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Abstract: This thesis, based largely on [1], deals with new techniques for computing

cosmological correlation functions of scalar fields with respect to a class of vacuum

states known as the α-vacua. By extending the Mellin space formalism for computing

such correlators in the Bunch-Davies vacuum to the case of non-zero α, we show

that to all orders in perturbation theory, late-time de Sitter boundary correlators

can be written as a linear combination of their counterparts in the Bunch-Davies

vacuum. The constituent perturbative Bunch-Davies contributions feature points in

both the expanding and the contracting Poincaré patches. In turn, this reformulation

allows us to relate these perturbative de Sitter correlators to Witten diagrams in

Euclidean Anti-de Sitter space. In particular, we show that any de Sitter diagram

can be written as a linear combination of EAdS Witten diagrams with analytically

continued momenta, each dressed with α-dependent coefficients. In addition, we use

our de Sitter results to compute the inflationary two- and three-point functions of

inflaton perturbations at leading order in slow-roll, for arbitrary spacetime dimension

and arbitrary choice of α-vacuum.
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Chapter 1

Introduction

Millennia of scientific research have culminated in two physical theories that describe

our universe at the largest and the smallest scales accessible to human beings. This

thesis explores a small part of the story that unfolds when we try to combine them.

Quantum Field Theory (QFT) is a mathematical framework which at its most

basic level describes the dynamics of elementary particles. The particular QFT that

describes three of the four fundamental forces in our universe, known as the Standard

Model of Particle Physics, has been tested to extraordinary accuracy. The part of

the standard model describing electromagnetism, Quantum Electrodynamics, can

be used to derive a property of the electron called its anomalous magnetic moment,

whose theoretical prediction matches the experimental measurement to more than 10

significant figures [2]. To put this into perspective, this level of accuracy is analogous

to predicting the distance between London and Athens, and this prediction agreeing

with the measured value to within the width of a grain of salt1.

At the other end of the universe’s ruler, we have Einstein’s theory of General Re-

lativity (GR). GR has stood fast as our best description of gravity for over one

1The distance between London (England) and Athens is roughly 3, 100km, and a grain of salt
is roughly half a millimetre in width. Thus, measuring the distance between London and Athens
to within the width of a grain of salt is a precision of roughly 0.5

3.1×109 ≈ 1.6 × 10−10; around one
part in 1010.
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hundred years, describing the universe on macroscopic scales - from planets all the

way up to enormous filaments of galaxies billions of light-years in length. Amongst

General Relativity’s predictions are the existence of black holes and gravitational

waves, the direct detection of which [3, 4] have been major recent achievements in

modern experimental physics.

However, despite the overwhelming successes of QFT and GR, the two theories seem

to conspire against unification. Treating General Relativity as a Quantum Field

Theory leads to issues of non-renormalisability, whereby amplitudes for high-energy

gravitational processes yield infinities that cannot be cured. Thought experiments

concerning quantum aspects of black hole event horizons lead to issues like the so-

called “firewall paradox” [5], which suggests that for GR and Quantum Mechanics

to be compatible one may have to let go of some sacred tenet of one of the two.

Experiment can’t shed any light on the matter either - experimental detection

of the would-be particle mediating gravitational interactions, the graviton, seems

completely impractical. For instance, it was estimated in [6] that a detector with

a mass comparable to that of Jupiter, in close orbit around a neutron star, would

expect to detect one graviton every decade2. The revelation that GR and QFT in

their current state simply do not mesh together3 is a rather startling one - how can

two theories that work so well in their own regimes, fail so spectacularly when we

try to combine them? Ultimately, we live in one universe, so it is philosophically

nonsensical to have two theories describing it that are incompatible with each other.

The last ∼ 50 years or so have seen surprising connections between these two seem-

ingly disparate paradigms, hinting at some underlying unified description. The

Anti-de Sitter/Conformal Field Theory correspondence [8–10] is a conjecture pos-

iting that certain gravitational theories, in spacetimes with negative cosmological

constant, are secretly equivalent to certain quantum field theories without gravity

in one dimension lower. These non-gravitational QFTs are often easier to study

2We note that while direct graviton detection is highly unlikely, cunning proposals for measuring
quantum gravitational effects in the laboratory do appear from time to time. See [7] for an overview.

3At least, not at high energies.
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than their gravitational duals, and the correspondence is conjectured to hold even

at the quantum level on the gravitational side, providing a handle on previously

intractable problems in Quantum Gravity. Perhaps the most famous example of

the correspondence is the conjecture that (on the gravitational side) type IIB string

theory on AdS5 × S5 is dual to (on the field theory side) N = 4 supersymmetric

Yang-Mills theory on R3,1.

In the most well-understood examples of AdS/CFT, the gravitational side of the

correspondence is a ten-dimensional string theory, which at low energies is described

by a theory of supergravity. The corresponding QFT in the conjecture is most

often supersymmetric, conformally invariant, and non-confining. By contrast, we

clearly live in four spacetime dimensions (not ten) and our universe is described

by General Relativity (not supergravity) at low energies. In addition, the kinds of

QFTs that describe the particle physics we have observed are non-supersymmetric,

non-conformal, and (in the case of the strong force) confining. Thus, despite the

enormous success of AdS/CFT, throughout its ∼ 30 year tenure one particularly

persistent hope has remained. Can we extend our understanding from AdS/CFT to

gain insight into theories closer to those that describe our universe?

It is widely believed that our universe began with a period of extremely rapid

accelerated expansion known as inflation, ending approximately 300,000 years before

the beginning of the hot big bang. The inflationary paradigm provides an explanation

for a number of puzzles that arose from our pre-inflationary understanding of early-

universe cosmology. One such puzzle is the so-called horizon problem, in which the

observed homogeneity of the Cosmic Microwave Background (CMB) implies that

seemingly causally disconnected regions of the universe must have been in thermal

equilibrium at some point during the universe’s evolution, despite the absence of a

mechanism for being so. The widely accepted solution to the horizon problem is that

the period before the CMB was produced must have been longer than once thought,

and that the offending regions of spacetime must have been in causal contact during

this “inflationary” period.
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Correlations between quantum fluctuations in the inflationary phase give rise to

correlations in the CMB, which in turn give rise to correlations in the positions

of the large-scale structures we see in the universe today. Thus, observations of

large-scale structure can in principle be traced back through the evolution of the

universe and into the inflationary phase, giving us a window into the highest-energy

observable process in the history of our universe. The geometry of the inflationary

phase is considered to be approximately that of de Sitter space (dS), a maximally

symmetric vacuum solution of Einstein’s equations with positive scalar curvature.

Thus, understanding QFT in de Sitter space is paramount to understanding our

universe as a whole.

It is important to note that an active area of research in modern experimental physics

is dedicated to looking through that window into the dynamics of the inflationary

phase. For example, the temperature power spectrum is a classic observable measured

by Planck [11] (amongst others) that describes temperature inhomogeneities in the

CMB. This power spectrum is “seeded” by the inflationary two-point function of

primordial fluctuations on the reheating surface at the end of inflation, and so by

measuring the temperature power spectrum we are peeking behind the curtain that

hides the dynamics of inflation. Future experiments hope to measure so-called non-

Gaussianities - higher-point correlations that could shed light on the spectrum of

particles and their interactions during inflation. For instance, observables known as

bispectra are related to inflationary three-point functions, and their measurement

could in principle allow us to infer the masses of the fields present in the inflationary

phase [12].

dS can be thought of as a closely related cousin of AdS, differing “only” by a change

in sign of the scalar curvature. Despite the seemingly small difference between the

two spaces, our understanding of quantum field theory in de Sitter space pales in

comparison to that of AdS. Through AdS/CFT one can translate poorly-understood

questions about quantum gravity in AdS into sharply-defined questions about the

dual conformal field theory, which can then be answered through such techniques
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as integrability and the conformal bootstrap4. The situation with de Sitter however

is far murkier - there are very few robust examples of dS/CFT, and in de Sitter

holography as a whole even fundamental questions like where exactly the putative

dual field theory should live5 are poorly understood. Even more pedestrian issues

such as the existence and definition of a de Sitter S-matrix6 and, most pertinent to

this thesis, the non-existence of a unique vacuum state further muddy the waters.

Scalar field theory in de Sitter space in fact admits an infinite one-parameter family

of vacuum states that are all invariant under the de Sitter isometries [25, 26], which

are often referred to as the α-vacua, with α a superselection parameter. The Bunch-

Davies vacuum, corresponding to α = 0, is the unique state that extrapolates to

the standard Minkowski vacuum at early times. Two-point functions in the Bunch-

Davies vacuum therefore have the usual short-distance singularity where the two

points are null separated, while the other dS invariant vacua (also) have a singularity

when the points are antipodal to one another. The latter is rather unconventional

since in dS antipodal points are separated by a cosmological horizon, and whether

or not interacting QFTs in vacua with α ̸= 0 are consistent has been the subject of

debate [27–34]. For these reasons, late-time correlators with α ̸= 0 are less studied

than their Bunch-Davies counterparts – though their phenomenological significance

has been discussed e.g. in [35–42]. From a holographic perspective, it has been

argued that in dS/CFT the bulk α-vacua correspond to a one-parameter family of

marginal deformations of the putative dual CFT on the boundary [43, 44].

The standard approach for computing inflationary and de Sitter correlation functions

is to use the in-in formalism [45, 46], which has given rise to the first perturbative

4The literature on these lines of research is vast; see for instance [13–15] for examples of the
conformal bootstrap approach, and [16] for a review of the utility of integrability in the context of
AdS/CFT.

5In the traditional dS/CFT approach [17] the CFT lives on the future boundary of de Sitter
space, but other approaches such as static patch holography [18] and de Sitter world line holography
[19], in which the dual theory lives elsewhere, have been considered.

6The asymptotic past and future of de Sitter space are separated by a cosmological horizon,
and all observers are forbidden by causality from accessing both I− and I+, making a traditional
S-matrix difficult to define - see [20, 21]. For recent progress regarding the definition of a de Sitter
S-matrix, see [22–24].
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results [47–53] for late-time correlators and a rich spectrum of inflationary phenomen-

ology. In recent years the Cosmological Bootstrap7 has emerged as a complementary

approach which aims to construct such correlators directly on the future bound-

ary (making no reference to bulk time evolution) using physical principles such as

unitarity, locality and symmetry as consistency requirements [55–60]. Invariance

under the full set of dS isometries in particular implies that correlation functions

on the late-time boundary of de Sitter space are constrained by conformal Ward

identities [12, 55, 61–73]. The latter, combined with consistent on-shell factorisation

and choice of initial state, has led to the first complete analytic understanding of the

four-point function for massless scalars mediated by the exchange of a massive scalar

in the Bunch-Davies vacuum [55]. In the former approach, the in-in formalism, one

often encounters complicated bulk time integrals involving Bessel functions that are

notoriously difficult to compute. In recent years, the Mellin space formalism [74–77]

for cosmological correlators has proven to be extremely useful not only for tackling

this issue, but also for providing new insights into the analytic structure of both de

Sitter and inflationary correlation functions8.

In particular, one approach to cosmological correlators has been to try to draw

lessons from the relatively well understood Anti-de Sitter (AdS) case, where bound-

ary correlation functions are, through the AdS/CFT correspondence, constrained

non-perturbatively by the axioms of the Conformal Bootstrap [78, 79]. Using the

structural similarities between dS and AdS, perturbative late-time correlators in the

in-in formalism can be reformulated in the more familiar language of Witten dia-

grams in Euclidean Anti-de Sitter (EAdS) space. It is well-known that dS and EAdS

are related by analytic continuation, and it turns out that this fact filters through

to the propagators for quantum field theories on the two spaces. In particular, dS

7For an overview of the Cosmological Bootstrap programme see e.g. [54].
8We should stress that the relationship between de Sitter space and the inflationary geometry

is approximate - inflationary correlation functions need not respect all of the isometries of de Sitter
space, and the departure from an exact de Sitter background is controlled by a dependence on the
slow-roll parameter ε that does not appear in the analogous de Sitter correlators. However, de
Sitter space provides a somewhat simpler toy model of inflation, and in this sense is a “first step”
towards an understanding of a more realistic setting.
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propagators are a linear combination of appropriately analytically continued solu-

tions to the propagator equation for a field of the same quantum numbers in EAdS.

These relations have been understood for late-time correlators in the Bunch-Davies

vacuum [75–77], and from them it follows that any given perturbative contribution

can be expressed in terms of corresponding Witten diagrams in EAdS. Late-time

correlators in the Bunch-Davies vacuum therefore have a similar analytic structure

to their Euclidean AdS counterparts, and this has led to various new insights [76,

77, 80–86] into their properties - including at the non-perturbative level. These

relations between dS and AdS open up the possibility to import techniques, results

and understanding from the relatively well-understood AdS setting. One central

question that this thesis attempts to answer is: How do these relations manifest

themselves for de Sitter vacua away from the Bunch-Davies vacuum?

1.1 This Thesis

In this thesis, based in large part on [1], we develop new techniques for the compu-

tation of late-time boundary correlation functions in de Sitter space for arbitrary

choice of α-vacuum. We also show how our results for exact de Sitter correlators

can be used to obtain two- and three-point functions in an inflationary context. The

main results of the thesis are:

• Correlators in the α-vacua from Bunch-Davies (sections 3.2 & 4).

Perturbative contributions to late-time correlators for a generic α-vacuum in

dSd+1 can be re-written in terms of their counterparts in the Bunch-Davies

vacuum with points antipodally transformed to the boundary at past infinity.

In momentum space this corresponds to flipping the magnitudes of the bound-

ary momenta by phases e±πi. This is proven in section 3.2 for massive scalar

fields (i.e. principal series representations) by rewriting the propagators for

generic α-vacuum in terms of their Bunch-Davies counterparts. It is possible
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to obtain expressions for other representations by analytic continuation and,

where appropriate, renormalisation.

• Correlators in the α-vacua from EAdS (sections 3.3 & 4).

Perturbative late-time correlators for a generic α-vacuum in dSd+1 can be

reformulated in terms of corresponding Witten diagrams in EAdSd+1 with

points antipodally transformed from the boundary on the upper to the lower

sheet of the EAdS hyperboloid. As above, in momentum space this corresponds

to flipping the magnitudes of the boundary momenta by phases e±πi. This is

achieved in section 3.3 by rewriting the Bunch-Davies propagators involved in

the results of section 3.2 in terms of their EAdS counterparts. This extends

the results of [75–77] for late-time correlators in the Bunch-Davies vacuum

to initial states related to the latter via Bogoliubov transformation. Various

examples for contact diagrams in the α-vacua are given in chapter 4, and we

show how to construct the four-point exchange diagram of general scalars. A

full expression for the scalar four-point de Sitter exchange written as a linear

combination of EAdS exchanges is available at [87].

• Mellin space for generic α-vacuum. We extend the Mellin space repres-

entation of momentum space conformal correlators [74–77] to include late-time

correlators in a generic α-vacuum. These differ from their Bunch-Davies (α = 0)

counterparts by phases in the Mellin variables. We review the solution of the

momentum space conformal Ward identities using the Mellin representation

(appendix C), where dilatation symmetry is manifest and the Ward identity

for special conformal transformations is reduced to a recursion relation. For

this reason, various propagator and correlator identities appearing in this work

are manifest in Mellin space.

• Inflationary correlators for arbitrary choice of α-vacuum (chapter 5).

The final chapter of the thesis is based on unpublished work. We use our results

for three-point contact and four-point exchange diagrams in the α-vacua to
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compute corrections to the inflationary two- and three-point (respectively)

correlation functions, to leading order in slow-roll. We find that our result for

the inflationary three-point function (which we calculate in the squeezed limit)

is a product of two inflationary two-point functions.

Notation and Conventions. We work in (d+ 1)-dimensional (EA)dS with the

“mostly plus” metric signature. Momentum vectors are denoted k⃗, and have mag-

nitude k ≡ |⃗k|. The momentum of the i-th external leg in a correlation function is

denoted k⃗i, while k⃗ is reserved for the momentum of an exchanged particle. Ambient

space indices are denoted by capital Latin letters A,B ∈ {0, 1, ..., d+ 1}. Bulk scalar

fields are denoted by ϕ, and have scaling dimension ∆ = d
2 + iν unless otherwise

stated. si and ui are reserved for Mellin variables associated with external and

internal particles, respectively. Unless otherwise stated we set the curvature radius

L of (EA)dS to L = 1.





Chapter 2

Background

In this chapter we review the salient aspects of quantum field theory in de Sitter

and Anti-de Sitter spacetime. We begin with a description of the classical geometry

of these manifolds, before reviewing scalar field theory on both dS and AdS. We

discuss the classification of particles in de Sitter according to Unitary Irreducible

Representations of the de Sitter isometry group. We then detail the issues pertinent

to vacuum states in de Sitter space, explaining how the α-vacua arise.

2.1 The Geometry of (Anti-) de Sitter Spacetime

2.1.1 Anti-de Sitter Spacetime

Anti-de Sitter (AdS) spacetime is a maximally symmetric vacuum solution to Ein-

stein’s equations with negative cosmological constant. AdSd+1 can be embedded in

Minkowski Rd,2 with embedding coordinates Xi, i ∈ {0, ..., d+ 1} and metric

ds2
Rd,2 = −dX2

0 − dX2
d+1 + dX2

1 + ...+ dXd, (2.1.1)

subject to the hyperbolic embedding equation

−X2
0 −X2

d+1 +X2
1 + ...+X2

d = −L2
AdS, (2.1.2)
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where LAdS is a length scale called the AdS radius, often set to 1 in this thesis.

From the embedding equation one can immediately see that the isometry group of

AdSd+1 is O(d, 2). Different solutions to this equation then parameterise different

charts on the AdS hyperboloid. In this thesis we will be most concerned not with

Anti-de Sitter, but with Euclidean Anti-de Sitter (EAdS)1. From now on we will

use “AdS” and “EAdS” interchangeably to mean EAdS. EAdSd+1 can be viewed as

a codimension-1 surface embedded in Rd+1,1 subject to the hyperbolic embedding

equation

−X2
0 +X2

1 + ...+X2
d +X2

d+1 = −L2
EAdS, (2.1.3)

whose different solutions then result in different charts on EAdS. Note that EAdS is

a two-sheeted hyperboloid; rearranging for X0 we find

X2
0 =

d+1∑
j=1

X2
j + L2

EAdS. (2.1.4)

Since X2
0 = 0 has no solutions (for real Xj), the regions of the hyperboloid with

sgn(X0) = ±1 are disconnected from one another, and EAdS is a two-sheeted

hyperboloid. The chart we will be most concerned with throughout is the Poincaré

patch, obtained via the solution (setting LAdS = 1)

X0 = 1 + x2 + z2

2z , Xi = xi

z
, Xd+1 = 1 − x2 − z2

2z , z > 0 (2.1.5)

where i ∈ {1, 2, ..., d}. This is a chart on the upper sheet of the AdS hyperboloid,

since X0 > 0. We can multiply each coordinate by −1 to obtain the analogous chart

on the lower sheet;

X0 = −1 + x2 + z2

2z , Xi = −xi

z
, Xd+1 = −1 − x2 − z2

2z , z > 0 (2.1.6)

is also a solution to the embedding equation, this time with X0 < 0. We can therefore

summarise EAdS in Poincaré coordinates as the solution

XAdS± ≡ (X0
AdS± , X i

AdS± , Xd+1
AdS±)

1Or simply hyperbolic space in mathematical literature.
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= ±1
z

(
1 + z2 + x2

2 , xi,
1 − z2 − x2

2

)
, z > 0, (2.1.7)

where the upper sheet is parameterised by XAdS+ with X0
AdS+ > 0 and the lower

sheet by XAdS− with X0
AdS− < 0.

Plugging the above into the metric for Rd+1,1 we obtain the metric for Euclidean

AdSd+1 in Poincaré coorindates,

ds2
EAdSd+1

= L2
AdS
z2 (dz2 + δijdx

idxj), (2.1.8)

where z ∈ [0,∞). One important feature of Anti-de Sitter space is the presence

of a conformal boundary at z = 0. Notice that a Weyl rescaling of the metric and

subsequently sending z → 0 results in the metric for Euclidean Rd. I.e,

lim
z→0

(
z2

L2
EAdS

ds2
EAdSd+1

)
= ds2

Rd := δijdx
idxj. (2.1.9)

The EAdS boundary2 is therefore a copy of Rd. We can also see this by considering

coordinates Q defining an embedding of Rd in Rd+1,1, defined by

Q0 = 1 + x2

2 , Qi = xi , Qd+1 = 1 − x2

2 , (2.1.10)

where again i ∈ {1, ..., d}. Notice that in the z −→ 0 limit, we have

zX −→ Q, (2.1.11)

namely the coordinates defining an embedding of AdSd+1 in Rd+1,1 (ie, the X)

coincide with the coordinates defining an embedding of Rd in Rd+1,1 (ie, the Q) up

to some overall factor.

From (2.1.3) we see that the isometry group of EAdS is O(d+ 1, 1). This happens

to also be the isometry group of de Sitter space, and the two manifolds turn out to

be related by a Wick rotation. We will exploit this fact heavily in this work.

2Note that AdS is maximally symmetric with constant Ricci scalar everywhere, and therefore
does not have a boundary in the sense of a “manifold with boundary”. In all cases in this thesis
when we refer to the AdS or dS “boundary”, we mean the conformal boundary as defined above.
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2.1.2 de Sitter Spacetime

de Sitter (dS) spacetime is a maximally symmetric vacuum solution to Einstein’s

equations with positive cosmological constant. dSd+1 can be embedded in Minkowski

Rd+1,1 with coordinates Xi, i ∈ {0, ..., d+ 1} and metric

ds2
Rd+1,1 = −dX2

0 + dX2
1 + ...+ dXd + dX2

d+1, (2.1.12)

subject to the hyperbolic embedding equation

−X2
0 +X2

1 + ...+X2
d +X2

d+1 = L2
dS, (2.1.13)

where analogously to the AdS case LdS is a length scale called the de Sitter radius3.

Unlike EAdS, the equation X2
0 = 0 has solutions (of the form

d+1∑
i=1

X2
i = L2

dS), and so

the regions for X0 < 0 and X0 > 0 are connected to one another. de Sitter space is

therefore a one-sheeted hyperboloid. One can see from (2.1.13) that the isometry

group of de Sitter space is O(d+ 1, 1), which has four connected components4. The

component connected to the identity is denoted SO+(d+1, 1), whose action preserves

the time direction and the space orientation of de Sitter space. Discrete elements of

O(d+ 1, 1) include time reversal and the parity transformation, given in embedding

space by5

T := diag(−1, 1, . . . , 1︸ ︷︷ ︸
d+1

) (2.1.14)

P = diag(1,−1, 1, . . . , 1︸ ︷︷ ︸
d

). (2.1.15)

3Again, often set to 1.
4An O(d + 1, 1) transformation acts on the coordinates as Xµ → Λµ

νXν . The four connected
components are then characterised by the sign of Λ0

0 and det(Λ) = ±1. The component with
det(Λ) = +1 and Λ0

0 > 0 is denoted SO+(d + 1, 1).
5In general dimensions, a parity transformation is defined to be any transformation that flips

the sign of one spatial coordinate; on R3 it turns out that flipping the sign of all coordinates is
also a valid parity transformation. We choose to flip the X1 coordinate by convention.
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respectively. An additional discrete element which will prove essential to this work

is the antipodal transformation, defined

A := diag (−1, ...,−1︸ ︷︷ ︸
d+2

), (2.1.16)

which acts in embedding space on a point x ∈ dSd+1 as

A : X(x) 7−→ X(x̄) := −X(x). (2.1.17)

Solutions to (2.1.13) correspond to various coordinate charts on dSd+1. One solution

covers the Expanding Poincaré Patch (EPP), and is parameterised by the coordinates

(t+, xi
+);

XdS+ ≡ (X0
dS+ , X i

dS+ , Xd+1
dS+ )

=
(
L sinh

(
t+
L

)
+ x⃗2

+
2L e

t+
L ,

xi
+
L
e

t+
L , −L cosh

(
t+
L

)
+ x⃗2

+
2L e

t+
L

)
, (2.1.18)

giving the metric

ds2
dS+ = −dt2+ + e+ 2t+

L dx⃗2
+. (2.1.19)

The EPP covers half of the de Sitter manifold, with the above parameterisation

satisfying X0 ≥ Xd+1. The other half of the manifold is covered by the Contracting

Poincaré Patch (CPP), which corresponds to the solution

XdS− ≡ (X0
dS− , X i

dS− , Xd+1
dS− )

=
(
L sinh

(
t−
L

)
−
x⃗2

−
2L e

− t−
L ,

xi
−
L
e− t−

L , L cosh
(
t−
L

)
−
x⃗2

−
2L e

− t−
L

)
, (2.1.20)

giving the metric

ds2
dS− = −dt2− + e− 2t−

L dx⃗2
−. (2.1.21)

In the context of inflationary cosmology, the EPP is most commonly used after an

additional transformation to conformal time. In fact, defining

η± = Le∓ t±
L , (2.1.22)
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the solution to the embedding equation becomes

XdS+ =
(
L2 + x⃗2

+ − η2
+

2η+
,
xi

+
η+

,
−L2 + x⃗2

+ − η2
+

2η+

)
(2.1.23)

for the EPP, and

XdS− =
(

−L2 − x⃗2
− + η2

−
2η−

,
xi

−
η−

,
L2 − x⃗2

− + η2
−

2η−

)
(2.1.24)

for the CPP. The metric for each patch then takes the same form;

ds2 = L2

η2
±

(−dη2
± + δijdx

i
±dx

j
±). (2.1.25)

The difference between these is that in the EPP, the conformal time is related to t+

as

η+ ∈ (∞, 0) ⇐⇒ t+ ∈ (−∞,+∞), (2.1.26)

whereas in the CPP we have

η− ∈ (0,∞) ⇐⇒ t− ∈ (−∞,+∞). (2.1.27)

As such, the conformal boundary of the EPP is at future infinity where η+ = 0, and

that of the CPP is at past infinity where η− = 0. One can also see the presence of

these boundaries in the embedding space formalism. One can define an embedding

of Rd in Rd+1,1 by coordinates Q±, where

Q± = ±
(
L2 + x⃗2

2 , xi ,
−L2 + x⃗2

2

)
. (2.1.28)

In the η± → 0 limit, we see that

lim
η±→0

η±XdS± = Q±, (2.1.29)

if we identify xi
+ = −xi

−. In this way, we see that a point described by Q+ on the

future boundary of dS is related to a point described by Q− on the past boundary

via the antipodal map;

A : Q± 7−→ Q∓. (2.1.30)
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The Penrose diagram in figure 2.1 shows the regions of de Sitter space that the EPP

and CPP cover, and the locations of the conformal boundaries.

Figure 2.1: The Penrose diagram for de Sitter space, showing the
Expanding and Contracting Poincaré patches and the
locations of the conformal boundaries at past and fu-
ture infinity. The antipodal map takes a point on the
boundary at future infinity I+ to its opposite point on
the boundary at past infinity I−.

We can cover both the CPP and the EPP simultaneously by simply “gluing” the

patches together; if we make the replacements x± → x and η± → η ∈ (−∞,∞),

then the EPP is covered by η = −η+ ≤ 0 and the CPP is covered by η = η− ≥ 0.

Then, the metric is given simply by

ds2 = L2
dS
η2 (−dη2 + δijdx

idxj), η ∈ (−∞,∞). (2.1.31)

The antipodal transformation then acts by flipping the sign of the conformal time;

A : x 7−→ x̄ = (−η, x⃗), where x = (η, x⃗). (2.1.32)

In these coordinates, the past and future conformal boundaries are reached by

sending η to zero from above and below, respectively. Namely, in sending η → 0−
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we are reaching 0 from the EPP, probing the boundary at future infinity. Similarly,

in sending η → 0+ we are reaching 0 from the CPP, probing the boundary at past

infinity. Figure 2.2 shows a rearrangement of the Penrose diagram for de Sitter,

illustrating how the η coordinate covers both patches.

Figure 2.2: The EPP and CPP can simultaneously be covered by
the time coordinate η ∈ (−∞,+∞). The boundary
at future infinity is reached from the EPP by sending
η → 0−, and the boundary at past infinity is reached
from the CPP by sending η → 0+.
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2.2 Quantum Field Theory in de Sitter Space

In this section we review the salient aspects of scalar Quantum Field Theory in de

Sitter space.

2.2.1 Late-Time Behaviour of the Scalar Field

Consider a massive scalar field on a fixed de Sitter background, propagating in the

expanding Poincaré patch. The dynamics of the scalar are given by the canonical

wave equation,
1√
−g

∂µ(
√

−g∂µϕ(η, x)) −m2ϕ(η, x) = 0, (2.2.1)

with the time coordinate restricted to η ∈ (−∞, 0) for the EPP. Using the metric

(2.1.31), we find

0 = 1√
−g

∂µ(
√

−g∂µϕ(η, x)) −m2ϕ(η, x)

= (−η)d+1∂µ

(−1
η

)d+1

gµν∂νϕ(η, x)
−m2ϕ(η, x)

= (−η)d+1

∂η


(

−1
η

)d+1

gηη︸︷︷︸
− η2

L2

∂ηϕ(η, x)

+ ∂i


(

−1
η

)d+1

gij︸︷︷︸
η2
L2 δij

∂jϕ(η, x)


−m2ϕ(η, x)

= (−η)d+1

L2

−∂η

[
(−η)−d+1 ∂ηϕ(η, x)

]
+
(

−1
η

)d+1

∂i∂
iϕ(η, x)

−m2ϕ(η, x)

= ...

=
(

(−η)2 ∂2

∂(−η)2 − (d− 1)(−η) ∂

∂(−η) − (−η)2∂i∂
i +m2L2

)
ϕ(η, x) = 0. (2.2.2)

Passing to momentum space in the spatial directions, this becomes(
(−η)2 ∂2

∂(−η)2 − (d− 1)(−η) ∂

∂(−η) + (−η)2k2 +m2L2
)
ϕk⃗(η) = 0. (2.2.3)

Let us now consider an ansatz ϕk⃗(η) = O(k)(−η)∆, with O(k) some arbitrary

function of the momentum. The wave equation then implies

∆(∆ − 1) + ∆(1 − d) + (−η)2k2 +m2L2 = 0. (2.2.4)
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Close to the late-time boundary, namely η → 0, we have

0 ≈ ∆(∆ − 1) + ∆(1 − d) +m2L2

= ∆2 − d∆ +m2L2, (2.2.5)

which has solutions

∆± = d

2 ±
√
d2

4 −m2L2. (2.2.6)

Thus, we see that the behaviour of the field close to the future boundary takes a

particularly simple form given by

ϕk⃗(η → 0−) ∼ O+(k)(−η)∆+ + O−(k)(−η)∆− , (2.2.7)

where it will prove convenient to parameterise ∆± as

∆± = d

2 ± iν. (2.2.8)

2.2.2 Classification of Particles in de Sitter Space

A basic consistency requirement for sensible physics is that the outcomes of ex-

periments should be unchanged when the system is acted upon by a symmetry

transformation. For instance, performing some particular experiment should yield

identical results regardless of whether we perform it in Durham, or in London - the

results should be the same if we translate the experiment by a few hundred miles.

It turns out that this idea (admittedly, pushed rather far) leads to the classification

of particle states in quantum field theory, telling us the kinds of particles that are

“allowed” if we want consistent physics. As a simple illustrative example, let M and

S be two operators on a vector space V corresponding to the mass and spin of some

particle, and let

ρ : G −→ GL(V )

g 7−→ ρ(g) (2.2.9)



2.2. Quantum Field Theory in de Sitter Space 23

be some representation of a Lie group G that we want our system to be invariant

under. In particular, since the mass and spin of the particle are observables we want

the operators M and S to be invariant under the action of G, namely

ρ(g)Mρ(g)−1 != M ⇐⇒ [ρ(g),M] != 0, (2.2.10)

ρ(g)Sρ(g)−1 != S ⇐⇒ [ρ(g),S] != 0. (2.2.11)

We also want these operators to assume fixed values on each representation; namely

we want that the action of ρ(g) on a state |ψ⟩ does not change the mass or spin of

|ψ⟩. If ρ(g) is an irreducible representation (irrep) of G, then by Schur’s lemma

[ρ(g),M] = 0 =⇒ M ∝ I, (2.2.12)

namely M = mI with m some proportionality constant. Thus, ρ being irreducible

is a sufficient condition for M to assume a fixed value m. Note that different

representations ρ will correspond to different m.

We also want to insist that inner products of the states remain invariant under the

action of G. In particular, if we transform

|m⟩ −→ |m̃⟩ := ρ(g) |m⟩ , (2.2.13)

we should insist that

⟨m̃|m̃⟩ != ⟨m|m⟩ =⇒ ρ(g)†ρ(g) != I. (2.2.14)

Thus, we see that some basic consistency requirements imply that states should

transform in unitary, irreducible representations (UIRs) of the symmetry group.

How should we classify these representations? One convenient method is provided

by Casimir invariants - operators that can be constructed from generators of the

Lie algebra g ≡ Lie(G). Let

ρ̃ : g −→ End(V ) (2.2.15)

be a representation of the Lie algebra g on a vector space V , and {Xi}i=1,...,dim(g) be
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any basis of g. Define the ρ̃−Killing form to be the map6

κρ̃ : g × g −→ F

(x, y) 7−→ κρ̃(x, y) := Tr(ρ̃(x) ◦ ρ̃(y)), (2.2.16)

with F the field over which g is defined (usually R or C). Let {ξi} be the dual basis

with respect to {Xi}; the basis for which κρ̃(Xi, ξj) = δij. The Casimir invariant

associated with the representation ρ̃ is then defined

Cρ̃ :=
dim(g)∑

i=1
ρ̃(Xi) ◦ ρ̃(ξi). (2.2.17)

It can be shown that the Casimir invariant commutes with all elements of the Lie

algebra, namely

[Cρ̃, ρ̃(a)] = 0, ∀a ∈ g. (2.2.18)

Therefore, if ρ̃ is irreducible, then by Schur’s lemma,

Cρ̃ = cρ̃ · idV , (2.2.19)

with cρ̃ a constant. Different irreps will result in different Casimir operators and

therefore different cρ̃, and since cρ̃ are constant on each irrep, Casimir operators

provide a convenient classification of irreps.

Let us now apply these ideas to the case at hand; particles in de Sitter space7. The

generators of the d-dimensional Euclidean conformal group Conf(Rd) are8

Mij︸︷︷︸
Spatial Rotations

, D︸︷︷︸
Dilatations

, Pi︸︷︷︸
Translations

, Ki︸︷︷︸
SCTs

, (2.2.20)

with Mij = −Mji. The isomorphism between Conf(Rd) and SO(d + 1, 1) is made

manifest by defining

Lij := Mij , L0,d+1 := D , Ld+1,i := 1
2(Pi +Ki) , L0,i := 1

2(Pi −Ki), (2.2.21)

6Once a basis for V is chosen, the map Tr is the elementary trace of a matrix.
7See [88] for an excellent review of the representation theory of SO(d + 1, 1).
8With SCTs being short for Special Conformal Transformations.
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with LAB = −LBA, which indeed generate the algebra so(d+ 1, 1)9,

[LAB, LCD] = ηBCLAD − ηACLBD + ηADLBC − ηBDLAC , (2.2.22)

where

ηAB = diag(−1, 1, ..., 1︸ ︷︷ ︸
d+1

), (2.2.23)

is used to raise and lower indices of the LAB. To get a unitary representation of

SO(d+ 1, 1) we also require the reality condition

L†
AB := (LBA)∗ = (−LAB)∗ != −LAB. (2.2.24)

The (quadratic) Casimir invariant is chosen to be

C2 := 1
2LABL

AB

= 1
2(2L0iL

0i + 2L0,d+1L
0,d+1 + LijL

ij + 2Li,d+1L
i,d+1)

= 1
2(−2L0iL0i − 2L0,d+1L0,d+1 + LijL

ij + 2Li,d+1Li,d+1)

= 1
2(PiK

i +KiP
i − 2D2 +MijM

ij). (2.2.25)

Now, using [Ki, P
j] = 2δ j

i D − 2M j
i and M i

i = 0 (since Mij is antisymmetric), we

have

C2 = D(d− D) + PiK
i + 1

2MijM
ij. (2.2.26)

To find the eigenvalue of this Casimir operator, c2, we allow C2 to act on a state

that transforms in some arbitrary irreducible representation of Conf(Rd). Since the

Casimir operator is constant on each representation, the value of c2 doesn’t depend

on the specific state we choose (only the representation the state transforms in), and

so we can make things easier by choosing the state to be a conformal primary |∆, s⟩,

satisfying (by definition)

D |∆, s⟩ = ∆ |∆, s⟩ (2.2.27)

Ki |∆, s⟩ = 0 (2.2.28)

9This can be seen by plugging in the commutation relations for the conformal algebra.
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1
2MijM

ij |∆, s⟩ = −s(s+ d− 2) |∆, s⟩ . (2.2.29)

Acting on this state with the Casimir operator, we find

C2 |∆, s⟩ = (∆(d− ∆) − s(s+ d− 2)) |∆, s⟩ , (2.2.30)

and so we read off the eigenvalue

c2 = ∆(d− ∆) − s(s+ d− 2). (2.2.31)

It turns out that these two parameters ∆ and s (the conformal dimension and

the spin, respectively) are enough to classify (or “label”) all unitary irreducible

representations of SO(d+ 1, 1) that describe traceless - symmetric fields in de Sitter

space.

Furthermore, for scalar fields s = 0 the UIRs of the de Sitter isometry group fall

into three categories known as the Principal Series, the Complementary Series and

the Discrete Series. Recall that the boundary behaviour of a massive scalar in de

Sitter space was given by

ϕ(η → 0−, k) ∼ O+(k)(−η)∆+ + O−(k)(−η)∆− , (2.2.32)

with O± transforming under Conf(Rd) like a scalar primary operator in a Euclidean

conformal field theory, with conformal dimension ∆±. It is convenient to use the

parameterisation ∆± = d
2 ± iν, and describe the three series of UIRs by specifying

the value of ν. These three series are as follows:



2.2. Quantum Field Theory in de Sitter Space 27

1. The Principal Series

• For the principal series, ν ∈ R (iν :=
√

d2

4 −m2L2 is imaginary)

and so m2L2 ≥ d2

4 . This class therefore corresponds to “heavy”

particles.

2. The Complementary Series

• For the complementary series, we define ν =: −iµ with µ ∈ R

(iν :=
√

d2

4 −m2L2 is real), and so ∆± = d
2 ± µ. In this series we

have 0 < m2L2 < d2

4 , and so µ ∈ (0, d
2). This class corresponds to

“light” particles. Massless particles correspond to µ = d
2 and lie on

the boundary of the complementary series - sometimes referred to

as the Exceptional Series.

3. The Discrete Series

• The discrete series is subtle, and we will not consider it in this work.

The discrete series poses a challenge on account of its containing

tachyons, but recent work on these UIRs can be found in [89–91].

We should note that there are also spinning versions of the principal, complementary

and discrete series. In particular, for traceless-symmetric spin-s fields (with s strictly

greater than 0) in de Sitter space we have

∆ ≡ ∆+ = d

2 +
√
d2

4 −m2L2 + s ≡ d

2 + iνs. (2.2.33)

For spinning fields the representation theory of SO(d + 1, 1) is more complicated,

and depends on the dimension d. The spinning Principal, Complementary and

Exceptional Series are:

• The Principal Series : νs ∈ R, so m2L2 ≥ d2

4 + s.
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• The Complementary Series : νs := −iµs =⇒ ∆ = d
2 + µs, with µs ∈ R such

that 0 < µs <
d
2 − 1. This corresponds to d− 1 < m2L < d2

4 + s.

• The Exceptional Series : Describes the boundary points of the complementary

series.

We also have the spinning Discrete Series, which exists only for odd d (ie, even

spacetime dimension d + 1) and describes non-traceless-symmetric fields. For the

Discrete Series, the spin vector s⃗ = (s1, . . . , sr) has all entries non-vanishing, and

the label ∆ is given by ∆ = d
2 + k with k ∈ 1

2N and 0 < k ≤ sr.

de Sitter space also admits so-called “partially massless” fields, with the parameter

ν given by ν = − i
2(d− 2 + 2(s− ζ) − 2) for totally symmetric representations, where

ζ ∈ {0, 1, . . . , s − 1}. An excellent review of all of the above can be found in [92],

along with a thorough discussion of non-traceless-symmetric representations.

2.2.3 de Sitter Vacua I - The Bunch-Davies Vacuum

As is standard procedure in quantum field theory, in Fourier space one can expand

a scalar field10 ϕk⃗(t) in a basis of mode functions11 {fk⃗(t), f̄k⃗(t)},

ϕk⃗(t) = fk(t) a†
k⃗

+ f̄k(t) a−k⃗, (2.2.35)

which are normalised with respect to the Klein-Gordon inner product, defined

(f, g) := −i
∫

Σ
ddx

√
γnµ (f ∗∂µg − g∂µf

∗) , (2.2.36)

where Σ is a spatial slice with induced metric γij and nµ is a timelike unit vector

normal to Σ. Defining ϕ1 (t, x⃗) =
∫ ddk

(2π)d e
+ik⃗·x⃗f̄k (t) and ϕ2 (t, x⃗) =

∫ ddk

(2π)d e
+ik⃗·x⃗fk (t),

10In position space we have

ϕ(t, x) =
∫

ddk

(2π)d
ϕk⃗(t) e+ik⃗·x⃗. (2.2.34)

11We follow the conventions of [12].



2.2. Quantum Field Theory in de Sitter Space 29

we require

(ϕ1, ϕ1) = 1, (ϕ2, ϕ2) = −1, (ϕ1, ϕ2) = 0. (2.2.37)

a†
k⃗

and ak⃗ are the standard creation and annihilation operators (respectively), satis-

fying the canonical commutation relations;

[ak⃗1
, a†

k⃗2
] = (2π)d δ(k⃗1 − k⃗2), [ak⃗1

, ak⃗2
] = [a†

k⃗1
, a†

k⃗2
] = 0 . (2.2.38)

One then defines a vacuum state |Ω⟩ by demanding

ak⃗ |Ω⟩ := 0, (2.2.39)

thereby marrying the vacuum to a particular choice of the basis mode functions

fk⃗(η).

We can use the Wightman function to characterise a vacuum state via

G
(Ω)
W (x1, x2) := ⟨Ω|ϕ(x1)ϕ(x2) |Ω⟩ , (2.2.40)

whose form will depend on the vacuum |Ω⟩. The Wightman function solves the

source-free wave equation; we see that since

ϕ(x, t) =
∫ ddk

(2π)d
(fk(t) a†

k⃗
+ f̄k(t) a−k⃗)eik⃗·x⃗, (2.2.41)

we have

G
(Ω)
W (x1, x2) :=

∫ ddk1

(2π)d

ddk2

(2π)d
⟨Ω| (fk1(t1) a†

k⃗1
+ f̄k1(t1) a−k⃗1

)

× (fk2(t2) a†
k⃗2

+ f̄k2(t2) a−k⃗2
) |Ω⟩ eik⃗1·x⃗1eik⃗2·x⃗2

=
∫ ddk1

(2π)d

ddk2

(2π)d
f̄k1(t1)fk2(t2) ⟨Ω| a−k⃗1

a†
k⃗2

|Ω⟩︸ ︷︷ ︸
⟨Ω| [a−k⃗1

, a†
k⃗2

] |Ω⟩

eik⃗1·x⃗1eik⃗2·x⃗2 . (2.2.42)

Sending k⃗1 → −k⃗1 and using the canonical commutation relation (2.2.38), we obtain

G
(Ω)
W (x1, x2) =

∫ ddk1

(2π)d

ddk2

(2π)d
f̄k(t1)fk(t2)e−ik⃗1·x⃗1eik⃗2·x⃗2 (2π)d δ(d)(k⃗1 − k⃗2)

=
∫ ddk

(2π)d
f̄k(t1)fk(t2) eik⃗·(x⃗2−x⃗1). (2.2.43)
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Since the mode functions by definition solve the homogeneous wave equation

(∇2 −m2)f(t, x⃗) = 0 =⇒
∫ ddk

(2π)d
(∇2 −m2)fk⃗(t)eik⃗·x⃗ = 0, (2.2.44)

the Wightman function also solves the homogeneous wave equation;

(∇2
x1 −m2)G(Ω)

W (x1, x2) = 0. (2.2.45)

We also see that in Fourier space, the Wightman function is given simply by a

product of the mode functions corresponding to |Ω⟩;

G
(Ω)
W (t1, t2; k⃗) = f̄k⃗(t1)fk⃗(t2), (2.2.46)

a crucial fact that will prove extremely useful later on.

The Wightman function is required to be invariant under the isometry group of the

background on which it is defined. In the case of de Sitter space, the Wightman

function should therefore be invariant under the de Sitter isometry group O(d+1, 1).

As such, G(Ω)
W (x1, x2) must depend only on an O(d+ 1, 1)-invariant combination of

x1 and x2, which we define to be

s(x1, x2) := ηABX1(x1)AX2(x2)B ≡ X1(x1) ·X2(x2)

= 1 + (η1 − η2)2 − (x1 − x2)2

2η1η2
, (2.2.47)

where we have given its specific form in the Poincaré patch for convenience later on.

This turns out to be more convenient to express via the variable

σ(x1, x2) := 1 + s(x1, x2)
2 = 1 + (η1 − η2)2 − (x1 − x2)2

4η1η2
, (2.2.48)

where we have

σ(x, x) = 1 , σ(x, x̄) = 0. (2.2.49)

In terms of the coordinate σ, it is well-known12 that the wave equation becomes

12See, for instance, [93].
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Euler’s Hypergeometric equation,

[σ (1 − σ) ∂2
σG

(Ω) (σ) −
(

d+1
2

)
(2σ − 1) ∂σG

(Ω) (σ)] −m2G(Ω) (σ) = 0, (2.2.50)

whose solution is a linear combination of two Gauss Hypergeometric functions. In

particular, we have

G(Ω) (σ) = A 2F1(d
2 + iν, d

2 − iν; d+1
2 ;σ) +B 2F1(d

2 + iν, d
2 − iν; d+1

2 ; 1 − σ), (2.2.51)

with A,B ∈ C. The Gauss Hypergeometric function is defined for |z| < 1 as

2F1(a, b; c; z) :=
∞∑

n=0

(a)n(b)n

(c)n

zn

n! , (2.2.52)

with (a)n the rising factorial13, and can be defined elsewhere by analytic continuation.

This has a branch point at z = 1, with the corresponding branch cut chosen to

be along [1,∞). This implies that (2.2.51) in turn is singular for σ = 1 when

A ̸= 0, B = 0, and for σ = 0 when A = 0, B ̸= 0. For the former, we have

σ(x1, x1) = 1 +X1(x1) ·X2(x2)
2 = 1 =⇒ X1(x1) ·X2(x2) = 1, (2.2.54)

which occurs when x1 and x2 are null separated, or lie on the lightcone of each-other

- we will henceforth call this the lightcone singularity. For the A = 0 singularity

however,

σ(x1, x1) = 1 +X1(x1) ·X2(x2)
2 = 0 =⇒ X1(x1) ·X2(x2) = −1

=⇒ X1(x1) ·X2(x̄2) = 1. (2.2.55)

Namely, the Wightman function is singular when x1 is null separated from the

point antipodal to x2 (and vice-versa). This latter singularity is at first sight a

rather unphysical one, though as can be seen from figure 2.1, antipodal points in de

Sitter space are separated by a cosmological horizon. Therefore a single observer,

13The rising factorial, or Pochhammer symbol, is given by

(a)n := Γ(a + n)
Γ(a) . (2.2.53)
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who is causally disconnected from half of de Sitter space and cannot access the

point antipodal to them, could never detect such a singularity. We see that (2.2.51)

therefore implies the existence not of a single vacuum state, but rather an entire

family of vacua corresponding to linear combinations of the two solutions, known

as the α-vacua. We will shortly see that in the Poincaré patch, this family can be

characterised by two parameters α and β.

The solution with B = 0 defines the so-called Bunch-Davies vacuum, whose only

singularity is the lightcone singularity. The Bunch-Davies vacuum, denoted |0⟩, is

referred to in the literature by a number of different names - the Hartle-Hawking

vacuum, the Euclidean vacuum14, and the Thermal vacuum are all used. The

lightcone singularity also occurs in Minkowksi space, and the coefficient A can be

fixed by insisting that the lightcone singularity in de Sitter and in Minkowski space

have the same strength15, resulting in

G(0) (σ) =
Γ
(

d
2 + iν

)
Γ
(

d
2 − iν

)
(4π)

d+1
2 Γ

(
d+1

2

) 2F1(d
2 + iν, d

2 − iν; d+1
2 ;σ), (2.2.56)

where the superscript (0) signifies the Bunch-Davies vacuum. Note that we still

need to be able to access the region for spacelike separation σ > 1, so we need to

specify how to deal with the branch cut along [0,∞). The different iϵ prescriptions

for dealing with this branch cut will then give us the time-ordered, anti-time-ordered

and Wightman functions. We note that in the short-distance limit in the Bunch-

Davies vacuum, the iϵ prescription should coincide with that for the Minkowski

space Green’s functions16. The solution (2.2.56) is a function of σ, which in the

short-distance limit η1 ≈ η2, x⃗1 ≈ x⃗2 is given by

σ = 1 + (η1 − η2)2 − (x⃗1 − x⃗2)2

4η1η2
∼ 1 + (η1 − η2)2 − (x⃗1 − x⃗2)2. (2.2.57)

14Since it is the unique vacuum reached by analytic continuation from the Euclidean sphere.
15This is a sensible consistency criterion; if we bring x1 and x2 close enough together they cannot

“feel” the curvature of the background and so the singularity should be of the same strength as its
Minkowski counterpart.

16I thank Joe Marshall for making me aware of footnote 12 of [81], which contains the following
simple argument.
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The Feynman propagator in Minkowski space depends on the combination of coordin-

ates (with the iϵ prescription included) (t1 − t2)2 − (x⃗1 − x⃗2)2 − iϵ, and so we should

choose σ → σ−iϵ for the prescription to obtain the time-ordered Green’s function. A

similar argument can be made for the anti-time-ordered Green’s function, obtaining

G
(0)
T (σ) = G(0) (σ − iϵ) , (2.2.58a)

G
(0)
T̄

(σ) = G(0) (σ + iϵ) . (2.2.58b)

These can be equivalently written as

G
(0)
T (x1, x2) = θ(η1 − η2)G(0)

W (x1, x2) + θ(η2 − η1)G(0)
W (x2, x1) , (2.2.59a)

G
(0)
T̄

(x1, x2) = θ(η1 − η2)G(0)
W (x2, x1) + θ(η2 − η1)G(0)

W (x1, x2) , (2.2.59b)

in terms of the Heaviside step function θ, with the iϵ prescription for the Wightman

function given by

G
(0)
W (x1, x2) = G(0) (σ − iϵ sgn(η1 − η2)) . (2.2.60)

It is often useful to decompose dS two-point functions in the Bunch-Davies vacuum

according to

G(0) (σ) = G
(0)
∆+

(σ) +G
(0)
∆−

(σ) , (2.2.61)

where

G
(0)
∆ (σ) = CdS

∆ (−4σ)−∆
2F1

∆,∆ − d
2 + 1

2

2∆ − d+ 1
; 1
σ

 , (2.2.62)

with CdS
∆ a constant we call the two-point coefficient. In the case that one of the two

points lies on the future or past de Sitter boundary one can then expand (2.2.58) for

large s, giving:

G
(0)
T (T̄ ) (s → ∞) = K

(0)
∆+, T (T̄ ) (s) +K

(0)
∆−, T (T̄ ) (s) , (2.2.63)

which naturally identifies time-ordered and anti-time-ordered bulk-to-boundary propag-
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ators,

K
(0)
∆, T (s) = CdS

∆
(−2s+ iϵ)∆ , (2.2.64a)

K
(0)
∆, T̄

(s) = CdS
∆

(−2s− iϵ)∆ , (2.2.64b)

with scaling dimension ∆ and two-point coefficient

CdS
∆ = 1

4π d+2
2

Γ (∆) Γ(d
2 − ∆). (2.2.65)

In Poincaré coordinates these read

K
(0)
∆, T (η, x⃗; y⃗) = CdS

∆

(
ηη0

−η2 + (x⃗− y⃗)2 + iϵ

)∆

, (2.2.66a)

K
(0)
∆, T̄

(η, x⃗; y⃗) = CdS
∆

(
ηη0

−η2 + (x⃗− y⃗)2 − iϵ

)∆

, (2.2.66b)

at late times η0 ∼ 0.

As we showed in section 2.2.1, in the expanding Poincaré patch, rather than becoming

Euler’s hypergeometric equation the wave equation (2.2.45) becomes (after going to

momentum space)(
(−η)2 d2

d(−η)2 − (d− 1)(−η) d

d(−η) + (−η)2k2 +m2
)
gk⃗(η) = 0. (2.2.67)

The solution to this equation can be expressed as a linear combination of Hankel

functions of the first and second kind;

gk⃗(η) = C1
1
2(−η) d

2H
(1)
iν (−kη) + C2

1
2(−η) d

2H
(2)
iν (−kη), (2.2.68)

with Ci constants. By insisting that these solutions reduce to those for the wave

equation in Minkowski space in the η → −∞ limit, we can fix the normalisation

constants and obtain the Bunch-Davies mode functions. In particular, insisting that

lim
η→0

(
C1

1
2(−η) d

2H
(1)
iν (−kη)

)
= lim

η→0

(
C2

1
2(−η) d

2H
(2)
iν (−kη)

)
!= 1√

2k
e−ikη, (2.2.69)
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leads to the mode functions in the Bunch-Davies vacuum f
(0)
k⃗

and f̄
(0)
k⃗

, given by

f
(0)
k⃗

(η) = (−η)
d
2

√
π

2 e
πν
2 H

(2)
iν (−kη) , (2.2.70a)

f̄
(0)
k⃗

(η) = (−η)
d
2

√
π

2 e− πν
2 H

(1)
iν (−kη) . (2.2.70b)

These are simply related under anti-podal transformation:

f̄
(0)
k⃗

(η) = − e
iπd

2 f
(0)
k⃗

(η e−iπ). (2.2.71)

2.2.4 de Sitter Vacua II - The α-Vacua

de Sitter space admits a family of inequivalent vacuum states known as the α-

vacua, which can be defined by a Bogoliubov transformation from the Bunch-Davies

vacuum17. The mode functions corresponding to the α-vacua are thus a linear

combination of the Bunch-Davies mode functions defined above, namely

f
(α)
k⃗

(η) := Af
(0)
k⃗

(η) +B f̄
(0)
k⃗

(η), (2.2.72)

f̄
(α)
k⃗

(η) := A∗ f̄
(0)
k⃗

(η) +B∗ f
(0)
k⃗

(η). (2.2.73)

The set {f (α)
k⃗

(η), f̄ (α)
k⃗

(η)} then forms a basis of solutions to the Klein-Gordon equa-

tion, and the field ϕ can be expressed as

ϕk⃗(η) = f
(α)
k⃗

(η) b†
k⃗

+ f̄
(α)
k⃗

(η) bk⃗, (2.2.74)

with b†
k⃗
, bk⃗ the creation and annihilation operators associated with the α-vacuum

modes. Plugging in (2.2.72), we see that

ϕk⃗(η) = f
(α)
k⃗

(η) b†
k⃗

+ f̄
(α)
k⃗

(η) bk⃗

= (Af (0)
k⃗

(η) +B f̄
(0)
k⃗

(η)) b†
k⃗

+ (A∗ f̄
(0)
k⃗

(η) +B∗ f
(0)
k⃗

(η)) bk⃗

= (Ab†
k⃗

+B∗ bk⃗)f (0)
k⃗

(η) + (B b†
k⃗

+ A∗ bk⃗)f̄ (0)
k⃗

(η)

17This is analogous to the Unruh effect in which the accelerated observer’s “vacuum” is related by
a Bogoliubov transformation to that of the inertial observer. However, in that case the accelerated
vacuum breaks translation invariance and thus is not a vacuum in the sense of this thesis, where
“vacua” are states which are invariant under all the isometries of the background spacetime.
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!= f
(0)
k⃗

(η) a†
k⃗

+ f̄
(0)
k⃗

(η) ak⃗, (2.2.75)

and so we identify the Bogoliubov transformation between the Bunch-Davies creation

and annihilation operators a†
k⃗
, ak⃗, and those for the α-vacua b†

k⃗
, bk⃗,

a†
k⃗

!= Ab†
k⃗

+B∗ bk⃗, ak⃗

!= B b†
k⃗

+ A∗ bk⃗. (2.2.76)

If we now insist that the new creation & annihilation operators satisfy the same

commutation relations as those for the Bunch-Davies vacuum, we find

[ak⃗1
, a†

k⃗2
] = (B b†

k⃗1
+ A∗ bk⃗1

)(Ab†
k⃗2

+B∗ bk⃗2
) − (Ab†

k⃗2
+B∗ bk⃗2

)(B b†
k⃗1

+ A∗ bk⃗1
)

= |B|2 b†
k⃗1
bk⃗2

+ |A|2 bk⃗1
b†

k⃗2
− |A|2 b†

k⃗2
bk⃗1

− |B|2 bk⃗2
b†

k⃗1

= (|A|2 − |B|2)bk⃗1
b†

k⃗2
− (|A|2 − |B|2)b†

k⃗2
bk⃗1

= (|A|2 − |B|2)[bk⃗1
, b†

k⃗2
], (2.2.77)

and so insisting that [ak⃗1
, a†

k⃗2
] != [bk⃗1

, b†
k⃗2

] requires

|A|2 − |B|2 != 1. (2.2.78)

This equation is solved by

A = coshα, B = eiβ sinhα, (2.2.79)

with α ∈ R and β ∈ [0, 2π), where we have neglected a possible overall phase

that does not contribute to expectation values. It can be shown that the Wightman

function is invariant under the component of the isometry group O(d+1, 1) connected

to the identity only if α and β are momentum-independent, and under the full

disconnected isometry group only if β = 0 [25]. Note that one reaches the Bunch-

Davies vacuum simply by setting α = β = 0; one can view the Bunch-Davies vacuum

as a distinguished point in the space of α-vacua.

An important remark to make is that since the creation and annihilation operators for

the Bunch-Davies vacuum are each a linear combination of creation and annihilation
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Figure 2.3: Each momentum-independent pair (α, β) ∈ R × [0, 2π)
defines the unique vacuum state of a different Fock space.
The vacuum manifold parameterised by this pair is a
cylinder.

operators for the α-vacua, an α-vacuum |α, β⟩ defined by

bk⃗ |α, β⟩ := 0, (2.2.80)

will not be a vacuum state with respect to the Bunch-Davies annihilation operator;

ak⃗ |α, β⟩ ≠ 0. (2.2.81)

From this perspective one can view the α-vacua as being states containing Bunch-

Davies excitations, analogous to the view that one takes in the context of the

Unruh effect where the accelerated observer finds particles in the state which the

inertial observer considers to be a vacuum. In addition, one should note that each

momentum-independent α-vacuum defines a unique de Sitter invariant ground state

of a different Fock space, with α acting as a superselection parameter. Alternatively

if we allow α, β to be momentum-dependent, it turns out that the dependence can

be chosen such that |αk⟩ and |0⟩ lie in the same Hilbert space, in which case the

αk-vacua are literally excited states over the Bunch-Davies vacuum [32, 94]. Such

general states defined by momentum-dependent parameters αk, βk have been called

Bogoliubov Initial States [1, 95, 96] or simply Alpha States [94] in the literature.

Henceforth, the goal is to compute correlation functions for scalar fields in the

α-vacua in de Sitter space, which can be extended to the more general family of

Bogoliubov initial states simply by allowing α and β to be appropriate functions of

the momenta; αk and βk for each mode of momentum k. In particular, we will use
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the notation

⟨ϕ1(k⃗1)...ϕn(k⃗n)⟩(α) ≡ ⟨α|ϕ1(k⃗1)...ϕn(k⃗n) |α⟩ , (2.2.82)

with |α⟩ ≡ |α, β⟩ assumed to indicate non-zero β unless otherwise specified, and

⟨ϕ1(k⃗1)...ϕn(k⃗n)⟩(0) (2.2.83)

denoting a correlator in the Bunch-Davies vacuum. In the next section, we introduce

the general method we will use to compute de Sitter correlators, known as the in-in

formalism.

2.2.5 dS Scattering: The In-In Formalism

In this section, we argue that scattering in de Sitter is more subtle than in flat space

(and indeed, in AdS), and we introduce the in-in or Schwinger-Keldysh formalism

for computing boundary correlators in de Sitter space.

Scattering in Flat Space. We begin by reviewing the procedure for calculating

scattering amplitudes in flat space in perturbation theory, following the review in

[97]. We define the two-point Green’s function of a (generally complex) field O in

the Heisenberg picture (where states are fixed and operators are time-dependent)

between two spacetime points x and x′ to be

G(x, x′) := ⟨Ω|T (O(x)O†(x′)) |Ω⟩ , (2.2.84)

where |Ω⟩ is defined to be the ground state of the full interacting theory18. To

compute scattering amplitudes in flat space, one proceeds perturbatively by split-

ting the Hamiltonian of the interacting theory into a free part and a perturbation

characterising the interaction, namely

H = H0 +Hint. (2.2.85)

18Namely, |Ω⟩ is the lowest-eigenvalue eigenstate of the full Hamiltonian H.
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We can then switch to the interaction picture (where operators evolve with the free

Hamiltonian H0 and states evolve with Hint) and define the time evolution operator

to be the time-ordered exponential of the interaction Hamiltonian. Precisely, the

evolution of a state |ψ⟩I from some initial t0 to a final t in the interaction picture is

given by

|ψ(t)⟩I = U(t, t0) |ψ(t0)⟩I , (2.2.86)

where the time evolution operator is given by

U(t, t0) = T exp
−i

t∫
t0

dt′Hint(t′)
 . (2.2.87)

Equation (2.2.84) is in general difficult to work with, since we do not necessarily

know what the state |Ω⟩ is. Hence, we instead assume that the interactions switch

off in the asymptotic past and future, and work with the ground state of the free

theory |0⟩19. We derive

⟨O(x)O†(x′)⟩ ≡ G(x, x′) = 1
⟨0|S |0⟩

⟨0|T (SOI(x)O†
I(x′)) |0⟩

= ⟨0| S† T (OI(x)O†
I(x′))S |0⟩ , (2.2.88)

where OI denote the fields in the interaction picture, and the S-matrix is defined by

S := U(−∞,∞). (2.2.89)

A perturbative expansion of this object yields Wick contractions between fields

from the interaction Hamiltonian in the time-ordered exponentials, thus giving

contributions from the two-point Green’s function G(x, x′).

In the above formalism, we have implicitly assumed that the vacuum of the free

theory |0⟩ is unchanged throughout the evolution of the system. Namely, we have

one vacuum state that the interacting theory asymptotes to in the far past and

future. In other words, we have general in- and out- states schematically defined

19Namely, H0 |0⟩ = 0.
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through a single vacuum state,

|in⟩ := a†...a† |0⟩ , |out⟩ := b†...b† |0⟩ . (2.2.90)

However, this assumption is not justified in the expanding Poincaré patch of de Sitter

space. In expanding spacetimes particle production can occur, and thus the state

we define as the vacuum on one fixed time slice will in general contain particles at

some later time. In addition, the asymptotic regions of de Sitter space are separated

by a cosmological horizon, so it is difficult for an observer to set up an “in” state on

I−, and subsequently observe an “out” state on I+ analogously to the Minkowski

case. We therefore seek a new formalism for dealing with scattering in de Sitter.

The In-In Formalism. The in-in formalism deals with the above issues by only

ever making reference to the initial state. Here, we take the initial state to be the

vacuum state of the free Hamiltonian on a time slice in the infinite past.

We want to evolve the system in time such that we can consider non-trivial dynamics,

and yet we also want to avoid making reference to any kind of “out” state (since as

we described above, such amplitudes are difficult to make sense of). We do this by

evolving the system forward in time, allowing interactions to influence the system,

and then evolving the system backwards in time to the initial time slice. Namely,

we are interested in so-called “in-in” correlators, heuristically

⟨in|S |in⟩ . (2.2.91)

We can achieve this kind of evolution by complexifying the time coordinate and

considering a contour C in the complex plane. Such a contour is schematically shown

in figure 2.4. We implement the time evolution by integrating from −∞ to some

time t at which we have an operator insertion20 in the correlator, and then from t

back to −∞. Concretely, we have that the correlation function of some product of

20Since in this thesis we are interested in boundary correlators in de Sitter space, the operators
will be inserted on the late-time boundary, at time t ≡ η ∼ 0.
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tt0

>

<

+ branch

− branch

t0 + iϵ

t0 − iϵ

C

Figure 2.4: The complex time contour C along which we evolve the
system (often referred to as the in-in contour). The
upper leg of the contour is referred to as the “+ branch”
and the lower leg as the “− branch”. The contour is
closed at some time t and runs clockwise - operators
inserted on the + branch are therefore time-ordered, and
those inserted on the − branch are anti-time ordered.

operators Q(t) inserted at a time t is given by [46]

⟨Q(t)⟩ = ⟨0|

T̄ exp
−i

t∫
−∞

dt′H

Q(t)
T exp

+i
t∫

−∞

dt′H

 |0⟩ . (2.2.92)

A perturbative expansion of this object will yield not only Wick contractions arising

from within the time-ordered part (giving the usual time-ordered Feynman propag-

ator) and those from within the anti-time-ordered part (giving the anti-time-ordered

Feynman propagator), but also Wick contractions between the two. These result in

contributions from two new Green’s functions that we will denote G+− and G−+.

Note that we do not need to evolve the system into the infinite future before we

turn the contour around and evolve back to the initial time slice - we only need to

consider the part of the contour from the initial time t = −∞ to the future-most

operator insertion. In other words, we do not concern ourselves with how the system

evolves to the future of all operator insertions.

Armed with the above, one can define the two-point in-in-Green’s function via

G
(Ω)
C (x1, x2) := ⟨Ω|TC(O(x1)O†(x2)) |Ω⟩ , (2.2.93)
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with TC the “contour-ordering” operator, which orders operator insertions O accord-

ing to where on the in-in contour they are inserted. From the above discussion

regarding the in-in contour time-ordering, the Green’s function decomposes into four

“component” Green’s functions, corresponding to the four possible distributions of

the operators along the in-in contour. The first two are

G
(Ω)
++(x1, x2) ≡ G

(Ω)
T (x1, x2) = ⟨Ω|T (O(x1)O†(x2)) |Ω⟩ (2.2.94)

corresponding to both operators being inserted on the + branch, and

G
(Ω)
−−(x1, x2) ≡ G

(Ω)
T̄

(x1, x2) = ⟨Ω| T̄ (O(x1)O†(x2)) |Ω⟩ (2.2.95)

corresponding to both operators being inserted on the − branch. Note that (2.2.94)

corresponds to the usual time-ordered Feynman propagator, and (2.2.95) corresponds

to the anti-time-ordered Feynman propagator. We also have two new non-trivial

Green’s functions arising from one operator being on the + branch and the other

being on the − branch, namely

G
(Ω)
+−(x1, x2) ≡ G

(Ω)
W (x2, x1) = ⟨Ω| O†(x2)O(x1) |Ω⟩ (2.2.96)

and

G
(Ω)
−+(x1, x2) ≡ G

(Ω)
W (x1, x2) = ⟨Ω| O(x1)O†(x2) |Ω⟩ . (2.2.97)

Here, (2.2.96) corresponds to the future-most field insertion being on the + branch,

and (2.2.97) corresponds to the future-most field insertion being on the − branch.

We now apply the above formalism to the case at hand; scattering in de Sitter space.

Scattering in de Sitter Space. In this thesis we are interested in correlation

functions of operators inserted on the future boundary of the expanding Poincaré

patch of de Sitter space. Following the above, the in-in correlation function of some

set of scalar fields on a given time slice at time η is given by

⟨ϕ(η, x⃗1) . . . ϕ(η, x⃗n)⟩ (2.2.98)
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= ⟨Ω(ηi)|
T̄ exp

−i
η∫

ηi

dη′H

ϕ(η, x⃗1) . . . ϕ(η, x⃗n)
T exp

+i
η∫

ηi

dη′H

 |Ω(ηi)⟩ .

One starts at initial time21 ηi = −∞ with vacuum |Ω(ηi)⟩ in the interacting theory,

evolves in a time-ordered (T ) fashion with respect to Hamiltonian H to the time

η and then evolves back in an anti-time-ordered fashion (T̄ ). To compute such

correlators perturbatively, as usual we work in the interaction picture, again splitting

the Hamiltonian into a free and interacting part H = H0 + Hint. The correlator

(2.2.98) can then be re-written as:

⟨ϕ(η, x⃗1) . . . ϕ(η, x⃗n)⟩ (2.2.99)

=
0⟨0| T̄

(
exp[−i

∫ η
−∞ dη′Hint(ϕ0)]

)
ϕ0(η, x⃗1) . . . ϕ0(η, x⃗n)T

(
exp[+i

∫ η
−∞ dη′Hint(ϕ0)]

)
|0⟩0

0⟨0| T̄
(
exp[i

∫ η
−∞ dη′Hint(ϕ0)]

)
T
(
exp[−i

∫ η
−∞ dη′Hint(ϕ0)]

)
|0⟩0

,

where |0⟩0 is the free theory vacuum and and the ϕ0 evolve according to the free

theory Hamiltonian H0. At late times we have η ∼ 0. In this thesis we take |0⟩0

to be an α-vacuum defined by (2.2.80). The perturbative expansion of this object

is then generated by expanding the exponentials so that the correlator can then be

computed perturbatively in the usual way using Wick contractions. As described

earlier, this gives rise to the four bulk-to-bulk propagators:

G++(x1;x2) = GT (x1;x2) = 0⟨0|T (ϕ0(x1)ϕ0(x2)) |0⟩0 , (2.2.100a)

G+−(x1;x2) = GW (x2;x1) = 0⟨0|ϕ0(x2)ϕ0(x1) |0⟩0 , (2.2.100b)

G−+(x1;x2) = GW (x1;x2) = 0⟨0|ϕ0(x1)ϕ0(x2) |0⟩0 , (2.2.100c)

G−−(x1;x2) = GT̄ (x1;x2) = 0⟨0|T̄ (ϕ0(x1)ϕ0(x2)) |0⟩0 , (2.2.100d)

21We should note that an iϵ prescription is commonly imposed at early times, ηi = −∞(1 ± iϵ),
that projects onto the Bunch-Davies vacuum and ensures that the mode functions are suppressed
as η → −∞. Away from the Bunch-Davies vacuum however, the mode functions are an admixture
of positive and negative frequency modes, and one could worry about divergences coming from the
early-time behaviour of the scalar field. However, imposing such an iϵ prescription appears to be
unimportant for the convergence of the η integrals we encounter in this work, and in fact, the Mellin
space approach that we employ later in the thesis seems to take care of this issue automatically.
See chapter 4.2 of [73] for a more detailed discussion of this issue.
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and two bulk-to-boundary propagators:

K∆, +(x, y⃗) ≡ K∆, T (x, y⃗), (2.2.101a)

K∆, −(x, y⃗) ≡ K∆, T̄ (x, y⃗), (2.2.101b)

where x, xn are bulk points and y⃗ is a boundary point. The bulk-to-boundary

propagators can be computed simply by taking one of the points in a given bulk-to-

bulk propagator to the boundary.

We will almost always go to Fourier space in the spatial directions, and we will give

the functional form of all of these propagators in the expanding Poincaré patch in

chapter 3.

2.3 Quantum Field Theory in Anti-de Sitter

Space

In later chapters we will be interested in the relationship between correlation func-

tions in Anti-de Sitter space and those in de Sitter. In this section we review the

salient aspects of scalar Quantum Field Theory in Anti-de Sitter space.

2.3.1 Boundary Behaviour of the Scalar Field

Throughout this thesis we will consider scalar field theories in (EA)dS whose actions

in the most general case take the form

S = 1
16πGd+1

∫
dd+1x

√
|g| (R − 2Λ + Lmatter) , (2.3.1)

where Gd+1 is Newton’s constant in d+ 1 dimensions and

Lmatter = 1
2
∑

i

∇µϕi∇µϕi + 1
2
∑

i

m2
iϕ

2
i +

∑ g

3!
∑
i,j,k

ϕiϕjϕk + λ

4!
∑

i,j,k,l

ϕiϕjϕkϕl + ... .

(2.3.2)
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In particular, when we consider ϕ3 or ϕ4 theory, we will endeavour to keep the

interaction as general as possible and allow the cubic- or quartic interactions to be

between different scalars with different masses. For simplicity, in this section we will

just consider a single scalar with mass m.

Consider the wave equation (2.2.1) for a massive scalar on a general background g,

1√
|g|
∂µ(

√
|g|∂µϕ(z, x)) −m2ϕ(z, x) = 0. (2.3.3)

For EAdSd+1 in Poincaré coordinates,

ds2 = L2
AdS
z2 (dz2 + δijdx

idxj), (2.3.4)

and so the wave equation becomes

0 = zd+1

Ld+1
AdS

∂µ

(
Ld+1

AdS
zd+1 ∂

µϕ(z, x)
)

−m2ϕ(z, x)

= zd+1∂µ

( 1
zd+1 g

µν∂νϕ(z, x)
)

−m2ϕ(z, x)

= zd+1∂z

(
1

zd+1
z2

L2
AdS

∂zϕ(z, x)
)

+ zd+1∂α

(
1

zd+1
z2

L2
AdS

δαβ∂βϕ(z, x)
)

−m2ϕ(z, x)

= zd+1∂z

(
z1−d∂zϕ(z, x)

)
+ z2∂α∂

αϕ(z, x) −m2L2
AdSϕ(z, x). (2.3.5)

Passing to Fourier space in the directions parallel to the boundary, we find

zd+1∂z(z1−d∂zϕ(z, k)) − k2z2ϕ(z, k) −m2L2
AdSϕ(z, k) = 0. (2.3.6)

Close to the boundary at z → 0, we can drop the z2 term and write

zd+1∂z(z1−d∂zϕ) −m2L2
AdSϕ = 0. (2.3.7)

Making the ansatz ϕ(z, k) = C(k)z∆, we find

0 = zd+1∂z(z1−d∂z(C(k)z∆)) −m2L2
AdSC(k)z∆

= zd+1∆∂z(z∆−d) −m2L2
AdSz

∆

= ∆(∆ − d) −m2L2
AdS (2.3.8)
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which is satisfied for

∆ = d

2 ±
√
d2

4 +m2L2
AdS. (2.3.9)

Defining ν :=
√

d2

4 +m2L2
AdS, we therefore have two independent solutions;

∆+ ≡ d

2 + ν, (2.3.10)

and

∆− ≡ d

2 − ν = d− ∆+, (2.3.11)

with

m2L2
AdS = −∆+∆−. (2.3.12)

We can therefore expand ϕ(z, k) near the boundary in terms of coefficients A(k) and

B(k) as

lim
z→0

ϕ(z, k) = A(k)z∆− +B(k)z∆+ . (2.3.13)

Note that the exponents are real if

m2L2
AdS ≥ −d2

4 (2.3.14)

is satisfied. This is the so-called Breitenlohner-Freedman bound, and its violation

can lead to instabilities in the bulk22. Notice that if ν < 0, we have√
d2

4 +m2L2
AdS < 0

=⇒ m2L2
AdS < −d2

4 , (2.3.15)

in violation of the BF bound. Thus, we require that ν
!

≥ 0.

Let us investigate further these modes A and B. Consider the Klein-Gordon inner

22In particular, when the BF bound is violated in Lorentzian AdS there exist modes in the bulk
which grow exponentially with increasing time. See [98, 99] for the original papers, and appendix
B of [100] for a review.



2.3. Quantum Field Theory in Anti-de Sitter Space 47

product (2.2.36)23

(ϕ1, ϕ2) := −i
∫
Σt

dzdx⃗
√

−ggtt(ϕ∗
1∂tϕ2 − ϕ2∂tϕ

∗
1), (2.3.16)

where Σt is a constant time slice and the integral is over the spatial directions. In

EAdS we have no time coordinate, so we can choose any of the x⃗ coordinates as our

“time” direction. Using gtt = 1
z2 =⇒ gtt = z2 and √

−gAdS = 1
zd+1 , we can plug in

the A mode ϕA(z, x) := A(x)zd−∆+ and find

(ϕA, ϕA) = −i
∫
Σt

dzdx⃗
|zd−∆+|2

zd−1 (A∗∂tA− A∂tA∗)

∼
∫
dzz−2∆++d+1

∼ z−2∆++d+2

−2∆+ + d+ 2 . (2.3.17)

The integral therefore is only convergent near the boundary z −→ 0 if

−2∆+ + d+ 2 > 0

⇐⇒ −2
(
d

2 + ν

)
+ d+ 2 > 0

=⇒ ν < 1, (2.3.18)

where we have used ∆+ = d
2 + ν. Thus, for the A-modes to be normalisable we have

the condition 0 ≤ ν < 1.

Now let’s look at the “B” modes. Defining ϕB := B(x)z∆+ , we have

(ϕB, ϕB) ∼
∫
dz
z2∆+

zd−1

∼ z2∆+−d+2

2∆+ − d+ 2 , (2.3.19)

and so the inner product is convergent only for 2∆+ − d+ 2 > 0, which corresponds

to ν > −1. Since we already have the condition that ν ≥ 0 from the BF bound, this

constraint is always satisfied and so the B modes are always normalisable.

23The unit normal vector points in the t-direction and is chosen to be nt = 1, nj = 0 ∀j ̸= t, so
nµ = gµνnν = gtt. We also have γij = gij .
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From the above, we see that we need to impose certain conditions on these modes

when we quantise the theory in order for us to avoid having non-physical states in

our Hilbert space. For ν ≥ 1, we get rid of the non-normalisable A mode by simply

imposing the boundary condition A = 0. For 0 ≤ ν < 1 both modes are normalisable,

so we have a free choice between Neumann boundary conditions24 A = 0, Dirichlet

boundary conditions25 B = 0, or neither, in which case we have “mixed” boundary

conditions.

The normalisable modes are the ones we quantise and use to build the Hilbert space

of the bulk theory. But what role do the non-normalisable modes play? Let’s

consider standard quantisation, where the non-normalisable mode is A. Before we

impose the A = 0 condition, we have

ϕ(z, x) = A(x)zd−∆+ +B(x)z∆+ + O(z2)

= A(x)z d
2 −ν +B(x)z d

2 +ν + O(z2). (2.3.20)

Therefore, near the boundary at z −→ 0 the A term dominates, assuming ν > 0.

Therefore, we interpret A(x) as setting the boundary value of the bulk field ϕ, namely

A = ϕ|∂AdS.

2.3.2 The AdS/CFT Correspondence

The AdS/CFT correspondence represents a concrete realisation of the holographic

principle, and posits that a quantum theory of gravity in asymptotically AdSd+1

spacetimes can be described by a d-dimensional Conformal Field Theory (CFTd)

living on the AdS boundary. AdS/CFT provides us with a non-perturbative definition

of quantum gravity in such spacetimes, and allows us to answer hard-to-attack

questions about quantum gravity by instead answering sharp questions about the

dual CFT. There are a plethora of concrete examples of AdS/CFT in a variety of

dimensions, the most well-understood being the conjecture that Type IIB string

24Known as “standard quantisation”.
25Known as “alternative quantisation”.
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theory on AdS5×S5 is dual to N = 4 Supersymmetric Yang-Mills theory on R3,1.

We will not be interested in concrete examples in this thesis, but it will be useful to

give a short review of AdS/CFT in generality in order to appreciate the significance

of Witten diagrams. As always we use Poincaré coordinates, where the metric for

Euclidean AdS is given by (2.1.8).

The GKPW Formula

The basic statement of the duality is that the generating functional of correlators

in certain26 d-dimensional Conformal Field Theories coincides with the partition

function of some gravitational theory on AdSd+1, if one imposes a certain set of

conditions which we elucidate here. Considering a single bulk scalar ϕ and ignoring all

other fields for simplicity, the so-called Gubser-Klebanov-Polyakov/Witten (GKPW)

formula [9, 10] provides a concrete statement of the AdS/CFT correspondence,

〈
exp

(
−
∫
ddxϕ0(x)O(x)

)〉
CFT

=
∫

ϕ|∂AdS=ϕ0(x)

Dϕ exp
[
− 1
G
SAdSd+1 [ϕ]

]
. (2.3.21)

This formula is a central entry in the AdS/CFT dictionary, and analogous formulae

exist for bulk fields of non-zero spin. On the RHS, we are evaluating the partition

function on the gravity side with the condition that as we approach the AdS boundary,

the bulk field ϕ approaches some given function ϕ0
27. The AdS/CFT dictionary then

tells us that we should interpret this given function ϕ0 as the source for a CFT

operator O, which we take to be the operator “dual” to ϕ. In Poincaré coordinates

(z, x) (where the AdS boundary is at z → 0), a more precise statement of the

boundary condition is

lim
z→0

z∆−dϕ(z, x) = ϕ0(x), (2.3.22)

where ∆ is the conformal dimension of the CFT operator O dual to the AdS bulk

field ϕ. In particular, this means that one can take two perspectives on the source

26It was argued in [101] that any CFT satisfying a certain list of criteria should have an AdS
dual.

27Namely, we integrate only over bulk field configurations that satisfy ϕ|∂AdS = ϕ0(x)
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- ϕ0 can either be viewed as a source for the boundary CFT operator O, or as a

source for its dual bulk field ϕ.

The above implies that one can obtain n-point correlators on the CFT side of the

duality by taking functional derivatives of the AdS partition function, namely28

⟨O1(x1)...On(xn)⟩ = N δn

δϕ0(x1)...δϕ0(xn)

∫
ϕ|∂AdS=ϕ0(x)

Dϕ exp
[
− 1
G
SAdS[ϕ]

] ∣∣∣∣∣∣
ϕ0=0

.

(2.3.23)

The AdS Feynman diagrams that contribute to these correlators are known as Witten

diagrams [9], and are an invaluable tool in AdS/CFT calculations. Since the duality

is strong/weak, the possibility to study strongly-coupled conformal field theories via

bulk perturbation theory opens up.

As an aside, note that one can imagine an alternative method for holographically

computing CFT correlators - by computing bulk correlators before extrapolating

them to the boundary. This idea (for identical scalar operators/bulk fields) gives

the extrapolate dictionary

⟨O(x1)...O(xn)⟩CFT = lim
z→0

z−n∆⟨ϕ(z, x1)...ϕ(z, xn)⟩bulk. (2.3.24)

It has been shown that this method is equivalent to the differentiate dictionary in

AdS, namely that the resulting correlators for each method coincide [102].

2.3.3 Witten Diagrams

As explained above, boundary correlators in EAdSd+1 can be computed perturbat-

ively as a sum of Witten diagrams; the AdS analogue of Feynman diagrams where

each external leg is anchored to the boundary. Internal legs of said diagrams are

associated with bulk-to-bulk propagators, which solve the wave equation with a

Dirac delta function source;

(∇2 −m2)GAdS
∆ (x, x′) = − 1√

|g|
δd+1(x− x′). (2.3.25)

28This is known as the differentiate dictionary.
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It turns out29 [103] that one can express the bulk-to-bulk propagator in terms of a

basis of functions ΩAdS
ν (x, x′) that are harmonic with respect to the AdS Laplacian,

(∇2 −m2)ΩAdS
ν (x, x′) = 0, (2.3.26)

and admit a split representation as a product of bulk-to-boundary propagators.

Namely, going to Fourier space in the directions parallel to the boundary the AdS

harmonic function is given by

ΩAdS
ν,⃗k

(z, z′) = ν2

π
KAdS

∆+ (z, k⃗)KAdS
∆− (z′,−k⃗), (2.3.27)

with the bulk-to-boundary propagator KAdS
∆ (z, k⃗) given by a modified Bessel function

of the second kind30 [10]. The bulk-to-boundary propagator can also be understood

as an integral kernel used to solve the homogeneous wave equation for a bulk field

ϕ(z, x),

(∇2 −m2)ϕ = 0, (2.3.28)

subject to the boundary condition lim
z→0

z∆−dϕ(z, x) = ϕ0(x). In particular, we seek a

solution to (2.3.28) of the form

ϕ(z, x) =
∫
ddx′K∆(z, x;x′)ϕ0(x′), (2.3.29)

where we impose

(∇2 −m2)KAdS
∆ (z, x;x′) = 0, lim

z→0
z∆−dKAdS

∆ (z, x;x′) = δ(d)(x− x′). (2.3.30)

It can be easily verified that (2.3.29) is indeed a formal solution of the homogeneous

wave equation, satisfying the required boundary condition. It is well-known that in

position space, the bulk-to-boundary propagator satisfying the above is then given

by

KAdS
∆ (z, x, x′) = Γ(∆)

2π d
2L

d−2
2

AdS Γ
(
∆ − d

2 + 1
)
(

z

z2 + (x− x′)2

)∆

. (2.3.31)

29See section 3.2.1 for more details.
30In later sections we will give the functional form of the bulk-to-bulk and bulk-to-boundary

propagators in the Mellin space representation.
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Tikz Diagrams
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z

1

Figure 2.5: The Witten diagram corresponding to a three-point con-
tact interaction between scalar fields of mass mi at a
point z in the bulk. This is interpreted in the AdS/CFT
correspondence as a tree-level perturbative contribution
to a three-point correlator of operators O with con-
formal dimension ∆i in the dual CFT on the boundary.

Witten diagrams can then be constructed from the above defined propagators by

integrating them over the bulk points involved. For instance, the contribution to a

boundary three-point function from a bulk three-point contact diagram is given by

⟨O∆1(k⃗1)O∆2(k⃗2)O∆3(k⃗3)⟩ =
∞∫

0

dz

zd+1 K
AdS
∆1 (z, k⃗1)KAdS

∆2 (z, k⃗2)KAdS
∆3 (z, k⃗3), (2.3.32)

with the integral over the bulk point z. This is represented diagrammatically in

figure 2.5.

2.3.4 A (Not-So) Trivial Observation

The keen reader will note that while there are clearly fundamental geometric differ-

ences between dS and AdS, the line elements for the two spaces are very similar, and

are in fact related by a Wick rotation. In particular, one can analytically continue

to the flat slicing of EAdSd+1 from the flat slicing of dSd+1 by starting with

ds2
dSd+1

= L2
dS
η2 (−dη2 + δijdx

idxj), (2.3.33)

and Wick rotating via the identification

z = −ηe±i π
2 , LAdS = −LdSe

±i π
2 , (2.3.34)
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Figure 2.6: dS and EAdS in embedding space. EAdS is a two-
sheeted hyperboloid. The Expanding Poincaré patch
of de Sitter space analytically continues to the upper
sheet of the EAdS hyperboloid under η = −ze±i π

2 , while
the Contracting Poincaré patch analytically continues
to the lower sheet.

resulting in the metric for EAdSd+1

ds2
EAdSd+1

= L2
EAdS
z2 (dz2 + δijdx

idxj). (2.3.35)

We notice also that by comparing (2.1.23) and (2.1.24) with (2.1.7), the Expanding

Poincaré Patch analytically continues to the upper sheet of the EAdS hyperboloid,

and the Contracting Poincaré patch analytically continues to the lower sheet.

This is an essential observation which underpins much of what follows. In fact, it

turns out that this relation between the line elements is not just a happy-but-useless

coincidence, but it persists through to the propagators in quantum field theories

on each space. In particular, we will see in the next chapter that the bulk-to-bulk

and bulk-to-boundary propagators for scalar fields in dS and EAdS are related via

certain analytic continuations of the radial coordinate, which can be traded for

analytic continuations of the boundary momenta. This implies that to all orders in

perturbation theory, late-time boundary correlation functions in de Sitter space can
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be recast as a linear combination of Witten diagrams in EAdS, with analytically

continued boundary momenta. The corresponding position space statement is that

correlation functions in de Sitter, when viewed from an AdS perspective, feature

points on both the upper and the lower sheets of the AdS hyperboloid.

Having explored the necessary background material, we now endeavour to derive the

propagators for scalar fields in the α-vacua in de Sitter space.



Chapter 3

Propagators from Bunch-Davies &

EAdS

This chapter is based on sections 3 and 4 of [1]. In this chapter we derive relations

between the de Sitter bulk-to-bulk and bulk-to-boundary propagators in the α-vacua

and the corresponding propagators in the Bunch-Davies vacuum, and in turn between

the α-vacua and the corresponding propagators in EAdS. This extends the work of

[74–77], in which it was shown that Bunch-Davies correlators can be rewritten in

terms of EAdS Witten diagrams, to arbitrary choice of α-vacuum.

The main results of this chapter are:

• α-Vacua From Bunch-Davies. Bulk-to-bulk and bulk-to-boundary propag-

ators in the in-in formalism for arbitrary choice of α-vacuum in the Expanding

Poincaré patch are written in terms of their counterparts in the Bunch-Davies

vacuum. The Bunch-Davies propagators involved feature points in both the

Expanding and the Contracting Poincaré patches.

• α-Vacua From EAdS. In turn, we re-write the α-vacuum bulk-to-bulk and

bulk-to-boundary propagators in the in-in formalism in terms of the corres-

ponding EAdS propagators. As a consequence of the α-vacuum propagators
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involving points in both the EPP and the CPP, the constituent EAdS propag-

ators appearing in the α-vacuum expressions involve points on both the upper

and the lower sheet of the EAdS hyperboloid. We will see that the consequence

of this in momentum space is that the EAdS propagators feature momenta

that are analytically continued as k → e±iπk. As such, unlike those for the

Bunch-Davies vacuum, late-time correlators in the α-vacua do not share the

same analytic structure as the EAdS boundary correlators appearing in the

context of the AdS/CFT correspondence, where all points are on the upper

sheet of the EAdS hyperboloid.

The results in this chapter extend to the Bogoliubov initial states by allowing α

and β to depend appropriately1 on the momentum, (α, β) → (αk, βk) for a mode of

momentum k.

Throughout this and subsequent chapters, we will make heavy use of the Mellin space

formalism [74–77], which has proven a useful tool for studying boundary correlation

functions in both dS and EAdS. We begin this chapter with a review.

3.1 Mellin Space

The computation of boundary correlation functions in dS and EAdS involves com-

plicated integrals over the radial coordinates η and z, respectively. In this section,

we demonstrate that in the presence of dilatation symmetry it is possible to go to

a basis of the Hilbert space in which these integrals are trivialised, becoming Dirac

delta functions. This basis can be identified with the so-called Mellin transform, and

the Dirac delta function that appears involves the Mellin variables, both of which

we define. We draw analogy with the setting of momentum space in the presence

of translation symmetry, following section 2.2 of [77]. Further details regarding the

1We note that Bogoliubov initial states do not promote α and β to arbitrary functions of the
momentum, but rather to functions with a certain fall-off. See [94] for details.
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construction of the Mellin transform and its relationship with the dilatation group

can be found in [104].

In the presence of translation symmetry it is often convenient to work in momentum

space, i.e. in a basis of plane waves e±ikx that diagonalise the translation generator2

and thus make the symmetry manifest. Namely, we can decompose a function

f(x) ∈ L2 (R, dx) as

f (x) =
∫ ∞

−∞

dk
2πf(k) eikx, (3.1.1)

where

f (k) =
∫ ∞

−∞
dxf(x) e−ikx. (3.1.2)

For this reason, in de Sitter space (and indeed, in any spacetime with translation

symmetry) one often considers late-time correlators in momentum space due to the

presence of translation symmetry in the spatial (boundary) directions. The remaining

direction is the bulk time direction, in which there is no translation symmetry, owing

to the time dependence of the de Sitter background. There is therefore less benefit

from transforming to Fourier space in the time direction. The situation is similar for

EAdS, where the presence of translation symmetry along the directions parallel to

the boundary make Fourier space a useful setting for studying boundary correlation

functions.

In dS and EAdS we not only have translation symmetry, but also symmetry under

dilatations; scale transformations of the form (for EAdS) (z, x⃗) → (λz, λx⃗). In the

presence of dilatation symmetry, it is natural to work in Mellin space [74–77]. We

can decompose functions f(z) ∈ L2
(
R+, dz

zd+1

)
according to

f(z) =
∫ i∞

−i∞

ds
2πi2f(s)z−

(
2s− d

2

)
, (3.1.3a)

f(s) =
∫ ∞

0

dz
z
f(z)z2s− d

2 , (3.1.3b)

where the monomials z∓
(

2s− d
2

)
are analogous to the plane waves in momentum space,

2Namely, the plane waves e±ikx are eigenfunctions of the translation operator.
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and in this case diagonalise the dilatation generator. We will illustrate this point

(following section 2.2 of [77]) in the context of EAdS, but the same holds for de Sitter

space with respect to the time coordinate η.

For theories with dilatation symmetry, namely those invariant under

z → λz, x → λx, (3.1.4)

Mellin space is analogous in a number of ways to Fourier space in the presence of

translation symmetry. To illustrate this, consider a function

f : (0,∞) −→ R

z 7−→ f(z). (3.1.5)

We want to study dilatations acting on such a function, so we define a representation

of the dilatation group GD on the space of smooth functions on R;

T : GD −→ End(C∞(R))

λ 7−→ Tλ, (3.1.6)

where the dilatation generator is formally the map

Tλ : C∞(R) −→ C∞(R)

f 7−→ Tλ[f ], (3.1.7)

where we define

Tλ[f ](z) ≡ Tλ[f(z)] := λ− d
2 f(λz). (3.1.8)

We claim that the dilatation generator acting on a function f(z) can be explicitly

written

Tλ = eλDz , Dz := z∂z − d

2 . (3.1.9)

We can see this by first looking at translations. The translation generator acts as

ea∂xf(x) = f(x+ a), (3.1.10)
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which can easily be seen by inspection of the Taylor expansion of the right-hand-side.

We can use this to deduce the action of the operator eλx∂x on a function; we have

eλx∂xf(x) = eλ∂ln(x)f(x) = eλ∂yf(ey) = f(ey+λ), (3.1.11)

where we have re-written the operator as a translation generator and used (3.1.10)

in the last equality. We then have

eλx∂xf(x) = f(ey+λ) = f(eλx) ≡ f(λ̃x). (3.1.12)

We will abuse notation somewhat by dropping the tilde, resulting in

eλx∂xf(x) = f(λx). (3.1.13)

We therefore see that this operator generates scale transformations on the coordinates.

Using this, the action of eλDz on a function f(z) is given by

eλDzf(z) = eλz∂zf(z)e−λ d
2

= f(eλz)(eλ)− d
2

≡ λ− d
2 f(λz), (3.1.14)

by our abuse of notation, and so indeed the action of this operator coincides with

our definition of Tλ above.

Tλ generates a symmetry transformation by preserving the sesquilinear inner product

defined by

⟨f |g⟩ :=
∞∫

0

dz

zd+1f(z)g∗(z). (3.1.15)

Indeed, we see that

⟨T [f ]|T [g]⟩ =
∞∫

0

dz

zd+1 T [f(z)]T [g(z)]∗

=
∞∫

0

dz

zd+1λ
−df(λz)g∗(λz)

=
∞∫

0

dw

λ−dwd+1λ
−df(w)g∗(w)
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=
∞∫

0

dz

zd+1f(z)g∗(z)

= ⟨f |g⟩ , (3.1.16)

where we performed the simple change of variables w := λz. Defining a norm on

C∞(R+) by

|| · || :=
√

⟨ · | · ⟩, (3.1.17)

the pair (C∞(R+), || · ||) naturally forms a Hilbert space, L2
(
R+, dz

zd+1

)
. A theory

defined by this Hilbert space will then have dilatation symmetry, namely its inner

products will be preserved under the action of Tλ.

One can easily see that the eigenfunctions of the dilatation generator are of the form

fα(z) = z
d
2 −iα, Tλ(fα(z)) = λ−iαfα(z). (3.1.18)

These eigenfunctions are orthogonal;

⟨fα|fβ⟩ =
∞∫

0

dz

zd+1 z
d
2 −iαz

d
2 +iβ

=
∞∫

0

dz

z
zi(β−α)

=
∞∫

−∞

dx ei(β−α)x

= 2πδ(β − α), (3.1.19)

and satisfy a completeness relation;
∞∫

−∞

dα

2π f
∗
α(z1)fα(z2) =

∞∫
−∞

dα

2π z
iα+ d

2
1 z

−iα+ d
2

2

= (z1z2)
d
2

∞∫
−∞

dα

2π

(
z1

z2

)iα

= (z1z2)
d
2

∞∫
−∞

dα

2π

(
e

ln( z1
z2

)
)iα

= (z1z2)
d
2 δ
(

ln
(
z1

z2

))
= zd+1

1 δ(z1 − z2), (3.1.20)
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where we used the well-known identity (treating z2 as constant)

δ(f(x)) = δ(x− x0)
|f ′(x0)|

, (3.1.21)

with x0 the root of f(x), and that δ(z1 − z2) is nonzero only for z1 = z2. Therefore,

the set of eigenfunctions {fα(z)} ≡ {z d
2 −iα} of the dilatation operator forms a basis

of the Hilbert space L2(R+, dz
zd+1 ). We can therefore decompose an element of this

Hilbert space into an integral against these eigenfunctions, analogously to the case

for an infinite discrete basis {e⃗i} and the decomposition

v⃗ =
∞∑

i=1
(v⃗ · e⃗i)e⃗i. (3.1.22)

In particular, we can decompose an element g of L2(R+, dz
zd+1 ) in terms of the eigen-

functions fα as

g(z) =
∞∫

−∞

dα

2π ⟨g|fα⟩ fα(z), (3.1.23)

with

⟨g|fα⟩ =
∞∫

0

dz

zd+1 g(z)f
∗
α(z)

=
∞∫

0

dz

zd+1 g(z)z
iα+ d

2

=
∞∫

0

dz

z
g(z)ziα− d

2 . (3.1.24)

Notice that by identifying iα = 2s, this is nothing but the Mellin transform of g;

g(s) =
∞∫

0

dz

z
g(z)z2s− d

2 . (3.1.25)

In summary, the decomposition of a function g ∈ L2(R+, dz
zd+1 ) into eigenfunctions of

the dilatation operator Tλ is therefore naturally identified with the Mellin transform

of g. We can also easily identify (3.1.23) with the inverse Mellin transform, by

g(z) =
∞∫

−∞

dα

2π ⟨g|fα⟩︸ ︷︷ ︸
≡g(iα)

fα(z)︸ ︷︷ ︸
z

−(iα− d
2 )
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=
i∞∫

−i∞

ds

2πi2g(s)z
−(2s− d

2 ), (3.1.26)

where again we replaced iα = 2s. Using this replacement and the completeness

relation it is straightforward to show that (3.1.25) and (3.1.26) are consistent.

We have demonstrated that in the presence of dilatation symmetry, it is possible

to construct a basis of the Hilbert space whose elements are eigenfunctions of the

dilatation operator; z±(2s− d
2 ). We have also shown that the decomposition of elements

of that Hilbert space with respect to said basis can be identified with the Mellin

transform. It is useful to go to this particular basis, and therefore useful to go to

Mellin space in the presence of dilatation symmetry3, because the integrals over the

radial coordinate (z for EAdS, η for dS) that appear in computations of boundary

correlators in dS and EAdS then trivialise to Dirac delta functions in the Mellin

variables. In turn, these delta functions enforce a constraint on the Mellin variables

analogous to the momentum-conserving delta function that appears when we study

correlators in Fourier space. We will now show how this delta function appears, both

for the case of Fourier space and translation symmetry as well as for Mellin space

and dilatation symmetry.

First, let’s consider the case for translation symmetry and the appearance of a delta

function in momentum space. Consider a three-point function ⟨O1(x1)O2(x2)O3(x3)⟩

for a CFT on Rd, and impose translation invariance,

⟨O1(x1)O2(x2)O3(x3)⟩ != ⟨O1(x1 + a)O2(x2 + a)O3(x3 + a)⟩

=⇒ ⟨O1(x1)O2(x2)O3(x3)⟩ = ⟨O1(x1 − x3)O2(x2 − x3)O3(0)⟩, (3.1.27)

where we chose a = −x3. In momentum space, we have

⟨O1(k⃗1)O2(k⃗2)O3(k⃗3)⟩ = (2π)d
∫
ddx1d

dx2d
dx3⟨O1(x1)O2(x2)O3(x3)⟩ei(k⃗1·x1+k⃗2·x2+k⃗3·x3)

3Note that since we are just performing an integral transform, we could in principle go to Mellin
space in the absence of dilatation symmetry, namely, by equipping the Hilbert space with some other
inner product that isn’t preserved under dilatations. However, in that case the Mellin transform
g(s) (which we’ve just shown is the same thing as the inner product) will not be preserved under
dilatations, and therefore the physics of dilatations will not be present in the resulting object.
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= (2π)d
∫
ddx1d

dx2d
dx3⟨O1(x1 − x3)O2(x2 − x3)O3(0)⟩ei(k⃗1·x1+k⃗2·x2+k⃗3·x3).

Let u = x1 − x3 and v = x2 − x3. Using ddx1d
dx2 = |J |dduddv (where J is the

Jacobian) we find

⟨O1(k⃗1)O2(k⃗2)O3(k⃗3)⟩ = (2π)d
∫
dduddvddx3⟨O1(u)O2(v)O3(0)⟩ei(k⃗1+k⃗2+k⃗3)·x3ei(k⃗1·u+k⃗2·v)

= (2π)dδ(d)(k⃗1 + k⃗2 + k⃗3)
∫
dduddv⟨O1(u)O2(v)O3(0)⟩ei(k⃗1·u+k⃗2·v)

≡ (2π)dδ(d)(k⃗1 + k⃗2 + k⃗3)⟨O1(k⃗1)O2(k⃗2)O3(k⃗3)⟩′. (3.1.28)

Due to rotation invariance together with momentum conservation, the three-point

function can only depend on the magnitudes of the momenta. In particular, rotation

invariance implies that the three-point function must be a function of dot products

of the momenta of the form

k⃗a · k⃗b, a, b ∈ {1, 2, 3}. (3.1.29)

Combining this with momentum conservation, we see that any dot product for which

a ̸= b can be re-written in terms of those for which a = b; for instance,

k⃗1 + k⃗2 + k⃗3 = 0 =⇒ k⃗3 = −(k⃗1 + k⃗2)

=⇒ |⃗k3|2 = (k⃗1 + k⃗2) · (k⃗1 + k⃗2)

= |⃗k1|2 + |⃗k2|2 + 2k⃗1 · k⃗2

⇐⇒ k⃗1 · k⃗2 = 1
2
(
|⃗k3|2 − |⃗k2|2 − |⃗k1|2

)
.

Therefore, we have

⟨O1(k⃗1)O2(k⃗2)O3(k⃗3)⟩ = (2π)dδ(d)(k⃗1 + k⃗2 + k⃗3)⟨O1(k1)O2(k2)O3(k3)⟩′, (3.1.30)

with |⃗ki| ≡ ki. We see that in momentum space, the relic of the imposition of

translation symmetry in position space is the appearance of a Dirac delta function

that imposes momentum conservation. This is to be expected - the Noether charge

of spatial translations is spatial momentum, and so we would expect that requiring

translation invariance in position space corresponds to some kind of constraint
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imposing momentum conservation in momentum space.

Let us now go to Mellin space, and investigate what happens when we impose

invariance (or more precisely covariance) under dilatations. In the Mellin-Barnes

representation, (3.1.30) becomes4

⟨O1(k⃗1)O2(k⃗2)O3(k⃗3)⟩ = (2π)dδ(d)(k⃗1 + k⃗2 + k⃗3)

×
i∞∫

−i∞

[dsj]3⟨O1(s1)O2(s2)O3(s3)⟩
3∏

j=1

(
kj

2

)−2sj+iνj

,

(3.1.31)

where

[dsj]n := ds1

2πi...
dsn

2πi . (3.1.32)

Imposing the dilatation Ward identity (a derivation of which is given in appendix

C) on the three-point function gives−d+
3∑

j=1
Dj

 ⟨O1(k1)O2(k2)O3(k3)⟩′ != 0, (3.1.33)

where Dj := −(∆j − d) + kj∂kj
is the generator of dilatations in momentum space.

Plugging in the Mellin-Barnes representation of ⟨O1(k1)O2(k2)O3(k3)⟩′, this implies

i∞∫
−i∞

[dsj]3
(
d

2 − 2(s1 + s2 + s3)
)

⟨O1(s1)O2(s2)O3(s3)⟩
3∏

j=1

(
kj

2

)−2sj+iνj
!= 0.

(3.1.34)

Therefore, imposing invariance under dilatations enforces a constraint on the Mellin

variables,
3∑

j=1
2sj − d

2 = 0. (3.1.35)

However, it turns out that this constraint can also be shown to appear in a different

way. By going to Mellin space in the momenta, we will see in later chapters that

integrals of the form

∫ 0

−∞

d (−η)
(−η)d+1 (−η)

−
∑

i

(
2si−

d
2

)
= 2πi δ

(
d+

∑
i

(
2si − d

2

))
, (3.1.36)

4See section 3.1 and appendix C.2 of [75] for further details on the Mellin representation of
three-point conformal structures.
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appear, which enforces the same constraint we obtained from the dilatation Ward

identity, namely (3.1.35). Therefore, we can view the appearance of a delta function

in the Mellin variables as the relic of dilatation symmetry in Mellin space; analogous

to the appearance of a momentum-conserving delta function as the relic of translation

invariance in momentum space. A proof of (3.1.36) can be found in appendix B.

The structure of the Mellin transform makes manifest certain identities satisfied by

propagators and their corresponding boundary correlators, both in dS and EAdS

- as well as the relationship between the two under analytic continuation. In the

following sections we derive these various identities, using the Mellin space formalism

described above.

3.2 α-vacua from Bunch-Davies

In this section we derive the bulk-to-bulk and bulk-to-boundary propagators for

scalar fields in an arbitrary choice of α-vacuum, expressing them in terms of their

corresponding propagators in the Bunch-Davies vacuum. These results extend to

the Bogoliubov initial states by allowing α and β to depend appropriately on the

momentum of the relevant mode. We begin with the bulk-to-bulk propagators,

computing the Wightman function and the (anti-) time-ordered Green’s functions.

3.2.1 Bulk-to-Bulk Propagators

Wightman Function. Recall that the Wightman function in momentum space

is given simply by the product of mode functions, as shown by equation (2.2.46). In

particular, for a vacuum state |Ω⟩ and corresponding mode functions fk⃗(t), we have

the general formula

G
(Ω)
W (t1, t2; k⃗) = f̄k⃗(t1)fk⃗(t2). (3.2.1)

In particular, for a scalar field in a generic α-vacuum in de Sitter space, we have

G
(α)
W (η1, η2; k⃗) = f̄

(α)
k⃗

(η1)f (α)
k⃗

(η2), (3.2.2)
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where

f
(α)
k⃗

(η) = Af
(0)
k⃗

(η) +B f̄
(0)
k⃗

(η), (3.2.3)

f̄
(α)
k⃗

(η) = A∗ f̄
(0)
k⃗

(η) +B∗ f
(0)
k⃗

(η), (3.2.4)

with f
(0)
k⃗

(η) the mode functions for the Bunch-Davies vacuum and we recall the

parameterisation

A = cosh(α), B = eiβ sinh(α). (3.2.5)

To compute the Wightman function, we use the Mellin space representation of the

Bunch-Davies mode functions, writing

f
(0)
k⃗

(η) =
∫ i∞

−i∞

du
2πif

(0)
k⃗

(u)(−η)−(2u− d
2 ), (3.2.6)

f̄
(0)
k⃗

(η) =
∫ i∞

−i∞

du
2πif̄

(0)
k⃗

(u)(−η)−(2u− d
2 ), (3.2.7)

where we recall that these functions were given by Hankel functions as in (2.2.70).

The integrands in the above are therefore given simply by the Mellin-Barnes repres-

entation of Hankel functions of the second and first kind (respectively), namely

f
(0)
k⃗

(u) = + i

2
√
π

Γ
(
u+ iν

2

)
Γ
(
u− iν

2

)(1
2 k e

+ iπ
2

)−2u

, (3.2.8)

f̄
(0)
k⃗

(u) = − i

2
√
π

Γ
(
u+ iν

2

)
Γ
(
u− iν

2

)(1
2 k e

− iπ
2

)−2u

. (3.2.9)

It is then straightforward to see the useful relation

f
(0)
k⃗

(u) = −e−2iπuf̄
(0)
k⃗

(u), (3.2.10)

which we will use shortly. We will start by defining the Mellin-Barnes representation

of the Wightman function,

G
(α)
W (η1; η2) =

i∞∫
−i∞

[ds]2 G(α)
W (u1;u2)(−η1)−2s1+ d

2 (−η2)−2s2+ d
2 , (3.2.11)

with

G
(α)
W (u1;u2) := f̄

(α)
k⃗

(u1)f (α)
k⃗

(u2). (3.2.12)
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Now, using that the α-vacuum mode functions are a linear combination of their

Bunch-Davies counterparts as in (3.2.3), we have

G
(α)
W (u1;u2) = f̄

(α)
k⃗

(u1)f (α)
k⃗

(u2)

=
(
A∗f̄

(0)
k⃗

(u1) +B∗f
(0)
k⃗

(u1)
) (
Af

(0)
k⃗

(u2) +Bf̄
(0)
k⃗

(u2)
)

= |A|2f̄ (0)
k⃗

(u1)f (0)
k⃗

(u2) + |B|2f (0)
k⃗

(u1)f̄ (0)
k⃗

(u2) +B∗Af
(0)
k⃗

(u1)f (0)
k⃗

(u2)

+ A∗Bf̄
(0)
k⃗

(u1)f̄ (0)
k⃗

(u2). (3.2.13)

Using (3.2.10) and (3.2.12) we can express this in terms of the Bunch-Davies Wight-

man function,

G
(α)
W (u1;u2) = |A|2G(0)

W (u1;u2) + |B|2e−2πi(u1−u2)G
(0)
W (u1;u2) −B∗Ae−2iπu1G

(0)
W (u1;u2)

− A∗Be2iπu2G
(0)
W (u1;u2). (3.2.14)

Using the Mellin-Barnes representation (3.2.11) one can then show that

e−2iπu1G
(0)
W (u1;u2) ⇐⇒ e− iπd

2 G
(0)
W (eiπη1; η2) (3.2.15)

e2iπu2G
(0)
W (u1;u2) ⇐⇒ e+ iπd

2 G
(0)
W (η1; e−iπη2) (3.2.16)

e−2iπ(u1−u2)G
(0)
W (u1;u2) ⇐⇒ G

(0)
W (eiπη1; e−iπη2). (3.2.17)

Thus, taking the inverse Mellin transform of both sides of (3.2.14) results in

G
(α)
W (η1; η2) = |A|2G(0)

W (η1; η2) + |B|2G(0)
W (η̄−

1 ; η̄+
2 ) −B∗Ae− iπd

2 G
(0)
W (η̄−

1 ; η2)

− A∗Be+ iπd
2 G

(0)
W (η1; η̄+

2 ), (3.2.18)

where we have introduced the notation

η̄±
i := e∓iπηi. (3.2.19)
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Finally, using our parameterisation of the coefficients A and B (3.2.5) we obtain the

Wightman function for a scalar field in a generic α-vacuum,

G
(α)
W (η1; η2) = cosh2 αG

(0)
W (η1; η2) + sinh2 αG

(0)
W (η̄−

1 ; η̄+
2 )

− 1
2 sinh 2α[ei(β+ πd

2 )G(0)
W (η1; η̄+

2 ) + e−i(β+ πd
2 )G(0)

W (η̄−
1 ; η2)]. (3.2.20)

Note that the Wightman function for generic α-vacuum in the expanding Poincaré

patch involves Bunch-Davies propagators with points anti-podally transformed to

the contracting Poincaré patch, η → η̄±. This will also be true for the (anti-)

time-ordered propagators, and will ultimately have interesting consequences for the

analytic structure of perturbative correlators in the α-vacua5.

(Anti-) Time-Ordered Propagators. We are also interested in the time-ordered

and anti-time-ordered propagators in terms of their Bunch-Davies counterparts. We

begin with the definition

G
(α)
T (η1; η2) = θ (η1 − η2)G(α)

W (η1; η2) + θ (η2 − η1)G(α)
W (η2; η1) , (3.2.21a)

G
(α)
T̄

(η1; η2) = θ (η1 − η2)G(α)
W (η2; η1) + θ (η2 − η1)G(α)

W (η1; η2) , (3.2.21b)

which we combine with the above expression (3.2.20) for the Wightman function

G
(α)
W in terms of its Bunch-Davies counterpart G(0)

W . Using the Mellin-Barnes repres-

entation (3.2.11) it is straightforward to show that

G
(0)
W (η̄−

1 ; η̄+
2 ) =

∫ i∞

−i∞
[du]2 G(0)

W (u1, k1;u2, k2)
(
−η1e

+πi
)−
(

2u1− d
2

) (
−η2e

−πi
)−
(

2u2− d
2

)
,

=
∫ i∞

−i∞
[du]2 e−2πi(u1−u2)f̄

(0)
k⃗1

(u1)f (0)
k⃗2

(u2) (−η1)
−
(

2u1− d
2

)
(−η2)

−
(

2u2− d
2

)
,

=
∫ i∞

−i∞
[du]2 f̄ (0)

k⃗1
(u2)f (0)

k⃗2
(u1) (−η1)

−
(

2u1− d
2

)
(−η2)

−
(

2u2− d
2

)
,

=
∫ i∞

−i∞
[du]2 G(0)

W (u1, k1;u2, k2) (−η2)
−
(

2u1− d
2

)
(−η1)

−
(

2u2− d
2

)
,

5Note that since the Hankel functions in (2.2.70) have a branch cut along the negative real
axis, one could worry about a rotation from the positive real axis by e±iπ. However, whenever we
perform such a rotation there is an implicit iϵ prescription that prevents us from rotating exactly
onto said branch cut. We can either view this as an infinitesimal movement of the branch cut, or
as a rotation by slightly less than π of the form e±i(π−ϵ).
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= G
(0)
W (η2; η1), (3.2.22)

where in the penultimate line we performed the trivial change of variables u1 ↔ u2

in the integral. Thus, we can express the time-ordered Green’s function as

G
(α)
T (η1; η2) = θ (η1 − η2)G(α)

W (η1; η2) + θ (η2 − η1)G(α)
W (η2; η1)

= cosh2(α)[θ(η1 − η2)G(0)
W (η1; η2) + θ(η2 − η1)G(0)

W (η2; η1)]

+ sinh2(α)[θ(η1 − η2)G(0)
W (η̄−

1 ; η̄+
2 ) + θ(η2 − η1)G(0)

W (η̄−
2 ; η̄+

1 )]

− 1
2 sinh(2α)

{
θ(η1 − η2)[eiβ+ iπd

2 G
(0)
W (η1; η̄+

2 ) + e−iβ− iπd
2 G

(0)
W (η̄−

1 ; η2)]

θ(η2 − η1)[eiβ+ iπd
2 G

(0)
W (η2; η̄+

1 ) + e−iβ− iπd
2 G

(0)
W (η̄−

2 ; η1)]
}

= cosh2(α)G(0)
T (η1; η2) + sinh2(α)G(0)

T̄
(η1; η2)

− 1
2 sinh(2α)

{
θ(η1 − η2)[eiβ+ iπd

2 G
(0)
W (η1; η̄+

2 ) + e−iβ− iπd
2 G

(0)
W (η̄−

1 ; η2)]

θ(η2 − η1)[eiβ+ iπd
2 G

(0)
W (η2; η̄+

1 ) + e−iβ− iπd
2 G

(0)
W (η̄−

2 ; η1)]
}
.

(3.2.23)

One can show using the Mellin representation that (recalling the notation (3.2.19))

G
(0)
W (η̄−

2 ; η1) = G
(0)
W (η̄−

1 ; η2), (3.2.24a)

G
(0)
W (η2; η̄+

1 ) = G
(0)
W (η1; η̄+

2 ), (3.2.24b)

and so this further simplifies to

G
(α)
T (η1; η2) = cosh2(α)G(0)

T (η1; η2) + sinh2(α)G(0)
T̄

(η1; η2)

− 1
2 sinh(2α)

{
eiβ+ iπd

2 G
(0)
W (η1; η̄+

2 ) + e−iβ− iπd
2 G

(0)
W (η̄−

1 ; η2)
}
. (3.2.25)

We now aim to express the remaining Wightman functions in this expression in

terms of (anti) time-ordered Green’s functions.

First, a small detour. It turns out that the in-in bulk-to-bulk propagators can be

expressed in terms of homogeneous solutions to the Klein-Gordon equation, called

harmonic functions. Originally introduced in the context of AdS [103, 105], these
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harmonic functions are a difference of AdS bulk-to-bulk propagators6;

ΩAdS
ν (x1, x2) = iν

2π

(
GAdS

d
2 +iν

(x1, x2) −GAdS
d
2 −iν

(x1, x2)
)
. (3.2.26)

One can define analogous harmonic functions for each of the de Sitter in-in propag-

ators, and express the propagators in Mellin space as [76]

G
(0)
±±̂(u1, u2) = csc(π(u1 + u2))(α±̂ω∆+(u1, u2) + β±ω∆−(u1, u2))

× Γ(iν)Γ(−iν)Ω±±̂
ν,⃗k

(u1, u2), (3.2.27)

≡ G
(0)
∆+,±±̂(u1, u2) +G

(0)
∆−,±±̂(u1, u2), (3.2.28)

where the dS Harmonic functions are defined in terms of the AdS harmonic function7;

Ω±±̂
ν,⃗k

(u1, u2) = cdS-AdS
d
2 +iν

cdS-AdS
d
2 −iν

e∓πi(u1+ iν
2 )e∓̂πi(u2− iν

2 )ΩAdS
ν,⃗k

(u1, u2), (3.2.29)

with

cdS-AdS
∆ := 1

2 csc
(
π

(
d

2 − ∆
))

, (3.2.30)

accounting for the change in two-point coefficient in going from dS to EAdS. We will

give the functional form of the EAdS harmonic function when we discuss bulk-to-

boundary propagators in the following section - the above is sufficient for now. We

also define the functions

ω∆±(u1, u2) := 2 sin
(
π
(
u1 ∓ iν

2

))
sin

(
π
(
u2 ∓ iν

2

))
, (3.2.31)

which serve to project onto the contributions from each of ∆±. The coefficients of

these functions in (3.2.27) are defined

α±± := 1
cdS-AdS

d
2 −iν

e±πν , β±± := 1
cdS-AdS

d
2 +iν

e∓πν , (3.2.32a)

6Intuitively, the difference of bulk-to-bulk propagators for different boundary conditions cannot
be zero, but will solve the homogeneous Klein-Gordon equation since the delta functions arising
from acting with the Klein-Gordon operator on the bulk-to-bulk propagators will cancel. This
difference will thus be a “harmonic function” in the ∇2f = 0 sense.

7Note that in position space this expression corresponds to the de Sitter harmonic functions
being an analytic continuation of their AdS counterparts.
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α±∓ := 1
cdS-AdS

d
2 −iν

e∓πν , β±∓ := 1
cdS-AdS

d
2 +iν

e∓πν , (3.2.32b)

which can be written in the compact form

α±̂ := α±±̂, β± := β±±̂, (3.2.33)

and satisfy the identities

α± = e±2πνα∓, β± = e∓2πνβ∓, (3.2.34)

which we use extensively. We have also defined propagators for each boundary

condition8 ∆±,

G
(0)
∆+,±±̂(u1, u2) ≡ csc(π(u1 + u2))α±̂ω∆+(u1, u2)Γ(iν)Γ(−iν)Ω±±̂

ν,⃗k
(u1, u2), (3.2.35a)

G
(0)
∆−,±±̂(u1, u2) ≡ csc(π(u1 + u2))β±ω∆−(u1, u2)Γ(iν)Γ(−iν)Ω±±̂

ν,⃗k
(u1, u2), (3.2.35b)

and it is straightforward to show from (3.2.29) the useful identities

e−2iπu1Ω−+
ν,⃗k

(u1, u2) = e−πνΩ++
ν,⃗k

(u1, u2), (3.2.36a)

e2iπu2Ω−+
ν,⃗k

(u1, u2) = e−πνΩ−−
ν,⃗k

(u1, u2), (3.2.36b)

e2iπ(u1+u2)Ω++
ν,⃗k

(u1, u2) = Ω−−
ν,⃗k

(u1, u2). (3.2.36c)

We now aim to express the Wightman functions in (3.2.25) in terms of (anti-) time-

ordered Green’s functions. We first go to Mellin space, where it can be shown

that9

G
(0)
W (η1, η̄

+
2 ) = e−iπ∆+G

(0)
∆+,T̄

(η1, η2) + e−iπ∆−G
(0)
∆−,T̄

(η1, η2). (3.2.37)

Following the same procedure, one can also show the following identities;

G
(0)
W (η̄−

1 , η2) = e+πi∆+G
(0)
∆+,T (η1, η2) + e+πi∆−G

(0)
∆−,T (η1, η2), (3.2.38a)

8Note that “boundary condition” is something of an abuse of terminology in this context - there
are two solutions to the wave equation with the most generic behaviour described by a linear
combination of the two; see (2.2.7). “Boundary condition” here simply refers to which of these
solutions we want to consider. In the context of AdS/CFT, these correspond to Dirichlet, Neumann,
or mixed boundary conditions - hence the terminology.

9See appendix A for details.
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G
(0)
∆±,T (η1, η2) = e−2πi∆±G

(0)
∆±,T̄

(η̄−
1 , η̄

−
2 ), (3.2.38b)

G
(0)
∆±,T̄

(η1, η2) = e2πi∆±G
(0)
∆±,T (η̄+

1 , η̄
+
2 ). (3.2.38c)

We can then plug these into (3.2.25), and obtain our final result for the time-ordered

propagator,

G
(α)
T (η1, η2) = P+

∆+
G

(0)
∆+,T (η1, η2) + e2πi∆+P−

∆+
G

(0)
∆+,T (η̄+

1 , η̄
+
2 )

+ (∆+ −→ ∆−), (3.2.39)

where we have defined

P+
∆ :=

(
cosh2(α) − 1

2 sinh(2α)e−iβ−πν
)
, (3.2.40a)

P−
∆ :=

(
sinh2(α) − 1

2 sinh(2α)e+iβ+πν
)
. (3.2.40b)

In (3.2.40) we have parameterised ∆ = d
2 + iν, and in (3.2.39) the (∆+ → ∆−)

includes the subscripts on the P±
∆±

.

For the anti-time-ordered propagator we follow the same procedure. Beginning with

the definition (3.2.21), we have

G
(α)
T̄

(η1; η2) = θ (η1 − η2)G(α)
W (η2; η1) + θ (η2 − η1)G(α)

W (η1; η2)

= cosh2(α)[θ(η1 − η2)G(0)
W (η2, η1) + θ(η2 − η1)G(0)

W (η1, η2)]

+ sinh2(α)[θ(η1 − η2)G(0)
W (η1, η2) + θ(η2 − η1)G(0)

W (η2, η1)]

− 1
2 sinh(2α)[ei(β+ πd

2 )G(0)
W (η1, η̄

+
2 ) + e−i(β+ πd

2 )G(0)
W (η̄−

1 , η2)],

(3.2.41)

where in going from the first to the second line we used identities (3.2.22), (3.2.24)

and

θ(η1 − η2) + θ(η2 − η1) = 1. (3.2.42)

From here we see that

G
(α)
T̄

(η1; η2) = cosh2(α)G(0)
T̄

(η1, η2) + sinh2(α)G(0)
T (η1, η2)
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− 1
2 sinh(2α)[ei(β+ πd

2 )G(0)
W (η1, η̄

+
2 ) + e−i(β+ πd

2 )G(0)
W (η̄−

1 , η2)],

(3.2.43)

which is identical to (3.2.25) after swapping10 sinh(α) ↔ cosh(α). Performing this

swapping on (3.2.39) we can therefore immediately write down

G
(α)
T̄

(η1, η2) = M+
∆+
G

(0)
∆+,T (η1, η2) + e2πi∆+M−

∆+
G

(0)
∆+,T (η̄+

1 , η̄
+
2 )

+ (∆+ −→ ∆−), (3.2.44)

where we have defined

M+
∆ :=

(
sinh2(α) − 1

2 sinh(2α)e−iβ−πν
)
, (3.2.45a)

M−
∆ :=

(
cosh2(α) − 1

2 sinh(2α)e+iβ+πν
)
. (3.2.45b)

Using (3.2.38) we reach our final result for the anti-time-ordered propagator,

G
(α)
T̄

(η1, η2) = M−
∆+
G

(0)
∆+,T̄

(η1, η2) + e−2πi∆+M+
∆+
G

(0)
∆+,T̄

(η̄−
1 , η̄

−
2 )

+ (∆+ −→ ∆−). (3.2.46)

Having derived the Wightman (equation (3.2.20)), time-ordered (equation (3.2.39))

and anti-time-ordered (equation (3.2.46)) bulk-to-bulk propagators in terms of their

Bunch-Davies counterparts, we now derive analogous expressions for the bulk-to-

boundary propagators.

3.2.2 Bulk-to-Boundary Propagators

Bulk-to-boundary propagators are obtained by taking the late-time limit of one of

the bulk points in the free theory two-point functions presented above, which is

straightforward to perform in the Mellin-Barnes representation. We’ll choose η2, and

so the calculation boils down to simply computing a Mellin-Barnes integral via the

residue theorem, and taking the leading residue in the η2 → 0 limit. The expansion

10This is clearer if we note the identity 1
2 sinh(2α) = cosh(α) sinh(α).
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for small η2 is generated by the residues of the poles in the corresponding Mellin

variable u2:

u2 = ± iν
2 − n, n = 0, 1, 2, . . . , (3.2.47)

where the leading terms are encoded the n = 0 poles. In particular,

lim
η2→0

G
(α)
±∓(η1; η2) = K

(α)
∆+,±(η1, k) +K

(α)
∆−,±(η1, k), (3.2.48)

which identifies the bulk-to-boundary propagators,

K
(α)
∆±,±̂(η1, k) =

∫ +i∞

−i∞

du1

2πi Res
u2=∓ iν

2

[
G

(α)
±̂ •(u1, u2) (−η2)

−
(

2u2− d
2

)]

× (−η1)
−
(

2u1− d
2

)
, (3.2.49)

where • indicates that the branch of the in-in contour the second bulk point is on

makes no difference to the result11.

For generic α, combining the bulk-bulk propagators derived earlier (and summarised

later in equation (3.2.64), where we use the notation of the in-in formalism) with

(3.2.49) above one obtains

K
(α)
∆, + (η, k) = P+

∆K
(0)
∆, +(η, k) + P−

∆ e
∆πiK

(0)
∆, +(η̄+, k),

K
(α)
∆, −(η, k) = M+

∆e
−∆πiK

(0)
∆, −(η̄−, k) +M−

∆K
(0)
∆, −(η, k),

(3.2.50a)

(3.2.50b)

where in the Mellin space representation the bulk-to-boundary propagators for the

Bunch-Davies vacuum read

K
(0)
∆,± (η, k) =

∫ i∞

−i∞

ds
2πiK

(0)
∆,± (s, k) (−η)−

(
2s− d

2

)
, (3.2.51)

where

K
(0)
∆,± (s, k) = (−η0)∆ Γ(−iν)

4π e
∓
(

s+ iν
2

)
πiΓ(s+ iν

2 )Γ(s− iν
2 )
(
k

2

)−2s+iν

, (3.2.52)

with the parameterisation ∆ = d
2 + iν.

11Which of K
(α)
∆,±̂(η1, k) we obtain depends only on the in-in branch for the first bulk point, since

we are leaving this point in the bulk and taking the other to the boundary.
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It should be noted that it is possible to trade the analytic continuations of the time

coordinate η in the above propagators for analytic continuations of the boundary

momentum k, a crucial fact that we will make heavy use of. To see this, we consider

the Mellin representation of an analytically continued bulk-to-boundary propagator

and simply shuffle the analytic continuation from the η to the k;

K
(0)
∆, ±̂(η̄±, k) =

i∞∫
−i∞

ds

2πiK
(0)
∆,±̂ (s, k) (−η̄±)−2s+ d

2

=
i∞∫

−i∞

ds

2πi (−η0)∆ Γ(−iν)
4π e

∓̂
(

s+ iν
2

)
πiΓ(s+ iν

2 )Γ(s− iν
2 )
(
k

2

)−2s+iν

× (e∓πi)(−2s+ d
2 )(−η)−2s+ d

2

= e±πi(∆−d)
i∞∫

−i∞

ds

2πi (−η0)∆ Γ(−iν)
4π e

∓̂
(

s+ iν
2

)
πiΓ(s+ iν

2 )Γ(s− iν
2 )

×
(
e∓πik

2

)−2s+iν

(−η)−2s+ d
2

= e±πi(∆−d)
i∞∫

−i∞

ds

2πiK
(0)
∆,±̂

(
s, k̄±

)
(−η)−2s+ d

2 , (3.2.53)

giving us the identity

K
(0)
∆, ±̂(η̄±, k) = e±πi(∆−d)K

(0)
∆, ±̂(η, k̄±), (3.2.54)

where we parameterised ∆ = d
2 + iν and introduced the notation

k̄± = e∓πik, (3.2.55)

analogous to the notation in (3.2.19). The equivalent identity at the level of the

Mellin-Barnes representation is

e∓πi(−2s+ d
2 )K(0)

∆,±̂ (s, k) = e±πi(∆−d)K
(0)
∆,±̂

(
s, k̄±

)
, (3.2.56)

which can be seen from the intermediate steps in the derivation of (3.2.54).

The same trade can be made in the bulk-to-bulk propagators. Recall the definition
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of the dS harmonic function in Mellin space from equation (3.2.29),

Ω±±̂
ν,⃗k

(u1, u2) = cdS-AdS
d
2 +iν

cdS-AdS
d
2 −iν

e∓πi(u1+ iν
2 )e∓̂πi(u2− iν

2 )ΩAdS
ν,⃗k

(u1, u2). (3.2.57)

This has a representation in terms of dS bulk-to-boundary propagators;

Ω± ±̂
ν,⃗k

(u1, u2) = ν2

π
K

(0)
∆+,± (u1, k1)K(0)

∆−,±̂ (u2, k2) , (3.2.58)

which can be seen by noting that the EAdS harmonic function is a product of EAdS

bulk-boundary propagators [103, 105], which in Mellin space reads [76]

ΩAdS
ν,⃗k

(u1, u2) = ν2

π
KAdS

∆+ (u1, k1)KAdS
∆− (u2, k2) , (3.2.59)

with the EAdS bulk-to-boundary propagator given by

KAdS
∆ (s, k) = 1

2Γ (iν + 1)Γ(s+ iν
2 )Γ(s− iν

2 )
(
k

2

)−2s+iν

. (3.2.60)

From this representation of the dS harmonic functions, the bulk-to-bulk propagators

inherit identities analogous to (3.2.54). In particular, we see that

G
(0)
±±̂(η̄±

1 , k1; η̄±̂
2 , k2) =

i∞∫
−i∞

[ds]2G(0)
±±̂(s1, k1; s2, k2)(−η̄±

1 )−2s1+ d
2 (−η̄±̂

2 )−2s2+ d
2

=
i∞∫

−i∞

[ds]2e∓πi(−2s1+ d
2 )e∓̂πi(−2s2+ d

2 ) csc(π(s1 + s2))

× (α±̂ω∆+(s1, s2) + β±ω∆−(s1, s2))Γ(iν)Γ(−iν)

× Ω±±̂
ν,⃗k

(u1, u2)(−η1)−2s1+ d
2 (−η2)−2s2+ d

2

=
i∞∫

−i∞

[ds]2e∓πi(−2s1+ d
2 )e∓̂πi(−2s2+ d

2 ) csc(π(s1 + s2))

× (α±̂ω∆+(s1, s2) + β±ω∆−(s1, s2))Γ(iν)Γ(−iν)

× ν2

π
K

(0)
∆+,± (s1, k1)K(0)

∆−,±̂ (s2, k2) (−η1)−2s1+ d
2 (−η2)−2s2+ d

2

= e±πi(∆+−d)e±̂πi(∆−−d)
i∞∫

−i∞

[ds]2 csc(π(s1 + s2))

× (α±̂ω∆+(s1, s2) + β±ω∆−(s1, s2))Γ(iν)Γ(−iν)
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× ν2

π
K

(0)
∆+,±

(
s1, k̄

±
1

)
K

(0)
∆−,±̂

(
s2, k̄

±̂
2

)
(−η1)−2s1+ d

2 (−η2)−2s2+ d
2

= e±πi(∆+−d)e±̂πi(∆−−d)
i∞∫

−i∞

[ds]2G(0)
±±̂(s1, k̄

±
1 ; s2, k̄

±̂
2 )

× (−η1)−2s1+ d
2 (−η2)−2s2+ d

2 , (3.2.61)

and we obtain the identity

G
(0)
±±̂(η̄±

1 , k1; η̄±̂
2 , k2) = e±πi(∆+−d)e±̂πi(∆−−d)G

(0)
±±̂(η1, k̄

±
1 ; η2, k̄

±̂
2 ). (3.2.62)

Analogous identities for a single analytic continuation that can be obtained in the

same way are

G
(0)
±∓(η̄±

1 , k1; η2, k2) = (e±πi)∆+−dG
(0)
±±̂(η1, k̄

±
1 ; η2, k2), (3.2.63a)

G
(0)
±∓(η1, k1; η̄∓

2 , k2) = (e∓πi)∆−−dG
(0)
±∓(η1, k1; η2, k̄

∓
2 ). (3.2.63b)

In this section we reached some of the main results of the thesis. The Wightman and

(anti-)time-ordered propagators for arbitrary choice of α-vacuum in the Expanding

Poincaré patch were written in terms of their counterparts in the Bunch-Davies va-

cuum, and similar expressions relating the α-vacuum bulk-to-boundary propagators

to those for the Bunch-Davies vacuum were obtained. The Bunch-Davies propagators

involved feature points that are analytically continued to the Contracting Poincaré

patch. We summarise these results below.

α-Vacuum Propagators from Bunch-Davies. Summarising the above in the

notation of the in-in formalism, for the bulk-to-bulk propagators we have

G
(α)
T (η1; η2) ≡ G

(α)
++ (η1; η2) = P+

∆+
G

(0)
∆+,++(η1; η2) + e2∆+πiP−

∆+
G

(0)
∆+,++(η̄+

1 ; η̄+
2 )

+ (∆+ → ∆−), (3.2.64a)

G
(α)
T̄

(η1; η2) ≡ G
(α)
−− (η1; η2) = M−

∆+
G

(0)
∆+,−−(η1; η2) + e−2∆+πiM+

∆+
G

(0)
∆+,−−(η̄−

1 ; η̄−
2 )

+ (∆+ → ∆−), (3.2.64b)
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G
(α)
W (η1; η2) ≡ G

(α)
−+(η1; η2) = cosh2 αG

(0)
−+(η1; η2) + sinh2 αG

(0)
−+(η̄−

1 ; η̄+
2 ) (3.2.64c)

− 1
2 sinh 2α[ei(β+ πd

2 )G(0)
−+(η1; η̄+

2 ) + e−i(β+ πd
2 )G(0)

−+(η̄−
1 ; η2)],

G
(α)
W (η2; η1) ≡ G

(α)
+−(η1; η2) = cosh2 αG

(0)
+−(η1; η2) + sinh2 αG

(0)
+−(η̄+

1 ; η̄−
2 ) (3.2.64d)

− 1
2 sinh 2α[ei(β+ πd

2 )G(0)
+−(η̄+

1 ; η2) + e−i(β+ πd
2 )G(0)

+−(η1; η̄−
2 )]

where we used (3.2.22) and G
(0)
+−(η1, η2) = G

(0)
−+(η2, η1). For the bulk-to-boundary

propagators, we found

K
(α)
∆, + (η, k) = P+

∆K
(0)
∆, +(η, k) + P−

∆ e
∆πiK

(0)
∆, +(η̄+, k), (3.2.65a)

K
(α)
∆, −(η, k) = M+

∆e
−∆πiK

(0)
∆, −(η̄−, k) +M−

∆K
(0)
∆, −(η, k), (3.2.65b)

where the coefficients are given by

P+
∆ =

(
cosh2 α− 1

2e
−iβ sinh 2αe−πν

)
, (3.2.66a)

P−
∆ =

(
sinh2 α− 1

2e
+iβ sinh 2αe+πν

)
, (3.2.66b)

M+
∆ =

(
sinh2 α− 1

2e
−iβ sinh 2αe−πν

)
, (3.2.66c)

M−
∆ =

(
cosh2 α− 1

2e
+iβ sinh 2αe+πν

)
. (3.2.66d)

These results were originally obtained in [1].

The central point of this section was to show that the in-in propagators in a generic

α-vacuum in the Expanding Poincaré Patch can be expressed in terms of their

Bunch-Davies counterparts, with points antipodally transformed to the Contracting

Poincaré Patch. We will see in the next section that the above can be expressed

in terms of EAdS propagators, with the analytic continuations on the dS time

coordinate leading to expressions involving EAdS propagators with points on both

the upper and the lower sheet of the EAdS hyperboloid.
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3.3 α-vacua from EAdS

Recent years have seen substantial progress in our understanding of the relationship

between in-in propagators in the Bunch-Davies vacuum and bulk-to-bulk and bulk-

to-boundary propagators in Euclidean AdS, and in turn the relationship between

perturbative correlators in the two spacetimes [74–77]. By computing the α-vacuum

bulk-to-bulk and bulk-to-boundary propagators in terms of their Bunch-Davies coun-

terparts, we can therefore straightforwardly extend existing results to express α-

vacuum propagators in terms of their counterparts in EAdS.

3.3.1 Bunch-Davies and EAdS

We begin with a review of the relations between in-in propagators in the Bunch-

Davies vacuum and the corresponding EAdS propagators; see [74–77] for details.

To express the bulk-to-bulk and bulk-to-boundary propagators in terms of their

EAdS counterparts, we first note that the bulk-to-bulk propagator in EAdS can be

expressed in the form [76, 77]

GAdS
∆ (z1, k1; z2, k2) =

∫ i∞

−i∞
[du]2 GAdS

∆ (u1, k1;u2, k2)z
−
(

2u1− d
2

)
1 z

−
(

2u2− d
2

)
2 , (3.3.1)

where

GAdS
∆ (u1, k1;u2, k2) = csc (π(u1 + u2))ω∆(u1, u2)Γ(iν)Γ(−iν) ΩAdS

ν,⃗k
(u1, u2), (3.3.2)

with the AdS harmonic function defined as a product of bulk-to-boundary propag-

ators in (3.2.59). Repeating for convenience, the Mellin representation of the AdS

bulk-to-boundary propagator is given by

KAdS
∆ (s, k) = 1

2Γ (iν + 1)Γ(s+ iν
2 )Γ(s− iν

2 )
(
k

2

)−2s+iν

. (3.3.3)

By comparing with (3.2.52), it is straightforward to see that in the Mellin repres-

entation (after stripping off the (−η0)∆ factor), the Bunch-Davies bulk-to-boundary
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propagators in de Sitter are related to the corresponding EAdS propagator by

K
(0)
∆,± (s, k) = cdS-AdS

∆ e
∓
(

s+ 1
2

(
∆− d

2

))
πi
KAdS

∆ (s, k) . (3.3.4)

Taking the Mellin transform of either side yields

K
(0)
∆,±(η, k) = cdS-AdS

∆ e∓ iπ
2 ∆KAdS

∆ (−e± iπ
2 η, k). (3.3.5)

The identity (3.3.4) then implies the relation (3.2.29) between the EAdS and dS

harmonic functions, via (3.2.58) and (3.2.59). We see that

Ω± ±̂
ν,⃗k

(u1, u2) = ν2

π
K

(0)
∆+,± (u1, k1)K(0)

∆−,±̂ (u2, k2)

= cdS-AdS
∆+ cdS-AdS

∆− e
∓
(

u1+ iν
2

)
πi
e

∓̂
(

u2− iν
2

)
πiν2

π
KAdS

∆+ (u1, k1)KAdS
∆− (u2, k2)

= cdS-AdS
∆+ cdS-AdS

∆− e
∓
(

u1+ iν
2

)
πi
e

∓̂
(

u2− iν
2

)
πiΩAdS

ν,⃗k
(u1, u2), (3.3.6)

which in turn implies relations between the EAdS and dS bulk-to-bulk and bulk-to-

boundary propagators. Starting from (3.2.27) and using the above identity between

the dS and AdS harmonic functions we find

G
(0)
±±̂(u1, u2) = csc(π(u1 + u2))(α±̂ω∆+(u1, u2) + β±ω∆−(u1, u2))

× Γ(iν)Γ(−iν)Ω±±̂
ν,⃗k

(u1, u2)

= csc(π(u1 + u2))(α±̂ω∆+(u1, u2) + β±ω∆−(u1, u2))Γ(iν)Γ(−iν)

× cdS-AdS
∆+ cdS-AdS

∆− e
∓
(

u1+ iν
2

)
πi
e

∓̂
(

u2− iν
2

)
πiΩAdS

ν,⃗k
(u1, u2)

= α±̂cdS-AdS
∆+ cdS-AdS

∆− e
∓
(

u1+ iν
2

)
πi
e

∓̂
(

u2− iν
2

)
πi

× csc(π(u1 + u2))ω∆+(u1, u2)Γ(iν)Γ(−iν)ΩAdS
ν,⃗k

(u1, u2)

+ β±cdS-AdS
∆+ cdS-AdS

∆− e
∓
(

u1+ iν
2

)
πi
e

∓̂
(

u2− iν
2

)
πi

× csc(π(u1 + u2))ω∆−(u1, u2)Γ(iν)Γ(−iν)ΩAdS
ν,⃗k

(u1, u2)

= α±̂cdS-AdS
∆+ cdS-AdS

∆− e
∓
(

u1+ iν
2

)
πi
e

∓̂
(

u2− iν
2

)
πi
GAdS

∆+ (u1, u2)

+ β±cdS-AdS
∆+ cdS-AdS

∆− e
∓
(

u1+ iν
2

)
πi
e

∓̂
(

u2− iν
2

)
πi
GAdS

∆− (u1, u2), (3.3.7)
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leading to the identity

G
(0)
±±̂(u1, u2) = cdS-AdS

∆+ cdS-AdS
∆− e

∓
(

u1+ iν
2

)
πi
e

∓̂
(

u2− iν
2

)
πi
(
α±̂GAdS

∆+ (u1, u2) + β±GAdS
∆− (u1, u2)

)
.

(3.3.8)

By noting that

α±̂cdS-AdS
∆+ cdS-AdS

∆− = cdS-AdS
∆+ e±̂πν , β±cdS-AdS

∆+ cdS-AdS
∆− = cdS-AdS

∆− e±πν , (3.3.9)

we can write this as

G
(0)
±±̂(u1, u2) =cdS-AdS

∆+ e±̂πνe
∓
(

u1+ iν
2

)
πi
e

∓̂
(

u2− iν
2

)
πi
GAdS

∆+ (u1, u2)

+cdS-AdS
∆− e±πνe

∓
(

u1+ iν
2

)
πi
e

∓̂
(

u2− iν
2

)
πi
GAdS

∆− (u1, u2), (3.3.10)

and taking the inverse Mellin transform of either side results in

G
(0)
±±̂(η1, η2) =cdS-AdS

∆+ e∓ iπ
2 ∆+e∓̂ iπ

2 ∆+GAdS
∆+ (−e± iπ

2 η1,−e±̂ iπ
2 η2)

+ (∆+ −→ ∆−), (3.3.11)

as was first derived in [77].

We see that bulk-to-bulk and bulk-to-boundary propagators in the Bunch-Davies

vacuum are related by analytic continuation to their counterparts in Euclidean Anti-

de Sitter. Via the relations (3.2.64) and (3.2.65), it should then be straightforward to

express the propagators for arbitrary choice of α-vacuum in terms of corresponding

propagators in EAdS. Writing down these relations is the goal of the next section.

3.3.2 α-vacua and EAdS

To express the de Sitter bulk-to-bulk and bulk-to-boundary propagators for the α-

vacua in terms of EAdS objects, we can simply plug the relations for the Bunch-Davies

propagators in terms of their EAdS counterparts into the relations for α-vacuum

propagators in terms of Bunch-Davies. For example, plugging (3.3.11) into (3.2.64)

will result in expressions for the in-in bulk-to-bulk propagators for the α-vacua in
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terms of corresponding EAdS propagators, with the momenta analytically continued

according to (3.2.62) and (3.2.63).

We start with the analogue of (3.3.11) for each of the boundary conditions ∆±,

namely

G
(0)
∆+,±±̂(η1, η2) = cdS-AdS

∆+ e∓ iπ
2 ∆+e∓̂ iπ

2 ∆+GAdS
∆+ (−e± iπ

2 η1,−e±̂ iπ
2 η2), (3.3.12)

and similar for ∆−. For the time-ordered propagator, this implies

G
(0)
∆+,++(η1, η2) = cdS-AdS

∆+ e−iπ∆+GAdS
∆+ (−e iπ

2 η1,−e
iπ
2 η2), (3.3.13)

G
(0)
∆+,++(η̄+

1 , η̄
+
2 ) = cdS-AdS

∆+ e−iπ∆+GAdS
∆+ (−e iπ

2 η̄+
1 ,−e

iπ
2 η̄+

2 ). (3.3.14)

As explained in the previous section, the analytic continuations η̄± ≡ e∓iπη can be

traded for analytic continuations of the momenta. In particular, using the Mellin

representation of the AdS bulk-to-bulk propagator (3.3.1) and the split representation

of the AdS harmonic function (3.2.59) it can be shown that

GAdS
∆+ (z̄±

1 , k; z̄±
2 , k) = e∓iπdGAdS

∆+ (z1, k̄
±; z2, k̄

±), (3.3.15)

and so

G
(0)
∆+,++(η̄+

1 , η̄
+
2 ) = cdS-AdS

∆+ e−iπ∆+GAdS
∆+ (−e iπ

2 η̄+
1 , e

iπ
2 η̄+

2 )

= cdS-AdS
∆+ e−iπ∆+e−iπdGAdS

∆+ (−e iπ
2 η1, k̄

+; −e
iπ
2 η2, k̄

+). (3.3.16)

Plugging these into (3.2.64a), we then find the time-ordered propagator for arbitrary

choice of α-vacuum in terms of the AdS bulk-to-bulk propagator,

G
(α)
++(η1, k; η2, k) = cdS-AdS

∆+ e−iπ∆+

(
P+

∆+
GAdS

∆+ (−e iπ
2 η1, k; −e

iπ
2 η2, k)

+ P−
∆+
e−2πνGAdS

∆+ (−e iπ
2 η1, k̄

+; −e
iπ
2 η2, k̄

+)
)

+ (∆+ → ∆−).

(3.3.17)

The same steps can be followed for the anti-time-ordered propagator and plugging
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into (3.2.64b), resulting in

G
(α)
−−(η1, k; η2, k) = cdS-AdS

∆+ eiπ∆+

(
M−

∆+
GAdS

∆+ (−e− iπ
2 η1, k; −e− iπ

2 η2, k)

+M+
∆+
e2πνGAdS

∆+ (−e− iπ
2 η1, k̄

−; −e− iπ
2 η2, k̄

−)
)

+ (∆+ → ∆−).

(3.3.18)

The derivations for the other propagators are similar. For G(α)
−+ and G

(α)
+− we need

the identities

GAdS
∆ (z̄±

1 , k1; z2, k2) = e∓iπ(d−∆+)GAdS
∆ (z1, k̄

±
1 ; z2, k2) (3.3.19a)

GAdS
∆ (z1, k1; z̄±

2 , k2) = e∓iπ∆+GAdS
∆ (z1, k1; z2, k̄

±
2 ) (3.3.19b)

GAdS
∆ (z̄±

1 , k1; z̄±̂
2 , k2) = e∓iπ(d−∆+)e∓̂iπ∆+GAdS

∆ (z1, k̄
±
1 ; z2, k̄

±̂
2 ), (3.3.19c)

which can again be obtained with the Mellin representation of the AdS bulk-to-bulk

propagator (3.3.1). Using (3.3.11) these lead to

G
(0)
−+(η1, η̄

+
2 ) = cdS-AdS

∆+ e−iπ( d
2 +iν)GAdS

∆+ (−e− iπ
2 η1, k1; −e+ iπ

2 η2, k̄
+
2 ) (3.3.20a)

+ (∆+ → ∆−)

G
(0)
−+(η̄−

1 , η2) = cdS-AdS
∆+ eiπ( d

2 −iν)GAdS
∆+ (−e− iπ

2 η1, k̄
−
1 ; −e+ iπ

2 η2, k2) (3.3.20b)

+ (∆+ → ∆−)

G
(0)
−+(η̄−

1 , η̄
+
2 ) = cdS-AdS

∆+ e2πνGAdS
∆+ (−e− iπ

2 η1, k̄
−
1 ; −e+ iπ

2 η2, k̄
+
2 ) (3.3.20c)

+ (∆+ → ∆−),

G
(0)
+−(η1, η̄

−
2 ) = cdS-AdS

∆+ eiπ( d
2 +iν)GAdS

∆+ (−e+ iπ
2 η1, k1; −e− iπ

2 η2, k̄
−
2 ) (3.3.20d)

+ (∆+ → ∆−)

G
(0)
+−(η̄+

1 , η2) = cdS-AdS
∆+ e−iπ( d

2 −iν)GAdS
∆+ (−e+ iπ

2 η1, k̄
+
1 ; −e− iπ

2 η2, k2) (3.3.20e)

+ (∆+ → ∆−)

G
(0)
+−(η̄+

1 , η̄
−
2 ) = cdS-AdS

∆+ e−2πνGAdS
∆+ (−e+ iπ

2 η1, k̄
+
1 ; −e− iπ

2 η2, k̄
−
2 ) (3.3.20f)

+ (∆+ → ∆−).
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Plugging (3.3.20a), (3.3.20b) and (3.3.20c) into (3.2.64c) then gives

G
(α)
−+(η1, η2) = cosh2(α)cdS-AdS

∆+ GAdS
∆+ (−e− iπ

2 η1, k; −e
iπ
2 η2, k)

+ sinh2(α)cdS-AdS
∆+ e2πν GAdS

∆+ (−e− iπ
2 η1, k̄

−; −e
iπ
2 η2, k̄

+)

− 1
2 sinh(2α)cdS-AdS

∆+ eπν
[
eiβ GAdS

∆+ (−e− iπ
2 η1, k; −e

iπ
2 η2, k̄

+)

+ e−iβ GAdS
∆+ (−e− iπ

2 η1, k̄
−; −e

iπ
2 η2, k)

]
+ (∆+ → ∆−). (3.3.21)

In the same way, plugging (3.3.20d), (3.3.20e) and (3.3.20f) into (3.2.64d) gives G(α)
+−,

G
(α)
+−(η1, η2) = cosh2(α)cdS-AdS

∆+ GAdS
∆+ (−e iπ

2 η1, k; −e− iπ
2 η2, k)

+ sinh2(α)cdS-AdS
∆+ e−2πν GAdS

∆+ (−e iπ
2 η1, k̄

+; −e− iπ
2 η2, k̄

−)

− 1
2 sinh(2α)cdS-AdS

∆+ e−πν
[
eiβ GAdS

∆+ (−e iπ
2 η1, k̄

+; −e− iπ
2 η2, k)

+ e−iβ GAdS
∆+ (−e iπ

2 η1, k; −e− iπ
2 η2, k̄

−)
]

+ (∆+ → ∆−). (3.3.22)

We can similarly rewrite the bulk-to-boundary propagators in terms of their EAdS

counterparts, by plugging (3.3.5) into (3.2.65). For the time-ordered bulk-to-boundary

propagator, we have

K
(α)
∆,+(η, k) = P+

∆K
(0)
∆,+(η, k) + P−

∆ e
iπ∆K

(0)
∆,+(η̄+, k)

= P+
∆ c

dS-AdS
∆ e− iπ

2 ∆KAdS
∆ (−e+ iπ

2 η, k) + P−
∆ c

dS-AdS
∆ e+ iπ

2 ∆K
(0)
∆,+(−e+ iπ

2 η̄+, k).

(3.3.23)

Trading the analytic continuation of the time coordinate for an analytic continuation

of the momentum, ie using

KAdS
∆ (−e iπ

2 η̄+, k) = e−iπ(d−∆)KAdS
∆ (−e iπ

2 η, k̄+), (3.3.24)

this gives

K
(α)
∆,+(η, k) = cdS-AdS

∆ e− iπ
2 ∆
[
P+

∆K
AdS
∆ (−e iπ

2 η, k)

+ P−
∆ e

iπ(2∆−d)KAdS
∆ (−e iπ

2 η, k̄+)
]
. (3.3.25)
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The derivation for the anti-time-ordered bulk-to-boundary propagator is exactly the

same. We find

K
(α)
∆, −(η, k) = M+

∆e
−iπ∆K

(0)
∆, −(η̄−, k) +M−

∆K
(0)
∆, −(η, k)

= M+
∆c

dS-AdS
∆ e− iπ

2 ∆KAdS
∆ (−e− iπ

2 η̄−, k) +M−
∆c

dS-AdS
∆ e+ iπ

2 ∆KAdS
∆ (−e− iπ

2 η, k),

(3.3.26)

which after again trading the analytic continuation on the time coordinate for one

on the momentum, gives

K
(α)
∆, −(η, k) = cdS-AdS

∆ e
iπ
2 ∆
[
M−

∆K
AdS
∆ (−e− iπ

2 η, k)

+M+
∆e

−iπ(2∆−d)KAdS
∆ (−e− iπ

2 η, k̄−)
]
. (3.3.27)

In this section we found that the in-in propagators in de Sitter space for generic

α-vacuum can be re-written in terms of their counterparts in Euclidean AdS, with

some of the momenta analytically continued as k → k̄± := e∓iπk. We summarise

the results below.

α-Vacuum Propagators from EAdS Summarising the above, we have

G
(α)
++(η1, k; η2, k) = cdS-AdS

∆+ e−iπ∆+

(
P+

∆+
GAdS

∆+ (−e iπ
2 η1, k; −e

iπ
2 η2, k) (3.3.28a)

+ P−
∆+
e−2πνGAdS

∆+ (−e iπ
2 η1, k̄

+; −e
iπ
2 η2, k̄

+)
)

+ (∆+ → ∆−),

G
(α)
−−(η1, k; η2, k) = cdS-AdS

∆+ eiπ∆+

(
M−

∆+
GAdS

∆+ (−e− iπ
2 η1, k; −e− iπ

2 η2, k) (3.3.28b)

+M+
∆+
e2πνGAdS

∆+ (−e− iπ
2 η1, k̄

−; −e− iπ
2 η2, k̄

−)
)

+ (∆+ → ∆−),

G
(α)
−+(η1, k; η2, k) = cosh2(α)cdS-AdS

∆+ GAdS
∆+ (−e− iπ

2 η1, k; −e
iπ
2 η2, k) (3.3.28c)

+ sinh2(α)cdS-AdS
∆+ e2πν GAdS

∆+ (−e− iπ
2 η1, k̄

−; −e
iπ
2 η2, k̄

+)



86 Chapter 3. Propagators from Bunch-Davies & EAdS

− 1
2 sinh(2α)cdS-AdS

∆+ eπν
[
eiβ GAdS

∆+ (−e− iπ
2 η1, k; −e

iπ
2 η2, k̄

+)

+ e−iβ GAdS
∆+ (−e− iπ

2 η1, k̄
−; −e

iπ
2 η2, k)

]
+ (∆+ → ∆−)

G
(α)
+−(η1, k; η2, k) = cosh2(α)cdS-AdS

∆+ GAdS
∆+ (−e iπ

2 η1, k; −e− iπ
2 η2, k) (3.3.28d)

+ sinh2(α)cdS-AdS
∆+ e−2πν GAdS

∆+ (−e iπ
2 η1, k̄

+; −e− iπ
2 η2, k̄

−)

− 1
2 sinh(2α)cdS-AdS

∆+ e−πν
[
eiβ GAdS

∆+ (−e iπ
2 η1, k̄

+; −e− iπ
2 η2, k)

+ e−iβ GAdS
∆+ (−e iπ

2 η1, k; −e− iπ
2 η2, k̄

−)
]

+ (∆+ → ∆−),

and

K
(α)
∆,+(η, k) = cdS-AdS

∆ e− iπ
2 ∆(−η0)∆

[
P+

∆K
AdS
∆ (−e+ iπ

2 η, k) (3.3.29a)

+ P−
∆ e

+iπ(2∆−d)KAdS
∆ (−e+ iπ

2 η, k̄+)
]
,

K
(α)
∆, −(η, k) = cdS-AdS

∆ e+ iπ
2 ∆(−η0)∆

[
M−

∆K
AdS
∆ (−e− iπ

2 η, k) (3.3.29b)

+M+
∆e

−iπ(2∆−d)KAdS
∆ (−e− iπ

2 η, k̄−)
]
,

where we have restored the factors of (−η0)∆ for completeness and we recall the

definitions of P±
∆ and M±

∆ from (3.2.66). These relations extend to a generic Bogoli-

ubov initial state by allowing α and β to depend appropriately on the momentum

associated with the propagators.

Summary. In this chapter we have developed some of the main results critical to

the latter half of the thesis. The identities (3.3.28) and (3.3.29) provide a proof, to

all orders in perturbation theory, that de Sitter boundary correlation functions in

the α-vacua can be expressed as a linear combination of EAdS Witten diagrams with

analytically continued momenta, each dressed with α- and β-dependent coefficients.

Clearly, unlike for the Bunch-Davies vacuum, late-time correlators in a generic α-

vacuum do not share the same analytic structure as EAdS boundary correlators

encountered in the context of the AdS/CFT correspondence – where all points are

on the upper sheet of the EAdS hyperboloid. Late-time correlators in a generic
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α-vacuum are well-known to exhibit singularities for collinear momentum configura-

tions, which can be viewed from an AdS perspective through (3.3.28) and (3.3.29)

as a consequence of the correlators featuring points on both the upper and the lower

sheet of the EAdS hyperboloid. The corresponding analytic continuations of the

external momenta convert the “total energy” singularity of cosmological correlators

in the Bunch-Davies vacuum [62, 106, 107], into the additional collinear singularities

characteristic of the α-vacua.

In the following chapter, we will apply the above identities to some examples, com-

puting perturbative late-time correlation functions in momentum space by re-writing

them in terms of corresponding EAdS Witten diagrams.





Chapter 4

Perturbative Correlators in de

Sitter

In this chapter, based on section 5 of [1], we study some examples of late-time

de Sitter correlation functions in the α-vacua, utilising the tools described in the

previous chapter. Our results extend to Bogoliubov initial states by allowing α and

β to be appropriate functions of the momentum, sending (α, β) → (αk, βk) for each

mode of momentum k. The main results of this chapter are, for arbitrary choice of

α-vacuum and general spacetime dimension d:

• The late-time boundary two-point function of a general scalar field.

• Expressions for n-point late-time contact diagrams of general scalars in terms

of their Bunch-Davies counterparts, through which they are also expressed in

terms of corresponding Witten diagrams in EAdS.

• Examples for the n = d = 3 case - three massless scalars, as well as two

conformally coupled scalars and a massless scalar.

• We also show how to construct the late-time boundary four-point exchange

diagram of general scalars in the in-in formalism. The full de Sitter exchange

written as a linear combination of EAdS Witten diagrams is available at [87].
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4.1 Two-point Function

2 n-point contact, dS

η

−∞

0
k⃗1 k⃗2 k⃗3 k⃗n

. . . =

+

k⃗1 k⃗2 k⃗3 k⃗n

. . .

+

−

k⃗1 k⃗2 k⃗3 k⃗n

. . .
(1)

3 late-time 2pt

lim
η1,η2→0

⟨ϕ(η1)ϕ(η2)⟩(α)

= lim
η1,η2→0


η

−∞

0

η1
η2

ϕ


=

η

−∞

0

ϕ

(2)

2

Figure 4.1: The late-time boundary two-point function in de Sitter
space is obtained by taking the ηi → 0 limit of both
points in a bulk-to-bulk propagator.

We begin with the late-time two-point function in de Sitter space, which is easily

obtained simply by taking both points of a bulk-to-bulk propagator to the boundary.

This is shown diagrammatically in figure 4.1. We choose the Wightman function in

this case, with the late-time two-point function defined simply by (3.2.20),

lim
η1,η2→0

⟨ϕ(η1)ϕ(η2)⟩(α) = lim
η1,η2→0

G
(α)
W (η1, η2), (4.1.1)

= lim
η1,η2→0

[
cosh2 α ⟨ϕ(η1)ϕ(η2)⟩(0) + sinh2 α ⟨ϕ(η̄−

1 )ϕ(η̄+
2 )⟩(0)

− 1
2 sinh 2α

(
ei(β+ πd

2 ) ⟨ϕ(η1)ϕ(η̄+
2 )⟩(0) + e−i(β+ πd

2 ) ⟨ϕ(η̄−
1 )ϕ(η2)⟩(0)

)]
,

where

lim
η1,η2→0

⟨ϕ(η1)ϕ(η2)⟩(0) = lim
η1,η2→0

G
(0)
W (η1; η2),

≡ lim
η1,η2→0

G
(0)
−+(η1; η2)

= lim
η1,η2→0

[
G

(0)
∆+,−+(η1; η2) +G

(0)
∆−,−+(η1; η2)

]
. (4.1.2)

To compute the late-time limit of these Bunch-Davies two-point functions, we note

that by taking one bulk point to the boundary we obtain a bulk-to-boundary propag-

ator. In particular,

lim
η1,η2→0

G
(0)
∆±,−+(η1; η2) = lim

η1→0
K

(0)
∆±,−(η1, k). (4.1.3)
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To compute the right-hand-side, we can use the Mellin representation of the bulk-

to-boundary propagator, writing

lim
η1,η2→0

G
(0)
∆±,−+(η1; η2) = lim

η1→0

i∞∫
−i∞

ds

2πiK
(0)
∆±,−(s, k)(−η1)−2s+ d

2

= (−η2)∆±
Γ(−iν)

4π e− πν
2

(
k

2

)iν

lim
η1→0

i∞∫
−i∞

ds

2πie
iπsΓ

(
s+ iν

2

)
Γ
(
s− iν

2

)(
k

2

)−2s

(−η1)−2s+ d
2

≡ (−η2)∆±
Γ(−iν)

4π e− πν
2

(
k

2

)iν

lim
η1→0

i∞∫
−i∞

ds

2πif(s), (4.1.4)

where we used (3.2.52) and called the integrand f(s) for compactness. f(s) has poles

on the left of the imaginary axis at

s = ±iν

2 − n, n ∈ Z≥0, (4.1.5)

and we compute the integral with the residue theorem,

lim
η1→0

i∞∫
−i∞

ds

2πif(s) = lim
η1→0

∑
±

∑
n

Ress=± iν
2 −n(f(s)). (4.1.6)

From the (−η1)−2s+ d
2 term in the integrand we can see that the terms for n ≠ 0 will

be subleading in the η1 → 0 limit. We therefore have

lim
η1→0

∑
±

∑
n

Ress=± iν
2 −n(f(s)) =

∑
±

Ress=± iν
2

(f(s)), (4.1.7)

and so

lim
η1→0

i∞∫
−i∞

ds

2πif(s) = lim
s→ iν

2

(
s− iν

2

)
Γ
(
s− iν

2

)
Γ
(
s+ iν

2

)
eiπs

(
k

2

)−2s

(−η1)−2s+ d
2

+ lim
s→− iν

2

(
s+ iν

2

)
Γ
(
s+ iν

2

)
Γ
(
s− iν

2

)
eiπs

(
k

2

)−2s

(−η1)−2s+ d
2

= Γ(iν)e− πν
2

(
k

2

)−iν

(−η1)
d
2 −iν + Γ(−iν)eπν

2

(
k

2

)iν

(−η1)
d
2 +iν , (4.1.8)

where we used the identity

Γ(z) = 1
z

∞∏
n=1

 1
1 + z

n

(
1 + 1

n

)z
. (4.1.9)
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Plugging this into equation (4.1.4), we have

lim
η1,η2→0

G
(0)
∆±,−+(η1; η2) =

(
k

2

)±iν (
k

2

)−iν

(−η2)∆±(−η1)∆−
Γ(∓iν)Γ(iν)

4π e∓ πν
2 e

πν
2

+
(
k

2

)±iν (
k

2

)iν

(−η2)∆±(−η1)∆+
Γ(∓iν)Γ(−iν)

4π e∓ πν
2 e− πν

2 , (4.1.10)

which can be expressed in the compact form

lim
η1,η2→0

G
(0)
∆±,−+(η1; η2) = (η1η2)

d
2

4π Γ
(
d

2 − ∆±

)2 (
η1η2k

2

4

)∆±− d
2

+ . . . , (4.1.11)

where . . . denotes a local term constant in k. Combining this with (4.1.2) and

plugging into (4.1.1) we obtain the late-time free theory two-point function for

arbitrary choice of α-vacuum,

lim
η1,η2→0

⟨ϕ(η1)ϕ(η2)⟩(α) =
[
cosh 2α− sinh 2α cos

(
π
(

β
π

+ d
2 − ∆+

))]
lim

η1,η2→0
G

(0)
∆+,W (η1; η2)

+ (∆+ → ∆−) . (4.1.12)

For a massless scalar (i.e. ν = id
2 , corresponding to ∆+ = 0 and ∆− = d) in d = 3

this reduces to

lim
η1,η2→0

⟨ϕk⃗(η1)ϕ−k⃗(η2)⟩(α) = cosh 2α− sin β sinh 2α
2k3 + . . . , (4.1.13)

where . . . is a local term proportional to η1 and η2.

At this point, there is a natural question to ask in the context of cosmology - which

value of α does our universe correspond to? At the level of the two-point function,

measuring our universe’s value of α would be a challenge, since (treating α as

momentum-independent) (4.1.13) differs from the Bunch-Davies result simply by an

overall multiplicative factor. However, at the level of non-Gaussianities, correlation

functions in the α-vacua feature poles for collinear momentum configurations that

are not present in the Bunch-Davies vacuum. Such folded singularities are a hallmark

of the α-vacua, and their detection via future cosmological surveys could provide a

route to measuring α as a cosmological observable1.

1See also [37] for a discussion of the effects of non-zero α on the CMB at the level of the
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We now move on to perturbative contributions to higher-point correlators, first

focusing on contact diagrams.

4.2 Contact Diagrams

Consider the n-point late-time contact diagram generated by the non-derivative

interaction

V12...n = −gϕ1ϕ2 . . . ϕn, (4.2.1)

of scalar fields ϕi, i = 1, 2, . . . , n with dS mass m2
i = ∆i(d − ∆i). In the in-in

formalism, for a generic α-vacuum this is given by

(α)AV12...n
∆1∆2...∆n

= (α,+)AV12...n
∆1∆2...∆n

+ (α,−)AV12...n
∆1∆2...∆n

, (4.2.2)

with contributions from the time-ordered (+) and anti-time-ordered (−) branches

of the in-in contour,

(α,±)AV1...n
∆1...∆n

(k1, k2, . . . , kn) = ±ig
∫ η0

−∞

dη
(−η)d+1 K

(α)
∆1,± (η, k1) . . . K(α)

∆n,± (η, kn) ,

(4.2.3)

where η0 ∼ 0. Equation (4.2.2) comes directly from a perturbative expansion of the

definition of an in-in correlation function. In particular (schematically), for a cubic

interaction we define Hint(η′) := ϕ3
±(η′) and for the in-in three-point function we find

that the numerator of equation (2.2.99) becomes

⟨ϕ(η, x⃗1)ϕ(η, x⃗2)ϕ(η, x⃗3)⟩ (4.2.4)

∼ ⟨T̄
(

exp[−ig
∫ η0

−∞

dη′

(−η)d+1ϕ
3
−(η′)]

)
ϕ(η, x⃗1)ϕ(η, x⃗2)ϕ(η, x⃗3)

× T

(
exp[+ig

∫ η0

−∞

dη′

(−η)d+1ϕ
3
+(η′)]

)
⟩,

where the notation ϕ± is simply to denote which of the time-ordered or anti-time-

ordered branches of the in-in contour the field belongs to. Expanding the exponentials

two-point function, albeit for a more intricate setup involving a momentum scale above which only
Bunch-Davies modes are excited.
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and using Wick’s theorem, at leading order we find

⟨ϕ(η, x⃗1)ϕ(η, x⃗2)ϕ(η, x⃗3)⟩

∼ ⟨T̄
(

exp[−
∫ η0

−∞

dη′

(−η′)d+1ϕ
3
−(η′)]

)
ϕ(η, x⃗1)ϕ(η, x⃗2)ϕ(η, x⃗3)T

(
exp[+i

∫ η0

−∞

dη′

(−η′)d+1ϕ
3
+(η′)]

)
⟩,

∼ +ig ⟨T
( ∫ η0

−∞

dη′

(−η′)d+1ϕ
3
+(η′)ϕ(η, x⃗1)ϕ(η, x⃗2)ϕ(η, x⃗3)

)
⟩

− ig ⟨T̄
( ∫ η0

−∞

dη′

(−η′)d+1ϕ
3
−(η′)ϕ(η, x⃗1)ϕ(η, x⃗2)ϕ(η, x⃗3)

)
⟩

∼ +ig
∫ η0

−∞

dη′

(−η′)d+1ϕ+(η′)ϕ+(η′)ϕ+(η′)ϕ(η, x⃗1)ϕ(η, x⃗2)ϕ(η, x⃗3)

− ig
∫ η0

−∞

dη′

(−η′)d+1ϕ−(η′)ϕ−(η′)ϕ−(η′)ϕ(η, x⃗1)ϕ(η, x⃗2)ϕ(η, x⃗3), (4.2.5)

which is exactly (4.2.2) for n = 3. For general n and η0 ∼ 0 this is represented

diagrammatically in figure 4.2.

Tikz Diagrams

alistair.j.chopping

November 2024

1 3pt contact AdS

O∆1
(k⃗1)

O∆2(k⃗2)O∆3(k⃗3)

z

2 n-point contact, dS

η

−∞

0
k⃗1 k⃗2 k⃗3 k⃗n

. . . =

∑

±

±

k⃗1 k⃗2 k⃗3 k⃗n

. . .
(1)

1

Figure 4.2: The n-point late-time contact diagram in de Sitter space
is given by the sum of each contribution from the ±
branches of the in-in contour. The solid grey line at the
top of each diagram represents the late-time boundary,
with the time coordinate running from η = −∞ deep
in the bulk to η = 0 on the boundary.

Using the expressions (3.2.65) for bulk-to-boundary propagators for generic α in

terms of those in the Bunch-Davies vacuum (α = 0), each contribution can be re-

cast in terms of the corresponding contribution in the Bunch-Davies vacuum with

the momenta appropriately rotated,

(α,+)AV1...n
∆1...∆n

(k1, k2, . . . , kn) = P+
∆1
. . . P+

∆n

(0,+)AV1...n
∆1...∆n

(k1, k2, . . . , kn) (4.2.6)
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+
∑

i

e(2∆i−d)πiP+
∆1
. . . P−

∆i
. . . P+

∆n

(0,+)AV1...n
∆1...∆n

(
k1, . . . , k̄

+
i , . . . , kn

)
+
∑
i < j

(
e(2∆i−d)πie(2∆j−d)πiP+

∆1
. . . P−

∆i
. . . P−

∆j
. . . P+

∆n

× (0,+)AV1...n
∆1...∆n

(
k1, . . . , k̄

+
i , . . . , k̄

+
j , . . . , kn

))
...

+ e(2∆1−d)πi . . . e(2∆n−d)πiP−
∆1
. . . P−

∆n

(0,+)AV1...n
∆1...∆n

(
k̄+

1 , . . . , k̄
+
n

)
,

and

(α,−)AV1...n
∆1...∆n

(k1, k2, . . . , kn) = M−
∆1
. . .M−

∆n

(0,−)AV1...n
∆1...∆n

(k1, k2, . . . , kn)

+
∑

i

e−(2∆i−d)πiM−
∆1
. . .M+

∆i
. . .M−

∆n

(0,−)AV1...n
∆1...∆n

(
k1, . . . , k̄

−
i , . . . , kn

)
+
∑
i < j

(
e−(2∆i−d)πie−(2∆j−d)πiM−

∆1
. . .M+

∆i
. . .M+

∆j
. . .M−

∆n

(0,−)

× AV1...n
∆1...∆n

(
k1, . . . , k̄

−
i , . . . , k̄

−
j , . . . , kn

))
...

+ e−(2∆1−d)πi . . . e−(2∆n−d)πiM+
∆1
. . .M+

∆n

(0,−)AV1...n
∆1...∆n

(
k̄−

1 , . . . , k̄
−
n

)
, (4.2.7)

where the P±
∆i

and M±
∆i

were summarised in (3.2.66). These, in turn, can be expressed

in terms of corresponding Witten diagrams in EAdS using the analytic continuations

(3.3.29), where [74]:

(0,±)AV1...n
∆1...∆n

(k1, k2, . . . , kn)

= ±i e∓ iπ
2 ( (n−2)d

2 +i(ν1+...+νn))
(

n∏
i=1

cdS-AdS
∆i

(−η0)∆i

)
AAdS

∆1...∆n
(k1, . . . , kn) , (4.2.8)

with

AAdS
∆1...∆n

(k1, . . . , kn) = −g
∫ ∞

0

dz
zd+1 K

AdS
∆1 (z, k1) . . . KAdS

∆n
(z, kn) . (4.2.9)

Using the Mellin representation of the bulk-to-boundary propagators

KAdS
∆ (z, k) =

i∞∫
−i∞

ds

2πiK
AdS
∆ (s, k) z−2s+ d

2 , (4.2.10)
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and (3.2.60), this can be expressed in the Mellin representation

AAdS
∆1...∆n

(k1, . . . , kn) =
∫ +i∞

−i∞
[ds]n AAdS

∆1∆2...∆n
(s1, k1; s2, k2; . . . ; sn, kn) , (4.2.11)

where

AAdS
∆1∆2...∆n

(s1, k1; s2, k2; . . . ; sn, kn) = −g
∫ ∞

0

dz
zd+1 z

−
n∑

i=1

(
2si−

d
2

)
(4.2.12)

×
n∏

i=1

Γ
(
si + 1

2

(
d
2 − ∆i

))
Γ
(
si − 1

2

(
d
2 − ∆i

))
2Γ
(
∆i − d

2 + 1
) (

ki

2

)−2si+∆i−
d
2
.

The integral over z then trivialises to a Dirac delta function in the Mellin variables

according to (3.1.36) (and explained in appendix B), resulting in

AAdS
∆1∆2...∆n

(s1, k1; s2, k2; . . . ; sn, kn) = −g 2πi δ
(
d+

n∑
i=1

(
2si − d

2

))
(4.2.13)

×
n∏

i=1

Γ
(
si + 1

2

(
d
2 − ∆i

))
Γ
(
si − 1

2

(
d
2 − ∆i

))
2Γ
(
∆i − d

2 + 1
) (

ki

2

)−2si+∆i−
d
2
.

Note that in the above we have used that rotations in the momenta are equivalent

to the antipodal transformation of the corresponding bulk point, as explained in

section 3.2.2. In particular,

AAdS
∆1...∆n

(
k1, . . . , k̄

±
i , . . . , kn

)
= −g(e∓πi)∆i−d

∫ ∞

0

dz
zd+1 K

AdS
∆1 (z, k1) . . . KAdS

∆i

(
z̄±, k1

)
. . . KAdS

∆n
(z, kn) . (4.2.14)

4.2.1 Three-point Function

Let us examine the n = 3 case in more detail. It turns out that one can trade an

analytic continuation of two momenta for an analytic continuation of just one. We

can see this in Mellin space with a straightforward calculation; we have

AAdS
∆1∆2∆3

(
k1e

∓iπ, k2e
∓iπ, k3

)
=

∞∫
0

dz

zd+1K
AdS
∆1 (z, e∓iπk1)KAdS

∆2 (z, e∓iπk2)KAdS
∆3 (z, k3)

=
i∞∫

−i∞

[ds]3KAdS
∆1 (s1, e

∓iπk1)KAdS
∆2 (s2, e

∓iπk2)KAdS
∆3 (s3, k3)

∞∫
0

dz

zd+1 z
−2(s1+s2+s3)+ 3d

2
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= e∓iπ(iν1+iν2)
i∞∫

−i∞

[ds]3
3∏

j=1

Γ
(
sj + iνj

2

)
Γ
(
sj − iνj

2

)
2Γ(1 + iνj)

(
kj

2

)−2sj+iνj
 e±2iπ(s1+s2)

× 2iπδ
(
s1 + s2 + s3 − d

4

)
, (4.2.15)

where we used (3.1.36) to perform the z integral and (3.2.60). Using the delta

function to impose the constraint s1 + s2 = d
4 − s3, we can write

AAdS
∆1∆2∆3

(
k1e

∓iπ, k2e
∓iπ, k3

)
= e∓iπ(iν1+iν2)

i∞∫
−i∞

[ds]3
3∏

j=1

Γ
(
sj + iνj

2

)
Γ
(
sj − iνj

2

)
2Γ(1 + iνj)

(
kj

2

)−2sj+iνj
 e±2iπ( d

4 −s3)

× 2πiδ
(
s1 + s2 + s3 − d

4

)

= e∓iπ(− d
2 +iν1+iν2+iν3)

i∞∫
−i∞

[ds]3
3∏

j=1

Γ
(
sj + iνj

2

)
Γ
(
sj − iνj

2

)
2Γ(1 + iνj)

(
kj

2

)−2sj+iνj
 e±iπ(−2s3+iν3)

× 2πiδ
(
s1 + s2 + s3 − d

4

)
, (4.2.16)

which leads to the identity

AAdS
∆1∆2∆3

(
k1e

∓iπ, k2e
∓iπ, k3

)
=
(
e∓πi

)∆1+∆2+∆3−2d
AAdS

∆1∆2∆3

(
k1, k2, k3e

±iπ
)
.

(4.2.17)

This in turn gives rise to the following compact expression for the α-vacuum three-

point contact diagram:

(α)AV123
∆1∆2∆3

(k1, k2, k3) = i

( 3∏
i=1

cdS-AdS
∆i

(−η0)∆i

)
(4.2.18)

×
∑
±
e∓ iπ

2 ( d
2 +i(ν1+ν2+ν3)) {(P±

∆1
P±

∆2
P±

∆3
−M±

∆1
M±

∆2
M±

∆3

)
AAdS

∆1∆2∆3 (k1, k2, k3)

+
(
P∓

∆1
P±

∆2
P±

∆3
−M∓

∆1
M±

∆2
M±

∆3

)
e∓2πν1AAdS

∆1∆2∆3(e∓iπk1, k2, k3)

+
(
P±

∆1
P∓

∆2
P±

∆3
−M±

∆1
M∓

∆2
M±

∆3

)
e∓2πν2AAdS

∆1∆2∆3(k1, e
∓iπk2, k3)

+
(
P±

∆1
P±

∆2
P∓

∆3
−M±

∆1
M±

∆2
M∓

∆3

)
e∓2πν3AAdS

∆1∆2∆3(k1, k2, e
∓iπk3)

}
,

with the P±
∆i

and M±
∆i

summarised in (3.2.66). It is also convenient to express the

contact diagram in the following form, which makes manifest that one recovers the
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known Bunch-Davies result upon setting α = 0:

(α)AV123
∆1∆2∆3

(k1, k2, k3) = i

( 3∏
i=1

cdS-AdS
∆i

(−η0)∆i

)∑
±
e∓ iπ

4 (d+2i(ν1+ν2+ν3))

×
{

(0)C±
∆1∆2∆3

AAdS
∆1∆2∆3 (k1, k2, k3) + sinh(2α)(α)C±

∆1∆2∆3

(
e∓πν1AAdS

∆1∆2∆3

(
e∓iπk1, k2, k3

)
+e∓πν2AAdS

∆1∆2∆3

(
k1, e

∓iπk2, k3
)

+ e∓πν3AAdS
∆1∆2∆3

(
k1, k2, e

∓iπk3
))}

, (4.2.19)

where the coefficients are defined

(0)C±
∆1∆2∆3

:= 1
8
[
±(3 cosh(4α) + 5) ∓ 2e∓iβ sinh(4α)

(
e∓πν1 + e∓πν2 + e∓πν3

)
±2e∓2iβ sinh2(2α)

(
e∓π(ν1+ν2) + e∓π(ν1+ν3) + e∓π(ν2+ν3)

)]
, (4.2.20a)

(α)C±
∆1∆2∆3

:= 1
4
[
∓2e±iβ cosh(2α)e±π(ν1+ν2+ν3)

± sinh(2α)
(
−e∓2iβ + e±π(ν1+ν2) + e±π(ν1+ν3) + e±π(ν2+ν3)

)]
. (4.2.20b)

Indeed, for α = 0 the terms proportional to sinh(2α) vanish and (0)C±
∆1∆2∆3

= ±1,

so the above yields

(0)AV123
∆1∆2∆3

(k1, k2, k3) = 2
( 3∏

i=1
cdS-AdS

∆i
(−η0)∆i

)
sin

(
π

2

(
d

2 + i (ν1 + ν2 + ν3)
))

× AAdS
∆1∆2∆3 (k1, k2, k3) , (4.2.21)

recovering the result of [74] for contact diagrams in the Bunch-Davies vacuum.

For generic scaling dimensions ∆i on the Principal Series, conformal three-point

functions in Fourier space are given by Appell’s F4 function [70]; a generalised hyper-

geometric function of two variables which admits a “triple-K” integral representation

as a product of three modified Bessel functions of the second kind (“Bessel - K”s). As

expected from AdS/CFT this representation coincides with the three-point contact
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diagram in AdS,

O∆1(k⃗1)

O∆2(k⃗2)O∆3(k⃗3)

z =
∞∫

0

dz

zd+1K
AdS
∆1 (z, k1)KAdS

∆2 (z, k2)KAdS
∆3 (z, k3),

(4.2.22)

with each bulk field dual to the CFT operator O∆i
(k⃗i) having a corresponding bulk-

to-boundary propagator containing a Bessel-K. In Mellin space, n-point contact

diagrams take the form (4.2.13). Away from the Principal Series, for certain special

values of the scaling dimensions this expression simplifies and in some cases there

are IR divergences. We will see examples of these in the following.

In the following examples we will set the parameter β = 0.

Three massless scalars in d = 3. In this case we have νi = 3i
2 i.e. ∆i = 0:

(α)AV123
000 (k1, k2, k3)
(cdS-AdS

0 )3 = 2AAdS
000 (k1, k2, k3) − sinh (2α)

∑
±

(
sinh (2α) ± i

2cosh (2α)
)

×
(
AAdS

000

(
e∓iπk1, k2, k3

)
+ AAdS

000

(
k1, e

∓iπk2, k3
)

+ AAdS
000

(
k1, k2, e

∓iπk3
))
.

(4.2.23)

The corresponding EAdS contact diagram is given by2

AAdS
000 (k1, k2, k3) = 1

3k3
1k

3
2k

3
3

[
2k2

1(k2 + k3) + 2k1
(
k2

2 − k2k3 + k2
3

)
+ 2k2k3(k2 + k3)

+4 (k3
1 + k3

2 + k3
3)

d− 3 − 1
3(6γ − 11)

(
k3

1 + k3
2 + k3

3

)
−
(
k3

1 + k3
2 + k3

3

)
(2 log(k1 + k2 + k3) + 1)

]
, (4.2.24)

which, for example, can be obtained from the Mellin-Barnes representation (4.2.13)

of three-point contact diagrams in dimensional regularisation (see appendix A). Note

2Note the presence of a total energy singularity kT := k1 + k2 + k3 → 0. This is a characteristic
singularity of cosmological correlators, and is related to the high-energy limit of the corresponding
flat-space amplitude [12, 55, 62].
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the presence of a local IR divergence for d = 3; in an inflationary context this is

regularised by a natural IR cut-off η0 ≈ 0 (ie, the end of inflation) near the late-time

boundary, where this term is of the form3
( 3∑

i=1
k3

i

)
log(−η0kT ) [63]. Such local IR

divergences can be cancelled in the in-in formalism by adding local counterterms at

the future boundary of dS [109].

The expression (4.2.23) agrees with the result originally obtained in [73], up to local

terms. Local terms (or contact terms) are those that in position space (namely, after

taking a Fourier transform) correspond to a Dirac delta function (or some derivative

acting on one), and so only contribute for coincident points. Examples of local terms

are constants and polynomials in one or more momenta; terms of the form k1k2,

k2
1k2k3, k2

2k3
k1

etc4. Terms like these produce a (derivative of) a delta function when

taking a Fourier transform back to position space, for instance

(k3
1 + k3

2 + k3
3) δ(k1 + k2 + k3) F.T−→

∞∫
−∞

dk1

2π
dk2

2π
dk3

2π (k3
1 + k3

2 + k3
3) eik1xeik2yeik3z

× δ(k1 + k2 + k3)

=
∞∫

−∞

dk1

2π
dk2

2π (k3
1 + k3

2 − (k1 + k2)3)eik1(x−z)eik2(y−z)

= i
( ∞∫

−∞

dk2

2π eik2(y−z)
)

d3

d(x− z)3

( ∞∫
−∞

dk1

2π eik1(x−z)
)

+ i
( ∞∫

−∞

dk1

2π eik1(x−z)
)

d3

d(y − z)3

( ∞∫
−∞

dk2

2π eik2(y−z)
)

+ . . .

= iδ(y − z) d3

d(x− z)3 δ(x− z) + iδ(x− z) d3

d(y − z)3 δ(y − z)

+ . . . , (4.2.25)

where . . . denotes similar terms that come from expanding the (k1+k2)3 term. Clearly,

3Setting d = 3 + δ in (4.2.24) results in a 1
δ pole. Such poles in dimensional regularisation

are analogous to log(Λ) terms in cut-off regularisation (with Λ an IR cutoff), which connects the
divergence in (4.2.24) to the log(−η0kT ) divergence for d = 3. See chapter 3 and appendix A of
[108] for a discussion in the context of the contact diagram of two conformally coupled and one
massless scalar.

4While the latter is clearly not analytic in k1, it will still produce a derivative of a delta function
involving y and z if we take a Fourier transform.
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such terms only contribute in the limit that the points are coincident, and are hence

ignored under the assumption that we are interested in correlation functions with

separated points. By contrast, terms like those in (4.2.23) of the form 1
kp for some

power p > 0 do not correspond to delta functions in position space, and so are said

to be non-local.

Two conformally coupled and one general scalar. In this case we have

ν1 = ν2 = i
2 and generic ∆3 ≡ ∆. We find

(α)AV123
d−1

2
d−1

2 ∆ (k1, k2, k3)( 3∏
i=1

cdS-AdS
∆i

(−η0)∆i

) =
∑
±

(0)C±
d−1

2
d−1

2 ∆e
∓ iπ

4 (d−2iν+2)AAdS
d−1

2
d−1

2 ∆ (k1, k2, k3) (4.2.26)

+ sinh(2α)
∑
±

(α)C±
d−1

2
d−1

2 ∆

[
e∓ iπ

4 (d−2iν+4)AAdS
d−1

2
d−1

2 ∆

(
e∓iπk1, k2, k3

)
+e∓ iπ

4 (d−2iν+4)AAdS
d−1

2
d−1

2 ∆

(
k1, e

∓iπk2, k3
)

+e∓ iπ
4 (d−6iν+2)AAdS

d−1
2

d−1
2 ∆

(
k1, k2, e

∓iπk3
)]
,

with

(0)C±
d−1

2
d−1

2 ∆ = 1
8
[
∓i(3 cosh(4α) + 5)

(
∓4e∓πν + 2i

)
sinh2(2α) +

(
4 ± 2ie∓πν

)
sinh(4α)

]
,

(α)C±
d−1

2
d−1

2 ∆ = ± i

4
[
2 cosh(2α)e±π(i+ν) + 2 sinh(2α)

(
1 ∓ ie±πν

)]
. (4.2.27)

In this case the three-point conformal structure reduces to a Gauss hypergeometric

function5 of the form

AAdS
d−1

2
d−1

2 ∆ (k1, k2, k3) = π3/2 24−d

k1k2

(
k3

2

)iν− d
2 +1 Γ

(
d
2 − iν − 1

)
Γ
(

d
2 + iν − 1

)
Γ
(

d−1
2

)

× 2F1

d
2 − 1 − iν, d

2 − 1 + iν

d−1
2

; k3 − k1 − k2

2k3

 . (4.2.28)

OPE limit. As we shall see in the next section, exchange diagrams factorise at the

level of each individual Witten diagram that appears in the expression. The OPE

limit where the exchanged particle goes on-shell, k → 0, can therefore be accessed by

5See for example section 3.3 of [74].
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considering the soft limit of one leg of the constituent three-point contact diagrams.

We will choose the third leg k3 → 0 to study the OPE limit of correlators for generic

choice of α vacuum.

Each term in the three-point function (4.2.26) can be characterised by the notation

AAdS
d−1

2
d−1

2 ∆

(
e±iπak1, e

±̂iπbk2, e
±̃iπck3

)
, with a, b, c ∈ {0, 1} parameterising the analytic

continuations. For a given term in said three-point function, the argument of the

Gauss hypergeometric function (4.2.28) then takes the form6

z = k3 − eiπ(±a∓̃c)k1 + eiπ(±̂b∓̃c)k2

2k3

= 1
2 − 1

2e
iπ(±a∓̃c)k1

k3
− 1

2e
iπ(±̂b∓̃c) 1

k3

√
k2

1 + k2
3 + 2k1k3 cos θk1,k3

k3→0= 1
2 − 1

2
(
eiπ(±a∓̃c) + eiπ(±̂b∓̃c)

) k1

k3
− 1

2e
iπ(±̂b∓̃c) cos θk1,k3 + O

(
k3

k1

)
, (4.2.29)

where θk1,k3 is the angle between vectors k⃗1 and k⃗3. In the Bunch-Davies vacuum

(i.e. a = b = c = 0) the k1/k3 term is leading, so that

2F1

d
2 − 1 − iν, d

2 − 1 + iν

d−1
2

; k3 − k1 − k2

2k3

 ∼
(
k1

k3

)− d
2 −iν+1

, (4.2.30)

and
(0)AV123

d−1
2

d−1
2 ∆ (k1, k2, k3 → 0) ∼

(
k3

k1

)2iν

, (4.2.31)

where we stripped off the overall power of k1 carrying the dimension of the three-point

function. In a generic α-vacuum instead, for certain values of a, b, c the coefficient

of this term vanishes7. For such values of a, b, c we have

AAdS
d−1

2
d−1

2 ∆

(
eaπik1, e

bπik2, e
cπik3

)

∼
(
k3

k1

)iν− d
2 +1

2F1

d
2 − 1 − iν, d

2 − 1 + iν

d−1
2

; 1 − eiπ(±̂b∓̃c) cos θk1,k3

2

 , (4.2.32)

which, for massive particles (i.e. ν ∈ R), dominates over the Bunch-Davies contribu-

tion (4.2.31) for d > 2. Note that this develops a branch cut for cos θk1,k3 = ±1 i.e.

6Note that by momentum conservation we have k2
2 = k2

1 + k2
3 + 2k1k3 cos θk1,k3 .

7For instance, (±a, ±̂b, ±̃c) = (+1, 0, −1) or (0, −1, 0).
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when k⃗1 and k⃗3 are collinear, as expected.

Let us note that due to their collinear singularities, three-point correlators for generic

α-vacuum have been interpreted in the literature as being “inconsistent” with the

OPE limit by the following general argument, which can be also be found in [62, 110,

111]. For conformally coupled scalars ∆ = 2 in d = 3, the dilatation Ward identity8

simplifies to(
−d+

3∑
i=1

Di

)
⟨O(k⃗1)O(k⃗2)O(k⃗3)⟩ =

( 3∑
i=1

ki∂ki

)
⟨O(k⃗1)O(k⃗2)O(k⃗3)⟩ = c, (4.2.33)

with c some constant9. It is straightforward to show that a combination of logarithms

solves this equation;

⟨O(k⃗1)O(k⃗2)O(k⃗3)⟩ =A ln(k1 + k2 + k3) +B ln(−k1 + k2 + k3)

+ C ln(k1 − k2 + k3) +D ln(k1 + k2 − k3), (4.2.34)

with symmetry under permutation of the momenta requiring B = C = D. In

position space, the OPE limit corresponds to the limit in which two points become

coincident. We assume that the unique solution to the conformal Ward identities in

position space is given by

⟨O(x1)O(x2)O(x3)⟩ = C∆1∆2∆3

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆1+∆3−∆2
13

, (4.2.35)

with xij := |xi − xj| and C∆1∆2∆3 a constant. If we take x1 and x2 coincident, ie we

consider the x12 → 0 limit, this becomes

⟨O(x1)O(x2)O(x3)⟩ ∼ 1
x∆1+∆2−∆3

12 x2∆3
13

. (4.2.36)

One can show that the Fourier transform of this object is proportional to

⟨Ok⃗1
Ok⃗2

Ok⃗3
⟩ ∝ 1

kd−∆1−∆2+∆3
1 kd−2∆3

3
= k3

k1
, (4.2.37)

8See appendix C for a derivation of the dilatation Ward identity.
9Note that we are allowing solutions that satisfy the dilatation Ward identity up to contact

terms, namely the constant on the right-hand-side is allowed to be non-zero (following section 4.3
of [62]). A constant in momentum space becomes a delta function in position space, which vanishes
for separated points. See the discussion around equation (4.2.25).



104 Chapter 4. Perturbative Correlators in de Sitter

where in the last equality we set d = 3,∆j = 2 ∀j ∈ {1, 2, 3}. Note that this is exactly

the behaviour of the Bunch-Davies limit of the three-point function (4.2.31)10 if we

set the general scalar conformally coupled, ν = i
2 . This establishes the result of

going to momentum space after taking the position-space OPE limit x12 → 0 of

the position space solution to the conformal Ward identities (4.2.35), assuming that

(4.2.35) is the unique solution in position space.

Now we want to compare this behaviour to that of the solution to the momentum-

space dilatation Ward identity (4.2.34), taking the corresponding OPE limit directly

in momentum space. In the k⃗3 → 0 limit (whose position space equivalent is the

above OPE limit x12 → 0), momentum conservation k⃗1 + k⃗2 + k⃗3 = 0 implies k1 ≈ k2.

The first term of (4.2.34) therefore scales as

ln(k1 + k2 + k3) ∼ ln(2k1 + k3)

= ln
(
k3

(
1 + 2k1

k3

))

= ln(k3) + ln
(

1 + 2k1

k3

)
,

= ln(k3) + log
(

2k1

k3

)
+ k3

2k1
+ O(k2

3) (4.2.38)

which in the k3 → 0 limit scales as

ln(k1 + k2 + k3) ∼ k3

k1
. (4.2.39)

It can be shown that the other terms, those involving collinear singularities, do not

behave this way, for instance

ln(−k1 + k2 + k3) ∼ ln(k3), (4.2.40)

for k1 ≈ k2. Therefore, the position-space OPE limit of (4.2.35), given by (4.2.37),

is only consistent with the corresponding momentum-space OPE limit of (4.2.34)

if B = C = D = 0. As such, solutions to the conformal Ward identities with

10We note that [62, 110, 111] parameterise ∆ = d
2 − iν, giving ∆ = 2 for conformally coupled

scalars ν = i
2 in d = 3, while we parameterise ∆ = d

2 + iν. As such, to compare with the results of
this section we should send ν → −ν before plugging ν = i

2 into (4.2.26).
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singularities for collinear momentum configurations have been previously considered

“inconsistent” with the OPE limit.

However, the above argument assumes that the solution to the position space con-

formal Ward identity is uniquely given by (4.2.35). In fact, as was shown in [1], the

space of solutions to the position space conformal Ward identities must be enlarged

to account for those with collinear singularities in momentum space, and a correct

OPE limit in position space should take the presence of these additional solutions

into account.

4.2.2 Four-point function

One can obtain similar expressions for higher-point contact diagrams. To demon-

strate, for n = 4 we have

(α)AV1234
∆1∆2∆3∆4

(k1, k2, k3, k4)

i
( 4∏

i=1
cdS-AdS

∆i
(−η0)∆i

)
=
∑
±
e∓ iπ

2 (d+i(ν1+ν2+ν3+ν4))
{

(0)C±
∆1∆2∆3∆4

AAdS
∆1∆2∆3∆4 (k1, k2, k3, k4)

+ sinh(2α)(α,1)C±
∆1∆2∆3∆4

[
e∓πν1AAdS

∆1∆2∆3∆4

(
e∓πik1, k2, k3, k4

)
+ . . .

]
+ sinh2(2α)(α,2)C±

∆1∆2∆3∆4

[
e∓π(ν1+ν2)AAdS

∆1∆2∆3∆4

(
e∓πik1, e

∓πik2, k3, k4
)

+e∓π(ν1+ν3)AAdS
∆1∆2∆3∆4

(
e∓πik1, k2, e

∓πik3, k4
)

+ e∓π(ν1+ν4)AAdS
∆1∆2∆3∆4

(
e∓πik1, k2, k3, e

∓πik4
)]}

,

(4.2.41)

where

(0)C±
∆1∆2∆3∆4

= ± 1
32 [4(7 cosh(2α) + cosh(6α))

−4e∓3iβ sinh3(2α)
(
e∓π(ν1+ν2+ν3) + e∓π(ν1+ν2+ν4) + e∓π(ν1+ν3+ν4) + e∓π(ν2+ν3+ν4)

)
+4e∓2iβ sinh(4α) sinh(2α)

(
e∓π(ν1+ν2) + e∓π(ν1+ν3) + e∓π(ν1+ν4) + e−π(ν2+ν3) + e∓π(ν2+ν4)

+e∓π(ν3+ν4)
)

− e∓iβ(7 sinh(2α) + 3 sinh(6α))
(
e∓πν1 + e∓πν2 + e∓πν3 + e∓πν4

)]
,

(4.2.42)
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(α,1)C±
∆1∆2∆3∆4

= ± 1
16
[
2e∓3iβe∓π(ν1+ν2+ν3+ν4) sinh2(2α) − e±iβ(3 cosh(4α) + 5)

−2e∓iβ sinh2(2α)
(
e∓π(ν1+ν2) + e∓π(ν1+ν3) + e∓π(ν1+ν4) + e∓π(ν2+ν3) + e∓π(ν2+ν4) + e∓π(ν3+ν4)

)
+2 sinh(4α)

(
e∓πν1 + e∓πν2 + e∓πν3 + e∓πν4

)]
, (4.2.43)

(α,2)C±
∆1∆2∆3∆4

= ±1
8
[
−e±iβ sinh(2α)

(
e∓πν1 + e∓πν2 + e∓πν3 + e∓πν4

)
+e∓iβ sinh(2α)

(
e∓π(ν1+ν2+ν3) + e∓π(ν1+ν2+ν4) + e∓π(ν1+ν3+ν4) + e∓π(ν2+ν3+ν4)

)
−2e∓2iβ cosh(2α)e∓π(ν1+ν2+ν3+ν4) + 2e±2iβ cosh(2α)

]
, (4.2.44)

extending the coefficients (4.2.20) for generic scalars to n = 4.

4.3 Four-point Exchange

2 n-point contact, dS

η

−∞

0
k⃗1 k⃗2 k⃗3 k⃗n

. . . =

+

k⃗1 k⃗2 k⃗3 k⃗n

. . .

+

−

k⃗1 k⃗2 k⃗3 k⃗n

. . .
(1)

3 Exchange

η

−∞

0

k⃗

k⃗1 k⃗2 k⃗3 k⃗4

=

∑

±±̂

±
±̂

k⃗

k⃗1 k⃗2 k⃗3 k⃗4

(2)

2

Figure 4.3: The four-point exchange diagram in de Sitter space is
given by a sum of each contribution from the ± branches
of the in-in contour, of which there are four - two for
each bulk point. The solid grey line at the top of each
diagram represents the late-time boundary, with the
time coordinate running from η = −∞ deep in the bulk
to η = 0 on the boundary.

In the same way, one can express four-point exchange diagrams in a generic α-

vacuum in terms of corresponding exchanges in Euclidean AdS with the momenta

appropriately rotated. In this case one also makes use of the identities (3.2.64)

for the bulk-to-bulk propagators in the Schwinger-Keldysh formalism which, under

the analytic continuations in section 3.3, are expressed in terms of corresponding

bulk-to-bulk propagators in EAdS with rotations of the exchanged momentum.
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In fact, it is possible to trade such rotations of the exchanged momenta for rotations

of the momentum of the external fields. Consider the exchange diagram mediated

by the cubic vertices

V12ϕ = g12ϕ1ϕ2ϕ, V34ϕ = g34ϕ3ϕ4ϕ. (4.3.1)

Using the representation (3.3.2) of bulk-to-bulk propagators together with (3.2.59),

the s-channel exchange diagram generated by the above cubic vertices in EAdS takes

the form, in the Mellin space representation,

AAdS
∆1∆2|∆|∆3∆4 (k1, k2; p1; p2; k3, k4) =

∫ +i∞

−i∞
[ds]4[du]2

× AAdS
∆1∆2|∆|∆3∆4 (k1, s1; k2, s2; p1, u1; p2, u2; k3, s3; k4, s4) , (4.3.2)

with

AAdS
∆1∆2|∆|∆3∆4 (k1, s1; k2, s2; p1, u1; p2, u2; k3, s3; k4, s4)

= Γ (1 + iν) Γ (1 − iν)
π

csc (π (u1 + u2))ω∆ (u1, u2)

× AAdS
∆1∆2∆ (s1, k1; s2, k2;u1, p1) AAdS

∆3∆4d−∆ (s3, k3; s4, k4;u2, p2) , (4.3.3)

in terms of the constituent three-point contact diagrams (4.2.13) in Mellin space.

With the same analysis used to derive the property (4.2.17) of the constituent three-

point functions, it can then be shown that rotations of the internal momentum can

be traded for rotations of the external momenta,

AAdS
∆1∆2|∆|∆3∆4

(
k1, k2; p̄±

1 ; p̄±̂
2 ; k3, k4

)
=
(
e±iπ

)d
2 −iν−iν1−iν2 (

e±̂iπ
)d

2 +iν−iν3−iν4

× AAdS
∆1∆2|∆|∆3∆4

(
k̄∓

1 , k̄
∓
2 ; p1; p2; k̄∓̂

3 , k̄
∓̂
4

)
. (4.3.4)

In de Sitter space, the contribution to the s-channel exchange from the ++ branch

of the in-in contour (i.e. both bulk points time-ordered) is

(α,++)AV12ϕV34ϕ

∆1∆2∆3∆4
(k1, k2, k3, k4) = (+ig12) (+ig34)

∫ 0

−∞

dη1

(−η1)d+1

∫ 0

−∞

dη2

(−η2)d+1

×K
(α)
∆1,+ (η1, k1)K(α)

∆2,+ (η1, k2)K(α)
∆3,+ (η2, k3)K(α)

∆4,+ (η2, k4)
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×
[
P+

∆+
G

(0)
∆+,++(η1, k; η2, k) + e−2νπP−

∆+
G

(0)
∆+,++(η1, k̄

+; η2, k̄
+) + (∆+ → ∆−)

]
,

(4.3.5)

where we inserted the expression (3.2.64) for the α-vacuum bulk-to-bulk propagator

in terms of its counterpart in the Bunch-Davies vacuum. By exchanging analytic

continuations of internal momenta for analytic continuations of external momenta,

this can be written in the form

(α,++)AV12ϕV34ϕ

∆1∆2∆3∆4
(k1, k2, k3, k4) = P+

∆+
(α,++)AV12ϕV34ϕ

∆1∆2|∆+|∆3∆4
(k1, k2, k3, k4)

+ P−
∆+

(
e+iπ

)2∆+−i(ν1+iν2+iν3+iν4) (α,++)AV12ϕV34ϕ

∆1∆2|∆+|∆3∆4

(
k̄−

1 , k̄
−
2 , k̄

−
3 , k̄

−
4

)
+ (∆+ → ∆−) , (4.3.6)

with only the external momenta ki rotated, where

(α,++)AV12ϕV34ϕ

∆1∆2|∆+|∆3∆4
(k1, k2, k3, k4) = (+ig12) (+ig34)

∫ 0

−∞

dη1

(−η1)d+1

∫ 0

−∞

dη2

(−η2)d+1

×K
(α)
∆1,+ (η1, k1)K(α)

∆2,+ (η1, k2)G(0)
∆+,++(η1, k; η2, k)K(α)

∆3,+ (η2, k3)K(α)
∆4,+ (η2, k4) .

(4.3.7)

Applying the identities (3.2.65) for the bulk-to-boundary propagators as well, this

can be expressed in terms of exchanges in the Bunch-Davies vacuum. In particular,

we find

(α,++)AV12ϕV34ϕ

∆1∆2|∆+|∆3∆4
(k1, k2, k3, k4) = P+

∆1
P+

∆2
P+

∆3
P+

∆4
(0,++)AV12ϕV34ϕ

∆1∆2|∆+|∆3∆4
(k1, k2, k3, k4)

+
∑

i

e(2∆i−d)πiP+
∆1
. . . P−

∆i
. . . P+

∆4
(0,++)AV12ϕV34ϕ

∆1∆2|∆+|∆3∆4

(
k1, . . . , k̄

+
i , . . . , k4

)
+
∑
i < j

(
e(2∆i−d)πie(2∆j−d)πiP+

∆1
. . . P−

∆i
. . . P−

∆j
. . . P+

∆4

× (0,++)AV12ϕV34ϕ

∆1∆2|∆+|∆3∆4

(
k1, . . . , k̄

+
i , . . . , k̄

+
j , . . . , k4

))
+e
∑

i

(2∆i−d)πi∑
i

e−(2∆i−d)πiP−
∆1
. . . P+

∆i
. . . P−

∆4
(0,++)AV12ϕV34ϕ

∆1∆2|∆+|∆3∆4

(
k̄+

1 , . . . , ki, . . . , k̄
+
4

)

+
( 4∏

i=1
e(2∆i−d)πiP−

∆i

)
(0,++)AV12ϕV34ϕ

∆1∆2|∆+|∆3∆4

(
k̄+

1 , k̄
+
2 , k̄

+
3 , k̄

+
4

)
, (4.3.8)

which in turn, using the analytic continuations (3.3.5) and (3.3.11), can be written
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in terms of the corresponding exchange diagram in EAdS [76, 77]:

(0,++)AV12ϕV34ϕ

∆1∆2|∆+|∆3∆4
(k1, k2, k3, k4)

=
( 4∏

i=1
cdS-AdS

∆i
(−η0)∆i

)
cdS-AdS

∆+ e
−
(

−d+∆++∆1+∆2
2

)
πi
e

−
(

−d+∆++∆3+∆4
2

)
πi

× AAdS
∆1∆2|∆+|∆3∆4 (k1, k2, k3, k4) , (4.3.9)

where

AAdS
∆1∆2|∆+|∆3∆4 (k1, k2, k3, k4) = g12g34

∫ ∞

0

dz1

zd+1
1

∫ +∞

0

dz2

zd+1
2

×KAdS
∆1 (z1, k1)KAdS

∆2 (z1, k2)GAdS
∆+ (z1, k; z2, k)KAdS

∆3 (z2, k3)KAdS
∆4 (z2, k4) . (4.3.10)

We have seen that by the split representation of the EAdS harmonic function (3.2.59),

the EAdS exchange diagrams “factorise”, or can be expressed as a product of three-

point contact diagrams. The OPE limit k → 0 where the exchanged particle goes

on-shell can therefore be equivalently probed by considering the soft limit of one leg

of the constituent three-point contact diagrams, which was studied in the previous

section.

The above procedure can be repeated for all other contributions (i.e. +−, −+, −−)

to the exchange in the in-in formalism, expressing the result in terms of corresponding

exchange diagrams in EAdS with appropriate rotations of the external momenta.

This expression for the full four-point s-channel de Sitter exchange can be found in

the Mathematica file in [87].

The t- and u-channel exchanges are obtained simply by permuting the external legs

in the s-channel exchange; see figure 4.4. In particular, the (++) contribution to

the s-channel exchange is given by

(α,++)AV12ϕV34ϕ

∆1∆2∆3∆4
(k1, k2, k3, k4) = (+ig12) (+ig34)

∫ 0

−∞

dη1

(−η1)d+1

∫ 0

−∞

dη2

(−η2)d+1

×K
(α)
∆1,+ (η1, k1)K(α)

∆2,+ (η1, k2)G(α)
∆+,++(η1, k; η2, k)K(α)

∆3,+ (η2, k3)K(α)
∆4,+ (η2, k4) ,

= (+ig12) (+ig34)
∫

[ds]4[du]2K(α)
∆1,+ (s1k1)K(α)

∆2,+ (s2, k2)G(α)
∆+,++(u1, k;u2, k)
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η

−∞

0

η1
η2

k⃗

k⃗1 k⃗2 k⃗3 k⃗4

η1
η2

k⃗

k⃗1 k⃗2 k⃗3 k⃗4

(5)

4 late-time 2pt

lim
η1,η2→0

⟨ϕ(η1)ϕ(η2)⟩(α)
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η1,η2→0




η

−∞

0

η1
η2

ϕ




=
η

−∞

0

ϕ

(6)
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−∞ +∞
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3

Figure 4.4: The t-channel (left) and u-channel contributions to the
de Sitter exchange are obtained from the s-channel ex-
change by a permutation of the external legs. At the
level of the Mellin-Barnes representation, this amounts
simply to a swapping of the external Mellin variables
in the Dirac delta functions arising from the bulk time
integrals.

×K
(α)
∆3,+ (s3, k3)K(α)

∆4,+ (s4, k4)

×
∫ 0

−∞

dη1

(−η1)d+1 (−η1)−2(s1+s2+u1)+ 3d
2

∫ 0

−∞

dη2

(−η2)d+1 (−η2)−2(s3+s4+u2)+ 3d
2 ,

= (+ig12) (+ig34)
∫

[ds]4[du]2K(α)
∆1,+ (s1k1)K(α)

∆2,+ (s2, k2)G(α)
∆+,++(u1, k;u2, k)

×K
(α)
∆3,+ (s3, k3)K(α)

∆4,+ (s4, k4)

× (2πi)δ
(
d

4 − s1 − s2 − u1

)
(2πi)δ

(
d

4 − s3 − s4 − u2

)
, (4.3.11)

while the t-channel contribution is given by

(α,++)AV12ϕV34ϕ

∆1∆3∆2∆4
(k1, k2, k3, k4) = (+ig12) (+ig34)

∫ 0

−∞

dη1

(−η1)d+1

∫ 0

−∞

dη2

(−η2)d+1

×K
(α)
∆1,+ (η1, k1)K(α)

∆3,+ (η1, k3)G(α)
∆+,++(η1, k; η2, k)K(α)

∆2,+ (η2, k2)K(α)
∆4,+ (η2, k4) ,

= (+ig12) (+ig34)
∫

[ds]4[du]2K(α)
∆1,+ (s1k1)K(α)

∆2,+ (s2, k2)G(α)
∆+,++(u1, k;u2, k)

×K
(α)
∆3,+ (s3, k3)K(α)

∆4,+ (s4, k4)

× (2πi)δ
(
d

4 − s1 − s3 − u1

)
(2πi)δ

(
d

4 − s2 − s4 − u2

)
. (4.3.12)

At the level of the Mellin-Barnes representation, we see that the difference is ulti-

mately just a swapping of s2 ↔ s3 in the delta functions.
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Summary. In this chapter we applied the relations derived in chapter 3 to study

perturbative correlators in de Sitter space. In particular, we computed the late-time

boundary two-point function and derived expressions for n-point contact diagrams

for generic choice of α-vacuum. We also focussed on some examples in the n = d = 3

case - the contact diagram of three massless scalars and that of two conformally

coupled and one general scalar. We showed that both contact and exchange diagrams

can be expressed in terms of their Bunch-Davies counterparts, as well as in terms of

EAdS Witten diagrams, with appropriately rotated external momenta. This opens

the door to a deeper understanding of de Sitter boundary correlators in the α-vacua

- by reformulating them in terms of the comparatively better-understood EAdS

Witten diagrams, one can then import techniques and understanding from the EAdS

case to the dS case.

In the following chapter, we extend the tools described above to the context of

inflation.





Chapter 5

Inflationary Correlators from

EAdS

This chapter is based on unpublished work. We extend the tools described above to

the context of inflationary correlation functions. In particular, we derive objects that

we refer to as master formulae for “inflationary” three-point contact and four-point

scalar exchange diagrams in EAdS, with legs analytically continued. In plugging

these master formulae into the three-point contact and four-point de Sitter exchange

diagrams for arbitrary choice of α-vacuum, we obtain corrections to the inflationary

two- and three-point functions of inflaton perturbations δϕ at leading order in slow-

roll.

The main results of this chapter are:

• Inflationary EAdS Master Formulae. We derive general formulae for

EAdS three-point contact and four-point exchange diagrams with external legs

analytically continued (as k → e±iπk) in every way that appears in the dS

three-point contact diagram (4.2.18), and the four-point exchange. We use the

Mellin space formalism to compute these formulae in certain soft limits, with

each leg having a small mass ϵ related to the slow-roll parameters.

• Inflationary Correlators from EAdS. By combining these “inflationary
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EAdS” master formulae with the formulae for dS correlators from EAdS Witten

diagrams described in chapter 4, we compute the leading correction to the

inflationary two- and three-point functions of inflaton perturbations.

5.1 Slow-Roll Inflation

We begin with a short overview of single-field slow-roll inflation. An excellent review

can be found in [112], which we loosely follow here.

5.1.1 Motivation

Correlations in the large-scale structure we see in the sky today are ultimately seeded

by quantum fluctuations in a phase of the universe’s evolution called inflation, a

period of extremely rapid accelerated expansion before the hot big bang. The infla-

tionary paradigm solves a number of issues with our pre-inflationary understanding of

early-universe cosmology, one being the horizon problem. This is the statement that

the observed homogeneity of the Cosmic Microwave Background (CMB) implies that

seemingly causally disconnected regions of the universe must have been in thermal

equilibrium at some point during the universe’s evolution, despite the absence of a

mechanism for being so. Inflation solves this issue by effectively including more time

before the CMB was produced, and allowing these regions to be in causal contact

during the inflationary phase.

The idea for how correlations in large-scale structure arose in the inflationary model

is as follows. Fluctuations in the metric and a scalar field called the inflaton get

stretched by the extremely rapid accelerated expansion of an approximately de Sitter

spacetime, ultimately being “caught” on the future boundary when the inflationary

period ends, depositing some energy onto this late-time surface. These energy

deposits then manifest themselves as temperature inhomogeneities in the Cosmic

Microwave Background, and create potential wells and hills for matter to fall into
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and out of further down the line in the universe’s evolution. In this way, correlations

between fluctuations in the inflationary phase ultimately lead to correlations in the

positions of large-scale structures in the sky today.

A central goal of modern experimental cosmology is to uncover the physics governing

the inflationary phase. An approach known as Cosmological Collider Physics [12]

puts forward the idea of viewing inflation as an extremely high-energy particle

collider, whereby observing large-scale structure could allow us to infer not only the

spectrum of particles present during the inflationary phase but also their dynamics.

For instance, measurements of power spectra, quantities related to the two-point

function of primordial fluctuations, by Planck [11] and others have found that

inflationary physics must have been approximately scale invariant. However, the

power spectrum alone is insufficient to allow us to infer the spectrum of particles

and their dynamics - to glean information about interactions for instance, one must

measure higher-point correlations. Probing such non-Gaussianities is a central goal

of the Euclid mission [113], which aims to constrain primordial non-Gaussianities by

detecting their imprint on the large-scale distribution of galaxies. The eventual hope

is that such cosmological surveys, in combination with future generations of CMB

experiments like CMB-S4, could improve existing constraints on non-Gaussianities

and uncover subtle features of inflationary dynamics, such as the kinds of interactions

between fields and initial conditions [114, 115]. As such, theoretical predictions for

the kinds of measurements these experiments hope to obtain are of paramount

importance.

In this thesis we are concerned only with the simplest model of inflationary dynamics,

known as single-field slow-roll inflation. The next section provides a lightning fast

review of the aspects of this model most pertinent to the thesis.
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5.1.2 Single-Field Slow-Roll Inflation

Accelerated expansion requires a source of negative pressure, which in the simplest

models of inflation is provided by the presence of a single scalar field ϕ called the

inflaton. The action for a scalar field on a general fixed background gµν is given by1

S =
∫
d4x

√
−g
[1
2R − 1

2g
µν∇µϕ∇νϕ− V (ϕ)

]
, (5.1.1)

where the inflaton potential V (ϕ) captures the mass term and self-interactions of

the scalar. From this action one can derive the energy-momentum tensor

Tµν := − 2√
−g

δS
δgµν

= ∇µϕ∇νϕ− gµν

(1
2∇σϕ∇σϕ+ V (ϕ)

)
, (5.1.2)

with the equation of motion for the scalar being given by

1√
−g

∂µ

(√
−g∂µϕ

)
+ dV (ϕ)

dϕ
= 0. (5.1.3)

Now, as a general model of an expanding spacetime we assume that gµν is of

Friedmann-Lemaître-Robertson-Walker (FLRW) form, whose line element is given

in polar coordinates by

ds2 = −dt2 + a2(t)
(

dr2

1 − kr2 + r2(dθ2 + sin2(θ)dϕ2)
)

(5.1.4)

with the function a(t) being the scale factor describing how spatial sections grow in

time. The parameter k describes the geometry of the spatial slices; k = 0 corresponds

to flat space, k = +1 to a sphere, and k = −1 to hyperbolic spatial slices. We will be

mostly concerned with flat spatial slices, and work in Cartesian coordinates where

the metric is given by

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
. (5.1.5)

Making the simplifying assumption that the scalar is homogeneous in space, namely

ϕ(t, x⃗) = ϕ̄(t), we find that the energy-momentum tensor takes the form of that of a

1We specialise to d + 1 = 4 in this short review for convenience.
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perfect fluid. Namely, we find

T µ
ν =



ρϕ 0 0 0

0 −pϕ 0 0

0 0 −pϕ 0

0 0 0 −pϕ


, (5.1.6)

where the energy density is given by

ρϕ = 1
2

˙̄ϕ2 + V (ϕ), (5.1.7)

and the pressure is

pϕ = 1
2

˙̄ϕ2 − V (ϕ). (5.1.8)

Indeed, we see that large negative pressure can be achieved if the scalar field satisfies
1
2

˙̄ϕ2 << V (ϕ).

The Einstein equations then imply two coupled differential equations; the first known

as the Friedmann Equation,

(
ȧ

a

)2
= 8πG

3 ρ− k

a2 , (5.1.9)

and the second (coming from the trace of the Einstein equations) known as the

acceleration equation,
ä

a
= −4πG

3 (ρ+ 3p). (5.1.10)

These two equations together then imply the continuity equation

ρ̇ = −3H(ρ+ p), (5.1.11)

where we have defined the Hubble parameter

H := ȧ

a
. (5.1.12)

Thus, the presence of the scalar field affects the geometry; through the Friedmann
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equation we have

H2 =
(
ȧ

a

)2
= 8πG

3 ρϕ = 8πG
3

(1
2

˙̄ϕ2 + V (ϕ̄)
)
, (5.1.13)

and so starting from the FLRW metric we find

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2)

= −dt2 + 3
8πG

ȧ2

1
2

˙̄ϕ2 + V (ϕ̄)
(dx2 + dy2 + dz2). (5.1.14)

The equation of motion for the homogeneous scalar field is given by

¨̄ϕ+ 3H ˙̄ϕ+ ∂V

∂ϕ̄
= 0. (5.1.15)

Note that this is the equation for a particle rolling down its potential, with 3H ˙̄ϕ

playing the role of the friction term2. If the friction term is sufficiently large, the

acceleration of this particle will be small, the particle will “roll slowly” down its

potential, and we will have ˙̄ϕ ∼ 1
3H
V ′(ϕ). This is the origin of the “slow-roll” in

slow-roll inflation. This “slow-roll condition” | ¨̄ϕ| << |3H ˙̄ϕ|, |V ′(ϕ̄)| is achieved if

ηH := −
¨̄ϕ
H ˙̄ϕ

<< 1, (5.1.16)

is satisfied, where we have defined the slow-roll parameter ηH .

The equation of state is characterised by the variable

Wϕ := pϕ

ρϕ

=
1
2

˙̄ϕ2 − V (ϕ̄)
1
2

˙̄ϕ2 + V (ϕ̄)
. (5.1.17)

If we insist on accelerated expansion, namely ä !
> 0, we find from the acceleration

equation (with a > 0) that

ä = −4πGa
3 (ρϕ + 3pϕ)

= −4πGaρϕ

3 (1 + 3Wϕ) !
> 0, (5.1.18)

2A particle rolling down a hill modelled by a potential V (x) experiences forces F = mẍ and
Fhill = −V ′(x) − γẋ with γ the friction coefficient. Equating the forces we get the EOM ẍ + γ

m ẋ +
V ′(x) = 0.
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and so accelerated expansion requires Wϕ

!
< −1

3 . In addition, assuming a positive

scale factor and energy density the requirement for negative pressure is Wϕ

!
< 0.

Beginning with the acceleration equation,

ä

a
= −4πG

3 (ρ+ 3p) , (5.1.19)

we can write

ä

a
= −4πGρ

3 (1 + 3Wϕ)

= −H2

2 (1 + 3Wϕ)

= −H2(1
2 + 3

2Wϕ)

= H2(1 − ε), (5.1.20)

where in going from the first to the second line we used the Friedmann equation

and assumed flat spatial sections k = 0. We have also defined another slow-roll

parameter3

ε := 3
2(1 +Wϕ) = 3

2

˙̄ϕ2

1
2

˙̄ϕ2 + V
= 8πG

2

˙̄ϕ2

H2 , (5.1.21)

where we used equation (5.1.13). The condition for accelerated expansion ä > 0

then translates into a condition on the slow-roll parameter; ε < 1. The slow-roll

parameter can also be related to the Hubble parameter, which can be seen first by

taking the time derivative,

H = ȧ

a
=⇒ Ḣ = ä

a
−
(
ȧ

a

)2
, (5.1.22)

and then using (5.1.20), giving

ε = − Ḣ

H2 = −d ln(H)
dN

. (5.1.23)

We have introduced the number of e-folds N , defined by dN := H(t)dt = d ln(a),

namely eN := a. It turns out that to solve the horizon problem, namely for the

light-cones of two apparently causally disconnected regions of the CMB to intersect

3The 8πG is often dropped, leaving just ε =
˙̄ϕ2

2H2 .
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in inflation, we require the inflationary phase to be maintained for at least ∼ 60 e-

folds, namely N
!
≳ 60. In slow-roll inflation we take4 ε << 1, and so the acceleration

equation becomes
ä

a
= H2(1 − ε) ≈ H2. (5.1.24)

Taking H to vary slowly enough to be considered approximately constant, we then

solve this differential equation to find

a(t) ≈ eHt. (5.1.25)

Plugging this back into the FLRW metric we find

ds2 = −dt2 + a(t)(dx2 + dy2 + dz2)

≈ 1
H2η2

(
−dη2 + dx2 + dy2 + dz2

)
, (5.1.26)

after transforming to conformal time. Thus, we see that the geometry of the universe

during slow-roll inflation was approximately that of de Sitter space.

In the slow-roll approximation, the slow-roll parameters can be expressed as con-

ditions on the shape of the potential as follows. In slow-roll where the potential

energy of the scalar dominates over the kinetic energy 1
2

˙̄ϕ << V (ϕ̄), the Friedmann

equation (5.1.13) becomes

H2 ≈ 8πG
3 V (ϕ̄)

=⇒ Ḣ ≈ 8πG
3

1
6H2V

′(ϕ̄), (5.1.27)

where we differentiated both sides and used that ˙̄ϕ ∼ 1
3H
V ′(ϕ̄) in slow-roll. After

some algebra and using the Friedmann equation again, we then have

ε := − Ḣ

H2 ≈ − 1
16πG

(
V ′(ϕ̄)
V (ϕ̄)

)2

, (5.1.28)

in the slow-roll approximation. For the other slow-roll parameter, we start with

4See appendix D of [112] for details on the smallness of the slow-roll parameters in inflation.
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˙̄ϕ ∼ 1
3H
V ′(ϕ̄) and differentiate both sides. We find

¨̄ϕ ≈ 1
3

− Ḣ

H2V
′(ϕ̄) +

˙̄ϕ
H
V ′′(ϕ̄)

 , (5.1.29)

which using ˙̄ϕ ∼ 1
3H
V ′(ϕ̄) again leads to

ηH = −
¨̄ϕ
H ˙̄ϕ

≈ ε− 1
8πG

V ′′(ϕ̄)
V (ϕ̄)

. (5.1.30)

For completeness, these ratios of (derivatives of) the potential are sometimes defined

to be two further potential slow-roll parameters (to distinguish them from the Hubble

slow-roll parameters above), leading to

ε ≈ εv, ηH ≈ ε− ηv. (5.1.31)

In order to obtain large-scale structure in the universe today, there must have

been deviations from the homogeneous cosmology described above. To take these

deviations into account, we consider small perturbations around the homogeneous

solution for the inflaton,

ϕ(t, x⃗) = ϕ̄(t) + δϕ(t, x⃗), (5.1.32)

where we call δϕ(t, x⃗) the inflaton perturbation. In cosmological perturbation theory

we also often consider perturbations in the metric,

gµν(t, x⃗) = ḡµν(t) + hµν(t, x⃗), (5.1.33)

with hµν called the curvature- or metric perturbation. It is the correlations between

these fluctuations in the inflationary phase that ultimately lead to the correlations

we observe in large-scale structure in the universe today. In this chapter we will

only consider correlators involving the inflaton perturbations, and we will ignore the

metric perturbations5.

5For realistic inflationary dynamics, the inflaton perturbations induce perturbations in the stress
tensor, which in turn source fluctuations in the metric. As such, for a full and consistent treatment
we should include the metric fluctuations. However, focussing only on the inflaton perturbations
will allow us to demonstrate the power of the new techniques presented in this chapter, and we
leave inflationary correlators involving gravitons and the effects of metric perturbations to future
work.



122 Chapter 5. Inflationary Correlators from EAdS

One final point to make is that the slow-roll parameters ε and ηH can be associated

with the mass of the inflaton in the following way. Consider the action (5.1.1), and

consider expanding the scalar field in a homogeneous part and a fluctuation as above,

ϕ(t, x⃗) = ϕ̄(t) + δϕ(t, x⃗). We find that the matter part of the action becomes

Smatter =
∫
ddx

√
−g

[1
2∇µϕ∇µϕ− V (ϕ)

]
=
∫
ddx

√
−g
[1
2∇µδϕ∇µδϕ− V (ϕ̄) − V ′(ϕ̄)δϕ− 1

2V
′′(ϕ̄)δϕ2

− 1
3!V

(3)(ϕ̄)δϕ3 + . . .
]

= S(2) + S(3) + . . . , (5.1.34)

where the part of the action containing quadratic terms S(2) encodes the free dynam-

ics of the perturbation, with S(3) and higher-order terms in the expansion encoding

interactions. We see that the quadratic action contains a mass term for the perturb-

ation, with the mass given by

m2 = V ′′(ϕ̄). (5.1.35)

Recalling the potential slow-roll parameter ηv from (5.1.30), the mass of the inflaton

perturbation can be then expressed

m2 ≈ 8πGηvV (ϕ̄)

≈ 3H2ηv

≈ 3H2(ε− ηH), (5.1.36)

where we used the Friedmann equation H2 ≈ 8πG
3 V (ϕ̄) in slow-roll. We see that in

slow-roll inflation, the mass of the inflaton perturbation is related to the slow-roll

parameters. This provides important intuition for the recipe in the next section.

5.1.3 Inflationary Correlators from de Sitter

Since we have good control over the computation of de Sitter correlation functions

via the in-in formalism, a natural question to ask is whether or not it is possible



5.1. Slow-Roll Inflation 123

to obtain correlation functions involving inflaton perturbations in the inflationary

background from knowledge of analogous correlators in de Sitter.

In slow-roll inflation we have two small parameters intrinsic to the theory; ε, ηH << 1.

Thus, a natural approach to inflationary correlators could be to compute a de Sitter

correlation function, perturb it using some combination ϵ of the slow-roll parameters,

and perform a series expansion using that combination as a perturbative parameter.

This way, we could interpret terms in the expansion proportional to powers of ϵ as

corrections to the de Sitter result, which arise due to the breaking of the de Sitter

isometries in an inflationary context. Indeed, this is exactly the approach we take.

We will follow a by-now-standard recipe [12, 116] inspired by the above logic for

computing inflationary two-point functions from de Sitter three-point functions, and

inflationary three-point functions from de Sitter exchange four-point functions of

general scalars. The recipe is as follows.

dS Correlators −→ Inflationary Correlators:

1. Give each leg in the dS diagram a small mass, setting νj = i
(

d
2 − ϵ

)
, with

ϵ related to the slow-roll parameters.

2. Send one of the legs soft and expand the result in powers of ϵ.

The intuition for this recipe is as follows. Regarding step 1, we want to produce

a correlation function of inflaton perturbations δϕ in inflation from a correlation

function of a general scalar field in exact de Sitter. Since the inflaton perturbation

δϕ is not perfectly massless, but rather has a small mass related to the slow-roll

parameters through (5.1.36), we give each leg in the de Sitter correlator a small mass

by setting νj = i(d
2 − ϵ), with ϵ related to the slow-roll parameters. In step 2, we

then take the soft limit of one leg of the correlator. The limit k → 0 (soft spatial

momentum, or small wavenumber) while keeping the other legs hard corresponds
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=⇒

k4 → 0

×

=⇒

k4 → 0

×

6

Figure 5.1: Inflationary three-point functions can be obtained from
exact de Sitter four-point functions by taking one of
the external legs soft. The soft limit, or the long-
wavelength limit, results in a correlator with three
hard perturbations on top of an approximately spatially
static background field. This is exactly the situation
in slow-roll inflation, where we expand the inflaton as
ϕ(t, x⃗) = ϕ̄(t) + δϕ(t, x⃗).

to the leg in question having very long wavelength compared to the other legs, and

as such we treat the soft leg as an approximately spatially static background field.

The result is a lower-point correlation function, whose hard legs are perturbations

on top of a classical, spatially constant background field. This is exactly a slow-roll

inflationary scenario, with the perturbations δϕ(t, x⃗) on top of the homogeneous

classical background field ϕ̄(t). By expanding in ϵ, we obtain inflationary corrections

to the corresponding de Sitter correlators. Note that while we could in principle com-

pute inflationary three-point functions from de Sitter four-point contact diagrams,

it is particularly interesting to compute them from de Sitter four-point exchanges

because the resulting inflationary three-point function will then retain features of

the exchanged particle. In particular, four-point exchanges contain non-analytic

(ie, oscillatory) terms signalling particle production6 in the OPE limit, where the

exchanged particle goes on-shell k → 0. Inflationary three-point functions computed

from such de Sitter diagrams then retain this oscillatory signal in the squeezed limit,

where (if we choose k4 to be the soft leg in the above recipe) k3 → 07. In particular,

6Namely, these terms are interpreted as signalling the production of a physical, on-shell particle
by the time-dependent background, which then decays into two pairs forming the external legs of
the exchange diagram. This is in contrast to the usual interpretation where the exchanged particle
is virtual.

7For an exchange diagram momentum conservation for one of the subdiagrams is given by
k⃗ + k⃗3 + k⃗4 = 0. Sending k⃗4 → 0 then implies |k| = |k3|, and so the k → 0 limit for the exchanged
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such correlators contain terms of the form
(

k3
k1

) d
2 +iν

, from which we see that the

frequency of the oscillations is set by the mass of the exchanged particle. This motiv-

ates the notion of Cosmological Collider Physics [12] - by experimentally measuring

the inflationary three-point function, one could in principle glean information about

the spectrum of particles during the inflationary phase.

In relating dS correlators for the α-vacua to a combination of Witten diagrams in

EAdS in chapter 4, we now have a clear path towards a systematic understanding of

such correlators (via EAdS) in an inflationary context. If we could compute a “master

formula” for an “inflationary” EAdS diagram8 with the momenta of the external

legs analytically continued, we could simply combine these in the way described in

chapter 4 to obtain inflationary correlators for arbitrary choice of α-vacuum. This

is the goal of the remainder of this chapter.

5.2 EAdS Inflationary Master Formulae

In this section we derive three- and four-point master formulae for analytically

continued, inflationary EAdS Witten diagrams.

5.2.1 Three-point Contact Diagram

The EAdS three-point contact diagram can be expressed in Mellin space as9

AAdS
∆1∆2∆3(e±aiπk1, e

±̂biπk2, e
±̃ciπk3)

=
i∞∫

−i∞

[ds]3KAdS
∆1 (s1, e

±aiπk1)KAdS
∆2 (s2, e

±̂biπk2)KAdS
∆3 (s3, e

±̃ciπk3)

× (2iπ)δ
(
d

4 − s1 − s2 − s3

)
(5.2.1)

particle is equivalent to k3 → 0, which is known as the squeezed limit.
8We define “inflationary” in the context of EAdS to simply be an EAdS Witten diagram for

which we follow the above recipe.
9Note that we have implicitly already performed the integral over the bulk coordinate z, which

gives the delta function. See equation (3.1.36).



126 Chapter 5. Inflationary Correlators from EAdS

with KAdS
∆ (s, k) given by (3.3.3), and a, b, c ∈ {0, 1} characterising the various

analytic continuations of the momenta. This is a “master formula” in the sense that

by choosing ±a, ±̂b and ±̃c appropriately, the formula describes all possible analytic

continuations of the legs that appear in the corresponding de Sitter diagram (4.2.18).

Using (3.3.3) and eliminating the s1 integral with the delta function, we are left with

AAdS
∆1∆2∆3(e±aiπk1, e

±̂biπk2, e
±̃ciπk3)

= 2
d
2 −

3∑
j=1

iνj

3∏
j=1

2Γ(1 + iνj)

i∞∫
−i∞

ds2

2πi
ds3

2πi Γ
(
s2 + iν2

2

)
Γ
(
s2 − iν2

2

)
Γ
(
s3 + iν3

2

)
Γ
(
s3 − iν3

2

)

× Γ
(
d

4 − iν1

2 − s2 − s3

)
Γ
(
d

4 + iν1

2 − s2 − s3

)

× (e±iπak1)− d
2 +iν1+2s2+2s3(e±̂iπbk2)−2s2+iν2(e±̃iπck3)−2s3+iν3 . (5.2.2)

We choose to perform the s2 integral first. Isolating it, we have

Is2 :=
i∞∫

−i∞

ds2

2πiΓ
(
s2 + iν2

2

)
Γ
(
s2 − iν2

2

)
Γ
(
d

4 − iν1

2 − s2 − s3

)
Γ
(
d

4 + iν1

2 − s2 − s3

)

× (e±iπak1)− d
2 +iν1+2s2+2s3(e±̂iπbk2)−2s2+iν2 , (5.2.3)

which has poles at

s2 = ±iν2

2 − n, n ∈ Z≥0, (5.2.4)

s2 = d

4 − s3 ± iν1

2 +m, m ∈ Z≥0. (5.2.5)

We choose10 to close the contour to the left of the imaginary axis, picking up the

first set of poles; those from the Γ
(
s2 ± iν2

2

)
factors. Given that we are interested

in eventually computing inflationary correlators, we need only consider the leading

s2 pole in the soft limit k2 → 0. This turns out to be the pole at s2 = − iν2
2 . After

10Note that this is not in general a free choice; one must be careful to choose the contour such
that the integral converges. Details can be found in appendix A.
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invoking the residue theorem, we find

lim
k2→0

AAdS
∆1∆2∆3(e±aiπk1, e

±̂biπk2, e
±̃ciπk3) = 2 d

2 −i(ν1+ν2+ν3)Γ(−iν2)(e±̂iπbk2)2iν2

3∏
j=1

2Γ(1 + iνj)

×
i∞∫

−i∞

ds3

2πi Γ
(
s3 + iν3

2

)
Γ
(
s3 − iν3

2

)
Γ
(
d

4 − s3 − i

2(ν1 − ν2)
)

(5.2.6)

× Γ
(
d

4 − s3 + i

2(ν1 + ν2)
)

(e±iπak3)− d
2 +i(ν1−ν2)+2s3(e±̃iπck3)−2s3+iν3 ,

where we used that for k2 → 0, we have k1 ∼ k3.

Finally, we deal with the s3 integral. For this we close the contour to the right of

the imaginary axis, picking up the poles at

s3 = d

4 + i

2(ν1 + ν2) + n, n ∈ Z≥0 (5.2.7)

s3 = d

4 − i

2(ν1 − ν2) +m, m ∈ Z≥0. (5.2.8)

Once again invoking the residue theorem, we find the soft EAdS three-point function

lim
k2→0

AAdS
∆1∆2∆3(e±aiπk1, e

±̂biπk2, e
±̃ciπk3)

= 2 d
2 −i(ν1+ν2+ν3)(e±̂iπbk2)2iν2

Γ(−iν1)Γ(−iν2)Γ(1 − d
2 − iν2)

23Γ(1 + iν2)Γ(1 + iν3)
(5.2.9)

×
{(e±iπak3)2iν1(e±̃iπck3)− d

2 −i(ν1+ν2−ν3)Γ(d
4 + i

2(ν1 + ν2 − ν3))Γ(d
4 + i

2(ν1 + ν2 + ν3))
Γ(1 − d

4 − i
2(−ν1 + ν2 + ν3))Γ(1 − d

4 + i
2(ν1 − ν2 + ν3))

−
(e±̃iπck3)− d

2 +i(ν1−ν2+ν3)Γ(d
4 − i

2(ν1 − ν2 + ν3))Γ(d
4 − i

2(ν1 − ν2 − ν3))
Γ(1 − d

4 − i
2(ν1 + ν2 + ν3))Γ(1 − d

4 − i
2(ν1 + ν2 − ν3))

}
.

To obtain the building block for a massless inflationary two-point function, we first

multiply by a factor of
3∏

j=1
cdS-AdS

∆j
before setting ν1 = ν2 = ν3 = i

(
d
2 − ϵ

)
, and

expanding around ϵ = 0. The leading term in ϵ then gives us our final result for the

“inflationary” EAdS two-point function,

3∏
j=1

(
cdS-AdS

∆j

)
lim

k2→0
AAdS

ϵϵϵ (e±aiπk1, e
±̂biπk2, e

±̃ciπk3)

∼ −
4d csc

(
πd
2

)
Γ
(
1 + d

2

)4

ϵ d5 π2(e±iπak3)d(e±̂iπbk2)d
−

4d csc
(

πd
2

)
Γ
(
1 + d

2

)4

ϵ d5 π2(e±̃iπck3)d(e±̂iπbk2)d
. (5.2.10)
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We will later plug this object into the de Sitter three-point contact diagram (4.2.18)

to find the leading correction to the inflationary two-point function for a generic

choice of α-vacuum.

5.2.2 Four-point Exchange Diagram

Here we follow a similar procedure to the above, but for EAdS four-point exchange

diagrams. In particular, we aim to compute an inflationary master formula for an

EAdS exchange with one soft leg (which we choose to be k4 → 0), in the squeezed

limit k3 → 0. By plugging this object into the de Sitter exchange described in

section 4.3 (and available in the GitHub file at [87]), we then obtain the inflationary

three-point function of inflaton perturbations δϕ in the squeezed limit. We begin by

computing a master formula for the s-channel exchange.

s-channel In particular, we are interested in computing the master formula

AAdS
∆1∆2|∆+|∆3∆4(e±aiπk1, e

±̂biπk2, e
±̃ciπk3, e

±̄fiπk4)

=
∫

[ds]4[du]2 AAdS
∆1∆2|∆+|∆3∆4(u1, u2, si|e±aiπk1, e

±̂biπk2, e
±̃ciπk3, e

±̄fiπk4), (5.2.11)

where in the s-channel we define the Mellin representation of the four-point exchange

as11

AAdS
∆1∆2|∆+|∆3∆4(u1, u2, si|e±aiπk1, e

±̂biπk2, e
±̃ciπk3, e

±̄fiπk4) := GAdS
∆+ (u1, k;u2, k)

×KAdS
∆1 (s1, e

±aiπk1)KAdS
∆2 (s2, e

±̂biπk2)KAdS
∆3 (s3, e

±̃ciπk3)KAdS
∆4 (s4, e

±̄fiπk4)

× (2πi)δ
(
d

4 − s1 − s2 − u1

)
(2πi)δ

(
d

4 − s3 − s4 − u2

)
. (5.2.12)

Similarly to the three-point contact Witten diagram (5.2.1), the parameters a, b, c, f ∈

{0, 1} describe all possible analytic continuations of the external legs. It is in this

sense that (5.2.11) is a “master formula”, and we will see that the Mellin integrals are

defined for all analytic continuations appearing in the four-point de Sitter exchange.

11Note that again we have implicitly performed the integrals over the bulk points z1 and z2,
resulting in the delta functions.
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Plugging in the Mellin representations of the EAdS bulk-to-bulk and bulk-to-boundary

propagators (3.3.2) and (3.3.3), one can write this as

AAdS
∆1∆2|∆+|∆3∆4(e±aiπk1, e

±̂biπk2, e
±̃ciπk3, e

±̄fiπk4) = 1
4πe

∓aπν1e∓̂bπν2e∓̃cπν3e∓̄fπν4

×
4∏

j=1

(
1

2Γ(1 + iνj)

) i∞∫
−i∞

[ds]3[du]2 csc(π(u1 + u2))ω∆+(u1, u2)Γ
(
u1 + iν

2

)
Γ
(
u1 − iν

2

)

× Γ
(
u2 + iν

2

)
Γ
(
u2 − iν

2

)(
k

2

)−2(u1+u2)

e∓2aiπs1e∓̂2biπs2e∓̃2ciπs3 (5.2.13)

×
3∏

j=1

Γ
(
sj + iνj

2

)
Γ
(
sj − iνj

2

)(
kj

2

)−2sj+iνj
 (2πi)δ

(
u1 −

(
d

4 − s1 − s2

))

×
i∞∫

−i∞

ds4

2πiΓ
(
s4 + iν4

2

)
Γ
(
s4 − iν4

2

)
e∓̄2fiπs4

(
k4

2

)−2s4+iν4

(2πi)δ
(
u2 −

(
d

4 − s3 − s4

))
.

Recall that when we compute inflationary correlators from correlators in de Sitter,

we are interested in the soft limit with respect to one of the external legs. We will

choose to consider the k4 → 0 limit, for which we need to perform the s4 integral,

which has poles at

s4 = ±iν4

2 − n. (5.2.14)

It turns out that the leading pole in the soft k4 limit is the s4 = − iν4
2 pole, with all

others subleading. The corresponding residue is given by

Γ(−iν4) e∓̄fπν4

(
k4

2

)2iν4

δ

(
u2 −

(
d

4 − s3 + iν4

2

))
. (5.2.15)

Invoking the residue theorem, we can therefore write

lim
k4→0

AAdS
∆1∆2|∆+|∆3∆4(e±aiπk1, e

±̂biπk2, e
±̃ciπk3, e

±̄fiπk4) = Γ(−iν4)
4π e∓aπν1e∓̂bπν2e∓̃cπν3e∓̄2fπν4

×
(
k4

2

)2iν4 4∏
j=1

(
1

2Γ(1 + iνj)

) i∞∫
−i∞

[ds]3[du]2 csc(π(u1 + u2))ω∆+(u1, u2)Γ
(
u1 + iν

2

)

× Γ
(
u1 − iν

2

)
Γ
(
u2 + iν

2

)
Γ
(
u2 − iν

2

)(
k

2

)−2(u1+u2)

e∓2aiπs1e∓̂2biπs2e∓̃2ciπs3

×
3∏

j=1

Γ
(
sj + iνj

2

)
Γ
(
sj − iνj

2

)(
kj

2

)−2sj+iνj
 (2πi)δ

(
u1 −

(
d

4 − s1 − s2

))

× (2πi)δ
(
u2 −

(
d

4 + iν4

2 − s3

))
. (5.2.16)
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We now use the delta functions to eliminate the u1 and u2 integrals, obtaining

lim
k4→0

AAdS
∆1∆2|∆+|∆3∆4(e±aiπk1, e

±̂biπk2, e
±̃ciπk3, e

±̄fiπk4) = e∓aπν1e∓̂bπν2e∓̃cπν3e∓̄2fπν4

× Γ(−iν4)
4π

(
k4

2

)2iν4 4∏
j=1

(
1

2Γ(1 + iνj)

) i∞∫
−i∞

[ds]3 csc
(
π

(
d

2 + iν4

2 − s1 − s2 − s3

))

× ω∆+

(
d

4 − s1 − s2,
d

4 + iν4

2 − s3

)
Γ
(
d

4 + iν

2 − s1 − s2

)
Γ
(
d

4 − iν

2 − s1 − s2

)

× Γ
(
d

4 + iν4

2 + iν

2 − s3

)
Γ
(
d

4 + iν4

2 − iν

2 − s3

)(
k3

2

)−2( d
2 + iν4

2 −s1−s2−s3)

× e∓2aiπs1e∓̂2biπs2e∓̃2ciπs3
3∏

j=1

Γ
(
sj + iνj

2

)
Γ
(
sj − iνj

2

)(
kj

2

)−2sj+iνj
 , (5.2.17)

where we used that in the soft k4 → 0 limit, k ∼ k3.

From here, we note that we are particularly interested in the squeezed limit of the

inflationary three-point function, which we obtain from the k3 → 0 limit of the above.

In said limit, k2 ∼ k1, and it will also prove useful to redefine s1 → s1 − s2. After

some algebra and plugging in the projector (3.2.31), this results in

lim
k3,k4→0

AAdS
∆1∆2|∆+|∆3∆4(e±aiπk1, e

±̂biπk2, e
±̃ciπk3, e

±̄fiπk4) = Γ(−iν4)
2π

4∏
j=1

(
1

2Γ(1 + iνj)

)

×
(
k4

2

)2iν4 (k1

2

)i(ν1+ν2) (
k3

2

)−d+i(ν3−ν4)

e∓aπν1e∓̂bπν2e∓̃cπν3e∓̄2fπν4 Is1 Is3 Is2 , (5.2.18)

where we define

Is2 :=
i∞∫

−i∞

ds2

2πi Γ
(
s2 + iν2

2

)
Γ
(
s2 − iν2

2

)
Γ
(
iν1

2 + s1 − s2

)
Γ
(

−iν1

2 + s1 − s2

)

× e2iπs2(±a∓̂b), (5.2.19)

Is3 :=
i∞∫

−i∞

ds3

2πi sin
(
π

(
d

4 + iν4

2 − iν

2 − s3

))
csc

(
π

(
d+ iν4

2 − s3 − s1

))
e∓̃2ciπs3

×
∏
±

Γ
(
s3 ± iν3

2

)
Γ
(
d

4 + iν4

2 ± iν

2 − s3

)
, (5.2.20)

Is1 :=
i∞∫

−i∞

ds1

2πi sin
(
π

(
d

4 − iν

2 − s1

))
Γ
(
d

4 + iν

2 − s1

)
Γ
(
d

4 − iν

2 − s1

)

×
(
k3

k1

)2s1

e∓2aiπs1 . (5.2.21)
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We then compute these integrals with the residue theorem, being careful in our

choices of contour such that each integral converges. The easiest integral is that over

s2, which is a variation of Barnes’ lemma. This has poles at

s2 = ±iν2

2 − n, n ∈ Z≥0, (5.2.22)

s2 = ±iν1

2 − s1 +m, m ∈ Z≥0, (5.2.23)

on the left and the right of the imaginary axis, respectively. Using the techniques in

appendix A, it turns out that we can choose to close the contour in either direction

for the combinations of ±a and ±̂b that appear in the expression for the de Sitter

exchange diagram12. Closing to the left, resummation of the corresponding residues

results in

Is2 = e±πaν2∓̂πbν2
Γ(1 + iν2)Γ(−iν2)Γ(1 − 2s1)Γ

(
s1 − i(ν1−ν2)

2

)
Γ
(
s1 + i(ν1+ν2)

2

)
Γ
(
1 − s1 + i(−ν1+ν2)

2

)
Γ
(
1 − s1 + i(ν1+ν2)

2

)
+ (ν2 → −ν2) (5.2.24)

We then compute the s3 integral (5.2.20). Setting s3 = Reiθ and again using the

techniques in appendix A, the integrand has behaviour

RRe(∆4)−2e−2πR(| sin θ|∓̃c sin θ), (5.2.25)

in the R → ∞ limit. Thus, for decay of the integrand we require

| sin θ |∓̃c sin θ
!

≥ 0, (5.2.26)

where in the case that the bound is saturated we also require

Re(∆4)
!
< 1. (5.2.27)

Note that condition (5.2.27) is satisfied in the case we are interested in, namely

for massless particles where ν4 = id
2 . Note also that (5.2.26) is always satisfied for

12These are
(
±a, ±̂b

)
= (0, 0), (±1, ±1), (±1, 0), (0, ±1). Note in particular that the combina-

tions (1, −1) and (−1, 1) do not appear.
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c ∈ {0, 1}. We choose to close the contour to the right, enclosing the poles at

s3 = d+ 2iν4 + 2iν
4 + n, n ∈ Z≥0, (5.2.28)

s3 = d+ iν4 − 2s1

2 +m, m ∈ Z≥0, (5.2.29)

which gives

Is3 = Γ
(

1 − d

4 + iν

2 + s1

)
Γ
(
d

4 − iν

2 − s1

)

×
e∓̃iπc( d

2 +i(ν+ν4))Γ
(

d
4 + i(ν−ν3+ν4)

2

)
Γ
(

d
4 + i(ν+ν3+ν4)

2

)
Γ
(
1 − d

2 − iν4
)

Γ
(
1 − d

4 + iν − i(ν−ν3+ν4)
2

)
Γ
(
1 − d

4 + iν − i(ν+ν3+ν4)
2

)
+ e∓̃iπc(d+iν4−2s1)Γ

(
(d−iν3+iν4)

2 − s1
)

Γ
(

(d+iν3+iν4)
2 − s1

) Γ
(
−d

4 + iν
2 + s1

)
Γ
(
1 + d

4 + iν
2 − s1

)
× 3F2

(
1, d

2 − i(ν3−ν4)
2 − s1,

d
2 + i(ν3+ν4)

2 − s1; d
4 − iν

2 − s1 + 1, d
4 + iν

2 − s1 + 1; 1
)
.

(5.2.30)

To evaluate the remaining integral in s1, setting s1 = Reiθ we need to determine the

behaviour of the 3F2 hypergeometric function in (5.2.30) as R → ∞. To that end,

using a transformation formula13 for 3F2 we have

3F2
(
1, d

2 − i(ν3−ν4)
2 − s1,

d
2 + i(ν3+ν4)

2 − s1; d
4 − iν

2 − s1 + 1, d
4 + iν

2 − s1 + 1; 1
)

=
Γ
(
−d

2 − iν4 + 1
)

Γ
(

d
4 − s1 − iν

2 + 1
)

Γ
(
−d

2 − iν4 + 2
)

Γ
(

d
4 − s1 − iν

2

)
× 3F2

(
1,−d

4 + i(ν−ν3−ν4)
2 + 1,−d

4 + i(ν+ν3−ν4)
2 + 1; d

4 + iν
2 − s1 + 1,−d

2 − iν4 + 2; 1
)

︸ ︷︷ ︸
∼1

∼ logR, (5.2.32)

where in the final equality we used the techniques of appendix A to give the behaviour

of the ratio of Γ-functions as R → ∞. Using the same techniques one can determine

13In particular,

3F2(a1, a2, a3; b1, b2; 1) = Γ(b1)Γ(−a1 − a2 − a3 + b1 + b2)
Γ(b1 − a1)Γ(−a2 − a3 + b1 + b2)

×3 F2(a1, b2 − a2, b2 − a3; b2, −a2 − a3 + b1 + b2; 1). (5.2.31)
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that exponential decay of the s1 integrand requires

| sin θ| ∓ a sin θ
!

≥ 0, (5.2.33)

2| sin θ| + (±̃c± a) sin θ !
> 0, (5.2.34)

where in the case that these bounds are saturated, decay of the integrand requires

that

d
!

≤ 3, (5.2.35)

and

d− Im(ν4)
!

≤ 5
2 , (5.2.36)

respectively. In our case of interest when the fourth leg is massless and ν4 = id
2 , the

latter condition becomes d
!

≤ 5. After computing the integral we can then relax this

condition by analytic continuation. Note that the left-hand-side of the first condition

is at its smallest when ∓a = −1, and that of the second condition is at its smallest

when ±̃c ± a = −2. Both conditions are therefore always satisfied. We choose to

close the integral over s1 to the right of the imaginary axis, where the integrand

contains three families of poles;

s1 = d

4 ± iν

2 + n, n ∈ Z≥0, (5.2.37)

s1 = 1 + n

2 , n ∈ Z≥0, (5.2.38)

s1 = d± iν3 + iν4

2 + n, n ∈ Z≥0. (5.2.39)

Performing the integral with the residue theorem results in a series expansion in k3
k1

,

whose leading terms in the k3 → 0 limit are encoded in the above poles for which

n = 0. Our final task to obtain the master formula for the s-channel exchange is to

compute the contribution to the s1 integral from each of the above poles in s1.

We first compute the contribution from the (5.2.37) poles. After multiplying the

result by the
4∏

i=1

(
cdS-AdS

∆i

)
cdS-AdS

∆+ factor, we then take the inflationary limit, setting

νj = ν = i
(

d
2 − ϵ

)
∀j ∈ {1, 2, 3, 4} and expanding around ϵ = 0. The leading term
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in the ϵ → 0 limit is given by

4∏
i=1

(
cdS-AdS

∆i

)
cdS-AdS

∆+ AAdS
ϵϵϵϵ

(
e±aiπk1, e

±̂biπk2, e
±̃ciπk3, e

±̄fiπk4
) ∣∣∣∣

s1= d
4 ± iν

2 +n

∼
23d−4 csc

(
πd
2

)4
Γ
(

d
2

)4
e−iπd(±a±̂b±̃c±̄f)(e±iπad + e±̂iπbd)(1 + e±̃iπcd)

d4πϵ2Γ
(
−d

2

)2
(k1k3k4)d

. (5.2.40)

Computing the contribution from the (5.2.39) poles and performing the above pro-

cedure results in

4∏
i=1

(
cdS-AdS

∆i

)
cdS-AdS

∆+ AAdS
ϵϵϵϵ

(
e±aiπk1, e

±̂biπk2, e
±̃ciπk3, e

±̄fiπk4
) ∣∣∣∣

s1= d±iν3+iν4
2 +n

∼ −
23d−4 csc

(
πd
2

)4
Γ
(

d
2

)4
e−iπd(±a±̂b±̃c±̄f)(e±iπad + e±̂iπbd)

d4πϵ2Γ
(
−d

2

)2
(k1k3k4)d

. (5.2.41)

Finally, computing the contribution from the leading (5.2.38) pole and performing

the above procedure results in

4∏
i=1

(
cdS-AdS

∆i

)
cdS-AdS

∆+ AAdS
ϵϵϵϵ

(
e±aiπk1, e

±̂biπk2, e
±̃ciπk3, e

±̄fiπk4
) ∣∣∣∣

s1= 1+n
2

∼ −
4d−3 csc

(
πd
2

)2
Γ
(

d
2

)4
Γ(d− 1)e∓iπa−iπd(±a±̂b±̄f)(e±iπad − e±̂iπbd)
dπ2 ϵ kd+1

1 kd−1
3 kd

4
. (5.2.42)

We see that (5.2.42) is subleading in both ϵ and in k3
k1

, and so can be ignored.

Summing (5.2.40) and (5.2.41) gives us our final result for the “inflationary” EAdS

exchange in the s-channel,

4∏
i=1

(
cdS-AdS

∆i

)
cdS-AdS

∆+ AAdS
ϵϵϵϵ

(
e±aiπk1, e

±̂biπk2, e
±̃ciπk3, e

±̄fiπk4
)

∼
23d−4 csc

(
πd
2

)4
Γ
(

d
2

)4
e−iπd(±a±̂b±̄f)(e±iπad + e±̂iπbd)

d4πϵ2Γ
(
−d

2

)2
(k1k3k4)d

. (5.2.43)

This result is useful because it will later be plugged into the de Sitter exchange

described in section 4.3 (and in the GitHub file at [87]) to obtain the squeezed limit

of the inflationary three-point function of inflaton perturbations δϕ.
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t- and u-channel. It is also important to consider the contributions from the

t- and u-channel de Sitter exchanges (see figure 4.4) to the squeezed limit of the

inflationary three-point function. As we shall see in the following, these contribute at

higher orders in the slow-roll approximation, and so can be neglected if we are only

interested in the leading-order correction to the inflationary three-point function.

We focus without loss of generality on the t-channel exchange diagram, where the

contribution from the u-channel follows by exchanging k1 ↔ k2.

As before we employ the decomposition of the dS exchange diagram in a generic

α-vacuum in terms of corresponding exchange diagrams in EAdS. For the latter, the

soft limit14 k4 → 0 is given by:

lim
k4→0

AAdS
∆1∆3|∆+|∆2∆4(e±aiπk1, e

±̂biπk2, e
±̃ciπk3, e

±̄fiπk4) = Γ(−iν4)
4π e∓aπν1e∓̂bπν2e∓̃cπν3e∓̄2fπν4

×
(
k4

2

)2iν4 4∏
j=1

(
1

2Γ(1 + iνj)

) i∞∫
−i∞

[ds]3[du]2 csc(π(u1 + u2))ω∆+(u1, u2)Γ
(
u1 + iν

2

)

× Γ
(
u1 − iν

2

)
Γ
(
u2 + iν

2

)
Γ
(
u2 − iν

2

)(
k

2

)−2(u1+u2)

e∓2aiπs1e∓̂2biπs2e∓̃2ciπs3

×
3∏

j=1

Γ
(
sj + iνj

2

)
Γ
(
sj − iνj

2

)(
kj

2

)−2sj+iνj
 (2πi)δ

(
u1 −

(
d

4 − s1 − s3

))

× (2πi)δ
(
u2 −

(
d

4 + iν4

2 − s2

))
. (5.2.44)

It is then straightforward to compute the u1 and u2 integrals with the delta functions.

Computing these and the s3 integral, in the squeezed limit k3 → 0 we have

lim
k3,k4→0

AAdS
∆1∆3|∆+|∆2∆4(e±aiπk1, e

±̂biπk2, e
±̃ciπk3, e

±̄fiπk4)

= π
Γ(−iν4)Γ(−iν3)

2 e∓aπν1e∓̂bπν2e∓̃2cπν3e∓̄2fπν4

(
k3

2

)2iν3 (k4

2

)2iν4

×
(
k

2

)−d+i(ν1−ν3)+i(ν2−ν4) 4∏
j=1

(
1

2Γ(1 + iνj)

)
I(t)

s1,s2 , (5.2.45)

with remaining Mellin-Barnes integrals in s1 and s2 given by

I(t)
s1,s2 =

∫ i∞

−i∞
[ds]2 e∓2aiπs1e∓̂2biπs2 csc(π(d

2 + i(ν1+ν2)
2 − s1 − s2))

14Namely, after computing the s4 integral and taking the leading term in k4 → 0.
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×
Γ
(

d
4 + i(ν+ν3)

2 − s1
)

Γ
(

d
4 + i(ν+ν4)

2 − s2
)

Γ
(
s1 + 1 − d

4 + i(ν−ν3)
2

)
Γ
(
s2 + 1 − d

4 + i(ν−ν4)
2

)
× Γ

(
s1 + iν1

2

)
Γ
(
s1 − iν1

2

)
Γ
(
s2 + iν2

2

)
Γ
(
s2 − iν2

2

)
, (5.2.46)

where we used that k1, k2 → k for k3, k4 → 0. Without loss of generality we can

evaluate the integral in s2 first, where the integrand has the following poles for

n ∈ Z≥0,

s2 = ±iν2

2 − n, (5.2.47)

s2 = d− 2
2 + i (ν1 + ν2)

2 − s1 − n, (5.2.48)

s2 = d

2 + i (ν1 + ν2)
2 − s1 + n, (5.2.49)

s2 = d

2 + i (ν + ν4)
2 + n. (5.2.50)

For all a, b ∈ {0, 1} the contour can be closed either side assuming that 2Re [∆3] < 3.

Closing the contour to the right of the imaginary axis, this gives

I(t)
s1,s2 =

e∓2iπas1Γ
(
s1 − iν1

2

)
Γ
(
s1 + iν1

2

)
Γ
(

d
4 − s1 + i(ν+ν3)

2

)
Γ
(
−d

4 + s1 + 1
2i(ν − ν3) + 1

)
× csc

(
π

(
d

4 − i(ν − ν1 − ν2 + ν4)
2 − s1

))

×
[
e∓̂ 1

2 iπb(d+2i(ν+ν4)) Γ
(
−d

2 − iν4 + 1
)

Γ
(

d
4 + i(ν−ν2+ν4)

2

)
Γ
(

d
4 + i(ν+ν2+ν4)

2

)
Γ
(
1 + i(ν−ν2−ν4)

2 − d
4

)
Γ
(
1 + i(ν+ν2−ν4)

2 − d
4

)
− e∓̂iπb(d+i(ν1+ν2)−2s1)Γ

(
d+ iν1

2 − s1

)
Γ
(
d+ i(ν1 + 2ν2)

2 − s1

)

× 3F2

( 1, d+iν1
2 − s1,

d+i(ν1+2ν2)
2 − s1

d+4−2i(ν−ν1−ν2+ν4)
4 − s1,

d+4+2i(ν+ν1+ν2−ν4)
4 − s1

; 1
)]
. (5.2.51)

Since we are interested in the three-point functions of scalar perturbations at leading

order in the slow-roll approximation, at this point is it convenient to set νi = ν =

i
(

d
2 − ϵ

)
and consider the leading contribution in ϵ,

I(t)
s1,s2 = 2

ϵ
e±̂ iπ

2 bde∓2iπas1
Γ
(
−d

2

)
csc

(
π
(

d
4 − s1

))
Γ
(
−d

4 − s1
)

Γ
(
s1 − d

4

)
Γ
(
s1 + d

4

)
Γ
(
1 − d

2

)
Γ
(
s1 + 1 − d

4

)
+O(1). (5.2.52)



5.3. Inflationary Correlators in the α-vacua 137

The poles in s1 are

s1 = ±d

4 + n, (5.2.53)

s1 = ±d

4 − n, (5.2.54)

s1 = d− 4
4 − n. (5.2.55)

One can then show that for each possible (±a, ±̂b) the result is given by a simple

expression involving harmonic numbers Hm. For instance,

I(t)
s1,s2

∣∣∣∣
(±a,±̂b)=(1,1)

=
8 csc

(
πd
2

)
d2ϵ

(
eiπdH d

2
+H− d

2

)
, (5.2.56)

and similar for all other (±a, ±̂b) = (±1, ±̂1).

Notice that this is subleading compared to the s-channel contributions15 (5.2.43),

which are O (ϵ−2). Since the contributions from the t-channel, and therefore u-

channel, are subleading to the s-channel contributions, and we are only interested

in the leading correction to the inflationary three-point function, we ignore them in

the following.

5.3 Inflationary Correlators in the α-vacua

Inflationary Two-Point Function. After dividing (4.2.18) by the dS two-point

function (4.1.12) for momentum k2 and plugging in (5.2.10), we obtain the leading

correction to the two-point function of the inflaton perturbation δϕ for general

spacetime dimension d+ 1. We find that

⟨δϕk⃗ δϕ−k⃗⟩(α)
(Infl.) ∼

2d Γ
(

d
2

)2 (
cosh 2α− cos

(
πd
2 + β

)
sinh 2α

)
kd dπϵ

, (5.3.1)

15One could be concerned that this result is inconsistent with permutation symmetry, given
that the de Sitter four-point exchange in the s-, t- and u-channels are related to each other by
permutations of the external legs. However, the squeezed limit k3 → 0 breaks this permutation
symmetry and renders only the resulting t- and u-channel diagrams permutations of each other.
Therefore, the fact that the t- and u-channel diagrams have a different dependence on ϵ than the
s-channel diagram is not inconsistent with permutation symmetry.
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where we relabelled k3 → k. In the Bunch-Davies limit α = β = 0, this agrees with

(3.55) of [75]16. For d = 3 this reduces to the simple form

⟨δϕk⃗ δϕ−k⃗⟩(α)
(Infl.)

∣∣∣∣
d=3

∼ 2 (cosh 2α− sin β sinh 2α)
3 k3ϵ

. (5.3.2)

Inflationary Three-Point Function. After plugging (5.2.43) into the de Sitter

exchange described in section 4.3, we obtain the leading correction to the squeezed

limit of the three-point function of inflaton perturbations δϕ for general spacetime

dimension d+ 1. We find

lim
k3→0

⟨δϕk⃗1
δϕk⃗2

δϕk⃗3
⟩(α)

(Infl.)

∼ −
22d−3Γ

(
d
2

)4 (
cosh 2α− cos

(
πd
2 + β

)
sinh 2α

)2

(k1k3)d dπ2ϵ
, (5.3.3)

where we have divided by the inflationary two-point function (5.3.1) of the soft leg,

k4. Note that the above inflationary three-point function is proportional to a product

of inflationary two-point functions. Namely, we see that

lim
k3→0

⟨δϕk⃗1
δϕk⃗2

δϕk⃗3
⟩(α)

(Infl.) = −dϵ

8 ⟨δϕk⃗1
δϕ−k⃗1

⟩(α)
(Infl.)⟨δϕk⃗3

δϕ−k⃗3
⟩(α)

(Infl.). (5.3.4)

A few comments are in order:

• We note that (5.3.3) is not the full inflationary three-point function, but rather

the contribution to it from the exchange of an inflaton. To obtain the full

three-point function one should also take into account the contribution from

the exchange of a graviton.

• We also note the 1
ϵ

pole in the two- and three-point functions of δϕ. While this

would be expected of the scalar part of the curvature perturbation ζ [117], we

are yet to understand its presence in the correlators of δϕ.

16Or more precisely, it agrees upon setting the spin ℓ = 0, setting ν1 = ν3 = i( d
2 − ϵ) and

expanding in ϵ.
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• The Maldacena consistency condition [45] is a relation between the squeezed

limit of the inflationary three-point function of the scalar part of the curvature

perturbations ζ and a product of inflationary two-point functions, of the form

lim
k3→0

⟨ζk⃗1
ζk⃗2
ζk⃗3

⟩(0)
(Infl.) = −ns⟨ζk⃗1

ζ−k⃗1
⟩(0)

(Infl.)⟨ζk⃗3
ζ−k⃗3

⟩(0)
(Infl.), (5.3.5)

where the proportionality constant ns is called the scalar spectral tilt. In [73], it

was found that the Maldacena consistency condition is not satisfied for vacua

away from the Bunch-Davies vacuum. The consistency condition has been

shown to arise from the conformal Ward identities [116], so its violation would

imply that the α-vacua are inconsistent with conformal symmetry, at odds

with recent progress at the four-point level [118]. We note that while our

result (5.3.4) is reminiscent of the Maldacena consistency condition, it involves

correlators of the inflaton perturbation δϕ rather than those of the curvature

perturbation ζ. However, the two are in principle related simply by a change

of gauge, giving hope that the Maldacena consistency condition could in fact

be satisfied for vacua with α ̸= 0.





Chapter 6

Conclusion

6.1 Summary

In this thesis, based in large part on [1], we developed new techniques for the

computation of late-time boundary correlators in de Sitter space for generic choice of

α-vacuum. Many of our results extend to the more general superset of states known

as the Bogoliubov initial states, by allowing the parameters (α, β) to be appropriate

functions of the momentum as (α, β) → (αk, βk), for each mode of momentum k.

In particular, we showed in chapter 3 that the in-in bulk-to-bulk and bulk-to-

boundary propagators for arbitrary choice of α-vacuum can be re-expressed in terms

of their Bunch-Davies counterparts, via analytic continuation of the bulk time co-

ordinate. We showed that this analytic continuation of the time coordinate can be

traded for an analytic continuation of the boundary momentum, which at the level

of the correlation functions converts the standard total-energy singularity present in

cosmological correlators to the folded singularities characteristic of the α-vacua. By

leveraging recent work on the reformulation of Bunch-Davies correlators in terms of

Witten diagrams in EAdS, we then showed that α-vacuum propagators can be ex-

pressed as combinations of EAdS propagators with analytically continued momenta.

In chapter 4 we studied a number of examples of perturbative correlation functions in

the α-vacua, utilising the tools we developed in chapter 3 to express these correlators
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as EAdS Witten diagrams with analytically continued momenta. We computed

the late-time boundary two-point function, as well as a general formula for contact

diagrams of scalar fields with any mass in arbitrary spacetime dimension d + 1,

and studied the d = 3 case in more detail. In d = 3 we computed the three-point

contact diagram of massless scalars, as well as that of one general scalar and two

conformally coupled scalars. We also computed the OPE limit of the latter, and

commented on the consistency of the α-vacua with this limit. We gave an algorithm

for constructing the four-point exchange diagram of scalars with generic mass, for

generic spacetime dimension, in terms of EAdS exchanges. The full expression is

available in the GitHub file at [87].

Finally, in chapter 5 (based on unpublished work) we extended our results to an

inflationary context. In particular, we computed what we call inflationary EAdS

master formulae - EAdS Witten diagrams with a soft leg and masses related to

the slow-roll parameter, with analytically continued boundary momenta. These

were then inserted into our results for de Sitter diagrams in terms of their EAdS

counterparts to obtain the leading correction to the inflationary two-point function,

and the leading correction to the squeezed limit of the inflationary three-point

function for any choice of α-vacuum and spacetime dimension.

In particular we showed how the three-point de Sitter contact diagram can be used to

derive the correction to the inflationary two-point function of inflaton perturbations

δϕ at leading order in slow-roll using the above procedure. We also computed the

inflationary three-point function in the same way, and found that it is proportional

to a product of inflationary two-point functions.

6.2 Directions for Future Work

There are a number of interesting possible directions for future work that we neglected

to mention in this thesis.
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• Fields with spin. While we focused on scalar field theories, the extension to

spinning fields should be straightforward. Indeed, the perturbative reformu-

lation of late-time correlators in the Bunch-Davies vacuum in terms of their

EAdS counterparts has also been derived for fields of arbitrary integer spin

[75–77] and fermions [82].

• More general initial states. It would be interesting to use the techniques

presented in this work to examine the properties of late-time correlators in

Bogoliubov initial states in more detail and to explore whether they might be

extended to more general states that are not the Bogoliubov transform of the

Bunch-Davies vacuum.

• Celestial correlators. Holographic correlation functions on the celestial

sphere of Minkowski space have recently been defined by considering the Mel-

lin transform of time-ordered Minkowski correlation functions with respect to

the radial direction in the hyperbolic slicing [119, 120]. The effective reduced

vacuum on the de Sitter slicing is the Bunch-Davies vacuum and accordingly

such celestial correlation functions can be re-written in terms of Witten dia-

grams in EAdS, recycling the results [76, 77] for the Bunch-Davies vacuum.

If one instead considers Lorentz (not Poincaré) invariant vacua, the effective

reduced vacua on the de Sitter slicing are α-vacua [121]. It would therefore be

interesting to understand whether celestial correlators in Lorentz (not Poin-

caré) invariant vacua can be studied along similar lines using the results of this

work.

• Holography. In the context of dS/CFT, the bulk α-vacua correspond to a

family of marginal deformations of the putative dual boundary CFT [43, 44].

Additionally, in [44] a definition of holographic CFT correlators was proposed

that corresponds to bulk particle scattering from the de Sitter boundary at past

infinity, I−, to the boundary at future infinity, I+. Late-time de Sitter correlat-

ors in the α-vacua contain singularities for collinear momentum configurations,
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which we showed can be understood as arising from antipodal transformations

of the points from the future to the past boundary via equation (3.2.54). In

light of our results for late-time de Sitter correlators in the α-vacua featuring

points on both boundaries1, it would be interesting to explore connections to

holography along these lines.

1See equations (3.2.64) and (3.2.65) for the bulk-to-bulk and bulk-to-boundary propagators,
explicitly showing the analytic continuations of the time coordinate η → η̄±.



Appendix A

Mellin-Barnes Integrals

In this work we regularly encounter Mellin-Barnes integrals; integrals of the general

form
i∞∫

−i∞

ds

2πig(s), (A.0.1)

where the integrand is in general a ratio of products of Gamma functions,

g(s) = Γ(a1 + A1s)...Γ(an + Ans)Γ(b1 −B1s)...Γ(bn −Bns)
Γ(c1 + C1s)...Γ(cn + Cns)Γ(d1 −D1s)...Γ(dn −Dns)

, (A.0.2)

with Ai, Bi, Ci, Di > 0. As in the standard treatment of Mellin-Barnes integrals,

the contour is from −i∞ to i∞ with suitable indentations to separate sequences of

poles of type Γ (s+ ai) from those of type Γ (−s+ bi). This contour prescription is

well-defined for parameters ai and bi such that poles from Γ-functions of the former

type do not collide with poles from those of the latter type. In the context of QFT

in de Sitter space, this is always the case for Principal Series representations where

∆i = d
2 + iνi, νi ∈ R, and such poles are therefore always separated1. This is not

always the case for the other unitary representations (i.e. the complementary series

representations, see section 2.2.2), where νi is imaginary, which can lead to pinching

of the integration contour. The latter gives rise to singularities which require careful

1A simple illustration is an integrand of the form Γ(s + ∆i)Γ(−s + ∆i). The two sets of poles
overlap if ∆i = −n, which has no solutions for Principal series representations with νi ∈ R.
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regularisation and in some cases also renormalisation2.

An example of pole collision that we encounter in this work is the three-point contact

diagram (4.2.18) with νi = 3i
2 , which in d = 3 corresponds to massless scalar fields.

Taking for the moment d arbitrary, from the Mellin space expression (4.2.13) we

have (following section 3.4 of [74])

AAdS
000 (k1, k2, k3) = − 2

k3
2k

3
3

∫ +i∞

−i∞

ds1

2πi (d− 4(s1 + 1))
(
2s1 − 1

2

)
Γ
(
2s1 − 3

2

)
Γ
(

d
2 − 2s1 − 3

)
×
(1

2k2k3(d− 4s1 − 6) + (k2 + k3)2
)

(k2 + k3)− d
2 +2s1+1 k

−2s1− 3
2

1 , (A.0.3)

where we eliminated the s3 integral using the Dirac delta function arising from (4.2.12)

and the s2 integral by applying Cauchy’s residue theorem. For the remaining s1

integral, the Γ-function poles are

s1 = 3
4 − n

2 , n ∈ Z≥0 (A.0.4)

s1 = d− 6
4 + m

2 , m ∈ Z≥0, (A.0.5)

which are overlapping for d ≤ 9. Keeping d arbitrary, evaluating the s1 integral by

closing the contour to the right one obtains

AAdS
000 (k1, k2, k3) = 1

3k3
1k

3
2k

3
3

[
2k2

1(k2 + k3) + 2k1
(
k2

2 − k2k3 + k2
3

)
+ 2k2k3(k2 + k3)

+4 (k3
1 + k3

2 + k3
3)

d− 3 − 1
3(6γ − 11)

(
k3

1 + k3
2 + k3

3

)
−
(
k3

1 + k3
2 + k3

3

)
(2 log(k1 + k2 + k3) + 1)

]
. (A.0.6)

Note that there is a simple pole for d = 3 which requires renormalisation. This

divergence is local and therefore, in the corresponding dS contact diagram (4.2.23),

can be cancelled in the in-in formalism by adding local counterterms at the future

boundary of dS [109].

Mellin space is also highly useful for deriving various propagator and correlator

identities. For example, equation (3.2.37) is straightforward to derive using the

2See [70, 109, 122–125] for authoritative works on regularisation and renormalisation of mo-
mentum space correlation functions in CFT.
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Mellin space formalism;

G
(0)
W (η1, η̄

+
2 ) ≡ G

(0)
−+(η1, η̄

+
2 )

=
+i∞∫

−i∞

[du]2G(0)
−+(u1, u2)(−η1)−2u1+ d

2 (−e−πiη2)−2u2+ d
2

= e− iπd
2

+i∞∫
−i∞

[du]2e2iπu2G
(0)
−+(u1, u2)(−η1)−2u1+ d

2 (−η2)−2u2+ d
2

= e− iπd
2

+i∞∫
−i∞

[du]2 csc(π(u1 + u2))(α+ω∆+(u1, u2) + β−ω∆−(u1, u2))Γ(iν)Γ(−iν)

× e2iπu2Ω−+
ν,⃗k

(u1, u2)(−η1)−2u1+ d
2 (−η2)−2u2+ d

2

= e− iπd
2

+i∞∫
−i∞

[du]2 csc(π(u1 + u2))(α+ω∆+(u1, u2) + β−ω∆−(u1, u2))Γ(iν)Γ(−iν)

× e−πνΩ−−
ν,⃗k

(u1, u2)(−η1)−2u1+ d
2 (−η2)−2u2+ d

2

= e−iπ( d
2 −iν)

+i∞∫
−i∞

[du]2 csc(π(u1 + u2))(α+ω∆+(u1, u2) + β−ω∆−(u1, u2))

× Γ(iν)Γ(−iν)Ω−−
ν,⃗k

(u1, u2)(−η1)−2u1+ d
2 (−η2)−2u2+ d

2

= e−iπ( d
2 −iν)

+i∞∫
−i∞

[du]2 csc(π(u1 + u2))α+ω∆+(u1, u2)Γ(iν)Γ(−iν)

× Ω−−
ν,⃗k

(u1, u2)(−η1)−2u1+ d
2 (−η2)−2u2+ d

2

+ e−iπ( d
2 −iν)

+i∞∫
−i∞

[du]2 csc(π(u1 + u2))β−ω∆−(u1, u2))Γ(iν)Γ(−iν)

× Ω−−
ν,⃗k

(u1, u2)(−η1)−2u1+ d
2 (−η2)−2u2+ d

2

= e−iπ( d
2 −iν)

+i∞∫
−i∞

[du]2 csc(π(u1 + u2))e2πνα−ω∆+(u1, u2)Γ(iν)Γ(−iν)

× Ω−−
ν,⃗k

(u1, u2)(−η1)−2u1+ d
2 (−η2)−2u2+ d

2

+ e−iπ( d
2 −iν)

+i∞∫
−i∞

[du]2 csc(π(u1 + u2))β−ω∆−(u1, u2))Γ(iν)Γ(−iν)

× Ω−−
ν,⃗k

(u1, u2)(−η1)−2u1+ d
2 (−η2)−2u2+ d

2

= e−iπ( d
2 +iν)

+i∞∫
−i∞

[du]2G(0)
∆+,−−(u1, u2)(−η1)−2u1+ d

2 (−η2)−2u2+ d
2
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+ e−iπ( d
2 −iν)

+i∞∫
−i∞

[du]2G(0)
∆−,−−(u1, u2)(−η1)−2u1+ d

2 (−η2)−2u2+ d
2 ,

(A.0.7)

and so we obtain equation (3.2.37),

G
(0)
W (η1, η̄

+
2 ) = e−iπ∆+G

(0)
∆+,T̄

(η1, η2) + e−iπ∆−G
(0)
∆−,T̄

(η1, η2). (A.0.8)

A.1 Convergence of Mellin-Barnes Integrals

Here we review the convergence of Mellin-Barnes integrals, largely following chapter

2.4 of [126]. We then prove a modified version of Barnes’ first lemma featuring a

phase dependent on the Mellin variable.

We are interested in the behaviour of the integrand of (A.0.1) as |s| −→ ∞. If the

integrand exponentially decays in this limit, then the contour can be closed at infinity

and the unwanted part of the contour will vanish. We begin by parameterising

s = Reiθ, (A.1.1)

and in this parameterisation we are interested in the |s| = R −→ ∞ limit. Using

Stirling’s approximation,

log(Γ(z)) ∼
(
z − 1

2

)
log(z) − z + 1

2 log(2π), −π < arg(z) < π, (A.1.2)

we can look at Gamma functions of the type Γ(α± βs) by writing

log(Γ(α±βReiθ)) ∼
(
α± βReiθ − 1

2

)
log(α±βReiθ)∓βReiθ+(s-independent terms).

(A.1.3)

We see that the approximation of log(Γ(α − βReiθ)) contains a term involving

log(α− βReiθ). Using the Euler reflection formula

Γ(1 − z) = π

sin(πz)Γ(z) , (A.1.4)
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and Stirling’s approximation, we can obtain

log(sin(πz)) = log(π) − log(Γ(z)) − log(Γ(1 − z)) − log(Γ(1 − z))

∼ −
(
z − 1

2

)
log(z) +

(
z − 1

2

)
log(1 − z) + O(1)

=⇒ log(z) ∼ log(1 − z) − 1
z − 1

2
log(sin(πz)), (A.1.5)

and so

log(α−βReiθ) ∼ log(1−α+βReiθ)− 1
α− βReiθ − 1

2
log(sin(π(α−βReiθ))). (A.1.6)

Plugging this into the above, we then have

log(Γ(α− βReiθ)) ∼
(
α− βReiθ − 1

2

)
log(1 − α + βReiθ)

− log(sin(π(α− βReiθ))) + βReiθ, (A.1.7)

where we have dropped the O(1) terms. The series expansion of log(1 − α + βReiθ)

at R = ∞ is given by

log(1 − α + βReiθ) = log(βReiθ) + O
( 1
R

)
, (A.1.8)

and so we can simplify the above to

log(Γ(α− βReiθ)) ∼ − log(sin(π(α− βReiθ)))

+
(
α− βReiθ − 1

2

)
log(βReiθ) + βReiθ. (A.1.9)

Recall also that we had

log(Γ(α + βReiθ)) ∼
(
α + βReiθ − 1

2

)
log(α + βReiθ) − βReiθ. (A.1.10)

We are particularly interested in the behaviour of the modulus of the integrand. We

therefore have

log |Γ(α + βReiθ)| = Re(log(Γ(α + βReiθ)))

= Re
[(
α + βReiθ − 1

2

)
log(α + βReiθ) − βReiθ

]
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= Re
[(
α + βReiθ − 1

2

)
log(α + βReiθ)

]
− βR cos(θ)

= Re
[
α log(α + βReiθ)

]
+ βRRe

[
eiθ log(α + βReiθ)

]
− 1

2Re
[
log(α + βReiθ)

]
− βR cos(θ)

∼ Re
[
α log(βReiθ)

]
+ βRRe

[
eiθ log(βReiθ)

]
− 1

2Re
[
log(βReiθ)

]
− βR cos(θ).

From here we note

Re
[
α log(βReiθ)

]
= Re

[
α log |βReiθ| + i arg(βReiθ)

]
= Re

[
α log |βReiθ|

]
= Re [α log(βR)]

= Re [α] Re [log(βR)] − Im [α] Im [log(βR)]︸ ︷︷ ︸
0

, (A.1.11)

and a similar procedure for the other terms. We then find

log |Γ(α + βReiθ)| ∼
(

Re(α) − 1
2

)
log(βR) − βR(θ sin(θ) + cos(θ))

+ βR cos(θ) log(βR), (A.1.12)

where again we have dropped all O(1) terms. Following exactly the same procedure

we can also obtain

log |Γ(α− βReiθ)| ∼ − βR cos(θ) log(βR) + βR(θ sin(θ) + cos(θ))

+
(

Re(α) − 1
2

)
log(βR) − log | sin(π(α− βReiθ))|.

The log | sin(π(α− βReiθ))| can be manipulated further for large R - in particular

log | sin(π(α− βReiθ))| =: Re
[
log sin(π(α− βReiθ))

]
= Re

[
log

( 1
2i
(
eiπ(α−βReiθ) − e−iπ(α−βReiθ)

))]
= Re

[
log

( 1
2i
(
eiπ(α−βR(cos θ+i sin θ)) − e−iπ(α−βR(cos θ+i sin θ))

))]
.

(A.1.13)

The oscillatory pieces contribute nothing to convergence in the R −→ ∞ limit, and
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so we see that

log | sin(π(α− βReiθ))| ∼


Re

[
log

(
1
2i
eπβR sin(θ)

)]
for sin(θ) > 0

Re
[
log

(
1
2i
eπβR(− sin(θ))

)]
for sin(θ) < 0.

(A.1.14)

Namely,

log | sin(π(α− βReiθ))| ∼ Re
[
log

( 1
2ie

πβR| sin(θ)|
)]
. (A.1.15)

Continuing, we therefore have

log | sin(π(α− βReiθ))| ∼ log
∣∣∣∣ 1
2ie

πβR| sin(θ)|
∣∣∣∣

= log
√1

4e
2πβR| sin(θ)|


= log

∣∣∣∣12eπβR| sin(θ)|
∣∣∣∣

∼ log
∣∣∣eπβR| sin(θ)|

∣∣∣
∼ πβR| sin(θ)|, (A.1.16)

remembering at every step that R −→ ∞. So finally, we have

log |Γ(α− βReiθ)| ∼ − βR cos(θ) log(βR) + βR(θ sin(θ) + cos(θ))

+
(

Re(α) − 1
2

)
log(βR) − πβR| sin(θ)||.

(A.1.17)

Barnes’ First Lemma with a Phase. Barnes’ first lemma is given by

i∞∫
−i∞

ds

2πiΓ(a+ s)Γ(b+ s)Γ(c− s)Γ(d− s)

= Γ(a+ c)Γ(a+ d)Γ(b+ c)Γ(b+ d)
Γ(a+ b+ c+ d) . (A.1.18)

This can be easily verified in Mathematica, and it can also be checked that it holds

regardless of the direction in which we close the contour. This can be seen from the

above formulae, where we find (defining g(s) to be the integrand)

log |g(s)| = Re(log(g(s)))

= log |Γ(a+ s)| + log |Γ(b+ s))| + log |Γ(c− s))| + log |Γ(c− s))| . (A.1.19)
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Using the formulae (A.1.12) and (A.1.17), we see that

log |g(s)| = −2πR| sin(θ)| + log(R)[Re(a+ b+ c+ d) − 2], (A.1.20)

as R −→ ∞ where s = Reiθ. Thus, the integrand exponentially decays regardless of

the direction we close the contour;

|g(s)| ∼ e−2πR| sin(θ)|elog(R)[Re(a+b+c+d)−2]

= e−2πR| sin(θ)|RRe(a+b+c+d)−2. (A.1.21)

In this work, a modified version of the above integral appears in the computation

of the inflationary three-point function, which is similar to that which appears in

Barnes’ lemma but with an additional phase factor. Namely, (5.2.19) is an integral

of the form

I±
2 =

i∞∫
−i∞

ds

2πiΓ(a+ s)Γ(b+ s)Γ(c− s)Γ(d− s)e±2iπs, (A.1.22)

where we will define

f
(2)
± (s) := Γ(a+ s)Γ(b+ s)Γ(c− s)Γ(d− s)e±2iπs. (A.1.23)

We now follow the above procedure to determine in which direction we should close

the contour. We have

log |f (2)
± (s)| = Re(log(f±(s))) (A.1.24)

= log |Γ(a+ s)| + log |Γ(b+ s))| + log |Γ(c− s))| + log |Γ(c− s))| + log |e±2iπs|.

The log |e±2πis2| is given by

log
∣∣∣e±2πis2

∣∣∣ = log
√
e±2πis2e∓2πis∗

2

= log
(
e±iπ(s2−s∗

2)
)

= ±iπ(s2 − s∗
2)

= ∓2πR sin(θ), (A.1.25)
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where in the last line we set s2 = Reiθ. This then gives

log |f (2)
± (s)| = Re(log(f±(s)))

= log |Γ(a+ s)| + log |Γ(b+ s))| + log |Γ(c− s))|

+ log |Γ(c− s))| ∓ 2πR sin(θ). (A.1.26)

Plugging in (A.1.12) & (A.1.17) we find

log |f (2)
± (s)| ∼ −2πR| sin(θ)| + log(R)[Re(a+ b+ c+ d) − 2] ∓ 2πR sin(θ). (A.1.27)

Therefore, for each of f (2)
± the modulus of the integrand is given by

|f (2)
+ (s)| ∼ e−2πR| sin(θ)|RRe(a+b+c+d)−2e−2πR sin(θ), (A.1.28)

and

|f (2)
− (s)| ∼ e−2πR| sin(θ)|RRe(a+b+c+d)−2e+2πR sin(θ). (A.1.29)

We now consider the behaviour of each integrand separately as we close the contour

to the right and to the left.

First consider f (2)
+ (s). For sin(θ) > 0, we see that |f (2)

+ (s)| exponentially decays and

the unwanted part of the contour will vanish for R −→ ∞. For sin(θ) < 0, the

exponential factors will cancel and the asymptotic behaviour is given by

|f (2)
− (s)| ∼ RRe(a+b+c+d)−2. (A.1.30)

This decays as R −→ ∞ if we insist on the restriction Re(a+ b+ c+ d) ≤ 1. This

condition can then be relaxed by analytic continuation. We therefore find that I+
2

can be computed by closing the contour to either side.

Now consider f (2)
− (s). For sin(θ) > 0, we see that the exponential factors cancel

and we have the same situation as for sin(θ) < 0 in the |f (2)
+ (s)| case. I.e, for the

integrand to decay and the unwanted part of the contour to vanish we again require

Re(a+ b+ c+ d)
!

≤ 1. For sin(θ) < 0, the modulus of the exponentially decays and

the unwanted part of the contour will vanish for R −→ ∞. We therefore find that
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I−
2 can be computed by closing the contour to either side, provided we insist on the

restriction Re(a+ b+ c+ d) ≤ 1.

With the above contour prescription these two integrals are then easily computed in

Mathematica, and are indeed seen to be a modification of Barnes’ First Lemma,

I±
2 = ± 1

2i
(
e±iπ(−a+b+c+d) + e±iπ(a−b+c+d) − e∓iπ(a+b−c+d) − e∓iπ(a+b+c−d)

)
× csc(π(a+ b+ c+ d))Γ(a+ c)Γ(a+ d)Γ(b+ c)Γ(b+ d)

Γ(a+ b+ c+ d) .
(A.1.31)
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Trivialisation of η integrals

Here we prove1 the simple identity;

0∫
−∞

dη(−η)s−1 = 2πiδ(s), (B.0.1)

for s ∈ C which can be trivially extended to the cases that appear in this work. This

integral appears in the calculation of correlation functions in both dS and EAdS

when we go to Mellin space in the boundary directions, trivialising the integrals

over the radial coordinate and producing a Dirac delta function that constrains the

Mellin variables. Here we give the proof in the setting of dS and an integral over

the time coordinate η, but the analogous identity can be proven for EAdS and the

radial coordinate z.

We begin by defining

ϕ(s) :=
0∫

−∞

dη(−η)s−1, (B.0.2)

and integrating this against a test function f : C → C, which we take to be

holomorphic (ie, without poles) everywhere. Namely, we aim to evaluate

I[f ] :=
∫
C

ds

2πif(s)ϕ(s), (B.0.3)

where C is some arbitrary contour that we will find to be restricted. We first send

1I am grateful to Rudolfs Treilis for bringing this elementary proof to my attention.
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η → −η, and then split up the integral ϕ(s) using a regulator a;

I[f ] =
∫
C

ds

2πif(s)
0∫

−∞

dη(−η)s−1

=
∫
C

ds

2πif(s)
∞∫

0

dη ηs−1

=
∫
C

ds

2πif(s)
 a∫

0

dη ηs−1 +
∞∫

a

dη ηs−1

 . (B.0.4)

Considering the first η integral, we have
a∫

0

dη ηs−1 = as

s
, Re(s) !

> 0, (B.0.5)

where the requirement on s comes from insisting on convergence of the integral. For

the second η integral, we have
∞∫

a

dη ηs−1 = −as

s
, Re(s) !

< 0, (B.0.6)

where again the requirement on s comes from insisting on convergence of the integral.

These requirements on s then restrict the contour C for each s integral;

I[f ] =
∫

C1,Re(s)<0

ds

2πif(s)a
s

s
−

∫
C2,Re(s)>0

ds

2πif(s)a
s

s
, (B.0.7)

where both integrands have a pole at s = 0 and C1 and C2 are indicated in figure

B.1. These contours can then be deformed into a single contour that encloses the

pole at s = 0; see figure B.1.
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Figure B.1: Contours C1 and C2 for the integrals contributing to
I[f ], which can be deformed into a single contour C3
that encloses the pole at s = 0.

Deforming the contours into C3 we can then write

I[f ] =
∫

C1,Re(s)<0

ds

2πif(s)a
s

s
−

∫
C2,Re(s)>0

ds

2πif(s)a
s

s

=
∫
C3

ds

2πif(s)a
s

s

= Res
(
f(s)a

s

s
, s = 0

)
= f(0). (B.0.8)

Therefore, we find that ∫
C

ds

2πif(s)ϕ(s) = f(0), (B.0.9)

and so we identify

ϕ(s) :=
0∫

−∞

dη(−η)s−1 = 2πiδ(s). (B.0.10)

□





Appendix C

Ward Identities & Boundary

Correlators

Here we give an overview of Ward identities for scalar operators. Let ϕ(x) → ϕ′(x) =

ϕ(x) + δϕ(x) be a classical global symmetry of a scalar field theory. To investigate

this symmetry at the quantum level, we transform the path integral as

∫
DϕeiS[ϕ] −→

∫
Dϕ′eiS[ϕ′]+

∫
ddx∂µjµ(x), (C.0.1)

where jµ(x) is the Noether current associated with the symmetry (the action is al-

lowed to transform up to a total derivative term under the symmetry transformation).

Using S[ϕ′] = S[ϕ] for a classical symmetry, we therefore have

∫
DϕeiS[ϕ] −→

∫
Dϕ′eiS[ϕ]+

∫
ddx∂µjµ(x)

=
∫

Dϕ′eiS[ϕ]
(

1 +
∫
ddx∂µj

µ(x) + ...
)

=
∫

Dϕ′eiS[ϕ] +
∫

Dϕ′
(∫

ddx∂µj
µ(x)

)
eiS[ϕ] + ...

=
∫

Dϕ′eiS[ϕ] +
〈∫

ddx∂µj
µ(x)

〉
+ .... (C.0.2)

Therefore, for the symmetry to hold at the quantum level (to leading order in

perturbation theory at least), we need the path integral measure to be invariant and
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we also require that

⟨∂µj
µ(x)⟩ != 0. (C.0.3)

Equation (C.0.3) is an example of a Ward identity - a condition that a correlation

function must satisfy in order for a transformation (in this case ϕ → ϕ+ δϕ) to be

a symmetry at the quantum level.

C.1 Dilatation Ward Identity

In this thesis we are most concerned with conformal symmetry. One relevant Ward

identity is therefore that for dilatations xi → λxi acting on three-point correlators

of primary operators in momentum space. To derive the dilatation Ward identity,

we begin by acting on the coordinates in the correlator with a dilatation and taking

the Fourier transform, namely

⟨O1(λx1)O2(λx2)O3(λx3)⟩ =
∫ ddk1

(2π)d

ddk2

(2π)d

ddk3

(2π)d
⟨O1(k1)O2(k2)O3(k3)⟩eiλ(k1·x1+k2·x2+k3·x3)

=
∫ ddk1

(2π)d

ddk2

(2π)d

ddk3

(2π)d
⟨O1(k1)O2(k2)O3(k3)⟩eiλ(k1·x1+k2·x2+k3·x3)

× δd(k1 + k2 + k3)

=
∫ ddk1

(2π)d

ddk2

(2π)d
⟨O1(k1)O2(k2)O3(k3)⟩′eiλ(k1·x1+k2·x2−(k1+k2)·x3),

(C.1.1)

where we have used that imposing translation and rotation invariance of the correlator

implies that it is a function of the magnitudes of the momenta ki ≡ |ki| and that it

is proportional to a momentum-conserving delta function. We have also defined

⟨O1(k1)O2(k2)O3(k3)⟩′ ≡ ⟨O1(k1)O2(k2)O3(−(k1 + k2))⟩. (C.1.2)

Continuing, we have

⟨O1(λx1)O2(λx2)O3(λx3)⟩ =
∫ ddk1

(2π)d

ddk2

(2π)d
⟨O1(k1)O2(k2)O3(k3)⟩′eiλ(k1·x1+k2·x2−(k1+k2)·x3)

= 1
λ2d

∫ ddk′
1

(2π)d

ddk′
2

(2π)d

〈
O1

(
k′

1
λ

)
O2

(
k′

2
λ

)
O3

(
k′

3
λ

)〉′
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× ei(k′
1·x1+k′

2·x2−(k′
1+k′

2)·x3), (C.1.3)

where we have changed variables to k′
i ≡ λki. Using that Oj(xj) → λ−∆j Oj(xj)

under a dilatation, we want the above to be equal to

⟨O1(λx1)O2(λx2)O3(λx3)⟩ = λ−∆⟨O1(x1)O2(x2)O3(x3)⟩, (C.1.4)

where we have defined ∆ :=
3∑

i=1
∆i. We therefore have

⟨O1(λx1)O2(λx2)O3(λx3)⟩ = λ−∆⟨O1(x1)O2(x2)O3(x3)⟩

= λ−∆
∫ ddk1

(2π)d

ddk2

(2π)d
⟨O1(k1)O2(k2)O3(k3)⟩′

× eiλ(k1·x1+k2·x2−(k1+k2)·x3).

Comparing (C.1.3) to (C.1.5), we see that

λ−∆⟨O1(k1)O2(k2)O3(k3)⟩′ = 1
λ2d

〈
O1

(
k1

λ

)
O2

(
k2

λ

)
O3

(
k3

λ

)〉′

⇐⇒ λ2d−∆⟨O1(k1)O2(k2)O3(k3)⟩′ =
〈

O1

(
k1

λ

)
O2

(
k2

λ

)
O3

(
k3

λ

)〉′

, (C.1.5)

where we have relabelled the integration variable k′
i → ki. Setting 1

λ
= (1 + ϵ) for ϵ

small, we obtain

(1 + ϵ)−(2d−∆)⟨O1(k1)O2(k2)O3(k3)⟩′ = ⟨O1 (k1 + ϵk1) O2 (k2 + ϵk2) O3 (k3 + ϵk3)⟩′

=
(

1 + ϵ
3∑

i=1
ki

∂

∂ki

)
⟨O1(k1)O2(k2)O3(k3)⟩′

(C.1.6)

where we have performed a Taylor expansion to O(ϵ) on the right-hand-side to get

from the first to the second line. Using that

1
(1 + ϵ)2d−∆ = 1 − (2d− ∆)ϵ+ O(ϵ2), (C.1.7)

we can obtain (
2d− ∆ +

3∑
i=1

ki
∂

∂ki

)
⟨O1(k1)O2(k2)O3(k3)⟩′ = 0. (C.1.8)
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Defining

Di := −(∆i − d) + ki
∂

∂ki

, (C.1.9)

we obtain the dilatation ward identity,(
−d+

3∑
i=1

Di

)
⟨O1(k1)O2(k2)O3(k3)⟩′ = 0. (C.1.10)

C.2 Boundary Correlators & Mellin Space

C.2.1 Bulk Perspective

In section 3.2 we saw that the propagators for late-time correlators in a generic

α vacuum could be re-written in terms of the corresponding propagators in the

Bunch-Davies vacuum (α = 0) with appropriate rotations of the time coordinate.

These rotations of the time coordinate could be traded for corresponding rotations

of the modulus of the boundary momenta. Since in Mellin space the dependence

on the modulus of the boundary momentum enters as a power, with the exponent

given by the corresponding Mellin variable (see equation (3.2.52)), the Mellin space

representation of propagators for generic α-vacuum are given by those in the Bunch-

Davies vacuum appropriately dressed by phases in the Mellin variables.

In particular, from the identities (3.2.64) and (3.2.65) it follows that propagators in

a generic α vacuum take the following form in Mellin space:

G
(α)
++(u1, k;u2, k) =

[
P+

∆+
+ e−2νπP−

∆+
e2(u1+u2)πi

]
G

(0)
∆+,++(u1, k;u2, k) + (∆+ → ∆−),

G
(α)
−−(u1, k;u2, k) =

[
M−

∆+
+ e2νπM+

∆+
e−2(u1+u2)πi

]
G

(0)
∆+,−−(u1, k;u2, k) + (∆+ → ∆−),

G
(α)
−+(u1, k;u2, k) =

[
cosh2 α + sinh2 α e−2(u1−u2)πi

−1
2 sinh 2α e+νπ

(
eiβ e2u2πi + e−iβ e−2u1πi

)]
G

(0)
∆+,−+(u1, k;u2, k)

+ (∆+ → ∆−),

G
(α)
+−(u1, k;u2, k) =

[
cosh2 α + sinh2 α e2(u1−u2)πi

−1
2 sinh 2α e−νπ(eiβ e−2u2πi + e−iβ e2u1πi)

]
G

(0)
∆+,+−(u1, k;u2, k)
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+ (∆+ → ∆−), (C.2.1)

and

K
(α)
∆, + (s, k) =

[
P+

∆ + P−
∆ e

−νπe2sπi
]
K

(0)
∆, + (s, k) , (C.2.2a)

K
(α)
∆, − (s, k) =

[
M−

∆ +M+
∆e

νπe−2sπi
]
K

(0)
∆, − (s, k) . (C.2.2b)

The upshot is that in Mellin space, perturbative late-time correlators in a generic α

vacuum are given by the Mellin space representation of the corresponding process

in the Bunch-Davies vacuum, dressed by phases in the Mellin variables. Owing to

the Dirac delta function (3.1.36) enforcing invariance under dilatations, such phases

moreover can be expressed purely in terms of Mellin variables associated to external

legs.

For example, in Mellin space the three-point contact diagram (4.2.19) in a generic

α-vacuum is given by

(α)AV123
∆1∆2∆3

(s1, k1; s2, k2; s3, k3) = i

( 3∏
i=1

cdS-AdS
∆i

(−η0)∆i

)∑
±
e∓ iπ

4 (d+2i(ν1+ν2+ν3))

×
{

(0)C±
∆1∆2∆3

+ sinh(2α)(α)C±
∆1∆2∆3

(
e±2s1πi + e±2s2πi + e±2s3πi

)}
× AAdS

∆1∆2∆3 (s1, k1; s2, k2; s3, k3) , (C.2.3)

where (0)C±
∆1∆2∆3

and (α)C±
∆1∆2∆3

were defined in (4.2.20).

C.2.2 Boundary Perspective

The structure of late-time correlators in a generic α-vacuum in Mellin space can

also be understood from a boundary perspective, following (and building on) section

3.1 of [77]. The (EA)dS isometry group acts on the boundary like the Euclidean

conformal group, and boundary correlators in these spaces are therefore constrained

by conformal Ward identities. Here, we review the implications of such conformal

Ward identities in Mellin space, focusing for simplicity on three-point functions.
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In addition to translations and rotations, the conformal group is generated by dilata-

tions and special conformal transformations. In momentum space, the dilatation

generator is given by (C.1.9), while the special conformal generator reads

Kki
= 2 (∆ − d) ∂ki

− 2kj∂kj
∂ki

+ ki∂2
kj
. (C.2.4)

As we saw above, translation and rotation symmetry enforce that three-point func-

tions are proportional to a momentum-conserving delta function, whose coefficient

is given by a function of the magnitudes ki = |⃗ki| of the boundary momenta,

F∆1∆2∆3

(
k⃗1, k⃗2, k⃗3

)
= (2π)d δ(d)

(
k⃗1 + k⃗2 + k⃗3

)
F ′

∆1∆2∆3 (k1, k2, k3) , (C.2.5)

where F∆1∆2∆3 is a momentum space three-point function of operators with scaling

dimension ∆i.

To solve the Ward identities associated to dilatations and special conformal trans-

formations we can go to Mellin space, where the three-point conformal structure

becomes [75]

F ′
∆1∆2∆3 (k1, k2, k3) =

∫ +i∞

−i∞
[ds]3 F∆1∆2∆3 (s1, s2, s3)

3∏
i=1

(
ki

2

)−2si+iνi

, (C.2.6)

and F∆1∆2∆3 (s1, s2, s3) is the Mellin transform of F ′
∆1∆2∆3 (k1, k2, k3). As we derived

in the previous section, the dilatation Ward identity is given by

0 =
(

−d+
3∑

i=1
Dj

)
F ′

∆1∆2∆3 (k1, k2, k3) , (C.2.7)

which in Mellin space translates into

0 =
∫ +i∞

−i∞
[ds]3

(
d
2 − 2 (s1 + s2 + s3)

)
F∆1∆2∆3 (s1, s2, s3)

3∏
i=1

(
ki

2

)−2si+iνi

. (C.2.8)

This implies that F∆1∆2∆3 (s1, s2, s3) takes the form:

F∆1∆2∆3 (s1, s2, s3) = 2πi δ
(

d
4 − s1 − s2 − s3

)
F ′

∆1∆2∆3 (s1, s2, s3) , (C.2.9)

which is the Mellin space analogue of momentum conservation (C.2.5) implied by

translation invariance.
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The Ward identity associated to special conformal transformations is given by( 3∏
i=1

Kj
ki

)
F ′

∆1∆2∆3 (k1, k2, k3) = 0. (C.2.10)

In [70] this was solved by reducing the Ward identity to two independent scalar

equations;

0 =
[(

∂2

∂k2
1

+ d+ 1 − 2∆1

k1

∂

∂k1

)
−
(
∂2

∂k2
3

+ d+ 1 − 2∆3

k3

∂

∂k3

)]
F ′

∆1 ∆2 ∆3 (k1, k2, k3) ,

(C.2.11a)

0 =
[(

∂2

∂k2
2

+ d+ 1 − 2∆2

k2

∂

∂k2

)
−
(
∂2

∂k2
3

+ d+ 1 − 2∆3

k3

∂

∂k3

)]
F ′

∆1 ∆2 ∆3 (k1, k2, k3) ,

(C.2.11b)

which is achieved by taking k⃗1 and k⃗2 to be independent momenta. Going to Mellin

space by plugging in (C.2.6), these translate into a system of difference equations,

(
s1 − 1 + 1

2

(
d
2 − ∆1

)) (
s1 − 1 − 1

2

(
d
2 − ∆1

))
F ′

∆1∆2∆3 (s1 − 1, s2, s3)

=
(
s3 − 1 + 1

2

(
d
2 − ∆3

)) (
s3 − 1 − 1

2

(
d
2 − ∆3

))
F ′

∆1∆2∆3 (s1, s2, s3 − 1) , (C.2.12)

(
s2 − 1 + 1

2

(
d
2 − ∆2

)) (
s2 − 1 − 1

2

(
d
2 − ∆2

))
F ′

∆1∆2∆3 (s1, s2 − 1, s3)

=
(
s3 − 1 + 1

2

(
d
2 − ∆3

)) (
s3 − 1 − 1

2

(
d
2 − ∆3

))
F ′

∆1∆2∆3 (s1, s2, s3 − 1) , (C.2.13)

which are solved by [77]

F ′
∆1∆2∆3 (s1, s2, s3) = p∆1∆2∆3 (s1, s2, s3)

×
3∏

i=1
Γ
(
si + 1

2

(
d
2 − ∆i

))
Γ
(
si − 1

2

(
d
2 − ∆i

))
, (C.2.14)

with p∆1∆2∆3 (s1, s2, s3) a periodic function of unit period in the Mellin variables1.

This a priori arbitrary function is further constrained by the requirement that the

Mellin integrals converge. Different choices for p∆1∆2∆3 (s1, s2, s3) yield different

solutions to the system of difference equations, of which there are four in total, since

1See chapter 4.4 of [126] for a detailed discussion of the application of the Mellin transform to
the solution of differential equations.
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we ultimately seek solutions to two second order differential equations (C.2.11).

The solution with no folded singularities is p∆1∆2∆3 (s1, s2, s3) = constant, which

corresponds to the conformal structure accounting for boundary correlators in EAdS

and in the Bunch-Davies vacuum of dS. This is the Mellin space representation

of the “triple-K” integral solution [70] to the conformal Ward identities, given by

(4.2.9) with n = 3. It is therefore manifest that in Mellin space the other solutions

to the conformal Ward identities are given by dressings of this solution by phases of

unit period in the Mellin variables, as in the expression (C.2.3) for late-time three-

point functions in the α-vacua. In Mellin space, multiplication of the Bunch-Davies

solution by phases in the Mellin variables corresponds, in momentum space, to a

flipping of the boundary momenta k → e±iπk. A dressing of the Bunch-Davies

solution by phases, namely the function p∆1∆2∆3 (s1, s2, s3) being given by a phase in

the Mellin variables of the form e±2iπsj , therefore indeed results in folded singularities.

For instance,

F ′
∆1∆2∆3 (k1, k2, k3) =

∫ +i∞

−i∞
[ds]3 F ′

∆1∆2∆3 (s1, s2, s3)
3∏

i=1

(
ki

2

)−2si+iνi

−→
∫ +i∞

−i∞
[ds]3e±2iπs3F ′

∆1∆2∆3 (s1, s2, s3)
3∏

i=1

(
ki

2

)−2si+iνi

= e∓πν3
∫ +i∞

−i∞
[ds]3F ′

∆1∆2∆3 (s1, s2, s3)
(
e∓iπk3

2

)−2s3+iν3 2∏
i=1

(
ki

2

)−2si+iνi

= e∓πν3F ′
∆1∆2∆3

(
k1, k2, e

∓iπk3
)
. (C.2.15)
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