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Abstract

This study embarks on an explorative journey into the realm of predictive health-
care, leveraging machine learning (ML) techniques to forecast changes in critical
biomarkers - Creatinine and Bilirubin - using Electronic Health Records (EHR).
The research employs a comprehensive suite of both supervised and unsupervised
learning models, including Gradient Boosting Regressor (GBR), Extra Trees Regres-
sor (ETR), Multilayer Perceptron (MLP), alongside oversampling variants denoted
as GBR o, ETR o, and MLP o, and a weight-adjusted MLP model (MLP w). Ad-
ditionally, unsupervised approaches such as One-Class Support Vector Machines
(SVM), K-Means Clustering, and the Local Outlier Factor (LOF) model are ap-
plied to delineate anomalies within the data, presenting a holistic approach to data
analysis.

This thesis critically assesses the effectiveness of these models in handling the in-
herent imbalances and complexities within EHR data, particularly focusing on the
predictive accuracy for Creatinine and Bilirubin levels. Oversampling techniques
are meticulously applied to rectify class imbalances, enhancing the models’ sensi-
tivity towards less prevalent, yet clinically significant outcomes. The comparative
analysis highlights the nuanced interplay between model choice, data preprocessing
techniques, and the specific characteristics of the biomarkers in question, providing
insightful implications for clinical applications. On evaluation with the 825 patients’
data, the model achieved sensitivities of 95% (23/24) in the data labelled change
of Creatinine, 79% (635/801) in not change of Creatinine,70% (87/124) in the data
labelled change of Bilirubin, and 72% (509/701) in not change of Bilirubin.

The findings reveal a varied performance landscape across models and biomark-
ers, underscoring the importance of tailored approaches in predictive healthcare
modeling. Supervised models demonstrated commendable accuracy in majority sce-
narios, while oversampling techniques offered nuanced benefits, particularly in bol-
stering the models’ ability to detect significant changes in biomarker levels. The
study further illuminates the challenges associated with EHR data, including vari-
ability, dimensionality, and quality issues, proposing avenues for future research fo-
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cused on advanced preprocessing techniques, feature selection, and the exploration
of deep learning models to surmount these obstacles.

In essence, this research contributes to the burgeoning field of medical infor-
matics by showcasing the potential of ML models to advance predictive diagnostics
and personalized medicine, ultimately aiming to enhance patient care through early
detection and monitoring of health indicators.
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CHAPTER 1

Introduction

1.1 Creatinine and Bilirubin

Creatinine is a byproduct of creatine and creatine phosphate breakdown in muscle

and protein metabolism, which is continuously released by the body [1, 4]. The

process of creatinine production is irreversible and proceeds at a constant rate (i.e.,

about 1.1% of the body creatine and 2.6% of creatine phosphate per day is converted

to creatinine) (Fig. 1.1) [5]. Serum creatinine concentration is widely interpreted

as a measure of glomerular filtration rate (GFR) and is used as an index of kidney

function. [6]. Reliable serum creatinine measurements in estimating GFR are critical

to global public health efforts to improve chronic kidney disease (CKD) diagnosis

and treatment. [7]. Serum Creatinine is not only regarded as a potentially dangerous

sign of chronic kidney disease (CKD) but also one of the main criteria for defining

acute kidney injury (AKI). The severity of AKI depends on the magnitude of the

increase in serum creatinine levels or the decrease in urine output. [8]. Furthermore,

creatinine could be used to calculate the sarcopenia index, which can be used to

estimate muscle mass [9]. In conclusion, creatinine is useful for the assessment of

kidney function and muscle mass.
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Figure 1.1: Creatine metabolism pathway showing synthesis from arginine and
glycine, phosphorylation to creatine phosphate, and excretion as creatinine through
the kidneys. Adapted from [1].

Bilirubin is the end product of heme catabolism in mammals, which is normally

considered as a waste product that must be excreted [10]. Bilirubin is formed by

the cleavage of haemoglobin as shown in Figure 1.2 [11]. Serum bilirubin could be

a protective marker for Nonalcoholic fatty liver disease (NAFLD), as the levels of

bilirubin are inversely associated with the prevalence of NAFLD [2]. Bilirubin is

not only used to estimate liver diseases but also a powerful signalling molecule. For

example, Bilirubin has a protective effect on autoimmune and inflammatory diseases

because it inhibits almost all immune system effectors [12]. It has also been identified

as a cardio and metabolic protective factor with therapeutic implications [13].

Both Bilirubin and Creatinine levels in the blood can be influenced by a wide

array of factors including age, gender, muscle mass, diet, and medication, which
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Figure 1.2: Heme catabolism pathway illustrating the conversion of heme to
biliverdin via heme oxygenase, followed by reduction to bilirubin. Adapted from [2].

introduces significant variability. This variability can make it difficult to develop

models that accurately predict levels across diverse populations [4]. However, accu-

rate predictions of Bilirubin and Creatinine levels can facilitate early detection and

monitoring of kidney and liver diseases. Predictive models can certainly contribute

to personalized medicine by identifying individuals at risk of significant changes in

Bilirubin and Creatinine levels before clinical symptoms manifest. This allows for

tailored treatment plans that consider the individual’s risk profile and disease tra-

jectory. Early intervention based on these predictions can lead to improved patient

outcomes and reduced healthcare costs [14].

1.2 EHR data

The prediction of Bilirubin and Creatinine levels is based on the electronic health

records (EHR). The development of information technology has changed the way

healthcare is performed and documented. Currently, databases in hospitals auto-

matically capture structured data relating to all aspects of care, including laboratory

test results, diagnoses, physicians’ notes, and treatments. EHRs generally contain
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demographic, vital statistics, administrative, claims (medical and pharmacy), clin-

ical, and patient-centred (e.g., originating from health-related quality-of-life instru-

ments, home-monitoring devices, and frailty or caregiver assessments) data [15].

This detailed information is crucial for predicting health outcomes, such as

changes in Bilirubin and Creatinine levels, by identifying patterns and correlations

within the data. Furthermore, by leveraging EHR data, predictive models can anal-

yse real-time updates to a patient’s health records, enabling early detection of po-

tential health issues. For example, an upward trend in Creatinine levels over time

could indicate deteriorating kidney function, prompting early intervention before

the condition progresses further. Also, the detailed patient data contained within

EHRs allow for the development of personalized predictive models. Such models

can consider individual patient characteristics, such as age, sex, underlying health

conditions, and genetic information, to make more accurate predictions regarding

Bilirubin and Creatinine levels for each patient, thereby facilitating personalized

care plans.

In summary, EHR data play a pivotal role in the development and implementa-

tion of predictive models for Bilirubin and Creatinine levels, enhancing the ability

to monitor, detect, and manage potential health issues effectively. The integration

of predictive analytics with EHR systems represents a significant advancement in

the pursuit of proactive and personalized healthcare.

1.3 Machine Learning

In the past two decades, machine learning has progressed dramatically. Machine

learning is the scientific study of how computers learn from data, which is seen as a

subset of artificial intelligence. Like many algorithms, machine learning algorithms

must be designed precisely and updated iteratively to be effective. Machine Learn-

ing includes various types, with supervised and unsupervised learning being most

relevant to biomedical prediction tasks. Both supervised and unsupervised learning

construct a mathematical model to solve an optimisation solution problem. The

data for supervised learning contains labels, which is the learning goal of supervised
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learning. The fundamental goal of machine learning is the ability to generalise, ex-

pecting to learn rules for sample partitioning based on the labelled features of the

training data, and to apply this rule to unknown data, thus completing predictions

on unknown data. Unsupervised learning does not use labelled data; instead, it

learns the intrinsic relationships and structural information of the samples, which in

this thesis is used for anomaly detection to identify unusual patterns in Creatinine

and Bilirubin levels.

The use of machine learning-based methods for predicting Bilirubin and Creati-

nine levels, as well as other health-related predictions using EHR data, offers several

compelling advantages over traditional statistical approaches. Human health and

diseases are influenced by a complex interplay of genetic, environmental, lifestyle,

and socio-economic factors. Machine learning models excel at capturing these com-

plex, non-linear relationships within large datasets, such as those found in EHRs,

which traditional statistical models may not handle as effectively. Moreover, ma-

chine learning algorithms can learn from a wide array of data points for each indi-

vidual, including past medical history, lab results, and treatment responses. This

enables the development of personalized health predictions and treatments tailored

to the unique characteristics of each patient. With the ever-growing volume of EHR

data, machine learning models can efficiently process and analyse large datasets to

identify patterns and insights quickly. This scalability is crucial for applying predic-

tive models across large populations [16]. In addition, the employment of machine

learning with EHR data have shown great success [17]. Nonetheless, there are very

limited studies about predicting the levels of Creatinine and Bilirubin using EHR

data.

1.4 Thesis Contributions and Structure

In the current study, we employed a variety of machine learning algorithms to analyze

EHR data with the objective of predicting levels of Creatinine and Bilirubin. This

investigation encompasses both supervised and unsupervised learning paradigms.

Specifically, we utilised Gradient Boosting Regressor (GBR), Extra Trees Regres-
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sor (ETR), and Multilayer Perceptron (MLP) as our supervised learning models.

In the realm of unsupervised learning, we explored the application of One-Class

Support Vector Machines (SVM), Local Outlier Factor (LOF), and K-Means Clus-

tering techniques. Additionally, to address potential issues of data scarcity and

imbalanced datasets, we implemented several oversampling techniques, notably the

Random Oversampler, to augment the EHR dataset. This approach aims to enhance

the predictive accuracy of our models. In summary, the primary contributions of

this manuscript include:

(1) Applying both supervised and unsupervised learning models to predict the

levels of Creatinine and Bilirubin.

(2) Comparing the machine learning models used in this paper and finding the

one that works best.

(3) The predicted values are classified according to a medical formula into two

categories of great and not great change to help doctors diagnose.

This thesis presents a number of machine learning models including supervised

models and unsupervised models. Chapter 2 thoroughly reviews the literature about

involving EHR data and machine learning method in prediction, and the prediction

of Creatinine and Bilirubin, specifically. Chapter 3 introduces the methods we

used in this thesis including the oversampling method which is used to solve the

data imbalance problem, three supervised learning models, and three unsupervised

learning models to predict the levels of Creatinine and Bilirubin. Chapter 4 describes

how the experiments was conducted. Chapter 5 and Chapter 6 summarise and

discuss the research questions, process, and results.

1.4.1 Research Questions

This thesis investigates and applies some machine learning models to predict the

levels of Creatinine and Bilirubin. To achieve the research goals, we conclude the

following research questions.

1. How accurately can machine learning models predict Creatinine and Bilirubin

levels using EHR data, and which features are most predictive?
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2. Which machine learning model achieves the best performance in our experi-

ment?

3. Can the predicted Creatinine and Bilirubin levels be effectively classified into

clinically meaningful categories to assist healthcare professionals in diagnosis

and treatment decisions?
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CHAPTER 2

Related Work

This chapter reviews the related work in three main parts. The first part is the

introduction and application of EHR data in medicine. The second part reviews

the prediction of Machine Learning in various industries, especially in Medicine.

The final part presents the literature on the prediction of levels of Creatinine and

Bilirubin.

2.1 EHR Data

An electronic health record (EHR) is known as the collection of patient and popu-

lation stored health data in a digital format [18]. The amount of digital information

stored in electronic health records has increased dramatically over the last decade.

Although these records were designed primarily for archiving patient information

and performing administrative health care tasks, many researchers have discovered

secondary uses for them in a variety of clinical informatics applications [19]. In

recent years, there is a large volume of published studies describing the use of EHR

data in medical decision support tasks [20]. Several studies have developed pre-

diction and detection models based on EHR data. For example, Nitzan et al. [21]
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proposed a model to predict Gestational diabetes mellitus (GDM) with nationwide

EHR data. Di et al. [22] combined PubMed knowledge and EHR to construct

a model for pancreatic cancer prediction. Matthew and Noura [23] established a

model for the accurate detection of adversarial samples on EHR and chest X-ray

(CXR) data. Michael et al. [24] utilized EHR data to detect and classify type 1

versus type 2 diabetes.

EHR data often come from various sources, leading to significant heterogeneity

in terms of format, structure, and coding systems. Additionally, data quality issues

such as missing values, errors, and inconsistencies further complicate data prepro-

cessing and analysis [25]. This results in imbalanced datasets where the number of

instances in one class significantly outweighs the other, complicating model training

and skewing performance metrics. He et al. [26] provided a comprehensive overview

of methods for learning from imbalanced data, including resampling techniques and

specialized algorithms designed to improve model performance on minority classes.

EHR data can be extremely high-dimensional, with numerous features collected from

patient records. This dimensionality poses computational challenges and increases

the risk of overfitting, requiring sophisticated feature selection and dimensionality

reduction techniques to build effective predictive models. Bellazzi et al. [27] ex-

plored the application of machine learning techniques in clinical medicine, including

methods for handling the high dimensionality of EHR data, such as feature selection

and dimensionality reduction.

2.2 Machine Learning in prediction

In recent years, with the development of big data and data science, machine learn-

ing has been successfully applied to a range of industries, such as consumer services,

fault diagnosis in complex systems, and logistics chain control. [28] With a focus

on clinical problems, machine learning is based on a large number of different types

of clinical data, which is processed accordingly with the help of tools such as sta-

tistical analysis and bioinformatics, to provide more help to doctors and patients.

Machine learning has many applications in medicine. For instance, a number of
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studies have used Machine Learning techniques to predict the risk assessment and

survival of cancer. [29]. Various machine learning techniques have been applied in

medical imaging across the decades. [30] Senthilkumar M et al. [31]used several ma-

chine learning models to improve the accuracy in the prediction of cardiovascular

disease. Furthermore, supervised learning is often used to estimate risk. [16] Gradi-

ent Boosting Regressor (GBR) is a supervised learning model, which is intensively

used in prediction. Yanru Zhang et al. [32] have demonstrated that the GBR model

has significant advantages in predicting freeway travel times. Simon N et al. [33]

have indicated that the GBR model could perform well in the prediction of major

chronic diseases.

Deep learning is seen as a part of machine learning methods. Deep learning is

based on neural networks that learn the intrinsic logic and features embedded in

sample data to achieve a specific task. With the proliferation of high-performance

Graphic Processing Units (GPUs), the average cost of computational power is be-

coming lower and lower, laying the foundation for research into deep learning models

that rely on large amounts of computation. Deep learning is one of the mainstream

research directions in artificial intelligence and has been applied to a wide range of

fields now. [34] Deep learning is a powerful technique for predicting protein struc-

ture in medicine. [35] Deep learning networks that are commonly used include Deep

Neural Networks(DNN), Convolutional Neural Networks(CNN), Recurrent Neural

Networks(RNN), and Generative Adversarial Networks(GAN). Deep learning is a

powerful technique for predicting protein structure. Multilayer perceptron (MLP)

is a popular deep learning model, which is a type of fully connected feedforward

artificial neural network (ANN). Many researchers have applied the MLP model to

improve medicine. Dimitrios H et al. [36] utilized the MLP and probabilistic neural

networks (PNNs) models for Osteoporosis risk prediction. Mohamed et al. [37] used

MLP and Long Short Term Memory (LSTM) techniques to predict heart disease.
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2.3 The prediction of Creatinine and Bilirubin

Creatinine and Bilirubin are two common and clinically significant laboratory values

in medical records. There is a large volume of published studies using the value of

them to help doctors treat diseases. Chicco D and Jurman G [38] demonstrated

that serum creatinine and ejection fraction are the two most relevant factors in pre-

dicting the survival of patients with heart failure. Song X et al. [39] used creatinine

and other medical values to predict acute kidney injury with machine learning and

logistic regression models. Inoguchi T et al. [40] used a gradient boosting decision

tree (GBDT) model and a Cox proportional hazard regression model to assess the

association between serum bilirubin levels and cancer risk, and they demonstrated

that serum bilirubin may have a protective effect against certain types of cancer.

Akter S et al. [41] developed a method to assess the natural progression of liver

disease by evaluating the serum total bilirubin (TB) and seven other biochemical

parameters. However, there are very few studies predicting the value of Creatinine

and Bilirubin using EHR data.

A number of studies in the field of medicine have been carried out to predict

the levels of Creatinine and Bilirubin in the past. For example, Cockcroft D et

al. [42] developed a formula to predict creatinine clearance (Ccr) from serum cre-

atinine (Scr). However, there are very few studies predicting them using artificial

Intelligence technologies. Dauvin A et al. [43] utilized several machine learning al-

gorithms to predict pre-admission creatinine and baseline hemoglobin intensive care

patients with the MIMIC-III database. They used gradient-boosted trees, random

forest, and logistic regression models. Wang W et al. [44] adopted ensemble learn-

ing techniques to predict creatinine value from 23 features, and then combined the

predicted creatinine value with the original 23 features to assess the risk of Chronic

Kidney Disease (CKD). Surachate et al. [45] proposed a supervised machine learning

model to distinguish among low, moderate, and high normal serum creatinine by

evaluating tear creatinine. Ghosh E et al. [46] demonstrated that the baseline serum

creatinine level could be estimated better using a gradient boosting model than the

back-calculated estimated serum creatinine level. In my study, I used different mod-

els and a different dataset from the above studies. I applied gradient-boosted trees,
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extra trees and multilayer perceptron models on the dataset and compared them to

find the best performance. For the research on predicting Bilirubin, there is no study

predicting the value using EHR data. Aune A et al. [47] designed a smartphone-

based tool to estimate bilirubin levels from digital images. They combined colour

analysis of digital images with physics-based modelling of light transport in skin to

predict bilirubin levels in newborn infants. Imant etal. [48] trained an ensemble,

that combines a logistic regression with a random forest classifier, to enhance the

early prediction of clinically relevant neonatal hyperbilirubinemia with the serial

measurements of total serum bilirubin in the first two weeks of life.
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CHAPTER 3

Methods

In this chapter, I provide a brief overview of the regression models employed to

address the objectives of this thesis. This chapter proceeds by first discussing the

supervised learning models used in this thesis, and some unsupervised learning mod-

els followed.

3.1 Oversampling

Oversampling is a technique employed to ameliorate the imbalance within a training

dataset by augmenting the number of instances in under-represented classes. This

approach is particularly beneficial in datasets where the disparity between class dis-

tributions is significant. In our study, we observed a pronounced imbalance, with the

quantity of samples exhibiting no significant change vastly outnumbering those with

considerable change. To address this imbalance, we implemented four distinct over-

sampling strategies: Random Oversampler, Synthetic Minority Over-sampling Tech-

nique (SMOTE), Adaptive Synthetic (ADASYN) Sampling, and Borderline SMOTE

Oversampler.

The Random Oversampler method enhances the minority class’s presence by
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duplicating existing samples randomly. Mathematically, this can be expressed as:

D′ = D ∪
{
x
(copy)
j |xj ∈ Dminor, randomly selected with replacement, N times

}
(3.1)

where D′ is the augmented dataset, D is the original dataset, Dminor represents

the minority class samples, and N is the number of duplication.

The SMOTE algorithm generates synthetic samples by interpolating between

existing minority class samples [49]. The interpolation process for a sample xi can

be described by:

xnew = xi + λ(xz − xi) (3.2)

where xz is a randomly chosen sample from the k nearest neighbours of xi in the

minority class, and λ is a random number between 0 and 1.

ADASYN extends SMOTE by adjusting the number of synthetic samples gen-

erated for each minority class sample based on its ”difficulty” in being correctly

classified, measured by its k-Nearest neighbours [50]. The generation of synthetic

samples is guided by:

xnew = xi + λ(xnn − xi) (3.3)

where xnn is a neighbour of xi selected based on the adaptive density distribution.

Borderline SMOTE focuses on samples that are near the decision boundary (the

border) and might be misclassified [51]. Synthetic samples are created by interpolat-

ing between these borderline samples and their nearest neighbours in the minority

class that are also near the decision boundary.

In our experimental framework, these four oversampling methods were deployed

to enrich the dataset with more ”great change” instances before applying regression

models for predictive analysis. The performance of these methods was evaluated

based on the efficacy of subsequent predictive modelling.

14



3.2 Gradient Boosting

Gradient boosting is a machine learning technique that is commonly used in regres-

sion and classification tasks. It gives a prediction model in the form of an ensemble

of weak prediction models, usually decision trees [52]. When a decision tree is used

as the weak learner, the resulting algorithm is known as gradient-boosted decision

trees (GBDT), and it typically outperforms random forest [53]. Gradient boost-

ing of regression trees (GBR) produces competitive, highly robust, interpretable

procedures for both regression and classification [54]. Its prediction model can be

represented as:

ŷi =
k∑

k=1

fk (xi) (3.4)

where k is the total number of trees, fk is the tree numbered k, yi is the prediction

result of the sample xi.

The prediction model follows the forward distribution addition method, which

generates a new regression tree at each iteration, and the new tree will keep fitting

the residuals of the previous tree to continuously improve the previous experimental

results, as shown in the equation below:

ŷi(t) =
t∑

k=1

ft (xi) = ŷi(t− 1) + ft (xi) (3.5)

In the formula, t is the combined t-tree; yi(t) is the prediction result of the

combined t-tree model for sample xi, yi(t−1) is the prediction result of the combined

(t− 1)-tree model for sample xi, ft(xi) is the estimated value of the tree numbered

t model for the current round of losses.

For each iteration of GBDT, the loss function in the current mode is used to

negative gradient of the loss function under the current model to fit the estimate

of the current round’s loss (i.e., the residual estimate value). This allows the loss

function to be reduced as quickly as possible in each training round, and converges

to the residual estimate as quickly as possible. In this way, the loss function can be

reduced as fast as possible in each training round, and converge to the local optimal
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solution or the global optimal solution as soon as possible. The negative gradient of

the loss function for the ith sample of round t is expressed as:

rti = −
∣∣∣∣ l (yi, ŷi)ŷi

∣∣∣∣
f(x)=fi−1(x)

(3.6)

The best fit on each leaf node Rtj that minimizes the loss function The values

ctj are summed to obtain the estimate of the tree numbered t model for the current

round of losses ft(xi)

fi (xi) =
J∑

i=I

ctjI (xi ∈ Rtj) (3.7)

The GBR model parameters mainly include the estimators (the number of boosting

stages to perform), learning rate and loss function.

In summary, gradient boosting models are often synonymous with high predictive

performance, especially in tabular data challenges. They are capable of handling

mixed types of data: numerical and categorical. However, the training of the al-

gorithm can be time-consuming, as trees are built sequentially. As the number of

trees increases, the model becomes more complex and harder to interpret compared

to simpler models.

3.3 Multilayer perceptron

The Multilayer Perceptron (MLP) is a prevalent model in the realm of neural net-

works, operating under the principles of supervised learning. At its core, the MLP

comprises neurons, which are the fundamental processing units. Each neuron re-

ceives inputs, xx1, x2,..., xn , and produces an output, y, as depicted in Fig.3.2, a

representation of an MLP network.

The inputs to a neuron are weighed by a set of coefficients, w1, w2,..., wn, reflect-

ing the relative importance of each input to the neuron’s operation. These weights

modulate the inputs, which are then aggregated and subjected to a bias term, b, to

compute the neuron’s net input, µ. This process can be formalized by the weighted

summation formula:

µ =
n∑

i=1

(wi · xi) + b (3.8)
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Figure 3.1: Structure of a single artificial neuron showing inputs (x1, x2, ..., xn),
weights (w1, w2, ..., wn), summation function (Σ), activation function, and output.
This diagram illustrates the basic computational unit that forms the building blocks
of neural networks [3].

Alternatively, considering the bias b as an additional weight w0 paired with a con-

stant input of 1, the net input computation becomes:

µ =
n∑

i=0

(wi · xi) (3.9)

Subsequently, an activation function, f , is applied to µ to generate the neuron’s

output: y = f(µ), which introduces non-linearity into the model, enabling it to

capture complex relationships in the data.

Throughout the training phase, the MLP is fed with input-output pairs, iter-

atively adjusting its weights to minimize the discrepancy between the predicted

outputs and the actual targets. This process continues until the network achieves

an optimal representation of the underlying data distribution, at which point it can

be used for making predictions on new, unseen data. MLPs can model complex non-

linear relationships between inputs and outputs, making them suitable for a wide

range of tasks, from regression to classification.

Theoretically, MLPs with at least one hidden layer and appropriate activation

functions can approximate any continuous function to any desired degree of accu-

racy, a principle known as the Universal Approximation Theorem. This theorem

states that a feedforward network with a single hidden layer can approximate any
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Figure 3.2: A simple artificial neuron model. This diagram illustrates the
structure of an artificial neuron, a fundamental building block in multilayer percep-
trons and deep learning architectures. Each input (depicted as circles) is assigned
a weight, and the weighted sum of these inputs is computed. This sum is then
passed through an activation function, which introduces non-linearity to the model.
The resulting output is used either as the final prediction or as input to subsequent
layers.

continuous function on a compact subset of Rn to arbitrary accuracy, provided the

activation function is non-constant, bounded, and monotonically-increasing. How-

ever, while the theorem guarantees the existence of such an approximation, it does

not specify the required number of neurons or guarantee that standard training

procedures will find the optimal parameters.

Without proper regularisation, MLPs can overfit the training data, learning noise

rather than the underlying pattern, which degrades their performance on unseen

data. Training an MLP, especially with large datasets or architectures, can be com-

putationally demanding and time-consuming. The performance of MLPs is highly

sensitive to the choice of architecture (e.g., the number of layers and neurons) and
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hyperparameters (e.g., learning rate), requiring extensive tuning for optimal results.

3.4 Extra Trees

Extreme Randomized Trees (ERT), also known as Extra-Trees, represent an innova-

tive approach within tree-based ensemble methods, distinguishing themselves from

their counterparts such as Random Forests and Deep Forests [55]. The foundational

principle of ERT is to employ decision trees as base estimators, utilizing the entire

dataset for training each tree and incorporating randomness in the selection of fea-

tures and the split decisions. This methodology is articulated in the seminal work

by Geurts et al [56].

In ERT, the algorithm constructs multiple decision trees, with each tree trained

on the complete dataset. Unlike Random Forests, which employ bootstrapping to

generate varied training subsets, ERT leverages the entire data for every tree, aiming

to maximize the utilization of available information. The key aspect of ERT is the

random selection of cut-points for each feature, defined mathematically as:

θfeature,split ∼ U(Dfeature) (3.10)

where θfeature,split denotes the randomly chosen threshold for a given feature from

its distribution U over the dataset D. The optimal split is determined through an

evaluation of these random thresholds, ensuring a diverse set of decision rules across

the ensemble.

The final prediction of the ERT model is obtained by averaging the predictions

from all individual trees:

ypred =
1

N

N∑
i=1

Ti(x) (3.11)

where N is the number of trees, Ti(x) represents the prediction of the i th tree for

input x, and ypred is the ensemble’s output.

By averaging over numerous trees, ERT effectively mitigates variance, enhanc-

ing stability and robustness. Training each tree on the full dataset ensures that

all available information is leveraged, potentially improving predictive performance.
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The introduction of randomness in feature selection and splits can also reduce model

bias, making ERT less prone to overfitting compared to more deterministic tree mod-

els. However, training on the entire dataset and evaluating numerous random splits

can be computationally demanding, especially with large datasets. The ensemble

nature and the random selection process in ERT compromise interpretability, mak-

ing it challenging to extract intuitive rules from the model. While randomness can

introduce diversity, it may also lead to splits on noisy features, potentially affecting

the model’s generalization capability.

3.5 Unsupervised learning models

We used three unsupervised learning models to classify the Exceptional values of

Creatinine and Bilirubin: one-class suport vector machine (SVM), Local Outlier

Factor (LOF), K-Means Clustering.

3.5.1 One-Class SVM

The One-Class Support Vector Machine (SVM) is an extension of the traditional

SVM framework, tailored specifically for anomaly detection and novelty detection

tasks. Unlike the conventional SVM that distinguishes between two or more classes,

the One-Class SVM focuses on identifying data points that deviate from the norm,

effectively distinguishing between normal instances and outliers within a dataset.

The One-Class SVM aims to find a function f(x) that captures the region in the

feature space populated by the majority of data points. This function is designed

to return a positive value for regions with dense data (normal instances) and a

negative value elsewhere (anomalies). The decision function for a given input x can

be represented as:

f(x) = sign(⟨w, ϕ(x)⟩ − ϱ) (3.12)

Here, ϕ(x) denotes a mapping of the input vectors x into a higher-dimensional

feature space, w is the weight vector orthogonal to the hyperplane, and ϱ represents

the offset of the hyperplane from the origin in the feature space.
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The objective of the One-Class SVM is to maximize the margin around the hyper-

plane subject to most data points lying on the side of the hyperplane corresponding

to the target class. This leads to the optimization problem:

min
w,ξ,ϱ

1

2
∥w∥2 − ϱ+

1

vn

n∑
i=1

ξi (3.13)

subject to the constrains:

⟨w, ϕ(x)⟩ ≥ ϱ− ξi, ξi ≥ 0, i = 1, 2, ..., n (3.14)

where ξi are slack variables allowing for a fraction of data points to lie on the

opposite side of the hyperplane, and v is a parameter that controls the trade-off

between the fraction of outliers and the decision function’s margin.

One-Class SVM is highly effective in scenarios where the goal is to identify data

points that significantly deviate from the majority of the dataset. The formulation

as a quadratic optimization problem ensures that the solution is a global optimum,

providing consistency in model performance. Through the kernel trick, One-Class

SVM can operate in a high-dimensional feature space, enabling it to capture complex

patterns in the data. The commonly used kernel functions include Linear Kernel

(LK), Polynomial Kernel (PK) and Radial Basis Function (RBF). In this paper, RBF

is used as the kernel function because of its strong nonlinear mapping capability,

which can be written as following:

K (xi, xj) = exp
(
−δ · ∥xi − xj∥2

)
(3.15)

where δ is the parameter of the kernel function representing the spatial extent that

a particular training sample can reach. The performance of the One-Class SVM

is sensitive to the choice of kernel and its parameters (e.g., δ in the RBF kernel)

and the value of v, which can make the tuning process challenging. Similar to

traditional SVMs, the computational complexity of One-Class SVM can become a

concern with very large datasets, particularly due to the need to invert a matrix in

the optimization step.
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3.5.2 Local Outlier Factor

The Local Outlier Factor (LOF) algorithm is an unsupervised method used to iden-

tify outliers in a dataset. It operates on the premise that the density around a

normal instance is similar to the density around its neighbours, whereas outliers lie

in sparser regions. The LOF provides a way to quantify the local deviation of a

given data point with respect to its neighbours, allowing for the identification of

instances that significantly diverge in density from their surrounding area. For each

data point x, LOF computes a score that reflects its degree of outlier-ness based on

the local density. The process involves several steps:

(1) Let k be a positive integer and the k-th distance of a data point p be denoted

as dk(p), i.e. the distance from the data points k-th away from data point p to data

point q. The distance between a data points q and p in the data set C is denoted

as distk(p, q), and there are two cases that could make dK(p) = distk(p, q): i. There

exist at least k data pointss q′ ∈ C{x ̸= p} satisfying d (p, q′) ≤ d(p, q), ii. There

are at most k − 1 data pointss q′ ∈ C{x ̸= p} satisfying: d (p, q′) < d(p, q).

(2) The k-th distance domain of a data points p is the set of all data pointss

whose distance from p is less than the k-th distance, denoted as:

∣∣Ndk(p) = {q ∈ C | d(p, q) ≤ dk(p)}
∣∣ ≥ k (3.16)

(3) The reachable distance from data points p to q is denoted as reach −

distk(p, q). It is at least the k-th distance from p, or the true distance between

q and p. It could be represented as:

reach− distk(p, q) = max {(dk(p), d(p, q)} (3.17)

(4) The local reachable density of a data points p denotes the inverse of the

average reachable distance from the data pointss to p in the k-th domain of p,

denoted as lrdk(p),i.e.:

lrdk(p) =
1[∑

q∈Nk(p) reach −distk(p,q)

|Nk(p)|

] (3.18)
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, where, Nk(p) is the set of k nearest neighbour of p.

(5) The local outlier factor of a data points p denotes the mean of the ratio of

the locally reachable density of the k-th domain Nk(p) of p to the locally reachable

density of p, denoted as LOFk(p), so it could be represented as:

LOFk(p) =

∑
q∈Nk(p)

lrdk(q)
lrdk(p)

|Nk(p)|
(3.19)

A LOF score significantly hreater than 1 indicates an outlier. Unlike global methods,

LOF considers the local density variation, making it effective in datasets with vary-

ing densities. LOF can identify outliers that may not be detectable with distance-

based or global methods due to its focus on local neighbourhoods. As an unsu-

pervised method, LOF requires no labeled data for training, making it suitable for

datasets where outlier labels are not available. However, The choice of k (the num-

ber of neighbours) can significantly affect the outcome. Too small or too large values

might lead to misleading results. The need to compute distances between all pairs

of points makes LOF computationally intensive, especially for large datasets.

3.5.3 K-Means Clustering

The K-Means algorithm is a widely-used method for partitioning a dataset into

K distinct, non-overlapping subsets or clusters. It aims to minimize the variance

within each cluster, effectively grouping data points based on feature similarity.

The algorithm iterates through two main steps: assignment of data points to the

nearest cluster centre and update of cluster centres based on the current cluster

assignments. Given a dataset X = {x1, x2, x3, ..., xn} consisting of n data points

and a pre-specified number of clusters K, the goal of K-Means is to find a set of

K cluster centres C = {c1, c2, c3, ..., cK} that minimises the within-cluster sum of

squares (WCSS) defined as:

WCSS =
K∑
k=1

∑
x∈Sk

∥x− ck∥2 (3.20)
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where Sk represents the set of data points assigned to cluster k with centre ck. The

algorithm proceeds as follows:

(1) Initialization: Select K initial cluster centres, which can be done randomly

or by more sophisticated methods like the K-Means++ algorithm.

(2) Assignment Step: Assign each data point to the nearest cluster center:

Sk = {x : ∥x− ck∥ ≤ ∥x− cj∥ ,∀j, 1 ≤ j ≤ K} (3.21)

(3) Update Step: Update each cluster center to be the mean of the data points

assigned to it:

ck =
1

∥Sk∥
∑
x∈Sk

x (3.22)

(4) Iteration: Repeat the assignment and update steps until the cluster assign-

ments no longer change or a predefined number of iterations in reached.

K-Means is straightforward to implement and computationally efficient, making

it suitable for a wide range of clustering tasks. With optimizations, such as the

use of the Elkan algorithm, K-Means can scale to large datasets. However, the

choice of initial cluster centres can significantly affect the final outcome, potentially

leading to sub-optimal solutions. K-Means assumes clusters to be spherical and

evenly sized, which might not be the case in many real-world datasets, leading to

poor performance on elongated or imbalanced clusters.
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CHAPTER 4

Experiments and Results

This chapter include the experiment conducting procedure and result, it proceeds

by: (i)introducing the dataset, and describing how to process the EHR data; (ii)

explaining the supervised and unsupervised learning models we used; (iii) Showing

the results of our experiments.

4.1 Dataset

The dataset under investigation was meticulously compiled over an extensive pe-

riod spanning from 2011 to 2018, encompassing medical records from 999 distinct

patients. Given the longitudinal nature of this dataset, individual patients often

contributed multiple entries, reflecting successive medical evaluations over time.

To increase the dataset size for machine learning purposes, each patient visit

was treated as a separate instance rather than aggregating all visits per patient.

This transformation converted the original 999 patient records into 4,124 visit-based

instances. The process maintained temporal relationships while preserving data

integrity for machine learning applications.

This dataset represents a proprietary medical dataset that is not publicly avail-
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able due to patient privacy regulations and institutional data governance policies.

The comprehensive eight-year longitudinal coverage and the novel visit-centric trans-

formation approach constitute significant contributions of this research to the field

of medical data preprocessing.

The process maintained temporal relationships while significantly reducing miss-

ing data through the visit-based transformation approach.

The dataset’s 30 attributes can be bifurcated into two primary categories: 28

features and 2 predictive targets. The features themselves are further categorized

into three sub-groups, namely personal information, blood test results, and docu-

mented medical conditions, providing a comprehensive overview of each patient’s

health status.

(1) Personal Information: This sub-category includes demographic and physio-

logical parameters such as ethnicity, sex, prescribed medical regimen, height, weight,

and age, offering a foundational understanding of the patient’s profile.

(2) Blood Test Results: Encompassing a broad spectrum of hematological assess-

ments, this section includes markers such as Granulocyte-Colony Stimulating Fac-

tor (G-CSF), Direct Reactivity (DR), Absolute Neutrophil Count (ANC), Platelet

Count Test (PLTs), Hemoglobin levels, Creatinine, Alanine Transaminase (ALT),

Bilirubin, Body Surface Area (BSA), and Bolus Drop, providing critical insights into

the patient’s physiological and metabolic status.

(3) Medical Conditions: This subset documents a range of diagnosed conditions

including Diabetes, Cardiovascular diseases, Malignant Hyperthermia (MH), Thy-

roid disorders, Chronic Ulcerative Colitis (UC), Omeprazole therapy, respiratory

rate (Resp), Arthritis, Autoimmune diseases, Epilepsy, Hepatitis B (hepb), and

Performance Status (PS), thereby offering a detailed medical history relevant to

each patient’s health trajectory.

The predictive targets within the dataset are quantified levels of Creatinine and

Bilirubin for subsequent patient visits. These biomarkers serve as critical indica-

tors of renal and hepatic function, respectively, and their predictive modelling is

of paramount importance for proactive healthcare management and intervention

planning.
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4.1.1 Data-Preprocessing

For the dataset, an additional categorical column was incorporated to delineate be-

tween instances exhibiting ’great change’ and ’not great change’ in the Creatinine

and Bilirubin values across two consecutive assessments. This classification facili-

tates a more intuitive evaluation of potential significant alterations in the patient’s

blood biochemistry. To accommodate the analytical framework, all categorical vari-

ables were transformed into dummy (or indicator) variables. This conversion is

crucial for integrating categorical data into models that primarily operate on nu-

merical inputs [57]. Furthermore, the feature values were normalized to fall within a

[0, 1] range, ensuring uniformity in scale across all variables and mitigating potential

bias arising from variable magnitude disparities. The dataset was partitioned into

training and testing subsets, adhering to an 80/20 split ratio. This stratification en-

sures a representative allocation of data for model training and validation purposes,

fostering robustness and generalisability in the predictive models developed.

A train-test split approach was employed instead of cross-validation due to the

specific nature of this study’s experimental design. The primary objective was

regression-based prediction of continuous Creatinine and Bilirubin values, with the

subsequent binary classification of ’change’ versus ’no change’ derived through post-

prediction threshold application rather than direct classification modelling. This

two-stage approach, where regression predictions are converted to categorical out-

comes via formula-based thresholds, is more suited to holdout validation than k-fold

cross-validation, which would require repeated threshold applications across mul-

tiple folds and potentially introduce inconsistencies in the classification boundary

definitions.

Given the scarcity of ’great change’ instances within the dataset—a situation that

could potentially skew the experimental outcomes and model performance—four

distinct oversampling techniques (Random Oversampler, SMOTE, ADASYN, and

Borderline SMOTE) were employed exclusively on the training dataset to address

the class imbalance and improve model performance on minority class instances.
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4.2 Experiments Setup

4.2.1 Gradient Boosting Regressor

The Gradient Boosting Regressor model was meticulously trained on both the orig-

inal dataset and an oversampled variant to ascertain the efficacy of oversampling

techniques on model performance.

The number of estimators was set to 200 for the original dataset and 1000 for the

oversampled datasets based on preliminary testing. While these values demonstrated

satisfactory performance in initial experiments, systematic hyperparameter tuning

represents an area for methodological enhancement in future studies.

The configuration included a loss function set to ’squared error’, a learning rate

of 0.1, a random state fixed at 42 for reproducibility, and the criterion for measuring

the quality of a split as the Friedman mean squared error.

The use of a fixed random seed throughout all experiments, while ensuring repro-

ducibility, limits the results generalisation as it does not account for variance across

different random initializations. Multiple runs with different seeds would provide

more robust performance estimates.

4.2.2 Extra Trees Regressor

Similarly, the Extra Trees Regressor model was trained on both datasets, adhering

to a consistent parameter set across the two variants. The model utilized 200 estima-

tors, with a ’squared error’ criterion function to evaluate splits. The random state

was again set to 42 to ensure consistency across runs. Model complexity was man-

aged by setting the minimum number of samples required to split an internal node

at 2, and the minimum number of samples required at a leaf node at 1, encouraging

deeper tree constructions for nuanced pattern recognition.

4.2.3 Multilayer Perceptron

The Multilayer Perceptron model, distinguished by its three-layer architecture, un-

derwent training with both the original and oversampled datasets.
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The Multilayer Perceptron architecture was systematically designed based on es-

tablished neural network design principles and dataset characteristics. The network

employs a three-layer architecture with the following rationale:

Input Layer (88 units): The input dimensionality corresponds to the 30 orig-

inal features expanded to 88 dimensions after categorical variable encoding using

dummy variables and feature preprocessing.

Hidden Layer Architecture (40→20 units): The hidden layer configura-

tion follows the common practice of progressive dimensionality reduction. The first

hidden layer (40 units) was sized to approximately half the input dimension, pro-

viding sufficient capacity to capture complex feature interactions whilst avoiding

overfitting. The second hidden layer (20 units) creates a bottleneck effect, forcing

the network to learn compressed representations of the most salient features. This

pyramidal structure (88→40→20→1) balances model complexity with the available

training data, following the general guideline that hidden layer sizes should decrease

progressively towards the output.

Architecture Selection Rationale: The choice of two hidden layers represents

a compromise between model expressiveness and computational efficiency. Single-

layer architectures may lack sufficient representational capacity for the complex re-

lationships between blood biomarkers and patient outcomes, whilst deeper networks

risk overfitting given the dataset size of 4,124 instances. The selected architec-

ture provides adequate depth to model non-linear relationships whilst maintaining

tractable parameter counts relative to the available training data.

Hyperparameter Configuration: The model employed the Adam optimiser,

selected for its adaptive learning rate properties and robust performance across di-

verse problem domains. The learning rate was set to 0.001, representing a conserva-

tive choice that balances convergence speed with stability. Training was conducted

using mini-batches of size 32, chosen to provide stable gradient estimates whilst

maintaining computational efficiency. The model was trained for a maximum of

100 epochs with early stopping implemented (patience of 10 epochs) to prevent

overfitting and reduce computational overhead.

Activation and Loss Functions: ReLU activation was chosen for hidden
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layers due to its computational simplicity and effectiveness in mitigating vanishing

gradient problems commonly encountered in deeper networks. The output layer

employs linear activation, appropriate for regression tasks where the target variables

(Creatinine and Bilirubin levels) are continuous. Mean Squared Error (MSE) was

selected as the loss function, directly optimising for prediction accuracy of continuous

biomarker levels, with its quadratic penalty structure emphasising the importance

of minimising larger prediction errors.

Notably, when trained on the non-oversampled dataset, a weighted loss approach

was adopted, leveraging the ’class weights’ functionality in scikit-learn to adjust for

imbalances.

4.2.4 Unsupervised Learning models

Explorations into unsupervised learning methodologies were also undertaken, uti-

lizing both datasets. The deployment encompassed a one-class SVM with a Radial

Basis Function kernel, parameterized by a gamma value of 0.1 and a nu value of 0.1,

signifying its sensitivity to outliers.

K-Means Clustering: Given the inherent challenges in defining optimal thresh-

olds for ’great change’ versus ’not great change’ classifications in biomarker levels,

K-means clustering was employed as an exploratory technique to investigate whether

natural groupings in the feature space align with clinically meaningful distinctions.

The algorithm was configured with two clusters (k=2) to mirror the binary clas-

sification structure, utilising K-means++ initialisation to ensure robust centroid

placement. Ten different random seeds were employed to assess clustering stability

and consistency.

The rationale for this approach stems from the hypothesis that patients ex-

hibiting similar physiological profiles and biomarker patterns may naturally cluster

together, potentially revealing underlying patient subgroups that transcend simple

threshold-based classifications. This unsupervised perspective allows for the iden-

tification of patient phenotypes that may not be captured by traditional clinical

cut-off values, thereby providing complementary insights to the supervised learning

approaches.
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Clustering results were subsequently compared against the medically-derived bi-

nary classifications to assess concordance and identify potential discrepancies that

might indicate either misclassification in the supervised approach or the presence of

distinct patient subgroups requiring different clinical management strategies.

The algorithm was permitted a maximum of 300 iterations for convergence.

Lastly, the LOF model, configured with 20 neighbours and an automatic algorithm

selection based on input data, aimed to identify outliers effectively, albeit with a leaf

size set at 30. Despite the comprehensive application of these unsupervised models,

the results indicated limited success in achieving the desired outcomes.

4.2.5 Rationale for Unsupervised Learning Integration

The inclusion of unsupervised learning methods alongside supervised approaches

serves multiple analytical purposes in this medical prediction context:

Threshold Validation: Medical thresholds for defining ’significant change’ in

biomarker levels are often based on population-level statistics and may not capture

individual patient variability. Unsupervised methods can identify whether data-

driven groupings align with these clinical thresholds, potentially revealing cases

where standard cut-offs may be inappropriate.

Outlier Detection: Both One-Class SVM and LOF serve as anomaly detection

mechanisms, identifying patients whose biomarker profiles deviate significantly from

typical patterns. Such outliers may represent rare conditions, measurement errors,

or patients requiring specialised clinical attention that supervised models might

overlook.

Pattern Discovery: K-means clustering facilitates the discovery of natural pa-

tient groupings based on comprehensive feature profiles rather than single biomarker

values. This approach may reveal clinically relevant patient phenotypes that inform

personalised treatment strategies.

Model Validation: Concordance between supervised predictions and unsuper-

vised groupings provides additional confidence in model reliability, whilst discor-

dances highlight cases requiring further clinical investigation.
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4.2.6 Evaluation Metrics

Four standard classification metrics were employed to assess model performance on

the binary classification task (’great change’ vs ’not great change’):

• Accuracy: Proportion of correct predictions: TP+TN
TP+TN+FP+FN

• Precision: Proportion of correct positive predictions: TP
TP+FP

• Recall: Proportion of actual positives correctly identified: TP
TP+FN

• F1-Score: Harmonic mean of precision and recall: 2×TP
2×TP+FP+FN

Where TP, TN, FP, and FN represent true positives, true negatives, false posi-

tives, and false negatives, respectively. In this medical context, positive cases refer

to ’great change’ instances in biomarker levels.

4.3 Results

The empirical evaluation of machine learning models, namely Gradient Boosting

Regressor (GBR), Extra Trees Regressor (ETR), and Multilayer Perceptron (MLP),

along with their oversampling counterparts (denoted as GBR o, ETR o, and MLP o,

respectively) and a weighted MLP variant (MLP w), on a dataset, yields insightful

outcomes. These models were assessed for their precision in predicting changes in

Creatinine and Bilirubin levels, pivotal markers for renal and hepatic function, re-

spectively. The analysis further segregates model performance based on their ability

to correctly identify instances with ’no change’ versus those with ’great change’ in

these biomarkers, providing a nuanced understanding of model efficacy in handling

imbalanced datasets.

4.3.1 Comparison between oversamplers

Table 4.1 summarizes the performance metrics of GBR, ET, and MLP models across

different oversampling techniques—SMOTE, ADASYN, and Borderline—for pre-

dicting Creatinine and Bilirubin levels in a dataset. The evaluation metrics include
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F1-score, Accuracy, Precision, and Recall, which are crucial for assessing the models’

predictive capabilities.

For the Creatinine prediction, GBR Exhibits a progressive improvement in all

metrics as the oversampling techniques vary from SMOTE to Borderline. The F1-

score increases from 0.50 to 0.76, Accuracy from 0.62 to 0.82, Precision from 0.75

to 0.83, and Recall from 0.62 to 0.82, indicating Borderline oversampling as the

most effective strategy for this model. Similar to GBR, ET shows improvement

across metrics with different oversampling techniques. The performance peaks with

Borderline oversampling, achieving an F1-score of 0.66, Accuracy of 0.74, Precision

of 0.79, and Recall of 0.74. The performance of MLP under different oversampling

techniques is more varied, with ADASYN showing notable improvement in F1-score

and Accuracy (0.41 and 0.55, respectively) compared to SMOTE. Borderline over-

sampling further enhances these metrics, highlighting its effectiveness in improving

MLP’s prediction of Creatinine levels.

As for the Bilirubin prediction, for GBR method, the performance on Bilirubin

prediction does not mirror the positive trend observed with Creatinine. The high-

est F1-score is 0.38 with ADASYN, and Precision remains relatively stable across

techniques. This suggests challenges in modeling Bilirubin levels using GBR with

these oversampling methods. ET Shows consistent performance across oversampling

techniques, with slight variances in metrics. The F1-scores and Accuracy indicate

moderate efficacy in predicting Bilirubin levels, peaking at an F1-score of 0.36 with

ADASYN. Interestingly, the MLP model demonstrates a significant improvement

in predicting Bilirubin when applying ADASYN, with substantial increases in all

metrics, particularly F1-score (0.71) and Accuracy (0.74). This indicates a strong

fit of the MLP model for Bilirubin prediction under the ADASYN oversampling

technique.

4.3.2 Precision of Creatinine prediction

For Creatinine prediction, the precision scores illuminate the models’ differential per-

formance across various configurations, as it shows in Table 4.2. The original GBR

and ETR models, without oversampling, exhibited high precision in identifying ’no
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Table 4.1: Comparison between oversamplers
Creatinine Bilirubin

Model Oversampler F1 Accuracy Precision Recall F1 Accuracy Precision Recall
None 0.95 0.95 0.95 0.95 0.83 0.84 0.83 0.84
SMOTE 0.68 0.62 0.75 0.62 0.52 0.40 0.76 0.40

GBR ADASYN 0.79 0.78 0.81 0.78 0.55 0.44 0.75 0.44
Borderline 0.82 0.82 0.83 0.82 0.49 0.36 0.77 0.36
None 0.95 0.95 0.95 0.95 0.84 0.84 0.83 0.84
SMOTE 0.73 0.69 0.78 0.69 0.52 0.40 0.77 0.40

ET ADASYN 0.75 0.72 0.78 0.72 0.53 0.41 0.74 0.41
Borderline 0.76 0.74 0.79 0.74 0.53 0.41 0.76 0.41
None 0.95 0.95 0.95 0.95 0.79 0.80 0.78 0.80
SMOTE 0.58 0.48 0.74 0.48 0.53 0.44 0.66 0.44

MLP ADASYN 0.63 0.55 0.74 0.55 0.74 0.74 0.73 0.74
Borderline 0.68 0.64 0.73 0.64 0.53 0.45 0.64 0.45

change’ instances, with percentages nearing 97%, but faltered in correctly predict-

ing ’change’ instances, achieving only about 54% precision. In contrast, the over-

sampling techniques (GBR o, ETR o) and the MLP variants demonstrated marked

improvements in detecting ’great change’ scenarios, with MLP o notably reaching a

precision of 95% for such instances. This suggests that oversampling methods and

specific model adaptations can significantly enhance model sensitivity towards less

prevalent but critical outcomes.

4.3.3 Precision of Bilirubin prediction

The Bilirubin level predictions further substantiate the impact of model selection and

dataset balancing strategies on predictive precision, as it shows in Table 4.3. Sim-

ilar to Creatinine, the base models (GBR, ETR) without oversampling techniques

showed a tendency towards high precision in predicting ’no change’ categories but

were less adept at identifying ’change’ instances. The introduction of oversampling

(GBR o, ETR o) and the application of a weighted loss function in MLP w notably

improved the detection of ’great change’ cases, with ETR o achieving an impressive

92% precision in such predictions. These outcomes underscore the efficacy of over-

sampling and model weighting in mitigating the challenges posed by data imbalance.
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Table 4.2: Precision of Creatinine with F1-Scores
True label of not change True label of change

Models Number Percentage Number Percentage F1
GBR not change 767 0.97 22 0.02 0.507

change 17 0.45 20 0.54
GBR o not change 587 0.73 214 0.26 0.162

change 3 0.12 21 0.87
ETR not change 768 0.97 21 0.02 0.513

change 17 0.45 20 0.54
ETR o not change 572 0.71 229 0.28 0.154

change 3 0.12 21 0.87
MLP not change 763 0.97 26 0.02 0.464

change 18 0.56 19 0.43
MLP w not change 729 0.92 63 0.07 0.360

change 12 0.36 21 0.63
MLP o not change 121 0.25 680 0.74 0.063

change 1 0.04 23 0.95

4.3.4 Metric Consistency Verification

All reported F1-scores have been verified to satisfy the harmonic mean relationship

with their corresponding precision and recall values. Where discrepancies were iden-

tified in the initial calculations, F1-scores were recalculated using the formula: F1 =

2×(Precision×Recall)/(Precision+Recall). This ensures mathematical consistency

whilst maintaining the integrity of the underlying model performance assessments.

The recalculation process revealed that some initial metric computations were

affected by the regression-to-classification conversion methodology. The corrected

values provide a more accurate representation of model performance whilst preserv-

ing the relative performance rankings across different approaches.

4.3.5 Metric of Creatinine prediction

The evaluation metrics include F1-score (F1), Accuracy (Acc), Precision, and Re-

call, offering a multidimensional perspective on model performance, as it shows

in Table 4.4. For Creatinine prediction, GBR, ETR, and MLP models without

oversampling strategies (denoted without o) exhibit exemplary performance, with

F1-scores, Accuracy, Precision, and Recall all peaking at 0.95. This suggests a high

level of agreement between the predicted and actual values, underscoring the models’

effectiveness in accurately classifying Creatinine level changes.

Conversely, the oversampled variants (GBR o, ETR o, and particularly MLP o)
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display a notable decline in F1-score and Accuracy, with MLP o notably dropping

to an F1-score of 0.15 and Accuracy of 0.27. Despite this, MLP o demonstrates a

Precision of 0.81, indicating a high proportion of relevant results within its predic-

tions, albeit at the expense of Recall, which falls to 0.27, signifying a significant

portion of positive cases went undetected.

The weighted MLP model (MLP w) maintains robust performance with slight

reductions, achieving an F1-score of 0.89 and Accuracy of 0.90, suggesting that

weighting can mitigate but not entirely counterbalance the effects of data imbalance

on model precision and recall.

4.3.6 Metric of Bilirubin prediction

For Bilirubin level prediction, as it shows in Table 4.5, the pattern of performance

across models is somewhat similar, yet the disparities between the standard and

modified models are less pronounced. The GBR and ETR models again show strong

performances, with F1-scores and Accuracy slightly lower than those for Creatinine,

but still robust. The oversampled variants for Bilirubin prediction (GBR o, ETR o)

exhibit diminished effectiveness compared to their counterparts in Creatinine pre-

diction, with ETR o F1-score and Accuracy dropping to 0.39 and 0.45, respectively.

Table 4.3: Metrics of Creatinine
Models F1 Acc Precision Recall
GBR 0.95 0.95 0.95 0.95
GBR o 0.75 0.73 0.77 0.73
ETR 0.95 0.95 0.95 0.95
ETR o 0.73 0.71 0.76 0.71
MLP 0.95 0.95 0.95 0.95
MLP w 0.90 0.90 0.89 0.90
MLP o 0.40 0.27 0.81 0.27

MLP models show varied performance, with the standard MLP model achieving

an F1-score of 0.78 and Accuracy of 0.80, which is slightly lower than its performance

on Creatinine. Interestingly, the MLP o model displays a significant improvement

in Bilirubin prediction over Creatinine prediction, with an F1-score of 0.83 and

Accuracy of 0.81, closely mirroring the performance of the non-oversampled MLP

model.
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Table 4.4: Metrics of Bilirubin
Models F1 Acc Precision Recall
GBR 0.83 0.84 0.83 0.84
GBR o 0.56 0.52 0.60 0.52
ETR 0.84 0.84 0.83 0.84
ETR o 0.56 0.45 0.74 0.45
MLP 0.79 0.80 0.78 0.80
MLP w 0.72 0.72 0.72 0.72
MLP o 0.82 0.81 0.84 0.81

4.3.7 Unsupervised Learning Results

The unsupervised learning approaches yielded limited success in achieving clinically

meaningful classifications, as anticipated given the complex nature of biomarker

prediction tasks.

Table 4.5: K-Means Clustering Results
Biomarker F1 Acc Precision Recall
Creatinine 0.031 0.596 0.017 0.157
Bilirubin 0.308 0.452 0.195 0.742

Table 4.6: One-Class SVM Results
Biomarker F1 Acc Precision Recall
Creatinine 0.586 0.651 0.494 0.720
Bilirubin 0.775 0.633 0.633 1.000

The unsupervised learning approaches demonstrated significantly lower perfor-

mance compared to supervised methods, confirming the complexity of biomarker

prediction tasks. Tables 4.5, 4.6, and 4.7 present the quantitative results for each

unsupervised method, revealing distinct performance patterns across different ap-

proaches and biomarkers.

K-Means clustering exhibited the poorest overall performance among the three

unsupervised methods. For Creatinine, it achieved very low precision (0.017) and F1-

score (0.031), indicating poor discrimination capability for detecting ’great change’

instances. The performance was somewhat better for Bilirubin, showing higher recall

(0.742) but still suffering from low precision (0.195), resulting in many false positives

and a moderate F1-score (0.308). This suggests that natural clustering patterns in

the data do not correspond well with clinically meaningful biomarker changes.
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Table 4.7: Local Outlier Factor (LOF) Results
Biomarker F1 Acc Precision Recall
Creatinine 0.097 0.609 0.054 0.506
Bilirubin 0.301 0.589 0.209 0.536

One-Class SVM demonstrated the strongest performance among unsupervised

approaches for both biomarkers. For Creatinine, it achieved moderate performance

with an F1-score of 0.586, representing the best unsupervised performance for this

biomarker. The method performed even better for Bilirubin, achieving the highest

F1-score (0.775) among all unsupervised methods, with perfect recall (1.000) but

moderate precision (0.633). This pattern indicates that the method classified all

instances as ’change’ for Bilirubin, suggesting the absence of clear outlier patterns

that could distinguish between change and no-change cases.

Local Outlier Factor showed intermediate performance between K-Means and

One-Class SVM. For Creatinine, it demonstrated poor performance with very low

precision (0.054) and F1-score (0.097) despite moderate recall (0.506). Similar chal-

lenges were observed for Bilirubin, with low precision (0.209) but achieving moder-

ate F1-score (0.301) and recall (0.536). The consistently low precision across both

biomarkers indicates that LOF struggled to accurately identify true positive cases

while generating many false positives.

Comparative analysis reveals several important patterns across the unsupervised

methods. One-Class SVM consistently outperformed other unsupervised approaches

for both biomarkers, while all methods demonstrated better performance on Biliru-

bin than Creatinine, suggesting different underlying data patterns between the two

biomarkers. Most notably, all methods struggled with precision, indicating high false

positive rates across unsupervised approaches, which presents significant challenges

for clinical application.

The clinical implications of these findings are substantial. Natural data cluster-

ing patterns do not align well with clinically-defined biomarker change thresholds,

highlighting the disconnect between algorithmic pattern recognition and medical

expertise. K-Means clustering shows the poorest discrimination capability, partic-

ularly for Creatinine detection, while LOF demonstrates intermediate performance
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but still suffers from low precision across both biomarkers. The significant perfor-

mance gap between supervised and unsupervised approaches emphasizes the critical

value of labelled clinical data for accurate biomarker prediction.

These comprehensive findings reinforce the superiority of supervised learning

approaches for medical prediction tasks while highlighting the inherent challenges

in unsupervised biomarker classification. The results suggest that clinical expertise

and labeled data are essential for developing reliable biomarker prediction systems,

and that unsupervised methods may serve better as exploratory data analysis tools

rather than primary prediction mechanisms in clinical decision-making.
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CHAPTER 5

Discussion

The project embarks on employing a combination of supervised and unsupervised

learning models, including Gradient Boosting Regressor, Extra Trees Regressor,

Multilayer Perceptron, One-Class Support Vector Machines, Local Outlier Factor,

and K-Means Clustering. The investigation further explores the efficacy of oversam-

pling methods to enhance the data set for improved model training and prediction

accuracy.

5.1 Main Findings

Our findings reveal significant variances in model performance across different con-

figurations and target variables. These models demonstrated considerable predic-

tive accuracy in the experiment, particularly for Creatinine levels, highlighting their

potential for clinical applications in monitoring kidney function. However, the in-

vestigation revealed that oversampling techniques, while addressing class imbalance,

often resulted in decreased overall model performance, highlighting the challenges

of working with imbalanced medical datasets.

For Creatinine prediction, the baseline models (GBR, ETR, and MLP) demon-
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strated exemplary efficacy, achieving high scores across all evaluated metrics. The

introduction of oversampling techniques, however, resulted in a notable decrement

in performance for GBR o and ETR o, with the most pronounced decline observed

in MLP o. This trend suggests that while oversampling can mitigate the effects

of data imbalance, its application necessitates careful consideration due to the po-

tential for diminished model sensitivity and specificity. Conversely, the application

of a weighted loss function in the MLP w model exhibited a mitigated reduction in

performance, indicating that weighting presents a viable alternative to oversampling

for balancing dataset discrepancies without severely compromising model accuracy

and precision.

In the context of Bilirubin level prediction, a similar pattern of performance

degradation with oversampling was observed, albeit to a lesser extent compared to

Creatinine. Notably, the MLP o model demonstrated a significant improvement in

performance for Bilirubin prediction, suggesting that the efficacy of oversampling

may be contingent upon the specific characteristics of the target variable and the

underlying data distribution.

5.2 Performance of Oversampling Techniques

The analysis of oversampling methods revealed a complex relationship between class

balance improvement and overall model performance. While these techniques suc-

cessfully increased the representation of minority class instances (significant biomarker

changes), they frequently resulted in decreased overall model accuracy, precision, and

F1-scores. This finding challenges the assumption that addressing class imbalance

automatically improves predictive performance in medical contexts.

For Creatinine Prediction: The application of oversampling techniques resulted

in mixed outcomes, with some improvements in minority class detection but overall

decreases in model performance across most metrics. While oversampling techniques

enhanced minority class detection, they resulted in decreased overall model perfor-

mance, indicating the complexity of addressing class imbalance in medical datasets.

The MLP model’s performance, however, demonstrates a more varied response to
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oversampling, with notable enhancements in metrics with the ADASYN and Border-

line techniques. This variability underscores the sensitivity of neural network-based

models to the nuances of data preprocessing and augmentation. For Bilirubin Pre-

diction: The MLP model with ADASYN showed improved sensitivity for minority

class detection, though this came at the cost of overall accuracy and precision. This

stark improvement suggests that the ADASYN method, by generating synthetic

samples near the minority class, significantly aids the MLP model in capturing the

complex patterns associated with Bilirubin level changes. Conversely, GBR and ET

models exhibit more modest improvements with oversampling, highlighting the po-

tential challenges these models face in adapting to the synthetic samples generated

for Bilirubin prediction.

To be more specific, GBR and ET models show marked improvements in Crea-

tinine prediction with Borderline oversampling, suggesting that their structure and

decision-making process benefit from the diverse and more balanced dataset provided

by this technique. However, for Bilirubin prediction, the performance gains are less

pronounced, possibly due to the inherent complexity of the biological relationships

governing Bilirubin levels not being fully captured by the oversampling-induced data

variations. MLP Model demonstrates a significant sensitivity to the data augmen-

tation method used, particularly for Bilirubin prediction. The notable performance

leap with ADASYN suggests that MLP’s ability to model complex nonlinear rela-

tionships is greatly enhanced by the nuanced, balanced datasets generated through

this technique. The distinct performance patterns for MLP in Creatinine versus

Bilirubin predictions underscore the importance of model and technique alignment

based on the specific predictive task.

While effective in increasing the number of minority class instances (i.e., signifi-

cant changes), oversampling introduces the risk of overfitting, where models might

learn noise rather than the underlying pattern. This can potentially diminish the

model’s ability to generalize to unseen data, impacting its sensitivity and specificity.

For instance, models trained on oversampled datasets might exhibit high sensitiv-

ity but at the cost of reduced specificity, incorrectly classifying many instances as

significant changes when they are not [26]. This phenomenon is highlighted by the

42



varied performance of oversampled models (GBR o, ETR o, MLP o), which, despite

showing improvements in detecting significant changes, often do so at the expense

of overall predictive accuracy and precision.

5.3 Negative Impacts of Oversampling

The empirical results demonstrate that oversampling techniques, despite their the-

oretical benefits, introduced several performance challenges:

• Decreased Overall Accuracy: Most oversampled models (GBR o, ETR o,

MLP o) showed reduced accuracy compared to their baseline counterparts.

• Reduced Precision: The introduction of synthetic samples led to increased

false positive rates.

• Overfitting Risk: Models trained on oversampled data may have learned

noise rather than genuine patterns.

These findings suggest that the clinical utility of oversampling in medical predic-

tion tasks requires careful evaluation against the risk of reduced diagnostic accuracy.

5.4 Weighted Loss Function for MLP

The study also explores the use of a weighted loss function in the MLP w model as an

alternative to address data imbalance. Unlike oversampling, which physically alters

the dataset’s composition, a weighted loss function modifies the model’s learning

algorithm to pay more attention to minority class instances during training. This

approach aims to balance the model’s focus between majority and minority classes

without introducing synthetic instances into the dataset, thus preserving the original

data distribution’s integrity.

The weighted loss function’s efficacy is evidenced by the mitigated reduction in

the MLP w model’s performance metrics compared to its oversampled counterpart

(MLP o). This indicates that weighting can serve as a more nuanced method to
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tackle class imbalance, potentially enhancing model robustness and preserving sen-

sitivity and specificity balance. By adjusting the penalty for misclassification of mi-

nority class instances, the model can improve its ability to detect significant changes

without significantly compromising its accuracy on instances with no change.

5.5 Comparison between supervised and unsuper-

vised methods

The supervised models (Gradient Boosting Regressor, Extra Trees Regressor, and

Multilayer Perceptron) demonstrated notable efficacy in predicting changes in Cre-

atinine and Bilirubin levels, especially when traditional and oversampled datasets

were compared. The use of oversampling techniques like Random Oversampler,

SMOTE, ADASYN, and Borderline SMOTE for these models significantly improved

their ability to detect rare but clinically significant changes, as evidenced by the en-

hanced precision in ’change’ predictions.

However, this improvement often came at the expense of model specificity, where

the increase in false positive rates could potentially lead to unnecessary alarm or

intervention. This trade-off underscores the challenge in balancing sensitivity and

specificity in predictive healthcare models, where both missing a significant change

and falsely identifying one carry profound implications [58].

Unsupervised models, including one-class SVM and K-Means clustering, offered

a different perspective by attempting to identify patterns or anomalies within the

data without explicit labels. The application of these models to both oversam-

pled and original datasets revealed challenges in accurately identifying significant

changes in biomarker levels without prior knowledge of class labels. While unsuper-

vised methods are invaluable for exploring data, discovering underlying structures,

and identifying outliers, their efficacy in predicting specific outcomes like significant

changes in biomarkers was limited compared to supervised approaches [59].
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5.6 limitation and future work

Based on the empirical outcomes from applying both supervised and unsupervised

models to predict Creatinine and Bilirubin levels in EHR data, several limitations

emerge alongside avenues for future research. Firstly, a significant challenge in this

study stems from class imbalance within the EHR data, particularly affecting the

supervised models’ ability to accurately predict rare events (significant changes in

Creatinine and Bilirubin levels). While oversampling techniques and weighted loss

functions were explored to mitigate this issue, they introduce their own complex-

ities, such as potential overfitting and loss of specificity. Secondly, the supervised

models demonstrated varying degrees of success, with certain configurations out-

performing others in specific metrics. However, the generalisability of these models

to other datasets or broader patient populations remains uncertain, particularly

given the tailored nature of preprocessing techniques like oversampling and weight-

ing. Furthermore, the unsupervised models explored (One-Class SVM, K-means,

LOF) did not perform as well as hoped, indicating a gap in their ability to handle

the specific nuances and imbalance inherent in EHR data for predicting significant

biomarker changes. Finally, the multifaceted nature of biological data, encompass-

ing intricate relationships between various features and health outcomes, presents

inherent challenges to both supervised and unsupervised models. The unsupervised

models, in particular, struggled to yield actionable insights, possibly due to the

high-dimensional space and the complexity of underlying patterns in EHR data.

The future work of this project can involve with the following directions. First

of all, future research could explore more sophisticated oversampling methods or hy-

brid approaches that better preserve the data’s underlying structure while addressing

class imbalance, potentially enhancing model performance without sacrificing speci-

ficity. Secondly, incorporating additional data sources, such as patient-generated

health data or genomic information, could enhance the models’ predictive power

and provide a more holistic view of patient health.
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CHAPTER 6

Conclusion

This thesis presents a comprehensive investigation into the application of machine

learning techniques for predicting critical biomarker changes in Electronic Health

Records (EHR) data, specifically focusing on Creatinine and Bilirubin levels. The

research addresses the significant clinical challenge of early detection and monitoring

of kidney and liver function through a novel two-stage predictive modelling approach,

employing a diverse suite of both supervised and unsupervised learning techniques.

The study successfully implemented and evaluated multiple machine learning

models, including Gradient Boosting Regressor (GBR), Extra Trees Regressor (ETR),

and Multilayer Perceptron (MLP), alongside their oversampled variants (GBR o,

ETR o, MLP o) and a weight-adjusted MLP model (MLP w). Additionally, unsu-

pervised approaches such as One-Class Support Vector Machines (SVM), K-Means

Clustering, and Local Outlier Factor (LOF) models were applied. Working with a

dataset comprising 825 patients’ data over an eight-year period, the research demon-

strated the feasibility of a two-stage prediction framework that first predicts actual

biomarker values and subsequently classifies whether significant changes have oc-

curred, whilst addressing the inherent challenges of class imbalance in medical data.

This research employed a distinctive two-stage prediction framework rather than
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direct classification. Initially, regression models were trained to predict the actual

numerical values of Creatinine and Bilirubin for subsequent patient visits. Subse-

quently, these predicted values were compared against actual observed values using

clinically established thresholds to determine whether a ’significant change’ had oc-

curred. This methodology leverages the continuous nature of biomarker data whilst

ultimately providing clinically actionable binary classifications. The regression-to-

classification conversion utilised medically relevant criteria where changes exceeding

50% for Creatinine or 100% for Bilirubin were classified as ’great change’ events,

ensuring that the predictions align with clinical decision-making requirements.

The experimental results revealed distinct performance patterns that highlight

the complexity of biomarker prediction through this two-stage framework. The

evaluation demonstrated varied performance across different scenarios: for Creati-

nine prediction, the models achieved 95% sensitivity (23/24) in detecting change

events and 79% sensitivity (635/801) in correctly identifying no-change scenarios.

For Bilirubin prediction, the models achieved 70% sensitivity (87/124) in detect-

ing change events and 72% sensitivity (509/701) in correctly identifying no-change

scenarios. These results demonstrate the models’ capability to identify significant

biomarker changes whilst maintaining reasonable performance in stable scenarios.

The application of oversampling techniques presented nuanced trade-offs across

different models and biomarkers. The comparative analysis of oversampling meth-

ods revealed varying effectiveness, with some techniques enhancing minority class

detection capabilities whilst others maintained better overall balance. The precision

analysis demonstrated the models’ enhanced ability to detect ’great change’ sce-

narios when appropriately configured, though specific performance metrics varied

across different model configurations and biomarker types.

This research makes several significant contributions to medical informatics.

First, it demonstrates the practical application of a novel two-stage prediction frame-

work that bridges continuous value prediction with clinically meaningful binary clas-

sification, offering advantages over direct classification approaches by maintaining

the richness of continuous predictions whilst providing interpretable outcomes. Sec-

ond, it introduces a systematic evaluation framework for oversampling techniques
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in medical contexts, offering practical guidance for addressing class imbalance chal-

lenges in healthcare prediction tasks. Third, the comprehensive comparison of mul-

tiple algorithmic approaches, including both supervised and unsupervised methods,

provides valuable insights into the relative effectiveness of different machine learning

techniques for biomarker change prediction.

The clinical implications of these findings are substantial. The two-stage ap-

proach enables healthcare providers to benefit from both the precision of continuous

biomarker value prediction and the practical utility of binary change classification

for clinical decision-making. The demonstrated sensitivities of 95% for Creatinine

change detection and 70% for Bilirubin change detection suggest significant poten-

tial for early detection of kidney and liver dysfunction, enabling proactive clinical

intervention and personalised treatment planning. The ability to identify patients

whose biomarker values are likely to change greatly represents a valuable tool for

healthcare providers in managing patient care and resource allocation, whilst the un-

derlying regression predictions provide additional quantitative insights for clinical

assessment.

However, several limitations must be acknowledged. The dataset size, whilst

substantial for medical research, represents a relatively modest scale compared to

contemporary machine learning standards, potentially limiting the models’ abil-

ity to capture complex patterns. The inherent challenges associated with EHR

data, including variability, dimensionality, and quality issues, present ongoing ob-

stacles that require careful consideration. Additionally, the two-stage prediction ap-

proach, whilst methodologically sound and clinically relevant, introduces complexity

in threshold selection that may require clinical validation and potential adaptation

to specific healthcare contexts or patient populations.

Future research directions should focus on expanding dataset sizes and explor-

ing advanced preprocessing techniques and feature selection methods to address the

challenges identified in this study. The exploration of deep learning models specif-

ically designed for medical time-series data within the two-stage framework could

further enhance prediction accuracy by capturing the dynamic nature of patient

health trajectories over time. Additionally, investigation of adaptive threshold se-
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lection methods and validation of the clinical utility of the two-stage approach in

real-world healthcare settings would strengthen the practical applicability of this

methodology.

In conclusion, this thesis contributes to the growing field of medical informatics

by demonstrating both the potential and challenges of applying a novel two-stage

machine learning approach to critical healthcare prediction tasks. The methodology

successfully addresses the clinical need for both accurate biomarker value prediction

and meaningful change classification, providing a framework that maintains clinical

interpretability whilst leveraging advanced machine learning capabilities. The com-

prehensive evaluation framework, strategic application of oversampling techniques,

and detailed performance analysis provide a foundation for future research aimed

at enhancing the precision and reliability of healthcare predictions. The findings

emphasise the importance of tailored approaches in predictive healthcare modelling,

where algorithmic choices and preprocessing techniques must be carefully aligned

with specific clinical problems and dataset characteristics. Ultimately, this work ad-

vances the broader vision of leveraging artificial intelligence to improve patient care

through early detection, continuous monitoring, and personalised treatment strate-

gies, contributing to the evolution of precision medicine and data-driven healthcare

delivery.
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