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Insights into mafic enclave crystallisation at
Soufrière Hills Volcano from groundmass crystal

shape-size relationships

Rebecca R. Hughes

Abstract

Crystal size and shape in igneous rocks reflects the magmatic conditions experienced during

their nucleation and growth. Whilst crystal size distributions are widely used in textural studies,

crystal shape variability and its petrogenetic significance is not as well understood. Recent work

has demonstrated that plagioclase nucleates as a prism and only develops its typical tabular

shape during subsequent overgrowth (Mangler et al., 2022; 2023). It is yet unclear whether

other phases besides plagioclase display a systematic evolution of shape with size.

Here, we reconstruct groundmass crystal 3D shape-size relationships in mafic enclaves from

Soufrière Hills Volcano (SHV), Montserrat. Mafic enclaves preserve evidence of magma mixing

events, a potential eruption trigger at SHV. Cooling of mafic enclaves in-situ provides a simple

groundmass crystallisation scenario in which to explore new concepts of how crystal shape

evolves with size.

Plagioclase evolves from prismatic to tabular with increasing size. Orthopyroxene potentially

evolves from equant to bladed, with statistical validation being inconclusive. Amphibole does

not show a systematic change in shape with size. Crystal growth modelling can reproduce

the plagioclase shape-size relationships by modelling the growth of an initial prism to a range

of overgrowth shapes. Overgrowth shape has been demonstrated experimentally to vary with

melt composition, from higher relative growth rates in crystals grown in basaltic melts to lower

relative growth rates in crystals grown in silicic melts (Mangler et al., 2023). Here, changing

plagioclase shape with size is interpreted to reflect changing melt chemistry as successive popula-

tions nucleate and grow. The first plagioclase nucleate in basaltic melt and overgrow to tabular

shapes. The melt becomes increasingly silicic with cooling and crystallisation. Successive popu-

lations nucleate in increasingly silicic melt, overgrowing to progressively more prismatic shapes.

This is reflected in the plagioclase shape-size distributions in the mafic enclave, demonstrating

the petrogenetic significance of crystal shape.
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1 Introduction

1.1 Background

Crystals in igneous rocks are recorders of the magmatic conditions experienced during their

nucleation and growth. When combined with geochemical information, characterising the tex-

tural features of the crystal cargo such as crystal size, shape, number density, and the zonation

within individual crystals can inform on magmatic processes. This includes insights into storage

and assembly of melts (Zellmer et al., 2024; Blundy & Cashman, 2008; Streck, 2008; Bennett

et al., 2019; Salisbury et al., 2008) or ascent and eruptive processes (Brugger & Hammer, 2010;

Rutherford & Hill, 1993; Browne & Gardner, 2006).

1.1.1 Crystal nucleation and growth

The petrogenetic significance of crystal size is both well-understood, and a well-established pa-

rameter in textural studies. Crystal size is a function of nucleation and growth rate, where both

have a dependency on the degree of undercooling (Kirkpatrick, 1975; Marsh, 1998). Undercool-

ing can be defined as the difference between the actual melt temperature and the temperature

at which a crystal phase saturates in the melt (Mollo & Hammer, 2017; Kirkpatrick, 1981).

Undercooling can refer to either a decrease in the actual temperature of a melt, or an increase

in the liquidus temperature of a melt due to compositional change induced by crystallisation or

volatile exsolution (Mollo & Hammer, 2017).

In crystal nucleation, the nucleus is required to reach a critical size by addition of atoms or

molecules in order to grow spontaneously (Swanson, 1977; Kirkpatrick, 1981; Hammer, 2008).

This critical size varies from very high near liquidus temperatures to smaller sizes as the degree of

undercooling increases. At higher degrees of undercooling, a smaller size of nucleus is required to

become stable and grow, making nucleation more likely to occur in these conditions. Therefore,

higher degrees of undercooling promote a higher nucleation rate, resulting in a high number

density of small crystals (Figure 1.1a). Conversely, relatively lower undercooling promotes a

lower nucleation rate, producing a low number density of larger crystals (Figure 1.1; Marsh,

1998; Cashman, 1990).

Growth rate is also integral to the development of crystal textures. Crystal growth is charac-

terised as either interface-controlled or diffusion-limited, the transition between which is con-

trolled by the degree of undercooling (Kirkpatrick, 1975; Lofgren, 1974; Muncill & Lasaga,

1987). Low degrees of undercooling promote interface-controlled growth, where the rate-limiting

process is the attachment of atoms to the advancing crystal face. High undercooling promotes

diffusion-limited growth, where the rate-limiting process is the movement of components through

the melt to and from the advancing crystal face. The balance between interface-controlled and

diffusion-limited growth exerts control on crystal morphology, discussed in Chapter 1.1.3 and

illustrated in Figure 1.1b. Likewise to nucleation rates, growth rates increase to a maximum

at some degree of undercooling and then decrease (Figure 1.1a), with the exact position of the

curves and their maxima being specific to both the crystallising phase and magmatic system in

question (Mollo & Hammer, 2017).

1



Figure 1.1: Crystal nucleation and growth in magmatic systems. a) Nucleation rates peak
at a higher degree of undercooling than growth rates. Undercooling a melt to T1 below the
liquidus promotes crystal formation in the growth-dominated regime, producing a low number
density of large crystals. A higher degree of undercooling to T2 promotes crystal formation in
the nucleation-dominated regime, producing a higher number density of small crystals. A very
high degree of undercooling to T3 causes the melt to quench to glass before nucleation can occur.
b) Low undercooling promotes the formation of euhedral crystals, with greater undercooling
producing increasingly anhedral morphologies.

Continuous nucleation and growth in a melt will produce multiple crystal size populations. This

is because undercooling is a dynamic property that changes over time in natural magmatic sce-

narios, imparting different nucleation and growth rates to different crystal populations formed

through time. For example, a magma could experience a relatively low cooling rate upon in-

trusion into the crust, reflected in a low number density of large euhedral crystals. A second

undercooling event upon rapid ascent in eruption would impart a high degree of undercooling,

producing a high number density of small crystals, possibly with anhedral morphology (after

Figure 1.1). Complexity in the overall crystal assemblage can be added by the addition of crys-

tals from elsewhere, including antecrysts from magma mixing or xenocrysts from incorporation

of wall-rock.

1.1.2 Crystal Size Distributions

The presence of multiple size populations is utilised in Crystal Size Distribution (CSD) analysis,

an approach to quantitatively characterise the crystallinity of a rock as a function of crystal size

(see Cashman (2020) for an in-depth review). Initially developed for industrial crystallisation

scenarios (Randolph & Larsen, 1971), CSD theory was adapted by Marsh (1988) for application

to magmatic systems. CSDs are a plot of the natural logarithm of population density against

size, the interpretation of which can be used to derive timescales of crystal nucleation and growth

(Figure 1.2). Nucleation rate can be estimated from the y-intercept, characteristic crystal size

can be estimated from the slope, and where residence times are known, growth rate can be

calculated (Marsh, 1988). These inferences require the assumption of a single, constant growth

rate for all phenocrysts measured. This is problematic given that crystal populations can have
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Figure 1.2: Example CSD showing a kinked plot with two crystal populations, often inferred
to occur by addition of antecrysts by magma mixing (Higgins, 1996b), two nucleation events
within a melt (Marsh, 1998) or aggregation of smaller crystals to form larger forms (Marsh,
1998). A downturn at the smallest crystal sizes is common, and often attributed to a lack of
smaller crystals imaged due to low resolution (Marsh, 1998; Hammer et al., 1999), coarsening
of the smallest crystals to larger forms (Higgins & Roberge, 2003), or intersection probability
effects (Brugger & Hammer, 2010). The y-intercept can be used to calculate the nucleation
rate, and the slope can be used to calculate growth rate if residence time is known.

diverse origins, experiencing different growth rates as magmatic conditions change over time

(Cashman, 2020; Brugger & Hammer, 2010). CSDs have been used to constrain crystallisation

histories of igneous rocks, by inferring residence times of storage prior to eruption (Cashman &

Marsh, 1988; Cashman, 1992; Mangan, 1990; Salisbury et al., 2008; Higgins, 2002), identifying

magma mixing events (Higgins, 1996) and informing on ascent rate dynamics, degassing and

microlite crystallisation (Brugger & Hammer, 2010; Hammer et al., 1999).

In practice, CSDs are commonly constructed using the software CSDCorrections (Higgins, 2000).

This programme converts 2D crystal intersection measurements into a 3D crystal size distri-

bution by complex stereological corrections. There are two key problems, outlined by Higgins

(2000). The cut-section effect describes that a particle is rarely ever intersected in the centre.

Therefore, even in a homogenous, single shape-size population of crystals, the resulting intersec-

tions will cover a wide range of sizes. Many small intersections may result from the intersection

of the edge of a much larger crystal, here referred to as corner-cuts. Moreover, the intersection

probability effect describes that for a population of multiple sizes, larger crystals are much more

likely to be intersected than smaller ones. Crystal shape will also affect the CSD reconstruc-

tion, but usually is assumed to be constant. Any reconstruction of 3D size or shape from 2D

intersection measurements must therefore account for these issues in stereological corrections.
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1.1.3 Crystal shape

In contrast to crystal size, the petrogenetic significance of crystal shape is less well understood

and applied in textural studies. Crystal growth is characterised as either interface-controlled

or diffusion-limited, the transition between which is controlled by the degree of undercooling.

(Kirkpatrick 1975; Lofgren, 1974; Muncill & Lasaga, 1987). The growth regime exerts con-

trol on the crystal morphology. A low degree of undercooling promotes interface-controlled

growth, where the rate-limiting process is the attachment of atoms to the advancing crystal

face. This produces euhedral morphologies with well-formed crystal facets (Figure 1.1b), with

the exact habit being determined by the relative growth rates of individual crystal faces (Kirk-

patrick, 1975). A high degree of undercooling promotes diffusion-limited growth, where the

rate-limiting process is the movement of components through the melt to and from the advanc-

ing crystal face. This produces cellular morphologies such as skeletal, dendritic and spherulitic

forms (Figure 1.1b; Lofgren, 1974; Kirkpatrick, 1975; Shea & Hammer, 2013). Undercooling

therefore exerts control on crystal shape as well as size. The transition from euhedral to cellular

morphologies has been investigated extensively in both isobaric cooling experiments (Lofgren,

1974; Lofgren, 1973; Muncill & Lasaga, 1987; Shea & Hammer, 2013; Arzilli et al., 2022) and

isothermal decompression experiments (Shea & Hammer, 2013; Hammer & Rutherford, 2002;

Martel, 2012). Most studies have been concerned with high degrees of undercooling, focusing

on the development of cellular morphologies. However, what is missing is a comprehensive

understanding of the conditions that produce variation in euhedral crystal shapes.

Recent work has sought to address this gap. Duchene et al. (2008) reconstructed the 3D

shape of plagioclase crystals grown experimentally, by applying a geomodelling software to

photographs of 2D sections. Whilst most plagioclase were tabular, with a constant interme-

diate/long (I/L) axes ratio, there was significant variability in short/intermediate (S/I ) axes

ratio. This variability in euhedral shape developed in an isobaric thermal experiment where

cooling rate was constant during crystallisation. It was suggested that plagioclase shapes re-

flected distinct episodes of crystal growth as melt conditions changed over the course of the

experiment, possibly due to changing melt diffusivity with cooling affecting growth rates on

individual crystal faces. Another explanation for the morphological variation was crystal at-

tachment by synneusis. Holness (2014) explored variation in plagioclase aspect ratio (AR, 2D

intersection long and short axes ratio) in natural sills. Plagioclase AR was found to vary system-

atically through the sills, the average AR being higher in thin sills inferred to experience higher

cooling rates than thicker sills, with lower AR and slower cooling rates. This demonstration of

the dependence of plagioclase shape on cooling rate illustrated how euhedral crystal shape has

petrogenetic significance, and can be applied to understand magmatic conditions.

More recently, Mangler et al. (2022) recognised that since crystal shape is sensitive to magmatic

conditions, this should be reflected in the presence of different shape populations produced by

continuous nucleation and growth of crystals through changing magmatic conditions - much the

same as the presence of multiple size populations that has been so successfully exploited in CSD

analysis. Reconstructing 3D shape-size relationships for plagioclase in natural samples, where

‘habit’ describes the ratio of the Short:Intermediate:Long axis (S:I:L), Mangler et al. (2022)
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demonstrated that plagioclase undergoes a systematic evolution in shape with size as it grows.

Plagioclase nucleates as a prism (high S/I ) and preferentially overgrows in the intermediate

dimension (I ) to evolve into a steady-state tab (lower S/I ) (Figure 1.3). Plagioclase rapidly

attain the shape defined by their relative growth rates after nucleation, attaining ‘steady-state

shape’ with a small volume increase. For the overgrowth of a 0.1 µm3 prism, steady-state shape

was achieved with a ∼100 µm3 increase in crystal volume; the absolute value will depend on

the initial crystal size, shape, overgrowth shape and number density (Mangler et al., 2022).

Figure 1.3: Evolution in plagioclase shape with size. a) Effect of number density (after
Mangler et al., 2022). A low number density associated with low degrees of undercooling means
there is large available growth volume for crystals to evolve from prisms to steady-state tabs. A
high number density reduces the available growth volume, so crystals remain relatively prismatic
with growth. b) Effect of melt composition/diffusivity (after Mangler et al., 2023). Plagioclase
experimentally grown in basaltic melt (red) have a lower S/I (i.e., more tabular) steady-state
overgrowth shape than those grown in more silicic melt (yellow). Steady-state shape is reached
with a relatively small volume increase (i.e. from an initial volume of 0.1 µm3 to 100 µm3 with
growth).

The systematic evolution in crystal shape is affected by undercooling. A high degree of un-

dercooling imparts a high nucleation rate, producing a large number of small crystals with

low ‘available growth volume’, meaning that crystals remain relatively prismatic (Figure 1.3).

Lower undercooling produces a lower crystal number density, such that the few crystals have

greater available growth volume and therefore can evolve in size to tabular shapes. Mangler et

al. (2022) linked these concepts to magmatic ascent rates, demonstrating the petrogenetic sig-

nificance of euhedral plagioclase shape. Mangler et al. (2023) explored these concepts further,

showing that when interface reactions occur at a similar rate to diffusion processes, plagioclase

growth can occur in an intermediate growth-regime where different growth-limitations act on

different advancing crystal faces. This manifests as variation in euhedral plagioclase morphol-

ogy. The morphology of experimentally-grown plagioclase populations displayed a dependency

on the melt composition/diffusivity, with plagioclase grown from basaltic melts having a lower
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S/I (i.e., more tabular) shape than those grown from more silicic melts, due to differences in

relative growth rates between populations.

It is not yet clear whether other silicate phases undergo a similar systematic evolution in shape

with size that can be linked to magmatic conditions. Recent work (Okumura et al., 2022;

2024) has explored pyroxene ‘tracht’, a term similar to habit but that specifically describes

the combination of crystallographic faces (Sunagawa, 2006). Decompression-induced crystalli-

sation experiments demonstrated that pyroxene tract evolves from octagonal at low effective

undercooling to hexagonal at higher undercooling (Okumura et al., 2022), with the threshold

undercooling at which transition occurs influenced by melt composition (Okumura et al., 2024).

Whilst this did not show a systematic change in 3D aspect ratio as is inferred for plagioclase, this

did demonstrate the sensitivity of pyroxene morphology to changing magmatic conditions. This

could suggest that there is a underlying process controlling crystal shape, that may be common

across all silicates; however, a demonstration of this is currently missing in the literature.

Crystal shape in igneous rocks has petrogenetic significance, with the sensitivity of crystals

to changing magmatic conditions reflected in systematic variations in euhedral morphology

(Mangler et al., 2022; 2023; Okumura et al., 2022; 2024). Characterising crystal shape-size

relationships can therefore provide insights into magmatic processes at depth and upon ascent.

As well as this, CSD analysis requires an estimate of crystal shape for stereological corrections,

which is usually assumed to be constant across crystal sizes (Higgins, 2002; Higgins & Roberge,

2003; Mangan, 1990; Armienti et al., 1994). Accurately constraining the 3D shape of each

crystal size population is therefore important to produce useful CSDs for better interpretation

of nucleation and growth dynamics.

Further, crystal shape is an important property to consider in understanding the development

and remobilisation of crystal mushes, as the shape of crystals within a melt affects the rheol-

ogy of the magma (Moitra & Gonnermann, 2015). ‘Maximum packing fraction’ describes the

crystallinity at which a suspension is considered rheologically immobile, and is strongly depen-

dent on particle aspect ratio (Mueller et al., 2010; 2011). The fraction of particles a melt can

hold before becoming ‘locked’ as a mush is greatest for equant (S≈I ) crystals, decreasing for

increasingly tabular (S≪I≪L) crystals (Mueller et al., 2011). Bretagne et al. (2023) found that

crystal shape not only affects the maximum packing fraction, but also changes the permeability

of a mush at a given melt fraction. The permeability of a maximally packed mush consisting of

prolate (needle-like habit) crystals is higher than that consisting of oblate (platy habit) crystals.

Constraining crystal shape and how it may systematically evolve in response to changing mag-

matic conditions is therefore crucial to understand the dynamics and timescales of processes in

crystal mushes, as well as volcanic processes.

1.2 Crystal shape-size relationships in mafic enclaves

Characterising crystal shapes under different crystallisation conditions is important to better

understand the petrogenetic significance of crystal morphology. Different conditions include

decompression-induced crystallisation upon magmatic ascent, crystallisation at depth prior to

eruption, and cooling of intrusions. Here, we explore crystallisation upon intrusion prior to

6



eruption by examining groundmass crystal shape-size relationships in magmatic enclaves. Mag-

matic enclaves form upon the mingling of two melts that are thermo-mechanically inhibited from

mixing fully due to a significant contrast in viscosity, caused by the different temperature, com-

position or crystallinity of the magmas (Bacon, 1986; Sparks & Marshall, 1986; Eichelberger,

1980). Magma mingling typically occurs when a more mafic magma replenishes a long-lived sili-

cic mush reservoir, and is a significant process in arc volcanism (Laumonier et al., 2014; Coombs

et al., 2003; Tepley et al., 2000; Clynne, 1999; Browne et al., 2006; Pallister et al., 1992, 1996;

Kent et al., 2010). The addition of heat, mass and volatiles from the intruding magma to the

silicic reservoir has the potential to remobilise melt, with magma mixing having been recognised

to be a potential eruption trigger (Sparks et al., 1977; Eichelberger, 1980; Pallister et al., 1996;

Larsen et al., 2006). Mafic enclaves therefore preserve a snapshot of these mingling dynamics.

Enclaves with diktytaxitic groundmass texture are thought to form by rapid quench crystalli-

sation (Bacon, 1986), and therefore provide a relatively simple crystallisation scenario in which

to explore the petrogenetic significance of crystal shape.

This study examines 3D crystal shape-size relationships in three mafic enclaves from SHV. The

aims of this study are as follows:

• Characterise the mafic enclaves texturally and geochemically (Chapter 3).

The thin sections were examined and imaged using optical microscopy and Scanning Elec-

tron Microscopy (SEM) to characterise crystal textures. Electron Dispersive Spectroscopy

(SEM-EDS) was used to analyse crystal chemistry.

• Characterise the 3D shape-size relationships of groundmass plagioclase, orthopyroxene and

amphibole. (Chapter 4).

Groundmass crystals were outlined and measured to obtain 2D intersection data. Crys-

tal size distributions were then reconstructed using CSDCorrections (Higgins 2000) and

3D crystal shape estimated using ShapeCalc (Mangler et al., 2022). This was carried

out to investigate if groundmass plagioclase displays the same systematic evolution in

shape (from prismatic to tabular with increasing size) observed in Mangler et al. (2022).

Whereas that study examined plagioclase microlites formed by decompression-induced

crystallisation upon magmatic ascent, here we examine groundmass plagioclase formed

by quench crystallisation upon magma mixing. Amphibole and orthopyroxene shape-size

relationships were also constrained in order to investigate whether other key rock-forming

silicate phases display a similar systematic evolution in shape with size. If so, this pos-

sibly suggests a common underlying process in silicate mineral growth, which could be

exploited to infer crystallisation conditions.

• Verify that the 3D shape-size relationships are true textural features rather than statistical

artefacts (Chapter 5).

Statistical testing of the 3D shape-size results was conducted to assess whether the sug-

gested 3D shape-size relationships are true textural features, or whether they could be

explained as statistical artefacts. For example, the smallest crystal populations might
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possibly be corner-cuts of a larger population (i.e., the previously described ’cut-section

effect’).

• Explore how varying steady-state overgrowth shape can reproduce the observed shape-size

relationships in the mafic enclaves (Chapter 6).

An adapted crystal growth model (c.f. Mangler et al., 2022) is used to model crys-

tal growth. Comparing the model evolution in crystal shape and size to the observed

shape-size relationships enables comment on the crystallisation conditions under which

the groundmass crystal populations could have formed.

• Interpret the petrogenetic significance of crystal shape in enclave crystallisation in terms

of the wider context of mingling dynamics at SHV (Chapter 6)

1.3 Geological history and petrology of Soufrière Hills Volcano

Soufrière Hills Volcano, Montserrat is part of the Lesser Antilles volcanic island arc (Figure 1.4),

formed by the oceanic Atlantic Plate subducting underneath the Caribbean Plate. Of the five

volcanic centres on Montserrat, SHV is the only active centre, with activity from ∼300 ka to

present (Rea, 1974). The volcano is a composite of at least five andesitic lava domes, with the

flanks composed of pyroclastic deposits (Zellmer et al., 2003a; Murphy et al., 2000). The most

recent eruption lasted 15 years, from July 1995 to February 2010, encompassing five phases of

activity (see Wadge et al. (2014) for a detailed eruption chronology). The eruptive activity was

characterised by episodic dome growth and collapse alongside Vulcanian explosions, interrupted

by reposes in lava extrusion (Wadge et al., 2014; Sparks & Young, 2002; Ryan et al., 2010).

Figure 1.4: Location of SHV, Montserrat in the Lesser Antilles volcanic island arc (ASTGTM
v003 DEM, USGS, 2025).
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The SHV plumbing system is thought to consist of a long-lived andesitic reservoir at shallow

depth, that is periodically recharged by influxes of mafic magma (Figure 1.5). Earlier work

suggested that the depth of the reservoir was ∼5-6 km (110-130 MPa) constrained by exper-

imental and petrological work (Barclay et al., 1998; Devine et al., 1998) and seismic studies

(Aspinall et al., 1998). More recent work (Edmonds et al., 2016) has suggested deeper storage

depths of 8-14 km and the presence of a vertically protracted crystal mush underlying south

Soufrière Hills. Prior to eruption, the andesite was stored at 820-840 °C, constrained by the

stability fields of amphibole and quartz, which are both present in the phenocryst assemblage

(Barclay et al., 1998). The extended history of the andesite reservoir includes multiple cycles

of reheating and recrystallisation on a millennial scale (103-104 years), evident from textural

disequilibrium features in phenocrysts including complex zonation, reaction rims and resorption

features (Zellmer et al., 2003a) and an inferred wide range of crystal residence times (Zellmer

et al., 2003b). Periodic recharge of the silicic reservoir by basaltic melt from a deeper region

(∼12 km depth, Elsworth et al., 2008) drives these reheating cycles and was inferred to have

occurred prior to the most recent eruption, acting as an eruption trigger (Murphy et al., 2000;

Murphy et al., 1998). The intrusion of hotter (1050 °C, Murphy et al. (2000)), less crystalline

basalt provides heat and volatiles as the driver for eruption (Devine et al., 2003; Murphy et al.,

2000; Edmonds et al., 2014). Mafic enclaves are present throughout the eruption (Murphy et

al., 2000; Barclay et al., 2010; Plail et al., 2014) but additional evidence for mixing is abundant,

including

1

Figure 1.5: a) The SHV plumbing system involves a long-lived silicic reservoir that is periodi-
cally recharged by basaltic magma from depth. b) After Plail et al. (2014; 2018), mafic magma
rises as buoyant plumes into the andesite. Type A enclaves form by quench crystallisation,
likely at plume margins. A hybrid layer develops at the mafic-silicic interface, from which Type
B enclaves form.
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disequilibrium textures in the andesite phenocryst assemblage (Murphy et al., 2000; Devine et

al., 1998), excess volatile emissions (Edmonds et al., 2010; Christopher et al., 2010) and the

presence of microlites grown in basaltic melt transferred to the host andesite (Humphreys et

al., 2009). Mafic enclaves notably increased in abundance across the five phases of the eruption

(Barclay et al., 2010). In Phase I, mafic enclaves constituted <1 % of erupted material, rising

to 5-7 % in Phase III, and finally 3-8 % in Phase IV-V (Murphy et al., 2000; Plail et al., 2014;

Barclay et al., 2010; Didonna et al., 2022).

The petrology of the andesitic rocks has been extensively characterised (Murphy et al., 2000;

Barclay et al., 1998; Devine et al., 1998; Humphreys et al., 2009) and remained relatively

constant over the course of the eruption, despite changes in eruptive style (Murphy et al., 2000;

Humphreys et al., 2009; Christopher et al., 2014). The andesite is 57-61 wt.% SiO2, highly

crystalline and porphyritic, with 33-66 vol.% phenocrysts (Murphy et al., 1998; Didonna et al.,

2022; Devine et al., 1998; Barclay et al., 1998; Humphreys et al., 2009; Murphy et al., 2000).

The phenocryst assemblage, in order of abundance, consists of plagioclase + amphibole +

orthopyroxene + Fe-Ti oxides, with minor quartz, apatite and clinopyroxene. The groundmass

assemblage lacks amphibole, instead consisting of plagioclase + orthopyroxene + clinopyroxene

+ Fe-Ti oxides + interstitial glass ± quartz. Glass abundance varies from 5-25 %, and is high-

Si rhyolite of 75-79 wt.% SiO2 (Murphy et al., 2000; Humphreys et al., 2010). Phenocrysts of

plagioclase, orthopyroxene, amphibole and quartz display varied and complex textures indicative

of disequilibrium, categorised in detail by Murphy et al. (2000) and Humphreys et al. (2009).

These textures have been used to infer the repeated reheating of the shallow silicic body and

have been linked to magmatic ascent by decompression-induced breakdown rims in amphiboles

(Rutherford & Devine, 2003).

Mafic enclaves comprise a minor but ubiquitous component of the eruptive material (Barclay et

al., 2010), with their petrology also having been extensively characterised (Murphy et al., 2000;

Plail et al., 2014; Christopher et al., 2014). The whole rock composition is basaltic to basaltic-

andesitic, ranging in SiO2 from 49 - 57 wt.% (Plail et al., 2014; Christopher et al., 2014). The

enclaves have a diktytaxitic groundmass texture of framework plagioclase. This is indicative of

rapid cooling by quench crystallisation (Bacon, 1986). The groundmass assemblage consists of

plagioclase ± amphibole ± orthopyroxene ± clinopyroxene + Fe-Ti oxides + trace amounts of

apatite + interstitial glass. Glass abundance is variable, and is high-Si rhyolite of 71-78 wt.%

silica (Plail et al., 2014; Humphreys et al., 2010). Enclaves contain large (2-3 cm) crystals of

plagioclase, amphibole and orthopyroxene, interpreted as inherited phenocrysts from the host

andesite (Plail et al., 2014; Humphreys et al., 2009). These crystals typically display a range of

disequilibrium textures attributed to both reheating episodes experienced when resident in the

silicic reservoir, and then disequilibrium induced by transferring into the hotter, basaltic melt

of the enclave. This includes plagioclase with sieved cores indicative of pervasive resorption,

rounded interiors from surficial resorption, orthopyroxene overgrown by clinopyroxene at the

rim, and reacted amphiboles with a range of breakdown textures (Humphreys et al., 2009). Plail

et al. (2014) designed a classification for enclaves from Phase IV-V as Type A, B or C based

on their textural features, which are linked to the differences in mingling dynamics in their
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formation (Figure 1.5). Type A enclaves are typified by a high-Al amphibole-bearing ground-

mass, chilled margins at the contact between the enclave and host andesite, high vesicularity

(32 vol.% mean) and the most primitive compositions (49-52 wt.% SiO2). They are suggested

to form at plume margins by rapid quench crystallisation, with little hybridisation between the

mingling magmas. Type B enclaves lack groundmass amphibole and chilled margins, are of

lower vesicularity (13 vol.% mean), are more evolved (53-57 wt.% SiO2), and they are thought

to have formed from a ‘hybrid layer’ that develops between the silicic and mafic magmas. Type

C enclaves are composite, with at minimum two distinct textural zones, proposed to form from

mingling between the mafic melt with the hybrid layer.
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2 Methods

Here we present the methods used to produce and validate the 3D crystal shape estimates. First,

conversion of 2D crystal intersection data to 3D shape and size estimates will be discussed, ex-

plaining the use of the programs ShapeCalc (Mangler et al., 2022) and CSDCorrections (Higgins,

2000). Then, the method of collecting BSE maps, chemical maps and geochemical data of crystal

phases using SEM-EDS will be discussed. Approaches to crystal intersection measurement will

be considered, with three methods tested and recommendations given. Different approaches

to crystal intersection outlining will then be tested to establish an accurate, consistent and

reproducible method used to collect 2D size-shape measurements. This data is then used to

produce 3D shape estimates of crystals. Finally, statistical validation tests are outlined to ex-

plore whether the suggested shape-size relationships in groundmass crystals could be explained

by statistical artefacts.

2.1 2D intersection data to 3D size-shape estimates

2.1.1 ShapeCalc

Crystal intersections in thin section are a 2D expression of 3D crystals. 2D intersection width

and length (w and l) can be used to constrain 3D shape (Short:Intermediate:Long dimensions;

S :I :L) using stereological conversion (Higgins, 1994; Higgins, 2000; Higgins, 1996). It was

established that for a crystal population that is randomly oriented, the same shape and the

same size:

• Modal 2D length (l) approximates the intermediate dimension (I );

• Modal 2D width (w) approximates the short dimension (S );

– Therefore the mode of the 2D intersection w/l distribution provides the 3D S/I of

the crystal.

• Skewness of the w/l distribution (+ 0.5) can provide an estimate of intermediate/long

dimension (I/ L);

– Long dimension (L) alone is challenging to constrain, due to the lack of intersections

along the long axis in thin section.

The requirements to enable conversion of 2D intersection data to 3D shape measurements are

therefore:

• Understanding of crystal orientation;

• Understanding of 3D crystal size;

• Robust 2D w/l measurements, obtained by measuring a sufficient number of 2D intersec-

tions with an accurate, consistent and reproducible method.

The program ShapeCalc (Mangler et al., 2022) was used to constrain 3D crystal shape from 2D

intersection w and l. 200 intersections is the minimum sufficient number for analysis (Mangler
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et al., 2022; Mock & Jerram, 2005). ShapeCalc compares the w/l distribution of input sample

data to 2618 model w/l distributions, spanning S :I :L between 1:1:1 to 20:20:20. The best-

fit 3D shape is calculated by maximising Rc
2, the cumulative measure of the goodness-of-fit

between the sample and model distributions. Rc
2 ≥0.975 indicates satisfactory model fits.

Rc
2 <0.975 indicates a larger discrepancy between sample and model w/l distributions than

reasonably expected for a natural sample (Mangler et al., 2022). Model w/l distributions are

derived from the program CSDCorrections (Higgins, 2000; Chapter 2.1.2). In this program, an

orthogonal solid is randomly sectioned 50,000 times to create a representative w/l distribution.

The ShapeCalc database includes 20,000 intersections per model shape distribution.

Figure 2.1: a) ShapeCalc output featuring the best-fit 3D shape estimate illustrated on a
Zingg diagram, alongside a comparisons of the w/l distributions and the cumulative frequency
distributions of the natural sample intersection data and the best-fit model shape. In this
example, the natural sample data has a best-fit 3D shape of 1.00:1.55:6.40. The high Rc

2

suggests a good fit of the sample data to the model shape, illustrated by the comparison of w/l
distributions. b) Example Zingg diagram from Mangler et al. (2022). This plot visualises 3D
shape by plotting S/I against I/L. The dominant 2D intersection shape of equant and prismatic
3D shapes has S=I. The dominant 2D intersection shape of tabular and bladed 3D shapes has
I>S. Contours of equal S/L become more closely spaced towards equant shapes.

Figure 2.1a illustrates a ShapeCalc output for a good sample-model fit. The best-fit S :I :L and

Rc
2 are presented alongside the ratio of S/I and I /L. Uncertainty is given as one standard

deviation (1 SD) of the 300 best model fits. Uncertainty for I /L is typically large, reflecting the

difficulty in constraining the L dimension. The best-fit 3D shape estimate is plotted on a Zingg

diagram of S/I against I /L. The 300 best-ranked S :I :L estimates are plotted, colour-coded to

their Rc
2 value. Figure 2.1b presents a blank Zingg diagram. Each corner defines a shape: S

≈ I ≈ L, ‘equant’; S ≈ I < L, ‘prismatic’; S < I ≈ L, ‘tabular’; and S < I < L, ‘bladed’.

3D shape estimates of groundmass crystals in the enclave samples will be described using this

terminology. In Figure 2.1a, a comparison of the w/l distributions and cumulative frequency

distributions illustrate goodness-of-fit between the natural sample data and the best-fit model

shape. The sharpness of the peaks in the model w/l distributions is unlikely to be replicated
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by the natural sample w/l distributions. This occurs for two reasons (Higgins, 1994). Natural

crystals are much more ‘irregular’ in shape than model orthogonal solids; model shapes will

have sharp corners, whilst natural crystals usually have rounded or multi-faceted corners. Also,

there is a much smaller number of natural sample intersections (typically a few hundred) than

the 20,000 model intersections..

2.1.2 Crystal Size Distributions

3D crystal size was constrained using CSD analysis. As discussed in Chapter 1.1.2, CSDCor-

rections (Higgins, 2000) was used, with the required inputs as follows.

• Intersectionw and l measurements. At minimum a few hundred intersections are required

for accurate results. Intersection measurement will be discussed in Chapter 2.3.

• A 3D shape estimate for the entire crystal population in the form S :I :L. This was calcu-

lated using ShapeCalc.

• The measured area (mm2) of the sample, i.e. the area of the BSE map minus the crystals

of the phase of interest that intersect the image edge. The area of the BSE map was

calculated using the dimensions of the image as reported in Fiji. Crystals of the phase

of interest that intersect the image edge were outlined, their total area calculated, which

was then subtracted from the area of the BSE map to give measured area of the sample.

• Volumetric Phase Abundance (VPA), i.e. the combined area of all measured intersections

expressed as a percentage of the total measured area. All CSDs are therefore corrected

to phase abundance. In a sample with crystals of no preferred orientation (‘massive’), the

crystal area fraction is equivalent to the crystal volume fraction (Higgins, 2002; Delesse,

1847).

• The average intersection ‘roundness’, measured on a scale of 1.0 - 0.0 in 0.1 increments,

where 0.0 = block and 1.0 = ellipsoid. Roundness ranged between 0.1-0.3 for different

crystal phases.

• The fabric of the sample, from the options ‘massive’, ‘foliated’ or ‘lineated’. All samples

had ‘massive’ fabric.

• An estimate of vesicularity expressed as percentage of the total measured area. This was

estimated using thresholding in Fiji. Vesicularity ranged between ∼15 % - ∼40 %.

• A chosen number of bins per decade in the size distribution plot. CSDs were consistently

reported using 5 bins per decade. More bins can introduce error due to the lower number of

intersections per bin, and the greater number of corrections necessary during stereological

conversion (Higgins, 2000).

2.1.3 Binning method

To explore how crystal shape changes with size, 2D intersection data were binned by size

fraction. The width and length measurements in each size fraction were input into ShapeCalc
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to produce best-fit 3D shape estimates. Two approaches were used to define size bins.

Initially, intersection populations were binned according to breaks in slope at certain sizes

(lengths) on their CSD (Figure 2.2). As CSDCorrections uses a singular 3D shape estimate of

the entire crystal population, it was thought that if shape did change with size in a population,

this might be reflected in the CSD by breaks in slope of the distribution curve. Whilst CSDs

were consistently reported in Chapter 4 with 5 bins per decade, CSDs with up to 8 bins per

decade were created to show any minor breaks in slope present in the smallest sizes that may be

obscured using only 5 bins per decade. Identifying breaks in slope helped suggest some size bins

in the plagioclase populations. However, this approach proved unhelpful for binning the mafic

phases; no breaks in slope correlating with change in shape were identified in the orthopyroxene

and amphibole cases. Also, many factors have been attributed to causing breaks in slope in

CSDs, for example a sequence of two nucleation events (Marsh, 1998). It cannot be certain that

a change in shape with size is what produced breaks in slope in this case.

Figure 2.2: BEL1B-A plagioclase CSD, using 10 bins per decade. Breaks in slope used to
suggest lengths to bin 2D intersection data are marked on the curve, alongside corresponding
ShapeCalc outputs for binned intersection data.

A second approach to define bins was to split each intersection population into two sub-

populations, either side of a threshold length, i.e., ‘intersections greater than a certain length’

and ‘intersections below a certain length’. Figure 2.3 illustrates this process. Here, a crystal

population of 1500 crystals was split into counterpart sub-populations, the first being the ‘200

largest intersections’, with the rest constituting the ‘1300 smallest intersections’. The popula-

tion was then systematically split into counterparts every hundred intersections: the ‘300 largest

intersections‘ paired with the ‘1200 smallest intersections’, the ‘400 largest intersections’ paired

with the ‘1100 smallest intersections’. This process continued until counterparts reached the

‘1300 largest intersections‘ paired with the ‘200 smallest intersections‘. Each counterpart
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Figure 2.3: Example of counterpart sub-population approach for plagioclase in MVO-1591A,
illustrated with ShapeCalc Zingg diagram outputs. The population of 1500 crystals was split
into counterpart sub-populations, starting with the ‘200 largest intersections’ and the ‘1300
smallest intersections’. Whilst splitting into sub-populations was carried out in hundred crystal
increments, here the results are shown for every other increment. The suggested size bins are
shown.

sub-population was input into ShapeCalc to produce a best-fit 3D shape estimate (Figure 2.3).

The 3D shape estimates were used to examine if, and if so, how, shape changed with size

fraction.

Both approaches were applied to all intersection data sets to identify if there was any change

in shape with size within a population. Where bins could be identified, it was aimed to have at

minimum 200 intersections per bin in order to have a sufficient number of crystal intersections

for analysis (Chapter 2.1.2). This was not always achievable for the largest size bins as there is

a lower abundance of the largest crystals in all samples, except for plagioclase in TRA10A.
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2.2 SEM data acquisition

2.2.1 BSE maps

Back-scattered electron (BSE) maps were acquired with a Hitachi SU-70 field emission Scanning

Electron Microscope (SEM) at Durham University (UK), using 15 kV accelerating voltage and

15 mm working distance. Representative areas of groundmass texture in each thin section of a

sample were identified under an optical microscope. The specific area selected to be mapped

needed to include an easily identifiable feature, such as a distinctive large phenocryst, that

would allow the chosen area to be located using optical microscopy, marked on a flatscan of the

thin section, and then located again using the SEM.

The purpose of acquiring BSE maps was to outline and measure groundmass crystal phases of

plagioclase, orthopyroxene and amphibole. The requirements of the maps were therefore:

1. Images were taken at sufficient magnification and resolution so that crystals were clear

enough to outline accurately, with a minimum size of ∼1 µm ;

2. Greyscale values of each crystal phase (a function of mean atomic number of each phase,

and brightness and contrast settings of the image) were distinct enough that phases could

be distinguished from each other;

3. Images included a sufficient number of crystal intersections for analysis across all crystal

lengths (minimum ∼ a few hundred crystal intersections per size fraction (Mangler et al.,

2022; Mock & Jerram, 2005)).

To achieve this, test images were taken in the imaging and EDS analysis software Aztec to

establish optical image properties by varying magnification, image resolution, pixel dwell time

and brightness and contrast. Test images were acquired using two thin sections representing

end-member cases of groundmass crystal size: BEL1B-A for the finest-grained samples, and

TRA10A for the coarsest-grained. BSE maps were acquired using the decided optimal properties

of 2048 x 2048 pixel resolution, 45 µs dwell time, at x 300 magnification for the coarsest-grained

samples and x 500 magnification for finer-grained samples. Mapped areas ranged between 2.5

mm2 - 17 mm2, consisting of 150-250 individual BSE images stitched together in Aztec in order

to image a sufficient number of crystal intersections. The largest areas were required for the

coarsest-grained samples. The minimum crystal intersection length that could be imaged in

high enough resolution to measure was ∼1 µm. The maximum intersection length that was

imaged ranged from ∼250 µm in the finest-grained sample to ∼750 µm in the coarsest-grained

sample.

2.2.2 Chemical maps

Chemical maps were acquired with an Oxford Instruments Xmax50 EDS analyser using 15 kV

accelerating voltage, 15 mm working distance, 400 s dwell time per frame, process time 4, 1048

x 1048 pixel resolution, at x 300 magnification for all samples. Using lower resolution than the

BSE maps was appropriate as the purpose of the chemical maps was only to visually differentiate

the mafic phases of orthopyroxene, clinopyroxene, amphibole and apatite. These phases have
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extremely similar greyscale values in BSE due to their similar mean atomic number relative to

the rest of the sample. A chemical map of calcium, magnesium and phosphorus content allows

these phases to be distinguished from each other (Figure 2.4). Orthopyroxene contains high

MgO (24-25 wt.%) and low CaO (1-2 wt.%) relative to low MgO (13-15 wt.%) and high CaO

(17-20 wt.%) in clinopyroxene. Amphibole contains intermediate MgO (13-16 wt.%) and CaO

(11-12 wt%).

Figure 2.4: Comparison of a BSE map and chemical map for the same area. a) Key showing
the highlight colour and chemical map colour associated with each phase. b) BSE map where
the brightness and contrast has been adjusted to create the maximum disparity in greyscale
values possible between the mafic phases, highlighting the difficulty in distinguishing them using
BSE intensity alone. Examples of each of the mafic phases have been outlined. c) Chemical
map of the same area for calcium, magnesium and phosphorus. The mafic phases are more
clearly distinguished by colour. d) Area with a complex intergrowth of mafic phases, outlined
in both BSE and chemical map, located in the white rectangle in (b) and (c).
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2.2.3 Representative geochemistry

Representative geochemistry of phases was acquired using SEM-EDS point analyses. A Hitachi

SU-70 field emission Scanning Electron Microscope (SEM) with an Oxford Instruments Xmax50

EDS analyser was used to collect data in Aztec. Conditions used were 15 kV accelerating voltage,

15.0 mm working distance, acquisition time of 60 s and process time 4. 3-5 point analyses were

taken for each crystal analysed, and then averaged.

Analysis of standards was conducted to estimate uncertainty in geochemical data, presented in

Table 2.1. 5 point analyses were taken of each standard, reported in Table 2.1 as the mean

value for each standard. The % difference between the mean value and the standard accepted

value provides a measure of accuracy. Standard deviation provides a measure of precision. The

analytical uncertainty is the 1 sigma error as reported in Aztec.

Table 2.1: Analysis of standards to estimate error in geochemical analyses. 5 point analyses
were taken of each standard and averaged to give a mean value in oxide wt.%.

Standards Reference Label NaO MgO Al2O3 SiO2 K2O CaO TiO2 Cr2O3 MnO FeOtotal Total

Labradorite NMNH 115900 Mean 3.68 0.18 30.42 52.04 0.15 13.07 0.04 0.42 100.00
Accepted value 3.45 0.15 30.91 51.25 0.18 13.64 0.05 0.01 0.49 100.13
% difference 6.7 22.7 -1.6 1.5 -18.9 -4.2 -20.0 -14.3
Standard deviation 0.02 0.01 0.04 0.06 0.02 0.06 0.02 0.02
Analytical uncertainty 0.03 0.02 0.06 0.08 0.01 0.04 0.03 0.03

Anorthite NMNH 137041 Mean 0.48 0.08 35.76 44.37 0.02 18.83 0.01 0.46 100.00
Accepted value 0.53 <0.02 36.03 44.00 0.03 19.09 0.03 0.62 100.33
% difference -9.1 280.0 -0.7 0.8 -46.7 -1.4 -80.0 -25.5
Standard deviation 0.01 0.01 0.04 0.12 0.01 0.09 0.01 0.02
Analytical uncertainty 0.02 0.02 0.06 0.08 0.01 0.05 0.03 0.03

Anorthoclase NMNH 133868 Mean 7.53 0.05 20.42 68.68 2.57 0.60 0.15 100.00
Accepted value 9.31 20.12 66.44 2.35 0.87 0.2 99.29
% difference -19.1 1.5 3.4 9.4 -30.6 -23.0
Standard deviation 0.03 0 0.03 0.02 0.03 0.02 0.02
Analytical uncertainty 0.03 0.02 0.05 0.09 0.02 0.02 0.03

Augite NMNH 164905 Mean 0.85 17.18 7.74 50.90 0.02 17.24 0.48 0.87 0.13 4.59 100.00
Accepted value 0.84 17.32 8.03 50.48 0.01 17.3 0.51 0.85 0.12 4.81 100.26
% difference 1.2 -0.8 -3.7 0.8 120.0 -0.4 -6.3 2.6 10.0 -4.6
Standard deviation 0.01 0.02 0.03 0.05 0.01 0.06 0.02 0.02 0.03 0.04
Analytical uncertainty 0.02 0.05 0.04 0.08 0.01 0.05 0.03 0.03 0.03 0.05

Diopside NMNH 117733 Mean 0.27 18.16 0.35 55.76 25.26 0.20 100.00
Accepted value 0.25 17.79 0.11 55.81 25.28 0.04 0.25 99.53
% difference 8.8 2.1 214.5 -0.1 -0.1 -20.0
Standard deviation 0.06 0.03 0.1 0.08 0.13 0.04
Analytical uncertainty 0.02 0.06 0.03 0.09 0.01 0.02 0.03 0.03 0.03 0.07

Hypersthene USNM 746 Mean 0.07 27.53 1.10 55.44 0.01 1.23 0.10 0.67 0.45 13.41 100.00
Accepted value 0.05 26.79 1.23 54.09 0.05 1.52 0.16 0.75 0.49 15.22 100.25
% difference 44.0 2.8 -10.7 2.5 -72.0 -19.2 -35.0 -10.9 -8.6 -11.9
Standard deviation 0.02 0.2 0.1 0.09 0.01 0.1 0.02 0.02 0.01 0.14
Analytical uncertainty 0.02 0.06 0.03 0.09 0.01 0.02 0.03 0.03 0.03 0.07

Hornblende NMNH 143965 Mean 2.51 13.04 14.78 41.74 2.06 10.28 5.00 0.11 10.48 100.00
Accepted value 2.6 12.8 14.9 40.37 2.05 10.3 4.72 0.09 11.25 100.02
% difference -3.5 1.8 -0.8 3.4 0.7 -0.2 5.8 24.4 -6.8
Standard deviation 0.07 0.14 0.17 0.24 0.03 0.19 0.11 0.02 0.06
Analytical uncertainty 0.03 0.04 0.05 0.08 0.02 0.04 0.04 0.03 0.06

2.3 2D size-shape data collection

2.3.1 Intersection measurement approaches

2D intersection length and width are required to estimate 3D shape using ShapeCalc (Mangler

et al., 2022). Potential approaches to constrain length and width include best-fit ellipse, direct

line measurements and minimum bounding rectangles (Table 2.2; Figure 2.5). Measurements

were collected using Fiji, a version of image processing software ImageJ (Schindelin et al.,
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2012). Best-fit ellipse and bounding rectangle require the intersections to be outlined. In Fiji,

an overlay is a layer of outlines from which size-shape data can be extracted.

Best-Fit Ellipse

The most common approach is best-fit ellipse, typically used in the construction of Crystal Size

Distributions (e.g., HIggins, 2000). In Fiji, this can be achieved by outlining each intersection to

create an overlay, and then fitting an ellipse of the same area, orientation and centroid to each

intersection in the overlay, with major and minor axes measurements equating to length and

width. The program can automate fitting an ellipse to each intersection, meaning data collection

is straightforward and time-efficient as measurements can be extracted directly from the overlay

without extra work additional to outlining. Length and width measurements are collected

simultaneously but are in separate columns in the output, removing the need to manually

sort data. However, the process of outlining intersections can be time-consuming. It can be

complicated to distinguish individual intersections if crystals are intergrown (Chapter 2.4), as

they are in these enclave samples. Further difficulties arise in defining full outlines if the thin

section used to acquire the BSE maps is of poor quality, with fractured crystals. If the extent

of an intersection has to be estimated, this can introduce random error into measurements.

However, since fitting ellipses is automated by Fiji, it is a consistent and reproducible approach

between and within samples.

Holness (2014) notes that for rectangular intersections (i.e., a pair of orthogonal lines), the

best-fit ellipse fitted to the rectangular outline by Fiji consistently results in an aspect ratio

(length/width) higher than the intersection outline aspect ratio by an exponent of 1.5. This

is because the area of the ellipse has to be equal to the area of the intersection outline, and

thus for rectangular intersections the ellipse has a greater length than the intersection outline.

This is illustrated in Figure 2.5a, where the length of the best-fit ellipse is visually slightly

longer than the length of the outline. The w:l ratio for the best-fit ellipse approach (0.31) is

slightly lower than both the direct line (0.34) and bounding rectangle (0.36) approaches. Holness

(2014) argues there is an absolute offset between best-fit ellipse measurements for rectangular

intersections and the length of the intersection outline, and there is a need to account for this

uniform scaling. This argument is relevant to the enclave samples as they contain many crystals

with rectangular intersections. This point is given further consideration in Chapter 2.3.2.

Direct Line Measurements

Another common approach is direct line measurements (Cashman, 1992; Mangler et al., 2022).

Intersection length and width are measured manually, using a line tool in Fiji. Outlines of

intersections are not required. For ‘regular’ shapes, direct line measurements follow the obvious

crystallographic axes and are perpendicular, as illustrated in Figure 2.5a. For ‘irregular’ shapes

(Figure 2.5b and 2.5c), a better approximation of length and width is to take measurements

at certain points on the intersection boundary (personal communication, Mangler, 2024). In

‘irregular’ shapes such as Figure 2.5b, the crystallographic axis is not

20



T
a
b
le

2
.2
:
C
om

p
ar
is
on

of
in
te
rs
ec
ti
on

m
ea
su
re
m
en
t
ap

p
ro
ac
h
es
:
b
es
t-
fi
t
el
li
p
se
,
d
ir
ec
t
li
n
e
m
ea
su
re
m
en
ts
,
a
n
d
m
in
im

u
m

b
o
u
n
d
in
g
re
ct
a
n
g
le
s.

M
e
a
su

re
m
e
n
t
A
p
p
ro

a
ch

F
u
n
c
ti
o
n

A
d
v
a
n
ta

g
e
s

D
is
a
d
v
a
n
ta

g
e
s

B
es
t-
fi
t
E
ll
ip
se

F
it
s
an

el
li
p
se

of
th
e
sa
m
e

ar
ea
,
ce
n
tr
oi
d
an

d
or
ie
n
ta
-

ti
on

to
ea
ch

in
te
rs
ec
ti
on

.
M
a
jo
r
an

d
m
in
or

ax
es

m
ea
-

su
re
m
en
ts

eq
u
at
e
to

in
te
r-

se
ct
io
n
le
n
gt
h
an

d
w
id
th
.

•
C
an

b
e
se
m
i-
au

to
m
at
ed

,
w
it
h
n
o
n
ee
d
fo
r
d
at
a
so
rt
-

in
g.

•
E
n
su
re
s
co
n
si
st
en
t
an

d
re
-

p
ro
d
u
ci
b
le

ap
p
ro
ac
h
b
e-

tw
ee
n
sa
m
p
le
s
b
ec
au

se
fi
t-

ti
n
g
el
li
p
se
s
is

au
to
m
at
ed

b
y
F
ij
i.

•
R
eq
u
ir
es

a
n
ov
er
la
y
o
f
o
u
t-

li
n
ed

in
te
rs
ec
ti
o
n
s
w
h
ic
h

ca
n
b
e
ti
m
e-
co
n
su
m
in
g
to

g
en

er
a
te

a
n
d
m
ay

in
tr
o
-

d
u
ce

ra
n
d
o
m

er
ro
r
if
o
u
t-

li
n
es

h
av
e
to

es
ti
m
a
te
d
.

D
ir
ec
t
L
in
e
M
ea
su
re
m
en

ts
In
te
rs
ec
ti
on

le
n
gt
h
an

d
w
id
th

ar
e
m
ea
su
re
d
m
an

-
u
al
ly

u
si
n
g
a
li
n
e
to
ol
.

•
D
o
es

n
ot

re
q
u
ir
e
ou

tl
in
es

to
co
ll
ec
t
m
ea
su
re
m
en
ts
,

w
h
ic
h
m
ay

b
e
co
n
ce
p
tu
al
ly

m
or
e
ro
b
u
st

fo
r
in
te
rg
ro
w
n

cr
y
st
al
s.

•
M
a
n
u
a
l
m
ea
su
re
m
en
ts

m
ay

in
tr
o
d
u
ce

er
ro
r
in

en
su
ri
n
g

le
n
g
th

a
n
d
w
id
th

a
re

a
lw
ay
s

p
er
p
en

d
ic
u
la
r
a
n
d
in

th
e

co
rr
ec
t
o
rd
er
,
in
tr
o
d
u
ci
n
g

th
e
n
ee
d
fo
r
d
a
ta

so
rt
in
g
.

•
D
ec
id
in
g
h
ow

to
m
ea
su
re

co
m
p
le
x
,
‘i
rr
eg
u
la
r’

sh
a
p
es

ca
n
u
n
d
er
m
in
e
h
ow

co
n
si
s-

te
n
t
a
n
d
re
p
ro
d
u
ci
b
le

th
is

a
p
p
ro
a
ch

is
.

M
in
im

u
m

B
o
u
n
d
in
g
sp
a
ce

R
ec
ta
n
gl
e

F
it
s
a
b
ou

n
d
in
g
b
ox

th
at

d
es
cr
ib
es

th
e
m
ax

im
u
m

ex
te
n
t
of

th
e
in
te
rs
ec
ti
on

.
H
ei
gh

t
an

d
w
id
th

eq
u
at
es

to
in
te
rs
ec
ti
on

le
n
gt
h
an

d
w
id
th
.

•
C
an

b
e
se
m
i-
au

to
m
at
ed

,
w
it
h
h
u
n
d
re
d
s
of

le
n
gt
h
an

d
w
id
th

m
ea
su
re
m
en
ts

co
l-

le
ct
ed

in
m
in
u
te
s,

w
it
h
ou

t
th
e
n
ee
d
fo
r
d
at
a
so
rt
in
g.

•
R
eq
u
ir
es

a
n
ov
er
la
y
o
f
o
u
t-

li
n
ed

in
te
rs
ec
ti
o
n
s
w
h
ic
h

ca
n
b
e
ti
m
e-
co
n
su
m
in
g
to

g
en

er
a
te

a
n
d
m
ay

in
tr
o
-

d
u
ce

ra
n
d
o
m

er
ro
r
if
o
u
t-

li
n
es

h
av
e
to

es
ti
m
a
te
d
.

21



perpendicular, and therefore length and width will not be taken perpendicular to each other.

Assessing whether intersections are ‘regular’ or ‘irregular’ shapes, and therefore deciding the

appropriate place to take length and width measurements, takes time and consideration. Direct

line measurements have been suggested to be conceptually more robust for measuring intergrown

crystals (Mangler et al., 2022). This is because measurements can be taken without defining

full outlines, the process of which may introduce random errors if intersection shape has to be

estimated.

This method requires taking twice as many measurements as there are intersections. If length

and width are taken concurrently for each intersection, extracted data must be sorted to separate

length and width measurements, in order to calculate aspect ratio. The need to sort data can

be avoided by taking all length measurements first, followed by width. This requires that

each intersection is measured in the exact same order twice, which is susceptible to human

error. For the most square intersections, where length and width are of similar value, it is

sometimes challenging to ensure the longest axis is attributed to length and the shorter to width;

confusing these values necessitates additional manual data sorting. Ensuring that measurements

are taken exactly perpendicular to each other for shapes where the crystallographic axes are

perpendicular (i.e. ‘regular’ shapes, Figure 2.5a) can be difficult. This is required to ensure

accurate measurements are taken in a consistent and reproducible way between rectangular

intersections.

Minimum Bounding Rectangle

Using a ‘minimum bounding rectangle’, the program fits a bounding box that describes the

maximum extent of the intersection. The width and height of the box describes the measured

width and length of the intersection (Figure 2.5). This approach is not as time-efficient as best-

fit ellipse as it cannot be automated to the same extent, i.e. extracted directly from the outline

overlay. Instead, bounding rectangles must be fit to each intersection in the overlay, which

can be semi-automated and achieved relatively quickly (bounding rectangles fit to hundreds of

intersections in minutes). However, the process of outlining intersections is time-consuming.

In theory, the bounding rectangle approach addresses some of the issues with direct line mea-

surements. Width and length of the intersection are measured simultaneously, removing the

need to sort data to separate measurements. It removes human error in ensuring that width

and length measurements are taken exactly perpendicular for rectangular intersections (Figure

2.5a). Unlike best-fit ellipse measurements, bounding rectangle length measurements for rect-

angular intersections do not have an absolute offset greater than the intersection outline length

(Figure 2.5a). It is a much quicker data collection process than taking individual direct line

measurements. It was thought that minimum bounding rectangle might be a good approxima-

tion of direct line measurements for ‘regular’ shapes (Figure 2.5a) as rectangle measurements

usually follow the crystallographic axes. Rectangle measurements are unlikely to be a good

match to direct line measurements for ‘irregular’ shapes (Figure 2.5b).
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Figure 2.5: A comparison of intersection shapes illustrating how different approaches would
measure the same shape, the resulting w:l value, how solidity is measured (see Chapter 2.3.1 for
further detail) and the resulting solidity value. a) A ‘regular’ shape. b) An ‘irregular’ shape.
c) An ‘irregular’ shape. d) A highly intergrown shape with relatively low solidity. e) A highly
intergrown shape with relatively low solidity.

2.3.2 Measurement comparison tests

Tests of the measurement approaches were run to decide which would be most appropriate for

the enclave material. Plagioclase crystals were outlined in two end-member samples of ground-

mass crystal size: MVO-1591A for the least intergrown, finest-grained sample, and TRA10A

for the most intergrown, coarsest-grained sample. 300 intersections and 200 intersections were

outlined and measured in MVO-1591A and TRA10A respectively. 2D width and length mea-
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surements were taken using best-fit ellipse, direct line measurements and minimum bounding

rectangle approaches. 2D intersection measurements were converted to 3D shapes estimates

using ShapeCalc (Table 2.3).

The percentage deviation of the w:l ratios estimated for the same intersection using different

approaches was calculated to compare how each approach measures individual intersections

(Table 2.4, Figure 2.7 and 2.9). For example, Figure 2.7a presents the percentage deviation of

the w:l ratio of direct line measurements relative to best-fit ellipse measurements. 0 % deviation

means that there is no difference in the w:l ratio between the two approaches for a particular

intersection. A positive deviation means that direct line measurements overestimate the w:l

ratio relative to the best-fit ellipse approach, and a negative deviation means that the direct

line measurements underestimate the w:l ratio relative to the best-fit ellipse approach.

Percentage deviation is plotted against solidity. Solidity describes the density of a shape. It is

defined as the area of an object divided by the area of a convex hull drawn around the object,

illustrated in Figure 2.10 and Figure 2.5. A value of 1 indicates a solid shape, and a value of

<1 indicates a shape with an uneven outline. Intergrown crystals tend to have more uneven

intersection outlines, and therefore lower solidity values, than non-intergrown crystals (Figure

2.5d and Figure 2.5e).

Table 2.3: 3D shape estimates from 2D intersection width and length measurements for each
different measurement approach.

Sample Measurement Approach na S I L Rc
2 S/I ± 1SDb I/L ± 1SDb

MVO-1591A Best-fit ellipse 300 1.00 2.80 5.60 0.967 0.36 ± 0.06 0.50 ± 0.25
Direct line measurements 300 1.00 2.70 4.80 0.947 0.37 ± 0.07 0.56 ± 0.25
Bounding rectangle 300 1.00 3.00 5.20 0.967 0.33 ± 0.06 0.58 ± 0.24

TRA10A Best-fit ellipse 200 1.00 2.30 4.80 0.989 0.43 ± 0.07 0.48 ± 0.25
Direct line measurements 200 1.00 1.80 6.40 0.974 0.56 ± 0.07 0.28 ± 0.24
Bounding rectangle 200 1.00 2.30 3.80 0.981 0.43 ± 0.07 0.61 ± 0.25

footnote in the pinkglitterglue style of coding. trying to avoid this sort of thing.
aNumber of intersections outlined and measured.
bOne standard deviation of the 300 best model fits in ShapeCalc (Mangler et al., 2022).

Table 2.4: w:l percentage deviation between each test measurement approach.

w:l % deviationpinkglitterglue

Sample Measurement Comparison n Mean ± 10 %a ± 20 %b

MVO-1591A Direct line measurements relative to best-fit ellipse 300 8.8 59.7 82.3
Bounding rectangle relative to direct line measurements 300 4.2 64.7 89.7
Best-fit ellipse relative to bounding rectangle 300 2.5 73.7 92.7

TRA10A Direct line measurements relative to best-fit ellipse 200 12.9 53.5 78.5
Bounding rectangle relative to direct line measurements 200 -1.6 52.0 79.5
Best-fit ellipse relative to bounding rectangle 200 7.1 59.5 82.5

footnote in the pinkglitterglue style of coding. trying to avoid this sort of thing.
aThe percentage of the total number of intersections that lie between ± 10 % deviation.
bThe percentage of the total amount of intersections that lie between ± 20 % deviation.

MVO-1591A

There is no significant difference in the 3D shape estimate between any of the three approaches

in the least intergrown, finest-grained sample (Table 2.3). Best-fit ellipse produces a 3D shape

estimate with S/I and I /L of 0.36 ± 0.06 and 0.50 ± 0.25. Direct line measurements produce

a 3D shape estimate with S/I and I /L of 0.37 ± 0.07 and 0.56 ± 0.25. Bounding rectangle
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Figure 2.6: 2D w/l distributions of the best-fit model shape compared to the w/l distribution
of the measured intersections for a) best-fit ellipse, b) bounding rectangle and c) direct line
measurements.

produces a 3D shape estimate with S/I and I /L of 0.33 ± 0.06 and 0.58 ± 0.24. All best-fit

shape estimates are within uncertainty. Rc
2 values agree within 2 %. Direct line measurements

produce a slightly greater uncertainty, of 0.947 compared to 0.967 for both best-fit ellipse and

bounding rectangle. There is no significant difference in 3D shape estimate because the w/l

distributions of the intersections for each approach are so similar, and so have a similar best-fit

model shape (Figure 2.6). The lower Rc
2 for direct line measurements could be due to random

error introduced when measuring complex, intergrown shapes without the use of outlines.

Figure 2.7a compares the percentage deviation of the w:l ratios of direct line measurements

relative to best-fit ellipse. There is no clear trend with solidity. Direct line measurements tend

to overestimate relative to best-fit ellipse, on average by ∼9 % (Table 2.4; dashed line in Figure

2.7a). ∼82 % of direct line measurements fall within ± 20 % deviation. This suggests that the

w:l ratios produced by direct line measurements and best-fit ellipse are a good fit to each other

in this sample.
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Figure 2.7: The percentage deviation of w:l ratio measured for each intersection using different
approaches, against solidity, for sample 1591A. This sample is representative of the finest-grained
and least intergrown groundmass. Each point is an individual intersection. The green box de-
lineates ± 20 % deviation from 0 %. a) Direct line measurements relative to best-fit ellipse.
b) Bounding rectangle relative to direct line measurements. c) Bounding rectangle relative to
best-fit ellipse. Representative intersection shapes of the greatest negative deviations (underes-
timations, pink), 0 % deviations (green), and the greatest positive deviations (overestimations,
orange).
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Figure 2.7b compares the percentage deviation of the w:l ratios of bounding rectangle mea-

surements relative to direct line measurements. There is no clear trend with solidity. Direct

line measurements tend to overestimate relative to bounding rectangle, on average by ∼4 %

(Table 2.4; dashed line in Figure 2.7b). ∼90% of direct line measurements fall within ± 20

% deviation. Bounding rectangle and direct line measurements are a good fit to one another

regardless of solidity in this sample. This suggests that bounding rectangles could be used as

an approximation of direct line measurements in samples with less intergrown groundmass.

Figure 2.7c compares the percentage deviation of the w:l ratios of bounding rectangle measure-

ments relative to best-fit ellipse measurements. There is a trend with solidity, in that bounding

rectangle measurements tend to underestimate w:l ratio relative to best-fit ellipse for intersec-

tions with high solidity, and tend to overestimate for intersections with low solidity. This is

illustrated with representative examples of intersection shapes for the greatest negative devi-

ations, the greatest positive deviations and 0 % deviations. The 0 % deviations and greatest

negative deviations tend to be intersections with higher solidity and clear crystallographic axes.

The negative deviations are always within ± 20 %. Low solidity shapes with high positive

deviations lack clear crystallographic axes, have uneven outlines, and exceed + 20 % deviation

(orange intersection shapes in Figure 2.7c). Overall, bounding rectangle measurements tend to

overestimate relative to best-fit ellipse, on average by ∼3 % (dashed line in Figure 2.7c). ∼93

% of intersections fall within ± 20 % deviation. This suggests that the bounding rectangle and

best-fit ellipse approach are generally a good fit to each other. However, low solidity shapes

with high positive deviations exceeding 20 % (orange intersection shapes in Figure 2.7c) show

that bounding rectangle and best-fit ellipse do not produce a good match in w:l ratio.

TRA10A

TRA10A is the coarsest-grained and most intergrown sample. The greater range of solidity

and lower mean solidity in TRA10A compared to 1591A (minimum solidity of ∼0.45 versus

∼0.65 respectively) reflects the more intergrown groundmass and more complex intersection

shapes in TRA10A. There is no significant difference in the 3D shape estimate produced by

the best-fit ellipse and bounding rectangle approach in the most intergrown, coarsest-grained

sample (Table 2.3). Best-fit ellipse and bounding rectangle produces a 3D shape estimate with

S/I = 0.43 ± 0.07 and I /L = 0.48 ± 0.25. There is a significant difference between these

estimates and the 3D shape estimate provided by direct line measurements (S/I = 0.56 ± 0.07

and I /L = 0.28 ± 0.24). The significant difference in 3D shape estimate is because the w/l

distribution of the intersections measured using direct line measurements is different to that

collected by the other two approaches, and so direct line measurements have a different best-fit

model shape. Figure 2.8 shows that for direct line measurements, the peak of the best-fit model

shape distribution is shifted towards the more equant intersection shape compared to that of

the other two approaches.

Figure 2.9a compares the percentage deviation of the w:l ratios of direct line measurements

relative to best-fit ellipse. There is no clear trend with solidity, similar to that of MVO-1591A.

Direct line measurements tend to overestimate relative to best-fit ellipse, on average by ∼13 %

(Table 2.4). ∼79 % of direct line measurements fall within ± 20 % deviation. Whilst
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Figure 2.8: 2D w/l distributions of the best-fit model shape compared to the w/l distribution
of the measured intersections for a) best-fit ellipse, b) bounding rectangle and c) direct line
measurements.

this suggests that these approaches are generally a good fit to each other, the greatest positive

deviations range to >90 %. For intersections with greatest positive deviations, the best-fit

ellipse and direct line measurements produce w:l ratios that are not a good match.

Figure 2.9b compares the percentage deviation of the w:l ratios of bounding rectangle measure-

ments relative to direct line measurements. There is a trend with solidity, in that bounding

rectangle measurements tend to underestimate w:l ratio relative to direct line measurements

for intersections with high solidity, and tend to overestimate for intersections with low solidity.

Overall, bounding rectangles tend to underestimate intersection w:l ratio relative to direct line

measurements, on average by ∼ -1.6 % (Table 2.4). ∼80 % of direct line measurements fall

within ± 20 % deviation. Bounding rectangle and direct line measurements are generally a

good fit to each other in this sample, suggesting that bounding rectangles maybe could be used

as an approximation of direct line measurements. However, as the greatest deviations range ±
80 % and the overall 3D shape estimates are significantly different, this suggests that
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Figure 2.9: The percentage deviation of w:l ratio measured for each intersection using dif-
ferent approaches, against solidity, for sample TRA10A. This sample is representative of the
coarsest-grained and most intergrown groundmass. Each point is an individual intersection.
The green box delineates ± 20 % deviation from 0 %. a) Direct line measurements relative
to best-fit ellipse. b) Bounding rectangle relative to direct line measurements. c) Bounding
rectangle relative to best-fit ellipse. Representative intersection shapes of the greatest negative
deviations (underestimations, pink), 0 % deviations (green), and the greatest positive deviations
(overestimations, orange).
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bounding rectangles are not as reliable as an approximation of direct line measurements in this

coarse-grained, more intergrown sample than in MVO-1591A, a less intergrown sample.

Figure 2.10: Illustration of the shape descriptor ‘solidity’ using representative intersection
shapes from the enclave samples. The dark blue outline defines the convex hull. An intersection
with a solidity value of 1.0 is a ‘solid’ shape, where the intersection area is equivalent to the
area of the convex hull. Solidity values decrease as intersection outlines become increasingly
complex due to intergrowth with other crystals, and the intersection area decreases relative to
the area of the convex hull.

Figure 2.9c compares the percentage deviation of the w:l ratios of bounding rectangle measure-

ments relative to best-fit ellipse measurements. There is a trend with solidity, in that bounding

rectangle measurements tend to underestimate w:l ratio relative to best-fit ellipse for intersec-

tions with high solidity, and tend to overestimate for intersections with low solidity. This is

illustrated with representative examples of intersection shapes for the greatest negative devi-

ations, the greatest positive deviations and 0 % deviations. Similarly to MVO-1591A, the 0

% deviations and greatest negative deviations (the negative deviations are always within ± 20

%), tend to be intersections with higher solidity and clear crystallographic axes. Low solidity

shapes with high positive deviations lack clear crystallographic axes, have uneven outlines, and

are often irregular shapes (similar to Figure 2.5b). Overall, bounding rectangle measurements

tend to overestimate relative to best-fit ellipse, on average by ∼ 7 %. ∼ 83 % of intersections

fall within ± 20 % deviation. This suggests that these approaches are a good fit for the majority

of intersections measured, but not as reliable for highly intergrown shapes.

Summary & Recommendations

Tests of best-fit ellipse, direct line measurements and bounding rectangles for the less inter-

grown, finer-grained sample MV0-1591A reveal that all three approaches produce similar re-

sults. All three produce the same 3D shape estimate with similar uncertainty. When comparing

the percentage deviation of w:l ratios between two approaches, the majority (∼80-90 %) of in-

tersections lie within ± 20 % deviation, indicating a good fit between approaches. Bounding

rectangle measurements appear to generally be a good approximation of direct line measure-

ments. This suggests that bounding rectangle measurements could be used in place of direct
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line measurements in samples with less intergrown groundmass that have intersections with

relatively high solidity. This is beneficial as fitting bounding rectangles is quicker than taking

individual direct line measurements, are less susceptible to human error in data collection and

do not require manual data sorting (Table 2.2).

In the coarser-grained, more intergrown sample of TRA10A, not all approaches produce similar

results. Best-fit ellipse and bounding rectangle produce the same 3D shape estimate with

similar uncertainty, however, direct line measurements produce a significantly different estimate.

Whilst the majority (∼80 %) of intersections lie within ± 20 % deviation when examining

percentage deviation of w:l ratios, suggesting a good fit between approaches, the range in

deviation contradicts this. Direct line measurements can overestimate best-fit ellipse by up to

∼90 %, bounding rectangles can overestimate direct line measurements by up to ∼70 % and

bounding rectangles can overestimate best-fit ellipse measurements by up to ∼60 % (Figure

2.9). The largest deviations tend to be for lower solidity intersections with complex outlines,

or ‘irregular’ shapes. Best-fit ellipse may underestimate width and length in absolute terms for

elongate, low solidity intersections, such as Figure 2.5d and 2.5e. This is because the area of the

ellipse has to equal the area of the intersection outline, and so for elongate shapes with complex

outlines, the ellipse visually underestimate length and width. Bounding rectangle always takes

length and width perpendicular, even for ‘irregular’ intersections where the crystallographic

axes is not perpendicular to one another. It can be a challenge to take direct line measurements

in an accurate, consistent and reproducible way in a highly intergrown sample with complex

intersections.

Having considered the results of these tests, it was decided to use best-fit ellipse to measure

intersections. It is an appropriate approach for both end-member cases of groundmass size and

degree of intergrowth. Whilst outlines are required, and take time to fit, they are necessary

to yield areal information crucial for further analyses, including to construct Crystal Size Dis-

tributions. Data collection of length and width is time-efficient as fitting ellipses is automated

by Fiji, with no manual data sorting required. As the majority of published data uses best-fit

ellipse, the use of best-fit ellipse in this study enables comparison with existing work.

As mentioned in Chapter 2.3.1, Holness (2014) notes that for rectangular intersections (i.e., a

pair of orthogonal lines), the best-fit ellipse fitted to the rectangular outline by Fiji consistently

results in an aspect ratio (length/width) higher than the intersection outline aspect ratio. For

these rectangular intersections, arguably bounding rectangle provides a more accurate measure

of width and length without an offset, visually seen in Figure 2.5a. Figure 2.7c and Figure

2.9c illustrate the percentage deviation in w:l ratio between the best-fit ellipse and bounding

rectangle approaches in both samples. Rectangular intersections are illustrated, outlined in blue.

For rectangular intersections, the deviations are typically ∼0 %. This suggests that despite an

absolute offset in length and width using best-fit ellipse, the resulting w:l ratio does not need

correcting for to obtain 3D shape estimates using ShapeCalc.
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2.4 Crystal outlining approach

Crystal intersections in the BSE maps of each sample were outlined in order to use best-fit

ellipse to extract size-shape measurements and visualise intersect shape. Outlining was carried

out using Fiji. Accurate outlining requires that different crystal phases are distinguishable from

each other, distinguishable from surrounding glass and vesicles, and that crystals of the same

phase can be identified as individuals. Three different approaches were attempted, summarised

in Table 2.5. The test results of each displayed in Figure 2.11.
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Figure 2.11: Comparison of result of different crystal intersection outlining approaches, at-
tempting to isolate plagioclase groundmass crystals.a) Unprocessed BSE map; b) Manual Out-
lining; c) Simple thresholding; d) Trainable Weka Segmentation (Arganda-Carreras et al. 2017).

2.4.1 Automated outlining

Simple thresholding is the most straightforward approach to create an overlay of measur-

able crystal intersections. This technique divides an image into two classes of pixels based on

greyscale value, effectively a ‘foreground’ and ‘background’. It can be applied to BSE images

to isolate features of a certain greyscale value (foreground), for example a certain crystal phase,

from everything else in the image (background). As it is an automated technique, it is a very

time-efficient approach, therefore it was attempted on a BSE map to test its suitability.

Simple thresholding was unsuitable to outline the enclave material. The plagioclase crystals

are too similar in atomic weight, and therefore greyscale value, to glass and thus cannot be

distinguished from it using simple thresholding (Figure 2.11c and 2.12c). The presence of com-

positional zoning within individual crystals complicates this further. For plagioclase, greyscale

value in a BSE image correlates well with anorthite content because variation in CaAl-NaSi has

a dominant effect on atomic number (Ginibre et al., 2002). Strong compositional zoning within

the groundmass plagioclase therefore hinders the ability of simple thresholding
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Figure 2.12: Comparison of different outlining approaches for a smaller area of Figure 2.11.
a) Unprocessed BSE map; b) Manual Outlining; c) Simple thresholding; d) Trainable Weka
Segmentation (Arganda-Carreras et al., 2017).

to outline intersections accurately, as it splits whole crystals with brighter, more anorthite-rich

cores and darker, less-calcic rims into those two components. The effect of compositional zoning

on BSE intensity is so pronounced that this feature has been exploited to correlate greyscale

values with anorthite contents in plagioclase crystals with complex zoning (Ginibre et al., 2022;

Humphreys et al., 2013). Whilst the plagioclase in these samples is easily distinguished from the

mafic phases, the mafic phases are not easily distinguished from each other (Figure 2.4). The

greyscale values of orthopyroxene, clinopyroxene and amphibole are too similar, further com-

plicated by compositional zoning creating overlapping greyscale values between different phases

(Figure 2.4d). Clinopyroxene sometimes forms thin reaction rims on groundmass amphibole.

The reaction rims are incorrectly included in outlines produced by simple thresholding. This

approach is also incapable of separating intergrown crystals from each other (Figure 2.12c), a

necessity due to the highly intergrown nature of the groundmass in all samples. Simple thresh-

olding is therefore not a suitable approach to outlining crystal intersection in these samples,

and demonstrates the challenges in accurate outlining.

Segmentation is a more complex approach to automated outlining. ‘Trainable Weka Seg-

mentation’ is an Fiji plugin (Arganda-Carreras et al., 2017) that combines machine learning
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algorithms with user-selected image features to divide an image into ‘foreground’ and ‘back-

ground’. The user trains the plugin to classify areas of an image by manually outlining both

features of interest and areas of disinterest, from which the program will attempt to classify the

whole image. This approach was attempted as it is time-efficient relative to manually outlining

an entire image, and if successful, the classifier can be used on multiple successive images. Un-

fortunately, segmentation was unsuitable to outline the enclave material broadly for the same

reasons simple thresholding failed: inability to distinguish between phases with similar greyscale

value, and poor ability to identify and separate individual crystal intersections in an intergrown

groundmass (Figure 2.11 and Figure 2.12).

2.4.2 Manual outlining

Manual outlining of groundmass crystal intersections was the only viable approach to generate

a measurable overlay, to account for both the intergrown nature of the groundmass and the

similarities in greyscale between phases. Outlines were drawn onto the BSE maps for each

sample using the polygon tool in Fiji. Resources used to aid in differentiating phases and to

identify crystal intersection edges and contacts included:

• Chemical maps of calcium, magnesium and phosphorus content were used to distinguish

mafic phases from each other.

• False colour image versions of the BSE maps, created using Look-Up Tables in Fiji.

Pseudo-colouring of images enhanced contrast and thus illustrated compositional differ-

ence between and within phases.

• The individual BSE images that were stitched together to create the map. They have

slightly better resolution than the stitched map, and thus sometimes better illustrated

crystal zoning and contacts.

• Optical microscopy was used to verify outlines for the coarsest-grained samples; this was

not possible for the finer grained samples.

Fractured crystals and crystals intersecting the image edge were discarded from analysis as

any size-shape data extracted would not be accurate. It is common practice in crystal size-

shape analyses to discard such crystals. For crystals intersecting the image edge, there is no

way to determine the true length and width of their 2D intersection. Including the ‘incomplete’

intersections in analysis would contribute to error in 3D shape reconstruction and could bias the

results of a CSD towards smaller crystals. Discarding crystals that intersect the image edge could

also arguably bias size-shape results, potentially by underestimating the total crystal volume

which could affect the CSD. However, as such large BSE maps were constructed (Chapter

2.2), there are only a few edge-intersecting crystals relative to ‘whole’ crystal intersections; for

plagioclase, ∼50-100 edge-intersecting crystals discarded for 500-1500 whole crystal intersections

measured and analysed. Therefore, it is suggested that discarding fractured crystals is unlikely

to bias size-shape analyses, and that the inclusion of edge-intersecting crystals would negatively

impact the 3D shape estimate more than their exclusion. Likewise, fractured crystals are also

discarded from being measured. This is also because their 2D intersection dimensions may not
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be accurate. Again, discarding such crystals could potentially bias size-shape results, especially

if a particular size of crystal is prone to fracturing during sample preparation. However, there

are very few fractured crystals within a BSE map (at most ∼ 10). Discarding this many crystals

relative to the number of crystals measured (a few hundred minimum) is therefore unlikely to

bias subsequent size-shape analyses.

Crystals interpreted as ‘inherited’ from the host andesite were discarded (Chapter 3). Inherited

plagioclase crystals were identified by their large size, sieve textures, and often complex zoning

patterns (Murphy et al., 2000; Humphreys et al., 2009). Inherited mafic phases were identified

by large size and evidence of alteration.

Manual outlining requires establishing a set of rules to follow on how to draw outlines. A

consistent, accurate approach must be followed that is reproducible within and between samples.

The intergrown nature of the groundmass in all samples introduces complexity in outlining.

Factors to consider were:

2.4.2.1 How should outlines be drawn when it is not completely clear whether a crystal is a

single crystal, or two crystals intergrown?

2.4.2.2 Should twinned crystals be outlined together, or as a single crystal?

2.4.2.3 Should outlines be drawn around intergrowths, or extrapolated through them?

2.4.2.4 How should outlines be drawn when crystals completely overlap?

2.4.2.5 Should inclusions of other crystals within a groundmass crystal be included in the

outline?

These factors were each tested by outlining the same area in a sample in different ways. 2D

size-shape measurements were extracted from the overlay and used to produce a 3D shape

estimate in ShapeCalc. The 2D and 3D size-shape data was compared between approaches.

A minimum number of ∼300 crystal intersections in each test run were outlined in order to

produce statistically significant results.

Table 2.6: 2D size-shape data extracted from intersection outlines for different outlining
tests.

Meanglitterglueglitterglueglitterglue

Approach n Intersection areaa (mm2) % difference in intersection areab Intersection area (µm2) l (µm) w (µm) w:l (µm) Solidity

Maximum 540 0.50 930 45.7 15.7 0.42 0.94
Minimum 302 0.51 1.53 1690 63.6 23.3 0.41 0.88
Outlining around intergrowths 300 0.21 730 43.7 14.1 0.41 0.94
Extrapolating through 300 0.23 5.10 770 44.4 14.5 0.41 0.96
Include overlapping 1510 1.20 780 42.5 14.7 0.42 0.95
Discard overlapping 1500 1.20 -0.27 780 42.6 14.7 0.42 0.95

footnote in the pinkglitterglue style of coding. trying to avoid this sort of thing.
aTotal intersection area.
b% difference in intersection area between two approaches, i.e., ‘maximum’ and ‘minimum’, etc.
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Approach Intersections S I L Rc2 S/I ± 1SD I/L ± 1SD

Maximum 540 1.00 2.70 5.60 0.972 0.37 ± 0.06 0.48 ± 0.25
Minimum 302 1.00 2.80 5.60 0.982 0.36 ± 0.06 0.50 ± 0.25
Outlining around intergrowths 300 1.00 2.80 5.60 0.967 0.36 ± 0.06 0.50 ± 0.25
Extrapolating through 300 1.00 2.80 5.60 0.969 0.36 ± 0.06 0.50 ± 0.25
Include overlapping 1510 1.00 2.70 5.60 0.974 0.37 ± 0.06 0.48 ± 0.25
Discard overlapping 1500 1.00 2.70 5.60 0.974 0.37 ± 0.06 0.48 ± 0.25

Table 2.7: 3D shape estimates from 2D intersection width and length measurement for
different outlining approaches.

2.4.2.1 How should outlines be drawn when it is not completely clear whether a

crystal is a single crystal, or two crystals intergrown?

The factor thought most likely to have a significant impact on how intersection outlines were

drawn, and thus an influence on size-shape data, was how outlines would be drawn when it was

not completely clear whether a crystal is a single crystal, or multiple intergrown. Figure 2.12a

and 2.13 illustrates the complexity in intergrown groundmass texture, and therefore difficulty

in accurate outlining. To evaluate the most suitable approach, the same area in a sample was

manually outlined twice: once where all crystals that could possibly be multiple intergrown

were split into the maximum number of crystals possible (a ‘maximum intersections’ approach),

and once where all crystals that could possibly be multiple intergrown were treated as single

crystals (a ‘minimum intersections’ approach). Figure 2.13 provides comparative examples. In

the ‘maximum’ approach, multiple intersections were outlined if there were multiple cores or

different zoning patterns, if there was a visible suture between crystals, or if contiguous crystals

had different orientations. In the ‘minimum’ approach, these cases were treated as singular

crystals and thus fewer were outlined in the same overall area. These decisions were based on

the work of Mangler (2024) and Brugger & Hammer (2015).

In order to test this, 302 intersections were outlined in the ‘minimum’ approach and 540 in-

tersections were outlined in the ‘maximum’ approach, covering the same total crystal area.

Intersections were measured using a best-fit ellipse to extract size-shape data (Table 2.6). The

width-length data were input into ShapeCalc to assess whether the different measurement ap-

proaches produce significantly different estimates of 3D shape (Table 2.7).
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Figure 2.13: Comparison of outlines for ‘maximum’ and ‘minimum’ approach. a) ‘Maximum’
approach. b) ‘Minimum’ approach.

39



Figure 2.14: 2D w/l distributions for intersection populations produced through a) the ‘max-
imum’ approach and b) the ‘minimum’ approach. There is no significant difference between the
3D shape estimates of the two approaches.

There is no significant difference between the two approaches for the 3D shape estimate (Table

2.7). The ‘maximum’ approach results in a best-fit shape with S/I of 0.37 (± 0.06) and I /L of

0.48 (± 0.25). The ‘minimum’ approach results in a best-fit shape with S/I of 0.36 (± 0.06)

and I /L of 0.50 (± 0.25). The lack of a significant difference is due to the 2D w/l distributions

of the intersections being so similar that they do not have a significantly different best-fit model

shape (Figure 2.14). The minor difference in Rc
2 of 0.972 for the ‘maximum’ approach and

0.982 for the ‘minimum’ approach could be due to the discrepancy in the number of crystal

intersections per approach, with the ‘maximum’ approach resulting in nearly twice the number

of intersections in the same area as the ‘minimum’ approach.

The average area per intersection is much larger in the ‘minimum’ approach compared to the

‘maximum’, with values of 1690 µm2 and 930 µm2 respectively (Table 2.6). The total intersec-

tion area outlined is ∼1.5 % higher in the ‘minimum’ approach. As both approaches outline the

same crystals and therefore attempt to outline the same area, the difference of ∼1.5% reflects

human error in outlining the same areas accurately. The average width and length for the

‘minimum’ approach is 23 µm and 64 µm, which again is larger than the average width and

length for the ‘maximum’ approach of 16 µm and 46 µm (Table 2.6). The w:l ratios are the

same for both approaches (0.42 for ‘maximum’ and 0.41 for ‘minimum’).

Whilst there is no significant difference in 3D shape estimate, the ‘maximum’ approach is

thought to be conceptually more robust. Due to the intergrown nature of the groundmass, a

large proportion (∼70 %) of the crystals are contiguous. The ‘minimum’ approach does not
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Figure 2.15: CSDs constructed using the ‘maximum’ and ‘minimum’ approach are not signif-
icantly different. The size distribution for the ‘minimum’ approach is slightly more abundant
in the smallest crystal sizes than the ‘maximum’ approach, but is still within error.

split up contiguous crystals, and therefore areas outlined as a singular crystal intersection that

are in reality multiple contiguous crystals will create irregular outlines, as seen in Figure 2.13b

& c.

The irregularity of outlines is reflected in the average solidity values (Table 2.6). The average

solidity of an intersection outlined in the ‘maximum’ approach is 0.94 compared to the lower

0.88 in the ‘minimum’ approach. The ‘minimum’ approach produces more irregular outlines

on average. This can be seen in the outlines themselves (Figure 2.13). Some of the outlines

produced through the minimum approach do not reflect normal plagioclase crystal morphologies

in any growth conditions. Reasons why the individual crystal intersections may not be evident

in a contiguous mass could be the quality of the BSE map in terms of resolution or the greyscale

(Chapter 2.2.1), or that the sample may not have been cut optimally to show individual crystals,

as a thin section is a random 2D intersection of 3D shapes. The ‘maximum’ approach is therefore

a better approach based on the accuracy of outlining on an individual crystal intersection basis.

This approach also enables the greatest number of crystal intersections to be outlined and

measured in a certain area. This is valuable as it maximises the data that can be extracted from

a single BSE map, and a high number of intersection measurements is beneficial to accurately

constrain a 3D shape estimate in ShapeCalc. This test provides reassurance that if a contiguous

mass of intergrown crystals was misidentified as a singular crystal, this will not have a significant

impact on overall results. Likewise, if a singular crystal was misidentified as multiple intergrown,

this will not have a significant impact on overall results. In both scenarios, this is provided a

sufficient number of intersects are measured (a few hundred at minimum).

Presumably, there could be a significant difference in CSDs constructed from a ‘maximum’ and

‘minimum’ approach. To test this, the data collected using both approaches was input into

CSDCorrections. There is no significant difference between the CSDs, both following a similar

shape of curve, and with individual data points on the curve being within error of each other

(Figure 2.15). Therefore, taking forward the ‘minimum’ approach for analyses is unlikely to

produce significantly different size results to a ‘maximum’ approach.
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2.4.2.2 Should twinned crystals be outlined individually, or as a single crystal?

The established rule when outlining intersections was not to split intersections into twins. This

was because it is difficult to be certain when identifying twins using just the BSE maps. An

analytical method like Electron Backscatter Diffraction (EBSD) would have been necessary

to correctly identify all simple twins present (Brugger & Hammer, 2015). The use of optical

microscopy to check for optical continuity would only have been possible for the coarsest-grained

samples, meaning the outlining approach would not have been consistent across all samples.

Therefore it was decided to not split intersections into twins to ensure a more consistent and

accurate approach to outlining across all samples. As established in Chapter 2.4.2.1, even if few

crystals were split into twins, this is unlikely to have a significant effect on 3D shape estimate

results.

2.4.2.3 Should outlines be drawn around intergrowths, or extrapolate through

them?

Another factor to consider is whether to draw outlines exactly around intergrown crystals (Fig-

ure 2.16a), or to extrapolate through intergrowths, approximating how the crystal boundary

may look if it had grown unimpinged (Figure 2.16b). It was thought that due to the highly

intergrown nature of the groundmass, perhaps extrapolating the outline would produce a more

accurate 3D-shape estimate. To test these approaches, the same 300 crystals were outlined

twice: once drawing lines exactly around intergrown crystals, and another time extrapolating

through boundaries (Figure 2.16).
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Figure 2.16: Comparison of outlining around intergrowths or extrapolating through them. a)
Outlining around intergrowths. b) Extrapolating through intergrowths.

There is no significant difference in 3D shape estimate (Table 2.7). Outlining around inter-

growths results in a best-fit shape with S/I of 0.36 (± 0.06) and I /L of 0.50 (± 0.25), the exact

same values as for extrapolating through intergrowths. The Rc
2 values are within 0.02%, with

0.967 for outlining around intergrowths and 0.969 for extrapolating through intergrowths. The

3D shape estimate is identical because both approaches produce intersection population with

the same w/l distribution (Figure 2.17).

Both approaches yield similar 2D size-shape values (Table 2.6.) Outlining around intergrowths

results in mean intersection length of 44 µm, a mean intersection width of 14 µm, a mean w:l

ratio of 0.41, and a mean solidity of 0.94. Extrapolating through intergrowths results in mean

intersection length of 44 µm, a mean intersection width of 15 µm, a mean w:l ratio of 0.41, and

a mean solidity of 0.96.

Extrapolating through intergrowths results in a greater total area outlined and a higher average

intersection area, by ∼ 5 % (Table 2.6). This is greater than the estimated error in outlining

of ∼ 1.5 % , as established in Section 1.4.2.1, and is therefore interpreted as a significant

difference in area measurements. Extrapolating through intergrowths arguably overestimates

total intersection area, which is a crucial measurement to produce accurate Crystal Size
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Figure 2.17: 2D w/l distributions for intersection populations produced through a) outlining
around intergrown crystals b) extrapolating through intergrown crystals. There is no significant
difference between the 3D shape estimates of the two approaches.

Distributions (Chapter 2.1.2). The decision was made to outline around intergrown crystals

rather than extrapolate through. The former is conceptually a better representation of actual

crystal intersect shape in these very intergrown samples, provides a more accurate estimate

of crystal intersection area and subsequently volume, and is a simpler approach to reproduce

between samples.

2.4.2.4 How should outlines be drawn when crystals completely overlap?

There are instances in which crystal intersections appear to overlap, or“cut through” each

other (Figure 2.18). The overlapping crystal has been intersected twice, producing two separate

intersections in the BSE map. Evidence that supports this is the geometry of the intersections,

i.e. the boundaries line up, and the presence of identical zoning in the same orientation. Two

outlining approaches were tested: once outlining overlapping crystals by extrapolating through

the crystals they intersect, and again by discarding overlapping intersections.

Of the 1510 intersections measured in sample 1591A, there were 10 instances of overlapping

crystals. Instances of overlapping therefore occur once every 150 outlines. There is no significant

difference in 3D shape estimate (Table 2.7) or 2D size-shape data (Table 2.6). This is expected as

there are so few instances of overlapping crystals, and therefore only 10 out of 1510 intersections

had to be discarded. The difference in total area between the approaches is negligible: outlining

the overlapping crystals adds 0.27 % total area, well below the outlining error estimate of 1.5

% (Chapter 2.4.2.3.). As the instances of overlapping crystals are so rare, including them does

not have a detrimental effect on the accuracy of the total area estimate, whilst providing more
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intersections within an area for analysis. The decision was made to include them in further

analyses by outlining overlapping crystals as in Figure 2.18a.

Figure 2.18: Comparison of outlining for a) Including overlapping intersections, and b) dis-
carding overlaps.

2.4.2.5 Should inclusions of other crystals be removed from outlines?

Some larger groundmass plagioclase and amphibole crystals contain small inclusions of other

phases. As outlines were drawn around the host crystals, these inclusions are included within

the outlines and consequently contribute to the estimates of crystal area and volume. If the

area of inclusions is large, this could lead to an overestimate of host crystal area and volume.

To test whether inclusions significantly contribute to estimates of plagioclase area, inclusions

in plagioclase groundmass crystals in one sample were outlined, and their area measured. The

sample chosen visually contains the largest amount of inclusions compared to other samples,

meaning this test could act as a maximum estimate of the contribution of inclusions to the

estimated area of host crystals (Figure 2.19). In this sample, inclusions constitute only 0.78 %

of the total groundmass plagioclase area. As inclusions are only a minor contribution to area

estimates (at maximum ∼0.8 %), it was decided to outline groundmass crystals regardless of

whether they hosted inclusions.
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Figure 2.19: Outlined plagioclase groundmass crystals in TRA10A in grey, with inclusions in
red. Inclusions make up 0.78 % of estimated groundmass plagioclase crystal area in this sample.
It is the most inclusion-abundant sample, and therefore gives an upper estimate for inclusion
contribution to host crystal total area.

Manual Outlining Rules:

Having considered a range of factors affecting how best to outline crystal intersections, the

following set of rules was established as an accurate, reproducible and consistent approach.

• Discard (do not measure intersections, or include intersections in area measurements):

– Crystals of the phase of interest that intersect the image edge;

– Broken or fractured crystals;

– Crystals affected by misaligned stitching in the BSE map;

– ‘Inherited’ crystals.

• Use the ‘Maximum’ approach: as many crystals as are petrographically reasonable are

outlined and measured. Intergrown crystals are distinguished using compositional zoning,

the presence of cores, and geometry of intersections.

• Draw around intergrowths as opposed to extrapolating through crystals.

• Do not split crystals into twins.

• Rare instances of overlapping crystals are outlined individually, extrapolating through

each other.

2.5 Statistical validation

2D size-shape data collected by outlining and measuring 2D intersections was binned by length

and input into ShapeCalc to produce 3D shape estimates (Chapter 2.1). Statistical tests were
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conducted to validate the 3D shape-size results.

2.5.1 CrystalSlice

The program CrystalSlice (Allgood, in preparation) was used to generate w/l distributions

of model crystal populations. The CrystalSlice algorithm is compatible with the CSDCorrec-

tions algorithm (Higgins, 2000), which was used to create the database of shapes in ShapeCalc

(Mangler et al., 2022). In CrystalSlice, model cuboids are randomly sectioned to create a rep-

resentative w/l distribution. 10,000 sections are attempted, resulting in 5500-7500 successful

intersections of the model cuboid. The model crystal population can contain up to four sub-

populations (P1 - P4). The user defines the 3D shape (S:I:L) and the relative proportions of

each sub-population. Relative crystal size between sub-populations can be varied by scaling the

S:I:L (x:y:z ) to a chosen length. The ability to vary 3D shape, size and proportions allows the

generation of model populations representing different crystal shape-size scenarios.

Two types of model crystal population were created:

• Multiple shapes, one size;

• One shape, one size.

The w/l distribution of each model population was compared to the w/l distribution of the

natural sample population, with goodness-of-fit quantified by Rc
2. Comparing the results of

different models indicates whether the natural sample population is better fit to a model pop-

ulation of multiple shapes, or a model population of a singular shape.

Figure 2.20a illustrates the method for a model crystal population of multiple shapes, one size.

Here, plagioclase intersection data in a natural sample was binned into four size fractions of

0-20 µm, 20-40 µm, 40-100 µm and 100 + µm, with 3D shape estimates produced for each

bin (S :I :L). The proportion of the total intersections in each bin was 31.3 %, 29.9 %, 31.5 %

and 7.2 % respectively. The 3D shape estimates and their relative proportions were input into

CrystalSlice to generate a model w/l distribution. Goodness-of-fit (Rc
2) between the model w/l

distribution and the natural sample w/l distribution suggests how well the model of multiple

shape populations matches the natural sample population.
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Figure 2.20: Example CrystalSlice (Allgood, in preparation) outputs different model crystal
populations. The w/l distribution of plagioclase intersections in an unbinned, natural sample
is compared to the w/l distribution of model intersections for multiple shapes model.

2.5.2 Model 2D Intersection Data

The natural sample data were binned by 2D intersection length to identify size fractions with

different 3D shapes (Chapter 2.1.3). For example, plagioclase intersection data in a natural

sample were binned into four size fractions of 0-20 µm, 20-40 µm, 40-100 µm and 100 + µm.

The intersections that comprise the smallest size fraction (0-20 µm) may have been produced by

sectioning through the corner of a crystal much larger than 20 µm (cut-section effect). A number

of the smallest intersections observed in the natural sample are expected to be corner-cuts of a

larger crystal, and are likely to be triangular. If the majority of the smallest intersections (0-20

µm) are produced in this way, then the smallest size fraction does not represent a “real” crystal

population of significantly different shape.

To address this problem, CrystalSlice was used to create model 2D intersection data by sec-

tioning a cuboid with the S:I:L of the complete unbinned population, generating intersection
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Figure 2.21: Scaling approach for 2D model intersection data. 2D model length measurements
are scaled to a representative maximum 2D length (around the base of the frequency curve).
Absolute maximum 2D length is not thought to be representative because there are so few very
large crystals. Scaling to different lengths was tested to establish a threshold length where the
proportion of the smallest size fraction in the model data and sample data matches.

width, length and shape data. The measurements were scaled to a representative maximum

intersection length, here based on the base of the frequency curve (Figure 2.21). The scaled

model 2D intersection data was then proportioned into each size bin, i.e., the number of model

intersections between 0-20 µm and the number of model intersections larger than 0-20 µm

(Figure 2.21). If sectioning a model cuboid can recreate the proportion of intersections in the

smallest size fraction (i.e., 0-20 µm length) in the natural samples, this suggests that the small-

est crystal population is likely corner-cuts of a large crystal population, and is therefore not a

distinct shape-size population.

The proportion of each intersection shape within the size bins is also compared. Corner-cuts of

the model cuboid will produce triangular intersections. If the model smallest fraction contains

more 3-point intersections than the sample smallest fraction, this suggests that the sample

smallest fraction is not just corner-cuts of larger crystals. There is a limitation in that natural

crystals are more irregular than model cuboids, and will often have rounded or multi-faceted

corners (Higgins, 1994). Some intersections that are corner-cuts of larger crystals will therefore

not appear triangular and will be missed in analysis.
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3 Mafic Enclave Sample Petrology

In this thesis, crystal textures were studied in three mafic enclaves erupted during Phase V,

the final eruptive phase lasting from October 2009 to February 2010: MVO-1591A, BEL1B-A

and TRA10A. Here, we characterise them in terms of texture (Figure 3.1 and Figure 3.2) and

chemistry (Table 3.1; Figure 3.3). The enclaves preserve a snapshot of the mingling dynamics at

SHV, where periodic basaltic recharge of the shallow mush reservoir is thought to be a potential

eruption trigger (Murphy et al., 2000; Murphy et al., 1998). The diktytaxitic groundmass

texture of the enclaves suggests they formed by rapid quench crystallisation (Bacon 1986; Plail

et al. 2014), and therefore provide a relatively simple crystallisation scenario in which to explore

the petrogenetic significance of crystal shape.

3.1 MVO-1591A

MVO-1591A is a fine-grained enclave with relatively high vesicularity (28.5 %) and a ground-

mass assemblage of plagioclase + amphibole + orthopyroxene + clinopyroxene + apatite + iron

oxides + rhyolitic interstitial glass (Figure 3.1d-e). Framework plagioclase makes up the dikty-

taxitic groundmass texture. Plagioclase has high-An cores (An75-85) and thin, more calcic rims

(An40-75). High-Al amphibole occurs alongside orthopyroxene, sometimes with darker cores

(1.2-2.4 wt.% CaO) and lighter rims (1.3-1.6 wt.% CaO), with the overlapping values likely due

to the difficulty in sampling very thin rims on small crystals in SEM-EDS (Figure 3.3b-c). Large

(2-3 cm) inherited phenocrysts from the andesite include plagioclase, which often displays sieved

cores, orthopyroxene, often with reaction rims of clinopyroxene, and amphibole, with individual

crystal textures ranging from euhedral to nearly entirely opacitised (Figure 3.1d). MVO-1591A

is categorised as a Type A enclave according to the system of Plail et al. (2014), owing to the

presence of groundmass amphibole, high vesicularity, and presence of a chilled margin. Taken

together, these observations suggest that this enclave formed by quench crystallisation (Bacon,

1986).

3.2 BEL1B-A

BEL1B-A is similar to MVO-1591A, again being a fine-grained enclave with the same ground-

mass assemblage and an inherited phenocryst population of plagioclase, orthopyroxene and

amphibole, which in this sample is accompanied by rare quartz hosting a clinopyroxene reac-

tion rim (Figure 3.2a). There is a similar amount of intergrowth between groundmass phases,

with notably complex interactions between amphibole and pyroxenes (Figure 3.2b-c). Ground-

mass plagioclase compositions are similar to MVO-1591A, with high-An cores (An70-90) and

thin rims (An15-45). Orthopyroxene nearly always appears with at least one zonation, usually

a darker core (1.7-2.3 wt.% CaO) and lighter rim (0.8-1.6 wt.% CaO). Low-Al amphibole does

not represent typical enclave compositions, instead resembling compositions of amphibole phe-

nocrysts in the host andesite, showing the complexity in enclaves erupted even within the Phase

V. A chilled margin (Figure 3.2e) between the host andesite and enclave suggests the enclave

formed by quench crystallisation. This, combined with the presence of groundmass amphibole,

categorises this enclave as Type A despite the relatively lower vesicularity (∼14 %).
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3.3 TRA10A

TRA10A is highly vesicular (∼30 %) and coarse-grained, with the same groundmass assem-

blage as previous. The groundmass is highly intergrown with little interstitial glass (Figure

3.2e-f). Groundmass plagioclase is not significantly different to the other enclaves, with high-

An cores (An75+). Plagioclase is the only inherited phenocryst, typically with dusty sieved cores

pervading the whole crystal interior, bounded by a calcic overgrowth rim. Groundmass amphi-

bole is low-Al, similar to that of MVO-1519A, as is groundmass orthopyroxene (cores, 1.6-2.6

wt.% CaO). TRA10A is categorised as a Type A enclave, due to the presence of groundmass

amphibole and high vesicularity.

Figure 3.3: Compositions of key groundmass phases analysed in the three enclaves. XAn is
calculated as CaO wt.%

CaO wt.%+NaO wt.%×100. a) Groundmass plagioclase have high-anorthite cores and
more calcic rims, with no significant difference in composition between enclaves. b) Groundmass
orthopyroxene have no significant difference in composition between enclaves, with slightly less
calcic rims than cores. c) Groundmass amphibole in MVO-1519A and TRA10A is high-Al,
whereas amphibole in BEL1B-A is low-Al, similar in composition to amphibole phenocrysts in
the host andesite. d) Interstitial glass is rhyolitic, ranging from ∼75-82 % SiO2.
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Table 3.1: Average compositions of groundmass plagioclase, orthopyroxene, amphibole and
interstitial glass of the three studied enclaves.

MVO-1591A MVO-1591A BEL1B-A BEL1B-A TRA10A

Groundmass plagioclase Core ±1σ Rim ±1σ Core ±1σ Rim ±1σ Core ±1σ
SiO2 49.51 1.62 64.40 6.77 50.56 1.96 75.57 5.18 47.81 2.25
Al2O3 31.99 1.12 22.13 4.54 31.19 1.27 13.95 4.04 33.02 1.58
FeOtotal 0.68 0.07 0.63 0.20 0.70 0.18 1.25 0.46 0.68 0.09
MgO 0.09 0.04 0.06 0.04 0.06 0.02 0.13 0.08 0.11 0.04
CaO 14.56 1.22 5.88 2.56 13.79 1.48 2.28 1.90 15.96 1.76
Na2O 3.03 0.70 6.01 0.95 3.55 0.85 4.36 0.28 2.33 1.01
K2O 0.09 0.04 0.78 0.62 0.08 0.03 2.17 0.66 0.04 0.03
Total 100.13 100.10 100.07 100.04 100.07
XAn 84.20 4.18 49.80 9.47 80.90 5.24 32.97 16.12 88.08 5.86

MVO-1591A MVO-1591A BEL1B-A BEL1B-A TRA10A
Groundmass orthopyroxene Core ±1σ Rim ±1σ Core ±1σ Rim ±1σ Core ±1σ
SiO2 53.12 0.91 52.63 0.1 53.22 1.13 52.76 0.48 52.51 0.69
Al2O3 2.09 0.65 0.99 0.03 1.70 0.48 1.14 0.27 2.13 0.65
FeOtotal 16.82 1.57 21.74 0.25 17.37 2.14 21.58 1.61 18.37 1.49
MgO 25.25 1.26 21.66 0.16 24.77 1.57 21.96 1.17 23.84 1.12
CaO 1.85 0.22 1.52 0.16 1.93 0.13 1.40 0.22 2.03 0.21
Na2O 0.08 0.03 0.07 0.06 0.13 0.05 0.11 0.03 2.10 0.05
K2O 0 0 0 0.06 0.01 0
TiO2 0.22 0.08 0.20 0.02 0.27 0.12 0.16 0.08 0.31 0.1
MnO 0.55 0.14 1.18 0.23 0.62 0.17 0.94 0.13 0.7 0
Total 99.98 100.01 100.0 100.01 102.02

MVO-1591A BEL1B-A TRA10A
Groundmass amphibole ±1σ ±1σ ±1σ
SiO2 42.33 0.71 46.66 0.58 41.99 0.67
Al2O3 15.38 1.01 8.73 0.39 15.56 0.95
FeOtotal 9.89 0.74 15.09 0.41 9.78 0.24
MgO 15.66 0.48 13.81 0.28 15.77 0.36
CaO 11.93 0.21 11.03 0.10 12.03 0.24
Na2O 2.43 0.07 1.85 0.10 2.48 0.08
K2O 0.27 0.03 0.28 0.03 0.25 0.03
TiO2 1.98 0.18 2.15 0.22 1.99 0.12
MnO 0.16 0.06 0.39 0.07 0.16 0.06
Total 100.01 100.05 100.00

MVO-1591A BEL1B-A TRA10A
Interstitial glass ±1σ ±1σ ±1σ
SiO2 79.64 0.57 77.55 1.32 78.46 0.94
Al2O3 11.91 0.38 10.28 0.73 12.86 0.66
FeOtotal 1.56 0.05 1.98 0.12 0.56 0.07
MgO 0.12 0.04 0.97 0.12 0
CaO 1.01 0.07 2.10 0.18 1.79 0.29
Na2O 2.46 0.11 3.10 0.35 4.61 0.22
K2O 2.76 0.02 1.75 0.35 1.49 0.12
TiO2 0.48 0.12 0.38 0.08 0.15 0.03
MnO 0.11 0.05 0.07 0.02 0.08 0.06
Total 100.04 98.7 100.04
NaO + K2O 5.21 0.13 4.85 0.51 6.10 0.14
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4 3D Size-Shape Results

Here, we present the results of the outlining, measurement and 3D shape estimation of ground-

mass crystals in the enclave samples. The results are organised by crystal phase: starting with

plagioclase, followed by the mafic phases of orthopyroxene and amphibole. First, the overlay

of intersection outlines will be presented alongside the extracted 2D size-shape data. Then,

the Crystal Size Distribution (CSD) will be presented, with size bins marked on if the sample

could successfully be binned by size to show change in shape. Finally, the results of the 3D

shape estimation will be presented, including the best-fit 3D shape estimate to both the binned

fractions and the complete unbinned intersection population for each sample.

4.1 Tabulated results

Table 4.1 presents the 2D size-shape data extracted from each overlay of outlined intersections

according to the method detailed in Chapter 2.3.1. Table 4.2 details the textural parameters

used to construct the CSDs. Table 4.3 presents the best-fit 3D shape estimates produced in

ShapeCalc for each phase in each sample. Plagioclase intersections were binned into four size

fractions: 0-20 µm, 20-40 µm, 40-100 µm and 100 + µm. The same bins were used consistently

to enable comparison between different samples for the same phase. Groundmass plagioclase

was outlined in all samples. Groundmass orthopyroxene was outlined in one sample, BEL1B-A.

Groundmass amphibole was outlined in one sample, TRA10A.

2D intersection measurements

Table 4.1: 2D size-shape data extracted from the overlays of outlined intersections.

Solidityglitterglue

Sample Phase na Measured
areab

(mm2)

φc (%) Mean
Area d

(µm2)

lmax
e

(µm)
lmin

f

(µm)
lmean

g

(µm)
w/lmean

h Mean Range Mode

MVO-1591A Plagioclase 1510 4.39 25.9 780 299 4 42.5 0.38 0.95 0.6 - 1.0 1.00
BEL1B-A Plagioclase 1528 2.49 27.5 449 241 3 33.6 0.42 0.96 0.6 - 1.0 1.00

Orthopyroxene 1317 9.80 5.2 385 248 4 28.3 0.55 0.94 0.6 - 1.0 1.00
TRA10A Plagioclase 534 15.98 32.2 9634 736 8 131.7 0.46 0.88 0.4 - 1.0 1.00

Amphibole 542 16.92 13.5 4200 1298 9 97.7 0.54 0.90 0.4 - 1.0 1.00

footnote in the pinkglitterglue style of coding. trying to avoid this sort of thing.
aNumber of crystal intersections measured.
bThe area of the BSE map minus the area of edge-intersecting crystals of the phase of interest (Chapter 2.1.2).
cCrystallinity of phase as a percentage of measured area (including vesicularity).
dMean intersection area.
eMaximum intersection length.
fMinimum intersection length.
gMean intersection length.
hMean intersection width:length ratio.
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Crystal Size Distributions

Table 4.2: Crystal Size Distribution (CSD) results and inputs. S:I:L is the best-fit 3D shape
estimate for the complete unbinned intersection population. Slope and intercept are calculated
in CSDCorrections (Higgins, 2000) using a linear least squares regression. The largest
amphibole crystal measured in TRA10A is an outlier, as it is twice as large as the second
largest crystal measured, and so has been removed from this analysis.

CSD Inputspinkglitterglueblueglitterglueredglitterglueorange

Sample Phase n Slope ± Error Intercept ± Error Measured area
(mm2)

VPAa (%) S I L Fabric Roundness Vesicularity
(%)

MVO-1591A Plagioclase 1510 -28.6 ± 0.50 12.7 ± 0.04 4.39 25.91 1.00 2.70 5.60 Massive 0.1 28.50
BEL1B-A Plagioclase 1528 -34.8 ± 0.60 13.61 ± 0.05 2.49 27.50 1.00 2.70 5.60 Massive 0.1 14.65

Orthopyroxene 1317 -29.7 ± 0.60 11.77 ± 0.05 9.80 5.17 1.00 1.50 5.20 Massive 0.1 13.25
TRA10A Plagioclase 534 -6.38 ± 0.21 7.57 ± 0.08 15.98 32.91 1.00 2.10 6.00 Massive 0.3 31.81

Amphibole 541 -7.58 ± 0.24 7.77 ± 0.08 16.80 12.86 1.00 1.55 6.40 Massive 0.2 30.25

glitterglue
aVolumetric Phase Abundance: the combined area of all measured intersections expressed as a percentage of
the total measured area (Chapter 2.1.2)

3D shape estimate results

Table 4.3: Best-fit 3D shape estimates for complete unbinned intersection data and binned
size fractions. Starred (*) bins have fewer than 200 intersections (considered the minimum
sufficient number for analysis).

Sample Phase Fraction (µm) n % Total S I L Rc
2 S/I ± 1 SD* I/L ± 1 SD*

MVO-1591A Plagioclase Unbinned 1510 100 1.00 2.70 5.60 0.974 0.37 ± 0.06 0.48 ± 0.25
0-20 474 31.4 1.00 1.45 9.20 0.996 0.69 ± 0.06 0.16 ± 0.18
20-40 451 29.9 1.00 2.80 5.60 0.982 0.36 ± 0.06 0.50 ± 0.25
40-100 476 31.5 1.00 3.60 9.20 0.994 0.28 ± 0.04 0.39 ± 0.23
100 + * 109 7.2 1.00 5.00 8.40 0.996 0.20 ± 0.03 0.60 ± 0.22

BEL1B-A Plagioclase Unbinned 1528 100 1.00 2.70 5.60 0.981 0.37 ± 0.06 0.48 ± 0.25
0-20 550 36.0 1.00 1.70 6.40 0.991 0.61 ± 0.06 0.26 ± 0.18
20-40 549 35.9 1.00 2.80 6.40 0.993 0.36 ± 0.05 0.44 ± 0.25
40-100 376 24.6 1.00 4.10 9.60 0.997 0.24 ± 0.03 0.43 ± 0.22
100 + * 53 3.5 1.00 4.90 12.00 0.990 0.20 ± 0.03 0.41 ± 0.22

Orthopyroxene Unbinned 1317 100 1.00 1.50 5.20 0.997 0.67 ± 0.06 0.29 ± 0.20
0-35 1012 76.8 1.00 1.40 2.60 0.998 0.71 ± 0.08 0.54 ± 0.27
35 + 305 23.2 1.00 3.00 6.80 0.989 0.33 ± 0.05 0.44 ± 0.25

TRA10A Plagioclase Unbinned 534 100 1.00 2.10 6.00 0.989 0.48 ± 0.07 0.35 ± 0.25
0-20 * 15 2.8 1.00 2.80 3.60 0.989 0.36 ± 0.07 0.78 ± 0.26
20-40 * 47 8.8 1.00 2.20 4.80 0.992 0.45 ± 0.06 0.46 ± 0.24
40-100 190 35.8 1.00 2.10 6.00 0.987 0.48 ± 0.07 0.35 ± 0.24
100 + 281 52.6 1.00 2.10 6.00 0.988 0.48 ± 0.06 0.35 ± 0.24

Amphibole Unbinned 542 100 1.00 1.55 6.40 0.998 0.65 ± 0.06 0.24 ± 0.20

4.2 Plagioclase

4.2.1 MVO-1591A

Figure 4.1a presents the overlay of outlined plagioclase crystal intersections produced by the

method detailed in Section 2.4.2. Figure 4.1b illustrates the binning process (Chapter 2.1.3),

with outlines differentiated by size fractions of 0-20 µm, 20-40 µm, 40-100 µm and 100 + µm. It

is a representative area of the proportion of intersections per size fraction, with the proportions

presented in Table 4.3. Intersections in the smallest bin generally have equant shapes, and

intersections become increasingly elongate with larger bins.

MVO-1591A has fine-grained groundmass, dominated by plagioclase. It is an end-member

sample for groundmass crystal size, being one of the finest-grained and least intergrown enclave

samples (Chapter 3). 26 % of the measured area is groundmass plagioclase (Table 4.1).
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Figure 4.1: Overlay of groundmass plagioclase intersection outlines in MVO-1591A. a)Overlay
of 1510 intersection outlines. Dashed area defines b). b) Intersection outlines colour-coded to
illustrate the binning process and relative proportions of intersections in each bin.

The maximum intersection length is 299 µm, with the minimum length being 4 µm. The

mean intersection length is 43 µm. The minimum width is 1 µm, representing the minimum

resolvable width from the quality of the BSE maps (Chapter 2.2). Solidity ranges from 0.6 - 1.0,

with an average solidity value of 0.95 and a modal solidity of 1.00. This suggests that crystal

intersections generally have quite even boundaries and regular shapes. This can be visually seen

in the overlay (Figure 4.1).

Figure 4.2 presents the CSD for the groundmass plagioclase. The 2D size-shape data and

textural data used as inputs are detailed in Table 4.2. The CSD is a curved slope, with a slope

of -28.6 (± 0.5) and an intercept of 12.7 (± 0.04). The lower limit of crystal size is 7 µm. The

downturn of the slope is due to the lower abundance of resolvable crystals at the smallest sizes.
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Figure 4.2: Crystal size distribution of groundmass plagioclase in MVO-1591A. The resulting
size fractions from binning the intersection data are marked on the slope.

The groundmass plagioclase intersection data were binned by size fraction to investigate change

in shape. Each binned fraction, as well as the complete unbinned data, were input into

ShapeCalc to produce a best-fit 3D shape estimate (Table 4.3). Figure 4.3 illustrates the

3D shape estimates and the suggested change in shape with size. There is a decrease in S/I

with increasing crystal size. Crystals approach more tabular shapes with increasing size. The

smallest crystals (0-20 µm) have a prismatic shape (S/I = 0.69 ± 0.06, I/L = 0.16 ± 0.18).

Crystals in the 20-40 µm fraction are a significantly different shape, moving towards more tabu-

lar with a decrease in S/I and increase in I/L (S/I = 0.36 ± 0.06, I/L = 0.50 ± 0.25). Crystals

in the 40-100 µm fraction are not a significantly different shape in terms of S/I to the 20-40

µm fraction (S/I = 0.28 ± 0.04, I/L = 0.39 ± 0.23). Crystals in the 100+ µm fraction are

significantly different to the smaller fractions, with the most tabular shape estimate (S/I =

0.20 ± 0.03, I/L = 0.60 ± 0.22). It should be noted that this size fraction includes only 109

crystals, below the minimum sufficient number required for analysis (Chapter 2.2.1). However,

the high Rc
2 value of 0.996 (Table 4.3) for this fraction indicates that despite the low number

of intersections, there is a good match between the natural sample data and the best-fit model

shape in ShapeCalc.

Figure 4.4 compares the w/l distributions for each binned fraction in the natural sample data

against the best-fit model shape. The Rc
2 values (Table 4.3) for the binned fractions are 0.996

(0-20 µm), 0.982 (20-40 µm), 0.994 (40-100 µm) and 0.996 (100 + µm). All four Rc
2 values are

above 0.980, three are above 0.990, and two are above 0.995. This goodness-of-fit is illustrated

in Figure 4.4. Again, despite the 100 + µm bin having fewer than 200 intersections, there is a

close match in w/l distribution between the natural sample data and the best-fit model shape

(Figure 4.4d). As established in Chapter 2.1.1, the sharpness
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Figure 4.3: 3D shape estimates for groundmass plagioclase in MVO-1591A. a) Zingg diagram
showing the S/I and I/L estimates for each binned size fraction and the complete unbinned
data. There is a decrease in S/I with increasing size, and general trend of shapes moving from
prismatic to tabular. b) Zingg diagram with the 3D shape estimates for each binned fraction
visualised. c) The suggested change in shape with size visualised alongside the singular shape
estimate for the unbinned intersection data. Shape evolves from prismatic to tabular with size.

of the peaks in the model w/l distributions is unlikely to be replicated by the natural sample

w/l distributions (Higgins, 1994).

The best-fit 3D shape estimate for the complete, unbinned data is S/I = 0.37 ± 0.06, I/L =

0.48 ± 0.25. This overlaps with the shape estimate for the 20-40 µm bin. The Rc
2 value for the

complete, unbinned data is 0.974, a lower confidence value than any of the binned size fractions.

The lower goodness-of-fit between the unbinned data and the best-fit model shape is illustrated

in Figure 4.4e.

The intersection outlines (Figure 4.1) provide a qualitative confirmation of the change in shape

with size fraction. The intersections in the 0-20 µm bin are generally equant shapes. Intersec-

tions become increasingly elongate in larger bins, reflecting the progression from prismatic to

tabular shapes with size.
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Figure 4.4: w/l distributions of the natural sample data in each binned fraction against the
model best fit shape distribution for groundmass plagioclase intersections in MVO-1591A. a)
0-20 µm. b) 20-40 µm. c) 40-100 µm. d) 100 + µm. e) Complete unbinned data.
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4.2.2 BEL1B-A

Figure 4.5a presents the overlay of outlined plagioclase crystal intersections. Figure 4.5b illus-

trates the binning process, with outlines differentiated by size fractions of 0-20 µm, 20-40 µm,

40-100 µm and 100 + µm. It is a representative area of the proportion of intersections per size

fraction, with the proportions presented in Table 4.3. Like plagioclase in MVO-1591A, intersec-

tions in the smallest bin generally have equant shapes, and intersections become increasingly

elongate with larger bins.

Like MVO-1591A, BEL1B-A has fine-grained groundmass, dominated by plagioclase. It is an

end-member sample for groundmass crystal size, being the finest-grained and least intergrown

enclave sample (Chapter 3). 28 % of the measured area is groundmass plagioclase (Table 4.1).

The maximum intersection length is 241 um, with the minimum length being 3 um. The

mean intersection length is ∼34 um. The minimum width is 1 um, representing the minimum

resolvable width from the quality of the BSE maps. Solidity ranges from 0.6-1.0, with an average

solidity value of 0.96 and a modal solidity of 1.00. This suggests that crystal intersections

generally have quite even boundaries and regular shapes. This can be visually seen in the

overlay (Figure 4.5).

Figure 4.5: Overlay of groundmass plagioclase intersection outlines in BEL1B-A. a) Overlay
of 1528 intersection outlines. Dashed area defines b). b) Intersection outlines colour-coded to
illustrate binning process and relative proportions of intersections in each bin.
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Figure 4.6: Crystal size distribution of groundmass plagioclase in BEL1B-A. The resulting
size fractions from binning the intersection data are marked on the slope.

Figure 4.6 presents the CSD for the groundmass plagioclase. The 2D size-shape data and

textural data used as inputs are detailed in Table 4.2. The CSD is a curved slope, with a slope

of -34.8 (± 0.6) and an intercept of 13.61 (± 0.05) (Table 4.2). The lower limit of crystal size

is 5 µm. The downturn of the slope is due to the lower abundance of resolvable crystals at the

smallest sizes.

The groundmass plagioclase intersection data were binned by size fraction to investigate change

in shape. Each binned fraction, as well as the complete unbinned data, were input into

ShapeCalc to produce a best-fit 3D shape estimate (Table 4.3). Figure 4.7 illustrates the 3D

shape estimates and the suggested change in shape with size. There is a decrease in S/I with

increasing crystal size. Crystals approach more tabular shapes with increasing size. The small-

est crystals (0-20 µm) have a prismatic shape (S/I = 0.61 ± 0.06, I/L = 0.26 ± 0.18). Crystals

in the 20-40 µm fraction are a significantly different shape, moving towards more tabular with

a decrease in S/I and increase in I/L (S/I = 0.36 ± 0.05, I/L = 0.44 ± 0.25). Crystals in the

40-100 µm fraction again move closer to tabular shapes, with a decrease in S/I and no change

in I/L (S/I = 0.24 ± 0.03, I/L = 0.43 ± 0.22). There is no significant difference in 3D shape

estimate for the 40-100 µm fraction and the 100 + µm fraction, which has S/I = 0.20 ± 0.03,

I/L = 0.41 ± 0.22.

Figure 4.8 compares the w/l distributions for each binned fraction of the natural sample data

against the best-fit model shape. The Rc
2 values (Table 4.3) for the binned fractions are 0.991

(0-20 µm), 0.993 (20-40 µm), 0.997 (40-100 µm) and 0.990 (100 + µm). All four Rc
2 values

are above 0.990. This goodness-of-fit is illustrated in Figure 4.8. The 100 + µm size fraction

includes only 53 crystals, below the minimum sufficient number required for analysis (Chapter

2.2.1). However, the high Rc
2 value of 0.990 (Table 4.3) for this fraction indicates that despite

the low number of intersections, there is a good match between the natural sample data and

the best-fit model shape in ShapeCalc. This is illustrated by Figure 4.8d, with the close match

in w/l distribution between the natural sample data and the best-fit model shape.
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Figure 4.7: 3D shape estimates for groundmass plagioclase in BEL1B-A. a) Zingg diagram
showing the S/I and I/L estimates for each binned size fraction and the complete unbinned
data. There is a decrease in S/I with increasing size, and general trend of shapes moving from
prismatic to tabular. b) Zingg diagram with the 3D shape estimates for each binned fraction
visualised. c) The suggested change in shape with size visualised alongside the singular shape
estimate for the unbinned intersection population. Shape evolves from prismatic to tabular with
size.

The best-fit 3D shape estimate for the complete, unbinned data is S/I = 0.37 ± 0.06, I/L

= 0.48 ± 0.25. This overlaps with the shape estimate for the 20-40 µm bin (Figure 4.7a).

The Rc
2 value 3D shape estimate for the complete, unbinned data is 0.981, a lower confidence

value than any of the binned size fractions. The lower goodness-of-fit between the unbinned

data and the best-fit model shape is illustrated in Figure 4.8e. Whilst the I/L value for the

complete unbinned data is higher than the I/L values for each binned data, the I/L values are

not significantly different in terms of error. The large error in I/L occurs due to the difficulty

in constraining L in stereological correction (Chapter 2.1).

The intersection outlines (Figure 4.5) provide a qualitative confirmation of the change in shape

with size fraction. The intersections in the 0-20 µm bin are generally equant shapes. Intersec-

tions become increasingly elongate in larger bins, reflecting the progression from prismatic to

tabular shapes with size.
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Figure 4.8: w/l distributions of the natural sample data in each binned fraction against the
model best-fit shape distribution for groundmass plagioclase intersections in BEL1B-A. a) 0-20
µm. b) 20-40 µm. c) 40-100 µm. d) 100 + µm. e) Complete unbinned data.
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4.2.3 TRA10A

Figure 4.9 presents the overlay of outlined plagioclase crystal intersections. Whilst binning was

attempted, no change in shape with size was identified. TRA10A has coarse-grained ground-

mass, dominated by plagioclase. It is an end-member sample for groundmass crystal size, being

the coarsest-grained and most intergrown enclave sample (Chapter 3). 32 % of the measured

area is groundmass plagioclase (Table 4.1). The maximum intersection length is 736 um, with

the minimum being 8 um. The mean intersection length is 132 um. The minimum width is

3 um, above the minimum resolvable width from the BSE maps. Solidity ranges from 0.4-1.0,

with an average solidity value of 0.88 and a modal solidity of 1.00. The wider range in solid-

ity and lower average solidity than MVO-1591A and BEL1B-A reflects the more intergrown

groundmass with complex crystal intersection shapes. This can be visually seen in the overlay

(Figure 4.9).

Figure 4.9: Overlay of groundmass plagioclase intersection outlines in TRA10A. a) Overlay
of 534 intersection outlines. Dashed area defines b). b) Closer view of intersection outlines.
Binning was attempted, but no change in shape with size was identified.

Figure 4.10 presents the CSD for the groundmass plagioclase. The 2D size-shape data and

textural data used as inputs are detailed in Table 4.2. The CSD is a curved slope, with a slope

of -6.38 (± 0.21) and an intercept of 7.57 (± 0.08) (Table 4.2). The lower limit of crystal size

is 20 µm.
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Figure 4.10: Crystal size distribution of groundmass plagioclase in TRA10A. Binning was
attempted, but no change in shape with size was identified.

Attempts were made to bin the groundmass plagioclase intersection data by size fraction to

investigate change in shape. First, binning was attempted using 0-20 µm, 20-40 µm, 40-100 µm

and 100 + µm bins, for consistency with the other plagioclase samples. No change in shape

with size was identified (Figure 4.11). The results of this binning attempt are presented and

discussed here. Other size bins were tried, but no change in shape with size was identified.

The 0-20 µm bin produces a very tabular 3D shape estimate (S/I = 0.36 ± 0.07, I/L = 0.78 ±
0.26). This bin includes only 15 intersections, far too few for reliable analysis using ShapeCalc.

It has a high Rc
2 of 0.989, which is unreliable due to the low number of intersections. The

poor match between the w/l distributions in the natural sample data and the best-fit model

shape in Figure 4.12a illustrates this. The 20-40 µm bin produces a 3D shape estimate of S/I

= 0.45 ± 0.06, I/L = 0.46 ± 0.24. This bin includes only 47 intersections, again too few for

reliable analysis. The 40-100 µm and 100 + µm bins produce the same 3D shape estimate

as the complete unbinned data (S/I = 0.48 ± 0.07, I/L = 0.35 ± 0.24). The Rc
2 values are

high, with 0.987 for 40-100 µm, 0.988 for 100 + µm, and 0.989 for the unbinned data. The

40-100 µm bin has 190 intersections, and 100 + µm bin has 281 intersections; relatively enough

intersections for analysis using ShapeCalc. The goodness-of-fit between these fractions and the

best-fit model shape is demonstrated in Figure 4.12c-e. The best-fit 3D shape estimates and

w/l distributions suggest that there is no change in groundmass plagioclase shape with size in

this sample.
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Figure 4.11: 3D shape estimates for groundmass plagioclase in TRA10A. a) Zingg diagram
showing the S/I and I/L estimates for each binned size fraction and the complete unbinned
data. The 40-100 µm fraction, the 100 + µm fraction and the unbinned data have the same
best-fit 3D shape estimate. The 0-20 µm and 20 - 40 µm bins have only 15 and 47 intersections
respectively. b) Zingg diagram with the 3D shape estimate for the complete unbinned fraction
visualised.
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Figure 4.12: w/l distributions of the natural sample data in each binned fraction against the
model best fit shape distribution for plagioclase in TRA10A. a) 0-20 um. b) 20-40 um. c)
40-100 um. d) 100 + um. e) Complete unbinned data.
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4.3 Orthopyroxene

4.3.1 BEL1B-A

Figure 4.13a presents the overlay of outlined orthopyroxene crystal intersections. Figure 4.13b

illustrates the binning process, with outlines differentiated by size fractions of 0-35 µm and 35 +

µm. It is a representative area of the proportion of intersections per size fraction. The smallest

intersections tend to have equant shapes, approximating octagonal or hexagonal. Intersections

become increasingly elongate at larger sizes.

In BEL1B-A, ∼5 % of the measured area is groundmass orthopyroxene (Table 4.1). The maxi-

mum intersection length is 248 µm, with the minimum length being 4 um. The mean intersection

length is ∼28 um. The minimum width is 2.6 um, above the minimum resolvable width from

the quality of the BSE maps. Solidity ranges from 0.6-1.0, with an average solidity value of 0.94

and a modal solidity of 1.00. This suggests that crystal intersections generally have quite even

boundaries, as can be visually seen in the overlay (Figure 4.13), and is expected as BEL1B-A

has one of the least intergrown groundmass out of the samples.

Figure 4.13: Overlay of groundmass orthopyroxene intersection outlines in BEL1B-A. a)
Overlay of 1317 intersection outlines. Dashed area defines b). b) Intersection outlines colour-
coded to illustrate binning process and relative proportions of intersections in each bin.

Figure 4.14 presents the CSD for the groundmass orthopyroxene. The 2D size-shape data and

textural data used as inputs are detailed in Table 4.2. The CSD is a curved slope, with a slope

of -29.7 (± 0.6) and an intercept of 11.77 (± 0.05). The lower limit of crystal size is 10 µm.

The downturn of the slope is due to the lower abundance of resolvable crystals at the smallest

sizes. The intersection population was binned into two size fractions, 0-35 µm and 35 + µm.

The bins are marked on the slope.
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Figure 4.14: Crystal size distribution of groundmass orthopyroxene in BEL1B-A. The resulting
size fractions from binning the intersection data are marked on the slope.

Groundmass orthopyroxene intersection data were binned by size fraction to investigate change

in shape. Both binned fractions, as well as the complete unbinned data, was input into

ShapeCalc to produce a best-fit 3D shape estimate (Table 4.3). Figure 4.15 illustrates the

3D shape estimates and the suggested change in shape with size. S/I decreases with increasing

size. Crystals in the smallest bin (0-35 µm) have an equant best-fit shape (S/I = 0.71 ± 0.08,

I/L = 0.54 ± 0.27). Crystals in the larger bin (35 + µm) have a significantly different best-fit

shape, moving towards bladed (S/I = 0.33 ± 0.05, I/L = 0.44 ± 0.25).

Figure 4.16 compares the w/l distributions for each binned fraction against the best-fit model

shape. The Rc
2 values (Table 4.3) for the binned fractions are 0.998 (0-35 µm) and 0.989 (35 +

µm). Both fractions contain a sufficient number of crystals for analysis using ShapeCalc: 1012

intersections for 0-35 µm, and 305 intersections for 35 + µm. The goodness-of-fit is illustrated

in Figure 4.16. The intersection outlines (Figure 4.13) provide a qualitative confirmation of the

suggested change in shape with size fraction. The intersections in the 0-35 µm bin are generally

equant shapes, approximating octagons. Intersections tend to be more elongate in the larger 35

µm bin, possibly reflecting the progression from equant to more bladed shapes with size.

Whilst the binning approach yields two size fractions of significantly different shapes with a

good fit to model 3D shapes, the complete unbinned data also produces a strong fit to model

shape data. The 3D shape estimate for the complete, unbinned data is S/I = 0.67 ± 0.06,

I/L = 0.29 ± 0.20. This overlaps with the shape estimate for the 0-35 µm bin. The Rc
2 value

for the complete, unbinned data is 0.997, a similar (within 1 %) confidence value to the 0-35

µm bin and a higher value (by 8 %) than the 35 + µm bin. The goodness-of-fit between the

unbinned data and the best-fit model shape is illustrated in Figure 4.16c.
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Figure 4.15: 3D shape estimates for groundmass orthopyroxene in BEL1B-A. a) Zingg dia-
gram showing the S/I and I/L estimates for each binned size fraction and the complete unbinned
data. b) Zingg diagram with the 3D shape estimates for each binned fraction visualised. c)
The suggested change in shape with size visualised alongside the singular shape estimate for
the unbinned intersection population. Best-fit shapes of the binned fractions move from a more
equant shape towards more bladed.
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Figure 4.16: w/l distributions of the natural sample data in each binned fraction against the
model best fit shape distribution of orthopyroxene in BEL1B-A. a) 0-35 µm. b) 35 + µm. c)
Complete unbinned data.

4.4 Amphibole

4.4.1 TRA10A

Figure 4.17 presents the overlay of outlined amphibole crystal intersections. Whilst binning

was attempted, no change in shape with size was identified. TRA10A is an end-member sample

for groundmass crystal size, being the coarsest-grained and most intergrown enclave sample

(Chapter 3). 13.5 % of the measured area is groundmass amphibole (Table 4.1). The maximum

intersection length is 1298 µm. The largest amphibole crystal measured in TRA10A
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Figure 4.17: Overlay of groundmass amphibole intersection outlines in TRA10A. a) Overlay
of 542 intersection outlines. Dashed area defines b). Yellow star marks intersection with largest
length, that was discarded from CSD creation. b) Close look at intersection outlines. Binning
was attempted, but no change in shape with size was identified.

is an outlier (starred in Figure 4.17a). It is twice as large as the second largest crystal measured,

which has a maximum length of 624 um. The minimum intersection length is 9 µm. The mean

intersection length is 98 um. The minimum width is 5 um, above the minimum resolvable

width (1 µm). Solidity ranges from 0.4-1.0, with an average solidity value of 0.90 and a modal

solidity of 1.00. The wider range in solidity and lower average solidity than the plagioclase

in MVO-1591A and plagioclase and orthopyroxene in BEL1B-A reflects the more intergrown

groundmass with complex crystal intersection shapes. This can be visually seen in the overlay

(Figure 4.5).

Figure 4.18 presents the CSD for the groundmass amphibole. The 2D size-shape data and

textural data used as inputs are detailed in Table 4.2. The CSD is a curved slope, with a slope

of -7.58 (± 0.24) and an intercept of 7.77 (± 0.08). The lower limit of crystal size is 20 µm.

The downturn of the slope is due to the lower abundance of resolvable crystals at the smallest

sizes.

Binning of the intersection data was attempted to investigate potential change in shape with

size. No change in shape with size was identified. The best-fit 3D shape estimate for the

complete unbinned data is S/I = 0.65 ± 0.06, I/L = 0.24 ± 0.20 (Table 4.1). Figure 4.19b

illustrates the 3D shape estimate. The Rc
2 value is high at 0.998. This strong goodness-of-fit

is illustrated in Figure 4.19c, where the w/l distribution of the unbinned intersection data is

compared to the best-fit model shape.
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Figure 4.18: Crystal size distribution of groundmass amphibole in TRA10A. Binning was
attempted, but no change in shape with size was identified. Red error bar means ”infinite”
error.

Figure 4.19: 3D shape estimate for groundmass amphibole in TRA10A. a) Zingg diagram
showing the S/I and I/L estimate for the complete unbinned data. No change in shape with
size was identified. b) Zingg diagram with the 3D shape estimate for the unbinned data c) w/l
distribution of the unbinned natural sample data against the model best-fit shape distribution.
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5 Statistical Validation

Chapter 4 presented 3D shape and size estimates for groundmass crystals in the mafic enclaves.

Here, we test the 2D intersection data to assess if the 3D shape-size results are true, distinct

crystal populations, or if they can be explained by sectioning effects producing statistical arte-

facts. Two approaches are taken, framed as questions below. The null hypothesis is that the

groundmass crystals are a single shape-size population.

• CrystalSlice: can a single shape-size model population reproduce the natural crystal shape-

size relationships?

Here, we use the numerical model CrystalSlice (Allgood, in prep) to model the 2D intersection

w/l distributions resulting from sectioning (1) a single shape-size population and (2) multiple

shape populations (Figure 5.1b) . If the w/l distribution of the single shape model matches that

of the groundmass crystals better than that of the multiple shapes model, this suggests that the

mafic enclave crystals are a single shape population. Table 5.1 presents the CrystalSlice inputs.

Single shape model distributions are produced from sectioning one model crystal population

(P1) with one shape (S:I:L). Multiple shape model distributions combine the w/l intersection

data from sectioning multiple cuboids of distinct shape, with their S:I:L defined by the 3D shape

estimate of the groundmass crystal populations for that sample. Rc
2 compares the similarity

between the modelled w/l distribution and the observed groundmass crystal w/l distribution.

Table 5.1: CrystalSlice inputs to create model 2D intersection w/l distributions.

Sample Phase Model Rc
2 Pn Fraction ( µm ) % S I L

MVO-1591A Plagioclase Single shape 0.953 P1 Unbinned 100.0 1.00 2.70 5.60
Multiple shapes 0.998 P1 0-20 31.4 1.00 1.45 9.20

P2 20-40 29.9 1.00 2.80 5.60
P3 40-100 31.5 1.00 3.60 9.20
P4 100+ 7.2 1.00 5.00 8.40

BEL1B-A Plagioclase Single shape 0.961 P1 Unbinned 100.0 1.00 2.70 5.60
Multiple shapes 0.996 P1 0-20 36.0 1.00 1.70 6.40

P2 20-40 35.9 1.00 2.80 6.40
P3 40-100 24.6 1.00 4.10 9.60
P4 100+ 3.5 1.00 4.90 12.00

TRA10A Plagioclase Single shape 0.986 P1 Unbinned 100.0 1.00 2.10 6.00
Multiple shapes 0.987 P1 0-20 2.8 1.00 2.80 3.60

P2 20-40 8.8 1.00 2.20 4.80
P3 40-100 35.8 1.00 2.10 6.00
P4 100+ 52.6 1.00 2.10 6.00

BEL1B-A Orthopyroxene Single shape 0.89 P1 Unbinned 100 1.00 1.50 5.20
Multiple shapes 0.990 P1 0-35 76.8 1.00 1.40 2.60

P2 35+ 23.2 1.00 3.00 6.80
TRA10A Amphibole Single shape 0.997 P1 Unbinned 100 1.00 1.55 6.40

• Validating the smallest crystal population: can sectioning a single shape-size population

reproduce the smallest crystal population observed in the groundmass crystals?

Sectioning a single shape-size population of large crystals will produce ‘corner-cuts’, which are

small intersections through the crystal edge. It is therefore important to test whether the
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smallest shape population in the groundmass crystals can be explained by simply being corner-

cuts of a larger crystal population, i.e., the cut-section effect (Chapter 1.1.2). To address this, we

use the same modelled 2D intersections from the previous approach/question and scale these

modelled 2D intersection data to a size representative of the groundmass crystal population

observed for each sample (scaling method described in Chapter 2.5.2). We then compare the

proportion and shapes of intersections that fit in the smallest size bin between the model and

groundmass crystals to ascertain if the smallest population in each mafic enclave is likely to

be corner-cuts, or a distinct shape-size population (Figure 5.1c). Table 5.2 presents the scaling

inputs and results for testing each sample. ‘Proportion’ shows what percentage of the scaled

model intersections falls within the size fraction. ‘Corner-cuts’ shows what percentage of the

scaled model intersections that are 0-20 µm in length are triangular, and are interpreted as

corner-cuts of the model cuboid.

Table 5.2: Validating the smallest population: details of the model cuboid shape and how
the model intersection data was scaled.

Sample Phase S I L Scaling approach Scaling (µm) Proportion % Corner-cuts (%)
MVO-1591A Plagioclase 1.00 2.70 5.60 Representative maximum 145 7.3 100
MVO-1591A Plagioclase 1.00 2.70 5.60 Threshold value 50.0 31.3 48.2
BEL1B-A Plagioclase 1.00 2.70 5.60 Representative maximum 70.0 21.3 59.6
BEL1B-A Plagioclase 1.00 2.70 5.60 Threshold value 45.9 36.0 42.4
BEL1B-A Orthopyroxene 1.00 1.50 5.20 Representative maximum 60.0 86.8 17.8
BEL1B-A Orthopyroxene 1.00 1.50 5.20 Threshold value 81 76.8 19.5

Below, we address these two questions systematically in turn for each phase in a sample that

displayed a change in shape with size: the plagioclase in MVO-1591A and BEL1B-A, and the

orthopyroxene in BEL1B-A. We address the first question for the phases that did not display a

change in shape with size: plagioclase and amphibole in TRA10A.

Key terms used throughout are defined here for clarity. The observed/natural sample refers to

the measured crystals in the mafic enclaves. A comparison of observed versus modelled data

is therefore a comparison of measurements from real groundmass crystals in the mafic enclaves

with model data. The smallest crystal population refers to the shape population generated by

the smallest size intersections in Chapter 4. For plagioclase in MVO-1591A and BEL1B-A,

the smallest crystal population is prismatic and generated by the 0-20 µm intersections. For

orthopyroxene in BEL1B-A, the smallest crystal population is equant and is generated by the 0-

35 µm intersections. Reference to the 0-20 µm fraction and 0-35 µm fraction therefore describes

the w/l measurements of the intersections of this size in the natural groundmass crystals. The

modelled intersection data is the w/l measurements and shapes of 2D intersections generated

from sectioning a model cuboid in CrystalSlice. Scaled model intersection data are the widths

and lengths of the model intersections when scaled to a certain µm value so that they can be

compared to the natural intersection data.
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Figure 5.1: a) CrystalSlice is used to section a cuboid to generate model 2D intersection data
for a known 3D shape. b) CrystalSlice is used to test if a single shape-size model population can
reproduce the natural crystal shape-size relationships. c) Model intersection data is compared
to the natural sample data to test if the smallest size fraction of natural crystals can be explained
as corner-cuts of large, single shape-size crystal population.
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5.1 Plagioclase: MVO-1591A

Groundmass plagioclase in MVO-1591A showed change in shape with size (Section 4.2.1). 2D

intersection data were binned into four size fractions of 0-20 µm, 20-40 µm, 40-100 µm and 100

+ µm. 3D shape estimates suggest evolution from prismatic to tabular (S/I decreases) with

increasing size (Figure 4.3). In this section, comparisons of natural and model w/l distributions,

and comparisons of natural and model 2D intersection data are used to explore the validity of

the shape-size result.

5.1.1 CrystalSlice: for plagioclase in MVO-1591A

CrystalSlice (Allgood, in preparation) was used to generate model w/l distributions of random

2D intersections through a population of crystals with a single size and single shape (the ‘sin-

gle shape, single size’ population, Figure 5.2b) and a combined population of crystals that are

binned into four size fractions, each with a distinct shape (the ‘multiple shapes’ population, Fig-

ure 5.2a) defined by the 3D shape estimates of each size fraction in the groundmass plagioclase

(Table 5.1). This is illustrated in Figure 5.1a and b.

Figure 5.2: Comparison of the unbinned plagioclase w/l distribution in MVO-1591A against
the w/l distribution of: a) a model w/l distribution of four shape sub-populations, defined by
the 3D shape estimates of each size plagioclase size fraction; b) a model w/l distribution for a
single shape population.

The w/l distribution of the multiple shape population closely matches the w/l distribution of

the plagioclase, with Rc
2 = 0.998 and a good visual fit between the peaks, both at ∼0.2 (Figure

5.2a). The w/l distribution of the single shape population is a poorer match to that of the
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plagioclase, with an Rc
2 = 0.953, 4.5 % lower than the multiple shapes estimate. Mangler et al.

(2022) established that an Rc
2 <0.975 was a poor fit (Chapter 2.1). There is a poorer visual fit

with the peak of the model curve sitting at higher w/l value of ∼0.4 than the plagioclase peak

at ∼0.2. (Figure 5.2b). This suggests that the groundmass plagioclase does contain multiple

shape populations, validating the 3D shape-size result. Of note is that the Rc
2 for the best-fit

3D shape estimate of the unbinned plagioclase intersections in ShapeCalc was 0.974. The lower

goodness-of-fit (0.953) for the single shape model population in CrystalSlice is likely due to a

lower number of successful intersections in this program (5500-7500 successful intersections in

CrystalSlice; 20,000 intersections in ShapeCalc).

5.1.2 Validating the smallest plagioclase population for MVO-1591A

The 0-20 µm intersections were interpreted as the smallest, most prismatic plagioclase popu-

lation (Chapter 4.2.1). However, it is possible that this small population could be corner-cuts

of larger crystals, not a true plagioclase population. Therefore, using CrystalSlice, model 2D

intersection data were generated to assess whether sectioning a single shape-size population of

crystals could reproduce the 0-20 µm plagioclase intersection proportions and shapes.

Figure 5.3: a) Sectioning a model cuboid of 1:2.7:5.6, scaled to a representative maximum
length of 145 µm cannot reproduce the proportion or shapes of the 0-20 µm plagioclase popu-
lation observed in MVO-1591A. b) The threshold scaling length to reproduce the proportion
of plagioclase intersections is ∼50 µm, but cannot reproduce intersection shapes. See text for
explanation.

A model cuboid of 1:2.7:5.6 (which is the estimated 3D shape for the unbinned plagioclase,

4.2.1) was sectioned to generate 2D intersection w/l data (Figure 5.3). These measurements

were scaled to a representative maximum 2D intersection length measured in the plagioclase,

145 µm, estimated from the 2D length distribution (Chapter 2.5.2; Figure 5.3). This was done

to make the model 2D intersection data comparable to the natural plagioclase intersection

data. Only 7.3 % of the model intersections are 0-20 µm, far less than the 31.4 % (red dashes)

constituted by the 0-20 µm fraction in the plagioclase (Table 5.2; Figure 5.3a). Furthermore, 100
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% of the model smallest intersections are triangles, indicating that they are all corner-cuts of the

model cuboid. In contrast, only 6 (1.3 % ) of the smallest plagioclase intersections are triangles,

clear corner-cuts. Sectioning a single model population of crystals with the same shape and

size therefore cannot reproduce the proportion or shapes of the 0-20 µm plagioclase fraction,

indicating that the smallest, most prismatic population in MVO-1591A is a true distinct shape

population (Figure 5.3).

The threshold length to which scaling the 2D model intersection data will reproduce the observed

proportion (31.4 %) of 0-20 µm intersections was found to be ∼50 µm (Table 5.2; Figure 5.3b).

In this case, 48.2 % of model 0-20 µm intersections are triangular corner-cuts of the model

cuboid, much greater than the 1.3 % of plagioclase intersections which are observed to be

triangular in MVO-1591A. Moreover, the model intersection widths and lengths produce a 3D

shape estimate of S/I = 0.63 ± 0.07, I/L = 0.70 ± 0.28 using ShapeCalc (Rc
2 = 0.998). This is

significantly different in terms of I/L to the best-fit 3D shape estimate for the plagioclase 0-20

µm fraction, S/I = 0.69 ± 0.06 and I/L = 0.16 ± 0.18 (Table 4.3). Therefore, whilst sectioning

this single shape-size model population can reproduce the proportion of 0-20 µm plagioclase

intersections, it cannot reproduce the proportion of corner-cuts or the 3D shape estimate for

the 0-20 µm intersections. This suggests that the smallest, most prismatic plagioclase crystals

in MVO-1591A represent a true, distinct population, rathen than a statistical artefact.

5.2 Plagioclase: BEL1B-A

Like MVO-1519A, the 2D intersection measurements of groundmass plagioclase in BEL1B-A

were binned into four size fractions of 0-20 µm, 20-40 µm, 40-100 µm and 100 + µm, suggesting

that plagioclase evolves from prismatic to tabular with increasing size (S/I decreases, I/L in-

creases) (Chapter 4.2.2). Again, we compare natural and model w/l distributions, and compare

natural and model 2D intersection data to explore the validity of this shape-size result.

5.2.1 CrystalSlice: plagioclase in BEL1B-A

CrystalSlice (Allgood, in preparation) was used in the same way as MVO-1519A, to generate

model w/l distributions of random 2D intersections through a population of crystals with a single

size and single shape (the ‘single shape, single size’ population, Figure 5.4b) and a combined

population of crystals that are binned into four size fractions, each with a distinct shape (the

‘multiple shapes’ population, Figure 5.4a) defined by the 3D shape estimates of each size fraction

in the groundmass plagioclase (Table 5.1).
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Figure 5.4: Comparison of the unbinned plagioclase w/l distribution in BEL1B-A against the
w/l distribution of: a) a model w/l distribution of four shape sub-populations, defined by the
3D shape estimates of each size plagioclase size fraction; b) a model w/l distribution for a
single shape population.

For BEL1B-A, the w/l distribution of the multiple shape population closely matches the w/l

distribution of the plagioclase, with Rc
2 = 0.996 and a good visual match between the distri-

bution peaks (w/l ≈ 0.2-0.25) (Figure 5.4a). The w/l distribution of the modelled single shape

population is again a poorer match to that of the plagioclase, with an Rc
2 = 0.961, which is 3.7

% lower than the multiple shape estimate. This is also below 0.975, where an Rc
2 <0.975 was

established by Mangler et al. (2022) to mean a poor fit. There is a poorer visual fit between the

distribution peaks (Figure 5.4b). The stronger goodness-of-fit between the w/l distributions of

the multiple shape model and the observed plagioclase indicates that BEL1B-A does contain

multiple distinct shape populations of plagioclase, validating the 3D shape-size result.

5.2.2 Validating the smallest plagioclase population for BEL1B-A

The 0-20 µm plagioclase intersections were interpreted as the smallest, most prismatic popu-

lation (Chapter 4.2.2). However, it is possible that these intersections could be corner-cuts of

a larger crystal. CrystalSlice was therefore used to generate model 2D intersection data for a

model cuboid to assess whether sectioning a modelled single shape-size population of crystals

could reproduce the 0-20 µm plagioclase intersection proportions and shapes in BEL1B-A.
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Figure 5.5: a) Sectioning a model cuboid of 1:2.7:5.6, scaled to a representative maximum
length of 70 µm cannot reproduce the proportion or shapes of 0-20 µm plagioclase intersections.
b) The threshold scaling length to reproduce the proportion of plagioclase intersections is ∼45.9
µm, but cannot reproduce intersection shapes. See text for explanation.

A model cuboid of 1:2.7:5.6 (which is the estimated 3D shape for the unbinned plagioclase,

Chapter 4.2.2) was sectioned to generate model 2D intersection measurements (Figure 5.5).

These model intersections were scaled to a representative maximum 2D length measured in

the plagioclase, 70 µm (after Chapter 2.5.2). 21.3 % of the model intersections are 0-20 µm

in length, which is ∼41 % less than the 36.0 % constituted by the 0-20 µm fraction in the

plagioclase (Table 5.2; Figure 5.5a). 59.6 % of the 0-20 µm model intersections are triangular

corner-cuts, compared to only 6 (1.1 %) of the 0-20 µm intersections of plagioclase being clear

corner-cuts. Sectioning this model single shape-size population therefore cannot reproduce the

observed proportion or shapes of the 0-20 µm plagioclase fraction, indicating that the smallest,

most prismatic population in BEL1B-A is a true distinct shape population.

The threshold length at which scaling the model 2D intersection data will reproduce the ob-

served proportion (36.0 %) of 0-20 µm intersections in the groundmass of BEL1B-A was found

to be ∼45.9 µm (Table 5.2; Figure 5.5b). In this case, 42.4 % of the model 0-20 µm intersec-

tions are triangular corner-cuts of the model cuboid, much greater than the 1.1 % of 0-20 µm

plagioclase intersections that are observed to be triangular in BEL1B-A. Again, the 0-20 µm

model intersection measurements generate a best-fit 3D shape estimate is S/I = 0.63 ± 0.06

and I/L = 0.44 ± 0.25, with an Rc
2 = 0.999 using ShapeCalc. This is not significantly different

than the best-fit 3D shape estimate for the observed plagioclase 0-20 µm fraction, S/I = 0.61

± 0.06 and I/L = 0.26 ± 0.18 (Table 4.3). Sectioning this single shape-size population can

therefore reproduce the proportion of 0-20 µm intersections, and can reproduce the prismatic

3D shape estimate. However, the proportion of model intersections that are corner-cuts is much

greater than what is observed in the plagioclase intersections, so sectioning this single shape-size

population cannot fully reproduce the smallest plagioclase population. This suggests that the

smallest, most prismatic plagioclase in BEL1B-A are a true distinct population, not a statistical
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artefact.

5.3 Plagioclase: TRA10A

Groundmass plagioclase in TRA10A was not found to exhibit change in shape with size, being

a single shape population (Section 4.2.3). A comparison of the plagioclase w/l distribution and

model w/l distributions is used to explore the validity of this result.

5.3.1 CrystalSlice: plagioclase in TRA10A

CrystalSlice was used to generate a model single shape-size population representative of the

TRA10A plagioclase shape estimate, 1:2.1:6 (Table 2.5.1). The w/l distribution of the plagio-

clase is a good match to that of the single shape model, with an Rc
2 = 0.986 (Figure 5.6a).

A multiple shapes model was generated (Table 2.5.1), where the four sub-populations were

defined by the respective best-fit 3D shape estimates and 2D intersection proportions of the

binned fractions in TRA10A (Table 2.5.1, after Chapter 4.2.3). The 0-20 µm and 20-40 µm

fractions do not have sufficient intersections for reliable analysis with ShapeCalc (15 and 47

intersections respectively, Table 4.3) and have poor sample-model fits, as can be seen visually

in Figure 4.12.

The w/l distribution of the multiple shape model is a good fit to the observed plagioclase w/l

distribution in TRA10A, with an Rc
2 = 0.987 (Figure 5.6b). This sample-model fit is just

as a good of a sample-model fit as between the observed plagioclase and the modelled single

shape population, with the Rc
2 of both sample-model fits being within 0.1 % of each other.

Likewise, there is visually little difference between the w/l distributions of the single shape

model (Figure 5.6a) and the multiple shapes model (Figure 5.6b). Only 2.8 % of cuboids in the

multiple shapes model population are a significantly different 3D shape to the remaining 97.2

% (Table 2.5.1 and cuboid shapes in Figure 5.6b). The 2.8 % is defined by P1, representing

the 0-20 µm fraction. This population is so small that is does not have a significant impact on

the resulting w/l distribution. The sample 0-20 µm fraction is thought to be off-cuts of larger

crystals, and not a true crystal sub-population. The multiple shapes approach demonstrates

that even if the 0-20 µm fraction is treated as a true crystal sub-population, the resulting model

w/l distribution is not significantly different to the single shape model w/l distribution. This

supports the conclusion that the observed plagioclase in TRA10A has no change in shape with

size, and is a single shape population.
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Figure 5.6: Comparison of the unbinned plagioclase w/l distribution in TRA10A against the
w/l distribution of: a) a model w/l distribution for a single shape population. b) a model
w/l distribution of four shape sub-populations, defined by the 3D shape estimates of each size
plagioclase size fraction. See text for explanation.

5.4 Orthopyroxene: BEL1B-A

Groundmass orthopyroxene in BEL1B-A was found to exhibit apparent changes in shape with

size (Chapter 4.3.1). 2D intersection measurements were binned into two size fractions of 0-35

µm and 35+ µm. 3D shape estimates suggest evolution from a higher S/I shape to a lower S/I

shape with increasing size (Chapter 4.3.1). As with the statistical validation of the plagioclase

populations, we compared the observed orthopyroxene w/l distribution and 2D intersection

shapes to model w/l distributions and intersection shapes, to explore the validity of the shape-

size result.

5.4.1 CrystalSlice: orthopyroxene in BEL1B-A

CrystalSlice (Allgood, in preparation) was used to generate model w/l distributions of random

2D intersections through a population of crystals with a single size and single shape (the ‘single

shape, single size’ population, Figure 5.7b) and a combined population of crystals that are

binned into two size fractions, each with a distinct shape (the ‘multiple shapes’ population,

Figure 5.7a) defined by the 3D shape estimates of each size fraction in the orthopyroxene

(Table 5.1). The w/l distribution of the multiple shapes model is a strong match to that of

the orthopyroxene, with Rc
2 = 0.990 (Figure 5.7a). The w/l distribution of the single shape

model is an equally good fit to the model data, with an Rc
2 = 0.989, within 0.1 % of the

multiple shapes model. Examining the shapes of the model distribution curves, the multiple
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shapes model (Figure 5.7a) has two peaks, centred on w/l ≈ 0.3 and 0.75. The orthopyroxene

distribution does not match these peaks, particularly that at w/l ≈ 0.3. The single shape

population (Figure 5.7b) has a clear peak at w/l ≈ 0.65.

Figure 5.7: Comparison of the unbinned plagioclase w/l distribution in BEL1B-A against the
w/l distribution of: a) a model w/l distribution of four shape sub-populations, defined by the
3D shape estimates of each size plagioclase size fraction; b) a model w/l distribution for a
single shape population.

The w/l distribution of the observed orthopyroxene in BEL1B-A lacks this peak, but this is

not unexpected. The sharpness of most peaks in model data are unlikely to be observed in

natural crystals, due to the irregular form of natural crystals as opposed to perfect model

cuboids, and because of the much smaller number of intersections in natural data (here, 534

orthopyroxene measured) compared to model data (6000-7000 intersections) (Higgins, 1994).

The w/l distribution curve shape in Figure 5.7b is therefore typical of a single shape, prismatic

population. This would suggest that the two distinct shape populations identified in Chapter

4.3.1 is a statistical artefact. However, as the Rc
2 values are virtually identical, it is inconclusive

as to whether the orthopyroxene in BEL1B-A is a single shape-size population, or does indeed

contain two distinct shape populations.

5.4.2 Validating the smallest orthopyroxene population for BEL1B-A

The 0-35 µm observed orthopyroxene intersections were interpreted as the smallest, most equant

population of crystals in BEL1B-A (Chapter 4.3.1). From above, it is inconclusive as to whether

this population does exist. To test whether the smallest population could be reproduced by
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sectioning a model single shape-size population, model 2D intersection data was generated for

a model cuboid and compared to the observed orthopyroxene data.

A model cuboid of 1:1.5:5.2 (the 3D shape estimate for the unbinned orthopyroxene intersections,

Chapter 4.3.1) was sectioned to generate model 2D intersection w/l data that was then scaled

to a representative maximum 2D intersection length, 60.0 µm (Table 5.2). The 0-35 µm fraction

constitutes 86.8 % of the total model intersections, exceeding by 10 % the 76.8 % constituted

by

Figure 5.8: Sectioning a model cuboid of 1:1.5:5.2, scaled to a representative maximum length
of 60.0 µm can reproduce the proportion or shapes of 0-35 µm orthopyroxene intersections.
b) The threshold scaling length to reproduce the proportion of orthopyroxene intersections is
∼81.0 µm.

the 0-35 µm fraction in the orthopyroxene (Figure 5.8a). Sectioning this modelled single shape

population can therefore reproduce the proportion of the smallest orthopyroxene population.

The majority of the model 0-35 µm intersections are 4- or 5-point shapes, matching the observed

orthopyroxene intersections being quads or above in outline. However, 17.8 % of model inter-

sections in the 0-35 µm fraction are triangular, indicating that nearly a fifth of the model 0-35

µm fraction are corner-cuts of the model cuboid population, whereas none of the orthopyroxene

intersections measured in BEL1B-A were triangular. Moreover, the best-fit 3D shape estimate

of the model 0-35 µm fraction is S/I = 0.53 ± 0.06 and I/L = 0.66 ± 0.25 using ShapeCalc, with

an Rc
2 = 0.998. This is significantly different than the best-fit 3D shape estimate for the 0-35

µm fraction of the observed orthopyroxene, S/I = 0.71 ± 0.08 and I/L = 0.54 ± 0.27 (Table

4.3). Sectioning a single shape-size model population can reproduce the proportion of 0-35 µm

intersections observed in BEL1B-A and can partially reproduce the intersection shapes, but

cannot recreate the lack of triangular corner-cuts or the 3D shape estimate.

The threshold length at which scaling the model 2D intersection data will reproduce the pro-

portion (76.8 %) of 0-35 µm intersections observed in BEL1B-A was found to be ∼81 µm (Table
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5.2). Similar to the previous scaling approach, the majority of the intersections are quads or

above- matching that observed in the orthopyroxene intersections, even though 19.5 % of model

0-35 µm intersections are triangular. The best-fit 3D shape estimate of the model 0-35 µm

fraction is S/I = 0.69 ± 0.08 and I/L = 0.73 ± 0.26 using ShapeCalc, with an Rc
2 = 0.990.

Sectioning a model single shape-size population can therefore broadly reproduce the proportion

of 0-35 µm intersections as well as their 3D shape estimate, and, albeit to a lesser extent, the

intersection shapes. Despite not seeing any clear triangular corner-cuts in the orthopyroxene

intersections, it is not necessarily expected that corner cuts of a pyroxene would be triangular,

as pyroxenes are not perfect cuboids; as they often have octagonal or hexagonal tracht, their

corner-cuts could have more complex shapes with more than 3 points.

In summary, whilst these tests cannot unambiguously prove either one of two orthopyroxene

shape populations in BEL1B-A, the results point towards the groundmass orthopyroxene is a

single shape population, and that the two distinct populations are a statistical artefact.

5.5 Amphibole: TRA10A

Like groundmass plagioclase in TRA10A, groundmass amphibole was not found to exhibit

change in shape with size (Chapter 4.4.1). A comparison of the amohibole w/l distribution and

a model w/l distribution is used to explore the validity of this single shape population result.

5.5.1 CrystalSlice: amphibole in MVO-1591A

CrystalSlice was used to generate a single shape-size population representative of the TRA10A

amphibole shape estimate, 1:1.55:6.4 (Table 2.5.1). The w/l distribution of the observed am-

phibole in TRA10A is a good match to the w/l distribution of the single shape model, with

an Rc
2 = 0.997 (Figure 5.6a). This is within 0.1 % of the Rc

2 = 0.998 best-fit shape estimate

using ShapeCalc. There is no multiple shapes model w/l distribution for comparison. The high

goodness-of-fit between the amphibole and single-shape model distributions supports the result

that there is no change in shape with size in the groundmass amphibole of TRA10A, it is a

single shape population.

Figure 5.9: There is a strong goodness-of-fit between the single shape model population and
the TRA10A amphibole population.
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5.5.2 Summary

Groundmass plagioclase in MVO-1591A and BEL1B-A both showed change in shape from pris-

matic to tabular with increasing size, and the statistical tests indicate that these mafic enclaves

contain true, distinct shape populations. TRA10A plagioclase does not show change in shape

with size, and statistical tests support that there is a single shape population. Groundmass

orthopyroxene in BEL1B-A possibly contained two shape populations, with a smaller, higher

S/I population and a larger, lower S/I population. However, statistical tests suggest that

the orthopyroxene is likely a single prismatic shape population, and that the smaller, more

equant population suggested to occur is likely a statistical artefact. Groundmass amphibole in

TRA10A did not show change in shape with size, and like the plagioclase in this mafic enclave,

the statistical tests support that the amphibole is a single shape population.
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6 Discussion

In this chapter, we use crystal growth modelling to explore how the observed groundmass

crystal shape-size relationships could have been produced in the mafic enclaves. First, we

apply the model to the plagioclase results, informing discussion of the processes that could

have contributed to the development of multiple plagioclase shape-size populations in BEL1B-

A and MVO-1591A. We then explore why we observe only one shape-size population in the

groundmass plagioclase and amphibole of TRA10A. Following this, we apply the growth model

to the orthopyroxene shape-size populations in BEL1B-A, and discuss these results with regard

to recent studies exploring variation in pyroxene morphology (Okumura et al., 2022; 2024).

Finally, we use the derived petrogenetic significance of groundmass crystal shape in the mafic

enclaves to comment on magmatic processes occurring at SHV.

6.1 Crystal growth modelling

We present an adapted crystal growth model that attempts to reproduce the groundmass shape-

size populations. Exploration of how varying steady-state overgrowth shape affects crystal

evolution and comparing these results with recent experimental work (Mangler et al., 2023)

enables comment on the crystallisation history of the mafic enclaves.

6.1.1 The crystal growth model

Mangler et al. (2022) presented a growth model that calculates the change in shape of a crystal

for a given initial shape and size, crystal volume increase, and defined overgrowth shape. The

magmatic process modelled is the growth of a single isolated crystal in the melt. The steady-

state overgrowth shape imparts relative growth rates on crystal faces that determine how the

crystal shape evolves with increasing volume. Mangler et al. (2022) found that, at a given

crystallisation interval, the shapes of crystal populations depend on their number density and

initial crystal size (Figure 6.1). A further application of the model has been to establish relative

growth rates (δS/ δI ) for experimentally grown plagioclase populations in basaltic and rhyolitic

melts by characterising plagioclase shape as a function of size (Mangler et al., 2023) .

The growth model is a valuable tool to explore the effects of initial size, shape, number density

and overgrowth shape on crystal shape-size evolution. However, a functional limitation exists

in that the user is required to manually adjust the ‘k factor’, which is a value that is necessary

to calculate the correct model crystal volume, necessitating a trial-and-error approach. Only a

singular ‘point’ in shape evolution can be calculated at a time; the complete shape-size evolution

must be manually plotted. Regarding geological applications, the model does not account for

the initial crystallinity of the melt volume. The initial population of proto-prisms will constitute

a small (typically ≤ 1 %) volume, which is not taken into account when calculating the volume

increase required per crystal to achieve the desired increase in total crystallinity.

To address these issues, the Excel sheet model of Mangler et al. (2022) was converted to a

MatLab script (Appendix A). The core difference is that the code iteratively solves for the ‘k

factor’ for a range of shapes between the initial and overgrowth shape, plotting the complete
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Figure 6.1: Schematic of the crystal growth model. a) The model grows a cuboid of a
specified initial shape (prism) and size (here, 0.1 µm3) by a certain volume depending on the
initial crystal number density (here, 17,500 mm-3) and desired increase in total crystallinity
(here, 36.3 %, the estimated crystallinity of groundmass plagioclase in MVO-1591A). For a
melt of initially 0 % crystallinity, to increase the total crystallinity by 36.3 %, each cuboid
must increase in volume by 20,743 µm3. As the volume increases, the cuboid evolves in shape
towards the steady-state overgrowth shape. b) How model cuboid shape evolves with size from
an initial prism towards the steady-state overgrowth shape. The steady-state overgrowth shape
will be one of the plagioclase populations in MVO-1591A (c)). A sufficient increase in volume
will evolve the model cuboid to the overgrowth shape, successfully reproducing the plagioclase
population. Conversely, an insufficient increase in volume means the model cuboid cannot reach
the overgrowth shape, failing to reproduce the plagioclase population.

evolution in individual crystal shape and volume, and total crystallinity of a volume of melt

(here, 1 mm3). The initial crystallinity constituted by the volume of the initial crystal popula-

tion is accounted for (after Equation (1)). This conceptually improves the applicability of the
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model to real magmatic scenarios by accounting for the initial crystallinity based on the crystal

number density.

(1) Initial crystallinity = (100 / melt volume) * (initial crystal volume * crystal number density).

An example output of this revised growth model output (Figure 6.2) presents the shape-size

evolution of the model crystal (red/yellow curves) from the initial shape and size (white circle)

to the overgrowth shape (black circle). The green circle shows the model shape-size when the

desired increase in total crystallinity (here, 36.3 %) has been achieved by the collective volume

increase of growing the initial crystal population (here, each individually by 20,743 µm3). The

volume increase in each individual crystal is therefore 207,000 %.

6.1.2 Application to groundmass plagioclase

The revised crystal growth model is applied to the mafic enclave samples to try to reproduce the

groundmass plagioclase size-shape relationships. The model was applied in three approaches.

Approach 1 models the evolution of a prism to different overgrowth shapes, following Mangler

et al. (2022). However, shape-size evolution of a singular crystal is not reflective of continuous

nucleation and growth in magmatic scenarios. Approach 2 attempts to address this through a

step-wise crystallisation approach to grow successive distinct shape-size populations observed

in the mafic enclaves. Following this, Approach 3 then varies steady-state overgrowth shape to

grow successive populations, as it was observed in Mangler et al. 2023 that steady-state shape

can evolve with changing melt composition/diffusivity.

The textural characteristics of BEL1B-A and MVO-1591A are similar, with the latter used

as model inputs (Table 6.1). The CSDs (Figure 4.6 and Figure 4.2 respectively) show that

groundmass crystals exponentially decrease in number density with increasing size. Four shape-

size populations were identified (Chapter 4) and verified to be real textural characteristics as

opposed to an analytical artefact (Chapter 5). The smallest crystal population is prismatic with

an S/I ∼ 0.7, evolving to increasingly tabular crystals ( S/I ≈ 0.50, 0.35, 0.20) with increasing

size. The modelling approaches attempt to reproduce these populations in succession.

Table 6.1: Growth model inputs for each approach. Total crystallinity increase (φinc) and
volumetric number density (Nv) after the textural characteristics of shape populations in
MVO-1591A. Constant parameters in all model runs include initial melt volume = 1 mm3,
initial crystal volume = 0.1 µm3 and initial crystal shape = 1:1.3:6.0. δS/ δI describe the
relative growth rates of the Short to Intermediate faces.

Approach Step Population φinc (%) Nv (mm-3) Vinc (µm3) Overgrowth shape δS/δI

Approach 1 Run 1 n/a 36.3 17,500 20,743 1:20:24 0.05
Run 2 n/a 36.3 17,500 20,743 1:5:8 0.2

Approach 2 Step 1 100 + µm 18.4 480 383,333 1:10:12 0.1
Step 2 40-100 µm 14.8 4900 30,204 1:10:12 0.1
Step 3 20-40 µm 3.5 9200 3804 1:10:12 0.1
Step 4 0-20 µm 0.9 20,000 450 1:10:12 0.1

Approach 3 Step 1 100 + µm 18.4 480 383,333 1:5:8 0.2
Step 2 40-100 µm 14.8 4900 30,204 1:4:7.5 0.25
Step 3 20-40 µm 3.5 9200 3804 1:3:7 0.33
Step 4 0-20 µm 0.9 20,000 450 1:1.5:6.5 0.66
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Approach 1

Approach 1 treats the groundmass plagioclase crystals as a single population nucleated instan-

taneously. Following Mangler et al. (2022), a 0.1 µm3 prism (1:1.3:6) was overgrown to two

steady-state shapes: 1:20:24 (δS/δI = 0.05, relative growth rate on Short to Intermediate faces)

and 1:5:8 (δS/δI = 0.2). These are endmembers of shapes observed in plagioclase grown ex-

perimentally (Mangler et al., 2023). In each model run, 1 mm3 of melt was crystallised by

36.3 %, which is the estimated groundmass plagioclase crystallinity of MVO-1591A (Table 6.1).

Overgrowth of the initial prism to either steady-state shape can reproduce the observed plagio-

clase shape populations, given the uncertainties, as the model cuboid evolves from prismatic to

tabular with increasing volume (Figure 6.2a). This agrees with Mangler et al. (2022), where

overgrowth of a 1:1.3:6 prism to a 1:10:12 tab was able to produce the range of plagioclase mi-

crolite shapes observed in natural samples from intermediate arc volcanoes. The growth model

shape results here are therefore consistent with each plagioclase size fraction in the mafic enclave

evolving towards the same steady-state shape. The later nucleating crystals do not reach the

steady-state shape because the increasing cumulative crystal number density causes a reduction

in available growth volume with time. However, Approach 1 fails to reproduce the crystal size.

The average volumes of the observed plagioclase populations are orders of magnitude greater

than the model cuboid at the same S/I (Figure 6.2b-c). This is because evolution in model

shape occurs at small volumes (10-1-102 µm, equivalent melt crystallinity ≈0.1-1 %), reaching

steady-state shape at ∼100 µm3. The plagioclase populations therefore cannot be linked by the

shape evolution of a single crystal with progressive overgrowth (cf Mangler et al., 2022).
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Figure 6.2: Approach 1: overgrowth of a prism to two steady-state shapes: 1:20:24 (red) and
1:5:8 (yellow). Natural plagioclase data are from MVO-1591A and represent four size fractions
as reported in Table 4.3. The evolution of the model crystal in shape and size with growth
follows the coloured lines, from initial shape to overgrowth shape. The model evolves through
the shapes of the plagioclase populations (a)), but cannot reproduce the averages sizes (b) and
c)). See text for further explanation.

Approach 2: Step-wise crystallisation

In natural scenarios, crystallinity of the melt increases incrementally with continuous crystal nu-

cleation and growth, producing multiple shape-size populations. Approach 2 approximates this

by modelling four ‘steps’ of crystallisation, aiming to reproduce the groundmass crystallinity

and number density of each plagioclase population (Table 6.1). For example, Step 1 attempts

to reproduce the largest, most tabular population using an 18.4 % crystallinity increase and a
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480 mm-3 number density, as observed for the >100 µm size fraction. Using the groundmass

crystallinity of each plagioclase population as the input for the total crystallinity increase means

that the model crystal will have the correct average volume to match the observations. There-

fore, this approach aims to see if the correct shape can also be reproduced. This approach was

run for two steady-state overgrowth shapes: 1:10:12 and 1:5:8. The first, 1:10:12 was used as it

is a typical plagioclase shape for groundmass in intermediate arc volcanoes (i.e. Mangler et al.,

2022). The second, 1:5:8 was shown in Approach 1 (Figure 6.2) to produce a range of shapes

with high S/I, and is therefore an alternative that may better reproduce the plagioclase shape

populations.

Neither overgrowth shape with this approach can reproduce the plagioclase shapes (Figure 6.3a

and 6.3c) with the correct average crystal volume (Figure 6.3b and 6.3d). In both cases, the

model shape at the desired crystallinity is much more tabular than the observed plagioclase

shape populations, the only exception being that an overgrowth shape of 1:5:8 (Figure 6.3c and

d) can reproduce both the size and shape of the largest, most tabular plagioclase population.

Failure to reproduce the plagioclase shapes is again because the model crystal evolves quickly

to the overgrowth shape with a small increase in volume, reaching ∼ 0.15 S/I with only a

∼1 % increase in total crystallinity (Step 4). This is because the number density is relatively

low, which means that each crystal has a relatively high available growth volume, a concept

explained in Figure 1.3.
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Figure 6.3: Approach 2: overgrowth of a prism to two steady-state shapes: 1:10:12 (a) - b))
and 1:5:8 (c) and d)), for four steps of crystallisation, reflecting the groundmass crystallinity
of each plagioclase population. Natural plagioclase data are as in Figure 6.2. This approach
cannot recreate the shape populations as in each step, the model crystal evolves to too low an
S/I shape with a small increase in volume.

Approach 3: Changing steady-state overgrowth shape

Previous approaches have demonstrated that shape evolution of the initial 0.1 µm3 prism occurs

with a small volume increase (10-1-102 µm). Mangler et al. (2023) established that the thresh-

old for attaining steady-state shape in experimentally grown plagioclase was ∼100 µm3. Any

combination of melt crystallinity increase, initial crystal size and number density that results

in the increase in individual model crystal volume exceeding ∼100 µm3 will thus evolve the

model crystal to the input overgrowth shape. Therefore, as the average crystal volume of each

plagioclase population exceeds this threshold (Table 6.1), the only way to recreate the shape-

size populations is to use the shape of each plagioclase population as the overgrowth shape.

This approach essentially dictates that the steady-state overgrowth shape changes with each

crystallisation step, illustrated in Figure 6.4. It progressively evolves from tabular (S/I = 0.2)
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to prismatic (S/I = 0.7) to reproduce increasingly smaller, higher S/I plagioclase populations.

Figure 6.4: Approach 3: overgrowth of a prism to increasingly high S/I overgrowth shapes.
Varying steady-state overgrowth shape to increasingly prismatic S:I:L can reproduce the pla-
gioclase shape-size populations. See text for further explanation.

This approach might seem somewhat circular. However, Mangler et al. (2023) discovered that

plagioclase morphology may be affected by an intermediate growth regime between interface-

controlled and diffusion-limited growth, which is important when melt diffusivity is similar to

interfacial reaction (growth) rates. In anisotropic crystal growth, where there are relative differ-

ences in interfacial reaction rates between faces, slower-growing crystal faces could be interface-

controlled, while faster-growing faces are diffusion-limited. In this intermediate regime, crystal

shape is therefore a function of the competing interface reaction kinetics and melt diffusivities.

This is expressed as variation in euhedral morphology, as seen in experimentally grown plagio-

clase populations (Figure 6.5; here, variation in euhedral morphology is expressed as differences

in S/I ). Relative growth rates of plagioclase grown in basaltic melts show a higher discrepancy

between short and intermediate growth directions (S/I ≈ 0.05) than those grown in haplodacitic

melts (S/I ≈ 0.2). Steady-state shape could therefore be dependent on melt diffusivity, evolving

to higher S/I with increasingly silicic melt compositions.
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Figure 6.5: Comparison of experimental (Mangler et al., 2023) and mafic enclave (this study)
plagioclase shape-size populations, with growth model curves defining model shape-size evolu-
tion from an initial 0.1µm3 prism to a range of steady-state overgrowth shapes. Plagioclase
grown in basaltic melt (red shading) evolve to lower S/I shapes than plagioclase grown in more
silicic melt (yellow shading).

In our growth modelling, we required the steady-state overgrowth shape to evolve to increasingly

high S/I with each crystallisation step in order to reproduce the plagioclase shape-size popu-

lations (Figure 6.4). This evolution in steady-state shape could have been driven by changing

melt diffusivity. Initially, the intruding melt is basaltic, hydrous and ∼1050 °C (Murphy et al.,

2000). The bulk rock compositions of SHV mafic enclaves are between 48–57 wt% SiO2 (Plail et

al., 2014; Christopher et al., 2014; Murphy et al., 2000; Zellmer et al., 2003a). Upon mingling

with the cooler host andesite, the intruding melt quickly cools with groundmass plagioclase

and other phases crystallising to form the diktytaxitic groundmass texture indicative of quench

crystallisation (Bacon, 1986; Blundy & Sparks, 1992). With progressive crystallisation, melt

evolves to increasingly silicic compositions, with residual glass in the enclaves being rhyolitic

with 70-79 wt.% SiO2 (Chapter 3; Plail et al., 2014; Murphy et al., 2000; Humphreys et al.,

2010). Water will also be lost with progressive cooling and crystallisation, further reducing

melt diffusivities. Therefore, it is conceivable that the evolution in residual melt composition

within the mafic enclaves could drive a change in steady-state shape from tabular to prismatic,

that could explain the plagioclase shape-size populations in the mafic enclaves (Figure 6.6).

The largest, most tabular crystal population that is inferred to have nucleated first would likely

attain a lower S/I steady-state shape than crystals nucleating later in increasingly silicic melt,

reflected in the smaller populations being increasingly prismatic.
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Are the proposed steady-state overgrowth shapes realistic? Steady-state shapes with relative

growth rates of S/I ≈ 0.2, 0.25 and 0.33, which are proposed to reproduce the three largest,

most tabular plagioclase populations, fall within the range of shapes produced experimentally

by Mangler et al. (2023) (Figure 6.5). These span the range from basaltic to silicic melts,

with a systematic trend to more tabular shapes in more primitive melt, consistent with what is

inferred here. However, no steady-state overgrowth shape greater than S/I ≈ 0.38 was observed.

Reproducing the smallest, most tabular population requires a steady-state overgrowth shape

of S/I ≈ 0.66, which is not within error of plagioclase shape populations grown in even the

most silicic compositions. Whilst not observed experimentally, the dependency of steady-state

shape on melt diffusivity found in Mangler et al. (2023) suggests if diffusivity decreased further

by melt evolving to more silicic compositions, steady-state shape should theoretically evolve to

higher S/I (Figure 6.5). Whilst plagioclase were experimentally grown in haplodacite melt with

72.3 wt.% SiO2 and run under water-saturated conditions, the smallest plagioclase grown in the

enclaves would have crystallised from more evolved melt (∼75 wt.%) which had lost water from

progressive cooling and crystallisation because these crystals nucleate last. The residual melt

in the enclave therefore likely would have had lower melt diffusivity than the experiments by

Mangler et al. (2023). Therefore, the high S/I steady-state shape required to reproduce the

smallest, most prismatic population could be realistic.

An alternative explanation explanation for the shape of the smallest, most prismatic population

could be overestimation of the average crystal volume. W:L data from the <20 µm intersections

were used to estimate average crystal volume. Whilst the influence of corner-cuts was explored

in Chapter 5, it remains possible that some intersections are corner-cuts of a larger crystal

population. An improvement on this method could be to calculate the intersection probability-

distributions for each crystal population, to understand what percentage of each intersection

size bin could be cuts of a larger crystal population (i.e, Sahagian & Proussevitch, 1998). Using

even the highest relative growth rate observed in experimental work (S/I ≈ 0.4), the smallest

plagioclase population (S/I = 0.69) could only be reproduced if the average crystal volume had

a magnitude of ∼100 µm3. The scaled dimension of a 1 µm3 crystal of 1:1.45:9.20 (estimated

shape of the smallest plagioclase population) would be 0.42 µm:0.61 µm:3.90 µm. A population

of this size would have intersections with a maximum length ∼4 µm. The model crystal volume

of ∼100 µm3 is much smaller than the calculated average plagioclase volume of the smallest

population (450 µm3, Table 6.1). If the average volume is overestimated, perhaps due to a

significant percentage of the 0-20 µm intersections being corner-cuts, then maybe the smallest

plagioclase are crystals that have not yet achieved steady-state shape. They could have been

evolving towards an overgrowth shape with a relatively high relative growth rate, say S/I ≈ 0.4,

but did not reach steady-state shape due to a lack of available growth volume, having nucleated

and grown last.

Another factor affecting the rate at which crystals approach their steady-state shape is the

initial crystal volume (Mangler et al., 2022). The observed plagioclase shape-size populations

can broadly be reproduced using a single steady-state overgrowth shape if the initial prism is

sufficiently large (i.e., ∼ 100 µm3) (Figure 6.7). This is because shape evolution occurs
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Figure 6.7: Overgrowth of a 100 µm3 prism to a 1:5:8 steady-state overgrowth shape in the
same application of the growth model as Approach 2 can reproduce the three largest observed
plagioclase populations within uncertainty. It cannot reproduce the shape of the smallest, most
prismatic population. 100 µm3 is also an unrealistic size for a nucleating prism (see text).

quickly with increasing volume, as demonstrated in Approach 1 and 2. However, a 100 µm3

initial prism is unrealistic. A 1:1.3:6 prism of 100 µm3 volume would have scaled dimensions of

2.34 µm:3.0 µm:14 µm, far too large for a nucleating prism. There is evidence for mechanical

transfer of crystals between the mafic enclaves and the host andesite, including the inherited

phenocryst population of the enclaves (Plail et al., 2014; Murphy et al., 2000) thought to occur

upon mingling, and microlite transfer is known to occur from the enclave to host andesite upon

enclave disaggregation (Humphreys et al., 2009). It therefore could be that a population of ∼
100 µm3 prismatic crystals from the host andesite may have been incorporated into the mafic

enclave, and overgrown to the tabular shapes observed. However, the groundmass crystals show

no textural evidence of disequilbrium similar to the inherited phenocryst population, so this is

scenario is not realistic.

6.1.3 Limitations of the crystal growth model

The model effectively grows a single, isolated crystal in the melt. In reality, crystals continuously

nucleate and grow, resulting in multiple shape-size populations reflecting changing magmatic

conditions over time; the motivating principle of recent crystal shape-size studies. Applying the

model in a step-wise crystallisation approach (Approach 2/3) attempted to address this limita-

tion. This was useful to establish how plagioclase shape-size populations could be reproduced,

and indeed the conditions under which they could not be reproduced. However, this approach

effectively only models discrete nucleation and growth of crystal populations.

The growth model does not account for impingement and intergrowth. After Step 2, 33.2 %

of the melt has crystallised to plagioclase. Groundmass amphibole and pyroxene crystallise

alongside (Figure 3.1 and 3.2). At some crystallinity, impingement and intergrowth would

occur, which could affect the resulting crystal shape (Holness, 2014). Section 4.2.1 illustrates the

groundmass texture of MVO-1591A, with a significant degree of impingement and intergrowth.
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An improvement on the growth model could be to account for the growth of other cuboids,

perhaps by calculating when impingement is likely to occur for a certain number density of

growing crystals randomly distributed in 1 mm3 of melt.

6.2 Groundmass crystal shapes in TRA10A

Unlike the other samples, groundmass plagioclase and amphibole in TRA10A displayed no

change in shape with size (Chapter 3). Below we discuss why the plagioclase result departs

from the observed trend of systematic change in shape with size in other enclaves, and the

implications of the amphibole result.

6.2.1 Plagioclase

TRA10A plagioclase forms a single shape population with S/I = 0.48 (± 0.07) and an average

crystal volume of ∼200,000 µm3. As this exceeds the 100 µm3 threshold for development of

a steady-state shape (Mangler et al., 2023), this suggests all plagioclase evolved to a singular

steady-state shape, regardless of evolution in melt composition with enclave cooling. A steady-

state shape of S/I = 0.5 is far more equant than the tabular shape (S/I = 0.05-0.2, Mangler et

al. (2023)) expected for plagioclase crystallising from an initially basaltic melt, and also exceeds

the values in the most silicic experiments (S/I = 0.2-0.35, Mangler et al. (2023)) (Figure 6.5).

Is the single shape population a consequence of the intersection outlining? TRA10A is the

coarsest-grained and most intergrown sample (Chapter 3), with irregular outlines possibly caus-

ing an inaccurate 3D shape estimate. However, Chapter 2.4 tested outlining approaches and

found no significant difference in 3D shape estimate between outlining highly intergrown crystals

exactly, or extrapolating and therefore estimating their shape. The single shape-size population

is therefore thought to be an accurate result.

Impingement of growing crystals can lead to increasingly equant shapes due to cessation of

growth of the fastest-growing face, forcing further growth to occur on the slower-growing faces

(Holness, 2014). The first nucleating crystals in the enclave could have evolved towards tabular

steady-states shapes, as for plagioclase in the other enclaves. Continued growth affected by

impingement with other groundmass grains could have prevented further overgrowth of the

fastest-growing face, stopping crystals from maintaining this tabular shape and instead forcing

evolution towards more equant, S/I = 0.5 shapes with further growth. Further nucleation in the

increasingly silicic melt could produce crystals growing towards increasingly equant overgrowth

shapes, regardless of the effect of impingement, because of the factors described above in Chapter

6.1.2. TRA10A has the coarsest-grained, highly intergrown groundmass (Figure 6.9), suggesting

that impingement could have affected the largest crystal shapes.

Lindoo et al. (in prep) show that plagioclase shape is related to the dynamic undercooling of

the melt over time, observing tabular crystals at high integrated undercooling and increasingly

prismatic crystals at lower intergrated undercooling. They suggest that the variation in euhedral

shape is due to a change in growth mechanisms of different crystal faces arising from the

changing undercooling conditions. The lack of prismatic plagioclase in TRA10A could therefore

101



be due to the enclave experiencing a lower degree of undercooling over time. The coarse-grained

groundmass supports a low cooling rate, as there is a relatively low number density (∼500

plagioclase intersections) of large groundmass plagioclase. The insulated interior of a large

enclave could experience a low cooling rate. Whilst the mean diameter of the Type A enclaves

characterised by Plail et al. (2014) was 2.3 cm, enclaves over 18 cm were measured, and the

largest Phase V enclave observed to date is 26 cm diameter (Plail et al., 2017). Using Equation 2

below (Furlong et al., 1991), we model the cooling of a layered intrusion (i.e., a dike, here meant

to approximate a buoyant plume of mafic magma rising into the host andesite and cooling).

T (x, t) = T0 +
∆T

2

[
erf

(
a− x

(4κt)1/2

)
+ erf

(
a+ x

(4κt)1/2

)]
(1)

x = distance across enclave T

T = temperature t

t = time T0

T0 = host andesite temperature (830 °C) D

∆T = temperature difference between host andesite and intruding mafic magma, where the ini-

tial temperature of the mafic magma is 1100 °C a

a = intrusion half-distance (13 cm) k

κ = thermal diffusivity (0.5e-6)

Figure 6.8: Cooling of a 26 cm diameter mafic enclave by thermal diffusion over a 14 day
period. The margin initially cools more quickly than the insulated interior. They rapidly reach
thermal equilibration, within 3 °C of each other 48 hours after mingling.

Figure 6.8 shows how temperature changes across an enclave of 26 cm diameter from centre

to exterior margin over 14 days, in 2.4 hour increments. Instantly upon mingling at t = 0,
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the enclave is 1100 °C, the initial temperature of the mafic magma. Over time, the enclave

quickly cools, faster at the margin than in the insulated interior. The mean cooling rate at the

margin over the first 12 hours is 13.6 °C hr-1, whereas the interior has a slightly lower mean

cooling rate of 12.0 °C hr-1. For an enclave of 26 cm diameter, the margin and interior reach

thermal equilibration rapidly, within 3 °C of each other 48 hours after mingling. An interior of

a larger enclave would cool at a slower rate. Whilst the largest enclave observed was only 26 cm

diameter (Plail et al., 2017), larger enclaves could possibly form, but not be preserved in eruptive

products because they disaggregate in the host andesite. Mechanical disaggregation of enclaves

has been shown to occur in many systems (Martin et al., 2006; Tepley et al., 1999; Ruprecht

et al., 2020). At SHV enclave disaggregation is evidenced by transfer of mafic microlites into

the host andesite (Humphreys et al., 2009). Therefore, if the TRA10A section was the interior

of a large enclave, following the findings of Lindoo et al. (in prep), the lower cooling rates

experienced in the insulated interior could promote the development of tabular shapes, and

explain the absence of prismatic shapes.

Mangler et al. (2024) demonstrated experimentally that plagioclase resorption reduces mor-

phologies towards more equant, higher S/I shapes. This shape is maintained with further

overgrowth. Resorption could therefore potentially explain plagioclase shape in TRA10A; is

there textural evidence for resorption in this enclave? After Mangler et al. (2024), resorption

is characterised as surficial (dissolution of crystal exteriors, producing rounded shapes) or per-

vasive (dissolution of crystal interiors, producing sieved textures). TRA10A contains large (2-3

cm) plagioclase with pervasive sieved interiors and clear calcic overgrowth rims, interpreted as

inherited phenocrysts from the host andesite, not groundmass crystals (Murphy et al., 2000;

Humphreys et al., 2009; Plail et al., 2014). All crystals displaying resorption features (red/or-

ange outlines in Figure 6.9) were therefore discarded from outlining. However, upon reflection,

some discarded crystals could be groundmass crystals displaying disequilibrium textures.

Orange outlines (Figure 6.9g-h) highlight discarded crystals due to their sieved, resorbed cores.

However, these crystals have smaller intersections and less extensive sieving than the inher-

ited plagioclase (Figure 6.9c) and texturally contribute to the diktytaxitic groundmass texture.

These crystals could be re-interpreted as groundmass crystals that have undergone resorption.

It should be noted that as these crystals were not outlined, they did not contribute to the pla-

gioclase shape estimate. Even if they were included, it is unlikely this would have measurably

changed the result as there are so few (∼3 additional w:l measurements).

Regardless, evidence of plagioclase dissolution in the groundmass suggests that at least some

crystals have growth histories more complex than simply crystallising in-situ upon mingling.

Surficial resorption is more subtle, appearing as rounded cores (Figure 6.9i-j). This is clearer

upon comparison to plagioclase with euhedral cores (Figure 6.9d-f). Other crystals possibly

display evidence of surficial resorption in their interiors, but it is not certain due to the resolution
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Figure 6.9: TRA10A groundmass plagioclase textures. a) Full BSE image outlined, with crys-
tals colour-coded (b) by textural feature. c) Inherited plagioclase phenocryst. d,e,f) Ground-
mass plagioclase with clear euhedral cores and no evidence of resorption. g,h) Groundmass
plagioclase with evidence of pervasive resorption. i,j) Groundmass plagioclase with possible
surficial resorption. k) Groundmass plagioclase with a visibly darker core.
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Figure 6.10: Complexity in mafic groundmass phases. a) Elongate amphibole crystal with
complex, rounded zonation (yellow dashes). Intergrown clinopyroxene (blue) with complex
zoning and rounded cores. b,c,d) Amphibole with lighter, rounded cores (yellow dashes).
e,f) Amphibole is generally subhedral, with rounded outlines and often smooth contacts with
plagioclase.

and contrast of the BSE stitch. Figure 6.9k highlights a groundmass plagioclase crystal with

a distinct darker, equant core, further suggesting that some crystals have experienced complex

growth histories. Variation in dissolution textures within the groundmass plagioclase, with some

showing pervasive resorption and others surficial, is not unexpected as it has been demonstrated

both experimentally and with comparison to natural samples that resorption events may not

affect all crystals equally (Mangler et al., 2024). Textural complexity of other groundmass

phases may further evidence the resorption suggestion. Amphibole displays complex zoning,

often presenting as rounded cores (Figure 6.10a-d). Subhedral exteriors have rounded contacts

with other crystals (Figure 6.10e,f). Clinopyroxene sometimes appears with rounded dark cores

(Figure 6.10a).

Mafic enclaves are interpreted to form by quench crystallisation upon the mingling of two

melts that are thermo-mechanically inhibited from mixing fully (e.g., Sparks & Marshall, 1986).

Evidence of quench crystallisation includes the diktytaxitic groundmass texture and glassy

margins between the host and enclave (Bacon, 1986; Murphy et al., 2000). The rationale

of this study was that enclaves provide a simple crystallisation scenario in which to examine

crystal shapes. However, groundmass crystals displaying disequilibrium features suggests that

some crystals have more complex growth histories than simple quench crystallisation. This was

recognised in Mangler et al. (2024), which reported that in quenched mafic inclusions from Mt St

Helens Volcano, up to 37 % of crystals display surficial resorption. If some groundmass crystals

did experience resorption, this could have reduced their morphologies towards more equant,
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lower S/I shapes. Further growth would not restore the original, tabular shapes, which could

be reflected in the single shape population estimate of S/I = 0.5 for groundmass plagioclase

in TRA10A. However, as the majority of plagioclase outlined appear to have euhedral cores,

further investigation such as higher resolution BSE images of individual crystals is necessary to

comment further.

6.2.2 Amphibole

TRA10A groundmass amphibole is a single shape population of S/I = 0.65 (± 0.06). This shape

estimate is realistic for amphiboles, which are known to have prismatic habits. The amphibole

in this enclave is complicated texturally, with subhedral edges, rounded cores, and complex

zonation (Figure 6.10). Plagioclase in TRA10A is also a single shape population. Amphibole

appearing as chadacrysts trapped within plagioclase oikocrysts were outlined and measured, in

an attempt to capture an earlier stage of crystal growth, following Higgins & Roberge (2003).

However, fewer than 20 amphibole chadacrysts were outlined, an insufficient number for analysis

with ShapeCalc, inhibiting comment on early amphibole shapes.

6.3 Orthopyroxene

Groundmass orthopyroxene in BEL1B-A was found to possibly have two shape populations: a

smaller, more equant population of S/I = 0.71 (± 0.08) and a larger, more bladed population

of S/I = 0.33 (± 0.05) (Chapter 3). It was inconclusive whether there are distinct shape

populations or a single shape population across all sizes (Chapter 5.4). We apply the growth

model to reproduce the two suggested size-shape populations, discussing the results in the

context of recent work examining orthopyroxene tracht (Okumura et al., 2022; 2024).

Growth modelling

Table 6.2: Growth model inputs. Total crystallinity increase (φinc) and volumetric number
density (Nv) after the textural characteristics of orthopyroxene populations in BEL1B-A.
Constant parameters in all model runs include initial melt volume = 1 mm3, initial crystal
volume = 0.1 µm3 and initial crystal shape = 1:1.05:1.6.

Approach Step Population φinc (%) Nv (mm-3) Vinc (µm3) Overgrowth shape δS/δI

Approach 1 Run 1 n/a 5.1 6902 7389 1:10:25 0.1
Approach 2 Step 1 35 + µm 1.8 955 18,848 1:3:7.5 0.33

Step 2 0-35 + µm 3.3 7846 4206 1:1.4:2.7 0.71

Approach 1 models the evolution of a 0.1 µm3 equant crystal to a more bladed, lower S/I

shape (Table 6.2). Like Approach 1 when modelling plagioclase growth, the average volumes

of the orthopyroxene populations are much larger than the model cuboid at the same S/I, as

overgrowth to steady-state shape occurs with a small volume increase (10-1-102 µm) (Figure

6.11). Again, as the average orthopyroxene volumes exceed 100 µm3, the only way to reproduce

these populations is to use the shape of each orthopyroxene population as the overgrowth

shape. Approach 2 therefore varies steady-state shape in the same way as in the plagioclase

growth modelling. Changing steady-state shape from S/I ≈ 0.33 to 0.71 can reproduce both

orthopyroxene shape-size populations (Figure 6.12).
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Figure 6.11: Approach 1: overgrowth of a 0.1 µm3 equant crystal to a more bladed, lower S/I
shape cannot recreate the orthopyroxene shape-size populations as evolution to steady-state
shape occurs with a small volume increase.

In the plagioclase growth modelling, it was suggested that the change in steady-state shape to

higher S/I could be driven by evolution in melt composition with enclave crystallisation. In the-

ory, the same principles could apply to the orthopyroxene populations; changing melt diffusivity

could be expressed as variation in euhedral crystal shape, reflected in the transition from large,

bladed crystals to smaller, more equant morphologies. This speculation could benefit from a

shape-size study of experimentally grown orthopyroxene populations like that of plagioclase in

Mangler et al. (2024), as well as further clarity around if distinct shape populations even exist

in the groundmass orthopyroxene (Chapter 5).

Figure 6.12: Approach 2: overgrowth of a 0.1 µm3 equant crystal to two different steady-
state shapes can reproduce the orthopyroxene shape-size populations. See text for further
explanation.

Recent work (Okumura et al. 2022; 2024) has explored how pyroxene ‘tracht’ is affected by

magmatic processes. ‘Tracht’ refers to the combination of crystallographic faces (Sunagawa,

2005). It is distinct from ‘habit’, which typically describes 3D aspect ratio or morphology (i.e.,

euhedral, S:I:L). Okumura et al. (2022) conducted decompression experiments that demon-

strated a systematic variation in pyroxene microlite tracht from octagonal to hexagonal as the

degree of effective undercooling (∆T eff) increases. An examination of pyroxene microlites in
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natural samples from the 2011 Shinmoedake eruption (Okumura et al., 2024) further explored

this, suggesting that under high (∆T eff), the relative growth rates on one of the crystallographic

faces becomes faster than those of the other prismatic faces until it disappears.

Our work aimed to establish if orthopyroxene displays a systematic variation in euhedral mor-

phology with increasing size, which was ultimately inconclusive. The recent work examining

tracht demonstrates that orthopyroxene can exhibit systematic variation in euhedral morphol-

ogy, but it is not related to crystal size, with tracht change proposed to be driven by variation

in ∆T eff. Undercooling conditions have long been recognised to affect crystal morphologies.

The shift from the diffusion-limited growth regime producing anhedral morphologies (dendritic,

skeletal, hopper) at high degrees of undercooling, to the interface-controlled growth regime

producing euhedral shapes at lower degrees of undercooling has been extensively investigated

(Lofgren, 1974; Hammer, 2008; Mollo & Hammer, 2017; Shea & Hammer, 2013). However, few

studies have examined variation in euhedral morphology. Mangler et al. (2023) did not find a

direct relationship between ∆T eff and plagioclase shape. Instead, as discussed, a dependency

on melt diffusivity/composition was suggested. Okumura et al. (2022) recognised that melt

composition impacted crystal shape where orthopyroxene grew in close proximity to plagio-

clase. These crystals displayed heptagonal tracht, whereas other crystals in the same sample

that did not grow in proximity to plagioclase were octagonal. It was proposed after Mujin et

al. (2017), that plagioclase crystallisation evolves the melt and results in an increase in ∆T eff

for pyroxene (Figure 12b in Mujin et al., 2017). In contrast, Okumura et al. (2024) ruled out

melt composition as the driver of tracht change. The pyroxene microlites in the most silica- and

plagioclase-rich pumice are octagonal, whilst the most silica-poor pumice contained hexagonal

microlites; the opposite observations would be expected if plagioclase crystallisation increasing

∆T eff for pyroxene was the driver of tracht change. They do recognise that melt composition

may exert control over the threshold at which tracht change occurs, due the influence of melt

diffusivity in anisotropic crystal growth (Okumura et al., 2024).

Okumura et al. (2024) used SR-XRCT scans to accurately reconstruct pyroxene microlite shape

in 3D. Figure 6.13 compares their 3D reconstructions with our 3D shape estimates. There is no

variation in shape, with all pyroxene microlites being prismatic (Okumura et al., 2024). Whilst

both this population and our orthopyroxene shape estimate using the smallest intersections

(0-35 µm, light green diamond, Figure 6.13) are the same S/I (∼0.7-0.8), and are likely within

error of I/L due the difficulty in constraining L accurately, it is notable that the Okumura et

al. (2024) shape estimates plot closer to the single shape population estimate than the 0-35 µm

estimate. This could support that our groundmass orthopyroxene is a single shape population.

Okumura et al. (2024) do recognise that the pyroxenes in the high-SiO2 (∼72 wt.%) samples

that experienced lower ∆T eff are more elongate than those in the low-SiO2 samples (∼67 %) that

experienced greater ∆T eff (differences in I/L in Figure 6.13). This is not a significant difference

in habit, but does demonstrate variation in euhedral habit within a single size population of

pyroxenes. Similarly, Castro et al. (2003) reconstructed pyroxene microlites in 3D and found

they exhibit a range of 3D aspect ratios from equant to prismatic, but this variation does not

show an obvious correlation with crystal size. Even with variation in pyroxene shape noted
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in Castro et al. (2003) and Okumura et al. (2024), none of their microlites display low S/I

shapes like the bladed morphology of the largest orthopyroxene crystals suggested in this work

(Chapter 3). This may not be expected as both examined microlites, but it is notable that a

low S/I shape has not been noted elsewhere. This could potentially support the conclusion

that there is a single prismatic population of orthopyroxene in BEL1B-A.

Figure 6.13: 3D shape estimates of orthopyroxene populations. All pyroxene microlites (purple
circles, Okumura et al. (2024)) are prismatic, with orthopyroxene grown in low silica melt being
slightly more elongate than those grown in higher silica melt. These microlites plot within error
of the single-shape estimate for this study’s orthopyroxene populations.

6.4 Mafic enclave crystallisation at SHV

The mafic enclaves of SHV are ascribed to the mingling of hot (∼1050 °C), hydrous basaltic

melt with cooler (∼ 850 °C) andesite upon intrusion of the mafic magma into the andesite mush

at storage depths of 8-14 km (after Edmonds et al., 2016). The mafic enclaves are interpreted

to have formed when molten. This is due to their diktytaxitic groundmass texture of framework

plagioclase and the presence of chilled margins between the host andesite and enclave, textural

features typical of rapid quench crystallisation in magmatic enclaves (Bacon, 1986; Murphy

et al., 2000). The intrusion of mafic magma has long been recognised as a potential eruption

trigger, as the addition of heat, mass and volatiles can potentially remobilise the host andesite

(Didonna et al., 2019; Clynne, 1999; Devine et al., 1998). The exact dynamics and timescales

of the magmatic interaction at SHV is debated. Groundmass textures in the mafic enclaves

will reflect their history of crystallisation, and therefore can provide insights into the nature of

mingling events.
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Plail et al. (2014) characterised Phase V enclaves as Type A, B or C based on geochemi-

cal and textural features. BEL1B-A, MVO-1591A and TRA10A were all classified as Type

A enclaves (Chapter 3) due to the presence of high-Al groundmass amphibole, high vesicular-

ity and abundant inherited phenocrysts. Type A enclaves are interpreted to form when the

mafic magma rises into the host andesite as a buoyant plume. There is little hybridisation

between the intruding melt and the silicic host, in contrast to Type B and C enclaves where

formation is driven by the development of a hybrid layer at the mafic-silicic interface. The

three enclaves studied here are therefore interpreted in line with this model, seen in Figure

6.14. The high cooling rate inferred from the quench crystallisation texture of the ground-

mass and the presence of chilled margins suggests these enclaves could have possibly formed

at plume margins (Browne et al., 2006). Upon mingling, the mafic enclaves gain their inher-

ited phenocrysts of disequilibrium-textured plagioclase, amphibole and orthopyroxene from the

host andesite. Rapid undercooling induces crystallisation, with the first nucleated plagioclase

growing to tabular forms in the initially basaltic melt. As melt composition evolves with pro-

gressive crystallisation, becoming increasingly silicic and losing water by volatile exsolution, the

changing melt diffusivity pushes the steady-state overgrowth shape of plagioclase to increasingly

high S/I. Later nucleating plagioclase therefore grow to progressively more prismatic shapes,

reflected in the development of multiple shape-size populations in BEL1B-A and MVO-1591A

(Figure 6.6; Figure 6.14). Groundmass orthopyroxene does not appear to change shape with

size, producing a singular prismatic population. TRA10A, whilst still a Type A enclave, is

texturally different to BEL1B-A and MVO-1591A due to its coarser-grained groundmass and

single shape populations of groundmass plagioclase and amphibole. The coarser-grained and

more equant plagioclase shapes could be due to a lower degree of undercooling promoting longer

crystallisation times. The lack of multiple plagioclase populations was suggested to possibly

reflect shape alteration due to impingement, evidenced by the highly intergrown and complex

groundmass, or possibly resorption, evidenced by the presence of some sieved cores and disso-

lution surfaces in the groundmass plagioclase. This sample suggests that at least some mafic

enclaves or crystals within have more complex growth histories than simple quench crystalli-

sation, despite erupting in the same Phase of eruption. Further detailed geochemical work on

groundmass crystals targeting mafic enclaves with diverse textures could provide insights into

the dynamic nature of mingling processes at SHV.
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7 Conclusions

The overarching goal of this work was to use groundmass crystal shape-size relationships in

three mafic enclaves to gain insights into enclave crystallisation at SHV. The main aims were

outlined in Chapter 1.2. Here, we outline the key findings of this work in the context of these

aims, as well as the implications and further questions to be answered.

The three mafic enclaves were characterised texturally and geochemically using optical mi-

croscopy and SEM-EDS (Chapter 3). All three were categorised as Type A enclaves according

to the framework of Plail et al. (2014), owing to the presence of groundmass amphibole, rel-

atively high vesicularity, and chilled margins in two enclaves. Despite containing the same

groundmass assemblage and all being Type A enclaves, there is clear textural diversity between

samples. MVO-1591A and BEL1B-A are fine-grained with inherited phenocryst assemblages of

plagioclase + amphibole + orthopyroxene, whereas TRA10A is a coarse-grained end-member

with only inherited plagioclase. Geochemically, the studied groundmass phases of plagioclase

and orthopyroxene, and the interstitial glass are not significantly different. However, the ground-

mass amphibole in BEL1B-A was significantly different to that of the other two samples and

reported compositions (e.g., Plail et al., 2014), instead being similar in major element chemistry

to that of the host andesite amphibole. These findings illustrate the diversity in mafic enclaves

erupted within a single phase (Phase V), and therefore the range of crystallisation conditions

upon mingling at depth. The implication is that any further work proposing a model for the

mingling dynamics at SHV should account for this diversity in erupted products.

Crystal intersections were outlined and measured in order to convert the 2D intersection data

into 3D shape-size estimates (Chapter 2.3). All three enclaves had an intergrown groundmass,

with TRA10A having the most complex intergrowths between crystals. Multiple outlining and

measurement approaches were tested to ensure that the final method would most accurately

reflect the 2D intersection shapes and sizes, despite the complexity in groundmass texture.

The detailed approach to collecting 2D measurements contributed to robust 3D shape-size

estimates. This gave assurance when discussing the 3D shape-size results that these estimates,

not an artefact of the outlining or measurement method, and instead were true shape-size

reconstruction that could be discussed and interpreted in the context of magmatic processes at

SHV.

Plagioclase in two enclaves was found to exhibit systematic change in shape with size, from pris-

matic (high S/I ) to tabular (low S/I ) with increasing size (Chapter 4.2). This is in agreement

with the findings of Mangler et al. (2022; 2023). Statistical validation confirmed the plagioclase

in both enclaves contains multiple shape populations, and that the smallest, most prismatic

population could not be explained as corner-cuts of a larger, single-shape crystal population

(Chapter 5.1 and 5.2).

The crystallisation conditions under which the observed plagioclase shape-size relationships

could be reproduced were explored, applying an adapted crystal growth model (Chapter 6.1).

It was found that varying steady-state overgrowth shape can reproduce the plagioclase shape-

size populations. This is the interpreted in the context of experimental work by Mangler et al.
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(2023), where it was shown that plagioclase shape is sensitive to melt composition/diffusivity,

with plagioclase grown in basaltic melt being lower S/I than those grown in more silicic melt.

The change in steady-state shape to higher S/I values with smaller plagioclase populations is

proposed to reflect changing melt diffusivity as the mafic enclaves cool and crystallise. Although,

it is debated as to whether the relative growth rate of S/I necessary to reproduce the smallest,

most prismatic population is realistic. An improvement to this approach would be to link the

interstitial melt composition to semi-quantitatively define melt diffusivity, and then see if this

fits within the anisotropic growth model of Mangler et al. (2023).

The crystal growth model is limited in its recreation of natural magmatic scenarios as it cannot

model continuous nucleation and growth, nor does it account for the impacts of impingement.

Here it was applied in a step-wise fashion with discrete intervals of nucleation and growth to re-

produce the plagioclase populations. A more detailed model that could model how crystallinity,

individual crystal shape and size evolve continuously would improve the applicability to natural

samples, as would accounting for impingement at a certain crystallinity.

Plagioclase in TRA10A does not exhibit a systematic change in shape with size from prismatic

to tabular, instead being a single shape of S/I = 0.48. Statistical validation confirmed it is

a single-shape population. This diverges from the trend established by Mangler et al. (2022)

and supported in MVO-1519A and BEL1B-A. Multiple factors were discussed that could have

contributed to this observation, including impingement affecting crystal growth, which is likely

in such a coarse-grained, intergrown sample. Textural disequilibrium features in the groundmass

crystals such as sieved cores, rounded interiors and rounded crystal contacts suggest that at least

some of these crystals have experienced complex growth histories beyond that of relatively simple

and rapid quench crystallisation. The exact details of these more complex histories remains

to be investigated, perhaps adding complexity to the existing models (i.e., Plail et al., 2017;

Didonna et al., 2022) of mafic-silicic interactions at SHV. The plagioclase in TRA10A having

experienced a lower cooling rate than those in the other two enclaves could have contributed

to the development of larger, more equant crystals, perhaps in the insulated interior of an

enclave. It was also suggested that TRA10A may have been a fragment of a larger enclave

that disaggregated. The relationship between crystal shape and undercooling could therefore

be applied to interrogate whether enclaves are ‘whole’ or disaggregated. A small enclave with

large, equant crystals indicative of low cooling rates, lower than would be expected for the

small size of the enclave, could possibly suggest that enclave represents the insulated interior of

a larger enclave that disaggregated.

Groundmass orthopyroxene in BEL1B-A was shown to potentially contain two shape-size pop-

ulations: a larger, more bladed population (lower S/I ), and a smaller, more equant population

(higher S/I ) (Chapter 4.3.1). Statistical validation did not conclusively confirm that these

populations are real, and instead suggested that the smallest population could be corner-cuts

of larger, prismatic crystals (Chapter 5.4). Therefore, the groundmass orthopyroxene is inter-

preted to be a singular, prismatic shape population. The systematic evolution in shape with size

observed in plagioclase has not been recreated for this silicate phase. However, orthopyroxene

was only measured in one section of one enclave. Further work measuring euhedral pyroxene
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of multiple sizes in rocks of different compositions and crystallisation conditions is necessary to

make a definitive statement as to whether orthopyroxene undergoes a systematic evolution in

shape with size. Moreover, recent work (Okumura et al. 2022; 2024) has demonstrated that py-

roxene tracht is related to undercooling conditions and melt composition, demonstrating there

is petrogenetic significance in pyroxene shape. Further work exploring tracht in other minerals

could reveal whether there is a common growth process across all silicate phases.

Likewise, groundmass amphibole in TRA10A did not display a systematic evolution in shape

with size, instead presenting as a single shape population that is relatively prismatic (Chapter

4.4.1). The amphibole, like some of the previously discussed plagioclase crystals, is texturally

complex, with rounded cores, complex zonation and occasional overgrowths of clinopyroxene. As

plagioclase in this sample was also a single shape population, and amphibole was only measured

in one section of one sample, we are unable to make a definitive statement as to whether this

silicate phase can display a systematic change in shape with size. Like the orthopyroxene,

further work measuring more amphiboles in different rocks is necessary to conclude whether

other silicate phases than plagioclase systematically evolve in shape with size, a feature that

could be exploited in the interpretation of magmatic processes.

The mafic enclave groundmass crystal shape-size results were interpreted within the mingling

model of Plail et al. (2014) (Chapter 6.4). The Type A enclaves of MVO-1519A and BEL1B-A

form by rapid quench crystallisation upon the rise of a buoyant plume of the intruding mafic

magma into the host andesite. The change in plagioclase shape with size reflects the evolution

of melt composition as the enclave cools, crystallises and loses water by volatile exsolution.

Orthopyroxene also crystallises, but does not also display a systematic change in shape that can

be linked to changing magmatic conditions. The lack of multiple shape populations in Type A

enclave of TRA10A highlights the textural diversity in enclaves from a single eruptive Phase, and

the presence disequilibrium textures in some groundmass crystals suggests the crystallisation

histories of at least some mafic enclaves are more complex than the quench crystallisation.

Further work could quantitatively link crystal shape to melt composition in order to better

understand the petrogenetic significance of plagioclase shape, which could possibly be used

to track how melt diffusivity changes through time, or to better understand the timescales of

mingling dynamics.
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A Appendix A: crystal growth model code

Here we present the crystal growth model code used in Chapter 6, adapted after Mangler et

al. (2022). We also present the textural characteristics of plagioclase in MVO-1519A and

orthopyroxene in BEL1B-A that were used to calculate model inputs.

A.1 Crystal growth modelling MatLab code

%% Crystal Growth Model after Mangler et al., 2022

% Follows the same structure as Excel model

% Inputs are requried in the ‘User inputs ’ cell and the ‘Crystal shape

calculations ’ cell:

%% User inputs

ReferenceVolume = 1; % Reference volume of magma , mm^3

Xtlinity = 0.3626; % Total increase in crystallisation wanted for the

reference volume of magma

NVxtl = 17510; % Volumetric number density of crystals

InitialIndividualXtlVolume =0.1*10^ -9; % Volume of a single crystal before

overgrowth , mm^-3

%% Volume calculations

% Calculate total volume of crystals before overgrowth

InitialTotalXtlVolume = InitialIndividualXtlVolume * NVxtl;

% Calculate volume of magma remaining , accounting for volume of initial

crystals

RemainingReferenceVolume = ReferenceVolume - InitialTotalXtlVolume;

% Calculate percentage of reference volume already crystallised , constituted

by the initial crystal population

InitialXtlisation = (ReferenceVolume -RemainingReferenceVolume) * 100;

% Calculate crystallisation increase modelled , accounting for the initial

crystallisation

XtlisationIncreaseModelled = (Xtlinity * 100) - InitialXtlisation;

% Calculate volume increase per crystal (if no nucleation)

Vincperxtl =(( RemainingReferenceVolume *10^9)*

(XtlisationIncreaseModelled /100))/NVxtl;

%% Crystal shape calculations

% Define initial crystal shape (INPUT HERE)

S_0 = 1;

I_0 = 1.3;

L_0 = 6;
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% Calculate S/I and I/L of initial shape

S0_div_I0 = S_0/I_0;

I0_div_L0 = I_0/L_0;

% Calculate initial crystal scaling factor

syms F;

eqn = (InitialIndividualXtlVolume *10^9) == (S_0*F)*(I_0*F)*(L_0*F);

F_sol = double(solve(eqn , F, "Real", true));

% Scale initial crystal shape

Sscaled = S_0 * F_sol;

Iscaled = I_0 * F_sol;

Lscaled = L_0 * F_sol;

SI = Sscaled * Iscaled;

IL = Iscaled * Lscaled;

SL = Sscaled * Lscaled;

% Define overgrowth crystal shape (INPUT HERE)

deltaS = 1;

deltaI = 10;

deltaL = 12;

% Calculate S/I and I/L of overgrowth shape

S1_div_I1 = deltaS/deltaI;

I1_div_L1 = deltaI/deltaL;

%% Trigonometric calculations

BetaS = toDegrees (" radians", (atan(deltaS/sqrt(deltaL ^2+ deltaI ^2))));

BetaI = toDegrees (" radians",(atan(deltaI/sqrt(deltaS ^2+ deltaL ^2))));

BetaL = toDegrees (" radians",(atan(deltaL/sqrt(deltaS ^2+ deltaI ^2))));

% Generate model points between initial and overgrowth shape by solving for k

for range of I values

% Create an array of I values between the initial and overgrowth shape

S_div_I_values = S0_div_I0 : -0.005: S1_div_I1;

values = [S_div_I_values , S1_div_I1 ];

I_values = 1./([ S_div_I_values , S1_div_I1 ]);

% Calculate k values for array of I values

k_values = zeros(size(I_values)); % Array to store results of function

for i = 1: length(I_values)

I2 = I_values(i);

% Define the function to solve:

fun = @(k) (Iscaled + 2*(( sind(BetaI))*k)) /( Sscaled +

2*(( sind(BetaS))*k)) - I2;
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% Solve for k numerically

k = fsolve(fun , 0);

k_values(i) = k;

end

DeltaS = sind(BetaS) * k_values;

DeltaI = sind(BetaI) * k_values;

DeltaL = sind(BetaL) * k_values;

SPrime = Sscaled + (2* DeltaS);

IPrime = Iscaled + (2* DeltaI);

LPrime = Lscaled + (2* DeltaL);

% Calculate new crystal shapes with progressive crystallisation

S_2 = SPrime ./ SPrime;

I_2 = IPrime ./ SPrime;

L_2 = LPrime ./ SPrime;

S2_div_I2 = S_2./I_2;

I2_div_L2 = I_2./L_2;

% Calculate volume change with progressive crystallisation

Vs = (1/3) * DeltaS .* (IL + sqrt(IL .* IPrime .* LPrime) + (IPrime .*

LPrime));

Vi = (1/3) * DeltaI .* (SL + sqrt(SL .* SPrime .* LPrime) + (SPrime .*

LPrime));

Vl = (1/3) * DeltaL .* (SI + sqrt(SI .* IPrime .* SPrime) + (SPrime .*

IPrime));

TotalVolume = 2*Vs + 2*Vi + 2*Vl;

% Calculate crystallinity change with progressive crystallisation

xtlinity = (( TotalVolume*NVxtl)/( RemainingReferenceVolume *10^9))*100;

%% Modelled crystallisation increase

% Calculate the model shape at which the total volume of the crystal

population creates the modelled crystallisation increase

% i.e., the value ’Total’ (D46 on Excel sheet) is green.

% The volume of the model shape should equal the Vincperxtl value.

% Calculate k value required

syms k

eqn = Vincperxtl == (2*((1/3) * (sind(BetaI)*k) * (SL + sqrt(SL *( Sscaled +

(2*( sind(BetaS)*k))) * (Lscaled + (2*( sind(BetaL)*k)))) + (( Sscaled +

(2*( sind(BetaS)*k))) * (Lscaled + (2*( sind(BetaL)*k))))))) + (2*((1/3)

* (sind(BetaS)*k)

* (IL + sqrt(IL *( Iscaled + (2*( sind(BetaI)*k))) * (Lscaled +

(2*( sind(BetaL)*k))))

+ (( Iscaled + (2*( sind(BetaI)*k))) * (Lscaled + (2*( sind(BetaL)*k))))))) +

(2*((1/3) * (sind(BetaL)*k) * (SI + sqrt(SI *( Iscaled +

(2*( sind(BetaI)*k))) * (Sscaled + (2*( sind(BetaS)*k)))) + (( Sscaled +
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(2*( sind(BetaS)*k))) * (Iscaled + (2*( sind(BetaI)*k)))))));

k_sol = double(vpasolve(eqn , k));

DeltaS3 = sind(BetaS)*k_sol;

DeltaI3 = sind(BetaI)*k_sol;

DeltaL3 = sind(BetaL)*k_sol;

S3Prime = Sscaled + (2* DeltaS3);

I3Prime = Iscaled + (2* DeltaI3);

L3Prime = Lscaled + (2* DeltaL3);

% New crystal shape

S_3 = S3Prime/S3Prime;

I_3 = I3Prime/S3Prime;

L_3 = L3Prime/S3Prime;

S3_div_I3 = S_3/I_3;

I3_div_L3 = I_3/L_3;

% check VolumeInc = VIncperXtl

Vs3 = (1/3) * DeltaS3 * (IL + sqrt(IL *I3Prime * L3Prime) + (I3Prime *

L3Prime));

Vi3 = (1/3) * DeltaI3 * (SL + sqrt(SL *S3Prime * L3Prime) + (S3Prime *

L3Prime));

Vl3 = (1/3) * DeltaL3 * (SI + sqrt(SI *I3Prime * S3Prime) + (S3Prime *

I3Prime));

TotalVolume3 = 2*Vs3 + 2*Vi3 + 2*Vl3;

CheckVolume3 = round(TotalVolume3 , 4) == round(Vincperxtl , 4); % should match ,

ans = logical 1

xtlinity3 = (( TotalVolume3*NVxtl)/( RemainingReferenceVolume *10^9))*100;

Checkxtlinity3 = round(xtlinity3 , 4) == round(XtlisationIncreaseModelled , 4);

% should match , ans = logical 1

%% Plots: S/I against I/L, total volume , total crystallinity

figure

% S/I against I/L

subplot (1,3,1)

plot(S2_div_I2 , I2_div_L2) % plots curve of change in shape with

crystallisation

hold on

h1 = scatter(S0_div_I0 , I0_div_L0 ," MarkerFaceColor", "w",

"MarkerEdgeColor ","k", "Marker","o" ); % plot initial shape

h2 = scatter(S1_div_I1 , I1_div_L1 ," MarkerFaceColor", "k",

"MarkerEdgeColor ","k", "Marker","o" ); % plot overgrowth shape
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h3 = scatter(S3_div_I3 , I3_div_L3 ," MarkerFaceColor", "#39 B185",

"MarkerEdgeColor ","k", "Marker","o"); % plot xtlinity increase shape

% legend

legend ([h1, h2, h3], "Initial shape", "Overgrowth shape", "Crystallisation

increase modelled shape ")

% format axes

box on

set(gca ," TickDir","out")

axis square

xlim ([0 1])

ylim ([0 1])

xticks (0.0:0.1:1.0)

xlabel ("S/I")

ylabel ("I/L")

% Plot S/I against total volume

subplot (1,3,2)

semilogy(S2_div_I2 , TotalVolume + InitialIndividualXtlVolume *10^9);

set(gca , ’YDir’, ’reverse ’)

hold on

h1 = scatter(values (1), InitialIndividualXtlVolume *10^9, "MarkerFaceColor",

"w", "MarkerEdgeColor ","k", "Marker","o"); % volume of initial shape

h2 = scatter(values(end), TotalVolume(end) + InitialIndividualXtlVolume *10^9 ,

"MarkerFaceColor", "k", "MarkerEdgeColor ","k", "Marker","o"); %

volume of overgrowth shape

h3 = scatter(S3_div_I3 , TotalVolume3 +

InitialIndividualXtlVolume *10^9 ," MarkerFaceColor", "#39 B185",

"MarkerEdgeColor ","k", "Marker","o"); % volume of the xtlinity

increase shape

% legend

legend ([h1, h2, h3], "Initial shape", "Overgrowth shape", "Crystallisation

increase modelled shape", ’Location ’, ’southeast ’)

% format axes

box on

set(gca ," TickDir","out")

axis square

xlim ([0 1])

xticks (0.0:0.1:1.0)

xlabel ("S/I")

ylabel (" Individual Crystal Volume (um^3)")

% Plot S/I against total crystallinity

subplot (1,3,3)

semilogy(S2_div_I2 , xtlinity + InitialXtlisation)

set(gca , ’YDir’, ’reverse ’)

hold on

h1 = scatter(values (1), InitialXtlisation ,"MarkerFaceColor", "w",

"MarkerEdgeColor ","k", "Marker","o"); % xtlinity of initial shape
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h2 = scatter(values(end), xtlinity(end), "MarkerFaceColor", "k",

"MarkerEdgeColor ","k", "Marker","o"); % xtlinity of the overgrowth shape

h3 = scatter(S3_div_I3 , xtlinity3 + InitialXtlisation ," MarkerFaceColor",

"#39 B185", "MarkerEdgeColor ","k", "Marker","o"); % xtlinity of the xtlinity

increase shape

% legend

legend ([h1, h2, h3], "Initial shape", "Overgrowth shape", "Crystallisation

increase modelled shape", ’Location ’, ’southeast ’)

% format axes

box on

set(gca ," TickDir","out")

axis square

xlim ([0 1])

xticks (0.0:0.1:1.0)

xlabel ("S/I")

ylabel (" Crystallinity (%)")

A.2 Textural characteristics

Table A.1: Textural characteristics of MVO-1591A, relevant to crystal growth modelling. φa

= areal crystallinity; Na = areal number density (µm-2); Sn = characteristic crystal length
(µm), Nv = crystal volume density (µm-3) Axtl = average crystal intersection area (µm2), Vxtl

= average crystal volume (µm3).

Parameter Unbinned data 0-20 µm 20-40 µm 40-100 µm 100 + µm

φa 0.363 0.009 0.035 0.148 0.184
Na (mm-2) 481 151 144 151 35
Sn (µm) 27.5 7.5 15.6 31.2 72.8
Nv (mm-3) 1.75e+04 2.00e+04 9.2e+03 4.9e+03 4.8e+02
Axtl (µm

2) 754 56.4 245 974 5295
Vxtl (µm

3) 20,701 423 3827 30,413 385,306

Table A.2: Textural characteristics of BEL1B-A, relevant to crystal growth modelling.

Parameter Unbinned data 0-35 µm 35+ µm

φa 0.051 0.018 0.033
Na (mm-2) 134.4 103 31
Sn (µm) 19.5 13.2 32.6
Nv (mm-3) 6902.821 7845.8 955.1
Axtl (µm

2) 379.0235 173.2 1061.8
Vxtl (µm

3) 7379.028 2280.1 34600.8

128


