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Abstract: Neutrinos permeate the Universe, possessing energies from the meV

scale all the way up to EeVs, and potentially beyond. The abundance and variety

of these neutrino fluxes makes them excellent candidates for experimentally probing

the fundamental nature and behaviour of neutrinos.

In this thesis, we will assess how neutrinos produced in two very different astrophys-

ical environments can be used for this purpose.

We will begin by looking at how the pseudo-Dirac scenario for neutrino masses would

impact the observations of Solar neutrinos at the future JUNO experiment. It will

be shown that these effects can be sizeable, and used to constrain the parameter

space of this scenario.

Our focus will then shift to point sources of neutrinos at the IceCube experiment.

We will model the effects of interactions between these high energy neutrinos, and

the relic neutrinos left over from the early Universe. Using public experimental

data, we will then place constraints on both the density of relic neutrinos, and the

parameters of a new, scalar mediated, interaction between neutrinos.
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Preface

Neutrinos are notoriously elusive. They interact so weakly with other particles that

they are able to travel over cosmic distances, even through the Earth, without trouble.

However, these unique properties also make neutrinos extremely interesting probes

of the Universe. Astrophysical fluxes of neutrinos, produced in some of the most

extreme conditions in the Universe, provide us with a new window into the processes

from which they originate. For example Solar neutrinos, produced in the core of

the Sun in thermonuclear processes, are able to propagate from their production

point all the way to Earth. This is in contrast to the photons produced by the same

category of processes, which interact strongly with the plasma in the Sun. Neutrinos

are thus a unique probe of the interior of the Sun.

As much as neutrinos are useful for understanding astrophysics, the inverse is also

true. Astrophysical neutrino fluxes have properties which would be impossible to

recreate on Earth. Of particular importance to this thesis are the range of energies

which they can possess, as well as the large distances they travel before being detected.

This allows for scrutiny of the exact nature and behaviour of neutrinos themselves.

In fact, it was the study of Solar neutrinos which eventually lead to the discovery of

neutrino oscillations and thus neutrino masses.

In this thesis we will discuss how two astrophysical fluxes of neutrinos can provide us

with insights into the fundamental nature and behaviour of neutrinos. In Chapter 1

we will cover the Standard Model of particle physics, in particular those aspects

most relevant to the study of neutrinos. We will then introduce the possible ways

that neutrinos may be given masses in Chapter 2. In Chapter 3 we will investigate
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how Solar neutrinos can be used to investigate the pseudo-Dirac neutrino scenario,

focussing on the JUNO experiment in particular. Chapter 4 will instead look at

high energy neutrinos at the IceCube experiment, originating from point sources,

and determine the constraints on two scenarios - overabundance of relic neutrinos,

and scalar mediated non-standard interactions between neutrinos. The thesis will

then be summarised in Chapter 5, and future progress in this field discussed.



Chapter 1

Neutrinos in the Standard Model

The Standard Model (SM) of particle physics consists of fundamental particles and

their transformations under chosen symmetries; in particular how they transform

under the Lorentz group SO+(1, 3), which is the symmetry group of special relativity,

and the gauge group SU(2)L × U(1)Y × SU(3)c. The SM is an example of a quantum

field theory (QFT), and as such all of the information that defines the theory is

encoded in a Lagrangian density function L (from this point on, we will just use

the term "Lagrangian" to refer to a Lagrangian density function). The action of the

QFT is

S[{φi }] ≡
∫

dx4 L({φi }) , (1.0.1)

where by the set {φi } we refer to the field content of the theory. Throughout this

chapter, we will demand that our Lagrangian is hermitian (L† = L), as well as

invariant under transformations of the symmetries of the theory. Unless otherwise

stated, we will also demand the Lagrangian be renormalisable.

Since the focus of this thesis will be on neutrinos, we will begin by building a picture

of spin-half particles (fermions) in the Lagrangian formulation. We will then discuss

local/gauge symmetries, before finally defining the SM. The implications of the SM

in relation to neutrinos, particularly of their interactions, will also be discussed.
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1.1 Fermions

Fermions are constructed from anti-commuting Weyl spinors. These are fields which

transform in either the (1/2, 0) (left-handed) or (0, 1/2) (right-handed) representa-

tions of the group SL(2,C), which is the double copy of the Lorentz symmetry group

SO+(1, 3). These two representations are interchanged by hermitian conjugation.

As a matter of convention, we will introduce spinor fields as left-handed by default

and refer to their right-handed counterparts via hermitian conjugation.

We will write left-handed spinors with lowered greek letter indices, e.g. ψα. A spinor

that transforms in the dual of this representation will instead have raised indices ψα.

The indices are raised or lowered by the two-index antisymmetric epsilon symbols,

εαβ and εαβ respectively, [1], whose non-zero elements are

ε12 = −ε21 = ε21 = −ε12 = 1 .

For right-handed spinors we instead use dotted indices, to distinguish the represent-

ations. We define

ψ†
α̇ ≡ (ψα)† , ψ†α̇ ≡ (ψα)† (1.1.1)

and

εα̇β̇ ≡ (εαβ)∗ , εα̇β̇ ≡ (εαβ)∗ . (1.1.2)

Under a general Lorentz transformation, a left-handed spinor field transforms as [1]:

ψα → Mα
βψβ , (1.1.3)

ψα → [(M−1)T ]αβψ
β , (1.1.4)

where M ∈ SL(2,C) is a Lorentz transformation in the left-handed representation.

We can write this matrix as

M = exp
[
−1

2iθµνJ
µν
]
, (1.1.5)

where θµν are real numbers and Jµν are the generators of the Lorentz algebra in this

representation.
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The transformations of the right-handed counterpart, f †
α̇ ≡ (fα)†, can be found from

the hermitian conjugate of the transformations of fα:

f †
α̇ → (M∗)α̇

β̇f †
β̇
, (1.1.6)

f †α̇ → [(M−1)†]α̇β̇f
†β̇ . (1.1.7)

From these transformation properties, we can see that Lorentz scalars can be con-

structed by contracting spinors with the same handedness. We will write these using

the shorthand notation

ψχ ≡ ψαχα and ψ†χ† ≡ ψ†
α̇χ

†α̇ .

To construct additional Lorentz scalar terms for our Lagrangian, we need to be able

to combine spinors into Lorentz tensors. Lorentz vectors can be built by introducing

the sigma matrices, σµ and σ̄µ, which are given by [1], [2]:

(σ0)αβ̇ =

 1 0

0 1

 = (σ̄0)α̇β , (σ1)αβ̇ =

 0 1

1 0

 = −(σ̄1)α̇β ,

(σ2)αβ̇ =

 0 −i

i 0

 = −(σ̄2)α̇β , (σ3)αβ̇ =

 1 0

0 −1

 = −(σ̄3)α̇β .

We can now construct the Lorentz vectors by combining spinors with undotted and

dotted indices, i.e. of opposite handedness. To produce Lorentz scalars, we can

contract them with other Lorentz vectors. The simplest choice of Lorentz vector is

the partial derivate ∂µ. Contracting this results in derivative terms that make the

spinors dynamical.

Before we begin to construct a Lagrangian for the fermions, we need to specify the

symmetries of the fermions beyond Lorentz invariance. The simplest case, which we

will begin with, is fermions without any additional symmetries.
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1.1.1 Neutral Fermions

We refer to fermions that only transform under the representations of the Lorentz

group as being neutral 1. In the simple case of a theory with a single neutral fermion,

the complete Lagrangian is [1][3]2

L = iψ†σ̄µ∂µψ − m

2 (ψψ + ψ†ψ†). (1.1.8)

From this Lagrangian, the equations of motion (eom) of ψ and ψ† are

iσ̄µ∂µψ − m

2 ψ
† = 0 , (1.1.9)

iσ̄µ∂µψ
† − m

2 ψ = 0 . (1.1.10)

Fermions that obey this set of coupled differential equations are called Majorana

fermions. We will refer to a Lagrangian of the form Eq. (1.1.8) as a Majorana

Lagrangian.

From Eq. (1.1.8) and Eq. (1.1.9), we can see that the terms which contract spinors

of the same handedness result in the fermion being massive. In general, we will call

these mass terms. We will specifically refer to mass terms of neutral fermions as

Majorana mass terms, or just Majorana masses.

1.1.2 Fermions With Global Symmetries

If we impose additional global symmetries onto our fermions, the Majorana mass

terms previously introduced will not be invariant under those symmetries. If we

take the simplest case of an additional U(1) symmetry, we define the action of an

element of this group to transform the left-handed spinor as

ψα → e−iθ ψα , (1.1.11)

1Sometimes, when there are other symmetries in the theory, we will refer to neutral fermions as
singlets.

2The integral of this Lagrangian density is hermitian only if the integral of the total derivative
term ∂µ

(
f†σ̄µψ

)
vanishes, with appropriate boundary conditions[3].
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where θ ∈ R.

The transformation of the right-handed spinor can then be found from hermitian

conjugation to be

ψ†
α̇ → e+iθ ψ†

α̇ . (1.1.12)

The mass terms will thus transform as

ψψ → e−2iθ ψψ and ψ†ψ† → e+2iθ ψ†ψ† . (1.1.13)

Since our Lagrangian must be invariant under the symmetries of the theory, we are

left with just the derivative term

L = iψ†σ̄µ∂µψ, . (1.1.14)

The eom from this Lagrangian are the Weyl equations

iσ̄µ∂µψ = 0 , (1.1.15)

iσ̄µ∂µψ
† = 0 , (1.1.16)

which define the dynamics of charged, massless fermions. We will refer to these

types of fermions as Weyl fermions, and the Lagrangian Eq. (1.1.14) as the Weyl

Lagrangian.

A single spinor field can thus only have charge or mass, but not both at the same

time. However we see in nature that charged particles, such as the electron, are

massive. To reconcile this, we have to introduce an additional spinor field. This

field, which we will call ψ̂, transforms under the global symmetry in the opposite

way to ψ

ψ̂ → e+iθ ψ̂ . (1.1.17)

With the addition of this new field, and its hermitian conjugate, it is now pos-

sible to construct terms which are invariant under the global transformations. The

Lagrangian of this new theory is given by

L = iψ†σ̄µ∂µψ + iψ̂†σ̄µ∂µψ̂ −mψψ̂ −mψ†ψ̂† . (1.1.18)
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The hermitian conjugate of ψ̂ is right-handed, but transforms under the global

transformations in the same way as ψ. We make this point clearer by defining

ψ̄ ≡ ψ̂†. The relationships between the different spinor fields are shown in Fig. 1.1.

Using this notation, we write the Dirac Lagrangian

L = iψ†σ̄µ∂µψ + iψ̄σ̄µ∂µψ̂ −mψψ̂ −mψ†ψ̄ , (1.1.19)

from which the eom are found to be

iσ̄µ∂µψ −mψ̄ = 0 , (1.1.20)

iσ̄µ∂µψ̄ −mψ = 0 , (1.1.21)

iσ̄µ∂µψ̂ −mψ† = 0 , (1.1.22)

iσ̄µ∂µψ
† −mψ̂ = 0 . (1.1.23)

These eom couple left- and right-handed spinors with the same charge. We can write

them more compactly by introducing a bi-spinor, also known as a Dirac spinor,

Ψα
α̇ ≡

ψα

ψ̄α̇

 . (1.1.24)

We can rewrite the eom in this notation to find the Dirac equation,

(−iγµ∂µ +m)Ψ = 0 , (1.1.25)

where we define the Dirac gamma matrices as

γµ ≡

 0 σµ

σ̄µ 0

 . (1.1.26)

Note that the upper right submatrix is σµ, rather than σ̄µ, due to the order of the

spinors changing compared to Eq. (1.1.19).

We can also rewrite the Dirac Lagrangian in this form

L = Ψ̄(iγµ∂µ −m)Ψ , (1.1.27)
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f f̂

P

f̄ C f †

Figure 1.1: The charged, left-handed 2-spinor field f , and its part-
ners under conjugation f †, charge conjugation, Cf = f̂ ,
and parity flipping, Pf = f̄ .

where the Dirac conjugate Ψ̄ is given by Ψ†∆, and

∆ ≡

 0 δα̇
β̇

δα
β 0

 . (1.1.28)

The fact that we have to contract Ψ with the Dirac conjugate field Ψ̄ 3, rather

than just the Hermitian conjugate Ψ†, is due to the non-unitarity of the Dirac

representation of the group of Lorentz transformations. Explicitly, Ψ† =
(
f † f̂

)
,

whereas in Eq. (1.1.27) we have on the left
(
f̂ f †

)
= Ψ†∆ .

We can also express the Majorana Lagrangian, Eq. (1.1.8), in the same formalism

with the identification f ≡ f̂ ⇐⇒ f † ≡ f̄ . This is also true for the Weyl Lagrangian,

which is just the massless limit of Eq. (1.1.27). However writing it this way obfuscates

the fact the in the massless limit the fields f and f̄ are completely independent from

each other. In fact, there is no need for both fields to exist in a theory simultaneously,

which is not true for the massive case.
3It is common to see the Dirac conjugate written as Ψ̄ = Ψ†γ0. In terms of their numerical

values, γ0 and ∆ are the same, however they have very different spinor index structure [1]
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1.1.3 Fermions with Local Symmetries

A transformation is local if its action depends on spacetime. To achieve this for a

U(1) symmetry, we promote the parameter θ → θ(x), where x is a point in spacetime.

A fermion that is charged under this group will transform as

ψ → e−iθ(x) ψ . (1.1.29)

If a local transformation leaves the Lagrangian invariant it is a local symmetry, or a

gauge symmetry, of the theory.

The mass terms ψψ̂ are invariant under these transformations by construction, so

it is sufficient to look at the Weyl Lagrangian only. With a fermion transforming

under a U(1) gauge the Weyl Lagrangian transforms as:

LWeyl = ψ†σ̄µ∂µψ → eiθ(x)ψ†σ̄µ∂µ

(
e−iθ(x)ψ

)
= eiθ(x)ψ†σ̄µe−iθ(x)

(
−i(∂µθ(x))ψ + ∂µψ

)
= ψ†σ̄µ∂µψ − iψ†σ̄µ

(
∂µθ(x)

)
ψ ,

(1.1.30)

which is clearly not gauge invariant. To resolve this, we need to add an additional

field to the Lagrangian, which transforms in the adjoint representation of the gauge

symmetry in the following way:

Aµ → U(x)
(
Aµ − 1

g
∂µ

)
U †(x) , (1.1.31)

where U(x) is the gauge transformation and g is the coupling constant of the group,

which governs the overall strength of the local transformations. As indicated by the

indices, this field also transforms as a Lorentz vector. If we promote the partial

derivative in our Lagrangian to a covariant derivative, i.e.

∂µ → Dµ ≡ ∂µ − igAµ , (1.1.32)
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then the Lagrangian will be gauge invariant, as the extra terms with derivatives of

θ(x) will cancel out. The field Aµ is referred to as a gauge boson. Though we have

only looked at the case of a U(1) gauge symmetry, the exact same argument holds

for any other local Lie group action, the difference being in the definition of Aµ.

Since the transformations will be of the form U(x) = exp (−iθa(x)Ta), where Ta are

the generators of the Lie group, we define the gauge boson as Aµ = Aa
µTa. This field

is clearly in the Lie algebra of the symmetry group, hence why it transforms in the

adjoint representation under gauge transformations.

If we expand our gauge invariant Weyl Lagrangian, we find we also have a term

which couples the spinor fields with the gauge boson fields:

ψ†σ̄µDµψ = ψ†σ̄µ∂µψ − igψ†σ̄µAµψ . (1.1.33)

This term leads to interactions between fermions and gauge fields, which in turn

allows fermions to interact with each other via an intermediate gauge boson.

1.2 Gauge Bosons

From a gauge field Aµ = Aa
µTa, it is possible to construct a Lorentz tensor which

transforms in the adjoint representation of the symmetry, thus allowing for quadratic

terms to define the dynamics of the field. This tensor is the field strength of the

gauge field. In component form it is given by

F a
µν ≡ ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , (1.2.1)

where the structure coefficients fabs are defined by the commutation relations of the

Lie group
[
T a, T b

]
= ifabcT c. The component form is equivalently written as
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Fµν ≡ ∂µAν − ∂νAν − ig[Aµ, Aν ] (1.2.2)

≡ F a
µνTa (1.2.3)

By including this term in the Lagrangian:

LG = F a
µνF

µν
a = 1

2 tr
[
FµνF

µν
]
, (1.2.4)

we find quadratic derivative terms of the gauge fields. This results in the gauge field

becoming dynamical, with the components satisfying the Klein-Gordon equation [3]:

(
∂2 +m2

)
Aµ = 0 (1.2.5)

with m2 ≡ 0 since there are no quadratic terms in Eq. (1.2.4). If we were to try and

add massive terms to the Lagrangian, they would be proportional to AµA
µ, which

would not be gauge invariant. The gauge bosons, which appear from demanding

gauge invariance of the Lagrangian, must then be massless.

1.3 The Standard Model Lagrangian

The SM is made up of various fields which transform in representations of the

previously mentioned symmetries. The Lorentz symmetries categorise the fields into

scalar (spin 0) and vector (spin 1) bosons, and spin 1/2 fermions. The vector bosons

arise from the local gauge symmetries, as described in Section 1.1.3, and transform

in their adjoint representations. Fermions are the matter constituents of the SM,

and transform in the fundamental representations of the gauge groups. Finally, the

SM contains one scalar boson field, referred to as the Higgs field. This field couples

to the chiral SU(2)L gauge field, and plays an important role in the generation of
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Field U(1)Y SU(2)L SU(3)c
Li −1 2 1
êi +2 1 1
Qi +1/3 2 3
ûi −4/3 1 3
d̂i +2/3 1 3
H +1 2 1

Table 1.1: Hyper-charges and representations of the SM fields under
the gauge groups U(1)Y, SU(2)L, and SU(3)c.

particle masses which is shown in Section 1.4. The representations of the fermions

and the Higgs field are shown in Table 1.1.

All of this information is written in terms of a Lagrangian density formulation, which

can be roughly separated into pieces pertaining to the pure gauge/Yang-Mills (LG)

sector, the kinematic terms of the fermions (LK), the Yukawa interactions of the

Higgs (LY), and the Higgs Lagrangian (LH).

Fermions appear in the SM Lagrangian in two places, the first of which is the "kinetic"

Lagrangian

LK =L†
i σ̄

µDµLi + ēiσ̄
µDµêi

+Q†
i σ̄

µDµQi + ūiσ̄
µDµûi + d̄iσ̄

µDµd̂i ,

(1.3.1)

where the fields correspond to those in Table 1.1. The action of the covariant

derivative on a field depends on the groups under which the field transforms. For

example, for Qi,

DµQi =
(
∂µ − ig1

QY

2 Bµ − ig2Wµ − ig3Gµ

)
Qi , (1.3.2)

where Bµ, Wµ, and Gµ are the gauge boson fields of the U(1)Y, SU(2)L, and SU(3)c

groups, respectively. The couplings g1, g2, g3 are assigned in the same manner.

The field strengths of the gauge bosons are denoted using the same letter as the

field, but with two Lorentz indices, and have the following pure gauge/Yang-Mills

Lagrangian:
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LG = −1
2 tr

[
GµνG

µν
]

− 1
2 tr

[
WµνW

µν
]

− 1
2BµνB

µν . (1.3.3)

The Higgs field transforms under both U(1)Y and SU(2)L transformations. Its Lag-

rangian is given by:

LH =
(
DµH

)† (
DµH

)
+ V (H) , (1.3.4)

where

DµH = (∂µ − i
g1

2 Bµ − ig2Wµ)H ,

and V (H) is the potential of the Higgs field, which will be expanded in Section 1.4.

In addition to this Lagrangian, it is also possible to create terms with fermions and

the Higgs - these are Yukawa interactions and have the following form:

LY =
∑
i,j

[
λ

(l)
ij L

†
iHēj + λ

(u)
ij Q

†
iĤūj + λ

(d)
ij Q

†
iHd̄j

]
+ h.c , (1.3.5)

where the sum is over the three different families of fermion species. The coupling

strengths of the interactions are given by λ(f)
ij , which are in general complex numbers.

The conjugate of the Higgs field is Ĥ = iτ2H
∗, which transforms as a SU(2)L doublet

but with opposite hypercharge. The matrices τi = σi/2 the generators of SU(2)L,

such that their commutator is given by
[
τi, τj

]
= iεijkτk. We refrain from using the

sigma matrices in this context to make clear that the τ matrices are acting on the

SU(2)L doublet representation, rather than on the spinors.
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1.4 Electroweak Spontaneous Symmetry

Breaking

All of the SM fermions are massless Weyl fermions, however we know from experi-

mental observation that all electrically charged fermions (we will talk about neutrinos

in the next section) have mass [4]. The SM resolves this via a process known as

Spontaneous Symmetry Breaking (SSB).

The potential in the Higgs Lagrangian Eq. (1.3.4) is chosen to have the form

V (H) = −µ2H†H + λ

2 (H†H)2 , (1.4.1)

where λ > 0. If we have µ2 > 0, this potential has a minimum when H†H = µ2/2λ.

In order to reduce the potential energy of the Higgs field, the vacuum must be a

particular value of H which satisfies this constraint, thus giving the field a vacuum

expectation value (vev) 〈H〉 = µ/
√

2λ. We will choose to write the vacuum state of

the Higgs field, H0, in the unitary gauge, such that

H0 = 1√
2

0

v

 . (1.4.2)

If we then look at what happens to the interaction terms between the Higgs field

and the leptonic fields:

λijL
†
iH0ēj = λij√

2

(
ν†

i e†
i

)0

v

 ēj = λijv√
2
e†

i ēj (1.4.3)

we find that they have exactly the form we expect of a mass term, where in this case

m = λijv/
√

2. However, we also see that unless λij ≡ δij, which a priori we have

no reason to assume, the flavour states are not mass eigenstates. This fact results

in flavour mixing, which will be discussed in more detail in Chapter 2. The Higgs
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vev also gives mass to the up and down type quarks. However, it does not give

the neutrinos mass because there is no term in the Lagrangian which couples the

neutrino to the Higgs vev. More concretely, there is no SU(2)L singlet with which to

form mass terms. We will explore possible scenarios for generating neutrino masses

in Chapter 2.

We know that the Higgs field transforms under the U(1)Y and SU(2)L gauge symmet-

ries. If we look at the vacuum state we can see that it is no longer invariant under

the group action of the symmetries of the Higgs field. Specifically, the generators of

SU(2)L act on H0 in the following way:

τ1H0 = 1
2
√

2

v
0

 , τ2H0 = 1
2
√

2

−iv

0

 , τ3H0 = 1
2
√

2

 0

−v

 .

Furthermore, the vacuum is also not invariant under U(1)Y transformations. The

only generators that leave the Higgs vacuum unchanged are thus the identity matrix,

and τ3 up to constant factors. If we look at the combination (I + τ3)/2, the resulting

matrix has only upper left components, and so will leave the vacuum Higgs field

unchanged. We are then left with a Lie algebra with only one generator, which is

isomorphic to u(1). Hence the original gauge symmetry of the SM is broken from

SU(2)L × U(1)Y to U(1)em [3][5][6]. This breaking occurs in the vacuum i.e. it is not

a dynamical process, hence why it is referred to as spontaneous symmetry breaking.

Returning to the kinetic terms of the Higgs Lagrangian, if we substitute in the

vacuum field of the Higgs:

(
DµH0

)† (
DµH0

)
=
∣∣∣(∂µ − ig1Bµ − ig2Wµ

)
H0

∣∣∣2
= v2

8

[
g2

2

∣∣∣W 1
µ

∣∣∣2 + g2
2

∣∣∣W 2
µ

∣∣∣2 +
∣∣∣g1Bµ − g2W

3
µ

∣∣∣2] (1.4.4)

where |.|2 implies hermitian conjugation and Lorentz contraction. In the above form,

it is clear that after SSB we have new vector fields which are formed from mixtures

of the old gauge bosons. If we relabel them in the following way[6]:
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W∓
µ = W 1

µ ± iW 2
µ√

2
and Zµ = cos θWW

3
µ − sin θWBµ , (1.4.5)

where

cos θW = g2√
g2

1 + g2
2

and sin θW = g1√
g2

1 + g2
2

, (1.4.6)

then Eq. (1.4.4) can be rewritten such that:

(
DµH0

)† (
DµH0

)
= m2

WW
+
µ W

−µ + m2
Z

2 ZµZ
µ , (1.4.7)

where we have defined the masses

m2
W = g2

2v
2

4 and m2
Z =

(
g2

1 + g2
2

)
v2

4 . (1.4.8)

This tells us that we now have three massive vector bosons in our theory. There is

one other possible combination of gauge bosons which is missing from Eq. (1.4.7),

which is Aµ = cos θWW
3
µ + sin θWBµ. Its exclusion from the mass generation above

implies it is massless. In fact, as previously stated, we have a remnant gauge sym-

metry U(1)em, and this massless boson is exactly the gauge boson of that symmetry.

If we now rewrite the covariant derivative for the left-handed leptons Li in terms of

the new field definitions:

DµLi =
[
∂µ − i

g2√
2
(
W+

µ τ
+ +W−

µ τ
−
)

− i
1√

g2
1 + g2

2

Zµ

(
g2τ3 − g1

QY

2

)

− i
g1g2√
g2

1 + g2
2

Aµ

(
τ3 + QY

2

) ]
Li

(1.4.9)

If we identify the new U(1)em charge and gauge coupling as
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Qem = τ3 + QY

2 and e = g1g2√
g2

1 + g2
2

, (1.4.10)

respectively, then the interaction terms become:

−i g2√
2
(
W+

µ τ
+ +W−

µ τ
−
)

− i
g2

cos θW
Zµ

(
τ3 − sin2 θWQem

)
− ieAµQem . (1.4.11)

1.5 Lepton Interactions

If we apply the EM charge operator to the left-handed weak doublet, we find that:

QemLi =

0 0

0 −1

Li (1.5.1)

from which we identify the upper component, which is neutral, with a neutrino, and

the lower component, which has charge −1, with the electron. By expanding the

kinetic terms in Eq. (1.3.1) in terms of the components, we find non-gauged inter-

action terms. We denote interactions involving the W± fields as Charged Current

(CC) interactions, as the W bosons carry EM charge, and those involving the Z field

as Neutral Current (NC) interactions. The interaction terms are as follows:

LCC = ie√
2 sin θW

(
W+

µ ν
†
l σ̄

µel +W−
µ e

†
l σ̄

µνl

)
(1.5.2)

LNC = ieZµ

cos θW sin θW

(1
2ν

†
l σ̄

µνl − 1
2e

†
l σ̄

µel + sin2 θW

(
e†

l σ̄
µel + ēlσ̄

µêl

))
(1.5.3)

where the subscript l denotes the flavour eigenstates of the CC interactions. From

these Lagrangians, and those governing the kinematics of the fields, we can derive

the usual Feynman rules and calculate scattering amplitudes.
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For interactions with energies much less than the mass of the W and Z bosons, it

is possible to integrate out these fields (see, for example, [3] Chapters 29 and 88).

This reduces the fields from being dynamic to static, which is valid in the regime

where their energies are much lower than their masses. The effective Lagrangian

that results from this process is given by [3]:

Leff = 2
√

2GF

(
Jµ

+J−µ + Jµ
ZJZµ

)
, (1.5.4)

where we have defined for brevity the currents:

Jµ
+ ≡ e†

l σ̄
µνl (1.5.5)

Jµ
− ≡ ν†

l σ̄
µel (1.5.6)

Jµ
Z ≡ Jµ

3 + sin2 θWJ
µ
em (1.5.7)

Jµ
3 ≡ 1

2
(
ν†σ̄µνl − e†

l σ̄
µel

)
(1.5.8)

Jµ
em ≡ sin2 θW

(
e†

l σ̄
µel + ēlσ̄

µêl

)
. (1.5.9)

The coupling constant of the effective interaction is the Fermi constant, GF , and is

defined as:

GF ≡ e2

4
√

2 sin2 θWM
2
W

. (1.5.10)

The effective interaction Lagrangian is an example of an effective field theory (EFT).

It is non-renormalisable, as can be deduced from the fact that the Fermi constant

has mass dimension [GF ] = −2. We can use this Lagrangian to evaluate the tree

level Feynman diagrams of low energy interactions which are of interest to us.





Chapter 2

Massive Neutrinos

In the SM treatment, neutrinos are massless particles. We may be tempted to couple

the neutrinos to the Higgs field as we did with the other fermions. However this

requires the introduction of a new particle which does not transform under SU(2)L,

for each flavour of neutrino that we wish to give mass. The Lagrangian term for this

coupling is identical to that of the up quarks:

Lν
y =

∑
i,j

λν
ijL

†
iĤν̄j + h.c. (2.0.1)

the new fields are ν̂i, and its hermitian conjugate ν̄i. These new fields are singlets

under the gauge symmetries of the SM, as they do not transform under SU(2)L and

have QY = 0, so they do not interact with the gauge fields. This means that we can

also add a Majorana mass term for ν̄ in our Lagrangian. The relevant terms are

now[7]:

Lν
mass = −

∑
i,j

λν
ijL

†
iĤν̄j − 1

2
∑

i

mij ν̄iν̄j + h.c. , (2.0.2)

after EWSSB, Eq. (2.0.2) becomes:
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Lν
mass = −

∑
i,j

λν
ijv√
2
ν†

i ν̄j − 1
2
∑

i

mij ν̄iν̄j + h.c. (2.0.3)

we can identify from the first term of this equation a mass matrix in flavour space

(MD)ij =
(
λijv

)
/
√

2. Looking at the structure of the Lagrangian in Eq. (2.0.3), we

find both Dirac mass terms (ν†
i ν̄i) and Majorana terms (ν̄iν̄j). If we use the fact

that ν†
i ν̄j = ν̄jν

†
i we can write Eq. (2.0.3) in a clearer form:

Lν
mass = −1

2

(
ν† ν̄

) 0 MD

(MD)T m


ν†

ν̄

+ h.c. , (2.0.4)

where the fields into vectors such that
(
ν†
)

i
= ν†

i , and similarly for ν̄. We can use

the fact that ν̄iν̄j = ν̄j ν̄i to constrain m to be a symmetric complex matrix. As a

matrix equation, the fact that the Lagrangian contains mixed Dirac and Majorana

mass terms is clearer. In order to find the physical states of the fields, i.e. the mass

eigenstates, we need to diagonalise the matrix in the above equation. In order to do

so, and to understand the implications of the mixed mass terms, we will take certain

limits of the scale of the different mass matrices.

2.1 Dirac neutrinos

In the limit of |m| = 0, the neutrino mass terms are identical to those of Dirac

neutrinos (see Eq. (1.1.19)). The full neutrino Lagrangian is then:

Lν = ν†
i σ̄

µ∂µνi + ν̄iσ̄
µ∂µν̂i −Miν

†
i ν̄i −Miνiν̂i

+ ie√
2 sin θW

(
W+

µ ν
†
l σ̄

µel +W−
µ e

†
l σ̄

µνl

)
+ ie

2 cos θW sin θW
Zµν

†
l σ̄

µνl ,
(2.1.1)

where el are the charged leptons, and sums over indices (and flavour states) are

implicit. We differentiate between the neutrino mass eigenstates and interaction

(flavour) eigenstates by their indices, which are i for the former and l for the latter.
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The masses Mi are taken to be the real, positive square roots of the eigenvalues

of M †
DMD. We find these by diagonalising the mass matrix using a bi-unitary

transformation.

For a general N × N complex matrix M̃ , we can construct two hermitian positive

semi-definite matrices by multiplying it with its hermitian conjugate from the left

and right:

(
M̃M̃ †

)†
= M̃M̃ † and

(
M̃ †M̃

)†
= M̃ †M̃ . (2.1.2)

These matrices will thus have real and positive eigenvalues. With unitary matrices

U and V defined by the following:

U †M̃M̃ †U = M2 and V †M̃ †M̃V = M2 (2.1.3)

from which we can see that

M = U †M̃V or equivalently M̃ = UMV † , (2.1.4)

where Mij = Miδij. We can then rewrite the Dirac mass term in the following way

(focussing on the right handed spinors in order to match convention):

M̃ll
′ν†

l ν̄l
′ = UliMij

(
V †
)

jl
′ ν

†
l ν̄l

′ = Mijν
†
i ν̄j . (2.1.5)

Since the ν̄ fields do not participate in weak interactions, we are free to redefine them

such that Vliν̄i → ν̄i, thus removing V from the theory. We can also identify from

the above that νl = (U)li νi and after applying the same procedure to the charged

leptons, the charged current interaction term becomes:
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W−
µ e

†
l σ̄

µνl =
(
U †

e

)
il

(Uν)lj W
−
µ e

†
i σ̄

µνj , (2.1.6)

where we have differentiated between the mixing matrices for neutrinos and charged

leptons, Uν and Ue respectively. We identify the mass eigenstates of the charged

leptons with those observed experimentally, i.e. {ei | i ∈ {1, 2, 3}} ≡ {e, µ, τ}. From

the above, we can identify the mixing matrix between neutrino and charged lepton

mass states - the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix:

UPMNS = U †
eUν . (2.1.7)

It is customary to construct flavour eigenstates for the neutrinos using UPMNS. Often,

the charged lepton mass states are indexed by Greek letters, e.g. α ∈ {e, µ, τ}, thus:

να = (UPMNS)αi νi . (2.1.8)

Since the neutral current (Z-exchange) interactions term contains both ν† and ν,

the choice of field definition is not important as the matrices are all unitary, and so

no mass state mixing occurs.

2.2 Mixed Majorana and Dirac Mass Terms with

One Generation

In order to build a qualitative picture of the effect of mixed mass terms, it is useful

to simplify the problem further. If we have only one species of fermion, the flavour

vectors - ν†, ν̄, and so on - return to being two-component spinors, and the mass

matrices - m and MD - become real and complex numbers respectively. Investig-

ating this scenario allows for analytical expressions which highlight the qualitative
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properties of the physics with different mass limits.

The mass term in this case becomes:

Lν
mass = −1

2

(
ν† ν̄

) 0 MD

MD m


ν

†

ν̄

+ h.c. . (2.2.1)

Since the mass matrix is complex symmetric, Takagi diagonalisation can be used to

produce real and positive diagonal elements [8][1]. This results in the following:

M =

 0 MD

MD m

 = U

m1 0

0 m2

UT , (2.2.2)

where U is a unitary matrix and m1 ,m2 > 0.

There are two interesting limits of the values of m which produce drastically different

physics. These are the See-Saw and Pseudo-Dirac limits, the latter of which will be

discussed in further detail in Chapter 3.

2.2.1 See-Saw limit

The first simplifying limit we will look at is the case where m � |MD|. If we rewrite

MD = eiθ εm, with real parameters θ and ε, then for small ε we have the following:

m1 = mε2 +O(ε3) and m2 = m(1 + ε2) +O(ε3) . (2.2.3)

Truncating these to linear order in the mass ratio ε, we find that

m1 = |MD|2

m
and m2 = m. (2.2.4)

This limit thus results in two mass states, one heavy and one light. This See-Saw
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scenario is often seen as a possible explanation for the extremely small neutrino

masses observed experimentally[9], [10].

2.2.2 Pseudo-Dirac limit

It is also interesting to look at the inverse limit, where |MD| � m. This is the

pseudo-Dirac scenario [10]–[15]. In this case, the values of the masses are [9]

m1,2 = |MD| ∓ m

2 = |MD|
(

1 ∓ 1
2

m

|MD|

)
. (2.2.5)

To linear order in ε ≡ m/ |MD|, the unitary diagonalisation matrix is found to have

the form

U =

 cos θ sin θ

− sin θ cos θ


eiφ 0

0 1

 , (2.2.6)

where φ is a real phase and the mixing angle θ is given by

tan θ = 1 − 4ε
1 + 4ε . (2.2.7)

Clearly, as ε → 0, the mixing of the neutrinos become maximal (θ = π/4).

Since the difference in the masses between pseudo-Dirac pairs are so small, it can

be extremely difficult to distinguish experimentally between true Dirac and pseudo-

Dirac scenarios. In Chapter 3, we will investigate a possible experimental analysis

for probing this scenario.
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2.3 Majorana Neutrinos

There is an alternative possibility where active neutrinos can have mass, but no

Yukawa coupling. If we view the low energy regime of the SM, after EWSSB, as a

theory in its own right, we can view the neutrino as a Majorana particle since it is

neutral under both of the remaining gauge symmetries. From this perspective, we

could expect the neutrino to have a Majorana mass term,

L ⊃ −ML

2 νiνi + h.c. . (2.3.1)

However, there is no way to introduce this term in the SM Lagrangian before EWSSB

without breaking either gauge invariance or renormalisability. The SM has been

tested to an excellent degree of precision in experiments, and so we can be confident

that is a good theory to explain the phenomenology available at, for example, collider

experiments. On the other hand, all particle physics experiments have some upper

limit on the energy scale at which they can probe the theory. As such, the SM is

often viewed as an EFT which emerges from some higher scale theory. This is the

same idea as with the low energy SM theory that arises after EWSSB. This means

we can add non-renormalisable terms to our Lagrangian, so long as they obey the

gauge invariance of the SM. This is identical to the four-Fermi interaction theory

outlined in Section 1.5, which was proposed to explain leptonic interactions before

the SM as we know it was identified.

Returning to the neutrino mass, we introduce the following non-renormalisable term

to our Lagrangian[16]

L5 = −Cij
5
Λ
(
εabHaLib

) (
εcdHcLjd

)
+ h.c. , (2.3.2)

where we have reintroduced the SU(2)L indices a, b, c, d to form an inner product

between the Higgs and leptonic fields using εab. Λ is the scale of the new physics

where the SM is no longer a valid EFT, and Cij
5 are the Wilson coefficients for these
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terms. The subscript refers to the fact that the combination of H and Li has mass

dimension five. The scale Λ reduces the mass scale of the whole term to four which

we expect for our Lagrangian density.

After EWSSB, this term reduces to

L5 = −C5

Λ
v2

2 νiνi + h.c. , (2.3.3)

where we have neglected terms containing the Higgs boson as we are interested

only on the neutrino mass term. Since the Higgs vev v/
√

2 is O(100 GeV), and

Λ � O(1 TeV) to ensure the SM is a good EFT at collider experiments, we can

expect the Majorana mass

ML = C5v
2

2Λ , (2.3.4)

to be very small, which aligns with experimental observations. This EFT treatment

allows us to remain agnostic of the true UV theory of the Universe and instead

parametrise the observable effect at lower energies.

In the previous sections which focussed on mixed Dirac-Majorana mass terms, we

could have also included this effective Majorana mass to be more general. However,

the qualitative outcomes of the different limits remain the same when ML is chosen

appropriately and so we will not revisit these scenarios.

2.3.1 Majorana vs Dirac Neutrinos

It is important to compare between neutrinos which gain mass through Yukawa

couplings (Dirac neutrinos) and those which gain their mass from the dimension

five operator (Majorana neutrinos). In particular, we may be interested in how the

nature of neutrinos could be elucidated in experiments. If we perform diagonalisation

of the Majorana neutrino masses we can find the mixing matrix which maps between
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the interaction and mass bases. The mixing matrix in the Majorana scenario differs

from the Dirac one only by a diagonal matrix containing arbitrary phases[17]:

UMajorana = UDirac diag(1, eiφ1 , eiφ2) . (2.3.5)

In general, these phases are difficult to measure. Oscillation experiments are not

sensitive to these phases, as the observables depend only on the magnitude of the

mixing matrix elements. As such, we will safely ignore them in the next section.

Perhaps the most evident difference between these two scenarios is their respective

degrees of freedom. Recall that in the Dirac scenario it was necessary to introduce

a new field ν̂, in order to form Dirac mass terms. This is not so in the Majorana

scenario, and in fact we can make the identifications ν ≡ ν̂ and ν̄ ≡ ν† as Majorana

fields are charge neutral by definition. So, in the Dirac scenario each generation of

neutrino has four degrees of freedom, corresponding to left and right-handed states

of the neutrino and anti-neutrino, whereas in the Majorana scenario there are only

two degrees of freedom. One potentially measurable effect of this is in the detection

of the relic neutrinos left over from the early Universe. This will be expanded upon

in Chapter 4.

There is currently a large experimental effort to determine whether neutrinos are

Majorana or Dirac fermions, by observing the presence or lack of neutrinoless double

beta decay[18]–[22]. This process, where two nuclei undergo beta decay simultan-

eously but producing only electrons, is only possible if neutrinos behave as Majorana

fields at low energies [23]. We will not focus on these experiments in the rest of this

work, and only highlight the efforts here.

2.4 Oscillations

A well known, and experimentally observed [24], consequence of flavour mixing in the

neutrino sector is neutrino oscillations. In this section we will analyse the pure Dirac
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case, where there are only three non-degenerate masses. The standard derivation

begins with a neutrino with flavour α and three momentum p, which is created in

a charged current weak interaction involving a charged lepton eα. As explained in

Section 2.1, we can relate the flavour states to the mass states using the PMNS

matrix:

|να〉 =
∑

k

(UPMNS)∗
αk |νk〉 . (2.4.1)

The mass states are eigenstates of the Hamiltonian of the free neutrinos, i.e. neutri-

nos in a vacuum will evolve in term in their mass states. The states are thus defined

by:

H |νk〉 = Ek |νk〉 , (2.4.2)

where Ek =
√

|p|2 +m2
k. The Schrödinger equation,

i
d

dt
|νk(t)〉 = H |νk(t)〉 , (2.4.3)

is solved by plane-wave solutions:

|νk(t)〉 = e−iEkt |νk〉 . (2.4.4)

Thus, the flavour states evolve as:

|να(t)〉 =
∑

k

U∗
αk e−iEkt |νk〉 , (2.4.5)

such that |να(0)〉 = |να〉, where we have switched to U ≡ UPMNS for brevity. Using

the fact that UPMNS is a unitary matrix, we can also express mass states as linear
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combinations of flavour states, i.e.

|νk〉 =
∑

α

Uαk |να〉 . (2.4.6)

Substituting this into Eq. (2.4.5), we find that for t > 0 the neutrino is actually a

superposition of flavour states:

|να(t)〉 =
∑

β

∑
k

U∗
αk e−iEkt Uβk |νβ〉 . (2.4.7)

We can then define the transition amplitude between the initial flavour state α and

another flavour state β at some time t:

Aαβ(t) ≡ 〈νβ|να(t)〉 =
∑

k

U∗
αkUβk e−iEkt , (2.4.8)

where we have used the orthonormal condition on the flavour states 〈να|νβ〉 = δαβ.

From this amplitude we can find the probability of measuring a neutrino in the β

flavour state (by observing a charged eβ lepton) after time t:

Pαβ(t) =
∣∣∣Aαβ(t)

∣∣∣2 =
∑
k,j

U∗
αkUβkUαjU

∗
βj exp(−i(Ek − Ej)t) . (2.4.9)

For ultrarelativistic neutrinos, the dispersion relation can be approximated by

Ek ≈ E + m2
k

2E , (2.4.10)

where E ≡ |p|. Thus the energy difference in the probability is approximately

Ek − Ej ≈ m2
k −m2

j

2E ≡ ∆m2
kj

2E . (2.4.11)
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Since ultrarelativistic neutrinos propagate at (close to) the speed of light we can

make another approximation, which is to equate time and propagation distance

t = L. This is more convenient as often in oscillation experiments the distance of

propagation is known well. The final, most general form of the oscillation probability

is:

Pαβ(L) =
∣∣∣Aαβ(L)

∣∣∣2 =
∑
k,j

U∗
αkUβkUαjU

∗
βj exp

(
−i∆m

2
kjL

2E

)
. (2.4.12)

From this, we can find the survival probability, Ps, defined as the probability of

detecting a neutrino in the same flavour state as it was originally produced in. This

has a fairly simple form[17]:

Ps ≡ Pαα(L) = 1 − 4
∑
k>j

|Uαk|2
∣∣∣Uαj

∣∣∣2 sin2
(

∆m2
kjL

4E

)
. (2.4.13)

This also defines a disappearance probability, Pd ≡ 1 − Ps ≡ ∑
β 6=α Pαβ.

Three flavour oscillations have been confirmed experimentally, and measured over a

range of sources and energies. The PMNS matrix is parametrised by four real num-

bers - the mixing angles, θ12,θ13, and θ23, as well as one phase (assuming neutrinos

are Dirac) δCP:

UPMNS =


c12c13 s12c13 s13 e−iδCP

−s12c23 − c12s23s13 eiδCP −c12c23 − s12s23s13 eiδCP s23c13

s12s23 − c12c23s13 eiδCP −c12s23 − s12c23s13 eiδCP c23c13

 (2.4.14)

where sab ≡ sin θab and cab ≡ cos θab.

A useful quantity when studying neutrino oscillations is the oscillation length, defined

as [17]

Losc(E,∆m2) ≡ 4πE
∆m2 . (2.4.15)
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This is the distance at which the phase generated by ∆m2 is equal to 2π. It can be

used to calculate the scale over which the oscillations occur.

2.4.1 Wave Packets and Decoherence

Whilst the previous, quantum mechanical, treatment is not the most rigorous, it has

been shown to agree with more complicated QFT calculations [17]. However, there

is one qualitative feature of a more formal treatment which is not present in the

previous treatment. This is the phenomenon of decoherence.

In the previous calculations, the neutrino wave-functions were treated as plane waves.

However this treatment cannot account for the fact that the production and detection

of a neutrino are localised events. The solution to this problem is to introduce wave

packets [17], which are constructed from superpositions of plane waves. They are

usually treated as Gaussian envelopes with uncertainties in energy, position, time,

and momentum. Oscillations only occur if the wave packets for the different mass

states overlap.

Since the mass states have distinct mass, their wave packets will have different group

velocities. If the distance between the production and detection of these neutrinos

is large enough, the wave packets for each mass state will separate until they have

exponentially small overlap. At this point, the neutrino oscillations no longer occur

and the measured flavour ratio will be given purely by the mixing matrix [17][25].

This effect is what we will refer to as decoherence.

Decoherence will be important when we focus on Solar neutrinos, particularly in

Chapter 3. We will not specify the value of the uncertainties of the wave packet,

due to the difficulty in their calculation and measurement, and instead rely only on

the qualitative effects of decoherence.
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2.5 Neutrino Oscillations in Matter

Due to their weak interactions, neutrinos are able to travel through matter back-

grounds over large distances without deflections. However, coherent forward elastic

interactions, which leave the background and neutrino unchanged (i.e. no flavour

changing or change in momentum) cannot be ignored. These interactions induce

potentials in the Hamiltonian of the propagating neutrinos, affecting their evolution.

We will focus on low temperature matter such that the only background fermions

we need to consider are electrons, protons, and neutrons. The only charged current

interaction which would have identical initial and final states would be between

neutrinos and electrons. The effective Hamiltonian for this process is[17]:

H CC
eff (x) = 4

√
2GF

[
ν†

e(x)σ̄µe(x)
] [
e†(x)σ̄µνe(x)

]
. (2.5.1)

Anticommuting spinors obey the following Fierz identity[1]:

(
z†

1σ̄
µz2

) (
z†

3σ̄µz4

)
= 2

(
z†

1z
†
3

)
(z2z4) =

(
z†

1σ̄
µz4

) (
z†

3σ̄µz1

)
, (2.5.2)

where the final equality is derived from the fact that z2z4 = z4z2. Performing the

Fierz transformation on the CC interaction allows us to separate the neutrino and

electron currents:

H CC
eff (x) = 4

√
2GF

[
ν†

e(x)σ̄µνe(x)
] [
e†(x)σ̄µe(x)

]
. (2.5.3)

After averaging over the momentum distribution of the background electron field

and averaging over electron chiralities (assuming equal probabilities for left and

right-handed), the final effective Hamiltonian becomes [17]:

H
CC
eff (x) = VCCν

†
e σ̄

0νe , (2.5.4)
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where the potential is proportional to the local electron number density, Ne

VCC =
√

2GFNe(x) . (2.5.5)

On the other hand, all background fermions can participate in neutral current in-

teractions with the neutrinos. The Hamiltonian is derived from the Lagrangian to be:

H NC
eff (x) = 4

√
2GF

∑
α

[
ν†

ασ̄
µνα

]∑
f

[
gf

Rf̂σµf̄ + gf
Lf

†σ̄µf
]

(2.5.6)

where

ge
L = −1

2 + sin2 θW , ge
R = sin2 θW ,

gp
L = 1

2 − sin2 θW , gp
R = − sin2 θW ,

gn
L = −1

2 , gn
R = 0 .

(2.5.7)

The effective Hamiltonian, after the averaging procedure performed on the CC po-

tential, is then

H
NC
eff =

∑
α

∑
f

V f
NCν

†
ασ̄

0να (2.5.8)

where the potential for fermion species f is

V f
NC =

√
2GFNfg

f
V (2.5.9)

for the "vector" coupling gf
V ≡ gf

L +gf
R. In an electrically neutral background (at least

on average), such as the plasma of the Sun or in the Earth, the number density of
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electrons and protons is equal. As ge
V = −gp

V , the potentials are equal and opposite

and so cancel. Thus only the neutron potential contributes and so:

VNC ≡
∑

f∈{e,p,n}
V f

NC = −GFNn√
2

. (2.5.10)

For neutrinos propagating through a medium with the properties under consideration,

the Hamiltonian is a combination of the free Hamiltonian H0, and the interaction

Hamiltonians HI :

H = H0 + HI (2.5.11)

such that

HI |να〉 = (VCCδαe + VNC) |να〉 , . (2.5.12)

The implication here is that the eigenstates of the free Hamiltonian (the mass states)

are not the same as the eigenstates of the interaction Hamiltonian (the flavour states).

The neutrinos will thus propagate in the eigenstates of the total Hamiltonian.

2.6 Solar Neutrinos

The results of the previous section are valid when the density profile is constant

over the propagation length of the neutrinos. It turns out that the propagation of

neutrinos through non-uniform density profiles can have drastically different features

compared to vacuum or uniform matter propagation. We will focus on neutrinos

produced in and propagating through the Sun, both because of the historical signi-

ficance of Solar neutrinos to improving our understanding of fundamental neutrino

properties, and also because of the relevance to Chapter 4.

Neutrinos are produced in the Sun by thermonuclear reactions. These reactions
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form two distinct groups, known as the pp chain and the CNO cycle. The pp chain

produces the vast majority of the total neutrino flux, with five distinct reactions

that produce neutrinos. These reactions are labelled by their initial particles. In

order of their contribution to the total neutrino flux, they are[17][7][26]:

pp : p+ p → 2H + e+ + νe ∼ 91%
7Be : 7Be + e− → 7Li + νe ∼ 7.3%

pep : p+ e− + p → 2H + νe ∼ 0.2%
8B : 8B → 8Be∗ + e+ + νe ∼ 7 × 10−3%

hep : 3He + p → 4He + e+ + νe ∼ 1.5 × 10−5%

The CNO cycle contributes a total of ∼ 1.5% of the total neutrino flux from the

Sun, however the exact value is dependent on the concentration of heavier elements

in the Sun. The relevant processes are:

13N : 13N → 13C + e+ + νe ∼ 0.84%
15O : 15O → 15N + e+ + νe ∼ 0.73%
17F : 17F → 17O + e+ + νe ∼ 8.6 × 10−3%

As shown in the reaction equations, the thermonuclear processes in the Sun produce

only pure electron-neutrinos. These neutrinos are created with a range of energies,

depending on the process of origin. Due to the kinematics of the process, the neutri-

nos produced in the 7Be and pep processes are monochromatic in energy. The other

pp-chain processes produce neutrinos with a β-form spectra given by[27]

dφ

dEν

= ΦA(x− Eν)
√

(x− Eν)2 −m2
eE

2
ν (2.6.1)

where Φ is the total flux, A is the integral normalisation, and x = Q+me with the

characteristic energy of the process given by Q and me is the electron mass.
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Solar neutrinos are also produced in large regions of the Sun, with radial distances

of the order of 10%R�. At the detector of a given experiment, there is no way to

distinguish between a neutrino produced at, say, r = 0.05R�, and one produced at

r = 0.1R�. To account for this, we need to average over the production region to

produce an incoherently summed flux. If the production region is much larger than

the typical oscillation length of the neutrinos, the oscillations will be averaged out,

and lose all dependence on the mass splitting or energy

P̄ee = 1 − 2
∑
k>j

|Uek|2
∣∣∣Uej

∣∣∣2 . (2.6.2)

As neutrinos are produce inside of the Sun, they are of course not travelling through

a vacuum. In fact, they are actually propagating through a matter background with

a density that varies over the propagation distance of the neutrino. To produce

analytical results for the oscillation probabilities in this scenario, it is useful to look

at the two-flavour oscillation scenario. This will prove useful in Chapter 3, but is

also of interest for Solar neutrinos. This is because νµ and ντ both experience the

same matter potential, and also because the energies of Solar neutrinos are too low

to produce their respective charge muons in the detection process, meaning they are

only detectable via NC interactions. We will thus combine the two flavours into one,

which we label as a, such that Pea = Peµ + Peτ .

In the two flavour case, the Hamiltonian in the flavour basis after removing constant

factors (m2
1 and VNC) is given by

HF = 1
2EU∆M2U † + V , (2.6.3)

where
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U =

 cos θ sin θ

− sin θ cos θ

 , ∆M2 =

0 0

0 ∆m2

 , V =

VCC 0

0 0

 . (2.6.4)

It is convenient to introduce the term ACC = 2EVCC for the sake of algebra. The

Hamiltonian can be combined into a single 2 × 2 matrix. After removing additional

constant factors by a global rephasing, the Hamiltonian of interest is

HF = 1
4E

−∆m2 cos 2θ + ACC ∆m2 sin 2θ

∆m2 sin 2θ ∆m2 cos 2θ − ACC

 . (2.6.5)

As mentioned in the previous section, the neutrino fields will propagate in the basis

which diagonalises this matrix, found by orthogonal transformations

HM = UT
MHFUM

= 1
4E

−∆m2
M 0

0 ∆m2
M

 ,
(2.6.6)

where the eigenvalue ∆m2
M is

∆m2
M =

√
(∆m2 cos 2θ − ACC)2 + (∆m2 sin 2θ)2 , (2.6.7)

and the rotation matrix UM is parametrised with a mixing angle θM such that

tan 2θM = tan 2θ ∆m2 cos 2θ
∆m2 cos 2θ − ACC

. (2.6.8)

To generalise these results to the case of a non-uniform matter density profile, we

reintroduce the x dependence of the potential which arises from the matter density.

This then promotes the mass splittings and mixing angles to also be functions. We
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can express a differential equation of the flavour transition amplitudes in the matter

background in matrix form as

i
d

dx

Aee

Aea

 = 1
4E

−∆m2
M cos 2θM ∆m2

M sin 2θM

∆m2
M sin 2θM ∆m2

M cos 2θM

 . (2.6.9)

Taking the amplitude between an electron state and eigenstate of the Hamiltonian,

Ãei = 〈νe(0)|νi(x)〉 =
∑

α

(UM)αi 〈νe(0)|να(x)〉 , (2.6.10)

which we can express as a vector of amplitudes

A = UMÃ , (2.6.11)

we can derive from Eq. (2.6.9) the differential equation for Ã

i
dÃ

dx
= 1

4E

 −∆m2
M −4EidxθM

4EidxθM ∆m2
M

 . (2.6.12)

We have introduced the shorthand notation of dxθM for the spatial derivative of the

mixing angle θM . If the derivative is small, then the eigenstates of the Hamiltonian

will remain the same, though the eigenvalues may change. The derivative can be

readily calculated as

dθM

dx
= 1

2
sin 2θM

∆m2
M

dACC

dx
(2.6.13)

There are a number of cases in which this can take a small value. The most trivial

of these is when the matter density is constant, or very slowly varying. To find the

more general cases, it is often useful to consider the adiabaticity parameter
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γ = ∆m2
M

4E |dxθM |
= (∆m2

M)2

2E sin θM |dxACC|
. (2.6.14)

When γ � 1, throughout the entire propagation length, the evolution of the neut-

rino states is adiabatic. The transitions between mass states are negligible, and the

solution to Eq. (2.6.13) is given simply by[17]

Ãe1(x) = exp
(
i
∫ x

0
dx′ ∆m2

M(x′)
4E

)
Ãe1(0) , (2.6.15)

Ãe2(x) = exp
(

−i
∫ x

0
dx′ ∆m2

M(x′)
4E

)
Ãe2(0) , (2.6.16)

which can be calculated given a known matter density profile. The survival probab-

ility in this scenario, taking into account the initial and final mixings (θ(i)
M and θ

(f)
M

respectively), are then found to be:

Pee = 1
2 − 1

2 cos 2θ(i)
M cos 2θ(f)

M + 1
2 sin 2θ(i)

M sin 2θ(f)
M cos

(∫ L

0

∆m2
M(x)

2E dx

)
. (2.6.17)

The final mixing angle is usually taken to be the vacuum one, as neutrino detectors

are often placed relatively close to the vacuum of space (the distance through the

overburden travelled by a neutrino is too small to induce different mixing).

2.6.1 Low Energy Regime

When the neutrino energy is sufficiently small, we can successfully treat matter

effects as a perturbation to the Hamiltonian. Choosing our perturbation parameter

to be

α ≡ ACC

∆m2 cos 2θ
≡ 2

√
2GFNeE

∆m2 cos 2θ
, (2.6.18)
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we can readily create perturbative expansions of ∆m2
M and tan 2θ:

∆m2
M = ∆m2

(
1 − α cos2 2θ + α2

8 sin2 4θ + O(α3)
)
, (2.6.19)

tan 2θM = tan 2θ
(
1 + α + α2 + O(α3)

)
. (2.6.20)

From this last equation, we can also find corrections to the mixing angle explicitly

θM = θ + sin 4θ
4 α + cos3 2θ sin 2θ

2 α2 + O(α3) (2.6.21)

If we are in the small α limit, either because the neutrino energy or the background

density are small, we can approximately ignore matter effects altogether. Combining

this with the adiabatic evolution limit, the averaged oscillation probabilities reduce

to the vacuum mixing with no dependence on the propagation length:

P̄ee = 1 + cos2 2θ
2 , (2.6.22)

P̄ea = 1 − cos2 2θ
2 . (2.6.23)

2.6.2 Three Generation Solar Neutrinos

Experiments have confirmed that there are three distinct flavours of charged leptons.

In the SM, this would mean we would have three flavours of neutrino. We will

assume that any modifications to the SM would be to add particles, rather than

remove them. As such there should be at least three flavours of neutrino.

On top of this, there is overwhelming evidence from neutrino oscillation experiments

that there are at least two neutrino states which have non-zero mass. We will now

examine how applicable the results for two-flavour Solar neutrinos are to probabilities
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in the three neutrino generation scheme.

As we have seen previously, the existence of three generations of neutrino requires

three independent mixing angles θ12, θ13, and θ23. There are also two independent

mass-squared splittings, ∆m2
21 and ∆m2

31, from which we can construct a third -

∆m2
32 = ∆m2

31 − ∆m2
21. Note that we have assumed NO of the masses, however the

results for IO can be found by swapping ∆m2
31 ↔ −∆m2

32, and the estimates will

generally remain true.

We will first look for the regimes in which matter effects can be ignored by defining a

critical energy Em, below which the perturbative expansion is valid. This value will

be the energy at which α = 1. If we use the two-flavour definition of α, and treat

each combination of θij,∆m2
ij as the parameters for the two-flavour oscillations, we

find

Em ≈



540 keV , θ12 = 33.41◦ and ∆m2
21 = 7.41 × 10−5 eV2

45 MeV , θ13 = 8.58◦ and ∆m2
31 = 2.51 × 10−3 eV2

4.4 MeV , θ23 = 42.4◦ and ∆m2
32 = 2.44 × 10−3 eV2

(2.6.24)

where we have taken the electron density to be Ne = 245 NA cm−3, which is greater

than that predicted from models of the core of the Sun, thus ensuring the validity

of the above results. If we restrict ourselves to neutrinos with E . 1 MeV, we need

only consider the matter effects on the oscillations produced by ∆m2
12. Furthermore,

the typical oscillation lengths for the other two mass-squared differences for these

energies will be small compared to the size of the production region:

Losc . 300 m � ∆R , (2.6.25)

where ∆R is the approximate width of the production region which is typically

O(10%)R�. We can thus safely assume that oscillations produced by the larger

mass splittings are incoherently averaged out. This motivates the use of the two-
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flavour results, with ∆m2 ≡ ∆m2
21. In fact, the ∆m2

21 mass-squared splitting is often

referred to as the "solar" mass-squared splitting, due to it’s dominant effect on Solar

neutrinos.

The only process in the Sun which produces neutrinos which all have energy below

500 keV is the pp process. This has a maximum energy threshold of Q ≈ 420 keV. At

these energies, α ≈ 0.78 which, while smaller than 1, is still large (naively, we would

need to go to 10th order in the expansion to get a less than 10% error). Instead,

we can perform an expansion in sin θ13 which from experimental measurements we

know to be small. To first order in this expansion, the survival probability can be

shown to be [28]:

Pee ≈ 1 − sin2 2θ12

C2
12

sin2
(

∆m2
21C12L

4E

)
, (2.6.26)

where

C12 ≡

√√√√sin2 2θ12 +
(

cos 2θ12 − 2EVCC

∆m2
21

)2

. (2.6.27)

We can write out the oscillation length for this probability directly from this form,

which we find to be

L12 ≡ 4πE
∆m2

21C12
. 15 km , (2.6.28)

where the numerical result is for a neutrino with energy 420 keV. Once again, this is

much smaller than the production region of pp neutrinos, and so all oscillation effects

are averaged out. Thus, the survival probability for pp neutrinos is just proportional

to the mixing from the PMNS matrix:

P ee ≈
∑

i

|(UPMNS)ei|4 . (2.6.29)
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We will make use of this in Chapter 3 when studying oscillations in pp neutrinos

under the pseudo-Dirac scenario.





Chapter 3

Probing the pseudo-Dirac scenario

using Solar neutrinos at JUNO

It was shown in Section 2.2.2 that the pseudo-Dirac scenario of neutrino mass gen-

eration is characterised by small mass-squared splittings between almost degenerate

pairs of Majorana neutrinos, with close to maximal mixing. As the oscillation length

for pairs of neutrinos is given by

Losc ≡ 4πE
δm2 , (3.0.1)

we would expect oscillations to occur over longer distances compared to those due to

the currently known mass splittings ∆m2
21 and ∆m2

31. To observe these oscillations

we are interested in sources of neutrinos which propagate over long distances before

being detected, and also ideally have low energies. This motivates Solar neutrinos as

ideal candidates for this purpose, as the Earth-Sun distance is ∼ 150 × 106 km and

have energies typically in the range O(100 keV) − O(1 MeV). From these values, we

would expect to be sensitive to mass splittings & 10−12 eV2, however this depends

on the capability of the experiment to measure lower energy neutrinos among other

things.

For this work, we will look at the capabilities of the near-future Jiangmen Under-

ground Neutrino Observatory (JUNO) experiment.
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3.1 Solar Neutrinos at JUNO

JUNO is a multi-purpose neutrino experiment proposed in 2008, with a primary

objective to determine the neutrino mass ordering [29]. JUNO will constrain this

parameter by measuring reactor Antineutrinos’ survival probability from the Yangji-

ang and Taishan nuclear power plants (NPPs). The neutrino detector is a liquid

scintillator with a 20-kilotonne fiducial mass 53 km from the two NPPs. While

primarily designed to detect reactor antineutrinos via inverse beta decay, JUNO can

also detect solar neutrinos through elastic neutrino electron scattering,

να + e− −→ να + e− ,

where α is the flavour of the incident neutrino. The differential cross-section of this

process, to first order in the effective weak interaction, is

dσ(α)

dEr

= 2G2
Fme

π

g(α)
L

2
+ g2

R

(
1 − Er

Eν

)2

− g
(α)
L gR

meEr

E2
ν

 , (3.1.1)

where GF is the Fermi constant, Er is the recoil energy of the outgoing electron, me

is the electron mass, Eν is the energy of the incident neutrino and g
(α)
L , gR, are the

(flavour dependent) coupling constants, which are related to the weak mixing angle

θW via

g
(α)
L = sin2 θW − 1

2 + δα,e , (3.1.2)

gR = sin2 θW . (3.1.3)

The delta function in flavour space arises from the enhancement of e− −νe scattering

due to the additional charged-current interaction. The differential event rate of

measured electrons in the detector can be expressed as [27]

dRi,a

dEr

= Ne

∑
α

dσ(α)

dEr

∫
dEνPeα(Eν) dφ

a

dEν

, (3.1.4)
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Source Φ (cm−2s−1) Q (keV) A (keV−5)
pp 5.98 × 1010 420 1.9232 × 10−13

7Be 4.93 × 109 862, 384 N/A

Table 3.1: Parameters for the differential fluxes of solar neutrino
sources used in this work, from [27]

where Ne is the number of electrons per kilotonne in the target medium, dσ(α)/dEr is

the differential cross section for neutrino-electron scattering as shown in Eq. (3.1.1),

and Peα is the probability for a neutrino with flavour α arriving at the detector

from the Sun. The index a runs over the solar neutrino sources, pp and 7Be. Their

differential spectra dφa/dEν can either be monochromatic in energy as is the case

for 7Be neutrinos or have a continuous β form such as the pp neutrino source:

dφ

dEν

= ΦA(x− Eν)
[
(x− Eν)2 −m2

e

] 1
2 E2

ν , (3.1.5)

where x = Q+me with Q being the characteristic energy. The total flux Φ, char-

acteristic energy Q, and integral normalisation A are given in table Table 3.1. The
7Be flux has two monochromatic lines at two different energies, with one at 384 keV

making up 10% of the total flux and another at 862 keV contributing the remaining

90% [27], [30]. For a neutrino with energy Eν , the maximum electron recoil energy

possible from scattering is given by:

Emax
r = 2E2

ν

me + 2Eν

. (3.1.6)

We can equivalently use this relation to find the minimum neutrino energy we must

consider when calculating the differential cross section at some recoil energy Er:

Emin
ν = 1

2

(
Er +

√
E2

r + 2Erme

)
, (3.1.7)

which is the lower integration boundary in Eq. (3.1.4) and Qa is the upper boundary.
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JUNO will be sensitive to both pp and 7Be neutrinos and other sources such as

pep and CNO neutrinos, though with a lower signal-to-noise ratio. This sensitivity

can be used to constrain the parameter space for pseudo-Dirac neutrinos via a solar

oscillation analysis which is the objective of this work. Nevertheless, the measurement

of solar neutrinos in JUNO will depend on the control of backgrounds that affect the

low-energy region. Such backgrounds appear due to the resemblance of the neutrino-

electron scattering signal to the weak decay of isotopes present in the detector.

Specifically, a neutrino-electron scattering produces isotropic light with no additional

signature, making it indistinguishable from a background one[31][32]. In JUNO, the

most important background sources are the impurities in the scintillator. Other

sources can be reduced by various techniques such as choosing a different fiducial

volume [31]. The largest background affecting the solar neutrino measurement is

the 14C beta decay process, which completely dominates below 156 keV. If this

background is under sufficient control, it can be removed by cutting recoil energies

at around 200 keV, which sets a minimum neutrino energy of ∼350 keV. This allows

for the measurement of the high energy part of the pp neutrinos. For energies above

the 14C background cut, 210Bi, 85Kr, and 238U will be the main sources of scintillation

backgrounds. Since it is still unclear if the 14C and possible pile-ups would affect

recoil energies larger than ∼ 400 keV, we consider three different situations for the

energy threshold in what follows. First, an optimistic case where the radiopurity of

the scintillator is low enough to have the carbon background and possible pile-ups

under control for energies above 200 keV. Second, a more conservative approach

where the energy threshold is set to be 450 keV, similar to the analysis performed

by the JUNO collaboration in Ref. [32]. We anticipate that the final sensitivity of

JUNO will lie between these scenarios, so we have also included a third case for a

cut at 250 keV to demonstrate how the sensitivity may vary.
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3.2 The Three Generation Pseudo-Dirac Scenario

In Section 2.2.2, we introduced the pseudo-Dirac scenario in the case of one generation

of neutrinos. However, in the SM we know there are three generations of neutrino as

there were three generations of left-handed leptons, which was constructed to align

with the observations of three different charged leptons. This is further backed up

by observational evidence from cosmology [33] which prefers three active neutrinos

in the early Universe. As such, we will briefly review the pseudo-Dirac scenario for

three active neutrinos.

Since we are in the pseudo-Dirac limit, we can treat the Majorana mass matrix m

as a small perturbation. We thus begin by diagonalising the mass matrix M̃ = M−m:

M̃ =

 0 MD

MT
D 0

 . (3.2.1)

We saw in Section 2.1 that MD can be diagonalised using two 3 × 3 matrices, which

we now refer to as UD and VD, such that M̂ = U †
DM̃VD, where M̂ is the diagonal

matrix of eigenvalues of M̃ . If we construct the following 6 × 6 unitary matrix:

U ≡

UD 0

0 V ∗
D

 , (3.2.2)

we can diagonalise the matrix M̃ †M̃ :

U †(M̃ †M̃)U =

M̂
2 0

0 M̂2

 . (3.2.3)

This matrix clearly has degenerate eigenvalues, since the matrix M̂ is repeated twice.

It is also valuable to notice that we have gone from having a Dirac mass term to

two Majorana masses. This makes evident that we can represent a Dirac fermion

as two different Majorana fermions, in the same way that we can also decompose a
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Dirac fermion into two Weyl fermions.

If we now reintroduce the corrections due to the small matrix m, ignoring any terms

proportional to m2, we find an almost diagonal matrix:

U †(M †M)U ≈

 M̂
2 εM̂

ε†M̂ M̂2

 , (3.2.4)

where we have parametrised the off diagonal elements, which are proportional to M̂ ,

with the matrix ε. We are principally interested in the effect of the perturbation

on the eigenvalues of the matrix. This is because, since the scale of the eigenvalues

of M̂ are large compared to the scale of the perturbation, corrections between non-

degenerate eigenvalues will be relatively small and have little effect. On the other

hand, the degenerate eigenvalues are identical before the perturbation, so the effects

will be more significant. This is also motivated by the outcome of the one-generation

analysis in Section 2.2.2. We can manipulate the quasi-diagonal matrix using a series

of permutation matrices to produce a block partitioned matrix, where the diagonal

blocks are 2 × 2 matrices with degenerate eigenvalues along the diagonal. Explicitly,

we have:

OTU †(M †M)UO =


M11 M12 M13

M21 M22 M23

M31 M32 M33

 , (3.2.5)

where

Mii =

 M̂
2
i ε∗

i M̂i

εiM̂i M̂2
i

 . (3.2.6)

The effect of diagonalising the quasi-diagonal matrix will be to generate shifts in the

original eigenvalues of the Dirac mass matrix, as well as to induce splittings between

the degenerate pairs of eigenvalues. We parametrise the shifts by relabelling the
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eigenvalues, and the splittings by δm2. From matrix perturbation theory, we find

that the mixing matrix is chosen such that the block diagonal terms diagonalise the

block diagonals of the mass matrix, and we can ignore off diagonal blocks since they

are further suppressed by factors of 1/∆m2
ij [34], where ∆m2

ij are the differences

between the original, non-degenerate eigenvalues. Thus, our full unitary diagonal-

isation matrix is given by

V = UOUPD , (3.2.7)

where the pseudo-Dirac rotation matrix is

UPD ≡


U14 02 02

02 U25 02

02 02 U36

 . (3.2.8)

and by 02 we refer to the 2 × 2 zero matrix. The rotation sub-matrices between mass

states i and j are parametrised in the usual way as

Uij ≡

 cos θij sin θij

−e−iφi sin θij e−iφi cos θij

 , (3.2.9)

with arbitrary real phases φi. This provides a large simplification over the most

general case, where the 6 × 6 unitary matrix would be parametrised by multiplying

15 complex rotation matrices [35].

We now have six distinct mass states, corresponding to the six distinct eigenvalues,

which behave as Majorana fermions in the absence of interactions. This aligns with

the previous statements of a free Dirac fermion being equivalent to two Majorana

fermions, and the small perturbation in mass breaks the degeneracy between the two

Majorana fermions to produce distinct states. The structure of the ordering mass

values is pictured in Fig. 3.1.
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The matrix V can be used to relate between the mass eigenstates, and the interaction

eigenstates. We will label those neutrinos that participate in weak interactions as

active states, να with α ∈ {e, µ, τ}, and those that do not interact as sterile states,

νs. We make no distinction between the sterile states as they have no distinguishing

features in experimental observations unlike the active states, but note that they

occupy a three-dimensional subspace. Following on from the diagonalisation of the

mass matrix, we have that:

νi = V

να

νs

 , (3.2.10)

where we have simply relabelled the original 3-vectors of left-handed states: να ≡ ν

and ν̂ ≡ νs.

In the limit of δm2 � ∆m2, where we can treat the mass matrix in Eq. (3.2.5) as

being completely block diagonal, the mixing between the mass eigenstates becomes

maximal just as in the one-generation case, such that θ14 = θ25 = θ36 = π/4, and

the mixing matrix V can be parametrised as[35]

V =

UPMNS 0

0 UR

 · 1√
2

13 i13

ϕ −iϕ

 , (3.2.11)

where ϕ = diag(e−iφ1 , e−iφ2 , e−iφ3) is a matrix containing the arbitrary phases, and

13 denotes the 3 × 3 identity matrix. The neutrino fields, in the flavour basis, take a

simple form in this limit,

να = (UPMNS)αk√
2

(νk + iνk+3) , (3.2.12)

for k ∈ {1, 2, 3}. From this, we observe that a flavour eigenstate is a maximally-mixed

superposition of two mass eigenstates with almost degenerate masses.
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Figure 3.1: The neutrino mass spectrum in the three-generation
pseudo-Dirac scenario. We choose, as a matter of con-
vention, to have the standard mass squared differences,
∆m2

ij,to be between the smaller of the mass pairs. These
mass pairs are almost degenerate, expect for a small
mass squared difference δm2

ij.

3.3 Pseudo-Dirac Neutrino Oscillations

It is fairly trivial to generalise the neutrino oscillation framework introduced in

Section 2.4 to the pseudo-Dirac case. The free Hamiltonian in the ultrarelativistic

approximation, for a neutrino with energy Eν , is

H0 = 1
2Eν

∆M2
d , (3.3.1)

where ∆M2
d is a matrix with diagonal elements equal to the mass squared values

found in the previous section minus an overall constant of m2
1, i.e. ∆M2

d = M2
d −m2

1I.

In order to take matter effects into account, we must also include the interaction

Hamiltonian. As described in Section 2.5, the active neutrino states will experience a

potential proportional to the Fermi constant and the background density of fermions.

On the other hand, the sterile states will have no potential due to their lack of

interactions, so the interaction Hamiltonian in the flavour basis is then
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HI =
√

2GF diag(2Ne −Nn,−Nn,−Nn, 0, 0, 0) (3.3.2)

where Ne and Nn are the electron and neutron number density of the background

matter field, respectively. Unlike in the standard scenario, we are not able to remove

the contribution to the potential from the neutron background by a simple re-phasing

due to the addition of the new sterile neutrino states.

In the scenario where the pseudo-Dirac mass splittings are much smaller than the

standard ones, δm2 � ∆m2
ij, matter effects will only affect the propagation of the

pseudo-Dirac pairs. We can thus treat the oscillations between pseudo-Dirac pairs

as two flavour oscillations, which provide corrections to the standard oscillation

probabilities. This is because we are interested in low and intermediate-energy

solar neutrinos, so we can consider analytical approximations to the oscillation

probabilities [36]. For pp neutrinos, which have energy Eν . 420 keV, the standard

matter effects are negligible, and thus we can approximate the mixing as modifying

the standard solar oscillation probabilities by including active-sterile oscillation of

each pair. At these energies, the standard vacuum oscillations average out the

distance-dependent factors due to the large production region leaving only powers of

the PMNS matrix elements. This simplifies the form of the oscillation probabilities:

Pee =
∣∣∣U3f

e1

∣∣∣4 P 2f
ee (θ14, δm

2
1)

+
∣∣∣U3f

e2

∣∣∣4 P 2f
ee (θ25, δm

2
2)

+
∣∣∣U3f

e3

∣∣∣4 P 2f
ee (θ36, δm

2
3) , (3.3.3a)

Pes =
∣∣∣U3f

e1

∣∣∣2 (1 − P 2f
ee (θ14, δm

2
1)
)

+
∣∣∣U3f

e2

∣∣∣2 (1 − P 2f
ee (θ25, δm

2
2)
)

+
∣∣∣U3f

e3

∣∣∣2 (1 − P 2f
ee (θ36, δm

2
3)
)
, (3.3.3b)

Pea = 1 − Pee − Pes . (3.3.3c)
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where Pee is the electron neutrino survival probability and Pes (Pea) the electron

neutrino to sterile (other active flavour) oscillation probability. Separating the muon

and tau flavour probabilities is unnecessary as they have identical contributions to the

scattering cross section, as was discussed in Section 3.1. We can further approximate

the two-neutrino oscillation probabilities by analysing the matter effects on the

evolution of each pseudo-Dirac pair, depending on the regime of the mass-squared

splitting value.

3.3.1 MSW Regime

When the pseudo-Dirac mass splittings satisfy

10−10 eV2 . δm2 . 10−6 eV2 ,

we must take into account the effect of non-adiabatic transitions through a resonant

region in the Sun, i.e. the MSW effect. However, vacuum oscillations are averaged

for mass splittings in this range, so we can remove any dependence on the Earth-Sun

distance. To take into account the non-adiabaticity of the Solar density profile in

this regime, it is necessary to introduce the crossing probability Pc, which for an

exponential density profile is given by [37]–[39]

Pc = e−γ sin2
θ − e−γ

1 − e−γ , (3.3.4)

where θ is the mixing angle between the two neutrino states, and the non-adiabaticity

parameter is given by [38], [39]

γ = 2πrij
0
δm2

ij

2Eν

, (3.3.5)

with rij
0 a distance obtained by performing an exponential fit of the matter potential

inside the Sun, Nij(r) = N ij
0 exp(−r/rij

0 ). Such a matter potential will depend on



56
Chapter 3. Probing the pseudo-Dirac scenario using Solar neutrinos at

JUNO

the specific pseudo-Dirac scenario to be tested [36],

Nij(r) =



Ne(r) cos2 θ13 cos2 θ12 − 1
2Nn(r) ij = 14

Ne(r) cos2 θ13 sin2 θ12 − 1
2Nn(r) ij = 25

Ne(r) sin2 θ13 − 1
2Nn(r) ij = 36

. (3.3.6)

For our purposes, we consider the electron and neutron number densities predicted

by the Solar Model AGSS09 from Ref. [40].

The active-sterile two-neutrino probability, averaged over the production region, will

then follow the Parke formula [37]

P 2f
ee (θij, δm

2
ij) = 1

2 +
(1

2 − Pc

)
cos 2θm

ij cos 2θij , (3.3.7)

where ij = {14, 25, 36}, and the usual expression gives the effective mixing angle in

the Sun

cos 2θm
ij = δm2

ij − Aij
0√

(δm2
ij cos 2θij − Aij

0 )2 − (δm2
ij sin 2θij)2

, (3.3.8)

with

Aij
0 ≡ 2

√
2EνGFN

ij
0 . (3.3.9)

3.3.2 Quasi-Vacuum Oscillations

When we are in the regime where

10−11 eV2 . δm2 . 10−10 eV2 ,

both the matter effects and the vacuum oscillations play an important role in the

pseudo-Dirac oscillations probabilities.

In this intermediate situation, we can recast the analytical approximations obtained

for a two-flavour oscillation in Refs [38], [39] to
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P 2f
ee (θij, δm

2
ij) = P ′

c cos2 θij + (1 − P ′
c) sin2 θij

−
√
Pc(1 − Pc) cos 2θm

ij sin 2θij cos
(
δm2

ijL�

2Eν

)
,

(3.3.10)

where

P ′
c = Pc sin2 θm

ij + (1 − Pc) cos2 θm
ij , (3.3.11)

and L� is the Sun-Earth distance.

3.3.3 Vacuum Oscillation Regime

For

δm2 . 10−11 eV2

the oscillation length is of the order of, or larger than, the radius of the Sun. Further-

more, the matter potential completely dominates the Hamiltonian, and so neutrinos

will propagate in their flavour states whilst in the Sun. Thus, the two-neutrino

probability will have the standard form in vacuum,

P 2f
ee (θij, δm

2
ij) = 1 − sin2(2θij) sin2

(
δm2

ijL�

4Eν

)
. (3.3.12)

3.3.4 Higher Energy 7Be Neutrinos

For the higher energy 7Be neutrino line, at 862 keV, the previous analytic approxim-

ations would lead to probabilities that do not reproduce the correct values due to

matter effects affecting the active neutrinos. Thus, numerical calculations were per-

formed using the slab approximation method [17]. This involves the discretisation of

the matter density profile of the Sun into slabs of constant density with some length

∆x, through which the propagation of the neutrino amplitude can be calculated.

Thus, the amplitude of a neutrino after passing through a varying density profile
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can be approximated as

A =
N∏

s=0
Vs exp

(
−im

2
s∆xs

2Eν

)
V †

s A0 , (3.3.13)

where Vs and m2
s are the effective mixing matrix and effective mass squared differ-

ence matrix, respectively, in the slab s. These are obtained by diagonalising the

Hamiltonian in the medium. The initial amplitude, A0, for solar neutrinos, which

are produced as pure νe states, is (1, 0, 0, 0, 0, 0)T in the flavour basis. We can obtain

the probability from the amplitude:

P 1ν
eα = |Aα|2 . (3.3.14)

However, this is only for a single neutrino originating from one position. In reality,

the Sun produces many neutrinos over a large region. Since we do not know where

a detected neutrino was produced, we must average the probability over the entire

production region yielding the Solar probability:

Peα =
∫ rb

ra

drρ(r)P 1ν
eα (r) ≈

N∑
i=0

ρ(ri)P 1ν
eα (ri) , (3.3.15)

where ρ is the production probability as a function of the radial position in the

Sun, and P 1ν
eα now depends on where the neutrino was produced. For this work, we

approximate ρ as a window function between 0.02R� and 0.125R� for 7Be, which

we found to be within a few percent of the probability calculated using theoretical

predictions of ρ. This is a reasonable approximation as, qualitatively, the averaged

probability depends primarily on the length over which it is averaged rather than

the exact distribution of the production. Further, the production region for 7Be is

highly concentrated over this region [30] and so should be approximated well by a

uniform distribution over this length.
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Figure 3.2: Numerical results for solar electron neutrino survival
probability, Pee, for the SM scenario (black solid curve)
and for the 1-4 pseudo-Dirac pair scenario with maximal
mixing (θ14 = π/4). The coloured curves correspond to
different possible values of the mass-squared splitting
between the pseudo-Dirac pairs, as indicated in the le-
gend. The light blue shaded region corresponds to the
energies of pp neutrinos coming from the Sun, and the
vertical red dashed line is the monochromatic energy of
the high energy 7Be neutrino line. The vertical black
dashed line is the minimum neutrino energy given a cut
in the recoil energy of 200 keV.
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Equation (3.3.13) can be used to calculate the oscillation probabilities at the surface

of the Sun. However, for small enough values of the mass splitting, we must con-

sider the vacuum oscillations between the Sun and the Earth. This is because the

production region is smaller than the typical oscillation length, and the decoherence

length is larger than the distance between the Earth and the Sun, LES. On the other

hand, ∆m2
12 and ∆m2

13 are sufficiently large that decoherence between these mass

states occurs over distances much smaller than LES. This results in the neutrino

mass states decohering into the three mass pairs, which we denote as 1-4, 2-5, and

3-6. We thus have to modify the amplitude at the edge of the Sun, A�, with two

mass state vacuum oscillations.

(AE)i = (A�)i ,

(AE)i+3 = exp
(

−iδm
2LES

2Eν

)
(A�)i+3 ,

where the index i = 1, 2, 3 denotes the mass state. From the amplitude at Earth,

AE, we can determine the appearance probability of some flavour α to be:

Peα = |Uα1 (AE)1 + Uα4 (AE)4|
2

+ |Uα2 (AE)2 + Uα5 (AE)5|
2

+ |Uα3 (AE)3 + Uα6 (AE)6|
2 .

(3.3.16)

This modified probability is then the input for the averaged probability used for

our analysis. In Fig. 3.2, we show the solar electron neutrino survival probability

in the 1-4 pair scenario. We observe that for a mass splitting of δm2
14 = 10−7 eV2,

the averaging of the probability results in a flat decrease in the survival probability

and that the production region is large enough that there is little energy dependence

on the probability. As the mass splitting decreases, this no longer is the case and

the energy dependence of the probabilities becomes important, as can be seen for

δm2
14 = 5×10−12 eV2. For even smaller mass splitting values, the survival probability

slowly approaches the standard oscillations until they are indiscernible. This is
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because the vacuum oscillation length becomes larger than the distance between

the Earth and the Sun, so the modification to the standard oscillations probability

approaches unity as the energy increases. The oscillation length is proportional to

the neutrino energy, and so lower energy neutrinos can probe smaller mass splittings.

This will set the limit on the lowest mass splitting that JUNO can probe.

3.4 Analysis

We aim to quantify JUNO’s sensitivity to the pseudo-Dirac neutrino parameter space.

To do this, we will calculate the probabilities of the active neutrinos arriving at the

detector using the methods discussed in Section 3.3. Given the input parameters,

the probabilities will give us the number of events we expect to see at the detector,

Ntheory, as is shown in Fig. 3.3. The overall effect of pseudo-Dirac oscillations is to

reduce the electron neutrino survival probability at Earth since part of the neutrinos

would oscillate to invisible sterile states. This is especially clear for the value of

δm2
14 = 5 × 10−12 eV2, where we observe a deficit of ∼ 36% with respect to the total

expected events in the standard scenario. As these give the largest contribution to

the cross-section, we can test the pseudo-Dirac scenarios by searching for a decrease

in the number of detected neutrino scattering events compared to the SM theoretical

expectation. The ability of the JUNO experiment to discriminate between the stand-

ard and pseudo-Dirac oscillation scenarios is given by the following test statistics,

χ2 =
∑

i

(∑
a αaN

i,a
theory +∑

b(αb − 1)N i,b −N i
bench

)2

N i
bench +∑

b N
i
b

+
∑

a

(
αa − 1
σa

)2

+
∑

b

(
αb − 1
σb

)2

,

(3.4.1)

which compares the predicted events from the theory and the standard oscillation

case. In Eq. (3.4.1), N i is the total number of counts in the ith recoil energy bin

from some source, given a target mass, Mtarget, and exposure time, t. The bin

width is taken to be 25 keV, in accordance with the expected energy resolution of
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JUNO of 3%
√
Er/MeV [29]. The index b runs over the backgrounds for the neutrino

detection process, and N i
bench is the benchmark neutrino event rate expected for

the standard oscillation scenario, i.e. N i
bench = ∑

a N
i,a
SM. The pull parameters αi

are free parameters that encode the measured events’ statistical deviation from the

theoretical expectation. For this analysis, we fix the standard oscillation parameters

at their central values, using the NuFIT 5.2 global fit data [41], since JUNO is

expected to measure independently the solar parameters θ12 and ∆m2
12 below the

percent level using reactor antineutrinos [29].

The background rates are taken from detector simulations performed by the JUNO

collaboration [29]. These simulations provide two possible scenarios for the reduction

of backgrounds in the detector, the ‘baseline’ case and the ‘ideal’ case. As previously

mentioned, the sources of backgrounds for the scintillation signal are from the

detector’s beta-decay processes of radioactive nuclei. For the ideal case, we consider
210Bi, 85Kr, and 238U as the main backgrounds. These are also very relevant in the

baseline case. However, it is also necessary to account for 40K and 232Th decay

chains.

The pull parameters are given a weighting assuming a Gaussian prior with an error σ.

For the neutrino sources, these errors correspond to the error in the theoretical flux

calculations taken from standard solar model (SSM) simulations [40]: σpp = 0.6%

and σ7Be = 6%. We assume that the background counts can be constrained to a

value of σbkg = 1%, which we believe to be appropriate from the simulations of

the backgrounds performed by the JUNO collaboration [29]. Minimising the test

statistic over the pull parameters will give the projected sensitivity of JUNO to

deviations from the standard oscillation scenario.
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Figure 3.3: Expected event rates at JUNO for pp (orange) and Be7

(green) solar neutrinos assuming a 6-year exposure time
with 20 kilotonne fiducial mass. Here we show how a
maximal mixing 1-4 pseudo-Dirac pair affects the event
rate that JUNO will measure, for δm2

14 values of 1 ×
10−7 eV2 (dashed), 5 × 10−12 eV2 (dotted), 1 × 10−12 eV2

(dash-dotted), and the SM case (solid). The data is
shown with bin widths of 25 keV, as was used in our
analysis, to demonstrate how JUNO can put limits on
these values.
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3.5 Constraints on the Possible Pseudo-Dirac

Nature of Neutrinos from JUNO

We simulate 6 years of exposure for JUNO, assuming a 20 kilotonne fiducial mass.

All results are taken for the ‘ideal’ background case. However, the calculations were

performed for the ’baseline’ case and were found to be similar.

From Fig. 3.4 we observe that JUNO can place strong limits on the 1-4 mixing

scenario, competing with the capability of the future DARWIN Xenon-based detector

that was calculated in [36]. This is somewhat surprising since the absence of the 14C

background at DARWIN gives it access to much more of the pp neutrino spectrum,

which gives stronger bounds on the mixing scenario since pp neutrinos have lower

energy and a strongly constrained uncertainty. However, the large fiducial mass of

JUNO, 20 kilotonnes as compared to DARWIN’s expected 300 tonnes, means that

a large number of pp neutrinos could be detected if the cut at 200 keV in recoil

energy is possible. As illustrated in Fig. 3.2, for mass splittings δm2
14 ≤ 10−12 eV2

the difference between the pseudo-Dirac and standard oscillations is much more

pronounced for pp neutrino energies, compared to 7Be neutrinos. This results in a

significant difference between the detection rate for pp neutrinos. Furthermore, the

theoretical constraints on the pp flux are much tighter than on the 7Be flux, resulting

in a stronger statistical significance on any deviation from the expected detection

rate of pp neutrinos. This allows JUNO to place strong constraints on this scenario.

If JUNO can achieve the intermediate cut (at 250 keV), it will be competitive

with the constraints from Borexino. However, if the backgrounds are not sufficiently

reduced, and the conservative cut is used, then JUNO would only be competitive with

Borexino in the 7Be neutrino sample, but since Borexino has measured pp neutrinos

using a combined sample, it has marginally greater constraining power than JUNO

in this scenario. If, on the other hand, JUNO can achieve the optimistic cut, then it

would exceed the sensitivity of Borexino and be competitive with DARWIN.

We have also considered a maximal mixing angle θ = π/4 and determined the
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for three values of the recoil energy cut: 200 keV (solid
line), 250 keV (dotted line), and 450 keV (dashed line).
Also shown are the projected limits that can be set
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constraints JUNO can place on the value of the mass splitting. We computed the

sensitivities for the case of 1-4 and 2-5 mixing, as well as for the full pseudo-Dirac

scenario assuming that each pair of mass states is split by the same amount, δm2.

The results of this analysis are shown in Fig. 3.5. In the optimistic scenario we find

that JUNO should be capable of excluding a mass splitting above ∼ 3.1 × 10−13 eV2

for the 1-4 scenario and ∼ 6 × 10−13 eV2 for the 2-5 scenario with a 3σ C.L. The

disparity between the two arises because the electron flavour state has a larger

component of the 1 - 4 mass state neutrinos than the 2 - 5, so it is more sensitive to

the oscillations of the former pair. For the “full” pseudo-Dirac case, JUNO would

be capable of excluding above δm2 & 2.9 × 10−13 eV2, which is lower than either of

the two individual cases. This occurs because all of the components of the electron

neutrino can oscillate into sterile states, removing the limiting factor of the PMNS

mixing and thus increasing the probability of a sterile state being at the detector.

JUNO will also be able to probe the δm2
25 parameter space, which is important since

there have been indications of a preference for a non-zero value of this parameter as

in [48]. In particular, the preferred value of δm2 ∼ 10−11 eV2 is testable by JUNO;

however, this assumes that the cut at 200 keV in recoil energy is feasible, as for

higher cuts there is a dip in sensitivity at around this value. This is due to oscillation

effects, where Pee becomes the same as the SM for the higher energy 7Be neutrinos.

When pp neutrinos are included, these dips are removed since the measured flux is

integrated over energy, and the minima are smeared out. The monochromatic nature

of the 7Be flux could be utilised in a seasonal variation analysis, as was done in [48]

to search for pseudo-Dirac neutrinos. Due to the large number of these neutrinos

that will be detected at JUNO, this could improve on the analysis already done and

would be an interesting possibility to explore. We leave this for future work.

Future detectors such as DUNE or HK might improve the sensitivity due to their

larger size in comparison to JUNO. However, their energy thresholds make them

sensitive only to 8B neutrinos, which have larger energies, and smaller fluxes, in

comparison to pp and 7Be as mentioned before. DUNE, for instance, has a 6 MeV
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threshold for detecting neutrinos [49], while Hyper-K is limited due to the minimal

energy that an electron needs to possess in order to emit Cherenkov radiation [50].

The mass splittings which can be tested with DUNE or Hyper-K are larger than the

ones in JUNO and are of order δm2
14 = 10−7 eV2. Thus, DUNE and HK could only

improve the current SK sensitivity (pink region of Fig. 3.4). However, we can observe

in the same figure that JUNO will be able to cover that region of the parameters,

even in the conservative scenario.



Chapter 4

Constraining Neutrino

Self-Interactions with Point-Source

Fluxes at IceCube

Astrophysical processes can produce neutrinos across a broad range of energies.

Whilst Solar neutrinos are produced with energies of O(100 keV) to O(10 MeV),

neutrinos have been detected with energies well above the TeV range[51]. A sig-

nificant contribution to the fluxes at these energies is believed to originate from

high energy processes in galaxies. High energy neutrinos can be produced from

the interactions of high energy protons with background matter, such as protons

or photons. These interactions produce hadronic showers, including charged pions

which subsequently decay into neutrinos[52]. Possible candidates of so called Cosmic

accelerators which could produce protons with such extreme energies are Gamma

Ray Bursts (GRB) and Active Galactic Nuclei (AGN).

However, the fluxes of these high energy neutrinos are very low in comparison to e.g.

Solar neutrinos[53], so extremely large detectors are required to be able to detect

them with statistical significance. The IceCube experiment[54], located at the South

Pole, consists of photo-multiplier tubes (PMTs) instrumented throughout a cubic

kilometre of Antarctic ice which is used as a detection medium. The interaction
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between incoming high energy neutrinos and the ice produces charged leptons, as

well as hadronic showers from the transfer of energy to the particle content of the

ice. These charged particles will propagate through the ice and produce Cherenkov

radiation, due to their high energies, which can be detected by the PMTs.

When the charged lepton produced from a CC interaction is a muon it is able to

travel through the detector with minimal momentum transfer. At sufficiently high

energies, the muon will travel over a distance greater than the separation of the

PMTs. Its Cherenkov radiation can then be detected by multiple PMTs along its

path of travel, which makes it possible to reconstruct the path and thus direction

of the momentum of the muon. These are referred to as track events, due to their

signature event topology in the detector. The direction of the produced muon will be

correlated with the direction of the incident neutrino due to momentum conservation.

This motivates the possibility of performing statistical inference to find locations in

the sky which are associated with an increased neutrino flux.

Point-sources of neutrinos are galaxies which are known to produce gamma-ray

fluxes, and whose location in the sky coincides with excesses in the neutrino flux[55].

They are point-like in the sense that the extent of the galaxy in the sky is smaller

than the error in the reconstruction of the direction of the incident neutrino. A large

experimental effort in searching for these sources of astrophysical neutrinos has lead

to the identification of a number of significant potential candidates. In particular,

the IceCube collaboration recently made the announcement of the galaxy NGC 1068

being a point-like source of neutrinos at the 4.3σ confidence level[56].

The goal of this work is to investigate the possibility of exploiting point sources

of astrophysical neutrinos to probe the behaviour and fundamental properties of

neutrinos. We will focus on two possible BSM scenarios, firstly an overabundance

of relic neutrinos assuming only SM interactions, and then additional interactions

between neutrinos mediated by a new, light scalar particle. These scenarios can

be probed by understanding that the neutrinos emitted by point sources are not

travelling through a vacuum, but instead a background of neutrino relics from the
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early Universe.

4.1 Cosmic Neutrino Background

Neutrinos in the early Universe were kept in thermal equilibrium, when the SM

plasma temperature was 1 MeV . T . 100 MeV, by the weak interactions with

electrons, positrons, and the other neutrinos that existed in the SM plasma. The

interaction rate can be expressed as

Γ = n 〈σv〉 , (4.1.1)

where n is the number density of target particles, σ is the cross-section, and v is the

neutrino velocity which was ≈ 1 (in natural units). As the SM plasma cooled due to

the expansion of the Universe, the interaction rate decreased due to the reduction

in the average centre-of-mass energy. In particular, thermally averaged cross section

is of the order [17]

〈σv〉 ∼ G2
FT

2 (4.1.2)

as the temperature is a measure of the average kinetic energy of particles in the

thermal bath.

Eventually, the interaction rate became smaller than the Hubble expansion rate of

the Universe, i.e. Γ < H. The temperature at which the neutrinos leave thermal

equilibrium, known as the freeze-out temperature, is Tfo ∼ 1 MeV. After this point

the evolution of their temperature became dominated by the redshift from expansion

of the Universe[57]

Tν(z) = 1 + z

1 + zfo
Tfo , (4.1.3)

where zfp is the redshift at freeze-out. The current temperature of the relic neutrinos

can be calculated and is found to be[17]

T 0
ν = 1.676 × 10−4 eV . (4.1.4)
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These neutrinos, which we call relic neutrinos, have a current day number density

which is found to be

n0 ≈ 56 cm−3 , (4.1.5)

per degree of freedom, giving a total of ≈ 360 cm−3 after summing over all chiralities

and flavours. At some earlier redshift, the number density is related to the current

day value by

nν(z) = n0(1 + z)3 , (4.1.6)

as would be expected from the conservation of particle number.

The relic neutrinos have long since decohered from the superposition of mass states

they were produced in [57]. Due to this, we will work in the mass basis when looking

at the effect of interactions on neutrino fluxes from point sources.

4.1.1 Neutrino Degrees of Freedom

As the neutrinos are kept in thermal equilibrium with the SM plasma by weak inter-

actions, we can assume that only left-chiral neutrinos existed in the early Universe.

If neutrinos are Dirac in nature then we have four chiral degrees of freedom, but at

zfo

n[ν](zfo) = nν(zfo) , (4.1.7)

n[ν†](zfo) = nν(zfo) , (4.1.8)

n[ν̄](zfo) = 0 , (4.1.9)

n[ν̂](zfo) = 0 . (4.1.10)

However, the chirality of a particle is not conserved over time, as can be seen from

the Dirac equation which couples left- and right- chiralities:

iσ̄µ∂µν −mν̄ = 0 , (4.1.11)

iσ̄µ∂µν̄ −mν = 0 . (4.1.12)
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Assuming that there are three non-zero masses for the neutrinos (oscillation exper-

iments tell us there must be at least two), we would expect to be able to find any

of the neutrino mass states in either chirality. If the neutrinos are all relativistic,

which will be the case for the two heaviest mass states, the time averaged densities

are given by [58]

n̄[ν](0) = n0

2 , (4.1.13)

n̄[ν†](0) = n0

2 , (4.1.14)

n̄[ν̄](0) = n0

2 , (4.1.15)

n̄[ν̂](0) = n0

2 . (4.1.16)

On the other hand if neutrinos are given their mass via the dimension-5 Weinberg

operator, as described in Section 2.3, and are thus Majorana in nature at low

energies, they have only two chiral degrees of freedom. These are populated in the

early Universe as

n[ν](zfo) = nν(zf0) , (4.1.17)

n[ν†](zfo) = nν(zf0) , (4.1.18)

and at present day

n[ν](0) = n0 , (4.1.19)

n[ν†](0) = n0 , (4.1.20)

i.e. they have twice the detectable relic density today than in the Dirac case. We

will specify our assumptions on the nature of the neutrino mass when relevant in

later sections.
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4.2 Propagation of Neutrino Fluxes

To take into account the effect of scattering with relic neutrinos on the neutrino flux

propagating to the Earth, it is necessary to solve a transport equation for the flux

of neutrinos with mass state i [59], [60],

∂Φi(t, E)
∂t

= d

dEν

[H(t)EνΦ(t, E)] − Φi(t, E)
∑

j

njσij(E)

+
∑
j,k,l

nk

∫ ∞

E
dE ′Φj(t, E ′)dσjk→il(E ′, E)

dE
,

(4.2.1)

where Φi denotes the combined flux of neutrinos and anti-neutrinos with mass state

i, and t is the time since the neutrinos were emitted. The first term, containing the

Hubble expansion rate H(t), accounts for the energy loss of neutrinos due to the

redshift from the expansion of the Universe. The second term is the loss term, which

reduces the flux at a particular value of energy according to the interaction rate

with the CνB, given by the product of nj, the number density of mass states j, and

σ, the neutrino-neutrino cross-section. In the third term of Eq. (4.2.1), the j state

is the incoming neutrino with energy E ′, the k state is the relic neutrino, i is the

outgoing neutrino with the mass state of interest, and l is the other neutrino state

produced in the interaction. This term distributes the flux from down-scattering

(energy loss of the neutrinos) and up-scattering of the relic neutrino. We solve this

differential equation numerically, using a similar method to that in [59].

The centre-of-mass energy of the interaction of the astrophysical neutrino, with

energy E, with the relic neutrino of mass mj, assumed to be at rest1, is

√
sj =

√
2mjE ∼ 1.41 MeV

(
mj

0.1 eV

)1/2 ( E

10 TeV

)1/2
.

We parametrise the initial fluxes of neutrinos from the point sources with a power-

law (PL) flux, where the flux is parameterised in terms of a normalisation Φ0, at

1Note that large overdensities due to some BSM interactions might also imply that the relic
neutrinos could be relativistic today, enhancing the centre-of-mass energy. However, we refrain
from considering such a scenario to keep our discussion as model-independent as possible.
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reference energy E0, and a spectral index γ such that

Φ(t = 0, Eν) = Φ0

(
Eν

E0

)−γ

. (4.2.2)

We take E0 = 1 TeV throughout this work. For each source, we assume the fluxes

are independent and uncorrelated. We also assume that the neutrinos are produced

from the decay of charged pions,

π+ → µ+ + ν†
µ → e+ + ν†

e + νµ + ν†
µ

which results in the initial flavour ratio of 1:2:0 for νe:νµ:ντ .

4.3 Numerically Solving The Neutrino Transport

Equation

We are able to solve Eq. (4.2.1) numerically, which allows us to find the neutrino

flux at Earth taking into account both the scattering with the CνB and redshift due

to the expansion of the Universe. For galaxies that are close enough to our own,

we ignore the negligible redshift effects and solve the propagation as a function of

distance. The method outlined in this section is generic in the specific model of

interactions, so detailed descriptions of e.g. cross sections will be left until later.

4.3.1 Upper And Lower Bounds On Neutrino Energy

Before describing the details of the numerical method, we will explain the bounds

of the neutrino energy integral in the third term of Eq. (4.2.1). The lower bound,

somewhat trivially, is the lowest energy of neutrinos that can be detected by IceCube,

which we take to be Emin = 100 GeV. We can do this because, as seen from the

integral in Eq. (4.2.1), the flux at a specific energy depends only on the flux at higher

energies. This results in the neutrinos “flowing down” in energy. As such, there is
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no dependence on undetectable neutrinos.

The upper bound on the neutrino energy is infinity (as we are assuming a power-law

flux); however, when solving this integral numerically, we need a finite upper bound

which will approximate the integral well. To find a value for the finite upper bound,

it is useful to look at the integral of the initial power-law flux from this lower bound

up to some energy cutoff E:

I(E) =
∫ E

100 GeV
Φ(0, E ′)dE ′ = Φ0

1 − γ

1
E−γ

0

(
E−γ+1 − (100 GeV)−γ+1

)
, (4.3.1)

where the initial flux is a power law:

Φ(0, E) = Φ0

(
E

E0

)−γ

, (4.3.2)

and we have assumed that γ > 1 to ensure that the integral converges when E → ∞.

The fraction of the total flux above the cutoff is then given by:

f(E) = 1 − I(E)
I(∞) =

(
E

102 GeV

)−γ+1
. (4.3.3)

Since the total flux above our cutoff energy is always greater than or equal to the

scattered flux above the cutoff energy, this fraction is then an upper bound on the

error in the approximation of the integral in Eq. (4.2.1). If we want the fraction of the

total flux above our cutoff to be smaller than some ε, we can find the corresponding

cutoff Emax from rearranging Eq. (4.3.3). This gives the relation:

log10

(
Emax

1 GeV

)
= 2 + log10(ε)

γ − 1 . (4.3.4)

For example, if we want to limit the flux ignored to ε = 10−6 we require Emax = 108

GeV assuming γ = 2. In practice, we take a fixed value of Emax = 1010 GeV, which
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satisfies ε ≤ 10−6 for γ ≥ 1.5.

4.3.2 Solving The Transport Equation Without Redshift

There are two cases in which we need to solve the transport equation; for closer

sources where redshift effects can be ignored, and for further sources where the

redshift effects need to be accounted for. The former of these is a simpler case, and

so we will first describe the discretisation and solving of the equation before adapting

the algorithm for the latter case.

To ignore the effect of redshift, we can set the energy loss term in Eq. (4.2.1) to zero.

We can also use the fact that the neutrinos are relativistic and change variables from

time t to distance r. We then get:

∂Φi(r, E)
∂r

= −Φi(r, E)
∑

j

njσij(E) +
∑
j,k,l

nk

∫ ∞

E
dE ′Φj(r, E ′)dσjk→il(E ′, E)

dE
(4.3.5)

This can be written more efficiently by assuming that all neutrino mass states have

the same relic density, i.e. ni = nν ∀ i ∈ {1, 2, 3}, and repackaging the sums over

integrated and differential cross-sections.

1
n

∂Φi(r, E)
∂r

= −Φi(r, E)Ki(E) +
∑

j

∫ ∞

E
dE ′ Φj(r, E ′)Jji(E,E ′) (4.3.6)

where the function Ki contains the cross-sections for incoming neutrino with mass mi,

and the kernel function Jji contains the differential cross-sections for the incoming

neutrino with mass j and outgoing neutrino with mass state i. The sum over k and

l has been moved inside of Jji. To discretise the flux over energy, we project the

differential equation onto a set of basis functions given by

{
Θ(E − En−1/2) Θ(En+1/2 − E) | n < N, n,N ∈ N

}
,

where Θ(x) is the Heaviside step function and N is the number of basis functions.
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This improves the numerical stability of the solution when there are discontinuities,

such as those in the cross-sections which arise from e+e− production, compared to

a finite-difference based discretisation. We also approximate the flux as a linear

combination of these basis functions. In our implementation, we space the bins

logarithmically and take the total number of bins N as 300. We then integrate the

differential equation over energy to obtain N coupled equations:

∆En

nν

∂Φn
i (r)
∂r

= −Φn
i (r)Kn

i +
∑

j

∑
m

Φm
j J

mn
ji , (4.3.7)

where we have defined:

Φn
i (r) = 1

∆En

∫ En+1/2

En−1/2

dE Φ(r, E) (4.3.8)

Kn
i =

∫ En+1/2

En−1/2

dE Ki(r, E) (4.3.9)

Jmn
ji =



∫ En+1/2

En−1/2

dE
∫ Em+1/2

Em−1/2

dE ′ Jji(E,E ′) if m > n ,

∫ En+1/2

En−1/2

dE
∫ Em+1/2

E
dE ′ Jji(E,E ′) if m = n ,

0 if m < n ,

(4.3.10)

∆Em = Em+1/2 − Em−1/2 . (4.3.11)

There are three possible values of Jmn
ji , each corresponding to different cases. First,

we have that the mth energy bin is higher than the nth (or equivalently m > n). In

this case we can integrate over both energy limits independently. In the second case

however, we have m = n which implies that the energy bins are the same. Since the

initial energy E ′ must be greater than the final energy E, the lower energy limit in

the second integral is E rather than Em−1/2. Finally, we have the case of m < n

which is not possible as the energy must decrease, resulting in a value of zero. We

calculate the integrals of Kn
i and Jmn

ji analytically, which reduces the time needed
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to solve the equation.

We now discretise the distance r, following an implicit finite-difference scheme. This

amounts to the substitutions:

∂Φn
i (r)
∂r

→ Φn
i (ra+1) − Φn

i (ra)
∆r (4.3.12)

Φn
i (r) → Φn

i (ra+1) (4.3.13)

Since K and J are not functions of r, this discretisation does not affect them. Per-

forming these substitutions in Eq. (4.3.7) gives:

∆En

nν

Φn
i (ra+1) − Φn

i (ra)
∆r = −Φn

i (ra+1)Kn
i +

∑
j

∑
m

Φm
i (ra+1)Jmn

ji . (4.3.14)

We now have a fully discretised form of Eq. (4.2.1), which we need to solve starting

from our initial power-law flux.

To solve these equations, we follow a similar method to that used in [59]. We rewrite

Eq. (4.3.14) as a matrix equation over the i and j indices:

Mjixj = x′
i

∆r − nνyi

∆En

, (4.3.15)

where

xi = Φn
i (ra+1) (4.3.16)

x′
i = Φn

i (ra) (4.3.17)

yi =
∑

m>n

∑
j

Φm
i (ra+1)Jmn

ji (4.3.18)

Mji =
(

1
∆r + nν

∆En

Kn
i

)
δij − nνJ

nn
ji (4.3.19)

Since each equation for n depends only on the solutions of equations m > n, we can

solve the whole system by starting at n = N and propagate the solutions down to

n = 0. This way, the only unknowns are the values xj, which can be solved for using

standard linear algebra techniques.
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One final step is to introduce a lower bound value for the flux in a bin, below which

it is set to zero. Doing so reduces noise and improves the stability of the solution

dramatically. The cutoff value was found by trial and error not to lose any useful

information about the flux. We found that a value of Φmin = 10−30 Φ0 was sufficient,

as it provided a stable solution without removing a significant amount of flux. Since

the output of the numerical solver will be used to calculate a probability density

function (pdf), the normalisation Φ0 does not matter, so we set it to be 1.

4.3.3 Solving The Transport Equation With Redshift

Solving the transport equation whilst taking into account redshift can be done in a

similar method to the one previously described, with some modifications.

Firstly, we wish to solve the flux as a function of the redshift z, using the substitution

∂t = H(z)(1 + z)∂z. Note that the definition of energy in the interaction is in the

local frame of reference, i.e. Elocal = (1+ z)Eobserved. In Eq. (4.2.1), this fact is taken

into account by the first term, however in our discretised equation we can instead

choose the energy bins such that we can make the substitution

Φn
i (za) →

(
1 + za

1 + za+1

)−3

Φn+1
i (za) . (4.3.20)

This means that the effect of redshift on the energy will shift the bins down by one

for each step in redshift, and to also dilute the flux due to the expansion of the

Universe. In order for the former to be the case, we have the following relation:

− log10

(
1 + za+1

1 + za

)
= ∆ log10 E , (4.3.21)

where the minus sign is needed due to the value of z starting at some zmax > 0 and

decreasing monotonically to z = 0 as the neutrinos propagate, i.e. za+1 < za. The

values of z for which we solve can then be defined iteratively:
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za+1 = 1 + za

exp (∆ log10 E) − 1 . (4.3.22)

To find the number of steps in z needed, we use the fact that

1 + zmax =
Nz−1∏
a=0

1 + za

1 + za+1
, (4.3.23)

which gives

Nz = log10(1 + zmax)
∆ log10 E

. (4.3.24)

Following this procedure will properly account for the effect of redshift on the flux

as it propagates through the expanding Universe to Earth [61].

There is one additional effect which differs when taking redshift into account, which

is the fact that the relic density of neutrinos will also decrease as the redshift de-

creases. This is easily included by promoting nν to a function of z, writing it in

terms of the current neutrino density:

nν(z) = (1 + za+1)3 nν(1) . (4.3.25)

Combining all these effects with the energy discretisation outlined in the previous

section, leaves us with the following matrix equation:

MjiΦn
j (za+1) = H(z)(1 + za+1)

za − za+1

(
1 + za

1 + za+1

)−3

Φn+1
i (za) − nν(z)

∆En

yi , (4.3.26)

where

yi =
∑

m>n

∑
j

Φm
j (za+1)Jmn

ji , (4.3.27)
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and

Mji =
(
H(z)(1 + za+1)
za − za+1

+ nν(z)
∆En

Kn
i

)
δij − nν(z)Jnn

ji . (4.3.28)

This system of equations can be solved using the same method as previously de-

scribed.

4.4 Analysis Methodology

To search for signals of neutrino self-interactions - from both overdensities and

non-standard interactions (NSI) - within the IceCube data, we perform an unbinned

maximum likelihood test using the SkyLLH python package [62]–[64]. The likelihood

function for N events, with a source flux determined by a set of model parameters

θ, is

L(ns,θ|x, N) =
N∏

i=1

(
ns

N
fS(xi|θ) +

(
1 − ns

N

)
fB(xi)

)
, (4.4.1)

where xi are the observables of the event i, ns is the number of events associated

with the signal, and fS and fB are the signal and background pdfs, respectively.

When performing the analysis, we consider the events from 2012-2018 taken from

the public release [65], and select those within a 15◦ radius from each source.

To perform a statistical test for a choice of parameters in a given model, we compare

the likelihood to that of the null hypothesis, which we take to be the best fit power

law flux for the chosen source. We use a log-likelihood ratio as our test-statistic:

TS = −2∆ log L = −2 log
(

L(ns,θ|xi, N)
L0

)
, (4.4.2)

where we denote the likelihood of the best-fit power law flux hypothesis as L0. The
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Source Number of events (ns) Spectral index (γ)
NGC 1068 56.5 3.15

PKS 1424+24 48.7 3.86
TXS 0506+056 14.5 2.17

Table 4.1: The best-fit values of the signal event normalisation (ns)
and the spectral index (γ) for each of the three sources
included in the analysis, assuming SM interactions and
no overdensity in the relic neutrino flux.

relevant model parameters for the power-law hypothesis are the spectral index γ,

and the location of the source in the sky θs. We take fixed values of θs according

to the source under consideration. For the overdensity hypothesis we also have the

parameter η, which is the ratio compared to the SM relic neutrino density. When

modeling the NSI flux, we fix η = 1 and instead have the mass of the scalar mediator

Mφ and the coupling between tau neutrinos gττ as the free model parameters. For

the two latter cases, we may also allow the mass of the lightest neutrino to vary - the

other two masses are derived from this value using measured mass splitting values

from NuFIT 2022 [41].

For each realisation of the BSM model parameters (η or (Mφ, gττ )), we minimise

the test statistic (TS) over the spectral index of the initial flux, γ, and the number

of signal events ns. The likelihood of the null hypothesis (L0) corresponds to the

absence of observable signals of neutrino interactions - the scenario where the CνB

density follows the prediction of the ΛCDM model or where there are no BSM self-

interactions - and the neutrino flux is described by the best-fit parameters given in

Table 4.1.

These values are obtained through a TS analysis comparing the likelihoods between

the power-law model and the scenario where all the data corresponds to the back-

ground.

To perform this analysis, it is necessary to solve Eq. (4.2.1) for the given model

parameters. This results in the flux of neutrinos at IceCube, which can then be used

to calculate the signal pdf.
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4.4.1 Future Sensitivities

In order to estimate the sensitivity of the analysis technique in the light of future data,

it is necessary to produce mock data on which the analysis can be performed. We do

this on a per source basis, on account of the sources being sufficiently separated in

the sky that there is minimal probability that an event originating from one source

will be within the angular cut taken for the analysis of another source. We also

assume that all of the systematics of the IceCube detector will remain the same,

which is a decision driven by necessity rather than realism. The creation of mock

data can be performed by SkyLLH, using the constructed pdf of the background and

a given source pdf. For the latter, we assume the source follows the best-fit power

law flux. Once a set of mock data is generated, it is combined with the current

data set and the analysis is performed. This process is repeated over a number of

different instances, and the expectation value of the test-statistic is approximated as

the mean value of TS over all instances of mock data. We found, through a process

of trial-and-error, that a set of 500 instances produced reliable values.

4.5 Relic Overdensity

Any deviation from the expected average number density of relic neutrinos, n0 ≈

56 cm−3, can be parameterised by η = n/n0, where n is the actual number density.

The final flux at Earth can be found by solving the transport equation of Eq. (4.2.1)

numerically over the distance that the neutrinos travel through the overdense region,

which we take to be the entire distance of their propagation between their source

and Earth, assuming a given overdensity η.

The effect of neutrino self-interactions over the astrophysical neutrino flux can be seen

in Fig. 4.2. Taking NGC 1068 as an example, the initial flux is plotted alongside the

final flux for several different relic neutrino densities. The main effect is a suppression

of the flux at high energies. Regeneration processes lead to an increased flux at lower
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Figure 4.1: The t-statistic −2∆ log L for NGC 1068 as a function
of the relic neutrino overabundance. The effect of the
value of m1 is also demonstrated by taking different
limits for the mass scale, as explained in the text. Here
we take deff = 14 Mpc for the radius of the overdense
region.
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Figure 4.2: Normalised muon neutrino fluxes from NGC 1068 at
IceCube under different scenarios. The black line is
the initial flux, taken to be a power law. The spectral
index of the initial flux is the best-fit values from our
TS analysis, γ = 3.15. Given this initial flux, the other
lines are the solutions to the transport equation, with
the relevant neutrino number density ratios indicated.
The number density is assumed to be constant over
the distance between NGC 1068 and Earth, and m1
(the lightest neutrino mass) is 0.034 eV. Flux given in
arbitrary units as the normalisation is a priori unknown.

energies; however, the influence at lower energies remains minimal due to the rapid

decrease of the flux with energy.

We begin our discussion by considering only SM neutrino interactions, and assume

that the number density is the same for all mass states and neutrinos/antineutrinos.

We require both total and differential SM cross-sections to solve the transport equa-

tions in Eq. (4.2.1), which we will briefly outline next. For the observable neutrinos

under consideration, which have energy . 100 TeV, the centre of mass energy of the

interactions (see Section 4.2) are always sufficiently small that the only important

processes are νν → νν, νν̄ → νν̄, and νν̄ → e+e−.
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Figure 4.3: Feynman diagrams for the relevant interactions between
neutrinos and relic neutrinos. (a) and (b) are the t- and
u-channel diagrams, respectively, for elastic scattering
of incident neutrinos off of relic neutrinos. (c) is for
lepton pair production where l = ν or l = e−. (d) is
the t-channel e+e− pair production diagram. (e) is the
t-channel elastic scattering of neutrinos on relic anti-
neutrinos.
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4.5.1 Total cross-sections

We assume that all particles in the incoming flux are neutrinos rather than antineut-

rinos. This is valid as the flux observed at IceCube is a combination of νµ and ν̄µ

fluxes, and the total cross-section is invariant under swapping ν ↔ ν̄.

We start with the νν → νν scattering. Since the Z-boson mediates this process, it

is convenient to work in the neutrino mass basis. The total cross-section is:

σij = G2
F sj(3δij + 1)

2π , (4.5.1)

where GF is Fermi’s constant and the 3δij occurs because of the interference between

t and u-channel diagrams, as shown in Fig. 4.3a and Fig. 4.3b respectively, which

occurs when i = j. In the case of νν̄ scattering, we separate the cross-section cal-

culation into two categories - νν̄ and e+e− production. The first of these follows

similarly to the previous case, in particular when i 6= j:

σij = G2
F si

6π , (4.5.2)

while for i = j, we have to account for the annihilation and production of new

neutrino pairs. Combined, this gives:

σii = G2
F sj

π

(2
3 + 2 × 1

6

)
= G2

F sj

π
, (4.5.3)

where the first term arises from production of a νiν̄i pair, which receives an enhance-

ment from the additional t-channel diagram as shown in Fig. 4.3e. The second term

is from the production of a k state mass pair, where i 6= k, of which there are two

possibilities.

For the electron pair production process, the cross-section must be calculated on
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a weak basis. We write the mass-basis cross-section in terms of the weak basis

cross-section using the PMNS matrix:

σij =
∑
α,β

|Uiα|2
∣∣∣Ujβ

∣∣∣2 σαβ . (4.5.4)

σαα = G2
F

3π

√
1 − 4m2

e

s

(
2m2

e

(
g2

V,α − 2g2
A,α

)
+ s

(
g2

A,α + g2
V,α

))
(4.5.5)

where the flavour dependent axial and vector couplings are gA,α = δαe − 1
2 and

gV,α = δαe − 1
2 + 2 sin2 θW respectively.

The total cross-section for the SM interactions between the high-energy neutrinos

flux from astrophysical sources and relic neutrinos can be split into two contributions:

one from the production of neutrino final states only and one from the production

of electron-positron pairs:

σij = σν
ij + σe

ij , (4.5.6)

where i is the incoming neutrino mass state, and j is the relic neutrino mass state,

as before. From this, we find that

σν
ij = G2

F (7δij + 2)sj

3π , (4.5.7)

where GF is the Fermi constant. This cross-section has been summed over the con-

tributions from relic neutrinos and antineutrinos. For the cross-section with e+e−

final states, the interaction must be calculated in the mass basis, such that

σe
ij =

∑
α

|Uei|2
∣∣∣Uej

∣∣∣2 σe
α , (4.5.8)
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where α is the flavour of the initial state neutrinos in the interaction. The production

of e+e− only occurs with neutrino-antineutrino annihilation, so we can consider the

initial flavours to be identical. The total cross-sections for this process are

σe
α = G2

F

3π [s(g2
A + g2

V ) + 2m2
e(g2

V − 2g2
A)]
√

1 − 4m2
e

s
, (4.5.9)

where gA = δαe + gα
A and gV = δαe + gα

V where gα
A = −1

2 and gα
V = −1

2 + 2 sin2 θW ,

with θW being the weak mixing angle and me the electron mass.

4.5.2 Differential cross-sections

For the process νjνk → νiνl we find that:

dσjk→il

dt
= G2

F

4π (δijδkl + δikδjl)2 , (4.5.10)

where the Mandelstam variables are t = −2mk(E ′ − E) and u = −2mkE. The pro-

cess νj ν̄k → νiν̄l follows similarly, with the Mandelstam variables remaining the same:

dσjk→il

dt
= G2

F

4π
u2

s2
k

(δjkδil + δijδkl)2 . (4.5.11)

Finally, we also need to account for up-scattered relic antineutrinos, i.e. the process

νj ν̄k → ν̄iνl. This differs from the previous two cases as the Mandelstam variables u

and t are swapped. The differential cross-section for this process is then:

dσjk→il

dt
= G2

F

4π
t2

s2
k

(δjkδil + δijδkl)2 . (4.5.12)

Combining these different processes gives the final differential cross-section:
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dσjk→il(E ′, E)
dE

= G2
Fmk

2π

(
(δijδkl + δikδjl)2 + (δjkδil + δijδkl)2

(
E

E ′

)2)
, (4.5.13)

Unlike in the case of the total cross-sections, when calculating the differential cross-

section in the second term on the RHS of Eq. (4.2.1), we are interested in the

kinematics of the final state of the interaction. In particular, we wish to obtain

the differential cross-section in terms of the energy of the outgoing i mass state

(anti)neutrino. We find that the differential cross-section for neutrino pair produc-

tion, taking all processes into account, is

dσjk→il(E ′, E)
dE

= G2
Fmk

2π

(
Aijkl +Bijkl

(
E

E ′

)2)
, (4.5.14)

where we have defined

Aijkl = (δijδkl + δikδjl)2 , (4.5.15)

Bijkl = (δjkδil + δijδkl)2 . (4.5.16)

From the kinematics of the interactions, we find that the opening angle of the

neutrinos produced in these interactions is O(10−6) radians over the energy range

of interest at IceCube. Whilst this opening angle may produce substantial effects

over the large distance between the point sources and Earth, the average opening

angle from the production of neutrinos from pions is larger by at least three orders

of magnitude. Thus, we can assume that the decrease in flux due to the angular

diffusion is counteracted by the same effect occurring in adjacent patches of space.

4.5.3 Results

In Fig. 4.1, we show the test statistic as a function of the CνB overabundance

parameter η. Since the SM cross-sections are proportional to the centre-of-mass

energy s, and because we assume the relic neutrinos to be at rest, the values of η
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Figure 4.4: The combined 90% confidence limits from all three
sources on a global relic overabundance as a function of
the mass of the lightest neutrino. The solid line is the
constraint using current data, and the dashed(dotted)
line shows the expectation of the limit with an extra
10(80) years of data taking. We assume normal ordering
and take the mass splittings from NuFIT 2022 [41].
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that are probed will depend on the neutrino masses. As the absolute scale of the

neutrino masses is not known, this analysis was repeated with different assumptions

on the mass of the lightest neutrino, assuming normal ordering (NO) and using the

mixing best-fit parameters from the NuFIT global analysis [41].

We consider three scenarios for the value of the lightest neutrino mass. First, we

employ the constraints on the sum of the neutrino masses coming from cosmological

measurements, i.e. ∑i mi < 0.13 eV [66], and the best-fit values of the mass splittings

from neutrino oscillation experiments to obtain a mass for the lightest neutrino

of m1 = 0.0342 eV. Direct searches for neutrino masses, such as the one carried

away by KATRIN experiment, set bound on the effective electron neutrino mass of

|Uei|2 m2
i < 0.8 eV2 [67], which is then translated to the value of the lightest neutrino

mass of m1 = 0.8 eV. Finally, we also consider a case where the lightest neutrino

mass is small, but ν1 is still non-relativistic today, i.e. m1 = 0.001 eV.

The strongest constraints on η come from the larger values of m1, resulting from the

increased centre-of-mass energy of the scattering processes, which leads to stronger

interactions between the neutrinos. The limiting factor on the strength of the

constraint, i.e. the plateau observed at higher values of η, is due to the limited

strength of our analysis of NGC 1068 as a point source. At these values, the signal

pdf of the scattered neutrino model goes to zero for all events as no signal events

are predicted to be detected; this, in turn, means that the model likelihood tends

towards a pure background. To push the exclusion bounds to higher confidence levels

(C.L.), we would require a larger likelihood value for the PL point-source analysis of

NGC 1068.

Extending this analysis to a range of values of m1 gives the results shown in Fig. 4.4,

where the 90% confidence limits are plotted for current data, and the expected

sensitivity for an extra 10 and 80 years of data taking using the methods explained

previously. We choose 80 years as a proxy for the IceCube Gen 2 experiment. Our

constraints improve as m1 increases due to the increase in the centre-of-mass energy.

On the other hand, for small m1, the mass squared differences dominate in setting
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the mass scale, which results in an asymptotic limit.

4.6 Scalar mediated neutrino self-interactions

In this section, we will consider new interactions between neutrinos, mediated by a

new light scalar. This scenario is motivated by the potential alleviation of the H0 and

σ8 tensions in cosmology by adding BSM neutrino self-interactions [59], [68]. These

observables are sensitive to the low energy interactions between neutrinos, which

affect their thermal history in the early Universe. At sufficiently low energies, these

interactions have the same four-Fermi structure as low energy Z-boson interactions,

but with an effective interaction strength Geff ≡
∣∣∣gαβ

∣∣∣2 /m2
φ. Here gαβ is the high

energy coupling between flavours α and β, and mφ is the mass of the new scalar

mediator. The coupling between τ neutrinos is of particular interest for alleviating

the H0 and σ8 tensions in cosmology, as the preferred regions of parameter space have

been ruled out for all other lepton flavours [59]. For gττ , the region of parameter

space which results in "moderately interacting neutrinos" (MIν) , is still viable.

This scenario is characterised by effective interaction strengths log(Geff MeV2) =

−3.90+1.00
−0.93 [68]. Hence, this coupling will be the focus of our analysis.

There are several scenarios in which such interactions have been investigated. For

example, in cosmology, these interactions can alter the number of relativistic de-

grees of freedom (Neff) by heating the neutrino population. Constraints on Neff

from BBN [69] impose an upper limit on the mediator mass mφ > 1.3 MeV for

couplings g > 10−4. Experiments involving meson and lepton decays also probe

these interactions by searching for decay modes involving neutrinos. In this work,

we focus specifically on couplings involving tau neutrinos, as their detection is more

challenging, leading to weaker coupling strength bounds. Current constraints from

measurements of τ decay rates limit the coupling to g2
ττ < 0.1 [70].

Treating the SM as a low-energy effective field theory, we can explore the inclusion

of a higher-dimensional operator. At dimension five, the Weinberg operator [16]
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can explain the smallness of the neutrino masses. At higher dimensions, additional

BSM processes can emerge. For example, at dimension six, a coupling between

neutrinos and a leptonic scalar with a lepton number charge of -2 can arise through

the operator [71]:

L ⊃ Cij

Λ (Ĥ†Li)(Ĥ†Lj)φ (4.6.1)

After the electroweak (EW) symmetry breaking, this operator contributes to the

Lagrangian as

L ⊃ 1
2gαβφνανβ , (4.6.2)

where Greek letters denote flavor indices, να are the left-handed neutrinos, and

φ is a real scalar. While this interaction could induce flavour-changing processes,

we focus exclusively on flavour-preserving interactions in this work. We follow the

approach outlined in [59] to incorporate this new interaction into the cross-section

calculations. We will consider the relic neutrino number density to be the same as the

standard calculation, and as such can ignore the contributions from SM interactions

as negligible as shown in the previous section.

The effect of these new interactions is demonstrated in Fig. 4.5, where we compare

the initial power-law flux from the source to the fluxes at Earth from two sources.

The first of these sources is located at a distance from Earth equal to that of NGC

1068, 14 Mpc, where we can safely ignore the effect of redshift. The second source is

located at a redshift value equal to that of TXS 0506+056. By direct comparison,

we can see firstly that the overall effect of the redshift is to logarithmically shift the

energy of the neutrinos to lower values. However, this is not an observable effect, at

least for a featureless power-law flux, since we have no fixed normalisation for the

flux and so the effect can be removed by increasing the initial flux. When the scalar

mediated interactions are included, new features appear in the flux which make the

distinction clearer.
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The two clear dips in flux occur when the centre of mass energy of the interactions

between relic and astrophysical neutrinos is the same as the mass of the mediating

scalar particle, producing a resonance in the cross-section. There are in fact three

dips, coinciding with the three masses of the neutrinos, which are separated accord-

ing to the mass differences which can be found from the experimentally measured

oscillation parameters. The smallness of the 1-2 mass difference leads to the two

dips being too close to distinguish successfully. The width of the dips is, at tree

level, proportional to the decay-rate of the scalar mediator [59]

Γ ∼ mφg
2
ττ . (4.6.3)

Comparing Fig. 4.5b to Fig. 4.5d, we can see how increasing the coupling widens

the "necks" of the dips.

We can also see the effect of redshift in these plots. On the one hand, the larger

distance travelled by the neutrinos leads to more significant changes in the flux, due

simply to the increase in the numbers of interactions that will occur. However the

redshift also shifts to flux to lower energy values, thereby "filling in" the dip with the

fluxes from higher energies. This is demonstrated in Fig. 4.6, where the normalised

flux is compared between three sources with different redshifts.

4.6.1 Results

The results of our analysis of NSI are presented in Fig. 4.8. We compare our bounds

to those from BBN, Z to invisible decays, and High Energy Starting Events (HESE)

at IceCube which originate from the diffuse astrophysical flux [59]. The HESE

dataset contains all events with an interaction vertex fully contained by the fiducial

volume of the detector [72]. As such, it contains a larger superset of the data

considered in our analysis, since we look only at events which can be reconstructed

as tracks. We find that the combined bound from all three sources considered in this

work is generally outperformed in the relevant parameter space by the diffuse source
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Figure 4.5: Effects of NSI on the neutrino flux propagating through
the CνB. We take an initial power-law flux with spec-
tral index γ = 3.86, which matches that of PKS. The
final flux at Earth is calculated for a source at the same
distance as NGC 1068 - 14 Mpc - and for a source at
the same redshift as TXS 0506+056 - z = 0.45. This
highlights the difference in final flux caused by both the
increased propagation distance and the redshift from the
expansion of the Universe. The value of the coupling
between tau-flavoured neutrinos and the scalar particle,
gττ , as well as the mass of the scalar particle, Mφ, are
varied between figures (a)-(d) to demonstrate their effect
on the final fluxes. Flux values are given in arbitrary
units as the normalisation of the flux is a priori un-
known.
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Figure 4.6: Ratio of the final to initial muon neutrino fluxes from
three toy sources at redshifts z0 ∈ { 0.5, 0.3, 0.1 }. The
lowering of the flux energy, thereby preserving the bump
in flux at lower energies, can be clearly seen. To produce
these fluxes an initial power-law flux was used with
spectral index γ = 2.7. The scalar coupling was chosen
to be gττ = 0.02 and the scalar mediator mass was
mφ = 0.5 MeV. Finally, the lightest neutrino mass m1
was given a value such that the cosmological bound on
the sum of the neutrino masses was saturated.

analysis, which we attribute to the smaller number of source events for point-sources.

However, the bounds are comparable, and point sources provide better constraints

for mediator masses, mφ, below 1 MeV, though BBN already constrains this. These

bounds are both complementary since calculating the flux of diffuse sources in the

NSI scenario requires assumptions about the z-dependence of neutrino production

in the early Universe [59], which is not the case for point sources where the redshift

is known to within some uncertainty.

We have also estimated the future sensitivity for 80 years of extra data, as a proxy

for 10 years of IceCube Gen-2 (dashed line in Fig. 4.8). The increase in observed

events expected at IceCube Gen-2 will be able to push the exclusion region to cover

much of the MIν solution, which will have important consequences for both neutrino

physics and cosmology. However the improvement in sensitivity is not uniform across

the values of the mass. This can be understood by considering the limiting factors of

the sensitivity of the analysis. For higher values of mass, the sensitivity is limited by

the flux of neutrinos at energies which are high enough to coincide with the dips in
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set of NSI parameters, the full analysis was performed
assuming the source was TXS 0506+056, and the best fit
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constructed from event samples created using SkyLLH.
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Figure 4.8: Scalar mediated neutrino self-interaction. The 2σ
exclusion region determined by IceCube is shown based
on astrophysical sources NGC 1068, TXS 0506+056 and
PKS 1424+240, and their combined result (black solid
line). To produce these, we assumed normal ordering
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of operation (black dash line), equivalent to 10 years
of data collection with IceCube-Gen2. We compare
our results to those from [59], which includes exclusion
regions from BBN (grey), Z to invisibles decay (purple),
and IceCube HESE (green).
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the flux. On the other hand, as gττ gets smaller the widths of the dips are reduced,

as can be seen in Fig. 4.5. If the energy pdf is broader than the width of the dip, it

is not possible to resolve the effect of the dip at the statistical level, i.e. the analysis

is systematics limited. This means that there will be some value of gττ at which the

sensitivity of the analysis saturates and additional data provides negligible benefits.

We can see this happening in Fig. 4.8, where the additional 80 years of data lowers

the contour at higher masses more than at lower masses, even though the statistics

relevant to the latter regime will increase much more than the former. Looking at

Fig. 4.7 we can see how, as gττ decreases, the pdf of the reconstructed muon energy

for NSIs becomes less distinguishable from the pdf for the power-law flux; this is

the case even though the pdf of the true neutrino energy retains features of the dip.

This limit can only be overcome by improved analysis and reconstruction techniques,

such as those used in [56].

4.7 Conclusion

Point sources of neutrinos offer a unique perspective into neutrino physics, both

within and beyond the Standard Model. It is also possible that additional BSM

scenarios beyond those discussed in this work could be constrained using a similar

analysis. We performed a log-likelihood analysis on neutrino decays arising from a

coupling to a massless scalar. However, we found that current public data cannot

constrain this scenario to a statistically significant degree as |TS| < 0.2 for all

coupling values.

As more data is collected, and improvements are made to analysis and reconstruction

techniques, these sources will be able to push our understanding of the neutrino to

new limits. They are particularly complimentary to diffuse neutrinos sources, as the

distance of propagation can be found using astronomical observations of their source

galaxy. This allows for a reduction in the assumptions made in any analysis, which

will provide more robust results. Furthermore, the addition of new data may make
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possible the identification of additional point-source candidates beyond the three

discussed in this analysis, which will potentially allow for further improvement on

the results presented here. This will almost certainly be the case with the future

IceCube Gen2 experiment, which will increase the rate of data taking by almost an

order of magnitude.



Chapter 5

Summary

In this thesis, we have investigated how two different sources of neutrinos, both

produced in astrophysical processes, can be used as experimental windows into the

fundamental nature and properties of neutrinos. The variety of these fluxes allows

for a wide range of potential realities to be scrutinised. The phenomena of neutrino

oscillations forces us to consider models of physics beyond the Standard Model as

we know it today. As such, neutrinos offer a pathway of discovery if we can find

ways to uncover their secrets.

In Chapter 3, we looked at the pseudo-Dirac scenario for neutrino masses. We

found that Solar neutrinos offer fertile ground for exploring the oscillations that

occur in this scenario. This was due to their low energies, and the large propagation

distance between the Sun and Earth. In particular the JUNO experiment, which

aims to begin data taking in the very near future, could provide large improvements

in the sensitivity to small values of δm2. If it is possible to control the large 14C

background, the sensitivity may even compete with the future DARWIN (now XLZD)

xenon detector.

On the other end of the energy scale, the possibility of harnessing high energy

neutrinos for new physics searches was detailed in Chapter 4. Point sources at

IceCube offer unique fluxes of neutrinos with energies of 100 GeV and beyond, from

galaxies with well constrained distances or redshifts. This offers complementarity
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to the diffuse fluxes at IceCube which have no known origin. We focussed our

efforts on two scenarios in particular, using public experimental data to perform

our analysis. The first of these was to search for deviations in the density of relic

neutrinos, however we found that the energies of the neutrino fluxes were too low to

probe this well. The second scenario investigated was that of additional interactions

between neutrinos, mediated by a light scalar particle. Our point source analysis was

able to produce similar constrains to those from diffuse fluxes, even though the mean

number of signal events was orders of magnitude smaller. Improvements on these

constraints will come from two directions. Firstly, advancements in analysis and

reconstruction techniques will be able to strengthen the discriminative power of point

source analyses. These improvements have already been developed by the IceCube

collaboration for their point source searches, and hopefully will become public in the

near future. The second direction of progress will be the construction of future high

energy neutrino observatories, such as KM3NeT and in particular IceCube Gen2.

These next generation experiments will be able to drastically increase the number

of neutrinos detected from point sources. We showed that such an increase in data

would lead to large improvements on the sensitivity to new interactions.

To conclude, we have covered neutrino fluxes that spread over gargantuan scales in

energy. In particular, the neutrinos observed at IceCube have energies beyond those

achievable even for protons at the LHC. Combined with the large distances over

which all astrophysical neutrino fluxes must travel before reaching Earth, they allow

us to investigate their behaviour under conditions that could never be replicated

by terrestrial experiments. They are thus a vital tool in our ongoing journey to

explore what may lay beyond the horizon of our understanding of the Universe.

When the next generation of neutrino experiments and observatories come online,

our understanding of both the neutrino and the Universe will be pushed to new

heights.



Bibliography

[1] H. K. Dreiner, H. E. Haber and S. P. Martin, “Two-component spinor tech-

niques and Feynman rules for quantum field theory and supersymmetry,”

Physics Reports, vol. 494, no. 1-2, pp. 1–196, Sep. 2010, issn: 03701573. doi:

10.1016/j.physrep.2010.05.002. arXiv: 0812.1594 [hep-ph].

[2] L. Infeld and B. L. van der Waerden, “THE WAVE EQUATION OF THE

ELECTRON IN THE GENERAL RELATIVITY THEORY,” Sitzungsber.

Preuss. Akad. Wiss. Berlin (Math. Phys. ), vol. 1933, pp. 380–401, 1933.

[3] M. Srednicki, Quantum field theory. Cambridge University Press, Jan. 2007,

isbn: 978-0-521-86449-7, 978-0-511-26720-8. doi: 10.1017/CBO9780511813917.

[4] S. Navas et al., “Review of particle physics,” Phys. Rev. D, vol. 110, no. 3,

p. 030 001, 2024. doi: 10.1103/PhysRevD.110.030001.

[5] M. E. Peskin and D. V. Schroeder, An Introduction to quantum field the-

ory. Reading, USA: Addison-Wesley, 1995, isbn: 978-0-201-50397-5, 978-0-429-

50355-9, 978-0-429-49417-8. doi: 10.1201/9780429503559.

[6] P. Ramond, Journeys beyond the standard model. 1999, vol. 101, isbn: 978-0-

8133-4131-6, 978-0-7382-0116-0.

[7] R. N. Mohapatra and P. B. Pal, Massive Neutrinos in Physics and Astrophysics

(Third Edition). 2004. doi: 10.1142/5024.

https://doi.org/10.1016/j.physrep.2010.05.002
https://arxiv.org/abs/0812.1594
https://doi.org/10.1017/CBO9780511813917
https://doi.org/10.1103/PhysRevD.110.030001
https://doi.org/10.1201/9780429503559
https://doi.org/10.1142/5024


106 Bibliography

[8] T. Takagi, “On an Algebraic Problem Reluted to an Analytic Theorem of

Carathéodory and Fejér and on an Allied Theorem of Landau,” Japanese

journal of mathematics :transactions and abstracts, vol. 1, pp. 83–93, 1924.

doi: 10.4099/jjm1924.1.0_83.

[9] S. M. Bilenky and S. T. Petcov, “Massive neutrinos and neutrino oscillations,”

Reviews of Modern Physics, vol. 59, no. 3, pp. 671–754, Jul. 1987, issn: 0034-

6861. doi: 10.1103/RevModPhys.59.671. (visited on 15/03/2025).

[10] L. Wolfenstein, “Different Varieties of Massive Dirac Neutrinos,” Nucl. Phys.

B, vol. 186, pp. 147–152, 1981. doi: 10.1016/0550-3213(81)90096-1.

[11] S. T. Petcov, “On Pseudodirac Neutrinos, Neutrino Oscillations and Neutri-

noless Double beta Decay,” Phys. Lett. B, vol. 110, pp. 245–249, 1982. doi:

10.1016/0370-2693(82)91246-1.

[12] S. M. Bilenky and B. Pontecorvo, “Neutrino Oscillations With Large Oscil-

lation Length in Spite of Large (Majorana) Neutrino Masses?” Sov. J. Nucl.

Phys., vol. 38, p. 248, 1983.

[13] R. Foot and R. R. Volkas, “Neutrino physics and the mirror world: How exact

parity symmetry explains the solar neutrino deficit, the atmospheric neutrino

anomaly and the LSND experiment,” Phys. Rev. D, vol. 52, pp. 6595–6606,

1995. doi: 10.1103/PhysRevD.52.6595. arXiv: hep-ph/9505359.

[14] D. Chang and O. C. W. Kong, “Pseudo-Dirac neutrinos,” Phys. Lett. B,

vol. 477, pp. 416–423, 2000. doi: 10.1016/S0370-2693(00)00228-8. arXiv:

hep-ph/9912268.

[15] A. de Gouvea, W.-C. Huang and J. Jenkins, “Pseudo-Dirac Neutrinos in the

New Standard Model,” Phys. Rev. D, vol. 80, p. 073 007, 2009. doi: 10.1103/

PhysRevD.80.073007. arXiv: 0906.1611 [hep-ph].

[16] S. Weinberg, “Baryon and Lepton Nonconserving Processes,” Phys. Rev. Lett.,

vol. 43, pp. 1566–1570, 1979. doi: 10.1103/PhysRevLett.43.1566.

https://doi.org/10.4099/jjm1924.1.0_83
https://doi.org/10.1103/RevModPhys.59.671
https://doi.org/10.1016/0550-3213(81)90096-1
https://doi.org/10.1016/0370-2693(82)91246-1
https://doi.org/10.1103/PhysRevD.52.6595
https://arxiv.org/abs/hep-ph/9505359
https://doi.org/10.1016/S0370-2693(00)00228-8
https://arxiv.org/abs/hep-ph/9912268
https://doi.org/10.1103/PhysRevD.80.073007
https://doi.org/10.1103/PhysRevD.80.073007
https://arxiv.org/abs/0906.1611
https://doi.org/10.1103/PhysRevLett.43.1566


Bibliography 107

[17] C. Giunti and C. W. Kim, Fundamentals of Neutrino Physics and Astrophysics.

2007, isbn: 978-0-19-850871-7. doi: 10.1093/acprof:oso/9780198508717.

001.0001.

[18] J. J. Gómez-Cadenas, J. Martín-Albo, J. Menéndez, M. Mezzetto, F. Monrabal

and M. Sorel, “The search for neutrinoless double-beta decay,” La Rivista del

Nuovo Cimento, vol. 46, no. 10, pp. 619–692, 1st Oct. 2023, issn: 1826-9850.

doi: 10.1007/s40766-023-00049-2.

[19] A. Gando et al., “Search for Majorana Neutrinos near the Inverted Mass

Hierarchy Region with KamLAND-Zen,” Phys. Rev. Lett., vol. 117, no. 8,

p. 082 503, 2016, [Addendum: Phys.Rev.Lett. 117, 109903 (2016)]. doi: 10.

1103/PhysRevLett.117.082503. arXiv: 1605.02889 [hep-ex].

[20] CUORE Collaboration, D. Q. Adams, C. Alduino et al., “Improved Limit on

Neutrinoless Double-Beta Decay in $^{130} \mathrm{Te}$ with CUORE,”

Physical Review Letters, vol. 124, no. 12, p. 122 501, 26th Mar. 2020. doi:

10.1103/PhysRevLett.124.122501.

[21] EXO-200 Collaboration, G. Anton, I. Badhrees et al., “Search for Neutrinoless

Double-$\ensuremath{\beta}$ Decay with the Complete EXO-200 Dataset,”

Physical Review Letters, vol. 123, no. 16, p. 161 802, 18th Oct. 2019. doi:

10.1103/PhysRevLett.123.161802.

[22] GERDA Collaboration, M. Agostini, G. R. Araujo et al., “Final Results of

GERDA on the Search for Neutrinoless Double-$\ensuremath{\beta}$ Decay,”

Physical Review Letters, vol. 125, no. 25, p. 252 502, 17th Dec. 2020. doi:

10.1103/PhysRevLett.125.252502.

[23] J. Schechter and J. W. F. Valle, “Neutrinoless Double beta Decay in SU(2) x

U(1) Theories,” Phys. Rev. D, vol. 25, p. 2951, 1982. doi: 10.1103/PhysRevD.

25.2951.

https://doi.org/10.1093/acprof:oso/9780198508717.001.0001
https://doi.org/10.1093/acprof:oso/9780198508717.001.0001
https://doi.org/10.1007/s40766-023-00049-2
https://doi.org/10.1103/PhysRevLett.117.082503
https://doi.org/10.1103/PhysRevLett.117.082503
https://arxiv.org/abs/1605.02889
https://doi.org/10.1103/PhysRevLett.124.122501
https://doi.org/10.1103/PhysRevLett.123.161802
https://doi.org/10.1103/PhysRevLett.125.252502
https://doi.org/10.1103/PhysRevD.25.2951
https://doi.org/10.1103/PhysRevD.25.2951


108 Bibliography

[24] Y. Fukuda et al., “Evidence for oscillation of atmospheric neutrinos,” Phys.

Rev. Lett., vol. 81, pp. 1562–1567, 1998. doi: 10.1103/PhysRevLett.81.1562.

arXiv: hep-ex/9807003.

[25] M. Beuthe, “Oscillations of neutrinos and mesons in quantum field theory,”

Phys. Rept., vol. 375, pp. 105–218, 2003. doi: 10.1016/S0370-1573(02)00538-

0. arXiv: hep-ph/0109119.

[26] M. Fukugita and T. Yanagida, Physics of neutrinos and applications to astro-

physics (Theoretical and Mathematical Physics). Berlin, Germany: Springer-

Verlag, 2003, isbn: 978-3-662-05119-1, 978-3-540-43800-7, 978-3-642-07851-4.

doi: 10.1007/978-3-662-05119-1.

[27] J. Aalbers et al., “Solar neutrino detection sensitivity in darwin via electron

scattering,” The European Physical Journal C, vol. 80, no. 1133, 2020. doi:

10.1140/epjc/s10052-020-08602-7.

[28] E. K. Akhmedov, R. Johansson, M. Lindner, T. Ohlsson and T. Schwetz,

“Series expansions for three-flavor neutrino oscillation probabilities in matter,”

Journal of High Energy Physics, vol. 2004, no. 04, p. 078, May 2004, issn:

1126-6708. doi: 10.1088/1126-6708/2004/04/078.

[29] F. An et al., “Neutrino Physics with JUNO,” J. Phys. G, vol. 43, no. 3,

p. 030 401, 2016. doi: 10.1088/0954-3899/43/3/030401. arXiv: 1507.05613

[physics.ins-det].

[30] I. Lopes and S. Turck-Chièze, “Solar neutrino physics oscillations: Sensitivity

to the electronic density in the sun’s core,” The Astrophysical Journal, vol. 765,

no. 1, p. 14, Feb. 2013. doi: 10.1088/0004-637X/765/1/14.

[31] A. Abusleme et al., “Radioactivity control strategy for the JUNO detector,”

JHEP, vol. 11, p. 102, 2021. doi: 10.1007/JHEP11(2021)102. arXiv: 2107.

03669 [physics.ins-det].

[32] A. Abusleme et al., “JUNO sensitivity to 7Be, pep, and CNO solar neutrinos,”

Mar. 2023. arXiv: 2303.03910 [hep-ex].

https://doi.org/10.1103/PhysRevLett.81.1562
https://arxiv.org/abs/hep-ex/9807003
https://doi.org/10.1016/S0370-1573(02)00538-0
https://doi.org/10.1016/S0370-1573(02)00538-0
https://arxiv.org/abs/hep-ph/0109119
https://doi.org/10.1007/978-3-662-05119-1
https://doi.org/10.1140/epjc/s10052-020-08602-7
https://doi.org/10.1088/1126-6708/2004/04/078
https://doi.org/10.1088/0954-3899/43/3/030401
https://arxiv.org/abs/1507.05613
https://arxiv.org/abs/1507.05613
https://doi.org/10.1088/0004-637X/765/1/14
https://doi.org/10.1007/JHEP11(2021)102
https://arxiv.org/abs/2107.03669
https://arxiv.org/abs/2107.03669
https://arxiv.org/abs/2303.03910


Bibliography 109

[33] N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron.

Astrophys., vol. 641, A6, 2020, [Erratum: Astron.Astrophys. 652, C4 (2021)].

doi: 10.1051/0004-6361/201833910. arXiv: 1807.06209 [astro-ph.CO].

[34] B. Bamieh. “A Tutorial on Matrix Perturbation Theory (using compact matrix

notation).” arXiv: 2002.05001 [math]. (24th Apr. 2022), pre-published.

[35] M. Kobayashi and C. S. Lim, “Pseudo-Dirac Scenario for Neutrino Oscillations,”

Physical Review D, vol. 64, no. 1, p. 013 003, 21st May 2001, issn: 0556-2821,

1089-4918. doi: 10.1103/PhysRevD.64.013003. arXiv: hep-ph/0012266.

[36] A. de Gouvêa, E. McGinness, I. Martinez-Soler and Y. F. Perez-Gonzalez, “pp

solar neutrinos at DARWIN,” Phys. Rev. D, vol. 106, no. 9, p. 096 017, 2022.

doi: 10.1103/PhysRevD.106.096017. arXiv: 2111.02421 [hep-ph].

[37] S. J. Parke, “Nonadiabatic Level Crossing in Resonant Neutrino Oscillations,”

Phys. Rev. Lett., vol. 57, S. C. Loken, Ed., pp. 1275–1278, 1986. doi: 10.1103/

PhysRevLett.57.1275. arXiv: 2212.06978 [hep-ph].

[38] A. de Gouvea, A. Friedland and H. Murayama, “Seasonal variations of the

Be-7 solar neutrino flux,” Phys. Rev. D, vol. 60, p. 093 011, 1999. doi: 10.

1103/PhysRevD.60.093011. arXiv: hep-ph/9904399.

[39] A. Friedland, “MSW effects in vacuum oscillations,” Phys. Rev. Lett., vol. 85,

pp. 936–939, 2000. doi: 10.1103/PhysRevLett.85.936. arXiv: hep-ph/

0002063.

[40] N. Vinyoles, A. M. Serenelli, F. L. Villante et al., “A new generation of standard

solar models,” The Astrophysical Journal, vol. 835, no. 2, p. 202, 2017. doi:

10.3847/1538-4357/835/2/202.

[41] I. Esteban, M. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou, “The

fate of hints: Updated global analysis of three-flavor neutrino oscillations,”

Journal of High Energy Physics, vol. 2020, no. 9, p. 178, 28th Sep. 2020, issn:

1029-8479. doi: 10.1007/JHEP09(2020)178.

https://doi.org/10.1051/0004-6361/201833910
https://arxiv.org/abs/1807.06209
https://arxiv.org/abs/2002.05001
https://doi.org/10.1103/PhysRevD.64.013003
https://arxiv.org/abs/hep-ph/0012266
https://doi.org/10.1103/PhysRevD.106.096017
https://arxiv.org/abs/2111.02421
https://doi.org/10.1103/PhysRevLett.57.1275
https://doi.org/10.1103/PhysRevLett.57.1275
https://arxiv.org/abs/2212.06978
https://doi.org/10.1103/PhysRevD.60.093011
https://doi.org/10.1103/PhysRevD.60.093011
https://arxiv.org/abs/hep-ph/9904399
https://doi.org/10.1103/PhysRevLett.85.936
https://arxiv.org/abs/hep-ph/0002063
https://arxiv.org/abs/hep-ph/0002063
https://doi.org/10.3847/1538-4357/835/2/202
https://doi.org/10.1007/JHEP09(2020)178


110 Bibliography

[42] H. Murayama, “Impact of neutrino oscillation measurements on theory,” AIP

Conf. Proc., vol. 721, no. 1, A. Para, Ed., pp. 122–129, 2004. doi: 10.1063/1.

1818385. arXiv: hep-ph/0312008.

[43] G. L. Fogli, E. Lisi, A. Marrone and A. Palazzo, “Global analysis of three-flavor

neutrino masses and mixings,” Prog. Part. Nucl. Phys., vol. 57, pp. 742–795,

2006. doi: 10.1016/j.ppnp.2005.08.002. arXiv: hep-ph/0506083.

[44] J. P. Cravens et al., “Solar neutrino measurements in Super-Kamiokande-II,”

Phys. Rev. D, vol. 78, p. 032 002, 2008. doi: 10.1103/PhysRevD.78.032002.

arXiv: 0803.4312 [hep-ex].

[45] B. Aharmim et al., “An Independent Measurement of the Total Active B-8

Solar Neutrino Flux Using an Array of He-3 Proportional Counters at the

Sudbury Neutrino Observatory,” Phys. Rev. Lett., vol. 101, p. 111 301, 2008.

doi: 10.1103/PhysRevLett.101.111301. arXiv: 0806.0989 [nucl-ex].

[46] M. B. Smy, “Solar neutrino precision measurements using all 1496 days of

Super-Kamiokande I data,” Nucl. Phys. B Proc. Suppl., vol. 118, F. von Feil-

itzsch and N. Schmitz, Eds., pp. 25–32, 2003. doi: 10.1016/S0920-5632(03)

01300-8. arXiv: hep-ex/0208004.

[47] B. T. Cleveland, T. Daily, R. Davis Jr. et al., “Measurement of the solar

electron neutrino flux with the Homestake chlorine detector,” Astrophys. J.,

vol. 496, pp. 505–526, 1998. doi: 10.1086/305343.

[48] S. Ansarifard and Y. Farzan, “Revisiting pseudo-dirac neutrino scenario after

recent solar neutrino data,” 2023. arXiv: 2211.09105 [hep-ph].

[49] F. Capozzi, S. W. Li, G. Zhu and J. F. Beacom, “DUNE as the Next-Generation

Solar Neutrino Experiment,” Phys. Rev. Lett., vol. 123, no. 13, p. 131 803, 2019.

doi: 10.1103/PhysRevLett.123.131803. arXiv: 1808.08232 [hep-ph].

[50] J. Bian et al., “Hyper-Kamiokande Experiment: A Snowmass White Paper,”

in Snowmass 2021, Mar. 2022. arXiv: 2203.02029 [hep-ex].

https://doi.org/10.1063/1.1818385
https://doi.org/10.1063/1.1818385
https://arxiv.org/abs/hep-ph/0312008
https://doi.org/10.1016/j.ppnp.2005.08.002
https://arxiv.org/abs/hep-ph/0506083
https://doi.org/10.1103/PhysRevD.78.032002
https://arxiv.org/abs/0803.4312
https://doi.org/10.1103/PhysRevLett.101.111301
https://arxiv.org/abs/0806.0989
https://doi.org/10.1016/S0920-5632(03)01300-8
https://doi.org/10.1016/S0920-5632(03)01300-8
https://arxiv.org/abs/hep-ex/0208004
https://doi.org/10.1086/305343
https://arxiv.org/abs/2211.09105
https://doi.org/10.1103/PhysRevLett.123.131803
https://arxiv.org/abs/1808.08232
https://arxiv.org/abs/2203.02029


Bibliography 111

[51] M. G. Aartsen et al., “Evidence for High-Energy Extraterrestrial Neutrinos at

the IceCube Detector,” Science, vol. 342, p. 1 242 856, 2013. doi: 10.1126/

science.1242856. arXiv: 1311.5238 [astro-ph.HE].

[52] F. W. Stecker, C. Done, M. H. Salamon and P. Sommers, “High-energy neut-

rinos from active galactic nuclei,” Physical Review Letters, vol. 66, no. 21,

pp. 2697–2700, 27th May 1991. doi: 10.1103/PhysRevLett.66.2697.

[53] E. Vitagliano, I. Tamborra and G. Raffelt, “Grand unified neutrino spectrum at

Earth: Sources and spectral components,” Reviews of Modern Physics, vol. 92,

no. 4, p. 045 006, 9th Dec. 2020. doi: 10.1103/RevModPhys.92.045006.

[54] A. Achterberg, M. Ackermann, J. Adams et al., “First year performance of the

IceCube neutrino telescope,” Astroparticle Physics, vol. 26, no. 3, pp. 155–173,

1st Oct. 2006, issn: 0927-6505. doi: 10.1016/j.astropartphys.2006.06.

007.

[55] M. G. Aartsen, M. Ackermann, J. Adams et al., “Time-Integrated Neutrino

Source Searches with 10 Years of IceCube Data,” Physical Review Letters,

vol. 124, no. 5, p. 051 103, 6th Feb. 2020. doi: 10.1103/PhysRevLett.124.

051103.

[56] ICECUBE COLLABORATION, R. Abbasi, M. Ackermann et al., “Evidence

for neutrino emission from the nearby active galaxy NGC 1068,” Science,

vol. 378, no. 6619, pp. 538–543, 4th Nov. 2022. doi: 10 . 1126 / science .

abg3395.

[57] A. J. Long, C. Lunardini and E. Sabancilar, “Detecting non-relativistic cos-

mic neutrinos by capture on tritium: Phenomenology and physics potential,”

Journal of Cosmology and Astroparticle Physics, vol. 2014, no. 08, p. 038, Aug.

2014, issn: 1475-7516. doi: 10.1088/1475-7516/2014/08/038.

[58] S.-F. Ge and P. Pasquini, “Parity violation and chiral oscillation of cosmological

relic neutrinos,” Physics Letters B, vol. 811, p. 135 961, 10th Dec. 2020, issn:

0370-2693. doi: 10.1016/j.physletb.2020.135961.

https://doi.org/10.1126/science.1242856
https://doi.org/10.1126/science.1242856
https://arxiv.org/abs/1311.5238
https://doi.org/10.1103/PhysRevLett.66.2697
https://doi.org/10.1103/RevModPhys.92.045006
https://doi.org/10.1016/j.astropartphys.2006.06.007
https://doi.org/10.1016/j.astropartphys.2006.06.007
https://doi.org/10.1103/PhysRevLett.124.051103
https://doi.org/10.1103/PhysRevLett.124.051103
https://doi.org/10.1126/science.abg3395
https://doi.org/10.1126/science.abg3395
https://doi.org/10.1088/1475-7516/2014/08/038
https://doi.org/10.1016/j.physletb.2020.135961


112 Bibliography

[59] I. Esteban, S. Pandey, V. Brdar and J. F. Beacom, “Probing secret interactions

of astrophysical neutrinos in the high-statistics era,” Phys. Rev. D, vol. 104,

p. 123 014, 12 Dec. 2021. doi: 10.1103/PhysRevD.104.123014. [Online].

Available: https://link.aps.org/doi/10.1103/PhysRevD.104.123014.

[60] P. Bhattacharjee and G. Sigl, “Origin and propagation of extremely high-energy

cosmic rays,” Phys. Rept., vol. 327, pp. 109–247, 2000. doi: 10.1016/S0370-

1573(99)00101-5. arXiv: astro-ph/9811011.

[61] S. Lee, “On the propagation of extragalactic high-energy cosmic and gamma-

rays,” Phys. Rev. D, vol. 58, p. 043 004, 1998. doi: 10.1103/PhysRevD.58.

043004. arXiv: astro-ph/9604098.

[62] M. Wolf, “SkyLLH - A generalized Python-based tool for log-likelihood analyses

in multi-messenger astronomy,” PoS, vol. ICRC2019, p. 1035, 2021. doi: 10.

22323/1.358.1035. arXiv: 1908.05181 [astro-ph.IM].

[63] C. Bellenghi et al., “Extending SkyLLH software for neutrino point source

analyses with 10 years of IceCube public data,” PoS, vol. ICRC2023, p. 1061,

2023. doi: 10.22323/1.444.1061. arXiv: 2308.12733 [astro-ph.HE].

[64] R. Abbasi et al., “The SkyLLH framework for IceCube point-source search,”

PoS, vol. ICRC2021, p. 1073, 2021. doi: 10 . 22323 / 1 . 395 . 1073. arXiv:

2107.08934 [astro-ph.IM].

[65] IceCube Collaboration, Icecube data for neutrino point-source searches years

2008-2018, 2021. doi: 10.21234/CPKQ-K003. [Online]. Available: https://

arxiv.org/abs/2101.09836.

[66] DES Collaboration, T. M. C. Abbott, M. Aguena et al., “Dark Energy Sur-

vey Year 3 results: Cosmological constraints from galaxy clustering and weak

lensing,” Physical Review D, vol. 105, no. 2, p. 023 520, 13th Jan. 2022. doi:

10.1103/PhysRevD.105.023520.

https://doi.org/10.1103/PhysRevD.104.123014
https://link.aps.org/doi/10.1103/PhysRevD.104.123014
https://doi.org/10.1016/S0370-1573(99)00101-5
https://doi.org/10.1016/S0370-1573(99)00101-5
https://arxiv.org/abs/astro-ph/9811011
https://doi.org/10.1103/PhysRevD.58.043004
https://doi.org/10.1103/PhysRevD.58.043004
https://arxiv.org/abs/astro-ph/9604098
https://doi.org/10.22323/1.358.1035
https://doi.org/10.22323/1.358.1035
https://arxiv.org/abs/1908.05181
https://doi.org/10.22323/1.444.1061
https://arxiv.org/abs/2308.12733
https://doi.org/10.22323/1.395.1073
https://arxiv.org/abs/2107.08934
https://doi.org/10.21234/CPKQ-K003
https://arxiv.org/abs/2101.09836
https://arxiv.org/abs/2101.09836
https://doi.org/10.1103/PhysRevD.105.023520


Bibliography 113

[67] M. Aker, A. Beglarian, J. Behrens et al., “Direct neutrino-mass measurement

with sub-electronvolt sensitivity,” Nature Physics, vol. 18, no. 2, pp. 160–166,

Feb. 2022, issn: 1745-2481. doi: 10.1038/s41567-021-01463-1.

[68] C. D. Kreisch, F.-Y. Cyr-Racine and O. Doré, “Neutrino puzzle: Anomalies, in-

teractions, and cosmological tensions,” Phys. Rev. D, vol. 101, no. 12, p. 123 505,

2020. doi: 10.1103/PhysRevD.101.123505. arXiv: 1902.00534 [astro-

ph.CO].

[69] N. Blinov, K. J. Kelly, G. Z. Krnjaic and S. D. McDermott, “Constraining the

Self-Interacting Neutrino Interpretation of the Hubble Tension,” Phys. Rev.

Lett., vol. 123, no. 19, p. 191 102, 2019. doi: 10.1103/PhysRevLett.123.

191102. arXiv: 1905.02727 [astro-ph.CO].

[70] A. P. Lessa and O. L. G. Peres, “Revising limits on neutrino-Majoron coup-

lings,” Phys. Rev. D, vol. 75, p. 094 001, 2007. doi: 10.1103/PhysRevD.75.

094001. arXiv: hep-ph/0701068.

[71] A. de Gouvêa, P. S. B. Dev, B. Dutta, T. Ghosh, T. Han and Y. Zhang,

“Leptonic Scalars at the LHC,” JHEP, vol. 07, p. 142, 2020. doi: 10.1007/

JHEP07(2020)142. arXiv: 1910.01132 [hep-ph].

[72] IceCube Collaboration, R. Abbasi, M. Ackermann et al., “IceCube high-energy

starting event sample: Description and flux characterization with 7.5 years

of data,” Physical Review D, vol. 104, no. 2, p. 022 002, 8th Jul. 2021. doi:

10.1103/PhysRevD.104.022002.

https://doi.org/10.1038/s41567-021-01463-1
https://doi.org/10.1103/PhysRevD.101.123505
https://arxiv.org/abs/1902.00534
https://arxiv.org/abs/1902.00534
https://doi.org/10.1103/PhysRevLett.123.191102
https://doi.org/10.1103/PhysRevLett.123.191102
https://arxiv.org/abs/1905.02727
https://doi.org/10.1103/PhysRevD.75.094001
https://doi.org/10.1103/PhysRevD.75.094001
https://arxiv.org/abs/hep-ph/0701068
https://doi.org/10.1007/JHEP07(2020)142
https://doi.org/10.1007/JHEP07(2020)142
https://arxiv.org/abs/1910.01132
https://doi.org/10.1103/PhysRevD.104.022002

	Abstract
	List of Figures
	List of Tables
	Declaration
	Acknowledgements
	Epigraph
	Dedication
	Preface
	Neutrinos in the Standard Model
	Fermions
	Neutral Fermions
	Fermions With Global Symmetries
	Fermions with Local Symmetries

	Gauge Bosons
	The Standard Model Lagrangian
	Electroweak Spontaneous Symmetry Breaking
	Lepton Interactions

	Massive Neutrinos
	Dirac neutrinos
	Mixed Majorana and Dirac Mass Terms with One Generation
	See-Saw limit
	Pseudo-Dirac limit

	Majorana Neutrinos
	Majorana vs Dirac Neutrinos

	Oscillations
	Wave Packets and Decoherence

	Neutrino Oscillations in Matter
	Solar Neutrinos
	Low Energy Regime
	Three Generation Solar Neutrinos


	Probing the pseudo-Dirac scenario using Solar neutrinos at JUNO
	Solar Neutrinos at JUNO
	The Three Generation Pseudo-Dirac Scenario
	Pseudo-Dirac Neutrino Oscillations
	MSW Regime
	Quasi-Vacuum Oscillations
	Vacuum Oscillation Regime
	Higher Energy 7Be Neutrinos

	Analysis
	Constraints on the Possible Pseudo-Dirac Nature of Neutrinos from JUNO

	Constraining Neutrino Self-Interactions with Point-Source Fluxes at IceCube
	Cosmic Neutrino Background
	Neutrino Degrees of Freedom

	Propagation of Neutrino Fluxes
	Numerically Solving The Neutrino Transport Equation
	Upper And Lower Bounds On Neutrino Energy
	Solving The Transport Equation Without Redshift
	Solving The Transport Equation With Redshift

	Analysis Methodology
	Future Sensitivities

	Relic Overdensity
	Total cross-sections
	Differential cross-sections
	Results

	Scalar mediated neutrino self-interactions
	Results

	Conclusion

	Summary

