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Abstract

The World Stroke Organisation (WSO) states that 1 in 4 people over the

age of 25 will have a stroke in their lifetime [1]. Intervention is required to help

rehabilitate stroke survivors and help them regain the maximum quality of life.

Current rehabilitation techniques focus physical exercise and assessment but

often do not monitor the brain directly. This would be useful in the treating of

brain injury to be able to give more direct feedback and inform decision making.

Currently, methods of assessing brain activity are limited by cost and their

ability to work in motion. EEG is one of the cheapest methods for reading brain

activity but suffers from artifacts caused by motion. This research aimed to

address this issue by removing motion contamination from EEG signals. To do

this, existing processing pipelines were assessed. These assessments covered both

traditional and machine learning algorithms with the aim of identifying areas for

innovation.

Using PyTorch, and other available libraries, this research evaluated existing

preprocessing methods and proposed new methods with a new machine learning

architecture. The resulting architecture is a convolutional UNet with bottleneck

replaced with a transformer encoder. The proposed preprocessing steps achieved

a significant temporal correlation of 86.883% and a 26.896 dB improvement

in SNR. These improvements highlight the method’s ability to preserve signal

integrity while removing motion artifacts. Notably, the network accomplished

this performance with around 173,000 fewer parameters than alternative methods,

demonstrating state-of-the-art performance. This reduction in parameters

reduces computational costs making it more suitable for real-time application in

resource-constrained environments such as a clinical setting.

However, comparison with other techniques is difficult because of differences

in preprocessing techniques. The nuances of this are also discussed in detail.
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1 Introduction

According to the World Stroke Organization (WSO), there are 12.2 million new people

affected by strokes each year, with 1 in 4 people over the age of 25 experiencing a stroke

in their lifetime [1]. The likelihood of developing a neurological disorder increases with

age with women being more likely to suffer than men [2]. With increasing demand

and pressures on health care professionals having detrimental effects on the well-being

of staff in the National Health Service (NHS) England [3], intervention and innovation

is required to support stretched workforces. In the same report from the Care Quality

Commission (CQC), healthcare professionals have stated that inadequate support is

effecting the quality of care they are able to provide. In addition, non-adherence to

rehabilitation programmes ranges from 50% to as high as 70% [4], [5] is resulting in

patients receiving sub-optimal rehabilitation.

A better understanding of this problem could be found using a Brain Computer

Interface (BCI) which provide a quantitative measure of brain activity. Using a BCI, it

is possible to measure engagement and predict the emotional response of a patient by

evaluating the recorded signals. Being able to identify exercises and activities which

are most engaging to a patient has the potential to provide great benefits in terms of

planning rehabilitation programmes. With this information, it would be possible to

tailor rehabilitation programmes on an individual level, in theory increasing adherence

and overall outcome. Combining this with emerging technologies such as Virtual

Reality (VR) could create a more engaging environment which can dynamically adapt

to patient needs and interests. Recommending particular exercises based on individual

characteristics has the potential to increase adherence to rehabilitation programmes.

There are many techniques currently in place for reading brain activity: functional

Near-Infrared Spectroscopy (fNIRS), functional Magnetic Resonance Imaging (fMRI)

and Electroencephalography (EEG) are examples of some commonly used techniques.

Whilst all of these methods are useful from gathering brain data, fNIRS and fMRI

are both limited by portability and cost. EEG on the other hand, offers a way of

measuring brain activity at a relatively low cost.

EEG being a portable and relatively cost-effective technique means it has the

potential to be useful for measuring people completing activities. For example, it

could be useful for monitoring patients participating in rehabilitation exercises or

completing other physical activities. It has the potential to be able to monitor progress,

engagement and predict emotions towards the current activity.

However, EEG is limited by multiple issues. Firstly, it is only able to record
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surface-level brain activity. Whilst this is not a particular issue due to the structure

of the brain, it means that information can be diluted and obfuscated. The second

is that EEG uses very sensitive electrodes to read brain signals. As a result, motion

can cause large artifacts from loose wires adding noise to the signal. This limitation

means that participants being studied and recorded are required to be very still during

recording sessions.

EEG is also extremely sensitive to external stimuli. Due to the strength of the

signals picked up, EEG requires amplification which is affected by environmental noise

such as electromagnetic interference from power lines or contamination from motion

of a subject. While environmental noise can largely be filtered out through the use

of a notch filter at the appropriate frequency for the region (50 Hz / 60Hz), motion

contamination remains an issue. Patients wearing the headset will be required to move

to complete their exercises. As such, the motion contamination needs to be reduced

or removed to allow for an accurate assessment.

The usefulness of EEG whilst users move has the potential to contribute to patient

care. Artificial Intelligence (AI) provides a potential way to tackle this issue by using

various techniques to create an intelligent solution to the problem. This research aims

to tackle the issue of motion contamination in EEG signals by using modern deep

learning techniques.

2 Contributions

This research offers multiple contributions to the task of removing motion

contamination from EEG signals. A light weight neural network containing 1,779,953

parameters was produced using a technique using a convolutional UNet with the

bottleneck replaced with a transformer encoder. This network contains fewer

parameters than the best performing direct comparison [6] (containing around 1.953

million parameters). It also achieves an improvement in temporal correlation over the

network of around 1.08% (to 89.08%). Both of these factors highlight the contribution

of the network architecture to the challenge of motion contamination removal from

EEG signals.

In addition to the network architecture improvements, the proposed data

preprocessing and windowing technique also contributes to the improvement in results.

This builds on existing methods by applying techniques which can be applied in

real-time. This is done by only apply preprocessing to signals which have already
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been downsampled and windowed to the correct size for processing by the network.

This allows for signals to be analysed during exercises and trials allowing for instant

feedback.

Finally, the proposed windowing method increases the focus on severe motion

contamination for network training purposes. This was accomplished by dynamically

changing the window overlap based on the temporal correlation between the ground

truth and motion contaminated signal. By increasing overlap the worse the temporal

correlation, greater focus was given to training the network to remove motion

contamination rather than just reproducing the input signal. 43.16% of the resulting

dataset are segments with a temporal correlation, between the ground truth and

motion contaminated signals, of below 50% prior to preprocessing. This is in contrast

to 27.7% using the method from [6] displaying an improvement on the focus on poorly

correlated segments.

Overall, this work contributes to the removal of motion contamination from EEG

signals by designing and training a network with fewer parameters than the closest

direct competition. This is done by introducing a lightweight transformer-encoder-

based UNet architecture. Reducing parameters while maintaining state-of-the-art

performance.

In addition, it iterates and improves existing pre-processing techniques for the

training datasets in order to find improvements in the motion contamination removal

process. These steps allow for a more computationally efficient processing pipeline

which reduces overall costs. In turn, this cost reduction is a step towards the

implementation of such systems in a practical resource-constrained setting. This

includes clinical settings where such systems could allow for greater understanding of

patient needs and requirements, enabling tailored rehabilitation.

3 Background

3.1 Brainwaves

To study the brain effectively, it is first important to understand brainwaves, which

are categorised by frequency and are indicative of different cognitive states [7]. Delta

waves, ranging between 0.1 Hz and 4 Hz, are commonly associated with deep sleep,

important for physical and mental restoration. Theta waves span 4 Hz to 8 Hz and

are linked to dreaming and visualisation, often observed during light sleep. Alpha

waves, occurring at frequencies of 8 Hz to 13 Hz, are correlated with creativity and
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relaxation.

In contrast, beta waves are associated with heightened alertness, critical thinking

and concentration. Spanning from 13 Hz to 30 Hz, beta waves are an indicator of

an individuals engagement with the external environment. Finally, gamma waves are

waves with a frequency between 30 Hz and 100 Hz. Gamma waves are associated

with cognitive processing, peak experiences and synchronisation of neural activity,

suggesting a state of heightened perception. Understanding these brainwaves is of the

utmost importance when studying the brain.

Brainwaves like these can be measured due to the electrical properties of the brain

which is made up of vast networks of neurons. Neurons communicate using chemical

and electrical signals. When a signal is sent from one neuron to another, a small

electrical change occurs in the receiving neuron, known as a Postsynaptic Potential

(PSP). PSPs can either make the receiving neuron more likely to send a signal to

the next neuron (Excitatory Postsynaptic Potential (EPSP)) or less likely (Inhibitory

Postsynaptic Potential (IPSP)) [8]. Although the electrical potential of a single neuron

firing is too small to be detected from the surface of the scalp, it is possible to measure

the activity over a larger area from the cerebral cortex, the outer layer of the brain.

The frequency of the detected activity can then be interpreted and analysed for an

insight into how an individual’s brain is functioning.

3.2 EEG

EEG is a common technique used for measuring brain activity. It is a non-invasive

technique in which a subject has multiple electrodes placed on their head. These

electrodes are used to measure voltage differences across the surface of the brain.

These signals can be differentiated and interpreted using a number of different factors,

such as location and frequency power.

Commonly, an EEG reading is taken using a cap with electrodes placed in the 10 -

20 system. The 10 - 20 system is an internationally recognised, standardised way of

placing electrodes on the head of a subject. The system is named after the placement

of the electrodes which are placed either 10% or 20% from the centre of the scalp.

Determining the centre of the scalp is accomplished by measuring from the nasion

(the join between the forehead and the nose) and the inion (the base of the skull at

the back of the head) and finding the centre point, see figure 1. The distance between

the preauricular points on either side of the head, also in figure 1, are also measured

and the centre point marked. The place where these 2 measurements cross over is the
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Figure 1: Inion, Nasion and Preauricular points

Figure 2: Active Electrode available from G.Tec [9]

desired location of the central electrode. The cap is placed on the subject’s head using

this as a reference point. Once placed on the subject’s head in the correct position,

it should be ensured that all electrodes are in contact with the scalp and that the

headset is tightly secured.

There are 2 common types of electrodes used for EEG. The first are passive

electrodes. Passive electrodes do not amplify the detected signals and require the use

of a conductive gel. The setup process for passive electrodes involves injecting this

gel through a hole in the centre of the electrodes to ensure a strong signal is being

detected. This results in high accuracy signals but also leads to longer clean up and

preparation times. Passive electrodes are used in the majority of EEG studies for the

benefit of increased accuracy. Active electrodes are the second commonly used type

of electrode. The difference being that active electrodes amplify the signals at the

source. A benefit of this is that conductive gel is not required. Whilst this can result

in poorer signal quality, it leads to shorter preparation and clean up times as well as

being generally more comfortable to wear.

Once data has been collected, signals may require post-processing and evaluating

depending on the requirements. As EEG is prone to a number of different artifacts,

this is an essential step to clean the data and make it usable.
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EEG data is prone to baseline drift. This is when the signal gradually increases

or decreases overtime and can be caused by a number of factors including electrodes

slipping from their initial positions and changes in temperature. Baseline drift should

be removed when working with EEG data to improve the quality of recordings and

interpretations. For this purpose, the trend is commonly removed from EEG data.

There are multiple approaches to this including: linear detrending, high-pass filtering

and moving average [10]. Linear detrending aims to fit a polynomial to the general

trend of the data which is then removed.

Detrending is a common technique which involves fitting a polynomial to the

general trend of the EEG data. This polynomial is then subtracted from the data.

Baseline drift can be accounted for by detrending methods and it has limited impact

on the data.

Many techniques in EEG post-processing involve using Infinite Impulse Response

(IIR) filters or Finite Impulse Response (FIR) filters [11]. Both filters are useful

for blocking and removing frequencies from a signal. IRR filters are recursive and

computationally efficient, making them useful for real-time applications. FIR filters are

non-recursive which makes them more stable than IRR filters but more computationally

expensive. Either of these techniques can be combined to create a number of different

operations such as band-stop, band-pass, high-pass and low-pass filters.

Band-stop filters remove frequencies from a signal [11]. EEG is prone to

environmental interference such as noise from power-lines. As such, it is useful

to be able to remove a particular range of frequencies from the signal (normally 50Hz

or 60Hz depending on which region the recordings are taken in). This is sometimes

also referred to as a notch filter.

Band-pass filters extract a specified range of frequencies from the signal [12].

Frequencies of brain activity are associated with different mental states. Being able to

isolate these states is useful for a number of different assessment criteria, for example

the Brain Engagement Index (BEI) which is used to quantify the engagement of

participants [13]–[15]. Band-pass filters are useful for extracting a given frequency

range from the data to use for such calculations. The equation of the engagement

index can be found below.

Engagement =
β

α+ θ

High-pass and low-pass filters filter out frequencies above or below a certain

frequency respectively. This is useful for removing low frequencies which impact useful
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data or removing high frequencies which are out of the range of interest. For example,

gamma brainwaves are the highest frequency brainwaves typically researched but there

is negligible data to be found above 100 Hz so it could be useful to remove frequencies

above this level to simplify the data.

More recent techniques aim to improve traditional techniques by being able to

detrend and inpaint data [16] . While this technique claims to provide better quality

detrending of EEG data, it relies on the use of multiple data channels making it

unusable on the available dataset.

EEG headsets require careful setup and constant analysis during trials and

experiments to ensure any recorded data is reliable. Knowledge of how EEG equipment

should be setup and monitored is an important part of the process. In addition,

knowledge of basic preprocessing techniques, such as bandpass filters, is essential for

the assessment of signal quality and for the extraction of useful data.

4 Literature Review

4.1 Overview

Removing motion artifact contamination from EEG signals has been a focus of research

for over a decade. Previously, there was no framework for assessing the accuracy of

improvements made other than assessing the improvement of Signal-to-Noise Ratio

(SNR).

In 2012, a dataset was created to allow motion contamination removal methods to

be evaluated [17]. Creating a matched dataset for motion artifact contamination is

incredibly difficult, since it is not possible to record someone who is stationary and

moving at the same time. To work around this, the dataset was created by having

stationary participants wear 2 electrodes within 30 mm of each other. This ensured

that the readings are highly correlated. One of the electrodes was periodically tapped

for the duration of the recording, creating artificial motion artifact contamination

on one of the electrodes. To supplement this, an accelerometer was attached to each

electrode, allowing the difference in motion to be used for motion artifact removal.

The ”Motion Artifact Contaminated fNIRS and EEG Data” dataset is a useful tool

for evaluating methods of removing motion artifact contamination from EEG signals

and is the best method currently available for assessing how well algorithms remove

the motion contamination. It is currently the only well known and freely available

matched dataset for EEG motion contamination removal. However, it is limited by
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size. Only 23 participants were recorded for around 9 minutes each. This lack of

diversity in the dataset could lead to results which do not generalise well with a larger

sample. Ideally, a larger dataset would be used for verification.

It is also limited by the use of artificial motion contamination. Although it would

be impossible to create a matched dataset any other way, without the use of simulation,

it means that other potential indicators of impending motion, such as an increase in

a particular frequency of brain activity, cannot be taken into account. In addition,

it also removes the possibility of working with signals from multiple electrodes. Any

motion made by a participant wearing an EEG headset should have a similar impact

on all EEG channels. Assessing multiple channels at once would allow for more robust

motion contamination removal. Nevertheless, the dataset provides a quantifiable way

of testing motion contamination removal methods.

4.2 Classical Approaches

The ”Motion Artifact Contaminated fNIRS and EEG Data” dataset was initially

used to assess multiple methods removing motion artifacts [17]. Using the collected

dataset, the accuracy of adaptive filters, Kalman filters and Ensemble Empirical

Mode Decomposition - Independent Component Analysis (EEMD-ICA) was assessed.

Kalman filters demonstrated the best improvements in temporal correlation (83.13%)

and SNR (9.7dB), followed by EEMD-ICA (76.5%, 8.9dB) and finally adaptive filters

(37.6%, 5.1dB). Improvement in this area since the creation of this dataset has been

easier to measure and assess.

The use of classical algorithms has since been used to improve the performance

of motion artifact removal. One such approach used Singular Spectrum Analysis

(SSA) [18]. In this approach, SSA was suggested for a number of reasons including:

low computational complexity compared to other methods; its adaptability to single-

channel data and its effectiveness in isolating low-frequency signal artifacts. This

approach was chosen because motion contamination often appears as low-frequency

artifacts and the available dataset, ”Motion Artifact Contaminated fNIRS and EEG

Data”, is only single-channel data. This aimed to improve upon Ensemble Empirical

Mode Decomposition - Canonical Correlation Analysis (EEMD-CCA), originally

suggested in 2006 [19] - predating the creation of the dataset.

One detail of the paper is the exclusion of participant data. Participants 12 and

15 were removed from the dataset due to poor correlation even over the clean epochs.

Following visual inspection, the research claims that no brain activity is present in
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the signals recorded for these participants. After this, the results were compared to

EEMD-CCA. The research found SSA to have a 0.91507 dB improvement of SNR

(∆SNR ) over EEMD-CCA as well as an 11.388% improvement in temporal correlation.

In addition, this comes with significantly higher performance. The paper claims a

reduction of computational complexity of around 5 times.

Multi-resolution Total Variation (MTV) and Multi-resolution Weighted Total

Variation (MWTV) denoising are methods which have also been used to remove

motion contamination from EEG signals [20]. These methods use a Discrete Wavelet

Transform (DWT) for the extraction of sub-band signals from the motion contaminated

signal. Either Total Variation (TV) or Weighted Total Variation (WTV) are then

applied over the DWT approximation. The difference between the approximated sub-

band signal and output of the TV or WTV filter is used to create a filtered approximate

signal. This approach did not leave out any of the recordings from the dataset and

claimed around a 29.12 dB improvement in ∆SNR, from the original dataset, as well

as a temporal correlation of around 68.56% using MTV denoising. Using MWTV

denoising, a ∆SNR improvement of 29.29 dB was found with a temporal correlation

of 67.37%.

MTV and MWTV offered significant improvement of ∆SNR over the Kalman

filter which was the best result from [17], an improvement of around 19.6 dB. However,

it fails to reach the temporal correlation achieved by the Kalman filter. Here it is

arguable that the SNR is a more significant measure of accuracy as it represents

the true transformation from the motion contaminated domain to the ground truth

domain. Although SNR can be useful for assessing signal quality, if it improves beyond

that of the ground truth signal, it is likely that solely optimising this metric would

lead to removing important information from the signal.

This research is separated by over half a decade showing that traditional methods

are slow to advance and limited progress has been made. While traditional methods

can improve the impact of motion artifacts in EEG signals, the drawbacks become

obvious when looking at existing research.

Traditional algorithms are limited by relying on a predefined hypothesis making

them more likely to overlook unexpected predictor values [21]. It is difficult for anyone

to look at a large dataset and create a mathematical model to fit a problem that can

take all the appropriate factors into account. For these reasons, machine learning

seems a much better fit for such a complex task. Recent research has looked to machine

learning for more accurate algorithms which can fit the provided dataset.
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4.3 Machine Learning Approaches

More recently, machine learning has been used to improve the performance of motion

artifact removal from EEG signals. In 2023, [22], used a UNet inspired network, along

with the ”Motion Artifact Contaminated fNIRS and EEG Data” dataset, to tackle

this problem. Following this, they also experimented with a modified Feature Pyramid

Network (FPN) [6] and claimed significant improvement over existing traditional

techniques. These approaches both work by augmenting the dataset and segmenting

it into 4 second windows, using differing methods.

[22], as opposed to [6], makes use of some preprocessing applied to both the ground

truth and motion contaminated signals. This has the benefit of simplifying the task for

the neural network as it can remove artifacts, in tried and tested ways, which are not

being targeted by the network. Consequently, this allows the network to become more

focused a specialised at a particular task. However, between 2015 and 2020, 21.28% of

hybrid Deep Learning post-processing of EEG data did not apply a preprocessing step

[23]. This suggests that there is scope to further improve existing methods through

the introduction of preprocessing.

Both [22] and [6] make use of encoder-decoder architectures. An example of this is

a UNet. The work of [22] used an adapted UNet for EEG motion artifact removal. A

UNet is a convolutional neural network that was originally designed for biomedical

image segmentation [24]. Biomedical datasets are often limited in size due to patient

confidentiality and the issue of getting consent from patients. For this reason, the UNet

was designed to work on limited datasets by focusing on capturing spatial information

affectively.

Architecturally, a UNet is a ”U”-shaped architecture consisting of 4 main

components: encoder layers; decoder layers; a bottleneck and skip connections. The

encoder layers make up the downsampling path and the decoder layers, the upsampling

path. Originally, the UNet was exclusively made of convolutional layers, the Rectified

Linear Unit (ReLU) activation function, max-pooling and transposed convolutional

layers. This has been changed and experimented with for different applications since.

However, the basic skeleton of the network remains the same. Figure 3 shows the

basic template of a UNet.

Downsampling is performed through a number of encoder layers. Each layer takes

an input and passes it through a convolutional layer with a 3× 3 kernel. In this first

convolution, the number of channels is increased, typically to a value which is a power

of 2. The output of this convolution is passed through a ReLU activation function
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Figure 3: An example of a 2D UNet

before being passed through a second 3× 3 convolution. The second convolution will

maintain the current number of channels. Then a final ReLU activation function is

applied. Following this final output of the encoder layer. This output then has a 2× 2

max pooling operation applied which downsamples the output to half the resolution

for the next encoder layer. As a result, each encoder layer has more channels but a

lower resolution than the previous, allowing deeper encoders to assess features more

holistically.

Following downsampling, the features from the deepest encoder are passed to the

bottleneck. The bottleneck connects the downsampling path to the upsampling path

via a number of additional convolutional layers to capture the more abstract features

in the data. A bottleneck layer looks quite similar to an encoder layer without the

need to apply a max-pool operation after computation. The bottleneck primes the

data for passing to the decoder.

Upsampling takes place following bottleneck processing. This typically doubles the

resolution of the data. Each decoder has a corresponding encoder. The input to the

encoder, following upsampling, is concatenated with the output of the corresponding

encoder before being processed by the decoder. This helps to maintain features across

the network which may have been lost from downsampling. To align the resolution of

the decoder input and encoder output, the encoder output was cropped to match the

same dimensions as the decoder input. As such, the input channels for each decoder is

double the output of the corresponding encoder, while the number of output channels

remains the same.

Other approaches add padding to convolutions to maintain resolution throughout

each encoder and decoder. Cropping is not required when this approach is taken.

Each convolution can be padded to preserve the resolution of the data. The padding
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applied can be defined as α−1
2 where α is the kernel size.

Finally, a convolution is applied to the output of the highest-level decoder. This is

typically a 1× 1 kernel which applies final tweaks to the network output.

[22] likely chose to use a UNet for its ability to work on datasets of limited size,

since research was conducted on the aforementioned ”Motion Artifact Contaminated

fNIRS and EEG Data” dataset. The work takes a standard UNet and adjusts the

encoder and decoder layers. Instead, they are replaced with Multi-resolution Pooling

(MRP) layers. MRP layers are designed to identify and emphasize key points of

information. This is used on each encoder and decoder layer meaning that, at each

step, the network works with multiple different resolutions to produce an output. This

can be effective but it also requires a large number of parameters which can make the

process slow and not fit for real-time application.

The innovation of this research was the combination of a number of factors. Firstly,

the paper takes a standard FPN but adds a UNet inspired bottleneck. The purpose of

the bottleneck is to give a more holistic view of the data. The bottleneck is to create

a link between the encoder and decoder path at the lowest point. This is when the

data is at the lowest resolution throughout the network, giving it a more holistic view

of the data allowing it to capture high-level features. Analysis of high-level features

can enhance generalisation and lead to more stable and consistent outputs.

Secondly, the paper takes a standard FPN but swaps out standard Convolutional

Neural Network (CNN) layers for Self-Organised Operational Neural Network (Self-

ONN) layers. Self-ONN layers are an extension of Operational Neural Network (ONN)

layers which are an extension of CNN layers.

Traditional CNN layers apply fixed kernels to data which are learned through

training. ONN were introduced to overcome some of the limitations of CNNs. Although

CNNs are effective at tasks such as image recognition, they are less effective with

diverse datasets and can fail to generalise well [25]. ONNs tackle some of the issues

with CNNs by incorporating mathematical functions in place of fixed kernels [26].

These functions add a non-linearity to the way data is handled in the network.

However, ONNs still rely on predefined functional sets which limits their

adaptability. Self-ONNs add to this by self-organising its use of non-linear functions

[27]. This means that optimal functions do not have to be defined in advance but can

instead be found during training. Research has found Self-ONNs to provide superior

performance over ONNs and CNNs.

Finally, the research adds an attention to each skip connection in the network.
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This attention should provide the decoder with information regarding the significance

of each section of the signal, improving overall performance.

Another thing of note is the use of CycleGANs on the dataset from [17]. Due

to the limited size of the dataset, it is questionable whether the dataset is sufficient.

Before augmentation, there are only around 135 samples, of 4 seconds, per participant.

This does not change dramatically following the suggested augmentation process.

CycleGANs typically require a large amount of data in order to accurately discriminate

between domains and reproduce the patterns. The limited nature of this dataset likely

inhibits the CycleGAN from achieving a high level of accuracy.

In addition, a CycleGAN has been used on a matched dataset. The main strength

and appeal of a CycleGAN is its ability to work well on unmatched data. Using

a CycleGAN in this case complicates the process when working on a dataset that

would have been trainable using standard training methods. It is possible that using

a CycleGAN was seen as a method to further augment data through the use of 2

generators producing simulated outputs. This is because cycle-consistency loss requires

the outputs of each generator to be passed through the other and used to calculate

gradients. In theory, this should create additional dataset augmentations.

However, the reasoning behind using a CycleGAN is not explained from that point

of view and seems an unnecessary over complication. Nevertheless, it does provide an

opportunity to use multiple EEG datasets to potentially improve the result of training.

Other research into artifact removal in EEG has also turned to the use of

machine learning. [28] used machine learning to remove Electrocardiogram (ECG)

contamination from EEG signals. A Random Vector Functional Link Network (RVFLN)

was suggested for this task due to the non-linear and non-stationary artifacts caused by

ECG. The RVFLN is a relatively simple network based on standard Single Hidden-layer

Feed-forward Network (SLFN). However, it overcomes issues with SLFNs, such as the

sensitivity of the learning rate and slow convergence, by randomly assigning hidden

node parameters based on certain probability distributions. The network also features

some connections between the input and output layers. These connections aim to

regularize enhancement features by providing reference to the original input in the

output nodes.

This network was trained on a semi-simulated dataset [29]. The outcome of this

research produced an output with an SNR of 68.1117 dB which is an improvement of

14.6117 dB over the best performing alternative, Complete Ensemble Empirical Mode

Decomposition with Adaptive Noise (CEEMDAN+AF). Of the 6 methods compared
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Method SNR (dB)
EMD + AF [30] 51.4

CEEMDAN + AF [30] 53.5
ANFIS + PSO [31] 21.9

[28] method 68.1

Table 1: SNR values quoted in [28]

Method IQ
Infomax 0.341
ICA 0.350

RLS notch filter [32] 0.331
[28] method 0.330

Table 2: IQ values quoted in [28]
(lower is better)

to in this study, only 3 of them have an SNR quoted (see table 1) and the other 3 are

compared to using Information Quality (IQ) (see table 2). This makes comparison of

the provided methods complicated and the results unclear. However, it provides the

highest of the SNR scores and the lowest IQ score, meaning it is the most effective

method based on both metrics, as a lower IQ score indicates less randomness. This

demonstrates the usefulness of machine learning when applied to EEG signals for the

purpose of artifact removal.

While encoder-decoder architectures are commonly used for handling EEG signals,

Long Short Term Memory (LSTM) networks also make a regular appearance in the

world of signal processing [33]–[35]. LSTMs are a form of Recursive Neural Network

(RNN) which are designed to handle sequential data. This is particularly relevant

when working with time-series data, such as EEG signals. LSTMs use memory cells

to manage the flow of information over time. This allows it account for temporal

dependencies. However, as the dataset commonly used for EEG motion artifact

removal contains artificial motion contamination, the typical indicators which may be

picked up by such a network are unlikely to be present in the dataset.

LSTMs inherently require greater memory usage than their encoder-decoder

counterparts as well. This is due to the memory cells required to retain information

between cycles. As a result, processing overheads can be massively increased and

running an instance of the network for each electrode would become a challenging

and expensive task. As EEG headsets range in the number of electrodes used, with

numbers ranging into the hundreds, this makes LSTMs a less practical choice when

looking at scalability and cost-effectiveness.

LSTMs have the benefit of previous context when analysing a signal. This is

because of the memory cells which preserve relevant information. On the other hand,
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data passed to UNets and other encoder-decoder architectures, lack the context of

previous values. Outputs from a UNet, therefore, are less likely to align with previous

outputs meaning that all data processed by a UNet for this task must be used in a

windowed manner. This might not be ideal when trying to assess engagement over an

extended or specific period of time.

In contrast to UNets, LSTMs have a linear architecture. Downsampling in the UNet

allows lower frequency variations to be assessed more closely. Motion contamination is

mainly of lower frequency which gives a UNet a theoretical advantage in this area. The

use of downsampling and assessing the signal at a series of different resolutions, and

in a less computationally expensive way, gives the UNet and other encoder-decoder

architectures the edge over LSTMs for this particular use case.

The task of removing motion artifact contamination from EEG signals can also be

viewed as a domain transformation task. A lot of research has been conducted into

transforming images from one domain to another [36]–[38]. For example, converting

images of cats into images of dogs. Such domain transformations focus on maintaining

background information and only making the necessary changes to the target of the

transformation. In the case of transforming images of cats into images of dogs, this

means the colour of the fur will likely be maintained across the transformation. For

EEG motion artifact removal, this is an essential characteristic as relevant features

within the noise need to be maintained whilst exclusively removing the noise.

[39] recently found excellent results with the UVCGAN - a CycleGAN using

a encoder-decoder architecture for the generator and a patch discriminator. The

UVCGAN takes a standard UNet and adds a Vision Transformer (ViT) [40] to the

bottleneck. In the bottleneck, the 2D image is flattened and positional encoding is

applied before being fed through the transformer encoder. The output of the encoder

is then reshaped back into the original 2D shape. In the research, it is hypothesised

that the skip connections in the UNet pass high-frequency information whereas the

transformer encoder acts as a method of learning pair-wise low-frequency relationships.

Also introduced by the paper are a gradient penalty for the discriminators to prevent

the discriminators learning too quickly and a pre-training method to initialise the

weights based on an inpainting task to achieve better performance. When compared to

a regular CycleGAN, the UVCGAN outperformed the CycleGAN on Fréchet Inception

Distance (FID) and Kernel Inception Distance (KID) scores significantly. The drawback

of the UVCGAN is that it takes 1.5 times as long to train as a regular CycleGAN (60

hours instead of 40 hours) and is computationally more complex with almost 3 times
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as many parameters. That being said, it is an important and relevant example of how

domain transformation has improved and could be applied to one-dimensional tasks.

As with the UVCGAN, [41] found success by using a transformer-based architecture

as the bottleneck of a UNet, further proving the efficacy of the concept. State-of-the-art

results were achieved for medical image segmentation, with average improvements in

accuracy on the BTCV multi-organ CT dataset of up to 13.71% (with an average dice

score of 88.39%) over a standard UNet. This is credited to the transformer encoder

facilitating the use of global contextual information which could not be achieved with

standard convolutional layers which focus solely on a local area.

Transformers, introduced by [42] are a type of neural network architecture

specialising in analysing sequential data. The core innovation of the architecture

is self-attention, a mechanism used to identify the significance of different parts of the

input. Self-attention allows Transformer-based architectures to analyse long range-

dependencies and inherently consider the order of trends. This has the potential to offer

significant benefits over existing methods for the processing of motion contaminated

EEG signals as it should allow the network to identify motion contamination more

effectively than those that only use convolutional layers. Convolutional layers are

not able to account for order and long-range dependencies but instead focus on a set

window. While this is useful in many use cases, it is physically impossible for motion

contamination in an EEG signal to precede the indications of impending motion

contamination. Therefore, a transformer should be able to learn that certain trends

indicate motion contamination and only apply any correction to the proceeding data.

Due to the small size of the available dataset [17], it is clear that a larger amount of

data would be beneficial. Creating a large matched dataset would be time consuming.

However, many datasets are available for EEG, some containing motion artifacts.

For this reason, the ability to use unpaired data would prove useful for removing

the motion artifacts. As a result, techniques that work on unpaired data need to

be considered. Some of these methods have already been discussed and used by

aforementioned research, for example [6], but fail to take full advantage of the benefits

of the technique.

Introduced in 2014, Generative Adversarial Networks (GANs) are a technique

devised to train neurzal networks on unpaired data [43]. GANs are based on game

theory and have found great success in generating realistic data [44]. This is particularly

useful for tasks in which a paired dataset is not possible. GANs have also shown to be

useful for generating data to enhance other training datasets [45]. GANs can overcome
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issues with small datasets by synthesizing realistic data based on the datasets. As such,

techniques such as data augmentation may not be required. However, the usefulness

of GANs is limited to continuous data and falls short when handling discrete data

such as the generation of words [46].

The objective of any GAN is to achieve the Nash Equilibrium. Nash Equilibrium

is a game theory concept which defines a state in a game in which no player can

improve their strategy without the other player first changing theirs. This creates

a situation in which each player’s strategy is optimal and there is no incentive to

deviate from the current strategy for any player. In the case of GANs, this applies to

the generator and discriminator playing a game in which the generator is trying to

fool the discriminator and the discriminator is trying to outsmart the generator. This

state is achieved when the discriminator is consistently uncertain if it is processing

real of generated data. In other words, it consistently gives a 50% chance that the

input is real. This concept allows GANs to work and become stable. Achieving this

equilibrium can be challenging and requires the fine tuning of hyper-parameters.

An area in which GANs excel is image generation and image domain translation.

With the use of a GAN, images of horses can be translated to pictures of zebras or

pictures of men can be translated into images of women and visa versa. In these

scenarios it is not possible to create a matched dataset. As a result, GANs provide

opportunities to train networks to complete tasks which would otherwise not be

possible.

In addition, using a training method which allows for unmatched datasets has

the potential to be beneficial for motion artifact removal from EEG as it means that

collecting a matching dataset is not necessarily required. Furthermore, while a dataset

is available, it is limited by the use of multiple electrodes which are highly correlated

but not an exact match. The size of the dataset is also limited. As a result, it is useful

for validation but the potential to use multiple datasets for training could result in

much more capable models.

A GAN works through the use of multiple networks. The first, referred to as the

generator, is responsible for the translation task. Generators are the output of GANs

and the part which is being trained to complete the desired task. A discriminator is

the second network in a GAN. Discriminators are responsible for telling the difference

between a generated output and an original one.

Generators in GANs are typically variations of convolutional networks. This can

span from a network which do standard up-sampling to networks such as UNets and
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Figure 4: GAN Training Example

FPNs and other more complicated networks.

Discriminators vary according to the task. However, the input to the discriminator

should be of the same resolution as the output of the generator. It is important that

the discriminator is balanced with the generator to ensure the stability of the training.

If the discriminator is too weak or too strong, the training of the generator will suffer.

If the discriminator is too weak, the generator will fail to learn complex features and

will suffer from general poor quality generation. If the discriminator is too strong, the

network is likely to suffer from issues such as vanishing gradients and mode collapse.

Training a GAN requires 3 steps. As an example, imagine a scenario in which an

image of a cat needs to be translated into an image of a dog. Both the discriminator

and the generator have to be trained. In order to train the networks, labels have to

be assigned to the genuine and generated data.

Commonly, 1 is used for genuine data and 0 is used for genuine data. However, this

is a recommended starting point and should be changed depending on the activation

functions used in the network. For example, if a Sigmoid or Softmax activation

function is used, 0 and 1 should provide reasonable results. On the other hand, if an

activation function which does not give an output between 1 and 0 is used, such as

Tanh, adjusting these values may be required to get the best results. The way loss is

calculated in a GAN is visualised in figure 4.

Ldiscriminator =
1

m

m∑
i=1

[log (D (yi)) + log (1−D (G (xi)))] (1)

To calculate the discriminator loss, an image of a dog would be passed through

the discriminator. The output of the discriminator would then be compared to the

genuine label, in this case 1. Secondly, the images of cats would be passed through the

generator. The output of the generator will be passed through the discriminator and

the value will be compared to the value for generated images, in this case 0. These
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losses are both applied to the discriminator so it learns the difference between genuine

and generated images. An example of discriminator loss can be found in equation 1.

The loss for the discriminator can change or be adjusted depending on the task.

Independent of the loss function used, the premise remains the same. It has to be able

to differentiate between genuine and generated inputs.

Ladversarial =
1

m

m∑
i=1

log (1−D (G (xi))) (2)

Once the discriminator has been trained, the generator can use the discriminator

to improve itself. In a GAN, the generator is trained to trick the discriminator into

classifying its outputs as genuine rather than generated. For this example, an image

of a cat would be passed into the generator. The output of the generator would then

be passed through the discriminator. Discriminator output will then be compared

to the value assigned for genuine dog images. The loss is then applied only to the

generator meaning that the gradients calculated for the discriminator are solely used

to update the generator. The original method for calculating generator loss can be

found in equation 2 where 1 is the value assigned for genuine images.

Ladversarial =
1

m

m∑
i=1

log (D (G (xi))) (3)

Research has shown that minimising this function for the generator can lead to

early vanishing gradients. As a result, maximising the output of the discriminator,

using the loss function in equation 3, was suggested as it solves the issue of early

vanishing gradients and provides stronger gradients earlier in training [43].

Whilst GANs are difficult to balance, this modified loss function generally leads to

more stable training. Other methods such as Wasserstein GANs (WGANs), spectral

normalisation of the discriminator and gradient penalties for the discriminator, have

all been suggested as ways of increasing the stability of training Generative Adversarial

Networks. WGANs implement a different type of loss for the GAN, replacing it with

Wasserstein distance which makes the training process smoother by giving a different

measure of distance between distributions.

GANs offer an elegant solution to the problem of working with unmatched data.

Basic GANs suffer from many drawbacks, which need to be overcome to work

reliably. Firstly, GANs suffer from training instability. Balancing the generator

and discriminator can be a challenge because an imbalance can lead to many issues

such as mode collapse, vanishing gradients and training divergence.
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Figure 5: Cycle consistency loss example

Mode collapse occurs when the generator of a GAN learns to ignore inputs. It has

been shown that GANs can be trained to a stage where the generator outputs will have

low diversity regardless of the input. In this instance, the generator network learning

to create one single output that effectively tricks the discriminator into believing the

output is genuine. Mode collapse can be prevented by methods such as minibatch

discrimination and, if the output should be representative of the input, CycleGANs.

GANs are also not trained to imitate their input. They can be trained to receive

noise to produce an image of a particular item. This does not work in the application

of removing motion artifacts from an EEG signal as it requires the features of the

signal to be maintained and represented in the output. A solution to this problem

is the CycleGAN which uses 2 GANs and additional loss functions to ensure that

information is maintained in the output of the generator.

CycleGANs innovate on the original GAN in a number of key areas. Like regular

GANs, CycleGANs allow for the training of a network on unmatched data. However,

CycleGANs differ from standard GANs in complexity.

The fundamental concept behind a CycleGAN remains the same as with a standard

GAN: generators are trained to complete a generation or translation task on unpaired

data through the use of discriminators. At their core, CycleGANs are 2 standard

GANs tied together by loss functions.

As for the previous example of translating images of cats into images of dogs, there

would also be a secondary GAN with the aim of translating images of dogs into cats.

In this instance, we end up with 2 generators and 2 discriminators both accomplishing

different tasks: one generator responsible for translating images cats into dogs; another

generator for translating images of dogs into cats; a discriminator for telling real dog

images from fake dog images and a discriminator for telling real cat images from fake

ones.
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To begin with, both GANs are trained in much the same way as before. They are

treated independently from each other as the discriminator and generator are trained.

The innovation of the CycleGAN, is cycle consistency loss. The theory behind cycle

consistency loss is, in order for features to be maintained in images, it should be

possible to translate an image of a dog which has been translated from an image of a

cat back into the original image. In other words, a genuine image should be able to

be passed through the corresponding generator, then through the opposite generator,

and the output should be the original image. This creates a link between the 2 GANs

which forces the generators to produce results which are largely similar to the original

input. This loss is applied to both generators for both configurations as shown in

figure 5. Cycle consistency loss can be formulated as below.

Lcycle(G,F ) =
1

m

m∑
i=1

[|Gy2x(Gx2y(xi))− xi|] +
1

m

m∑
i=1

[|Gx2y(Gy2x(yi))− yi| (4)

Cycle consistency loss is a useful tool to preserve data throughout a domain

transform. A multiplier is commonly used to control the influence of the cycle

consistency loss over the training process. Commonly, 10 is the multiplier used

multiply the cycle consistency loss in the original paper and is a recommended starting

point for any other work.

As training progresses, cycle consistency normally improves to a point at which

it becomes less influential than adversarial loss. However, it remains a useful tool

throughout training to ensure consistency following domain transformation.

Identity loss is another loss introduced for use in CycleGANs. Whilst not a

requirement of CycleGANs, it can help to reduce noise and maintain features through

the generators. Identity loss aims to teach the generators to only translate the correct

input to another domain. Take the example of images of dogs and cats again. If a

picture of a cat is placed in the generator designed to translate pictures of dogs into

cats, the expectation would be that no translation is applied to the image. In other

words, the output of the generator should be the input image. This is exactly what

identity loss aims to accomplish. By passing an image through the incorrect generator

and calculating the difference between the input data and output data as the loss. An

example of identity loss can be found below.

Lidentity =
1

m

m∑
i=1

[xi −Gx2y(xi)] +
1

m

m∑
i=1

[yi −Gy2x(yi)] (5)
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Identity loss is then combined with adversarial loss and cycle consistency loss to

create the complete loss function for the generators. The influence of identity loss is

controlled with a multiplier. The most common multiplier of identity loss is 5. As a

rule, the identity loss should be half the value of cycle consistency loss [47].

CycleGANs are not without their limitations and suffer from many of the same

issues as regular GANs. Finding balance in a standard GAN can be a challenge. When

handling 2 at the same time, it further complicates balancing the hyper-parameters.

While there are methods of overcoming this, such as a grid search, it still takes much

longer than traditional methods.

Due to their inherent complexity, CycleGANs are also computationally expensive

to train. Having to train 4 networks rather than 1 naturally increases training time

and computational requirements. This can lead to more expensive equipment being

required and slows down iteration and testing.

On the other hand, the ability CycleGANs to work on unpaired data in an

unsupervised capacity leads them to be a very useful tool despite the drawbacks.

Especially, when tackling challenges where a matched dataset may be difficult to

create.

A common issue with CycleGANs is discriminator over-fitting. This is when the

discriminator quickly becomes too accurate and too specified to the training data.

This overconfidence can lead to the generator not being able to keep up. As a result,

the generator loss functions fail to adapt the generator in the right way and results

can stagnate early or even get worse.

Designing a discriminator to match the strength of the generator is a potential

solution to this problem. If discriminators are quickly over-fitting, simplifying the

discriminator design is a possible solution to the problem. This can also lead to other

problems, however, as a weak discriminator will lead to poor quality training of the

generators. There are many tested discriminators for various tasks [48], [49] which

act as useful starting points for new research. Using variations of these and adapting

them to suit the needs of a task can be a good starting point. Then other methods

can be used to adjust the strength of the generator.

The choice of optimiser can also control the strength of the discriminator. Adam is

a commonly used optimiser for both generator and discriminator training (for example

in [50]). However, this can lead to the discriminator becoming too strong too quickly.

One method of overcoming this is to use different optimisers designed to prevent

over-fitting [51]. An example of this is using a Stochastic Gradient Descent (SGD)
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optimiser which typically optimises networks more slowly than the Adam optimiser,

allowing the training of the generator to keep up. Other methods include adding a

gradient penalty to the discriminator loss function which prevents the discriminator

from learning too quickly [52].

Adjusting the label values for real and fake data is another method of accounting

for discriminator over-fitting. Commonly, 1 is the label assigned to real data and 0

is assigned to fake data. This is useful for discriminators using a activation function

on their final layer which normalises the output between the values of 0 and 1 (e.g.

sigmoid or softmax). Nevertheless, selecting these values from the extreme ends

of the activation function output values can quickly lead to the over-fitting of the

discriminator. Moving these values slightly towards each other (e.g. for a sigmoid

activation function: setting the fake label to 0.1 and the real label to 0.9) can prevent

overconfidence in the discriminator. It is also important to ensure these values are

correctly adapted to the activation function in use. For example, for a Tanh activation

function, the values of -0.9 and 0.9 for fake and real data respectively would be more

appropriate.

Pooling is another method used in CycleGANs [53]. The pooling of data is used to

slow the learning of the discriminator so that it is not always being updated based

on the most recent generator outputs. A pool typically consists of 50 outputs from a

generator and each generator has its own pool. Each iteration, generator output is

sent to the pool with a 50% chance of replacing an existing item in the pool. When

training the discriminator, it pulls a sample from the corresponding pool rather than

getting an output from the generator in its current state. This slows the learning of

the discriminator to prevent over-fitting and improve generator training.

Changing the learning rate of the optimisers for the generators and discriminators

is something which has been experimented with more recently [54]. This is another

method which can help to balance an over-performing discriminator. Adjusting the

learning rate of the generator to be slower can help it from adapting to the discriminator

too quickly before the discriminator has been able to identify the differences between

real and fake data. Likewise, reducing the learning rate of the discriminator can

prevent it from over-fitting or becoming too confident too quickly.

Overall, it is evident that there is a large quantity of research on EEG signal

processing. Recent advances in the removal of motion contamination from EEG

signals have come from the use of machine learning techniques to accurately identify

and remove motion contamination. However, there are gaps in existing research,
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especially with preprocessing methods before network processing. In addition, new

techniques which have found success in other areas have the potential to further

increase performance.

4.4 Research Gaps

Following review of the existing literature, several key areas of focus can be identified.

From the available research, there is limited attention on removing motion artifacts

using machine learning while looking exclusively at the EEG signals. Existing research

mainly focuses on either using the provided accelerometer data or complex training

techniques. Using the provided accelerometer data by [17], as in [22], leads to the

requirement of accelerometers on every electrode used. This leads to greater expense

for healthcare providers and more discomfort for wearers from the added pressure

on the electrodes. Ideally, the method should be able to work on a single electrode

without matching accelerometer data to avoid this issue.

Focus from other research has also placed emphasis on complex training techniques

for unmatched data, such as the CycleGAN [6] while working on a matched dataset.

This can be viewed in 2 ways. Firstly, results would likely be improved by not using a

CycleGAN to train on a matched dataset. Secondly, the use of a CycleGAN opens the

door to using a larger amount of data and to use the original dataset exclusively for

evaluation. Both of these options should be explored for an improvement in results.

Finally, the inclusion of a transformer encoder at the bottleneck of an encoder-

decoder architecture has the potential to provide better results by looking at low-

frequency relationships between data. The idea is to utilise the inherent ability of

transformer encoders to learn relationships between segments of data with respect

to order. The transformer encoder can be passed low-resolution data to identify

and process larger trends in the data. These two benefits should improve on the

performance of convolutional layers which do not respect the order of the data or

long-term relationships between data segments. By using the approach of [39], [54],

it may be possible to achieve greater accuracy and success through the use of a

transformer encoder and its ability to recognise relationships between patterns.
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5 Research Questions & Aims

5.1 Research Questions

Firstly, can the number of parameters in current solutions be reduced but still achieve

similar performance? Some of the reviewed methods, [22] in particular, feature complex

architectures with great computational expense. This will be assessed by analysing

the temporal correlation between the network output and ground truth signals.

Secondly, would the inclusion of a transformer encoder in the network architecture

enhance the removal of motion artifacts from EEG signals? As success has been

found using variations of the transformer encoder in other areas [39], [54], this has the

potential to be applied to EEG signals due to their ability to work with chronological

data.

In addition, how effective are the existing preprocessing techniques used on the

EEG data before being processed by the network and is there room for improvement?

Existing research has shown preprocessing techniques which are impractical for real-

time application or do not apply preprocessing on motion contaminated data. The use

of preprocessing techniques that are practical for real-time use-cases has the potential

to increase performance and lower computational cost.

Finally, would the inclusion of additional datasets and the use of unpaired training

techniques improve results? [6] used a CycleGAN for training but used a matched

dataset. This suggests that there is scope for improvement in results using additional

datasets to train the network.

5.2 Research Aims

This research aims to address the outlined research gaps. The aim is to produce a

network with fewer parameters than the existing methods. This will allow the network

to run on inexpensive hardware, reducing the cost of implementing the results in

places such as hospitals where many use cases could be found but budgets are limited.

In addition, the aim is to improve the network through the use of recent techniques.

Such techniques include the use of a transformer encoder at the bottleneck of the

encoder-decoder architecture to give the network an understanding of the relationship

between different patterns in the data. This also comes with the benefit of the

transformer encoder taking order into account which is important in time-series data.

Finally, the aim is to improve the dataset and dataset preprocessing such that

the network requires fewer parameters. This will be accomplished through the use
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of improved preprocessing techniques as well as the use of training techniques which

allow for the inclusion of additional data.

6 Method

To achieve the aims and answer the questions outlined, it was decided that the first

question to address should be that of the dataset preprocessing as it was essential

for all additional questions. This should then be followed by the trialling of different

techniques using standard back-propagation training on the matched dataset. This

training method is significantly faster than training methods used for unpaired data

and would allow for faster iteration on the network design. Finally, unpaired training

would be tested to facilitate the inclusion of additional datasets.

In order to create and train neural networks efficiently, it was important to select

a Machine Learning (ML) framework to proceed with. As TensorFlow and PyTorch

are the most commonly used frameworks in the ML sphere [55], both were considered.

Following some testing, PyTorch was selected over TensorFlow for its simplicity,

documentation and community. TensorFlow appears to be used more in a production

environment making it incredibly efficient but with a steeper learning curve. The

benefit of using PyTorch was its low barrier to entry and its large adoption within the

academic community.

In order to ensure repeatability, at the beginning of each test, PyTorch was given

a seed of 15. This was to ensure that random values generated throughout training

were consistent throughout trials and to ensure fair and repeatable results.

All training and testing was performed on a computer running Windows 11 with

an AMD Ryzen 9 5950X CPU, 32 Gigabytes (GB) of Double Data Rate 4 (DDR4)

Random Access Memory (RAM) and an NVIDIA GeForce RTX 3060 with 12 GB of

Video Random Access Memory (VRAM). CUDA was used to increase the speed of

training and testing.

6.1 Dataset Overview

As standard, the dataset procured by [17] was used to assess the accuracy of motion

artifact removal techniques. The dataset for EEG contains readings from the motion

contaminated and ground truth electrodes as well as X, Y and Z readings from the

accelerometer attached to each electrode and a signal which indicated when the trial

is in progress.
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However, the electrodes and accelerometers were sampled at different frequencies.

The accelerometers were sampled at 200 Hz while the electrodes were sampled at 2048

Hz. For the purposes of this research, the accelerometer data can be ignored. The

aim was to produce a network capable of removing motion artifact contamination

from EEG signals which can be applied in a cost-effective way. As accelerometers

attached to each electrode is not a standard feature of EEG headsets, the use of the

accelerometer data was not viable.

After reviewing the literature, it is clear that the best avenue forward in this area

of research is through the use of machine learning. Classical algorithms do not provide

suitable adaptability and require high levels of complexity. Machine learning provides

an advantage from its ability to dynamically fit the problem, requiring less human

input and higher accuracy. As a result a machine learning approach was taken to the

problem.

Firstly, the ”Motion Artifact Contaminated fNIRS and EEG Data” dataset was

downloaded from PhysioNet and assessed. The claim of [18] is that the recordings of

participants 12 and 15 are very poorly correlated and contain no actual brain data.

To assess this, the dataset was loaded into a Jupyter notebook detrended using the

SciPy library (scipy.signal.detrend [56]). The validity of all trials was then assessed

by finding the Pearson Correlation Coefficient (PCC) between the ground truth and

motion contaminated signals.

PCC is used as a performance metric for comparing one-dimensional temporal

data such as signals. Using PCC, the expected output of a network can be compared

with the actual output, where a value of 1 is an exact match and a value of -1 is the

exact opposite. This offers a way of assessing the accuracy of the network output by

direct comparison with the ground truth signal. The equation to find the PCC can be

found in equation 6.

r =

∑
(x−mx)(y −my)√∑

(x−mx)2
∑

(y −my)2
(6)

While the PCC is a useful metric for this application, it is not a perfect solution. For

example, it reports on the correlational error and not the absolute error. That means

that, if the values being compared to each other are well correlated but offset by a

constant amount, this will not be reflected by the PCC. This is not ideal as it means a

signal which is offset from the target signal could still be considered highly correlated.

However, this issue can be somewhat negated in this case through the choice of loss

function in the network as loss functions typically focus on absolute error. This means
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that, throughout training, the output should converge such that any offset created is

negligible. As a result, the PCC offers a reliable measure of accuracy in this use case.

The PCC was calculated using the SciPy library (scipy.stats.pearsonr [57]).

Following an analysis of the results, it was found that both trials 12 and 15 had

an above average temporal correlation. For this reason, the claims that they should

be excluded were ignored and they were kept in the dataset.

In order to accurately assess performance of any network produced against existing

research, the data augmentation methods of [22] and [6] were both reproduced for use.

These works are the biggest recent contributors to the machine learning approach to

the issue of motion artefactual EEG signals.

However, there are some notable inconsistencies which need to be addressed. In

both of these approaches, the dataset is augmented in different ways and then validated

with the leave-one-out approach. Although this offers some metric by which to assess

the performance of the network, it also creates an issue in which the results are not

directly comparable. Whilst training on different augmentations of the dataset has

the potential to provide better results, validation needs to be completed on similarly

processed data in order for it to be a meaningful comparison.

OverlappingPercentage =


0, if ηtemp > 0.5

10× (⌊(1− ηtemp)× 10⌋), if ηtemp < 0.5

(7)

The way in which the augmentation differs is in overlap. Both methods handle

windows of 4 seconds of data at a time. The difference is that both methods overlap

these windows at different intervals to increase the amount of data and make up for

the small sample size of the dataset. In [22] each window had a 50% overlap with

the previous, which means that twice as many samples were created. On the other

hand, [6] used an equation to determine overlap based on the correlation between the

ground truth and motion contaminated signals in the given window (see equation 7).

This creates a problem when comparing the results of the networks. The earlier

research, [22], claims a higher correlation between ground truth and network output

than that of [6]. When looking at the way the dataset has been processed, however, it

is clear that this should be the case. The leave-one-out approach to validation sees the

network trained once for each trial, known as a fold. In this case, trial 1 might be left

out while the network is trained on trials 2 - 23. The trained network would then be

validated against trial 1. Here, the validation metric is the PCC. This is then repeated
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Figure 6: Normalised ground truth and motion contaminated signals from trials 1 and
2

Figure 7: Normalised ground truth and motion contaminated signals from trials 12
and 15

for trials 2 - 23 and the average validation score is taken as the score for the network.

This is particularly useful for small datasets where all data might be required for

training. In this instance, though, it is of note that the motion contaminated signal is

not pure motion contamination.

For example, figures 6 and 7 clearly show that there are 4 different regions of

motion contamination in the motion contaminated signal but they are separated by

sections containing no motion artifacts. As [6] dynamically adjusts the window overlap

based on the PCC, this means that the dataset used in [22] contains a different ratio

of significant motion contamination for training and validation. The network could be

expected to perform much better on less contaminated data as the PCC between the

ground truth and motion contaminated signal at those points should be much closer

to 1.

From this, it can be seen that the network would perform well simply by not

adjusting the input. As a result, the claims of accuracy from either paper (a PCC of

0.905 for [22] and 0.872 for [6]) are not directly comparable.

To compensate for this, each dataset used had a second set used for validation.

This set has a fixed overlap, of 50%, and was only used for evaluation. This provided
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a means of assessing the dataset augmentation method to achieve the best results.

6.2 Dataset Augmentation

6.2.1 [22] Dataset Reproduction

The first data to be reproduced was that of [22]. As previously mentioned, this

research also used the accelerometer data from the motion contaminated electrode.

The requirement for accelerometers attached to each electrode is not one that is

supported by the research aim of keeping the system as low cost as possible. Therefore,

when reproducing the data augmentation from [22], only the electrode values were

used. In the original work, the EEG readings were downsampled from 2048 Hz to 256

Hz. This downsampling was done to reduce the sampling rate of the electrodes to a

similar rate as the accelerometers (200 Hz). As the accelerometer and EEG data were

used concurrently, they needed to have a similar number of data points. While this

was not the case for this work, only top-of-the-range EEG headsets are capable of

sampling at 2048 Hz. Many cheaper headsets sample at much closer to 256 Hz. As

a result, this downsampling is still beneficial to the aims of keeping implementation

costs low.

To downsample the data, the BrainFlow [58] library was used using

brainflow.data filter.DataFilter.perform downsampling. This was set to use the median

value of the results.

Then each of the 23 trials was trimmed because the dataset contains extra readings

at the start and end of each exercise. This relevant data is marked by the presence

of a trigger signal which was used to extract the desired EEG data. Data was read

from the provided Comma Separated Value (CSV) files using the built-in Python

CSV library. Sections of the signal considered not a part of the trials were noted by

a 0 in the fourth column of the CSV files. Using the Python CSV library, files are

read row by row. Therefore, as the file is read in, any row containing a 0 in the forth

column was excluded. The sections of all trials containing a 1 in the fourth column are

continuous. As a result, different sections of the trial were not unknowingly combined.

This method was used for the creation of each dataset augmentation.

Following this, the data was detrended using a polynomial fit. This is done to

remove baseline drift which can occur during signal recording for several reasons

largely related to the condition of the electrodes. For example, a change in electrode

temperature or the electrodes moving on a subject’s head can all cause baseline drift.

The polynomial fit was found using Python’s Numpy library. The fit was first found
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using numpy.polynomial.polynomial.Polynomial.fit [59]. Then, this fit was subtracted

from the signal to detrend the data.

Baseline drifts are largely unpredictable and do not align across electrodes meaning

that the ground truth and motion contaminated signals do not share the same baseline

drift. If the neural network had to also take these wanderings into account, it would

create confusion from random additional patterns. Hence, the researchers in [22] opted

to remove this by fitting a polynomial of order 20 along each trial and removing it

from the data. This was applied to both the ground truth and motion contaminated

signals.

Following this detrending, the signals were split into windows of 4 seconds (1024

samples following downsampling) with a 50% overlap. Once separated, the new

segments also underwent a polynomial detrending process. A polynomial of order 20

was fitted to all ground truth signals and removed. For motion contaminated signals,

the process was less straightforward. Segments containing motion contamination were

detrended with a polynomial of order 3. On the other hand, segments that did not

contain motion contamination were once again detrended with a polynomial of order

20.

However, this decision cannot be applied in practice as there would be no way of

differentiating between these signals. Arguably, the same treatment should be applied

to the motion contaminated signal regardless. However, for the sake of matching the

previous method, this was applied. The definition of motion contaminated segments

was left ambiguous by the paper. As a result, sections with a PCC below 0.5 were

considered motion contaminated. The decision to use 0.5 as the cut-off was not

arbitrary. It was used as this was the value selected by [6] to increase window

overlapping. For a consistent comparison, the same value was used here.

Finally, environmental noise, caused by power lines, was then removed from the

signals using a IIR-based notch filter. EEG is very sensitive to background noise

from sources such as power lines and it is necessary to remove them for proper data

preparation. In this case, 50 Hz noise was removed. This was achieved using Python’s

SciPy library (scipy.signal.irrnotch [60]).

Then each segment was normalized using z-score normalisation followed by range

normalization between 0 and 1. This is in accordance with the original method.

However, the z-score normalisation does appear to be redundant as it is a linear

transformation. This completed the recreation of the dataset augmentations used in

[22].
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6.2.2 [6] Dataset Reproduction

To reproduce the dataset augmentations from [6], a series of similar steps were taken.

First, the data was downsampled to 256 Hz from 2048 Hz once again using the

BrainFlow library and with the operation set to median. In the original research, the

decision was also taken to undertake this downsampling step. However, in this case

the accelerometer data was not used. It is likely that this was done to reduce model

parameters as a 4 times smaller input would dramatically decrease computational

complexity. Nevertheless, this is purely speculative as the reason for this downsampling

is not stated.

The downsampled signals were then reduced to 4 second samples (1024 data points).

In this case, only the ground truth signal was detrended. This was by fitting and

removing a polynomial of order 10 to the ground truth segments. To implement this,

the SciPy library’s polynomial fit function [59] was once again used to find the fit,

then subtracted from the signal.

The same IIR filter as before was then used to remove power line interference

at 50 Hz. This was implemented using the SciPy library’s iirnotch function [60].

The overlapping percentage with the next sample was then determined by the

aforementioned overlapping percentage equation.

6.2.3 Custom Dataset

Following the reproduction of both datasets, it was observed that less than 30% of the

data in each data set contained high levels of motion contamination. As previously

mentioned, any section with a PCC below 0.5 was considered to contain high levels

of motion contamination. To account for this, a custom variation of the dataset was

created.

To design the preprocessing for custom data augmentation, the previous methods

were first assessed. The method used by [22] includes fitting a polynomial to the full

set of data prior to windowing. This makes sense in an attempt to achieve the best

results but is impractical in real-time applications where a large amount of data may

not be available. As the intended application of this research is for real-time use, this

step had to be dropped from the workflow.

In addition, [6] states not detrending the motion contaminated data in order to

justify the use of the neural network. This claim seems largely redundant as the aim of

the neural network is ultimately to make the output as accurate as possible. Therefore,

detrending the motion contaminated data should give optimal results.
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Figure 8: Window overlap based on PCC for custom data augmentation

To create the custom dataset augmentations, each trial was first downsampled to

256 Hz. This was done using the BrainFlow library’s perform downsampling method,

with the operation set to use the median. This step was taken to match the other

methods [6], [22] but also to ensure that the network can be used on lower-end EEG

headsets which have a lower sampling rate.

OverlappingPercentage =
tan−1 (2 (1− ntemp)− 2) + 1

2.2
× 100 (8)

Following this, the signals were segmented into 4 second windows. This is in

alignment with the other studies. From this windowing process, the aim was to improve

the ratio of motion contamination over the other 2 data augmentation methods. For

this a new equation was created for the windowing process. The equation used can

be found in equation 8, where ntemp is the PCC below the motion contaminated and

ground truth signals, which was used to place greater emphasis on sections with a

lower PCC and less focus on sections with a higher PCC.

Visualisation of the resulting distribution can be seen in figure 8. From this

technique, it can be seen that lower PCCs are gradually prioritised over higher PCCs.

However, unlike the other distributions, it also accounts for results with reasonable

PCCs and also gives some overlap on features with higher correlations. In theory, this

should enable the network to learn motion contamination removal more clearly by also

focusing on smaller deviations in correlation.

Following this step, a polynomial was fit to both the ground truth and motion

contaminated windows and removed. This was implemented using Numpy library’s

polynomial fit function [59] to fit a polynomial along the signal and then subtracting

the polynomial from the signal.

For this step, a polynomial with an order of 10 was used for the ground truth

signals and an order of 4 was used for the motion contaminated signals. As the ground

truth signal contains only important data, it is important to make sure the signal
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(a) [22] Augmentation Example

(b) [6] Augmentation Example

(c) Custom Augmentation Example

Figure 9: Examples motion contamination from trial 23 for each data augmentation
technique

is as clean as possible. In addition, adjusting the motion contaminated signal too

much has the potential to remove important data from the signal and emphasise the

contaminated data. For this reason, a value of 10 was selected.

Following this, the same IIR notch filter was used on both channels. This is

important for the removal of power line noise which is present in all of the trials in

the dataset. The IIR filter was set to remove 50Hz noise from the signal as before and

was implemented using the SciPy library’s ”iirnotch” function [60].

Finally, each window was range normalised between the values of 0 and 1. This is

for the sake of processing the data to keep it in a form which can be passed through

the network.

Figure 9 shows a motion contaminated window from each augmentation method.

All of the examples are from trial 23 and show limited emphasis on the brain signal

and much more on the motion contamination. It shows that, whilst there is not much

difference between the preprocessing methods, the custom augmentations maintain

larger details from the ground truth signal. This is more evident in 10 as the results

are taken from the validation sets, meaning they are all from the same section of the
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(a) [22] Augmentation Validation Example

(b) [6] Augmentation Validation Example

(c) Custom Augmentation Validation Example

Figure 10: Examples motion contamination from trial 23 for each data augmentation
technique taken from the validation set for direct comparison
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signal.

Figure 10 clearly shows the greater adjustments made by the custom pre-processing

steps, while also displaying a clear need for additional processing to properly clean

the signal. This displays and justifies the requirement of a neural network for

additional processing, contrary to claims by [6] which suggested detrending the motion

contaminated signal would remove the necessity for ML.

6.3 Dataset Selection

In order to proceed, it was necessary to use only one dataset. To determine the

most useful data augmentation technique, they were all tested via training on a

standard 1D UNet. A UNet is an encoder-decoder architecture with skip connections

between like-sized encoders and decoders. UNets were originally used for medical image

segmentation [24] and are the inspiration for many techniques in signal processing [61],

[62] so it was chosen as a reasonable starting point to get informative results.

The designed UNet contains 5 layers and 677,105 parameters. Each encoder and

decoder is made up of a convolutional 1D layer with a kernel size of 3 and a padding

of 1 to maintain resolution. This is followed by a Tanh activation function. The

convolution layer and activation function are then repeated once more to form an

encoder or decoder.

For encoders, this is followed by a max-pooling layer to reduce the resolution of

the layer by half for the following encoder or bottleneck. Decoder layers are preceded

by transpose layers with a kernel size of 2 and a stride of 2 to double the resolution.

Before decoder layers are processed, the feature maps (output) from the corresponding

encoder are appended following the transposition of data. At the bottleneck, the same

combination of 1D convolutions and activation functions, as used in the encoders and

decoders, is used.

Finally, an additional convolutional layer with a kernel size of 1 is applied. This

layer applies any final adjustments to the output and is standard in UNets. An

additional activation function is then applied to the final output of the network.

For the first encoder, the number of channels is increased from 1 input channel to

16 input channels. As the resolution is halved down the encoder path, the number

of channels is doubled. The opposite is true for the decoder path as the number of

channels is halved as the resolution is doubled. The result is an output with the same

number of channels and the same resolution as the input. Figure 11 shows a detailed

diagram of the network.
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Figure 11: 1D Convolutional Network

This network differs from a typical UNet in 2 key areas. Firstly, a standard UNet

is used for 2D tasks such as image processing. As processing EEG signals only requires

1D data, the network was adjusted accordingly. Secondly, the ReLU activation function

[63] is typically used in UNets. ReLU is typically used for its computational efficiency

and its ability to reduce the chances of vanishing gradients. However, both [22] and [6]

use the Tanh activation function. This is likely for the purposes of keeping the data

normalised between 0 and 1. It is also related to some requirements of the networks

which will be discussed later. As a result, the Tanh activation function was used in

place of ReLU for this task.

Trials were run on all variations of the data set for the sake of comparison. Weights

in the network were initialised using Xavier normal distribution [64] with a gain of 1.

The batch size used for training was 16, as per [6], and each fold was trained for 10

epochs to obtain a representative result.

The Adam optimiser was used with a learning rate of 2× 10−4 and beta values of

0.9 and 0.999. Adam is a commonly used optimiser for a wide range of tasks. Though

Adam has been shown to have poor generalisation in some scenarios [65], it offers a

way to get reliable results quickly, so it was chosen as a reasonable starting point.

Lastly, Mean Squared Error (MSE) was used for the loss function. Mean Absolute

Error (MAE) (sometimes referred to as L1 loss) was also an option. However, MSE

adapts more quickly to more significant errors. This means that the biggest errors

in the signal output will be punished exponentially more. As the network removes

motion contamination, large errors are a big issue. In addition, small errors are of

less significance when the signal is evaluated. As a result, ensuring larger errors are

minimised was crucial. MAE on the other hand, does not scale the loss exponentially

for greater errors, theoretically making it a worse choice for this task.
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Following the trials and analysis of the results, it was concluded that the proposed

preprocessing and window overlapping methods should be used to proceed. This

decision was made because the proposed method is capable of being applied in real-

time which is essential for use with patients when quick feedback may be crucial. As a

result, the preprocessing method described by [22] would not be feasible. Secondly, the

results of the proposed preprocessing method significantly outperformed the method

proposed by [6]. This meant that the decision to use the proposed method was

straightforward.

6.4 Base Architecture Selection

Following the selection of a signal preprocessing method, it was clear that improvements

needed to be made to the architecture of the network to produce optimal results.

UNets are a commonly used type of auto-encoder made up of an encoder-decoder

architecture. FPNs are another example of an auto-encoder architecture [66]. First

created for object detection tasks, FPNs have since been adapted to a range of different

applications largely pertaining to object detection [67]–[69]. As it has been shown

to be an effective method in detection tasks, its applications have the potential to

expand to the detection and removal of motion contamination. For that reason, it was

used as a comparison to the UNet architecture previously described.

To construct an FPN, another network is first required. This network is known as

the backbone and can be thought of in a similar way to the encoder path in a UNet.

The job of the backbone is to extract features at various different resolutions. For this

reason, it is common for pre-trained models to be used as the backbone of FPNs, such

as a ResNet [70]. In this sense, FPNs can be considered somewhat parasitical. The

backbone, also referred to as the bottom-up pathway, creates the feature maps which

will later be analysed by the FPN.

Following the feed-forward computation of the backbone, the FPN is used for

feature extraction. The FPN makes up what is referred to as the top-down path

of the network and functions in a similar way to the decoder path of a UNet. The

top-down path should be constructed in such a way that each layer matches a layer in

the backbone network. As such, skip connections can be created between like-sized

layers in the bottom-up and top-down paths.

Unlike a UNet, FPNs do not feature a bottleneck. Rather the first layer of the

top-down path is taken from the output of the backbone with a kernel of size 1 applied.

Following this each layer is transposed to match the resolution of the next layer in the
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FPN. From this point on, each layer in the FPN takes an input which is constructed

of 2 parts. The first is the upsampled output of the previous layer in the top-down

path. The second, is the output of the like-sized layer in the bottom-up path. These 2

values are added together to form the input of the network. This process takes place

all the way until the top layer in the top-down path which outputs the same resolution

as the input to the backbone.

Each layer in the top-down path applies a kernel to the input data, normally of

size 3× 3 for 2D data, followed by an activation function. This applies an additional

processing step to the feature-extracted data, which enables deeper understanding

from the network.

In order to construct an FPN comparable to the UNet tested previously, the

encoder path was taken from the UNet and used as the backbone. This consists of 4

encoders, each half the resolution of the last but with double the channels. This was

done to ensure that the backbone was fair and comparable for each network.

To form the top-down path, 4 decoder layers were created of matching size to each

of the layers in the backbone. These decoders use the same kernels as those used in

the decoders for the UNet for processing. This means that in each decoder layer, there

are 2 kernels with a size of 3 and a padding of 1 applied. Each convolution is followed

by a Tanh activation function.

This FPN differs from the UNet in multiple areas. The first is the lack of any

processing at the bottleneck, which means that key details could potentially be missed.

Secondly, the skip connections have a 1× 1 convolution applied. This should improve

feature recognition over the UNet due to the additional adjustment and processing

step.

Due to the lack of a bottleneck and because each of the FPN decoder layers has

half as many channels, the resulting FPN would have significantly fewer parameters

than the UNet. In order to make the test fair, the number of channels was increased

at each stage of the encoder and decoder. The first layer had 24 channels which was

doubled for each layer further down in the network. The result of this is a network with

612,625 parameters which is much more closely comparable to the UNet’s 677,105.

Parameter-wise this makes the FPN 9.5% smaller than the UNet. However, this is

for 2 reasons. The first is the lack of any convolutions being applied in the bottleneck.

This is the section of the UNet with the greatest number of channels which means a

much higher number of parameters. Secondly, the layers in the top-down path of the

FPN have half the number of input channels each. This is due to skip connections being
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Figure 12: Convolutional FPN Used for comparison to the UNet

multiplied with the output of the previous encoder rather than being concatenated as

in the UNet. Testing revealed that the FPN underperformed the UNet on all but one

trial. Several potential solutions to this were considered. For example, by increasing

the number of parameters in the network through the replacement of addition with

concatenation in the top-down path. This would double the number of channels in the

decoder kernels and give the network more information to work with in the top-down

path. However, this would make the network larger than the UNet which is less than

ideal in the venture for computational efficiency.

Highlighted by this result is the importance of the bottleneck for the identification

of key features for processing by the decoder path. Therefore, it can be concluded

that special attention should be given to the bottleneck and that the concatenation of

encoder outputs to decoder inputs is preferable to summation. As a result, the UNet

was used as the base architecture going forward.

6.5 Transformer Encoder Bottleneck

As the bottleneck was identified as a key component of the network for the task of

removing motion contamination from an EEG signal, special attention was given to

this area of the network. [39] suggested the use of a ViT for use in image translation

tasks with the aim of identifying low-frequency features. The research shows significant

performance gains from the use of a ViT at the bottleneck of the network with the

additional use of positional encoding.

As this is not a 2D task, a ViT is not required. To utilise the potential displayed by

the ViT in the work of [39], the bottleneck of the UNet was replaced with a standard

transformer encoder as described in [42]. While [6] used attention mechanisms to

improve the performance of the network, transformer encoders offer a number of

benefits.
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Transformer encoders have the ability to understand the order of the signal. For

this use-case, the signal is split into tokens (small sections of chronological data)

which is used by the multi-head self-attention mechanism to understand the relevance

between the different tokens.

Tokens are created from an embedding matrix which is used to transform sections

of the data into tokens. For each token, a query, key and value vector are created. For

the query, the token is multiplied by a learned query matrix. The same is true for

the key which is also the product of multiplying the token by a learned key matrix to

produce a key vector for the token.

Masking is then applied to this matrix to ensure that each element in the sequence

is only affected by those preceding it. This is very important in the case of signal

processing as a signal cannot be retroactively impacted. To stop this, a mask is applied

to set any points in this matrix which correspond to a key which appears later in the

sequence than the query to negative infinity. Each of these values is then divided by

the square-root of the number of dimensions in one key vector.

A Softmax activation function is applied to normalise the output matrix and give

a probability distribution across the new matrix. This matrix is a measure of how

each key attends to each query. This query is then adjusted further by a value vector

which is computed for each embedding and adds context to the output.

Following this, the output is passed through a feed-forward network to refine the

token representations. These encoders are normally used in a series, known as layers,

repeating multiple times to further refine the output. The output is an encoded

representation of the relationships between the different sections of the data. This is

particularly useful when processing signals. For simplicity, the transformer encoder

was implemented using the built-in transformer encoder offered by PyTorch [71]. The

transformer encoder was set to have 8 attention heads and 4 layers.

Prior to the transformer encoder, learned positional encoding was added directly to

the signal. Positional encoding was implemented similarly in the work of [39]. Learned

positional encodings were concatenated with the existing data at the bottleneck and

passed through a feed-forward layer with a Gaussian Error Linear Unit (GELU)

activation function to embed the positional encodings and introduce non-linearity.

Another reason for the inclusion of GELU was also the use of Tanh activation

functions within the network since Tanh normalises the values in the network between

-1 and 1. An alternative to GELU would have been the ReLU activation function. The

issue with this function is that it sets any value below 0 to 0. This had the potential

50



Figure 13: 1D convolutional UNet with a transformer encoder bottleneck

to remove half of the input data from the network. Therefore, GELU was a natural

choice as it does not remove values below 0 from the data.

While it is common to use fixed values based on trigonometric functions for

positional encoding [42], learned parameters were opted for as they could better adapt

to the dataset and give better results overall. Due to the small resolution of the data

at the transformer (1× 64), it was concluded that this small increase in parameters

would lead to better overall results.

Following testing, it was found that the transformer encoder boosted the temporal

correlation between the ground truth and network output, as expected. As a result,

the transformer encoder was kept in the architecture. The architecture can be seen in

figure 13.

6.6 Self-ONN Layers

One of the innovations of [6] was the use of Self-ONN layers. Self-ONN layers build

upon the more traditional convolutional layers by swapping linear kernels for more

dynamic ones. Historically, a convolutional kernel would be made up of linear values.

For example, a kernel of size 3×1, as might be the case in a 1D network, would be made

up of 3 values, one for each cell in the kernel. While this produces successful results,

a common requirement of these layers is to use multiple in sequence to introduce

non-linearity to the computations.

Convolutional layers are inherently homogeneous as a result which yields limited

results. ONNs [72] and subsequently Self-ONNs [73] were introduced as a way of

introducing nonlinearity to the flow of data through a network. This is achieved
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by replacing the linear values of the convolutional kernels with a function. Initially,

with ONNs, these functions would have to be defined manually. However, the later

innovation of the Self-ONN allowed for functions to be dynamically created through

back-propagation. These functions are made up of mathematical operators such as

the trigonometric functions which enable create heterogeneous kernels.

Each Self-ONN layer has an associated Q-value. This defines the number of

functions used within each kernel element, hence, controlling the non-linearity.

Increasing the Q-value naturally increases the computational cost of the network,

which is why lower Q-values are preferred. A Self-ONN layer with a Q-value of 1 is

essentially a convolutional layer with no special variation applied. Therefore, in [6]

a Q-value of 3 was used to introduce non-linearity without increasing the network

parameters and computational cost too dramatically.

One of the added benefits of the Self-ONN layers is, due to their inherent

heterogeneous nature, the requirement for using multiple in series to produce non-

linear transformations and model the data more accurately is substantially reduced.

Reducing network complexity as a result.

In an attempt to further improve the network, the structure of each encoder and

decoder was changed as well as that of the final layer. For the encoder and decoder

layers the double convolution was replaced with a single Self-ONN layer with the same

kernel size and padding. The final convolution layer in the network was also directly

replaced with a Self-ONN layer. All Self-ONN layers were assigned a Q-value of 3 as

in [6].

A quirk of Self-ONN layers is the requirement to receive a value of between -1

and 1. This is due to some of the functions used within the network only working in

this range. However, due to the previous use of the Tanh activation function, this

was not an issue. The activation function was not changed following the swap from

convolutional layers to Self-ONN layers.

Self-ONN layers were added to the model using the FastONN library [74] available

for PyTorch. A network diagram can be seen in figure 14.

Following testing, it was found that the use of Self-ONN layers resulted in overall

worse performance than that of the convolutional network variant. However, in [6],

in order to protect against vanishing and exploding gradients, batch normalisation

was added between each Self-ONN layer and activation function in the encoders and

decoders.

Batch normalisation was added between the Self-ONN layer and the activation
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Figure 14: 1D Self-ONN UNet with a transformer encoder bottleneck

Figure 15: 1D Self-ONN UNet with a transformer encoder bottleneck and 2 Self-ONN
layers per encoder and decoder

function. Following testing, it was found that the use of batch normalisation led to

overall worse results. Therefore, it was removed from the network.

As the Self-ONN layers were expected to provide better results due to their non-

linear nature, more the network was changed again. The network was reverted to the

convolutional variant, except this time the convolutional layers were directly replaced

with Self-ONN layers. These Self-ONN layers were given a Q-value of 2 and the

network was tested again. An overview of the network architecture can be seen in

figure 15. The theory was that this should provide a fair comparison as the Self-ONN

layers directly replaced the convolutional layers. This network also failed to outperform

the standard convolutional results.

The original Self-ONN variant of the network was tested again, excluding batch

normalisation, but for 20 epochs. The theory was that the increased complexity of the
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Figure 16: 1D convolutional UNet with a transformer encoder bottleneck and sigmoid
for the final activation function

Self-ONN layers may require more training time to be properly effective. This was

compared to the convolutional variant of the network which was trained again for the

same number of epochs.

The Self-ONN variant once again failed to outperform the convolutional variant

even though the convolutional variant contained 194,720 fewer parameters. Therefore,

Self-ONN layers were removed from the network and the convolutional layers were

reimplemented.

6.7 Activation Functions

In an attempt to further improve performance, the activation functions used were

brought into question. Due to the use of Tanh activation functions in the network,

outputs are in the range of -1 to 1. While this produced encouraging results to this

point, the preprocessing of the EEG signals normalised the data to values between 0

and 1. Network output could be renormalised between this range; however, it would

likely lead to worse results since the network is not being trained with this final

transformation taken into account. To circumvent this issue, it was hypothesised

that replacing the final activation function in the network with a Sigmoid activation

function would lead to a better overall temporal correlation between the network

output and ground truth signals. The network architecture can be found in figure 16.

Following testing, a small improvement was found from the use of the Sigmoid

activation function. Therefore, it was kept in the model.
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Figure 17: Final model architecture

6.8 Kernel Sizes

For further improvement, different kernel sizes were considered throughout the network.

[6] suggested the use of larger kernel sizes in higher encoder and decoder layers in

the network. This is to allow for the consideration of more information at higher

resolutions, leading to the network gaining a better understanding of the underlying

distribution of the data. While this will increase the number of parameters in the

network, the potential of it leading to better results needed to be explored.

Kernel size was adjusted down the network. The encoder and decoder with the

lowest number of channels were given a kernel size of 11. Each layer deeper in the

network, the kernel size was reduced by 2, leading to the kernels on the deepest layer,

layer 4, having a kernel size of 5. To account for this change in kernel size and to

maintain the same output resolution as before, the padding of each kernel was also

changed. The padding applied to each kernel was k−1
2 where k is the kernel size. All

other parameters were maintained for this trial. The network architecture can be seen

in figure 17.

An improvement in overall performance was found from the changes made to the

kernel sizes through the network. Following comparison with existing methods, it was

found that the trained network was achieving competitive results. Therefore, the focus

was shifted to the training technique.

6.9 CycleGAN

As discussed earlier, the size of the available dataset is limited, even with overlapping

windows used to increase the amount of trainable data. One way of solving this was
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to use unpaired training so that multiple datasets could be used. This has the benefit

of being able to use the existing data and pad it out with datasets containing motion

and others which were based on stationary tasks. For example, motor imagery tasks.

To test this, a CycleGAN was created for its ability to work with unpaired data and

its use in other studies (for example [6]).

Since CycleGANs are made up of 4 different networks, 2 generators and 2

discriminators, iteration was much slower. However, with the generators already

designed from the previous process, designing the discriminator network was the next

step. PatchGANs are commonly used for this task in both 1D and 2D tasks [75], [76].

As the job of the discriminator is to differentiate between real and fake inputs, it is

important that the discriminator is able to provide accurate and specific feedback for

the generators. The advantage of a PatchGAN is that it gives feedback on sections

of the generator output rather than the whole output. This means that it learns to

predict which portions of the generator output seem real and which seem generated,

allowing the training process to focus more specifically on significant areas.

The designed PatchGAN discriminator was based on the one proposed by [6].

Due to the previously discovered poor performance of the Self-ONN layers, however,

they were replaced with double convolutional layers. This creates a lighter weight

network enabling faster testing. Also, the final convolutional layer of the PatchGAN

was followed by a sigmoid activation function to allow for a value of 1 to be used for

real values and 0 to be used for fake. Although it would have been possible to use a

value of -1 for fake signals, to make full use of the Tanh activation function, it limits

training in a few ways. For example, Binary Cross-Entropy (BCE) loss expects inputs

between 0 and 1 so using Tanh would limit choices for loss functions.

The CycleGAN was developed from scratch using built-in functions in PyTorch.

While developing the CycleGAN, the same dataset as before was used to ensure that

the inclusion of additional data did not obscure the results. This also meant that

previous results could give a rough idea of what to expect which helped with the

iteration process.

CycleGANs take a long time to train. This is due to the training of 4 different

networks and having to calculate 8 loss values across the networks. As such,

development had to be iterative and largely based on intuition. This meant monitoring

training was required to be able to quickly improve on results. CycleGANs are complex

and difficult to balance, so optimising the performance is much more of an art than a

science.
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The most important hyper-parameters in a CycleGAN are: the cycle consistency

loss multiplier, the identity loss multiplier and the learning rate for the optimisers. As

all of these factors are directly related to the loss functions, the loss functions had to

be selected first.

To begin the development process, standard hyper-parameter values for CycleGANs

were implemented. As in the original CycleGAN [47], a cycle consistency loss multiplier

of 10 and an identity loss multiplier of 5 were used. For learning rate, the 5× 10−5

was used as in [6]. However, after quick iteration based on visual inspection, the cycle

consistency loss multiplier was reduced to 8 and the identity loss multiplier reduced to

4. This was because the adversarial loss was found to be unstable and the reduction

of these multipliers led to better results. It was also found that the discriminators

would often output values of around 0.5 from the very first epoch. As a result, and to

improve training speeds, the discriminator learning rate was increased to 1× 10−4.

Initially, the optimiser selected for use in the network was Adam. This was because

of the success found using Adam previously. However, it was theorised that the use of

Root-Mean-Square (RMS) propagation might be more useful due to its ability to work

with sparse gradients. This was found to be the case and the optimiser for both the

discriminator and generator were replaced. The reason for this improvement is that

CycleGANs often require large datatsets to train effectively. As the dataset does not

meet this threshold, it is probable that the use of RMS propagation improved results

due to Adam struggling to generalise on the lack of data.

Multiple loss functions for cycle consistency loss, identity loss, adversarial loss and

discriminator loss were trialled. These included BCE, MAE and MSE. Following this,

it was decided the BCE would be used for both adversarial and discriminator loss and

MSE would be used for cycle consistency and identity loss as these loss functions were

found to be the most effective.

Finally, to help the discriminators better learn to differentiate between real and

fake inputs over time, pooling was added. At the start of each batch, the motion

contaminated data and ground truth data are both passed through their respective

generators. The output of this is then sent to the respective pool. For each output

sent to the pool, there is a 50% chance that it will be discarded. Otherwise, the output

is added to the pool. If the pool is full, the oldest item in the pool is removed to

make space for a new one. In this case, the pool size was set to 32 (double the batch

size of 16). Then, when the discriminator is trained to differentiate between real and

generated data each epoch, the generated data is randomly sampled from the pool to
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ensure the discriminator learns the features of motion contamination more effectively

and does not forget previously learned features.

Though time had gone into optimising the training process, consistently worse

results than using back-propagation were found. This is to be expected, as using

an indirect training technique on matched data will obfuscate the training process.

However, the comparison of these results to those containing additional training data

was still a useful metric. Therefore, additional datasets were included in the training.

Finding additional data proved challenging. Very few datasets that contain motion

contamination are available. One was found in which healthy and epileptic participants

performed activities of daily living while wearing an EEG headset with a single electrode

[77]. These activities include: walking, standing and cooking. For compatibility with

the original dataset, only healthy records were used. Each recording in the dataset is

20 seconds long and there are only 60 recording of healthy patients. As a result the

dataset is incredibly limited. Nevertheless, as the only option available, it was added

to the training data.

Recordings in this dataset were taken at 512 Hz. Therefore, the downsampling step

during preprocessing was only by a factor of 2 rather than 8. As there was no ground

truth comparison signal, the window overlap was set to a fixed 50% as in [22] since

dynamically adjusting the overlap based on temporal correlation was not an option.

Other than these steps, all preprocessing steps matched that applied previously. This

resulted in 480 additional samples for training that would be used in all training folds.

To supplement this additional data, a dataset containing resting EEG data was

added [78]. This was selected because the participants in the original study [17] were

at rest. The dataset was sampled at 2,048 Hz but is already downsampled to 256 Hz.

This matches the downsampled frequency of the rest of the datasets used, so it could

be directly implemented without downsampling. Only the data featuring open eyes

was used and the signal from the electrode in position Fp1 was selected to line up with

the position of the electrodes used in [17]. Window overlap was set to a fixed amount,

244 samples or around 23.8%, in order to create a matching number of samples as the

additional motion contaminated data.

Following this, the CycleGAN was trained across the 23 folds using the same

parameters as before to ensure a fair comparison. The inclusion of this additional data

was found to provide worse overall results. Therefore, the network produced from

standard back-propagation methods was selected as the final network.

Using back-propagation, a preprocessing technique and neural network were
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developed which can outperform existing real-time techniques at removing motion

contamination from EEG signals. This is accomplished by creating a dataset with

a larger focus on high levels of motion contamination. As a result, fewer network

parameters are required making the process less computationally expensive. This

demonstrates an improvement to existing processes overall. However, the use of a

CycleGAN was found to inhibit results both with and without additional data. This

could be due to several factors including the quality of the available datasets and the

tuning of the CycleGAN hyper-parameters.

7 Results

The aim of this work was to produce a neural network and a preprocessing method

to remove motion contamination from EEG signals. To do this, a publicly available

dataset, ”Motion Artifact Contaminated fNIRS and EEG Data” from [17], was used.

Claims from other research [18], stated that some trials should be excluded. Namely,

trials 12 and 15 were stated to not contain any brain data and are poorly correlated.

To assess this claim, and the rest of the dataset, the correlation of the signals of each

participant was assessed. For each trial, the data was first. The detrended signals

were then range normalised between 0 and 1. The results can be found in table 3.

From these results, it is clear that trial 12 in particular has a high correlation

compared to the average PCC. In fact, both trials 12 and 15 have above average

correlations for the dataset. Figure 7 shows both trial 12 and trial 15 following linear

detrending and range normalisation between 0 and 1. It is apparent from these that the

ground truth and motion contaminated signals contain relevant and useful information.

For example, all 4 periods of artificial motion contamination in each of the motion

contaminated signals are clearly visible and appear to have no direct impact on the

ground truth signal from a visual inspection.

To further support this claim, a visual inspection of the other trials was also

conducted for comparison. When compared with other trials, for example trials 1 and

2 as seen in figure 6, it seems that trials 12 and 15 should, in fact, be included in the

training data, contrary to beliefs of [18].

However, from the results in table 3, low correlations were found for trials 10 and

11. Trial 10 in particular contains a noticeable artifact in the ground truth signal (see

figure 18). Also of note are trials 20 and 21 for the same reason (also in figure 18).

The removal of these sections of the trials was considered. However, it was
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Trial Pearson Correlation Coefficient
1 0.46142
2 0.24333
3 0.14948
4 0.21095
5 0.92668
6 0.08925
7 0.12998
8 0.48080
9 0.11601
10 -0.04659
11 -0.05109
12 0.82712
13 0.28500
14 0.16721
15 0.36637
16 0.43930
17 0.43100
18 0.76188
19 0.75491
20 0.24918
21 0.22086
22 0.09085
23 0.44084

Average 0.33673

Table 3: Ground Truth and Motion Contaminated Signal Correlation by Trial

Figure 18: Normalised ground truth and motion contaminated signals from trials 10,
20 and 21
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Trial PCC
1 0.93737
2 0.78579
3 0.81510
4 0.77402
5 0.73693
6 0.68348
7 0.73015
8 0.79368
9 0.79553
10 0.75843
11 0.83766
12 0.91828
13 0.70710
14 0.69438
15 0.76627
16 0.76791
17 0.87307
18 0.87891
19 0.87632
20 0.86919
21 0.89030
22 0.84025
23 0.81158

Average 0.80616
Standard Deviation 0.07002

Table 4: Temporal correlation per trial for the [22] dataset augmentation method

ultimately decided that the artefactual signals of these trials should remain a part of

the data. Predominantly, this decision was made to follow the existing studies [6], [22],

which do not mention excluding these segments. As a means of assessing the network

architecture accurately against these other methods, trials 10, 20 and 21 were used in

their entirety.

7.1 Dataset Augmentations

In order to accurately assess the data preprocessing methods from the other studies

[6], [22], the proposed methods were used to create variations of the dataset.

The preprocessing and windowing method described in [22] resulted in an

augmented dataset with 6187 samples. The dataset features an average temporal

correlation of 0.80616 between samples (see table 4) with a ratio of 1842:4345 for

contaminated to non-contaminated segments (based on a PCC of 0.5).

The result of the steps described in [6] is a dataset with 3259 samples and an

average PCC of 0.45468 between samples (see table 5) with a ratio of 903:2356 for

contaminated to non-contaminated segments (based on a PCC of 0.5). To supplement

this for validation, an additional copy of this augmentation was created with a 50%
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Trial PCC
1 0.61591
2 0.44198
3 0.52472
4 0.37297
5 0.32924
6 0.26913
7 0.28632
8 0.46626
9 0.44198
10 0.37412
11 0.46279
12 0.64747
13 0.39141
14 0.38697
15 0.46307
16 0.43108
17 0.54802
18 0.52212
19 0.41215
20 0.52814
21 0.55416
22 0.45702
23 0.51148

Average 0.45385
Standard Deviation 0.09396

Table 5: Temporal correlation per trial for the [6] dataset augmentation method

overlap rather than a dynamic one for comparison with the previous augmentation.

One thing of note is how much of either dataset is made up of severe motion

contamination (a PCC below 0.5). 29.8% and 27.7% respectively. As a result, the

networks are largely being trained to reproduce the input with a smaller focus on

motion contamination removal. The proposed dataset aimed to increase the ratio of

severe motion contaminated segments using a different window overlapping equation

(see equation 8).

For the custom dataset, a polynomial with an order of 10 was initially used for

the fit to detrend both the ground truth and motion contaminated signals. Resulting

from this is an augmented dataset with 4050 samples and an average PCC of 0.79394

between samples (see table 6) with a ratio of 1748:2302 for contaminated to non-

contaminated segments (based on a PCC of 0.5). The percentage of samples that

contain a significant amount of motion contamination, a PCC of over 0.5, is 43.16%

which is a large increase over the other 2 data augmentation methods, both of which

have values below 30%.

However, in later trials, it was found that the network failed to improve the

temporal correlation on some of the trials. This suggested that the order of the

62



Trial PCC

1 0.94406
2 0.83940
3 0.80893
4 0.74312
5 0.74022
6 0.75332
7 0.72871
8 0.74431
9 0.78375
10 0.75605
11 0.84026
12 0.92250
13 0.64223
14 0.72411
15 0.67581
16 0.68031
17 0.86974
18 0.90157
19 0.81416
20 0.80591
21 0.88555
22 0.86812
23 0.78840

Average 0.79394
Standard Deviation 0.07952

Table 6: Temporal correlation per trial for the proposed dataset augmentation method
with a polynomial of order 10 to detrend motion contaminated signal
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Trial PCC

1 0.86349
2 0.73339
3 0.73840
4 0.55030
5 0.58657
6 0.58765
7 0.56652
8 0.64777
9 0.68674
10 0.65559
11 0.74774
12 0.84939
13 0.53723
14 0.62726
15 0.53552
16 0.57279
17 0.74983
18 0.75650
19 0.66910
20 0.69796
21 0.76330
22 0.76071
23 0.72264

Average 0.67854
Standard Deviation 0.09413

Table 7: Temporal correlation per trial for the proposed dataset augmentation method
with a polynomial of order 4 to detrend motion contaminated signal

polynomial being applied to the motion contaminated signal was too strong to the

point that it was removing important information from the signal. Therefore, the

order of the polynomial used to fit the motion contaminated signals was reduced to 4.

The final custom data preparation method featured a temporal correlation of

0.67854 between the ground truth and motion contaminated segments. All other

factors of the dataset remained the same. A breakdown of the correlations of the final

method can be found in table 7.

For a clearer comparison, the temporal correlation of the 3 datasets can be seen in

table 8.

The table clearly displays a number of key points about the proposed method.

Firstly, it sits between the other methods in terms of the average correlation of the

windows, with an average correlation of 0.67854 as opposed to 0.80616 and 0.45385.

This displays an improvement over [6] in terms of preprocessing accuracy. Detrending

the motion contaminated signal allows the network to learn more when it comes to

motion contamination removal and less about general detrending from baseline drift.

Also visible in the table is the closer correlation between the proposed method
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Trial [22] Segments [6] Segments Proposed Segments
1 0.93737 0.61591 0.86349
2 0.78579 0.44198 0.73339
3 0.81510 0.52472 0.73840
4 0.77402 0.37297 0.55030
5 0.73693 0.32924 0.58657
6 0.68348 0.26913 0.58765
7 0.73015 0.28632 0.56652
8 0.79368 0.46626 0.64777
9 0.79553 0.44198 0.68674
10 0.75843 0.37412 0.65559
11 0.83766 0.46279 0.74774
12 0.91828 0.64747 0.84939
13 0.70710 0.39141 0.53723
14 0.69438 0.38697 0.62726
15 0.76627 0.46307 0.53552
16 0.76791 0.43108 0.57279
17 0.87307 0.54802 0.74983
18 0.87891 0.52212 0.75650
19 0.87632 0.41215 0.66910
20 0.86919 0.52814 0.69796
21 0.89030 0.55416 0.76330
22 0.84025 0.45702 0.76071
23 0.81158 0.51148 0.72264

Average 0.80616 0.45385 0.67854
Standard Deviation 0.07002 0.09396 0.09413

Table 8: Data augmentation and segmentation comparison

and the [22] method as opposed to the correlation between the[6] method and the [22]

method. As the preprocessing steps in the proposed method and the method proposed

by [6] are practical for real-time use, this displays that the preprocessing on the data

allows the network to focus more on the removal of motion contamination artifacts.

Finally, this table also displays the increase in motion artifacts in the dataset

by having the highest standard deviation of the approaches. Despite the proposed

approach having more preprocessing than the approach of [6], it still has a higher

standard deviation displaying the increase in the amount of segments containing

significant motion contamination.

7.2 Dataset Evaluation

To evaluate the quality of the proposed dataset preparation methods, they were all

used to train an identical network. A 1D UNet was designed for this purpose (see

figure 11).

To form fair assessments, the method presented in [6] was supplemented with an

additional validation set. The validation set used the same windowing method as [22]

with a 50% overlap to ensure fair and accurate comparison. This additional validation
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Fold Dataset Network Processed
1 0.93737 0.96718
2 0.78579 0.89570
3 0.81510 0.92082
4 0.77402 0.79917
5 0.73693 0.80471
6 0.68348 0.77253
7 0.73015 0.78900
8 0.79368 0.90092
9 0.79553 0.90184
10 0.75843 0.87697
11 0.83766 0.91315
12 0.91828 0.96670
13 0.70710 0.82553
14 0.69438 0.82933
15 0.76627 0.86529
16 0.76791 0.86721
17 0.87307 0.94382
18 0.87891 0.96010
19 0.87632 0.96377
20 0.86919 0.94983
21 0.89030 0.96896
22 0.84025 0.94597
23 0.81158 0.91406

Average 0.80616 0.89315
Standard Deviation 0.07002 0.06215

Table 9: PCC for each fold of the [22] dataset using a 1D UNet before and after
processing with a 1D UNet

set was also created for the proposed preprocessing method for the same reason.

Each dataset was trained for 10 epochs with a learning rate of 2 × 10−4 using

the Adam optimiser (with betas of 0.9 and 0.999) and the MSE loss function. This

training was completed with the leave-one-out approach, so each dataset was trained

23 times. For the proposed data preparation method and the method from [6], the

trial used for validation in each fold was substituted with the validation set featuring

a 50% overlap between windows as in [22].

First, the [22] dataset variation was trained. The results for each fold can be found

in table 9. It displays results spanning a range of 0.11, with all PCC results between

the values of 0.77253 and 0.96896. Originally, after preprocessing, this version of the

dataset had an average PCC of 0.80616. By increasing the correlation to 0.89315, on

average, the network shows an improvement of around 10.798%. However, the network

performed particularly poorly on folds 4, 6 and 7. Nevertheless, these results still show

a noticeable improvement following training which is likely due to heavy preprocessing

to detrend the data.

In order to assess the quality of these results, the same test was repeated. However,
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Fold Validation Dataset Network Processed
1 0.62576 0.93844
2 0.43891 0.87048
3 0.52981 0.88947
4 0.37639 0.71579
5 0.32120 0.76380
6 0.27636 0.73701
7 0.29970 0.72478
8 0.46390 0.86485
9 0.44584 0.85365
10 0.37478 0.80152
11 0.46119 0.85934
12 0.66600 0.94411
13 0.38083 0.71369
14 0.40098 0.75282
15 0.45707 0.78352
16 0.45629 0.79290
17 0.55055 0.91080
18 0.52624 0.92837
19 0.41358 0.93165
20 0.53018 0.92331
21 0.57372 0.94036
22 0.45634 0.91159
23 0.53141 0.89259

Average 0.45900 0.84543
Standard Deviation 0.09687 0.07970

Table 10: PCC for each fold of the [6] dataset with 50% window overlap before and
after processing with a 1D UNet

this time using the dataset created following the steps of [6]. Theoretically, this

should achieve worse results than the previous method. Several factors contribute

to this assumption. The first is the lack of training data. There are 2,928 fewer

records in this dataset meaning the dataset is around 47.325% smaller. Having roughly

half the amount of data should theoretically produce worse results. In addition, the

dataset features a slightly worse ratio of motion contaminated data to data which

does not contain contamination (27.7% as opposed to 29.8% containing a PCC below

0.5) making it more difficult for the network to learn the appropriate features and

identifiers to look out for.

Table 10 shows the results of the second dataset augmentation technique. As

hypothesised, the results are significantly lower with an average PCC following

processing of 0.84543, a decrease of 0.04772. That being said, there is a larger increase

in temporal correlation based on the use of the network. This can be attributed to a

number of factors including the task of general detrending being less challenging than

the process of motion artifact removal as well as the less processed dataset having

more room for correlational improvement. Nevertheless, the overall PCC was lower
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than when using the previous technique.

There was also a larger spread of results with a standard deviation of 0.0797 across

the 23 folds. This result falls short of beating the previous method in consistency

as well, with the previous achieving 0.06215, missing out by 0.01755. This margin

is relatively large. However, it is worth noting that this dataset could be used in a

practical scenario due to its consistent preprocessing technique which is not dependent

upon the correlation between the ground truth and motion contaminated signals.

The results shown were evaluated using the validation version of the dataset created,

making these results directly comparable to the previous results. The validation set

does not include the dynamic overlap technique used for the creation of the dataset

used in [6] but rather a 50% overlap. However, the rest of the processing remains the

same. The worse results are a result of fewer preprocessing steps in comparison with

the other augmentation technique, such as strong detrending prior to windowing, as

well as the use of significantly less data for the model to train on.

Finally, the network was trained on the proposed dataset augmentations. The

expectation for this test was that it would produce better results than the [6] dataset.

This is due to applying a detrending operation to the motion contaminated signal as

well as placing greater emphasis on the motion contaminated portions of the signal,

making up over 43% of the dataset instead of less than 30%. However, due to the

lack of strong preprocessing steps prior to windowing, it was theoretically unlikely to

outperform the dataset used in [22]. The aim was, to get comparable results with less

intensive preprocessing that would be practical in a real-time environment and not

have to be applied after the fact. As a result, the theory was that the custom dataset

should be slightly out-performed by the dataset used in [22].

As expected, it achieved a lower PCC than the preprocessing method used by [22],

with an average PCC of 0.85610 compared to 0.89315. This can be attributed to the

dataset being only 65.46% the size of the dataset used in [22] and having less specific

preprocessing steps. However, it performed better than the preprocessing method

of [6] by a PCC of 0.01067. This performance can be attributed to the detrending

applied to the motion contaminated signal as well as greater emphasis on motion

contaminated segments due to the window overlapping technique used in the creation

of the training dataset.

In addition, the proposed preprocessing method sits in the middle of all 3 methods

when it comes to standard deviation, showing an increase in consistency over the

method proposed by [6]. This shows the proposed dataset to be a reasonable middle
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Fold Validation Dataset Network Processed
1 0.88097 0.94435
2 0.75705 0.88347
3 0.80039 0.89746
4 0.61865 0.73193
5 0.64501 0.76337
6 0.62193 0.74947
7 0.63200 0.74645
8 0.75073 0.87362
9 0.74115 0.86496
10 0.71566 0.81552
11 0.77407 0.87116
12 0.87525 0.94658
13 0.63782 0.73978
14 0.66884 0.78015
15 0.67034 0.79982
16 0.68606 0.80289
17 0.81712 0.91572
18 0.81022 0.92635
19 0.80862 0.93942
20 0.80640 0.92468
21 0.82878 0.94547
22 0.79275 0.92729
23 0.78279 0.90033

Average 0.74446 0.85610
Standard Deviation 0.08039 0.07476

Table 11: PCC for each fold of the adjusted proposed dataset with 50% window overlap
before and after processing with a 1D UNet
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Fold [22] Dataset [6] Dataset Proposed Dataset
1 0.96718 0.93844 0.94435
2 0.89570 0.87048 0.88347
3 0.92082 0.88947 0.89746
4 0.79917 0.71579 0.73193
5 0.80471 0.76380 0.76337
6 0.77253 0.73701 0.74947
7 0.78900 0.72478 0.74645
8 0.90092 0.86485 0.87362
9 0.90184 0.85365 0.86496
10 0.87697 0.80152 0.81552
11 0.91315 0.85934 0.87116
12 0.96670 0.94411 0.94658
13 0.82553 0.71369 0.73978
14 0.82933 0.75282 0.78015
15 0.86529 0.78352 0.79982
16 0.86721 0.79290 0.80289
17 0.94382 0.91080 0.91572
18 0.96010 0.92837 0.92635
19 0.96377 0.93165 0.93942
20 0.94983 0.92331 0.92468
21 0.96896 0.94036 0.94547
22 0.94597 0.91159 0.92729
23 0.91406 0.89259 0.90033

Average 0.89315 0.84543 0.85610
Standard Deviation 0.06215 0.07970 0.07476

Table 12: All dataset results for a 1D UNet

ground between the 2 previous preprocessing methods.

It is again worth noting that the dataset used for validation of the network, trained

on the custom dataset, featured the same preprocessing as the training set. However,

the overlap of the windows was set to 50%, as in [22], to make the results directly

comparable.

The training time for this network varied across the different datasets and directly

reflects the size of the data created by each of the windowing methods. The proposed

windowing method required 97 seconds per fold, the [22] dataset required 152 seconds

per fold and the [6] dataset required 86 seconds per fold. An inference time of 0.0028

seconds was recorded for this network.

For easier comparison, table 12 displays the results from all 3 trials. Following the

claims of [18] that trials 12 and 15 should be excluded from the dataset, it is worth

noting that there is no significant difference in performance in these trials. In fact, in

all dataset variations, fold 12 performed above average. Trial 15, on the other hand,

resulted in below average results on all dataset variations. With that being said, it

was far from obtaining the lowest PCC in any of the trials. For that reason, these

trials were kept in the dataset.
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Fold [22] Overlap [6] Overlap Proposed Overlap
1 0.94435 0.94388 0.94058
2 0.88347 0.88294 0.87571
3 0.89746 0.89040 0.87387
4 0.73193 0.73006 0.67223
5 0.76337 0.75956 0.72883
6 0.74947 0.74461 0.73387
7 0.74645 0.73714 0.69680
8 0.87362 0.87142 0.84428
9 0.86496 0.86098 0.85805
10 0.81552 0.81747 0.78369
11 0.87116 0.87142 0.86414
12 0.94658 0.94389 0.94083
13 0.73978 0.74369 0.68201
14 0.78015 0.75786 0.75851
15 0.79982 0.80325 0.76224
16 0.80289 0.79287 0.75118
17 0.91572 0.91717 0.90001
18 0.92635 0.92281 0.91410
19 0.93942 0.94067 0.92313
20 0.92468 0.92579 0.90557
21 0.94547 0.94303 0.93444
22 0.92729 0.92618 0.91703
23 0.90033 0.89824 0.88828

Average 0.85610 0.85328 0.83258
Standard Deviation 0.07476 0.07645 0.08867

Table 13: Proposed dataset validated using leave-one-out with different window
overlaps on the validation sets

Also mentioned before were trials 10, 20 and 21 for regions of contamination in the

ground truth signal. Trial 10 achieved results below the average PCC on all processing

methods. However, although it was below average, it was not on the lower end of

the results for any of the datasets. Furthermore, trials which were not identified

as containing motion contamination in the ground truth signal, for example trial 4,

perform even more poorly across all dataset variations. Therefore, the exclusion of

this trial cannot be justified.

In addition, trials 20 and 21 both score above the average PCC on every variation

of the dataset. This indicates that the impact of the identified contamination is

negligible. As a result, the exclusion of these trials is also unnecessary.

For further evaluation, the 1D UNet trained on the proposed dataset was validated

against itself using the leave-one-out approach. This time, the dataset used for the

evaluation of each fold featured the same dynamic overlap used for the training set.

As a result, the test set contained more motion contamination for testing against.

Also, both [22] and [6] used this approach for validation purposes as standard in the

leave-one-out approach. Table 13 shows the result of this trial.
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Using this approach to validation, the network is tested against a larger amount of

motion contaminated data. With this knowledge, it is understood that worse results

should be expected when testing with the leave-one-out approach. This testing was

done to use as a benchmark for progress throughout the development of the network.

From the initial results, it can be seen that the use of a trained UNet improves the

PCC of the dataset by 5.4% from 0.78758 to 0.83011. Although it is an improvement

over the preprocessing alone, it shows the requirement of a more complex network to

better identify motion contamination and remove it from the data.

For completeness, the proposed preprocessing method was applied to the data

but with the window overlap used by [6]. This was done to produce a value that

could be directly compared with the results stated in the paper. [6] claims a temporal

correlation of 0.872 following preprocessing of the signal and processing by the network.

Table 13 shows a temporal correlation of 0.85946 with the proposed preprocessing

technique and equivalent window overlap to [6]. This displays that, even with a

standard 1D UNet, the proposed preprocessing method can train a simple network of

comparable performance, with a discrepancy in the leave-one-out validation value of

only 0.021.

7.3 Base Architecture Selection

In order to identify a base architecture to proceed with, the previously mentioned

UNet was tested against an FPN with a similar number of parameters. The test was

completed using the same hyper-parameters as before but on the 2 different networks.

In addition, the proposed dataset preparation steps were used for both training and

validation.

It was hypothesised that the UNet should significantly outperform the FPN for this

task due to its additional processing steps in the bottleneck and the greater number of

channels in the decoder path. Ideally, the FPN would perform similarly to the UNet,

allowing for a lighter weight solution to the problem. The designed FPN is shown in

figure 12.

The FPN had an average training time per fold of 95 seconds with an inference

time of 0.0026 seconds and results of these trials can be found in table 14. From these

results, a number of observations can be drawn. It is notable that the FPN performs

better than the UNet on fold 3. This displays the potential of the FPN architecture

for this task being more light-weight and computationally inexpensive compared to

the UNet.
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Fold FPN UNet
1 0.93356 0.94140
2 0.86735 0.86940
3 0.89622 0.87768
4 0.63853 0.67477
5 0.69907 0.71954
6 0.72232 0.72832
7 0.67773 0.69192
8 0.80276 0.82802
9 0.85313 0.85805
10 0.76893 0.78616
11 0.84891 0.86434
12 0.92700 0.94231
13 0.67267 0.68201
14 0.75837 0.75864
15 0.74536 0.76125
16 0.70822 0.75118
17 0.88251 0.90001
18 0.91207 0.91302
19 0.89717 0.91934
20 0.89346 0.90382
21 0.93236 0.93688
22 0.90298 0.91666
23 0.88321 0.88828

Average 0.81843 0.83100
Standard Deviation 0.09448 0.08942

Table 14: PCC comparison FPN vs UNet

However, it is evident that on the majority of folds, the performance of the network

underperforms that of the UNet. Whilst some other trials provide comparable results,

such as trials 2, 6, and 9, it is was clear that the network suffered from the lack of a

bottleneck and the concatenation of the encoder outputs to the decoder inputs. With

an average PCC across the folds of 0.81843 and a standard deviation of 0.09448, the

FPN was also found to be less consistent than the UNet, making the decision to use a

UNet based architecture a simple one.

7.4 Transformer Encoder Bottleneck

Following the previous trial displaying that the UNet outperformed the FPN, the

UNet was modified. Special attention was given to the bottleneck which was indicated

to be a key component of the UNet’s performance.

Inspired by other research [39], the bottleneck convolutions of the UNet were

replaced with a transformer encoder. This also featured learned positional encoding

which was concatenated with the data prior to processing by the transformer encoder.

The inclusion of the transformer encoder increased the training time to an average of

128 seconds per fold with an average inference time of 0.0052 seconds.
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Fold Convolutional Transformer
1 0.94140 0.95418
2 0.86940 0.88526
3 0.87768 0.90342
4 0.67477 0.72996
5 0.71954 0.73689
6 0.72832 0.75234
7 0.69192 0.73519
8 0.82802 0.82984
9 0.85805 0.85827
10 0.78616 0.81318
11 0.86434 0.88649
12 0.94231 0.94925
13 0.68201 0.68716
14 0.75864 0.76713
15 0.76125 0.76331
16 0.75118 0.78754
17 0.90001 0.91729
18 0.91302 0.93455
19 0.91934 0.92624
20 0.90382 0.90571
21 0.93688 0.94852
22 0.91666 0.92114
23 0.88828 0.89614

Average 0.83100 0.84735
Standard Deviation 0.08942 0.08341

Table 15: Comparison of PCC between UNet bottleneck configurations

The new network was trained and validated against the custom dataset. These

trials used the same hyper-parameters as before and used leave-one-out validation.

The results of these trials can be found in table 15.

The results show an improvement in the PCC of 0.01635 following the inclusion of

a transformer in the bottleneck. This is due to its ability to find relationships between

different patterns in the signal in a retrospective manner. This increase in accuracy

also came with a decrease in standard deviation of the results across the folds from

0.08942 to 0.08341. This displays the usefulness of introducing a transformer encoder

with learned positional encoding to the bottleneck as it lead to an improvement in

temporal correlation and overall consistency.

7.5 Self-ONN Layers

Convolutional layers were removed and replaced with Self-ONN layers due to their

use in [6]. The research claimed an increase in performance from the use of Self-ONN

layers. To trial this, the double convolutional layers used in the encoders and decoders

were replaced with a Self-ONN layer followed by the same activation function as with

the convolutional variant.
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Fold Convolution Self-ONN Self-ONN + Batch Normalisation
1 0.95418 0.94593 0.90827
2 0.88526 0.86877 0.81733
3 0.90342 0.88004 0.88140
4 0.72996 0.72314 0.71108
5 0.73689 0.72183 0.62920
6 0.75234 0.70888 0.74120
7 0.73519 0.73703 0.69848
8 0.82984 0.81523 0.79185
9 0.85827 0.85086 0.84516
10 0.81318 0.79212 0.79816
11 0.88649 0.86023 0.84537
12 0.94925 0.93812 0.93691
13 0.68716 0.68617 0.68944
14 0.76713 0.78323 0.77457
15 0.76331 0.71487 0.75920
16 0.78754 0.74800 0.73141
17 0.91729 0.90371 0.90041
18 0.93455 0.92700 0.92766
19 0.92624 0.91694 0.91271
20 0.90571 0.91249 0.88475
21 0.94852 0.92590 0.92591
22 0.92114 0.90178 0.90078
23 0.89614 0.88762 0.86454

Average 0.84735 0.83260 0.82069
Standard Deviation 0.08341 0.08550 0.08803

Table 16: A comparison of PCC per fold between the convolutional variant, Self-ONN
variant and Self-ONN with batch normalisation variant of the network

As part of this trial, the network was trained once with batch normalisation and

once without. The results of this trial can be found in table 16. The average training

time per fold for the Self-ONN variant was 109 seconds with an inference time of 0.0054

seconds. For the Self-ONN with batch normalisation variant, the average training

time per fold was 108 seconds with an inference time of 0.0059 seconds.

Surprisingly, the results show a decrease in performance when using Self-ONN

layers and a further decrease in performance when using batch normalisation between

the Self-ONN layers and the activation function. Not only was the average performance

of these networks worse but they also featured a wider range of results: shown by a

higher standard deviation. These results were confusing given the success found in

the work of [6].

In addition, there was an increase in the number of parameters across the network

due to the use of the Self-ONN layers (with a Q-value of 3). The standard convolutional

network had a parameter count of 1,522,801, whereas the Self-ONN version of the

network had a parameter count of 1,717,521. Intuitively, this does not make much

sense as a network with a higher parameter counts would be expected to be more
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Fold Convolution Self-ONN
1 0.95418 0.94883
2 0.88526 0.86174
3 0.90342 0.90312
4 0.72996 0.70311
5 0.73689 0.74359
6 0.75234 0.75528
7 0.73519 0.72141
8 0.82984 0.82692
9 0.85827 0.83059
10 0.81318 0.80292
11 0.88649 0.87991
12 0.94925 0.94665
13 0.68716 0.68147
14 0.76713 0.75968
15 0.76331 0.76535
16 0.78754 0.76170
17 0.91729 0.89338
18 0.93455 0.92002
19 0.92624 0.91713
20 0.90571 0.90717
21 0.94852 0.93748
22 0.92114 0.88305
23 0.89614 0.88908

Average 0.84735 0.83650
Standard Deviation 0.08341 0.08253

Table 17: Comparison of PCC per fold between the convolutional variant and the
Self-ONN variant of the network, with 2 Self-ONN layers per encoder and decoder
with a q value of 2

effective.

To better understand the problem, the encoders and decoders of the Self-ONN

UNet were changed to more closely reflect those of the convolutional variant. The

encoders and decoders featured 2 Self-ONN layers, each followed by a Tanh activation

function. To account for the significant increase in parameters, and to give a closer

reference to the convolutional UNet, the Q-value of all Self-ONN layers in the network

was changed to 2. Batch normalisation was excluded for its poor results in the previous

test. The result was a network with 1,816,241 parameters. The result of this test can

be found in table 17.

As evidenced by these results, the network still underperformed the standard

convolutional UNet, even though it contained 293,440 more parameters. This indicated

an issue with the training process as equivalent results would at least be expected.

Due to the increase in complexity provided by Self-ONN layers, it was hypothesised

that the number of epochs for efficient optimisation of the network was too low. While

not the case for the convolutional variant of the network, it was the only reasonable

conclusion which could be drawn at this point.

76



(a) Fold 1

(b) Fold 2

(c) Fold 3

Figure 19: PCC over 20 training epochs on the Self-ONN variant of the network
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Convolutional Self-ONN
10 Epochs 20 Epochs 10 Epochs 20 Epochs

1 0.95418 0.95351 0.94883 0.95306
2 0.88526 0.89374 0.86174 0.88658
3 0.90342 0.91140 0.90312 0.90758
4 0.72996 0.70505 0.70311 0.73141
5 0.73689 0.75054 0.74359 0.75124
6 0.75234 0.77172 0.75528 0.77002
7 0.73519 0.75097 0.72141 0.74578
8 0.82984 0.83775 0.82692 0.84635
9 0.85827 0.87107 0.83059 0.87270
10 0.81318 0.81454 0.80292 0.80914
11 0.88649 0.88755 0.87991 0.88350
12 0.94925 0.95085 0.94665 0.94973
13 0.68716 0.72196 0.68147 0.70720
14 0.76713 0.78243 0.75968 0.78549
15 0.76331 0.80447 0.76535 0.79374
16 0.78754 0.78471 0.76170 0.79558
17 0.91729 0.91918 0.89338 0.91238
18 0.93455 0.94305 0.92002 0.93630
19 0.92624 0.92206 0.91713 0.93216
20 0.90571 0.92394 0.90717 0.92536
21 0.94852 0.95459 0.93748 0.94751
22 0.92114 0.92930 0.88305 0.92655
23 0.89614 0.89816 0.88908 0.89667

Average 0.84735 0.85576 0.83650 0.85504
Standard Deviation 0.08341 0.07991 0.08253 0.07830

Table 18: Result of 20 epochs on Self-ONN UNet

To test this theory, the PCC of the network was tracked through training. The

1,717,521 parameter variant of the Self-ONN network was used for this test. The

number of epochs was increased to 20 to test the hypothesis. The PCC graph

throughout this test for folds 1, 2 and 3 can be seen in figure 19.

When training for 20 epochs, the network with Self-ONN layers took an average of

205 seconds per fold for training. Additionally, the convolutional variant required an

average of 235 seconds per fold.

While the PCC of some of the networks plateaued around 10 epochs, some found

greater improvement over the 20 epochs rather than 10 used previously for training.

As a result of this improvement in performance, a full trial was run against the dataset.

In addition to this, to ensure that the improvement was not the result of improvements

to the transformer, the convolutional variant was also trained for 20 epochs as a

comparison. The results of this trial can be found in table 18.

As shown in table 18 the results are an improvement over those in table 16 but at the

cost of more parameters than the convolutional variant. It also shows that an increase

in the epochs for the convolutional variant offers better results than its Self-ONN
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(a) Fold 1

(b) Fold 2

(c) Fold 3

Figure 20: PCC over 20 training epochs on the convolutional variant of the network

counterpart. Although the final result between the 2 variants was ultimately close,

the convolutional network was providing similar results with hundreds of thousands

fewer parameters.

It was posited that increasing the training epochs further may still result in better

results. To assess this, the PCC was assessed over the epochs to gain an understanding

of how much improvement could be found. Figure 19 shows the PCC over 20 epochs

for the first 3 folds of the Self-ONN network variant. Improvement clearly plateaus

before the 20 epochs are complete, showing that the Self-ONN variant was not offering

notable improvement over the standard convolutional model. For that reason, the

convolutional variant of the network was worked with from here on out as it was

proving to perform better with fewer parameters.

Similarly to the Self-ONN variant of the network, figure 20 shows that the training

of the convolutional variant of the network has plateaued by 20 epochs of training.

However, it is noticeable that in a few of the folds, the best result is not achieved in
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Figure 21: PCC for the convolutional network in fold 4

the last epoch. This is particularly visible in fold 4, shown in figure 21.

It can be seen that the best result is achieved in epoch 15 and that progress is

relatively unstable after the 6th epoch. To improve this and to help the network

perform better, it would be possible to implement a learning scheduler to decrease the

learning rate over the epochs. This should stabilise training and lead to better results

overall across the network. It would also be possible to implement a system which

saves only the best performing network across training. While both of these methods

offer potential, it was first decided to experiment more with the architecture of the

network in order to make previous results directly comparable to the new architectures.

7.6 Activation Functions

The final Tanh activation function was replaced with a Sigmoid function to ensure the

network output was between 0 and 1. This was done as the ground truth data that

the network was learning to imitate was also normalised between these values.

To test this hypothesis, the final activation function in the network was switched to

Sigmoid. The test was run using the same parameters as in the previous test, except

that the number of training epochs was reduced back to 10. While 20 had received

better results, it was important to be able to make the architecture changes directly

comparable to all previous iterations. It also meant that iteration time could be twice

as fast. The comparison in table 19 shows the result of this test compared with the

Self-ONN network described for the previous test.

For the network with the final activation function replaced with Sigmoid, the

average training time per fold was 126 seconds with an inference time of 0.0054

seconds. The results show a minor improvement in performance from the use of a

Sigmoid activation in the final layer with an improvement in PCC of 0.00212. This

change also led to an improvement in consistency across the folds. The standard

deviation of the results improved from 0.08341 to 0.07820, an improvement of 6.25%.
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Fold Tanh Sigmoid
1 0.95418 0.95275
2 0.88526 0.86884
3 0.90342 0.91042
4 0.72996 0.72130
5 0.73689 0.75081
6 0.75234 0.75590
7 0.73519 0.75159
8 0.82984 0.83930
9 0.85827 0.86889
10 0.81318 0.81309
11 0.88649 0.88058
12 0.94925 0.94986
13 0.68716 0.71357
14 0.76713 0.78691
15 0.76331 0.79358
16 0.78754 0.76709
17 0.91729 0.91086
18 0.93455 0.93627
19 0.92624 0.93079
20 0.90571 0.87170
21 0.94852 0.95289
22 0.92114 0.92648
23 0.89614 0.88443

Average 0.84735 0.84947
Standard Deviation 0.08341 0.07820

Table 19: Final layer activation function results

This further displays that replacing the final Tanh activation function with Sigmoid

yielded stronger results.

7.7 Optimisers

At the start of the iteration process, the Adam optimiser was somewhat arbitrarily

selected for training. Adam is a very commonly used optimiser in machine learning

and is widely accepted as a reasonable starting point.

Nevertheless, there are some drawbacks to the use of Adam. For example, it is

thought to be poor for generalisation, with some researchers opting to use other,

sometimes less precise methods, in search of better generalisation [65].

There are variants of Adam available. One example is AdamW which aims to

tackle the issue of poor generalisation by separating weight decay from the gradient

update process [79]. By handling these values separately, issues which can arise from

them being linked, such as interference from adaptive learning rates, can be avoided

resulting in a more stable training process.

Another variant of Adam, Adamax [80], simplifies the gradient scaling process in

the optimiser by using the maximum absolute value of the gradients instead of the L2
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Fold Adam AdamW Adamax
1 0.95275 0.95235 0.94641
2 0.86884 0.86849 0.86614
3 0.91042 0.90938 0.85794
4 0.72130 0.71788 0.69657
5 0.75081 0.75020 0.72369
6 0.75590 0.75315 0.73508
7 0.75159 0.75406 0.73304
8 0.83930 0.83902 0.80244
9 0.86889 0.86881 0.85802
10 0.81309 0.81358 0.80560
11 0.88058 0.88133 0.86838
12 0.94986 0.94970 0.92940
13 0.71357 0.71376 0.67087
14 0.78691 0.78677 0.76632
15 0.79358 0.79336 0.77139
16 0.76709 0.76678 0.73865
17 0.91086 0.91078 0.90595
18 0.93627 0.93678 0.92808
19 0.93079 0.93056 0.89400
20 0.87170 0.87123 0.84962
21 0.95289 0.95185 0.91801
22 0.92648 0.92646 0.91919
23 0.88443 0.88646 0.84813

Average 0.84947 0.84925 0.82752
Standard Deviation 0.07820 0.07843 0.08171

Table 20: Optimiser comparison for convolutional UNet

normal. This makes it more robust to large gradients.

As there are multiple variants of Adam available, AdamW and Adamax were also

experimented with. Using the previous configuration, AdamW and Adamax were also

trialled. The result of these trials can be found in table 20.

The AdamW trial had an average training time of 121 seconds per fold and the

Adamax optimiser had an average training time of 124 seconds per fold. The results

show close output from all of the optimisers. As all of the optimisers are built on

the same foundation, this is not surprising. However, it does show that a standard

Adam optimiser gives the best performance for this task over the other options. While

AdamW offered almost identical performance to that of the plain Adam optimiser,

Adamax performed noticeably worse (especially on mean PCC with a difference of over

0.02). This is likely due to Adamax being designed for tasks with large gradients which

is typically suited to much larger neural networks targeted at much more complex

tasks.

These results proved that a standard Adam optimiser was the correct choice

originally.

82



Fold Kernel Size 3 Staggered Kernel Sizes
1 0.95275 0.95460
2 0.86884 0.89084
3 0.91042 0.91731
4 0.72130 0.74183
5 0.75081 0.76887
6 0.75590 0.76155
7 0.75159 0.76869
8 0.83930 0.83551
9 0.86889 0.87305
10 0.81309 0.82114
11 0.88058 0.89228
12 0.94986 0.95301
13 0.71357 0.72977
14 0.78691 0.79384
15 0.79358 0.80578
16 0.76709 0.77997
17 0.91086 0.91970
18 0.93627 0.94516
19 0.93079 0.92122
20 0.87170 0.92774
21 0.95289 0.95499
22 0.92648 0.92729
23 0.88443 0.89304

Average 0.84947 0.85988
Standard Deviation 0.07820 0.07516

Table 21: Comparison of using a kernel size of 3 on for all kernels vs using larger
kernels at higher layers

7.8 Kernel Sizes

For the final adjustment to the network, the kernel sizes and padding were adjusted to

account for the resolution of the data at the current level in the network. Therefore,

higher-resolution encoders and decoders received larger kernels than those deeper in

the network.

This network was tested using the same hyper-parameters as with the previous

trial. The results can be seen in table 21.

The new network had an average training time per fold of 131 seconds with an

inference time of 0.0053 seconds. As suggested, the increase in kernel size led to a

deeper understanding by the network and a further increase in the PCC between the

network output and ground truth. Due to this increase, the network output from the

folds was saved for testing against the other windowing techniques. However, it was

discovered that the network was not behaving as expected once saved and the PCC

was more erratic when testing against even the same dataset.

As mentioned previously, it was hypothesised that decreasing the learning rate

throughout training would improve results. This was based on the results from previous
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Fold Previous PCC (10 epochs) Best PCC Best Epoch Final PCC
1 0.95460 0.95579 19 0.95530
2 0.89084 0.90335 17 0.89446
3 0.91731 0.92035 12 0.91883
4 0.74183 0.74921 19 0.74226
5 0.76887 0.77325 19 0.76318
6 0.76155 0.79260 15 0.78388
7 0.76869 0.77560 17 0.76852
8 0.83551 0.86688 16 0.84502
9 0.87305 0.88145 14 0.88190
10 0.82114 0.82267 16 0.82270
11 0.89228 0.89211 16 0.89064
12 0.95301 0.94912 18 0.95436
13 0.72977 0.72942 18 0.72396
14 0.79384 0.80446 14 0.80143
15 0.80578 0.81320 13 0.81326
16 0.77997 0.81426 14 0.80913
17 0.91970 0.92445 17 0.92380
18 0.94516 0.94474 20 0.94531
19 0.92122 0.94343 13 0.93527
20 0.92774 0.93135 19 0.92893
21 0.95499 0.95640 14 0.95516
22 0.92729 0.93329 12 0.93087
23 0.89304 0.90564 11 0.90398

Average 0.85988 0.86883 16 0.86488
Standard Deviation 0.07516 0.07217 2.58687 0.07431

Table 22: PCC results from training the UNet with modified transformer bottleneck
over 20 epochs

training in which the PCC would become unstable late in training, as evidenced in

figure 21. As a result, a linear learning rate decay was implemented such that the

learning rate in the final epoch was 1% of that in the first epoch. In addition, the

number of epochs was adjusted back to 20 as this was the final trial intended to be

run.

As it was the final trial for this method, each fold was monitored and the highest

performing network from the 20 epochs was saved for each trial. This was to ensure

maximum accuracy of the network. The results of this trial can be found in table 22.

With the increase to 20 epochs, the mean training time per fold for the final

network was around 274 seconds. The results show a clear improvement in overall

score from the additional epochs and a decrease in learning rate over time. This is

displayed by the comparison of the previous runs (shown in the second column of

the table) to the PCC after the 20th epoch of training in each fold (shown in the

final column of the table). An increase of the average PCC across the folds, of 0.005,

and a decrease in the standard deviation of the PCCs across the folds, of 0.00214,

demonstrates an overall increase in both accuracy and consistency.
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Fold [22] windowing [6] windowing Proposed Windowing
1 0.96057 0.95813 0.95579
2 0.91416 0.91265 0.90335
3 0.93120 0.92588 0.92035
4 0.80982 0.80578 0.74921
5 0.81666 0.80742 0.77325
6 0.81037 0.80285 0.79260
7 0.82349 0.81268 0.77560
8 0.89651 0.89567 0.86688
9 0.88719 0.88560 0.88145
10 0.85595 0.85556 0.82267
11 0.90113 0.90156 0.89211
12 0.96109 0.95843 0.94912
13 0.78790 0.78731 0.72942
14 0.82758 0.82930 0.80446
15 0.86553 0.86750 0.81320
16 0.85266 0.85581 0.81426
17 0.94016 0.94299 0.92445
18 0.95368 0.95218 0.94474
19 0.96016 0.96244 0.94343
20 0.94778 0.94799 0.93135
21 0.96566 0.96412 0.95640
22 0.94162 0.94064 0.93329
23 0.91842 0.91508 0.90564

Average 0.89258 0.89077 0.86883
Standard Deviation 0.05764 0.05892 0.07217

Table 23: Network validated against different windowing techniques

From the other 2 columns, it can be seen that, by taking the best result from each

fold, a further improvement can be found. The results show the best results to occur

commonly around the 16th epoch. This indicates that 20 epochs is, on the whole,

more than sufficient for the network on this dataset. An improvement of 0.00395 in

terms of average PCC can be found and an additional decrease of just over 0.002 for

the standard deviation display an improvement in accuracy and consistency over using

the result of the 20th epoch.

However, some of the poorer performing folds, such as folds 4 and 5, earned the

highest PCC on fold 19. This indicates that they could potentially benefit from

additional training epochs. In this case, it was deemed unnecessary due to the results

of the other folds being much more favourable.

To be able to accurately assess the performance of the network over that of [22]

and [6], the network was also validated using the window overlapping techniques of

both mentioned approaches. The preprocessing remained the same but the window

overlap was adjusted. The results of this validation can be found in table 23.

From the results, it can be seen that the proposed preprocessing method and

network outperform the method proposed by [6] by a PCC of around 0.0011. [6]
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Trial Preprocessed Network Output
1 0.86349 0.95579
2 0.73339 0.90335
3 0.73840 0.92035
4 0.55030 0.74921
5 0.58657 0.77325
6 0.58765 0.79260
7 0.56652 0.77560
8 0.64777 0.86688
9 0.68674 0.88145
10 0.65559 0.82267
11 0.74774 0.89211
12 0.84939 0.94912
13 0.53723 0.72942
14 0.62726 0.80446
15 0.53552 0.81320
16 0.57279 0.81426
17 0.74983 0.92445
18 0.75650 0.94474
19 0.66910 0.94343
20 0.69796 0.93135
21 0.76330 0.95640
22 0.76071 0.93329
23 0.72264 0.90564

Average 0.67854 0.86883
Standard Deviation 0.09413 0.07217

Table 24: Network improvement over preprocessed dataset

claims a PCC of 0.88 using their method which can be seen to be less effective than

the proposed method. In addition to this, the proposed model contains 1,779,953

parameters whereas the model proposed by [6] contained ”around 1.953 million

parameters”. This shows a reduction in parameters of around 173,000.

[22] quotes an average temporal correlation of 0.90516 across the 23 folds. While

this is higher than the proposed network, this method uses accelerometer data. As

the aim of this research was to produce a network which could be used on any EEG

headset for a low cost, this was not practical for the proposed network. However, the

difference in performance between the 2 methods overall is less than 2% showing that

a comparable level of performance can be found using only the contaminated EEG

signals and much less harsh preprocessing.

A comparison between the preprocessed dataset and the final network output can

be seen in table 24 . The results show in the table display an average increase in

correlation of 28.044% over the preprocessing. This is an improvement over the work of

[22] which achieved an improvement of 10.937% over the dataset proposed in the same

research. While obtaining better results, this was including the use of accelerometer

data in the input to the network and the use of preprocessing steps which cannot be
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used in real-time.

In addition, while the results of [6] display a much larger improvement, of 91.721%,

it does not achieve as accurate results as that of the proposed method (a PCC of 0.880

as opposed to 0.891 when the proposed technique is validated using the same window

overlap method as in [6] for direct comparison). It achieves this improvement due to a

lack of preprocessing on the motion contaminated signal, relying on the network to

perform both detrending and motion contamination removal. The proposed method

also achieves this improved performance with around 173,000 fewer model parameters.

Although the improvement of the temporal correlation is small at around 1.1%

(a temporal correlation of 89.1% as opposed to 88% of [6]), it is important. When

working with EEG signals, it is essential to provide the most accurate results as the

signals are often transformed into power bands for evaluation. Errors in the signal can

lead to further errors down the line and lead to greater inaccuracies. This network

ultimately provides a more representative output with lower computational overheads.

The significance of this is that it was achieved with the use of fewer network parameters

due to processing improvements.

Another method commonly used to assess the performance of the motion

contamination removal techniques from EEG signals is the SNR. This helps to indicate

the improvement in signal quality throughout the process. However, in this case, it

is more difficult to accurately assess the SNR as the dataset was originally range

normalised between 0 and 1.

∆SNR = 10log10

(
σ2
x

σ2
eafter

)
− 10log10

(
σ2
x

σ2
ebefore

)
(9)

In order to estimate this improvement, the normalised output was adjusted to

fit the same range as the original corresponding ground truth segments without any

preprocessing. The calculation of the improvement in SNR ( ∆SNR ) in equation 9.

In this equation, σ2
x is the squared variance of the ground truth, σ2

ebefore
is the

squared variance of the motion contaminated signal and σ2
eafter

is the squared variance

of the motion-contaminated signal after preprocessing and network processing.

To calculate the improvement in SNR, the original data set, without pre-processing

or windowing, was downsampled and segmented using the proposed windowing method.

The variance of each trial was then taken. The results of this can be seen in table 25.

After substituting these values into the equation, a SNR improvement of +26.896

dB is shown. This is an improvement over the methods of [22] and [6] which achieved

improvements of +26.641 dB and +26.497 dB respectively. This displays a modest
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Trial Ground Truth Motion Contaminated Network Processed
1 623.85155 1968.70889 721.23227
2 5530.22292 32030.90834 1924.14373
3 637.57896 76015.52723 747.10467
4 446.20861 6816.76931 312.44512
5 431.43176 7043.61854 282.40952
6 547.28432 12830.86544 313.97586
7 565.51214 31233.26774 301.75250
8 317.64572 11205.90300 356.80315
9 1193.09087 10052.35460 658.02797
10 600.11354 11347.92082 489.91348
11 573.70937 5120.19056 531.05701
12 648.43762 7893.74150 759.60468
13 2076.93146 9413.05141 1048.57959
14 12489.51028 9029.84794 4280.50909
15 887.70940 17880.64464 581.55407
16 643.28949 9203.60979 460.25886
17 738.13886 9010.24316 732.20301
18 1148.04933 12222.57919 1169.20118
19 2194.05098 76281.67084 1861.15471
20 1050.57687 31130.50348 1084.70678
21 915.37798 34594.10648 1149.18950
22 2071.49606 22470.90564 1252.95632
23 610.44315 37254.08534 772.79058

Average 1606.11571 20958.74017 947.45972
Standard Deviation 2557.78618 19855.88599 838.32364

Table 25: Variance from proposed windowing

improvement over the other methods of between 0.255 dB and 0.399 dB.

However, it is arguable that these results are not directly comparable again due

to the difference in windowing. As the windowing on the proposed method focuses

more heavily on the motion contaminated portion of the results, this is likely to create

a higher SNR as there will be a greater amount of variance in segments containing

significant motion contamination.

To compare with the other results, the same method was repeated. The original,

unfiltered ground truth and motion contaminated signals were segmented using the

same methods as [22] and [6]. The final networks created from the training process

were then also assessed using the variants of the proposed dataset featuring the window

overlap methods from the other studies. The results for the [6] variant of the dataset

can be found in table 26 and the results for the [22] variant can be found in table 27.

With these results for comparison, an SNR improvement of +22.430 dB can be

found for the [6] windowing method and +22.794 dB for the [6] windowing method.

Although still a significant improvement, this is below the figures quoted by the other

methods by around 4 dB. This drop can be attributed to both a lower average variance

of the ground truth signals (over 250 in both cases) and a much lower average of the
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Trial Ground Truth Motion Contaminated Network Processed
1 627.19224 1755.46678 723.97759
2 4451.10946 22229.73602 1853.47091
3 617.97098 32840.25173 743.57470
4 449.98128 4073.47692 327.78561
5 453.80993 6129.68833 309.28680
6 495.89706 8571.31096 312.33133
7 582.76228 22164.83436 327.84629
8 328.95595 5799.56175 376.54968
9 1205.38145 7133.64481 752.88448
10 660.34550 9276.72658 546.02591
11 575.00721 4585.15966 534.72670
12 645.08922 5866.61665 737.28726
13 2375.21778 4801.25188 1101.19584
14 5905.56673 7347.44322 2842.50462
15 689.35943 6353.78957 492.13584
16 548.13410 4518.84604 423.44374
17 731.43930 4962.16749 737.11646
18 1038.45127 7215.32690 1072.01080
19 2538.47513 27726.44438 2114.38531
20 1001.15404 15164.80231 1079.75987
21 960.24090 19074.66573 1121.22074
22 1762.31503 18340.05121 1150.22247
23 654.62439 25179.59642 815.71537

Average 1273.84698 11787.42868 891.10688
Standard Deviation 1348.31192 8778.46154 617.91191

Table 26: Variance from [6] windowing

Trial Ground Truth Motion Contaminated Network Processed
1 636.91575 1517.64547 728.18815
2 3692.89437 30441.57125 1722.73705
3 638.97287 39243.54929 762.92592
4 449.36183 3625.02203 331.12956
5 466.91709 5628.10085 308.63663
6 520.33243 9509.03219 318.10634
7 558.96497 19974.98153 319.16662
8 328.33939 6188.05824 373.21674
9 1445.85775 6302.15033 820.93085
10 657.93523 8513.66945 533.50345
11 600.27529 4397.52302 555.41048
12 649.92881 4967.62855 739.06947
13 2348.81851 4779.23790 1146.90513
14 8374.55024 6072.65307 3106.22504
15 681.48589 7222.60189 499.51799
16 581.35469 4505.76237 432.35479
17 749.66285 4896.58186 739.38363
18 1083.92248 7494.19194 1099.84881
19 2399.69931 30051.78663 2054.09246
20 1004.57076 14426.82080 1068.04014
21 958.97153 21153.23303 1131.43242
22 1658.07044 21383.99459 1144.76987
23 623.65792 23522.64450 784.78655

Average 1352.67219 12426.88873 900.88600
Standard Deviation 1691.40633 10273.60004 642.59365

Table 27: Variance from [22] windowing
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motion contaminated signals (over 8,000 in both cases). This is in contrast to the

change in variance of the network processed output which had a range of less than 57

across all 3 windowing methods.

In addition, the decrease can be attributed to an increase in motion contaminated

data used for training over the other methods. This trains the network to have more

focus on removing motion contamination instead of focusing more on improving the

SNR. In the other methods, over 70% of the training data was focused on matching

signals which already had a PCC of over 0.5. This gives greater focus to motion

contamination removal and more focus to noise reduction to match the preprocessed

signal. The greater focus on motion contamination can be credited as one of the

reasons the proposed network achieves a greater PCC than the other methods with

fewer parameters.

However, these results demonstrate the consistency of the proposed method due to

the low change in output variance between the different windowing techniques.

7.9 CycleGAN

Following the successful results using the designed architecture, a CycleGAN was used

to train the network. This was to enable the network to be trained on a larger amount

of data as the data used for training could be compiled from multiple different sources.

To establish a point of comparison for the additional data, the CycleGAN was

first trained on and validated against the proposed dataset using the leave-one-out

approach. The results of this training can be found in table 28.

As expected, the training time was significantly increased using the CycleGAN.

This is due to the complexity of training multiple networks at once and the requirement

of additional epochs. The average training time per fold was 4,889 seconds.

The results show a clear decrease in the temporal correlation of the network output

and the ground truth over the previous method (0.79647 as opposed to 0.86883). This

is to be expected for multiple reasons.

Firstly, due to time constraints, each fold of the network was only trained for 50

epochs. While this is sufficient to get a relative idea of how effective the CycleGAN is,

it is likely that training for a greater number of epochs, with the inclusion of additional

fine tuning of the hyper-parameters, would lead to better results.

Secondly, as training took place on a matched dataset, it can be expected that

standard back-propagation would result in better results than an indirect training

method such as a CycleGAN. As it is the job of the discriminator in a CycleGAN to
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Fold PCC
1 0.93818
2 0.83913
3 0.81927
4 0.69130
5 0.69353
6 0.72628
7 0.69057
8 0.77837
9 0.77773
10 0.75288
11 0.83310
12 0.93016
13 0.65152
14 0.72097
15 0.70555
16 0.69583
17 0.85900
18 0.90023
19 0.84930
20 0.85657
21 0.90406
22 0.87273
23 0.83253

Average 0.79647
Standard Deviation 0.08518

Table 28: Temporal correlation with CycleGAN with no additional data

identify the key patterns of the target data, which is then passed on to the generator,

the important features become obscured due to the additional training step.

However, an increase in the SNR was found. The SNR increased from 26.896 dB

in the standard trials to 26.967 dB in the CycleGAN trials. This displays that the

CycleGAN may do a better job at identifying the underlying signal than the previous

method.

However, it is also possible that the decrease in temporal correlation has led

to results with lower variance due to not identifying the motion contamination as

accurately. If confusion has been introduced, overcorrection in the signal may improve

the SNR whilst producing a worse temporal correlation.

Although the results from the use of a CycleGAN were considerably worse than

those of the previous method, additional trials were run to see if an improvement in

results could be found from the inclusion of additional datasets.

When searching for other datasets, very few that contain motion could be

found. However, using the additional dataset that was found, 480 additional samples

were added to the motion contaminated signals. In addition, a dataset containing

participants at rest was sampled and added to the dataset to create a matching 480
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Fold PCC
1 0.93050
2 0.82395
3 0.81913
4 0.67710
5 0.68160
6 0.71152
7 0.67776
8 0.75616
9 0.78240
10 0.72773
11 0.81512
12 0.91428
13 0.64369
14 0.70309
15 0.68967
16 0.67686
17 0.84936
18 0.89231
19 0.82966
20 0.83352
21 0.88220
22 0.86175
23 0.81713

Average 0.78246
Standard Deviation 0.08560

Table 29: Temporal correlation with CycleGAN with additional data

samples added to the ground truth segments used in each trial.

Due to the additional data, the average training time per fold increased to 5,750

seconds. The results of this trial can be found in table 29. From this table, it can be

seen that the inclusion of the additional data decreased the final temporal correlation

of the results by around 1.4%. While this is not a large difference, it does indicate

that the inclusion of this data hampered training overall.

In contrast, a further improvement of the SNR, up to 26.970 dB from 26.967 dB,

displays that the inclusion of additional data may have improved the signal quality

overall. On the other hand, it is also possible that this is also due to the network

failing to identify the motion contamination and is instead producing outputs with

missing data leading to an increase in the SNR and a decrease in the temporal PCC.

Originally, the idea of including additional datasets was to improve the training of

the network. More data should, in theory, lead to better results. These worse results

could be due to several factors. Firstly, the quality of the training results is highly

dependent on the quality of the data. Due to the limited availability of additional

data, expanding the dataset was very difficult and resulted in only a small number of

additional trials. It is probable that the additional motion contaminated data was of
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little use to the training and has perhaps caused the worse results. As it was the only

other dataset containing motion artifacts found, the available options were incredibly

limited. This highlights a requirement for the creation of more motion contaminated

datasets in order to achieve better results.

Additionally, the dataset used to supplement the motion contaminated data was

collected with the MindWave 2 headset. This is not a traditional EEG headset as it

only features the data from a single electrode. In addition, it is an active electrode as

opposed to the passive electrode commonly used in EEG research. This difference in

electrode type will provide different results due to the requirement of amplification of

the signal from active electrodes.

Furthermore, the MindWave 2 is made of a rigid structure, which means that

motion is more likely to cause a loss of contact between the wearer and the electrode,

as opposed to a standard deformable mesh cap used for EEG research. As a result,

motion contamination may appear differently than with a standard deformable cap.

However, this is difficult to verify through visual inspection. Both of these factors will

have created differences in the data which may have made it more difficult for the

network to generalise.

This also raises a larger issue in this domain as ultimately the results of using the

[17] dataset are only strictly applicable to the headset used in their method and similar

headsets. Motion artifacts are created through the motion of wires and electrodes.

Depending on how the electrodes and wires are secured and attached, this is likely to

look different in each headset. A custom solution is required on a per-headset basis in

order to attain optimal results.

In addition, the dataset created by [17] does not include indicators of motion in

the brain signals. This is due to participants remaining still whilst artificial motion

contamination was induced. Research has investigated how brain signals change during

motor imagery [81]. This is when a participant imagines making a movement but

does not actually complete the motion. From this, it can be concluded that there is

probably important information missing from the [17] dataset which may improve the

performance of neural networks when it comes to removing motion artifacts. It is

possible that the dataset is not ideal as a result. However, the solution is a compromise

as a method of creating a matched dataset for EEG signals would be very difficult to

accomplish any other way.

Overall, the best results came from the use of back-propagation on the transformer

encoder infused convolutional UNet. This achieved a temporal correlation between the
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ground truth and network output of 0.86883 when validated against its own dataset

using the leave-one-out-approach. When validated using the same preprocessing steps

but with a different window overlapping technique, it outperforms the existing solution

for real-time motion contamination removal techniques by 1.08% with around 173,000

fewer parameters.

This is significant in terms of the overhead costs required to run such a network.

It means that the network can be run on more cost-effective hardware as it is

less computationally expensive, with an inference time of 0.0053 seconds on the

aforementioned hardware. This means that it has a lower barrier to entry for

implementation in resource-restricted environments such as a clinical setting.

8 Conclusion

This research aimed to create a processing pipeline capable of removing motion

contamination from EEG signals as effectively and efficiently as possible. The network

produced contains fewer than 1.8 million parameters and achieves better results in

terms of temporal correlation improvement than other methods.

The first research question aimed to assess how effective the existing preprocessing

techniques used on the available EEG data are in other studies. From the identified

studies [6], [22] it was found that the existing methods could be improved. One of the

identified methods [22] applied preprocessing steps to the data which was impractical

for real-time use by detrending across the whole dataset prior to windowing the

data. Not having the option of running effectively in real-time is less than ideal,

especially in a clinical setting where instant feedback may be crucial. The outlined

preprocessing steps would also work differently on different lengths of recordings

making the preprocessing technique inconsistent.

In addition, the method described in [6] does not include any preprocessing on

the motion contaminated signal. This left room for improvement as detrending EEG

signals is standard practice to remove artifacts such as baseline drift. Giving the

network the task of also detrending the signal complicates the process for the network,

meaning it has multiple features to identify and remove.

The proposed method was shown to be more effective than [6] after using both

pre-processing techniques to train the same network. A correlational improvement

of 2.07% was found on a 1D convolutional UNet from the changes applied. This is

significant as it displays that a simple improvement in the dataset augmentations can
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improve techniques without the requirement of more complex networks. In turn, this

reduces costs and lowers the barriers to entry for implementing the solution.

The proposed preprocessing method also performed better due to its increased

emphasis on motion contamination. The proposed windowing method creates a dataset

of which over 43% is made up of highly motion contaminated data (a PCC between the

ground truth and motion contaminated signal of less than 0.5). This is a noticeable

improvement over the method of [6] in which less than 28% of the segments contained

highly motion contaminated data. From this, the network was able to better adapt

to the task of removing motion contamination rather than being simply encouraged

to reproduce the input. Again, this is beneficial as it means a network with fewer

parameters, thus lower overhead costs, can be trained to complete the task. This leads

to a more accessible solution.

Another aim of the research was to produce a compact and efficient network

that offers at least similar performance to existing methods. The proposed network

outperforms the method of [6] by 1.21% (a PCC of around 0.891 as opposed to

0.880 when tested against the same windows of the dataset) with around 9.86% fewer

parameters. This demonstrates an improved performance over the previous method

with a decrease in parameters. As a result, the final network is less computationally

expensive meaning that it can run on cheaper hardware making it more accessible.

Although the proposed method does not quite match that of [22] in terms of

temporal correlation, it does work with a method that could be used in real-time

applications with less harsh preprocessing. Although the parameter count of the

network produced in the research is not explicitly stated, it can be assumed to be

significantly higher due to the use of a similar structure with a significant increase of

complexity in the encoders and decoders due to the combination of multiple complex

techniques. Such a decrease in parameters leads to lower computational complexity

which, in turn, leads to better accessibility.

The question of whether the use of recent techniques, such as the inclusion of a

transformer encoder in the bottleneck of the network, would improve performance was

raised before trials began. A transformer encoder was included in the bottleneck with

learned positional encoding concatenated to the input. A noticeable improvement of

around 1.6% was found from the inclusion of a 4 layered transformer encoder with

8 heads. This demonstrates the usefulness of a network architecture that can take

sequential relationships into account when working with temporal data.

Although good results have been achieved from this work, the issue of comparison
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with other methods has been made evident throughout. The issue of there being

no standard method for validating neural networks against the ”Motion Artifact

Contaminated fNIRS and EEG Data” dataset creates issues of objective comparison

between approaches. As the leave-one-out method has been used to assess networks but

with different window overlaps, the ratio of the dataset windows containing significant

motion contamination to those containing data highly correlated with the ground

truth signal fluctuates between research methods. This makes a direct comparison of

the quoted results futile as no true conclusions can be drawn without additional work.

It is also worth noting that [6], [22] and the proposed method offer different network

architectures and preprocessing steps but all achieve a final temporal correlation

between the ground truth and network output within 3% of each other. Additionally

this is while not achieving more than 91% accuracy in terms of temporal correlation.

This could be tied to imperfections in the core dataset as it offers closely correlated

but not identical signals based on the electrodes (for both ground truth and motion

contamination) being placed close together but not reading from exactly the same

position. As such, if a network was to produce 99-100% correlation between the signals,

it would likely not be fully representative of the true signal and would likely introduce

its own artifacts.

Either way, these similar results with varying techniques allude towards the solution

to motion contamination in EEG signals not being solvable purely through algorithms.

Instead, the combination of a mechanical solution paired with software would produce

the best results. This would be best developed without the use of the dataset from

[17] but with custom, simulated data to achieve optimal performance.

Additionally, for the use of unpaired training techniques, and for better results

overall, it is essential that more datasets are created. The very limited availability

of motion artifact contaminated EEG datasets was highly restrictive in development.

Available datasets suffer from a low quantity of data, low numbers of participants and

differing headsets making the use of all the data together difficult for a network to

generalise. Creating more datasets is essential for creating better solutions to the issue

of motion contamination.

In conclusion, the developed processing pipeline for motion contaminated EEG

signals, including the preprocessing steps and neural network, offers state-of-the-

art results with fewer parameters than alternate methods. It achieves a temporal

correlation of over 89% between ground truth and network output (when validated

with 50% window overlapping on the [17] dataset), as well as an improvement in
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Figure 22: Ground truth, preprocessed motion contamination and network processed
example from fold 23 window 70

SNR of over 22 dB (when validated with the same window overlapping technique),

demonstrating a significant improvement in signal quality. A demonstration of the

improvement provided by the network can be seen in figure 22.

This solution is outperforms similar techniques from [6] whilst reducing the number

of parameters. This is significant in reducing the challenges to implementing the

solution in resource-restricted environments such as a clinical setting. As the target of

this work was to produce a network which could remove motion contamination from

EEG signals for use in such a setting, this is a really important accomplishment.

However, further progress is limited by the lack of available data and limitations of

existing datasets. To progress further, a hybrid approach that incorporates software

and mechanical solutions would likely yield the best results.

9 Future Work

Going forward, a standard method for validation, such as the use of 50% overlap,

must be maintained for results to be directly comparable. Additional complexity for

comparison could also be added through changes to different factors. For example,

the use of different window lengths has the potential to impact the comparability of

performance. Therefore, a method of accurately assessing machine learning techniques

for motion artifact removal from EEG signals is essential.

The development of a headset which is designed to decrease motion artifacts would

also prove to be beneficial overall. Any headset designed should aim to reduce the noise

introduced by cable and electrode motion. It may be useful in this case to incorporate

the machine learning techniques outlined here. However, it would be beneficial to

create custom data to train such a model which can be tailored to the specific headset

in such a scenario.

Finally, to further progress the work, larger and higher quality datasets are required.

Datasets with EEG signals containing motion are difficult to find and much more data

is required to effectively train a model. If a large, motion contaminated dataset were

to be produced, it would facilitate the use of unpaired training techniques and could
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lead to better results overall. This dataset could then be validated using the dataset

created by [17].
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