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ABSTRACT 

Global forest cover has decreased by 12% from 2001 to 2022, and the rate of loss is increasing 

(Global Forest Watch), which has consequence for carbon flows and ecosystem health. A UN 

framework, Reducing Emissions from Deforestation and Forest Degradation (REDD+), seeks to 

provide financial support to developing countries to measure and mitigate deforestation at the 

country-scale using satellite images. Deforestation measurement in the context of a REDD+ 

program would benefit from automation via machine learning – that would be able to measure 

deforestation in countrywide data quickly and accurately. 

Existing attempts at using image classification to measure deforestation in satellite images have 

yielded mixed results with regard to REDD+ reporting requirements. This was done using a 

limited range of satellites, and a very limited range of classification algorithms. However, the 

remote sensing literature has much research on the effectiveness of and combinations of 

different satellite sensors and algorithms that can be applied here. This research compares a 

broader range of classification algorithms and satellite sensors (both multispectral and SAR) and 

combinations of satellites, tested in a range of deforestation drivers in Guyana, a country with a 

large proportion of mixed tropical rainforests and an advanced, experienced REDD+ program.  

When comparing three algorithms (Random Forest, Gradient Boosted Trees, Naïve Bayes), with 

default probability thresholds for prediction decisions, on Sentinel-2 satellite data, the overall 

accuracies were 96%, 95% and 93%, respectively. When comparing satellites, the overall 

accuracies were 77% (ALOS-2), 69% (Sentinel-1), 90% (Landsat), 87% (Sentinel-2), 70% 

(RapidEye), 89% (Planetscope). The overall accuracy when classifying sedimented rivers was 

96%, 99% for clear rivers, and 68% when the model was trained on sedimented rivers and 

tested on clear rivers. When classifying mining sites with no vegetation inside the mine, the 

Consumer’s Accuracy is 91% for forest and 94% for mining, but when classifying mining sites 

with vegetation inside the mine, the Consumer’s Accuracy is 98% for forest and 48% for 

mining. In all cases, manually tuning the class probability threshold for prediction decisions 

away from 50% created a map of deforestation that followed the true labels very closely. These 

results indicate that, in addition to choosing the algorithm and sensor, image classification of 

deforestation in a REDD+ context must account for the optimal probability threshold and the 

within-class variation. 

 

https://www.globalforestwatch.org/dashboards/global/
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CHAPTER 1: INTRODUCTION TO THE MEASUREMENT OF DEFORESTATION 

SECTION 1.1 INTRODUCTION TO THE TOPIC AND OBJECTIVES 

From 1990 to 2009, deforestation is estimated to have released ~1.4 PgC/yr into the 

atmosphere, and the bulk of this deforestation has been in the carbon-dense tropical rainforests 

of South America and Africa (Houghton, 2012; with a broader review in IPCC, 2015). Tropical 

forest ecosystems have carbon stocks of 306-324 petagrams of carbon (Mackey et al., 2020), 

and potentially have the ability to sequester 120 petagrams of carbon by 2100 (Houghton and 

Nassikas, 2018). Tropical land use changes, such as increases in agriculture, logging and 

mining, are causing extensive deforestation and forest degradation (Pan et al., 2011). As trees 

are cut down, solid carbon is released into the atmosphere as carbon dioxide, flooding and 

water-related diseases increase, and agriculture and ecosystem services are harmed (Bovolo et 

al., 2018, Gentine et al., 2019). Deforestation and forest degradation are currently the second 

largest anthropogenic source of carbon after fossil fuels, at 20% of global emissions (Van der 

Werf et al., 2009), and tropical deforestation and forest degradation are key parts of this 

(Houghton, 2012). This is why deforestation is a vital policy matter: forests provide essential 

services, and deforestation deprives people of those benefits, and deforestation has the 

potential to destabilize the climate system by reducing carbon sequestration, releasing large 

amounts of carbon very quickly, and altering bio-physical processes such as albedo and 

evapotranspiration. Reforestation, on the other hand, has the potential to help mitigate climate 

change (Psistaki et al., 2024). 

A UN framework, Reducing Emissions from Deforestation and Forest Degradation (REDD+), 

seeks to provide financial support to developing countries to measure and mitigate 

deforestation at the country-scale using satellite images. Deforestation measurement in the 

context of a REDD+ program would benefit from automation via machine learning – that would 

be able to measure deforestation in countrywide data quickly and accurately. 

Existing attempts at using image classification to measure deforestation in satellite images have 

yielded mixed results with regard to REDD+ reporting requirements. This was done using a 

limited range of satellites, and a very limited range of classification algorithms. However, the 

remote sensing literature has much research on the effectiveness of and combinations of 

different satellite sensors and algorithms that can be applied here. This research compares a 

broader range of classification algorithms and satellite sensors (both multispectral and SAR) and 

http://whrc.org/wp-content/uploads/2015/09/HoughtonEnvSust.12.pdf
https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter06_FINAL.pdf
https://link.springer.com/article/10.1007/s11027-019-09891-4
https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.13876
https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.13876
https://www.fs.usda.gov/treesearch/pubs/download/38624.pdf
https://iopscience.iop.org/article/10.1088/1748-9326/aacf60/meta
https://iopscience.iop.org/article/10.1088/1748-9326/aacf60/meta
https://iopscience.iop.org/article/10.1088/1748-9326/ab22d6/pdf
https://escholarship.org/content/qt52n993mq/qt52n993mq.pdf
https://escholarship.org/content/qt52n993mq/qt52n993mq.pdf
http://whrc.org/wp-content/uploads/2015/09/HoughtonEnvSust.12.pdf
https://doi.org/10.3390/su16146089
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combinations of satellites, tested in a range of deforestation drivers in Guyana, a country with a 

large proportion of mixed tropical rainforests and an advanced, experienced REDD+ program.  

The overall aim of the study is to identify the classifiers, datasets and label sets that can 

produce the accuracy needed to automate REDD+ measurement and monitoring. This can be 

broken down into specific research questions: 

1. How does land cover type mapping accuracy change between classifiers? This can start 

with single classifiers, and then test ensembles of classifiers. 

2. How does land cover type mapping accuracy change between satellite sensors and 

combinations of sensors? This can start with individual sensors, and then move on to 

data fusion. 

3. How does the complexity of the land cover types affect accuracy? This can be tested by 

classifying two land cover types, then three and four, and then all land cover types. 

In the best case, this research will find a combination of classifiers, data and labels that can 

identify changes in difficult-to-separate land cover types in near real time. The most immediate 

impact will be on the Guyana Forestry Commission, as they will be the first to see the results. 

This is also applicable to other REDD+ countries, some of which have tried to implement 

machine learning without success. This also has applications to land cover mapping in general. 

This case study also has implications for machine learning on satellite images. It evaluates 

classifier performance using real world data from a variety of satellite sensors, and the class 

labels are based on higher quality reference data than most research, which will lead to an 

improved ability to identify and interpret errors.  

The rest of Chapter 1 will introduce the problem of tropical deforestation measurement and 

reporting in the REDD+ context, and introduce the value of automating this process using 

machine learning. Chapter 2 will explain how this fits into the Guyana Forestry Commission’s 

REDD+ reporting requirements. Chapter 3 will introduce the data that will be used. Chapters 4 

to 8 will report results. Chapter 4 is a comparison of classification algorithms. Chapters 5 and 6 

will test multispectral and radar images at two location in Guyana. Chapter 7 will test 

combinations of multispectral and radar images. Chapter 8 will test the ability of machine 

learning to identify a range of deforestation drivers. Chapter 9 will discuss the issues raised in 

the previous five chapters, and their implications for machine learning and deforestation 

measurement. 
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SECTION 1.2 MOTIVATING RESEARCH ON DEFORESTATION MEASUREMENT 

Accurate and efficient forest monitoring is vital, because forests are important regulators of the 

global climate, and form critical parts of the global carbon cycle, acting both to sequester and 

to store carbon. Carbon dioxide is removed from the atmosphere by tree leaf photosynthesis, 

and sequestered in solid plant matter as the plant grows, which eventually goes into the soil as 

forest litter, and the carbon returns to the atmosphere by natural decay or by burning (see 

Malhi and Grace, 2000 for details). Deforestation accelerates the latter part of the cycle when 

felled trees burn or decay, increasing the amount of atmospheric carbon. Timber harvesting can 

delay this, if the wood harvested does not decay or burn immediately. Reforestation accelerates 

the former part of the cycle, removing atmospheric carbon, but over longer periods of time.  

Forests are therefore an important carbon sink, especially in the tropics, which are estimated to 

account for 55% of global forest carbon stocks (Pan et al., 2011). Forests have a powerful 

effect on atmospheric carbon dioxide concentrations and hence global temperature (Reichstein 

and Carvalhais, 2019, Nunes et al, 2019, Zhao et al, 2022). This is especially true of tropical 

forests, which in addition to sequestering carbon, also cool the air through evaporation. See 

Bonan (2008) for an overview, and see Bovolo et al. (2018) for an example of how forests have 

long-distance effects on climate via evapotranspiration. This makes forests vital to solving 

social, environmental and climate change problems, and means that forests need to be 

protected and restored. 

In addition to climate regulation, forests provide a wide range of other ecosystem services. 

Examples include: timber and fuel production, nutrient retention, biodiversity protection, 

ecotourism, and spiritual and traditional values (Aznar-Sánchez et al., 2018), along with clean 

water, water availability, landslide prevention, flood mitigation, mitigation of coastal waves, fire 

resistance, food security, control and avoidance of disease, medicine, and pollution mitigation 

(Brandon, 2014, Rajasugunasekar et al., 2023). Reducing deforestation therefore has additional 

benefits beyond climate change alone. 

An important international effort to help reduce the rate of deforestation is REDD+ (Reducing 

Emissions from Deforestation and Forest Degradation). REDD+ is a United Nations Framework 

Convention on Climate Change (UNFCCC) framework for financing, agreements between a 

developed country and a developing country, adopted in 2013 at COP19, where developing 

countries receive financial support through carbon-credits for maintaining standing forests and 

http://www.zo.utexas.edu/courses/Thoc/Readings/Tropical_Forests_and_Atmospheric_CO2.pdf
https://www.fs.usda.gov/treesearch/pubs/download/38624.pdf
https://link.springer.com/article/10.1007/s10712-019-09551-x
https://link.springer.com/article/10.1007/s10712-019-09551-x
https://doi.org/10.3390/su11195276
https://doi.org/10.1016/j.jclepro.2022.130692
https://web-static-aws.seas.harvard.edu/climate/seminars/pdfs/Bonan_2008.pdf
https://durhamuniversity.sharepoint.com/teams/Matthewsupervision/Shared%20Documents/General/Dissertation/10.1088/1748-9326/aacf60
https://www.mdpi.com/1999-4907/9/8/453
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2622749
https://journalijecc.com/index.php/IJECC/article/view/3614
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avoiding deforestation and degradation. This can provide funding from the international 

community to maintain forest ecosystems and their services for the global benefits of climate 

change mitigation, instead of promoting the clearing of forests for economic development and 

the income it brings at the national scale. In order to receive carbon-credit funds, countries are 

responsible for monitoring and quantifying the extent of deforestation prevented through the 

Measurement, Reporting and Verification (MRV) process. As part of this process, countries find 

it beneficial to measure and report changes in forest cover using remote sensing data which 

covers wide areas, much larger areas than it is possible to monitor on foot, at a much cheaper 

price, in a standardised and timely manner. 

Investments in REDD+ were initially mostly between two countries as bilateral agreements, or 

as multi-lateral agreements through third parties (e.g. World Bank Carbon Fund, or the Green 

Climate Fund), which helped set up the financing framework. More recently, in order to meet 

more general carbon-credit forest financing markets, a new international carbon crediting 

program, has been set up for financing national REDD+ programs, Architecture for REDD+ 

Transactions (ART, 2021), which was set up in 2018. ART’s stated mission is to finance global-

scale action on climate change, incentivize governments to achieve results, and serve as a 

global quality benchmark to provide confidence in the integrity of REDD+ reporting and 

financing (ART, 2021a). This has recently come to include provisions for financing both 

restoration of destroyed forests in countries that have seen extensive deforestation, and 

preservation of existing forests in High Forest Low Deforestation (HFLD) countries, where 

deforestation has been minimal. 

The REDD+ Environmental Excellence Standard (TREES) is ART’s standard for Monitoring, 

Reporting and Verification. TREES was first published in 2020, and TREES version 2.0 was 

published in 2021 (ART, 2021a), and maintains compatibility with earlier guidelines, agreements 

and frameworks. Under ART-TREES, a REDD+ country creates a standard operating procedure 

that meets the requirements of ART and accepted standards for emissions reporting based on 

remote sensing. ART-TREES accounting requirements include activity data, emission factors and 

removal factors, a monitoring plan, uncertainty quantification, and environmental, social and 

governance safeguards. 

Examples of those earlier good practice guidelines are the Global Observation of Forest Cover 

and Global Observation of Land Dynamics (GOFC-GOLD) of the Global Forest Observations 

Initiative (GFOI). REDD+ countries have a lot of flexibility in how they design their standard 

https://www.artredd.org/wp-content/uploads/2022/12/ART-Issues-Worlds-First-Jurisdictional-Forestry-TREES-Carbon-Credits-to-Guyana.pdf
https://www.artredd.org/wp-content/uploads/2021/12/TREES-2.0-August-2021-Clean.pdf
https://www.artredd.org/wp-content/uploads/2021/12/TREES-2.0-August-2021-Clean.pdf


  11  

 

operating procedures, but these guidelines will help a country ensure that it passes audits. 

Important aspects of remote sensing practice standards include (GOFC-GOLD, 2016): 

1. Selecting the forest definition and designating the forest area. There is variation in the 

definition of forest, which determines what changes are counted. Section 1.2 of this 

research goes in depth into this. 

2. Selecting satellite data. Concerns include sensor type (multispectral, SAR, etc.), spatial 

resolution (the smallest changes are not visible in lower resolution images), cost, 

availability, etc. Section 1.3 explains what factors go into selecting data, and what 

options are available. 

3. Decision on sampling areas or complete coverage of a country/jurisdiction. 

4. Processing and analyzing the satellite data. 

5. Accuracy assessment. 

Some countries have used machine learning to automate deforestation mapping (such as 

Mexico and Indonesia, in Sections 1.5 and 1.6), and some countries use humans to interpret 

satellite images (such as Guyana) – but which is better? Humans have one major advantage 

over machine learning: humans can use context clues to identify the location and cause of land 

cover change, and can understand the objective and make decisions about how to achieve that. 

This is especially important because errors have financial and political consequences. False 

positives – finding deforestation where there is none, so overcounting – will reduce a country’s 

financial support and political standing. False negatives – failing to find deforestation events – 

will reduce a country’s ability to respond to deforestation, and will reduce the perceived 

integrity of REDD+ work in the eyes of the world. 

But machine learning has its own advantages: 

• Machine learning can classify land cover types across an entire country very quickly, far 

more quickly than a human can. This may enable a country to detect deforestation 

events in near real time and respond quickly to stop the activity causing the land use 

change. In the case of illegal activity, the government may be able to respond while the 

activity is ongoing, instead of detecting it the year after it happened. 

• Humans are limited to viewing what a computer screen can display. In remote sensing, 

bands are the slices of the electromagnetic spectrum that a sensor can record. Colour 

photographs have three bands: red, green, and blue. A camera’s sensor records those 

http://www.gofcgold.wur.nl/redd/sourcebook/GOFC-GOLD_Sourcebook.pdf
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three slices of the visible light spectrum. Satellite sensors have other bands (Red Edge, 

Near Infrared, Shortwave Infrared, Yellow, SAR polarizations, etc) that record other 

slices of the electromagnetic spectrum, but only three can be used at a time. Therefore, 

a human can see only part of the total amount of information recorded in remote sensing 

data, or has to cycle through a series of band combinations. Machine learning can work 

with all of the available information. Every band of an image can be processed at once, 

whether the satellite has four bands or eight or more. Not only that, but images from 

different satellites can be combined to allow the machine learning algorithm to process 

all information and combinations of information that would not be feasible for a human 

operator. 

• Machine learning can output both class predictions and class probabilities. Low 

probabilities indicate high uncertainty, and high probabilities indicate high certainty. 

Machine learning can therefore quantify uncertainty in a basic way as part of the 

process. 

The three key components of machine learning are:  

• Model/Classifier: The model tells the computer how to make predictions from data. The 

classification algorithm determines the characteristics of the model and how the model is 

applied to the data.  

• Data: The data are the images recorded by a satellite sensor. The image can be a 

multispectral image (visible light and infrared radiation), or it can be a SAR image (an 

active sensor that uses microwaves to image a surface). 

• Labels: The land cover type that each pixel belongs to. In the “true” labels, each pixel is 

assigned a true class (based on interpretation of reference data, aided by ground 

truthing). The “predicted” labels are those generated by the model. In classification in 

general, each data point has a class associated with it, and in this case, the classes are 

the land cover types. 

Reference data: This is data for a specific purpose, and this supports the creation of class labels 

and accuracy assessment. Reference data are data of the highest available quality that can be 

used to create labels that accurately reflect the ground truth. 

Some notes about terminology: 
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• In the context of neural networks, image classification assigns one label to a whole 

image, and image segmentation assigns a label to each pixel in an image. In other 

machine learning contexts, image classification assigns a label to each pixel in an image. 

In this dissertation, image classification refers to the latter; i.e. image classification will 

assign a label to each pixel in an image. 

• In tutorials and guides on machine learning, the term classifier can be used to describe 

both the model and the algorithm. They are not the same thing, though: the model is 

the rule that is created using data and an algorithm. Here therefore, the term classifier 

will be used to describe the algorithm. 

The basic steps in the machine learning process are: 

1. Class label creation: Using the reference data as a guide, each pixel in the data is 

assigned a label that indicates its true class. 

2. Training/fitting: This step uses the data allocated for training, and the labels associated 

with that data, to build a classifier. The step-by-step process is determined by choosing a 

classification algorithm. 

3. Validation: This step uses data that were not seen in the training step, and the labels 

associated with that data, to measure the accuracy of the model/classifier. The classifier 

is run on the validation data, and outputs predictions. Those predictions are then 

compared with the labels, and the accuracy is measured. 

Accurate machine learning requires high quality training and validation data, labels based on 

high quality reference data, and the model must use an algorithm that is appropriate to the 

data and the research question. All three must be present; good data and labels will not work 

with a poorly chosen model, and a model is only as good as the data and labels given to it.  

The literature on classification algorithms and the literature on data quality in the context of 

remote sensing of forests are extensive already, with many classification algorithm comparisons 

and satellite sensor comparisons already published. Reviews of data fusion can be found in Pohl 

and van Genderen (1998); Wang et al. (2005); Pandit and Bhiwani (2015); Ghassemian (2016); 

Kulkarni and Rege (2020). Examples of classifier studies include Maxwell et al. (2018) on the 

contradictory results of such studies, Rogan et al. (2008) and Lippitt et al. (2008) comparing 

neural networks with decision trees, and several studies comparing Random Forest with 

Support Vector Machines (Pal, 2007, Adam et al., 2014, Zhang and Xie, 2013; Maxwell et al., 

https://www.tandfonline.com/doi/pdf/10.1080/014311698215748
http://www.academia.edu/download/40620363/A_comparative_analysis_of_image_fusion_m20151203-20388-69v53n.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.695.3322&rep=rep1&type=pdf
https://www.sciencedirect.com/science/article/abs/pii/S1566253516300173
https://www.sciencedirect.com/science/article/pii/S1566253519305470
https://doi.org/10.1080/01431161.2018.1433343
https://doi.org/10.1016/j.rse.2007.10.004
https://doi.org/10.14358/PERS.74.10.1201
https://doi.org/10.1080/01431160412331269698
https://doi.org/10.1080/01431161.2014.903435
https://link.springer.com/article/10.1007/s13157-012-0373-x
https://www.tandfonline.com/doi/full/10.1080/15481603.2014.912874
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2014a; Maxwell et al., 2014b; Maxwell et al., 2015). There is also research on the importance 

of the quality of reference data that the results are measured against (Stehman and Foody, 

2019; Foody 2009, 2010, 2011, 2013; Foody et al., 2016). This means that the core 

components of machine learning (algorithm selection and high quality class labels) are well 

studied. 

What the literature currently lacks is research that tackles some specific challenges of REDD+ 

monitoring and reporting head-on. These challenges include: 

• The classification algorithm tests in the previous paragraph tend to study one spectrally 

homogeneous study area. However, country-wide deforestation measurement will 

require a classifier that can recognize the same land cover types in many variations. 

Rivers can be clear or turbid. Mining sites can be active or abandoned. These have 

varying amount of new vegetation, varying amounts of bare surfaces, and mining ponds 

of many colours. This study will test classifers and remote sensing satellites in not just 

one study area, but multiple, and report on the differences in results. 

• The creation of class labels for each land cover type and activity. REDD+ land cover 

classes are spectrally complex and heterogeneous, which results in a large amount of 

overlap that results in confusion between land cover classes. The mix of confusion 

matrices and maps of class predictions and probabilities will provide a detailed 

understanding of the nature of this problem. 

When quantifying forest change, it is critical to define what counts as forest, as this will affect 

the measurement, and there are variations in definitions. The Food and Agriculture Organization 

of the United Nations defines forest as half hectare area with at least 10% canopy cover and 

tree height greater than 5 meters. The United Nations Framework Convention on Climate 

Change allows for some flexibility: individual countries can decide that a hectare must have 

10% to 30% canopy cover to be forest, with a tree height of 2-5 meters, as per the Marrakesh 

Agreement. 

This variation in definitions means that the interpretation of forest change figures depends on 

what each country is counting as forest. Romijn et al. (2013), using Indonesia as a case study, 

found that forest stock levels are 18% higher when using a “natural forest definition” rather 

than the local definition and 27% higher when using the FAO’s definition of forest cover.  

https://www.tandfonline.com/doi/full/10.1080/15481603.2014.912874
https://doi.org/10.14358/PERS.80.2.179-189
https://doi.org/10.1080/01431161.2014.1001086
https://doi.org/10.1016/j.rse.2019.05.018
https://doi.org/10.1016/j.rse.2019.05.018
https://doi.org/10.1080/01431160902755346
https://doi.org/10.1016/j.rse.2010.05.003
https://doi.org/10.1111/j.1466-8238.2010.00605.x
https://doi.org/10.1080/2150704X.2013.798708
https://doi.org/10.3390/ijgi5110199
https://doi.org/10.1016/j.envsci.2013.06.002
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Designating a forest area means deciding what areas will and will not be mapped for 

deforestation. For example, areas designated for indigenous peoples may be excluded because 

the practice of shifting cultivation (clearing small areas of forest land for cultivation and then 

allowing it to revert to natural forest) is considered as sustainable and not a change in land use 

(Heinimann et al., 2017). 

At first glance, the process of deforestation mapping is straightforward: Using remote sensing 

data, map areas that are forest and areas that are not forest. However, the previous two points 

indicate that forest loss figures, such as the Global Forest Watch figure cited above, require a 

close look at the data and assumptions behind the figures is needed. Other issues that create 

uncertainty are: 

• The spatial resolution (ground area covered by each pixel) of the image determines the 

amount of deforestation that will be detected – small deforestation events will not be 

detected at Landsat’s spatial resolution/pixel size (which is what Global Forest Watch 

primarily uses), but many of these small events add up to a large discrepancy. 

• The date of acquisition of the image matters due to seasonality of forest ecological 

processes, such as fruiting and leaf shedding. 

• Cloud cover in very cloudy areas can mask terrain cover, and therefore create gaps in 

the data by hiding the area under the clouds. 

The extensive literature on data fusion may provide a way to increase the amount of 

information available to the classifier to help it separate complex classes, and the extensive 

literature on classifier comparisons will provide options to find the appropriate algorithm for this 

problem. This study will start by examining the problem of separating classes in simple and 

complex situations. It will then examine the effect of data fusion, and end with a classifier 

comparison, using real-world REDD+ data. 

In summary, forests are essential to the future prosperity of humanity and the environment. 

Forests are being destroyed rapidly, but mitigation is possible by measuring and responding to 

land use change, if accurate and precise data can be collected on the location and extent of 

deforestation. The path toward this includes tests of classifiers and sensors singly and in 

combination (which have been done extensively) in the wide range of study areas that the 

classifier will encounter (which has not been done extensively). Chapters 2 and 3 will explain 

why Guyana, with its REDD+ program, is a suitable place for such research. The chapters after 

https://doi.org/10.1371/journal.pone.0184479
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that will provide results on classifier tests using several study sites across Guyana, eight satellite 

sensors, and several classification algorithms across two platforms (Google Earth Engine and 

Python). 

SECTION 1.3 DATA USED IN DEFORESTATION MAPPING 

For compatibility with GOFC-GOLD and ART-TREES standards, the data used to map 

deforestation consists of satellite images, along with some aerial photography for use as 

reference data. This section will examine factors to consider when selecting satellite images for 

classification purposes: the type of sensor, the spatial resolution, availability, and cost. 

DIFFERENT SENSOR TYPES 

There are a wide variety of different satellite remote sensing sensor types, which record 

different information, and therefore their usefulness in deforestation mapping varies. 

First, some elaboration on different sensor types is needed. Satellite remote sensing uses 

electromagnetic radiation to interact with a surface on Earth and record the reflectance or 

backscatter with an appropriate sensor. Different materials have different interactions with 

electromagnetic radiation (EM), which makes different information about the surface visible to 

different sensors. The different sensors are: 

• Multispectral sensors record visible and infrared light that comes from the Sun and is 

reflected by vegetation and other surfaces on the Earth’s surface. Different wavelengths 

provide information on different aspects of the surface. 

• SAR is an active sensor type. This means that SAR emits its own microwave energy, and 

then records the intensity of the microwave backscatter from the ground surface and 

return to the sensor. Microwaves emitted and received by SAR sensors are sensitive to 

water content, molecular structure and dielectric properties. 

Here are some important electromagnetic interactions in remote sensing of forests: 

• Plant pigments such as chlorophyll a & b and carotene absorb EM radiation most strongly 

at blue and red wavelengths. 

• Near Infrared EM radiation is strongly reflected by vegetation due to refraction at cell 

wall interfaces.  Leaf cell structure has low reflectance in visible light and very high 

reflectance in at near infrared wavelengths. Water, on the other hand, absorbs strongly 
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at near and shortwave infrared wavelengths. In Marais Sicre (2020), the near infrared 

band had the best performance of the optical bands in separating crops in agriculture 

remote sensing. 

• The Red Edge bands are in the transition between the visible and near infrared 

wavelength regions. 

• Vegetation moisture content has two absorption regions, corresponding with the two 

shortwave infrared bands. In Ferreira et al. (2019), the separation of tree species in 

Brazil was improved when shortwave infrared bands were added to visible light and near 

infrared bands. Including shortwave infrared bands improved detection of non-

photosynthetic forest litter that varies from one species to another. They also note that 

shortwave infrared has unique absorption features for biochemical markers such as 

nitrogen, water, cellulose and lignin (Kokaly et al., 2009). 

 

Both multispectral sensors and SAR sensors are therefore useful, and they are useful in 

different ways. This opens up the possibility of using both in combination. 

DIFFERENT SPATIAL RESOLUTIONS 

Satellite sensor images are made up of various pixels which have a particular size, the ground 

sample distance (GSD) that it covers, which is consistent across the image after the raw data 

has been processed. This determines the size of the details that can be resolved, and the size 

of the data. Mixed pixels happen when a land cover boundary goes through the middle of a 

pixel, which is more common at lower resolutions. 

Low resolution sensors (such as AVHRR, MODIS, MERIS) have pixel GSD that cover a very large 

area, meaning that an area of up to 1 km2 only has one data point and therefore average 

values are derived for that pixel. These satellites are therefore unable to resolve small areas, 

and miss small objects but can span the entire world, staying within the computational 

resources available to most researchers. 

Medium spatial resolution sensors (such as Landsat, Sentinel-1, Sentinel-2) have pixels that 

cover a much smaller GSD than the low resolution sensors and can resolve much smaller 

details. The Global Forest Watch figure cited above is based on Landsat data with 30 m GSD. 

https://www.sciencedirect.com/science/article/pii/S0303243418308948#sec0060
https://www.sciencedirect.com/science/article/pii/S0924271619300280#s0075
https://d1wqtxts1xzle7.cloudfront.net/48855447/Kokaly_RF_Asner_GP_Ollinger_SV_et_al._Ch20160915-16030-ppdo0o-libre.pdf?1473942426=&response-content-disposition=inline%3B+filename%3DCharacterizing_canopy_biochemistry_from.pdf&Expires=1705965086&Signature=NhXiR9nJWh2ij7rinDMg1HgdY6PD-64AU0vGuxUhKvEQZ0ZRyf9eJkpo01rHI1nUV-GbkXvourd~ODBY3MjAVhiI03W9rE~xyBmFsLgiwHuiGAdlu~lHVTUNp0VAsQtkTfXSFcP285ivK-CigiwTEFrRjqepFXsnBWparcNxdj9ztLPKo15YIUJSMnGy~M8Jv8lsqgXKlXpg-uCc3vm2-8ff2RjpQbp5CMQ7TWvnRgqR-meMyMYuFLi3xBD-QNuuqY-kGcbITaRU6uYuO0xGc-xI2~Agx1uWp42gfRA7TokBlPr46O6YN799kbUUA3K89ITa-NHBBQnhknp7isplUA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
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High resolution satellites have small enough pixels that they can resolve smaller and narrower 

features like roads. Examples include RapidEye (5 meter pixels), Planetscope (3 meter pixels), 

and SPOT (1.5 meter pixels after pan-sharpening). Pixel sizes are for the surface reflectance 

product. 

Very high resolution sensors (Worldview, SkySat, Pleiades, IKONOS, etc.) can see the smallest 

details, and can be used as reference data, but the file sizes are very large, and the camera 

may be angled away from looking straight down, creating distortion in the image. These factors 

mean that higher resolution is not always better. Increasing the resolution increases the 

computational requirements exponentially, and if all relevant details are visible at lower 

resolution, then  lower resolution data may be more suitable for analysis. 

COST 

Some remote sensing data products are available for free, and some data products are 

commercial and require funding to access them. The availability of sufficient funding is a major 

factor in determining which satellites can be used, as some are prohibitively expensive. Some 

satellite data is available free of charge, such as Landsat and the Sentinel missions. Satellite 

data products from commercial providers, such as Planet, Airbus and Maxar, require resources 

in order to task acquisition and to retrieve already acquired imagery from their commercial 

archive. Developing countries need to mitigate deforestation but have limited financial 

resources, which will affect the recommendations at the end of this research. When free image 

products are equal in accuracy to commercial products, the free products will be recommended. 

Commercial products will need to be higher in accuracy to justify the added expense. 

DIFFERENT TIME PERIODS 

Civilian Earth observation began in 1972 with the launch of ERTS-1, the satellite that would 

come to be known as Landsat 1. In the 53 years since, many satellites have come and gone. 

For contemporary mapping, satellites that are currently operational are needed, and for 

historical mapping, the satellites that were operational at the time are needed. Table 1 shows 

which satellites are available now and have been available in the past. 
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Table 1: Time periods covered by some commonly used satellites. 

Medium/High Resolution Multispectral Satellites SAR Satellites 

Landsat Multispectral Scanner 1972-2012 Radarsat-1 1995-2013 

Landsat Thematic Mapper 1982-2012 ALOS PALSAR 2006-2011 

SPOT-1 1986-1990 Radarsat-2 2007-present 

SPOT-2 1990-2009 TerraSAR-X 2007-present 

SPOT-3 1993-1997 ALOS-2 2014-2024 

SPOT-4 1998-2013 Sentinel-1 2014-present 

CBERS-1 1999-2003 Radarsat Constellation 2019-present 

MODIS-Terra and MODIS-Aqua 1999-present COSMO-SkyMed 2007-present 

Landsat Enhanced Thematic Mapper 1999-2021  

CBERS-2 2003-2009 Very High Resolution Multispectral 

SPOT-5 2003-2015 IKONOS 2000-2015 

Resourcesat-1 2003-present QuickBird 2001-2015 

ALOS AVNIR 2006-2011 Worldview-1 2007-present 

RapidEye 2008-2020 GeoEye-1 2008-present 

Resourcesat-2 2011-present Worldview-2 2009-present 

SPOT-6 2012-present Worldview-3 2014-present 

Landsat Operational Land Imager 2013-present Worldview-4 2016-2019 

Planetscope Dove Classic 2014-2022 SkySat 2013-present 

SPOT-7 2014-2023   

CBERS-4 2014-present   

Sentinel-2 Multispectral Imager 2015-present   

Planetscope Dove R 2019-2022   

CBERS-4A 2019-present   

Planetscope SuperDove 2020-present   
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SECTION 1.4 REDD+ AS A SOLUTION TO DEFORESTATION 

Implementing remote sensing-based tools to the problem of deforestation requires policy 

infrastructure that will enable developing countries to acquire the financial, material and 

technological resources required for monitoring deforestation. The United Nations Framework 

Convention on Climate Change has responded to this problem by creating the REDD program 

(Reducing Emissions from Deforestation and Forest Degradation), which was later expanded to 

REDD+ (the + is about sustainable forest management and restoration of forest carbon stocks) 

(UN-REDD, 2020). This is a global program where developed countries provide results-based 

financial support to developing countries for the purpose of limiting deforestation. Here are the 

key points in the development of REDD+: 

• In 1994, the UNFCC pledged to ‘stabilize green-house gas concentration’, ‘within a time 

frame sufficient to allow ecosystems to adapt naturally’, formalised under the 1997 Kyoto 

Protocol, and 2013 Doha Amendment, which established carbon-trading protocols.  

• In 2005, Costa Rica and Papua New Guinea led discussion of REDD (Reducing Emissions 

from Deforestation and Degradation) at COP11. 

• In 2007, the Bali Action Plan was adopted at COP13 (UNFCCC, n.d.). It includes a shared 

long-term goal for emissions reduction, as well as components for mitigation, adaptation, 

technology and financing. 

• In 2010, the Cancun Safeguards were adopted (UN-REDD, 2024). They include: 

o That actions are complementary or consistent with the objectives of national and 

international programs. 

o Transparent and effective governance structures. 

o Respect for knowledge and rights of Indigenous and local communities. 

o The full and effective participation of stakeholders. 

o Actions are consistent with conservation. 

o Actions to address the risk of reversals. 

o Actions to reduce displacement of emissions. 

• In 2013, the Warsaw Framework was adopted at COP19 (UNFCCC, 2024). This is a series 

of decisions (some adopted at COP21 in 2015) concerning national Monitoring, Reporting 

and Verification (MRV) systems. 

https://redd.unfccc.int/
https://unfccc.int/process/conferences/the-big-picture/milestones/bali-road-map
https://www.un-redd.org/glossary/cancun-safeguards
https://redd.unfccc.int/fact-sheets/warsaw-framework-for-redd.html
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• In 2015, Article 5 of the Paris Agreement called for parties to conserve and enhance 

carbon sinks and reservoirs, and to implement results-based payments for reducing 

deforestation and forest degradation (United Nations, 2015). 

• In 2022, COP26 initiated Architecture for REDD+ Transactions (ART), “a standalone, 

independent program that develops and administers standardized procedures for 

crediting emission reductions and removals from national and large sub-national REDD+ 

programs” (ART, 2021). Its standard for monitoring and verification of emissions 

removals is The REDD+ Environmental Excellence Standard (TREES). 

• The LEAF Coalition was established to bring together forest governments, donor 

governments and corporate donors to enable REDD+ financing through the sale of 

carbon credits (LEAF Coalition, n.d.). These credits must meet the standard set by ART-

TREES. 

By 2019, 39 countries were participating in REDD+ agreements. As of 2020, the status is 

(Forest Carbon Partnership, 2023): 

• One country where ART Trees has been approved at time of writing – The Cooperative 

Republic of Guyana 

• 6 countries that are eligible to receive results-based financial support. 

• 12 countries that have submitted a national strategy or action plan. 

• 15 countries that have submitted a summary of information on how safeguards are being 

addressed and respected. 

• 50 countries that have submitted a REDD+ forest reference level or forest reference 

emission level for technical assessment to the UNFCCC, covering more than 70% of the 

total forest area in developing countries. 

When analyzing satellite images to map forest change, the default analytical method is visual 

interpretation. This is the easiest to implement, and experienced operators can classify images 

with high accuracy. However, visual interpretation is very time consuming and would benefit 

from automation using machine learning. Classification and segmentation of images is a well-

established task with a large scientific literature documenting research and industry experience 

which can be applied to the problem of deforestation mapping. The rest of this chapter will 

introduce three examples of land use change mapping from Mexico, Indonesia, and Guyana. 

https://unfccc.int/sites/default/files/english_paris_agreement.pdf
https://www.artredd.org/about-us/
https://www.leafcoalition.org/about
https://www.forestcarbonpartnership.org/countries
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They will illustrate the challenges of automating land use / deforestation mapping, as well as 

the potential for solutions. 

SECTION 1.5 MEXICO’S AUTOMATED DEFORESTATION MAPPING SYSTEM  

One example of an automated REDD+ MRVS is Mexico. In the early 2010s, Mexico adopted a 

fully automated deforestation detection system, called Monitoring Activity Data in Mexico, or 

MAD-Mex. The methodology looks like this: (Gebhardt, n.d.) 

• The historical baseline was made using Landsat, which had 40 years of data in 2012. In 

2012, their plan for the future was to incorporate high resolution RapidEye images into 

the workflow.  

• The image processing pipeline ends with cloud masked Landsat images, four vegetation 

indices, a digital elevation model with aspects and slope, and descriptive metrics for each 

band in the time series (Minimum, Maximum, Average, Range, Standard Deviation). 

• The prepared images are then segmented using object labels and vectorization, and 

object classes are mapped with the help of reference vector cartography. Objects are 

classified using 10-fold boosted decision trees. 

• Accuracy assessment is done using reference field inventory points. Validation was 

performed at the national level because there were too few samples per Landsat frame. 

Only those forest inventory points were used where each sub-plot has the same land 

cover type. Random area-weighted stratified sampling was done, using the land cover 

classes as strata. 

• The reference data comes from the National Institute of Statistics and Geography of 

Mexico (INEGI), which has published national vegetation maps at a scale of 1:250.000 

with a 25 ha minimum mapping area. 

• The mapping process includes manual preliminary interpretation of satellite images, field 

verification in selected sites, reinterpretation based on field verification and comparative 

analysis, analysis of and integration of information to object polygons, a map which has 

layers on vegetation types, vegetation ecosystems, agricultural usage, and other 

information. 

 

 

https://www.un-redd.org/sites/default/files/2021-10/Dia_2_Grupo_2_2_MAD-MEX-Landsat_Methodology_Gebhardt.pdf
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Before moving on, a word about measuring accuracy using confusion matrices: 

• Interpretation of Confusion Matrix: The rows and columns represent the true labels and 

predicted labels. In data science in general, which one represented which is chosen by 

the researcher and labelled, and in remote sensing, the convention is to have the rows 

represent true labels and the columns represent predicted labels. In this research, the 

remote sensing convention is followed. The diagonal of the matrix is the correct 

predictions, and the upper and lower triangular matrices around it are the incorrect 

predictions, with the true class and falsely predicted class indicated. 

• Usefulness of Confusion Matrices: The goal of this research is to understand the ability of 

different classifiers and sensors to classify deforestation drivers, and a confusion matrix 

provides the most detailed class-by-class breakdown of the errors. 

• Interpretation of Accuracy: In terms of a confusion matrix, the accuracy is the number of 

pixels in the diagonal divided by the number of pixels in the confusion matrix. Accuracy 

is strongly influenced by class imbalance. A classifier where the majority class is 

predicted very accurately, and the minority class is predicted very inaccurately, will have 

high accuracy because the majority of pixels were classified accurately. 

• Usefulness of Accuracy: Accuracy is a simple way of summarizing the overall 

performance of a classifier, and accuracy scores are easy to compare. Accuracy scores 

do not provide details of which classes the classifier handled well and which it didn’t, and 

accuracy is sensitive to unbalanced data. 

• Interpretation of Consumer’s Accuracy: This indicates how many predictions in each class 

were correct. 

• Interpretation of Producer’s Accuracy: This indicates how many examples of each class 

were found.  

• Usefulness of Producer’s and Consumer’s Accuracy: These are two ways of summarizing 

the per-class performance of a classifier, and they can be easily added to a confusion 

matrix as an extra row and column. In this way, they show the number of predictions by 

class that were correct, and the number of samples of each class that were found, with 

the confusion matrix entries that they’re summarizing. 
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Table 2: The components of a confusion matrix. 

  True Labels Consumer’s 

Accuracy   Forest Mining 

Predicted 

labels 

Forest Correctly identified forest Mining identified as 

forest 

Percentage of 

forest predictions 

that are correct 

Mining Forest identified as mining Correctly identified 

mining 

Percentage of 

mining predictions 

that are correct 

 Producer’s 

Accuracy 

Percentage of true forest 

pixels that the model found 

Percentage of true 

mining pixel found 

Overall Accuracy 

 

Table 3: A demonstration set of predictions. This is the data source for the example 

confusion matrix in Table 4 below. 

True Label Forest Mining Forest Mining Forest Mining Forest Mining 

Prediction Forest Mining Mining Mining Forest Forest Forest Mining 

 

Table 4: A confusion matrix derived from the data in Table 3. 

  True Labels Consumer’s 

Accuracy Predicted 

labels 

 Forest Mining 

Forest 3 1 75% 

 Mining 1 3 75% 

Producer’s Accuracy 75% 75% 75% 
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Gebhardt et al. (2014), representing four Mexican government agencies, assessed the accuracy 

of its mapping using the data and workflow described above. Three types of accuracy were 

measured:  

• The overall accuracy is the percentage of predictions that were correct. This ranged from 

62% to 65.7%. 

• The Producer’s Accuracy is the percentage of pixels in each class that were predicted. 

This ranged from 53.4% (Temperate Mixed Forest) to 77.5% (Tropical Evergreen 

Forest).  

• The Consumer’s Accuracy is the percentage of predictions in each class that were 

correct. This ranged from 30.5% (Wetland) to 91.1% (Scrubland). 

One thing to note about that accuracy is that this is not sufficient to fully automate 

deforestation mapping. The number of errors is significant enough that the output would need 

a lot of manual inspection and correction. This could negate the labour saving that automation 

would ideally provide. 

Another issue is that the accuracy assessment is biased, because it is based, not on a random 

sample distributed across the country, but on government field work (specifically, the National 

Institute of Statistics and Geography in Mexico). Government fieldwork is not distributed 

randomly across the country, and so the sample is likely to be biased and not reflect the true 

population. Government fieldwork is instead driven by policy priorities and accessibility of sites, 

which introduces bias. For example, the reference data is biased toward large-scale permanent 

agriculture, and a lack of representations of small-scale agriculture. Mas et al. (2014) redid the 

analysis in Gebhardt et al. (2014) and found that, when a truly random sample was used, the 

accuracy was much lower.  

Mas et al. (2014) also point out that the change figures presented are implausible. The change 

over the 18 years from 1993 to 2008 is 40%, and the changes from 2002 to 2005 and 2005 to 

2008 are 43%. This is the consequence of building a classification model using low quality 

reference data and biased samples. 

Finally, Mas et al. (2014) argue that a fully automated approach will not produce sufficiently 

accurate results. It relies exclusively on spectral data, leading to much confusion. They argue 

that automation must assisted rather than replace human decision making. 

https://doi.org/10.3390/rs6053923
https://doi.org/10.3390/rs8070533
https://doi.org/10.3390/rs6053923
https://doi.org/10.3390/rs8070533
https://doi.org/10.3390/rs8070533
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That last point is a valid argument against relying too much on the system presented in Mexico, 

and other systems that rely exclusively on multispectral data. However, machine learning is fully 

capable of incorporating data from other sources, such as SAR, Lidar, elevation models, 

hyperspectral sensors, and ancillary GIS data. The last problem that Mas et al. identify is there 

one that can easily be solved with further research. The next two sections will look at two other 

case studies in automation of deforestation mapping: Indonesia and Guyana. 

SECTION 1.6 INDONESIA’S AUTOMATED DEFORESTATION MAPPING SYSTEM 

Another country that has automated REDD+ MRV work is Indonesia. Based on the summary in 

Kustiyo et al. (2015), Indonesia has built its National Carbon Accounting System, which has two 

components: the remote sensing component and the emissions estimation component. The 

satellite data they use is a mix of Landsat 8 and SPOT 5/6/7. This was supplemented by 

information from experts, along with GIS data, maps and ground information. The ground truth 

data was satellite images with 1-2 meter resolution where the boundary between forest and 

non-forest is obvious. 

Their workflow starts with image selection and preparation. One cloud-free image from each 

year is selected. One clear image is preferred, but rarely possible in a place as cloudy as 

Indonesia. Orthorectification, radiometric calibration, cloud masking and mosaicking are then 

applied. 

The change mapping process starts with the creation of a forest base probability image using 

supervised classification, done with the help of expert input on land cover, and statistical 

procedures including canonical variate analysis. Stratification was used because of the variation 

in land cover across Indonesia. It was noted that a single classifier does not work on all areas 

around Indonesia.  After the base mapping is done, forest cover probabilities for the other years 

are derived using a semi-automated matching process. In the multi-temporal classification 

stage, individual year classifications are combined and refined using Bayesian networks, using 

the entire time series, with weights related to accuracy, temporal change and neighbouring 

values. 

So far, two efforts to automate deforestation mapping have been presented. They have 

shortcomings, related to the quality of reference data, methodological issues, and the problem 

of separating spectrally similar land cover types. There is a clear need for research to solve the 

https://isprs-archives.copernicus.org/articles/XL-7-W3/441/2015/isprsarchives-XL-7-W3-441-2015.pdf
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latter two problems, in a region that has higher quality reference data. This chapter will end 

with an introduction to such a region. 

SECTION 1.7 GUYANA’S REDD+ PROGRAM 

The first REDD+ program to implement results-based payments was the Guyana-Norway 

REDD+ Agreement (Guyana Forestry Commission, 2020). In the original agreement, Norway 

agreed to provide up to USD 250 million in results-based payments to help Guyana transition to 

a low-carbon green development-based economy. 

The goal of the MRVS project is to contribute to Guyana’s green development pathway by 

implementing the MRVS, reporting on the REDD+ Interim Indicators, and streamlining the 

REDD+ indicators. The Guyana Forestry Commission has approached this as a continuous 

learning project, and Guyana’s MRVS has been expanded and refined considerably over the last 

ten years. 

Guyana is a High Forest Low Deforestation country, where about 85% of the country is forest, 

and deforestation from 1993 to 2013 was 0.02% to 0.079% per year. The most common driver 

of deforestation is mining, which accounts for 60% of deforestation from 1990 to 2009 (pre-

REDD+) and 90% from 2009 to 2012 (REDD+ period) (Bholanath and Cort, 2015). In a world 

where many parts of the tropical rainforest around the Amazon River are being rapidly 

destroyed, releasing large amounts of carbon into the atmosphere, Guyana has been the 

opposite. Their mining and other activities have destroyed a small fraction of their forests, and 

the Guyana Forestry Commission (GFC) has been dedicated to preserving the extensive forest 

that was never lost. 

An automated workflow based on machine learning needs to be validated against a high quality 

benchmark before it can be deployed. Guyana is able to serve as this benchmark because it has 

not attempted to automate deforestation measurement and reporting process. Instead, Guyana 

has built a robust REDD+ program based on human interpreters who have 15 years of 

accumulated experience and institutional knowledge.  

The benefits go both ways. Machine learning research would benefit from the resources and 

experience that the Guyana Forestry Commission has. Research on machine learning in remote 

sensing of forests benefits from a case study that offers high quality reference data, sufficient 

examples of different deforestation drivers, and opportunities for industry applications. Guyana 

https://forestry.gov.gy/wp-content/uploads/2020/02/Guyana-MRV-Support-Mid-Term-Evaluation-Final-Report-17.02.2020.pdf
https://isprs-archives.copernicus.org/articles/XL-7-W3/315/2015/isprsarchives-XL-7-W3-315-2015.pdf
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is a prime example of this. Guyana and Norway signed a REDD+ agreement in 2009, one of the 

first in the world, to be managed by the Guyana Forestry Commission (GFC). Since then, GFC 

has acquired thirteen years of experience in REDD+ measurement, reporting and verification. 

GFC currently holds six years (2017, 2018, 2019, 2021, 2022, 2023) of aerial photography and 

very high resolution satellite images of deforestation sites, which provides a first-rate set of 

reference data. GFC also stands to benefit greatly from the results of this research – detailed 

results on the optimal machine learning workflow will save a lot of labour and money in their 

efforts to monitor and mitigate deforestation.  

In summary, Guyana’s REDD+ program has the resources needed to do high quality machine 

learning resources and the ability to implement solutions that come out of this research. This 

means that Guyana is the ideal case study in an effort to solve the problems that have made 

automation difficult so far. This research is being done in the context of a successful REDD+ 

program. In October 2021, Guyana because the first country to have TREES registration 

documents accepted (ART, 2021b). In December 2022, Guyana received the world first ART-

TREES credits (ART, 2022). The next chapter will go into more detail about deforestation and 

REDD+ methodology in the Guyana context. 

SECTION 1.8 SUMMARY AND CONCLUSION 

In summary, deforestation is a pressing global problem, with major implications for climate 

change and the humans who live in tropical forests. Dozens of developing countries are using 

remote sensing to measure deforestation and receive financial assistance under the REDD+ 

program and its associated policy frameworks (ART and TREES). Currently, this is done 

manually by humans who interpret countrywide remote sensing data. If it were possible to 

automate this work with machine learning, then a lot of labour would be saved in measuring 

deforestation, labour that could be redirected toward responding to deforestation. 

There have been previous efforts to automate deforestation measurement with machine 

learning. The main problem is that the accuracy has not been high enough for deforestation 

mapping. The consequences of errors are great. False positives will overestimate deforestation, 

which will have severe financial and political consequences. False negatives will result in the 

country not responding to deforestation events that are happening.  

https://www.artredd.org/art-approves-trees-documents-submitted-by-guyana/
https://www.artredd.org/wp-content/uploads/2022/12/ART-Issues-Worlds-First-Jurisdictional-Forestry-TREES-Carbon-Credits-to-Guyana.pdf
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There is room for improvement in methodology. The existing accuracy assessments lack 

predicted land cover maps that show the location and spatial distribution of errors, and they 

lack class probability images, that would provide the spatial distribution of uncertainty. 

Guyana is a suitable country to provide a benchmark to validate machine learning. This includes 

aerial photography with sub-meter resolution. This would allow very close examination of 

classifier performance at a variety of locations.  
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CHAPTER 2: THE NATURE AND PREPARATION OF THE DATA IN GUYANA 

 

Figure 1: A map of Guyana showing the extent of forest (green) and the locations of 

the main study sites. Data provided by Guyana Forestry Commission 
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SECTION 2.1 OVERVIEW OF THE GUYANA REDD+ PROGRAM 

Guyana’s REDD+ program began in 2009, when The Cooperative Republic of Guyana and the 

Kingdom of Norway signed a REDD+ agreement. This program is administered by the Guyana 

Forestry Commission (GFC). GFC is responsible for advising the Minister of the Environment on 

forest policy, laws and regulations, and for the management of State Forests. GFC’s work is 

guided by the National Forest Plan, which was created to address the National Forest Policy. 

GFC develops and monitors standards for forest sector operations, develops and implements 

forest protection and conservation strategies, oversees forest research and provides support 

and guidance on forest education and training. 

As part of the 2009 REDD+ agreement, Guyana became responsible for setting up a 

Measurement, Reporting and Verification System (MRVS). Payments were tied to the amount of 

forest that is lost, and no money is provided if deforestation crosses a specified threshold. 

Recently, Guyana has been transitioning to financing Guyana’s deforestation work by selling 

carbon credits on the private market, under ART-TREES (Architecture for REDD+ Transactions 

and The REDD+ Environmental Excellence Standard).  

Guyana’s REDD+ program has grown in many ways over the last fourteen years. In 2009, 

Guyana developed a three-year roadmap as a framework for a national REDD+ MRVS (Guyana 

Forestry Commission, 2019). This roadmap outlines progressive steps to build a fully 

implemented MRVS. The purpose of the MRVS is to monitor, report and verify forest carbon 

emissions from deforestation and forest degradation. The objective of the initial MRVS Road 

Map was to undertake comprehensive, consistent, transparent and verifiable assessment of 

forest area from 1990 to 2009 using Landsat-type satellite data that meets the criteria of the 

IPCC Good Practice Guidelines for LULUCF (Guyana Forestry Commission, 2019). 

In conjunction with its REDD+ program, Guyana launched its Low Carbon Development 

strategy, which seeks to promote economic development while combatting climate change. Its 

two goals are to transform Guyana’s economy to deliver greater economic and social 

development by following a low carbon development path, and to provide a model to the world 

on how climate change can be addressed through low carbon development in developing 

countries if the international community takes the necessary collective action, especially relating 

to REDD+ (Guyana Forestry Commission, 2019). 

https://forestry.gov.gy/wp-content/uploads/2019/11/MRVS-Year-8-Summary-Report.pdf
https://forestry.gov.gy/wp-content/uploads/2019/11/MRVS-Year-8-Summary-Report.pdf
https://forestry.gov.gy/wp-content/uploads/2019/11/MRVS-Year-8-Summary-Report.pdf
https://forestry.gov.gy/wp-content/uploads/2019/11/MRVS-Year-8-Summary-Report.pdf
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From its inception, Guyana’s MRVS was designed to include data from multiple sources that can 

be combined in a consistent manner. There was a stepwise approach allowing time to bridge 

gaps in capacity allowing the integration of image processing and time series analysis routines. 

In 2010, forest change mapping was done using a combination of Landsat and DMC images. In 

2011, Guyana began using high resolution RapidEye images. In 2012, 2013 and 2014, very high 

resolution aerial photography of high risk areas was acquired, something not seen in the other 

two REDD+ case studies (Mexico and Indonesia). 

In 2014, Phase 2 of the roadmap was developed to consolidate and expand capacities for 

national REDD+ reporting and MRV, and support Guyana in meeting evolving international 

reporting requirements from the UNFCC and continue to fulfill additional reporting 

requirements. In 2017, the MRVS moved into its second phase in line with tasks set out in the 

MRVS Road Map (Guyana Forestry Commission, 2019). The initial steps of the REDD+ program 

allowed for a historical assessment of forest cover to be completed, key database integration to 

be fulfilled, and for interim/intermediate indicators of emissions from deforestation and forest 

degradation to be reported (Guyana Forestry Commission, 2019). In the time since, reporting 

on timber harvesting and illegal logging has been mainstreamed under full emissions 

accounting using existing methods.  

Mining and infrastructure degradation estimates are calculated using new methods as part of a 

move toward more comprehensive yet sustainable methods for MRVS implementation after 

2020. The sustainability means avoiding costly high resolution satellite images or aerial 

photography, as part of Guyana’s desire to move toward a lower cost REDD+ implementation 

(Guyana Forestry Commission, 2019). In Phase 2, Guyana looked at lower cost satellite options, 

and found that Sentinel-2 and Landsat provided a good alternative to RapidEye. Sentinel-2’s 

five-day revisit time will be used to develop near real time, continuous monitoring within the 

MRVS. Using Sentinel-2 and Landsat together allows for 6-7 observations per month. From 

2015, a combination of Sentinel-2 and Landsat data was primarily used. In 2017, 2018 and 

2019, aerial photography was commissioned. It was recorded by mounting a GeoVantage 

multispectral (RGB + Near Infrared) sensor to a Cessna and flying over target areas. Starting in 

2019, GFC started using Sentinel-1 quarterly composites, along with a mix of Planetscope, 

RapidEye, Sentinel-2 and Landsat data. Typically, the highest resolution cloud free image is 

used to find deforestation events. The MRVS has been built to be data agnostic. 

https://forestry.gov.gy/wp-content/uploads/2019/11/MRVS-Year-8-Summary-Report.pdf
https://forestry.gov.gy/wp-content/uploads/2019/11/MRVS-Year-8-Summary-Report.pdf
https://forestry.gov.gy/wp-content/uploads/2019/11/MRVS-Year-8-Summary-Report.pdf
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One way in which Guyana’s REDD+ program has increased in sophistication is that the Guyana 

Forestry Commission measured forest degradation, and was one of very few countries to do so. 

After the ART Workbook was introduced, degradation was modelled via a buffer around 

deforestation events. 

In 2018, the reporting was based on several REDD+ Interim Indicators, which allow for 

reporting while the full MRVS is under development. The framework for that year moved away 

from Interim Indicators toward the reporting of total forest carbon emissions and removals, 

with a focus on reporting emissions. The Guyana Forestry Commission’s Monitoring, Reporting 

and Verification System (MRVS) has matured to the point where it reports annual forest carbon 

emissions and removals by activities caused by deforestation and forest degradation. The forest 

degradation work includes establishing national carbon conversion values, expansion factors, 

wood density and root/shoot ratios, and a detailed assessment of key processes affecting forest 

carbon, including a long-term monitoring plan for forest carbon (Guyana Forestry Commission, 

2019).  

In Phase 2, local communities became involved in the MRVS. This allows REDD+ activities to 

benefit from the skills and experience of local communities, in addition to the expert knowledge 

in GFC. In addition, the list of objectives of the program has grown, and now includes scientific 

journal publications. 

In 2020, Phase 3 of the roadmap was developed to create a path toward a fully operational 

forest carbon reporting platform, suitable for a potential market-based mechanism while 

meeting all UNFCCC recommendations. 

Recent developments in remote sensing technology have opened up new options for higher 

resolution optical satellites (such as SkySat and Worldview), higher revisit times (Planetscope), 

and online platforms that support faster and more efficient use of data (such as Google Earth 

Engine). GFC has also negotiated with ESRI for access to their full mapping suite, including Web 

dashboards. From 2021, SkySat and Worldview-3 data has been used as reference data, along 

with a mix of Planetscope, Sentinel-2, Landsat and Sentinel-1 data. 

Figure 2 below shows the components of Guyana’s REDD+ program. In Figure 1, my research 

fits into “Satellite Data – Deforestation”, at the top left. Key data in my research was provided 

by the Guyana Forestry Commission, and my outputs will feed into MRVS work. If this step 

https://forestry.gov.gy/wp-content/uploads/2019/11/MRVS-Year-8-Summary-Report.pdf
https://forestry.gov.gy/wp-content/uploads/2019/11/MRVS-Year-8-Summary-Report.pdf
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received near-real-time inputs with greater accuracy and precision, then this will support new 

measurement and monitoring products in the future. With infrastructure like this already in 

place, the outputs of this research will be ready for application immediately. 

 

 

Figure 2: The components of Guyana's REDD+ program and their connections. This research is 

part of the “Satellite Data – Deforestation” component in the top left. The outputs of this 

research will feed into the MRVS component beside it. Source: https://forestry.gov.gy/wp-

content/uploads/2022/07/Guyana-MRVS-Report-Year-2021-Final-1.pdf  

 

In summary, one reason that Guyana is an excellent case study in remote sensing of forests is 

that the existing deforestation monitoring program has undergone fourteen years of 

development and experience. A wealth of data have already been collected, and the issues of 

mapping forest change in this area are already well understood. The results of the MRVS have 

applications to a range of policy and decision-making functions in the natural resources sector, 

especially forest management. Over the past decade, Guyana’s MRVS has generated a wealth 

of data that can be used to understand the multiple uses of forests (Guyana Forestry 

Commission, 2019). Today, the potential of the data generated through annual mapping of 

https://forestry.gov.gy/wp-content/uploads/2022/07/Guyana-MRVS-Report-Year-2021-Final-1.pdf
https://forestry.gov.gy/wp-content/uploads/2022/07/Guyana-MRVS-Report-Year-2021-Final-1.pdf
https://forestry.gov.gy/wp-content/uploads/2019/11/MRVS-Year-8-Summary-Report.pdf
https://forestry.gov.gy/wp-content/uploads/2019/11/MRVS-Year-8-Summary-Report.pdf
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forest change extends well beyond the intended MRV function into policy, decision-making, 

integration of compliance functions, and more effective management within the natural 

resources sector. This research will therefore undertake an in-depth analysis of classifier and 

sensor performance for remote sensing of forests and relevant land cover changes in the 

context of Guyana’s REDD+ program. 

SECTION 2.2 THE GUYANA FORESTRY COMMISSION’S CHANGE MAPPING PROCESS 

The process of mapping change is about identifying and measuring permanent changes in land 

use that results from anthropogenic activities, and then digitizing them into a map. In Guyana, 

change is mapped by digitizing change areas in satellite images, using a Geographic 

Information System (GIS). The entire country is divided into 24 tiles, and each tile is assigned 

to a technician. The operator searches for change within their tile and digitizes it. The current 

monitoring system is designed to map change events in the year in which they occur, and then 

monitor any change that occurs over that area each year. When a polygon’s status is constant, 

its land use type is updated to stay consistent with the previous analysis. When there is a 

change in the land use type, this is recorded using the appropriate driver for that change. 

Currently, the satellite sensors being used are Planetscope (Dove Classic sensor), Sentinel-2 

(Multispectral Instrument sensor) and Landsat (Operational Land Imager instrument), with 

Sentinel-2 being the default. Funding for Planetscope data has been provided by the Norway 

International Climate and Forests Initiative (NICFI). Landsat is being used as a supplement to 

fill in gaps in Sentinel-2 data due to clouds. This is supplemented by tasking SkySat to acquire 

very high-resolution data in targeted areas. The Guyana Forestry Commission’s standard 

operating procedure includes these steps: 

1. If the Sentinel-2 images are offset from the official UTM grid, apply spatial corrections 

using control points. 

2. The Minimum Mapping Unit in their process is one hectare, except for roads of all types. 

For roads, the minimum mapping unit is one stretch of road that is a minimum of 10 

meters wide and 100 meters long. Smaller roads than this are not counted. This applies 

to roads made of any material. In this study, the one hectare Minimum Mapping Unit is 

not used; the mapping area is the pixel size of each satellite sensor. The pixels for each 
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satellite are 3 meters wide (Planetscope), five meters wide (RapidEye), 10 meters wide 

(Sentinel-2), and 30 meters wide (Landsat). 

3. Mapping Deforestation Events starts with a systematic review of each 1 km grid in a 24 

km2 tile. When change events are found, they are digitized using satellite imagery, 

previous mapping, and Enhanced Vegetation Index (EVI) data. Land use change is 

attributed by documenting satellite image evidence, the period that the change occurred 

in, the change driver and the final land use. Attributes are applied to the Change Master 

using the Change Toolbar. 

4. Quality Assurance and Quality Control (QA/QC) is done by an analyst in the Guyana 

Forestry Commission’s mapping team who systematically checks through 445 24 km tiles, 

validates the no overlaps rule, reviews the attribution and ensures that the driver and 

land use type is recorded. Agency reference data and very high spatial resolution images 

are available to assist with validation. 

5. Independent Accuracy Assessment is done yearly by Durham University. 

6. After the QA/QC work is done, the data passes through two additional models to produce 

the final reported figures. The first model ingests the change data created in the 

previous steps, along with reference data on forest types, the country boundary, land 

classes, and potential for change and accessibility. It verifies that no change events have 

been assigned to areas that were confirmed not to have change, and it assigns the 

information in the reference data list above to each change event. The second model 

uses the output of the first model to produce a series of tables and charts from 

templates, for the final report. 

7. The final all change dataset is produced using an ArcGIS model, which uses as inputs the 

change master, the non-forest layer, the country boundary, the land classes layer, and 

the potential for change and accessibility map. All changes are clipped against the non-

forest data to ensure that no change areas have been mapped in confirmed non-forest 

areas. 

The manual change mapping process is labour intensive. The next step for GFC is automated 

detection of deforestation events, which will reduce the cost of monitoring deforestation, and 

allow human experts to spend less time finding deforestation and more time responding to 

deforestation. 
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SECTION 2.3 CREATING CLASS LABELS BASED ON THE LAND COVER TYPES 

The goal of this research is to train a model that takes pixel values as inputs and outputs the 

correct land cover category or deforestation driver, making this a classification problem. 

Therefore, a critical step is creating a set of classes that meets REDD+ reporting requirements. 

The Guyana Forestry Commission’s Standard Operating Procedure describes both land cover 

classes (Table 5) and deforestation drivers, based on IPCC classes (see Table 5 column IPCC 

Description). A land use class is the resulting land use based on the driver. For example, bare 

land is the land use class resulting from mining activity. Anthropogenic activities that drive such 

land use change include mining, roads, settlements, logging and agriculture. 

The way for a computer to automatically identify these land cover types is to recognize their 

colours, textures, shapes and context clues. Forests have one colour and texture, rivers have 

another. Mining sites are identified by recognizing a cluster of objects that always occur 

together – ponds, bare surfaces, roads and vegetation growing inside the mine. One of the 

identifying features of agriculture is that the fields tend to be rectangular. Settlements are 

recognized as buildings in a grid of roads, with grass, isolated trees and paved surfaces. 

Machine learning normally uses colour information (pixel values) only, and Convolutional Neural 

Networks can also use textures and structures. None of these algorithms use the context clues 

that a human would use, so one of the challenges of this research is finding a way to separate 

these classes without using context information. 
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Table 5: Schema for Guyana and IPCC land cover types. Taken from the Guyana 

Forestry Commission’s standard operating procedure for 2023. 

Class Guyana Description IPCC Description 

Forest Mixed forest Forest Land 

Wallaba/Dakama/Muri forest 

Swamp/Marsh forest 

Montane forest 

Mangrove forest 

Savannah Forest 

Shifting Agriculture systems 

Non-Forest Cropland Cropland 

Tropical unmanaged grassland Grassland 

 Tropical unmanaged shrub-land 

Open Water Wetlands 

 Herbaceous unmanaged wetland 

Settlement Settlements 

 Pre-1990 Mining Areas 

Rock Other lands 

Bare-land 

 

The land cover classes being used are based on the set of classes used in accuracy assessment. 

The classes being used are: Forest, River, Mining, Road, Bare Land, Settlement, Agriculture, 

Grassland. 

From 2017 to 2019, Guyana commissioned high resolution aerial photography of high risk 

areas. The sensor was GeoVantage, which records Blue, Green, Red and Near Infrared at 25 to 

60 cm resolution, depending on altitude. It was mounted on a Cessna aircraft. Unlike satellite 

images, these are cloud-free multispectral images (though they do have cloud shadow). 
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The study areas created in this research are areas that have GeoVantage aerial photography. 

Different air photos have different combinations of classes represented, and in each test in the 

results chapters (Chapters 4-8), a pair of images with the desired combination of classes was 

selected. One member of the pair is for training the model, and the other member is for testing 

the model. 

These air photos record details as fine as individual vehicles and the canopy of individual trees, 

and as such allow for maximum precision in identifying boundaries between land cover types. 

As part of this research, the labels were created by tracing the land cover boundaries in ArcGIS. 

Then, a shapefile was created that has the land cover boundaries, and then it was converted to 

a raster. The very high resolution of the reference data means that very small details are 

visible, including details that are not visible in the data being used for training and validation. 

They were therefore used to create class labels. Here’s how they fit into machine learning: 

• Start with the data and the class labels. The class labels are the correct answers, and the 

data occupies the place of a question. 

• Train a model that uses the data and the labels to figure out how to go from the 

question to the answer. 

• Prepare another dataset and class label set. Run the new data through the model to 

make predictions. This asks the computer a question, and the computer uses the model 

to give answers. 

• Compare the predictions with the class labels to assess the model’s accuracy. If the 

accuracy is low, then the model is bad, and cannot be used to make reliable predictions. 

If the accuracy is high enough, then the model is good, and will make reliable 

predictions. 

• The study areas are areas that have GeoVantage aerial photography, and they represent 

a wide range of land cover type combinations. 

SECTION 2.4 STUDY AREAS AND EXAMPLES OF CLASSES 

The satellite remote sensing data used in this study comes from the locations where very high 

resolution aerial photography was acquired. From 2017 to 2019, the Guyana Forestry 

Commission ordered aerial photography of a sample of high-risk areas. These photographs 

were taken using an airborne GeoVantage multispectral sensor (with blue, green, red, and near 

infrared bands) mounted on a Cessna aircraft. Depending on the altitude, the spatial resolution 

is 25 to 60 cm, which means that very small details are visible. These air photos serve as the 
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reference data. The class labels for training and testing were derived by tracing over the land 

cover boundaries in these very high resolution images. 

Because this is where very high resolution reference data is available, this is where the data 

used in this study was selected. For each satellite sensor, an image was clipped out that 

matches the extent of each air photo. Approximately 70 air photos were acquired in each year 

over three years, so most sensors have 210 images total. Within these, the air photos that have 

forest only were not used. 

Figures 3-22 have examples of each land cover type, including Forest, River, Mining, Road, 

Settlement, Agriculture and Grassland. There can be substantial spectral variation within each 

land cover class; hence each class will have two or more examples. This variation will be 

important in interpreting the results of classification workflow comparisons – this spectral 

variation within land cover classes is something that a human technician can deal with 

effortlessly, but it can have a major impact on classifier behaviour. 

In looking at the examples of each land cover type, several sources of confusion are visible: 

• Forests have high spectral variability, due to the texture of the canopy, especially in 

higher resolution data. This creates opportunities for confusion when part of the canopy 

overlaps with another class. 

• Rivers vary in their appearance. Some are clear, and some are laden with sediment. This 

presents a problem when classifying data nationwide: a model trained on rivers in one 

area wlll have problems identifying other rivers, and a model trained on all rivers will 

have such a range of spectral variation that confusion with other classes becomes likely. 

• Mining sites have a variety of objects within them, with very different spectral properties. 

This includes mining ponds, bare surfaces, and new vegetation. 

• Roads are very narrow, which means that they have a lot of edge pixels relative to 

interior pixels. 

• Settlements include buildings, roads, bare surfaces, grass, and isolated trees. This 

creates many opportunities for confusion with the other classes. 

Table 6, taken from the Guyana Forestry Commission’s Standard Operating Procedure, 

describes criteria for each class. One important thing to note is that these criteria are based on 

policy needs, which are not always compatible with the needs of machine learning. Here are 

some examples: 
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• Roads are only counted as deforestation when they are more than 10 meters wide. 

However, the high resolution satellite images and the aerial photography are able to see 

even the narrowest of roads. This may mean that a classifier will be able to pick up roads 

that shouldn’t be counted.  

• Another important thing to note is that, for most activities, the area covered must be 

greater than one hectare. However, once again, the high resolution satellite images and 

aerial photography show very small details, much smaller than a hectare. For 

settlements, this means that there are small areas that should be counted as part of the 

forest, but will appear as settlements to the classifier. 

Another issue is the details that aren’t mentioned: where exactly should the line be drawn 

between land cover classes? The aerial photography has high enough resolution that individual 

bushes and buildings can be clearly seen. In mining sites and settlements, the edge of the 

forest was drawn at the edge of the trees, which means that isolated trees and low vegetation 

are included in the Mining and Settlement classes. Isolated trees and low vegetation are 

spectrally similar to the forest, which will make classification easier, by categorizing like with 

like. But they need to be measured as part of the mining site, for policy reasons. Finding a 

machine learning workflow that meets REDD+ reporting requirements will be part of the 

challenge of this research. 
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Table 6: Summary of Activities and Drivers. Taken from the Guyana Forestry 

Commission’s standard operating procedure for 2023. 

Drivers Activity Criteria End Land Use 

Class 

Forestry Sustainable Forest 

Management 

Fall inside state forest area 

and is a registered concession 

 

Degraded forest by 

type 

Bare land 

Infrastructure Roads > 10 m Settlements 

Mining Deforestation Roads > 10 m Settlements 

Infrastructure Deforestation sites ≥ 1 ha Bare land 

Agriculture Deforestation Deforestation sites ≥ 1 ha Cropland 

Fire Deforestation Deforestation sites ≥ 1 ha Bare-land or 

Cropland 

Degradation Degraded forest sites Degraded forest by 

type 

Infrastructure Deforestation Roads > 10 m Settlements 

Settlements Deforestation Areas deforested for human 

settlements ≥ 1 ha 

Settlements 

Shifting Cultivation Deforestation Deforestation sites ≥ 1 ha Cropland 

Reforestation Reforestation Monitor abandoned deforestation 

sites for an increase in vegetative 

cover 

Degraded forest by 

type 

Afforestation Afforestation Monitor historical non-forest areas 

for afforestation 

Degraded forest by 

type 
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Figure 3: Examples of forest in images taken by various satellite sensors. The 

within-class variation in the forested are can be a challenge to a classifier. 
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Figure 4: Aerial photograph of forest in northwestern Guyana. Figure 2 shows this 

land cover type from satellites. 

 

Figure 5: Aerial photograph of forest in northwestern Guyana. Figure 2 shows this 

land cover type from satellites. 
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Figure 6: Examples of rivers in images recorded by different satellites and locations. 

Notice that not all rivers are spectrally similar. 
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Figure 7: River in a forest in northwestern Guyana, taken from an aircraft. Figure 5 

shows this land cover type from satellites. 

 

Figure 8: The Demarara River, near Linden, taken from a bridge. Figure 5 shows this 

land cover type from satellites. 

 

 

 

 

 



  47  

 

Figure 9: Examples of a mining site in images recorded by different satellite sensors. 

Notice the complexity – there are bare surfaces, roads, ponds, and young 

vegetation, which are all very different from each other and very similar to other 

classes. 
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Figure 10: The active bauxite mine near Linden. 

 

Figure 11: An abandoned section of the artisanal gold mine near Mahdia. Figure 8 

shows this land cover type from satellites. 
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Figure 12: Examples of a road in images recorded by different satellite sensors. This 

class is very thin, with lots of edge pixels. 
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Figure 13: A road in central Guyana. Figure 11 shows this land cover type from 

satellites. 

 

Figure 14: A road near Mahdia. Figure 11 shows this land cover type from satellites. 
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Figure 15: Examples of a settlement near Linden. Like mining sites, Settlements are 

complex classes, with many spectrally distinct objects within them. 
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Figure 16: Settlement south of Linden. Figure 14 shows this land cover type from 

satellites. 

 

Figure 17: The town of Linden. Figure 14 shows this land cover type from satellites. 
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Figure 18: Examples of agriculture on the Essequibo River, near its mouth. 
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Figure 19: Agriculture near the mouth of the Essequibo River, taken from an 

aircraft. 

 

Figure 20: Agriculture near the mouth of the Essequibo River, taken from an 

aircraft. 
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Figure 21: Examples of grassland. The same surface can look very different in 

images recorded by different sensors – see the top left corners of each image. 
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Figure 22: Grassland area north of Linden. 
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SECTION 2.5 POTENTIAL SOLUTIONS 

The fundamental problem in classification of land cover types is the difficulty of separating the 

land cover classes seen in Figures 3 to 22. The classifier works by separating classes in the data 

according to the labels provided, and anything that appears identical in the data will not be 

separable. The separability of classes depends on whether the data values are different or the 

same in each class in each dataset. When two types of surfaces interact very differently with 

EM radiation, they’re easily separated in the image recorded. When two types of surfaces 

interact the same way, they can’t be separated. Separation is easiest when there is no overlap 

between classes, and when the gap in distributions of data values between classes matches the 

shape of the estimator. Separation is difficult when there is a lot of overlap between classes, or 

when the chosen algorithm is not suited to the data. The task is therefore to find out how to 

solve the problem of overlap and how to match the estimator to the data. 

WHICH DATA ARE BEST? 

In Leckie (1990), multispectral and SAR images were compared in their ability to separate tree 

species near Chalk River in Canada. SAR was better at separating softwood tree species (red 

pine, white pine, jack pine, spruce) than visible light and infrared bands. Near infrared and mid 

infrared bands were important for separating hardwood species and softwood species. Visible 

and mid-infrared bands were useful for separating open and forested areas. 

In the context of satellite remote sensing, sensor fusion combines multispectral and SAR images 

into one image. There are two inputs: A three band multispectral image and a one band SAR 

image. There is one output: a three-band fused image, that has information from both sources. 

This is an extension of pansharpening, which is a method of creating an image with both high 

spatial and spectral resolution (illustrated in Figure 23). In multispectral images, there is a 

trade-off between spatial resolution and spectral resolution. Lowering the spectral resolution 

means widening the range of wavelengths, which increases the number of photons acquired. 

Increasing the spatial resolution reduces the number of photons that are captured per pixel. 

This creates a situation where a sensor needs either high spatial resolution and low spectral 

resolution to get a signal, or high spectral resolution and low spatial resolution. 

https://www.asprs.org/wp-content/uploads/pers/1990journal/sep/1990_sep_1237-1246.pdf
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Figure 23: An example of pansharpening. Source: https://pro.arcgis.com/en/pro-

app/latest/help/analysis/raster-functions/fundamentals-of-pan-sharpening-

pro.htm 

The answer to this was pansharpening. A satellite has both multispectral bands, which have 

high spectral resolution and low spatial resolution, and a panchromatic band, which has high 
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spatial resolution and low spectral resolution. A variety of mathematical techniques exist to fuse 

the panchromatic band with the multispectral bands to produce an image that has both high 

spectral resolution and high spatial resolution. 

This has two inputs, a 3-band RGB image and a 1-band panchromatic image, and the output is 

another 3-band RGB image with higher spatial resolution. The reason is that, until recently, 

remote sensing mostly meant visual interpretation of digital images. Computer displays are 

designed to work with three channels exclusively (Red, Green, Blue), and that’s also what the 

human eye sees. Pansharpening was designed to work within this by fusing 4 input bands (low 

resolution RGB + high resolution Panchromatic) into 3 output bands. 

The performance of image classification depends heavily on the amount of information in the 

data. A higher information dataset can be created by combining the information of multispectral 

and SAR images. There is a decades-long body of literature (reviews can be found in Pohl and 

van Genderen (1998); Wang et al., 2005; Pandit and Bhiwani, 2015; Ghassemian, 2016; 

Kulkarni and Rege, 2020) that shows that accuracy can be improved by combining data from 

multiple sources. In these reviews and the literature they review, the goal of sensor fusion is to 

combine images from different sources in a way that increases the quantity and quality of 

information available. A fused multispectral-SAR image has spatial, spectral, textural, and 

dielectric information in one image. Features not visible in either source image alone can be 

detected here. Pohl and van Genderen (1998) summarizes this as “1 + 1 = 3”. 

In satellite remote sensing, different sensors and bands record different information about the 

same surface. SAR, visible light and infrared data are complementary in this way. Machine 

learning can see all of these all at once, and this may allow it to separate classes that aren’t 

separable in one sensor alone.  

Sensor fusion has been tested in a REDD+ context in Malawi (Hirschmugl et al., 2018), and it 

found that accuracy increased from 76% (optical only) and 69% (SAR only) to 85% for optical 

and SAR data based on a Bayesian combination method (from Reiche et al., 2015). 

Sensor fusion uses a mathematical process to combine or replace information. In this context, 

this means spatial and spectral information. A multispectral image’s bands (Red, Green, Blue 

and Near Infrared, and more) contain both spatial and spectral information. SAR images contain 

spatial information. The algorithm used here is the HSV transformation implemented in Google 

Earth Engine. 

https://www.tandfonline.com/doi/pdf/10.1080/014311698215748
http://www.academia.edu/download/40620363/A_comparative_analysis_of_image_fusion_m20151203-20388-69v53n.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.695.3322&rep=rep1&type=pdf
https://www.sciencedirect.com/science/article/abs/pii/S1566253516300173
https://www.sciencedirect.com/science/article/pii/S1566253519305470
https://www.tandfonline.com/doi/pdf/10.1080/014311698215748
https://doi.org/10.3390/land7040116
https://www.mdpi.com/2072-4292/7/5/4973
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In addition to fusing multispectral and SAR images, there is also the option of stacking the 

bands. Each image is an array of pixels, with two spatial dimensions (x and y coordinates) and 

one band dimension (the values of each band at each pixel). There can be two images, 

recorded by two satellite sensors, that have their pixels at the same xy coordinates, but have 

different bands. In stacking, the second image’s band values are added to the band axis of the 

first image, keeping the same pixel locations in space, but extending the band axis. If the axis 

specified is the feature axis, which can also be thought of as the channel or band axis, then a 

new array will be made that has the combined features of the source arrays. For example, 

RapidEye has five bands, for an array of dimension (height, width, 5), and Sentinel-1 has two 

bands, for a dimension of (height, width, 2). Stacking them along axis 2 will produce an image 

that has dimension (height, width, 7). This differs from sensor fusion in that the exact pixel 

values of both source images are kept in the new image - in sensor fusion, the fused image has 

pixel values that are derived from but not identical to the source images. 

There is some literature on this approach, though it isn’t nearly as extensive as the literature on 

sensor fusion. Holmberg (2021) stacked Sentinel-1 and Sentinel-2 bands and found a small 

increase in classification accuracy, though it was judged not to be worth the added 

computational requirements. Kuplich (2006) used both SAR and multispectral bands in a neural 

network, and class discrimination increased when both SAR and multispectral bands were used 

over SAR bands only. 

WHICH CLASSIFICATION ALGORITHM IS THE BEST? 

Another solution to the problem of insufficient accuracy is to try different classifiers 

(classification algorithms). There is a lot of literature that compares a small selection of 

common classifiers. But there’s also a gap in the literature here: there are many less common 

classifiers that haven’t been tested. A solution may be found in an overlooked classifier or 

ensemble of classifiers. 

The choice of classifier is critically important to the accuracy of the classification output, and so 

a classifier comparison will be part of this research. There is a vast amount of literature 

comparing classifiers. Typically, three or four common classifiers are compared based on overall 

accuracy or confusion matrices. For example, Zhao et al. (2019) compares Classification and 

Regression Trees, Random Forest, Support Vector Machines and neural networks. This research 

https://www.diva-portal.org/smash/get/diva2:1575687/FULLTEXT01.pdf
https://d1wqtxts1xzle7.cloudfront.net/46995713/Classifying_regenerating_forest_stages_i20160704-28714-1w4es98-libre.pdf?1467624243=&response-content-disposition=inline%3B+filename%3DClassifying_regenerating_forest_stages_i.pdf&Expires=1704916574&Signature=PBBKSDk-WCIPWmtbEk6g4D6Q~EmcBJL0ZdM0k9XfGoB5F8sZjKe7d8pQFa9nN2LGCf0y58Ey~tp-xRjqNSoUgWSIbbxcNV7NCn4uAnDC8wtb8CVUc-hv~RHIR7GnSp2i7GjfREwHAY9dk7wAEjrAZ1pzxNmrHs-jODb~OdNKgyAP97B3LC7wugPPIt2YFLY~g1MInAtFdgNwUMPl~xmFC2cFOnWYg81AIJvIFAdO~WoyANjzEVJjpAkIW8m7dswg0RZBf7Hlzouew6gRZdIaiPi3vSP13k0~Fdk7M7I8vdnxL85QwRS7hewVpJ0u5nvCewazxI0deHEEpFjyb9vZZw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://doi.org/10.1016/j.foreco.2018.12.019
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is different from other classifier comparisons in that a much broader range of classifiers will be 

tested, on multiple platforms (Python with Scikit-Learn and Keras, Google Earth Engine). 

The literature is full of contradictory results on which classifier is the best to use (more 

discussion in Maxwell et al 2018). Neural networks outperform decision trees and their boosted 

implementations (Rogan et al 2008), and decision trees and their ensembles are more accurate 

than neural networks (Lippitt et al 2008). Random Forest outperforms Support Vector Machines 

(Pal 2005, Adam et al 2014), and Support Vector Machines outperform Random Forest (Zhang 

and Xie 2013, Maxwell et al 2014, Maxwell et al 2014, Maxwell et al 2015). This makes it clear 

already that there is no straightforward answer in the literature. 

Looking at each study, it becomes clear that their data and methodologies are not comparable. 

Rogan et al 2008 uses two study areas in northern and southern California, the data is Landsat 

5 with ancillary elevation data, and reference data was acquired by interpreting forest resource 

photographs. Lippitt et al 2008 used Landsat 7 data, and the study area was in Massachusetts. 

Rogan et al 2008 compared the fuzzy ARTMAP neural network algorithm with two decision tree 

implementations: S-Plus, C4.5. Lippitt et al 2008 compared ARTMAP, Multilayer Perceptrons, 

Self-Organizing Maps, and decision trees using the Gini and entropy splitting rules. Any one of 

these differences could result in differences in classifier performance. Lawrence and Moran 

2015 used 30 datasets from Montana, Wyoming, Utah, Colorado, New Mexico, Arizona, Nevada 

and California to compare Random Forest, C5 decision trees, logistic model trees, support 

vector machines, and Multivariate Adaptive Regression Splines. Random Forest was the best in 

18/30 datasets, C5 was the best in 11/30, and Logistic Model Trees was the best in 1/30. 

In summary, the best classifier is very context-dependent, and the results of a classifier 

comparison in one context cannot be applied to a different context. It will therefore be 

important to test different classifiers in the context of Guyana REDD+ monitoring. 

HOW TO MAKE GOOD LABELS? 

In the discussion of the land cover classes in Section 2.6, it became clear that the official land 

cover classes in the Standard Operating Procedure pose several challenges for machine 

learning:   

• The river examples were not consistent – clear rivers and turbid rivers are spectrally very 

different.  

https://doi.org/10.1080/01431161.2018.1433343
https://doi.org/10.1016/j.rse.2007.10.004
https://doi.org/10.14358/PERS.74.10.1201
https://doi.org/10.1080/01431160412331269698
https://doi.org/10.1080/01431161.2014.903435
https://link.springer.com/article/10.1007/s13157-012-0373-x
https://link.springer.com/article/10.1007/s13157-012-0373-x
https://www.tandfonline.com/doi/full/10.1080/15481603.2014.912874
https://doi.org/10.14358/PERS.80.2.179-189
https://doi.org/10.1080/01431161.2014.1001086
https://doi.org/10.1016/j.rse.2007.10.004
https://doi.org/10.14358/PERS.74.10.1201
https://doi.org/10.1016/j.rse.2007.10.004
https://doi.org/10.14358/PERS.74.10.1201
https://doi.org/10.1016/j.rse.2015.09.008
https://doi.org/10.1016/j.rse.2015.09.008
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• Mining sites have vegetation that can be confused with forests, ponds that can be 

confused with rivers, and bare surfaces that can be confused with roads. 

• Roads less than 10 meters wide aren’t counted toward deforestation, but they will be 

picked up by a classifier, especially in higher resolution data. 

• Settlements have grass, trees, roads, buildings and paved surfaces.  

• Deforestation is only counted if the area is greater than a hectare, but a classifier will 

pick up many smaller details in high resolution data. 

• Human operators use context information to separate these classes. However, machine 

learning relies primarily on spectral information alone, though Convolutional Neural 

Networks can also use texture and structure information. 

These specific problems, in a REDD+ monitoring context, have never been tackled head-on in 

the literature. In the existing literature, the class labels are simply the land cover types, and the 

study areas are small areas that have clear and carefully chosen examples. A model that seeks 

to classify land cover types across an entire country will not be working with a small set of 

simple examples, but the heterogeneous data described above. This study will test models and 

satellite sensors using more diverse data than most studies on this topic. 

SECTION 2.6 THE KEY RESEARCH QUESTIONS 

The previous section shows that there is a lot of research on the data and model aspects of 

machine learning, including classifier comparisons and tests of data fusion. There is also some 

research on the importance of good reference data in creating good class labels. What is 

missing from the research on data fusion is tests in the context of REDD+ and mapping in 

mixed tropical forest regions. These areas are typically very cloudy and forest to non-forest 

transition involves identifying and characterising a number of complex of land cover types. That 

last point is the core of the problem: country-wide classification of deforestation will need to 

classify a heterogeneous set of sites, a level of spectral diversity that a classifier will struggle 

with. This research is an opportunity to collect the results needed to develop a strategy that 

tackles that challenge head on. 

In the research on class labels, there is a lack of research on the problem with using official 

land cover classes as class labels in machine learning. The problem with this is that class labels 

based on human activities and heterogeneous areas may not be compatible with machine 

learning. There are multiple activities that can have vegetation inside them (mining, 
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settlements), and mining ponds can be spectrally similar to a nearby river. Spectral variation 

within classes leading to overlap between classes will create a situation that a classifier may not 

be able to handle. Also, the classes are normally separated using context information, and so it 

may or may not be possible to separate them using spectral information alone. 

This leads to the research questions last seen in Section 1.1: 

1. How does land cover type mapping accuracy change between classifiers? How is this 

affected by the spectral variation from one site to the next, and how is it affected by the 

nature of the classes? 

2. How does land cover type mapping accuracy change between satellite sensors and 

combinations of sensors? Does this address the problems that have been summarized in 

this section? 

3. How does the complexity of the land cover types affect accuracy? This is closely related 

to the issues discussed in the previous paragraph. 

In the best case, this research will find a combination of classifiers, data and labels that can 

identify changes in difficult-to-separate land cover types in near real time. It evaluates classifier 

performance using real world data from a variety of satellite sensors, and the class labels are 

based on higher quality reference data than most research, which will lead to an improved 

ability to identify and interpret errors. The most immediate impact will be on the Guyana 

Forestry Commission, as they will be the first to see the results. This is also applicable to other 

REDD+ countries, some of which have tried to implement machine learning without success. 

This also has applications to land cover mapping more generally. 

The Guyana Forestry Commission has the potential to benefit greatly from human-equivalent 

automated deforestation detection. The manual change mapping process is labour intensive. 

Automation will allow technicians to spend less time finding deforestation and more time 

minimizing deforestation. In addition to deforestation mapping, it's a small step from 

deforestation to forest degradation, fire monitoring and species mapping, and this technology 

can be adapted to identify tree species and to map change, health and species in the 

mangroves along tropical coastlines. Mangroves are currently being assessed for inclusion in the 

monitoring of Guyana’s forests. In addition to Guyana, there are dozens of countries worldwide 

that would benefit from this as well. 
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CHAPTER 3: DATA SELECTION AND PREPARATION 

SECTION 3.1 DATA NEEDED TO ACHIEVE THE RESEARCH AIM 

There are two types of Earth observation sensor used in this research; these are multispectral 

sensors and SAR sensors. Multispectral sensors record spectral information: reflected visible and 

infrared light that comes from the Sun and is reflected by vegetation and other surfaces on the 

Earth’s surface. One drawback of multispectral images is that they cannot see any feature past 

a closed vegetation canopy. Another drawback is that multispectral optical sensors cannot 

penetrate clouds, and thus large gaps can appear in the data when there are clouds and cloud 

shadows present in the imagery. As with many tropical regions, Guyana has frequent cloud 

cover. These issues hamper work with optical satellites and means that SAR satellites may bring 

considerable benefits. 

SAR is an active sensor type. This means that SAR emits its own microwave energy, and then 

records the intensity of the microwave backscatter from the ground surface and return to the 

sensor. Backscatter intensity and polarisation are determined by surface texture and dielectric 

properties. One advantage of SAR images is that they are not affected by cloud cover, and 

another advantage is that some SAR configurations can provide structural information in three 

dimensions. In addition, SAR images are useful in forest mapping, because they are sensitive to 

forest structure changes even after the canopy has closed (Milodowski et al., 2017). 

Different sensor types can provide complementary information. Features that are 

indistinguishable or invisible to one sensor may be visible to another sensor. Two objects that 

have the same spectral properties cannot be distinguished in multispectral images. Likewise, 

two objects that have the same surface texture and dielectric properties cannot be 

distinguished in SAR images. Sicre et al. (2020) found that classification of crops improves in 

accuracy when SAR and multispectral data are both used. 

This research provides a detailed look at the performance of different sensors and algorithms in 

image classification, in isolation and in ensembles. In this context, performance means a 

classifier’s ability to separate two classes in a given dataset. Whether classes can be separated 

depends partly on whether they look similar or different in a given dataset, and this depends on 

what the sensor records.  

There are also logistical and technical concerns, such as the cost of acquiring images and their 

technical capabilities and computational requirements. This chapter will describe in detail the 

https://iopscience.iop.org/article/10.1088/1748-9326/aa7e1e/meta
https://doi.org/10.1016/j.jag.2019.101972
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options available for data, and the implications for our understanding of image classification and 

the implications for industry practice. 

Machine learning requires training data, validation data, training labels, validation labels and 

reference data. 

• The training data are the data used to fit the model. In classification problems, the 

training data needs labels to indicate the correct class for each data point. The training 

labels are the labels used with the training data to fit the model. 

• The validation data are the data used to test the model. The validation data are not seen 

during fitting. The validation labels are used to measure the accuracy of the model’s 

predictions on the validation data. 

• The reference data are the data used to create the labels. This problem requires high 

resolution reference data, because different datasets are being compared, and to see 

details on the ground not visible in lower resolution products. The reference data must 

have the highest quality possible – errors in the reference data will impact model 

accuracy. 

SECTION 3.2 REQUIREMENTS 

The key problem is that some land cover classes are difficult to separate, and the proposed 

solutions are to create ensembles of different sensor types and break down the classification 

process into steps. Answering this question will require data that meets these requirements: 

• The data must come from more than one sensor type. Sensor types include 

multispectral, SAR, hyperspectral, thermal and Lidar. 

• The sensor must be available in 2017, 2018 and 2019 – the years covered by the 

reference data. 

• The sensor must have data available in the areas covered by the reference data. 

• The data must either be free or funding must be available to acquire the data. 

The eight sensors chosen are: 

• SAR: ALOS-2 (Figure 12), Sentinel-1 (Figure 13), Radarsat-2 (Figure 14), TerraSAR-X 

(Figure 15). 

• Multispectral: Planetscope (Figure 30), RapidEye (Figure 31), Sentinel-2 (Figure 32), 

Landsat (Figure 33). 

The coming sections will explain in detail why these were chosen. 
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SECTION 3.3 WHAT DO SENSOR TYPES RESPOND TO? 

The two best sensor types for this research are multispectral and SAR. There is already a large 

amount of research on the topic of combining them. Multispectral sensors are the most well 

established in remote sensing of forests, with SAR sensors being the second most common.  

There is also some research on combining multispectral and hyperspectral data, where the 

combined dataset has the spatial resolution of the multispectral image and the spectral 

resolution of the hyperspectral image. This has very high computational requirements because 

of the large number of features combined with the large number of samples. Therefore, this 

research will create ensembles of multispectral and SAR images. 

Multispectral sensors record slices of the visible light and infrared spectra called bands (Figure 

29). Typical bands have names like Blue, Green, Red, Red Edge, Near Infrared and Shortwave 

Infrared, and their wavelength ranges are chosen based on the reflectance properties of 

surfaces. In remote sensing of forests, these are the most common uses of multispectral bands: 

• Visible Light: Plant pigments such as chlorophyll absorb energy most strongly in the 

Blue and Red bands. All multispectral sensors have Blue, Green and Red bands, with 

three exceptions: the Landsat Multispectral Scanner, Terra-ASTER and CBERS, which 

have Green and Red only. 

• Near Infrared: Near Infrared EM radiation is strongly reflected by vegetation due to 

refraction at cell interfaces. Leaf cell structure has low reflectance in visible light and very 

high reflectance in Near Infrared. Water reflects almost no Near Infrared. All 

multispectral sensors record Near Infrared. 

• Red Edge: The Red Edge bands are in the transition between the two. RapidEye, 

SuperDove and Worldview-3 have one Red Edge band, and Sentinel-2 has three Red 

Edge bands. 

• Shortwave Infrared: Vegetation moisture content has two maxima, corresponding 

with the two Shortwave Infrared bands. Sentinel-2 and Landsat have two Shortwave 

Infrared bands, and Worldview-3 and Terra-ASTER have eight. 

In Marais Sicre (2020), the Near Infrared band had the best performance of the optical bands in 

separating crops in agriculture remote sensing. In Leckie (1990), multispectral and SAR images 

were compared in their ability to separate tree species near Chalk River in Canada. SAR was 

better at separating softwood tree species (red pine, white pine, jack pine, spruce) than visible 

light and infrared bands. Near infrared and mid infrared bands were important for separating 

https://doi.org/10.1016/j.jag.2019.101972
https://www.asprs.org/wp-content/uploads/pers/1990journal/sep/1990_sep_1237-1246.pdf
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hardwood species and softwood species. Visible and mid-infrared bands were useful for 

separating open and forested areas.  

In Ferreira et al. (2019), the separation of tree species in Brazil was improved when Shortwave 

Infrared bands were added to visible light and near infrared bands. Including Shortwave 

Infrared bands improved detection of non-photosynthetic forest litter that varies from one 

species to another. In addition, shortwave infrared has unique absorption features for 

biochemical markers such as nitrogen, water, cellulose and lignin (Kokaly et al., 2009). 

SECTION 3.4 TIME COVERED 

In Section 3.2, one of the criteria was that the data must be from 2017, 2018, or 2019. Table 7 

shows the years in which different satellites provide data. 

The medium and high resolution satellites that meet that criterion are: Landsat 7 (Enhanced 

Thematic Mapper), Landsat 8 (Operational Land Imager), Sentinel-2, SPOT-6, SPOT-7, 

RapidEye, Planetscope with the Dove Classic sensor, CBERS-4, Resourcesat. Of these, Landsat 7 

and 8 and Sentinel-2 provide Shortwave Infrared capability, Sentinel-2 and RapidEye provide 

Red Edge capability, and all others provide visible light and Near Infrared capability. 

The SAR satellites that meet that criterion are: Radarsat-2 (Figure 27), TerraSAR-X (Figure 28), 

ALOS-2 (Figure 25), Sentinel-1 (Figure 26). 

Almost all Planetscope images used here were recorded using the Dove Classic sensor. The first 

Dove R images in Guyana are from the end of 2019, and the first SuperDove data is from 2020. 

 

 

 

 

 

 

https://doi.org/10.1016/j.isprsjprs.2019.01.019
https://d1wqtxts1xzle7.cloudfront.net/48855447/Kokaly_RF_Asner_GP_Ollinger_SV_et_al._Ch20160915-16030-ppdo0o-libre.pdf?1473942426=&response-content-disposition=inline%3B+filename%3DCharacterizing_canopy_biochemistry_from.pdf&Expires=1706754942&Signature=IyZb12gzORlsG0MGbxVAay02aCg3~W7GFVz48kFe27fY9F7Ot7Ff61HbCNpkFU1dbXLjOAIFw2j3EccegPucAQhtAiljXHbhhKsY5ADK~sCpjjRpK43ARvECswkVtuKPtjcDOJP6AasVPWzsRfCPv2iCT8p5SwfkqFSVdMKYChXV6mhTWJ~qxPPQ6AOsFRwJIQtVsfKy54EEuWi52J8YRIDe8J9gzIxVDwMsYwOYmcDGMtTlyJDBia-pWRHPvBJ3Itb2uDMxhN3U4K1lcDRGnELQdUxehA0fxXh2EODQpGJQPtF5akW9RODjMy9mR-cVwJOsK9WD-Y8tjJjCraWEgQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
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Table 7: Availability of multispectral and SAR satellites. A suitable satellite for this 

study has data in the years 2017, 2018 and 2019. More recent satellites are suitable 

for future work. 

Medium to High Resolution Multispectral Sensors SAR Satellites 

Planetscope SuperDove 2020-present ALOS-2 2014-present 

Planetscope Dove R 2019-2022 Sentinel-1 2014-present 

Sentinel-2 Multispectral Imager 2015-present TerraSAR-X 2007-present 

Planetscope Dove Classic 2014-2022 Radarsat-2 2007-present 

Landsat Operational Land Imager 2013-present ALOS PALSAR 2006-2011 

RapidEye 2008-2020   

Landsat Enhanced Thematic Mapper 1999-2021   

Landsat Thematic Mapper 1982-2012   

Landsat Multispectral Scanner 1972-2012   
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SECTION 3.5 REVISIT TIME 

The revisit time of a satellite is the time it takes for the satellite to image the same place on the 

Earth’s surface again (see Table 8 below). Higher revisit range (fewer days between images) 

means higher temporal resolution in a time series. More importantly, in a place as cloudy as 

Guyana, a higher revisit rate increases the chance that the satellite will image the area on a 

rare cloud-free day. The best satellite for revisit rate is Planetscope (daily), and the worst is 

Landsat (16 days). RapidEye and Sentinel-2 are in the middle (6 and 5 days, respectively). 

At the time this research was planned (2020), there were two Sentinel-1 satellites, doubling the 

revisit time. Partway through this research, one of them failed, and thus Sentinel-1 has less 

data available from 2021 onward. 

Table 8: Revisit time of selected satellites. 

Satellite Revisit Time (days) 

Landsat 7 16 

Landsat 8 16 

Sentinel-2 5 

RapidEye 6 

Planetscope 1 
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SECTION 3.6 SPATIAL RESOLUTION 

An important factor in making a decision about which satellites to get data from is their spatial 

resolution. In multispectral images, each sensor has one resolution for all bands, or some bands 

at one resolution and two bands at a second resolution (see Table 9 below). The best spatial 

resolution is a pansharpened SPOT image, with 1.5 meter pixels, and the second best is 

Planetscope with 3 meter pixels. They also have the best revisit rate. However, it should be 

noted that the lower spatial resolution and revisit time options are also those that offer 

Shortwave Infrared capability, and in the case of Sentinel-2 and RapidEye, Red Edge capability. 

This creates a situation where all satellites offer some sort of benefit. 

Table 9: Spatial resolution (pixel dimensions) of selected satellites. 

Satellite Bands Resolution (m) 

Landsat 5-9 Multispectral bands 

Panchromatic 

30 

15 

Sentinel-2 Red Edge and Shortwave Infrared 

Visible light and Near Infrared 

20 

10 

RapidEye All bands 5 

SPOT-6 / 7 Visible light and Near Infrared 

Panchromatic 

6 

1.5 

Planetscope All bands 3 

 

SECTION 3.7 COST 

Some satellite image products are provided free of charge, and some are available for a price 

(see Table 10). This has implications for both research and industry applications. For research, 

this means that some image products are available immediately, and some will only be available 

if funding is granted, and the funding may limit the quantity of data that can be acquired. For a 

government’s REDD+ program to use commercial image products, they would need to get 

funding from the donor country. In the case of Guyana, the Norway Climate and Forests 

Initiative (NICFI) is already paying for access to Planet image products. To access all other paid 
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image products, a case for funding above and beyond what is already being provided would 

need to be made. This means that the best candidates will be Planet image products, as well as 

Landsat and Sentinel data. 

Radarsat-2 data was acquired with funding provided by the European Space Agency's Third 

Party Mission Programme. TerraSAR-X data was acquired with funding provided by Airbus’ 

Academic Support Programme. 

 

Table 10: Cost of selected satellites, reflecting the minimum order size. 

Sensor Cost 

Sentinel (all) Free 

Landsat Free as of 2009 (United States Geological Survey) 

Planetscope 

RapidEye 

Free: 5000 km2/month with Planet’s Education and Research Program 

€900 per terabyte with a departmental license 

€540 per terabyte with a campus license 

ALOS-2 

PALSAR-2 

Free: 25 meter resolution images, which are on Google Earth Engine 

Higher resolution images for a price 

TerraSAR-X €875 to €2450 for archival images, depending on resolution 

€1750 to €4900 for new acquisitions, depending on resolution 

Airbus offers a 50% academic discount 

Funding is available through Airbus’ Academic Support Program 

Radarsat-2 $3600 (single polarization) to $7800 (quad polarization) 

Funding is available through the ESA’s Third Party Mission Programme 

 

 

https://www.usgs.gov/programs/national-land-imaging-program/nli-fees-and-landsat-data-products
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SECTION 3.8 CLOUD MASKING 

Multispectral sensors cannot see through clouds, and the information under them is lost. 

Guyana is one of the cloudiest places in the world, which makes this problem especially acute in 

this context. 

A common way to remove clouds is to create a cloud-free composite. Images from different 

dates have clouds in different places. If the clouds in each image are masked out, and then the 

images are composited, then the gaps in one image are filled with data from another image. 

When this is done, the temporal range needs to be kept to a minimum. If the area changes 

between images, then there will be discontinuities. As a result, creating cloud free composites 

in Guyana is often unfeasible. The approach used here is to clip out clear areas between clouds. 

This still results in more than enough data, especially in higher resolution images. See Figure 24 

for an example. 
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Figure 24: The same area in Planetscope, after (left) and before (right) cloud 

removal. The image displays the Near Infrared, Red and Green bands. 
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Figure 25: ALOS-2 Level 2.2 images with dual HH/HV polarization, which are ortho-

rectified and have terrain correction using the ALOS World 3D 30 meter resolution 

digital elevation model, downloaded from Google Earth Engine (GEE). Prior to 

downloading, images were converted from linear units to decibels using the 

provided equation: γ0 = 10*log10(DN2) - 83.0 dB. 
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Figure 26:  Sentinel-1 data in VV/VH dual polarization was downloaded from Google 

Earth Engine. GEE uses Sentinel-1 Toolbox apply these processing steps: 1) Thermal 

noise removal. 2) Radiometric calibration. 3) Terrain correction using SRTM 30 

meter resolution. 4) Conversion from linear units to decibels. 
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Figure 27: An example of Radarsat-2. This research uses the Extra Fine beam mode 

in HH single polarization and the SGX image product. SGX images have very fine 

pixel spacing that preserves all image information and makes images suitable for 

post-processing (source). Using Sentinel Applications Platform (SNAP), the images 

were processed for calibration to β0, speckle reduction using Refined Lee, Terrain 

Correction using the 30 meter Copernicus DEM, and conversion from linear units to 

decibels. 
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Figure 28: An example of TerraSAR-X. TerraSAR-X images were downloaded as 

Enhanced Ellipsoid Corrected (EEC) images. This is a multi-look product, projected 

and resampled to the WGS 1984 ellipsoid using an external digital elevation model. 

This product also features the highest level of geometric correction available for 

TerraSAR-X (source). After being downloaded, the only processing applied was 

conversion from linear units to decibels using the Sentinel Applications Platform 

(SNAP). The image products are StripMap (2.75 m resolution) and ScanSAR (8.25 

meter resolution). 

 

https://www.engesat.com.br/wp-content/uploads/r459_9_201408_tsxx-itd-ma-0009_tsx-productguide_i2.00.pdf
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Figure 29: To summarize the spectral information of the multispectral satellites on 

the next four pages, this figure provides the range of wavelengths captured by each 

band for each sensor. The band numbers in the figure and the table correspond. 

Table 11: Wavelength ranges of the selected multispectral sensors, by band. 

Sentinel-2 Wavelength 

Nanometers 

Landsat 8 Wavelength 

Nanometers 

1 Coastal 432 - 453 1 Coastal 430 - 450 

2 Blue 459 - 525 2 Blue 450 - 510 

3 Green 542 - 578 3 Green 530 - 590 

4 Red 649 - 680 4 Red 640 - 670 

5 Red Edge 1 697 - 712    

6 Red Edge 2 733 - 748    

7 Red Edge 3 773 - 793    

8 Near Infrared 780 - 886 5 Near Infrared 850 - 880 

11 Shortwave Infrared 1 1568 - 1660 6 Shortwave Infrared 1 1570 - 1650 

12 Shortwave Infrared 2 2115 - 2290 7 Shortwave Infrared 2 2110-2290 

   8 Panchromatic 500 - 680 

Planetscope (Dove Classic) Wavelength 

Nanometers 

RapidEye Wavelength 

Nanometers 

1 Blue 455 - 515 1 Blue 440 - 510 

2 Green 500 - 590 2 Green 520 - 590 

3 Red 590 - 670 3 Red 630 - 685 

   4 Red Edge 690 - 730 

4 Near Infrared 780 - 860 5 Near Infrared 760 - 850 
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Figure 30: An example of the Planetscope data. Funding has been provided by the 

Norway International Climate and Forests Initiative via the Guyana Forestry 

Commission. 
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Figure 31: An example of the RapidEye data, showing a settlement. This site was 

chosen because, due to limited coverage, there is no RapidEye data at the same 

location as the other seven examples. Funding has been provided by the Norway 

International Climate and Forests Initiative via the Guyana Forestry Commission. 
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Figure 32: An example of the Sentinel-2 data.  
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Figure 33: An example of the Landsat data. The data used consists of a clip of the 

cloud-free part of the mine, in the middle of the image. 
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SECTION 3.9 REFERENCE DATA 

In machine learning, the labels state the correct answer for each data point. The algorithm 

works under the assumption that every label is correct. This means that training requires high 

quality reference data that can be used to create accurate labels. For 50 years in remote 

sensing, high quality reference data has been a vital part of high quality data analysis (Stehman 

and Foody, 2019). When using machine learning on satellite images, using high quality 

reference data is vital. Foody (2009, 2010, 2011, 2013) and Foody et al. (2016) found that even 

a small number of imperfections in the reference data reduces accuracy considerably. 

The Guyana Forestry Commission has been acquiring very high quality reference data. In 2017, 

2018 and 2019, they ordered aerial photography of a sample of high-risk areas. One example is 

Figure 34 on the next page; it shows mining on the left side and a river in the top right. The 

reference data is the GeoVantage aerial photography sensor. These photographs were taken 

using a GeoVantage multispectral sensor, with Blue, Green, Red, and Near Infrared bands, 

mounted on a Cessna. Depending on the altitude, their spatial resolution (25 to 60 cm) is 

higher than any satellite, which means that very small details are visible in them. These air 

photos serve as the reference data. The class labels for training and testing were derived by 

tracing over the land cover boundaries in these very high-resolution images. 

Because this is where very high-resolution reference data is available, this is where the data 

was selected. For each satellite sensor, an image was clipped out that matches the extent of 

each air photo. Approximately 70 air photos were acquired in each year over three years, so 

most sensors have 210 images total (some sensors have fewer due to limited coverage). 

  

https://doi.org/10.1016/j.rse.2019.05.018
https://doi.org/10.1016/j.rse.2019.05.018
https://doi.org/10.1080/01431160902755346
https://doi.org/10.1016/j.rse.2010.05.003
https://doi.org/10.1111/j.1466-8238.2010.00605.x
https://doi.org/10.1080/2150704X.2013.798708
https://doi.org/10.3390/ijgi5110199
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Figure 34: An example of the reference data (left) and the class labels (right). A 

river is visible in the upper right of the image, and mining is on the left side. 

Recorded using a GeoVantage sensor on a Cessna. Pixel size depends on altitude 

and is below one meter. 

  



  85  

 

CHAPTER 4: SELECTING A CLASSIFIER 

SECTION 4.1 INTRODUCTION TO THE METHODOLOGY 

This chapter will test classifier performance using the most important satellites in an area that 

provides the best available data, before moving on to more difficult cases. The three most 

common sensors in remote sensing of forests are Planetscope, Sentinel-2 and Landsat, and 

they will be the first three to be tested, before moving on to other satellites in later chapters. 

The first three classifiers to be tested will be three widely used classifiers available in Google 

Earth Engine: Random Forest, Gradient Boosted Trees and Naïve Bayes.  

CLASS LABELS 

The mining site has two types of surfaces inside it: bare land, and a mining pond (the example 

is in Figures 35-38). The process is: 

• An essential step in classification is creating good labels, and Figures 22 and 23 provide 

some clues that will help to decide where the class boundaries should be drawn. Figure 

22 shows the Enhanced Vegetation Index (EVI) values for each pixel. EVI uses the Near 

Infrared, Red and Blue bands to provide a measure of vegetation vitality. EVI is 

calculated as: EVI = G * ((NIR - R) / (NIR + C1 * R – C2 * B + L)) (USGS, n.d.). In 

Figure 22, the boundary between dense and healthy vegetation (dark green) and a lack 

of vegetation (light green to white) is very clear. It shows where the river is, and where 

the mining site is, including a path to the right of the bare land area. 

• This was then used as a guide to creating the boundaries between forest and the non-

forest classes. 

Figure 38 shows the results of clustering using X-Means in Google Earth Engine. Clustering 

shows which pixels are similar to and different from which other pixels, which determines how a 

classifier will behave when given this data. It provides some additional information: the river is 

spectrally homogeneous, and the mining pond is clustered with the river. The bare land is 

clustered separately from the river, and from much of the forest. With this in mind, there are a 

few considerations to keep in mind when drawing class boundaries: 

• For a human doing policy work, a mining pond is not a river. It’s part of a mining site. 

• For a classifier, the mining pond is in this example is spectrally identical to the river, and 

if a large minority of the mining site is part of the river, then there will be confusion. 

https://www.usgs.gov/landsat-missions/landsat-enhanced-vegetation-index#:~:text=Landsat%20Enhanced%20Vegetation%20Index%20(EVI,in%20areas%20with%20dense%20vegetation.
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• Unbalanced classes can lead to high accuracy in the majority class and low accuracy in 

minority classes; Appendix D provides a detailed discussion of this matter. 

The decision was made to lean toward the needs of the classifier, and label the mining pond as 

river. This results in three classes that are as spectrally homogeneous and distinct as possible, 

in the cleanest data available. 

CHOOSING A PLATFORM 

The platform used for image processing in this chapter is Google Earth Engine. All pixels in each 

sensor’s image were selected, and assigned a random number. 90% of pixels were assigned to 

the training data, and 10% of pixels were assigned to the validation data. Figure 36 shows the 

spatial distribution of training and validation pixels, superimposed over the class labels. After 

that, the results of the comparison begin. 

Google Earth Engine is not the only platform capable of machine learning on satellite images – 

the Python programming language allows the NumPy, Scikit-Learn and Tensorflow module to 

be used to analyze satellite images (see Table 9 for a summary of the differences). The 

advantages of Python are the wide range of classification algorithms and metrics, and options 

for sample size, feature and hyperparameter tuning. Scikit-Learn offers decision trees, three 

nearest neighbours algorithms, five linear models, five implementations of Naïve Bayes, 

multilayer perceptrons, bagging and boosting ensembles, and clustering. TensorFlow offers the 

components needed to built a wide range of neural network architectures. Google Earth Engine 

offers seven classification algorithms: Classification and Regression Trees, Random Forest, 

Gradient Boosted Trees, Support Vector Machines, Naïve Bayes, K-Nearest Neighbours and 

Minimum Distance. 

At first glance, it seems that Python is orders of magnitude better than Google Earth Engine in 

the range of classifiers available. There are a few things to consider: 

• Google Earth Engine is a ready-made platform for analysis of satellite data, where much 

of the data is built into the platform. A Python platform must be built from scratch. 

• GEE analysis is done on their supercomputers. Python analysis must be done on the 

researcher’s own computers. 

• Measuring the performance of the full range of classifiers is simple: record and report the 

confusion matrices and other accuracy metrics for each one in a table. In choosing a 

classifier for a specific task, this offers the widest possible range of options. In gaining 
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insights into classifier behaviour, however, this wide range of options makes a study 

much more complicated. 

The conclusion is that the most important metrics are Confusion Matrix, Consumer’s Accuracy, 

Producer’s Accuracy and Accuracy. In practical terms, Scikit-Learn offers the wider range of 

metrics, but Google Earth Engine has all of the necessary metrics. The extra metrics in Scikit-

Learn do not offer anything indispensable that the Google Earth Engine metrics do not have. 

For results on the effectiveness of Scikit-Learn classifiers, see Appendix A. Appendix B provides 

a detailed overview of the classification metrics available.  

SAMPLE SIZE 

The sample size and strategy needs to be chosen carefully – they affect accuracy greatly. 

Huang et al. (2002) found that changing sample size and feature set had as great an impact on 

accuracy as changing the classifier. Rogan et al. 2008 found that reducing the number of 

training samples by 25% decreased the accuracy of neural networks by 10% and single 

decision trees by 35%. Pal and Mather (2003) found that, as the sample size increases from 

700 to 2700, decision tree accuracy goes from 78% to 84%.  

For sample size tuning, Scikit-Learn has a learning curve function that runs the classifier on a 

list of train sizes or fractions. It can run multiple sample sizes in parallel, and when available, it 

will use Partial Fit to speed up the process. Google Earth Engine does not have an equivalent 

function; sample sizes must be tested manually. 

In every test, the prediction and probability images were created using the entire image. The 

confusion matrices were calculated using 10% of the pixels in each image, the 10% not used 

for training. 

FEATURE ENGINEERING 

It has been known as early as Serpico et al. (1994) that classification accuracy and 

computational efficiency depend heavily on the feature set used (in a remote sensing context, 

the bands). For feature engineering, Scikit-Learn offers several algorithms, which start with one 

feature and add features until improvement stops, or start with all features and remove 

features until improvement stops, or select features based on the Feature Importance measure 

(decision trees) or coefficients (linear models). 

https://www.tandfonline.com/doi/epdf/10.1080/01431160110040323?needAccess=true
https://doi.org/10.1016/j.rse.2007.10.004
https://www.sciencedirect.com/science/article/pii/S0034425703001329#SEC3
https://doi.org/10.1117/12.196757
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Google Earth Engine does not have an equivalent function; different features must be tested 

manually. Appendix C provides results on feature engineering using this data. 

HYPERPARAMETER TUNING 

The performance of a classifier depends heavily on the choice of hyperparameters, and 

different applications call for different hyperparameters. A review of various tuning methods is 

available in Yang and Shami, 2020. For hyperparameter tuning, Scikit-Learn has three options: 

• Grid Search Cross Validation. This is the most exhaustive and the most computationally 

expensive. Ma et al. (2021) uses a multi-stage grid search process, where the first step 

uses a small number of samples over a broad search space, and subsequent steps 

sample a smaller range of values based on the results of previous steps. 

• There is also the approach known as “grad student descent”, where the researcher 

manually tries different hyperparameter values and adjusts the range of values using 

experience, guessing, and the results of previous tests (Yang and Shami, 2020). 

• Random Search Cross Validation. This method creates a distribution of hyperparameter 

combinations in a specific search space, randomly samples this distribution, and tests the 

sampled hyperparameter combinations. This is a more efficient approach to searching a 

large search space than Grid Search CV, which tests every possible combination. This is 

introduced in Bergstra and Bengio (2012). 

• Bayes Search Cross Validation via the Scikit-Optimize module. Like Random Search CV, 

Bayes Search CV creates a distribution of hyperparameters in a specified search space. 

Bayes Search CV uses the result of each iteration to update its belief about the location 

of the optimal hyperparameter combination, moving closer and closer with each 

iteration. Early stopping can be used to halt the search when improvement slows. 

Google Earth Engine does not have built-in hyperparameter tuning; hyperparameters must be 

tested manually. One approach is to do tuning in Python and carry it over to GEE. 

CHOICE OF CLASSIFICATION ALGORITHM 

This research is a test of the capabilities of multispectral and SAR satellite data, alone and in 

combination. A large classifier comparison, in addition to that test, would multiply the scope of 

the project, but to produce useful results, it is important to find a well-suited classification 

algorithm. This section will test three algorithms: Random Forest, Gradient Boosting, and Naïve 

Bayes. These are implemented in both Google Earth Engine and Python. 

https://doi.org/10.1016/j.neucom.2020.07.061
https://ieeexplore.ieee.org/abstract/document/9529058
https://doi.org/10.1016/j.neucom.2020.07.061
https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf?ref=broutonlab.com
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Naïve Bayes uses Bayes’ Theorem to estimate the probability that a data point x belongs to a 

class y. A core assumption of the Naïve Bayes algorithm is that all features are independent of 

one another (hence the Naïve in Naïve Bayes), so it considers each feature individually, without 

covariance between features. Features are not independent in many applications, but Naïve 

Bayes has still been known to be an accurate classifier regardless (James et al., 2023, page 

154). 

The other two classification algorithms are ensembles of decision trees. As per James et al., 

2023, pg. 327-340, decision trees divide the data into segments, where each segment is 

assigned a class based on the mean or mode. Splitting decisions are made by optimizing a 

measure of the quality of a split. The set of rules that segments the data can be visualized as a 

tree of splitting decisions, which makes decision trees easy for a human to interpret. This 

makes decision trees well suited to data with complex, nonlinear relationships. 

One disadvantage of decision trees is high variance: the predictions of the decision tree 

algorithm can vary greatly, due to a slight change in the input data (James et al., 2023, pg. 

340-343). The solution provided is the Bagging algorithm. Bagging is an algorithm that 

constructs not a single model, but an ensemble of models. Typically, a Bagging ensemble fit 

dozens or hundreds of decision trees. Each decision tree is fitted not on the whole dataset, but 

on different random subsamples of the data. The predictions of the individual trees are then 

aggregated. This reduces the variance of the output. 

Like Bagging, the Random Forest algorithm (James et al., 2017, pg. 343-345) is an ensemble 

algorithm that fits many decision trees and aggregates the outputs. Random Forest keeps the 

core feature of Bagging: each decision tree in the ensemble is fitted on different subsamples of 

the data. Random Forest further improves classification accuracy by making a second change. 

When constructing each split in the decision trees, a random subsample of the features is 

considered. The reason is that different features have different levels of influence over the 

construction of the decision tree. It is possible for one highly influential feature to dominate the 

construction process, such that the decision trees are highly correlated. Averaging the results of 

many highly correlated decision trees would not reduce the variance of the output by very 

much. Random Forest is designed to produce decorrelated decision trees that have low variance 

and high reliability. 

https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.statlearning.com%2F&data=05%7C02%7Cmatthew.g.wiecek%40durham.ac.uk%7C11154581f5cf42e71cf008ddb0111ba9%7C7250d88b4b684529be44d59a2d8a6f94%7C0%7C0%7C638860309731652714%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=OBiIKQ7K7bBUczI76y%2FemCACOr4Z9M%2FO4vY8OdsFAuI%3D&reserved=0
https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.statlearning.com%2F&data=05%7C02%7Cmatthew.g.wiecek%40durham.ac.uk%7C11154581f5cf42e71cf008ddb0111ba9%7C7250d88b4b684529be44d59a2d8a6f94%7C0%7C0%7C638860309731666075%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=u%2FuCX79Rte%2FE2gD5qZEslLPhAdJuzPfdYlP0mhgubZs%3D&reserved=0
https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.statlearning.com%2F&data=05%7C02%7Cmatthew.g.wiecek%40durham.ac.uk%7C11154581f5cf42e71cf008ddb0111ba9%7C7250d88b4b684529be44d59a2d8a6f94%7C0%7C0%7C638860309731666075%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=u%2FuCX79Rte%2FE2gD5qZEslLPhAdJuzPfdYlP0mhgubZs%3D&reserved=0
https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.statlearning.com%2F&data=05%7C02%7Cmatthew.g.wiecek%40durham.ac.uk%7C11154581f5cf42e71cf008ddb0111ba9%7C7250d88b4b684529be44d59a2d8a6f94%7C0%7C0%7C638860309731679209%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=5ea8pfWMj6Ih1EWQnQ3yldfhdFQh6ANLmzPHULbkAok%3D&reserved=0
https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.statlearning.com%2F&data=05%7C02%7Cmatthew.g.wiecek%40durham.ac.uk%7C11154581f5cf42e71cf008ddb0111ba9%7C7250d88b4b684529be44d59a2d8a6f94%7C0%7C0%7C638860309731708254%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=PREi02NGmtpmYR8Rr51DkORGRQekUPqe7sXd1UV8mC8%3D&reserved=0
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Another way of building an ensemble of decision trees is boosting (James et al., 2023, pg. 345-

348). Where Random Forest builds many independent decision trees in parallel, boosting builds 

many decision trees in sequence, and each tree depends on the trees that came before it. At 

each iteration, boosting fits a decision tree to the data, and the errors/residuals are measured. 

At the next iteration, another decision tree it trained, and the errors/residuals in the last 

iteration are given emphasis, so that later decision trees increasingly focus on difficult-to-

classify data points. There are multiple implementations where the details of the boosting 

process vary, and the one used here is Gradient Boosting.  

SUMMARY OF THE METHODOLOGY 

Table 12 provides a detailed summary of the differences between the two platforms. Here are 

the key points: 

• Google Earth Engine has the majority of the data already built in and pre-processed. 

Python has no built-in and pre-processed remote sensing data. 

• Google Earth Engine has a sufficient number of classifiers for the purpose of this 

research. Scikit-Learn’s wider range of classifiers would complicate the comparison 

greatly without adding more support to the argument. 

• Google Earth Engine has all necessary metrics. Scikit-Learn’s extra metrics do not add 

any necessary information. 

• Sample size, feature selection and hyperparameters can be tuned in Python, and the 

results can then be carried over to Google Earth Engine.  

In summary, this chapter will use Google Earth Engine to test three common classifiers on three 

common satellites. Figure 35 shows the location of these data for this comparison within 

Guyana. This area is one of the best available for this, for several reasons: 

• The area is spectrally simple, relative to many other areas. The mining site is mostly bare 

earth with a single pond; other mining sites have a very complex mix of objects. 

• The satellite images were recorded over a time period of one month. Because Guyana is 

one of the cloudiest countries in the world, there are areas where multispectral data 

from different satellites is up to six months apart, due to the difficulty of finding a gap in 

the cloud cover. Having data from the same season maximizes consistency between 

images. 

https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.statlearning.com%2F&data=05%7C02%7Cmatthew.g.wiecek%40durham.ac.uk%7C11154581f5cf42e71cf008ddb0111ba9%7C7250d88b4b684529be44d59a2d8a6f94%7C0%7C0%7C638860309731724297%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=cNsmwJBuDsrZZwlMg06vK4%2BTmBL8MZ%2BBhk253snjvPo%3D&reserved=0
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• The boundary of the study area was chosen to avoid extreme class imbalance. The 

proportion of river, mining and forest pixels is as close to balanced as possible. 

SECTION 4.2 RESULTS AND DISCUSSION 

The overall trend in the results in this chapter is that the classification accuracy for Forest and 

River is very high, and Mining accuracy is high but lower. In Consumer’s Accuracy, Forest 

ranges from 93.81% (Naïve Bayes on Sentinel-2, see Table 18) to 99.11% (Random Forest and 

Gradient Boosted Trees with Landsat, see Tables 19 and 20). River accuracy shows more 

variation: Consumer’s Accuracy is 93-97% for Random Forest and Gradient Boosted Trees in 

Sentinel-2 and Planetscope and Naïve Bayes on Sentinel-2, 85% for Random Forest and 

Gradient Boosted Trees on Landsat, 80% for Naïve Bayes on Planetscope, and 0% for Naïve 

Bayes on Landsat.  

Looking at the predicted land cover map and class probabilities for Random Forest on 

Planetscope (Figure 42), in the area labelled Mining, the predicted class boundary follows the 

true boundary very closely. In the area labelled Path, two thirds is not predicted. In the class 

probabilities, the path is visible, in an area that has a lower probability of being forest, though 

the probability of forest is still above 50% there. The predictions are made by setting a 

threshold of 50% to the class probabilities, and this would suggest that the Path area would be 

predicted correctly if the threshold were adjusted based on the mixed pixels present. 

The second classifier is Gradient Boosted Trees, and in this test the input data are from the 

same Planetscope imagery as the previous test. The class probabilities (Figure 43) show that 

the predicted class boundaries are close to the true boundaries, with similar distribution to the 

Random Forest results in the previous test. However, where Random Forest has high certainty 

everywhere except for class boundaries, Gradient Boosted Trees has low certainty everywhere. 

Despite this, in the predicted land cover map (Figure 40), the predicted class boundaries are 

close to the true class boundaries, as in Random Forest. The confusion matrix (Table 14) is 

almost identical to Random Forest (Table 13), despite the vast difference in class probabilities. 

The third classifier is Naïve Bayes. In the predicted land cover map (Figure 41), the river was 

consistently classified as river. But the forest-river boundary was classified as mining, part of 

the bare land was classified as river, the mining pond was classified as mining, and the area 

classified as mining includes the edge of the forest. The class probabilities show extreme 
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confidence for each class (Figure 41), which is consistent with the behaviour of Naïve Bayes 

when given a large sample size. 

The second sensor to be tested is Sentinel-2, and the first test uses Random Forest. In Figure 

42, the class labels have lines indicating the class boundaries in the highest resolution reference 

data, which at this resolution shows which pixels will be mixed pixels. As with Planetscope, 

Sentinel-2 with Random Forest produces a predicted land cover map where, in the mining site, 

the predicted class boundaries are close to the true class boundaries. The exception is that the 

path disappears in the predicted land cover map but is visible in the class probabilities (Figure 

42). The second test uses Gradient Boosted Trees. The same pattern appears as the test with 

Planetscope (Figure 43). Naïve Bayes with Sentinel-2 produces very different results than Naïve 

Bayes with Planetscope. This time, Naïve Bayes produces a very accurate predicted land cover 

map with high certainty (Figure 44). 

The third sensor to be tested is Landsat, and the first test uses Random Forest. In Figure 45, 

the lower resolution results in a large number of mixed pixels, and half of the path disappears, 

because the majority of the pixel is forest. The resulting predictions are very close to the true 

class labels. The second test uses Gradient Boosted Trees. In the predicted land cover map 

(Figure 46),  the class boundaries are very close to the class labels, and again, the class 

probabilities (Figure 46) show low certainty, in sharp contrast with the high certainty of Random 

Forest. The third classifier is Naïve Bayes. With Landsat data, the predicted land cover map 

(Figure 47) classifies both the forest and the river as forest, but outlines the mining site well. 

The mining pond is mostly classified as forest except for one pixel, and there are some river 

pixels around the edge of the mining site. In the class probabilities (Figure 47), the probability 

of Forest is different for the river vs the forest. This again suggests that accurate predictions 

could be derived from the class probabilities using a different threshold, one other than 50%. 

The purpose of this chapter is to compare the performance of three common classifiers and 

satellites in a spectrally simple area, and the main takeaway is that Random Forest is the best 

performing classifier. It produces accurate predicted land cover maps and probabilities with 

high confidence regardless of the data given to it. Naïve Bayes produces reasonably accurate 

predicted land cover maps in Sentinel-2 and Landsat, and an inaccurate predicted land cover 

map in Planetscope. The two differences between Planetscope and Sentinel-2 are that Gradient 

Boosted Trees produces accurate predictions but the probabilities have low certainty. Random 

Forest will therefore be the default classifier going forward. This is an observation that is not 
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mentioned in the existing literature on gradient boosted trees in remote sensing; Lawrence et 

al., 2004; Jun et al., 2021; Chirici et al., 2013 test gradient boosted trees in remote sensing 

classification problems, and find high prediction accuracy, but never mention class probabilities. 

The next comparison (Chapter 5) will test Random Forest using four SAR satellites and two 

multispectral satellites, in a more complex area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 12: Summary of the differences between Google Earth Engine and Python. 

 Google Earth Engine Python 

Data acquisition Free and pre-processed data is built in 

More data can be uploaded 

Data must be acquired manually 

Data must be pre-processed manually 

Classification Metrics  Accuracy 

Confusion Matrices 

Confusion Matrices 

Accuracy 

https://www.montana.edu/spowell/documents/pdffiles/lawrence_rse.pdf
https://www.montana.edu/spowell/documents/pdffiles/lawrence_rse.pdf
https://doi.org/10.1080/13658816.2021.1887490
https://www.academia.edu/download/46268340/Stochastic_gradient_boosting_classificat20160605-30763-15l2ig3.pdf
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Consumer’s Accuracy 

Producer’s Accuracy 

Precision 

Recall 

F1 Score 

Matthews Correlation Coefficient 

Jaccard Score 

Hinge Loss 

Log Loss 

Sample Size Tuning Must be done manually A learning curve function is available 

Feature Engineering Must be done manually Sequential Feature Selection 

Exhaustive Feature Selection 

Hyperparameter Tuning Must be done manually Grid Search Cross Validation 

Random Search Cross Validation 

Bayes Search Cross Validation 

Classifiers Available CART 

Random Forest 

Gradient Boosted Trees 

Support Vector Machine 

K-Nearest Neighbours 

Naïve Bayes 

Minimum Distance 

Decision Tree (Loh et al., 2014) 

Naïve Bayes 

K-Nearest Neighbours 

Radius Neighbours 

Nearest Centroid 

Logistic Regression 

Passive Aggressive Classifier 

Ridge Classifier 

Stochastic Gradient Descent 

Support Vector Machine 

Perceptron 

Multilayer Perceptron 

More advanced neural network 

architectures in TensorFlow 

https://imsarchives.nus.edu.sg/oldwww/Programs/014swclass/files/loh.pdf
https://doi.org/10.1073/pnas.082099299
https://arxiv.org/abs/1407.0202
http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf
https://doi.org/10.1037/h0042519
https://files.eric.ed.gov/fulltext/ED294889.pdf
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Figure 35: The location of the first set of tests in Guyana. This area is in the far west 

of the country, deep in the jungle near the border with Venezuela 
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Figure 36: The reference Skysat image data (top), and maps of the training data 

points (middle) and validation data points (bottom), superimposed over the class 

labels. Forest is green, river is blue, and mining is yellow. The purple dots are the 

locations of selected pixels. 
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Figure 37: The Landsat source data. Top image: Red, Green and Blue bands (30m). 

Bottom image: Panchromatic band (15 m). The panchromatic band captures 

photons from the full visible light spectrum, and the multispectral bands capture 

photons from specific slices of the visible light spectrum.  
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Figure 38:  

Bottom left: The Enhanced Vegetation Index (EVI) values for each pixel. Dark green 

is the most vibrant vegetation, and the lightest green is no vegetation. It follows 

the forest/non-forest boundary very closely.  

Bottom right: The results of clustering using X-Means Clustering. The forest and the 

river are in separate clusters. The bare surface is in another cluster, the mining pond 

is clustered with the river, and the forest-mining boundary is clustered with the 

water.  

Top left: False colour composite image of Planetscope data used to calculate the EVI 

and clustering maps.  

Top right: The class labels, as described in the legend on the bottom centre. 
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Table 13: Random Forest on Planetscope. 

Accuracy: 95.99% 

Pixel Count: 3924 

True Consumer’s 
Accuracy Forest River Mining 

Predicted Forest 2470 4 34 98.48% 

River 22 539 15 93.58% 

Mining 39 18 153 72.86% 

Producer’s Accuracy 97.59% 96.08% 75.74%  

 

Figure 39: Planetscope classified using Random Forest. Data (top left), labels 

(middle left), predictions (bottom left), probability of Forest (top right), probability 

of River (middle right), probability of Mining (bottom right). 
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Table 14: Gradient Boosted Trees on Planetscope. 

Accuracy: 96.21% 

Pixel Count: 3294 

True Consumer’s 
Accuracy Forest River Mining 

Predicted Forest 2462 4 42 98.17% 

River 19 544 13 94.44% 

Mining 30 17 163 77.62% 

Producer’s Accuracy 98.05% 96.28% 74.77%  

Figure 40: Planetscope classified using Gradient Boosted Trees. Data (top left), 

labels (middle left), predictions (bottom left), probability of Forest (top right), 

probability of River (middle right), probability of Mining (bottom right). The black 

line in the labels follows the class boundary to show mixed pixels. 
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Table 15: Naive Bayes on Planetscope 

Accuracy: 91.92% 

Pixel Count: 3294 

True Consumer’s 
Accuracy 

 

Forest River Mining  

Predicted Forest 2403 1 104 95.81%  

River 10 464 102 80.56%  

Mining 21 28 161 76.67%  

Producer’s Accuracy 98.73% 94.12% 43.87%   

Figure 41: Planetscope classified using Naïve Bayes. Data (top left), labels (middle 

left), predictions (bottom left), probability of Forest (top right), probability of River 

(middle right), probability of Mining (bottom right). 
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Table 16: Random Forest on Sentinel-2. 

Accuracy: 95.74% 

Pixel Count: 305 

True Consumer’s 
Accuracy Forest River Mining 

Predicted Forest 219 0 7 96.90% 

River 3 54 0 94.74% 

Mining 3 0 19 86.36% 

Producer’s Accuracy 97.33% 100.00% 73.08%  

Figure 42: Sentinel-2 classified using Random Forest. Data (top left), labels (middle 

left), predictions (bottom left), probability of Forest (top right), probability of River 

(middle right), probability of Mining (bottom right). 
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Table 17: Gradient Boosted Trees on Sentinel-2. 

Accuracy: 95.08% 

Pixel Count: 305 

True Consumer’s 
Accuracy Forest River Mining 

Predicted Forest 212 0 4 95.58% 

River 5 51 1 96.49% 

Mining 1 0 21 86.36% 

Producer’s Accuracy 97.74% 94.83% 73.08%  

Figure 43: Sentinel-2 classified using Gradient Boosted Trees. Data (top left), labels 

(middle left), predictions (bottom left), probability of Forest (top right), probability 

of River (middle right), probability of Mining (bottom right). 
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Table 18: Naive Bayes on Sentinel-2. 

Accuracy: 93.11% 

Pixel Count: 305 

True Consumer’s 
Accuracy Forest River Mining 

Predicted Forest 212 0 14 93.81% 

River 5 51 1 96.49% 

Mining 1 0 21 94.45% 

Producer’s Accuracy 97.25% 100.00% 58.33%  

Figure 44: Sentinel-2 classified using Naïve Bayes. Data (top left), labels (middle 

left), predictions (bottom left), probability of Forest (top right), probability of River 

(middle right), probability of Mining (bottom right). 
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Table 19: Random Forest on Landsat. 

Accuracy: 94.52% 

Pixel Count: 146 

True Consumer’s 
Accuracy Forest River Mining 

Predicted Forest 111 0 1 99.11% 

River 4 23 0 85.19% 

Mining 3 0 4 57.14% 

Producer’s Accuracy 94.07% 100.00% 80.00%  

Figure 45: Landsat classified using Random Forest. Data (top left), labels (middle 

left), predictions (bottom left), probability of Forest (top right), probability of River 

(middle right), probability of Mining (bottom right). 
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Table 20: Gradient Boosted Trees on Landsat. 

Accuracy: 94.52% 

Pixel Count: 146 

True Consumer’s 
Accuracy Forest River Mining 

Predicted Forest 111 0 1 99.11% 

River 2 25 0 85.19% 

Mining 3 0 4 57.14% 

Producer’s Accuracy 94.07% 100.00% 80.00%  

Figure 46: Landsat classified using Gradient Boosted Trees. Data (top left), labels 

(middle left), predictions (bottom left), probability of Forest (top right), probability 

of River (middle right), probability of Mining (bottom right). 
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Table 21: Naive Bayes on Landsat. 

Accuracy: 78.08% 

Pixel Count: 146 

True Consumer’s 
Accuracy Forest River Mining 

Predicted Forest 108 3 1 96.43% 

River 27 0 0 0.00% 

Mining 1 0 6 85.71% 

Producer’s Accuracy 79.41% 0.00% 85.71%  

Figure 47: Landsat classified using Naïve Bayes. Data (top left), labels (middle left), 

predictions (bottom left), probability of Forest (top right), probability of River 

(middle right), probability of Mining (bottom right). 
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CHAPTER 5: TESTING MORE SENSORS IN A NEW LOCATION 

The study area in the previous chapter was one of the simplest Forest-River-Mining sites 

available, but real-world applications need to cope with more complexity than the simplest sites. 

The existing literature on remote sensing of forests tends to test classifiers in a single area with 

a simple set of land cover types. However, deforestation mapping of an entire country involves 

testing classifiers in a very heterogeneous set of land cover types. Rivers can be clear or turbid. 

Mining sites can be active (more bare surfaces), abandoned (more emphasis on new 

vegetation), or mixed (complex mix of bare surfaces, vegetation and mining ponds). This 

chapter and the next chapter will address this issue by testing sensors in two complex mining 

sites that both have a river passing by.  

It would also be good to test a wider range of sensors. This chapter will accomplish that by 

comparing six sensors in a region with more complexity: a mining site beside a river that has 

ponds, bare surfaces and vegetation. This creates opportunities for overlap with other classes, 

that will test the capabilities of Random Forest with each data source. The location in Guyana is 

shown in Figure 47, and Figure 48 shows the multispectral data before clouds were removed. 

This location was chosen because it is the only site that has aerial photography of an area with 

forest, river, mining and roads, and all four multispectral sensors used in this study. The 

benefits of these sensors are: 

• Planetscope is the highest resolution of the set, and has the highest revisit time. 

• RapidEye is useful for historical work, because it provides five meter resolution images 

from 2008 to 2020. 

• Sentinel-2 is the most commonly used sensor, is well calibrated, and has sufficient 

resolution for most remote sensing of forests work. 

• Landsat is still frequently used in large-scale remote sensing of forests work. 

• Sentinel-1 and ALOS-2 are SAR sensors, which penetrate clouds, and record very 

different information from the multispectral sensors. The ALOS-2 data is from a 

descending orbit, and the Sentinel-1 data is from an ascending orbit. Both sensors were 

right-looking. 

The classifier is Random Forest, with the Max Nodes hyperparameter set to 24. This level of 

smoothing yielded the best accuracy. Otherwise, this is a continuation of the method in Chapter 

4. 
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Figure 48: The location of the multispectral comparison in Guyana. The example 

image is Landsat. 
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Figure 49: The multispectral images before cloudy areas were clipped out. Top left: 

Planetscope. Top middle: RapidEye. Top right: Sentinel-1. Bottom left: Sentinel-2. 

Bottom middle: Landsat. Bottom right: ALOS-2. 
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SECTION 5.1 RESULTS 

Planetscope, Sentinel-2 and Landsat offer similar performance, and RapidEye has lower 

accuracy than the other multispectral sensors (Table 22). Of the SAR sensors, accuracy at 

classifying forest is similar to the multispectral sensors, but accuracy at classifying river and 

mining is much lower. Overall, in Planetscope (Figure 49) and Sentinel-2 (Figure 51), the 

predicted class boundaries were close to the true boundaries. When using RapidEye and 

Landsat, the predicted class boundaries are farther from the true boundaries than in Sentinel-2 

and Planetscope.  

Table 22: Summary of results for the multispectral comparison. 

  Planetscope RapidEye Sentinel-2 Landsat ALOS-2 Sentinel-1 

Pixel Count 9822 2131 4060 3177 1208 7342 

Consumer’s 

Accuracy 

Forest 94.69% 79.26% 92.01% 94.77% 91.77% 92.56% 

River 77.27% 59.83% 80.53% 78.95% 42.22% 22.60% 

Mining 72.57% 59.77% 80.67% 79.19% 42.63% 16.47% 

Producer’s 

Accuracy 

Forest 92.16% 69.87% 89.33% 92.02% 81.44% 72.65% 

River 77.82% 71.43% 86.12% 85.71% 65.52% 51.97% 

Mining 79.42% 69.21% 83.71% 84.54% 60.45% 42.17% 

 

When identifying the roads, Random Forest with Planetscope (Figures 49) is able to identify the 

majority of the road pixels. RapidEye (Figure 50) and Sentinel-2 (Figure 51) can identify a 

minority of road pixels, and Landsat (Figure 52) can identify almost no road pixels. Sentinel-1 

(Figure 53) and ALOS-2 (Figure 54), the SAR satellites, are unable to identify roads at all. 

When identifying the river, the Sentinel-2 was the best, finding almost all of the river, and the 

Planetscope and Landsat images also produced good river classifications. The RapidEye 

predictions were very good at the majority of the river, but the middle part of the river was 

missing a large part. ALOS-2 identifies about half of the river and is missing the other half. 

Sentinel-1 identifies the centre of the river but misses the edge. 



  112  

 

When identifying the mining areas, the Sentinel-2 and Landsat predictions outline the mining 

areas very accurately. The Planetscope and RapidEye predictions accurately identify the 

majority of the mining areas, but miss large areas around the edges. 

The SAR data here is much worse at identifying mining and river than the multispectral sensors 

(Table 22). However, the two SAR sensors are similar to Planetscope, Sentinel-2 and Landsat 

when identifying forest. 

In the probability of river for Planetscope (Figure 49), Sentinel-2 (Figure 51), and Landsat 

(Figure 52), there is a darker red area that matches the forest in the true labels, and a lighter 

red area that matches the mining area in the true labels. In more numerical terms, there is a 

sharp gradient in class probabilities at the class boundary, and the two classes have distinct 

probabilities of river. By identifying the threshold value that matches the centre of this gradient, 

it would be possible to predict all three classes just from the probability of river. 

In comparing the four multispectral sensors, the lowest performing sensor was RapidEye. 

Planetscope was the best at identifying roads, and Sentinel-2 and Landsat were both the best 

at outlining the mining areas. Planetscope’s ability to find roads makes sense: at three meter 

spatial resolution, it is the only one that can resolve a feature as narrow as a road, and provide 

enough pure pixels for a classifier to identify it. This indicates that high spatial resolution is 

useful in some situations, but in many other situations, moderate resolution sensors (Sentinel-2 

and even Landsat) are adequate for most deforestation mapping. The two best sensors at 

outlining the mining area have one feature in common that Planetscope and RapidEye lack: 

Shortwave Infrared capability. So far, it appears that SAR sensors perform much worse than 

multispectral sensors, meaning that they are not a viable alternative in cloudy areas. 

At this point, all available multispectral sensors have been tested. Two SAR sensors have been 

tested, but data from two higher resolution SAR sensors is available from other parts of 

Guyana. The next chapter will compare results from four SAR sensors and three multispectral 

sensors in another location.  
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SECTION 5.2 DISCUSSION 

Some of the classification errors are where mining ponds were identified as River (ranges from 

96/785 pixels or 12.2% for Sentinel-1 to 18/220 pixels or 8.19% for ALOS-2). However, the 

idea that is a misclassification, a deviant from the truth, requires some examination. The true 

labels were made with the policy definitions of land cover types in mind. For policy makers, 

what matters is where a mining site occurs in the forest. However, as far as ground features 

and physical processes are concerned, a mining site is not just a mining site. It is a collection of 

bare surfaces, mining ponds with varying chemical compositions and therefore varying spectral 

properties, and vegetation in varying stages of regrowth. The Random Forest classifier is 

picking up on this – the river classification includes similar mining ponds (which are also water), 

and the classifier identifies the denser vegetation within mining areas as forest. For the 

purposes of quantifying land cover types for policy purposes, the complexity of the mining area 

will result in errors. However, for the purposes of studying the physical and ecological 

properties of the area, the Random Forest classifier is improving on the labels, and identifying 

relevant features within the mining area. Therefore, classifier accuracy, how close the 

predictions are to the truth, depends on the context. The confusion matrices reflect the 

accuracy for policy purposes, but the usefulness to physical and ecological remote sensing is 

higher than the confusion matrices would suggest. 

Three of the multispectral images have gaps in their coverage (Figures 49-51). In the case of 

RapidEye, the majority of the scene is missing due to the need to remove clouds. In many parts 

of the world, avoiding cloud cover is simply a matter of selecting data from a different date, and 

in a low-cloud area, it will be easy to find cloudless images that are close in time to each other. 

Guyana is one of the cloudiest places in the world, and this can be next to impossible. Images 

can be months apart, because cloud-free days were few and far between. SAR is often used as 

a solution to this problem, because microwaves pass through clouds. However, in this case, 

SAR classification accuracy was lower than the multispectral data, enough so that it isn’t a 

suitable replacement. 
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SECTION 5.3 CONCLUSION AND NEXT STEPS 

The take-aways from this chapter are: 

• Overall, the multispectral sensors outperformed the SAR sensors. 

• The ability to identify roads in SAR images is closely tied to pixel size. 

• The two sensors that are best at finding mining are Sentinel-2 and Landsat: the two with 

Shortwave Infrared bands. 

• The class probabilities show a gradient that follows the class boundary closely, even 

when the predictions don’t. This suggests that variable thresholding could improve 

predictions. 

The next step is to run this test again, in a different area. This test will find out whether the 

results are consistent across the country. Normally, when classifiers are tested in remote 

sensing of forests research, one study area is selected, which is very homogeneous, and 

therefore easy for the classifier to work with. However, nationwide deforestation mapping will 

require a classifier that can work with very heterogeneous data. 

The next study site will also have a different set of satellites. The area is missing one 

multispectral sensor (RapidEye), but it does have two higher resolution SAR satellites: 

TerraSAR-X and Radarsat-2. The next study site will serve a second purpose: find out whether 

SAR performance improves with higher resolution. 
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Table 23: Confusion matrix for Planetscope classified with Random Forest. 

Accuracy: 89.03% 

Pixels: 9822 

True Consumer’s 
Accuracy Forest River Mining 

Predicted Forest 6865 14 371 94.69% 

River 6 221 59 77.27% 

Mining 578 49 1659 72.57% 

Producer’s Accuracy 92.16% 77.82% 79.42%  

Figure 50: Planetscope classified using Random Forest. Top left: Data. Top middle: 

True labels. Top right: Predicted classes. Bottom left: Probability of forest. Bottom 

middle: Probability of river. Bottom right: Probability of mining. 
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Table 24: Confusion matrix for RapidEye classified with Random Forest. 

Accuracy: 69.68% 

Pixels: 2131 

True Consumer’s 
Accuracy Forest River Mining 

Predicted Forest 697 5 248 79.26% 

River 12 70 35 59.83% 

Mining 405 23 636 59.77% 

Producer’s Accuracy 69.87% 71.43% 69.21%  

Figure 51: RapidEye classified using Random Forest. Top left: Data. Top middle: 

True labels. Top right: Predicted classes. Bottom left: Probability of forest. Bottom 

middle: Probability of river. Bottom right: Probability of mining. 
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Table 25: Confusion matrix for Sentinel-2 classified with Random Forest. 

Accuracy: 87.19% 

Pixels: 4060 

True Consumer’s 
Accuracy Forest River Mining 

Predicted Forest 2152 8 179 92.01% 

River 1 211 50 80.53% 

Mining 256 26 1177 80.67% 

Producer’s Accuracy 89.33% 86.12% 83.71%  

Figure 52: Sentinel-2 classified using Random Forest. Top left: Data. Top middle: 

True labels. Top right: Predicted classes. Bottom left: Probability of forest. Bottom 

middle: Probability of river. Bottom right: Probability of mining. 
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Table 26: Confusion matrix for Landsat classified with Random Forest. 

Accuracy: 89.86% 

Pixels: 3177 

True Consumer’s 
Accuracy Forest River Mining 

Predicted Forest 2065 7 107 94.77% 

River 3 90 21 78.95% 

Mining 176 8 700 79.19% 

Producer’s Accuracy 92.02% 85.71% 84.54%  

Figure 53: Landsat classified using Random Forest. Top left: Data. Top middle: True 

labels. Top right: Predicted classes. Bottom left: Probability of forest. Bottom 

middle: Probability of river. Bottom right: Probability of mining. 
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Table 27: Confusion matrix for Sentinel-1 classified with Random Forest. 

Accuracy: 69.05% 

Pixels: 7342 

True Consumer’s 
Accuracy Forest River Mining 

Predicted Forest 4693 19 358 92.56% 

River 130 66 96 22.60% 

Mining 1637 42 331 16.47% 

Producer’s Accuracy 72.65% 51.97% 42.17%  

Figure 54: Sentinel-1 classified using Random Forest. Top left: Data. Top middle: 

True labels. Top right: Predicted classes. Bottom left: Probability of forest. Bottom 

middle: Probability of river. Bottom right: Probability of mining. 
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Table 28: Confusion matrix for ALOS-2 classified with Random Forest. 

Accuracy: 77.24% 

Pixels: 1208 

True Consumer’s 
Accuracy Forest River Mining 

Predicted Forest 781 1 69 91.77% 

River 8 19 18 42.22% 

Mining 170 9 133 42.63% 

Producer’s Accuracy 81.44% 65.52% 60.45%  

Figure 55: ALOS-2 classified using Random Forest. Top left: Data. Top middle: True 

labels. Top right: Predicted classes. Bottom left: Probability of forest. Bottom 

middle: Probability of river. Bottom right: Probability of mining. 
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CHAPTER 6: SAR COMPARISON USING A FOREST-RIVER-MINING SITE 

The previous two chapters have examined four multispectral sensors and two SAR sensors at 

two locations, which present different degrees of difficulty for classification. There is a third 

location with forest, river and mining in Guyana, located on the Cuyuni River (Figure 55), where 

data from four SAR sensors and three multispectral sensors are available. The four SAR sensors 

include both moderate and high spatial resolution data, with microwaves in both vertical and 

horizontal polarizations. The two SAR sensors in the last chapter (Sentinel-1 and ALOS-2) are 

available again, as are three of the multispectral sensors (Planetscope with the Dove Classic 

sensor, Sentinel-2, Landsat, but not RapidEye). This chapter will serve two purposes: 

• To provide a more comprehensive assessment of the ability of SAR to map deforestation, 

at both moderate and high resolution. 

• To compare with the results of Chapter 5 at a mining site on the Konawaruk River, an 

assessment of the performance of the same sensors in a different environment, this time 

on the Cuyuni River. This is important because nationwide deforestation mapping needs 

to be able to accurately classify the full diversity of land cover in Guyana. 

Figure 55 shows the location of the area in Guyana. This is an area that includes the Cuyuni 

River and several mining areas that have a complex mix of vegetation and ponds. This area also 

has a mix of topography, including both flat areas and rapid changes in elevation. This means 

that this area will provide both high quality training data for a SAR test (low relief) and the 

ability to test SAR classifiers in both easy situations (low relief, simple land cover) and difficult 

situations (high relief, complex land cover types).  

SECTION 6.1 CHOOSING THE SAR SATELLITES 

The full discussion of selecting the SAR satellites can be found in Chapter 3. Here are the key 

points for this chapter, with a summary in Table 29: 

• The ALOS-2 data is a 25 meter resolution ScanSAR image, because that is available for 

free on Google Earth Engine. The image is dual polarized HH/HV, and the microwaves 

are L-band, which penetrates to the forest floor. The satellite was in a descending orbit 

(top to bottom in the image), and the sensor is right-looking (the beam is oriented 

toward the left in the image). SAR shadows will be on the right side of a hill. 
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• The Sentinel-1 data is at 10 meter resolution (Interferometric Wide Swath) and is also 

freely available. The image is dual polarized VV/VH, and the microwaves . The satellite 

was in an ascending orbit (top to bottom in the image), and the sensor is right-looking 

(the beam is oriented toward the left in the image). SAR shadows will be on the left side 

of a hill. 

• The Radarsat-2 data is a five meter resolution Fine beam mode image, in single 

polarization HH. It has been processed using radiometric calibration, terrain correction 

and speckle reduction using the Refined Lee algorithm. The satellite was in a descending 

orbit (top to bottom in the image), and the sensor is right-looking (the beam is oriented 

toward the left in the image). SAR shadows will be on the right side of a hill. 

• The TerraSAR-X data is a 2.75 meter resolution StripMap image, in dual polarization 

VV/VH. It came with radiometric calibration and terrain correction applied. The satellite 

was in a descending orbit (top to bottom in the image), and the sensor is right-looking 

(the beam is oriented toward the left in the image). SAR shadows will be on the left side 

of a hill. 

• The SAR images were collected in August 2017. The Planetscope data was collected on 

5th September 2017, the Landsat data was collected on 12th April 2018, and the Sentinel-

2 data was collected on 23rd September 2018, as these are the dates that offered a 

sufficient amount of cloud free data. 

 

Table 29: A summary of the available synthetic aperture radar (SAR) satellites. X-

band, C-band and L-band are the microwave frequency bands emitted. They differ in 

penetrating power: X-band (the shortest wavelengths) reflect off of the canopy, and 

L-band (the longest wavelength) reflects off of the forest floor. Polarizations are 

included: Horizontal or vertical. 

 X-band C-band L-band 

2.75m TerraSAR-X VV/VH   

5m  Radarsat-2 HH  

10m  Sentinel-1 VV/VH  

25m   ALOS-2 HH/HV 

 



  123  

 

SECTION 6.2 COVERAGE OF THE TRAINING AND PREDICTION DATA 

For multispectral and SAR data, there are two issues that determine what areas are covered by 

the training and validation data, and where the training samples are drawn from. They are: 

cloud cover and topography. For multispectral data, the cloud cover problem was solved by 

finding an image from the date with the least cloud cover, and then clipping out the clouds that 

were present. The training and validation samples were drawn from the cloud-free area that 

overlaps in all of the images. SAR penetrates clouds, which means that it may be a solution to 

this problem. 

The second problem, steep topography, can limit the usefulness of SAR. Figure 42 shows a 

TerraSAR-X SAR image, along with an elevation map derived from Shuttle Radar Topography 

Mission (SRTM) data. The SRTM data shows that Area 1 and Area 2 are flat, with simple 

geometry, and Area 3 has high relief and complex geometry. In the SAR image, Area 3 has a 

large amount of white smearing, where that slope was in the shadow of the SAR signal, and 

pixel values had to be interpolated when terrain correction was done. The location of SAR 

shadow is determined by the satellite’s orbit and the sensor’s look direction. Depending on 

which way the sensor is pointed, one side of a hill or the other will be in the sensor’s shadow. 

For this reason, two confusion matrices are being generated: one to measure performance in 

an easy area with little relief, and one to measure classifier performance in a difficult area with 

high relief. 
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Figure 56: The location of the study site in Guyana, with a TerraSAR-X example. The 

lower left image is a digital elevation model in meters. Area 1 is where the pixels for 

training were drawn from. Area 2 is where the first set of validation pixels were 

drawn from, and Area 3 is where the second set of validation pixels were drawn 

from. The whitest pixels (highest backscatter value) correspond with the left side of 

the hills in the DEM. 
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SECTION 6.3 RESULTS 

These results use the same sensors and the same classifier (Random Forest) as Chapter 5, but 

these results are from a different location.  

In this chapter, the classifier used for the test is Random Forest. The number of trees in the 

Random Forest was tuned manually, and it was found that reducing the number of trees 

(smoothing the model) reduces accuracy. It was also found that the orbit (ascending or 

descending in a polar orbit) either did not affect accuracy or did not change accuracy enough to 

solve any problems. Detailed results for both can be seen in Appendix E. 

In this test, the confusion matrices and associated statistics were drawn from two sets of 

validation samples. One is from an area of low relief (Table 30), and the other is from an area 

of high relief (Table 31). Comparing SAR sensors within the flat part of the Cuyuni River mining 

site in different parts of a three-class problem, all sensors have high Consumer’s Accuracy when 

classifying Forest (88% to 93%), and much lower Consumer’s Accuracy when classifying River 

(27% to 81%) and Mining (12% to 34%). When classifying the hilly area, Consumer’s Accuracy 

for Forest is 91% to 94%, for River it is 67% to 98%, and for Mining it is 8% to 19%. Overall, 

the pattern between the flat and hilly area is that the hilly area has slightly better classification 

of forest, and the classification of river and mining is much worse. 

Comparing sensors, Sentinel-1 (C-band) is consistently the best, ALOS-2 (L-band) is second 

best, and Radarsat-2 (C-band) and TerraSAR-X (X-band) are much worse than either. Looking 

at polarization, the best and second worst sensors use dual VV/VH polarization, the second best 

uses dual HH/HV polarization, and the worst uses HH polarization. Looking at resolution, the 

two worst sensors are the two highest resolution sensors, the best sensor is in the middle, and 

the second-best sensor has the highest resolution. Looking at Figures 46-49, the distribution of 

predictions becomes noisier as the resolution increases. Note that this is after adjusting the 

Random Forest hyperparameters to smooth the model, by limiting the number of nodes in the 

trees. When unlimited nodes were allowed, the distribution of predictions was much noisier. 

In comparison, the multispectral sensors showed higher performance at classifying Forest, and 

much higher performance at classifying River and Mining areas. 
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Table 30: Summary of confusion matrix results for the SAR comparison in the flat 

area, Area 2 in Figure 42, in the Cuyuni River mining site. Area 1 in Figure 42 was 

the training data. Accuracies are percentage out of the total pixel count. 

  ALOS-2 Sentinel-1 Radarsat-2 TerraSAR-X Planetscope Sentinel-2 Landsat 

Pixel size 25m 10m 5m 2.75m 3m 10m 15m 

Pixel Count 2360 14 602 58 133 192 111 149 560 6139 914 

Consumer’s 

Accuracy 

Forest 91.47 93.05 88.02 89.22 96.70 94.75 97.85 

River 65.33 80.68 26.71 35.45 91.24 97.87 68.34 

Mining 34.23 14.44 11.59 13.33 77.79 64.20 57.69 

Producer’s 

Accuracy 

Forest 87.20 18.71 13.38 52.80 96.72 86.01 93.40 

River 55.06 74.49 63.14 78.74 89.11 78.25 97.14 

Mining 46.20 88.42 70.44 45.18 78.15 85.98 38.04 

 

Table 31: Summary of confusion matrix results for the SAR comparison in the hilly 

area, Area 3 in Figure 42, in the Cuyuni River mining site. Area 1 in Figure 42 was 

the training data. Accuracies are percentage out of the total pixel count. 

  ALOS-2 Sentinel-1 Radarsat-2 TerraSAR-X Planetscope Sentinel-2 Landsat 

Pixel size 25m 10m 5m 2.75m 3m 10m 15m 

Pixel Count 1620 10 283 40 497 326 005 112 587 10 154 709 

Consumer’s 

Accuracy 

Forest 93.83 97.14 91.23 92.45 97.00 97.32 87.60 

River 90.01 98.44 67.14 76.60 98.16 96.54 53.41 

Mining 19.13 9.18 7.75 9.10 53.50 61.42 67.05 

Producer’s 

Accuracy 

Forest 85.19 28.07 19.34 58.12 96.63 96.49 85.95 

River 76.34 88.74 88.01 80.91 80.82 95.80 26.14 

Mining 40.15 89.55 74.27 46.97 67.49 68.24 67.83 
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SAR RESULTS 

The first SAR sensor to be tested is ALOS-2 (Table 35), at 25 meter resolution with HH/HV 

polarization. The predictions (Figure 59) show that the river is accurately outlined, and the 

mining ponds are mostly classified as river. However, a large minority of forest pixels are 

identified as mining, and a large minority of mining pixels are identified as forest. Class 

probabilities are in Figure 59, and show a high probability of mining in the mining area, and in 

many parts of the forest. Looking at the data images in Figure 59, there is partial overlap 

between the forest and mining pixel values – the darker forest pixels are as dark as the mining 

area. 

The second SAR sensor to be tested is Sentinel-1 (Table 36). The results (Figure 60) are similar 

to ALOS-2 (Table 35). The river is clearly identified, and many of the mining ponds are 

identified as river. There is much confusion between forest and mining again, though this time 

the results are reversed: the majority of the forest area is classified as mining. In the data 

images (Figure 60), the bottom centre shows a bright area of smearing where the elevation 

changes quickly. Looking at the bottom centre of the predictions panel, this entire area is 

identified as forest. Looking above and to the right of that area, closer to the river and the right 

edge of the predictions panel, the higher backscatter (brighter in the image) forest pixels are 

classified as forest, and the lowest backscatter (darkest in the image) forest pixels are classified 

as mining. This indicates that there is a lot of variability in pixel values in a SAR image of a 

forest. The darker end of the spectrum overlaps with the mining area (which is majority dark), 

and areas that are influenced by the geometry of rough topography overlap with the brightest 

parts of a forest – remember that the training pixels were drawn from the mining area to the 

right, and the flat area north of the river, and the area of changing elevation was used only for 

predictions. This terrain effect actually makes the classifier more accurate in this area, because 

the entire area of changing elevation was classified as forest, and there is no mining or river in 

it, whereas forests with flatter topography are classified partly as forest and partly as mining. 

The third sensor to be tested is Radarsat-2 (Table 37). This is corrected to σ0 with terrain 

correction using Copernicus 30 m DEM. The predictions (Figure 61) show that the river is clearly 

outlined, and many mining ponds are identified as water, but the majority of both the mining 

site and the forest are identified as mining. 

The fourth sensor to be tested is TerraSAR-X (Table 38). The predictions (Figure 62) reverse 

the Radarsat-2 predictions: the river is clearly outlined (though parts inside it are identified as 
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forest), and the mining site and forest are both largely identified as mining, with scattered 

pixels in both areas identified as mining. The class probabilities (Figure 62) indicate low 

certainty for forest and mining, and high certainty for water. 

In the Google Earth Engine implementation, Random Forest has a Maximum Nodes 

hyperparameter. Values from 2 to 512 were tested, and 24 produced the highest accuracy 

scores, and was used for the results above. However, when unlimited nodes were allowed, the 

forest and mining predictions were reversed for Sentinel-1, Radarsat-2 and TerraSAR-X: the 

majority of pixels in both the mining and forest areas were classified as forest, and almost all of 

the water was identified as river. 

MULTISPECTRAL RESULTS 

In this comparison, the multispectral sensors consistently produced better results than the SAR 

sensors. Of the three multispectral sensors analysed (see Table 32 for Planetscope or Table 33 

for Sentinel-2), Sentinel-2 is the most accurate for two classes (Mining and River), and 

Planetscope is the most accurate in Forest. 

The first test will be Planetscope, the highest performing sensor. In this test (Figure 56), the 

entire mining site has been labelled as Mining. This is a spectrally complex area that includes 

many mining ponds and some patches of isolated forest new vegetation growth. Random Forest 

was still able to outline the river and the mining sites accurately, and it identifies some of the 

mining ponds as river. This shows that Random Forest can improve upon labels. The class 

probabilities (Figure 56) accurately follow the boundary between the mining site and the river, 

even though the line can’t be seen by visual inspection of the data. Note that the two data 

images in Figure 56 show every band: the top image is Green-Red-Near Infrared, and the 

bottom image is Blue-Green-Red. First generation Planetscope sensors (Dove Classic) have no 

other bands available. This suggests that Random Forest, when looking at all four bands at 

once, can accurately identify land cover boundaries not visible to a human operator. 

In Planetscope, the prediction image is “more accurate” because it accurately reflects features 

within a complex land cover class. However, this also means that the prediction at each pixel 

will be different from the label, which will reduce its accuracy in the confusion matrix. This may 

be an effect of Random Forest’s ability to improve on labels. 
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The second test is another multispectral sensor, Sentinel-2 (Figure 57). This time, Random 

Forest shows a much greater ability to improve on class labels. The river and mining site are 

accurately outlined again, and more mining ponds were identified as water. The differences 

between Planetscope (Dove Classic sensor) and Sentinel-2 are the resolution (3 meters for 

Planetscope, 10 meters for Sentinel-2), and Sentinel-2 records more infrared bands. The class 

probabilities (Figure 57) show a difference in probability between mining surface and some of 

the mining ponds that were still classified as mining rather than river. 

The third test is Landsat (Figure 58 and Table 34). Again, the river and the mining site 

predicted boundaries are very close to the true boundaries. One mining pond was identified as 

river, and large areas of vegetation in the southern end of the mining area were identified as 

forest. 

SECTION 6.4 DISCUSSION 

Overall, a clear pattern emerges. Both multispectral and SAR are very good at outlining the 

river. This is useful to know in hydrological research: SAR penetrates clouds, and so free-to-

download SAR  (Sentinel-1 or ALOS-2 ScanSAR) could be used for river and lake mapping with 

wall-to-wall coverage with 10 meter resolution. The problem is that Random Forest with 

Sentinel-1 and ALOS-2 identifies mining ponds as rivers, which would create a lot of false 

positives. This ties in with the discussion of accuracy in Chapter 5. The key point is that the 

classifier is capturing details not found in the true labels used for training and validation. 

When classifying mining, the Planetscope (Figure 56) and Sentinel-2 (Figure 57) data both 

outline the mining site very accurately, and identify very little of the forest as mining. Almost 

none of the river is identified as mining. In the data, the river and the mining ponds are 

indistinguishable to the human eye, but the classifier was still able to separate them accurately. 

In the class probabilities, there is a visible difference in probability of river between mining and 

forest – as in the previous chapter, the gradient in probability between the two follows the true 

class boundary. 

When Random Forest classifies mining using ALOS-2 data, the mining sites are mostly identified 

as either mining or river. However, there are a large number of false positives in the forest 

area. The backscatter variation in the forest partially overlaps with the mining area, in a way 

that not even Random Forest can correct for. 
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When classifying mining using Sentinel-1 data, part of the mining site is identified as mining, 

and part is identified as forest. The same pattern holds in Radarsat-2 and TerraSAR-X, with the 

proportion of pixels identified as mining increasing as the resolution increases. 

It is also worth noting that the class probabilities follow the texture of the canopy. 

Variable thresholding can be used to increase the number of mining sites detected, at the 

expense of false positives. Technicians can filter out false positives; false negatives will be 

difficult to find and correct. 

SECTION 6.5 CONCLUSION 

The last two comparisons have tested the same sensors and the same land cover type (Forest-

River-Mining) at two locations, one on the Cuyuni River, and one on the Konawaruk River. The 

multispectral results were similar, but the SAR results were very different. At the Cuyuni River 

site, the SAR classification was very good at finding the river, and heavily biased toward 

classifying land pixels as mining. At the Konawaruk River site, the SAR classification missed 

about half of the river pixels, and was heavily biased toward identifying land pixels as forest. 

This indicates that study sites are not interchangeable, and the location has an impact on the 

classifier. 

The last two comparisons have found that Random Forest is a high performing classifier in 

multispectral data, because of its ability to accurately outline class boundaries, and its ability to 

improve on labels, when given suitable data. Multispectral data consistently gives good results, 

even in this comparison, where the difficulty of the data was increased. SAR data is much 

worse than multispectral data in the same location. This outweighs the advantages of SAR 

(cloud penetration). The next chapter will look at the results of combining multispectral and 

SAR images. 
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Table 32: Confusion matrices for Planetscope. The top confusion matrix is from Area 

2 in Figure 42, the flat area, and the bottom confusion matrix is from Area 3, the 

hilly area. 

Accuracy: 93.92% 

Pixel Count: 149 560 

True Consumer’s 
Accuracy Forest River Mining 

Predicted Forest 119 932 45 4021 96.70% 

River 15 4533 539 91.24% 

Mining 4076 390 15 969 77.79% 

Producer’s Accuracy 96.72% 89.10% 78.15%  

 

Accuracy: 93.06% 

Pixel Count: 112 587 

True Consumer’s 
Accuracy Forest River Mining 

Predicted Forest 90 962 51 3120 97.00% 

River 225 8233 1729 98.16% 

Mining 2585 103 5579 53.50% 

Producer’s Accuracy 96.63% 80.82% 67.49%  
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Figure 57: Planetscope classified using Random Forest. Data with Green-Red-Near 

Infrared (top left), labels (top middle), predictions (top right), probability of forest 

(bottom left), probability of river (bottom middle), probability of mining (bottom 

right). The areas below correspond with the areas in Figure 42. 
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Table 33: Confusion matrices for Sentinel-2. The top confusion matrix is from Area 2 

in Figure 42, the flat area, and the bottom confusion matrix is from Area 3, the hilly 

area. 

Accuracy: 85.42% 

Pixel Count: 6139 

True Consumer’s 
Accuracy Forest River Mining 

Predicted Forest 3684 0 599 94.75% 

River 10 367 92 97.87% 

Mining 194 8 1239 64.20% 

Producer’s Accuracy 86.01% 78.25% 85.98%  

 

Accuracy: 94.43% 

Pixel Count: 10 154 

True Consumer’s 
Accuracy Forest River Mining 

Predicted Forest 8230 28 271 97.33% 

River 0 866 38 96.54% 

Mining 226 3 492 61.42% 

Producer’s Accuracy 96.49% 95.80% 68.24%  
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Figure 58: Sentinel-2 classified using Random Forest. Data with Green-Red-Near 

Infrared (top left), labels (top middle), predictions (top right), probability of forest 

(bottom left), probability of river (bottom middle), probability of mining (bottom 

right). The areas below correspond with the areas in Figure 42. 
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Table 34: Confusion matrices for Landsat. The top confusion matrix is from Area 2 in 

Figure 42, the flat area, and the bottom confusion matrix is from Area 3, the hilly 

area. 

Accuracy: 88.40% 

Pixel Count: 914 

True Consumer’s 
Accuracy Forest River Mining 

Predicted Forest 637 0 14 97.85% 

River 20 136 43 68.34% 

Mining 25 4 35 57.69% 

Producer’s Accuracy 93.40% 97.14% 38.04%  

 

Accuracy: 75.88% 

Pixel Count: 709 

True Consumer’s 
Accuracy Forest River Mining 

Predicted Forest 318 0 45 87.60% 

River 14 47 27 53.41% 

Mining 85 0 173 67.05% 

Producer’s Accuracy 76.26% 100% 70.61%  
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Figure 59: Landsat classified using Random Forest. Data showing Green-Red-Near 

Infrared (top left), labels (top middle), predictions (top right), probability of forest 

(bottom left), probability of river (bottom middle), probability of mining (bottom 

right). The areas below correspond with the areas in Figure 42. 
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Table 35: Confusion matrices for ALOS-2. The top confusion matrix is from Area 2 in 

Figure 42, the flat area, and the bottom confusion matrix is from Area 3, the hilly 

area. 

Accuracy: 80.72% 

Pixel Count: 2360 

True Consumer’s 
Accuracy Forest River Mining 

Predicted Forest 1716 4 248 87.20% 

River 19 49 21 55.06% 

Mining 141 22 140 46.20% 

Producer’s Accuracy 91.47% 65.33% 34.23%  

 

Accuracy: 80.80% 

Pixel Count: 1620 

True Consumer’s 
Accuracy Forest River Mining 

Predicted Forest 1156 4 197 85.19% 

River 4 100 27 76.33% 

Mining 72 7 53 40.15% 

Producer’s Accuracy 93.83% 90.09% 19.13%  
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Figure 60: ALOS-2 classified using Random Forest. Data with HV polarization (top 

left), labels (top middle), predictions (top right), probability of forest (bottom left), 

probability of river (bottom middle), probability of mining (bottom right). The areas 

below correspond with the areas in Figure 42. The sensor is looking to the left. 
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Table 36: Confusion matrices for Sentinel-1. The top confusion matrix is from Area 2 

in Figure 42, the flat area, and the bottom confusion matrix is from Area 3, the hilly 

area. 

Accuracy: 29.56% 

Pixel Count: 14 602 

True Consumer’s 
Accuracy Forest River Mining 

Predicted Forest 2291 26 9925 18.71% 

River 2 330 111 74.49% 

Mining 169 53 1695 88.42% 

Producer’s Accuracy 93.05% 80.68% 14.44%  

 

Accuracy: 38.17% 

Pixel Count: 10 283 

True Consumer’s 
Accuracy Forest River Mining 

Predicted Forest 2408 11 6161 28.07% 

River 0 883 112 88.74% 

Mining 71 3 634 89.55% 

Producer’s Accuracy 97.14% 98.44% 9.18%  
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Figure 61: Sentinel-1 classified using Random Forest. Data with VV polarization (top 

left), labels (top middle), predictions (top right), probability of forest (bottom left), 

probability of river (bottom middle), probability of mining (bottom right). The areas 

below correspond with the areas in Figure 42. The sensor is looking to the right. 
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Table 37: Confusion matrices for Radarsat-2. The top confusion matrix is from Area 

2 in Figure 42, the flat area, and the bottom confusion matrix is from Area 3, the 

hilly area. 

Accuracy: 22.68% 

Pixel Count: 58 133 

True Consumer’s 
Accuracy Forest River Mining 

Predicted Forest 6474 2508 39 390 13.38% 

River 149 1451 698 61.14% 

Mining 732 1474 5257 70.44% 

Producer’s Accuracy 88.02% 26.71% 11.59%  

 

Accuracy: 29.76% 

Pixel Count: 40 497 

True Consumer’s 
Accuracy Forest River Mining 

Predicted Forest 6531 1448 25 783 19.34% 

River 41 3318 411 88.01% 

Mining 587 176 2202 74.27% 

Producer’s Accuracy 91.23% 67.14% 7.75%  
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Figure 62: Radarsat-2 classified using Random Forest. Data with HH polarization 

(top left), labels (top middle), predictions (top right), probability of forest (bottom 

left), probability of river (bottom middle), probability of mining (bottom right) . The 

sensor is looking to the right. 
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Table 38: Confusion matrices for TerraSAR-X. The left confusion matrix is from Area 

2 in Figure 42, the flat area, and the right confusion matrix is from Area 3, the hilly 

area. 

Accuracy: 73.73% 

Pixel Count: 192 111 

True Consumer’s 
Accuracy Forest River Mining 

Predicted Forest 133 136 9617 18 330 82.65% 

River 764 4636 617 77.05% 

Mining 16 084 5065 3862 15.44% 

Producer’s Accuracy 88.77% 24.00% 16.93%  

 

Accuracy: 80.10% 

Pixel Count: 326 005 

True Consumer’s 
Accuracy Forest River Mining 

Predicted Forest 96 127 5135 10 769 85.80% 

River 1050 9845 1129 81.88% 

Mining 7766 793 1280 13.01% 

Producer’s Accuracy 91.60% 62.42% 9.71%  
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Figure 63: TerraSAR-X classified using Random Forest. Data with VV polarization 

(top left), labels (top middle), predictions (top right), probability of forest (bottom 

left), probability of river (bottom middle), probability of mining (bottom right). The 

sensor is looking to the right. 

 

 

 



  145  

 

CHAPTER 7: RESULTS ON COMBINING MULTISPECTRAL AND SAR SENSORS 

SECTION 7.1 INTRODUCTION 

In the last two chapters, the SAR and multispectral images were strong and weak at different 

aspects of the classification. SAR (particularly ALOS-2) tended to be better at finding mining 

ponds and outlining the river than multispectral images. Multispectral images were much better 

at outlining the mining areas than SAR. But there is another possibility: to combine both data 

types into one. This chapter tests two methods of fusing data from different sensors.  

There is some literature on this approach, though it isn’t nearly as extensive as the literature on 

sensor fusion. Holmberg (2021) stacked Sentinel-1 and Sentinel-2 bands and found a small 

increase, though it was judged not to be worth the added computational requirements. Kuplich 

(2006) used both SAR and multispectral bands in a neural network, and class discrimination 

increased when both SAR and multispectral bands were used over SAR bands only. 

There are five comparisons in this section, three at the Cuyuni River site (seen in Chapter 6) 

and two at the Konawaruk River site (seen in Chapter 5). The Cuyuni River site has data from 

Planetscope + TerraSAR-X, Sentinel-2 + Sentinel-1, and Landsat + ALOS-2. The Konawaruk 

River site has data from Sentinel-2 + Sentinel-1 and Landsat + ALOS-2. 

SENSOR FUSION 

The first method is the sensor fusion approach most commonly used in the remote sensing 

literature, where a three-band multispectral image and a one-band SAR image are fused into a 

three-band image that has information from both sources. 

Here are the key concepts: 

• In the RGB colour space, each colour is represented by three coordinates, that represent 

the mix of wavelengths in the colour: the recorded values of the Red, Green and Blue 

bands. 

• A multispectral satellite sensor splits the incoming visible light into Red, Green and Blue 

fractions (sometimes more), and records their intensities as a vector of numbers at each 

pixel. 

• There is a trade-off between spatial resolution and spectral resolution. When photons are 

drawn from fewer wavelengths, they need to be drawn from a larger spatial area to get 

https://www.diva-portal.org/smash/get/diva2:1575687/FULLTEXT01.pdf
https://d1wqtxts1xzle7.cloudfront.net/46995713/Classifying_regenerating_forest_stages_i20160704-28714-1w4es98-libre.pdf?1467624243=&response-content-disposition=inline%3B+filename%3DClassifying_regenerating_forest_stages_i.pdf&Expires=1704916574&Signature=PBBKSDk-WCIPWmtbEk6g4D6Q~EmcBJL0ZdM0k9XfGoB5F8sZjKe7d8pQFa9nN2LGCf0y58Ey~tp-xRjqNSoUgWSIbbxcNV7NCn4uAnDC8wtb8CVUc-hv~RHIR7GnSp2i7GjfREwHAY9dk7wAEjrAZ1pzxNmrHs-jODb~OdNKgyAP97B3LC7wugPPIt2YFLY~g1MInAtFdgNwUMPl~xmFC2cFOnWYg81AIJvIFAdO~WoyANjzEVJjpAkIW8m7dswg0RZBf7Hlzouew6gRZdIaiPi3vSP13k0~Fdk7M7I8vdnxL85QwRS7hewVpJ0u5nvCewazxI0deHEEpFjyb9vZZw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
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a clear signal. When photons are drawn from a wider range of wavelengths, they can be 

drawn from a smaller spatial area. Some multispectral sensors have both a panchromatic 

band and multispectral bands. The panchromatic band has lower spectral resolution (it 

draws from the entire visible light spectrum) and higher spatial resolution. The 

multispectral bands draw from the red, green and blue slices of the visible light 

spectrum, at a lower spatial resolution. Satellites that have a panchromatic band include 

Landsat, SPOT, Worldview and IKONOS. Satellites that do not have a panchromatic band 

include Sentinel-2, Planetscope and RapidEye. 

• An image with the spatial resolution of the panchromatic band and the spectral 

resolution of the multispectral bands is a pansharpened image. It can be made by fusing 

the panchromatic band with the multispectral bands. Google Earth Engine has 

implemented the Hue-Saturation-Volume (HSV) transform for this. 

• Hue can be thought of as the dominant wavelength or the colour in its purest form. 

Examples of hues are red, green or blue. 

• Saturation is the tone of a hue, and can be adjusted by adding white or black. 

• Volume is the brightness of a pixel. 

• In the HSV colour space, each colour is represented by three coordinates: for the 

brightness, the primary colour, and the tone within the colour. 

• Note that the panchromatic band has one value, the volume, with no spectral 

information. The multispectral bands do have colour information that can then become 

Hue and Saturation information. 

There are two things to note, that can extend this idea: 

1. Multispectral sensors have more than just visible light capability; they have at least Near 

Infrared capability. In remote sensing of forests, the Near Infrared band provides 

information on vegetation health and vitality, and in many situations, a Near Infrared – 

Red – Green image is more useful than a Red – Green – Blue image. 

2. Computer displays are designed to display three channels. Normally, they are Red, Green 

and Blue, but the other bands in a multispectral image are pixel values of the same 

nature, and it’s trivial to put the Near Infrared band into the monitor’s Red channel, the 

Red band into the Green channel, and the Green band into the Blue channel. 

3. Another kind of data that is of the same nature is the pixel values in a processed SAR 

image. Each pixel value is the intensity of the backscattered microwave photons. As 
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rasters – arrays of pixel values – SAR images and panchromatic bands are fundamentally 

of the same nature. 

There is a decades-long body of literature (reviews can be found in Pohl and van Genderen, 

1998; Wang et al., 2005; Pandit and Bhiwani, 2015; Ghassemian, 2016; Kulkarni and Rege, 

2020) that shows that accuracy can be improved by combining data from multiple sources. In 

these reviews and the literature they review, the goal of sensor fusion is to combine images 

from different sources in a way that increases the quantity and quality of information available. 

A fused multispectral-SAR image has spatial, spectral, textural, and dielectric information in one 

image. Features not visible in either source image alone can be detected here. Pohl and van 

Genderen (1998) summarizes this as “1 + 1 = 3”. 

Sensor fusion is done using the HSV process implemented in Google Earth Engine, which 

includes these steps: 

1. The multispectral image’s Near Infrared, Red and Green bands are transformed to the 

HSV colour space. This combination provides more information about forests than the 

Red-Green-Blue combination. 

2. A new image is made by stacking the Hue and Saturation bands with the SAR image in 

the intensity position. 

3. The image is transformed to the RGB colour space. 

STACKING IMAGES 

That method of image fusion makes use of well-established methods in remote sensing, and it 

works within the constraints of the computer monitors used to visually interpret satellite 

images. However, in machine learning, classifiers are not limited to three bands. They can 

accept inputs with any number of bands. This opens up the possibility of testing the idea of 

fusing images by just stacking them. The inputs are an m-band multispectral image (4 for 

Planetscope, 10 for Sentinel-2, 8 for Landsat) and an n-band SAR image (2 for each). The 

output is an m + n band image (6 bands for Planetscope + TerraSAR-X, 12 bands for Sentinel-1 

+ Sentinel-2, 10 bands for Landsat + ALOS-2). 

The name comes from NumPy’s Stack method, a recent implementation of an old idea, which 

joins arrays along a specified axis. If the axis specified is the feature/channel/band axis, then a 

new array will be made that has the features of the source arrays. For example, RapidEye has 

five bands, for an array of dimension (height, width, 5), and Sentinel-1 has two bands, for a 

https://www.tandfonline.com/doi/pdf/10.1080/014311698215748
https://www.tandfonline.com/doi/pdf/10.1080/014311698215748
http://www.academia.edu/download/40620363/A_comparative_analysis_of_image_fusion_m20151203-20388-69v53n.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.695.3322&rep=rep1&type=pdf
https://www.sciencedirect.com/science/article/abs/pii/S1566253516300173
https://www.sciencedirect.com/science/article/pii/S1566253519305470
https://www.sciencedirect.com/science/article/pii/S1566253519305470
https://www.tandfonline.com/doi/pdf/10.1080/014311698215748
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dimension of (height, width, 2). Stacking them along axis 2 will produce an image that has 

dimension (height, width, 7). This differs from sensor fusion in that the exact pixel values of 

both source images are kept in the new image - in sensor fusion, the fused image has pixel 

values that are derived from but not identical to the source images. The images were stacked in 

Google Earth Engine, where they had already been projected to the same coordinate system. 

Stacked images are made using the Add Bands method in Google Earth Engine. The first image 

is the multispectral image, the second image is the SAR image, and the output image has the 

multispectral bands and the SAR bands. 

SECTION 7.2 RESULTS 

In the confusion matrices in this section, there are results from four sensors: 

• Stacked refers to an image that has all the bands of the source multispectral and SAR 

images intact. 

• Fused refers to an image that was made through HSV fusion. 

• After that, come a multispectral image alone and then SAR backscatter alone. 

TESTING PLANETSCOPE + TERRASAR-X AT THE CUYUNI RIVER MINING SITE 

When combining Planetscope with TerraSAR-X at the Cuyuni River mining site, the stacked and 

fused images both show little difference over Planetscope, but a great improvement over 

TerraSAR-X (Table 36). The Consumer’s Accuracy for Forest in TerraSAR-X is 89%, and for 

Planetscope is 97%. For both fused and stacked images, the Consumer’s Accuracy is 97% in 

both cases. When classifying River pixels, the Consumer’s accuracy is 35% in TerraSAR-X and 

91% in Planetscope, and becomes 86% in fused images and 91% in stacked images.  When 

classifying Mining pixels, Consumer’s Accuracy is 13% in TerraSAR-X and 78% in Planetscope, 

and 71% in fused images and 78% in stacked images. In effect, combining SAR with 

multispectral matches the performance of the multispectral, without adding anything. 

When testing traditional sensor fusion, the predictions (Figure 63) show that the fused data 

outlines the river and the mining site as well as the multispectral source image, and much 

better than the SAR source image. Several mining ponds are identified as river, and large areas 

of vegetation inside the mining site are identified as forest. Some noise is present in the river.  

When testing a stacked image, the noise in the river disappears, fewer mining ponds are 

identified as river, and larger areas of vegetation inside the mining site are identified as forest. 
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TESTING SENTINEL-2 + SENTINEL-1 AT THE CUYUNI RIVER MINING SITE 

When combining Sentinel-2 with Sentinel-1 at the Cuyuni River mining site, the Consumer’s 

Accuracy for mining in the flat area is 14% for Sentinel-1, 64% for Sentinel-2, 56% for fused 

images, and 64% for stacked images. In the hilly area, the Consumer’s Accuracy for mining is 

9% for Sentinel-1, 61% for Sentinel-2, 51% for fused images, and 54% for stacked images 

(Table 37). With this sensor combination, the combined images are actually worse than the 

source multispectral image, but much better than the source SAR image. This is different from 

the Planetscope-TerraSAR-X combination. There, combining images didn’t change the accuracy. 

This is the first sign that the effect of combining images depends on the source satellites. 

When testing traditional sensor fusion (Figure 64), the predictions outline all classes with good 

accuracy. Some small sections of the river are classified as land classes, and some mining 

ponds are classified as river. Most of the roads are clearly visible in the predictions. 

When testing a stacked image, the predictions (Figure 64) outline the river almost perfectly, 

and outline the mining sites very accurately. 

TESTING LANDSAT + ALOS-2 AT THE CUYUNI RIVER MINING SITE 

Combining Landsat with ALOS-2 reports another pattern (Table 41). At the flat part of the 

Cuyuni River site, the Consumer’s Accuracy for Mining is 34% for ALOS-2, 38% for Landsat, 

64% when fused, and 73% when stacked. In the hilly area, there is a very different difference: 

19% for ALOS-2, 63% for Landsat, 33% when fused, and 47% when stacked.  

When testing traditional sensor fusion (Figure 65), much of the river is classified as mining. The 

riverbank is consistently misclassified as mining. Dense vegetation inside the mining areas is 

consistently classified as forest, and mining ponds are consistently classified as river. The upper 

half of the mining site is outlined accurately, but the majority of the bottom half is classified as 

forest. There are many small areas inside the forest that are classified as river. 

When testing a stacked image, the predictions (Figure 65) follow the outlines of each class 

boundary very accurately. The only major deviation is where some mining ponds very close to 

the river are classified with the river.  
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TESTING SENSOR FUSION AT THE KONAWARUK RIVER MINING SITE  

There are also results from combined Sentinel-1 and Sentinel-2 images at the Konawaruk River 

mining site (Table 42). There, the Consumer’s Accuracy for Sentinel-1 is 55%, for Sentinel-2 is 

79%, for fused images is 77%, and for stacked images is 78%. This is consistent with the 

Planetscope-TerraSAR-X combination, and inconsistent with the Sentinel-1/Sentinel-2 

combination at the Cuyuni River mining site. 

At the Konawaruk River mining site, the difference is much smaller: 62% for ALOS-2, 78% for 

Landsat, 75% when fused, 80% when stacked. 

When testing traditional sensor fusion (Figure 66), the predictions again outline the edges of 

the mining and river areas very accurately. This time, fewer mining ponds are classified as River 

than the Planetscope + TerraSAR-X combination, and more vegetation inside the mining areas 

is identified as forest. 

When testing a stacked image, the predictions (Figure 66) outline the class boundaries very 

closely, and even capture many of the roads. In Figure 66, the stacked predictions improve 

greatly upon the fused predictions. The fused predictions carry over many of the errors found in 

the SAR image, and the stacked predictions share the accuracy of the multispectral predictions. 
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Table 39: Comparison of accuracy scores for Planetscope and TerraSAR-X at the 

Cuyuni River (same area as Chapter 6). The pixel size is 3 meters. 

  Area 2 in Figure 42 (Flat Area) Hilly Area 

  Stacked Fused Planetscope TerraSAR-X Stacked Fused Planetscope TerraSAR-X 

Consumer’s 

Accuracy 

Forest 96.70 96.68 96.70 89.22 97.01 98.11 97.00 92.45 

River 90.75 86.26 91.24 35.45 98.30 98.83 98.16 76.60 

Mining 77.80 70.77 77.79 13.33 53.77 51.04 53.50 9.10 

Producer’s 

Accuracy 

Forest 96.76 95.36 96.72 52.80 96.68 94.95 96.63 58.12 

River 88.68 83.76 89.11 78.74 80.79 79.65 80.82 80.91 

Mining 77.95 77.14 78.15 45.18 67.65 81.95 67.49 46.97 

 

Table 40: Comparison of accuracy scores for Sentinel-2 and Sentinel-1 at the Cuyuni 

River (same area as Chapter 6). The pixel size is 10 meters. 

  Flat Area Hilly Area 

  Stacked Fused Sentinel-2 Sentinel-1 Stacked Fused Sentinel-2 Sentinel-1 

Consumer’s 

Accuracy 

Forest 94.96 91.56 94.75 93.05 97.36 97.94 97.32 97.14 

River 98.11 98.60 97.87 80.68 97.09 99.27 96.54 98.44 

Mining 64.31 55.72 64.20 14.44 60.56 48.51 61.42 9.18 

Producer’s 

Accuracy 

Forest 86.15 81.81 86.01 18.71 96.35 94.06 96.49 28.07 

River 77.61 74.84 78.25 74.49 96.02 90.38 95.80 88.74 

Mining 86.40 77.72 85.98 88.42 68.79 76.70 68.24 89.55 
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Table 41: Comparison of accuracy scores for Landsat and ALOS-2 at the Cuyuni 

River (same area as Chapter 6). The pixel size is 15 meters. 

  Flat Area Hilly Area 

  Stacked Fused Landsat ALOS-2 Stacked Fused Landsat ALOS-2 

Consumer’s 

Accuracy 

Forest 94.90 93.23 93.81 91.47 96.14 94.77 76.47 93.83 

River 97.04 31.49 100 65.33 99.72 48.10 100 90.01 

Mining 72.77 63.81 37.96 34.23 47.20 32.86 62.95 19.13 

Producer’s 

Accuracy 

Forest 97.37 93.58 97.85 87.20 95.60 90.78 85.95 85.19 

River 42.71 25.26 63.82 55.06 77.17 41.30 26.14 76.34 

Mining 79.51 68.17 64.06 46.20 64.60 54.57 67.83 40.15 

 

Table 42: Comparison of accuracy scores at the Konawaruk River (same as Chapter 

5). The pixel sizes are 15 meters (Landsat + ALOS-2) and 10 meters (Sentinel). 

  Landsat and ALOS-2 Sentinel-2 and Sentinel-1 

 Stacked Fused Landsat ALOS-2 Stacked Fused Sentinel-2 Sentinel-1 

Consumer’s 

Accuracy 

Forest 93.43 93.16 93.39 84.00 90.31 78.97 90.30 72.82 

River 94.06 80.39 94.06 84.27 83.08 77.07 79.81 52.04 

Mining 79.59 75.37 77.91 61.99 77.53 77.38 79.09 54.94 

Producer’s 

Accuracy 

Forest 92.97 92.20 92.12 88.29 87.54 92.03 88.67 97.13 

River 66.67 35.10 70.91 35.89 70.08 67.26 74.05 26.04 

Mining 83.38 82.72 93.13 58.65 83.29 58.95 82.30 12.56 

 

SECTION 7.3 DISCUSSION 

Pohl and van Genderen, 1998 describes sensor fusion as “1 + 1 = 3”, arguing that combining 

two sensors reveals details not visible in other one alone, and there is ample literature showing 

situations where sensor fusion does improve classification performance. In Adrian et al. (2021), 

fused SAR-multispectral data was found to have better accuracy at one study site in India, 

when classifying crop types. In Ahmad et al. (2024), the four study sites were cities of similar 

type. Sentinel-1 and Landsat data were stacked, and the resulting accuracy was 0.86 for 

https://www.tandfonline.com/doi/pdf/10.1080/014311698215748
https://pdf.sciencedirectassets.com/271826/1-s2.0-S0924271621X00044/1-s2.0-S0924271621000599/am.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEKn%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJHMEUCIBuuZ9jN%2BslvdZpjSN0hZWJju46fQ9SI4D0pL0tRKRGYAiEAqTevZ7Upz04M8Abtq2JqdhJ1sN%2FL5RLHbosSVZm1USYqsgUIMRAFGgwwNTkwMDM1NDY4NjUiDFD7bBQxOOA%2BmZs1nyqPBUsn02o%2FJrhF7ooX0LmcUmnYmH5TL2tmyrvBt28kcqFMI4B%2B8jcI1wwoQYZO28424Zhh0epoSXm%2F7WHqCyEsimsp4lb6hwizeRPyauM%2FElL5dFpP4zexiBABaXUKcAIyDAyoz9kVPssdX8JOBNIkOal73qmE303b2L%2FmO5cEUoNL04k%2FXQEqFORqk%2FaCs6k57lBygpSRuS3iX%2BRQ3piV0j%2FZ5GrGuOaUr8YlERW5pRNHoCtK%2F7fU4EM76mgLruSYf4TsJe%2FiRicQS1XLyzBWAiLRKndr3NWq878HcQ30hHYJSTgQ2vAITFy%2BjtTIQ%2FKbO4KYu0w99%2BHdPw%2BiySewPCYFWboVrADqDMvYrmimXD%2FGC1CGVmiiN9iskrGyuzjoxEKG%2BSVDiQtw9uRHOEv1z8MiVlI5inYBQiuriCUUPGQUqCGFoRk4nRdAtHTg%2BiNXXYUKWS7TkQtYypADKYrkdVfH%2BJmV%2FTPz7RKhFMA6%2F%2Ba3KO05yI2bA3r5N2xywn988vtMewA1CHU2L2WIX1Ke23qOf8E%2FqSCpfUtE5MS8G6Pvd64R%2BMeNks6kPVng%2ByrzoZFqmw27pn8dJ5NffbLXe7hauGintBQTGmHuKlOTMBYARq068ulU1ctFWVYhnjNuTwn8eo6KCWalneYWhNtef7%2FGqIKTIeFQLplhSvJgwL%2Bks543qx4yF18sJ6GrdJGysFOsUsJh4uIX8eivA320kyzPlkuUcqQBvVOjZ6694bIDYaxJIOpB2ZfT6jVoxVDmEFszqWMgCtUjysqeAjVsuBHEY7VxxYZOLOnQwnGTmotbMO8DzNjnJ%2BS48b7hqPaWg81A%2BD9nI0MzTOvOcNIyUbtN5pmD%2F5mimnUmUl2T930wq87isgY6sQEXyozE4F%2BP12lUtyYKyG0Rw%2FcTdNDgzkW0AlJhY0gpXDOUtCImImwKW%2BzxA4YOx2B3T%2F8Yi0e6N2nx0OP5KtijH%2Fd7V2uOx2sTIP7zZO4jIDLxshZroS7DyuIlD1wIPhLKcgSNrdRwj0Ou2wvPKpocLNc177T9InD2P6zPFU6YOaExLzGtGpWwjv0uAICdZ3yn1xCLne2UJPmAbc%2FdeG%2Bt2yoi%2Fd3NIMfz01sRN6tN7sA%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20240530T175350Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTY52HZUFNP%2F20240530%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=42664224128cc23c3edba09e019a63e47cd31340dfe7e6aaeb63540d490a08c5&hash=81fd0509c32c17d0ed880e422aa7bc20ecc7f4686da3a52b5b43a7e81dfd9423&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S0924271621000599&tid=pdf-10a37397-c91a-40a2-89f0-ca3d63c259ed&sid=e798c1a3491f4843358873b6be40aa900187gxrqa&type=client
https://www.mdpi.com/2072-4292/16/5/873
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stacked, 0.84 for Landsat, and 0.67 for Sentinel-1. Overall, the results show that, in this 

context, the performance of fused SAR-multispectral data is not better than both sources, but 

between them. This shows that traditional sensor fusion methods won’t result in much 

improvement in this context, despite what a lot of literature would suggest. 

It should be noted that sensor fusion literature often discusses its usefulness in visual 

interpretation rather than machine learning – as an example, Liu et al. (2015) measures sensor 

fusion quality based on measures of visual interpretability. This explains why sensor fusion has 

been done this way – computer monitors are capable of outputting three-band RGB images, 

and so if you want the information of four or more bands, you need to reduce that to three 

bands.  

However, machine learning is not limited to the three bands of a computer monitor. Classifiers 

are capable of working with vectors of any length, which opens up the option of creating a 

multimodal dataset by simply stacking the bands of multiple source images.  

Overall, in this context, stacking images represents an improvement over traditional sensor 

fusion. The accuracy of the class boundaries is as good as the multispectral data, if not better. 

However, it doesn’t represent a large improvement over the multispectral data. The SAR doesn’t 

appear to be contributing very much to the final predictions. 

SECTION 7.4 CONCLUSION 

The take-away of this chapter is that combining images using sensor fusion or stacking does 

not improve classification performance. The effect varies: sometimes combined images perform 

as well as the multispectral source image, and sometimes they perform worse. Performance 

varies with both study site and sensor combination. 

So far, all tests have been in mining areas that have a nearby river. The next chapter will test 

the performance of stacked Sentinel-1/Sentinel-2 data using Random Forest in a variety of land 

cover types. 

https://doi.org/10.1016/j.isprsjprs.2014.12.018
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Figure 64: Comparison of results from Planetscope, TerraSAR-X, fused data, and 

stacked data at the Cuyuni River mining site. 

Top left: Data, fused TerraSAR-X + Planetscope. Top middle: Fused predictions.  

Top right: Stacked predictions. Bottom left: True labels.  

Bottom middle: TerraSAR-X predictions. Bottom right: Planetscope predictions.  
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Figure 65: Comparison of results from Sentinel-2, Sentinel-1, fused data, and 

stacked data at the Cuyuni River mining site. 

Top left: Data, fused Sentinel-1+ Sentinel-2. Top middle: Fused predictions.  

Top right: Stacked predictions. Bottom left: True labels.  

Bottom middle: Sentinel-1 predictions. Bottom right: Sentinel-2 predictions.  
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Figure 66: Comparison of results from Landsat, ALOS-2, fused data, and stacked 

data at the Cuyuni River mining site. 

Top left: Data, fused ALOS-2 + Landsat. Top middle: Fused predictions.  

Top right: Stacked predictions. Bottom left: True labels.  

Bottom middle: ALOS-2 predictions. Bottom right: Landsat predictions.  
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Figure 67: Comparison of results from Sentinel-2, Sentinel-1, fused data, and 

stacked data at the Konawaruk River mining site. 

Top left: Data, fused Sentinel-1+ Sentinel-2. Bottom left: True labels.  

Bottom middle: Sentinel-1 predictions. Bottom right: Sentinel-2 predictions.  

Top middle: Fused predictions. Top right: Stacked predictions. 
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Figure 68: Comparison of results from Landsat, ALOS-2, fused data, and stacked 

data at the Konawaruk River mining site. 

Top left: Data, fused ALOS-2 + Landsat. Top middle: Fused predictions.  

Top right: Stacked predictions. Bottom left: True labels.  

Bottom middle: ALOS-2 predictions. Bottom right: Landsat predictions.  
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CHAPTER 8: RESULTS IN KEY LAND COVER TYPES 

SECTION 8.1 INTRODUCTION 

Now that the optimal data and classification algorithm have been established in the previous 

chapters, this chapter will extend the study by using them to test classification performance in a 

variety of land cover types that better represents the variety of tasks in deforestation mapping 

in Guyana. Combinations of land cover types will include Forest and River, Forest and Mining, 

Forest and Road, Forest and Grassland, Forest, Settlement and Agriculture, and all of those 

classes at once.  

In general, study locations were selected based on these reasons: 

• The training data and the validation data need to have the chosen spectral 

characteristics, and they need to be similar. If the study sites have very different spectral 

characteristics, then that will introduce an extra variable, complicating the interpretation 

of the results. 

• The deforested area, and forest around it, needs to be cloud free. There are no cloud-

free images, and there are a few images that are completely clouded over. In selecting 

study sites, many potential areas were clouded over, which narrowed down the options 

to only a few. Study sites were chosen from among those that were clear above the 

deforested area. 

Here is a description of the land cover types being tested: 

• Mining (Historic): The historic mining site is an abandoned mine, where there are still 

ponds, but the bare surfaces have new vegetation growing into them. This new 

vegetation is easy to distinguish visually from the surrounding forest. The two sites were 

chosen because they have the largest area of historic mining that has no bare surfaces. 

• Mining (Active): An active mine has ponds and bare surfaces, and can have some 

vegetation, but less than historic mining. The two sites were chosen because they have 

large bare surfaces and the least amount of new vegetation. 

• Mining (Mixed): A mixed mining site has both active mining and new vegetation 

growing in. In all three cases, the training and validation data were chosen from two 

locations that are spectrally similar to each other, to ensure that errors reflect the land 

cover type and not a spectral mismatch. The two sites were chosen because they are 
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spectrally similar to each other and they are the largest mining areas that have large 

amounts of both bare surfaces/mining ponds (active) and new vegetation (historic). 

• Roads: In a physical sense, roads are deforestation – trees are cut down to clear the 

way for them. However, roads are ordinarily not counted as deforestation, because they 

are narrow enough to disappear in the medium resolution satellite images often used to 

measure and report deforestation. It would be good to test classification accuracy on 

roads anyway. The two road images chosen here are the widest roads available, to 

ensure that they will be at least one full pixel wide. This also means that most roads will 

be narrower. 

• Settlements and Agriculture: Settlements have roads, paved surfaces, isolated trees, 

grass and buildings. Settlements and agriculture were tested together, because both are 

infrequent enough in Guyana that there are very few examples available in the reference 

data. The two sites chosen are the northern and southern halves of the same town, and 

this is the only pair of images that have settlements and agriculture and not mining or 

rivers. 

• Rivers: As natural features, rivers are not an activity like the previous examples. 

Instead, rivers need to be classified when measuring the total non-forest area, and 

classifying rivers is useful to hydrological work. 

• Grassland: Like rivers, grasslands are natural features that need to be classified to 

measure the non-forest area. Separating forest from grassland is very important in those 

parts of Guyana that are naturally savannah, and there are large areas of savannah in 

the interior uplands. The two study sites were chosen as the pair that is most spectrally 

similar. 

• All Classes: The examples above separate two or three classes (one class is always 

Forest). The last test separates six of those classes at once (Forest, River, Mining, Road, 

Settlement, Agriculture). The training and validation data are taken from two locations in 

Linden, which has jungle, the Demerara River, an active bauxite mine, a town, and farm 

fields, all in close proximity to each other. As a High Forest Low Deforestation country, 

Guyana has little deforestation, and the majority of that is mining. Linden was chosen 

because there aren’t any other areas that have this combination of deforestation drivers. 

The sampling strategy in this chapter is different from the sampling strategy used in Chapters 

4-7. In those chapters, because there was only one study site that met the criteria for each 

comparison, one image was used, and the pixels were split into training and validation samples. 
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In this comparison, each test will be done using two images from different study sites with the 

same land cover types. 

One image will be the training image: the training data will consist of every pixel from that 

image. The other image will be the validation image: the confusion matrix, associated statistics, 

and predictions and class probabilities will all be calculated from that image. This means that 

the predictions and probabilities images will be based entirely on data that was not seen in 

training. The training and validation images will be from different locations, and they will be 

chosen from two sites that have similar spectral/backscatter characteristics. The two images will 

come from different times, though each image is from one date, which ensures that the training 

and validation data are consistent. Guyana is very cloudy, which greatly reduces the ground 

surface that is visible at a given point in time. 

The locations of the study sites can be seen in Figure 68. 
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Figure 69: Location of the training and validation data for the tests in this chapter. 
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Table 43: Dates of the data for each study site. 

Sedimented River Training Image 7th December 2017 

 Validation Image 18th October 2019 

Clear River Training Image 8th October 2017 

 Validation Image 14th August 2018 

Narrow River Training Image 13th October 2019 

 Validation Image 17th December 2017 

Mixed River Training Image 17th December 2017 

 Validation Image 8th October 2017 

Historic Mining Training Image 30th June 2018 

 Validation Image 23rd September 2017 

Active Mining Training Image 23rd September 2017 

 Validation Image 23rd September 2017 

Mixed Mining Training Image 23rd September 2017 

 Validation Image 20th June 2018 

Roads Training Image 6th April 2019 

 Validation Image 18th October 2019 

Grassland Training Image 8th September 2019 

 Validation Image 26th January 2019 

Settlement and Agriculture Training Image 3rd October 2017 

 Validation Image 3rd October 2017 

All Classes Training Image 23rd September 2017 

 Validation Image 23rd September 2017 
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SECTION 8.2 RESULTS 

RIVERS 

Random Forest with stacked Sentinel-1 and Sentinel-2 data (as in Chapter 7) was tested in four 

river locations, which represent: 

1. A river with sediment from nearby mining. The results can be seen in figure 70 in this 

chapter. 

2. A clear river (low sediment). The results can be seen in figure 72 in this chapter. 

3. A narrow river, one where there will be more mixed pixels. The results can be seen in 

figure 74 in this chapter. 

4. A mix of river types, where the training data is a river with sediment, and the validation 

data is a clear river. The results can be seen in figure 76 in this chapter. This will test the 

classifier’s ability to classify the full range of rivers in Guyana in wall-to-wall deforestation 

mapping. 

The sedimented river results show that, for the most part, the boundaries in the predictions 

follow the true labels very closely (Figure 69 and Table 44). The exceptions are for very narrow 

rivers, and for an island that wasn’t in the class labels. This is important, because the ability of 

Random Forest to correct labels means that it will produce an accurate land cover map even as 

the extent of the river channel or water level changes. In the class probabilities, in the bottom 

right corner, the probability of Forest is much lower where a small stream is located, indicating 

that class probabilities can find streams small enough to be dominated by mixed pixels. In the 

confusion matrix (Table 44), the Consumer’s and Producer’s Accuracy for Forest is near perfect 

(above 95%), but Consumer’s Accuracy for River is 78% while Producer’s Accuracy for River is 

96%, which reflects the inability to accurately classify sections of the river that are one or two 

pixels (10-20 m) wide.  

Classification of wide rivers with low sediment showed near perfect results. In the confusion 

matrix (Table 45), the Consumer’s Accuracy and Producer’s Accuracy are above 98.60% for all 

classes, and in the predictions (Figure 71), the class boundaries are very close to the true 

labels, with almost no class probabilities close to 50%. 

Classification of narrow rivers showed far worse accuracy. In the confusion matrix (Table 46), 

the Consumer’s Accuracy and Producer’s Accuracy for Forest are both above 97%. But the 

Producer’s Accuracy for River is 60%, and the Consumer’s Accuracy is 39%. In looking at the 
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predictions (Figure 73), the predicted river follows the course of the real river perfectly, and 

there is no region of high uncertainty around it. However, the predicted river is narrower than 

the real river. In comparing the predictions with the validation data, two observations stand 

out. One is that the trees are casting shadows on the river, which change its spectral properties 

greatly. Another is that, because the river is so narrow, mixed pixels represent a greater 

proportion of the river. 

Classification of a mix of river types has produced accurate results, if a different probability 

threshold is used. By default, the classifier outputs class probabilities, and in a binary problem, 

the pixel is predicted to be the class with a probability greater than 50%. The confusion matrix 

(Table 47) uses this 50% threshold, and finds that 99.94% of pixels (out of 60 376 total) have 

been classified as Forest. This is near-total inaccuracy. The predictions in Figure 63 show which 

pixels fall into three other thresholds: 60%, 80% and 95% probability of Forest. The only pixels 

with less than 60% probability of Forest are a small cluster located near the top of the image, 

in the river. The pixels that fall between 60% and 80% probability of Forest match the river 

almost perfectly, and the pixels with greater than 80% probability of Forest match the Forest 

almost perfectly. 

MINING 

The mining results (results in figures 65, 67, 69 in this chapter show that Random Forest tends 

to find vegetation inside the mining site and classify it as Forest, even when that vegetation is 

not in the class labels. The mixed mining site (Figures 81 and 82), and to a lesser extent the 

historic mining site (Figures 77 and 78), classified scattered areas of Forest as Mining. This 

follows the spectral variation in the forest canopy; some patches of forests are spectrally similar 

to vegetation in the mining site. Note that this does not occur in the active mining example 

(Figures 79 and 80), which has very little vegetation inside the mining site. Looking at the class 

probabilities, the certainty of Forest is high for historic mining and active mining, and low for 

mixed mining. 

The confusion matrices offer three very different results. Table 48 (historic mining) has a 

Consumer’s Accuracy of 47% for Mining. Table 49 (active mining) has a Consumer’s Accuracy of 

94% for Mining, and Table 50 (mixed mining) has a Consumer’s Accuracy of 77% for Mining. 

Forest accuracy is consistently above 90%. There is no one accuracy for the Mining land cover 

type; it varies considerably from one kind of mining site to the next.  
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ROAD 

The confusion matrix (Table 51) shows near perfect accuracy for Forest (above 98%), and a 

Consumer’s Accuracy of 2% and Producer’s Accuracy of 43% for Roads. These results are in the 

two areas with the widest roads available, to minimize the possibility of the roads being so 

narrow that they disappear. 

The predictions (Figure 84) show that the choice of probability threshold makes the difference 

between an accurate classification and a false negative. If pixels with a probability of Road 

greater than 50% are classified as Road, then most of the road will be missed, only a few 

isolated sections. If the probability threshold is set to 10% probability of Road and 90% 

probability of Forest, then the predictions will accurately identify the extent of the road. The 

pixels with greater than 90% probability of Forest will accurately identify the extent of the 

Forest. These results make sense, considering the width of a road and the resolution of the 

data. With 10 meter pixels, a road will consist mostly of mixed pixels, and if the forest occupied 

the majority of the pixel, then that will skew its spectral properties in the direction of forest. 

GRASSLAND 

In Forest and Grassland predictions (results can be seen in figures 85 and 86 of this chapter), 

the predicted class boundaries closely follow the true class boundaries. Some areas labelled as 

Forest were classified as Grassland, where the vegetation is lower than the surrounding forest. 

In the confusion matrix (Table 52), the Producer’s Accuracy for Forest is 79% and 96% for 

Grassland. The histograms (Table 71) show that the distributions for pixel values of forest and 

grassland have overlap, but they each have one peak, and their peaks are well separated. 

SETTLEMENT AND AGRICULTURE 

When classifying Settlement and Agriculture, the confusion matrix (Table 53) shows near 

perfect accuracy for Forest (Consumer’s Accuracy of 97% and Producer’s Accuracy of 96%), 

moderate accuracy in Settlements (Consumer’s Accuracy of 65% and Producer’s Accuracy of 

54%), and almost no accuracy in Road and Agriculture (0% to 6%). The predictions (Figures 87 

and 88) map the forest very close to the true Forest labels. The true Settlement areas are 

predicted accurately, but several areas labelled as Forest are classified as Settlement, where 

there is a clearing in the forest. The classifier missed all of the Road and Agriculture pixels. The 

class probabilities show high certainty for most classes. 
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ALL CLASSES 

The final test site includes all land cover classes. In this test, the Forest, River, Mining, some of 

the Roads, and most of the Settlement were outlined very accurately (Figures 89 and 90). One 

of the Agriculture areas was identified partly as Forest, and partly as Settlement. In the 

confusion matrix (Table 54), all accuracies were above 85%, except for Agriculture, where the 

Consumer’s Accuracy is 11%. 

SECTION 8.3 DISCUSSION 

One difference between this study and previous research is the variety in study sites. In Scarpa 

et al. (2018), there was just one study site. In Milodowski et al. (2017), the objective was to 

measure forest loss in areas where agriculture was expanding, and two study sites in different 

provinces in Brazil were used. This chapter tests eight study sites with different land cover 

types. They are: 

• River classifications are very accurate when classifying wide rivers with similar spectral 

characteristics. Small streams disappear in the predictions, but the class probabilities 

indicate their location with areas of lower certainty. When classifying rivers with very 

different sediment composition and therefore spectral characteristics, classification was 

still very accurate when the probability threshold was adjusted. 

• Mining classifications are variable in accuracy and certainty from one location to the next, 

depending on the spectral characteristics of each site. This includes the presence or 

absence of vegetation, the presence or absence of bare surfaces, and the spectral 

characteristics of mining ponds. 

• Roads are too narrow to appear in predictions. However, class probabilities show areas 

of mixed pixels where the road is. 

• Agriculture never appears in predictions or class probabilities. 

The tests above show situations where the classifier misses most examples of the non-forest 

class with the default probability threshold, but outlines the class boundaries very accurately 

when a different threshold is used. Variable thresholds for class probabilities is a concept that 

has been extensively explored in the literature on other topics. Wu et al. (2018) tested a Fully 

Convolutional Network at land cover mapping, with and without adaptive probability thresholds. 

Measured using the Jaccard Index (also known as Intersection Over Union), accuracy when 

https://www.mdpi.com/2072-4292/10/2/236
https://iopscience.iop.org/article/10.1088/1748-9326/aa7e1e/meta
https://doi.org/10.1080/09540091.2018.1510902
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classifying small vehicles went from 0.166 without adaptive thresholds to 0.238 with. When 

classifying roads, accuracy went from 0.863 without to 0.864 with.  

This also indicates that classification accuracy depends heavily on location. This is a variable 

that will have to be addressed in further research on other aspects of machine learning in 

remote sensing of forests. In doing a classifier comparison, or a sensor comparison, or a study 

of classifier behaviour, or a study of feature engineering, sample size or hyperparameter tuning, 

the results will vary greatly between study sites, even within the sample land cover type. This 

means that site selection is a critically important decision, and there needs to be a strategy for 

selecting one site or many sites. 

The knowledge needed is an understanding of how variation in the data causes and does not 

cause variation in classifier performance. This means understanding: 

• The nature of the data from different areas, in statistical terms, to fully understand what 

the classifier is receiving. This means detailed descriptive statistics on spectral properties 

(multispectral and hyperspectral data), backscatter, polarimetry and interferometry 

(SAR), and 3D structure (Lidar and long-wavelength SAR). 

• A detailed study of how different classifiers respond to data at different sites. This would 

go beyond accuracy comparison, and dive into the theory of statistical learning, and how 

each step of the algorithm is responding to the data at different sites. A summary of 

variations in classifier behaviour from one area to another would enable a researcher to 

choose a set of study sites that represent a large area of interest or would identify study 

areas that need to be classified by different models. This summary of variations can 

include sites that behave similarly and can be lumped together, sites that behave very 

differently and need to be analyzed separately, and exceptions to trends that need to be 

accounted for. 

• The resulting workflow may include both supervised classification and clustering, along 

with vegetation indices, and different models for different data types, with a first step 

being segmenting the data based on the characteristics of different areas. 

SECTION 8.4 CONCLUSION 

This chapter shows that the same data and the same classifier in different settings get different 

results, even when the different settings belong to the same land cover type, and it shows that 

the classifier handles some land cover types very well, while struggling with others. It points 
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the way forward for research on machine learning in a REDD+ context. There are four follow-

up studies that can be done based on the results of this chapter: 

1. Research into variation in rivers, and how to build a workflow (not necessarily a single 

classifier) that can classify both clear and turbid rivers. 

2. Research into variation in mines, and how to build a workflow (not necessarily a single 

classifier) that can classify the full variety in mining ponds, vegetation and bare surfaces. 

3. Research into variable thresholding to improve predictions in mixed pixel situations, such 

as roads. 

4. Research into the problem of classifying settlements and agriculture. 

5. Further research into a strategy for creating class labels that reflect the physical and 

ecological processes that appear in the data, while still providing the information needed 

to meet policy requirements. 
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Figure 70: Data for rivers with sediment classification in Red, Green, Blue.  

Top left: Training data in Sentinel-2 RGB.  

Top right: Reference data from GeoVantage aerial photography.  

Bottom left: Validation data in Sentinel-2 RGB.  

Bottom right: Reference data from GeoVantage aerial photography. 
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Figure 71: Stacked Sentinel-1 + Sentinel-2 (as in Chapter 7) classified using 

Random Forest. Location has forest and river with sediment with no other land 

cover types.  

Top left: True labels. Top right: Predictions.  

Bottom Left: Probability of Forest. Bottom Right: Probability of River. 

 

Table 44: Confusion matrix when classifying rivers with sediment. 

Accuracy: 96.07% 
Pixel Count: 27 250 

True Consumer’s 
Accuracy 

Forest River  

Predicted Forest 22 986 149 99.36% 

River 921 3194 77.62% 

Producer’s Accuracy 96.15% 95.55%  
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Figure 72: Data for clear river classification in Red, Green, Blue.  

Top: Training data in Sentinel-2 RGB.  

Middle: Reference data from GeoVantage aerial photography.  

Bottom left: Validation data in Sentinel-2 RGB.  

Bottom right: Reference data from GeoVantage aerial photography. 
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Table 45: Confusion matrix when classifying clear rivers. 

 

 

 

 

 

Figure 73: Stacked Sentinel-1 + Sentinel-2 (as in Chapter 7) classified using 

Random Forest. Location has forest and clear river with no other land cover types.  

Top left: True labels. Top right: Predictions.  

Bottom Left: Probability of Forest. Bottom Right: Probability of River. 

 

 

 

Accuracy: 98.64% 
Pixel Count: 22987 

True Consumer’s 
Accuracy 

Forest River  

Predicted Forest 10787 131 98.80% 

River 149 11920 98.77% 

Producer’s Accuracy 98.64% 98.91%  
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Figure 74: Data for narrow river classification in Red, Green, Blue.  

Top left: Training data in Sentinel-2 RGB.  

Top right: Reference data from GeoVantage aerial photography.  

Bottom left: Validation data in Sentinel-2 RGB.  

Bottom right: Reference data from GeoVantage aerial photography. 
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Table 46: Confusion matrix when classifying narrow rivers. 

Accuracy: 96.61% 
Pixel Count: 31899 

True Consumer’s 
Accuracy 

Forest River  

Predicted Forest 30334 325 98.94% 

River 755 485 39.11% 

Producer’s Accuracy 97.57% 59.88%  

 

Figure 75: Stacked Sentinel-1 + Sentinel-2 (as in Chapter 7) classified using 

Random Forest. Location has forest and narrow rivers with no other land cover 

types.  

Top left: True labels. Top right: Predictions.  

Bottom Left: Probability of Forest. Bottom Right: Probability of River. 
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Figure 76: Data for mixed river classification in Red, Green, Blue.  

Top left: Training data in Sentinel-2 RGB.  

Top right: Reference data from GeoVantage aerial photography.  

Middle: Validation data in Sentinel-2 RGB.  

Bottom: Reference data from GeoVantage aerial photography. 
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Table 47: Mixed River 

Accuracy: 68.28% 
Pixel Count: 60376 

True Consumer’s 
Accuracy 

Forest River  

Predicted Forest 41194 5 99.88% 

River 19144 33 0.17% 

Producer’s Accuracy 68.27% 86.84%  

 

Figure 77: Stacked Sentinel-1 + Sentinel-2 (as in Chapter 7) classified using 

Random Forest. Location has forest and a mix of clear and sedimented rivers with 

no other land cover types.  

Top left: True labels. Top right: Predictions.  

Bottom Left: Probability of Forest. Bottom Right: Probability of River. 
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Figure 78: Data to classify forest and mining classes, in an example of historic 

(abandoned) mining, in Red, Green, Blue. Classification results are in Figure 59. 

Top left: Training data in Sentinel-2 RGB.  

Top right: Reference data from GeoVantage aerial photography.  

Bottom left: Validation data in Sentinel-2 RGB.  

Bottom right: Reference data from GeoVantage aerial photography. 

 



  179  

 

Table 48: Confusion matrix when classifying an historic mining site.  

Accuracy: 91.04% 
Pixel Count: 5236 

True Consumer’s 
Accuracy 

Forest Mining  

Predicted Forest 4397 60 98.65% 

Mining 409 370 47.50% 

Producer’s Accuracy 91.49% 86.05%  

Figure 79: Stacked Sentinel-1 + Sentinel-2 (as in Chapter 7) classified using 

Random Forest. Location has forest and historic mining with no other land cover 

types.  

Top left: True labels. Top right: Predictions.  

Bottom Left: Probability of Forest. Bottom Right: Probability of River. 
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Figure 80: Data for active mining classification in Red, Green, Blue.  

Top left: Training data in Sentinel-2 RGB. Location is a gold mine near Mahdia. 

Top right: Validation data in Sentinel-2 RGB. Location is a bauxite mine near Linden. 

Bottom left: Reference data from GeoVantage aerial photography.  

Bottom right: Reference data from GeoVantage aerial photography. 
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Figure 81: Stacked Sentinel-1 + Sentinel-2 (as in Chapter 7) classified using 

Random Forest at an active bauxite mine near Linden (see Figure 66). Location has 

forest and active mining with no other land cover types.  

Top left: True labels.  

Top right: Predictions.  

Bottom Left: Probability of Forest.  

Bottom Right: Probability of Mining. 

 

 

Table 49: Confusion matrix when classifying an active mining site. 

Accuracy: 92.26% 

Pixel Count: 30 192 

True Consumer’s 
Accuracy 

Forest Mining  

Predicted Forest 14 398 848 90.63% 

Mining 1489 13 457 94.07% 

Producer’s Accuracy 94.44% 90.04%  



  182  

 

Figure 82: Data for forest-mining classification in Red, Green, Blue.  

Top left: Training data in Sentinel-2 RGB.  

Top right: Reference data from GeoVantage aerial photography.  

Bottom left: Validation data in Sentinel-2 RGB.  

Bottom right: Reference data from GeoVantage aerial photography. 

 

Table 50: Confusion matrix when classifying a mixed mining site. 

Accuracy: 90.38% 
Pixel Count: 44 585 

True Consumer’s 
Accuracy 

Forest Mining  

Predicted Forest 32 308 1896 94.46% 

Mining 2392 7989 76.96% 

Producer’s Accuracy 93.11% 80.82%  
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Figure 83: Stacked Sentinel-1 + Sentinel-2 (as in Chapter 7) classified using 

Random Forest. Location has forest and active mining with no other land cover 

types.  

Top left: True labels. Top right: Predictions.  

Bottom Left: Probability of Forest. Bottom Right: Probability of Mining. 

 



  184  

 

 

Figure 84: Data for road classification 

in Red, Green, Blue.  

Top: Training data in Sentinel-2 RGB.  

Middle: Reference data from 

GeoVantage aerial photography.  

Bottom left: Validation data in 

Sentinel-2 RGB.  

Bottom right: Reference data from 

GeoVantage aerial photography. 
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Figure 85: Stacked Sentinel-1 + Sentinel-2 (as in Chapter 7) classified using 

Random Forest. Location has forest and active mining with no other land cover 

types.  

Top left: True labels.  

Top right: Predictions.  

Bottom Left: Probability of Forest.  

Bottom Right: Probability of Mining. 

 

 

Table 51: Confusion matrix when classifying a road. 

Accuracy: 98.09% 
Pixel Count: 22 932 

True Consumer’s 
Accuracy 

Forest Road  

Predicted Forest 22 485 13 99.94% 

Road 424 10 2.30% 

Producer’s Accuracy 98.15% 43.48%  
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Figure 86: Data for 

grassland classification in 

Red, Green, Blue.  

Top left: Training data in 

Sentinel-2 RGB.  

Top right: Reference data 

from GeoVantage aerial 

photography.  

Bottom left: Validation 

data in Sentinel-2 RGB. 

Bottom right: Reference 

data from GeoVantage 

aerial photography. 
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Figure 87: Stacked Sentinel-1 + 

Sentinel-2 (as in Chapter 7) 

classified using Random Forest. 

Location has forest and active 

mining with no other land cover 

types.  

Top left: True labels.  

Top right: Predictions.  

Bottom Left: Probability of Forest. 

Bottom Right: Probability of 

Mining. 
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Figure 88: Data for forest, road, settlement and agriculture.  

Top left: Training data in Sentinel-2 RGB.  

Top right: Reference data from GeoVantage aerial photography.  

Bottom left: Validation data in Sentinel-2 RGB.  

Bottom right: Reference data from GeoVantage aerial photography. 

 

 

Table 52: Confusion matrix when classifying grassland. 

 

 

 

Accuracy: 90.06% 
Pixel Count: 77 586 

True Consumer’s 
Accuracy 

Forest Grassland  

Predicted Forest 20 361 2123 90.56% 

Grassland 5592 49 510 89.85% 

Producer’s Accuracy 78.45% 95.89%  
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Figure 89: Stacked Sentinel-1 + Sentinel-2 (as in Chapter 7) classified using 

Random Forest. Location has forest and active mining with no other land cover 

types.  

Top left: True labels. Top right: Predictions.  

Bottom Left: Probability of Forest. Bottom Right: Probability of Mining. 

 

 

Table 53: Confusion matrix when classifying settlement and agriculture. 

Accuracy: 91.46% 
Pixel Count: 47 574 

True Consumer’s 
Accuracy 

Forest Road Settlement Agriculture  

Predicted Forest 40 933 27 1254 6 96.95% 

Road 468 9 45 0 1.72% 

Settlement 1227 127 2513 1 64.97% 

Agriculture 19 8 877 0 0.00% 

Producer’s Accuracy 95.98% 5.26% 53.59% 0.00%  
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Figure 90: Data for grassland 

classification in Red, Green, Blue.  

Top left: Training data in Sentinel-2 

RGB. Top right: Reference data 

from GeoVantage aerial 

photography.  

Bottom left: Validation data in 

Sentinel-2 RGB. Bottom right: 

Reference data from GeoVantage 

aerial photography. 
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Figure 91: Stacked Sentinel-1 + Sentinel-2 (as in Chapter 7) classified using 

Random Forest. Location has forest and active mining with no other land cover 

types.  

Top left: True labels. Top right: Predictions.  

Bottom Left: Probability of Forest. Bottom Right: Probability of Mining. 
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Table 54: Confusion matrix when classifying all classes. 

Accuracy: 95.78% 

Pixel Count: 43 681 

True Consumer’s 

Accuracy 

Forest River Mining Road Settlement Agriculture  

Predicted Forest 24 752 17 17 5 23 1 99.75% 

River 23 2120 0 0 1 0 98.88% 

Mining 141 0 10 583 2 0 0 98.67% 

Road 89 0 100 1176 0 13 85.34% 

Settlement 232 21 49 28 0 3068 90.29% 

Agriculture 864 0 26 1 192 137 11.23% 

Producer’s Accuracy 94.83% 98.24% 98.22% 97.03% 93.05% 99.28%  
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CHAPTER 9: OVERALL DISCUSSION AND CONCLUSION 

SECTION 9.1 CHAPTER REVIEW AND TYING IT ALL TOGETHER 

Having finished presenting the results in detail in Chapters 4-8, this chapter will start by 

summarizing the results (Section 9.1), and then it will discuss the issues the results present and 

their place in the broader literature (Sections 9.2 to 9.6) before moving on to the conclusion 

(Section 9.7) and some comments about changes in technology over the last five years (Section 

9.8). As stated at the end of Chapter 2, the overall aim of the study is to identify the classifiers, 

datasets and reference (labeled) data sets that can produce the accuracy needed to automate 

REDD+ measurement and monitoring. This was broken down into specific research questions: 

1. How does land cover type mapping accuracy change with the type of classifier? This can 

start with single classifiers. 

2. How does land cover type mapping accuracy change when using remote sensing data 

from different satellite sensors and combinations of sensors? This can start with 

individual sensors, and then move on to data fusion. 

3. How does the complexity of the land cover type affect accuracy? This can be tested by 

first classifying two land cover types, then three and four land cover types. 

The first question is the subject of Chapter 4. There, it was found that of all the classifiers 

tested, Random Forest gave the best overall performance using a location that represented 

forest, mining and river (water) land covers. When using Planetscope imagery from the first 

generation Dove Classic sensor, overall accuracies were 96% for Random Forest, 95% for 

Gradient Boosted Trees, and 80% for Naïve Bayes. The predicted land cover map for Random 

Forest most closely followed the true class boundaries, with fewer errors inside classes. 

Random Forest was able to accurately outline class boundaries and improve on class labels, and 

it was noticed that Enhanced Vegetation Index and clustering were useful aids in defining 

certain class boundaries. This indicates that EVI can assist in label creation by showing the 

outline of most areas of forest. 

Chapters 5 and 6 address the first part of the second question, a comparison of multispectral 

and SAR satellite sensors most commonly used in remote sensing of forests. Where Chapter 4 

compared multispectral sensors only, Chapter 5 tested the Random Forest classification 

algorithm on image data from seven multispectral and SAR satellite sensors at a location typical 

of large surface mines located on the Cuyuni River, in north-central Guyana. Overall, the 
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multispectral sensors outperformed the synthetic aperture radar (SAR) sensors. Classifications 

with Planetscope (with the Dove Classic sensor), Sentinel-2 and Landsat 8 data yielded overall 

accuracies from 81% to 90%, and the SAR satellites Sentinel-1 and ALOS-2 yielded accuracies 

of 69% and 77%. The ability to identify roads in SAR images is closely tied to pixel size. The 

two sensors that perform best classifying of mining sites are Sentinel-2 and Landsat 8. The 

class probabilities show a gradient that follows the class boundary closely, even when the 

predictions don’t. This suggests that classification accuracies could be improved by tuning the 

probability threshold for predicting the class of a pixel. 

In Chapter 6, a Random Forest classifier was tested at a riverside mine on the Konawaruk 

River, using data from seven satellites, a mix of multispectral and SAR sensors. SAR sensor 

classification accuracy ranges from 23% (Radarsat-2 in the hilly area) to 81% (ALOS-2 in both 

areas). Multispectral sensor classification accuracy was 85% to 94% for Planetscope (with the 

Dove Classic sensor) and Sentinel-2. When separating forest from river, classification using both 

multispectral and SAR sensors performed well, and also performed well at separating mining 

from river. With SAR data, Consumer’s Accuracy ranged from 53% to 88%, and in 

multispectral, Consumer’s Accuracy ranged from 53% to 98%. SAR sensors were much worse 

than multispectral sensors at separating forest from mining (23% to 81% Consumer’s Accuracy 

for SAR sensors, 85%+ Consumer’s Accuracy for multispectral sensors). 

The second part of the second question, about combining multispectral and synthetic aperture 

radar (SAR) satellite images, is the subject of Chapter 7. In Chapter 7, two methods of 

combining data were tested, so that a Random Forest model can use the information from both 

sensor types at once. A dataset that fuses data from both Planetscope (multispectral) and 

TerraSAR-X (SAR) to classify forest had the same Consumer’s Accuracy as using Planetscope 

alone (96.70% in both cases). When classifying forest with fused Landsat and ALOS-2 data, the 

Consumer’s Accuracy went from 67% to 96%, but when classifying mining sites, the 

Consumer’s Accuracy went from 63% to 47%. Sensor fusion does not improve classification 

accuracy over multispectral data, and both multispectral data and fused multispectral-SAR data 

outperform SAR data alone. 

The third question, about the effect of the complexity of land cover types on accuracy, is the 

subject of Chapter 8. In that chapter, Random Forest with Sentinel-2 data was tested at a 

variety of locations, representing the typical land cover types associated with to tropical 

deforestation. Small rivers, close in width to the ten meter pixels used in Sentinel-1 and 
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Sentinel-2 data, are identified as forest in predictions, but visible in the class probability image, 

as the probability of forest values are consistently lower in the pixels labelled as rivers. Roads 

are largely classified as forest in predictions, but like small rivers, they are visible in the class 

probability image as a drop in the probability of forest values where the road is located. Tuning 

the probability threshold for prediction decisions results in very accurate predictions. When 

separating both settlements and agriculture, the classifier identifies forest with high accuracy 

(Consumer’s Accuracy 95%), finds no agriculture pixels (Consumer’s Accuracy 0%), and finds 

almost no road pixels (Consumer’s Accuracy 1.72%).  

These results show that variation within the same land cover type is an important consideration 

when using machine learning to map and measure deforestation extent. When a model is 

trained on spectrally homogeneous examples of a land cover type, it performs well on similar 

examples and poorly on spectrally different examples. Spectral variation within a class can also 

lead to overlap between classes. The results also provide detailed information on the spatial 

distribution of prediction errors and class probabilities within specific classes:  

1. In forests, the classification errors often follow the spectral variation within the forest – 

darker or lighter parts of the canopy that spectrally overlap with another class.  

2. In mining sites, errors follow the complex features within the mining site, which can 

include bare surfaces, new vegetation, and water bodies/ponds that can have many 

colours due to variability in depth and sediment content. 

3. In roads, most of the pixels are erroneously predicted as forest, though the road is 

clearly visible in the class probability map ouputs. This problem can be solved by tuning 

the probability threshold for making predictions. 

The problems in accurately classifying those three land cover types (forests, mining, roads) are 

about: 1) the complex nature of some land cover types, 2) the importance of spatial 

information, and 3) the importance of class probabilities to accurate prediction. Mines are a 

clear example of a complex land cover type – they have many different objects within them that 

have very different spectral (multispectral) and SAR backscatter properties, and these objects 

are often confused with other land cover types. Mining ponds can be confused with rivers, and 

the vegetation growing inside a mine (especially a recently abandoned mine) looks like intact 

forest. Rivers provide an example of complexity of a different sort, in that the sediment load 

varies across a country, and this also results in great spectral variation within the same land 
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cover type. Settlements are also a complex land cover type, with many objects within them 

(roads, buildings, grass, trees, bare ground).  

The second and third points (about mining and roads) both highlight the importance of spatial 

information and high-resolution reference data to effective accuracy assessment, in their own 

ways (discussed further in Section 9.2). In this study, the understanding of the causes of 

classification errors comes from the spatial distribution and physical context of errors. This 

information is not provided by confusion matrices and the accuracy metrics derived from them, 

but from maps of predicted classes and class probabilities (discussed in detail in Section 9.3). In 

general, class probabilities provide information about uncertainty in its physical context. In the 

case of roads, the class probabilities reflect mixed pixels in such a way that tuning the class 

probabilities will result in accurate class predictions in situations that yield very low accuracy 

with the default probability threshold for predicting classes. 

This understanding of the physical context and causes of classification errors depends on very 

detailed information about the study area in each test. This detailed information comes from 

comparing the predictions and class probabilities with high spatial resolution reference data. 

The end of Section 9.3 discusses the role of reference data in accuracy assessment. 

The implication for practice is that a nationwide deforestation measurement strategy that uses 

machine learning must be designed for a heterogeneous dataset where there is large within-

class variation, and where one model may not fit all locations. The clearest example is given 

early in Chapter 8, where a model trained on clear rivers performed poorly on sedimented 

rivers, and vice versa. Once the spectral variation between sites of the same type has been 

addressed, then detailed algorithm and sensor tests can be done, in a way that will allow a 

useful automated workflow to be developed. 
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SECTION 9.2 SPATIAL INFORMATION 

Three issues were raised in Section 9.1, that will be discussed further in this chapter. They are: 

• The heterogeneous nature of some of the land cover types. 

• The challenge of the most difficult land cover types, and the limits of machine learning. 

• The importance of probability threshold tuning to high accuracy. 

The unifying thread of all those points is the importance of high-resolution spatial information. 

It’s possible to discuss them because this study reported both confusion matrices and predicted 

land cover maps, and because every study site had very high resolution reference data to aid in 

accuracy assessment. All of these will be discussed in depth as this chapter goes on. First, some 

discussion of what is meant by spatial information. 

In this study, the data points are pixels that represent discrete and spatially contiguous sections 

of a physical object. Each pixel has a location in space and time, and a context that consists of 

the physical object at that location, the surrounding objects, and the physical context of 

machine learning predictions at that location at that point in time. Information on the location 

and context of prediction errors and high uncertainty allows the reader to relate the model’s 

performance to the physical phenomenon being studied. Maps of predicted land cover types 

show the spatial distribution and physical context of classification errors, and maps of class 

probabilities enable similar interpretation of uncertainty, and they allow the reader to 

understand how the model interacts with the data recording the physical objects being 

measured. 

In this study, this was done by comparing predicted land cover maps and class probability maps 

with very high resolution remote sensing data, which in this study consisted of aerial 

photography where the pixels covered a ground area of less than one meter. That aerial 

photography shows details as small as individual shrubs and vehicles, which allows for 

maximum precision in creating class labels, and maximum information in evaluating predicted 

land cover types and class probabilities. The former point, about creating precise class labels, is 

critically important because accuracy measurement consists of comparing predictions with the 

correct label, and this is only valid if the correct labels are error-free. Even a small amount of 

error in the training data can lead to results that overestimate accuracy greatly (Foody, 2012).  

  

https://doi.org/10.1016/j.rse.2010.05.003
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SECTION 9.3 CONFUSION MATRICES AND SPATIAL INFORMATION 

The standard practice for reporting classification accuracy in remote sensing of forests is a 

confusion matrix. It provides a numerical breakdown of which true classes were identified as 

which predicted classes. This can be summarized using a variety of derived metrics, such as 

overall accuracy, and per-class summaries in Consumer’s/User’s Accuracy and Producer’s 

Accuracy. Confusion matrices and their associated statistics are very useful, because they 

indicate which classes the classifier can accurately identify, and which classes it struggles with, 

and which classes they’re being confused with. 

The problem with confusion matrices is that they provide no information about the spatial 

distribution and physical context of errors (a point also made in Comber et al., 2012), which 

means that they lack a lot of the information on spatial distribution and physical context needed 

to evaluate the causes of errors, and the usefulness of the predicted maps. This information is 

provided by a map of predicted land cover types and a map of the probability of each class at 

each pixel (every results chapter has many examples of these). When these prediction and 

probability maps are compared with high-resolution reference data for the location, the reader 

can see how the errors and uncertainty are distributed, and what physical features are 

associated with errors and high uncertainty.  

In this study, Chapter 6 provides an example of the importance of spatial accuracy assessment: 

two confusion matrices were reported, for different regions in the area of interest. That study 

area had areas of flat topography and areas of very hilly topography, and SAR imagery 

responds very differently in flat vs hilly areas. There were separate confusion matrices for the 

flat and hilly areas. Confusion matrices, as normally used, are a global accuracy metric, but in 

remote sensing of forests, the number of misclassifications is not randomly or evenly 

distributed, but localized around phenomena that are difficult to classify in the chosen data-

algorithm combination (Foody 2004 makes a similar point). In this case, variation in the 

landscape was the phenomenon that affected accuracy, and different parts of the landscape 

were assessed separately. The alternative, one confusion matrix for the whole area, would 

represent an average of errors that does not reflect the reality in each part of the landscape. 

This is another example showing why spatial information is necessary to accuracy assessment. 

Another example of the benefits of spatial information to accuracy assessment is in Asner et al. 

(2009). That study tests a fully automated deforestation measurement software package called 

CLASlite, which classifies forest and non-forest. The results section of that study shows a 

https://doi.org/10.1016/j.rse.2012.09.005
https://doi.org/10.1080/01431160512331326521
https://doi.org/10.1117/1.3223675
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predicted land cover map that shows the proportion of each vegetation type at each pixel. It 

shows gradations in the amount of healthy vegetation across the study area, and it shows 

vegetation types relative to the river that passes through. There are also maps of the standard 

error at each pixel, which show high uncertainty near the river and in the areas of dead 

vegetation. In example from deforestation mapping Gabon (another REDD+ country), Sannier 

et al. (2014) and (2016) report predicted land cover maps that provide similar information 

about the patterns in the spatial distribution of deforestation, with similar benefits for 

understanding the results and the behaviour of the classifier. Together, this study, Sannier et 

al. (2014) and (2016), and Asner et al. show the value of predicted land cover maps and 

uncertainty maps in assessing accuracy and the causes of inaccuracy. 

Espejo et al. (2018) provides a case study in the importance of uncertainty information in the 

form of maps of class probabilities. The figures in Chapter 5 to 8 of this dissertation have maps 

of the class probabilities of mining areas, and consistently find that there is variation in the 

probability of mining that correlates with the locations of bare surfaces, vegetation, and mining 

ponds. In Chapter 8, when classifying rivers and roads, it was observed that tuning the 

probability threshold increased prediction accuracy greatly. This was observed in the map of 

class probabilities at each pixel, and is not information that can be found in the confusion 

matrix. Further research can compare the class probabilities within mining sites, to determine 

whether the class probabilities associated with specific objects fall within thresholds that can be 

used in the classification workflow. Espejo et al. (2018) reports numerical results and discusses 

the difficulties of classifying landscape disturbances caused by mining, and the importance of 

identifying mining methods. Maps of predicted land cover types and maps of class probabilities 

would have provided information on what physical features are causing problems, which would 

point the way to a solution. 

Joshi et al. (2015) is an example of a study whose results look similar to the results of this 

study when you only look at the confusion matrices, but important differences become 

apparent when predicted land cover maps are included. When assessing the predictions using 

overall accuracy, the SAR results in Chapters 5 and 6 are not too dissimilar from those reported 

by Joshi et al., which used ALOS data to map deforestation due to mining and reported 67% 

accuracy. Joshi et al. mention that there is a clear reduction in backscatter in gold mining areas 

as opposed to intact forest. A close look at the data for the ALOS-2 tests in Chapters 5-6 shows 

that there is a noticeable change in SAR backscatter in the mining areas versus the forest. 

https://www.fs.usda.gov/nrs/pubs/jrnl/2014/nrs_2014_sannier_001.pdf
https://www.fs.usda.gov/nrs/pubs/jrnl/2016/nrs_2016_sannier_001.pdf
https://www.fs.usda.gov/nrs/pubs/jrnl/2014/nrs_2014_sannier_001.pdf
https://www.fs.usda.gov/nrs/pubs/jrnl/2016/nrs_2016_sannier_001.pdf
https://doi.org/10.3390/rs10121903
https://durhamuniversity.sharepoint.com/teams/Matthewsupervision/Shared%20Documents/General/Dissertation/10.1088/1748-9326/10/3/034014
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However, the prediction images in the figures in Chapters 5-6 show a detail that is not 

mentioned in Joshi et al.: there is a lot of variation in backscatter within both forest and mining 

classes, and the distribution of values overlaps enough that there are a large number of 

incorrectly classified pixels, resulting in a predicted land cover map where the location of the 

mining site is clearly visible, but there are many misclassified pixels within the bounds of the 

mining area. This noise will result in incorrect quantification of forest change, and potentially 

false positives when identifying deforestation events, and future research needs to quantify this 

uncertainty. 

McRoberts et al. (2016) is a comparison of models for calculating change in forest area in Brazil, 

using a variety of maps as data. They found that the Global Forest Change map (McRoberts et 

al. cite Hansen et al. 2013, and Song et al. 2018 reports more recent research on the Global 

Forest Change data) resulted in the lowest accuracy, at 62% for the lowest forest/non-forest 

threshold and 66% for the highest threshold. The highest accuracy went to the Atlas 2008 map, 

with 82% accuracy. It is useful to have information on other options for data sources in identify 

change. However, the results indicate that, when using Global Forest Change data, a large 

minority of pixels are misclassified, and when using the Atlas 2008 data, 28% of pixels are 

misclassified. Where are these errors? The large number suggests that the errors are more than 

just a few scattered pixels, or a thin line along class boundaries where the pixels are mixed. But 

because only numerical metrics derived from confusion matrices are presented, there is no 

spatial information about how the errors are distributed. Are they random noise, are they 

concentrated around specific physical features, are the errors all along class boundaries? This 

determines whether these errors are something that a user can work around.  

In conclusion, spatial information in the form of predicted land cover maps and maps of 

uncertainty are essential information in accuracy assessment. When maps of predictions are 

present, they indicate local variations in accuracy, the physical context of errors, and the impact 

that the errors would have on the usefulness of the product. When spatial information is not 

provided, the information available is much more limited, and key details are missing. The 

following sections will explore questions and issues that can be explored because this study has 

extensive spatial information. 

An important aspect of spatial information is spatial resolution, the size of a pixel or the ground 

area covered by a pixel. The importance of spatial resolution becomes very clear when looking 

at the results in Chapters 5 and 6, particularly when comparing the details visible in Planetscope 

https://nmbu.brage.unit.no/nmbu-xmlui/bitstream/handle/11250/2452968/cjfr-2016-0064.pdf?sequence=2
https://www.researchgate.net/profile/Alexey-Egorov-2/publication/312446651_High-resolution_maps_of_21st-century_forest_cover_change/links/587e22df08ae9275d4eb56d3/High-resolution-maps-of-21st-century-forest-cover-change.pdf
https://www.nature.com/articles/s41586-018-0411-9
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and Landsat images. In the GeoVantage aerial reference data, the colour and boundaries of 

individual mining ponds and vegetation in a mining site are clearly visible, making for easy 

interpretation of the nature of the site and the causes of observed classifier behaviour. In the 

Landsat data, these important details are not visible in the larger pixels; the only thing that can 

be seen is that this is a mining site. Previous research on remote sensing of deforestation in 

Guyana has used this same high-quality reference data, and reported that “Detailed comparison 

of the Global Forest Change dataset reveals some errors, mainly associated with the 30 m pixel 

size”, an observation that is possible because of the detailed information that high-quality 

reference data provides (Galiatsatos et al., 2020). This observation about the value of 

GeoVantage data is also true of other high-resolution data. Pickering et al. (2021) found that 

the higher resolution data provided information on spatial heterogeneity at small scales, and 

Pickering et al. (2019) reported that RapidEye data (5 meter pixels) showed thin ribbon-shaped 

mines not visible in Landsat images.  

A non-Guyana example of the importance of high resolution reference data can be seen in 

Giljum et al. (2022), which measures the extent of mining-caused deforestation, and discusses 

in depth its environmental and human impact. Their forest data is from Global Forest Watch, 

and their mine location data is based on coordinates provided by the Metals and Mining 

Database, provided by Standard and Poors as part of their business intelligence services. The 

discussion of accuracy notes the need to quantify the indirectly deforested areas around mining, 

and the need for comprehensive data that can provide information on local circumstances, and 

methods that allow for insights beyond average effects. The results in this research provide a 

step in that direction, by assessing in detail the information and errors that come out of high-

resolution satellite images of mining sites. Small details of ponds, active mining areas and 

vegetation regrowth could be seen, especially in higher resolution data. But this study highlights 

the need for something that Giljum et al. doesn’t mention: validation of the forest/non-forest 

data. The classifications in Chapters 4-8 were not perfect: even the best workflows had at least 

some errors. Global forest change maps, and maps of deforestation drivers, need to come with 

uncertainty quantified, which Giljum et al. does not have. 

SECTION 9.4 THE HETEROGENEOUS NATURE OF LAND COVER TYPES 

Some land cover types are not homogeneous and uniform in the spectral properties of their 

surfaces. Mines have many surfaces within them (bare ground, ponds, vegetation) that are 

spectrally very different from each other. Settlements, with their mix of buildings, roads, grass, 

https://www.mdpi.com/2072-4292/12/11/1790
https://doi.org/10.3390/rs13112191
https://doi.org/10.1016/j.rse.2018.11.018
https://doi.org/10.1073/pnas.2118273119
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trees and bare ground, have the same problem. Rivers vary greatly in their sediment load, and 

this produces great spectral variation. This section will explore that observation in depth. 

The heterogeneous nature of the mining sites has come up once before in the literature. Espejo 

et al. (2018) states that:  

“While easily identifiable by visual inspection in both Landsat-based and high-

resolution satellite data, landscape disturbances caused by ASGM [Artisanal Scale 

Gold Mining] are difficult to accurately classify using current methodologies on 

medium scale multispectral satellite data. This is due to the heterogeneous nature of 

the post-mining landscape, in which large areas of bare ground, water, and remnant 

or new vegetation are mixed in the same Landsat pixel”. 

In addition to summarizing their results, the quote above also serves as an excellent summary 

of the results in this research. They used data fusion consisting of Landsat images and 

geomorphological data, supplemented with Global Forest Change and CLASLite-derived maps. 

Chapters 5-8 of this study also used Landsat data, as well as other multispectral sensors, SAR 

sensors, and fused multispectral-SAR data, and all of them had the problem described in the 

quotation above. 

Espejo et al. go on to say that ”mining disturbance is heterogeneous in its spectral signature, 

but spatially contagious” [sic]. They suggest using CLASLite forest/non-forest maps as a spatial 

prior, and constraining the analysis to non-forest areas within that. At first glance, this seems 

like a sound idea. In this study, the model was able to consistently identify change, even when 

it couldn’t identify the driver (such as the all-classes test in Chapter 8). 

This study offers another approach: in Chapter 4, it was noticed that the Enhanced Vegetation 

Index (EVI) was very good at outlining the edge between the forest and non-forest areas. 

Overall, within carefully chosen study sites, forest/non-forest measurement is a solved problem. 

The Random Forest classifier used with an Enhanced Vegetation Index will reliably separate 

forests from non-forest land cover types. Random Forest is also very effective at separating 

rivers with similar sediment levels, and at classifying mining sites of similar type. This indicates 

that the problem is not unique to this research, and that there are potential solutions. One is a 

multi-step classification process, where EVI is used to separate forest from non-forest, and 

within the non-forest area, mining is classified. 

https://doi.org/10.3390/rs10121903
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However, there is a problem that is not discussed in Espejo et al.: whether using CLASLite, 

Global Forest Change, or EVI, the new vegetation that grows in a mining site could easily be 

classified as forest, something that was observed in the predicted land cover maps in Chapters 

4-8. It would not be in the non-forest area that then gets analyzed to detect mining. 

Settlements (analyzed in Chapter 8) are another spectrally complex area. In the predicted land 

cover types, significant portions of the settlement areas were classified as forest, and some 

areas inside the settlements were classified as roads. This shows that the model is unsuited to 

accurately measuring the extent of settlements, but it is useful for identifying the location of a 

settlement. The same is true of the mining results: the model can accurately identify the 

presence of mining, but due to confusion between forests and vegetation inside the mine, area 

measurements will be inaccurate. 

The extensive literature on remote sensing of settlements offers another solution that was 

beyond the scope of a study of data fusion, but may be the solution to the problem of 

classifying both settlements and mines. It has been found that object-based classifications 

outperform pixel-based classifications when classifying settlements (Stow et al., 2007; Myint et 

al., 2011; Zhang et al., 2018), and object-based image analysis has been used to solve different 

problems in Guyana (Persaud et al., 2020). Before using object-based classification, though, 

this question needs to be answered: In this study, it was found that methods that work well in 

carefully chosen test areas perform poorly when used in nationwide datasets with high within-

class variability. Object-based classification methods would need to be tested first to find out 

whether they are a solution to that problem, or would be affected by that problem. 

SECTION 9.5 CLASSIFYING AGRICULTURE 

Regarding the results on agriculture, it should be noted that there was no test of forest vs 

agriculture, without other classes present. The analysis was constrained to areas that have 

aerial photography as reference data and have no cloud cover in one of the cloudiest countries 

on Earth. In addition, mining is the majority driver of deforestation in Guyana, with agriculture 

representing a minor component. This limits the number of suitable examples that can be used 

for testing. 

In Chapter 8, there were two tests of the model’s ability to find agriculture, and the model was 

able to identify the presence of change, but not the driver of change. There is a wide body of 

literature on remote sensing of agriculture (for reviews, see Khanal et al., 2020 and Weiss et al, 

https://doi.org/10.1080/01431160701604703
https://doi.org/10.1016/j.rse.2010.12.017
https://doi.org/10.1016/j.rse.2010.12.017
https://doi.org/10.1016/j.rse.2018.06.034
https://isprs-archives.copernicus.org/articles/XLII-3-W11/131/2020/isprs-archives-XLII-3-W11-131-2020.pdf
https://doi.org/10.3390/rs12223783
https://doi.org/10.1016/j.rse.2019.111402
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2020), covering vegetation extent, crop condition, nutrients and water, weed identification, and 

more. Here, the key issue is that methods that work well in small spatial scale studies that use 

data that is carefully chosen for simplicity do not scale well to nationwide deforestation 

measurement. A study that illustrates this well is Doggart et al. (2020). They map deforestation 

due to agriculture in Tanzania using ALOS-2 data, and an independent accuracy assessment 

reported 98% agreement between predictions and reference data. At first glance, this indicates 

a much higher accuracy than the results in Chapter 8 of this study. Doggart et al. excluded 

areas identified as wetlands, water or flooded cropland in the 2010 NAFORMA Land Use Land 

Cover map, and within that, intact forest and deforestation were separated using a threshold. 

There are two differences between Doggart et al. and this study that are worth noting:  

• Doggart et al. is a simpler classification problem, where other complex land cover types 

are not included. 

• Ancillary GIS data (land cover data) is being used to narrow the range of data that will 

be sent to the model, simplifying the data to be classified, and eliminating potential 

sources of confusion. 

Therefore, classification accuracy can be increased by simplifying the data and the labels. This 

works when testing machine learning within the context of a small, carefully chosen area, with 

little within-class variation. In the context of country-wide quantification of all deforestation 

drivers, that must include all the variation that occurs within land cover types. Using existing 

land cover maps and other government GIS data has one problem: it only contains 

deforestation events already known to the government, and remote sensing has value in 

detecting recent and illegal activity that has not already been recorded. The results in Doggart 

et al. reflect a context where the problem can be simplified easily, and the results in Chapter 8 

better reflect the challenge of machine learning in the more complex context of nationwide 

REDD+ measurement. 

SECTION 9.6 TUNING THE PROBABILITY THRESHOLD 

In Chapter 8, the accuracy of the model when identifying roads depended heavily on the 

probability threshold used to make predictions. This section will explain probability threshold 

tuning and its implications for classifying mixed pixels. 

The output of most classification algorithms is class probabilities. In the case of decision trees, 

the class probability represents the percentage of pixels in a node that belong to that class. In 

https://doi.org/10.1016/j.rse.2019.111402
https://durhamuniversity.sharepoint.com/teams/Matthewsupervision/Shared%20Documents/General/Dissertation/10.1088/1748-9326/ab6b35
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an ensemble of decision trees, the class probability is the average probability across all trees in 

the ensemble. By default, classes are predicted by selecting the highest probability class. In a 

binary classification problem, this is the class that has greater than 50% probability of 

membership. 

In Chapter 8, when using the default probability threshold for predictions, almost all road pixels 

were identified as Forest. This is because the probability of forest was as high as 90% in most 

pixels that were labelled as road. However, the distributions of probability of forest values for 

forest and road were distinct. When the probability threshold was moved to 90% probability of 

forest, then pixels with a 10% probability of road or lower were predicted to be road, and the 

prediction accuracy was very high. 

There has been other research on using probability threshold tuning to improve accuracy in 

remote sensing of forests. Botelho Jr. et al. (2022) mapped roads in the Brazilian Amazon using 

Sentinel-2 data and a Convolutional Neural Network. They used a probability threshold of 0.2 to 

decide which class each pixel belongs to, and high prediction accuracy resulted. This lends 

credence to the observation that probability threshold tuning is important for accurate road 

detection. 

Tuning the probability threshold has been found to improve classification accuracy in other 

contexts as well. Li et al. (2023) found that, in agricultural remote sensing, tuning the 

probability threshold improved classification accuracy. Komarov and Buehner (2018) increased 

ice and open water detection accuracy by tuning the probability threshold. When they used a 

class probability threshold of 0.95, the fraction of misclassified ice pixels decreased from 0.98 to 

0.24, and the fraction of misclassified water pixels decreased from 0.35 to 0.09. Bangira et al. 

(2019) found success in using threshold tuning to accurately classify optically complex water 

bodies, which could be applicable to the heterogeneous classes problem discussed earlier. 

Hancock et al. (2022) applied threshold tuning to imbalanced data to improve classification 

accuracy in that situation. 

The results of this study and others show that this has the potential to become standard 

practice in remote sensing, including developing a multiclass tuning implementation. There are 

two things to note about implementation.  

First, the ability to tune the probability threshold for binary classifications has been 

implemented in Scikit-Learn version 1.5 (released in May 2024). Scikit-Learn does not have a 

https://doi.org/10.3390/rs14153625
https://doi.org/10.1016/j.rse.2023.113623
https://doi.org/10.1109/LGRS.2018.2806189
https://www.mdpi.com/2072-4292/11/11/1351
https://durhamuniversity.sharepoint.com/teams/Matthewsupervision/Shared%20Documents/General/Dissertation/10.1109/CIC56439.2022.00028
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version for tuning multiclass probability thresholds. One option is in Wu et al. (2018), which 

used a Convolutional Neural Network with an adaptive threshold that maximizes the Jaccard 

Similarity Score. Wang et al. (2020) tuned the probability threshold of a Convolutional Neural 

Network by optimizing the accuracy score. 

Second, this study shows a simpler approach to mapping roads than previous research. Where 

Botelho Jr. et al. used a computationally expensive Convolutional Neural Network, this study 

was able to classify roads with high accuracy using Sentinel-2 data and the relatively 

computationally inexpensive Random Forest algorithm available in Google Earth Engine. 

SECTION 9.7 KEY OUTCOMES 

The most important outcome is that country-wide deforestation mapping requires a strategy for 

the variation in data from one location to the next. The same classifier with the same data 

classifying the same land cover type yielded very different results. Rivers vary in their sediment 

composition (Chapter 8), and mining sites vary in their vegetation cover, bare surfaces and 

mining ponds (Chapters 4-7). Section 9.6 ended with the point that high classification accuracy 

often occurs in situations that are made simple by being restricted to a small area, and 

nationwide deforestation needs to be designed for the complexity of nationwide data. This 

means that classification at carefully chosen specific sites is easy in most cases, with greater 

than 98% accuracy in some cases, but it prevents accurate wall-to-wall classification with a 

single model. 

Location is one variable among several interacting variables, and the others include sensor and 

the classification algorithm. Multispectral sensors consistently outperform SAR sensors at 

identifying forest and mining (Chapters 5-6), though both multispectral and SAR tend to be very 

accurate at identifying rivers (Chapters 4-8), especially when an optimal probability threshold is 

chosen (Chapter 8). When multispectral and SAR backscatter data were combined (Chapter 7), 

the result is that sensor fusion in this context did not produce the improved results that a lot of 

remote sensing literature reports.  

However, even after selecting the optimal sensor and classifier in one site, the performance 

varied when the same sensor/classifier combination was used across study sites (Chapter 8). 

Separating forest from river using a wide and clear river produced near-perfect accuracy, while 

training on sedimented river and testing on clear river produced near-complete inaccuracy. 

There was also variation in classification outcomes between different types of mining sites. 

https://doi.org/10.1080/09540091.2018.1510902
https://doi.org/10.3390/rs12020207
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Other outcomes include some options for improving classification accuracy. The Enhanced 

Vegetation Index follows the Forest/Non-forest boundary very closely, which opens up the 

possibility of automatic generation of accurate labels. It was also found that the class 

probabilities accurately outline class boundaries even when they’re invisible in predictions. This 

occurs when mixed pixels are an issue. This indicates that prediction accuracy can be increased 

in mixed pixel situations by adjusting the probability threshold. 

The way forward is therefore to study the performance of classifiers and sensors in different 

environments, and come to understand how performance varies, and what can be done to 

classify large and heterogeneous areas. There is now a commitment to ending global 

deforestation and forest degradation by 2030 (five years after the submission of this 

dissertation), but deforestation will continue to occur, if not legally then illegally. It is vitally 

important that all countries have the ability to identify illegal deforestation events quickly and at 

low cost, so that they can respond to them right away. This research takes a large step toward 

that by identifying the problem that has prevented machine learning from automating 

deforestation measurement so far. 

The next and final section will comment on upcoming Earth observation satellite missions and 

the data that they will provide to follow-up research. 

SECTION 9.8 A NOTE ABOUT SENSORS GOING FORWARD 

Planetscope SuperDove is now available. In late 2019, almost all of the data available was from 

the Dove Classic sensor, with some Dove R data just beginning to be released. The revisit time 

is near daily and improves as new cubesats are added to the constellation. Planet provides free 

pan-tropical basemaps, and provides free data to participating governments via the Norway 

Climate and Forests Initiative. The trade-off is that the radiometric consistency is lower than 

Sentinel-2 (Tu et al., 2022), and the geolocation quality is inconsistent (Semple et al., 2023). 

Planet is also expanding its very high resolution capabilities with the new Pelican sensor, which 

records 30 cm pixels. Planet is also expanding into space-based hyperspectral remote sensing 

with the Tanager mission, which offers 5 nm continuous bands covering the visible light, near 

infrared and shortwave infrared spectra, and it has announced its own automatic multispectral-

radar data fusion platform with Sentinel-1.  

Global Ecosystem Dynamics Investigation (GEDI) Lidar data has come and gone, and come 

again. It began collecting data in March 2019, and was stowed in March 2023, though the 

https://doi.org/10.1016/j.jag.2022.103035
https://www.earthdata.nasa.gov/s3fs-public/2024-05/NASA-PlanetSuperDoveGeometricAssessment-04092024%20Report.pdf
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return of the GEDI mission has been confirmed from 2024 to 2030. At first glance, space-based 

Lidar appears to be tremendously useful in Guyana, where a nationwide airborne or drone-

based Lidar survey would be prohibitively expensive. However, due to the length of time 

needed to collect enough returns for data of sufficient coverage and resolution, and the fact 

that the sensor has been stowed, GEDI data is unsuitable for detection of yearly change going 

forward, and its usefulness in historical research is very limited. 

Sentinel-1A failed, leaving just one functioning Sentinel-1 SAR satellite instead of two. In 2019, 

Sentinel-1 was providing adequate coverage of Guyana for testing and supplementary use to 

multispectral data. Until the new satellites Sentinel-1C and Sentinel-1D are launched, Sentinel-1 

coverage is insufficient for use in deforestation measurement, and the amount of data available 

for testing is limited. 

This may change in 2025, when the Biomass and NISAR satellites launch. The Biomass mission 

will provide forest biomass and carbon stock data that may be highly applicable to deforestation 

quantification, and NISAR will provide quad-polarized L-band and S-band SAR data. These 

longer wavelength radar sensors will provide deep canopy penetration, to the ground in some 

cases, providing information on forest structure and biomass that will complement the shorter 

wavelength radar sensors that reflect off of the canopy. Biomass and NISAR are ESA and NASA-

ISRO missions, respectively, which means that they will be made available at not cost, and will 

likely be available through Google Earth Engine. Minh et al. (2021) report results from Gabon 

that indicate that the vertical structure information of P-band SAR increases classification 

accuracy by 33%. Santos et al. (2000), da Costa Freitas (2008) and Rosa et al. (2017) have all 

reported benefits from using airborne P-band SAR to map deforestation in the Brazilian 

Amazon. In addition, the Sentinel-1C satellite was launched on 5th December 2024. This opens 

up the possibility of exploring the potential for a new kind of sensor fusion: combining SAR data 

at four wavelengths and four penetrating depths: C-band Sentinel-1, S-band and L-band NISAR 

data, and P-band Biomass data.  

https://doi.org/10.3390/rs13040696
https://doi.org/10.1016/j.rse.2002.12.001
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APPENDIX A: PLATFORM COMPARISON 

The key result of this research is that the core problem of nationwide deforestation mapping is 

the variety in the data, and the main body of the dissertation argued that point. Along the way, 

many other observations about classifier and sensor behaviour were made. This appendix will 

report results on a wide range of classifiers in Python, feature selection, choice of metrics, 

sample size, and class balance. 

COMPARING A BROADER RANGE OF CLASSIFIERS 

TRANSITIONING FROM GOOGLE EARTH ENGINE TO PYTHON 

So far, all tests have been in Google Earth Engine (GEE). But there are others that can do 

machine learning on satellite images. The Python programming language is the most common 

language in data science today, and it is capable of classifying satellite images. The workflow 

was constructed using these modules: 

• RasterIO opens GeoTIFF images and converts them to NumPy arrays. 

• Scikit-Learn tunes hyperparameters, classifies the data, and assesses accuracy using a 

wide range of metrics. 

• RasterIO saves predictions and class probabilities as GeoTIFF files for viewing in ArcGIS. 

The data is a test of a section of the Cuyuni River (Figure 91), upstream from the Cuyuni River 

mining site in Chapter 6. The training data and the validation data are from different but 

adjacent areas, which will ensure that there are no spectral differences in the water. 

METHODOLOGY: GOOGLE EARTH ENGINE VS PYTHON 

The Python workflow follows these steps: 

1. Using the RasterIO module, open GeoTIFF data and label images and convert them to 

3D NumPy arrays (width, height, bands). 

2. Reshape the data to a 2D array (samples, bands), and reshape the labels to a vector 

(samples,). 

3. Delete no data entries from the array. 
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4. Tune hyperparameters. Bayes Search Cross-Validation (using the Scikit-Optimize module) 

is efficient at searching large search spaces. Grid Search Cross Validation can be used for 

small search spaces. 

5. Fit the classifier using tuned hyperparameters. 

6. Calculate confusion matrix and associated statistics. 

7. Create a predictions array (samples, features) from the validation image. 

8. Reshape the predictions image from (samples, 1) to (height, width, 1), and then to (1, 

height, width), and then save the resulting image using RasterIO. 

9. Create class probability arrays (samples, number of classes) from the validation image. 

10. Reshape the class probabilities image from (samples, number of classes) to (height, 

width, number of classes), and then to (number of classes, height, width), and then save 

the resulting image using RasterIO. 

The Google Earth Engine workflow follows these steps: 

1. The training and validation data for the classifier is feature collections created from 

images. At each pixel in the training image, a point feature is created with the pixel’s 

values, and a feature collection of points is made for each pixel in the validation image. 

2. The classifier (Random Forest) is trained using the training feature collection. 

3. The trained classifier is applied to the validation feature collection, and a confusion 

matrix is calculated from that. 

4. A prediction image and a class probabilities image are made by classifying the validation 

image. 

SUMMARY OF RESULTS 

A summary of Consumer’s Accuracy and Producer’s Accuracy is provided in Table 55.  

• CART (GEE) and Decision Tree (Python): In Consumer’s Accuracy, Forest is slightly 

lower, and River is much higher. In Producer’s Accuracy, River is lower and Forest is 

much higher. 

• Random Forest: In Consumer’s Accuracy, River is lower for Python than GEE. Accuracies 

are otherwise similar. 

• Gradient Boosted Trees: Python accuracy is much higher – in Google Earth Engine, all 

pixels were assigned to the majority class. 
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• Naïve Bayes: In Consumer’s Accuracy, River is much lower in Python. In Producer’s 

Accuracy, River is much higher in Python. 

• Minimum Distance (GEE) and Nearest Centroid (Python): Python accuracy is consistently 

slightly lower. 

• K-Nearest Neighbours: In Consumer’s Accuracy, River is higher in Python. In Producer’s 

Accuracy, River is lower in Python. 

• Support Vector Machines: Accuracy in Google Earth Engine is high, and very low in 

Python. The performance of Support Vector Machines is an outlier among the Python 

classifiers; the others have much higher performance. The specific implementation used 

here is LIBSVM in both Python and Google Earth Engine. In Python, several 

hyperparameters were tuned (C, kernel, degree, gamma, coef0), and the same 

hyperparameters were used in Google Earth Engine. In Table 56, two implementations 

were tested in Python: LIBLINEAR and LIBSVM. LIBLINEAR showed similar results to the 

other classifiers. 

The Python workflow was built from scratch, and the process is fully understood. The full details 

of the GEE workflow are not available in the documentation. What is known is that the training 

data is input as point features, but the documentation does not say whether the classifier 

converts that to a 1D array (the NumPy approach) or processes point features natively. This is 

the first question that needs to be answered. 

Some of the classifiers are identical in implementation between platforms, but most are not. 

Support Vector Machine uses the libsvm implementation in both cases. The Minimum Distance 

classifier in Google Earth Engine does not have a Python equivalent with the same name, so 

Nearest Centroid was used as the closest equivalent. What is also known is the difference in 

hyperparameter tuning. The Google Earth Engine implementations have fewer hyperparameters 

that can be tuned, compared with their Python counterparts. For hyperparameter tuning, 

Google Earth Engine only allows for manual testing of different hyperparameter values. Python 

includes Grid Search CV (in Scikit-Learn) and Bayes Search CV (in Scikit-Optimize). 

CONCLUSION 

The original goal of this research was to test the benefits of sensor fusion for classification 

accuracy in deforestation mapping in Guyana. It has been found that there are other, more 

important issues that need to be addressed. The most important problem is that classifier 
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behaviour varies greatly from one location to another. This appendix has also found that the 

platform also matters – results will change depending on whether you are using Google Earth 

Engine or Python. Understanding why these differences occur, and how they vary from one 

study site to the next, will allow a researcher to choose the best platform for the task. 

 

Table 55: Accuracy of near-equivalent classifiers in Google Earth Engine and Python. 

  Consumer’s Accuracy Producer’s Accuracy 

  Forest River Forest River 

GEE CART 98.16 39.63 76.65 91.43 

Python Decision Tree 96.73 81.24 96.67 81.54 

GEE Random Forest 98.20 88.03 97.96 89.29 

Python Random Forest 98.13 75.48 95.74 87.79 

GEE Gradient Boosted Trees 85.64 0.00 100.00 0.00 

Python Gradient Boosted Trees 99.07 71.49 95.13 93.22 

GEE Naïve Bayes 96.50 93.22 98.92 78.57 

Python Naïve Bayes 98.92 72.69 95.32 92.29 

GEE Minimum Distance 96.50 92.44 98.92 78.57 

Python Nearest Centroid 92.85 86.10 97.41 68.16 

GEE K-Nearest Neighbours 97.60 86.62 97.72 87.86 

Python K-Nearest Neighbours 98.98 71.98 95.21 92.59 

GEE Support Vector Machine (LIBSVM) 98.23 85.83   

Python Support Vector Machine (LIBSVM) 51.98 5.01 75.47 1.82 
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Figure 92: The location of the training and validation data in Guyana. 
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Figure 93: Top left: Training data in Sentinel-2. Bottom left: True labels for training 

data. Middle: Validation data. Right: True labels for validation data. 
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PYTHON CLASSIFIER PERFORMANCE 

CLASSIFIERS SPECIFIC TO SCIKIT-LEARN 

Scikit-Learn has a wide range of classifiers, including many not found in Google Earth Engine. 

While doing this research, other Scikit-Learn classifiers were tested as well. Here are some 

observations: 

• The best performing classifier is Naïve Bayes. 

• Soft Voting is the second best classifier. Soft Voting fits each of the base classifiers and 

calculates the class probabilities. Predictions are made based on the argmax of the 

probabilities at each pixel. Soft Voting outperforms Hard Voting, which reports the 

majority predictions at each pixel. 

• Radius Neighbours Classifier assigned all pixels to Forest – all Forest probabilities were 

above 50%. 

• The LIBSVM implementation of Support Vector Machines in Python gives very poor 

performance, and this only happens in Python. 

• The Consumer’s Accuracy for the other classifiers is no lower than 70% for River 

(Stacking Classifier with passthrough) and 91% for Forest (Support Vector Machine using 

the LIBLINEAR implementation). The Producer’s Accuracy is no lower than 87% for 

Forest (Nearest Centroid) and 50% for River (for Passive Aggressive Classifier). 
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Table 56: Accuracy of Scikit-Learn classifiers, sorted in ascending order of Forest 

accuracy. 

 Consumer’s Accuracy Producer’s Accuracy 

 Forest River Forest River 

Naïve Bayes 98.92 72.69 95.32 92.29 

Soft Voting 97.52 79.32 96.37 85.07 

K-Neighbours Classifier 98.98 71.98 95.21 92.59 

Multilayer Perceptron 99.16 70.64 95.00 93.74 

Stacking Classifiers 99.28 69.96 94.89 94.55 

Stacking Classifiers with Passthrough 99.23 70.11 94.91 94.22 

Decision Tree 96.73 81.24 96.67 81.54 

Hard Voting 96.68 91.34 96.68 81.32 

Perceptron 99.63 64.88 94.10 96.88 

Nearest Centroid 92.85 86.10 87.41 68.16 

Stochastic Gradient Descent 82.25 86.44 97.45 66.47 

Logistic Regression 91.69 86.63 97.47 64.97 

Linear Support Vector Machine (LIBLINEAR) 91.36 86.85 97.50 61.14 

Ridge Classifier 86.58 88.63 97.72 54.01 

Passive Aggressive Classifier 93.85 89.40 97.80 49.61 

Radius Neighbours Classifier 99.47 0.00 84.86 4.84 

Support Vector Machine (LIBSVM) 51.98 5.01 75.47 1.82 
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Table 57: Accuracy of bagged and boosted ensembles of decision trees. 

 Consumer’s Accuracy Producer’s Accuracy 

 Forest River Forest River 

Decision Tree 96.73 81.24 96.67 81.54 

Bagged Decision Tree 98.13 75.48 95.74 87.79 

Bagged Extra Randomized Trees 51.73 22.79 79.01 7.75 

Random Forest 98.13 75.48 95.74 87.79 

Boosted Decision Trees 98.60 75.12 95.70 90.51 

Boosted Extra Randomized Trees 45.00 26.55 77.48 7.91 

Gradient Boosted Trees 99.07 71.49 95.13 93.22 

Histogram Gradient Boosted Trees 43.86 26.81 77.10 8.84 
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Table 58: Accuracy scores for bagging 

and boosting of Scikit-Learn classifiers. 

Consumer’s Accuracy Producer’s Accuracy 

Forest River Forest River 

Naïve Bayes 98.92 72.69 95.32 92.29 

Bagged Naïve Bayes 98.97 72.25 95.25 92.59 

Boosted Naïve Bayes 98.92 72.69 95.32 92.29 

K-Neighbours Classifier 98.98 71.98 95.21 92.59 

Bagged K-Neighbours Classifier 98.97 72.30 95.26 92.59 

Radius Neighbours Classifier 99.47 0.00 84.86 4.84 

Bagged Radius Neighbours Classifier 98.98 71.69 95.16 92.56 

Nearest Centroid 92.85 86.10 87.41 68.16 

Bagged Nearest Centroid 92.82 86.10 97.41 68.10 

Logistic Regression 91.69 86.63 97.47 64.97 

Bagged Logistic Regression 91.64 86.71 97.48 64.86 

Boosted Logistic Regression 97.55 79.27 96.36 85.21 

Passive Aggressive Classifier 93.85 89.40 97.80 49.61 

Bagged Passive Aggressive Classifier 97.18 80.27 96.51 93.51 

Ridge Classifier 86.58 88.63 97.72 54.01 

Bagged Ridge Classifier 95.81 88.89 97.75 52.71 

Boosted Ridge Classifier 98.56 75.63 95.79 90.36 

Stochastic Gradient Descent 82.25 86.44 97.45 66.47 

Bagged Stochastic Gradient Descent 92.03 86.56 97.47 65.89 

Boosted Stochastic Gradient Descent 100.00 0.00 84.89 0.00 

Perceptron 99.63 64.88 94.10 96.88 

Bagged Perceptron 93.75 85.73 97.30 70.83 

Boosted Perceptron 78.39 90.72 97.94 42.75 

Linear Support Vector Machine 91.36 86.85 97.50 61.14 
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Bagged Linear Support Vector Machine 91.30 86.90 97.51 63.98 

Boosted Linear Support Vector Machine 99.49 67.68 94.54 95.97 

Support Vector Machine 51.98 5.01 75.47 1.82 

Bagged Support Vector Machine 66.18 92.78 98.10 32.79 

Multilayer Perceptron 99.16 70.64 95.00 93.74 

Bagged Multilayer Perceptron 98.78 74.00 95.53 91.52 

 

NEURAL NETWORKS IN KERAS 

The previous tests used the classifiers found in Scikit-Learn. This section is a preliminary test of 

three simple deep learning architectures in Keras. The architectures are: 

• A multilayer perceptron with three hidden Dense layers and two Dropout layers. The 

number of units, and the fraction of units dropped, are tuned using Bayesian 

Optimization. 

• A multilayer perceptron with three hidden Dense Flipout layers that use Bayesian 

weights. These come from the Tensorflow-Probability module. There are two Dropout 

layers again. 

• A Convolutional Neural Network based on the Unet architecture. 

The workflow follows these steps: 

1. Using RasterIO, open the GeoTIFF data and label files and convert them to NumPy 

arrays. 

2. Using NumPy, expand them from (height, width, bands) to (batches, height, width, 

bands). 

3. Optimize hyperparameters using Bayesian optimization. 

4. Fit the final model on the training data for a maximum of 20 000 epochs, with early 

stopping implemented. 

5. Calculate predictions and confusion matrices using the validationd data. 

For consistency, the same data was used for the Google Earth Engine test, the Scikit-Learn 

classifier test, and the Keras deep learning test (Figures 100 and 101). 
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All neural networks using Keras have 98% Consumer’s Accuracy when classifying Forest (Table 

60). Consumer’s Accuracy for River is much higher for Multilayer Perceptrons with Bayesian 

weights than regular weights (16% vs 2%) and Convolutional Neural Networks based on the 

Unet architecture (16% vs 0%). 

Table 59: Accuracy for three neural network architectures built using Keras. 

 Consumer’s 

Accuracy 

Producer’s 

Accuracy 

 Forest River Forest River 

Multilayer Perceptron 98.05 1.77 11.32 87.69 

Bayesian Multilayer Perceptron 98.26 15.70 99.70 3.11 

Convolutional Neural Network 98.21 0.00 100.00 0.00 
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APPENDIX B: CHOICE OF METRIC FOR COMPARING PERFORMANCE 

The goal of this research is to find the workflow that produces the most useful land cover map 

as a prediction, meaning high accuracy relative to a ground truth. For industry applications, 

outputs so inaccurate that they have no information need to be discarded. Outputs that do 

provide information need to be sorted to quickly find the best one. For science, the cause of 

variation needs to be identified. This section will identify the classification metric that 

accomplishes that.  

• Definition of Accuracy: Correct pixels / All pixels. 

• Definition of Precision: True Positives / True Positives + False Positives. In the multiclass 

case, Recall is calculated for each class and averaged. 

• Definition of Recall: True Positives / True Positives + False Negatives. In the multiclass 

case, Recall is calculated for each class and averaged. 

• Definition of Matthews Correlation Coefficient:  

• Definition of Jaccard Score: Size of the intersection of two classes divided by the size of 

the union of two classes. In the multiclass case, this is calculated for each class and 

averaged. 

• Definition of Confusion Matrix: A square matrix of size n x n, where n is equal to the 

number of classes.  

• Definition of Consumer’s Accuracy: For each row, divide the number of pixels in the 

correct column by the total number of pixels in the row. 

• Definition of Producer’s Accuracy: For each row, divide the number of pixels in the 

correct row by the total number of pixels in the column. 

• Definition of Log Loss: For each pixel, with a true label in the range 0 to 1, the log loss in 

the binary case is the negative log-likelihood of the classifier. This can be generalized to 

the multiclass case with a matrix of probability estimates for each label.  

There is a substantial amount of literature arguing that the Matthews Correlation Coefficient is 

the best option. Chicco and Jurman (2020) argue that Matthews Correlation Coefficient should 

be used instead of Precision and Recall by all scientists because it is not affected by class 

imbalance or class swapping. Yao and Shepperd (2020) argue that F1 Score should be 

deprecated in favour of the Matthews Correlation Coefficient. Gonzalez-Ramirez et al. (2021) 

analyzed seven classification metrics and found that Matthews Correlation Coefficient is the 

most robust. Jurman et al. (2012) found that “MCC is a good compromise among discriminancy, 

https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-6413-7?trk=public_post_comment-text
https://dl.acm.org/doi/abs/10.1145/3383219.3383232?casa_token=Lzbmb1nJgroAAAAA:iw4jnYicAs_Z5HolD1V-0ifnrWXbKqsqRj1W5ydE_S5pz5Bd-2FOCsNhEuKEtRsRSNDAV2YyOG7co98
https://d1wqtxts1xzle7.cloudfront.net/93667943/jqsa.2021.22.8.11-libre.pdf?1667586935=&response-content-disposition=inline%3B+filename%3DAnalysis_of_multi_class_classification_p.pdf&Expires=1697929855&Signature=GgZ0stqv7lnosDcQANrNI1AyHJERdzS2Xx476GLEutUAKj4Sp~D1ZDAT96mTHcT2X-~~AZcL5KbTuWviETVkxcEyNEGLS0k-6Yw7xFHzyLDNRu8xB9~hR1EoYclOSWQWMR5aOstJ8IltC0X6alVht6nAmH0fx0~7okpyrs-qQvi9r-IXtXyUZ84GJEq29Tu8NImhk8SsSAhmX6OWu1KoXw9JdOmqpozzstYDsrOYtZryut0DjgXrk1K0y47e5JYRF~ElAd-ijdsTOHnG1XCBP1O~ixU81Km7CZq1DYib5F2xR-2oE9vwsa6-qSLzvVPaseljmy~uM5gtDV1-CwULVg__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0041882#s3
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consistency and coherent behaviors with varying number of classes, unbalanced datasets, and 

randomization”. 

Contrary to those opinions, Foody (2023) argues that Matthews Correlation Coefficient is 

sensitive to class imbalance and the quality of the reference data, and that it is not necessarily 

the final word on classification accuracy assessment. MCC can produce a high score on a poor 

classifier if errors in the reference data correlate with errors in the classifier, and that the 

quality of the reference data has a major impact on classification metrics (Foody, 2023) 

Because of this, the choice of classification metrics cannot be chosen based on what the 

literature usually recommends. Instead, the objective of this research must be made clear, and 

the performance of each metric must be assessed based on how well it accomplishes the 

objectives of this research. 

Interpretation of Confusion Matrix: The rows and columns represent the true labels and 

predicted labels. In data science in general, which one represented which is chosen by the 

researcher and labelled, and in remote sensing, the convention is to have the rows represent 

true labels and the columns represent predicted labels. In this research, the remote sensing 

convention is followed. The diagonal of the matrix is the correct predictions, and the upper and 

lower triangular matrices around it are the incorrect predictions, with the true class and falsely 

predicted class indicated. 

Usefulness of Confusion Matrices: The goal of this research is to understand the ability of 

different classifiers and sensors to classify deforestation drivers, and a confusion matrix 

provides the most detailed class-by-class breakdown of the errors. 

Interpretation of Accuracy: In terms of a confusion matrix, the accuracy is the number of pixels 

in the diagonal divided by the number of pixels in the confusion matrix. Accuracy is strongly 

influenced by class imbalance. A classifier where the majority class is predicted very accurately, 

and the minority class is predicted very inaccurately, will have high accuracy because the 

majority of pixels were classified accurately. 

Usefulness of Accuracy: Accuracy is a simple way of summarizing the overall performance of a 

classifier, and accuracy scores are easy to compare. Accuracy scores do not provide details of 

which classes the classifier handled well and which it didn’t, and accuracy is sensitive to 

unbalanced data. 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0291908#sec008
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0291908#sec008
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Interpretation of Consumer’s Accuracy: This indicates how many predictions in each class were 

correct. 

Interpretation of Producer’s Accuracy: This indicates how many examples of each class were 

found.  

Usefulness of Producer’s and Consumer’s Accuracy: These are two ways of summarizing the 

per-class performance of a classifier, and they can be easily added to a confusion matrix as an 

extra row and column. In this way, they show the number of predictions by class that were 

correct, and the number of samples of each class that were found, with the confusion matrix 

entries that they’re summarizing. 

Interpretation of Precision: In the binary case, Precision is the percentage of all pixels identified 

as the positive class that really were the positive class. In the multiclass case, this is the 

average of that for all classes. A weighted option is available for imbalanced data. 

Usefulness of Precision: In the binary case, Precision provides information on the classifier’s 

ability to avoid false positives. In the multiclass case, this is averaged, and so the per-class 

information provided by Consumer’s Accuracy is summarized, but the details are lost. The 

average can be weighted, to reduce sensitivity to unbalanced data. 

Interpretation of Recall: In the binary case, Recall is the percentage of the positive class that 

was predicted. In the multiclass case, this is the average of that for all classes. A weighted 

option is available for imbalanced data. 

Usefulness of Recall: In the binary case, Recall provides information on the classifier’s ability to 

avoid false negatives. In the multiclass case, this is averaged, and so the per-class information 

provided by Producer’s Accuracy is summarized, but the details are lost. The average can be 

weighted, to reduce sensitivity to unbalanced data. 

Interpretation of Matthews Correlation Coefficient: This is a correlation coefficient where +1 is a 

perfect classification, 0 is a completely random prediction, and -1 is a perfectly inverse 

prediction. As the score moves from 0 to 1, is becomes increasingly less random and better 

than chance. It takes into account all aspects of the confusion matrix. 

Usefulness of Matthews Correlation Coefficient: In the binary case, MCC uses all four of True 

Positives, True Negatives, False Positives and False Negatives. At first glance, this makes it the 

most complete summary of a confusion matrix, using information found in neither Precision nor 
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Recall. MCC is useful for comparing the randomness of two classifications – the one that is 

closer to 0 is the more random of the two. Like Precision and Recall, MCC also loses per-class 

information. 

Interpretation of Jaccard Score: In the binary case, Jaccard Score represents the number of 

correct predictions as the intersection of the predicted and true labels (the number of correct 

predictions) and the number of total predictions as the union of predictions and true labels. This 

makes it an alternative way of calculating accuracy. 

Usefulness of Jaccard Score: The difference between Jaccard Score and Accuracy is the 

calculation of the percentage of correct predictions, and this difference does not provide any 

new information. 

Interpretation of Log Loss: The log loss is a description of the uncertainty of class probabilities, 

by calculating the distance between the predicted probability and the label (which is given a 

value of 1). 

Usefulness of Log Loss: Log Loss is a useful complement to confusion matrices, because it 

provides information on the uncertainty of the class probabilities, information that is not found 

in metrics based on predictions. 

In summary, the metrics that provide the necessary information are the standard set in remote 

sensing: a confusion matrix combined with Consumer’s Accuracy, Producer’s Accuracy and 

Accuracy. Log Loss is a useful complement, by providing a summary of uncertainty. The other 

metrics do not provide any useful information not provided by the metrics described above. 

 

APPENDIX C: FEATURE ENGINEERING 

While developing the Python workflow, some observations were made about feature selection. 

Table 60 below shows accuracy scores when classifying with only one band from Sentinel-1 or 

Sentinel-2. The range of accuracy scores is very small – from 79.88% (VH polarization) to 

81.11% (Red Edge 3). The most important observation is that all bands are nearly equally 

useful – there is no one band that will produce a terrible classification, and there is no band 

that will produce a perfect classification, either. 
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Table 61 below shows accuracy scores using all bands except for the one specified. Here, 

performance is nearly identical – every accuracy score can be rounded to either 86.34% or 

86.35%. Once again, removing features does not make any meaningful difference. 

Table 60: Accuracy scores when using only one band from Sentinel-1 and Sentinel-2 

data. 

Accuracy Band 

0.8111 Red Edge 3 

0.8106 Shortwave Infrared 2 

0.8101 Coastal 

0.8095 VV 

0.8081 Green 

0.8080 Shortwave Infrared 1 

0.8065 Near Infrared 

0.8065 Red 

0.8040 Red Edge 2 

0.8030 Blue 

0.8020 Red Edge 1 

0.7988 VH 

 

Table 61: Accuracy scores when each band is omitted. 

Accuracy Band Combination 

0.86348 Without Shortwave Infrared 2 

0.86345 Without Red Edge 2 

0.86345 Without Green 

0.86342 Without VV 

0.86342 Without Shortwave Infrared 1 

0.86342 Without Red 

0.86342 Without Coastal 

0.86342 All Bands 

0.86339 Without VH 

0.86339 Without Near Infrared 

0.86339 Without Red Edge 3 

0.86339 Without Red Edge 1 

0.86336 Without Blue 
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APPENDIX D: CLASS BALANCE 

Class imbalance is a major issue, and there is no perfect solution, only trade-offs. Preserving 

the class proportions of the original data will lead to a classifier that favours the majority class, 

and undersampling gives the classifier a dataset that’s different from the prediction data 

(Salmon et al., 2015). 

Class balance is required to train good models (Belgiu and Drăguţ 2016), but class imbalance is 

a recurring problem in remote sensing. The class imbalance seen here is consistent with 

previous research (Graves et al., 2016). This is a result of a classifier seeking to minimize an 

overall error rate (Maxwell et al., 2018). 

The remote sensing of forests literature has several approaches to deal with imbalanced data 

(Douzas et al., 2019): 

• Introduce a cost matrix that applies higher misclassification costs for the minority 

classes. 

• Modify the algorithm to reinforce learning of the minority classes. An exampe of this is 

Infinitely Imbalanced Logistic Regression (Williams et al., 2009), which is designed so 

that, as the size of the majority class approaches infinity, the coefficients are minimally 

affected. 

• Sampling strategies to rebalance the class distribution, by: 

o Undersampling to reduce the size of the larger classes. 

o Oversampling to create artificial data for the smaller classes. 

o Hybrid approaches that combine oversampling and undersampling. 

Examples of sampling strategies include dynamic weighting (Zhou et al., 2023), the Synthetic 

Minority Oversampling Technique (SMOTE) (Douzas et al., 2019, Mallah et al., 2022), 

Undersampling and oversampling come with their own problems (He and Garcia, 2009). 

Undersampling reduces the number of points sampled in the larger classes, which means that 

key information about the larger classes may not be included. Oversampling duplicates points in 

the smaller classes, which can lead to overfitting. 

Douzas et al., 2019 tests a variation of SMOTE using land cover classification of Landsat data. 

The results are reported based on Accuracy, F1 Score, and G-Mean, using Decision Trees, 

https://ieeexplore.ieee.org/abstract/document/7326461?casa_token=w7P03DCasOwAAAAA:r6JE5yd0F8dwF9u74Wt6qWBA_mNhKkqlqa_swVZRoLVKuADlpZZXAnzYDSvhpQZAAqHoWU_6Q9X1
https://doi.org/10.1016/j.isprsjprs.2016.01.011
https://doi.org/10.3390/rs8020161
https://doi.org/10.1080/01431161.2018.1433343
https://doi.org/10.3390/rs11243040
https://ieeexplore.ieee.org/abstract/document/5071274
https://doi.org/10.3390/rs15071768
https://doi.org/10.3390/rs11243040
https://doi.org/10.3390/rs15071768
https://ieeexplore.ieee.org/abstract/document/5128907
https://doi.org/10.3390/rs11243040
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Random Forest, Gradient Boosted Trees, and K-Nearest Neighbours. Accuracy was always 

highest when using no oversampling. When using F1 Score, accuracy was always higher when 

using oversampling, by 2% to 10%.  

Maxwell et al., 2018 argues that we should consider the opposite approach: change the 

classifiers to meet the needs of the data. One of the questions they ask is: “What kind of 

assumptions will make imbalanced learning algorithms work better compared to learning from 

the original distributions?”. That suggests that there is much potential for further research into 

designing classifier implementations that are insensitive to class imbalance. 

Google Earth Engine offers two sampling options: 

• Random sampling, where all pixels are randomly selected. 

• Stratified sampling, where a specified number of pixels per class are randomly selected. 

• Sampling by region, where pixels within a bounding box are randomly selected. 

Scikit-Learn offers these sampling options: 

• The simplest approach to sampling is to randomly sample the data so that every pixel 

has an equal chance of being selected. 

• Scikit-Learn also offers the option of random sampling where the proportion of classes in 

the sample matches the proportion of classes in the original dataset. 

• NumPy offers the tools needed to implement undersampling as well. 

Tables 62-65 show results from four tests of the effect of class balance. The classifications 

separate forest from grassland (the same data as in Chapter 8). In Google Earth Engine, the 

results show that balancing the class proportions produces a small increase in Consumer’s 

Accuracy for Grassland increases from 78% to 79%, and the Producer’s Accuracy for Forest 

decreases from 96% to 84%. Balanced classes here actually have lower performance. In the 

Scikit-Learn test on the same data, undersampling increased the overall accuracy (72% to 

88%), but the Producer’s Accuracy for Grassland went from 89% to 13%, and the Consumer’s 

Accuracy for Forest went from 98% to 88%. Despite the increase in overall accuracy, the 

distribution of errors has changed such that balanced classes do not solve any problems. 

 

 

 

https://doi.org/10.1080/01431161.2018.1433343
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Table 62: Confusion matrices using all pixels, with no resampling or weighting, in 

Google Earth Engine. 

Accuracy: 96.07% 
Pixel Count: 34170 

True Consumer’s 
Accuracy 

Forest Grassland  

Predicted Forest 22986 149 99.36% 

Grassland 921 3194 77.62% 

Producer’s Accuracy 96.15% 95.54%  

 

Table 63: Stratified Sampling (equal number of pixels sampled per class), in Google 

Earth Engine. 

Accuracy: 89.77% 
Pixel Count: 9328 

True Consumer’s 
Accuracy 

Forest Grassland  

Predicted Forest 4629 35 99.25% 

Grassland 863 3253 79.03% 

Producer’s Accuracy 84.29% 98.94%  

 

Table 64: Confusion matrix usng all pixels, with no resampling or weighting, in 

Python. 

Accuracy: 71.76% 
Pixel Count: 9328 

True Consumer’s 
Accuracy 

Forest Grassland  

Predicted Forest 20370 515 97.53% 

Grassland 9136 4149 31.23% 

Producer’s Accuracy 69.04% 88.96%  

 

Table 65: Undersampling (equal pixels per class) in Python. 

Accuracy: 88.05% 
Pixel Count: 34170 

True Consumer’s 
Accuracy 

Forest Grassland  

Predicted Forest 29477 4053 87.91% 

Grassland 29 611 95.47% 

Producer’s Accuracy 99.90% 13.10%  
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APPENDIX E: SAR CLASSIFICATIONS 

This appendix elaborates on the radar comparison in Chapter 5, by testing the effects of these 

variables: 

• Radar sensor: There are four sensors tested, and they are ALOS-2, Sentinel-1, Radarsat-

2, and TerraSAR-X. 

• Satellite orbit: This can be ascending or descending. These satellites travel in polar 

orbits, and the orbit listed indicates whether they are heading from the south pole to the 

north pole, or from the north pole to the south pole. Radar sensors look to the side as 

they travel, which means that opposite orbits mean opposite look directions. This 

changes the location of the radar shadows that can affect classification results. 

• Model smoothing. Random Forest models can be smoothed by controlling the number of 

trees. Two values are tested here: 24 trees, or unlimited trees. 

The take-aways are: 

• Model smoothing makes the results worse. In all cases, better classifications were done 

with unlimited trees than 24 trees. 

• In ALOS-2, changing the look direction changed the predictions, but never produced 

predictions that are close to the true labels. In TerraSAR-X, changing the look direction 

does not change the results. 

• In Radarsat-2, model smoothing does not change the predictions. 
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Table 66: ALOS-2, Ascending Orbit, Random Forest with 24 Trees 
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Table 67: ALOS-2, Ascending Orbit, Random Forest with Unlimited Trees 
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Table 68: ALOS-2, Descending Orbit, Random Forest with 24 Trees 
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Table 69: ALOS-2, Descending Orbit, Random Forest with Unlimited Trees 
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Table 70: Sentinel-1, Ascending Orbit, Random Forest with 24 Trees 
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Table 71: Sentinel-1, Ascending Orbit, Random Forest with Unlimited Trees 
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Table 72: Radarsat-2, Ascending Orbit, Random Forest with 24 Trees 
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Table 73: Radarsat-2, Ascending Orbit, Random Forest with Unlimited Trees 
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Table 74: TerraSAR-X, Ascending Orbit, Random Forest with 24 Trees 
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Table 75: TerraSAR-X, Ascending Orbit, Random Forest with Unlimited Trees 
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Table 76: TerraSAR-X, Descending Orbit, Random Forest with 24 Trees 
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Table 77: TerraSAR-X, Descending Orbit, Random Forest with Unlimited Trees 

 


