
Durham E-Theses

Simulating Fundamental Physics: Numerical

Endeavours in Astronomical and Particle

Phenomenology

MAXWELL, JAMES,LUKE

How to cite:

MAXWELL, JAMES,LUKE (2025) Simulating Fundamental Physics: Numerical Endeavours in

Astronomical and Particle Phenomenology, Durham theses, Durham University. Available at Durham
E-Theses Online: http://etheses.dur.ac.uk/16147/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/16147/
 http://etheses.dur.ac.uk/16147/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Simulating Fundamental Physics

Numerical Endeavours in Astronomical and

Particle Phenomenology

James Maxwell

A Thesis presented for the degree of
Doctor of Philosophy

Institute for Particle Physics Phenomenology
Department of Physics

Durham University
United Kingdom

June 2025





Simulating Fundamental Physics

Numerical Endeavours in Astronomical and

Particle Phenomenology

James Maxwell

Submitted for the degree of Doctor of Philosophy

June 2025

Abstract: The fundamental theories of physics, general relativity and quantum

field theory allow for the description of highly complex interacting systems. To

truly realise the nature of these theories, one must take advantage of the numerical

power provided by modern computational hardware. In this thesis, we begin by

exploring the possibility, through numerical simulations, that signatures of multi

axion phenomenology may be imprinted on the high energy photon spectra of Blazars.

We follow this with a presentation of our work on the determination, numerically, of

the dynamical friction force that would be experienced by a black hole propagating

through a field of scalar particles. Finally, we return from the astrophysical realm,

and present a novel code that may allow for the rapid computation of precision

matrix elements relevant to future terrestrial collider experience. By accelerating

pre-existing implementations of the Laprota algorithm, during the the preliminary

benchmarking of our code, we observed a reduction in execution time by an order

of magnitude.
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Preamble

Prior to the advent of computational hardware the solutions to the equations that

govern the dynamics of the universe could only be probed through the use of ana-

lytical approximations and arduous numerical calculations. Whilst in the classical

era of Newtonian mechanics, these techniques proved, in many cases, sufficient to

extract verifiable predictions from theoretical laws, in the modern age of quantum

mechanics and general relativity their applicability is limited to all but the most

simplistic of scenarios. These scenarios often include isolated systems with minimal

interactions. For example, the derivations of the analytical Black Hole solutions to

Einstein field equations rely on the high degree of symmetry associated with a trivial

matter environment. Similarly, in particle physics, purely analytical methods can

only access low precision terms in perturbative expansions of the path integral, with

those of a higher order necessitating the evaluation of complicated loop integrals.

The preceding two decades have seen momentous developments in computational

power. These increases in memory capacity and processing speed mean it is now

possible to simulate, to a high degree of precision, complicated and coupled systems

involving large scale ranges. In chapter 2 we discuss the propagation of high energy

photons from their Blazar source to the Earth in the presence of a non-trivial

magnetic field structure and with couplings to string motivated axion-like particles.

In chapter 4 we consider the more intensive problem of a Black Hole moving trough

a field of scalar particles. The vast difference in length scales associated with

this problem necessitate the use of a High Performance Computing (HPC) cluster

to achieve a sufficient operational throughput to appropriately resolve important
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dynamics. HPC’s offer a high degree of parallelism and have been the de facto

standard platform for intensive numerical investigations. With the rise of Artificial

Intelligence in recent years and the accompanying growth in the capabilities of

Graphics Processing Units (GPU’s), a new paradigm for the study of numerical

physics has emerged. GPU’s provide extremely high operational throughputs with a

memory structure that offers minimal latency. In chapter 5 we present a novel, proof

of concept code that may aid in the computation of high precision matrix elements,

potentially capable of accelerating their evaluation by an order of magnitude.

This thesis explores three vastly different aspects of computational physics. In

advance of each subject, therefore, we provide a detailed introduction and a specific-

ation of the notations and conventions used therein. Note, in particular, that during

our discussions on particle physics and general relativity, we use different metric

signatures and different choices of natural units, so as best to remain in keeping with

the existing literature and the conventions of these fields.

We begin now with an introduction to one of the most well verified theoretical

descriptions of the universe, that of the Standard Model of particle physics.



Chapter 1

Particle Physics Introduction

1.1 The Standard Model

The Standard Model (SM) represents the state of the art in our understanding of the

behaviour of the infinitesimal. It is a unification of special relativity and quantum

mechanics and has allowed for some of the most accurate predictions about our

universe. The SM will form the basis for the majority of the work in this thesis.

Accordingly, we present an overview of its core facets to give context for what follows.

1.1.1 Gauge Theory

Through over 100 years of experimentation, the local (Gauge) symmetries of the

universe have been determined. It is these that form the basis for the SM. Specifically,

we require the Lagrangian to be invariant under the following Lie group:

SU(3)c × SU(2)L × U(1)Y. (1.1.1)

Where, SU(3)c is associated with the strong interaction and SU(2)L×U(1)Y describes

electro-weak processes [6]. The SM Lagrangian can then be constructed by writing

down every gauge and Lorentz invariant term that is renormalizable and corresponds
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to an observed particle. To illustrate this process, we consider a toy model involving

a non-interacting, massive complex scalar φ with U(1) gauge symmetry:

L = (∂µφ)†(∂µφ)−m2φ†φ. (1.1.2)

Where, under U(x) ∈ U(1) transformation:

φ→ U(x)φ. (1.1.3)

Here, U(x) are elements of the representation labelled by a charge g. In the Lag-

rangian’s current state eq. (1.1.2), the presence of the partial derivatives spoil the

gauge symmetry:

∂µ(U(x)φ(x)) = φ(x)∂µ(U(x)) + U(x)∂µφ(x) (1.1.4)

̸= U(x)∂µφ(x). (1.1.5)

To address this issue, we must introduce an additional, so called gauge field Aµ(x),

with which we define a gauge covariant derivative:

Dµ = ∂µ − igAµ. (1.1.6)

We further stipulate that Aµ possesses the following transformation property under

U(1):

Aµ → UAµU
−1 − i

g
(∂µU)U−1. (1.1.7)

Finally, exchanging ∂µ for Dµ in eq. (1.1.2) yields the desired gauge invariance.

Interestingly, our theory of a single particle has now become one of two particles.

At present, however, Aµ is arbitrary and non-dynamical. As we are free to add

additional terms to our Lagrangian, provided they satisfy the symmetries, we seek
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to introduce a derivative term for Aµ. This can be constructed in a gauge invariant

way using the field strength tensor:

Fµν = ∂µAν − ∂νAµ, (1.1.8)

where it can be shown that the field strength tensor transforms as Fµν → UFµνU
†.

The following contraction can be appended to our Lagrangian, giving:

L = (Dµφ)†(Dµφ)−m2φ†φ− 1
4FµνF

µν (1.1.9)

= (∂µφ)†(∂µφ)−m2φ†φ+ g2AµA
µφ2 − 1

4FµνF
µν . (1.1.10)

This is a fully gauge invariant Lagrangian that describes the interaction between

two dynamical fields.

The true SM Lagrangian can be constructed in a way analogous to this, albeit with

some additional complications. In particular, in the above example we considered

a very simple gauge symmetry to postpone the discussion of group representations

and algebras. We will now address these complexities to motivate the physical

Lagrangian.

The SM gauge groups are Lie groups. That is to say that the group operation is

differentiable. This means that at a given point in spacetime, an element g of a

group G of dimension N can be written as:

g = e−θa
T

a

a ∈ 1, 2, ...N, (1.1.11)

where the θa are continuous parameters that label the group elements and the T a

are known as the infinitesimal generators of the group:

T a = i
∂g

∂θa

∣∣∣∣∣
θ=0

. (1.1.12)
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The group generators are related according to the Lie algebra:

[
T a, T b

]
= ifabcT c, (1.1.13)

where the fabc are known as structure constants and [, ] is the Lie bracket. The Lie

algebra of the group can be used to construct the various group representations. A

group representation associates each element in the group with an M ×M matrix.

The different particles in the SM will transform under different group representations.

Specifically, the fermion fields will transform either under the fundamental or the

trivial representations, whereas the gauge fields will transform under the adjoint

representation.

The trivial representation simply maps every group element to the identity matrix.

Fields that are uncharged under a given symmetry will transform under the trivial

representation, for example, leptons under SU(3)c. We can express the non-trivial

representations in terms of their generators according to eq. (1.1.11). The Funda-

mental representation is the smallest injective representation. It is conventional to

normalise the fundamental generators as follows:

Tr(T aFT bF ) = δab

2 . (1.1.14)

For SU(3) the generators that satisfy these conditions are known as the Gell-Mann

matrices.

The generators of the adjoint representation can be expressed in terms of the structure

constants as:

(T aA)bc = −ifabc. (1.1.15)

This is because the adjoint representation acts on elements of the lie algebra so

its generators must encode the relationship expressed in eq. (1.1.13). Acting on
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the basis elements (T a) of the Lie algebra, the adjoint generators will yield the lie

bracket:

T aAT
b =

[
T a, T b

]
. (1.1.16)

The action of a group element g ∈ G on an element of the algebra h ∈ g is that of

composition:

gh = g ◦ h. (1.1.17)

The Lie algebra consists of matrices so this composition can be written:

g ◦ h = ghg−1. (1.1.18)

Comparing this to the transformation property of the gauge field Aµ in eq. (1.1.7),

we see that the first part of the right hand side is recovered by the requirement that

Aµ transforms under the adjoint representation. Interestingly, this also means that

the values that the gauge field takes are actually the elements of the Lie algebra.

The second term in eq. (1.1.7) arises because the field is defined locally and simply

accounts for the derivatives present in eq. (1.1.2).

By requiring that the gauge fields belong to the Lie algebra of the symmetry group,

one can ensure appropriate transformation properties when constructing the covari-

ant derivative. It should be noted that the Aµ considered in the above example is

not expressed in the general form for a Lie algebra element. This is because U(1) has

only a single generator. Generally, a gauge field will be expressed as a superposition

of the fundamental generators:

Aµ = AaµT
a
F . (1.1.19)

This leads to the following modification to the field-strength tensor:



34 Chapter 1. Particle Physics Introduction

Fµν = F a
µνT

a (1.1.20)

= ∂µAν − ∂νAµ − ig
[
Aµ, Aν

]
. (1.1.21)

Putting all this together, we can now construct the SM Lagrangian.

1.1.2 Fermion Lagrangian

In the previous example, we considered a scalar field and a vector gauge field.

Fermions, however, exist in a different space - that of spinors. Spinors were first

introduced by Klein in 1897 and encode the property of spin as discovered by the

Stern-Gerlach experiment [7]. As with all objects in the SM, spinors must behave

in a way such that their physics is invariant under the Lorentz group SO(1, 3), i.e.

Lorentz scalars formed from spinors should be invariant under the group action.

Lorentz 4-vectors naturally satisfy this condition. However, they do not reflect the

spin property. Spinors change sign under a spatial rotation by 360o instead requiring

a rotation by 720o to return to their original state. There are no representations

of the rotational subgroup SO(3) ⊂ SO(1, 3) of the Lorentz group that satisfy

this property. Spinors instead, transform under the fundamental representation of

SL(2,C). SL(2,C) is a double cover (2 to 1 homomorphism) of SO(1, 3). One full

rotation in the subgroup SU(2,C) ⊂ SL(2,C) maps to two full rotations in SO(3),

thus encoding the spin property.

To see this more explicitly consider the fundamental representations of SO(3) and

SU(2,C). The generators of SO(3) (Jx, Jy, Jz) are given by:

Jx =


0 0 0

0 0 −i

0 i 0

 , Jy =


0 0 i

0 0 0

−i 0 0

 , Jz =


0 −i 0

i 0 0

0 0 0

 , (1.1.22)

and obey the Lie algebra:
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[Jx, Jy] = iJz, [Jy, Jz] = iJx, [Jz, Jx] = iJy. (1.1.23)

A generic rotation matrix in 3 dimensions can then be written:

A = eiθ
a
J

a

. (1.1.24)

The generators for SU(2,C) are the Pauli matrices {σa}, a ∈ [1, 3], given by:

σ1 = 1
2

0 1

1 0

 , σ2 = 1
2

0 −i

i 0

 , σ3 = 1
2

1 0

0 −1

 , (1.1.25)

obeying:

[
σi, σj

]
= iϵijkσ

k. (1.1.26)

Where ϵijk are the Levi-Civita symbols. A rotation in SU(2,C) can be written:

A′ = eiθ
′a
σ

a

. (1.1.27)

These are related to rotations in SO(3) by:

θ′a = 2θa. (1.1.28)

Including boosts, a general spinor will transform under the fundamental representa-

tion of SL(2,C) and can be represented by a two component complex vector. There

is one additional subtlety concerning spinors when modelling fermionic particles.

This is chirality (or handedness). Experiments have shown that there are two forms

of spinor that behave differently under the standard model gauge symmetries. These

are referred to as being left-handed or right-handed and can be distinguished by the

representation of SU(2,C) under which they transform. Specifically, for a rotation,

a left-handed spinor will transform under:
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A′
L = eiθ

′a
σ

a

. (1.1.29)

Whereas a right-handed spinor will transform under the inverse:

A′
R = e−iθ′a

σ
a

. (1.1.30)

These two component complex spinors are known as Weyl spinors. Left handed Weyl

spinors are said to transform under the (1/2, 0) representation of the Lorentz group,

meaning that they transform under the first of the two representations above and

trivially under the second. A right handed Weyl spinor is said to transform under

the (0, 1/2) representation.

In any massless theory, the left and right handed Weyl spinors will be uncoupled and

the Lagrangian could simply be written in terms of separate spinors. For example:

Lkinetic = iψ†
Lσ

µ∂µψL + iψ†
Rσ

µ∂µψR. (1.1.31)

Where ψL and ψR are the left and right handed spinor respectively, σµ = (I, σ⃗) are the

Pauli matrices and σµ = (I,−σ⃗). The presence of the Pauli matrices in eq. (1.1.31)

effectively generalises the Lorentz invariance of ∂µ to the space of spinors. Fermions,

however, are known to be massive and mass terms lead to a coupling between left-

handed and right-handed spinors. It is thus useful to introduce a doublet of left and

right handed spinors known as a Dirac spinor :

Ψ =

ψL
ψR

 . (1.1.32)

The fermion mass term can then be written:

Lmass = −mΨΨ (1.1.33)
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= −m
(
ψ†
Lσ

0ψR + ψ†
Rσ

0ψL
)
, (1.1.34)

where:

Ψ = Ψ†γ0. (1.1.35)

Here σ0 and σ0 effectively encode contractions in left handed and right handed Weyl

spinor spaces and γ0 encodes contraction in the combined Dirac space. These ensure

that the mass term is a Lorentz scalar. Eq. (1.1.31) can be rewritten in Dirac spinor

space as:

Lkinetic = iΨγµ∂µΨ, (1.1.36)

where the gamma matrices, which take the role of the Pauli matrices, are given by:

γ0 =

 0 I2

I2 0

 γi =

 0 σi

−σi 0

 , i = 1, 2, 3. (1.1.37)

If a Dirac spinor contains only one non-zero Weyl spinor, it is said to have the

chirality of that spinor. The chirality of a Dirac spinor can be determined using the

chirality operator γ5:

γ5

ψL
0

 = −

ψL
0

 ; (1.1.38)

γ5

 0

ψR

 =

 0

ψR

 . (1.1.39)

Where,

γ5 = iγ0γ1γ2γ3. (1.1.40)
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Dirac spinors can be decomposed into their right-handed and left-handed components

using right and left chiral projection operators:

Ψ = ΨL + ΨR = PLΨ + PRΨ. (1.1.41)

Hare ΨR and ΨL are Dirac spinors and the projection operators are given by:

PL = 1
2
(
1− γ5

)
, PR = 1

2
(
1 + γ5

)
. (1.1.42)

As stated previously, the SM gauge group does not treat fermions with opposing

chirality equally. Specifically, only left handed fermions transform non-trivially under

SU(2)L. This means that the mass term eq. (1.1.34) is in fact not gauge invariant

as it mixes left and right handed components. This conundrum can be resolved with

the keystone of the standard model - the Higgs mechanism.

1.1.3 The Higgs Mechanism

The Higgs mechanism allows for massive fermions and gauge bosons without violating

gauge invariance through a process of spontaneous symmetry breaking. We introduce

a complex scalar doublet that transforms in the fundamental representations of

SU(2)L and U(1)Y :

Φ = 1√
2

φ1 + iφ2

φ3 + iφ4

 . (1.1.43)

This is the Higgs field, the dynamics of which are given by its Lagrangian:

LHiggs = (DµΦ)†(DµΦ)− V (Φ), (1.1.44)

The covariant derivative Dµ can be written in terms of the vector SU(2)L gauge

fields W a
µ , a ∈ {1, 2, 3} and the U(1)Y gauge field Bµ
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DµΦ =
(
∂µ − i

g

2σa ·W
a
µ − i

g′

2 Bµ

)
Φ, (1.1.45)

where σa are the Pauli matrices that generate SU(2)L. The most general form one

can write down for the Higgs potential V (Φ) is:

V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2. (1.1.46)

At this stage, µ and λ are free parameters. To produce symmetry breaking, however,

we require the Higgs field to posses a non-zero Vacuum Expectation Value (VEV).

This occurs when V (Φ) is minimal for non-zero Φ. To form such a potential, we

require µ2 > 0 and λ > 0. For this choice of parameters, the potential will be

minimised when Φ†Φ = µ
2

2λ and the Higgs VEV is:

v =
√
µ2

2λ. (1.1.47)

The Higgs field has four degrees of freedom, so there are infinitely many states that

minimise the potential φ2
1 +φ2

2 +φ2
3 +φ2

4 = µ
2

2λ . These states are all equivalent up to

a gauge transformation and so we are free arbitrarily to select a gauge in which only

a single degree on freedom is non-zero. Conventionally, we choose φ4 ̸= 0, rewriting

it in terms of a new field h with a trivial VEV as:

Φ = 1√
2

 0

h+ v

 . (1.1.48)

This is known as the unitary gauge. When the Higgs field is in its vacuum state,

the SU(2)L × U(1)Y is spontaneously broken to a single U(1)EM corresponding to

electromagnetism.

The gauge boson mass terms now arise automatically by evaluating the Higgs kinetic

term at the VEV (h = 0). With the following field definitions:
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W±
µ = 1√

2
(
W 1
µ ∓ iW 2

µ

)
, (1.1.49)

Z0
µ = 1√

g2 + g′2

(
gW 3

µ − g′Bµ

)
, (1.1.50)

Aµ = 1√
g2 + g′2

(
gW 3

µ + g′Bµ

)
, (1.1.51)

(1.1.52)

we obtain:

(DµΦ)†(DµΦ)|h=0 = 1
2

(
gv

2

)2 (
|W+

µ |2 + |W−
µ |2

)
+ 1

2

v
√(

g2 + g′2
)

2


2

|Z0
µ|2

(1.1.53)

≡ 1
2m

2
W

(
|W+

µ |2 + |W−
µ |2

)
+ 1

2m
2
Z |Z0

µ|2. (1.1.54)

The W± and Z0 bosons gain masses gv
2 and v

√
g

2+g′2

2 respectively. Note that there

is no mass term for the photon Aµ. This is because the Higgs VEV is still invariant

under U(1)EM after symmetry breaking.

To derive the fermion mass terms, we must introduce a gauge invariant Yukawa

coupling between the Higgs and the fermion fields. To achieve this, we must first

pair the left-handed fermions into SU(2)L doublets. Consider as an example the

doublet formed from two Dirac spinors representing a down quark (d) and an up

quark (u):

QL =

uL
dL

 . (1.1.55)

Note that only the left-handed projections of the spinor fields are included in the

doublet as only they transform non-trivially under SU(2)L. The full Yukawa inter-

action for these quarks can then be written:
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LQuarks
Y = −ydQLΦdR − yuQLΦ̃uR + h.c. (1.1.56)

Where yd and yu are the Yukawa couplings and h.c. is the hermitian conjugate. Each

term in eq. (1.1.58) constitutes an inner product in SU(2)L space between a quark

doublet and the Higgs doublet. Once again, substituting the VEV for the Higgs

field, one obtains fermionic masses of the form:

mf = 1√
2
yfv. (1.1.57)

This process also applies to leptons, however, there are no terms involving right-

handed neutrinos as these are massless in the SM. For example, for electrons:

LLeptons
Y = −yeLLΦeR + h.c. (1.1.58)

with doublet:

LL =

 eL
νeL

 . (1.1.59)

These quark and lepton groupings are known as generations (or families). The SM

has three generations; (see fig. 1.1 for details). Focusing on a single generation, and

combining everything together, the SM Lagrangian can be written:

LSM =− 1
4G

α
µνG

α,µν − 1
4W

a
µνW

a,µν − 1
4BµνB

µν (1.1.60)

+ (DµΦ)†(DµΦ)− V (Φ†Φ) (1.1.61)

+ iQL /DQL + iQR /DQR + iLL /DLL + iLR /DLR (1.1.62)

− (ydQLΦdR + yuQLΦ̃uR + h.c.)− (yeLLΦeR + h.c.). (1.1.63)

Here, the first line contains the gauge boson kinetic terms. The second line describes

the Higgs field and its potential. The Third line describes the fermion kinetic terms

and the final line contains the fermion-Higgs Yukawa interactions.
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This has all been constructed by writing down every renormalisable term involving

the empirical fields that is symmetric under both the SM gauge group and the Lorentz

group. Working within this vein, there is one additional term that one could, in

principle, write down pertaining to the gluon and electroweak fields. There have,

however, been no experimental studies able to detect its existence. The seeming

absence of this term is known as the strong CP problem.
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Figure 1.1: The particle content of the SM. The fermions are shown
on the left with the three generations separated into
individual columns. Mass values were taken from [1].

1.2 The Strong CP Problem

In the theory of Quantum Chromo Dynamics (QCD), the SM symmetries permit

the inclusion of a term of the form:

L ⊃ θ
g2

32π2G
α
µνG̃

α,µν , (1.2.1)
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known as the QCD theta term, where G̃α,µν = 1
2ϵ
µνσρGα

σρ is the dual gluon field

strength tensor and θ is known as the vacuum angle. This additional Lagrangian

term can in fact be written as total derivative:

Gα
µνG̃

α,µν = ∂µK
µ, (1.2.2)

where Kµ, known as the Chern-Simons current, is given by:

Kµ = ϵµνρσ
(
Aaν∂ρA

a
σ + g

3f
abcAaνA

b
ρA

c
σ

)
. (1.2.3)

As a consequence of this, one can conclude that the theta term will not affect perturb-

ations about the vacuum. This can be seen by considering the space-time integral in

the path integral which, for total derivatives, can be reformulated using Gauss law

into a surface integral over the boundary at infinity. The standard boundary condi-

tions then ensure that this integral is null. For this reason, it might seem that the

theta term is redundant, and indeed it was neglected in early formulations of QCD.

It was later realised, however, that its inclusion gives rise to a number of important

non-perturbative effects. These effects arise due to the non-trivial vacuum structure

of QCD. That is to say that there exist SM ground states that cannot be rotated

into one another through an SU(3) gauge transformation. This non-trivial vacuum

results from the topology of the SU(3) manifold, so the theta term is sometimes

referred to as being topological.

If the universe existed purely in a single vacuum state, then we would not observe

any effect from the theta term. Semi-classical solutions to the Equations Of Motion

(EOM) have been discovered that take the system from one vacuum state to another.

These solutions are known as instantons and, importantly, (through the theta term)

enable the violation of the combined discrete symmetry of Charge conjugation and

Parity (collectively CP symmetry). Charge conjugation symmetry refers to invari-

ance under the exchange of a particle with its anti-particle and parity describes

the effect of inverting the space-time directions. Instantons map between states



44 Chapter 1. Particle Physics Introduction

of differing baryon number, thereby increasing the matter content of the universe

relative to anti matter. This equates to a CP symmetry violation. In addition,

and of more relevance experimentally, the theta term implies a non-zero electric

dipole moment for the neutron. Empirical studies have constrained this value to be

very small ≤ 10−26e cm [8]. This translates to a constraint on the vacuum angle of

|θ| ≤ 10−10. The vanishing size of this parameter is what is known as the strong

CP problem. It is problematic from the point of view of naturalness with it being

significantly smaller than the other numbers in the SM Lagrangian.

1.2.1 The QCD Axion

One can attempt to explain the strong CP problem by moving beyond the SM. The

most widely accepted, although currently, unproven, resolution to the strong CP

problem was put forward by R. D. Peccei and H. Quinn in 1977 [9, 10]. Prior to

this seminal work by Peccei and Quinn, it was shown that if at least one quark

has no bare mass, then the theta term is irrelevant and can be set to zero through

chiral rotation [11]. Unfortunately, this is inconsistent with empirical data and,

although some models have been proposed that try to explain the quark masses as

being a consequence of renormalization, the magnitude of this effect seems to be

insufficient [12]. Motivated by this, and the way quark masses arise through the Higgs

mechanism, Peccei and Quinn introduced a new global U(1)A axial symmetry. Axial

in this context denotes that the group respects chirality, with elements operating

inversely on left-handed (ψL → ψLe
iα) versus right-handed (ψR → ψRe

−iα) spinors.

Acting on Dirac spinors, the group action can be expressed succinctly using the γ5

matrix:

ψ → ψeiαγ
5
. (1.2.4)

This new U(1)A symmetry is often referred to as the Peccei-Quinn symmetry U(1)PQ.

In addition, the Peccei-Quinn (PQ) mechanism introduces a new scalar field φPQ
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charged under U(1)PQ with the following zero-temperature potential:

V (φPQ) = µ2
PQ

(
|φPQ|2 −

f 2
a

2

)2

. (1.2.5)

Where fa is known as the decay constant and µPQ is a dimensionless parameter. As

we saw with the Higgs mechanism, a potential of this form has a non-zero VEV

given by:

|φPQ| =
fa√

2
. (1.2.6)

Expanding around the VEV, we can write:

φPQ(x) = 1√
2

(fa + ρ(x)) eia(x)/fa . (1.2.7)

Here ρ(x) is a massive degree of freedom and a(x) is a massless Goldstone boson.

As we are working with a global symmetry, the Goldstone boson doesn’t get eaten

by the gauge fields to give them mass and instead persists as its own particle known

as the axion. The massive field on the other hand decouples at low energies and

can be neglected to give an effective axion theory. To see this, one need only

compute its mass. By expanding the potential in eq. (1.2.5) around the VEV we

find mρ ∼ µPQfa. We will see shortly that the strength of the axion gluon coupling

is inversely proportional to fa. Experimental bounds show that fa and mρ must be

very large, thus ρ can be integrated out, giving an effective scalar field:

φPQ(x) = fa√
2
eia(x)/fa . (1.2.8)

From this, we can see that the axion field transforms as a(x) → a(x) + αfa under

U(1)PQ. At present, the axion can couple to fermions through Yukawa couplings as

we saw for the Higgs boson. This, on its own, however, does not produce anything

that looks like the QCD theta term. Of the other terms we can add to the Lagrangian,

one of the simplest would be a current-current interaction of the form:
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L ⊃ Jφ,µJ
µ
ψ (1.2.9)

Where Jφ,µ is the Noether current associated with the PQ charged scalar and Jµψ is

that associated with fermions. The axion Noether current associated with the PQ

symmetry is given by

Jµφ = ∂L
∂(∂µφPQ)δφPQ + ∂L

∂(∂µφ∗
PQ)δφ

∗
PQ. (1.2.10)

Where the transformation can be written as δφPQ = iαφPQ. We find that

Jµφ = iφ∗
PQ

↔
∂µφPQ. (1.2.11)

Substituting the low energy effective φPQ eq. (1.2.8) gives:

JµPQ ≈ fa∂
µa. (1.2.12)

We therefore find that our current-current term can be expressed as:

Jφ,µJ
µ
ψ = fa∂µaJ

µ
ψ . (1.2.13)

Using integration by parts, the divergence can be shifted onto the fermion current,

giving:

Jφ,µJ
µ
ψ = −faa∂µJµψ . (1.2.14)

This kind of derivative coupling is a feature of Goldstone bosons and has important

consequences on the form of the interaction. In particular, a classical interpretation

of Noether’s theorem would suggest that eq. (1.2.14) is identically zero due to the

PQ symmetry. In reality, however, regularisation of the one loop triangle diagram

leads to a breakdown of the conservation law and the divergence of the fermion

current becomes:
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∂µJ
µ
ψ = g2

s

32π2NG
a
µνG̃

aµν , (1.2.15)

where N relates to the PQ charge of the Fermions. This invalidation of the conserva-

tion law is known as the chiral or axial anomaly. Quantum anomalies describe the

breakdown of classical symmetry laws when transitioning to a quantum field theory.

Unlike classical theories, where the physical path taken through phase space is that

which minimises the action, in QFT the system can be thought to take all possible

paths, weighted and summed into the path integral. It is this distinction that leads

to the problem. Specifically, it is not sufficient that the action is invariant under

a transformation; to realise the conservation, the path integral measure must also

transform by a trivial Jacobian factor. The current eq. (1.2.15) can be calculated

through a long-winded process, the details of which can be found here [13]. The CP

violating terms in the Lagrangian are now:

L ⊃ θ
g2

32π2G
α
µνG̃

α,µν + a

fa

g2
s

32π2NG
a
µνG̃

aµν . (1.2.16)

With this, we are starting to see how the PQ mechanism might account for the

unnatural θ-angle. There are still a number of steps remaining, however. The axion

field is currently a massless Goldstone mode and we have a dynamical effective

θ-angle given by θeff = θ +Na/fa. We can fix both these issues by considering the

axion effective potential. Non-perturbative instantons give rise to a potential of the

form:

Veff ∼ − cos
(
θ +N

a

fa

)
. (1.2.17)

This potential is minimised at the VEV, given by ⟨a⟩ = θfa/N . Finally, we can

perform a field redefinition, expanding the new axion field around its VEV a →

⟨a⟩ + a. This new physical axion gains a mass through the explicit symmetry

breaking potential induced by the instanton effects. We can also see that the strong
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CP problem is now resolved, with the effective θ-term in the ground state being

forced to zero by the axion VEV:

θeff = θ +N
⟨a⟩
fa

= 0. (1.2.18)

Without breaking the rest of the SM, the PQ mechanism naturally explains the

empirical lack of CP violation and provides a new pseudo-scalar degree of freedom

with which to verify the theory. The axion is one of the most well motivated

extensions to the SM and since its inception many experiments have searched for

its existence. Although as yet no such particle has been discovered, the axion has

motivated an entire branch of Beyond the Standard Model (BSM) theories based on

a weakly coupled pseudo-scalar. This wider class of particles are said to be axion

like and are the focus of our investigations in chapter 2. To avoid confusion, we shall,

henceforth, refer to the axion described above as the QCD axion and more general

axions as Axion Like Particles or ALPs.

Both the QCD axion and ALPs are also well motivated as possible dark matter (DM)

candidates [14]. Through the misalignment mechanism, these fields could evolve

into non-relativistic pressure-less clouds of particles, compatible with cold DM. The

QCD axion and ALPs may thus constitute a significant fraction, or even the entirety,

of the DM in the universe.

1.3 Axion Like Particles

ALPs arise both as a generalisation of the QCD axion and as a consequence of other

theories. Generic ALPs do not posses the same relationship between their mass

and coupling as the axion. This vastly increases the available parameter space in

which to search for their existence. The QCD axion parameter space is difficult to

probe experimentally and many new search strategies have begun to focus entirely

on generic ALP models.
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As well as generating a single generic ALP, some theories also predict the existence

of a spectrum of ALPs of differing masses. This is of particular interest with regard

to the work in this thesis. String theories regularly give rise to these ALP spectra

and are a strong motivation for our work.

1.3.1 The String Axiverse

String theory is a vast subject and not the focus of this thesis. Conveniently, however,

ALP modes are present in even the most simplistic string models. In this section, we

will discuss bosonic string theory and show the general mechanism through which

ALPs emerge. This section is based on ref. [15].

On a classical level, string theory promotes a classical point particle to a string. The

path of the particle through space (its world-line) gets promoted to a world-sheet.

In D dimensional space, the world-sheet is a D − 2 dimensional hypersurface. This

simple modification leads to a theory that may be able to explain both gravitation

and SM physics in a renormalisable way that reduces to QFT and general relativity

in the low energy limit. The starting point for bosonic string theory is the Polyakov

action:

S = −T2

∫
d2σ
√
−g gαβ∂αXµ∂βXµ. (1.3.1)

Here, we define coordinates on the world-sheet σα = (τ, σ);α ∈ {1, 2}, where σ ∈

[0, 2π) is the position along the string and τ is related to the time. The world-

sheet is embedded in the background Minkowski space (known as the target space)

according to Xµ(σα), with the induced metric on the world-sheet being given by gαβ

and √−g =
√
− det(gµν). The indices α and β refer to world-sheet coordinates and

µ and ν refer to the target space. The Polyakov action is classically equivalent to an

integral over the area of the world-sheet scaled by the tension in the string T . That

is to say that, solving the classical EOMs for gµν and Xµ and substituting these

back into the action gives:
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S = −T
∫
d2σ
√
−γ, (1.3.2)

where γµν is the, now non-dynamical, induced metric on the on the world-sheet.

This equation, known as the Nambu-Goto (NG) action, and indeed eq. (1.3.1) have

been constructed to be reparametrisation invariant with respect to the world-sheet

coordinates σα. Interestingly, this simple string action is sufficient to generate both

gravitons and axions.

Although eq. (1.3.2) and eq. (1.3.1) are classically equivalent, the Polyakov action is

easier to work with at a quantum level. The extra degrees of freedom in the Polyakov

action are related to gauge symmetries. Of particular importance is the invariance

of eq. (1.3.1) under a local scaling of the metric:

gαβ → Ω2(σ)gαβ. (1.3.3)

This is known as Weyl Invariance and allows the gαβ to be written as the flat

Minkowski metric ηαβ. Omitting the details, this is achieved by firstly using the σα

reparametrisation invariance to pick a gauge in which the metric is locally conformally

flat, i.e:

gαβ = e2φ(σα)ηαβ. (1.3.4)

Then using the Weyl invariance to set φ = 0 [15]. With this gauge choice, the

Polyakov action reduces to the simple form:

S = −T
∫
d2σ ∂αX · ∂αX. (1.3.5)

Where (·) indicates contraction through the target-space metric. Promoting the

world-sheet metric to a dynamical field in the Polyakov action avoids the square-

root present in the NG action. With this simplified action, the theory can now be
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quantised. This can be most easily achieved through canonical quantisation. The

first step in this procedure is to find the classical solutions to the EOM. Written in

terms of lightcone coordinates (σ± = τ ± σ), the EOM reads:

∂+∂−X
µ = 0. (1.3.6)

In general, the solutions to eq. (1.3.6) will take the form:

Xµ(σα) = Xµ
L(σ+) +Xµ

R(σ−). (1.3.7)

The labels L and R refer to left moving and right moving waves respectively. For

the closed string sector, the equations can be solved subject to the constraint that

the sting is periodic Xµ(τ, σ) = Xµ(τ, σ + 2π). These solutions are:

Xµ
L(σ+) = 1

2x
µ + 1

2α
′pµσ+ + i

√
α′

2
∑
n̸=0

α̃µn
n
e−inσ+

. (1.3.8)

Xµ
R(σ−) = 1

2x
µ + 1

2α
′pµσ− + i

√
α′

2
∑
n̸=0

αµn
n
e−inσ−

. (1.3.9)

Where α′ = 1/(2πT ). In addition to the EOMs, the Euler-Lagrange equations also

provide two constraint equations of the form:

(∂+X)2 = (∂−X)2 = 0. (1.3.10)

Applying these to the solutions gives:

(∂−X)2 = α′∑
n

Lne
−inσ−

; (1.3.11)

(∂+X)2 = α′∑
n

L̃ne
−inσ+

. (1.3.12)

Where,
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Ln = 1
2
∑
m

αn−m · αm; (1.3.13)

L̃n = 1
2
∑
m

α̃n−m · α̃m. (1.3.14)

For n ∈ Z and αµ0 is defined to be:

αµ0 = α̃µ0 =
√
α′

2 p
µ. (1.3.15)

Here the Ln and L̃n can be interpreted as the Fourier decomposition of the constraints

eq. (1.3.10), which themselves obey the constraints:

Ln = L̃n = 0 n ∈ Z. (1.3.16)

Looking at the n = 0 constraints, one finds (using eq. (1.3.15)) that:

α′

2 pµp
µ +

∑
n>0

αn−m · αm = 0. (1.3.17)

Noting that, in Minkowski space, pµpµ is equivalent to the effective mass squared

pµp
µ = −M2, we may write:

M2 = 4
α′
∑
n>0

αn−m · αm. (1.3.18)

Crucially, because αµ0 = α̃µ0 , we can also equate this to the sum of left-moving

oscillators:

M2 = 4
α′
∑
n>0

α̃n−m · α̃m. (1.3.19)

Having two expressions for the mass allows us to relate the left movers to the right

movers. This is known as the level matching condition.
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To quantise this theory, the string position vector Xµ and its conjugate momenta

Πµ = Ẋµ/(2πα′) can be promoted to operators with the canonical commutation

relations:

[Xµ(σ, τ),Πν(σ′, τ)] = iδ(σ − σ′)δµν , (1.3.20)

[Xµ(σ, τ), Xν(σ′, τ)] = [Πµ(σ, τ),Πν(σ′, τ)] = 0. (1.3.21)

Rewriting these in terms of the Fourier modes gives the following non-zero commut-

ators:

[αµn, ανm] = [α̃µn, α̃νm] = nηµνδn+m,0. (1.3.22)

Drawing parallels with single particle quantum mechanics, we can interpret the

αµn and α̃µn and annihilation operators and αµ−n and α̃µ−n are creation operators for

right and left moving modes respectively. Upon a generic vacuum string state with

momentum eigenvalue pµ, the annihilation operators act with the following effect:

αµn|0⟩ = 0, α̃µn|0⟩ = 0, for n > 0. (1.3.23)

Akin to the classical string picture, a level matching condition also exists for the

quantised operators. Some additional complexities arise as a result of dealing with

operators instead of numbers. The details of this are not relevant here, although the

result is an important one. The quantum mechanical version of the level-matching

condition is:

M2 = 4
α′

(
N − D − 2

24

)
(1.3.24)

= 4
α′

(
Ñ − D − 2

24

)
. (1.3.25)
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Where N and Ñ can be thought of as number operators given by:

N =
D−2∑
i=1

∑
n>0

αi−nα
i
n, (1.3.26)

Ñ =
D−2∑
i=1

∑
n>0

α̃i−nα̃
i
n. (1.3.27)

We can now extract the physical fields from the theory. In string theory, the familiar

fields of QFT and general relativity present in the form of string excitations. In

fact, the first particle that appears comes from the ground state of the system.

Substituting N = 0 into eq. (1.3.27) generates a particle with a mass squared given:

M2 = − 1
α

D − 2
6 . (1.3.28)

This particle is knowns as the tachyon and its complex mass is one of the ways in

which this simple bosonic string theory breaks down. Axion states do still occur

even in this over-simplified theory. Axions and gravitons result from the first string

harmonic. This can be generated by acting with a creation operator α̃i−1 or αi−1. It

might seem then that there are two possible first harmonics, one that is left-moving

and one that is right-moving. The level-matching condition, however, requires that

there be an equal number of left modes as there are right, hence the first harmonic

can be written:

α̃i−1α
i
−1|0, p⟩. (1.3.29)

The states this generates have a mass of:

M2 = 4
α′

(
1− D − 2

24

)
. (1.3.30)

Due to the symmetries in the Lagrangian, states that are generated by a creation

operator must transform as a vector under the Poincaré group (SO(1, D − 1)). The
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state generated by eq. (1.3.29) must therefore transform as a tensor. It can be

shown that, for this to be the case, these states must be massless. Consequently, the

target space must have dimension D = 26. Working with massless states and in the

current gauge, the Poincaré symmetry reduces to SO(24) with the state eq. (1.3.29)

transforming in the 24 ⊗ 24 (vector ⊗ vector) representation. In principle, one

could now associate a particle field with this. However SO(24), is not irreducible

so this field would not be fundamental. In addition, the indices i and j don’t run

over the entire target space. SO(24) can be written as the direct sum of three

irreducible representations. These correspond to a traceless-symmetric part, an

anti-symmetric part and a singlet. This gives three separate fields Gµν(X), Bµν(X)

and the singlet Φ(X). The first and last field are associated with the graviton and

diltaton respectively, but it is the second field Bµν(X) that gives rise to ALPs.

ALP states generally occur through the process of compactification, whereby the 26

dimensional space required for string theory is reconciled with our 4 dimensions of

space-time. On the compactified manifold, D − 4 of the dimensions are cyclically

warped back onto themselves. This is akin to rolling an infinitely long sheet of paper

along one direction to form a cylinder. On a macroscopic scale, this cylinder will

appear to be a 1 dimensional line. The topology of the compactified manifold can

have non-trivial effects on the resultant particle spectrum, but most structures will

result in ALPs. After compactification, the Bµν field can be split into spacetime

components Bµν ; µ, ν ∈ [1, 4], mixed components Baµ; a ∈ [5, 26]µ ∈ [1, 4] and

compactified components Bab; a, b ∈ [5, 26]. It is these compact components that

become the ALPs. To produce an ALP, the compactified dimensions must be

integrated over. The number of ALPs generated is given by the number of distinct

surfaces over which the integration can be performed. Bab are the components of

a 2-form field B = BabdX
a ∧ dXb which defines a 2 dimensional volume element.

The integration surfaces must therefore be 2 dimensional. Roughly, a 2 dimensional

closed surface is known as a 2-cycle. As an analogy, one can consider 1-cycles on

a Torus. In this case, there are 2 distinct 1-cycles, corresponding to a loop around
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the body and a loop around the hole (see 1.2). The number of distinct k-cycles is

given by the kth Bretti number. The number of ALP modes is given by the second

Bretti number, with each ALP mode bi given by the following integration over a

given 2-cycle Σi:

bi =
∫

Σi

B (1.3.31)

These scalar fields can be shown to behave as ALPs in effective theories built by

substituting the new field spectra back into the string Lagrangian. The exact

properties of these ALPs depends on the form of the string Lagrangian and the

compactification scheme. In particular, the decay constant is related to the volume

(VΣi
) of a given 2-cycle (Σi) as follows:

f 2
a ∼

1
VΣi

(1.3.32)

Relating fa to the full compactified volume V , one can write:

f 2
a ∼

M2
p

Vα
(1.3.33)

Where Mp is the plank mass and α is a theory dependent parameter [16].

Some theories predict ALP spectra containing over 100 particles with distinct masses

[17–21]. Few studies have considered the effect that large numbers of ALP states

could have on phenomenology. We explore some novel results in this regard in the

following chapter.
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Figure 1.2: The 1-cycles around a torus. The two topologically
distinct 1-cycles are shown in blue and red.





Chapter 2

ALP Anarchy

As discussed in chapter 1, ALPs are a well motivated extension to the SM, with the

original QCD axion providing a resolution to the strong CP problem and generic

ALPs occurring in large numbers in the particle spectra of string theories. In addition,

ALPs have also emerged as one of the leading candidate for cold dark matter [22–26].

Unlike the QCD axion, ALPs need not couple to gluons; therefore, their mass and

SM couplings are not necessarily related. ALPs are pseudo-scalar fields and are

singlets under the SM gauge group. This determines the form of their interactions

with the SM fields. For example, the Lagrangian of a single ALP φ interacting with

photons and electrons is given by

L ⊃ −1
2∂

µφ∂µφ−
1
2m

2φ2 − gγφF̃ µνFµν + ge

2me

ψ̄γµγ5ψ∂µφ , (2.0.1)

where gγ is the coupling of φ to the electromagnetic field strength tensor, F µν , ge

is the dimensionless ALP-electron coupling, me is the electron mass and ψ denotes

the electron field.

Models containing many ALPs may differ qualitatively in their phenomenology from

those containing a single axion or ALP. Recent works have explored many ALP

scenarios in a range of contexts [27–44]. The goal of this chapter is to explore the

interaction of many ALP models with the SM. As pointed out in Ref. [39], this can
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be understood by considering the misalignment between the ALPs’ mass basis and

the basis in which only one linear combination of ALPs couples to electromagnetism.

As shown below, this results in oscillations between the electromagnetically coupled

ALP and a number of orthogonal hidden ALP states where the physics at work

is analogous to that of neutrino oscillations. This effect has also been studied in

the context of Kaluza-Klein axions [45]. This chapter will expand on the results of

Ref. [39] by considering several new aspects of these ALP oscillations. In particular,

we will introduce ALP anarchy models, similar to the anarchy approach that has been

used in neutrino physics to explain the structure of the leptonic mixing matrix. We

will show that these many ALP models display dramatically different phenomenology

to single ALP models with the same effective couplings. The framework developed

here also applies to any system with multiple axion or ALP fields.

This chapter is structured as follows. In section 2.1 we will introduce many ALP

models and the oscillation effect. In section 2.2 we will introduce ALP anarchy mod-

els. In section 2.3, section 2.4 and section 2.5 we will calculate the phenomenology of

ALP anarchy models in the CERN Axion Solar Telescope, in magnetic white dwarfs

and in the gamma-ray spectra of distant blazars respectively. Finally, in section 2.6,

we will discuss our results further and conclude.

2.1 Axion Oscillations

We will consider a model containing N ALPs, each coupling to both photons and

electrons:

L ⊃
N∑
i=1

(
−1

2∂
µφi∂µφi −

1
2m

2
iφ

2
i − gγi φiF̃ µνFµν + gei

2me

ψ̄γµγ5ψ∂µφi

)
, (2.1.1)

where φi is an ALP field with mass mi, gγi is the coupling of φi to the electromagnetic

field strength tensor, F µν , gei is the dimensionless ALP-electron coupling, me is the
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electron mass and ψ denotes the electron field. In this chapter, we will consider

only ALP interactions with photons and electrons, but similar considerations would

apply to other couplings. We note that eq. (2.1.1) is in the mass and kinetic basis.

In this work, we will consider string-motivated ultra-light ALPs, and hence, we will

assume that the QCD axion (which may also emerge from string theory) is too heavy

or too weakly coupled to contribute to the scenarios considered here. Furthermore,

string ALPs with masses heavier than the energy scales considered below will also

not contribute. It will be convenient to rotate to the electromagnetic basis, in which

only a single ALP (the ‘electromagnetic ALP’) couples to photons:

L ⊃ −
∑
i

1
2∂

µφi∂µφi −
∑
i,j

1
2M

γ
ijφiφj +

∑
i

gei
2me

ψ̄γµγ5ψ∂µφi − gγφ1F̃
µνFµν , (2.1.2)

where gγ =
√∑

i g
γ
i

2 is the total effective ALP-photon coupling, we have chosen

φ1 = ∑
i g

γ
i φi/g

γ as the electromagnetic ALP and φi and gei have been appropriately

redefined. This basis has the advantage that only φ1 interacts directly with the

photon. The other ALPs, φ{2...N}, are ‘hidden’ with respect to the electromagnetic

interaction.

For example, any ALP production via the electromagnetic interaction in cases where

the mass is irrelevant will produce the electromagnetic ALP state φ1. The production

rate can, in this case, be calculated simply by considering a single ALP with coupling

gγ to photons. However, this does not necessarily mean we can treat the system as

though there is only one ALP with coupling to photons gγ. As we assume that the

ALP mass states differ and that the mass and electromagnetic basis are misaligned,

φ1 may mix with the hidden states, φ{2...N}. This is an analogous effect to neutrino

oscillations resulting from misalignment between the neutrinos’ interaction and mass

eigenbases.

Similarly, we can define the electronic basis in which only one ALP (the ‘electronic

ALP’) couples to electrons:
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L ⊃ −
∑
i

1
2∂

µφi∂µφi −
∑
i,j

1
2M

e
ijφiφj −

∑
i

gγi φiF̃
µνFµν + ge

2me

ψ̄γµγ5ψ∂µφ1 , (2.1.3)

where ge =
√∑

i g
e
i

2 and we have now chosen φ1 = ∑
i g

e
iφi/g

e as the electronic ALP

and φi and gγi have been appropriately redefined. As with the electromagnetic ALP,

this basis has the advantage that only φ1 interacts directly with the electron while the

other ALPs φ{2...N} are ‘hidden’ with respect to the electron interaction. Note that

the electronic and electromagnetic ALP states are generally neither orthogonal nor

colinear. Hence, in scenarios where both ALP-photon and ALP-electron interactions

are relevant, we must potentially consider three different bases - the mass, the

electromagnetic, and the electronic. If other interactions between the ALPs and the

SM are relevant, these may introduce further relevant bases.

As shown below, ALP oscillations are phenomenologically significant for many ob-

servations, particularly when we hope to detect an ALP that has propagated a large

distance. However, ALP search strategies that rely only on the disappearance of SM

particles or energy into ALP degrees of freedom, such as stellar cooling bounds on

ALPs [46–48], are not significantly affected by ALP oscillations. Therefore, compar-

ison between ALP searches is substantially more complicated in many ALP systems

than if we assume only a single axion or ALP.

2.2 Anarchy Models

String theory provides a framework to understand ALP properties, including their

mixing matrices that parameterise the misalignment between the interaction and

mass bases. Calculating these mixing matrices is a highly non-trivial task [49].

Nonetheless, the ALP photon coupling has been modelled in a range of string

axiverse scenarios [21, 50]. Such modelling of the electronic ALP properties from

string theory has not been undertaken.
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This current lack of knowledge of the mixing matrices, from a first principle string

theory calculation, presents a challenge when motivating the choice of ALP mixing

parameters and couplings. In this work, we circumvent this issue and remain agnostic

to the ALPs’ particular ultraviolet physics by considering a large set of randomly

sampled mixing matrices. This framework, also known as anarchy, has been applied

in neutrino physics and refers to the postulate that the neutrino mass matrix has no

particular structure but that its elements are randomly chosen O(1) parameters [51–

62]. Randomness in O(1) coupling constants is expected in sufficiently complicated

models or with many fields mixing with each other. While it remains unclear if

string theory predicts an anarchy-like mixing pattern, in this work, we use anarchy

to explore the general properties of multi-ALP phenomenology and their relation to

the number of ALP mass eigenstates.

To implement this anarchical approach and determine the mixing matrices between

the hidden and visible ALPs, we assume that the non-diagonal ALP mass matrices,

Mγ and M e, are real and can, therefore, be related to the mass basis states as

follows:

Mα = UαDUαT α = e, γ , (2.2.1)

where we assume Uα ∈ SO(N) and D = diag (m1,m2, . . . ,mN) is a real diagonal

matrix with mi denoting the mass of ALP field φi. Following our assumption that the

electromagnetic and electronic bases are misaligned, a given model will be described

by a set of two rotations Uα - one for each interaction basis. We sample SO(N) such

that elements are uniformly distributed over the group manifold to generate these

mixing matrices. This can be achieved using the Haar measure, which describes the

density of elements in a Lie group. In spherical coordinates, the Haar measure for

SO(N) is:

dV =
 ∏
i∈[1,N−1],j∈[i,N−1]

sini−1 θi,j

 dθ1,1 · · · dθN−1,N−1 , (2.2.2)
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where there are N(N − 1)/2 mixing angles,
{
θij
}

1≤i≤j≤N−1
with θ1,j ∈ [0, 2π] and

θi,j ∈ [0, π] for i, j > 1. Sampling uniformly in dV yields the desired distribution

of the angles that parameterise the mixing matrices Uγ and U e and we outline

our numerical procedure for this task in appendix A. Mixing matrices, although

providing a simple means to understand a given parametrisation, contain a large

degree of redundancy. In practice, and in what follows, we are more interested in

the relationship between the couplings in the mass basis – {gγi } and {gei }. Given,

for example, the EM coupling in the EM-ALP basis, the mass basis couplings are

given by:


gγ1

gγ2
...

 = Uγ


gγ

0
...

 . (2.2.3)

An analogous statement is also true for the electron-ALP couplings. From eq. (2.2.3),

it is clear that the top row of Uγ parameterises the mixing of the electromagnetic ALP

with the hidden states, which will have observable phenomenological consequences.

The remaining N − 1 rows determine the mixing between the hidden states, which

is not observationally relevant.

We note that the mixing matrices U parameterise only the misalignment between

the electromagnetic, electronic and mass bases and not the magnitude of the total

effective couplings gγ and ge. This allows us to distinguish between the effects of

basis misalignment and the effects of simply varying the total coupling, which is

also present in the single ALP case. In the following sections, we will explore the

phenomenology of ALP anarchy models. In particular, we will compare anarchy

models with different numbers of ALPs to single ALP models with the same total

effective couplings. We note here that, in a string axiverse scenario, the fundamental

parameters are the couplings gγi and gei of the mass eigenstates and the effective

couplings of the electromagnetic and electronic ALP states that emerge from these.

In this case, the possible values of the effective couplings gγ and ge are determined
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by the string model.

2.3 The CERN Axion Solar Telescope

In this section, we will outline the production of electromagnetic and electronic solar

ALPs in the Sun and their detection by the CERN Axion Solar Telescope (CAST).

We will discuss how oscillations, within the framework of an anarchical mixing

pattern, influence the number of electromagnetic solar ALP states that reach the

CAST detector. Finally, we will explain how we reinterpret the CAST experimental

constraint on the single ALP parameter space for our multi-ALP scenario. Of the

potential astrophysical sources, the Sun is one of the most accessible to the search

for ALPs as the internal dynamics of the Sun are well understood and can be

accurately modelled by a weakly coupled plasma. Within this setting, it is possible

to find analytical forms for the emitted ALP flux, and these can be used to set

competitive bounds on ALP couplings for mass ranges relevant to solar processes.

ALPs are produced predominantly through three mechanisms: axio-bremsstrahlung

(the Primakoff process) [63, 64], axio-recombination and axio-de-excitation [65–67],

and Compton scattering [68–70], see Ref. [71] for a comprehensive overview. Of these

processes, shown in fig. 2.1, only the Primakoff process depends on the ALP-photon

coupling with the others arising from the ALP-electron interaction. CAST was a

helioscope designed to use the Primakoff effect to scatter axions or ALPs produced

by the Sun into photons. It consisted of a 9.2 m long evacuated cylinder with a

sustained magnetic field oriented transverse to the ALP propagation direction. A

bound on gγ and ge can be placed based on the lack of an ALP signal. In this work,

we consider how the multi-ALP scenario will alter this bound. This modification

occurs as the electromagnetic and electronic ALP states produced in the Sun may

oscillate into hidden ALP states which would be undetectable using CAST.
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Figure 2.1: Top left image shows the Primakoff process that pro-
duces the electromagnetic ALP, and the middle and top
right images show the Compton scattering and axio-
recombination processes that produce the electronic
ALP. The bottom row shows axio-de-excitation and
Bremsstrahlung processes that produce the electronic
ALP.

2.3.1 Solar ALP emission and detection

If ALPs couple to the electromagnetic field strength tensor or an electronic current,

as in eq. (2.1.1), they can be produced in the Sun. The relevant ALP production

processes are shown in fig. 2.1, and the dominant ALP production mechanisms are

Bremmstrahlung (B), Compton Scattering (C) and the Primakoff process (P ). In

the well-studied single ALP case, with no oscillation into hidden ALPs, the fluxes

at Earth, in units of m−2 year−1 keV−1, generated by these mechanisms are given

by [72]:

dΦa

dω

∣∣∣∣∣
B

= 8.3× 1020
(

ge
10−13

)2 ω

1 + 0.667ω1.278 e
−0.77ω , (2.3.1)

dΦa

dω

∣∣∣∣∣
C

= 4.2× 1018
(

ge
10−13

)2
ω2.987e−0.776ω , (2.3.2)

dΦa

dω

∣∣∣∣∣
P

= 2.0× 1018
(

gγ
10−12GeV−1

)2
ω2.450e−0.829ω , (2.3.3)

where the ALP energy, ω, is in keV. A more detailed study of the solar ALP flux

can be found in [73]. Integrating over the energy range (0.8− 6.8 keV) of the CAST

analysis [74], the total fluxes can be found for ΦB, ΦC and ΦP :
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ΦB

m−2 year−1 = 4.1× 1046ge2 , (2.3.4)

ΦC

m−2 year−1 = 5.2× 1045ge2 , (2.3.5)

ΦP

m−2 year−1 = 1.0× 1043
(

gγ

GeV−1

)2

. (2.3.6)

The CAST experimental constraints assume a single ALP that couples to electro-

magnetism and electrons. We will now consider the CAST signal from models with

multiple ALP mass eigenstates.

2.3.2 Oscillation: The two ALP case

We will expand upon the results of [39] by discussing the basics of ALP oscillations

relevant to CAST in a simplified two ALPs scenario where φe and φγ are linear

combinations of only two massive ALP states, φ1 and φ2, which have masses m1 and

m2 respectively. The Lagrangian in the mass basis is

L ⊃− 1
2∂

µφ1∂µφ1 −
1
2∂

µφ2∂µφ2 −
1
2m

2
1φ

2
1 −

1
2m

2
2φ

2
2 (2.3.7)

− gγ1φ1F̃
µνFµν − gγ2φ2F̃

µνFµν + ge1
2me

ψ̄γµγ5ψ∂µφ1 + ge2
2me

ψ̄γµγ5ψ∂µφ2 . (2.3.8)

We can rotate to a basis where a single ALP field, the electromagnetic ALP, couples

to electromagnetism while the other hidden electromagnetic ALP field does not.

These are given by

φγ = gγ1φ1 + gγ2φ2√
gγ2

1 + gγ2
2

, φγh
= gγ2φ1 − gγ1φ2√

gγ2
1 + gγ2

2

, (2.3.9)

respectively. Analogously, the electronic ALP and the hidden electronic ALP are

the following orthogonal combinations:
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φe = ge1φ1 + ge2φ2√
ge21 + ge22

, φeh
= ge2φ1 − ge1φ2√

ge21 + ge22

, (2.3.10)

respectively. Note that the electromagnetic and electron ALPs φγ and φe are gen-

erally neither colinear nor orthogonal. Therefore, φγh
will in general have some

non-zero coupling to electrons and φeh
will in general have some non-zero coupling

to photons. The following unitary rotation matrices relate the mass basis and the

electromagnetic and electron bases:

 φγ

φhγ

 =

 cos(θγ) sin(θγ)

− sin(θγ) cos(θγ)


 φ1

φ2

 ,

 φe

φhe

 =

 cos(θe) sin(θe)

− sin(θe) cos(θe)


 φ1

φ2

 ,

(2.3.11)

with

cos (θα) =
 gα1√

gα2
1 + gα2

2

 , sin (θα) =
 gα2√

gα2
1 + gα2

2

 , (2.3.12)

where α = γ, e.

We will assume that all couplings are real, and their values are determined using

the anarchical approach outlined in section 2.2. We will also assume that m1 and

m2 are much less than other relevant energy scales. In particular, we will assume

m1,m2 < 10−2 eV, corresponding to CAST bounds for evacuated magnet bores. In

this mass range, the ALP masses are also much lower than their production energy

in the Sun and can be treated in the relativistic limit. This means their effects on

ALP production may be neglected, so axio-recombination, axio-de-excitation and

Compton scattering produce the state φe while Primakoff production produces the

state φγ. Furthermore, in this mass range, the CAST sensitivity is independent of

mass, and therefore CAST will detect the state φγ as a single signal.

As CAST aims to detect electromagnetic ALPs, φγ , we are interested in the probab-

ility that a solar electronic or electromagnetic ALP oscillates to an electromagnetic
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ALP after travelling a distance L. We can calculate these probabilities using the

fact that the mass eigenstates propagate as |φi(L)⟩ = e−im
2
i L

2ω |φi(0)⟩, where L is the

distance travelled. The former is given by

P (φe → φγ) ≡ Pe→γ = 1
2

(
1 + cos(2θe) cos(2θγ) + sin(2θe) sin(2θγ) cos

(
∆m2L

2ω

))
,

(2.3.13)

where ∆m2 = m2
2 −m2

1 is the mass squared splitting between the ALP mass states.

Rewriting eq. (2.3.13) in terms of couplings, gα, yields

Pe→γ =

(
ge1

2gγ2
1 + ge22 g

γ2
2

)
(
ge1

2 + ge22

) (
gγ2

1 + gγ2
2

)
1 + 2ge1gγ1ge2gγ2(

ge1
2gγ2

1 + ge22 g
γ2
2

) cos
(

∆m2L

2ω

) . (2.3.14)

In addition to the electronic ALPs produced in the Sun oscillating to electromagnetic

ALPs when they reach CAST, we must consider the survival probability of the solar

electromagnetic ALP which is the usual two-state survival probability familiar from

neutrino physics:

P (φγ → φγ) ≡ Pγ→γ = 1− sin2(2θγ) sin2
(

∆m2L

4ω

)
(2.3.15)

= 1− 4 gγ2
1 g

γ2
2(

gγ2
1 + gγ2

2

)2 sin2
(

∆m2L

4ω

)
. (2.3.16)

Several simplifications can be made for solar ALP oscillations. Firstly, the matter

potential induced by the solar electron background is negligibly small and therefore

does not affect the electron ALP propagation through the Sun. This can be estimated

from the fact that the potential experienced by electron neutrinos from electrons in

the Sun is V ≈ GFNe ∼ 10−12 eV where GF is Fermi’s constant and Ne is the number

density of electrons in the Sun’s core. In contrast, the potential experienced by the

electronic ALP (with coupling g
e

2me
= 10−11 GeV−1) is V ≈

(
g

e

2me

)2
Ne ∼ 10−29eV.
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Likewise, the potential induced by the Sun’s magnetic field is negligible, so vacuum

oscillation between the ALP states will be applied. Secondly, for Sun-Earth distances

and keV solar ALP with ∆m2 > 10−12 eV2, the oscillation probability of eq. (2.3.13)

and eq. (2.3.14) will be averaged when integrated over the CAST energy range

yielding:

Pe→γ =

(
ge1

2gγ2
1 + ge22 g

γ2
2

)
(
ge1

2 + ge22

) (
gγ2

1 + gγ2
2

) , Pγ→γ = gγ1
4 + gγ2

4(
gγ2

1 + gγ2
2

)2 . (2.3.17)

2.3.3 Oscillation: The many ALP case

We now turn to the case where many ALP mass eigenstates couple to electrons and

photons:

L ⊃
N∑
i

(1
2∂

µφi∂µφi −
1
2m

2
iφi2 − g

γ
i φiF̃

µνFµν + gei ψ̄γ
µγ5ψ∂µφi

)
, (2.3.18)

such that the electromagnetic and electronic ALPs produced in the Sun are linear

combinations of the mass states:

φγ =
∑
i g

γ
i φi√∑
i g

γ
i

2
, φe =

∑
i g

e
iφi√∑
i g

e
i

2
, (2.3.19)

where we again assume that all ALP masses considered are mi < 10−2 eV. Any mass

eigenstates with mi > 10−2 eV would not contribute to the signal considered here

as they would not produce a signal in CAST with an evacuated bore. Again, we

will assume that ∆m2 > 10−12 eV2 so that the oscillation probabilities average when

integrated over the CAST energy range. Under these conditions, it can be shown

that the electromagnetic ALP survival probability is

Pγ→γ = 1
N

1 +
N2VAR

(
{gγi

2}
)

gγ4

 =
∑N
i g

γ
i

4(∑N
i g

γ
i

2
)2 , (2.3.20)
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where N is the number of ALP mass eigenstates, gγ =
√∑

gγi
2 is the coupling of the

electromagnetic ALP to photons, and VAR({gγi
2}) is the variance of the ALP-photon

couplings squared in the mass basis which is given by

VAR
(
{gγi

2}
)

=

∑N
i

[
gγi

2 − g
γ 2

N

]2

N
. (2.3.21)

Likewise, the probability that an electronic ALP oscillates to an electromagnetic

ALP is

Pe→γ = 1
N

1 +
N2COVAR

(
{gγi

2}, {gei 2}}
)

gγ2ge2

 =
∑N
i g

e
i

2gγi
2∑N

i g
e
i

2∑N
i g

γ
i

2 , (2.3.22)

where ge =
√∑

gei
2 is the coupling of the electronic ALP to electrons, and the

covariance of the ALP-photon and ALP-electron couplings squared is given by

COVAR
(
{gγi

2}, {gei 2}}
)

=

∑N
i

[
gγi

2 − g
γ 2

N

] [
gei

2 − g
e2

N

]
N

. (2.3.23)

2.3.4 Reinterpretation of CAST results

The non-observation of an excess number of photons allows CAST to place constraints

on the (gγ, ge) parameter space, which bounds the solar ALP fluxes on Earth. In

the multi-ALP case, the fluxes of the electromagnetic and electronic ALP on Earth,

namely the oscillated fluxes, are, respectively:

Φosc
γ = Pγ→γΦγ + Pe→γΦe , (2.3.24)

Φosc
e = Pγ→eΦγ + Pe→eΦe , (2.3.25)

where Φγ = ΦP and Φe = ΦB+ΦC and Pa→b is the probability of species a oscillating

into species b during propagation as derived in section 2.3.3. Since CAST makes
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use of a strong magnetic field to convert ALPs, the relevant flux to consider for the

recasting from the single to the multi-ALP scenario is Φosc
γ . CAST has placed bounds

on (gγ)2 as a function of ALP mass and on gγ as a function of ge, for small ALP

mass ma, for a single ALP. Here we determine an upper bound on gγ as a function of

ge for multi-ALP scenarios with ma ≤ 10−2 eV and ∆m2 > 10−12 eV2 for all relevant

ALP mass eigenstates; for which the bound becomes mass independent [74]. We do

this by considering the maximum flux compatible with the non-detection of ALPs by

CAST. Given the original single ALP bound on the ALP-electromagnetic coupling,

which we denote as gγN=1(ge), (shown by the black line in fig. 2.2), the maximum

flux of electromagnetic ALPs

ΦMax(ge, gγ) = (gγN=1(ge))2

gγ2 ΦN=1(ge, gγN=1(ge)) , (2.3.26)

where ΦN=1 = ΦP + ΦB + ΦC is the flux at the detector in the single ALP case.

With Φosc
γ (ge, gγ) in hand, we now perform a grid scan over the coupling parameter

space, (ge, gγ), to determine the new bound1. For a given point in the ALP anarchy

parameter space to be allowed by existing CAST data, the total EM-ALP flux at

the detector given in eq. (2.3.24) must be less than ΦMax.

To determine the bound on the total effective couplings in the ALP anarchy scenario,

it is therefore necessary to compute Pγ→γ and Pe→γ. From section 2.3.3, these are

given by eq. (2.3.20) and eq. (2.3.22), respectively, and can be written in terms

of the relationship between the individual ALP couplings (gei and gγi ). It is this

relationship that encodes the mixing between the various ALP states. We consider

104 realisations of {gγi } and {gei } for each overall coupling pair (gγ, ge). For each

point in (gγ, ge) space, we determine the proportion of viable realisations such that

Φosc
γ < ΦMax(ge, gγ). These results are shown in fig. 2.2; for a detailed outline of this

numerical procedure, see appendix B. The black line indicates the original N = 1

bound (φe ≡ φγ) where in the mass independent region log10

(
gγ [GeV−1]

)
≲ −10.

1To accelerate this procedure we developed a C++ package with python bindings, allowing for
optimised parallel computation through the use of OpenMP.
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Figure 2.2: The fraction of realisations consistent with non-
detection as a function of coupling (ge and gγ) shown
for two different values of N – Left: N = 2; Right:
N = 30. The grey region indicates the excluded region
from solar neutrinos [2].

The boundary between regions where 0 and 100% of realisations are viable can be

interpreted as the bound on gγ as a function of ge in the ALP anarchy scenario.

From fig. 2.2, it can be seen that increasing the number of ALPs decreases the

competitiveness of the bound. The left plot of fig. 2.2 shows the bound with N = 2

ALP fields, and we observe that the effect of an additional state is marginal; however,

for N = 30, we observe that the bound on gγ is relaxed by almost half an order of

magnitude with log10(gγ [GeV−1]) ≲ −9.6. As the number of hidden states increases,

the oscillated flux of electromagnetic ALPs on Earth decreases since they can oscillate

into the hidden ALP states that are not detectable by CAST. Hence, the effective

coupling gγ can increase to compensate for this decrease in the detectable flux.

To quantify this relationship, we consider ALP multiplicities N ∈ [2, 30]. For each N

in this set, we determine the value of gγ , gγ50(N) for which 50% of mixing realisations

satisfying Φosc
γ < ΦMax(ge, gγ) at a point in the horizontal region of (fig. 2.2). We

fix ge = 10−15. For this low ALP-electron coupling, the production processes for φe,

namely bremsstrahlung and Compton scattering, are ineffective, and the production

of φγ in the Sun dominates. gγ50(N) can be interpreted as an approximate bound on

gγ in the ALP anarchy scenario. This result is shown in fig. 2.3, which we fit the

following function to:
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Figure 2.3: Bounds on photon ALP coupling (gγ) as a function of
number of ALPs (N) for ge = 10−15. The scatter plot
depicts the minimum upper bound consistent with 50%
of mixing matrix realisations. The fit to that is shown
as a line plot.

gγ = em logN−c, (2.3.27)

where we find m = 0.25 and c = −23. This fitting function is also shown in fig. 2.3.

We can understand the dependence of the bound on N - gγ50(N) ∝ N1/4. We first

note that when electromagnetic ALP production dominates, CAST is sensitive to

gγ4, as the ALP must be produced and detected via this coupling to photons. In

the many ALP scenario, the bound placed on gγ4 is weakened in proportion to the

electromagnetic ALP survival probability Pγ→γ given in eq. (2.3.20). For large N ,

the variance term becomes negligible and we have Pγ→γ ∼ 1
N

. We therefore obtain

gγ50(N) ∝ N1/4, as found numerically.

We have seen that if the ALP-photon and ALP-electron interactions are an effect from

multiple ALP mass eigenstates, the CAST bounds on the total effective couplings may

be somewhat reduced. We have calculated this reduction in the ALP anarchy scenario

for mass differences ∆m2 > 10−12 eV2. As shown in [39], for ∆m2 < 10−14 eV2, there

is no significant oscillation into hidden states. For intermediate mass differences,
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there is a non-trivial oscillation structure depending on ω.

2.4 Magnetic white dwarfs

Having considered the constraints from the CAST experiment, we now examine

how the limits on the single ALP electromagnetic and electronic coupling from

observations of magnetic white dwarfs (MWDs) can be applied to our multi-ALP

scenario. MWDs produce ω ∼ keV energy ALPs via axio-bremsstrahlung, which

can convert to X-rays in the magnetosphere surrounding the MWD. Subsequently,

searches for observable X-ray signals provide one of the most stringent constraints

on the ALP parameter space, see e.g. Ref. [3]. More specifically, in the single ALP

scenario, where N = 1 and φe ≡ φγ , the (ge, gγ) parameter space is constrained from

the non-observation of astrophysical X-ray emission from the MWD RE J0317-853

by the Suzaku telescope [75]. The flux of ALP-induced X-ray photons on Earth, in

the low ALP mass regime, is approximately proportional to ΦX-ray ∝ (gegγ)2 as the

ALP luminosity is proportional to ge2 while the probability the ALP transitions to

X-ray photons is proportional to gγ2. The non-observation of excess X-rays provides

an upper bound on ΦX-ray and hence a corresponding bound on (ge, gγ).

In the multi-ALP case, since the radius of the MWD is relatively small (less than

one percent of the Sun’s radius [76]), the oscillations between the electronic ALP

and hidden states do not have time to develop, assuming ∆m2 ≲ 4R = 10−10 eV2,

where R is the MWD’s radius. Moreover, we assume that all ALP masses considered

are mi < 10−2 eV. To perform a simple recast of the single to the multi-ALP case,

we compute the conversion probability (Pe→γ) and scale the N = 1 bound on gegγ,

denoted as bN=1, as follows:

bN>1 = bN=1/Pe→γ (2.4.1)

where bN>1 is the new bound on gegγ assuming the existence of N ALP states.



76 Chapter 2. ALP Anarchy

A decrease in the conversion probability will allow for a greater possible coupling

strength. In the MWD setting, in the case where oscillations do not have time to

develop, Pe→γ is given by the scalar product of φe and φγ:

Pe→γ =
∣∣∣∣∣
∑
i g

e
i g
γ
i

gegγ

∣∣∣∣∣
2

(2.4.2)

Note that this is a different limit to that considered in section 2.3 as the distance

propagated is much lower. The resulting bound as a function of number of axions is

shown in fig. 2.4 for values: L = 4 × 10−3 Solar Radii [76], E = 5 keV and masses

distributed logarithmically in [10−9, 10−6] eV. The conversion probability, accounting

for the presence of hidden ALPs (in the simple two-ALP case, see eq. (2.3.13)), is

given by

Pe→γ = cos2(θe − θγ) , (2.4.3)

which describes the projection of the electronic ALP state onto the EM ALP state.

In the limit θe = θγ, naturally, the probability Pe→γ = 1 because the electron and

EM ALP states are completely aligned, and the N = 1 case is recovered. If these

angles are very different, then the probability Pe→γ can be significantly smaller and

make the bound proportionally weaker.

In fig. 2.4, we show how the limit on |gγge|, in the low ALP mass regime, from Ref. [3]

changes as the number of hidden states is increased. We observe that as the number

of hidden states is increased, the total allowed coupling strength of the ALP to EM

and electrons increases. This occurs because increasing the number of hidden states

leads to an increase in the typical orthogonality between the electromagnetic and

electronic ALP states, decreasing the chance that an ALP produced in an electron

interaction will convert into a photon. We find that the bound decreases almost

three orders of magnitude as the number of ALP mass states increases from 2 to 18.
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Figure 2.4: The bounds on gγge as a function of N for the low mass
(ma < 10−6eV), low propagation limit of the MWD. The
bounds were computed for a set 1000 coupling pairs (ge
and gγ). The central 90% of bounds lie within the red
band, with the central third being encompassed by the
blue band. The one ALP bound was recast from Ref. [3].

2.5 Very high-energy blazars

In this final section, we examine how our multi-ALP scenario can be constrained

by the observation of very high-energy gamma rays. We begin by outlining the

simulation of the propagation of these high-energy photons emitted by blazars toward

Earth, considering the possibility of photon mixing with multiple ALP states. We

detail the density matrix equations and the model of the magnetic fields used in the

simulation. Additionally, we discuss the selection of blazars and how these sources

can be utilised to constrain the electromagnetic coupling as a function of the number

of ALPs in our multi-ALP scenario.

Blazars produce a large flux of Very High Energy (VHE) photons. These TeV

scale photons can scatter off the isotropic extragalactic background light (EBL) as

they propagate to Earth, producing positron-electron pairs. The probability with

which this scattering occurs increases with energy. As such, we expect significant

attenuation of high-energy photons travelling through intergalactic space. Telescope
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observations suggest that the Universe may be more transparent than expected to

VHE photons [77,78], although the evidence for this effect is not conclusive [79,80].

Several phenomenological studies have introduced ALPs to explain this discrepancy

[81–84]. VHE photons can oscillate into ALPs in the magnetic field of the blazar or

the intergalactic medium and thus travel unimpeded through the Universe. These

oscillations may conspire for appropriate masses and couplings, such that the ALPs

reconvert into photons in the Milky Way, allowing for their detection on Earth. In

this case, the measured flux of VHE photons on Earth will be amplified, accounting

for the observations. In this section, we will explore this effect in the context of our

multi-ALP model. Following and extending the analysis of Ref. [84], we consider an

arbitrarily mass-mixed set of ALP states. We note that the ALP-electron coupling

does not play a significant role in this process, and therefore will not be considered

in this section.

2.5.1 Simulation

In the following subsections, we describe the approach by which we simulate the

propagation of VHE photons from their blazar source to Earth. We consider both

photon-EBL scattering and ALP-photon mixing. As the ALP mass is relevant for

this effect, we work in the mass basis where each ALP couples separately to the

photon. We again determine these couplings anarchically. Photon-EBL scattering

is dissipative (VHE photons can scatter off EBL photons, creating positron-electron

pairs) and introduces non-unitarity into the evolution. To account for this effect, we

use a density matrix formalism.

Our simulation can be broken down into three spatial regions: propagation through

the galaxy cluster hosting the blazar; propagation through the intergalactic medium

(IGM); and propagation through the Milky Way (MW). The principal difference

between each region is the form of the magnetic field present. Photon to ALP

conversion occurs most readily in the galaxy cluster where the VHE-photon density
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Figure 2.5: Photon survival probability against propagation dis-
tance for a photon energy of 400 GeV produced by
1ES0414+009. The zero ALP case is shown in black,
with the central third of samples shown in red and blue
for the 1 ALP and 20 ALP cases respectively.

and magnetic fields are large. As the VHE photon/ALP beam propagates out of the

cluster, the relatively strong cluster fields give way to a much weaker intergalactic

field, largely suppressing any ALP-photon processes. The vast IGM is instead

responsible for the attenuation of photons by EBL scattering. Finally, once the

blazar jet reaches the Milky Way, we expect to see ALP-photon back-conversion

induced by the strong galactic magnetic fields.

The effect of each propagation region is depicted in fig. 2.5 which shows the photon

survival probability of a photon with E = 400 GeV as a function of the distance

of propagation from the blazar. The solid black line indicates the scenario without

ALPs (N = 0), while the red and blue regions correspond to the scenarios of N = 1

and N = 20 ALP states respectively. In the no-ALP scenario, the survival probability

remains unity until propagation through the IGM where, due to EBL scattering, it

decreases to ∼ 0.2. For the cases that include ALPs, a number of model unknowns
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associated with oscillation lead us to consider a large set possible Pγ→γ – each

element generated with a unique B-field structure and, for N > 1, an anarchical

choice of {gγi }. The central third of these {Pγ→γ} are indicated by the filled regions

in the figure. In both the one and 20 ALP cases, we see the effect of photon to

ALP conversion in the galaxy cluster. In the one ALP case, we see a significant

increase in the photon survival probability as the beam travels through the Milky

Way, corresponding to the reconversion of ALPs to photons. However, this increase

is not present in the 20 ALP case. This is because the electromagnetic ALP produced

in the galaxy cluster is very likely to oscillate into a hidden ALP before it reaches

the Milky Way. Due to oscillation into hidden ALPs, if the ALP-photon coupling is

spread over 20 ALPs, we always expect a decrease in the blazar luminosity rather

than the increase seen in the single ALP case.

The galaxy cluster

The simulation begins with a jet of pure photons at the site of the blazar. These

photons are unpolarised, hence we take our initial state to be the following the

density matrix:

ργ = 1/2



1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 . . .


, (2.5.1)

where the first two diagonal elements correspond to the photons’ two polarisa-

tions, and the remaining diagonal elements correspond to the ALP mass eigenstates;

off-diagonal elements are associated with a superposition of states. To facilitate

comparison between the multi-ALP and single ALP effects, we follow [84] in our

description of the magnetic fields. We take the cluster field to have a domain-like

structure with a radially dependent magnitude given by:
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BC(r) = BC
0 (1 + (r/rcore)2)−η , (2.5.2)

where, the core radius is rcore = 200 kpc and the central field strength is BC
0 = 10µG

and η = 0.5. Within a given magnetic domain, the field is assumed to be constant.

The direction of the magnetic field is randomised in each domain. The coherence of

the magnetic field, therefore, depends on the domain length, which is taken to be

∆Lc = 10 kpc. The total radius of the cluster is 2 Mpc.

Galaxy clusters are home to a large population of charged particles that will give an

effective mass to the photon. To accurately describe these, we consider the electron

density given by:

nel(r) = n0
el(1 + r/rcore)−1 , (2.5.3)

where n0
el = 10−2cm−3. With this description of the cluster, we evolve the state

matrix of eq. (2.5.1) by constructing an evolution operator (G) for each domain:

G = eiH∆L , H =



∆pl + 2∆QED 0 (∆φγ
x )1 (∆φγ

x )2 (∆φγ
x )3

0 ∆pl + 7
2∆QED (∆φγ

y )1 (∆φγ
y )2 (∆φγ

y )3

(∆φγ
x )1 (∆φγ

y )1 ∆φ
1 0 0

(∆φγ
x )2 (∆φγ

y )2 0 ∆φ
2 0

(∆φγ
x )3 (∆φγ

y )3 0 0 . . .


,

(2.5.4)

where H denotes the propagation Hamiltonian with the following parameters:

∆pl = −1.1× 10−10GeV
E × 10−3

ne
10−3cm3 (2.5.5)

∆QED = 4.1× 10−6GeV
E × 10−3

B2
x +B2

y

µG2 (2.5.6)

∆φ
i = −7.8× 10−3GeV

E × 10−3

(
mi

10−8GeV

)2
(2.5.7)
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(∆φγ
x )i = 7.6× 10−2 gγi GeV

5× 10−11
By

µG (2.5.8)

(∆aγ
y )i = 7.6× 10−2 gγi GeV

5× 10−11
Bx

µG . (2.5.9)

Here, E is the photon/ALP energy (in GeV), ne is the electron density and Bx and

By are the x and y components of the magnetic field strength (in µG) [85]. The

mass of the ith ALP state, denoted mi, is taken to be distributed logarithmically

within
[
10−8, 10−5

]
eV. The various components of H can be interpreted as follows:

∆φ
i are the ALP mass terms; ∆pl is a photon effective mass term, induced by thermal

effects in the electron plasma; (∆φγ
x )i and (∆φγ

y )i are the ALP-photon couplings for

each photon polarisation; and, ∆QED implements vacuum polarisation effects. As

we are working in the mass basis, each ALP is independent of all other ALP states

so H is diagonal in the ALP sector. We construct a new evolution operator, Gi, for

each domain using the central values of B and nel. The state of the system after

propagation through the cluster is then given by:

ρCout =G̃Cργ
(
G̃C

)†
, (2.5.10)

G̃C =
∏
i

GC
i , (2.5.11)

where i runs over each domain in the cluster.

Intergalactic space

The intergalactic magnetic field is modelled with a similar domain-like structure to

that of the AGN cluster, albeit with a significantly lower overall strength and a much

larger domain length ∆LIG = 50 Mpc. The intergalactic medium has a luminosity

redshift (z) dependent field strength given by:

BIG(z) = BIG
0 (1 + z)2 , (2.5.12)
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where BIG
0 = 1 nG. The intergalactic electron density is approximated with a

constant value of nIGel = 10−7 cm−3. To account for VHE photon scattering off the

EBL we introduce a non-unitary decay matrix (D) for each domain:

D(τ) =


exp(−τ/2) 0 0

0 exp(−τ/2) 0

0 0 . . .

 , (2.5.13)

where τ is the optical depth associated with propagation through a given domain.

In general, τ depends on the photon energy and the redshift of the domain. We use

the EBL opacity model given in Ref. [86]. After computing D(τi) for each domain,

the ALP-photon state is propagated as follows:

ρIGout = G̃IGρCout

(
G̃IG

)†
, (2.5.14)

G̃IG =
∏
i

D(τi)GIG
i , (2.5.15)

where GIG
i is calculated as before using eq. (2.5.4) with i running over each domain

in the IGM.

The Milky Way

Compared to the previous two field scenarios, the Milky Way field has a significantly

more complex structure that comprises a halo field that surrounds a spatially compact

disk field. Following Ref. [87], we describe the disk by a series of logarithmic spirals

and the halo field by a superposition of piece-wise functions extending relatively far

above and below the galactic plane, see fig. 2.6. It is this extensive halo field that is

responsible for the majority of ALP-Photon conversion. A detailed description of the

field model used is provided in [87]. We note that in our work, a small alteration has

been made to correct the function describing boundaries between the consecutive

log-spiral regions in the disk:
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rbound = rje
(θ−π) cot θ , θ = π

180(90− αopen) , (2.5.16)

where αopen = 11.5o is the opening angle of the log-spiral and rj are the radii at

which each spiral boundary crosses the negative x-axis. Finally, we use a constant

electron density of 0.1 cm−3 to construct the MW evolution operator. The final state

of the system is then given by the product over domains i:

ρMW
out = G̃MWρIGout

(
G̃MW

)†
, (2.5.17)

G̃MW =
∏
i

GMW
i , (2.5.18)

where again we discretise our computation of the evolution operator (Gi) - in this

case, using an approximate-coherence length of 100 pc. We begin the Milky Way

propagation stage when the ALP/photon reaches a radial distance of 20 kpc from

the galactic centre. The probability that an emitted photon is detected as a photon

on Earth is found by projecting the final state (ρMW
out ) onto the two possible photon

states:

Pγ→γ = Tr
(
2ργT MW

out

)
(2.5.19)

= Tr
(

2ργ
[
G̃MW G̃IGG̃C

]
ργ
[
G̃MW G̃IGG̃C

]†)
. (2.5.20)

2.5.2 Code

To achieve optimal efficiency, the code1 for the simulation was written in C++ and

relies heavily on the Eigen matrix library [88] which allows for parallelised execution

of matrix operations. The software was written with a focus on usability. For

example, it allows different sections of the simulation to be activated and deactivated
1The code is available in the following repository: https://gitlab.dur.scotgrid.ac.uk/

James_Maxwell/blazarphotonaxion.

https://gitlab.dur.scotgrid.ac.uk/James_Maxwell/blazarphotonaxion
https://gitlab.dur.scotgrid.ac.uk/James_Maxwell/blazarphotonaxion
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Figure 2.6: The magnitude of the Milky Way field in two perpen-
dicular planes through the galactic centre. Left: cross-
section at z = 0 looking upon the galactic disk; Right:
cross-section perpendicular to disk at y = 0. The sign
of the field indicates the orientation of the azimuthal
component: positive - anticlockwise (looking down neg-
ative z); negative - clockwise. The location of the earth,
(−8.5, 0, 0)kpc, is marked by the black circle.

without modification to the code. This promotes its use for similar but distinct

problems that may not require the simulation of all propagation domains. Indeed,

at the time of writing this thesis, the software is currently being used in this way.

The code was verified by considering the single ALP scenario discussed in ref. [89].

2.5.3 Results

Due to observational limitations, the field orientations in each domain of the galaxy

cluster and intergalactic medium are unknown and small changes thereto could have

a large effect on the final value of Pγ→γ . It is thus necessary to simulate with a large

set of different field directions. Pγ→γ now represents a stochastic quantity that we

use to marginalise over the unknown field states.

As with the rest of this work, we also encounter an ambiguity in the choice of

mixing parameters ({gγi }), which we again account for using the ALP anarchy model

described above. Each simulation run has a unique set of coupling parameters and

magnetic field orientations. The final results described below were obtained using a

sample of Nsamp = 1000 simulation runs and a set of 6 Blazar sources. These sources
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j Source Experiment Fit Function
1 Mkn 501 HEGRA LP
2 1ES0414+009 H.E.S.S PL
3 1ES0229-200 H.E.S.S. PL
4 Mkn421 H.E.S.S. LP
5 1ES1101-232 H.E.S.S PL
6 1ES0347-121 H.E.S.S PL

Table 2.1: List of VHE gamma-ray sources used in our analysis and
their corresponding fit functions; Log Parabola (LP) or
Power Law (PL), see appendix C.

(listed in table 2.1) were selected based on the availability of their data and on their

inclusion in other works on this subject [84]. We plan to perform a more detailed

follow-up study using a larger sample of sources and more recent data.

For a given choice of blazar source and grid point (N, gγ) in model parameter space,

the result of our simulation is a set of Nsamp survival probability spectra Pγ→γ(E),

where E is the photon energy. To marginalise over these, we use the students

p-statistic (pt), following [84]; the calculation of pt is described in appendix C.

For each grid point, we obtain a distribution of Nsamp p-statistics. We collate

these data by determining the value of pt corresponding to the field configuration

resulting in a better agreement between the model and corrected spectra than 95%

of other configurations. We denote this as p95. In this way, we arrive at a two-

dimensional parameter scan for each source that preserves more of the underlying

pt distribution than could be achieved, for example, by simply averaging the pt over

Nsamp. This method facilitates comparison with Ref. [84]. Note that this method

results in relatively conservative bounds on ALP scenarios as we are choosing a B

field configuration that agrees rather well with the data.

Finally, to construct an overall parameter scan we determine p95 on the union of

the sample data for each source. The resulting grid scan is shown as a heat map in

fig. 2.7. Lower values of − log10 (p95) correspond to the model better reproducing the

observations. We see a significant improvement over the SM with the addition of a

single ALP state, this corroborates the findings of Ref. [84]; the introduction of ALP
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states can alleviate tensions in standard intergalactic opacity models. Interestingly,

and novel to this work, we also observe that increasing N provides a worse fit to

the VHE data. As the number of ALP states increases, so too does the number of

hidden states. Working in the interaction basis, states in models with many ALPs

will exist less frequently as the interaction state. We might expect, therefore, a

suppression in the back conversion probability. This can be seen explicitly in fig. 2.5,

where in the 20 ALP case, we do not observe any increase in Pγ→γ in the MW. This

effect can be very significant, in this case, completely negating the opacity decrease

caused by reduced EBL scattering; Pγ→γ is significantly lower in the 20 ALP case

than it is for no ALPs (black line in the fig. 2.5). It should be noted that the results

depicted in fig. 2.5, having been computed for a single source and energy, may not

be representative of other sources at different locations. In contrast, fig. 2.7 reflects

our statistical analysis using multiple blazars and energies, where the single ALP

state shows the greatest agreement with observed spectra.

In addition to favouring fewer ALP states, we also see a lower degree of tension at

greater ALP couplings. The lower regions of fig. 2.7 behave as no ALP models, and

there is no significant reduction in EBL scattering.

2.6 Discussion

In this chapter, we have explored the phenomenology of ALP anarchy models com-

prising many axion-like particles whose masses and SM couplings are related by

random matrices. String compactifications typically generate many ALPs; therefore,

the phenomenology of many ALP systems is an important direction in studying

physics beyond the SM. The ALP anarchy scenario provides a benchmark for this

phenomenology.

We have shown that a key feature of many ALP phenomenology is oscillations

between the ALP states that couple to the SM and hidden ALP states that do

not. A given ALP model can be characterised by the total ALP photon and ALP

electron couplings gγ2 = ∑
gγi

2 and ge2 = ∑
gei

2. However, oscillation into hidden
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Figure 2.7: A heat map showing p95 computed using 6 sources and
Nsamp = 1000 samples per source. Lower values (higher
p95) indicate better agreement between the model and
the data.

ALP states can significantly reduce the signal in some ALP searches, such as CAST

and IAXO. Other ALP search strategies sensitive only to photon disappearance

into ALP degrees of freedom, such as arguments from stellar cooling, will be largely

insensitive to the number of ALP fields for a given total ALP-photon coupling. Still,

other search strategies such as ADMX [90] and other Dark Matter haloscopes rely

on a mass resonance and would, therefore, be sensitive to each ALP mass eigenstate

individually rather than to the total effective ALP couplings. If the total ALP-photon

coupling and dark matter density is shared over many ALP states, the expected

signal in haloscope experiments for a given mass would be correspondingly reduced.

As discussed in section section 2.5, ALPs have been proposed as a solution to increase

the observed transparency of the Universe to very high energy photons. However, we

found that for many ALP systems, the photon survival probability instead decreases

due to the presence of ALPs - the opposite effect to that observed for a single ALP.

We therefore conclude that many ALP phenomenology leads to a number of new

effects not captured by consideration of a single ALP field.
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General Relativity Introduction

Up until now, everything we have considered has taken place in flat Minkowski

space-time. Minkowski space is appropriate in regimes of weak gravitation, such as

we experience on the Earth. Much of the remaining content of this thesis, however,

concerns the search for signatures of ALPs and other scalar particles around massive

astrophysical objects. The extreme energies and gravitational and electromagnetic

fields generated by these structures make them ideally suited to the search for weakly

coupled particles. To fully describe processes taking place around these objects, we

must take account of the curvature of space-time using General Relativity (GR).

In the following section, we overview the core features of GR working up to the

black-hole solutions to Einstein’s field equations. Following this, we discuss the

process by which these highly non-linear systems can be probed numerically through

the use of high performance computers (HPCs).

Throughout this chapter and the next, we use geometric units such that the speed

of light is c = 1 and Newton’s gravitational constant is G = 1. When referring to

space-time coordinates, we use the Greek alphabet µ, ν, ... ∈ [0, 3] and when referring

to purely spatial coordinates we use the Latin alphabet i, j, ... ∈ [1, 3]. Additionally,

and contrary to the preceding chapters, we use the mostly positive metric signature

ηµν = diag(−1,+1,+1,+1).

As we have seen in the previous chapters, particles exert forces on one another
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through the propagation of gauge fields. One force, however, is notably absent from

the SM Lagrangian, this being gravitation. Attempts to reconcile gravity within

the framework of the particle theory have as yet, been unyielding. Particle theories

concerning gravity and its proposed graviton have proved to be non-renormalisable

and unable to generate useful predictions. Gravity can by understood, not with a

quantum field theory, but rather a classical field theory. This theory was developed

throughout the 20th century by appealing to two core tenets. These being general

covariance and the principle of equivalence. The former is the requirement that the

laws of physics remain invariant under a change of observer and the latter reflects

the observation that objects accelerate under gravity at a mass independent rate.

3.1 Equivalence principle

An early form of the equivalence principle was deduced by Galileo, and later refined

by Newton. This form, known as weak equivalence is the statement that gravitational

mass and inertial mass are the same. That is to say that the acceleration due to

gravity is mass independent, contrary to all other forces of nature.

This distinguishing observation of the gravitational force was later developed by

Einstein, giving the strong equivalence principle. The strong equivalence principle

describes the notion that an observer in a free falling box will experience weight-

lessness in the same way as an observer adrift in empty space. More technically,

the laws of physics in a free-falling reference frame are locally equivalent to those in

the absence of a gravitational field. The effect of gravitation is only apparent when

considering an extended system. Returning to the free falling box example, consider

the case that an observer drops two test masses (that we assume cannot gravitate

towards one another) from different locations. If the box is falling in the Earth’s,

spherical, gravitational field, then the masses would begin to converge. On the other

hand, if the box and its occupants are falling in a uniform field, then the masses will

remain in the same position, see fig. 3.1.
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Curved Spacetime Flat Spacetime

Figure 3.1: An illustration of how the curvature of space time can
be observed in free fall, provided the system has a finite
size. The balls falling in the curved spacetime (left)
converge due to the spatial variation in the field. In
the absence of any field, or variations in the field, the
balls remain in the same location relative to one another
(right).

A form of the strong equivalence principle also holds for a scenario complimentary

to that of a free-falling box, in which the box is now at rest on the Earth’s surface.

An observer within this box will now experience a force from the base of the box.

Equivalence implies that this force, and indeed all the laws of nature, will be locally

equivalent to those within an appropriately accelerating box in free space. It was this

result that led Einstein to infer that gravitation should be described by a geometrical

theory. Acceleration describes changes in space and time and Einstein developed his

theory by considering gravity as a warping of a space-time surface in the presence

of massive objects. This warping then gives rise to gravitational acceleration. John

Wheeler summarised this succinctly in Ref. [91, pg.235]:

‘Spacetime tells matter how to move; matter tells spacetime how to curve.’

3.1.1 Differential Geometry

Having identified GR as a geometric theory, Einstein required an appropriate math-

ematical framework, through which to express this notion. For this, he turned to

differential geometry, a formalism that extends the concepts of calculus to geomet-

rical, smooth surfaces known as manifolds.
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Returning to gravity, we begin with the question of what does it mean for space

to curve? To answer this, it is necessary to introduce a concept of length to the

manifold. The size of an infinitesimal line element is given by the, aptly named,

metric:

ds2 = gµνdx
µdxν , (3.1.1)

where gµν is known as the metric tensor. gµν is symmetric and contains information

about the shape of the manifold. For flat Euclidean space R3, gµν is simply the

identity matrix and the metric becomes a statement of Pythagoras’ theorem:

ds2 = dx2 + dy2 + dz2. (3.1.2)

Consider now the less trivial example of a 2-sphere S2 in polar coordinates (θ, ϕ).

In this case, the metric becomes:

ds2 = R2
(
dθ2 + sin2 θ dϕ2

)
. (3.1.3)

The metric in-fact contains all of the information regarding the shape and curvature

of the manifold. It follows that to successfully realise Einstein’s geometric theory

of gravity, we are required to determine the metric tensor gµν(xµ) throughout the

manifold.

Before discussing the field equations that govern the behavior of gµν , it is instructive

to explore another important property of the metric, namely, it provides a natural

way to define an inner product between vectors. As a brief aside, when we refer to

vectors in differential geometry, we are really referring to tangent vectors. Tangent

vectors simply live in the space tangential to the manifold (M) at a given point (p),

known as the tangent space TPM . A tangent vector can be defined in terms of a

smooth curve γ(s) as:
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V µ = dγµ

ds

∣∣∣∣
s=0

. (3.1.4)

In local coordinates, this vector can be written:

V = V µ∂µ, (3.1.5)

where ∂µ = ∂
∂x

µ . It is often useful to define a vector as a function of the position

V (xµ) on the manifold. This is known as a vector field and is an element of the

disjoint union of all tangent spaces, known as the tangent bundle V (xµ) ∈ TM . In

local coordinates, one may write:

V = V ν(xµ)∂ν . (3.1.6)

We see that in differential geometry, vectors and vector fields correspond to differen-

tial operators. A related concept is that of the dual vector space T ∗
pM , an element

of which (in local coordinates) can be written:

V ∗ = Vµdx
µ, (3.1.7)

where dxµ form a basis of one-forms and the lower index of Vµ indicates that the

vector belongs to T ∗
pM . V ∗ is dual in the sense that, when it is operated on by a

vector will yield a scalar:

V µ∂µVµdx
µ = V µVµ. (3.1.8)

Elements of the dual space are known as covectors and elements of the tangent space

are known as contravectors. They are related to one another through the metric:

Vµ = gµνV
µ. (3.1.9)

In this way, the metric naturally provides a definition for an inner product:
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(V, U) = V µgµνU
ν . (3.1.10)

3.2 Geodesics

As identified previously, the metric contains the curvature information of the manifold

and thus will dictate the motion of bodies under gravitation. We now describe how

this motion can be determined. In the absence of gravity, spacetime will be flat and

a test mass will not experience any acceleration, hence:

d2xµ

dλ2 = 0, (3.2.1)

where λ is an affine parameter that labels points in the trajectory xµ(λ). If the test

mass encounters a non-trivial gravitational field, then eq. (3.2.1) must be augmented

with an additional curvature term, giving:

d2xµ

dλ2 + Γµρσ
dxρ

dλ

dxσ

dλ
= 0, (3.2.2)

where Γµρσ are known as Christoffel symbols and encode spatial variations in the

metric. This equation is known as the geodesic equation, and in the absence of any

back reaction, can be solved to determine the path of any free-falling object in a

gravitational field. An example of a test mass free-falling into a 2d black hole (BH)

geometry is depicted in fig. 3.2 using a Flamm paraboloid1.

The Christoffel symbols that dictate the geodesic path are given by:

Γλµν = 1
2g

λρ
(
∂µgνρ + ∂νgµρ − ∂ρgµν

)
, (3.2.3)

where gµν is the inverse metric. The Christoffel symbols describe how the tangent

spaces change from one point to another. It should be noted that the presence of
1Flamm’s embedding encodes the non-Euclidean 2d geometry of the Schwarzchild metric as a

Euclidean surface in 3d by equating the metrics
(
1− 2M

r

)−1
dr2 = dr2 + dz2.
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Figure 3.2: A geodesic (black line) for a test mass free-falling on a 2d
Schwarzchild geometry. To visualise the curvature, the
manifold is depicted in 3d through Flamm’s embedding.
The geometry corresponds to a BH of mass M = 1 and
the test mass was initialised with a velocity of 0.99c in
the angular direction.
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partial derivatives in the eq. (3.2.3) implies that the Christoffel symbols are not

tensors. Under coordinate transformation, these symbols will gain a correction term

containing additional derivative operations.

In GR, geodesics can be classified according to their 4-velocity kµ. Geodesics corres-

ponding to the motion of massive objects are said to be time-like, and satisfy the

normalisation condition gµνk
µkν < 0. For massless particles, trajectory geodesics

will satisfy gµνk
µkν = 0 and are said to be null or light-like. Finally, geodesics for

which gµνk
µkν > 0 are said to be space-like.

3.2.1 Covariant derivative

The Christoffel symbols provide a way to relate vectors in one tangent space to those

in an adjacent space. This allows one to define a tensor derivative that encapsulates

the structure of space-time, known as the covariant derivative. Acting on a scalar

function (f(xµ)), the covariant derivative simply reduces to partial differentiation:

∇µf = ∂µf. (3.2.4)

This reflects the fact that scalars are unaffected by the structure of the manifold.

Acting on a vector field (V = V µeµ), however, the covariant derivative takes the

form:

∇µV
ν = eµV

ν + ΓνµλV λ, (3.2.5)

where eµ are the basis vectors. The relationship between the covariant derivative and

the partial derivative in this case is most apparent in the coordinate basis (eµ = ∂µ),

for which:

∇µV
ν = ∂µV

ν + ΓνµλV λ. (3.2.6)
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Hence, in flat space, ∇µV
ν = ∂µV

ν .

The covariant derivative is related to the concept of parallel transport. Parallel

transport describes the act of continuously translating a vector from one point on

the manifold to another such that it remains invariant up to changes due to the

curvature. A vector V µ is said to be parallel transported along a curve with tangent

vector uµ if it satisfies the following relation:

uν∇νV
µ = 0. (3.2.7)

3.2.2 Curvature

The Christoffel symbols, which embody the variation of the metric over the manifold,

have already proved invaluable. Unfortunately, however, they do not transform

covariantly under a change of basis. This is at odds with our desire to construct a

basis independent theory of gravity. Through specific combinations of these symbols

it is possible to construct new objects that do transform appropriately. These objects

can then be used to build a differential equation for the structure of the metric.

The first such object we will consider is the Riemann tensor, given by:

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ. (3.2.8)

Unlike the Christoffel symbols, the Riemann Tensor can be transformed simply by

contracting it with an appropriate Jacobian tensor. To develop some intuition about

the Riemann tensor, consider the parallel transport of a tangent vector on a manifold.

If the vector V ρ is transported along the sides of a geodesic triangle (see fig. 3.3),

then in general, the resulting vector will differ from the original. For an infinitesimal

triangle (side length dxµ), and to first order, the difference between the two vectors

will be given by:

δV ρ ≈ Rρ
σµνV

σdxµdxν . (3.2.9)
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v1

v2

v3

v4

∆v

A

B

C

Figure 3.3: Depiction of Riemann curvature. The change in the
vector V1 after parallel transporting it along the path
of the geodesic triangle (ABC) is given by ∆V . For an
infinitesimal triangle, ∆V = δV .

For flat space the Riemann tensor is zero, reflecting the fact that a vector transported

round a triangle will not change.

We can construct another covariant quantity by further contracting the indices of

the Riemann Tensor. This object, known as the Ricci tensor, is defined:

Rµν = Rλ
µλν . (3.2.10)

The Ricci tensor describes the congruence of geodesics, i.e. whether adjacent geodesic

curves are converging or diverging. To visualise this, consider a small circle (known

as a geodesic ball) on a two-sphere S2. If the circle is allowed to free-fall along its

perimeter geodesics, then its volume will change, see fig. 3.4. This change can be

approximately expressed through the following differential equation:

d2V

dτ 2 ≈ −Rµνu
µuνV, (3.2.11)

where V is the original volume, uµ is the geodesic tangent vector at the centre of

the circle and τ is the geodesic affine parameter. Note that on a general mani-
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uµ(τ)

Figure 3.4: The change in area of a geodesic ball flowing according
to its perimeter geodesics on S2. The solid red lines
indicate the tangential perimeter geodesics. The central
geodesic tangent uµ follows the dashed line. The change
in the area of the ball is described by the Ricci tensor.

fold, a geodesic ball will not maintain its shape in free-fall. To fully describe the

volume change, one must account for vortices and shear in the geodesic congruence.

Eq. (3.2.11) is a special case of the Raychaudhuri equation which takes these effects

into account; more information on this can be found in Ref. [92].

Finally, we introduce the Ricci scalar, defined simply as the trace over the Ricci

Tensor:

R = gµνRµν . (3.2.12)

The Ricci scalar condenses all the curvature information into a single number at

each point on the manifold. If R > 0, the curvature is said to be positive and

geodesics will tend to converge along their paths. This is the case with a sphere.

For negative curvature (R < 0) geodesics diverge. Hyperbolic planes such as saddles

have negative curvature.
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3.2.3 Einstein’s Field Equations

Having identified the metric as the core structure encapsulating the effects of gravity,

we now require a way for matter to influence gµν . This is achieved in the form of

Einstein’s Field Equations (EFEs):

Gµν = 8πG
c4 Tµν , (3.2.13)

where Tµν is known as the stress energy tensor and encodes the distribution of energy

and mass in the universe and Gµν is the Einstein tensor that contains the curvature

information:

Gµν = Rµν −
1
2Rgµν . (3.2.14)

In this subsection, we will follow in Einstein’s footsteps and derive his field equations

relating matter to curvature. The starting point in this endeavour is to write down

an appropriate action. As the action corresponds to an integral over space-time,

we require an appropriate definition of the infinitesimal volume. Our manifold is

endowed with a metric, so we can use the natural volume form given by √−g.

We are now free to choose terms to add to the integrand. When deriving the SM

Lagrangian, we simply wrote down every term allowed under the symmetry group

that corresponded to an observed particle. We will use a similar approach here. To

ensure covariance, we may only write down scalar quantities. The simplest scalar

that encapsulates the curvature is R; we are thus motivated to write down the action:

S = 1
16πG

∫
R
√
−g d4x. (3.2.15)

Applying the principle of least action to eq. (3.2.15), one obtains the vacuum field

equations:

Gµν := Rµν −
1
2Rgµν = 0. (3.2.16)
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To include the effects of matter, we simply add the matter Lagrangian into the

action:

S = 1
16πG

∫
(R + Lmatter)

√
−g d4x. (3.2.17)

As an example, for a scalar field φ with potential V (φ), Lmatter might take the form:

Lmatter = 1
2g

µν∂µφ∂νφ− V (φ). (3.2.18)

To obtain the non-trivial EFEs, we can vary eq. (3.2.17) with respect to gµν . We

begin by defining the stress energy tensor to be the variation in the matter action

Smatter:

Tµν = − 2√
−g

δSmatter

δgµν
, (3.2.19)

where:

Smatter = 1
16πG

∫
Lmatter

√
−g d4x. (3.2.20)

Finally, by combining equations eq. (3.2.19) and eq. (3.2.16) we derive equation

eq. (3.2.13), which, in expanded form and taking c = 1, reads:

Rµν −
1
2Rgµν = 8πGTµν . (3.2.21)

The left-hand side of these equations describes the curvature of space-time and the

right-hand side describes the mass and energy content of the universe. As we saw

previously, the Ricci tensor and scalar are defined in terms of the Riemann tensor,

which itself is comprised of second order partial derivatives of the metric. EFEs thus

constitute a set of 16 second order partial differential equations. For a generic system,

solving these equations analytically is intractable. In recent years, the development

of HPCs has allowed these complicated problems to be studied numerically. A large
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portion of the work in this thesis concerns the use of these methods to study scalar

fields in the presence of BHs. We give an introduction to these numerical relativity

(NR) techniques in section 3.3. In the following subsection, we will study some of

the analytical solutions to EFEs.

3.2.4 Black Holes

BHs constitute some of the simplest solutions to EFEs. Of these, the Schwarzchild

solution, describing a non-rotating, uncharged BH is the most approachable. As a

starting point, we assume the universe to be devoid of mass, hence T µν = 0 and EFEs

reduce to the vacuum equations eq. (3.2.16). Working in spherical polar coordinates

(t, r, θ, ϕ), it can be shown that the following metric solves these equations:

ds2 = −
(

1− 2GM
r

)
dt2 + dr2

1− 2GM
r

+ r2
(
dθ2 + sin2 θ dϕ2

)
. (3.2.22)

This is the Schwarzchild metric for a BH of mass M . The coordinate basis used here

to express the metric is associated asymptotic inertial observers (stationary observers

at an infinite distance BH). From this perspective, the metric has a singularity at

r = 2GM . This value, known as the Schwarzchild radius subtends a spherical event

horizon from within which no matter or light can escape. Within the event horizon,

all time-like and light-like geodesics will point inwards, see fig. 3.5. It can also be

seen that as the Schwarzchild radius is approached, the temporal metric component

will tends to zero. From the perspective of inertial asymptotic observers, therefore,

no time will appear to pass at the event horizon. If such an observer were to watch

a ball fall into the BH, they would see it slow down to a stop as it approached this

point. This is seemingly at odds with the classical notion of gravitation. In fact, the

singularity giving rise to this phenomenon is known as a coordinate singularity and

is only present in certain coordinate systems. If instead, one were to consider an

inward moving frame, following the path of a geodesic, then this singularity would

disappear. Coordinate systems for which time propagation does not asymptote to
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Space

Time

BH

Figure 3.5: Possible geodesics in and around a BH. The light-like
geodesics are shown in red, with the time like geodesics
depicted in black/white. Outside the event horizon ob-
jects can move in an outwards spatial direction. Within
the Schwarzchild radius, however, even light-like paths
point inwards towards the centre.

zero are said to be horizon-penetrating. We will see later how these are necessary

to appropriately resolve dynamics close to BHs.

In addition to the singularity at r = 2GM , eq. (3.2.22) also has a singularity at

r = 0. This is, however, not a coordinate singularity and is present in all coordinate

systems. To see this, we can consider the basis independent Ricci Scalar, which, for

the Schwarzchild geometry, is given by:

R = 4GM
r3 − 8G2M2

r4 . (3.2.23)

At the centre of the BH, R → ∞, indicating that there is infinite curvature. All

time-like and light-like geodesics will end at this point and GR is unable to predict

what will happen here.

The Schwarzchild metric is not the only BH geometry that arises from the vacuum

field equations. In general, physical BHs will possess a non-zero spin and charge

and can be described by the Kerr-Newman metric [93]. Additionally, the matter

environment around physical BHs will be non-trivial and for a thorough treatment

of their physics, one must turn to numerical simulations.
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3.3 Numerical Relativity

Physical systems involving the interplay between matter and BHs will generally not

posses a high degree of symmetry. It is therefore difficult to solve the field equations

that describe these systems analytically. This issue is compounded by the fact that

the matter distribution and thus metric will evolve in time. Solving EFEs as well

as the matter evolution equations across both space and time, whilst including back

reactions effects between these is a task that can only be undertaken numerically.

In this subsection, we discuss how this can be achieved by evolving an initial spatial

state temporally using methods of finite difference.

EFEs treat space and time on an equal footing. This is problematic when it comes

to predicting the temporal evolution of a system. Expressed in the form eq. (3.2.21),

EFEs constitute a set of 10 independent, non-linear Partial Differential Equations

(PDEs) relating changes in space, time, mass and energy to one another. To evolve

a system numerically, we wish to rephrase these equations in the form of an initial

value (or Cauchy) problem:

∂tu = F
(
u, ∂iu, ∂i∂ju

)
. (3.3.1)

Where u are evolutions variables and F is a set of functions of u and their spatial

derivatives. Expressing the EFEs in this way, the time dependence of the metric can

be determined purely from its spatial structure and energy distribution at a given

time. Numerical integration techniques can then be used to solve for the metric at

later times.

To morph the field equations into the form of eq. (3.3.1), a number of key challenges

must be addressed. The most fundamental of these is in the bifurcation of space

and time. Known as 3 + 1 decomposition, space-time is foliated into a series of

space-like submanifold laminae, each labelled by a different time-like coordinate t.

There are many different ways to perform this decomposition, but perhaps the most

simple is the Arnowitt–Deser–Misner (ADM) formulation. We will see later some
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more sophisticated approaches. In ADM decomposition, one defines the line element

associated with the laminae:

dσ2 = γijdx
idxj (3.3.2)

and expresses the full 4-metric as:

ds2 = −α2dt2 + γij(dxi + βidt)(dxj + βjdt), (3.3.3)

where λij is referred to as the induced metric, βi, the shift, and α, the lapse. βi

encodes the change in spatial coordinates between consecutive laminae and α is an

expression of change in proper time (dτ = αdt) between laminae separated by an

infinitesimal dt. Explicitly, the metric tensor and its inverse are given by:

gµν =

−α
2 + βkβk βi

βj γij

 , gµν =

− 1
α

2
β

i

α
2

β
j

α
2 γij − β

i
β

j

α
2

 . (3.3.4)

The covariant and contravarient spatial vectors are related to one another by the

spatial metric. For example the covariant shift is βi = γijβ
j. The contravariant

spatial metric γij is simply the matrix inverse of the induced metric tensor (γij).

EFEs are most easily expressed in terms of curvature quantities (R and Rµν). In

the ADM formalism, we can try to do the same thing, although we’ll need some new

definition of curvature that can be written in 3 + 1 form. Given the time-like normal

vector (nµ) to the laminae,

nµ = 1
α

(
∂µt − βi∂µi

)
, (3.3.5)

the extrinsic curvature is defined:

Kij = −1
2(Ln⃗γij) (3.3.6)
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γij

nµ(xi)
nµ(xi + δxi)

δnµ

Figure 3.6: An embedding of a 1d hyper-surface within a 2d base
space. The surface has an induced metric γij, i, j ∈ {0}
and extrinsic normal vector field nµ(xi), µ ∈ {0, 1}, i ∈
{0}. The extrinsic curvature is related to the change
in the surface normal δnµ. This curvature is extrinsic
in the sense that it describes how a higher dimensional
object varies over the surface. R simply describes the
change of the metric and so is in some sense intrinsic
to the submanifold, whereas K encodes the embedding
and, in this case, effectively relates temporal compon-
ents to spatial ones.

= gµi g
ν
j∇µnν , (3.3.7)

where Ln⃗ is the Lie derivative in the n⃗ direction. The extrinsic curvature describes

the rate of change of the normal nµ as it moves across the space-like sub-manifold,

see fig. 3.6.

We can now break down EFE’s into a set of equations of the form eq. (3.3.1) and a

number of elliptical constraint equations. The time evolution of the induced metric

is given by:

∂tγij = −2αKij +∇iβj +∇jβi. (3.3.8)

and the evolution of the extrinsic curvature is:

∂tKij = βk∂kKij +Kki∂jβ
k +Kkj∂iβ

k
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−∇i∇jα

+ α
(

(3)Rij +KKij − 2KikK
k
j

)
+ 4πα(γij(S − ρ)− 2Sij). (3.3.9)

Here (3)Rij refers to the Ricci tensor calculated on the induced metric, not the

spatial components of the 4-tensor. Similarly, ∇i is the covariant derivative on the

sub-manifold. K is the trace of the extrinsic curvature and the quantities, S, ρ and

Sij are projections of the stress energy tensor (T µν) in the direction of n⃗:

ρ = nαnβTαβ, (3.3.10)

Si = −nαTαi, (3.3.11)

Sij = Tij, (3.3.12)

S = γijSij. (3.3.13)

They are the quantities that would be measured by normal observers to the spatial

slices [94]. For example ρ is the energy density and Si is the momentum density.

From EFEs, we can also write down a Hamiltonian constraint, given by:

H = R +K2 −KijK
ij − 16πρ (3.3.14)

and a momentum constraint, given by:

Mi = ∇j(γijK −Kij)− 8πSi (3.3.15)

We now have our 10 EFEs in ADM form; 4 constraint equations and 6 evolution

equations (the symmetric components of kij and γij). The constraint equations don’t

give any information on the evolution of the system, they are instead a restriction on

the choice of metric and mass distribution. For instance, in their absence, we would

be free to write down a scenario in which a large mass was situated in a completely
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flat spacetime. This, of course, would be non-physical. The constraint equations are

particularly important when specifying the initial data for a NR simulation. We will

see later that it is a non-trivial task to determine a suitable starting metric that is

both consistent with the stress-energy and appropriate for the types of problems one

might wish to solve. For now though, we will discuss the implementation of time

evolution in NR codes.

3.3.1 Time Integration

The work presented in the following chapter builds on the code base of GRChombo [95].

The focus of this subsection will be on the time integration schemes used by this

software.

Each time evolution step can be decomposed into two parts; an update to the

background, followed by an update to the matter distribution. The update to the

background involves the integration of eq. (3.3.8) and eq. (3.3.9). The right hand sides

of these equations can be found using the metric, the stress-energy, and numerical

derivatives thereof. The time integration can then be completed using the 4th-order

Runge-Kutta algorithm (RK4). This algorithm uses 4 numerical evaluations of the

derivatives to ensure good agreement with the analytic solution.

With the background updated, the evolution of the matter terms can now be com-

puted. To achieve this, it is necessary it introduce additional equations of motion.

EFEs describe the evolution of the background geometry but not that of the matter.

The matter evolution can be determined using a classical Hamiltonian approach,

albeit with a curved background. Returning to the example from section 3.2.3 of a

scalar field, minimally coupled to gravity:

S =
∫
d4x
√
−g

(
−1

2g
µν∇µφ∇νφ− V (φ)

)
. (3.3.16)

We can find the Hamiltonian by contracting the stress-energy tensor Tµν with the

normal nµ to the space-like hyper-surfaces;
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Hφ = nµnνTµν (3.3.17)

For a scalar field, the stress-energy in covariant form can be written [96]:

T µν = ∇µφ∇νφ− gµν
(1

2g
αβ∇αφ∇βφ+ 2V (φ)

)
. (3.3.18)

Contracting with nµ and rewriting in terms of ADM variables, one finds:

Hφ = α
√
γ

(
1
2
π2
φ

γ
+ 1

2γ
ij∂iφ∂jφ+ V (φ)

)
+ βiπφ∂iφ, (3.3.19)

where πφ is the conjugate momentum defined by:

πφ = δL
δ(∂tφ) = 1

α

(
∂tφ− βi∂iφ

)
. (3.3.20)

Hamilton equations of motion are given by the following variational derivatives:

∂tπφ = −δHφ

δφ
(3.3.21)

= βi∂iπM + γij
(
α∂j∂iφ+ ∂jφ∂iα

)
+ αKπM − γijΓkij∂kφ+ dV

dφ
. (3.3.22)

and

∂tφ = δHφ

δπφ
(3.3.23)

= απφ + βi∂iφ. (3.3.24)

These equations are in the form of Cauchy problems and in GRChombo are solved, once

again, using the RK4 algorithm. In summary, there are 6 dynamical equations and

4 constraint equations for the metric and, in the case of a scalar field, 1 additional

equation of motion (EOM) for the matter. In general, one would have a matter

EOM for each degree of freedom as well as additional matter constraint equations.
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Under ideal circumstances, where numerical integration was completely accurate, the

ADM constraint equations would always be satisfied. In reality, however, numerical

errors can compound leading to instabilities that can result in significant constraint

violation. As with all numerical simulations, the easiest way to reduce the error is to

increase the resolution. In some cases, however, a better choice of numerical scheme

is required. In NR, this corresponds to selecting a different 3 + 1 decomposition.

3.3.2 Adaptive Mesh Refinement

There are two options when it comes to increasing the resolution. Decrease the

time step or increase the number of spatial points. GRChombo uses a mesh-based

system, where space is divided into a grid of cubes. The spatial resolution could be

improved by simply reducing the global grid spacing. This approach would come

at a large cost, however, both in terms of execution time (as more boxes must be

iterated through) and in terms of the memory required to store the data. In regions

of low curvature, the additional information afforded by the higher resolution mesh

would be redundant. A common strategy to maximize both efficiency and accuracy

is with Adaptive Mesh Refinement (AMR) where the mesh is iteratively sub-divided

in regions of interest (high curvature) and left sparse in flat regions.

AMR can be performed on the fly during the simulation. This can be achieved

through a number of different algorithms. GRChombo inherits its AMR scheme from

the fluid dynamics code Chombo [97], which itself is based on the Berger-Rigoutsos

algorithm [98]. This algorithm works by first estimating the error associated with

each grid element, then determining a set of cuboidal boxes to encompass the regions

of large error. The cells in these regions are then subdivided and the process is

repeated until the error tolerance is met or the user specified maximum refinement

level is reached. See fig. 3.7 for an illustration of AMR.

Once the mesh has been subdivided into refinement levels, the simulation proceeds,

beginning with the update step on the coarsest level. The grid cells belonging
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Figure 3.7: Example of AMR in an x-y plane surrounding a BH.
Three levels of refinement are depicted centred around
a boosted BH (the colour is associated with the real
part of a scalar field that surrounds the BH). Each
successive refinement level has twice the resolution of
the preceding level in each dimension.

to higher refinement levels are then updated through the repeated application of

progressively smaller time evolution steps. To maintain consistent evolution at the

boundaries between refinement levels, the data coarse boundary cells are interpolated

to populate so called ghost cells that are used during the evolution of the finer levels.

Once temporal synchronized is achieved between the different refinement levels, any

coarse cells that are overlapped by fine cells have their data overwritten. This

processes is repeated iteratively through the successively finer levels until all cells

are updated.

AMR allows for efficient partitioning of both spatial and temporal resolution. It

allows large simulations to be performed without sacrificing accuracy around regions

of interest. This is particularly useful for studying BH phenomena, where, to avoid

the use of non-physical boundaries, the simulation volume should be large enough

to approximate Minkowski space at its peripheries. Without AMR a simulation of

this kind would be computationally unattainable.
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3.3.3 Beyond ADM

As mentioned previously, sometimes, simply increasing the resolution isn’t enough to

ensure numerical convergence. To achieve convergence, the evolution equations must

be well-posed. That is, they must have a unique solution that varies continuously

with the initial conditions. Secondly, when simulate physics, one must further

stipulate that disturbances in the solution propagate in a wavelike manner (i.e. at

a finite speed). Well-posed PDEs of this nature are said to be hyperbolic. In the

absence of the constraints, the ADM evolution equations are not truly hyperbolic as

some parameters may increase in an unbounded way [96]. Unfortunately, numerical

errors in the metric evolution can lead to constraint violation, thereby invalidating

the use of the ADM scheme. Numerical GR codes use modified strongly hyperbolic

versions of the ADM equations that are well posed even in the absence of the energy

and momentum constraints. Common choices are BSSN and CCZ4. For more

information on these topics, please refer to Ref. [99].

3.3.4 Initial Condition

We now turn our attention back to the constraint equations. Unlike the hyperbolic,

evolution equations, these are elliptical in nature and do not produce wave-like solu-

tions with finite speeds of information transfer. This, however, is not as pathological

as it first appears. The constraint equations do not contain any time derivatives

so their propagation speed is not a speed in the canonical sense and we are not in

violation of special relativity. These elliptical constraint equations do present other

challenges. Before one can run a numerical simulation, the state from which the

system should begin evolving must be chosen. Thanks to the constraints, this is a

non-trivial task. In some cases, such as when simulating low density gases around

massive compact objects like BHs, it is possible to neglect the back reaction of the

low density matter and simply use the metric of the massive object. In other cases,

the results of previous numerical simulation can be used as a starting point. In more
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difficult cases, specialised codes can be used to solve the elliptical equations. One

such code, produced by the GRChombo collaboration is GRTrensa [100].

3.3.5 Fixed Background

In the remainder of this thesis, we will only be concerned with the evolution of

matter on a fixed metric background. This simplifies the situation considerably

from the general case discussed above. In particular, since we don’t evolve the field

equations, we are at no risk of violating the constraints and we are free to work

in ADM coordinates. In addition, we will be working in a regime where the back

reaction can be ignored. Consequently, we can simply fix the metric to an analytical

solution to the vacuum Einstein equations and freely choose the initial conditions

for the matter fields. This removes two of the key difficulties in numerical GR. We

will still make use of AMR and matter evolution, but take analytical values for the

metric quantities.





Chapter 4

Dynamical Friction

New light scalar and pseudo-scalar particles appear in many well-motivated exten-

sions of the SM. As discussed in section 1.2 the QCD axion is an overwhelmingly

popular solution to the strong CP problem and as outlined in section 1.3 ALPs

occur quite generically in string compactification. Such (pseudo) scalars must be

very weakly coupled to the SM to have evaded detection. Additionally, their SM

couplings are rather model dependent. It is therefore well motivated to search for

these new degrees of freedom via their gravitational interactions, for example by

understanding their behaviour in the vicinity of BHs.

BHs are expected to readily encounter bosonic clouds, whether this be as a result

of accretion or through more hypothetical processes such as superradiance around

spinning BHs [101, 102]. Whilst the effects of superradiance may be detectable

through instability collapse and Bosenovae [103], where the bosonic cloud becomes

unstably dense, more generic bosonic clouds cannot be detected in this way. It

may, however, be possible to infer the presence of such clouds by the force they

exert on their source BH. As a massive object moves through a system of smaller

gravitating bodies, it will accrete and sling-shot them, forming an over-density to its

rear. This will exert a force, known as Dynamical Friction (DF), on the moving body

as the surrounding masses are accelerated. DF was first described by Chandrasekhar

in 1943 [104] for non-relativistic stars moving under Newtonian gravity. Later
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works extended this principle to describe motion through fluids [105–107]. More

recently, numerical simulations have been used to determine relativistic corrections

to DF [4, 108]. These corrections have proved to be significant in certain scenarios

such as during Extreme Mass Ratio Inspirals (EMRIs) [109].

4.1 Background

Chandrasekha’s Newtonian description of DF pertains to a high mass star mov-

ing through a field of stochastically distributed lower mass stars. Chandrasekha

described the DF force experienced by a star of mass M , moving with velocity v

through a star field of density ρ as follows [104]:

FChandra = 4πρM
2

v2 ln
(
bmax

bmin

)
. (4.1.1)

Here, the logarithmic term, known as the Coulomb logarithm, accounts for the range

of possible impact parameters [bmin, bmax]. The lower parameter (bmin) corresponds to

the capture impact of the focal star bmin ≈M/v2. The maximum impact parameter is

related to the size of the gravitational wake. If the star were to enter a homogeneous

gas cloud, initially its wake would be negligible, hence bmax would initially be zero.

Over time, bmax would grow, in conjunction the DF force.

Chandrasekha’s result for the DF can be thought of as the high mass (µ) limit of

the following expression for the DF generated by a cloud of scalar particles [110]:

Fd,nonrel = 4πρ
(
M

v

)2
{ln(2kr)− 1− Re [Ψ(1 + iβ)]} , (4.1.2)

where Ψ is the digamma function, k = µv and β is given by:

β = bmin

λdB
, (4.1.3)
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with λdB = 1/k being the de Broglie wavelength. As the impact parameter becomes

large compared to λdB, eq. (4.1.2) will tend towards eq. (4.1.1). This occurs for high

M and µ and low velocities.

Although this field based description of DF correctly accounts for wave-like effects,

both of these Newtonian approaches underestimate the force at relativistic speeds. In

the relativistic regime, the effect of time dilation increases the gravitational deflection,

thereby increasing the net momentum transfer. In this regime and in the limit of

weak scattering (where the minimum impact parameter bmin ≫M), eq. (4.1.2) must

be augmented by the following multiplicative factor [111]:

Fd,rel = γ2(1 + v2)2 Fd,nonrel. (4.1.4)

Note that in the ultra-relativistic limit where v = 1, corresponding to photon

propagation, the term (1+v2)→ 2. This is associated with the photon gravitational

deflection angle:

θphoton = 2θmatter. (4.1.5)

Where θmatter is the slingshot angle for non-relativistic matter around a massive

object in the weak scattering limit.

As well as the relativistic correction, an additional multiplicative factor must be

included to account for the case where the boost velocity exceeds the speed of sound

(cs) of the matter field [112–114]. This is because oscillations in the field induced by

the boosted mass cannot propagate outside the Mach cone described by the angle

(θM) to the negative of the propagation vector:

θM = arcsin cs
v
. (4.1.6)

This leads to an anisotropic accumulation of density and pressure around the cone.

This can be accounted for in the DF with the introduction of the following pressure
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factor that effectively replaces ρ→ ρ+ p in eq. (4.1.2):

Fd = ρ+ p

ρ
Fd,rel. (4.1.7)

Where p is the isotropic pressure in the absence of any perturbations induced by the

mass M .

In 2021, numeral GR simulations were used by the authors of Ref. [4] to verify the

relativistic and supersonic DF expression given by:

Fd = Fd, nonrel × γ2(1 + v2)2 × ρ+ p

ρ
(4.1.8)

They considered a BH moving relative to complex scalar field of mass µ described

by:

φ(x, t) = φ0e
i(ωt−kx), (4.1.9)

where k = µv and ω = µ2 + k2. From this, they determined a pressure correction of

the form:

ρ+ p

ρ
= 1 + κ

v2

1 + v2 (4.1.10)

where κ accounts for the distinction between more wave-like (small µ) and particle-

like (large µ) fields. With κ → 1 for wave-like fields and κ → 0 for particle-like

fields.

The numerical evolution was achieved using the AMR code GRDZhadzha [4]. This is

is a branch of GRChombo [97] that is designed for fixed background simulations. As

discussed in the previous chapter, the use of a fixed background greatly simplifies

the process of extracting the forces acting on the BH and reduces the simulation run

time. It does, however, mean that all back reactions on the metric are neglected.

For this to be a valid approximation, the matter energy density must be sufficiently
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κ → 1 κ → 0

SimulationsFd,nonrel Fd,nonrel ∼ FChandra

Relativistic and pressure correction

Fd = Fd,nonrel × γ(1 + v2)2 ×
(
1 + κ v2

1+v2

)
c

αs = µM
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Figure 4.1: A cartoon depicting the different regions of validity for
the various approximation to DF. Simulations allow for
accurate investigations around the limits of validity of
analytical approaches. This is a reproduction of fig. 4
in [4].

small ρ≪ 1. In the case of superradiance mentioned above, matter densities are not

expected to exceed ρ < 10−5. The agreement found between the fixed background

numerical result and eq. (4.1.8) further indicates the accuracy of this approximation.

In addition to verifying the historical analytical results, these types of simulations

open up new regions of the mass-velocity plane that were inaccessible to purely

analytical techniques. The cartoon in fig. 4.1 illustrates this point.

The simulations carried out by the authors of Ref. [4] were performed using a

fixed Schwarzchild metric written in isotropic coordinates. Isotropic coordinates

are associated with stationary, asymptotic observers in the far field. As a result,

when written in this form, the metric approaches that of Minkowski space at large

distances from the BH. Consequently, the DF as measured by isotropic observers can

be associated directly with the Newtonian understanding of the force. Unfortunately,

however, the isotropic metric possesses a coordinate singularity at the event horizon.

This leads to reduced temporal evolution close to the BH and decreases the accuracy
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Figure 4.2: Constant KS time curves in Schrawzchild coordinates.
A mass of M = 1 was used to produce this plot, giving a
Schwarzchild radius of r = 2. Notice that, at the event
horizon (dashed line), any finite change KS time relates
to an infinite passage of Schwarzchild time. Note also
that the constant time curves in KS become asymptot-
ically parallel to those in Schwarzchild coordinates at
large radii.

of the simulation as well as its computational efficiency. Previous works sought to

address these issues by excising a central sphere around the BH and only evolving

the regions exterior to this [4,108]. While this approach is valid in simple situations,

in cases where there are non-trivial dynamics within or close to the excised region,

potentially important details will be unresolved. To access these proximal regions

numerically, it is necessary to use a horizon-penetrating gauge. In this chapter, we

make use of the Kerr-Schild (KS) basis. This coordinate system corresponds to

observers that are infalling along null geodesics and therefore exhibits the necessary

horizon-penetration. Fig. 4.2 depicts the difference in temporal evolution between

the (non-horizon-penetrating) Schwarzchild and KS bases as a function of radius.

In what follows, we present a method for calculating the isotropic DF force using

KS coordinates. The process of transforming data between the two gauges is not
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entirely intuitive and we provide a detailed overview of this in section 4.3. Before

tackling the augmented computation, however, we begin with a description of the

process purely within isotropic coordinates.

4.2 Isotropic Formulation

In this section we describe the procedure used to determine the DF corresponding

to inertial, asymptotic observers that is induced by a scalar field on a boosted BH

using a fixed isotropic background. The information in this section is based on the

following works [4, 108].

4.2.1 Metric

The natural choice of inertial observers would be those associated with the standard

Schwarzchild coordinates. Unfortunately, however, the use of these coordinates

leads to analytically unwieldy expressions in the 3 + 1 decomposition of the metric.

It is much easier to consider the observers for whom the spatial metric appears

locally isotropic. This is the case for observers infalling along time-like geodesics.

At spatial infinity, these observers will asymptotically agree with their Schwarzchild

counterparts. If a numerical simulation is carried out over a sufficiently large spatial

volume, then the frictional forces can be obtained using the isotropic gauge.

In general, and as discussed in chapter 3, the choice of space-time foliation scheme

(3 + 1 decomposition) is central to success of numerical time integration. In the case

of a fixed background, however, it is sufficient to use the simple ADM decomposition.

In isotropic coordinates, the ADM decomposition of the Schwarzchild metric can be

written:

ds2 = −α2dt2 + γij(dxi + βidt)(dxj + βjdt), (4.2.1)

where,
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α2 =
(

1− M
2r

1 + M
2r

)2

, (4.2.2)

βi = 0, (4.2.3)

γxx = γyy = γzz =
(

1 + M

2r

)4
. (4.2.4)

To experience a non-zero DF force, the BH must be boosted with respect to the

surrounding scalar field. There are of course two canonical perspectives from which to

view this boost. One could hold the BH in place and initialise the scalar field with a

homogeneous initial velocity, or, instead, boost the BH relative to a non-moving field.

The former may seem more straight-forward, however, it would lead to complicated

boundary conditions. It is, in fact, more straightforward to apply the boost directly

to the BH. This introduces another issue, namely that the BH will eventually drift

outside any finite simulation region. To lock the BH in place, the Lorentz boost

can be combined with a Galilean shift in the opposite direction. Relative to these

boosted-shifted coordinates (t, x, y, z), the un-boosted and un-shifted coordinates

(tub, xub, yub, zub) can be written:

tub = (t/γ − γvx); xub = γx; yub = y; zub = z. (4.2.5)

The boosted, shifted isotropic ADM variables can be written:

α2 = AB

γ2(B − Av2)
, βi = δixAv, (4.2.6)

γxx = γ2(B − Av2), γyy = γzz = B. (4.2.7)

and A and B are given by:

A =
(

1− M
2r̄

1 + M
2r̄

)2

; (4.2.8)
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B =
(

1 + M

2r̄

)4
, (4.2.9)

where r̄2 = γ2x2 + y2 + z2. In the above expressions, γ refers to the Lorentz factor:

γ = 1√
1− v2

. (4.2.10)

In general, one might expect that boosting the metric in this way would have an

effect on the measured DF. Conveniently, it can be shown that no such correction

to the DF force is required as momenta remain invariant under the boost and shift

transformations [4]:

dPx
dt

=
dPxub

dtub
, (4.2.11)

where Px and Pxub are the momenta in the boosted and un-boosted frames respect-

ively.

4.2.2 Scalar Field

Scalar fields are the simplest to implement numerically and study analytically. In

addition, their existence around BH is well motivated with ALPs expected to undergo

superradiant amplification upon a Kerr type background. Real scalar fields lack a

phase degree of freedom, and so will propagate via mass dependent oscillations in

their energy density:

φRe = φ0 cos(µt). (4.2.12)

This can be problematic when evolving the field numerically, leading to increased

errors. Complex scalar fields, however, do not suffer this issue and yet retain most

of the simplicity afforded by their real counterparts. Indeed, in the absence of any

metric back-reaction, the real and imaginary parts of the field will decouple from one

another [4]. The action of a minimally coupled complex scalar field can be written:
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S =
∫
d4x
√
−g

[1
2g

µν∇µφ
∗∇νφ− V (|φ|)

]
. (4.2.13)

where the potential is simply V = 1
2µ

2|φ|2. The evolution of this field is given by

eq. (3.3.22) and eq. (3.3.24).

The stress-energy is crucial to determination of the DF and diagnostic quantities

described below. For the action given by eq. (4.2.13), this tensor can be expressed

as:

Tµν = 1
2
[
(∇µφ∇νφ

∗ +∇νφ∇µφ
∗)− gµν∇λφ∇λφ∗ − gµνV (|φ|)

]
. (4.2.14)

The stress-energy can be written in ADM form by its projections onto the normals

to the spatial slices using equations eq. (3.3.10) to eq. (3.3.13).

With the above specification of static, boosted metric, the choice of initial conditions

is somewhat arbitrary - Working in the limit of zero back-reaction, the elliptical

constraint equations can be neglected, and since the BH already encodes the boost,

the only requirement on the initial field configuration is that it is non-moving. The

simplest non-trivial field configuration is that with a spatially constant, non-zero

amplitude φ, given by:

Re [φ(t = 0, r)] = φ0; (4.2.15)

Im [φ(t = 0, r)] = 0; (4.2.16)

Re [∂tφ(t = 0, r)] = 0; (4.2.17)

Im [∂tφ(t = 0, r)] = µφ0. (4.2.18)

Similarly, selecting appropriate boundary conditions is also straightforward in this

regime. All of the interesting dynamics will be fixed around the centre of the

simulation region, so it is appropriate to simply set homogeneous boundary conditions

at a large distance from the BH. AMR is required to provide sufficient resolution
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near the event-horizon while also allowing the simulation domain to reach sufficiently

into the far-field.

4.2.3 Diagnostics and Friction

DF is a force, and as such, can be determined by considering the rate of change

of momentum of the BH. Working in the fixed background limit, changes in the

BH momentum are neglected by the simulation. To extract an effective force, it

is necessary to consider changes in the dynamical momentum of the scalar field.

EFEs contain a set of 4 elliptical constraint equations pertaining to energy and

momentum conservation. In the limit of zero back reaction, energy conservation

holds, however, as we discuss below, momentum conservation is broken. This is a

consequence of the structure of the metric and can be taken into account with the

introduction of a momentum source term related to the exchange of momentum

with the background. This adapted momentum constraint and indeed the standard

energy conservation law constitute important diagnostic tools in numerical GR. As

we describe in section 4.4, many simulation parameters such as grid spacing and

derivative fidelity can lead to instabilities that render the results invalid. Verifying

the Hamiltonian and momentum constraints is necessary to ensure the accuracy

of a given simulation. In this section, we present a derivation of, firstly, the more

straightforward energy constraint, and, later, the momentum constraint. Finally, we

identify the terms in the momentum constraint that are associated with DF.

One can define a general current Jµ in GR by projecting the Stress-Energy tensor

onto a particular direction ζµ:

Jµ = ζνT µν . (4.2.19)

The energy current (JµE) is associated with the projection onto the time direction ∂t,

hence ζµE = (1, 0, 0, 0). This choice of ζµE is in fact a Killing vector of the metric, i.e.:
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LζEgµν = ∇µζEν +∇νζEµ = 0, (4.2.20)

where LζEgµν is the Lie derivative of the metric along the direction of ζµE. This shows

that the metric is unchanged under flows along this direction. This choice of projec-

tion vector therefore encodes a continuous symmetry of the system. Consequently,

Noether’s theorem implies conservation of the energy current:

∇µJ
µ
E = ∇µ(T µνζEν), (4.2.21)

= 0. (4.2.22)

where the second line arises from the Killing vector relation and the constraint laws

of EFEs, which imply that:

∇µT
µν = 0. (4.2.23)

Integrating over the divergence of the current gives:

∫
d4x
√
−g∇µJ

µ
E = 0. (4.2.24)

Working in ADM decomposition, we wish to rewrite eq. (4.2.24) in terms of integrals

over the individual spatial slices. To do so, we define the energy charge QE associated

with the conserved current (JµE) as its projection onto the normal nµ to a given 3d

spatial hypersurface Σ:

QE = nµJ
µ
E. (4.2.25)

For the spatial surface Σ, the unit normal is in the time direction and can be written:

nµ =
(

1
α
,−β

i

α

)
(4.2.26)
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With a dual vector given by nµ = α(1, 0, 0, 0). We can re-express eq. (4.2.24) as a

relationship between the temporal variation in the net energy QE within the volume

Σ and the total flux across its boundary ∂Σ [94]:

∂

∂t

∫
Σ
d3x
√
γ QE = −α

∫
Σ
d3x
√
γ∇iJ

i
E. (4.2.27)

This relationship can be obtained by separating the spatial and temporal components

of the covariant derivative:

∇µJ
µ
E = ∂tJ

0
E + Γµµ0J

0
E +∇iJ

i
E = 0. (4.2.28)

and noting that the temporal Christoffel symbols can be written as a time derivative

of the volume form:

Γµµ0 = 1
√
g
∂t
√
g. (4.2.29)

We conclude due to the static nature of the background, that Γµµ0 = 0. Hence:

∂

∂t

∫
Σ
d3x
√
γ J0

E = −
∫

Σ
d3x
√
γ∇iJ

i
E. (4.2.30)

Finally, substituting J0
E = QE/α yields eq. (4.2.27). We can now apply Gauss’s law

to this equation to obtain:

∂

∂t

∫
Σ
d3x
√
γ QE = −

∫
∂Σ
d2x
√
σ FE. (4.2.31)

Where ∂Σ is the 2d spatial hypersurface with induced metric σ that bounds the 3d

spatial volume Σ and FE is the flux through this surface, given by:

FE = αNiJ
i
E. (4.2.32)
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Here N i is the 3d vector describing the normal to ∂Σ. We will take Ni = (r = 1, θ =

0, ϕ = 0), i.e. pointing radially outwards, thereby defining ∂Σ to be a spatial 2-

sphere. It will be useful in the following section on KS coordinates to have covariant

expression for the flux. To obtain this, we can extend our definition of Ni → Nµ

with the following normalisation condition NµN
µ = 1. This implies that N0 = βiNi,

hence, we derive the covariant force term:

FE = αNµJ
µ
E − αN0J

0
E (4.2.33)

= αNµJ
µ
E − β

µNµnνJ
ν
E (4.2.34)

= Nµ(αJµE − βµnνJνE). (4.2.35)

Where we assign β0 = 0. We have now arrived at eq. (4.2.31) that relates an integral

over the energy density QE contained within a spherical volume to the flux through

its boundary. By computing these values at regular intervals, the convergence of the

simulation can be verified. It is in this sense that we use this conservation law as a

diagnostic.

A similar calculation can be carried out to obtain the momentum flux, with the

momentum in a particular spatial direction being associated with the projection

of the stress-energy onto that direction. The difficulty in this case is that due to

the spatial variation of metric, the current associated with momentum JµP = ζνPT
µ
ν

is not conserved. Put another way, any spatial momentum projection vector, e.g.

ζµP = (0, x = 1, y = 0, z = 0), will not satisfy Killing’s equation, and as a consequence,

Noether’s theorem implies the existence of a source term SP, such that:

∫
d4x
√
−g∇µJ

µ
P =

∫
d4x
√
−g T µν∇µζ̃

ν
P. (4.2.36)

Which, repeating the above procedure, leads to:

∂t

∫
Σ
d3x
√
γ QP = −

∫
∂Σ
d2x
√
σ FP +

∫
Σ
d3x
√
γ SP, (4.2.37)
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where:

SP = αT µν∇µζ
ν
P. (4.2.38)

This equation relates the rate of change of momentum within the volume Σ to the

flux across its boundary combined with the momentum generated in its bulk due

to the lack of spatial translational symmetry in the metric. There are a number of

subtleties regarding the integrals presented in this subsection. Firstly, it should be

noted that at each point in the domain of the integrals, a different frame of reference

is used and the quantities within the integrand are those that would be measured

by an observer within this frame. Each of these frames corresponds to isotropic

observers located at a specific location. At an infinite distance from the BH, all

observers will be stationary and will agree on the values of the integrands and the

integrals will effectively be carried out within a single frame. By performing the

flux integration at sufficiently large radii, one can recover the change in energy and

momentum expected by an inertial asymptotic observer.

The second, more problematic feature of these integrals is that we have taken Σ to

fully encompass the BH. To perform the simulation, one would thus be required to

compute the matter evolution in the presence of metric singularities. In isotropic

coordinates, this issue is two-fold as a the system exhibits not only the true origin

singularity, but also a coordinate singularity at the event-horizon. To account for

this, a central region of Σ must be excised. The boundary surface ∂Σ now becomes a

pair of concentric disconnected spheres, see fig. 4.3. No evolution will be preformed

within the inner excision region. Ideally this buffer zone would be as small as possible

to reduce the loss of information. If the excision boundary is too close to the BH,

however, a significant degree of noise can be introduced [4].

We now consider how the momentum constraint eq. (4.2.37) relates to the force

on the BH. From a Newtonian perspective, DF can be computed by summing the

gravitational force generated by the surrounding matter. For a continuous fluid, this
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BH
OEIE

Figure 4.3: An illustration of the inner (IE) and outer (OE) ex-
cision regions. Evolution is carried out in all but the
cross-hatched region within the inner excision. The sep-
aration between the inner excision and the BH prevents
numerical instabilities. The computation of diagnostic
quantities and frictional forces is performed only in the
orange region between the excision radii.

force, projected onto the xi direction, will be given by:

F id, nonrel =
∫ GMρ

r2
xi

r
dV. (4.2.39)

In GR, obtaining an integral for the DF force is less-trivial as gravity is encoded

in the curvature of spacetime. In a full relativistic scenario, the matter field will

generate its own perturbation to the curvature and it is this modification that leads

to the relativistic version of DF. Working in the limit of negligible back reaction,

this perturbation to the background metric is encoded in the non-conservation of

momentum from the context of the scalar field. This is equivalent to how the

momentum of a ball thrown in the air on earth is not conserved, because it is

transferred to the earth and neglected. From this, one can conclude that the total

relativistic force on the BH is given by:

F =
∫

Σ
d3x
√
γ SP. (4.2.40)

Where, in this equation, Σ is the entire volume of 3d space. It is common to make the
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distinction between the force due to DF and that which is induced by the accretion

of matter into the BH. Taking the Newtonian result as inspiration, the DF should

arise from the integral over the field that is exterior to the BH. The accretion term

is then associated with the momentum flux into the event-horizon. Breaking the

force up in this way, we can write:

F =
∫

Σ−ΣBH

d3x
√
γ SP +

∫
∂ΣBH

d2x
√
σ FP, (4.2.41)

where ΣBH is the volume encompassed by the event-horizon. Here, the right most

integral, known as the Bondi term [115] describes accretion, whilst the left most

integral over the source describes the DF. In simulations, ΣBH can be approximated

by the inner excision sphere.

The distinction made between the accretion and friction terms in eq. (4.2.41) seems

very intuitive, and indeed, within a specific gauge, this makes sense. It is easy to see,

however, that under a change of observer, these terms can mix. Take for example a

horizon-penetrating, compared with a non-penetrating, gauge. The accretion flux in

the non-penetrating gauge will be zero, whilst in general this will not be the case in

the penetrating gauge.

Note that in a simulation where the full integration volume is finite, the total rate

of change of momentum eq. (4.2.37) also includes a flux integral over the outer

boundary. This corresponds to the momentum of the field entering the simulation

region. During the early stages of the evolution from the initial conditions, the

net momentum of the field within the simulation domain may evolve somewhat.

Eventually, however, the system should settle to a steady state where the total

momentum within the domain is constant. At this point, the net momentum flux

will exactly cancel the total source momentum. Once this point is reached, the rate

of change of the integrated momentum flux can be interpreted as the total force on

the BH. Additionally, because this flux integral is carried out over a sphere of large

radius, this force will be approximately that corresponding to inertial asymptotic



132 Chapter 4. Dynamical Friction

observers, as desired. Overall then, we write the net force (DF plus Bondi term)

acting on the BH as:

F = −
∫
∂Σ
d2x
√
σ FP +

∫
∂ΣBH

d2x
√
σ FP. (4.2.42)

Which is valid provided that the simulation has reached a state in which:

∂t

∫
Σ
d3x
√
γ QP = 0. (4.2.43)

4.3 Kerr-Schild Formulation

We now move on to discuss our novel approach to computing the DF force using the

horizon-penetrating KS gauge. We begin in much the same was as for the isotropic

case. A number of corrections and modifications must be made along the way to

account for the difference in observers, however. We start with a description of the

ADM Schwarzchild metric in the KS basis, following this, we discuss the changes

made to the scalar field initial conditions. Finally, we derive an augmented expression

for the DF.

4.3.1 Metric

KS coordinates were first introduced to describe the rotating Kerr metric. In this

work we take advantage of their manifest horizon-penetration. The KS basis is

constructed by considering observers that are infalling along null geodesics. These

correspond to massless particles and therefore, do not asymptote to stationary

observers at spatial infinity. This feature significantly complicates the evaluation

of the forces that may act upon the BH, and requires several transformations and

additional correction terms to yield agreement with the isotropic case.

A KS observer will posses a null velocity vector, ℓµ, satisfying gµνℓµℓν = 0 and will

follow a geodesic of the form:
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ℓµ∇µℓ
ν = 0. (4.3.1)

At an infinite distance from the BH, gµν → ηµν . Expanding around this flat space,

the KS form of a metric is given by:

gµν = ηµν +Hℓµℓν , (4.3.2)

where ℓµ is chosen such that it is null with respect to both ηµν and gµν , and H is a

function of the spatial components. For the Schwarzchild metric, the infalling null

geodesic is:

ℓµ = (−1, x/r, y/r, z/r). (4.3.3)

and H is given by:

H = 2M
r
. (4.3.4)

As in the isotropic case above, we again boost and shift the metric according to

eq. (4.2.5). The boosted and shifted KS metric can be written in the form eq. (4.2.1)

with the ADM variables being given by:

α =
√
βiγijβ

j + (1− v2)− 2Hbℓb,0ℓb,0; (4.3.5)

βi = γij(−vδ0j + 2Hbℓb,jℓb,0); (4.3.6)

γij = δij + 2Hbℓb,iℓb,j, (4.3.7)

where Hb = M/rb and ℓb = (−1, xb/rb, y/rb, z/rb) are the boosted forms of eq. (4.3.4)

and eq. (4.3.3), for which:

xb = γx; (4.3.8)
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rb =
√
γ2x2 + y2 + z2. (4.3.9)

4.3.2 Scalar field

As in the isotropic case, we again perform the simulations using a complex scalar

field. We do modify the initial conditions, however. A constant time slice in isotropic

coordinates will not correspond to a constant time slice in KS. We account for this by

computing the isotropic time coordinate at each point in the spatial KS simulation

volume and evolving the isotropic initial conditions as plane waves up to this time.

Explicitly, this is:

Re [φ(t = 0, r)] = φ cos
(
µtiso(rKS,µ)

)
; (4.3.10)

Im [φ(t = 0, r)] = −φ sin
(
µtiso(rKS,µ)

)
; (4.3.11)

Re [∂tφ(t = 0, r)] = −µφ sin
(
µtiso(rKS,µ)

)
; (4.3.12)

Im [∂tφ(t = 0, r)] = µφ cos
(
µtiso(rKS,µ)

)
, (4.3.13)

where tiso(rKS,µ) is the isotropic time coordinate written as a function of the spatial

KS coordinates rKS,µ. Whilst this correction isn’t strictly necessary, we expect it to

improve the rate of convergence between the two approaches before the system has

settled into a steady state.

4.3.3 Diagnostics and Friction

This subsection concerns the calculation of Boosted Isotropic (BI) quantities using

a Boosted Kerr-Schild (BKS) basis. To avoid confusion, we denote BI coordinates

with a bar and BKS without. For example, the vµ̄ signifies a vector expressed in BI

coordinates and vµ is the same vector expressed in BKS coordinates. We further

denote quantities pertaining to the BI basis with a bar, so, for example, the BI spatial

unit normal would be n̄µ̄ expressed in BI coordinates and n̄µ in BKS coordinates.
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As identified in the discussion for isotropic observers, the DF is an observer depend-

ent quantity. In GR, classical Newtonian descriptions of DF are associated with

asymptotic, inertial observers. Whilst BKS coordinates are asymptotically flat, they

are not inertial. Although we could directly apply the framework of section 4.2 in

BKS coordinates, the resulting force would not match the isotropic result. This issue

arises because, in general, the temporal and spatial directions will not agree between

two arbitrary gauges. This means that one would expect that ζ ̸= ζ̄ for ζµ = ζ̄µ

and similarly for the surface normals nµ. The canonical approach to solving this

problem would be to exploit covariance to write the BI ζ̄ and n̄ in BKS coordinates.

We will begin with this strategy, and later highlight a number of issues with this

naive approach.

Starting with the straightforward energy diagnostic, we note that the left hand side

of eq. (4.2.31) is simply an integral over the scalar quantity:

Q̄E = n̄µ̄J̄
µ̄
E. (4.3.14)

where the current is given by:

J̄ µ̄E = ζ̄ ν̄ET
µ̄
ν̄ . (4.3.15)

To compute Q̄E using a simulation performed in BKS coordinates, each of the

covariant, BI quantities must be transformed into the BKS basis xµ̄ → xµ. We can

define the Jacobian for this transformation J µ
ν̄ as follows:

J µ
ν̄ = ∂xµ

∂xν̄
. (4.3.16)

Working with non-dynamical backgrounds, J µ
ν̄ can be found simply via analytical

pre-computation. The simulation, when performed in BKS coordinates can generate

the stress-energy in BKS form, and although its coordinate representation T µν will

differ from that in BI coordinates T̄ µ̄ν̄ , the tensors themselves will approximately
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match for any given space-time event T̄ (xµ̄) = T (xµ). To find Q̄E then, we need

only transform n̄µ̄ and ζ̄ µ̄E by contraction with J µ
ν̄ .

Returning to eq. (4.2.31), we must now perform a 3d volume integral over the spatial

hyper-surface Σ̄. This is where issues start to arise. Assuming Σ̄ is spherical in BI

space, then in general it will be aspherical in BKS coordinates and the temporal

and spatial components may even mix; see fig. 4.4. In addition, the volume forms
√
γ̄ ̸= √γ will also differ. If this were a volume element on the whole space, i.e.
√
−g, then accounting for this change would be straightforward, with the transformed

element being given by:

√
−g = |detJ µ

ν̄ |
√
−ḡ. (4.3.17)

Instead of integrating over a non-trivial re-parametrisation of Σ̄(xµ) written in the

BKS basis and transforming the non-covariant volume element, we opt to perform

a spatially spherical integral in BKS coordinates using the BKS induced volume

element √γ. This integral corresponds to the BI energy contained within a non-

spherical BI surface. We thus obtain the following expression for the augmented left

hand side of eq. (4.2.31):

∂

∂t

∫
Σ
d3x
√
γ QE →

∂

∂t

∫
Σ
d3x
√
γ Q̄E. (4.3.18)

This is easier to compute numerically, as the BKS quantities are accessible to the

simulation and a spherical integration scheme already exists within the code base of

GRDZhadzha. We will later show how correction terms can be introduced to resolve

the disagreement caused by using different integration volumes.

We now consider the right hand side of eq. (4.2.31), where the situation becomes

yet murkier. To relate energy and flux, we once again deconstruct the covariant

derivative to obtain eq. (4.2.30). In this case, however, it is less straight forward to

relate J̄0
E to Q̄E because in the BKS coordinates, n̄µ will no longer simply be given

by (ᾱ, 0, 0, 0). In order to reproduce the conservation law, we are forced to replace
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Figure 4.4: A BI sphere of radius r̄ = 1 as viewed by a BKS observer
with boost velocity v = 0.99 in the x direction. The
colour indicates the radial distance from the centre. The
original sphere, i.e. a radius r = 1 BKS sphere is shown
within the morphed BI sphere. At v = 0, both spheres
agree. The left plot shows the x-y projection, and the
right plot shows the z-y projection.

Q̄ with a projection of the current onto the BKS spatial normal Q̄E → nµJ̄
µ
E; the

difference between the normal vectors n̄µ and nµ is depicted in fig. 4.5. We can then

write:

∂

∂t

∫
Σ
d3x
√
γ nµJ̄

µ
E = −

∫
∂Σ
d2x
√
σ Nµ(αJ̄µE − βµnν J̄νE). (4.3.19)

This equation is no longer related directly to the energy measured by a BI observer

or a BKS observer but can provide an important diagnostic. One could simply use

eq. (4.2.31) in the BKS basis to compute the BKS energy and use this to verify the

numerical stability. By using the hybrid expression of eq. (4.3.19) it is also possible

to verify the accuracy of the transformations.
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Figure 4.5: Lines in BKS coordinates projected onto the x − y
plane tracing the spatial normal directions in BKS, Nµ

(dashed black), and BI, N̄µ (red). A boost velocity of
v = 0.9 in the x direction and BH mass of M = 1.0 were
used to produce this figure. Note that the spatial com-
ponents of the normal directions agree for zero boost
velocity.

We now turn to the momentum continuity equation. The momentum current in

the BI x direction is found by projecting the stress-energy onto ζ̄ µ̄P = (0, x = 1, y =

0, z = 0):

J̄µP = ζ̄νPT
µ
ν . (4.3.20)

This introduces an additional source term as before. Overall, performing the integ-

rations in BKS space, we obtain the quasi BI momentum diagnostic:
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∂

∂t

∫
Σ
d3x
√
γ nµJ̄

µ
P = −

∫
∂Σ
d2x
√
σ Nµ(αJ̄µP − βµnν J̄νP)

+
∫

Σ
d3x
√
γ αT µν∇µζ̄

ν
P.

(4.3.21)

This expression is in fact general for any choice of stress-energy projection direction ζ.

Whilst we could use eq. (4.3.21) for identifying convergence issues, it is not directly

related to the DF force. In the previous section, we related the source term to the

change in the ADM momentum of the BH through eq. (4.2.41) and showed that once

a steady state is reached, the DF can be expressed purely in terms of the momentum

flux. In this case, the steady state can be identified with the condition:

∂

∂t

∫
Σ
d3x
√
γ Q̄P = 0, (4.3.22)

Once eq. (4.3.22) is satisfied, the BI force acting on the BH in the x direction will

be given by:

F̄ x̄ =
∫
∂Σ
d2x
√
σ N̄µ(ᾱJ̄µP − β̄µn̄ν J̄νP). (4.3.23)

We now define a correction vector of the form:

bµ = (Nµα−Nνβ
νnµ)− (N̄µᾱ− N̄ν β̄

νn̄µ). (4.3.24)

Finally, using eq. (4.3.21) we can write:

F̄ x̄ +
∫
∂Σ
d2x
√
σ (bµJ̄µP) = (4.3.25)∫

∂Σ
d2x
√
σ Nµ(αJ̄µP − βµnν J̄νP) =

∫
Σ
d3x
√
γ αT µν∇µζ̄

ν
P (4.3.26)

+ ∂

∂t

∫
Σ
d3x
√
γ nµJ̄

µ
P, (4.3.27)

which, once the stationary state is reached and the final term on the last line reduces

to zero, will give to the following expression for the BI force:
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F̄ x̄ =
∫

Σ
d3x
√
γ αT µν∇µζ̄

ν
p −

∫
∂Σ
d2x
√
σ (bµJ̄µP). (4.3.28)

We see that the force is given by a source term combined with a correction that

accounts for the difference between the temporal and spatial projection directions as

well as the disagreement in ADM decomposition between BI and BKS coordinates.

We could once again try to make the distinction between the force due to accretion

and that due to DF. However, because F̄ x̄d corresponds to a non-horizon-penetrating

gauge, the observed net flux over the horizon will be null and F̄ x̄d is identical to the

DF force.

4.4 Numerical Framework

In this section we describe our numerical implementation of the above framework for

computing the BI DF force using BKS coordinates. We use the code GRDZhadzha

as the basis for our simulations [116]. GRDZhadzha inherits its AMR and integration

classes from GRChombo, but provides analytic expressions for the metric quantities

instead of solving the EFEs. As mentioned previously, it was originally developed

to compute the DF force using simulations performed in isotropic coordinates. In

this work, we have developed an additional metric background class for working in

BKS coordinates and provide a modified diagnostic class for verifying the continuity

equations eq. (4.3.19) and eq. (4.3.21).

4.4.1 Diagnostic Implementation

We perform the numerical evolution of the scalar field entirely within BKS coordin-

ates. The diagnostics and friction are not required to preform this evolution so

we only compute these quantities periodically, with an interval of 100 coarse evol-

ution steps. At each diagnostic step, we calculate the left and right hand sides of
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eq. (4.3.19) and eq. (4.3.21), modifying Σ to exclude the inner excision. Explicitly,

we can write these quasi energy and momentum constraints as:

∂

∂t

∫
Σ
d3x
√
γ nµJ̄

µ
E = −

∫
∂Σout

d2x
√
σ αNµJ̄

µ
E +

∫
∂Σin

d2x
√
σ αNµJ̄

µ
E; (4.4.1)

and,

∂

∂t

∫
Σ
d3x
√
γ nµJ̄

µ
P = −

∫
∂Σout

d2x
√
σ αNµJ̄

µ
P +

∫
∂Σin

d2x
√
σ αNµJ̄

µ
P+∫

Σ
d3x
√
γ αT µν∇µζ̄

ν
P,

(4.4.2)

respectively, where ∂Σin and ∂Σout refer to the inner and outer boundaries of Σ.

During a given time evolution step, the simulation will update the ADM projections

(ρ, Si, Sij and S) of the stress-energy tensor (see section 3.3). The first step in

computing the diagnostics is to rewrite the ADM variables as covariant quantities.

The full 4d stress-energy tensor can be written:

T µν = ρnµnν + Sµnν + Sνnµ + Sµν (4.4.3)

In addition to T µν , we also require the covariant metric in order to compute the

contractions and the covariant derivatives present in eq. (4.4.1) and eq. (4.4.2).

Whilst we could reconstruct the metric and its derivatives directly in terms of the

α, β and γµν , the computation and implementation of the Christoffel symbols could

be a significant source of bugs1. We thus opted to simply determine the 4-metric

from analytic expressions and determine its derivatives and associated Christoffel

symbols numerically at run time. This approach is not ideal as it involves multiple

computations of the same metric quantities; once in the 3 + 1 decomposition, and

multiple times in covariant form. At the time of writing this thesis, we are currently in

the process of implementing a fully ADM based formulation that we will later verify
1The analytical expressions for the Christoffel symbols are unwieldy and difficult to implement

accurately.
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against our covariant approach. Presently, we determine the Christoffel symbols

according to:

Γλµν = 1
2g

λσ
(
∂µgνσ + ∂νgµσ − ∂σgµν

)
, (4.4.4)

with the metric derivatives being computed using finite difference:

∂µg
νσ ≈ gνσ(xρ + dxρ)− gνσ(xρ − dxρ)

2dxρ . (4.4.5)

One could, in principle store the full 4-metric as a variable on the grid and perform

the differentiation using the difference in gµν between adjacent cells. This would,

however, incur a significant memory overhead in storing the 10 independent metric

components and increase the number of memory copy calls required. To avoid this,

we instead compute gµν twice for each grid cell to compute eq. (4.4.5). Using this

method, we are also free to independently specify the fidelity of the derivative step

dxµ. During testing, we found that values of dxµ < 10−6 lead to significant numerical

errors due to noise, whilst values significantly larger than this fail to resolve the

derivatives to a sufficient accuracy.

With the BKS quantities expressed in covariant form, it remains for us to determine

the covariant energy and momentum projection operators ζ̄µE and ζ̄µP that define the

currents J̄µE and J̄µP. We achieve this via contraction with the BKS to BI Jacobian

(J µ
ν̄ ), which can be written analytically in terms of the following three partial

Jacobians:

(JBoost)µν =



1
γ
−γv 0 0

0 γ 0 0

0 0 1 0

0 0 0 1


; (4.4.6)
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(Jsph)µν =



1 0 0 0

0 x√
x

2+y2+z2
xz√

x
2+y

2

x
2+y

2+z
2

√
x

2+y2+z2
−y

0 y√
x

2+y2+z2
yz√

x
2+y

2

x
2+y

2+z
2

√
x

2+y2+z2
x

0 z√
x

2+y2+z2
−x2−y2√

x
2+y

2

x
2+y

2+z
2

√
x

2+y2+z2
0



; (4.4.7)

(JI →KS)µν =



1 − 2m(m+2rIso)
rIso(m−2rIso) 0 0

0 1− m
2

4r2
Iso

0 0

0 0 1 0

0 0 0 1


, (4.4.8)

where, acting on contravectors e.g. ζµ, (JBoost)µν transforms from an un-boosted

frame to one that is boosted and shifted. (Jsph)µν maps from a polar basis to a

Cartesian one and (JI →KS)µν transforms from un-boosted polar isotropic coordinates

to un-boosted KS coordinates and is parametrised in terms of the former. Overall the

full transformation from BKS to BI can be written as the following matrix product:

J µ
ν̄ = (J −1

Boost)µδ (Jsph(xKS)δκ(JI →KS(xI))κι (J −1
sph(xI))ιρ(J −1

Boost)ρσ(Jsph(x̄))σν̄ , (4.4.9)

where xI and xKS are un-boosted isotropic and KS coordinates respectively.

With these quantities in hand, we are now able to evaluate the diagnostic spatial

and volume integrals to assess the validity of a given simulation.

4.4.2 Setup and Parameters

We describe now, with regard to their justification in terms of numerical stability

and comparability, our chosen simulation parameters and integration schemes.

Using our modified version of GRDZhadzha, we evolve the system on an adaptively

refined mesh-grid. We use the pre-existing integration scheme to solve the scalar
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equations of motion eq. (3.3.24) and eq. (3.3.22). In this approach, the PDEs are

reduced to ODEs using the method of lines, whereby the spatial partial derivatives

are computed using finite difference on the grid and time integration is performed

using the RK4 algorithm. Following [4], we make use of the quadrant symmetry

of the problem and perform the simulation within a cuboidal spatial domain of

volume ∆x×∆y ×∆z = L× L/2× L/2, with the BH centred on (∆x/2, 0, 0). The

diagnostics and frictional forces are then multiplied by a factor of 4 to obtain those

which will be measured over the full volume. For comparative reasons, we select the

full domain length L according to the values used by the authors of [4]. We discretise

the domain onto a coarse grid of dimensions 128× 64× 64 and specify a maximum

of 7 (2 : 1) refinement iterations. Between each spatial sub-division, we additionally

reduce the time step by a factor of 10. This improves efficiency, allowing larger time

steps to be used by coarser levels. The coarsest time step is chosen according to

the condition dtcoarse ≤ T/32, where T is the characteristic oscillation period of the

scalar field, T = 2π/µ [4]. The discrete nature of this grid based approach allows

for optimised load distribution through the Message Passing interface1 (MPI) [117].

Using a single 64 core, 2.6GHz CPU, a simulation run up to a time of 5000 coarse

steps takes O(1h) to complete.

As outlined previously, the convergence of the diagnostic quantities can be affected

by the choice of the inner excision radius. This relationship is depicted in fig. 4.6.

Sufficient numerical stability is observed for radii greater than 3.5 and a value of

rin = 4.083 was selected to produce the data described below.

4.5 Preliminary Results

At present our code is able to perform a full evolution within the BKS basis and

compute the quasi BI diagnostic quantities that constitute eq. (4.4.1) and eq. (4.4.2)

1MPI is a framework for distributed memory, parallel computation and is used extensively in
high performance computing clusters.
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Figure 4.6: Fractional discrepancy in between the left and right
hand sides of eq. (4.4.2) against inner excision radius.
For radii less than 3.5 the flux through the inner excision
cannot be resolved numerically and is neglected in the
computation of the momentum discrepancy. The effect
of this can be seen in the discontinuity at this radius.
The data used to generate this figure were generated
using v = 0.2 and α = 0.05 and correspond to an
evolution time of t = 163.2.
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and we are currently implementing the full BI DF calculation. To verify the self-

consistency of our code, we performed two simulation runs up to a time t = 5000

with a BH of mass M = 1 and scalar field with amplitude α = 0.05; for a scalar

field of mass µ = 1 × 10−12eV, this corresponds to a BH with a physical mass of

Mphys = 6.6M⊙ (where M⊙ is the mass of the sun). In the first run, we took the

boost velocity to be v = 0, and in the second, this was chosen to be v = 0.2. The

simulations were carried out on within a box of length L = 4096 with 128 coarse

grid cells per dimension and 7 grid refinement levels. The effect of the boost on the

scalar field can be seen in its energy density distribution. The energy density in

the x-y plane is depicted in fig. 4.7 and fig. 4.8 for zero velocity and boosted cases

respectively1. In the zero velocity case, the energy density can be seen to build up

around the BH as matter is accreted, whereas in the boosted case, an over density in

the scalar field accumulates behind the BH. The extent of this wake increases over

time, eventually reaching the outer excision radius. Once the wake size saturates,

the internal energy and momentum densities will enter a steady state. At this point

the total energy within the excision region will saturate to a constant value. We

plot the total energy in the right hand plot of fig. 4.9. At late times, the energy

approaches a constant value.

The total energy depicted in fig. 4.9 has been calculated in two ways. These corres-

pond to the left-hand side (solid lines) and right-hand side (dashed lines) of eq. (4.4.1)

after time integration. We also show the flux, directly, in the left plot of eq. (4.4.1).

The agreement between the dashed and solid lines for both v = 0 and v = 0.2,

demonstrates self consistency in our implementation of the framework discussed in

section 4.3.3. We also demonstrate momentum conservation according to eq. (4.4.2),

both in the x (fig. 4.10) and radial (fig. 4.11) directions.

1Energy density and diagnostic figures were produced using excision radii of rin = 4.083 and
rout = 900 and a simulation volume of 4096 × 2048 × 2048. The lower half of the density plots
were not the result of direct simulation but were inferred from the upper half using the y → −y
symmetry of the problem.
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We conclude that our implementation is able to consistently evolve a system en-

tirely within a BKS gauge whilst computing BI observables. We additionally note

that with our chosen simulation parameters, the system is well posed, with the

diagnostics not displaying any significant deviation, even at late times. On the back

of this, we are now working to implement the DF calculation of eq. (4.3.28).

Figure 4.7: The evolution of the energy density in the x-y plane
around a non-moving BH. The BH is centred at (x =
0, y = 0), and the visible circle marks the outer excision
radius. Over time, the energy density grows around the
BH as matter is accreted into its vicinity.
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Figure 4.8: The evolution of the energy density in the x-y plane
around BH centred at (x = 0, y = 0) and boosted in
the negative x direction. The over-density wake grows
over time until the influence of the BH reaches the outer
excision (rout = 900). At late times, the energy density
begins to enter a steady state within the finite excision
region.
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Figure 4.9: Energy flux conservation (left) and total energy con-
servation (right) for v = 0 (blue) and v = 0.2 (red).
The solid and dashed lines correspond to the left and
right hand sides of eq. (4.4.1) respectively, with these
being integrated over t in the right plot. The fractional
difference between the dashed and solid lines is shown
below. Agreement between these lines indicates conver-
gence of the simulations. The decrease in energy flux at
t = 3000 occurs as the wake reaches the outer excision
radius leading to an increase in flux out of this bound-
ary.
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Figure 4.10: Conservation of momentum flux in the x direction (left)
and total momentum (right) for v = 0 (blue) and v =
0.2 (red). The solid and dashed lines correspond to the
left and right hand sides of eq. (4.4.2) respectively, with
these being integrated over t in the right plot. As in
fig. 4.9, the fractional discrepancy between dashed and
solid lines is shown below and indicates a high degree
of momentum conservation. In the v = 0 case, the
flux is negligible as the ingoing flux in the x direction
cancels on either side of x = 0. In the boosted case
the momentum grows as it forms a wake moving in the
direction of −x.
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Figure 4.11: Radial momentum conservation. As in fig. 4.10, flux
is depicted in the left plot with total momentum on
the right. The solid and dashed lines again corres-
pond to the left and right hand sides of eq. (4.4.2)
with their fractional disagreement depicted below.
In this case, however, the projection vector ζ̄µP =
(t = 0, r = 1, θ = 0, ϕ = 0) has been selected to point
in the outwards radial direction. In the un-boosted
case, the radial momentum grows linearly as matter
accelerates towards the BH isotropically. In the boos-
ted case, however, the momentum growth decreases at
late times as the wake of fast moving particles begins
to exit through the excision boundary.

4.6 Outlook

In this chapter, we have demonstrated the viability, with respect to energy and

momentum conservation, of our horizon-penetrating implementation of scalar field

evolution around BHs. We are currently refactoring our code to be more in keeping

with the existing code base of GRDZhadzha and to minimise redundant metric and

stress-energy calculations. Once this is complete, we expect to be able to reproduce

the DF presented in [4]. The use of horizon-penetration will effectively result in

greater temporal resolution around the horizon. The temporal resolution is inversely
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proportional to the grid refinement level, therefore convergence of the diagnostics

can be achieved with lower grid resolutions than with non-penetrating gauges. This

will reduce the overall execution time, potentially allowing for the investigation of

more complicated problems.

A further benefit of the KS gauge is its applicability to rotating Kerr backgrounds.

One of the core motivations for the study of bosonic scalars around BHs is superra-

diance. Superradiance is fundamentally an effect of rotation. In realistic scenarios,

therefore, we expect phenomena such as frame dragging to have an important affect

on the observed DF force. At present we take the spin of the BH to be zero, however,

with minimal modifications to the metric, this could be included in the simulation

background.

Overall, this work may give new insights into the the behaviour of BHs within their

surroundings, and potentially aid in the calculation of gravitational wave signals

generated by inspiraling BHs. This may allowing for the identification of new

fundamental fields that have thus far evaded detection.



Chapter 5

Precision Calculations

The Large Hadron Collider (LHC) located at CERN is currently the foremost ter-

restrial particle detection experiment. Since its creation, in addition to the successful

search for the Higgs Boson completed in 2012, a key science driver for the LHC has

been the search for physics Beyond the SM (BSM) [118–125]. To correctly identify

an effect as belonging to new physics, it is necessary to determine theoretically the

phenomenological implementations of the SM to a high degree of accuracy. With the

LHC now undergoing significant upgrades that promise an increase in peak lumin-

osity from 1× 1034cm−2s−2 to 7.18× 1034cm−2s−2 [126], the precision requirements

on theoretical calculations are now greater than ever. For example, many theories

of BSM physics predict a non-standard Higgs boson self coupling [127]. To resolve

this against the analytical uncertainty associated with perturbative physics, it is

necessary to compute cross-sections such as that of 2 Gluon to 2 Higgs (gg → HH)

scattering at up to Next to Next to Leading Order (N2LO) [128]. This involves the

evaluation Feynman diagrams containing many loops and legs, such as the following:

g

g

H

H (5.0.1)
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The computation of these high-order corrections is extremely computationally ex-

pensive. The most advanced techniques involve identifying families of integrals and

relating these to a set of master integrals whose evaluation is more tractable; this

approach is known as the Laporta algorithm [129]. One of the core bottlenecks with

this method is in the decomposition of an integral into the master basis. This is

usually is achieved through the use of Integration By Parts (IBP) relations and Gaus-

sian elimination. It is this elimination step wherein the problem lies. Sophisticated

modern techniques aim to reduce the time complexity of this problem by decreasing

the required number of Gaussian elimination procedures through the use of multi-

variate rational function interpolation. At present, one of the leading tool-chain

for this consists of the following triad of software: Kira [130, 131], Ratracer [132]

and FireFly [133,134]. We will explore the use case of these codes in the following

subsections, but note that FireFly is used to perform the interpolation step.

FireFly, whilst benefiting from multithreading, is fundamentally a CPU bound

application. The advent of modern GPU hardware offers the possibility of an

increase in operational throughput of the order of 100 times that of high end CPUs.

In the following chapter, we discuss how this can be utilised to good effect in the

context of precision phenomenology. We present a novel, proof of concept code that

is capable of performing multivariate polynomial interpolation entirely on a GPU.

We further demonstrate that its efficiency surpasses that of FireFly for many real

world polynomials. Before addressing this, however, we provide an overview of the

Laporta algorithm.

5.1 Laporta Algorithm

The computation of any Feynman diagrams with greater complexity than tree level

will involve the evaluation of loop integrals. The Laporta algorithm provides a

systematic procedure with which one may deconstruct and simplify these integrals

to the point where they are numerically soluble. In this section, we overview the core
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facets of this algorithm and identify the motivation for the work in this chapter. To

aid in this discussion, we find it useful to consider a specific example of gg → HH

scattering:

g

g

H

H (5.1.1)

Computing this element up to N2LO will involve the evaluation of over 100 integrals,

please see ref. [128] for a detailed analysis. These integrals will, in general, possess

a rank-2 tensor structure associated with the 2 external gluon legs. The first step in

their evaluation is to extract this tensor dependence through the process of Tensor

Reduction.

5.1.1 Tensor Reduction

To simplify the integrals, we wish to extract their tensor components and write

them, instead, as a superposition of tensor basis elements. For the example of

gaµ(p1)gbν(p2)→ H(−p3)H(−p4) scattering, a general matrix element can be written

[128]:

Mab = ε1,µε2,νM
µν
ab = ε1,µε2,νδab (F1T

µν
1 + F2T

µν
2 ) , (5.1.2)

where εi,µ are gluon polarisations and {a, b} are colour indices. Here the Fi are

known as form factors and contain the integral structure and the T µνi form the

tensor basis and are functions of the external momenta. The tensor basis vectors

can be constructed as combinations of the momentum vectors and the metric tensor,

for example:
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T µν1 = ηµν − pµ2p
ν
1

p1 · p2
; (5.1.3)

T µν2 = ηµν + 1
(pT )2(p1 · p2)

[
m2
Hp

µ
2p

ν
1 − 2(p1 · p3)pµ2pν3 − 2(p2 · p3)pµ3pν1 + 2(p1 · p2)pµ3pν3

]
,

(5.1.4)

where mH is the Higgs mass and:

p2
T = (p2 + p3)2(p1 + p3)2 −m4

H

(p1 + p2)2 . (5.1.5)

For any given choice of tensor basis, one may determine the form factors by projecting

the matrix element onto linear combinations (P µν
I,ab) of T µν1 and T µν2 , i.e.:

Fi = P µν
i,abM

ab
µν . (5.1.6)

Each form factor generated in this way will comprise a sum of scalar integrals. These

loop integrals will typically take the form:

I =
∫ ∏

j

ddℓj

(2π)d

 N({ℓj})
D1D2 · · ·Dn

, (5.1.7)

where N({ℓj}) is a function of the loop momenta {ℓj}, the Di are propagator factors

and d is the space-time dimension. Note that d is left as a variable here to account for

divergences through dimensional regularisation and renormalisation [6]. The number

of propagator factors will depend on the number of internal lines associated with a

given loop. For example, a Higgs boson loop with internal momentum ℓ containing

two vertices with external momenta p would be associated with two propagators of

the form:

D1 = ℓ2 −m2
H ; (5.1.8)

D2 = (ℓ+ p)2 −m2
H . (5.1.9)
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These same propagators may also arise from diagrams with alternative loop struc-

tures. Integrals with the same propagator structure are said to belong to a family.

It is possible to rewrite integrals within a given family as a linear superposition

of other members of that family. This is achieved through Integration By Parts

(IBP) relations and allows a large set of complicated integrals to be computed from

a subset of simpler ones.

5.1.2 Integration By Parts Relations

IBP relations arise as a consequence of Gauss’s theorem within dimensional regu-

larisation, which implies that integrals of total derivatives vanish. Crucially, this

means that:

∫
dDℓ

∂

∂ℓµ

(
vµ

1
D
a1
1 D

a2
2 . . . Dan

n

)
= 0, (5.1.10)

where vµ can refer to either loop or external momenta and αi are powers of the

propagators. Expanding the derivative in eq. (5.1.10) and integrating by parts will

yield expressions of the form:

Iij...k =
∑
l

clIi′(l)j′(l)...k′(l). (5.1.11)

Where the integral subscripts {i, j, k, i′, j′, k′} denote the exponents of the propag-

ators pertaining to the family and the cl are expansion coefficients. Note that the

numerator present in eq. (5.1.7) and those which arise during the IBP procedure

can be expressed as negative powers of the denominators. In this way, any given

loop integral can be written in the form Iij...k, which itself can be expressed as a

superposition of simpler integrals. The integral elements that constitute a minimum

spanning set of the family, are known as master integrals. Once all members of the

family are expressed in this basis, the master integrals can be evaluated using nu-

merical methods such as sector decomposition. This final evaluation step is beyond

the scope of this work. Please see Ref. [135] for more information.
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5.1.3 Gaussian Elimination

The first step in reduction to the master basis ({Mn} ⊂ {In}) is to express each

Feynman integral as a linear combination of all family members ({In}). In the

language of linear algebra, the IBP relations can be written:


a11 a12 a13

a21 a22 a23

a31 a32 a33




I1 = M1

I2

I3

 =


0

0

0

 , (5.1.12)

where, for brevity we drop the propagator subscripts and simply denote each integral

using a single number. In this example, each of the 3 rows corresponds to a unique

IBP relation, and I1 is assumed to be the master integral in terms of which I2 and

I3 may be written. In this way, the problem has been reduced to a matrix equation,

solvable via the standard techniques of linear algebra. To achieve the reduction to

the masters, one need only to perform sufficient Gaussian elimination steps. Whilst

this procedure does have very poor time complexity scaling (O(N3), for a matrix of

size N), its execution time and memory requirements even for the large ∼ 100× 100

matrices that we expect to encounter will be feasibly small. The problem arises due

to the fact that the coefficients aij are complicated analytical function of the external

momenta. Modern software such as Kira can perform algebraic Gaussian elimination.

For small problems this is a simple task. For modern problems, however, hardware

limitations make this process highly non-trivial. Specifically, when working purely

algebraically, the expressions resulting from Elementary Row Operations (EROs)

swell rapidly and can quickly exceed the available computational memory. For large

problems, it is instead necessary to perform the elimination steps numerically. This

is done by substituting test momenta into the algebraic parameters.

This process necessarily leads to a large amount of information loss. This can be

circumvented by using interpolation to build an analytical expression from a set of

numerical results. This approach avoids memory swell but requires a large number of

elimination procedures, in effect trading the memory bottleneck for a temporal one.
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In modern versions of Kira, this issue can be addressed using Ratracer. Ratracer,

deriving its name from rational tracer, traces the ERO steps taken by Kira for a

single numerical substitution and records them to a trace file. This prevents the

need for repeated Gaussian eliminations, with the trace file effectively encoding the

master integral coefficients, albeit in an very unsimplified form.

The traces generated by Ratracer take the form of rational functions and can be

simplified using interpolation. Interpolation schemes assume that their target (or

black-box) function (a trace in this case) takes a specific form and use repeated

numerical evaluations to determine the coefficients through which this can be para-

metrised. It is because interpolation reconstructs into a chosen form e.g. that of a

canonical polynomial:

f(x) = a0 + a1x+ ...+ aNx
N , (5.1.13)

that the result will automatically be in its most simplified state. This approach can

be vastly more memory efficient and faster than algebraic simplification algorithms.

The current state of the art tool for this purpose is FireFly. FireFly is a multi-

threaded CPU application that supports MPI. In spite of this, it represents one of

the largest bottlenecks in the computation of high order Feynman integrals. During

profiling we found that, for physically relevant scenarios, the numerical evaluations

of the black-box functions were responsible for the majority of the interpolation time.

These black-box evaluations, however, can be computed entirely in parallel and so

motivate the use of GPU hardware.

5.2 GPU Interpolation

As identified above, it is the evaluation of the black-box probes that consumes the

majority of the execution time for a given interpolation. By refactoring this aspect of

the Laporta algorithm for execution on a GPU, one would naively expect a significant
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time saving. The most straightforward approach to accelerating FireFly would be

to simply move the black-box evaluations onto the GPU, whilst continuing to use

FireFly’s pre-existing CPU based interpolator. The inter-device communication

calls that would be required for this are significantly slower than access speeds of

both the host main memory and the GPU global memory and would, therefore, incur

an unnecessarily large overhead. We instead choose to perform the full interpolation

procedure on the GPU.

In the remainder of this chapter we describe the algorithmic choices and optimisation

schemes with which our GPU based interpolator is constructed; for an overview of

the key hardware differences between GPU and CPU devices please see appendix D.

We begin with a description of the core procedures below, saving the details of

the implementation until the following section. We note that at present our code

does not support direct rational function reconstruction as is required for use with

Kira. It instead acts as a proof of concept, able to solve the precursor problem of

multivariate polynomial interpolation. For the remainder of this work, therefore,

we consider the simplified problem in which the Ratracer trace files contain only

multivariate polynomials.

5.2.1 Finite Fields

When working with numerics, the limitations of the finite precision of computational

data types are ever present. Whilst high precision floating point types such as doubles

can represent extremely large and small numbers, the possibility of information loss

due to their finite mantissa invalidates their use in high precision interpolation.

Similarly, integer types also lack the required range to express the interpolation

coefficients. A common solution to this issue it to use finite (or Galois) fields. A

Galois field (GF) labelled by a prime P is a set of positive integers GF(P ) = Z

mod P . The use of such fields prevents the risk of integer overflow while maintaining

the precision that would be lost with floating point types. Until recently NVIDIA
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GPUs did not provide hardware support for modular arithmetic and, although

software emulation of these operations is available, this would incur a significant

overhead.

The size of the Galois field also plays a significant role in the efficiency of the

interpolation. Firefly uses a 64 bit unsigned integer type with P < 264. For

function coefficients larger than 264, the results from multiple interpolation over

different fields must be combined to reproduce the full coefficient. This can be

achieved using the Chinese Remainder Theorem (CRT). Current NVIDIA GPUs do

provide support for 64 bit unsigned integers, albeit with less hardware optimization

when compared with the 32 bit variant. Performing the CRT on 32 bit types required

twice the number of evaluations when compared to their 64 bit counterparts. In

this work we opt to use the 32 bit type for the interpolations and perform the CRT

reconstruction on the CPU using an arbitrary precision type provided by the GNU

Multiple Precision arithmetic library (GMP).

5.2.2 Parsing

We now have a way to represent numbers on the GPU, but still require a method

by which to represent the trace files in a machine readable format. The trace files

produced by Ratracer are often in excess of 50GB in size for modern problems.

This may constitute a significant fraction of the available GPU memory, leaving

insufficient memory for the interpolation process. To alleviate this issue, we begin by

manually subdividing the input trace file, processing only a single trace < 1GB per

run. This is in contrast to FireFly that can handle the full system simultaneously.

The human readable trace functions generated by Ratracer are not readily com-

prehensible to the GPU. Ideally, one would represent each trace in a binary format

that could be executed directly. To this end, we have investigated the use of Just

In Time (JIT) compilation. The CUDA compiler (nvcc) is capable of performing

significant optimisations such as removing redundant operations and its usage allows
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for minimal execution times and overall memory footprints. For large polynomials,

however, we find that the overhead due to the compiler runtime exceeds any possible

time savings afforded by this strategy. We instead choose to parse each trace as a

string and use a for loop to iterate through each set of operands and operations.

To reduce the size of this string, we first re-express the chosen trace function in

Reverse Polish Notation (RPN), where sets of operands are written preceding their

operation. This removes the need for parentheses. For example consider the following

simple expression:

x(x+ 3) Infix;

x3 + x× x RPN.

We store the RPN expression associated with a given trace as a character array with

each character (or token) representing either an operator or an operand. During each

trace evaluation, the variable symbols are substituted for numerical values using a

lookup.

The standard method for parsing an expression in RPN relies on the use of a stack

type memory structure to store intermediate values. Stacks follow a first-in-last-out

storage paradigm wherein the length of the stack may grow or shrink dynamically

to accommodate variations in number of elements. CUDA, unfortunately, does not

support device side dynamic memory allocation as would be required for this. It is

possible, however, to predetermine the maximum stack depth required to parse an

RPN expression. This can be achieved using the algorithm 1.

Using this, a statically sized stack can be constructed by allocating a block of

GPU global memory of size max_depth · n_threads · size_of(Field Type), where

the value of n_threads determines the number of black-box probes that may be

computed simultaneously. For sufficiently large polynomials, the available global
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Algorithm 1 Compute the Maximum Stack Depth of an Expression
1: Input: A vector of strings representing the expression, expression
2: Output: The maximum stack depth, max_depth
3: stack_depth ← 0
4: max_depth ← 0
5: for all token in expression do
6: if is_operator(token) then
7: stack_depth ← stack_depth− 1
8: else
9: stack_depth ← stack_depth + 1

10: max_depth ← max(max_depth, stack_depth)
11: return max_depth

memory will place a bound on this quantity. If the thread count is significantly

reduced, however, the device utilization will suffer and performance will be impaired.

One method to reduce the necessary stack depth would be to traverse the RPN

expression to construct a tree-like structure. In this way, independent branches of

the tree could be identified and evaluated individually. For an illustration of this

see fig. 5.1. In this proof of concept work we do not implement this strategy, and

instead identify it as possible addition for a future update.

5.2.3 Univariate Polynomial Interpolation

The simplest polynomials are those involving only a single variable. The interpolation

of such a univariate polynomial of rank N involves the determination of a series of

coefficients {ai}; i ≤ N :

P (x) = a0 + a1x+ ...+ aNx
N , (5.2.1)

which satisfies {P (xi) = yi}; i ≤ N , where, in our case, the xi are randomly gener-

ated input probe values and the yi are the results of corresponding trace function

evaluations. Interpolation can be rephrased as a linear algebra problem of the form:

V · a = y, (5.2.2)
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×

×

+

x 3y 2

+

3x y

+

2x 1

Figure 5.1: A binary tree in RPN for the expression f(x, y) = ((x+
3y+2)(3x+y))(2x+1). Representing a function in this
way allows independent branches (such as is identified
in red) to be identified and computed independently.

where V is known as the Vandermond matrix and can be written:

V =



1 x1 x2
1 · · · xN1

1 x2 x2
2 · · · xN2

1 x3 x2
3 · · · xN3

... ... ... . . . ...

1 xn x2
n · · · xNn


,

and the vectors a and y are given by:

a =



a0

a1

a2

...

aN


, y =



y1

y2

y3

...

yN


.

Written in this form, the coefficients can be determined by simply inverting the Van-

dermond matrix. Whilst this seems trivial, and indeed is for low rank polynomials,
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the poor time complexity scaling of inversion (O(N3), for a matrix of size N ×N)

means this direct approach is not feasible for large matrices.

Since the 17th century, many interpolation algorithms with greater efficiency than

matrix inversion have been developed. Some of the earliest forms were developed

by Newton and Lagrange in 1669 and 1795 respectively. Newton’s interpolation is

a sequential algorithm and involves the reconstruction of each coefficient in turn

using the values of the previous coefficients. In contrast, in Lagrange interpolation,

each coefficient can be computed independently. Both of these algorithms require

O(N2) operations to interpolate a polynomial of rank N . In the case of Lagrange

interpolation, however, parallel implementations can allow for significantly reduced

execution times.

The univariate Lagrange interpolation algorithm is as follows. Given a set of black-

box probes {xi}; i ∈ [0, N ] and their corresponding trace function evaluations P (xi),

it is possible to reconstruct any rank N polynomial P (x) as a superposition of rank

N Lagrange polynomials ln(x):

P (x) =
N∑
n=0

ãnln(x), (5.2.3)

where, the nth Lagrange polynomial can be written:

ln(x) = (x− x0)
(xn − x0)

. . .
(x− xn−1)
(xn − xn−1)

(x− xn+1)
(xn − xn+1)

. . .
(x− xN)
(xn − xN) (5.2.4)

=
∏

j∈[0,N ]
j ̸=n

x− xj
xn − xj

, (5.2.5)

and the expansion coefficients ãn are simply given by:

ãn = P (xn). (5.2.6)

Each term in eq. (5.2.3) can be computed independently from every other term, and
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if one desired to express the interpolation result in the form eq. (5.2.3), then the

whole procedure could be achieved in O(N) time with optimal parallelism.

5.2.4 Multivariate Polynomial Interpolation

In general, the traces produced by Ratracer will be functions of multiple variables

associated with the various momenta of the problem. The interpolation of such

multivariate polynomials can be achieved through repeated application of univariate

algorithms. Consider a two dimensional polynomial of rank (N,M):

P (x, y) =
∑

n<(N−1)

∑
m<(M−1)

anmx
nym. (5.2.7)

This function can be reconstructed by first performing M univariate interpolations

over x, using a different value for y for each interpolation. Each of these polynomials

will require a set of N probe values (xi) to compute. The result of this first stage will

be a set of M independent one dimensional polynomials in x. The second dimension

can then be reconstructed by performing N independent interpolations over y using

the coefficients of the interpolations over x in place of the black-box evaluations

used in the previous stage. Overall, the number of black-box probes required for this

interpolation would be N ·M . In this simple 2d case this procedure can be viewed

using matrices in place of the vectors in the univariate example above. The input to

the system will be the set of random black-box probes ({(xi, yj)}i ∈ [0, N − 1], j ∈

[0,M − 1]). From these, a codomain matrix Yx corresponding to y in eq. (5.2.2) can

be determined:

Yx =



P (x0, y0) P (x1, y0) P (x2, y0) · · · P (xN−1, y0)

P (x0, y1) P (x1, y1) P (x2, y1) · · · P (xN−1, y1)

P (x0, y2) P (x1, y2) P (x2, y2) · · · P (xN−1, y2)
... ... ... . . . ...

P (x0, yM−1) P (x1, yM−1) P (x2, yM−1) · · · P (xN−1, yM−1)


, (5.2.8)
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Beginning with the interpolation over the x direction, each row of eq. (5.2.8) corres-

ponds to an individual interpolation problem. The solution to these will be a set

of coefficients ai(yj) that parametrise polynomials (Pyj
(x)) in x that are labelled by

the yj:

P (x, yi) = Pyj
(x) =

∑
i

ai(yj)xi. (5.2.9)

To prepare for the interpolation over y, we form a new codomain matrix Yy from the

coefficients ai(yj):

Yy =



a0(y0) a1(y0) a2(y0) · · · aN−1(y0)

a0(y1) a1(y1) a2(y1) · · · aN−1(y1)

a0(y2) a1(y2) a2(y2) · · · aN−1(y2)
... ... ... . . . ...

a0(yN−1) a1(yN−1) a2(yN−1) · · · aN−1(yN−1)


, (5.2.10)

such that,

Yy



1

x

x2

...

xN−1


=



P (x, y0)

P (x, y1)

P (x, y2)
...

P (x, yN−1)


. (5.2.11)

The interpolations over the y direction can be performed analogously to those over

the x. To achieve this, the interpolation must be carried out along the columns

instead of the rows. The result of this will be a matrix of pure coefficients aij,

satisfying the relation:
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

1

y

y2

...

yN−1



T 

a00 a10 a20 · · · a(N−1)0

a01 a11 a21 · · · a(N−1)1

a02 a12 a22 · · · a(N−1)2

... ... ... . . . ...

a0(M−1) a1(M−1) a2(M−1) · · · a(N−1)(M−1)





1

x

x2

...

xN−1


= P (x, y).

(5.2.12)

Note that in this example the results of the interpolation are the sets of canonical

coefficients to the individual monomial terms xmyn. This is not necessary and in

fact most interpolation schemes are based around expanding polynomials in terms

of basis function that simplify the procedure. For example, in the 1d Lagrange

interpolation algorithm outlined above, reconstruction is carried out in terms of

Lagrange polynomials.

Modern multivariate interpolation schemes such as the Zipple algorithm [136] (as

used by FireFly) utilise sophisticated techniques to achieve time complexities as low

as O(N log(N)). Zipple’s algorithm is particularly well suited to the reconstruction

of sparse multivariate polynomials as it does not assume the polynomials to contain

non-zero coefficients for every possible term. This reduces the total number of

coefficients that must be calculated. Unfortunately, Zipple’s algorithm is not readily

parallelisable and so cannot take full advantage of the high operational throughput

of GPU’s. In fact, the O(N2) Lagrange algorithm is a better choice, and it is this

that we implement in this work.

To extend the 1d Lagrange algorithm to N dimensions, we must iteratively inter-

polate over the coefficients generated by previous interpolation steps. Whilst this

could be preformed directly using the Lagrange coefficients ān, the result of the full

interpolation would be a sum of products of Lagrange polynomials, e.g:

P (x, y) =
∑
ij

(āx)i(āy)jli(x)lj(y). (5.2.13)
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As we are interested in determining a fully simplified expression, in which like terms

have been cancelled against one another, we must re-express the result of each

interpolation stage in canonical form before proceeding with the next stage.

To rewrite eq. (5.2.5) in canonical form, both the numerator and denominator must

be expanded. The denominator consists of pure numbers and can be efficiently

computed in parallel using multiplicative reduction, where the product is subdivided

and processed across multiple threads. We provide the details of our implementation

of this in section 5.3.2.

The numerator, on the other hand, consists of a product of rank 1 polynomials. In

direct coefficient space, its expansion through repeated polynomial multiplication

is equivalent to an iterative convolution. Convolution is a costly operation with

a time complexity of at best O(N2), where N is the degree of the polynomial.

Lagrange polynomials, however, are written as a product of many small polynomials

so the overall complexity will be greater as multiple convolution operations would

be required. Some early performance gains can by achieved by making use of the

parallel GPU architecture to perform multiple convolutions at the same time. At

the first level, there are N rank 1 polynomials of the form:

Pi(x) = (xn − xi) (5.2.14)

A set of (N/2) new polynomials of rank 2 can be found by convolving pairs of these.

This process can be iterated a total of log2 N times to determine the full polynomial

of rank N . This divide and conquer approach is significantly faster than performing

each convolution sequentially. The early iterations involve a large number of small

convolutions that can be computed in parallel. At later iterations, however, a small

number of large convolutions is required. As each convolution must be calculated on

a single thread the gains found on the first levels will be lost in the later levels. By

transforming the system to frequency (or reciprocal) space, the convolution can be

performed as element wise multiplication, taking O(N) time. For complex numbers,
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this can be done using a Fourier Transform.

The utility of the FT is entirely made possible by the high efficiency of the Fast

Fourier Transform (FFT) algorithm. The standard FT algorithm has the same time

complexity as convolution and so will not lead to any efficiency gains. By placing

the additional restriction that the degree of the polynomial in each dimension be

power of 2, one may exchange the direct FT for the FFT. The FFT uses a method of

division and conquest to achieve a time complexity of O(N log(N)). For polynomials

of length N = 100, as are commonly encountered in precision calculations, the FFT

approach will be approximately 15 times faster than regular convolution.

As discussed previously, to prevent integer overflow, we interpolate over Galois fields.

These finite fields are incompatible with the standard FFT and we must instead

use a variant known as the Number Theoretic Transformation (NTT). The use of

the NTT in this way places restrictions on the choice of prime (P ) over which the

underlying Galois field is defined. We discuss this in detail in section 5.3.5, but

note that P must be chosen such that it possesses appropriate primitive roots. The

process for determining suitable primes can be very time consuming as it requiring

trial and error, but can be performed as a precompensation step.

5.2.5 Chinese Remainder Theorem

As discussed earlier, the result of the above interpolation algorithm may only match

the true polynomial up to modulation by some large prime number. If the coefficients

of the original polynomial are less than this prime and positive, then the result of

the interpolation will match the true polynomial. If this is not the case, further

work is required to truly reconstruct the polynomial. In the case that coefficients are

negative and less than half the value of the prime, their true value can be determined

by simply subtracting the prime from the reconstructed value e.g.:

−3 ∼= 4 mod 7; (5.2.15)
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−3 = 4− 7. (5.2.16)

If, however, the true value of a given coefficient is larger than the prime, then the

determination of its value will be less straightforward and require the use of the

CRT. This theorem states, given a set of congruences

{ci = C mod pi} ⊂ N, (5.2.17)

where C ∈ N and the {pi} ∈ N (known as moduli) are (at least) pairwise coprime

to one another, that the following expression may be uniquely determined:

C mod P = C mod
∏
i

pi. (5.2.18)

This can be achieved using algorithm 2.

Algorithm 2 CRT
1: Input: Arrays of moduli and a
2: Output: The true coefficient A
3: A← 0
4: M← 1
5: Initialize an array Ms of size nModuli
6: Initialize an array Ys of size nModuli
7: for i = 0 to nModuli− 1 do
8: M← M× moduli[i]
9: for i = 0 to nModuli− 1 do

10: Ms[i] = M
moduli[i]

11: Ys[i] = modInverse(Ms[i], moduli[i])
12: for i = 0 to nModuli− 1 do
13: partialMult← modMultiply(a[i], Ms[i], M)
14: partialMult← modMultiply(partialMult, Ys[i], M)
15: A← modAdd(A, partialMult, M)
16: return A

For a given coefficient, each interpolation over a different prime field (pi) can be

interpreted as an individual ai. If the true coefficient A is less than the product over
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the primes (A < P ), then the true coefficients can be completely reconstructed by

the CRT. In reality, it is necessary for the absolute value of the true coefficient to

be less than half the product of primes (C < P/2) to allow for the accounting of

negative numbers.

The coefficients encountered in precision calculations are frequently as large as

10100 ≈ 2332 so may require in excess of ten 32 bit prime fields to fully reconstruct.

The maximum unsigned integer type with hardware support on modern GPUs has a

depth of only 64 bits. It is for this reason that we perform the final CRT calculation

on the CPU using the GMP library.

5.3 Numerical Framework

In this section, we describe the details of our implementation of the above interpola-

tion strategy. We begin by discussing Galois fields and parallel reduction algorithms

and towards the end of this section we provide a detailed background on the FT and

NTT due to their central role in efficient Lagrange interpolation.

5.3.1 Modular Arithmetic

At the heart of polynomial reconstruction is the finite field over which the polynomial

is defined. As such, it is crucial that the mathematical operations from which

polynomials are comprised are implemented efficiently. Working with unsigned

integers, the main hindrance in this regard it the possibility of integer overflow

and underflow. The following subsection details the algorithms used to account for

this issue while still ensuring a high level of efficiency. As explained previously, we

work with Galois fields using modular arithmetic to ensure that the result of any

mathematical operation will not exceed the value of field defining prime, P .

Although the result of any modular operation will necessarily be less than P , in-

termediate results need not be. Unsigned integer overflow can be thought of as a
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modulation operation; modulo the integer size, for example 232. The modulo oper-

ator is non commutative, so this presents an issue for the storage of intermediate

expressions. For example, the addition of two large, 32 bit values a, b > 231 will

overflow, and the following sequence of operations will yield an incorrect result for

their sum modulo some P < 232:

modSum(a, b, P ) = ((a+ b) mod 32) mod P (5.3.1)

̸= (a+ b) mod P. (5.3.2)

To avoid the overflow operation (the modulation by 32 in eq. (5.3.1)), we stipulate

that P < 231.

With addition accounted for, the next issue is subtraction. Here, there is the added

difficulty that we are working with unsigned types that cannot represent negative

numbers directly. To account for this we interpret the upper half of the prime field

as corresponding to negative numbers, i.e.:

−a ∼= (P − a) < 232, (5.3.3)

for 231 > a > 0 and |a| < 231. During the reconstruction process, both positive and

negative numbers may be represented by this region of the field. This is not an issue

and is a consequence of the cyclicity of the Galois field. Negativity is only relevant

when the congruencies are combined to give the full coefficients Ai ∈ Z. We define

the modular subtraction between the numbers a, b ∈ GF (P ) as follows:

modSub(a, b) = (a− b+ P ) mod P. (5.3.4)

Here, the result of the first subtraction may lead to underflow although this will be

immediately corrected with an overflow from the addition of P .

Unlike addition and subtraction, multiplications can overflow and underflow in more
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challenging ways. The multiplication of two 32 bit unsigned integers (a and b)

will yield a result with a size of up to 64 bits. Modular multiplication could be

implemented straightforwardly by either casting to 64 bits or restricting the input

size to a, b < 216. In our present implementation, we rely on casting, although, this

is not ideal due to the reduced hardware support for 64 bit types. We are currently

in the process of updating to a more sophisticated approach. Modular multiplication

is a key step in many cryptographic algorithms. As a result, several highly efficient

fixed type algorithms have been developed. The most notable of these is Montgomery

multiplication, given by algorithm 3.

Algorithm 3 Montgomery Multiplication Algorithm
1: Input: Integers a, b, modulus P , and R = 2k with gcd(P,R) = 1
2: Output: (a× b) mod P

Ensure: T = (a · b ·R−1) mod P
3: Precompute P ′ such that R · P ′ ≡ −1 (mod P )
4: T ← a · b
5: m← (T · P ′) mod R
6: u← (T +m · P )/R
7: if u ≥ P then
8: u← u− P
9: return u

During our preliminary testing, we found Montgomery’s method to be ∼ 41% faster

than performing the calculation in 64 bits1. For the large number of multiplication

operations expected to be present in Ratracer trace files, this could lead to a

significant time saving.

Polynomials involve exponentiation, sometimes by large numbers. Direct exponenti-

ation requires repeated multiplication steps to be performed. For the large exponents

this is very inefficient. In this work we perform exponentiation by squaring. For

example, 39 can be written 3× ((32)2)2, requiring 4 multiplication operations instead

of 9. In practice, a bit-shift operation can be used to keep track of the exponent,

1Tests were performed using an 80GB NVIDIA A100 GPU. For each test a set of 107 multi-
plications were computed, with each test being repeated 10, 000 times to account for variations in
GPU warm-up time and thread scheduling.
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further increasing the efficiency.

The final arithmetic operation required for polynomial interpolation is modular di-

vision. This is the least trivial to implement as it is defined as inverse modular

multiplication. Division can be performed using the extended Euclidean method,

algorithm 4.

Algorithm 4 Extended Euclidean Algorithm for Modular Inverse
1: Input: Integer a, modulus p
2: Output: a−1 mod p (modular inverse of a modulo p)

Ensure: Compute t1 such that (a · t1) ≡ 1 (mod p)
3: r1 ← p, r2 ← a mod p
4: t1 ← 0, t2 ← 1
5: while r2 ̸= 0 do
6: q ← ⌊r1/r2⌋
7: rtmp ← r2
8: r2 ← r1 − q · r2
9: r1 ← rtmp

10: ttmp ← t2
11: t2 ← t1 − q · t2
12: t1 ← ttmp

13: return (t1 + p) mod p

5.3.2 Parallel Reduction

Devices with a high degree of parallelism can combine large sets of numbers efficiently

using reduction algorithms. Numerous implementations of these exist in efficient

libraries such as NVIDIA’s Thrust [137]. These pre-existing libraries rely on the data

being formatted in a specific way. To map the data generated during interpolation

into the desired from would involve duplicating the memory footprint and carrying

out a large number of memory copy operations. To optimise both execution time

and memory usage, we have developed a custom reduction method that minimises

data copying. Our implementation makes use of the block, warp, thread hierarchy

of NVIDIA GPUs and their associated memory access patterns. To describe this,
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we will use the example of addition, where the problem we wish to solve is given by

the sum:

S =
N∑
i=0

ai. (5.3.5)

We begin by discussing the simpler case in which N is less than the thread capacity

of a block. In this case, each coefficient ai can be loaded into the high speed

shared memory of a warp within the block. Each warp contains 32 = 25 threads

and will store the value of up to 32 different ai. The first stage of the reduction

involves combining pairs of (ai, ai+1) within each warp. This can be done using

the __shfl_down_sync() CUDA call that allows for efficient memory read/write

operations without race conditions or blocking. The second stage involves repeating

this procedure, this time, using a step size of 2 instead of 1. The full procedure

continues in the same way and is depicted in fig. 5.2. After completing this, each

warp will contain a single number within the first element of its shared memory.

The warps will then be synchronised and the result of the sum in each warp will be

copied into the the shared memory of the first warp. The reduction process can then

be repeated for a second time to complete the reduction. Performing the reduction

entirely without the use of global memory ensures minimal run times. If a given sum

consists of more elements than the thread capacity of a block then a single warp is

used to compute the sum over the excess elements before carrying out the above

procedure.

5.3.3 Discrete Fourier Transform

The FT is crucial to the simplification of Lagrange polynomials. For the finite

set of coefficients that define a polynomial, the relevant form of the FT is the

Discrete Fourier Transform (DFT). The DFT allows one to express a discrete signal

{x[n];n ∈ [0, N − 1]} in the reciprocal basis {X[k]; k ∈ [0, N − 1]}, given by:
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a1 a2 a3 a4 a5 a6 a7 a8

Figure 5.2: Intra warp reduction procedure for a hypothetical warp
with 8 threads. The orange boxes indicate the read
and write location within the array at each stage. The
arrows indicate addition operations. The result of the
reduction will be stored in the first element of the array.

X[k] =
N−1∑
n=0

x[n]e−i 2π
N
kn, k = 0, 1, . . . , N − 1. (5.3.6)

In this basis, each elementX[k] corresponds to an amplitude of an oscillatory function

of frequency 2π
N
k. For this reason, the reciprocal basis is often referred to as the

frequency domain. Consider now, a polynomial with complex coefficients:

P (x) = a0 + a1x+ ...+ aN−1x
N−1. (5.3.7)

This polynomial can be represented by the sequence {a0, ..., aN−1}. Given a second

polynomial (Q(x)) represented by {b0, ..., bN−1}, the product of P and Q, can be

written:

P (x) ·Q(x) = {a0 · b0, a0 · b1 + a1 · b0, ..., aN−1 · bN−1} (5.3.8)

= {a0, ..., aN−1} ∗ {b0, ..., bN−1}. (5.3.9)

where, ∗ represents discrete convolution. Convolution is acieved with a double loop
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over [0, N − 1], yielding O(N2) time complexity. The convolution theorem states

that:

DFT{x[n] ∗ h[n]} = DFT{x[n]} ·DFT{h[n]}. (5.3.10)

This implies that convolution can be computed by a DFT followed by element-

wise multiplication followed by an inverse DFT. Element-wise multiplication scales

linearly in N . Unfortunately, the DFT algorithm has quadratic complexity, so this

approach appears to only trade one bottleneck for another. Luckily, and as alluded

to earlier, there exists a class of FFT algorithms that can perform a full DFT in

only O(N log2(N)) time. This is achieved by repeatedly subdividing the problem

into increasingly small DFTs.

5.3.4 Fast Fourier Transform

There are many variations of FFT, but the most well known is the radix 2 Decimation

In Time (DIT) Cooley-Turkey algorithm [138]. The radix refers to the way in which

eq. (5.3.6) is subdivided. Being radix 2, the DFT is separated into two sums at each

stage:

X[k] =
N/2−1∑
n=0

x[2n]e−i 2π
N
k(2n) +

N/2−1∑
n=0

x[2n+ 1]e−i 2π
N
k(2n+1), k = 0, 1, . . . , N2 − 1.

(5.3.11)

This can be rewritten in terms of two DFTs with period N/2 by extracting a factor

of e− 2πi
N
k from the second sum:

X[k] =
N/2−1∑
n=0

x[2n]e−i 2π
N/2kn + e− 2πi

N
k
N/2−1∑
n=0

x[2n+ 1]e−i 2π
N/2kn, k = 0, 1, . . . , N2 − 1.

(5.3.12)

Here, the left sum corresponds to a DFT over the even indexed inputs, and the right

corresponds to a DFT over the odd indexed inputs. The preceding exponential is
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known as a twiddle factor. The key to the FFT’s efficiency is that, written in this

way, the periodic nature of the complex exponential can be exploited to express the

X[k + N/2]; k < N/2 in terms of quantities already known from the computation

of the X[k]; k < N/2:

X[k +N/2] =
N/2−1∑
n=0

x[2n]e−i 2π
N/2 (k+N/2)n + e− 2πi

N
(k+N/2)

N/2−1∑
n=0

x[2n+ 1]e−i 2π
N/2 (k+N/2)n

(5.3.13)

=
N/2−1∑
n=0

x[2n]e−i 2π
N/2kne−2πni + e− 2πi

N
ke−πi

N/2−1∑
n=0

x[2n+ 1]e−i 2π
N/2kne−2πni

(5.3.14)

=
N/2−1∑
n=0

x[2n]e−i 2π
N/2kn − e− 2πi

N
k
N/2−1∑
n=0

x[2n+ 1]e−i 2π
N/2kn (5.3.15)

= Ek − e− 2πi
N
kOk (5.3.16)

where Ek and Ok refer to the kth even and odd DFTs respectively. In this way, the

total number of required DFTs is halved. By repeating this process until each DFT

is computed on a set of two inputs, the time complexity can be further reduced. The

final DFTs are order O(1) and the initial DFT for each of the N outputs is sub-

divided log2(N) times, so the overall complexity is O(N log2(N)). An illustration of

the signal flow by which multiple DFTs are combined to give the full FFT is depicted

in fig. 5.3.

The above description of the FFT operates on a complex field. In this work, however,

polynomials are reconstructed over Galois fields. Galois fields, like the complex

exponential, are cyclic, and are thus compatible with a modified version of the FFT

known as a Number Theoretic Transformation (NTT).

5.3.5 Number Theoretic Transformation

The NTT is achieved by replacing the exponentials in the complex DFT with appro-

priate primitive roots of unity in the Galois field GF(P ) = Z mod P :
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x[0]

x[4]

x[2]

x[6]

x[1]

x[5]

x[3]

x[7]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

Figure 5.3: The signal flow used to compute the FFT. The input
array is shown on the left with the result of the FFT
on the right. The pairings over which each individual
DFT is performed are indicated by arrows. Owing to
their appearance, these pairings are often referred to as
butterfly operations.

e−i 2π
N
kn → ωknN mod P, (5.3.17)

where, ωN is the N th root of unity:

ωNN → 1 mod P, (5.3.18)

and ω0
N , ω

1
N , ..., ω

N−2
N are all distinct.

With this adaptation, the number theoretic DFT can be written:

X[k] =
N−1∑
n=0

x[n]ωknN , k = 0, 1, . . . , N − 1. (5.3.19)

To perform an NTT using the FFT algorithm, where the DFTs are iteratively

subdivided, it is necessary to find M th primitive roots for all M ∈ {21, 22, 23, ..., N}.

The main difficulty in going from a complex DTT to an NTT is in the determination
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of prime fields for which these exit. In general, a prime field will not give rise to an

nth primitive root, so a scan of large primes P ≈ 232 is required. If a field has an nth

root, the following condition will be satisfied:

(P − 1) mod n = 0. (5.3.20)

This is equivalent to saying that there exists a cyclic subgroup of GF(P ) of order

n. The generators of the subgroup are the primitive roots and can be found using

algorithm 5. This approach assumes that n is a power of 2, a condition that is also

required for the NTT to be efficient.

Algorithm 5 Determine Primitive Root Modulo p
1: Input: Prime number p and integer n dividing p− 1
2: Output: A primitive root g of order n modulo p
3: Generate a random value x ∈ Zp
4: Compute g ← x(p−1)/n mod p
5: if gn/2 ̸≡ 1 (mod p) then
6: return g (a primitive root)
7: else
8: Repeat with a new random x

The first step for the evaluation of polynomial multiplications is to precompute a set

of primes, whose finite fields have multiplicative subgroups of order 21, 22, ..., 213 along

with their 2ith primitive roots1. With these in hand, it is possible to perform Fourier

transforms on polynomials of length 21, 22, ..., 213, thereby allowing the complete

expansion of the Lagrange polynomials. It should be noted that in the computation

of the primes according to eq. (5.3.20), it is only necessary to check this criterion

for the largest power of 2, i.e. n = 213 as all lower powers will implicitly satisfy the

condition.
1Larger orders could in principle be used, however, we find that memory constraints restrict the

maximum polynomial size to be at most 213.
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5.4 Results and Discussion

To verify the effectiveness of our code, we have benchmarked it against FireFly,

using both a synthetic univariate polynomial test as well as a real-world multivariate

master coefficient. For the polynomial test, reconstruction was performed over

functions of the form:

f(x) =
N∑
i=1

ixi. (5.4.1)

By varying N , the time scaling of the two codes was determined. This is shown in

fig. 5.4. Note that for these runs, the parser was not used in either program. For

small polynomials, FireFly was found to be around an order of magnitude faster

than our code. Additionally, our code had no dependence on the polynomial degree

up to approximately N = 103. These effects can be attributed to the overhead

associated with the initialisation of the GPU; this involves memory allocation and

driver loading. For our test system1, this start up time was found to be ∼ 0.4s.

From fig. 5.4, it can be seen that the execution time for FireFly has a relatively

poor scaling with N , and although FireFly is faster for small polynomials, it falls

short of our code for polynomials of degree N > 100. For the largest polynomials

tested, we found our code to be 274 times faster, with FireFly taking 16.8min to

complete, compared to 3.7s for our code.

Although the gains afforded by our interpolation scheme grow with increasing prob-

lem complexity, there is a limit to the size of polynomials that can be interpolated.

This is set by the memory constraints of the system. The reconstruction process has

a minimum memory requirement given by:

Memmin = (4NvarsN
2
terms) bytes, (5.4.2)

where Nvars is the number of variables and Nterms is the maximum degree of the
180GB NVIDIA A100 GPU and 16 core and 2.1GHz Intel(R) Xeon(R) Silver 4216 CPU.



5.4. Results and Discussion 183

polynomial and must be a power of 2. For 80GB of available ram, this equates

to a univariate polynomial of degree ∼ 141 × 103. The requirement that Nterms ∈

2n; n ∈ N is necessary to allow the NTT to be performed. Note that if the degree

of the polynomial is not close to a power of 2, then an unnecessarily large number

of black-box probes will be computed to pad the NTT array to the appropriate size.

We do not account for this issue in this work, however a simple strategy to reduce

the GPU workload would simply be to pad the NTT array using a single probe value

for all additional elements. This wouldn’t affect the interpolation result whilst still

allowing the NTT to be performed.

Figure 5.4: Interpolation times for 1d polynomials of varying de-
gree for FireFly (red) and our code (blue). Our code
outperforms FireFly for polynomials of degree ∼ 100.
The polynomials used to produce this figure were selec-
ted with coefficients that could be reconstructed using
a single prime field.

For the real-world test, we reconstructed a single master coefficient generated for

the process gg → hh at 2 loop. The chosen coefficient was a rational function of

2 momentum variables (s and t). Before performing the interpolation, we used a

separate Mathematica script [139] to multiply out the denominator. The resulting
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polynomial had a degree of 75 in s and 81 in t and each of the polynomial coeffi-

cients were ∼ 1094 in size, requiring ∼ 5 independent 64 bit prime fields and ∼ 10

independent 32 bit fields to reconstruct. The results of this test are broken down

into the parsing time and execution time and are summarised in table 5.1. In spite

of requiring more prime fields, our code outperformed FireFly in terms of the total

execution time by approximately an order of magnitude.

We found the parsing time for our code to constitute a significant fraction of the

total run time, 25% for the real world example in table 5.1. This is in contrast to

FireFly, where parsing time takes less than 1% of the total. We have not dedicated

much time to the optimisation of our parser as it a CPU bound process and not

the focus of this work. In future versions of our code, however, efficient algorithms

such as the shunting yard parser used by FireFly could be implemented to further

reduce execution times.

From table 5.1, it is clear that the reconstruction of rational functions is a more

intensive procedure than that of polynomials, with FireFly taking over twice as

long to process the rational function compared to the expanded polynomial. There

are many ways to perform rational interpolation, but perhaps the most suited to

our current approach is to interpolate the numerator and denominator as individual

polynomials. If GPU acceleration yields the same time savings as observed for

polynomials, this technique could lead to a significant increase in the accessible

precision of QFT calculations.

Overall, we suggest the use of a hybrid approach between CPU and GPU based

interpolation. The minimal start up overhead of CPUs makes them ideal for handling

small coefficients, whilst the huge operational throughput of GPUs can greatly

accelerate the processing of larger coefficients. This approach would also circumvent

the issues caused by the memory limitations of current GPUs by allowing the parallel

batch processing of small coefficients on the CPU. Furthermore, the overhead of

initialising the GPU could be diluted by continuously processing coefficients in a

sequential manner such that the main process remains active on the GPU throughout.
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This will prevent multiple spool up operations.

Our Code (Pol) FireFly (Pol) FireFly (Rat)
Parsing Time [s] 0.15 0.03 0.04
Interpolation Time [s] 0.44 5.66 12.30
Total Time [s] 0.59 5.69 12.34

Table 5.1: Parsing and interpolation times for a master integral
coefficient generated for the gg → hh at two loop. This
coefficient was a 2d function of the s and t Mandelstam
variables. As, at present, our code is only able to handle
polynomial interpolation, we preprocessed this coefficient
by multiplying out the denominator using an external
program. The timings associated with the interpolation
of this polynomial are indicated by (Pol). For complete-
ness, we also present the interpolations time for FireFly
to solve the full rational problem (Rat).

5.5 Outlook

We have demonstrated the utility of modern GPUs in precision calculations in

QFT. We see that, in sufficiently large, real world scenarios, our code can perform

interpolation over a time span that is an order of magnitude lower than state of

the art CPU based codes. At N2LO, the evaluation of the integrals associated

with a single scattering process can take a period of weeks to complete. The vast

majority of this time is associated with the interpolation procedure, specifically in the

evaluation of black-box probes. If a similar level of GPU acceleration as demonstrated

for polynomial interpolation can be obtained for the more complicated process of

rational interpolation, then computation times could be reduced from weeks to days.

This would remove a barrier to a new frontier of precision physics. With the rapid

development of new GPU hardware in the pursuit of Artificial Intelligence (AI) with

ever increasing memory capacities and core counts, the time to transition old code

to modern GPU hardware is now!





Chapter 6

Conclusions

In this thesis, we have discussed the use of modern computational hardware in solving

a wide variety problems in fundamental physics. Our investigations have focussed

on the extremes of energy and curvature, where analytical techniques may struggle

to resolve important dynamics. The enormous operational throughputs afforded by

the highly parallel architectures or modern HPC clusters and GPU devices allow

for high accuracy modelling of physical processes. We have demonstrated this both

for scenarios where extreme precision is required as well as in cases where, due

to unknowns in the theory, large samples of numerical data are required to draw

representative conclusions.

Motivated by string theory and the strong CP problem, in chapter 2 we investigated

the possibility that ALP-photon interconversion may be responsible for the perceived

excess in high energy Blazar spectra. String theories generically predict large num-

bers of ALPs. Whilst numerous studies have investigated the effect of a single ALP

state on Blazar spectra, none, prior to our work, had investigated a truly string mo-

tivated model. The main difficulty in this regard arises due to the uncertain nature

of the ALP mass and coupling distributions. We addressed this issue through an

anarchical framework, marginalising over many samples of the masses and couplings

as well as the magnetic field structures of intergalactic space. Through the use of

temporal discretisation, we simulated the propagation of photons from their Blazar
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source to the earth to determine their survival probabilities. Fitting these to the

observed Blazar spectra, our results suggest that if ALPs are responsible for the

excess, then models involving fewer ALPs are favoured. In future studies, where

the details of the ALP spectra (couplings and masses) can be extracted from their

progenitor string theories, investigation of Blazar spectra may provide an insight

into the viability of a given theory.

Continuing with our focus on the physics of scalar fields around BHs, in chapter 4

we presented a work in progress fixed background numerical GR code for the determ-

ination of the DF force on BHs. As in chapter 2, this involves the time integration

of the field equations, albeit this time using a classical field and a non-trivial metric.

Novel to our code, we express this metric in the horizon-penetrating, KS coordin-

ates. This allows for increased accuracy around the horizon, but complicates the

extraction of inertial observables. During preliminary testing, our code successfully

met the convergence criteria, satisfying the Isotropic Hamiltonian and momentum

constraints even at late times. We are currently in the process of implementing the

DF calculation as well as refactoring the code to achieve improvements in efficiency.

Once fully implemented, our software may aid in the calculation of gravitation wave

signals emitted by binary systems as their BHs spiral though accreted matter. In

addition, the use of the KS gauge greatly simplifies the metric form for Kerr type

BHs. With the addition of spin, fixed background simulations in KS coordinates may

allow for detailed analyses of superradiant amplification in binary systems where the

orbit of the companion BH may be perturbed by the energy loss channel generated

by dynamical friction with superradiant cloud. In addition, the growth of the cloud

itself may be affected by the orbit of the secondary BH.

In chapter 5, we moved away from the extreme energy and curvature environments

of BHs, focussing instead on the high precision calculations required to interpret

the results of terrestrial experiments. With the ever increasing energies reached

by particle colliders such as the LHC, the demand for high order calculations in

perturbative QFT is growing. The determination of the resulting loop integrals
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requires the use of sophisticated computational techniques such as the Laprota

algorithm. Focussing on one core bottleneck in this procedure, we demonstrated

the utility of GPU acceleration in the interpolation of multivariate polynomials. By

selecting algorithms that best make use of the parallelism provided by GPU hardware,

we achieved a reduction in execution time by an order of magnitude for sufficiently

large real world problems. For its use in the Laporta algorithm, our code must be

extended to work with rational functions. This can be achieved through repeated

polynomial interpolation steps. A large proportion of the efficiency gains seen in

our current proof of concept work would likely be maintained in a full, rational

code. Improvements in speed of this magnitude would reduce the evaluation time

for complicated Feynman diagrams from weeks to hours, making the computation

of very high precision matrix elements feasible.

Throughout this thesis, we have used the enormous parallelism of modern devices to

probe theories in a way that would have been impossible only decades prior. With

the recent development of artificial intelligence, GPUs and other specialised devices

with highly parallel architectures have undergone significant development. We are

currently on the verge of a revolution in numerical physics. As the memory capacity

of these devices grows, and as specialised parallel algorithms are developed, the

ability to probe complex interacting systems will only increase. No physical system

exists truly in isolation. Numerical simulations, therefore, constitute one of the most

effective methods through which to probe the theoretical interplay between the vast

array of physics that governs the behaviour of our universe.





Appendix A

Statistical approach to producing

mixing matrices using the Haar

measure

Here we can outline how the mixing matrices are inductively produced. Following

section 2.2, one can generate a sample of N−1 mixing angles, {θij}, in spherical polar

coordinates. As a simplifying assumption, we take the mixing matrices, U ∈ SO(N).

Since SO(N) is parametrised by N(N − 1)/2 mixing angles,
{
θij
}

1≤i≤j≤N−1
, the

mixing matrix for SO(2) can be parametrised by a single angle, θ11:

U2 =

 cos θ11 sin θ11

− sin θ11 cos θ11

 . (A.0.1)

The Haar measure of this matrix is given by eq. (2.2.2) and, explicitly, is

dV = dθ11 , (A.0.2)

which informs us we sample over θ11 uniformly in [0, 2π]. Generalising to higher

dimensions, the structure of the matrices becomes much less trivial. The most
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the Haar measure

straightforward approach to writing down a higher SO(N) matrix is as a product

of matrices:

UN = U ′
NSN(UN−1) (A.0.3)

where SN(UN−1), given by:

SN(UN−1) =

UN−1 0

0T 1

 , (A.0.4)

where 0 is a (N − 1) dimensional zero vector and SN(UN−1) represents rotations in

the hyperplane orthogonal to the N th dimension. U ′
N is the N -dimensional analogue

of U2, describing rotations that involve the N th coordinate:

U ′
N 1,1 = cos

(
θ1,N−1

)
(A.0.5)

U ′
N1,i+1 = cos

(
θi+1,N−1

) i∏
m=1

sin
(
θm,N−1

)
∀ i ∈ [1, N − 2] (A.0.6)

U ′
N 1,N =

N−1∏
m=1

sin
(
θm,N−1

)
(A.0.7)

U ′
Ni,j = 0 ∀ j < i− 1 & i > 1 (A.0.8)

U ′
Ni,j = − sin

(
θj,N−1

)
∀ j = i− 1 & i > 1 (A.0.9)

U ′
Ni+1,i+1 = cos

(
θi,N−1

)
cos

(
θi+1,N−1

)
∀ i ∈ [1, N − 2] (A.0.10)

U ′
NN,N = cos

(
θN−1,N−1

)
(A.0.11)

Explicitly, the SO(3) mixing matrix has the following form:

U3 =


cos θ12 sin θ12 cos θ22 sin θ12 sin θ22

− sin θ12 cos θ12 cos θ22 cos θ12 sin θ22

0 − sin θ22 cos θ22




cos θ11 sin θ11 0

− sin θ11 cos θ11 0

0 0 1

 .
(A.0.12)
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Hence we produce the symbolic form of the N-dimensional mixing matrices in-

ductively. We then sample the angles according to the Haar measure as shown

in eq. (2.2.2), and we can visualise these samples as populating an N -dimensional

sphere uniformly.





Appendix B

Producing CAST bounds

This section provides a detailed overview of the approach used to recast the CAST

bounds in section 2.3.4. The original CAST bound can be generalised by considering

the detector’s sensitivity. From any point (gγN=1, g
e
N=1) on the original bound, the

black line shown in fig. 2.2, we can extract a proxy for the maximum signal (σmax)

that is consistent with non-detection:

σmax = Φtot(geN=1, g
γ
N=1)(g

γ
N=1)2 , (B.0.1)

where Φtot is the total single ALP flux at the detector; computed using eq. (2.3.4),

eq. (2.3.5) and eq. (2.3.6):

Φtot(geN=1, g
γ
N=1) = ΦP (gγN=1) + ΦB(geN=1) + ΦC(geN=1) . (B.0.2)

For any point in the coupling parameter space, the total flux at the detector must,

therefore, be less than:

Φmax(gγ) = σmax/g
γ2 (B.0.3)

We note that to obtain the total flux at the detector we integrated over the differential

fluxes of eq. (2.3.1), eq. (2.3.2) and eq. (2.3.3) using a lower integration boundary
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of ω = 1 keV (corresponding to the detector threshold) and an upper bound of

ω = 10 keV.

The recast bounds in fig. 2.2 are shown as heat maps. The weight assigned to each

set of couplings (ge, gγ), corresponds to the proportion of our sample of survival and

conversion probabilities, {Pγ→γ} and {Pe→γ}, that are consistent with eq. (B.0.3).

That is to say that, for a given (ge, gγ) and probability P l
e→γ ∈ {Pe→γ}, we find the

proportion (η) of {Pγ→γ} that satisfy:

Φmax(gγ) ≥ ΦP (gγ)Pγ→γ + (ΦB(ge) + ΦC(ge))Pe→γ (B.0.4)

At this point, η could be found by Monte Carlo sampling {Pγ→γ} and determining

the number of elements that satisfy eq. (B.0.4). This approach is, however, very com-

putationally expensive. A significant saving can be achieved by instead considering

the critical value (PCrit) of Pγ→γ that achieves equality in eq. (B.0.4):

PCrit(ge, gγ, P l
e→γ) = 1

ΦP (gγ)
[
Φmax(gγ)− (ΦB(ge) + ΦC(ge))P l

e→γ

]
, (B.0.5)

η is now given by the cumulative sum - evaluated at PCrit - of the histogram of {Pγ→γ};

η = C(PCrit). An example of this procedure is depicted in fig. B.1. Repeating this

process for every P l
e→γ ∈ {Pe→γ}, the total weight associated with a coupling pair is

given by:

W (ge, gγ) = 1
Nae

∑
l

C(PCrit(ge, gγ, P l
e→γ)) , (B.0.6)

where Nae is the size of {Pe→γ} - taken here to be Nae = Naγ = 104. W (ge, gγ) is

equivalent to the fraction of {Pγ→γ} and {Pe→γ} that satisfy eq. (B.0.4) and will

saturate to 1 for sufficiently low couplings.
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Figure B.1: An example of a photon survival histogram for a 2
ALP scenario with couplings gae = 1.14 × 10−12GeV
and gaγ = 8.02× 10−11GeV. The critical values (PCrit)
for two distinct values of P l

e→γ are indicated by the
dashed lines. The cumulative sum of the histogram is
shown below with the weights (η) being given cumulat-
ive sum at each critical value (these are indicated by
the horizontal dashed lines).





Appendix C

Fit quality for VHE spectra and

statistical approach to multi-ALP

parameter space

To assess the fit of our multi-ALP model to the VHE Blazar spectra, we employ the

same statistical methods as Refs. [84,89]. In particular, we use the observed spectra,

Φobs
i , shown in table 2.1.

We note that Φobs
i contains data on the blazar source plus all ambient backgrounds.

We compute the photon survival probability for a given point in the theory parameter

space:

〈
Pγ→γ

〉
i
(gγ, ge) = 1

∆Ei

∫
∆Ei

dEPγ→γ(E) , (C.0.1)

where E is the photon energy, and this probability can be computed on a bin-by-bin

basis (see fig. C.1). The absorption-corrected flux is given by

Φi(gγ, ge) =
〈
Pγ→γ

〉−1

i
(gγ, ge)Φobs

i , (C.0.2)

where again, we have kept the theory parameter dependence explicit. For a given

point in the model parameter space, (gγ, ge), we are tasked with understanding its
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multi-ALP parameter space

Figure C.1: An example distribution of photon survival probabilit-
ies as a function of energy. These probabilities corres-
pond to the source 1ES0414+009.

compatibility with the observed spectra. For this purpose, we must quantify the

observed flux in the absence of new physics and do so by fitting Φi(gγ, ge) to a power

law:

f(E) =


N0 (E/E0)−Γ , pfit ⩾ 0.05

N0 (E/E0)−(Γ+βc ln(E/E0)) , otherwise
(C.0.3)

where pfit denotes the fit probability. The first power law contains three parameters:

N0, E0, and Γ while in the second (which is a parabola in log-log space), there are

four fit parameters, N0, E0, βc and Γ. The power law function is used unless the

baseline (no ALP) fit probability (as calculated by Ref. [84]) is less than 0.05. An

example of a corrected spectrum fitted with a power law is shown in fig. C.2

We note that, when computing the fit parameters, we perform a Chi-Squared analysis,

taking the spectral uncertainties to be statistical. For each energy bin (Ei), the fit

residual is calculated:

χi = Φi − f (Ei)
σi

, (C.0.4)

where σi denotes the statistical measurement uncertainty at 68% confidence level.
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Figure C.2: An example of the measured (red) and corrected (blue)
spectrum for 1ES0414+009 for a single realisation of
magnetic field structure for a single ALP. The power
law fit to the corrected spectrum is indicated by the
black line.

The value of χ2 can now easily be obtained by summing the residuals over all energy

bins and squaring.

Assuming that Pγ→γ accurately predicts the Universe’s opacity to VHE γ rays,

we would expect the residuals in the optically thick regime to follow a Gaussian

distribution with a mean of zero. To test this hypothesis, we employ the t-test,

where we calculate the test statistic, t, as follows:

t = χ̄√
σχ/Nχ

. (C.0.5)

where χ̄ denotes the mean and σχ the variance of the residual distribution, which

comprises a total of Nχ data points. The pt test statistic we use to quantify the

fit of our model to the observed spectra can be obtained using a standard t-test

procedure.
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GPU Structure

NVIDIA GPUs, as used in this work, are programmed using the CUDA API [140]. CUDA

allows general purpose computational work to be offloaded to a GPU. It introduces

a number of software level abstractions to help facilitate optimal parallel execution.

In this section, we will briefly describe these abstractions and their relation to the

true GPU hardware.

A function that is to be executed in parallel is known as a kernel. Kernels run on

the GPU and can be launched from the CPU (Host) or GPU (Device). When a

kernel is called, its execution is divided into groups of threads known as warps. Each

warp contains 32 threads, where each thread corresponds to a single execution of the

kernel. Importantly, every thread in a warp will execute each kernel instruction at

the same time. This is known as lockstep execution and can lead to large bottlenecks

when working with conditional logic where a small number of threads may execute

code in one branch while all others are paused until the next branch is reached. This

is known as warp divergence.

As well as warps, CUDA introduces two additional thread groupings, thread blocks

and grids. A thread block can contain up to 1028 threads and a grid can contain an

arbitrary number of blocks.

At the hardware level, GPUs consist of a number of parallel compute units known

as Streaming Multiprocessors (SMs). Each SM contains a set of execution cores
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and a small amount of high speed shared memory. Additionally, GPUs have a large

amount (≈ 80 GB) of slower, global memory that can be accessed by all SMs.

Each thread block will be executed on a single SM and the grid of blocks will be

assigned to saturate the SMs. This structure allows for efficient memory transfer

between threads. All threads in a warp execute in lockstep so there are no race

conditions1 when accessing shared memory. For inter-warp communication within

the same block, it is necessary to ensure thread level synchronization. This can

be achieved through the CUDA API. Finally, for inter-block communication, global

memory must be used.

It should be noted that in reality, SMs execute multiple warps simultaneously. A warp

scheduler is used to assign work to the SM cores. To ensure maximal throughput,

it is necessary to provide each SM with more than a single warp to prevent gaps in

execution.

1Race conditions occur when multiple threads attempt to read from, or write to, the same
section of memory simultaneously and can lead to undefined behaviour.
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