χ, α⟩ by setting

ci(g, h) :=
〈
λ, ϕi(α)(g, h)

〉
· u
(
gi, hg−1▷i

)
, (3.217)
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where we defined the multiplicative factor

ϕi(α)(g, h) :=
α(r−1

i , g, h) · α
(
gi, hg−1▷i, r

−1
(gh)−1▷i

)
α
(
gi, r

−1
g−1▷i, h

) ∈ A . (3.218)

To summarise, we can label the irreducible unitary 2-representations R of G = A[1]⋊αG

by triples R = (H,λ, u) consisting of

1. a subgroup H ⊂ G,

2. a H-invariant character λ ∈ A∨,

3. a 2-cochain u ∈ C2(H,U(1)) satisfying du = ⟨λ, α|H⟩.

This reproduces the known classification of ordinary irreducible 2-representations of G
[151–153] (see also [5, 6, 57–59] for a physical interpretation of the latter as Wilson
surfaces in three-dimensional discrete gauge theories). The dual of R = (H,λ, u) is
given by R∨ = (H,λ∗, u∗). The trivial 2-representation of G is = (G, 1, 1).

3.4.2.2 Intertwiners

An intertwiner between two given unitary 2-representations R = (n, σ, χ, c) and
R′ = (n′, σ′, χ′, c′) is a 2-natural transformation η : R ⇒ R′ between the corresponding
†-2-functors. The associated data can be described as follows:

• To the single object ∗ ∈ BG, η assigns a morphism η∗ between R(∗) = n and
R′(∗) = n′, which is an (n′×n)-matrix V of Hilbert spaces Vij .

• To the 1-form elements g ∈ G, η assigns unitary 2-morphisms

ηg : R′(g) ◦ V ⇒ V ◦ R(g) (3.219)

which need to be compatible with the composition of two 0-form elements g, h ∈ G

in the sense that the diagram

(3.220)

commutes. Upon identifying ηg with an (n′×n)-matrix of unitary linear maps

(ηg)ij =: φ(g)(σ′
g−1 )(i), j (3.221)
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with φ(g)ij : Vij → Vg ▷ (i,j), condition (3.220) becomes equivalent to

φ(g)h ▷(i,j) ◦ φ(h)ij =
c′
gh ▷i(g, h)
cgh ▷j(g, h) · φ(g · h)ij , (3.222)

where we denoted by g ▷ (i, j) := (σ′
g(i), σg(j)) the product action σ′ × σ of G

on [n′] × [n]. Furthermore, in order for η to be compatible with the action of the
1-form symmetry group A, the diagram

(3.223)

has to commute for all a ∈ EndG(g), leading to the condition

χ′
g ▷i(a) · φ(g)ij = χg ▷j(a) · φ(g)ij . (3.224)

In particular, setting g = 1 reveals that Vij = 0 unless χ′
i = χj ∈ A∨.

To summarise, intertwiners η between two unitary 2-representations R = (n, σ, χ, c)
and R′ = (n′, σ′, χ′, c′) can be labelled by tuples η = (V, φ) consisting of

1. an (n′×n)-matrix of Hilbert spaces Vij with Vij = 0 unless χ′
i = χj ,

2. a collection of unitary linear maps φ(g)ij : Vij → Vg ▷(i,j) such that

φ(g)h ▷ (ij) ◦ φ(h)ij =
c′
gh ▷i(g, h)
cgh ▷j(g, h) · φ(g · h)ij . (3.225)

The identity intertwiner idR : R ⇒ R of a unitary 2-representation R is specified by
the data idρ = ( n, Id), where ( n)ij = δij · C. The dual and adjoint of an intertwiner
η = (V, φ) : R ⇒ R′ can be described as follows:

• The dual of η is defined to be the intertwiner η∨ : (R′)∨ ⇒ R∨ that has associated
data η∨ = (V ∨, φ∨) with (V ∨)ij = Vji and

(φ∨)(g)ij = φ(g)ji . (3.226)

• The adjoint of η is defined to be the intertwiner η̂ : R′ ⇒ R that has associated
data η̂ = (V̂ , φ̂) with (V̂ )ij = (Vji)∨ and

φ̂(g)ij = (φ(g)−1
ji )T , (3.227)

where T denotes the transpose of linear maps between vector spaces.
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Simples

In order to classify the simple intertwiners between two irreducible unitary 2-represen-
tations R = (n, σ, χ, c) and R′ = (n′, σ′, χ′, c′) of G, we express the latter as inductions

R = IndG
H(λ, u, p) and R′ = IndG

H′(λ′, u′, p′) (3.228)

of the one-dimensional unitary 2-representations (λ, u) and (λ′, u′) of the sub-2-groups
H(′) = A[1] ⋊α H

(′) ⊂ G given by

H = Stabσ(1) , λ = χ1|H , u = c1|H , (3.229)

and similarly for the ′-ed variables. We then consider a fixed orbit of the product
G-action σ′ × σ on [n′] × [n] with fixed representative (i0, j0) ∈ [n′] × [n]. As the
G-action σ on [n] is transitive, we may without loss of generality assume that j0 = 1.
Similarly, since σ′ is transitive on [n′], we can fix x ∈ G such that x ▷ 1 = i0

15. Then,
the stabiliser of the orbit representative (i0, 1) ∈ [n′] × [n] is given by

Stabσ′×σ(i0, 1) = Stabσ(1) ∩ Stabσ′(i0)

= Stabσ(1) ∩ x(Stabσ′(1)) ≡ H ∩ xH ′ .
(3.230)

Now let η = (V, φ) be an intertwiner between R and R′. Using the above, we can
reduce the data associated to η to the following:

• By defining W := V(i0,1), we obtain a finite-dimensional Hilbert space that
vanishes unless χ′

i0 = χ1. Since χ1 ≡ λ and

χ′
i0(a) = χ′

x▷1(a) = χ′
1(ax) ≡ λ′(ax) =: (xλ′)(a) (3.231)

for all a ∈ A, this means that W = 0 unless λ = xλ′.

• By defining for each h ∈ H ∩ xH ′ the unitary linear map

ψ(h) :=
c′
i0(x, hx)
c′
i0

(h, x) · φ(h)(i0,1) : W → W , (3.232)

we obtain a unitary representation ψ of H ∩ xH ′ on W with projective 2-cocycle

xu′

u
· ⟨λ, γx(α)⟩ ∈ Z2(H ∩ xH ′, U(1)

)
, (3.233)

15 For fixed i0, the group element x ∈ G is unique up to multiplication by elements h′ ∈ Stabσ′ (1) ≡ H ′

from the right. Moreover, multiplying x by elements h ∈ Stabσ(1) ≡ H from the left changes the
representative (i0, 1) → (h ▷ i0, 1) of the fixed G-orbit in [n′] × [n]. The element x ∈ G hence
defines a double coset [x] ∈ H\G/H ′.
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where we defined the multiplicative factor

γx(α)(h, k) := α(h, x, kx)
α(h, k, x) · α(x, hx, kx) ∈ A . (3.234)

Conversely, given x ∈ G such that λ = xλ′ together with a unitary representation
ψ of H ∩ xH ′ on a Hilbert space W with projective 2-cocycle (3.233), we obtain an
intertwiner η = (V, φ) between R and R′ via induction: To this end, let {r1, ..., rn}
and {r′

1, ..., r
′
n′} be fixed representatives of left H and H ′ cosets in G, i.e.

G/H = {r1H, ..., rnH} ,

G/H ′ = {r′
1H, ..., r

′
n′H} ,

(3.235)

such that r1 = r′
1 = 1 and r′

i0 = x. This allows us to define little group elements

gj := r−1
j · g · r(g−1)▷j ∈ H

g′
i := (r′

i)−1 · g · r′
(g−1)▷i ∈ H ′

(3.236)

for each g ∈ G and all i ∈ [n′] and j ∈ [n]. We then define the double index set

Ix :=
{

(i, j) ∈ [n′]×[n]
∣∣ r−1

j r′
i ∈ HxH ′} ⊂ [n′] × [n] (3.237)

and fix for each (i, j) ∈ Ix representatives tij ∈ H and t′ij ∈ H ′ such that

r−1
j r′

i = tij · x · (t′ij)−1 (3.238)

with ti0,1 = t′i0,1 = 1. Using this, we can construct for each g ∈ G little group elements

gij := t−1
g ▷(ij) · gg ▷j · tij

≡ x[(t′g ▷(ij))−1 · g′
g ▷i · t′ij

]
∈ H ∩ xH ′ ,

(3.239)

where (i, j) ∈ Ix. The intertwiner η = (V, φ) is then constructed as follows:

• We define an (n′×n)-matrix V with Hilbert space entries

Vij :=

W if (i, j) ∈ Ix

0 otherwise
. (3.240)

• For (i, j) ∈ Ix and g ∈ G, we construct a unitary map φ(g)ij : Vij → Vg ▷(ij) by

φ(g)ij := νij(u)(g)
ν ′
ij(u′)(g) ·

〈
λ,

µij(α)(g)
x[µ′

ij(α)(g)] · ωx,ij(α)(g)
〉

· ψ(gij) , (3.241)
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where we defined the multiplicative phases

νij(u)(g) :=
u
(
gij , t

−1
ij

)
u
(
t−1
g ▷(ij), gg ▷j

) ∈ U(1) ,

ν ′
ij(u′)(g) :=

u′(gxij , (t′ij)−1)
u′((t′g ▷(ij))−1, g′

g ▷i

) ∈ U(1) ,

(3.242)

as well as the multiplicative factors

µij(α)(g) :=
α
(
t−1
g ▷(ij), r

−1
g ▷j , g

)
· α
(
gij , t

−1
ij , r

−1
j

)
α
(
t−1
g ▷(ij), gg ▷j , r

−1
j

) ∈ A ,

µ′
ij(α)(g) :=

α
(
(t′g ▷(ij))−1, (r′

g ▷i)−1, g
)

· α
(
gxij , (t′ij)−1, (r′

i)−1
)

α
(
(t′g ▷(ij))−1, g′

g ▷i, (r′
i)−1

) ∈ A ,

ωx,ij(α)(g) :=
α
(
x, gxij , (r′

i t
′
ij)−1

)
α
(
x, (r′

g ▷i t
′
g ▷(ij))−1, g

)
· α
(
gij , x, (r′

i t
′
ij)−1

) ∈ A .

(3.243)
The collection of linear maps (3.241) then obeys

φ(g)h ▷ (ij) ◦ φ(h)ij =
c′
gh ▷i(g, h)
cgh ▷j(g, h) · φ(g · h)ij , (3.244)

where c ∈ C2
σ(G,U(1)n) and c′ ∈ C2

σ′(G,U(1)n′) are as in (3.217).

To summarise, we can label the simple intertwiners between two irreducible unitary
2-representations R = (H,λ, u) and R′ = (H ′, λ′, u′) by tuples η = (x, ψ) consisting of

1. a representative x ∈ G of a double coset [x] ∈ H\G/H ′ such that λ = xλ′,

2. an irreducible unitary representation ψ of H ∩ xH ′ with projective 2-cocycle

xu′

u
· ⟨λ, γx(α)⟩ ∈ Z2(H ∩ xH ′, U(1)

)
. (3.245)

The identity intertwiner idR : R ⇒ R of R = (H,λ, u) is given by idR = (1,1H),
where 1H denotes the trivial representation of H. The dual and adjoint of a simple
intertwiner η = (x, ψ) : R ⇒ R′ can be described as follows:

• The dual of η is the intertwiner η∨ : (R′)∨ ⇒ R∨ specified by η∨ = (x−1, ψ∨),
where ψ∨ is the representation of H ′ ∩Hx on W defined by

(ψ∨)(k) = ψ(xk)〈
λ′, κx(α)(k)

〉 (3.246)

with κx(α)(k) := βx−1,x(α)(k) ∈ A and β(α) as in (3.253) below.
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• The adjoint of η is the intertwiner η̂ : R′ ⇒ R specified by η̂ = (x−1, ψ̂ ), where
ψ̂ is the representation of H ′ ∩Hx on W∨ defined by

ψ̂(k) :=
〈
λ′, κx(α)(k)

〉
·
[
ψ(xk)−1]T . (3.247)

Here, T denotes the transpose of linear maps between vector spaces.

Composition

Given two intertwiners η : R ⇒ R′ and η′ : R′ ⇒ R′′ between unitary 2-representations
R, R′ and R′′, we can compose them to obtain an intertwiner η′ ◦ η : R ⇒ R′′.
Concretely, if η and η′ are specified by data η = (V, φ) and η′ = (V ′, φ′) as before,
their composition has associated data

(V ′, φ′) ◦ (V, φ) =
(
V ′ ⊗ V, φ′ ⊗ φ

)
, (3.248)

where defined the matrix of Hilbert spaces and collection of linear maps

(V ′ ⊗ V )ij =
n′⊕
k= 1

V ′
ik ⊗ Vkj , (3.249)

(φ′ ⊗ φ)(g)ij =
n′⊕
k= 1

φ′(g)ik ⊗ φ(g)kj . (3.250)

Now suppose that R, R′ and R′′ are all irreducible, so that we can label them by data
R = (H,λ, u) and similarly for R′ and R′′. We furthermore assume that η and η′ are
simple intertwiners, so that we can label them by η = (x, ψ) and η′ = (x′, ψ′) as before.
Then, their composition is the (not necessarily simple) intertwiner labelled by16

(x, ψ) ◦ (x′, ψ′) =

⊕
[h] ∈Hx\H′/ x′H′′

(
x·h·x′, IndH ∩ xhx′

H′′

H ∩ xH′ ∩ xhx′H′′

[
x[εh(u′)]

⟨λ, βx,h(α) · βxh,x′(α)⟩ ·
(
ψ ⊗ xhψ′) ]) ,

(3.251)

where Ind denotes the induction functor for (projective) representations of subgroups
and we made use of the 1-cochains

εh(u′)(k) := u′(h, kh)
u′(k, h) ∈ U(1) , (3.252)

βx,y(α)(k) := α(k, x, y) · α(x, y, kxy)
α(x, kx, y) ∈ A . (3.253)

16 For better readability, we temporarily changed the order in which we denote the composition of
intertwiners, so that (x, ψ) ◦ (x′, ψ′) denotes the composition of η : R ⇒ R′ and η′ : R′ ⇒ R′′.
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The above composition rule simplifies if we restrict attention to endotwiners of an
irreducible unitary 2-representation R = (H,λ, u) with H ◁ G normal. In this case,
simple endotwiners η = (x, ψ) and η′ = (x′, ψ′) are labelled by group elements
[x], [x′] ∈ G/H together with irreducible unitary (projective) representations ψ and
ψ′ of H, which compose according to

(x, ψ) ◦ (x′, ψ′) =
(
x · x′,

ψ ⊗ xψ′〈
λ, βx,x′(α)

〉 ) . (3.254)

Equivalences

Having established the notion of intertwiners for unitary 2-representations, we can
discuss equivalences between them. Concretely, R = (n, σ, χ, c) and R′ = (n′, σ′, χ′, c′)
are considered equivalent if there exist an invertible intertwiner η : R ⇒ R′ between
them. If the latter is specified by data η = (V, φ) as before, then invertibility of η can
be reduced to the following conditions:

• As V is an invertible (n′×n)-matrix of Hilbert spaces, we must have n = n′ with
V being of the form Vij = δi,τ(j) · C for some permutation τ ∈ Sn. Furthermore,
since Vij = 0 unless χ′

i = χj , we must have χ′ = τχ, where (τχ)i = χτ−1(i).

• As φ provides unitary isomorphisms φ(g)ij : Vij → Vσ′
g(i),σg(j) for each g ∈ G, we

must have σ′
g = τ ◦ σg ◦ τ−1 for all g ∈ G. Furthermore, since the entries of V

are one-dimensional, the above linear maps need to be of the form

φ(g)ij = δi,τ(j) · ϑg ▷i(g) (3.255)

for some multiplicative phases ϑi(g) ∈ U(1). Plugging this into the composition
rule (3.225) then yields the condition

(dϑ)i(g, h) ≡
ϑg−1 ▷i(h) · ϑi(g)

ϑi(gh) = c′
i(g, h)

cτ−1(i)(g, h) , (3.256)

which implies that [c′/ τc] = 1 ∈ H2
σ′(G,U(1)n).

In summary, two given unitary 2-representations R = (n, σ, χ, c) and R′ = (n′, σ′, χ′, c′)
are equivalent if and only if they have the same dimension n = n′ and there exists a
permutation τ ∈ Sn such that

σ′ = τσ , χ′ = τχ , [c′/ τc ] = 1 . (3.257)

Now suppose that both R and R′ are irreducible, so that we can label them by data
R = (H,λ, u) and R′ = (H ′, λ′, u′) as before. By repeating the same reasoning as
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above, one can show that R and R′ are equivalent if and only if there exists a group
element x ∈ G such that

H ′ = xH , λ′ = xλ ,

[
u′

xu
· ⟨λ, γx(α)⟩

]
= 1 . (3.258)

3.4.2.3 Example

As a simple example, consider the finite 2-groups G± = Z4[1] ⋊± Z2, where the 0-form
component Z2 =: ⟨x⟩ acts on the 1-form component Z4 =: ⟨a⟩ via xa = a−1 and the
± indicates the choice of Postnikov class [α±] ∈ H3(Z2,Z4) ∼= Z2 given by

α+(x, x, x) = 1 or α−(x, x, x) = a . (3.259)

The irreducible 2-representations in each case are labelled by triples (H,u, λ) as before
and can be described as follows:

• If G = G+, there is no non-trivial choice of 2-cocycle u since H2(Z2, U(1)) = 1.
Up to equivalence, there are hence five irreducible 2-representations labelled by

1+ 1− 2+ 20 2−

H Z2 Z2 1 1 1

λ 1 â2 1 â â2 ,

(3.260)

where â denotes the character on the 1-form component defined by ⟨â, a⟩ = i.

• If G = G−, the condition du = ⟨λ, α−|H⟩ admits no solution when H = Z2 and
λ = â2. As a result, the corresponding 2-representation 1− no longer exists.

Pictorially, we represent the irreducible 2-representations of G± together with their
categories of intertwiners by

(3.261)

where the red colouring indicates the absence of the 2-representation 1− and its
intertwiners in the case of G−.
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3.4.3 Applications

Having defined and classified unitary 2-representations of finite 2-groups, we can
give the associated data a physical interpretation as follows: Consider a quantum
field theory with finite 2-group symmetry G = A[1] ⋊α G (i.e. the theory contains
topological surface and line defects labelled by 0-form and 1-form group elements
g ∈ G and a ∈ A, respectively, cf. equation (3.77)). As before, the 0-form defects
g ∈ G can act on line operators L in the theory via wrapping, i.e.

(3.262)

Upon fixing a finite set of line operators Li (where i = 1, ..., n) that is closed under
the wrapping action of G, we can write gLi = Lσg(i) for some permutation action
σ : G → Sn. If we furthermore assume the line operators Li to be simple (meaning
that the only topological local operators they host are scalar multiples of the identity),
there exist one-dimensional spaces of topological local operators

(3.263)

at the intersection of a simple line operator Li with a symmetry defect g ∈ G. The
composition of the junction vectors vi(g) is then of the form

vh▷i(g) ◦ vi(h) = cgh▷i(g, h) · vi(gh) (3.264)

for some multiplicative phases ci(g, h) ∈ U(1), which capture the fusion of 0-form
defects g, h ∈ G that intersect the line operators Li inside correlation functions:

(3.265)

As a result, we can view the collection of the phases ci(g, h) as an ’t Hooft anomaly
for the 0-form symmetry G on the line operators Li [1, 148]. In addition, we can link
any line operator Li with a 1-form defect a ∈ A to produce a phase

(3.266)

All in all, we see that the data associated to the action of the 2-group symmetry
G on (simple) line operators forms a quadruple (n, σ, χ, c) that labels a unitary 2-
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representation R of G. This shows that, in analogy to the fact that local operators
transform in unitary representations of symmetry groups, line operators transform
in unitary 2-representations of symmetry 2-groups [1, 3, 148]. In the case where the
permutation action σ is transitive, we can restrict attention to 0-form defects that lie
in the stabiliser subgroup H of a fixed line operator L1, which reproduces the data
of an irreducible 2-unitary 2-representation. Physically, H then corresponds to the
‘unbroken’ subgroup of G on the line operator L1.

In addition to the above, one may also consider non-genuine local operators O that
sit at the end of the line operators Li, i.e.17

(3.267)

Using the operator-state map, the space of all such operators O then forms a Hilbert
space Vi. Since any 1-form defect a ∈ A can be unlinked from Li if the latter ends
on a local operator O, we see that Vi can be non-zero if and only if χi(a) = 1 for all
a ∈ A. In this case, intersecting the line operator Li with a symmetry defect g ∈ G

induces a linear map φi(g) : Vi → Vg ▷i via

(3.268)

which as a consequence of (3.265) needs to obey the composition rule

φh ▷i(g) ◦ φi(h) = cgh ▷i(g, h) · φi(g · h) . (3.269)

Mathematically, we see that the collection of Hilbert spaces Vi and linear maps φi
forms the data of an intertwiner η = (V, φ) between the trivial 2-representation and
R = (n, σ, χ, c, s). Upon restricting to the case where the latter is irreducible, this
then implies that local operators at the end of a fixed line operator L1 transform in
unitary projective representations of the associated unbroken subgroup H.

3.4.3.1 Example: Outer Automorphisms

Consider a pure gauge theory with simply connected gauge group G. This theory has
a split18 2-group symmetry given by the outer automorphism 2-group

G = Z(G)[1] ⋊ Out(G) . (3.270)

17 More generally, one could consider local junction operators that sit inbetween two non-trivial line
operators. We will restrict attention to the above case for simplicity.

18 We say that a 2-group G is split if its associated Postnikov class is trivial.
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Concretely, this is the 2-group whose

• 0-form component is the group Out(G) = Aut(G)/Inn(G) of outer automorphisms
of G, which consists of automorphisms f : G → G modulo precomposition with
inner isomorphisms of the form g(.) : G → G for some g ∈ G,

• 1-form component is the centre Z(G) of G, i.e. consists of group element z ∈ G
that commute with all other elements of G,

• action of the 0- on the 1-form component is given by [f ] ▷ z = f(z).

A natural class of line operators in the theory is given by Wilson lines Wρ labelled
by irreducible representations ρ of the gauge group G. In particular, they carry an
action of the outer automorphism 2-group G that can be described as follows:

• The wrapping action of 0-form defects [f ] ∈ Out(G) is given by

[f ] ▷ Wρ = Wρ ◦f−1 , (3.271)

where ρ ◦ f−1 is the irreducible representation of G obtained by precomposing ρ
with the inverse of a representative f of [f ].

• The linking action of 1-form defects z ∈ Z(G) is given by

z ▷ Wρ = χρ(z) ·Wρ , (3.272)

where χρ(.) = Tr[ρ(.)]/dim(ρ) denotes the (normalised) character associated to
the irreducible representation ρ.

Below we list a selection of simple examples:

• If G = SU(N) with N > 2, we have Out(G) = Z2 =: ⟨s⟩ and Z(G) = ZN =: ⟨z⟩.
If we denote by Λk(N) the k-th antisymmetric power of the fundamental represen-
tation, then the wrapping action of s on the corresponding Wilson lines is

s ▷ WΛk(N) = WΛN−k(N) . (3.273)

The associated central characters are given by

χΛk(N)(z) = e
2πik

N . (3.274)

• For G = Spin(2N) with N > 4, we have Out(G) = Z2 =: ⟨s⟩, which exchanges
the spinor and conjugate spinor representations S± of Spin(2N). The associated
central characters depend on whether N is even or odd:
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◦ If N is even, we have Z(G) = Z2 × Z2 =: ⟨z1, z2⟩ and the central characters
associated to the two spinor representations are

χS+(z1) = 1

χS+(z2) = −1
and

χS−(z1) = −1

χS−(z2) = 1
. (3.275)

◦ If N is odd, we have Z(G) = Z4 =: ⟨z⟩ and the central characters associated
to the two spinor representations are

χS+(z) = i and χS−(z) = −i . (3.276)

• If G = Spin(8), the group of outer automorphisms enhances to

Out(G) = S3 = Z3 ⋊ Z2 =: ⟨r, s⟩ , (3.277)

which permutes the two spinor and the vector representation as follows:

(3.278)

The associated central characters of Z(G) = Z2 × Z2 =: ⟨z1, z2⟩ are given by

χS+(z1) = 1

χS+(z2) = −1
,

χS−(z1) = −1

χS−(z2) = 1
and

χV (z1) = −1

χV (z2) = −1
. (3.279)

3.4.3.2 U(1) Gauge Theory

Consider a G = U(1) gauge theory with two complex scalars ϕ1 and ϕ2 of charge
q = 2. If we neglect magnetic and charge conjugation symmetries, this theory has a
split 2-group symmetry that can be described as follows [120]:

• Its 0-form component is the continuous flavour symmetry SO(3) ∼= SU(2)/Z2 that
rotates ϕ1 and ϕ2, where the Z2 quotient mods out the diagonal transformation
ϕi → −ϕi that can be reabsorbed by a gauge transformation.

• Its 1-form component is the Z2 subgroup of the center Z(G) = U(1) capturing
the Gukov-Witten defects that are unbroken in the presence of the scalars ϕi.

• Its Postnikov class is given by Bock(w2) ∈ H3(SO(3),Z2), where we denoted by
w2 ∈ H2(SO(3),Z2) the extension class associated to

1 → Z2 ↪−→ SU(2) ↠ SO(3) → 1 (3.280)
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and Bock : H∗(−,Z2) → H∗+1(−,Z2) is the Bockstein map associated to

1 → Z2 ↪−→ Z4 ↠ Z2 → 1 . (3.281)

Since this 2-group is partly continuous, it falls out of the realm of our current framework.
However, one may restrict attention to finite subgroups such as D4

ı
↪−→ SO(3), whose

associated Postnikov class

α = ı∗(Bock(w2)) = Bock(ı∗(w2)) (3.282)

corresponds to the non-trivial generator of H3(D4,Z2) ∼= Z2. Since wrapping a Wilson
line Wn (n ∈ Z) with a 0-form defect in D4 leaves the former invariant, we see that
the action of the 2-group G = Z2[1] ×α D4 on Wn is specified by the following data:

• A character χn = χn ∈ Z∨
2 , where χ denotes the generator of Z∨

2 . This captures
the linking action of the topological Gukov-Witten defects generating the Z2

1-form symmetry, which is trivial for even n since the associated Wilson line Wn

can end on the charged matter fields ϕi.

• A 2-cochain cn ∈ C2(D4, U(1)) such that dcn = ⟨χn, α⟩. This captures the
consecutive intersection of the Wilson line Wn with two 0-form defects in D4. In
particular, non-closedness of cn for n odd reflects the fact that the associated
Wilson line cannot end on any local operators and necessarily carries an ’t Hooft
anomaly for the 0-form symmetry D4.



4
D I S C U S S I O N

In this thesis, we developed systematic tools to describe the action of generalised global
symmetries on local and extended operators in a quantum field theory. We generalised
the construction of the tube category from two to three spacetime dimensions and
provided concrete examples of both invertible and non-invertible symmetries. Below,
we list a selection of open questions and possible future research directions.

4.1 Open Questions

While the construction of higher tube categories presented in this thesis marks a first
step towards fully capturing the action of generalised global symmetries on physical
observables, it leaves open several related questions of both physical and mathematical
nature. We mention the following three examples:

• Tensor Products: When considering the action of the tube category on twisted
sector operators, we placed the latter on a single isolated spacetime locus (e.g.
a point for local operators or a curve for line operators). In general, however,
correlation functions will include several operator insertions placed at distinct
spacetime loci. In analogy to the group-like case, we then expect the collection
of these insertions to transform in an appropriate notion of “tensor product
representations” of the tube category. While the latter can be defined explicitly in
two dimensions using the so-called Day convolution product [154] (see also [155]),
it would be desirable to generalise the construction to higher dimensions and
to study the associated implications on both collections of (extended) operators
and the structure of the tube category itself.

• Extended Unitarity: Throughout this thesis, we realised the principle of
unitarity for generalised global symmetries by assuming that the associated
symmetry categories are equipped with an appropriate †-structure, which imple-
ments spacetime reflections on the top-level of morphisms. In general, however,
it was pointed out in [156] that an (∞, n)-category with all adjoints admits a
whole variety of possible higher †-structures that are parameterised by different
choices of subgroup G ⊂ Aut(AdjCat(∞,n)) ∼= PL(n). In [3], we considered the
case n = 2 and G = (Z2)2 for finite 2-group symmetries, while the †-structures
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considered in this thesis correspond to choosing G = Z2. It would be desirable
to investigate the physical meaning of more general types of †-structures and to
study the associated induced structures on the tube category.

• Physical Applications: Given the abstract construction of higher tube cat-
egories and their representations, it would be desirable to apply the tools and
techniques developed in this thesis to derive new dynamical implications of
generalised symmetries in concrete physical examples. For instance, recent ad-
vances include the development of a categorical Landau paradigm that classifies
gapped phases of matter via their generalised symmetries [157–160] as well as
the construction of quantum lattice models that realise a given (higher) fusion
category as their symmetry [161–163].

4.2 Outlook

Throughout this thesis, we considered generalised global symmetries in spacetime
dimension d ≤ 3 that were of finite bosonic type. In general, however, quantum field
theories in any number of dimensions will typically exhibit symmetries that are both
bosonic and fermionic as well as discrete and continuous. It is hence natural to try
to extend the categorical description of generalised symmetries in three orthogonal
directions as illustrated below:

While finite fermionic symmetries are believed to be captured by (higher) superfusion
categories (see e.g. [164–166]), a rigorous mathematical treatment of continuous non-
invertible symmetries seems more elusive. We expect that addressing these challenges
will lead to novel insights and further progress in our physical and mathematical
understanding of generalised symmetries.
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