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Abstract

Modelling dependence among random quantities is a core aspect of multivariate data

analysis. Copulas provide a flexible and powerful approach to capturing the dependence

structure between random quantities. Several dependence models have been proposed

in the literature, including classical copulas, vine copulas, and fully nested Archimedean

copulas (FNAC). In parallel, several statistical methods have been developed within the

imprecise probability framework, including nonparametric predictive inference (NPI). NPI

is based on minimal modelling assumptions and quantifies uncertainty using lower and up-

per probabilities. Recently, NPI has been applied to bivariate data using both parametric

and nonparametric copulas.

This thesis contributes to the use of NPI for multivariate data by presenting different

approaches for prediction. The focus is on copulas for modelling dependence, as they

provide high flexibility for modelling complex dependency patterns. A generalization

is proposed for the method that combines NPI with bivariate data, using a parametric

copula with a single parameter to model dependence. The approach is further extended

by introducing a fully nonparametric version that uses a nonparametric copula. A novel

method for combining NPI with vine copulas is also presented, motivated by the vine

copulas ability to capture several dependence structures in a model. In addition, a new

method integrating NPI with FNAC is developed, where FNAC is a promising model

for capturing different dependencies within a model using Archimedean copulas. The

proposed methods are illustrated using examples from the literature. Simulation studies

are conducted to evaluate the predictive performance of the proposed methods and to
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compare the methods, highlighting their strengths and differences. The results indicate

that the methods with either vine copulas or FNAC perform well compared to other

methods.
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Chapter 1

Introduction

1.1 Overview

Many multivariate models are introduced to model dependence among variables, which

plays an important role in statistical models whenever there are more than two random

quantities [9]. The challenge of dependence in multivariate data lies in analyzing the

dependence structure, exploring its characteristics and effectively modelling the relation-

ships between variables [19].

In some cases, it is important to measure the dependence between variables, such as

the correlation coefficient, which is a fundamental measure. This is a simple measure and

insufficient for explaining the dependence structure, especially in multivariate cases. In

addition, it assumes a linear relationship between two variables. This means it cannot

capture dependencies that are not linear [37]. Several proper measures of modelling

dependence can capture complex dependence in high dimensions, including copula, vine

copulas and fully nested Archimedean copulas [60].

Copulas are commonly used in modelling dependence between variables. It first ap-

peared by Sklar in [91, 96] based on Fréchet’s works in [40]. In general, a copula is a

multivariate distribution function with one-dimensional margins that are uniform [60]. It

has the feature for modelling the dependence structure and the marginal distributions

separately [60, 84]. The Elliptical and Archimedean copula families are well established

in the literature, offering flexible approaches to capturing dependence [60, 84]. Many cop-

ulas have been developed to capture different types of dependencies and provide a clear

1
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relation between the copula parameters and dependence measures [42, 83].

Joe [60] explores the extension of copulas to the multivariate setting in detail. These

models face limitations, as they do not permit negative dependence as in the bivariate

case [60]. Copulas are widely applied across various fields, including finance [17, 34, 102],

risk management [36, 64] and insurance [20, 61, 93]. A comprehensive overview of classical

copula models and their important properties are well described in Chapter 2.

An alternative approach to model dependence is vine copulas, which have proven to be

flexible and useful in high dimensions. Vine copulas or pair-copulas constructions (PCC)

were first introduced by Joe [60]. It was presented as a decomposition that contains

unconditional and conditional bivariate copulas [14, 15]. Modelling dependence using

a vine copula can be modelled easily and captures different dependence structures in a

model. This is due to the vine construction, which consists of several bivariate copulas,

each of which can be of any copula type [3]. Comprehensive overviews of vine copula

statistical inference are available by Czado [29], Kurowicka and Joe [67], Dissmann et al.

[35] and Aas et al. [3]. Vine copulas have been widely applied in various fields including

finance [1, 30, 85], insurance [94, 101] and risk management [8, 18].

Another model for capturing dependence is the fully nested Archimedean copula

(FNAC), which was first introduced by Joe [60]. This model is constructed by nesting

two or more bivariate copulas in a model. These bivariate copulas in the FNAC model

construction have to be from the same Archimedean family [99]. There is a limitation

that FNAC can be modelled by nesting different types of copulas from the Archimedean

family to cover various degrees of dependencies [75]. Although FNAC can be constructed

by nesting different types of copulas from the Archimedean family to capture various

degrees of dependence, certain restrictions must be considered. These restrictions on the

combinations of copula types that can be nested to model dependence have been dis-

cussed in the literature, Hofert [52], McNeil [74] and Okhrin et al. [86]. There are many

applications using FNAC model, including finance [55, 90], drought analysis [12, 31, 73]

and risk management [36].

Modelling dependence captures the relationships between variables, enhancing the

ability to make statistical inferences and produce accurate predictions. Nonparametric

predictive inference (NPI) is a frequent statistical framework that requires few assump-
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tions [10, 11]. NPI is based on Hill’s assumption A(n), which gives a direct conditional

probability for one or more future observable random quantities conditional on observed

values of related random quantities [49, 50, 51]. Although Hill’s assumption A(n) is not

sufficient to derive precise probabilities, it provides strong probability bounds for events

of interest, including future observations. NPI is a framework of statistical theory and

methods that use A(n)-based lower and upper probabilities and also considers several

variations of A(n) which are suitable for different inferences [10, 11, 26].

NPI was developed recently to address a number of applications in the literature of

statistics [24]. NPI has been presented for different data types, including multinomial data

[25] and bivariate data [5, 27, 77]. Mainly, two methods using bivariate data have been

developed based on the NPI approach. Coolen-Maturi et al. [27] and Muhammad et al.

[77] introduced NPI for bivariate data with parametric or nonparametric copulas. Their

performance was evaluated using simulation studies. Muhammad et al. used the NPI with

copulas for combining bivariate diagnostic tests [78] and survival analysis [80]. A further

applications using these methods with smoothed bootstrap methods was introduced by

Al Luhayb et al. [5, 6] and in spread option pricing model by He [48]. Several studies

applied case-based approaches to wildfire prediction using NPI combined with parametric

copulas by Muhammad et al. [79], Roslin et al. [88, 89].

1.2 Outline of the thesis

This thesis presents four methods to extend NPI to multivariate data by combining it

with different types of copulas to model the dependence structure. The focus is on para-

metric copulas with one parameter, nonparametric copulas, vine copulas, and FNAC. The

proposed methods are evaluated through simulation studies. The thesis is organized as

follows: Chapter 2 presents a brief overview and background of the theoretical notion of

copulas, vine copulas and fully nested Archimedean copulas. This chapter also presents

an overview of NPI and Hill’s assumption A(n), as well as methods for combining NPI

with copulas in the bivariate case. Chapter 3 extends the existing methods of combining

NPI with bivariate parametric copula and nonparametric copulas that was introduced by

Muhammad [27] to the trivariate case. The performance of the two methods investigated
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via simulations. A generalization of these two methods will be presented. Chapter 4

introduces a method for combining NPI with vine copulas in three dimensions. Different

vine copula structures are presented to illustrate the method, and its performance is eval-

uated. Chapter 5 presents the method of combining NPI with fully nested Archimedean

copulas. The performance of this method is evaluated and a generalization to arbitrary

dimensions is provided. A comparison study of the proposed methods is conducted via

simulations. Chapter 6 summarizes the key results of this thesis, provides concluding

remarks and discusses related topics for future research.



Chapter 2

Preliminaries

2.1 Introduction

This chapter provides an overview of the fundamental concepts from the literature that

are used in this thesis. It begins with an introduction to copula theory, covering both

parametric and nonparametric copulas. The construction of vine copulas is then discussed

in detail, followed by a comprehensive explanation of the fully nested Archimedean copula.

Finally, the chapter presents the basic theory of NPI and the method of combining NPI

with bivariate data using copulas, which forms the essential framework for this thesis.

2.2 Copula

A copula is a method used to model the dependence between random variables. Sklar was

the first to use the term ”copula” [96]. A copula is a Latin word that means link, tie or

connection, describing how it connects the marginal distributions. Its importance arises

from its ability to describe the dependence structure separately from the marginals. A

copula is used to combine two or more univariate marginal distributions into a multivariate

distribution. Statistically, a copula (C) is a multivariate cumulative distribution function

with uniform marginal distributions on [0, 1] and C : [0, 1]d → [0, 1] for d ≥ 2 [59, 84].

Let X = (X1, X2, . . . , Xd) and x = (x1, x2, . . . , xd). The multivariate cumulative

distribution function F (x1, x2, . . . , xd) = P (X1 ≤ x1, . . . , Xd ≤ xd) of a random vector

(X1, X2, . . . , Xd) can be expressed in term of the marginal CDFs Fi for i = 1, . . . , d and

5
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a copula C.

FX(x) = C(F1(x1), . . . , Fd(xd)) (2.2.1)

The corresponding multivariate density function fX is given by

fX(x) = c(F1(x1), . . . , Fd(xd)) ∗ f1(x1) . . . fd(xd) (2.2.2)

where c(.) is the density function of the copula and fi is the marginal density function of

Xi [59, 84]. The copula function satisfies the following properties

1. C(x1, . . . , xi−1, 0, xi+1, . . . , xd) = 0

2. C(1, . . . , xi, . . . , 1) = x for all xi ∈ [0, 1]

3.
∑2

i1=1

∑2
i2=1 · · ·

∑2
id=1(−1)i1+i2+···+idC(x1, x2, . . . , xd) ≥ 0

Measuring the dependence between random variables is an important tool. A copula

has the ability to model the dependence structure. There is a relationship between depen-

dence and the copula’s parameter, which helps characterize various types of dependencies.

A rank-based dependence measure such as Kendall’s τ [63] can be written in terms of the

copula [66, 72]. Assume X and Y are continuous random variables with a copula CX,Y

associated with FX,Y (x, y), then Kendall’s τ can be expressed as

τ = 4

∫
[0,1]2

CX,Y (x, y)dCX,Y (x, y)− 1, (2.2.3)

2.3 Families of copulas

There is a huge variety of parametric copula models presented in the literature. Each of

these models possesses specific characteristics. This thesis focuses on some of the most

popular families of copulas, such as the Gaussian (Normal) copula, Clayton, Gumbel,

Frank and Joe copulas [84]. The Gaussian copula is one of the elliptical copulas [84].

The Gaussian copula is implemented by applying a Normal distribution to the univariate

marginals and a multivariate Normal distribution to the joint distribution [38]. For sym-

metric, positive definite matrix with diag(R) = (1, 1, . . . , 1)T the Gaussian copula with

parameter θn ∈ [−1, 1] is given by

C(x1, . . . , xd) = ΦR(Φ
−1(x1), . . . ,Φ

−1(xd)) (2.3.1)
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where Φ−1 is the inverse cumulative distribution function of standard normal distribution

and ΦR is the multivariate standard normal distribution function, with linear correlation

matrix R [84, 104]. Another popular family of copulas is the Archimedean copulas [92],

which allows for modelling dependence, including different types of tail dependence [71].

This type of copula has a simple closed-form expression and is constructed using a gen-

erator function with a single parameter θ, which is restricted to the interval (0,∞) [84].

It is given by

C(x1, . . . , xd; θ) = ψ[−1](ψ(x1; θ) + · · ·+ ψ(xd; θ); θ) (2.3.2)

where ψ is a smooth, strictly decreasing, continuous function known as the generator of

copula and ψ[−1] denotes the pseudo inverse of the generator function. There are different

types of Archimedean copulas, including Clayton [23], Frank [39], Ali-Mikhail-Haq [7] and

Gumbel [103]. More details on Archimedean copulas can be found in [44, 84].

The Clayton copula is a one-parameter copula with positive lower tail dependence,

where there is more dependence in the negative tail than in the positive tail [23]. The

Clayton copula for θc > 0 has the form

Cθc(x1, . . . , xd) = (
d∑
i

(xi)
−θc)−1/θc − d+ 1) (2.3.3)

The Gumbel copula models upper tail dependence between variables [103]. The generator

function is ψ(x; θg) = (− ln(x))θg) and its inverse is ψ[−1](x) = exp(−x1/θg) for θg ≥ 1

leading to

Cθg(x1, . . . , xd) = exp−[
m∑
i=1

(− lnxi)
θg ]1/θg (2.3.4)

The Frank copula is a symmetric copula [39], has the generator function ψ(x; θf ) =

− ln(
exp(−θfx)−1

exp(−θf )−1
) and inverse generator function ψ[−1](x) = − 1

θf
ln(1+exp(−x)(exp(−θf )−

1)) for θ > 0 leading to

Cθf (x1, . . . , xd) = − 1

θf
ln(1 +

∏
i(e

θfxi)

e−θf − 1
) (2.3.5)

The Joe copula models upper tail dependence between variables [59]. The generator

function is ψ(x; θj) = − ln(1− (1−x)θj) and its inverse is ψ[−1](x) = 1− [1− exp(−x)]1/θj

for θj ≥ 1 leading to

Cθj(x1, . . . , xd) = 1− (1− [1− (1− x)θj ] . . . [1− (1− xd)
θj ])1/θj ; θj > 0 (2.3.6)
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A detailed review of the properties of these copulas can be found in [19, 60, 84].

The estimation of copula parameters is widely discussed in the literature [21, 45].

Generally, estimation methods are categorized as parametric, semiparametric or non-

parametric. The parametric estimation method, such as maximum likelihood estimation

(MLE) or inference functions for margins (IFM), is preferred when the marginal distri-

butions are known. However, the performance of these estimators may be affected if the

marginal distributions are misspecified. In practice, margins are often unknown, making

it challenging to identify the most suitable copula for modelling the dependence struc-

ture. To address this issue, semiparametric estimation methods, such as pseudo maximum

likelihood estimation method (PML), can be implemented. These methods estimate the

margins nonparametrically and estimate the copula parameterically.

The PML method focuses on choosing the value of the parameter θ̂ that maximizes

the log pseudo likelihood function with empirical marginal distributions F̂Xi
. It is shown

to be the most efficient and optimal and its properties are studied by Cherubini et al.

[22]. The copula parameter is estimated by maximising the copula density as

L(θ) =
n∑

i=1

log
[
c
(
F̂X1(x1,i), . . . , F̂Xd

(xd,i); θ
)]

(2.3.7)

Nonparametric estimation methods do not depend on assumptions regarding the marginal

distributions or the dependence structure, offering flexibility when the true forms of the

marginals or copula are unknown [45, 95]. Nonparametric estimation of copula density

can be implemented using kernels [69, 81], using wavelets [43], using splines [62], based on

Bernstein polynomials [70] or empirical copulas, as introduced by Deheuvels [32]. In this

thesis, estimating the copula using kernel is used because it provides a smooth estimate of

the copula density. The kernel method is widely used in nonparametric statistics and only

requires choosing a bandwidth, which can be selected using cross-validation or a plug-in

estimator.

The kernel density estimator is a way of using kernels as weights to estimate the

probability density function of a random variable. The idea works by centering a kernel of

probability weight 1/n on each observation, which is controlled by a smoothing parameter,

the bandwidth b. There are many ways to calculate the bandwidth, including the normal

reference rule-of-thumb and least square cross-validation (LCSV). The first method is
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given by Silverman [95].

b = 1.06 σ̂jn
−1/(d+4) (2.3.8)

where d is the number of variables. The LSCV method selects a bandwidth that minimizes

the integrated squared error of the estimate from the data [95]. The LSCV criterion for

selecting the optimal bandwidth b in kernel density estimation is given by

LSCV (b) =

∫
Rd

f̂(x;b)2 dx− 2

n

n∑
i=1

f̂−i(Xi;b) (2.3.9)

from which follows:

b̂LSCV = argmin
b∈F

LSCV (b). (2.3.10)

Given the random quantities X and x = (x1, . . . , xd). Let (Ui,1, . . . , Ui,d) ∼ [0, 1] is the

transformed rank of the random quantities X with joint distribution C and corresponding

probability density function, c : [0, 1]d → R. Nonparametric copula distributions based

on the kernel density estimator is given by

Ĉ(u1, . . . , ud) =
1

n

n∑
i=1

d∏
j=1

K

(
uj − Ui,j

b

)
(2.3.11)

where for all u1, . . . , ud ∈ [0, 1], K : Rd → R is a multivariate kernel function and b > 0 is

the bandwidth.

2.4 Vine copulas

In the previous section, several copulas are introduced, which will be used in the two-

dimensional case in Chapter 4 of this thesis. This section provides another way to model

dependence, which is a flexible multivariate model called the vine copulas or pair-copula

constructions (PCC) model. Vine copulas are introduced by Joe [58, 59] and discussed by

Bedford and Cooke [14, 15, 16]. This construction models the multivariate variables using

bivariate copulas. The flexible structure of vine copulas allows for the inclusion of various

types of dependencies [28]. The vine copula structure is not unique and it has d!
2
possible

decompositions in a d-dimension [1, 2]. The structure of vine copulas overcomes the

limitations of classical copula models, offering flexible multivariate modelling. Consider

a random variables X = (X1, X2, X3) with a joint distribution function f(x1, x2, x3)
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and univariate marginal densities f1, f2, f3 and F1, F2, F3 are the marginal distribution

functions. Then, the vine copula decomposition of a trivariate case takes the form

f(x1, x2, x3) = f3|12(x3|x1, x2)f2|1(x2|x1)f1(x1) (2.4.1)

where f3|12(x3|x1, x2) is determined by considering the bivariate conditional density f13|2(x3, x1|x2)

and it can expressed as follows

f3|12(x3|x1, x2) =
f13|2(x3, x1|x2)
f1|2(x1|x2)

=
c13|2(F1|2(x1|x2), F3|2(x3|x2))f1|2(x1|x2)f3|2(x3|x2)

f1|2(x1|x2)

= c13|2(F1|2(x1|x2), F3|2(x3|x2))f3|2(x3|x2)

(2.4.2)

The last two terms in the right-hand numerator can be expressed as

f2|1(x2|x1) =
c12(F1(x1), F2(x2))f2(x2)f1(x1)

f1(x1)
= c12(F1(x1), F2(x2))f2(x2) (2.4.3)

f3|2(x3|x2) =
c23(F2(x2), F3(x3))f3(x3)f2(x2)

f2(x2)
= c23(F2(x2), F3(x3))f3(x3) (2.4.4)

Substituting these expressions to Equation (2.3.4) leads to

f(x1, x2, x3) = c13|2(F1|2(x1|x2), F3|2(x3|x2))c23(F2(x2), F3(x3))c12(F1(x1), F2(x2))

f1(x1)f2(x2)f3(x3)
(2.4.5)

This construction is not unique; for three dimensions, there are three different decompo-

sitions, where different decompositions lead to different results as presented in Figure 2.1.

By reordering the variables, the structure could be written as

f(x1, x2, x3) = c23|1(F2|1(x2|x1), F3|1(x3|x1))c13(F1(x1), F3(x3))c12(F1(x1), F2(x2))

f1(x1)f2(x2)f3(x3)
(2.4.6)

or

f(x1, x2, x3) = c12|3(F1|3(x1|x3), F2|1(x2|x1))c13(F1(x1), F3(x3))c23(F2(x2), F3(x3))

f1(x1)f2(x2)f3(x3)
(2.4.7)

All these three structures have three parameters θ1, θ2, θ3 and a conditional copula

term. For example, in Equation (2.4.5) the conditional copula term c13|2(x1, x3|x2) de-

pends on x2. To simplify estimation, the dependence on the specific conditioning value is
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Figure 2.1: Three-dimensional different construction based on reordering variables

ignored [3, 4, 98]. It assumes that the conditional copula is independent of the conditioning

variables, except through the conditional distributions [29]. This conditional copula can be

obtained by partial differentiation F1|2(x1|x2) = ∂C12(x1,x2;θ̂1)
∂x2

and F3|2(x3|x2) = ∂C23(x2,x3;θ̂3)
∂x2

[59].

2.5 Nested Archimedean copulas (NAC)

Another structure for modelling dependence, in addition to vine copulas and classical

copulas, is the Nested Archimedean copula (NAC), also known as the asymmetric or hi-

erarchical copula. NAC was first introduced by Joe [60] and is extensively discussed by

Trede and Savu [90] and Embrechts et al. [36]. In general, there are two constructions

derived under the name of Nested Archimedean copulas: Fully Nested Archimedean cop-

ulas (FNAC) and Partially Nested Archimedean copulas (PNAC). In this thesis, FNAC

is used in Chapter 5.

A copula C is a fully nested Archimedean copula (FNAC) if it is an Archimedean

copula whose arguments can be replaced by other nested Archimedean copulas. FNAC

with d− 1 hierarchies or nesting levels is defined by

C(x1, . . . , xd) = ψ−1
d−1

(
ψd−1 ◦ ψ−1

d−2

[
· · ·
(
ψ2 ◦ ψ−1

1

[
ψ1(x1) + ψ1(x2)

]
+ψ2(x3)

)
+ · · ·+ ψd−2(xd−1)

]
+ ψd−1(xd)

) (2.5.1)

for (x1, . . . , xd) ∈ [0, 1]d, where ψ1, . . . , ψd−1 are the generators of Archimedean copulas,

ψ−1
1 , . . . , ψ−1

d−1 the inverse generators and ◦ is the composite function with parameters

θ1 ≥ θ2 ≥ · · · ≥ θd−1. McNeil [74] proved that FNAC is a copula if all the generators
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X1 X2 X3 X4

C2

C1

C3

Figure 2.2: Four-dimensional FNAC structure

ψ−1
1 , ψ−1

2 , . . . , ψ−1
d−1 are completely monotone. ψi+1 ◦ ψ−1

i must have completely monotone

derivatives for all levels i of the nesting [52, 74].

If all the generators are of the same type from the Archimedean family e.g all the

generators are Clayton copulas then the FNAC structure is a copula. On the contrary, if

the generators are from different types from the Archimedean family then the composition

function ψi+1 ◦ ψ−1
i may not have a completely monotonic derivative. Thus, the FNAC

structure is not a copula. The three-dimensional FNAC expressions of Clayton, Gumbel,

Frank and Joe copulas are listed in Table 2.1. The possible choices of which different

families could be combined were discussed and investigated by Hofert [52, 53], Hofert and

David [54] and McNeil [36].

Equation (2.5.2) and Figure 2.2, represent the FNAC structure in the four-dimensional

case. There are three bivariate copulas C1, C2, C3 required to model the dependence for

the four-dimensional random variables X1, X2, X3 and X4 using FNAC. First, X1 and X2)

are coupled by copula C1. Then, X3 is coupled with C1 by C2. After that, the random

variable X4 is coupled with C2 by C3.

C(x1, x2, x3, x4) = C3(x4, C2(x3, C1(x1, x2)))

= ψ−1
3

(
ψ3(x4) + ψ3

(
ψ−1
2

(
ψ2(x3) + ψ2

(
ψ−1
1 (ψ1(x1) + ψ1(x2))

))))
(2.5.2)
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FNAC C(x1, x2, x3) Parameter Range

Clayton (x−θ1
3 + (x−θ2

1 + xθ22 − 1)
θ1
θ2 )

−1
θ1 θ1 ≤ θ2 ∈ [0,∞)

Gumbel exp(−([(− lnx1)
θ2 + (− lnx2)

θ2 ]
θ1
θ2 ) + (− lnx3)

θ1)
1
θ1 ) θ1 ≤ θ2 ∈ [1,∞)

Frank − 1
θ1

ln(1− (1− exp(−θ1))
−1(1− [1− (1− exp(−θ2))

−1(1− exp(−x1θ2)) θ1 < θ2 ∈ [0,∞)

(1− exp(−x2θ2))]
θ1
θ2 )(1− exp(−x3θ1)))

Joe 1− (((1− x1)
θ2(1− (1− x2)

θ2) + (1− x2)
θ2)

θ1
θ2 (1− (1− x3)

θ1) + (1− x3)
θ1)

1
θ1 θ1 ≤ θ2 ∈ [1,∞)

Table 2.1: The trivariate FNAC

2.6 Nonparametric Predictive Inference (NPI)

Nonparametric predictive inference (NPI) is a statistical method used to make inferences

about a future observation based on past data [24]. NPI is built on the assumption A(n)

of Hill [50], which gives a direct conditional probability for a future observable random

quantity, conditional on observed values of related random quantities.

Assume that X1, X2, . . . , Xn, Xn+1 are continuous and exchangeable real-valued ran-

dom quantities. Let the ordered observed values of X1, X2, . . . , Xn be denoted by x1 <

x2 < · · · < xn. Let x0 = −∞ and xn+1 = ∞ [50]. Assume further there are no

tied observations, but if there are ties, they can be treated by adding a small value

close to zero to break ties [51]. For a future observation Xn+1, the assumption A(n) is

P (Xn+1 ∈ (xi−1, xi) =
1

n+1
where i = 1, 2, . . . , n+ 1.

A(n) does not assume anything else and is a post-data assumption related to exchange-

ability [50]. Inferences based on A(n) are predictive and nonparametric and can be consid-

ered suitable if there is hardly any knowledge about the random quantity of interest, other

than the n observations or if one does not want to use such information. Although A(n) is

not sufficient to derive precise probabilities, it provides optimal bounds for probabilities

for all events of interest, including future observation [10]. These bounds are lower and

upper probabilities in the theory of imprecise probability and are denoted by P (A) and

P (A), respectively. P (A) is the lower probability of an event A and can be interpreted

as the maximum lower bound for the probability A. P (A) is the upper probability of an

event A and can be interpreted as the minimum upper bound for the probability of A. In

imprecise probability theory, 0 ≤ P (A) ≤ P (A) ≤ 1 and the lower and upper probabilities

are conjugate P (A) = 1−P (Ac) where Ac is the complement event of A. These properties
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hold for the NPI lower and upper probabilities, as demonstrated by Coolen and Augustin

[10].

2.7 Combining NPI with copulas for bivariate data

Coolen-Maturi et al. [27, 77] introduced two methods for applying NPI in the bivariate

case, taking into account the dependence structure using parametric and nonparametric

copulas. The idea can be categorized into two steps: applying NPI to the marginals, then

using an assumed copula. The semi-parametric method assumes a parametric copula in

the second step, while the nonparametric method assumes a nonparametric copula based

on a kernel approach. The notation and concepts provided by Muhammad [76] are used

to introduce the two prediction approaches.

Assume there are n bivariate observations (xi, yi), i = 1, . . . , n corresponding to n

exchangeable bivariate random quantities with no ties. The observations are ordered such

as x1 < · · · < xi < · · · < xn and y1 < · · · < yi < · · · < yn. Let the new future bivariate

observation denoted as (Xn+1, Yn+1) given the past observations (xi, yi), i = 1, . . . , n.

Using the assumption A(n) for the matginals gives

P (Xn+1 ∈ (xi−1, xi)) =
1

n+ 1
and P (Yn+1 ∈ (yj−1, yj)) =

1

n+ 1
(2.7.3)

for i, j = 1, 2, . . . , n+ 1 where x0 = −∞, xn+1 = ∞, y0 = −∞ and yn+1 = ∞.

To link the first step to the second one where the dependence structure in the observed

data is taken into account. Mohammad [76] introduced a natural transformation of the

random quantities Xn+1 and Yn+1 by using a corresponding transformation X̃n+1 and Ỹn+1

where

(Xn+1 ∈ (xi−1, xi), Yn+1 ∈ (yj−1, yj) ⇐⇒

(X̃n+1 ∈ (
i− 1

n+ 1
,

i

n+ 1
), Ỹn+1 ∈ (

j − 1

n+ 1
,

j

n+ 1
)) (2.7.4)

where i, j = 1, 2, . . . , n+1. The A(n) assumption for the marginal using the transformation

lead to

P (X̃n+1 ∈ (
i− 1

n+ 1
,

i

n+ 1
)) = P (Xn+1 ∈ (xi−1, xi)) =

1

n+ 1
(2.7.5)
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P (Ỹn+1 ∈ (
j − 1

n+ 1
,

j

n+ 1
) = P (Yn+1 ∈ (yj−1, yj)) =

1

n+ 1
(2.7.6)

This is a transformation from the real space R2 to [0, 1]2, where [0, 1]2 is divided

into (n + 1)2 equal sized squares by the n observed bivariate observations. The uniform

marginal distributions have been discretized using this transformation. For the second

step a parametric copula is assumed and the copula parameter θ is estimated. The

parameter is estimated using transformed data by replacing the observed pair (xi, yi), i =

1, . . . , n by (
rxi

(n+1)
,

ryi
(n+1)

) where rxi is the rank of the observation xi among x-observations

and ryi is the rank of the observation yi among y-observations. The estimated copula and

NPI on the marginal are now combined by defining the probability that the transformed

pair (X̃n+1, Ỹn+1) belonged to a certain square from the (n + 1)2 squares into which the

space [0, 1]2 has been partitioned as follow:

hij(θ̂) = PC(X̃n+1 ∈ (
i− 1

n+ 1
,

i

n+ 1
), Ỹn+1 ∈ (

j − 1

n+ 1
,

j

n+ 1
)|θ̂) (2.7.7)

where i, j ∈ 1, . . . , n + 1 and PC(.|θ̂) is the assumed copula-based probability with the

estimated parameter θ̂. The hij values satisfies
∑n

i=1

∑n
j=1 hij = 1 and each value of hij

is between 0 and 1 and
∑n

j=1 hij =
1

n+1
for all i ∈ { 1, . . . , n+ 1} and

∑n
i=1 hij =

1
n+1

for

all j ∈ { 1, . . . , n+ 1}

In the second method, a nonparametric kernel-based copula replaces the parametric

copula. First, NPI is applied to the marginals, followed by the same transformation as

before. The kernel-smoothed copula density estimator ĉ is defined as

ĉ(x, y) =
1

nbXbY

n∑
i=1

K

(
x− FX(X̃i)

bX
,
y − FY (Ỹi)

bY

)
(2.7.8)

where K : R2 → R is a bivariate kernel function, bX , bY > 0 are the bandwidths or

smoothing parameters, FX(X̃i) =
rxi
n+1

and FY (Ỹi) =
ryi
n+1

. Now, the NPI approach for

the marginals, can be combined with the nonparametric kernel-based copula to take the

dependence into account as follows,

hij(ĉ) = PC(X̃n+1 ∈ (
i− 1

n+ 1
,

i

n+ 1
), Ỹn+1 ∈ (

j − 1

n+ 1
,

j

n+ 1
)|ĉ) (2.7.9)

where i and j ∈ 1, . . . , n+1 and P (.|ĉ) represents the nonparametric kernel-based copula

probability with estimated kernel density function ĉ as defined in Equation (2.7.8). These
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hij values must satisfy the three conditions as explained in the semi-parametric method.

This chapter introduces the theoretical background for the topics discussed in this thesis

from the literature. This thesis considers mainly the trivariate case where the novelty lies

in the consideration of different copula constructions.



Chapter 3

NPI Combined with Classical Copula

3.1 Introduction

As stated in the previous chapter, Coolen-Maturi et al. [27, 77] introduced two methods

for predictive inference of a future observation based on bivariate data: a semi-parametric

method and a nonparametric method. Both follow a two-step approach: first, applying

nonparametric predictive inference (NPI) to the marginals; second, modelling the de-

pendence structure using either a parametric or a nonparametric copula. This chapter

presents two extensions of these methods to the multivariate case, maintaining the same

structure by first applying NPI to the marginals and then using a multivariate copula to

capture dependence.

This chapter is organized as follows. Section 3.2 introduces an extension of the semi-

parametric method in the trivariate case followed by a generalization of this method to

the multivariate case. Section 3.3 introduces an extension of the nonparametric method in

the trivariate case and this is followed by an extension of this method to the multivariate

case. The proposed methods are explained through examples in Section 3.4. The pre-

dictive performance of the proposed methods is evaluated through simulations in Section

3.5. Section 3.6 presents examples from the literature to illustrate the applications of the

proposed methods. Concluding remarks of this chapter are provided in Section 3.7.

17
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3.2 Combining NPI with a parametric copula

A semiparametric method is introduced, combining Nonparametric Predictive Inference

(NPI) for the marginals with a parametric trivariate copula. The method extends Muham-

mad’s work by focusing on the trivariate case [76]. The method involves two main steps:

first, applying NPI to the marginals; second, assuming a trivariate parametric copula and

estimating its parameter to capture the dependence structure.

For the first step, assume that there are n trivariate observations (xi, yi, zi), i =

1, . . . , n, representing the observed values of n exchangeable trivariate random quantities

with no ties. The observations of the marginals are ordered and denoted by xi, yj and zk

for simplicity, so x1 < · · · < xi < · · · < xn, y1 < · · · < yj < · · · < yn and z1 < · · · < zk <

· · · < zn.

Using Hill’s assumption A(n), it is possible to derive a partially specified predictive

probability distribution for each Xn+1, Yn+1 and Zn+1 given the observations x1, . . . , xn,

y1, . . . , yn and z1, . . . , zn, respectively, lead to P (Xn+1 ∈ (xi−1, xi)) = 1
n+1

, P (Yn+1 ∈

(yj−1, yj)) = 1
n+1

and P (Zn+1 ∈ (zk−1, zk)) = 1
n+1

for i, j, k ∈ { 1, . . . , n + 1} , where

x0 = −∞, xn+1 = ∞, y0 = −∞, yn+1 = ∞ and z0 = −∞, zn+1 = ∞.

To link the first step with the second step, where the dependence structure in the

data is taken into account to provide a partially specified predictive distribution for the

trivariate (Xn+1, Yn+1, Zn+1) by introducing a natural transformation of the three random

quantities individually as introduced by Muhammad [76]. Let X̃n+1 , Ỹn+1 and Z̃n+1 de-

note the transformed versions of the random quantitiesXn+1 , Yn+1 and Zn+1, respectively,

such that

(Xn+1 ∈ (xi−1, xi), Yn+1 ∈ (yj−1, yj, Zn+1 ∈ (zk−1, zk)) ⇐⇒

(X̃n+1 ∈ (
i− 1

n+ 1
,

i

n+ 1
), Ỹn+1 ∈ (

j − 1

n+ 1
,

j

n+ 1
), Z̃n+1 ∈ (

k − 1

n+ 1
,

k

n+ 1
)) (3.2.1)

where i, j and k = 1, . . . , n + 1. This transformation from the real space R3 to [0, 1]3 is

based on n trivariate data, where [0, 1]3 is divided into (n + 1)3 equal sized blocks. By

following these transformations of the marginals, the uniform marginal distribution on

[0, 1] has been discretized. The A(n) assumption for the marginals after the transformation

lead to

P (X̃n+1 ∈ (
i− 1

n+ 1
,

i

n+ 1
)) = P (Xn+1 ∈ (xi−1, xi)) =

1

n+ 1
(3.2.2)
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P (Ỹn+1 ∈ (
j − 1

n+ 1
,

j

n+ 1
) = P (Yn+1 ∈ (yj−1, yj)) =

1

n+ 1
(3.2.3)

and

P (Z̃n+1 ∈ (
k − 1

n+ 1
,

k

n+ 1
) = P (Zn+1 ∈ (zk−1, zk)) =

1

n+ 1
(3.2.4)

The second step is to use a trivariate parametric copula and estimate the copula param-

eter. The copula parameter can be estimated using the transformed data where each

observed pair (xi, yi, zi), i = 1, . . . , n is replaced by (
rxi

(n+1)
,

ryi
(n+1)

,
rzi

(n+1)
) where rxi the rank

of the observation xi among x-observations, ryi the rank of the observation yi among

y-observations and rzi the rank of the observation zi among z-observations.

Now, NPI on the marginals can now be combined with the estimated copula by defining

the probability for the event that the transformed pair (X̃n+1, Ỹn+1, Z̃n+1) belongs to a

certain block from (n+ 1)3 blocks into which the space [0, 1]3 has been partitioned,

hijk(θ̂) = PC(X̃n+1 ∈ (
i− 1

n+ 1
,

i

n+ 1
), Ỹn+1 ∈ (

j − 1

n+ 1
,

j

n+ 1
),

Z̃n+1 ∈ (
k − 1

n+ 1
,

k

n+ 1
)|θ̂) (3.2.5)

where i, j and k ∈ 1, . . . , n+ 1 and PC(.|θ̂) is the assumed copula-based probability with

estimated parameter θ̂ and the cumulative distribution function is

Hijk(ĉ) = PC(X̃n+1 ≤
i

n+ 1
, Ỹn+1 ≤

j

n+ 1
, Z̃n+1 ≤

k

n+ 1
|θ̂) (3.2.6)

These values (n+1)3 of hijk(θ̂) that sum to one provide a fully discretized probability

distribution for the transformed future observations. This distribution can be used for

making inferences about the actual future observation or any event of interest. The

probabilities satisfies:

1.
∑n

i=1

∑n
j=1

∑n
k=1 hijk(θ̂) = 1

2.
∑n

j=1

∑n
k=1 hijk(θ̂) = 1

n+1
, for i ∈ {1, 2, . . . , n + 1},

∑n
i=1

∑n
k=1 hijk(θ̂) = 1

n+1
, for

j ∈ {1, 2, . . . , n+ 1} and
∑n

i=1

∑n
j=1 hijk(θ̂) =

1
n+1

, for k ∈ {1, 2, . . . , n+ 1}

3. hijk(θ̂) ≥ 0, for i, j,k ∈ {1, . . . , n+ 1}

Using Equation (3.2.5), one can make an inference about an event involving the

next future trivariate observation (Xn+1, Yn+1, Zn+1). Assume that E(Xn+1, Yn+1, Zn+1)
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is the event of interest and the corresponding lower and the upper probabilities are

P (E(Xn+1, Yn+1, Zn+1)) and P (E(Xn+1, Yn+1, Zn+1)), respectively. For this event to be

true, the observed data (xi, yi, zi), for i = 1, . . . , n, partitioned R3 into (n + 1)3 blocks

Bijk = (xi−1, xi) ⊙ (yj−1, yj) ⊙ (zk−1, zk), for i, j, k = 1, . . . , n + 1. By defining the event

of interest as follows

E(x, y, z) =

 1 if E(Xn+1, Yn+1, Zn+1) is true for Xn+1 = x, Yn+1 = y and Zn+1 = z

0 else

Let Eijk = max
(x,y,z)∈Bijk

E(x, y, z), so Eijk = 1 if there is at least one (x, y, z) ∈ Bijk for

which E(x, y, z) = 1, else Eijk = 0. By defining Eijk = min
(x,y,z)∈Bijk

E(x, y, z), so Eijk = 1 if

E(x, y, z) = 1 for all (x, y, z) ∈ Bijk, else Eijk = 0. The lower and upper probabilities for

the event E(Xn+1, Yn+1, Zn+1) leads to

P (E(Xn+1, Yn+1, Zn+1)) =
∑
i,j,k

Eijkhijk(θ̂) (3.2.7)

P (E(Xn+1, Yn+1, Zn+1)) =
∑
i,j,k

Eijkhijk(θ̂) (3.2.8)

For example, if the event of interest is that the sum of the next observations Xn+1, Yn+1

and Zn+1 is greater than a value t, expressed as Tn+1 = Xn+1+Yn+1+Zn+1 > t. The lower

probability for the event that the sum of the next observations will exceed a particular

value t; Tn+1 = Xn+1 + Yn+1 + Zn+1 > t is

P (Tn+1 > t) =
∑

(i,j,k)∈Lt

hijk(θ̂) (3.2.9)

where Lt = { (i, j, k) : xi−1+ yj−1+ zk−1 > t, 1 ≤ i ≤ n+1, 1 ≤ j ≤ n+1, 1 ≤ k ≤ n+1}

and the upper probabilities takes the form

P (Tn+1 > t) =
∑

(i,j,k)∈Ut

hijk(θ̂) (3.2.10)

where Ut = { (i, j, k) : xi + yj + zk > t, 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n + 1, 1 ≤ k ≤ n + 1} .

The lower and upper probabilities in Equations (3.2.9) and (3.2.10), which can also be

interpreted as survival functions for the future observation Tn+1, will be denoted by S(t),

S(t), respectively.
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High Correlation

X Y Z

-0.831 0.181 -0.134

1.197 0.220 0.512

0.407 0.315 0.202

0.042 -0.394 -0.756

No Correlation

X Y Z

-0.445 -0.466 -0.104

1.408 -1.316 0.245

1.205 -0.441 0.423

0.965 1.008 0.050

Table 3.1: Simulated data from a trivariate Gaussian distribution with different correla-

tion structures.

Example 3.2.1 Two three-dimensional visualizations of the probabilities hijk(θ̂) under

different dependence structures are shown in Figures 3.1 and 3.2. Each figure is based

on a dataset of size n = 4, simulated from a trivariate Gaussian distribution with mean

vector zero. Two cases are considered: a no correlation case where the covariance matrix

is the identity matrix and a high correlation case where all off-diagonal entries of the

covariance matrix are set to 0.9 as shown in Table 3.1.

The parameter is estimated using the pseudo maximum likelihood method, assuming

a trivariate Frank copula. Using a classical copula with a single dependence parameter to

model the entire trivariate distribution implies that each pair of variables shares the same

level of dependence. The relationship between the parameter values and their associated

Kendall τ values demonstrates that the dependence structure is governed by this single

parameter. As θ increases, the dependence between the variables becomes stronger. For

the first dataset, which is highly correlated, the estimated parameter is 8.41 with a corre-

sponding Kendall τ of 0.62. For the second dataset, the estimated parameter is θ̂ = 2.68

with a corresponding Kendall τ value of 0.27, indicating a weaker positive dependence.

This illustrates how the copula’s dependence parameter affects the dependence structure

as measured by Kendall τ . The estimated parameter is used to calculate the probabilities

hijk(θ̂) as given by Equation (3.2.5). Figures 3.1 and 3.2 present the marginals of the

probabilities hijk(θ̂). Each figure presents three sides: the right side h.jk =
∑

i hijk, the

left side hi.k =
∑

j hijk and the bottom side hij. =
∑

k hijk.

On each side, there are large values of the hijk when i = j = k, particularly when

the data is highly correlated compared to when the data has no correlation. There is
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Figure 3.1: The probabilities h.jk, hi.k and hij., for the high correlation case.

also symmetry around these large values on each side, with similar results observed on

all three sides. This effect is due to the copula having one dependence parameter that

controls the dependence structure between the three variables. The figures show positive

dependence on each side, but the case of high correlation shows larger values of hijk when

i = j = k than when there is no correlation.



3.2. Combining NPI with a parametric copula 23

i

j

k

1

2

3

4

5

1 2 3 4 5
1

2

3

4

5

.0705

.0516

.0364

.0249

.0167

.0516

.0485

.0417

.0333

.0249

.0364

.0417

.0437

.0417

.0364

.0249

.0333

.0417

.0485

.0516

.0167

.0249

.0364

.0516

.0705

.0705

.0516

.0364

.0249

.0167

.0516

.0485

.0417

.0333

.0249

.0364

.0417

.0437

.0417

.0364

.0249

.0333

.0417

.0485

.0516

.0167

.0249

.0364

.0516

.0705

.0705

.0516

.0364

.0249

.0167

.0516

.0485

.0417

.0333

.0249

.0364

.0417

.0437

.0417

.0364

.0249

.0333

.0417

.0485

.0516

.0167

.0249

.0364

.0516

.0705

Figure 3.2: The probabilities h.jk, hi.k and hij., for the no correlation case.

Equivalently, the method of combining NPI with multivariate data can be extended to

more than three dimensions by following the same two main steps above, namely, applying

NPI for the marginals in the first step and assuming a parametric copula in the second

step and estimate the parameter to take the dependence structure into account as follows.

Assume that there are n observations of d multivariate random variables X1,X2, . . . ,Xd

where Xi = (X1,i, X2,i, . . . , Xd,i), i = 1, . . . , n. We are interested in making inferences

involving one future multivariate observation, denoted by (X1,n+1, X2,n+1, . . . , Xd,n+1).

Using Hill’s assumption A(n), it is possible to derive a partially specified predictive

probability distribution for each ofX1,n+1, X2,n+1, . . . , Xd,n+1 given their observations xi =

x1, x2,. . . , xd, respectively, where xi = (x1,i, . . . , xd,i). These are as follows

P (X1,n+1 ∈ (x1,i1−1, x1,i1)) =
1

n+1
, P (X2,n+1 ∈ (x2,i2−1, x2,i2)) =

1
n+1

and P (Xd,n+1 ∈

(xd,id−1, xd,id)) =
1

n+1
for i1, i2, . . . , id = 1, . . . , n + 1, where x1,0, x2,0, . . . , xd,0 = −∞ and

x1,n+1, x2,n+1, . . . , xd,n+1 = ∞ for simplicity.

The two steps can be linked by introducing a natural transformation of the random
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quantities individually. Let X̃1,n+1, X̃2,n+1, . . . , X̃d,n+1 be the transformed versions of the

random quantities X1,n+1, X2,n+1, . . . , Xd,n+1, respectively, such that

(X1,n+1 ∈ (x1,i1−1, x1,i1), X2,n+1 ∈ (x2,i2−1, x2,i2), . . . , Xd,n+1 ∈ (xd,id−1, xd,id)) ⇐⇒

(X̃1,n+1 ∈ (
i1 − 1

n+ 1
,

i1
n+ 1

), X̃2,n+1 ∈ (
i2 − 1

n+ 1
,

i2
n+ 1

), . . . , X̃d,n+1 ∈ (
id − 1

n+ 1
,

id
n+ 1

))

(3.2.11)

for i1, i2, . . . , id ∈ 1, . . . , n+ 1. The assumption A(n) of the transformations leads to

P (X̃1,n+1 ∈ (
i1 − 1

n+ 1
,

i1
n+ 1

)) = P (X1,n+1 ∈ (x1,i1−1, x1,i1)) =
1

n+ 1
(3.2.12)

P (X̃2n+1 ∈ (
i2 − 1

n+ 1
,

i2
n+ 1

)) = P (X2,n+1 ∈ (x2,i2−1, x2,i2)) =
1

n+ 1
(3.2.13)

P (X̃d,n+1 ∈ (
id − 1

n+ 1
,

id
n+ 1

)) = P (Xd,n+1 ∈ (xd,id−1, xd,id)) =
1

n+ 1
(3.2.14)

This transformation from the space Rd to [0, 1]d is based on n trivariate data, where

[0, 1]d is divided into (n + 1)d equal sized blocks. By following these transformations of

the marginals, the uniform marginal distribution on [0, 1] has been discretized. Following

these transformations of the marginals, the uniform marginal distributions is discretized

on [0, 1], which is fully correspond to copulas, as any copula will result in the same

discretized uniform marginal distributions.

For the second step when assuming a parametric copula and estimate the parame-

ter, where the observed pairs are replaced by (
r
x1
i

n+1
, . . . ,

r
xd
i

n+1
) where r

xj

i the rank of the

observation xi among n-xj observations. NPI on the marginals is now combined with

the estimated copula to provide a partially specified predictive distribution for one future

multivariate observation and each (n+ 1)d blocks is assigned a specific probability as

hi1i2...id(θ̂) = PC(X̃1,n+1 ∈ (
i1 − 1

n+ 1
,

i1
n+ 1

), X̃2,n+1 ∈ (
i2 − 1

n+ 1
,

i2
n+ 1

), . . . ,

X̃d,n+1 ∈ (
id − 1

n+ 1
,

id
n+ 1

)|θ̂) (3.2.15)

where i1, i2, . . . , id ∈ 1, . . . , n + 1. PC(.|θ̂) is the assumed copula-based probability and θ̂

is the estimated parameter value and the corresponding cumulative distribution function,

Hi1i2...id(θ̂) = PC(X̃1,n+1 ≤ i1
n+ 1

, X̃2,n+1 ≤ i2
n+ 1

, . . . , X̃d,n+1 ≤ id
n+ 1

|θ̂) (3.2.16)
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These (n + 1)d values of hi1i2...id(θ̂) provide the fully discretized probability distribution

for the transformed future observations, which can be used for statistical inference on

the future observation or any event of interest involving the future observation. These

hi1i2...id(θ̂) probabilities satisfy the following conditions

1.
∑n

i1=1

∑n
i2=1 · · ·

∑n
id=1 hi1i2...id = 1

2.
∑n

i2=1 · · ·
∑n

id=1 hi1i2...id =
1

n+1
, for all i1 ∈ { 1, 2, . . . , n+ 1} this summation condi-

tion is repeated for each marginal by fixing a different index and summing over the

others.

3. hi1i2...id ≥ 0, for all i1, i2, . . . , id ∈ { 1, . . . , n+ 1}

3.3 Combining NPI with a nonparametric copula

Combining NPI with a nonparametric bivariate copula was first introduced by Muhammad

in [76]. This section presents an extension of Muhammad’s work by applying NPI to the

marginals with a nonparametric trivariate copula. In general, the idea is similar to that

presented in Section 3.2, which consists of two main steps: applying NPI for the marginals

for the first step and assuming a nonparametric trivariate copula in the second step.

Let (Xn+1, Yn+1, Zn+1) be a future trivariate observation and X̃n+1, Ỹn+1 and Z̃n+1 be

the transformation versions of the random quantities Xn+1, Yn+1 and Zn+1, respectively,

following from the natural transformations related to the marginal A(n) assumptions as

presented in Section 3.2. For the second step, a kernel-based copula is assumed, with an

estimated probability density function defined as:

ĉ(x, y, z) =
1

nbXbY bZ

n∑
i=1

K

(
x− FX(X̃i)

bX
,
y − FY (Ỹi)

bY
,
z − FZ(Z̃i)

bZ

)
(3.3.1)

where K : R3 → R is a trivariate kernel function, bX , bY , bZ > 0 are the bandwidths or

smoothing parameters, FX(X̃i) =
rxi
n+1

, FY (Ỹi) =
ryi
n+1

and FZ(Z̃i) =
rzi
n+1

. Now, the NPI

approach for the marginals can be combined with the nonparametric kernel-based copula

Equation (3.3.1) to take the dependence into account as follows

hijk(ĉ) =

PC(X̃n+1 ∈ (
i− 1

n+ 1
,

i

n+ 1
), Ỹn+1 ∈ (

j − 1

n+ 1
,

j

n+ 1
), Z̃n+1 ∈ (

k − 1

n+ 1
,

k

n+ 1
)|ĉ) (3.3.2)
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where i, j and k ∈ { 1, . . . , n + 1} , PC(.|ĉ) is the nonparametric kernel-based copula

probability and ĉ is the estimated kernel density function. The cumulative distribution

function takes the form

Hijk(ĉ) = PC

(
X̃n+1 ≤

i

n+ 1
, Ỹn+1 ≤

j

n+ 1
, Z̃n+1 ≤

k

n+ 1
| ĉ
)

(3.3.3)

Note that the hijk(ĉ) values must satisfy the three conditions presented after Equation

(3.2.5) in Section 3.2.

Similarly, the method of combining NPI with nonparametric copula can be extended

to more than three dimensions and is similar to the method discussed in Section 3.2,

by following the same two main steps: applying NPI for the marginals in the first step

and assuming a nonparametric copula in the second step. Then, combining these steps

together to define the probabilities hi1i2...id as follows. Let (X1,n+1, X2,n+1, . . . , Xd,n+1) be

a future multivariate observation and let X̃1,n+1, X̃2,n+1, . . . , X̃d,n+1 be the transformed

versions of the random quantities X1,n+1, X2,n+1, . . . , Xd,n+1 respectively, following from

the natural transformations related to the marginal A(n) assumptions. For the second

step when assuming a kernel-based copula, Equation (2.3.10), the estimated probability

density function defined as

ĉ(x) =
1

nbX1 . . . bXd

n∑
i=1

K

(
x1 − FX1(X̃1,i)

bX1

,
x2 − FX2(X̃2,i)

bX2

, . . . ,
xn − FXn(X̃d,i)

bXd

)
(3.3.4)

where K : Rd → R is a trivariate kernel function, b = bX1 , bX2 , . . . , bXd
> 0 are the

bandwidths, FX1(X̃1i) =
r
x1
i

n+1
, FX2(X̃2i) =

r
x2
i

n+1
,. . . , FXd

(X̃di) =
r
xd
i

n+1
. Now, the NPI

approach for the marginals, can be combined with the nonparametric kernel-based copula

to take the dependence into account as follows

hi1i2...in(ĉ) =

PC(X̃1,n+1 ∈ (
i1 − 1

n+ 1
,

i1
n+ 1

), X̃2,n+1 ∈ (
i2 − 1

n+ 1
,

i2
n+ 1

), . . . , X̃d,n+1 ∈ (
id − 1

n+ 1
,

id
n+ 1

)|ĉ)

(3.3.5)

where i1, i2, . . . , id ∈ 1, . . . , n + 1. Further, the corresponding cumulative distribution

function is

Hi1i2...id(ĉ) = PC(X̃1,n+1 ≤ i1
n+ 1

, X̃2,n+1 ≤ i2
n+ 1

, . . . , X̃d,n+1 ≤ id
n+ 1

)|ĉ) (3.3.6)
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The probabilities hi1i2...id(ĉ) must satisfy the conditions as presented in Section 3.2 after

Equation (3.2.13).

3.4 Examples

This section illustrates the proposed methods—combining NPI with a parametric copula

as in Section 3.2 and with a nonparametric copula as in Section 3.3 using trivariate Gaus-

sian datasets with zero mean vectors. Three covariance matrices representing different

correlation structures are considered, with sample sizes n = 10, 25, 50. These covariance

matrices are as follows:
1 0.9 0.9

0.9 1 0.9

0.9 0.9 1




1 0.5 0.5

0.5 1 0.5

0.5 0.5 1




1 0.15 0.15

0.15 1 0.15

0.15 0.15 1


The dependence strength is defined as High (H), Moderate (M), and Low (L) corre-

sponding to assumed correlations of 0.9, 0.5 and 0.15, respectively. First four parametric

copula types are used: Clayton, Gumbel, Frank and Joe, as presented in Section 2.3. The

pseudo maximum likelihood method, commonly used to estimate copula parameters, is

implemented via the R package copula [100].

Following the method presented in Section 3.2, which assumes a trivariate copula to

take the dependence structure into account between the variables, the estimated param-

eters for the four assumed trivariate copulas are presented in Table 3.2. Table 3.2 shows

that the Gumbel copula consistently has the highest Kendall’s τ value of 0.84 across all

the copulas considered, regardless of the correlation level. When the sample size is 50,

both the Frank and Gumbel copulas yield the same Kendall’s τ value. It is clear that

the parameter estimates tend to increase with higher correlation in the generated data,

as expected.

With the estimated parameters and the assumed trivariate copulas, the probabilities

hijk(θ̂) are obtained according to Equation (3.2.5). Figure 3.3 presents a three-dimensional

plot of the probabilities hijk(θ̂) for Frank trivariate copulas, considering different corre-

lation levels and sample sizes. Generally, it can be seen from these figures that the

probabilities hijk(θ̂) are similar but not identical in each block. Some of these figures
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τ n Clayton Gumbel Frank Joe

τ θ̂c τ θ̂g τ θ̂f τ θ̂j

10 0.77 6.23 0.84 6.15 0.79 16.81 0.81 9.10

H 25 0.61 3.15 0.77 4.28 0.76 14.54 0.72 6.04

50 0.66 3.95 0.73 3.77 0.73 12.75 0.66 4.71

10 0.38 1.20 0.46 1.85 0.41 4.37 0.41 2.28

M 25 0.36 1.13 0.49 1.95 0.47 5.16 0.44 2.43

50 0.34 1.01 0.38 1.61 0.38 3.94 0.31 1.81

10 0.23 0.60 0.30 1.43 0.22 2.07 0.28 1.68

L 25 0.22 0.57 0.24 1.31 0.23 2.17 0.20 1.44

50 0.13 0.29 0.13 1.15 0.13 1.15 0.10 1.20

Table 3.2: Estimated parameters and corresponding Kendall’s τ values from simulated

data with varying sample sizes, correlation levels, and copula types.

show little difference in the probabilities hijk(θ̂), which is particularly apparent in the

top right panel for smaller sample sizes.

As explained in Example 3.2.1, the marginals of the probabilities hijk(θ̂) show a pos-

itive relationship pattern when the generated data is highly correlated. So for all these

copulas, highly correlated data leads to hijk probabilities having larger values when i, j

and k are close to each other compared to the situation when the data is moderately

correlated. When the data is weakly correlated, the probabilities hijk(θ̂) will still show a

positive pattern when i, j and k are closer, but this pattern is weaker compared to when

the data is more correlated. Similar results are also achieved when assuming either Clay-

ton, Gumbel or Joe copulas. The detailed results are presented in Appendix A, Figures

A.1-A.6.
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Figure 3.3: The hijk probabilities obtained from simulated data n = 25 using Frank

copulas with different correlation levels.
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Assume that the event of interest is Tn+1 = Xn+1+Yn+1+Zn+1 > t. The NPI lower and

upper probabilities from Equations (3.2.9) and (3.2.10) are shown in Figures 3.4 and 3.5

for the Clayton and Gumbel copulas, respectively. These figures show the results across

different correlation levels and sample sizes. The NPI lower and upper probabilities for

selected values of t are presented in Table 3.3. The imprecision, which is the difference

between the upper and lower probabilities, is larger with a positive correlation than when

there is a weak correlation.

This is because the event Tn+1 = Xn+1+Yn+1+Zn+1 > t is closely linked to the prob-

abilities hijk(θ̂), which is fundamental for inference. In positively correlated data, large

values of hijk(θ̂) tend to occur when i, j, and k are are close to each other. Calculating

the lower and upper probabilities, as in Equations (3.2.9) and (3.2.10), tends to include

more hijk(θ̂) values and with the event Tn+1 > t, theses values are included in the lower

and upper probabilities for most values of t. As a result, imprecision remains small across

most t values, as shown in Figures 3.4 and 3.5. Similar patterns are observed for Frank

and Joe copulas

For all copulas, high positive correlation results in consistent imprecision across t

values, while low correlation causes greater imprecision in the tails and less at the center.

This pattern occurs at similar t values across copula types. Imprecision at the center

decreases as correlation increases. The results also show that sample size affects the NPI

lower and upper probabilities. Overall, imprecision remains small with large datasets,

regardless of the copula type.
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(a) Low,n = 10
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(b) Low,n = 25
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(c) Low,n = 50
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(d) Moderate, n = 10

−15 −10 −5 0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

Lo
w

er
 a

nd
 U

pp
er

 P
ro

b

Upper bound
Lower bound

(e) Moderate, n = 25
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(f) Moderate, n = 50
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(g) High, n = 10
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(h) High, n = 25
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(i) High, n = 50

Figure 3.4: The NPI lower and upper probabilities of the event Tn+1 > t, based on

simulated data with different sample sizes, correlations, and Clayton copula.
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(a) Low, n = 10

−15 −10 −5 0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

Lo
w

er
 a

nd
 U

pp
er

 P
ro

b

Upper bound
Lower bound

(b) Low, n = 25
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(c) Low, n = 50
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(d) Moderate, n = 10
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(e) Moderate, n = 25
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(f) Moderate, n = 50
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(g) High, n = 10
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(h) High, n = 25
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Figure 3.5: The NPI lower and upper probabilities of the event Tn+1 > t, based on

simulated data with different sample sizes, correlations, and Gumbel copula.
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τ n t Clayton Gumbel Frank Joe

P P P P P P P P

-6.00 0.8951 1.0000 0.8752 1.0000 0.8579 1.0000 0.8359 1.0000

10 -3.00 0.6721 0.7564 0.6671 0.7604 0.6655 0.7572 0.6584 0.7527

0.00 0.3120 0.4058 0.2881 0.3809 0.2957 0.3871 0.2873 0.3789

H -6.00 0.9266 0.9625 0.9234 0.9707 0.9120 0.9800 0.9030 0.9925

25 -3.00 0.7625 0.7996 0.7502 0.7919 0.7448 0.7844 0.7337 0.7818

0.00 0.4961 0.5363 0.4524 0.4932 0.4570 0.4956 0.4449 0.4843

-6.00 0.9305 0.9489 0.9377 0.9614 0.9300 0.9665 0.9372 0.9866

50 -3.00 0.8193 0.8393 0.8109 0.8337 0.8025 0.8241 0.7941 0.8257

0.00 0.5279 0.5476 0.4985 0.5194 0.5043 0.5240 0.4837 0.5037

-6.00 0.8573 1.0000 0.8316 1.0000 0.8242 1.0000 0.8286 1.0000

10 -3.00 0.7274 0.8314 0.6868 0.8263 0.6833 0.8192 0.6592 0.8428

0.00 0.3221 0.4726 0.2917 0.4097 0.3145 0.4370 0.2789 0.3908

M -6.00 0.9280 0.9737 0.9151 0.9904 0.9082 0.9945 0.9191 0.9983

25 -3.00 0.8122 0.8542 0.7869 0.8457 0.7745 0.8333 0.7763 0.8621

0.00 0.5142 0.5707 0.4667 0.5157 0.4855 0.5306 0.4391 0.4876

-6.00 0.9511 0.9745 0.9487 0.9898 0.9453 0.9914 0.9582 0.9968

50 -3.00 0.8505 0.8720 0.8423 0.8789 0.8269 0.8640 0.8515 0.9029

0.00 0.5500 0.5793 0.4929 0.5221 0.5116 0.5375 0.4636 0.4961

-6.00 0.8593 1.0000 0.8510 1.0000 0.8546 1.0000 0.8600 1.0000

10 -3.00 0.7386 0.8733 0.7000 0.8776 0.6985 0.8843 0.6831 0.8947

0.00 0.3281 0.5072 0.3105 0.4546 0.3178 0.4822 0.2947 0.4347

L -6.00 0.9262 0.9856 0.9292 0.9975 0.9260 0.9981 0.9399 0.9992

25 -3.00 0.8332 0.8888 0.8165 0.9023 0.8077 0.8941 0.8192 0.9201

0.00 0.5040 0.5748 0.4548 0.5257 0.4726 0.5399 0.4330 0.5101

-6.00 0.9567 0.9901 0.9640 0.9972 0.9633 0.9974 0.9688 0.9984

50 -3.00 0.8795 0.9153 0.8788 0.9292 0.8736 0.9249 0.8849 0.9393

0.00 0.5249 0.5675 0.4868 0.5318 0.4974 0.5406 0.4766 0.5252

Table 3.3: The NPI lower and upper probabilities of the event Tn+1 > t, based on simu-

lated data with different sample sizes, correlations, and copula types.
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To illustrate the method of combining NPI with a nonparametric trivariate copula.

Two bandwidth methods are used: the normal reference rule-of-thumb and the LSCV

methods, which are available in the np package in R [47] and presented in Section 2.3.

Following the proposed method presented in Section 3.3, where NPI is applied for the

marginals and the bandwidth values are selected to obtain the probabilities hijk(ĉ) as

defined in Equation (3.3.2).

The bandwidth values are shown in Table 3.4, which demonstrates that using the

normal reference rule-of-thumb method gives a constant value regardless of the correlation

strength of the three random quantities. This is because it is a fixed type, due to the

normal reference rule-of-thumb bandwidth equation, as presented in Section 2.3, Equation

(2.3.8). This bandwidth value decreases as the sample size increases, while the LSCV

method gives the smallest bandwidth values compared to the normal reference rule-of-

thumb method. This method depends on minimizing the integrated squared error. In

general, the bandwidth values using the LSCV method decrease as the correlation level

and the sample size increase, as shown in Table 3.4. Using these bandwidth values and an

assumed correlation of the generated data leads to different probabilities hijk(ĉ), as seen

in Figure 3.6.

Figure 3.6 presents the probabilities hijk(ĉ) using the normal reference rule-of-thumb.

Applying the normal reference rule-of-thumb with a small sample size shows similar prob-

abilities, except that the left corner has higher probabilities. As the correlation increases,

the probabilities become higher in both the top right and bottom left corners. Using the

LSCV method shows that some probabilities are higher in certain blocks. Increasing the

correlation causes the probabilities hijk(ĉ) to become similar, except in the top right and

bottom left corners, where they are slightly higher. For high positive correlation, the

bandwidth decreases and the probabilities hijk(ĉ) include larger values when i, j and k

are closer. In contrast, when the data is weakly correlated, the probabilities hijk(ĉ) are

highly scattered. The remaining results of probabilities hijk(ĉ) are presented in Appendix

A, Figures A.7-A.9.
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τ n Normal Reference LSCV

b bX bY bZ

10 0.203 0.103 0.063 0.086

H 25 0.154 0.037 0.052 0.061

50 0.123 0.030 0.047 0.059

10 0.203 0.104 0.040 0.251

M 25 0.123 0.100 0.039 0.062

50 0.123 0.100 0.039 0.062

10 0.203 0.223 0.001 0.232

L 25 0.154 0.161 0.091 0.084

50 0.123 0.084 0.077 0.102

Table 3.4: The bandwidth values from simulated data using different sample sizes, corre-

lation levels, and bandwidth types, b = bX = bY = bZ

Then, the NPI lower and upper probabilities for the event of interest are presented

in Figures 3.7 and 3.8 and Table 3.5. This table shows how the results vary based on

the sample size, the correlation between variables, and the chosen bandwidth method for

selected values of t. Generally, Table 3.5 It also indicates that increasing the sample size

results in less imprecision. Additionally, the imprecision decreases when the generated

data are more highly correlated compared to when they are weakly correlated.

For the event of interest Tn+1 > t, the NPI lower and upper probabilities are typically

include several additional probabilities of hijk(ĉ). With a high positive correlation, these

additional probabilities hijk(ĉ) include a few larger values for most values of t, compared

to a weak correlation.
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Figure 3.6: The hijk probabilities, obtained from simulated data n = 25 using different

correlations and normal reference rule-of-thumb.
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(a) Low, n = 10
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(b) Low, n = 25
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(c) Low, n = 50
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(d) Moderate, n = 10
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(e) Moderate, n = 25
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(f) Moderate, n = 50
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(g) High, n = 10
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(h) High, n = 25
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Figure 3.7: The NPI lower and upper probabilities of the event Tn+1 > t, based on

simulated data with different sample sizes, correlations, and normal reference rule-of-

thumb bandwidth.
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(a) Low, n = 10
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(b) Low, n = 25
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(c) Low, n = 50
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(d) Moderate, n = 10
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(e) Moderate, n = 25
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(f) Moderate, n = 50
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(g) High, n = 10
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(h) High, n = 25
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Figure 3.8: The NPI lower and upper probabilities of the event Tn+1 > t, based on

simulated data with different sample sizes, correlations, and LSCV bandwidth.
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τ n t Normal Reference LSCV

P P P P

1.00 0.6290 0.7314 0.6363 0.7000

10 1.50 0.4425 0.5574 0.4401 0.5736

2.00 0.2285 0.3312 0.2639 0.3201

H 1.00 0.6538 0.6943 0.6554 0.6942

25 1.50 0.4645 0.5076 0.4518 0.4896

2.00 0.2959 0.3353 0.3190 0.3488

1.00 0.6663 0.6853 0.6642 0.6790

50 1.50 0.4945 0.5191 0.5093 0.5358

2.00 0.3000 0.3168 0.3009 0.3111

1.00 0.6508 0.7772 0.6519 0.7584

10 1.50 0.4335 0.5653 0.4377 0.5656

2.00 0.1748 0.2992 0.1924 0.3046

M 1.00 0.6682 0.7286 0.6613 0.7253

25 1.50 0.4477 0.4923 0.4457 0.4829

2.00 0.2611 0.3037 0.2763 0.3135

1.00 0.7132 0.7416 0.7094 0.7390

50 1.50 0.4702 0.5009 0.4720 0.5058

2.00 0.2514 0.2695 0.2556 0.2700

1.00 0.6966 0.8363 0.6836 0.8303

10 1.50 0.4044 0.5833 0.4013 0.5713

2.00 0.1307 0.2410 0.1208 0.2272

L 1.00 0.7377 0.8015 0.7357 0.8038

25 1.50 0.4516 0.5176 0.4524 0.5160

2.00 0.1926 0.2411 0.1951 0.2414

1.00 0.7872 0.8194 0.7887 0.8235

50 1.50 0.4681 0.5079 0.4662 0.5063

2.00 0.1921 0.2146 0.1970 0.2176

Table 3.5: The NPI lower and upper probabilities of the event Tn+1 > t, based on simu-

lated data with different sample sizes, correlations, and bandwidth.
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3.5 Predictive performance

This section presents the results of a simulation study conducted to evaluate the predictive

performance of the methods proposed in Sections 3.2 and 3.3. For each method, N = 100

datasets of size n+1 are generated. For each generated dataset, the first n observations are

used for the proposed methods, and the last observation is used to evaluate the predictive

performance. Sample sizes of n = 10 and n = 25 are used to avoid the long computation

times associated with larger datasets

In this study, the focus is on the sum of the next observations Tn+1 = Xn+1 + Yn+1 +

Zn+1. Let (xji , y
j
i , z

j
i ) denote the ith observation in the jth simulated sample, where

i = 1, 2, . . . , n refers to the observation within a sample, and j = 1, 2, . . . , N indexes

the simulated samples. Let (xjf , y
j
f , z

j
f ) be the extra simulated pair that will be used for

the evaluation and let the corresponding sum denoted by tjf = xjf + yjf + zjf . Recall

from the lower and upper probabilities for the event of interest Tn+1 = Xn+1 + Yn+1 +

Zn+1, Equations (3.2.9) and (3.2.10) as presented in Section 3.2 and denote that S(t) =

P (Tn+1 > t) and S(t) = P (Tn+1 > t). The inverse values of these lower and upper survival

functions of Tn+1, for a value q ∈ (0, 1), are defined as

tjq = inf
t∈R

{ S(t) ≤ q} (3.5.7)

t
j
q = inf

t∈R
{ S(t) ≤ q} (3.5.8)

where tq ≤ tq holds. If the two inequalities listed below hold true, then the proposed

method works effectively.

p1 =
1

N

N∑
j=1

1(tjf > tjq) ≤ q (3.5.9)

p2 =
1

N

N∑
j=1

1(tjf > tjq) ≥ q (3.5.10)

The values q = 0.25, 0.50, 0.75 are chosen for performance evaluation, though different

quantiles can also be used. Quantiles provide a good indicator of the performance of the

proposed method. The simulation is conducted by varying degrees of dependence, using

various values of Kendall’s (τ) and a variety of sample sizes to determine whether there

is an influence on the performance.
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The datasets are generated from assumed parametric dependence models, setting the

parameter values corresponding to the selected τ values. For comparison, the four com-

monly used copulas: Clayton, Gumbel, Frank and Joe, are used in this study. The esti-

mated parameters are obtained using the pseudo maximum likelihood estimation method,

which is presented in Section 2.3. This method outperforms other estimation techniques,

particularly when the marginal distribution is unknown, which is common in many real-

world applications, as noted in the literature. Moreover, it is preferred due to its faster

computational performance compared to alternative methods.

Predictive performance: parametric copula

In this study, the focus is on the performance evaluation of the method presented in

Section 3.2. Four common one-parameter trivariate copulas are used: Clayton, Gumbel,

Frank and Joe copulas, which are presented in Section 2.3. In the simulation, Kendall’s

τ values of 0.25, 0.5, and 0.75 are used to represent low (L), moderate (M), and high (H)

dependence, respectively.

The results are presented in Tables 3.6-3.9, which present the p1 and p2 values calcu-

lated using Equations (3.5.9) and (3.5.10). For optimal performance, the q value must

satisfy p1 ≤ q ≤ p2. Tables 3.6-3.9 confirm good performance for all the assumed copulas

and the results adhere to the condition p1 ≤ q ≤ p2, except for n = 25 using the Clayton

copula, as highlighted in Table 3.6. One possible explanation is that larger sample sizes

reduce imprecision, which may result in some q values falling outside the predicted in-

tervals [p1, p2]. The tables show that imprecision is relatively large when the sample size

is n = 10, and it tends to decrease as the sample size increases to n = 25. The results

indicate that the parameters are well estimated, as the true and estimated values are close

to each other, particularly for the sample size of n = 25. Thus, the dependence structures

are well described, with the corresponding Kendall’s tau values of the true and estimated

values being close to each other.
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τ θC q n = 10 n = 25

θ̂C p1 p2 θ̂C p1 p2

L 0.6667 0.25 1.1152 0.18 0.31 0.8540 0.22 0.28

0.50 0.42 0.57 0.48 0.53

0.75 0.70 0.81 0.73 0.79

M 2 0.25 2.6230 0.17 0.31 2.1949 0.24 0.30

0.5 0.43 0.55 0.51 0.56

0.75 0.69 0.77 0.75 0.78

H 6 0.25 7.2905 0.22 0.34 5.7748 0.24 0.29

0.5 0.47 0.57 0.48 0.52

0.75 0.70 0.78 0.73 0.77

Table 3.6: Simulation study I, Predictive performance, Clayton copula.

In addition, the tables clearly show that imprecision decreases as the correlation among

variables increases, regardless of the copula type. This can be attributed to two main

factors related to the event Tn+1 = Xn+1 + Yn+1 + Zn+1 > t, which is explained through

the probabilities hijk, fundamental for inference. For high positive correlation, and with

the event defined as the sum, the lower and upper probabilities in Equations (3.2.9) and

(3.2.10) tend to include additional hijk(θ̂). These additional terms generally have large

values for most t under positive correlation. Conversely, for weak correlation, the hijk

probabilities where i, j, k are close are not as large as in the high positive correlation case.
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τ θG q n = 10 n = 25

θ̂G p1 p2 θ̂G p1 p2

L 1.33335 0.25 1.6048 0.17 0.28 1.4453 0.24 0.28

0.5 0.41 0.56 0.47 0.53

0.75 0.65 0.80 0.70 0.76

M 2 0.25 2.4191 0.20 0.30 2.1749 0.25 0.28

0.5 0.42 0.52 0.48 0.53

0.75 0.65 0.79 0.71 0.76

H 4 0.25 4.5301 0.22 0.30 4.0539 0.25 0.28

0.5 0.43 0.53 0.48 0.53

0.75 0.65 0.77 0.71 0.76

Table 3.7: Simulation study I, Predictive performance, Gumbel copula.

τ θF q n = 10 n = 25

θ̂F p1 p2 θ̂F p1 p2

L 2.37193 0.25 3.0163 0.19 0.32 2.5720 0.22 0.26

0.5 0.42 0.55 0.46 0.52

0.75 0.67 0.79 0.71 0.77

M 5.736283 0.25 6.4797 0.21 0.31 6.0112 0.24 0.28

0.5 0.44 0.53 0.48 0.53

0.75 0.65 0.77 0.74 0.78

H 14.138501 0.25 13.7274 0.21 0.31 13.5046 0.22 0.26

0.5 0.44 0.52 0.47 0.52

0.75 0.67 0.78 0.72 0.77

Table 3.8: Simulation study I, Predictive performance, Frank copula.
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τ θJ q n = 10 n = 25

θ̂J p1 p2 θ̂J p1 p2

L 1.596108 0.25 2.0293 0.23 0.31 1.7708 0.22 0.27

0.5 0.43 0.58 0.48 0.54

0.75 0.65 0.82 0.71 0.78

M 2.856257 0.25 2.4191 0.20 0.30 3.0676 0.22 0.26

0.5 0.42 0.52 0.48 0.53

0.75 0.65 0.79 0.74 0.78

H 6.782365 0.25 7.6760 0.20 0.30 6.5317 0.22 0.26

0.5 0.46 0.58 0.49 0.52

0.75 0.68 0.79 0.72 0.76

Table 3.9: Simulation study I, Predictive performance, Joe copula.

Predictive performance: nonparametric copula

This study focuses on evaluating the method presented in Section 3.3 using the approach

discussed in Section 3.5, with particular attention to bandwidth selection using the LSCV

method, as the normal reference rule-of-thumb produces similar results. By using different

quantiles to investigate the method’s performance, one can choose any value of q. In this

study, the chosen values are q = 0.25, 0.50, 0.75, which offer valuable insight into the

performance of the proposed method, as tested using Equations (3.5.9) and (3.5.10).

Table 3.14 presents the average bandwidth values bx, by and bz over 100 runs using the

LSCV bandwidth method. It also shows the corresponding copula types with the assumed

Kendall’s τ values used for simulation. In general, the bandwidth values decrease as

the level of dependence increases, regardless of the copula type, and they are smaller

for n = 25. Simulations based on the Clayton copula with low correlation show larger

bandwidth values compared to other copulas, due to the Clayton copula’s characteristic

lower tail dependence.

Tables 3.10-3.13 present the predictive performance results using the nonparametric

copula with the LSCV bandwidth method. Table 3.10 shows the predictive performance

of the proposed method and the generated data is from the trivariate Clayton copula. It
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shows that in most cases, q is not included between p1 and p2, regardless of the sample

size or the strength of dependence. In the table, bold font numbers indicate these val-

ues. Simulating data from a one-parameter trivariate Clayton copula exhibits lower tail

dependence. Choosing bandwidth using the LSCV method leads the probabilities hijk(ĉ)

to be strongly spread out. As the event of interest is on the sum, the lower and upper

probabilities tend to include extra values of the probabilities hijk(ĉ).

Table 3.11 shows the predictive performance when the generated data is from the

Gumbel copula. The method generally performs well, with the exception of cases where

n = 25. This pattern is consistent with expectations, as imprecision decreases with

increasing sample size. Tables 3.12 and 3.13 present the predictive performance results

when the generated data are from the Frank copula and Joe copula, respectively. As the

dependence increases, there are fewer cases where the q value is not between p1 and p2

compared to Table 3.10. The case when q is not in the interval [p1, p2] occurs when the

strength of dependence increases. This is due to the chosen copula type for simulation

with a specific level of dependence and the bandwidth selection method that impacts the

probabilities hijk(ĉ). In addition, this is reflected in the results when considering the event

Tn+1 = Xn+1 + Yn+1 + Zn+1 > t that can be explained through the probabilities hijk(ĉ).

The imprecision is larger when the correlation is weak compared to when it is strong.

Overall, the simulation studies indicate that the proposed method performs well when

combined with parametric copulas. In contrast, its performance is less effective with

nonparametric copulas. This suggests the need for further investigation using alternative

nonparametric copula approaches, to enable a more comprehensive comparison with the

results obtained in this chapter.
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τ q n = 10 n = 25

p1 p2 p1 p2

L 0.25 0.27 0.43 0.26 0.31

0.5 0.51 0.64 0.47 0.53

0.75 0.73 0.83 0.65 0.71

M 0.25 0.29 0.39 0.26 0.31

0.5 0.49 0.58 0.49 0.53

0.75 0.69 0.78 0.67 0.71

H 0.25 0.19 0.25 0.29 0.34

0.5 0.32 0.41 0.37 0.42

0.75 0.58 0.69 0.63 0.67

Table 3.10: Predictive performance, Clay-

ton copula

τ q n = 10 n = 25

p1 p2 p1 p2

L 0.25 0.19 0.34 0.21 0.24

0.5 0.39 0.53 0.39 0.47

0.75 0.63 0.77 0.66 0.70

M 0.25 0.21 0.27 0.21 0.24

0.5 0.38 0.53 0.40 0.46

0.75 0.67 0.77 0.68 0.71

H 0.25 0.12 0.23 0.19 0.21

0.5 0.40 0.56 0.44 0.48

0.75 0.66 0.79 0.70 0.74

Table 3.11: Predictive performance, Gum-

bel copula

τ q n = 10 n = 25

p1 p2 p1 p2

L 0.25 0.18 0.29 0.23 0.29

0.5 0.45 0.56 0.47 0.52

0.75 0.65 0.76 0.74 0.82

M 0.25 0.26 0.33 0.28 0.31

0.5 0.45 0.60 0.54 0.56

0.75 0.72 0.82 0.71 0.77

H 0.25 0.28 0.34 0.18 0.20

0.5 0.49 0.53 0.50 0.53

0.75 0.73 0.75 0.73 0.78

Table 3.12: Predictive performance, Frank

copula

τ q n = 10 n = 25

p1 p2 p1 p2

L 0.25 0.21 0.34 0.24 0.29

0.5 0.43 0.56 0.49 0.53

0.75 0.61 0.75 0.74 0.80

M 0.25 0.27 0.34 0.27 0.31

0.5 0.46 0.54 0.55 0.58

0.75 0.65 0.74 0.70 0.76

H 0.25 0.21 0.34 0.28 0.32

0.5 0.43 0.56 0.53 0.57

0.75 0.61 0.75 0.71 0.79

Table 3.13: Predictive performance, Joe

copula
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copula type τ θ n = 10 n = 25

bX bY bZ bX bY bZ

Clayton L 0.6667 0.248 0.239 0.243 0.128 0.129 0.136

M 2 0.193 0.202 0.192 0.113 0.109 0.113

H 6 0.105 0.122 0.137 0.070 0.070 0.070

Gumbel L 1.3333 0.208 0.183 0.191 0.119 0.111 0.111

M 2 0.170 0.152 0.147 0.096 0.084 0.098

H 4 0.111 0.091 0.091 0.055 0.053 0.067

Frank L 2.3719 0.213 0.206 0.203 0.122 0.119 0.128

M 5.736 0.165 0.146 0.177 0.099 0.106 0.105

H 14.1385 0.073 0.061 0.066 0.073 0.061 0.066

Joe L 1.5961 0.175 0.182 0.196 0.106 0.104 0.109

M 2.8562 0.092 0.082 0.094 0.080 0.080 0.084

H 6.7823 0.175 0.182 0.196 0.048 0.050 0.053

Table 3.14: Bandwidth values from simulated data across different sample sizes, correla-

tion levels, and copula types.

3.6 Applications

This section uses two datasets from the literature to demonstrate the methods introduced

in Sections 3.2 and 3.3. Both datasets relate to events of interest for a single future

observation. The first dataset is applied to the trivariate case, and the second to the

four-variate case, with both methods illustrated using these dimensions.

3.6.1 Typical Meteorological Year Data (TMY)

A Typical Meteorological Year (TMY) dataset is provided in the pvlib R package [56].

This dataset includes several weather measurements, with this example focusing on the

apparent temperature (AT), also known as the ”feels like” temperature, which is com-

monly used in meteorology.It provides an approximation of the heat balance experienced

by the human body.
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Figure 3.9: Pairwise scatterplots of variables in the TMY dataset.

Temperature Water vapour pressure Wind speed Apparent temperature

10.01 9.440016 6.20 4.785

10.02 9.807809 5.20 5.617

10.03 10.175600 5.70 5.398

10.04 10.175610 5.71 5.401

10.05 10.175620 5.21 5.761

10.08 10.543390 4.10 6.689

10.09 11.033790 4.11 6.854

10.07 11.401580 5.22 6.179

10.11 11.769370 5.23 6.333

10.60 12.250260 5.24 6.975

11.71 12.765140 6.21 7.575

11.72 12.765143 5.25 8.257

11.73 12.765141 5.26 8.260

11.74 13.176920 3.10 9.918

11.10 12.664120 4.12 8.395

7.80 9.828025 4.13 4.152

7.20 9.027794 2.10 4.709

7.21 9.027794 1.50 5.139

7.22 8.419179 3.11 3.821

6.70 7.841308 2.11 3.811

Table 3.15: Dataset of dry bulb temperature, water vapour pressure and wind speed with

their corresponding apparent temperature (AT ) values.
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This measure depends on air temperature (X), relative humidity (Y ) and wind speed

(Z). The apparent temperature is defined as [97]:

AT = Ta + 0.3e− 0.70ws− 4 (3.6.11)

where Ta is the dry bulb temperature in degrees Celsius, e is the water vapour pressure in

hectopascals and ws is the wind speed in meters per second. The water vapour pressure

can be calculated from the temperature and relative humidity in case the vapour pressure

is not given, which is defined as

e =
rh

100
6.105 exp(17.27Ta/(237.7 + Ta))

where rh is the relative humidity.

A subset of the TMY dataset is used, with a small value of about 0.01 is added to

the duplicated observations to avoid tied observations. The data are presented in Table

3.15. For this dataset, there is a high positive correlation of about 0.90 between dry bulb

temperature and water vapour pressure, and about 0.70 between water vapour pressure

and wind speed. A moderate positive correlation of 0.46 between dry bulb temperature

and wind speed, as shown in Figure 3.9.

Assume that the event of interest is that the next apparent temperature value is greater

than t, that is ATn+1 > t, where is given ATn+1 = Xn+1,+0.33Yn+1−0.79Zn+1−4, where

Xn+1, Yn+1 and Zn+1 refer to the next values of temperature, relative humidity, and wind

speed, respectively.

Combining NPI with a parametric copula

By applying the proposed method presented in Section 3.2, where assuming a trivariate

parametric copula and using the pseudo maximum likelihood method to estimate the

parameters. Thus, the estimated parameters and corresponding Kendall’s (τ) values are:

θ̂C = 1.78 with τ = 0.47 for the Clayton copula, θ̂G = 1.87 with τ = 0.46 for the Gumbel

copula, θ̂F = 5.50 with τ = 0.50 for the Frank copula and θ̂J = 2.04 with τ = 0.36 for the

Joe copula.
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Clayton Gumbel Frank Joe

t P P

-6.3570 1.0000 1.0000

-4.3570 0.9996 1.0000

-2.3570 0.9923 1.0000

-0.3570 0.9548 0.9996

1.6430 0.9509 0.9989

3.6430 0.8821 0.9345

5.6430 0.6631 0.6759

7.6430 0.1640 0.2145

9.6430 0.0012 0.0649

11.6430 0.0000 0.0381

13.6430 0.0000 0.0049

15.6430 0.0000 0.0001

P P

1.0000 1.0000

0.9975 1.0000

0.9811 1.0000

0.9589 0.9998

0.9449 0.9983

0.8540 0.9093

0.6781 0.6987

0.1970 0.2289

0.0031 0.0572

0.0000 0.0201

0.0000 0.0049

0.0000 0.0000

P P

1.0000 1.0000

0.9978 1.0000

0.9817 1.0000

0.9587 0.9996

0.9449 0.9984

0.8625 0.9110

0.6845 0.6915

0.1782 0.2230

0.0019 0.0634

0.0000 0.0361

0.0000 0.0067

0.0000 0.0000

P P

1.0000 1.0000

0.9975 1.0000

0.9748 1.0000

0.9570 0.9997

0.9416 0.9974

0.8369 0.8874

0.6633 0.6909

0.2230 0.2532

0.0101 0.0600

0.0001 0.0187

0.0000 0.0049

0.0000 0.0000

Table 3.16: The NPI lower and upper probabilities of the event ATn+1 > t using different

types of copula at selected values of t.

Figure 3.10 shows the probabilities hijk with different trivariate copulas. This figure

illustrates how these probabilities are affected by the estimated parameter and the type

of copula. As explained in Section 3.2, for a positive high correlation, the probabilities

hijk(θ̂) include large values when i, j and k are close to each other. Choosing different

copula types leads to different results in the probabilities hijk(θ̂) and as a result, the NPI

lower and upper probabilities are different.

The lower and the upper probabilities for the event ATn+1 > t are presented in Figure

3.11 presented in Table 3.16 for selected values of t. The figure illustrates that the impre-

cision, defined as the difference between the corresponding upper and lower probabilities,

remains relatively consistent across the values of t. This is due to the impact discussed in

Section 3.2, particularly in relation to the high positive correlation between the variables

and considering the event of interest ATn+1 > t.
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Figure 3.10: The hijk probabilities, Example 3.6.1.
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(a) Clayton copula

−5 0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

Lo
w

er
 a

nd
 U

pp
er

 P
ro

b

Upper bound
Lower bound

(b) Gumbel copula
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(c) Frank copula
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(d) Joe copula

Figure 3.11: The NPI lower and upper probabilities of the event ATn+1 > t using different

types of copula.

Combining NPI with a nonparametric copula

This example implements the proposed method introduced in Section 3.3, assuming a

nonparametric copula, and applies two types of bandwidth selection: the normal reference

rule-of-thumb and LSCV.

The bandwidths of X, Y and Z remain the same when using the normal reference
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Normal Reference LSCV

t P P

-6.3570 1.0000 1.0000

-4.3570 0.9970 0.9987

-2.3570 0.9688 0.9834

-0.3570 0.9259 0.9602

1.6430 0.9051 0.9493

3.6430 0.8246 0.8657

5.6430 0.6479 0.6768

7.6430 0.2058 0.2452

9.6430 0.0570 0.0967

11.6430 0.0322 0.0535

13.6430 0.0068 0.0174

15.6430 0.0000 0.0001

P P

1.0000 1.0000

1.0000 1.0000

0.9913 0.9920

0.9132 0.9565

0.9122 0.9555

0.8995 0.9429

0.6881 0.7321

0.1585 0.2018

0.0433 0.0857

0.0165 0.0172

0.0079 0.0087

0.0000 0.0000

Table 3.17: The NPI lower and upper probabilities of the event that ATn+1 > t using

different types of bandwidths at selected values of t.

rule-of-thumb, at approximately 0.160. For the LSCV method, the bandwidth values are

0.029, 0.029 and 0.036 for X, Y and Z, respectively. These bandwidth selection methods

are provided by the np R package [47].

The NPI lower and upper probabilities for the event ATn+1 > t correspond to the

bandwidth methods and are presented in Figure 3.12 and, for selected values of t in Table

3.17. The figure shows little difference; indicating that all bandwidth selections similar

lower and upper probabilities.

It is clear that noticeable differences are observed in the results from Figure 3.12

between the values 0 and 5, whereas the remaining values show little variation. This

occurs due to the chosen bandwidth, where the LSCV focuses on selecting the bandwidth

values based on minimizing the integrated mean squared error. As a result, this affects

the probabilities hijk(ĉ), which is essential for making inferences in the proposed method.

Consequently, the NPI lower and upper probabilities for the event ATn+1 > t are affected.
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(a) Normal reference
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(b) LSCV

Figure 3.12: The NPI lower and upper probabilities of the event ATn+1 > t using different

types of bandwidths.

3.6.2 Weekly return data

A dataset of 50 weekly return observations on each of ten stocks was presented by Jobson

[57]. The portfolios were constructed using stocks from the Toronto Stock Exchange,

beginning in 1982. This example involves four selected stocks, with 35 observations per

stock, showing high positive correlation, as shown in Figure 3.13.

Let the portfolio consist of four stocks denoted by X, Y ,Z and W . The portfolio

return formula is defined as PR = w1X + w2Y + w3Z + w4W , where wi are the weights

with equally weighted 0.25. Assume that one is interested in the next portfolio return

PRn+1 that exceed a value t, i.e PRn+1 > t

Combining NPI with a parametric copula

The generalized method from Section 3.2 is applied to the case d = 4, where NPI is

combined with a four-variate parametric copula. Table 3.18 and Figure 3.14 present the

NPI lower and upper probabilities of the event of interest PRn+1 > t. The results are

calculated using the same parametric copulas but in the four-variate case and the param-

eters are estimated using the pseudo maximum likelihood estimation method. As shown



3.6. Applications 55

X

−
2

0
2

4
6

0 1 2 3 4

0
5

10
−2 0 2 4 6

Y

Z

−2 0 2 4 6 8

0 5 10

0
2

4
−

2
2

6

W

Figure 3.13: Pairwise scatterplots of variables in the weekly return dataset.

in Figure 3.14, the results appear visually similar across the parametric copulas. Table

3.18 provides a clearer comparison at specific values t. The assumed parametric copulas

lead to different probabilities hijkl(θ̂). Considering an event involving the sum can be

interpreted through the probabilities hijkl(θ̂). For a high positive correlation, the proba-

bilities hijkl(θ̂) include large values when i, j, k, l are close to each other. Consequently, the

lower and upper probabilities are affected. This is due to the effect discussed in Section

3.2, specifically the high positive correlation between random quantities, along with the

interest in the sum of these quantities.
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(a) Clayton copula
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(b) Gumbel copula
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(c) Frank copula
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(d) Joe copula

Figure 3.14: The NPI lower and upper probabilities of the event PRn+1 > t using different

types of copula.
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Clayton Gumbel Frank Joe

t P P

-3.25 0.9946 1.0000

-2.75 0.9889 1.0000

-2.25 0.9775 1.0000

-1.75 0.9603 0.9850

-1.25 0.9320 0.9578

-0.75 0.8892 0.9177

-0.25 0.8224 0.8541

0.25 0.7247 0.7608

0.75 0.5998 0.6426

1.25 0.4610 0.5124

1.75 0.3280 0.3876

2.25 0.2203 0.2844

P P

0.9997 1.0000

0.9985 1.0000

0.9928 1.0000

0.9773 0.9973

0.9434 0.9778

0.8847 0.9297

0.7931 0.8409

0.6667 0.7129

0.5260 0.5696

0.3957 0.4369

0.2888 0.3281

0.2087 0.2466

P P

1.0000 1.0000

0.9997 1.0000

0.9966 1.0000

0.9826 0.9991

0.9440 0.9819

0.8760 0.9280

0.7805 0.8295

0.6647 0.7065

0.5432 0.5820

0.4267 0.4665

0.3217 0.3646

0.2342 0.2809

P P

1.0000 1.0000

0.9999 1.0000

0.9990 1.0000

0.9929 0.9998

0.9689 0.9928

0.9069 0.9570

0.7948 0.8601

0.6433 0.7034

0.4917 0.5395

0.3679 0.4065

0.2738 0.3077

0.2038 0.2356

Table 3.18: The NPI lower and upper probabilities of the event PRn+1 > t using different

types of copula at selected values of t.

Combining NPI with a nonparametric copula

Applying the proposed generalization method introduced in Section 3.3 to the four-variate

case. The bandwidths are selected using the normal reference rule-of-thumb and the

LSCV. The bandwidth values using the LSCV have the smallest values of 0.070, 0.075,

0.002 and 0.070, compared to those obtained by selecting the bandwidth using the normal

reference rule-of-thumb, which gives identical results of 0.138.

Table 3.19 and Figure 3.15 present the resulting NPI lower and upper probabilities of

the event of interest PRn+1 > t. Given a strong positive correlation in the dataset, the

probabilities hijkl(ĉ) indicate large values when i, j, k, l are close to each other. Therefore,

calculating the lower and upper probabilities for an event of interest tend to include addi-

tional hijk(θ̂). These additional terms generally have large values for most t under positive

correlation. Considering the event of interest PRn+1 > t, these additional probabilities

hijkl(ĉ) often contain a few larger values for most values of t leading to small imprecision.

The TMY and portfolio returns examples illustrate the proposed methods in Section
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Normal Reference LSCV

t P P

-3.25 0.9995 1.0000

-2.75 0.9939 0.9987

-2.25 0.9713 0.9895

-1.75 0.9299 0.9642

-1.25 0.8838 0.9201

-0.75 0.8192 0.8606

-0.25 0.7257 0.7656

0.25 0.6070 0.6427

0.75 0.4990 0.5273

1.25 0.3950 0.4279

2.25 0.1864 0.2248

P P

1.0000 1.0000

0.9997 0.9999

0.9801 0.9895

0.9150 0.9629

0.8637 0.9104

0.7981 0.8414

0.7452 0.7638

0.5858 0.6336

0.5000 0.5131

0.4119 0.4373

0.2608 0.3110

Table 3.19: The NPI lower and upper probabilities of the event that PRn+1 > t using

different types of bandwidths at selected values of t.

3.2 and 3.3. For the TMY example, where the event of interest is ATn+1 > t, the

results show that the proposed method performs well using either a parametric copula

or a kernel-based nonparametric copula. For the portfolio returns example, the method

applies both parametric and nonparametric copulas in the four-variate case. As discussed

in this example the proposed method performs well in that multivariate setting, also

demonstrating the ability to be applied in any dimension.
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(a) Normal reference
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Figure 3.15: The NPI lower and upper probabilities of the event that PRn+1 > t using

different types of bandwidths.
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3.7 Concluding remarks

This chapter extends the two methods for combining NPI with bivariate copulas, originally

introduced by Coolen-Maturi et al. [27, 77], to the trivariate case. Both the semiparamet-

ric and nonparametric approaches are presented, using copulas to model the dependence

structure. The focus is on predictive inference for a single future trivariate observation. A

generalization to higher dimensions (d > 3) is developed following a similar structure. The

methods are illustrated through examples, and their predictive performance is assessed

via simulations in the trivariate case. Additionally, applications to four-variate data from

the literature demonstrate their use in higher dimensions.

For the first method, a parametric copula with one dependence parameter is used

to describe the dependence, meaning that each pair of variables shares the same depen-

dence level. The performance of this method is evaluated through simulation studies.

Throughout this work, the focus is on assuming a trivariate parametric copula with one

parameter. It might be of interest to study classical copulas with multiple parameters and

this is left for future work. One could explore copulas that differ in their representation of

the dependence structure that contain multiple parameters, such as vine copulas and fully

nested Archimedean copulas (FNAC). These types of dependence models can capture a

range of dependency structures, and their use will be examined in Chapters 4 and 5.

For the second method, which assumes a nonparametric copula—specifically a kernel-

based copula—the focus is on bandwidth selection, including types such as the normal

reference rule-of-thumb and least squares cross-validation (LSCV). The method’s perfor-

mance is evaluated through simulations, revealing poor results regardless of sample size

or dependence level between variables. Given its unsatisfactory performance compared

to the first method, further investigation is needed, including exploring alternative non-

parametric copula approaches. This is left for future work. Additionally, both methods

become increasingly time-consuming and computationally demanding as dataset size and

dimensionality grow.



Chapter 4

NPI Combined with Vine Copula

4.1 Introduction

This chapter introduces a method of combining nonparametric predictive inference (NPI)

with vine copulas for predictive inference. A vine copula is a type of dependence model

that captures different dependencies among variables and provides a flexible framework

for constructing multivariate dependence structures using bivariate copulas. There are

no restrictions on the choice of bivariate copula families within vine copulas, and each

bivariate copula in the vine structure can belong to any copula family. This flexibility

enables vine copulas to represent a wide range of dependence structures within a model.

The proposed method focuses on predictive inference in the trivariate case.

This chapter is organized as follows: In Section 4.2, the method of NPI combined with

trivariate vine copulas is introduced. The effectiveness of this newly proposed methodol-

ogy is illustrated in Section 4.3. The performance of this method is investigated in Section

4.4. An example from the literature illustrating the real-world application of the proposed

method is presented in Section 4.5. Some concluding remarks are included in Section 4.6.

4.2 Combining NPI with a parametric vine copula

This section presents a method for combining NPI with trivariate vine copula. The bivari-

ate hij presented in Section 2.7 is used to construct vine copulas for the NPI multivariate
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approach as

hxyzijk = h
xy|z
ij|k × hxzik × hyzjk × (n+ 1)3 (4.2.1)

where hxzik and hyzjk follow the same formulation, based on the work by Coolen-Maturi

et al., [27] presented in Section 2.7. Assume that there are n trivariate observations

(xi, yi, zi), i = 1, . . . , n, which are the observed values of n exchangeable trivariate random

quantities with no ties. The observations of the marginals are ordered and denoted by

xi, yj and zk for simplicity, so x1 < · · · < xi < · · · < xn, y1 < · · · < yj < · · · < yn and

z1 < · · · < zk < · · · < zn.

By applying the assumption A(n) for the marginals and using the natural transforma-

tions with an assumed bivariate copulas as

(Xn+1 ∈ (xi−1, xi), Yn+1 ∈ (yj−1, yj)) ⇐⇒

(X̃n+1 ∈ (
i− 1

n+ 1
,

i

n+ 1
), Ỹn+1 ∈ (

j − 1

n+ 1
,

j

n+ 1
)) (4.2.2)

(Xn+1 ∈ (xi−1, xi), Zn+1 ∈ (zk−1, zk)) ⇐⇒

(X̃n+1 ∈ (
i− 1

n+ 1
,

i

n+ 1
), Z̃n+1 ∈ (

k − 1

n+ 1
,

k

n+ 1
)) (4.2.3)

where i, j, k ∈ 1, ..., n+ 1. Assuming a bivaraite parametric copulas after applying NPI for

the marginals by using transformed data such as (
rxi

(n+1)
,

ryi
(n+1)

) and (
rxi

(n+1)
,

rzi
(n+1)

) instead

of (xi, yi) and (xi, zi), respectively, to coincide to the transformation method for the

marginals, where rxi is the rank of the observation xi among the x−observations, ryi is the

rank of the observation yi among the y−observations and rzi is the rank of the observation

zi among the z−observations. Therefore, the probabilities hxzik and hyzjk are defined as

hik(θ̂1) = P (X̃n+1 ∈ (
i− 1

n+ 1
,

i

n+ 1
), Z̃n+1 ∈ (

k − 1

n+ 1
,

k

n+ 1
)|θ̂1) (4.2.4)

hij(θ̂2) = P (X̃n+1 ∈ (
i− 1

n+ 1
,

i

n+ 1
), Ỹn+1 ∈ (

j − 1

n+ 1
,

j

n+ 1
)|θ̂2) (4.2.5)

The estimated parameter of hxzik is θ̂1 and the estimated parameter of hxyij is θ̂2. The prob-

ability h
yz|x
jk|i is similar to hxzik and hxyij and the difference lies in introducing the observations

under a simplifying assumption, which neglects conditioning on X ∈ Ixi . This assump-

tion, commonly used in the literature, is explicitly adopted in this work and discussed
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in Section 2.4. Therefore, under the simplifying assumption for modeling the conditional

copula, we first use the estimated parameters θ̂1 and θ̂2 to define the pseudo-observations l

and m. Let the conditional variables Y |X and Z|X be denoted by L andM , respectively.

The pseudo-observations are then defined as follows, in order to obtain h
xy|z
ij|k :

l = FY |X=x(y|x; θ̂1) =
∂Cxy(x, y; θ̂1)

∂x
(4.2.6)

m = FZ|X=x(z|x; θ̂2) =
∂Cxz(x, z; θ̂2)

∂x
(4.2.7)

where θ̂1 is the estimated parameter of the bivariate copula of (X,Z) and θ̂2 is the es-

timated parameter of the bivariate copula of (X, Y ). The conditional copula under the

simplifying assumption is defined as

cyz|x(y, z|x) = cyz(FY |X(y|x), FZ|X(z|x)) for y, z ∈ [0, 1] (4.2.8)

where FZ|X(z|x) and FY |X(y|x) are the conditional distribution functions of Y givenX = x

and Z given X = x, respectively. Let lq and mν denote the ordered observations so,

l1 < · · · < lq < · · · < ln and m1 < · · · < mν < · · · < mn. By using the same natural

transformations associated with the marginal A(n) assumptions, as outlined in Section 2.7

we have

(Ln+1 ∈ (lq−1, lq),Mn+1 ∈ (mν−1,mν)) ⇐⇒

(L̃n+1 ∈ (
q − 1

n+ 1
,

q

n+ 1
), M̃n+1 ∈ (

ν − 1

n+ 1
,

ν

n+ 1
)) (4.2.9)

where L̃n+1 and M̃n+1 are the transformation of the two random quantities Ln+1 and

Mn+1. q, ν = 1, 2, . . . , n + 1, where q0 = −∞, qn+1 = ∞ and ν0 = −∞, νn+1 = ∞. The

parameter is estimated by assuming a bivariate parametric copula such as (
rli

(n+1)
,

rmi
(n+1)

)

instead of (li,mi). Where rli is the rank of the observation lq among the l- observations

and rmi is the rank of the observation mν among the m- observations. The probabilities

hlmij can be defined by combining NPI on the marginal with the estimated parameter θ̂3

as follows:

hlmqν (θ̂3) = P (L̃n+1 ∈ (
q − 1

n+ 1
,

q

n+ 1
), M̃n+1 ∈ (

ν − 1

n+ 1
,

ν

n+ 1
)|θ̂3) (4.2.10)
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Therefore, using hxzik ,h
yz
jk and h

xy|z
ij|k to build the construction as in Equation (4.2.1)

hijk(θ̂) = P (X̃n+1 ∈ (
i− 1

n+ 1
,

i

n+ 1
), Z̃n+1 ∈ (

k − 1

n+ 1
,

k

n+ 1
)|θ̂1)

× P (X̃n+1 ∈ (
i− 1

n+ 1
,

i

n+ 1
), Ỹn+1 ∈ (

j − 1

n+ 1
,

j

n+ 1
)|θ̂2)

× P (L̃n+1 ∈ (
q − 1

n+ 1
,

q

n+ 1
), M̃n+1 ∈ (

ν − 1

n+ 1
,

ν

n+ 1
)|θ̂3)× (n+ 1)3 (4.2.11)

where P (.|θ̂) is the copula-based probability with estimated parameters θ̂ = (θ̂1, θ̂2, θ̂3)

are the estimated parameters of the bivariate copulas. Equation (4.2.11) should meet the

conditions as presented in Section 3.2, where

1.
∑n

i=1

∑n
j=1

∑n
k=1 hijk(θ̂) = 1

2.
∑n

j=1

∑n
k=1 hijk(θ̂) = 1

n+1
, for i ∈ {1, 2, . . . , n + 1},

∑n
i=1

∑n
k=1 hijk(θ̂) = 1

n+1
, for

j ∈ {1, 2, . . . , n+ 1} and
∑n

i=1

∑n
j=1 hijk(θ̂) =

1
n+1

, for k ∈ {1, 2, . . . , n+ 1}

3. hijk(θ̂) ≥ 0, for i, j,k ∈ {1, . . . , n+ 1}

Equation (4.2.11) will be used to make inferences about an event of interest, as explained

in Section 3.2, using Equations (3.2.9) and (3.2.10).

Example 4.2.1 This example illustrates the probabilities hijk(θ̂) as given in Equation

(4.2.11). A dataset of 9 observations was generated from a trivariate Gaussian distribution

with mean vector zero and a variance-covariance matrix equal to the identity matrix.

Assume that each bivariate copula follows a Frank copula and their parameters are es-

timated using the pseudo maximum likelihood estimation method. The estimated pa-

rameters of each bivariate copula, along with their corresponding Kendall’s τ values are

presented in Table 4.1. This table shows that the first two bivariate copulas, (X, Y ) and

(X,Z), exhibit dependence values of approximately 0.44 and 0.79, respectively, while the

third copula indicates a weaker dependence of about 0.19. This result aligns with the

vine structure where the first two pairs show stronger dependence than the third, which

reflects a noticeably weaker association.

After estimating the parameters, the probabilities hijk are calculated as described in

Equation (4.2.11). While the vine copula model offers greater flexibility in capturing a

range of dependencies compared to a classical trivariate copula with a single parameter,



4.2. Combining NPI with a parametric vine copula 65

Pairs τ θ̂

x, y 0.44 4.77

x, z 0.79 17.50

y, z 0.19 1.76

Table 4.1: Estimated parameters and corresponding Kendall’s τ values for the simulated

data using Frank copulas.

this flexibility introduces a notable challenge. The computed probabilities hijk show that

the marginals over X, Y and Z are not equal to 1/(n+1) and the total sum of hijk is not

exactly equal to one, as is clear from Table 4.2 (left side).

This issue arises when discretizing each bivariate copula in the vine structure to obtain

the probabilities as in Equation (4.2.11) which leads to inconsistent results. Since the

discretization process is applied independently to each bivariate copula, the marginal

distributions derived from different pair-copulas may not match exactly. As a result,

the overall structure may no longer satisfy the defining properties of a copula, most

notably, the requirement that all marginal distributions be uniform on the interval [0, 1].

In this sense, the resulting discretized vine is no longer a copula. This issue can be

solved using the iterated proportional fitting (IPF), which was first introduced by Deming

and Stephan [33] and investigated with discrete copula by Geenens [41]. This algorithm

focuses on reaching the desired margins and preserving the dependence structure of the

joint probabilities. This algorithm consists of normalizing the rows and columns of the

probabilities hijk alternately to derive uniform marginals. The probabilities hijk after

applying the IPF satisfy their conditions, as presented in this example. The IPF algorithm

is straightforward and can be generalized in any dimension and it is available in the R

package mipfp [13]. Modifying the probabilities hijk using the IPF algorithm shows all

the conditions satisfied as in Table 4.2 (right side). Thus, these probabilities hijk, with

their sufficient conditions, now become suitable for investigation and visualization.
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h.jk hi.k hij.

1 0.1394 0.1407 0.1398

2 0.1254 0.1248 0.1252

3 0.1136 0.1131 0.1135

4 0.1057 0.1055 0.1057

5 0.1019 0.1018 0.1018

6 0.1019 0.1018 0.1018

7 0.1057 0.1055 0.1057

8 0.1136 0.1131 0.1135

9 0.1254 0.1248 0.1252

10 0.1394 0.1407 0.1398

h.jk hi.k hij.

1 0.1 0.1 0.0999

2 0.1 0.1 0.1

3 0.1 0.1 0.1

4 0.1 0.1 0.1

5 0.1 0.1 0.1001

6 0.1 0.1 0.1001

7 0.1 0.1 0.1

8 0.1 0.1 0.1

9 0.1 0.1 0.1

10 0.1 0.1 0.0999

Table 4.2: The marginals of each variable before (left) and after (right) applying the IPF

Example 4.2.2 Three three-dimensional visualizations of the probabilities hijk(θ̂) under

different dependence structures are shown in Figures 4.1-4.3. Each figure is based on a

dataset of size n = 4, simulated from a trivariate Gaussian distribution with mean vector

zero. Three cases are considered: a no correlation case where the covariance matrix is

the identity matrix, a high correlation case where all off-diagonal entries of the covariance

matrix are set to 0.9 and a negative high correlation case where all off-diagonal entries of

the covariance matrix are set to −0.9 as given in Table 4.3.

Assume that the bivariate copulas for the pairs (X, Y ), (X,Z) and (Y, Z|X), which

capture the dependence structure between each pair of variables, are Gaussian copulas,

representing a symmetrical dependence structure. The pseudo maximum likelihood esti-

mation method is used to estimate the parameters θ = (θ1, θ2, θ3) and their corresponding

τ values, as given in Table 4.4. The results illustrate that the dependence for the first

two pairs (X, Y ), (X,Z) is stronger than in the third pair (Y, Z|X) which show how these

dependencies are affected when the assumed correlation of the generated data changes.

Since the main focus is to visualize the hijk(θ) probabilities, the probabilities are cal-

culated using the estimated parameters θ in Equation (4.2.11). Figures 4.1-4.3 illustrate

different cases when varying the assumed correlation of the generated data. Each figure
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Positive Correlation

X Y Z

-0.831 0.181 -0.134

1.197 0.220 0.512

0.407 0.315 0.202

0.042 -0.394 -0.756

No Correlation

X Y Z

0.687 1.066 0.537

1.906 1.063 1.370

0.528 0.403 1.168

0.793 -1.214 -1.006

Negative Correlation

X Y Z

-0.071 0.452 -0.278

0.698 -0.464 -0.040

-0.205 -0.377 0.677

1.727 -1.039 -0.752

Table 4.3: Simulated data from a trivariate Gaussian distribution with different correla-

tion structures.

Pairs
Positive correlation No correlation Negative correlation

τ θ̂ τ θ̂ τ θ̂

(x, y) 0.61 0.81 -0.32 -0.48 -0.73 -0.91

(x, z) 0.73 0.91 0.45 0.65 -0.77 -0.93

(y, z|x) 0.50 0.70 0.19 0.30 -0.42 -0.61

Table 4.4: Estimated parameters and corresponding Kendall’s τ values from simulated

data, correlation levels, and Gaussian vine copula.

presents three sides: the right side, where h.jk =
∑

i hijk, the left side, where hi.k =
∑

j hijk

and the bottom side, where hij. =
∑

k hijk. The case where the data is highly correlated is

presented in Figure 4.1. This figure shows a positive relation with large values of hijk(θ̂)

when i, j, k are close to each other. When there is no correlation in the generated data,

the results appear scattered, as shown in Figure 4.2. For the negative case, Figure 4.3

displays large values with a negative relation on each side of hij. and hi.k. This is be-

cause the generated data with negative correlation affects the results on the marginals

hij. and hi.k for the pairs (X, Y ) and (X,Z), whereas the third pair (Y, Z|X) shows less

effect. Also, the chosen pairs in this order are not unique and changing the order leads to

different hijk results, but the relation between variables remains the same.
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Figure 4.1: The probabilities h.jk, hi.k and hij., for the high correlation case.
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Figure 4.2: The probabilities h.jk, hi.k and hij., for the no correlation case.
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Figure 4.3: The probabilities h.jk, hi.k and hij., for the negative high correlation case.
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4.3 Example

This section illustrates the proposed methods combining NPI with vine copulas as in

Section 4.2 using trivariate Gaussian datasets with zero mean vectors. Three covariance

matrices representing different correlation structures are considered, with sample sizes

n = 10, 25, 50. These covariance matrices are as follows:


1 0.9 0.9

0.9 1 0.9

0.9 0.9 1




1 0.5 0.5

0.5 1 0.5

0.5 0.5 1



1 0 0

0 1 0

0 0 1


The assumed correlations between the random variables in each sample are 0.9, 0.5, 0

denoted as High (H), Moderate (M) and Low (L) for convenience. All samples are sim-

ulated using the R package mvtnorm [46]. The pseudo maximum likelihood estimation

method is applied to estimate the bivariate copula parameters, assuming the Gaussian

copula as the parametric form. These estimations can be performed using the VineCopula

package in R [82].

In the first scenario (Case I), the pair-copula construction is based on the selected pairs

(X, Y ), (X,Z), and the conditional pair (Y, Z|X). Following the proposed method intro-

duced in Section 4.2, the corresponding probabilities hijk(θ̂) are computed accordingly.

The second scenario considers (Case II) a pair-copula construction based on the following

selected pairs (X, Y ), (Y, Z) and the conditional pair (X,Z|Y ). The third scenario (Case

III) involves the pairs (Y, Z), (X,Z), and the conditional pair (X, Y |Z). In the fourth

scenario (Case IV), a pair-copula construction is based on the chosen pairs: (X, Y ), (Y, Z)

and (X,Z), where the third pair does not depend on a conditioned variable. The first

three scenarios are based on selecting specific orders of variable pairs and the effect on

the NPI lower and upper probabilities is studied. Changing the selected pairs leads to

different probabilities hijk and hence different NPI lower and upper probabilities for the

event of interest. The first three scenarios are based on selecting specific orders of variable

pairs and the effect on the NPI lower and upper probabilities is studied. Changing the

selected pairs leads to different probabilities hijk and hence different NPI lower and upper

probabilities for the event of interest.
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Case I Case II Case III Case IV

τ θ̂ τ θ̂ τ θ̂ τ θ̂

0.61 0.81 0.36 0.53 0.41 0.27 0.36 0.53

0.73 0.91 0.36 0.54 0.36 0.54 0.27 0.41

0.50 0.70 0.12 0.19 0.26 0.40 0.36 0.54

Table 4.5: Estimated parameters and corresponding Kendall’s τ values from simulated

data with varying sample sizes, moderate correlation, and copula types.

Case I Case II Case III Case IV

τ θ̂ τ θ̂ τ θ̂ τ θ̂

0.70 0.89 0.70 0.89 0.69 0.89 0.70 0.89

0.69 0.89 0.72 0.90 0.72 0.90 0.69 0.89

0.35 0.53 0.27 0.41 0.32 0.48 0.72 0.90

Table 4.6: Estimated parameters and corresponding Kendall’s τ values from simulated

data with varying sample sizes, high correlation, and copula types.

Given the simulated data, the parameters of the assumed parametric copula (Gaussian

copula) are estimated using the pseudo maximum likelihood method to account for the

dependence structure. Using the estimated parameters θ̂, the probabilities hijk(θ̂) are

computed for each scenario. The estimated parameters for these four scenarios with

n = 50 and strong or moderate assumed correlation are shown in Tables 4.5 and 4.6.

These results show that if the generated data are highly correlated, this implies that

the estimated parameters and their corresponding Kendall τ values are high. This is due

to the relationship between the copula parameters and the strength of dependence between

the variables. Thus, when the data are highly correlated, the estimated parameter of the

copula reflects this high degree of dependence, leading to a higher value for the copula

parameter. This is clear in the first two rows in each case, Tables 4.5 and 4.6.

A noticeable difference appears on the last row in all cases except Case IV of Tables

4.5 and 4.6, where the estimated parameter of conditional pairs presents corresponding

Kendall τ values that are usually weaker than the first two pairs. This is convenient
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with the vine copula structure, where the first two pairs have stronger dependence than

the third pair. The difference in Case IV is that the third pair is used without applying

the simplifying assumption. Therefore, the estimated parameter value of the third pair

is similar to the estimated parameter values of the first two pairs. When the data is

highly correlated, the estimated copula parameter shows this high level of dependence,

resulting in a higher parameter value. Similar results are obtained when the simulation is

conducted for different sample sizes and correlation values reported in Appendix B, Table

B.1.

The probabilities hijk(θ̂) are determined after the parameters are estimated. Figure

4.4 presents three-dimensional plots of hijk(θ̂) when n = 50 for the four scenarios. From

Figure 4.4, it seems these probabilities are similar but not exactly the same in most

cases. For positive, highly correlated data, the probabilities hijk(θ̂) tend to have large

probabilities when i, j, k close to each other, compared to when the data are moderately

correlated for all scenarios. When the data are very weak or there is no correlation, then

the marginals are highly scattered. Similar results with different correlations and varying

sample sizes are visualized in Appendix B.

The probabilities hijk(θ̂) are used to obtain the NPI lower and upper probabilities for

the event of interest, Xn+1 +Yn+1 +Zn+1 > t. The NPI lower and upper probabilities are

obtained by using Equations (3.2.9) and (3.2.10) in Section 3.2 and they are presented in

Table 4.7 and Figure 4.5. Table 4.7 represents the NPI lower and upper probabilities at

t = 0 for all four scenarios obtained from generated data with sample sizes n = 10, n = 25

and n = 50 and with the assumed correlations. Data are generated from a trivariate

normal distribution with a mean vector of zero, which is symmetric around zero, one of the

properties of the normal distribution. With the event of interest Xn+1 +Yn+1 +Zn+1 > t,

at t = 0, the expected value of the sum is zero, and the NPI lower and upper probabilities

tend to include 0.5.
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Figure 4.4: The hijk probabilities obtained from simulated data n = 25 using Gaussian

vine copula with different correlation levels.
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For all scenarios, the value 0.5 is included between the lower and upper probabilities

at t = 0 when n = 10. Increasing the sample size to n = 25 shows the value 0.5 ∈ [P , P ]

except when the correlated data is high for Cases I, II and IV. For n = 50, where the

generated data is moderately correlated, Cases I, II and IV show the NPI probabilities are

greater than 0.5 and this is due to the randomness in the data. Also, Case III, the only

case, shows 0.5 ∈ [P , P ] regardless of the sample size or the correlation strength. This

is due to the selection of a specific pair for the vine copula construction. As expected,

imprecision decreases as the sample size increases, consistent with the concept of impreci-

sion. As n increases, the imprecision of the lower and upper probabilities decreases. Also,

the imprecision decreases when the correlation strength increases. This can be explained

through the hijk(θ̂), that is for highly positively correlated data the probabilities hijk(θ̂)

tend to include additional large probabilities. As the event of interest is on the sum,

the NPI lower and upper probabilities tends to include several additional probabilities.

With a high positive correlation, these additional probabilities hijk(θ̂) include a few larger

values for most values of t, compared to a weak correlation.

Combining NPI with a vine copula offers flexibility for modelling multivariate data.

The flexibility arises when selecting the pairs for modelling dependence and selecting the

copula type for each bivariate copula. Vine copula structure also reduces complexity when

the dimension is increased, making it more adaptable than the classical copulas, which

rely on a single parameter regardless of the dimension. Each pairwise dependence in the

vine copulas can be any type of copula to capture the dependence structure.
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(a) Not correlated, n = 10
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(b) Not correlated, n = 25
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(c) Not correlated, n = 50
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(d) Moderate, n = 10
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(e) Moderate, n = 25
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(f) Moderate, n = 50
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(g) High, n = 10
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(h) High, n = 25
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(i) High, n = 50

Figure 4.5: The NPI lower and upper probabilities of the event Tn+1 > t, based on

simulated data with different sample sizes, correlations, Case (III).
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τ Case n = 10 n = 25 n = 50

P P P P P P

I 0.4098 0.5080 0.5091 0.5518 0.4964 0.5176

H
II 0.4103 0.5082 0.5086 0.5516 0.4961 0.5174

III 0.3857 0.5033 0.4839 0.5662 0.4674 0.5047

IV 0.4082 0.5000 0.5041 0.5428 0.4958 0.5156

I 0.3675 0.5328 0.4838 0.5456 0.4636 0.4916

M
II 0.3534 0.5398 0.4856 0.5627 0.4646 0.4935

III 0.3137 0.5557 0.4709 0.5745 0.4501 0.5052

IV 0.3607 0.5419 0.4850 0.5428 0.4683 0.4925

I 0.2754 0.6281 0.4356 0.5875 0.4413 0.5014

L
II 0.2461 0.6385 0.4464 0.5988 0.4439 0.5045

III 0.3500 0.5954 0.4588 0.5741 0.4447 0.5031

IV 0.2769 0.6276 0.4449 0.5770 0.4437 0.5003

Table 4.7: The NPI lower and upper probabilities of the event Tn+1 > t, based on simu-

lated data with different sample sizes, correlations

4.4 Predictive performance

This section presents simulation results evaluating the predictive performance of the

method proposed in Section 4.2. The approach is similar to that in Section 3.5, but

vine copulas are used here. For each of N = 100 datasets of size n + 1, the first n ob-

servations are used to apply the method, and the last observation evaluates predictive

performance. To reduce computation time, simulations are performed for sample sizes

n = 10 and n = 25.

The trivariate Gaussian distribution with mean vector zero. Three covariance matrices

representing different correlation structures are considered (corresponding to High (H),

Moderate (M) and Low (L) dependence, respectively) is used for the simulation, as follows:
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
1 0.9 0.9

0.9 1 0.9

0.9 0.9 1




1 0.5 0.5

0.5 1 0.5

0.5 0.5 1



1 0 0

0 1 0

0 0 1


Given that the vine copula structure comprises bivariate copula dependence models,

each of the four commonly used copulas, namely, Clayton, Gumbel, Frank, and Joe, is

applied to all pairs of variables. The parameters are estimated using the pseudo-maximum

likelihood method, as described in Section 2.3.

Table 4.12 represents the average of the 100 parameter estimates along with the corre-

sponding Kendall τ values. The results indicate that the parameters are well estimated,

as the true and estimated values are close to each other, especially for n = 25. The

dependence structures are well described, as the corresponding Kendall’s τ values for the

true and estimated values are also close to each other. As described at the beginning of

this chapter, vine copulas decompose multivariate dependencies into pairwise copulas. θ̂3

corresponds to the dependence between the third pair (Y, Z|X) of variables in the vine

structure, in contrast to θ̂1 and θ̂2, which capture the strongest dependence between the

first two pairs (X, Y ) and (X,Z). As a result, the dependence captured by θ̂3 is typically

weaker, leading to a lower estimate compared to θ̂1 and θ̂2, which is consistent with the

vine structure.

As explained in Section 3.5, the inverse values of the lower and upper survival functions

of Tn+1 for a value q ∈ (0, 1) as defined in Equations (3.5.7) and (3.5.8) which yield the

two inequalities p1 and p2 that are presented in Equations (3.5.9) and (3.5.10) for testing

the performance. By using different quantiles to assess the method’s performance, any

value of q can be selected. Quantiles offer a good indicator for evaluating the method’s

effectiveness. Thus, for a good performance p1 < q < p2 must hold.

The results of the predictive performance are presented in Tables 4.8–4.11, which

highlight the strong performance of the proposed method. Table 4.8 presents the results

when the bivariate copulas in the vine structure are all Clayton copulas. The results

indicate that when the sample size is n = 10, q typically lies within the interval [p1, p2].

For n = 25, the imprecision decreases, and q tends to fall outside this interval. Tables

4.8-4.11 represent the results when assuming the pair copulas in the vine structure are
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all Gumbel, all Frank or all Joe copulas, respectively. These tables show that in a few

cases, the q values fall outside the range [p1, p2]. At n = 10, there are just two values in

each table that are not within the range, mainly due to randomness in the data for these

copulas when the dependence level increases. However, when n = 25, the imprecision

reduces, which leads to q falling outside [p1, p2].

These tables clearly show that as the correlation between variables increases, impre-

cision decreases, regardless of the copula type.

This can be attributed to two main factors related to the event Tn+1 = Xn+1+Yn+1+

Zn+1 > t, which is explained through the probabilities hijk(θ̂), fundamental for infer-

ence. For high positive correlation, and with the event defined as the sum, the lower and

upper probabilities in Equations (3.2.9) and (3.2.10) tend to include additional hijk(θ̂).

These additional terms generally have large values for most t under positive correlation.

Conversely, for weak correlation, the hijk probabilities where i, j, k are close are not as

large as in the high positive correlation case. Also, when assuming no correlation, the

probabilities hijk(θ̂) become more scattered.

τ q n = 10 n = 25

p1 p2 p1 p2

L 0.25 0.02 0.30 0.13 0.23

0.50 0.32 0.57 0.41 0.51

0.75 0.71 0.93 0.70 0.82

M 0.25 0.10 0.28 0.15 0.22

0.50 0.36 0.54 0.40 0.45

0.75 0.74 0.88 0.68 0.74

H 0.25 0.10 0.28 0.16 0.22

0.50 0.37 0.53 0.41 0.45

0.75 0.74 0.85 0.68 0.72

Table 4.8: Predictive performance, Clayton

copula

τ q n = 10 n = 25

p1 p2 p1 p2

L 0.25 0.07 0.29 0.15 0.25

0.50 0.39 0.65 0.44 0.54

0.75 0.77 0.99 0.69 0.85

M 0.25 0.14 0.30 0.19 0.23

0.50 0.45 0.58 0.45 0.53

0.75 0.77 0.89 0.68 0.82

H 0.25 0.16 0.29 0.19 0.23

0.50 0.48 0.59 0.45 0.53

0.75 0.76 0.88 0.68 0.79

Table 4.9: Predictive performance, Gumbel

copula
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τ q n = 10 n = 25

p1 p2 p1 p2

L 0.25 0.06 0.33 0.12 0.24

0.50 0.32 0.62 0.43 0.52

0.75 0.72 0.99 0.68 0.85

M 0.25 0.10 0.29 0.15 0.21

0.50 0.42 0.57 0.44 0.51

0.75 0.78 0.90 0.71 0.82

H 0.25 0.13 0.28 0.17 0.21

0.50 0.48 0.57 0.44 0.51

0.75 0.77 0.88 0.71 0.81

Table 4.10: Predictive performance, Frank

copula

τ q n = 10 n = 25

p1 p2 p1 p2

L 0.25 0.08 0.31 0.16 0.25

0.50 0.41 0.67 0.46 0.55

0.75 0.80 0.99 0.69 0.85

M 0.25 0.17 0.31 0.21 0.27

0.50 0.49 0.63 0.49 0.55

0.75 0.79 0.93 0.68 0.82

H 0.25 0.16 0.29 0.19 0.25

0.50 0.50 0.62 0.49 0.54

0.75 0.71 0.86 0.69 0.83

Table 4.11: Predictive performance, Joe

copula

Copula τ n = 10 n = 25

θ̂1 τ1 θ̂2 τ2 θ̂3 τ3 θ̂1 τ1 θ̂2 τ2 θ̂3 τ3

Clayton L 0.58 0.19 0.66 0.20 0.50 0.16 0.31 0.12 0.37 0.14 0.23 0.09

M 1.79 0.42 1.77 0.40 0.72 0.21 1.22 0.37 1.33 0.38 0.46 0.18

H 3.23 0.56 3.42 0.56 0.84 0.24 2.36 0.52 2.46 0.54 0.56 0.21

Gumbel L 1.34 0.20 1.38 0.21 1.31 0.18 1.84 0.14 1.20 0.14 1.14 0.10

M 2.10 0.46 2.12 0.44 1.46 0.25 1.78 0.42 1.81 0.43 1.30 0.21

H 3.16 0.62 3.13 0.61 1.62 0.30 2.56 0.59 2.62 0.60 1.38 0.25

Frank L 1.03 0.10 1.15 0.10 1.12 0.10 0.97 0.10 0.13 0.12 0.71 0.07

M 5.26 0.42 5.18 0.40 2.98 0.26 4.54 0.41 4.71 0.42 2.37 0.24

H 9.34 0.59 9.20 0.59 3.92 0.31 8.04 0.59 8.23 0.59 3.03 0.30

Joe L 1.53 0.19 1.59 0.19 1.45 0.15 1.28 0.12 1.28 0.12 1.19 0.08

M 2.61 0.41 2.65 0.39 1.62 0.21 2.09 0.35 2.11 0.36 1.39 0.16

H 4.33 0.56 4.09 0.54 2.07 0.25 3.13 0.51 3.21 0.52 1.49 0.19

Table 4.12: Estimated parameters and corresponding Kendall’s τ values from simulated

data with varying sample sizes, correlation levels, and vine copula types.
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Figure 4.6: The contour bivariate plot (lower panel), the scatter plots and Kendall’s tau

values (upper panel) of the TMY data

4.5 Application

This section applies the proposed method to the Typical Meteorological Year (TMY)

dataset previously used in Example 3.6.1. Before fitting the proposed method, there are

three ways to order the pairs in a trivariate vine copula. As mentioned previously, the

vine structure in three dimensions is not unique and any order of the pairs yields different

results. In vine copulas, it is preferable to select the appropriate pairs of variables. The

first pairs in the vine structure capture the strongest dependencies, while later pairs repre-

sent conditional dependencies, which are usually weaker than the first two pairs. Placing

strongly dependent variables later in the vine model may not capture them effectively.

Figure 4.6 presents the correlation between variables, showing that dry bulb temperature

and water vapour pressure variables have the highest correlation (X, Y ), followed by the

variables water vapour pressure and wind speed (Y, Z), and then dry bulb temperature

and wind speed (X,Z).

A common method used to select the pairs is to order the variables depending on
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the value of Kendall’s tau [2]. Once the most appropriate order of variables has been

determined, the next step is to select a copula that best represents the data for each pair

in order to capture dependence. Several methods can be used to select the best bivariate

copula, including contour plots that visualize the dependence structure, as shown in Figure

4.6. This figure illustrates the dependence between variables, helping to identify the most

suitable model for each pair based on the observed relationships. Figure 4.6 indicates

that the Gumbel copula is most appropriate for modeling the dependence between dry

bulb temperature and water vapour. The contour plot reveals an asymmetric structure

with strong overall dependence, reflecting a high correlation between the variables. The

stronger upper-tail dependence compared to the lower tail aligns with the characteristics

of the Gumbel copula. For the other variable pairs, the contour plots show stronger lower-

tail dependence and a more dispersed pattern in the upper tail, suggesting the use of the

survival Joe copula. This type of copula is a rotated version of Joe copula rotated 180◦ by

considering c180(x1, x2) = x1 + x2 − 1 + c(1− x1, 1− x2). For example, a Joe copula that

exhibits upper tail dependence results in lower tail dependence when rotated by 180◦.

By applying the proposed method presented in Section 4.2, where bivariate copulas

are assumed in the vine structure and the pseudo maximum likelihood estimation method

is used to estimate the parameters, the estimated parameters for each copula are given in

Table 4.13. This table shows that the first two pairs have Kendall’s tau values stronger

than the third pair and this is due to the vine structure explained in Section 4.2. Figure

4.7 illustrates how the probabilities hijk(θ̂) are influenced by the selected copulas and

the estimated parameters. Three parameters control the dependence, each with a specific

dependence value, as shown in Table 4.13. The probabilities with high positive correlation

show that the marginals exhibit a positive relationship when i, j, k are close to each other.

For very weak or zero correlation, no obvious relationship is observed. These probabilities

obtained are fundamental for inference and affect the NPI lower and upper probabilities

when considering an event of interest. For positive correlations, the probabilities hijk(θ̂)

tend to include additional large probabilities. Considering the event of interest as the ap-

parent temperature tends, the NPI lower and upper probabilities tends to include several

additional probabilities. The NPI lower and upper probabilities of the event ATn+1 > t

for some selected values t are presented in Table 4.14 and Figure 4.8.
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Pairs Copula Family τ θ̂

x, y Gumbel 0.89 9.12

x, z Survival Joe 0.38 2.12

y, z|x Survival Joe 0 1

Table 4.13: Estimated parameters and corresponding Kendall’s τ values using vine copula.

t -6.35 -4.35 -2.35 -0.35 1.64 3.64 5.64 7.64 9.64 11.64 13.64

P 1.0000 0.9977 0.9845 0.9532 0.9461 0.8505 0.6308 0.2359 0.0174 0.0003 0.0000

P 1.0000 1.0000 1.0000 0.9985 0.9960 0.8998 0.6350 0.2544 0.0623 0.0433 0.0399

Table 4.14: The NPI lower and upper probabilities of the event ATn+1 > t using different

vine copula at selected values of t.
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Figure 4.7: The hijk probabilities.
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Figure 4.8: The NPI lower and upper probabilities of the event ATn+1 > t using vine

copula.
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4.6 Concluding remarks

This chapter introduced the method of combining NPI with a vine copula. Vine copula

is considered to be more flexible for modelling different dependencies than the classical

copula, which relies on a single parameter. It can model multiple dependence structures by

specifying each bivariate copula with a chosen copula type. Computing the probabilities

hijk, which are fundamental for inference, is the most challenging step in this method. In

a trivariate copula model, the challenge arises in capturing the dependencies between the

three variables. Modelling the pairwise dependencies in such a vine copula structure can be

complex, particularly when there are multiple copulas involved. The iterated proportional

fitting (IPF) is often used to fit the copula model, adjusting the marginals while preserving

the dependencies among the three variables. This is obvious from the provided example

in Section 4.2 showing that the marginals were not identical and this does not satisfy the

hijk conditions. By using the IPF algorithm that makes, the probabilities hijk are made to

satisfy their conditions. These probabilities were investigated and visualized with varying

correlation values.

The proposed method is illustrated by considering different scenarios and an example

based on data from the literature. The performance is evaluated through simulations. The

method performs well in general except when the vine structure contains Clayton copulas

with n = 25,where the imprecision decreases leading to q /∈ [p1, p2]. Throughout this work,

the focus was on using trivariate parametric vine copulas, with the simplifying assumption

outlined in Section 2.4. However, extending this approach to higher dimensions is worth

exploring, though it introduces additional computational challenges. It may be beneficial

to model the vine copula without the simplifying assumption, as this could provide a

more accurate representation of dependencies, though at the cost of increased complexity.

This remains an area for future work, as further exploration is needed to fully assess its

potential and computational implications.



Chapter 5

NPI Combined with FNAC

5.1 Introduction

As the main goal of this thesis is to develop NPI-based methods for multivariate data, this

chapter presents a method that combines nonparametric predictive inference (NPI) with

fully nested Archimedean copulas (FNAC) for predictive inference. In previous chapters,

NPI was combined with dependence models such as classical copulas with one parameter

and vine copulas. This chapter extends that work by introducing FNAC as an alternative

dependence model within the NPI framework.

This chapter is organized as follows: In Section 5.2, the method of NPI combined

with trivariate FNAC is introduced. The effectiveness of this newly proposed method is

illustrated in Section 5.3. The performance of this method is evaluated in Section 5.4.

Two examples from the literature to illustrate the application of the proposed method to

the real world are presented in Section 5.5. A comparison study is conducted to evaluate

the performance of all the methods proposed throughout this thesis in Section 5.6. The

comparison highlights the strengths and limitations of each approach and provides insight

into their applicability. Some concluding remarks are included in Section 5.7.

5.2 Combining NPI with FNAC

This section introduces the method of combining NPI with a parametric trivariate fully

nested Archimedean copulas in two stages. The first stage applies NPI for the marginals

85
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and then in the second step, a trivariate parametric FNAC is assumed and the parameters

are estimated to take into account the dependence structure.

For the first stage, which applies NPI for the marginals, assume that there are n

trivariate observations (xi, yi, zi), i = 1, . . . , n, which are the observed values of n ex-

changeable trivariate random quantities with no ties. The observations of the marginals

are ordered and denoted by xi, yj and zk for simplicity, so x1 < · · · < xi < · · · < xn,

y1 < · · · < yj < · · · < yn and z1 < · · · < zk < · · · < zn.

Using Hill’s assumption A(n), it is possible to derive a partially specified predic-

tive probability distribution for Xn+1, Yn+1 and Zn+1 given the observations x1, . . . , xn,

y1, . . . , yn and z1, . . . , zn that, respectively, lead to P (Xn+1 ∈ (xi−1, xi)) =
1

n+1
, P (Yn+1 ∈

(yj−1, yj)) = 1
n+1

and P (Zn+1 ∈ (zk−1, zk)) = 1
n+1

for i, j, k ∈ { 1, . . . , n + 1} , where

x0 = −∞, xn+1 = ∞, y0 = −∞, yn+1 = ∞ and z0 = −∞, zn+1 = ∞.

To link the first stage with the second stage, where the dependence structure in the

data is taken into account to provide a partially specified predictive distribution for the

trivariate (Xn+1, Yn+1, Zn+1) is by introducing a natural transformation of the three ran-

dom quantities individually as introduced by Muhammad [76]. Let X̃n+1 , Ỹn+1 and

Z̃n+1 denote the transformed versions of the random quantities Xn+1 , Yn+1 and Zn+1

respectively, such that

(Xn+1 ∈ (xi−1, xi), Yn+1 ∈ (yj−1, yj, Zn+1 ∈ (zk−1, zk)) ⇐⇒

(X̃n+1 ∈ (
i− 1

n+ 1
,

i

n+ 1
), Ỹn+1 ∈ (

j − 1

n+ 1
,

j

n+ 1
), Z̃n+1 ∈ (

k − 1

n+ 1
,

k

n+ 1
)) (5.2.1)

where i, j and k ∈ { 1, . . . , n+ 1} . This transformation from the real space R3 to [0, 1]3

is based on n trivariate data, where [0, 1]3 is divided into (n+ 1)3 equal sized blocks. By

following these transformations of the marginals, the uniform marginal distribution on

[0, 1] has been discretized. The A(n) assumption for the marginals after the transformation

lead to

P (X̃n+1 ∈ (
i− 1

n+ 1
,

i

n+ 1
)) = P (Xn+1 ∈ (xi−1, xi)) =

1

n+ 1
(5.2.2)

P (Ỹn+1 ∈ (
j − 1

n+ 1
,

j

n+ 1
) = P (Yn+1 ∈ (yj−1, yj)) =

1

n+ 1
(5.2.3)

and

P (Z̃n+1 ∈ (
k − 1

n+ 1
,

k

n+ 1
) = P (Zn+1 ∈ (zk−1, zk)) =

1

n+ 1
(5.2.4)
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For the second stage, a trivariate parametric FNAC is assumed with parameters θ1 and θ2

to capture the dependence structure and the parameters are estimated. The parameters

can be estimated where the observed pair (xi, yi), i = 1, . . . , n is replaced by (
rxi
n+1

,
ryi
n+1

),

after that assume a bivariate parametric Archimedean copula to couple (
rxi
n+1

,
ryi
n+1

) with

rzi
(n+1)

where rxi is the rank of the observation xi among x-observations ryi is the rank of

the observation yi among y-observations and rzi is the rank of the observation zi among

z-observations.

Now, NPI on the marginals can now be combined with the estimated copulas by

defining the probability for the event that the transformed variables (X̃n+1, Ỹn+1, Z̃n+1)

belongs to a specific block out of the (n+1)3 blocks into which the space [0, 1]3 has been

partitioned.

hijk(θ̂1; θ̂2) =

PC(X̃n+1 ∈ (
i− 1

n+ 1
,

i

n+ 1
), Ỹn+1 ∈ (

j − 1

n+ 1
,

j

n+ 1
), Z̃n+1 ∈ (

k − 1

n+ 1
,

k

n+ 1
)|θ̂1; θ̂2) (5.2.5)

where i, j and k ∈ { 1, . . . , n+1} and PC(.|θ̂1; θ̂2) is the assumed copula-based probability

with estimated parameters θ̂1 and θ̂2. These values (n + 1)3 of hijk(θ̂1; θ̂2) that sum

up to one provide a fully discretized probability distribution for the transformed future

observations. This distribution can be used for making inferences about the actual future

observation or any event of interest. The hijk(θ̂1; θ̂2) probabilities satisfy

1.
∑n

i=1

∑n
j=1

∑n
k=1 hijk(θ̂1; θ̂2) = 1

2.
∑n

j=1

∑n
k=1 hijk(θ̂1; θ̂2) =

1
n+1

, for i ∈ {1, 2, . . . , n+1},
∑n

i=1

∑n
k=1 hijk(θ̂1; θ̂2) =

1
n+1

,

for j ∈ {1, 2, . . . , n+1} and
∑n

i=1

∑n
j=1 hijk(θ̂1; θ̂2) =

1
n+1

, for k ∈ {1, 2, . . . , n+1}

3. hijk(θ̂1; θ̂2) ≥ 0, for i, j,k ∈ {1, . . . , n+ 1}

The method of combining NPI with multivariate data can be extended beyond the trivari-

ate case by following two main steps: applying NPI for the marginals in the first step

and then assuming a parametric FNAC to capture the dependence structure through

the estimated parameters as follows. Assume that there are n observations of d multi-

variate random variables X1,X2, . . . ,Xd where Xi = (X1,i, X2,i, . . . , Xd,i), i = 1, . . . , n.

We are interested in prediction in event involving these future observations multivariate

observation as (X1,n+1, X2,n+1, . . . , Xd,n+1).
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Using Hill’s assumption A(n), it is possible to derive a partially specified predictive

probability distribution for each ofX1,n+1, X2,n+1, . . . , Xd,n+1 given their observations xi =

x1, x2,. . . , xd, respectively, xi = (x1,i, . . . , xd,i), these as follows:

P (X1,n+1 ∈ (x1,i1−1, x1,i1)) = 1
n+1

, P (X2,n+1 ∈ (x2,i2−1, x2,i2)) = 1
n+1

,. . . , P (Xd,n+1 ∈

(xd,id−1, xd,id)) =
1

n+1
for i1, i2, . . . , id ∈ { 1, . . . , n + 1} , where x1,0 = x2,0 = .... = xd,0 =

−∞ and x1,n+1 = x2,n+1 = .... = xd,n+1 = ∞ are introduced for notation simplicity.

The two steps can be linked by introducing a natural transformation of the random

quantities individually. Let X̃1,n+1, X̃2,n+1, . . . , X̃d,n+1 be the transformed versions of the

random quantities X1,n+1, X2,n+1, . . . , Xd,n+1, respectively, such that

(X1,n+1 ∈ (x1,i1−1, x1,i1), X2,n+1 ∈ (x2,i2−1, x2,i2), . . . , Xd,n+1 ∈ (xd,id−1, xd,id)) ⇐⇒

(X̃1,n+1 ∈ (
i1 − 1

n+ 1
,

i1
n+ 1

), X̃2,n+1 ∈ (
i2 − 1

n+ 1
,

i2
n+ 1

), . . . , X̃d,n+1 ∈ (
id − 1

n+ 1
,

id
n+ 1

)) (5.2.6)

for i1, i2, . . . , id = 1, . . . , n+ 1. The assumption A(n) of the transformations lead to

P (X̃1,n+1 ∈ (
i1 − 1

n+ 1
,

i1
n+ 1

)) = P (X1,n+1 ∈ (x1,i1−1, x1,i1)) =
1

n+ 1
(5.2.7)

P (X̃2n+1 ∈ (
i2 − 1

n+ 1
,

i2
n+ 1

)) = P (X2,n+1 ∈ (x2,i2−1, x2,i2)) =
1

n+ 1
(5.2.8)

P (X̃d,n+1 ∈ (
id − 1

n+ 1
,

id
n+ 1

)) = P (Xd,n+1 ∈ (xd,id−1, xd,id)) =
1

n+ 1
(5.2.9)

For the second step when assuming a parametric FNAC with parameters θ and estimate

the parameters is by using the transformed data, where the observed pairs are replaced by

(
r
x1
i

n+1
, . . . ,

r
xd
i

n+1
) wher r

xj

i the rank of the observation xi among n-xj observations. NPI on

the marginals is now combined with the estimated copula to provide a partially specified

predictive distribution for one future multivariate observation and each (n+1)d blocks is

assigned a specific probability as

hi1i2...id(θ) =

PC(X̃1,n+1 ∈ (
i1 − 1

n+ 1
,

i1
n+ 1

), X̃2,n+1 ∈ (
i2 − 1

n+ 1
,

i2
n+ 1

), . . . , X̃d,n+1 ∈ (
id − 1

n+ 1
,

id
n+ 1

)|(θ))

(5.2.10)

where i1, i2, . . . , id ∈ { 1, . . . , n+1} . PC(.|θ) is the assumed copula-based probability and

θ is the estimated parameters values. These (n+1)d values of hi1i2...id(θ) provide the fully
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High Correlation

X Y Z

-1.023 -1.038 -0.825

-0.553 -0.327 -0.840

0.796 0.413 0.340

0.087 0.606 0.053

No Correlation

X Y Z

0.687 1.066 0.537

1.906 1.063 1.370

0.528 0.403 1.168

0.793 -1.214 -1.006

Table 5.1: Simulated data from a trivariate Gaussian distribution with different correla-

tion structures.

discretized probability distribution for the transformed future observations, which can be

used for statistical inference on the future observation or an event of interest involving

the future observation. These hi1i2...id(θ) probabilities satisfy the following conditions:

1.
∑n

i1=1

∑n
i2=1 · · ·

∑n
in=1 hi1i2...id(θ) = 1

2.
∑n

i2=1 · · ·
∑n

in=1 hi1i2...id(θ) = 1
n+1

, for all i1 ∈ { 1, 2, . . . , n + 1} this summation

condition is repeated for each marginal by fixing a different index and summing

over the others.

3. hi1i2...id(θ) ≥ 0, for all i1, i2, . . . , id =∈ { 1, . . . , n+ 1}

Example 5.2.1 Two three-dimensional visualizations of the probabilities hijk(θ) under

different dependence structures are shown in Figures 5.1 and 5.2. Each figure is based

on a dataset of size n = 4, simulated from a trivariate Gaussian distribution with mean

vector zero. Two cases are considered: a no correlation case where the covariance matrix

is the identity matrix and a high correlation case where all off-diagonal entries of the

covariance matrix are set to 0.9 as given in Table 5.1.

The pseudo maximum likelihood estimation method is used to estimate the parame-

ters and the selected copula is the Frank FNAC. As mentioned in Section 2.5, FNAC is

restricted to the Archimedean family and the Frank copula belongs to this family. The

relationship between the parameter values and their associated Kendall τ values demon-

strates that the dependence structure is controlled by two parameters in a trivariate

FNAC. The first parameter θ1 is for the variables X and Y and the second parameter
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Pairs τ θ̂

(x, y) 0.69 10.90

(; z) 0.63 8.83

τ θ̂

0.42 4.49

0.42 4.49

Table 5.2: Estimated parameters and corresponding Kendall’s τ values from simulated

data with varying correlation levels using Frank FNAC.

is θ2 for the variables Z and the bivariate copula of (X, Y ) where θ1 > θ2. For the two

datasets, the estimated parameters with the corresponding Kendall τ values are presented

in Table 5.2. Each dataset indicated that θ1 ≥ θ2 and for the second dataset, the estimated

parameter indicated a weaker positive dependence compared to the first dataset.

The estimated parameter is used to calculate the probabilities hijk(θ̂1; θ̂2) as given by

Equation (5.2.5). Figures 5.1 and 5.2 present the marginal probabilities hijk(θ̂1; θ̂2) where

each figure presents three sides: the right side h.jk =
∑

i hijk, the left side hi.k =
∑

j hijk

and the bottom side hij. =
∑

k hijk. On each side, there are large values when i = j = k

when the dataset is highly correlated compared to when the data is weakly correlated.

There is also a symmetry around these large values on each side. This effect is due to the

FNAC structure having two parameters to capture dependence.
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Figure 5.1: The probabilities h.jk, hi.k and hij., for the high correlation case.
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Figure 5.2: The probabilities h.jk, hi.k and hij., for the no correlation case.
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5.3 Example

This section presents the NPI lower and upper probabilities to illustrate the proposed

method introduced in Section 5.2. using trivariate Gaussian datasets with zero mean

vectors. Three covariance matrices representing different correlation structures are con-

sidered, with sample sizes n = 10, 25, 50 using the R package mvtnorm [46]. These

covariance matrices are as follows:


1 0.9 0.9

0.9 1 0.9

0.9 0.9 1




1 0.5 0.5

0.5 1 0.5

0.5 0.5 1




1 0.15 0.15

0.15 1 0.15

0.15 0.15 1


The dependence strength is defined as High (H), Moderate (M), and Low (L) corre-

sponding to assumed correlations of 0.9, 0.5 and 0.15, respectively. First four parametric

FNAC types are used: Clayton, Gumbel, Frank and Joe, as presented in Section 2.5. The

pseudo maximum likelihood method, commonly used to estimate copula parameters, is

implemented via the R package copula [100]. All copula components within the FNAC

structure belong to the same Archimedean family.

Following the method presented in Section 5.2, which applies NPI for the marginals and

estimating the parameters for the assumed FNAC to capture the dependence structure,

Table 5.3 presents the estimated parameters for the four assumed FNACs. The results

show that the parameter estimates generally increase with stronger correlations in the

generated data, is consistent with expectations. Moreover, the results satisfy the FNAC

parameter condition: the parameter in the first nesting level is greater than or equal to

the parameter in the second nesting level.

The probabilities hijk(θ̂1; θ̂2) can be obtained using Equation (5.2.5). Figure 5.3

presents a three-dimensional plot of these probabilities for the Frank trivariate FNAC

across different correlation levels and sample sizes. Generally, the figures show that the

probabilities hijk(θ̂1; θ̂2) are similar but not identical within each block. This pattern be-

comes more apparent in the top-right region of the plot as the sample size decreases. For

all FNAC models, highly correlated data lead to larger values of hijk(θ̂1; θ̂2) when i, j and

k are close to each other, compared to cases with moderate or weak correlations. When

the data are weakly correlated, the probabilities hijk(θ̂1; θ̂2) still show a positive pattern



5.3. Example 93

when i, j and k are close to each other, although this pattern is weaker compared to cases

with stronger correlation. Similar results are observed when using other FNAC types.

Full details are presented in Appendix C.

Assume that the event of interest is Tn+1 = Xn+1 + Yn+1 + Zn+1 > t. The NPI lower

and upper probabilities are presented in Figure 5.4, which shows the NPI lower and upper

probabilities with Gumbel FNAC, obtained from datasets with low, moderate and high

correlations and different sample sizes. The NPI lower and upper probabilities for selected

t values are presented in Table 5.4. The results show that imprecision is larger when the

data exhibit a weak positive correlation than when the correlation is strong. This occurs

because the event of interest, Tn+1 = Xn+1 + Yn+1 + Zn+1 > t, can be explained using

the probabilities hijk(θ̂1; θ̂2), which play a fundamental role for inference. For positively

correlated data, hijk(θ̂1; θ̂2) have larger values when i, j and k are close to each other.

Consequently, the calculation of lower and upper probabilities, as in Equations (3.2.9)

and (3.2.10), includes more of these high probabilities. For the event of interest Tn+1, the

NPI lower and upper probabilities are typically include these additional hijk(θ̂1; θ̂2) of t

resulting in less imprecision.

Since the data are generated from a trivariate Gaussian distribution with a zero mean

vector and the event of interest involves the sum Tn+1 = Xn+1 + Yn+1 + Zn+1 > t, the

expected value of the sum is zero. In many cases, the value 0.5 is included within the NPI

lower and upper probabilities. However, in some instances such as when t = 0 the value

0.5 is not included due to randomness in the data.
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Figure 5.3: The hijk probabilities obtained from simulated data n = 25 using Frank FNAC

with different correlation levels.
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τ n Clayton Gumbel Frank Joe

τ θ̂ τ θ̂ τ θ̂ τ θ̂

10 0.67 4.04 0.64 2.81 0.61 8.09 0.55 3.32

0.58 2.77 0.48 1.94 0.48 5.35 0.38 2.10

H 25 0.73 5.46 0.75 4.02 0.75 14.48 0.66 4.75

0.59 2.83 0.67 3.07 0.65 9.61 0.60 3.87

50 0.66 3.95 0.72 3.56 0.73 12.79 0.63 4.24

0.61 3.14 0.71 3.39 0.70 11.45 0.63 4.20

10 0.41 1.39 0.33 1.50 0.29 2.84 0.29 1.72

0.31 0.91 0.22 1.28 0.23 2.21 0.08 1.15

M 25 0.38 1.21 0.42 1.72 0.44 4.70 0.34 1.95

0.30 0.85 0.36 1.55 0.33 3.29 0.30 1.77

50 0.37 1.20 0.37 1.59 0.39 3.97 0.29 1.72

0.30 0.87 0.35 1.54 0.36 3.68 0.28 1.70

10 0.38 1.21 0.38 1.62 0.35 3.58 0.31 1.82

0.35 1.10 029 1.41 0.31 3.04 0.19 1.42

L 25 0.46 1.73 0.38 1.60 0.40 4.23 0.27 1.67

0.31 0.89 0.32 1.47 0.35 3.52 0.26 1.64

50 0.21 0.54 0.14 1.16 0.17 1.53 0.07 1.14

0.09 0.21 0.08 1.08 0.10 0.91 0.04 1.07

Table 5.3: Estimated parameters and corresponding Kendall’s τ values from simulated

data with varying sample sizes, correlation levels, and FNAC types.
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τ n t Clayton Gumbel Frank Joe

P P P P P P P P

-6.00 0.8816 1.0000 0.8467 1.0000 0.8374 1.0000 0.8555 1.0000

10 -3.00 0.7619 0.8527 0.7387 0.8711 0.7326 0.8628 0.7089 0.9030

0.00 0.2389 0.3652 0.2116 0.3184 0.2301 0.3460 0.2021 0.3039

H -6.00 0.9506 1.0000 0.9302 1.0000 0.9186 1.0000 0.9237 1.0000

25 -3.00 0.8263 0.8647 0.8232 0.8679 0.8126 0.8591 0.8141 0.8884

0.00 0.5104 0.5512 0.4816 0.5229 0.4900 0.5290 0.4640 0.5034

-6.00 0.9748 1.0000 0.9614 1.0000 0.9520 1.0000 0.9534 1.0000

50 -3.00 0.8269 0.8461 0.8244 0.8468 0.8137 0.8360 0.8221 0.8587

0.00 0.5147 0.5357 0.4843 0.5052 0.4940 0.5137 0.4661 0.4857

-6.00 0.8675 1.0000 0.8859 1.0000 0.8776 1.0000 0.9135 1.0000

10 -3.00 0.7794 0.8922 0.7333 0.9335 0.7303 0.9273 0.7230 0.9573

0.00 0.2573 0.4260 0.2222 0.3733 0.2397 0.4017 0.1990 0.3706

M -6.00 0.9375 1.0000 0.9387 1.0000 0.9351 1.0000 0.9567 1.0000

25 -3.00 0.8577 0.8999 0.8438 0.9188 0.8319 0.9107 0.8453 0.9460

0.00 0.4999 0.5603 0.4533 0.5081 0.4717 0.5239 0.4253 0.4837

-6.00 0.9654 1.0000 0.9635 1.0000 0.9609 1.0000 0.9759 1.0000

50 -3.00 0.8639 0.8837 0.8656 0.9038 0.8486 0.8884 0.8803 0.9337

0.00 0.5091 0.5402 0.4533 0.4823 0.4757 0.5021 0.4237 0.4553

-6.00 0.9202 1.0000 0.9491 1.0000 0.9477 1.0000 0.9677 1.0000

10 -3.00 0.8507 1.0000 0.8189 1.0000 0.8123 1.0000 0.8248 1.0000

0.00 0.6625 0.7704 0.6113 0.7741 0.6153 0.7591 0.5918 0.7996

L -6.00 0.9166 0.9605 0.9109 0.9853 0.9032 0.9856 0.9197 0.9949

25 -3.00 0.8493 0.8979 0.8223 0.9024 0.8136 0.8901 0.8168 0.9175

0.00 0.5576 0.6120 0.4959 0.5579 0.5159 0.5680 0.4659 0.5365

-6.00 0.9533 0.9852 0.9601 0.9965 0.9576 0.9962 0.9650 0.9980

50 -3.00 0.8692 0.9053 0.8709 0.9227 0.8624 0.9136 0.8790 0.9344

0.00 0.5154 0.5582 0.4739 0.5211 0.4854 0.5288 0.4694 0.5219

Table 5.4: The NPI lower and upper probabilities of the event Tn+1 > t, based on simu-

lated data with different sample sizes, correlations, and FNAC types.
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(a) Low, n = 10
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(b) Low, n = 25
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(c) Low, n = 50
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(d) Moderate, n = 10
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(e) Moderate, n = 25
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(f) Moderate, n = 50
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(g) High, n = 10
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(h) High, n = 25
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Figure 5.4: The NPI lower and upper probabilities of the event Tn+1 > t, based on

simulated data with different sample sizes, correlations, and Gumbel FNAC.
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5.4 Predictive performance

This section presents simulation studies to evaluate the performance of the proposed

methods in Section 5.2. This section uses a similar evaluation procedure to that described

in Section 3.5, but FNAC is used to model the dependence structure.

A total of N = 100 datasets, each of size n + 1, are generated. For each dataset, the

first n observations are used to implement the proposed method and the last observation

is used to assess predictive performance. To reduce computational demands, simulations

are conducted with N = 100 runs and sample sizes n = 10 and n = 25. Since the FNAC

structure contains nested Archimedean copulas, this study uses four types of FNAC for

generating data: Clayton, Gumbel, Frank and Joe. In this study, Kendall’s tau values

are τ = 0.25, 0.50, 0.75. The terms High (H), Moderate (M) and Low (L) are used as

abbreviations to indicate the strength of dependence in the results. The parameters are

estimated by using the pseudo maximum likelihood estimation method and are presented

in Section 2.3.

The estimated parameters of each type of FNAC are shown in Table 5.9. This table

shows the average of 100 parameter estimates together with the associated Kendall’s τ

values. The estimated parameters closely align with the true values, particularly for the

sample size of n = 25, indicating strong estimation accuracy. Similarly, the estimated

Kendall’s τ values closely match the true values, reflecting an accurate representation of

the dependence structure and overall, the dependence is well captured.

Applying the method introduced in Section 5.2, the trivariate FNAC is assumed to

be from the same parametric family as that used for data generation. The results are

presented in Tables 5.5-5.8 where p1 and p2 are obtained using Equations (3.5.9) and

(3.5.10). The method performs effectively when q lies within [p1, p2]. The results in

these tables highlight the good performance of the proposed method in general. This is

consistent with expectations, as the same parametric FNAC family is used in both the

method and the data simulation.

In the case of n = 25, the imprecision, measured by the difference p2 − p1, is reduced

compared to when n = 10. This aligns with the general principle that larger sample sizes

lead to less imprecision, especially in methods involving imprecise probabilities, which is

a common feature of methods based on imprecise probabilities. A notable feature of the
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τ q n = 10 n = 25

p1 p2 p1 p2

L 0.25 0.15 0.30 0.14 0.19

0.50 0.39 0.60 0.44 0.54

0.75 0.69 0.85 0.73 0.78

M 0.25 0.15 0.29 0.24 0.27

0.50 0.37 0.52 0.54 0.57

0.75 0.69 0.81 0.74 0.77

H 0.25 0.25 0.32 0.19 0.27

0.50 0.43 0.55 0.41 0.46

0.75 0.66 0.81 0.70 0.70

Table 5.5: Predictive performance, Clayton

FNAC

τ q n = 10 n = 25

p1 p2 p1 p2

L 0.25 0.22 0.36 0.22 0.35

0.50 0.49 0.69 0.50 0.62

0.75 0.75 0.87 0.79 0.81

M 0.25 0.25 0.34 0.24 0.25

0.50 0.44 0.61 0.50 0.54

0.75 0.73 0.84 0.72 0.77

H 0.25 0.18 0.28 0.24 0.28

0.50 0.50 0.58 0.49 0.54

0.75 0.71 0.80 0.73 0.77

Table 5.6: Predictive performance, Gumbel

FNAC

proposed method is observed when comparing cases with high correlation to those with

weak correlation. The imprecision is reduced when the correlation in the generated data is

higher, compared to when it is weak. This occurs due to considering an event of interest

Tn+1 = Xn+1 + Yn+1 + Zn+1 > t and this can be illustrated through the probabilities

hijk(θ̂1; θ̂2), which are fundamental to the proposed method for making inferences.

As discussed earlier in this chapter, the level of dependence influences these probabil-

ities, as demonstrated in Example 5.2.1, where two parameters control the dependence in

trivariate FNAC. When there is a high positive correlation, the probabilities hijk(θ̂1; θ̂2)

are large when i, j, k are close to each other. When considering an event of interest as

the sum, the lower and upper probabilities, as defined in Equations (3.2.9) and (3.2.10),

tend to include additional hijk(θ̂) and with a positive high correlation, these additional

hijk(θ̂) include large values for most values of t. In contrast, for moderate correlations,

the probabilities hijk(θ̂) are smaller when i, j, k are close to each other, compared to the

case of a high positive correlation. Also, when assuming no correlation, the probabilities

hijk(θ̂) become more scattered.
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τ q n = 10 n = 25

p1 p2 p1 p2

L 0.25 0.25 0.36 0.26 0.36

0.50 0.43 0.55 0.54 0.61

0.75 0.64 0.82 0.81 0.87

M 0.25 0.23 0.30 0.26 0.30

0.50 0.41 0.51 0.46 0.52

0.75 0.65 0.78 0.75 0.80

H 0.25 0.18 0.36 0.17 0.26

0.50 0.50 0.62 0.53 0.59

0.75 0.73 0.82 0.70 0.74

Table 5.7: Predictive performance, Frank

FNAC

τ q n = 10 n = 25

p1 p2 p1 p2

L 0.25 0.13 0.25 0.19 0.21

0.50 0.38 0.56 0.45 0.54

0.75 0.63 0.79 0.67 0.78

M 0.25 0.22 0.30 0.24 0.28

0.50 0.40 0.54 0.52 0.56

0.75 0.67 0.79 0.76 0.80

H 0.25 0.16 0.25 0.20 0.22

0.50 0.36 0.44 0.50 0.52

0.75 0.55 0.69 0.72 0.79

Table 5.8: Predictive performance, Joe

FNAC

Copula Family τ n = 10 n = 25

θ̂1 τ1 θ̂2 τ2 θ̂1 τ1 θ̂2 τ2

Clayton L 1.24 0.30 0.77 0.22 0.66 0.23 0.47 0.17

M 3.43 0.56 2.36 0.47 2.37 0.52 1.79 0.45

H 5.32 0.69 3.95 0.62 4.91 0.69 3.76 0.63

Gumbel L 1.58 0.31 1.42 0.24 1.36 0.24 1.23 0.17

M 2.58 0.56 2.21 0.49 2.19 0.52 1.93 0.46

H 3.85 0.70 3.10 0.64 3.49 0.69 2.81 0.62

Frank L 2.84 0.25 1.43 0.13 2.00 0.20 1.26 0.13

M 7.32 0.53 5.52 0.43 5.97 0.50 5.20 0.45

H 13.99 0.71 10.83 0.65 11.59 0.69 9.08 0.63

Joe L 1.98 0.28 1.74 0.22 1.55 0.21 1.40 0.16

M 3.63 0.53 3.10 0.46 2.98 0.49 2.57 0.44

H 6.06 0.68 4.40 0.57 6.08 0.71 4.59 0.63

Table 5.9: Estimated parameters and corresponding Kendall’s τ values from simulated

data with varying sample sizes, correlation levels, and FNAC types.
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5.5 Applications

In this section, two examples based on the same datasets presented in Section 3.6 are

considered to illustrate the application of the proposed method. The first dataset is used

for the trivariate case, while the second is applied to the four-variate case.

5.5.1 Typical Meteorological Year Data

In this example, the proposed method in Section 5.2 is illustrated using the Typical

Meteorological Year (TMY), as in Example 3.6.1 with the same event of interest. The

random quantities are air temperature (X), relative humidity (Y ) and wind speed (Z)

and the apparent temperature is calculated as AT = Ta + 0.33e− 0.70ws− 4.

The variables are ordered according to their correlation strength, with the strongest

correlations determining the order. As previously explained in Section 2.5, a key condition

of the FNAC model is the restriction on parameters, where the first parameter must be

greater than or equal to the second. These parameters represent the level of dependence

between the variables. As shown in Figure 3.9, Example 3.6.1 shows that the air temper-

ature and relative humidity have the highest correlation, while wind speed and humidity

have the lowest correlation. In the FNAC model, these correlations determine the order

of the variables.

The NPI lower and upper probabilities for this event of interest are presented in Table

5.11 and Figure 5.6. Table 5.11 clearly show that imprecision decreases as the correlation

among variables increases, regardless of the FNAC type. This can be attributed to two

main factors related to the event Tn+1 = Xn+1 + Yn+1 + Zn+1 > t, which is explained

through the probabilities hijk, fundamental for inference. For high positive correlation,

and with the event defined as the sum, the lower and upper probabilities in Equations

(3.2.9) and (3.2.10) tend to include additional hijk(θ̂). These additional terms generally

have large values for most t under positive correlation. Conversely, for weak correla-

tion, the hijk probabilities where i, j, k are close are not as large as in the high positive

correlation case.
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Copula family Clayton Gumbel Frank Joe

Pairs τ θ̂ τ θ̂ τ θ̂ τ θ̂

(x, y) 0.81 8.34 0.89 9.12 0.89 35 0.87 13.57

(.; z) 0.37 1.18 0.30 1.43 0.33 3.25 0.19 1.42

Table 5.10: Estimated parameters and corresponding Kendall’s τ values using different

FNAC types.

Clayton Gumbel Frank Joe

t P P

-6.3570 1.0000 1.0000

-4.3570 0.9970 1.0000

-2.3570 0.9809 1.0000

-0.3570 0.9524 0.9986

1.6430 0.9474 0.9961

3.6430 0.8490 0.8943

5.6430 0.6395 0.6436

7.6430 0.2390 0.2640

9.6430 0.0148 0.0807

11.6430 0.0003 0.0441

13.6430 0.0000 0.0152

15.6430 0.0000 0.0022

P P

1.0000 1.0000

0.9835 1.0000

0.9623 1.0000

0.9524 0.9986

0.9390 0.9878

0.8182 0.8541

0.6617 0.6623

0.2748 0.2945

0.0283 0.0720

0.0022 0.0288

0.0000 0.0258

0.0000 0.0038

P P

1.0000 1.0000

0.9877 1.0000

0.9645 1.0000

0.9527 0.9982

0.9387 0.9905

0.8285 0.8582

0.6583 0.6549

0.2633 0.2835

0.0227 0.0758

0.0018 0.0419

0.0000 0.0271

0.0000 0.0038

P P

1.0000 1.0000

0.9862 1.0000

0.9618 1.0000

0.9529 0.9973

0.9270 0.9848

0.7959 0.8287

0.6528 0.6553

0.2946 0.3113

0.0442 0.0839

0.0045 0.0298

0.0000 0.0278

0.0000 0.0059

Table 5.11: The NPI lower and upper probabilities of the event ATn+1 > t using different

FNAC types at selected values of t.

Figure 5.5 shows the probabilities hijk(θ̂) for each FNAC model. As explained in

Example 5.2.1, the probabilities indicate large values when i, j, k close to each other and

symmetric results around these values. For a positive correlation, these large values are

included in the lower and upper probabilities. Different FNAC models lead to different

NPI lower and upper probabilities, as presented in Table 5.11 for selected values of t.
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Figure 5.5: The hijk probabilities, Example 5.5.1
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(a) Clayton FNAC
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(b) Gumbel FNAC
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(c) Frank FNAC
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(d) Joe FNAC

Figure 5.6: The NPI lower and upper probabilities of the event ATn+1 > t using different

FNAC types.
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Copula family Clayton Gumbel Frank Joe

Pairs τ θ̂ τ θ̂ τ θ̂ τ θ̂

(x, y) 0.50 2.02 0.65 2.84 0.62 8.56 0.61 3.93

(.; z) 0.49 1.94 0.65 2.83 0.60 7.81 0.59 3.75

(.;w) 0.36 1.13 0.52 2.08 0.48 5.38 0.49 2.79

Table 5.12: Estimated parameters and corresponding Kendall’s τ values using different

FNAC types.

5.5.2 Weekly return data

Consider the same dataset and event of interest for the portfolio returns (PR) as in

Example 3.6.2. The portfolio consist of four stocks denoted by X, Y ,Z and W . The

portfolio return formula is defined as PR = w1X +w2Y +w3Z +w4W , where wi are the

weights with equally weighted 0.25. Assume that one is interested in the next portfolio

return PRn+1 that exceed a value t, i.e PRn+1 > t. The generalized form of the proposed

method from Section 5.2 is applied to the case d = 4, where NPI is combined with a four-

variate fully nested Archimedean copula. Table 5.13 and Figure 5.7 present the NPI lower

and upper probabilities for the event of interest PRn+1 > t in the context of a four-variate

case. The results are obtained using the same parametric FNAC and estimation method

as in Example 5.5.1, but applied to the four-variate case. The parameters and their

corresponding τ values are estimated using the pseudo maximum likelihood estimation

method and presented in Table 5.12, which outlines the dependence structure used in this

method.

The differences are not easily seen in Figure 5.7, as the results appear similar across

the parametric FNAC models. However, Table 5.13 makes these differences more evident,

as the copulas yield different probability values hijkl(θ̂). Although these probabilities

are challenging to visualize directly, they are fundamental to the inference process, as

they are used to compute the NPI lower and upper probabilities. These lower and upper

probabilities are directly affected by the values of hijkl(θ̂) due to the event of interest

involving the sum, this behavior is explained by the effect of strong positive correlation

between the random variables discussed in Section 5.2.
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Clayton Gumbel Frank Joe

t P P

-3.25 0.9935 1.0000

-2.75 0.9885 1.0000

-2.25 0.9763 1.0000

-1.75 0.9587 0.9834

-1.25 0.9292 0.9544

-0.75 0.8856 0.9139

-0.25 0.8179 0.8489

0.25 0.7207 0.7553

0.75 0.6011 0.6421

1.25 0.4676 0.5174

1.75 0.3352 0.3942

2.25 0.2244 0.2897

P P

0.9992 1.0000

0.9971 1.0000

0.9886 1.0000

0.9693 0.9949

0.9318 0.9685

0.8725 0.9150

0.7818 0.8245

0.6592 0.7001

0.5293 0.5686

0.4079 0.4458

0.3026 0.3392

0.2190 0.2550

P P

0.9999 1.0000

0.9993 1.0000

0.9942 1.0000

0.9751 0.9981

0.9305 0.9730

0.8631 0.9117

0.7718 0.8141

0.6599 0.6969

0.5467 0.5824

0.4372 0.4739

0.3339 0.3739

0.2441 0.2891

P P

1.0000 1.0000

0.9998 1.0000

0.9982 1.0000

0.9891 0.9996

0.9572 0.9884

0.8867 0.9413

0.7736 0.8338

0.6332 0.6839

0.4988 0.5400

0.3844 0.4199

0.2896 0.3220

0.2149 0.2457

Table 5.13: The NPI lower and upper probabilities of the event PRn+1 > t using different

types of FNAC at selected values of t.
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(a) Clayton FNAC
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(b) Gumbel FNAC
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(c) Frank FNAC
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Figure 5.7: The NPI lower and upper probabilities of the event PRn+1 > t using different

FNAC types.
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5.6 Comparison study

This section presents a comparison study of all the methods discussed in the thesis, based

on simulation studies that evaluate the performance of the proposed NPI methods, using

a method similar to the one described in Section 3.5 to assess the predictive performance

of the approaches. In this section, N datasets of size n + 1 are generated. The first n

observations from each dataset are used to apply the proposed methods, while the last

observations is used to evaluate the predictive performance. To reduce computational

time, N = 100 simulated datasets are generated with a sample size of n = 10, 25. For

the simulation, a trivariate Gaussian distribution with mean vector zero and a covariance

matrix as: 
1 0.9 0.5

0.9 1 0.15

0.5 0.15 1


For the parametric methods, four common copulas—Clayton, Frank, Gumbel and Joe

are used. The first method applies classical copulas with a single parameter. The second

method uses vine copulas, which include Clayton, Frank, Gumbel and Joe copulas within

the vine structure pairwise. The fourth method applies the FNAC dependence model to

each of these copulas. The fourth method is a nonparametric approach that uses a kernel-

based copula, along with least squares cross-validation (LSCV) and normal reference

rule-of-thumb bandwidth selection. For all the parametric methods, the parameters are

estimated using the pseudo maximum likelihood estimation method.

The averages of the estimated parameters and their corresponding Kendall’s τ values

for each parametric method are as follows. For the first method when using classical

copula, when n = 10: Clayton (θ̂C = 1.23, τ = 0.38), Gumbel (θ̂G = 1.70, τ = 0.41),

Frank (θ̂F = 3.74, τ = 0.37) and Joe (θ̂J = 2.01, τ = 0.36). For n = 25: Clayton

(θ̂C = 0.94, τ = 0.32), Gumbel (θ̂G = 1.53, τ = 0.35), Frank (θ̂F = 3.34, τ = 0.34) and

Joe (θ̂J = 1.73, τ = 0.29). Although the simulated data are generated with varying levels

of pairwise dependence 0.9, 0.5, 0.15, the Kendall’s τ values obtained from the assumed

copula model fall within a range 0.29 to 0.41. This is primarily due to the use of a single-

parameter copula, which applies the same level of dependence across all variable pairs.

A single-parameter copula, such as the Clayton, Gumbel, Frank or Joe copula, assumes
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that all pairs of variables share the same dependence structure, controlled by a single

parameter θ.

In the second method, when using the vine copula, the parameters θ̂1 are greater

than θ̂2 with their corresponding Kendall’s τ values. This is due to the correlation of

the simulated data; the first pair indicates a highly correlated value greater than the

correlation of the second pair. The third pair indicates values weaker than the first two

pairs and this is consistent with the vine structure. The results are presented in Table

5.14.

In the third method, when using the FNAC structure, the parameters θ̂1 > θ̂2 hold

for all the FNAC types. This is expected where the correlation of the first pair in the

simulated data is higher than the correlations of the other pairs. This aligns with the

FNAC parameters’ condition. The results are presented in Table 5.15.

In the nonparametric method, when using the normal reference rule-of-thumb and

LSCV bandwidth selection, the average of the bandwidth values when n = 10 and using

the normal reference rule-of-thumb is identical b = 0.209 while using the LSCV gives

bX = 0.064, bY = 0.183 and bZ = 0.299. When n = 25 and using the normal reference

rule-of-thumb, it is identical b = 0.156 while using the LSCV gives bX = 0.031, bY = 0.105

and bZ = 0.187 shows that when n = 25 the results decrease compared to when n = 10.

As discussed in Section 2.5, the inverse values of the lower and upper survival functions

of Tn+1, Tn+1 = Xn+1 + Yn+1 + Zn+1 > t, for a value q ∈ (0, 1) as defined in Equations

(3.5.7) and (3.5.8) lead to the two inequalities p1 and p2 presented in Equations (3.5.9) and

(3.5.10) for testing performance. The same quantile values q = 0.25, 0.50, 0.75 are applied

to assess the performance of the four methods and for good performance p1 < q < p2

must be satisfied.

The results of the predictive performance are presented in Tables 5.16-5.19. The results

in general show good performance for the parametric copulas methods. The results of the

predictive performance for the first parametric method when using a classical copula with

a single parameter are presented in Table 5.16. This table show a good performance, with

most results satisfying the condition p1 ≤ q ≤ p2, except for a few cases when n = 10 and

n = 25, as highlighted in Table 5.16. These occur when the value of q falls outside the

interval [p1, p2].
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n = 10 n = 25

Copula τ1 θ̂1 τ2 θ̂2 τ3 θ̂3 τ1 θ̂1 τ2 θ̂2 τ3 θ̂3

Clayton 0.563 3.648 0.355 1.426 0.023 0.055 0.507 2.192 0.322 1.022 0.001 0.003

Gumbel 0.620 3.247 0.387 1.850 0.015 1.018 0.578 2.466 0.358 1.609 0 1

Frank 0.591 9.671 0.344 4.112 -0.228 -2.597 0.578 7.778 0.350 3.686 -0.279 -2.815

Joe 0.559 4.393 0.339 2.236 0.015 1.030 0.501 3.018 0.298 1.838 0.002 1.003

Table 5.14: Estimated parameters θ1, θ2, θ3 and their corresponding Kendall’s τ1, τ2, τ3

from simulated data with varying sample sizes, using vine copula types.

The results of the predictive performance for the parametric methods when using vine

copulas and FNAC are presented in Tables 5.17 and 5.18. Table 5.17 shows two cases

where the value q is not included in the interval [p1, p2] when n = 10 and the vine structure

is Gumbel or Joe copulas for q = 0.75. Table 5.18 shows one case q < p1 when the FNAC

type is Joe. Both methods show more cases where q /∈ [p1, p2] when n = 25. This is

reasonable, as a larger sample size tends to introduce small imprecision, so it is expected

that some values may fall outside the interval. The tables also show large imprecision

when the sample size is n = 10, which tends to decrease as the sample size increases

to n = 25. Similarly, with the nonparametric method using the bandwidth selection

method when n = 10, there is one case that q < p1 for q = 0.75 and increasing the

sample size to n = 25 shows that cases where q is outside the interval are more compared

to the parametric methods as shown in Table 5.19. This occurs due to the event of

interest Tn+1 = Xn+1 + Yn+1 + Zn+1 > t and the probabilities hijk that are calculated

using the bandwidth selection method which is fundamental for inference, as explained

in Section 2.5. In general, for all these methods, since the event of interest involves the

sum Tn+1 = Xn+1+Yn+1+Zn+1 > t and in the case of positive correlation, the calculated

probabilities hijk tend to be larger when i, j and k are close to each other. Calculating

the lower and upper probabilities for this event of interest tends to include additional of

high values for most values of t.
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n = 10 n = 25

Copula τ1 θ̂1 τ2 θ̂2 τ1 θ̂1 τ2 θ̂2

Clayton 0.554 3.235 0.262 0.892 0.517 2.273 0.225 0.649

Gumbel 0.619 2.996 0.289 1.512 0.582 2.495 0.239 1.357

Frank 0.594 9.118 0.227 2.439 0.583 7.889 0.227 2.257

Joe 0.558 4.045 0.252 1.757 0.504 3.041 0.196 1.487

Table 5.15: Estimated parameters θ1, θ2 and their corresponding Kendall’s τ1, τ2 from

simulated data with varying sample sizes, using FNAC types.

n q Clayton Gumbel Frank Joe

p1 p2 p1 p2 p1 p2 p1 p2

0.25 0.20 0.40 0.21 0.47 0.21 0.41 0.26 0.47

10 0.50 0.53 0.67 0.60 0.70 0.57 0.70 0.62 0.72

0.75 0.75 0.92 0.75 0.93 0.75 0.94 0.75 0.96

0.25 0.21 0.28 0.24 0.28 0.21 0.28 0.26 0.29

25 0.50 0.36 0.40 0.40 0.47 0.38 0.44 0.41 0.51

0.75 0.68 0.77 0.71 0.80 0.72 0.83 0.69 0.81

Table 5.16: Predictive performance; classical copulas.

n q Clayton Gumbel Frank Joe

p1 p2 p1 p2 p1 p2 p1 p2

0.25 0.18 0.28 0.13 0.29 0.12 0.35 0.13 0.31

10 0.50 0.35 0.54 0.40 0.59 0.38 0.60 0.42 0.62

0.75 0.74 0.89 0.77 0.90 0.71 0.90 0.78 0.94

0.25 0.15 0.21 0.19 0.23 0.19 0.25 0.21 0.25

25 0.50 0.38 0.49 0.49 0.52 0.42 0.51 0.50 0.54

0.75 0.68 0.77 0.72 0.82 0.66 0.79 0.72 0.82

Table 5.17: Predictive performance; vine copulas.
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n q Clayton Gumbel Frank Joe

p1 p2 p1 p2 p1 p2 p1 p2

0.25 0.20 0.40 0.23 0.42 0.22 0.40 0.25 0.40

10 0.50 0.44 0.59 0.49 0.64 0.48 0.63 0.52 0.65

0.75 0.71 0.90 0.73 0.91 0.75 0.94 0.71 0.98

0.25 0.21 0.27 0.22 0.28 0.22 0.27 0.24 0.29

25 0.50 0.35 0.40 0.39 0.46 0.38 0.45 0.41 0.50

0.75 0.70 0.78 0.72 0.81 0.72 0.83 0.72 0.82

Table 5.18: Predictive performance; FNAC types.

n q Normal reference LSCV

p1 p2 p1 p2

0.25 0.18 0.33 0.20 0.33

10 0.50 0.39 0.62 0.44 0.70

0.75 0.78 0.92 0.81 0.93

0.25 0.27 0.31 0.27 0.31

25 0.50 0.58 0.62 0.58 0.61

0.75 0.81 0.90 0.81 0.89

Table 5.19: Predictive performance; nonparametric copulas.

5.7 Concluding remarks

In this chapter, the method of combining NPI for the marginals with a trivariate FNAC

to capture the dependence among variables is introduced. FNAC is a nested structure

to model the dependence between variables. FNAC is more flexible than classical copula

with one parameter due to the nested structure and contains multiple parameters but it

is less flexible than vine copula because FNAC is limited to the Archimedean family. This

method is introduced for predictive inference about a single future trivariate observation.

A multivariate expression (d > 3) is constructed in a similar manner. This method is



5.7. Concluding remarks 113

illustrated via examples and the performance of this method is evaluated through simula-

tions, showing good results in general. Throughout this work, the focus was on assuming

an FNAC from the same type of Archimedean family. However, it might be of interest to

explore the use of FNAC with different Archimedean copulas in a nested structure. This

is left for future work. The performance of the method using FNAC is compared with

classical copulas, nonparametric copulas and vine copulas via simulation. The results

show that the methods with either FNAC or vine copulas perform well compared to other

methods, while the nonparametric method shows relatively weaker performance.

The benefits offered by FNAC become more complex as the dimension increases. This

is due to the increased level of nesting, which adds more parameters. In high dimensional

cases, FNAC becomes limited in capturing dependence, where the range of dependence

that can be modelled is reduced. As the dataset size and dimensionality increase, the

proposed method requires more computational resources and processing time.



Chapter 6

Conclusions

This thesis mainly aims to introduce NPI for multivariate data using copulas. To do

this, we approach the problem in two ways: semi-parametrically, by assuming a para-

metric copulas, and nonparametrically, by assuming a nonparametric copulas to model

the dependence structure—while using NPI for the marginals. The NPI-based marginals

are then combined with the chosen copula (parametric or nonparametric) to form the

full multivariate model. Four methods are introduced in this thesis using different types

of copulas for the predictive performance of a single future observation. The focus is

on parametric copulas with one parameter, nonparametric copulas, vine copulas, and

FNAC. These proposed methods using these types of copulas are illustrated their superi-

ority through simulation studies and real data applications. Through simulation studies,

the performance of these methods is evaluated and a comparison study of the proposed

methods is conducted. The main strength of the multivariate copula model is that it pro-

vides flexibility where the dependence structure and the marginals are separated. This

benefit allows for choosing different dependence structures with uniform marginals.

In Chapter 3, two methods are introduced for predictive inference: NPI combined with

parametric classical copula and NPI combined with nonparametric copulas using kernel-

based copula. The first method depends on using a parametric copula with a single

parameter. This method performs well regardless of the sample size, copula type and the

level of dependence. For further research, it could be of interest to study classical copulas

with more than one parameter, as they are better suited to capturing complex dependence

structures than single-parameter copulas. One more interesting topic that can be explored
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using this method is by studying the imprecise discrete copulas using patchwork techniques

[65]. This is left for future research. The second method depends on using kernel-based

copulas and the bandwidth selection type. This method is demonstrated using simulated

and real data sets. The predictive performance of this method was evaluated and found

to be suboptimal. Future research could explore alternative nonparametric copulas to

potentially enhance prediction. Also, one could study the smoothed bootstrap of this

method [5]. This is left as future research.

In Chapter 4, the method of combining NPI with vine copulas is introduced. The

main benefit of the vine copula structure is that it contains several bivariate copulas in

a model. This feature allows for the flexibility of specifying each bivariate copula, which

allows for capturing different dependencies in a model. A numerical example shows that

the probabilities hijk conditions are not satisfied. The IPFP algorithm is able to solve

this problem by adjusting the marginals and preserving the dependence among variables.

The proposed method is illustrated through a real data application and simulated data

in different scenarios. The performance is evaluated through simulations and the method

performs well. For future research, one may study the method of combining NPI with

discrete vine copulas, e.g. similar to the ones developed by Panagiotelis et al. [87].

In Chapter 5, the method of combining NPI with FNAC is introduced. In this method,

the NPI is incorporated with FNAC, capturing the dependence structure. FNAC is suit-

able for modeling complex high-dimensional dependence but is limited to the Archimedean

copula family. The proposed method is illustrated via examples and real-data applica-

tions. The performance is evaluated via simulation studies and the results are satisfactory.

A comparison study between the four methods introduced in this thesis. The results show

that the performance of the method when using either FNAC or vine copulas is better

than when using classical copulas, while the nonparametric method did not perform well.

An advantage of FNAC is that it allows the use of different Archimedean copulas within

a model. It may be interesting to explore this type of FNAC combined with NPI. This is

left for future research.

In this thesis, these methods can be applied to any event of interest involving fu-

ture observations. Integrating NPI with a dependence model for predictive inference

in multivariate scenarios provides valuable insights into data relationships. However,
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as dimensionality increases, the dependence model grows more complex. Calculating

the discretized probabilities becomes increasingly computationally intensive, and overall

computation time also rises with larger sample sizes.

As a further potential direction for future research, a new way to combine NPI with

multivariate data called the partially nested Archimedean copula (PNAC) is introduced

by Joe [59], which is unlike the FNAC. The FNAC structure nests one dimension at a

time, requiring at least three variables for modelling dependence. Whereas PNAC requires

at least four variables in its structure [59]. For instance, assume there are four random

variables, then model each pair by the copula and then couple these two bivariate copulas

by another copula. Another interesting approach for combining NPI with multivariate

data is to use the General Nested Archimedean copula (GNAC). GNAC is used to model

the dependence structure with arbitrary nesting levels, which is left as future work [68].



Appendix A

Visualizations of the probabilities

hijk; Classical Copulas

This appendix displays visualizations of the probabilities hijk under various trivariate

copula types. It demonstrates how the estimation method, the strength of the depen-

dence between variables, and the selected copula type all affect the outcomes. These

visualizations are part of the simulation study discussed in Section 3.4.
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Figure A.1: The hijk probabilities were obtained from simulated data of size n = 10,

generated using the Clayton copula and the Gumbel copula with varying correlation

coefficients.
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Figure A.2: The hijk probabilities were obtained from simulated data of size n = 10,

generated using the Frank copula and the Joe copula with varying correlation coefficients.
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Figure A.3: The hijk probabilities were obtained from simulated data of size n = 25,

generated using the Clayton copula and the Gumbel copula with varying correlation

coefficients.
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Figure A.4: The hijk probabilities were obtained from simulated data of size n = 25,

generated using the Frank copula and the Joe copula with varying correlation coefficients.
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Figure A.5: The hijk probabilities were obtained from simulated data of size n = 50,

generated using the Clayton copula and the Gumbel copula with varying correlation

coefficients.
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Figure A.6: The hijk probabilities were obtained from simulated data of size n = 50,

generated using the Frank copula and the Joe copula with varying correlation coefficients.
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Figure A.7: The hijk probabilities were obtained from simulated data of size n = 10 using

different types of bandwidths with varying correlation coefficients.
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Figure A.8: The hijk probabilities were obtained from simulated data of size n = 25 using

different types of bandwidths with varying correlation coefficients.
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Figure A.9: The hijk probabilities were obtained from simulated data of size n = 50 using

different types of bandwidths with varying correlation coefficients.
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Visualizations of the probabilities

hijk; Vine Copula

This appendix presents the estimated parameters and visualizations of the probabilities

hijk, obtained using a Gaussian copula based on the scenarios outlined in Section 4.3.
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n Correlation Pair Case I Case II Case III Case IV

τ θ̂ τ θ̂ τ θ̂ τ θ̂

1st pair 0.28 0.43 0.28 0.43 -0.57 -0.78 0.28 0.43

10 No correlation 2nd pair -0.57 -0.78 -0.10 -0.15 -0.10 -0.15 -0.57 -0.78

3rd pair 0.08 0.13 -0.55 -0.76 0.24 0.36 -0.10 -0.15

1st pair 0.50 0.71 0.50 0.71 -0.19 -0.29 0.50 0.71

10 Moderate 2nd pair -0.19 -0.29 0.28 0.42 0.28 0.42 -0.19 -0.29

3rd pair 0.29 0.44 -0.24 -0.37 0.48 0.69 0.28 0.42

1st pair 0.86 0.97 0.86 0.97 0.64 0.84 0.86 0.97

10 High 2nd pair 0.64 0.84 0.69 0.88 0.69 0.88 0.64 0.84

3rd pair 0.33 0.50 -0.10 -0.16 0.73 0.91 0.69 0.88

1st pair -0.01 -0.01 -0.01 -0.01 -0.37 -0.55 -0.01 -0.01

25 No correlation 2nd pair -0.37 -0.55 0.09 0.09 0.14 -0.30 -0.37 -0.55

3rd pair 0.09 0.14 -0.37 -0.55 0.03 0.05 0.09 0.14

1st pair 0.35 0.53 0.35 0.53 -0.03 -0.05 0.35 0.53

25 Moderate 2nd pair -0.03 -0.05 0.33 0.50 0.33 0.50 -0.03 -0.05

3rd pair 0.37 0.54 -0.20 -0.30 0.56 0.38 0.33 0.50

1st pair 0.67 0.87 0.67 0.87 0.58 0.79 0.67 0.87

25 High 2nd pair 0.58 0.79 0.70 0.89 0.70 0.89 0.58 0.79

3rd pair 0.46 0.67 0.06 0.09 0.40 0.58 0.70 0.89

1st pair 0.01 0.02 0.01 0.02 -0.09 -0.14 0.01 0.02

50 No correlation 2nd pair -0.09 -0.14 0.04 0.06 0.04 0.06 -0.09 -0.14

3rd pair 0.04 0.06 -0.09 -0.14 0.02 0.03 0.04 0.06

1st pair 0.61 0.81 0.36 0.53 0.41 0.27 0.36 0.53

50 Moderate 2nd pair 0.73 0.91 0.36 0.54 0.36 0.54 0.27 0.41

3rd pair 0.50 0.70 0.12 0.19 0.26 0.40 0.36 0.54

1st pair 0.70 0.89 0.70 0.89 0.69 0.89 0.70 0.89

50 High 2nd pair 0.69 0.89 0.72 0.90 0.72 0.90 0.69 0.89

3rd pair 0.35 0.53 0.27 0.41 0.32 0.48 0.72 0.90

Table B.1: Estimated Kendall’s τ and copula parameters θ̂ for different pairs across four

cases, correlation levels, and varying sample sizes using Gaussian vine copulas.



Appendix B. Visualizations of the probabilities hijk; Vine Copula 129

x

y

z

0.002

0.004

0.006

0.008

0.010

(a) Low, Case I

x

y

z

0.002

0.004

0.006

0.008

0.010

0.012

0.014

(b) Low, Case II

x

y

z

0.001

0.002

0.003

0.004

0.005

0.006

(c) Moderate, Case I

x

y

z

0.001

0.002

0.003

0.004

(d) Moderate, Case II

x

y

z

0.00

0.01

0.02

0.03

0.04

0.05

(e) High, Case I

x

y

z

0.00

0.01

0.02

0.03

0.04

(f) High, Case II

Figure B.1: The hijk probabilities were obtained from simulated data of size n = 10,

generated using Gaussian copulas with varying correlation coefficients.
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Figure B.2: The hijk probabilities were obtained from simulated data of size n = 25,

generated using Gaussian copulas with varying correlation coefficients.
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Figure B.3: The hijk probabilities were obtained from simulated data of size n = 50,

generated using Gaussian copulas with varying correlation coefficients.
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Figure B.4: The hijk probabilities were obtained from simulated data of size n = 10,

generated using Gaussian copulas with varying correlation coefficients.
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Figure B.5: The hijk probabilities were obtained from simulated data of size n = 25,

generated using Gaussian copulas with varying correlation coefficients.
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Figure B.6: The hijk probabilities were obtained from simulated data of size n = 50,

generated using Gaussian copulas with varying correlation coefficients.



Appendix C

Visualizations of the probabilities

hijk; FNAC

In this appendix, the probabilities hijk under several types of trivariate FNAC are vi-

sualized. It illustrates how the chosen FNAC type, the degree of dependence among

variables and the estimation technique both influence the results. Section 5.3 presents

the simulation study, which uses these graphical results.
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Figure C.1: The hijk probabilities were obtained from simulated data of size n = 10,

generated using the Clayton FNAC and the Gumbel FNAC with varying correlation

coefficients.
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Figure C.2: The hijk probabilities were obtained from simulated data of size n = 10,

generated using the Frank FNAC and the Joe FNAC with varying correlation coefficients.
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Figure C.3: The hijk probabilities were obtained from simulated data of size n = 25,

generated using the Clayton FNAC and the Gumbel FNAC with varying correlation

coefficients.
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Figure C.4: The hijk probabilities were obtained from simulated data of size n = 25,

generated using the Frank FNAC and the Joe FNAC with varying correlation coefficients.
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Figure C.5: The hijk probabilities were obtained from simulated data of size n = 50,

generated using the Clayton FNAC and the Gumbel FNAC with varying correlation

coefficients.
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Figure C.6: The hijk probabilities were obtained from simulated data of size n = 50,

generated using the Frank FNAC and the Joe FNAC with varying correlation coefficients.
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