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Morality, Social Identity and Environmentally Conscious Economic Behaviour: Advancing our 

Understanding of Green Consumption and Investment. 

Lucy Victoria Naga 

 

Abstract 

The neoclassical framework of independent, self-interested, utility-maximising agents often fails to 

adequately explain environmentally sustainable behaviours. This thesis explores how integrating key 

aspects of human nature — such as morality and social identity — into economic models can better 

capture the drivers of sustainable decision-making.   

 

In the first two papers, I develop theoretical models to examine the influence of Kantian morality on 

consumer and investor behaviour. The first paper investigates consumer behaviour within an optimal 

taxation framework. It demonstrates that in a homogeneous society of perfectly moral agents, 

environmental externalities are fully internalised, eliminating the need for corrective taxation. However, 

heterogeneity in preferences and income can reduce the degree of internalisation, necessitating 

government intervention. The second paper analyses investor behaviour using a two-period asset 

pricing model. It shows that in an economy composed entirely of Kantian investors, the price premium 

on polluting assets equals to social cost of their externalities. When a proportion of investors deviate 

from Kantian principles to optimise in a self-interested manner, moral investors partially compensate 

for excessive investment in polluting assets but fail to achieve a Pareto optimal outcome.  

 

The final paper presents an empirical study of household preferences for renewable heating systems, 

exploring the role of latent environmental attitudes, energy attitudes, and social identity in shaping 

willingness to pay for heating system attributes. The estimation results reveal that pro-environmental 

attitudes, energy-saving attitudes, and coal mining identity significantly influence how households 

prioritise the different social benefits arising from the heating systems. Whilst predicted effects of latent 

variables on sensitivity to attributes are of the expected sign, the effects on willingness to pay are limited 

due to cost sensitivity. Investment cost emerges as a critical factor in the attitude-behaviour gap. 
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CHAPTER 0: Motivation 

Lucy Naga 

 

Within economics, the environmental dilemma can be represented in the form of two key market 

failures. Firstly, the degradation of the environment is a classic example of an externality. Externalities 

arise when the social costs and benefits of an action do not match the private costs and benefits that are 

accounted for by the decision-makers. Within the environmental dilemma, decision-makers fail to 

account for the external effects of their actions on the environment and on the well-being of others. This 

results in low market prices, overconsumption of harmful goods, and excessive environmental damage. 

Secondly, the failure to adequately protect the environment is an example of a public goods dilemma. 

Everyone stands to gain from a healthy environment. These gains are non-excludible and non-rivalrous. 

No one can be prevented from deriving benefits from environmental quality, and these benefits are 

independent of the number of others also benefiting from it. This allows for an individual to free ride 

on others’ contributions to environmental quality, making it individually irrational for them to 

contribute. These two market failures present a key challenge for international and national policy to 

encourage environmentally conscientious behaviour by firms, investors, and consumers.  

 

Despite the pessimism emanating from the economics discipline, considerable hope can be found when 

we look to human nature and the intrinsic motivations behind human action. A consumer survey by 

Deloitte (2023) highlighted that a significant proportion of consumers purposefully engage in 

sustainable behaviours. They find that 76% of people invest additional effort to recycle their waste, 

42% of people pay more for durable or long-lasting products, and 36% of people spend time fixing or 

repairing items rather than replacing them with equivalent items. Meanwhile, a record $649 billion 

flowed into Environmental, Social and Governance funds worldwide in 2021, up from $542 billion and 

$285 billion in 2020 and 2019 (Reuters, 2021). Each of these behaviours contradicts conventional 

economic theory. Here, many respondents are incurring additional private costs to the benefit of society 

at large, even when they derive negligible material benefits from their own contributions. When 

questioned why they are environmentally sustainable, many people refer to the value they place upon 

the environment and on the wellbeing of others, or to wanting to do their part or to do the right thing. 

This suggests that the nexus of care expands beyond the individual themselves and that the consideration 

of actions expands beyond expected consequences.  

 

Social psychology theories of behaviour such as the Behavioural Reasoning Theory (BRT, Westaby, 

2005; Claudy et al., 2013), and the Value-Belief-Norm framework (VBN, Stern et al., 1995, 1999) 

emphasise the key role of social structures, worldviews, values, beliefs, and norms. Our experiences 

and our social environment shape how we see the world and what holds value, whilst social rules and 
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moral norms determine codes of conduct and set ethical standards. Many economic behaviours are 

performed in this rich setting and thus are guided by our social identity and moral ideals.  

 

DEFRA’s 2021 (Department for Environment Food and Rural Affairs, 2021, Section 3.2 'Behavioural 

and Social Science') Research and Innovation Report highlighted the importance of this research agenda 

by posing the following questions, ‘How can we encourage or incentivise behavioural change among 

businesses, communities, and individuals to achieve positive outcomes for the environment? What 

models of societal change might be used to underpin these behaviour-change initiatives?’. 

Understanding human behaviour is key to designing effective policies. Policies impose external 

incentives aiming to bring the competitive equilibrium of the economy closer to the Pareto optimal 

allocation where social welfare is optimised; however, the influence of external incentives is contingent 

upon the extant internal motivations of humans (Frey and Stutzer, 2006). To fully understand human 

behaviour it is necessary to deviate from Edgeworth’s ‘rational fool’ (Sen, 1977), taking on the mantle 

from Adam Smith (1759, Part 3, Ch1, p 129) to ‘thoroughly enter into all the passions and motives 

which influenced it’. 

 

Within my thesis, I explore how we can model environmentally sustainable behaviours by drawing on 

the moral and social motivations of economic agents. Within my first two papers, I focus on the role of 

morality, modelling economic agents to optimise their behaviour according to Kant’s (1785, as in 

Koorsgaard, 2012) categorical imperative, 

 

“Act only according to that maxim whereby you can, at the same time, will that it should become a 

universal moral law”.  

(Kant, 1785, 4:421 as in Koorsgaard 2012, p34). 

 

This can be interpreted as setting out a logical relation that one should only engage in an action if one 

can consistently wish that others do the same thing if they were in the same situation. Thus, rather than 

seek to maximise their own gain assuming ceteris paribus, the Kantian agent would seek to do the ‘right 

thing’, whereby they consider the hypothetical outcome of everyone doing the same as themselves. 

Throughout my thesis, I employ Roemer’s (2010) formalisation of Kantian morality, whereby the ‘same 

maxim’ is interpreted as the same deviation from current consumption or investment. This interpretation 

facilitates greater flexibility and allows for investigation into the effects of heterogeneity. 

 

Within my first paper, I employ Roemer’s (2010) formalisation of Kantian moral preferences to model 

how green consumers optimise their consumption of dirty goods with negative consumption 

externalities. I incorporate these enriched consumer preferences into the Ramsey model of second-best 

commodity taxation, introducing both clean and dirty goods, to investigate how optimal consumption 
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taxation policy changes in the presence of moral consumers. I investigate the case of both homogeneous 

and heterogeneous moral agents. My results demonstrate that when consumers with homogeneous 

preferences and incomes optimise in a Kantian moral manner, they voluntarily internalise 

environmental externalities, removing the need for Pigouvian taxation and resulting in the Ramsey Rule 

holding. Furthermore, I find that morality increases the inelasticity of demand for dirty goods, resulting 

in a higher optimal Ramsey taxation for dirty goods relative to clean goods. When I expand my model 

to consider moral agents with heterogeneous preferences and incomes, I find that the externality is only 

partially internalised. The residual externality and hence the optimal Pigouvian taxation depends upon 

the variance of preferences and the correlation between preferences and income.  

 

Within my second paper, I employ a similar framework of moral optimisation to model how green 

investors optimise their portfolios of clean and dirty assets. I build a two-period asset pricing model and 

derive the asset pricing relation (1) under Pareto optimality, (2) in a competitive non-Kantian economy, 

(3) in a competitive Kantian economy, (4) in a competitive partial Kantian economy with exclusive 

Kantian investors and non-Kantian investors, (5) in a competitive partial Kantian economy with 

inclusive Kantian investors and non-Kantian investors. Under Pareto optimality, the return on dirty 

assets must be higher to compensate for the marginal social costs arising from the dirty firm’s pollution 

externalities. This pollution premium increases the costs of production for the dirty firm and thus 

reduces pollution to optimal levels. In a competitive non-Kantian economy, individual investors do not 

take into account pollution externalities, and thus the return is equalised across clean and dirty assets, 

resulting in over-investment in the dirty firm and sub-optimally high levels of pollution.  

 

In a competitive Kantian economy, each Kantian investor considers the pollution damages they would 

suffer if all investors were to increase their investment in the dirty firm and thus seeks to reduce their 

own investment to reduce this cost. In each of the partially Kantian economies, non-Kantian investors 

would invest solely in dirty assets until their return is equalised with clean assets. Meanwhile, when 

Kantians are exclusive, they would take into account the behaviour of non-Kantians and consider the 

pollution damages they would suffer given current levels of non-Kantian investment if only Kantian 

agents increased their investment. We find that in a partially exclusive Kantian economy, the pollution 

premium declines and the overall level of dirty investment rises with the proportion of non-Kantians. 

When Kantians are inclusive, they would consider the pollution damages if both Kantians and non-

Kantians were to increase their investment, even though non-Kantians optimise differently. We find 

that in a partially inclusive Kantian economy, the same trends will hold as in the partially exclusive 

Kantian economy. We find that inclusive Kantians invest more in dirty assets than exclusive Kantians. 

We analytically derive our results and run simulations to demonstrate how Kantian and non-Kantian 

portfolios change as the proportion of non-Kantians in the economy increases.  
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Within my third paper, I conduct a discrete choice experiment to investigate household stated 

preferences for renewable heating technologies and the behavioural determinants of household 

investment decisions. This study is part of a project on geothermal energy from disused mines, where 

we are investigating household perception and willingness to pay for new technologies. We conducted 

a household survey within which we conducted our choice experiment and collected behavioural data 

on attitudes and perceptions as well as socio-demographic data. The choice experiment established the 

hypothetical scenario of purchasing a heating system for a new property, it included four renewable 

heating technologies: geothermal district heating, hydrogen boiler, solar electric boiler, and air source 

heat pump. Each technology was described by five attributes: investment cost, monthly cost, 

replacement period, annual CO2 emissions, and job creation.  

 

I use data from this survey to analyse how latent variables of pro-environmental attitudes, energy-saving 

attitudes, and coal-mining social identity influence household stated preferences for renewable heating 

systems. I employ an integrated choice latent variable (ICLV) model to investigate how these latent 

variables influence sensitivity towards different heating system attributes, how this translates into 

willingness to pay, and how such attitudes may influence responsiveness to policy changes. I find that 

both pro-environmental and energy-saving attitudes increase sensitivity towards CO2 emissions. I also 

find that those who are more pro-environmental are less sensitive to cost, and thus overall have a higher 

willingness to pay for cleaner heating systems. On the other hand, those who are more energy-conscious 

have a higher sensitivity to cost, and thus overall do not have a higher willingness to pay for cleaner 

heating systems. Meanwhile, those who identify more strongly with the coal mining heritage of the 

region are more likely to choose geothermal heating systems and have a higher sensitivity to job 

creation, but their heightened sensitivity to cost means they are not willing to pay more for heating 

systems that create more jobs. Our policy simulations demonstrate that if a carbon price is introduced, 

demand will shift towards cleaner heating systems, with demand being more elastic for energy-

conscious households and less elastic for pro-environmental households. 

 

Overall, this thesis demonstrates the power of intrinsic motivation in driving sustainable behaviours. It 

demonstrates that conventional economics is too pessimistic about human nature and that morality, 

social norms, and cultural identity play important roles in the decision-making of economic agents. This 

highlights the need for policy to consider how conventional economic incentives interact with intrinsic 

motivations to ensure that they crowd in such motivations rather than crowding them out.  
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CHAPTER 1: Kantian Morality and Optimal Second-Best Commodity Taxation 

Lucy Naga*, Thomas Renström, Laura Marsiliani 

Abstract 

When investigating optimal taxation in the presence of green consumerism, economists largely focus 

on corrective Pigouvian taxation within partial equilibrium models in a first-best world. Depending 

upon the operationalisation of green preferences, studies find that optimal corrective Pigouvian taxes 

reduce or stay constant. In this paper, we build upon the Ramsey optimal commodity taxation structure 

(Ramsey, 1927) in a second-best world to investigate how moral green preferences influence optimal 

Pigouvian corrective taxation and Ramsey revenue-raising taxation for goods with environmental 

externalities. We employ Roemer’s (2010) formalisation of Kantian moral preferences to model how 

green consumers optimise their consumption of dirty goods. We incorporate these enriched consumer 

preferences within the Ramsey model, introducing both dirty and clean goods. We investigate the case 

of both homogeneous and heterogeneous moral agents. Our results demonstrate that when consumers 

with homogeneous preferences and incomes optimise in a Kantian moral manner, consumers 

voluntarily internalise environmental externalities, removing the need for Pigouvian taxation and 

resulting in the Ramsey Rule holding. Furthermore, morality reduces the elasticity of demand for dirty 

goods, resulting in a higher optimal Ramsey taxation for dirty goods relative to clean goods. When we 

expand our model to consider moral agents with heterogeneous preferences and incomes, we find that 

the externality is only partially internalised. The residual externality and hence the optimal Pigouvian 

taxation depends upon the variance of preferences and the correlation between preferences and income. 
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1.1 Introduction and Context 

‘Every economic action takes place in the framework of a moral or ethics’ 

(Laffont, 1975, p.431) 

 

When consumption behaviour exhibits externalities, ethical enquiry is a relevant consideration for 

economic agents. Ethical economic agents may apply moral principles to evaluate the ‘right’ action 

given the available alternatives, payoffs, and consequent externalities. Philosophy provides a plethora 

of moral principles. Economists tend to adopt egoistic consequentialism, whereby agents seek to 

maximise their own material gain. However, within a deeply interconnected and interdependent society, 

a richer concept of ‘rightness’ is necessary. On the one hand, egoistic consequentialism may be 

expanded to utilitarianism, whereby a universal, altruistic form of consequentialism is applied to 

maximise the material payoff for the greatest number of agents. However, this demands considerable 

knowledge of the welfare of others and may be criticised as asking too much. On the other hand, 

consequentialism may be abandoned for deontological moral principles, whereby agents employ moral 

rules to guide their behaviour. Kant’s categorical imperative provides a golden rule for evaluating 

behaviour. It states that one should,  

 

“Act only according to that maxim whereby you can, at the same time, will that it should become a 

universal law”. 

(Kant, 1785, 4:421 as in Koorsgaard, 2012, p34) 

 

This can be interpreted as setting out a logical relation that an individual should only engage in a 

behaviour if they can consistently wish that all others do the same thing if they were in a similar 

situation. Kantian morality has been employed within the context of economics to explain voluntary 

contributions to public goods (Laffont, 1975; Brekke et al., 2003; Roemer, 2010) and may be applied 

to broader contexts to explain voluntary internalisation of external effects. Within the framework of 

Kantian reasoning, economic agents are modelled to internalise the externalities arising from their own 

actions by seeking to reduce the externalities imposed upon them by other agents. This echoes the 

Christian doctrine, ‘do to others what you would have them do to you’ (Matthew 7:12, New 

International Version). 

 

In the context of environmental economics, moral preferences can be used to model the behaviour of 

green consumers. Green consumers have an awareness of the environmental consequences of their 

consumption decisions and actively seek to internalise the negative environmental externalities which 

arise from production processes, consumer usage and final disposal methods (Ottman, 1992). 

Neoclassical models of consumer behaviour adopt egoistic preferences, failing to capture patterns of 
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green consumerism since agents disregard the external effects of their actions. Economists have sought 

to model green consumerism in various ways. Ambec and DeDonder (2022) employ Andreoni’s (1989, 

1990) concept of a ‘warm glow’, modelling green consumers to derive a private benefit from 

contributing to environmental sustainability. This warm glow could stem from a personal desire to 

contribute to the environment. It could be embedded in social preferences such as altruism (Andreoni, 

1990), network effects (Brécard, 2013; Nyborg, 2020), social norms (Nyborg, 2018; Dasgupta et al., 

2016), or social reputation (Rege, 2004; Kassab, 2020), and could be influenced by moral convictions 

to do the ‘right thing’ (Laffont, 1975; Brekke et al., 2003; Roemer, 2010; Alger and Weibull, 2013).   

 

Within this paper, we will focus on the Kantian moral foundations of green consumerism. Laffont 

(1975) introduced Kantian morality into the economics literature, employing Kant’s categorical 

imperative to explain why beachgoers do not leave their beer cans on the beach. The moral individual 

contemplates what the right behaviour is by considering how they would like it if all other individuals 

did likewise. Whilst leaving their own beer can on the beach causes them negligible aesthetic costs, if 

all others did the same, the cost would be significant, thereby outweighing the cost of the effort 

employed to dispose of their beer can. Thus, the Kantian would contribute to the public good of a clean 

beach and dispose of their beer can. This form of reasoning is relevant whenever externalities arise from 

an individual’s actions. It is particularly pertinent in the context of atmospheric externalities, where the 

individual’s action has a negligible effect. For, in this case, even when the individual cares about the 

environment or cares about the wellbeing of others, their action does not pose sufficient costs upon 

these ends to motivate a behaviour change. It is also particularly relevant in the context of unobserved 

externalities, whereby an agent’s action or the externalities arising from it are not common knowledge, 

for in this case social norms and reputation would have weaker influences upon agent behaviour. 

Henceforth, the internal moral motivations of agents are an important consideration in the context of 

green consumerism, whereby individual consumers have negligible and potentially unobservable 

effects on the environment. 

 

Alger and Weibull (2013, 2016) investigate whether the theory of Kantian motivation is evolutionarily 

conceivable for economic agents. They employ evolutionary game theory based on survival-of-the-

fittest logic, modelling agent-agent interactions whereby preferences guide the behaviour of agents, 

behaviour generates fitness payoffs, and fitness payoffs determine the distribution of preferences for 

future generations. They argue that a degree of Kantian morality can be sustained in the general 

population if assortative matching is incorporated into the model. Assortative matching allows for 

homophilic tendencies to increase the likelihood of individuals interacting with others of the same type. 

Henceforth, whilst neoclassical Nashian agents would outperform Kantian agents in one-on-one 

interactions through free-riding off the Kantian’s efforts, Kantian-Kantian interactions bring 

sufficiently higher payoffs to sustain the survival of such moral preferences. 
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Miettinen et al. (2020) and Van Leeuwen and Alger (2021) empirically investigate whether individuals 

display Kantian preferences. They run a series of experimental games to explore how well different 

formulations of utility functions represent individual behaviour within strategic interactions. Both 

papers find evidence of moral behaviour in conjunction with both selfish and other-regarding or social 

preferences. They find that including morality improved how well their model fits observed behavioural 

patterns. 

 

Within the theoretical literature, economists have integrated moral preferences into the utility function 

of economic agents in several different ways. For homogeneous agents, Kantian moral preferences lead 

identical individuals to consider their utility given the hypothetical scenario that all other agents perform 

the same action as themselves. A fully Kantian consumer would therefore consume the quantity that 

they would be happy for all individuals to consume. A partially Kantian agent might consider their 

material and moral preferences separately, trading off the material gain from higher consumption of a 

dirty good against the moral gain from lower consumption (Alger and Weibull, 2013, 2016; Eichner 

and Pethig, 2022; Ayoubi and Thurm, 2020). Alternatively, a partially Kantian agent may relate 

morality to a self-image payoff, whereby they derive positive utility from consuming close to their 

Kantian moral ideal level, but they trade this self-image payoff against other material payoffs within 

their utility function (Brekke et al., 2003). For heterogeneous agents, the Kantian hypothetical of all 

agents doing the same thing changes since different incomes, preferences and circumstances result in 

different optimum consumption levels. Therefore, Roemer (2010, 2015, 2019) suggests that a fully 

Kantian agent would contemplate all others deviating from their current action by the same proportion, 

optimising consumption at the point where no one would wish for everyone to deviate. A partially 

Kantian agent may calculate their moral utility through this method and trade it off against material 

utility or derive more nuanced self-image payoffs from consuming close to this morally ideal level 

(Long, 2021).  

 

Given the negligible impact that an individual consumer has on the environment, consequentialist 

altruism and environmentalism fail to sufficiently motivate clean behaviours. Furthermore, since many 

clean behaviours are performed privately, thus are unobserved, social norms and reputation fail to 

comprehensively capture motivation. This suggests that there is some intrinsic, moral motivation behind 

green consumerism that is intricately linked to the positive contribution made to the environment and 

society.  

 

Within this paper, we focus on how optimal taxes can be set on both clean and dirty goods when 

consumers optimise their consumption of dirty goods according to Roemer's (2010, 2015) conception 

of Kantian morality. Roemer’s formalisation allows us to model agents with heterogeneous preferences 
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and incomes, facilitating investigation into how different patterns of diversity influence optimal tax 

system design. To do this we employ and expand upon the Ramsey model of optimal second-best 

commodity taxation (Ramsey, 1927). 

 

The Ramsey model of optimal commodity taxation (Ramsey, 1927; Myles, 1995, ch4) presents a 

general equilibrium model of taxation whereby the government must raise a given revenue requirement 

through second-best distortionary commodity taxes. In the baseline Ramsey model, identical consumers 

are modelled through a representative household. Optimal taxes raise the required revenue at the lowest 

cost to social welfare, maximising efficiency. This leads to the Ramsey Rule which states that the 

proportional change in compensated demands should be equal across all goods, implying that, when 

cross-price elasticities are minimal, goods with lower price elasticity of demand should bear the highest 

taxes.   

 

Diamond and Mirrlees (1971), Diamond (1975) and Mirrlees (1975) extend the Ramsey model to 

consider the distributional effects of optimal taxes in the presence of heterogeneous households that 

have different social marginal utility of income. Optimal taxes raise the required revenue at the lowest 

cost to social welfare, optimising the trade-off of efficiency and equity. Efficiency considerations 

encourage higher taxes on price inelastic goods, whilst equity considerations encourage lower taxes on 

goods consumed disproportionately by households with higher social marginal utilities of income and 

hence lower incomes.  

 

Sandmo (1975) and Sadka (1978) (see also Bovenberg and de Mooij, 1994; Bovenberg and van der 

Ploeg, 1994) extend the Ramsey model with heterogeneous households to include goods with 

externalities, whereby corrective Pigouvian taxation is introduced alongside optimal revenue-raising 

Ramsey taxation. Optimal taxes balance the competing goals of efficiency, equity, and environmental 

sustainability while raising the required revenue. Dirty goods are subject to revenue-raising Ramsey 

taxes and additional corrective Pigouvian environmental levies. When these levies conflict with 

efficiency or equity objectives, they are set below the first best Pigouvian corrective tax, only partially 

internalising environmental externalities.  

 

This paper contributes to the literature by incorporating moral consumers into the Ramsey model to 

investigate how green consumerism affects optimal taxation. A further contribution is to investigate the 

case of heterogeneous preferences to highlight how the variance of preferences and the correlation 

between preferences and income influence patterns of optimal taxation. 

 

The effect of green consumerism on optimal taxation has been studied within partial equilibrium models 

in a first-best setting. Within these models, the authors investigate the effects of green consumerism on 
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the level of corrective Pigouvian taxation (Dasgupta et al., 2016; Eichner and Pethig, 2022). These 

models tend to adopt homogeneous preferences, investigating how taxes vary with the degree of 

morality. Through employing the Ramsey optimal taxation framework, we will investigate the effects 

of green consumerism on the broader tax system in a second-best setting where the government has a 

revenue requirement and lump-sum taxes are infeasible. Furthermore, by adopting Roemer's (Roemer 

2010) model of heterogeneous moral optimisation, we will explore how heterogeneous preferences and 

incomes influence patterns of optimal taxation within a perfectly moral population. 

 

The remainder of this paper outlines and proves the theoretical model. We will first set up the consumer 

problem with moral preferences, whereby consumers optimise their consumption of a dirty good, a 

clean good, and leisure subject to a budget constraint. We will then set out the government’s problem 

to raise a given revenue requirement at minimum cost to social welfare by charging taxes on dirty and 

clean goods, taking into account the behaviour of consumers. We will then investigate the Ramsey 

revenue-raising tax and the Pigouvian corrective tax in four key cases: (1) Non-moral homogeneous 

consumers, (2) Non-moral heterogeneous consumers, (3) Moral homogeneous consumers, and (4) 

Moral heterogeneous consumers. We will discuss the influence of morality and heterogeneity on the 

optimal levels of taxation. Finally, we will conclude by discussing the limitations of the model and 

highlighting areas for future exploration.   

 

1.2 Model 

1.2.1 Model Set Up 

 

We consider an economy with 𝐻 households, each seeking to optimise their utility subject to a budget 

constraint. Each household ℎ ∈ {1, … , 𝐻} derives utility from the consumption of a dirty good, 𝑧ℎ, a 

clean good, 𝑥ℎ, and leisure, (1 − 𝑙ℎ), where total time is normalised to one and 𝑙ℎ  represents the time 

allocated to labour. Additionally, each household experiences disutility from pollution externalities 

caused by the aggregate consumption of the dirty good, defined as 𝑍 = ∑ 𝑧ℎ𝐻
ℎ=1 .  

 

For simplicity, we assume the utility function of each household is additively separable and homothetic, 

represented as, 

 

𝑈ℎ = ln(𝑧ℎ) + 𝜃ℎ ln(𝑥ℎ) + 𝜂ℎ ln(1 − 𝑙ℎ) − 𝜙(𝑍), (1.1) 

 

where 𝜃ℎ > 0 and 𝜂ℎ > 0 represent household ℎ’s preferences for the clean good and leisure, 

respectively, relative to the dirty good. The term 𝜙(𝑍) is the damage function, capturing the disutility 
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from pollution externalities. It is assumed to be differentiable, increasing, and convex with respect to 

𝑍.1  

 

Additive separability implies that the marginal utility derived from each good (dirty good, clean good, 

and leisure) is independent of the household’s consumption of other goods, simplifying the analysis of 

consumer behaviour. Homothetic preferences result in linear Engle curves (income offer curves) 

passing through the origin, meaning that as income scales up or down, the demanded bundle is scaled 

proportionally, preserving the ratio of goods consumed. Consequently, the ratio of demand for the clean 

good, the dirty good, and leisure is independent of household income. 

 

The logarithmic functional forms for 𝑧ℎ , 𝑥ℎ , and (1 − 𝑙ℎ) preference indicate that utility is an 

increasing, concave function of these variables, implying diminishing marginal utility for consumption 

and leisure. The damage function 𝜙(𝑍) captures the disutility from aggregate dirty good consumption. 

We assume that the population is large enough for each household’s contribution to 𝑍 has a negligible 

individual impact. 

 

These preferences have several desirable properties that simplify the model exposition and facilitate 

comparisons with the baseline Ramsey Rule. Firstly, when externalities are absent and consumers are 

homogeneous, the homothetic utility function implies that uniform taxation is optimal under 

neoclassical utility optimisation, thus the baseline Ramsey Rule can be recovered. Secondly, where 

consumers are homogeneous, households consume goods in the same proportions regardless of income, 

meaning that in such cases, the many-household Ramsey Rule reduces to the single-household version, 

and commodity taxes cannot serve a redistributive purpose. This focuses attention on the balance 

between efficiency and environmental sustainability objectives, putting equity to one side. Finally, 

homothetic utility functions allow for aggregation across households, enabling the calculation of 

aggregate demand elasticities, which simplifies the analysis of collective behaviour and policy impacts. 

 

We assume that consumer goods are produced using constant returns to scale technology within 

competitive markets, such that profit-maximising firms generate zero real profits. Households and the 

government treat producer prices, 𝑝𝑧 , 𝑝𝑥 ,  and wage rates, 𝑤ℎ, as fixed. Household-specific wage rates 

reflect household-specific labour productivities which are also assumed to be fixed. The market prices 

faced by consumers are a combination of the fixed producer price plus the optimal commodity taxation 

charged by the government. We assume that taxes on labour income are normalised to zero, such that 

individuals face a wage rate, 𝑤ℎ, and market prices, 𝑞𝑧 = 𝑝𝑧 + 𝑡𝑧  and 𝑞𝑥 = 𝑝𝑥 + 𝑡𝑥 . Therefore, 

 
1 𝜙′(𝑍) > 0, 𝜙′′(𝑍) > 0 
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consumers who receive income from their labour, 𝑤ℎ𝑙h, and an additional lump-sum income, 𝐼ℎ, face 

a budget constraint of 

 

𝑞𝑧𝑧ℎ + 𝑞𝑥𝑥ℎ = 𝑤ℎ𝑙ℎ + 𝐼ℎ . (1.2) 

 

We consider a government that must set commodity taxes, 𝑡𝑧 = 𝑞𝑧 − 𝑝𝑧 and 𝑡𝑥 = 𝑞𝑥 − 𝑝𝑥, to generate 

an exogenous revenue requirement, 𝑅, at minimum cost to social welfare. To simplify the model and to 

facilitate direct comparison with the baseline Ramsey model, we assume that there is no lump sum 

taxation and that the whole revenue requirement must be raised via optimal commodity taxes. The 

government must take into account how consumer demand responds to changes in the market price 

resulting from tax rate changes. The government is assumed to optimise a Bergson-Samuelson social 

welfare function, where social welfare, 𝑊, is a function of all households’ indirect utility functions, 

𝑉ℎ(𝑞𝑧 , 𝑞𝑥 , 𝑤ℎ , 𝐼ℎ), 

 

𝑊 = 𝑊(𝑉1(𝑞𝑧, 𝑞𝑥 , 𝑤1, 𝐼1), … , 𝑉𝐻(𝑞𝑧 , 𝑞𝑥 , 𝑤𝐻 , 𝐼𝐻)), (1.3) 

 

subject to their revenue constraint, 

 

(𝑞𝑧 − 𝑝𝑧)𝑍 + (𝑞𝑥 − 𝑝𝑥)𝑋 = 𝑅. (1.4) 

 

1.2.2 The Moral Consumer Problem 

 

To capture green consumerism, we model households to optimise their consumption of the dirty good 

according to Roemer’s (2010, 2015) formalisation of Kant’s categorical imperative. Ethical 

considerations are relevant in the case of dirty good consumption due to the negative environmental 

externalities which affect the utility of all households. Such considerations are irrelevant in the case of 

the clean good and leisure consumption since these are independent, individualistic choices which affect 

only the utility of the decision-makers. Thus, the optimal consumption of the moral consumer would 

coincide with that of the neoclassical consumer.  

 

We employ Roemer’s formalisation of Kant’s categorical imperative. 

 

“A strategy profile is a Kantian equilibrium if no player would like all players to alter their 

contributions by the same multiplicative factor.” 

Roemer (2010, p1) 
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Therefore, when choosing their consumption of the dirty good, households consider both themselves 

and all other agents to deviate from their current consumption by the same multiplicative factor, 𝛾ℎ, 

such that their own consumption is represented as 𝛾ℎ𝑧ℎ, and aggregate consumption is 𝛾ℎ𝑍. The 

Lagrangian can be set up as follows: 

 

ℒℎ = ln(𝛾ℎ𝑧ℎ) + 𝜃ℎ ln(𝑥ℎ) + 𝜂ℎ ln(1 − 𝑙ℎ) − 𝜙(𝛾ℎ𝑍) + 𝛼ℎ{𝐼ℎ + 𝑤ℎ𝑙ℎ − 𝑞𝑧𝛾ℎ𝑧ℎ − 𝑞𝑥𝑥ℎ} , (1.5) 

 

where the Lagrange multiplier, 𝛼ℎ, represents the marginal utility of income. To optimise consumption 

of the dirty good, the moral consumer would choose the proportional deviation from current 

consumption levels which would maximise their own utility given their budget constraint. Therefore, 

the Lagrangian is differentiated with respect to the proportional deviation. The morally optimal level of 

𝑧ℎ would be at the point where the agent would not wish for all agents to deviate from their current 

consumption levels by any common amount, i.e., 𝛾ℎ = 1.  

 

𝜕ℒℎ

𝜕𝛾ℎ
|

𝛾ℎ=1

= 1 − 𝜙′(𝑍)𝑍 − 𝛼ℎ𝑞𝑧𝑧ℎ = 0 . (1.6) 

Rearranging this gives the Kantian first-order condition for the dirty good, 

 

𝑧ℎ =
1 − 𝜙′(𝑍)𝑍

𝛼ℎ𝑞𝑧
. (1.7) 

Consumption of the clean good and leisure will follow neoclassical consumer optimisation, whereby 

the Lagrangian is differentiated with respect to the quantity demanded of each good, and then set to 

zero. This gives the usual first-order conditions, 

 

𝑥ℎ =
𝜃ℎ

𝛼ℎ𝑞𝑥
 (1.8) 

 

(1 − 𝑙ℎ) =
𝜂ℎ

𝛼ℎ𝑤ℎ
 (1.9) 

 

From these three first-order conditions (Eq. 1.7-1.9) and the budget constraint (Eq. 1.2), we can obtain 

an expression for the marginal utility of income and the demand function for each good. 

 

𝛼ℎ =
(1 + 𝜃ℎ + 𝜂ℎ − 𝜙′(𝑍)𝑍)

𝑤ℎ + 𝐼ℎ
 , (1.10) 
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𝑧ℎ =
(1 − 𝜙′(𝑍)𝑍)(𝑤ℎ + 𝐼ℎ)

(1 + 𝜃ℎ + 𝜂ℎ − 𝜙′(𝑍)𝑍)𝑞𝑧
, (1.11) 

𝑥ℎ =
𝜃ℎ(𝑤ℎ + 𝐼ℎ)

(1 + 𝜃ℎ + 𝜂ℎ − 𝜙′(𝑍)𝑍)𝑞𝑥
, (1.12) 

(1 − 𝑙ℎ) =
𝜂ℎ(𝑤ℎ + 𝐼ℎ)

(1 + 𝜃ℎ + 𝜂ℎ − 𝜙′(𝑍)𝑍)𝑤ℎ
 . (1.13) 

We assume that the product of the aggregate consumption of the dirty good and marginal damage from 

aggregate consumption is less than one, 𝜙′(𝑍)𝑍 < 1,2 such that each household will have strictly 

positive demands for both goods and leisure. Additionally, we assume that lump sum income is low 

enough that it will always be optimal to work even at the lowest wage rates. This avoids a corner solution 

in equation 1.13, ensuring that leisure time is less than the individual’s time endowment.  

 

Equations 1.10 to 1.13 demonstrate that the consumption patterns of Kantian moral consumers are 

influenced by the consumption of all other consumers. In the Kantian optimisation process, households 

consider the effect of all consumers deviating by the same proportion, thus changes to the externality 

are significant and will influence their demand function through the term, 0 < 𝜙′(𝑍)𝑍 < 1. This 

contrasts with the consumption patterns of non-Kantian consumers. In the neoclassical optimisation 

process, households assume aggregate consumption of the dirty good is given and their own 

contribution to it is negligible. Therefore, in the neoclassical case, demands differ from the moral case 

in equations 1.11-1.13, in that each of the terms −𝜙′(𝑍)𝑍 = 0 (i.e., in the numerator of equations 1.10 

and 1.11, and the denominator of equations 1.11, 1.12 and 1.13).  

 

First, since 𝜙′(𝑍)𝑍 > 0 for moral consumers, we can see that consumption of the dirty good (Eq. 1.11) 

will be lower for the Kantian consumer, since 𝜙′(𝑍)𝑍 reduces the numerator to a greater extent than it 

reduces the denominator. This demonstrates that moral consumers internalise some of the 

environmental externality by reducing their own consumption of the dirty good. Secondly, we can see 

that for both the clean good (Eq. 1.12) and leisure (Eq. 1.13), the externality reduces the value of the 

denominator only, resulting in higher consumption. The rationale for an increase in consumption of the 

clean good is that a reduction in consumption of the dirty good frees up income to spend on the clean 

good. The rationale for an increase in leisure is that a decrease in consumption of the dirty good 

decreases demand for income, hence the individual may work less and enjoy more leisure time. 

 

 
2 This can be obtained from the first order condition for moral dirty good consumption in equation 1.7, since 

𝑞𝑧 > 0 and 𝛼ℎ > 0. If 𝜙′(𝑍)𝑍 > 1 then all Kantians would want to reduce their consumption, lowering 𝑍. 

Thus, 𝜙′(𝑍)𝑍 < 1 is the only stable equilibrium of the moral consumer problem. 
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We can also see how individuals' preferences and incomes influence their demands. For example, a 

higher preference for the clean good relative to the dirty good, 𝜃ℎ, will increase demand for the clean 

good whilst reducing demands for both the dirty good and leisure. Higher lump-sum income, 𝐼ℎ, will 

increase demand for both consumption goods and for leisure, meanwhile, higher wage income, 𝑤ℎ, will 

increase demand for consumption goods, but will reduce demand for leisure.3 This demonstrates how 

moral consumers continue to trade off the benefit of higher individual consumption of the dirty good 

against the cost of higher aggregate consumption, with consumers with dirtier preferences or higher 

incomes consuming more dirty goods. 

 

Subsequently, the indirect utility or the value function of the consumer can be derived by substituting 

these demands back into the consumer utility function.  

 

𝑉ℎ = 𝑙𝑛 (
(1 − 𝜙′(𝑍)𝑍)(𝑤ℎ + 𝐼ℎ)

(1 + 𝜃ℎ + 𝜂ℎ − 𝜙′(𝑍)𝑍)𝑞𝑧
) + 𝜃ℎ 𝑙𝑛 (

𝜃ℎ(𝑤ℎ + 𝐼ℎ)

(1 + 𝜃ℎ + 𝜂ℎ − 𝜙′(𝑍)𝑍)𝑞𝑥
)

+𝜂ℎ 𝑙𝑛 (
𝜂ℎ(𝑤ℎ + 𝐼ℎ)

(1 + 𝜃ℎ + 𝜂ℎ − 𝜙′(𝑍)𝑍)𝑤ℎ
) − 𝜙(𝑍). (1.14)

 

From the indirect utility, the consumer’s response to changes in the market price of the dirty good and 

the clean good can be calculated. 

 

𝜕𝑉ℎ

𝜕𝑞𝑧
= −

1

𝑞𝑧
− [1 +

(𝜃ℎ + 𝜂ℎ)(𝜙′′(𝑍)𝑍 + 𝜙′(𝑍))𝑍

(1 − 𝜙′(𝑍)𝑍)(1 + 𝜃ℎ + 𝜂ℎ − 𝜙′(𝑍)𝑍)
] 𝜙′(𝑍)

𝜕𝑍

𝜕𝑞𝑧

= −
1

𝑞𝑧
− 𝜙′(𝑍)(1 + 𝑚ℎ)

𝜕𝑍

𝜕𝑞𝑧
,                                                        (1.15)

 

 
where  

𝑚ℎ =
(𝜃ℎ + 𝜂ℎ)(𝜙′′(𝑍)𝑍 + 𝜙′(𝑍))𝑍

(1 − 𝜙′(𝑍)𝑍)(1 + 𝜃ℎ + 𝜂ℎ − 𝜙′(𝑍)𝑍)
> 0 (1.16) 

captures the influence of moral preferences.4  

 

 Meanwhile, 

 

𝜕𝑉ℎ

𝜕𝑞𝑥
= −

𝜃ℎ

𝑞𝑥
. (1.17) 

 
3 When we have log utility and positive lump sum income, the substitution effect will dominate the income 

effect. Higher wages make leisure more expensive causing agent to substitute towards labour. 
4 A non-moral consumer would have partial derivative: 

𝜕𝑉ℎ

𝜕𝑞𝑧
= −

1

𝑞𝑧
− 𝜙′(𝑍)

𝜕𝑍

𝜕𝑞𝑧
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Equation 1.17 demonstrates that a change in the price of the clean good only influences indirect utility 

via their demand for the clean good. This is due to the aggregate demand for the dirty good being 

independent of the price of the clean good, as can be seen from the aggregation and partial 

differentiation of household demand for the dirty good in equation 1.11. 

 

Whereas equation 1.15 demonstrates that an increase in the market price of the dirty good has two 

effects. The first term on the right-hand side in equation 1.15 demonstrates a reduction in utility due to 

private consumption becoming more expensive. Meanwhile, the second term demonstrates an increase 

in utility due to lower aggregate consumption reducing external damages. 

 

In equation 1.15, 𝑚ℎ represents the influence of morality. We can deduce that for Kantian moral 

consumers 𝑚ℎ > 0, 5 whilst for non-Kantian consumers 𝑚ℎ = 0. This suggests that a change in the 

price of the dirty good will have a larger positive component for Kantian moral consumers, implying 

that they will suffer less from an increase in dirty good taxes and thereby their demand will be less 

responsive to changes in the tax rate. This is because moral consumers have already voluntarily reduced 

their consumption of the dirty good by taking into account aggregate externalities, therefore when there 

is a price increase which reduces all households’ individual consumption of the dirty good and 

subsequently reduces aggregate consumption and aggregate externalities, the moral consumer will have 

a smaller externality to seek to internalise. The negative term in the denominator of the dirty good 

demand would reduce, thus there will be a positive force upon individual dirty good demands, overall 

resulting in a smaller reduction in dirty good demand in response to a price change. 

 

1.2.3 The Government Problem 

 

Given the behaviour of households, the government aims to choose tax rates to maximise social welfare 

(Eq. 1.3) subject to its revenue constraint (Eq. 1.4). The government’s optimisation problem may be 

represented through the Lagrangian, 

 

ℒ = 𝑊(𝑉1(. ), 𝑉2(. ), … , 𝑉𝐻(. )) + 𝜆{(𝑞𝑧 − 𝑝𝑧)𝑍 + (𝑞𝑥 − 𝑝𝑥)𝑋 − 𝑅}, (1.18) 

 

 
5 From equation 1.12, if 𝑥ℎ > 0 then (1 + 𝜃 + 𝜂 − 𝜙′(𝑍)𝑍) > 0. From equation 1.11, if 𝑧ℎ > 0, since we have 

established the denominator is positive, (1 − 𝜙′(𝑍)𝑍) > 0. Finally, since the pollution damage function is 

increasing and convex, we know that (𝜙′′(𝑍)𝑍 + 𝜙′(𝑍)) > 0. Consequently, 𝑚 =
(𝜃+𝜂)(𝜙′′(𝑍)𝑍+𝜙′(𝑍))𝑍

(1−𝜙′(𝑍)𝑍)(1+𝜃+𝜂−𝜙′(𝑍)𝑍)
> 0. 
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where 𝑉ℎ(. ), ℎ = 1, … , 𝐻 represents the indirect utility function for each household as set out in 

equation 1.14, 𝜆 is the Lagrange multiplier, and the government chooses tax rates 𝑡𝑧 = 𝑞𝑧 − 𝑝𝑧 and 

𝑡𝑥 = 𝑞𝑥 − 𝑝𝑥. Here, the aggregate consumption of the dirty and the clean goods, 𝑍 and 𝑋 respectively, 

are consistent with the aggregation of household demand functions in equations 1.11 and 1.12. 

 

The first order condition for the choice of the tax on the dirty good is 

 

𝜕ℒ

𝜕𝑞𝑧
= ∑

𝜕𝑊

𝜕𝑉ℎ
(−

1

𝑞𝑧
− 𝜙′(𝑍)(1 + 𝑚ℎ)

𝜕𝑍

𝜕𝑞𝑧
) + 𝜆 (𝑍 + (𝑞𝑧 − 𝑝𝑧)

𝜕𝑍

𝜕𝑞𝑧
+ (𝑞𝑥 − 𝑝𝑥)

𝜕𝑋

𝜕𝑞𝑧
) = 0 .

𝐻

ℎ=1

(1.19) 

 

As shown in Appendix A2, the dual cost minimisation problem is consistent with the consumer’s utility 

optimisation for moral consumers, henceforth Slutsky substitution can be used to decompose the terms 

in the second large bracket into a substitution effect and an income effect.  

 

𝜕ℒ

𝜕𝑞𝑧
= ∑

𝜕𝑊

𝜕𝑉ℎ
(−

1

𝑞𝑧
− 𝜙′(𝑍)(1 + 𝑚ℎ)

𝜕𝑍

𝜕𝑞𝑧
)

𝐻

ℎ=1

                                                              

+𝜆 (𝑍 + (𝑞𝑧 − 𝑝𝑧)
𝜕𝑍𝑐

𝜕𝑞𝑧
+ (𝑞𝑥 − 𝑝𝑥)

𝜕𝑋𝑐

𝜕𝑞𝑧
− (𝑡𝑧

𝜕𝑍

𝜕𝐼 ̅
+ 𝑡𝑥

𝜕𝑋

𝜕𝐼 ̅
) 𝑍) = 0 (1.20)

 

 
As shown in Appendix A3, the symmetry of the Slutsky substitution terms also holds within the Kantian 

model, therefore  𝜕𝑋𝑐

𝜕𝑞𝑧
=

𝜕𝑍𝑐

𝜕𝑞𝑥
. 

 

𝜕ℒ

𝜕𝑞𝑧
= ∑

𝜕𝑊

𝜕𝑉ℎ
(−

1

𝑞𝑧
− 𝜙′(𝑍)(1 + 𝑚ℎ)

𝜕𝑍

𝜕𝑞𝑧
) 

𝐻

ℎ=1

                                                           

+𝜆 (𝑍 + (𝑞𝑧 − 𝑝𝑧)
𝜕𝑍𝑐

𝜕𝑞𝑧
+ (𝑞𝑥 − 𝑝𝑥)

𝜕𝑍𝑐

𝜕𝑞𝑥
− (𝑡𝑧

𝜕𝑍

𝜕𝐼 ̅
+ 𝑡𝑥

𝜕𝑋

𝜕𝐼 ̅
) 𝑍) = 0 (1.21)

 

 
Following this, the middle two terms in the second bracket can be transformed through a first-order 

Taylor approximation.6 Subsequently, equation 1.21 can be rearranged to give a formula for the 

percentage change in compensated demand for the dirty good under the optimal taxation system, 

 

 
6𝑍𝑐(𝑞𝑧 , 𝑞𝑥 , 𝑢) ≈ 𝑍𝑐(𝑝𝑧 , 𝑝𝑥, 𝑢) + (𝑞𝑧 − 𝑝𝑧)

𝜕𝑍𝑐(𝑝𝑧,𝑝𝑥 ,𝑢)

𝜕𝑞𝑧
 + (𝑞𝑥 − 𝑝𝑥)

𝜕𝑍𝑐(𝑝𝑧,𝑝𝑥,𝑢)

𝜕𝑞𝑥
. Therefore,  

∆𝑍𝑐 ≈ (𝑞𝑧 − 𝑝𝑧)
𝜕𝑍𝑐

𝜕𝑞𝑧
 + (𝑞𝑥 − 𝑝𝑥)

𝜕𝑍𝑐

𝜕𝑞𝑥
. 
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∆𝑍𝑐

𝑍
=

1

𝜆
∑

𝜕𝑊

𝜕𝑉ℎ
(

1

𝑞𝑧
+ 𝜙′(𝑍)(1 + 𝑚ℎ)

𝜕𝑍

𝜕𝑞𝑧
)

1

𝑍
 

𝐻

ℎ=1

− 1 + 𝑡𝑧

𝜕𝑍

𝜕𝐼 ̅
+ 𝑡𝑥

𝜕𝑋

𝜕𝐼 ̅
 . (1.22) 

 

Similarly, for the change in compensated demand for the clean good, we obtain, 

 

∆𝑋𝑐

𝑋
=

1

𝜆
∑

𝜕𝑊

𝜕𝑉ℎ

𝜃ℎ

𝑞𝑥

1

𝑋

𝐻

ℎ

− 1 + 𝑡𝑧

𝜕𝑍

𝜕𝐼 ̅
+ 𝑡𝑥

𝜕𝑋

𝜕𝐼 ̅
. (1.23) 

 

It should be noted that equations 1.22 and 1.23 for the proportional change in compensated demand are 

approximations that become arbitrarily accurate as the tax rates get arbitrarily small, i.e., as the revenue 

requirement, 𝑅, becomes arbitrarily small. 

 

1.2.4 The Ramsey Rule 

 

If the Ramsey Rule holds, then, in a system of optimal second-best commodity taxation, the percentage 

change in compensated demand is the same for all goods, i.e., 
Δ𝑍𝑐

𝑍
=

Δ𝑋𝑐

𝑋
. The economics literature 

demonstrates that when consumers are heterogeneous or when there are consumption externalities, the 

efficiency objective of the Ramsey Rule must balance with equity and environmental objectives 

(Diamond and Mirrlees, 1971; Diamond, 1975; Mirrlees, 1975; Sandmo, 1975; Sadka, 1978). We 

analyse the equivalence of equations 1.21 and 1.22 to investigate how the deviations from the Ramsey 

Rule are influenced by morality, both in the case of homogeneous and heterogeneous households.  

 

We carry out this investigation for four key cases, (1) Non-moral agents with homogeneous preferences, 

(2) Non-moral agents with heterogeneous preferences, (3) Moral agents with homogeneous preferences, 

and (4) Moral agents with heterogeneous preferences, as shown in table 1.1. We highlight how both 

morality and heterogeneity influence optimal taxes. 

 

 Table 1.1: Four versions of the model and their chapter sections 

 Homogeneous Heterogeneous 

Non-Moral 

Moral 

Section 1.2.4.1 

Section 1.2.4.3 

Section 1.2.4.2 

Section 1.2.4.4 
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For simplicity of exposition, we assume that the government has a utilitarian social welfare function, 

such that social welfare is the unweighted sum of individual utilities, 𝑊 = 𝑉1(. ) + ⋯ + 𝑉𝐻(. ), and 

𝜕𝑊

𝜕𝑉ℎ = 1 ∀ℎ. Consequently, within this utilitarian framework, we evaluate, 

 

Δ𝑍𝑐

𝑍
−

Δ𝑋𝑐

𝑋
=

1

𝜆
 (∑ (

1

𝑞𝑧
+ 𝜙′(𝑍)(1 + 𝑚ℎ)

𝜕𝑍

𝜕𝑞𝑧
)

1

𝑍
 

𝐻

ℎ=1

− ∑
𝜃ℎ

𝑞𝑥𝑋

𝐻

ℎ

) . (1.24) 

 

1.2.4.1 Non-Moral Consumers with Homogeneous Preferences 

 

Proposition 1: When consumers have homogeneous preferences and optimise in a 

neoclassical manner an additional corrective Pigouvian tax must be levied on the dirty 

good to internalise negative environmental externalities. Optimal Ramsey taxes are 

uniform. 

 

When consumers optimise in a non-moral, neoclassical way, they assume external effects are constant. 

This is because they hold constant the consumption of other agents whilst assuming their own 

consumption has negligible effects on aggregate consumption level. Therefore, the term representing 

the marginal damage of negative externalities, 𝜙′(𝑍)𝑍, will disappear from the demand functions (Eq. 

1.11 to 1.13), and subsequently, the morality term, 𝑚ℎ, disappear in the consumer’s utility response to 

price changes (Eq. 1.15, 1.22, 1.24).  

 

To evaluate equation 1.24, we must express the different parts of the equation in the same terms. First, 

we can substitute the non-moral expression for the partial differential, 
𝜕𝑍

𝜕𝑞𝑧
= −

𝑍

𝑞𝑧
. Second, we can 

substitute the expression for the aggregate clean good demand in terms of the dirty good demand, 
1

𝑋
=

𝑞𝑥

𝑞𝑧

1

∑ 𝜃ℎ𝑧ℎ𝐻
ℎ=1

. We can then rearrange the equation to investigate the Ramsey Rule in the case of non-

moral agents, setting 𝑚ℎ = 0. 

 

Δ𝑍𝑐

𝑍
−

Δ𝑋𝑐

𝑋
=

1

𝜆
 

1

𝑞𝑧
(∑ (

1

𝑍
− 𝜙′(𝑍))

𝐻

ℎ=1

− ∑ (
𝜃ℎ

∑ 𝜃ℎ𝑧ℎ𝐻
ℎ=1

)

𝐻

ℎ

) (1.25) 

 

When households have homogeneous preferences, 𝜃ℎ = 𝜃, 𝜂ℎ = 𝜂, ∀ℎ. For homogeneous agents, 

equation 1.25 simplifies to, 
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Δ𝑍𝑐

𝑍
−

Δ𝑋𝑐

𝑋
= −

𝐻

𝜆

𝜙′(𝑍)

𝑞𝑧
. (1.26) 

 

Therefore, when we have non-moral consumers with homogeneous preferences, the Ramsey rule does 

not hold, the optimal tax system causes a larger compensated proportional reduction in dirty good 

consumption equal to the value of the marginal damages. Thus, an additional Pigouvian corrective tax7 

equal to this value must be charged. This matches the findings of Sandmo (1975) and Bovenberg and 

de Mooij (1994) who introduce dirty goods into the Ramsey optimal taxation model with neoclassical 

consumer preferences. 

 

We can further investigate the nature of revenue-raising Ramsey taxes within this context by calculating 

the price elasticity of demand for the dirty good and the clean good. In Appendix A1, we find that  𝜀𝑧 =

𝜕𝑍

𝜕𝑞𝑧

𝑞𝑧

𝑍
  = 𝜀𝑋 =

𝜕𝑋

𝜕𝑞𝑥

𝑞𝑥

𝑋
 =  −1. This implies that the revenue-raising component of the tax rates will be 

uniform across the dirty good and the clean good because the demand for both goods is equally 

responsive the changes in the price. 

 

If there were no externalities, such that 𝜙(𝑍) = 𝜙′(𝑍) = 0, then the model reduces to the baseline 

representative household Ramsey model, whereby in the system of optimal taxation the Ramsey Rule 

of equi-proportionate reduction in compensated demands holds. 

 

1.2.4.2 Non-Moral Consumers with Heterogeneous Preferences 

 

When consumers optimise in a non-moral, neoclassical way but have heterogeneous preferences, the 

discrepancy between the optimal proportional change in demand for the dirty good and the optimal 

proportional change in demand for the clean good will depend upon the distribution of preferences and 

the correlation between preferences and income. 

 

Proposition 2: When consumers optimise in a neoclassical manner and have 

heterogeneous preferences for the clean good and homogeneous income, the additional 

corrective Pigouvian tax levied on the dirty good to internalise negative environmental 

externalities is exacerbated by preference heterogeneity. Optimal Ramsey taxes are 

uniform. 

 

 
7 We define the discrepancy between 

Δ𝑍𝑐

𝑍
 and 

Δ𝑋𝑐

𝑋
 to the ‘Pigouvian tax’ since in the scenario where 𝑅 = 0 and 

there is no Ramsey tax, a corrective Pigouvian tax would still be required to achieve the social optimum.  
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Proposition 2 assumes that preference for leisure and household income are homogeneous.8 When 

agents have heterogeneous preferences for the clean good, the first term within 
Δ𝑍𝑐

𝑍
 no longer cancels 

with 
Δ𝑋𝑐

𝑋
 in equation 1.25. The contribution of these terms, 

1

𝜆

1

𝑞𝑧
(

𝐻

𝑍
− ∑

𝜃ℎ

∑ 𝜃ℎ𝑧ℎ𝐻
ℎ=1

𝐻
ℎ=1 ), depends upon 

the relation between clean good preference and dirty good demand. When income is homogeneous, it 

is clear to see that there is a negative relation between preference for the clean good, 𝜃ℎ, and demand 

for the dirty good, 𝑧ℎ. This is clear from the partial differential of the dirty good demand function with 

respect to the clean good preference, 
𝜕𝑧ℎ

𝜕𝜃ℎ = −
𝑤ℎ+𝐼ℎ

(1+𝜃ℎ+𝜂ℎ)
2

𝑞𝑧

< 0. Henceforth, in the population, there 

will be a negative covariance between the two, Cov(𝜃ℎ , 𝑧ℎ) < 0. The formula for covariance 

demonstrates that the first two terms inside the bracket in equation 1.25 will have a negative 

contribution. Cov(𝜃ℎ , 𝑧ℎ) =
1

𝐻−1
(∑ 𝜃ℎ𝑧ℎ𝐻

ℎ=1 −
1

𝐻
∑ 𝜃ℎ𝐻

ℎ=1 ∑ 𝑧ℎ𝐻
ℎ=1 ) < 0, rearranges to show that 

 

𝐻

𝑍
−

∑ 𝜃ℎ𝐻
ℎ=1

∑ 𝜃ℎ𝑧ℎ𝐻
ℎ=1

< 0. 

 

Henceforth, when income is independent of preferences, preference heterogeneity increases the size of 

the negative environmental externality, resulting in a higher corrective Pigouvian tax under the optimal 

tax system. As the variance of clean good preferences increases, this effect intensifies. 

 

Proposition 3: When consumers optimise in a neoclassical manner and have 

heterogeneous preferences for the clean good, 

(a) When income is negatively correlated with clean good preference, the exacerbation 

of the additional Pigouvian tax by preference heterogeneity is increased. 

(b) When income is positively correlated with clean good preference, the exacerbation 

of the additional Pigouvian tax by preference heterogeneity is reduced. 

 

Proposition 3 assumes that preference for leisure is homogeneous across households. If income is also 

heterogeneous and clean good preferences vary systematically with income, the overall effect on 

optimal taxation will depend upon the sign and strength of the correlation between preferences and 

income.  

 

The first two terms in equation 1.25 still depend upon the relation between clean good preference and 

dirty good demand, however, this relation will now be influenced by income. To investigate this 

influence, we can expand the covariance function, 

 
8 Thus, Cov(𝑤ℎ  + 𝐼ℎ , 𝜃ℎ) = 0, Cov(𝑤ℎ  + 𝐼ℎ , 𝜂ℎ) = 0, 𝐶𝑜𝑣(𝜃ℎ, 𝜂ℎ) = 0.  
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Cov(𝜃ℎ , 𝑧ℎ) = Cov (𝜃ℎ ,
(𝐼ℎ + 𝑤)

(1 + 𝜃ℎ + 𝜂)𝑞𝑧
)                              

=
1

(𝐻 − 1)𝑞𝑧
[∑

(𝜃ℎ − �̅�)(𝐼ℎ + 𝑤)

1 + 𝜃ℎ + 𝜂ℎ

𝐻

ℎ=1

] . (1.27)

 

 

For simplicity, we have assumed wage income and preference for leisure to be homogeneous. If income 

were also homogeneous, we would have 
1

(𝐻−1)𝑞𝑧
[∑

(𝜃ℎ−�̅�)

1+𝜃ℎ+𝜂
𝐻
ℎ=1 ] < 0 as above. 

 

If income is negatively correlated with clean good preference, this implies that richer people have dirtier 

preferences, and therefore, when clean good preference is below average, (𝜃ℎ − �̅�) < 0, it will be 

multiplied by a larger income within the summation, (𝐼ℎ + 𝑤). Henceforth, when summed across all 

households, the overall covariance between clean good preference and dirty good consumption will 

become more negative. This occurs because households with higher incomes will overconsume the dirty 

good to a much greater extent, exacerbating the covariance between clean good preference and dirty 

good demand. Overall, this increases the residual externality due to overconsumption by the rich not 

being compensated for by constrained consumption of lower income, cleaner households, and therefore 

the optimal Pigouvian taxation increases. 

 

On the other hand, if income is positively correlated with clean preference, this implies that richer 

people have cleaner preferences, and now when clean good preference is above average, (𝜃ℎ − �̅�) >

0, it will be multiplied by a larger income within the summation of equation 1.27. Henceforth, when 

summed across all households there will be a larger positive component, reducing the negative 

covariance between clean good preference and dirty good demand. This occurs because households 

with higher income will spend more on all commodities, both clean and dirty goods, henceforth despite 

having a lower preference for dirty goods they may still consume a considerable amount. Additionally, 

those with dirtier preferences do not have as much income to overconsume dirty goods. Overall, this 

reduces the covariance between clean good preference and dirty good demand, reducing the residual 

externality and the corresponding optimal Pigouvian tax.  

 

Within the context of heterogeneous preferences, we find that the price elasticities of demand for the 

dirty good and the clean good are still identical and equal to −1. Therefore, optimal Ramsey revenue-

raising taxes will still be uniform. 
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1.2.4.3 Moral Consumers with Homogeneous Preferences 

 

Proposition 4: When consumers have homogeneous preferences and optimise in a 

Kantian moral manner, the Ramsey rule holds, hence no additional corrective 

Pigouvian tax must be levied on the dirty good. Optimal Ramsey taxes will be relatively 

higher on the dirty good due to moral optimisation resulting in a relatively lower price 

elasticity of demand. 

 

To evaluate equation 1.24 in the presence of moral consumers we must repeat the exercise at the 

beginning of subsection 1.2.4.1, to express the equations in the same terms, now using expressions from 

moral optimisation. First, we can substitute the moral expression for the partial derivative, 
𝜕𝑍

𝜕𝑞𝑧
=

−
𝑍

𝑞𝑧

1

(1+
∑ 𝑚ℎ𝑧ℎ𝐻

ℎ=1
𝑍

)

 from equation A1.4 in Appendix A. Second, we can substitute the expression for 

aggregate clean good in terms of the dirty good, 
1

𝑋
=

(1−𝜙′(𝑍)𝑍)𝑞𝑥

𝑞𝑧

1

∑ 𝑧ℎ𝜃ℎ𝐻
ℎ=1

. We can then rearrange the 

equation to investigate the Ramsey rule in the case of moral agents.  

 

Δ𝑍𝑐

𝑍
−

Δ𝑋𝑐

𝑋
=

1

𝜆

1

𝑞𝑧
(∑ (1 − 𝜙′(𝑍)𝑍

(1 + 𝑚ℎ)

1 +
∑ 𝑚ℎ𝑧ℎ𝐻

ℎ=1
𝑍

)
1

𝑍

𝐻

ℎ=1

− ∑ ((1 − 𝜙′(𝑍)𝑍)
𝜃ℎ

 ∑𝜃ℎ𝑧ℎ
)

𝐻

ℎ=1

) (1.28) 

 

When Kantian moral consumers have homogeneous preferences, 𝜃ℎ = 𝜃, 𝜂ℎ = 𝜂, and 𝑚ℎ = 𝑚, ∀ℎ. 

For homogeneous agents, equation 1.28 simplifies to,  

 

Δ𝑍𝑐

𝑍
−

Δ𝑋𝑐

𝑋
=

1

𝜆

1

𝑞𝑧
(∑ (1 − 𝜙′(𝑍)𝑍

1 + 𝑚

1 + 𝑚
)

1

𝑍

𝐻

ℎ=1

− ∑ ((1 − 𝜙′(𝑍)𝑍)
𝜃

 𝜃𝑍
)

𝐻

ℎ=1

) = 0 (1.29)  

 

Therefore, when we have moral consumers with homogeneous preferences, the Ramsey rule holds. This 

implies that only Ramsey revenue-raising taxes are charged on all goods, there is no additional 

corrective Pigouvian tax charged on the dirty goods. This is because when all consumers are perfectly 

Kantian with homogenous preferences, they will each voluntarily internalise the externalities arising 

from their own consumption of the dirty good by reducing their consumption to the optimal level. This 

finding is consistent with Roemer (2010, 2015) who shows that in the context of voluntary contributions 

to a public good, all external effects are perfectly internalised in the Kantian equilibrium.  
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We can further investigate the nature of revenue-raising Ramsey taxes within this homogeneous moral 

environment. In Appendix A1, we find that the price elasticity of demand for the dirty good, 𝜀𝑍 =

−
1

1+𝑚
, is less elastic than for the clean good, 𝜀𝑋 = −1, henceforth moral consumers’ demand for the 

dirty good will be less responsive to changes in the price of the dirty good. Consequently, it is optimal 

to charge relatively higher Ramsey taxes on the dirty good, since demands will be distorted less, and 

the revenue requirement can be raised with lower costs to social welfare. This finding aligns with our 

intuition that the motivation of moral consumers is non-pecuniary.  

 

1.2.4.4. Moral Consumers with Heterogeneous Preferences 

 

When Kantian moral consumers have heterogeneous preferences, the Ramsey rule no longer holds. The 

residual externality and the optimal level of Pigouvian corrective tax will depend upon the distribution 

of preference and the correlation between preference and income. 

 

Proposition 5: When consumers optimise in a Kantian moral manner and have 

heterogeneous clean good preferences, the Ramsey rule no longer holds.  

 

When income is homogonous, an additional corrective Pigouvian tax levied on the dirty 

good to internalise negative environmental externalities arising from preference 

heterogeneity. Optimal Ramsey taxes will be relatively higher on the dirty good due to 

moral optimisation resulting in a relatively lower price elasticity of demand. 

 

Proposition 5 assumes that preference for leisure and household income are homogeneous. When moral 

agents have heterogeneous preferences, as in section 1.2.4.2, the terms in in equation 1.28 no longer 

cancel out. Equation 1.28 can be simplified and re-arranged to investigate how heterogeneous 

preferences influence residual externalities.  

 

Δ𝑍𝑐

𝑍
−

Δ𝑋𝑐

𝑋
=

1

𝜆𝑞𝑧𝑍
((𝐻 −

∑ 𝜃ℎ𝐻
ℎ=1 ∑ 𝑧ℎ𝐻

ℎ=1

∑ 𝜃ℎ𝑧ℎ𝐻
ℎ=1

) − 𝜙′(𝑍)𝑍 (
𝐻𝑍 + ∑ 𝑚ℎ𝐻

ℎ=1 ∑ 𝑧ℎ𝐻
ℎ=1

𝑍 + ∑ 𝑚ℎ𝑧ℎ𝐻
ℎ=1

−
∑ 𝜃ℎ𝐻

ℎ=1 ∑ 𝑧ℎ𝐻
ℎ=1

∑ 𝜃ℎ𝑧ℎ𝐻
ℎ=1

)) (1.30) 

 

The contribution the term in the first bracket in equation 1.30 depends on the relation between clean 

good preferences and dirty good demand. The contribution of the term in the second bracket also 

depends on the relation between the morality term and dirty good demand.  

 

When income is homogeneous or independent of preferences, it is clear to see that there is a negative 

relation between preference for the clean good, 𝜃ℎ, and moral consumers demand for the dirty good, 
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𝑧ℎ. This is clear from the partial differential, 
𝜕𝑧ℎ

𝜕𝜃ℎ = −
(1−𝜙′(𝑍)𝑍)(𝐼ℎ+𝑤ℎ)

(1+𝜃ℎ+𝜂ℎ−𝜙′(𝑍)𝑍)
2

𝑞𝑧

< 0. Henceforth, as in 

section 1.2.4.2, 
𝐻

𝑍
−

∑ 𝜃ℎ𝐻
ℎ=1

∑ 𝜃ℎ𝑧ℎ𝐻
ℎ=1

< 0, and thus 𝐻 −  
∑ 𝜃ℎ𝐻

ℎ=1 ∑ 𝑧ℎ𝐻
ℎ=1

∑ 𝜃ℎ𝑧ℎ𝐻
ℎ=1

< 0 the first bracket in equation 1.30 is 

negative. 

 

Additionally, when income in homogeneous or independent of preferences, it is clear to see that there 

will be a positive relation between preference for the clean good and the morality term, 𝑚ℎ =

(𝜃ℎ+𝜂ℎ)(𝜙′′(𝑍)𝑍+𝜙′(𝑍))𝑍

(1+𝜃ℎ+𝜂ℎ−𝜙′(𝑍)𝑍)(1−𝜙′(𝑍)𝑍)
. Again, this is clear from the partial differential, 

𝜕𝑚ℎ

𝜕𝜃ℎ =
(𝜙′′(𝑍)𝑍+𝜙′(𝑍))𝑍

(1+𝜃ℎ+𝜂ℎ−𝜙′(𝑍)𝑍)
2 >

0. Together, these two relations imply that a higher clean good preference is associated with both a 

smaller dirty good demand and a higher morality term, implying a negative relation between dirty good 

demand and the morality term, Cov(𝑧ℎ , 𝑚ℎ) < 0. Expanding out the covariance, Cov(𝑧ℎ , 𝑚ℎ) =

1

𝐻−1
(∑ 𝑧ℎ𝑚ℎ𝐻

ℎ=1 −
1

𝐻
∑ 𝑧ℎ𝐻

ℎ=1 ∑ 𝑚ℎ𝐻
ℎ=1 ) < 0, rearranging and substituting this into the first term 

inside the second bracket of equation 1.30 gives, 
𝐻𝑍+∑ 𝑚ℎ𝐻

ℎ=1 ∑ 𝑧ℎ𝐻
ℎ=1

𝑍+∑ 𝑚ℎ𝑧ℎ𝐻
ℎ=1

> 𝐻. Together with the finding 

above that  
∑ 𝜃ℎ𝐻

ℎ=1 ∑ 𝑧ℎ𝐻
ℎ=1

∑ 𝜃ℎ𝑧ℎ𝐻
ℎ=1

> 𝐻, this implies that the sign of the second bracket depends on the scale of 

the covariance between the two terms. We expect that the covariance between clean preference and 

demand will be stronger than the covariance between the morality term and demand, therefore, the 

second bracket will have a positive contribution which is smaller than the first bracket and further scaled 

down by 𝜙′(𝑍)𝑍 < 1. Henceforth, when there are heterogeneous moral consumers, we expect that a 

residual externality arises from this heterogeneity, as we found in the case of non-moral agents in section 

1.2.4.2. 

 

If income is also heterogeneous and preferences vary systematically with income, the overall effect on 

optimal taxation will depend upon the sign and strength of the correlation between preferences and 

income. 

 

Proposition 6: When consumers optimise in a Kantian moral manner and have 

heterogeneous clean good preferences, the Ramsey rule no longer holds. 

(a) When income is negatively correlated with clean good preference, the additional 

corrective Pigouvian tax charged on the dirty good to correct for residual 

externalities arising from preference heterogeneity will increase.  

(b) When income is positively correlated with clean good preference, the additional 

corrective Pigouvian tax charged on the dirty good to correct for residual 

externalities arising from preference heterogeneity will be reduced. 
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Proposition 6 assumes that preference for leisure is homogenous across households. As in section 

1.2.4.2, the relation between clean good preference and dirty good demand is influenced by the relation 

between clean good preference and income. When income is negatively correlated with clean good 

preference, such that richer consumers have dirtier preferences, both Cov(𝜃ℎ , 𝑧ℎ) and Cov(𝑧ℎ , 𝑚ℎ) will 

become more negative. Consequently, the first bracket in 1.30 will have a more negative contribution. 

Meanwhile, since the covariance between clean good demand and the morality term is likely to reduce 

to a larger extent, the second bracket is likely to become less positive and may even become negative 

if the correlation between income and preferences is strongly negative. Overall, the residual externality 

will be larger, requiring a higher optimal Pigouvian corrective tax.  

 

On the other hand, if there is a positive correlation between income and clean goods preference, such 

that richer consumers have cleaner preferences, we observe the opposite. With both Cov(𝜃ℎ , 𝑧ℎ) and 

Cov(𝑧ℎ , 𝑚ℎ) becoming less negative, thus the first bracket will become less negative, whilst the second 

bracket will become more positive. Overall, there will be a smaller residual externality and a smaller 

optimal Pigouvian corrective tax. 

 

1.3 Key Findings 

We have developed a model to investigate optimal commodity taxation in the presence of both a dirty 

good with environmental externalities and a clean good. We have explored the influence of moral versus 

non-moral optimisation, and of homogeneous versus heterogeneous preferences. 

 

Our first finding, in Proposition 1, is that, in the presence of homogeneous neoclassical consumers who 

maximise their material utility, an additional corrective tax is required to internalise externalities arising 

from dirty good consumption. This confirms the findings of Sandmo (1975), Sadka (1978), Bovenberg 

and de Mooij (1994) and Bovenberg and van der Ploeg (1994), that both a revenue-raising Ramsey tax 

and a corrective Pigouvian tax must be levied on dirty goods in a system of optimal taxation. The value 

of this tax corresponds to the marginal social cost of the externality. 

 

Our second finding, in Propositions 2 and 3, is that the corrective Pigouvian element of the tax will 

increase when neoclassical consumers have heterogeneous preferences. This occurs due to the 

diminishing marginal utility of consumption. This causes overconsumption by agents with a stronger 

preference for the dirty good which is not compensated for by sufficient underconsumption by agents 

with a weaker preference for the dirty good.  

 

This increase in optimal Pigouvian taxation is exacerbated when income is negatively correlated with 

clean good preference. In this case, richer individuals have dirtier preferences and thus have more 
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income to spend on overconsuming the dirty good. Meanwhile, those with cleaner preferences cannot 

compensate for this higher level of overconsumption.  

 

Our third finding, in Proposition 4, is that in the presence of homogeneous Kantian moral consumers 

who seek to ‘do the right thing’, all negative environmental externalities from dirty good consumption 

are internalised. This removes the need for external corrective interventions and means that the Ramsey 

Rule will hold. This aligns with Roemer’s (2010, 2015) key result that Kantian optimisation solves 

collective action problems and perfectly internalises externalities.  

 

Our fourth finding, in Propositions 5 and 6, is that when Kantian moral consumers have heterogeneous 

preferences, they are not able to fully internalise environmental externalities arising from dirty good 

consumption. This matches the finding in propositions 2 and 3 where externalities increase due to 

preference heterogeneity. In the case of moral consumers, this results in a residual externality which 

requires a Pigouvian-style tax to internalise. The value of this residual externality is determined by the 

negative correlation between dirty good consumption and clean good preference and also the negative 

correlation between dirty good consumption and the morality term. As above, we find this effect is 

exacerbated when income is negatively correlated with clean good preference and reduced in the case 

of positive correlation. Propositions 5 and 6 highlight the importance of adopting Roemer's (2010) 

formalisation of heterogeneous moral agents rather than a simpler model of a representative agent. They 

demonstrate how even fully moral agents fall short of achieving the social optimum, and that the 

residual externality will be determined by the direction and the size of the correlation between 

preferences, demand, and income. 

 

Our fifth and final finding concerns the level of Ramsey revenue-raising tax levied on dirty goods 

relative to clean goods. When cross-price elasticities of demand are minimal, the Ramsey Rule implies 

that higher taxes should be levied on price inelastic goods since a higher revenue can be raised with less 

distortion to market demand and therefore less cost to social welfare. When agents optimise in a non-

moral, neoclassical manner the Ramsey revenue-raising component of the tax will be uniform across 

consumption goods due to the uniform, unitary price elasticity of demand. When agents optimise in a 

Kantian moral manner a relatively higher Ramsey revenue-raising tax should be charged on the dirty 

good due to relatively more price inelastic demand. This emerges because moral consumers are 

motivated by their partiality to do the right thing, and thus will be less responsive to changes in the 

market price. The moral consumers’ demand is a function of the external damages, subsequently, the 

morality term, 𝑚ℎ, captures how moral consumers’ demand changes in response to a change in external 

damages which arise from a price change. For moral consumers, when the price of the dirty good 

increases, there is a direct effect of a higher price reducing demand, meanwhile there is a smaller, 

indirect effect of a higher price inducing lower external damages and subsequently increasing demand. 
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When the government increases the tax on the dirty good, some of the moral responsibility on the 

consumer is crowded out, and there is less pressure to reduce their consumption. This is also the case 

in Diamond (1973) who investigates corrective taxation when demand is a function of the externality, 

however, in our case, the direct effect always outweighs the indirect effect.  

 

Furthermore, in the case of heterogeneous moral preferences, the Ramsey tax will increase with the 

positive correlation between income and clean good preference. This is because when preferences are 

cleaner, the morality term will be greater, and thus the indirect effect of an increase in demand following 

an increase in the dirty good tax would be greater (although still less than the direct effect of reducing 

demand). Since those with higher income will consume more of all goods, this makes the overall price 

elasticity of demand for the dirty good less elastic. 

 

When we repeat this analysis for goods with positive environmental externalities, we obtain similar 

results. However, in this case, moral preferences make the demand for goods with positive externalities 

more elastic, 𝜀𝑍 = −
1

1+
∑ 𝑚ℎ𝑧ℎ𝐻

ℎ=1
𝑍

 , consequently lowering the optimal level of Ramsey taxation. 

 

1.4 Discussion 

This paper has set up a model of optimal commodity taxation for dirty and clean goods with Kantian 

moral consumers. It has shown that when moral consumers are homogeneous, all environmental 

externalities are internalised, removing the need for corrective Pigouvian taxation. It has further shown 

that when moral consumers are heterogeneous, whilst they internalise a large degree of the 

environmental externalities, there is a residual externality arising from preference heterogeneity which 

requires a Pigouvian corrective tax. Furthermore, in both cases, moral preferences increase the price 

inelasticity of demand for the dirty good relative to the clean good, resulting in relatively higher Ramsey 

revenue-raising taxes. Overall, this suggests that in a system of optimal taxation with perfectly Kantian 

preferences, the corrective Pigouvian element will reduce whilst the revenue-raising Ramsey 

component will increase. The extent of changes to these components will depend upon the variance in 

preferences, and the correlation between preferences, demands and incomes. The relative changes of 

these two tax components will determine the overall influence of moral preferences on optimal tax rates. 

This remains an empirical question.  

 

Whilst setting up our model, several key simplifying assumptions have been made. Firstly, we have 

assumed that all consumers are perfectly moral with regard to their consumption of the dirty good, 

resulting in the full internalisation of negative externalities when consumers are homogeneous. When 

choosing their consumption of the dirty good, they follow Roemer’s (2010) rationale of Kantian 
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optimisation, consuming at a level where they would not wish for all agents to deviate from their current 

consumption by any common multiplicative factor. However, in reality, consumers are not perfectly 

moral. Moral considerations are likely to be a relevant factor in their decision-making process, but this 

factor will generally be weighed against material and social factors. An individual might not do the 

perfectly moral thing if it were extremely costly or if it would go against a social norm or hurt someone 

they loved. Alger and Weibull (2013) and Eichner and Pethig (2022) include both material and moral 

preferences within the consumer’s utility function. Brekke et al. (2003) and Long (2021) include both 

material preferences and moral preferences through a self-image payoff function. These representations 

of utility fit more closely with empirical findings, whereby moral behaviour is combined with both 

selfish and other-regarding or social preferences (Miettinen et al., 2020; Van Leeuwen and Alger, 

2021). We expect that as the degree of morality reduces, the degree of internalisation of external effects 

will reduce, and henceforth the optimum level of corrective taxation will increase. Simultaneously, we 

expect that a reduction in morality will increase responsiveness to changes in the market price. This 

increase in demand elasticity would imply that the optimum level of revenue-raising taxation will be 

reduced. 

 

Secondly, whilst we have employed a general, Bergson-Samuelson social welfare function in the 

composition of the model, we simplified this to a utilitarian social welfare function in our model analysis 

and interpretation. Given the concavity of Cobb-Douglas utility functions, the linear, utilitarian Bergson 

Samuelson social welfare function implies a preference for redistribution. Whilst social welfare will 

increase by the same amount regardless of whether this is experienced by the lowest or the highest 

income household, lower income household will experience higher marginal utility from a given change 

in consumption. Cremer et al. (2003) demonstrate that when the government has equity concerns and 

consumers have heterogeneous preferences, Pigouvian taxation plays a redistributive role on top of its 

corrective mandate. It would be interesting to investigate how changing the weight of equity concerns 

influences optimal policy, we expect that the influence this has upon the environment will depend upon 

the correlation between income and household preferences.  

 

Thirdly, we have assumed that every individual has the same marginal contribution to the pollution 

externality and that every individual suffers the same marginal damage from pollution. On the one hand, 

the demand of individuals may have different marginal contributions to external damages, for example, 

this may depend upon the energy efficiency of their technology or the way they dispose of waste after 

consumption. Diamond (1973) sets up a model within which consumers have different marginal 

contributions to pollution, he finds that the optimal tax depends on how sensitive different contributors 

to pollution are to changes in the price of the dirty good and the size of the externality. When those who 

have larger marginal contributions have demands that are more sensitive to the size of the externality, 

then a smaller corrective tax is optimal. In our model, the responsiveness of demand to external damages 
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is captured within the morality term, therefore we would expect that if there was a positive correlation 

between the morality term and an individual’s marginal contribution to damages, then a smaller 

corrective tax would be optimal, because those who have the highest potential to cause damage tend to 

make the greatest effort to internalise externalities. 

 

On the other hand, individuals may experience different marginal damages from pollution due to living 

in different places, having different routines, different health conditions, and different abilities to 

mitigate damages. Sandmo (1975) sets up a model within which consumers experience different 

marginal damages from pollution. He finds that when lower-income individuals suffer higher marginal 

damages from pollution, the corrective element of optimal taxation is larger. Overall, Sandmo finds that 

the revenue-raising component of the tax is highest in the presence of high-income polluters, whilst the 

corrective component of the tax is highest in the presence of low-income pollutees. We expect these 

findings to carry over to extensions of our model. We confirm this in Appendix A4, where we introduce 

a household specific scale parameter on the damage function. For heterogeneous moral consumers, the 

corrective component of tax is highest when the scale of damages is positively correlated with higher 

income and negatively correlated with clean good preferences.  

 

Extensions of our model could consider modifying the assumptions above. Additional extensions could 

consider broadening from a static framework to a dynamic framework. This would demonstrate the 

influence that morality may have on the market and optimal taxation over time. This could include how 

morality and preferences evolve over time and how firms respond to changes in preferences and tax 

rates. Also, the model could be extended to consider more general utility functions with non-zero cross 

price effects, such as a constant elasticity of substitution (CES) utility function, in this case the baseline 

Ramsey Rule would not hold, thus our point of comparison would change. However, it could offer 

broader insights to optimal commodity taxation. 

 

Furthermore, we have taken an exclusively theoretical approach within this paper to investigate the 

channels through which optimal taxation would change in the presence of moral green consumers. In 

doing so I have worked exclusively in quantity-space, to facilitate direct comparisons with the baseline 

Ramsey Rule. Whilst this offers valuable insights into the uniformity/non-uniformity of Ramsey 

taxation and the need for Pigouvian taxation, it gives limited insights to the actual magnitude of optimal 

tax rates and the relative scales of Ramsey and Pigouvian tax. Further investigations would benefit from 

numerical simulations calibrated to real-world market data to investigate the magnitude of optimal 

taxation and the degree to which it changes in response to morality and household heterogeneity with 

different patterns of correlation between preferences and income. 
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The key takeaway from this paper is that internal moral motivations to internalise external damages 

arising from one’s actions can significantly benefit the environment and that whilst external intervention 

is generally still necessary to maximise social welfare, the optimal intervention is likely to be 

significantly influenced by these internal moral motivations. Three policy recommendations arise from 

our findings. Firstly, higher taxes should be placed on dirty goods that are consumed disproportionately 

by higher income consumers; this will reduce the social cost of corrective taxes. Secondly, goods which 

are perceived with stronger moral connotations should have lower corrective taxes, since individuals 

tend to voluntarily reduce their consumption of these goods. Moral connections may be stronger when 

individuals can observe the damages caused by consumption or when they relate to the damages in a 

stronger way. Thirdly, information campaigns and public engagement programs can increase 

consumers' perception of their environmental impact and increase their engagement with the 

environment, highlighting the moral dimension of their actions hence activating moral propensities 

within their decision-making.  
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CHAPTER 2: Green Investment and Kantian Morality 

Lucy Naga*, Thomas I. Renström, Laura Marsiliani 

Abstract 

The rise of responsible investment cannot be fully explained by standard utilitarian behaviour. While, 

moral theories have been applied to responsible consumption and voluntary provision of public goods, 

but no attempts have been made at modelling moral investments. This paper develops a model of 

Kantian moral investment, where agents seek to do the right thing by investing according to how they 

would want everyone to invest. We derive the first-best Pareto efficient asset pricing relation for this 

framework, which contains a pollution premium on dirty assets. We compare first-best outcome to the 

equilibria under non-Kantian, fully Kantian, and partially Kantian scenarios, highlighting the 

implications for equilibrium pollution levels. In a fully Kantian economy, the equilibrium is Pareto 

efficient, with wealth inequality and preference heterogeneity shaping portfolio holdings. However, 

when only a fraction of investors is Kantian, the equilibrium outcome depends on both the proportion 

of Kantians and the scope of their morality. Specifically, inclusive Kantians — who act on what they 

believe all agents, including non-Kantians, ought to do — generate more pollution than exclusive 

Kantians, who adjust their behaviour acknowledging that non-Kantians will not act similarly. As the 

proportion of non-Kantians increases, the equilibrium deviates further from the Pareto-efficient 

allocation. These findings provide new insights into the relationship between morality, investment 

behaviour and environmental outcomes.  
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2.1 Introduction 

‘I didn’t see how divesting alone would stop climate change or help people in poor countries. It was 

one thing to divest from companies to fight apartheid, a political institution that would (and did) 

respond to economic pressure. It’s another thing to transform the world’s energy system...just by selling 

the stocks of fossil-fuel companies. 

‘I still feel this way today. But I have come to realize that there are other reasons for me not to own the 

stock of fossil-fuel companies — namely, I don’t want to profit if their stock prices go up because we 

don’t develop zero-carbon alternatives. I’d feel bad if I benefited from a delay in getting to zero.’  

(Bill Gates, 2021, p 9-10). 

 

These were the words of magnate and philanthropist Bill Gates, who in 2019, divested all direct 

holdings in oil and gas companies1. The above quote demonstrates the moral concerns of investors, who 

seek to do the right thing despite their individual actions having negligible tangible effects on the state 

of the environment and climate.  

 

Socially responsible investment (SRI) is on the rise. SRI may be defined as a ‘long-term oriented 

investment approach, which integrates environmental, social and governance (ESG) factors in the 

research, analysis, and selection process of securities within an investment portfolio’ (Eurosif 2016, 

p.9). In 2021, a record $649 billion poured into ESG-focused funds worldwide, up from $542 billion 

and $285 billion in 2020 and 2019. ESG funds now account for 10% of worldwide fund assets (Reuters, 

2021). Research by OnePlanetCapital (2022), a new sustainability-driven investment house, found that 

85% of investors now view climate change as the greatest long-term threat, and many have begun to 

move their investments in response. They report that 12% plan to transfer into ‘ESG’ funds this year, 

and 17% plan to do so in the next few years. Meanwhile, 70% of investors say they would actively 

avoid putting money into companies with a negative environmental impact.  

 

In a report investigating the perspective of asset owners, Morningstar Sustainalytics (2023) found that 

the three greatest drivers of ESG investing are senior management/leadership (around 36% of the 500 

interviewed asset owners rated this in their top 3 motivations), ethical and moral principles (around 

31%), and external pressures from media and campaign groups (around 27%). This suggests that 

reputation, morality, and social pressure are significant drivers of ESG investing. Meanwhile, the report 

finds that the principal barrier to pursuing an ESG investment strategy is the impact on returns (around 

38% rated this in their top 3 barriers). This implies that asset owners may face a trade-off between 

traditional investment objectives of maximising risk-adjusted returns, and the moral and social 

pressures of doing the right thing for the environment and society. Indeed, empirical literature 

 
1 As did the trust that manages the Gates Foundation’s endowment. 
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demonstrates this trade-off, with socially responsible portfolios generating lower returns than 

conventional alternatives but delivering external benefits in the form of ESG contributions (Baker et 

al., 2022; Barber et al., 2021; Zerbib, 2019). 

 

Two key theories seek to explain why socially responsible portfolios tend to generate lower returns: the 

climate risk theory and the investor preference theory. The climate risk theory states that firms with 

stronger ESG performances are more resilient to future climate risk, including both physical damages 

from climate change and policy implications of climate change legislation. Thus, investors have a higher 

willingness to invest in firms with higher ESG scores to hedge against this risk (Ardia et al., 2022; 

Bolton and Kacperczyk, 2021; Ilhan et al., 2021; Engle et al., 2020; Ceccarelli et al., 2023). The investor 

preference theory states that investors derive non-pecuniary benefits from contributing funds towards 

ESG factors, and thus have a higher willingness to invest in funds which have greater ESG impact.  

 

Both theories are supported by the empirical literature. Both theories suggest that investors would be 

willing to accept lower financial returns from socially responsible firms (Pástor et al., 2021; Barber et 

al., 2021; Zerbib, 2019; Hong and Kacperczyk, 2009).  

 

The climate risk theory further implies that in times of economic or environmental crisis, socially 

responsible firms should outperform conventional firms due to their greater resilience. This has been 

found during the 2008-2009 financial crisis (Lins et al., 2017), the COVID-19 crisis (Albuquerque et 

al., 2020; Pástor and Vorsatz, 2020), when there were unexpected increases in climate change concerns 

(Ardia et al., 2022) or the salience of climate change (Choi et al., 2020). 

 

The investor preference theory further implies that money flowing into socially responsible funds 

should be less sensitive to changes in risk-adjusted returns (Renneboog et al., 2008). Bollen (2007) 

finds this is the case, with demand for socially responsible firms being less volatile than demand for 

conventional funds, and demand being less responsive to poor returns than to good returns. This 

asymmetry of elasticity indicates the commitment and loyalty of socially responsible investors towards 

the ESG elements of their investment portfolio. The investor preference theory is further supported by 

empirical studies seeking to elicit investor’s preferences and motivation. In a field study, Bauer et al. 

(2021) found that two-thirds of pension fund members voted for the fund to expand engagement with 

companies based on their commitment to sustainable development goals, even when they expect that 

this will hurt financial returns. Bauer et al. (2021) employ Falk et al.’s (2018, 2023) empirically 

validated measure of social preferences to demonstrate that these are a key driver of the observed 

socially responsible behaviour. Furthermore, Bonnefon et al. (2022) and Hartzmark and Sussman 

(2019) use experimental settings to characterise the moral concerns and environmental concerns of 

investors, Bonnefon et al. (2022) demonstrate strong evidence that investors seek to align their 
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investments with their social values, meanwhile Hartzmark and Sussman (2019) find that investors who 

consider environmental and social impact when making their investments respond to an environmental 

information shock more than performance and risk expectations could account for. This suggests that 

whilst ESG factors can influence both the expected risk and return of investments, patterns of risk and 

return are not sufficient to capture patterns of socially responsible behaviour, therefore, consideration 

of non-pecuniary preferences is necessary. 

 

Non-pecuniary preferences refer to preferences for any non-financial aspect of an investment. For 

socially responsible investments, investors may be environmentalists who explicitly place value on the 

environmental outcomes, they may be altruists who value the social and governance outcomes and care 

about the wellbeing of others. However, in many cases, an individual’s investments have a negligible 

effect on the overall performance of the firm and subsequent environmental and social outcomes. 

Andreoni (1990) introduces the concept of ‘impure altruism’ whereby individuals derive private value 

from the act of contributing to a public good, independent of the benefits they derive from the good 

itself. This detaches the non-pecuniary benefit from expected consequences, with agents modelled to 

derive a ‘warm glow’ from doing a good thing. This warm glow concept has been adopted widely within 

the theoretical literature for public good contributions and socially responsible investment. The utility 

function of socially responsible investors has been enriched with a warm glow derived from the 

observed social impact of firms they invest in (Pástor et al., 2021), the environmental score of their 

portfolio (Baker et al., 2022), pollution flows caused by firms they hold shares in (Dam and Heijdra, 

2011; Dam, 2011), and the perceived pollution content of their investment portfolio (Dam and 

Scholtens, 2015; Renström et al., 2019, 2021). These theoretical models demonstrate that warm glow 

preferences result in a pollution premium being charged on polluting or socially damaging firms, this 

pushes up their cost of capital, thus reducing their production and the production of negative 

externalities, whilst incentivising investment in abatement activities. Renström et al. (2019, 2021) 

investigate the policy implications of warm glow preferences. They find that the warm glow preferences 

reduce the optimal corrective tax needed to internalise the negative externalities of pollutive firms, 

meanwhile, they make the policy of subsidising abatement activities more effective. 

 

We seek to further enrich investor preferences to incorporate the mechanisms underlying this warm 

glow payoff. Andreoni et al. (2017, p.626) claim that ‘the concept of warm glow is a placeholder for 

more specific models of individual and social motivations’. It is important to consider specific 

motivations because different motivations operate through different mechanisms and respond 

differently to policy changes. Since the term SRI is used interchangeably with moral/ethical investing 

and is often conceptualised as investors seeking to do the right thing for the environment and society, 

we focus on the moral motivations of investors. As Chapter 1 highlights, philosophy presents a plethora 

of moral theories, from egoistic consequentialism underlying the selfish behaviour of neoclassical 
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models to altruism which broadens the scope of consequentialist concern to the wellbeing of others, and 

from deontology which abstracts from consequences and seeks to follow moral rules to virtue ethics 

whereby individuals seek to be a good person. Due to the negligible effect of an individual investor’s 

portfolio on realised outcomes and the complexity of defining a good person, we draw on the 

deontological philosophy of Kant to determine the ‘right’ behaviour. Kant’s moral rule, the categorical 

imperative, states that one should, 

 

“Act only according to that maxim whereby you can, at the same time, will that it should become a 

universal moral law”  

(Kant, 1785, 4:421 as in Koorsgaard 2012, p34). 

 

This can be interpreted as setting out a logical relation that one should only engage in an action if they 

can consistently wish that others do the same thing if they were in the same situation. Laffont (1975) 

introduced this concept within the economics literature, and it has been employed within theoretical 

modelling in public goods (Brekke et al., 2003, Alger and Weibull, 2013; Roemer, 2010, 2019; Long, 

2021) and green consumerism literatures (Eicher and Pethig, 2022).  

 

Our paper proceeds as follows. The literature review in section 2.2 covers the formalisation of Kantian 

moral preferences within economics and highlights the relevance of moral preferences for SRI. Section 

2.3 presents our asset pricing model in the presence of environmental externalities and Kantian moral 

investors. Section 2.4 reports simulation results from our partial Kantian models. Section 2.5 discusses 

our findings and concludes. We will seek to answer the two questions raised by Marsiliani et al. (2023), 

firstly, would non-standard preferences enable an efficient equilibrium to be achieved whereby 

externalities from production are internalised? Secondly, if government intervention is needed, what is 

the nature of this intervention under these non-standard preferences? 

 

2.2 Literature Review 

Marsiliani et al. (2023) highlight that enriching the behaviour of economic agents beyond neoclassical 

representations is necessary in the presence of market failures. Neoclassical behaviour is sufficient 

when agents have full information about the consequences of their actions; prices are set at marginal 

costs and are reliable signals of value; and markets are complete with all consequences appropriately 

priced. However, the ESG factors of investments represent a positive external effect which is not 

adequately accounted for within the market, therefore, neoclassical models of investment behaviour 

diverge from observable behaviour. Edgeworth (1881) recognises that whilst his statement that ‘the first 

principle of Economics is that every agent is actuated only by self-interest’ was appropriate for agents 

engaging in ‘economical calculus’ (exchange in a perfectly competitive market), it is fundamentally 
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mistaken about general human behaviour (Sen, 1977). In the presence of externalities, motivation 

diversifies beyond self-interest. Social norms, community values, and moral rules which guide non-

economic behaviour play an important role in much of economic life. ‘A close look reveals that a great 

deal of economic life depends for its viability on a certain limited degree of ethical commitment. Purely 

selfish behaviour of individuals is really incompatible with any kind of settled economic life.’ (Arrow, 

1973, p.314).  

 

2.2.1 Warm Glow Preferences 

The ‘warm glow’ approach to modelling non-standard investor preferences is the first step. Andreoni 

(1990) introduced the concept of ‘warm glow’, suggesting that agents derive a private benefit from the 

act of contributing to a public good which is separate from the benefit derived from the public good 

itself. Ziven and Small (2005) suggest that in the context of investment, socially responsible investors 

perceive the firm’s managers to act on their behalf, and thereby derive a warm glow payoff from the act 

of contributing to public goods through holding securities issued by socially responsible firms. 

Similarly, in the context of environmental externalities, Dam (2011) models socially responsible 

investors to feel partly responsible for the pollution generated by firms in which they hold shares, thus 

they derive a negative warm glow payoff from investing in dirty firms. Warm glow models of SRI 

demonstrate that a premium is demanded on returns from firms generating negative environmental or 

social externalities (Dam, 2011; Dam and Heijdra, 2011; Renström et al., 2019, 2021), or that investors 

are willing to receive lower returns from socially responsible firms (Baker et al., 2022; Pástor et al., 

2021; Zivin and Small, 2005). This makes the cost of capital more expensive for ‘bad’ firms, reducing 

production and reducing negative externalities; meanwhile ‘good’ firms can access cheaper capital and 

their production is promoted. This reduces social and environmental harm both through shifting funding 

towards socially responsible firms, and through creating a financial incentive for ‘bad’ firms to invest 

in abatement activities and contribute to ESG factors. Whilst warm glow preferences bring investment 

closer to the Pareto optimum, government intervention is still necessary to internalise externalities from 

production. 

 

Renström et al. (2019, 2021) investigate the policy implications of warm glow preferences on optimal 

corrective taxation and optimal subsidies for abatement activities. Renström et al. (2019) demonstrate 

that warm glow preferences operate like an implicit tax, by raising the cost of capital for harmful firms. 

Subsequently, the optimal level of explicit corrective tax is lower in the presence of warm glow 

investors. Renström et al. (2021) investigate whether policy can be designed such that environmental 

performance can be improved without the trade-off of lower economic performance, as is the case with 

corrective taxation. They investigate the role of abatement subsidies which can allow firms to increase 

production but reduce the negative environmental or social impact of production per unit. They 
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demonstrate that warm glow preferences are key to the effectiveness of abatement subsidies since firms 

engaging in abatement would be rewarded by investment from warm glow investors with lower/no 

premiums charged. Therefore, the nature of government intervention changes in the presence of warm 

glow preferences, with optimal tax lowering and abatement subsidies becoming viable.  

 

2.2.2 Moral Preferences 

Socially responsible investors are often conceptualised as being ‘ethical’ or ‘moral’, due to them 

seeking to bring about beneficial social and environmental outcomes (Lewis and Cullis, 1990). Brooks 

(1989, p32) defines ethical investors as those who ‘believe that all investments they make have an 

ethical dimension, that they can and should apply their ethical standards to potential investments… they 

look for an investment vehicle with both ethical and financial quality’. This matches the claim Laffont 

(1975, p.431) makes that ‘every economic action takes place in the framework of a moral or ethics’, 

and Arrow’s (1973) earlier statement on the importance of ethical commitment in economic life.  

 

Marsiliani et al. (2023) argue that within the context of externalities and interdependent agents, the 

concept of morality in economics must be expanded beyond the egoistic consequentialist represented 

within neoclassical models. They highlight how the economics literature tends to draw on Kantian 

morality as an alternative since this broadens the scope of morality beyond the individual and moves 

the focus away from the expected consequences of actions to the rightness or wrongness of the actions 

themselves. A socially responsible investor can then be modelled to seek to do the right thing and to 

put their money where their values lie.  

 

Kantian morality is based on the principle that one should “Act only according to that maxim whereby 

you can, at the same time, will that it should become a universal moral law” (Kant, 1785, 4:421 as in 

Koorsgaard 2012, p34). This concept has been introduced into the economics literature and interpreted 

to mean that the economic agent should consider the Kantian counterfactual of what would happen if 

everyone were to behave similarly and then optimise their consumption accordingly. Henceforth, the 

Kantian agent would be motivated to internalise the externalities arising from their own actions by 

seeking to reduce the externalities imposed upon them by other agents. This behavioural motivation has 

been found to be evolutionarily conceivable for economic agents (Bergstrom, 1995; Curry and Roemer, 

2012; Alger and Weibull, 2013, 2016; Alger et al., 2020), and to be empirically validated within various 

economic scenarios (Elias et al., 2016; Czajkowski et al., 2017; Caparo and Rand, 2018; Miettinen et 

al., 2020; Van Leeuwen and Alger, 2021), whereby moral preferences are often found to operate 

alongside material and social preferences.  
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Morality has not been formally modelled within the investment literature; therefore, we draw on 

examples from the public goods literature and green consumerism literature to construct our model. 

Kantian morality has been introduced in various ways, both for identical and heterogeneous consumers, 

both directly and indirectly.  

 

When agents are identical, with the same preferences and constraints, the Kantian counterfactual is the 

hypothetical scenario of all agents performing the same action as the decision maker. Alger and 

Weibull’s (2013) model of the homo moralis represents agents to have utility functions which are a 

convex combination of material utility which employs the Nashian counterfactual and moral utility 

which employs the Kantian counterfactual. Brekke et al. (2003) model agents to calculate the Kantian 

moral ideal according to the Kantian counterfactual, they subsequently represent utility to be a weighted 

sum of material utility and a self-image payoff which is determined by how close their action is to their 

moral ideal. 

 

When individuals are heterogeneous, with different preferences and/or constraints, the Kantian 

counterfactual must be adjusted. The hypothetical scenario of all agents acting according to the ‘same 

maxim’ would no longer imply that agents will perform the same action. Roemer (2010) suggests that 

the ‘same maxim’ may be interpreted as agents deviating from their current action by the same 

multiplicative factor. Thus, Roemer suggests that the Kantian equilibrium is where ‘no player would 

like all players to alter their contributions by the same multiplicative factor’ (Roemer, 2010, p1). 

Roemer models an economy of perfect Kantians and finds that in the Kantian equilibrium, the Pareto 

efficient outcome is achieved. Long (2021) integrates Roemer’s (2010) model of heterogeneous moral 

optimisation into Brekke et al.’s (2003) framework of partial morality, to investigate the role of self-

image underpinned by heterogeneous moral ideals.  

 

Models of partially moral agents facilitate investigation into how an individual’s degree of morality 

influences consumption. A further extension to the literature considers how agents with moral 

preferences interact with non-moral agents, and how their Kantian counterfactual takes the presence of 

non-moral agents into account (Long, 2016, 2017, 2019; Grafton et al., 2017).  Within these papers, 

Long distinguishes between inclusive and exclusive Kantians; inclusive Kantians would consider all 

agents, Kantian and non-Kantian, to be hypothetical co-movers within their Kantian counterfactual, 

whilst exclusive Kantians would only consider the subset of Kantian agents to be co-movers, taking 

non-Kantian actions as given. Long (2019) also considers a continuum of inclusivity between these two 

extremes, with Kantians considering non-Kantians to deviate by some fraction of the multiplicative 

factor. He finds that when Kantians and non-Kantians interact, non-Kantians will out-perform Kantian 

agents, but the pay-off of both agents will increase both in the share of Kantian agents and in the degree 

of inclusivity of these Kantians, whilst the size of the externality will decrease with both parameters. It 
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would seem that inclusive Kantianism is a better reflection of Kant’s maxim of a universal moral law, 

however, exclusive Kantianism may reflect a greater degree of realism regarding the practice of Kantian 

morality. 

 

The literature has shown that in the context of public goods and green consumerism, Kantian agents 

can achieve an efficient equilibrium if all agents are identical and perfectly Kantian (Roemer, 2010; 

Chapter 1 of this thesis). If agents are partially Kantian then their morality brings the economy closer 

to the efficient equilibrium but does not fully internalise externalities (Brekke et al., 2003; Eichner and 

Pethig, 2022). Furthermore, in chapter 1 we demonstrate that even if all agents are perfectly Kantian, if 

they have heterogeneous preferences then the equilibrium falls short of the Pareto optimum.  

 

This implies that, so long as agents are either heterogeneous or imperfectly moral, government 

intervention is needed. Brekke et al. (2003) highlight the importance of considering consumer 

perception of policy intervention, and the potential for moral motivations to be crowded out by shifting 

the locus of responsibility onto the government. On the one hand, if a corrective tax is perceived to 

cover the full social cost of an externality, moral motivation would be crowded out. Whilst this is 

acceptable when the perception is correct, if the tax does not actually cover the full social cost, the 

equilibrium will be sub-optimal. Dasgupta et al. (2016) argue that a Pigouvian tax covering the full 

social cost of the externality would be necessary since when individuals have heterogeneous degrees of 

morality and individual-specific taxes are infeasible, the only way to achieve the Pareto optimum is to 

crowd out the existing moral motivation and impose external policy stimulus. 

 

On the other hand, Brekke et al. (2003) highlight that when taxes are perceived as a symbolic 

punishment which reminds people that such behaviour is harmful but does not cover the full social cost 

of the externality, then the tax can crowd in moral motivation. This is supported by Eichner and Pethig 

(2022), who find that whilst individual-specific taxes would be ideal in the first-best world, the second-

best tax policy would be a uniform tax which is smaller than the Pigouvian tax. This demonstrates that 

a combination of morality and external policy intervention can complement one another to realise the 

social optimum. Brekke et al.’s (2003) theory on crowding in moral motivation supports Frey and 

Stutzer’s (2008) view on the importance of self-determination and endowing moral responsibility to 

agents. Therefore, overall, models of morality suggest that not only should optimal taxation be lower, 

but that it is important to consider individual’s perception of the policy and their feeling of 

responsibility.  

 

In what follows, we adopt Roemer’s (2010, 2019) representation of Kantian morality to model moral 

investors who optimise their investment portfolio. We subsequently adopt Long’s (2016, 2017, 2019) 
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representation of inclusive and exclusive Kantian agents to model the influence of moral investors in a 

market which also contains non-moral investors.   

 

2.3 Model 

We consider a two-period, lifecycle asset-pricing model. We model households, ℎ = 1, … 𝐻, to derive 

utility from their consumption in both periods, {𝑐1
ℎ , 𝑐2

ℎ}, and disutility from pollution, 𝑋. The utility 

function is assumed to be additively separable in these arguments,  

 

𝑈ℎ = 𝑢(𝑐1
ℎ) + 𝛽[𝑢(𝑐2

ℎ) − 𝜂ℎ𝑣(𝑋)], (2.1) 

 

where 𝛽 is the intertemporal discount factor and 𝜂ℎ measures the household’s preference for the 

environment. We assume that 𝑢(. ) is an increasing, concave function, and 𝑣(. ) is an increasing, linear 

function.  

 

In period 1, households earn labour income, 𝑙1
ℎ, where the first period exogenous wage rate is 

normalised to unity. They spend this income on consumption, 𝑐1
ℎ, and investment {𝑘ℎ , 𝑧ℎ}, subject to 

the constraint, 

 

𝑙1
ℎ = 𝑐1

ℎ + 𝑘ℎ + 𝑧ℎ . (2.2)  

 

Their investment portfolio consists of investment in a ‘clean’ firm, 𝑘ℎ, and investment in a ‘dirty’ firm, 

𝑧ℎ. The dirty firm generates pollution which causes disutility. 

 

In period 2, households earn labour income, 𝑤𝑙2
ℎ , and income from the return on their investments, 

{𝑅𝑘ℎ , 𝑃𝑧ℎ}. They spend this income on consumption, 𝑐2
ℎ, subject to the constraint, 

 

𝑐2
ℎ = 𝑤𝑙2

ℎ + 𝑅𝑘ℎ + 𝑃𝑧ℎ . (2.3) 

 

Here, 𝑤 is the second-period endogenous wage (defined below), 𝑅 is the constant return on clean 

investment, and 𝑃 is the return on dirty investment defined below by the dirty firm’s production 

function. The return on dirty investment is determined by the dirty firm’s production and subsequent 

profits.  
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The dirty firm uses the invested capital, 𝑍 = ∑ 𝑧ℎ
ℎ , and hires exogenously supplied labour, 𝐿 = ∑ 𝑙2

ℎ
ℎ , 

to produce output according to a constant return to scale production function, 𝐹(𝑍, 𝐿). The firm earns 

profit,  

 

𝜋 = max
𝐿

𝐹(𝑍, 𝐿) − 𝑤𝐿 . (2.4) 

 

The firm’s first order condition at the optimal production level determines the wage rate,  

 

𝐹𝐿(𝑍, 𝐿) − 𝑤 = 0. (2.5) 

 

A household’s investment of 𝑧ℎ implies that they earn a share 
𝑧ℎ

𝑍
 of the profits. Consequently, 

shareholder income is 
𝜋𝑧ℎ

𝑍
 and the return is, 

𝑃 =
𝜋

𝑍
. (2.6) 

 

The polluting firm generates pollution, 𝑋, which we assume to be linear in production, 

 

𝑋 = 𝜓𝐹(𝑍, 𝐿). (2.7) 

 

The first-period resource constraint is given by aggregating consumers’ first-period budget constraint 

(eq. 2.2),  

 

∑ 𝑙1
ℎ

ℎ

= 𝐶1 + 𝐾 + 𝑍. (2.8) 

 

The second-period resource constraint is given by aggregating consumers’ second-period budget 

constraint (eq. 2.3) using the definition for 𝑃, and substituting in the firm’s profit function (eq. 2.4), 

 

𝐶2 = 𝑤 ∑ 𝑙2
ℎ

ℎ

+ 𝑅𝐾 + 𝐹(𝑍, 𝐿) − 𝑤𝐿 = 𝑅𝐾 + 𝐹(𝑍, 𝐿). (2.9) 

 

2.3.1 Pareto Efficiency 

Pareto efficient investment requires that it is not possible to increase the utility of one household without 

lowering the utility of other households. Consequently, to derive the Pareto efficient asset-pricing rule 

we seek to maximise the utility of a given household, (eq. 2.1 for ℎ = 1) keeping all other households’ 

utilities (eq. 2.1 for all ℎ ≠ 1) above certain threshold values, subject to the resource constraints (eq. 

2.8 and 2.9). The Lagrange function for this optimisation problem is, 
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ℒ = 𝑢(𝑐1
1) + 𝛽[𝑢(𝑐2

1) − 𝜂1𝑣(𝜓𝐹(𝑍, 𝐿))]                                               

+ ∑ 𝜇ℎ{𝑢(𝑐1
ℎ) + 𝛽[𝑢(𝑐2

ℎ) − 𝜂ℎ𝑣(𝜓𝐹(𝑍, 𝐿))] − 𝑈ℎ}

𝐻

ℎ=2

              

+𝜆1 {∑(𝑙1
ℎ − 𝑐1

ℎ)

𝐻

ℎ=1

− 𝐾 − 𝑍} + 𝜆2 {𝑅𝐾 + 𝐹(𝑍, 𝐿) − ∑ 𝑐2
ℎ

𝐻

ℎ=1

} . (2.10)

 

 

Notice that only the aggregate investments are relevant here. The Lagrangian multipliers, 𝜇ℎ , 𝜆1, and 𝜆2 

correspond to the ‘tightness’ of the utility and resource constraints. The exact allocation will be a 

function of those constraints; however, we can derive an efficiency rule which holds regardless of the 

constraints. The efficiency rule corresponds to the Samuelson (1952) Rule for Pareto Efficient public 

goods provision. In our case, we have an asset-pricing rule (see Appendix B1 for derivation2): 

 

Proposition 1: The externality, X, is Pareto Efficient if and only if the return on investment in the 

polluting industry obeys: 

 

𝐹𝑧(𝑍, 𝐿) − 𝑅 = ∑ 𝜂ℎ
𝑣′(𝑋)

𝑢′(𝑐2
ℎ)

 𝜓 𝐹𝑧(𝑍, 𝐿)

𝐻

ℎ=1

 . (2.11) 

 

Proposition 1 states that the difference between the return on the polluting asset, 𝐹𝑧, and the clean asset, 

𝑅, is equal to a pollution premium. The pollution premium is determined by the marginal social cost of 

pollution and is the sum of the marginal rates of substitution between the environment and private 

consumption, multiplied by the asset’s marginal pollution. The stronger households’ preferences are for 

the environment, the larger the pollution premium will be.  

 

A higher pollution premium will increase the cost of capital for the dirty firm. This reduces the level of 

production which lowers the amount of pollution emitted. 

 

2.3.2 Competitive Equilibrium in the Absence of Kantian Investors 

In the competitive Walrasian equilibrium under ‘standard’ preferences and individualistic behaviour, 

each investor will maximise their utility holding the utility of all other investors constant. Since each 

household is small in comparison to the market, their investment decisions will have a negligible impact 

 
2 Given that we cannot have negative capital in a closed economy, Appendix B1 applies the constraint that 𝐾 ≥
0. We calculate the Pareto optimal asset pricing rule when this constraint is binding and when it is non-binding. 

We assume that it is non-binding throughout the paper. 
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on the production of firms, and thus on the overall level of pollution. Consequently, from the 

households’ point of view the two assets, 𝐾 and 𝑍, will be equivalent and must yield the same return.  

 

This can be demonstrated by modelling each household to choose their investment portfolio to 

maximise their intertemporal utility function (equation 2.1) subject to their resource constraints 

(equations 2.2 and 2.3), 

 

Max𝑘ℎ,𝑧ℎ𝑈ℎ = 𝑢(𝑙1
ℎ − 𝑘ℎ − 𝑧ℎ) + 𝛽 [𝑢 (𝑤𝑙2

ℎ + 𝑅𝑘ℎ +
𝐹(𝑍, 𝐿) − 𝑤𝐿

𝑍
𝑧ℎ) − 𝜂ℎ𝑣(𝜓𝐹(𝑍, 𝐿))] . (2.12) 

 

This gives the first-order condition Euler equations,  

 

𝜕𝑈ℎ

𝜕𝑘ℎ
= −𝑢′(𝑐1

ℎ) + 𝛽𝑅𝑢′(𝑐2
ℎ) = 0, (2.13) 

 

𝜕𝑈ℎ

𝜕𝑧ℎ
= −𝑢′(𝑐1

ℎ) + 𝛽 (
𝐹(𝑍, 𝐿) − 𝑤𝐿

𝑍
) 𝑢′(𝑐2

ℎ) = 0. (2.14) 

 

Given the Euler equations (Eq. 2.13 and 2.14) and given that constant returns to scale production implies 

𝑃 =
𝐹(𝑍,𝐿)−𝑤𝐿

𝑍
= 𝐹𝑍(𝑍, 𝐿) (see Appendix B2), we can see that,  

 

𝑅 = 𝐹𝑍(𝑍, 𝐿) = 𝑃. (2.15) 

 

Here there is no pollution premium, the return is equal across investments. 

 

In the ‘standard’ competitive equilibrium, the marginal product of the dirty firm is equal to the gross 

return of the clean asset and thus lower than the Pareto efficient level, implying that pollution is sub-

optimally high.  

 

2.3.3 Equilibrium in the Presence of Kantian Investors 

Kantian moral investors optimise their investment decisions according to Kant’s categorical imperative; 

thus, they consider what would happen if all other investors were to behave similarly to them and 

optimise their payoff in this Kantian counterfactual scenario. We adopt Roemer’s (2010, 2019) 

formalisation of Kantian morality, representing the ‘same maxim’ within the categorical imperative as 

the ‘same multiplicative deviation’ from current investment levels.  
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Note that Kantian optimisation is only relevant for the choice of the dirty investment since this is the 

only decision which exhibits externalities whereby each investor is impacted by the investment 

decisions of all other investors. In the case of private consumption and clean investments, household 

decisions are independent and thus Kantian optimisation would coincide with conventional, 

neoclassical optimisation.  

 

2.3.3.1 All Households are Kantian Investors 

When all households are Kantian investors, each household would consider changing their dirty asset 

investment decision if they would gain higher private utility from all households changing their dirty 

asset investment by the same multiplicative factor. We notice that this is an equilibrium concept, 

whereby the Kantian equilibrium is reached when scaling the investment of all households by a common 

factor does not result in a utility gain for the household in question.  

 

Therefore, households can be represented to maximise their intertemporal utility function (eq. 2.1) 

subject to their period 1 and period 2 budget constraints (eq. 2.2 and 2.3), assuming that all households 

are deviating from their dirty asset investments by a common multiplicative factor, 𝛾ℎ.  

 

Thus, the first-order condition with respect to the dirty investment is derived by maximising,   

 

𝑈ℎ = 𝑢(𝑙1
ℎ − 𝑘ℎ − 𝛾ℎ𝑧ℎ) + 𝛽 [𝑢 (𝑤𝑙2

ℎ + 𝑅𝑘ℎ +
𝛾ℎ𝑧ℎ

𝛾ℎ𝑍
[𝐹(𝛾ℎ𝑍, 𝐿) − 𝑤𝐿]) − 𝜂ℎ𝑣 (𝜓𝐹(𝛾ℎ𝑍, 𝐿))] , (2.16) 

 

with respect to the factor of deviation, 𝛾ℎ , and evaluating at the point where the household would not 

wish for any household to deviate by any common factor, 𝛾ℎ = 1. This gives the Kantian first-order 

condition,  

 

𝜕𝑈ℎ

𝜕𝛾ℎ
|

𝛾ℎ=1

= −𝑢′(𝑐1
ℎ)𝑧ℎ + 𝛽[𝑢′(𝑐2

ℎ)𝑧ℎ𝐹𝑍(𝑍, 𝐿) − 𝜂ℎ𝑣′(𝑋)𝜓𝐹𝑍(𝑍, 𝐿)𝑍] = 0. (2.17) 

 

The first-order condition with respect to clean investment gives the usual consumption Euler equation,  

 

−𝑢′(𝑐1
ℎ) + 𝛽𝑅𝑢′(𝑐2

ℎ) = 0. (2.18) 

 

Combining these two first-order conditions gives the efficiency rule for a Kantian household,  
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𝑧ℎ(𝐹𝑧(𝑍, 𝐿) − 𝑅) = 𝜂ℎ
𝑣′(𝑋)

𝑢′(𝑐2
ℎ)

 𝜓 𝐹𝑍(𝑍, 𝐿)𝑍 . (2.19) 

 

Aggregating this across all households gives the Pareto efficient asset-pricing rule in equation 2.11.  

 

Proposition 2: The Kantian equilibrium is Pareto Efficient; the externality is internalised. 

 

Thus, if all investors are Kantian, the externality problem is solved, and government intervention is not 

needed. This arises because Kantian investors calculate that the right thing is to reduce their own 

investments in the dirty firm since they would be better off if all households reduced their investments 

in the dirty firm. When all households are Kantian, this internalises the pollution externality. 

 

Heterogeneity among Kantian investors implies that they choose different portfolio holdings.  

 

Proposition 3: Wealthier individuals will hold a larger share in the pollutive firm. Individuals with 

stronger preferences for the environment will also hold a larger share in the pollutive firm3. 

 

Households with more productive labour will be richer and thus, assuming period 2 consumption is a 

normal good, they will achieve higher consumption in period 2. This implies a lower marginal utility 

of consumption and thus the right-hand side of their efficiency rule in equation 2.19 will be larger. 

Therefore, they will hold a larger share of investment in the polluting firm.  

 

Households with stronger preferences for the environment, 𝜂ℎ, will also tend to hold a larger share of 

investment in the pollution firm. The exact relation between 𝜂ℎ and 𝑧ℎ depends upon the shape of the 

marginal utility function, Appendix B3 demonstrates that a sufficient condition for higher 𝜂ℎ to result 

in higher 𝑧ℎ is that the Arrow-Pratt measure of relative risk aversion is no greater than 1, i.e., 

−
𝑢′′(𝑐2

ℎ)𝑐2
ℎ

𝑢′(𝑐2
ℎ)

≤ 1. Whilst environmentalists having more dirty assets seems counterintuitive, it arises as a 

consequence of being in equilibrium. Kantian investors are seeking to balance the gain from a cleaner 

environment when everyone reduces their investment, against the loss of return on investment from 

reducing their own investment. Households with stronger environmental preferences, 

‘environmentalists’, experience greater damages from pollution, and thus demand a higher pollution 

premium to compensate them for these damages. However, in equilibrium, the law of one price dictates 

that the pollution premium is the same for all households, and thus below the optimum level for 

environmentalists. Therefore, the Kantian environmentalist would need to hold larger shares in the 

 

3 Given the sufficient condition − 𝑢′′(𝑐2
ℎ)𝑐2

ℎ

𝑢′(𝑐2
ℎ)

≤ 1. 
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polluting firm in order for the loss of return from investment to balance the gain from a cleaner 

environment when everyone reduces their investment.  

 

2.3.3.2 A Fraction of Households are Kantian Investors 

When an economy is composed of both Kantian and non-Kantian investors, the Kantian investors will 

optimise according to their moral principles, whilst non-Kantians will behave competitively. Thus, 

Kantian investors will induce a pollution premium on dirty assets. Meanwhile, for non-Kantian 

investors, the polluting asset becomes dominant as it offers a higher return. This means that non-Kantian 

investors will invest only in the polluting asset. The size of the pollution premium and the scale of 

aggregate investment in the dirty firm will depend upon the proportion of Kantians and non-Kantians 

in the economy and the size of their savings. 

 

In principle, one could have an equilibrium where non-Kantian investors invest up to the point where 

returns on clean and dirty assets are equalised, 𝐹𝑧(𝑍𝑛 , 𝐿) = 𝑅, where 𝑍𝑛 denotes the total assets of the 

non-Kantians. In this case, non-Kantians could invest in both clean and dirty assets. Meanwhile, Kantian 

investors would be in a corner solution (equation 2.13 would be negative), in the sense that they seek 

to make a negative investment in dirty assets. Since this is not possible, they would hold only clean 

assets. This equilibrium would coincide with the ‘standard’ competitive equilibrium in section 2.2 

above. However, if the savings of the non-Kantian are not enough to reach 𝐹𝑧(𝑍𝑛 , 𝐿) = 𝑅, then the 

Kantian investors play a role. Non-Kantians would invest solely in the polluting asset when 𝐹𝑧(𝑍𝑛 , 𝐿) >

𝑅. 

 

Long (2019) highlights two ways of modelling Kantians when non-Kantians are present — exclusive 

Kantians and inclusive Kantians. An exclusive Kantian would account for the fact that a proportion of 

investors are non-Kantian and would consider the right action as the best that Kantians can achieve 

within this environment. Thus, the exclusive Kantian counterfactual considers non-Kantian investors’ 

behaviour to be constant whilst only Kantian households are considered as hypothetical co-movers. An 

inclusive Kantian would consider that they should do the moral action, even if others do not follow the 

moral view. Thus, the inclusive Kantian counterfactual considers both Kantian and non-Kantian 

households to be hypothetical co-movers in their Kantian optimisation. 

 

We investigate exclusive and inclusive Kantian equilibria separately. Intuitively, we would expect the 

pollution premium to be lower in both equilibria than in a fully Kantian economy because Kantians 

have less market power to demand a premium, whilst non-Kantians will increase their investment in 

dirty assets in response to a premium causing it to decline further. We first derive the exclusive Kantian 
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equilibrium and then the inclusive Kantian equilibrium, investigating how the presence of non-Kantians 

influences total investment in dirty assets. 

 

2.3.3.2.1 Exclusive Kantians  

First, we look at the case of exclusive Kantianism. In this optimisation, the Kantians assume non-

Kantian behaviour to be constant whilst considering other Kantians to deviate by a common factor, 𝛾ℎ. 

Exclusive Kantians would now choose their investment portfolio to optimise,  

 

𝑈ℎ = 𝑢(𝑙1
ℎ − 𝑘ℎ − 𝛾ℎ𝑧ℎ)                                                                                                                     

+𝛽 [𝑢 (𝑤𝑙2
ℎ + 𝑅𝑘ℎ +

𝐹(𝛾ℎ𝑍𝑘 + 𝑍𝑛 , 𝐿) − 𝑤𝐿

𝛾ℎ𝑍𝑘 + 𝑍𝑛
𝛾ℎ𝑧ℎ) − 𝜂ℎ𝑣 (𝜓𝐹(𝛾ℎ𝑍𝑘 + 𝑍𝑛 , 𝐿))] . (2.20)

 

 

The exclusive Kantian first-order condition for the dirty investment would be, 

 

𝜕𝑈ℎ

𝜕𝛾ℎ
|

𝛾ℎ=1

= −𝑢′(𝑐1
ℎ)𝑧ℎ  + 𝛽[𝑢′(𝑐2

ℎ)𝐹𝑧𝑧ℎ − 𝜂ℎ𝑣′(𝑋)𝜓𝐹𝑍(𝑍, 𝐿)𝑍𝐾] = 0, (2.21) 

 

whilst the same Euler equation (eq. 2.18) would hold for the clean investment. These can be combined 

to give,  

 

𝑧ℎ(𝐹𝑧  − 𝑅) = 𝜂ℎ
𝑣′(𝑋)

𝑢′(𝑐2
ℎ)

𝜓𝐹𝑍𝑍𝐾 . (2.22) 

 

When aggregated over Kantian agents, this gives the overall pollution premium, 

 

𝐹𝑍 − 𝑅 = ∑ 𝜂ℎ
𝑣′(𝑋)

𝑢′(𝑐2
ℎ)

𝜓𝐹𝑍

ℎ∈{𝐾𝑎𝑛𝑡}

 . (2.23). 

 

Equation 2.23 suggests that the pollution premium is smaller than the Pareto efficient pollution 

premium, since it sums the marginal rates of substitutions among Kantian households only, without re-

scaling. However, it would also depend upon the relative changes in the marginal utility gained from a 

Kantian increasing their own investment versus the marginal disutility experienced from all Kantian 

agents increasing their investment. 
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We verify that the exclusive Kantian pollution premium is lower than the Pareto optimal premium in 

Appendix B4.2, by taking to total differential of equation 2.23 to find how the overall level of dirty 

investment changes with the proportion of non-Kantians.  

 

𝑑𝑍

𝑑𝛿
=

[−
𝑁𝜂𝜓𝑣

𝑢′(𝑐2
ℎ)

−
(𝑁 − 𝑁𝑛)𝜂𝜓𝑣

𝑢′(𝑐2
ℎ)

𝑢′′(𝑐2
ℎ)

𝑢′(𝑐2
ℎ)

𝛽
𝑁 𝐷]

[
𝐹𝑧𝑧𝑅
𝐹𝑍𝐹𝑧

+
(𝑁 − 𝑁𝑛)𝜂𝜓𝑣

𝑢′(𝑐2
ℎ)

𝑢′′(𝑐2
ℎ)

𝑢′(𝑐2
ℎ)

 
𝛽
𝑁  𝐵]

> 0, (2.24) 

 

where 𝛿 =
𝑁𝑛

𝑁
, 𝐵 = (𝐹𝑧𝑧 (−𝑍 +

𝑍𝑘𝑁

𝑁𝑘 ) +
𝐹𝑧−𝑅

(1−𝛿)
(1 − 𝑍𝑛  𝐹𝑧𝑧𝐴)) > 0, and 𝐷 =

(𝐹𝑧−𝑅)

(1−𝛿)
(

𝑍𝑘𝑁

𝑁𝑘 −
𝑍𝑛𝑁

𝑁𝑛 ) <

0. We find that the analytical solution has a positive sign4, demonstrating that in an economy with 

exclusive Kantians, as the proportion of non-Kantians rises, the level of investment in the dirty firm 

will rise.  

 

Proposition 4: In the Exclusive Kantian equilibrium, pollution is greater than in the Pareto efficient 

equilibrium. 

 

2.3.3.2.2 Inclusive Kantians  

Next, we consider the case of inclusive Kantianism. In this optimisation, the Kantians consider both 

Kantians and non-Kantians to deviate by a common factor. Thus, the inclusive Kantians optimise 

equation 2.16, just as in the case where all agents are Kantian, resulting in each Kantian agent 

demanding a pollution premium as in equation 2.18. These premiums are then aggregated over the 

Kantian households to give the overall pollution premium,  

 

𝐹𝑍(𝑍, 𝐿) − 𝑅 =
𝑍

𝑍𝐾  ∑ 𝜂ℎ
𝑣′(𝑋)

𝑢′(𝑐2
ℎ)

 𝜓 𝐹𝑍(𝑍, 𝐿)

ℎ∈{𝐾𝑎𝑛𝑡}

. (2.25) 

 

By initial inspection of equation 2.25, it is not clear how the inclusive Kantian pollution premium 

compares to the Pareto efficient pricing rule (eq. 2.11). In Appendix B4.1, we take the total differential 

of equation 2.25 to investigate how the total level of dirty investment changes as the proportion of non-

Kantians in the economy increases. We find that the differential of aggregate dirty investment with 

respect to the proportion of non-Kantians is, 

 

 
4 In the numerator both terms are negative. In the denominator both terms are negative. 
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𝑑𝑍

𝑑𝛿
=

[
𝑍

𝑍𝑘
𝑁𝜂𝜓𝑣

𝑢′(𝑐2
ℎ)

[−1 − (1 − 𝛿)
𝑢′′(𝑐2

𝑘𝑝)

𝑢′(𝑐2
𝑘𝑝)

𝛽
𝑁 𝐷 +

𝑍𝑛

𝑍𝑘

(1 − 𝛿)
𝛿

𝑁]]

[
𝑅𝐹𝑧𝑧
𝐹𝑧𝐹𝑧

+
𝑍

𝑍𝑘 (1 − 𝛿)𝑁 𝜂
𝑣′(𝑋)

𝑢′(𝑐2
ℎ)

𝜓 [
𝑢′′(𝑐2

𝑘𝑝)

𝑢′(𝑐2
𝑘𝑝)

𝛽
𝑁  𝐵 +

𝑍𝑛

𝑍𝑘 (
1
𝑍 − 𝐹𝑧𝑧𝐴)]]

, (2.26) 

 

Where 𝐴 =

𝛽

𝑢′′(𝑐2)
[−𝑁𝑙1𝐹𝑧−𝑤𝑁𝑙2]

𝛿(𝑁𝑙1−𝑢′−1(𝛽𝐹𝑧)𝑤𝑁𝑙2)(1+𝑢′−1(𝛽𝐹𝑧)𝐹𝑧)
> 0.  

We find that the analytical solution has no definitive sign5, suggesting that there are conflicting effects 

upon the overall level of dirty investment and that the relative size of these effects will depend upon the 

functional form of the utility and production functions and the calibration of parameter values.  

 

The main difference between the inclusive Kantian and the exclusive Kantian equilibria is the multiplier 

of 
𝑍

𝑍𝑘 on the right-hand side of equation 2.25, which arises because inclusive Kantians consider all agents 

as co-movers in their Kantian hypothetical but can only change their own investment. This means that 

when the inclusive Kantian seeks to equalise the marginal cost from all pollution externalities with the 

marginal benefit from their own investment returns, they will likely have to invest more to cover the 

higher costs arising from non-Kantian dirty investment. Hence, due to this Kantian equilibrium effect, 

Kantian dirty investment is likely to rise as the number of non-Kantians increases within the economy. 

In contrast, the exclusive Kantian only seeks to equalise the marginal cost from pollution externalities 

arising from Kantian investment with the marginal benefit from their own investment.  

 

However, when aggregate dirty investment rises, this pushes down the return on dirty assets, thus an 

increase in investment by Kantian agents may result in a reduction in investment by non-Kantian agents. 

Since it is not clear whether the increase in Kantian investment is greater than the subsequent decrease 

in non-Kantian investment, equation 2.26 has no definitive sign.  

 

Overall, since non-Kantian dirty investment is expected to be higher than Kantian dirty investment, we 

expect the results from the exclusive Kantian equilibrium will carry over to the inclusive Kantian 

equilibrium, such that pollution will be greater than in the Pareto efficient equilibrium. However, we 

cannot analytically compare the inclusive Kantian equilibrium with the exclusive Kantian equilibrium.  

 

 
5 In the numerator the term outside the bracket is positive, whilst inside the bracket the first two terms are 

negative and the third is positive, with no clear dominance in scale. In the denominator the first term is negative, 

the second term has a positive term outside the bracket, and one negative and two positive terms inside the 

bracket, again with not clear dominance in scale. 
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Hypothesis 1: In the Inclusive Kantian equilibrium, pollution is greater than in the Pareto efficient 

equilibrium. 

 

2.4 Simulations 

To numerically investigate the relationship between the proportion of Kantians and the level of dirty 

investment and to compare the exclusive Kantian economy to the inclusive Kantian economy, we run a 

set of numerical simulations. Within these simulations, we assign functional forms to the utility and 

production functions which satisfy the assumptions within the model. The utility function is represented 

as a logarithm, such that 𝑢(𝑐) = ln (𝑐), whilst the production function is represented as the Cobb-

Douglas function with 𝛼 = 1/2 for ease of exposition, such that 𝐹(𝑍, 𝐿) = 𝑍1/2𝐿1/2. We run some tests 

to investigate how sensitive our outcomes are to these functional forms, varying the utility function by 

introducing a Stone-Geary term for essential consumption in each period and varying the production 

function by investigating different capital shares.  

 

Within Appendix B5 we derive expressions for 𝑘𝑘, 𝑧𝑘  and 𝑧𝑛 for the 8 different scenarios shown in 

table 2.1. In each scenario, we solve the three expressions simultaneously to estimate equilibrium values 

for Kantian and non-Kantian investment portfolios. 

 

Table 2.1: Functional forms and type of Kantian within each simulation 

 

Utility function Production function 
Exclusive 

Kantians 

Inclusive 

Kantians 

𝑈ℎ = ln(𝑐1
ℎ) + 𝛽 (ln(𝑐2

ℎ) − 𝜂ℎ𝑣(𝑋)) 𝐹(𝑍, 𝐿) = 𝑍1/2𝐿1/2 Simulation 1 

Eq.: B5.7, B5.9, 

B5.10 

Simulation 2 

Eq.: B5.7, 

B5.8, B5.9 

𝑈ℎ = ln(𝑐1
ℎ) + 𝛽 (ln(𝑐2

ℎ) − 𝜂ℎ𝑣(𝑋)) 𝐹(𝑍, 𝐿) = 𝑍1/3𝐿2/3 Simulation 3 

Eq.: B5.11, 

B5.13, B5.14 

Simulation 4 

Eq.: B5.11, 

B5.12, B5.13 

𝑈ℎ = ln(𝑐1
ℎ) + 𝛽 (ln(𝑐2

ℎ − 𝑠) − 𝜂ℎ𝑣(𝑋)) 𝐹(𝑍, 𝐿) = 𝑍1/2𝐿1/2 Simulation 5 

Eq.: B5.19, 

B5.21, B5.22 

Simulation 6 

Eq.: B5.19, 

B5.20, B5.21 

𝑈ℎ = ln(𝑐1
ℎ − 𝑠) + 𝛽 (ln(𝑐2

ℎ) − 𝜂ℎ𝑣(𝑋)) 𝐹(𝑍, 𝐿) = 𝑍1/2𝐿1/2 Simulation 7 

Eq.: B5.27, 

B5.29, B5.30 

Simulation 8 

Eq.: B5.27, 

B5.28, B5.29 

*To see equations refer to Appendix B5. 
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We use the software Maple to solve the three simultaneous equations within each simulation. We 

calibrate the parameters within all our models according to reasonable market estimates, adjusting to 

ensure that there are real solutions at the equilibria. The annual discount rate is set to 2%, such that over 

the life cycle model, assuming a worker is employed for 40 years, the intertemporal discount rate is 

𝛽 = 0.9840 = 0.446. We set 𝜃 = 0.181 where 𝜃 = 𝜂𝑣′(𝑋)𝜓 𝑁
𝛽

1+𝛽
  and 𝑁 is normalised to 1. This 

implies that 𝜂𝑣′(𝑋)𝜓 = 0.3695 reflects the damage from an additional unit of production, which is the 

multiplication of three terms: one reflecting the pollution arising from an additional unit of production, 

one reflecting the damage caused by this pollution, and one reflecting the disutility that arises from this 

damage. We set the constant return on clean assets to be, 𝑅 = 1.05. We set the labour in each period to 

𝑙1 = 0.225 and 𝑙2 = 1 where labour in the second period was chosen for simplicity of exposition, whilst 

labour in the first period was chosen to ensure stable solutions with positive optimal investments for 

0 < 𝛿 ≤ 1. Finally, wages in the first period are set to 1 and wages in the second period are determined 

endogenously. 

 

There are three roots for each simulation. Only one of these roots satisfies the constraint that investment 

cannot be negative, and therefore we analyse this as the equilibrium solution. We repeat each simulation 

for different proportions of non-Kantians, 𝛿 = [0,1] at intervals of 0.1 to see how the equilibrium 

investment portfolios of Kantians and non-Kantians change as the proportion of non-Kantians within 

the economy increases.  

 

2.4.1 Simulations 1 and 2: Exclusive vs Inclusive Kantians 

Figure 2.1 demonstrates that simulations 1 and 2 confirm propositions 4 and 5, that the level of pollution 

in both the exclusive Kantian equilibrium and the inclusive Kantian equilibrium will be higher than the 

Pareto efficient level. The purple lines show that in both cases the average level of dirty investment 

rises as the proportion of non-Kantians in the economy increases, this pushes down the pollution 

premium on dirty assets and implies higher levels of pollution.  
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Figure 2.1: Graph to show the investment portfolio of Exclusive and Inclusive Kantians 

* Exclusive Kantians in Simulation 1 (solid lines) and Inclusive Kantians in Simulation 2 (dashed lines). 

Where k is individual Kantian clean investment, zk is individual Kantian dirty investment, zn is 

individual non-Kantian dirty investment, and Z/N is average dirty investment. 

 

The blue lines show that as the proportion of non-Kantians increases, the individual investment of non-

Kantians declines. This arises because at all values of 𝛿 ∈ [0,1] non-Kantians invest more than Kantians 

in the dirty firm. Therefore, as the number of non-Kantians increases, aggregate investment rises. 

However, as aggregate investment rises, the return on dirty assets is pushed down, thus reducing the 

incentive for non-Kantians to invest. Therefore, as aggregate dirty investment rises, individual non-

Kantian investment falls. We can see that in the inclusive Kantian simulations, non-Kantian investment 

is slightly lower for 0 < 𝛿 < 1, due to the positive levels of Kantian dirty investment.  

 

The red lines show that Kantian dirty investment differs significantly in the exclusive Kantian equilibria 

and the inclusive Kantian equilibria. In each of the exclusive Kantian equilibria, the solid line shows 

that the Kantian does not invest in the dirty firm. This aligns with the first-order condition for exclusive 

Kantian dirty investment in equation 2.21, where zero dirty investment will always be an available 

equilibrium since they only consider the damages generated by Kantian agents thus zero investment 

implies zero pollution damages and zero benefits from dirty investments. In contrast, the dashed red 

line demonstrates inclusive Kantians increase their dirty investment as the proportion of non-Kantians 

increases. This is because inclusive Kantians seek to equalise the marginal cost of all pollution damages 

with the marginal benefit arising from their own dirty investment. Thus, since the average dirty 
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investment rises with the number of non-Kantians, pollution damages will also rise, resulting in a higher 

optimal level of Kantian dirty investment.  

 

We can see that the increase in Kantian investment is greater than the subsequent reduction in non-

Kantian investment, thus for all levels of 0 < 𝛿 < 1, the purple lines show that the average dirty 

investment in the inclusive Kantian equilibrium is slightly higher than in the exclusive Kantian 

equilibrium.  

 

Finally, the green lines show that the optimal level of Kantian clean investment also responds to the 

proportion of non-Kantians in the economy. The solid lines show that exclusive Kantians, who invest 

solely in the clean firm, reduce their investment as the proportion of non-Kantians increases. This arises 

because as the level of dirty investment rises, the production of the dirty firm rises, pushing up labour 

income in period 2, 𝑤𝑙2 = 𝐹 − 𝐹𝑧𝑍 =
1

2
𝑍

1

2. Higher income in period 2 reduces the incentive to save in 

period 1, thus clean investment falls. The dashed lines show that inclusive Kantian clean investment 

reduces relatively more as the proportion of non-Kantians increases, this is because they are also 

substituting away from clean investment towards dirty investment.  

 

2.4.2 Simulations 3 and 4: Exclusive and Inclusive Kantians with lower capital shares 

To investigate how sensitive these results are to the functional form of the production function, we 

investigate how the simulation outcomes change when the capital share reduces to 𝛼 =
1

3
, such that the 

production function is 𝐹(𝑍, 𝐿) = 𝑍
1

3𝐿
2

3.  

 

Figure 2.2 demonstrates that when the capital share declines the same general patterns arise in both the 

exclusive Kantian and inclusive Kantian equilibria, but the levels of all types of investment are lower6. 

The blue lines and the dashed red line show that investment in dirty assets declines for both non-

Kantians and inclusive Kantians, resulting in lower average investment in the dirty firm as shown by 

the purple lines. This arises because when capital forms a smaller share in the production of the dirty 

firm, the marginal return to capital investment will fall, reducing the incentive to invest. Despite capital 

investment being lower, figure 2.3 shows that, given the same exogenous levels of labour, the overall 

production of the dirty firm will be higher. Therefore, when capital forms a smaller share in production, 

the investors’ portfolios have a smaller influence on the production and subsequent pollution generated 

by firms.   

 

 
6 Figures B1 and B2 in appendix B6 demonstrate the difference between simulations 1 and 3, and simulations 2 

and 4. 
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Figure 2.2: Graph to show the investment portfolio of Exclusive and Inclusive Kantians with lower 

capital share in production.  

* Left graph allows for negative investment, right graph restricts optimisation to positive investment. 
Exclusive Kantians in Simulation 3 (solid lines) and Inclusive Kantians in Simulation 4 (dashed lines) 

when the capital share in the production function is reduced to 1/3, such that 𝐹(𝑍, 𝐿) = 𝑍
1

3𝐿
2

3. Where k 

is individual Kantian clean investment, zk is individual Kantian dirty investment, zn is individual non-

Kantian dirty investment, and Z/N is average dirty investment. 

 

 Figure 2.2 also demonstrates that Kantian clean investment is significantly lower when the capital share 

in production is lower. This is because a lower capital share implies a higher labour share, which results 

in a higher marginal return to labour in period 2, and thus lower incentive to invest in period 1 to fund 

period 2 consumption. With this calibration of parameters, the inclusive Kantian would want to invest 

a negative amount in the clean firm, thus would like to borrow from period 2 to fund consumption in 

period 1. Since this is not possible, the inclusive Kantian would be in a corner solution with 𝑘 = 0 and 

positive dirty investments.  
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Figure 2.3: Graph to show the total production of the dirty firm in the Exclusive and Inclusive equilibria 

for each production function. 

*Solid lines show the baseline model with alpha=1/2 such that 𝐹(𝑍, 𝐿) = 𝑍
1

2𝐿
1

2, dashed lines show the 

modified model with alpha=1/3 such that 𝐹(𝑍, 𝐿) = 𝑍
1

3𝐿
2

3. 

 

2.4.3 Simulations 5,6,7, and 8: Exclusive and Inclusive Kantians with Stone-Geary Utility Terms 

The Stone Geary preference parameter, 𝑠, introduces a minimum consumption requirement. In 

simulations 5 and 6 we impose this requirement on period 2 consumption such that 𝑈ℎ = 𝑢(𝑐1
ℎ) +

𝛽[𝑢(𝑐2
ℎ − 𝑠) − 𝜂ℎ𝑣(𝑋)], whilst in simulations 7 and 8 we impose it on period 1 consumption, such that 

𝑈ℎ = 𝑢(𝑐1
ℎ − 𝑠) + 𝛽[𝑢(𝑐2

ℎ) − 𝜂ℎ𝑣(𝑋)]. A minimum consumption requirement implies that in the 

period in which the requirement is imposed, the individual will only gain utility from consumption 

above this minimum level, and that they would never choose a level of consumption below this level 

since utility would become negative or undefined in the case of logarithmic utility. Consequently, the 

consumption smoothing process is shifted. The investor would have an incentive to satisfy their 

minimum consumption requirement before optimising across periods, thus they would allocate more 

consumption to the period constrained by the Stone-Geary term. Within our simulations we apply a 

Stone Geary term that is 5% of the optimal period 2 consumption level for non-Kantians within a fully 

non-Kantian economy, thus we set 𝑠 = 0.0135. We run the simulations with the baseline production 

function with 𝛼 =
1

2
. 
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Figure 2.4: Graph to show the investment portfolio of Exclusive and Inclusive Kantians when Stone 

Geary term is introduced to utility function of investors.  

*Exclusive Kantians in simulations 5 and 7 (solid lines) and Inclusive Kantians in simulations 6 and 8 

(dashed lines). Dark colours show simulations 5 and 6 where the Stone Geary term is introduced in 
period 2, light colours show simulations 7 and 8 where the Stone Geary term is introduced in period 1. 

k is individual Kantian clean investment, zk is individual Kantian dirty investment, zn is individual non-

Kantian dirty investment, and Z/N is average dirty investment. 

 

Figure 2.4 demonstrates that the general trends within Figure 2.1 are still evident when a Stone Geary 

term is applied. The dark lines in Figure 2.4 show that when the Stone-Geary term is introduced to 

period 2 utility, investors shift their consumption towards period 2 by increasing their investment. Non-

Kantian agents have higher levels of dirty investment, and Kantian agents have higher levels of both 

clean and dirty investment. In contrast, when the Stone-Geary term is introduced to period 1 utility, 

investors shift their consumption towards period 1 by reducing their investment. Non-Kantian agents 

have lower levels of dirty investment, and Kantian agents have lower levels of both clean and dirty 

investment. The higher lines of simulation 5 and 6, and the lower lines of simulations 7 and 8 in Figure 

2.4 sit above and below the baseline simulations 1 and 2 in Figure 2.1.  
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2.4.4 Simulations summary 

Overall, our simulations demonstrate four key findings. Firstly, they confirm propositions 4 and 5, 

demonstrating that the presence of non-Kantians has a significant influence on the level of pollution 

within the economy, with the level of pollution increasing with the proportion of non-Kantians. 

Secondly, they demonstrate that the presence of non-Kantians significantly influences the investment 

portfolio of Kantian agents, and that this influence depends upon whether Kantians optimise in an 

exclusive or inclusive Kantian manner. Exclusive Kantians never invest in the dirty firm, but their clean 

investment declines with declining labour returns as the proportion of non-Kantians increase. Inclusive 

Kantians increasingly invest in the dirty firm as the proportion of non-Kantians rises, and their clean 

investment declines even further. Thirdly, they demonstrate that aggregate dirty investment and 

subsequent pollution is higher in the inclusive Kantian equilibrium than in the exclusive Kantian 

equilibrium when 0 < 𝛿 < 1. Finally, they demonstrate that within the assumptions of having a 

constant return to scale production function and a concave utility function, our results hold for different 

capital shares and Stone Geary consumption requirements.  

 

2.5 Conclusion 

We have presented a two-period model where heterogeneous households have a choice of clean and 

dirty investments. First, we derived a first-best, Pareto-efficient asset pricing rule, where the return on 

the dirty investment contains a pollution premium. We showed that when all investors are Kantian, the 

first-best asset pricing rule holds in equilibrium, and thus the externality is internalised. In this 

equilibrium, wealthier individuals will hold a larger share in the polluting firm. Furthermore, individuals 

with stronger preferences for the environment will hold a larger share in the polluting firm. 

 

We next characterised the equilibria when only a fraction of the population is Kantian. We analytically 

derived the mechanisms underlying the partially Kantian equilibria and ran a series of simulations to 

investigate how investment portfolios changed as the proportion of non-Kantians increased and to 

compare the exclusive Kantian equilibria to the inclusive Kantian equilibria. If Kantians are exclusive, 

in the sense that they do what is morally right acknowledging that non-Kantians will not follow suit, 

then pollution will be greater than in the Kantian equilibrium. If Kantians are inclusive, in the sense that 

they do what is morally right according to what they believe that all agents, Kantian and non-Kantian, 

should do, then pollution will be even higher than in the exclusive Kantian economy when 0 < 𝛿 < 1. 

This is because in the inclusive Kantian optimum the marginal cost from all pollution damages is equal 

to the marginal benefit from a Kantian agents’ own dirty investment, thus when aggregate non-Kantian 

investment in dirty assets rises, the inclusive Kantians also increase their dirty investment.  
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Understanding the potential mechanisms underlying socially responsible investment helps to design 

policy to further encourage and facilitate such investment patterns. Firstly, even in a fully Kantian 

economy, well-intentioned agents need to be informed about the externalities generated by firms and 

the cost of these externalities. Therefore, regulations mandating the provision of firms’ environmental 

performance are key to allowing moral agents to make informed decisions. Furthermore, ensuring this 

information is digestible and simple is key to ensuring information is understood and has an influence 

on decision-making. 

 

Furthermore, within a partially Kantian economy, we can see that as the number of Kantian agents rises 

and as the exclusivity of these agents rises, the economy comes closer to the Pareto optimum. This 

highlights the role for policy to emphasise the moral responsibility of individual investors and to 

empower them to make the changes that they want to see. However, it is also important for moral agents 

to be realistic about the scope of morality within the economy so that they can be more effective in 

promoting social welfare. Kantians are more effective in internalising externalities when they are 

focused on the impact that they can have as moral agents, rather than concerning themselves with the 

behaviour of non-moral agents. 

 

Evidently, there is still an important role for market-based intervention. Whilst the pollution premium 

acts as an implicit tax upon dirty firms, it also serves to reward non-Kantian investors for investing in 

dirty assets. This could have the negative consequence of encouraging harmful behaviours, whilst also 

placing these harmful assets in the hands of less responsible people. On the other hand, an explicit tax 

would increase costs for firms without providing financial incentives for non-Kantians to increase their 

investments in dirty assets.  

 

Our contribution is to derive the asset pricing rule, and the equilibrium pollution levels under (i) 

efficiency, (ii) full Kantianism, (iii) partial exclusive Kantianism, and (iv) partial inclusive Kantianism. 

We have investigated the role of wealth and environmental preferences for the individually optimal 

portfolio. We showed that the need for government intervention depends on the proportion of Kantians 

in the population and the inclusivity of their moral norms.  
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CHAPTER 3: Coal Legacies and Geothermal Futures: Choice Modelling Analysis of Household 

Preferences for Renewable Heating Systems. 

Lucy Naga*, Jingyuan Di, Kalila Mackenzie, Laura Marsiliani, Thomas Renström, Riccardo Scarpa. 

Abstract: 

Heating contributed 23% of the UK’s greenhouse gas emissions in 2021. To achieve the government’s 

commitment to net zero by 2050, decarbonisation of heating systems is crucial. This requires mass 

adoption of renewable, low-carbon heating systems by households and business owners. Within this 

paper, we investigate how environmental attitudes and social identity influence household stated 

preferences for four renewable heating systems: geothermal district heating from mines, hydrogen 

boiler, solar electric boiler and air source heat pump. We focus specifically on preferences for 

geothermal district heating from mines in the North East of England where coal mining heritage has a 

significant influence on local social identity.  

We conduct a stated preference discrete choice experiment and employ an integrated choice and latent 

variable (ICLV) analysis approach. We find that those with environmentally friendly attitudes have a 

higher marginal willingness to pay for systems with lower carbon dioxide (CO2) emissions. However, 

although those with energy-conscious attitudes are more sensitive to CO2 emissions, their heightened 

cost sensitivity means that they are not willing to pay more for such systems. Our predictions 

demonstrate that a carbon price will shift demand towards geothermal energy. The elasticity of demand 

is lower for environmentally friendly respondents and higher for energy-conscious respondents. We 

also find that those who identify more strongly with the region’s coal mining heritage view the use of 

coal mines more positively and are more likely to choose geothermal heating from mines, they are also 

more sensitive to the job creation attribute, yet more cost-sensitive. Overall, this suggests that coal 

mining communities will have a positive attitude towards the introduction of geothermal district 

heating. However, due to the high levels of deprivation and subsequent high levels of cost sensitivity, 

when the time comes, most households would be compelled to choose the cheapest option.  

 

JEL classification: D12, D91, Q41, Q58. 

Keywords: Energy economics, Choice modelling, Heating systems, Identity, Environmental 

Preferences. 
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3.1 Introduction 

The UK government is committed to achieving net zero greenhouse gas (GHG) emissions by 2050 

(BEIS, 2021a). Meeting this commitment requires research and innovation into low-carbon 

technologies alongside widespread behavioural change. Heating generated 23% of the UK’s GHG 

emissions in 2019 (BEIS, 2021b), with household heating alone contributing 17%. Despite significant 

innovation in low-carbon heating systems and recent policy efforts to encourage adoption, households' 

transition away from fossil fuel heating sources has been slow. 78% of the UK homes are still heated 

by natural gas boilers (BEIS, 2021b). The government’s Heat and Building Strategy (BEIS, 2021a) sets 

out its policy approach and plan to transition to low-carbon, renewable heating systems, including the 

phase-out of natural gas boiler installation beyond 2035. The report recognises the multi-faceted 

challenge of the transition but also emphasises the opportunities for improved welfare, growth, and 

levelling up.  

 

Several low-carbon technologies are available in the market. A key technology being encouraged by 

the government as a ‘no-regret’ action (BEIS, 2021a) is the hydronic heat pump — including air source 

and ground source. Heat pumps extract heat from the air or the ground using technology similar to that 

found in a refrigerator or air conditioner. Warm air is pumped over a heat exchanger, causing a 

refrigerant liquid to evaporate and pass through a compressor which increases the pressure and raises 

the temperature. This heat is then transferred to the home or target space. Solar electric heat is another 

alternative, whereby photovoltaic (PV) cells absorb sunlight and create electricity to power an electric 

boiler. Research and development into alternative low-carbon heating systems is ongoing, with several 

viable alternatives not widely available in UK markets. Hydrogen-fuelled boilers are one alternative, 

whereby hydrogen is extracted by electrolysis within power plants and then burnt for energy within 

household boilers. Hydrogen is a low-carbon fuel and does not release carbon dioxide when burnt. 

However, the overall emissions depend upon how the hydrogen gas is generated. Geothermal district 

heating is another alternative, whereby deep ground sources such as mines are used as a source for 

geothermal heat which can be extracted via heat pump technology and then distributed within a district 

heat network.  

 

It is unlikely that there is a one-size-fits-all solution (BEIS, 2018); subsequently, multiple technologies 

will be important on our path to net zero. Natural resources and existing infrastructure play a 

fundamental role in the viability and efficiency of the different heating sources. In this project, we are 

focusing on consumer preferences for heating systems within the North East of England. The North 

East has an abundance of disused coal mines, a remnant of its strong coal mining heritage. Over time, 

these mines have filled with water and this water has been heated by natural geothermal processes to 

10-15 degrees Celsius (British Geological Society). Heat pump technology can boost this to 



 72 

temperatures of up to 40-50 degrees Celsius (Geological Society of London), hence providing a viable 

source of household heating. Geothermal district heating systems are set up as a renewable process. 

Warm water is extracted from a deep mine seam, and cooler water is returned to a shallower mine seam 

or the same seam some distance away. It then trickles through the rocks, heating up on its journey to 

the extraction point. There is also the potential to use these systems to store and recycle waste heat.  

 

Demographically, the North East is one of the most deprived regions in the country, therefore many 

households may struggle to afford investments in low-carbon heating alternatives. A renewable energy 

project which draws on resources within the region, generates green jobs for residents, and offers a 

source of affordable and renewable energy appears to offer a win-win scenario for households. Within 

this paper, we investigate households’ attitudes towards geothermal district heating, exploring their 

willingness to pay for different renewable heating systems and how their environmental preferences, 

energy-saving inclinations, and coal mining identity influence their sensitivity towards different heating 

system attributes. 

 

We administer a discrete choice experiment through a survey of 915 households in the North East of 

England to investigate household willingness to pay for geothermal district heating, a solar electric 

boiler, a hydrogen boiler, and an air source heat pump. We investigate which heating system attributes 

influence household decisions by varying levels of investment cost, monthly cost, replacement period, 

CO2 emissions and job creation.  

 

Alongside our choice experiment, we ask a series of attitudinal questions relating to environmental 

attitudes, energy behaviours and coal mining identity. We also collect information on respondents’ 

socio-demographic characteristics as well as details relating to their house and current heating system. 

We match respondents’ postcode areas to information about coal mine locations to obtain more detailed 

respondent-specific information about mining identity and the legacy of coal mining within the region. 

We first use data from the choice experiment and survey questions to conduct a baseline multi-nominal 

logit (MNL) model. We then investigate patterns of heterogeneity by introducing household 

characteristics into the MNL model, by estimating a mixed logit (MXL) model to incorporate a random 

continuous source of heterogeneity, and by estimating integrated choice and latent variable (ICLV) 

models to incorporate latent behavioural determinants. We finally focus on the role of environmental 

and energy attitudes and coal mining identity.  

 

Our preliminary factor analysis reveals that indicators for pro-environmental attitudes and energy-

saving attitudes load onto separate factors, leading us to investigate them as distinct latent 
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variables. Within our ICLV model analysis, we find that respondents with stronger pro-environmental 

attitudes exhibit a higher sensitivity to CO2 emissions; when an MNL choice structure is applied, this 

translates to a higher willingness to pay for heating systems with lower CO2 emissions than the average 

willingness to pay in the sample. Yet, when an MXL choice structure is applied, whilst heightened 

sensitivity to CO2 emissions remains, cost sensitivity increases, suggesting that underlying random 

parameters that correlate to environmental attitudes are the drivers of heightened willingness to pay in 

the MNL model. In contrast, both ICLV models find that, whilst those who have stronger energy-saving 

attitudes are more sensitive to CO2 emissions, their heightened sensitivity to cost means they do not 

have a higher willingness to pay for heating systems with lower CO2 emissions. Our policy predictions 

demonstrate that when a carbon price is introduced, households would be expected to shift their demand 

to cleaner alternatives. Households with stronger pro-environmental attitudes have a less price elastic 

demand than average, whilst households with stronger energy-conscious attitudes have a more price 

elastic demand. 

 

Additionally, we find that respondents with stronger coal mining identity are more likely to choose 

geothermal district heating over other renewable heating alternatives. Furthermore, coal mining identity 

is associated with a greater sensitivity to job creation. However, again, due to the heightened cost 

sensitivity of this segment, this does not translate into a higher willingness to pay for job creation. 

Within our policy predictions, coal mining identity does not significantly influence demand 

responsiveness. 

 

The rest of the paper is constructed as follows. Section 3.2 is a literature review of each of the 

behavioural theories and the choice modelling methodology. Section 3.3 covers the methods employed 

within this paper, including the survey design, data collection and choice modelling specifications. 

Section 3.4 provides an overview of our data. Section 3.5 presents the analytical results. Section 3.6 

presents our model predictions in the case of a carbon tax and a technology-specific subsidy. Section 

3.7 concludes and highlights the key takeaways.  

 

3.2 Literature 

3.2.1 Behavioural Influences 

Over the last several decades economists have enriched our conception of economic agents beyond the 

narrow, self-interested, independent homo-economicus by incorporating vital elements of our shared 

humanity such as our identity (Akerlof and Kranton, 2000), social context (Duflo, 2017), social norms 

(Elster, 1989; Nyborg, 2018), moral values (Laffont, 1975; Roemer 2010) and ways of life (Collier, 

2016) into models of behaviour. Sen (1977) highlights how the homo-economicus was never conceived 
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as a realistic depiction of humans, but rather it was intended as a simplification of an economic agent 

acting within a perfect market situation. However, the reality of pervasive market failures in the form 

of imperfect and asymmetric information, externalities, and interdependence between agents, means 

that community networks, informal social contracts, and moral rules play a significant role within 

economic scenarios. Thus, when seeking to understand decision-making within real-life scenarios, it is 

important to consider this enriched concept of economic agents. 

 

3.2.1.1 Pro-environmental and Energy-saving Attitudes 

Economic behaviour in the context of environmental externalities is particularly susceptible to agents’ 

human qualities due to the prevalence of negative environmental externalities and coordination failures 

which require social structures and moral rules to resolve. Since economic agents are many and their 

individual actions have a negligible external effect on the environment, it would be rational for each to 

act as homo-economicus and disregard their effect on externalities and focus on maximising their 

individual welfare. However, social structures and moral rules sustained through laws and norms enable 

economic agents to coordinate and collectively reduce their impact on the environment. Social 

psychology frameworks such as the Behavioural Reasoning Theory (BRT, Westaby, 2005; Claudy et 

al., 2013), and the Value-Belief-Norm framework (VBN, Stern et al., 1995, 1999) suggest that it is 

these social structures, values, and worldviews that determine individual pro-environmental attitudes 

and intentions and that attitudes and intentions are the most significant antecedent to behaviour 

(Westaby, 2005; Claudy et al., 2013). 

 

The ONS Opinions of Lifestyle Survey (OPN) (July 2024) found that 58% of adults in Great Britain 

expressed concern about the impact of climate change and Deloitte (2023) suggest that this concern and 

the pro-environmental attitudes associated with it are growing. This trend is likely driven by 

advancements in scientific research demonstrating the impact of human behaviour on the environment 

and climate, alongside increased access to reliable information and firsthand experiences of 

environmental impacts. Social psychology theories suggest that with a growth in environmental 

attitudes, we should observe more environmentally friendly behaviours, which should imply a greater 

willingness to pay for environmentally friendly alternatives than before. People will put their money 

where their values lie, perhaps due to a desire to feel a warm glow (Andreoni et al., 1991) from 

contributing to the environment, or from doing the socially acceptable or morally right thing (Nyborg, 

2018). 

 

The New Ecological Paradigm (NEP) scale (Dunlap et al., 2000) is the most widely used measure of 

an individual's environmental concern. The NEP is a validated psychometric scale, which captures the 
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‘pro-ecological’ worldview of respondents through 15 Likert-style survey statements concerning 

human impact on the environment, the balance of nature, and the responsibility of humans to look after 

the planet. Stern et al. (1995) incorporated the NEP into their behavioural framework as a general belief 

or worldview which is influenced by values and affects specific individual environmental beliefs and 

pro-environmental attitudes.  

 

The impact of pro-environmental attitudes on behaviours concerning renewable energy systems, and 

the attendant willingness to pay (WTP), has been investigated with structured survey tools based on 

contingent valuation (Hansala et al., 2008; Koto and Yiridoe, 2019) and choice experiment (Amador et 

al., 2013; Cicia et al., 2012; Petrovich et al., 2019) methods. These studies often use psychometric 

measures, such as the NEP scale, to capture latent environmental attitudes. Studies investigating 

marginal WTP for higher shares of renewable energy generation in their supplier’s energy mix find that 

environmental preferences have a positive impact on it (Amador et al., 2013), whilst those investigating 

preferences for particular energy sources generally find stronger preferences for renewable energy 

sources among respondents who worry more about climate change and have stronger environmental 

preferences (Cicia et al., 2012; Koto and Yiridoe, 2019; Hansala et al., 2008).  

 

In their study on microgeneration technologies, Scarpa and Willis (2010) highlight that whilst 

renewable energy generation is valued significantly by households, for the majority of households, this 

value was, at the time, insufficient to cover the higher capital costs of such technologies.  

 

In general, pro-environmental attitudes are found to have a positive effect on behaviour which is 

insufficient to correct for the environmental externalities arising from this behaviour. This may be due 

to the attitudes not being strong enough, or there could be an attitude-behaviour gap limiting action 

(Westaby, 2005; Claudy et al., 2013). Westaby (2005) suggests that even when individuals have strong 

attitudes toward a particular behaviour, reasons against the action may still be a barrier to agency. Thus, 

it is likely that despite having environmentally friendly attitudes, the extent to which this influences 

willingness to pay will be limited by financial barriers, practical barriers regarding retrofitting, or other 

behavioural barriers, such as status quo bias.  

 

Attitudes towards energy-saving also have a significant influence on energy behaviours. Statistica 

(2024) shows that household electricity consumption has been consistently declining over the last 20 

years. Households used to consume over 100 terawatt-hours of electricity every year, with a height of 

126 terawatt-hours in 2005, this gradually dropped to approximately 92 terawatt-hours in 2023. This 

substantial decline is likely to be due to improvements in energy efficiency and a rise in energy-saving 
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behaviours. There are two key reasons why households may have become more proactive about energy-

saving practices. Firstly, it may manifest their pro-environmental attitudes as they wish to reduce their 

carbon footprint by reducing energy consumption (Gadenne et al., 2011; Udalov et al., 2017). Secondly, 

it may be motivated by money-saving objectives, since lower energy consumption reduces energy bills 

(Aravena et al., 2016). In the case of energy usage, the cost is not necessarily a barrier to sustainable 

behaviour, since reducing energy usage reduces both cost and emissions, this can confound emissions-

reducing motives with cost-reducing motives, thereby complicating their respective identification. 

 

Amador et al. (2013) used energy-saving actions as an explanatory variable in a mixed logit analysis of 

electricity supplier choice. They find that respondents who engage in more energy-saving behaviours 

have a higher willingness to pay for renewable energies. This suggests that environmental preferences 

are strongly related to energy-saving attitudes.  

 

Deloitte (2023) found that during the recent cost-of-living crisis, energy-saving behaviours increased 

whilst other more expensive environmentally friendly behaviours, such as purchasing from 

environmentally friendly brands and switching to renewable energy sources, decreased. This suggests 

that growth in energy-saving behaviours is partly motivated by cost-saving incentives.  

 

3.2.1.2 Coal Mining Identity 

Within culturally significant contexts, the identity and cultural values attached to actions and their 

outcomes can influence the economic behaviour of humans. The coal mining heritage of the North East 

of England is likely to influence how residents feel about the repurposing of mines (Beynon and 

Hudson, 2021) and the persistent economic effects of coal mine closure is likely to influence residents’ 

prioritisation of collective social benefits.  

 

Social psychologists posit that the self or ‘ego’ is a fundamental driver of individual behaviour (Akerlof 

and Kranton, 2000; Brown, 1986; Turner et al., 1979). Identity encompasses all aspects of the self; 

values, personal goals, personal narratives, preferences, physical attributes, habitual behaviour and 

personality traits (Gatersteben et al., 2014; Pillsbury, 1934). Thus, it corresponds to the foundational 

stages of behavioural theories such as VBN and BRT. The self or ‘ego’ determines how an individual 

sees themselves and their place in the world. Identity is a stable characteristic shaped by an individual’s 

experiences and their social environment and interactions. Therefore, an individual’s identity has a 

significant influence on both the objective of their behaviour and the behaviour they choose to achieve 

that objective. 
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Akerlof and Kranton (2000, p.717) posit that the choice of identity ‘may be the most important 

“economic” decision people make’ due to the fundamental impact it has upon behaviour. They 

introduce identity payoffs into an economic model of behaviour, modelling identity to be closely related 

to social categories. Within their model, everyone is assigned to a social category and has a notion of 

others’ assignment. Each social category is associated with different ideal characteristics and prescribed 

behaviours. Identity payoffs depend on the social status of one’s assigned social category, the extent to 

which one’s given characteristics match the ideal and the extent to which one’s own actions and others’ 

actions correspond to prescribed behaviours.  

 

Gatersteben et al. (2014) state that identity and values are stable factors that transcend specific 

situations. Alesina and Giuliano (2015) and Grosfeld et al. (2013) demonstrate that even when the initial 

stimulus which developed the identity and the attendant prescribed behaviours disappear, the inclination 

to conform to such prescriptions remains.  However, the degree of persistence is likely to fade over 

time. Kranton (2019) suggests that social distinctions and norms, whilst fixed in the short run, may be 

selected in the medium run, and may be endogenous in the long run, changing according to individual 

actions and events.  

 

This study focuses on the North East of England where the strong coal mining heritage has had a 

significant influence on local culture and individual identity. Within the ‘Shadow of the Mine’ Beynon 

and Hudson (2021) set out the history of the North East, chronicling the development and demise of the 

coal mining industry and how this influenced geographical patterns of settlement, social and political 

structures, and economic conditions within communities. The remote locations of mines led to the 

formation of many remote rural pit villages where mining was the dominant, if not unique, source of 

livelihood. There was a strong sense of comradery and community within these pit villages. Coal miners 

developed this comradery as they worked together in harsh and risky working conditions. The coal 

miners and their families developed this sense of community as they came together in trade union action 

to fight for workers’ rights and against the closure of the mines.  

 

Coal mining peaked in the 1920s with 1.2 million workers employed within the industry. However, 

from the 1960s onwards coal mine closure accelerated due to the rise of international competition in 

coal markets and due to the rise in alternative fuel sources such as natural gas. Furthermore, smaller 

mines at the heart of pit villages were replaced by large, mechanised mines in new towns on the North 

East coast. Whilst the miners’ strike increased the sense of community and comradery as workers came 

together to fight for their jobs and fight for coal mines to remain open, this broke down when the strikes 

failed and mines closed. Large-scale mine closures resulted in widespread unemployment and high 
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levels of deprivation. Many men failed to find jobs, and those who did were unsatisfied with the 

unskilled nature of these jobs. Communities look back on their coal mining heritage with nostalgia.  

 

Beatty et al. (2019) report on the present-day economic and social conditions in former coalfields in 

England, Scotland, and Wales. They find persistent effects of coal mining, with the population tending 

to be older with fewer working-aged residents due to outmigration for work. They find residents have 

a 1-year lower life expectancy, a higher proportion of long-term health conditions, and a higher number 

of working-age adults claiming incapacity benefits than the national average, largely due to a legacy of 

poor health conditions from working in the mines. This report was used to justify continued support for 

coalfield regions, to compensate for mining-related illnesses and to renew efforts to level up these areas.  

 

Coal mining heritage is likely to have a significant influence on the identity of households in the North 

East. Households are likely to have strong feelings about their history, the legacy of coal mining and 

the remaining mining infrastructure. Households’ views on politics and economic opportunities are also 

likely to be influenced by the process of mine closure, with there being strong views on job opportunities 

and the levelling up agenda. According to Akerlof and Kranton’s (2000) economic theory of identity, 

this will influence their behaviour as they seek to align with the prescribed behaviours of this identity. 

 

3.2.2 Choice Modelling Methodology 

3.2.2.1 Choice Modelling Origin 

Choice modelling is widely used to analyse the decision-making process of economic agents, to 

quantify their marginal willingness to pay for various attributes of alternatives, predict market 

behaviour, and inform policy design. Choice modelling is grounded in the theory of random utility 

maximisation (RUM) (Marschak, 1960; McFadden, 1976, 1986), which posits that decision-makers 

select the alternative that maximises their expected utility based on the available options and their 

attributes. Utility is derived from specific attributes of alternatives (Lancaster, 1966), prompting 

individuals to weigh and trade-off these attributes and select the option most aligned with their 

preferences. As such, observed choices are a manifestation of underlying utility.  

 

3.2.2.2 Multinomial Logit Choice Models 

The multinomial logit (MNL) choice model was first introduced by McFadden (1974) and is a 

foundational tool in discrete choice analysis. Also referred to as the conditional logit model, it represents 

the choice probability of an alternative to be conditional on its attributes. The MNL remains highly 
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popular due to its closed-form solution and ease of interpretation, often serving as a baseline model for 

comparison in discrete choice studies.  

 

McFadden (1974) drew upon insights from Marschak’s (1960) RUM framework and Luce’s (1959) 

Independence of Irrelevant Alternatives (IIA) axiom. The RUM model represents the utility of 

alternative 𝑖 for individual 𝑛, 𝑈𝑛𝑖 , as a combination of a deterministic component, 𝑉𝑛𝑖, and a stochastic 

component, 𝜀𝑛𝑖. 

 

𝑈𝑛𝑖 = 𝑉𝑛𝑖 + 𝜀𝑛𝑖 . (3.1) 

 

The deterministic component is modelled using Lancaster’s (1966) approach to consumer theory, 

whereby utility is a function of the observed attributes of the alternative. This is commonly specified as 

a linear function of the parameter vector and forms the structural equation within the choice model. 

 

𝑉𝑛𝑖 = 𝛽
′𝑥𝑛𝑖 , (3.2) 

 

where, 𝑥𝑛𝑖, is a (𝐾 ∗ 1) vector of observed explanatory variables, with 𝐾 representing the number of 

explanatory variables, and 𝛽′ is a vector of unknown taste parameters to be estimated.  

 

Meanwhile, the stochastic component, 𝜀𝑛𝑖, is assumed to follow an independently identically distributed 

(iid) Extreme Value Type 1 distribution, with a density function of 𝑓(𝜀𝑛𝑖) = 𝑒
−𝜀𝑛𝑖𝑒−𝑒

−𝜀𝑛𝑖
. This ensures 

consistency between the RUM model of behaviour and the IIA axiom. The IIA axiom states that the 

ratio of probabilities for two alternatives is the same in every choice set that contains the two 

alternatives. This simplifies the empirical collection of choice data by allowing for multinomial choice 

probabilities to be inferred from binomial choice experiments.  

 

The measurement equation relates the observed choice to the unobserved, underlying utility through the 

assumption of utility maximisation, 

 

𝑦𝑖𝑛 = {
1    if 𝑈𝑖𝑛 ≥ 𝑈𝑗𝑛    ∀𝑗 ∈ 𝐶𝑛
0     otherwise.                    

. (3.3) 
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Where 𝑦𝑖𝑛 is a choice indicator equal to one if individual 𝑛 chooses alternative 𝑖 and zero otherwise, 

and 𝐶𝑛 is the choice set for individual 𝑛.  

 

The iid Extreme Value Type 1 distribution of the stochastic term determines the formulation of the 

choice model as a logit model since the distribution of the difference between two iid Extreme Value 

Type 1 variables is logistic. The probability that an individual 𝑛 chooses alternative 𝑖 is the close-form 

logit choice probability,  

 

𝑃𝑛𝑖 =
𝑒𝛽

′𝑥𝑛𝑖

∑ 𝑒𝛽
′𝑥𝑛𝑗

𝑗

. (3.4) 

 

McFadden (1974) demonstrates that a sample log-likelihood function with these choice probabilities is 

globally concave for linear-in-parameters utility, facilitating maximum likelihood estimation. 

Assuming each decision maker’s choice is independent of other decision-makers, the probability of 

each individual in the sample choosing the alternative they were observed to choose is given by the 

following sample log-likelihood function,  

 

LL(𝛽) = ∑∑𝑦𝑛𝑖 ln 𝑃𝑛𝑖
𝑖

𝑁

𝑛=1

. (3.5) 

 

Where 𝑦𝑛,𝑖 = 1 if alternative 𝑖 was chosen by 𝑛, and 𝑦𝑛,𝑖 = 0 if it was not, according to equation 3.3.  

 

There are three potential limitations of the MNL model. 

 

Firstly, whilst the multinomial logit model can be enriched to incorporate systematic taste variations, it 

cannot handle random taste variations. For example, the hypothesis that low-income households may 

place more importance on the purchase price of alternatives can be incorporated through the taste 

parameter on the purchase price, 𝛽𝑝𝑟𝑖𝑐𝑒,  

 

𝛽𝑛,price =
�̂�price

𝐼𝑛
. (3.6) 
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Where �̂�price represents a common taste parameter,  𝐼𝑛 represents household income, and 𝛽𝑛,𝑝𝑟𝑖𝑐𝑒 

represents a taste parameter which accounts for the effect of income on sensitivity to price. However, 

taste variations arising purely randomly or as a result of unobserved factors cannot be estimated. In this 

case, the taste parameter would be enriched with a random element, 𝜇𝑛,  

 

𝛽n,price =
�̂�price

𝐼𝑛
+ 𝜇𝑛 , (3.7) 

 

which would result in a composite error term within the utility function, 

 

𝜀�̅�𝑖 = 𝜀𝑛𝑖 + 𝜇𝑛𝑥𝑛𝑖,price  , (3.8) 

 

where 𝑥𝑛𝑖,𝑝𝑟𝑖𝑐𝑒 is the price attribute, which is multiplied by the composite 𝛽price  from equation 3.6 

within the utility function. This error term is no longer independently or identically distributed. It is not 

independently distributed because 𝜇𝑛 enters the utility for each alternative, thus 𝜀�̅�,𝑖 is necessarily 

correlated over alternatives. It is not identically distributed since the variation in attribute levels across 

alternatives implies that 𝑉𝑎𝑟(𝜀�̅�,𝑖) varies across alternatives. Thus, the MNL model can no longer 

provide unbiased estimates of parameters. Henceforth, either the source of taste variation should be 

explicitly measured and incorporated into the model, or a different model specification is advised. 

 

A second potential limitation lies in the strong assumption of IIA. When correct, the IIA assumption 

delivers consistent estimation of model parameters. But when choice probabilities do not satisfy the IIA 

property, the resulting estimations will be inconsistent. Chipman (1960) and Debreu (1960) set out the 

red-bus-blue-bus problem to demonstrate how proportional substitution patterns are not always suitable 

given the different relations substitutability between alternatives. The IIA assumption implies that if an 

attribute of one alternative changes in a way that increases the probability of this alternative being 

chosen, then demand for all other alternatives will fall by the same proportion.  

 

Finally, the MNL model requires unobserved factors to be independent over time (Train, 2009). This 

may cause issues in repeated choice situations where unobserved factors are likely to be correlated over 

time. If the source of this correlation is observable, such as state dependence or lagged response, this 

can be accommodated within the model. However, unobserved sources of correlation may cause 

estimates to be biased. Daly et al. (2012) explicitly account for the repeated nature of choice 
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experiments, by modelling the probability of a sequence of choices rather than each choice 

independently. This means that the MNL model can be used in stated preference choice experiments. 

 

3.2.2.3 Mixed Logit Choice Models 

Mixed logit (MXL) choice models overcome the potential limitations of the MNL model by allowing 

for random taste variation, correlation in unobserved factors over time, and unrestricted substitution 

patterns. The first simple mixed logit models within the economics literature followed shortly after the 

MNL model (Boyd and Mellman, 1980; Cardell and Dunbar, 1980; Train et al., 1987a; Ben-Akiva et 

al., 1993), however the full potential of MXL models was only realised upon the advent of simulation 

(Bhat, 1998; Brownstone and Train, 1998; Erdem, 1996; Train, 1998, 1999; Bhat, 2000).  

 

There are two distinct but formally equivalent formulations of mixed logit models, the random 

coefficients formulation and the error components formulation. The random coefficient formulation 

supposes that the taste parameters vary across the population according to some distribution, 𝑓(𝛽|Θ), 

and it is the parameters Θ of this distribution that are to be estimated (usually mean and variance). The 

error components formulation supposes that the stochastic term can be decomposed into an iid Extreme 

Value Type 1 element, and an error component that may be correlated over alternatives, thus allowing 

for flexible substitution patterns.  

 

In general, the MXL is formulated as a weighted average of the logit formula for a panel of T choices 

evaluated at different values of 𝛽, for each individual n, with the weights given by the mixing 

distribution, which is the density function, 𝑓(𝛽|Θ), 

 

𝑃𝑛𝑖 = ∫∏
exp(𝛽𝑛

′ 𝑥𝑛𝑖𝑡)

∑ exp(𝛽𝑛
′ 𝑥𝑛𝑗𝑡)

𝐽
𝑗=1

𝑡=𝑇

𝑡=1
𝑓(𝛽|Θ)  𝑑𝛽. (3.9) 

 

Within the standard MNL, the mixing distribution is degenerate of fixed parameters 𝑏, such that 

𝑓(𝛽|Θ) = 1 for 𝛽 = 𝑏, and 𝑓(𝛽|Θ) = 0 otherwise.  

 

Within the latent class logit model for a panel of T choices by each respondent n, the mixing distribution 

is discrete, with 𝛽 taking a finite set of distinct values, 𝑏1,… , 𝑏𝑀 with membership probability 𝑠𝑚 that 

the respondent n acquires the preference parameters 𝛽 = 𝑏𝑚 of the latent class m. The unconditional 

probability of observing a panel of T choices, each of a given alternative is then,  
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𝑃𝑛𝑖 = ∑ 𝑠𝑚 (∏
exp(𝑏𝑚

′ 𝑥𝑛𝑖𝑡)

∑ exp(𝑏𝑚
′ 𝑥𝑛𝑗𝑡)

𝐽
𝑗=1

𝑡=𝑇

𝑡=1
)

𝑀

𝑚=1

. (3.10) 

 

Within most applications which have been called mixed logit models, the mixing distribution is 

continuous and may be specified by the researcher. Most applications employ normal and log-normal 

distributions (Train, 1998; Revelt and Train, 1998; Ben-Akiva and Bolduc, 1996), with log-normal 

distributions being used when the coefficient is known to have the same sign for every decision maker 

(Train, 1998), such as a negative cost coefficient. When estimating the choice model, the parameters of 

the mixing distributions for the random preference parameters across respondents, Θ, are estimated, 

since the 𝛽𝑛’s are random terms that are integrated out to obtain the unconditional choice probability of 

the sequence of choices observed in the single panel. In the case of 𝑓(𝛽|Θ) being the normal 

distribution,  

 

𝑃𝑛𝑖 = ∫∏
exp(𝛽𝑛

′ 𝑥𝑛𝑖𝑡)

∑ exp(𝛽𝑛
′ 𝑥𝑛𝑗𝑡)

𝐽
𝑗=1

𝑡=𝑇

𝑡=1
 𝜙(𝛽|𝑏,𝑊) 𝑑𝛽 (3.11) 

 

the mean, 𝑏, and the variance-covariance matrix (or its Choleski decomposition), 𝑊, of the taste 

parameters are estimated, i.e., Θ = {𝑏,𝑊}.  

 

3.2.2.4 Integrated Choice Latent Variable Models 

Integrated choice latent variable models (ICLV) build upon the base of an MNL or an MXL (or other 

choice models such as the Multinomial Probit (MNP) model) and incorporate latent variables such as 

attitudes, values, and perceptions. ICLV models were first introduced by McFadden (1986), who sought 

to build a prototype for incorporating statistical analysis of psychometric data into discrete choice 

modelling to explicitly model the cognitive mechanisms that govern behaviour. McFadden formulated 

a linear structural equations (LISREL) model (Jöreskog, 1978; Everitt, 1984) which has formed the 

foundation for ICLV models.  

 

As shown in figure 3.1, the ICLV model can be decomposed into a latent variable model component 

and a choice model component which is much like the MNL or MXL above but with latent variables 

included within the utility specification. Each component has a set of measurement equations which 

elicit the latent variable (e.g., latent attitude in the latent variable component, latent utility in the choice 

model component) from how it is reflected in attitudinal indicators or the choice indicator. Structural 
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equations relate the latent variables to observed variables such as the socio-demographic characteristics 

of the respondent, attributes of the alternatives, or features of the choice scenario.  

 

Figure 3.1: Schematic of Integrated Choice and Latent Variable (ICLV) model 

 
Latent variables are unobservable and cannot be directly measured. Therefore, within the survey 

attitudinal questions are asked to indirectly obtain information about latent variables. The responses to 

attitudinal indicator questions are manifestations of individuals’ latent attitudes (Abou-Zeid and Ben-

Akiva, 2024). Values (Temme et al., 2007), attitudes (Habib et al., 2011), personality (Boyce et al., 

2019; Johassen et al., 2006), social comparisons (Abou-Zeid and Ben-Akiva, 2011; Kamargianni et al., 

2014), identity (Facciolo et al., 2020) and environmental attitudes (Facciolo et al., 2020; Hoyos et al., 

2002; Johasson et al., 2006) can be elicited through asking questions which reflect the respondents’ 

position. Factor analysis can be employed to investigate which indicators are appropriate for each latent 

variable (Hoyos et al., 2015; Mariel and Meyerhoff, 2016; Mariel et al., 2018), and to test the validity 

of latent variables using factor loadings and Cronbach’s Alpha. 

 

The measurement equations within the latent variable model express each of the indicators in terms of 

a latent variable. It is common for indicator questions to be asked on discrete Likert scales. Daly et al. 

(2012) employ an ordered logit model structure to capture the ordinal nature of the indicators. For 

individual 𝑛 and indicator 𝑠 ∈ (1,2, …𝑆), the underlying unobserved continuous indicator, 𝐼𝑛,𝑠
∗ , is 

expressed as a function of the relevant latent variable 𝑥𝑛
∗ , 

 

𝐼𝑛𝑠
∗ = 𝜂𝑠𝑥𝑛

∗ + 𝜐𝑛𝑠, (3.12) 
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where 𝜂𝑠 shows the strength of this relationship between the indicator and the latent variable and 𝜐𝑛𝑠 is 

a random variable. 

 

Meanwhile, the observed discrete indicator, 𝐼𝑛𝑠, reflects this continuous indicator with threshold 

parameters 𝜏1 < 𝜏2 < 𝜏3 < 𝜏4 determining which range of unobserved continuous responses matched 

each observed discrete indicator response.  

 

𝐼𝑛𝑠 =

{
 
 

 
 
1    if − ∞ < 𝐼𝑛𝑠

∗ ≤ 𝜏1
2    if 𝜏1 < 𝐼𝑛𝑠

∗ ≤ 𝜏2   
3    if 𝜏2 < 𝐼𝑛𝑠

∗ ≤ 𝜏3   
4    if 𝜏3 < 𝐼𝑛𝑠

∗ ≤ 𝜏4   
5    if 𝜏4 < 𝐼𝑛𝑠

∗ ≤ ∞    

, (3.13) 

 

The threshold parameters, 𝜏1, 𝜏2, 𝜏3, 𝜏4 are estimated along with the 𝜂𝑠 parameters.  

 

Structural equations within the latent variable model relate observed socio-demographic characteristics 

to latent variables,  

 

𝑥𝑛
∗ = 𝛾 𝑥𝑛 + 𝜁𝑛. (3.14) 

 

Where 𝑥𝑛 reflects a vector of observed variables and characteristics, and the matrix 𝛾 of parameters 

reflects how each observed variable relates to each of the latent variables. The random error term, 𝜁𝑛, 

accounts for random heterogeneity. Generally, structural equations in ICLV are weak (Anable, 2005; 

Vij and Walker, 2016), which implies the latent variable can provide explanatory power above and 

beyond observable variables and characteristics of the survey respondents.   

 

The structural equation of the choice model may take a similar form to the MNL or MXL models above, 

with the addition of the latent variables as explanatory variables. As in equation 3.2, 

 

𝑉𝑛𝑖 = 𝛽
′𝑥𝑛𝑖 . 

 

Where 𝛽′ = (𝛽1, 𝛽2,… , 𝛽𝐾) is a vector of coefficients on the observed (𝐾 ∗ 1) vector of alternative 

attributes, 𝑥𝑛𝑖. The coefficient may be interacted with latent variables and/or observed variables such 
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that for a given attribute 𝑘 the coefficient depends on observable and latent characteristics of the 

individual,    

 

𝛽𝑘,𝑛 = �̂�𝑘 + 𝜆
′𝑥𝑛
∗ + 𝛼′𝑥𝑛 . (3.15) 

 

Where 𝜆′ and 𝛼′ are vectors of parameters to be estimated. Latent variables can be interacted with 

coefficients of attribute levels (Daly et al., 2012; Hess and Beharry-Borg 2012) to investigate how 

sensitivities to particular attributes vary with latent attitudes, values or perceptions, or they can be 

incorporated directly into the utility specifications if the alternatives are labelled (Mariel et al., 2015; 

Kassahun et al., 2016) to investigate the influence on the alternative specific constants. As before, the 

measurement equation of the choice model is based on the random utility model.  

 

To obtain efficient and consistent estimates of model parameters, all equations in the ICLV model are 

estimated simultaneously (Ben-Akiva et al., 1999, 2002; Ashok et al., 2002). Early choice models 

which sought to incorporate psychological constructs attempted to directly include indicators of latent 

variables into utility functions (Morey, 1981; Green, 1984; Harris and Keane, 1999), or sequentially 

estimated the latent variable model and then the choice model, where the latent variable was included 

as a deterministic variable (Anwar et al., 2014; Bhat and Dubey, 2014). Two key issues arise with these 

approaches (Ben-Akiva et al., 1999, 2002; Ashok et al., 2002; Bolduc et al., 2005), firstly measurement 

error arises when indicators or fitted latent variables are directly incorporated into the utility function 

since indicators are not a direct measure of the underlying latent variable, and fitted values contain error 

(Ashok et al., 2012; Ben-Akiva et al., 2002). Secondly, endogeneity bias arises because responses to 

the attitudinal questions are correlated with unobserved factors that enter the error term of the choice 

model. The sequential approach can be made consistent by integrating the choice probability over the 

distribution of the latent variables (Ben-Akiva et al., 2002). However, the simultaneous approach offers 

improvements in efficiency by using the information provided by both the choice and the indicators of 

the latent variables to provide the best fit. 

 

To ensure that the model can be identified, it is necessary to normalise the scale of the measurement 

equation (eq. 3.12) for the latent variable. Daly et al. (2012) discuss two different normalisations that 

can be conducted. Firstly, the approach taken by Ben-Akiva et al. (1999), fixes the scale of the latent 

variable by constraining the parameters, 𝜂𝑠. The impact of each of the latent variables is normalised for 

one of the attitudinal indicators. In this case, the variance of the error term in the latent variable structural 

equation needs to be estimated. Secondly, in the approach taken by Bolduc et al. (2005), the variance 
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of the error in the latent variable structural equation is normalised to 1, and the values of 𝜂𝑠 are 

estimated. Daly et al. (2012) demonstrate that the two normalisations are equivalent.  

 

Vij and Walker (2016) highlight that the ICLV model not only provides valuable behavioural insights 

into market decisions but can also improve the statistical performance of the choice model by correcting 

for bias from omitted variables and measurement errors and leading to lower variance of parameter 

estimates.  

 

Whilst the behavioural insights and the identification of structural relationships between observable and 

latent variables may assist in practice and policy in ways not possible using reduced-form models, it is 

important to be aware of the limitations deriving policy implications from ICLV models. Chorus and 

Kroesen (2014) argue that ICLV models do not support the derivations of policies which aim to change 

behaviour through changing latent variables- for example, information campaigns aimed at changing 

attitudes to encourage particular behaviours. Firstly, they highlight that latent variables are usually 

endogenous to choices, which precludes inference of causality. Secondly, since most data on latent 

variables is cross-sectional, they highlight that no claims can be made concerning how changes in that 

latent variable at the individual level will change behaviour.  

 

3.2.2.5 Choice Modelling and Energy Choices 

Stated preference choice experiments provide a flexible tool to investigate preferences that determine 

energy behaviours, with hypothetical choices giving the analyst the opportunity to tune attribute levels 

and introduce alternatives that are not yet commercially available. Within energy economics, choice 

modelling has been used to investigate preferences for different energy mixes (Vecchiato and Tempesta, 

2015; Borchers et al., 2007; Zorić and Hrovatin, 2012), different renewable energy systems 

(Franceschinis et al., 2016, 2017), and micro-generation energy systems (Scarpa and Willis, 2010; 

Willis et al., 2011).  

 

3.2.2.6 Choice Modelling, Identity, and Environmental Preferences 

Stated preference choice experiments have been employed to investigate the influence of latent 

environmental attitudes and identity on different environmental and energy behaviours. Generally, 

hybrid choice models are employed, either in the form of integrated choice and latent variable models 

or in the form of latent class models (Meles et al., 2022) where latent variables are used as explanatory 

variables in preference class membership equations. 
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Environmental attitudes are usually measured through Likert-style questions similar to the statements 

in the NEP scale. These responses are used as indicators within the latent variable model which is 

estimated simultaneously with the choice model to investigate the joint impact of latent environmental 

attitudes on indicator and choice task responses. In general, studies find that participants with stronger 

pro-environmental attitudes are more likely to select environmentally friendly alternatives and be 

willing to pay more for these alternatives (Daziano and Bolduc, 2013; Facciolo et al., 2020; Taye et al., 

2018; Hoyos et al. 2015; Johansson et al., 2006). However, in some cases such attitudes have an 

insignificant effect on behaviours (Sottile et al., 2015), implying that an attitude-behaviour gap is 

present. 

 

Similarly, studies have measured energy-saving attitudes through Likert-style questions relating to 

stated energy behaviours. Amador et al. (2013) find that respondents who carry out energy-saving 

actions in their homes have a higher willingness to pay for renewable energy. 

 

Social identity has been measured through indicator questions asking how much an individual relates 

to particular identity traits. Environmental studies have found that place identity significantly influences 

individuals’ preferences for the preservation of local landscapes. This is manifest in several forms, on 

the one hand, place identity increases willingness to pay for landscape preservation (Hoyos et al., 2009; 

Facciolo et al., 2020). On the other hand, it can decrease willingness to pay for renewable energy 

infrastructure which may negatively impact the local landscape (Strazzera et al., 2012). Typically, local 

landscape features have spatially correlated WTPs (Campbell et al, 2009) and this spatial correlation 

fades with distance (Campbell et al., 2008).  

 

3.3 Methods 

3.3.1 Survey 

We designed a novel household survey which we first administered to a pilot sample of 100 households 

and then to a final sample of 915 households in the North East of England. We introduced the survey 

to respondents with a basic description of our Geothermal Energy from Mines and Solar Geothermal 

Heat (GEMS) project and a simple explanation of the survey structure and expected duration. We 

designed the survey with four sections: (1) Attitudinal questions, (2) Choice experiment, (3) Socio-

demographic characteristics, (4) Heating and Housing characteristics. See Appendix C1 for the survey. 

 

3.3.1.1 Attitudinal questions 
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Attitudinal questions were designed to capture environmental preferences, energy preferences, energy 

literacy, the strength of environmental social norms, the strength of coal mining identity, and attitudes 

towards energy system governance and energy policy. Within this paper, we are focusing on the 

influence of environmental and energy attitudes on willingness to pay for lower CO2 emissions 

reductions and the influence of coal mining identities on alternative specific constants and sensitivity 

to energy system attributes, particularly job creation. To elicit environmental and energy attitudes, we 

asked questions about the respondents’ behaviours and beliefs, such as whether they are concerned 

about environmental damages caused by human activities and whether they adjust their thermostats to 

reduce their energy usage. To elicit the strength of coal mining identity, we ask respondents how 

strongly they identify with the ‘proud mining heritage’ of the North East and whether using mines for  

heating honours this history. Appendix C1 contains the attitudinal questions.  

 

3.3.1.2 Choice experiment 

Our choice experiment was framed within a hypothetical market scenario where the respondent was 

asked to suppose that they were selecting a new heating system for their new residential 

accommodation1. In light of the government’s ambition to ban the installation of gas boilers by 2035 

(BEIS, 2021a), four renewable heating alternatives were offered: geothermal district heating, hydrogen 

boiler, solar electric boiler, and air source heat pump. A basic description of each of these technologies 

was provided with demonstrative diagrams (as shown in Appendix C1).  

 

Within the choice cards, the alternatives were portrayed based on five attributes: investment cost (cost 

of installation and connection to pipelines/grid of the heating system, GBP), monthly cost (monthly cost 

of the heating system for usage, maintenance, and repair costs, and fuel costs where relevant, GBP), 

replacement period (time from installation to dismantling/ end-of-life of the heating system, years), 

CO2 emissions (quantity of carbon dioxide equivalent emissions the heating system creates throughout 

its lifecycle; in production, usage and disposal, kg per year), job creation (number of full-time 

equivalent jobs created by the heating system when 1000 households adopt the heating system).2 3 Table 

3.1 shows the attribute levels calibrated on the available market data and engineering literature (see 

Appendix C2 for more details on attribute level setting). 

 
1 We chose to focus on new heating systems for a new house for two reasons, firstly, to provide insight to 

choices for heating systems in new housing developments such as Seaham Garden Village in County Durham, 

secondly, to remove potential bias which could arise from house-specific retrofitting costs. 
2 We focus on gross job creation in new renewable energy industries. However, our results should be interpreted 

with caution since transition away from fossil-fuel energy sources will also initiate job loss, thus resulting in 

lower net job creation. 
3 We chose to represent the upfront costs, recurring costs and duration as separate attributes rather than 

combining them into a net present value to facilitate investigation into how socio-demographic characteristics 

and behavioural variables influence preferences towards each cost component individually. 
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Table 3.1: Table of attribute level settings 

 

We chose to present respondents with twelve choice tasks. Higher numbers of choice tasks are important 

when investigating individual heterogeneity (Train, 2009; Sarrias, 2020) and can increase the likelihood 

of learning true preferences as respondents proceed through the choice cards (Hess et al., 2012). 

However, too many choice tasks may raise issues regarding respondent fatigue and/or boredom and 

inattention, which could lower the scale of the model by increasing error variance (Bradley and Daly, 

1994; Scarpa et al., 2011; Hess et al., 2012). We tested in our test pilot survey that twelve choice cards 

were manageable for respondents (Mariel et al., 2021). Given that the literature finds that the number 

of attributes does not affect response efficiency (Caussade et al., 2005; Meyerhoff et al., 2015), we 

included all five attributes of key policy interest. 

 

We employed the Ngene choice modelling design software to optimise the design of our choice 

experiment based on the attribute level settings in table 3.1. We used an optimal orthogonal in the 

differences (OOD) design (Street et al., 2001, 2005), using the D-error to maximise the information 

available. Initially, using no prior parameters, we generated 80 choice tasks which we split into 10 

blocks of 8 for the test pilot survey. We surveyed 80 respondents in the Durham area, analysed the 

results using MNL and MXL methods, and used these to update our priors and thus improve the 

efficiency of our design (Sandor and Wedel, 2001; Ferrini and Scarpa, 2007; Scarpa and Rose, 2008; 

Mariel et al., 2021). Subsequently, we generated 48 choice cards in 4 blocks of 12 which we used in 

the pilot of our full survey of 100 respondents in the Northeast. We updated our priors once more to 

generate the 4 sets of 12 choice cards used within our final survey with 915 respondents. An example 

of the choice tasks presented in the survey is shown in Figure 3.2.   

 
Geothermal 

District Heating 

Hydrogen Boiler Solar Electric 

Boiler 

Air Source Heat 

Pump 

Investment 

Cost 

£3,000, £4,000, 

£5,000, £6,000 

£1,500, £2,500, 

£3,500, £4,500 

£8,000, £9,500, 

£11,000, £12,500 

£6,000, £7,500, 

£9,000, £10,500 

Monthly 

Cost 

£20, £60, 

£100, £150 

£60, £110, 

£160, £210 

£80, £120, 

£160, £200 

£90, £110, 

£130, £150 

Replacement 

Period 

16 years, 18 years, 

20 years, 25 years 

12 years, 13.5 years, 

15 years, 20 years 

20 years, 22.5 years, 

25 years, 30 years 

16 years, 18 years, 

20 years, 25 years 

CO2 

emissions 

100 kg, 250 kg, 

600 kg, 950kg 

100 kg, 1000 kg, 

5000 kg, 11000 kg 

100 kg, 650 kg, 

1200 kg, 1800 kg 

350 kg, 1150 kg, 

2000 kg, 3000 kg 

Job creation 5, 10, 20, 30 5, 10, 20, 30 5, 10, 20, 30 5, 10, 20, 30 
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Figure 3.2: Example of Choice Task 

 
3.3.1.3 Socio-demographic characteristics 

We ask questions about the respondents’ gender, age, income bracket, educational level, occupational 

status, occupation type, marital status, family size, vehicle ownership, first half of postcode and country 

of birth.  

 

We use the first part of respondents’ postcodes (the outward code which indicates the postcode area and 

district) to identify their location, which we then link to information about mine locations and dates of 

coal extraction as well as local income, employment, and rural/urban statistics. 

 

3.3.1.4 Heating and housing characteristics 

We ask questions about the respondents’ living and accommodation situations, about the type of 

accommodation (terraced, detached, semi-detached, apartment or mobile/temporary structure), whether 

they own or rent, the number of rooms in the house, length of time living in accommodation, and 

expected length of time living in accommodation in future. We also ask questions concerning the 

respondents' heating system, their house’s energy performance (Energy Efficiency rating), and their 

council tax band. This helped us to uncover the links between energy demand and energy system 

choices. 
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3.3.2 Choice Analysis 

3.3.2.1 Multinomial Logit Model 

We begin by estimating a baseline MNL model, starting by including only product attributes, and 

subsequently investigating the influence of respondent socio-demographic characteristics. 

 

First MNL specification: 

 

𝑉𝑖 = ASC𝑖 + 𝛽InvCostInvCost𝑖 + 𝛽MonCostMonCost𝑖 + 𝛽RepPerRepPer𝑖 + 𝛽CO2CO2𝑖 + 𝛽JobJob𝑖  , (3.16) 

 

Where 𝑉𝑖 represents the utility derived from alternative 𝑖, ASCi represents the alternative specific 

constant for alternative 𝑖, {InvCost𝑖 , MonCost𝑖 , RepPer𝑖 , CO2𝑖 , Job𝑖} represent the attribute levels of 

alternative 𝑖, and {𝛽InvCost, 𝛽MonCost, 𝛽RepPer, 𝛽CO2, 𝛽Job} represent the marginal utility of each 

attribute. 

 

Second, we interact each of the taste parameters with key socio-demographic and accommodation 

characteristics such that utility now depends on individual-specific characteristics.  

 

𝑉𝑛𝑖 = ASC𝑖 + 𝛽InvCost,nInvCost𝑖 + 𝛽MonCost,nMonCost𝑖 + 𝛽RepPer,nRepPer𝑖
+𝛽CO2,nCO2𝑖 + 𝛽Job,nJob𝑖  ,                                                (3.17)

 

 

For each attribute 𝑘 = {InvCost,MonCost, RepPer, CO2, Job},4  

 

𝛽𝑘,𝑛 = �̂�𝑘 + 𝛼LowInc,𝑘LowInc𝑛 + 𝛼OwnAccom,𝑘OwnAccom𝑛 + 𝛼Time10,𝑘Time10𝑛   

+𝛼ExpTime10,𝑘ExpTime10𝑛 + 𝛼Male,𝑘Male𝑛+𝛼UniEduc,𝑘UniEduc𝑛
+𝛼Unemp,𝑘Unemp𝑛 + 𝛼Age35,𝑘Age35𝑛 + 𝛼Age3555,𝑘Age3555𝑛 . (3.18)

 

 

Of key interest is the influence of income levels, whether they own their home, how long they have 

lived there and how long they expect to live there, gender, education level, employment status, and age. 

We construct each of these as dummy variables. Income is measured according to a threshold, where 

the discrete variable ‘LowInc’   identifies households with income below £30,000, i.e., households in 

the bottom half of the income distribution of our sample. Whether they own their home outright or with 

 
4 Where the attribute abbreviations relate to the investment cost, monthly cost, replacement period, 

CO2 emissions, and job creation, respectively. 
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a mortgage is indicated by the ‘OwnAccom’ discrete variable, whether they have lived there for more 

than 10 years is indicated by ‘Time10’, and whether they expect to live there for a further 10 years is 

indicated by ‘ExpTime10’. Gender is specified as a dummy variable with ‘Male’ equal to one for males 

and zero for females. Education level is specified as a dummy variable, ‘UniEduc’, according to whether 

or not the respondent graduated from university, with one identifying those that are university graduates 

and zero those that are not. Employment status is measured by ‘Unemp’ which indicates whether the 

individual is unemployed. Age is measured according to three thresholds, those under the age of 35, 

‘Age35’, those between 35 and 55, ‘Age3555’, and those above the age of 55, that form the baseline 

group.  

 

3.3.2.2 Mixed Logit Model 

We proceed by investigating the degree of heterogeneity not captured directly by socio-demographic 

characteristics (i.e. unobserved) by means of a mixed logit model. We assume that (the negative of) the 

cost coefficients, 𝛽InvCost and 𝛽MonCost, follow a log-normal distribution since we expect all 

respondents to gain disutility from cost increases. We assume the remaining attribute level coefficients 

follow normal distributions, allowing for both positive and negative preferences towards them.  

 

We then include both deterministic and random heterogeneity in an MXL model with socio-

demographics.  

 

3.3.2.3 Integrated Choice and Latent Variable Model 

To investigate the influence of environmental preferences and coal mining identity we employ separate 

ICLV choice models. The first step we take is to investigate the validity of our latent variables by 

running a factor analysis on all the attitudinal questions relating to the environment, energy usage, and 

coal mining identity. Table 3.2 shows the estimation results of our factor analysis. We learn that the 

indicators load onto three factors: environmental attitudes, energy attitudes, and coal mining identity. 

Environmental attitudes and energy attitudes both have factor loading of greater than 0.5 for all indicator 

questions and each has a Cronbach Alpha greater than 0.7. This implies that they are valid latent 

variables, which are strongly reflected in the attitudinal questions. Coal mining identity has lower factor 

loadings and a Cronbach alpha of 0.594. This implies that it is a weaker latent variable, but that there is 

some common reflection of coal mining identity in the attitudinal questions. We investigated whether 

the strength of the coal mining latent variable improved when we omitted some of the attitudinal 

indicators, however we found that the latent variable was strongest when all three attitudinal indicators 

were included. 
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Table 3.2: Estimation of Factor analysis 

Indicator Indicator Descriptor 

F
a
c
to

r
 1

: 
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: 
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m
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n
a
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Conc_env ‘I am concerned about damage to the 

natural environment caused by human 

activities’ 

0.792 
  

0.363 

Change_life ‘I make changes to my lifestyle to 

protect the environment’ 

0.638 
  

0.514 

Should_change ‘I believe that people in the UK should 

make changes to their lifestyles to 

protect the environment’ 

0.727 
  

0.429 

Adj_therm_know ‘I know how to adjust the 

thermostat/heating to reduce my energy 

usage’ 

 
0.713 

 
0.484 

Adj_therm_have ‘In the past winter, I have adjusted my 

thermostat/ heating and/or used other 

ways to save energy’ 

 
0.596 

 
0.581 

Red_energy ‘I know other ways to reduce my energy 

usage in the house’ 

 
0.794 

 
0.345 

Energy_dm ‘I am involved in energy-related 

decisions in my household’ 

 
0.559 

 
0.636 

Iden_herit ‘The North East of England claims to 

have a ‘proud mining heritage’. I 

personally identify with this heritage’ 

  
0.555 0.687 

Hon_his ‘Using disused coal mines as a  source of 

geothermal energy honours the history of 

coal mining’ 

  
0.559 0.595 

Proj_imp ‘Research projects like this one at 

Durham University are important for my 

community’ 

  
0.485 0.540 

 
 

SS loadings  2.027 2.075 0.996 
 

Proportion 

Variance 

 0.184 0.189 0.091 
 

Cumulative 

Variance 

 0.373 0.189 0.463 
 

Cronbach's Alpha  0.785 0.776 0.594 
 

 Chi-square statistic: 583.52 on 25 degrees of freedom, p-value 3.31e-107 
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3.3.2.3.1 ICLV: Environmental and Energy Attitudes 

We first look at how environmental and energy preferences influence household willingness to pay for 

lower carbon dioxide emissions.  

 

Within our latent variable model, we set out separate structural and measurement equations for each of 

the latent variables, as demonstrated in Figure 3.3. We specify structural equations (eq. 3.19 and 3.20) 

relating each of the environmental and energy attitudes to a set of observed respondent characteristics. 

We use the same respondent characteristics as in the structural equation for utility (equation 3.18), with 

the additional discrete variables of ‘𝑅𝑒𝑛𝑒𝑤𝑛’ which indicates whether the respondent currently has a 

renewable source of heating in their house. 

 

Figure 3.3: Schematic of Environmental and Energy Attitudes ICLV model 

 

EnvAtt𝑛
∗ = 𝛾LowInc

env LowInc𝑛 + 𝛾Male
env Male𝑛 + 𝛾UniEduc

env UniEduc𝑛 + 𝛾Unemp
env Unemp𝑛 + 𝛾Age35

env Age35𝑛

+𝛾Age3555
env Age3555𝑛 + 𝛾OwnAccom

env OwnAccom𝑛 + 𝛾Renew
env Renew𝑛

+𝛾Time10
env Time10𝑛 + 𝛾ExpTime10

env ExpTime10𝑛 + 𝜁𝑛
env (3.19)

 

 

Alternative 

Attributes 

Socio-demographic 

characteristics 

Environmental 

attitudes 

Utility 

Conc_env 

Change_life 

Adj_therm_know 

Choice 

Energy 

attitudes 
Adj_therm_have 

Red_energy 

Should_change 

Key: 

              Measurement equation 

              Structural equation 

              Observable variable 

              Latent variable 

Energy_dm 
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EneAttn
∗ = 𝛾LowInc

ene LowInc𝑛 + 𝛾Male
ene Male𝑛 + 𝛾UniEduc

ene UniEduc𝑛 + 𝛾Unemp
ene Unemp𝑛 + 𝛾Age35

ene Age35𝑛

+𝛾Age3555
ene Age3555𝑛 + 𝛾OwnAccom

ene OwnAccom𝑛 + 𝛾Renew
ene Renew𝑛

+𝛾Time10
ene Time10𝑛 + 𝛾ExpTime10

ene ExpTime10𝑛 + 𝜁𝑛
ene (3.20)

 

 

The structural equations include a random component, 𝜁env, 𝜁ene, which is simulated using 2000 Sobel-

Faure-Tezuka draws. We repeated simulations with 100, 500, 1000, and 2000 Sobel-Faure-Tezuka 

draws and found that the coefficients and standard errors were stable. 

 

The measurement equations relate the environmental attitude latent variable to the three ordinal 

indicators that are loaded onto it in the factor analysis, and the energy attitude latent variable to the four 

ordinal indicators that are loaded onto it. We employ the order logit structure as in equations 3.12 and 

3.13. For example, for the ‘conc_env’ (‘I am concerned about damage to the natural environment caused 

by human activities’) indicator, which signals ordinal strength of environmental attitudes, ‘𝑐𝑜𝑛𝑐𝐸𝑛𝑣𝑛𝑠
∗ ’ 

is the unobserved continuous feeling that respondents would have toward the question, whilst 

‘𝑐𝑜𝑛𝑐𝐸𝑛𝑣𝑛𝑠’ is the observed discrete response dictated by the Likert style questions, and ‘𝐸𝑛𝑣𝐴𝑡𝑡𝑛
∗ ’ is 

the unobserved latent attitude which is manifested within individuals’ responses.  

 

concEnv𝑛
∗ = 𝜂𝑐𝑜𝑛𝑐𝐸𝑛𝑣EnvAtt𝑛

∗ + 𝜐𝑛 (3.21) 

 

concEnv𝑛,𝑠 =

{
 
 

 
 
1     if − ∞ < concEnv𝑛.𝑠

∗ ≤ 𝜏1
concEnv           

2     if 𝜏1
concEnv < concEnv𝑛.𝑠

∗ ≤ 𝜏2
concEnv   

3     if 𝜏2
concEnv < concEnv𝑛,𝑠

∗ ≤ 𝜏3
concEnv   

4     if 𝜏3
concEnv < concEnv𝑛,𝑠

∗ ≤ 𝜏4
concEnv   

5     if 𝜏4
concEnv < concEnv𝑛,𝑠

∗ ≤ ∞               

, (3.22) 

  

Within our choice model, we investigate the influence of environmental and energy attitudes on the 

alternative specific constants and the sensitivity to all 𝐾 different product attributes. 

 

𝑉𝑛𝑖 = ASC𝑖𝑛 + 𝛽InvCost,nInvCost𝑖 + 𝛽MonCost,nMonCost𝑖 + 𝛽RepPer,nRepPer𝑖
+𝛽CO2,nCO2𝑖 + 𝛽Job,nJob𝑖 (3.23)

 

 

For each 𝑖 = {Geo, Hyd, Sol, Pum}, 

ASCin = ASĈ𝑖 + 𝜆env,𝑖EnvAtt𝑛
∗ + 𝜆ene,𝑖EneAtt𝑛

∗ . (3.24) 
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For each 𝑘 = {InvCost,MonCost, RepPer, CO2, Job}, 

𝛽𝑘𝑛 = �̂�𝑘 + 𝜆env,𝑘EnvAtt𝑛
∗ + 𝜆ene,𝑘EneAtt𝑛

∗ . (3.25) 

 

We estimate the latent variable model and the choice model simultaneously using a simulated maximum 

likelihood estimator with 2000 random Sobol-Faure-Tezuka draws. We run two versions of the ICLV 

model. The first has an MNL choice model, and the second has an MXL choice model with uncorrelated 

random parameters. In Appendix C5 we seek to investigate whether our behavioural hypotheses are 

robust to the introduction of correlated random parameters. 

 

3.3.2.3.2 ICLV: Coal mining identity 

We next investigate how coal mining identity influences which heating technology households are most 

likely to select, and whether it influences their willingness to pay for job creation.  

 

Figure 3.4: Schematic of Coal Mining Identity ICLV model 

 

Within our latent variable mode, our structural equation relates the coal mining identity variable to 

respondent characteristics (as in equation 3.18) and includes a variable, ‘𝑁𝑜𝑀𝑖𝑛𝑒𝑠𝑛’, which counts how 

many mines are located within the respondents’ postcode area5. This was obtained by mapping the 

 
5 Data source: Northern Mine Research Society. 

Alternative 

Attributes 

Socio-demographic 

characteristics 

Coal Mining 

Identity 

Utility 

Iden_herit 

Hon_his 

Choice 

Proj_imp 

Key: 

              Measurement equation 

              Structural equation 

              Observable variable 

              Latent variable 
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locations of mines and matching them to postcode locations on the mapping software ArcGIS, then 

merging this data to the postcode area data provided within the survey. 

 

Iden𝑛
∗ = 𝛾LowInc

iden LowInc𝑛 + 𝛾Male
idenMale𝑛 + 𝛾UniEd

iden UniEduc𝑛 + 𝛾Unemp
iden Unemp𝑛 + 𝛾Age35

iden Age35𝑛

+𝛾Age3555
iden Age3555𝑛 + 𝛾OwnAccom

Iden OwnAccom𝑛 + 𝛾Time10
iden Time10𝑛

+𝛾ExpTime10
iden ExpTime10𝑛 + 𝛾NoMines

iden NoMines𝑛 + 𝜁𝑛
iden (3.26)

 

 

The measurement equations relate the coal mining identity latent variable to the three indicators that 

are loaded onto it in the factor analysis. Again, we employ an order logit structure as above. 

 

Within our choice model, we include the latent variable directly into the utility function to investigate 

the influence of identity on the alternative specific constant for each of the alternatives and on the 

sensitivity to each of the different product attributes, 

 

𝑉𝑛,𝑖 = ASC𝑖𝑛 + 𝛽InvCost,nInvCost𝑖 + 𝛽MonCost,nMonCost𝑖 + 𝛽RepPer,nRepPer𝑖
+𝛽CO2CO2𝑖 + 𝛽IobJob𝑖 (3.27)

 

For each 𝑖 = {Geo, Hyd, Sol, Pum}, 

ASCin = ASĈ𝑖 + 𝜆IdenIden𝑛
∗ . (3.28) 

 

For each 𝑘 = {InvCost,MonCost, RepPer, CO2, Job}, 

𝛽𝑘𝑛 = �̂�𝑘 + 𝜆Iden,𝑘Iden𝑛
∗ , (3.29) 

 

to ensure that there is no bias in the coefficient on the job creation attribute. Again, we estimate the 

latent variable model and the choice model simultaneously for the three different choice model 

specifications detailed above. 

 

3.4 Data  

3.4.1 Pilot Data 

To optimise our choice card design, we collected two rounds of pilot data. In the first round, we 

collected data from 80 respondents in the Durham area. This pilot aimed to ascertain whether 
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respondents understood the choice task6 and to derive prior parameters to improve the efficiency of the 

choice card design (no additional questions beyond the choice experiment were included in the initial 

pilot). As described in the design section 3.3.1.2.1, we used a D-optimal design with no prior parameters 

to generate 80 combinations of alternatives which were grouped into 10 blocks of 8 choice cards. We 

randomly assigned respondents to a choice card block. Subsequently, we re-optimised our choice cards 

based on the prior parameters from our first pilot. Optimising the design of our choice cards ensures 

that we obtain the maximum amount of information from a limited number of choice tasks. 

 

In the second round, we collected data through Qualtrics, a survey management company, from 100 

respondents in the North East. We used 4 blocks of 12 choice cards and included the additional 3 

sections of the survey. We were close to a block-balanced design with blocks 1 to 4 having 25, 26, 25, 

and 24 respondents respectively. The survey was structured with attitudinal questions first, then the 

choice experiment, and then the socio-demographic and housing characteristic questions. This pilot 

aimed to investigate if the other questions in our survey were clear, to check for any misunderstandings 

or errors, and to reoptimize the choice card design based on the target sample area of the North East. 

We found that sensitivity to CO2 emissions was lower than we had expected even from respondents 

who expressed higher levels of environmental concern. We added an additional explanation of CO2 

emissions in the introduction to the choice cards, comparing CO2 emissions from heating to CO2 

emissions from driving, which is more widely discussed and understood. 

 

3.4.2 Final Data 

Our final data was collected by Qualtrics with a sample size of 915 participants in the North East of 

England. We ensured that this sample was representative of the demographic structure by stratifying 

the sampling by gender and age group based on UK statistics provided by Qualtrics (as shown in Table 

3.3). 

Table 3.3: Sample stratification statistics 

Age Group Target Statistics Sample 

18-24 11.38% 11.26% 

25-34 19.32% 19.78% 

35-44 18.05% 18.14% 

45-54 19.41% 19.45% 

55-64 
31.84% 

16.72% 

65 + 14.64% 

 

 
6 We discussed the choice cards with participants following completion to check for understanding and to ensure 

that there was not excessive cognitive strain.  
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Sex Target Statistics Sample 

Male 49.5% 50.93% 

Female 50.5% 49.07% 

 

Each participant was faced with 12 choice tasks, with the 48 specifications thus blocked into four 

groups. Again, we were close to a block-balanced design with blocks 1 to 4 having 223, 236, 228 and 

228 respondents respectively. The ordering of the alternatives in the choice tasks blocks was alternated 

in the final survey design. With 12 choices tasks and 915 participants, this generated 10,980 

observations within our dataset. 

 

3.5 Analysis7 

3.5.1 Multinomial Logit Model Analysis 

Column 1 of Table 3.4 shows the results from a simple MNL model with no socio-demographics. We 

have rescaled8 the attribute levels such that parameter values are of a similar scale and not too close to 

zero, this improves the speed of the estimation procedure.  

 

Table 3.4: Estimation of Multinomial Logit (Model 1) and Mixed Logit (Model 2) 

 MNL 

(Model 1) 

MXL 

(Model 2) 

ASCgeo  0.892 (12.32)*** 0.125 (1.47) 

ASChyd  0.802 (9.40)*** -0.410 (3.63)*** 

ASCsol  0.717 (9.13)*** 0.712 (7.86)*** 

ASCpum  0.000 (fixed) 0.000 (fixed) 

𝛽InvCost  -0.956 (11.63)*** 0.6705 (11.68)*** 

{-4.642}¹ 

𝜎InvCost   -1.315 (33.50)*** 

{9.995}¹ 

𝛽MonCost  -0.758 (22.03)*** -0.286 (3.59)*** 

{-2.786}¹ 

𝜎MonCost    1.619 (20.62)*** 

{9.948}¹ 

𝛽RepPer  0.323 (10.06)*** 0.367 (8.62)*** 

𝜎RepPer   0.875 (14.45)*** 

𝛽CO2  -0.775 (12.14)*** -2.542 (12.83)*** 

 
7 All empirical analysis was conducted using the Apollo package in R (Hess and Palmer, 2019a, 2019b).  

8Investment cost / 10,000; Monthly cost / 100; Replacement period / 10; CO2 / 10,000; Job / 100. 
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𝜎CO2   3.724 (16.19)*** 

𝛽Job  0.689 (5.68)*** 0.937 (5.83)*** 

𝜎Job   1.460 (3.21)*** 

   

LL -12,611.23 -10,489.41 

Absolute values of z-statistics in brackets, * 90% confidence, ** 95% confidence, *** 

99% confidence correspond with 2-sided critical values 1.64, 1.96, 2.58 respectively.  

Where heating alternatives {geo, hyd, sol, pum} represent geothermal district heating, 

hydrogen boiler, solar electric boiler, and air source heat pump respectively.  

¹Moments of the log-normal estimations in curly brackets, where 

 𝜇𝛽 = −exp (𝜇𝑙𝑜𝑔𝛽 +
𝜎𝑙𝑜𝑔𝛽
2

2
), and  𝜎𝛽 = 𝜇𝛽 ∗ √exp(𝜎log𝛽

2 ) − 1 

 

From the MNL model we can see geothermal district heating has the highest alternative specific 

constant, implying that all else equal, respondents seem to prefer this alternative to the others. We can 

also see that all the alternative attributes are statistically significant, implying that they all have a 

significant influence on the respondents’ choice of heating system. To interpret these coefficients, we 

can use the MNL coefficient estimates to calculate a point estimate of the marginal willingness to pay 

for each attribute. We use the initial investment cost as the key cost attribute and calculate how much 

more respondents are willing to invest to obtain higher attribute levels by calculating the marginal rate 

of substitution between investment cost and each attribute. 

 

Marginal willingness to pay for CO2 emission reduction is 
𝛽CO2

𝛽InvCost
=

0.775

0.956
∗ 100 = £81.07 per 100 kg 

lower CO2 emissions per year. Assuming an average replacement period of 20 years, this would 

accumulate to 2 tonnes of CO2 emissions over the lifetime of the heating system, implying a carbon 

price of £40.54 per tonne of CO2 if we ignore the effects of time discounting. Alternatively, if we were 

to apply a discount factor of 2% per year, this would accumulate to 
£81.07∗0.9820

2
= £27.27 per tonne of 

CO2. These are both less than half of the UK 2023 carbon price of £83.05 (UK ETS Authority, 2023), 

implying that whilst households are willing to pay for lower CO2 emissions, this would not cover the 

full cost of the externality. 

 

Willingness to pay for job creation is 
𝛽Job

𝛽InvCost
=

0.689

100
0.956

10,000

=
0.00689

0.0000956
= £72.07 per additional job created 

when 1000 households adopt the technology. If 1000 households were willing to pay this per job, this 

would accumulate to £72,098. We can compare this to the cost of job creation calculated by the IFS 
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(IFS, Spring Budget 2023) of £70,000. This implies that the collective willingness to pay for job creation 

is close to the market cost of job creation. 

 

Willingness to pay for one additional year of life of the heating system is 
βRepPer

𝛽InvCost
=

0.323

10
0.956

10,000

=
0.0323

0.0000956
=

£338.04. Willingness to pay for £1 lower monthly bill is only 
𝛽MonCost

𝛽InvCost
=

 
0.758

100

 
0.956

10,000

=
0.00758

0.0000956
= £79.29. 

However, over 20 years, if the household saved £1 in real terms (no discounting the nominal value) 

every month for 20 years, they would save £240 in monthly bills. If this £1 were discounted at a monthly 

discount rate of 
0.02

12
, then this would accumulate to a present discounted value of £2299. If this £1 were 

accumulated annually a discounted at an annual rate of 0.02, then this would accumulate to a present 

discounted value of £19910.  The difference between a willingness to pay of £79.29 and the actual cost 

savings demonstrates the cognitive bias of temporal discounting, with respondents reluctant to pay 

higher costs now, despite greater cost savings in the future. 

 

3.5.2 Mixed Logit Model Analysis 

To investigate the degree of preference heterogeneity across respondents we estimate a panel mixed 

logit model, where the preference parameters on the product attributes are assumed to follow a 

continuous distribution, rather than being a single, discrete vector of preference coefficients applicable 

to all respondents. We assume that the parameters on the price attributes are distributed across 

respondents with a log-normal distribution based on the theoretical expectation of a strictly negative 

price elasticity of demand. We assume that the parameters on the other product attributes are distributed 

normally since both positive and negative sensibilities are conceivable. We estimate the maximum of 

the simulated log-likelihood function with 2000 random Sobel-Faure-Tezuka draws, which is high 

enough to reduce the simulation variance of the estimates. 

 

Column 2 in Table 3.4 shows the results of the MXL model. We can see that there is a significant degree 

of heterogeneity, with all random parameters having a statistically significant standard deviation 

estimate. The coefficients of variation for the cost attributes are 2.15 and 3.57 for investment cost and 

monthly cost, respectively. The z-value for the standard deviation is highest for these two attributes, 

suggesting a high degree of confidence in the shape of this distribution and the degree of heterogeneity. 

 

 
9 £1 ∗

1−0.99812∗20

1−0.998
= £229 

10 £12 ∗
1−0.9820

1−0.98
= £199 
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Preferences for the three attributes of replacement period, CO2 emissions, and job creation are also 

significantly heterogeneous, with coefficients of variation of 2.38, 1.46, and 1.56 respectively. The z-

value for the standard deviation for the job creation attribute is the least significant, implying a lower 

degree of confidence in the shape of the distribution. 

 

We can also use the mean and standard deviation from the mixed logit model to investigate whether 

preferences are heterogeneous to the extent that a significant proportion of the sample has coefficients 

of the opposite sign. The probability of a negative coefficient on the replacement period is 0.261, 

implying that 26.1% of respondents prefer heating systems with a shorter replacement period. This may 

be because this would allow them to upgrade their heating system more regularly, potentially to achieve 

gains in efficiency which come through product research and development over time. 

 

The probability of a positive coefficient on CO2 emissions is 0.247, implying that 24.7% of respondents 

prefer heating systems with higher CO2 emissions. This result conflicts with the hypothesis that 

households will derive negative marginal utility from CO2 emissions due to the adverse environmental 

consequences. To test whether this is a true reflection of underlying preference or just a by-product of 

the assumption of normally distributed preferences, we compare the fit of this model against models 

with different distributional assumptions. In Appendix C4 we estimate model D1, where we assume a 

normal distribution with a restricted standard deviation, such that only 10% of the population has 

positive coefficients. In model D2, we assume a log-normal distribution. The likelihood ratio test rejects 

model D1 in favour of model 2, and the Ben-Akiva and Swait test is in favour of model D2 over model 

2. This leads us to conclude that log-normal is a superior estimation of the distribution of preferences 

for CO2 emissions, which implies that preferences are negative across the whole sample. 

 

In model 2, the probability of a negative coefficient on job creation is 0.337, implying that 33.7% of 

respondents oppose job creation. Again, this result conflicts with the hypothesis that households will 

derive positive marginal utility from job creation due to the social benefits job opportunities provide. 

We repeated the tests above for the job creation coefficient, testing both a normal distribution with a 

restricted standard deviation and a log-normal distribution. Both the model with a restricted normal 

distribution and the model with the log-normal rejected the normal distribution in model 2, with the 

log-normal distribution having the highest log-likelihood. This leads us to conclude that preferences for 

job creation are positive across the whole sample. 
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The log-likelihood of our MXL is significantly higher than the simple MNL model, demonstrating that 

this model better fits our data. The Ben-Akiva and Swait test returns a p-value of virtually zero, 

highlighting the degree to which the MXL model is superior. 

 

3.5.3 Multinomial and Mixed Logit with Socio-demographic Characteristics Model Analysis 

To unpack this heterogeneity, we investigate the impact of different socio-demographic and housing 

characteristics, focusing on income, gender, education, employment status, age, and key housing 

characteristics such as whether they own their accommodation, how long they have lived in their 

accommodation, and long they expect to live in their accommodation in the future.  

 

Column 1 of Table 3.5 shows the MNL with socio-demographics. We include socio-demographic and 

housing characteristics as shift parameters on household preferences for the alternative-specific 

constants of the different heating system attributes, using ‘pum’ as the baseline. To investigate the 

impact of income, we include a categorical variable ‘low income’, which identifies households with 

aggregate income below £30,000. We find that income has a significant effect on preferences for job 

creation, with those with lower income having a higher preference. Since there is no significant effect 

of either of the cost attributes, this implies low-income households have a higher willingness to pay for 

job creation.  

 

‘Own accommodation’ indicates whether the households own their housing either outright or with a 

mortgage, ‘time10’ indicates whether households have lived in their accommodation for 10 or more 

years, whilst ‘exptime10’ indicates whether households expect to live in their accommodation for 10 or 

more years. Interestingly, the only significant influence on the cost coefficients is that those who have 

lived in their accommodation for 10 or more years have an even higher aversion to investment costs. 

The only other significant effect of housing characteristics on preference is that homeowners have a 

lower preference for job creation, implying a lower willingness to pay. 

 

‘Male’ is a categorical variable indicating whether the respondent is male and ‘Unemp’ indicates 

whether the respondent is unemployed, we find these have no significant effect on preferences. 

‘UniEduc’ indicates whether the respondent has graduated from university, we find that this only 

influences preferences for CO2 emissions, whereby those with a university education are more averse 

to CO2 emissions. Since their cost parameter is not significantly affected, this implies that they would 

have a higher willingness to pay for heating systems with lower CO2 emissions.  
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Finally, we find that age has a significant effect on preferences. We looked at the difference across three 

different age groups: under 35 years old, 35 to 55 years old, and over 55 years old, where over 55 years 

old is the base group in the regression. These years were chosen based on the history of coal mining, 

with the youngest group largely being born after the closure of the mines (or too young to remember 

them) (1991-199411), the middle group being children when the mines were open (1969-1989), and the 

final group being adults who were likely to have worked in the mines or to have known people who 

worked in the mines. We find that the respondent's age has a significant effect on preferences. Both of 

the younger groups appear less cost-sensitive to both investment and monthly costs. The middle 35-55 

group is also less sensitive to CO2 emissions and job creation. This implies that due to lower investment 

cost-sensitivity, the youngest group will have a higher willingness to pay for heating system attributes, 

whilst the middle group may have a higher or lower willingness to pay for lower CO2 emissions and 

job creation, depending on the relative changes in sensitivities towards these attributes compared to the 

cost attributes. 

 

When we include both random and deterministic heterogeneity in the MXL model with socio-

demographics, we discover two important things. Firstly, we find that when random unobserved 

heterogeneity is controlled for, some of the sociodemographic variables become significant. Secondly, 

we see that the significance of the variance terms is reduced, demonstrating that the inclusion of 

deterministic factors for observed heterogeneity reduces random heterogeneity.  

 

Both of these factors can be seen in the investment cost attribute. We can see that in column 2 of table 

3.5, low income now has a positive, significant effect on sensitivity to investment cost. 

Counterintuitively, this implies that low-income households are less sensitive to cost attributes, and thus 

appear to have a more elastic demand for heating systems. We can also see that whilst there is still 

significant variance in the distribution of the income preference parameter, its estimation accuracy has 

reduced from having a z-value of 35.44 to 17.17, which is still very high.  

 

We can also see that by introducing deterministic heterogeneity in the model, the variance of the random 

parameter estimates on the job creation attribute becomes insignificant. This suggests that heterogeneity 

is adequately captured by these socio-demographics, where age and university education have 

significant effects on preference parameters.  

 

 
11 Closure of large mines Dawdon, Murton, Van Tempest, Westoe, Easington, Wearmouth, Ellington (UK 

Parliament, Mine Closures). 
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Table 3.5: Estimation of Multinomial Logit with socio-demographics (Model 3) and Mixed Logit with 

socio-demographics (Model 4) 

 MNL with socio-demographics 

(Model 3) 

MXL with socio-demographics 

(Model 4) 

ASCgeo  1.576 (5.55)*** -0.016 (0.05) 

ASChyd  1.393 (4.15)*** -1.018 (2.36)** 

ASCsol  1.120 (3.53)*** 1.520 (4.38)*** 

ASCpum  0.000 (fixed) 0.000 (fixed) 

𝛽InvCost  -0.820 (2.72)*** 1.819 (31.02)*** 

{0.000638}¹ 

𝜎InvCost   -0.609 (12.78)*** 

{-0.000480}¹ 

𝛽MonCost  -0.727 (5.76)*** 0.459 (5.90)*** 

{-0.0280}¹ 

𝜎MonCost   1.006 (12.55)*** 

{-0.0465}¹ 

𝛽RepPer  0.348 (2.88)*** 0.420 (2.64)*** 

𝜎RepPer   0.0742 (9.28)*** 

𝛽CO2  0.643 (3.08)*** -1.725 (2.85)*** 

𝜎CO2   3.772 (13.99)*** 

𝛽Job  0.852 (1.93)* 1.317 (2.02)** 

𝜎Job   0.920 (1.06) 

   

𝛼LowInc
geo

  -0.038 (0.24) 0.273 (1.43) 

𝛼LowInc
sol   -0.067 (0.37) 0.317 (1.30) 

𝛼LowInc
hyd

  -0.096 (0.59) -0.265 (1.47) 

𝛼LowInc
InvCost  0.164 (0.93) 1.442 (4.76)*** 

𝛼LowInc
MonCost  -0.069 (0.96) 0.151 (1.53) 

𝛼LowInc
RepPer

  0.030 (0.44) 0.047 (0.49) 

𝛼LowInc
CO2   -0.040 (0.29) -0.078 (0.24) 

𝛼LowInc
Job

  0.525 (2.09)** 0.657 (1.83)* 

𝛼OwnAccom
geo

  -0.052 (0.29) 0.384 (1.83)* 

𝛼OwnAccom
sol  -0.068 (0.33) 0.492 (1.81)* 

𝛼OwnAccom
hyd

 0.193 (0.92) -0.040 (0.18) 

𝛼OwnAccom
InvCost  -0.103 (0.52) 1.278 (3.57)*** 

𝛼OwnAccom
MonCost  0.113 (1.41) 0.356 (2.92)*** 

𝛼OwnAccom
RepPer

 -0.110 (1.40) -0.099 (-0.91) 
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𝛼OwnAccom
CO2  0.116 (0.84) 0.173 (0.32) 

𝛼OwnAccom
Job

 -0.579 (1.94)* -0.509 (1.20) 

𝛼Time10
geo

  0.007 (0.04) 0.443 (1.94)* 

𝛼Time10
sol    0.082 (0.39) 0.621 (2.14)** 

𝛼Time10
hyd

  -0.015 (0.08) -0.297 (1.32) 

𝛼Time10
InvCost  -0.407 (2.02)** 1.034 (3.00)*** 

𝛼Time10
MonCost  -0.137 (1.67)* 0.044 (0.34) 

𝛼Time10
RepPer

  -0.012 (0.16) -0.047 (0.42) 

𝛼Time10
CO2   -0.138 (0.90) -0.278 (0.60) 

𝛼Time10
Job

  -0.149 (0.53) -0.209 (0.50) 

𝛼ExpTime10
geo

 -0.086 (0.55) 0.164 (0.81) 

𝛼ExpTime10
sol  0.055 (0.29) 0.479 (1.83)* 

𝛼ExpTime10
hyd

 -0.206 (1.18) 
-0.370 (1.84)* 

𝛼ExpTime10
InvCost  -0.009 (0.05) 1.138 (3.81)*** 

𝛼ExpTime10
MonCost  -0.101 (1.32) 0.082 (0.72) 

𝛼ExpTime10
RepPer

 0.086 (1.18) 
0.113 (1.06) 

𝛼ExpTime10
CO2  -0.092 (0.61) -0.543 (1.34) 

𝛼ExpTime10
Job

 0.032 (0.12) 
-0.173 (0.44) 

𝛼Male
geo

  -0.296 (2.04)** -0.084 (0.47) 

𝛼Male
sol   -0.352 (2.06)** 0.005 (0.02) 

𝛼Male
hyd

  -0.107 (0.68) -0.280 (1.60)* 

𝛼Male
InvCost  -0.192 (1.15) 0.867 (3.03)*** 

𝛼Male
MonCost  0.008 (0.11) 0.167 (1.59)* 

𝛼Male
RepPer

  -0.051 (0.78) -0.081 (0.871) 

𝛼Male
CO2   -0.145 (1.12) -0.341 (1.00) 

𝛼Male
Job

  0.114 (0.46) 0.109 (0.32) 

𝛼UniEd
geo

  -0.047 (0.32) 0.113 (0.62) 

𝛼UniEd
sol   -0.001 (0.01) 0.250 (1.08) 

𝛼UniEd
hyd

  -0.121 (0.79) -0.247 (1.43) 

𝛼UniEd
InvCost  -0.135 (0.76) 0.436 (1.36) 

𝛼UniEd
MonCost   -0.064 (0.87) -0.049 (0.44) 

𝛼UniEd
RepPer

  -0.009 (0.13) 0.040 (0.41) 

𝛼UniEd
CO2   -0.425 (2.95)*** -1.170 (3.16)*** 

𝛼UniEd
Job

  0.501 (1.86)* 0.858 (2.19)** 
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𝛼Unemp
geo

  0.021 (0.08) -0.027 (0.08) 

𝛼Unemp
sol   -0.218 (0.64) -0.230 (0.48) 

𝛼Unemp
hyd

  -0.095 (0.33) 
-0.222 (0.66) 

𝛼Unemp
InvCost  0.439 (1.36) 0.547 (0.98) 

𝛼Unemp
MonCost  0.141 (0.97) 0.291 (1.28) 

𝛼Unemp
RepPer

  -0.181 (1.39) 
-0.288 (1.63) 

𝛼Unemp
CO2   0.601 (2.77)*** 0.718 (1.24) 

𝛼Unemp
Job

  -0.449 (0.89) 
-0.821 (1.10) 

𝛼Age35
geo

  -0.836 (3.44)*** -0.154 (0.54) 

𝛼Age35
sol   -0.875 (3.08)*** 0.113 (0.31) 

𝛼Age35
hyd

  -0.383 (1.37) 
-0.631 (2.12)** 

𝛼Age35
InvCost  -0.005 (0.02) 2.307 (5.86)*** 

𝛼Age35
MonCost  0.197 (1.78)* 0.771 (5.64)*** 

𝛼Age35
RepPer

  0.021 (0.20) 
-0.003 (0.02) 

𝛼Age35
CO2   0.195 (1.01) 0.451 (0.77) 

𝛼Age35
Job

  -0.412 (1.00) 
-0.910 (1.55) 

𝛼Age3555
geo

  -0.377 (1.62) 0.253 (0.91) 

𝛼Age3555
sol   -0.240 (0.88) 0.698 (1.97)** 

𝛼Age3555
hyd

  -0.140 (0.53) 
-0.417 (1.47) 

𝛼Age3555
InvCost   0.214 (0.93) 2.307 (7.37)*** 

𝛼Age3555
MonCost  0.019 (0.19) 0.450 (3.87)*** 

𝛼Age3555
RepPer

  -0.003 (0.04) 
0.011 (0.08) 

𝛼Age3555
CO2   0.257 (1.60) 0.678 (1.36) 

𝛼Age3555
Job

  -0.736 (2.11)** 
-1.017 (2.04)** 

   

LL -12,396.79 -10,312.18 

With absolute values of z-statistics in brackets, * 90% confidence, ** 95% confidence, 

*** 99% confidence correspond with 2-sided critical values 1.64, 1.96, 2.58 

respectively. 

¹Moments of the log-normal estimations in curly brackets, where 𝜇𝛽 and  𝜎𝛽 are 

calculated as in table 3.4. 
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3.5.4 ICLV: Environmental and Energy Attitudes Model Analysis 

To unpack this heterogeneity further, we investigate how respondents' attitudes towards the 

environment and energy influence their sensitivity towards cost and CO2 emission attributes.  

 

We investigate the above-mentioned attitudes by means of latent variables and interact these with the 

alternative specific constants and each of the attributes. We find pro-environmental attitudes and 

energy-saving attitudes have a significant effect on respondents’ choices, and significantly improve the 

fit of the choice model. 

 

Table 3.6.1 Estimation of Measurement equations of the Latent Variable Model for Environmental 

Attitude within Models 5a and 5b 

Environmental Attitude 

 ICLV Env Ene 

(Model 5a: MNL) 

ICLV Env Ene 

(Model 5b: MXL) 

𝜂concEnv  -0.422 (3.86)*** -0.402 (3.88)*** 

𝜏1
concEnv -3.865 (16.55)*** -4.064 (17.00)*** 

𝜏2
concEnv -2.782 (18.51)*** -2.984 (18.34)*** 

𝜏3
concEnv -1.526 (14.05)*** -1.738 (14.19)*** 

𝜏4
concEnv 0.719 (7.32)*** 0.497 (5.09)*** 

𝜂changeLife -0.309 (3.11)*** -0.457 (4.40)*** 

𝜏1
changeLife

 -3.932 (16.19)*** -4.217 (16.86)*** 

𝜏2
changeLife

 -2.871 (18.73)*** -3.148 (18.38)*** 

𝜏3
changeLife

 -1.698 (16.27)*** -1.959 (14.94)*** 

𝜏4
changeLife

 0.916 (10.60)*** 0.712 (6.95)*** 

𝜂shouldChange -0.430 (4.01)*** -0.474 (4.37)*** 

𝜏1
shouldChange

 -4.036 (15.87)*** -4.3 (15.86)*** 

𝜏2
shouldChange

 -3.23 (18.06)*** -3.492 (17.53)*** 

𝜏3
shouldChange

 -1.753 (15.04)*** -2.011 (14.85)*** 

𝜏4
shouldChange

 0.652 (6.80)*** 0.409 (3.99)*** 

With absolute values of robust z-statistics in brackets, * 90% confidence, 

** 95% confidence, *** 99% confidence correspond with 2-sided critical 

values 1.64, 1.96, 2.58 respectively. 

Bolduc et al. (2005) normalisation applied. 
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Table 3.6.2: Estimation of the Measurement equation of Latent Variable Model for Energy Attitude 

within Models 5a and 5b 

Energy Attitude 

 ICLV Env Ene 

(Model 5a: MNL) 

ICLV Env Ene 

(Model 5b: MXL) 

𝜂adjThermKnow 0.384 (4.29)*** 2.226 (10.00)*** 

𝜏1
adjThermKnow

 -3.365 (18.28)*** -5.176 (10.59)*** 

𝜏2
adjThermKnow

 -2.566 (18.42)*** -4.058 (9.08)*** 

𝜏3
adjThermKnow

 -2.009 (17.14)*** -3.254 (7.58)*** 

𝜏4
adjThermKnow

 0.133 (1.48) 0.296 (0.74) 

𝜂adjThermHave 0.308 (3.49)*** 1.609 (10.52)*** 

𝜏1
adjThermHave

 -3.742 (17.21)*** -4.861 (12.15)*** 

𝜏2
adjThermHave

 -2.454 (18.87)*** -3.305 (10.27)*** 

𝜏3
adjThermHave

 -1.642 (15.91)*** -2.273 (7.35)*** 

𝜏4
adjThermHave

 0.551 (6.67)*** 0.861 (2.92)*** 

𝜂redEnergy 0.472 (4.83)*** 3.019 (7.50)*** 

𝜏1
redEnergy

 -4.262 (15.86)*** -7.746 (8.32)*** 

𝜏2
redEnergy

 -3.074 (18.25)*** -5.759 (7.67)*** 

𝜏3
redEnergy

 -2.306 (17.14)*** -4.459 (6.58)*** 

𝜏4
redEnergy

 0.216 (2.21)** 0.588 (1.09) 

𝜂energyDM 0.594 (6.41)*** 1.691 (11.52)*** 

𝜏1
energyDM

 -4.649 (15.01)*** -5.75 (12.56)*** 

𝜏2
energyDM

 -3.294 (18.14)*** -4.14 (11.24)*** 

𝜏3
energyDM

 -2.119 (15.31)*** -2.699 (7.92)*** 

𝜏4
energyDM

 -0.124 (1.11) -0.019 (0.06) 

With absolute values of robust z-statistics in brackets, * 90% confidence, 
** 95% confidence, *** 99% confidence correspond with 2-sided critical 

values 1.64, 1.96, 2.58 respectively. 

Bolduc et al. (2005) normalisation applied. 

 
Table 3.7.1: Estimation of Structural equation of Latent Variable Model for Environmental Attitude 

within Models 5a and 5b 

Environmental Attitude 

 ICLV Env Ene 

(Model 5a: MNL) 

ICLV Env Ene 

(Model 5b: MXL) 

𝛾LowInc -0.144 (1.86)* 0.143 (2.07)** 

𝛾Male -0.004 (0.05) 0.048 (0.69) 
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𝛾UniEduc -0.102 (1.29) -0.132 (1.78)* 

𝛾Unemp -0.005 (0.03) 0.266 (1.51) 

𝛾Age 35 -0.068 (0.56) 0.44 (3.50)*** 

𝛾Age3555 0.058 (0.51) 0.396 (3.58)*** 

𝛾OwnAccom 0.109 (1.19) 0.14 (1.32) 

𝛾Renew -0.079 (0.53) 0.38 (2.22)** 

𝛾Time10 0.057 (0.61) 0.021 (0.25) 

𝛾ExpTime10 -0.012 (0.13) 0.029 (0.36) 

With absolute values of robust z-statistics in brackets, * 90% confidence, 

** 95% confidence, *** 99% confidence correspond with 2-sided critical 

values 1.64, 1.96, 2.58 respectively. 

 

Table 3.7.2: Estimation of Structural equation of Latent Variable Model for Energy Attitude within 

Model 5a and 5b 

Energy Attitude 

 ICLV Env Ene 

(Model 5a: MNL) 

ICLV Env Ene 

(Model 5b: MXL) 

𝛾LowInc -0.140 (1.80)* -0.218 (2.54)** 

𝛾Male -0.041 (0.54) 0.143 (1.73)* 

𝛾UniEduc 0.092 (1.22) 0.12 (1.29) 

𝛾Unemp -0.214 (1.38) -0.328 (1.57) 

𝛾Age 35 -0.522 (3.96)*** -0.51 (3.52)*** 

𝛾Age3555 -0.306 (2.74)*** -0.199 (1.56) 

𝛾OwnAccom 0.026 (0.27) 0.235 (2.39)** 

𝛾Renew -0.527 (4.28)*** -0.336 (1.98)** 

𝛾Time10 0.187 (2.11)** 0.013 (0.13) 

𝛾ExpTime10 0.081 (0.95) 0.316 (3.30)*** 

With absolute values of robust z-statistics in brackets, * 90% confidence, 

** 95% confidence, *** 99% confidence correspond with 2-sided critical 

values 1.64, 1.96, 2.58 respectively. 

 

Tables 3.6.1, 3.6.2, 3.7.1 and 3.7.2 show the parameter estimates of the latent variable model, with the 

first column showing results from the ICLV with an MNL choice model (Model 5a), and the second 

showing results from the ICLV with an MXL choice model (Model 5b). Tables 3.6.1 and 3.6.2 show 

the measurement equation estimates for each of the latent variables (equations 3.21 and 3.22). As 

expected from the factor analysis in Table 3.2, all the indicators are statistically significant. All the 

environmental attitudinal indicators reflect pro-environmental attitude; therefore, since their 

coefficients are negative in Table 3.6.1, a higher value of the environmental latent variable reflects a 

lower concern for the well-being of the environment. All the energy attitudinal indicators reflect energy-
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saving attitudes; therefore, positive coefficients mean that a higher value of the energy latent variable 

reflects a greater preference to reduce energy usage. Results are consistent between models 5a and 5b. 

 

Tables 3.7.1 and 3.7.2 show the structural equation estimates for both the environmental (equation 3.19) 

and energy (equation 3.20) latent variables. We estimated the structural equations with a random error 

term which we simulated with 2000 random Sobel-Faure-Tezuka draws. As expected, the structural 

equation is weak with few socio-demographic variables having a significant effect on attitudes. 

Including random parameters in the choice model increases the significance of several parameters.  We 

can see that low income is significant for both behaviours. For environmentally friendly attitudes the 

sign of the parameter changes when random parameters are introduced into the choice model, this 

suggests that for individuals with a similar distribution of random parameters, a lower income implies 

less environmentally friendly attitudes. Model 5b also demonstrates that those with lower income tend 

to be less energy conscious. University education becomes significant in model 5b, demonstrating a 

positive relation with environmentally friendly attitudes.  

 

Model 5a suggests that energy attitudes are positively impacted by the length of time that people have 

lived in their accommodation, whilst model 5b suggests that those who expect to live in their 

accommodation for a longer time period in the future tend to be more energy conscious.  

 

Surprisingly, those who have installed renewable heating systems in their houses are less 

environmentally friendly and less energy conscious. One would expect energy-consciousness to be a 

primary motivation for investing in renewable heating systems. Our results may reflect a boomerang 

effect, whereby, since their source of heating is renewable and affordable they are no longer concerned 

with their energy usage, or they feel that they have done their bit for the environment and thus are 

morally licenced to increase their energy usage. 

 

Finally, we find that energy consciousness increases with age, with those above 55 being the most 

energy conscious, and those under 35 being the least energy conscious. This could be related to 

experience and time paying energy bills since older people are more aware of the rise in energy prices. 

It could also be related to the different lifestyles of different ages, whereby on average retired people 

spend more time at home, people between 35 and 55 are more likely to be providing for the energy 

usage of a whole family, and people below 35 may have smaller homes.  
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Table 3.6: Estimation of Structural Equation of Choice Model within Models 5a and 5b 

 MNL 

(Model 1) 

ICLV Env Ene MNL 

(Model 5a) 

ICLV Env Ene MXL 

(Model 5b) 

 Estimate s.e. Estimate s.e. Estimate s.e. 

ASCgeo 0.892 (12.32)*** 0.045 1.575 (5.13)*** 0.307 0.799 (3.76)*** 0.212 

ASChyd 0.802 (9.40)*** 0.058 1.507 (4.15)*** 0.363 -0.053 (0.19) 0.274 

ASCsol 0.717 (9.13)*** 0.043 0.769 (2.86)*** 0.269 -0.366 (1.57) 0.233 

ASCpum 0.000 (fixed) (fixed) 0.000(fixed) (fixed) 0.000 (fixed) (fixed) 

𝛽invCost -0.956 (11.63)*** 0.075 

-2.300 (10.05)*** 0.229 

0.869 (5.74)*** 

{-4.150}¹ 0.151 

𝜎invCost   

  

1.053 (13.1)*** 

{1.238}¹ 0.08 

𝛽monCost -0.758 (22.03)*** 0.023 

-1.558 (10.08)*** 0.155 

0.319 (3.28)*** 

{-2.402}¹ 0.097 

𝜎monCost   

  

1.056 (14.15)*** 

{0.456}¹ 0.075 

𝛽repPer 0.323 (12.14)*** 0.031 0.573 (7.78)*** 0.074 0.689 (7.64)*** 0.09 

𝜎repPer     0.651 (8.70)*** 0.075 

𝛽co2 -0.775 (12.14)*** 0.053 -1.864 (7.87)*** 0.237 -3.084 (8.64)*** 0.357 

𝜎co2     2.509 (9.48)*** 0.265 

𝛽job 0.689 (5.68)*** 0.113 1.688 (6.47)*** 0.261 2.128 (6.97)*** 0.305 

𝜎job     2.481 (6.77)*** 0.366 

𝜆geo
env   0.643 (2.52)** 0.255 -1.394 (6.52)*** 0.214 

𝜆hyd
env    1.731 (8.37)*** 0.207 0.414 (1.41) 0.294 

𝜆sol
env   1.338 (6.81)*** 0.197 1.145 (6.11)*** 0.188 

𝜆invCost
env    -0.39 (2.21)** 0.176 1.531 (7.66)*** 0.200 

𝜆monCost
env    0.591 (5.42)*** 0.109 0.546 (7.58)*** 0.072 

𝜆repPer
env    -0.188 (3.03)*** 0.062 -0.348 (4.63)*** 0.075 

𝜆co2
env   1.096 (7.08)*** 0.155 1.373 (7.63)*** 0.18 

𝜆job
env   -0.949 (3.90)*** 0.243 -1.209 (4.72)*** 0.256 

𝜆geo
ene   1.696 (9.81)*** 0.173 0.211 (1.11) 0.19 

𝜆hyd
ene    1.394 (7.54)*** 0.185 0.879 (3.68)*** 0.239 

𝜆sol
ene   -0.225 (1.33) 0.169 0.442 (2.30)** 0.192 

𝜆invCost
ene    -0.777 (10.38)*** 0.075 -0.182 (3.15)*** 0.058 

𝜆monCost
ene    -1.204 (9.19)*** 0.131 0.355 (2.10)** 0.169 

𝜆repPer
ene    0.274 (4.98)*** 0.055 0.136 (2.38)** 0.057 

𝜆co2
ene   -0.852 (7.13)*** 0.119 -0.504 (3.53)*** 0.143 

𝜆job
ene   

0.565 (2.82)*** 0.200 -0.114 (0.57) 0.199 
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LL 

(choice 

model) 

-12,611.23 -9,564.05 -9251.21 

Absolute values of robust z-statistics in brackets, * 90% confidence, ** 95% confidence, *** 99% 

confidence correspond with 2-sided critical values 1.64, 1.96, 2.58 respectively. 

¹Moments of the log-normal estimations in curly brackets, where 

𝜇𝛽 = −exp (𝜇𝑙𝑜𝑔 𝛽 +
𝜎𝑙𝑜𝑔𝛽
2

2
), and  𝜎𝛽 = 𝜇𝛽 ∗ √exp(𝜎log𝛽

2 ) − 1 

 

Table 3.8 shows the structural equation estimates for the choice models (equations 3.23-3.25). In the 

first column, we have replicated the model 1 MNL results from Table 3.4 above. We used these values 

as starting values in the estimation of model 5a and the MXL results from Table 3.4 as the starting 

values in the estimation of model 5b. In the second column, we have estimated the MNL choice model 

from model 5a. In the third column, we have estimated the MXL choice model from model 5b. We find 

that the estimates for the parameters change significantly compared to model 1 and that the 

environmental and energy latent variables have a significant effect on the alternative specific constants 

and respondents’ sensitivity to all attributes.  

 

We observe consistent findings regarding the influence of the environmental latent variable on 

individuals’ aversion to CO2 emissions across models 5a and 5b. The environmental latent variable has 

a positive effect on the sensitivity to CO2 emissions, this suggests that weaker pro-environmental 

attitudes lead to lower disutility from CO2 emissions. Conversely, those with stronger pro-

environmental attitudes are more averse to CO2 emissions. 

 

The influence of environmental attitudes on sensitivity to investment cost differs between models 5a 

and 5b. In model 5a (MNL), the interaction parameter is negative, implying that individuals with 

stronger pro-environmental attitudes are less sensitive to investment costs. In contrast, in model 5b 

(MXL) this interaction parameter becomes positive, indicating that, on average, individuals with 

stronger pro-environmental preferences are more sensitive to investment costs. The significance of the 

standard deviation of the investment cost parameter demonstrates significant preference heterogeneity 

within the sample. The change of sign on the interaction term between environmental preferences and 

the investment cost parameter upon introduction of random parameters suggests that for individuals 

with a common distribution of random parameters, those with higher environmental preferences tend 

to be more cost-sensitive. Whilst, at the population level, when these effects are not accounted for, it 

appears that those with stronger environmental preferences have lower cost sensitivity. This suggests 

that incorporating random parameters controls for omitted variable bias, implying that there are some 

underlying characteristics which correlate with environmental attitudes and influence cost sensitivity. 
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For example, it could be that those who have stronger environmental preferences are people who have 

more leisure time to spend in nature and have sufficient education and financial capacity to care about 

contributing to the environment. In this sense, this group of people would likely have a lower cost 

consciousness, since they have space, time and money to spend time in and contribute to nature, but 

this cost sensitivity is not caused by their environmental attitudes. 

 

The overall effect of environmental attitudes on willingness to pay for cleaner heating systems depends 

on how the ratio of emissions sensitivity to cost sensitivity varies with environmental attitudes. In model 

5a, it is clear to see that at the population level, those with higher environmental attitudes have a higher 

willingness to pay for cleaner systems, since they are both more sensitive to CO2 emissions and less 

sensitive to investment cost. Thus, it appears that they are willing to put their money where their values 

lie. However, this effect is complicated within model 5b, since when controlling for random parameters, 

those with higher environmentally friendly attitudes are more sensitive to both CO2 emissions and cost, 

the overall effect will depend on the relative size of these two effects for each individual. This suggests 

that the positive effect on willingness to pay observed in model 5a is likely to be driven largely by 

underlying heterogeneity which is correlated to environmental preferences. This suggests that 

increasing environmental preferences would not be sufficient to encourage the adoption of clean 

technologies, underlying heterogeneous enabling factors influence the capability of individual to put 

their money where their values lie.  

 

We find that the environmental attitude latent variable has a negative effect on the sensitivity to the 

replacement period, reflecting that those who care less about the environment care less about how long 

their heating system lasts. Given the negative effect on the sensitivity to investment cost in model 5a, 

this suggests that those who care less about the environment will have a lower willingness to pay for 

heating systems with longer durations, which implies that those with stronger pro-environmental 

preferences have a higher willingness to pay. This could reflect efforts to minimise life cycle 

environmental impact by extending the duration. However, given the positive effect on sensitivity to 

investment cost in model 5b, it is likely that this effect is driven by underlying factors which are 

correlated with environmental preferences. Differential time preferences are also suggested by the 

different signs of the parameters on investment cost and monthly cost in model 5a, which implies that 

whilst those with heightened environmental attitudes are more sensitive to monthly energy costs, they 

appear less sensitive to heating system investment costs, this could reflect how those with higher 

environmental preferences are more willing to save to make high quality investments. This effect 

disappears in model 5b, implying that this effect is not driven by the latent variable itself, but by random 

parameters which correlate with it. 
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We find that the energy attitude latent variable has a negative effect on the sensitivity to CO2 emissions 

in both model 5a and 5b, reflecting that those who care more about reducing their energy usage are 

more averse to CO2 emissions. We also find that it has a negative effect on the sensitivity to investment 

cost in both models 5a and 5b, reflecting that those who are energy-conscious are also more cost-

conscious. Overall, energy-conscious attitudes may have a positive or negative effect on willingness to 

pay for heating systems with lower CO2 emissions, since whilst the CO2 emissions coefficient becomes 

more negative (increases in absolute size), the investment cost coefficient also becomes more negative 

(increases in absolute size). Since the magnitude of the change in sensitivity to investment cost is 

greater, this is likely to reduce willingness to pay for lower CO2 emissions, but this is driven by cost 

sensitivity rather than lack of concern for CO2 emissions.  

 

We also find that the energy attitude latent variable has a positive effect on the sensitivity to replacement 

period, reflecting that those who care more about reducing their energy usage care more about how long 

their heating system lasts. However, given the heightened cost consciousness, they are unlikely to be 

willing to pay for heating systems that last longer.  

 

In Appendix C5 we investigate whether our model is robust to correlation between the random 

parameters. We estimate a model 5c which allows for correlation between the random parameter on 

investment cost and the random parameter on CO2 emissions. We find that the parameter on the 

correlation term is positive and significant, but that the sign and significance of the sensitivity 

parameters and latent variable interaction terms retain their sign and significance. This supports our 

behavioural hypotheses, suggesting that our findings are robust to correlated random parameters. A 

further investigation of the full matrix of correlation is left for future research. 

 

Overall, model 5a suggests that those who hold strong environmental preferences are willing to put 

their money where their values lie and will have a higher willingness to pay for low-carbon heat. Whilst 

model 5b, suggests that this effect will be heterogeneous across the population, is likely to depend on 

some enabling factors, and is not guaranteed to increase willingness to pay. These models also imply 

that the primary motivation behind energy-saving attitudes is to save money with the secondary motive 

being to reduce emissions, which suggests that energy-conscious households may be less inclined to 

pay for low-carbon heat. Given that we have not studied how changes in attitudes over time influence 

stated preferences for heating systems, from our study we cannot directly infer how changes in 

environmental or energy attitudes may influence willingness to pay (Chorus and Kroesen, 2014). 
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3.5.5 ICLV: Coal Mining Identity Model Analysis 

To investigate how local coal mining heritage may influence participants' preferences towards 

repurposing coal mines for renewable heating technologies and towards the creation of green jobs, we 

introduce coal mining identity into an ICLV model as a latent variable. We look at the influence of the 

latent variable measuring coal mining identity on the alternative specific constants and each of the 

attribute parameters.  

Table 3.7: Estimation of Measurement Equation of Latent Variable Model within Model 6a and 6b 

Coal Mining Identity 

 ICLV MNL (Model 6a) ICLV MXL (Model 6b) 

𝜂idenHerit -0.096 (1.34) 0.021 (0.27) 

𝜏1
idenHerit -2.492 (19.57)*** -2.516 (19.24)*** 

𝜏2
idenHerit -1.226 (15.05)*** -1.252 (14.28)*** 

𝜏3
idenHerit 0.043 (0.62) 0.014 (0.19) 

𝜏4
idenHerit 1.435 (16.49)*** 1.404 (15.49)*** 

𝜂honHist 0.235 (3.11)*** 0.328 (3.90)*** 

𝜏1
honHist -4.164 (15.98)*** -4.297 (16.26)*** 

𝜏2
honHist -2.777 (19.67)*** -2.908 (18.93)*** 

𝜏3
honHist -0.51 (6.58)*** -0.625 (6.84)*** 

𝜏4
honHist 1.451 (15.79)*** 1.357 (13.86)*** 

𝜂projImp 0.28 (3.84)*** 0.367 (4.44)*** 

𝜏1
projImp

 -4.33 (15.43)*** -4.477 (15.66)*** 

𝜏2
projImp

 -3.507 (18.28)*** -3.654 (18.12)*** 

𝜏3
projImp

 -1.463 (15.63)*** -1.599 (14.91)*** 

𝜏4
projImp

 0.649 (7.99)*** 0.539 (6.00)*** 

With absolute z-value in brackets, * 5% sig, ** 2.5% sig. *** 1% sig. 

Bolduc et al. (2005) normalisation applied. 

 

Table 3.8: Estimation of Structural Equation of Latent Variable Model within Model 6 

Coal mining identity 

 Hybrid MNL Hybrid MXL 

𝛾LowInc 0.003 (0.03) -0.044 (0.55) 

𝛾Male -0.060 (0.82) -0.122 (1.61) 

𝛾UniEd 0.093 (1.29) 0.077 (0.96) 

𝛾Unemp -0.129 (0.85) -0.081 (0.46) 

𝛾Age35 -0.394 (3.11)*** -0.398 (3.07)*** 

𝛾Age3555 -0.261 (2.44)** -0.388 (3.41)*** 
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𝛾OwnAccom -0.092 (1.01) -0.165 (1.52) 

𝛾Time10 0.158 (1.88)* 0.03 (0.33) 

𝛾ExpTime10 0.058 (0.69) -0.056 (0.62) 

𝛾NoMines -0.002 (0.86) -0.003 (1.41) 

Absolute values of robust z-statistics in brackets, * 90% confidence, ** 
95% confidence, *** 99% confidence correspond with 2-sided critical 

values 1.64, 1.96, 2.58 respectively. 

 

 
Tables 3.9 and 3.10 show the estimations of the latent variable model for identity. Table 3.9 shows the 

measurement equation (as in equations 3.21 and 3.22 but for identity) estimates. The factor analysis in 

Table 3.2 showed that coal mining identity was a weaker latent variable with a Crombach Alpha value 

of 0.594. We can see this weakness reflected in lower levels of significance of the indicator variables, 

with the 𝜂idenHerit for the indicator question relating to identifying with the coal mining heritage of the 

region (‘iden_herit’) not being statistically significant. This reinforces that we should interpret the 

results from this ICLV model with caution. All the factor loadings are positive, with both the indicator 

relating to the repurposing of coal mines honouring the coal mining history of the region (‘hon_his’), 

and the indicator relating to feeling that the GEMS project is good for local communities (‘proj_imp’), 

being significant. This implies that the latent variable may not directly reflect coal mining identity, but 

more a view that repurposing the mines is good for the community.  

 

Table 3.10 shows the structural equation (equation 3.26) estimates for identity. As in the case of 

environmental and energy attitudes, the structural equation is relatively weak. We can see that only age 

is significant, those under the age of 35, who would not have been old enough to remember the mines 

being open, have the lowest coal mining identity. Whilst those who are older than 55 who were alive 

whilst the mines were open and during the miners’ strike in the 1980s have the strongest identity.   

 

Table 3.9: Estimation of Structural Equation of Choice Model within Model 6 

 MNL 

(Model 1) 

ICLV iden MNL 

(Model 6a) 

ICLV iden MXL 

(Model 6b) 

 Estimate s.e. Estimate s.e. Estimate s.e. 

ASCgeo 0.892 (12.32)*** 0.045 0.894 (3.69)*** 0.242 0.743 (3.64)*** 0.204 

ASChyd 0.802 (9.40)*** 0.058 0.967 (7.60)*** 0.127 -0.104 (0.41) 0.258 

ASCsol 0.717 (9.13)*** 0.043 0.064 (0.51) 0.127 -0.429 (1.83)* 0.234 

ASCpum 0.000 (fixed) (fixed) 0.000 (fixed) (fixed) 0.000 (fixed) (fixed) 

𝛽invCost -0.956 (11.63)*** 0.075 -1.744 (10.29)*** 0.17 0.81 (5.50)*** 0.147 
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{-4.219}¹ 

𝜎invCost   

   

-1.122 (12.84)*** 

{1.286}¹ 0.087 

𝛽monCost -0.758 (22.03)*** 0.023 

-1.288 (10.22)*** 0.126 

0.278 (2.99)*** 

{-2.403}¹ 0.093 

𝜎monCost   

   

1.095 (12.55)*** 

{0.422}¹ 0.087 

𝛽repPer 0.323 (12.14)*** 0.031 0.481 (8.00)*** 0.06 0.653 (8.37)*** 0.078 

𝜎dur      0.64 (8.01)*** 0.08 

𝛽co2 -0.775 (12.14)*** 0.053 -1.437 (7.99)*** 0.18 -3.009 (9.95)*** 0.302 

𝜎co2      2.497 (10.65)*** 0.234 

𝛽job 0.689 (5.68)*** 0.113 1.628 (7.43)*** 0.219 1.952 (6.78)*** 0.288 

𝜎job      -2.371 (6.91)*** 0.343 

𝜆geo
iden   1.614 (10.98)*** 0.147 1.501 (7.38)*** 0.203 

𝜆hyd
iden   0.622 (4.24)*** 0.147 -0.2 (0.66) 0.303 

𝜆sol
iden   -0.656 (4.80)*** 0.137 -1.039 (5.40)*** 0.192 

𝜆invCost
iden    -0.903 (7.47)*** 0.121 -1.396 (6.91)*** 0.202 

𝜆monCost
iden    -0.795 (17.13)*** 0.046 -0.579 (8.53)*** 0.068 

𝜆repPer
iden    0.263 (5.46)*** 0.048 0.35 (4.91)*** 0.071 

𝜆co2
iden   -1.027 (12.85)*** 0.080 -1.25 (8.62)*** 0.145 

𝜆job
iden   0.791 (4.35)*** 0.182 1.008 (4.19)*** 0.240 

       

LL 

(choice 

model 

only) 

-12,611.23 -10,512,08 -9,418.16 

Absolute values of robust z-statistics in brackets, * 90% confidence, ** 95% confidence, *** 99% 

confidence correspond with 2-sided critical values 1.64, 1.96, 2.58 respectively. 

¹Moments of the log-normal estimations in curly brackets, where 

𝜇𝛽 = −exp (𝜇𝑙𝑜𝑔𝛽 +
𝜎𝑙𝑜𝑔𝛽
2

2
), and  𝜎𝛽 = 𝜇𝛽 ∗ √exp(𝜎log𝛽

2 ) − 1 

 

The choice model in Table 3.11 shows the structural equation estimates of the choice model (equations 

3.27-3.29). It demonstrates that the coal mining identity latent variable has a significant effect on both 

the renewable energy alternative and sensitivity towards the choice attributes.  

 

Firstly, we can see from the alternative-specific constants that those with a stronger coal mining identity 

are significantly more likely to select the geothermal district heating system. This demonstrates that 

those who feel that repurposing the mines will be good for their community are comparatively more 
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inclined to adopt geothermal district heating over other renewable energy systems. Therefore, 

communities with stronger coal mining identities are likely to be more receptive to geothermal district 

heating systems being set up within their communities. 

 

Secondly, we can see that coal mining identity has a significant effect on the sensitivity to all attributes. 

Of particular interest are the job creation attribute and the investment cost attributes. Participants with 

stronger coal mining identity have a greater sensitivity towards job creation, demonstrated by a positive 

coefficient in both models 6a and 6b. On the one hand, this aligns with the narrative of high levels of 

unemployment and lack of skilled job opportunities within mining communities following the closure 

of the mines. This would have been felt more acutely by individuals and families who had historically 

relied on the mines for employment, and thus they would likely feel more strongly about job creation, 

particularly skilled jobs in the energy sector. On the other hand, given that the identity latent variable 

could be interpreted as a positive feeling towards repurposing mines for the good of the community, 

this may reflect how one of the reasons people feel it is good for the community is because of the local 

job opportunities it will create. 

 

We can also see that those who have a stronger coal mining identity are more cost-sensitive, both in 

terms of investment cost and monthly cost. This effect holds in both model 6a and model 6b where 

preference heterogeneity is accounted for. This would also make sense given the history of hardship 

faced by coal mining communities following the closure of the mines, which is still true at present in 

the form of comparative economic disadvantage.  

 

In Appendix C5 we investigate whether our model is robust to correlation between the random 

parameters. We estimate a model 6c which allows for a correlation between the random parameter on 

investment cost and the random parameter on job creation. We find that the parameter on the correlation 

term is positive and insignificant, and that the sign and significance of all choice model parameters are 

unchanged. Again, this supports the robustness of our behavioural hypotheses. 

 

The combination of higher sensitivity to job creation and higher sensitivity to cost may result in a 

positive or negative influence of coal mining identity on willingness to pay for job creation. Despite 

having a greater preference for job creation, their cost sensitivity reduces their willingness to pay for 

everything and may counter this preference. In this case, the proportional increase in cost sensitivity is 

relatively larger than the proportional increase in sensitivity to job creation, which implies that despite 

having stronger preferences for job creation, those with stronger coal mining identity have a lower 

willingness to pay for job creation due to their sensitivity to costs. 
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This suggests that there is an attitude-behaviour gap in the case of job creation. Individuals with a 

stronger coal mining identity are more sensitive to job creation, but this heightened sensitivity to cost 

is a barrier to them expressing this preference in the market, since they would not be willing to pay 

more for an alternative offering higher job creation due to budgetary constraints. 

 

3.6 Model Predictions 

Discrete choice models can be used to predict how consumer behaviour will change in response to 

policy proposals which influence attribute levels of the alternatives. We use models 5a and 6a to 

investigate how adoption rates of the technologies change in response to (1) the introduction of a carbon 

tax, (2) the introduction of technology-specific subsidies. We investigate how the behavioural variables 

of environmental attitudes, energy-saving attitudes, and coal mining identity relate to the extent of 

behaviour change.  

 

3.6.1 Carbon Tax Predictions 

Carbon taxes are a market intervention which explicitly put a price on the carbon emission externalities 

arising from production processes and consumption. Ideally, the price of carbon in the market should 

be set equal to the marginal cost of the externality, such that demand for pollutive products is 

discouraged through higher prices to the extent that externalities are internalised. Within this study, we 

apply the UK carbon price of £83.05 per tonne of CO2 emissions. 

 

To investigate the influence of a carbon tax on the probability of choosing different heating system 

technologies, we look at the effect of adding the carbon tax to investment cost and monthly cost 

separately. In scenario 1, we add the carbon tax to the investment cost; to do so we calculate the annual 

cost of CO2 emissions by multiplying emissions by the carbon price. We then calculate the total value 

of emissions by adding up the cost of CO2 emissions and discounting them over the replacement period 

of the product.  

 

InvCostCP𝑖 = InvCost𝑖 + CO2𝑖 ∗ 0.08305 ∗ (
(1 + 𝑟)RepPer𝑖 − 1

𝑟 ∗ (1 + 𝑟)RepPer𝑖
) (3.30) 

 

Where ‘InvCostCP’  is the investment cost inclusive of the carbon tax, and 𝑟 is the discount rate, which 

we set to 0.02. 
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We separately look at what would happen if we charged the carbon tax as part of the monthly cost of 

the heating systems. In scenario 2, we add the carbon tax to the monthly cost, by first dividing the 

annual CO2 emissions by 12, and then multiplying them by the carbon price. 

 

MonCostCPi = MonCosti + (
1

12
) ∗ CO2i ∗ 0.08305 (3.31) 

 

Where ‘MonCostCP’ is the monthly cost inclusive of the carbon tax. We then use models 5a and 6a to 

predict, for each respondent in each choice task, the probability of selecting each alternative in scenario 

1 and scenario 2. We compare the probabilities within each scenario with the base probabilities to see 

how charging a carbon tax would influence demand across the different technologies.  

 

The carbon tax increases the cost of all alternatives in proportion to the carbon emissions they produce, 

therefore heating systems which release more carbon dioxide on average will become relatively more 

expensive. Table 3.12 shows that for both models 5a and 6a, the pattern of demand change is similar, 

with the average probability of selecting geothermal district heating rising the most and the average 

probability of selecting hydrogen boilers decreasing the most under both scenarios. This is likely to 

reflect that on average geothermal district heating releases lower CO2 emissions, thus in response to a 

carbon tax respondents shift their demand to this cleaner alternative. 

 

Table 3.10: Predicted average probability of selecting each alternative when a carbon tax is 

introduced 

  Geothermal 

District 

Heating 

Hydrogen 

boiler 

Solar 

electric 

boiler 

Air source 

heat pump 

ICLV: Env and 

Ene Attitudes 

(Model 5) 

No Tax 0.4688 0.2511 0.1897 0.0904 

Carbon Tax on 

Investment Cost 

0.5122 0.2031 0.1928 0.0920 

Carbon Tax on 

Monthly Cost 

0.4866 0.2332 0.1905 0.0899 

ICLV: Identity 

(Model 6) 

No Tax 0.4669 0.2464 0.1876 0.0992 

Carbon Tax on 

Investment Cost 

0.4990 0.2097 0.1945 0.0967 

Carbon Tax on 

Monthly Cost 

0.4848 0.2253 0.1908 0.0991 

 

We investigate the patterns of heterogeneity underlying the changes in probabilities of selecting each 

alternative, focusing on how the change in probability of selecting geothermal district heating varies 
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across the different latent variables. We first calculate the difference in probabilities (before and after 

carbon tax) of selecting geothermal district heating for each respondent in each choice task, we then run 

an OLS regression to regress this difference against the conditional value of each of the latent variables 

both in the base period and in the relevant carbon tax model. Since the ICLV model simultaneously 

predicts the choice model and the latent variable model, changing attribute levels of the alternatives in 

the choice model influences the conditional values of the attitudinal variables in the latent variable 

models. Appendix C6.1 shows that, when a carbon tax is introduced, environmental attitudes strengthen, 

and energy-saving attitudes and coal-mining identity weaken. 

 

In the case of environmental attitudes, Appendix C6.2 shows that the higher the value of the latent 

variable, and thus the lower the respondents’ pro-environmental attitude, the larger the shift of 

respondents' demand is towards geothermal district heating. This implies that those with higher pro-

environmental attitudes are less responsive to price changes linked to emissions and thus have less 

elastic demand. This is likely to be because these respondents already choose the cleaner alternative. 

 

In the case of energy-saving attitudes, Appendix C6.2 shows that the higher the value of the latent 

variable, and thus the higher the individuals’ energy-saving attitude, the larger the predicted shift of 

their demand towards geothermal district heating. This reflects the relationship between higher energy-

saving attitudes and greater cost-consciousness since the relatively lower price of cleaner heating 

alternatives is more attractive to respondents with strong energy-saving attitudes. 

 

In the case of coal mining identity, we find that the relationship between the value of the latent variable 

and the degree to which demand is predicted to shift towards geothermal district heating is statistically 

insignificant.  

 

In the long run, the effect of a carbon tax on the adoption of different technologies is likely to change. 

Since a carbon tax makes alternatives with higher CO2 emissions less competitive in the market, energy 

companies and manufacturers of renewable heating systems will have a greater incentive to reduce the 

carbon emissions from production and usage. For example, hydrogen boilers release more CO2 on 

average within this choice experiment because brown hydrogen production has high CO2 emissions, 

however, as production of hydrogen transitions to green hydrogen and CO2 emissions fall, the carbon 

tax would likely favour the adoption of hydrogen boilers. Similarly, solar panels have a high lifecycle 

CO2 emission because China is a major supplier of solar panels and coal still makes up a significant 

proportion of their total energy production. If China transitions their energy production to more 
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renewable sources or if people purchase more from cleaner suppliers, then the carbon tax would be in 

favour of solar panels. 

 

3.6.2 Technology-specific Subsidy Predictions 

Subsidies are a form of market intervention which reduce the price of a given alternative with the 

objective of increasing its demand. Subsidies are widely applied in the renewable heating sector to 

encourage the installation of heat pumps and solar panels. Subsidies could be a useful policy to 

coordinate market behaviour to encourage greater adoption of a given technology in a particular region. 

For example, in the North East, the abundance of disused coal mining infrastructure makes geothermal 

heating systems a viable alternative. However, since geothermal heating from mines is set up in district 

heating systems, adoption by a majority within a given locality is necessary for optimal benefits to be 

obtained. A subsidy imposed on geothermal district heating systems could coordinate households to 

purchase a common renewable heating solution. 

 

To investigate the influence of subsidies on demand for the different heating systems, we use model 5 

and impose subsidies of 10%, 20%, 50% and 75% on the investment cost of each alternative separately, 

and predict the probability of each technology being chosen.  

 

Table 3.11: Predicted average probability of selecting each alternative when a subsidy is introduced 

on the investment cost of each alternative in turn 

 Geothermal 

District Heating 

Hydrogen boiler Solar electric 

boiler 

Air source heat 

pump 

No subsidy 0.4688 0.2511 0.1897 0.0904 

Geothermal     

10% 0.4799 0.2431 0.1880 0.0890 

20%  0.4911 0.2351 0.1863 0.0875 

50% 0.5245 0.2109 0.1813 0.0834 

75% 0.5516 0.1910 0.1773 0.0800 

Hydrogen      

10% 0.4635 0.2576 0.1893 0.0896 

20% 0.4582 0.2642 0.1889 0.0887 

50% 0.4391 0.2880 0.1873 0.0857 

75% 0.4270 0.3028 0.1864 0.0838 

Solar Electric 

boiler 

    

10% 0.4593 0.2566 0.1951 0.0889 

20% 0.4552 0.2547 0.2017 0.0884 
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50% 0.4403 0.247 0.2261 0.0865 

75% 0.4236 0.2381 0.2536 0.0847 

Air source heat 

pump 

    

10% 0.4602 0.2559 0.1888 0.0952 

20% 0.4571 0.2530 0.1882 0.1017 

50% 0.4421 0.2394 0.1852 0.1333 

75% 0.4288 0.2270 0.1828 0.1614 

 

Table 3.13 suggests that if these were the only heating systems available on the market, then subsides 

will have an influence upon which heating system is adopted, however, this influence is quite small. 

For example, subsidising geothermal district heating by 50% only increases the probability of adoption 

from 49.11% to 52.45%. The largest effects are seen for air source heat pumps, which is the technology 

that has the lowest probability of adoption in the base model. Here, a 50% subsidy increases adoption 

from 9.52% to 13.33%, increasing adoption by around 40%. 

 

3.7 Key Findings and Conclusion 

Household adoption of renewable heating systems is fundamental for the UK to achieve its net zero 

commitments. The government identified that it is unlikely that there is a one-size-fits-all solution 

(BEIS, 2018) and that multiple technologies will be important on our path to net zero. On the supply 

side, suitable technologies depend upon natural resources, environment and climate. For example, the 

North East of England is endowed with disused coal mines offering potential for geothermal district 

heating systems. On the demand side, household preferences have a significant influence on the 

adoption of available renewable heating systems. 78% of households in the UK have natural gas boilers 

and adoption of renewable heating systems is likely to be delayed due to households wanting to exploit 

the lifetime of their current heating system. Key barriers to investing in renewable heating systems are 

the higher cost and lack of familiarity with new technologies. 

 

We conducted a choice experiment where respondents were faced with a scenario in which they were 

choosing a new heating system for a new residential accommodation, with no status quo option. We 

present households with four different renewable heating systems, geothermal district heating, a 

hydrogen boiler, a solar electric boiler, and an air source heat pump. We vary the attribute levels of 

investment cost, monthly cost, replacement period, CO2 emissions and job creation. We analyse the 

trade-offs respondents make between the alternatives in the different choice tasks to investigate 

marginal willingness to pay for the different product attributes. We investigate the heterogeneity of 

household preferences by analysing how socio-demographic characteristics and latent variables 
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measuring environmental and energy attitudes and coal mining identity influence sensitivities towards 

the different attributes.  

 

We find that the most preferred renewable heating alternative is geothermal district heating. We also 

find that all product attributes have a significant influence on respondents’ utility and thus on the 

alternative they choose.  

 

Of significant interest is the marginal willingness to pay for CO2 reduction. A key aim of the energy 

transition is to reduce the carbon footprint of heating systems. To understand household willingness to 

pay to contribute to achieving this aim, it is important to see to what extent households are willing to 

voluntarily internalise the externalities arising from their heating consumption. We find that the 

marginal willingness to pay for lower CO2 emissions is £27.27 - £40.54 (depending on time 

discounting) per tonne of CO2 which is less than half of the 2023 UK carbon price of £83.05. This 

implies that external intervention is necessary to fully internalise negative environmental externalities. 

We find that environmental and energy attitudes increase sensitivity towards CO2 emissions and that 

whilst those with stronger pro-environmental attitudes have a higher marginal willingness to pay for 

CO2 emission reduction, those with strong energy-saving attitudes have a lower marginal willingness 

to pay due to their higher cost sensitivity. We also find that when we introduce random parameters into 

our ICLV choice model, heightened sensitivity to CO2 emissions remains for both latent variables, but 

neither has discernible effects of willingness to pay, suggesting that underlying random parameters that 

are related to environmental attitudes are driving observed heightened willingness to pay. 

 

We also investigate marginal willingness to pay for job creation, finding that on average respondents 

are willing to pay £72.07 per additional job created when 1000 households adopt the technology. When 

aggregated over 1000 households, this amount is close to the average cost of job creation calculated by 

the IFS 2023. We find that those who have a stronger coal mining identity or feel more positive about 

the impact that repurposing coal mines would have upon the local community feel more strongly about 

job creation, however, their higher cost sensitivity means that they would not have a higher willingness 

to pay for this job creation. We also found that these households were more likely to choose geothermal 

district heating within our choice experiment scenario. 

 

Finally, we have predicted how the choice of heating system will change with the introduction of a 

carbon tax and a subsidy. Our two integrated choice and latent variable models predict that the carbon 

tax will encourage respondents to adopt geothermal district heating. Respondents with stronger energy-

saving attitudes have the most elastic demand, whilst respondents with stronger pro-environmental 
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attitudes have the least elastic demand. We also find that subsidising technologies does increase demand 

for that technology, but that even subsidising at 75% only increases demand for geothermal by 7.2%, 

hydrogen boilers by 4.5%, solar panels by 5.9% and air source heat pumps by 6.6%. In the current 

market, with gas boilers still being the cheapest available alternative, these proportions are likely to be 

even smaller.  

 

Understanding the behavioural determinants driving the adoption of renewable heating systems and 

addressing attitude-behaviour gaps are critical for promoting sustainable energy practices and shaping 

effective policies. This study demonstrates that environmental and energy attitudes, as well as social 

identity, play a significant role in how households evaluate heating system attributes and prioritize 

collective social benefits. These insights provide valuable guidance for designing targeted interventions 

and policies that align with household values, thereby facilitating the transition to sustainable energy 

systems. 
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Appendix A: Appendix for Chapter 1 

Appendix A1: Derivation of Demand Elasticities 

First, consider the dirty good.  
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Consider the moral consumer demand for the dirty good as in equation 1.11, 𝑧ℎ =
(1−𝜙′(𝑍)𝑍)(𝑤ℎ+𝐼ℎ)
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, 

differentiate this with respect to the price of the dirty good. 
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We then aggregate this over all households to obtain the aggregate demand elasticity. 
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This can be rearranged to obtain the price elasticity of demand. 
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We can then repeat this process for the clean good, using the clean good demand from equation 1.12, 

𝑥ℎ =
𝜃ℎ(𝑤ℎ+𝐼ℎ)

(1+𝜃ℎ+𝜂ℎ−𝜙′(𝑍)𝑍)𝑞𝑥
. This gives, 

 

𝜀𝑥 =
𝜕𝑋

𝜕𝑞𝑥

𝑞𝑥

𝑋
= −1 
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Using the different assumptions across the four different versions of the model, we can work out the 

different demand elasticities. 

 

Table A1: Price elasticity of demand across different versions of the model 

 Homogeneous Heterogeneous 

Non-moral 

 

Moral 

𝜀𝑍 = −1, 𝜀𝑥 = −1 

 

𝜀𝑍 = −
1

1 + 𝑚
, 𝜀𝑥 = −1 

𝜀𝑍 = −1, 𝜀𝑥 = −1 

 

𝜀𝑍 = −
1

1 +
∑ 𝑚ℎ𝑧ℎ𝐻

ℎ=1
𝑍

, 𝜀𝑥 = −1 

 

Appendix A2: Equivalence of Utility Maximisation and Cost Minimisation 

Compensated demand is the outcome of the dual cost-minimisation problem, it shows how demand 

would change as a result of a change in the price, compensating to remain at the same utility level. To 

employ the Slutsky decomposition, it is important to demonstrate that the dual cost minimisation is 

consistent with the utility maximisation carried out in the paper.  

 

This problem can be set out as consumers choosing their consumption and leisure to minimise their 

expenditure subject to achieving a given level of utility. Given the Kantian optimisation, it may be 

interpreted as achieving a given level of moral utility or ‘rightness’ at the smallest cost.  

 

Min𝑧ℎ,𝑥ℎ,(1−𝑙ℎ)𝑞𝑧𝑧
ℎ + 𝑞𝑥𝑥

ℎ − 𝑤ℎ𝑙ℎ  (𝐴2.1) 

 

subject to 

 

ln(𝑧ℎ) + 𝜃ℎ ln(𝑥ℎ) + 𝜂ℎ ln(1 − 𝑙ℎ) = 𝑢ℎ + 𝜙(𝑍) (𝐴2.2) 

 

Construct the Lagrangian, 

 

ℒ = 𝑞𝑧𝛾𝑧ℎ + 𝑞𝑥𝑥
ℎ − 𝑤𝑙ℎ + 𝛽ℎ{ln(𝛾𝑧ℎ) + 𝜃ℎ ln(𝑥ℎ) + 𝜂ℎ ln(1 − 𝑙ℎ) − 𝜙(𝛾𝑍) − 𝑢ℎ} (𝐴2.3) 

 

The first order conditions would give,  

 

𝜕ℒ

𝜕𝛾
|
𝛾=1

= 𝑞𝑧𝑧
ℎ + 𝛽ℎ{1 − 𝜙′(𝑍)𝑍} = 0  
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𝑧ℎ,𝑐 = −
𝛽ℎ

𝑞𝑧
(1 − 𝜙′(𝑍)𝑍) (𝐴2.4) 

 

𝜕ℒ

𝜕𝑥ℎ
= 𝑞𝑥 + 𝛽ℎ {

𝜃ℎ

𝑥ℎ
} = 0  

 

𝑥ℎ,𝑐 = −
𝛽ℎ

𝑞𝑥
𝜃ℎ (𝐴2.5) 

 

𝜕ℒ

𝜕𝑙ℎ
= −𝑤ℎ + 𝛽ℎ {−

𝜂ℎ

1 − 𝑙ℎ  
) = 0  

 

(1 − 𝑙ℎ,𝑐) = −
𝛽ℎ

𝑤ℎ
𝜂ℎ (𝐴2.6) 

 

Substituting these into the constraint gives, 

 

ln(−
𝛽ℎ

𝑞𝑧
(1 − 𝜙′(𝑍)𝑍)) + 𝜃ℎ ln(−

𝛽ℎ

𝑞𝑥
𝜃ℎ) + 𝜂ℎ ln (−

𝛽ℎ

𝑤ℎ
𝜂ℎ) − (𝑢ℎ + 𝜙(𝑍)) = 0 (𝐴2.7) 

 

When utility, 𝑢ℎ, is set at the same level as in the utility maximisation problem (equation 1.14), we find 

that,  

 

𝛽ℎ = −
(𝑤 + 𝐼ℎ)

(1 + 𝜃 + 𝜂 − 𝜙′(𝑍)𝑍)
= −

1

𝛼ℎ
(𝐴2.8) 

 

When 𝛽ℎ is substituted into the first order conditions (equations A2.4 to A2.6), this results in demands 

for 𝑧ℎ , 𝑥ℎ , and (1 − 𝑙ℎ) which are equivalent to the utility maximisation problem. 

 

Appendix A3: Compensated Demands and Proof of the Symmetry of Substitution Effects 

Appendix A3.1 Compensated Demands 

To calculate the Hicksian compensated demands for the dirty good and the clean good we can carry out 

the dual moral cost minimisation problem, as in Appendix A2. From equation A2.7 we can adopt a 

general expression for 𝛽ℎ, 
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−𝛽ℎ = [
𝑞𝑧𝑞𝑥

𝜃ℎ
𝑤ℎ𝜂ℎ

𝑒𝜙(𝑍)+𝑢ℎ

(1 − 𝜙′(𝑍)𝑍)𝜃ℎ𝜃ℎ

𝜂ℎ𝜂ℎ
]

1

1+𝜃ℎ+𝜂ℎ

. (𝐴3.1) 

 

Equation A3.1 can then be substituted into the first-order conditions from the dual cost minimisation 

(equations A2.4 to A2.6) to obtain the moral Hicksian compensated demands for the dirty good and the 

clean good.  

 

𝑧ℎ,𝑐 = [
𝑞𝑧𝑞𝑥

𝜃ℎ
𝑤ℎ𝜂ℎ

𝑒𝜙(𝑍)+𝑢ℎ

(1 − 𝜙′(𝑍)𝑍)𝜃ℎ𝜃ℎ

𝜂ℎ𝜂ℎ
]

1

1+𝜃ℎ+𝜂ℎ

(1 − 𝜙′(𝑍𝑐)𝑍𝑐)

𝑞𝑧

= [
𝑞𝑧

−(𝜃ℎ+𝜂ℎ)
𝑞𝑥

𝜃ℎ
𝑤ℎ𝜂ℎ

𝑒𝜙(𝑍𝑐)+𝑢ℎ

(1 − 𝜙′(𝑍𝑐)𝑍𝑐)−(𝜃ℎ+𝜂ℎ)𝜃ℎ𝜃ℎ

𝜂ℎ𝜂ℎ]

1

1+𝜃ℎ+𝜂ℎ

, (𝐴3.2)

 

 

𝑥ℎ,𝑐 = [
𝑞𝑧𝑞𝑥

𝜃ℎ
𝑤ℎ𝜂ℎ

𝑒𝜙(𝑍)+𝑢ℎ

(1 − 𝜙′(𝑍)𝑍)𝜃ℎ𝜃ℎ

𝜂ℎ𝜂ℎ
]

1

1+𝜃ℎ+𝜂ℎ

𝜃ℎ

𝑞𝑥
= [

𝑞𝑧𝑞𝑥
−(1+𝜂ℎ)

𝑤ℎ𝜂ℎ

𝑒𝜙(𝑍𝑐)+𝑢ℎ

(1 − 𝜙′(𝑍𝑐)𝑍𝑐)𝜃ℎ−(1+𝜂ℎ)
𝜂ℎ𝜂ℎ

]

1

1+𝜃ℎ+𝜂ℎ

. (𝐴3.3) 

 

Appendix A3.2 Proof of Slutsky Substitution Symmetry 

Symmetry of the Slutsky substitution effects requires that, 

  

𝑑𝑍𝑐

𝑑𝑞𝑥
=

𝑑𝑋𝑐

𝑑𝑞𝑧
. (𝐴3.4) 

 
This can be investigated by checking whether the change in aggregate compensated demand for the 

dirty good, 𝑍𝑐 = ∑ 𝑧ℎ,𝑐𝐻
ℎ=1 , when there is a change in the price of the clean good is equal to the change 

in aggregate compensated demand for the clean good, 𝑋𝑐 = ∑ 𝑥ℎ,𝑐𝐻
ℎ=1 , when there is a change in the 

price of the dirty good.  

 

Starting with the dirty good, we can take the individual compensated demands from equation A3.2, take 

logs, differentiate with respect to the price of the clean good, and then sum across all households. 
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𝜕𝑍𝑐

𝜕𝑞𝑥
= ∑

𝜕𝑧ℎ,𝑐

𝜕𝑞𝑥

𝐻

ℎ=1

                                                                                                                                                        

= ∑
𝜃ℎ𝑧ℎ,𝑐

(1 + 𝜃ℎ + 𝜂ℎ)𝑞𝑥   
+

𝜙′(𝑍𝑐)𝑧ℎ,𝑐

1 + 𝜃ℎ + 𝜂ℎ  

𝜕𝑍𝑐

𝜕𝑞𝑥
−

(𝜃ℎ + 𝜂ℎ)(𝜙′′(𝑍𝑐)𝑍𝑐 + 𝜙′(𝑍𝑐))𝑧ℎ,𝑐

(1 + 𝜃ℎ + 𝜂ℎ)(1 − 𝜙′(𝑍𝑐)𝑍𝑐)

𝜕𝑍𝑐

𝜕𝑞𝑥

𝐻

ℎ=1

(𝐴3.5)

 

 

Rearrange to give, 

 

𝜕𝑍𝑐

𝜕𝑞𝑥
=

1
𝑞𝑥

∑
𝜃ℎ𝑧ℎ,𝑐

1 + 𝜃ℎ + 𝜂ℎ
𝐻
ℎ=1

1 − 𝜙′(𝑍𝑐) ∑
𝑧ℎ,𝑐

1 + 𝜃ℎ + 𝜂ℎ
𝐻
ℎ=1 +

𝜙′′(𝑍𝑐)𝑍𝑐 + 𝜙′(𝑍𝑐)
1 − 𝜙′(𝑍𝑐)𝑍𝑐 ∑

(𝜃ℎ + 𝜂ℎ)𝑧ℎ,𝑐

1 + 𝜃ℎ + 𝜂ℎ
𝐻
ℎ=1

(𝐴3.6) 

 

Repeat this process with the aggregate compensated demand for the clean good. 

 

𝜕𝑋𝑐

𝜕𝑞𝑧
= ∑

𝜕𝑥ℎ,𝑐

𝜕𝑞𝑧

𝐻

ℎ=1

                                                                                                                                                        

=
1

𝑞𝑧
∑

𝑥ℎ,𝑐

(1 + 𝜃ℎ + 𝜂ℎ)  

𝐻

ℎ=1

+
𝜕𝑍𝑐

𝜕𝑞𝑧
∑ 𝑥ℎ,𝑐 (

𝜙′(𝑍𝑐)

1 + 𝜃ℎ + 𝜂ℎ  
+

𝜙′′(𝑍𝑐)𝑍𝑐 + 𝜙′(𝑍𝑐)

(1 + 𝜃ℎ + 𝜂ℎ)(1 − 𝜙′(𝑍𝑐)𝑍𝑐)
)

𝐻

ℎ=1

(𝐴3.7)

 

 

To simplify the expression in equation A3.7, we need to separately calculate 
𝜕𝑍𝑐

𝜕𝑞𝑧
 using the compensated 

demand for the dirty good and partially differentiating it with respect to its own price. 

 

𝜕𝑍𝑐

𝜕𝑞𝑧
=

−
1
𝑞𝑧

∑
(𝜃ℎ + 𝜂ℎ)𝑧ℎ,𝑐

1 + 𝜃ℎ + 𝜂ℎ
𝐻
ℎ=1

1 − 𝜙′(𝑍𝑐) ∑
𝑧ℎ,𝑐

1 + 𝜃ℎ + 𝜂ℎ
𝐻
ℎ=1 +

𝜙′′(𝑍𝑐)𝑍𝑐 + 𝜙′(𝑍𝑐)
1 − 𝜙′(𝑍𝑐)𝑍𝑐 ∑

(𝜃ℎ + 𝜂ℎ)𝑧ℎ,𝑐

1 + 𝜃ℎ + 𝜂ℎ
𝐻
ℎ=1

(𝐴3.8) 

 

Substitute the expression in equation A3.8 back into equation A3.7, 

 

𝜕𝑋𝑐

𝜕𝑞𝑧

=
1

𝑞𝑧
∑

𝑥ℎ,𝑐

(1 + 𝜃ℎ + 𝜂ℎ)  

𝐻

ℎ=1

 

−

−
1
𝑞𝑧

∑
(𝜃ℎ + 𝜂ℎ)𝑧ℎ,𝑐

1 + 𝜃ℎ + 𝜂ℎ
𝐻
ℎ=1 (𝜙′(𝑍𝑐)∑

𝑥ℎ,𝑐

1 + 𝜃ℎ + 𝜂ℎ
𝐻
ℎ=1 +

𝜙′′(𝑍𝑐)𝑍𝑐 + 𝜙′(𝑍𝑐)

1 − 𝜙′(𝑍𝑐)𝑍𝑐 ∑
𝑥ℎ,𝑐

1 + 𝜃ℎ + 𝜂ℎ
𝐻
ℎ=1 )

1 − 𝜙′(𝑍𝑐)∑
𝑧ℎ,𝑐

1 + 𝜃ℎ + 𝜂ℎ
𝐻
ℎ=1 +

𝜙′′(𝑍𝑐)𝑍𝑐 + 𝜙′(𝑍𝑐)
1 − 𝜙′(𝑍𝑐)𝑍𝑐 ∑

(𝜃ℎ + 𝜂ℎ)𝑧ℎ,𝑐

1 + 𝜃ℎ + 𝜂ℎ
𝐻
ℎ=1
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𝜕𝑋𝑐

𝜕𝑞𝑧
=

(
1 − 𝜙′(𝑍𝑐)𝑍𝑐

𝑞𝑧
∑

𝑥ℎ,𝑐

1 + 𝜃ℎ + 𝜂ℎ
𝐻
ℎ=1 )

1 − 𝜙′(𝑍𝑐)∑
𝑧ℎ,𝑐

1 + 𝜃ℎ + 𝜂ℎ
𝐻
ℎ=1 +

𝜙′′(𝑍𝑐)𝑍𝑐 + 𝜙′(𝑍𝑐)
1 − 𝜙′(𝑍𝑐)𝑍𝑐 ∑

(𝜃ℎ + 𝜂ℎ)𝑧ℎ,𝑐

1 + 𝜃ℎ + 𝜂ℎ
𝐻
ℎ=1

(𝐴3.9) 

 

To investigate the equivalence of the Slutsky substitution effects, we can use the compensated demand 

functions to obtain 𝑧ℎ,𝑐 in terms of 𝑥ℎ,𝑐, such that 𝑧ℎ,𝑐 =
(1−𝜙′(𝑍𝑐)𝑍𝑐)𝑞𝑥𝑥ℎ,𝑐

𝜃ℎ𝑞𝑧
. Substituting this into 

equation A3.6 gives, 

 

𝜕𝑍𝑐

𝜕𝑞𝑥
=

(1 − 𝜙′(𝑍𝑐)𝑍𝑐)
𝑞𝑧

∑
𝑥ℎ,𝑐

1 + 𝜃ℎ + 𝜂ℎ
𝐻
ℎ=1

1 − 𝜙′(𝑍𝑐) ∑
𝑧ℎ,𝑐

1 + 𝜃ℎ + 𝜂ℎ
𝐻
ℎ=1 +

𝜙′′(𝑍𝑐)𝑍𝑐 + 𝜙′(𝑍𝑐)
1 − 𝜙′(𝑍𝑐)𝑍𝑐 ∑

(𝜃ℎ + 𝜂ℎ)𝑧ℎ,𝑐

1 + 𝜃ℎ + 𝜂ℎ
𝐻
ℎ=1

(𝐴3.10) 

 

The right-hand side of equation A3.10 is equivalent to the right-hand side of equation A3.9, proving 

that in the case of moral households, the Slutsky substitution effects are symmetric (i.e. equation A3.4 

holds). 

 

Appendix A4: Heterogeneous pollution damages 

Households may suffer different marginal damages from pollution. A straightforward way of 

introducing heterogeneity is to introduce an additional household-specific parameter as a multiplier on 

the damage function, this assumes that the shape of the damage function is homogeneous, but the scale 

differs. Solving the model with heterogeneous damages results in agents who suffer the highest 

pollution damages reducing their own dirty good consumption by larger amounts. The overall effect 

will depend upon how pollution damages relate to clean good preference, leisure preference and income 

levels. On the whole, the same aggregate results hold, yet those who suffer more from pollution bear a 

relatively greater burden in terms of correcting pollution externalities.  

 

𝐿ℎ  =  ln(𝛾ℎ𝑧ℎ) + 𝜃ℎ  ln(𝑥ℎ) + 𝜂ℎ  ln(1 − 𝑙ℎ) − 𝜓ℎ  𝜙(𝛾ℎ𝑍) + 𝛼ℎ(𝐼ℎ + 𝑤ℎ𝑙ℎ − 𝑞𝑧𝛾
ℎ𝑧ℎ − 𝑞𝑥𝑥

ℎ)(𝐴4.1) 

 

Derive first order conditions. 

𝜕𝐿ℎ

𝜕𝛾ℎ
|
𝛾ℎ=1

= 1 − 𝜓ℎ𝜙′(𝑍)𝑍 − 𝛼ℎ𝑞𝑧𝑧
ℎ = 0 (𝐴4.2) 

 

𝑧ℎ =
1 − 𝜓ℎ𝜙′(𝑍)𝑍

𝛼ℎ𝑞𝑧
 (𝐴4.3) 
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𝑥ℎ =
𝜃ℎ

𝛼ℎ𝑞𝑥

(𝐴4.4) 

 

(1 − 𝑙ℎ) =
𝜂ℎ

𝛼ℎ𝑤ℎ
(𝐴4.5) 

 

Substitute first order conditions into budget constraint to obtain expression for 𝛼ℎ: 

 

𝛼ℎ =
1 + 𝜃ℎ + 𝜂ℎ − 𝜓ℎ𝜙′(𝑍)𝑍

𝐼ℎ + 𝑤ℎ
(𝐴4.6) 

 

Substitute 𝛼ℎ  into first order conditions to obtain expressions for the Marshallian demands: 

 

𝑧ℎ =
(1 − 𝜓ℎ𝜙′(𝑍)𝑍)(𝐼ℎ + 𝑤ℎ)

(1 + 𝜃ℎ + 𝜂ℎ − 𝜓ℎ𝜙′(𝑍)𝑍)𝑞𝑧
 (𝐴4.7) 

 

𝑥ℎ =
𝜃ℎ(𝐼ℎ + 𝑤ℎ)

(1 + 𝜃ℎ + 𝜂ℎ − 𝜓ℎ𝜙′(𝑍)𝑍)𝑞𝑥

(𝐴4.8) 

 

(1 − 𝑙ℎ) =
𝜂ℎ(𝐼ℎ + 𝑤ℎ)

(1 + 𝜃ℎ + 𝜂ℎ − 𝜓ℎ𝜙′(𝑍)𝑍)𝑤ℎ
(𝐴4.9) 

 

Indirect utility function then becomes: 

 

𝑉ℎ = 𝑙𝑛 (
(1 − 𝜓ℎ𝜙′(𝑍)𝑍)(𝐼ℎ + 𝑤ℎ)

(1 + 𝜃ℎ + 𝜂ℎ − 𝜓ℎ𝜙′(𝑍)𝑍)𝑞𝑧
) + 𝜃ℎ 𝑙𝑛

𝜃ℎ(𝐼ℎ + 𝑤ℎ)

(1 + 𝜃ℎ + 𝜂ℎ − 𝜓ℎ𝜙′(𝑍)𝑍)𝑞𝑥

+𝜂ℎ 𝑙𝑛
𝜂ℎ(𝐼ℎ + 𝑤ℎ)

(1 + 𝜃ℎ + 𝜂ℎ − 𝜓ℎ𝜙′(𝑍)𝑍)𝑤ℎ
− 𝜓ℎ𝜙(𝑍) (𝐴4.10)

 

 

 

Differentiate indirect utility function with respect to price of each goods to see how demand responds 

to a change in the tax rate. 

 

𝑉ℎ = 𝑙𝑛(1 − 𝜓ℎ𝜙′(𝑍)𝑍) + (1 + 𝜃ℎ + 𝜂ℎ) 𝑙𝑛(𝐼ℎ + 𝑤ℎ)

−(1 + 𝜃ℎ + 𝜂ℎ) 𝑙𝑛(1 + 𝜃ℎ + 𝜂ℎ − 𝜓ℎ𝜙′(𝑍)𝑍) − 𝑙𝑛(𝑞𝑧)

− 𝑙𝑛(𝑞𝑥) − 𝑙𝑛(𝑤ℎ) + 𝜃ℎ 𝑙𝑛 𝜃ℎ + 𝜂ℎ 𝑙𝑛 𝜂ℎ − 𝜓ℎ𝜙(𝑍) (𝐴4.11)
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𝜕𝑉ℎ

𝜕𝑞𝑧
= −

1

𝑞𝑧
− [1 +

(𝜃ℎ + 𝜂ℎ)𝜓ℎ(𝜙′′(𝑍)𝑍 + 𝜙′(𝑍))𝑍

(1 + 𝜃ℎ + 𝜂ℎ − 𝜓ℎ𝜙′(𝑍)𝑍)(1 − 𝜓ℎ𝜙′(𝑍)𝑍)
]𝜓ℎ𝜙′(𝑍)

𝜕𝑍

𝜕𝑞𝑧
(𝐴4.12) 

 

𝜕𝑉ℎ

𝜕𝑞𝑧
= −

1

𝑞𝑧
− 𝜓ℎ𝜙′(𝑍)(1 + 𝑚ℎ)

𝜕𝑍

𝜕𝑞𝑧
(𝐴4.13) 

 

Where 𝑚ℎ =
(𝜃ℎ+𝜂ℎ)𝜓ℎ(𝜙′′(𝑍)𝑍+𝜙′(𝑍))𝑍

(1+𝜃ℎ+𝜂ℎ−𝜓ℎ𝜙′(𝑍)𝑍)(1−𝜓ℎ𝜙′(𝑍)𝑍)
. 

 

Meanwhile,  

𝜕𝑉ℎ

𝜕𝑞𝑥
= −

𝜃ℎ

𝑞𝑥

(𝐴4.14) 

 

Within the government problem, we then have equation 1.18 become: 

 

𝜕𝐿

𝜕𝑞𝑧
= ∑

𝜕𝑊

𝜕𝑉ℎ
(−

1

𝑞𝑧
− 𝜓ℎ𝜙′(𝑍)(1 + 𝑚ℎ)

𝜕𝑍

𝜕𝑞𝑧
) + 𝜆 (𝑍 + (𝑞𝑧 − 𝑝𝑧)

𝜕𝑍

𝜕𝑞𝑧
+ (𝑞𝑥 − 𝑝𝑥)

𝜕𝑋

𝜕𝑞𝑧
) = 0

𝐻

ℎ=1

(𝐴4.15) 

 

Leading to 1.21 and 1.22 becoming 

 

∆𝑍𝑐

𝑍
=

1

𝜆
∑

𝜕𝑊

𝜕𝑉ℎ
(

1

𝑞𝑧
+ 𝜓ℎ𝜙′(𝑍)(1 + 𝑚ℎ)

𝜕𝑍

𝜕𝑞𝑧
)
1

𝑍

𝐻

ℎ=1

− 1 + 𝑡𝑧
𝜕𝑍

𝜕𝐼 ̅
+ 𝑡𝑥

𝜕𝑋

𝜕𝐼 ̅
(𝐴4.16) 

 

∆𝑋𝑐

𝑋
=

1

𝜆
∑

𝜕𝑊

𝜕𝑉ℎ

𝜃ℎ

𝑞𝑥

1

𝑋

𝐻

ℎ=1

− 1 + 𝑡𝑧
𝜕𝑍

𝜕𝐼 ̅
+ 𝑡𝑥

𝜕𝑋

𝜕𝐼 ̅
(𝐴4.17) 

 

Thus 1.23 would be: 

 

∆𝑍𝑐

𝑍
−

∆𝑋𝑐

𝑋
=

1

𝜆
(∑ (

1

𝑞𝑧
+ 𝜓ℎ𝜙′(𝑍)(1 + 𝑚ℎ)

𝜕𝑍

𝜕𝑞𝑧
)
1

𝑍

𝐻

ℎ=1

− ∑
𝜃ℎ

𝑞𝑥

1

𝑋

𝐻

ℎ=1

) (𝐴4.18) 

 

 

Homogeneous, non-moral (
𝜕𝑍

𝜕𝑞𝑧
= −

𝑍

𝑞𝑧
,
1

𝑋
=

𝑞𝑥

𝑞𝑧

1

∑ 𝜃ℎ𝑧ℎ𝐻
ℎ=1

, 𝑚ℎ = 0): 

 



 158 

∆𝑍𝑐

𝑍
−

∆𝑋𝑐

𝑋
= −

𝜓𝐻𝜙′(𝑍)

𝜆𝑞𝑧
(𝐴4.19) 

 

Heterogeneous, non-moral 

 

∆𝑍𝑐

𝑍
−

∆𝑋𝑐

𝑋
= −

(∑𝜓ℎ)𝜙′(𝑍)

𝜆𝑞𝑧
+ (

𝐻

𝑍
−

∑ 𝜃ℎ𝐻
ℎ=1

∑ 𝜃ℎ𝑧ℎ𝐻
ℎ=1

) (𝐴4.20) 

 

Homogeneous, moral (
𝜕𝑍

𝜕𝑞𝑧
= −

𝑍

𝑞𝑧

1

1+
∑𝑚ℎ𝑧ℎ

𝑍

,
1

𝑋
=

(1−𝜓ℎ𝜙′(𝑍)𝑍)𝑞𝑥

𝑞𝑧

1

∑𝑧ℎ𝜃ℎ): 

 

∆𝑍𝑐

𝑍
−

∆𝑋𝑐

𝑋
=

1

𝜆𝑞𝑧𝑍
(∑(1 − 𝜓𝜙′(𝑍)𝑍)

𝐻

ℎ=1

− ∑(1 − 𝜓𝜙′(𝑍)𝑍)

𝐻

ℎ=1

) = 0 (𝐴4.21) 

 

Heterogeneous, moral 

 

∆𝑍𝑐

𝑍
−

∆𝑋𝑐

𝑋
=

1

𝜆𝑞𝑧
(∑ (1 − 𝜓ℎ𝜙′(𝑍)𝑍

1 + 𝑚ℎ

1 +
∑𝑚ℎ𝑧ℎ

𝑍

)
1

𝑍

𝐻

ℎ=1

− ∑(1 − 𝜓ℎ𝜙′(𝑍)𝑍)
𝜃ℎ

∑𝑧ℎ𝜃ℎ

𝐻

ℎ=1

) 

 

∆𝑍𝑐

𝑍
−

∆𝑋𝑐

𝑋
=

1

𝜆𝑞𝑧𝑍
((𝐻 −

∑ 𝜃ℎ𝐻
𝐻=1 ∑ 𝑧ℎ𝐻

ℎ=1

∑ 𝜃ℎ𝑧ℎ𝐻
ℎ=1

) − 𝜙′(𝑍)𝑍 (
𝑍 ∑ (𝜓ℎ(1 + 𝑚ℎ))𝐻

ℎ=1

𝑍 + ∑ 𝑚ℎ𝑧ℎ𝐻
ℎ=1

−
∑ 𝑧ℎ𝐻

ℎ=1 ∑ 𝜓ℎ𝜃ℎ𝐻
ℎ=1

∑ 𝑧ℎ𝜃ℎ𝐻
ℎ=1

))(4.22) 

 

 

If the only difference is the damage function (i.e., income, clean good preference and leisure preference 

homogenous): 

 

∆𝑍𝑐

𝑍
−

∆𝑋𝑐

𝑋
=

1

𝜆𝑞𝑧𝑍
(−𝜙′(𝑍)𝑍 (

𝑍 ∑ (𝜓ℎ(1 + 𝑚ℎ))𝐻
ℎ=1

𝑍 + ∑ 𝑚ℎ𝑧ℎ𝐻
ℎ=1

− ∑ 𝜓ℎ

𝐻

ℎ=1

)) (4.23) 

 

Since 𝑚ℎ =
(𝜃ℎ+𝜂ℎ)𝜓ℎ(𝜙′′(𝑍)𝑍+𝜙′(𝑍))𝑍

(1+𝜃ℎ+𝜂ℎ−𝜓ℎ𝜙′(𝑍)𝑍)(1−𝜓ℎ𝜙′(𝑍)𝑍)
 depends on 𝜓ℎ it also varies across households. 

 

𝜕𝑚ℎ

𝜕𝜓ℎ

1

𝑚ℎ
=

1

𝜓ℎ
+

𝜙′(𝑍)𝑍

(1 + 𝜃ℎ + 𝜂ℎ − 𝜓ℎ𝜙′(𝑍)𝑍)
+

𝜙′(𝑍)𝑍

(1 − 𝜓ℎ𝜙′(𝑍)𝑍)
> 0 
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Positive correlation between morality term and damage parameter. Therefore, assuming homogenous 

preferences for clean good and leisure and homogeneous income, will be a negative correlation between 

the morality term and dirty good consumption. 

 

Since 𝑧ℎ =
(1−𝜓ℎ𝜙′(𝑍)𝑍)(𝐼ℎ+𝑤ℎ)

(1+𝜃ℎ+𝜂ℎ−𝜓ℎ𝜙′(𝑍)𝑍)𝑞𝑧
 ,  

 

𝜕𝑧ℎ

𝜕𝜓ℎ
= 𝑧ℎ

−(𝜃ℎ + 𝜂ℎ)𝜙′(𝑍)𝑍

(1 − 𝜓ℎ𝜙′(𝑍)𝑍)(1 + 𝜃ℎ + 𝜂ℎ − 𝜓ℎ𝜙′(𝑍)𝑍)
< 0 

 

As the parameter on the damage function increases, the Kantian consumption of the dirty good 

decreases. Therefore, assuming clean good preference, leisure preference and income constant, there 

would be a negative correlation between ψh and zh. 

 

This implies that in the first term inside the brackets, the numerator will be greater than the denominator, 

thus this term will be greater than the second term inside the bracket. This means overall the term will 

be negative, but it will be smaller than the absolute size homogenous non-moral.  

 

When there is a difference in the damage that consumers experience, each consumer will seek to 

internalise the damages that they personally experience. This means that consumers who experience a 

higher damage, i.e. higher ψh, will consume less of the dirty good, whilst consumers who experience 

lower damages will consume more. Assuming that all other preference and income are homogeneous 

across agents, heterogeneity in damage functions results in a residual externality. When all other 

preferences and income are constant, each agent is weighing the gain from their own dirty good 

consumption (which will be the same for all agents) against the cost of everyone increasing their dirty 

good consumption (which differs according to ψh). Given the concave shape of the utility function, the 

lower consumption of people experiencing higher damages will not compensate for the higher 

consumption of people experiencing lower damages. 

 

If we allow for income to vary across households, the effect of heterogeneous damages depends on the 

correlation between the damage parameter and income. If there is positive correlation between the 

damage parameter and income, then the negative correlation between ψh and zh would reduce, resulting 

in a lower corrective element of the tax. Thus, we support Sandmo’s findings, where higher income 

people suffer from pollution, the corrective element of taxation will be lower. In our case, this is due to 

higher income moral households having greater market power to bring the economy closer to the social 

optimum. 
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Appendix B: Appendix for Chapter 2 

Appendix B1: Pareto Efficient Asset Pricing Rule 

The first order conditions from optimising equation 2.8 with respect to consumption in both periods and 

with respect to the constraint 𝐾 ≥ 0 are, 

 

𝜕ℒ

𝜕𝑐1
ℎ = 𝜇ℎ  𝑢′(𝑐1

ℎ) − 𝜆1 = 0, (𝐵1.1) 

 

𝜕ℒ

𝜕𝑐2
ℎ = 𝜇ℎ𝛽𝑢′(𝑐2

ℎ) − 𝜆2 = 0 , (𝐵1.2) 

 

𝜕ℒ

𝜕𝐾
= −𝜆1 + 𝜆2𝑅 ≤ 0 , (𝐵1.3) 

 

𝜕ℒ

𝜕𝑍
= − ∑ 𝜇ℎ𝛽𝜂ℎ𝑣′(𝑋)𝜓𝐹𝑧

𝐻

ℎ=1

− 𝜆1 + 𝜆2𝐹𝑍 = 0. (𝐵1.4) 

 

If the constraint K ≥ 0 binds, then (B1.3) is negative. Divide equation (B1.4) by 𝜆2 and substitute in 

𝜇ℎ =
𝜆2

𝛽𝑢′(𝑐2
ℎ)

 from equation (B1.2), 

𝐹𝑧(𝑍, 𝐿) −
𝜆1

𝜆2
= ∑ 𝜂ℎ

𝑣′(𝑋)

𝑢′(𝑐2
ℎ)

 𝜓 𝐹𝑧(𝑍, 𝐿)

𝐻

ℎ=1

 . (𝐵1.5) 

 

If the constraint K ≥ 0 is not binding, then  𝜆1 = 𝜆2𝑅 and we have the Pareto optimum asset-pricing 

rule, 

𝐹𝑧(𝑍, 𝐿) − 𝑅 = ∑ 𝜂ℎ
𝑣′(𝑋)

𝑢′(𝑐2
ℎ)

 𝜓 𝐹𝑧(𝑍, 𝐿)

𝐻

ℎ=1

 . (𝐵1.6) 

If the constraint K ≥ 0 binds, use (B1.1) and (B1.2) in (B1.5), and we have the Pareto optimum asset-

pricing rule, 

𝐹𝑧(𝑍, 𝐿) −
𝑢′(𝑐1

ℎ)

𝛽𝑢′(𝑐2
ℎ)

= ∑ 𝜂ℎ
𝑣′(𝑋)

𝑢′(𝑐2
ℎ)

 𝜓 𝐹𝑧(𝑍, 𝐿)

𝐻

ℎ=1

 . (𝐵1.7) 

for any h. 
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Appendix B2: Return on the Dirty Asset 

Given that the dirty firms’ production function has constant returns to scale, the production function 

can be written as, 

 

𝐹(𝑍, 𝐿) = 𝐹𝑍𝑍 + 𝐹𝐿𝐿 . (𝐵2.1) 

 

In equilibrium, the marginal production of labour will be equal to the wage rate, 𝐹𝐿 = 𝑤, such that, 

 

𝐹(𝑍, 𝐿) = 𝐹𝑍𝑍 + 𝑤𝐿. (𝐵2.2) 

  

Equation B2.2 can be substituted into the return on the dirty asset such that, 

 

𝑃 =
𝐹(𝑍, 𝐿) − 𝑤𝐿

𝑍
= 𝐹𝑍(𝑍, 𝐿) (𝐵2.3) 

Appendix B3: Higher 𝜂ℎ implies higher 𝑧ℎ 

 

(𝐹𝑧 − 𝑅)𝑧ℎ = 𝜂ℎ
𝑣(𝑋)

𝑢′(𝑐2
ℎ)

𝐹𝑧𝑍 (𝐵3.1) 

 

Assuming aggregate consumption constant, take the differential of equation B3.1, rearrange to give, 

 

d𝑧ℎ

𝑧ℎ
=

d𝜂ℎ

𝜂ℎ
−

𝑢′′(𝑐2
ℎ)

𝑢′(𝑐2
ℎ)

d𝑐2
ℎ (𝐵3.2) 

 

Take the two budget constraints from equations 2.2 and 2.3, substitute first period budget constraint 

(2.2) into second period budget constraint (2.3) to give, 

 

𝑐2
ℎ = (𝐹𝑧 − 𝑅)𝑧ℎ + 𝑤𝑙2

ℎ + 𝑅𝑙1 − 𝑅𝑐1
ℎ (𝐵3.3) 

 

Take the differential of equation B3.3, 

 

d𝑐2
ℎ = (𝐹𝑧 − 𝑅)d𝑧ℎ − 𝑅 d𝑐1

ℎ (𝐵3.4) 

 

Use the first order condition in equation 2.18, 

 

𝑢′(𝑐1
ℎ) = 𝛽𝑅 𝑢′(𝑐2

ℎ) (𝐵3.5) 

Take the differential of equation B3.5, 

 

𝑢′′(𝑐2
ℎ)d𝑐1

ℎ = 𝛽𝑅𝑢′′(𝑐2
ℎ)d𝑐2

ℎ (𝐵3.6) 

 

Divide equation B3.6 by B3.5, 

 

𝑢′′(𝑐1
ℎ)

𝑢′(𝑐1
ℎ)

d𝑐1
ℎ =

𝑢′′(𝑐2
ℎ)

𝑢′(𝑐2
ℎ)

 d𝑐2
ℎ 
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𝐴1
ℎ  d𝑐1

ℎ = 𝐴2
ℎ  d𝑐2

ℎ (𝐵3.7) 

 

Where 𝐴𝑡
ℎ = −

𝑢′′(𝑐𝑡
ℎ)

𝑢′(𝑐𝑡
ℎ)

.  

 

Substitute equation B3.7 into equation B3.4, 

 

d𝑐2
ℎ = (𝐹𝑧 − 𝑅)d𝑧ℎ − 𝑅

𝐴2
ℎ

𝐴1
ℎ

d𝑐2
ℎ  

 

dc2
h = (

𝐴1
ℎ

𝐴1
ℎ + 𝑅𝐴2

ℎ
) (𝐹𝑧 − 𝑅)d𝑧ℎ (𝐵3.8) 

 

Substitute equation B3.8 into equation B3.2,  
 

d𝑧ℎ

𝑧ℎ
=

d𝜂ℎ

𝜂ℎ
+ (

𝐴1
ℎ

𝐴1
ℎ + 𝑅𝐴2

ℎ
)𝐴2

ℎ(𝐹𝑧 − 𝑅)d𝑧ℎ 

 

 

d𝑧ℎ

𝑧ℎ
(1 −

𝐴1
ℎ

𝐴1
ℎ + 𝑅𝐴2

ℎ
𝐴2

ℎ(𝐹𝑧 − 𝑅)𝑧ℎ) =
d𝜂ℎ

𝜂ℎ
(𝐵3.9) 

 

Firstly, 
𝐴1

ℎ

𝐴1
ℎ+𝑅𝐴2

ℎ < 1 since 𝑅 > 0 and 𝐴𝑡
ℎ > 0 (due to utility being increasing and concave in 

consumption). Secondly, a sufficient condition for 𝐴2
ℎ(𝐹𝑧 − 𝑅)𝑧ℎ ≤ 1 is that −

𝑢′′(𝑐2
ℎ)

𝑢′(𝑐2
ℎ)

𝑐2
ℎ ≤ 1. This can 

be seen by multiplying and dividing 𝐴2
ℎ(𝐹𝑧 − 𝑅)𝑧ℎ by 𝑐2

ℎ such that, 

 

𝐴2
ℎ(𝐹𝑧 − 𝑅)𝑧ℎ = 𝐴2

ℎ𝑐2
ℎ

𝐹𝑧 − 𝑅

(𝐹𝑧 − 𝑅)𝑧ℎ + 𝑤ℎ𝑙2 + 𝑅𝑘
 

 

Here, we can see that 
𝐹𝑧−𝑅

(𝐹𝑧−𝑅)𝑧ℎ+𝑤ℎ𝑙2+𝑅𝑘
< 1. If 𝐴2

ℎ𝑐2
ℎ ≤ 1, i.e., −

𝑢′′(𝑐2
ℎ)

𝑢′(𝑐2
ℎ)

𝑐2
ℎ ≤ 1, this is sufficient for 

𝐴2
ℎ(𝐹𝑧 − 𝑅)𝑧ℎ < 1 which, together with 

𝐴1
ℎ

𝐴1
ℎ+𝑅𝐴2

ℎ < 1 , is sufficient for the term within the bracket of 

equation B3.9 to be positive.  

 

Therefore, given the sufficient condition that the Arrow-Pratt measure of relative risk-aversion is no 

greater than 1, a higher 𝜂ℎ will correspond to a higher 𝑧ℎ. 

 

Appendix B4: Deriving how Aggregate Dirty Investment changes with the Proportion of Non-

Kantians 

B4.1 Inclusive Kantians 

Starting from the pollution premium in the inclusive partially Kantian economy (equation 2.18), 

suppose that all Kantian agents are identical, 
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𝐹𝑧 − 𝑅

𝐹𝑧
=

𝑍

𝑍 − 𝑍𝑛
(1 − 𝛿)𝑁𝜂

𝑣′(𝑋)

𝑢′(𝑐2
ℎ)

𝜓, (𝐵4.1) 

 

Where 𝛿 =
𝑁𝑛

𝑁
 represents the proportion of non-Kantians in the economy. We can then begin to 

investigate how equilibrium aggregate dirty investment changes when the proportion of non-Kantians 

changes by taking the full differential of equation B4.1, where 𝜂, 𝜓, 𝑣′(𝑋) and 𝑁 are fixed. 

 

𝑅𝐹𝑧𝑧

𝐹𝑧𝐹𝑧
 𝑑𝑍 = − [

𝑍

𝑍𝑘
𝑁𝜂

𝑣′(𝑋)

𝑢(𝑐2
𝑘𝑝)

𝜓] 𝑑𝛿 + [−
𝑍

𝑍𝑘
(1 − 𝛿)𝑁 𝜂

𝑣′(𝑋)

𝑢′(𝑐2
ℎ)

𝜓
𝑢′′(𝑐2

𝑘𝑝)

𝑢′(𝑐2
𝑘𝑝)

] 𝑑𝑐2
ℎ

−[
𝑍𝑛

𝑍𝑘2
(1 − 𝛿)𝑁𝜂

𝑣′(𝑋)

𝑢′(𝑐2
𝑘𝑝

)
𝜓] 𝑑𝑍 + [

𝑍

𝑍𝑘2
(1 − 𝛿)𝑁𝜂

𝑣′(𝑋)

𝑢′(𝑐2
𝑘𝑝

)
𝜓]𝑑𝑍𝑛 (𝐵4.2)

 

 

To obtain 
𝜕𝑍

𝜕𝛿
, we first need to investigate how 𝑍𝑛 and 𝑐2

ℎ change with regards to changes in aggregate 

dirty investment and the proportion of non-Kantians.  

 

To investigate 𝑑𝑍𝑛 we can start with the expression for non-Kantian investment. We know that non-

Kantians invest solely in the dirty firm and that their investment level depends upon the return from this 

investment and on how much they value consumption in period two versus period one. The inverse of 

their first order condition, 𝑢′(𝑐1
ℎ) = 𝛽𝐹𝑧𝑢

′(𝑐2
ℎ), is 𝑐1

ℎ = 𝑐2
ℎ  𝑢′−1(𝛽𝐹𝑧). Substituting the non-Kantian’s 

budget constraint, which excludes clean investments gives an expression for non-Kantian dirty 

investment. 

 

𝑧𝑛 =
𝑙1 − 𝑤𝑙2𝑢

′−1(𝛽𝐹𝑧)

1 + 𝐹𝑧  𝑢′−1(𝛽𝐹𝑧)
(𝐵4.3) 

 

Assuming that non-Kantian agents are identical, aggregate non-Kantian investment would be, 

 

𝑍𝑛 = 𝑁𝑛 (
𝑙1 − 𝑤𝑙2𝑢

′−1(𝛽𝐹𝑧)

1 + 𝐹𝑧  𝑢′−1(𝛽𝐹𝑧)
) (𝐵4.4) 

 

Multiply and divide by N, then substitute 𝑤𝐿 = 𝑤𝑁𝑙2 = 𝐹 − 𝐹𝑧𝑍 from production equilibrium in 

equation B2.2 to give, 

 

𝑍𝑛 =
𝑁𝑛

𝑁
(
𝑁𝑙1 − 𝑢′−1(𝛽𝐹𝑧)(𝐹 − 𝐹𝑧𝑍)

1 + 𝐹𝑧  𝑢′−1(𝛽𝐹𝑧)
) (𝐵4.5) 
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Take the total differential of equation B4.5, using the fact that that partial differential of the inverse of 

marginal utility 𝑢′−1(𝛽𝐹𝑧)  with respect of 𝐹𝑧 is equal to 
𝜕𝑢′−1(𝛽𝐹𝑍)

𝜕𝐹𝑧
=

𝛽

𝑢′′(𝑐2
𝑛)

, and with respect to 𝑍 is 

equal to 
𝜕𝑢′−1(𝛽𝐹𝑍)

𝜕𝑍
=

𝛽𝐹𝑧𝑧

𝑢′′(𝑐2
𝑛)

.  

 

𝑑𝑍𝑛 =
𝑍𝑛

𝛿
 𝑑𝛿 +                                                                                                                                                              

(

𝑢′−1(𝛽𝐹𝑧)𝐹𝑧𝑧𝑍 − (𝐹 − 𝐹𝑧𝑍)
𝛽𝐹𝑧𝑧

𝑢′′(𝑐2
𝑛)

1 + 𝑢′−1(𝛽𝐹𝑧)𝐹𝑧
−

(𝑁𝑙1 − 𝑢′−1(𝛽𝐹𝑧)(𝐹 − 𝐹𝑧𝑍)) (𝐹𝑧𝑧𝑢
′−1(𝛽𝐹𝑧) +

𝐹𝑧𝛽𝐹𝑧𝑧

𝑢′′(𝑐2
𝑛)

)

(1 + 𝑢′−1(𝛽𝐹𝑧)𝐹𝑧)2 )𝑑𝑍(𝐵4.6)

 

 

Dividing equation B4.6 by 𝑍𝑛 and simplifying gives, 

 

𝑑𝑍𝑛 = 𝑍𝑛 [
1

𝛿
 𝑑𝛿 + 𝐹𝑧𝑧 (

𝑢′−1(𝛽𝐹𝑧)[𝑍 − 𝑁𝑙1 + 𝐹𝑢′−1(𝛽𝐹𝑧)] +
𝛽

𝑢′′(𝑐2
𝑛)

[−𝑁𝑙1𝐹𝑧 − 𝑤𝑁𝑙2]

𝛿(𝑁𝑙1 − 𝑢′−1(𝛽𝐹𝑧)(𝐹 − 𝐹𝑧𝑍))(1 + 𝑢′−1(𝛽𝐹𝑧)𝐹𝑧)
)𝑑𝑍] (𝐵4.7) 

 

The first term in the numerator cancels out in equilibrium since, 𝑢′(𝑙1 − 𝑧) = 𝛽𝐹𝑧𝑢′(𝑤𝑙2 + 𝐹𝑧𝑍) 

implies that 𝑁𝑙1 − 𝑍 = 𝑢′−1(𝛽𝐹𝑧)(𝑁𝑤𝑙2 + 𝐹𝑧𝑍) = 𝑢′−1(𝛽𝐹𝑧)𝐹, such that 𝑍 − 𝑁𝑙1 + 𝐹𝑢′−1(𝛽𝐹𝑧) =

0. 

 

𝑑𝑍𝑛 = 𝑍𝑛 [
1

𝛿
 𝑑𝛿 + 𝐹𝑧𝑧 (

𝛽
𝑢′′(𝑐2

𝑛)
[−𝑁𝑙1𝐹𝑧 − 𝑤𝑁𝑙2]

𝛿(𝑁𝑙1 − 𝑢′−1(𝛽𝐹𝑧)(𝐹 − 𝐹𝑧𝑍))(1 + 𝑢′−1(𝛽𝐹𝑧)𝐹𝑧)
)𝑑𝑍] . (𝐵4.8) 

 

Let 

 

𝑑𝑍𝑛 = 𝑍𝑛 [
1

𝛿
 𝑑𝛿 + 𝐹𝑧𝑧𝐴𝑑𝑍] , (𝐵4.9) 

 

where 𝐴 =

𝛽

𝑢′′(𝑐2)
[−𝑁𝑙1𝐹𝑧−𝑤𝑁𝑙2]

𝛿(𝑁𝑙1−𝑢′−1(𝛽𝐹𝑧)𝑤𝑁𝑙2)(1+𝑢′−1(𝛽𝐹𝑧)𝐹𝑧)
> 01. This implies that as the proportion of non-Kantians 

in the economy rises, the aggregate investment of non-Kantians rises due to a higher number of non-

Kantians investing, however, this aggregate investment falls with overall investment in the dirty firm, 

 
1 The numerator will be positive due to 𝑢′′(𝑐2) < 0, 𝑁𝑙1𝐹𝑧 > 0,𝑤𝑁𝑙2 > 0. The first term in the denominator 

will be positive, since, given that investors find it optimal to invest in period 1, then 𝑢(𝑙1) < 𝛽𝐹𝑧  𝑢(𝑤𝑙2), 
therefore 𝑁𝑙1 > 𝑢′−1(𝛽𝐹𝑧)𝑤𝑁𝑙2 = 𝑢′−1(𝛽𝐹𝑧)(𝐹 − 𝐹𝑧𝑍). The second term in the denominator is clearly positive 

due to 𝑢′−1(𝛽𝐹𝑧) > 0, 𝐹𝑍 > 0. 
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implying that each individual non-Kantian household is investing less due to the declining marginal 

productivity of capital lowering returns. 

 

To investigate 𝑑𝑐2
𝑘𝑝

 we need to look at how Kantian consumption changes with respect to changes in 

the proportion of non-Kantians and the subsequent changes in dirty investment, we can take the total 

differential of Kantian consumption.  

 

Starting from the Kantian first order condition for clean investment 𝑢′(𝑐1) = 𝛽𝑅𝑢′(𝑐2), we can take 

the inverse, 𝑐1 = 𝑐2 𝑢
′−1(𝛽𝑅). Substituting in the Kantian budget constraints (equations 2.2 and 2.3) 

we have, 

 

𝑙1 − 𝑤𝑙2𝑢
′−1(𝛽𝑅) = 𝑧ℎ (1 + 𝐹𝑧𝑢

′−1(𝛽𝑅)) + 𝑘 (1 + 𝑅𝑢′−1(𝛽𝑅)) , (𝐵4.10) 

 

From which we can derive an expression for Kantian clean investment in terms of dirty investment, 

investment returns, labour and utility. 

 

𝑘 =
𝑙1 − 𝑧ℎ − 𝑤𝑙2𝑢

′−1(𝛽𝑅) − 𝑧ℎ𝐹𝑧𝑢
′−1(𝛽𝑅)

1 + 𝑅𝑢′−1(𝛽𝑅)
(𝐵4.11) 

 

To obtain an expression for period 2 consumption in terms of dirty investment, investment returns, and 

fixed parameters, equation B4.11 can be substituted into the Kantian second period budget constraint. 

 

𝑐2 = 𝑤𝑙2 + 𝐹𝑧𝑧
ℎ + 𝑅 (

𝑙1 − 𝑧ℎ − 𝑤𝑙2𝑢
′−1(𝛽𝑅) − 𝑧ℎ𝐹𝑧𝑢

′−1(𝛽𝑅)

1 + 𝑅𝑢′−1(𝛽𝑅)
) (𝐵4.12) 

 

Equation B4.12 can be simplified to, 

 

𝑐2 =
𝛽

𝑁
(𝑤𝑁𝑙2 + 𝑅𝑁𝑙1 +

(𝐹𝑍 − 𝑅)(𝑍 − 𝑍𝑛)

1 − 𝛿
) 

 

Where 𝛽 =
1

1+𝑅𝑢′−1
(𝛽𝑅)

 is a constant. 

Substitute in 𝑤𝐿 = 𝑤𝑁𝑙2 = 𝐹 − 𝐹𝑧𝑍 then add and subtract (𝐹𝑧 − 𝑅)𝑍, 

 

𝑐2 =
𝛽

𝑁
(𝐹 − 𝐹𝑧𝑍 + (𝐹𝑧 − 𝑅)𝑍 + 𝑅𝑁𝑙1 − (𝐹𝑧 − 𝑅)𝑍 +

(𝐹𝑍 − 𝑅)(𝑍 − 𝑍𝑛)

1 − 𝛿
) 
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𝑐2
𝑘𝑝 =

𝛽

𝑁
[𝐹 − 𝑅𝑍 + 𝑅𝑁𝑙1 − (𝐹𝑧 − 𝑅)𝑍 +

(𝐹𝑧 − 𝑅)(𝑍 − 𝑍𝑛)

(1 − 𝛿)
] (𝐵4.13) 

 

Take the total differential, 

 

𝑑𝑐2
𝑘𝑝 =

𝛽

𝑁
[{−𝐹𝑧𝑧𝑍 + (

𝐹𝑧 − 𝑅 + 𝐹𝑧𝑧(𝑍 − 𝑍𝑛)

(1 − 𝛿)
)}𝑑𝑍 − {

(𝐹𝑧 − 𝑅)

(1 − 𝛿)
} 𝑑𝑍𝑛 + {

(𝐹𝑧 − 𝑅)(𝑍 − 𝑍𝑛)

(1 − 𝛿)2 }𝑑𝛿] (𝐵4.14) 

 

Substitute in equation B4.9 for 𝑑𝑍𝑛, 

 

𝑑𝑐2
𝑘𝑝 =

𝛽

𝑁

[
 
 
 
 {−𝐹𝑧𝑧𝑍 + (

𝐹𝑧 − 𝑅 + 𝐹𝑧𝑧(𝑍 − 𝑍𝑛)

(1 − 𝛿)
)}𝑑𝑍 − {

(𝐹𝑧 − 𝑅)

(1 − 𝛿)
}𝑍𝑛 [

1

𝛿
 𝑑𝛿 + 𝐹𝑧𝑧𝐴𝑑𝑍]

+{
(𝐹𝑧 − 𝑅)(𝑍 − 𝑍𝑛)

(1 − 𝛿)2 }𝑑𝛿
]
 
 
 
 

(𝐵4.15) 

 

𝑑𝑐2
𝑘𝑝

=
𝛽

𝑁

[
 
 
 
 (𝐹𝑧𝑧 (−𝑍 +

(𝑍 − 𝑍𝑛)

1 − 𝛿
) +

𝐹𝑧 − 𝑅

(1 − 𝛿)
(1 − 𝑍𝑛  𝐹𝑧𝑧𝐴))𝑑𝑍

+
(𝐹𝑧 − 𝑅)

(1 − 𝛿)
(
(𝑍 − 𝑍𝑛)

(1 − 𝛿)
−

𝑍𝑛

𝛿
)𝑑𝛿

]
 
 
 
 

 

 

Rearranging this gives, 

 

𝑑𝑐2
𝑘𝑝 =

𝛽

𝑁
[(𝐹𝑧𝑧 (−𝑍 +

𝑍𝑘𝑁

𝑁𝑘
) +

𝐹𝑧 − 𝑅

(1 − 𝛿)
(1 − 𝑍𝑛  𝐹𝑧𝑧𝐴))𝑑𝑍 +

(𝐹𝑧 − 𝑅)

(1 − 𝛿)
(
𝑍𝑘𝑁

𝑁𝑘
−

𝑍𝑛𝑁

𝑁𝑛 )𝑑𝛿] (𝐵4.16) 

 

𝑑𝑐2
𝑘𝑝

=
𝛽

𝑁
[𝐵𝑑𝑍 + 𝐷𝑑𝛿] (𝐵4.17) 

 

Where 𝐵 = (𝐹𝑧𝑧 (−𝑍 +
𝑍𝑘𝑁

𝑁𝑘 ) +
𝐹𝑧−𝑅

(1−𝛿)
(1 − 𝑍𝑛  𝐹𝑧𝑧𝐴)) > 02, and 𝐷 =

(𝐹𝑧−𝑅)

(1−𝛿)
(
𝑍𝑘𝑁

𝑁𝑘 −
𝑍𝑛𝑁

𝑁𝑛 ) < 03. 

 

Substituting equation B4.9 for 𝑑𝑍𝑛 and equation B4.17 for 𝑑𝑐2
ℎ  into the total differential of the partially 

Kantian pollution premium (equation B4.2) gives: 

 
2 Since 𝐹𝑧𝑧 < 0 and 

𝑍𝑘

𝑁𝑘 <
𝑍

𝑁
 in the presence of non-Kantians, the first term will be positive. Further, 

(𝐹𝑧 − 𝑅) > 0, 0 < 𝛿 < 1, and 𝐴 > 0 imply that the second term is also positive. 

3 In the presence of Kantians, (𝐹𝑍 − 𝑅) > 0 and 0 < 𝛿 < 1 make the first term positive, and 
𝑍𝑘

𝑁𝑘 <
𝑍𝑛

𝑁𝑛 implies that the term this is multiplied with is negative. 
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[
𝑅𝐹𝑧𝑧

𝐹𝑧𝐹𝑧
+

𝑍

𝑍𝑘
(1 − 𝛿)𝑁 𝜂

𝑣′(𝑋)

𝑢′(𝑐2
ℎ)

𝜓 [
𝑢′′(𝑐2

𝑘𝑝)

𝑢′(𝑐2
𝑘𝑝)

𝛽

𝑁
 𝐵 +

𝑍𝑛

𝑍𝑍𝑘
−

𝑍𝑛

𝑍𝑘
𝐹𝑧𝑧𝐴]]  𝑑𝑍

= [
𝑍

𝑍𝑘
𝑁𝜂

𝑣′(𝑋)

𝑢(𝑐2
𝑘𝑝)

𝜓 [−1 − (1 − 𝛿)
𝑢′′(𝑐2

𝑘𝑝)

𝑢′(𝑐2
𝑘𝑝)

𝛽

𝑁
𝐷 +

𝑍𝑛

𝑍𝑘

(1 − 𝛿)

𝛿
𝑁]] 𝑑𝛿

(𝐵4.18)

 

 

𝑑𝑍

𝑑𝛿
=

[
𝑍
𝑍𝑘 𝑁𝜂

𝑣′(𝑋)

𝑢(𝑐2
𝑘𝑝)

𝜓 [−1 − (1 − 𝛿)
𝑢′′(𝑐2

𝑘𝑝)

𝑢′(𝑐2
𝑘𝑝)

𝛽
𝑁 𝐷 +

𝑍𝑛

𝑍𝑘

(1 − 𝛿)
𝛿

𝑁]]

[
𝑅𝐹𝑧𝑧
𝐹𝑧𝐹𝑧

+
𝑍
𝑍𝑘 (1 − 𝛿)𝑁 𝜂

𝑣′(𝑋)

𝑢′(𝑐2
ℎ)

𝜓 [
𝑢′′(𝑐2

𝑘𝑝
)

𝑢′(𝑐2
𝑘𝑝)

𝛽
𝑁  𝐵 +

𝑍𝑛

𝑍𝑍𝑘 −
𝑍𝑛

𝑍𝑘 𝐹𝑧𝑧𝐴]]

(𝐵4.19) 

 

Overall, the sign of equation B4.19 will depend upon the functional forms of the utility and production 

functions and the values of the parameters within the equations. There are multiple effects occurring 

simultaneously when the proportion of non-Kantians increases in the economy, which of these effects 

dominates cannot be solved analytically. 

 

B4.2 Exclusive Kantians 

Start from the pollution premium in the exclusive Kantian economy in equation 2.23. Assuming that 

Kantian agents are identical we can simplify this to, 

 

(𝐹𝑍 − 𝑅)

𝐹𝑧
=

(𝑁 − 𝑁𝑛)𝜂𝜓𝑣

𝑢(𝑐2
ℎ)

. (𝐵4.20) 

 

Take the total differential of equation B4.20. 

 

𝐹𝑧𝑧𝑅

𝐹𝑍𝐹𝑧
 𝑑𝑍 = −

𝑁𝜂𝜓𝑣

𝑢′(𝑐2
ℎ)

 𝑑𝛿 −
(𝑁 − 𝑁𝑛)𝜂𝜓𝑣

𝑢′(𝑐2
ℎ)

𝑢′′(𝑐2
ℎ)

𝑢′(𝑐2
ℎ)

 𝑑𝑐2
ℎ  (𝐵4.21) 

 

Substitute equation B.C17 in for 𝑑𝑐2
ℎ. 

 

𝐹𝑧𝑧𝑅

𝐹𝑍𝐹𝑧
 𝑑𝑍 = −

𝑁𝜂𝜓𝑣

𝑢′(𝑐2
ℎ)

 𝑑𝛿 −
(𝑁 − 𝑁𝑛)𝜂𝜓𝑣

𝑢′(𝑐2
ℎ)

𝑢′′(𝑐2
ℎ)

𝑢′(𝑐2
ℎ)

 [
𝛽

𝑁
[𝐵𝑑𝑍 + 𝐷𝑑𝛿]] (𝐵4.22) 
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Re-arrange, 

 

[
𝐹𝑧𝑧𝑅

𝐹𝑍𝐹𝑧
+

(𝑁 − 𝑁𝑛)𝜂𝜓𝑣

𝑢′(𝑐2
ℎ)

𝑢′′(𝑐2
ℎ)

𝑢′(𝑐2
ℎ)

 
𝛽

𝑁
 𝐵] 𝑑𝑍 = [−

𝑁𝜂𝜓𝑣

𝑢′(𝑐2
ℎ)

−
(𝑁 − 𝑁𝑛)𝜂𝜓𝑣

𝑢′(𝑐2
ℎ)

𝑢′′(𝑐2
ℎ)

𝑢′(𝑐2
ℎ)

𝛽

𝑁
𝐷] 𝑑𝛿 

 

𝑑𝑍

𝑑𝛿
=

[−
𝑁𝜂𝜓𝑣

𝑢′(𝑐2
ℎ)

−
(𝑁 − 𝑁𝑛)𝜂𝜓𝑣

𝑢′(𝑐2
ℎ)

𝑢′′(𝑐2
ℎ)

𝑢′(𝑐2
ℎ)

𝛽
𝑁 𝐷]

[
𝐹𝑧𝑧𝑅
𝐹𝑍𝐹𝑧

+
(𝑁 − 𝑁𝑛)𝜂𝜓𝑣

𝑢′(𝑐2
ℎ)

𝑢′′(𝑐2
ℎ)

𝑢′(𝑐2
ℎ)

 
𝛽
𝑁  𝐵]

> 0 (𝐵4.23) 

 

𝑑𝑍

𝑑𝛿
=

[
𝑍
𝑍𝑘

𝑁𝜂𝜓𝑣

𝑢′(𝑐2
ℎ)

[−1 − (1 − 𝛿)
𝑢′′(𝑐2

𝑘𝑝
)

𝑢′(𝑐2
𝑘𝑝)

𝛽
𝑁 𝐷 +

𝑍𝑛

𝑍𝑘

(1 − 𝛿)
𝛿

𝑁]]

[
𝑅𝐹𝑧𝑧
𝐹𝑧𝐹𝑧

+
𝑍
𝑍𝑘 (1 − 𝛿)𝑁 𝜂

𝑣′(𝑋)

𝑢′(𝑐2
ℎ)

𝜓 [
𝑢′′(𝑐2

𝑘𝑝)

𝑢′(𝑐2
𝑘𝑝

)

𝛽
𝑁  𝐵 +

𝑍𝑛

𝑍𝑍𝑘 −
𝑍𝑛

𝑍𝑘 𝐹𝑧𝑧𝐴]]

 

 

We can see that the numerator is negative, since the first term is composed of positive element and is 

subtracted, whilst the second term has two negative elements, 𝑢′′(𝑐2
ℎ) < 0 and 𝐷 < 0, which multiply 

to become positive, and this term is also subtracted. The numerator is also negative, since the first term 

has one negative element, 𝐹𝑧𝑧 < 0, and the second term has one negative element, 𝑢′′(𝑐2
ℎ) < 0. Overall, 

this makes the differential in equation 2.23 positive, demonstrating that in an economy with exclusive 

Kantians, the amount of dirty investment will rise with the proportion of non-Kantians. 

 

Appendix B5: Simulation equations 

To simulate the inclusive Kantian equilibrium, we use the analytical equilibrium from the model above 

and solve it for specific values of the constant parameters. We vary the proportion of non-Kantian agents 

in the economy to investigate how Kantian and non-Kantian portfolios change with regards to the 

proportion of non-Kantians.  

 

From the Kantian’s first order condition for clean investment, equation 2.16, we know that 

 

𝑢′(𝑐1) = 𝛽𝑅 𝑢′(𝑐2)  

 

Assuming logarithmic utility functions we can substitute in 𝑢′(𝑐) =
1

𝑐
 and the two budget constraints in 

equations 2.2 and 2.3 to give, 
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𝑤𝑙2 + 𝑅𝑘 + 𝐹𝑍𝑧𝑘 = 𝛽𝑅(𝑙1 − 𝑘 − 𝑧𝑘)  

 

This can be rearranged to give an equation for Kantian clean investment in terms of returns on 

investment, dirty investment, and labour, 

 

𝑘 =
1

𝑅
 (

𝛽

1 + 𝛽
 𝑅𝑙1 −

(𝑤𝑙2 + 𝑧𝑘(𝛽𝑅 + 𝐹𝑧))

1 + 𝛽
) (𝐵5.1) 

 

We can then take the equilibrium condition for Kantians from equation 2.17, where we assume that 

𝑣(𝑋) is linear such that 𝑣′(𝑋) = 𝑣, and 
1

𝑢′(𝑐2)
= 𝑐2, 

 

(𝐹𝑧 − 𝑅)𝑧𝑘 = 𝜓𝑣𝜂𝑐2𝐹𝑧𝑍.  

 

substitute in 𝑐2 =
𝛽

1+𝛽
((𝐹𝑍 − 𝑅)𝑧𝑘 + 𝑤𝑙2 + 𝑅𝑙1) from the budget constraint in equation 2.3, 

 

(𝐹𝑧 − 𝑅)𝑧𝑘 = 𝜓𝑣𝜂𝐹𝑧𝑍
𝛽

1 + 𝛽
((𝐹𝑍 − 𝑅)𝑧𝑘 + 𝑤𝑙2 + 𝑅𝑙1) .  

 

Simplify this to, 

 

(𝐹𝑧 − 𝑅)𝑧𝑘 = 𝜃
𝐹𝑧𝑍

𝑁
 ((𝐹𝑍 − 𝑅)𝑧𝑘 + 𝑤𝑙2 + 𝑅𝑙1) (𝐵5.2) 

 

Where 𝜃 = 𝜓𝑣𝜂𝑁
𝛽

1+𝛽
. Equation B5.2 can be rearranged to give an expression for Kantian dirty 

investment in terms of returns on investment, aggregate dirty investment and labour. 

 

𝑧𝑘 =
𝜃

𝐹𝑍𝑍
𝑁

1 − 𝜃
𝐹𝑍𝑍
𝑁

𝐹 − 𝐹𝑍𝑍
𝑁 + 𝑅𝑙1

𝐹𝑧 − 𝑅
(𝐵5.3) 

 

Where 𝑤𝑙2 = 𝐹𝑧
𝑍

𝑁
, which arises from the production function equilibrium in equation B.B2, whereby 

𝑤𝑙2 = 𝐹 − 𝐹𝑧𝑍, which in the case of a Cobb-Douglas production with 𝛼 =
1

2
, 𝐹(𝑍, 𝐿) = 𝑍

1

2𝐿
1

2, would 

give 𝑤𝑙2 = 𝐹𝑧
𝑍

𝑁
. 
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Finally, an expression for non-Kantian dirty investment can be derived from the non-Kantian’s first 

order condition for dirty investment in the scenario where they only invest in the dirty firm. 

 

𝑢′(𝑐1) = 𝛽𝐹𝑧  𝑢
′(𝑐2)  

 

Substituting in for logarithmic utility and for the Kantian’s budget constraints of 𝑐1 = 𝑙1 − 𝑧𝑛  and                  

𝑐2 = 𝑤𝑙2 + 𝐹𝑧𝑧𝑛, 

 

𝑤𝑙2 + 𝐹𝑧𝑧
𝑛 = 𝛽𝐹𝑧(𝑙1 − 𝑧𝑛)  

 

𝑧𝑛 =
𝛽

1 + 𝛽
 𝑙1 −

1

1 + 𝛽

𝑤𝑙2
𝐹𝑧

 

 

Substituting in 𝑤𝑙2 =
𝐹−𝐹𝑧𝑍

𝑁
,  

 

𝑧𝑛 =
𝛽

1 + 𝛽
 𝑙1 −

1

1 + 𝛽

𝐹 − 𝐹𝑧𝑍

𝐹𝑧𝑁
 (𝐵5.4) 

 

Overall, equations B5.1, B5.3 and B5.4 give the expressions for the portfolios of the Kantian and the 

non-Kantian agents.  

 

Average dirty investment can be calculated by substituting B5.3 and B5.4 into the equation for average 

dirty investment in the partially Kantian economy, 
𝑍

𝑁
=

𝑁𝑘

𝑁
 𝑧𝑘 +

𝑁𝑛

𝑁
 𝑧𝑛 

 

 
𝑍

𝑁
=

𝑁𝑘

𝑁
 (

𝜃
𝐹𝑍𝑍
𝑁

1 − 𝜃
𝐹𝑍𝑍
𝑁

𝐹𝑍𝑍
𝑁

+ 𝑅𝑙1

𝐹𝑧 − 𝑅
) +

𝑁𝑛

𝑁
 (

𝛽

1 + 𝛽
 𝑙1 −

1

1 + 𝛽

𝑍

𝑁
) 

 

 
𝑍

𝑁
(1 +

𝑁𝑛

𝑁

1

1 + 𝛽
) = (1 −

𝑁𝑛

𝑁
) (

𝜃
𝐹𝑍𝑍
𝑁

1 − 𝜃
𝐹𝑍𝑍
𝑁

𝐹𝑍𝑍
𝑁 + 𝑅𝑙1

𝐹𝑧 − 𝑅
) +

𝑁𝑛

𝑁
 

𝛽

1 + 𝛽
 𝑙1 

 

𝑍

𝑁
(1 +

𝑁𝑛

𝑁

1

1 + 𝛽
) = (1 −

𝑁𝑛

𝑁
) 

(

 
 

1
2𝜃 (

𝑍
𝑁)

1
2

1 −
1
2

𝜃 (
𝑍
𝑁

)

1
2

1
2(

𝑍
𝑁)

1
2
+ 𝑅𝑙1

(
𝑍
𝑁

)
−

1
2
− 𝑅

)

 
 

+
𝑁𝑛

𝑁
 

𝛽

1 + 𝛽
 𝑙1 (𝐵5.5) 
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To investigate the case of exclusive Kantianism, we would use the same equations for the Kantian clean 

investment and the non-Kantian dirty investment, however, we would derive a different equation for 

the Kantian dirty investment based on exclusive Kantian optimisation. Instead for drawing on equation 

2.17, where the Kantians assume that all agents, Kantian and non-Kantian, will deviate the same 

proportion within their moral optimisation, we draw on equation 2.22 where they assume that only 

fellow Kantian agents will deviate. 

 

𝑧𝑘(𝐹𝑧 − 𝑅) = 𝜂ℎ𝜓𝑣𝐹𝑍(𝑍, 𝐿)𝑍𝐾
𝛽

1 + 𝛽
((𝐹𝑍 − 𝑅)𝑧𝑘 + 𝑤𝑙2 + 𝑅𝑙1)  

 

𝑧𝑘(𝐹𝑧 − 𝑅) =
𝜃𝐹𝑧𝑁

𝑘𝑧𝑘

𝑁
((𝐹𝑍 − 𝑅)𝑧𝑘 + 𝑤𝑙2 + 𝑅𝑙1)  

 

𝑧𝑘 =

𝜃𝐹𝑧𝑁
𝑘𝑧𝑘

𝑁

1 −
𝜃𝐹𝑧𝑁𝑘𝑧𝑘

𝑁

(
𝐹 − 𝐹𝑧𝑍

𝑁
+ 𝑅𝑙1)

(𝐹𝑧 − 𝑅)
 (𝐵5.6) 

 

To investigate how aggregate dirty investment changes as the proportion of non-Kantians in the 

economy changes, we run simulations of equations B5.1, B5.3, B5.4, and B5.5. We assume that the 

production function is Cobb-Douglas with a capital input share of 𝛼 =
1

2
, such that 𝐹(𝑍, 𝐿) = 𝑍

1

2𝐿
1

2, 

where 𝐿 = 𝑁𝑙2 = 𝑁 since it is assumed that 𝑙2 = 1. The equations become,  

 

𝑘 =
1

𝑅
 

(

 
 𝛽

1 + 𝛽
 𝑅𝑙1 −

(
1
2𝑍

1
2𝑁−

1
2 + 𝑧𝑘 (𝛽𝑅 +

1
2𝑍−

1
2𝑁

1
2))

1 + 𝛽

)

 
 

(𝐵5.7) 

 

𝑧𝑘 (𝐼𝑛𝑐𝑙𝑢𝑠𝑖𝑣𝑒) =

1
2

𝜃𝑍
1
2𝑁−

1
2

1 −
1
2𝜃𝑍

1
2𝑁−

1
2

1
2

𝑍
1
2𝑁−

1
2 + 𝑅𝑙1

1
2𝑍−

1
2𝑁

1
2 − 𝑅

(𝐵5.8) 

 

𝑧𝑛 =
𝛽

1 + 𝛽
 𝑙1 −

1

1 + 𝛽

𝑍

𝑁
(𝐵5.9) 

 

𝑧𝑘 (𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒) =

1
2𝜃𝑍−

1
2𝑁−

1
2(𝑁 − 𝑁𝑛)𝑧𝑘

1 −
1
2

𝜃𝑍−
1
2𝑁−

1
2(𝑁 − 𝑁𝑛)𝑧𝑘

1
2𝑍

1
2𝑁−

1
2 + 𝑅𝑙1

1
2

𝑍−
1
2𝑁

1
2 − 𝑅

(𝐵5.10) 
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To conduct these simulations, we must assign the constants values with are representative of a real 

market scenario. We use 𝛽 = 0.96, 𝑅 = 1.25, 𝑙1 = 0.225 and 𝜃 = 0.181. We also assume that 𝑁 = 1 

and solve the set of equations for values of 𝑁𝑛 ∈ [0,1].  

 

We investigate the sensitivity of these results to variations in the functional forms of the production 

function and the utility function.  

 

Firstly, we repeat the simulations with a Cobb-Douglas function with a capital share of 𝛼 =
1

3
, such that 

𝐹(𝑍, 𝐿) = 𝑍
1

3𝐿
2

3. We find that in this case, the same patterns of results hold as the proportion of non-

Kantians in the economy investments. The main difference is that for every proportion of non-Kantians, 

the overall level of dirty investment in the economy is lower, but that the overall level of production by 

the dirty firm is higher.  

 

𝐹(𝑍, 𝐿) = 𝑍
1
3𝑁

2
3,   𝐹𝑧(𝑍, 𝐿) =

1

3
𝑍−

2
3𝑁

2
3, 𝑤𝑙2 =

𝐹 − 𝐹𝑧𝑍

𝑁
=

2

3
𝑍

1
3𝑁−

1
3 

 

𝑘 =
1

𝑅
 

(

 
 𝛽

1 + 𝛽
 𝑅𝑙1 −

(
2
3𝑍

1
3𝑁−

1
3 + 𝑧𝑘 (𝛽𝑅 +

1
3𝑍−

2
3𝑁

2
3))

1 + 𝛽

)

 
 

(𝐵5.11) 

 

𝑧𝑘 (𝐼𝑛𝑐𝑙𝑢𝑠𝑖𝑣𝑒) =

1
3𝜃𝑍

1
3𝑁−

1
3

1 −
1
3

𝜃𝑍
1
3𝑁−

1
3

2
3 𝑍

1
3𝑁−

1
3 + 𝑅𝑙1

1
3

𝑍−
2
3𝑁

2
3 − 𝑅

(𝐵5.12) 

 

𝑧𝑛 =
𝛽

1 + 𝛽
 𝑙1 −

1

1 + 𝛽

2𝑍

𝑁
(𝐵5.13) 

 

𝑧𝑘 (𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒) =

1
3

𝜃𝑍−
2
3𝑁−

1
3(𝑁 − 𝑁𝑛)𝑧𝑘

1 −
1
3

𝜃𝑍−
2
3𝑁−

1
3(𝑁 − 𝑁𝑛)𝑧𝑘

2
3

𝑍
1
3𝑁−

1
3 + 𝑅𝑙1

1
3

𝑍−
2
3𝑁

2
3 − 𝑅

(𝐵5.14) 

 

Secondly, we repeat the simulations with a Stone-Geary utility function, whereby the investor has a 

baseline level of consumption that they must achieve in a give period. We investigate the difference 

between placing this restriction on first period consumption and second period consumption. We set 

this restriction at 10% of the optimal period 2 consumption in the fully non-Kantian economy.  
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𝑈ℎ = 𝑢(𝑐1
ℎ) + 𝛽[𝑢(𝑐2

ℎ − 𝑠) + 𝜂ℎ𝑣(𝑋)] 

 

𝑢′(𝑐1) = 𝛽𝑅 𝑢′(𝑐2 − 𝑠)  

 

𝑤𝑙2 + 𝑅𝑘 + 𝐹𝑍𝑧𝑘 − 𝑠 = 𝛽𝑅(𝑙1 − 𝑘 − 𝑧𝑘)  

 

𝑘 =
1

𝑅
(

𝛽

(1 + 𝛽)
𝑅𝑙1 −

(𝑤𝑙2 + (𝛽𝑅 + 𝐹𝑧)𝑧
𝑘)

(1 + 𝛽)
+

1

(1 + 𝛽)
𝑠) (𝐵5.15) 

 

(𝐹𝑧 − 𝑅)𝑧𝑘 = 𝜓𝑣𝜂𝑐2𝐹𝑧𝑍.  

 

(𝐹𝑧 − 𝑅)𝑧𝑘 = 𝜓𝑣𝜂𝐹𝑧𝑍 (
𝛽

1 + 𝛽
((𝐹𝑍 − 𝑅)𝑧𝑘 + 𝑤𝑙2 + 𝑅𝑙1) − 𝑠) .  

 

(𝐹𝑧 − 𝑅)𝑧𝑘 = 𝜃
𝐹𝑧𝑍

𝑁
 ((𝐹𝑍 − 𝑅)𝑧𝑘 + 𝑤𝑙2 + 𝑅𝑙1 −

1 + 𝛽

𝛽
 𝑠)  

 

𝑧𝑘,𝐼𝑛𝑐𝑙𝑢𝑠𝑖𝑣𝑒 =
𝜃

𝐹𝑍𝑍
𝑁

1 − 𝜃
𝐹𝑍𝑍
𝑁

𝐹 − 𝐹𝑍𝑍
𝑁 + 𝑅𝑙1 −

1 + 𝛽
𝛽

 𝑠

𝐹𝑧 − 𝑅
(𝐵5.16) 

 

𝑢′(𝑐1) = 𝛽𝐹𝑧  𝑢
′(𝑐2 − 𝑠)  

 

𝑤𝑙2 + 𝐹𝑧𝑧
𝑛 − 𝑠 = 𝛽𝐹𝑧(𝑙1 − 𝑧𝑛)  

 

𝑧𝑛 =
𝛽

1 + 𝛽
𝑙1 −

𝐹 − 𝐹𝑧𝑍

𝐹𝑧𝑁(1 + 𝛽)
+

𝑠

𝐹𝑧(1 + 𝛽)
 (𝐵5.17) 

 

𝑧𝑘,𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 =

𝜃𝐹𝑍(𝑁 − 𝑁𝑛)𝑧𝑘

𝑁

(1 −
𝜃𝐹𝑍(𝑁 − 𝑁𝑛)𝑧𝑘

𝑁 )

(𝑤𝑙2 + 𝑅𝑙1 −
1 + 𝛽

𝛽
 𝑠)

(𝐹𝑧 − 𝑅)
(𝐵5.18) 

 

Substituting in 𝐹(𝑍, 𝐿) = 𝑍
1

2𝐿
1

2, 𝐹𝑧 =
1

2
𝑍−

1

2𝐿
1

2, 𝑤𝑙2 =
1

2
𝑍

1

2𝑁−
1

2 
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𝑘 =
1

𝑅
(

𝛽

(1 + 𝛽)
𝑅𝑙1 −

(
1
2𝑍

1
2𝑁−

1
2 + (𝛽𝑅 +

1
2𝑍−

1
2𝑁

1
2) 𝑧𝑘)

(1 + 𝛽)
+

1

(1 + 𝛽)
𝑠) (𝐵5.19) 

 

𝑧𝑘 (𝐼𝑛𝑐𝑙𝑢𝑠𝑖𝑣𝑒) =

1
2𝜃𝑍

1
2𝑁−

1
2

1 −
1
2𝜃𝑍

1
2𝑁−

1
2

1
2 𝑍

1
2𝑁−

1
2 + 𝑅𝑙1 −

1 + 𝛽
𝛽

 𝑠

1
2 𝑍−

1
2𝐿

1
2 − 𝑅

(𝐵5.20) 

 

𝑧𝑛 =
𝛽

1 + 𝛽
𝑙1 −

𝑍

𝑁(1 + 𝛽)
+

𝑠

1
2𝑍−

1
2𝐿

1
2(1 + 𝛽)

 (𝐵5.21) 

 

𝑧𝑘,𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 =

1
2𝜃𝑍−

1
2𝑁−

1
2(𝑁 − 𝑁𝑛)𝑧𝑘

(1 −
1
2

𝜃𝑍−
1
2𝑁−

1
2(𝑁 − 𝑁𝑛)𝑧𝑘)

(
1
2𝑍

1
2𝑁−

1
2 + 𝑅𝑙1 −

1 + 𝛽
𝛽

 𝑠)

(
1
2

𝑍−
1
2𝑁

1
2 − 𝑅)

(𝐵5.22) 

 

If we now have a minimum consumption in period 1: 

 

𝑈ℎ = 𝑢(𝑐1
ℎ − 𝑠) + 𝛽[𝑢(𝑐2

ℎ) + 𝜂ℎ𝑣(𝑋)] 

 

𝑢′(𝑐1 − 𝑠) = 𝛽𝑅 𝑢′(𝑐2)  

 

𝑤𝑙2 + 𝑅𝑘 + 𝐹𝑍𝑧𝑘 = 𝛽𝑅(𝑙1 − 𝑘 − 𝑧𝑘 − 𝑠)  

 

𝑘 =
1

𝑅
(

𝛽

(1 + 𝛽)
𝑅(𝑙1 − 𝑠) −

(𝑤𝑙2 + (𝛽𝑅 + 𝐹𝑧)𝑧
𝑘)

(1 + 𝛽)
) (𝐵5.23) 

 

(𝐹𝑧 − 𝑅)𝑧𝑘 = 𝜓𝑣𝜂𝑐2𝐹𝑧𝑍.  

 

(𝐹𝑧 − 𝑅)𝑧𝑘 = 𝜓𝑣𝜂𝐹𝑧𝑍 (
𝛽

1 + 𝛽
((𝐹𝑍 − 𝑅)𝑧𝑘 + 𝑤𝑙2 + 𝑅𝑙1)) .  

 

(𝐹𝑧 − 𝑅)𝑧𝑘 = 𝜃
𝐹𝑧𝑍

𝑁
 ((𝐹𝑍 − 𝑅)𝑧𝑘 + 𝑤𝑙2 + 𝑅𝑙1)  

 

𝑧𝑘,𝐼𝑛𝑐𝑙𝑢𝑠𝑖𝑣𝑒 =
𝜃

𝐹𝑍𝑍
𝑁

1 − 𝜃
𝐹𝑍𝑍
𝑁

𝐹 − 𝐹𝑍𝑍
𝑁

+ 𝑅𝑙1

𝐹𝑧 − 𝑅
(𝐵5.24) 
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𝑢′(𝑐1 − 𝑠) = 𝛽𝐹𝑧  𝑢
′(𝑐2)  

 

𝑤𝑙2 + 𝐹𝑧𝑧
𝑛 = 𝛽𝐹𝑧(𝑙1 − 𝑧𝑛 − 𝑠)  

 

𝑧𝑛 =
𝛽

1 + 𝛽
(𝑙1 − 𝑠) −

𝐹 − 𝐹𝑧𝑍

𝐹𝑧𝑁(1 + 𝛽)
(𝐵5.25) 

 

𝑧𝑘,𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 =

𝜃𝐹𝑍(𝑁 − 𝑁𝑛)𝑧𝑘

𝑁

(1 −
𝜃𝐹𝑍(𝑁 − 𝑁𝑛)𝑧𝑘

𝑁 )

(𝑤𝑙2 + 𝑅𝑙1)

(𝐹𝑧 − 𝑅)
(𝐵5.26) 

 

Substituting in 𝐹(𝑍, 𝐿) = 𝑍
1

2𝐿
1

2, 𝐹𝑧 =
1

2
𝑍−

1

2𝐿
1

2 

 

𝑘 =
1

𝑅
(

𝛽

(1 + 𝛽)
𝑅(𝑙1 − 𝑠) −

(
1
2 𝑍

1
2𝑁−

1
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𝑧𝑛 =
𝛽

1 + 𝛽
(𝑙1 − 𝑠) −

𝑍

𝑁(1 + 𝛽)
 (𝐵5.29) 
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(𝐵5.30) 

 

(1) Inclusive Kantian baseline B5.7, B5.8, B5.9 

(2) Exclusive Kantian baseline B5.7, B5.9, B5.10 

(3) Inclusive Kantian change production function B5.11, B5.12, B5.13 

(4) Exclusive Kantian change production function B5.11, B5.13, B5.14 

(5) Inclusive Kantian change utility function c2 B5.19, B5.20, B5.21 

(6) Exclusive Kantian change utility function c2 B5.19, B5.21, B5.22 

(7) Inclusive Kantian change utility function c1 B5.27, B5.28, B5.29 

(8) Exclusive Kantian change utility function c1 B5.27, B5.29, B5.30 
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Appendix B6: Simulation output tables 

Table B1: Simulation 1 results (Exclusive Kantians) 

Nn/N k zk zn Z/N F(Z,L) 

0.1 0.047111647 0 0.064909444 0.006490944 0.080566397 

0.2 0.038852613 0 0.060965978 0.012193196 0.110422804 

0.3 0.033074739 0 0.057474227 0.017242268 0.131309817 

0.4 0.028607323 0 0.05436078 0.021744312 0.147459527 

0.5 0.024979832 0 0.051567318 0.025783659 0.160572908 

0.6 0.0219443 0 0.049046921 0.029428152 0.171546357 

0.7 0.019350591 0 0.046761417 0.032732992 0.180922612 

0.8 0.017099687 0 0.04467943 0.035743544 0.189059631 

0.9 0.015122365 0 0.042774936 0.038497442 0.196207651 

1 0.013368142 0 0.041026165 0.041026165 0.202549167 

 

Table B2: Simulation 2 results (Inclusive Kantians)  

Nn k zk zn Z/N F(Z,L) 

0.1 0.045425626 0.000514799 0.064609755 0.006924295 0.083212347 

0.2 0.036359798 0.001122887 0.060420225 0.012982354 0.113940136 

0.3 0.030001626 0.00176314 0.056767355 0.018264405 0.135145864 

0.4 0.025102287 0.002409179 0.053577732 0.0228766 0.151250125 

0.5 0.021152734 0.00304557 0.050784797 0.026915183 0.164058476 

0.6 0.01788019 0.003662879 0.048330815 0.030463641 0.174538365 

0.7 0.015116613 0.00425547 0.046166523 0.033593207 0.183284499 

0.8 0.012749341 0.004820236 0.044250202 0.036364209 0.190694018 

0.9 0.010698465 0.005355778 0.042546642 0.038827556 0.19704709 

1 0.008904999 0.005861849 0.041026165 0.041026165 0.202549167 

 

Table B3.1: Simulation 3 results (Exclusive Kantian with lower capital share)  

Nn k zk zn Z/N F(Z,L) 

0.1 0.002019073 0 0.060965978 0.006096598 0.182682038 

0.2 -0.01231049 0 0.05436078 0.010872156 0.221533066 

0.3 -0.020982166 0 0.049046921 0.014714076 0.245044147 

0.4 -0.027033319 0 0.04467943 0.017871772 0.261450337 

0.5 -0.03156741 0 0.041026165 0.020513083 0.273743391 

0.6 -0.035119405 0 0.03792517 0.022755102 0.283373736 

0.7 -0.037990036 0 0.035260014 0.02468201 0.291156735 

0.8 -0.040364733 0 0.032944846 0.026355877 0.297595131 

0.9 -0.042365391 0 0.030914972 0.027823475 0.303019416 

1 -0.044076036 0 0.02912072 0.02912072 0.307657402 
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Table B3.2: Simulation 3 results (Exclusive Kantian with lower capital share) where 𝑘 ≥ 0 

Nn k zk zn Z/N F(Z,L) 

0.1 0.002019073 0 0.060965978 0.006096598 0.182682038 

0.2 0 0 0.05436078 0.010872156 0.221533066 

0.3 0 0 0.049046921 0.014714076 0.245044147 

0.4 0 0 0.04467943 0.017871772 0.261450337 

0.5 0 0 0.041026165 0.020513083 0.273743391 

0.6 0 0 0.03792517 0.022755102 0.283373736 

0.7 0 0 0.035260014 0.02468201 0.291156735 

0.8 0 0 0.032944846 0.026355877 0.297595131 

0.9 0 0 0.030914972 0.027823475 0.303019416 

1 0 0 0.02912072 0.02912072 0.307657402 

 

Table B4.1: Simulation 4 results (Inclusive Kantian with lower capital share) 

Nn k zk zn Z/N F(Z,L) 

0.1 -0.001216118 0.000559214 0.060354445 0.006538737 0.186995554 

0.2 -0.016340404 0.001136822 0.053375452 0.011584548 0.226269682 

0.3 -0.02539398 0.001667587 0.047905855 0.015539067 0.249540848 

0.4 -0.031624869 0.002141901 0.043535049 0.01869916 0.265424311 

0.5 -0.03622601 0.002561978 0.03997875 0.021270364 0.277071363 

0.6 -0.039778909 0.002933413 0.037038273 0.023396329 0.286010892 

0.7 -0.042610823 0.003262397 0.034572228 0.025179279 0.293099063 

0.8 -0.044923103 0.003554741 0.032478038 0.026693379 0.298860039 

0.9 -0.046847522 0.003815568 0.030679879 0.027993448 0.303635209 

1 -0.048474364 0.004049273 0.02912072 0.02912072 0.307657402 

 

 

Table B4.2: Simulation 4 results (Inclusive Kantian with lower capital share) where 𝑘 ≥ 0 

 

Nn k zk zn Z/N F(Z,L) 

0.1 0 0.000559214 0.060354445 0.006538737 0.186995554 

0.2 0 0.001136822 0.053375452 0.011584548 0.226269682 

0.3 0 0.001667587 0.047905855 0.015539067 0.249540848 

0.4 0 0.002141901 0.043535049 0.01869916 0.265424311 

0.5 0 0.002561978 0.03997875 0.021270364 0.277071363 

0.6 0 0.002933413 0.037038273 0.023396329 0.286010892 

0.7 0 0.003262397 0.034572228 0.025179279 0.293099063 

0.8 0 0.003554741 0.032478038 0.026693379 0.298860039 

0.9 0 0.003815568 0.030679879 0.027993448 0.303635209 

1 0 0.004049273 0.02912072 0.02912072 0.307657402 
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Table B5: Simulation 5 results (Exclusive Kantian with Stone Geary term in period 2) 

Nn k zk zn Z/N F(Z,L) 

0.1 0.054337662 0 0.066331822 0.006633182 0.081444351 

0.2 0.045864363 0 0.062804395 0.012560879 0.112075327 

0.3 0.039896296 0 0.059540978 0.017862293 0.133649891 

0.4 0.035258981 0 0.056560765 0.022624306 0.150413783 

0.5 0.031478832 0 0.053843851 0.026921925 0.164079022 

0.6 0.028305401 0 0.051363576 0.030818146 0.175550977 

0.7 0.025586519 0 0.04909378 0.034365646 0.185379735 

0.8 0.023221488 0 0.047010726 0.037608581 0.19392932 

0.9 0.02113969 0 0.045093472 0.040584125 0.20145502 

1 0.01928947 0 0.043323743 0.043323743 0.208143564 

 

Table B6: Simulation 6 results (Inclusive Kantian with Stone Geary term in period 2) 

Nn k zk zn Z/N F(Z,L) 

0.1 0.052860711 0.000452308 0.066109189 0.007017997 0.083773484 

0.2 0.043643337 0.001006763 0.062366888 0.013278788 0.115233622 

0.3 0.037123529 0.001605538 0.058951369 0.018809288 0.137146956 

0.4 0.032064088 0.002222434 0.055889598 0.0236893 0.153913287 

0.5 0.02796044 0.002841138 0.053158993 0.028000066 0.167332201 

0.6 0.024541845 0.003450872 0.050726126 0.031816024 0.178370469 

0.7 0.021641155 0.004044493 0.048556624 0.035202985 0.187624585 

0.8 0.019145969 0.004617396 0.046618378 0.038218182 0.195494711 

0.9 0.016976263 0.005166797 0.044882551 0.040910976 0.202264618 

1 0.015072716 0.005691212 0.043323743 0.043323743 0.208143564 

 

Table B7: Simulation 7 results (Exclusive Kantian with Stone Geary term in period 1) 

Nn k zk zn Z/N F(Z,L) 

0.1 0.043626689 0 0.061014877 0.006101488 0.07811202 

0.2 0.035619259 0 0.057308019 0.011461604 0.10705888 

0.3 0.030017402 0 0.054025773 0.016207732 0.127309591 

0.4 0.025686081 0 0.051099133 0.020439653 0.142967316 

0.5 0.022169098 0 0.048473279 0.024236639 0.15568121 

0.6 0.019226041 0 0.046104106 0.027662463 0.166320364 

0.7 0.016711347 0 0.043955732 0.030769012 0.175410981 

0.8 0.014529014 0 0.041998664 0.033598931 0.183300113 

0.9 0.012611929 0 0.04020844 0.036187596 0.190230376 

1 0.010911147 0 0.038564595 0.038564595 0.196378704 
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Table B8: Simulation 8 results (Inclusive Kantian with Stone Geary term in period 1) 

Nn k zk zn Z/N F(Z,L) 

0.1 0.0420128 0.00047761 0.060736838 0.006503533 0.080644483 

0.2 0.033246739 0.001035664 0.056804659 0.012189463 0.110405902 

0.3 0.027105444 0.001618912 0.053376725 0.017146256 0.130943713 

0.4 0.022376833 0.002204067 0.050382752 0.021475541 0.146545354 

0.5 0.018566753 0.002777864 0.047759542 0.025268703 0.158961325 

0.6 0.015410504 0.003332447 0.045452601 0.028604539 0.169128765 

0.7 0.012745168 0.003863309 0.04341566 0.031549955 0.17762307 

0.8 0.010461649 0.004368127 0.041609695 0.034161381 0.184827978 

0.9 0.008482679 0.00484602 0.040001875 0.036486289 0.191013846 

1 0.006751308 0.005297053 0.038564595 0.038564595 0.196378704 
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Figure B1: Graph to show difference between investment portfolios in the Exclusive Kantian 

equilibrium for different capital shares.  

*Light coloured lines show equilibria for capital share=1/2, dark coloured lines show equilibria for 

capital share=1/3. 

 

 

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

In
v
e
st

m
e
n

t

Proportion of Non-Kantians

k (Excl) zk (Excl) zn (Excl) Z/N (Excl)

k (Excl) low zk (Excl) low zn (Excl) low Z/N (Excl) low



 181 

 

Figure B2: Graph to show difference between investment portfolios in the Inclusive Kantian equilibrium 

for different capital shares.  

*Light coloured lines show equilibria for capital share=1/2, dark coloured lines show equilibria for 

capital share=1/3. 
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Appendix B7: Simulation Maple code 

Appendix B7.1: Inclusive Kantians 

 

 

Appendix B7.2: Exclusive Kantians 
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Appendix B7.3: Inclusive Kantians with lower capital share in production 

 
Appendix B7.4: Exclusive Kantians with lower capital share in production 
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Appendix B7.5: Inclusive Kantians with Stone Geary term in period 2 

 

Appendix B7.6: Exclusive Kantians with Stone Geary term in period 2 
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Appendix B7.7: Inclusive Kantians with Stone Geary term in period 1 

 

 

Appendix B7.8: Exclusive Kantians with Stone Geary term in period 1 
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Appendix C: Appendix for Chapter 3 

Appendix C1: Survey questions 

Dear Resident,   

  

You are invited to participate in a survey which will inform Durham University’s research project on 

Geothermal Energy from Mines and Solar Geothermal Heat (GEMS). The main purpose of this 

survey is to understand how households in the North East of England make decisions regarding their 

heating system.   

  

The GEMS research project explores whether water from flooded, abandoned mines could be used as 

a low-carbon, geothermal source of heat for UK homes. It is expected that this geothermal energy 

system will contribute to reducing CO2 emissions and creating new jobs in the region. GEMS is an 

interdisciplinary project funded by the UK Engineering and Physical Sciences Research Council 

(EPSRC). For more information, please see: https://gems.ac.uk/  

  

The survey should take no longer than 15 minutes. It comprises of 4 main sections:   

  

1. About your preferences   

2. Score cards  

3. About you   

4. About your accommodation.   

  

Your response will be anonymous and no identifiable information will be collected. The results will 

be analysed by researchers at Durham University and reported to the research council. 

  

For further information on the survey, you can contact Dr Laura Marsiliani on 0191 3346363 or at 

laura.marsiliani@durham.ac.uk  

  

Thank you   

The GEMS project team   

June 2023  

 

Survey Part 1: Behavioural Questions 

Here are some questions about your energy preference. Please tick the box that describes you best. 

 

 

https://gems.ac.uk/
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Q1: I know how to adjust the thermostat/heating to reduce my energy usage. 

A1: Strongly disagree / Disagree / Neither agree nor disagree / Agree / Strongly agree 

 

Q2: I know other ways to reduce my energy usage (for example, only heating certain rooms or washing 

laundry at a low temperature) in the house. 

A2: Strongly disagree / Disagree / Neither agree nor disagree / Agree / Strongly agree 

 

Q3: In the past winter, I have adjusted my thermostat/heating and/or used other ways to save energy. 

A3: Strongly disagree / Disagree / Neither agree nor disagree / Agree / Strongly agree 

 

Q4: I am involved in energy-related decisions (heating, energy usage, etc.) in my household. 

A4: Strongly disagree / Disagree / Neither agree nor disagree / Agree / Strongly agree 

 

Q5: I support the UK government's ambition to ban the sale of gas boilers in the future. 

A5: Strongly disagree / Disagree / Neither agree nor disagree / Agree / Strongly agree 

 

Q6: Government financial support (grants) to households is necessary for households to invest in a low-

carbon heating system. 

A6: Strongly disagree / Disagree / Neither agree nor disagree / Agree / Strongly agree 

 

Q7: I would be incentivised to switch to a low-carbon heating system if I was offered a government 

grant. 

A7: Strongly disagree / Disagree / Neither agree nor disagree / Agree / Strongly agree 

 

Q8: I would like to produce my own heating (for example, through a biomass boiler or a wood burner). 

A8: Strongly disagree / Disagree / Neither agree nor disagree / Agree / Strongly agree 

 

Q9: I would like a local community organisation to own, supply or manage the heating system in my 

neighbourhood. 

A9: Strongly disagree / Disagree / Neither agree nor disagree / Agree / Strongly agree 

 

Q10: The North East of England claims to have a ‘proud mining heritage’. I personally identify with 

this heritage. 

A10: Strongly disagree / Disagree / Neither agree nor disagree / Agree / Strongly agree 

 

Q11: Using disused (abandoned) coal mines as a source of geothermal energy honours the history of 

coal mining. 
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A11: Strongly disagree / Disagree / Neither agree nor disagree / Agree / Strongly agree 

 

Q12: Research projects like this one at Durham University are important for my community. 

A12: Strongly disagree / Disagree / Neither agree nor disagree / Agree / Strongly agree 

 

Q13: I know what 'carbon footprint' means. 

A13: Strongly disagree / Disagree / Neither agree nor disagree / Agree / Strongly agree 

 

Q14: I am concerned about damage to the natural environment caused by human activities. 

A14: Strongly disagree / Disagree / Neither agree nor disagree / Agree / Strongly agree 

 

Q15: I make changes to my lifestyle to protect the environment (for example, by recycling rather than 

throwing things away, using my car less, or buying local food). 

A15: Strongly disagree / Disagree / Neither agree nor disagree / Agree / Strongly agree 

 

Q16: What proportion of people in the North East of England do you think make changes in their 

lifestyles to protect the environment? (for example, by recycling rather than throwing things away, 

using their car less, or buying local food)  

A16: Please provide your best guess in percentage on the slider scale from 0% to 100% (continuous 

slider from 0% to 100%). 

 

Q17: I believe that people in the UK should make changes to their lifestyles to protect the environment. 

A17: Strongly disagree / Disagree / Neither agree nor disagree / Agree / Strongly agree 

 

Q18: What proportion of people in the North East of England do you think believe that people in the 

UK should make changes in their lifestyles to protect the environment? [ 

A18: Please provide your best guess in percentage on the slider scale from 0% to 100% (continuous 

slider from 0% to 100%). 

 

Q19: I am willing to ask for advice from neighbours, colleagues and friends when I am making decisions 

relating to my heating usage/system. 

A19: Strongly disagree / Disagree / Neither agree nor disagree / Agree / Strongly agree 

 

Q20: I use the internet/social media for information when I am making decisions relating to my heating 

usage/system. 

A20: Strongly disagree / Disagree / Neither agree nor disagree / Agree / Strongly agree 
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Survey Part 2: Choice experiment 

In this section, you will be presented with several choice cards with low-carbon alternatives for 

domestic heat. You will be asked to make a choice based on five attributes of the heating systems. All 

of the heating systems in the choice cards give the same amount of heat. 

 

Suppose you are selecting a new heating system for new residential accommodation. There are four 

heating systems available: 

1. Geothermal district heating from disused mines; 

2. Hydrogen boiler; 

3. Solar electric boiler and 

4. Air source heat pump. 

 

Inside the building, the equipment needed for the operation of the four heating systems is similar and it 

is typically a heat exchanger. The diagram below shows an example of a heat exchanger: 

 

 
Figure C1: Image of a heat exchanger used for all the heating systems (Source: Kensa Contracting) 

 

Geothermal District Heating from disused mines: For geothermal district heating from disused 

(abandoned) mines, warm groundwater is extracted from flooded coal mines. A district heat pump 

extracts the heat from this water. Then the hot water (red dotted line) is supplied to the household via 

underground pipes, and the cold water (blue dotted line) is returned to the mining system. The diagram 

below shows how a geothermal district heating system works: 
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Figure C2: Diagram of a geothermal district heating system (Source: Mining Remediation Authority, 

X) 

Hydrogen Boiler: A hydrogen boiler uses hydrogen gas as a fuel to produce heat for your home. It 

works in a similar way to a traditional gas boiler, but instead of burning natural gas, it uses hydrogen 

gas to produce heat. The diagram below shows an illustration of a hydrogen boiler: 

 
Figure C3: Image of a hydrogen boiler (Source: Remeha) 

 



 191 

Solar Electric Boiler: A solar electric boiler uses electricity to produce heat for your home. The 

electricity is generated from solar energy and powers the solar-compatible electric boiler. The diagram 

below shows how a solar electric boiler system works: 

 
Figure C4: Diagram of house with solar panels and a solar electric boiler (Source: iStock) 

 

Air Source Heat Pump: An air source heat pump extracts heat from the outside air to produce heat 

for your home. The heat is compressed using refrigerant fluid and transferred to your heating system 

via a heat exchanger. The diagram below shows how an air source heat pump works: 

   

Figure C5: Diagram of a ground source heat pump (Source: WDS Green Energy) 
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The above heating systems differ in terms of the following attributes: 

1. Investment Cost: Cost of installation and connection to pipelines/grid of the heating system 

(in Great British Pounds, £); 

2. Monthly Cost: Monthly cost of the heating system for usage, maintenance and repair costs, 

and fuel costs where relevant (in £); 

3. Replacement Period: The time from installation to dismantling/end-of-life of the heating 

system (in years). 

4. CO2 Emissions: The quantity of carbon dioxide (CO2) / equivalent the heating system 

creates throughout its lifecycle; in production, usage, and disposal (in kilogrammes (kg) per 

year). For reference, the equivalent CO2emissions for an average gas boiler in the UK is 4700 

kgs per year. This is equivalent to 21,000 miles of driving a petrol car, or roughly 74 trips 

from Newcastle to London.  

5. Job Creation: The number of jobs (in full-time equivalent jobs) created by the heating 

system (for example, engineering, construction, plant operators, managers, etc.) when 1000 

households adopt the heating system. 

 
Please continue to the next page. The choice cards will appear, each of them containing the heating 

system options (geothermal district heating, hydrogen boiler, solar electric boiler, and air source heat 

pump), but with different levels of the attributes (investment cost, monthly cost, replacement period, 

CO2emissions, and job creation). 

 

Please select your most preferred heating system based on the attributes of each alternative, and please 

consider each choice card independently. If you are completing this survey on a mobile phone, please 

rotate the phone to view the full choice card.  

 
Among the following heating options, which one do you prefer? 

(Followed by 12 choice cards) 

 

Survey Part 3: Socio-demographic characteristics 

Q21: Please input the first half of your postcode (e.g. if postcode DH1 XXX then write ‘DH1’, if 

postcode DH11 XXX then write ‘DH11’) 

A21: Free text 

 

Q22: What is your age? 

A22: Under 25/ 25-34/ 35-44/ 45-54/ 55-64/ 65 and above 
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Q23: Which gender do you identify with? 

A23: Female / Male / Other / Prefer not to say 

 

Q24: What is your legal marital or registered civil partnership status? 

A24: Single / Married / Other / Prefer not to say 

 

Q25: How many people are there in your household? 

A25: 1 / 2 / 3 / 4 / 5 and more 

 

Q26: Of which, how many are dependent children? 

A26: None / 1 / 2 / 3 or more 

 

Q27: What is your country of birth? [Please input the full country name in text below]. 

A27: Drop down of all country names 

 

Q28: Which level best describes your educational achievement? 

A28: No education / Primary school / Secondary school / Further Education (College/ Technical 

Qualification)  / University degree: Under Graduate / University Degree: Post Graduate / Professional 

or vocational education / Prefer not to say 

 

Q29: What is your employment status? [Tick all the boxes that apply] 

A29: Working as an employee /Self-employment or freelance work/ Unemployed  

Retired / Student / Long-term sick or disabled  / Looking after home or family / None of above 

 

Q30: What is your full job title? (Such as Retail Assistant, Office Cleaner, District Nurse, Primary 

School Teacher, Director, or Manager - Do not state your grade or pay band) [Please input in text 

below). 

A30: Free text 

 

Q31: Which option do you think describes your job sector? - Selected Choice/ If other, please specify. 

A31: Agriculture / Mining and quarrying / Manufacturing / Electricity, gas, steam, air conditioning 

supply / Water supply, sewerage, waste management and remediation activities / Construction / 

Wholesale and retail trade; repair of motor vehicles and motorcycles/  Transport and storage / 

Accommodation and food service activities / Information and communication / Financial and insurance 

activities / Real estate activities / Professional, scientific, and technical activities / Administrative and 

support service activities /  Public administration and defence; compulsory social security / Education / 

Human health and social work activities / Other, please specify: 



 194 

Q32: What is your total annual household income (before taxes and deducation)? 

A32: 0-£15,000 / £15,000-£30,000 / £30,000-£45,000 / £45,000-£60,000 / £60,000-£75,000 / £75,000-

£90,000 / £90,000 or more / Prefer not to say 

 

Q33: In total, how many cars or vans are owned or available for use by people in the household? 

A33: None / 1 / 2 / 3 and more 

 

Survey Part 4: Housing Characteristics 

Q34: Does your household own or rent this accommodation? 

A34: I own the accommodation outright / I own the accommodation with a mortgage or loan / I rent 

(with or without housing benefits) / I live here rent-free 

 

Q35: What type of accommodation is this? 

A35: Detached / Semi-detached / Terraced (including end-terrace) / A flat, maisonette or apartment / A 

mobile or temporary structure: A caravan, mobile home or other mobile or temporary structure / Other: 

please specify  

 

Q36: How many bedrooms does your accommodation have? 

A36: 1 / 2 / 3 / 4 and more 

 

Q37: How long have you been living in this accommodation? 

A37: Less than one year / Two to three years / Four to five years / Six to ten years / Ten or more years 

 

Q38: How long do you expect to live in this accommodation in the future? 

A38: Less than five years / Six to ten years / Ten or more years 

 

Q39: What type of heating system does this accommodation have? [Tick all the boxes that apply] 

A39: No central heating / Gas / Electricity / Oil / Wood burner / Solar electric boiler / Air source heat 

pump / Other renewable energy source / District or communal heat network / Other (please specify- 

free text) 

 

Q40: What is the Energy Performance rating of this accommodation? ('A' being the highest energy 

efficiency, and 'E and below' being the lowest energy efficiency) 

A40: A&B / C / D / E and below / I cannot remember or do not know 

 

Q41: What is the council tax band for this accommodation ('E and above' being the highest tax band 

and 'A' being the lowest tax band) 
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A41: E and above / D / C / B / A / I cannot remember or do not know 

 

Appendix C2: Choice card attribute levels 

Mackenzie et al. (forthcoming) detail the calculation of the different heating system attributes for the 

choice card. An overview from this paper is provided in table C1 below. 

 

Monthly cost and CO2 emissions are based on estimates of average energy use for an average UK house 

with 2 to 3 bedrooms, 12,000 kWh electricity per year (Ofgem, a). 

 

Table C1: Table detailing sources of attribute level settings 

Geothermal District Heating 

Investment 

Cost 

£3,000, £4,000, 

£5,000, £6,000 

Gudmundsson et al. (2013):  €2500-3900 Denmark, 

convert using 2013 exchange rate (€1=£0.8492) and 

inflation-adjust to 2023 prices gives £2849-4444. 

In line with WTP study in Germany (Krikser et al., 2020). 

Monthly 

Cost 

£20, £60, 

£100, £150 

Gudmundsson et al. (2013): operating and maintenance 

cost estimated at 2.5% of investment cost per property for 

the heat network supplier. £1596-3019 per year, £40-75 

per month. 

Beckers and Young (2017): US study 1% of investment 

cost which ranged from $3000-$6000. £2.50-£5 per 

month. 

Replacement 

Period 

16 years, 18 years, 

20 years, 25 years 

Fasci (2022): 20-25 years for heat pump and exchanger. 

Bleicher and Gros (2016): 100 years for underground 

technology. 

CO2 

emissions 

100kg, 250kg, 

600kg, 950kg 

Usage of energy to power the heat pump technology. 

Coefficient of performance (COP) 3.5-4 (Banks et al., 

2019) used to scale down electricity requirement, 85g 

CO2e per kWh (Evans, 2020), 291kg CO2e per year. 

Scale up for production and disposal of system to obtain 

lifecycle emissions. 

Job creation 5, 10, Based on estimates from other technologies. 
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20, 30 

Hydrogen Boiler 

Investment 

Cost 

£1,500, £2,500, 

£3,500, £4,500 

Hart et al. (2015): £3500 per household on average. 

British Gas (2024) and The Engineer (2021): Gas boiler 

manufactures promote that cost will be in line with natural 

gas boilers of £1500-4000. 

Monthly 

Cost 

£60, £110, 

£160, £210 

Cost of hydrogen gas used, more expensive than natural 

gas due to energy-intensive nature of hydrogen 

production. 

National Infrastructure Commission (2023): UK home 

£1550-2370 annual, £129-198 monthly. 

Parkinson et al. (2019): significant uncertainty, low $0.96 

per kg hydrogen from coal gasification, high $14.87-17.30 

per kg hydrogen powered by solar energy. 

Molloy (2019): 1kg hydrogen produces 33kWh electricity. 

Replacement 

Period 

12 years, 13.5 years, 

15 years, 20 years 

Hart et al. (2015): micro-combined heat and power (CPH) 

systems 10-15 years lifespan. 

Mckay (2023): natural gas boiler average lifetime 10-20 

years. 

CO2 

emissions 

100kg, 1000kg, 

5000kg, 11000kg 

Depends greatly on source of hydrogen. Lowest 0.31kg 

CO2e per kg hydrogen from biomass gasification 

(Parkinson et al., 2019). Highest 30.9kg CO2e per kg 

hydrogen (Molley, 2019) 

Job creation 5, 10, 

20, 30 

Based on estimates from other technologies. 

Solar Electric Boiler 

Investment 

Cost 

£8,000, £9,500, 

£11,000, £12,500 

Market price inclusive of installation costs. 

£6299 for soalr panels, £1000-3500 for electric boiler 

compatible with solar panels (Ecoexpert, 2024). 

Monthly 

Cost 

£80, £120, 

£160, £200 

Mainly composed of maintenance costs for boiler and 

soalr panels. 
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Li et al. (2018) £1200-1500 over lifespan, £3-6.25 per 

month. 

Cost of servicing, cleaning, assumed replacement of one 

solar panel and the inverter over possible 30-year lifetime, 

monthly cost of £52-68. 

Intermittency in solar energy in UK, account for electricity 

costs from national grid during peak winter £112-188. 

(Howell 2023; Ideal Heat Solutions, 2023). 

Replacement 

Period 

20 years, 22.5 years, 

25 years, 30 years 

Odeh et al. (2013): solar panels last 30 years 

Scholfield (2024): solar electric boilers last 15-25 years. 

CO2 

emissions 

100kg, 650kg, 

1200kg, 1800kg 

Primarily stem from production and disposal of heating 

system rather than usage. Including extraction of raw 

materials. 

Parliamentary Office of Science and Technology (2016): 

10g CO2e per kWh 

Department for Energy and Climate Change (2014): 149g 

CO2e per kWh. 

Job creation 5, 10, 

20, 30 

Fernandez (2024) and Lempriere (2024): similar to air 

source heat pumps 0.3 full time equivalent (FTE) jobs per 

installation. Scale up to 1000 installations, 30 FTE. 

Lower bound set to 5 FTE, consistent with other DCE 

studies on job creation as a heating system attribute 

(Maxim and Roman, 2019; Maxim et al., 2022). 

Air Source Heat Pump 

Investment 

Cost 

£6,000, £7,500, 

£9,000, £10,500 

Energy Saving Trust, (2024b): £5000-15,000 

Monthly 

Cost 

£90, £110, 

£130, £150 

COP of 2.8 2020-2023 (Harris and Walker, 2023), 

seasonable performance factor (SPF) averaged over the 

year is 2.5, used to scale down household electricity 

requirement. 

Electricity price at Energy Price Cap of 28.62 pence per 

kWh, monthly cost £114 (Ofgem, b). 

Annual servicing £100-300 (Crossley, 2023). 
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Appendix C3: ArcGIS maps of Coal Mine Locations 

 

 

 

 

Replacement 

Period 

16 years, 18 years, 

20 years, 25 years 

BEIS (2021a), Lin et al. (2021): 20 years. 

CO2 

emissions 

350kg, 1150kg, 

2000kg, 3000kg 

COP 2.5-3 (Chesser et al. 2021; Harris and Walker, 2023), 

used to scale down electricity requirement. 

288-816kg CO2 per year based on low carbon electricity 

sources (Parliamentary Office of Science and Technology, 

2016). 

Clarke (2019): 1600kg per year 

ISO Energy (2023): 2453 kg per year 

Job creation 5, 10, 

20, 30 

Heptonstall and Winskel (2023): 0.3 FTE per installation. 

Figure C6: ArcGIS map showing mine locations and postcode areas 



 199 

 

 

 

Appendix C4: Mixed logit parameter distribution checks 

We ran the mixed logit model with alternative distributions for the CO2 emissions coefficient and the 

job creation coefficient.  

 

First, we estimated a normal distribution with a restricted standard deviation (Theine and Scarpa, 2009). 

In model D1, we fix the mean of the coefficient on CO2 emissions at the value calculated in the mixed 

logit model 2. We then calculate what the standard deviation must be for only 5% of the distribution to 

fall above zero. 

 

𝑧 =
𝑥 − 𝜇

𝜎
→ 1.64 =

0 + 2.542

𝜎
 

𝜎 =
2.542

1.64
= 1.55 (𝐶4.1) 

 

Figure C7: ArcGIS map showing density of coal mines in postcode areas 
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In model D3, we restrict the standard deviation of the normal distribution of the job creation coefficient 

in a similar way.  

 

−1.64 =
0 − 0.9376

𝜎
 

 

𝜎 =
0.9376

1.64
= 0.571. (𝐶4.2) 

 

In model D2 and D4 we assume that the random coefficients for the CO2 and job creation attributes 

follow a truncated normal distribution, where the CO2 coefficient is truncated [−∞, 0] and the job 

creation attribute is truncated [0,∞]. Within apollo we take draws, 𝑝, from the uniform distribution and 

transform these draws into draws from the truncated normal by the inverse normal cumulative 

distribution function. 

 

𝑥 = 𝛷−1(𝛷(𝑎; �̅�, 𝜎) + 𝑝 ∗ (𝛷(𝑏; �̅�, 𝜎) − 𝛷(𝑎; �̅�, 𝜎)); �̅�, 𝜎) 

 

where 𝑎 is lower bound and 𝑏 is the upper bound of the truncation, �̅� and 𝜎 are the mean and standard 

deviation of the ‘parent’ general normal probability distribution function, and 𝛷 is the cumulative 

normal distribution function, and 𝛷−1 the inverse of this.  

 

Model 2 is the mixed logit model with starting values of zero for the parameter estimates. To facilitate 

a precise comparison of the restricted model with the unrestricted model, Model 2a and 2b have starting 

values which match the restriction placed in model C1 and C3 respectively, but do not restrict the value 

of these parameters in the estimation. This step was taken due to the fact that model C3 outperformed 

model 2 despite having a lower degree of freedom. 

 

Table C2: Estimation of Mixed Logit models to test Normal (Model 2) vs Truncated Normal 

Distribution Assumptions (Models C1 and C3) 

 MXL 

Model 2 

MXL 

Model 2a 

MXL 

Model 2b 

MXL  

restricted  

normal CO2 

Model C1 

MXL 

restricted 

normal job 

Model C3 

ASC𝑔𝑒𝑜  0.125  

(1.47) 

0.124 

(1.45) 

0.121 

(1.43) 

0.168  

(2.00)** 

0.120  

(1.44) 

ASCℎ𝑦𝑑  -0.410  -0.410 -0.412 -0.188  -0.407  



 201 

(3.63)*** (3.62) (3.65) (1.76)* (3.63)*** 

ASC𝑠𝑜𝑙   0.712  

(7.86)*** 

0.711 

(7.85) 

0.711 

(7.86) 

0.691  

(7.75)*** 

0.705  

(7.87)*** 

ASC𝑝𝑢𝑚  0.000  

(fixed) 

0.000 

(fixed) 

0.000 

(fixed) 

0.000  

(fixed) 

0.000  

(fixed) 

𝛽𝐼𝑛𝑣𝐶𝑜𝑠𝑡  0.671  

(11.68)*** 

{4.642}¹ 

0.682 

(11.98) 

{4.733} 

0.671 

(11.67) 

{4.572} 

0.630  

(11.34)*** 

{4.411}¹ 

0.679  

(12.25)*** 

{4.839}¹ 

𝜎𝐼𝑛𝑣𝐶𝑜𝑠𝑡  1.315  

(33.50)*** 

{9.995}¹ 

1.321 

(34.98) 

{10.289} 

1.303 

(30.87) 

{9.657} 

1.307  

(33.13)*** 

{9.377}¹ 

1.34  

(-27.45)*** 

{10.845}¹ 

𝛽𝑀𝑜𝑛𝐶𝑜𝑠𝑡  -0.286  

(-3.59)*** 

{2.786}¹  

-0.287 

(-3.63) 

{2.712} 

-0.263 

(-3.26) 

{2.787} 

-0.300  

(-3.86)*** 

{2.501}¹ 

-0.293  

(-3.72)*** 

{2.632}¹ 

𝜎𝑀𝑜𝑛𝐶𝑜𝑠𝑡  1.619  

(20.62)*** 

{9.948}¹ 

1.603 

(28.64) 

{9.419} 

1.605 

(29.33) 

{9.713} 

1.560  

(25.55)*** 

{8.065}¹ 

1.588  

(-21.29)*** 

{8.906}¹ 

𝛽𝑅𝑒𝑝𝑃𝑒𝑟  0.367  

(8.62)*** 

0.367 

(8.56) 

0.363 

(8.49) 

0.337  

(8.11)*** 

0.365  

(8.63)*** 

𝜎𝑅𝑒𝑝𝑃𝑒𝑟   0.875  

(14.45)*** 

-0.860 

(13.34) 

0.866 

(14.13) 

0.963  

(15.77)*** 

0.869  

(13.96)*** 

𝛽𝐶𝑂2  -2.542  

(12.83)*** 

-2.557 

(12.70) 

-2.544 

(12.89) 

-2.54  

(fixed) 

-2.549  

(12.62)*** 

𝜎𝐶𝑂2  3.724  

(16.19)*** 

3.720 

(16.01) 

-3.779 

(16.28) 

1.55  

(fixed) 

-3.708  

(16.86)*** 

𝛽𝐽𝑜𝑏  0.937  

(5.83)*** 

0.944 

(5.95) 

0.946 

(5.87) 

0.879  

(5.71)*** 

0.937  

(fixed) 

𝜎𝐽𝑜𝑏  1.460  

(3.21)*** 

1.577 

(3.84) 

1.433 

(2.93) 

-1.342  

(3.05)*** 

0.571  

(fixed) 

      

LL -10489.41 -10486.94 -10486.55 -10659.02 -10487.84 

LRT 

p-value 

   1.866 e-07 

 

Reject model 

D1 

0.273 

 

Cannot reject 

model D3 
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Absolute values of z-statistics in brackets, * 90% confidence, ** 95% confidence, *** 99% 

confidence correspond with 2-sided critical values 1.64, 1.96, 2.58 respectively.  

Where heating alternatives {geo, hyd, sol, pum} represent geothermal district heating, 

hydrogen boiler, solar electric boiler, and air source heat pump respectively.  

 

Table C3: Estimation of Mixed Logit models to test Normal (Model 2) vs Log-Normal Distribution 

Assumptions (Models C2, C4 and C5) 

 MXL 

Model 2 

MXL lognormal 

CO2 

Model C2 

MXL lognormal 

job 

Model C4 

MXL lognormal 

job co2 and job 

Model C5 

ASC𝑔𝑒𝑜  0.125  

(1.47) 

0.175 

(2.02) 

0.130 

(1.52) 

0.179 

(2.04) 

ASCℎ𝑦𝑑  -0.410  

(3.63)*** 

-0.388 

(3.49) 

-0.403 

(3.53)*** 

-0.379 

(-3.36) 

ASC𝑠𝑜𝑙   0.712  

(7.86)*** 

0.717 

(7.74) 

0.716 

(7.85)*** 

0.720 

(7.67) 

ASC𝑝𝑢𝑚  0.000  

(fixed) 

0.000 

(fixed) 

0.000 

(fixed) 

0.000 

(fixed) 

𝛽𝐼𝑛𝑣𝐶𝑜𝑠𝑡  0.671  

(11.68)*** 

{4.642}¹ 

0.636 

(10.99) 

{4.630}¹ 

0.662 

(11.44)*** 

{4.603} 

0.654 

(11.17) 

𝜎𝐼𝑛𝑣𝐶𝑜𝑠𝑡  1.315  

(33.50)*** 

{9.995}¹ 

1.339 

(-27.37) 

{10.359}¹ 

1.315 

(34.05)*** 

{9.910} 

1.362 (38.87) 

𝛽𝑀𝑜𝑛𝐶𝑜𝑠𝑡  -0.286  

(-3.59)*** 

{2.786}¹  

-0.521 

(-5.64) 

{2.985}¹ 

-0.282 

(-3.56)*** 

{2.806} 

-0.498 

(5.31) 

𝜎𝑀𝑜𝑛𝐶𝑜𝑠𝑡  1.619  

(20.62)*** 

{9.948}¹ 

1.797 

(23.47) 

{14.702}¹ 

1.621 

(22.17)*** 

{10.056} 

1.763 

(30.35) 

𝛽𝑅𝑒𝑝𝑃𝑒𝑟  0.367  

(8.62)*** 

0.257 

(5.91) 

0.370 

(8.62)*** 

0.270 

(6.14) 

𝜎𝑅𝑒𝑝𝑃𝑒𝑟   0.875  

(14.45)*** 

1.067 

(16.68) 

0.870 

(14.58)*** 

1.050 

(16.33) 
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𝛽𝐶𝑂2  -2.542  

(12.83)*** 

-0.639 

(4.51) 

{} 

-2.582 

(12.81)*** 

-0.676 

(-3.47) 

𝜎𝐶𝑂2  3.724  

(16.19)*** 

2.996 

(31.05)  

{} 

-3.78 

(16.01)*** 

2.955 

(23.53) 

𝛽𝐽𝑜𝑏  0.937  

(5.83)*** 

0.616 

(3.86) 

-1.259 

(3.76)*** 

{} 

-2.800 

(-3.64) 

𝜎𝐽𝑜𝑏  1.460  

(3.21)*** 

1.403 

(3.23)  

1.578 

(11.39)*** 

{} 

2.386 

(7.46) 

     

LL -10489.41 -10377.73 -10471.34 -10364.17 

LRT 

p-value 

    

BAS 

p-value 

 3.192e-51 

 

Reject model 2 

7.51 e-10 

 

Reject model 2 

3.387e-57 

 

Reject model 2 

Absolute values of z-statistics in brackets, * 90% confidence, ** 95% confidence, *** 99% 

confidence correspond with 2-sided critical values 1.64, 1.96, 2.58 respectively.  

Where heating alternatives {geo, hyd, sol, pum} represent geothermal district heating, 

hydrogen boiler, solar electric boiler, and air source heat pump respectively.  

¹Moments of the log-normal estimations in curly brackets, where 𝜇𝛽 = − exp (𝜇𝑙𝑜𝑔 𝛽 +
𝜎𝑙𝑜𝑔 𝛽

2

2
), 

and  

 𝜎𝛽 = 𝜇𝛽 ∗ √exp(𝜎log𝛽
2 ) − 1 

 

Comparing models 2a and model C1 in table C2 shows that restricting the standard deviation of the 

CO2 parameter leads to a significantly worse fit. However, comparing models 2b and C2 demonstrates 

that restricting the standard deviation of the job creation parameter does not significantly worsen the fit 

of the model. Henceforth, we would not reject the restricted model with the favourable behavioural 

interpretation that only 5% of the sample have negative preferences for job creation. 
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Appendix C5: ICLV MXL with correlation 

Table C4.1: Estimation of Measurement Equation of Environmental Attitude Latent Variable Model 

within Model 5a, 5b, and 5c. 

Environmental Attitude 

 ICLV Env Ene MNL 

(Model 5a) 

ICLV Env Ene MXL 

(Model 5b) 

ICLV Env Ene MXL cor 

(Model 5c) 

𝜂concEnv  -0.422 (3.86)*** -0.402 (3.88)*** -0.324(2.70)*** 

𝜏1
concEnv -3.865 (16.55)*** -4.064 (17.00)*** -3.965(16.94)*** 

𝜏2
concEnv -2.782 (18.51)*** -2.984 (18.34)*** -2.888(18.36)*** 

𝜏3
concEnv -1.526 (14.05)*** -1.738 (14.19)*** -1.649(14.65)*** 

𝜏4
concEnv 0.719 (7.32)*** 0.497 (5.09)*** 0.559(6.39)*** 

𝜂changeLife -0.309 (3.11)*** -0.457 (4.40)*** -0.352(2.70)*** 

𝜏1
changeLife

 -3.932 (16.19)*** -4.217 (16.86)*** -4.090(16.46)*** 

𝜏2
changeLife

 -2.871 (18.73)*** -3.148 (18.38)*** -3.025(18.32)*** 

𝜏3
changeLife

 -1.698 (16.27)*** -1.959 (14.94)*** -1.845(15.30)*** 

𝜏4
changeLife

 0.916 (10.60)*** 0.712 (6.95)*** 0.781(8.43)*** 

𝜂shouldChange -0.430 (4.01)*** -0.474 (4.37)*** -0.374(2.95)*** 

𝜏1
shouldChange

 -4.036 (15.87)*** -4.3 (15.86)*** -4.169(15.77)*** 

𝜏2
shouldChange

 -3.23 (18.06)*** -3.492 (17.53)*** -3.365(17.69)*** 

𝜏3
shouldChange

 -1.753 (15.04)*** -2.011 (14.85)*** -1.895(15.31)*** 

𝜏4
shouldChange

 0.652 (6.80)*** 0.409 (3.99)*** 0.485(5.24)*** 

With absolute values of robust z-statistics in brackets, * 90% confidence, ** 95% confidence, *** 99% 

confidence correspond with 2-sided critical values 1.64, 1.96, 2.58 respectively. 

Bolduc et al. (2005) normalisation applied. 

 
 

Table C4.2: Estimation of Measurement Equation of Energy Attitude Latent Variable Model within 

Model 5a, 5b, and 5c. 

Energy Attitude 

 ICLV Env Ene MNL 

(Model 5a) 

ICLV Env Ene MXL 

(Model 5b) 

ICLV Env Ene MXL cor 

(Model 5c) 

𝜂adjThermKnow 0.384 (4.29)*** 2.226 (10.00)*** 2.118(6.68)*** 

𝜏1
adjThermKnow

 -3.365 (18.28)*** -5.176 (10.59)*** -5.315(9.38)*** 

𝜏2
adjThermKnow

 -2.566 (18.42)*** -4.058 (9.08)*** -4.243(8.54)*** 

𝜏3
adjThermKnow

 -2.009 (17.14)*** -3.254 (7.58)*** -3.463(7.64)*** 

𝜏4
adjThermKnow

 0.133 (1.48) 0.296 (0.74) -0.025(0.07) 

𝜂adjThermHave 0.308 (3.49)*** 1.609 (10.52)*** 1.543(7.48)*** 

𝜏1
adjThermHave

 -3.742 (17.21)*** -4.861 (12.15)*** -4.983(12.12)*** 
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𝜏2
adjThermHave

 -2.454 (18.87)*** -3.305 (10.27)*** -3.469(10.54)*** 

𝜏3
adjThermHave

 -1.642 (15.91)*** -2.273 (7.35)*** -2.458(8.26)*** 

𝜏4
adjThermHave

 0.551 (6.67)*** 0.861 (2.92)*** 0.612(2.38)** 

𝜂redEnergy 0.472 (4.83)*** 3.019 (7.50)*** 2.763(4.52)*** 

𝜏1
redEnergy

 -4.262 (15.86)*** -7.746 (8.32)*** -7.588(6.24)*** 

𝜏2
redEnergy

 -3.074 (18.25)*** -5.759 (7.67)*** -5.785(5.99)*** 

𝜏3
redEnergy

 -2.306 (17.14)*** -4.459 (6.58)*** -4.578(5.58)*** 

𝜏4
redEnergy

 0.216 (2.21)** 0.588 (1.09) 0.142(0.32) 

𝜂energyDM 0.594 (6.41)*** 1.691 (11.52)*** 1.736(10.31)*** 

𝜏1
energyDM

 -4.649 (15.01)*** -5.75 (12.56)*** -6.050(13.17)*** 

𝜏2
energyDM

 -3.294 (18.14)*** -4.14 (11.24)*** -4.452(11.97)*** 

𝜏3
energyDM

 -2.119 (15.31)*** -2.699 (7.92)*** -2.999(8.97)*** 

𝜏4
energyDM

 -0.124 (1.11) -0.019 (0.06) -0.281(0.97) 

With absolute values of robust z-statistics in brackets, * 90% confidence, ** 95% confidence, *** 99% 

confidence correspond with 2-sided critical values 1.64, 1.96, 2.58 respectively. 

Bolduc et al. (2005) normalisation applied. 

 
 

Table C4.3: Estimation of Structural Equation of Environmental Attitude Latent Variable Model 
within Model 5a, 5b, and 5c. 

Environmental Attitude 

 ICLV Env Ene (All) 

(Model 5: MNL) 

ICLV Env Ene (All) 

(Model 5: MXL) 

ICLV Env Ene (All) 

(Model 5: MXL corr) 

𝛾LowInc -0.144 (1.86)* 0.143 (2.07)** 0.070 (0.87) 

𝛾Male -0.004 (0.05) 0.048 (0.69) 0.091 (1.00) 

𝛾UniEduc -0.102 (1.29) -0.132 (1.78)* -0.111 (1.23) 

𝛾Unemp -0.005 (0.03) 0.266 (1.51) 0.067 (0.27) 

𝛾Age 35 -0.068 (0.56) 0.44 (3.50)*** 0.336 (2.35)** 

𝛾Age3555 0.058 (0.51) 0.396 (3.58)*** 0.335 (2.61)*** 

𝛾OwnAccom 0.109 (1.19) 0.14 (1.32) 0.158 (1.58) 

𝛾Renew -0.079 (0.53) 0.38 (2.22)** 0.284 (1.98)** 

𝛾Time10 0.057 (0.61) 0.021 (0.25) -0.079 (0.70) 

𝛾ExpTime10 -0.012 (0.13) 0.029 (0.36) -0.055 (0.56) 

With absolute values of robust z-statistics in brackets, * 90% confidence, ** 95% confidence, *** 

99% confidence correspond with 2-sided critical values 1.64, 1.96, 2.58 respectively. 
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Table C4.4: Estimation of Structural Equation of Energy Attitude Latent Variable Model within 
Model 5a, 5b, and 5c. 

Energy Attitude 

 ICLV Env Ene (All) 

(Model 5: MNL) 

ICLV Env Ene (All) 

(Model 5: MXL) 

ICLV Env Ene (All) 

(Model 5: MXL corr) 

𝛾LowInc -0.140 (1.80)* -0.218 (2.54)** -0.224 (2.39)** 

𝛾Male -0.041 (0.54) 0.143 (1.73)* 0.124 (1.54) 

𝛾UniEduc 0.092 (1.22) 0.12 (1.29) 0.073 (0.85) 

𝛾Unemp -0.214 (1.38) -0.328 (1.57) -0.226 (1.34) 

𝛾Age 35 -0.522 (3.96)*** -0.51 (3.52)*** -0.644 (4.76)*** 

𝛾Age3555 -0.306 (2.74)*** -0.199 (1.56) -0.258 (2.14)** 

𝛾OwnAccom 0.026 (0.27) 0.235 (2.39)** 0.163 (1.77)* 

𝛾Renew -0.527 (4.28)*** -0.336 (1.98)** -0.341 (2.11)** 

𝛾Time10 0.187 (2.11)** 0.013 (0.13) -0.018 (0.18) 

𝛾ExpTime10 0.081 (0.95) 0.316 (3.30)*** 0.283 (3.14)*** 

With absolute values of robust z-statistics in brackets, * 90% confidence, ** 95% confidence, 

*** 99% confidence correspond with 2-sided critical values 1.64, 1.96, 2.58 respectively. 

 
 
Table C4.5: Estimation of Structural Equation Choice Model within Model 5a, 5b, and 5c. 

 ICLV Env Ene 

MNL 

(Model 5a) 

s.e.  ICLV Env Ene 

MXL 

(Model 5b) 

s.e ICLV Env Ene 

MXL cor 

(Model 5c) 

s.e 

ASCgeo  1.575 (5.13)*** 0.307 0.799 (3.76)*** 0.212 0.762 (3.25)*** 0.234 

ASChyd 1.507 (4.15)*** 0.363 -0.053 (0.19) 0.274 0.198 (0.69) 0.286 

ASCsol 0.769 (2.86)*** 0.269 -0.366 (1.57) 0.233 -0.168 (0.64) 0.263 

ASCpum  0.000(fixed) (fixed) 0.000 (fixed) (fixed) 0.000 (fixed) (fixed) 

𝛽invCost 

-2.3 (10.05)*** 0.229 

0.869 (5.74)*** 

{-4.150}¹ 0.151 

0.737 (4.90)*** 

{-3.495}¹ 0.15 

𝜎invCost 

  

1.053 (13.1)*** 

{1.238}¹ 0.08 

-1.014 (6.86)*** 

{0.988}¹ 0.148 

𝛽monCost 

-1.558 (10.08)*** 0.155 

0.319 (3.28)*** 

{-2.402}¹ 0.097 

0.263 (2.38)** 

{-2.426}¹ 0.11 

𝜎monCost 

  

1.056 (14.15)*** 

{0.456}¹ 0.075 

1.116 (8.34)*** 

{0.414}¹ 0.134 

𝛽repPer 0.573 (7.78)*** 0.074 0.689 (7.64)*** 0.09 0.7 (7.42)*** 0.094 

𝜎repPer   0.651 (8.70)*** 0.075 0.613 (6.82)*** 0.09 

𝛽co2 -1.864 (7.87)*** 0.237 -3.084 (8.64)*** 0.357 -2.969 (9.25)*** 0.321 

𝜎co2   2.509 (9.48)*** 0.265 2.297 (9.26)*** 0.248 

𝛽job 1.688 (6.47)*** 0.261 2.128 (6.97)*** 0.305 1.925 (6.70)*** 0.287 

𝜎job   2.481 (6.77)*** 0.366 -2.285 (6.13)*** 0.373 
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𝛽inv,co2
cov      0.577 (7.05)*** 0.082 

𝜆geo
env  0.643 (2.52)** 0.255 -1.394 (6.52)*** 0.214 -1.314 (5.67)*** 0.232 

𝜆hyd
env  1.731 (8.37)*** 0.207 0.414 (1.41) 0.294 0.456 (1.58) 0.289 

𝜆sol
env  1.338 (6.81)*** 0.197 1.145 (6.11)*** 0.188 1.186 (5.96)*** 0.199 

𝜆invCost
env  -0.39 (2.21)** 0.176 1.531 (7.66)*** 0.2 1.398 (7.04)*** 0.199 

𝜆monCost
env   0.591 (5.42)*** 0.109 0.546 (7.58)*** 0.072 0.503 (5.84)*** 0.086 

𝜆repPer
env  -0.188 (3.03)*** 0.062 -0.348 (4.63)*** 0.075 -0.31 (4.03)*** 0.077 

𝜆co2
env 1.096 (7.08)*** 0.155 1.373 (7.63)*** 0.18 1.197 (7.39)*** 0.162 

𝜆job
env -0.949 (3.90)*** 0.243 -1.209 (4.72)*** 0.256 -1.046 (3.77)*** 0.278 

𝜆geo
ene 1.696 (9.81)*** 0.173 0.211 (1.11) 0.19 0.472 (1.63) 0.29 

𝜆hyd
ene  1.394 (7.54)*** 0.185 0.879 (3.68)*** 0.239 0.974 (2.81)*** 0.346 

𝜆sol
ene -0.225 (1.33) 0.169 0.442 (2.30)** 0.192 0.425 (1.42) 0.3 

𝜆invCost
ene  -0.777 (10.38)*** 0.075 -0.182 (3.15)*** 0.058 -0.322 (3.93)*** 0.082 

𝜆monCost
ene  -1.204 (9.19)*** 0.131 0.355 (2.10)** 0.169 0.006 (0.03) 0.195 

𝜆repPer
ene  0.274 (4.98)*** 0.055 0.136 (2.38)** 0.057 0.195 (2.66)*** 0.073 

𝜆co2
ene -0.852 (7.13)*** 0.119 -0.504 (3.53)*** 0.143 -0.705 (3.84)*** 0.184 

𝜆job
ene 

0.565 (2.82)*** 0.200 -0.114 (0.57) 0.199 0.157 (0.71) 0.222 

LL 

(choice 

model 

only) 

-9564.05 -9,251.21 -9183.79 

Absolute values of robust z-statistics in brackets, * 90% confidence, ** 95% confidence, *** 99% 

confidence correspond with 2-sided critical values 1.64, 1.96, 2.58 respectively. 

¹Moments of the log-normal estimations in curly brackets, where 

𝜇𝛽 = −exp (𝜇𝑙𝑜𝑔 𝛽 +
𝜎𝑙𝑜𝑔 𝛽

2

2
), and  𝜎𝛽 = 𝜇𝛽 ∗ √exp(𝜎log𝛽

2 ) − 1 

 

Table C4.6: Estimation of Measurement Equation of Identity Latent Variable Model within Model 6a, 

6b, and 6c. 

Coal Mining Identity 

 ICLV MNL (Model 6a) ICLV MXL (Model 6b) ICLV MXL cov 

(Model 6c) 

𝜂idenHerit -0.096 (1.34) 0.021 (0.27) 0.022 (0.28) 

𝜏1
idenHerit -2.492 (19.57)*** -2.516 (19.24)*** -2.517 (19.24)*** 

𝜏2
idenHerit -1.226 (15.05)*** -1.252 (14.28)*** -1.253 (14.27)*** 

𝜏3
idenHerit 0.043 (0.62) 0.014 (0.19) 0.014 (0.18) 

𝜏4
idenHerit 1.435 (16.49)*** 1.404 (15.49)*** 1.404 (15.47)*** 

𝜂honHist 0.235 (3.11)*** 0.328 (3.90)*** 0.329 (3.91)*** 

𝜏1
honHist -4.164 (15.98)*** -4.297 (16.26)*** -4.298 (16.27)*** 

𝜏2
honHist -2.777 (19.67)*** -2.908 (18.93)*** -2.909 (18.98)*** 
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𝜏3
honHist -0.51 (6.58)*** -0.625 (6.84)*** -0.626 (6.89)*** 

𝜏4
honHist 1.451 (15.79)*** 1.357 (13.86)*** 1.356 (13.93)*** 

𝜂projImp 0.28 (3.84)*** 0.367 (4.44)*** 0.367 (4.44)*** 

𝜏1
projImp

 -4.33 (15.43)*** -4.477 (15.66)*** -4.478 (15.68)*** 

𝜏2
projImp

 -3.507 (18.28)*** -3.654 (18.12)*** -3.654 (18.18)*** 

𝜏3
projImp

 -1.463 (15.63)*** -1.599 (14.91)*** -1.599 (15.01)*** 

𝜏4
projImp

 0.649 (7.98)*** 0.539 (6.00)*** 0.539 (6.04)*** 

With absolute z-value in brackets, * 5% sig, ** 2.5% sig. *** 1% sig. 

Bolduc et al. (2005) normalisation applied. 

 
Table C4.7: Estimation of Structural Equation of Identity Latent Variable Model within Model 6a, 6b, 

and 6c 

Coal mining identity 

 Hybrid MNL Hybrid MXL Hybrid MXL with Cov 

𝛾LowInc 0.003 (0.04) -0.044 (0.55) -0.035 (0.45) 

𝛾Male -0.060 (0.83) -0.122 (1.61) -0.125 (1.65)* 

𝛾UniEd 0.091 (1.25) 0.077 (0.96) 0.083 (1.03) 

𝛾Unemp -0.132 (0.86) -0.081 (0.46) -0.074 (0.45) 

𝛾Age35 -0.393 (3.11)*** -0.398 (3.07)*** -0.404 (3.19)*** 

𝛾Age3555 -0.261 (2.44)** -0.388 (3.41)*** -0.389 (3.49)*** 

𝛾OwnAccom -0.092 (1.01) -0.165 (1.52) -0.158 (1.47) 

𝛾Time10 0.161 (1.91)* 0.03 (0.33) 0.024 (0.26) 

𝛾ExpTime10 0.056 (0.68) -0.056 (0.62) -0.058 (0.66) 

𝛾NoMines -0.002 (0.85) -0.003 (1.41) -0.004 (1.47) 

Absolute values of robust z-statistics in brackets, * 90% confidence, ** 95% confidence, *** 99% 

confidence correspond with 2-sided critical values 1.64, 1.96, 2.58 respectively. 

 
Table C4.8: Estimation of Structural Equation of Choice Model within Model 6a, 6b, and 6c 

 MNL 

(Model 1) 

ICLV iden 

(Model 6a: MNL) 

ICLV  

(Model 6b: MXL) 

ICLV Env Ene 

(All) 

(Model 6c: MXL 

corr) 

ASCgeo 0.892 (12.32)*** 0.894 (3.69)*** 0.743 (3.64)*** 0.741 (3.69)*** 

ASChyd 0.802 (9.40)*** 0.967 (7.60)*** -0.104 (0.41) -0.108 (0.43) 

ASCsol 0.717 (9.13)*** 0.064 (0.51) -0.429 (1.83)* -0.431 (1.87)* 

ASCpum 0.000 (fixed) 0.000 (fixed) 0.000 (fixed) 0.000 (fixed) 

𝛽invCost -0.956 (11.63)*** 

-1.744 (10.29)*** 

0.81 (5.50)*** 

{-4.219}¹ 

0.815 (5.79)*** 

{-4.191}¹ 

𝜎invCost  

 

-1.122 (12.84)*** 

{1.286}¹ 

-1.112 (13.35)*** 

{1.274}¹ 
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𝛽monCost -0.758 (22.03)*** 

-1.288 (10.22)*** 

0.278 (2.99)*** 

{-2.403}¹ 

0.277 (3.02)*** 

{-2.409}¹ 

𝜎monCost  

 

1.095 (12.55)*** 

{0.422}¹ 

1.097 (12.67)*** 

{0.423}¹ 

𝛽dur 0.323 (12.14)*** 0.481 (8.00)*** 0.653 (8.37)*** 0.651 (8.40)*** 

𝜎dur   0.64 (8.01)*** 0.635 (7.82)*** 

𝛽co2 -0.775 (12.14)*** -1.437 (7.99)*** -3.009 (9.95)*** -3.009 (10.07)*** 

𝜎co2   2.497 (10.65)*** 2.496 (10.73)*** 

𝛽job 0.689 (5.68)*** 1.628 (7.43)*** 1.952 (6.78)*** 1.961 (6.80)*** 

𝜎job   -2.371 (6.91)*** -2.373 (7.00)*** 

𝛽inv,job
cov     -0.058 (1.09) 

𝜆geo
iden  1.614 (10.98)*** 1.501 (7.38)*** 1.499 (7.47)*** 

𝜆hyd
iden  0.622 (4.24)*** -0.2 (0.66) -0.203 (0.68) 

𝜆sol
iden  -0.656 (4.80)*** -1.039 (5.40)*** -1.042 (5.39)*** 

𝜆invCost
iden   -0.903 (7.47)*** -1.396 (6.91)*** -1.405 (6.88)*** 

𝜆monCost
iden   -0.795 (17.13)*** -0.579 (8.53)*** -0.577 (8.56)*** 

𝜆dur
iden  0.263 (5.46)*** 0.35 (4.91)*** 0.346 (4.81)*** 

𝜆co2
iden  -1.027 (12.85)*** -1.25 (8.62)*** -1.247 (8.50)*** 

𝜆job
iden  0.791 (4.35)*** 1.008 (4.19)*** 1.018 (4.22)*** 

     

LL (choice 

model only) 

-12,611.23 -10,512,08 -9,418.16 -9,417.90 

Absolute values of robust z-statistics in brackets, * 90% confidence, ** 95% confidence, *** 99% confidence 

correspond with 2-sided critical values 1.64, 1.96, 2.58 respectively. 

¹Moments of the log-normal estimations in curly brackets, where 

𝜇𝛽 = −exp (𝜇𝑙𝑜𝑔 𝛽 +
𝜎𝑙𝑜𝑔 𝛽

2

2
), and  𝜎𝛽 = 𝜇𝛽 ∗ √exp(𝜎log𝛽

2 ) − 1 

 

 

Appendix C6: Predictions and regressions 

OLS regressions of change in probability of selecting geothermal district heating against different 

attitudinal latent variables when a carbon tax is imposed. 

 

When a carbon tax is imposed on the investment cost, 

 

DifProbGeoi = 0.0434 + 0.00181 (2.12)EnvAttitude0,i (𝐶5.1) 

 

DifProbGeoi = 0.0430 + 0.00242 (3.07)EnvAttitude1,i (𝐶5.2) 
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DifProbGeoi = 0.0440 + 0.00230 (2.91)EneAttitude0,i (𝐶5.3) 

 

DifProbGeoi = 0.0441 + 0.00172 (2.06)EneAttitude1,i (𝐶5.4) 

 

Where DifProbGeoi is the difference in the probability of a participant choosing geothermal district 

heating in the base model and the caron price prediction, EnvAttitude0,i and EnvAttitude1,i are the 

conditional environmental attitude in the base model and carbon price model respectively,  and 

EneAttitude0,i and EneAttitude1,i is the conditional energy-saving attitudes for each model. The t-

value for the coefficient is reported in brackets. All relations are significant with 95% confidence.  

 

Repeating this for model X, we find that identity is not significantly related to the change in probability 

of selecting geothermal district heating. 

 

DifProbGeoi = 0.0322 + 0.000154 (0.21)Identity0,i (𝐶5.5) 

 

DifProbGeoi = 0.0321 − 0.000293 (−0.37)Identity1,i (𝐶5.6) 

 

Where Identity0,i  and Identity1,i are the conditional coal mining identity values in the base model and 

the carbon taxation prediction. 

 

When the carbon tax is imposed on the monthly cost,  

 

DifProbGeoi = 0.0178 + 0.000542 (1.60)EnvAttitude0,i (𝐶5.7) 

 

DifProbGeoi = 0.0177 + 0.000744 (2.22)EnvAttitude1,i (𝐶5.8) 

 

DifProbGeoi = 0.0181 + 0.00114 (3.67)EneAttitude0,i (𝐶5.9) 

 

DifProbGeoi = 0.0181 + 0.00116 (3.69)EneAttitude1,i (𝐶5.10) 

 

The relationship between the difference in probability and environmental attitudes is positive yet not 

significant for environmental attitude in the base model, but is significant with 95% confidence for 

environmental attitude when calculated from conditionals in the carbon tax prediction. The relationship  

between difference in probability and energy-saving attitudes in significant for both set of conditionals.  
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Repeating this for model X, again, we find that identity is not significantly related to the change in 

probability of selecting geothermal district heating. 

 

DifProbGeoi = 0.180 + 0.000243 (0.63)Identity0,i (𝐶5.11) 

 

DifProbGeoi = 0.0322 + 0.0000986 (0.01)Identity1,i (𝐶5.12) 

 

Appendix C7: Apollo code for each of the models 

C7.1: Model 1 - MNL 

# ############################################################## # 

#### LOAD LIBRARY AND DEFINE CORE SETTINGS                    #### 

# ############################################################## # 

 

### Clear memory 

rm(list = ls()) 

 

### Load libraries 

library(apollo) 

 

### Initialise code 

apollo_initialise() 

 

### Set core controls 

apollo_control    = list( 

  modelName       = "MNL_GEMS", 

  modelDescr      = "Basic MNL model", 

  indivID         = "id",  

  outputDirectory = "output") 

 

# ############################################################## # 

#### LOAD DATA AND APPLY ANY TRANSFORMATIONS                  #### 

# ############################################################## # 

 

database = read.csv("~/Library/CloudStorage/OneDrive-

DurhamUniversity/PhD/Choice Modelling 

GEMS/Data/GEMS_full_data_clean_env_080824.csv", header=TRUE) 

 

# ############################################################## # 

#### DEFINE MODEL PARAMETERS                                  #### 

# ############################################################## # 

 

### Vector of parameters, including any that are kept fixed in  

### estimation 

 

apollo_beta=c(asc_geo   = 0, 

              asc_hyd   = 0, 

              asc_sol   = 0, 

              asc_pum   = 0, 

               

              b_invCost = 0, 
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              b_monCost = 0, 

              b_co2     = 0, 

              b_dur     = 0, 

              b_job     = 0) 

 

### Vector with names (in quotes) of parameters to be kept fixed  

### at their starting value in apollo_beta 

 

apollo_fixed = c("asc_pum") 

 

# ############################################################## # 

#### GROUP AND VALIDATE INPUTS                                #### 

# ############################################################## # 

 

apollo_inputs = apollo_validateInputs() 

 

# ############################################################## # 

#### DEFINE MODEL AND LIKELIHOOD FUNCTION                     #### 

# ############################################################## # 

 

apollo_probabilities=function(apollo_beta,  

   apollo_inputs, 

                              functionality="estimate"){ 

 

  ### Attach inputs and detach after function exit 

 

  apollo_attach(apollo_beta, apollo_inputs) 

  on.exit(apollo_detach(apollo_beta, apollo_inputs)) 

 

  ### Create list of probabilities P 

  P = list() 

   

  ### List of utilities: these must use the same names as in  

      mnl_settings, order is irrelevant 

 

  V = list() 

  V[["geo"]] = asc_geo   + b_invCost * invCost_1 + b_monCost *  

               monCost_1 + b_dur * dur_1 + b_co2 * co2_1 + b_job *   

               job_1 

  V[["hyd"]] = asc_hyd   + b_invCost * invCost_2 + b_monCost *  

               monCost_2 + b_dur * dur_2 + b_co2 * co2_2 + b_job *  

               job_2 

  V[["sol"]] = asc_sol   + b_invCost * invCost_3 + b_monCost *  

               monCost_3 + b_dur * dur_3 + b_co2 * co2_3 + b_job *  

               job_3   

  V[["pum"]] = asc_pum   + b_invCost * invCost_4 + b_monCost *  

               monCost_4 + b_dur * dur_4 + b_co2 * co2_4 + b_job * 

               job_4   

   

  ### Define settings for MNL model component 

  mnl_settings    = list( 

    alternatives  = c(geo=1, hyd=2, sol=3, pum=4),  

    choiceVar     = choice, 

    utilities     = V) 

   

  ### Compute probabilities using MNL model 
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  P[["model"]] = apollo_mnl(mnl_settings, functionality) 

 

  ### Take product across observation for same individual 

  P = apollo_panelProd(P, apollo_inputs, functionality) 

 

  ### Prepare and return outputs of function 

  P = apollo_prepareProb(P, apollo_inputs, functionality) 

  return(P)} 

# ############################################################## # 

#### MODEL ESTIMATION                                         #### 

# ############################################################## # 

 

model = apollo_estimate(apollo_beta,  

                        apollo_fixed, 

                        apollo_probabilities, 

                        apollo_inputs) 

 

# ############################################################## # 

#### MODEL OUTPUTS                                            #### 

# ############################################################## # 

 

apollo_modelOutput(model) 

apollo_saveOutput(model) 

 

 

C7.2: Model 2 - MXL 

# ############################################################## # 

#### LOAD LIBRARY AND DEFINE CORE SETTINGS                    #### 

# ############################################################## # 

 

### Clear memory 

rm(list = ls()) 

 

### Load Apollo library 

library(apollo) 

 

### Initialise code 

apollo_initialise() 

 

### Set core controls 

apollo_control    = list( 

  modelName       = "MMNL_GEMS", 

  modelDescr      = "MMNL model with normal distributions for all  

                     attributes on GEMS data", 

  indivID         = "id",  

  outputDirectory = "output") 

 

# ############################################################## # 

#### LOAD DATA AND APPLY ANY TRANSFORMATIONS                  #### 

# ############################################################## # 

 

database = read.csv("~/Library/CloudStorage/OneDrive-

DurhamUniversity/PhD/Choice Modelling 

GEMS/Data/GEMS_full_data_clean_env_080824.csv", header=TRUE) 
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# ############################################################## # 

#### DEFINE MODEL PARAMETERS                                  #### 

# ############################################################## # 

 

### Vector of parameters, including any that are kept fixed in  

### estimation 

 

apollo_beta = c(asc_geo        = 0, 

                asc_hyd        = 0, 

                asc_sol        = 0, 

                asc_pum        = 0, 

                b_invCost_mu   = -10, 

                b_invCost_sig  = 0, 

                b_monCost_mu   = -10, 

                b_monCost_sig  = 0, 

                b_dur_mu       = 0, 

                b_dur_sig      = 0, 

                b_co2_mu       = 0, 

                b_co2_sig      = 0, 

                b_job_mu       = 0, 

                b_job_sig      = 0) 

 

### Vector with names (in quotes) of parameters to be kept fixed  

### at their starting value in apollo_beta 

 

apollo_fixed = c("asc_pum") 

 

# ############################################################## # 

#### DEFINE RANDOM COMPONENTS                                 #### 

# ############################################################## # 

 

### Set parameters for generating draws 

apollo_draws     = list( 

  interDrawsType = "halton", 

  interNDraws    = 1000, 

  interNormDraws = c("draws_invCost", 

                     "draws_monCost",  

                     "draws_dur",  

                     "draws_co2",  

                     "draws_job")) 

 

### Create random parameters 

apollo_randCoeff = function(apollo_beta, apollo_inputs){ 

  randcoeff = list() 

 

  randcoeff[["b_invCost"]] = -exp(b_invCost_mu + b_invCost_sig *  

                       draws_invCost)  

  randcoeff[["b_monCost"]] = -exp(b_monCost_mu + b_monCost_sig *  

                                  draws_monCost) 

  randcoeff[["b_dur"]]     = b_dur_mu + b_dur_sig * draws_dur 

  randcoeff[["b_co2"]]     = b_co2_mu + b_co2_sig * draws_co2 

  randcoeff[["b_job"]]     = b_job_mu + b_job_sig * draws_job 

   

  return(randcoeff)} 
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# ############################################################## # 

#### GROUP AND VALIDATE INPUTS                                #### 

# ############################################################## # 

 

apollo_inputs = apollo_validateInputs() 

 

# ############################################################## # 

#### DEFINE MODEL AND LIKELIHOOD FUNCTION                     #### 

# ############################################################## # 

 

 

apollo_probabilities = function(apollo_beta,  

                                apollo_inputs,  

                                functionality="estimate"){ 

   

  ### Function initialisation 

  ### Attach inputs and detach after function exit 

  apollo_attach(apollo_beta, apollo_inputs) 

  on.exit(apollo_detach(apollo_beta, apollo_inputs)) 

   

  ### Create list of probabilities P 

  P = list() 

   

  ### List of utilities: these must use the same names as in  

  ### mnl_settings, order is irrelevant 

 

  V = list() 

  V[["geo"]] = (asc_geo  + b_invCost * invCost_1 + b_monCost *  

               monCost_1 + b_dur * dur_1 + b_co2 * co2_1 + b_job *  

               job_1) 

  V[["hyd"]] = (asc_hyd  + b_invCost * invCost_2 + b_monCost *  

               monCost_2 + b_dur * dur_2 + b_co2 * co2_2 + b_job *  

               job_2) 

  V[["sol"]] = (asc_sol  + b_invCost * invCost_3 + b_monCost *  

               monCost_3 + b_dur * dur_3 + b_co2 * co2_3 + b_job *  

               job_3) 

  V[["pum"]] = (asc_pum  + b_invCost * invCost_4 + b_monCost *  

               monCost_4 + b_dur * dur_4 + b_co2 * co2_4 + b_job *  

               job_4) 

   

  ### Define settings for MNL model component 

  mnl_settings    = list( 

    alternatives  = c(geo=1, hyd=2, sol=3, pum=4), 

    choiceVar     = choice, 

    utilities     = V ) 

   

  ### Compute probabilities using MNL model 

  P[["model"]] = apollo_mnl(mnl_settings, functionality) 

   

  ### Take product across observation for same individual 

  P = apollo_panelProd(P, apollo_inputs, functionality) 

   

  ### Average across inter-individual draws 

  P = apollo_avgInterDraws(P, apollo_inputs, functionality) 

   

  ### Prepare and return outputs of function 
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  P = apollo_prepareProb(P, apollo_inputs, functionality) 

  return(P)} 

 

# ############################################################## # 

#### MODEL ESTIMATION                                         #### 

# ############################################################## # 

 

model = apollo_estimate(apollo_beta,  

                        apollo_fixed, 

                        apollo_probabilities,  

                        apollo_inputs) 

 

# ############################################################## # 

#### MODEL OUTPUTS                                            #### 

# ############################################################## # 

 

apollo_modelOutput(model) 

apollo_saveOutput(model) 

 

C7.3: Model 3 – MNL with Socio-demographics 

 
# ############################################################## # 

#### LOAD LIBRARY AND DEFINE CORE SETTINGS                    #### 

# ############################################################## # 

 

### Clear memory 

rm(list = ls()) 

 

### Load libraries 

library(apollo) 

 

### Initialise code 

apollo_initialise() 

 

### Set core controls 

apollo_control    = list( 

  modelName       = "MNL_sociodemographics_GEMS_130924", 

  modelDescr      = "Sociodemographics MNL model", 

  indivID         = "id",  

  outputDirectory = "output") 

 

# ############################################################## # 

#### LOAD DATA AND APPLY ANY TRANSFORMATIONS                  #### 

# ############################################################## # 

 

### Loading data from package 

database = read.csv("~/Library/CloudStorage/OneDrive-

DurhamUniversity/PhD/Choice Modelling 

GEMS/Data/GEMS_full_data_clean_100924.csv", header=TRUE) 

 

# ############################################################## # 

#### DEFINE MODEL PARAMETERS                                  #### 

# ############################################################## # 
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### Vector of parameters, including any that are kept fixed in  

### estimation 

 

apollo_beta = c(asc_geo                 = 0, 

                asc_hyd                 = 0, 

                asc_sol                 = 0, 

                asc_pum                 = 0, 

               

                b_invCost               = 0, 

                b_monCost               = 0, 

                b_co2                   = 0, 

                b_dur                   = 0, 

                b_job                   = 0, 

               

                a_invCost_low_income    = 0, 

                a_monCost_low_income    = 0, 

                a_dur_low_income        = 0, 

                a_co2_low_income        = 0, 

                a_job_low_income        = 0, 

  

                a_invCost_own_accom     = 0, 

                a_monCost_own_accom     = 0, 

                a_dur_own_accom         = 0, 

                a_co2_own_accom         = 0, 

                a_job_own_accom         = 0, 

                

                a_invCost_time10        = 0, 

                a_monCost_time10        = 0, 

                a_dur_time10            = 0, 

                a_co2_time10            = 0, 

                a_job_time10            = 0, 

               

                a_invCost_exptime10     = 0, 

                a_monCost_exptime10     = 0, 

                a_dur_exptime10         = 0, 

                a_co2_exptime10         = 0, 

                a_job_exptime10         = 0, 

             

                a_invCost_male          = 0, 

                a_monCost_male          = 0, 

                a_dur_male              = 0, 

                a_co2_male              = 0, 

                a_job_male              = 0, 

             

                a_invCost_uni_ed        = 0, 

                a_monCost_uni_ed        = 0, 

                a_dur_uni_ed            = 0, 

                a_co2_uni_ed            = 0, 

                a_job_uni_ed            = 0, 

 

                a_invCost_emp_typ_unemp = 0, 

                a_monCost_emp_typ_unemp = 0, 

                a_dur_emp_typ_unemp     = 0, 

                a_co2_emp_typ_unemp     = 0, 

                a_job_emp_typ_unemp     = 0, 
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                a_invCost_age35         = 0, 

                a_monCost_age35         = 0, 

                a_dur_age35             = 0, 

                a_co2_age35             = 0, 

                a_job_age35             = 0, 

                         

                a_invCost_age3555       = 0, 

                a_monCost_age3555       = 0, 

                a_dur_age3555           = 0, 

                a_co2_age3555           = 0, 

                a_job_age3555           = 0) 

 

### Vector with names (in quotes) of parameters to be kept fixed  

### at their starting value in apollo_beta 

 

apollo_fixed = c("asc_pum") 

 

# ############################################################## # 

#### GROUP AND VALIDATE INPUTS                                #### 

# ############################################################## # 

 

apollo_inputs = apollo_validateInputs() 

 

# ############################################################## # 

#### DEFINE MODEL AND LIKELIHOOD FUNCTION                     #### 

# ############################################################## # 

 

apollo_probabilities = function(apollo_beta,  

                                apollo_inputs,  

                                functionality="estimate"){ 

 

  ### Attach inputs and detach after function exit 

  apollo_attach(apollo_beta, apollo_inputs) 

  on.exit(apollo_detach(apollo_beta, apollo_inputs)) 

 

  ### Create list of probabilities P 

  P = list() 

 

  b_invCost_shift = (b_invCost  

                  +  a_invCost_low_income    * low_income 

                  +  a_invCost_male          * male 

                  +  a_invCost_own_accom     * own_accom 

                  +  a_invCost_time10        * time_accom10  

                  +  a_invCost_exptime10     * exp_time_accom10 

                  +  a_invCost_uni_ed        * uni_ed 

                  +  a_invCost_emp_typ_unemp * emp_typ_unemp 

                  +  a_invCost_age35         * age35           

                  +  a_invCost_age3555       * age3555) 

 

  b_monCost_shift = (b_monCost  

                  +  a_monCost_low_income    * low_income  

                  +  a_monCost_male          * male 

                  +  a_monCost_own_accom     * own_accom 

                  +  a_monCost_time10        * time_accom10  

                  +  a_monCost_exptime10     * exp_time_accom10 
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                  +  a_monCost_uni_ed        * uni_ed 

                  +  a_monCost_emp_typ_unemp * emp_typ_unemp 

                  +  a_monCost_age35         * age35           

                  +  a_monCost_age3555       * age3555) 

  b_dur_shift     = (b_dur  

                  +  a_dur_low_income        * low_income  

                  +  a_dur_male              * male 

                  +  a_dur_own_accom         * own_accom 

                  +  a_dur_time10            * time_accom10  

                  +  a_dur_exptime10         * exp_time_accom10 

                  +  a_dur_uni_ed            * uni_ed 

                  +  a_dur_emp_typ_unemp     * emp_typ_unemp 

                  +  a_dur_age35             * age35           

                  +  a_dur_age3555           * age3555) 

  b_co2_shift     = (b_co2  

                  +  a_co2_low_income        * low_income  

                  +  a_co2_male              * male 

                  +  a_co2_own_accom         * own_accom 

                  +  a_co2_time10            * time_accom10  

                  +  a_co2_exptime10         * exp_time_accom10 

                  +  a_co2_uni_ed            * uni_ed 

                  +  a_co2_emp_typ_unemp     * emp_typ_unemp 

                  +  a_co2_age35             * age35           

                  +  a_co2_age3555           * age3555) 

  b_job_shift     = (b_job  

                  + a_job_low_income         * low_income  

                  + a_job_male               * male 

                  + a_job_own_accom          * own_accom 

                  + a_job_time10             * time_accom10  

                  + a_job_exptime10          * exp_time_accom10 

                  + a_job_uni_ed             * uni_ed 

                  + a_job_emp_typ_unemp      * emp_typ_unemp 

                  + a_job_age35              * age35           

                  + a_job_age3555            * age3555) 

   

  ### List of utilities: these must use the same names as in 

  ### mnl_settings, order is irrelevant 

 

  V = list() 

  V[["geo"]] = (asc_geo  + b_invCost_shift * invCost_1 +  

                b_monCost_shift * monCost_1 + b_dur_shift * dur_1  

                + b_co2_shift * co2_1 + b_job_shift * job_1) 

  V[["hyd"]] = (asc_hyd  + b_invCost_shift * invCost_2 +             

                b_monCost_shift * monCost_2 + b_dur_shift * dur_2  

                + b_co2_shift * co2_2 + b_job_shift * job_2) 

  V[["sol"]] = (asc_sol  + b_invCost_shift * invCost_3 +  

                b_monCost_shift * monCost_3 + b_dur_shift * dur_3  

                + b_co2_shift * co2_3 + b_job_shift * job_3) 

  V[["pum"]] = (asc_pum  + b_invCost_shift * invCost_4 +  

                b_monCost_shift * monCost_4 + b_dur_shift * dur_4  

                + b_co2_shift * co2_4 + b_job_shift * job_4)   

   

  ### Define settings for MNL model component 

  mnl_settings    = list( 

    alternatives  = c(geo=1, hyd=2, sol=3, pum=4),  

    choiceVar     = choice, 
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    utilities     = V) 

   

  ### Compute probabilities using MNL model 

  P[["model"]] = apollo_mnl(mnl_settings, functionality) 

 

  ### Take product across observation for same individual 

  P = apollo_panelProd(P, apollo_inputs, functionality) 

 

  ### Prepare and return outputs of function 

  P = apollo_prepareProb(P, apollo_inputs, functionality) 

  return(P)} 

# ############################################################## # 

#### MODEL ESTIMATION                                         #### 

# ############################################################## # 

 

model = apollo_estimate(apollo_beta,  

                        apollo_fixed,  

                        apollo_probabilities,  

                        apollo_inputs,  

                        estimate_settings) 

 

# ############################################################## # 

#### MODEL OUTPUTS                                              ## 

# ############################################################## # 

 

apollo_modelOutput(model) 

apollo_saveOutput(model) 

 

C7.4: Model 4 – MXL with Socio-demographics 

# ############################################################## # 

#### LOAD LIBRARY AND DEFINE CORE SETTINGS                    #### 

# ############################################################## # 

 

### Clear memory 

rm(list = ls()) 

 

### Load libraries 

library(apollo) 

 

### Initialise code 

apollo_initialise() 

 

### Set core controls 

apollo_control    = list( 

  modelName       = "MNL_sociodemographics_GEMS", 

  modelDescr      = "Sociodemographics MNL model", 

  indivID         = "id",  

  outputDirectory = "output") 

 

# ############################################################## # 

#### LOAD DATA AND APPLY ANY TRANSFORMATIONS                  #### 

# ############################################################## # 
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database = read.csv("~/Library/CloudStorage/OneDrive-

DurhamUniversity/PhD/Choice Modelling 

GEMS/Data/GEMS_full_data_clean_100924.csv", header=TRUE) 

 

# ############################################################## # 

#### DEFINE MODEL PARAMETERS                                  #### 

# ############################################################## # 

 

### Vector of parameters, including any that are kept fixed in  

### estimation 

 

apollo_beta=c(asc_geo                 = 0, 

              asc_hyd                 = 0, 

              asc_sol                 = 0, 

              asc_pum                 = 0, 

               

              b_invCost               = 0, 

              b_monCost               = 0, 

              b_co2                   = 0, 

              b_dur                   = 0, 

              b_job                   = 0, 

               

              a_invCost_low_income    = 0, 

              a_monCost_low_income    = 0, 

              a_dur_low_income        = 0, 

              a_co2_low_income        = 0, 

              a_job_low_income        = 0, 

               

              a_invCost_own_accom     = 0, 

              a_monCost_own_accom     = 0, 

              a_dur_own_accom         = 0, 

              a_co2_own_accom         = 0, 

              a_job_own_accom         = 0, 

               

              a_invCost_male          = 0, 

              a_monCost_male          = 0, 

              a_dur_male              = 0, 

              a_co2_male              = 0, 

              a_job_male              = 0, 

             

              a_invCost_uni_ed        = 0, 

              a_monCost_uni_ed        = 0, 

              a_dur_uni_ed            = 0, 

              a_co2_uni_ed            = 0, 

              a_job_uni_ed            = 0, 

             

              a_invCost_emp_typ_unemp = 0, 

              a_monCost_emp_typ_unemp = 0, 

              a_dur_emp_typ_unemp     = 0, 

              a_co2_emp_typ_unemp     = 0, 

              a_job_emp_typ_unemp     = 0, 

               

              a_invCost_age35         = 0, 

              a_monCost_age35         = 0, 

              a_dur_age35             = 0, 

              a_co2_age35             = 0, 
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              a_job_age35             = 0, 

         

              a_invCost_age3555       = 0, 

              a_monCost_age3555       = 0, 

              a_dur_age3555           = 0, 

              a_co2_age3555           = 0, 

              a_job_age3555           = 0 ) 

 

### Vector with names (in quotes) of parameters to be kept fixed  

### at their starting value in apollo_beta 

 

apollo_fixed = c("asc_pum") 

 

# ############################################################## # 

#### GROUP AND VALIDATE INPUTS                                #### 

# ############################################################## # 

 

apollo_inputs = apollo_validateInputs() 

 

# ############################################################## # 

#### DEFINE MODEL AND LIKELIHOOD FUNCTION                     #### 

# ############################################################## # 

 

apollo_probabilities = function(apollo_beta,  

                     apollo_inputs,  

                                functionality="estimate"){ 

 

  ### Attach inputs and detach after function exit 

 

  apollo_attach(apollo_beta, apollo_inputs) 

  on.exit(apollo_detach(apollo_beta, apollo_inputs)) 

 

  ### Create list of probabilities P 

  P = list() 

   

  b_invCost_shift = (b_invCost  

                  +  a_invCost_low_income    * low_income  

                  +  a_invCost_own_accom     * own_accom 

                  +  a_invCost_male          * male 

                  +  a_invCost_uni_ed        * uni_ed 

                  +  a_invCost_emp_typ_unemp * emp_typ_unemp 

                  +  a_invCost_age35         * age35           

                  +  a_invCost_age3555       * age3555 ) 

  b_monCost_shift = (b_monCost  

                  +  a_monCost_low_income.   * low_income  

                  +  a_monCost_own_accom     * own_accom 

                  +  a_monCost_male          * male 

                  +  a_monCost_uni_ed        * uni_ed 

                  +  a_monCost_emp_typ_unemp * emp_typ_unemp 

                  +  a_monCost_age35         * age35           

                  +  a_monCost_age3555       * age3555 ) 

  b_dur_shift     = (b_dur  

                  +  a_dur_low_income        * low_income  

                  +  a_dur_own_accom         * own_accom 

                  +  a_dur_male              * male 

                  +  a_dur_uni_ed            * uni_ed 
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                  +  a_dur_emp_typ_unemp     * emp_typ_unemp 

                  +  a_dur_age35             * age35           

                  +  a_dur_age3555           * age3555 ) 

  b_co2_shift     = (b_co2  

                  +  a_co2_low_income        * low_income  

                  +  a_co2_own_accom         * own_accom 

                  +  a_co2_male              * male 

                  +  a_co2_uni_ed            * uni_ed 

                  +  a_co2_emp_typ_unemp     * emp_typ_unemp 

                  +  a_co2_age35             * age35      

                  +  a_co2_age3555           * age3555 ) 

  b_job_shift     = (b_job  

                  +  a_job_low_income        * low_income  

                  +  a_job_own_accom         * own_accom 

                  +  a_job_male              * male 

                  +  a_job_uni_ed            * uni_ed 

                  +  a_job_emp_typ_unemp     * emp_typ_unemp 

                  +  a_job_age35             * age35           

                  +  a_job_age3555           * age3555 ) 

   

  ### List of utilities: these must use the same names as in  

  ### mnl_settings, order is irrelevant 

 

  V = list() 

  V[["geo"]] = (asc_geo + b_invCost_shift * invCost_1 +  

                b_monCost_shift * monCost_1 + b_dur_shift * dur_1  

                + b_co2_shift * co2_1 + b_job_shift * job_1) 

  V[["hyd"]] = (asc_hyd + b_invCost_shift * invCost_2 +  

                b_monCost_shift * monCost_2 + b_dur_shift * dur_2 

                + b_co2_shift * co2_2 + b_job_shift * job_2) 

  V[["sol"]] = (asc_sol + b_invCost_shift * invCost_3 +  

                b_monCost_shift * monCost_3 + b_dur_shift * dur_3  

                + b_co2_shift * co2_3 + b_job_shift * job_3) 

  V[["pum"]] = (asc_pum + b_invCost_shift * invCost_4 +  

                b_monCost_shift * monCost_4 + b_dur_shift * dur_4 

                + b_co2_shift * co2_4 + b_job_shift * job_4)   

   

  ### Define settings for MNL model component 

 

  mnl_settings    = list( 

    alternatives  = c(geo=1, hyd=2, sol=3, pum=4),  

    choiceVar     = choice, 

    utilities     = V ) 

   

  ### Compute probabilities using MNL model 

  P[["model"]] = apollo_mnl(mnl_settings, functionality) 

 

  ### Take product across observation for same individual 

  P = apollo_panelProd(P, apollo_inputs, functionality) 

 

  ### Prepare and return outputs of function 

  P = apollo_prepareProb(P, apollo_inputs, functionality) 

  return(P)} 

 

# ############################################################## # 

#### MODEL ESTIMATION                                         #### 
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# ############################################################## # 

 

model = apollo_estimate(apollo_beta,  

                        apollo_fixed,  

                        apollo_probabilities,  

                        apollo_inputs,  

                        estimate_settings) 

 

# ###############################################################  

#### MODEL OUTPUTS                                            #### 

# ############################################################## # 

 

apollo_modelOutput(model) 

apollo_saveOutput(model) 

 

C7.5: Model 5a – ICLV with Environmental and Energy Attitudes 

# ###############################################################  

#### LOAD LIBRARY AND DEFINE CORE SETTINGS                   #### 

#################################################################  

 

### Clear memory 

rm(list = ls()) 

 

### Load Apollo library 

library(apollo) 

 

### Initialise code 

apollo_initialise() 

 

### Set core controls 

apollo_control    = list( 

  modelName       = "Hybrid_with_OL_env_ene_161024", 

  modelDescr      = "Hybrid choice model on GEMS data, using          

                     ordered measurement model for identity and  

                     environmental preference indicators", 

  indivID         = "id", 

  nCores          = 10,  

  outputDirectory = "output") 

 

# ###############################################################  

#### DEFINE MODEL PARAMETERS                                 #### 

#################################################################  

 

### Vector of parameters, including any that are kept fixed in  

### estimation 

 

apollo_beta = c(asc_geo                 = 0.89, 

                asc_hyd                 = 0.80, 

                asc_sol                 = 0.72, 

                asc_pum                 = 0, 

                b_invCost               = -0.9555,  

                b_monCost               = -0.7578,  

                b_dur                   = 0.3233,  
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                b_co2                   = -0.7750,  

                b_job                   = 0.6889,  

                 

                lambda_env_geo          = 0, 

                lambda_env_hyd          = 0, 

                lambda_env_sol          = 0, 

                lambda_env_inv          = 0, 

                lambda_env_mon          = 0, 

                lambda_env_dur          = 0, 

                lambda_env_co2          = 0,  

                lambda_env_job          = 0, 

                 

                lambda_ene_geo          = 0, 

                lambda_ene_hyd          = 0, 

                lambda_ene_sol          = 0, 

                lambda_ene_mon          = 0, 

                lambda_ene_inv          = 0, 

                lambda_ene_dur          = 0, 

                lambda_ene_co2          = 0, 

                lambda_ene_job          = 0, 

                

                gamma_ev_low_income     = 0, 

                gamma_ev_own_accom      = 0, 

                gamma_ev_time10         = 0, 

                gamma_ev_exptime10      = 0, 

                gamma_ev_male           = 0, 

                gamma_ev_uni_ed         = 0, 

                gamma_ev_unemp          = 0, 

                gamma_ev_age35          = 0, 

                gamma_ev_age3555        = 0, 

                gamma_ev_heat_renew     = 0, 

                 

                gamma_en_low_income     = 0, 

                gamma_en_own_accom      = 0, 

                gamma_en_time10         = 0, 

                gamma_en_exptime10      = 0, 

                gamma_en_male           = 0, 

                gamma_en_uni_ed         = 0, 

                gamma_en_unemp          = 0, 

                gamma_en_age35          = 0, 

                gamma_en_age3555        = 0, 

                gamma_en_heat_renew     = 0, 

                 

                zeta_conc_env           = 0, 

                tau_conc_env_1          = -1, 

                tau_conc_env_2          = -0.5, 

                tau_conc_env_3          = 0.5, 

                tau_conc_env_4          = 1, 

                zeta_change_life        = 0, 

                tau_change_life_1       = -1, 

                tau_change_life_2       = -0.5, 

                tau_change_life_3       = 0.5, 

                tau_change_life_4       = 1, 

                zeta_should_change      = 0, 

                tau_should_change_1     = -1, 

                tau_should_change_2     = -0.5, 
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                tau_should_change_3     = 0.5, 

                tau_should_change_4     = 1, 

                zeta_adj_therm_know     = 0, 

                tau_adj_therm_know_1    = -1, 

                tau_adj_therm_know_2    = -0.5, 

                tau_adj_therm_know_3    = 0.5, 

                tau_adj_therm_know_4    = 1, 

                zeta_adj_therm_have     = 0, 

                tau_adj_therm_have_1    = -1, 

                tau_adj_therm_have_2    = -0.5, 

                tau_adj_therm_have_3    = 0.5, 

                tau_adj_therm_have_4    = 1, 

                zeta_red_energy         = 0, 

                tau_red_energy_1        = -1, 

                tau_red_energy_2        = -0.5, 

                tau_red_energy_3        = 0.5, 

                tau_red_energy_4        = 1, 

                zeta_energy_dm          = 0, 

                tau_energy_dm_1         = -1, 

                tau_energy_dm_2         = -0.5, 

                tau_energy_dm_3         = 0.5, 

                tau_energy_dm_4         = 1) 

 

### Vector with names (in quotes) of parameters to be kept fixed   

### at their starting value in apollo_beta 

 

apollo_fixed = c("asc_pum") 

 

### Ben-Akiva normalisation to scale the latent variable set  

### coefficient on one of the indicators to 1 

 

# ###############################################################  

#### DEFINE RANDOM COMPONENTS                                #### 

################################################################# 

 

### Set parameters for generating draws 

apollo_draws     = list( 

  interDrawsType = "sobolFaureTezuka" 

  interNDraws    = 2000,           

  interUnifDraws = c(),       

  interNormDraws = c("eta2", "eta3"),  

   

  intraDrawsType = "", 

  intraNDraws    = 0,           

  intraUnifDraws = c(),      

  intraNormDraws = c() ) 

 

### Create random parameters 

 

apollo_randCoeff=function(apollo_beta, apollo_inputs){ 

  randcoeff = list() 

   

  randcoeff[["Env_Attitude"]]=(gamma_ev_low_income* low_income  

                             + gamma_ev_own_accom * own_accom 

                             + gamma_ev_time10    * time_accom10 

                             + gamma_ev_exptime10 * exp_time_accom10 
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                             + gamma_ev_male      * male 

                             + gamma_ev_uni_ed    * uni_ed  

                             + gamma_ev_unemp     * emp_typ_unemp 

                             + gamma_ev_age35     * age35  

                             + gamma_ev_age3555   * age3555  

                             + gamma_ev_heat_renew* heat_renew  

                             + eta2) 

   

  randcoeff[["Ene_Attitude"]]=(gamma_en_low_income* low_income  

                             + gamma_en_own_accom * own_accom 

                             + gamma_en_time10    * time_accom10 

                             + gamma_en_exptime10 * exp_time_accom10 

                             + gamma_en_male      * male 

                             + gamma_en_uni_ed    * uni_ed  

                             + gamma_en_unemp     * emp_typ_unemp 

                             + gamma_en_age35     * age35  

                             + gamma_en_age3555   * age3555  

                             + gamma_en_heat_renew* heat_renew 

                             + eta3) 

  return(randcoeff) } 

 

# ###############################################################  

#### GROUP AND VALIDATE INPUTS                               #### 

################################################################# 

 

apollo_inputs = apollo_validateInputs() 

 

# ###############################################################  

#### DEFINE MODEL AND LIKELIHOOD FUNCTION                    #### 

#################################################################  

 

apollo_probabilities = function(apollo_beta,  

                                apollo_inputs,  

                                functionality="estimate"){ 

   

  ### Attach inputs and detach after function exit 

  apollo_attach(apollo_beta, apollo_inputs) 

  on.exit(apollo_detach(apollo_beta, apollo_inputs)) 

   

  ### Create list of probabilities P 

  P = list() 

   

  ### Likelihood of indicators 

  ol_settings4 = list(outcomeOrdered= conc_env,  

                 V                  = zeta_conc_env*Env_Attitude, 

                 tau                = list(tau_conc_env_1,  

                                            tau_conc_env_2,  

                                            tau_conc_env_3,  

                                            tau_conc_env_4), 

                 rows               = (choice_no==1), 

                 componentName      = "indic_conc_env") 

   

  ol_settings5 = list(outcomeOrdered = change_life,  

                 V                = zeta_change_life*Env_Attitude,  

                 tau              = list(tau_change_life_1,  

                                         tau_change_life_2,  
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                                         tau_change_life_3,  

                                         tau_change_life_4), 

                 rows             = (choice_no==1), 

                 componentName    = "indic_change_life") 

   

  ol_settings6 = list(outcomeOrdered = should_change,  

                 V              = zeta_should_change*Env_Attitude,  

                 tau            = list(tau_should_change_1,  

                                       tau_should_change_2,  

                                       tau_should_change_3,  

                                       tau_should_change_4), 

                 rows           = (choice_no==1), 

                 componentName  = "indic_should_change") 

   

   

  ol_settings7 = list(outcomeOrdered = adj_therm_know,  

                 V            = zeta_adj_therm_know*Ene_Attitude,  

                 tau          = list(tau_adj_therm_know_1,  

                                     tau_adj_therm_know_2,  

                                     tau_adj_therm_know_3,  

                                     tau_adj_therm_know_4), 

                 rows         = (choice_no==1), 

                 componentName= "indic_adj_therm_know") 

   

  ol_settings8 = list(outcomeOrdered = adj_therm_have,  

                 V             = zeta_adj_therm_have*Ene_Attitude,  

                 tau           = list(tau_adj_therm_have_1,  

                                      tau_adj_therm_have_2,  

                                      tau_adj_therm_have_3,  

                                      tau_adj_therm_have_4), 

                 rows          = (choice_no==1), 

                 componentName = "indic_adj_therm_have") 

   

  ol_settings9 = list(outcomeOrdered = red_energy,  

                 V                 = zeta_red_energy*Ene_Attitude,  

                 tau               = list(tau_red_energy_1,  

                                          tau_red_energy_2,  

                                          tau_red_energy_3,  

                                          tau_red_energy_4), 

                 rows              = (choice_no==1), 

                 componentName     = "indic_red_energy") 

   

  ol_settings10 = list(outcomeOrdered = energy_dm,  

                  V                 = zeta_energy_dm*Ene_Attitude,  

                  tau               = list(tau_energy_dm_1,  

                                           tau_energy_dm_2,  

                                           tau_energy_dm_3,  

                                           tau_energy_dm_4), 

                  rows              = (choice_no==1), 

                  componentName     = "indic_energy_dm") 

 

P[["indic_conc_env"]]= apollo_ol(ol_settings4, functionality)  

P[["indic_change_life"]]= apollo_ol(ol_settings5, functionality) 

P[["indic_should_change"]]= apollo_ol(ol_settings6, functionality) 

P[["indic_adj_therm_know"]]= apollo_ol(ol_settings7,  

                                       functionality) 
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P[["indic_adj_therm_have"]]= apollo_ol(ol_settings8,  

                                       functionality) 

P[["indic_red_energy"]]= apollo_ol(ol_settings9, functionality) 

P[["indic_energy_dm"]] = apollo_ol(ol_settings10, functionality)  

   

   

  ### Create alternative specific constants and coefficients using 

interactions with latent variables 

   

asc_geo_value   = (asc_geo + lambda_env_geo * Env_Attitude +           

                  lambda_ene_geo * Ene_Attitude) 

asc_hyd_value   = (asc_hyd + lambda_env_hyd * Env_Attitude +  

                  lambda_ene_hyd * Ene_Attitude) 

asc_sol_value   = (asc_sol + lambda_env_sol * Env_Attitude +  

                  lambda_ene_sol * Ene_Attitude) 

   

b_invCost_value = (b_invCost + lambda_env_inv * Env_Attitude +  

                  lambda_ene_inv*Ene_Attitude) 

b_monCost_value = (b_monCost + lambda_env_mon * Env_Attitude +  

                  lambda_ene_mon*Ene_Attitude) 

b_dur_value     = (b_dur + lambda_env_dur * Env_Attitude +                    

                  lambda_ene_dur*Ene_Attitude) 

b_co2_value     = (b_co2 + lambda_env_co2 * Env_Attitude +  

                  lambda_ene_co2*Ene_Attitude) 

b_job_value     = (b_job + lambda_env_job * Env_Attitude +  

                  lambda_ene_job * Ene_Attitude) 

   

  ### Likelihood of choices 

  ### List of utilities: these must use the same names as in  

  ### mnl_settings, order is irrelevant 

   

V = list() 

V[["geo"]] = (asc_geo_value + b_invCost_value * InvCost_1 +  

              b_monCost_value * MonCost_1 + b_dur_value * Dur_1 +  

              b_co2_value * CO2_1 + b_job_value * Job_1 ) 

V[["hyd"]] = (asc_hyd_value + b_invCost_value * InvCost_2 +  

              b_monCost_value * MonCost_2 + b_dur_value * Dur_2 +  

              b_co2_value * CO2_2 + b_job_value * Job_2 ) 

V[["sol"]] = (asc_sol_value + b_invCost_value * InvCost_3 +  

              b_monCost_value * MonCost_3 + b_dur_value * Dur_3 +  

              b_co2_value * CO2_3 + b_job_value * Job_3 ) 

V[["pum"]] = (asc_pum       + b_invCost_value * InvCost_4 +  

              b_monCost_value * MonCost_4 + b_dur_value * Dur_4 +                

              b_co2_value * CO2_4 + b_job_value * Job_4 ) 

   

  ### Define settings for MNL model component 

  mnl_settings    = list( 

    alternatives  = c(geo=1, hyd=2, sol=3, pum=4), 

    avail         = list(geo=1, hyd=1, sol=1, pum=1), 

    choiceVar     = choice, 

    utilities     = V, 

    component     = "choice" ) 

   

  ### Compute probabilities for MNL model component 

  P[["choice"]] = apollo_mnl(mnl_settings, functionality) 
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  ### Likelihood of the whole model 

  P = apollo_combineModels(P, apollo_inputs, functionality) 

   

  ### Take product across observation for same individual 

  P = apollo_panelProd(P, apollo_inputs, functionality) 

   

  ### Average across inter-individual draws 

  P = apollo_avgInterDraws(P, apollo_inputs, functionality) 

   

  ### Prepare and return outputs of function 

  P = apollo_prepareProb(P, apollo_inputs, functionality) 

  return(P) } 

 

#apollo_beta=apollo_searchStart(apollo_beta, 

#apollo_fixed,apollo_probabilities, apollo_inputs) 

 

# ###############################################################  

#### MODEL ESTIMATION                                        #### 

#################################################################  

 

### Estimate model 

model = apollo_estimate(apollo_beta, apollo_fixed, 

apollo_probabilities, apollo_inputs) 

 

# ###############################################################  

#### MODEL OUTPUTS                                           #### 

################################################################# 

 

apollo_modelOutput(model) 

apollo_saveOutput(model) 

 

C7.6: Model 5b – ICLV with Environmental and Energy Attitudes MXL 

# ###############################################################  

#### LOAD LIBRARY AND DEFINE CORE SETTINGS                   #### 

#################################################################  

 

### Clear memory 

rm(list = ls()) 

 

### Load Apollo library 

library(apollo) 

 

### Initialise code 

apollo_initialise() 

 

### Set core controls 

apollo_control    = list( 

  modelName       = "Hybrid_with_OL_env_ene_MXL", 

  modelDescr      = "Hybrid choice model on GEMS data, using          

                     ordered measurement model for identity and  

                     environmental preference indicators", 

  indivID         = "id", 

  nCores          = 10,  
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  outputDirectory = "output") 

 

# ###############################################################  

#### DEFINE MODEL PARAMETERS                                 #### 

#################################################################  

 

### Vector of parameters, including any that are kept fixed in  

### estimation 

 

apollo_beta = c(asc_geo = 0.66966 , 

                 asc_hyd = 0.1376 , 

                 asc_sol = -0.17367 , 

                 asc_pum = 0 , 

                 b_invCost_mu = 0.71924 , 

                 b_invCost_sig = 1.26374 , 

                 b_monCost_mu = 0.13652 , 

                 b_monCost_sig = 1.05374, 

                 b_dur_mu    = 0.69666, 

                 b_dur_sig   = 0.58669, 

                 b_co2_mu    = -2.87054, 

                 b_co2_sig   = 2.39364, 

                 b_job_mu    = 1.87267, 

                 b_job_sig   = 2.35984, 

                 lambda_env_geo  = -1.33015, 

                 lambda_env_hyd  = 0.46567, 

                 lambda_env_sol  = 1.19916, 

                 lambda_env_inv  = 1.45552, 

                 lambda_env_mon  = 0.54991, 

                 lambda_env_dur  = -0.34919, 

                 lambda_env_co2  = 1.15929, 

                 lambda_env_job  = -1.04404, 

                 lambda_ene_geo  = 0.44767, 

                 lambda_ene_hyd  = 0.89473, 

                 lambda_ene_sol  = 0.34275, 

                 lambda_ene_mon  = -0.35352, 

                 lambda_ene_inv  = 0.04986, 

                 lambda_ene_dur  = 0.19472, 

                 lambda_ene_co2  = -0.78268, 

                 lambda_ene_job  = 0.10965, 

                 gamma_ev_low_income = 0.02821, 

                 gamma_ev_own_accom  = 0.16332, 

                 gamma_ev_time10     = -0.0384, 

                 gamma_ev_exptime10  = 0.02188, 

                 gamma_ev_male       = 0.0963, 

                 gamma_ev_uni_ed     = -0.11492, 

                 gamma_ev_unemp      = 0.10958, 

                 gamma_ev_age35      = 0.27185, 

                 gamma_ev_age3555    = 0.31562, 

                 gamma_ev_heat_renew = 0.28958, 

                 gamma_en_low_income = -0.22128, 

                 gamma_en_own_accom  = 0.17823, 

                 gamma_en_time10     = 0.01865, 

                 gamma_en_exptime10  = 0.25921, 

                 gamma_en_male       = 0.13879, 

                 gamma_en_uni_ed     = 0.08156, 

                 gamma_en_unemp      = -0.25341, 
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                 gamma_en_age35      = -0.6059, 

                 gamma_en_age3555    = -0.22613, 

                 gamma_en_heat_renew = -0.34703, 

                 zeta_conc_env       = -0.30379, 

                 tau_conc_env_1      = -3.94185, 

                 tau_conc_env_2      = -2.86504, 

                 tau_conc_env_3      = -1.62799, 

                 tau_conc_env_4      = 0.57441, 

                 zeta_change_life    = -0.32087, 

                 tau_change_life_1   = -4.05809, 

                 tau_change_life_2   = -2.99412, 

                 tau_change_life_3   = -1.8175, 

                 tau_change_life_4   = 0.79812, 

                 zeta_should_change  = -0.35936, 

                 tau_should_change_1 = -4.14787, 

                 tau_should_change_2 = -3.34289, 

                 tau_should_change_3 = -1.87381, 

                 tau_should_change_4 = 0.50068, 

                 zeta_adj_therm_know = 2.16646, 

                 tau_adj_therm_know_1    = -5.32773, 

                 tau_adj_therm_know_2    = -4.2383, 

                 tau_adj_therm_know_3    = -3.44557, 

                 tau_adj_therm_know_4    = 0.03503, 

                 zeta_adj_therm_have     = 1.58457, 

                 tau_adj_therm_have_1    = -4.99487, 

                 tau_adj_therm_have_2    = -3.45963, 

                 tau_adj_therm_have_3    = -2.43762, 

                 tau_adj_therm_have_4    = 0.6633, 

                 zeta_red_energy         = 2.91359, 

                 tau_red_energy_1        = -7.81626, 

                 tau_red_energy_2        = -5.93322, 

                 tau_red_energy_3        = -4.67429, 

                 tau_red_energy_4        = 0.22599, 

                 zeta_energy_dm          = 1.75068, 

                 tau_energy_dm_1         =   -6.02559, 

                 tau_energy_dm_2         = -4.4162, 

                 tau_energy_dm_3         = -2.95351, 

                 tau_energy_dm_4         = -0.23007) 

### Vector with names (in quotes) of parameters to be kept fixed   

### at their starting value in apollo_beta 

 

apollo_fixed = c("asc_pum") 

 

### Ben-Akiva normalisation to scale the latent variable set  

### coefficient on one of the indicators to 1 

 

# ###############################################################  

#### DEFINE RANDOM COMPONENTS                                #### 

################################################################# 

 

### Set parameters for generating draws 

apollo_draws = list( 

   interDrawsType="sobolFaureTezuka",  

   interNDraws=2000,           

   interUnifDraws=c(),       
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   interNormDraws=c("eta2", "eta3","draws_invCost","draws_monCost", 

"draws_dur", "draws_co2", "draws_job"), 

 

  intraDrawsType = "", 

  intraNDraws    = 0,           

  intraUnifDraws = c(),      

  intraNormDraws = c() ) 

 

### Create random parameters 

 

apollo_randCoeff=function(apollo_beta, apollo_inputs){ 

  randcoeff = list() 

   

  randcoeff[["Env_Attitude"]]=(gamma_ev_low_income* low_income  

                             + gamma_ev_own_accom * own_accom 

                             + gamma_ev_time10    * time_accom10 

                             + gamma_ev_exptime10 * exp_time_accom10 

                             + gamma_ev_male      * male 

                             + gamma_ev_uni_ed    * uni_ed  

                             + gamma_ev_unemp     * emp_typ_unemp 

                             + gamma_ev_age35     * age35  

                             + gamma_ev_age3555   * age3555  

                             + gamma_ev_heat_renew* heat_renew  

                             + eta2) 

   

  randcoeff[["Ene_Attitude"]]=(gamma_en_low_income* low_income  

                             + gamma_en_own_accom * own_accom 

                             + gamma_en_time10    * time_accom10 

                             + gamma_en_exptime10 * exp_time_accom10 

                             + gamma_en_male      * male 

                             + gamma_en_uni_ed    * uni_ed  

                             + gamma_en_unemp     * emp_typ_unemp 

                             + gamma_en_age35     * age35  

                             + gamma_en_age3555   * age3555  

                             + gamma_en_heat_renew* heat_renew 

                             + eta3) 

randcoeff[["b_invCost"]] = -exp(b_invCost_mu + b_invCost_sig * 

draws_invCost + b_cor * draws_co2_inv) 

randcoeff[["b_monCost"]] = -exp(b_monCost_mu + b_monCost_sig * 

draws_monCost) 

randcoeff[["b_dur"]] = b_dur_mu + b_dur_sig * draws_dur 

randcoeff[["b_co2"]] = b_co2_mu + b_co2_sig * draws_co2       

randcoeff[["b_job"]] = b_job_mu + b_job_sig * draws_job + b_cor * 

draws_co2_inv 

  return(randcoeff) } 

 

# ###############################################################  

#### GROUP AND VALIDATE INPUTS                               #### 

################################################################# 

 

apollo_inputs = apollo_validateInputs() 

 

# ###############################################################  

#### DEFINE MODEL AND LIKELIHOOD FUNCTION                    #### 

#################################################################  

 



 234 

apollo_probabilities = function(apollo_beta,  

                                apollo_inputs,  

                                functionality="estimate"){ 

   

  ### Attach inputs and detach after function exit 

  apollo_attach(apollo_beta, apollo_inputs) 

  on.exit(apollo_detach(apollo_beta, apollo_inputs)) 

   

  ### Create list of probabilities P 

  P = list() 

   

  ### Likelihood of indicators 

  ol_settings4 = list(outcomeOrdered= conc_env,  

                 V                  = zeta_conc_env*Env_Attitude, 

                 tau                = list(tau_conc_env_1,  

                                            tau_conc_env_2,  

                                            tau_conc_env_3,  

                                            tau_conc_env_4), 

                 rows               = (choice_no==1), 

                 componentName      = "indic_conc_env") 

   

  ol_settings5 = list(outcomeOrdered = change_life,  

                 V                = zeta_change_life*Env_Attitude,  

                 tau              = list(tau_change_life_1,  

                                         tau_change_life_2,  

                                         tau_change_life_3,  

                                         tau_change_life_4), 

                 rows             = (choice_no==1), 

                 componentName    = "indic_change_life") 

   

  ol_settings6 = list(outcomeOrdered = should_change,  

                 V              = zeta_should_change*Env_Attitude,  

                 tau            = list(tau_should_change_1,  

                                       tau_should_change_2,  

                                       tau_should_change_3,  

                                       tau_should_change_4), 

                 rows           = (choice_no==1), 

                 componentName  = "indic_should_change") 

   

   

  ol_settings7 = list(outcomeOrdered = adj_therm_know,  

                 V            = zeta_adj_therm_know*Ene_Attitude,  

                 tau          = list(tau_adj_therm_know_1,  

                                     tau_adj_therm_know_2,  

                                     tau_adj_therm_know_3,  

                                     tau_adj_therm_know_4), 

                 rows         = (choice_no==1), 

                 componentName= "indic_adj_therm_know") 

   

  ol_settings8 = list(outcomeOrdered = adj_therm_have,  

                 V             = zeta_adj_therm_have*Ene_Attitude,  

                 tau           = list(tau_adj_therm_have_1,  

                                      tau_adj_therm_have_2,  

                                      tau_adj_therm_have_3,  

                                      tau_adj_therm_have_4), 

                 rows          = (choice_no==1), 
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                 componentName = "indic_adj_therm_have") 

   

  ol_settings9 = list(outcomeOrdered = red_energy,  

                 V                 = zeta_red_energy*Ene_Attitude,  

                 tau               = list(tau_red_energy_1,  

                                          tau_red_energy_2,  

                                          tau_red_energy_3,  

                                          tau_red_energy_4), 

                 rows              = (choice_no==1), 

                 componentName     = "indic_red_energy") 

   

  ol_settings10 = list(outcomeOrdered = energy_dm,  

                  V                 = zeta_energy_dm*Ene_Attitude,  

                  tau               = list(tau_energy_dm_1,  

                                           tau_energy_dm_2,  

                                           tau_energy_dm_3,  

                                           tau_energy_dm_4), 

                  rows              = (choice_no==1), 

                  componentName     = "indic_energy_dm") 

 

P[["indic_conc_env"]]= apollo_ol(ol_settings4, functionality)  

P[["indic_change_life"]]= apollo_ol(ol_settings5, functionality) 

P[["indic_should_change"]]= apollo_ol(ol_settings6, functionality) 

P[["indic_adj_therm_know"]]= apollo_ol(ol_settings7,  

                                       functionality) 

P[["indic_adj_therm_have"]]= apollo_ol(ol_settings8,  

                                       functionality) 

P[["indic_red_energy"]]= apollo_ol(ol_settings9, functionality) 

P[["indic_energy_dm"]] = apollo_ol(ol_settings10, functionality)  

   

   

  ### Create alternative specific constants and coefficients using 

interactions with latent variables 

   

asc_geo_value   = (asc_geo + lambda_env_geo * Env_Attitude +           

                  lambda_ene_geo * Ene_Attitude) 

asc_hyd_value   = (asc_hyd + lambda_env_hyd * Env_Attitude +  

                  lambda_ene_hyd * Ene_Attitude) 

asc_sol_value   = (asc_sol + lambda_env_sol * Env_Attitude +  

                  lambda_ene_sol * Ene_Attitude) 

   

b_invCost_value = (b_invCost + lambda_env_inv * Env_Attitude +  

                  lambda_ene_inv*Ene_Attitude) 

b_monCost_value = (b_monCost + lambda_env_mon * Env_Attitude +  

                  lambda_ene_mon*Ene_Attitude) 

b_dur_value     = (b_dur + lambda_env_dur * Env_Attitude +                    

                  lambda_ene_dur*Ene_Attitude) 

b_co2_value     = (b_co2 + lambda_env_co2 * Env_Attitude +  

                  lambda_ene_co2*Ene_Attitude) 

b_job_value     = (b_job + lambda_env_job * Env_Attitude +  

                  lambda_ene_job * Ene_Attitude) 

   

  ### Likelihood of choices 

  ### List of utilities: these must use the same names as in  

  ### mnl_settings, order is irrelevant 
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V = list() 

V[["geo"]] = (asc_geo_value + b_invCost_value * InvCost_1 +  

              b_monCost_value * MonCost_1 + b_dur_value * Dur_1 +  

              b_co2_value * CO2_1 + b_job_value * Job_1 ) 

V[["hyd"]] = (asc_hyd_value + b_invCost_value * InvCost_2 +  

              b_monCost_value * MonCost_2 + b_dur_value * Dur_2 +  

              b_co2_value * CO2_2 + b_job_value * Job_2 ) 

V[["sol"]] = (asc_sol_value + b_invCost_value * InvCost_3 +  

              b_monCost_value * MonCost_3 + b_dur_value * Dur_3 +  

              b_co2_value * CO2_3 + b_job_value * Job_3 ) 

V[["pum"]] = (asc_pum       + b_invCost_value * InvCost_4 +  

              b_monCost_value * MonCost_4 + b_dur_value * Dur_4 +                

              b_co2_value * CO2_4 + b_job_value * Job_4 ) 

   

  ### Define settings for MNL model component 

  mnl_settings    = list( 

    alternatives  = c(geo=1, hyd=2, sol=3, pum=4), 

    avail         = list(geo=1, hyd=1, sol=1, pum=1), 

    choiceVar     = choice, 

    utilities     = V, 

    component     = "choice" ) 

   

  ### Compute probabilities for MNL model component 

  P[["choice"]] = apollo_mnl(mnl_settings, functionality) 

   

  ### Likelihood of the whole model 

  P = apollo_combineModels(P, apollo_inputs, functionality) 

   

  ### Take product across observation for same individual 

  P = apollo_panelProd(P, apollo_inputs, functionality) 

   

  ### Average across inter-individual draws 

  P = apollo_avgInterDraws(P, apollo_inputs, functionality) 

   

  ### Prepare and return outputs of function 

  P = apollo_prepareProb(P, apollo_inputs, functionality) 

  return(P) } 

 

#apollo_beta=apollo_searchStart(apollo_beta, 

#apollo_fixed,apollo_probabilities, apollo_inputs) 

 

# ###############################################################  

#### MODEL ESTIMATION                                        #### 

#################################################################  

 

### Estimate model 

model = apollo_estimate(apollo_beta, apollo_fixed, 

apollo_probabilities, apollo_inputs) 

 

# ###############################################################  

#### MODEL OUTPUTS                                           #### 

################################################################# 

 

apollo_modelOutput(model) 

apollo_saveOutput(model) 
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C7.7: Model 5c – ICLV with Environmental and Energy Attitudes MXL with correlation 

# ###############################################################  

#### LOAD LIBRARY AND DEFINE CORE SETTINGS                   #### 

#################################################################  

 

### Clear memory 

rm(list = ls()) 

 

### Load Apollo library 

library(apollo) 

 

### Initialise code 

apollo_initialise() 

 

### Set core controls 

apollo_control    = list( 

  modelName       = "Hybrid_with_OL_env_ene_MXL_cor", 

  modelDescr      = "Hybrid choice model on GEMS data, using          

                     ordered measurement model for identity and  

                     environmental preference indicators", 

  indivID         = "id", 

  nCores          = 10,  

  outputDirectory = "output") 

 

# ###############################################################  

#### DEFINE MODEL PARAMETERS                                 #### 

#################################################################  

 

### Vector of parameters, including any that are kept fixed in  

### estimation 

 

apollo_beta = c(asc_geo = 0.761971 , 

                 asc_hyd = 0.197592 , 

                 asc_sol = -0.168279 , 

                 asc_pum = 0 , 

                 b_invCost_mu = 0.737234 , 

                 b_invCost_sig = -1.013919 , 

                 b_monCost_mu = 0.262974 , 

                 b_monCost_sig = 1.116409 , 

                 b_dur_mu = 0.699838 , 

                 b_dur_sig = 0.613193 , 

                 b_co2_mu = -2.969189 , 

                 b_co2_sig = 2.297435 , 

                 b_job_mu = 1.924743 , 

                 b_job_sig = -2.284934 ,  

                 b_cor = 0.577071 , 

                  

                 lambda_env_geo = -1.3144 , 

                 lambda_env_hyd = 0.456004 , 

                 lambda_env_sol = 1.185894 , 

                 lambda_env_inv = 1.397582 , 

                 lambda_env_mon = 0.503376 , 

                 lambda_env_dur = -0.310334 , 
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                 lambda_env_co2 = 1.197252 , 

                 lambda_env_job = -1.045922 , 

                  

                 lambda_ene_geo = 0.472143 , 

                 lambda_ene_hyd = 0.97361 , 

                 lambda_ene_sol = 0.42528 , 

                 lambda_ene_mon = -0.321536 , 

                 lambda_ene_inv = 0.00629 , 

                 lambda_ene_dur = 0.194543 , 

                 lambda_ene_co2 = -0.70492 , 

                 lambda_ene_job = 0.156987 , 

                  

                 gamma_ev_low_income = 0.070444 , 

                 gamma_ev_own_accom = 0.157634 , 

                 gamma_ev_time10 = -0.078628 , 

                 gamma_ev_exptime10 = 0.055476 , 

                 gamma_ev_male = 0.091241 , 

                 gamma_ev_uni_ed = -0.111259 , 

                 gamma_ev_unemp = 0.066652 , 

                 gamma_ev_age35 = 0.33597 , 

                 gamma_ev_age3555 = 0.335369 , 

                 gamma_ev_heat_renew = 0.28424 , 

                  

                 gamma_en_low_income = -0.224146 , 

                 gamma_en_own_accom = 0.162904 , 

                 gamma_en_time10 = 0.017984 , 

                 gamma_en_exptime10 = 0.282924 , 

                 gamma_en_male = 0.123596 , 

                 gamma_en_uni_ed = 0.073335 , 

                 gamma_en_unemp = -0.226411 , 

                 gamma_en_age35 = -0.643717 , 

                 gamma_en_age3555 = -0.257897 , 

                 gamma_en_heat_renew = -0.340522 , 

                  

                 zeta_conc_env = -0.324042 , 

                 tau_conc_env_1 = -3.964662 , 

                 tau_conc_env_2 = -2.887678 , 

                 tau_conc_env_3 = -1.649174 , 

                 tau_conc_env_4 = 0.559275 , 

                 zeta_change_life = -0.351707 , 

                 tau_change_life_1 = -4.089524 , 

                 tau_change_life_2 = -3.024711 , 

                 tau_change_life_3 = -1.845356 , 

                 tau_change_life_4 = 0.78109 , 

                 zeta_should_change = -0.373905 , 

                 tau_should_change_1 = -4.169443 , 

                 tau_should_change_2 = -3.364744 , 

                 tau_should_change_3 = -1.894839 , 

                 tau_should_change_4 = 0.484887 , 

                 zeta_adj_therm_know = 2.117626 , 

                 tau_adj_therm_know_1 = -5.315219 , 

                 tau_adj_therm_know_2 = -4.24332 , 

                 tau_adj_therm_know_3 = -3.462989 , 

                 tau_adj_therm_know_4 = -0.025158 , 

                 zeta_adj_therm_have = 1.543307 , 

                 tau_adj_therm_have_1 = -4.982673 , 
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                 tau_adj_therm_have_2 = -3.469168 , 

                 tau_adj_therm_have_3 = -2.457901 , 

                 tau_adj_therm_have_4 = 0.612349 , 

                 zeta_red_energy = 2.763357 , 

                 tau_red_energy_1 = -7.587614 , 

                 tau_red_energy_2 = -5.78483 , 

                 tau_red_energy_3 = -4.578293 , 

                 tau_red_energy_4 = 0.141731 , 

                 zeta_energy_dm = 1.736103 , 

                 tau_energy_dm_1 = -6.04997 , 

                 tau_energy_dm_2 = -4.451987 , 

                 tau_energy_dm_3 = -2.998871 , 

                 tau_energy_dm_4 = -0.280708 ) 

### Vector with names (in quotes) of parameters to be kept fixed   

### at their starting value in apollo_beta 

 

apollo_fixed = c("asc_pum") 

 

### Ben-Akiva normalisation to scale the latent variable set  

### coefficient on one of the indicators to 1 

 

# ###############################################################  

#### DEFINE RANDOM COMPONENTS                                #### 

################################################################# 

 

### Set parameters for generating draws 

apollo_draws = list( 

   interDrawsType="sobolFaureTezuka",  

   interNDraws=2000,           

   interUnifDraws=c(),       

   interNormDraws=c("eta2", "eta3","draws_invCost","draws_monCost", 

"draws_dur", "draws_co2", "draws_job", "draws_co2_inv"),  

    

   intraDrawsType="", 

   intraNDraws=0,           

   intraUnifDraws=c(),      

   intraNormDraws=c()       ) 

### Create random parameters 

 

apollo_randCoeff=function(apollo_beta, apollo_inputs){ 

  randcoeff = list() 

   

  randcoeff[["Env_Attitude"]]=(gamma_ev_low_income* low_income  

                             + gamma_ev_own_accom * own_accom 

                             + gamma_ev_time10    * time_accom10 

                             + gamma_ev_exptime10 * exp_time_accom10 

                             + gamma_ev_male      * male 

                             + gamma_ev_uni_ed    * uni_ed  

                             + gamma_ev_unemp     * emp_typ_unemp 

                             + gamma_ev_age35     * age35  

                             + gamma_ev_age3555   * age3555  

                             + gamma_ev_heat_renew* heat_renew  

                             + eta2) 

   

  randcoeff[["Ene_Attitude"]]=(gamma_en_low_income* low_income  

                             + gamma_en_own_accom * own_accom 
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                             + gamma_en_time10    * time_accom10 

                             + gamma_en_exptime10 * exp_time_accom10 

                             + gamma_en_male      * male 

                             + gamma_en_uni_ed    * uni_ed  

                             + gamma_en_unemp     * emp_typ_unemp 

                             + gamma_en_age35     * age35  

                             + gamma_en_age3555   * age3555  

                             + gamma_en_heat_renew* heat_renew 

                             + eta3) 

randcoeff[["b_invCost"]] = -exp(b_invCost_mu + b_invCost_sig * 

draws_invCost + b_cor * draws_co2_inv) 

randcoeff[["b_monCost"]] = -exp(b_monCost_mu + b_monCost_sig * 

draws_monCost) 

randcoeff[["b_dur"]] = b_dur_mu + b_dur_sig * draws_dur 

randcoeff[["b_co2"]] = b_co2_mu + b_co2_sig * draws_co2       

randcoeff[["b_job"]] = b_job_mu + b_job_sig * draws_job + b_cor * 

draws_co2_inv 

  return(randcoeff) } 

 

# ###############################################################  

#### GROUP AND VALIDATE INPUTS                               #### 

################################################################# 

 

apollo_inputs = apollo_validateInputs() 

 

# ###############################################################  

#### DEFINE MODEL AND LIKELIHOOD FUNCTION                    #### 

#################################################################  

 

apollo_probabilities = function(apollo_beta,  

                                apollo_inputs,  

                                functionality="estimate"){ 

   

  ### Attach inputs and detach after function exit 

  apollo_attach(apollo_beta, apollo_inputs) 

  on.exit(apollo_detach(apollo_beta, apollo_inputs)) 

   

  ### Create list of probabilities P 

  P = list() 

   

  ### Likelihood of indicators 

  ol_settings4 = list(outcomeOrdered= conc_env,  

                 V                  = zeta_conc_env*Env_Attitude, 

                 tau                = list(tau_conc_env_1,  

                                            tau_conc_env_2,  

                                            tau_conc_env_3,  

                                            tau_conc_env_4), 

                 rows               = (choice_no==1), 

                 componentName      = "indic_conc_env") 

   

  ol_settings5 = list(outcomeOrdered = change_life,  

                 V                = zeta_change_life*Env_Attitude,  

                 tau              = list(tau_change_life_1,  

                                         tau_change_life_2,  

                                         tau_change_life_3,  

                                         tau_change_life_4), 
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                 rows             = (choice_no==1), 

                 componentName    = "indic_change_life") 

   

  ol_settings6 = list(outcomeOrdered = should_change,  

                 V              = zeta_should_change*Env_Attitude,  

                 tau            = list(tau_should_change_1,  

                                       tau_should_change_2,  

                                       tau_should_change_3,  

                                       tau_should_change_4), 

                 rows           = (choice_no==1), 

                 componentName  = "indic_should_change") 

   

   

  ol_settings7 = list(outcomeOrdered = adj_therm_know,  

                 V            = zeta_adj_therm_know*Ene_Attitude,  

                 tau          = list(tau_adj_therm_know_1,  

                                     tau_adj_therm_know_2,  

                                     tau_adj_therm_know_3,  

                                     tau_adj_therm_know_4), 

                 rows         = (choice_no==1), 

                 componentName= "indic_adj_therm_know") 

   

  ol_settings8 = list(outcomeOrdered = adj_therm_have,  

                 V             = zeta_adj_therm_have*Ene_Attitude,  

                 tau           = list(tau_adj_therm_have_1,  

                                      tau_adj_therm_have_2,  

                                      tau_adj_therm_have_3,  

                                      tau_adj_therm_have_4), 

                 rows          = (choice_no==1), 

                 componentName = "indic_adj_therm_have") 

   

  ol_settings9 = list(outcomeOrdered = red_energy,  

                 V                 = zeta_red_energy*Ene_Attitude,  

                 tau               = list(tau_red_energy_1,  

                                          tau_red_energy_2,  

                                          tau_red_energy_3,  

                                          tau_red_energy_4), 

                 rows              = (choice_no==1), 

                 componentName     = "indic_red_energy") 

   

  ol_settings10 = list(outcomeOrdered = energy_dm,  

                  V                 = zeta_energy_dm*Ene_Attitude,  

                  tau               = list(tau_energy_dm_1,  

                                           tau_energy_dm_2,  

                                           tau_energy_dm_3,  

                                           tau_energy_dm_4), 

                  rows              = (choice_no==1), 

                  componentName     = "indic_energy_dm") 

 

P[["indic_conc_env"]]= apollo_ol(ol_settings4, functionality)  

P[["indic_change_life"]]= apollo_ol(ol_settings5, functionality) 

P[["indic_should_change"]]= apollo_ol(ol_settings6, functionality) 

P[["indic_adj_therm_know"]]= apollo_ol(ol_settings7,  

                                       functionality) 

P[["indic_adj_therm_have"]]= apollo_ol(ol_settings8,  

                                       functionality) 
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P[["indic_red_energy"]]= apollo_ol(ol_settings9, functionality) 

P[["indic_energy_dm"]] = apollo_ol(ol_settings10, functionality)  

   

   

  ### Create alternative specific constants and coefficients using 

interactions with latent variables 

   

asc_geo_value   = (asc_geo + lambda_env_geo * Env_Attitude +           

                  lambda_ene_geo * Ene_Attitude) 

asc_hyd_value   = (asc_hyd + lambda_env_hyd * Env_Attitude +  

                  lambda_ene_hyd * Ene_Attitude) 

asc_sol_value   = (asc_sol + lambda_env_sol * Env_Attitude +  

                  lambda_ene_sol * Ene_Attitude) 

   

b_invCost_value = (b_invCost + lambda_env_inv * Env_Attitude +  

                  lambda_ene_inv*Ene_Attitude) 

b_monCost_value = (b_monCost + lambda_env_mon * Env_Attitude +  

                  lambda_ene_mon*Ene_Attitude) 

b_dur_value     = (b_dur + lambda_env_dur * Env_Attitude +                    

                  lambda_ene_dur*Ene_Attitude) 

b_co2_value     = (b_co2 + lambda_env_co2 * Env_Attitude +  

                  lambda_ene_co2*Ene_Attitude) 

b_job_value     = (b_job + lambda_env_job * Env_Attitude +  

                  lambda_ene_job * Ene_Attitude) 

   

  ### Likelihood of choices 

  ### List of utilities: these must use the same names as in  

  ### mnl_settings, order is irrelevant 

   

V = list() 

V[["geo"]] = (asc_geo_value + b_invCost_value * InvCost_1 +  

              b_monCost_value * MonCost_1 + b_dur_value * Dur_1 +  

              b_co2_value * CO2_1 + b_job_value * Job_1 ) 

V[["hyd"]] = (asc_hyd_value + b_invCost_value * InvCost_2 +  

              b_monCost_value * MonCost_2 + b_dur_value * Dur_2 +  

              b_co2_value * CO2_2 + b_job_value * Job_2 ) 

V[["sol"]] = (asc_sol_value + b_invCost_value * InvCost_3 +  

              b_monCost_value * MonCost_3 + b_dur_value * Dur_3 +  

              b_co2_value * CO2_3 + b_job_value * Job_3 ) 

V[["pum"]] = (asc_pum       + b_invCost_value * InvCost_4 +  

              b_monCost_value * MonCost_4 + b_dur_value * Dur_4 +                

              b_co2_value * CO2_4 + b_job_value * Job_4 ) 

   

  ### Define settings for MNL model component 

  mnl_settings    = list( 

    alternatives  = c(geo=1, hyd=2, sol=3, pum=4), 

    avail         = list(geo=1, hyd=1, sol=1, pum=1), 

    choiceVar     = choice, 

    utilities     = V, 

    component     = "choice" ) 

   

  ### Compute probabilities for MNL model component 

  P[["choice"]] = apollo_mnl(mnl_settings, functionality) 

   

  ### Likelihood of the whole model 

  P = apollo_combineModels(P, apollo_inputs, functionality) 
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  ### Take product across observation for same individual 

  P = apollo_panelProd(P, apollo_inputs, functionality) 

   

  ### Average across inter-individual draws 

  P = apollo_avgInterDraws(P, apollo_inputs, functionality) 

   

  ### Prepare and return outputs of function 

  P = apollo_prepareProb(P, apollo_inputs, functionality) 

  return(P) } 

 

#apollo_beta=apollo_searchStart(apollo_beta, 

#apollo_fixed,apollo_probabilities, apollo_inputs) 

 

# ###############################################################  

#### MODEL ESTIMATION                                        #### 

#################################################################  

 

### Estimate model 

model = apollo_estimate(apollo_beta, apollo_fixed, 

apollo_probabilities, apollo_inputs) 

 

# ###############################################################  

#### MODEL OUTPUTS                                           #### 

################################################################# 

 

apollo_modelOutput(model) 

apollo_saveOutput(model) 

 

C7.8: Model 6a – ICLV with Identity 

# ############################################################## # 

#### LOAD LIBRARY AND DEFINE CORE SETTINGS                    #### 

# ############################################################## # 

 

### Clear memory 

rm(list = ls()) 

 

### Load Apollo library 

library(apollo) 

 

### Initialise code 

apollo_initialise() 

 

### Set core controls 

apollo_control    = list( 

  modelName       = "Hydrid choice model identity effect all  

                     attributes 05_11 BHHH 100 RD", 

  modelDescr      = "Hybrid choice model on GEMS data, using 

                     ordered measurement model for identity and  

                     environmental preference indicators", 

  indivID         = "id", 

  nCores          = 10,  

  outputDirectory = "output") 
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# ############################################################## # 

#### LOAD DATA AND APPLY ANY TRANSFORMATIONS                  #### 

# ############################################################## # 

 

### Loading data from package 

database = 

read.csv("/Users/lucyvictorianaga/Library/CloudStorage/OneDrive-

DurhamUniversity/PhD/GEMS/Choice Modelling 

GEMS/Data/GEMS_full_data_clean_100924.csv", header=TRUE) 

 

# ############################################################## # 

#### DEFINE MODEL PARAMETERS                                  #### 

# ############################################################## # 

 

### Vector of parameters, including any that are kept fixed in  

### estimation 

apollo_beta = c(asc_geo             = 0.91, 

                asc_hyd             = 0.81, 

                asc_sol             = 0.71, 

                asc_pum             = 0, 

                b_invCost           = -0.000090,  

                b_monCost           = -0.00072,  

                b_dur               = 0.029,  

                b_co2               = -0.000090,  

                b_job               = 0.0057,  

                 

                lambda_id_geo       = 0, 

                lambda_id_hyd       = 0, 

                lambda_id_sol       = 0, 

                 

                lambda_id_inv       = 0, 

                lambda_id_mon       = 0, 

                lambda_id_dur       = 0, 

                lambda_id_co2       = 0, 

                lambda_id_job       = 0,  

                 

                gamma_id_low_income = 0, 

                gamma_id_own_accom  = 0, 

                gamma_id_time10     = 0, 

                gamma_id_exptime10  = 0, 

                gamma_id_male       = 0, 

                gamma_id_uni_ed     = 0, 

                gamma_id_unemp      = 0, 

                gamma_id_age35      = 0, 

                gamma_id_age3555    = 0, 

                gamma_id_no_mines   = 0, 

                 

                zeta1_iden_herit    = 1, 

                tau1_iden_herit_1   = -2,  

                tau1_iden_herit_2   = -1,  

                tau1_iden_herit_3   = 1,  

                tau1_iden_herit_4   = 2, 

 

                zeta1_hon_his       = 1, 

                tau1_hon_his_1      = -2,  

                tau1_hon_his_2      = -1,  
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                tau1_hon_his_3      = 1,  

                tau1_hon_his_4      = 2, 

 

                zeta1_proj_imp      = 1, 

                tau1_proj_imp_1     = -2,  

                tau1_proj_imp_2     = -1,  

                tau1_proj_imp_3     = 1,  

                tau1_proj_imp_4     = 2 

          ) 

 

### Vector with names (in quotes) of parameters to be kept fixed 

### at their starting value in apollo_beta 

 

apollo_fixed = c("asc_pum") 

 

### Ben-Akiva normalisation to scale the latent variable set  

### coefficient on one of the indicators to 1 

 

# ############################################################## # 

#### DEFINE RANDOM COMPONENTS                                 #### 

# ############################################################## # 

 

### Set parameters for generating draws 

apollo_draws     = list( 

  interDrawsType = "sobolFaureTezuka"",  

  interNDraws    = 2000,           

  interUnifDraws = c(),       

  interNormDraws = c("eta"),  

   

  intraDrawsType = "", 

  intraNDraws    = 0,           

  intraUnifDraws = c(),      

  intraNormDraws = c()   ) 

 

### Create random parameters 

apollo_randCoeff=function(apollo_beta, apollo_inputs){ 

  randcoeff = list() 

   

  randcoeff[["Identity1"]] = (gamma_id_low_income * low_income 

                            + gamma_id_own_accom  * own_accom 

                            + gamma_id_time10     * time_accom10 

                            + gamma_id_exptime10 *exp_time_accom10 

                            + gamma_id_male       * male 

                            + gamma_id_uni_ed     * uni_ed  

                            + gamma_id_unemp      * emp_typ_unemp 

                            + gamma_id_age35      * age35  

                            + gamma_id_age3555    * age3555  

                            + gamma_id_no_mines   * no_mines    

                            + eta) 

  return(randcoeff)} 

 

# ############################################################## # 

#### GROUP AND VALIDATE INPUTS                                #### 

# ############################################################## # 

 

apollo_inputs = apollo_validateInputs() 
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# ############################################################## # 

#### DEFINE MODEL AND LIKELIHOOD FUNCTION                     #### 

# ############################################################## # 

 

apollo_probabilities = function(apollo_beta,  

                                apollo_inputs,  

                                functionality="estimate"){ 

   

  ### Attach inputs and detach after function exit 

  apollo_attach(apollo_beta, apollo_inputs) 

  on.exit(apollo_detach(apollo_beta, apollo_inputs)) 

   

  ### Create list of probabilities P 

  P = list() 

   

  ### Likelihood of indicators 

  ol_settings1 = list(outcomeOrdered = iden_herit,  

                      V              = zeta1_iden_herit*Identity1,  

                      tau            = list(tau1_iden_herit_1,  

                                            tau1_iden_herit_2,  

                                            tau1_iden_herit_3,  

                                            tau1_iden_herit_4), 

                      rows           = (choice_no==1), 

                      componentName  = "indic1_iden_herit") 

   

  ol_settings2 = list(outcomeOrdered = hon_his,  

                     V               = zeta1_hon_his*Identity1 ,  

                     tau             = list(tau1_hon_his_1,  

                                            tau1_hon_his_2,  

                                            tau1_hon_his_3,  

                                            tau1_hon_his_4), 

                     rows            = (choice_no==1), 

                     componentName   = "indic1_hon_his") 

   

  ol_settings3 = list(outcomeOrdered = proj_imp,  

                      V              = zeta1_proj_imp*Identity1,  

                      tau            = list(tau1_proj_imp_1,  

                                            tau1_proj_imp_2,  

                                            tau1_proj_imp_3,  

                                            tau1_proj_imp_4), 

                      rows           = (choice_no==1), 

                      componentName  = "indic1_proj_imp") 

   

   

  P[["indic1_iden_herit"]]= apollo_ol(ol_settings1, functionality) 

  P[["indic1_hon_his"]]   = apollo_ol(ol_settings2, functionality) 

  P[["indic1_proj_imp"]]  = apollo_ol(ol_settings3, functionality) 

   

   

  ### Create alternative specific constants and coefficients using  

  ### interactions with latent variable 

 

asc_geo_value   = asc_geo   + lambda_id_geo * Identity1 

asc_hyd_value   = asc_hyd   + lambda_id_hyd * Identity1 

asc_sol_value   = asc_sol   + lambda_id_sol * Identity1 
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b_invCost_value = b_invCost + lambda_id_inv * Identity1  

b_monCost_value = b_monCost + lambda_id_mon * Identity1  

b_dur_value     = b_dur     + lambda_id_dur * Identity1  

b_co2_value     = b_co2     + lambda_id_co2 * Identity1  

b_job_value     = b_job     + lambda_id_job * Identity1  

           

   

 

   

  ### Likelihood of choices 

  ### List of utilities: these must use the same names as in 

  ### mnl_settings, order is irrelevant 

 

  V = list() 

  V[["geo"]] = (asc_geo_value + b_invCost_value * InvCost_1 +  

                b_monCost_value * MonCost_1 + b_dur_value * Dur_1  

                + b_co2_value * CO2_1 + b_job_value * Job_1) 

  V[["hyd"]] = (asc_hyd_value + b_invCost_value * InvCost_2 +  

                b_monCost_value * MonCost_2 + b_dur_value * Dur_2  

                + b_co2_value * CO2_2 + b_job_value * Job_2 ) 

  V[["sol"]] = (asc_sol_value + b_invCost_value * InvCost_3 +  

                b_monCost_value * MonCost_3 + b_dur_value * Dur_3  

                + b_co2_value * CO2_3 + b_job_value * Job_3 ) 

  V[["pum"]] = (asc_pum       + b_invCost_value * InvCost_4 +  

                b_monCost_value * MonCost_4 + b_dur_value * Dur_4  

                + b_co2_value * CO2_4 + b_job_value * Job_4 ) 

   

  ### Define settings for MNL model component 

  mnl_settings    = list( 

    alternatives  = c(geo=1, hyd=2, sol=3, pum=4), 

    avail         = list(geo=1, hyd=1, sol=1, pum=1), 

    choiceVar     = choice, 

    utilities     = V, 

    component     = "choice" ) 

   

  ### Compute probabilities for MNL model component 

  P[["choice"]] = apollo_mnl(mnl_settings, functionality) 

   

  ### Likelihood of the whole model 

  P = apollo_combineModels(P, apollo_inputs, functionality) 

   

  ### Take product across observation for same individual 

  P = apollo_panelProd(P, apollo_inputs, functionality) 

   

  ### Average across inter-individual draws 

  P = apollo_avgInterDraws(P, apollo_inputs, functionality) 

   

  ### Prepare and return outputs of function 

  P = apollo_prepareProb(P, apollo_inputs, functionality) 

  return(P)} 

 

# ############################################################## # 

#### MODEL ESTIMATION                                         #### 

# ############################################################## # 
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### Estimate model 

estimate_settings= list(estimationRoutine = "BHHH" ) 

 

model = apollo_estimate(apollo_beta, apollo_fixed, 

apollo_probabilities, apollo_inputs, estimate_settings) 

 

# ############################################################## # 

#### MODEL OUTPUTS                                            #### 

# ############################################################## # 

 

apollo_modelOutput(model) 

apollo_saveOutput(model) 

 

C7.9: Model 6b – ICLV with Identity MXL 

# ############################################################## # 

#### LOAD LIBRARY AND DEFINE CORE SETTINGS                    #### 

# ############################################################## # 

 

### Clear memory 

rm(list = ls()) 

 

### Load Apollo library 

library(apollo) 

 

### Initialise code 

apollo_initialise() 

 

### Set core controls 

apollo_control    = list( 

  modelName       = "Hydrid choice model identity effect all  

                     attributes 05_11 BHHH 100 RD", 

  modelDescr      = "Hybrid choice model on GEMS data, using 

                     ordered measurement model for identity and  

                     environmental preference indicators", 

  indivID         = "id", 

  nCores          = 10,  

  outputDirectory = "output") 

 

# ############################################################## # 

#### LOAD DATA AND APPLY ANY TRANSFORMATIONS                  #### 

# ############################################################## # 

 

### Loading data from package 

database = 

read.csv("/Users/lucyvictorianaga/Library/CloudStorage/OneDrive-

DurhamUniversity/PhD/GEMS/Choice Modelling 

GEMS/Data/GEMS_full_data_clean_100924.csv", header=TRUE) 

 

# ############################################################## # 

#### DEFINE MODEL PARAMETERS                                  #### 

# ############################################################## # 

 

### Vector of parameters, including any that are kept fixed in  
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### estimation 

apollo_beta = c(asc_geo = 0.761971 , 

                 asc_hyd = 0.197592 , 

                 asc_sol = -0.168279 , 

                 asc_pum = 0 , 

                 b_invCost_mu = 0.737234 , 

                 b_invCost_sig = -1.013919 , 

                 b_monCost_mu = 0.262974 , 

                 b_monCost_sig = 1.116409 , 

                 b_dur_mu = 0.699838 , 

                 b_dur_sig = 0.613193 , 

                 b_co2_mu = -2.969189 , 

                 b_co2_sig = 2.297435 , 

                 b_job_mu = 1.924743 , 

                 b_job_sig = -2.284934 ,  

                  

                 lambda_id_geo    = 1.613, 

                 lambda_id_hyd    = 0.621, 

                 lambda_id_sol    = -0.656, 

                 lambda_id_inv    = -0.903, 

                 lambda_id_mon    = -0.795, 

                 lambda_id_dur    = 0.263, 

                 lambda_id_co2    = -1.026, 

                 lambda_id_job    = 0.788,  

                  

                 gamma_id_low_income     =  0.003, 

                 gamma_id_own_accom      =  -0.092, 

                 gamma_id_time10         =  0.161, 

                 gamma_id_exptime10      =  0.056, 

                 gamma_id_male           =  -0.060, 

                 gamma_id_uni_ed         =  0.091, 

                 gamma_id_unemp          =  -0.132, 

                 gamma_id_age35          =  -0.393, 

                 gamma_id_age3555        =  -0.261, 

                 gamma_id_no_mines       =  -0.002, 

                  

                 zeta1_iden_herit       = -0.097, 

                 tau1_iden_herit_1      = -2.492,  

                 tau1_iden_herit_2      = -1.226,  

                 tau1_iden_herit_3      = 0.043,  

                 tau1_iden_herit_4      = 1.435, 

                 zeta1_hon_his          = 0.235, 

                 tau1_hon_his_1         = -4.164,  

                 tau1_hon_his_2         = -2.777,  

                 tau1_hon_his_3         = -0.510,  

                 tau1_hon_his_4         = 1.450, 

                 zeta1_proj_imp         = 0.279, 

                 tau1_proj_imp_1        = -4.330,  

                 tau1_proj_imp_2        = -3.507,  

                 tau1_proj_imp_3        = -1.464,  

                 tau1_proj_imp_4        = 0.649 

          ) 

### Vector with names (in quotes) of parameters to be kept fixed 

### at their starting value in apollo_beta 

 

apollo_fixed = c("asc_pum") 
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### Ben-Akiva normalisation to scale the latent variable set  

### coefficient on one of the indicators to 1 

 

# ############################################################## # 

#### DEFINE RANDOM COMPONENTS                                 #### 

# ############################################################## # 

 

### Set parameters for generating draws 

apollo_draws     = list( 

  interDrawsType = "sobolFaureTezuka"",  

  interNDraws    = 2000,           

  interUnifDraws = c(),       

  interNormDraws = c("eta", "draws_invCost", "draws_monCost", 

"draws_dur", "draws_co2", "draws_job"),  

   

  intraDrawsType = "", 

  intraNDraws    = 0,           

  intraUnifDraws = c(),      

  intraNormDraws = c()   ) 

 

### Create random parameters 

apollo_randCoeff=function(apollo_beta, apollo_inputs){ 

  randcoeff = list() 

   

  randcoeff[["Identity1"]] = (gamma_id_low_income * low_income 

                            + gamma_id_own_accom  * own_accom 

                            + gamma_id_time10     * time_accom10 

                            + gamma_id_exptime10 *exp_time_accom10 

                            + gamma_id_male       * male 

                            + gamma_id_uni_ed     * uni_ed  

                            + gamma_id_unemp      * emp_typ_unemp 

                            + gamma_id_age35      * age35  

                            + gamma_id_age3555    * age3555  

                            + gamma_id_no_mines   * no_mines    

                            + eta) 

   randcoeff[["b_invCost"]] = -exp(b_invCost_mu + b_invCost_sig * 

draws_invCost) 

   randcoeff[["b_monCost"]] = -exp(b_monCost_mu + b_monCost_sig * 

draws_monCost) 

   randcoeff[["b_dur"]] = b_dur_mu + b_dur_sig * draws_dur 

   randcoeff[["b_co2"]] = b_co2_mu + b_co2_sig * draws_co2  

   randcoeff[["b_job"]] = b_job_mu + b_job_sig * draws_job 

  return(randcoeff)} 

 

# ############################################################## # 

#### GROUP AND VALIDATE INPUTS                                #### 

# ############################################################## # 

 

apollo_inputs = apollo_validateInputs() 

 

# ############################################################## # 

#### DEFINE MODEL AND LIKELIHOOD FUNCTION                     #### 

# ############################################################## # 

 

apollo_probabilities = function(apollo_beta,  
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                                apollo_inputs,  

                                functionality="estimate"){ 

   

  ### Attach inputs and detach after function exit 

  apollo_attach(apollo_beta, apollo_inputs) 

  on.exit(apollo_detach(apollo_beta, apollo_inputs)) 

   

  ### Create list of probabilities P 

  P = list() 

   

  ### Likelihood of indicators 

  ol_settings1 = list(outcomeOrdered = iden_herit,  

                      V              = zeta1_iden_herit*Identity1,  

                      tau            = list(tau1_iden_herit_1,  

                                            tau1_iden_herit_2,  

                                            tau1_iden_herit_3,  

                                            tau1_iden_herit_4), 

                      rows           = (choice_no==1), 

                      componentName  = "indic1_iden_herit") 

   

  ol_settings2 = list(outcomeOrdered = hon_his,  

                     V               = zeta1_hon_his*Identity1 ,  

                     tau             = list(tau1_hon_his_1,  

                                            tau1_hon_his_2,  

                                            tau1_hon_his_3,  

                                            tau1_hon_his_4), 

                     rows            = (choice_no==1), 

                     componentName   = "indic1_hon_his") 

   

  ol_settings3 = list(outcomeOrdered = proj_imp,  

                      V              = zeta1_proj_imp*Identity1,  

                      tau            = list(tau1_proj_imp_1,  

                                            tau1_proj_imp_2,  

                                            tau1_proj_imp_3,  

                                            tau1_proj_imp_4), 

                      rows           = (choice_no==1), 

                      componentName  = "indic1_proj_imp") 

   

   

  P[["indic1_iden_herit"]]= apollo_ol(ol_settings1, functionality) 

  P[["indic1_hon_his"]]   = apollo_ol(ol_settings2, functionality) 

  P[["indic1_proj_imp"]]  = apollo_ol(ol_settings3, functionality) 

   

   

  ### Create alternative specific constants and coefficients using  

  ### interactions with latent variable 

 

asc_geo_value   = asc_geo   + lambda_id_geo * Identity1 

asc_hyd_value   = asc_hyd   + lambda_id_hyd * Identity1 

asc_sol_value   = asc_sol   + lambda_id_sol * Identity1 

   

b_invCost_value = b_invCost + lambda_id_inv * Identity1  

b_monCost_value = b_monCost + lambda_id_mon * Identity1  

b_dur_value     = b_dur     + lambda_id_dur * Identity1  

b_co2_value     = b_co2     + lambda_id_co2 * Identity1  

b_job_value     = b_job     + lambda_id_job * Identity1  
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  ### Likelihood of choices 

  ### List of utilities: these must use the same names as in 

  ### mnl_settings, order is irrelevant 

 

  V = list() 

  V[["geo"]] = (asc_geo_value + b_invCost_value * InvCost_1 +  

                b_monCost_value * MonCost_1 + b_dur_value * Dur_1  

                + b_co2_value * CO2_1 + b_job_value * Job_1) 

  V[["hyd"]] = (asc_hyd_value + b_invCost_value * InvCost_2 +  

                b_monCost_value * MonCost_2 + b_dur_value * Dur_2  

                + b_co2_value * CO2_2 + b_job_value * Job_2 ) 

  V[["sol"]] = (asc_sol_value + b_invCost_value * InvCost_3 +  

                b_monCost_value * MonCost_3 + b_dur_value * Dur_3  

                + b_co2_value * CO2_3 + b_job_value * Job_3 ) 

  V[["pum"]] = (asc_pum       + b_invCost_value * InvCost_4 +  

                b_monCost_value * MonCost_4 + b_dur_value * Dur_4  

                + b_co2_value * CO2_4 + b_job_value * Job_4 ) 

   

  ### Define settings for MNL model component 

  mnl_settings    = list( 

    alternatives  = c(geo=1, hyd=2, sol=3, pum=4), 

    avail         = list(geo=1, hyd=1, sol=1, pum=1), 

    choiceVar     = choice, 

    utilities     = V, 

    component     = "choice" ) 

   

  ### Compute probabilities for MNL model component 

  P[["choice"]] = apollo_mnl(mnl_settings, functionality) 

   

  ### Likelihood of the whole model 

  P = apollo_combineModels(P, apollo_inputs, functionality) 

   

  ### Take product across observation for same individual 

  P = apollo_panelProd(P, apollo_inputs, functionality) 

   

  ### Average across inter-individual draws 

  P = apollo_avgInterDraws(P, apollo_inputs, functionality) 

   

  ### Prepare and return outputs of function 

  P = apollo_prepareProb(P, apollo_inputs, functionality) 

  return(P)} 

 

# ############################################################## # 

#### MODEL ESTIMATION                                         #### 

# ############################################################## # 

 

### Estimate model 

estimate_settings= list(estimationRoutine = "BHHH" ) 

 

model = apollo_estimate(apollo_beta, apollo_fixed, 

apollo_probabilities, apollo_inputs, estimate_settings) 
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# ############################################################## # 

#### MODEL OUTPUTS                                            #### 

# ############################################################## # 

 

apollo_modelOutput(model) 

apollo_saveOutput(model) 

 

C7.10: Model 6c– ICLV with Identity MXL with correlation 

# ############################################################## # 

#### LOAD LIBRARY AND DEFINE CORE SETTINGS                    #### 

# ############################################################## # 

 

### Clear memory 

rm(list = ls()) 

 

### Load Apollo library 

library(apollo) 

 

### Initialise code 

apollo_initialise() 

 

### Set core controls 

apollo_control    = list( 

  modelName       = "Hydrid choice model identity effect all  

                     attributes 05_11 BHHH 100 RD", 

  modelDescr      = "Hybrid choice model on GEMS data, using 

                     ordered measurement model for identity and  

                     environmental preference indicators", 

  indivID         = "id", 

  nCores          = 10,  

  outputDirectory = "output") 

 

# ############################################################## # 

#### LOAD DATA AND APPLY ANY TRANSFORMATIONS                  #### 

# ############################################################## # 

 

### Loading data from package 

database = 

read.csv("/Users/lucyvictorianaga/Library/CloudStorage/OneDrive-

DurhamUniversity/PhD/GEMS/Choice Modelling 

GEMS/Data/GEMS_full_data_clean_100924.csv", header=TRUE) 

 

# ############################################################## # 

#### DEFINE MODEL PARAMETERS                                  #### 

# ############################################################## # 

 

### Vector of parameters, including any that are kept fixed in  

### estimation 

apollo_beta = c(asc_geo = 0.761971 , 

                 asc_hyd = 0.197592 , 

                 asc_sol = -0.168279 , 

                 asc_pum = 0 , 

                 b_invCost_mu = 0.737234 , 

                 b_invCost_sig = -1.013919 , 
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                 b_monCost_mu = 0.262974 , 

                 b_monCost_sig = 1.116409 , 

                 b_dur_mu = 0.699838 , 

                 b_dur_sig = 0.613193 , 

                 b_co2_mu = -2.969189 , 

                 b_co2_sig = 2.297435 , 

                 b_job_mu = 1.924743 , 

                 b_job_sig = -2.284934 ,  

                 b_cor = 0.5, 

                  

                 lambda_id_geo    = 1.613, 

                 lambda_id_hyd    = 0.621, 

                 lambda_id_sol    = -0.656, 

                 lambda_id_inv    = -0.903, 

                 lambda_id_mon    = -0.795, 

                 lambda_id_dur    = 0.263, 

                 lambda_id_co2    = -1.026, 

                 lambda_id_job    = 0.788,  

                  

                 gamma_id_low_income     =  0.003, 

                 gamma_id_own_accom      =  -0.092, 

                 gamma_id_time10         =  0.161, 

                 gamma_id_exptime10      =  0.056, 

                 gamma_id_male           =  -0.060, 

                 gamma_id_uni_ed         =  0.091, 

                 gamma_id_unemp          =  -0.132, 

                 gamma_id_age35          =  -0.393, 

                 gamma_id_age3555        =  -0.261, 

                 gamma_id_no_mines       =  -0.002, 

                  

                 zeta1_iden_herit       = -0.097, 

                 tau1_iden_herit_1      = -2.492,  

                 tau1_iden_herit_2      = -1.226,  

                 tau1_iden_herit_3      = 0.043,  

                 tau1_iden_herit_4      = 1.435, 

                 zeta1_hon_his          = 0.235, 

                 tau1_hon_his_1         = -4.164,  

                 tau1_hon_his_2         = -2.777,  

                 tau1_hon_his_3         = -0.510,  

                 tau1_hon_his_4         = 1.450, 

                 zeta1_proj_imp         = 0.279, 

                 tau1_proj_imp_1        = -4.330,  

                 tau1_proj_imp_2        = -3.507,  

                 tau1_proj_imp_3        = -1.464,  

                 tau1_proj_imp_4        = 0.649          ) 

### Vector with names (in quotes) of parameters to be kept fixed 

### at their starting value in apollo_beta 

 

apollo_fixed = c("asc_pum") 

 

### Ben-Akiva normalisation to scale the latent variable set  

### coefficient on one of the indicators to 1 

 

# ############################################################## # 

#### DEFINE RANDOM COMPONENTS                                 #### 

# ############################################################## # 
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### Set parameters for generating draws 

apollo_draws     = list( 

  interDrawsType = "sobolFaureTezuka"",  

  interNDraws    = 2000,           

  interUnifDraws = c(),       

  interNormDraws = c("eta", "draws_invCost", "draws_monCost", 

"draws_dur", "draws_co2", "draws_job", "draws_job_inv"),  

   

  intraDrawsType = "", 

  intraNDraws    = 0,           

  intraUnifDraws = c(),      

  intraNormDraws = c()   ) 

 

### Create random parameters 

apollo_randCoeff=function(apollo_beta, apollo_inputs){ 

  randcoeff = list() 

   

  randcoeff[["Identity1"]] = (gamma_id_low_income * low_income 

                            + gamma_id_own_accom  * own_accom 

                            + gamma_id_time10     * time_accom10 

                            + gamma_id_exptime10 *exp_time_accom10 

                            + gamma_id_male       * male 

                            + gamma_id_uni_ed     * uni_ed  

                            + gamma_id_unemp      * emp_typ_unemp 

                            + gamma_id_age35      * age35  

                            + gamma_id_age3555    * age3555  

                            + gamma_id_no_mines   * no_mines    

                            + eta) 

   randcoeff[["b_invCost"]] = -exp(b_invCost_mu + b_invCost_sig * 

draws_invCost + b_cor * draws_job_inv) 

   randcoeff[["b_monCost"]] = -exp(b_monCost_mu + b_monCost_sig * 

draws_monCost) 

   randcoeff[["b_dur"]] = b_dur_mu + b_dur_sig * draws_dur 

   randcoeff[["b_co2"]] = b_co2_mu + b_co2_sig * draws_co2  

   randcoeff[["b_job"]] = b_job_mu + b_job_sig * draws_job + b_cor * 

draws_job_inv 

  return(randcoeff)} 

 

# ############################################################## # 

#### GROUP AND VALIDATE INPUTS                                #### 

# ############################################################## # 

 

apollo_inputs = apollo_validateInputs() 

 

# ############################################################## # 

#### DEFINE MODEL AND LIKELIHOOD FUNCTION                     #### 

# ############################################################## # 

 

apollo_probabilities = function(apollo_beta,  

                                apollo_inputs,  

                                functionality="estimate"){ 

   

  ### Attach inputs and detach after function exit 

  apollo_attach(apollo_beta, apollo_inputs) 

  on.exit(apollo_detach(apollo_beta, apollo_inputs)) 
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  ### Create list of probabilities P 

  P = list() 

   

  ### Likelihood of indicators 

  ol_settings1 = list(outcomeOrdered = iden_herit,  

                      V              = zeta1_iden_herit*Identity1,  

                      tau            = list(tau1_iden_herit_1,  

                                            tau1_iden_herit_2,  

                                            tau1_iden_herit_3,  

                                            tau1_iden_herit_4), 

                      rows           = (choice_no==1), 

                      componentName  = "indic1_iden_herit") 

   

  ol_settings2 = list(outcomeOrdered = hon_his,  

                     V               = zeta1_hon_his*Identity1 ,  

                     tau             = list(tau1_hon_his_1,  

                                            tau1_hon_his_2,  

                                            tau1_hon_his_3,  

                                            tau1_hon_his_4), 

                     rows            = (choice_no==1), 

                     componentName   = "indic1_hon_his") 

   

  ol_settings3 = list(outcomeOrdered = proj_imp,  

                      V              = zeta1_proj_imp*Identity1,  

                      tau            = list(tau1_proj_imp_1,  

                                            tau1_proj_imp_2,  

                                            tau1_proj_imp_3,  

                                            tau1_proj_imp_4), 

                      rows           = (choice_no==1), 

                      componentName  = "indic1_proj_imp") 

   

   

  P[["indic1_iden_herit"]]= apollo_ol(ol_settings1, functionality) 

  P[["indic1_hon_his"]]   = apollo_ol(ol_settings2, functionality) 

  P[["indic1_proj_imp"]]  = apollo_ol(ol_settings3, functionality) 

   

   

  ### Create alternative specific constants and coefficients using  

  ### interactions with latent variable 

 

asc_geo_value   = asc_geo   + lambda_id_geo * Identity1 

asc_hyd_value   = asc_hyd   + lambda_id_hyd * Identity1 

asc_sol_value   = asc_sol   + lambda_id_sol * Identity1 

   

b_invCost_value = b_invCost + lambda_id_inv * Identity1  

b_monCost_value = b_monCost + lambda_id_mon * Identity1  

b_dur_value     = b_dur     + lambda_id_dur * Identity1  

b_co2_value     = b_co2     + lambda_id_co2 * Identity1  

b_job_value     = b_job     + lambda_id_job * Identity1  

           

   

 

   

  ### Likelihood of choices 

  ### List of utilities: these must use the same names as in 
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  ### mnl_settings, order is irrelevant 

 

  V = list() 

  V[["geo"]] = (asc_geo_value + b_invCost_value * InvCost_1 +  

                b_monCost_value * MonCost_1 + b_dur_value * Dur_1  

                + b_co2_value * CO2_1 + b_job_value * Job_1) 

  V[["hyd"]] = (asc_hyd_value + b_invCost_value * InvCost_2 +  

                b_monCost_value * MonCost_2 + b_dur_value * Dur_2  

                + b_co2_value * CO2_2 + b_job_value * Job_2 ) 

  V[["sol"]] = (asc_sol_value + b_invCost_value * InvCost_3 +  

                b_monCost_value * MonCost_3 + b_dur_value * Dur_3  

                + b_co2_value * CO2_3 + b_job_value * Job_3 ) 

  V[["pum"]] = (asc_pum       + b_invCost_value * InvCost_4 +  

                b_monCost_value * MonCost_4 + b_dur_value * Dur_4  

                + b_co2_value * CO2_4 + b_job_value * Job_4 ) 

   

  ### Define settings for MNL model component 

  mnl_settings    = list( 

    alternatives  = c(geo=1, hyd=2, sol=3, pum=4), 

    avail         = list(geo=1, hyd=1, sol=1, pum=1), 

    choiceVar     = choice, 

    utilities     = V, 

    component     = "choice" ) 

   

  ### Compute probabilities for MNL model component 

  P[["choice"]] = apollo_mnl(mnl_settings, functionality) 

   

  ### Likelihood of the whole model 

  P = apollo_combineModels(P, apollo_inputs, functionality) 

   

  ### Take product across observation for same individual 

  P = apollo_panelProd(P, apollo_inputs, functionality) 

   

  ### Average across inter-individual draws 

  P = apollo_avgInterDraws(P, apollo_inputs, functionality) 

   

  ### Prepare and return outputs of function 

  P = apollo_prepareProb(P, apollo_inputs, functionality) 

  return(P)} 

 

# ############################################################## # 

#### MODEL ESTIMATION                                         #### 

# ############################################################## # 

 

### Estimate model 

estimate_settings= list(estimationRoutine = "BHHH" ) 

 

model = apollo_estimate(apollo_beta, apollo_fixed, 

apollo_probabilities, apollo_inputs, estimate_settings) 

 

# ############################################################## # 

#### MODEL OUTPUTS                                            #### 

# ############################################################## # 

 

apollo_modelOutput(model) 

apollo_saveOutput(model) 
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