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Abstract: Precision calculations are essential for advancing our understanding of

fundamental physics. As collider experiments achieve ever-higher accuracy, match-

ing this precision on the theoretical side is increasingly critical. This demands

sophisticated computational tools to tackle complex higher-order corrections.

This thesis focuses on techniques for handling Feynman integrals which are central

to these corrections. We introduce a method to compute these integrals directly in

the Minkowski kinematic regime without contour deformation, demonstrating its

efficiency and robustness through multi-loop examples.

We also present a calculation of next-to-leading-order electroweak corrections to

Higgs pair production, detailing the computational framework and presenting results

for the NLO EW corrections to both total and differential cross sections.

Beyond this specific calculation, the techniques outlined in this thesis have broader

applications in precision collider physics. By improving the efficiency and accuracy

of multi-loop calculations, they contribute to reducing theoretical uncertainties and

enhancing the search for deviations from the Standard Model.





Contents

List of Figures 9

List of Tables 17

1 Introduction 27

1.1 Higgs Pair Production . . . . . . . . . . . . . . . . . 28

2 Feynman Integrals 33

2.1 Fundamentals . . . . . . . . . . . . . . . . . . . . 33

2.1.1 Dimensional Regularisation . . . . . . . . . . . . 38

2.2 Representations of Feynman Integrals . . . . . . . . . . . 41

2.2.1 Momentum Space Representation . . . . . . . . . . 42

2.2.2 Schwinger Parameter Representation . . . . . . . . . 43

2.2.3 Feynman Parameter Representation . . . . . . . . . 45

2.3 Integration-by-Parts Reduction . . . . . . . . . . . . . . 52

2.3.1 Integral Families . . . . . . . . . . . . . . . . 52

2.3.2 The IBP Identity . . . . . . . . . . . . . . . . 55

2.3.3 Dimensional Recurrence Relations . . . . . . . . . . 57

2.4 Sector Decomposition . . . . . . . . . . . . . . . . . 61

2.5 Differential Equations . . . . . . . . . . . . . . . . . 65



6 Contents

3 Avoiding Contour Deformation in Feynman Integrals 71

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . 71

3.1.1 Integrands in Parameter Space . . . . . . . . . . . 72

3.1.2 Landau Equations . . . . . . . . . . . . . . . . 73

3.1.3 Contour Deformation . . . . . . . . . . . . . . . 74

3.2 Method . . . . . . . . . . . . . . . . . . . . . . 77

3.2.1 Overview . . . . . . . . . . . . . . . . . . . 77

3.2.2 Algorithm for Univariate Bisectable Integrals . . . . . . 79

3.2.3 Beyond Univariate Bisectable Integrals . . . . . . . . 82

3.3 Examples . . . . . . . . . . . . . . . . . . . . . . 83

3.3.1 Massless Examples . . . . . . . . . . . . . . . . 83

3.3.2 Massive Examples . . . . . . . . . . . . . . . . 100

3.4 Numerical Benchmarks . . . . . . . . . . . . . . . . . 119

3.4.1 Timings . . . . . . . . . . . . . . . . . . . . 121

3.4.2 Cancellations . . . . . . . . . . . . . . . . . . 127

4 Partial NLO EW Corrections to Higgs Pair Production 135

4.1 Invitation . . . . . . . . . . . . . . . . . . . . . . 135

4.2 Calculation . . . . . . . . . . . . . . . . . . . . . 138

4.2.1 Lagrangian and Input-Parameter Scheme . . . . . . . 138

4.2.2 Amplitude Structure . . . . . . . . . . . . . . . 141

4.2.3 Diagram and Amplitude Generation . . . . . . . . . 145

4.2.4 Reduction . . . . . . . . . . . . . . . . . . . 147

4.2.5 Evaluation of the Master Integrals . . . . . . . . . . 151

4.2.6 Electroweak Renormalisation . . . . . . . . . . . . 157

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . 160

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . 166



Contents 7

A Details of Electroweak Renormalisation 169

A.1 Vacuum Expectation Value Counterterm . . . . . . . . . . 172

A.2 Feynman Rules and Counterterm Expressions . . . . . . . . 174

A.3 Comparison of Counterterms and Renormalization Procedures . . 175

Bibliography 177





List of Figures

1.1 Example 1-loop (LO) box- and triangle-type diagrams contributing

to HH-production in the dominant gluon fusion channel. Note the

appearance at the leading order of the Higgs cubic self-coupling in

the triangle-type diagrams. . . . . . . . . . . . . . . . 31

2.1 The idea behind Wick rotation. Once the poles (in red) have been

shifted off the original contour of integration according to the Feynman

prescription, the contour is closed in the complex k0 plane generating

the overall contour, γ. Since this contour encloses no poles, the

integral can be evaluated with Cauchy’s theorem. Contributions from

the arcs of this contour vanish in the infinite-radius limit. . . . . 35

2.2 The unequal mass bubble with s = p2 and m1 ̸= m2. . . . . . . 41

2.3 An example of momentum routing for the unequal mass bubble (2.3a)

and a depiction of an explicit choice of ‘dot’ structure: ν1 = 3, ν2 = 2

(2.3b). . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 The bubble with assigned Schwinger parameters. . . . . . . . 45

2.5 The bubble with assigned Feynman parameters. . . . . . . . . 48

2.6 The off-shell box with assigned Feynman parameters. . . . . . . 50



10 List of Figures

2.7 Decomposing the original domain of integration into two sectors and

then remapping the resulting domains back to the positive unit square.

The overlapping singularity is depicted by a filled red circle and its

evolution under this procedure is shown. . . . . . . . . . . 62

2.8 Coefficients of ϵn (n ∈ {0, 1, 2, 3, 4}) in the Laurent expansion of

J2−2ϵ
bub (1, 1) as functions of s with m1 = 1 and m2 = 2 fixed. The

threshold at s = (m1 + m2)2 is shown in pink and the series solution

is verified using pySecDec at numerous benchmark points denoted by

crosses. . . . . . . . . . . . . . . . . . . . . . . . 70

3.1 The massless box with all on-shell legs (3.1a), an off-shell leg (p1)

(3.1b) and the massless pentagon (3.1c). . . . . . . . . . . 84

3.2 Massless non-planar 2-loop boxes with 6 (3.2a: BNP6) and 7 (3.2b:

BNP7) propagators respectively. . . . . . . . . . . . . . 91

3.3 Massless non-planar 3-loop box (the crown graph, G••). . . . . . 95

3.4 A flowchart showing the transformations for an example resolution of

integral B in the shifts and rescalings approach; the transformations

in the final line are inspired by the algorithmic approach. The initial

integral (red) is mapped to four integrals (green) in this resolution, in

three of which the transformed FB is manifestly positive and in one of

which it is manifestly negative. We remind the reader that s + t > 0

and −t > 0 in the assumed kinematic regime. . . . . . . . . 98

3.5 The L-loop banana-type integrals resolved in this section (L ∈ {1, 2, 3}):

the equal mass (3.5a) and unequal mass (3.5b) bubble integrals, the

equal mass elliptic sunrise integral (3.5c), and the 3-loop equal mass

banana integral (3.5d). . . . . . . . . . . . . . . . . . 101

3.6 The variety of F̃ and the three regions of the integration domain

which it separates. In the upper left and lower right regions, F̃ > 0

whereas in the upper right region, F̃ < 0. . . . . . . . . . . 103



List of Figures 11

3.7 Independent equal mass triangles with an off-shell leg (p2 > 0). . . 106

3.8 Remapping the simplex integration region of the massive triangle (in

green) to the positive unit square in R2
≥0. Here, F is to be understood

as F after the δ-function has been integrated out and in the second

panel, after the remapping transformation as well. . . . . . . . 107

3.9 The integration domain of the massive triangle separated into one

negative and three positive regions. . . . . . . . . . . . . 108

3.10 The chain of transformations which maps the negative region of the

massive triangle (in blue) to the positive unit square. . . . . . . 108

3.11 The F = 0 surface of the equal mass sunrise in R3
>0 with the caveat

that this should properly be understood projectively. . . . . . . 112

3.12 Remapping the simplex integration region of the elliptic sunrise (in

green) to the positive unit square in R2
≥0 then exploiting the symmetry

about x2 = 1
2 . Here, F is to be understood as F after the δ-function

has been integrated out and in the second and third panels, after their

respective remapping transformations as well. . . . . . . . . 113

3.13 The integration domain of the elliptic sunrise separated into one neg-

ative and three positive regions. . . . . . . . . . . . . . . 114

3.14 The chain of transformations which maps the negative region of the

elliptic sunrise (in blue) to the positive unit square. . . . . . . 114

3.15 Remapping the simplex integration region of the banana (in green)

to the positive unit cube in R3
≥0 then exploiting the symmetry about

x3 = 1
2 . We omit the legend for clarity but this figure should be un-

derstood analagously to Fig. 3.12 with the F < 0 region given in blue

outside the domain of integration and in dark orange within. Here, F

is to be understood as F after the δ-function has been integrated out

and in the second and third panels, after their respective remapping

transformations as well. . . . . . . . . . . . . . . . . . 117



12 List of Figures

3.16 The six regions (one negative, 3.16a, and five positive, 3.16b – 3.16f)

into which the integration domain of the banana is partitioned in this

resolution. . . . . . . . . . . . . . . . . . . . . . 118

3.17 The chain of transformations which maps the negative region of the

banana (in blue) to the positive unit cube. . . . . . . . . . . 118

3.18 Timings with and without contour deformation for the massless 1-loop

box with an off-shell leg, expanded up to the finite order. Evaluated

for different values of s with t = −1 and p2
1 = 2 fixed. . . . . . . 123

3.19 Timings with and without contour deformation for the massless 1-loop

pentagon, expanded up to the finite order. Evaluated for different

values of s12 while the other kinematics are fixed at (s23, s34, s45, s51) =

(−3, 2.5, −3, 5). . . . . . . . . . . . . . . . . . . . . 123

3.20 Timings with and without contour deformation for the 2-loop non-

planar box with 6 propagators, expanded up to the finite order. Eval-

uated for different values of s with t = −1 fixed. . . . . . . . 124

3.21 Timings with and without contour deformation for the 2-loop non-

planar box with 7 propagators, expanded up to the finite order. Eval-

uated for different values of s with t = −1 fixed. In this example no

digits could be obtained with contour deformation. . . . . . . 124

3.22 Timings with and without contour deformation for the 3-loop non-

planar box, with only the leading ϵ−4 pole included. Evaluated for

different values of s with t = −1 fixed, except for the point s = 1,

where t = −0.2. For the benchmarks where s ≥ 4 no digits could be

obtained with contour deformation. . . . . . . . . . . . . 125

3.23 Timings with and without contour deformation for the all-massive 1-

loop triangle, expanded up to order ϵ4. Evaluated for different values

of β with m = 1 fixed. . . . . . . . . . . . . . . . . . 125



List of Figures 13

3.24 Timings with and without contour deformation for the all massive

2L elliptic sunrise, expanded up to order ϵ4. Evaluated for different

values of β with m = 2 fixed. . . . . . . . . . . . . . . . 126

3.25 Timings with and without contour deformation for the all massive 3L

banana, expanded up to order ϵ4. Evaluated for different values of β

with m = 2 fixed. . . . . . . . . . . . . . . . . . . . 126

3.26 Magnitude of the real part of the positive and negative contributions

compared to the total integral for the massless pentagon at orders

−3, −2, −1, 0 in the ϵ expansion. κδ = lim
δ!0+(−1 − iδ)−3−ϵ. The

ϵ−3 pole is spurious and is only present as an artefact of the sector

decomposition of J−
pen. . . . . . . . . . . . . . . . . . 128

3.27 Magnitude of the real part of the positive and negative contributions

compared to the total integral for BNP6 at orders −3, −2, −1, 0 in

the ϵ expansion. κδ = lim
δ!0+(−1− iδ)−2−2ϵ. The ϵ−3 pole is spurious

and is a consequence of cancellation between J+
BNP6 and κδJ

−
BNP6. . 129

3.28 Magnitude of the real part of the positive and negative contributions

compared to the total integral for BNP7 at orders −3, −2, −1, 0 in

the ϵ expansion. κδ = lim
δ!0+(−1 − iδ)−3−2ϵ . . . . . . . . . 130

3.29 Magnitude of the real part of the positive and negative contribu-

tions compared to the total integral for the all massive 1L triangle

at orders −1, 0, 1, 2 in the ϵ expansion. κδ = lim
δ!0+(−1 − iδ)−1−ϵ,

β ∈ (0.01, 0.99) and m = 2. The 1, 2, 3 indices corresponds to the

different positive regions shown in Fig. 3.9. . . . . . . . . . 131

3.30 Magnitude of the real part of the positive and negative contribu-

tions compared to the total integral for the elliptic sunrise at or-

ders −2, −1, 0 in the ϵ expansion. κδ = lim
δ!0+(−1 − iδ)−1−2ϵ,

β ∈ (0.01, 0.9) and m = 2. The 1, 2, 3 indices corresponds to the

different positive regions shown in Fig. 3.13. . . . . . . . . . 132



14 List of Figures

3.31 Magnitude of the real part of the positive and negative contributions

compared to the total integral for the elliptic sunrise at orders 1, 2, 3, 4

in the ϵ expansion. κδ = lim
δ!0+(−1 − iδ)−1−2ϵ, β ∈ (0.01, 0.9) and

m = 2. The 1, 2, 3 indices corresponds to the different positive regions

shown in Fig. 3.13. . . . . . . . . . . . . . . . . . . 133

4.1 Example diagrams contributing to each of the 6 coupling structures

on which we separate the bare two-loop amplitude. . . . . . . 146

4.2 The physical region in the s-t plane, given by (4.2.26), with the phys-

ical thresholds corresponding to s-channel cuts shown with dotted

lines. Our test contour increasing in s is shown in blue with boundary

points plotted along with benchmark points verified in pySecDec. . 154

4.3 Real and imaginary parts of coefficients in the ϵ-expansion of se-

lected rescaled master integrals taken along the contour shown in

Fig. 4.2. a) Rescaled master #5: c5(ϵ) IF1
(0,0,3,2,0,1,0,0,0)(s, t), b) rescaled

master #155: c155(ϵ) IF1
(0,0,1,0,2,1,0,2,1)(s, t), c) rescaled master #353:

c353(ϵ) IF4
(1,0,0,1,1,1,1,0,1)(s, t) and d) rescaled master #464: c464(ϵ) IF4,D=6−2ϵ

(2,0,1,1,1,1,1,0,2)(s, u).

The lower panel of each figure shows the ratio of the pySecDec result

to the DiffExp result for the real part of the coefficient of ϵ4 which

contributes to the amplitude at finite order. . . . . . . . . . 155

4.4 The UV-renormalised form factors F
(1),fin
1 (left panel) and F

(1),fin
2 (right

panel) divided by g2
s . Note that the spread of points, which is due to

the t-dependence, is milder in F
(1)
1 than in F

(1)
2 . The uncertainty of

each phase-space point due to the limited precision of the numerical

integration is indicated with an error bar. . . . . . . . . . . 162

4.5 Plots of the ϵ0 coefficient of the bare form factors separated on coupling

structure, F
(1)
i,j . . . . . . . . . . . . . . . . . . . . . 164



List of Figures 15

4.6 Invariant mass and transverse momentum distributions for Higgs bo-

son pair production at LO and NLOEW including only the Yukawa

and self-coupling type corrections. The QCD renormalisation and

factorisation scales are set to µr = µf = mHH/2. . . . . . . . 165

A.1 Example diagrams contributing to the fixing of δv from the Higgs

cubic vertex (a, b, c), the Yukawa vertex (d, e) and the Higgs quartic

vertex (f, g, h, i). . . . . . . . . . . . . . . . . . . . 172





List of Tables

4.1 Number of Feynman diagrams (one-particle-irreducible, one-particle-

reducible and total), excluding tadpole diagrams, which contribute to

each of the bare coupling structures at NLO. . . . . . . . . . 145

4.2 Integral families at NLO . . . . . . . . . . . . . . . . 148

4.3 Numeric results for the bare form factors, F
(1)
i,j , for each coupling

structure on the phase-space point: {s = 799/125, t = −519/500,

m2
H = 12/23, m2

t = 1}. Boldface digits represent the error on the

final two stated digits and where there are none, the stated digits are

accurate to the given precision. Missing ϵ orders are understood to

be identically zero. . . . . . . . . . . . . . . . . . . 161

4.4 Inclusive cross section for Higgs boson pair production for different

hadronic centre-of-mass energies,
√

s̄, at LO and NLOEW including

only the Yukawa and self-coupling type corrections. The QCD renor-

malisation and factorisation scales are set to µr = µf = mHH/2. . . 165





Declaration

The work in this thesis is based on research carried out in the Department of Physics

at Durham University. No part of this thesis has been submitted elsewhere for any

degree or qualification.

Research presented in this thesis is based on joint work:

• Chapter 3 is based on [1, 2]: Stephen Jones, Anton Olsson and Thomas Stone,

Evaluating Parametric Integrals in the Minkowski Regime without Contour

Deformation, Proceedings of Science (PoS) LL2024 (2024) 036 and Stephen

Jones, Anton Olsson and Thomas Stone, Positive Integrands from Feynman

Integrals in the Minkowski Regime, To Appear.

• Chapter 4 is based on [3]: Gudrun Heinrich, Stephen Jones, Matthias Kerner,

Thomas Stone, Augustin Vestner, Electroweak corrections to Higgs boson pair

production: the top-Yukawa and self-coupling contributions, Journal of High

Energy Physics (JHEP) 11 (2024) 040.

Copyright © 2025 Thomas Stone.

The copyright of this thesis rests with the author. No quotation from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged.





Acknowledgements

My thanks, first and foremost, go to Stephen Jones for always going above and

beyond in his role as supervisor. My PhD experience has been thoroughly enjoyable

as well as intellectually stimulating, in no small part because of him.

I would also like to thank my parents, Mark and Lesley, my brother, Ben and my

wider family for their perpetual encouragement and understanding.
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Chapter 1

Introduction

High-energy physics is firmly in the era of precision, where innovative advancements

in computational capability are driving efforts to tackle some of the most press-

ing challenges in fundamental physics. The pursuit of higher-order corrections in

quantum chromodynamics (QCD) and the electroweak (EW) sector is essential for

accurately describing the processes observed at current and future particle colliders,

such as the high-luminosity Large Hadron Collider (LHC). These corrections are vital

for matching theoretical predictions to the unprecedented precision of experimental

measurements, enabling the discovery of new physics and the rigorous testing of the

Standard Model (SM). However, this frontier comes with significant challenges: for

example, both the reduction to and the evaluation of a basis of master Feynman

integrals required for higher-order calculations often involve intricate mathematical

and computational obstacles. To overcome these hurdles, novel analytic and numer-

ical tools are indispensable for advancing our understanding of these fundamental

processes.

In this thesis, we discuss several of the challenges arising in the computation of

higher-order corrections, focussing heavily on loop integrals and various techniques

employed to handle these complicated objects. The remainder of Chapter 1 motivates

the relevance of Higgs pair production as a salient process to investigate in the

Standard Model and establishes the framework for the leading-order (LO) calculation.
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In Chapter 2, we explore the rich structure of Feynman integrals, providing the

relevant background knowledge required to follow the exposition in Chapters 3 and

4. Throughout, we encounter a variety of important concepts including dimensional

regularisation, loop integral representations, integration-by-parts (IBP) reduction,

sector decomposition and the method of differential of equations, to name a few. In

Chapter 3, we introduce a novel approach to directly evaluating Feynman integrals

in the Minkowski kinematic regime without recourse to contour deformation by

mapping Minkowski integrals to causally-prescribed sums of ‘Euclidean’ integrals.

The benefits of this approach are twofold: firstly, numerical performance is vastly

improved compared to standard contour deformation, as demonstrated in a number of

multi-loop examples; secondly, from the analytic practitioner’s perspective, it renders

the continuation to physical kinematics manifestly trivial. The thesis concludes with

Chapter 4 which describes, in detail, our recent calculation of a partial subset of

next-to-leading-order (NLO) electroweak corrections to di-Higgs production. We

discuss a number of the methods adopted in the calculation, such as optimising the

basis of master integrals for numerical evaluation, before presenting results for the

contribution of this subset of NLO EW corrections to total and differential cross

sections.

1.1 Higgs Pair Production

To motivate the study of Higgs pair production, we begin by briefly summarising

the relevant SM background1. The Standard Model is a quantum field theory based

on the gauge group

G = SU(3)C × SU(2)L × U(1)Y (1.1.1)

where the subgroup SU(3)C corresponds to QCD and the remaining part of G,

SU(2)L × U(1)Y , describes the electroweak sector. This latter subgroup is spontan-

1For a detailed introduction to the Standard Model, consult any of the excellent textbooks
which discuss the topic (for example, [4–6]).
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eously broken,

SU(2)L × U(1)Y ! U(1)Q , (1.1.2)

as a consequence of the non-zero vacuum expectation value (vev) of the Higgs field.

Writing the Higgs doublet as

Φ =

ϕ+

ϕ0

 = 1√
2

ϕ1 + iϕ2

ϕ3 + iϕ4

 , (1.1.3)

we can parameterise the expansion about the non-zero vev, v, by

Φ = U
1√
2

 0

v + H

 (1.1.4)

where U is 2 × 2 unitary matrix which, using the gauge freedom, we can – and will

– always take to be the identity matrix. This choice, known as the unitary gauge,

decouples the would-be Goldstone bosons from the Standard Model. The physical

Higgs boson field is identified with H, where ⟨H⟩ = 0, resulting in

⟨Φ⟩ = 1√
2

 0

v

 . (1.1.5)

The SM Higgs potential is given by the most general (renormalisable) potential built

from Φ that is invariant under electroweak gauge transformations:

V (Φ) = −µ2Φ†Φ − λ

4
[
Φ†Φ

]2
, µ2 > 0 , λ < 0

= −µ2

2 (v + H)2 − λ

16 (v + H)4

= −v

4
(
4µ2 + λv2

)
H − 1

8
(
4µ2 + 3λv2

)
H2

− λv

4 H3 − λ

16 H4 + O
(
H0
)

(1.1.6)

where we have inserted the expansion about the vev from (1.1.4) and we ignore

the constant terms, O
(
H0
)
, in the potential. Note that the presence of a non-zero

vacuum expectation value is itself a consequence of µ2 > 0 , λ < 0. Considering the

way the potential appears in the SM Lagrangian, L ⊃ −V (Φ), we can identify the
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coefficient of H2 with m
2
H

2 . Furthermore, the condition

∂V (Φ)
∂H

∣∣∣∣∣
H=0

= 0 (1.1.7)

implies that v2 = −4µ
2

λ
. With these identifications, we can eliminate µ2 = m

2
H

2 and

λ = −2m
2
H

v
2 ; the Higgs potential is then given by

V (Φ) = −m2
H

4 (v + H)2 + m2
H

8v2 (v + H)4

= m2
H

2 H2 + m2
H

2v
H3 + m2

H

8v2 H4 + O
(
H0
)

.

(1.1.8)

We make a number of comments about the terms appearing in (1.1.8). Firstly, we

note that the term linear in H vanishes after expressing the potential in terms of mH

and v – this occurs due to the condition that the vacuum minimises the potential1.

Secondly, the cubic and quartic terms in the potential will induce cubic and quartic

self-interactions of the Higgs with Feynman rules given by = −i3m
2
H

v
and

= −i3m
2
H

v
2 in the Standard Model; the SM cubic and quartic self-couplings are

therefore completely fixed by mH and v. Although experimental measurements have

determined the Higgs mass and vev (thereby fixing the numerical value of the cubic

and quartic SM self-couplings), direct measurements of the self-couplings remain

imprecise2. Any deviations from the SM predictions in experimentally derived values

for the self-couplings would be a clear signpost for beyond the Standard Model

(BSM) physics.

In order to measure the self-couplings directly, we must study processes which act as

probes of these couplings. Di-Higgs production is an example of such a process, as

sensitivity to the cubic self-coupling already enters at the leading order in the gluon

fusion channel – which dominates at the LHC – as shown in Fig. 1.1. In the Standard

Model, Higgs pair production via gluon fusion is a loop-induced process meaning

that the leading order corresponds to a 1-loop contribution, the NLO correction to

a 2-loop contribution and so on. The leading order calculation was performed some
1We will revisit this point in Chapter 4 when discussing the handling of tadpole contributions.
2See Chapter 4 for current and projected bounds on the cubic Higgs self-coupling.
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Figure 1.1: Example 1-loop (LO) box- and triangle-type diagrams
contributing to HH-production in the dominant gluon
fusion channel. Note the appearance at the leading
order of the Higgs cubic self-coupling in the triangle-
type diagrams.

time ago [7, 8] with the first NLO QCD result (retaining full top mass dependence)

presented in [9]12. The LO partonic cross section is given by

σ̂(0) = 1
2s

∫ d3k3

(2π)3 2Ek3

d3k4

(2π)3 2Ek4

(2π)4 δ4 (p1 + p2 − k3 − k4)
∣∣∣∣M(0)

∣∣∣∣2 (1.1.9)

where the integral over the two-particle phase space may be partially performed using

the δ-functions. Standard manipulations carried out in the centre-of-momentum

frame allow us to write

σ̂(0) = 1
16πs2

∫ t+

t−

dt

∣∣∣∣M(0)
∣∣∣∣2 (1.1.10)

where s and t are the standard Mandelstam invariants for 2 ! 2 scattering. The

integration limits, t±, correspond to the boundary of the physical scattering region

in the s-t plane and are explicitly derived in Chapter 4 where we also express the

averaged matrix element squared,
∣∣∣∣M(0)

∣∣∣∣2, as a sum over squared scalar form factors.

The technology required to perform the loop integrals which appear in the averaged

matrix element squared (and higher-order corrections to it) forms the focus of a

large portion of this thesis.

To obtain the total cross section from the partonic cross section, we use the collinear

factorisation formula with the gluon PDFs (parton distribution functions):

σ(0)
(
s̄, µr, µf

)
=
∫ 1

0
dx1dx2 fg

(
x1, µ2

f

)
fg

(
x2, µ2

f

)
σ̂(0)

(
s=x1x2s̄, µr, µf

)
θ
(
x1x2s̄−4m2

H

)
(1.1.11)

where µr is the renormalisation scale, µf is the factorisation scale and the Heaviside

1For a thorough overview of the available results for this process, see Chapter 4.
2The NLO QCD calculation is in the process of being re-performed using improved computational

technology and insights gained from the NLO EW calculation presented in Chapter 4.
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function explicitly ensures that the integration is over the kinematically-allowed

region. Changing variables to τ = x1x2 and x1 = x, we obtain

σ(0)
(
s̄, µr, µf

)
=
∫ 1

0
dτ
∫ 1

τ

dx

x
fg

(
x, µ2

f

)
fg

(
τ

x
, µ2

f

)
σ̂(0)

(
s = τ s̄, µr, µf

)
θ
(
τ s̄ − 4m2

H

)
.

(1.1.12)

Defining τ0 = 4m
2
H

s̄
and introducing the (gluon) luminosity function,

dLgg

dτ
=
∫ 1

τ

dx

x
fg

(
x, µ2

f

)
fg

(
τ

x
, µ2

f

)
, (1.1.13)

we can write down the final result for the total cross section:

σ(0)
(
s̄, µr, µf

)
=
∫ 1

τ0

dτ
dLgg

dτ
σ̂(0)

(
s = τ s̄, µr, µf

)
. (1.1.14)

Comparing theoretical predictions for total and differential cross sections to experi-

mental measurements is essential for testing whether the underlying theory accur-

ately describes reality. With the increasing precision of experimental data, achieving

matching theoretical accuracy requires higher-order corrections, along with the re-

fined mathematical and computational techniques required to calculate them.

While the Standard Model remains a remarkably successful theory, it is widely

recognized as incomplete. The Higgs self-coupling, due to its direct connection

to the shape of the Higgs potential, could play a key role in identifying potential

deviations from the Standard Model and signs of new physics. Precise theoretical

predictions for Higgs pair production, including electroweak corrections which are

O (5%) and distort the shapes of differential cross sections, are therefore vital.

The remainder of this thesis is devoted to the development of tools and techniques

for calculating higher-order corrections, with a strong focus on loop integrals, which

are essential ingredients in these computations. A number of these methods are then

applied to the case of NLO EW corrections to Higgs pair production, where we spell

out in detail some of the material we have presented schematically here. Beyond

this specific case, the techniques developed in this thesis have broader applications

and can contribute to future studies of processes in precision collider physics.



Chapter 2

Feynman Integrals

Beyond tree-level, Feynman integrals appear in the calculation of quantum field

theory observables (for instance, in matrix elements for processes which are then

used to derive cross-sections). Therefore, these loop integrals play a significant role

both in understanding precise quantum corrections to an observable, where the

leading order is a tree-level contribution, as well as in the ability to calculate loop-

induced processes where Feynman integral evaluations are required to compute the

first term in an asymptotic series (di-Higgs production is a prime example of this). In

this chapter, we remind the reader of some of the fundamentals of Feynman integrals

before briefly detailing aspects of the rich structure that appears most prominently

at the multi-loop level. A comprehensive exposition of the state-of-the-art knowledge

in the field of Feynman integrals is beyond the scope of this thesis; we refer the

reader to [10] for an excellent overview while we restrict to the relevant topics here.

2.1 Fundamentals

In this chapter, we will focus solely on scalar Feynman integrals; we will assume

that some kind of reduction from tensor to scalar integrals has already taken place

in the relevant calculation (for example, Passarino-Veltman reduction [11] or use of

the projector method, see e.g. [12,13]). We will allow for ‘dots’ – propagators which
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are doubled, tripled etc. – as well as inverse propagators in the numerator such

that, in momentum space, our integrals (which depend implicitly on the spacetime

dimension, D and an arbitrary mass scale, µ) will take the following general form:

J (s; ν) =
(
µ2
)ν− LD

2
∫ L∏

l=1
[Dkl]

N∏
i=1

1
Dνi

i

(
k, p, m2

i

) . (2.1.1)

Here, our L-loop, N -propagator integral, J , depends on the kinematic invariants, s1,

which include the squared masses, m2
i ≥ 0, associated to each inverse propagator Di

(which themselves depend on the loop (k) and external (p) momenta). The powers

νi ∈ Z of the inverse propagators may be positive (with νi > 1 corresponding to

dots), negative (corresponding to inverse propagators in the numerator) or zero (such

that the corresponding propagator does not appear at all in the integrand) and we

define ν = ∑N
i=1 νi. For our purposes, we will take these inverse propagators to be

Di = q2
i − m2

i + i0+ (2.1.2)

where qi is the overall momentum flowing through the propagator (in general, a linear

combination of external and loop momenta) and i0+ encodes the causal Feynman

prescription. We will also define the measure to be

[Dkl] = dDkl

iπ
D
2

(2.1.3)

for the spacetime dimension D such that the overall µ-dependent prefactor renders

the integral dimensionless. Note that this is not the physical normalisation from the

Feynman rules where the denominator of (2.1.3) would be (2π)D; however, conversion

between the normalisations is trivial.

As a simple example, let us consider the tadpole integral with ν1 = ν ∈ Z>0,

Jtad

(
m2; ν

)
=
(
µ2
)ν− D

2
∫

[Dk] 1(
k2 − m2 + i0+

)ν . (2.1.4)

We remind the reader that k2 = k2
0 − |⃗k|2 and so, without the Feynman prescription,

1Italicised, boldface characters are a shorthand to denote ordered sets, e.g. c = {c1, c2, . . . , c|c|}.
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Re(k0)

Im(k0)

−∞ +∞

+i∞

−i∞

0
×

−Ek ×

+Ek

γ

Figure 2.1: The idea behind Wick rotation. Once the poles (in red)
have been shifted off the original contour of integration
according to the Feynman prescription, the contour is
closed in the complex k0 plane generating the overall
contour, γ. Since this contour encloses no poles, the
integral can be evaluated with Cauchy’s theorem. Con-
tributions from the arcs of this contour vanish in the
infinite-radius limit.

there would be poles on the k0 integration contour for

k0 = ±
√

|⃗k|2 + m2 = ±Ek . (2.1.5)

The causal Feynman prescription shifts the poles off the contour of integration (or,

equivalently, deforms the contour away from the real axis to avoid the poles) as in

Fig. 2.1. The contour can be closed in the complex k0 plane such that it does not

enclose any poles and hence, by Cauchy’s theorem,

∫
γ

dk0
1(

k2
0 − |⃗k|2 − m2 + i0+

)ν = 0 . (2.1.6)

Given that the contributions from the quarter-circular arcs can also be shown to
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vanish in the limit that their radii go to infinity, we obtain

∫ +∞

−∞
dk0

1(
k2

0 − |⃗k|2 − m2 + i0+
)ν +

∫ −i∞

+i∞
dk0

1(
k2

0 − |⃗k|2 − m2
)ν = 0 (2.1.7)

where we have neglected the i0+ prescription in the second integrand as the contour

along the imaginary axis in Fig. 2.1 avoids any poles irrespective of its presence.

Using (2.1.7), we can change variables – a process known as Wick rotation owing to

the idea that the integration contour has been rotated as in Fig. 2.1 – to Euclidean

momenta,

k0 = ik0,E , k⃗ = k⃗E , (2.1.8)

such that

∫ +∞

−∞
dk0

1(
k2

0 − |⃗k|2 − m2 + i0+
)ν = i (−1)ν

∫ +∞

−∞
dk0,E

1(
k2

0,E + |⃗kE|2 + m2
)ν .

(2.1.9)

Note that k2
0,E + |⃗kE|2 = k2

E (the standard Euclidean norm squared) and our original

tadpole becomes

Jtad

(
m2; ν

)
= i (−1)ν

(
µ2
)ν− D

2
∫

[DkE] 1(
k2

E + m2
)ν . (2.1.10)

The integrand of (2.1.10) depends only on the norm of the Euclidean D-vector so

we may naturally adopt D-dimensional spherical polar coordinates and perform the

angular integrations trivially, using ΩD = 2π
D/2

Γ(D/2) :

Jtad

(
m2; ν

)
= (−1)ν

2π
D
2

(
µ2
)ν− D

2
∫

dΩD

∫ ∞

0
dk2

E

(
k2

E

)D
2 −1(

k2
E + m2

)ν

= (−1)ν

Γ
(

D
2

) (µ2
)ν− D

2
∫ ∞

0
dk2

E

(
k2

E

)D
2 −1(

k2
E + m2

)ν

= (−1)ν

Γ
(

D
2

) (m2

µ2

)D
2 −ν ∫ ∞

0
dτ

τ
D
2 −1

(τ + 1)ν

(2.1.11)

where, in the final line, we have made the simple change of variables τ = k2
E/m2.
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This brings the integral into the familiar form of an Euler beta function:

B (z1, z2) =
∫ 1

0
dt tz1−1 (1 − t)z2−1 =

∫ ∞

0
dt

tz1−1

(t + 1)z1+z2
= Γ (z1) Γ (z2)

Γ (z1 + z2)
(2.1.12)

where the second and third equalities follow from the first (defining) equality. We

can use the representations of the Euler beta function in (2.1.12) to identify our

integral in (2.1.11) and, by direct inspection, we find that

Jtad

(
m2; ν

)
=

(−1)ν Γ
(
ν − D

2

)
Γ (ν)

(
m2

µ2

)D
2 −ν

. (2.1.13)

It is useful to examine (2.1.13) in various limits. If we try and take the standard

tadpole (ν = 1) in D = 4, we find that the formula in (2.1.13) diverges. In general,

due to the simple poles of Γ (z) at z ∈ Z≤0 (and under our assumption that ν is a

positive integer), the tadpole will diverge when D is a positive even number greater

than or equal to 2ν.

Superficially, this poses a serious issue: the simplest possible (non-zero) Feynman

integral is infinite in our number of spacetime dimensions! To handle this divergence

(and the vastly many others appearing in loop integrals) formally, we will need to

adopt a regularisation scheme. If we consider (2.1.11) with ν = 1 and D = 4, we see

that the origin of this divergence comes from the upper limit of integration (that is

to say, k2
E ! ∞). We call this an ultraviolet (UV) divergence – in contrast to an

infrared (IR) divergence which stems from low-momentum, long-distance behaviour.

Generally, both types of divergence can appear in a given Feynman integral.

There are a number of commonly-used regularisation schemes, each with their own

advantages and disadvantages. To regulate UV divergences, one may employ cut-off

regularisation where the norms of the Euclidean loop momenta are restricted to

be between zero and some hard cut-off scale, Λ. One can then show that physical

observables are independent of the choice of cut-off and therefore Λ may freely be

taken to infinity. One of the disadvantages of this approach is that a hard cut-off

is generally not Lorentz invariant and can also violate gauge invariance (although

there are intriguing approaches inspired by smoothed asymptotics to remedy this,
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see [14,15], for example). Another UV regularisation scheme, first introduced in [16],

is Pauli-Villars regularisation which, in the case of a photon propagator, for example,

involves the following modification:

1
k2 + i0+ −!

1
k2 + i0+ − 1

k2 − Λ2 + i0+ . (2.1.14)

The physical theory is again recovered in the limit that the regulator Λ (which acts

like a large fictitious mass) is taken to infinity. This scheme is gauge invariant in

abelian theories such as QED but this feature no longer holds at the non-abelian level

and is therefore less suited to calculations in theories such as QCD. Furthermore, in

many computations, numerous additions of these fictitious heavy particle propagators

are required (see [17]) rendering this procedure unwieldy in general. To regulate IR

divergences, it is often possible to add a small mass term to the propagator of massless

particles but, for example, explicit photon mass terms in the QED Lagrangian are

forbidden by gauge invariance so this may be undesirable (even though the small

mass only appears at intermediate steps in the calculation and is formally taken to

zero at the end for physical observables) depending on one’s taste.

Instead, throughout this thesis, we adopt a unified framework for regulating both UV

and IR divergences simultaneously while retaining both Lorentz and gauge invariance.

This framework, first comprehensively presented in [18], is known as dimensional

regularisation.

2.1.1 Dimensional Regularisation

Dimensional regularisation1 is a procedure through which divergences in quantum

field theory calculations are regulated by extending the theory away from some

integer dimension D = D0 (often taken to be D0 = 4) to general complex D.

Let us consider how this procedure affects a generic loop integral appearing in the
1By dimensional regularisation, we will always be implicitly referring to conventional dimensional

regularisation (CDR) and not to other related schemes such as ’t Hooft-Veltman scheme (HV) and
so on.
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calculations in this theory. By simple power counting analysis of the loop momenta

present in the measure (2.1.3) and the integrand, it is clear that the UV divergences

in D0 arising from high-momentum behaviour will be cured for Re(D) ≤ DUV < D0

while the IR divergences, related to low-momentum behaviour, will be cured for

Re(D) ≥ DIR > D0, for some DUV and DIR.

It is clear that both conditions cannot be simultaneously satisfied so, instead, we

assume initially that the IR divergences are regulated by some other method (such

as the small mass regulator previously mentioned) and consider the theory in

D = D0 − 2ϵ. For sufficiently large ϵ > 0, the integrals appearing in a generic

calculation in the theory are individually free of UV divergences (which would

reappear in the limit that the regulator goes to zero as 1/ϵn poles in a Laurent ex-

pansion). At this point, UV renormalisation takes place to remove these divergences

completely from the calculation such that the result may be analytically continued

to the entire complex D-plane. Then, the IR regulator can be removed and the

calculation is convergent for sufficiently large ϵ < 0 with the IR divergences now

appearing again as poles in ϵ as ϵ ! 0. These IR poles would then cancel among

each other for the calculation of a sufficiently inclusive observable – a fact which, for

IR poles stemming from final states, is guaranteed within the Standard Model by

the Kinoshita–Lee–Nauenberg (KLN) theorem [19,20]. Practically, it is often prefer-

able to avoid the initial IR regularisation and simply compute straightforwardly in

D = D0 − 2ϵ with the knowledge that, before UV renormalisation, poles in ϵ could

correspond to either UV and IR divergences with only the latter remaining after

applying a valid renormalisation procedure.

It is important to stress that, in order to obtain correct results, we must extend all

the objects that lived in the D0-space to the D-space consistently (and not merely

the loop integrals themselves). For example,

gµνgµν = gµ
µ = D = D0 − 2ϵ (2.1.15)

which implies that the identities satisfied by the γ matrices for D0 = 4 are modified,
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such as

γµγνγργµ = 4gνρ14 −! γµγνγργµ = 4gνρ14 − 2ϵγνγρ. (2.1.16)

In this section, however, we focus on the Feynman integrals themselves and make no

further comment about the behaviour of other objects in dimensional regularisation

(such as the necessary modifications required to maintain a mass-dimensionless

coupling, among other notable complications).

Let us now return to our formula for the tadpole in (2.1.13). For D = 4 − 2ϵ, we

have

Jtad

(
m2; 1

)
= −Γ (−1 + ϵ)

(
m2

µ2

)1−ϵ

= m2

µ2

[
1
ϵ

+ 1 − γE − ln
(

m2

µ2

)]
+ O (ϵ)

(2.1.17)

where, in the second line, we have expanded about ϵ ! 0 (generating the Euler-

Mascheroni constant, γE = −Γ′ (1), which is an artefact of dimensional regularisa-

tion1). The original UV divergence is now manifest as a simple pole in the regulator,

ϵ. We stress that this procedure has not removed the divergence (in the context of a

physical calculation, this would be done with UV renormalisation); we have merely

regularised it such that it can be manipulated formally.

In general, the dimensional regularisation procedure interprets Feynman integrals

as meromorphic functions of the dimensional regulator, ϵ, for all points, s, in the

kinematic space which are non-pathological (that is to say, excluding kinematic

thresholds which are divergent independent of the spacetime dimension, for ex-

ample). In the next section, we will introduce a number of different representations

of Feynman integrals commonly used in the field as well as discussing the connections

between them.
1We could have also redefined the measure in (2.1.3) to ensure this constant is not present in

the results of our integrals (as is commonly done in the literature).
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s

m1

m2

Figure 2.2: The unequal mass bubble with s = p2 and m1 ̸= m2.

2.2 Representations of Feynman Integrals

There are many different representations of a given Feynman integral, each with their

own benefits and drawbacks depending on the context in which they are being studied.

In this section, we will highlight three of these – namely, the momentum space,

Schwinger parameter and Feynman parameter representations – while noting that

other, less familiar representations such as the Lee-Pomeransky, Baikov and Mellin-

Barnes representations exist and are well-suited to certain applications (see [10] for

details). In this section, we will restrict to νi ∈ Z>0 but we will return to allowing

for inverse propagators in the numerator in later sections1.

To clarify some of the abstract general formulae presented in the section, we will

consider the simple example of an unequal mass bubble integral and analyse how this

appears in each of the three representations. We depict this integral in diagrammatic

form in Fig. 2.2 and state the conventions adopted in this thesis: blue external legs

are on-shell (p2
a = 0), green external legs are off-shell (p2

a ̸= 0), black internal lines

are massless propagators (mi = 0), purple internal lines are massive propagators

(mi > 0), red dashed lines correspond to propagator deletions, ‘dots’ are given by

filled black circles and vertices are given by filled dark blue circles (these are most

useful for depicting non-planar integrals such as those appearing in Chapter 3).

1Generalisations of some of the formulae presented in this section which allow for inverse
propagators in the numerator exist but we will not discuss them here.
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2.2.1 Momentum Space Representation

We begin by looking at the momentum space representation in more detail. We

have already seen the general formula for a Feynman integral in momentum space

in (2.1.1); we repeat it here for convenience:

J (s; ν) =
(
µ2
)ν− LD

2
∫ L∏

l=1
[Dkl]

N∏
i=1

1
Dνi

i

(
k, p, m2

i

) . (2.2.1)

For our prototypical example (the unequal mass bubble in Fig. 2.2), this general

formula reduces to

Jbub (s; ν) =
(
µ2
)ν1+ν2− D

2
∫

[Dk] 1[
k2 − m2

1 + i0+
]ν1
[
(k − p)2 − m2

2 + i0+
]ν2

(2.2.2)

where s = {s, m2
1, m2

2} and we have routed the momenta as in Fig. 2.3a.

s

m1

p k

k−p

m2

(a)

s

m1

m2

(b)

Figure 2.3: An example of momentum routing for the unequal mass
bubble (2.3a) and a depiction of an explicit choice of
‘dot’ structure: ν1 = 3, ν2 = 2 (2.3b).

An important point to stress about the momentum representation is that, due to

the integration limits, we can always shift one of the loop momenta by some linear

combination of the external and other loop momenta without affecting the result of

the integral. For example, a perfectly acceptable momentum routing would be to

modify Fig. 2.3a by k ! k + p which would result in

Jbub (s; ν) =
(
µ2
)ν1+ν2− D

2
∫

[Dk] 1[
(k + p)2 − m2

1 + i0+
]ν1
[
k2 − m2

2 + i0+
]ν2 .

(2.2.3)

For a simple 1-loop integral like the bubble, it is clear by inspection that the two

expressions in (2.2.2) and (2.2.3) are equivalent but for a more complicated multi-
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loop example with many external legs and mass scales, this would not be so trivial.

Fortunately, there exist efficient algorithms to detect when two integrals are related in

this way (and under more general transformations of the loop and external momenta)

which are implemented in public packages such as Reduze [21] among many others.

In the following section, we will use the momentum representation to derive an-

other useful representation of Feynman integrals called the Schwinger parameter

representation.

2.2.2 Schwinger Parameter Representation

In order to introduce the Schwinger parameter representation, we first present the

Schwinger trick:

1
Aνi

= 1
Γ (νi)

∫ ∞

0
dt tνi−1e−tA, Re(A) > 0 (2.2.4)

which follows from the definition of the Γ-function. If we replace A in (2.2.4) with

−Di = −q2
i + m2

i (which is valid in the context of Wick rotation of all the momenta

and in the Euclidean kinematic regime where we can drop the i0+ prescription1), we

can insert the Schwinger trick into the momentum representation in (2.2.1) for all

the propagators and find

J (s; ν) =
(
µ2
)ν− LD

2 (−1)ν
∫ L∏

l=1
[Dkl]

N∏
i=1

1
Γ (νi)

∫ ∞

0
dti t

νi−1
i e−ti(−q

2
i +m

2
i ) . (2.2.5)

We can reverse the order of integration and combine the product of exponentials

into the exponential of a sum to obtain

J (s; ν) =
(
µ2
)ν− LD

2 (−1)ν∏N
i=1 Γ (νi)

∫ ∞

0

N∏
i=1

dti t
νi−1
i

∫ L∏
l=1

[Dkl] e−
∑N

i=1 ti(−q
2
i +m

2
i ) .

(2.2.6)

1Strictly, we could have dropped this assumption and used the modified Schwinger trick
D−νi

i = i−νi Γ(νi)
−1 ∫∞

0 dt tνi−1eitDi which holds for Im(Di) > 0 (as guaranteed by the Feyn-
man prescription) and invoked ideas from complex analysis but the final result in (2.2.10) would
prove to be the same, provided we re-insert the Feynman prescription correctly at the end. Hence,
we present the Euclidean case for the derivation here but one can consult [22] for more detail.
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The argument of the exponential in (2.2.6) will have terms which are quadratic,

linear and constant with respect to the loop momenta and so, by defining a vector

K⃗ of the L loop momenta kl, we can always write this as

N∑
i=1

ti

(
−q2

i + m2
i

)
= −K⃗ · M · K⃗ + 2V⃗ · K⃗ + C (2.2.7)

where the symmetric, positive-definite L×L matrix M depends only on the Schwinger

parameters, ti, while the L-vector V⃗ and the constant contribution C depend on

both the Schwinger parameters and the external kinematics.

Once we have the exponential in this form, we can naturally extend the standard

result for the multivariable Gaussian integral to D dimensions and perform the

integration over the loop momenta. That is to say,

(
µ2
)ν− LD

2
∫ L∏

l=1
[Dkl] e−

∑N

i=1 ti(−q
2
i +m

2
i ) = U (t)− D

2 exp
(

−F (t, s)
U (t)

)
(2.2.8)

where we have introduced, for the first time, the first and second Symanzik polyno-

mials U and F which will play an important role in this thesis. Here, they can be

identified with
U = det M

F = U
µ2

(
V⃗ · M−1 · V⃗ + C

) (2.2.9)

coming from the solution to the Gaussian integral and we will see a graphical way of

deriving them in section 2.2.3. Putting everything together and correctly re-inserting

the Feynman prescription required outside of the Euclidean regime, we obtain the

Schwinger parameter representation:

J (s; ν) = (−1)ν∏N
i=1 Γ (νi)

∫ ∞

0

N∏
i=1

dti t
νi−1
i U (t)− D

2 exp
(

−F (t, s) − i0+

U (t)

)
. (2.2.10)

Now we return to our example of the unequal mass bubble and assign Schwinger

parameters to each propagator as in Fig. 2.4. The sum in (2.2.7) simplifies to

t1

(
−k2 + m2

1

)
+ t2

(
− (k − p)2 + m2

2

)
= − (t1 + t2) k2 + 2t2 p · k − t2 p2 + t1m

2
1 + t2m

2
2

(2.2.11)
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s

t1, m1

p k

k−p

t2, m2

Figure 2.4: The bubble with assigned Schwinger parameters.

and, as this is a 1-loop example, we can easily extract the 1 × 1 matrix M and

the 1-vector V⃗ as t1 + t2 and t2 p respectively as well as C = −t2 p2 + t1m
2
1 + t2m

2
2.

Using (2.2.9) and inserting p2 = s, we find

U (t) = t1 + t2

F (t, s) = t1 + t2

µ2

(
t2
2s

t1 + t2
− t2s + t1m

2
1 + t2m

2
2

)

= − s

µ2 t1 t2 + (t1 + t2)
(

m2
1

µ2 t1 + m2
2

µ2 t2

)
,

(2.2.12)

allowing us to write

Jbub (s; ν) = (−1)ν

Γ (ν1) Γ (ν2)

∫ ∞

0
dt1 dt2 t

ν1−1
1 t

ν2−1
2 (t1 + t2)− D

2 ×

exp
−

−s t1 t2 + (t1 + t2)
(
m2

1 t1 + m2
2 t2

)
− i0+

µ2 (t1 + t2)

 .

(2.2.13)

In the next section, the Schwinger parameter representation in (2.2.10) will be used

to derive the most important representation for this thesis: the Feynman parameter

representation.

2.2.3 Feynman Parameter Representation

We now discuss the Feynman parameter representation – one of the most commonly

adopted representations of Feynman integrals. We start with the Schwinger para-

meter representation1 in (2.2.10) and insert a factor of 1 under the integral sign

1One could instead follow the textbook approach and start from the momentum representation
in (2.2.1) and introduce Feynman parameters using Feynman’s trick for each of the propagators:

N∏
i=1

A
−νi
i = Γ (ν)∏N

i=1 Γ (νi)

∫
RN

≥0

N∏
i=1

dxi x
νi−1
i δ

(
1 −

N∑
i=1

xi

)(
N∑

i=1
xiAi

)−ν

.
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(keeping the Feynman prescription implicit for now):

J (s; ν) = (−1)ν∏N
i=1 Γ (νi)

∫ ∞

0

N∏
i=1

dti t
νi−1
i

∫ ∞

0
dλ δ

(
λ −

∑
i∈S

ti

)
U (t)− D

2 exp
(

−F (t, s)
U (t)

)
(2.2.14)

where S is any (non-empty) subset of {1, 2, . . . , N}. We change variables to Feynman

parameters defined by ti = λxi which gives us

J (s; ν) = (−1)ν∏N
i=1 Γ (νi)

∫ ∞

0

N∏
i=1

dxi x
νi−1
i δ

(
1 −

∑
i∈S

xi

)
×

∫ ∞

0
dλ λν−1 U (λx)− D

2 exp
(

−F (λx, s)
U (λx)

)
.

(2.2.15)

At this stage, we make use of an important property of the U and F polynomials. A

result of the construction in (2.2.9) is that the U and F polynomials are homogeneous

of degree L and L+1 respectively in their parameters (this is manifest in the graphical

construction of the polynomials presented later in this section). Explicitly, this means

that
U (λx) = λL U (x)

F (λx, s) = λL+1F (x, s)
(2.2.16)

which simplifies (2.2.15):

J (s; ν) = (−1)ν∏N
i=1 Γ (νi)

∫ ∞

0

N∏
i=1

dxi x
νi−1
i δ

(
1 −

∑
i∈S

xi

)
U (x)− D

2 ×

∫ ∞

0
dλ λν− LD

2 −1 exp
(

−F (x, s)
U (x) λ

)
.

(2.2.17)

Restricting to the Euclidean regime (where F > 0 within the integration domain),

we can change variables once more to χ = F
U λ, obtaining

J (s; ν)= (−1)ν∏N
i=1Γ (νi)

∫ ∞

0

N∏
i=1

dxi x
νi−1
i δ

(
1 −

∑
i∈S

xi

)
U (x)ν− (L+1)D

2

F (x, s)ν− LD
2

∫ ∞

0
dχ χν− LD

2 −1e−χ.

(2.2.18)
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We recognise the integral over χ to be the Γ-function with argument ν − LD
2 which

allows us to write down the Feynman parameter representation (with the Feynman

prescription correctly re-inserted):

J (s; ν) =
(−1)ν Γ

(
ν− LD

2

)
∏N

i=1 Γ (νi)

∫ ∞

0

N∏
i=1

dxi x
νi−1
i δ

(
1 −

∑
i∈S

xi

)
U (x)ν− (L+1)D

2[
F (x, s) − i0+

]ν− LD
2

.

(2.2.19)

We have therefore shown how it is possible to convert from the more familiar mo-

mentum space representation of a given integral to either of the Schwinger or Feyn-

man parameter representations. One may ask, however, whether it is possible to

immediately write down the parameter representations without recourse to the pic-

ture of loop momenta and their associated routings around a diagram; the answer

to this question is an emphatic yes. By inspecting (2.2.10) and (2.2.19), we realise

that, for a given choice of dot structure ν of the propagators, the only objects we

need to derive are the Symanzik polynomials U and F . The graphical method of

constructing U and F using cuts of the diagram associated to the Feynman integral

provides such an algorithm to obtain the polynomials without having to introduce

and route loop momenta; the only data required consist of the external kinematics

and the graph (in the graph theory sense) itself.

Consider the Feynman diagram representation of a Feynman integral (for example, as

in Fig. 2.2); this is a graph, G, with edges labelled by e1. The U and F polynomials

can be derived from this graph using the following equations:

U(x) =
∑

T
1∈T 1

∏
e/∈T

1

xe, F0(x, s) =
∑

(T 1
,T

2)∈T 2

−
s(T 1

,T
2)

µ2
∏

e/∈(T 1
,T

2)

xe

 , (2.2.20)

F(x, s) = F0(x, s) + U(x)
∑
e∈G

m2
e

µ2 xe (2.2.21)

where T 1 = T 1 (G) and T 2 = T 2 (G) are the spanning 1-forests (i.e. the spanning

trees) and the spanning 2-forests of the graph G respectively2. The symbol s(T 1
,T

2)

1In this sense, the graph G does not contain external legs as edges (i.e. e = {e1, e2, ..., eN }) but
we will nevertheless depict them in the diagrams.

2If the reader is unfamiliar with the pre-requisite graph theory, we recommend consulting [10]
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s

x1, m1

x2, m2

Figure 2.5: The bubble with assigned Feynman parameters.

refers to the square of the total momentum flowing between the two tree components

T1 and T2 of the spanning 2-forest
(
T 1, T 2

)
. By considering (2.2.20), it is manifest

in this construction that, in the absence of internal masses, each Feynman parameter

appears at most linearly in each monomial of U and F . We note that the presence

of internal masses only modifies the F polynomial as in (2.2.21) such that, in

these additional terms, Feynman parameters associated to massive propagators may

appear quadratically in a given monomial. In any case, U and F remain homogeneous

polynomials of the Feynman parameters of degree L and L + 1 respectively with all

the kinematic dependence retained solely in F . Given that the Feynman parameters

are integrated over RN
≥0, it is clear that U ≥ 0 with the equality only holding on the

boundary of the integration domain. The kinematic dependence of F means that, in

general, F can be positive, negative or zero throughout the integration domain (with

the Feynman prescription in (2.2.19) required when F is zero within the domain of

integration, away from the boundary). We will define the Euclidean regime in this

thesis to be the kinematic regime such that F ≥ 0 in the integration domain with

the equality holding only on the boundary as with U . We note that, if momentum

conservation is imposed on the kinematic parameters appearing in F (such that they

are not all independent), such a regime is not even guaranteed to exist for a given

Feynman integral – we will meet such integrals in Chapter 3.

We will present some simple cases to clarify the graphical construction in (2.2.20)

and (2.2.21). Firstly, we return to our familiar example of the unequal mass bubble

and assign Feynman parameters to each propagator as in Fig. 2.5. To construct U ,

for an introduction relevant for this context. In any case, we hope that the presented diagrammatic
examples clarify this construction.
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we must sum over all deletions of L propagators which reduce the original L-loop

diagram to a tree (here L = 1):

U (x) = + . (2.2.22)

Similarly, to construct F0, we must sum over all deletions of L+1 propagators which

reduce the original L-loop diagram into two trees with non-zero squared momentum

flowing between them:

F0 (x, s) = − s

µ2 . (2.2.23)

Adding the mass terms from (2.2.21), this yields

U (x) = x1 + x2

F (x, s) = − s

µ2 x1x2 + (x1 + x2)
(

m2
1

µ2 x1 + m2
2

µ2 x2

) (2.2.24)

in agreement with (2.2.12) without ever having introduced a loop momentum. This

allows us to write down the unequal mass bubble in the Feynman parameter repres-

entation:

Jbub (s; ν) =
(−1)ν Γ

(
ν − D

2

)
Γ (ν1) Γ (ν2)

∫ ∞

0
dx1 dx2 x

ν1−1
1 x

ν2−1
2 δ

(
1 −

∑2
i=1 αixi

)
×

(x1 + x2)ν−D[
− s

µ
2 x1x2 + (x1 + x2)

(
m

2
1

µ
2 x1 + m

2
2

µ
2 x2

)
− i0+

]ν− D
2

(2.2.25)

where the coefficients αi ≥ 0 (with at least one of the two non-zero) encode the

freedom to choose any non-empty subset of the parameters in the δ-function. Taking

the massless limit m1,2 ! 0 in the Euclidean regime s < 0 and integrating out x2



50 Chapter 2. Feynman Integrals

p1

p2

p3

p4

x1

x4

x2

x3

Figure 2.6: The off-shell box with assigned Feynman parameters.

using the δ-function with α1 = α2 = 1, we obtain

Jbub ({s, 0, 0}; ν) =
(−1)ν Γ

(
ν − D

2

)
Γ (ν1) Γ (ν2)

(
−s

µ2

)D
2 −ν ∫ 1

0
dx1 x

D
2 −ν2−1

1 (1 − x1)
D
2 −ν1−1

(2.2.26)

which we recognise from (2.1.12) as another Euler beta function. This allows us to

write

Jbub ({s, 0, 0}; ν) =
(−1)ν Γ

(
ν − D

2

)
Γ
(

D
2 − ν1

)
Γ
(

D
2 − ν2

)
Γ (ν1) Γ (ν2) Γ (D − ν)

(
−s

µ2

)D
2 −ν

(2.2.27)

with the analytic continuation to the physical region given by s ! s + i0+. If we

consider the standard case of no dots (ν = {1, 1}) in D = 4 − 2ϵ, we have1

Jbub ({s, 0, 0}; {1, 1}) = Γ (ϵ) Γ (1 − ϵ)2

Γ (2 − 2ϵ)

(
−s

µ2

)−ϵ

= 1
ϵ

+ 2 − γE − ln
(

−s

µ2

)
+ O (ϵ) .

(2.2.28)

We see, once again, that we have a divergent integral as the regulator, ϵ, goes to

zero. We note that this pole is purely a result of expanding Γ (ϵ) which stems from

the D-dependent prefactor in (2.2.19); we call such integrals ‘quasi-finite’.

As another clarifying example of the graphical construction of the Symanzik polyno-

mials, we now consider the massless box with an off-shell leg shown in Fig. 2.6 (with

all the external momenta defined to be incoming and the kinematic invariants given

by the standard Mandelstam variables s = (p1 + p2)2 and t = (p1 + p3)2 along with

1For the physical region (s > 0), the analytic continuation gives us 1
ϵ +2−γE−ln

(
s

µ
2

)
+iπ+O (ϵ).
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the off-shellness p2
1 ̸= 0). We construct U with the deletions of 1 propagator,

U (x) = + + + ,

(2.2.29)

corresponding to the four spanning trees of the graph and we construct F0 with the

deletions of 2 propagators,

F0 (x, s) = − s

µ2 − t

µ2 − p2
1

µ2 , (2.2.30)

corresponding to the three spanning 2-forests of the graph with non-zero squared

momentum flowing between them. Note that if we had allowed all four external legs

to be off-shell, each of the six spanning 2-forests of the graph would contribute to F0

through terms proportional to p2
2, p2

3 and p2
4 (with one of the four pi being replaced

using overall momentum conservation). Since this integral has no massive internal

propagators, we have F = F0 and so

U (x) = x1 + x2 + x3 + x4

F (x, s) = − s

µ2 x1x2 − t

µ2 x3x4 − p2
1

µ2 x1x3

(2.2.31)

allowing us to write the Feynman parameter representation of the off-shell box:

Jbox, p
2
1>0 (s; ν) =

(−1)ν Γ
(
ν − D

2

)
∏4

i=1 Γ (νi)

∫ ∞

0

4∏
i=1

dxi x
νi−1
i δ

(
1 −

∑4
i=1 αixi

)
×

(x1 + x2 + x3 + x4)ν−D[
− s

µ
2 x1x2 − t

µ
2 x3x4 − p

2
1

µ
2 x1x3 − i0+

]ν− D
2

.
(2.2.32)

Thus, we conclude our discussion of the graphical construction of the Symanzik

polynomials through these examples.

The Feynman parameter representation will play a significant role in Chapter 3

where we present an alternative method for integrating these parametric integrands

outside the Euclidean regime without requiring an explicit contour deformation.
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2.3 Integration-by-Parts Reduction

In state-of-the-art QFT calculations, many thousands of scalar Feynman integrals

may appear in the computation of amplitudes. Given the immense difficulty in

evaluating these loop integrals (either analytically or numerically), it is advantageous

to reduce this number of integrals as far as possible using linear relations between the

Feynman integrals themselves. For example, these could be symmetry relations of the

kind described in Section 2.2.1 or identities stemming from the Lorentz invariance of

the scalar integrals1. In this section, we will focus on a special kind of linear relation

between Feynman integrals referred to as Integration-by-Parts (IBP) identities. With

all the required linear relations, the thousands of integrals may be reduced to a finite

basis of so-called ‘master’ integrals which then need to be evaluated. The vector

space structure of Feynman integrals2 means that this basis choice is not unique and

certain choices will be beneficial depending on the method of evaluation.

We will begin by introducing the concept of an integral family and the relevant

notation used in the literature of this field, before presenting the IBP identity itself

and demonstrating this on our prototypical example of the massive bubble. We

conclude this section with an exposition of dimensional recurrence relations (DRRs)

which were used in the calculation detailed in Chapter 4.

2.3.1 Integral Families

Consider a process with P + 1 external legs such that there are P independent

external momenta after overall momentum conservation has been applied. The

maximal number of kinematic invariants is given by3

(
P

2

)
+ P = P (P + 1)

2 (2.3.1)

1We will not discuss these ‘LI’ identities explicitly as they do not provide additional information
to IBP identities (as shown in [23]) which are the focus of this section.

2In fact, this vector space structure may even be equipped with an inner product, see [24].
3The binomial coefficient (‘n choose k’) is given by

(
n
k

)
= n!

k!(n−k)! .
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where the first term on the left-hand-side of (2.3.1) counts the number of ways

one can take a scalar product between two of the external momenta (pa · pb ̸=a) and

the second term counts scalar products of the external momenta with themselves

(p2
a). For the L-loop contribution to the process, scalar products between the L loop

momenta and the P external momenta, as well as scalar products among the loop

momenta themselves, appear in the Feynman integrals. We can count this number

as well:

N =
(

P + L

2

)
+ L −

(
P

2

)
= L (L + 2P + 1)

2 . (2.3.2)

We define an integral family to be a set of inverse propagators, D, of cardinality

|D| = N such that any scalar product involving at least one of the loop momenta

can be written as a linear combination of the inverse propagators appearing in the

set.

We make two comments. Firstly, in general, a process at L loops will have Feynman

diagrams with multiple topologies leading to multiple integral families being defined.

Secondly, not all inverse propagators appearing in D will correspond to actual

propagators of the diagram – they are introduced as so-called ‘auxiliary propagators’

to ensure the family is complete in the sense of the ability to reproduce all possible

scalar products. In the special 1-loop case, we have N |L=1 = P + 1 and, since every

1-loop integral already has P + 1 propagators, no auxiliary propagators are required.

An integral in the momentum space representation defined with respect to an integral

family D is then given by

J (ν) =
(
µ2
)ν− LD

2
∫ L∏

l=1
[Dkl]

N∏
i=1

1
Dνi

i

(2.3.3)

where, in this section, we allow once more for νi ∈ Z (dropping the explicit de-

pendence on s and the Feynman prescription for brevity). Closely adhering to the

conventions of [21, 25] and [26, 27], we adopt the following standard notation for a

given integral, J :

t =
N∑

i=1
θ
(

νi − 1
2

)
(2.3.4)
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which counts the number of inverse propagators appearing in the denominator (i.e.

inverse propagators with νi > 0),

r =
N∑

i=1
νi θ

(
νi − 1

2

)
(2.3.5)

which is the sum of the powers of the inverse propagators in the denominator1 and

s =
N∑

i=1
|νi| θ

(1
2 − νi

)
(2.3.6)

which is the (negated) sum of the powers of the inverse propagators appearing in

the numerator (i.e. inverse propagators with νi < 0).

We also introduce the important concept of a sector, S ⊆ D, which denotes a subset

of the inverse propagators in the family. An integral is said to belong to a sector, S,

if the set of all inverse propagators appearing in the denominator coincides with S.

The notion of a subsector, S1, of a sector, S2, is naturally defined through S1 ⊂ S2.

All integrals belonging to the same sector of an integral family share a unique sector

ID number, S, given by

S =
N∑

i=1
2i−1 θ

(
νi − 1

2

)
. (2.3.7)

The corner integral of a sector is defined to be the unique integral in the sector with

r = t and s = 0. In other words, it is the only integral in the sector with no dots or

inverse propagators in the numerator. It can be shown (see [28]) that all integrals

in a given sector will be zero if the corresponding corner integral is scaleless.

To clarify these definitions with an example, consider the somewhat artificial N = 9

index structure

ν = {1, 0, −4, 3, −2, 0, 2, 1, 2} . (2.3.8)

This corresponds to an integral (defined with respect to an integral family) with

t = 5, r = 9 and s = 6 in sector 457. The corner integral of this sector has the index

structure

ν = {1, 0, 0, 1, 0, 0, 1, 1, 1} . (2.3.9)

1Note that this implies that the total number of dots on an integral is given by d = r − t.



2.3. Integration-by-Parts Reduction 55

In this language of integral families and sectors, symmetry relations can provide

identities connecting the integrals within a sector or between sectors (or, in the

case of multiple defined integral families, even between sectors in different families).

In the next section, we will discuss the most important linear relations between

Feynman integrals: IBP identities.

2.3.2 The IBP Identity

We present the IBP identity for dimensionally-regulated integrals [29]:

(
µ2
)ν− LD

2
∫ L∏

l=1
[Dkl]

∂

∂kµ
m

[
qµ

n∏N
i=1 Dνi

i

]
= 0 (2.3.10)

where qµ
n is any linear combination of the loop and external momenta. For a given

‘seed’ integral of the type in (2.3.3), this generates L (L + P ) relations – this can

be seen by considering q to be the loop and external momenta themselves with

n ∈ {1, 2, . . . , L, L + 1, . . . , L + P} and m ∈ {1, 2, . . . , L}. The IBP identity relates

integrals from the same family with differing numbers of propagators; to that end,

we introduce the propagator raising and lowering operators, i±, defined by

i
±J (ν1, . . . , νi, . . . , νN) = J (ν1, . . . , νi ± 1, . . . , νN) . (2.3.11)

Let us return to the unequal mass bubble,

Jbub (ν1, ν2) =
(
µ2
)ν− D

2
∫

[Dk] 1[
k2 − m2

1

]ν1
[
(k − p)2 − m2

2

]ν2 . (2.3.12)

Using (2.3.10), we obtain one IBP relation for q1 = k and another for q2 = p. These

are given by

0 =
[
(D − 2ν1 − ν2) − ν21

−
2

+ − 2m2
1

µ2 ν11
+ − m2

1+m2
2−s

µ2 ν22
+
]

Jbub

0 =
[
(ν2 − ν1) + ν11

+
2

− − ν21
−
2

+ − m2
1−m2

2+s

µ2 ν11
+ − m2

1−m2
2−s

µ2 ν22
+
]

Jbub .

(2.3.13)

We can insert different integer values of ν1 and ν2 (corresponding to different values

of r and s) to build as large a system of equations as we need to reduce any integral in
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this family to a basis of master integrals, J⃗ , which we could take to be, for example,

J⃗ =


Jbub (1, 1)

Jbub (1, 0)

Jbub (0, 1)

 . (2.3.14)

Note that we have a true bubble master integral in the top-level sector (S = 3) and

tadpole master integrals in the subsectors (S = 1 and S = 2).

For a general integral family, we can determine the required ranges of r and s

demanded by the physics problem and build a system of equations that can be solved

such that any integral in the defined range can be expressed as a linear combination

of the elements in a finite basis of master integrals. In practice, this reduction

process is automated in modern computations using the Laporta algorithm [30]

which systematically solves the system of IBP relations by assigning a lexicographic

ordering to the integrals and reducing integrals which are higher-ranked with respect

to this ordering to lower-ranked ones. Different lexicographic orderings may be

chosen, provided they are consistent; for example, we may define one integral to be

less complicated than another integral (J1
L.O.

< J2) if t1 ≤ t2 then if s1 ≤ s2 then if

r1 ≤ r2 then if S1 ≤ S2 and so on where the subsequent checks are only carried out

at each step if the equality holds.

In its standard form, the Laporta algorithm selects master integrals based purely on

the defined lexicographic ordering which may not always lead to an optimal basis.

However, in modern applications, the algorithm is often modified to reduce integrals

directly to a preferred basis of master integrals. In Chapter 4, we will show how we

chose a basis of master integrals by demanding that the most difficult integrals only

had to be expanded to leading order in ϵ which drastically improved the numerical

evaluation of the integrals with the package pySecDec.

The existence of a systematic reduction to a basis guarantees that all integrals within

a given topology can be expressed in terms of a well-chosen set of master integrals,

greatly simplifying higher-order calculations in perturbative quantum field theory.
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2.3.3 Dimensional Recurrence Relations

In this section, we discuss dimensional recurrence relations (DRRs) which relate

integrals in a given dimension D to integrals in the same family in some other

dimension D′ – usually, D′ = D ± 2. These DRRs can be used along with IBP

relations to rotate a basis of master integrals from one basis, J⃗1, in D to another

basis, J⃗2, which, in general, contains integrals in multiple dimensions. It was shown in

[31,32] that such rotations can be constructed which generate a basis of (quasi-)finite1

integrals. Such bases are highly desirable; for example, they can make the pole

structure of an amplitude manifest in the coefficients of the master integrals post-

reduction and they can be much simpler to evaluate either analytically or numerically.

In Chapter 4, we will demonstrate how such a finite basis – by which we henceforth

mean a basis of finite integrals – was used and further improved upon for the

calculation of electroweak corrections to di-Higgs production.

In this section, we derive a relation between an integral in D dimensions and integrals

from the same integral family with a different dot structure in D + 2 dimensions;

such a relation was first presented in [36] with the reverse direction (D ! D − 2)

stated in [37]2. We apply this method, along with IBP reduction, to our bubble

example to construct the rotation from the basis, J⃗1, given in (2.3.14) to a finite

basis, J⃗2. To that end, in this section, we will explicitly indicate the dimension

of our integrals with respect to the reference dimension, D, as well as introducing

the dimension raising and lowering operators and the (modified) propagator raising

operator:

D
±JD (ν1, . . . , νi, . . . , νN) = JD±2 (ν1, . . . , νi, . . . , νN)

î
+JD (ν1, . . . , νi, . . . , νN) = −νiJ

D (ν1, . . . , νi + 1, . . . , νN) .

(2.3.15)

We begin by acting on the Schwinger parameter representation in (2.2.10) – where

1For a thorough discussion on finiteness criteria in the Euclidean regime, see [33]; the Minkowski
case is still an open question in general – see discussions in [34,35], for example.

2Naturally, after IBP reduction, the reverse direction can also be obtained from the forward
result via matrix inversion but computationally it can be convenient to have access to both relations.
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νi > 0 – with the raising operators in (2.3.15). The result is

D
+JD (ν) = (−1)ν∏N

i=1 Γ (νi)

∫ ∞

0

N∏
i=1

dti t
νi−1
i U (t)−1 U (t)− D

2 exp
(

−F (t, s) − i0+

U (t)

)

î
+JD (ν) = (−1)ν∏N

i=1 Γ (νi)

∫ ∞

0

N∏
i=1

dti t
νi−1
i ti U (t)− D

2 exp
(

−F (t, s) − i0+

U (t)

)
.

(2.3.16)

By inspecting (2.3.16), we realise that we can construct an identity operator out of

D
+ and {î} by first considering the effect of U

(
1̂, . . . , N̂

)
1 on JD. The action of

U
(
1̂, . . . , N̂

)
brings a factor of U (t) into the numerator of the integrand while, from

(2.3.16), D+ induces a factor of U (t) in the denominator. Clearly then, from the

commutativity of the propagator raising operators and the dimension shift operators

in (2.3.15) with one another, we obtain

JD (ν) = U
(
1̂, . . . , N̂

)
D

+JD (ν) (2.3.17)

which, by definition, implies that

JD (ν) = U
(
1̂, . . . , N̂

)
JD+2 (ν) . (2.3.18)

Hence, we have constructed a way to express integrals in D dimensions in terms of

integrals in D + 2.

Note that, if we merely apply U
(
1̂, . . . , N̂

)
D

+ to a master integral in D dimensions,

we do not, in general, obtain a linear combination of master integrals in D + 2

immediately. However, the integrals that appear can always be reduced back to the

same masters in D + 2 dimensions using IBP relations (which will, of course, be the

same relations as in D dimensions but with D ! D + 2). Therefore, for some basis

of master integrals, J⃗ D, we can construct the basis rotations

J⃗ D = R J⃗ D+2 ⇐⇒ J⃗ D+2 = R−1J⃗ D (2.3.19)

for some invertible matrix R derived using the DRRs and IBP relations.

1U
(
1̂, . . . , N̂

)
is defined naturally; for example, if U (t) = t1 + t2, then U

(
1̂, 2̂

)
= 1̂+ 2̂.
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To obtain a (quasi-)finite basis from some generic basis of master integrals, one often

modifies both the dimensions of some (or even all) of the original integrals as well

as their dot structures; the new basis will have the same number of master integrals

in each sector as before when employing dots and dimension shifts. For our bubble

example, let us derive the relation between our original quasi-finite basis

J⃗ 4−2ϵ
1 =


J4−2ϵ

bub (1, 1)

J4−2ϵ
bub (1, 0)

J4−2ϵ
bub (0, 1)

 (2.3.20)

in D = 4 − 2ϵ and a choice of finite basis given by

J⃗ 2−2ϵ
2 =


J2−2ϵ

bub (1, 1)

J2−2ϵ
bub (2, 0)

J2−2ϵ
bub (0, 2)

 (2.3.21)

in D − 2 = 2 − 2ϵ dimensions with a dot on each of the subsector (tadpole) master

integrals. We apply (2.3.18) to each of the integrals in the finite basis, J⃗ 2−2ϵ
2 :

J2−2ϵ
bub (1, 1) =

[
1̂+ 2̂

]
J4−2ϵ

bub (1, 1)

= −J4−2ϵ
bub (2, 1) − J4−2ϵ

bub (1, 2) (2.3.22)

= R1,1 J4−2ϵ
bub (1, 1) + R1,2 J4−2ϵ

bub (1, 0) + R1,3 J4−2ϵ
bub (0, 1) ,

J2−2ϵ
bub (2, 0) = 1̂ J4−2ϵ

bub (2, 0)

= −2 J4−2ϵ
bub (3, 0) (2.3.23)

= R2,2 J4−2ϵ
bub (1, 0) ,

J2−2ϵ
bub (0, 2) = 2̂ J4−2ϵ

bub (0, 2)

= −2 J4−2ϵ
bub (0, 3) (2.3.24)

= R3,3 J4−2ϵ
bub (0, 1)

where, in the final line for each integral, we have used IBP relations to reduce back
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to the quasi-finite basis, J⃗ 4−2ϵ
1 . The change of basis matrix,

R =


R1,1 R1,2 R1,3

0 R2,2 0

0 0 R3,3

 , (2.3.25)

contains the non-zero elements

R1,1 = 2 (1 − 2ϵ) s µ2(
s − [m1 + m2]2

) (
s − [m1 − m2]2

) ,

R1,2 =
(1 − ϵ)

(
m2

2 − m2
1 − s

)
µ4

m2
1

(
s − [m1 + m2]2

) (
s − [m1 − m2]2

) ,

R1,3 =
(1 − ϵ)

(
m2

1 − m2
2 − s

)
µ4

m2
2

(
s − [m1 + m2]2

) (
s − [m1 − m2]2

) ,

R2,2 = ϵ (1 − ϵ) µ4

m4
1

,

R3,3 = ϵ (1 − ϵ) µ4

m4
2

.

(2.3.26)

Hence, we can relate the two bases, J⃗ 4−2ϵ
1 and J⃗ 2−2ϵ

2 , using the change of basis

matrix and its inverse, R−1:

J⃗ 2−2ϵ
2 = R J⃗ 4−2ϵ

1 ⇐⇒ J⃗ 4−2ϵ
1 = R−1J⃗ 2−2ϵ

2 . (2.3.27)

We have shown that the use of dimensional recurrence relations in combination with

IBP reduction provides a powerful tool for rotating to finite bases of master integrals,

significantly simplifying their evaluation. However, while such basis choices mitigate

divergences in the regulator, ϵ, we would wish, in principle, to be able to evaluate

any Feynman integral. In cases where a fully finite basis cannot be easily identified

or when one simply wants to evaluate an integral without having to first reduce to

a basis of master integrals, an approach is required for the divergent integrals where

expanding the integrands about ϵ ! 0 and integrating the coefficients to obtain the

Laurent expansion fails. One such approach is sector decomposition [38], discussed

in the following section, which systematically isolates divergent regions of parameter

space and allows for their analytic or numerical evaluation via expansion in ϵ.
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2.4 Sector Decomposition

Let us consider a generic loop integral with νi > 0 in the Feynman parameter

representation, as in (2.2.19) and repeated here for convenience:

J (s; ν) =
(−1)ν Γ

(
ν− LD

2

)
∏N

i=1 Γ (νi)

∫ ∞

0

N∏
i=1

dxi x
νi−1
i δ

(
1 −

∑
i∈S

xi

)
U (x)ν− (L+1)D

2[
F (x, s) − i0+

]ν− LD
2

.

(2.4.1)

In the Euclidean regime1, the singularities of Feynman integrals stem from either the

boundary of the integration domain or a possible overall 1/ϵ from the D−dependent

prefactor. Sector2 decomposition (see [39, 40] for comprehensive reviews) is an

approach to handling the former type of singularity by first applying parameter

transformations which ‘factorise’ these singularities and then employing suitable

subtractions such that any remaining non-trivial integrals are finite. This makes the

approach ideally suited to numerical evaluation and, as a result, it is implemented

in numerous packages such as pySecDec [41] among others [42,43].

The factorisation step is required when a parametric integral possesses what is known

as an ‘overlapping’ singularity. To illustrate what these are and how to handle them,

we consider the archetypal toy example, following [39]:

I =
∫ 1

0
dx1 dx2

1
x1+aϵ

1 xbϵ
2 [x1 + (1 − x1) x2]

. (2.4.2)

There is a singularity stemming from the third factor in the denominator of the

integrand in (2.4.2) as x1 ! 0 and x2 ! 0 simultaneously. When a singularity

is a result of multiple parameters approaching the boundary of integration at the

same time (but strictly not when they individually tend towards it), we call this an

overlapping singularity. Sector decomposition is a way of handling an integral with

overlapping singularities by mapping it to a sum of sector integrals where none of

the singularities are of that nature.
1We remind the reader that we define the Euclidean regime to be the kinematic region where

F ≥ 0 in the integration domain with the equality only holding on the boundary.
2NB: ‘sector’ in this context is unrelated to the notion of a sector defined in the previous section.
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x1

x2

1

10

!
x1

x2

+
x1

x2

!
x1

x2

+
x1

x2

Figure 2.7: Decomposing the original domain of integration into two
sectors and then remapping the resulting domains back
to the positive unit square. The overlapping singularity
is depicted by a filled red circle and its evolution under
this procedure is shown.

To sector decompose the integral in (2.4.2), we begin by inserting a factor of 1 under

the integral sign in a way which dissects the integration domain into two sectors. We

then remap each of the resulting sectors back to the original domain of integration.

This proceeds as follows:

I =
∫

dx1dx2
1

x1+aϵ
1 xbϵ

2 [x1 + (1 − x1) x2]
[θ (x1 − x2) + θ (x2 − x1)]

=
∫

dx1dx2
1

x1+aϵ
1 xbϵ

2 [x1 + (1 − x1) x2]
+
∫

dx1dx2
1

x1+aϵ
1 xbϵ

2 [x1 + (1 − x1) x2]

=
∫

dx1dx2
1

x
1+(a+b)ϵ
1 xbϵ

2 [1 + (1 − x1) x2]
+
∫

dx1dx2
1

x1+aϵ
1 x

1+(a+b)ϵ
2 [1 + (1 − x2) x1]

(2.4.3)

where the integration domains at each step correspond to those in Fig 2.7. In order

to obtain the final line, we have applied the variable transformations x2 ! x1x2 and

x1 ! x1x2 for the domain remappings ! and ! respectively. This pro-

cedure has ‘factorised’ the overlapping singularity; in each of the resulting integrands,

there is no additional singularity from the simultaneous limit x1 ! 0 and x2 ! 0

which is distinct from the individual limits. For a generic Feynman integral, there

are a number of algorithmic approaches, both iterative and geometric, implemented

in various packages which allow for the systematic resolution of these overlapping

singularities in the Euclidean regime – see [39,40] for detail on the different methods.

In general, once the overlapping singularities of a Feynman integral have been
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factorised in this sense, we are left with sector integrals of the type:

Iσ =
∫ 1

0

∏
i∈Sσ

dxi x
αi+βiϵ
i Iσ

(
{xj}j∈Sσ

, ϵ
)

. (2.4.4)

Here, σ labels the sector and Sσ ⊂ {1, . . . , N} (with |Sσ| = N − 1) encodes which

parameters appear in the sector. Iσ is the remaining part of the integrand which

does not lead to singularities in any limit in which the Feynman parameters go to

the boundary (either individually or simultaneously). At this stage, we perform

the subtractions: if αi > −1, the integral over xi in (2.4.4) is finite and we may

move onto the next variable; if αi ≤ −1, we require a subtraction to perform the xi

integration.

For clarity, let us consider the univariate case for the exposition of the subtraction

procedure – the generalisation to the multivariable case is simply an iteration of this

procedure over all the variables. Consider the integral

Iσ =
∫ 1

0
dx xα+βϵ Iσ (x, ϵ) (2.4.5)

with α ≤ −1. We can construct a subtraction term by Taylor expanding the

integrand about the singular limit x ! 0:

Rσ =
∫ 1

0
dx xα+βϵ

|α|−1∑
k=0

xk

k!
∂kIσ

∂xk

∣∣∣∣∣
x=0

. (2.4.6)

By construction, the subtraction term, Rσ, has the same behaviour as Iσ in the

singular region of x approaching zero but it is far simpler to evaluate. The result is

Rσ =
|α|−1∑
k=0

1
k! [1 + k + α + βϵ]

∂kIσ

∂xk

∣∣∣∣∣
x=0

(2.4.7)

which allows us to write

Iσ = Rσ + Iσ − Rσ

=
|α|−1∑
k=0

1
k! [1 + k + α + βϵ]

∂kIσ

∂xk

∣∣∣∣∣
x=0

+

∫ 1

0
dx xα+βϵ

Iσ (x, ϵ) −
|α|−1∑
k=0

xk

k!
∂kIσ

∂xk

∣∣∣∣∣
x=0

 .

(2.4.8)
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The singularity of Iσ has been isolated in the first term of (2.4.8) while the remaining

integral is finite by construction. The integrand of this finite integral may be

expanded as a series about ϵ ! 0 and each term in the expansion can then be

integrated either analytically or numerically. For the common case of α = −1,

(2.4.8) reduces to the familiar subtraction given by

Iσ = Iσ (0, ϵ)
βϵ

+
∫ 1

0
dx x−1+βϵ [Iσ (x, ϵ) − Iσ (0, ϵ)] . (2.4.9)

Let us apply the subtraction procedure to the sector integrals in our toy example

– this is a multivariate case so we will need to iterate the method outlined above

over all the parameters (in this example, over x1 and x2). We denote the sector

integrals appearing in the last line of (2.4.3) by IA and IB. It is clear that IA has a

leading 1/ϵ pole (as α1 = −1 and α2 = 0) while IB has a 1/ϵ2 pole (as α1 = −1 and

α2 = −1). This means that IA only requires a subtraction for the x1 integration;

we will perform this subtraction explicitly and simply state the result for IB which

requires the iterated procedure:

IA =
∫ 1

0
dx1 dx2

1
x

1+(a+b)ϵ
1 xbϵ

2 [1 + (1 − x1) x2]

=
∫ 1

0
dx1 dx2

1
x

1+(a+b)ϵ
1 xbϵ

2 [1 + x2]
+

∫ 1

0
dx1 dx2

[
1

x
1+(a+b)ϵ
1 xbϵ

2 [1 + (1 − x1) x2]
− 1

x
1+(a+b)ϵ
1 xbϵ

2 [1 + x2]

]

=
∫ 1

0
dx2

−x−bϵ
2

(a + b) ϵ [1 + x2]
+
∫ 1

0
dx1 dx2

x
−(a+b)ϵ
1 x1−bϵ

2

[1 + (1 − x1) x2] [1 + x2]

= − ln 2
(a + b)

1
ϵ

− b π2

12 (a + b) + ln2 2
2 + O (ϵ)

(2.4.10)

and

IB = 1
a (a + b)

1
ϵ2 + ln 2

(a + b)
1
ϵ

+ a π2

12 (a + b) − ln2 2
2 + π2

12 + O (ϵ) . (2.4.11)

Summing over the sectors and noting the cancellations, we find that

I = IA + IB

= 1
a (a + b)

1
ϵ2 + a π2

6 (a + b) + O (ϵ) .
(2.4.12)
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We have seen an example of how sector decomposition systematically handles di-

vergent integrals in the Euclidean regime, allowing for their analytical or numerical

evaluation as a Laurent series in the dimensional regulator, ϵ. In the Minkowski

regime, where F can vanish within the integration domain (away from the bound-

ary), other methods are required to supplement this procedure in order to evaluate

Feynman integrals – we postpone discussion of this physically significant case to

Chapter 3 where we introduce a new procedure to map Minkowski integrals to a

sum of ‘Euclidean’ ones (which can then be handled using the methods outlined in

this section).

In the next section, we discuss another way of evaluating Feynman integrals which

requires setting up a differential equation system for a basis of master integrals.

Sector decomposition can be complementary here, either by providing boundary

conditions for the differential equation system or by allowing for an independent

check of the solution of the system; we will see both applications in the calculation

presented in Chapter 4.

2.5 Differential Equations

The method of differential equations, first introduced in its current form in [44,45]

and later expanded upon in [46,47], is a technique for evaluating a master basis of

Feynman integrals. Derivatives of each integral in the basis are taken with respect

to the kinematic invariants and the resulting integrals are then IBP-reduced back to

the masters. This enables the construction of a closed system of coupled differential

equations which can then be solved using various techniques. In this section, we begin

by presenting a general algorithm for explicitly constructing derivative operators

which manifestly return integrals from the same family (albeit in shifted dimension)1;

this allows for the use of IBP relations to reduce back to the basis of masters. We

will then show the general form of the differential equation system, commenting on
1Other derivative operators are available.
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some useful properties which can help to verify a valid construction. Finally, we

will apply the method of differential equations to the finite basis in (2.3.21) for our

prototypical example of the massive bubble topology.

To construct the derivative operators, we return (as in the derivation of the dimen-

sional recurrence relations) to the Schwinger parameter representation:

J (s; ν) = (−1)ν∏N
i=1 Γ (νi)

∫ ∞

0

N∏
i=1

dti t
νi−1
i U (t)− D

2 exp
(

−F (t, s) − i0+

U (t)

)
. (2.5.1)

In this section, we will absorb µ2 into the definition of our kinematic invariants,

sj ∈ s, such that sj/µ2 ! sj where the new sj are dimensionless. By a slight abuse

of notation, we implement this by setting µ2 = 1 (note that the µ-dependence

can always be restored). Let us consider the action of the derivative with respect

to sj (having already eliminated dependent kinematic invariants using momentum

conservation) on the Schwinger parameter representation in (2.5.1), with νi > 0:

∂J

∂sj

= − (−1)ν∏N
i=1 Γ (νi)

∫ ∞

0

N∏
i=1

dti t
νi−1
i U (t)−1 U (t)− D

2
∂F
∂sj

exp
(

−F (t, s) − i0+

U (t)

)

= − (−1)ν∏N
i=1 Γ (νi)

∫ ∞

0

N∏
i=1

dti t
νi−1
i U (t)− D+2

2 Fsj
(t) exp

(
−F (t, s) − i0+

U (t)

)
(2.5.2)

where in the final line we have used that the F polynomial is linear in the sj to define

the sj-coefficient of F : Fsj
(t) = ∂F

∂sj
. It is clear from the graphical construction of F

that Fsj
depends only on the integration parameters and not on the other kinematic

invariants. From the linearity of the F polynomial in all the kinematic invariants

(with no constant term), we also have that

F (t, s) =
∑
sj ∈s

Fsj
(t) sj . (2.5.3)

Similarly to the application of U
(
1̂, . . . , N̂

)
on J in the derivation of dimensional

recurrence relations, we can consider the action of Fsj

(
1̂, . . . , N̂

)
on J . This would

replicate the second line of (2.5.2), up to a minus sign and a dimension shift. Hence,

we obtain
∂J

∂sj

= −Fsj

(
1̂, . . . , N̂

)
D

+J (s; ν) . (2.5.4)
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Using DRRs and IBP relations, we can always reduce the right hand side of (2.5.4)

to master integrals. Hence, for a generic basis J⃗ , we can construct

∂J⃗

∂sj

= Asj
J⃗ (2.5.5)

where Asj
is the so-called ‘partial derivative matrix’ for sj. Treating D and ν as

fixed for each master integral, J , in the basis, J⃗ , we have

dJ⃗ =
∑
sj ∈s

∂J⃗

∂sj

dsj . (2.5.6)

Comparing (2.5.5) with (2.5.6), we obtain the following compact expression for the

differential equation system:

dJ⃗ =
 ∑

sj ∈s

Asj
dsj

J⃗ . (2.5.7)

We can define the matrix of one-forms A = ∑
sj ∈s Asj

dsj to obtain the even more

compact expression

dJ⃗ = AJ⃗ (2.5.8)

which allows us to write the ‘integrability condition’:

d2 = 0 ⇒ dA = A ∧ A . (2.5.9)

This integrability condition on A is equivalent to a condition on the partial derivative

matrices themselves given by

∀sj, sk ∈ s :
∂Asj

∂sk

−
∂Ask

∂sj

+
[
Asj

, Ask

]
= 0 . (2.5.10)

In multi-loop calculations (such as the one presented in Chapter 4 where each Asj

was a 494×494 matrix), it is advisable to check the integrability condition is satisfied

explicitly; the realisation of the integrability condition in (2.5.10) is often the most

practical. Another useful check relates to the fact that not all derivatives of a

Feynman integral are independent – they obey the scaling relation

∑
sj ∈s

sj

∂J

∂sj

=
(

LD

2 − ν
)

J . (2.5.11)
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This can easily be seen by considering the action of the derivative operator ∑sj ∈ssj
∂

∂sj

on an integral, J , in the Feynman parameter representation. The scaling relation

induces the following relation on the partial derivative matrices:

∑
sj ∈s

sjAsj
= Γ (2.5.12)

where Γ is a diagonal matrix with elements consisting of the scaling dimension of

each master integral. Performing both checks (that is to say, that the integrabil-

ity condition and the scaling relation are satisfied) is highly recommended when

constructing a differential equation system.

Now, we implement this method of differential equations in our example of the

unequal mass bubble topology with the master basis

J⃗ =


J2−2ϵ

bub (1, 1)

J2−2ϵ
bub (2, 0)

J2−2ϵ
bub (0, 2)

 . (2.5.13)

Applying (2.5.4) for sj ∈ {s, m2
1, m2

2} to each integral in J⃗ , we obtain

∂sJ
2−2ϵ
bub (1, 1) = 1̂ 2̂ J4−2ϵ

bub (1, 1) = J4−2ϵ
bub (2, 2)

∂
m

2
1
J2−2ϵ

bub (1, 1) = −1̂
(
1̂+ 2̂

)
J4−2ϵ

bub (1, 1) = −2 J4−2ϵ
bub (3, 1) − J4−2ϵ

bub (2, 2) (2.5.14)

∂
m

2
2
J2−2ϵ

bub (1, 1) = −2̂
(
1̂+ 2̂

)
J4−2ϵ

bub (1, 1) = −J4−2ϵ
bub (2, 2) − 2 J4−2ϵ

bub (1, 3) ,

∂sJ
2−2ϵ
bub (2, 0) = 0

∂
m

2
1
J2−2ϵ

bub (2, 0) = −1̂2 J4−2ϵ
bub (2, 0) = −6 J4−2ϵ

bub (4, 0) (2.5.15)

∂
m

2
2
J2−2ϵ

bub (2, 0) = 0 ,

∂sJ
2−2ϵ
bub (0, 2) = 0

∂
m

2
1
J2−2ϵ

bub (0, 2) = 0 (2.5.16)

∂
m

2
2
J2−2ϵ

bub (0, 2) = −2̂2 J4−2ϵ
bub (0, 2) = −6 J4−2ϵ

bub (0, 4) .
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Using IBP relations and DRRs, we can reduce the resulting integrals appearing

above back to the masters in J⃗ . This allows us to construct the following differential

equation system:

∂J⃗

∂s
= AsJ⃗ ,

∂J⃗

∂m2
1

= A
m

2
1
J⃗ ,

∂J⃗

∂m2
2

= A
m

2
2
J⃗ (2.5.17)

As =


(m

2
1+m

2
2−s)s+([m2

1−m
2
2]2−s

2)ϵ

s(s−[m1+m2]2)(s−[m1−m2]2)
m

2
1(m

2
1−m

2
2−s)

s(s−[m1+m2]2)(s−[m1−m2]2)
m

2
2(m

2
2−m

2
1−s)

s(s−[m1+m2]2)(s−[m1−m2]2)
0 0 0

0 0 0


(2.5.18)

A
m

2
1
=


(s−m

2
1+m

2
2) (1+2ϵ)

(s−[m1+m2]2)(s−[m1−m2]2)
s−m

2
1−m

2
2

(s−[m1+m2]2)(s−[m1−m2]2)
2m

2
2

(s−[m1+m2]2)(s−[m1−m2]2)
0 −1+ϵ

m
2
1

0

0 0 0


(2.5.19)

A
m

2
2
=


(s+m

2
1−m

2
2) (1+2ϵ)

(s−[m1+m2]2)(s−[m1−m2]2)
2m

2
1

(s−[m1+m2]2)(s−[m1−m2]2)
s−m

2
1−m

2
2

(s−[m1+m2]2)(s−[m1−m2]2)
0 0 0

0 0 −1+ϵ

m
2
2


(2.5.20)

where the set of partial derivative matrices, Asj
, can be shown to explicitly satisfy

the integrability condition in (2.5.10) and the scaling relation in (2.5.12).

Finally, we can obtain the Laurent series in ϵ for each master integral in the basis,

J⃗ , using the package DiffExp [48]. DiffExp solves the system using a generalised

series solution, expanding in a line parameter, x, which defines a chosen contour in

the kinematic space. Truncating the series solution after a large enough number of

terms provides a sufficiently precise value of the coefficient of each order in ϵ for a

given value of x. In Fig. 2.8, we present results for J2−2ϵ
bub (1, 1) as a function of s

obtained using DiffExp, having provided the package with an analytic boundary

condition at s = 0 and having fixed m1 = 1 and m2 = 2.
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Figure 2.8: Coefficients of ϵn (n ∈ {0, 1, 2, 3, 4}) in the Laurent
expansion of J2−2ϵ

bub (1, 1) as functions of s with m1 = 1
and m2 = 2 fixed. The threshold at s = (m1 + m2)2 is
shown in pink and the series solution is verified using
pySecDec at numerous benchmark points denoted by
crosses.



Chapter 3

Avoiding Contour Deformation in

Feynman Integrals

In this chapter, we introduce a novel method for integrating directly in the Minkowski

regime without recourse to contour deformation. The method maps a Minkowski

integral to a causally-prescribed sum of integrals with manifestly non-negative2

integrands which can then be dealt with using the standard approach of sector

decomposition, for example, as discussed in Section 2.4. We begin, in Section 3.1,

by reviewing how contour deformation can handle some of the singularities which

appear in loop integrals in the Feynman parameter representation. The method for

avoiding contour deformation is outlined in Section 3.2 with an algorithm provided

for the cases where we know how to automate the procedure. Examples of the

method being applied to both massless and massive Feynman integrals are given in

Section 3.3 with the effect on performance discussed in Section 3.4.

3.1 Preliminaries

In this section, we will re-introduce our notation for Feynman integrals in Feynman

parameter space. We will review the singularities present in dimensionally regulated
2The integrands are also strictly positive within the integration domain, away from the boundary.
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parameter integrals and summarise the method of contour deformation, which can

be used to evaluate parameter integrals outside the Euclidean regime.

3.1.1 Integrands in Parameter Space

In this chapter, an L-loop dimensionally regularised1 Feynman integral depending

on the kinematic invariants, s, will be written in terms of Feynman parameters, x,

as

J(s) = (−1)ν Γ (ν − LD/2)∏N
i=1 Γ (νi)

lim
δ!0+

∫
RN

≥0

N∏
i=1

dxix
νi−1
i

U(x)ν−(L+1)D/2

(F(x, s) − iδ)ν−LD/2 δ
(
1 − α (x)

)
(3.1.1)

where U(x) and F(x, s) are the homogeneous Symanzik polynomials discussed

heavily in Chapter 2. Given its significance in this exposition, we now denote the

Feynman prescription explicitly by the limit that the parameter δ > 0 goes to zero

from above. In contrast to (2.2.19), we denote the domain of integration by RN
≥0

and set µ2 = 1. The argument of the δ-function defines an arbitrary hyperplane

that bounds the integral in this positive domain for at least one xi ≥ 0 [10, 49,

50]. Common choices of the function α(x) include the N -dimensional simplex

α(x) = ∑N
i=1 xi, or lower dimensional simplices α(x) = ∑

i∈S xi, where a non-empty

subset of the Feynman parameters, S, is selected as mentioned in Section 2.2.3.

We recall from the graphical construction of the Symanzik polynomials in (2.2.20)

and (2.2.21) that U(x) and F0(x, s) are at most linear in a particular Feynman

parameter, while F(x, s) is at most linear (quadratic) in parameters associated to

massless (massive) propagators. Furthermore, we note that U(x) consists purely of

positive monomials of Feynman parameters with positive coefficients, it is therefore

manifestly positive in RN
≥0. The F(x, s) polynomial is built from monomials with

both positive and negative sign depending on the value of the invariants, s.

Both U(x) and F(x, s) may vanish on the intersection of the hyperplane defined

1Without loss of generality, we will assume D = 4 − 2ϵ throughout. We stress that the method
is agnostic to the specific number of spacetime dimensions.
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by the δ-function with the coordinate hyperplanes, or, equivalently, for subsets of x

vanishing. Depending on the propagator powers, νi, and the space-time dimension,

D, this can give rise to UV and IR divergences. When the invariants s are chosen

such that F(x, s) contains monomials with different signs, the F(x, s) polynomial

can additionally vanish and change sign on hypersurfaces within the integration

domain, RN
>0.

For some Feynman integrals, it is possible to define a kinematic region in which

all monomials of F(x, s) have the same overall sign, we will refer to this choice

of kinematics as being the manifestly same-sign regime. More generally we can

encounter Feynman integrals and kinematic regions in which the monomials of

F(x, s) do not have the same sign, but for which ∀x ∈ RN
>0 : F(x, s) > 0 or

∀x ∈ RN
>0 : F(x, s) < 0, this situation will be referred to as being a same-sign

regime1. In the most general situation F(x, s) vanishes on hypersurfaces in RN
>0 and

has no definite sign, we will refer to this as a mixed-sign (or Minkowski) regime.

3.1.2 Landau Equations

The necessary, but not sufficient, conditions for a dimensionally regulated parameter

integral to have a singularity are described by the Landau equations [51–55]. In

parameter space they can be written as [56],

F(x, s) = 0, xk

∂F(x, s)
∂xk

= 0, for each k ∈ {1, . . . , N}. (3.1.2)

As discussed above, the F -polynomial can vanish and potentially give rise to singular-

ities when some subset of Feynman parameters vanish, xi ! 0, i.e. at the boundary

of the integration domain, causing each individual monomial in F to vanish. Such sin-

gularities occur independently of the sign of the individual monomials in F and can

be identified algorithmically, for example, by using sector decomposition [40,57–60].

The cases where both F(x, s) and all ∂F(x, s)/∂xk vanish away from the boundary

1We define the Euclidean region specifically to be the positive case, ∀x ∈ RN
>0 : F(x, s) > 0.
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of the integration domain can occur when monomials of different sign are present in

F(x, s) as well as all partial derivatives with respect to the Feynman parameters.

In these cases, the monomials can cancel against each other within the domain of

integration and lead to solutions of the Landau equations.

Significant progress in analysing and solving the Landau equations has been made

recently, see [61–72], for example. In [35], the analysis of a set of solutions of the

Landau equations in parameter space which are present for generic kinematics led

to the idea that integrals can be split on hypersurfaces which solve the Landau equa-

tions within the integration domain, thus mapping these solutions to the boundary

of the new dissected integrals. The advantage of this dissection procedure is that

the solutions of the Landau equations are now again solely on the boundary of integ-

ration and any resulting singularities can be algorithmically detected in parameter

space using sector decomposition algorithms. In this chapter, we will explore this

idea in a slightly different context, instead focusing on the variety F(x, s) = 0 but,

importantly, not requiring all partial derivatives vanish. Generally, such hypersur-

faces are not solutions of the Landau equations and therefore do not give rise to

(non-spurious) dimensionally-regulated singularities of the Feynman integral. How-

ever, as described in Section 3.1.3, these varieties do introduce a substantial (and

computationally-expensive) obstacle.

3.1.3 Contour Deformation

When evaluating integrals in the mixed-sign (Minkowski) regime, the F(x, s) poly-

nomial can vanish within the domain of integration due to cancellation between

monomials. When this occurs, the causal iδ appearing in (3.1.1) acts as a deforma-

tion of the integration contour into the complex-plane and provides a prescription

for evaluating the integral in a theory with causal propagators. As a result of this,

in the mixed-sign regime, the integral can become complex-valued. The values of

the kinematic invariants, s, at which the integral transitions from a same-sign to
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a mixed-sign regime is sometimes called a (pseudo-)threshold and such points can

correspond, for example, to internal propagators becoming on-shell. The Feynman

prescription defines an analytic continuation of the integral and specifies the branch

on which multivalued functions, such as square-roots and logarithms which result

from the integration over the Feynman parameters, should be evaluated.

The location (and shape) of the F(x, s) = 0 hypersurface depends on the signs and

magnitudes of the kinematic invariants, s. In the same-sign regime, the variety of

F(x, s) is located in the non-positive domain of x and only touches the integration

domain when some xi vanish. In the mixed-sign regime, the variety enters the domain

of integration with portions of the hypersurface strictly within the domain (away

from the boundary). To correctly define the causal integral, the integration contour

can be deformed into the complex-plane by shifting each Feynman parameter by a

vanishingly small imaginary part iτk:

xk ! zk = xk − iτk. (3.1.3)

This shift results in the F -polynomial transforming as,

F(x, s) ! F(z, s) = F(x, s) − i
∑

k

τk

∂F(x, s)
∂xk

+ O(τ 2). (3.1.4)

The individual τk can then be chosen in accordance with the causal prescription,

i.e. to ensure that the deformed F(z, s) develops a negative imaginary part where

F(x, s) vanishes. If the τk are chosen such that a loop can be formed by connecting

the original contour (with the prescribed iδ) and the new integration contour and

the τk are chosen small enough that this loop does not enclose any additional poles,

then Cauchy’s integral theorem states that the two integrals are equal up to a minus

sign. An example of a choice of shift parameters that achieves all of the above (in

the integration domain xi ∈ [0, 1]) is given by [73–85],

τk = λk xk(1 − xk)∂F(x)
∂xk

, (3.1.5)

where λk are arbitrary parameters chosen small enough that the loop does not enclose



76 Chapter 3. Avoiding Contour Deformation in Feynman Integrals

any additional poles. Inserting the deformation into (3.1.4) gives,

F(z, s) = F(x, s) − i
∑

k

λk xk(1 − xk)
(

∂F(x, s)
∂xk

)2

+ O(τ 2). (3.1.6)

This choice gives a negative imaginary part to F(z, s) except at xk = 0 and xk = 1

(chosen as the boundary of integration) and where all ∂F(x, s)/∂xk vanish. Note

that (3.1.4) suggests an interpretation of the Landau equations in the situation where

F(x, s) and all the partial derivatives, ∂F(x, s)/∂xk, simultaneously vanish. In this

case the infinitesimal deformation of the integration contour into the complex-plane

according to (3.1.3) does not avoid the variety of F(x, s).

The advantage of the deformation procedure given in (3.1.3) and (3.1.5) is that the

deformed integral is exactly equal (up to a minus sign) to the original Feynman

integral. However, a significant drawback of this procedure is that the integral can

become highly oscillatory with a large positive contribution from one part of the

contour cancelled by a large negative contribution from elsewhere along the contour.

Furthermore, the change of variables from x ! z introduces an (N − 1) × (N − 1)

Jacobian determinant (after integrating out the δ-function) depending in a non-

trivial way on the integration variables and kinematics. In high-dimensional cases,

this Jacobian can be significantly more complicated than the integrand itself. Fur-

thermore, the contour depends on the arbitrary parameters λk, it is not always trivial

to pick valid values and the variance of the integrand depends on the choice of λk.

Alternatively, the Feynman integral can be directly evaluated with iδ set to several

small positive (non-zero) numbers. The correct result can then be obtained by

performing an extrapolation of these evaluations to δ ! 0+, see [86–89]. The

drawback of this approach is that the value of the integral with non-zero δ only

approximates the true result and any error due to the extrapolation to δ ! 0+ needs

to be carefully assessed. Furthermore, the value of δ must always be chosen small

enough that no additional poles are crossed in the complex-plane, this can force the

integration contour close to the singular surface making the integrand oscillatory.

In Section 3.2, we describe an alternative strategy of evaluating Feynman integrals
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in parameter space in the mixed-sign regime without using contour deformation.

3.2 Method

In this section, we propose a procedure for evaluating Feynman parametrised integrals

in the mixed-sign (Minkowski) regime, i.e. where F(x, s) has no definite sign for

x ∈ RN
>0, without deforming the integration contour into the complex-plane. After

introducing the general concept, we present a constructive algorithm valid for a

specific class of Feynman integrals. We show that when this form can be achieved,

the resulting integrands are strictly non-negative and the analytic continuation of

the resulting integrals becomes trivial.

3.2.1 Overview

The quintessential idea is to construct transformations of the Feynman parameters

such that the variety of the F -polynomial (the hypersurface defined by F(x, s) = 0)

is mapped to the boundary of the integration domain. After this, F only vanishes on

the integration boundary, any singularities resulting from this can be algorithmically

dealt with using existing methods, such as sector decomposition.

The procedure involves splitting the integration domain into regions where F > 0

and F < 0 and integrating these regions separately. We may also further sub-divide

the positive and negative regions for technical or computational ease, see the massive

examples in Section 3.3.2. For the regions where F is negative, we factor out a minus

sign from F ensuring the Feynman prescription is respected, after this, we will have

only non-negative integrands. The resulting general decomposition for the original

Feynman integral, J(s), is

J(s) =
N+∑

n+=1
J+,n+(s) + lim

δ!0+
(−1 − iδ)−(ν−LD/2)

N−∑
n−=1

J−,n−(s), (3.2.1)

where we have allowed for both the positive and negative regions to be subdivided
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into N+ and N− sub-regions respectively. After this decomposition, we note that

the imaginary part of the original integral J(s) is fully determined by the contri-

bution from the negative region(s) in (3.2.1) and, furthermore, is a result of the

(−1 − iδ)−(ν−LD/2) factor multiplying the purely real J−(s) contribution(s). We re-

mark that, in many cases, the division can be chosen such that there is only a single

positive and a single negative region (see the algorithm in Section 3.2.2 and many

of the massless examples in Section 3.3.1).

It has long been known that, for integrals in a kinematic regime where F is non-

positive in the integration domain, an overall minus sign can be factored out and the

resulting non-negative (Euclidean) integrand can be evaluated. As a trivial example,

consider the massless bubble in the physical s > 0 regime:

Jbub,m=0 = lim
δ!0+

Γ (ϵ)
∫
R2

≥0

dx1dx2
(x1 + x2)−2+2ϵ

(−sx1x2 − iδ)ϵ δ
(
1 −

∑2
i=1 αixi

)
= lim

δ!0+
(−1 − iδ)−ϵ Γ (ϵ)

∫
R2

≥0

dx1dx2
(x1 + x2)−2+2ϵ

(sx1x2)ϵ δ
(
1 −

∑2
i=1 αixi

)
= lim

δ!0+
(−1 − iδ)−ϵJ−

bub,m=0

(3.2.2)

where in the final line we have translated this simple manipulation into the language

of our decomposition given in (3.2.1). Our procedure essentially generalises this idea

by mapping a generic integral into integrals which are already Euclidean (where

F > 0 originally) plus cases like this where F < 0 and we can factor out the

prescription to generate Euclidean integrands.

In order to construct the integrands appearing in (3.2.1), we must ensure that our

transformations do not spoil the non-negativity of U (nor introduce zeroes of U

within the integration domain) as well as avoiding transformations with Jacobian

determinants which break the positivity of the resulting integrand within (but not

necessarily on the boundary of) the integration domain. Furthermore, we must

check that the transformations applied do not miss any regions from the original

integration domain as well as prohibiting transformations that map regions from

outside the original integration domain into the new domain.
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These demands may initially appear quite constraining and hence, one might assume

that the transformations are potentially difficult to construct. However, we will

show that for a large number of massless integrals (a sample of which are detailed in

Section 3.3.1), the procedure is algorithmic. Additionally, geometric visualisations

can prove extremely useful for building an understanding of how the transformations

should appear, which aids their construction. We adopt this approach on a case-by-

case basis for the resolution of the massive integrals in Section 3.3.2. In its current

form, this approach suffers from the disadvantage that it is difficult to visualise

beyond four propagators, although this does not present an obstacle to the concept

in principle.

The interplay between the positive and negative contributions in our dissection also

allows us to obtain an understanding of the structure of the original integral from

a new perspective. For example, if we have a finite integral with a complex-valued

leading order in the ϵ expansion, we must necessarily have a pole in ϵ in the negative

integral contribution which generates an imaginary ϵ0 term when multiplied with

the expansion of (−1 − iδ)−(ν−LD/2). In order for the full integral to be finite, the

positive contribution must have the exact same pole in ϵ such that the poles cancel

in the full integral to leave a finite leading order.

3.2.2 Algorithm for Univariate Bisectable Integrals

Here we describe an algorithmic procedure for resolving a class of Feynman integrals

which we call univariate bisectable in sR. The algorithm will succeed in mapping an

integral in a given mixed-sign (Minkowski) regime, sR, defined by a set of inequalities

depending on external kinematics, to a single integral in which F(x, s) is non-

negative and a single integral in which F(x, s) is non-positive if there is a single

variable for which the F(x, s) = 0 hypersurface divides the integration domain in

two. In Section 3.3 we discuss several non-trivial examples for which this algorithm

succeeds and we also solve cases for which this algorithm is not sufficient.
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Algorithm 1: Univariate Bisection (UB)
Input: I(x, s; δ), {smin < s < smax}
Output: I+(x, s), I−(x, s)
foreach xi ∈ x do

Let r = Reduce[{F(x, s) < 0} ∪ {0 < x} ∪ {smin < s < smax}, xi];
if r ∼ (3.2.6) then

Let I−(x, s) = J (x ̸=i, yi) I(x̸=i, yi; −s; 0)
Let I+(x, s) = J (x ̸=i, y′

i) I(x ̸=i, y′
i; s; 0)

return I+(x, s), I−(x, s)
else if r ∼ (3.2.7) then

Let I−(x, s) = J (x ̸=i, y′
i) I(x̸=i, y′

i; −s; 0)
Let I+(x, s) = J (x ̸=i, yi) I(x ̸=i, yi; s; 0)
return I+(x, s), I−(x, s)

end
return ¬UB in {smin < s < smax}

We begin by considering a generic Feynman integral of the form Eq. (3.2.3),

J(s) = (−1)ν Γ (ν − LD/2)∏N
i=1 Γ (νi)

lim
δ!0+

I(s; δ), (3.2.3)

I(s; δ) =
∫
RN

≥0

dx I(x, s; δ) δ
(
1 − α (x)

)
(3.2.4)

=
∫
RN

≥0

N∏
i=1

dxix
νi−1
i

U(x)ν−(L+1)D/2

(F(x, s) − iδ)ν−LD/2 δ
(
1 − α (x)

)
. (3.2.5)

Our goal is to cast the integral into the form of (3.2.1) for a specific kinematic region.

We begin by defining some convenient notation, let x = {x1, . . . , xN} be the complete

set of Feynman parameters and x ̸=i = x\{xi} = {x1, . . . , xi−1, xi+1, . . . xN} be the set

excluding a single parameter xi. Let sR = {smin < s < smax} be a kinematic region

defined by a system of inequalities, this notation should be interpreted as placing

minimum and maximum limits on each independent kinematic invariant/mass on

which the integral depends (i.e. after applying momentum conservation to eliminate

any dependent invariants).

The success of the algorithm depends on the choice of kinematic region, a conservative

choice of input region would be to choose a region from one (pseudo-)threshold to

the next (pseudo-)threshold in each variable without crossing any intermediate

thresholds.
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In Algorithm 1, we state the univariate bisection procedure. The input to the al-

gorithm is the integrand of the Feynman integral to be resolved and the kinematic

regime of interest. The algorithm iterates over each Feynman parameter and at-

tempts to find a valid bisection. The Reduce[{ . . . }, xi] function (which is already

implemented in this syntax in Mathematica) takes a set of inequalities and tries to

reduce them to a simpler system with the result including expressions of the type

a < xi < b, where possible, for generic functional forms a and b. The forms of the

reduced system, r, for which a bisection is valid are given by,

{0 < xi < f
(
x̸=i

)
} ∪ {0 < x ̸=i} ∪ {smin < s < smax}, (3.2.6)

{f
(
x̸=i

)
< xi} ∪ {0 < x ̸=i} ∪ {smin < s < smax}, (3.2.7)

where f(x ̸=i) is a rational function with unit degree of homogeneity. If a valid

bisection can be found then we construct a transformation for the bisection parameter,

xi, that maps the variety to an integration boundary. If the reduced system r is

of form Eq. (3.2.6) then we map F = 0 to xi ! ∞ while keeping the boundary at

xi = 0 fixed. If r is of the form Eq. (3.2.7) then we instead map the variety F = 0

to xi = 0 while keeping the boundary at xi ! ∞ fixed. These mappings can be

achieved by replacing xi with yi or y′
i, given by

yi = xi

xi + xj

f
(
x ̸=i

)
, (3.2.8)

y′
i = xi + f

(
x ̸=i

)
. (3.2.9)

In the mapping Eq. (3.2.8) the variable xj ̸= xi appearing in the denominator is an

arbitrary Feynman parameter. The function J (x ̸=i, yi) appearing in the algorithm

is the Jacobian determinant resulting from the change of variables from xi to yi.

When defining I−(x, s), we factor a minus sign out of the F -polynomial, we indicate

this in our algorithm by calling I with argument −s, this is equivalent as only F

initially depends on the kinematics and it is linear in the kinematic invariants. If

the algorithm succeeds then it will return the non-negative integrands I+(x, s) and
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I−(x, s), the result for the original integral is then given by,

J±(s) = (−1)ν Γ (ν − LD/2)∏N
i=1 Γ (νi)

∫
RN

≥0

dx I±(x, s) δ
(
1 − α (x)

)
(3.2.10)

J(s) = J+(s) + lim
δ!0+

(−1 − iδ)−(ν−LD/2) J−(s). (3.2.11)

If the algorithm fails then the integral is not univariate bisectable in the kinematic

region {smin < s < smax} – a different (more restrictive) choice of region may be

necessary or the structure of the integral itself may prevent any univariate bisection

from being obtained, we will discuss this case further in Section 3.2.3.

We note that several aspects of the above algorithm are arbitrary. Firstly, there

may be multiple possible bisection parameters for a given Feynman integral, in order

to obtain the simplest possible integrands it may be beneficial to examine multiple

resolutions with different bisection parameters. It is sometimes even possible to select

different bisection parameters for constructing I−(x, s) and I+(x, s). Secondly,

the xj appearing in (3.2.8) can be replaced by a more general function (e.g. a

constant), however, we prefer the transformation to be homogeneous such that the

resulting integrand retains its homogeneity; any valid linear function of the Feynman

parameters would also achieve this.

The univariate bisection algorithm is agnostic to the choice of hyperplane α(x) in

the δ-function of (3.2.5), such that a choice can be made post-resolution. This is

due to the algorithm protecting the projective nature of the resulting integrals by

preserving the homogeneity of the integrands throughout the resolution procedure.

In contrast to this, for the integrals which we resolve without use of the algorithm,

presented in Section 3.3.2, we will often make a specific choice of the δ-function and

integrate over one variable before considering the dissection of the integral.

3.2.3 Beyond Univariate Bisectable Integrals

Current work focusses on extending this algorithm to integrals which do not get

resolved with a univariate bisection parameter and understanding for which integrals
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and regimes the algorithm fails. In Section 3.3.2, several of the presented massive

integrals can not be resolved using the univariate bisection algorithm in the full

physical region. However, we are also aware of a number of massless integrals for

which this algorithm also fails. For example, we use this algorithm to analyse BNP7,

a non-planar double-box, in Section 3.3.1 and the algorithm resolves this case but

it fails on the planar double-box integral in the same regime when parametrising

in terms of s, t. Understanding the fundamental source of the breakdown of this

method on examples like this is likely to provide insight on the extension of this

procedure to a more general class of Feynman integrals.

One immediate generalisation of Algorithm 1, which we have verified to work on

several examples, is to iterate the bisection using several variables until the integral

is resolved. The principal complication of this procedure is ensuring that the entire

original integration domain is covered without any double counting.

In Section 3.3.2, we will focus on studying individual integrals involving internal

masses including integrals known to be elliptic and hyperelliptic. In these cases, we

will directly inspect the geometry of the variety of F and derive a valid decomposition,

demonstrating that this principle can be applied for a wide class of Feynman integrals.

With our current methods, we will find that, in contrast to Algorithm 1, we often

need more than one positive and one negative integrand, motivating the general

decomposition formula of (3.2.1).

3.3 Examples

3.3.1 Massless Examples

In this section, we provide a number of examples of massless integrals which are

resolved automatically by the algorithm presented in Section 3.2.2. We show that

this procedure can be successfully applied to integrals including but not limited to:

1-loop with an off-shell leg, 1-loop 5-point, 2-loop non-planar and 3-loop non-planar
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Figure 3.1: The massless box with all on-shell legs (3.1a), an off-
shell leg (p1) (3.1b) and the massless pentagon (3.1c).

integrals. For pedagogical reasons, we apply each step of the algorithm in detail for

a simple massless box with on-shell legs before presenting the remaining examples

more succinctly.

1-Loop Box with All On-Shell Legs

To clarify the application of the algorithm presented in Section 3.2.2, let us begin

by analysing the simple case of a 1-loop massless box with all external legs on-shell,

shown in Fig. 3.1a. Each step will be carried out in detail for this simple example

in the hope that this illuminates the abstract procedure.

The integral we wish to resolve is

Jbox(s) =Γ (2 + ϵ) lim
δ!0+

Ibox(s; δ), (3.3.1)

Ibox(s; δ) =
∫
R4

≥0

4∏
i=1

dxi

U(x)2ϵ

(F(x, s) − iδ)2+ϵ δ
(
1 − α (x)

)
, (3.3.2)

where the U(x) and F(x, s) polynomials are given by

U(x) = x1 + x2 + x3 + x4, (3.3.3)

F(x, s) = −s12x1x2 − s13x3x4, (3.3.4)

with sij = (pi + pj)2. Suppose that we are interested in evaluating this integral for

2 ! 2 physical scattering kinematics {0 < s12 < ∞, −s12 < s13 < 0}. Usually we

would need a contour deformation as this regime is above the threshold at s12 = 0
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and the F polynomial contains monomials of different sign and can therefore itself

be both positive or negative inside the domain of integration. Note that in this

kinematic regime s12 > 0 and (−s13) > 0.

Applying Algorithm 1, we begin with the choice xi = x1. Attempting to reduce with

respect to x1 the set of inequalities,

{−s12x1x2 − s13x3x4 < 0} ∪ {0 < x1, 0 < x2, 0 < x3, 0 < x4} ∪

{0 < s12 < ∞, −s12 < s13 < 0}, (3.3.5)

we obtain the solution,

r = {−s13x3x4

s12x2
< x1} ∪ {0 < x2, 0 < x3, 0 < x4} ∪ {0 < s12 < ∞, −s12 < s13 < 0}.

(3.3.6)

We observe that r is of the form Eq. (3.2.7) with

f(x ̸=1) = (−s13)x3x4

s12x2
, (3.3.7)

therefore, x1 is a valid bisection parameter. As dictated by the algorithm, we can

now construct the positive and negative contributions by transforming the variable

x1. Applying the transformation given in (3.2.7),

x1 ! y′
1 = x1 + (−s13)x3x4

s12x2
, (3.3.8)

we map the variety F(x, s) = 0 to x1 = 0 while keeping the boundary at x1 ! ∞

fixed. The resulting integrand is given by

J −(x) = 1, U−(x) = x1 + x2 + x3 + x4 + (−s13)x3x4

s12x2
, F−(x, s) = s12x1x2,

I−
box(x, s) = J −(x) U−(x)2ϵ

F−(x, s)2+ϵ

= x−2−ϵ
1 (s12x2)−2−3ϵ (s12x2 (x1 + x2 + x3 + x4) − s13x3x4)2ϵ .

(3.3.9)

In this example we are not considering an integral with dots (propagators raised to

a higher power) or a numerator, in general one would apply the transformation also
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to any Feynman parameters appearing in the numerator.

The positive contribution is given by transforming the variable x1 according to (3.2.8)

with the arbitrary choice xj = xN ,

x1 ! y1 = x1

x1 + x4

(−s13)x3x4

s12x2
(3.3.10)

which maps the variety F(x, s) = 0 to x1 ! ∞ keeping x1 = 0 fixed. The resulting

integrand is given by

J +(x) = (−s13)x3x
2
4

s12x2(x1 + x4)2 , U+(x) = x1

x1 + x4

(−s13)x3x4

s12x2
+ x2 + x3 + x4,

F+(x, s) = (−s13)x3x
2
4

x1 + x4
,

I+
box(x, s) = J +(x) U+(x)2ϵ

F+(x, s)2+ϵ

= (x1 + x4)−ϵ (s12x2)−1−2ϵ
(
−s13x3x

2
4

)−1−ϵ

(s12x2 (x1 + x4) (x2 + x3 + x4) − s13x1x3x4)2ϵ .

(3.3.11)

Sewing the positive and negative contributions together, the final result for the

on-shell box integral is given by,

Jbox(s) = Γ (2 + ϵ) lim
δ!0+

Ibox(s; δ) (3.3.12)

Ibox(s; δ) = I+
box(s) + (−1 − iδ)−2−ϵ I−

box(s). (3.3.13)

Note that, neglecting the δ-functions, the integrands of both I+
box and I−

box pick up a

factor of λ−N = λ−4 under the scaling transformation {x1, . . . , x4} ! {λx1, . . . , λx4}.

This stems from the homogeneity of the original U and F polynomials and the fact

that the algorithm preserves the homogeneity.

1-Loop Box with an Off-Shell Leg

In this example, we extend the previous case to a massless box where we now allow

for an off-shell leg as in Fig. 3.1b with p2
1 > 0. For this integral and the remaining
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massless examples, we present the resolution procedure more concisely given that

the algorithm has been explained and applied in detail already. From now on, we

will explicitly denote the hyperplane α(x) by ∑N
i=1 αixi. The integral we wish to

consider is

Jbox, p
2
1>0 = lim

δ!0+
Γ (2 + ϵ) Ibox, p

2
1>0

Ibox, p
2
1>0 =

∫
R4

≥0

4∏
i=1

dxi

U(x)2ϵ

(F(x, s) − iδ)2+ϵ δ
(
1 −

∑4
i=1 αixi

) (3.3.14)

where, as we derived explicitly in Section 2.2.3, the U polynomial remains unchanged

and the F polynomial gets modified by an extra term proportional to the off-shellness,

p2
1 > 0:

U(x) = x1 + x2 + x3 + x4

F(x, s) = −sx1x2 − tx3x4 − p2
1x1x3.

(3.3.15)

We resolve this integral over the Minkowskian kinematic regime given by s, p2
1 > 0 and

−s < t < 0 (which we note includes the physical scattering kinematics). Following

the algorithm, the transformation for the bisection parameter xi = x1 which resolves

the negative contribution is given by

x1 ! x1 +
(

−tx3x4

sx2 + p2
1x3

)

J = 1.

(3.3.16)

Given that this transformation resolves the negative (F < 0) contribution, we must

extract a minus sign from the transformed F to obtain a manifestly non-negative

integrand resulting in

I−
box,p2

1>0 =
∫
R4

≥0

4∏
i=1

dxi I−
box, p

2
1>0 δ

(
1 −

∑4
i=1 αixi

)

I−
box, p

2
1>0 =

[(
sx2 + p2

1x3

)
(x1 + x2 + x3 + x4) − tx3x4

]2ϵ

x2+ϵ
1

(
sx2 + p2

1x3

)2+3ϵ .

(3.3.17)
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The positive contribution can naturally be resolved using the same bisection para-

meter with the transformation (choosing xj = xN = x4),

x1 !
x1

x1 + x4

(
−tx3x4

sx2 + p2
1x3

)

J = −tx3x
2
4

(x1 + x4)2
(
sx2 + p2

1x3

) ,

(3.3.18)

which gives us

I+
box, p

2
1>0 =

∫
R4

≥0

4∏
i=1

dxi I+
box, p

2
1>0 δ

(
1 −

∑4
i=1 αixi

)

I+
box, p

2
1>0 =

[(
sx2 + p2

1x3

)
(x1 + x4) (x2 + x3 + x4) − tx1x3x4

]2ϵ

x2+2ϵ
4 (x1 + x4)ϵ (−tx3)1+ϵ

(
sx2 + p2

1x3

)1+2ϵ .

(3.3.19)

The resulting construction mirrors (3.3.13) and we obtain

Jbox, p
2
1>0 = lim

δ!0+
Γ (2 + ϵ) Ibox, p

2
1>0

Ibox, p
2
1>0 = I+

box, p
2
1>0 + (−1 − iδ)−2−ϵ I−

box, p
2
1>0.

(3.3.20)

1-Loop Pentagon

A massless pentagon (see Fig. 3.1c) is minimally parameterised with five kinematic

invariants, for example with the set of cyclic scalar products (s12, s23, s34, s45, s51),

where sij = (pi + pj)2. In Feynman parameterised form the pentagon integral is

Jpen = lim
δ!0+

−Γ (3 + ϵ) Ipen

Ipen =
∫
R5

≥0

5∏
i=1

dxi

U(x)1+2ϵ

(F(x, s) − iδ)3+ϵ δ
(
1 −

∑5
i=1 αixi

) (3.3.21)

where the pentagon U and F polynomials are given by

U(x) = x1 + x2 + x3 + x4 + x5

F(x, s) = −s45x3x5 − s12x2x5 − s34x2x4 − s51x1x4 − s23x1x3.

(3.3.22)

We consider the kinematic regime where s12, s34, s51 > 0 and s23, s45 < 0. Imposing

these constraints, the algorithm gives us the transformation to resolve the negative
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contribution (where F < 0) for bisection parameter xi = x3:

x3 !
x3

x3 + x5

(
s51x1x4 + s34x2x4 + s12x2x5

−s23x1 − s45x5

)

J = x5 (s51x1x4 + s34x2x4 + s12x2x5)
(x3 + x5)2 (−s23x1 − s45x5)

(3.3.23)

where we remind the reader that −s23, −s45 > 0 in the assumed kinematic regime

and we have arbitrarily chosen xj = xN = x5 in the transformation. This allows us

to obtain, after factoring out a minus sign from the transformed F and simplifying

the resulting integrand,

I−
pen =

∫
R5

≥0

5∏
i=1

dxi I−
pen δ

(
1 −

∑5
i=1 αixi

)

I−
pen = [(x3+x5)(−s23x1−s45x5)(x1+x2+x3+x4+x5)+x3(s51x1x4+s34x2x4+s12x2x5)]1+2ϵ

x2+ϵ
5 (x3 + x5)ϵ (−s23x1 − s45x5)2+2ϵ (s51x1x4 + s34x2x4 + s12x2x5)2+ϵ .

(3.3.24)

Conversely, the positive contribution can be resolved by applying the corresponding

transformation of the bisection parameter,

x3 ! x3 +
(

s51x1x4 + s34x2x4 + s12x2x5

−s23x1 − s45x5

)

J = 1,

(3.3.25)

to the U and F polynomials. We find

I+
pen =

∫
R5

≥0

5∏
i=1

dxi I+
pen δ

(
1 −

∑5
i=1 αixi

)

I+
pen = [(−s23x1 − s45x5) (x1+x2+x3+x4+x5) + s51x1x4 + s34x2x4 + s12x2x5]1+2ϵ

x3+ϵ
3 (−s23x1 − s45x5)4+3ϵ .

(3.3.26)

Appropriately combining the positive and negative contributions yields the resolved

pentagon integral
Jpen = lim

δ!0+
−Γ (3 + ϵ) Ipen

Ipen = I+
pen + (−1 − iδ)−3−ϵ I−

pen.

(3.3.27)

The resolution described above is valid for one particular sign combination of the
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kinematics. In order to evaluate the pentagon for any kinematic point one would

have to repeat the procedure above 25 = 32 times. It is possible to reuse resolutions

by considering symmetries of the F polynomial. For example by factoring out a

minus sign from F , it is easy to see that half of the sign combinations are related

to the other half. Still, it is clear that without an automated implementation of the

algorithm, it would be a tedious procedure to fully resolve an integral such as the

pentagon, that depends on many kinematic variables. An alternative approach is

to instead reduce the pentagon to box integrals with off-shell legs and resolve these

instead. A box integral with an off-shell leg has 23 = 8 possible sign combinations,

reducing the naive number of required resolutions by a factor of 4. The downside

is that the reduction of a pentagon to boxes is only valid up to a finite remainder.

This approach is thus only useful if higher orders in ϵ are not needed. The pentagon

can be written in terms of boxes [90] as

Ipen = −1
2

5∑
l,k=1

S−1
lk Ibox,l + O(ϵ), (3.3.28)

where Slk are elements of the matrix

S = −1
2



0 p2
2 s23 s51 p2

1

p2
2 0 p2

3 s34 s12

s23 p2
3 0 p2

4 s45

s51 s34 p2
4 0 p2

5

p2
1 s12 s45 p2

5 0


. (3.3.29)

In (3.3.28) each box integral has on off-shell leg corresponding to the pinching of a

propagator of the pentagon. While the benefit of reducing the pentagon to boxes is

not extremely significant, the same idea can be applied to even higher point functions.

For example a hexagon parameterised by 8 invariants has 28 = 256 sign combinations

to consider, and so on. Even with an automated implementation of the algorithm,

at some point it could become problematic to produce and compile integration code

if the number of invariants is too large. In such cases it could be useful to keep these
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Figure 3.2: Massless non-planar 2-loop boxes with 6 (3.2a: BNP6)
and 7 (3.2b: BNP7) propagators respectively.

reduction strategies in mind.

2-Loop Non-Planar 6 Propagator Box

The non planar box with six propagators (BNP6, see Fig. 3.2a) is parameterised by

the Mandelstam invariants s = (p1 + p2)2 and t = (p2 + p3)2 (having applied the

momentum conservation rule s + t + u = 0) and the integral is given by

JBNP6 = lim
δ!0+

Γ (2 + 2ϵ) IBNP6

IBNP6 =
∫
R6

≥0

6∏
i=1

dxi

U(x)3ϵ

(F(x, s) − iδ)2+2ϵ δ
(
1 −

∑6
i=1 αixi

) (3.3.30)

where the U and F polynomials for BNP6 are

U(x) = x1x2 + x1x3 + x1x4 + x1x5 + x2x3 + x2x4 + x2x6+

x3x5 + x3x6 + x4x5 + x4x6 + x5x6

F(x, s) = − sx2x3x6 − tx1x2x4 + (s + t)x1x3x5.

(3.3.31)

We restrict to the physical kinematic regime for 2 ! 2 scattering where s > 0 and

−s < t < 0 and apply the algorithm. We find that the negative contribution can

be resolved by applying the following transformation (with xj = xN = x6) to the

bisection parameter xi = x1:

x1 !
x1

x1 + x6

(
sx2x3x6

(s + t) x3x5 − tx2x4

)

J = sx2x3x
2
6

(x1 + x6)2 [(s + t) x3x5 − tx2x4]

(3.3.32)
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where we remind the reader that we have s + t > 0 and −t > 0 in our restricted

kinematic regime. This allows us to construct the negative contribution

I−
BNP6 =

∫
R6

≥0

6∏
i=1

dxi I−
BNP6 δ

(
1 −

∑6
i=1 αixi

)

I−
BNP6 =

(
sx2x3x

2
6

)−1−2ϵ
(x1 + x6)−ϵ [(s + t) x3x5 − tx2x4]−1−3ϵ ×[

[(s + t) x3x5 − tx2x4] (x1 + x6) [(x3 + x4) (x2 + x5) + (x2+x3+x4+x5) x6]

+ sx1x2x3x6 (x2 + x3 + x4 + x5)
]3ϵ

.

(3.3.33)

The positive contribution may be obtained with the corresponding transformation

where
x1 ! x1 +

(
sx2x3x6

(s + t) x3x5 − tx2x4

)

J = 1

(3.3.34)

giving

I+
BNP6 =

∫
R6

≥0

6∏
i=1

dxi I+
BNP6 δ

(
1 −

∑6
i=1 αixi

)

I+
BNP6 = x−2−2ϵ

1 [(s + t) x3x5 − tx2x4]−2−5ϵ ×[
[(s + t) x3x5 − tx2x4]

[
(x3 + x4) (x2 + x5) +

(x1 + x6) (x2 + x3 + x4 + x5)
]

+ sx2x3x6 (x2 + x3 + x4 + x5)
]3ϵ

.

(3.3.35)

We may therefore reconstruct BNP6 using the decomposition formula in (3.2.1):

JBNP6 = lim
δ!0+

Γ (2 + 2ϵ) IBNP6

IBNP6 = I+
BNP6 + (−1 − iδ)−2−2ϵ I−

BNP6.

(3.3.36)

2-Loop Non-Planar 7 Propagator Box

The non planar box with seven propagators (BNP7, see Fig. 3.2b) depends on the

two kinematic invariants s = (p1 + p2)2 and t = (p2 + p3)2 and the integral is given
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by
JBNP7 = lim

δ!0+
−Γ (3 + 2ϵ) IBNP7

IBNP7 =
∫
R7

≥0

7∏
i=1

dxi

U(x)1+3ϵ

(F(x, s) − iδ)3+2ϵ δ
(
1 −

∑7
i=1 αixi

) (3.3.37)

where the U and F polynomials for BNP7 are

U(x) = x1x4 + x1x5 + x1x6 + x1x7 + x2x4 + x2x5 + x2x6 + x2x7+

x3x4 + x3x5 + x3x6 + x3x7 + x4x6 + x4x7 + x5x6 + x5x7

F(x, s) = − s(x3x4x6 + x2x5x7 + x2x3x7 + x2x3x6 + x2x3x5 + x2x3x4)

− tx1x5x6 + (s + t)x1x4x7.

(3.3.38)

We consider the kinematic regime where s > 0 and −s < t < 0 and find that the

algorithm gives us the following transformation to resolve the negative contribution

(for xi = x1 and xj = xN = x7):

x1 !
x1

x1 + x7

(
s [x3x4x6 + x2x5x7 + x2x3 (x4 + x5 + x6 + x7)]

(s + t) x4x7 − tx5x6

)

J = sx7 [x3x4x6 + x2x5x7 + x2x3 (x4 + x5 + x6 + x7)]
(x1 + x7)2 [(s + t) x4x7 − tx5x6]

(3.3.39)

with s + t > 0 and −t > 0 in the assumed regime. We may therefore generate

I−
BNP7 =

∫
R7

≥0

7∏
i=1

dxi I−
BNP7 δ

(
1 −

∑7
i=1 αixi

)

I−
BNP7 = (sx7)−2−2ϵ (x1 + x7)−ϵ [(s + t) x4x7 − tx5x6]−2−3ϵ ×

[x3x4x6 + x2x5x7 + x2x3 (x4 + x5 + x6 + x7)]−2−2ϵ ×[
sx1 (x4 + x5 + x6 + x7) [x3x4x6 + x2x5x7 + x2x3 (x4 + x5 + x6 + x7)] +

[(s+t)x4x7−tx5x6] (x1+x7) [(x4+x5) (x6+x7)+(x2+x3) (x4+x5+x6+x7)]
]1+3ϵ

.

(3.3.40)

Note that all factors in the integrand of (3.3.40) are positive in this kinematic regime

within the integration domain (with zeroes only on the boundary); the algorithm

constructively demands this result but it may only be manifest after simplification

of the transformed integrand.
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The positive contribution to BNP7 can be resolved with the same bisection parameter

x1 using the transformation

x1 ! x1 +
(

s [x3x4x6 + x2x5x7 + x2x3 (x4 + x5 + x6 + x7)]
(s + t) x4x7 − tx5x6

)

J = 1

(3.3.41)

to obtain

I+
BNP7 =

∫
R7

≥0

7∏
i=1

dxi I+
BNP7 δ

(
1 −

∑7
i=1 αixi

)

I+
BNP7 = x−3−2ϵ

1 [(s + t) x4x7 − tx5x6]−4−5ϵ ×[
s (x4 + x5 + x6 + x7) [x3x4x6 + x2x5x7 + x2x3 (x4 + x5 + x6 + x7)] +

[(s + t)x4x7 − tx5x6]
[
(x4 + x5) x6 + x3 (x4 + x5 + x6) + (x3 + x4 + x5) x7+

(x1 + x2) (x4 + x5 + x6 + x7)
]]1+3ϵ

.

(3.3.42)

Combining the positive and negative contributions appropriately gives us the decom-

position of BNP7:
JBNP7 = lim

δ!0+
−Γ (3 + 2ϵ) IBNP7

IBNP7 = I+
BNP7 + (−1 − iδ)−3−2ϵ I−

BNP7.

(3.3.43)

3-Loop Non-Planar Box, G••

In this section, we consider a massless 3-loop example (G•• in the notation of [35])

where the standard contour deformation implementation in Feynman parameter

space breaks down due to the presence of a leading Landau singularity for arbitrary

kinematics. We show that, after separately resolving this Landau singularity to

decompose the original integral into a sum of six others, we can then apply a combin-

ation of shifts and rescalings of the Feynman parameters along with transformations

inspired by the algorithm to the two integrals of the resulting six which require

a contour deformation in the physical scattering kinematic regime. The massless

non-planar 3-loop box (the so-called crown graph, G••, see Fig. 3.3) depends on the
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p1 p3

p2 p4

Figure 3.3: Massless non-planar 3-loop box (the crown graph, G••).

Mandelstam invariants s, t and u where we use momentum conservation to eliminate

u = −s − t. We wish to consider the integral

JG••
= lim

δ!0+
Γ (2 + 3ϵ) IG••

IG••
=
∫
R8

≥0

8∏
i=1

dxi

U(x)4ϵ

(F(x, s) − iδ)2+3ϵ δ
(
1 −

∑8
i=1 αixi

) (3.3.44)

where the U and F polynomials for the crown graph, G••, are given by

U(x) = (x1 + x2) (x3 + x4) (x5 + x6) + (x1 + x2) (x3 + x4) (x7 + x8) +

(x1 + x2) (x5 + x6) (x7 + x8) + (x3 + x4) (x5 + x6) (x7 + x8)

F(x, s) = − s (x2x5 − x1x6) (x4x7 − x3x8) − t (x2x3 − x1x4) (x6x7 − x5x8)

(3.3.45)

and we restrict to the massless 2 ! 2 physical scattering regime, s > 0 and

−s < t < 0.

In [35], it was shown that this integral has a solution of the Landau equations within

the integration domain for generic physical kinematics, preventing evaluation with

the usual contour deformation procedure described in Section 3.1.3. The solution

proposed by the authors of [35] was to transform the Feynman parameters such that

each factor of F(x, s) is linear. This can be achieved by the transformations

x1 ! x1
x2

x8
, x3 ! x3

x4

x8
, x5 ! x5

x6

x8
, x7 ! x7

x8

x8
(3.3.46)

with Jacobian J = x2x4x6/x3
8.

The resulting F -polynomial is given by,

F(x, s) = x2x4x6

x8
[−s(x1 − x5)(x3 − x7) − t(x1 − x3)(x5 − x7)] . (3.3.47)
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The integral can then be dissected into 4! = 24 regions each defined by a strict

ordering of xi ≥ xj ≥ xk ≥ xl with i, j, k, l all permutations of 1, 3, 5, 7. Each of the

resulting integrals will have polynomials of definite sign multiplying each invariant

s, t. Taking into account the symmetry of the integral, IG••
can now be expressed

as a sum over six integrals,

IG••
=
∑
K

IK ,

IK =
∫
R8

≥0

8∏
i=1

dxi

UK(x)4ϵ

(x2x4x6)1+3ϵ x1+9ϵ
8 (FK (x, s) − iδ)2+3ϵ δ

(
1 −

∑8
i=1 αixi

)
,

(3.3.48)

where K is in the set {A, B, C, D, E, F} (denoting each of the six integrals from

the Landau pole resolution) and we have factored out some monomials into the

denominator. The procedure protects the homogeneity of UK and FK as well as

retaining the positive definiteness of the former.

Strictly, not all terms in the sum of (3.3.48) require a δ-prescription; this is clear

from examining the resultant FK polynomials themselves1:

FA (x, s) = − [sx3 (x1 + x3 + x5) + (s + t) x1x5]

FB (x, s) = − [(s + t) x1x3 + tx5 (x1 + x3 + x5)]

FC (x, s) = − [sx1 (x1 + x3 + x5) − tx3x5]

FD (x, s) = + [(s + t) x5 (x1 + x3 + x5) + tx1x3]

FE (x, s) = + [sx3x5 − tx1 (x1 + x3 + x5)]

FF (x, s) = + [sx1x5 + (s + t) x3 (x1 + x3 + x5)] .

(3.3.49)

We remind the reader that, in the assumed kinematic regime, we have s + t > 0

and −t > 0; using this, we can immediately make a number of remarks. Firstly, it

is clear that integrals E and F will have manifestly positive integrands (as the FK

polynomials are the only parts of (3.3.48) that affect whether the individual integrals

are Euclidean or not), hence, they do not require a δ-prescription. Secondly, integrals

1Note that we have used the symmetry to reduce from 24 integrals to the choice of 6 where all
the FK depend only on {x1, x3, x5} and not x7.
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A and C can be trivially brought into Euclidean form by factoring out (−1− iδ)−2−3ϵ

from the integrals, similarly to (3.2.2), since FA and FC are manifestly negative

within the domain of integration for the assumed kinematic regime. Finally, we

remark that integrals B and D would naively require a contour deformation due to

zeroes of the FK polynomials within the domain of integration (strictly away from

the boundary); this can be traced to the appearance of +t < 0 appearing inside

the brackets of FB and FD in (3.3.49). We note that, had we assumed a different

kinematic regime, a different subset of the six integrals would be automatically

Euclidean but we stress that there is no regime where none of the six naively require

a contour deformation.

We therefore focus on integrals B and D and resolve them such that we do not need

an explicit contour deformation. In this exposition, instead of straightforwardly

applying the algorithm, we present a different resolution procedure to bring the

integrals into the required form. We note that each integral may be resolved both

with the default application of the univariate bisection algorithm (at the expense of

introducing square roots) as well as with an iterated generalisation of the algorithm

(the detail of which we leave for further work). Here, we demonstrate an alternative

approach based upon shifts and rescalings of the Feynman parameters, focussing

on the F polynomial, which works in this case (and can also be shown to work for

many of the other examples presented in this section) but, as of yet, has not been

formulated algorithmically. We note that, whenever we shift a variable such that

xa ! xa + xb, we must consider the converse case xb ! xa + xb to cover the entire

original domain. This is justified since we essentially repeatedly insert

θ (xa − xb) + θ (xb − xa) = 1 (3.3.50)

under the integral sign, where the equality above holds. This type of transformation,

along with the positive rescaling of a Feynman parameter, is reminiscent of the

transformations appearing in sector decomposition; indeed, they are heavily inspired

by this procedure. We emphasise, however, that we are still mapping zeroes of the
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FB (x, s) = − [(s + t) x1x3 + tx5 (x1 + x3 + x5)]

FB ! s+t
−t

[
sx2

5 + t (x1 − x5) (x3 − x5)
]

FB ! s+t
−t

[
sx2

5 + tx1 (x3 − x5)
]

FB ! s+t
−t

[(sx1+(s+t) x5) (x1+x5)−tx3x5]

FB ! s+t
−t

[
sx2

5 + tx1x3

]
FB ! s+t

−t

[
s (x3 + x5)2 − tx1x5

]

FB ! s+t
−t

[
sx

2
5x8

x1+x8

]
FB ! − [(s + t) x1x3]

x5 ! s+t
−t

x5

x1 ! x1 + x5 x5 ! x1 + x5

x3 ! x3 + x5 x5 ! x3 + x5

x1 ! x1
x1+x8

(
sx

2
5

−tx3

)
x1 ! x1 +

(
sx

2
5

−tx3

)

Figure 3.4: A flowchart showing the transformations for an example
resolution of integral B in the shifts and rescalings ap-
proach; the transformations in the final line are inspired
by the algorithmic approach. The initial integral (red)
is mapped to four integrals (green) in this resolution, in
three of which the transformed FB is manifestly posit-
ive and in one of which it is manifestly negative. We
remind the reader that s + t > 0 and −t > 0 in the as-
sumed kinematic regime.
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FK polynomials from within the domain of integration to the boundary where they

can then be dealt with using sector decomposition.

In Fig. 3.4, we show an example of how this approach might be applied to resolve

integral B. The integral is mapped to four different integrals (three positive contri-

butions and one negative contribution) such that

IB =
3∑

n+=1
I

+,n+
B + (−1 − iδ)−2−3ϵ I−

B . (3.3.51)

We note that this approach often generates more integrals than strictly necessary

(that is to say, only one positive and only one negative contribution for IB, for

example); however, the transformations at each step are superficially simpler and

the resulting integrands are often less involved. In this sense, difficult integrals may

be amenable to this less conservative approach if other methods fail.

Integral D may be similarly resolved into three positive contributions and one neg-

ative contribution such that our initial integral, IG••
, can be expressed as a causally

prescribed sum over twelve integrals with manifestly positive integrands:

IG••
=
 3∑

n+=1
I

+,n+
B +

3∑
n+=1

I
+,n+
D + I+

E + I+
F

+ (−1 − iδ)−2−3ϵ
[
I−

A + I−
B + I−

C + I−
D

]
.

(3.3.52)

where the positive contributions I+
E and I+

F are simply IE and IF and the negative

contributions I−
A and I−

C are merely IA and IC with (−1 − iδ)−2−3ϵ factored out

accordingly.

For brevity, we will only state the negative contribution, I−
B , from the contour-avoided

integral, IB, explicitly:
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I−
B = 1

(s + t)1+3ϵ (−t)1+8ϵ

∫
R8

≥0

8∏
i=1

dxi I−
B δ

(
1 −

∑8
i=1 αixi

)

I−
B = x−2−3ϵ

1 x−2−7ϵ
3 x−1−9ϵ

8 (x2x4x6)−1−3ϵ ×[
−tx3x4x6x8 (x7 + x8) (x3 + x5 + x7 + x8) [sx5 − t (x3 + x7 + x8)] +

x2x6x8 (x7+x8) [sx5(x3+x5)−tx3 (x1+x3+x5+x7+x8)] [sx5−t(x3+x7+x8)] +

x2x4x6(x3+x5+x7+x8)[sx5(x3+x5)−tx3(x1+x3+x5+x7+x8)] [sx5−t(x3+x7+x8)]

− tx2x4x8 (x7+x8) (x3+x5+x7+x8) [sx5 (x3+x5)−tx3 (x1+x3+x5+x7+x8)]
]4ϵ

.

(3.3.53)

3.3.2 Massive Examples

In this section, we present 1-, 2- and 3-loop examples of integrals with massive

propagators. Understanding how to resolve such integrals would be extremely relev-

ant in applying the method to the calculation of massive phenomenologically-relevant

amplitudes, particularly in the case of electroweak corrections, see Chapter 4 for

example, where a large number of mass scales may be present in the problem. The

primary complication in the massive case is that the F polynomial gets modified

by a term proportional to U such that each Feynman parameter associated with a

massive propagator may appear quadratically in the monomials of F :

F = F0 + U
N∑

j=1
m2

jxj (3.3.54)

where F0 is the corresponding polynomial of the massless version of the same integral.

We analyse the 1-loop massive bubble and triangle initially before applying the

method to 2-loop elliptic and 3-loop hyperelliptic examples.
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Figure 3.5: The L-loop banana-type integrals resolved in this sec-
tion (L ∈ {1, 2, 3}): the equal mass (3.5a) and unequal
mass (3.5b) bubble integrals, the equal mass elliptic sun-
rise integral (3.5c), and the 3-loop equal mass banana
integral (3.5d).

Equal Mass Bubble

To introduce how the method applies to massive integrals, we begin by considering

the bubble integral in Fig. 3.5a with internal propagators of equal mass, m:

Jbub = lim
δ!0+

Γ (ϵ) Ibub

Ibub =
∫
R2

≥0

dx1dx2
(x1 + x2)−2+2ϵ(

−sx1x2 + (x1 + x2)
(
m2x1 + m2x2

)
− iδ

)ϵ δ
(
1 −

∑2
i=1 αixi

)
.

(3.3.55)

We can integrate out x2 by making the symmetric choice (i.e. x1 + x2) of hyperplane

α(x) = ∑N
i=1 αixi to obtain

Ibub =
∫ 1

0
dx1

1(
−sx1 (1 − x1) + m2 − iδ

)ϵ . (3.3.56)

The denominator of the integrand in (3.3.56) can develop a zero within the domain

of integration above the threshold for the on-shell production of the intermediate

pair of massive particles. We wish to consider the integral within this Minkowskian

kinematic regime and so we parameterise the above-threshold region with the para-

meter

β2 = s − 4m2

s
∈ (0, 1) (3.3.57)

and eliminate s > 0 for β ∈ (0, 1) to give

Ibub =
(

1 − β2

m2

)ϵ ∫ 1

0
dx1

1(
(1 − 2x1)2 − β2 − iδ

)ϵ . (3.3.58)
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We may exploit the symmetry of the integrand about the point x1 = 1
2 (as can be

seen in the invariance of the integrand under x1 ! 1 − x1) to rewrite the integral as

Ibub =
(

1 − β2

m2

)ϵ ∫ 1

0
dx1

1(
(1 − x1)2 − β2 − iδ

)ϵ (3.3.59)

as this will allow us to resolve the integral into one purely positive contribution (as

opposed to two without using the symmetry) and one purely negative contribution.

We then split this integral at the point at which the denominator vanishes, x1 = 1−β,

within the integration domain and remap the resulting domains to the original

positive unit interval. That is to say,

Ibub =
(

1 − β2

m2

)ϵ
∫ 1−β

0
dx1

1(
(1 − x1)2 − β2 − iδ

)ϵ +
∫ 1

1−β
dx1

1(
(1 − x1)2 − β2 − iδ

)ϵ


=
(

1 − β2

m2

)ϵ
∫ 1

0
dx1

1 − β(
(1 − (1 − β) x1)2 − β2

)ϵ +
∫ 1

0
dx1

β(
−x1 (2 − x1) β2 − iδ

)ϵ


=
(

1 − β2

m2

)ϵ
∫ 1

0
dx1

1 − β(
(1 − (1 − β) x1)2 − β2

)ϵ +

(−1 − iδ)−ϵ
∫ 1

0
dx1

β(
x1 (2 − x1) β2

)ϵ


= I+

bub + (−1 − iδ)−ϵ I−
bub

(3.3.60)

where the integrands of I+
bub and I−

bub are manifestly positive inside the domain of

integration (and so the prescribed iδ prescription is dropped within integrals once

they no longer require it). These integrals can be easily evaluated analytically and

it is interesting to note that, although the entire original integral has the functional

form of an incomplete Beta function, the negative contribution is functionally simpler

and evaluates to a (normal) Beta function multiplied by a simple prefactor.

Unequal Mass Bubble

To illustrate the applicability of various methods to avoid contour deformation, we

present a different way of resolving the massive bubble in the case of unequal masses,

m1 and m2, depicted in Fig. 3.5b. In this case, we focus solely on the F polynomial
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Figure 3.6: The variety of F̃ and the three regions of the integration
domain which it separates. In the upper left and lower
right regions, F̃ > 0 whereas in the upper right region,
F̃ < 0.

which is given by

F = −sx1x2 + (x1 + x2)
(
m2

1x1 + m2
2x2

)
. (3.3.61)

Analogously to the equal mass bubble, we define

β2 = s − (m1 + m2)2

s − (m1 − m2)2 ∈ (0, 1) (3.3.62)

which reduces to (3.3.57) in the limit that m2 ! m1 = m. In the next step, we

rescale the Feynman parameters x1 and x2 with the transformations xi ! xi/mi

such that we can perform the resolution procedure on the dimensionless polynomial

F̃ = x2
1 + x2

2 − 21 + β2

1 − β2 x1x2. (3.3.63)

In Fig. 3.6, we plot the variety of F̃ (that is to say, the set of points where F̃ = 0)

and find that it separates the integration domain into three regions defined by the

sign of F̃ – in the upper left and lower right portions of Fig. 3.6, F̃ > 0, while in

the upper right part of the domain, F̃ < 0.

We need to construct transformations of the Feynman parameters such that we can



104 Chapter 3. Avoiding Contour Deformation in Feynman Integrals

convert the unequal mass bubble integral into three integrals each of which is over

one of the regions in Fig. 3.6. In order to do this, we first need to solve the variety

F̃ = 0 for one of the Feynman parameters. Trivially, we find that

x2 = 1 ± β

1 ∓ β
x1 (3.3.64)

defines the variety F̃ = 0 in such a form. Once we have this form, the construction

of the transformations becomes trivial. For example, we wish to map the upper right

region of Fig. 3.6 to the original integration domain which sets the demand that the

line x2 = 1+β
1−β

x1 becomes the new axis x′
1 = 0 and the line x2 = 1−β

1+β
x1 becomes the

new axis x′
2 = 0. These demands, along with the constraint that we want to map

a subset of the original integration domain to the full original integration domain

(and not to map points from outside the domain) to fix the signs, allow us to write

down the transformations immediately:

x′
1

!= −
(

x2 − 1 + β

1 − β
x1

)
, x′

2
!= +

(
x2 − 1 − β

1 + β
x1

)

⇓

x1 !

(
1 − β2

)
(x1 + x2)

4β
, x2 !

(1 − β)2 x1 + (1 + β)2 x2

4β
.

(3.3.65)

By construction, this maps the variety of F̃ to the boundary of integration and this

can be seen explicitly in the effect of the transformations:

F̃ ! −x1x2 (3.3.66)

which is strictly negative within the domain of integration and zero only on the

boundary. Naturally, we must also apply the corresponding transformations to the

U polynomial as well as keeping track of the Jacobian determinant. If we carry out

the same procedure for the remaining two regions, we find that we can recast our
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original integral

Jbub,m1 ̸=m2 = lim
δ!0+

Γ (ϵ) Ibub,m1 ̸=m2

Ibub,m1 ̸=m2 =
∫
R2

≥0

dx1dx2
(x1 + x2)−2+2ϵ(

−sx1x2+(x1+x2)
(
m2

1x1+m2
2x2

)
− iδ

)ϵ δ
(
1 −

∑2
i=1 αixi

)
(3.3.67)

in the regime s > (m1 + m2)2 ⇔ β2 ∈ (0, 1) into a causally-prescribed sum over

three integrals with manifestly non-negative integrands:

Ibub,m1 ̸=m2 = I+,1
bub,m1 ̸=m2

+ I+,2
bub,m1 ̸=m2

+ (−1 − iδ)−ϵ I−
bub,m1 ̸=m2

(3.3.68)

where the constituent integrals are given by

I+,1
bub,m1 ̸=m2

= 1
m1m2

∫
R2

≥0

dx1dx2

(
x2

(
x2 + 4βx1

1 − β2

))−ϵ

×(
x1

m1
+ x2

m2
+ (1 + β) x1

(1 − β) m2

)−2+2ϵ

δ
(
1 −

∑2
i=1 αixi

)
(3.3.69)

I+,2
bub,m1 ̸=m2

= 1 + β

m1m2 (1 − β)

∫
R2

≥0

dx1dx2

x1

(
4βx2 + (1 + β)2 x1

)
(1 − β)2

−ϵ

×

(
x2

m2
+ (1 + β) (x1 + x2)

(1 − β) m1

)−2+2ϵ

δ
(
1 −

∑2
i=1 αixi

)
(3.3.70)

I−
bub,m1 ̸=m2

= 1 − β2

4m1m2β

∫
R2

≥0

dx1dx2 (x1x2)−ϵ ×

(
1 − β2

)
(x1 + x2)

4m1β
+ (1 − β)2 x1 + (1 + β)2 x2

4m2β

−2+2ϵ

δ
(
1 −

∑2
i=1 αixi

)
.

(3.3.71)

Again, these integrals can be analytically evaluated (for example, in Mathematica)

and we find that they replicate the known result for the unequal mass bubble by

checking the coefficients order-by-order in the expansion in ϵ. We note that expanding

deeper in ϵ in the contour-avoided form is computationally more efficient than

expanding the original integral which may prove useful for multi-loop calculations

where the one-loop result may need orders beyond ϵ0.
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Figure 3.7: Independent equal mass triangles with an off-shell leg
(p2 > 0).

1-Loop Triangle with an Off-Shell Leg

For our final 1-loop massive example, we consider the massive triangle with an off-

shell leg (the independent equal-mass configurations of which are shown in Fig. 3.7).

Here, we present the resolution of the fully massive triangle (Fig. 3.7e) in detail. We

pick this mass configuration for our exposition as it is the most difficult and the

analysis of the other examples is carried out almost identically. The integral we wish

to consider is

Jtri = lim
δ!0+

−Γ (1 + ϵ) Itri

Itri =
∫
R3

≥0

dx1dx2dx3
(x1 + x2 + x3)−1+2ϵ(

−p2x1x2 + m2 (x1 + x2 + x3)2 − iδ
)1+ϵ δ

(
1 −

∑3
i=1 αixi

)
.

(3.3.72)

It is possible to make multiple choices to parameterise the projective integral and

we note that, for example, making different choices of hyperplane α(x) = ∑
i αixi

can lead to different solutions of the problem. In our experience, being guided by

the symmetry of the problem, where possible, leads to the neatest solutions but one

may choose e.g. δ (1 − x1) and successfully avoid contour deformation (although

not necessarily easily avoiding square roots involving the Feynman parameters).

Following this philosophy, we make the symmetric choice – here, δ (1 − x1 − x2 − x3)

– which is often the optimal choice at 1-loop as it sends the U polynomial immediately

to 1. Defining β2 = p
2−4m

2

p
2 ∈ (0, 1) and integrating out the δ-function over x3, we

have

Itri =
(

1 − β2

m2

)1+ϵ ∫
R2

≥0

dx1dx2 θ (1 − x1 − x2)
(
1 − β2 − 4x1x2 − iδ

)−1−ϵ
(3.3.73)
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⇒

Figure 3.8: Remapping the simplex integration region of the
massive triangle (in green) to the positive unit square
in R2

≥0. Here, F is to be understood as F after the
δ-function has been integrated out and in the second
panel, after the remapping transformation as well.

where the Heaviside function is a result of the symmetric choice of hyperplane and

restricts the remaining domain of integration to a simplex. With the foresight that

we will wish to integrate this numerically with a standard package like pySecDec,

we apply a coordinate transformation that remaps this domain to the positive unit

square in R2
≥0 as in Fig. 3.8. After this mapping, x2 ! (1 − x1) x2, we have

Itri =
(

1 − β2

m2

)1+ϵ ∫ 1

0
dx1dx2 (1 − x1)

(
1 − β2 − 4 (1 − x1) x1x2 − iδ

)−1−ϵ
. (3.3.74)

Visualising the variety of the transformed F allows us to separate the integration

domain into a number of regions, the choice (and number) of which is guided by what

is practically simpler to deal with. We show this choice of four regions in Fig. 3.9

where we have separated the integration domain (the positive unit square in R2
≥0)

into three positive regions where F > 0 and one negative one where F < 0 (which

will generate the entire imaginary part of the full integral). We will show the chain

of transformations which maps the negative region (blue in Fig. 3.9) to the positive

unit square and state the result for the remaining positive regions. Firstly, we need

to map the orange and red positive regions in Fig. 3.9 outside the square. To do

this, we find the x1-values where the variety of F intersects with the boundary of
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Figure 3.9: The integration domain of the massive triangle separ-
ated into one negative and three positive regions.

⇒ ⇒

Figure 3.10: The chain of transformations which maps the negative
region of the massive triangle (in blue) to the positive
unit square.

the domain at x2 = 1. A trivial calculation reveals these values to be 1±β
2 and we

want to map the x1-lines defined by these values to the boundaries of integration

x1 = 0 and x1 = 1. We can easily construct a transformation which satisfies these

demands:

x′
1

!=
x1 − 1−β

2
1+β

2 − 1−β
2

⇒ x1 !
1
2 + β

(
x1 − 1

2

)
(3.3.75)

and we show the effect of this transformation in the transition from the first to the

second panel of Fig. 3.10 with F ! 1 − β2 − (1 − (1 − 2x1)2β2) x2. The geometric

visualisation helps us to deduce the next logical step which is to map the variety of

this transformed F to the boundary at x2 = 0 while keeping the boundary at x2 = 1



3.3. Examples 109

fixed (so as not to map in any points from outside the integration domain). In order

to do this, we must first solve F = 0 as x2 = f (x1). Trivially, we find:

F = 0 ⇒ x2 = 1 − β2

1 − (1 − 2x1)2 β2 = f (x1) . (3.3.76)

In this form, we can directly construct the transformation which satisfies the demands

above:

x′
1

!= x1, x′
2

!= x2 − f (x1)
1 − f (x1)

⇒ x1 ! x1, x2 ! x2 + (1 − x2) f (x1) . (3.3.77)

This transformation generates the transition between the second and third panels

in Fig 3.10 and completes the mapping of the negative region to the positive unit

square as required. The final result for the negative contribution after taking into

account the Jacobian determinants of the transformations is

I−
tri = 2−1−2ϵ

(
1 − β2

m2

)1+ϵ

β1−2ϵ
∫ 1

0
dx1dx2 (1 − x1)−ϵ x−ϵ

1 x−1−ϵ
2 (1 − (1 − 2x1) β)−1

(3.3.78)

where we have already factored out (−1 − iδ)−1−ϵ. We note that this integral is O
(

1
ϵ

)
whereas the full integral Itri is finite. This pole cancels exactly with a corresponding

pole in I+,2
tri and, since I+,1

tri and I+,3
tri are free of poles in ϵ, the construction consistently

reproduces the full result.

It is illuminating to consider the general structure of this cancellation; if the full

result is finite and also has an imaginary part at the leading order (which is true

of Itri), the negative contribution must necessarily have a pole in ϵ to generate

the imaginary part from multiplying the ϵ1 term in the expansion of (−1 − iδ)a+bϵ.

Furthermore, the total positive contribution must have an equal pole in ϵ to cancel

the pole of the negative contribution leaving a finite result. This type of analysis

can be fruitful in predicting a priori the pole structure of the constituent integrals

in the decomposition.
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For completeness, we state the result for the positive contributions:

I+,1
tri = 1

4

(
1−β2

m2

)1+ϵ

(1−β)−ϵ
∫ 1

0
dx1dx2 (2−(1−β) x1)(1+β−(2−(1−β) x1) x1x2)−1−ϵ

(3.3.79)

I+,2
tri = β

2

(
1 − β2

m2

)1+ϵ(
1 − β2

)−ϵ
∫ 1

0
dx1dx2 (1 − x2)−1−ϵ (1 − (1 − 2x1) β)−1

(3.3.80)

I+,3
tri = 1

4

(
1−β2

m2

)1+ϵ

(1−β)1−ϵ
∫ 1

0
dx1dx2 (1−x1) (1+β−x2(1−x1)(1+β+(1−β)x1))−1−ϵ .

(3.3.81)

This gives the total result

Itri =
3∑

n+=1
I

+,n+
tri + (−1 − iδ)−1−ϵ I−

tri (3.3.82)

where we stress again that each integrand in the constituent integrals of (3.3.82) is

manifestly non-negative in the Minkowskian kinematic region defined by β ∈ (0, 1)

throughout the entire integration domain. Additionally, all singularities have been

mapped to the endpoints where they can be dealt with using standard techniques

such as sector decomposition instead of applying a contour deformation prescription

as would usually be required in a numerical calculation.

2-Loop Elliptic Sunrise

In this section, we analyse the equal mass sunrise integral – the simplest integral

which involves a function class beyond polylogarithms. The sunrise has been studied

extensively and it is known to evaluate to elliptic integrals. It is for this reason

that we choose to apply the method to the sunrise in order to show that there is

no fundamental obstruction to avoiding contour deformation for massive integrals

beyond the polylogarithmic class. We find, however, that the sunrise leads us

naturally to algebraic transformations of the Feynman parameters instead of purely

rational function transformations. To the best of our current knowledge, it seems not

to be possible to find a resolution which avoids square roots in the transformations
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(we contrast this with initial attempts involving square roots to resolve the massive

1-loop triangles in Fig. 3.7 which were able to be improved upon) but this does not

present a problem for our purposes of numerical evaluation.

The analysis of the 2-loop massive sunrise follows similarly to the 1-loop massive

triangle detailed in Section 3.3.2 (as they are both cases of integrals with three equal-

mass propagators); as a result of this, we focus mainly on the differences to that case

in this exposition. The integral we wish to resolve without contour deformation is

Jsun = lim
δ!0+

−Γ (−1 + 2ϵ) Isun

Isun =
∫
R3

≥0

dx1dx2dx3
(x1x2 + x2x3 + x1x3)−3+3ϵ δ

(
1 −∑3

i=1 αixi

)
(
−sx1x2x3 + (x1x2 + x2x3 + x1x3) m2 (x1+x2+x3) − iδ

)−1+2ϵ

(3.3.83)

and is depicted in Fig. 3.5c. A plot of the sunrise’s F = 0 surface in R3
>0 (which should

be rigorously understood in the context of the projective integral, parameterised

with the δ-function, for example) is given in Fig. 3.11. It is the shape of this surface

that will end up determining the resolution of the integral and we see that its

distorted conic-esque geometry divides the integration into an inside and outside;

this appears to be intrinsically linked to our inability to use purely rational functions

for the resolution transformations. As we will see after a choice of hyperplane in

the δ-function, this will force the use of square roots and guide us towards algebraic

transformations.

Motivated once again by the symmetry of the problem, we choose δ (1 − x1 − x2 − x3)

and integrate out x3 after having parameterised the Minkowskian kinematic regime

we are interested in with β2 = s−9m
2

s
∈ (0, 1). We remap the resulting simplex

integration domain to the positive unit square (as shown in the transition between

the first and second panels of Fig. 3.12) in the same way as for the massive triangle

in Section 3.3.2. These manipulations give us

Isun =
(

1 − β2

m2

)−1+2ϵ∫ 1

0
dx1dx2

(1 − x1)−1+ϵ (x1 + (1 − x1) (1 − x2) x2)−3+3ϵ((
1−β2−9x1

)
(1−x1)(1−x2) x2+

(
1−β2

)
x1−iδ

)−1+2ϵ

(3.3.84)
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Figure 3.11: The F = 0 surface of the equal mass sunrise in R3
>0

with the caveat that this should properly be under-
stood projectively.

where, by direct inspection of (3.3.84), the integrand can be seen to enjoy a symmetry

under x2 ! 1 − x2 (analogously to the equal-mass bubble in Section 3.3.2). This

allows us to integrate x2 from 0 to 1
2 instead and then double the result. We

remap this halved integration domain back to the positive unit square (as shown in

the transition between the second and third panels of Fig. 3.12) and benefit from

exploiting this symmetry which reduces the number of regions we will need to resolve.

Of course, were this symmetry not present, we would still be able to resolve the

integral with more regions. Noting that the Jacobian factor of 1
2 in this second

transformation cancels the doubling from the symmetry, we have

Isun = 42−ϵ

(
1 − β2

m2

)−1+2ϵ

×

∫ 1

0
dx1dx2

(1 − x1)−1+ϵ (4x1 + (1 − x1) (2 − x2) x2)−3+3ϵ((
1 − β2 − 9x1

)
(1 − x1) (2 − x2) x2 + 4

(
1 − β2

)
x1 − iδ

)−1+2ϵ .

(3.3.85)

We can define a set of three positive regions where the denominator of (3.3.85),



3.3. Examples 113

⇒ ⇒

Figure 3.12: Remapping the simplex integration region of the el-
liptic sunrise (in green) to the positive unit square in
R2

≥0 then exploiting the symmetry about x2 = 1
2 . Here,

F is to be understood as F after the δ-function has
been integrated out and in the second and third pan-
els, after their respective remapping transformations
as well.

which we will loosely refer to as F (even though we have factored out 1 − x1), is

positive (i.e. F > 0) and one where it is negative (i.e. F < 0) which we show in

Fig. 3.13. We will resolve the negative region in detail once more as it plays the

special role in solely generating the imaginary part of the full integral.

In order to resolve the negative region, we first must map the sides of the variety

F = 0 to the boundary. Using the intersection of the variety with the boundary

at x2 = 1 to find the associated x1-values as in the case of the massive triangle in

Section 3.3.2, we find the relevant transformation to be

x′
1

!=
x1 − 1

6

(
2 + β2 − β

√
8 + β2

)
1
6

(
2 + β2 + β

√
8 + β2

)
− 1

6

(
2 + β2 − β

√
8 + β2

)
⇓

x1 !
1
6

(
2 + β2 − (1 − 2x1) β

√
8 + β2

)
.

(3.3.86)

The effect of this transformation is shown in the transition from the first to the

second panel in Fig. 3.14. It is clear from this geometric picture what the next (and

final) step of the resolution should be: mapping the variety to x2 = 0 keeping the

boundary at x2 = 1 fixed. The main distinction between this case and the massive

triangle in Section 3.3.2 enters here; we want to solve the variety as x2 = f (x1) but
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Figure 3.13: The integration domain of the elliptic sunrise separated
into one negative and three positive regions.

⇒ ⇒

Figure 3.14: The chain of transformations which maps the negative
region of the elliptic sunrise (in blue) to the positive
unit square.

this gives us a function involving a square root containing x1 instead of a purely

rational function. Nevertheless, we still apply a transformation of the type in (3.3.77)

to our transformed F .

Applying the same set of transformations to the U polynomial and accounting for the

corresponding Jacobian determinants, we obtain for our final result for the negative

contribution,

I−
sun = 27−6ϵ3

1
2 −ϵ

(
β2
)2−2ϵ (

8 + β2
)2−2ϵ

(
1 − β2

m2

)−1+2ϵ

×
∫ 1

0
dx1dx2 (1 − x1)

3
2 −2ϵx

3
2 −2ϵ
1 x1−2ϵ

2 R−
sun (x1, x2; β) , (3.3.87)
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where the finite remainder function is given by,

R−
sun (x1, x2; β) = R1(x2; β)R2(x1; β)R3(x1; β)R4(x1, β)R5(x1, x2; β),

R1(x2; β) = x̄1−2ϵ
2 ,

R2(x1; β) =
[
−β2 + ββ̄x̃1 + 4

]
3ϵ−2,

R3(x1; β) =
[
4 − β

(
2β
(
β2 + 1

)
− 3ββ̄2x1x̄1 + 2β̃β̄x̃1

)] 3
2 −ϵ,

R4(x1; β) =
[
β2β̄2x1x̄1

(
−11β2 + 3ββ̄x̃1 + 20

)
+ 4β̃2

(
β2 − ββ̄x̃1 + 4

)]
1−2ϵ,

R5(x1, x2; β) =
[
β2β̄2x1x̄1

(
x2x̄2

(
−β2 + ββ̄x̃1 + 4

)
+ 4β

(
3β − β̄x̃1

))
+ 4β̃

(
β4 + 7β2 −

(
β2 + 3

)
ββ̄x̃1 + 4

)]
3ϵ−3,

(3.3.88)

with x̄1 = 1 − x1, x̃1 = 1 − 2x1, x̄2 = 2 − x2 and β̄ =
√

8 + β2, β̃ =1 − β2. Each of

the factors in the integrand of (3.3.87) can be shown to be positive for 0 < x1 < 1,

0 < x2 < 1 and 0 < β < 1, thereby removing the need for a contour deformation.

We can perform similar resolutions for the positive regions to obtain the overall

construction:

Isun =
3∑

n+=1
I

+,n+
sun + (−1 − iδ)1−2ϵ I−

sun. (3.3.89)

The increase in efficiency of instead integrating the non-negative integrands of the

constituent integrals in (3.3.89) with pySecDec (as opposed to the standard contour-

deformed setup) can be seen in Section 3.4.

3-Loop Hyperelliptic Banana

In this section, we investigate the 3-loop equal mass banana integral. One may

associate a geometry to the L-loop massive banana defined by the variety of the

F polynomial in the complex projective space, CPL; for L ≥ 2, the corresponding

geometry is that of a Calabi-Yau (L−1)-fold (see, for example, [91]). In the previous

section, we demonstrated that the method works on the sunrise integral (in this

language, a 2-loop massive banana) which is associated to an elliptic curve (i.e. a

Calabi-Yau 1-fold) at the expense of seemingly inescapably introducing square roots
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involving the Feynman parameters. In this section, we show that an integral asso-

ciated to the more complex geometric structure of a K3 surface (i.e. a Calabi-Yau

2-fold) provides no obstruction to this method of avoiding contour deformation. We

make no further comment on the underlying geometry associated to these integrals

except to say that this motivates studying these particular examples by proving that

these geometric properties are not inherently prohibitive to this procedure. We also

acknowledge that it is known that additional non-trivial geometric structure appears

for this family of integrals with L ≥ 4 but resolving fully-massive integrals with

more than four propagators is beyond the scope of this thesis.

The 3-loop equal mass banana integral (shown in Fig. 3.5d) is given by

Jban = lim
δ!0+

Γ (−2 + 3ϵ) Iban

Iban =
∫
R4

≥0

4∏
i=1

dxi

(x1x2x3 + x1x3x4 + x2x3x4 + x1x2x4)−4+4ϵ

(F (x, s) − iδ)2−3ϵ δ
(
1 −

∑4
i=1 αixi

)
(3.3.90)

where the F polynomial is

F (x, s) = −sx1x2x3x4+(x1x2x3 + x1x3x4 + x2x3x4 + x1x2x4) m2 (x1+x2+x3+x4) .

(3.3.91)

Having presented the geometric resolution procedure a number of times already, we

detail this example more schematically. We begin by integrating out x4 using the

δ-function with the symmetric choice of hyperplane (i.e. x1 + x2 + x3 + x4) and we

parameterise the Minkowskian kinematic regime with β2 = s−16m
2

s
∈ (0, 1). Analag-

ously to the elliptic sunrise example, we remap the resulting simplex integration

domain to the positive unit hypercube (in this case, the positive unit cube in R3).

The symmetry of the resulting integrand under x3 ! 1 − x3 allows us once again

to reduce the number of integrals into which we will eventually decompose Iban by

integrating instead from x3 = 0 up to x3 = 1
2 , remapping this back to the unit

positive cube and doubling the result (however, we remark once more that this is

not strictly necessary and one could perform the entire resolution without exploiting
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⇒ ⇒

Figure 3.15: Remapping the simplex integration region of the ba-
nana (in green) to the positive unit cube in R3

≥0 then
exploiting the symmetry about x3 = 1

2 . We omit the
legend for clarity but this figure should be understood
analagously to Fig. 3.12 with the F < 0 region given
in blue outside the domain of integration and in dark
orange within. Here, F is to be understood as F
after the δ-function has been integrated out and in the
second and third panels, after their respective remap-
ping transformations as well.

this). This sequence of domain-remapping transformations is depicted in Fig. 3.15

(where this time we focus solely on the positive unit cube) and should be compared

and contrasted with the corresponding set of transformations for the elliptic sunrise

in Fig. 3.12.

Once the domain has been successfully remapped to the unit positive cube, it may be

(somewhat arbitrarily) dissected into regions where the transformed F polynomial

is positive and negative. The art of partitioning the integration domain in general,

as we currently understand it, revolves around the balance between minimising the

number of integrals in the decomposition (minimally one negative region and one

positive region) and producing regions which can all be successfully mapped back

to the positive unit hypercube. We show, in Fig. 3.16, an example partitioning of

the positive unit cube in R3 for the resolution of the banana which generates five

positive contributions and one negative contribution.

We will focus on the set of transformations which maps the negative region to the

original integration domain as shown in Fig 3.17. First, we look at the intersection

of the variety of the transformed F polynomial with the plane x3 = 1 and analyse



118 Chapter 3. Avoiding Contour Deformation in Feynman Integrals

(a) I−
ban (b) I+,1

ban (c) I+,2
ban (d) I+,3

ban (e) I+,4
ban (f) I+,5

ban

Figure 3.16: The six regions (one negative, 3.16a, and five positive,
3.16b – 3.16f) into which the integration domain of the
banana is partitioned in this resolution.

⇒ ⇒ ⇒

Figure 3.17: The chain of transformations which maps the negative
region of the banana (in blue) to the positive unit cube.

the resulting closed curve. It is clear from focussing on the plane x3 = 1 in the first

panel of Fig. 3.17 that this curve has four turning points (by which we mean the

four points on the curve of maximal and minimal x1 and x2 respectively). In the

resolution of the negative region shown in Fig. 3.17, we arbitrarily choose to first

identify the points of maximal and minimal x1 on the curve using standard turning

point analysis and then map the planes x1 = xmin
1 and x1 = xmax

1 to x1 = 0 and

x1 = 1 respectively. This transformation is shown in the transition between the first

and second panels of Fig. 3.17. We note that, on the curve, both xmin
1 and xmax

1 have

a corresponding x2-value of x2 = 1
3 (independent of β) and taking a slice through the

integration domain at this value of x2 (combining all regions in Fig. 3.16) generates

a plot which is, superficially, very similar to Fig. 3.12. The next step is to solve

the transformed curve at x3 = 1 as x2 = f (x1). Clearly, from the second panel of

Fig. 3.17, this will have two solutions (the curve is quadratic in x2) and a square root

involving the Feynman parameters – specifically, x1 – enters at this point. The map

which takes x2 = f1 (x1) to the plane x2 = 1 and x2 = f2 (x1) to the plane x2 = 0 is

trivial to construct once f1 and f2 are known and we demonstrate the effect of this
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transformation in the transition between the second and third panels of Fig. 3.17.

Finally, we have to solve the variety of the transformed F as x3 = g (x1, x2) (which

also has two solutions due to the quadratic appearance of x3 but only one solution

which is relevant within the integration domain) and map this to the plane x3 = 0

while keeping x3 = 1 fixed. This transformation is shown in the transition between

the third and fourth panels of Fig. 3.17 and concludes the mapping of the original

negative region to the positive unit cube.

A similar analysis is carried out for the remaining five positive regions in Fig. 3.16,

resulting in1

Iban =
5∑

n+=1
I

+,n+
ban + (−1 − iδ)1−2ϵ I−

ban (3.3.92)

where all of the integrands appearing in (3.3.92) are manifestly positive within the

domain of integration (and away from the boundary).

3.4 Numerical Benchmarks

The procedure described in the preceding sections produces manifestly positive

integrands out of Feynman integrals and, more generally, parameter integrals in

mixed-sign regimes. This greatly reduces the complexity of numerically evaluating

the remaining integrals and is likely to be beneficial for a variety of parameter

space based approaches to evaluating Feynman integrals. For finite integrals, we

can numerically integrate the resulting integrands either directly or using FeynTrop,

for example. For divergent integrals, we still need to factorise any overlapping

singularities and perform a suitable subtraction to obtain finite integrals, as described

in Section 2.4, for which we can employ sector decomposition as implemented in

tools such as FIESTA or pySecDec.

In this work, we use the public pySecDec program to benchmark the integration

1We note that, for our numerical evaluation in pySecDec, we perform a manual sector decompos-
ition of one of the positive contributions into two constituent integrals but this is implementation-
dependent and orthogonal to the resolution procedure for avoiding contour deformation
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time of the resolved integrals and compare to the timings we get when using contour

deformation. Note that pySecDec is not optimised for this new approach and could

be greatly improved. For example, parsing large prefactor expressions sometimes

dominates evaluation time, due to the usage of inefficient SymPy routines. These

expressions appear as a result of the resolution procedure, particularly in the massive

examples, and have therefore not been a problem in pySecDec before. Expanding

and loading such expressions in Mathematica is practically instant, and we expect

the expression parsing in pySecDec to be improved in the future. For this reason we

subtract the loading time of the prefactors from the results and let the comparisons

be strictly on the integration time. This is mainly relevant for the 1-loop massive tri-

angle, where the prefactors were particularly slow to load, relative to the integration

time.

Unless otherwise specified, the integration was done with the Disteval integrator,

run on an NVidia A100 80G GPU. The exceptions are the 2-loop sunrise and 3-

loop banana integrals, where an older integrator was used in order to access the

feature of user-defined C++ functions. The resolved versions of these examples contain

large positive remainder functions raised to high integer powers that by default get

expanded into very large expressions by FORM routines within pySecDec. This makes

it hard to even generate and compile the integration libraries and calls for a better

handling of large positive functions in pySecDec. This is again something that has

only appeared as a result of the resolution procedure and has not been a bottleneck

before. Eventually, pySecDec should offer the possibility for the user to prevent

certain functions from being expanded. For now, this problem can be circumvented

by manually defining the remainder expressions as symbolic functions, and provide

them directly as C++ functions. The option of doing this does not yet exist in the

Disteval interface, but will be included in a release in the near future. These two

integration libraries were compiled with gcc 7.5.0 and run on one core of an AMD

EPYC 7352 CPU.
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3.4.1 Timings

In this section, we provide benchmarks of the integration time with the new resolution

procedure compared to using contour deformation as implemented in pySecDec.

Figs. 3.18, 3.19, 3.20, 3.21 and 3.22 show timings for the massless examples described

in Section 3.3.1.

For the 1-loop off-shell box it is necessary to go to extreme kinematic configurations

before we see noticeable improvement in avoiding contour deformation. However,

already for the 1-loop pentagon, there are order of magnitude improvements for all

phase space points we test, at a high enough precision.

For the 2-loop and 3-loop non-planar boxes the improvements are even larger which

is expected as the computational complexity of the contour deformation grows with

the number of propagators.

For certain phase space points in these examples, we do not manage to obtain any

digits with contour deformation. The situation is the most extreme for BNP7 where

the integration with contour deformation fails to converge at each phase space point

we tried.

Fig. 3.23 shows timings for the 1-loop massive triangle described in Section 3.3.2.

The triangle can be evaluated to high precision in short time, both with and without

contour deformation. The initial lattice size of the QMC integrator is enough to

reach about 10 digits of precision and the example is essentially too simple to see

any gain from removing contour deformation.

In fact, evaluation of the lattice points is not the bottleneck of this integral which is

why we look strictly at the integration time for the benchmarks and ignore the time

it takes to load the prefactors. Despite these measures, we still see that the resolved

version of the integral evaluates slower than using contour deformation. The reason

is that our resolved integrands have singularities at both the upper and the lower

integration boundary.
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To handle this, pySecDec splits the integrals and remaps all singularities to the

lower boundary which results in more sectors and thereby increased evaluation time.

For the positive contributions, J+,1
tri , J+,2

tri and J+,3
tri , the singularities are only present

at one of the boundaries and the splitting could either be turned off or avoided

by applying simple transformations of the type x ! 1 − x before passing them to

pySecDec.

This reduced the number of sectors significantly and brought the integration time

of the resolved integral close to the time of integrating with contour deformation.

For the negative contribution, J−
tri, singularities are present at both boundaries and

splitting the integral is therefore necessary.

The small remaining time difference can mostly be attributed to the extra sector

this split generates. Usually, dealing with a few extra sectors due to the resolution

procedure is not a major issue, since the resolved integrands typically scale much

better. The problem with the triangle is that it is too easy to integrate in either

case and we are purely limited by the time it takes to evaluate the initial number of

lattice points.

In the other massive examples we also require integral splitting but then the contour

deformed integrals are eventually unable to reach higher precision and we are able

to access more digits with the resolved integrands.

In Figs. 3.24 and 3.25, we show the timings for the elliptic sunrise and hyperelliptic

banana integrals. A black dot indicates a point after which the evaluation time

diverged and the integration was terminated after > 10 hours.
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Figure 3.18: Timings with and without contour deformation for the
massless 1-loop box with an off-shell leg, expanded up
to the finite order. Evaluated for different values of s
with t = −1 and p2

1 = 2 fixed.
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Figure 3.19: Timings with and without contour deformation for
the massless 1-loop pentagon, expanded up to the fi-
nite order. Evaluated for different values of s12 while
the other kinematics are fixed at (s23, s34, s45, s51) =
(−3, 2.5, −3, 5).



124 Chapter 3. Avoiding Contour Deformation in Feynman Integrals

10−910−810−710−610−510−410−310−210−1

Requested Relative Error

101

102

103

104

In
te

gr
a
ti

o
n

T
im

e
[s

]

BNP6 - Integration Time vs. Relative Error

No CD s = 4

No CD s = 40

No CD s = 400

No CD s = 4000

CD s = 4

CD s = 40

CD s = 400

CD s = 4000

Figure 3.20: Timings with and without contour deformation for the
2-loop non-planar box with 6 propagators, expanded
up to the finite order. Evaluated for different values
of s with t = −1 fixed.
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Figure 3.21: Timings with and without contour deformation for the
2-loop non-planar box with 7 propagators, expanded
up to the finite order. Evaluated for different values of
s with t = −1 fixed. In this example no digits could
be obtained with contour deformation.
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pole included. Evaluated for different values of s
with t = −1 fixed, except for the point s = 1, where
t = −0.2. For the benchmarks where s ≥ 4 no digits
could be obtained with contour deformation.
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3.4.2 Cancellations

Since the resolved integrals are split up into multiple pieces, there could be a drop in

precision on the full integrals due to cancellations. The benchmarks in the previous

section already take this into account by considering the relative error on the full

integral1. We therefore already implicitly see that if there are any cancellations, they

are not severe for the phase space points considered so far. In this section we show

explicitly that this is the case for larger scans of the phase spaces, by comparing the

magnitude of the different contributions against the magnitude of the full integral.

Fig. 3.26 shows the magnitude of the positive and negative contributions to the

massless pentagon, compared to the full result, for the real parts of the coefficients

to the ϵ−3, ϵ−2, ϵ−1 and ϵ0 poles. The magnitude of the positive and negative

contributions are of the same order of magnitude at each order in ϵ and so the

cancellations are small and there is no significant loss in precision. The ϵ−3 pole is

of course spurious and its coefficient is integrated to 0 within the precision limit. As

the pole does not appear when sector decomposing the unresolved pentagon integral,

a potential issue with the resolution procedure is highlighted2. Spurious poles are

difficult to integrate to high relative precision numerically and instead a trigger on

absolute precision must be used. For the benchmarks we simply skip integrating the

coefficients of poles that are spurious. In practice, however, the order of the leading

pole might not be known and in such cases the integration can be terminated based

on an absolute error instead.

The cancellations between the positive and negative contributions to the BNP6 and

BNP7 examples are shown in Figs. 3.27 and 3.28 respectively. Here there are also

spurious ϵ−3 poles. The difference to the pentagon is that in these cases they appear

as a result of cancellations between the positive and negative contributions, and

are therefore a direct consequence of the resolution procedure. In these figures it
1This is automated within the sum_package module of pySecDec.
2In this case the spurious pole is actually not a direct consequence of the resolution but of the

sector decomposition of the negative piece. Spurious poles can also appear when sector decomposing
unresolved integrals.
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Figure 3.26: Magnitude of the real part of the positive and negative
contributions compared to the total integral for the
massless pentagon at orders −3, −2, −1, 0 in the ϵ ex-
pansion. κδ = lim

δ!0+(−1 − iδ)−3−ϵ. The ϵ−3 pole is
spurious and is only present as an artefact of the sector
decomposition of J−

pen.

is also clear how the cancellations, and thereby the integration performance, gets

worse close to threshold. Since in these plots, we fix t = −1, the resolution is only
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valid when s > 1, and the magnitudes of the positive and negative pieces get larger

relative to the full integral, closer to this point.
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ative contributions compared to the total integral
for BNP6 at orders −3, −2, −1, 0 in the ϵ expansion.
κδ = lim
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Figure 3.28: Magnitude of the real part of the positive and neg-
ative contributions compared to the total integral
for BNP7 at orders −3, −2, −1, 0 in the ϵ expansion.
κδ = lim

δ!0+(−1 − iδ)−3−2ϵ

Fig. 3.29 shows the cancellations between the one negative and three positive contri-

butions to the massive 1-loop triangle. As for BNP6 and BNP7, there is a spurious

pole, this time at order ϵ−1 which is a direct consequence of the resolution.
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Figure 3.29: Magnitude of the real part of the positive and negative
contributions compared to the total integral for the
all massive 1L triangle at orders −1, 0, 1, 2 in the ϵ
expansion. κδ = lim

δ!0+(−1−iδ)−1−ϵ, β ∈ (0.01, 0.99)
and m = 2. The 1, 2, 3 indices corresponds to the
different positive regions shown in Fig. 3.9.

Figs. 3.30 and 3.31 show the cancellations between the one negative and three positive

contributions to the elliptic sunrise. The ϵ−2 pole only has contributions from the
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Figure 3.30: Magnitude of the real part of the positive and negative
contributions compared to the total integral for the
elliptic sunrise at orders −2, −1, 0 in the ϵ expansion.
κδ = lim

δ!0+(−1− iδ)−1−2ϵ, β ∈ (0.01, 0.9) and m = 2.
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regions shown in Fig. 3.13.

J+,1
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sun leaving the zero contribution from J+,2
sun hidden in Fig. 3.30 under the

zero contribution from κδJ
−
sun.
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contributions compared to the total integral for the
elliptic sunrise at orders 1, 2, 3, 4 in the ϵ expansion.
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Chapter 4

Partial NLO EW Corrections to

Higgs Pair Production

In this chapter, we present our recent calculation of next-to-leading order electroweak

corrections to Higgs pair production. We begin in Section 4.1 by expanding on the

motivation given in Chapter 1 for studying the process gg ! HH, summarising

the currently available results. In Section 4.2, we describe our calculation in detail,

making use of several techniques outlined in Chapter 2. Chronologically, this calcu-

lation preceded the development of the methods presented in Chapter 3; however,

building on our current understanding, we could, in principle, apply those methods

to this and similar calculations, expecting a significant improvement in efficiency

and a corresponding reduction in numerical uncertainty – we leave this for future

work.

4.1 Invitation

Among the main goals of the current and future runs of the CERN Large Hadron

Collider is tightening the constraints on the Higgs boson cubic self-coupling, λHHH .

Measurements of the Higgs boson pair cross section at ATLAS currently set an upper

limit of µHH < 2.4 at 95% confidence level, giving a bound on the self-coupling
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modifier, κλ = λHHH/λSM
HHH , of −1.4 < κλ < 6.1 [92, 93] while measurements at

CMS place a limit of µHH < 3.4, giving −1.24 < κλ < 6.49 [94]. The high-luminosity

LHC run is expected to shrink this constraint to 0.1 < κλ < 2.3 [95], thereby ruling

out the scenario of κλ = 0 where the Higgs boson does not couple to itself via a

cubic coupling. As discussed in Chapter 1, Higgs boson pair production in gluon

fusion is the prime process to consider in order to constrain the trilinear coupling

because λHHH already enters at the leading order and the gluon fusion production

channel is dominant at the LHC. Many models of BSM physics predict modified

Higgs boson self-couplings, particularly those where electroweak symmetry breaking

occurred through a first-order phase transition, which is a prerequisite for generating

the observed baryon asymmetry. Therefore, it is crucial to have precise predictions

for this process within the SM, such that potential discrepancies between data and

theory can be clearly identified as signposts of new physics.

The LO cross section for the process gg ! HH has been calculated in [7,8] and NLO

QCD corrections including the full top-quark mass dependence are also available [9,

89, 96–98] as mentioned in Chapter 1, increasing the total cross section by about

60%. The real corrections, entering the NLO QCD cross section, have recently been

obtained in a compact analytic form [99]. NLO matching to parton showers has been

performed in [100–103], later also including anomalous couplings within an Effective

Field Theory (EFT) framework [104–106].

QCD corrections beyond NLO have been calculated in the heavy-top-limit [107–109],

or in a combination of large-mt and high-energy expansions [110]. Partial three-loop

results also have been obtained recently [111,112]. The full NLO QCD corrections

have been included in calculations where even higher orders have been evaluated,

e.g. including the top mass dependence in the real corrections at NNLO [113], or

N3LO corrections [114,115] and N3LO+N3LL corrections [116] in the heavy-top-limit.

The N3LO results have a residual scale uncertainty of about 3%, therefore other

uncertainties, such as missing electroweak corrections, become an important part in

the uncertainty budget.
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Currently, the top-mass renormalisation scheme uncertainties are the largest uncer-

tainties for this process [103, 117], they are estimated to be of the order of 20%.

However, the electroweak corrections also introduce a renormalisation scheme de-

pendence, and its interplay with the scheme dependence of the QCD corrections is

currently unknown. Furthermore, it is well-known that EW corrections can signific-

antly affect the shape of kinematic distributions. For example, the EW corrections

to single Higgs boson production are of the order of +5% for mH = 125 GeV, domin-

ated by the light fermion contributions, but, for larger values of mH , the corrections

become negative and the light quark contribution ceases to dominate the correc-

tion [118–120]. First partial NLO EW corrections to Higgs boson pair production

have been calculated in [121–123], the full NLO EW corrections in the large top-quark

mass expansion up to 1/m8
t have been calculated in [124]. Total and differential

cross sections including the full NLO EW corrections have been presented in [125],

finding a decrease by −4% of the total cross section after inclusion of the NLO EW

corrections.

As the first order EW corrections to double Higgs production factorise from the NLO

QCD corrections to this process, mixed QCD-EW corrections would only play a role

at even higher orders. The latter are relevant for single Higgs production, where the

experimental uncertainties are very small; contributions to these mixed corrections

have been calculated in [126–133].

In this chapter, we calculate the electroweak corrections to the process gg ! HH

in the scalar sector, i.e. the corrections which are Yukawa-enhanced or are of Higgs

self-coupling type (with the quartic coupling λHHHH also now entering at NLO),

while corrections due to the exchange of virtual electroweak gauge bosons are not

included. The calculation involves four-point, two-loop integrals with up to two

mass scales (mt, mH) and two independent Mandelstam variables (s, t), which we

retain fully symbolically in our amplitude. The master integrals are evaluated in two

ways: with the method of sector decomposition as explained in Section 2.4 using

pySecDec [41, 134–136] and by solving differential equations via series expansions
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using DiffExp [48, 137] as detailed in Section 2.5.

The remainder of this chapter is structured as follows: in Section 4.2, we give details

of the calculation, describing the projection onto form factors, the reduction to

master integrals and their evaluation; the UV renormalisation of the amplitude is

also described in detail. In Section 4.3 we provide values for the bare and renormalised

amplitude at a selected phase-space point and present our results for the Higgs boson

pair invariant mass and Higgs boson transverse momentum distributions in addition

to the impact of these corrections on the total cross section. Our conclusions are

presented in Section 4.4.

4.2 Calculation

In this section, we describe the details of our calculation of the NLO electroweak

corrections to Higgs boson pair production including only the top-Yukawa and

Higgs boson self-coupling contributions. We start by specifying the parts of the SM

Lagrangian relevant for computing these corrections in Section 4.2.1, followed by a

detailed description of the amplitude structure for gg ! HH in Section 4.2.2. The

remaining sections give details of our computational setup, starting from diagram

generation in Section 4.2.3, continuing with the reduction to master integrals in

Section 4.2.4, and closing with the master integral evaluation in Section 4.2.5. In

Section 4.2.6, we describe the renormalisation of our amplitudes. For a review of the

standard methods for the computation and renormalisation of one-loop electroweak

corrections in the Standard Model, see [138,139].

4.2.1 Lagrangian and Input-Parameter Scheme

To precisely define the corrections we wish to compute – i.e. only those induced by

the Yukawa coupling and Higgs self-couplings – and to derive their renormalisation,

we do not start from the general SM Lagrangian. Instead, we start from a more
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accessible subset corresponding to a Yukawa model with only one up-type fermion

(the top quark) and one scalar field (the Higgs boson). Indeed, employing a series

of simplifications, we can see it truly is a subset of the SM: firstly, we remove the

Yang-Mills part for the electroweak gauge bosons so that they only appear in the

covariant derivative. Additionally, all leptons, light quarks and the bottom quark

are dropped since their coupling to the Higgs field is negligibly small compared to

that of the top quark. Prior to electroweak symmetry breaking (EWSB), this leads

to the bare Lagrangian1

L0 = − 1
4G0,µνGµν

0 + (DµΦ0)†(DµΦ0) + µ2
0Φ†

0Φ0 + λ0

4 (Φ†
0Φ0)2

+ iQ̄L,0 /DQL,0 + it̄R,0 /DtR,0 − (yt,0Q̄L,0Φc
0tR,0 + h.c.),

(4.2.1)

with

QL,0 =

tL,0

0

 , (4.2.2)

and the gluon field strength tensor denoted by Gµν
0 . Taking the gaugeless limit for the

EW sector corresponds to the limit (g, g′) ! (0, 0), which removes the electroweak

gauge bosons (as well as their associated ghost fields) entirely, such that the covariant

derivatives have the form

Dµ = ∂µ − igs,0G
a
0,µta (4.2.3)

where ta are the generators of SU(3)C and Ga
0,µ are the gluon fields. As described

in Chapter 1, the Higgs field, Φ0, acquires a vacuum expectation value, v0, spon-

taneously breaking the electroweak symmetry. Expanding the Higgs field around

its vev and using unitary gauge to decouple the Goldstone bosons, we obtain the

Lagrangian

L0 = − 1
4G0,µνGµν

0 + 1
2(∂µH0)†(∂µH0) + µ2

0

2 (v0 + H0)2 + λ0

16(v0 + H0)4

+ it̄0 /Dt0 − yt,0
v0 + H0√

2
t̄0t0 + constant

1Objects with a zero subscript are considered bare unless stated otherwise.
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= − 1
4G0,µνGµν

0 + 1
2(∂µH0)†(∂µH0) − m2

H,0

2 H2
0 − m2

H,0

2v0
H3

0 − m2
H,0

8v2
0

H4
0

+ it̄0 /Dt0 − mt,0t̄0t0 − mt,0

v0
H0t̄0t0 + constant

(4.2.4)

with the identifications,

m2
H,0 = 2µ2

0 , mt,0 = yt,0v0√
2

and v2
0 = −2m2

H,0

λ0
. (4.2.5)

The constant term in the Lagrangian is neglected from now on as it does not contrib-

ute to observables. For later convenience, we also introduce the labels gt,0, g3,0, g4,0

(and gt, g3, g4) for the bare (and renormalised) top-Yukawa (Htt) coupling, cubic

Higgs (H3) self-coupling and quartic Higgs (H4) self-coupling, respectively. In the

SM and in our Yukawa model, they are related to the top-quark mass, Higgs boson

mass and vev via

gt,0 ≡ mt,0

v0
, g3,0 ≡ 3m2

H,0

v0
, g4,0 ≡ 3m2

H,0

v2
0

. (4.2.6)

We present the set of Feynman rules for this Lagrangian, relevant to our calculation,

in Appendix A.2. For the Yang-Mills part they are equivalent to the standard QCD

rules and can be taken from the literature (e.g. from [140] with ηG = 1, ηs = −1).

Details of the derivation of the electroweak counterterms and renormalisation are

presented in Appendix A.

To evaluate our predictions, we must also specify a consistent electroweak input-

parameter scheme. We take the top-quark mass and Higgs boson mass in the on-

shell (OS) scheme as inputs to our calculation. The renormalised top-quark Yukawa

coupling, gt, depends on the top-quark mass and the vev, it is fixed via the relation

given in (4.2.6) after renormalising the top-quark mass and the vev. Similarly, the

renormalised cubic, g3, and quartic, g4, Higgs boson self-couplings depend on the

Higgs mass and the vev and are fixed via (4.2.6) after renormalising the Higgs mass

and the vev. In the gaugeless limit, we can consider the Z and W bosons (which

do not appear directly in our computation) to be massless particles; therefore, it is

natural to pick MZ = 0 and MW = 0 as input parameters. Finally, we must specify
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the value of the electromagnetic coupling constant. The most natural choice in our

parameterisation would be to specify the value of the vev, v, after renormalisation.

However, to simplify the connection to more commonly used input schemes, we

instead take GF as an input parameter and derive from it the value of the vev in the

Gµ (a.k.a. αµ) scheme. That is to say, we require that the relation v = (
√

2GF )− 1
2

holds to all orders in perturbation theory. We circumvent the complication that the

muon decay vertex employed for the matching in the Gµ scheme is not present in our

model by relying on external calculations (e.g. [141]) to fix the finite parts of the vev

renormalisation; for further details, see Section 4.2.6 and Appendix A.1. In summary,

the input-parameter scheme of our calculation is therefore {MZ = 0, MW = 0, GF }

+ {mt, mH}, where all masses are specified in the on-shell scheme.

4.2.2 Amplitude Structure

We compute the amplitude for the process ga
µ(p1)gb

ν(p2) ! H(−p3)H(−p4), with all

momenta defined as incoming. The amplitude may be parametrised in terms of the

usual Mandelstam invariants,

s = (p1 + p2)2, t = (p1 + p3)2, u = (p2 + p3)2, (4.2.7)

with p2
1 = p2

2 = 0 and p2
3 = p2

4 = m2
H . Due to momentum conservation, p1 + p2 + p3 +

p4 = 0, the invariants obey the additional relation s + t + u = 2m2
H .

As described in Section 4.2.1, we will consider only the subset of electroweak correc-

tions appearing in the SM, involving the top-quark Yukawa coupling and the Higgs

boson trilinear and quartic couplings. The electroweak W and Z gauge bosons do

not appear in our calculation, therefore, no axial-vector couplings are present in

the amplitude. The amplitude may be written as a linear combination of tensor

structures

Mab = ε1,µε2,νMµν
ab = ε1,µε2,νδab

[
A gµν +

∑
i,j∈{1,2,3}

Bi,j pµ
i pν

j

]
, (4.2.8)
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where ε1,µ, ε2,ν are the gluon polarisation vectors, a, b are colour indices in the adjoint

representation and A, Bi,j are scalar coefficient functions, depending only on the kin-

ematic invariants and the spacetime dimension. The gluon transversality conditions

ϵ1 · p1 = ϵ2 · p2 = 0 allow us to set the coefficients {B1,1, B1,2, B1,3, B2,2, B3,2} to zero,

with five scalar functions remaining (including A). Having applied the transvers-

ality condition, the condition that the amplitude obeys the QCD Ward identity,

p1,µMµν
ab = p2,νMµν

ab = 0, reduces the independent number of coefficients from five to

two. Hence, without loss of generality, the amplitude may be written in terms of

only two independent form factors, F1 and F2,

Mab = ε1,µε2,νδab (F1T
µν
1 + F2T

µν
2 ) . (4.2.9)

The tensor structures, T µν
1 , T µν

2 , can be chosen to be

T µν
1 = gµν − pµ

2pν
1

p1 · p2
, (4.2.10)

T µν
2 = gµν + 1

p2
T (p1 · p2)

[
m2

Hpµ
2pν

1 − 2(p1 · p3)pµ
2pν

3 − 2(p2 · p3)pµ
3pν

1 + 2(p1 · p2)pµ
3pν

3

]
,

(4.2.11)

where p2
T = (ut−m4

H)/s and T1 ·T1 = T2 ·T2 = D−2, T1 ·T2 = D−4, where D = 4−2ϵ

is the number of spacetime dimensions, such that the individual form factors corres-

pond to helicity amplitudes: M++ = M−− = −F1 and M+− = M−+ = −F2. The

form factors are individually gauge invariant and can be separately renormalised, see

Section 4.2.6, meaning that the interference contribution between the renormalised

form factors vanishes in the limit ϵ ! 0.

The scalar form factors, Fi, can be extracted from the amplitude, Mµν
ab , using pro-

jectors defined to obey the relations,

∑
pol

P µν
i,ab ε∗

1,µε∗
2,νε1,µ

′ε2,ν
′δaa

′
δbb

′
Mµ

′
ν

′

a
′
b

′ = P µν
i,abM

ab
µν = Fi (4.2.12)

with ∑pol ε∗
1,µε1,µ

′ = −gµµ
′ . The projectors are given explicitly by,

P µν
1,ab = δab

N2
c − 1

1
4(D − 3) [(D − 2)T µν

1 + (4 − D)T µν
2 ] , (4.2.13)
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P µν
2,ab = δab

N2
c − 1

1
4(D − 3) [(4 − D)T µν

1 + (D − 2)T µν
2 ] . (4.2.14)

where the N2
c −1 (with Nc = 3) appearing in the denominator cancels the colour factor

appearing from the δab in the projector contracting with the δab in the decomposed

amplitude.

Each of the bare form factors can be expanded in terms of the bare electroweak

couplings as follows,

Fi = F
(0)
i + F

(1)
i , (4.2.15)

F
(0)
i = g2

s,0

(
g3,0 gt,0 F

(0)
i,g3gt

+ g2
t,0 F

(0)
i,g

2
t

)
, (4.2.16)

F
(1)
i = g2

s,0

(
g3,0 g4,0 gt,0 F

(1)
i,g3g4gt

+ g3
3,0 gt,0 F

(1)
i,g

3
3gt

+ g4,0 g2
t,0 F

(1)
i,g4g

2
t

+ g2
3,0 g2

t,0 F
(1)
i,g

2
3g

2
t

+ g3,0 g3
t,0 F

(1)
i,g3g

3
t

+ g4
t,0 F

(1)
i,g

4
t

)
, (4.2.17)

where gs =
√

4παs is the strong coupling. The bare form factors correspond to the

coefficients of the bare couplings, we suppress the 0 subscript of the bare couplings

in the labels of the form factors for brevity. The form factors F
(0)
i,j correspond to the

leading-order one-loop triangle and box contributions, while F
(1)
i,j correspond to the

6 possible coupling structure combinations appearing at two loops. We expand our

bare form factors in the electroweak coupling, α0 ∝ 1/v0
2, such that the products of

couplings entering at LO scale as 1/v0
2 while the products of couplings entering at

NLO scale as 1/v0
4.

The bare form factors may be further decomposed into sets of one-particle-irreducible

(1PI) and one-particle-reducible (1PR) diagrams. At leading order, the form factors,

split according to combinations of the EW couplings (gt,0, g3,0, g4,0), are either entirely

1PI or 1PR,

F
(0)
i,g3gt

= F
(0),1PR
i,g3gt

, F
(0)
i,g

2
t

= F
(0),1PI
i,g

2
t

. (4.2.18)

Starting from NLO, the form factors contain a mixture of 1PI and 1PR contributions,

F
(1)
i,g

3
3gt

= F
(1),1PR
i,g

3
3gt

, F
(1)
i,g3g4gt

= F
(1),1PR
i,g3g4gt

, (4.2.19)
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F
(1)
i,g

2
3g

2
t

= F
(1),1PI
i,g

2
3g

2
t

+ F
(1),1PR
i,g

2
3g

2
t

, F
(1)
i,g4g

2
t

= F
(1),1PI
i,g4g

2
t

+ F
(1),1PR
i,g4g

2
t

, (4.2.20)

F
(1)
i,g3g

3
t

= F
(1),1PI
i,g3g

3
t

+ F
(1),1PR
i,g3g

3
t

, F
(1)
i,g

4
t

= F
(1),1PI
i,g

4
t

+ F
(1),1PR
i,g

4
t

. (4.2.21)

We compute each of the bare form factors F
(0)
i,j and F

(1)
i,j separately and obtain results

for both the 1PI and 1PR contributions separately.

As discussed in Chapter 1, the LO partonic cross section can be written as

σ̂(0) = 1
16πs2

∫ t+

t−

dt

∣∣∣∣M(0)
∣∣∣∣2 = 1

512πs2

∫ t+

t−

dt
(∣∣∣F (0)

1

∣∣∣2 +
∣∣∣F (0)

2

∣∣∣2) (4.2.22)

where

t± = m2
H − s

2

1 ∓

√
1 − 4m2

H

s

 (4.2.23)

are the boundaries in t of the physical region for a given s > 4m2
H . The physical

region can be derived from the condition that the Gram matrix, G = [2pi · pj], has a

positive determinant [142] (in conjunction with the condition that
√

s > 2mH > 0).

The Gram matrix is given by

G =


0 s t − m2

H

s 0 u − m2
H

t − m2
H u − m2

H 2m2
H

 (4.2.24)

and, after applying momentum conservation to eliminate u, we obtain

det G > 0 ⇒ −2s
[
m4

H − 2m2
Ht + t(s + t)

]
> 0 . (4.2.25)

Along with the physical conditions on s and mH , this allows us to write down the

physical region:

mH > 0, t < 0, s >

(
m2

H − t
)2

−t
. (4.2.26)

The boundaries, t±, of the physical region are then obtained by solving s = (m
2
H−t)2

−t

for t. The averaged matrix element squared
∣∣∣∣M(0)

∣∣∣∣2 contains a symmetry factor for

the two final state Higgs bosons, spin and colour averaging for the incoming gluons,

a factor of D−2 from the square of the tensor structures (D−4 from the interference

between the tensor structures does not contribute as explained above) and another
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factor of N2
c − 1 from the sum over the adjoint colour indices of δab in (4.2.9). As

described in Chapter 1, to obtain the total cross section, the partonic cross section

must be combined with the parton distribution functions (PDFs) as in (1.1.14).

At NLO in the electroweak expansion, the bare form factors can have UV divergences

which give rise to poles of order 1/ϵ which are treated by renormalising the masses

and fields of the Higgs boson and top quark along with the vacuum expectation value.

We perform the UV renormalisation by computing explicit counterterm amplitudes,

separated on couplings structures, as described in Section 4.2.6. In this way, we

retain the complete dependence of our amplitudes on the individual couplings which

facilitates changing the electroweak input scheme or supplementing our calculation

with higher-dimensional effective field theory operators. The subset of corrections

that we consider here consists of corrections involving the emission of additional

massive particles from massive particle lines and is therefore free of IR singularities.

4.2.3 Diagram and Amplitude Generation

We generate Feynman diagrams using QGRAF [143] and find a total of 168 diagrams,

after excluding tadpole diagrams and diagrams present in the full Standard Model

but not in our reduced Yukawa Model. We generate the amplitude using two

independent tool chains based on either a) alibrary [144], a Mathematica and

FORM [145] package for computing multi-loop amplitudes, or b) Reduze 2 [21]. The

resulting amplitudes agree up to sector relations and symmetries before applying

integration-by-parts identities (see Section 2.3.1 and Section 2.3.2).

Type g3g4gt g3
3gt g4g

2
t g2

3g2
t g3g

3
t g4

t

1PI 0 0 3 6 24 60
1PR 12 6 1 6 24 26
Total 12 6 4 12 48 86

Table 4.1: Number of Feynman diagrams (one-particle-irreducible,
one-particle-reducible and total), excluding tadpole dia-
grams, which contribute to each of the bare coupling
structures at NLO.
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(a) g3g4gt (b) g3
3gt

(c) g4g2
t (d) g2

3g2
t

(e) g3g3
t (f) g4

t

Figure 4.1: Example diagrams contributing to each of the 6 coup-
ling structures on which we separate the bare two-loop
amplitude.

The number of diagrams contributing to each of the coupling structures entering

our subset of NLO EW corrections are given in Table 4.1, and example Feynman

diagrams for each of these structures are shown in Fig. 4.1. The coupling structures

g3g4gt and g3
3gt have only a single Yukawa coupling and therefore consist of diagrams

that contain loop corrections to the Higgs propagator or trilinear vertex, they are

therefore entirely 1PR (see Figs. 4.1a and 4.1b). The 1PR contribution to the g4g
2
t

coupling structure consists of a diagram containing a triple gluon vertex with a single

gluon connected to the fermion loop and thus has a vanishing colour factor. The

g4g
2
t coupling structure, therefore, receives only a 1PI contribution, see Fig. 4.1c.

The remaining coupling structures receive contributions from both 1PI and 1PR

diagrams.

The complete EW corrections, obtained using the large-mt limit in [124] and fully

using AMFlow in [125], contain within them all coupling structures presented in

this work, as well as additional contributions from diagrams containing W and Z

bosons and their ghosts, as well as the Goldstone bosons. The coupling structures
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g3g4gt and g3
3gt consist of factorisable one-loop contributions and are comparatively

straightforward to compute, they have appeared previously in the literature [121,146,

147]. The coupling structure g4g
2
t contains only three-point integrals, the relevant

integrals are known analytically in a large top mass expansion [119,148], the complete

structure was computed numerically in [121]. The g2
3g2

t coupling structure was also

computed numerically in [121]. To the best of our knowledge, the g3g
3
t contribution

has not been computed separately so far. The 1PI contribution to g4
t was computed

in the high-energy limit in [123].

As a cross-check of one of the more challenging pieces of our calculation, we compare

the 1PI piece of our bare g4
t structure to [123]1 and find good agreement for points

at sufficiently high energy s ≳ 4m2
t , with points at s ≳ 9m2

t differing by less than

2% and less than 1% for s ≳ 16m2
t . The other parts of our calculation are performed

systematically using an identical setup to this structure and so are partially checked

by this comparison. Further checks on our final result are described in Section 4.3.

4.2.4 Reduction

In this chapter, we modify our notation slightly such that loop integrals are written

as a list of exponents νi for the denominators Di of the corresponding integral family

f as defined in Table 4.2. In our calculation each loop integral is defined as

If
ν⃗ (s, t) =

(
µ4−D

)L
∫ L∏

l=1
[Dkl]

N∏
i=1

1
Dνi

i

(
k, p, m2

i

) , (4.2.27)

in a general dimension D, where, as before, L is the number of loops and N is

the number of propagators. When reporting bare form factors, our integrals are

multiplied by an additional factor of CD =
(
iπD/2/(2π)D

)
per loop. This factor

is required to recover the physical normalisation dictated by the Feynman rules as

noted in Section 2.1.

After identifying momentum mapping symmetries of the kind described in Sec-
1We thank the authors of [123] for performing a detailed comparison of our results.
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F1 F2 F3 F4

l2
1 − m2

t l2
1 − m2

t l2
1 − m2

H l2
1 − m2

t

l2
2 − m2

t l2
2 − m2

t (l1 − l2)2 − m2
t l2

2 − m2
H

(l1 − l2)2 − m2
H (l1 − l2)2 − m2

H (l1 + p1)2 − m2
H (l1 − l2)2 − m2

t

(l1 + p1)2 − m2
t (l1 + p1)2 − m2

t (l2 + p1)2 − m2
t (l1 + p1)2 − m2

t

(l2 + p1)2 − m2
t (l2 + p1)2 − m2

t (l1 − p2)2 − m2
H (l2 + p1)2 − m2

H

(l1 − p2)2 − m2
t (l1 − p3)2 − m2

t (l2 − p2)2 − m2
t (l1 − p2)2 − m2

t

(l2 − p2)2 − m2
t (l2 − p3)2 − m2

t (l2−p2−p3)2−m2
t (l2 − p2)2 − m2

H

(l1−p2−p3)2−m2
t (l1−p2−p3)2−m2

t (l1+p1+p3)2−m2
H (l1−p2−p3)2−m2

t

(l2−p2−p3)2−m2
t (l2−p2−p3)2−m2

t (l2+p1−p2)2−m2
H (l2−p2−p3)2−m2

H

F5 F6 F7

l2
1 − m2

H l2
1 − m2

H l2
1 − m2

t

l2
2 − m2

t l2
2 − m2

t l2
2 − m2

t

(l1 − l2)2 − m2
t (l1 − l2)2 − m2

t (l1 − l2)2 − m2
H

(l1 + p1)2 − m2
H (l1 − p3)2 − m2

H (l1 + p1)2 − m2
t

(l2 + p1)2 − m2
t (l2 − p3)2 − m2

H (l2 + p1)2 − m2
t

(l1 − p3)2 − m2
H (l2 + p2)2 − m2

t (l1 − p2)2 − m2
t

(l2 − p3)2 − m2
t (l1 + p1 + p2)2 − m2

H (l2 − p2)2 − m2
t

(l1 − p2 − p3)2 − m2
H (l1 − l2 + p1)2 − m2

t (l1 − l2 + p3)2 − m2
H

(l2 − p2 − p3)2 − m2
t (l1 − l2 − p2 − p3)2 − m2

H (l2 − p2 − p3)2 − m2
t

Table 4.2: Integral families used in the reduction (up to permuta-
tions of the external legs).
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tion 2.2.1 with Feynson [149], we use a total of 7 integral families (along with

permutations of the external legs for 5 of the families) to encode the scalar integrals

appearing in all form factors. The two-loop families used in this calculation are

shown in Table 4.2.

To perform the integration-by-parts reduction [29] procedure outlined in Section 2.3,

we begin by identifying a suitable basis of master integrals. Retaining all masses, we

find that at two-loop a total of 494 master integrals are required to represent both

the NLO amplitude and a closed system of differential equations. We observe that

up to 11 master integrals are required within a single sector, namely, a 6-propagator

non-planar sector belonging to family F7 (sector 413 using the ID notation of Reduze

2 introduced in Section 2.3.1).

Initially, we choose a finite basis of integrals [31], as explained in Section 2.3.3,

preferring dots over inverse propagators in the numerator. The basis is chosen such

that we have D-factorising denominators [150, 151], meaning that, post-reduction

(such that F
(1)
i = ∑494

k=1 ck
i (s, D) Ik), the denominator of each of the rational function

master coefficients factorises into a product of purely kinematic- and spacetime-

dependent functions:

ck
i (s, D) = gk

i (s, D)
hk

i (s, D)
!

gk
i (s, D)

hk
i,s(s) hk

i,D(D)
. (4.2.28)

Using this basis, the time to numerically evaluate all form factors to a precision

of 10−3 using pySecDec is O(100h) on a single GPU. The evaluation time can be

decreased by 2-3 orders of magnitude by further optimising the basis choice. Focusing

on the integrals dominating the run time, specifically, the top-level sectors in all

integral families and especially those in the most complicated non-planar families

(F6 and F7), we searched for a basis in which the masters in the top level (t = 7, in

the notation of Section 2.3.1) sectors and, where possible, next-to-top level (t = 6)

sectors had coefficients free of poles in the dimensional regulator, ϵ. To obtain a

basis with the required properties we found it necessary to employ both dots and

dimensional recurrence relations [36,37,152] of the type discussed in Section 2.3.3.



150 Chapter 4. Partial NLO EW Corrections to Higgs Pair Production

During the basis search, we found it of practical use to reduce individual sectors

neglecting subsectors, thereby avoiding the reconstruction of the vastly more com-

plicated subsector master coefficients, for a large number of different possible basis

choices. With the pole-free coefficient criterion satisfied, we only need to expand

the top-level master integrals to leading order in the regulator, vastly reducing the

time required to evaluate them numerically. Furthermore, since we will use the

same basis for the evaluation with pySecDec and for the differential equations, we

must also avoid poles of the regulator in the “diagonal” elements of the differential

equation system (as these cannot be removed by similarity transformations of the

partial derivative matrices Asj
later).

Our final basis choice consists of integrals with up to three dots expressed in D ± 2n

in the set {2 − 2ϵ, 4 − 2ϵ, 6 − 2ϵ, 8 − 2ϵ}. We could eliminate 1/ϵ poles in the

amplitude coefficients for all t = 7 master integrals and many of the t = 6 integrals

while retaining finiteness and D-factorising coefficients for the new basis of integrals1.

Crucially, to obtain a basis with these properties, we found it necessary to select

integrals in different numbers of dimensions within a single sector.

Having settled on an improved basis, we generate the dimensional recurrence rela-

tions and differential equations of the master integrals using Reduze 2, firstly with

all in D = 4 − 2ϵ. We generate IBP equations with Kira [26,27] covering all integ-

rals appearing in the amplitude, differential equations and dimensional recurrence

relations, again in D. Next, we replicate these equations with the relevant shifts

of D (that is to say, ±2n) to cover the entire system, such that we have enough

information to express integrals in any of our equations in terms of masters in any

of the relevant dimensions. We can load this entire set of equations along with the

unreduced amplitude split on coupling structures into Ratracer [153] and, defining

1In our final basis, we have a total of 25 6-propagator master integrals (+25 obtained by crossing)
belonging to F1, F2 and F4 with a 1/ϵ present in their coefficient in the amplitude. The integrals
IF5,D=6−2ϵ

(0,1,1,1,1,0,2,1,0)(s, t) and IF5,D=6−2ϵ
(0,1,1,1,1,0,2,1,0)(s, u) are also present in our final basis, though they are

neither finite nor quasi-finite, starting at order 1/ϵ. We find that these integrals do not contribute
significantly to the evaluation time and did not attempt to improve our basis of master integrals
further. However, this would be possible in principle.
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our choice of masters, we can solve this system of equations using Kira, Ratracer,

and Firefly [154,155] to express our amplitude and differential equations in terms

of our preferred basis of integrals.

We stress that the reduction is obtained fully symbolically, retaining all masses

and invariants (mt is set to 1 in our reduction, but can be restored by dimensional

analysis). Using the same setup, we also obtain a reduction with m2
H/m2

t = 12/23.

We find the total size of the rational coefficients in the reduced amplitude to be 99Gb

for the fully symbolic reduction and 8.5Gb with the numeric mass ratio inserted,

when separated on coupling structures as in (4.2.17).

As a cross-check of the reduction and our amplitude, we independently perform a

reduction to a different set of masters with the Higgs boson mass set to a numerical

constant and confirm the value of our amplitude after the numerical evaluation of the

master integrals. We further checked the integral reduction by obtaining reductions

for individual phase-space points, by substituting all kinematic invariants and masses

with randomly selected rational values.

4.2.5 Evaluation of the Master Integrals

To evaluate the master integrals appearing in our two-loop amplitudes, we rely on

the method of sector decomposition discussed in Section 2.4, as implemented in the

latest version of pySecDec. We first generate expressions for the reduced amplitudes

in terms of the 494 master integrals, as described in Section 4.2.4. The amplitudes

along with the definitions of the integral families are passed to pySecDec, which

generates a single code capable of evaluating all bare form factors F
(1)
i,j , with i = 1, 2

and j = {g3g4gt, g2
3gt, g4g

2
t , g2

3g2
t , g3g

3
t , g4

t }. The code is automatically generated

such that the master integrals are numerically evaluated only once per phase-space

point and then used to generate results for each of the form factors and coupling

structures.

Our amplitude code is generated by retaining the full symbolic dependence on s, t,
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mt, mH and expanding in ϵ. When evaluating phase-space points, in order to obtain

numerically stable coefficients, it is necessary to insert the Mandelstam invariants

and masses in a precision higher than the usual floating point double precision. In

our code, the input values for the Mandelstam invariants and masses are cast to

rational numbers by picking the smallest fraction which reproduces s/m2
t and t/m2

t to

a precision of 10−5, we also set m2
H = 12/23, with m2

t = 1. We stress, however, that

since we have retained the full symbolic dependence on the masses in the integral

reduction and the generation of our code, we can therefore arbitrarily vary the value

of the Higgs boson and top-quark masses.

Due to the significant size of the rational coefficients present in our fully sym-

bolic amplitude, the evaluation of the master integral coefficients can itself be time-

consuming, taking a few minutes to obtain the numeric value of all of the master

integral coefficients. We, therefore, find it beneficial to generate a second code with

the specific value for the Higgs boson mass pre-inserted into the coefficients, this

reduces the time taken to evaluate the master integral coefficients significantly.

Upon integration, with the master integral basis we have chosen, we observe spurious

poles up to order ϵ−4 in the coupling structures g2
3g2

t , g3g
3
t and g4

t . Upon integration,

the coefficient of the ϵ−4, ϵ−3 and ϵ−2 poles vanish within the precision of the numerical

integration, leaving a non-zero ϵ−1 pole (for structures {g3g4gt, g3
3gt, g3g

3
t , g4

t } in form

factor F
(1)
1 and for g4

t in F
(1)
2 ) and finite part. The remaining UV ϵ−1 pole is cancelled

against the corresponding counter-term amplitude only after integration.

When evaluating the amplitude, pySecDec adaptively adjusts the precision with

which each integral is obtained in order to reach a given precision for the amplitude

(more specifically, each form factor, F
(k)
i,j ) in the minimum time. This means that

complicated (slow to evaluate or slow to converge) integrals are typically sampled less

by the algorithm unless they dominate the uncertainty estimate on the amplitude.

In contrast, the algorithm may spend more time evaluating simple integrals precisely,

if their contribution to the amplitude is large. In our production runs, we request

a relative precision of 10−3 on the finite part of each two-loop form factor for each
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coupling structure, F
(1)
i,j .

For a typical bulk phase-space point, with s ≈ 561/130 · m2
t and t ≈ −566/217 · m2

t ,

the integration takes approximately five minutes on four GPUs1. For the selected

phase-space point, the algorithm spends the most time evaluating the integrals

IF4
(1,0,1,1,1,1,1,0,1)(s, t) and IF4

(1,0,1,1,1,2,0,0,1)(s, t) and uses the most integrand evaluations

for IF4
(1,0,1,1,1,1,1,0,1)(s, t) and IF4

(1,0,1,1,1,1,1,0,1)(s, u). The least precisely known integrals

are IF4
(1,0,1,1,1,1,1,0,0)(s, t) with an uncertainty of 3 × 10−4 and IF1

(1,0,1,1,1,1,1,0,0)(s, t) with

an uncertainty of 1×10−4, followed by IF4
(1,0,0,1,2,1,1,0,0)(s, t) with an uncertainty around

6 × 10−5. For a point in the high energy regime with s ≈ 123 · m2
t and t ≈ −7/5 · m2

t

we find that the integrals IF4
(1,0,1,0,2,1,0,1,1)(s, t) and IF4

(1,0,1,0,2,1,0,1,1)(s, t) are the least

precisely known after an integration time of two hours. Up to this point, the most

time was spent on the integrals IF4
(1,0,1,1,1,2,0,0,1)(s, u) and IF1

(0,1,1,1,1,0,2,1,0)(s, u), which

are also sampled the most. We remark that all of these integrals are planar.

As a cross-check of the numerical evaluation of our master integrals, we have also

obtained a set of differential equations, using the methods outlined in Section 2.5,

which are symbolic in s and t and have the aforementioned numeric values for the

masses. The differential equations are obtained for the same master integral basis

as selected for the numerical evaluation described above and are therefore not in

canonical form. They are then rescaled by rational functions of ϵ to eliminate poles

in ϵ in the differential equation matrices. To verify our numerical evaluation, we

use pySecDec to generate a number of boundary points at high precision along a

contour of increasing s in the s-t plane as in Fig. 4.2. We then run smaller contours

in DiffExp between these boundary points to obtain results for the entire contour

(except for the ttH threshold where we run very close to the threshold above and

below without ever crossing it). Similarly to Fig. 2.8, we check at given benchmark

points that the evaluations from DiffExp and pySecDec are consistent and plots of

a selection of rescaled master integrals are shown in Fig. 4.3. The real and imaginary

parts of the coefficients of the required orders of ϵ in the expansion of the rescaled
1Nvidia A100-PCIE-40GB, CUDA v12040
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Figure 4.2: The physical region in the s-t plane, given by (4.2.26),
with the physical thresholds corresponding to s-channel
cuts shown with dotted lines. Our test contour increas-
ing in s is shown in blue with boundary points plotted
along with benchmark points verified in pySecDec.

master integrals are plotted along with the corresponding boundary and benchmark

points. A ratio of the pySecDec result to the DiffExp result is given in the lower

subplot. For completeness, we list the rescalings of the selected master integrals

here:

c5(ϵ) = ϵ

(ϵ − 1)2(2ϵ − 3)(2ϵ − 1)2(2ϵ + 1)(3ϵ − 2)(3ϵ − 1)(4ϵ − 3)(4ϵ − 1)
,

c155(ϵ) = ϵ2

2ϵ − 1 , c353(ϵ) = ϵ4

2ϵ − 1 , c464(ϵ) = ϵ4

2ϵ − 1 .

In order to determine how we should perform the analytic continuation of the master

integrals from the unphysical region to the physical region, we first recall that the

Feynman prescription in momentum space corresponds, in Feynman parameter space,

to the following replacement in the second Symanzik polynomial F :

F −! F − iδ (4.2.29)

where we have used the postive-definiteness of the first Symanzik polynomial U .
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Figure 4.3: Real and imaginary parts of coefficients in the ϵ-
expansion of selected rescaled master integrals taken
along the contour shown in Fig. 4.2. a) Rescaled
master #5: c5(ϵ) IF1

(0,0,3,2,0,1,0,0,0)(s, t), b) rescaled mas-
ter #155: c155(ϵ) IF1

(0,0,1,0,2,1,0,2,1)(s, t), c) rescaled master
#353: c353(ϵ) IF4

(1,0,0,1,1,1,1,0,1)(s, t) and d) rescaled mas-
ter #464: c464(ϵ) IF4,D=6−2ϵ

(2,0,1,1,1,1,1,0,2)(s, u). The lower panel
of each figure shows the ratio of the pySecDec result to
the DiffExp result for the real part of the coefficient of
ϵ4 which contributes to the amplitude at finite order.
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This prescription must be applied consistently in order to obtain valid results when

crossing threshold singularities. From the graphical construction of the second

Symanzik polynomial F introduced in Section 2.2.19, this corresponds to sending

all the (squared) momenta flowing between two 2-forests, s(T 1
,T

2), to s(T 1
,T

2) + iδ and

internal masses squared, m2
i , to m2

i − iδ [48].

In DiffExp, we encounter segments centred on thresholds and their expansions may

involve multi-valued functions such as logarithms or square roots. At these points,

the δ-prescription supplied as an input by the user is applied. Given that s(T 1
,T

2)

are linear combinations of the Mandelstam variables and external masses (which

obey conservation relations), DiffExp instead takes as input a list of irreducible

polynomials (“DeltaPrescriptions”) in the kinematic invariants of the problem which

are zero on these thresholds and an additional term ±iδ to prescribe the branch

choice. For physical thresholds, the correct choice of ±iδ is essential to obtain

accurate results but DiffExp also requires a choice to be made for polynomials

which go to zero in the denominators of entries in the partial derivative matrices

which do not correspond to physical thresholds – this choice can be freely made

without affecting results.

In practice, similarly to [156], we construct the power sets of both the external

momenta and the internal masses and generate a list of δ-prescriptions of the form

s − m2 + iδ where s is a generalised squared sum of momenta and m2 is a generalised

squared sum of internal masses. We obtain a list of irreducible polynomials appearing

in the denominators of entries in our partial derivative matrices Asj
and then see

which correspond directly to prescriptions in our constructed list and give them the

correct sign of iδ by expanding the given irreducible polynomial about that point.

The remaining denominator polynomials are non-physical and we arbitrarily assign

+iδ. This method generates correct results for all points checked with pySecDec

and changing the sign of a prescription for a polynomial corresponding to a physical

threshold can be explicitly seen to give the wrong result.
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4.2.6 Electroweak Renormalisation

At higher orders in electroweak theory, a tadpole renormalisation has to be performed

on top of the usual field, mass and vertex renormalisation. Since the gaugeless limit

removes the coupling α from the theory, conventional input parameter schemes

that involve α cannot be used. As described in Section 4.2.1, we fix the input

parameters mH and mt in the on-shell scheme and use the Gµ scheme for the vev.

Tadpole contributions are treated within the Fleischer-Jegerlehner tadpole scheme

(FJTS) [157].

The Gµ scheme imposes the renormalisation condition that the expression for muon

decay corresponds at all orders to the effective four-fermion tree-level interaction

in Fermi’s theory, thereby fixing the relation between Gµ and the renormalised vev,

and determining the relation between the bare, v0, and renormalised vev, v, at each

order. In the Yukawa model utilised here, the vertex required for muon decay is not

present, therefore it is not possible to directly derive the Gµ scheme relation between

the bare and renormalised vev.

In principle, the renormalisation constant for the vev can be fixed from any elec-

troweak vertex in the theory, for example, the triple and quartic Higgs self-interaction

vertices or the Yukawa vertex, by requiring that the higher order electroweak cor-

rections to the vertices are finite. The consistency of the electroweak theory means

that the pole part of the vev renormalisation constant matches in all schemes and

independently of which vertex is used to fix it, only the finite part differs. How-

ever, to facilitate the use of our result and its interpretation, we present our main

results using the Gµ scheme, we obtain the finite parts of the vev counter term

using the complete expression for the vev counterterm presented in [141] in the limit

MW ! 0, MZ ! 0. In Appendix A.1 we derive the vev renormalisation constants

from each of the vertices in our theory and discuss this point in further detail. With

the chosen schemes and conditions, the renormalised quantities and counterterms
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H0 =
√

ZHH =
√

1 + δHH, (4.2.30)

t0 =
√

Ztt =
√

1 + δtt, (4.2.31)

m2
H,0 = m2

H(1 + δm2
H), (4.2.32)

mt,0 = mt(1 + δmt), (4.2.33)

v0 + ∆v = v(1 + δv) + ∆v, (4.2.34)

can be fixed. Note that the vev renormalisation condition contains one contribution,

∆v, from the FJTS for the shift of the vev and another contribution, δv, from

the vertex correction. For a detailed description of the procedure, please refer to

Appendix A. The explicit expressions used in this work are listed in Appendix A.2

and a comparison to expressions in the literature is presented in Appendix A.3.

A gluon field renormalisation factor, Zg, or strong coupling renormalisation is not

needed, since it would only receive electroweak corrections at a higher order in the

strong interaction as a mixed correction.

The renormalised amplitude Mren can now be calculated from the sum of the LO

matrix element M(0), with the bare fields and parameters expressed in terms of the

renormalised quantities, and the NLO matrix element M(1):

Mren = ZH ·
[
M(0)

(
mt (1 + δmt) , m2

H

(
1 + δm2

H

)
, v (1 + δv) + ∆v

)
+

M(1)
(
mt, m2

H , v
)] (4.2.35)

where we have suppressed the gluon colour indices of the matrix element appearing

in (4.2.9). The matrix element M(0) contains all one-loop contributions as well as

diagrams with counterterm insertions. All occurring parameters are the renormalised

ones. Expanding to first order in δX with X = {H, t, m2
H , mt, v} and including the

tadpole corrections to the vev, ∆v, we may rewrite the renormalised amplitude as,

Mren = M(0)(mt, m2
H , v) + M(1)

δX(mt, m2
H , v) + M(1)(mt, m2

H , v) + O(δX2),

(4.2.36)
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with

M(1)
δX =δHM(0)(mt, m2

H , v) + δmtM
(0)
δmt

(mt, m2
H , v) + δm2

HM(0)
δm

2
H

(mt, m2
H , v)

+ δvM(0)
δv (mt, m2

H , v) + ∆vM(0)
∆v(mt, m2

H , v). (4.2.37)

In practice, we separate the counterterm amplitudes, M(1)
δX, according to the form

factor, i = 1, 2, and the coupling structure, j = g3gt, g2
t , appearing in the amplitude

as well as the additional coupling structures appearing in the counterterms δX

themselves. We obtain the finite one-loop and two-loop renormalised form factors

by taking the combination,

F
(0),fin
i = F

(0)
i , (4.2.38)

F
(1),fin
i = F

(1)
i + F

(1),δX
i , (4.2.39)

respectively, where F
(1),δX
i collects the counterterm contribution obtained by apply-

ing the projectors (given in (4.2.13) and (4.2.14)) to the counterterm amplitude in

(4.2.37). The counterterm amplitudes are generated by inserting the counterterm

vertices given in Appendix A.2 into the one-loop amplitude, leaving the counterterms

δX and ∆v symbolic, then factoring them out of the amplitude. The counterterms

δX and the tadpole terms ∆v contain 1/ϵ divergences, therefore, the counterterm

amplitudes must be expanded up to and including O(ϵ) in order to obtain correct

results for M(1)
δX at finite order. We evaluate the counterterm amplitudes numerically

in pySecDec and insert the A0 and B0 (tadpole and bubble) integrals appearing in

the counterterms symbolically.

We remark that, when considering the form factors separated by individual coupling

structures, the sum of the two-loop and corresponding counter term contribution

is not finite for all form factors, i.e. the sums F
(1)
i,j + F

(1),δX
i,j are not individually

finite. The reason for this is that, in the SM, the couplings gt, g3, and g4 are not

independent quantities, they must obey the relations given in (4.2.6) for the ϵ poles

of the renormalised amplitude to cancel. As a result, the Higgs boson cubic, g3,

and quartic, g4, couplings can not be naively varied without also modifying the
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underlying theory, for example by adding mass dimension-6 (and/or dimension-8)

operators (see [158], for example) or by imposing additional particles/symmetries.

A further complication arises when considering the renormalised form factors sep-

arated by individual coupling structures in Gµ scheme. As described above, in this

scheme the δv counterterm is derived using the muon decay process, which requires

the presence of W and Z bosons and their associated couplings in the theory. Using

results from the literature for this counter term, it is not straightforward to separate

the contributions to δv in the Gµ scheme according to the couplings g3, g4 and gt.

The contributions of different coupling structures to the δv counterterm also depend

on the choice of the renormalisation conditions, as described in Appendix A.1. In

this work, we therefore do not attempt this separation and report only the finite

renormalised form factors F
(1),fin
i constructed employing the SM values/relations for

the various couplings.

4.3 Results

In this section, we present the results of our computation. We begin by discussing

both the bare, F1 and F2, and renormalised, F fin
1 and F fin

2 , form factors, before

presenting results for the total cross section and differential distributions at NLOEW,

including only the Yukawa and self-coupling contributions.

In Table 4.3, we provide explicit numbers for the NLOEW contributions of each of

the coupling structures to the bare amplitude form factors F1 and F2. We note

that these numbers are the coefficients of the coupling structures (and so need to be

multiplied by the coupling structures themselves as in (4.2.17)). We make a number

of comments about these results. Firstly, we note that F1 and F2 correspond to the

M++ and M+− helicity amplitudes, respectively. Therefore, contributions to F1

have an initial state with a total spin of zero, whilst F2 receives contributions from

initial states with total spin two. For the structures g3g4gt and g3
3gt, the contributions

to F
(1)
2 are zero because these diagrams are entirely one-particle-reducible (1PR)
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j: ϵ# F
(1)
1,j F

(1)
2,j

g3g4gt : ϵ−1 +7.317018424938384 · 10−5

+3.530994674708006 · 10−5 i
0

g3g4gt : ϵ0 +3.273276184619130 · 10−4

+2.941949902790170 · 10−4 i
0

g3
3gt : ϵ−1 +4.035301063033099 · 10−6

+1.947326866890242 · 10−6 i
0

g3
3gt : ϵ0 +3.494986290012938951·10−5

−4.477006613201774340·10−5i
0

g4g
2
t : ϵ0 +1.4701555653754324 · 10−4

−3.1468546340616729 · 10−4 i
0

g2
3g2

t : ϵ0 −3.0041895984712 · 10−4

+1.3620861846296 · 10−4 i
−1.067808312 · 10−6

+4.825510899 · 10−6 i

g3g
3
t : ϵ−1 +9.620868816878 · 10−5

−1.157183797579 · 10−4 i
0

g3g
3
t : ϵ0 +7.72339132021 · 10−4

+1.22972663623 · 10−4 i
+5.94722962 · 10−5

+6.54646767 · 10−5 i

g4
t : ϵ−1 −4.509709135223640 · 10−3

−1.009026289053441 · 10−3 i
−5.41141411126 · 10−5

+7.83375122326 · 10−5 i

g4
t : ϵ0 −2.119575532656 · 10−2

−8.827769663982 · 10−3 i
−3.3656913 · 10−4

+4.6338899 · 10−4 i

Table 4.3: Numeric results for the bare form factors, F
(1)
i,j , for

each coupling structure on the phase-space point:
{s = 799/125, t = −519/500, m2

H = 12/23, m2
t = 1}.

Boldface digits represent the error on the final two stated
digits and where there are none, the stated digits are
accurate to the given precision. Missing ϵ orders are un-
derstood to be identically zero.
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Figure 4.4: The UV-renormalised form factors F
(1),fin
1 (left panel)

and F
(1),fin
2 (right panel) divided by g2

s . Note that the
spread of points, which is due to the t-dependence, is
milder in F

(1)
1 than in F

(1)
2 . The uncertainty of each

phase-space point due to the limited precision of the
numerical integration is indicated with an error bar.

via a cut through a Higgs boson propagator (see Table 4.1 and Fig. 4.1), therefore

the initial states have total spin zero. Similarly, the contribution from structure

g4g
2
t to F

(1)
2 is zero since diagrams with this structure can only contribute to spin

zero due to their symmetry. Finally, there is no 1/ϵ pole contribution to F
(1)
2 from

structure g3g
3
t because the only 1PI counterterm diagrams (which must topologically

be LO box diagrams to contribute to F
(1)
2 ) which could correspond to this coupling

structure have counterterm insertions in the Yukawa vertex, the relevant part of the

correction is given in Fig. A.1e in Appendix A.1. This particular contribution to

the Yukawa vertex correction is ϵ-finite, hence this structure’s contribution to F
(1)
2

is also finite.

In Fig. 4.4 we display the finite, UV-renormalised, form factors as a function of the

Mandelstam invariant s. Examining the F
(1),fin
1 form factor we observe that it has

both a real and imaginary part for all physically accessible values of s, even close to

the HH production threshold, this is because it receives a large contribution from

diagrams with a two-particle cut through a pair of Higgs bosons (i.e. with a HH

threshold), see e.g. Figs. 4.1a–4.1d. The t-dependence, visible in the spread of points

at a given s value, is much milder for F
(1),fin
1 than F

(1),fin
2 . Considering the F

(1),fin
2
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form factor, we note that it is also complex-valued in the entire physically-accessible

region of phase-space. However, only a small imaginary part exists between the HH

and tt thresholds. As discussed, the F
(1),fin
2 form factor receives contributions only

from 1PI diagrams, the only class of diagrams contributing with a HH threshold

in the s-channel are those of Fig. 4.1d. We find that numerically the contribution

of these diagrams to F
(1),fin
2 at low invariant mass is much smaller than that of

other coupling structures. In Fig. 4.5, we present plots of the finite term of the

individual bare form factors, F
(1)
i,j , separated on coupling structures as in (4.2.17).

Note again that the spread of points due to the t-dependence is more pronounced in

the contributions to F
(1)
2 than in the contributions to F

(1)
1 .

In order to verify our results, we carried out a number of checks. Firstly, we checked

that our two independently generated amplitudes (before reduction to masters) were

symbolically identical up to sector relations and symmetries. Secondly, we confirmed

that the amplitude is symmetric under the exchange of t and u by comparing the

numerical results of multiple pairs of phase-space points wherein the first point’s

t-value is substituted by u = 2m2
H − s − t in the second and observing that these are

identical within the stated numerical error. Thirdly, for the two-loop contribution,

we observed that before UV renormalisation the only poles appearing were 1/ϵ

(spurious poles up to order 1/ϵ4 cancel). After UV renormalisation, all poles cancel

which simultaneously corroborates our expectation that there are neither soft nor

collinear IR singularities. We also checked that poles of the bare form factors F
(1)
i,j

are purely real below the tt threshold for a selection of phase-space points in this

kinematic region.

For the presentation of our final results, we use the PDF4LHC21_40 [159] distribution

functions interfaced via LHAPDF [160] and set the factorisation and renormalisation

scale to µr = µf = mHH/2. The masses of the Higgs boson and top quark are

set to mH = 125 GeV, mt =
√

23/12 mH = 173.055 GeV, respectively, and we set

GF = 1.1663787 · 10−5 GeV−2, corresponding to v = 246.22 GeV.

Results for the total and differential cross section at the LHC with a hadronic centre-
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Figure 4.5: Plots of the ϵ0 coefficient of the bare form factors sep-
arated on coupling structure, F

(1)
i,j .
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√
s̄ 13 TeV 13.6 TeV 14 TeV

LO [fb] 16.45 18.26 19.52
NLOEW [fb] 16.69 18.52 19.79
NLOEW/LO 1.01 1.01 1.01

Table 4.4: Inclusive cross section for Higgs boson pair production
for different hadronic centre-of-mass energies,

√
s̄, at LO

and NLOEW including only the Yukawa and self-coupling
type corrections. The QCD renormalisation and factor-
isation scales are set to µr = µf = mHH/2.
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Figure 4.6: Invariant mass and transverse momentum distributions
for Higgs boson pair production at LO and NLOEW

including only the Yukawa and self-coupling type cor-
rections. The QCD renormalisation and factorisation
scales are set to µr = µf = mHH/2.

of-mass energy of
√

s̄ = 13 TeV, 13.6 TeV and 14 TeV are given in Table 4.4 and

shown differentially in mHH and pT,H in Fig. 4.6, respectively. These results are

obtained by reweighting ∼ 7000 unweighted LO events with the NLOEW contribution.

We observe that the partial NLOEW corrections computed here increase the total

cross section by ∼ 1%. This is comparable to the size of the QCD scale uncertainty

of ∼ 3% obtained at N3LO in the heavy top-quark limit [114,115].

For the invariant mass distribution, shown in Fig. 4.6, the corrections introduce very

large shape distortions, ∼ 30% with the binning we select, close to the Higgs pair

production threshold, compatible with the observations of [122]. In [125], it was

found that the full EW corrections lead to an enhancement of the mHH spectrum

close to the Higgs boson pair production threshold of up to 15%. Reproducing the

binning used in [125] we find an enhancement of ∼ 25%, suggesting that the gauge
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boson contributions included in their full results partly cancel the enhancement

we see at low mHH values. This appears plausible when looking at individual

contributions to the EW corrections for single Higgs boson production [118–120].

The shape distortions in the pT,H distribution of our results are less localised, with a

significant 5% enhancement just below the top-quark pair production threshold and

at high-pT,H , along with suppression at the level of 2% just above the top-quark pair

production threshold. In our results, we see a general enhancement at high mHH

and pT,H not present in the full EW corrections, this suggests that the gauge boson

contribution dominates at high-energy and is negative.

We have also evaluated our results using the NNPDF31_nlo_as_0118 PDF set as

used in [125]. Using this PDF set, we obtain a total NLOEW cross section of

20.19 fb including only the Yukawa and self-coupling type corrections, which is a

1% enhancement compared to the LO. In comparison, the full NLOEW total cross

section presented in [125] is 19.12(6) fb, which is a 4.2% decrease relative to the

LO. This discrepancy suggests that the gauge boson contribution, appearing in the

complete EW calculation, dominates the corrections and has the opposite sign to

the corrections computed here.

4.4 Conclusions

We have presented the calculation of the electroweak corrections to Higgs boson

pair production in gluon fusion in the gaugeless limit. In total, these partial NLO

electroweak corrections increase the cross section by about 1 %. The corrections

impact the Higgs boson pair production invariant mass and transverse momentum

distributions, giving an enhancement of up to 30 % at low mHH values due to the

Yukawa-type corrections, which is larger than in the case of the full corrections

presented in [125], where the enhancement is found to be 15 %. This suggests that

the gauge boson contributions are negative for mHH values below the 2mt threshold.

We also observe almost no correction for higher values of mHH , in contrast to
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−10 % found in [125], suggesting again that this region is dominated by negative

contributions from diagrams containing W and Z bosons.

In our calculation, we retain the full symbolic dependence on the top-quark and

Higgs boson masses in the reduction to master integrals of the two-loop amplitude.

All integrals are calculated using the method of sector decomposition detailed in

Section 2.4 and cross-checked by evaluating them using the series expansion of

differential equations as outlined in Section 2.5. We provide results for the bare

amplitude divided into individual form factors separated according to the Yukawa,

Higgs trilinear and quartic couplings. We present results for the UV-renormalised

form factors, the di-Higgs invariant mass and the Higgs boson transverse momentum

distribution. The renormalisation of partial electroweak corrections in the Yukawa

model is discussed in detail, this provides relevant input for the interpretation of

results presented elsewhere in the literature for non-Standard Model values of the

Higgs boson self-couplings.

The results presented here, and the techniques used to obtain them (a number of

which are discussed in Chapter 2), provide an important cross-check and benchmark

for further analysing and interpreting the complete electroweak corrections. For

example, the fully symbolic reduction to master integrals obtained using several of the

ideas presented in Section 2.3 allows for the study of mass scheme uncertainties. Our

results also facilitate investigating the effects of anomalous couplings, for example,

anomalous trilinear and quartic Higgs boson couplings. These couplings can be

varied consistently within an Effective Field Theory framework, for example the

non-linear Effective Field Theory (HEFT), where the fact that the Higgs boson is

an EW singlet decorrelates the trilinear and quartic Higgs couplings at leading order

in the EFT expansion. Although not the main focus of this work, our complete set

of differential equations, which can be evaluated using series expansion methods,

may also provide useful semi-analytic insights into the structure of the electroweak

corrections.





Appendix A

Details of Electroweak

Renormalisation

From the Lagrangian of (4.2.4) one arrives at a fully renormalised theory by first

including the vev shift v0 ! v0 + ∆v to obtain

L′ =1
2(∂µH0)†(∂µH0) + µ2

0

2 (v0 + ∆v + H0)2 + λ0

16(v0 + ∆v + H0)4

+ it̄0 /Dt0 − yt,0
v0 + ∆v + H0√

2
t̄0t0

(A.0.1)

=1
2(∂µH0)†(∂µH0) + H0

(
µ2

0v0 + λ0v
3
0

4 + ∆v(µ2
0 + 3

4λ0v
2
0)
)

+ H2
0

(
µ2

0

2 + 3v2
0λ0

8 + 3
4λ0v0∆v

)
+ H3

0

(
λ0v0

4 + ∆v
λ0

4

)
+ H4

0
λ0

16

+ it̄0 /Dt0 − mt,0t̄0t0 − mt,0

v0
∆vt̄0t0 − mt,0

v0
H0t̄0t0 .

(A.0.2)

This step is required to keep the value of v0 at the minimum of the Higgs potential,

which is shifted at NLO compared to LO. On a diagrammatic level, the shift of

the minimum of the Higgs potential is caused by diagrams containing tadpole sub-

diagrams.

The definition of the vev upon renormalisation is therefore related to the treatment

of tadpole contributions. Tadpole counterterms can be generated in two different

ways in the Lagrangian: through parameter renormalisation [138, 161, 162], or via

Higgs field redefinitions [157,161,163,164], see [139] for a review. The latter is also
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called Fleischer-Jegerlehner scheme (FJTS). A new scheme for tadpole renormalisa-

tion, dubbed Gauge-Invariant Vacuum expectation value Scheme (GIVS), has been

suggested recently [165], which is a hybrid scheme of the two schemes mentioned

above, with the benefits of being gauge independent while avoiding large corrections

in MS-type schemes. The effects of certain input parameter schemes in SMEFT have

been studied in [141].

When using OS renormalisation in unitary gauge, the FJTS is a suitable choice

yielding the vev shift prescription and thereby the Lagrangian of (A.0.2). The

emerging term linear in the Higgs field is identified with the tadpole counterterm

δT =
(

µ2
0v0 + λ0v

3
0

4 + ∆v(µ2
0 + 3

4λ0v
2
0)
)

= −∆vm2
H , (A.0.3)

where the first two terms in the brackets cancel upon using (4.2.5) and, in the second

equality, the bare quantities have been expressed in terms of their renormalised coun-

terparts, neglecting higher-order terms of O(δ2
X , ∆vδX , (∆v)2). The renormalisation

condition is that the sum of the tadpoles, T H , and the tadpole counterterm, δT ,

should vanish at the given order,

0 != δT + T H ⇔ δT = −T H = −
[

+
]

. (A.0.4)

With this condition, all contributions from tadpole subdiagrams are integrated

out and collected in the counterterm δT . Inserting (A.0.3) as well as the field,

parameter, and vertex renormalisations from (4.2.30)–(4.2.34) into (A.0.2) yields the

fully renormalised Lagrangian

L =1
2(1 + δH)(∂µH)†(∂µH) + HδT −

(
m2

H

2
(
1 + δm2

H + δH

)
− 3δT

2v

)
H2

−
(

g3

3!

(
1 + δm2

H + 3
2δH − δv

)
− δT

2v2

)
H3 − g4

4!
(
1 + δm2

H + 2δH − 2δv

)
H4

+ i(1 + δt)t̄ /Dt − mt

(
1 + δmt + δt − δT

vm2
H

)
t̄t − gt

(
1 + δmt + δH

2 + δt − δv

)
Ht̄t

(A.0.5)

where the couplings g3, g4 and gt are the renormalised counterparts of the bare
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couplings, g3,0, g4,0 and gt,0. They obey (4.2.6) after substituting the bare quantities

with their renormalised values. Since the explicit tadpole insertions into each diagram

now cancel with the corresponding explicit tadpole counterterm insertions, we can

neglect both of these explicit contributions. Tadpole contributions will therefore

only appear implicitly due to the terms δT appearing in the counterterm insertions,

given in Appendix A.2 (see also Section 3.1.7 of [139] where they use the notation

δt to denote what we call δT in the present work).

We perform an on-shell renormalisation, which fixes δH , δt, δm2
H and δmt via the

renormalisation conditions (slashes where applicable)

0 =
[
Σ(/p)

]
/p=m

, 0 =
 d

d/p
Σ(/p)


/p=m

. (A.0.6)

The masses m and self-energies Σ are those of the top quark and the Higgs boson,

respectively. For the top self-energy Σt, only the mixed top-Higgs bubble

and the counterterm insertion contribute whereas for the Higgs self-energy

ΣH , there are three diagrams and the counterterm insertion. The resulting renorm-

alisation constants are given in Appendix A.2.

The vev counterterm can be fixed using any of the Yukawa, triple, or quartic Higgs

self-interaction vertices. For consistency with much of the literature on EW correc-

tions, we employ the Gµ scheme and use the counterterm as given in [141] in the

limit MW ! 0, MZ ! 0, as detailed in Section A.1.

Finally, we note that the top-quark wave function renormalisation counterterm δt

enters in multiple vertices, but since there are only closed top loops occurring, the

final result should not contain any dependence on this quantity. Every top vertex

counterterm insertion ∝ δt is cancelled by the top propagator insertion ∝ δ−1
t . This

also serves as a crosscheck of the renormalised amplitude and, indeed, we do not

observe any dependence on δt in our final expression.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.1: Example diagrams contributing to the fixing of δv from
the Higgs cubic vertex (a, b, c), the Yukawa vertex (d,
e) and the Higgs quartic vertex (f, g, h, i).

A.1 Vacuum Expectation Value Counterterm

The vev counterterm can be fixed by demanding the finiteness of the higher-order

electroweak corrections to an electroweak vertex of the theory. For determining

the poles of the counterterm, it does not matter which vertex is picked, and we

are free to use either the Yukawa, Higgs cubic or Higgs quartic vertex. By explicit

calculation, we find that all three vertices give the same UV divergent part for the

vev counterterm,

δv|UV = −3m4
H + 2m2

Hm2
t Nc − 8m4

t Nc

32π2m2
Hv2ϵ

, (A.1.1)

upon demanding that NLO electroweak virtual contributions do not correct the

tree-level expression for the vertex. For example, for the Yukawa coupling, we may

require that

−igt
!= ΓHt̄t, (A.1.2)
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at NLO with the diagrams in Figs. A.1d and A.1e contributing to ΓHt̄t. This fixes

the vev counterterm and we find that the divergent part in our theory is given by

δgt
v (gt, g3, g4)|UV = −

g3gtm
2
H + 2g2

t mt

(
m2

H − 4m2
t

)
Nc

32π2m2
Hmtϵ

(A.1.3)

where g4 is included as an argument because δgt
v can, in principle, have a g4-

dependence at higher-orders (but the UV part at NLO explicitly does not). If

instead we fix the vev counterterm from the Higgs cubic self-coupling by requiring

that

−ig3
!= ΓHHH (A.1.4)

holds to NLO in our theory – contributions include the diagrams in Figs. A.1a, A.1b

and A.1c – then we obtain,

δg3
v (gt, g3, g4)|UV = − 1

32π2g3m
4
Hϵ

[
g3g4m

4
H + 8g4gtm

2
Hm3

t Nc − 8g2
3gtm

3
t Nc

+ 2g3g
2
t m2

H

(
m2

H + 12m2
t

)
Nc − 48g3

t m4
HmtNc

]
.

(A.1.5)

Similarly, from the requirement

−ig4
!= ΓHHHH , (A.1.6)

we obtain

δg4
v (gt, g3, g4)|UV = −2gtg4Nc(gt(m4

H + 6m2
Hm2

t ) − 2g3m
3
t ) + g2

4m4
H − 24g4

t m4
HNc

32π2g4m
4
Hϵ

(A.1.7)

whose derivation includes contributions from the diagrams in Figs. A.1f, A.1g, A.1h

and A.1i. Upon insertion of the SM coupling values of (4.2.6), all of our calculations

of the divergent part of δv coincide. That is to say,

δgt
v

(
mt

v
,
3m2

H

v
,
3m2

H

v2

)∣∣∣∣∣∣
UV

= δg3
v

(
mt

v
,
3m2

H

v
,
3m2

H

v2

)∣∣∣∣∣∣
UV

= δg4
v

(
mt

v
,
3m2

H

v
,
3m2

H

v2

)∣∣∣∣∣∣
UV

!= δv|UV

(A.1.8)

as they must since the pole cancellation has to occur independently of the scheme

choice. The finite terms, on the other hand, differ. To obtain a result comparable

with other authors’ works, we choose the Gµ scheme. The pole structure also agrees
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in this case; to fix the finite part we use the result of [141] which is obtained from

the full SM contributions in Gµ scheme. After application of the same limits as in

the Lagrangian, namely MW , MZ ! 0, we arrive at the counterterm in (A.2.6).

A.2 Feynman Rules and Counterterm

Expressions

The Lagrangian of (A.0.5) yields the Feynman rules for renormalised quantities and

the counterterm insertions.

i

p
2−m

2
H

−i
[
(m2

H − p2)δH + m2
Hδm2

H − g3
m

2
H

δT
]

i(/p+mt)
p

2−m
2
t

−i
[
(mt − /p)δt + mtδmt − gt

m
2
H

δT
]

igst
aγµ igsδtt

aγµ

−igt −igt

(
δmt + δH

2 + δt − δv

)
−ig3 −ig3

(
δm2

H + 3
2δH − δv

)
+ i g4

m
2
H

δT

−ig4 −ig4(δm2
H + 2δH − 2δv)

We do not list the rules for the gluon self-interactions, since any diagrams involving

these vertices are identically zero by colour. The analytic expressions for the coun-

terterm insertions δX are as follows:

δmt = − gt

2m2
t

[(
g3mt

m2
H

− gt

)
Ã0(m2

H) + gt

(
1 − 8 m2

t

m2
H

Nc

)
Ã0(m2

t )

+ gt(m2
H − 4m2

t )B̃0(m2
t , m2

H , m2
t )
] (A.2.1)

δt = + g2
t

2m2
t

[(
(3 − 2ϵ) + 4(ϵ − 1) m2

t

m2
H

)
Ã0(m2

H) + (2ϵ − 3)Ã0(m2
t )

+ (2ϵ − 3)(m2
H − 2m2

t )B̃0(m2
t , m2

H , m2
t )
] (A.2.2)

δm2
H = − 1

2m2
H

[(
g2

3

m2
H

− g4

)
Ã0(m2

H) + 8gtNc

(
gt − g3

mt

m2
H

)
Ã0(m2

t )

− g2
3B̃0(m2

H , m2
H , m2

H) − 4g2
t (m2

H − 4m2
t )NcB̃0(m2

H , m2
t , m2

t )
] (A.2.3)
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δH = + 1
3m2
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[
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H

(ϵ − 1)Ã0(m2
H) + 12g2
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] (A.2.4)

δT = − g3

2 Ã0(m2
H) + 4gtmtNcÃ0(m2

t ) (A.2.5)

δv = 1
2DπD/2

1
2v2

(
−m2

H

2 + Ncm
2
t − 2NcA0(m2

t ) − 3A0(m2
H) + 8Nc

m2
t

m2
H

A0(m2
t )
)

(A.2.6)

As explained in Appendix A.1, δv cannot be split up in different coupling structures,

since we obtain the full expression from [141], where this is not provided.

The scalar integrals are defined to be

Ã0

(
m2

1

)
:= 1

2DπD/2 A0

(
m2

1

)
= µ4−D

2DπD/2

∫ dDℓ

iπD/2
1

ℓ2 − m2
1

(A.2.7)

B̃0

(
p2, m2

1, m2
2

)
:= 1

2DπD/2 B0

(
p2, m2

1, m2
2

)
= µ4−D

2DπD/2

∫ dDℓ

iπD/2
1

(ℓ2 − m2
1)((ℓ + p)2 − m2

2)

(A.2.8)

with the t’Hooft scale, µ, to repair the dimensionality and the causal iδ Feynman

prescription understood implicitly.

A.3 Comparison of Counterterms and

Renormalization Procedures

In this section, we briefly compare the renormalisation procedure used for the vev in

our work, given in (4.2.34) and (A.2.6), to the schemes presented in [141] and [139].

After dropping all non-SM terms, the vev renormalization in (2.18) of [141] reads

1
v2

T,0
= 1

v2
µ

[
1 − 1

v2
µ

∆v(4,1,µ)
µ

]
= 1

v2
µ

[
1 − 1

v2
µ

∆ṽ(4,1,µ)
µ − 1

v2
µ

∆v
(4,1,µ)
µ,tad

]
, (A.3.1)

where we have used (A.14) of the same reference to collect all contributions not

associated with tadpoles in ∆ṽ(4,1,µ)
µ and the remaining tadpole contributions in
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∆v
(4,1,µ)
µ,tad . Using the relations,

vT,0| [141] ≡ v0 + ∆v, (A.3.2)

vµ| [141] ≡ v (A.3.3)

and inserting (4.2.34), we obtain,

1
v2

T,0
= 1

(v0 + ∆v)2 ≈ 1
v2(1 + 2δv + 2∆v

v
)

≈ 1
v2 (1 − 2δv − 2∆v

v
) (A.3.4)

where, in the last two manipulations, we retain only terms linear in δv and ∆v. By

comparison, we can identify

∆v(4,1,µ)
µ | [141] ≡ 2v2

(
δv + ∆v

v

)
, (A.3.5)

∆v
(4,1,µ)
µ,tad | [141] ≡ 2v∆v . (A.3.6)

The comparison of our counterterms to those given in [139], is less straightforward,

as they instead use the renormalisation constants δM2
W , δsw, δZe to parametrise the

renormalisation, where e is the electric charge, sw = sin θw, and θw is the Weinberg

angle. Using the tree level relation for the bare vev,

2MW,0sw,0

e0
= v0 (A.3.7)

we obtain
δM2

W | [139]

2M2
W

+
δsw| [139]

sw

− δZe| [139] = δv, (A.3.8)

where the extra factors of MW and sw in the denominator are due to their definition

M2
i,0 = M2

i + δM2
i , for i = W, Z rather than e.g. M2

i,0 = M2
i (1 + δM2

i ), see (98)

of [139]. This allows us to express our counter terms, given in Section A.2, in terms

of their renormalisation constants. To match our counterterm expressions exactly,

we additionally set δtPRTS| [139] = 0 and δtFJTS| [139] = δT in their expressions, i.e. we

select the Fleischer-Jegerlehner tadpole scheme. Finally, to recover the counterterm

insertions we give in (A.2.6), the δZe expression should be derived in the Gµ scheme,

as described in Section 5.1.1 of [139].
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