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Abstract 

This thesis explored the application of machine learning techniques to enhance the 

efficiency and accuracy of surface flow visualization (SFV). The SFV technique has been 

widely used in fluid dynamics research to provide qualitative information. In order to extract 

some quantitative information from SFV images, specific algorithms must be developed. While 

machine learning algorithms are a type of algorithm that automatically analyses data to obtain 

patterns and uses these patterns to make prediction. 

The core innovation of this thesis lies in the use of Convolutional Neural Networks 

(CNNs) to automate streamline detection, demonstrating superior reliability and accuracy 

compared to traditional methods like Sobel edge detection. Building on this, the thesis proposes 

a predictive neural network model capable of estimating flow fields from SFV images. To train 

this model, a comprehensive dataset was constructed using both experimental data and 

synthetically generated images, significantly improving the model's robustness and 

generalization ability. 

The Global Luminescent Oil-Film (GLOF) method has been conducted to determine if 

the surface friction fields could be extracted from the videos. The results from this thesis 

indicate that this is not the case. while GLOF has promising applications, substantial refinement 

is required to achieve reliable results in complex flow cases. 

Therefore, the SFV images was labelled manually using chaincode method. And 

Generative Adversarial Networks (GANs) were applied to generate synthetic flow field images, 

which supplemented the experimental data and improved model training. Additionally, a 

simplified approach combined synthetic and experimental data to train predictive models like 

U-Net, improving the accuracy of flow field estimation. 

this work delivers a practical framework that enables researchers to input a single SFV 

image and obtain a preliminary prediction of streamlines and flow fields. Another useful 

contribution is the creation of a unique dataset, hosted on GitHub, which combines 

experimental and synthetic data, enabling the training of flow visualization algorithms. 
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Chapter 1 Introduction 

Surface flow visualization (SFV), specifically surface oil flow visualization, is an 

experimental technique that involves coating the surface with a mixture of oils and dyes before 

applying the flow to the subject. While investigating the surface flow, the surface topology 

must be analysed to determine the flow field near the surface. Therefore, numerous flow 

visualization and image processing techniques have been proposed, showing good performance. 

Nonetheless, their accuracy is largely contingent on human expertise, and the overall 

processing cost is elevated because they necessitate the trial-and-error optimization of 

thresholding parameters, such as intensity thresholds, contrast levels. As a result, these 

parameters are not universally applicable across all experimental conditions. 

Recent advances in machine learning offer the potential to automate and enhance the 

accuracy of streak detection and flow field estimation from SFV images. This thesis explored 

the application of neural networks to address some of the limitations in existing methods and 

aimed to contribute to the broader field of flow visualization by introducing data-driven 

approaches. 

While much of the data generation for this research was conducted using the Durham 

Cascade and Plint Wind Tunnel facilities, this thesis focused on leveraging machine learning 

techniques for image analysis and flow prediction. Abdelsalam et al. (2017) initially 

demonstrated the potential of topological methods for detecting prominent streamlines in flow 

visualization images. Building on this foundation, this work introduced the use of GANs to 

bridge the gap between experimental and synthetic data. 

To the best of the author’s knowledge, this thesis is the first attempt to apply GANs to 

the quantitative analysis of statistical images from flow visualization. Previous efforts in this 

field have predominantly relied on either topological methods or manual annotations, which, 

while insightful, offered only indirect insights into the underlying flow phenomena. Moreover, 

quantitative analysis has often been constrained by the availability of high-quality images or 

video data, which could be difficult to obtain without disrupting the flow. 

The following key activities have been undertaken as part of this research: 

- Development and validation of machine learning models for automated streak 

detection in SFV images. 
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- Application of GLOF techniques to assess their effectiveness in extracting directional 

information from flow visualization. 

- Generation of synthetic flow visualization images using CFD data and GAN models 

to augment the training dataset. 

- Training and evaluation of a U-Net model for predicting flow fields directly from flow 

visualization images, using both synthetic and experimental data. 

The thesis is organized into several chapters: 

1. Introduction – this section. 

2. Literature Review – this discusses the importance of skin friction, previous 

work in flow visualization, and machine learning applications in fluid dynamics. 

3. Methodologies – details the experimental setup, data collection, and machine 

learning models used in the study. 

4. Extracting Streamline Data from Surface Flow Images Using CNNs– this 

presents the development and evaluation of the CNN-based streak detection 

method. 

5. Global Luminescent Oil-Film (GLOF) method– this explores the application of 

GLOF techniques and their performance. 

6. Synthetic Data Generation and GAN Training – this describes the use of CFD 

data and GANs to create synthetic flow visualization images. The U-Net 

model’s performance in predicting flow fields from images is also evaluated. 

7. Conclusions. 

The generation of synthetic images and all CFD simulations referenced in this thesis 

were performed using data from the Durham Cascade and Plint Wind Tunnel. The model 

development process leveraged MATLAB and PyTorch (Paszke et al., 2019) for 

implementation, with the evaluation of GLOF techniques drawing on the work of Liu (2013). 

The GAN architecture was adapted based on the framework proposed by Zhu et al. (2017). 

However, the analysis and processing of data, as well as the debugging and evaluation of 

models, were independently carried out by the author. 

An abridged version of Chapter 4 was published as GPPS-TC-2024-0100, at a peer 

reviewed conference. The version presented in this thesis builds upon and extends the prior 
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work, incorporating additional analyses, discussions and refinements to offer a more 

comprehensive perspective on the subject matter. 
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Chapter 2 Literature Review 

This chapter reviews relevant literature, which reveals the significance of flow 

visualization and the promising potential of machine learning. It explores the connection 

between skin friction in fluid mechanics and flow visualization, demonstrating how these 

concepts intersect in the context of this thesis. Additionally, the chapter discusses the role of 

Generative Adversarial Networks in this field. To provide a comprehensive foundation, key 

concepts and basic knowledge related to these topics are also covered in this chapter. 

2.1 Basic concept of surface flow 

The term "turbomachinery" has its roots in Latin and was popularized by Claude Burdin 

in 1822, defining it as "that which spins". It encompassed a broad range of machines involved 

in either extracting or delivering energy to a flowing fluid through the rotation of one or more 

blade rows (Lakshminarayana, 1995). In Fluid Mechanics and Thermodynamics of 

Turbomachinery, Dixon and Hall (2013) defined turbomachines as devices where energy is 

exchanged with a continuously flowing fluid through the dynamic interaction of one or more 

rows of moving blades. This classification encompasses machines that either transfer energy 

to the fluid or extract energy from it. When these machines impart energy to the fluid, they are 

classified as diffusers, compressors, or pumps. Conversely, when they extract energy from the 

fluid, they are referred to as expanders or turbines. Specifically, the term "turbine" commonly 

refers to the complete power system composed of components such as the diffuser, expander, 

nozzle, etc.(Ingram, 2009). Gas turbine systems have applications in various fields, such as 

turboprops for medium-range aircraft, turboshafts for helicopters and marine vessels, and gas 

turbine power plants. Although these systems differ in their specific configurations, the 

aerodynamic principles of the turbine remain consistent. 

In turbomachinery fluid mechanics research, observation and experimentation play 

crucial roles, facilitating intuitive judgments and quantitative calculations. Moreover, fluid 

flow is often challenging to directly observe, necessitating additional methods for visualization, 

commonly referred to as flow visualization. 

2.2 Skin friction 

Skin friction, represented by the wall shear stress τ, is a fundamental quantity in fluid 

dynamics that relates to the shear stress experienced by a surface in viscous flows. It is crucial 
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for understanding near-wall structures in complex fluid systems. Skin friction fields exhibit 

topological features like critical points and separation lines, traditionally visualized by surface 

oil flow visualization. 

These topological features are essential for identifying regions of flow separation, 

reattachment, and vortex formation. Those regions usually play critical roles in predicting 

aerodynamic performance and optimizing designs in engineering applications. The detailed 

study of skin friction patterns enables engineers and researchers to uncover the underlying flow 

mechanisms that drive drag, heat transfer, and even acoustic noise in turbulent flows (Zanoun 

et al., 2021). 

2.2.1 Skin friction and momentum 

The understanding of skin friction in recent days incorporates both fluid mechanics and 

the behaviour of solid boundaries interacting with a fluid. This relationship primarily involves 

how the boundary, when accompanied by parallel flow that allows the formation of a "boundary 

layer", affects momentum exchange between the fluid and the surface. At high Reynolds 

number the boundary layer is relatively thin and its thickness, denoted by δ, determined by the 

physics of the flow, plays a crucial role in skin friction dynamics. 

In examining skin friction, the focus shifts from direct frictional analysis to studying 

the velocity distribution within the boundary layer. This approach arises from the realization 

that skin friction is closely linked to how velocity changes across this thin layer. The 

measurement of such velocity distributions is more often performed directly or inferred through 

established theoretical frameworks. 

For example, as Figure 2.1 shows, consider a plate of width b and introduce a coordinate 

system where the flow is aligned parallel to the plate, and the origin is at the leading edge. The 

force of friction Fx exerted on the plate between the leading edge and a point x along the plate 

can be calculated following the theoretical approach established by Von Karman (1934). 

According to this approach, the frictional force is expressed as: 

 𝐹𝑥 = 𝑏 ∫ 𝜌𝑢(𝑈 − 𝑢) 𝑑𝑦
∞

0

 (2.1) 

Here, 𝜌 represents the fluid density, U the flow velocity at the first cross-section, and 𝑢 

the velocity at a subsequent cross-section ∆𝑆 away. As the fluid passes through an element 𝑑𝑆 

of the second cross section, the mass flow per unit time can be expressed as 𝜌𝑢𝑑𝑆. This fluid 



Chapter 2 

7 

 

mass originally had the momentum U per unit mass at the first cross section and reaches the 

momentum u per unit mass at the second cross section. The total loss of momentum of the fluid, 

considering an element 𝑑𝑆, amounts to 𝜌𝑢(𝑈 − 𝑢)𝑑𝑆 and the total loss of momentum of the 

fluid in unit time to∫ 𝜌𝑢(𝑈 − 𝑢)𝑑𝑆
 

𝑆
, the integral being taken over the cross section downstream. 

This amount is equal to the total frictional force acting on the portion of the plate extending 

from the leading edge to the distance x. 

  

Figure 2.1 Boundary layer and skin friction 

 

Additionally, the calculation of the shear stress 𝜏0 exerted by the fluid on the plate is 

important for understanding skin friction. This stress is defined by the local friction per unit 

area and can be expressed mathematically as: 

 𝜏0 =
1

𝑏

𝑑𝐹

𝑑𝑥
=

𝑑

𝑑𝑥
[∫ 𝜌𝑢(𝑈 − 𝑢) 𝑑𝑦

∞

0

] (2.2) 

In practical situations, it is generally accurate enough to limit the integral from y = 0 to 

a finite value y = δ. The impact of friction is confined to a narrow region along the plate, from 

0 to δ, which can be called "boundary layer". 

The discussion above substitutes the issue of skin friction with the issue of velocity 

distribution within the boundary layer. In fact, the friction can be measured either directly or 

through assessing the velocity distribution throughout the boundary layer, as emphasized in 

Von Karman (1934)'s work. 
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2.2.2 Impact of skin friction on fluid dynamics performance 

Skin friction is essential in analysing aerodynamic performance, particularly because 

the surface friction vector field exposes intricate flow topologies in three-dimensional 

separated flows and turbulent boundary layers. The near-wall flow structures in both separated 

and turbulent flows are determined by the surface friction field and the surface pressure field. 

Notably, there exists a definitive coupling relationship between surface friction and other 

critical surface properties, such as surface pressure (Bewley and Protas, 2004), surface 

temperature (Xu et al., 2022), and surface scalar concentration (Liu et al., 2014). From a 

theoretical perspective, this coupled structure can be analysed through mathematical 

transformations to identify and understand coherent near-wall structures in complex flows. 

In the past few decades, plenty of work has been devoted to express the skin friction as 

the contributions from the flow statistics inside the flow domain in wall-bounded turbulence 

(Fukagata et al., 2002, Gomez et al., 2009, Renard and Deck, 2016, Li et al., 2019b). Fukagata 

et al. (2002) derived a straightforward relationship between the skin-friction coefficient and the 

distinct contributions from the mean and statistical turbulent quantities across the wall layer, 

and this relationship was referred to as the Fukagata–Iwamoto–Kasagi (FIK) identity. The FIK 

identity indicates that four dynamical effects, the laminar, turbulent, inhomogeneous and 

transient components, will contribute to the wall skin friction based on the streamwise 

momentum budget. Furthermore, they used the above relationship to analyse the drag 

modification by the uniform wall blowing and suction as well as by opposition control. The 

FIK identity was extended by Gomez et al. (2009) to compressible wall-bounded turbulence 

and was used to study the compressibility effects on the generation of skin friction. They 

showed that the skin friction can be ascribed to the contributions of four physical processes, 

i.e. the laminar, turbulent, compressible and a fourth coming from the interaction between 

turbulence and compressibility. They found that the main contribution to the skin friction was 

from the turbulent term in compressible turbulent channel flows. Inspired by the idea of the 

FIK decomposition, Mehdi and White (2011) presented a modified FIK identity to evaluate 

skin-friction coefficient when measurements at most streamwise locations are unavailable. In 

such case, the streamwise gradients were substituted by the total stress gradients in the wall-

normal direction. Mehdi et al. (2014) found that the FIK decomposition was based on a 

mathematically exact relation, and the integration could be applied on an arbitrary height. This 

modified form of the FIK identity could be used for flows with ill-defined outer boundary 

conditions, or when the measurement grid cannot cover the whole boundary-layer thickness. 
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Similarly, Xia et al. (2021) described skin friction using the average velocity and the Reynolds 

shear stress in any region that is perpendicular to the wall.  

Liu (2019) provided a relationship between surface friction 𝜏 and the surface pressure 

gradient ∇𝜕𝐵𝑝𝜕𝐵 in incompressible flows, which can be written as:  

 𝝉 ∙ ∇𝜕𝐵𝑝𝜕𝐵 = 𝜇𝑓Ω (2.3) 

where 𝑓Ω is the boundary exstrophy flux (BEF) plus the curvature-induced contribution. 

Here, ∇𝜕𝐵 represents the gradient operator on the surface, 𝜇 is the fluid's dynamic viscosity, 

and 𝜕𝐵 indicates the properties of the surface. The derivation of this relationship is based on 

the Taylor series expansion of the near-surface velocity field in the Navier-Stokes equations 

and the geometric properties of vorticity lines on the surface. This relationship demonstrates 

the intrinsic coupling between surface friction and surface pressure through BEF.  

Similarly, to establish the relationship between surface friction, surface temperature, 

and heat flux, the energy equation could be reformulated, leading to the relationship 𝝉 ∙

∇𝜕𝐵𝑇𝜕𝐵 = 𝜇𝑓Q, where 𝑇𝜕𝐵is the surface temperature, and 𝑓Q relates to the heat flux, the third-

order normal derivative of surface temperature, curvature terms, and viscous dissipation terms. 

In a certain case, this relationship represents a general differential form of the Reynolds analogy 

between surface friction and boundary heat flux. Because of the similarity between mass and 

heat transfer processes, the relationship between surface friction and surface scalar 

concentration 𝜙𝜕𝐵 , 𝝉 ∙ ∇𝜕𝐵𝜙𝜕𝐵 = 𝜇𝑓M , has been derived from the mass transfer equation, 

where 𝑓M  is related to mass flux, the third-order normal derivative of surface scalar 

concentration, curvature terms, and source terms. 

These relationships take the general form 𝝉 ∙ ∇𝜕𝐵𝑞 = 𝑓 , where 𝑞  is a measurable 

quantity, 𝑓 can be measured or modelled, and ∇𝜕𝐵 is the surface gradient operator (or projected 

onto the image plane). Mathematically, determining the vector field 𝝉 from given fields of 𝑔 

and 𝑓 is an inverse problem, akin to the optical flow problem in computer vision (Liu, 2019). 

Therefore, variational methods can be employed to solve this problem in the image plane, to 

extract the surface friction field from surface flow visualization.  

2.2.3 Skin friction and measurement techniques 

To obtain information on surface skin friction, appropriate measurement techniques are 

required. Studies have been conducted to assess the relationship between skin friction and flow 
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pattern. Most surface friction measurement technologies are indirect and localized methods, 

typically using a single sensor element to provide the magnitude of skin friction at a specific 

location (Liu, 2013). For instance, Dhawan (1953)'s pioneering work introduced the direct 

measurement of surface skin friction using a moving wall element, a technique that 

circumvented the common errors associated with traditional indirect methods. This "direct" 

method allowed for accurate measurement of wall shear forces without relying on prior 

knowledge of the flow state. The primary advantage of Dhawan's method was its versatility, 

being applicable across laminar, turbulent, and complex three-dimensional flows. However, 

the early devices faced challenges such as slow response times of the floating element and 

susceptibility to environmental factors, issues which were later addressed in Winter (1979)'s 

research. 

Winter's design incorporated a feedback system that allowed the floating head to return 

to its unloaded position quickly after shear force application, enhancing measurement accuracy. 

Despite these improvements, Winter's method was not without flaws. The slow response time 

of the sensor (on the order of seconds) could compromise accuracy in rapidly changing flow 

conditions, and the mechanical complexity of the sensor made it potentially vulnerable in high-

temperature or high-speed environments. 

Waltrup and Schetz (1973) further advanced the field by focusing on wall skin friction 

measurements in complex flow conditions, particularly in supersonic and high-temperature 

flows. Their designs included liquid-filled sensor housings and water-cooling systems, which 

stabilized sensor performance under extreme conditions. However, these methods also 

encountered challenges, such as ensuring the physical integrity of the sensors under high-

temperature and high-pressure conditions. Additionally, material selection for the floating head 

and thermal protection remained critical concerns. While some of these technical issues were 

mitigated, they continue to be key areas for future research and development. 

Most traditional skin-friction measurement methods are limited by their local approach 

and sensitivity to environmental conditions. This makes them slow and less accurate in extreme 

flow situations. In contrast, global skin-friction measurement techniques offer a more complete 

approach by using image-based methods to capture both the magnitude and direction of the 

entire friction field. Reda et al. (1997) developed a liquid crystal coating (LCC) method to 

measure surface shear stress vector distributions on planar surfaces. This method used colour 

changes in liquid crystals caused by shear stress to visualize and measure shear forces across 
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the whole surface. It was precise, fast, and could handle complex flow situations. However, the 

method was limited by the need for specific optical access, the complexity and cost of the 

imaging and calibration setup, and the requirement for accurate colour-shear calibration. 

Similarly, Fonov et al. (2006) developed surface-stress-sensitive polymer film (S3F) method. 

S3F could provide a surface-stress map by measuring the elastic deformation of a polymer film. 

Its results would be affected by properties of the polymer film. Micro-pillar arrays, on the other 

hand, used the deflection of tiny, flexible pillars to directly measure shear stress with high 

accuracy and temporal resolution (Brücker et al., 2007). However, they could have some 

resonant frequency problems and require careful calibration and alignment to maintain 

consistent results. 

Liu et al. (2008) chose to calculate the skin friction field by observing the changes in 

the oil film surface over time, called the Global Luminescent Oil-Film Skin-Friction Meter. 

This calculation method was derived from the thin-oil-film equation, establishing a relationship 

between the thin oil-film equation and the normalized luminescent intensity in the image plane.  

The relation between the wall shear-stress vectors τw and the oil film thickness h can be 

obtained from the thin-oil-film equation(Brown and Naughton, 1999, Naughton and Sheplak, 

2002), which is written as follows: 

 
𝜕ℎ

𝜕𝑡
+

𝜕

𝜕𝑋𝑖
[
ℎ2𝜏𝑖

2𝜇
− (

𝜕𝑝𝑤

𝜕𝑋𝑖
− 𝜌𝑔𝒊)

ℎ3

3𝜇
] = 0,       (𝑖 = 1,2) (2.4) 

where μ is the oil dynamic viscosity, pw is the wall static pressure on the oil film, ρ is 

the density of oil, t for time and g is the gravity vector. The thickness of the oil film, ℎ, is 

considered to be proportional to the luminescent intensity, 𝐼. This relationship can be expressed 

as ℎ=𝜅𝐼, where the parameter 𝜅 is a constant(Tran and Chen, 2021). 

This equation has the same form as the physics-based optical flow equation, which will 

be further discussed in section 3.2.2. Then, the variational method was used to determine the 

optical flow, and the Euler–Lagrange equations were solved to obtain the relative skin friction 

field. Compared to previous global skin-friction measurement techniques, GLOF's 

experimental setup was simpler and could quickly obtain a global distribution of skin friction. 

However, it relied on analysing experimental videos, which means it was difficult to apply to 

non-invasive experiments where only flow visualization images were available after the 

experiment had been completed. 
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Figure 2.2 Projection from fluid flow onto the image plane from Liu and Shen (2008). 

 

In summary, current skin friction measurement techniques are limited by their localized 

nature, sensitivity to environmental conditions, and slow response times in dynamic or extreme 

flows. Global methods, while more comprehensive, still rely on specific setups and invasive 

experiment method. There is a need for a more efficient method to determine the flow field 

using surface flow visualization images. Machine learning offers a promising solution by 

analysing these images to predict skin friction and flow patterns in real-time, leveraging large 

datasets and advanced algorithms to provide a non-invasive, flexible, and efficient approach 

for various conditions. 

2.3 Computational Fluid Dynamics (CFD) 

2.3.1 Numerical method 

The unsteady 3D Reynolds-averaged Navier-Stokes (RANS) equations employed in 

this study can be obtained by taking ensemble average of instantaneous mass and momentum 

conservation equations for incompressible and isothermal flows, as shown in the following: 

 
𝜕𝑢̅𝑖

𝜕𝑥𝑖
= 0 (2.5) 

 
𝜕𝑢̅𝑖

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝑢̅𝑖𝑢̅𝑗 + 𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅ ) = −

1

𝜌
∙

𝜕𝑝̅

𝜕𝑥𝑖
+

𝜕𝜏𝑖̅𝑗

𝜕𝑥𝑗
 (2.6) 

 𝜏𝑖̅𝑗 = 2𝑣𝑆𝑖𝑗 = 𝑣 (
𝜕𝑢̅𝑖

𝜕𝑥𝑗
+

𝜕𝑢̅𝑗

𝜕𝑥𝑖
) (2.7) 

where the subscripts i and j indicate the ith and jth components of the Cartesian 

coordinate respectively, represent the time-averaged velocity and pressure fields respectively, 

t is the time, ρ is the density of the fluid (defined as a constant in this study, air), 𝜏𝑖̅𝑗 is the mean 
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viscous stress tensor, is the mean strain-rate tensor, and v is the kinematic viscosity of the fluid 

(i.e. v=1.8×10-5). The Reynolds number (Re) is a dimensionless quantity that characterizes the 

ratio of inertial forces to viscous forces in a fluid flow. It is a key parameter in determining 

whether the flow is laminar or turbulent. The Reynolds number is defined as: 𝑅𝑒 = 𝑈𝐿/𝑣, 

where U is the characteristic velocity (taken as 20 m/s based on the free-stream flow) and L is 

the characteristic length scale (chosen as 0.026 m corresponding to the model’s diameter). 

Substituting these values yields Re = 3×104. The Reynolds stress tensor term (i.e. 𝑇̅𝑖𝑗 = 𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ ) 

can be obtained by using the Boussinesq eddy-viscosity hypothesis: 

 𝑇̅𝑖𝑗 = 𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ =
2

3
𝑘𝛿𝑖𝑗 − 𝑣𝑡 (

𝜕𝑢̅𝑖

𝜕𝑥𝑗
+

𝜕𝑢̅𝑗

𝜕𝑥𝑖
) (2.8) 

 𝑘 =
1

2
𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅ =

1

2
(𝑢𝑥

′ 𝑢𝑥
′̅̅ ̅̅ ̅̅ ̅ + 𝑢𝑦

′ 𝑢𝑦
′̅̅ ̅̅ ̅̅ ̅ + 𝑢𝑧

′ 𝑢𝑧
′̅̅ ̅̅ ̅̅ ) (2.9) 

where k is the turbulent kinetic energy, ij is the Kronecker delta symbol and vt 

represents the turbulent viscosity of the flow. Different turbulence models can be used to 

determine the turbulent viscosity vt , including the standard k-epsilon (k−) model (Launder 

and Spalding, 1983), the renormalization group k-epsilon (RNG k−) model (Yakhot et al., 

1992), the realizable k− turbulence model (Shih et al., 1995), Lien (1996)’s cubic non-linear 

low-Reynolds k− model, Launder and Sharma low-Reynolds k− turbulence model (Launder 

and Sharma, 1974), Shih (1993)'s quadratic non-linear k− turbulence model, the standard high 

Reynolds-number k-omega (k−) model (Wilcox, 1998)  

To accurately capture the transition effects in this study, the 4-equation SST transition 

model (Menter, 1994, Menter et al., 2003) was employed, which extends the k− formulation 

by introducing additional transport equations for transition onset. This model has been 

validated in previous research (Zhang, 2017), and is well-suited for predicting the flow 

characteristics in our setup. 

2.3.2 Grid 

In the section 2.3.1 (p.12), the numerical method used in CFD were briefly discussed. 

With advancements in computer technology and numerical methods, many complex 

engineering problems could now be solved using numerical calculations based on discretization, 

yielding solutions that met engineering requirements. Discretization involves replacing a 

continuous space with a set of discrete points. The process is to divide the area being calculated 
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into several non-overlapping subdomains, determine the node locations for each subdomain, 

and define the control volume represented by each node. A node is the geometric location of 

the unknown physical quantity to be solved, the control volume, and the smallest geometric 

unit for applying the governing equations or conservation laws. Typically, nodes are considered 

as representatives of control volumes. The control volume and subdomains do not always 

coincide. At the beginning of the discretization process, small domains are defined by a series 

of straight or curved lines corresponding to the coordinate axes, and these domains are called 

subdomains. The mesh is the foundation of discretization, and the mesh nodes store the 

discretized physical quantities. Although the mathematical theory behind grid generation is 

relatively classical, its practical application is still a developing field (Thompson et al., 1985). 

In the CFD computational process, the quality and suitability of the grid directly affect the 

reliability of the final results (Anderson and Wendt, 1995). 

2.3.3 Applications and Validation 

In terms of applications, CFD has achieved significant growth in recent years, and its 

application range has expanded from traditional engineering problems to emerging fields. For 

example, in the field of renewable energy, CFD helps optimize the aerodynamic performance 

of wind turbines and the thermal management of photovoltaic systems, which could provide 

innovative solutions for wind and solar energy design; In the field of environmental protection, 

CFD is widely used to simulate pollutant diffusion, flooding, and urban microclimate 

conditions, which promotes initiatives for sustainable development and environmental policies; 

In the field of biomedicine, CFD simulation provides useful insights into hemodynamic, 

respiratory mechanics, and drug delivery, which solves complex medical challenges.  

Recently, machine learning has been introduced in CFD. It could improve the accuracy 

and efficiency of CFD simulations and create new opportunities for modelling and predicting 

complex flow situations. Panchigar et al. (2022) reviewed machine learning applications in 

CFD, emphasizing its potential in predicting complex flow fields. Shourangiz-Haghighi et al. 

(2020) showed how CFD enhanced energy efficiency and advanced wind turbine performance. 

Machine learning has also been applied to predict flow processes such as membranes, which 

helps determine the distribution of fluid pressure and velocity in membranes with different 

shapes. Kamrava et al. (2021) used their model to predict the flow and transport properties of 

other types of porous materials. Machine learning model also helped them design membranes 

that are customized for specific applications. Raissi et al. (2020) attempted to encode the 
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Navier-Stokes equations into neural networks, offering a novel approach to extracting velocity 

and pressure fields from certain SFV images. 

It can be seen that current research combining machine learning and CFD mainly 

focused on Physics-Informed Neural Networks and Accelerating CFD calculations. While 

there were less works about using machine learning to get quantitative data from SFV images, 

as this task involves complex challenges such as extracting accurate flow features from noisy 

visual data, dealing with limited labelled datasets, and ensuring the physical consistency of the 

reconstructed fields. However, once the flow field could be stably obtained from the SFV 

image, it means that there is a cheap way to understand the surface, and for CFD, there is also 

a reliable way to be initialized. 

2.4 Flow visualization 

The role of flow visualization in experimental fluid-mechanical research has been 

thoroughly examined. Many reviews cover this field or focus on specific applications 

(Merzkirch, 1987). Flow visualization could provide precise information about flow 

characteristics in both spatial and temporal dimensions, which enabled researchers to analyse 

and verify flow behaviour (Etminan et al., 2022). 

As Lu (2010) emphasized in his review, establishing a coherent link between surface 

patterns and the flow field required a solid understanding of flow theory, which is missing in 

many publications. Flow visualization techniques, including methods such as surface oil flow 

visualization (SOFV), tuft analysis, Particle Image Velocimetry (PIV), and others, are 

employed to study fluid dynamics. SOFV, as an experimental method, needs to coat the surface 

of interest with an oil and dye mixture before subjecting it to a flow. In areas with high shear 

stress, the oil/dye mixture will be removed, while in areas with low shear stress, it persists or 

accumulates. The resulting pattern is then analysed to understand the structure near the 

examined surface. Despite the simplicity, intuitive outcomes, and minimal experimental 

equipment requirements of SOFV, current research predominantly utilizes it as an indirect 

observational tool, emphasizing qualitative insights over quantitative analysis. 

Zierke et al. (1994) used an oil-paint method to obtain patterns of skin-friction lines on 

the rotor blades surfaces of a high-Reynolds-number centrifugal pump. This post-processing 

flow visualization technique revealed that the existence of a trailing-edge separation vortex, 

which migrated radially upward along the trailing edge and then turned in the circumferential 
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direction near the casing, moving in the opposite direction of blade rotation. The resulting 

patterns qualitatively confirmed the unsteadiness of the vortex and helped in establishing the 

trajectory of the tip leakage vortex core. 

The abilities of the thin oil film technique with its application in a short duration wind 

tunnel can avoid the intrusiveness of the measuring device and the corresponding flow 

disturbance while exploring the skin friction as emphasized by Schülein (2004). For instance, 

Aunapu et al. (2000) compared the flow visualization results from two different established 

methods utilizing ink dots and solvent, and oil and black powder. Both techniques successfully 

captured key flow features, including the horseshoe vortex, its migration across the passage, 

endwall cross flow, and the saddle point. However, the ink dot technique proved more effective, 

providing a clearer and more detailed depiction of the shear stress patterns, along with a 

permanent record for post-experiment analysis. In contrast, the oil and black powder method, 

while useful for real-time observation, lacked permanence and was less precise in low-velocity 

regions. 

Despite the value of surface flow visualization techniques, there remains a significant 

gap in correlating qualitative surface patterns with more detailed flow characteristics, such as 

turbulent kinetic energy or velocity profiles. Techniques like oil/dye visualization primarily 

provide information about the direction of the flow, but they are limited in their ability to yield 

precise quantitative data about the flow properties. Based on the assumption that the oil paint 

traces lines corresponding to wall shear stress, streakline patterns can reveal transitions from 

laminar to turbulent boundary layers and regions of flow separation. However, current research 

on flow visualization, particularly in high Reynolds number flows, has predominantly focused 

on qualitative insights into features such as vortex structures and separation zones, with 

relatively less emphasis on directly quantifying flow field properties. This gap means that flow 

visualization images are often used as supplementary illustrations in research, and the rich 

information they contain is not fully utilized. 

In this context, the integration of machine learning techniques represents a promising 

development in flow visualization. While traditional flow visualization methods rely heavily 

on manual identification and analysis of surface patterns, machine learning can assist in 

automating the process of recognizing and labelling flow features, such as direction fields, 

directly from surface patterns. Through machine learning, it is possible to enhance the analysis 

of flow patterns. This approach can help researchers more efficiently interpret flow 
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characteristics and improve the accuracy of flow visualizations, without the need for invasive 

measurement techniques. The use of machine learning in this study is specifically focused on 

automating the labelling of direction fields in surface flow patterns, thus providing a more 

consistent and scalable approach to flow visualization. 

2.4.1 Basic concept of flow visualization 

Regardless of the methods used for flow visualization, the result is always one or a set 

of images. These images can come from direct photography, vector fields measured by digital 

particle image velocimetry (DPIV), or even from experimental results of pressure sensors. 

Ultimately, these images need to be interpreted manually, and through them, the flow field can 

be understood directly or indirectly. Before this, it is essential to define and understand the 

terms like flow visualization and flow pattern and their relationships. 

According to Perry and Chong (2012), the flow type described by streamlines consists 

of special points where the streamline slope is indeterminate, and the velocity is zero. These 

points were referred to as critical points or stationary points in the flow pattern. A streamline 

is essentially a curve that is tangent to the velocity vector at every point, and at the stationary 

point, since the velocity is zero, the direction of the streamline becomes indeterminate. 

Understanding these special points is important for analysing the overall structure of the flow 

because they represent key topological features in the flow. 

Another important aspect of flow visualization is distinguishing between streamlines, 

pathlines, and streaklines to describe the flow. As illustrated in Figure 2.3 (Nakayama, 2018), 

these concepts, though identical in steady flow, exhibit significant differences in unsteady flow. 

Streamlines (Figure 2.3a), which show the velocity field at a specific moment, are tangent to 

the velocity vector at each point; Pathlines (Figure 2.3b) represent the actual path of fluid 

particles over time, showing where a single particle moves through the flow; Streaklines 

(Figure 2.3c) show the positions of particles released from a fixed point at different times, 

tracing the paths of various particles starting from the same point. In unsteady flow, streaklines 

can traverse different regions of the flow, to reveal the complexity of flow field. 
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Figure 2.3 Schematic diagram of (a) Streamline. (b) Streakline. (c) Pathline (Nakayama, 2018) 

 

By analysing critical points and flow patterns in various flows, Chong et al. (1990) 

studied the flow characteristics and behaviour under different conditions. Through experiments 

and numerical simulations, they identified and classified foci, saddles, and nodes in the flow. 

For vortex structures, methods based on invariants of the vorticity and rate of strain tensors 

were proposed to classify and analyse vortex core structures, which are important in turbulence 

studies. 

The most widely used local methods for vortex identification are based on the analysis 

of the velocity-gradient tensor ∇𝒖 = 𝑺 + 𝛀, its symmetric and antisymmetric parts, strain-rate 

tensor S and vorticity tensor Ω, respectively, and the three invariants of ∇u (Kolář, 2007). The 

Q-criterion (Hunt et al., 1988) identifies vortices as regions where the vorticity magnitude 

prevails over the strain-rate magnitude, ensuring that the second invariant of the velocity-

gradient tensor is positive. And the Δ-criterion (Chong et al., 1990, Vollmers et al., 1983, 

Dallmann, 1983) characterizes vortices through the occurrence of complex eigenvalues of the 

velocity-gradient tensor, which correspond to elliptic critical points in a moving reference 

frame. The λ2-criterion (Jeong and Hussain, 1995) refines vortex detection by considering the 

pressure Hessian and defining vortices based on the ordering of eigenvalues of the symmetric 

tensor S² + Ω², ensuring two negative eigenvalues. Machine learning techniques have also been 

introduced to automate and improve vortex identification, making it possible to analyse large-

scale turbulence datasets with greater efficiency and accuracy. 

By combining different visualization techniques, fluid motion in complex flows could 

be better understand. For instance, Perry and Chong (2012) proposed a method which used 

vortex skeleton of the flow to simplify and interpret complex vortex fields. They used the Biot-

Savart law to calculate the distribution of vortex cores in the flow, which was then used to 
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reconstruct the flow field. This method worked especially well for complex flows like turbulent 

boundary layers, jets, and wakes. 

Many other researchers have also made important contributions to the study of complex 

flows. For example, Lighthill (1963) studied the generation of vorticity in incompressible, 

uniform-density flow, then they found that all vorticity is generated at solid boundaries. 

Batchelor (2000) further investigated the properties of vortices moving with fluids and 

demonstrated this phenomenon through staining experiments. Truesdell (1954) and Cantwell 

(1979) explored the mechanisms of vortex formation and evolution through theoretical analysis 

and experimental research. Dallmann (1983) and Vollmers et al. (1983) focused on the 

development of experimental techniques, especially the use of laser and PIV to capture 

complex vortex structures in flow. 

Streamlines show the vortex structures and separation points, while pathlines and 

streaklines indicate the formation and evolution of vortices. This information is important for 

understanding the mixing, diffusion, and transport properties of turbulence. Robinson (1991), 

Perry and Chong (1994) demonstrated the existence of complex vortex structures in turbulent 

boundary layers through experiments and numerical simulations, and proposed a vortex 

classification method. The vortex structure can be effectively distinguished from other flow 

features based on the invariant of the velocity gradient tensor (Hussain and Jeong, 1995). 

Vortex identification techniques have also been widely used in studying turbulent eddies, 

vortex shedding, and wake dynamics, providing deeper insight into energy transfer and 

turbulence modulation. Soria and Cantwell (1994) studied transient phenomena in complex 

flows, as well as the evolution of flow structures. 

In summary, flow visualization is not only capturing images, but also using these 

images to analyse the fundamental principles and structures of fluid dynamics. By 

understanding the relationships between streamlines, pathlines, and streaklines, using 

mathematical and modern visualization techniques, fluid motion can be better described and 

analysed, as a result, more information about the flow field could be obtained. 

2.4.2 Methods of flow visualization 

Based on the reading conducted during the literature review, flow visualization methods 

can be categorised on the principles they utilize, and each category can be further subdivided 

by specific characteristics: 
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1. Adding Extraneous Material: 

• Hydrogen Bubble Visualization. 
• Smoke and Paint Visualization. 
• Tuft Visualization. 

 
2. Adding Energy: 

• Molecular Tagging. 
 

3. Optical Methods: 

• Schlieren Method. 
• Digital Interferometry. 

 

Hydrogen bubble visualization relies on electrolysis to generate numerous small 

bubbles on a thin conductive wire (25-50 µm), which acts as one electrode in a direct current 

circuit. The other electrode, typically metal or graphite, is placed outside the test zone but 

within the fluid flow. The wire, serving as the negative electrode, forms hydrogen bubbles on 

its surface. By oscillating the voltage through the wire, successive lines of hydrogen bubbles, 

known as timelines, are created at constant time intervals. These bubble lines are carried 

downstream by the fluid flow and deform according to the local velocity profile. The bubbles, 

being 1-1.5 times larger than the wire diameter, rise at a negligible speed compared to the fluid 

flow. The shape and orientation of the wire depend on the type of fluid flow being examined, 

and the distance between the wire supports, which are subject to vortex shedding, is crucial to 

avoid disrupting the flow. Materials like stainless steel, aluminium, tungsten, and platinum are 

commonly used for the wire, with platinum being favoured for its non-corrosive nature and 

excellent soldering properties. Proper illumination of the bubbles allows for detailed 

visualization and quantitative analysis using photographs. Background light tilted at a 

recommended angle of 65º is used for illumination (Post and van Walsum, 1993, Merzkirch, 

1987). 

Traditional methods such as dye and smoke have long been utilized for visualizing fluid 

motion. Dyes are simple and effective. To reduce buoyancy, dyes are mixed with small 

amounts of alcohol, methanol, or ethanol. Other substances like laundry detergent, milk, 

fluorescent dye, potassium permanganate, and rhodamine can also be used, provided they have 

neutral buoyancy, resist mixing with the test fluid, and offer good visibility (Merzkirch, 1987, 

Van Dyke and Van Dyke, 1982). Dyes are typically injected into the fluid stream via small 

diameter pipes (1.5-2 mm) or through hypodermic needles or model openings. However, the 

injection velocity can disrupt the fluid flow; too high a velocity produces mushroom-like 
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disturbances, while too low a velocity creates a vortex street (Tritton, 2012). These disruptions 

can be minimized by placing the dye source further upstream. 

Smoke wires are another common technique for airflow visualization. A metal wire 

coated with hydrocarbon oil is heated by passing current, causing the oil to evaporate and form 

smoke (Freymuth, 1993). The choice of wire material is less critical, provided it meets tensile 

strength and electrical resistance requirements; nickel, steel, and tungsten are frequently used. 

The wire diameter depends on the fluid flow velocity, with smaller diameters for lower 

velocities and vice versa. The oil must be evenly applied, either manually or automatically with 

brushes (Merzkirch, 1987). 

Tufts provide a simple method for determining flow direction near a solid surface. 

When the flow becomes unstable or turbulent, the tufts move erratically, indicating a turbulent 

boundary layer or separation (Chen et al., 2019b). The choice of tuft size and material depends 

on the model size and test conditions. Ordinary cotton threads are used for large models, while 

mini tufts, made from thin nylon strands with a diameter around 20 µm, are used to minimize 

flow disturbance. Fluorescent colouring can enhance visibility. Mini tufts can exhibit high-

frequency whiplash motion, making them difficult to photograph, so small cups may be 

attached to calm their movement (Treaster and Stinebring, 1980). 

Special cameras like CCD cameras are used to photograph marked molecules and track 

their movement. Photochromic dye or phosphorescent supramolecules can be used as tracers 

(Gendrich et al., 1997). Photochromic tracers start transparent and become visible upon photon 

absorption, allowing the fluid containing the dye to appear dark when illuminated by white 

light. Fluorescein, with a high quantum yield of about 85%, can also be used, making the 

method known as laser-induced fluorescence (Kozomora et al., 2024). Photochromic ink is 

cost-effective and can be activated with a nitrogen gas laser. These tracers are ideal for studying 

fluid mixing, as mixing zones are highly visible. Phosphorescent supramolecules address low 

contrast issues, emitting light after excitation, allowing for extended observation periods. This 

method is advantageous for three-dimensional flow visualization. 

Optical methods for flow visualization include techniques like the Schlieren method, 

which is highly sensitive to density changes (Settles, 2001). In Schlieren systems, brightness 

levels depend on the refractive index's first derivative, whereas in shadow photography, they 

depend on the second derivative. A Schlieren system with parallel light converges the light 
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using a lens or spherical mirror, forming an image at the focal point where a knife edge cuts 

off part of the light to reduce illumination intensity. Using point or slit light sources is 

mandatory. Errors like astigmatism and coma, caused by lens irregularities, can be minimized 

using a Z-shaped optical array and parabolic lenses. A two-pass Schlieren system increases 

sensitivity to small density changes, using a conical light source and an optical beam splitter, 

reducing astigmatism and coma. Schlieren methods can also produce colour images using white 

light and filters at the focal point (Goldstein, 2017). 

Interferometry uses the superposition of light waves to amplify or cancel each other. 

The interferometer splits the light beam into two paths, one directed at a reference plane and 

the other at the fluid flow, creating phase delays seen as alternating dark and light patterns 

(Hariharan, 2010). Digital interferometry combines holographic interferometry with computer 

processing to accurately determine phase delays, provide real-time fluid flow information and 

capture small perturbations. This method can be used for visualizing stable and unstable fluid 

flows (Watt and Vest, 1987). 

Current SFV techniques primarily focus on flow tracking based on foreign material 

introduction and optical interference principles, and they are easily influenced by intrusive flow 

field disturbances and limitations in spatiotemporal resolution. For instance, hydrogen bubble 

and dye injection may alter local flow structures due to buoyancy effects or injection velocity, 

while tuft methods struggle to capture transient details in high-frequency turbulence. Moreover, 

with the advancement of high-speed imaging and computational processing capabilities, 

molecular tagging and digital interferometry have gradually enabled high-precision three-

dimensional dynamic measurements, though they still face challenges such as complex 

equipment and high costs. 

However, from the perspective of multimodal fusion and intelligent algorithm 

optimization, it is possible to integrate non-intrusive optical methods such as laser-induced 

fluorescence with machine learning-based image analysis, thereby minimizing flow field 

interference. With the deep learning techniques, it becomes possible to automatically identify 

and analyse flow field images to extract key parameters such as velocity, vorticity and shear 

rate. 

2.4.3 Image Processing Techniques 
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Image processing usually is the first step in the analysis of flow visualization images in 

fluid mechanics. Images captured by digital cameras would be converted into digital files that 

allow for further processing to extract additional information. When analysing these images, it 

is necessary to link the patterns and topological rules of the images. Edge detection is a 

fundamental step in image processing, which helps identify and outline these patterns. It has 

been widely used in classical computer vision tasks such as segmentation (Zhang et al., 2015) 

and image recognition (Yang et al., 2002, Shotton et al., 2008). More recently, edge detection 

has also been applied to modern tasks like image-to-image translation (Zhu et al., 2017) , photo 

sketching (Li et al., 2019a), image analysis (Pourreza et al., 2018) and remote sensing 

(Isikdogan et al., 2017). 

Since the introduction of the Sobel operator (Sobel, 1970), many edge detection 

techniques have been developed. Classical methods like the Canny edge detector (Canny, 1986) 

have stood the test of time and are still widely used today. For instance, Abdelsalam et al. 

(2017), developed an image processing algorithm utilizing Canny edge detection and linear 

Hough transforms to extract quantitative data from SFV images. This algorithm effectively 

identifies flow patterns and allows for detailed comparisons with CFD results to better 

understand flow characteristics. However, it also generated scattered noise vectors, which 

indicated the need for further refinement to improve accuracy and reduce errors.  

Significant progress has been made in edge detection because of the deep learning, 

especially convolutional neural networks (CNN). CNN is designed for processing grid like data, 

such as images. They are composed of multiple layers and can automatically learn to extract 

features from raw image data, which makes them highly effective in tasks such as object 

detection, classification, and edge detection. New edge detectors have been developed using 

CNNs, such as DeepEdge (Bertasius et al., 2015), Holistically-Nested Edge Detection (HED) (Xie 

and Tu, 2015), Richer Convolutional Features (RCF) (Liu et al., 2017), and Boundary Detection 

Convolutional Network (BDCN) (He et al., 2019). These models are similar to traditional 

methods for predicting edge maps from images, but they have excellent performance due to 

their ability to learn and capture complex features from large datasets. The effectiveness of 

these deep learning-based methods stems from applying CNNs at different scales and using 

diverse image sets for training, combined with various training regularization techniques 

(Poma et al., 2020). For instance, the HED model takes advantage of multi-scale feature fusion 

to enhance edge detection accuracy, demonstrating the power of deep learning in this field. 
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There are many directions for future research in edge detection and other image 

processing techniques. Developing more robust algorithms to handle complex backgrounds 

and diverse image characteristics remains a priority. Additionally, integrating more advanced 

deep learning techniques, such as Generative Adversarial Networks (GANs) and Graph 

Convolutional Networks (GCNs), could further improve edge detection accuracy and expand 

its applications. Cross-disciplinary integration, such as combining image processing with 

natural language processing (NLP) and augmented reality (AR) technologies, also holds 

promise for new breakthroughs in image analysis. 

2.5 Machine learning and conditional generative adversarial 

networks 

Machine learning is the subfield of computer science that, according to Samuel (1959), 

gives "computers the ability to learn without being explicitly programmed". Evolved from the 

study of pattern recognition and computational learning theory in artificial intelligence, 

machine learning explores the study and construction of algorithms that can learn from and 

make predictions on data – such algorithms overcome the constraints of following strictly static 

program instructions by making data-driven predictions or decisions, through building a model 

from sample inputs. Machine learning is sometimes conflated with data mining, where the latter 

subfield focuses more on exploratory data analysis and is known as unsupervised learning. Ma-

chine learning can also be unsupervised and be used to learn and establish baseline behavioural 

profiles for various entities and then used to find meaningful anomalies. Within the field of 

data analytics, machine learning is a method used to devise complex models and algorithms 

that lend themselves to prediction; in commercial use, this is known as predictive analytics. 

These analytical models allow researchers, data scientists, engineers, and analysts to "produce 

reliable, repeatable decisions and results" and uncover "hidden insights" through learning from 

historical relationships and trends in the data (Ongsulee, 2017). 

Machine learning is an application of artificial intelligence, which provides a given 

system with the ability to learn automatically and improve from experience without explicit 

programming. 

In the author's view, surface flow visualization images can be considered the 

fingerprints of the flow field. The basic fingerprint recognition system consists of four stages: 

firstly, the sensor which is used for enrolment and recognition to capture the biometric data. 
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Secondly, the pre-processing stage which is used to remove unwanted data and increase the 

clarity of ridge structure by using enhancement technique. Thirdly, feature extraction stage 

which take the input from the output of the pre-processing stage to extract the fingerprint 

features. Fourthly, the matching stage is to compare the acquired feature with the template in 

the database.(Ali et al., 2016). To alleviate both cost and privacy issues, several approaches 

have been proposed to create synthetic fingerprint datasets, Bouzaglo and Keller (2022) 

proposed a novel fingerprint synthesis and reconstruction framework based on the StyleGAN2 

architecture, where the generator is trained on a large fingerprint dataset. The generator 

produced realistic fingerprint images based on latent vector inputs. By feeding a random vector 

into the generator, a random fingerprint could be synthesized. Through the Minutiae-To-Vec 

encoder, minutiae can be encoded into latent vectors for fingerprint reconstruction. Svoboda et 

al. (2017) trained GANs on synthetic datasets to denoise and predict missing parts of fingerprint 

ridge patterns. In addition, they used convolutional autoencoders to reconstruct damaged 

fingerprints and achieved state-of-the-art results on multiple fingerprint databases. 

Song et al. (2023) used the pix2pix method, which will be detailed introduced in section 

2.5.2, to predict the flow field and aerodynamic performance of aerofoils in wind turbine blades. 

These methods served as potential alternatives to traditional, resource-intensive CFD 

techniques, and showed promising results in quickly identifying aerodynamic characteristics, 

such as blade design. Han et al. (2019) introduced a new method based on deep learning for 

streamline based flow field representation and simplification, aimed at operating within in situ 

visualization settings. The process involved tracing streamlines from each simulation timestep, 

storing them in a compressed form, and later reconstructing the vector fields for detailed post 

analysis. 

2.5.1 Convolutional neural network 

Convolutional Neural Networks (CNNs) are deep learning models designed primarily 

for tasks involving grid-like data structures, particularly image and video analysis (Ciresan et 

al., 2011). These networks typically consist of three primary components: an input layer, 

hidden layers, and an output layer. The hidden layers include one or more layers that perform 

convolutions, where a mathematical operation (the convolution) is performed between the 

input data and a filter or kernel, typically using the Frobenius inner product(Goodfellow, 2016). 

The activation function commonly used is ReLU (Rectified Linear Unit) to introduce non-

linearity(Nair and Hinton, 2010). As the convolution kernel moves across the input, it generates 
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a feature map that is passed on to subsequent layers, which can include pooling, fully connected, 

and normalization layers (Krizhevsky et al., 2012). CNNs share some functional similarities 

with matched filters in signal processing. 

In a CNN, the input is a tensor with dimensions: 

(number of inputs) × (input height) × (input width) × (input channels) 

After passing through a convolutional layer, the image becomes abstracted to a feature 

map, also called an activation map, with shape: 

(number of inputs) × (feature map height) × (feature map width) × (feature map 

channels). 

 

 

Figure 2.4 Typical CNN architecture. Khan et al. (2021) 

 

As depicted in Figure 2.4, CNNs involve a multi-stage process where each layer 

extracts increasingly abstract representations of the input data. Convolutional operations mimic 

the response of neurons in the visual cortex to stimuli, where each neuron processes only a 

subset of the input, known as the receptive field. 

Alongside the convolutional layers, CNNs often incorporate pooling layers, which 

further reduce the data dimensions. Pooling operations can be either local or global: local 

pooling (e.g., 2×2 tiling) consolidates small clusters of neurons, while global pooling 

aggregates information across the entire feature map (Krizhevsky et al., 2012, Ciresan et al., 

2011). Common pooling strategies include max pooling, which selects the maximum value 

from each cluster, and average pooling, which computes the average value (Ciregan et al., 2012, 

Yamaguchi et al., 1990). 
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Fully connected layers connect every neuron in one layer to every neuron in another 

layer. It is the same as a traditional multilayer perceptron neural network (MLP). The flattened 

matrix goes through a fully connected layer to classify the images. 

In neural networks, each neuron receives input from some number of locations in the 

previous layer. In a convolutional layer, each neuron receives input from only a restricted area 

of the previous layer called the neuron's receptive field. Typically, the area is a square (e.g. 5 

× 5 neurons). Whereas, in a fully connected layer, the receptive field is the entire previous layer. 

Thus, in each convolutional layer, each neuron takes input from a larger area in the input than 

previous layers. This is due to applying the convolution over and over, which takes the value 

of a pixel into account, as well as its surrounding pixels. When using dilated layers, the number 

of pixels in the receptive field remains constant, but the field is more sparsely populated as its 

dimensions grow when combining the effect of several layers. 

To manipulate the receptive field size as desired, there are some alternatives to the 

standard convolutional layer. For example, atrous or dilated convolution (Chen et al., 2017, Yu 

and Koltun, 2015) expands the receptive field size without increasing the number of parameters 

by interleaving visible and blind regions. Moreover, a single dilated convolutional layer can 

comprise filters with multiple dilation ratios (Duta et al., 2021), thus having a variable receptive 

field size. 

Each neuron in a neural network computes an output value by applying a specific 

function to the input values received from the receptive field in the previous layer. The function 

that is applied to the input values is determined by a vector of weights and a bias (typically real 

numbers). Learning consists of iteratively adjusting these biases and weights. 

The vectors of weights and biases are called filters and represent particular features of 

the input (e.g., a particular shape). A distinguishing feature of CNNs is that many neurons can 

share the same filter. This reduces the memory footprint because a single bias and a single 

vector of weights are used across all receptive fields that share that filter, as opposed to each 

receptive field having its own bias and vector weighting. 

The CNNs could be evaluated by several different metrics, including classification 

accuracy, precision, recall, F1-score, and confusion matrices when dealing with classification 

problems. For tasks like image processing, edge detection and flow field prediction, the mean 

squared error (MSE) and mean absolute error (MAE) are commonly used. 
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For flow field prediction, CNNs can effectively extract features from flow data and 

generate accurate flow predictions. This makes CNNs particularly suitable for modelling and 

analysing complex flow fields. For example, Kim and Günther (2019) developed a CNN-based 

algorithm that combines filtering and feature extraction to robustly extract vortex centres and 

generate nearly steady reference frames from noisy and resampled inputs. CNNs also could be 

used to predict pressure on a cylinder from velocity distributions in wake flow, achieving high 

precision and efficiency through transfer learning, as shown in the work of Ye et al. (2020). 

2.5.2 Generative adversarial networks and Pix2pix 

The concept of image-to-image transformation was initially proposed by Hertzmann et 

al. (2001), where they applied learned generative filters to new target images to create 

"analogous" filtering results, called "image analogies". Gatys et al. (2016) used feature 

representations from high-performing CNNs to transfer image style between arbitrary images. 

Their work primarily involved a series of operations directly applied to target images, and the 

results usually contained a lot of low-level noise. Recently, some impressive results have been 

achieved using Generative Adversarial Networks (GANs) (Goodfellow et al., 2014). 

Depending on the target and data types, GANs can be divided into many variants to better suit 

specific tasks. Representative variants include InfoGAN, cGAN, CycleGAN, f-GAN, WGAN, 

et al. The model used in this thesis is a type of cGAN.  

The architecture of the GAN and cGAN is shown in Fig 2.5. The GAN framework 

consists of two main components: a generator (denoted as G) and a discriminator (denoted as 

D), which work together to generate data in an adversarial training process (Goodfellow et al., 

2014). The generator takes random noise as input and generates synthetic data, while the 

discriminator  evaluates the data and determines whether it is real or generated. The training 

objective of the generator is to produce data that the discriminator cannot distinguish, while 

the goal of the discriminator is to correctly identify whether the input data is real. 

The internal structure of the generator typically begins with a fully connected layer that 

expands the low-dimensional noise vector into an initial set of feature maps. This is followed 

by a series of transposed convolutional layers (also known as deconvolution layers) that 

progressively upsample the feature maps to the target output size. Each upsampling step is 

usually accompanied by batch normalization to stabilize the training and ReLU activation 

functions to introduce non-linearity. The output layer commonly uses a Tanh activation 
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function to ensure that the generated image values are within a specified range. the structure of 

the generator could vary greatly depending on different tasks. 

The discriminator, conversely, is structured as a deep convolutional neural network that 

gradually downscales the input through a series of convolutional layers. Each convolutional 

operation is typically followed by batch normalization and a LeakyReLU activation function, 

which helps to prevent the vanishing gradient problem. Finally, a fully connected layer with a 

Sigmoid activation function outputs a probability score indicating whether the input is real or 

generated. The input to the generator is a noise tensor with dimensions (batch size) × (noise 

dimension), whereas the discriminator receives an image tensor with dimensions (batch size) 

× (height) × (width) × (channels). Figure 2.5(a) illustrates the basic architecture of GANs. 

 

  

Figure 2.5 Architectures of (a) GAN and (b) cGAN 

 

The cGAN is an extension of the traditional GAN, designed to generate data based on 

specific conditions (Mirza and Osindero, 2014). These conditions can be provided in various 

forms, such as noise vectors, images, or class labels. In the cGAN architecture (as shown in 

Fig 2.5(b)), the generator G receives a combination of the input noise z and the condition c, 
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which will be used to generate data. Then the discriminator receives input data x and condition 

c to determine whether the data is real or generated. 

Pix2pix is a widely adopted approach for solving image-to-image translation problems 

and it can be considered as a special type of cGAN (Isola et al., 2017). In pix2pix, the generator 

is built on the U-Net architecture, which is effective in image-to-image translation tasks. U-

Net has a "skip connection" structure that directly connects corresponding encoder and decoder 

layers. This structure allows for more stable learning compared to a simple encoder-decoder 

design. The discriminator in pix2pix utilizes a convolutional PatchGAN classifier, which 

evaluates images by focusing on patches of a specific size rather than the entire image. This 

modification helps train the generator to generate images with more realistic and detailed 

features. 

The evaluation of GANs requires different strategies compared to traditional 

discriminative models. Since the primary goal of a GAN is to generate realistic samples, 

quantitative metrics such as the Inception Score (IS) and the Fréchet Inception Distance (FID) 

are widely used, the detailed information of which would be introduced in section 6.2.2. 

Although GANs have some applications in fluid dynamics, such as solving the Navier-

Stokes equations (Wu et al., 2022, Song et al., 2023, Chen et al., 2020), reducing computational 

costs (Kastner and Dogan, 2023, Afzali et al., 2021), here are still few studies on surface flow 

visualization using GANs. This thesis attempts to explore this underexplored direction by 

applying GAN-based techniques, especially cGANs, to enhance the understanding of surface 

flow patterns. 

2.6 Overview 

This chapter introduces the use of machine learning in surface flow visualization. The 

Flow is complex, but the study of the flow field is very meaningful, and for this, flow 

visualization methods are needed for both qualitative and quantitative analysis. Machine 

learning has considerable potential as a tool for predicting and analysing flow fields. This data-

driven, non-invasive approach is a significant improvement over traditional method. 

Experimenters can understand some characteristics of the flow field before making detailed 

measurements or simulations. 
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A number of methods of flow visualization using the advanced imaging technologies 

have been proposed. However, much of the previous work in flow visualization has been 

manual and qualitative, limiting its ability to extract detailed, quantitative information from 

flow fields. This thesis aims to address this issue by developing an automated, quantitative 

method to extract information from flow visualization results. By adopting this approach, more 

detailed insights into flow field surfaces can be obtained, which can then be compared with 

CFD results for validation and deeper analysis. This method is significant because it not only 

enhances the information gathered from flow visualization but also bridges the gap between 

qualitative observations and quantitative comparisons. Ultimately, it advances the 

understanding of fluid dynamics and improves the accuracy of flow analyses.  
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Chapter 3 Methodologies 

This chapter focuses on the experimental methods used in the Durham Cascade and 0.5 

Plint wind tunnel. It describes the techniques employed to obtain flow visualization and GLOF 

skin-friction meter for this thesis. There is an extensive section on data processing techniques 

specific to the cascade. This chapter also includes descriptions related to CNNs, U-net, and 

GANs. It covers the structure and layers of these neural networks, methods for preparing 

datasets, and some training details. 

3.1 Experimental facilities 

To support this thesis, experiments were conducted in two facilities, with 

approximately 300 tests performed, of which more than 200 were used for this thesis. The 

primary variables investigated included wind speed, different obstacles in the flow field, and 

varying oil/dye ratios. Flow visualization experiments using oil/dye techniques were carried 

out in the 0.5 Plint wind tunnel to examine simple surface flow phenomena. The experimental 

conditions covered a range of nondimensional numbers, including Reynolds numbers (Re) 

varying from 2×103 to 3×104. 

To ensure the reliability and accuracy of the results, multiple repetitions were conducted 

for each set of experimental conditions, minimizing random errors and enhancing the statistical 

significance of the data, which were then used to train the model. 

3.1.1 The Durham cascade 

The Durham Cascade is a low-speed, large scale linear cascade developed and 

constructed at Durham University for studying secondary flow. It comprises an array of six 

blades designed to maintain a similar Reynolds number and pressure distribution of Rolls-

Royce RB211 engine high-pressure turbine blades but at a low Mach number (McIntosh et al., 

2011).  

After being originally designed by Graves (1985), the Durham Cascade has undergone 

several refurbishments to accommodate different types of experiments. These refurbishments 

include the installation of aluminium blades, improvements in blade and endwall mounting 

methods, and enhancements in measurement accuracy. The latest layout, designed for tip 

clearance flow experiments, is depicted in Figure 3.1. 
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Figure 3.1 Durham Cascade Layout Third Angle Projection Including Definitions of Cascade 
Coordinates and Image Capture. (Martinez-Castro, 2022) 

 

Air was supplied to the cascade by a variable-speed centrifugal fan, passing through 

various filters and settling chambers before entering the working section. Turbulence intensity 

at the inlet was approximately 5%, achieved by a grid of bars mounted 1.4 m in front of the 

blade leading edge. Boundary layer bleeds were provided 150 mm downstream of the 

turbulence grid on both walls. The cascade turned the flow through 111° and discharged 

upwards. Table 3-1 provides a summary of the key parameters of the Durham Cascade. 

Table 3-1 Key Cascade Parameters 

Parameter Unit 

Inlet Flow Angle 42.75° 

Exit Blade Angle -68.70° 

Blade Pitch 191 mm 

Blade Axial Chord 181 mm 

Tip Clearance 3.75 mm 

Freestream Velocity 19.1 m/s 

Dynamic Pressure 215 Pa 

Re number 4 x 105 

 

The cascade blades had a span of 375 mm and a chord of 224 mm, resulting in an aspect 

ratio of 1.78. Blade passages were instrumented on one endwall. The endwalls could be 

changed with profiled or planar endwalls, depending on the requirements of the experimental 

campaign. 

3.1.2 The 0.5 Plint wind tunnel 
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The 0.5 Plint wind tunnel used in this work was an open-circuit design that discharged 

directly to the atmosphere. The working section had a square cross-section of 457 mm × 457 

mm, with a length of 1.22 m. The sides of the working section were solid, while the top and 

bottom were open. The tunnel was driven by an upstream 36-blade centrifugal fan, with a 

rotational speed of approximately 17 Hz, resulting in a blade passing frequency of 600 Hz. The 

maximum tunnel speed was around 21 m/s, and the turbulence intensity had been measured to 

be less than 0.25%.(Sims-Williams, 2001) 

In this work, modifications were made to the Plint wind tunnel as shown in Figure 3.2. 

A mounting device was used to secure the camera to the section, which significantly minimizes 

the impact of vibrations during operation on the results. Directly beneath the camera lens was 

a transparent glass plate that allowed the camera to directly record the conditions within the 

wind tunnel's working section without affecting the internal airflow. 

 

 

Figure 3.2 0.5 Plint Wind Tunnel Layout 
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The region of interest (ROI) was mounted flush with the bottom wall of the wind tunnel 

and secured beneath the test section. Simple-shaped objects could be placed or suspended 

above the ROI to influence the surface flow field. This setup allowed for the collection of 

various flow visualization images and videos, capturing the effects of different objects on the 

flow dynamics. 

3.2 Experimental techniques 

3.2.1 Oil/dye visualization 

The principle of oil/dye surface flow visualization involved applying a mixture of oil 

(diesel or paraffin) and dye to the surface of the model of interest. This model was then placed 

in the wind tunnel, where the flow was applied at the desired speed. The oil/dye mixture 

followed the path of the flow on the model surface, with regions of low velocity appearing as 

the oil/dye remained mostly in place. Separation bubbles were easily identified as a "slug" of 

fluid accumulated in the region of recirculation. Besides, regions of high shear stress near the 

wall were identified as the oil/dye mixture was removed from the model surface altogether. 

The most comprehensive information on this technique is provided by Barlow et al. (1999), 

Merzkirch (2012) and Maltby (1962), which describe it in detail. 

In oil/dye work, it is important to ensure that the speed in the wind tunnel is high enough; 

otherwise, gravity may cause the pattern on the blades and endwalls to be meaningless. In low-

speed areas, the oil/dye may also stay in place, causing the pattern to come entirely from the 

brush used to apply the mixture. Airbrush was not used here because the dye itself, often 

clogged the feed inlet. The velocities in the Durham cascade were just high enough to obtain 

acceptable flow visualization results. For instance, good flow visualization was achieved on 

the suction side of the blade and in the blade passage without significant difficulty. However, 

the pressure side and upstream of the blade leading edge on the endwall presented more 

challenges. This was particularly relevant as all aerofoils had a stagnation point where the 

velocity dropped to zero, making surface flow visualization inherently challenging in these 

regions. The impact of velocity increase on flow visualization results was clearly illustrated by 

Marchal and Sieverding (1977), where oil visualizations showed exit velocities ranging from 

20 m/s to 160 m/s, although it should be noted that oils of differing viscosities were used in the 

tests. 
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The tests began with preparing an oil/dye mixture in ratios of 4:1 to 2:1 by volume, 

using standard road diesel and a dye composed of Fiesta daylight colours and an inert bulking 

agent. This dye fluoresced under ultraviolet light, enhancing the clarity of the resulting patterns. 

The oil/dye mixture was gently applied to the test article using a brush, ensuring an even 

coating without deep brush marks. The brush strokes were kept perpendicular to the expected 

flow direction to distinguish between brush marks and flow streaks. 

Upon completion of the entire experiment, the endwall would be carefully extracted for 

photography. High-resolution images (6000 × 4000 pixels) were captured using a Nikon D5300 

DSLR camera with an AF-S Nikkor 35mm 1:1.8G lens, mitigating optical distortions. The 

camera was mounted on a horizontal tripod arm, and the endwall maintained upright during 

capture.  

In the specific tip clearance endwall experiment, after the wind tunnel had been initiated 

and the flow velocity had stabilized for approximately 25 minutes, the endwall was removed 

from the cascade, and image acquisition was conducted. Subsequent inspection of the endwall 

following the experiment revealed that the majority of its surface had become dry, with 

minimal oil residue present. However, certain areas near the projection of the blades still 

retained oil deposits. This is an expected result since it is expected that surface oil is readily 

entrained by the airflow along the streamlines, with less facile removal occurring at saddle 

points. 

3.2.2 Global luminescent oil-film (GLOF) skin-friction meter 

As discussed in Chapter 2, the Global Luminescent Oil Film (GLOF) method, 

developed by Liu et al. (2008), is a technique for extracting high-resolution skin friction fields 

from GLOF images. This method has been applied to a variety of complex flow scenarios (Tran 

et al., 2019, Tran et al., 2018, Lee et al., 2018, Zhong et al., 2015, Husen et al., 2018b, Husen, 

2017, Husen et al., 2018a, Woodiga et al., 2016, Woodiga et al., 2018, Liu et al., 2011, Woodiga 

and Liu, 2009). It operated by measuring the oil-film thickness and inferring skin friction from 

the temporal and spatial evolution of this thickness. Luminescent oil, which emitted light 

proportional to its thickness when optically thin, was used for visualization. During 

experiments, a thin film of luminescent oil was applied to the surface of interest and illuminated 

with light sources. In this experiment, the regular supplementary lighting was used, as 

illustrated in Figure 3.2, while for some other case, the light source could also be UV light. The 
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resulting luminescent intensity was captured by a camera with an appropriate optical filter, 

effectively converting oil-film thickness measurement into luminescent intensity measurement. 

 

Figure 3.3 Measurement System for Luminescent Oil-film Skin Friction Measurement. 

 

The GLOF method relies on measuring the thickness of a luminescent oil film and 

solving the projected thin-oil-film equation as an inverse problem. For an optically thin 

luminescent oil film applied to a surface 𝑋3 = 𝑆(𝑋1, 𝑋2) and illuminated appropriately, the oil-

film thickness h is directly proportional to the normalized luminescent intensity, which could 

be written as ℎ = 𝛽−1(𝐼/𝐼𝑟𝑒𝑓) , where β is proportional to the quantum efficiency of the 

luminescent dye mixed in the oil, I is luminescent intensity, and 𝐼𝑟𝑒𝑓 is the reference intensity, 

which depends on the intensity of the background light source. 

Replacing h by I in Eq (2.5), the following equation can be obtained: 

 
𝜕𝐼

𝜕𝑡
+

𝜕

𝜕𝑋𝑖
[
𝜅𝜏𝑖

2𝜇
𝐼2 − (

𝜕𝑝𝑤

𝜕𝑋𝑖
− 𝜌𝑔𝒊)

𝜅2

3𝜇
𝐼3] = 0,       (𝑖 = 1,2) (3.1) 

There is a one-to-one mapping between the image plane (x1, x2) and the surface 𝑋3 =

𝑆(𝑋1, 𝑋2). This means that each point on the image plane corresponds uniquely to a point on 

the surface, and vice versa, enabling precise correlation of image data with physical locations 

on the surface. In the work described in this thesis, the camera was parallel to the experimental 

plane, the form of the orthographic projection transformation thus became simple. A relation 

𝜕/𝜕𝑋𝑖 = 𝜀𝜕/𝜕𝑥𝑖 exists, where 𝜀 could be considered as a constant. To convert Eq.(3.1) in the 

image coordinates, a new variable called equivalent skin friction 𝝉′ = (𝜅𝐼𝜀/𝜇)𝝉𝒘 needs to be 

introduced. Substitution of 𝜏′ into Eq.(3.1) yields 

 
𝜕𝐼

𝜕𝑡
+ ∇(𝐼 𝝉′) = 𝑓(𝑥1, 𝑥2, 𝐼) (3.2) 
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where is ∇= 𝜕/𝜕𝑥𝑖 gradient operator in the image plane, and the right-hand-side (RHS) 

term in Eq.(3.2) is defined as 

 𝑓(𝑥1, 𝑥2, 𝐼) = 𝜀
𝜕

𝜕𝑥𝑖
[(𝜀

𝜕𝑝𝑤

𝜕𝑥𝑖
− 𝜌𝑔𝒊)

𝜅2

3𝜇
𝐼3],       (𝑖 = 1,2) (3.3) 

Thus, with Eq.(3.4) the luminescent intensity, 𝐼, can be mapped onto the image plane. 

Since the camera's radiometric response function is linear, the relationship between 𝐼 and the 

image grayscale intensity is also linear. The term f represents the effect of the pressure gradient 

and gravity, which is in the order of 𝜀ℎ3 ≪ 0 , since for very thin oil condition, ℎ3 ≪ 0. 

Therefore, this term is considered as a higher-order small term in Eq.(3.2). Considering a 

spatial change of skin friction is small, Eq.(3.2) can be further rewritten as: 

 
𝜕𝐼

𝜕𝑡
+ 𝝉′∇𝐼 = 0 (3.4) 

At this point, Eq.(3.4) has the same form of the physics-based optical flow equation for 

various flow visualizations(Liu and Shen, 2008). Therefore, the same optical flow problem can 

be solved to determine a skin friction field. To determine the equivalent skin-friction field 𝝉′ =

(𝜏′
1, 𝜏′

2) , additional constraints need to be introduced since Eq.(3.2) is not sufficient to 

determine 𝜏′
1and 𝜏′

2. Liu et al. (2008) used a regularization term based on the L2 norm of the 

skin-friction gradient that was originally proposed by Horn and Schunck (1981) for computing 

optical flow. The L2 norm, also known as the Euclidean norm, measures the magnitude of a 

vector in a multidimensional space. It is calculated as the square root of the sum of the squares 

of its components, providing a way to quantify the overall size or length of the vector. In the 

context of the skin-friction gradient, applying the L2 norm helps to smooth the variations in 

the gradient, thus promoting continuity and stability in the resulting flow field. This variational 

equation essentially represents a constraint on the local continuity of skin friction field. Given 

I and f, a functional with the Horn–Schunck regularization term for the skin-friction field on 

an image domain Ω is defined as 

 (𝝉′) = ∫ [
𝜕𝐼

𝜕𝑡
+ ∇ ∙ (𝐼𝝉′) − 𝑓]

2

𝑑𝑥1𝑑𝑥2 + 𝛼 ∫(|∇𝜏′
1|2 + |∇𝜏′

2|2)𝑑𝑥1𝑑𝑥2
 (3.5) 

The Lagrange multiplier 𝛼 should be suitably selected since it is the coefficient of the 

diffusion term of the Eq.(3.5) The minimization of 𝐽(𝝉′) the Euler-Lagrange equations: 
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 𝐼
𝜕

𝜕𝑥𝑖
[
𝜕𝐼

𝜕𝑡
+ ∇ ∙ (𝐼𝝉′) − 𝑓] + 𝛼∇2𝜏′

𝑖,       (𝑖 = 1,2) (3.6) 

where ∇2= 𝜕2/𝜕𝑥𝑖𝜕𝑥𝑖 (𝑖 = 1,2) is the Laplace operator, and the Neumann condition 

𝜕𝝉′/𝜕n=0 is imposed on the domain boundary. The numerical solution of Eq.(3.6) gives the 

equivalent skin friction 𝝉′. If the GLOF image is high-resolution and its intensity field with a 

sufficiently large intensity gradient, the 𝝉′ solved by Eq.(3.6) will be not sensitive to 𝛼. 

Even in steady flow, the luminescent oil film on the region of interest surface is 

evolving over time. In fact, 𝝉′  solved by Eq.(3.6) is a snapshot skin friction field from 2 

successive images. Similarly, a series of corresponding snapshot solutions can be obtained 

from the sequence of successive images captured by video. From a physical perspective, a 

snapshot solution captures prominent skin friction signatures in areas where the oil-film 

evolution is particularly sensitive to flow at that specific moment. Consequently, a time 

sequence of snapshot solutions is necessary to capture significant skin friction signatures at 

various moments throughout the oil-film evolution process. To reconstruct the steady-state or 

time-averaged skin friction field, snapshot solutions within certain time range were superposed 

and averaged. It could combine instantaneous flow characteristics from different moments, 

effectively filtering out transient fluctuations. 

In this study, the viscosity of the paraffin oil was chosen to be 3.0 cSt at 25 ℃. This 

specific viscosity was selected based on the need for a moderate evolution speed, which 

resulted in an interval of approximately 0.2 seconds between consecutive images. This time 

interval was optimal for the setup, as it helped avoid missing critical frames while also 

conserving computational resources. Additionally, during the experiments, it was observed that 

paraffin oil exhibited the advantageous property of being carried away from the surface at the 

end of the test, while the dye remained in the region of interest. To ensure accurate results, the 

oil was applied as a very thin layer, which prevented wind-driven ripples at the oil-air interface. 

This thin oil film also guaranteed that the film thickness stayed within the linear relationship 

range between oil film thickness and luminescence intensity, which was crucial for accurate 

flow visualization in the experiments. 

After applying the mixture, the wind tunnel operation commenced. The tunnel should 

be quickly brought up to speed to prevent the dye from evolving while stationary. Once the 

conditions within the tunnel met the required standards, data collection began. High-resolution 

videos (1920×1080 pixels) were captured using a Nikon Z50 camera with an AF-S Nikkor 
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35mm 1:1.8G lens, mitigating optical distortions. The camera was fixed outside the test section, 

directly above the ROI, supported by a steel structure. A transparent plate was placed below 

the camera lens, allowing the camera to directly record the flow pattern of the ROI without 

being affected by airflow-induced vibrations.  

The image acquisition rate was set at 60 frames per second. The wind tunnel ran at full 

speed for 10 minutes, with the main pattern forming within the first 5 minutes, although longer 

runs allowed the pattern to dry more thoroughly. The colour intensity of the obtained images 

was proportional to the dye concentration in the coating. Normalized intensity images ℎ =

𝛽−1(𝐼/𝐼𝑟𝑒𝑓) were used for processing, with the snapshot solutions extracted using the optical 

flow-based algorithm described in the data processing section. 

The development of a luminescent oil film on a surface is time-dependent, even in 

steady flow conditions. The numerical solution of the projected thin-oil-film equation provides 

a snapshot skin friction field from a pair of successive images. A series of these snapshot 

solutions, obtained from a time sequence of GLOF images, captures key skin friction signatures 

at different moments, highlighting regions where the oil-film evolution is most responsive to 

the flow. To reconstruct a steady-state or time-averaged skin friction field, these snapshot 

solutions are superposed or averaged. The GLOF method typically yields a normalized skin 

friction field without requiring in-situ calibration. However, to obtain an absolute skin friction 

field, in-situ calibration using accurate skin friction values from reliable techniques, such as an 

interferometric oil-film skin friction meter or computational and theoretical methods, is 

necessary. 

3.3 Data pre-processing 

Subsequent to image acquisition, a multi-stage image processing pipeline implemented 

in software using the Python language was employed for image processing, utilizing functions 

sourced from the deep learning framework Pytorch (Paszke et al., 2019). Supplementary 

functions were drawn from other packages such as Numpy (Harris et al., 2020), SciPy 

(Virtanen et al., 2020), Matplotlib (Hunter, 2007), etc. This step has been applied before most 

of the image processing workflows in this thesis. 

The preprocessing step was designed to reduce the noise and enhance edge information. 

It facilitated more accurate feature extraction and subsequent image analysis stages. And 

thereby this improvement increased the reliability and performance of the overall workflow 
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described in this thesis. The example results could be found in Figure 3.4, and after the 

preprocessing steps, the primary edges in the target region have become particularly prominent. 

To pre-process images, the method provided by Abdelsalam et al. (2017) was applied. 

The calibration phase addressed radial and tangential distortions inherent to the camera lens by 

estimating constant parameters through image capture of a calibration pattern, utilizing Zhang 

(2000). Following calibration, the visual image was partitioned into user-defined rectangular 

cells for grayscale conversion, with grid size influencing detection accuracy. Noise reduction 

was then applied using the bilateral filter (Tomasi and Manduchi, 1998), which was particularly 

effective in preserving edges. Finally, intensity gradients were exposed using an algorithm 

based on the approach of Rao and Schunck (1991) for estimating the orientation field from 

flow visualization images. 

 

Figure 3.4 Flow Chart of Data Pre-processing 

 

3.4 Dataset preparation 

It was difficult to build a sufficiently rich training dataset through experiments alone. 

Therefore, various methods were used to expand the database for different research purposes. 

For instance, for edge detection, the training set consists of a pre-training set from BIPED and 

a fine-tuning set composed of manually annotated experimental data. For predicting the flow 

field, the training set is a mixture of experimental data and synthetic data generated by cGANs. 

The main challenge in developing a robust edge detection algorithm is that the 

algorithm must learn to recognize a wide variety of SFV cases. For example, the images to be 
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recognized may include laminar flow on a flat plate, surface flow visualization on an aerofoil, 

or flow around a cylinder. Other numerous factors, such as image resolution, lighting 

conditions, and noise levels, might also significantly impact the performance of the edge 

detection algorithm. A robust edge detection algorithm should also be able to handle images 

with unpredictable flow conditions. 

To ensure robust model generalization, a standard three-way split of the dataset into 

training (80%), validation (10%), and test (10%) subsets was adapt in both Chap 5 and Chap 

6. The training set ensures broad coverage of learning scenarios. The validation set guides 

hyperparameter tuning and monitors training progress to mitigate overfitting. And the test set 

remains entirely isolated, providing an unbiased assessment of the model’s performance on 

unseen data. 

3.4.1 Edge detection dataset 

The edge detection dataset consisted of a pre-training dataset and a fine-tuning dataset. 

The pre-training dataset was derived from the open-source BIPED dataset. The Barcelona 

Images for Perceptual Edge Detection (BIPED) dataset comprises 250 high-definition outdoor 

images, each with a resolution of 1280×720 pixels. These images have been carefully annotated 

by experts in the field of computer vision, ensuring that redundant information was not 

considered. Nevertheless, all results have undergone cross-checking to correct any potential 

errors or mislabelling. This dataset, developed due to the lack of datasets specifically for edge 

detection tasks, has been publicly released as a benchmark for evaluating edge detection 

algorithms. In contrast, the experimental dataset exhibits greater specificity based on flow 

visualization characteristics. For instance, samples contain low-contrast transitional regions 

(such as gradual interfaces between low-speed wake zones and main flow regions). While such 

features are typically treated as noise in conventional edge detection datasets, they hold 

significant diagnostic value in flow field analysis. In practice, the MDBD dataset (Mély et al., 

2016), which is commonly used for edge detection tasks, features edges annotated by various 

contributors; however, these annotations are not validated, and in some instances, the edges 

correspond to incorrect annotations. The level of detail in the annotations for the dataset used 

in the current work can be observed in the ground truth images in Figure 3.5. 
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Figure 3.5 Edge-maps from BIPED Train Dataset 

 

To increase the number of training images, data augmentation was performed: 1) Given 

the high resolution of the BIPED dataset images, they were split along half the width of the 

image; 2) Similar to the HED method, each generated image was rotated through 15 different 

angles and cropped to fit predefined rectangular areas; 3) Images were horizontally flipped; 4) 

Two gamma corrections were applied (0.3030, 0.6060). This augmentation process generated 

288 enhanced images from every 200 original images. 

The fine-tuning dataset has involved processing authentic flow visualization images, as 

Figure 3.6 shows. Initially, Canny edge detection was used to detect edges, followed by manual 

selection of the most suitable threshold for accuracy. After this, the resultant edge map was 

refined further to remove excessively short edges and connect discontinuities through manual 

processing, rather than relying on automated morphological operations. This process has 

yielded the final edge map. The images in the dataset have then undergone pre-processing steps. 
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Figure 3.6 Work Flow on Preparing Fine-tuning Data 

 

3.4.2 Flow field prediction dataset 

This section discusses the construction, composition, and role of the flow prediction 

dataset in performance evaluation. This dataset was designed to provide high-quality training 

and testing data for image generation and prediction tasks in flow visualization, especially in 

wind tunnel experiments. In wind tunnel experiments, flow field visualization data is often 

constrained by experimental conditions and equipment limitations. It is costly and time-

consuming to obtain large-scale, high-precision experimental images Therefore, the dataset 

combines high-precision images obtained from actual experiments with synthetic images 

generated by the pix2pix model. By doing this, the dataset not only preserves the true physical 

properties of the experimental data, but also enhances its diversity and quantity. 

The dataset construction process began with the collection of 30 experimental images 

from the Durham cascade and Plint wind tunnel experiments. These images were pre-processed 

and served as the basic material for the input dataset. Then the pix2pix generation model was 

used to generate corresponding SFV images based on these experimental images. In this 

process, the model learned the flow field properties from the experimental images and 

generated synthetic images. 

Figure 3.7 shows a typical result generated by the pix2pix generative model, where the 

left side is the input image, the middle is the flow field prediction image generated by the 

pix2pix model, and the right side is the real image obtained by the experiment.  

Since the flow field visualization task involves style transfer, there may be subtle 

differences between two flow field images even under the same experimental conditions. 

Therefore, traditional quantitative evaluation methods, like Mean Squared Error (MSE), are 
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not suitable for this task. To address this issue, the Structural Similarity Index (SSIM) has been 

chosen as the primary performance evaluation metric. 

SSIM is a perceptual image quality evaluation method that effectively measures the 

similarity between generated images and real images in terms of brightness, contrast, and 

structure. The SSIM value could be calculated by: 

 𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
 (3.7) 

where 𝑥 and 𝑦 represent the generated and real images, respectively, 𝜇𝑥and 𝜇𝑦are the 

mean intensity of the two images, 𝜎𝑥
2  and 𝜎𝑦

2 are the intensity variances, and 𝜎𝑥𝑦 is the 

covariance between the images. The constants 𝐶1 and 𝐶2 are included to avoid division by 0. 

SSIM considers the similarity of brightness, contrast, and structure, making it more suitable 

than simple pixel difference measures like MSE for evaluating the overall visual quality and 

structural fidelity of images. 

In flow field visualization tasks, SSIM effectively reflects whether the generated image 

retains key features of the flow field, such as vortices, streamlines, and separation points. 

Specifically, by calculating the SSIM value between the generated image and the 

corresponding experimental image, the similarity in visual structure can be quantified. A higher 

SSIM value indicates that the generated image is closer to the real experimental image. This 

suggests that the model can effectively reproduce important physical features of the flow field. 

 

Figure 3.7 Comparison of Experimental Flow Visualization Images and pix2pix Model 
Predictions 
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The synthetic image dataset used for training, testing and validation could be found in: 

https://github.com/Dehakaa/synimage 

This dataset is publicly available for further research and experimentation, enabling 

other researchers to replicate and build upon this work. 

3.5 Neural networks techniques 

This section presents an overview of the neural network architectures utilized in this 

work, offering a general understanding of their design and implementation. The specific 

training details for each network will be discussed in their respective chapters later in this thesis. 

The aim is to summarize the key features of each architecture and how they contribute to 

achieving the research objectives. 

All training in this work was conducted on the NVIDIA CUDA Centre (NCC), with 

training details provided in the respective chapters. NCC has been purchased through Durham 

University's strategic investment funds, and is installed and maintained by the Department of 

Computer Science. 

3.5.1 Convolutional neural networks 

This section introduces the proposed network architecture and give details on the 

different modules. Before designing this custom network, several existing pre-trained models 

such as HED and EdgeNet were tested. While some models showed promising results in terms 

of edge detection accuracy, they did not fully meet the requirements. Therefore, a custom 

network with fewer parameters was designed tp ensure better generalization and more efficient 

learning of the relevant edge features. The proposed model was based on Lightweight Dense 

Convolutional neural network (LDC) by Soria et al. (2022), and the following presents the 

proposed modifications in detail. The LDC architecture comprises two subnets: the Dense 

Extreme Inception Network (Dexi) and the upsampling network (USNet). Dexi consists of 4 

blocks, which acts as an encoder, and the skip-connections couple the third and fourth blocks 

as well as their sub-blocks. USNet, on the other hand, is a conditional CNN, which acts as a 

decoder and transforms feature maps into edge maps, matching the size of the input image of 

the Dexi subnet. 
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As shown in Figure 3.8, each block contains two convolutional layers. The size of all 

convolutional kernels is 3×3, and the number of kernels is indicated accordingly. In addition, 

the first block has a notation 's2', which signifies that the stride of the convolutional layer is 2. 

Each convolutional layer is followed by batch normalization and a Rectified Linear Unit 

(ReLU). Starting from block-3, the last convolutional layer of the last sub-block does not 

include the ReLU function. The red rectangles represent the use of 3×3 convolutional kernels 

with a stride of 2 in the max-pooling operation. Compared to LDC, this work increases the 

number of convolutional kernels in block-4. Additionally, Inspired by Poma et al. (2020)'s 

work, the four intermediate edge-map predictions are fused to generate a single edge-map. This 

edge map can be treated as a special form of image, represented as a 2D array, where each pixel 

encodes the presence or absence of an edge at that spatial location. Its dimensions correspond 

to those of the input image or feature map being processed. The configuration of the loss 

function for the network mentioned in this work is similar to that of the LDC network. Detailed 

information can be found in Soria et al. (2022). 

 

Figure 3.8 Architecture of the proposed CNN based model. 

 

From a model interpretability viewpoint, the shallow layers (block-1 and block-2 in 

Figure 3.8) primarily capture low-level visual features such as edges and corners. These 

features are generalizable and transferable to other visual tasks beyond flow field analysis. 

Intermediate layers (block-3 in Figure 3.8) begin to encode local shapes and texture patterns, 

which could offer moderate generalizability across similar domains. And the deeper layers 

(block-4 in Figure 3.8) learn high-level extract high level abstract features such as vortex cores, 

streamlines, or saddle points. 

Due to the limited number of images obtained from the experiment, the network was 

first pre-trained using the BIPED dataset to better leverage its performance. The pretraining 

was performed for 50 epochs, using a binary cross-entropy loss function with a batch size of 8 
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and an initial learning rate of 1e-4. To preserve low-level texture features, the first two 

convolutional blocks (Block-1 and Block-2) were frozen during the initial pretraining phase, 

while the remaining layers were kept trainable.  

The edge map was derived by initially applying Canny edge detection to the 

experimental image, followed by manual removal of excessively short and overlapping streaks. 

The sliced SFV images were then input into this pre-trained network, the output of which was 

its edge feature map. This provided all the edge information in the image and was a binary 

image. The values of all edge positions were 1, and the background values were 0. This 

information could not be directly used to compute the flow field. Therefore, some further 

processing of these data was required. 

3.5.2 U-net 

 

Figure 3.9 An overview of the deep neural network architecture with input and output 
specifications. 

 

The deep neural network (DNN) model is based on a U-net architecture, a convolutional 

network originally used for the fast and precise segmentation of images, and later used for the 

inference of flow fields and the development of DNN models. 

As inputs for the learning task 𝑦̆ = 𝑓(𝜉) , where 𝑦̆ represents the predicted orientation 

field, while 𝜉 denotes the input image data. Hence, the input becomes 𝑚 × 𝑛 × 3 , where 𝑚 

and 𝑛 respectively represent the length and width of the input image. In the encoding part, 7 

convolutional blocks are used to transform the input into a single data point with 1024 features. 
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The decoder part of the network is designed symmetrically with another 7 layers in order to 

reconstruct the outputs with the desired dimension, i.e. 𝑚 × 𝑛 × 1 , corresponding to the 

orientation field variables. Leaky ReLU activation functions with a slope of 0.2 is used in the 

encoding layers, and regular ReLU activations in the decoding layers. 

The current method has the potential to be extended to other scenarios, such as 

incorporating inflow boundary conditions as inputs, and adding skin friction magnitude as 

outputs. This would require transformations of these variables to fit the input and output 

formats of U-net, and implementing corresponding convolutions within the U-net architecture. 

 

3.5.3 Generative adversarial networks 

The key success of GANs lies in their novel framework, which utilizes adversarial loss 

to force generated images to be indistinguishable from ground truth images. GANs are 

generative models that learn a mapping from random noise vector z to output image y, 𝐺: 𝑧 →

𝑦. In contrast, cGANs learn a mapping from observed image x and random noise vector z, to 

y, 𝐺: {x, z} → 𝑦. The generator G is trained to produce outputs that cannot be distinguished 

from "real" images by an adversarial trained discriminator, D, which is trained to do as well as 

possible at detecting the generator's "fakes". 

The objective of a conditional GAN can be expressed as 

 ℒ𝑐𝐺𝐴𝑁(𝐺, 𝐷) = 𝔼𝑥,𝑦[log 𝐷(𝑥, 𝑦)] + 𝔼𝑥,𝑧 [log (1 − 𝐷(𝑥, 𝐺(𝑥, 𝑧)))] (3.8) 

where 𝔼𝑥,𝑦[log 𝐷(𝑥, 𝑦)] means expected value of log 𝐷(𝑥, 𝑦) given (x, y) and G tries 

to minimize this objective against an adversarial D that tries to maximize it, i.e 𝐺∗ =

𝑎𝑟𝑔𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷ℒ𝑐𝐺𝐴𝑁(𝐺, 𝐷) 

Isola et al. (2017)further improved cGANs, and the corresponding software was called 

pix2pix. In cGANs, the generator learns the mapping from random noise z to G(z). In contrast, 

in the generator of pix2pix, there is no input noise z. A novelty of pix2pix is that its generator 

learns the mapping from observed image y to output image G(y). In this case, the objective of 

cGANs is expressed as following: 

 ℒ𝑐𝐺𝐴𝑁(𝐺, 𝐷) = 𝔼𝑥,𝑦[log 𝐷(𝑥, 𝑦)] + 𝔼𝑦 [log (1 − 𝐷(𝑦, 𝐺(𝑦)))] (3.9) 
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In terms of the loss function, Isola et al. opted for the Manhattan distance (L1 distance) 

instead of the Euclidean distance (L2 distance) to generate less blurry results: 

 ℒ𝐿1
(𝐺) = 𝐸𝑥,𝑦[‖𝑥 − 𝐺(𝑦)‖𝑙] (3.10) 

Therefore, the final objective is defined as: 

 𝐺∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷ℒ𝑐𝐺𝐴𝑁(𝐺, 𝐷) + 𝜆ℒ𝐿1
(𝐺) (3.11) 

If there is no noise z, the network can still learn the mapping from x to y, but it will 

produce deterministic outputs, thus unable to match any distribution other than the Dirac delta 

function, which is a mathematical construct used to represent a specific point in a probability 

distribution, either discrete or continuous. However, this is advantageous for the purpose of 

this work, as for a flow visualization image, there should be a deterministic flow field 

corresponding to it. Therefore, in the final model of this work, noise is provided in the form of 

dropout at multiple layers of the generator, which is applied during both training and testing 

phases. 

3.6 Overview 

This chapter provides a comprehensive overview of the experimental methodologies 

and data processing techniques employed in this thesis. It introduces the experimental setup 

used to obtain flow visualization and skin friction measurements, specifically the Durham 

Cascade and the 0.5 Plint wind tunnel. Various techniques, such as oil/dye visualization and 

GLOF skin-friction measurement, are described to illustrate how flow patterns were captured 

and analysed. CFD simulations using ANSYS Fluent and OpenFOAM were employed to 

construct a comprehensive dataset for neural network training and validation. 

The CNN architecture was employed in Chapter 4 to extract edge features from flow 

visualization images. Specifically, a modified lightweight Dense CNN (based on the work of 

Soria et al., 2022) was employed. This network was pre-trained on the BIPED edge detection 

dataset and fine-tuned with experimental data. The CNN can accurately extract key features 

such as separation lines and vortices from surface flow images. Its architecture consists of four 

convolutional blocks, incorporating skip connections, batch normalization, and ReLU 

activation functions to optimize feature extraction. 

In Chapter 6, to reconstruct the complex flow fields, the U-Net architecture was 

introduced. This network comprises symmetric encoder-decoder paths, each containing seven 
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convolutional blocks. The U-Net transforms experimental images and synthetic flow field data 

from OpenFOAM simulations into quantitative directional fields. GANs were also employed 

to solve the issue of insufficient experiment data. The sGAN was used to generate synthetic 

flow field images, where the network learned a deterministic mapping from experimental 

images to corresponding flow fields. Due to the physical nature of flow visualization, the model 

didn’t use random noise as input. The generator incorporates Dropout layers during both 

training and testing phases to improve generalization, while the discriminator ensures the 

physical plausibility of generated images through adversarial training. 

The integration of these neural networks with experiments and CFD simulations forms 

a comprehensive framework for flow field analysis. Experimental images provide real-world 

data for the networks, GLOF measurements offer time-resolved data for validating fluid 

friction fields, and CFD simulations both verify experimental results (Chapter 5) and supply 

synthetic training data for the U-Net (Chapter 6). 
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Chapter 4 Extracting Streamline Data from Surface Flow Images 

Using CNNs 

  

Figure 4.1 Flow chart of streakline detection algorithm 

 

This chapter presents an enhanced method for reconstructing flow fields from SFV 

images, building on the approach proposed by Abdelsalam et al. (2017), By introducing a 
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CNN-based edge detection technique, the new method addresses limitations in accurately 

discerning the orientation of streaks and mitigating the formation of scattered noise vectors in 

the original work. This work has also been published in the Global Power and Propulsion 

Society (GPPS) conference (Liu et al., 2024). 

Based on the preliminary findings presented in a previous work at GPPS, where a CNN-

based model was trained to automate streamline detection and flow field reconstruction, this 

chapter investigates various stages of preprocessing methods and evaluates their impact on the 

corresponding outputs at each stage. Additionally, another CNN architecture inspired by Dexi 

and USNet is proposed to further enhance the robustness of the methods. This expanded 

research addresses the limitations identified in the earlier study, leading to improvements in 

the efficiency of recognizing flow visualization images. 

The principal stages of the algorithm are shown in Figure 4.1. 

The algorithm is based on Abdelsalam's processing method, if steps 6 and 7 were 

replaced with Canny Edge Detection and Linear Hough Transform, and step 8 was skipped 

(Green box in Figure 4.1), the method would be identical to Absdelsalam's technique. Thus, as 

well as the differences in edge detection algorithms compared to Abdelsalam, this work also 

employs a distinct methodology for the subsequent construction of the flow field. 

4.1 Image Preprocessing Techniques 

As shown in Figure 3.4, the image preprocessing stage consists of several steps, 

including calibrated visualization image, division into cells, grayscale conversion, image 

smoothing, and exposing intensity gradients. These steps are designed to prepare the images 

for further analysis by improving their quality and reducing distortions and noise. Together, 

these preprocessing steps lay a solid foundation for subsequent edge detection and feature 

extraction. 

4.1.1 Calibrated Visualization Image 

In this work, although the Nikon D5300 DSLR and Nikon Z50 cameras used were 

equipped with built-in automatic calibration functions, manual calibration was opted for to 

ensure the accuracy and reliability of the experimental results. The automatic calibration 

function relies on lens distortion models pre-set in the camera firmware, typically obtained 

through laboratory testing, and is designed to correct radial and tangential distortions of the 
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lens. While this method is sufficient for many everyday applications, in scientific research 

involving precise measurements, automatic calibration may not fully eliminate all geometric 

distortions, especially in scenarios requiring high precision. 

 

Figure 4.2 Images used for chessboard calibration 

 

The basic principle of automatic calibration is based on lens distortion models pre-

stored in the camera hardware. These models are obtained through calibration tests in the 

laboratory and are adjusted in real-time according to image characteristics during the capture 

process. However, this type of calibration is usually based on general scenarios and may not 

cover all possible distortion cases under specific conditions that demand high precision. As 

mentioned in Hartley and Zisserman (2003)'s Multiple View Geometry, any slight uncorrected 

distortion could lead to significant errors in precise measurements. 

To further enhance measurement accuracy, the calibration tools in the OpenCV library 

(Bradski, 2000) were used for manual calibration. This method is based on Zhang (2000)'s 
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calibration theory, which is widely applied in the field of computer vision and provides an 

effective way to correct the camera's intrinsic and distortion parameters using known planar 

patterns, such as chessboards. In the experiment, a 7×7 chessboard pattern was used, with each 

square measuring 10 mm. By capturing images of this pattern from multiple angles, the pixel 

coordinates of the chessboard corners were obtained, which were then associated with their 

known positions in the actual three-dimensional space. A system of nonlinear equations was 

constructed, and the intrinsic and distortion parameters of the lens were estimated using 

optimization algorithms such as the least squares method, thereby achieving high-precision 

calibration. 

The core of manual calibration lies in using images from multiple viewpoints to 

eliminate potential systematic errors. Images from multiple viewpoints not only provide more 

comprehensive information to determine the parameters of the camera model but also enhance 

the stability and accuracy of the computational results through redundant data. 

After manual calibration, the effectiveness of the calibration was validated by 

measuring the physical distance between two points. As shown in Figure 4.3, the results 

indicate that the measurement error before calibration was 3.29%, whereas after manual 

calibration, the error was reduced to 0.11%. This outcome aligns with expectations and 

demonstrates the effectiveness of manual calibration in eliminating potential distortions. 

 

Figure 4.3 Calibration results. (a) Original image; (b) calibrated image. 

 

4.1.2 Division into Cells and Grayscale Conversion 

After completing the calibration, a calibrated image like Figure 4.3 could be obtained, 

segmentation and grayscale conversion were performed on the target image. These operations 
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were aimed at simplifying the computations and enhancing processing efficiency. Since the 

topological relationships within the image do not need to be considered during processing, 

dividing the image into smaller segments effectively reduces the computational load. This 

approach of processing smaller image segments not only offers significant advantages in 

lowering computational complexity but also speeds up the algorithm’s execution. Based on 

experience and practice in the field of image processing, block processing is a common 

optimization strategy, particularly useful for the rapid handling of large-scale data. During the 

grayscale conversion, single-channel processing was chosen. This decision was made because 

red dye was used as a marker in this experiment, so extracting only the red channel of the image 

is sufficient to meet the research requirements. The individual R, G, and B values from the 

original RGB image were simply separated, treating each as an independent grayscale image. 

 

Figure 4.4 Separation of an RGB image into its individual grayscale channels (R, G, and B), 
with pseudo-colouring applied for visualization purposes. 

 

The Figure 4.4 shows the process of splitting an RGB image into its individual colour 

channels, followed by converting each of these channels into grayscale. The original image is 

first divided into red, green, and blue channels, where the red channel stands out due to its 

association with the experimental conditions. After converting the channels into grayscale, the 
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red channel in grayscale shows the most significant contrast, especially when compared to the 

green and blue channels. 

This enhanced contrast in the red channel is consistent with the use of red dye as a 

marker in the experiment. By isolating and processing only the red channel, which contains the 

most critical information, the grayscale image highlights the key regions more effectively. The 

decision to focus on the red channel simplifies the processing, as the single-channel approach 

reduces computational complexity while maintaining the necessary accuracy for segmentation 

and analysis. 

In comparison, the grayscale images for the green and blue channels offer less 

pronounced contrast and detail, supporting the decision to prioritize the red channel. This 

targeted approach optimizes the image processing workflow, ensuring that the relevant 

information is extracted efficiently and accurately without unnecessary computational 

overhead. 

4.1.3 Image Smoothing 

Image smoothing is a preprocessing step aimed at reducing noise and unnecessary 

fluctuations in image data, which could obscure important features or lead to incorrect analysis 

results. Smoothing techniques work by averaging the intensity values of neighbouring pixels, 

thereby reducing high-frequency variations and enhancing the visibility of important structures 

within the image. This process is particularly important in image analysis tasks, as sharp 

changes in pixel intensity (often caused by noise) can lead to misleading gradient calculations 

and subsequent errors in edge detection or feature extraction.  

Unlike the commonly used Gaussian filter, this work employs a bilateral filter for 

smoothing. The bilateral filter achieves edge-preserving smoothing by combining domain and 

range filtering. The intensity value of each pixel is replaced with a weighted average of the 

intensity values of nearby pixels. The weights are determined by two factors: spatial proximity 

and intensity similarity. Spatial weight ensures that only pixels close to the target pixel 

significantly affect the output, while range weight ensures that only pixels with similar 

intensities meaningfully influence the result. 

Mathematically, the bilateral filter can be expressed as: 
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 𝐼′(𝑥) =
1

𝑊(𝑥)
∑ 𝐼(𝑥𝑖) ∙ exp (−

|𝑥𝑖 − 𝑥|2

2𝜎𝑆
2 ) ∙ exp (−

|𝐼(𝑥𝑖) − 𝐼(𝑥)|2

2𝜎𝑇
2 )

𝑥𝑖∈Ω

 (4.1) 

Here, I'(x) represents the intensity of the filtered pixel x, I(xi) denotes the intensity of 

the pixel xi within the neighbourhood Ω, 𝜎𝑆  controls the influence of spatial distance, 𝜎𝑇 

controls the influence of intensity differences, and W(x) is the normalization factor, defined as: 

 𝑊(𝑥) = ∑ exp (−
|𝑥𝑖 − 𝑥|2

2𝜎𝑆
2 ) ∙ exp (−

|𝐼(𝑥𝑖) − 𝐼(𝑥)|2

2𝜎𝑇
2 )

𝑥𝑖∈Ω

 (4.2) 

The main advantage of the bilateral filter is its ability to smooth the image while 

preserving edges, which is crucial for visual analysis tasks. Unlike the Gaussian filter, which 

may blur both edges and noise, the bilateral filter preserves significant edge details by taking 

into account the spatial and photometric distances between pixels. 

4.1.4 Exposing Intensity Gradients 

To extract intensity gradients within the image, the Sobel operator was employed, a 

widely recognized method in image processing for detecting edges. The Sobel operator 

calculated the gradient of the image intensity in both the horizontal and vertical directions, 

effectively identifying regions where intensity changed sharply—indicative of edges or 

significant structural features. 

This process involved the application of two convolution kernels designed to detect 

intensity changes along the x-axis (Gx) and y-axis (Gy). The kernels are defined as follows: 

 𝐺𝑥 = [
−1 0 1
−2 0 2
−1 0 1

] ,   𝐺𝑦 = [
−1 −2 −1
0 0 0
1 2 1

] (4.3) 

These kernels are convolved with the input image I to obtain the gradients in the x and 

y directions: 

 𝑆𝑜𝑏𝑒𝑙𝑥 = 𝐼 ∗ 𝐺𝑥,   𝑆𝑜𝑏𝑒𝑙𝑦 = 𝐼 ∗ 𝐺𝑦 (4.4) 

The resulting gradient maps highlight intensity variations in the respective directions. 

To obtain a comprehensive gradient magnitude that reflects the overall intensity change at each 

pixel, these directional gradients are combined using the following formula: 
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 |∇𝐼| = √(𝑆𝑜𝑏𝑒𝑙𝑥)2 + (𝑆𝑜𝑏𝑒𝑙𝑦)
2 (4.5) 

The gradient magnitude map, shown in the right panel of Figure 4.5, reveals the edges 

and other prominent features within the image by emphasizing areas of significant intensity 

variation. This map is critical for understanding the underlying structure of the image, as it 

highlights the boundaries and transitions that may be less apparent in the original image. 

 

Figure 4.5 Image intensity gradients results. 

 

As illustrated in Figure 4.5, the original image (left) and the computed gradient 

magnitude map (right) are presented side by side for direct comparison. The gradient map 

provides a clear visualization of intensity transitions, which are essential for further analysis, 

such as edge detection and feature extraction. This comparison demonstrates the effectiveness 

of the Sobel operator in exposing the critical intensity gradients that define the structural 

features of the image. 

4.2 CNN Architecture for Edge Detection 

This section introduces the design and implementation of the EdgeNet architecture for 

edge detection, which integrates two main components: Dexi and USNet. It describes how Dexi 

uses skip connections to preserve edge details through deep layers and explains the role of 

USNet in upsampling feature maps to match the ground truth resolution. 

4.2.1 Design Considerations 

As mentioned in section 3.5.1, the CNN network in this chapter, called EdgeNet 

consists of two main components: Dexi and USNet.  
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The Dexi architecture, initially proposed by Poma et al. (2020), uses an end-to-end 

training framework rather than relying on pre-trained object detection models like VGG16. In 

these existing networks, edge features recognized in the shallow layers are often not retained 

in the deeper layers, resulting in the loss of important information. Under the Dexi architecture, 

the model can learn how to perform edge detection directly from the specified dataset without 

being affected by biases introduced by unknown pre-trained weights. 

 

Figure 4.6 Flowchart of (a) EdgeNed architecture and (b) normal CNN architecture 

 

A notable design feature of Dexi is the introduction of parallel skip connections inspired 

by the Xception architecture. These skip connections is critical in preserving edge-related 

information as it propagates through the network. By connecting the early and later layers, they 

help retain edge features that might otherwise be lost during deep convolutional operations. 

This approach ensures that the model maintains a high level of detail in its edge predictions, 

which is particularly important for fine-scale edge detection. 
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In the USNet component, the design focuses on effectively upsampling the feature maps 

generated by the Dexi part to match the resolution of the ground truth edge maps. USNet 

gradually upsamples the feature maps to the required scale by combining convolutional and 

deconvolutional layers. 

By closely integrating the designs of Dexi and USNet, the EdgeNet model performs 

exceptionally well across various scenarios and datasets, providing precise and detailed edge 

detection results. The EdgeNet model was trained on the BIPEDv2 dataset, which is described 

in detail in the Section 3.4.1(p.42). The fine-scale edge annotations in BIPEDv2 allow the 

model to accurately detect edges even in images significantly different from the training set, 

giving the pre-trained EdgeNet model considerable generalization ability for new scenes. 

4.2.2 Layers and Features for Image Analysis 

In the EdgeNet architecture, image analysis relies on the close collaboration between 

different layers, particularly the effective integration of the Dexi and USNet components The 

core architecture of the Dense Extreme Inception Network (Dexi) which functions as an 

encoder, consisting of six blocks, as shown in Figure 4.7. These blocks are made up of multiple 

sub-blocks, each containing convolutional layers that generate feature maps. Skip connections 

are introduced to link blocks and sub-blocks, ensuring that the features computed in the early 

layers are preserved and integrated as data is passed through the network. Due to the regularity 

in the flow field's directional patterns, the absence of very complex boundary cases, and the 

limited size of the available training dataset, modifications have been introduced in this work 

to reduce computational costs and mitigate the risk of overfitting. Additionally, the output layer 

has been improved to produce a binarized edge map. The architecture of the EdgeNet could be 

found in Figure 4.6. It can be seen that the architecture on the left side of the Figure 4.6 presents 

a deep convolutional neural network used for edge detection, divided into multiple 

convolutional blocks, each containing several convolution layers (conv) and pooling layers 

(max-pooling). Feature maps are extracted layer by layer and downsampled through different 

convolution operations, with feature aggregation between layers leading to edge detection 

output. The architecture of Figure 4.7, also used for edge detection, places more emphasis on 

multi-scale feature fusion between convolutional blocks. It combines feature maps at different 

scales (×2, ×4, ×8, ×16) to further refine these multi-scale features, producing a more detailed 

edge map. Both architectures employ convolution and pooling operations, but the DexiNed 

architecture focuses more on multi-level feature fusion to improve edge detection accuracy, 
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which means higher computational costs while the EdgeNet architecture is comparatively 

simpler. Due to the depth and complexity of the network, feature extraction efficiency may 

decrease; therefore, adaptive adjustments have been made to the internal structure of each block 

to enhance performance and reduce redundancy. Overall, EdgeNet has less than 3% of 

parameters (around 1 M) comparing to the original architecture (around 35 M). 

 

Figure 4.7 Flowchart of DexiNed architecture from Poma et al. (2020) 
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To ensure the preservation of important edge features in a deep network, the Dexi 

component includes two types of skip connections: the First Skip Connection (FSC) and the 

Second Skip Connection (SSC). 

The First Skip Connection establishes links between the early and later layers of the 

network, ensuring that edge features extracted in the shallow layers can be directly transferred 

to deeper levels. For example, if the input to a block is X, and the output after convolutional 

operations is F(X), then the final output of the block, Y, can be expressed as: 

 𝑌 = 𝐹(𝑋) + 𝑋 (4.6) 

This design allows shallow information to be added to deep features, enabling edge 

features to be retained in the deeper layers of the network, thereby enhancing the model's 

detection capability.  

To further strengthen the preservation of edge features, the Second Skip Connection 

transfers information between different sub-blocks within the same block. Suppose the current 

block has two sub-blocks with outputs F1(X) and F2(X), respectively, then the output of the 

Second Skip Connection, Z, can be expressed as: 

 𝑍 =
𝐹1(𝑋) + 𝐹2(𝑋)

2
 (4.7) 

By combining the First Skip Connection and the Second Skip Connection, EdgeNet can 

retain multi-level edge features when processing complex images, ultimately producing more 

accurate edge maps. Overall, the function of these connections can be represented by the 

following formula: 

 𝑌𝑓𝑖𝑛𝑎𝑙 =
𝐹𝑆𝐶(𝑋) + 𝑆𝑆𝐶(𝑋)

2
 (4.8) 

where, FSC(X) and SSC(X) represent the outputs of the First and Second Skip Connections, 

respectively. The final output, 𝑌𝑓𝑖𝑛𝑎𝑙, is the average of these two results. Through this fusion, 

the Dexi component ensures the transmission and retention of edge information in the deep 

network. 

It is important to distinguish these skip connections from the dense connections used in 

DenseNet architectures. While both techniques aim to improve feature reuse and gradient flow, 

they operate differently. Skip connections were used to directly link corresponding layers in 
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the encoder and decoder, which help preserve spatial details during upsampling. And it was 

wildly used in tasks like image segmentation. In contrast, DenseNet employed dense 

connections, where each layer receives input from all previous layers. 

The USNet component is responsible for upsampling the feature maps generated by 

Dexi to match the target resolution. This process is achieved through a combination of 

convolutional and deconvolutional layers, where each iteration upsamples the feature maps to 

a higher resolution until they match the size of the ground truth edge map. The design of USNet 

focuses on accurately upsampling while preserving edge details to produce clear edge maps. 

Specifically, as shown in Figure 4.8, block-b is activated only when upscaling the input 

feature maps from the Dexi network. This process is repeated until the size of the feature maps 

is doubled compared to the initial input image. The enlarged feature maps are then passed to 

block-a, which first processes the input feature maps using a 1 × 1 convolution kernel and 

applies a nonlinear transformation through the ReLU activation function. Next, block-a 

performs transposed convolution using a kernel of size s × s, where s represents the scale of 

the input feature map. After the final deconvolution operation in block-a, the feature map is 

upsampled to the same size as the initial input image. The final convolutional layer does not 

have an activation function. 

 

Figure 4.8 USNet architecture 

 

In the implementation of USNet, three different upsampling strategies can be used: 

bilinear interpolation, sub-pixel convolution, and transposed convolution. Based on empirical 

evaluations in the literature, it was found that among these three, transposed convolution 

demonstrated better performance in terms of the F-measure,  

where 𝐹 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
. 
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Therefore, this method was also adopted in this study. Transposed convolution 

performs upsampling through "inverse convolution", preserving spatial information and better 

maintaining the fine structure of edges while enlarging the image. 

4.3 Training 

This section provides a detailed description of the training process for the EdgeNet 

model, including a description of the dataset used, data augmentation strategies, as well as 

specific training strategies and epoch settings. The design and execution of these steps ensure 

that the model can achieve high-precision edge detection in various complex scenarios. 

4.3.1 Dataset Description and Augmentation 

As mentioned in the section 3.4.1, the BIPED dataset was used as the primary dataset 

to pre-train the EdgeNet model in this study.  

During the dataset construction, both the original images and augmented images were 

used to expand the diversity of the training set. These data augmentation techniques included 

image rotation, flipping, scaling, and colour jittering. The application of these techniques 

enabled the model to better adapt to various image changes, thereby improving its 

generalization ability to unknown scenes. These operations also increased the size of the dataset 

and allowed the model to encounter a more diverse range of edge patterns during training. 

Except the BIPED dataset, this thesis also used other standard edge detection datasets 

to further optimize and validate the model's performance. Those datasets include MDBD 

(Multicue Dataset for Boundary Detection), which consists of various images with multiple 

boundary detection cues, allowing for robust evaluation of edge detection algorithms. The 

BSDS500 (Berkeley Segmentation Dataset) contains 500 images with ground-truth 

segmentation, which can comprehensively evaluate the performance of the model in different 

scenes. The Contemporary Image Dataset (CID) includes a collection of contemporary images 

that challenge the model with both simple and complex scenes. Together, these datasets cover 

a wide range of scenarios, ensuring that the model can effectively adapt to various application 

environments. 

Edge detector evaluation has been well established since the groundbreaking work cited 

in Ziou and Tabbone (1998)’s work. Given that BIPED provides annotated ground-truth edge 

maps, three commonly adopted evaluation metrics in the field have been utilized: the fixed 
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contour threshold (ODS), the optimal threshold for each image (OIS), and average precision 

(AP). 

 

Table 4-1 Quantitative results of EdgeNet trained on BIPED 

Dataset ODS OIS AP 

MDBD 0.859 0.864 0.917 

CID 0.652 0.690 0.711 

BSDS300 0.709 0.726 0.738 

BSDS500 0.728 0.745 0.689 

 

From Table 4-1, it can be seen that EdgeNet performs exceptionally well on the MDBD 

dataset, achieving ODS, OIS, and AP scores of 0.859, 0.864, and 0.917, respectively, indicating 

outstanding detection performance in high-contrast scenes. On the BSDS500 dataset, which 

features more complex scenes, EdgeNet also shows robust performance, with an ODS of 0.728, 

OIS of 0.745, and an AP of 0.689, although the AP is slightly lower. The results on the CID 

dataset are relatively lower, which may be due to the low contrast between the foreground and 

background in the images, making it difficult to detect edges amidst strong grayscale or colour 

variations. Overall, EdgeNet's performance across various datasets demonstrates its 

adaptability and effectiveness in different application scenarios. 

4.3.2 Training Strategy and Epoch Details 

To ensure that the EdgeNet model fully learns the edge features in images, a systematic 

training strategy was designed. First, the model was initial training on the BIPED dataset. The 

primary goal of this step was for the model to master the basic edge detection task, gradually 

learning high- and low-level features in images to establish an initial capability for edge 

recognition. 

During the initial phase of training, a relatively high learning rate of 0.001 was set to 

accelerate the convergence of model parameters. As training progressed, the learning rate was 

gradually reduced to ensure that the model could make finer adjustments in local regions, 

thereby avoiding overfitting. This dynamic learning rate strategy effectively balanced the speed 

and accuracy of the model's training. 

In each training epoch, the model went through the entire training dataset, making edge 

predictions for each image and calculating the loss value. For the loss function, a cross-entropy 
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loss function was employed, modified to meet the specific needs of the edge detection task. 

The specific form of the loss function is: 

 ℒ = ∑ 𝜆𝑛

𝑁

𝑛=1

∙ 𝑙𝑛 (4.9) 

 𝑙𝑛 = −𝑤[𝑦 ∙ 𝑙𝑜𝑔(𝜃(𝑦̂𝑛)) + (1 − 𝑦) ∙ 𝑙𝑜𝑔(1 − 𝜃(𝑦̂𝑛))] (4.10) 

Here, θ represents the sigmoid function, y and 𝑦̂𝑛 denote the ground truth edge map and 

the predicted edge map, respectively. 𝜆𝑛 is a set of hyperparameters used to balance positive 

and negative samples, and w is the weight in the loss function, given by the following equation: 

 𝑤(𝑦>0) = 1 ×
𝑦−

𝑦+ + 𝑦−
    𝑎𝑛𝑑    𝑤(𝑦≤0) = 1.1 ×

𝑦+

𝑦+ + 𝑦−
 (4.11) 

Here, y+ and y- represent the number of positive and negative samples in the given 

ground truth edge map (GT), respectively. Additionally, the loss value l is obtained by 

averaging the loss values l(i,j) over all pixel positions (i, j): 

 𝑙 = 𝑚𝑒𝑎𝑛(𝑙𝐼×𝐽) (4.12) 

where, 𝑙(𝑖，𝑗) = [𝑙1, … , 𝑙𝑁] represents the set of loss values obtained for each pixel position (i,j) 

across all predictions. This average loss value is used to compute the final overall loss ℒ. This 

loss function ensures accurate detection of different types of edges in the predictions by 

reasonably balancing positive and negative samples. 

In each training round, the model output multiple edge prediction maps, which were 

then combined using different fusion strategies to produce the final edge detection result. In 

this step, the fusion strategy derived the result through a fusion process at the end of the network, 

rather than averaging all prediction maps. According to Poma et al. (2020)'s work, these two 

strategies perform similarly in terms of quantitative results, so the former results will be 

primarily presented in subsequent analyses. 

The training process included multiple epochs to ensure that the model fully learned 

the features in the training data. In the early stages, as the number of epochs increased, the 

model's loss decreased rapidly, indicating that the model was gradually mastering the edge 

detection task through continuous optimization. However, in the later stages of training, the 

rate of loss reduction tended to slow down, at which point performance on the validation set 
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was monitored to determine whether further adjustment of the training strategy or stopping of 

the training was necessary. 

 

Figure 4.9 Training Curve of each epoch 

 

Figure 4.9 illustrated the loss curves across epochs under different learning rate settings. 

As shown, a moderate learning rate (0.0001) enabled stable and effective convergence. In 

contrast, a higher learning rate (0.001) caused oscillations and instability, while a lower 

learning rate (0.00001) led to slower convergence. 

During the fine-tuning phase, the model's detailed performance was further optimized 

while maintaining the generalization ability obtained in the pre-training phase. Since the dataset 

used for fine-tuning is smaller and more specialized, the learning rate was fixed at 0.0001 to 

ensure that the model could converge stably and make fine adjustments during the fine-tuning 

process. The main architecture and strategies from the pre-training phase were retained, but the 

focus shifted to enhancing the model's performance in flow visualization-related tasks through 

a lower learning rate and smaller parameter updates. 

With a reasonable epoch setting and dynamic learning rate adjustment, the EdgeNet 

model demonstrated excellent performance across different datasets and application scenarios. 

Additionally, cross-validation strategies were introduced on the validation set during the 
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training process to ensure that the model could broadly adapt to different test datasets after 

training and achieve high-precision edge detection in practical applications. 

 

Figure 4.10 Learning Curve of each epoch at LR = 0.0001 

 

The training and validation loss curves was shown in Figure 4.10. Both curves exhibit 

minor fluctuations, particularly in the earlier epochs. These are likely due to a relatively small 

batch size and the use of a fixed learning rate, but overall convergence is observed. And the 

validation curve closely follows the training curve without significant divergence, indicating 

that the model generalizes well and is not overfitting. Through systematic training and 

adjustment, the EdgeNet model has acquired strong edge detection capabilities, allowing it to 

accurately identify and extract edge information in various complex scenarios. 
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4.4 Post-processing 

This section outlines the post-processing steps for analysing flow visualization images, 

focusing on label detection, obtaining orientation fields, and determining direction. 

4.4.1 Label Detection 

Labelling (also known as Connected component labelling, connected component 

analysis, or region labelling) represents an algorithmic implementation of graph theory 

employed for ascertaining the connectivity of regions resembling "blobs" within a binary image. 

In a binary image, such as a grayscale image, if two adjacent pixels have the same value (both 

0 or 1), these two pixels are considered to be part of a mutually connected region. This 

relationship is transitive, and the "labelling" process involves assigning the same value to all 

pixels within a connected region. 

 

Figure 4.11 Label and store the detected streaks. (left) start with G; (right) start with J. 

 

Specifically, as illustrated in Figure 4.11 (for clarity, a simplified lettering scheme is 

used in the figure), for each pixel, the presence of other pixels within its surrounding eight cells 

is examined. This evaluation is recursively applied to the detected pixels until no suitable 

candidates remain. Throughout this process, all pixels involved are labelled as part of the same 

streak. The whole process can be started from any point on the streak, such as G (Figure 4.11left) 

or J (Figure 4.11 right). Initiating the labelling process for one of the streaks, starting from G 

(Figure 4.11 left), reveals that E, I and J are adjacent to it. Subsequently, C is adjacent to point 

E, while K and L is adjacent to J. Continuing in this sequential manner, a tree-like structure 

can be employed to record the results, ultimately resulting in the "labelling" of A, B, C, E, G, 

I, J, K as a cohesive entity. Suppose the process starts from J (Figure 4.11 right), similarly, it 

would reveal that G, I, K and L are adjacent to J. Finally, a different tree-like structure with 
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same content could be obtained. In fact, starting from any point on the streak will eventually 

result in the entire streak being labelled. 

Figure 4.12 provides a visual summary of Steps 6 and 7 applied to a single cell. The 

segmented grayscale image cell is shown in Figure 4.12(a) and underwent edge detection to 

transform into the binary image shown in Figure 4.12(b). Labelling was then performed on this 

edge feature map. Although the actual map was more intricate than the example in Figure 4.11, 

the underlying principles remained consistent. Ultimately, each "independent" edge was 

labelled, and for ease of distinction, different colours are used in Figure 4.12(c) to show the 

detected streaks. 

 

Figure 4.12 The label detection result from a cell of flow visualization image: (a) grey scale 
image; (b) image after edge detection; (c) image after labelled 

 

4.4.2 Obtaining the Orientation Field 

In Step 7, despite the extraction of all streaks, which constitutes the most direct 

observational data, this information cannot be directly used to generate the directional field. 

This limitation stems from the heterogeneous distribution and clutter of streaks throughout the 

image, which obscures relevant information. Additionally, on the scale of the entire image, the 

identified streaks form only a sparse matrix. Therefore, alternative approaches are required. 

The algorithm used to estimate the orientation field from a surface oil flow visualization 

image relies on the gradients of the resulting images after post-processing, which is described 

in detail by Rao and Schunck (1991). Specifically, it targets the gradients obtained from 

detected streaks, aiming to reduce interference from background noise. 
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The gradient at a point (i, j) is represented in polar coordinates as 𝐺𝑖𝑗𝑒𝑖𝜃𝑖𝑗. In Step 7, 

employing label detection, one can obtain the set L of streaks present on a given cell. Therefore, 

for an N × N cell, the dominant orientation, 𝜃𝑚𝑛 of its centre point (m, n) can be represented 

as below: 

 𝜃𝑚𝑛 =  tan−1 (
∑ 𝐺𝑖𝑗

2 sin 2𝜃𝑖𝑗(𝑖,𝑗)∈𝑳

∑ 𝐺𝑖𝑗
2 cos 2𝜃𝑖𝑗(𝑖,𝑗)∈𝑳

) /2 (4.13) 

The estimated orientation angle is denoted as 𝜃𝑚𝑛 + 𝜋/2, as the gradient vector is 

perpendicular to the direction of anisotropy. 

A key point is that the orientation estimation algorithm yields an orientation field rather 

than a vector field. The flow at a specific point could correspond to either direction: θ or θ + 

π. As a result, any method depending on an accurate vector field as input will inevitably fail to 

achieve the intended outcomes. 

4.4.3 Direction Decision 

Additional measures were required to aid in determining the specific flow direction of 

cells. In this work, the flow direction assessment of cells is based on the following assumptions: 

at the inlet of the flow field, the flow direction of cells should align with the direction of the 

wind tunnel's outflow; for any cell at arbitrary positions, due to the sufficiently small size of 

the cell, its flow direction should not exhibit significant "discontinuities" compared to 

neighbouring cells. For instance, in Figure 4.13(a), a cell with an undetermined orientation 

exhibits two potential directions, denoted as (b) and (c). Clearly, the predominant flow 

direction at this juncture is upward. Hence, direction b appears more plausible, while direction 

c is disregarded due to the presence of a significant "discontinuity". To quantitatively describe 

the coherence in the flow direction at the centre (m, n) of a given cell, consider another cell 

whose centre is (i, j), where i and j are chosen so that this cell resides within a defined region 

W surrounding the target cell. In practice, the selected entities comprise the eight neighbouring 

cells surrounding the target cell. The directional relationship between two vectors can be 

represented by the cosine of the angular displacement difference. The smaller the absolute 

difference in angular displacements, the smaller the angle between the vectors, indicating a 

closer alignment in direction. The measure of coherence could be defined by 
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 𝑆𝑐𝑜𝑟𝑒𝑚𝑛 =  ∑ cos|𝜃𝑖𝑗 −  (𝜀𝑚𝑛 + 𝜃𝑚𝑛)|
(𝑖,𝑗)∈𝑊

 (4.14) 

 where 𝜀𝑚𝑛 = {
0
𝜋

 (4.15) 

Thus, the problem shifts to maximizing the overall coherence across all cells, whose 

centre points fall falls within the set F, with the boundary condition being the predetermined 

direction at the inlet position. By solving for the maximum of Eq.(4.16) the distribution of the 

vector field can be determined. 

 𝜀𝑚𝑛
∗ =  arg max

𝜀𝑚𝑛

∑ ∑ cos|𝜃𝑖𝑗 −  (𝜀𝑚𝑛 + 𝜃𝑚𝑛)|
(𝑖,𝑗)∈𝑊(𝑚,𝑛)∈𝐹

 (4.16) 

 

 

Figure 4.13 Possible case for ambiguity. (a) Original orientation to be inferred; (b) Probable 
estimations (true); (c) Probable estimations (false) 

 

4.5 Performance Evaluation 

To illustrate the advantages of the proposed algorithm, a comparison is made between 

the results obtained using the traditional Hough transform and the CNN-based algorithm 

developed in this chapter. This comparison provides a clear visual representation of the 

differences in performance. The lines detected in the flow visualisation images with a 3.75 mm 

tip clearance using CNN-based algorithm is shown in Figure 4.14 (top). The result of using 

linear Hough transform on the detected streaklines is exhibited in Figure 4.14(bottom). The 

algorithm proposed in this work significantly mitigates the formation of noise vectors, which 

often manifest as seemingly vertical, horizontal, or diagonally oriented at 45° (Figure 4.14 

(bottom)). Moreover, the algorithm in this work calculates the average information of each 

labelled streak using Eq. (4.16) to obtain directional information, which is then redrawn as 

streaks. This approach differs from fitting the maximum possible line segments within cells (as 

shown in the right panel of Figure 4.14). Therefore, it is evident that the distribution of streaks 

in the top panel of Figure 4.14 is more uniform, with minimal intersection between streaks. 
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Figure 4.14 Image processing results; (top) CNN-based algorithm result in this work; (bottom) 
image processing solution from Abdelsalam et al. (2017) 

 

In the field of image processing, evaluating the robustness of algorithms against 

blurring is crucial for applications. This study aims to assess and compare the robustness of a 

CNN-based algorithm, and a traditional image processing solution proposed by Abdelsalam et 

al., focusing on their performance under varying levels of image blurring. 

A systematic approach was employed, utilizing the Mean Squared Error (MSE) metric 

to quantify image quality degradation. The MSE measures the disparity between the original 

and blurred orientation fields of images processed by both algorithms. A lower MSE value 

indicates better preservation of the original image's directional features despite the blurring, 

reflecting greater robustness against degradation. 

By applying this methodology to both the CNN-based algorithm and the image 

processing solution, significant insights into their performance and robustness under different 

blurring conditions are revealed. 
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Figure 4.15 Gaussian blur results; (left) original image; (right) blur image with kernel size=10 
and sigma=25. 

 

As Figure 4.15 shows, the blurred images are created using Gaussian blur, where the 

parameters kernel size and sigma determine the extent of blurring. A larger kernel size 

increases the filter's spatial coverage, while a higher sigma value results in a stronger blur effect. 

Blurring reduces image details, which can alter the directional information contained in the 

image. 

To compute MSE between original and blurred orientation fields, the difference in 

orientation angles at each pixel is evaluated. Orientation matrices are derived from the Hough 

transform, which detects the primary direction of lines in the image. The original orientation 

matrix represents the unblurred state of the image, while the blurred orientation matrix reflects 

the directions detected after applying Gaussian blur. MSE quantifies how much the blurring 

process distorts or alters the directional features of the image. 

The MSE is calculated by: 

 𝑀𝑆𝐸 =
1

𝑛
∑(𝑥𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

 (4.17) 

where xi represents the orientation angle at pixel i in the original orientation field, yi 

represents the orientation angle at pixel i in the blurred orientation field, n is the total number 

of pixels. 
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Figure 4.16 MSE performance in relation to kernel size and sigma for CNN-based algorithm and 
Abdelsalam’s algorithm. 

For CNN-based algorithm, as kernel size and sigma increase, the MSE also increases, 

but the overall rate of increase is relatively small. For example, with a kernel size of 3, MSE 

rises from 0.044 at sigma = 1 to 0.059 at sigma = 20. Similarly, with a kernel size of 11, MSE 

increases from 0.082 at sigma = 1 to 0.331 at sigma = 20. This steady but moderate rise in MSE 

suggests that CNN-based algorithm maintains a good level of robustness across different levels 

of blurring, with directional matrices showing limited deviation. 

In contrast, Abdelsalam’s algorithm. exhibits a much sharper rise in MSE as kernel size 

and sigma increase. For example, with a kernel size of 3, MSE rises from 0.297 at sigma = 1 

to 0.314 at sigma = 20, while with a kernel size of 11, MSE escalates rapidly from 0.364 at 

sigma = 1 to 1.741 at sigma = 20. This indicates that Abdelsalam’s algorithm is less robust to 

blurring, with significant changes in the orientation matrices as the level of blurring intensifies. 

From this robustness analysis, CNN-based algorithm appears to be more stable than 

Abdelsalam’s algorithm when exposed to different levels of blurring, especially at larger kernel 

sizes and higher sigma values. The relatively smaller increase in MSE for CNN-based 

algorithm suggests that it better preserves the geometric features of the image, even after 

significant blurring. On the other hand, Abdelsalam’s algorithm shows a more pronounced 

increase in MSE, indicating that its performance is more susceptible to blurring, with a greater 

loss or alteration of directional information. 

Robustness analysis is crucial in understanding an algorithm's stability and reliability 

in real-world applications. For tasks such as image matching, edge detection, or object tracking, 
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CNN-based algorithm may be more adaptive to varying levels of blur and noise, whereas 

Abdelsalam’s algorithm might require further optimization to improve its robustness in more 

complex or degraded environments. 

Figure 4.17 shows the calculated streamlines from streaks using streamslice function 

in MATLAB. Precisely locating the visualization image facilitates direct plotting of blade 

profiles onto the image. The obtained quantitative flow field results from the input of a flow 

visualization photograph are notably encouraging. At the inlet, streamlines exhibit approximate 

uniform flow. However, in proximity to the cascade blades, the streamlines undergo separation 

following the expected pattern of the tip leakage vortex. A close examination of the results 

shows that regions within the original image displayed limited clarity which may introduce 

distortions into the results. In the dotted box area of Figure 4.17, a number of vectors point in 

apparent non-physical directions at certain points. Some of these were attributed to surface 

irregularities or contaminants. A few anomalies were also attributed to deficiencies in the 

processing algorithms. In regions with complex flow conditions, especially near saddle points 

and areas with nearly horizontal flow, the existing direction recognition algorithm struggled to 

provide accurate results. 

 

Figure 4.17 Calculated streamlines from streaks. 

 

This approach was not exclusively applicable to the experimental results obtained from 

the cascade; in fact, it yielded promising qualitative outcomes for surface flow visualization 

images sourced from other sources as well.  
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Figure 4.18 Calculated streamlines from streaks from other surface flow visualization images. 

 

As shown in Figure 4.18, the application of this approach to surface flow visualization 

images sourced from other experiments resulted in flow patterns that are consistent with expert 

interpretation of the image in the literature(Ingram et al., 2005) and with other measurements 

(pressure probe, wool tufts etc) in the cascade. As well as a qualitative description of the image 

that aids interpretation of the flow field the technique offers quantitative data from surface oil 

flow visualisation. 

4.6 Conclusion 

This chapter builds on the foundational work by Abdelsalam et al. (2017), enhancing 

their edge detection approach with CNNs to improve the accuracy and reliability of extracting 

streamline information from surface flow visualization images. By integrating modern image 

processing techniques, a comprehensive algorithm has been developed that surpasses previous 

methods in effectively discerning the direction and structure of flow patterns. 

In pre-processing stage, the images were manually calibrated using advanced 

techniques from the OpenCV library, which solves the limitations of automatic camera 

calibration and minimizes geometric distortion. Subsequently, the images were divided into 

smaller cells, converted to grayscale, smoothed with a bilateral filter to preserve edges, and 

processed to reveal intensity gradients. These steps enhanced the visibility of important 

structures. 

The most important part of this method is to apply a customized CNN architecture for 

edge detection. This architecture is adapted from the EdgeNet model and incorporates novel 

design elements such as parallel skip connections and USNet. These innovations enable the 

model to preserve fine edge features and achieve high-resolution edge detection. Training the 
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model on various datasets, including BIPED and other standard edge detection datasets, 

ensures its robustness and adaptability to various scenes.  

After edge detection, several post-processing steps are used to improve the results. 

Label detection identifies and marks streaks in the processed image, while orientation 

estimation algorithms are used to calculate the dominant flow direction. Then, a coherence-

based approach is adopted to address directional ambiguity, ensuring consistency in the vector 

field of the entire image. Even in complex flow areas that are difficult to achieve with 

traditional methods, this method can accurately detect and quantify flow patterns. The 

calculated streamlines are highly consistent with the expected flow behaviour and expert 

interpretations. 

All datasets and code are available for download at: 

https://github.com/Dehakaa/Streamline_detector 
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Chapter 5 Assessment of the GLOF Method for Surface Friction 

Visualization 

This chapter examines the application and performance evaluation of the Global 

Luminescent Oil-Film (GLOF) method for measuring surface friction fields in fluid dynamics 

experiments While this method offers a non-invasive optical alternative to traditional 

measurement techniques, its practical effectiveness remains uncertain. It can be considered an 

optical alternative to traditional measurement techniques, with which detailed information 

about boundary layer interactions, surface shear stresses and other fundamental flow properties 

could be captured non-invasively. 

However, while the GLOF method provides valuable insights, it also has limitations in 

practical use. This chapter evaluates the accuracy of surface friction result obtained with GLOF, 

with a particular focus on its agreement compared to established experimental data. For this 

purpose, the findings obtained using the GLOF method are compared with the experiment 

results of Eckerle and Langston (1987), who investigated the flow field around a cylinder. CFD 

results are also compared with Eckerle's experimental data, showing better alignment with the 

observed flow characteristics. As a result, the GLOF method did not work effectively in this 

thesis. 

5.1 Global luminescent oil-film (GLOF) method 

In this section, inspired by the work of Liu et al. (2008), the application of the Global 

Luminescent Oil Film (GLOF) method is explored to assess the relationship between surface 

friction and flow patterns. Utilizing oil film flow visualization techniques, particularly the 

analysis of surface oil flow, critical insights are derived from the residual flow traces. Based 

on the thin oil film equation established in prior studies, which has been discussed in section 

2.2.3 and section 3.2.2, the relationship between oil film thickness and wall shear stress is 

examined, revealing the connection between oil film characteristics and flow behaviour. 

Furthermore, a formula linking the luminous intensity of the oil film to its thickness, as 

proposed in Liu (2013)'s work, serves as a foundation for this analysis. With the camera aligned 

parallel to the experimental plane, the image data can be accurately correlated with the actual 

surface position, enabling precise and reliable evaluation. 
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However, despite the rigorous theoretical framework, GLOF faces several challenges 

in practical applications, particularly with regard to accuracy and stability. This analysis 

evaluates the effects of equipment vibration, inter-frame time intervals and temporal stability 

on the estimation of the surface friction field. In a high-vibration environment, the clarity of 

the images is compromised, affecting subsequent data processing and analysis, which leads to 

incorrect identification of flow patterns. The variations in inter-frame time intervals 

significantly influence the stability of the skin friction field, demonstrating a high dependency 

on flow conditions. The results in the following sections include cases with no obstacles in the 

flow field and cases with different obstacles: a rectangular prism, a streamlined object, and a 

cylinder. 

5.1.1 Discrepancies Between Experimental Challenges and Theoretical 

Applications 

In the previous chapter, the theoretical framework of the GLOF method was established, 

detailing how surface friction is mapped from oil film thickness and luminescent intensity using 

optical flow equations. One of the primary challenges in implementing GLOF lies in the 

accuracy of the estimated surface friction field. This method depends on precise image data 

and a well-defined relationship between oil film luminescent intensity and the underlying flow 

dynamics. Although the theoretical basis is robust, discrepancies can occur between the 

predicted surface friction field and observed flow patterns. To illustrate these challenges, the 

performance of GLOF was evaluated using a specific video dataset. 

To extract flow field information from video frames and generate corresponding vector 

data, this work utilizes videos recordings obtained from surface flow visualization experiments. 

In these experiments, a luminescent oil film was applied to the surface, and the flow patterns 

were captured in real-time using high-resolution cameras.  

The flow visualization experiments were conducted in a low-speed wind tunnel at 0.5 

plint wind tunnel, with a test section measuring 0.46 m × 0.46 m × 1.22 m. The freestream 

velocity was set to 19.1 m/s and the Reynolds number varying from 2×103 to 3×104 due to the 

different characteristic lengths of the experimental obstacle. The model surface was coated 

with a thin luminescent oil film to visualize the surface friction distribution. The wind tunnel 

was operated under steady-state conditions to ensure consistent flow characteristics throughout 

the experiment. 
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The video data was then processed using the GLOF method, implemented using a 

MATLAB code developed based on Liu (2019)'s work, with appropriate adjustments tailored 

to specific requirements. The video was processed frame by frame, with each pair of 

consecutive frames serving as input for optical flow computation. For instance, frame It and 

frame It+1 form an image pair used to calculate motion information for that time step, ensuring 

the continuity of the temporal sequence. 

Prior to optical flow computation, each frame underwent preprocessing to optimize 

computational performance. This included scaling the images to reduce resolution (using the 

scaling factor scale_im), thereby lowering computational complexity. Additionally, Gaussian 

filtering (with a filter kernel size of size_filter) was applied to smooth the images and reduce 

noise. These preprocessing steps enhanced image quality, contributing to improved accuracy 

and robustness of the subsequent optical flow algorithm. 

The optical flow computation was performed using a two-step estimation method. First, 

the Horn-Schunck method was applied for an initial estimation of the optical flow field. This 

step balanced the smoothness of the flow field and brightness consistency using the Lagrange 

multiplier λ1, producing an initial optical flow vector field. Next, the Liu-Shen method was 

employed to refine the initial results. By applying a higher weighting factor λ2 to enforce 

stronger constraints, this step yielded an optical flow vector field with enhanced physical 

relevance. The optical flow field consisted of displacement components ux and uy for each pixel, 

providing a spatial representation of pixel movement between consecutive frames. 

The optical flow vector field was further processed through brightness normalization to 

generate the skin friction field. The specific formulas used were τx= ux /g and τy= uy /g, where 

gg represented the mean brightness value of the two frames. This normalization step reduced 

deviations caused by brightness inconsistencies, ensuring that the results were more stable and 

aligned with physical reality. By processing multiple image pairs, the skin friction fields 

generated for each frame were accumulated and averaged, resulting in the final vector field 

corresponding to the entire video. 

The experiments were conducted on a system with an AMD Ryzen 5 5600G, 16GB 

RAM, and an NVIDIA GTX 3060 GPU. And the video was recorded by Nikon Z50 camera 

with an AF-S Nikkor 35mm 1:1.8G lens. The video used for flow visualization experiments 

had a total duration of 120 seconds, captured at a frame rate of 60 frames per second (fps). 
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Each frame was a high-resolution image with a resolution of 1920×1080 pixels. This video 

would be analysed from the following aspects. 

5.1.1.1 Vibration 

One significant challenge encountered during the implementation of GLOF is the 

vibration of the equipment. The wind tunnel generates intense vibrations during operation, and 

even though the camera is fixed externally to the tunnel, the recorded images and data can still 

be significantly affected. This vibration not only disrupts the clarity of the images but also 

directly impacts subsequent image analysis and data processing. Specifically, when the 

algorithm analyses the movement of dye streaks, it becomes difficult to accurately distinguish 

whether the relative displacement of the dye streaks in the test article results from their actual 

movement or from false variations caused by equipment vibrations. This uncertainty greatly 

reduces the reliability of the experimental results. 

 

Figure 5.1 In the unobstructed test article area, evenly apply the oil/dye mixture using a brush 

 

Vibration is not limited to a specific direction, which leads to severe distortion in the 

analysis results. To visually illustrate this effect, Figure 5.1 shows the experimental conditions 

where no obstacles are placed within the wind field. Under these conditions, the test article 

should exhibit a stable laminar flow. In this scenario, theoretically, most vector directions 

should remain consistent and be parallel to the main flow direction—i.e., the inlet flow 

direction. However, under vibrating conditions, the vectors in the images display noticeable 

deviations and scatter. This phenomenon clearly indicates that vibrations disrupt the local flow, 

causing what should be a smooth flow field to become turbulent and uneven. 
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Figure 5.2 skin-friction vectors on the image surface with vibration 

 

To address this issue, a sturdy structure can be added externally to the equipment to 

reduce the impact of vibrations. Specifically, the camera was securely fixed to a steel frame, 

allowing it to vibrate synchronously with the wind tunnel, maintaining the same frequency and 

pattern. This design can significantly reduce image jitter caused by equipment vibrations, 

thereby greatly enhancing the stability and accuracy of the data. As shown in Figure 5.3, the 

improved experimental results demonstrate that the directions of the skin friction vectors 

maintain a high degree of consistency, closely aligning with the expected laminar state. This 

proves that the measures successfully mitigated the interference caused by vibrations, ensuring 

more precise experimental data. 

 

Figure 5.3 skin-friction vectors on the image surface without vibration 
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5.1.1.2 Time Interval Between Frames 

An in-depth analysis of the GLOF algorithm revealed significant variations in the 

surface friction field between adjacent frames. This variability suggests that GLOF may be 

sensitive to the time intervals between frames, which requires careful consideration. To 

quantify this deviation, the SSIM method was used to evaluate the similarity of the surface 

friction field under different time intervals, as discussed in the previous chapter. 

A specific comparison was made using a frame interval of 30 frames, which balances 

sufficient sample size and manageable data density. As shown in Figure 5.4, three experimental 

scenarios with varying levels of disturbance are presented alongside their corresponding SSIM 

curves. In the graphs on the right, the trends of SSIM values with changing frame counts are 

depicted. The horizontal axis represents the "starting frame index," while the vertical axis 

denotes the "SSIM score." Each point in the graphs indicates the SSIM value calculated every 

30 frames. 

For the first SSIM curve (Figure 5.4b): As the frame count increases from 0, the SSIM 

value initially remains relatively high, around 0.96, indicating a high degree of similarity 

between frames in the early stages. Around frame 2000, the SSIM value begins to decline 

significantly, dropping sharply from its earlier stable state until it levels off around frame 4000. 

After frame 4000, the SSIM value continues to decrease, with the distribution of data points 

becoming more scattered, suggesting a reduction in similarity between adjacent frames. 

For the second SSIM curve (Figure 5.4d): The trend resembles that of the Figure 5.4b. 

In the early stages of frame count increase, the SSIM value fluctuates around 0.96, indicating 

a high similarity. At approximately frame 1000, the SSIM score experiences a slight increase 

and remains above 0.96. However, around frame 2000, the SSIM value starts to show a clear 

downward trend, becoming more pronounced after frame 5000, ultimately decreasing below 

0.93, with a sparser distribution of points reflecting a further weakening of similarity between 

images. 

For the third SSIM curve (Figure 5.4f): This curve initially mirrors the trends of the 

Figure 5.4b and Figure 5.4d, with the SSIM value remaining above 0.965 before frame 1000, 

indicating a high degree of similarity. However, after frame 1000, the SSIM score gradually 

declines, with a notable downward trend around frame 2000. Unlike the previous two curves, 

this one exhibit more fluctuations after frame 3000, with more frequent and severe variations 
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in the SSIM value, especially after frame 5000, where the amplitude of fluctuation significantly 

increases. Ultimately, the SSIM value drops to around 0.94 at approximately frame 7000, with 

substantial volatility in image similarity persisting. 

The observations from the above images can be summarized as follows: 

1. Temporal Change in Image Similarity: The SSIM curves of the three experimental 

groups show that in the initial frame segment (between 1000 and 2000 frames), the similarity 

between adjacent frames is high, indicating minimal changes in the object and background. 

However, around frame 2000, the SSIM values begin to decrease, signifying a significant 

reduction in image similarity. 

2. Sustained Decrease and Variability: As the frame count increases, the magnitude of 

the SSIM value's decline gradually levels off after frame 4000; however, the fluctuation 

patterns differ across experiments. For example, the third experimental group exhibits greater 

SSIM variability, while the first group shows a smoother declining trend, reflecting differences 

in experimental scenarios. 

3. Overall SSIM Value Changes: In all three experimental groups, SSIM values remain 

high initially, reflecting strong similarity between adjacent frames. However, as the frame 

count increases, SSIM values exhibit an overall downward trend, particularly noticeable 

between frames 2000 and 5000. 

These phenomena can be interpreted as follows: in the initial phase, the flow remains 

relatively stable, leading to minor changes in the surface friction field, which results in high 

similarity between adjacent frames. However, around frame 2000, the SSIM value begins to 

decline sharply, with a non-linear distribution emerging. This change can be attributed to the 

startup of the wind tunnel, where alterations in airflow conditions lead to marked differences 

between frames. 

Additionally, scenarios with frame intervals of 60, 90, and 120 frames were compared, 

all exhibiting similar trends. This suggests that regardless of the chosen frame interval, SSIM 

changes are primarily dependent on surface flow conditions. When frame intervals are larger, 

the results appear "sparser" due to a reduction in sampled points, which may result in accuracy 

declines from insufficient computational data. Notably, smaller frame intervals are not 

necessarily better. If set too small, the camera may fail to effectively capture surface changes 

induced by airflow. In those experiments, the boundary layer velocity is approximately 1 m/s, 
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meaning that within 1/60 seconds, the surface oil film moves less than 0.0167 meters in the 

direction of airflow. Such a short distance results in minimal visible surface changes, leading 

to accumulated errors that could negatively impact the results. Therefore, setting a frame 

interval of 30 frames offers an optimal balance between these concerns. 

 

Figure 5.4 SSIM Under Different Obstacle Conditions. (a) flow visualization experiment under 
rectangular obstacle condition; (b) SSIM trend for the rectangular obstacle condition;(c) flow 

visualization experiment under streamlined obstacle condition; (d) SSIM trend for the 
streamlined obstacle condition; (e) flow visualization experiment under cylindrical obstacle 

condition; (f) SSIM trend for the cylindrical obstacle condition. 

 

In conclusion, the choice of time interval directly affects the performance of the GLOF 

algorithm under different flow conditions. In practical applications, appropriately configuring 

camera parameters and flow conditions will help enhance the accuracy of GLOF results. 
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5.1.1.3 Temporal stability 

To evaluate the temporal stability of GLOF results, the impact of varying durations and 

different time "slices" on the outcomes is considered. This interval enables the capture of 

transient effects or changes in surface friction over time. Key parameters influencing this 

stability include the time interval between successive images, the selection of calculation 

regions, and the duration of computation. 

For the same video, the calculated skin friction field exhibits significant variations with 

changes in these factors. For instance, as illustrated in Figure 5.5, all three images represent 

GLOF calculations derived from the same video, with the only difference being the selection 

of different time segments. In Figure 5.5a, which focuses on an early segment post-wind tunnel 

activation, only a few prominent vectors are visible near the edges. In contrast, Figure 5.5b and 

Figure 5.5c analysed later time intervals, revealing distinct differences in the skin friction field. 

The discrepancies are so pronounced that even qualitative observations yield clear variations, 

indicating a high dependence of GLOF results on temporal factors. 

This dependency complicates the selection of which time segment to present as the final 

result, and extracting a standardized flow field from the video becomes challenging. During 

quantitative comparisons, variance calculations show that no specific moment achieves 

complete stability.  

The situation in Figure 5.5 can also be reflected by the variation in variance. Selecting 

the time period between the wind tunnel starting and stopping, and setting a frame interval of 

30 frames, the skin friction field is calculated using the GLOF method and used as the ground 

truth (GT). Within this time period, dividing it into several smaller time segments with an 

interval of 20 seconds, and similarly setting a frame interval of 30 frames, the corresponding 

friction field is calculated. To compare the temporal stability of the directional field changes, 

the following formula is proposed: 

 𝑆𝑡 =
1

𝑁
∑ (tan−1 (

𝑢𝑡,𝑖

𝑣𝑡,𝑖
) + tan−1 (

𝑢𝐺𝑇,𝑖

𝑣𝐺𝑇,𝑖
))

2

𝑖∈𝐼

 (5.1) 

where 𝑢𝑡,𝑖, 𝑣𝑡,𝑖 are the x-direction and y-direction velocity components at point i on the 

image at time t, calculated using the GLOF method. While 𝑢𝐺𝑇,𝑖,  𝑣𝐺𝑇,𝑖 are the ground truth 

velocity components in the x-direction and y-direction at point i on the image, calculated using 

the GLOF method. 
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Figure 5.5 Examples of different calculated results of skin friction field for the proposed video 
using GLOF method. 

 

Figure 5.7 shows the trend of St over time, whose experiment condition could be found 

in Figure 5.6. The fluctuations in St under different conditions are quite significant, displaying 

noticeable rises and falls. This "non-stationary" characteristic makes it difficult to identify a 

representative moment that can describe the typical state of St. 
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Figure 5.6 Experiments conducted under different obstacle conditions and their corresponding 
name. (a) rectangular obstacle; (b) streamlined obstacle;(c) empty obstacle; (d) cylindrical 

obstacle. 

 

In scenarios without obstacles, such as the empty space shown in Figure 5.7, the 

variations in St are relatively stable, with only slight fluctuations, indicating a more stable 

system under these conditions. However, in other scenarios, when obstacles are present, the 

fluctuations in St increase significantly, with the curve showing much more pronounced 

undulations. This reflects a greater susceptibility of the system to external disturbances, leading 

to a more unstable state under these conditions. 

For the case represented by the black squares (rectangular obstacle), St shows large 

fluctuations in the early stage, particularly around 30 seconds, where the value rapidly rises 

from 2 to nearly 4. After this, the fluctuations become more stable. During the middle period 

from 60 to 120 seconds, while St still experiences minor oscillations, the magnitude is small, 

staying between 2 and 3, indicating that the system gradually stabilizes under this condition. 

However, after 120 seconds, there is a slight rise in St again, suggesting that the system is not 

entirely stable and still exhibits a tendency to fluctuate. 
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Figure 5.7 Temporal Variation of St Under Different Obstacle Conditions 

 

The curve represented by the red dots (streamlined obstacle) shows an overall 

downward trend. At the beginning, St is around 2.5, and as time progresses, the value gradually 

decreases to about 1.5 at 120 seconds, followed by a slight rebound and stabilization around 2. 

Compared to the other curves, the fluctuations in St under condition streamlined obstacle are 

smaller, showing that the system is relatively more stable, though still displaying a mild 

downward trend. 

The curve represented by the blue triangles (empty obstacle) is the most stable. The St 

value consistently remains between 0.5 and 1.5, with almost no significant fluctuations. This 

suggests that under this condition, the system exhibits very high stability, with minimal impact 

from external disturbances, maintaining a low operating range. This performance might 

indicate that the system is hardly affected by external interference in this condition, displaying 

marked stability. 
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In contrast, the curve represented by the green inverted triangles (cylindrical obstacle) 

shows noticeable fluctuations. Particularly in the early stage, from 0 to 40 seconds, St drops 

from 4 to around 3.5, followed by some fluctuations. Throughout the time period, the St value 

stays between 3 and 4, reflecting significant system volatility under this condition, indicating 

a strong instability. Then after 140 seconds, the curve exhibits a clear upward trend, suggesting 

that the system may have experienced stronger disturbances later on, resulting in a more 

unstable state. 

By analysing this data, it becomes apparent that system stability varies significantly 

under different conditions. The blue curve exhibits the most stability, with the smallest 

amplitude of fluctuations, remaining at a low level, which corresponds to a scenario without 

obstacles. Meanwhile, the green curve shows dramatic fluctuations, with higher St values, 

reflecting a sharp increase in instability under conditions of strong external interference. The 

red and black curves show moderate fluctuations, with a downward trend and a trend toward 

stabilization, respectively. 

In conclusion, the influence of obstacles or external disturbances on system stability is 

significant. The data indicates that under conditions with minimal external interference, the 

system maintains high stability, with small St fluctuations. However, when obstacles or strong 

external disturbances are present, system instability increases markedly, with larger St 

fluctuations. 

5.1.1.4 Resolution and Accuracy 

The spatial resolution of video frames significantly affects the precision of surface 

friction measurements. To assess this, skin friction fields calculated from different resolutions: 

full resolution (1920×1080) and reduced resolution (960×540). The results revealed notable 

differences. This finding underscores the importance of high-resolution images for accurately 

determining the surface friction field. High spatial resolution ensures more detailed flow 

visualization and enhances the reliability of the GLOF results, ultimately leading to more 

robust experimental conclusions. 
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Figure 5.8 Comparison of Surface Friction Fields at Different Resolutions. (a) reduced 
resolution (960×540); (b) full resolution (1920×1080) 

 

These findings discuss several factors that impact the accuracy of results when applying 

GLOF. The next section will delve deeper into the performance evaluation of GLOF, utilizing 

experimental results and comparisons with other techniques to validate its effectiveness. 

5.1.2 Performance evaluation 

Figure 5.9a shows the last oil-film image taken during the experimental process. In the 

experiment, a cylinder was placed on the test article surface, and the corresponding flow 

visualization was recorded by camera. Since the flow field distribution around a cylinder has 

been extensively studied, using this example can better illustrate the results and highlight any 

existing issues. The result image has been preprocessing with techniques described in Section 

3.3. A saddle point and the separation lines can be seen in the Figure 5.9a. As shown in Figure 

5.9a and Figure 5.9b, the experimental observations are consistent with the theoretical 

framework presented in Eckerle and Langston (1987)'s work. An accumulation of the oil was 

also observed behind the cylinder, which is attributed to the formation of vortices in this region. 

Figure 5.9c, d present the skin-friction vectors and skin-friction lines, averaged from 

80 image pairs. However, a significant discrepancy is observed in the results. According to 

flow visualization and experimental measurements, the skin friction vector around the cylinder 

is expected to remain predominantly horizontal before reaching the cylinder. Upon 

encountering the cylinder, the flow should bifurcate and subsequently reconverge downstream. 

In contrast, the skin-friction distribution obtained from GLOF deviates substantially from this 

expected pattern. Instead of exhibiting the anticipated flow separation and reconvergence, the 

GLOF results indicate a trend of convergence near the cylinder, which contradicts the observed 
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oil flow pattern. Moreover, the GLOF results introduce numerous artificial vortices that are not 

physically expected in this flow configuration. 

 

Figure 5.9 Skin-friction topology by the proposed optical-flow algorithm: a) typical luminescent 
oil-film image, b) cylinder vortex model developed by Eckerle and Langston (1987), c) skin-

friction vectors, d) skin-friction line on the image surface. 

 

For the purpose of quantifying comparisons, this section presents a structured three-

way comparison between the reference experimental data from Eckerle (1985)'s doctoral 

dissertation, the current GLOF experimental results, and corresponding CFD simulations. By 

examining agreements and discrepancies across all three results, the performance limitations 

in the GLOF could be found. The experimental data presented in Eckerle (1985)'s doctoral 

dissertation served as the baseline for validating both the GLOF measurements and CFD results. 

Figure 5.10 illustrates the schematic of the test section, and the coordinate system used 

in this study. The origin of the coordinate system coincides with the centre of the cylinder and 

the circular disk at the lower end wall. The angular and radial positions are represented by β 

and R, respectively. The Cartesian coordinates indicating flow direction, vertical, and lateral 

positions are x, y, and z. The experiment aims to create vertical and horizontal symmetry planes 

along the centreline and mid-height of the test section. Given the focus on surface visualization 

of the end wall, particular attention is placed on the bottom surface of the selected quadrant. 
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Figure 5.10 Schematic showing test section with cylinder and coordinate systems from 
Eckerle (1985) 

 

Eckerle measured the pressure distribution around a large cylinder using an 

instrumented floor disk. This disk is mounted on a support plate with multiple static pressure 

holes, allowing for pressure data acquisition at various radial and angular positions. The setup 

of the pressure holes enables minimal interference when measuring the static pressure 

distribution on the end wall and the cylinder surface. Furthermore, the design of the disk allows 

it to rotate, facilitating precise measurements at different locations and ensuring data symmetry 

and accuracy. The internal flow field data were obtained using a movable five-hole probe, with 

data collected in the angular planes defined by β = -5, 0, 5, 25, 45, and 90 degrees. The probe 

was traversed at 81 radial locations to define the flow field adjacent to and within the separation 

region. A layer at a height of y/D ≈ 0.0083 was used for flow visualization as comparison 

experimental data, representing the lowest point for which data could be collected without end 

wall interference. The test conditions included a free stream velocity of 30.5 m/s, with a 

Reynolds number based on the cylinder diameter of 5.5 × 105, and a boundary layer thickness 

occupying 13% of the cylinder diameter. Some of the data are summarized in the Table 5-1, 

reflecting detailed measurements of the flow field through the five-hole probe at different 

angular planes. 
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Firstly, the velocity ratio U/U0 shows significant fluctuations with changes in radial 

position R/D. Near smaller radial positions, such as R/D = 0.29, the velocity ratio drops to 

approximately 0.4, suggesting significant flow separation in that region. However, as the radial 

distance increases, the velocity ratio gradually recovers and approaches higher values (around 

0.8), indicating a reattachment and recovery trend of the flow away from the wall. Secondly, 

the static pressure coefficient CPS exhibits negative values at multiple locations, particularly 

around R/D = 0.4, indicating local static pressure below the reference pressure, possibly related 

to local pressure changes caused by flow separation in that area. The total pressure coefficient 

CPT mostly remains near 1.0, but shows slight declines at certain positions, such as R/D = 0.32 

and R/D = 0.45, suggesting possible total pressure losses or energy dissipation in those areas. 

The significant variations in yaw angle Phi and pitch angle Theta, especially around R/D = 0.31 

where the yaw angle reaches approximately 14 degrees, reveal the complexity of flow direction, 

particularly near the separation region, where flow may experience dramatic lateral deflection 

and turbulence. These data collectively demonstrate the asymmetry of flow in radial and 

angular planes, especially in the flow structure near the separation zone, showcasing significant 

changes in velocity, pressure, and direction, providing important experimental evidence for 

understanding the behaviour of separated flows. 

Table 5-1 Five-Hole Probe Data at y/D ≈0.0083 

Angluar 

plane R/D y/D 

Phi 

degree 

Theta 

degree CPT CPS U/U0 

-5 0.809 0.0083 5.0 -104.6 0.519 0.443 0.195 

-5 1.532 0.0085 0.1 -2.8 0.559 0.175 0.516 

0 0.596 0.0078 -2.2 -156.7 0.132 0.802 0.257 

0 1.532 0.0085 1.8 0.0 0.539 0.189 0.722 

5 0.596 0.0082 -4.0 138.2 0.078 0.836 0.295 

5 1.532 0.0083 1.1 1.9 0.481 0.175 0.587 

25 0.553 0.0084 -0.2 69.0 0.008 0.476 0.718 

25 0.936 0.0086 1.7 44.4 0.501 0.243 0.506 

45 0.553 0.0083 0.3 46.6 -0.001 -0.552 1.234 

45 1.191 0.0079 1.3 21.1 0.523 -0.063 0.735 

90 0.553 0.0099 0.7 1.3 0.002 -1.832 1.682 

90 2.375 0.0085 2.1 2.0 0.666 -0.23 0.751 
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Figure 5.11 Measured endwall pressure distribution from Eckerle (1985) 

 

Since the experimental results from Eckerle et al. were nondimensionalized, they can 

serve as a reference for detailed comparisons with the computational results of this study, which 

are also presented in a nondimensional form for consistency. In Eckerle's experiments, the 

coordinate system uses the centre of the cylinder and the disk as the origin, with the radial 

position represented by the nondimensional variable R, the angular position by β, and the 

streamwise, vertical, and transverse location represented by the nondimensional x, y and z 

coordinates, respectively. To ensure a reasonable comparison between the two datasets, the 

computed flow field data must first be nondimensionalized to match the experimental 

coordinate system. This involves normalizing the computational results based on the cylinder 

diameter or other relevant characteristic lengths. 

To accurately match corresponding positions in the flow field, points with the same 

nondimensional coordinates (R and β) from the computational results can be extracted based 

on the radial and angular positions provided in Eckerle's experiments, which explicitly state 

the symmetry of the flow, indicating the existence of vertical and horizontal symmetry planes 

along the centreline and mid-height of the test section. Therefore, during the comparison 

process, priority should be given to selecting key points within these symmetry planes for 

quantitative comparisons of physical quantities such as velocity and pressure, allowing for an 

in-depth evaluation of the consistency between numerical simulation results and experimental 

measurements. 
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Figure 5.12 Corresponding points in the GLOF calculation for Eckerle’s experiment 

 

Despite Eckerle's experiments accurately representing velocity direction through 

nondimensional radial and angular positions (R and β), the overall trends show significant 

discrepancies when compared to computational results of this work. Particularly in the regions 

of 𝛽 < −50°and 𝛽 > 50°, the velocity directions measured experimentally do not align well 

with the computational results. To ensure consistency in nondimensional analysis, the flow 

conditions for these results correspond to a Reynolds number of 5.5 × 105, ensuring direct 

comparability with experimental data. This indicates that the numerical simulation exhibits 

some deviations in capturing the flow characteristics in these regions, potentially related to 

model assumptions or the handling of boundary conditions. 

Figure 5.13 presents a comparative analysis between the GLOF method and true theta 

values derived from Eckerle's experimental setup. The theta is the flow vector calculated at the 

same points as in Eckerle’s result. It features a red line representing the ideal scenario where 

the GLOF results perfectly align with the true values. However, a significant disparity is 

evident in the plotted black points, which correspond to the GLOF theta measurements. 

The GLOF theta values show marked deviations from the expected true theta values. 

This suggests that the numerical simulations may struggle to accurately capture the flow 

characteristics in these specific regions. Near the critical angles, where separation and complex 

flow phenomena are expected, the GLOF method fails to reflect the precise directional changes 

noted in Eckerle's experimental results. 
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Figure 5.13 Comparison of experimental angle and GLOF calculation angle 

 

5.2 Simulating a surface in experiments 

5.2.1 Test Configuration 

This study adopted a geometric configuration similar to that used in the flow 

visualization experiments. As shown in Figure 5.14, a finite cylinder with a width of D = 0.024 

m and a height of h = 0.3 m was vertically mounted on a flat boundary. The computational 

domain's length (in the flow direction), width (in the lateral direction), and height (in the 

spanwise direction) were L = 0.607 m = 25.3 D, W = 0.302 m = 12.6 D, and H = 0.3 m = 12.5 

D, respectively. Additionally, the junction of the cylinder and the bottom wall was located at 

the origin of the coordinate system, meaning that the inlet boundary was positioned 0.200 m 

upstream of the cylinder, while the outlet boundary was 0.406 m downstream of the cylinder. 

CFD was employed as a tool for simulating the flow around the cylinder. The CFD 

approach used varied depending on the task at hand. In this case, ANSYS Fluent was employed 

for flow simulations. 
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5.2.2 Meshing 

In this section, the details of the computational mesh generation are presented to ensure 

the accuracy and reliability of the CFD simulations.  

The mesh is generated using ICEM CFD with a structured multi-block approach. The 

domain is divided into several zones to ensure smooth transitions and proper resolution of 

critical regions, particularly around the cylinder. The mesh comprises approximately 2 million 

elements, primarily hexahedral cells in the bulk flow. The grid resolution is approximately 320, 

160, and 40 cells in the X, Y, and Z directions, respectively. This corresponds to roughly 51,200 

elements per two-dimensional XY layer. 

 

Figure 5.14 Model domain configuration stretched to show principal dimensions 

 

To resolve the boundary layer effectively, the first grid point is placed at a normalized 

wall distance (y+) of equal to 1. The boundary layer thickness, calculated as 2.56×10-5 based 

on Wilcox (1998)'s work, is resolved with 50 layers of elements in the radial direction. This 

ensures that flow characteristics near the surface, including shear stress and separation 

behaviour, are accurately captured. 



Chapter 5 

101 

 

 

Figure 5.15 The computational grid on the bottom plane 

 

5.2.3 boundary conditions 

Four types of boundary conditions are applied in the simulation to ensure that the 

Reynolds number matches the experimental value. At the inlet, a fixed uniform velocity is 

prescribed for the velocity field, where u = 19 m/s and v = w = 0, while a zero-gradient condition 

is imposed on the pressure field, 
𝜕𝑝

𝜕𝑛
= 0 . At the outlet, the pressure field at the outlet, a 

homogeneous Dirichlet condition is applied, which means p = 0 is everywhere at the boundary. 

On the bottom wall and the surface of the obstacle, a no-slip impermeable boundary condition 

is prescribed for the velocity field, setting u = v = w = 0, while a zero-gradient condition is 

applied to the pressure field. For the top and lateral boundaries of the computational domain, a 

free-slip condition is imposed, meaning the velocity component normal to the boundary is zero. 

The simulations were performed using ANSYS Fluent 2022 R1, with the k-ε turbulence 

model employed to capture turbulence effects, especially in the wake region of the cylinder. 

Steady-state simulations were conducted, with a convergence criterion of 10-6 for residuals. 

5.2.4 Results and discussion 

This section investigates the mean velocity and pressure fields by analysing the time-

averaged streamlines and pressure contours in two characteristic planes: the near endwall plane 

of the cylinder at Z/D = 0.01 and the symmetry plane at Y/D = 0. As illustrated in Figure 5.16, 

a strong positive and negative pressure region develops both in front of and behind the cylinder 
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due to its obstructive effect on the flow. Furthermore, the topology of the average streamlines 

in this plane reveals two symmetrically distributed vortex centres, labelled C and D, along with 

a saddle point identified as R in Figure 5.16. 

 

Figure 5.16 Comparison of the mean streamlines and pressure contours on the Z/D=0.01 plane 

 

As shown in the Table 5-2, which could also be found in Figure 5.17, the theta degrees 

from the CFD simulation generally align well with the corresponding GLOF degrees across 

most of the angular planes, indicating a good agreement between the two methods. It should 

be noted that the data shown in Table 5-2 was only some representative values, as displaying 

the full dataset would result in an impractical and overly lengthy presentation. The values of 

the CFD and GLOF measurements for theta are mostly within a narrow range, with only slight 

deviations observed in certain regions. For example, at an angular plane of -5° and R/D=0.809, 

the CFD measurement of theta is -104.6°, while the GLOF measurement is 4.7°, showing a 

significant discrepancy. This difference could be attributed to potential experimental setup 

variations, such as slight misalignments or inconsistencies in the flow visualization technique 

at this particular point. 

Other discrepancies, such as the differences between CFD and GLOF measurements at 

R/D=0.553 and 45° angular plane, where the CFD value is 46.6° and the GLOF value is 5.6°, 

could be due to the inherent limitations of the numerical simulation, particularly in regions with 

more complex flow dynamics like vortex formation and recirculation areas, where turbulence 

models might introduce small inaccuracies. 
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Table 5-2 Five-Hole Probe Data compare with GLOF and CFD data at y/D ≈0.0083 

Angluar 

plane 
R/D y/D Phi degree 

Theta 

degree 

GLOF 

degree 

CFD 

degree 

-5 0.809 0.0083 5.0 -104.6 4.7 -83.2 

-5 1.532 0.0085 0.1 -2.8 4.7 -4.3 

0 0.596 0.0078 -2.2 -156.7 4.4 -116.6 

0 1.532 0.0085 1.8 0.0 3.3 -8.5 

5 0.596 0.0082 -4.0 138.2 3.4 103.8 

5 1.532 0.0083 1.1 1.9 2.6 -4.0 

25 0.553 0.0084 -0.2 69.0 5.7 77.0 

25 0.936 0.0086 1.7 44.4 5.7 30.0 

45 0.553 0.0083 0.3 46.6 5.6 34.0 

45 1.191 0.0079 1.3 21.1 5.2 15.5 

90 0.553 0.0099 0.7 1.3 4.5 -12.5 

90 2.375 0.0085 2.1 2.0 4.0 -5.7 

 

In general, the CFD degrees closely match the GLOF degrees, with deviations that are 

likely due to factors such as grid resolution, turbulence model assumptions, and the sensitivity 

of the CFD solution to boundary conditions. These discrepancies highlight the challenges in 

accurately capturing complex flow features near the cylinder’s surface and wake region, where 

turbulence-induced effects are pronounced. Nonetheless, the overall consistency between the 

CFD and GLOF results supports the reliability of the CFD simulations in replicating the 

experimental findings under the conditions studied. 
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Figure 5.17 Comparison of experimental angle and CFD calculation angle 

 

5.3 Conclusion 

This chapter evaluates the performance of the Global Luminescent Oil-Film method, 

especially its application in surface flow visualization. The results show both its potential and 

limitations. The GLOF method can provide non-intrusive flow visualization and capture details 

like vortex formation and boundary layer separation. However, it has become clear that this 

method is not suitable for studying surface friction fields around complex geometries, such as 

a cylinder in flow. 

In this thesis, the inapplicability of the GLOF method is directly reflected in its 

difficulty in accurately reproducing the expected flow behaviour around a cylinder. Although 

the GLOF results can match certain visual features of the flow, such as saddle points and 

separation lines, there are obvious differences in the surface friction patterns compared with 

experimental data and CFD results. GLOF introduces vortices that should not exist physically 

and captures abnormal flow patterns in areas where separation occurs. This inconsistency 
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shows that while GLOF provides useful insights for flow visualization, it needs further 

improvements to improve the accuracy of its friction field calculations, especially in complex 

flow scenarios. The reasons for these limitations may because of the GLOF technique's reliance 

on optical flow data and the complexity of processing this information, which can lead to errors 

in identifying flow fields, especially in flow areas where separation or reattachment occurs. 
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Chapter 6 Synthetic Data Generation and Unet Training 

This chapter focuses on the research method of using generative adversarial networks 

(GAN) and U-Net models to predict surface flow fields by using experimental data and 

synthetic data. The process can be divided into four key stages, as shown in Figure 6.1. 

In the sGAN training phase, which is outlined in red in the Figure 6.1, experimental 

data is collected and processed. The process starts with a calibrated visualization image, which 

has undergone several preprocessing to highlight important features. The followed steps 

include dividing the image into smaller cells to capture localized flow details, grayscale 

conversion and image smoothing to reduce noise and improve feature clarity. The final step of 

this phase involves exposing intensity gradients, which enhances the visibility of key flow 

structures. Once pre-processing is complete, an edge detection step will generate a streaks 

image. This streaks image serves as input for the sGAN, marking the end of the training phase 

for the GAN. 

The image synthesis phase involves using the trained sGAN to generate synthetic data. 

This phase starts with defining random surface flow boundary conditions, followed by 

modeling and meshing to simulate surface geometries. These geometries are used in 

OpenFOAM CFD simulations, producing a surface flow field. The resulting flow field is then 

converted into a synthetic visualization image. The sGAN processes this image to create a 

synthetic streaks image, which closely mimics the texture and features of real experimental 

data. This phase is crucial for generating a diverse dataset that improves the robustness of the 

model. 

In U-net training phase which is outlined in yellow in the Figure 6.1, both experimental 

and synthetic data are combined to train a U-Net model. The inputs to the U-Net include the 

calibrated visualization images from experiments and the synthetic visualization images 

generated by the sGAN. Additionally, the chaincode method is used to annotate flow structures 

in the experimental data, providing detailed information for training. The U-Net is trained to 

output surface flow fields, learning from both real and synthetic data to enhance its predictive 

accuracy and generalization capabilities. 

Each output pixel of the U-Net corresponds to a local flow orientation, encoded through 

a colour-to-angle mapping scheme. Through this way, the output image could serve as both a 

visual and quantitative result of the flow field. 
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In the application phase (shown in green), the trained U-Net is used for flow field 

prediction. It takes a new visualization image as input and generates a predicted surface flow 

field. 

 

 

Figure 6.1 Flow chart of flow field prediction algorithm 
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6.1 Data Collection and Preparation 

6.1.1 Experimental Data Acquisition 

The data is sourced from experiments, with the basic principles aligning with the 

methods described in the previous chapter Methodologies 3.2.1, although some details have 

been adjusted specifically for the neural network model.  

In this work, a method known as "Chaincode"(Bansal et al., 2011) was employed to 

annotate the experimental images. In brief, similar to the approach described in the preceding 

chapter, a set of ridges was first extracted from the images using algorithms. The direction of 

each ridge was manually assessed by the researchers and subsequently mapped to a vector field. 

A total of 50 images were processed using this method. 

Chaincode is widely used in fingerprint recognition to represent object contours. A 

pixel image can be fully reconstructed from the chaincode of its contour, allowing for the 

extraction of minutiae. In this method, the image is scanned from top to bottom and right to 

left, detecting transitions from white (background) to black (foreground). The contour is then 

traced counterclockwise and represented as an array of contour elements. Each contour element 

corresponds to a pixel on the contour, containing the pixel's x and y coordinates, the slope or 

direction in which the contour enters that pixel, and curvature along with other auxiliary 

information. 

In Figure 6.2b, minutiae locations within the chaincode contours are displayed. The 

black regions represent the binarized contours of the target ridges, which have been traced 

using the chaincode algorithm. The red points highlight ridge endings, where the contours 

exhibit significant leftward turns, indicating termination points of the ridges. In contrast, the 

blue points denote bifurcation points, which correspond to significant rightward turns where a 

single ridge splits into multiple paths. 

In the original binarized flow visualization images derived from flow visualization 

experiments, the main area of the target streak is wider than a single pixel. As the ridge 

boundary is traced counterclockwise, termination feature points (the ends of the ridges) are 

detected when there are significant turns in the trajectory. To calculate the angle theta at point 

P, as illustrated in Figure 6.2c, vector Pin points to contour point P, while vector Pout points 

outward from P.  
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Figure 6.2 Flow Visualization and Minutia Extraction: (a) Grayscale Image of Flow Visualization 
(Partial Region), (b) Minutia Locations in Chaincode Contours, (c) Significant Turn Calculation 

in Minutia Analysis 

 

The calculations for Pin and Pout utilize multiple adjacent contour points to mitigate 

local noise and provide a better vector estimate through averaging. 𝜃 can be expressed by the 

following formula: 

 𝜃 = cos−1
𝑃𝑖𝑛 ∙ 𝑃𝑜𝑢𝑡

|𝑃𝑖𝑛| ∙ |𝑃𝑜𝑢𝑡|
 (6.1) 
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Using chaincode to generate the directional field is more efficient and robust in image 

enhancement for several reasons: (1) chaincode generation relies on pre-binarization 

algorithms; (2) both adaptive binarization and chaincode generation algorithms are efficient; 

(3) the directional field is directly computed by tracking the chaincode on a discrete grid. The 

goal is to obtain the ridge directions for the entire window, rather than for each individual pixel. 

 

Figure 6.3 Chaincode Method for Minutiae Calculation and Flow Field Visualization. 

 

Figure 6.3 shows an example of the flow field analysis process on a test surface using 

minutiae detection and directional feature extraction. The leftmost image illustrates the original 

test surface captured under specific imaging conditions, where a ROI is highlighted for detailed 

analysis. The magnified grayscale patch reveals the fine-grained texture patterns characteristic 

of natural wood grains. In the centre, the minutiae detection step identifies critical ridge 

features such as endpoints and bifurcations. The rightmost image demonstrates the estimated 

local orientation field, where short green line segments indicate the dominant flow direction 

within each subregion. 

After collecting a substantial amount of the experiment data, the steps involved in data 

processing are critical for constructing a specific dataset. This dataset must then be divided into 

training, testing, and validation sets in a ratio of 8:1:1 to facilitate subsequent model 

training(Goodfellow, 2016). The complexity of data processing primarily arises from the 

inherent errors commonly present in experimental data, which necessitates prioritizing the 

model's ability to "learn" the mapping relationship between specific experiments and abstract 

flow fields. To achieve this effectively, the dataset must be constructed based on certain 

assumptions. 
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In this context, the RLF method(Leer and Kempf, 2021) provides an important 

theoretical foundation. According to relevant literature, this method derives the following 

points from a set of initial assumptions: (1) the flow at a given point in the flow field is naturally 

influenced by predetermined physical boundary conditions and surrounding geometrical 

shapes; (2) any wall surface in contact with the flow will affect the flow; (3) the influence of 

geometrical elements close to the point of interest in the flow field typically outweighs that of 

more distant elements. Although these three assumptions are not universally applicable, they 

offer significant insights for mapping from geometrical shapes to flow. 

The complete flow visualization is shown in Figure 6.3. Upon zooming into the detailed 

regions, the results of the chaincode application can be observed, where the black and white 

colours represent image intensity. Black indicates regions where streaks are likely to be present. 

Blue dots represent the locations of endings, while red dots denote bifurcations. However, the 

flow field obtained from this information is sparse. To obtain directional information for each 

pixel, linear interpolation is applied. The final flow field is represented by the green lines in 

the image on the right. 

Figure 6.4 illustrates the distribution ranges of the velocity components u and v in the 

entire experiment dataset, where u represents the horizontal velocity component and v 

represents the vertical velocity component. The values of u and v typically range from -100 to 

+100, with approximately 95% of the values concentrated within this range. To prevent outliers 

from impacting the final results, these anomalous values were manually removed prior to 

dataset construction. Since typical u and v values show minimal variation compared to these 

extreme values, retaining such outliers could potentially lead to biased model training and 

reduced prediction stability, as documented in Tukey (1977)’s and Agrawal and Agrawal 

(2015)’s work. 

To fill the gaps left by the removal of outliers, a linear interpolation method was applied. 

This approach effectively restores data continuity, allowing the dataset to maintain physical 

consistency while minimizing biases that may arise from missing values. 
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Figure 6.4 Distribution of u and v Values 

 

In the data processing procedure, physical consistency analysis is an essential 

approach for verifying the accuracy of experimental or numerical simulation data. This 

analysis ensures that the phenomena described in the dataset align with fundamental theories 

of fluid mechanics by checking whether the data adheres to known physical laws or 

principles. Based on the research by Bansal et al. (2011), this study focuses on examining 

the continuity of the dataset to ensure that the resulting data is not only statistically 

reasonable but also physically reliable. 

The expression used to verify the continuity equation for an incompressible flow is 

as follows:  

 ∇𝒖 = 0 (6.2) 

 ∇𝒖 =
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
 (6.3) 

Therefore, for an ideal system, the theoretical value of ∇u should be zero or 

approximately zero. By examining ∇u at all points in the flow field, it is possible to identify 

any points exhibiting "inconsistency". Figure 6.5 presents the calculated results of ∇u for 

selected images in the dataset. In this figure, darker colours indicate higher values, while lighter 

colours signify values closer to zero. Observing the data distribution in the figure makes it 

possible to conclude that most flow characteristics in the dataset exhibit strong continuity. This 

is clearly reflected in Figure 6.5, where the variations in ∇u values across points display a 

relatively stable trend, indicating that physical consistency has been maintained throughout 

data processing, thus ensuring the reliability of fluid motion characteristics. In summary, the 
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dataset demonstrates high integrity and continuity, making it well-suited for model training 

purposes. 

 

Figure 6.5 ∇u Distribution for Flow Field Consistency 

 

6.2 Synthetic Data Generation 

As noted in the previous chapter, despite being a relatively novel technique in recent 

literature, the GLOF method exhibits poor robustness and does not align well with 

experimental results, rendering it unsuitable for applications such as generating training data. 

However, due to the necessity of having a reliable data source, the focus is shifted to GANs 

(Generative Adversarial Networks), which can generate synthetic images to serve as a training 

set. This approach has been documented in works by authors such as Frid-Adar et al. (2018) 

and Antoniou (2017). In simple terms, this involves utilizing techniques like style transfer to 

enhance the data generation process. 

The basic structure of GANs consists of a generator and a discriminator, with most 

existing research being based on the original GAN framework proposed by Goodfellow et al. 

(2014). Therefore, improvements and applications based on this structure are of significant 

reference value and can serve as benchmark models for comparative experiments. This section 

compares four models: the proposed sGAN, the baseline model pix2pix(Isola et al., 2017), 

GauGAN(Park et al., 2019), and CycleGAN(Zhu et al., 2017).  

First, a brief overview of these models is provided: pix2pix, based on Conditional 

Generative Adversarial Networks (cGANs), is used for image-to-image translation tasks and 
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has been widely applied in tasks such as image inpainting and style transfer, as shown in Figure 

6.6a. GauGAN generates high-quality landscape images from user-provided sketches or 

semantic segmentation maps, demonstrating strong detail generation capabilities, as shown in 

Figure 6.6b. CycleGAN, on the other hand, performs image-to-image translation through 

unsupervised learning, enabling style transfer or image synthesis without paired data, and is 

particularly suited for domain adaptation tasks, as shown in Figure 6.6c. 

 

Figure 6.6 GANs Architectures. (a) pix2pix; (b) GauGAN; (c)CycleGAN. 
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6.2.1 Training process 

In this work, the experimental data from Section 6.1 were used to train the GAN neural 

network to generate synthetic images. The GAN consists of two main components: a 

discriminator and a generator, as described in the following paragraph. The GAN employed in 

this study is based on the CycleGAN architecture(Zhu et al., 2017). However, due to the 

specific requirement for streak detection in the task, the generator is replaced with a U-Net 

architecture, and an attention mechanism(Vaswani et al., 2017) is incorporated to improve 

streak recognition. This modified network is referred to as SGAN. 

In the GAN architecture, the generator network consists of five blocks, each of which 

includes a Convolution Transpose layer, Batch Normalization, and ReLU activation. Only the 

last Convolution Transpose layer is followed by a Tanh activation layer, replacing Batch 

Normalization and ReLU. The detailed parameters for each layer in the generator network are 

shown in Table 6-1. 

The discriminator network is composed of five consecutive convolutional blocks. Each 

block includes a Convolution layer, Batch Normalization, and a LeakyReLU activation layer. 

Unlike the generator, the discriminator uses LeakyReLU as the activation function in all blocks 

except the last one. The last block substitutes the Batch Normalization and LeakyReLU layers 

with a Sigmoid and Flatten layer to output a single prediction score. The detailed parameters 

of the discriminator network are provided in Table 6-2. 

Both networks were trained using the Adam optimizer with a learning rate of 0.0002. 

The decay factors for the Adam optimizer were set as follows: β₁ = 0.5 and β₂ = 0.999. 
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Table 6-1 The Parameter of the Generator Architecture 

No. Names of the Layers 

Number of 

Convolutional Layer 

Filters 

Convolutional Layer 

Filter 

Size/Stride/Padding 

1 Input + Reshape 3 - 

2 Conv2d + LeakyReLU 

+ BatchNorm 

64 4/2/1 

3 Conv2d + LeakyReLU 

+ BatchNorm 

128 4/2/1 

4 Conv2d + LeakyReLU 

+ BatchNorm 

256 4/2/1 

5 Conv2d + LeakyReLU 

+ BatchNorm 

512 4/2/1 

6 Conv2d + LeakyReLU 

+ BatchNorm 

512 4/2/1 

7 Conv2d + LeakyReLU 

+ BatchNorm 

512 4/2/1 

8 Conv2d + LeakyReLU 

+ BatchNorm 

512 4/2/1 

9 ConvTranspose2d + 

ReLU + BatchNorm 

512 4/2/1 

10 ConvTranspose2d + 

ReLU + BatchNorm 

512 4/2/1 

11 ConvTranspose2d + 

ReLU + BatchNorm 

256 4/2/1 

12 ConvTranspose2d + 

ReLU + BatchNorm 

128 4/2/1 

13 ConvTranspose2d + 

ReLU + BatchNorm 

64 4/2/1 

14 ConvTranspose2d + 

Tanh 

3 4/2/1 
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Table 6-2 The Parameter of the Discriminator Architecture 

No. Names of the Layers 

Number of 

Convolutional Layer 

Filters 

Convolutional Layer 

Filter 

Size/Stride/Padding 

1 Conv2d + LeakyReLU 64 4 / 2 / 1 

2 Conv2d + BatchNorm 

+ LeakyReLU 

128 4 / 2 / 1 

3 Conv2d + BatchNorm 

+ LeakyReLU 

256 4 / 2 / 1 

4 Conv2d + BatchNorm 

+ LeakyReLU 

512 4 / 1 / 1 

5 Conv2d + Sigmoid + 

Flatten 

1 4 / 1 / 1 

 

Training a GAN network is computationally intensive and requires extensive training 

time and resources. For this, a RTX A6000 GPU was used, and the network was implemented 

using PyTorch(Paszke et al., 2019). The training process was carried out on NVIDIA CUDA 

Centre (NCC) GPU system. The code for this experiment is available on GitHub at 

https://github.com/Dehakaa/sGAN, allowing for reproducibility of the results. 

The objective is to generate a corresponding synthetic flow visualization image based 

on a given flow field map. To ensure high fidelity and minimal artifacts, the GAN model should 

effectively learn the mapping between flow field data and visualization images. 

The loss function is less critical for GAN-based neural networks, mainly because the 

GAN architecture exploits an adversarial process between the generator (G) and discriminator 

(D) to dynamically improve output quality (Goodfellow et al., 2014). The discriminator, due 

to its robust ability to differentiate between real and synthetic data, provides relatively accurate 

feedback, guiding the generator more effectively. 

Unlike in supervised learning models, where validation loss directly reflects the model's 

generalization capability, GANs do not exhibit a straightforward validation loss. This is 

because the discriminator is trained to fit the current state of the generator, which may lead to 

overfitting. Therefore, the loss values are not reliable indicators of the model's ability to 

generalize to unseen data. 
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Under these conditions, although the generator’s loss (G loss) may appear suboptimal, 

the model is still able to achieve high-quality results, as demonstrated in Figure 6.7. In the 

figure, the D loss refers to the discriminator’s loss, which indicates how well the discriminator 

is distinguishing between real and generated data. 

 

 

Figure 6.7 GAN Training Results for Synthetic Flow Visualization Generation 

 

6.2.2 Synthetic Image Results 

This section presents extensive experimental results to validate the effectiveness and 

superiority of the proposed method. 

Figure 6.8 illustrates the sGAN results using experimental images from the Durham 

cascade. The left image shows the input data, which were obtained from streaks generated 

through CNN-based edge detection applied to flow visualization images, as described earlier, 

the middle image displays the real experimental images, and the right image presents a flow 

visualization prediction generated by the sGAN. While Mean Squared Error (MSE) is 

commonly used to quantitatively assess predictive performance, it is not particularly suitable 

for the present task. The task at hand is essentially style transfer, where even under identical 
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experimental conditions, two flow visualization images will not be exactly the same. However, 

from a visual perspective, realistic synthetic "experimental images" can be generated 

convincingly, especially when considering streaks in the images. 

 

Figure 6.8 sGAN Results for Flow Visualization Synthetic images 

 

Quantitatively comparing the quality of generated images has long posed a challenge 

in establishing suitable evaluation standards. For GAN architectures, the most widely accepted 

evaluation metrics are the Inception Score (IS) and the Fréchet Inception Distance (FID) scores. 

The IS method leverages a pre-trained InceptionV3 model to assess the quality and 

diversity of generated images. The InceptionV3 model, trained on the ImageNet database, 

which contains over a million images, achieves 78.8% accuracy in classifying images into 

1,000 categories. However, IS does not evaluate the similarity between generated images and 

real images. Therefore, in this work, the FID method was introduced to assess image quality 

by comparing the distribution of generated images with the distribution of real images used to 

train the generator. 
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The core idea of FID is to map both the generated images and real images into a feature 

space and then compare their distributions in this space. The specific steps are as follows: 

1. Feature Extraction: Use the InceptionV3 model (typically using the feature vector from 

its final layer) to extract features from both the generated and real images. 

2. Feature Distribution Calculation: For both the generated and real image sets, the 

extracted feature vectors form a multi-dimensional normal distribution, which can be 

characterized by a mean vector (μ) and a covariance matrix (Σ). 

3. Fréchet Distance Calculation: The distribution of generated images and real images is 

then substituted into the Fréchet Distance formula: 

 FID = ‖𝜇𝑟𝑒𝑎𝑙 − 𝜇𝑔𝑒𝑛‖
2

+ Tr (𝐶𝑥 + 𝐶𝑦 − 2(𝐶𝑥𝐶𝑦)
1/2

) (6.4) 

Here, Tr represents the trace of a matrix, which is the sum of all diagonal elements. 

𝜇𝑟𝑒𝑎𝑙 and 𝜇𝑔𝑒𝑛 are the mean activation values generated from the final average pooling layer 

for real and generated images, respectively. Cx and Cy are the sample covariance matrices of 

these activation values. The trace is determined using the following formula: 

 Tr ((𝐶𝑥𝐶𝑦)
1/2

) = ∑ 𝜎𝑖(𝐶𝑥
𝑇𝐶𝑦𝐶𝑦

𝑇𝐶𝑥)

𝑚

𝑖=1

 (6.5) 

In this expression, 𝜎𝑖 represents the singular values of CxCy, as the eigenvalues and 

singular values are identical in the context of covariance matrices. 

The trained GAN was used to generate the required synthetic images, and their FID 

values are determined and summarized in  

Table 6-3. Initially, the GAN's FID score on the experimental dataset decreased 

gradually from 24.5 to 14.8, indicating that the model progressively learned the characteristics 

of the data distribution, thereby significantly improving the quality of generated images. 

Notably, the model reached its optimal state at 150 epochs, demonstrating the effectiveness of 

the training process, showing the corresponding changes in the GAN model as training epochs 

increased. 
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Table 6-3 Training performance of GANs 

Model Name 

Number of 

Generated 

Images 

Number of 

Real Images 
FID Score 

Training 

Epochs 
Notes 

GAN 500 500 24.5 50 Initial training 

GAN 500 500 16.7 100 Mid-term training 

GAN 500 500 14.8 150 Optimal model 

 

6.2.3 Comparison of generation performance with respect to different models 

 

 

Figure 6.9 Comparison of Synthetic Images Performance with Different GAN Models 

 

From the result images in Figure 6.9, it can be seen that the surface flow visualization 

images generated by sGAN and CycleGAN are almost identical to the real images. However, 

when it comes to GauGAN, which focuses solely on style transfer, it fails to generate 

convincing images. It only produces streaks with corresponding colors near the streak regions, 

while other areas exhibit lower resolution. This is likely because GauGAN is primarily 

designed for generating the overall style of an image rather than precise detail accuracy. As a 

result, its generative capacity is limited when dealing with tasks that require fine structural 
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details or physical features. Specifically, GauGAN focuses on converting sketches or semantic 

segmentation maps into high-quality images but may overlook the accurate reproduction of 

complex physical phenomena or details. Studies suggest that style transfer models like 

GauGAN often perform poorly in detail reconstruction, especially when fine structures or high-

frequency information are involved, leading to a loss of resolution or distortion in the generated 

images.(Gui et al., 2023) 

By comparing the generated results with the real flow visualization images and 

calculating the differences using formula 

ℒ𝐿1
(𝐺) = 𝐸𝑥,𝑦[‖𝑥 − 𝐺(𝑦)‖𝑙] 

, previously introduced as Eq.(3.10), the absolute error map of the generated images is 

shown in Figure 6.10. In the map, lighter colours indicate larger errors, while darker (blue) 

colours represent smaller errors. The flow field images generated by the pix2pix model are 

structurally close to the real flow fields but exhibit some deviations in detail and texture. The 

absolute error map reveals that pix2pix shows a higher concentration of warm colours in certain 

areas (particularly in the streak regions), indicating lower prediction accuracy in key areas. 

Pix2pix mainly relies on pixel-wise loss computation, which enables it to generate relatively 

sharp edges but causes detail loss in complex textured regions. The images generated by 

GauGAN show relatively small errors in the streak regions, with a broader distribution of 

cooler colours. However, white noise points are evenly spread across the entire image, 

suggesting that the model may need improvement in generating local consistency in fine details. 

CycleGAN performs well in predicting the overall structure of the flow field but shows reduced 

accuracy in regions with large directional changes (as shown in the bottom row of Figure 6.10, 

where CycleGAN's predictions exhibit large white areas at points of curvature). The sGAN 

model demonstrates a more balanced performance in generating both overall structure and key 

regions. Compared to the other models, sGAN maintains global consistency while also 

capturing finer details more effectively. This is likely due to sGAN's focus on improving the 

accuracy of image content reconstruction, allowing it to achieve a better balance between 

structural integrity and detailed texture accuracy in the generated results. 

To investigate the efficiency of generating "effective information" in synthetic images, 

this study also performs a Peak Signal-to-Noise Ratio (PSNR) analysis for each method. The 

peak signal-to-noise ratio is a metric that quantifies the ratio between the power of the signal 

and the power of the noise. PSNR is defined through the Mean Squared Error (MSE). For two 



Chapter 6 

123 

 

m×n grayscale images I and K, where one is the ground truth and the other is the predicted data, 

the MSE is defined as: 

 𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑[𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]2

𝑛−1

𝑗=0

𝑚−1

𝑖=0

 (6.6) 

The PSNR value is then determined by the following equation: 

 𝑃𝑆𝑁𝑅 = 10 ∙ log10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
) (6.7) 

here MAXI represents the maximum possible pixel value of the image. If each sample 

point is represented using 8 bits, then MAXI = 255. higher PSNR values indicates less distortion 

and better preservation of the original image details. This is performed by reducing the noise 

in the input image. (Sethi et al., 2022) 

 

 

Figure 6.10 Error Cloud Pictures of Synthetic Images Performance from Different GAN Models 

 

Table 6.4 lists PSNR and SSIM for four different generative adversarial networks 

(GANs)—Pix2pix, GauGAN, CycleGAN, and sGAN—evaluated on three different real 
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images. The evaluation metrics include SSIM, MSE, and PSNR, which provide a 

comprehensive measure of image quality in terms of similarity to the real image. 

Table 6-4 PSNR and SSIM Comparison of Different GAN Models 

Real image Network Model SSIM MSE PSNR (dB) 

0 

Pix2pix 0.6017 0.0037 24.31 

GauGAN 0.6194 0.0037 24.30 

CycleGAN 0.6434 0.0029 25.31 

sGAN 0.8686 0.0008 30.79 

1 

Pix2pix 0.4617 0.0056 22.50 

GauGAN 0.5452 0.0063 21.99 

CycleGAN 0.5217 0.0051 22.93 

sGAN 0.8503 0.0011 29.67 

2 

Pix2pix 0.4439 0.0060 22.20 

GauGAN 0.4742 0.0068 21.69 

CycleGAN 0.4294 0.0077 21.13 

sGAN 0.8540 0.0012 29.36 

 

For Image 0, sGAN achieved the highest SSIM value of 0.8686, significantly 

outperforming the other models. This indicates that sGAN generates images most similar to 

the real image in terms of structural quality, with the highest PSNR value of 30.79 dB and the 

lowest MSE of 0.0008. In contrast, Pix2pix, GauGAN, and CycleGAN had lower SSIM scores, 

with Pix2pix showing the lowest PSNR (24.31 dB) and the highest MSE (0.0037). 

For Image 1, sGAN again led with an SSIM of 0.8503, a PSNR of 29.67 dB, and an 

MSE of 0.0011, showcasing its ability to preserve image quality across different inputs. On the 

other hand, Pix2pix produced the lowest SSIM of 0.4617 and a PSNR of 22.50 dB, indicating 

a relatively poor reconstruction of the real image. GauGAN and CycleGAN perform 

moderately, with CycleGAN having a slightly better SSIM and PSNR than GauGAN. 

In Image 2, sGAN continued to outperform the other models, achieving an SSIM of 

0.8540, a PSNR of 29.36 dB, and an MSE of 0.0012. The other models, particularly Pix2pix 

and CycleGAN, had the lowest performance with SSIM values of 0.4439 and 0.4294, 

respectively. Pix2pix's PSNR is the lowest at 22.20 dB, further highlighting sGAN’s superior 

image quality in this case. 
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Overall, sGAN consistently produces the highest SSIM, PSNR, and lowest MSE across 

all three images, demonstrating its effectiveness in generating high-quality images with better 

structural and visual fidelity compared to Pix2pix, GauGAN, and CycleGAN. 

6.3 Test data generation 

This section describes the data generation process used throughout the remainder of 

this chapter, primarily focusing on simple flow fields, such as the flow around a cylindrical 

body with a random base shape, and the processing of GAN-generated images. The goal of this 

data generation is to prepare training materials for the U-Net model, as illustrated in Figure 6.1. 

This data will be used for pre-training in Section 6.4. The procedure was as followed. 

Arbitrary two-dimensional shapes were generated using B-spline curves, where control 

points were randomly sampled within a specified range. These shapes simulate simplified flow 

obstacles. Each shape was then meshed for simulating 3D laminar flow fields using 

OpenFOAM. The Navier-Stokes equations were solved under steady-state conditions with 

uniform inlet velocity and zero-gradient outlet conditions. After convergence, the resulting 

velocity components were extracted and normalized. These flow fields serve as the input to the 

U-Net network. Corresponding synthetic visualization images were generated from the 

simulation results. Each sample thus consisted of a paired set: [visualization image (as input), 

flow field (as output)]. The data was resized to 256×256 pixels to ensure consistency and 

efficiency during training. To improve the generalization capability, additional flow field data 

from the Durham cascade experiments Martinez-Castro (2022) was included and processed 

similarly. This pre-training dataset enabled the U-Net model to first learn basic flow structures 

and visualization mappings, before later fine-tuning with experimental datasets in Section 6.4. 

6.3.1 Generation and Preprocessing of Simple Flow Field Data 

6.3.1.1 Mesh Generation for Simple Geometries 

The first step in generating random shapes was to plot n random points within the range 

[0,1]2, and then translated them so that their centroid could be located at (0, 0). These points 

were then sorted in ascending order based on their polar angles (see Fig 6.11a). 

Unlike the work by Chen et al. (2019a), which generated random shapes using Bezier 

curves, this work employed B-spline curves to generate random shapes. Specifically, the 

`scipy.interpolate.splprep` and `scipy.interpolate.splev` functions in Python 3.8 were used. 
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In the process of constructing the B-spline curve, a set of discrete points pi was first 

defined as the basis for generating the curve. To ensure smooth interpolation of these points, 

the points were first sorted by their polar angles. Then, the point set is parameterized using the 

`splprep` function to create a smooth B-spline curve. 

To control the smoothness of the curve, a parameter s was introduced. The range of s 

is [0, ∞), and in this thesis, s = 0.5. When s is close to 0, the resulting curve tightly fits the input 

discrete points, capturing sharp features of the point set. When s takes on a larger value, the 

curve becomes smoother and deviates more from the original point set, resulting in a softer 

shape. Therefore, by adjusting s, the global smoothness of the curve could be controlled. 

The shape of the B-spline curve is primarily defined by the combination of knots and 

control points. The shape of each curve segment is determined by its control point set, which 

is similar to the intermediate control points in Bezier curves, influencing the tangent direction 

and the curvature of the segment, as shown in Figure 6.11b. Unlike Bezier curves, B-splines 

do not pass directly through the control points at the start and end of each segment. Instead, the 

curve is interpolated between these control points based on the knot sequence. This method 

ensures that the shape of each segment is defined by a set of adjacent control points, which 

maintains continuity and smoothness between segments. 

During the spline construction process, the curve's degree can be further adjusted using 

the parameter k. By setting k = 3, a cubic B-spline curve is generated, and the curve has C2-

smoothness at the connection points between segments. This means that the curve transitions 

smoothly at the knots without noticeable angular discontinuities. This property is well-suited 

for most smooth connection requirements, and produces visually pleasing curves. 

In terms of tangent control, B-splines differ from Bezier curves in that they do not 

explicitly set the tangent directions. Instead, the density of the knots controls the tangent shape 

in different regions of the curve. A denser knot sequence leads to sharper bends in the curve, 

while a sparser knot sequence makes the curve appear more linear. Although tangent control is 

not as precise as in Bezier curves, B-splines offer good smoothness and can generate fluid 

curves. 

To create a closed spline, the `splev` function is used to sample the curve, obtaining a 

smooth set of points that form a closed loop. This loop can then be used as the outline of a 

geometric shape or as smooth mesh lines for further rendering and visualization. This method, 



Chapter 6 

127 

 

similar to Bezier curves, achieves smooth curves through global smoothness control and the 

influence of local control points. 

 

Figure 6.11 Random Shape Generation with B-spline Curves. (a) Random original points 
generation; (b) Control points generation; (c) Related Bezier curves. 

 

By specifying different values of n, a variety of shapes can be generated, as shown in 

Figure 6.12. Although most shapes are valid, some unrealistic shapes occasionally occurred 

with low probability and were manually removed. Additionally, since the goal of this section 

is to model near-surface flow conditions, the distance between the generated shape and the 

surface, known as the "tip clearance," must be specified.  

 

Figure 6.12 Random Shape Generation Results of Different n Number 

 

6.3.1.1 CFD Simulation Setup 

In this section, CFD was used to generate and process simple flow field data for training a U-

Net model. OpenFOAM was selected for this task due to its suitability for batch processing 

and its open-source flexibility in large-scale simulations. The goal was to simulate various flow 

conditions around arbitrary shapes generated by B-spline curves, which would later be used for 

training a deep learning model. A non-structured mesh was created for the fluid domain using 

FEATool’s mesh generation tools. The fluid domain was divided into two regions: one close 

to the cylinder wall and the other farther from it. In the region near the cylinder, where flow 

gradients are expected to be steep and detailed resolution is required, the mesh elements were 
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set to a very fine size of 0.0002. The top view of the generated mesh is shown in the Figure 

6.13. This fine grid allowed for the accurate capture of boundary layer effects, vortex shedding, 

and other complex flow features typically observed in such proximity to solid surfaces. 

Conversely, in the outer region of the fluid domain, where flow gradients are expected to be 

less pronounced, larger mesh elements of size 0.002 were employed. This helped reduce 

computational costs while still ensuring an adequate resolution for capturing global flow 

behaviour. This refinement captured the detailed flow behaviour near the cylinder while 

reducing computational costs in the outer region. The average number of cells was 

approximately 200,000, providing a balance between resolution and computational efficiency.  

Boundary conditions were set with no-slip conditions at the cylinder surface and far-

field conditions at the outer boundaries. The inlet and outlet boundaries were defined to ensure 

realistic flow behaviour. A uniform inlet velocity of 19 m/s (u = 19  m/s ,v = w = 0) was applied 

at the inlet. The outlet had a homogeneous Dirichlet condition for the pressure field (p = 0). 

The top and side boundaries of the domain were assigned free-slip conditions. 

The simulations were conducted using OpenFOAM v2212 with the simpleFoam solver, 

which is suitable for steady-state, incompressible flow simulations. The k-ε turbulence model 

was used to simulate the turbulent flow behaviour. A convergence criterion of 10-5 for residuals 

was set, with the pressure and velocity fields monitored during the simulation to ensure stability. 

 

 

Figure 6.13Top View of the Unstructured Mesh for CFD Simulation 
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6.3.1.2 Results and Dataset Generation 

The dataset consists of 5,000 shapes along with their steady-state velocity and pressure 

fields computed at a Reynolds number of 3000. This Reynolds number was selected to ensure 

turbulent flow characteristics while maintaining numerical stability, and was calculated based 

on a characteristic length scale defined by the characteristic diameter of cylinder (L = 0.02 m), 

and a fixed inlet velocity (U = 19 m/s). Figure 6.14 illustrates the pressure field corresponding 

to the shape shown in Figure 6.13. Naturally, these results cannot be directly used for model 

training; they require preprocessing as described in Section 6.3.3. The dataset was 

systematically divided into three parts: 80% for the training set, 10% for the validation set, and 

10% for the test set. 

 

Figure 6.14 Pressure field of a sample shape shown in Figure 6.13 

 

6.3.2 Durham Cascade Flow Field Simulation Based on Specific Tip Clearance 

The analytical approach and model selection in this section are informed by the work 

of Martinez-Castro (2022), utilizing the Transition SST turbulence model to solve the RANS 

equations. This model, based on the k-ε turbulence framework, was initially proposed by 

Wilcox (1988) and primarily addresses the transport equations for k (turbulent kinetic energy) 

and ε (dissipation rate). The Transition SST model incorporates modifications to account for 

the effects of primary turbulent shear stresses, using a limiter function to adjust the eddy 

viscosity (Menter, 1992). Additionally, this model solves transport equations for intermittency 
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(γ) and the Reynolds number (Reθ) and is thus also referred to as the (γ - Reθ) turbulence model. 

After post-processing, these outputs would also be used as training data/for validation purposes. 

6.3.3 GAN Synthetic Image Generation Process 

In both Sections 6.3.1 and 6.3.2, the resulting data is structured in a "coordinate-data" 

format, where the data may include u-velocity, v-velocity, pressure fields, or other flow field 

information. Typically, a mesh contains numerous nodes; however, using such high-resolution 

data directly in machine learning would drastically increase the number of training parameters, 

leading to an excessive computational cost. To address this, the study resamples the data to a 

256 × 256 Cartesian grid, aligning with the input image size. 

 

Figure 6.15 Mesh Data Projection onto Cartesian Grid 

 

The first step is to project the mesh data onto a 256 × 256 Cartesian grid while 

preserving accuracy as much as possible. The method is illustrated in the Figure 6.15. For 

instance, to obtain flow field data at a target coordinate, consider the point T at (4,4) (shown 

as a green triangle in the Figure 6.15). The algorithm identifies the four nearest points A1, A2, 

A3 and A4 (marked in orange), with coordinates (x1, y1), (x2, y2), (x3, y3) and (x4, y4) and 

corresponding flow field values F1, F2, F3 and F4. The flow field value FT at T is then calculated 

as a distance-weighted average of these four points, as follows: 
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where 

 𝑑𝑖 = √(𝑥𝑇 − 𝑥𝑖)2 + (𝑦𝑇 − 𝑦𝑖)2 (6.9) 

This equation represents the Euclidean distance from point T to point Ai. The numerator 

of Eq.(6.9) calculates the weighted sum of the flow field values Fi of each neighbouring point, 

with the weights being the inverse of their respective distances di; the closer points contribute 

more to FT. The denominator normalizes the result, ensuring that the weighted average remains 

within a reasonable range. This process can be applied iteratively to obtain the coordinates of 

all points on the grid. 

 

6.4 Training U-net to Predict Flow Field 

The U-Net architecture is described in detail in the methods section; here, a brief 

overview of its working principle is provided. U-Net was first proposed by Ronneberger et al. 

(2015) as an improvement to the traditional sliding window approach used in convolutional 

neural networks (CNNs)(Ciresan et al., 2012). In conventional CNNs, a contracting path, 

similar to the first branch of U-Net, is used to extract high-level features from the input image. 

However, as the features become more abstract, the localization information is often lost, 

making it difficult for the network to directly generate meaningful reconstructed images. 

Walker et al. (2015) proposed a CNN-based method that predicts the future motion of every 

pixel as optical flow from a single static image without any human supervision, achieving state-

of-the-art performance across diverse scenes. The core idea of U-Net is to follow the 

contracting path with an expanding (or upscaling) path. This path uses deconvolution layers to 

progressively restore the resolution of the feature maps, with the restoration process being 

symmetric to the contracting path. After each deconvolution operation, the expanding path 

reintroduces localization information through shortcut connections with the corresponding 

layers in the contracting path. In this process, the convolution operations in the expanding path 

concatenate features from the previous expanding layer with the localization information 

passed through the shortcut connections, effectively merging the information. A schematic 
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overview of the U-Net input and output structure is briefly illustrated in Figure 3.9, with further 

architectural details already provided in section 3.5.2. 

As previously mentioned, pretraining is designed to train the network's ability to 

identify edges and directions. However, since synthetic images are based on simplified 

assumptions, real-world scenarios are often more complex, requiring additional fine-tuning 

with real experimental images and annotations. 

The learning process in neural networks involves adjusting the network's biases and 

weights to minimize the value of a carefully chosen loss function. In regression problems, the 

most commonly used loss functions are L1 loss function and L2 loss function, which are also 

referred to as Mean Absolute Error (MAE) and Mean Squared Error (MSE), respectively. Once 

a loss function is selected, the network optimization is carried out through backpropagation 

and Stochastic Gradient Descent (SGD), with gradient updates relying on the partial derivatives 

of the loss function with respect to the network's weights. 

The formula for MSE is: 

 𝜀𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 (6.10) 

where 𝑦𝑖  is the true value of the i-th sample, 𝑦̂𝑖  is the predicted value, and n is the 

number of samples. MSE amplifies the impact of large errors by squaring each error term and 

averaging. When using MSE as the loss function, the gradient update rule is: 

 
𝜕𝜀𝑀𝑆𝐸

𝜕𝑤
=

2

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖) ∙

𝜕𝑦̂𝑖

𝜕𝑤

𝑛

𝑖=1

 (6.11) 

Because of the squared error term, larger errors contribute more to the gradient, which 

leads to the model prioritizing adjustments to larger errors. Although MSE allows for faster 

reduction of large errors during the early stages of training, it can also lead to overfitting due 

to its sensitivity to outliers. 

In contrast, the formula for MAE is: 

 𝜀𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 (6.12) 
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where |𝑦𝑖 − 𝑦̂𝑖| represents the absolute error of the i-th sample. MAE penalizes each 

error term linearly, unlike MSE, which amplifies the effect of larger errors. When using MAE 

as the loss function, the gradient update rule becomes: 

 
𝜕𝜀𝑀𝐴𝐸

𝜕𝑤
=

1

𝑛
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𝜕𝑦̂𝑖

𝜕𝑤

𝑛

𝑖=1
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where sign(𝑦𝑖 − 𝑦̂𝑖)  indicates the sign of the error (positive or negative), and the 

gradient direction matches the sign of the error. Since MAE does not involve squaring the error 

term, each error contributes equally to the gradient update, which results in a more gradual 

gradient descent process, especially minimizing the effect of outliers. 

Once the loss function is selected, backpropagation and SGD are used to optimize the 

weights and biases of the network. Gradient descent is typically performed on small random 

subsets of data, known as mini-batches, rather than calculating the gradient on the entire dataset 

at once. This method reduces computational cost and prevents excessive memory consumption. 

In this study, the effect of different mini-batch sizes (1, 8, 16, 32) on the training process was 

investigated. The dataset is divided into multiple mini-batches, which are used multiple times 

in random order. One complete pass through the entire dataset is called an "epoch." This 

process repeats until the validation accuracy (i.e., the prediction accuracy on the validation 

subset) no longer improves, and the training stops when accuracy starts to decrease, indicating 

the network has begun overfitting by learning non-generalizable features from the training set. 

In practice, the differences between L1 loss function and L2 loss function can also affect 

the speed and stability of convergence. L2 loss function tends to penalize large errors more 

heavily at the beginning of training, which typically leads to faster convergence and quicker 

correction of large errors. However, its high sensitivity to outliers can cause the model to overfit 

noise or rare samples. On the other hand, L1 loss function has less sensitivity to outliers, as it 

applies a linear penalty to each error. Therefore, L1 loss function leads to a more robust 

convergence process, especially when there is significant noise in the data, but its convergence 

is generally slower than L2 loss function. 

In this study, input images are resized to a fixed size of 256×256 pixels to control 

training costs. To ensure fairness in comparisons, all random seeds used for training different 

networks are initialized with a fixed value at the beginning. PyTorch (Paszke et al., 2019)is 
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selected for constructing the U-net due to its strong integration capabilities and the ease of use 

provided by the Python programming language. 

In general, a larger batch size can accelerate the training process for each epoch since 

more data is processed simultaneously, allowing parallel computation to enhance efficiency 

when supported by hardware. Larger batch sizes also contribute to more stable gradient updates, 

enabling the model to approach the optimal solution more rapidly. On the other hand, smaller 

batch sizes offer more frequent gradient updates. While each update involves fewer samples, 

potentially causing greater fluctuations in the gradients, these fluctuations can sometimes help 

the model escape local optima and achieve better solutions. 
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Figure 6.16 Loss Curves Variation with Epochs for Different Batch Sizes. (a) batch size=1; (b) 
batch size=8; (c) batch size=16; (d) batch size=32 

 

Figure 6.16 illustrated the variation trends of the L1 and L2 loss function values on the 

training set as a function of epochs. Under both L1 and L2 loss functions, the error demonstrates 

distinct trends over the epochs. For smaller batch sizes (e.g., batch size = 1), the errors for both 

L1 and L2 losses exhibit significant fluctuations, resulting in more pronounced oscillations in 
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the error curves. As the batch size increases (from 8 to 32), the error fluctuations gradually 

decrease, convergence becomes faster, and the curves smooth out, indicating enhanced training 

stability. Notably, under the L2 loss function, the error curve for batch size = 32 is the 

smoothest, and the final error is relatively low. On the other hand, the figures also reveal that 

once the batch size reaches 16, further increases in batch size do not lead to significantly 

reduced fluctuations in the loss function. Therefore, this study adopts a batch size of 16 for 

model training. Additionally, the effects of the L1 and L2 loss functions on training results are 

compared, as shown in Figure 6.18. 
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Figure 6.17 Comparison of Loss Curves for Training and Validation with Batch Size 16, L2 
Loss 

 

The loss curves for training and validation shown in Figure 6.17 correspond to a batch 

size of 16 and the use of the L2 loss function. At the early stage of training, both the training 

and validation losses decrease rapidly. Then at training progresses, after approximately 20 

epochs, the losses stabilize and fluctuate around a low value (approximately between 0.08 and 

0.12), suggesting that the model has gradually converged. Throughout the process, the training 



Synthetic Data Generation and Unet Training 

136 

 

and validation losses remain closely aligned, with no significant indications of overfitting or 

underfitting. In certain local regions, the validation loss is slightly lower than the training loss, 

which can be attributed to the application of L2 regularization, which could enhance the 

generalization ability of U-net. Although slight fluctuations are observed in the curves, they 

are likely caused by the randomness introduced by the relatively small batch size. Such 

fluctuations are normal and do not negatively impact the overall training stability. 

0 20 40 60 80

0.0

0.1

0.2

0.3

0.4

0.5

0.6

L
o
ss

Epoch

 L1 loss

 L2 loss

 

Figure 6.18 Comparison of L1 and L2 Loss Curves with Batch Size 16 

 

Figure 6.18 shows the variation in model error over epochs under identical batch sizes 

when using the L1 and L2 loss functions. During the early stages of training (approximately 

the first five epochs), the errors for both L1 and L2 losses decrease rapidly. The L2 loss shows 

a slightly faster rate of decline and converges to a lower error value sooner. This indicates that, 

in the initial phase, the L2 loss is more effective in rapidly reducing errors. In the stable phase, 

the error curve for the L2 loss remains consistently lower and exhibits less fluctuation 

compared to the L1 loss. This aligns with the characteristics of the L2 loss, which imposes 

stronger penalties on larger error values, leading to a smoother error curve. Therefore, models 
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trained with the L2 loss tend to achieve a lower average error and the variability of the curve 

is reduced. The L1 loss curve shows greater fluctuations, likely due to its reduced sensitivity 

to small error values, which makes it less effective at smoothing out noise during training. In 

contrast, the L2 loss's squared penalty effect amplifies its sensitivity to errors. While this may 

theoretically increase the impact of noise, if the batch size is large enough, the impact of noise 

will be averaged out, resulting in a more stable L2 loss curve. Throughout the training process, 

the L2 loss is always lower than L1 loss, indicating that, under the same training conditions, 

the L2 loss is more efficient at reducing errors and enables the model to converge to a lower 

error value. Overall, under the current conditions, the L2 loss function is better than the L1 loss 

function, achieving faster convergence and maintaining a lower error level. While the L1 loss 

demonstrates robustness against extreme noise, it falls short in terms of smoothness and the 

final convergence of errors compared to the L2 loss. 

6.5 Demonstration of the Workflow on a Sample Case 

To demonstrate the end-to-end workflow of the proposed synthetic data generation and 

flow field prediction framework, a representative test case was constructed based on the 

Durham Cascade. This geometry and flow scenario have been extensively used in previous 

experimental studies and numerical validations, providing a reliable foundation for 

benchmarking the model's performance. 

6.5.1 Test Case Setup 

The test case adopts the same setup as described in the section 3.1.1, including blade 

geometry, domain dimensions, and boundary conditions. The corresponding flow visualization 

image was obtained from the experimental dataset under well-controlled wind tunnel 

conditions. The flow conditions in this test case correspond to a Reynolds number of 

approximately Re = 4 × 105, based on chord length and inlet velocity, falling within the 

transitional regime. 
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Figure 6.19 Surface flow visualization image of the test case 

 

This specific configuration has also been subject to high-fidelity numerical validation 

by Martinez-Castro (2022), who performed detailed CFD simulations of the Durham cascade 

using a RANS approach with a validated turbulence model. His results serve as a reference for 

evaluating flow structures such as wake development, blade surface boundary layers, and 

secondary flow features. 

Figure 6.19 shows that the surface flow visualization result of the Durham cascade. 

This panel was placed on the right side of the cascade as an endwall and could be removed 

after the experiment. The black lines in the figure indicate the corresponding blade positions 

during the experiment. Since the tip clearance under the experimental conditions was 3.75 mm, 

flow patterns within the area enclosed by the black lines can also be observed. A specific region 

(highlighted by the yellow rectangle in the figure) was selected as the comparison area — this 

is because not all areas in the photograph represent flow regions, and alignment with the CFD 

results is necessary. 

6.5.2 Generation of Reference CFD Results 

The CFD simulations were conducted using a RANS approach with a k–ω SST 

turbulence closure. The computational domain consisted of a linear cascade of turbine blades 

with periodic boundary conditions applied in the pitchwise direction. A structured mesh was 

used, with localized refinement near blade surfaces and in the wake region to ensure accurate 

resolution of boundary layer separation and vortex shedding phenomena. The total cell count 

was approximately 3 million, and mesh independence was confirmed in the original study. 
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Figure 6.20 shows the 3D mesh structure of the blade and endwall. The red frame in 

Figure 6.20 (b) shows the tip clearance details. The first blade is fixed on the endwall, while 

the second blade has a small gap from the endwall. This reflects the design of the Durham 

cascade, where only the middle four blades have adjustable tip clearance, and the 

corresponding section of the endwall is removable. As shown in Figure 6.19, the removable 

endwall section can be detached after the experiment, whereas the remaining parts of the 

cascade are fixed. 

 

Figure 6.20 3D Basic Mesh of blade and endwall; (a) top view; (b) front view. 

 

Boundary conditions were set to match those of the experimental setup. At the inlet, the 

free stream velocity was specified as 19 m/s, while the outlet was defined with a fixed static 

pressure. Blade and endwall surfaces were treated as no-slip walls. The operating point 

corresponds to an inflow Reynolds number of Re = 4 × 105, based on chord length and axial 

velocity. Simulations were considered converged once residuals dropped below 1 × 10-6. 
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The final CFD solution includes the full velocity field which was extracted and 

interpolated to the same spatial resolution as the U-net output. This ensures pixel-wise 

alignment for direct quantitative error analysis between prediction and ground truth. 

 

Figure 6.21 Reference CFD streamline for the test case.  

 

Figure 6.21 presents the time-averaged streamlines and pressure contours in the endwall 

plane. At the inlet, the flow direction is relatively parallel, but after encountering the blades, 

most streamlines are deflected following the blade geometry. Due to the gap between the blade 

tips and the endwall, some streamlines are able to pass through the blade projection area 

(indicated by the black closed regions in the figure) and subsequently merge with other 

streamlines in the wake region. 

6.5.3 Flow Field Prediction Using U-net 

The experimentally obtained flow visualization image corresponding to the Durham 

cascade test case was used as input to the trained U-net model. No manual annotations or 

velocity field inputs were used — the model predicted the flow purely from the visual 

streamline patterns. 

The U-net model had been trained on a mixed dataset comprising both synthetic and 

experimental flow images, enabling it to generalize across a range of flow features, including 

wakes, vortices, and boundary layers. For this test, the model operated in test mode and 

produced a two-component velocity field output, with the same grid resolution as the reference 

CFD data. 
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Figure 6.22 Predicted velocity magnitude field from U-net, inferred from SFV image of the 
Durham cascade. 

 

Figure 6.22 shows the U-net prediction results for the specified region in Figure 6.19, 

presented in vector form. To provide a more intuitive assessment, the predicted vectors are 

overlaid onto the original FSV image. Black arrows represent the predicted skin friction 

directions from the U-net, while the background displays the experimentally captured flow 

field. Overall, the U-net successfully captured the main flow features, including the primary 

flow direction and wake development. The results demonstrated good agreement with the 

experimental observations. In the region near the inlet and between the blades, the predicted 

vectors closely match both direct visual observations, and the velocity direction fields from 

CFD simulations. This shows that the model has a strong ability to predict boundary layer flows. 

In the wake region, however, some areas exhibited more disordered vectors, which might be 

attributed to factors such as the limited resolution of the training data, the complexity of 

turbulent flow structures, and the detailed treatment within the model. 

Quantitative error analysis is presented in the following section, where the U-net 

prediction is directly compared to the CFD reference solution using both pixel-wise and 

structure-aware metrics. 

6.5.4 Error Distribution Analysis 

To quantitatively assess the prediction accuracy of the U-net model, a pixel-wise 

comparison was performed between the predicted flow field and the reference CFD solution. 
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Based on the definition provided in Eq. (6.10) the mean absolute error 𝜀𝑀𝐴𝐸 was calculated to 

capture the average deviation across all pixels. In addition to 𝜀𝑀𝐴𝐸, a supplementary pixel-wise 

relative error function, inspired by the work of Chen et al. (2019a), is introduced to evaluate 

prediction quality: 

 𝜀𝛼 =
1

𝑛(𝑃)
∑ 𝟙(𝜀𝛼

𝑝 > 0)

𝑛(𝑃)

𝑝=1

 (6.14) 

where, 

 𝜀𝛼
𝑝 = 𝟙 (|

𝑦𝑝−𝑦𝑝
′

𝑦𝑝 + 𝜂
| > 𝛼) (6.15) 

and 

 𝑦𝑝 = ∑ 𝑦𝑝𝑗

3

𝑗=1

 (6.16) 

where yp represents the reference velocity direction at pixel p, 𝛼  is a threshold 

parameter, and 𝜂 is a small constant to avoid division by zero. 

 

Figure 6.23 Absolute error distribution of velocity magnitude. 

 

Figure 6.23 presents spatial maps of the absolute error across the prediction domain. 

The highest error concentrations are observed in the wake region and along blade edges, where 

sharp gradients and unsteady features are more difficult to reconstruct from static visualization 

images. 
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Overall, the model achieves a 𝜀𝑀𝐴𝐸  of 0.369 across the domain, with 𝜀0.1yielding a 

value of 18.6%, indicating that fewer than one in five pixels exhibit more than 10% deviation 

relative to the ground truth. These results are consistent with earlier evaluations across the 

synthetic and literature datasets, confirming the model’s capacity to recover dominant flow 

structures with reasonable fidelity. 

Nevertheless, the error distribution reveals limitations in boundary fidelity and small-

scale structure recovery, especially in regions influenced by complex three-dimensional effects 

or turbulent breakdown, which are not fully encoded in the 2D streamline input. 

6.6 Results 

This section presents a quantitative analysis of the U-net's predictive performance on 

different test subsets, using two metrics: 𝜀𝑀𝐴𝐸  and 𝜀𝛼 , whose definition could be found in 

section 6.5.4. Statistical comparisons were conducted across U-net architecture using the test 

subsets. Additionally, the prediction performance of the different networks was evaluated on 

unseen flow visualization images, primarily sourced from the literature. Figure 6.24 shows the 

different errors. 

 

Figure 6.24 Comparison of Prediction Errors Across Experiment, Synthetic, and Literature 
Datasets. 

 

The results demonstrate that predictions on experiment dataset are serving as the 

baseline reference for the experimental data, with all error values normalized to 1.00. synthetic 

dataset shows overall lower errors compared to Experiment dataset, indicating improved 

prediction accuracy on synthetic data. Specifically, the average errors in the 𝜀𝑀𝐴𝐸, 𝜀0.05, and 

𝜀0.01 metrics are reduced by 15%, 10%, and 12%, respectively. This suggests that incorporating 

synthetic data enhances the pretraining effect of the model, reducing overall error levels. 
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Additionally, there are significant reductions in the standard deviation and maximum error, by 

20% and 10%, respectively, indicating improved stability and fewer extreme errors in 

predictions for Synthetic dataset. 

In contrast, errors for Literature dataset are notably higher than those for Subsets A and 

B, which aligns with expectations. Since Literature dataset consists of data sourced from the 

literature, the model has no prior exposure to its distribution. The average errors in the 𝜀𝑀𝐴𝐸, 

𝜀0.05, and 𝜀0.01  metrics increase by 30%, 25%, and 35%, respectively. These elevated errors 

are primarily concentrated around shape boundaries and high-gradient regions, likely reflecting 

the model's limited generalization capacity. Standard deviation and maximum error for 

Literature dataset also increase significantly, with each reaching 1.40 and 1.60 times the 

baseline values, respectively. This indicates that predictions on new data distributions not only 

exhibit higher overall errors but also greater variability and extreme values. 

In summary, synthetic data contributes to improved model performance to some extent, 

but there remains room for enhancing the model's capabilities on novel data distributions. 

Future efforts could focus on optimizing data diversity and distribution coverage to strengthen 

the model's generalization ability, while also improving resolution in prediction regions to 

mitigate boundary errors. 

6.7 Conclusion 

This chapter explores the application of GANs for generating synthetic flow field data 

and investigated their effectiveness in enhancing flow field prediction tasks. The presented 

method involved multiple stages, including data collection, preprocessing, GANs training, and 

model evaluation. Through these stages, techniques such as chaincode annotation, interpolation, 

and consistency checks were used to ensure the dataset's quality and physical reliability. The 

obtained results shows that synthetic data generated by GANs can improve the accuracy of 

flow prediction models. 

The PSNR and SSIM scores showed that the images generated by sGAN were visually 

consistent with the real images. Compared with other GAN architectures such as CycleGAN, 

pix2pix, and GauGAN, sGAN was clearer and more consistent structures when generating flow 

field images. Meanwhile, although sGAN performed well in generating realistic flow 

visualizations, CycleGAN and pix2pix also performed well in terms of edge clarity. This shows 

that different GAN architectures are suitable for different aspects of flow field data generation, 
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and the choice of model should be based on task requirements. During training, the FID score 

of sGAN dropped from 24.5 to 14.8, indicating that the synthetic images gradually became 

similar to the real experimental data. 

It was found that synthetic data generated by GAN could make it possible to train a 

flow field prediction models when experimental data is not enough or unavailable. However, 

further improvements in the synthetic data generation process are needed to improve the 

generalization of the model to new flow conditions. Increasing the diversity of the dataset and 

incorporating a wider range of flow geometries, Reynolds numbers, and turbulence models will 

help improve the robustness and prediction accuracy of the model. 
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Chapter 7 Conclusions 

7.1 Key Findings 

Recent advances in flow visualization techniques, such as surface oil flow visualization 

and global luminescent oil-film method have enabled non-invasive analysis of fluid dynamics. 

However, there are still some challenges in quantitative analysis, automating streamline 

detection and addressing data scarcity for data-driven models. Machine learning, especially 

deep learning showed a possible way to solve these challenges. 

This thesis extended the state-of-the-art by addressing these gaps through three key 

findings: 

1. Streamline Detection Using CNNs 

Based on previous work, this thesis developed a CNN-based method to enhance the 

streamlines detection in SFV images. The proposed preprocessing steps, including manual 

calibration, grayscale conversion, and bilateral filtering, ensures the quality of the input image. 

The proposed model significantly improves the preservation of detailed features by adding skip 

connections and a customized upsampling network. Then in the post processing part, label 

detection and flow direction estimation would help to further optimize the output results. 

Despite the progress made, the experimental results also show that continued optimization and 

cross-validation in different flow situations are still very important. 

2. Evaluation of GLOF Method 

The performance of the GLOF method in surface friction visualization has been 

evaluated in Chapter 5. Although the method provides a non-invasive means to capture flow 

features such as separation lines and saddle points, there are still some limitations. One of the 

most critical issues is its inability to accurately reproduce expected flow behaviours around a 

cylinder. Although some visual features of the flow were correctly identified, the method 

showed significant differences in the surface friction patterns compared to experimental data 

and CFD results. Improvements in computational algorithms and increased imaging resolution 

are needed in the future to improve its reliability, especially in complex flow situations. 

3. Synthetic Data Generation and Unet Training 



Chapter 7 

147 

 

Chapter 6 explored methods to augment the dataset using synthetic images. In order to 

generate synthetic flow images similar to the experimental data, the sGAN model was proposed. 

Data preparation steps such as chain code annotation, interpolation, and consistency checks 

ensured that the generated images remained physically reasonable and followed the principles 

of fluid dynamics. The sGAN model successfully generated high-quality synthetic images, 

achieving good SSIM and PSNR scores. Then these synthetic images were combined with 

experimental data to train the U-Net model for flow field prediction. With U-net, a preliminary 

quantitative estimation of the flow field can be obtained by SFV images; with sGAN, the flow 

field data generated by CFD can be used to generate "fake" SFV images. 

7.2 Recommendations for Future Work 

• Mixing some visible tracer particles into the dye or using pressure-sensitive dye 

are preferable to using dye alone and should be used where possible in future. 

This not only allows the surface flow field to be measured with PIV, but also 

greatly improves the accuracy compared to manual annotation. 

• Future flow visualization experiments should accurately handle the thickness of 

the oil film. In the current work, it was assumed that the thickness of the oil 

layer applied to the surface was uniform. In fact, since it was applied with a 

brush, although air brush and roller brush had been tried in addition, it is 

impossible to ensure that the thickness of the oil film is absolutely uniform. This 

should be taken into account in future work. 

• Professional photography equipment should be used as much as possible. In the 

initial work, the author used a GoPro camera, which turned out to be not suitable 

for this job. 

• Experimental techniques should be carefully recorded and published. Data and 

program codes for new technologies or designs should be made public when 

confidentiality is not required. This allows experiments to be repeated and the 

experimental process to be reviewed by peer review. 

• There are many ways for machine learning to enhance CFD results, but due to 

limitation on the author's time, these methods are not included in the main body 

of this thesis. One particularly promising method comes from Raissi et al. 

(2020), which encodes the Navier-Stokes equations into neural networks. 

Theoretically, U-net can do the same thing to predict the flow field. 
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• Extending the current 2D flow visualization techniques to 3D measurements 

would provide a more complete understanding of the flow structures. 

Stereoscopic PIV or tomographic techniques could be considered for future 

work. 

• The video results could be further analysed using recurrent neural networks 

(RNNs), particularly LSTM or GRU architectures, to model temporal evolution 

and improve flow field predictions. This approach may better capture long-term 

dependencies in unsteady flows. 

• A more comprehensive validation of the experimental results using 

complementary techniques, such as pressure probe or hot-wire anemometry, 

could further strengthen the reliability of the findings. 

7.3 Concluding Remarks 

Surface flow visualization has long been a crucial tool in fluid dynamics research, 

which help researchers capture and analyse flow patterns on surfaces. Recent advancements in 

machine learning, like CNNs, GANs and so on, have shown promise in automating the 

extraction of streamlines from SFV images. However, challenges remain in improving the 

accuracy and applicability of these methods across different flow conditions. Building on these 

existing techniques, this thesis extends the state-of-the-art by developing a robust framework 

for streamline detection and flow field prediction. This technique enables preliminary 

quantitative analysis of flow fields under limited experimental conditions, while also serving 

to verify CFD results. 
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