
Durham E-Theses

Applications of Topology and Geometry in Data

Science

URBANCIC, ZIVA

How to cite:

URBANCIC, ZIVA (2025) Applications of Topology and Geometry in Data Science, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/16068/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/16068/
 http://etheses.dur.ac.uk/16068/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Applications of Topology and
Geometry in Data Science

Živa Urbančič

A thesis presented for the degree of
Doctor of Philosophy at Durham University

Department of Mathematics
Durham University
United Kingdom

19th May 2025

ii

Abstract

In the last decades we have experienced a boom in computing power, closely followed by the
emergence of novel analytic methods which rely on more expensive computations. Part of this
wave have been methods that build models of the processes at play based on the data collected
during observation, and view them through the lens of topology and geometry. The primary
assumption of these methods is that topological and geometrical properties of the model reflect
the underlying structure in data, and so probing them can help uncover laws governing the
phenomena under study.

The versatility and wide range of use of these methods are illustrated in this thesis. We present
four works of completely different flavors covering topics from theory to practice, from math-
ematics and computer science to cell biology. In one, we contribute new insights into persistent
homology: a method whose output is an algebraic object called persistence module, which counts
and relates topological features of the data at different scales. Our results give guarantees of
when two persistence modules are close enough algebraically, so that we can pair the entries
encoding the same underlying feature at each scale, and track the evolution of said pairs as the
scale is increased. We then switch the setting to one of neural networks, where we evaluate if
their plasticity relates to how they partition the input space. In particular, we set out to answer
if choosing their initial parameters with the aim of obtaining finer partitions speeds up their
learning and increases the accuracy of their final predictions. Next, we provide a framework for
topological modeling of spaces, which are characterized by both their metric and directed struc-
ture, and appear naturally when the phenomenon under study has a non-reversible component.
In particular, we provide two similarity measures that can be used to compare such spaces. As the
final curtain, we explore gene expression data obtained from a specific class of neurons, namely
monoaminergic neurons, in the brains of fruit flies. Within the data set we identify structure

iii

in the form of denser subsets, which is related to division of neurons into several subtypes. In
addition, we uncover the genes that drive this division, and repeat the analysis on a subtype
corresponding to dopaminergic neurons.

iv

Declaration

The work in this thesis is based on research carried out within the Pure Mathematics Group
at the Department of Mathematics at Durham University, UK. No part of this thesis has been
submitted elsewhere for any other degree or qualification. Some work in this thesis is drawn from
papers published alongside others, as detailed below.

Parts of this thesis were done in collaboration with Jeffrey Giansiracusa and published in [1].
In particular, some introductory material from the paper is restated in Sections 2.2.3 to 2.2.5,
while the original results are stated verbatim in Chapter 3. The author of the thesis contributed
all the results and writing to the aforementioned publication.

Chapter 4 contains work done in collaboration with Yue Ren and Iolo Jones. We share authorship
of the code used to run the experiments, and the writing was carried out by the author of the
thesis. It has not been submitted for publication at the time of writing.

In Chapter 5 we present parts of the work which was, at the time of writing, submitted to the
proceedings of the Women in Computational Topology Third Workshop, entitled Research in
Computational Topology 3 and published as a volume of Association for Women in Mathematics
– Springer series. It is a result of a collaboration with Lisbeth Fajstrup, Brittany Terese Fasy,
Wenwen Li, Lydia Mezrag, Tatum Rask and Francesca Tombari. The definitions of notions
we introduced are the result of group discussions. While significant and invaluable input was
given by the collaborators, this author claims main authorship of Examples 5.1.7, 5.2.6 and 5.3.2
and Theorems 5.2.3 and 5.3.5. Sections 5.4 and 5.5 are summarized as examples in the submitted
paper, but the author decided to extended and develop them further in this thesis.

v

Chapter 6 summarizes results of a collaboration with Vincent Croset. He proposed the problem
and provided the data. Data analysis and writing was carried out by the author of the thesis.
No content has been submitted for publication at the time of writing.

Copyright © 2025 by Živa Urbančič.
“The copyright of this thesis rests with the author. No quotations from it should be published
without the author’s prior written consent and information derived from it should be acknow-
ledged”.

vi

Acknowledgements

I would like to express my gratitude to

My supervisors, Yue Ren and Jeffrey Giansiracusa, without whose guidance and support, I would
not have found my footing in the world of academia. You helped me recognize the importance
of taking small steps, that failure is a blessing in disguise and contribution to science can take
many forms. Thank you for devoting your time to me and for providing perspective the many
times I needed it. Thank you for sharing your thoughts on how to connect and organize projects,
which at first glance seemed mostly unrelated, into a thesis, and giving me feedback on all of its
versions.

Members of the viva committee, Vidit Nanda and Fernando Galaz García. Thank you for sharing
your knowledge and expertise with me through invaluable feedback and insightful questions
during the viva. Your input has significantly contributed to the improvement of my thesis.

My family, who are always there for me. Thank you for anticipating my needs, being patient
through all my rebellions and moments of despair, and for being unbearably proud of me. I am
in particular grateful to Jasna, for sharing with me her excitement about the new subject she
took at the university all those years ago. Who knew that conversation would lead to our paths
converging once again, and I would follow in your footsteps for the millionth time in our lives.
(I know, how annoying!) Since you kindly excused me from reading your thesis, you are excused
from reading mine.

Dino, who is my source of strength and had my back in every fight, especially the ones I fought
with myself. Thank you for navigating life with me, for being my safe space, my confedan, my
light. I could not have done it without you.

vii

My collaborators. Lisbeth, Brittany, Wenwen, Lydia, Tatum, Francesca, you are all fantastic. I
am grateful I was able to learn valuable lessons about team work and combining different points
of view in such a welcoming group. Vincent and Sophie, thank you for kindly sharing data with
me, for answering all of my many questions, and for giving me invaluable insight into the world
of genes. Herbert, your infectious enthusiasm helped me gain momentum for the rest of my PhD.

My academic family and my friends. The blessing of your friendship helped me, quite frankly,
to stay sane. Your company has been a respite in these years, so I thank you for adjusting to
my crazy schedule and being there whenever I asked you to.

Lastly, I would like to express my gratitude to the TDA research community and all the or-
ganizations and institutions that supported me throughout my journey. In particular, the work
presented in this thesis was greatly supported by the Centre for TDA, funded by EPSRC under
grant EP/R018472/1. I am also deeply thankful to Primož Škraba and Omer Bobrowski for
generously sharing an implementation of k-cluster with me, which significantly contributed to
this work.

viii

Contents

Abstract ii

Declaration iv

Acknowledgements vi

Contents viii

List of Figures xi

List of Tables xiv

List of Acronyms xv

1 Introduction 1

2 Prerequisites 9
2.1 Measuring Distances . 9

2.1.1 Metric Spaces . 9
2.1.2 Paths and Length Structures . 11
2.1.3 Gromov–Hausdorff Distance . 13

2.2 Topological Methods in Data Science . 15
2.2.1 Shape Approximation . 16
2.2.2 Homology . 21
2.2.3 Persistent Homology . 22
2.2.4 Bottleneck and Interleaving Distance . 25
2.2.5 Barcode Basis . 27

ix

2.3 Directed Spaces . 30
2.3.1 Operations on Directed Spaces . 32
2.3.2 Directed Spaces and Length Structures . 33

2.4 Gene Expression Data . 33
2.4.1 Cellular Processes . 33
2.4.2 Single-Cell RNA Sequencing . 34
2.4.3 Properties of Gene Expression Data . 36
2.4.4 Biological and Technical Artifacts in Gene Expression Data 38
2.4.5 Standard pipeline for Clustering Analysis of Gene Expression Data 39

3 Ladder Decomposition for Morphisms of Persistence Modules 44
3.1 Ladder Decomposition of a Persistence Morphism . 47
3.2 Ladder Decompositions and Interleavings . 49

3.2.1 Interleavings and δ-Invertible Morphisms of Persistence Modules 50
3.2.2 Nestedness Condition for Ladder Decomposition of a δ-Invertible Morphisms 54
3.2.3 Ladder Decompositions of an Interleaving Pair . 66

3.3 q-Coarse Ladder Decomposition . 70
3.3.1 q-Coarse Ladder Decomposition of a δ-invertible Morphism 73
3.3.2 q-Coarse Ladder Decompositions of a δ-Interleaving Pair 75

3.4 Induced Partial Matchings . 77
3.4.1 Ladder Decomposition Induced Partial Matching . 78
3.4.2 Comparisson with the Bauer-Lesnick Induced Matchings 80
3.4.3 Basis-Independent Partial Matchings . 83
3.4.4 q-Coarse Induced Partial Matchings . 84

4 Initialization Strategy for Deep Neural Networks with ReLU Activation 85
4.1 Neural Network Preliminaries . 86

4.1.1 Network Architecture . 86
4.1.2 Pipeline . 87
4.1.3 Activation Regions . 90

4.2 Initialization Strategy . 93
4.2.1 Adjusting Layer Variance . 96
4.2.2 Computing Region Membership . 98
4.2.3 Complexity Analysis . 98

4.3 Experiments . 99

x

4.3.1 Adam Optimization and fix_layer_deviation . 100
4.3.2 SGD Optimization and fix_layer_deviation . 102
4.3.3 Adam Optimization and reset_layer_deviation . 104

4.4 Conclusion . 106

5 Gromov–Hausdorff Distance for Directed Metric Spaces 108
5.1 Zigzag Distance . 110
5.2 Directed Gromov–Hausdorff Distance . 113
5.3 Distortion Distance . 118
5.4 Directed Flat Torus . 122
5.5 Directed Weighted Graphs as D-spaces . 123

6 Classification of Gene Expression Data 129
6.1 Thirsty Fly Data Set and Classification Tasks . 130
6.2 Methods . 134

6.2.1 Persistence-inspired Clustering Method: k-cluster . 135
6.2.2 Clustering Methods Used for Comparison . 137
6.2.3 Evaluation of Clustering Results . 140
6.2.4 Marker Detection . 141

6.3 Classification of Monoaminergic Neurons . 142
6.3.1 Clustering on iM with euclidean distance . 145
6.3.2 Clustering on iM with cosine similarity . 149
6.3.3 Clustering on log-transformed iM with euclidean distance 154
6.3.4 Marker detection on good clusterings . 158
6.3.5 Conclusion . 160

6.4 Classification of Dopaminergic Neurons . 163
6.4.1 Clustering on dM with respect to cosine similarity . 164
6.4.2 Clustering on log-transformed dM with respect to euclidean distance 164
6.4.3 Feature selection and subsequent clustering . 165
6.4.4 Combining clustering results . 170

6.5 Conclusion . 171

Bibliography 173

xi

List of Figures

2.1 An example where the Čech and VR complex on the same dataset and with the
same radius differ. 17

2.2 An example of a point cloud and VR complexes on it at different radii. 19
2.3 A simplicial complex and the group of its 1-cycles. 23
2.4 An illustration of the processes of transcription and translation. 35
2.5 The dropout effect in scRNA-seq data sets . 40
2.6 Variance vs. mean plot for log2-normalized Thirsty Fly data set 41

3.1 The barcodes of modules V and W in Example 3.2.1. 50
3.2 Points in a persistence diagram corresponding to strictly nested bars. 55
3.3 Example of a barcode with nestedness 1. 55
3.4 Further examples of barcodes with different nestedness. 56
3.5 The implications of Lemma 3.1.2 for a pair of nested bars. 59
3.6 Illustration of matrix MΦ accompanying the proof of Lemma 3.2.15. 61
3.7 Restrictions for endpoints of bars used in the proof of Lemma 3.2.15. 62
3.8 Bars from Remark 3.2.18 illustrating that MΨ◦Φ is in general not equal to MΨ ·MΦ

for composable morphisms of persistence modules Φ and Ψ. 66
3.9 Example of a barcode of a persistence module with small nestedness. 71

4.1 Comparison of initialization strategies on neural networks trained with Adam
optimizer and with fix_layer_deviation scaling. 101

4.2 Comparison of initialization strategies on neural networks trained with SGD op-
timizer and with fix_layer_deviation scaling. 103

4.3 Comparison of initialization strategies on neural networks trained with Adam
optimizer and with reset_layer_deviation scaling. 105

xii

4.4 Evolution of number of linear regions during training [2]. 107

5.1 Examples and non-examples of zigzag paths. 110
5.2 Isometric embeddings of X and Y into a metric space Zδ in which their Hausdorff

distance is δ-close to their (undirected) Gromov–Hausdorff distance. 115
5.3 The construction of space Zδϵ accompanying the proof of Theorem 5.2.3. 116
5.4 Balls in the zigzag metric on a directed flat torus. 123
5.5 Self intersections of the border of a sphere on a directed flat torus. 124
5.6 Sketches accompanying the proof of Proposition 5.4.1. 125

6.1 Clustering of drosophila brain cells into 7 clusters, plotted with UMAP. 131
6.2 Plots of gene expression profiles colored with respect to experiment membership. . 134
6.3 UMAP projection of iM with annotated class representatives. 144
6.4 UMAP projection of iM colored with respect to class membership determined on

binary expression vectors. 145
6.5 Clustering of monoaminergic neurons on iM with euclidean distance. 146
6.6 Ordered multiplicative values for 8-cluster filtration on iM with euclidean distance.147
6.7 The total entropy for each of the tested clustering methods, computed on the set

of representatives. As mentioned in Section 6.2.3, low values indicate the obtained
clusters are homogeneous with respect to the cell subtype. 149

6.8 Clustering of monoaminergic neurons on iM with cosine similarity. 150
6.9 Ordered multiplicative values for 8-cluster filtration on iM with cosine similarity. . 151
6.10 Clustering results on iM with cosine similarity for k-cluster and spectral clustering.152
6.11 The total entropy for each of the tested clustering methods, computed on the set

of representatives. As mentioned in Section 6.2.3, low values indicate the obtained
clusters are homogeneous with respect to the cell subtype. 153

6.12 Clustering of monoaminergic neurons on ln(iM) with euclidean distance. 155
6.13 Ordered multiplicative values for 8-cluster filtration on ln(iM) with euclidean

distance. 156
6.14 Estimated scale of expression in iM . 157
6.15 The total entropy for each of the tested clustering methods, computed on the set

of representatives. As mentioned in Section 6.2.3, low values indicate the obtained
clusters are homogeneous with respect to the cell subtype. 158

6.16 Plot of variance vs. mean for each gene in ln(dM). 165
6.17 Ordered multiplicative values for 8-cluster filtration on dM with cosine similarity. 166

xiii

6.18 Results of clustering with k-cluster with parameters k = 8 and N = 2 on dM with
respect to cosine similarity. 166

6.19 Ordered multiplicative values for 6-cluster filtration on ln(dM) with euclidean
distance. 167

6.20 Results of clustering with k-cluster with parameters k = 6 and N = 4 on ln(dM)

with respect to euclidean distance. 167
6.21 Ordered multiplicative values for 8-cluster filtration on

√
dMf with euclidean

distance. 168
6.22 Results of clustering with k-cluster with parameters k = 8 and N = 5 on

√
dMf

with respect to euclidean distance. 168
6.23 Combined plots of three clustering results on dopaminergic neurons. 169
6.24 UMAP projection of

√
dMf with colors corresponding to clusters in A. 170

xiv

List of Tables

6.1 Cluster-wise expression of important genes for clusters obtained with spectral
clustering on iM with euclidean distance. 159

6.2 Cluster-wise expression of important genes for clusters obtained with k-cluster
on iM with cosine similarity. 159

6.3 Cluster-wise expression of important genes for clusters obtained with k-means
on ln(iM) with euclidean distance. 159

6.4 Cluster-wise expression for clusters obtained with spectral clustering on iM with
euclidean distance. 161

6.5 Cluster-wise expression of important genes for clusters obtained with k-cluster
on iM with cosine similarity. 161

6.6 Cluster-wise expression for clusters obtained with k-means on ln(iM) with euc-
lidean distance. 162

6.7 Cluster-wise expression for clustering A on dopaminergic neurons. 172

xv

List of Acronyms

Adam adaptive moment estimation. 6, 88, 89, 100–102, 104–106

cDNA copy DNA. 35, 36

DNA deoxyribonucleic acid. 33–35, 129

GABA gamma-aminobutyric acid. 131

kNN k-nearest neighbors. 42

MNN mutual nearest neighbors. 38

mRNA messenger RNA. 34–36, 39, 40

NB nagative binomial. 36

p.f.d. pointwise finite dimensional. 24–27, 44, 136

PCA principal component analysis. 42

PCR polymerase chain reaction. 35

ReLU rectified linear unit. 6, 86–91, 100

xvi

RNA ribonucleic acid. 34, 129

RPM reads per million. 40

scRNA-seq single-cell RNA sequencing. 33, 34, 36–40, 42

SGD stochastic gradient descent. 6, 88, 100, 102–104, 106

t-SNE t-distributed stochastic neighbor embedding. 42

TDA topological data analysis. 135

ToMATo topological mode analysis tool. 136

UMAP uniform manifold approximation and projection. 42, 131, 144, 145, 169, 170

VR Vietoris–Rips. 17

ZINB zero-inflated negative binomial. 36

ZIP zero-inflated Poisson. 36

1

Chapter 1

Introduction

Data is everywhere. When skillfully processed, it becomes an invaluable asset, boosting our
understanding of the world around us. However, in its raw state, data is essentially "informa-
tionless" – merely a collection of points scattered across feature space. The journey to extract
meaningful insights from data has traditionally leaned heavily on statistics and probability the-
ory. In its simplest form, data analysis started with calculating basic statistical metrics like mean
and variance. As computing power increased, more sophisticated methods such as hypothesis
testing and regression analysis emerged and became staples in the data analysis toolkit. The
most recent developments in form of artificial intelligence have revolutionized the field and have
significantly expanded our ability to interpret complex data sets. In this thesis, however, we
explore a somewhat different approach offered by the fields of geometry and topology.

Geometry arose from studying practical problems in the physical world, using measurements
of lengths and angles. Over time, it has moved away from our early understanding of reality,
which was limited to (at most) three-dimensional, flat space. However, the interest into how
lengths and angles are measured within mathematical objects, and the properties derived from
these measurements, has remained central. Topology, geometry’s younger sister, on the other
hand, is relatively more abstract. It does not rely on the concept of length. Instead, it develops
a notion of “close enough” in a more general setting, allowing for the study of continuity. In
fact, the properties of mathematical objects studied within topology are those preserved under
continuous transformations.

Chapter 1: Introduction 2

Tools of geometry and topology can be applied to data to study its shape – either on the level
of individual entries or the data set as a whole. In the latter case, it is often assumed that the
“shape of the sample space” reflects the inherent properties and laws governing the processes at
play. These can be uncovered by modeling the relationships between points on several scales and
inferring which objects said models represent based on the computed topological and geometric
invariants. On the other hand, when each observation in the data set is a shape from the get
go (for example in image analysis), these invariants can be used to summarize the shape. Using
the resulting compressed features in further analysis, including with machine learning methods,
facilitates or speeds up the otherwise expensive computations. We support these claims with the
following motivating examples:

• There are many examples of imaging data sets whose shape information has been com-
pressed using topological and geometric summaries. In [3], the authors represent the
wing vein structure in Drosophila melanogaster as an embedded planar graph. In [4],
topological features are used in classification of hepatic lesions.

• In time series analysis, changes in modes of behavior are reflected in the topological
properties of the model (for example sliding window-embedding). By monitoring such
properties given the raw neurophysiological recordings of epilepsy patients, we can detect
seizures in real time [5]. In statistical physics systems, phase transitions can be identified
by topological study of the lattice model configuration and its change with increasing
temperature [6].

• When the studied phenomenon is periodic, circles, tori, or other non-trivial topological
objects may be found within the data. For example, grid cells are neurons, which are part
of the brain’s spatial awareness centers, and fire in a characteristic hexagonal pattern
corresponding to specific locations. They are organized into modules, with the firing
patterns of cells within each module being translations of one other. When the patterns
of different cells within a single module are (flattened and) embedded, they reside on a
toroidal manifold, which reflects their 2D-lattice structure [7].

By choosing good models for the data and rephrasing the questions in terms of their geometric
and topological properties, one can develop novel methods to tackle problems whose nature
makes them inaccessible to the existing data-science toolkit. Different methods can also be used
in combination to enhance the predictive power of our analysis.

The aim of the following chapters is to further convince the reader that topology and geometry
are interesting; not purely because they are so inherently, but because of their many applications.

Chapter 1: Introduction 3

We include a collection of four works, spanning many topics in mathematics, computer science,
and even cell biology and genomics, all centered around leveraging geometry and topology in data
analysis. As some experience reported in the following is individual to the author, let me switch
between the more formal and more personal style of writing as I present to you the projects
filling this thesis.

With only a few, clearly indicated exceptions, Chapters 3 to 6 include original work. My contri-
butions to the projects that are summarized in these chapters are detailed in the Declaration.

Chapter 3: Ladder Decomposition for Morphisms of Persist-

ence Modules
The work described in Chapter 3 began with Jeffrey Giansiracusa stating the following problem.
Take a multi-parameter persistence module; that is a covariant functor V : Rn → Vect(F) where n
is the number of parameters, Rn is equipped with the product order, and Vect(F) is the category
of modules over a chosen field F. For simplicity sake, let n = 2 and consider the restrictions
to increasing lines in the parameter space. For example, let L : R → R be an affine function
mapping x 7→ ax+ b with a > 0 and observe that

V |L : R→ Vect(F)

V |L : t 7→ V (t, L(t))

is a one-parameter persistence module. Restrictions to different lines can be related [8, 9], espe-
cially if the lines in questions are parallel to each other. Then, a distinguished type of morphism,
which measures algebraic similarity and is called an interleaving morphism, exists between the
restrictions. This interleaving morphism is part of the inner structure of V , and may, as a con-
sequence, have even nicer properties. Under mild assumptions each one-parameter persistence
module admits a direct sum decomposition into intuitive building blocks. The question is, can
we relate the building blocks of the restrictions to parallel lines via the interleaving morphism
that exists between them.

A similar question for a general, not necessarily interleaving morphism has received a lot of
attention from the topological data analysis community in the recent years. It is interesting for
two main reasons. Firstly, a similar direct sum decomposition known to exist for one-parameter
persistence modules does not exist in the multi-parameter case under the same mild assumptions.

Chapter 1: Introduction 4

Thus, approximate results, such as those which might sprout from these studies, can give us new
descriptors for the structure of multi-parameter persistence modules. Secondly, morphisms may
encode relations between two settings in which a phenomenon is studied. Comparing commonly
used topological summaries via morphisms therefore has many potential applications in the field.

First construction of a partial bijection between the summands of the decompositions defined via
a morphism, which also provided important stability related guarantees, appeared in [10]. Its
main shortcoming, that it is determined by the image of the morphism and not the morphism
itself, was addressed independently in [11, 12, 13]. We base our work on the results of [11], where
it was shown that a partial bijection induced by a direct sum decomposition of the morphism
exists under relatively strict assumption on the summands constituting the decompositions of
the persistence modules. We show that this assumption can be relaxed significantly whenever
the morphism in question is close to being an isomorphism. Similar results in the setting of
vineyard modules appear in [14].

Chapter 4: Initialization Strategy for Deep Neural Networks

with ReLU Activation
Chapter 4 includes a partial report on an ongoing collaboration with two members of my research
group: my supervisor, Yue Ren, and my academic sibling, Iolo Jones. Following Yue’s initiat-
ive, we began investigating deep neural networks and, specifically, their connection to tropical
geometry.

Tropical geometry is a branch of algebraic geometry, in which the classical study of polyno-
mials and their solutions is carried out within an unconventional arithmetic framework, where
addition, ⊕, and multiplication, ⊗, are defined as

x⊕ y = max{x, y}

x⊗ y = x+ y.

An example of a tropical polynomial is a ⊗ x2 ⊕ b ⊗ x ⊗ y2 or max{a + 2x, b + x + 2y}. Of
course, the degree can be arbitrary and polynomials can be multivariate. Each polynomial in n
variables defines a geometric object called a tropical hypersurface, which is the set of points
in Rn at which the maximum is attained at least twice.

Chapter 1: Introduction 5

Arrangements of tropical hypersurfaces appear naturally in machine learning as decision bound-
aries of neural networks with maxout activation [15]. Maxout of rank r ∈ N is a piece-wise linear
function, defined as

x 7→ max {A1x+B1, . . . , Arx+Br} , (1.1)

where the maximum is applied coordinate-wise, and each Aix+Bi is an affine function. These r
affine functions are in practice channels of a layer of a neural network. Such a network is piecewise
linear: there are regions in its input space on which it is an affine function. Within each of these
regions, the maxout activations are consistent in their decision: which channel achieves the
maximum in which coordinate does not change. The set of points where their decision changes is
called the decision boundary. In particular, where the decision changes in coordinate j of (1.1),
the maximum

x 7→ max {(A1x+B1)j , . . . , (Arx+Br)j} ,

is attained twice. The set of such points is exactly a tropical hypersurface and the entire decision
boundary is their arrangement.

Analogous regions of linearity for networks with other piece-wise linear activations have been
shown to carry interesting information about the network and the task it is trained for, and
have been studied in connection with network expressivity and its potential for generalization
to unseen input, with networks with larger number of regions having more desirable properties.
Inspired by this knowledge, we set out to develop a novel initialization technique for maxout
neural networks, which would prioritize maximizing the number of linear regions before the
network is trained.

This turned out to be a very ambitious goal. As this was the first time any of us have manipulated
neural networks manually, the learning curve was steep. Even so, we implemented the first
version of the methods for initialization and keeping track of the regions rather quickly. The
real bottleneck was the abundance of choice available in the machine learning community, which
completely overwhelmed three novices. Which data set do we train the networks on? What
architecture should we choose for them? Which maxout rank, loss function, optimizer? What
should the learning rate be and should we use momentum? How do we make our answers to
these questions consistent? We wanted to be good researchers and provide a thorough overview
comparing many combinations, but we quickly realized that would require us to adjust the

Chapter 1: Introduction 6

methods more or less for every single one. Thus, we began by choosing the most popular data
set for classification tasks, MNIST [16], a fixed, relatively small, network architecture, cross-
entropy loss, and maxout of rank 2, which is equivalent to the better known and extensively
studied rectified linear unit (ReLU) activation. We chose to compare stochastic gradient descent
(SGD) [17, Chap. 8.1.3] and adaptive moment estimation (Adam) [18] optimizers with their
default settings. Three years and many (many!) bugs later, we have some preliminary results,
which I summarize in Chapter 4.

Chapter 5: Gromov–Hausdorff Distance for Directed Metric

Spaces
The project presented in Chapter 5 was born at the Third Workshop for Women in Compu-
tational Topology, held in July 2023 at the Bernoulli center in Lausanne. I joined a group of
six brilliant women, Lisbeth Fajstrup, Brittany Terese Fasy, Wenwen Li, Lydia Mezrag, Tatum
Rask and Francesca Tombari. Initially, we intended to study the connections between dynamic
programming and directed topology. The second has been used ingeniously to study concurrent
processes [19] by modeling them as subspaces of directed hypercubes and comparing the equi-
valence classes of paths up to endpoint-preserving homotopy. The idea was, that the recurrence
relations between path equivalence classes with fixed starting point and varying end points could
be leveraged to compute them dynamically. While this is true, we agreed gains of dynamic
implementation would be minimal if any, and thus decided to pivot.

Our new inspiration came from the work of Lim, Mémoli and Smith [20]. They used Gromov–
Hausdorff distance, a metric on compact metric spaces up to isometry, to study the difference
between spheres endowed with geodesic distance. Although computing this distance exactly is
notoriously difficult, a framework they developed, cleverly using one of its definitions in com-
bination with conventional topological tools, such as the Borsuk–Ulam theorem, allowed them
to derive significant results. Alongside other remarkable applications of Gromov–Hausdorff dis-
tance, this inspired us to explore its potential in the context of directed spaces. Immediately, we
stumbled across two questions:

• What is a natural way to define a metric on a directed space?

• What is a natural way to generalize the definition of the Gromov–Hausdorff distance to
directed spaces equipped with a metric?

Chapter 1: Introduction 7

After many failed attempts, we arrived to some definitions answering these questions. They
are listed in Chapter 5 along with some examples of directed spaces. Notably, we define two
generalizations of the Gromov–Hausdorff distance: the directed Gromov–Hausdorff distance and
the distortion distance, each capturing different properties of the spaces. While directed Gromov–
Hausdorff distance recognizes the differences in directed structure that are reflected in the metric
only, the distortion distance is almost an extended metric on the set of directed metric spaces
up to directed isometry and thus captures the difference in directed structure well. As similarity
measures that account for both the metric and the directed structure of the object under study,
they have potential applications in many contexts (for example when the problem is modeled
by a directed weighted graph). However, to make them readily applicable, the theory needs to
be developed further to include results that approximate or bound these distances on interesting
examples of directed spaces. The exact computation unfortunately requires searching the spaces
of maps between directed metric spaces and consequently has very high complexity, much like
the exact computation of Gromov–Hausdorff distance.

Chapter 6: Classification of Gene Expression Data
Two years into my doctoral study, I became frustrated with the fact that I had not yet acquired
any practical experience of working with real world data sets. I find applications to biology and
medicine incredibly interesting, which is why I reached out to the Biophysical Sciences Institute
in Durham and began attending their lunchtime mixer events. At one of these events I met
Vincent Croset, an assistant professor at the Department of Biosciences, Durham University. He
and his collaborators have been studying thirst-induced changes in gene expression and collated a
data set for this purpose [21]. As part of their study, they ran several clustering steps at different
resolutions, restricting the data set to the cells of interest at each step and clustering again.
When restricting the data set to the neurons identified to be monoaminergic (this restriction is
called the Thirsty Fly data set in this thesis), the standard methods of their field that have been
serving them well thus far could no longer produce coherent clusters. Vincent attributed this to
the small size of Thirsty Fly data set and asked me whether topological methods might be able
to identify substructures in such a setting. I was optimistic, and promised to play around with
the data set to give him a more informed answer. This was the beginning of a project described
in Chapter 6.

It became clear immediately, that the gene expression data sets are peculiar. The simplest ques-
tions, such as “How do I know if a specific gene is expressed in a specific cell?”, had unexpectedly

Chapter 1: Introduction 8

complicated answers, and my initial attempts in clustering were disappointing. Soon after, how-
ever, Jeff brought a clustering method inspired by persistent homology, called k-cluster [22], to
my attention. We reached out to its authors, Omer Bobrowski and Primož Škraba, who kindly
shared its implementation with me. To our surprise, the first clusters I obtained with it were
already really impressive, and were only tweaked slightly since (see upper left plot in Figure 6.5).

First success called for further discussions with Vincent in which the aims of the project were more
properly defined. He disclosed that they are particularly interested in a subtype of monoaminergic
neurons known as the dopaminergic neurons. They wished to find finer substructures, related
to different subtypes of dopaminergic neurons, and identify them, despite not knowing which
genes are the drivers of this sub-specialization. The task, in short, was to identify dopaminergic
neurons, cluster them further, and reason about why those clusters form. We leveraged the
clustering task on the monoaminergic neurons, where we tested a collection of methods, as a
proof of concept for the subsequent work on dopaminergic neurons.

To summarize the results, fully detailed in Chapter 6, k-cluster consistently performed well and
emerged as the most versatile and user-friendly method in experiments on monoaminergic neur-
ons. Further and more detailed comparison of clustering methods should be carried out, but this
suggests k-cluster has great potential for use within various communities studying transcriptome
data sets. In addition, comparing the obtained sets of clusters I was able to compile a short
list of genes whose role in cell specialization into subtypes of monoaminergic neurons should
be investigated. Although many methods gave satisfactory results for clustering monoaminergic
neurons, this success was not matched on dopaminergic neurons, likely due to the small size of
the data set relative to its expected heterogeneity. Fortunately, Vincent’s group has acquired a
much larger dataset of dopaminergic neurons, which is, at the time of writing, being cleaned and
prepared for analysis. Thus, this project is still ongoing.

9

Chapter 2

Prerequisites

This chapter includes the preliminary theory needed for later work. In particular, Section 2.2 is
needed in Chapters 3 and 6, Sections 2.1 and 2.3 in Chapter 5, and Section 2.4 in Chapter 6.

2.1 Measuring Distances
There are several (related) notions of how one can measure distance between points in a set.
Most common notions, metrics and their generalizations, are presented in Section 2.1.1. On the
other hand, one may choose a distinguished set of paths on a space, define a length of a path, and
measure the distance between two points via the lengths of paths between them. This point of
view is described in Section 2.1.2. Lastly, we can also measure distances between metric spaces
themselves. This can, for example, be done using the Gromov–Hausdorff distance, detailed in
Section 2.1.3.

2.1.1 Metric Spaces
We list definitions of a metric and some of its generalizations, which we collate from many
sources [23, 24, 25].

Definition 2.1.1. A binary function d : X ×X → [0,∞) on a set X is a metric on X if it has
the following properties:

Chapter 2: Prerequisites 10

1. identity: d(x, x) = 0 for all x ∈ X,

2. positivity: d(x, y) > 0 for all x ̸= y ∈ X,

3. symmetry: d(x, y) = d(y, x) for all x, y ∈ X, and

4. triangle inequality: d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

A pair (X, d) of a set with a metric on it is called a metric space.

There are many generalizations of the notion of a metric, where we skip one or more of the
requirements from its definition.

Definition 2.1.2. A binary function d : X ×X → [0,∞) is a

a) pseudometric on X if it satisfies identity, symmetry and triangle inequality, but not
positivity: for distinct x ̸= y, d(x, y) might be zero.

b) quasimetric on X if it satisfies identity, positivity and triangle inequality, but not
symmetry.

c) semimetric on X if it satisfies identity, positivity and symmetry, but not triangle
inequality.

We can further allow d to not be finite. A binary function d : X × X → [0,∞] that satis-
fies identity, positivity, symmetry and triangle inequality is called an extended metric on X.
The prefixes “extended”, “pseudo-”, “quasi-”, and “semi-” can be combined when dropping mul-
tiple assumptions from Definition 2.1.1. For example, an extended pseudometric is a func-
tion d : X ×X → [0,∞] that satisfies identity, symmetry and triangle inequality, but not posit-
ivity.

Definition 2.1.3. A map f : X1 → X2 where (X1, d1) and (X2, d2) are metric spaces is called
K-Lipschitz for K > 0 if for all x, y ∈ X1,

d2(f(x), f(y)) ≤ Kd1(x, y).

It is distance-preserving if for all x, y ∈ X1

d2(f(x), f(y)) = d1(x, y).

A distance-preserving map is always injective, and it is called an isometry when it is bijective.
Metric spaces between which an isometry exists are isometric.

Chapter 2: Prerequisites 11

Every metric space (X, d) can be endowed with a metric-induced topology, which can be defined
by giving a base {Br(x) | r ∈ (0,∞), x ∈ X}, where Br(x) is the open ball of radius r centered
at x in the metric d, Br(x) = {x′ ∈ X | d(x, x′) < r}. The converse is not true: not every
topological space X can be endowed with a metric, and the ones that can are called metrizable.

2.1.2 Paths and Length Structures
The main source for this section is [26], although many notions are standard in the fields of
topology and mathematical analysis. The authors study how the notions of distance and length
of a path are related to each other. We rephrase some of their results here.

A path on a topological space X is a continuous map γ : [a, b] → X, where [a, b] ⊂ R is an
arbitrary interval. Common operations on paths can be defined as follows.

Definition 2.1.4. Let γ : [a, b]→ X be a path. The restriction of γ to the interval [c, d] ⊆ [a, b]

is the path γ|[c,d] : [c, d] → X. If δ : [b, c] → X is a path with γ(b) = δ(b), the concatenation
of γ and δ is a path γ ⋆ δ : [a, c] → X satisfying γ ⋆ δ|[a,b] = γ and γ ⋆ δ|[b,c] = δ. A linear
reparametrization of the path γ is a path γ′ : [a−kh , b−kh]→ X defined as γ′(s) = γ(hs+ k) for
some h > 0 and k ∈ R.

Let C be a family of paths γ : [a, b] → X where a and b are variable, and let ℓ : C → [0,∞] be
some function we call length.

Definition 2.1.5. The pair (C, ℓ), where the family C contains all singleton paths {⋆} → X and
is closed under restriction, concatenation and linear reparametrization, and length ℓ is

• monotone, i.e. ℓ(γ|[c,d]) ≤ ℓ(γ) for any γ : [a, b]→ X and [c, d] ⊆ [a, b],

• additive, i.e. ℓ(γ ⋆ δ) = ℓ(δ) + ℓ(γ),

• zero on singleton paths,

• independent of linear reparametrizations, i.e. ℓ(γ) = ℓ(γ′) for any reparametrization γ′

of γ,

is a length structure on X.

Chapter 2: Prerequisites 12

For a simple example of a length structure, let X = R and C be a family of non-decreasing paths
in X. Then the pair (C, ℓ), with length ℓ defined as ℓ(γ) = γ(b)−γ(a) for any path γ : [a, b]→ X,
is a length structure on R.

Note that in [26] a path is any (not necessarily continuous) map J → X, where X is a non-empty
set and J is an arbitrary interval. However, in our work such level of generality is not necessary,
so we only consider topological spaces and continuous paths. Further, we often take C to be the
family of rectifiable paths for the chosen length function.

Definition 2.1.6. A path γ is rectifiable with respect to the length structure ℓ if ℓ(γ) <∞.

Notice that the family of rectifiable paths satisfies the assumptions of the path family from
Definition 2.1.5. To be specific, constant paths, finite concatenations, restrictions and linear
reparametrizations of rectifiable paths are all rectifiable paths as well.

Given a length structure (C, ℓ) on X, we can define dℓ : X ×X → [0,∞] by setting

dℓ(x, y) := inf
ξ∈C
{ℓ(ξ) | ξ(0) = x, ξ(1) = y}.

Note that when there is no path in C that starts at x and ends at y, dℓ(x, y) = ∞. Since dℓ
satisfies identity, positivity and triangle inequality, it is an extended quasimetric. It is induced
by the length structure (C, ℓ), and is called induced distance accordingly. Similarly, given an
extended quasimetric (or even a metric) d on a topological space X, a length function can be
defined as below.

Definition 2.1.7. The length by total variation of a path γ : [a, b]→ X is defined as

ℓd(γ) = sup

N∑
i=1

d(γ(ti−1), γ(ti)),

where the supremum ranges over all the sequences a ≤ t0 < t1 < · · · < tN ≤ b.

If we choose a path family C on X that contains singleton paths and is closed under restrictions,
concatenations and linear reparametrizations (requirements of Definition 2.1.5), then pairing it
with length by total variation gives a length structure [24, Section 2.3.2].

Chapter 2: Prerequisites 13

The interplay between notions of extended quasimetric and length structure is studied extensively
in [26]. In particular, they are interested in the sequences

d −→ ℓd −→ dℓd −→ . . .

ℓ −→ dℓ −→ ℓdℓ −→ . . .

and their idempotency. We restate some of their results here.

Proposition 2.1.8 (Proposition 2.7 of [26]). Let d be an extended quasimetric, γ : [a, b] → X

a path, and φ : [a′, b′] → [a, b] a weakly increasing, continuous function that satisfies φ(a′) = a

and φ(b′) = b. Then

ℓd(γ ◦ φ) = ℓd(γ).

Whenever the length functional is a length by total variation, we can use Proposition 2.1.8 to
justify restricting the family of paths C to only paths I → X, where I is the unit interval.
Proposition 2.1.9 is contained in Theorem 2.19 and Proposition 3.10 of [26].

Proposition 2.1.9. For an extended quasimetric d and a length structure (C, ℓ) on X

ℓdℓ(γ) ≤ ℓ(γ),

d(x, y) ≤ dℓd(x, y), (2.1)

for every path γ ∈ C and every pair of points x, y ∈ X.

2.1.3 Gromov–Hausdorff Distance
In this section, we give the necessary prerequisites on the topic of measuring distances between
metric spaces. In particular, we recall the definition of Gromov–Hausdorff distance between
metric spaces X and Y , which measures how far X and Y are from being isometric. We further
list some known results about it as they appear in [20, 24].

Definition 2.1.10. The Hausdorff distance between compact subsets A and B of a metric
space (M,d) is

dH(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
,

Chapter 2: Prerequisites 14

where d(a,B) = infb∈B d(a, b) and d(A, b) = infa∈A d(a, b). The Gromov–Hausdorff distance
between two compact metric spaces (X, dX) and (Y, dY) is

dGH(X,Y) = inf

X
f

↪−→Z
g←−↩Y

dZH(f(X), g(Y)),

where the infimum ranges over metric spaces (Z, dZ) and isometric embeddings f : X ↪→ Z and
g : Y ↪→ Z.

Gromov–Hausdorff distance is notoriously difficult to compute, which is why the alternative
characterization by [27] via special properties of maps is especially useful.

Definition 2.1.11. Let (X, dX) and (Y, dY) be two metric spaces, and φ : X → Y and ψ : Y → X

two maps between them. The definitions of distortion of φ and the codistortion of the pair φ,ψ
are, respectively,

dis(φ) = sup
x,x′∈X

|dX(x, x′)− dY (φ(x), φ(x′))|

codis(φ,ψ) = sup
x∈X, y∈Y

|dX(x, ψ(y))− dY (φ(x), y)|.

Theorem 2.1.12 ([27]). For bounded metric spaces (X, dX) and (Y, dY)

dGH(X,Y) =
1

2
inf

φ : X→Y
ϕ : Y→X

max{dis(φ),dis(ψ), codis(φ,ψ)},

where the infimum ranges over (not necessarily continuous) maps φ,ψ.

Even when the exact value of Gromov–Hausdorff distance cannot be computed, Theorem 2.1.12
gives a plethora of lower and upper limits for its value.

Corollary 2.1.13. Let (X, dX) and (Y, dY) be two metric spaces. Then

dGH(X,Y) ≤ 1

2
inf
φ∈S
ψ∈T

max{dis(φ),dis(ψ), codis(φ,ψ)},

where S and T are subsets of all maps from X to Y and Y to X respectively. In particular,

dGH(X,Y) ≤ 1

2
max{dis(φ),dis(ψ), codis(φ,ψ)}

Chapter 2: Prerequisites 15

for specific choices of φ : X → Y and ψ : Y → X. On the other hand,

dGH(X,Y) ≥ 1

2
inf

φ : X→Y
dis(φ),

dGH(X,Y) ≥ 1

2
inf

ψ : Y→X
dis(ψ), and

dGH(X,Y) ≥ 1

2
inf

φ : X→Y
ϕ : Y→X

codis(φ,ψ).

This approach to estimating the value of Gromov–Hausdorff distance has been used in combin-
ation with the Borsuk–Ulam Theorem in [20] to improve the lower bounds and in some cases
compute the exact value of Gromov–Hausdorff distance between m-dimensional spheres endowed
with the geodesic distance. Some other useful properties of the Gromov–Hausdorff distance can
be summarized as below.

Proposition 2.1.14 (Properties of the Gromov-Hausdorff distance). For bounded metric spaces
(X, dX) and (Y, dY)

1. dGH(X,Y) <∞,

2. dGH(X,Y) ≤ 1
2 max{Diam(X),Diam(Y)},

3. dGH(X,Y) = Diam(Y) if X = {x0}.

2.2 Topological Methods in Data Science
In the research area of topological data analysis, one of the main assumptions made is that
data is sampled from a nice lower-dimensional subspace in the ambient space. A lot of inherent
information about the problem studied is therefore lost when taking a discrete sample. As
a consequence, point clouds are augmented with topological structure, which is subsequently
studied to hopefully uncover properties of the underlying subspace.

We describe one of the most popular such pipelines here. Some methods for augmentation
with topological structure are presented in Section 2.2.1. Homology, the invariant of topological
spaces used to analyze said augmentations, is described in Section 2.2.2, while its generalization,

Chapter 2: Prerequisites 16

persistent homology, used for analyzing nested families of augmentations, is presented in Sec-
tion 2.2.3. The result of persistent homology is a persistence module which is considered to be a
rich topological summary of a data set. In Section 2.2.4 we list some distances used to compare
persistence modules, and we describe their algebraic structure in more detail in Section 2.2.5.

2.2.1 Shape Approximation
Throughout this section, P = {p0, p1, . . . , pk} is a finite set. In practice, P is a point cloud and
sits in an ambient space (such as, for example, Rd), but the early definitions of this section can
be stated more generally. We closely follow [28].

Definition 2.2.1. An abstract simplicial complex on P is a finite collection K = {Ki ⊆ P}i
of subsets of P such that σ ∈ K and τ ⊆ σ imply τ ∈ K. The sets in K are called the abstract
simplices. The dimension of an abstract simplex σ is |σ| − 1. Any non-empty subset τ ⊆ σ

is a face of σ, and it is proper if σ ̸= τ . Similarly, σ is a coface of τ and is proper if σ ̸= τ .
A subcomplex of K is an abstract simplicial complex L with L ⊆ K. For each j ∈ N the
subcomplex K(j) = {σ ∈ K | dim(σ) ≤ j} consisting of all simplices in K of dimension at most j
is called the j-skeleton of K. The 0-skeleton is also called the vertex set, and can be denoted
as Vert(K). The dimension of an abstract simplicial complex is the maximum dimension of its
abstract simplices. A simplicial map of K into L is a function f : Vert(K) → Vert(L) such
that σ ∈ K implies f(σ) ∈ L. Two abstract simplicial complexes K and L are isomorphic if
there exists a bijection f : Vert(K) → Vert(L) such that α ∈ K if and only if f(α) ∈ L, or,
equivalently, when f and its inverse f−1 are simplicial maps.

Note that there exists a closely related notion of geometric simplicial complex with an
additional requirement that P sits in an ambient space Rd and the points spanning any simplex
in the complex must be affinely independent. It is easy to see this condition is not satisfied
for a general abstract simplicial complex, since it is violated whenever the dimension of the
abstract simplicial complex is bigger than the dimension of the ambient space. On the other
hand, a geometric simplicial complex is always an abstract simplicial complex as well. Luckily,
for any abstract simplicial complex K in ambient dimension d, one can always obtain a geometric
simplicial complex G in a higher ambient dimension that is isomorphic to K. This result is called
the Geometric Realization Theorem [28, pg. 64], and such a geometric simplicial complex G is
called a geometric realization of K.

Chapter 2: Prerequisites 17

We give definitions of two methods of constructing a simplicial complex on a data cloud, namely
the Čech and Vietoris–Rips complex. These are the only methods we discuss here, however,
there are many others that are used frequently (such as the Delaunay complex [28, Chapter
III.3], (weighted) alpha complex [28, Chapter III.4] and witness complex [29]).

Definition 2.2.2. The Čech complex on points P = {p0, . . . , pn} ⊂ Rd at radius r is the
simplicial complex

Čech(r) = {S ⊂ P |
⋂
x∈S

Bx(r) ̸= ∅},

where Bx(r) is the open ball of radius r centered at x.

Definition 2.2.3. The Vietoris–Rips (VR) complex on points P = {p0, . . . , pn} ⊂ Rd at
radius r is the simplicial complex

VR(r) = {S ⊂ P | max
s,s′∈S

∥s− s′∥ ≤ 2r}.

Note that the condition maxs,s′∈S∥s − s′∥ ≤ 2r is equivalent to saying that the open balls of
radius r centered at points in S all pairwise intersect. A simple example of when the two con-

x0 x1

x2

r

x0 x1

x2

x0x1

x0x2 x1x2

x0 x1

x2

x0x1

x0x2 x1x2
x0x1x2

Čech(r)

VR(r)

Figure 2.1: A simple example where the Čech and VR complex on the same dataset and with
the same radius differ. Because the unit balls Bx(r) do not have a triple intersection, the
Čech complex Čech(r) does not contain a 2-simplex. However, since the balls intersect pairwise
on {x0, x1, x2}, the simplex they span is in VR(r).

Chapter 2: Prerequisites 18

structions differ is shown in Figure 2.1. Observe the following: the Vietoris-Rips complex VR(r)

is determined by its 1-skeleton. A k-simplex σ is in VR(r) if and only if each of its edges ϵ ∈ σ(1)

is in VR(r). This makes computations easier, which is why Vietoris-Rips complexes are the most
widely used construction for shape approximation. Čech complexes, however, come with nice
theoretical guarantees.

Definition 2.2.4. A homotopy between continuous maps f, g : X → Y , where X and Y are
topological spaces, is another continuous map H : X × [0, 1]→ Y such that

H(x, 0) = f(x)

H(x, 1) = g(x)

for all x ∈ X. If a homotopy between f and g exists, we write f ≃ g.

Two topological spacesX and Y are homotopy equivalent if there exist continuous maps f : X →
Y and g : Y → X such that g ◦ f ≃ IdX and f ◦ g ≃ IdY . In that case, we write X ≃ Y and refer
to f and g as homotopy equivalences.

Note that in both cases ≃ is an equivalence relation. As a consequence we often say that
homotopy equivalent spaces are “of the same homotopy type”.

Theorem 2.2.5. The geometric realization of the Čech complex on P at radius r is homotopy
equivalent to the union of open balls ∪p∈PBp(r).

Remark 2.2.6. Theorem 2.2.5 is a corollary of the Nerve Theorem, several versions of which
appear in [30, 31, 32]. It is especially strong if we assume that the data set P lies along a
latent low-dimensional manifold embedded in ambient space, which is known as the manifold
hypothesis. If the chosen radius r is sufficiently small, and the sample P is dense enough with
respect to r (for specific conditions and more details on this line of research, see [33, 34]), then
Theorem 2.2.5 posits that Čech(r) on P is homotopy equivalent to the latent manifold.

Shape approximation using a simplicial complex requires the choice of radius. Intuitively, choos-
ing smaller radius will lead to more local properties of the latent manifold being preserved, while
a bigger radius favors global properties (using too large a radius, however, leads to loss of all
relevant information). Unfortunately, properties on different scales can rarely be preserved in
one single simplicial complex for one chosen radius, as for example in Figure 2.2.

Chapter 2: Prerequisites 19

(a) Point cloud P ⊆ R2. (b) VR(0.4) on P .

(c) VR(0.47) on P . (d) VR(0.6) on P .

Figure 2.2: An example of a point cloud (a) and Vietoris-Rips complexes on it at different
radii: r = 0.4 in (b), r = 0.47 in (c), and r = 0.6 in (d). We clearly see the point cloud is sampled
from two disjoint circles, but the Vietoris-Rips complex is not able to capture this information
at any one radius. This is especially well illustrated in (c), where a part of the bigger circle is
already connected to the smaller one while not yet being fully connected with parts of itself. In
addition, we would expect two cycles to be visible from the complex, but none have been formed
yet. When they are formed, see (d), so many points are connected that the information about
there being two connected components is lost.

Chapter 2: Prerequisites 20

Luckily, both Čech and VR complexes (use K to denote either) have the property that for
radii r1 ≤ r2 the complex K(r1) is contained in K(r2). This is very useful when we want to
study the evolution of topological properties with respect to scale.

Definition 2.2.7 (Filtered simplicial complex). A sequence {Ki}i=0,...,n of simplicial complexes,
such that

∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn,

is called filtered simplicial complex.

Sometimes, as is the case for filtered Čech or VR simplicial complexes induced by an increasing
sequence of radii r0 < r1 < . . . < rn, the first simplicial complex in the sequence need not be an
empty set. If that is the case, we add it artificially. Further, we sometimes require that Kn be a
saturated simplicial complex (meaning that any simplex spanned by a subset of vertices of Kn

is in Kn).

When using filtered simplicial complexes to study topological properties at different scales, fur-
ther justification for using VR complexes can be given.

Theorem 2.2.8 (Theorem 2.5 of [35]). For a finite S ⊂ Rd and r ≥ 0,

Čech(r) ⊆ V R(r) ⊆ Čech

(√
2d

d+ 1
r

)
.

This fact can be leveraged to show that under certain assumptions about “goodness” of our
sample P with respect to a measure of convexity defect, the VR and Čech complexes on P are
homotopy equivalent [36], which means a version of Theorem 2.2.5 under stronger assumptions
holds for VR complexes as well.

The main method used to study filtered simplicial complexes is persistent homology, which
we present in Sections 2.2.2 and 2.2.3.

Chapter 2: Prerequisites 21

2.2.2 Homology
In this section we present homology, a method to study topological properties of spaces. As
we are mainly interested in simplicial complexes, we define simplicial homology. Although most
concepts of this section can be formulated over commutative rings, we choose to instead work
with a fixed field F to bypass certain complications that would otherwise arise.

Definition 2.2.9. Let p ∈ Z be a dimension and K a simplicial complex. The free F-module
on the basis of p-simplices in K is called the p-chain group and denoted as Cp = Cp(K). Each
element in Cp(K) is called a p-chain.

A p-chain is therefore a formal sum
∑
aiσi of p-simplices in K with ai ∈ F. The addition is

done component-wise, i.e.
∑
aiσi +

∑
biσi =

∑
(ai + bi)σi, and it inherits associativity and

commutativity from F. Further, the neutral element is 0 =
∑

0σi, and an inverse of c =
∑
aiσi

is −c =
∑

(−ai)σi. Since F is a field, chain groups Cp are vector spaces.

Although chain groups can be defined for all integer values of p, they are trivial for p < 0

and p > dim(K). They are related between each other in the following way.

Definition 2.2.10. The boundary of a p-simplex σ(x0, x1, . . . , xp) is the formal sum

∂p(σ) =

p∑
k=0

(−1)k[x0, . . . , x̂k, . . . , xp],

where [x0, . . . , x̂k, . . . , xp] is the co-dimension 1 face of σ spanned by x0, . . . , xk−1, xk+1, . . . , xp.
The boundary generalizes to p-chains as

∂p(c) =
∑

ai∂p(σi),

where c =
∑
aiσi. This defines a map ∂p : Cp → Cp−1 called the p-th boundary map. By

combining the chain groups and boundaries for all dimensions p ∈ Z, we obtain the chain
complex

· · · ∂p+2−−−→ Cp+1
∂p+1−−−→ Cp

∂p−−→ · · · ∂2−−→ C1
∂1−−→ C0

∂0−−→ 0.

By definition the boundary maps commute with addition in the chain groups and so are linear
maps. We give elements in their image and their kernel a special name.

Chapter 2: Prerequisites 22

Definition 2.2.11. As the name suggests, a p-chain is a p-boundary, if it is a boundary of
a (p+ 1)-chain. The set Bp = Bp(K) of all p-boundaries is a subspace of Cp, called the group
of p-boundaries. A p-cycle is a p-chain, whose boundary is the zero (p − 1)-chain. The
set Zp = Zp(K) of all p-cycles is a subspace of Cp, called the group of p-cycles.

As we implied before, Bp = im ∂p+1 and Zp = ker ∂p. What is even more interesting, the group
of p-boundaries is a subgroup of the group of p-cycles.

Theorem 2.2.12 (Fundamental Lemma of Homology, [28, p. 95]). For any p ∈ Z the composition
of boundary maps ∂p−1∂p is the zero map.

This enables us to form quotients and differ between cycles up to boundaries (see Figure 2.3),
which naturally leads to the notion of homology.

Definition 2.2.13. The quotient vector space Hp(K) = Zp(K)/Bp(K) is the p-th homology
group of simplicial complex K. The rank of Hp is the p-th Betti number β(K).

Homology groups are invariants of topological spaces. Intuitively, H0(K) describes the connected
structure of K, and its elements are formal sums of connected components. The higher
dimensional homology groups describe the holes (for p = 1) and voids (for p ≥ 2) appearing
in K.

Example 2.2.14 (Homology of spheres). Approximate an n-sphere Sn = {x ∈ Rn+1 | ∥x∥2 = 1}
with the simplicial complex that is the boundary of an (n+ 1)-simplex. One can then compute
the homology groups and obtain that

Hp(S0) ∼=

F⊕ F, p = 0,

0, otherwise,
and Hp(Sn) ∼=

F, p = 0 or p = n,

0, otherwise.
△

2.2.3 Persistent Homology
As mentioned in Section 2.2.1, persistent homology is a method used to study the evolution of
topological properties of a filtered simplicial complex

∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn.

Chapter 2: Prerequisites 23

Figure 2.3: An example of a simplicial complex K on the left, and three elements of the group of
its 1-cycles Z1(K) on th right: ℓ1 = v2v3+v3v4+v4v5+v2v5, ℓ2 = v0v1+v1v2+v2v5+v5v7−v0v7,
and ℓ3 = v0v1 + v1v2 + v2v5 − v0v5. Notice that ℓ1 is also a boundary of v2v3v4 + v2v4v5, and
is contractible within K. This is not true for cycles ℓ2 and ℓ3, however one can be transformed
into the other using a homotopy within K. Notice that these properties are respected by homo-
topy: q1(ℓ1) = 0, while q1(ℓ2), q1(ℓ3) ̸= 0. Moreover, since the difference ℓ2−ℓ3 = v0v5+v5v7−v0v7
is a boundary, q1(ℓ2) = q1(ℓ3). This illustrates that H1 homology counts “holes” in a simplicial
complex. Source: [37].

The topological properties we speak of are the homology groups. We can apply Hp to each
complex in the sequence for any dimension p we are interested in. The inclusions Ki ↪→ Kj

for i ≤ j induce homomorphisms Hp(Ki)→ Hp(Kj), which gives a sequence

0 = Hp(K0)→ Hp(K1)→ . . .→ Hp(Kn).

This sequence is an example of a persistence module.

Remark 2.2.15. Persistent homology is more generally the study of the evolution of homology
through a nested sequence of topological spaces, called a filtration. A filtered simplicial complex
is a filtration where each of the topological spaces is a simplicial complex, but it is far from being
the only useful or interesting example. Other examples include sublevel set filtration and
superlevel set filtration, which are, given a function f : X → R on a topological space X, the
nested sequence of {f−1((−∞, t])}t∈R and the nested sequence of {f−1([t,∞))}t∈R respectively.
Those are the standard filtrations used in Morse theory [38].

Definition 2.2.16 (General definition of a persistence module). A persistence module is a
covariant functor V : P → Vect(F), where Vect(F) is the category of F-vector spaces and P is a
poset viewed as a category with objects p ∈ P and the set of morphisms Hom(p, q) containing
one element if and only if p ≤ q. In other words, V assigns an F-module Vp to each element p ∈ P

Chapter 2: Prerequisites 24

and a linear map vp,q : Vp → Vq, called an inner morphism, to any pair of indices p, q ∈ P

with p ≤ q. Let V and W be two persistence modules indexed over the same poset P . A
(persistence) morphism between V and W is a family Φ = {Φp : Vp → Wp}p∈P of linear
maps that commute with the inner morphisms, that is Φq ◦ vp,q = wp,q ◦Φp for all p ≤ q. It is a
(persistence) isomorphism if its constituent maps Φp are all isomorphisms.

Note that Definition 2.2.16 is given in full generality. However, throughout this work we only
ever work with two types of persistence modules:

a) A finitely indexed pointwise finite dimensional (p.f.d.) persistence module
is a persistence module V : [ℓ + 1] → Vect, where [ℓ + 1] = {0, 1, . . . , ℓ} is the totally
ordered set with ℓ + 1 elements and Vect is the category of finite dimensional vector
spaces over F. In practice, it is sensible to assume a persistence module is of this type,
because the homology of a one-parameter filtration built on a finite real-world data set
changes finitely many times when we vary the filtration parameter.

b) A ladder persistence module (V,W,Φ) consists of finitely indexed p.f.d. persistence
modules V,W : [ℓ + 1] → Vect and a family of linear maps {Φi}i∈[l+1] arranged in a
commutative diagram

V0 V1 V2 · · · Vl−1 Vl

W0 W1 W2 · · · Wl−1 Wl.

v0,1

Φ0

v1,2

Φ1

vl−1,l

Φl−1 Φl

w0,1 w1,2 wl−1,l

Note that this definition suffices in our setting, but it can be stated more generally [39] in
the setting of zig-zag persistence [40], where the arrows of inner morphisms v and w
can be reversed, as long as the direction is the same for vi,i+1 and wi,i+1 for all i ∈ [l+1].

Notice that the notion of a morphism Φ between finitely indexed p.f.d. persistence modules V
and W is equivalent to the notion of a ladder persistence module (V,W,Φ). Further, p.f.d.
persistence modules are nice to work with because they are a direct sum of intuitive building
blocks.

Definition 2.2.17. Let P be a poset and J ⊂ P an interval within it, i.e. for all j ≤ k ∈ J any l
satisfying j ≤ l ≤ k is also in J . The interval persistence module kJ : P → Vect consists of
vector spaces

(kJ)p =

F, if p ∈ J,

0, otherwise,

Chapter 2: Prerequisites 25

combined with linear maps (kJ)p → (kJ)q that are identity whenever p ≤ q ∈ J , and the zero
map otherwise.

Theorem 2.2.18 (Structure Theorem [41]). Every finitely indexed p.f.d. persistence mod-
ule V : P → Vect is isomorphic to a direct sum of finitely many interval persistence modules. In
other words, there exist a finite multiset Bar(V) = {(ai, bi) ∈ P 2}i such that

V ∼=
⊕

(a,b)∈Bar(V)

k[a,b].

This decomposition uniquely determines the persistence module, so we compress the information
it carries as follows.

Definition 2.2.19. The multiset Bar(V) is the barcode of persistence module V . The multiset

Diag(V) = Bar(V) ∪∆,

where ∆ is the multiset containing each point (a, a) ∈ P 2 with multiplicity∞, is the persistence
diagram of V .

2.2.4 Bottleneck and Interleaving Distance
To compare pairs of persistence modules, many notions of distance have been introduces on
their set. Most commonly used, the bottleneck and the Wasserstein distances, are defined via
persistence diagrams. We state the definition of the former, and refer the reader to [42] for
information on the latter.

Definition 2.2.20. Let V,W be finitely indexed p.f.d. persistence modules and Diag(V) and
Diag(W) their persistence diagrams. The bottleneck distance between V and W is

dB(V,W) = inf
γ

sup
x
||x− γ(x)||∞

where the supremum ranges over all x ∈ Diag(V), and the infimum ranges over all bijec-
tions γ : Diag(V)→ Diag(W).

The bottleneck distance is a metric on the space of persistence diagrams (assuming as above they
are obtained from finitely indexed p.f.d. persistence diagrams). However, one can also define an

Chapter 2: Prerequisites 26

extended pseudo-metric on the space of persistence modules that is algebraic in nature and does
not require the computation or even existence of the interval decomposition. An integral role in
its definition is played by δ-interleaving morphisms.

Definition 2.2.21. The shift of a persistence module V is a persistence module V (δ) defined
as

V (δ)t = Vt+δ

v(δ)t1,t2 = vt1+δ,t2+δ

for any δ ≥ 0 (where the persistence module V (0) is simply V itself). Persistence modules V
and W are δ-interleaved if there exist morphisms Φ: V → W (δ) and Ψ: W → V (δ) such that
the diagrams

Vt Vt+2δ

Wt+δ

vt,t+2δ

Φt Ψt+δ

and

Vt+δ

Wt Wt+2δ

Φt+δ

wt,t+2δ

Ψt

commute. The pair (Φ,Ψ) is called a δ-interleaving.

Note that two persistence modules are 0-interleaved if and only if they are isomorphic. As
a consequence, we often consider the parameter δ to measure how far from isomorphic two
persistence modules can be.

Definition 2.2.22. The interleaving distance dI is an extended pseudometric on the set of
persistence modules defined as

dI(V,W) = inf {δ | V and W are δ-interleaved}.

Remark 2.2.23. Since interleaving distance does not require the existence of interval decom-
position, it can be stated in a more general setting than the bottleneck distance, in which it is
“only” an extended pseudometric. Indeed, notice that interval persistence modules k[a,b] and k[a,b)
are δ-interleaved for all δ > 0 but not isomorphic, which violates identity; and that there is no δ
for which k[a,∞) is δ-interleaved with an interval persistence module with bounded support, and
it is thus possible for the interleaving distance not to be finite. However, on the set of finitely
indexed p.f.d. persistence module, the interleaving distance is, in fact, a metric. Further, it agrees
with the bottleneck distance on that same set.

Chapter 2: Prerequisites 27

Theorem 2.2.24 (Isometry Theorem [10]). For any pair V,W of finitely indexed p.f.d. persist-
ence modules

dB(V,W) = dI(V,W).

In the rest of this work, we assume all persistence modules are finitely indexed and p.f.d. unless
stated otherwise.

2.2.5 Barcode Basis
Here, we mostly follow the terminology of [11]. To begin with, define the following relations on
the set of intervals:

[i1, j1] ≤ [i2, j2] ⇐⇒ i1 < i2 or (i1 = i2 and j1 < j2),

[i1, j1] ⪯ [i2, j2] ⇐⇒ i1 ≤ i2 ≤ j1 ≤ j2
[i1, j1] ⊂ [i2, j2] ⇐⇒ i2 < i1 ≤ j1 < j2

The first, ≤, is simply the lexicographical order (total), while the second, ⪯, is not transitive and
therefore not an order. The relation ⪯ is uniquely useful in persistence barcodes, since it encodes
the restrictions of how a morphism of persistence modules can map (see Remark 2.2.28). It is
often referred to as the overlapping relation [43]. Finally, the relation I ⊂ J simply states
that I is strictly nested in J . Note that when a pair of bars I ≤ J has a nonempty intersection
and I ⪯̸ J , it must be strictly nested as J ⊂ I.

Let V be a persistence module indexed over [ℓ+ 1] = {0, 1, . . . , ℓ} and let ni = dimF Vi. Select a
basis family

B = {Bi ⊂ Vi | Bi is an ordered basis of Vi for all i ∈ [ℓ+ 1]}.

In these bases the inner morphisms vi−1,i : Vi−1 → Vi can be represented as ni×ni−1 matrices Ai.
Consequently, the module V is isomorphic to

Fn0
A1−−−→ Fn1

A2−−−→ · · · Aℓ−1−−−→ Fnℓ−1
Aℓ−−−→ Fnℓ .

Chapter 2: Prerequisites 28

Definition 2.2.25. Let ω : ⊕[a,b] k[a,b] → V be an isomorphism between the interval decompos-
ition of V and V , and αi its component at index i. Then the basis family

B = {imωi ⊂ Vi | i ∈ [ℓ+ 1]}

is a barcode basis of V .

Intuitively, a barcode basis is a basis family B in which a bar corresponds to a sequence of basis
vectors, each one mapping to the next with the inner morphisms. After fixing an order on Bar(V),
this corresponds to the matrix representations Ai of inner morphisms being in barcode form:
in row-echelon form with all pivots equaling 1 and all other entries being 0,

1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 0

 .

Via this observation, we could give an alternative definition of the barcode basis as a basis family
in which all matrices Ai are in barcode form with respect to the chosen order (as in [11]).

The choice of barcode basis for a persistence module is not unique, and we can change the barcode
basis via the action of G =

∏l
i=0 GL(ni;F). The action of an element g = (g0, g1, . . . , gl) of G

on a matrix sequence A = {Ai}i is given by

(gA)i = gi ·Ai · g−1
i−1,

which corresponds to switching from basis B = {Bi} to gB = {giBi}. By [11, Proposition 2.4.]
any matrix sequence A ∈ X can be put in a barcode form by the action of G. The changes of
basis in G that keep the matrix sequence A unchanged are part of the stabiliser of A,

Stab(A) =
{
g ∈ G | Ai = gi ·Ai · g−1

i−1 for all 1 ≤ i ≤ l
}
. (2.2)

Introducing barcode bases enables us to write persistence morphisms as matrices.

Chapter 2: Prerequisites 29

Definition 2.2.26. Let {Bi}i∈[l+1] be a barcode basis of persistence module V corresponding
to an isomorphism ω : ⊕[a,b] k[a,b] → V . For a bar J of multiplicity µ in Bar(V), a family

x
(j)
J = {(ω|

k
(j)
J

)i ∈ Bi}i∈J ,

where 0 ≤ j ≤ µ, is called a generator of bar J . Note that there are µ distinct choices for a
generator of J as implied by the index j. Whenever the explicit choice is not important, we use
the notation xJ .

A collection = {bi ∈ Bi}i∈J is a generator of bar J = [α, β] if and only if it satisfies

• Ai+1bi = bi+1 for i ∈ [α, β − 1],

• Aβ+1bβ = 0 and

• ⟨Aαbα−1, bα⟩α = 0 for all bα−1 ∈ Bα−1,

where the inner product ⟨·, ·⟩i is induced by the basis Bi.

Proposition 2.2.27. Choose barcode bases for persistence modules V and W . Then any morph-
ism Φ: V →W can be written as a single matrix

MΦ =

X
[0,0]
[0,0] X

[0,1]
[0,0] . . . X

[0,l]
[0,0] 0 . . . 0 . . . 0

X
[0,1]
[0,1] . . . X

[0,l]
[0,1] X

[1,1]
[0,1] . . . X

[1,ℓ]
[0,1] . . . 0

. . .
...

...
...

...
X

[0,l]
[0,l] 0 . . . X

[1,ℓ]
[0,ℓ] . . . X

[ℓ,ℓ]
[0,ℓ]

X
[1,1]
[1,1] . . . X

[1,ℓ]
[1,1] . . . 0

. . .
...

...
X

[1,ℓ]
[1,ℓ] . . . X

[ℓ,ℓ]
[1,ℓ]

. . .
...

X
[ℓ,ℓ]
[ℓ,ℓ]

, (2.3)

where each sub-matrix X [i1,j1]
[i2,j2]

encodes how Φ maps generators of bar [i1, j1] in Bar(V) to gener-
ators of bar [i2, j2] in Bar(W). The rows and columns are ordered with respect to the overlapping
relation, ⪯, increasingly, using arbitrary order among generators of the same bar.

Chapter 2: Prerequisites 30

The proof of Proposition 2.2.27 is included in the proof of [11, Theorem 4.3.] as Step 1. Notice
that a bar J with multiplicity µJ has µJ columns (or rows) associated to it, each belonging to
one of the generators xJ .

Remark 2.2.28. It is easy to see that there cannot be a non-zero morphism IJ1 → IJ2 between
interval persistence modules unless J2 ⪯ J1 (this must hold if the commuting-squares requirement
in the definition of a morphism of persistence modules is to be satisfied). This is reflected in
the general matrix shape (2.3), where the only non-zero block matrices XJ1

J2
are associated with

bars J2 ⪯ J1.

2.3 Directed Spaces
Following [44, 19] we present directed spaces, which are topological spaces with additional direc-
ted structure. Let therefore X be a topological space and I the unit interval [0, 1] with euclidean
topology.

Definition 2.3.1. A continuous map γ : I → X is called a path on X, and γ(0) and γ(1) are
its source and target respectively. The reverse path of γ is the path γ∗ : I → X with γ∗(t) =
γ(1− t). Given two paths, γ, with source x and target x′, and γ′, with source x′ and target x′′,
their concatenation, γ ⋆ γ′ is a path defined as

γ ⋆ γ′(t) =

γ(2t), if 0 ≤ t ≤ 1
2

γ′(2t− 1), if 1
2 ≤ t ≤ 1

and it is a path with source x and target x′′.

Note that this definition of a path differs from the one in Section 2.1.2, since the domain interval I
in Definition 2.3.1 is fixed. As we justify later in this section, however, the two theories coincide
nicely.

Definition 2.3.2. A directed space or d-space is a pair (X, P⃗ (X)), where X is a topological
space and P⃗ (X) is a collection of paths on X, called the directed structure on X, such that:

DS1 Every constant path cx : I → {x} for x ∈ X belongs to P⃗ (X).

DS2 The precomposition hγ of a path γ in P⃗ (X) with any weakly increasing continu-
ous h : I → I is in P⃗ (X) (partial reparametrization).

Chapter 2: Prerequisites 31

DS3 The concatenation γ ⋆ γ′ of two paths γ and γ′ in P⃗ (X) is also in P⃗ (X).

Whenever the directed structure does not need to be specified we denote the pair (X, P⃗ (X))

as X⃗. The elements of P⃗ (X) are called d-paths on X. The subset of P⃗ (X) containing those
d-paths γ with γ(0) = x and γ(1) = x′ is denoted by P⃗ (x, x′). Any subset Y ⊆ X can inherit
the topology and the directed structure from X⃗ by setting P⃗ (Y) = {γ ∈ P⃗ (X) | γ(I) ⊆ Y }.
Such a d-space (Y, P⃗ (Y)) is called a d-subspace of X⃗. Further, any d-space X⃗ has a reverse
d-space X⃗∗ = (X, P⃗ (X)∗) whose directed structure P⃗ (X)∗ is given by the reverse paths of
d-paths in P⃗ (X). Given two d-spaces X⃗ and Y⃗ , a directed map or d-map is a continuous
map F : X → Y such that, for every γ in P⃗ (X), the composition Fγ is in P⃗ (Y). We denote it
by F⃗ : X⃗ → Y⃗ . The category of d-spaces with d-maps is denoted dTop.

Since partial reparametrizations are not necessarily surjective, Property DS2 implies that P⃗ (X)

is closed under taking subpaths. As we defined it, concatenation is not associative, but it is up
to reparametrization.

Observe that a topological space X can be endowed with many directed structures. Two simple
examples that can be defined for any X are the discrete directed structure P⃗ (X) = {cx}x∈X ,
which consists of only the constant paths, and the trivial directed structure P⃗ (X) = XI ,
which consists of all paths on X. The d-spaces (X, {cx}x∈X) and (X,XI) are called the discrete
d-space and the trivial d-space respectively. Moreover, the set of all directed structures on a
topological space X form a lattice [44].

Definition 2.3.3. Let P(X) be the set of all possible directed structures on a topological spaceX,
so that (X, P⃗) is a d-space for every P⃗ ∈ P(X). Endow it with a partial order

P⃗ ≤P Q⃗ ⇐⇒ P⃗ ⊆ Q⃗.

The order induces a lattice structure on P(X) by defining the meet of P⃗ and Q⃗ as P⃗∧Q⃗ := P⃗∩Q⃗,
and their join as P⃗ ∨ Q⃗ := P⃗ ∪ Q⃗, where P⃗ ∪ Q⃗ is the closure of P⃗ ∪ Q⃗ under finite concatenation
and partial reparametrization. The lattice (P(X),≤P) is complete, and bounded by the trivial
directed structure as top element ⊤ and the discrete directed structure as bottom element ⊥.

Definition 2.3.4. For a subset A ⊂ XI of paths on a topological space X, the directed
structure generated by A is the smallest directed structure containing A,

A⃗ =
∧
{P⃗ ∈ P(X) | A ⊆ P⃗} =

⋂
{P⃗ ∈ P(X) | A ⊆ P⃗}.

Chapter 2: Prerequisites 32

The d-space (X, A⃗) is called the d-space generated by A.

An interesting class of examples of d-spaces arises from posets. A topological space with a partial
order (X,≤X) defines a d-space (X, P⃗ (X)) where P⃗ (X) is the set of weakly increasing paths with
respect to ≤X , i.e., paths γ such that γ(s) ≤X γ(t) for every s ≤ t. For example, the product
order induces a directed structure on Rk.

Example 2.3.5 (Directed (Hollow) Hypercubes). Let Qn = δIn ⊂ Rn be the boundary of
the n-cube for some n ≥ 1. Denote its facets as

F ij = Ii−1 × {j} × In−i,

where j = 0, 1 and i = 1, . . . , n, and endow each of them with the partial order ≤ij inherited
from Rn. Since the corresponding orders agree on the intersections of facets, we can define a
partial order ≤Qn

on Qn so that ≤Qn
restricted to F ij is ≤ij for any i = 1, . . . , n and j = 0, 1.

Define the directed (hollow) n-cube Q⃗n to be the pospace (Qn, P⃗ (Qn)) with the directed
structure P⃗ (Qn) containing all weakly increasing paths with respect to the partial order ≤Qn

. △

2.3.1 Operations on Directed Spaces
The category dTop of d-spaces is complete and cocomplete [19, Proposition 4.5], which in
particular means it is closed under finite products, coproducts, pullbacks and pushouts. Below,
we specify what the underlying topological spaces and the distinguished paths are for a few such
constructions. Therefore, let (X, P⃗ (X)) and (Y, P⃗ (Y)) be two d-spaces.

Definition 2.3.6. The Cartesian product of d-spaces X⃗ and Y⃗ , denoted by X⃗ × Y⃗ , is
the topological space X × Y with the directed structure given by the product P⃗ (X × Y) :=

P⃗ (X)× P⃗ (Y) in Set.

The disjoint union of d-spaces X⃗ and Y⃗ , denoted by X⃗ ⊔ Y⃗ , is the topological space X ⊔ Y
with the directed structure given by the coproduct P⃗ (X ⊔ Y) := P⃗ (X) ⊔ P⃗ (Y) in Set.

Let X⃗ be a directed space, ∼ an equivalence relation on the underlying topological space X,
and π : X → X/∼ the corresponding quotient map. Quotient space X/∼ can be endowed with a
set of d-paths P⃗ (X/∼) inherited from X⃗ via the quotient map, namely

P⃗ (X/∼) = {π(γ) | γ ∈ P⃗ (X)}.

The resulting d-space is called the quotient d-space of X⃗ under ∼, and denoted as X⃗/∼.

Chapter 2: Prerequisites 33

2.3.2 Directed Spaces and Length Structures
Consider a d-space X⃗ where the underlying spaceX is a metric space (X, d) and its topology is in-
duced by said metric. As seen in Definition 2.1.7, the metric induces a length function ℓd on paths
in X, called the length by total variation. Further, Proposition 2.1.8 justifies restricting the path
structure to paths from the unit interval to X. In accordance with this result, define C(P⃗ (X)) to
be the set of all continuous functions γ : [a, b]→ X for which a composition γ ◦ φ is in P⃗ (X) for
some weakly increasing, continuous function φ : [0, 1] → [a, b] satisfying φ(0) = a and φ(1) = b.
Note that paths in P⃗ (X) and singleton paths are in C(P⃗ (X)), which is also closed under restric-
tion, concatenation and linear reparametrization.

Corollary 2.3.7. The pair (C(P⃗ (X)), ℓd) is a path structure on X.

2.4 Gene Expression Data
Historically, studying function and disease in healthcare has relied exclusively on behavior and
phenotype observation. Developments of new sequencing methods, however, have enabled re-
searchers to enrich their studies with genotype information as well. The first methods, falling
in the family of bulk sequencing methods, would obtain the genetic information from a tis-
sue and average it out. With the advancement of sequencing procedures, however, it became
possible to obtain gene expression data at the resolution of individual cells, providing detailed
information on cellular heterogeneity. A family of such sequencing methods is called single-cell
RNA sequencing (scRNA-seq).

In this section we give the molecular biology prerequisites needed for understanding single-cell
sequencing methods and the resulting data sets. We list the steps of the sequencing process and
the technical artifacts each step might introduce to the data. We also briefly discuss the natural
variance present in the data. Further, we detail the standard pipeline used to perform data
analysis (and clustering more in particular) on single-cell RNA sequencing (scRNA-seq) data,
and some drawback of the methods used. The general sources for the sequencing technologies
are [45, 46], and [47, 48, 49, 50, 51] for the computational aspects.

2.4.1 Cellular Processes
Every organism is built from cells, which are also considered to be basic functional units. They
are active all the time, and each cell has the same set of instructions (barring the very interesting
phenomenon of mosaicism), called the deoxyribonucleic acid (DNA).

Chapter 2: Prerequisites 34

The DNA is a double-stranded molecule, where each of the two famously twisted strands is a
sequence of smaller units, called nucleotide bases. There are four types of nucleotide bases in
DNA, called cytosine, guanine, adenine and thymine. They can follow each other in whatever
sequence, as long as the two strands satisfy the base pairing rule: adenine on one strand is
always accompanied by thymine on the other (and vice versa), and cytosine is always paired with
guanine. The DNA is a very long molecule, with the number of nucleotide pairs varying across
different species (for example, the approximate number for human DNA is 3 billion) [52, page
12]. It can be split in subsequences called genes, each corresponding to one set of instructions.

However, DNA is not the only molecule carrying genetic information in a cell. In fact, there are
many others including several types of ribonucleic acid (RNA). In contrast to DNA, RNA
is a single-stranded molecule. While its strand is composed of nucleotide bases in a similar way
to DNA, a new base, called uracil, takes the place of thymine. Here, we focus on messenger
RNA (mRNA) whose purpose is to carry the instructions for synthesizing protein from the cell
nucleus to the ribosomes. It is a product of a process called transcription (see Figure 2.4), in
which the two strands of DNA temporarily split at the location of the gene that is being copied
(each gene that has been copied is called expressed). mRNA is then assembled as the base-
pair-negative of one of the strands where uracil is again replaced by thymine. Once assembled,
it travels to the ribosome where protein is synthesized in a process called translation.

The importance of proteins for cellular structure and function could not be overstated. They have
many roles and are involved in nearly all cellular processes, including replicating and transcribing
DNA, metabolism, controlling in-flow and out-flow of materials or information, . . . This is why
knowledge about which proteins are being produced by a cell at any given time provides incredible
insight. Since their synthesis depends on mRNA molecules, this is mirrored in the amount of
mRNA, and more particularly, the amount of times a specific gene has been expressed. This is
exactly the type of information collected during single-cell RNA sequencing, with the resulting
data being appropriately called gene expression data.

2.4.2 Single-Cell RNA Sequencing
In the section we give a rough outline of steps during the single-cell RNA sequencing to obtain
a gene expression data set.

It all begins with a sample, which is either a tissue, an organism or a collection thereof. Individual
cells must then be separated from the rest of the sample and isolated, which is usually done by

Chapter 2: Prerequisites 35

Figure 2.4: An illustration of the processes of transcription and translation. Source: [53]

immersing each cell into its own droplet of oil-based emulsion. This is a very intricate step, and it
is often not entirely successful. As a result, some droplets might have “too little” genetic material
(so called empty droplets [54]), while some others might contain genetic material belonging
to other cells in addition to theirs. Such a droplet is referred to as a doublet [55]. Regardless,
mRNA is captured from each droplet. The next step is called reverse transcription, in which
mRNA is used as a template for constructing a more stable double-stranded copy DNA (cDNA)
molecule. To be precise, a second strand is attached to each mRNA molecule according to the
base-pair rules. This conversion also enables the subsequent use of DNA-based techniques. An
example of such a technique is polymerase chain reaction, better known as PCR [56]. It is
perhaps the most popular among many available methods [57] used in the amplification step.

Chapter 2: Prerequisites 36

Here, each cDNA molecule is copied many times so that its amount is sufficient to be detected
in the subsequent sequencing. Next, a sequencing library is prepared. This usually means
that each molecule gets elongated on both ends with different tagging sequences. These ensure
that each molecule binds to the sequencing instrument correctly, that sequencing primer reacts
with it, and that we are able to track the source cell of each molecule. During sequencing, the
sequence of nucleotide bases in each mRNA molecule is read and transcribed, making a large
data set. Gene expression data is then summarized during quantification, when a count of how
many times a specific gene is expressed in each cell is computed. These counts are collected in a
matrix, with an integer entry for each cell (a row in the matrix) and each gene (a column in the
matrix).

2.4.3 Properties of Gene Expression Data
Here, we list properties or commonly made assumptions about the distribution of the data and
geometry in the ambient space.

Distributional Assumptions
The most common distributions used to model its predecessor, bulk RNA-seq data, are some-
times used to model scRNA-seq data as well, namely Poisson [58] and nagative binomial distribu-
tion [59, 60, 61]. However, a strong presence of zeros and consequent bimodality in the scRNA-seq
data often inspires the choice of mixture models instead. In particular, mixture models of Poisson
or nagative binomial distribution with point mass at zero, called zero-inflated Poisson (ZIP)
and zero-inflated negative binomial (ZINB) respectively, are popular choices. Interestingly,
the debate among the scientific community about whether zero-inflated distributions should be
used is not settled yet, with some arguing that the high presence of zeros is primarily a biological
signal and not a technical artifact [62, 63] (see the description of dropout effect in 2.4.4).

Expression Range
If L is the largest entry in the count matrix M , then any expression count lies in range [0, L].
Based on the entry, we wish to answer the following: is a gene expressed in a specific cell, and
if so, how strongly? In general, only the count of 0 signifies that the gene is not expressed,
however a certain amount of false non-expression (which we discuss further in Section 2.4.4) and
false expression is expected to be present in the data. Thus, entries that equal 0 or 1 are often

Chapter 2: Prerequisites 37

not trusted. Higher entries in general reliably signify expression, but the exact scale might be
affected by a technical artifact or biological variance within the data (see Section 2.4.4).

There are many zeros in scRNA-seq data, and most counts are significantly smaller than L

(approximately 95% of counts in Thirsty Fly data set from Section 6.1 are smaller than 0.01 ·L,
which is approximately 20). This, coupled with the fact that there are many dimensions (in
which an unexpectedly large count can be observed), results in many outliers being present in
scRNA-seq data sets.

Measures of Similarity and Effect of Scale
It can be difficult to find a meaningful measure of similarity between gene expression vectors.
This can be seen even when comparing the expression levels of a single gene. There the count
of 2 is much closer in most commonly used notions of distance to 0 than it is to 8, although
we are comparing expression with non-expression in the first case versus two different levels of
expression in the second (whether this difference in scale is significant can be gene dependent,
which further complicates the choice of similarity measure). To mitigate the effect of scale, some
sort of log-normalization is usually applied (for example, the default in Seurat package (R) [64]
is M(c, i) 7→ ln(1 + 104 × M(c,i)∑

iM(c,i))). An alternative to log-normalization is to use a form of
square-root transform (for example Freeman-Tukey transform [65]). However, these methods do
not remove the effect of scale completely (as they should not).

When comparing expression vectors, the problem of finding a meaningful measure of similarity
gains an additional dimension that adds to its complexity. Namely, some notions of distance are
heavily affected by scale while we might care about the pattern of expression more. When this
is the case, scale invariant measures of similarity are preferable. An example of such a measure
is cosine similarity, defined as

SC(A,B) =
A ·B
∥A∥∥B∥

= cos(∠(A,B)), (2.4)

for any pair of vectors A,B in the same ambient space Rn, where ∥⋆∥ is the euclidean distance.
To illustrate this, take expression vectors A,B,C ∈ R5 to be

A = (0, 2, 0, 3, 25),

B = (2, 0, 4, 0, 27),

C = (0, 1, 0, 1, 3).

Chapter 2: Prerequisites 38

The standard choice, the euclidean distance, identifies A and B as much closer (at ∼ 6.08) than A
and C (at ∼ 22.11). Cosine similarity, however, identifies higher similarity in expression patterns
between A and C (at ∼ 0.045) than between A and B (at ∼ 0.023).

Number of Relevant Genes and Curse of Dimensionality
Due to often not knowing a priori which genes are involved in processes one wishes to study, all
the counts collected during single-cell RNA sequencing are included in the analysis. Thus, the
dimension of ambient space is often in thousands, even though it is often assumed only a handful
of genes are biologically relevant. As a consequence, the data suffers from the curse of dimen-
sionality and an appropriate pipeline should be followed. To remove as many irrelevant genes,
feature selection may be applied, but often further dimensionality reduction step is necessary (a
common pipeline with both these steps is described in Section 2.4.5).

2.4.4 Biological and Technical Artifacts in Gene Expression Data
Due to the intricacy of the sequencing procedure, there is a lot of room for introducing technical
artifacts to the data. Further, natural variance is present in scRNA-seq data sets. We discuss
specific examples of such phenomena here.

Batch Effect
Sequencing experiments are often long lasting and laborious, which is why they are commonly
split into batches. Although one tries to keep the environment in which each batch is analyzed
unchanged, some slight differences are usually present and they can affect the result. This is
known as the batch effect [66].

The goal of batch effect correction methods is to minimize these differences and simultaneously
preserve as much biological information as possible. Most methods begin by identifying biological
signals (usually cell populations) that are shared across different batches, and comparing these
signals to estimate batch effect. This insight can then be used to align batches in a correction
step. Often these steps are applied many times, obtaining a more refined alignment with each
iteration. Some commonly used batch effect correction methods are mutual nearest neighbors
(MNN) [67], Seurat alignment [68, 69] and ComBat [70].

Chapter 2: Prerequisites 39

mRNA Levels
The amount of mRNA and the specific genes expressed are ever changing within a cell. This
depends among other things on cell function, stimuli from the environment, current part of
cell’s life cycle, and cell health. This introduces two phenomena that might need addressing,
depending on the specific goal of the analysis. Firstly, unhealthy cells (often meaning cancerous
or dying) have been reported to have inflated ribosomal and mitochondrial gene counts [71,
72]. Such cells often need to be removed from analysis, as their function is severely affected.
Secondly, the number of mRNA molecules obtained from each cell varies greatly. This might
be due to the presence of empty droplets or doublets, which extremely high or low total gene
expression counts are usually attributed to, and the corresponding entries in the data set can
be removed accordingly. However, some variance in total counts is to be expected, either due
to natural variance (for example, sensitivity varies across different tissues and mRNA degrades
non-uniformly [73, 74]) or technical effects (such as batch effect). Unfortunately, this might
overshadow the biological heterogeneity we wish to study. To address it, SCTransform [60] or a
similar stabilizing method may be applied.

Dropout
This is a technical artifact introduced at the stage of mRNA capture, reverse transcription or
amplification. In any of these steps, the signal of a single molecule or a group of molecules may be
lost, resulting in false negative expression of some genes, referred to as dropout [51, 75, 76]. The
presence of dropout-events can be detected by analyzing cell-to-cell relationships (see Figure 2.5),
or, similarly, by gene-to-gene relationships.

There is a plethora of methods for addressing the dropout effect [77, 78, 79, 80, 81, 82]. For
a thorough overview of them, consult [83]. Note, however, that high presence of zero counts is
partially due to true non-expression. These methods therefore need to distinguish non-biological
from biological zeros based on observed counts, which they (mostly) attempt by probabilistic
arguments. On the other hand, this separation of biological and non-biological zeros is sometimes
described as an unfeasible task, and addressing dropout is warned against [62, 63].

2.4.5 Standard pipeline for Clustering Analysis of Gene Expression
Data

Here, we give a rough outline of commonly used pipeline for clustering analysis on scRNA-seq
data sets, following [47, 48, 49].

Chapter 2: Prerequisites 40

(a) A smoothed scatter plot illustration of cell-to-cell vari-
ability within gene expression data. The artifacts that can
be recognized from these plots are high-magnitude outliers,
over-dispersion in the anti-diagonal direction, and drop-out
events.

(b) Actual cell vs. cell plot as in Fig-
ure 2.5a for scRNA-seq data set from
the study of mouse embryonic fibro-
blast stem cell [84].

Figure 2.5: Dropout effect in cell vs. cell plots (with a point per each gene) from scRNA-seq
data sets. The assumption is that the chosen cells are of the same type and therefore gene
expressions should be correlated. However, it may happen that the areas close to the axes are
highly populated, meaning many genes are highly expressed in one cell while not expressed in
the other, hinting at the presence of dropout events. Note that RPM stands for “reads per
million” and it signifies that additional normalization with respect to mRNA levels across cells
was applied before log10-normalization. Source of figures: [76].

Pre-processing
During pre-processing, many steps are taken to address and hopefully mitigate the variance
and other artifacts present in the data, and prepare it for further analysis. For example, the
cells and genes are filtered to remove genes that are not expressed often enough on our dataset
and remove unhealthy cells or droplets. Secondly, normalization or other scaling techniques
can be applied to dampen the effect of scale and different mRNA levels across cells. Some such
techniques are RPM (reads per million), SCTransform and log-transformation. If the experiment
from which the data was obtained was split into batches, the data can be aligned using batch
effect correction methods [70, 69, 67]. Presence of dropout can be addressed in pre-processing
too [77, 78, 79, 80, 81, 82].

Chapter 2: Prerequisites 41

Feature Selection
As mentioned, the set of genes whose expression is analyzed is far larger than the set of relevant
genes. This abundance of information can be costly due to the curse of dimensionality. Further,
the smaller the percentage of relevant genes, the less they will contribute to the analysis. How-
ever, which genes are relevant is rarely known a priori. In the step of feature selection, some
assumptions are made about the statistical summaries of gene expression profiles of relevant
genes, and genes satisfying those assumptions are selected for further analysis.

Figure 2.6: Variance vs. mean plot for log2-normalized Thirsty Fly data set (introduced in
Section 6.1), where each point in the plot corresponds to a gene in the data set. The trend is a
polynomial in degree 3 fit to the data using mean-squared error.

For example, it is often assumed that the majority of the variability in the expression of a specific
gene is due to technical noise, and that it is larger for genes with high means [47]. (Note that
log- or some other type of normalization is often applied in advance, and different measures
of variability can be chosen, such as variance and squared coefficient of variation.) When that
is the case, a trend is fit to the plot of variability vs. mean with a point for each gene, see
Figure 2.6. This trend signifies the expected variability of gene’s expression given its mean
(also called the technical component), and the difference to actual variability is called the

Chapter 2: Prerequisites 42

biological component. The latter is commonly considered to measure relevance, and the data
is projected to genes with high biological components.

Dimensionality Reduction
Although this step is optional, there are many reasons for applying dimensionality reduction at
this point. Firstly, the latent dimension of the point cloud obtained after feature selection is often
assumed to still be much smaller then the ambient one. The dimension might also still be too
high to successfully apply certain clustering methods. In addition, most dimensionality reduction
methods combine correlated signals, thus eliminating redundancy in data. Most commonly,
principal component analysis (PCA) is used to project down to d ∈ [10, 50] dimensions, where
the exact dimension is sometimes determined using a Jackstraw function [85]. Other popular
methods include UMAP [86] and t-SNE [87], with UMAP being especially prevalent in data
visualization.

Clustering
Next, the point cloud is clustered, the goal of which is usually to group cells based on their cell
type. Most popular clustering methods for the analysis of scRNA-seq data are based on com-
munity detection on k-nearest neighbors (kNN) graphs, which try to obtain a partition of the
graph into subgraphs, or communities, on which some measure of edge density or connectedness
is maximized. This can be done following an agglomerative process of merging communities
if the gain in the chosen measure is positive. An example of such method is the Louvain al-
gorithm [88], in which the chosen measure is modularity – the difference between the actual
number of edges within a community and the expected one. Another approach, followed by
the Walktrap algorithm [89], is to simulate random walks on the graph and use the results to
merge communities, following the reasoning that random walks tend to linger in highly connected
regions.

Louvain and Walktrap algorithms are perhaps most commonly used, but of course, other methods
of community detection and, more generally, clustering can be applied. However, one should be
aware of potential distributional assumptions made by individual methods [90], since not all can
be expected to perform well on zero-inflated, highly variable and high-dimensional data with
many outliers, such as scRNA-seq data.

Chapter 2: Prerequisites 43

Marker Detection or Differential Expression Analysis
To assign biological meaning to the obtained clusters one can study statistical properties (such
as mean, median, maximum, minimum, . . .) of expression patterns on the level of clusters, and
compare the results between clusters or between each cluster and its complement. This is called
differential expression analysis and its goal is to identify genes that drive cluster separation.
These genes are called markers. Commonly used heuristics for differential expression analysis
differ greatly, which is why we do not detail them here. Instead, we direct the reader to [91] for
a comparison of some popular methods, and to Section 6.2.4 for the description of the method
used in this work.

44

Chapter 3

Ladder Decomposition for
Morphisms of Persistence Modules

In the spirit of the structure theorem giving a barcode for one-parameter p.f.d. persistence
modules, Jacquard et al. [11] identify assumptions under which a morphism viewed as a ladder
persistence module decomposes into a direct sum of elementary ladder persistence modules:

• I+J consists of an interval persistence module kJ on the source side that is mapped to 0

on the target side.

• I−K consists of 0 on the source side and an interval persistence module kK on the target
side.

• RJ
K consist of an interval persistence module kJ on the source side and an interval

persistence module kK on the target side with a morphism that in each degree i ∈ J
sends the basis vector of (kJ)i to the basis vector of (kK)i if i ∈ K, and to 0 otherwise.

A ladder decomposition is then an isomorphism of Φ: V → W to a direct sum of elementary
ladder persistence modules, and the main result of [11] is that one exists whenever the bar-
codes Bar(V) and Bar(W) do not admit strictly nested bars.

In this chapter we focus on a special family of morphisms of persistence modules, namely the
interleaving morphisms. They come in pairs (Φ,Ψ), with Φ: V → W (δ) and Ψ: W → V (δ),

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 45

where the persistence module V (δ) is obtained from V via shifts in the indexing parameter,
i.e. V (δ)t = Vt+δ. The pair must further satisfy that their composition (both instances) is
exactly the family of inner morphisms of the corresponding persistence module. Because of
this property, their existence implies the persistence modules in the domain and codomain are
algebraically related, and the smaller the shifting parameter, the stronger this relation is. The
smallest δ for which a δ-interleaving pair between V andW exists is denoted by dI and called their
interleaving distance [92] (it can be defined in more general settings, for example in any category
with flow [93]). As a consequence of various stability results [94, 10] interleaving morphisms arise
between persistence modules obtained from closely related inputs to the persistent homology
pipeline. They also arise between restrictions of multi-parameter persistence modules to close-
enough parallel lines in the parameter space [95]. As such, interleaving morphisms are interesting
from the point of view of both applications and theoretical results.

In most of this chapter we are only interested in one of the morphisms in the interleaving pair.
For this reason we introduce the notion of a δ-invertible morphism - a morphism Φ: V → W

for which there exists another morphism Ψ : W → V (2δ) so that both of their compositions
are just the inner morphisms in the corresponding persistence module. It is easy to see a δ-
invertible morphism Φ: V → W is equivalent to a morphism in a δ-interleaving pair between V
and W (−δ). Special properties of δ-invertible morphisms make them somewhat easier to work
with than the general morphisms, which we leverage to obtain their ladder decompositions under
looser assumptions. To elaborate, we define a constant Ξ(V) called the nestedness of persistence
module V , as the minimal distance between endpoints (either of birth-points or of death-points)
of strictly nested bars. The main result in this chapter is the following.

Theorem 3.2.8. For a δ-invertible morphism Φ: V →W with δ < 1
2 min(Ξ(V),Ξ(W)) there

exist parameters rJ2J1 , d
+
J , d

−
K ∈ N such that

(V,W,Φ) ∼=
⊕
J1⪯J2

(
RJ2
J1

)rJ2
J1 ⊕

⊕
J

(
I+J

)d+J ⊕⊕
K

(
I−K

)d−K
.

In persistent homology pipelines, long bars are the signals and short bars are often associated
with noise in the input. Therefore it is potentially useful to truncate and discard the bars shorter
than some threshold. Here we explore how this process interacts with the ladder decomposition
theorem above. For this reason, we introduce another parameter q to be the length of the longest
bar we wish to disregard. We consider restrictions V≥q and W≥q of modules V and W to the

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 46

features which persist for at least q, which are given by projection maps prV≥q and prW≥q and
inclusion maps iV≥q and iW≥q respectively.

Theorem 3.3.4. For any q ≥ 0 a δ-invertible morphism Φ: V →W induces the following (δ+ q
2)-

invertible morphisms:

1. Morphism prW≥q ◦ Φ: V → W≥q. If δ < 1
2 min(Ξ(V),Ξ(W≥q)) − q

2 holds, it decomposes
as a ladder persistence module.

2. Morphism Φ ◦ iV≥q : V≥q → W . If δ < 1
2 min(Ξ(V≥q),Ξ(W))− q

2 holds, it decomposes as
a ladder persistence module.

3. Morphism prW≥q ◦ Φ ◦ iV≥q : V≥q → W≥q. If δ < 1
2 min(Ξ(V≥q),Ξ(W≥q)) − q

2 holds, it
decomposes as a ladder persistence module.

Via the correspondence between δ-invertible morphisms and morphisms appearing in δ-interleaving
pairs we obtain ladder decompositions of both morphisms in an interleaving pair. Comparing
them we find they are as compatible as the shifting parameter allows.

Theorem 3.2.21. Let (Φ,Ψ) be a δ-interleaving pair between modules V and W with δ <
1
2 min(Ξ(V),Ξ(W)). For any pair of bars JV ∈ Bar(V) and JW ∈ Bar(W) satisfying |JV |, |JW | ≥
2δ, and for any µ ∈ N the following statements are equivalent

• (RJV
JW (δ))

µ appears in the ladder decomposition of Φ,

• (RJW
JV (δ))

µ appears in the ladder decomposition of Ψ.

As observed already in [11], whenever a ladder decomposition can be obtained, it induces a partial
matching on the barcodes of the persistence modules involved. A partial matching can be defined
on a general multi-set as a partial bijection. The first instance of a morphism-induced partial
matching appeared in [10] in order to prove the Isometry Theorem, stating that the interleaving
distance on the one-parameter persistence modules agrees with the bottleneck distance [94] on
persistence barcodes. This construction, however, is not linear with respect to direct sums
of ladder persistence modules. Addressing this (and some other grievances) the notion of basis-
independent partial matchings has been introduced [13], which the ladder decomposition induced
partial matchings are examples of. We analyse their properties when the morphism is a part of
an interleaving and show that their cost is limited above by the interleaving parameter.

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 47

Corollary 3.4.2 (of Theorem 3.2.8). Let Φ: V → W (δ) be one of two morphisms making a δ-
interleaving pair for δ < 1

2 min(Ξ(V),Ξ(W)), and χΦ the partial matching induced by the ladder
decomposition of Φ. Its cost is at most δ. If further δ = dI(V,W), then the induced matching
realizes the bottleneck distance.

Further, the matchings induced by ladder decompositions of the pair of morphisms making an
interleaving are compatible for all bars of sufficient length.

Corollary 3.4.3 (of Theorem 3.2.21). Let χΦ : Bar(V) •→ Bar(W) and χΨ : Bar(W) •→ Bar(V)

be the partial matchings induced by morphisms (Φ,Ψ) forming a δ-interleaving pair where δ <
1
2 min(Ξ(V),Ξ(W)). For any pair of bars JV ∈ Bar(V) and JW ∈ Bar(W) satisfying |JV | ≥ 2δ

and |JW | ≥ 2δ, and any µ ∈ N,

((JV , JW), µ) ∈ χΦ ⇐⇒ ((JW , JV), µ) ∈ χΨ.

Preliminary material originally present in [1] can be found in Sections 2.2.3 to 2.2.5. We begin this
chapter in Section 3.1, where we specify how to view morphisms as ladder persistence modules and
state the ladder decomposition theorem of [11]. Section 3.2 is dedicated to interleavings and δ-
invertible morphisms. We quote their definition and state some basic results in the language of
barcode bases in Section 3.2.1. We define the nestedness constant and state the main theorem
about the ladder decomposition of δ-invertible morphisms in Section 3.2.2. It also contains a
plethora of technical lemmata used to prove the main theorem. Section 3.2.3 compares the ladder
decompositions of both morphisms making an interleaving pair. The generalisation of the theory
introduced in Section 3.2 to the case when we discard short bars is presented in Section 3.3. It
includes the definition of a q-splitting of a persistence module and the generalisation of the main
theorem – Theorem 3.3.6. Lastly, we state results regarding the ladder decomposition induced
partial matchings in Section 3.4, where they are also compared with other notions of induced
partial matchings.

3.1 Ladder Decomposition of a Persistence Morphism
Let Φ: V → W be a morphism of persistence modules between V and W , which are both
indexed over [ℓ + 1] = {0, 1, . . . , ℓ}. Fix barcode bases BV and BW and let MΦ be the single-
matrix representation of Φ in these bases, which exists according to Proposition 2.2.27. Further,

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 48

let MΦ(xK , xJ) be the entry of the matrix MΦ in the row belonging to xK and column belonging
to xJ , where xK and xJ are generators of bars K and J respectively. (Recall that there are µ
distinct generators of a bar with multiplicity µ.) The value of MΦ(xK , xJ) is to be understood
as follows: the image of a basis vector in the generator xJ with Φ can be expressed for each
component Φi : Vi →Wi as

Φi((xJ)i) =
∑
xK
K∋i

MΦ(xK , xJ) · (xK)i.

In light of Remark 2.2.28, the bar generators xK with non-zero coefficientMΦ(xK , xJ) correspond
to bars with K ⪯ J .

Definition 3.1.1. The support of the image of the bar generator xJ with morphism Φ is the
set

suppΦ(xJ) = {xK |MΦ(xK , xJ) ̸= 0}.

Lemma 3.1.2. If xK ∈ suppΦ(xJ) then K ⪯ J .

Proof. This is a simple reiteration of the observation in Remark 2.2.28 using the new notation.

Introduce the following simple and intuitive components as building blocks in the decomposition
of ladder modules: R[i2,j2]

[i1,j1]
, I+[i1,j1] and I−[i1,j1] for [i1, j1] ⪯ [i2, j2].

R
[i2,j2]
[i1,j1]

:

· · · 0 Fi2 · · · Fj2 0 · · ·

· · · 0 Fi1 · · · Fj1 0 · · ·

0

0

id

id

id

id

0

0

0 id id 0

I+[i1,j1] :

· · · 0 Fi1 · · · Fj1 0 · · ·

· · · 0 · · · 0 · · ·

0 id

0

id 0

0

I−[i1,j1] :

· · · 0 · · · 0 · · ·

· · · 0 Fi1 · · · Fj1 0 · · ·

0 0

0 id id 0

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 49

Theorem 3.1.3 (Theorem 4.3. of [11]). Let (V,W,Φ) be a ladder persistence module where
neither V nor W admit a pair of strictly nested bars. Then there are integers rJ2J1 , d

+
J , d

−
K ∈ N

for which

(V,W,Φ) ∼=
⊕
J1⪯J2

(
RJ2
J1

)rJ2
J1 ⊕

⊕
J

(
I+J

)d+J ⊕⊕
K

(
I−K

)d−K
. (3.1)

The right side of Equation (3.1) is called the ladder decomposition of morphism Φ. The
isomorphism is given by a change of barcode bases of the domain and codomain. The matrix
representation of Φ in the bases in which it decomposes as a ladder persistence module is in
partial matching form.

Definition 3.1.4. A matrix is in partial matching form if there is at most one 1 in each row
and each column, with all the other entries being 0.

We will often refer to the partial matching form as the matching form for short. Since the ladder
decomposition is unique up to an automorphism, the matching form is unique up to (compositions
of) permutations of the order of columns (or rows) belonging to a collection of indistinguishable
bars.

Jacquard et al. show with examples that if either Bar(V) or Bar(W) contain a pair of strictly
nested bars then such a decomposition need not exist. The focus of our work is to refine this
and show that, under additional hypotheses on Φ, a decomposition will exist even when there
are nested bars.

3.2 Ladder Decompositions and Interleavings
In this section the theory of ladder decompositions of morphisms in the case of interleavings
is developed further. Interleavings come in pairs of morphisms, which we (with slight abuse of
notation) call δ-invertible morphisms and are interesting in their own right. Theorem 3.2.8 relaxes
the assumptions of the Ladder Decomposition Theorem of [11] for δ-invertible morphisms, while
Corollary 3.2.20 summarises the relation between ladder decompositions of the two morphisms
making an interleaving pair.

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 50

3.2.1 Interleavings and δ-Invertible Morphisms of Persistence Modules
Recall from Section 2.2.4 that a δ-shift of a persistence module V is a persistence module V (δ)

with

V (δ)t = Vt+δ

v(δ)t1,t2 = vt1+δ,t2+δ,

and that two persistence modules V and W are δ-interleaved if there exists a pair of morph-
isms Φ: V →W (δ) and Ψ: W → V (δ) such that the diagrams

Vt Vt+2δ

Wt+δ

vt,t+2δ

Φt Ψt+δ

and

Vt+δ

Wt Wt+2δ

Φt+δ

wt,t+2δ

Ψt

commute. The pair (Φ,Ψ) is a δ-interleaving

Example 3.2.1. Let us introduce an interleaving which we will use as a running example. Let V
and W be persistence modules

V : 0 R R2 R2 R2 R3 R R R 0,

W : 0 0 R2 R2 R2 R2 R2 R1 0 0,

(10) Id Id

(
1 0
0 1
0 0

)
(0 1 0) Id Id

Id Id Id Id (0 1)

with barcode bases given by the unit vectors of the vector spaces Rn. Their barcodes are

0 1 2 3 4 5 6 7

[0, 4]
[1, 7]
[4, 4]

[1, 5]
[1, 6]

Bar(V)

Bar(W)

Figure 3.1: The barcodes of modules V and W in Example 3.2.1.

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 51

Bar(V) = {[0, 4], [1, 7], [4, 4]} and Bar(W) = {[1, 5], [1, 6]},

where the bars have been written in the lexicographical order. Bar generators associated with
our choice of barcode bases are

xV[0,4] = {e⃗1
(0), e⃗1

(1), e⃗1
(2), e⃗1

(3), e⃗1
(4)},

xV[1,7] = {e⃗2
(1), e⃗2

(2), e⃗2
(3), e⃗2

(4), e⃗1
(5), e⃗1

(6), e⃗1
(7)},

xV[4,4] = {e⃗3
(4)},

xW[1,5] = {f⃗1
(1), f⃗1

(2), f⃗1
(3), f⃗1

(4), f⃗1
(5)},

xW[1,6] = {f⃗2
(1), f⃗2

(2), f⃗2
(3), f⃗2

(4), f⃗2
(5), f⃗1

(6)},

where e⃗
(i)
j and f⃗

(i)
j denote the j-th unit vector in Vi and Wi respectively. Define morph-

isms Φ: V →W (1) and Ψ :W → V (1) with components

Φ0 =

[
2

0

]
, Φ1,Φ2,Φ3 =

[
2 1

0 1

]
, Φ4 =

[
2 1 1

0 1 0

]
, Φ5 =

[
1
]
, Φ6,Φ7 = 0,

Ψ0,Ψ7 = 0, Ψ1,Ψ2 =

[
1
2 − 1

2

0 1

]
, Ψ3 =

1
2 − 1

2

0 1

0 0

 , Ψ4,Ψ5 =
[
0 1

]
, Φ6 =

[
1
]
.

To see that these define two morphisms of persistence modules, one simply checks that

wi+1,i+2 ◦ Φi = Φi+1 ◦ vi,i+1 and vi+1,i+2 ◦Ψi = Ψi+1 ◦ wi,i+1

for i = −1, 0, . . . , 7. Their respective single-matrix representations from Proposition 2.2.27 are

MΦ =

[
2 1 1

0 1 0

]
and MΨ =

1
2 − 1

2

0 1

0 0

 ,
and they make a 1-interleaving pair

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 52

V : 0 R R2 R2 R2 R3 R R R 0,

W : 0 0 R2 R2 R2 R2 R2 R 0 0.

Φ0 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6

Φ7=0Ψ0 Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6

Ψ7=0

We can verify that they make a 1-interleaving pair by showing that Φi+1 ◦Ψi = wi,i+2 and Ψi+1 ◦
Φi = vi,i+2 for all i ∈ Z and on all basis vectors of the chosen barcode basis for W and V

respectively. To show the first, consider only basis vectors in bar generator xW[1,6] and see that

Φi+1 ◦Ψi
(
(xW[1,6])i

)
=

Φi+1

(
(xV[1,7])i+1 − 1

2 (x
V
[0,4])i+1

)
, if 1 ≤ i ≤ 3,

Φi+1

(
(xV[1,7])i+1

)
, if 3 < i ≤ 6,

=

(xW[1,5])i+2 + (xW[1,6])i+2 − 1
2 (2(x

W
[1,5])i+2), if 1 ≤ i ≤ 3,

(xW[1,6])i+2, if 3 < i ≤ 6,

= (xW[1,6])i+2.

The same holds for xW[1,5] following similar computation. To prove Ψi+1 ◦ Φi = vi,i+2, let us
compute how the composition maps basis vectors in bar generator xV[4,4]:

Ψ5 ◦ Φ4

(
(xV[4,4])4

)
= Ψ5

(
(xW[1,5])5

)
= 0

= v4,6
(
(xV[4,4])4

)
.

Again, similar computation can be done to show it holds also for basis vectors in bar generat-
ors xV[0,4] and xV[1,7]. △

It is often useful to decouple the definition of an interleaving morphism by singling one of the
morphisms out and implying the existence of the other without committing to a choice of it.
This motivates the definition of a δ-invertible morphism.

Definition 3.2.2. A morphism Φ : V →W is δ-invertible if there exists another morphism Ψ :

W → V (2δ) such that the diagrams

Vt Vt+2δ

Wt

vt,t+2δ

Φt
Ψt

and
Vt+2δ

Wt Wt+2δ

Φt+2δ

wt,t+2δ

Ψt

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 53

commute. Morphism Ψ is called a δ-inverse of Φ.

As before, parameter δ measures how close a morphism is to being an isomorphism, as a 0-
invertible morphism is simply an isomorphism.

Remark 3.2.3 (Correspondence between δ-interleavings and δ-invertible morphisms). Let us
make the relationship between the notions of a δ-invertible morphism and a δ-interleaving pair
explicit. A morphism Φ: V → W is δ-invertible if and only if, when regarded as a morph-
ism Φ′ : V → W ′(δ) with W ′ = W (−δ), it is half of a δ-interleaving. In fact, any δ-inverse of Φ
gives (after the necessary shifts) a morphism making a δ-interleaving pair with Φ′.

From here on, we will work with δ-invertible morphisms and obtain results that hold for morph-
isms in a δ-interleaving pair via the correspondence in Remark 3.2.3.

Example 3.2.4. Take the 1-interleaving pair (Φ,Ψ) from Example 3.2.1. The induced 1-
invertible morphism Φ(1) maps from V to W ′ = W (1). Since we replace W with its shift,
the barcode is now

Bar(W ′) = {[0, 4], [0, 5]}

and the bar generators in our choice of barcode basis are

xW
′

[0,4] = {f⃗1
(0), f⃗1

(1), f⃗1
(2), f⃗1

(3), f⃗1
(4)},

xW
′

[0,5] = {f⃗2
(0), f⃗2

(1), f⃗2
(2), f⃗2

(3), f⃗2
(4), f⃗1

(5)}.

Notice, however, that the matrix representations of the components Φi are equal to the matrix
representations Φ

(1)
i , and so are the single matrix representations

MΦ =MΦ(1) .

The same holds for the 1-inverse Ψ(1) of Φ(1). △

The Shift Operator
As has become clear in this section, shifting in degree will be common throughout this work. To
avoid confusion, we explain some shift-related notation here.

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 54

Definition 3.2.5. Let δ ∈ N0 be a parameter.

• For any interval I = [i1, i2], define the δ-shift of I as I(δ) = [i1 − δ, i2 − δ].

• For any bar generator xI , define the δ-shift of bar generator xI as

xI(δ) = xI(δ) = {(xI)t+δ}t∈I(δ).

• For any persistence module V with inner morphisms vi,j : Vi → Vj , define the inner
δ-morphism as [δ]V : V → V (δ) and ([δ]V)t = vt,t+δ.

• For any morphism Φ: V →W of persistence module, define the δ-shift of Φ as Φ(δ) : V (δ)→
W (δ) and Φ(δ)t = Φt+δ.

Using this notation, we can rephrase the requirements for morphisms Φ: V →W (δ) and Ψ: W →
V (δ) to be a δ-interleaving as

Ψ(δ) ◦ Φ = [2δ]V and Φ(δ) ◦Ψ = [2δ]W .

Similarly, a morphism Φ: V → W is δ-invertible when there exists a morphism Ψ: W → V (2δ)

so that

Ψ ◦ Φ = [2δ]V and Φ(2δ) ◦Ψ = [2δ]W .

3.2.2 Nestedness Condition for Ladder Decomposition of a δ-Invertible
Morphisms

Since δ-invertible morphisms are special examples of morphisms of persistence modules, The-
orem 3.1.3 applies to them. However, the assumption that neither Bar(V) nor Bar(W) admit
strictly nested bars restricts the use of the theorem to a small family of morphisms. To see
this clearly, observe Figure 3.2. Luckily, the special properties of δ-invertible morphism allow
us to loosen the requirements of Theorem 3.1.3. In order to do that, we analyse nested bars in
barcodes of persistence modules.

Definition 3.2.6. For a persistence module M define a constant

Ξ(M) = min
[a,b]⊂[c,d]∈Bar(M)

min{|a− c|, |b− d|}

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 55

Figure 3.2: Observe a point in a persistence diagram that corresponds to a bar J . Any bar K
that is strictly nested with J corresponds to a point in one of the shaded regions of the diagram:
if J ⊂ K it is in the green, and if K ⊂ J it is in the blue region. This illustrates that many
diagrams have strictly nested points.

and call it the nestedness of persistence module M . Note that the minimum loops over all
pairs of strictly nested bars in Bar(M) and is defined to equal ∞ when such bars do not exist.
It therefore takes values in (0,∞].

Example 3.2.7. Let us compute nestedness for the instructive example in Figure 3.3. The
barcode consists of bars

I = [0, 8], J = [1, 5], K = [1, 8], L = [3, 5].

The minimum in the definition loops over pairs J ⊂ I, L ⊂ K, and L ⊂ I. The minimum

0 1 2 3 4 5 6 7 8

I

K

J

L

Figure 3.3: Example of a barcode with nestedness 1.

distance between endpoints for each pair respectively is 1, 2 and 3. Perhaps not intuitively the
nestedness is defined as the smallest of these values, 1. Two further examples of barcodes with
different nestedness are shown in Figure 3.4. △

The main result of this chapter is that, as long as the nestedness is not “too small”, we can still
obtain the ladder decomposition for a δ-invertible morphism.

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 56

0 1 2 3 4 5 6 7 8

(a) Barcode with nestedness 3.

0 1 2 3 4 5 6 7 8

(b) Barcode with nestedness ∞.

Figure 3.4: Further examples of barcodes with different nestedness.

Theorem 3.2.8. For a δ-invertible morphism Φ: V →W with δ < 1
2 min(Ξ(V),Ξ(W)) there

exist parameters rJ2J1 , d
+
J , d

−
K ∈ N such that

(V,W,Φ) ∼=
⊕
J1⪯J2

(
RJ2
J1

)rJ2
J1 ⊕

⊕
J

(
I+J

)d+J ⊕⊕
K

(
I−K

)d−K
.

Remark 3.2.9. The restriction of Theorem 3.2.8 to the case when barcodes contain no nested
bars, this is when min(Ξ(V),Ξ(W)) = ∞, states the same as the restriction of Theorem 3.1.3
to δ-invertible morphisms.

Remark 3.2.10 (Sufficient but not necessary condition). To see a trivial example of when a
ladder decomposition exists for a δ-invertible morphism but Theorem 3.2.8 does not guarantee
it, pick your favorite example of a persistence module M with nested bars, i.e. Ξ(M) <∞, and
observe the identity morphism Id : M →M . It is a δ-invertible morphism for all δ ∈ [0,∞), and
it does not satisfy the assumptions of Theorem 3.2.8 for any δ ≥ 1

2Ξ(M). However, it is obvious
that it admits a ladder decomposition even for those choices of δ.

For a slightly less trivial example, let the morphism be given by its ladder decomposition

R
[0,2+m]
[0,2] ⊕ I+[1,1]

for some m ≥ 2. This is a δ-invertible morphism for any δ ≥ m
2 , and its ladder decomposition

obviously exists. However, the nestedness Ξ({[0, 2+m], [1, 1]}) is 1, and not even the smallest δ =
m
2 satisfies the assumption δ < 1

2 min(Ξ(V),Ξ(W)) = 1
2 .

The proof of Theorem 3.2.8 follows a similar approach as the proof of Theorem 3.1.3 in [11]. By

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 57

Proposition 2.2.27, morphism Φ can be represented as a single block matrix

MΦ =

X
[0,0]
[0,0] X

[0,1]
[0,0] . . . X

[0,l]
[0,0] 0 . . . 0 . . . 0

X
[0,1]
[0,1] . . . X

[0,l]
[0,1] X

[1,1]
[0,1] . . . X

[1,l]
[0,1] . . . 0

. . .
...

...
...

...
X

[0,l]
[0,l] 0 . . . X

[1,l]
[0,l] . . . X

[l,l]
[0,l]

X
[1,1]
[1,1] . . . X

[1,l]
[1,1] . . . X

[l,l]
[1,l]

. . .
...

...
X

[1,l]
[1,l] . . . 0

. . .
...

X
[l,l]
[l,l]

,

This matrix will be inductively reduced to matching form. During the reduction we are al-
lowed to use only the matrix operations whose result is the same morphism written in another
barcode basis. These operations correspond to the actions of the stabilisers Stab({vt,t+1}t)
and Stab({wt,t+1}t) (as in Equation (2.2)) on the barcode bases of the domain and codomain
respectively. As a consequence of the properties of the stabilisers, namely that their elements
commute with the inner morphisms, the admissible matrix operations (as deduced in [11]) are
the following:

AO1 Any invertible operation between columns corresponding to the same bar J , or between
rows corresponding to the same bar J .

AO2 Modifying CJ using CK whenever K ⪯ J .

AO3 Modifying RJ using RK whenever J ⪯ K.

Let us introduce a few technical lemmas, which will be used in the proof.

Lemma 3.2.11. Let Φ: V → W be a morphism of persistence modules and J and K two bars
in Bar(V). If suppΦ(xJ) and suppΦ(xK) have a non-empty intersection, then J ∩ K ̸= ∅.
Similarly, if generators of bars J and K in Bar(W) both lie in suppΦ(xL) for some bar L ∈
Bar(V), then J ∩K ̸= ∅.

Proof. Let us begin with the first statement. Without loss of generality, assume J = [c, d] ≤
K = [a, b]. By Lemma 3.1.2 a bar [i, j] that is in the support of both Φ(x[c,d]) and Φ(x[a,b]) must

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 58

satisfy

i ≤ c,

c ≤ j ≤ d, (3.2)

i ≤ a, and

a ≤ j ≤ b. (3.3)

Since such a bar [i, j] exists by assumption, combining inequalities (3.2) and (3.3) gives j ∈
[a, b] ∩ [c, d] and so the intersection J ∩K is not empty.

For the second statement, set J = [c, d] and K = [a, b]. Then the bar L = [i, j] in the support of
whose image xJ and xK lie, must satisfy

a, c ≤ i and i ≤ b, d

by Lemma 3.1.2. It follows that i ∈ J ∩K ̸= ∅.

Lemma 3.2.12. Let Φ: V → W be a morphism between persistence modules V and W , and
let [c, d] ⊂ [a, b] be a pair of nested bars in Bar(V). Then any bar [i, j] ∈ Bar(W) whose generator
is contained in both suppΦ(x[a,b]) and suppΦ(x[c,d]) must satisfy

i ≤ a and c ≤ j ≤ d. (3.4)

As a consequence, the length of any such bar [i, j] must be at least c− a.

Similarly, any bar [i, j] ∈ Bar(V) for which suppΦ(x[i,j]) contains generators x[a,b] and x[c,d] of
nested bars [c, d] ⊂ [a, b] ∈ Bar(W) must satisfy

c ≤ i ≤ d and b ≤ j. (3.5)

As a consequence, the length of any such bar [i, j] must be at least b− d.

Proof. Both statements are a simple consequence of Lemma 3.1.2. For the bars in (3.4) it states
that

i ≤ a ≤ j ≤ b and i ≤ c ≤ j ≤ d

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 59

birth death

c d

ba

][a]b
][c]d

c− a

(a) The restrictions for a bar in the support of
both Φ(x[a,b]) and Φ(x[c,d]), where [c, d] ⊂ [a, b]
are strictly nested bars. The restrictions for birth
point are marked in green, while the restrictions
for death point are marked in blue, with the
second line from the bottom showing the restric-
tions induced by bar [a, b] and the bottom one
those induced by [c, d]. The interval in which
both are satisfied is marked with a square in the
respective colour.

birth death

c d

ba

[a][b
[c]d

b− d

(b) The restrictions for a bar with both x[a,b]

and x[c,d] in the support of its image,
where [c, d] ⊂ [a, b] are strictly nested bars. The
restriction for birth point are marked in green,
while the restrictions for death point are marked
in blue, with the top line showing the restrictions
induced by bar [a, b] and the second line from the
top showing those induced by [c, d]. The inter-
val in which both are satisfied is marked with a
square in the respective colour.

Figure 3.5: The implications of Lemma 3.1.2 for a pair of nested bars [c, d] ⊂ [a, b] in Bar(V)
(case a) or Bar(W) (case b).

(observe Figure 3.5a). Since the bars are nested, these requirements can be summarised as

i ≤ a and c ≤ j ≤ d.

It follows readily that j − i ≥ c − a. Statement (3.5) can be proved in a similar way (observe
Figure 3.5b).

Lemma 3.2.13. Let Φ: V → W be a δ-invertible morphism and Ψ : W → V (2δ) its δ-inverse.
For any bar [a, b] ∈ Bar(V) of length at least 2δ with generator x[a,b] there exists a bar [i, j] ∈
Bar(W) with generator x[i,j] such that

x[i,j] ∈ suppΦ(x[a,b]), (3.6)

x[a,b](2δ) ∈ suppΨ(x[i,j]). (3.7)

Similarly, for any bar [i, j] ∈ Bar(W) of length at least 2δ with generator x[i,j] there exists a
bar [a, b] ∈ Bar(V) with generator x[a,b] such that (3.6) and (3.7) hold. It is easy to see that

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 60

if x[i,j] is a generator that satisfies (3.6) and (3.7) for x[a,b], then x[a,b] is a generator that satisfies
it for x[i,j].

The endpoints of bars [a, b] ∈ Bar(V) and [i, j] ∈ Bar(W) with bar generators for which (3.6)
and (3.7) hold, must satisfy

a− 2δ ≤ i ≤ a ≤ i+ 2δ and b− 2δ ≤ j ≤ b ≤ j + 2δ.

Proof. The containment statements are a simple consequence of the fact that compositions Φ◦Ψ
and Ψ ◦ Φ map generators belonging to bars of length at least 2δ to themselves. The rest is a
consequence of applying Lemma 3.1.2 to (3.6) and (3.7) and combining the obtained inequalities.

Remark 3.2.14. Given a δ-interleaving pair (Φ,Ψ) between V and W , Lemma 3.2.13 implies
that for any generator x[a,b] of a bar [a, b] ∈ Bar(V) with b−a ≥ 2δ there exists a generator x[i,j]
of bar [i, j] ∈ Bar(W) such that

x[i,j](δ) ∈ suppΦ(x[a,b]), (3.8)

x[a,b](δ) ∈ suppΨ(x[i,j]). (3.9)

Further, bar [i, j] must satisfy

|i− a| ≤ δ and |j − b| ≤ δ.

Similar conditions hold for any generator x[i,j] of a bar with length at least 2δ.

Lemma 3.2.15. Given Φ: V →W let MΦ be the matrix of a δ-invertible morphism Φ: V →W

written in barcode bases BV and BW . Let X [c,d]
[i,j] be a sub-matrix of MΦ (containing the rows

and columns corresponding to generators of bars [i, j] and [c, d] respectively) such that all the
sub-matrices to the left and below it have already been reduced to matching form with opera-
tions AO1, AO2 and AO3. Then X

[c,d]
[i,j] can also be reduced using these operations.

Proof. Let A denote the sub-matrix containing all the sub-matrices appearing to the left and
downward of X [c,d]

[i,j] (observe Figure 3.6). Since all other sub-matrices in A have already been

reduced there is at most one 1 in each row and column of A outside of X [c,d]
[i,j] . A non-zero entry

of X [c,d]
[i,j] in row R and column C falls in (at least) one of the following categories:

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 61

1. The entries of row R and column C in A, that are not in X [c,d]
[i,j] , are zero.

2. There is a 1 in the row R to the left of X [c,d]
[i,j] .

3. There is a 1 in the column C bellow X
[c,d]
[i,j] .

∗
MΦ =

R

C

Figure 3.6: Areas in green denote the sub-matrix A containing all sub-matrices to the left and
below sub-matrixX [c,d]

[i,j] , marked with the darkest shade. The non-zero entryMΦ(R,C) is denoted
with ∗.

When reducing X [c,d]
[i,j] , start with entries of type 2 and 3. We will justify that we can set them

to zero using matrix operations of type AO2 and AO3. After this is done, the non-zero entries
will all be of type 1. The remaining steps in the reduction can be performed using operations of
type AO1.

To show we can set an entry of type 2 to zero, assume 1 in row R lies in a column belonging
to a bar [a, b]. Let us prove, that [a, b] ⪯ [c, d] and we can use AO2 to reduce MΦ(R,C). We
already know that [a, b] ≤ [c, d], and by Lemma 3.2.11 the bars [a, b] and [c, d] have a non-empty
intersection. It remains to be proven that [c, d] ̸⊂ [a, b]. For that purpose, assume [c, d] ⊂ [a, b]

and observe Figure 3.7a. By Lemma 3.2.12 the bar [i, j], which is in the support of both Φ(x[c,d])

and Φ(x[a,b]), must satisfy

i ≤ a and c ≤ j ≤ d, (3.10)

and be of length at least c− a ≥ Ξ(V) > 2δ. By Lemma 3.2.13 there exists a bar [k, l] ∈ Bar(V)

for which

x[i,j] ∈ suppΦ(x[k,l]) and x[k,l](2δ) ∈ suppΨ(x[i,j]), (3.11)

i ≤ k ≤ i+ 2δ and j ≤ l ≤ j + 2δ, (3.12)

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 62

where Ψ :W → V (2δ) is an arbitrary choice of a δ-inverse of Φ. The combined inequalities (3.10)
and (3.12) give us restrictions on [k, l]:

k ≤ a+ 2δ and c ≤ l ≤ d+ 2δ.

Because Ξ(V) > 2δ we further have l ≤ d+ 2δ < b. Now notice that k cannot be larger than a:
if it is, then [k, l] ⊂ [a, b] and k − a ≤ 2δ, which violates the assumption that δ < 1

2Ξ(V).
Similarly, l cannot be larger than d, since d < l ≤ d+2δ implies [c, d] ⊂ [k, l], which violates the
same assumption. As a consequence of these observations, the bar [k, l] cannot be equal to [a, b]

or [c, d].

To summarise, there is a bar [k, l] ̸= [a, b], [c, d] satisfying (3.11), which appears before [a, b]

and [c, d] in the order ≤ . Because x[i,j] ∈ suppΦ(x[k,l]), the entry in row R and column belonging
to [k, l] must be non-zero. This means there are two non-zero entries in row R of sub-matrix A
to the left of X [c,d]

[i,j] , which cannot be true, since all sub-matrices in A except for X [c,d]
[i,j] are

reduced. Since we obtained a contradiction, bars [c, d] and [a, b] are not strictly nested. We can
use operations of type AO2 to reduce the entry MΦ(R,C).

c d

ba

]a [c]di j

]
a+ 2δ < c

[
c

]
d+ 2δ < b

k l

(a) The restrictions for endpoints of any bar [i, j]
whose generator is in the support of Φ(x[a,b])
and Φ(x[c,d]) for a δ-invertible morphism Φ are
shown in green. In blue are the restrictions
for the endpoints of a bar [k, l] satisfying (3.11)
and (3.12), which exists by Lemma 3.2.13.

a b

ji

[a− 2δ > i
k]b [j − 2δ > b

l

[
a

]
b

c [
j

d

(b) The restrictions for endpoints of any bar [c, d]
for which the support Φ(x[c,d]) contains generat-
ors x[a,b] and x[i,j] for a δ-invertible morphism Φ
are shown in green. In blue are the restrictions
for the endpoints of a bar [k, l] satisfying (3.14)
and (3.15), which exists by Lemma 3.2.13.

Figure 3.7: Restrictions for endpoints of bars used in the proof of Lemma 3.2.15.

The fact that the entries of the third type can be set to zero using operations of type AO3 can be
proven in a similar way. Assume 1 in column C lies in a row belonging to a bar [a, b] ∈ Bar(W).

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 63

We know that [i, j] ≤ [a, b], and by Lemma 3.2.11 the bars [a, b] and [i, j] have a non-empty
intersection. As before, assume [a, b] ⊂ [i, j] and observe Figure 3.7b. By Lemma 3.2.12 the
bar [c, d] ∈ Bar(V), for which suppΦ(x[c,d]) contains both x[i,j] and x[a,b], must satisfy

a ≤ c ≤ b and j ≤ d, (3.13)

and be of length at least j − b ≥ Ξ(V) > 2δ. By Lemma 3.2.13 there exists a bar [k, l] ∈ Bar(W)

for which

x[k,l] ∈ suppΦ(x[c,d]) and x[c,d](2δ) ∈ suppΨ(x[k,l]), (3.14)

c− 2δ ≤ k ≤ c and d− 2δ ≤ l ≤ d. (3.15)

Notice that l cannot be smaller than j: if it is, the combined restrictions (3.13) and (3.15) give
us j−2δ ≤ l < j and a−2δ ≤ k ≤ b. As a consequence [k, l] ⊂ [i, j] for |j− l| < 2δ, which violates
the assumption that δ < 1

2Ξ(V). Similarly, k cannot be smaller than a, since a − 2δ ≤ k < a

implies [a, b] ⊂ [k, l], which violates the same assumption.

To summarise, there is a bar [k, l] ̸= [a, b], [i, j] satisfying (3.14), which appears after [a, b] and [i, j]

in the order ≤ . Because x[k,l] ∈ suppΦ(x[c,d]), the entry in column C and row belonging to [k, l]

must be non-zero. This means there are two non-zero entries in column C of sub-matrix A

below X
[c,d]
[i,j] , which cannot be, since all sub-matrices in A except for X [c,d]

[i,j] are reduced. Since
we obtained a contradiction, bars [i, j] and [a, b] are not strictly nested. We can therefore use
the row belonging to bar [a, b] in the reduction of MΦ(R,C).

We are now ready to conclude the proof of Theorem 3.2.8.

Proof of Theorem 3.2.8. Let us reduce the matrix MΦ to matching form by admissible opera-
tions AO1, AO2 and AO3. The reduction is done on sub-matrices inductively, processing the
columns from left to right, starting at the lowest non-zero sub-matrix in each column and con-
tinuing upwards. Choosing this order, the assumptions of Lemma 3.2.15 are satisfied at each
step, including for the first sub-matrix in the order. As a consequence the fact that the whole
matrix can be reduced using admissible operations AO1, AO2 and AO3 follows readily.

As is the case for the general morphism, the matching form of MΦ is unique up to barcode basis
changes acting among different bar generators of the same bar.

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 64

Example 3.2.16. The inequality in the assumption δ < 1
2 min(Ξ(V),Ξ(W)) of Theorem 3.2.8

is strict. Here, we provide an example of a δ-invertible Φ: V → W for δ = 1
2 min(Ξ(V),Ξ(W))

that does not admit a ladder decomposition. Let V and W be persistence modules with bar-
codes Bar(V) = {[0, 5], [2, 3]} and Bar(W) = {[0, 3]}, and barcode bases given by generators

xV[0,5] = {e⃗1
(0), e⃗1

(1), e⃗1
(2), e⃗1

(3), e⃗1
(4), e⃗1

(5)},

xV[2,3] = {e⃗2
(2), e⃗2

(3)},

xW[0,3] = {f⃗1
(0), f⃗1

(1), f⃗1
(2), f⃗1

(3)}.

Define the 1-invertible morphism Φ and its 1-inverse Ψ: W → V (2) by giving their matrix
representations

MΦ =
[
1 1

]
and MΨ =

1
0

 .
Notice that Ξ(V) = 2 and Ξ(W) = ∞, and so δ = 1 satisfies 2δ = min(Ξ(V),Ξ(W)). Further,
since the two bars constituting the barcode of V are nested, the only allowed operation on the
columns of MΦ is scaling, which is not enough to reduce MΦ to matching form. △

Example 3.2.17. Consider again the 1-invertible morphism Φ(1) : V →W ′ from Example 3.2.4.
Remember, the barcodes of the modules are

Bar(V) = {[0, 4], [1, 7], [4, 4]} and Bar(W ′) = {[0, 4], [0, 5]},

where the bars have been written in the lexicographical order, and the single-matrix representa-
tion of Φ(1) in the barcode bases chosen in Example 3.2.1 and Example 3.2.4 is

MΦ(1) =

[
2 1 1

0 1 0

]
.

Note that the nestedness of modules V and W ′ are 3 and ∞ respectively, and since δ <
1
2 min(3,∞) holds for the shifting parameter δ = 1, morphism Φ(1) satisfies the assumptions
of Theorem 3.2.8. Let us reduce the matrix MΦ(1) to matching form while keeping track of bases
changes. We begin with the entry MΦ(1)(1, 1) = 2, which is reduced by an admissible operation

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 65

of type AO1,

xV[0,4] 7→
1

2
xV[0,4] = {

1

2
(xV[0,4])i}i∈[0,4].

Moving on to the second column, leave the entry MΦ(1)(2, 2) = 1 unchanged and elimin-
ateMΦ(1)(1, 2) = 1 by subtracting the second row from the first, which is the admissible operation
of type AO3 since [0, 4] ⪯ [0, 5]. This corresponds to the basis change

xW
′

[0,5] 7→ xW
′

[0,5] + xW
′

[0,4] = {(x
W ′

[0,5])i + (xW
′

[0,4])i}i∈[0,4] ∪ {(xW
′

[0,5])5}.

The updated matrix MΦ(1) is now

MΦ(1) =

[
1 0 1

0 1 0

]
.

To eliminate MΦ(1)(1, 3) and finish the reduction process, perform the basis change

xV[4,4] 7→ xV[4,4] − x
V
[0,4] = {(x

V
[4,4])4 − (xV[0,4])4},

which corresponds to the admissible operation of type AO2 subtracting first column from the
last. The ladder decomposition of (V,W ′,Φ(1)) is therefore

R
[0,4]
[0,4] ⊕R

[1,7]
[0,5] ⊕ I+[4,4]

and is obtained in barcode bases in which the bar generators are

xV[0,4] = {
1

2
e⃗1

(0),
1

2
e⃗1

(1),
1

2
e⃗1

(2),
1

2
e⃗1

(3),
1

2
e⃗1

(4)},

xV[1,7] = {e⃗2
(1), e⃗2

(2), e⃗2
(3), e⃗2

(4), e⃗1
(5), e⃗1

(6), e⃗1
(7)},

xV[4,4] = {e⃗3
(4) − 1

2
e⃗1

(4)},

xW
′

[0,4] = {f⃗1
(0), f⃗1

(1), f⃗1
(2), f⃗1

(3), f⃗1
(4)},

xW
′

[0,5] = {f⃗2
(0) + f⃗1

(0), f⃗2
(1) + f⃗1

(1), f⃗2
(2) + f⃗1

(2), f⃗2
(3) + f⃗1

(3), f⃗2
(4) + f⃗1

(4), f⃗1
(5)}. △

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 66

Jr

J ′

Jc

Figure 3.8: Suppose we compose a morphism mapping xJ′ to xJr with a morphism mapping xJc
to xJ′ . Since the bars Jc and Jr do not intersect, the composition of these morphisms would not
map between xJc and xJr , which means the matrix representation of composition is not simply
the product of matrix representations of morphisms.

3.2.3 Ladder Decompositions of an Interleaving Pair
Let (Φ,Ψ) be a δ-interleaving pair between modules V and W . Representing the composi-
tion Φ(δ) ◦Ψ or Ψ(δ) ◦ Φ in a single matrix in a chosen barcode basis gives

Id≥2δ(xJ1 , xJ2) =

1, if |J1| ≥ 2δ and xJ1(2δ) = xJ2 ,

0, otherwise,

which follows from the definition of a δ-interleaving pair. In the rest of this section we analyse
these properties further to obtain results relating ladder decompositions of Φ and Ψ.

Remark 3.2.18. When working with single matrix representations of morphisms of persistence
modules as defined in Proposition 2.2.27, we cannot rely on the intuition developed for matrices
of linear maps between vector spaces. An example of such discrepancy is the fact that the matrix
representation of the composition Φ ◦ Ψ is in general not equal to the matrix product of MΦ

and MΨ. However, it can be obtained from the matrix product as follows

MΨ◦Φ(xJr , xJc) =

(MΨ ·MΦ)(xJr , xJc), if Jr ⪯ Jc,

0, otherwise.

To clarify, the entry MΨ◦Φ(xJr , xJc) might be zero if Jc and Jr have an empty intersection
(see Figure 3.8).

Let i be the index of a row (or a column) and denote by xi the bar generator corresponding to
row (or column) i. Denote the corresponding bar by Ji = [i1, i2].

Lemma 3.2.19. Let MΦ and MΨ be the matrix representations of morphisms Φ: V → W (δ)

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 67

and Ψ: W → V (δ) making an interleaving pair in the barcode bases in which Φ decomposes as
in Theorem 3.2.8. For any non-zero entry MΦ(r, c) = 1, the following hold:

1. If |Jc| ≥ 2δ or |Jr| ≥ 2δ then MΨ(c, r) = 1.

2. If |Jc| ≥ 2δ and there exists z ̸= c for which MΨ(z, r) ̸= 0 then
(a) Jz ⪯ Jc,

(b) z2 < c1 + 2δ.

3. If |Jr| ≥ 2δ and there exists z ̸= r for which MΨ(c, z) ̸= 0 then
(a) Jr ⪯ Jz,

(b) z1 > r2 − 2δ.

Proof. Suppose |Jc| ≥ 2δ and observe the matrix representation of the composition MΨ◦Φ =

Id≥2δ. Since the entry MΨ◦Φ(c, c) = 1 is non-zero, Remark 3.2.18 suggests that MΨ◦Φ(c, c) =

(MΨ ·MΦ)(c, c). From the matrix equation

MΨ ·MΦ =

r

c ∗ a ∗

z ∗ b ∗

·

c

0

0 1 0 r

0

we can deduce that 1 = (MΨ ·MΦ)(c, c) = 1 · a = MΨ(c, r). With a similar procedure we can
obtain the same result for when |Jr| ≥ 2δ which proves the first property.

Continue with the assumption that |Jc| ≥ 2δ and there is a z such that MΨ(z, r) ̸= 0. Now
the entry MΨ◦Φ(z, c) is zero, and since (MΨ ·MΦ)(z, c) = MΨ(z, r) is not zero, it must be that
the bars Jz(2δ) and Jc do not intersect. In other words, z2 < c1 + 2δ (property 2b). Now
assume Jz ̸⪯ Jc, which means we are in one of the following cases:

• z2 > c2,

• z1 > c1,

• z2 < c1.

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 68

The first case cannot happen since c2 < z2 < c1 + 2δ and |Jc| ≥ 2δ cannot hold simultaneously.
In the second case, the chain of inequalities c1 < z1 ≤ z2 < c1 + 2δ ≤ c2 gives us Jz ⊂ Jc

and |z1 − c1| < 2δ, which is a contradiction with the assumption that δ < 1
2 min(Ξ(V),Ξ(W)).

Lastly, assume z2 < c1. Since |Jc| ≥ 2δ, the bar Jr must be the one from Remark 3.2.14. In
particular,

|ci − ri| ≤ δ for i = 1, 2.

Since c1 − δ ≤ r1, a bar Jz with the bar generator in suppΨ(xr) must satisfy z2 ≥ r1 + δ ≥ c1,
which cannot be satisfied in the third case. We arrive to contradictions in all three cases,
hence Jz ⪯ Jc holds.

Properties 3a and 3b can be obtained similarly by observing the entries of MΦ◦Ψ = Id≥2δ and
comparing them to

MΦ ·MΨ =

c

0

r 0 1 0

0

·

z r

∗ ∗
a b c

∗ ∗

.

Corollary 3.2.20. Let (Φ,Ψ) be a δ-interleaving pair between persistence modules V and W

for δ < 1
2 min(Ξ(V),Ξ(W)). Let the matrix representation MΦ of Φ, written in barcode bases BΦ

V

and BΦ
W of V and W respectively, be in matching form. There exists a pair of barcode bases BΨ

V

and BΨ
W for V and W respectively, in which the matrix representation MΨ of Ψ is in matching

form and

MΦ(r, c) =MΨ(c, r)

whenever |Jc| ≥ 2δ and |Jr| ≥ 2δ.

Proof. Write MΨ in barcode bases BΦ
V and BΦ

W and perform the reduction process using ad-
missible operations AO1, AO2 and AO3. Assume we reduced everything to the left of and
below MΨ(c, r), and that MΨ(c, r) ̸= 0 (as we can skip it if it is zero). Further, since operations
of type AO1 can be used to scale it, assume that MΨ(c, r) = 1.

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 69

First, consider the case when MΦ(r, c) = 1. Since |Jc| ≥ 2δ and |Jr| ≥ 2δ, the combined
properties 2a and 3a from Lemma 3.2.19 guarantee that the row c to the left of MΨ(c, r) and
the column r below MΨ(c, r) were zero at the start of the reduction. This means that the steps
of the reduction before encountering MΨ(c, r) did not modify them and they are both still zero.
This also means we can leave the entry MΨ(c, r) to be one and move to the next step of the
reduction.

On the other hand, when MΦ(r, c) = 0 another entry in column c of MΦ must be equal
to 1 because |Jc| ≥ 2δ. Say this entry is MΦ(r

′, c). By property 1 of Lemma 3.2.19 this
means MΨ(c, r

′) = 1. Now we have two non-zero entries in row c of MΨ, namely MΨ(c, r
′)

and MΨ(c, r). By property 3a of Lemma 3.2.19, Jr′ ⪯ Jr and we can reduce the entry MΨ(c, r)

by subtracting column r′ from column r, which is an admissible operation of type AO2.

Theorem 3.2.21. Let (Φ,Ψ) be a δ-interleaving pair between modules V and W with δ <
1
2 min(Ξ(V),Ξ(W)). For any pair of bars JV ∈ Bar(V) and JW ∈ Bar(W) satisfying |JV |, |JW | ≥
2δ, and for any µ ∈ N the following statements are equivalent

• (RJV
JW (δ))

µ appears in the ladder decomposition of Φ,

• (RJW
JV (δ))

µ appears in the ladder decomposition of Ψ.

Proof. For each appearance of RJV
JW (δ) in the ladder decomposition of Φ we have a unique

entry MΦ(R,C) = 1 in the reduced matrix in the matching form, where R is a row index
belonging to the bar JW (δ) and C a column index belonging to the bar JV . By Corollary 3.2.20,
the entry MΨ(C,R) in the matching form of Ψ also equals 1. It corresponds to an appearance
of RJW

JV (δ) in the ladder decomposition of Ψ.

Example 3.2.22. Continue Examples 3.2.1 and 3.2.17 by considering the morphism Ψ, which
forms an interleaving with Φ. First, remember the ladder decomposition

R
[0,4]
[0,4] ⊕R

[1,7]
[0,5] ⊕ I+[4,4] △

that we obtained for the 1-invertible morphism Φ(1) in Example 3.2.17. The ladder decomposition
of Φ is then

R
[0,4]
[1,5] ⊕R

[1,7]
[1,6] ⊕ I+[4,4].

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 70

To obtain a ladder decomposition for Ψ as well, begin by writing the matrices Ψi in the (shifted
equivalents of) barcode bases obtained in Example 3.2.17:

Ψ0,Ψ7 = 0, Ψ1,Ψ2 =

[
1 0

0 1

]
, Ψ3 =

1 0

0 1

0 0

 , Ψ4,Ψ5 =
[
0 1

]
, Ψ6 =

[
1
]
.

Since the single matrix representation of Ψ

MΨ =

1 0

0 1

0 0

 (3.16)

is already in matching form, further reduction is not necessary. The ladder decomposition of Ψ
is

R
[1,5]
[0,4] ⊕R

[1,6]
[1,7] ⊕ I−[4,4].

Remark 3.2.23. The ladder decompositions of Φ and Ψ are in most cases obtained in dif-
ferent pairs of barcode bases (BΦV ,BΦW) and (BΨV ,BΨW) respectfully, which is not illustrated
in Example 3.2.22. This happens whenever MΨ written in bases (BΦV ,BΦW) contains a non-zero
entry MΨ(R,C

′) as

C C ′

1 ∗ R

1 R′

or when a similar entry can be found in MΦ written in bases (BΨV ,BΨW).

3.3 q-Coarse Ladder Decomposition
As deduced in Section 3.2.2, the range of parameters δ for which δ-invertible morphisms between
persistence modules V and W will decompose as in Theorem 3.2.8 is controlled by the nestedness
of V and W . More precisely, small nestedness imposes a harsher limit on the parameter δ in
Theorem 3.2.8. In this section we focus on persistence modules with small nestedness which is

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 71

achieved in (relatively) short bars, as illustrated in Figure 3.9. We explore to which extent short
nested bars can be ignored and how this weakens our results from Sections 3.2.2 and 3.2.3.

Figure 3.9: Example of a barcode of a persistence module with small nestedness. The minimum
from the definition of nestedness is achieved in the lower two bars, which are significantly shorter
than the top-most bar and can in some cases be attributed to noise.

Definition 3.3.1. Let V be a persistence module and q ∈ R≥0. An isomorphism V ∼= V≥q⊕V<q,
where the pair (V≥q, V<q) of persistence modules satisfies

• any bar J ∈ Bar(V≥q) is of length at least q,

• any bar J ∈ Bar(V<q) is of length smaller than q,

is called a q-splitting of V .

A q-splitting induces epimorphisms prV≥q, pr
V
<q and monomorphisms iV≥q, i

V
<q, which map as fol-

lows:

V≥q V V<q.
iV≥q prV<q

prV≥q iV<q

Whenever we wish to discard shorter bars, let us say shorter than q, we will project the module V
onto the part V≥q of its splitting. We refer to V≥q as the q-coarse part of V . Such a splitting
exists for any persistence module and any parameter q ≥ 0, and is especially convenient since
it allows us to define barcode bases BV≥q

and BV<q
for V≥q and V<q separately. The barcode

basis BV these induce on V is then defined simply as

BV = iV≥q(BV≥q
) ∪ iV<q(BV<q

).

Remember that by Definition 3.2.5 the notation [δ]V is used to denote the collection of inner
morphisms {vi,i+δ}i of module V . For the sake of brevity let us omit the subscript denoting the
module and write only [δ] whenever the module can be discerned from the context.

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 72

Lemma 3.3.2. For any parameter q and a persistence module V the following properties hold:

1. Ξ(V≥q) = min
[c,d]⊂[a,b]∈Bar(M)

d−c≥q

min{|a− c|, |b− d|}.

2. dB(Bar(V),Bar(V≥q)) < q
2 .

3. V and V≥q are q
2 -interleaved with interleaving morphisms

φV≥q : V → V≥q(
q

2
) φ̃V≥q : V≥q → V (

q

2
)

φV≥q = [
q

2
] ◦ prV≥q φ̃V≥q = iV≥q(

q

2
) ◦ [q

2
].

4. Epimorphism prV≥q and monomorphism iV≥q are q
2 -invertible.

Proof. Property 1 is rather obvious since the barcode Bar(V≥q) can be obtained from Bar(V) by
discarding bars shorter than q. To prove Property 2 observe that the the bottleneck distance will
be achieved in a matching where all bars in Bar(V) of length at least q are matched with their
copies in Bar(V≥q) and the rest are left unmatched. The first contribute nothing to the cost,
while the second are of length < q, and not matching them contributes less than q

2 to the cost.
As a consequence of Property 2 and the algebraic stability theorem [10], modules V and V≥q

are q
2 -interleaved. To prove that a possible choice for q

2 -interleaving morphisms are φV≥q and φ̃V≥q,
see that

φ̃V≥q(
q

2
) ◦ φV≥q = iV≥q(q) ◦ [q] ◦ prV≥q = [q] ◦ iV≥q ◦ prV≥q,

where we use the morphism property iV≥q(q)◦ [q] = [q]◦ iV≥q in the last step. Further, since V<q ⊆
ker([q]) we obtain the desired

φ̃V≥q(
q

2
) ◦ φV≥q = [q].

The proof that φV≥q(
q
2) ◦ φ̃

V
≥q = [q] also follows from similar considerations. These equalities

together finish the proof of Property 3. To prove that prV≥q is q
2 -invertible, we simply need to

restate Property 3 as

(iV≥q(q) ◦ [q]) ◦ prV≥q = [q]

prV≥q(q) ◦ (iV≥q(q) ◦ [q]) = prV≥q(q) ◦ ([g] ◦ iV≥q) = [q]

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 73

and see that iV≥q(q) ◦ [q] is its q
2 -inverse. Similarly, iV≥q is q

2 -invertible with prV≥q(q) ◦ [q] as
its q

2 -inverse.

3.3.1 q-Coarse Ladder Decomposition of a δ-invertible Morphism
In this section we state the weaker versions of our results from Section 3.2 that hold for δ-invertible
morphisms.

Lemma 3.3.3. Let q ≥ 0. A δ-invertible morphism Φ: V → W with a δ-inverse Ψ induces the
following maps onto q-coarse parts of V and W :

1. A (δ+ q
2)-invertible morphism prW≥q◦Φ: V →W≥q with a (δ+ q

2)-inverse Ψ(q)◦iW≥q(q)◦[q].

2. A (δ + q
2)-invertible morphism Φ ◦ iV≥q : V≥q →W with a (δ + q

2)-inverse prV≥q(q + 2δ) ◦
[q](2δ) ◦Ψ.

3. A (δ + q
2)-invertible morphism Φ̃ : V≥q →W≥q with a (δ + q

2)-inverse Ψ̃ where

Φ̃ = prW≥q ◦ Φ ◦ iV≥q,

Ψ̃ = prV≥q(2δ + q) ◦Ψ(q) ◦ (iW≥q(q) ◦ [q]).

Lemma 3.3.3 gives rise to the following commutative diagrams:

V W V W V W

W≥q V≥q V≥q W≥q

Φ

prW≥q◦Φ
prW≥q

Φ Φ

prW≥qiV≥q
Φ◦iV≥q

iV≥q

Φ̃

Proof. The first two statements are a simple consequence of the fact that a composition of a δ-
invertible morphism with a q

2 -invertible morphism is a (δ+ q
2)-invertible morphism. To show the

third, draw the composition Ψ̃ ◦ Φ̃ in a diagram as

V W W (q) V (2δ + q)

V≥q W≥q V≥q(2δ + q).

Φ

prW≥q

Ψ(q)

prV≥q(2δ+
q
2)iV≥q

Φ̃ Ψ̃

iW≥q(q)◦[q]

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 74

where the dashed arrows denote compositions prV≥q ◦ Φ of a δ- and q
2 -invertible morphism,

and Ψ(q) ◦ iW≥q(q) ◦ [q] of their δ- and q
2 -inverses. Consequently, the composition

Ψ(q) ◦ iW≥q(q) ◦ [q] ◦ prV≥q ◦ Φ

is simply the inner morphism [2δ + q]V . Further,

Ψ̃ ◦ Φ̃ = prV≥q(2δ + q) ◦ [2δ + q]V ◦ iV≥q

is simply the inner morphism [2δ + q]V≥q
. The proof that Φ̃(2δ + q) ◦ Ψ̃ = [2δ + q]W≥q

follows in
a similar way. Draw the composition Φ̃(2δ + q) ◦ Ψ̃ in a diagram as

W V (2δ) V (2δ + q) W (2δ + q)

W≥q V≥q(2δ + q) W≥q(2δ + q),

Ψ

prV≥q(2δ+q)◦[q]

Φ(2δ+q)

prW≥q(2δ+q)

Ψ̃

iW≥q iV≥q(2δ+q)

Φ̃(2δ+q)

where we use the fact that morphisms commute with the inner morphisms [q] to equivalently
write

Ψ̃ = prV≥q(2δ + q) ◦Ψ(q) ◦ (iW≥q(q) ◦ [q]) as (prV≥q(2δ + q) ◦ [q]) ◦Ψ ◦ iW≥q.

The dashed arrows again denote compositions (Φ◦ iV≥q)(2δ+q) of a δ- and q
2 -invertible morphism

(on the right), and prV≥q(2δ+ q) ◦ [q] ◦Ψ of their δ- and q
2 -inverses (on the left). The composition

of the dashed arrows is therefore the family of inner morphisms [2δ + q]W and the composition

prW≥q(2δ + q) ◦ [2δ + q]W ◦ iW≥q

is also a family of inner morphisms, [2δ + q]W≥q
.

The following theorem lists the conditions that must be satisfied so that the induced morphisms
from Lemma 3.3.3 decompose as ladder persistence modules.

Theorem 3.3.4. For any q ≥ 0 a δ-invertible morphism Φ: V →W induces the following (δ+ q
2)-

invertible morphisms:

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 75

1. Morphism prW≥q ◦ Φ: V → W≥q. If δ < 1
2 min(Ξ(V),Ξ(W≥q)) − q

2 holds, it decomposes
as a ladder persistence module.

2. Morphism Φ ◦ iV≥q : V≥q → W . If δ < 1
2 min(Ξ(V≥q),Ξ(W))− q

2 holds, it decomposes as
a ladder persistence module.

3. Morphism prW≥q ◦ Φ ◦ iV≥q : V≥q → W≥q. If δ < 1
2 min(Ξ(V≥q),Ξ(W≥q)) − q

2 holds, it
decomposes as a ladder persistence module.

Furthermore, the barcode bases in which these ladder decompositions are obtained can be extended
to barcode bases of persistence modules V and W .

Proof. All three statements of this proposition are a direct consequence of Theorem 3.2.8. Let
us provide details only for the proof of the last one, since we follow the same approach in all
cases.

The morphism Φ̃ = prW≥q ◦ Φ ◦ iV≥q is a (δ + q
2)-invertible morphism between V≥q and W≥q

by Lemma 3.3.3. Since

δ +
q

2
<

1

2
min(Ξ(V≥q),Ξ(W≥q))

holds by our assumption, we can apply Theorem 3.2.8 to Φ̃. This means there is a pair of barcode
bases BV≥q

and BW≥q
in which Φ′ decomposes as a ladder persistence module. As noted before,

the fact that V≥q is the q-coarse part of a q-splitting of V means that BV≥q
can be supplemented

with any barcode basis BV<q to form a barcode basis for V . By extending both BV≥q
and BW≥q

we obtain barcode bases BV and BW claimed to exist by the theorem.

3.3.2 q-Coarse Ladder Decompositions of a δ-Interleaving Pair
As before, we can leverage the correspondence between δ-invertible morphisms and δ-interleavings
to obtain a statement similar to Theorem 3.3.4 that holds for a single morphism in a δ-interleaving
pair. We state the analogues of the two theoretical results of Section 3.3.1 here, omitting all
the proofs, since they are simple exercises in applying the correspondence from Remark 3.2.3.
Comparing the q-coarse ladder decompositions of the two morphisms making a δ-interleaving we
again show that there is a nice correspondence between them for all bars of sufficient length.

Lemma 3.3.5 (Analogue of Lemma 3.3.3). Let q ≥ 0. A δ-interleaving pair (Φ,Ψ) between
modules V and W induces the following maps onto their q-coarse parts:

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 76

1. Morphisms φW≥q(δ) ◦ Φ: V → W≥q(δ +
q
2) and Ψ(q2) ◦ φ̃

W
≥q : W≥q → V (δ + q

2) making
a (δ + q

2)-interleaving pair.

2. Morphisms Φ(q2) ◦ φ̃
V
≥q : V≥q → W (δ + q

2) and φV≥q(δ) ◦ Ψ: W → V≥q(δ +
q
2) making

a (δ + q
2)-interleaving pair.

3. Morphisms Φ̃ : V≥q →W≥q(δ +
q
2) and Ψ̃ :W≥q → V≥q(δ +

q
2) where

Φ̃ = φW≥q(δ) ◦ Φ ◦ iV≥q,

Ψ̃ = φV≥q(δ) ◦Ψ ◦ iW≥q,

which make a (δ + q
2)-interleaving pair.

Lemma 3.3.5 gives rise to the following commutative diagrams:

V W (δ) V (q2) W (δ + q
2) V

W≥q(δ +
q
2) V≥q V≥q W≥q(δ +

q
2)

W (δ + q
2)

Φ

φW
≥q(δ)◦Φ

φW
≥q(δ)

Φ(q
2)

φW
≥q(δ)◦Φ

φ̃V
≥q

Φ(q
2)◦φ̃

V
≥q

iV≥q

Φ̃

Φ(q
2)◦φ̃

V
≥q

prW≥q

Theorem 3.3.6 (Analogue of Theorem 3.3.4). For any q ≥ 0, a morphism Φ: V →W (δ) which
is part of a δ-interleaving pair induces the following morphisms:

1. Morphism φW≥q(δ) ◦Φ. If δ < 1
2 min(Ξ(V),Ξ(W≥q))− q

2 holds, it decomposes as a ladder
persistence module.

2. Morphism Φ(q2) ◦ φ̃
V
≥q. If δ < 1

2 min(Ξ(V≥q),Ξ(W))− q
2 holds, it decomposes as a ladder

persistence module.

3. Morphism Φ̃ from Lemma 3.3.5. If δ < 1
2 min(Ξ(V≥q),Ξ(W≥q))− q

2 holds, it decomposes
as a ladder persistence module.

All these decompositions are obtained in partial barcode bases that can be extended to barcode
bases of modules V and W .

Notice how Lemma 3.3.5 and Theorem 3.3.6 fit together. Given a δ-interleaving pair (Φ,Ψ),
morphism Φ satisfies the assumptions of case (1) of Theorem 3.3.6 for some q if and only if the

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 77

morphism Ψ satisfies the assumptions of case (2) of Theorem 3.3.6 for the same parameter q.
The induced morphisms each of them gives make a (δ+ q

2)-interleaving pair by Lemma 3.3.5(1).
By switching the roles of Φ and Ψ we can see the reverse also holds giving us the (δ + q

2)-
interleaving pair from Lemma 3.3.5(2). Further, morphisms Φ and Ψ satisfy the assumptions of
case (3) simultaneously, giving us the (δ+ q

2)-interleaving pair from Lemma 3.3.5(3). This means
Theorem 3.3.6 assures that whenever one of the morphisms in the pair can be decomposed, then
so can the other. More importantly, we can compare them.

Let (Φ′,Ψ′) be any of the induced (δ + q
2)-interleaving pairs from Lemma 3.3.5 for which the

ladder decomposition can be obtained by Theorem 3.3.6. By applying Corollary 3.2.20 and
Theorem 3.2.21 to (Φ′,Ψ′) we obtain the following result.

Corollary 3.3.7. Let the matrix representation MΦ′ of Φ′, written in barcode bases BΦ
V and BΦ

W

of V and W respectively, be in matching form. There exists a pair of barcode bases BΨ
V and BΨ

W

for V and W respectively, in which the matrix representation MΨ′ of Ψ′ is in matching form and

MΦ′(r, c) =MΨ′(c, r)

whenever |Jc| ≥ 2δ + q and |Jr| ≥ 2δ + q. For such two bars and any µ ∈ N, the following
statements are equivalent

• (RJc
Jr
)µ appears in the ladder decomposition of Φ′,

• (RJr
Jc
)µ appears in the ladder decomposition of Ψ′.

Since the barcode bases in which we write the matrix MΦ′ can be expanded to barcode bases
of the whole persistence modules in the domain and codomain of Φ, we can think of MΦ′ as a
sub-matrix of MΦ.

3.4 Induced Partial Matchings
Here we give a brief introduction to multisets, which barcodes are examples of. A multiset S
is a set where each element s ∈ S has a non-zero multiplicity µ(s) ∈ Z>0. An isomorphism of
multisets is a bijection of the underlying sets that preserves the multiplicities. A sub-multiset
is a subset T ⊆ S in which the multiplicity of each element is not bigger than its multiplicity

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 78

in S. A morphism of multisets S1 and S2 consists of sub-multisets T1 ⊆ S1 and T2 ⊆ S2 and an
isomophism χ : T1 → T2. We call it a partial matching between S1 and S2 and denote it by

χ : S1 •→ S2.

We often write and define partial matchings as multisets of pairs (t1, χ(t1)) ∈ T1 × T2. They
appear in the definitions of various notions of distances on the space of barcodes, such as the bot-
tleneck [94] and the p-Wasserstein distance [42]. More precisely, each of these distances d(B1, B2)

is the smallest cost of a partial matching between B1 and B2, where the associated cost is dif-
ferent for each of the distances. In the case of the bottleneck distance, which is relevant for the
use in this chapter, the cost of a partial matching χ : S1 •→ S2 is

max
{

max
(I,J)∈χ

{max(|i1 − j1|, |i2 − j2|)}, max
J∈B1∪B2

J /∈χ

1

2
(j2 − j1)

}
,

where I = [i1, i2] and J = [j1, j2].

Given a morphism between one-parameter persistence modules, one might ask whether it in-
duces a partial matching on the level of barcodes. This question was central in the proof of the
algebraic stability theorem [10], when a BL induced matching (BL stands for “Bauer and
Lesnick”) was introduced. In this section we look at an alternative construction of a morphism in-
duced partial matching given by the ladder decompositions. We compare them to the BL-induced
matching and show that they are an example of basis-independent induced matchings [13].
We conclude the chapter with the matchings induced by the ladder decompositions of the coarser
versions of the δ-invertible morphisms.

3.4.1 Ladder Decomposition Induced Partial Matching
In [11], Jacquard et al. observe that an alternative definition of an induced partial matching can
be retrieved from the ladder decomposition of the morphism in question.

Corollary 3.4.1 (of Theorem 3.1.3). The ladder decomposition of a morphism Φ: V → W

induces a matching of barcodes Bar(V) and Bar(W) defined as

χΦ : Bar(V) •→ Bar(W)

χΦ = {((J1, J2), rJ2J1) | R
J2
J1

appears in ladder decomposition of Φ}.

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 79

Note that χΦ is a multiset in which each pair (J1, J2) appears with the multiplicity rJ2J1 .

The uniqueness of the ladder decomposition implies that the induced matching is also unique.
Theorem 3.2.8 assures the existence of a ladder decomposition for a wider range of δ-invertible
morphisms, which induce partial matchings in a similar way. By the correspondence from Re-
mark 3.2.3 the same holds for morphisms that are part of a δ-interleaving pair. The following
results describe the properties of the matchings they induce.

Corollary 3.4.2 (of Theorem 3.2.8). Let Φ: V → W (δ) be one of two morphisms making a δ-
interleaving pair for δ < 1

2 min(Ξ(V),Ξ(W)), and χΦ the partial matching induced by the ladder
decomposition of Φ. Its cost is at most δ. If further δ = dI(V,W), then the induced matching
realizes the bottleneck distance.

Proof. The decomposition

(V,W,Φ) ∼=
⊕

[i1,j1]⪯[i2,j2]

(
R

[i2,j2]
[i1,j1]

)r[i2,j2]

[i1,j1] ⊕
⊕
i≤j

(
I+[i1, j1]

)d+ij ⊕⊕
i≤j

(
I−[i1, j1]

)d−ij
is obtained by finding a pair of barcode bases (BV ,BW) in which the matrix representation of Φ
is in matching form. Remember, each appearance of RJc

Jr
in the decomposition corresponds to a

non-zero entry in the matrix MΦ in a row r belonging to Jr and column c belonging to column Jc.
Similarly, each appearance of I+J corresponds to an empty column in MΦ belonging to bar J ,
and each appearance of I−J corresponds to an empty row in MΦ belonging to bar J .

First, let us prove that the matched bars contribute a cost smaller than δ. If the bars [i2, j2] ∈
Bar(V) and [i1, j1] ∈ Bar(W) are matched, a generator of bar x[i1,i1] is in the support of the
image of the generator x[i2,j2] with the δ-invertible morphism Φ. By Lemma 3.2.13 this implies
that |i2− i1| ≤ δ and |j2− j1| ≤ δ. Therefore, the cost of matching these bars is smaller or equal
to δ.

All there is left to prove is that the cost the bars that are left unmatched contribute is less than δ
as well. Assume I+[i, j] for [i, j] ∈ Bar(V) appears as a summand in the decomposition. Since
the suppΦ(x[i,j]) is empty, Lemma 3.2.13 implies that |j − i| < 2δ and the cost of not matching
it is smaller than δ. In a similar manner one can show that if I−[i, j] appears as a summand in
the decomposition, then the cost of not matching [i, j] ∈ Bar(W) is smaller than δ.

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 80

Corollary 3.4.3 (of Theorem 3.2.21). Let χΦ : Bar(V) •→ Bar(W) and χΨ : Bar(W) •→ Bar(V)

be the partial matchings induced by morphisms (Φ,Ψ) forming a δ-interleaving pair where δ <
1
2 min(Ξ(V),Ξ(W)). For any pair of bars JV ∈ Bar(V) and JW ∈ Bar(W) satisfying |JV | ≥ 2δ

and |JW | ≥ 2δ, and any µ ∈ N,

((JV , JW), µ) ∈ χΦ ⇐⇒ ((JW , JV), µ) ∈ χΨ.

Proof. By Theorem 3.2.21, MΦ(r, c) = 1 implies MΦ(c, r) = 1 for an index c corresponding to
the bar JV and r corresponding to bar JW . Consequently the multiplicity rJVJW of RJV

JW
in the

ladder decomposition of Φ is smaller or equal to the multiplicity rJWJV of RJV
JW

in the ladder
decomposition of Ψ. By using the same arguments with the roles of Φ and Ψ reversed, we
obtain that rJWJV ≤ rJVJW . Considering the definition of the ladder decomposition induced partial
matching, this concludes the proof.

Example 3.4.4. Return to the δ-interleaving pair (Φ,Ψ) from Examples 3.2.1, 3.2.17 and 3.2.22.
The ladder decompositions we obtained are

(V,W (δ),Φ) ∼= R
[0,4]
[1,5] ⊕R

[1,7]
[1,6] ⊕ I+[4,4] and (W,V (δ),Ψ) ∼= R

[1,5]
[0,4] ⊕R

[1,6]
[1,7] ⊕ I−[4,4]

respectively. The matchings they induce are therefore

χΦ = {([0, 4], [1, 5]), ([1, 7], [1, 6])}

χΨ = {([1, 5], [0, 4]), ([1, 6], [1, 7])}.

They happen to be the opposite matchings, which is not always the case (they can differ on bars
shorter than 2δ). It is easy to see that they are of cost 1, which agrees with Corollary 3.4.2. △

3.4.2 Comparisson with the Bauer-Lesnick Induced Matchings
To our knowledge the first notion of a partial matching induced by a morphism of persistence
modules was introduced by Bauer and Lesnick in [10, 43]. Requiring a choice of an order on bars
with the same endpoints, the construction follows three steps:

1. A (general) morphism Φ: V →W is split into a surjection onto its image and inclusion
into the codomain as follows:

V
qΦ−→→ im Φ

iΦ
↪−→ W.

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 81

The matchings χBLqΦ and χBLiΦ are defined separately and later combined into a single
matching χBLΦ as

χBLΦ = {(JV , JW) | ∃Jim ∈ Bar(imΦ) s.t. (JV , Jim) ∈ χBLqΦ and (Jim, JW) ∈ χBLiΦ }.

2. The matching of the injection iΦ is constructed for each family ⟨·, d⟩ of bars with the
second endpoint d individually. First, both ⟨·, d⟩Bar(imΦ) and ⟨·, d⟩Bar(W) are ordered by
the length decreasingly, combining it with the chosen order on bars of the same length.
Then the n-th bar in ⟨·, d⟩Bar(imΦ) gets matched with the n-th bar in ⟨·, d⟩Bar(W). If the
cardinalities differ, the residual bars are left unmatched. The matchings of families ⟨·, d⟩
for all possible endpoints d are combined into a matching χBLiΦ .

3. The matching of the surjection qΦ is constructed for each family ⟨b, ·⟩ of bars with the
first endpoint b individually. As before, families ⟨b, ·⟩Bar(imΦ) and ⟨b, ·⟩Bar(W) are ordered
as before and bars get matched based on their position in the order. The matchings of
families ⟨b, ·⟩ for all possible endpoints b are combined into a matching χBLqΦ .

As noted by the authors, the construction is determined by the barcodes Bar(V), Bar(W)

and Bar(imΦ). This means that the only way the morphism influences the construction is not
through its image, but through the barcode Bar(imΦ). More explicitly, as long as the barcodes
of the image of two parallel morphisms are the same, the induced matchings will coincide. Let
us illustrate this with an example.

Example 3.4.5. Let V and W be the following persistence modules:

V : 0 F2 F2 F2 F 0,

W : 0 F F2 F2 F2 0.

Id Id (1 0)

(10) Id Id

Notice that we assume a specific choice of barcode bases in which we have written the transition
maps. The bottleneck and interleaving distances between these modules are both 1 and there is
an obvious choice for a 1-invertible morphism, namely

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 82

V : 0 F2 F2 F2 F 0

W (δ = 1): 0 F F2 F2 F2 0.

Φ 0

Id

Id

Id

Id

(1 0)

Id 0

(10)
Id Id

The 1-invertible morphism making an interleaving pair with Φ is defined to be the identity when
possible, which also determines the other components through the commuting squares. However,
this is not the only choice of an interleaving pair. Alternatively, we could define a morphism Ψ

as

V : 0 F2 F2 F2 F 0

W (δ = 1): 0 F F2 F2 F2 0,

Ψ 0

Id

(0 1
1 0)

Id

(0 1
1 0)

(1 0)

(0 1
1 0) 0

(10)
Id Id

and the morphism making its interleaving pair as the exchange matrix whenever possible, which
again defines the other components through commuting squares. No matter which definition we
choose, the barcode of the image is {[0, 2], [0, 2]} in both cases. The BL-induced matchings of
the two morphisms, computed as

χBLiΦ =

⟨·, 2⟩Bar(im) ⟨·, 2⟩Bar(W (δ=1))

[0, 2] •7→ [−1, 2]
[0, 2] •7→ [0, 2]

 =

⟨·, 2⟩Bar(im) ⟨·, 3⟩Bar(W)

[0, 2] •7→ [0, 3]

[0, 2] •7→ [1, 3]

 = χBLiΨ ,

χBLiΦ =

⟨0, ·⟩Bar(im) ⟨0, ·⟩Bar(V)

[0, 2] •7→ [0, 3]

[0, 2] •7→ [0, 2]

 = χBLiΨ ,

χBLΦ = {([0, 3], [0, 3]), ([0, 2], [1, 3])} = χBLΨ ,

are therefore the same and do not respect the mapping of the morphism fully.

This is not true for the matchings induced by the ladder decompositions of the interleavings.

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 83

Notice that in the chosen barcode bases Φ and Ψ are already in matching form, namely

Φ =

[
1 0

0 1

]
and Ψ =

[
0 1

1 0

]
.

The matchings induced by their ladder decompositions are

χΦ = {([0, 3], [0, 3]), ([0, 2], [1, 3])} and

χΨ = {([0, 3], [1, 3]), ([0, 2], [0, 3])},

which are clearly different. Despite a δ-interleaving being used in this example, the difference in
the two definitions of induced matchings can be observed for a general morphism of persistence
modules. △

3.4.3 Basis-Independent Partial Matchings
As in this chapter, Gonzalez Diaz and Soriano Trigueros in [13] adopt the view of morphisms as
ladder persistence modules. They define a different notion of a partial matching, called basis-
independent partial matching, which is independent of the choice of order on the barcode
(hence basis-independent).

Definition 3.4.6. A basis-independent partial matching between persistence modules V
and W , indexed over posets PV and PW respectively, is a function

MW
V : PV × PW → Z≥0,

where PV and PW are the sets of intervals in PV and PW respectively. Further, it must satisfy∑
1≤d≤n

∑
1≤c≤d

MW
V (a, b, c, d) ≤ µV ([a, b]) and

∑
1≤b≤n

∑
1≤a≤b

MW
V (a, b, c, d) ≤ µW ([c, d]),

where µV ([a, b]) is the multiplicity of bar [a, b] in Bar(V) and µW ([c, d]) is the multiplicity of
bar [c, d] in Bar(W).

The ladder decomposition induced partial matchings of [11], and therefore the ones we study in
this chapter, are examples of basis-independent partial matchings. To see this, defineMW

V for a

Chapter 3: Ladder Decomposition for Morphisms of Persistence Modules 84

morphisms Φ as

MW
V (a, b, c, d) = r

[a,b]
[c,d] ,

where r[a,b][c,d] is the multiplicity of R[a,b]
[c,d] appearing in the ladder decomposition of Φ. Consequently,

MW
V (a, b, c, d) is the multiplicity of the pair ([a, b], [c, d]) in the ladder decomposition induced

partial matching χΦ. It is rather obvious that the sum
∑
J r

J
[c,d] is not bigger than the multiplicity

of [c, d] in Bar(W) and the sum
∑
J r

[a,b]
J is not bigger than the multiplicity of [a, b] in Bar(V).

3.4.4 q-Coarse Induced Partial Matchings
Whenever the interleaving parameter δ is too big to apply Corollary 3.4.2, we might still leverage
the results of Section 3.3 to define partial matchings of potentially higher cost. The following
result is obtained by combining Theorem 3.3.6 and Corollaries 3.3.7, 3.4.1 and 3.4.3.

Corollary 3.4.7. Let (Φ,Ψ) be a δ-interleaving pair between modules V and W , and suppose
there exists a parameter q such that

δ <
1

2
min(Ξ(V≥q),Ξ(W≥q))−

q

2
.

Then the (δ + q
2)-interleaving pair (Φ′,Ψ′) it induces by Theorem 3.3.6 (1), (2) or (3) further

induces a partial matching

χΦ′ : Bar(V) •→ Bar(W)

χΦ′ = {((J1, J2), rJ2J1) | R
J2
J1

appears in ladder decomposition of Φ′}

which leaves bars in Bar(V<q) and Bar(W<q) unmatched. It is of cost smaller or equal to δ+ q
2 .

By Corollary 3.3.7 for any pair of bars JV ∈ Bar(V) and JW ∈ Bar(W) with |JV | ≥ 2δ + q

and |JW | ≥ 2δ + q

((JV , JW), µ) ∈ χΦ′ ⇐⇒ ((JW , JV), µ) ∈ χΨ′ ,

where µ is the multiplicity of this pairing in both χΦ′ and χΨ′ .

85

Chapter 4

Initialization Strategy for Deep
Neural Networks with ReLU
Activation

Neural networks are essentially families of functions, characterized by parameters known as
weights and biases. They are large and flexible families, which enables them to approximate
solutions to many problems. By continuously changing the parameters based on the perform-
ance of the current function on data, increasingly accurate approximations can be found. Not
surprisingly, the success of this optimization process, called training, depends heavily on how
suitable the initial values of the parameters are. The heuristic we follow in setting them is called
an initialization, and studies of different initialization strategies (tailored to specific tasks or
network architectures) is an integral part of machine learning research. As a result, a plethora
of methods have been developed and made available. In practice, neural networks are usually
initialized randomly, with only mean and variance of the layer outputs controlled to prevent them
from getting too large or too small for successful training. Due to the fact that the probability
of a unit in the network being inactive (meaning the activation is zero for all data) is highly
dependent on the geometry of the data, some advocate for the use of empirical approaches [96]
which learn the “best” initialization for the task at hand.

Chapter 4: Initialization Strategy for Deep Neural Networks with ReLU
Activation 86

For networks with piecewise linear activation, such as ReLU, linear regions play an important
theoretic role in their understanding. Most prior studies into linear regions of ReLU networks
focus on their maximal or expected number [97, 98, 99, 100, 101] which are interesting due to
relative ease of computation and their relation to network expressivity. While their number can
grow exponentially with the number of layers [98], it is usually proportional to the total number
of neurons [101]. Since networks with higher number and more even spread of linear regions are
believed to be able to approximate a richer class of functions [97, 98], it may be beneficial to
maximize their number.

In this work, we devise our own initialization strategy with that exact aim, and monitor how the
number of regions changes during training. Our experiments reveal that whether or not there
are benefits to maximizing the number of linear regions at initialization can vary significantly
based on the variance control heuristic and training configuration (where the choice of network
optimizer is of particular importance). In addition, they shine a light on a few phenomena which
are not yet well-understood within the machine learning community.

The chapter is organized as follows. In Section 4.1, we give the necessary prior knowledge about
the use of neural networks on the specific network we focus on in this work, namely a deep neural
network with ReLU activation. The details of our initialization strategy are given in Section 4.2,
while a report on the experiments comparing it to other strategies follows in Section 4.3. Our
observations are summarized in Section 4.4.

4.1 Neural Network Preliminaries
In this work we focus entirely on deep neural networks with fully connected layers and ReLU
activation. We provide preliminary details about them here, and also write about the pre-
deployment stages of their use, namely initialization, training and testing, as it relates to our
subsequent work.

4.1.1 Network Architecture
Let us represent a deep neural network by the diagram

f :

f [h−1]︷ ︸︸ ︷
Rn0

f(1)

−→ Rn1︸ ︷︷ ︸
=:f [1]

g(1)−→ Rn2
f(2)

−→ · · · g
(h−2)

−→ Rnh−2
f(h−1)

−→ Rnh−1
g(h−1)

−→ Rnh−1
f(h)

−→ Rnh
g(h)

−→ [0, 1]nh .

Chapter 4: Initialization Strategy for Deep Neural Networks with ReLU
Activation 87

Each f (ℓ) denotes an affine function f (ℓ) = W (ℓ) · x+ b(ℓ), where W (ℓ) = (w
(ℓ)
i,j) ∈ Rnℓ×nℓ−1 is a

suitable weight matrix and b(ℓ) ∈ Rnℓ is a bias. The composition g(ℓ) ◦ f (ℓ) is called a layer,
and g(ℓ) is an activation function. In our setting, g(ℓ) for ℓ < h is rectified linear unit
(ReLU) activation function, which is just coordinate-wise maximum xi 7→ max(xi, 0). The last
activation function, g(nh) : Rnh → [0, 1]nh , is a LogSoftmax function, defined coordinate-wise
as

g(nh)(z)i = ln

(
ezi∑nh

j=1 e
zj

)

for z = (z1, . . . , znh
) ∈ Rnh . It transforms the output of the last affine function to a vector

of log probabilities for nh possible outcomes. In some contexts, it is necessary to look at each
coordinate of Rnℓ separately. In that case, each composition πi ◦g(ℓ) ◦f (ℓ), where πi : Rnℓ → Rnℓ

is the projection onto the i-th coordinate in the codomain, is called a unit of layer ℓ. We denote
the partial compositions by f [ℓ] := f (ℓ) ◦ g(ℓ−1) ◦ f (ℓ−1) ◦ · · · ◦ g(1) ◦ f (1) as indicated above, so
that f = g(h) ◦ f [h].

4.1.2 Pipeline
A neural network is first initialized with some values for weights and biases of every layer. These
values are then optimized based on the objective given by a loss function, and lastly tested on
previously unseen data. We explain the necessary details of each of these steps here.

Let us postpone discussing the topic of initialization, and assume the network parameters take
random values for now. Each network is trained for a specific task, and here, we focus on
classification. This means that the network is supposed to assign each point in the data set
to one of nh pre-defined classes. We require a labeled data set X, which means that for each
point x ∈ X in the data it is also known which class it belongs to, as given by a map L : X → [nh]

into the set of labels.

It is crucial to exclude a portion of this data set from training, as the generalization capacity
of the trained network needs to be assessed on previously unseen data. Thus, X is split into
two parts: the training set Xtrain and testing set Xtest. A typical recommendation is to
allocate 80 − 90% of the data to Xtrain and 10 − 20% to Xtest. The network is then trained
exclusively on the training set in an iterative process involving the following steps.

Chapter 4: Initialization Strategy for Deep Neural Networks with ReLU
Activation 88

• The layers of the neural network are applied to the data in what is called a forward
pass to obtain a prediction. For point x, the prediction y = f(x) is a vector of log
probabilities. Namely, its j-th coordinate, yj , is the natural logarithm of predicted
probability that x belongs to class j ∈ [nh], and thus

∑
j∈[nh]

eyj = 1.

• Denote by α(x) the one-hot vector encoding of the label L(x), that is α(x)j = 1 if
L(x) = j and 0 otherwise. In the next step, the predictions are compared to the target
values α(x) via a loss function. The most common loss function in classification tasks
(and also the one we use later on) is the (multiclass) cross-entropy loss. It is defined
as

c(α(x), y) = −
nh∑
j=1

α(x)j log(yj). (4.1)

To compute it for a batch B ⊆ Xtrain, it is custom to take the average,

c(B) =
1

|B|
∑
x∈B

c(α(x), f(x)).

• Notice that, implicitly, the cost function depends on all weights and biases in the network.
Partial derivatives of the loss function with respect to all of the parameters are used to
compute their updates. Very generally, the update at step t of a parameter p is computed
following

p(t) = p(t−1) + η · φ(∇pc(t),∇pc(t−1), . . . ,∇pc(0)),

where η is a parameter called the learning rate, and controls the step size for the up-
date, and φ is the method-dependent function which depends on partial derivatives of
the loss function with respect to the parameter being updated at t and all the previous
steps. Note that the loss function is not differentiable when using ReLU activation. It is,
however, piecewise differentiable and most methods choose the appropriate derivative at
each step in an efficient way. Due to a dependence of the derivatives in the earlier layers
on the derivatives in the later layers, the updates are computed in the “backwards” dir-
ection. This step is accordingly called backpropagation. The specific approach to the
computation of parameter updates depends on the choice of the optimizer. In our work,
we use stochastic gradient descent (SGD) [17, Chap. 8.1.3] and adaptive moment
estimation (Adam) [18] with the default parameters of the Pytorch implementation.

Chapter 4: Initialization Strategy for Deep Neural Networks with ReLU
Activation 89

Training is rarely performed on the whole training data set simultaneously due to high memory
demands, especially on large data sets. Instead, the set Xtrain is usually partitioned into
batches B1, . . . , Bb. This approach can also accelerate computation and introduce random-
ness, which can be beneficial in helping the model escape local minima. Similarly, a single pass
of all the batches through the network, called an epoch, might not be sufficient for the model
to learn the intricacies of the task. It is beneficial to iterate over the data set multiple times,
allowing the model to refine the parameters with every epoch. The choice of batch size (and
therefore the number of batches b) and the number of epochs should be given whenever describing
a training process.

A particular issue that can arise during training are vanishing or exploding gradients. This
is when the partial derivatives become very small or very large, respectively, as they are back-
propagated through the network. The first leads to slow updates and consequently stalls network
training, while the second can cause the training to be unstable and to diverge. Among the ap-
proaches for preventing these issues, it is recommended to use ReLU activation, optimizers with
adaptive learning rate (such as Adam) which can amplify small and prevent excessive updates by
choosing the learning rate accordingly, and to choose an appropriate strategy for initialization
of network parameters.

The choice of initialization heuristic is known to have significant impact on subsequent training
of the network in question, with a good initialization leading to faster convergence and better
accuracy. Most commonly used initialization techniques, for example He [102], Xavier [103],
and LeCun [104] initializations (which is the default PyTorch initialization for fully connected
layers), sample network parameters randomly from uniform or normal distribution with mean
and variance controlled per layer to prevent the gradients from vanishing or exploding. To be
more precise, the guiding principle of all these techniques is that one can avoid vanishing and
exploding gradients by scaling the weights of a layer so that its input and output have the same
variance. When the input data set is normalized, the variance of the output of every layer should
thus be close to 1. This is a principle we also adopt in the design of our custom initialization
method. In addition to the latter, we use LeCun initialization, in which the entries of W (ℓ)

and b(ℓ) are drawn randomly from the uniform distribution U(− 1√
nℓ−1

, 1√
nℓ−1

).

Finally, let us address how the success of the training is assessed. Typically, several quantitative
metrics are monitored throughout the training process, and their final values are compared
against the same metrics applied to the test dataset, Xtest. The selection of metrics varies based

Chapter 4: Initialization Strategy for Deep Neural Networks with ReLU
Activation 90

on the specific task the network is trained for, and the most common metrics for classification
tasks are loss and accuracy. Let y again denote the prediction of the network on input x,
and let yi(x) = max(y) be the largest coordinate of the prediction, implying that x belongs to
class i(x). Then, the accuracy of the network on a subset S ⊆ X is defined as

acc(S) =
|{x ∈ S | i(x) = L(x)}|

|S|
.

In other words, it is the percentage of correct predictions the network makes on the given set of
inputs. To monitor accuracy and loss during the training process, we plot their values every s

steps in the training (where a step here means a pass of one batch). We postpone giving further
details until Section 4.3.

4.1.3 Activation Regions
The notion of activation regions is central to our work in this chapter. We provide the necessary
prior knowledge related to them here.

An activation pattern is a binary vector s = (s
(ℓ)
i)ℓ=1,...,h,i=1,...,nℓ

∈ {±1}[n1;n2;...;nh], where
[n1;n2; . . . ;nh] = {(ℓ, i) | ℓ = 1, . . . , h, i = 1, . . . , nℓ}. They can be used to describe the network’s
“train of thought”: the activation pattern at a point x ∈ Rn0 is

s(x) :=
(
s
(ℓ)
i (x)

)
ℓ=1,...,h,
i=1,...,nℓ

where s
(ℓ)
i (x) :=

+1 if f [ℓ]i (x) > 0,

−1 if f [ℓ]i (x) ≤ 0.

For ReLU, if s(ℓ)i = −1 the activation nulls the result of f (ℓ)i , and if s(ℓ)i = 1 the result passes
through unchanged. The activation pattern at x therefore collects the network’s “decision” at
each unit. The set of points for which f [ℓ]i = 0 is accordingly called a decision boundary.

Each activation pattern s ∈ {0, 1}[n1;n2;...;nh] has an associated activation region

A(s) :=
{
x ∈ Rn0 | s = s(x)

}
,

where (·) denotes the euclidean closure. Thus, each point x ∈ Rn0 belongs to an activation region
A(x) := A(s(x)). If x ∈ Int(A(x)), we say x is generic. For each layer, the Jacobian of f [ℓ]

is well-defined and constant in the interior of the maximal activation regions. We denote it by
Jf [ℓ](s).

Chapter 4: Initialization Strategy for Deep Neural Networks with ReLU
Activation 91

Remark 4.1.1. On specific subsets of the input space Rn0 , the network f behaves as a linear
function. Each of these (maximal) subsets is referred to as a linear region. This concept is
often mistaken for the notion of an activation region, likely because they coincide under the
assumption of genericity for the types of networks where these concepts are typically analyzed,
namely fully connected deep neural networks with all activation functions being piecewise linear.
Example 4.1.2 illustrates that these notions can differ in special cases. In our case, there is an
additional reason for distinction due to the use of (non-linear) LogSoftmax as the last activation
function. However, we rarely consider the units of the last layer and shamelessly use the two
notions interchangeably.

Example 4.1.2. Define a network R f(1)

−→ R2 g(1)−→ R2 f(2)

−→ R where f (1)(x) = (x,−x), f (2)(x, y) =
x− y and g(1) is ReLU activation. Such a network maps any input x ∈ R to

f (2) ◦ g(1) ◦ f (1)(x) = f (2) ◦ g(1)(x,−x)

= f (2)
(
max(x, 0),max(−x, 0)

)
= max(x, 0)−max(−x, 0)

= x.

Thus, the whole R is one linear region, while there are two activation regions belonging to
activation patterns (1,−1) and (−1, 1). △

The following lemma (which appears originally in [105], but we restate it here in our notation)
gives assurance that these activation regions are “nice”. To be precise, they are either empty or
full-dimensional closed convex polyhedra, and their set covers the entire input space Rn0 .

Lemma 4.1.3. Fix an activation pattern s = s(x0) with x0 ∈ int(A(s)). Any activation in-
dex (ℓ, i) ∈ [n1;n2; . . . ;nh] defines a closed affine half-space

Fs(ℓ, i) :=
{
y ∈ Rn0 | sℓ,i ·

[
(Jf [ℓ](x0))i · (y − x0) + f

[ℓ]
i (x0)

]
≥ 0
}

=
{
y ∈ Rn0 | sℓ,i · (Jf [ℓ](x0))i · y ≥ sℓ,i ·

[
(Jf [ℓ](x0))i · x0 − f [ℓ]i (x0)

]}
.

Chapter 4: Initialization Strategy for Deep Neural Networks with ReLU
Activation 92

Their intersection for all units in layer ℓ is a convex polyhedron

Fs(ℓ) :=

nℓ⋂
i=1

Fs(ℓ, i)

:=
{
y ∈ Rn0 | Dℓ

sJf [ℓ](x0) · y ≥ Dℓ
s

[
Jf [ℓ](x0) · x0 − f [ℓ](x0)

]}
where Dℓ

s is a diagonal matrix with entries (Dℓ
s)ii = sℓ,i. Further, the activation region A(s) is

the convex polyhedron
⋂h
ℓ=1

⋂nℓ

i=1 Fs(ℓ, i) =
⋂h
ℓ=1 Fs(ℓ).

Proof. By induction on the layer depth ℓ ∈ [h], we show that y ∈
⋂ℓ
j=1

⋂nj

i=1 Fs(j, i) holds if and
only if sj,i(y) = sj,i for all j ∈ [ℓ] and i ∈ [nj].

Begin with the first layer. For i ∈ [n1], we have that (Jf [1])i = (Jf(1))i is simply W (1)
i: , the i-th

row of W (1). Further, f (1)i (x0) can be written as W (1)
i: x0 + b

(1)
i . Then for any y ∈ Rn0

f
(1)
i (y) =W

(1)
i: (y) + b

(1)
i

=W
(1)
i: · y + f

(1)
i (x0)−W (1)

i: · x0
= (Jf [1])i · y + f

[1]
i (x0)− (Jf [1])i · x0

and s1,i(y) = s1,i holds if and only if

s1,i ·
[
(Jf [1])i · y + f

[1]
i (x0)− (Jf [1])i · x0

]
≥ 0.

Now, assume y ∈ Rn0 lies in Fs(j) for all layers j ∈ [ℓ− 1]. Then

(g(ℓ−1) ◦ f [ℓ−1])i = max(0, sℓ−1,i) · f [ℓ−1]
i

for all i ∈ [nℓ−1], which is a fixed linear function on
⋂ℓ−1
j=1 Fs(j). As a consequence, the com-

position f
[ℓ]
i = (f (ℓ) ◦ g(ℓ−1) ◦ f [ℓ−1])i is also linear on

⋂ℓ−1
j=1 Fs(j), where its Taylor expansion

around x0 gives

f
[ℓ]
i (y) = (Jf [ℓ](x0))i · (y − x0) + f

[ℓ]
i (x0)

= (Jf [ℓ](x0))i · y − (Jf [ℓ](x0))i · x0 + f
[ℓ]
i (x0).

Chapter 4: Initialization Strategy for Deep Neural Networks with ReLU
Activation 93

The activation patterns sℓ,i(y) and sℓ,i are equal if and only if

sℓ,i ·
[
(Jf [ℓ](x0))i · y − (Jf [ℓ](x0))i · x0 + f

[ℓ]
i (x0)

]
≥ 0,

which concludes the proof.

Remark 4.1.4. Note that the activation regions remain unchanged under scaling of weights and
biases. This is true when scaling is isotropic and anisotropic, first meaning that the scaling
factor is the same for each unit within a layer, and the second that it is not. To see this, suppose
we scale the unit i in layer ℓ by a factor a > 0, which means (a · f (ℓ)i) ◦ g(ℓ) ◦ f [ℓ−1] = a · f [ℓ]i . The
half-space Fs(ℓ, i) we obtain after scaling is{

y ∈ Rn0 | sℓ,i ·
[
a · (Jf [ℓ](x0))i · (y − x0) + a · f [ℓ]i (x0)

]
≥ 0
}

=
{
y ∈ Rn0 | a · sℓ,i

[
(Jf [ℓ](x0))i · (y − x0) + ·f [ℓ]i (x0)

]
≥ 0
}

=
{
y ∈ Rn0 | sℓ,i ·

[
(Jf [ℓ](x0))i · (y − x0) + ·f [ℓ]i (x0)

]
≥ 0
}
,

which is the same as before scaling. This also implies that the activation region A(s), which is
the intersection

⋂h
ℓ=1

⋂nℓ

i=1 Fs(ℓ, i), is unchanged.

4.2 Initialization Strategy
The aim of our work was to develop and test an initialization strategy which optimizes the number
and distribution of activation regions. We chose the parameters for each unit of each layer (in an
increasing order) separately, aiming to split multi-labeled regions at each step. We decide which
region to split based on a custom-defined measure, called the cross-entropy region cost creg.
Given a region R in which a subset SR = Xtrain ∩ R of the training data lies, its cost is defined
as

creg(R) :=
∑
x∈SR

c(α(x), v%), (4.2)

where v% ∈ Rnh is a vector with the percentage of points in SR labeled with i as the i-th
coordinate. Notice that when all points in SR belong to the same class, creg(R) = 0.

Our strategy has been implemented in Python (using the machine learning library PyTorch).
For pseudo-code of the main method, reinitialize_network, and the methods it relies on, see
Algorithms 1 to 6. Its steps are roughly the following.

Chapter 4: Initialization Strategy for Deep Neural Networks with ReLU
Activation 94

1. Initialize the network following the LeCun initialization heuristic, i.e. draw entries
of W (ℓ) and b(ℓ) randomly from U(− 1√

nℓ−1
, 1√

nℓ−1
).

2. Loop through the layers ℓ = 1, . . . , h and the units u = 1, . . . , nℓ, and reinitialize.
Throughout the reinitialization, collect the information about which point belongs to
which region (within table R), and what is each region’s cost (within list C). These are
initialized with values signaling the existence of one region containing all training data
and of appropriate cost. Further, we keep track of the images of the training set Xtrain

with g(ℓ) ◦ f [ℓ] and denote it by X
(ℓ)
train. The specific steps taken during the iteration

depend on which stage the algorithm is in.
• Stage 1: First, it is determined which region R to split with the activation of the

unit u, which can be identified easily from C. The set of points SR = Xtrain ∩R that
lie within R is read from R. Let w(ℓ)

u: be the u-th row in the weight matrix W (ℓ),
which contains all the entries contributing to the value of unit u. Further, let b(ℓ)u
be the u-th coordinate of the bias for that layer. Then, the unit u maps an input x
to

max(w(ℓ)
u: · x+ b(ℓ)u , 0) = max(w(ℓ)

u: · x,−b(ℓ)u) + b(ℓ)u ,

where · denotes the scalar product. Notice that if we wish to split the region R

in half, it is enough to change the bias b(ℓ)u . Indeed, one can consider the set
P = {w(ℓ)

u: · x | x ∈ SR} and choose such b(ℓ)u that ⌈ |P |
2 ⌉ of the points in P are bigger

than −b(ℓ)u and ⌊ |P |
2 ⌋ are smaller. Thus, a new value for the bias is set, and R and C

are updated. If u is the last unit in its layer, an additional step in which mean
and variance of the weights are controlled is applied. Here we use two different
scaling methods, which are detailed in Section 4.2.1. The choice between the two
is controlled with the boolean parameter keepV ariance. Lastly, the output of the
previous layer, X(ℓ−1)

train (or the training data set Xtrain if ℓ = 1), is passed through
layer ℓ and X(ℓ)

train is computed.

• Stage 2: Once the cost of all regions is 0 (meaning each region contains points
belonging to the same class), no further network parameters are changed. Never-
theless, values of R and C are updated.

Chapter 4: Initialization Strategy for Deep Neural Networks with ReLU
Activation 95

Algorithm 1 (reinitialize_network method). Custom network initialization.
Input: network, X (data), Y (labels)
Flags: keepV ariance (controls which scaling is used, see Section 4.2.1)
Output: C, list containing the cost of each region
1: initialize R, C
2: if keepV ariance then Σ = (σ1, . . . , σh)← layerwise_deviation(network, X)

▷ σℓ ∈ Rnℓ is a coordinate-wise standard deviation of g(ℓ) ◦ f [ℓ](X)
3: else Σ← ([] for each layer in network)
4: for layer innetwork do
5: X, R, C ← reinitialize_relu_layer(layer, X, Y, R, C, σlayer, keepV ariance)
6: return C

Algorithm 2 (reinitialize_relu_layer method). Custom layer initialization.
Input: layer, X (data), Y (labels), R (table containing the activation pattern and region of

each data point), C (list containing the cost of each region), σ̂ (target standard deviation)
Flags: keepV ariance (controls which scaling is used, see Section 4.2.1)
Output: X, R, C after being passed through layer
1: c← highest creg cost of regions in R ▷ for definition of creg, see Equation (4.2)
2: stage← determine the stage
3: for u = 0, 1, . . . , nlayer do ▷ Loop through units in layer
4: if stage = 1 then
5: w

(layer)
u: , b

(layer)
u ← parameters of unit u in layer

6: XR ← points in region R, which has the highest creg cost in R
7: b

(layer)
u ← bias_update(XR, w

(layer)
u:)

8: update R, C
9: if creg(R) = 0 for∀R ∈ R then

10: stage← 2

11: else if stage = 2 then
12: update R, C
13: Xtemp← pass X through the reinitialized layer
14: if keepV ariance then
15: reset_layer_deviation(layer, Xtemp, σ̂) ▷ Scale parameters to control variance
16: else
17: fix_layer_deviation(layer, Xtemp) ▷ Scale parameters to control variance
18: X ← pass X through layer
19: return X, R, C

Chapter 4: Initialization Strategy for Deep Neural Networks with ReLU
Activation 96

Algorithm 3 (bias_update method). For a layer with given weight, compute the value for the
corresponding bias so that the most costly region is split in half.
Input: XR (data belonging to region R), w (weight of the layer)
Output: b, bias so that activation in associated unit splits XR in half

1: N ← ⌊ |XR|
2 ⌋

2: WXR ← [w · x for x ∈ XR]
3: WXR ← order WXR increasingly
4: aN , aN+1 ←WXR[N], WXR[N + 1]
5: return aN+aN+1

2

4.2.1 Adjusting Layer Variance
After changing the parameters of the layer, we need to perform additional steps to ensure the
variance is controlled and thus the gradients do not vanish or explode during optimization. To
do this, we call one of the methods fix_layer_deviation and reset_layer_deviation whose
steps are detailed in Algorithms 4 and 5 respectively. Both essentially scale the parameters of
the layer, which does not change the activation regions, per Remark 4.1.4. Which of the two
methods we use is controlled by the boolean parameter keepV ariance in reinitialize_network

and reinitialize_relu_layer (Algorithms 1 and 2 respectively): reset_layer_deviation is
used when True, and fix_layer_deviation when False.

The method fix_layer_deviation applies isotropic scaling to the parameters of each layer
which sets the variance of its output to 1. To be precise, all weights and biases are scaled by a
factor of 1

σ , where σ is the standard deviation of the norms of the output of the layer. As we
noted above, our choice of this scaling method follows a guiding principle that, on normalized
data sets, exploding and vanishing gradients can be avoided by making sure the variance of the
output of each layer is approximately 1 [102, 103, 104].

Due to the unexpected performance of fix_layer_deviation in our experiments (see Sec-
tions 4.3.1 and 4.3.2), we implement another scaling method which resets the variance of layer
output to what it was prior to us changing the parameters of the layer. This is implemen-
ted within reset_layer_deviation method, which therefore needs to be provided with the
desired standard deviation σ̂ for each coordinate of the output (this can be computed with
layerwise_deviation method in Algorithm 6). To determine the scaling factors, coordinate-
wise standard deviation of the layer as is, σ, is computed. The weights and biases of unit u are
then scaled by σ̂[u]

σ[u] . Contrary to fix_layer_deviation, this scaling is anisotropic.

Chapter 4: Initialization Strategy for Deep Neural Networks with ReLU
Activation 97

Algorithm 4 (fix_layer_deviation method). Scaling of layer parameters so that the layer
output has variance 1.
Input: layer, X (data), σ̂ (target standard deviation)
1: σ ← std(X) ▷ std stands for coordinate-wise standard deviation
2: replace zero entries in σ and σ̂ with 1
3: scalars←

[
σ̂[u]/σ[u] for unit u in layer

]
4: for u = 1, . . . , nlayer do
5: w

(layer)
u: ← σ̂[u]

σ[u] · w
(layer)
u:

6: b(layer) ← σ̂
σ · b

(layer) ▷ coordinate-wise operations

Algorithm 5 (reset_layer_deviation method). Scaling of layer parameters so that the layer
output has the same variance as before the reinitialization.
Input: layer, X (data)
1: σ ← std(||input|| for input in X) ▷ std stands for standard deviation of a list
2: w(layer) ← 1

σ · w
(layer)

3: b(layer) ← 1
σ · b

(layer)

Algorithm 6 (layerwise_deviation method). Computing the standard deviation of layer
output.
Input: network, X (data)
Output: Σ = (σ(1), . . . , σ(h)) where σ(ℓ) ∈ Rnℓ is a coordinate-wise st. deviation of g(ℓ) ◦f [ℓ](X)

1: Σ← []
2: for layer innetwork do
3: X ← pass X through layer
4: append std(X) ∈ Rnlayer to Σ ▷ std stands for coordinate-wise standard deviation
5: return Σ

Chapter 4: Initialization Strategy for Deep Neural Networks with ReLU
Activation 98

4.2.2 Computing Region Membership
For any input x ∈ Rn0 it can be determined which activation region it belongs to by computing
its activation pattern. An example of such method, determine_region_membership, is given in
Algorithm 7.

In practice, however, the activation patterns of both regions and input are continuously computed
and updated during the reinitialization process. At the beginning of iteration step belonging
to unit u in layer ℓ, the only entries of the activation pattern that are known are sk,j for
(k, j) < (ℓ, u) in the lexicographical order. Once the bias is reset, the only activation regions R
whose sets SR = Xtrain∩R change are the ones that are intersected by the new decision boundary.
Two new regions replace each such region, and the membership is recomputed for points in SR.
Note that the entries to the activation patterns of these points do not change for (k, j) < (ℓ, u),
only the entry for (ℓ, u) gets appended. For regions that are not split by the new decision
boundary, similarly, only the entry for (ℓ, u) is computed and appended.

Algorithm 7 (determine_region_membership method). Determines which region a data point
belongs to.
Input: layers (list of network’s layers), x (data point), R (table containing the activation pat-

tern and region of each data point)
Output: R ∈ R that x belongs to, as given by its activation pattern
1: s← [] ▷ initialize activation pattern
2: for layer in layers do
3: z ← [w

(layer)
u: · x+ b

(layer)
u for u = 1, . . . , nlayer]

4: s(layer) ← [sgn(zu) for zu ∈ z]
5: append s(layer) to s
6: x← pass x through layer
7: return s

4.2.3 Complexity Analysis
To address the question of scalability of our initialization strategy to the practical neural network
setting, let us comment on its computational complexity.

Let D denote the number of data points, L the number of layers, and n the maximal number of
units in a layer of our network. In such a setting, one forward pass contributes at mostO(D·L·n2)
operations. To reinitialize all units in our network, two forward passes are needed: one in order
to split the regions, and one to update both the region table R and the cost vector C. The

Chapter 4: Initialization Strategy for Deep Neural Networks with ReLU
Activation 99

complexity of the subsequent step – adjusting the layer variance – depends on the chosen method.
In the worst case scenario, when reset_layer_deviation is used, this step involves computing
two coordinate-wise standard deviations of D points in Rn per layer, along with an additional
forward pass, again contributing an order of O(D · L · n2) operations. Finally, an extra forward
pass is required to keep track of the images of the data points with each layer.

In total, this results in five forward passes, yielding an overall computational complexity of O(D ·
L · n2). Note, however, that we performed complexity analysis on the worst case scenario. In
practice, the initialization strategy almost always terminates prematurely because it runs out of
regions to split. Further, the number of data points, D, to use in the reinitialization should be
chosen to be significantly smaller than the size of the dataset. Lastly, the number of units in a
layer need not be constant across the network. As a result, with carefully chosen parameters,
the computational complexity of our initialization can be significantly lower than that of a single
training epoch.

4.3 Experiments
Our strategy was implemented in Python (using the machine learning library PyTorch for the
construction and training of neural networks) and is available on Github [106]. We provide a
detailed description of the experiments and their results in this section.

Data Set. We chose the MNIST data set [16] for the experiments, as it is arguably the most well-
studied classification data set in the machine learning community. It consists of 70000 images of
hand-written digits from 0 to 9. Each image is represented by a 28× 28 grid of grayscale pixels,
i.e. each pixel is an integer in [0, 255]. It is used in classification tasks, where neural networks
are trained to predict which digit each image portrays.

In order to feed an image into a fully connected layer, it is first flattened into a 784-dimensional
vector by concatenating its rows. In addition, the data set is normalized. In line with the
standard practice, we randomly allocate 60000 images into the training, and 10000 images into
the test data set.

Chapter 4: Initialization Strategy for Deep Neural Networks with ReLU
Activation 100

Network Architecture. The networks used in all experiments have identical architecture:

f : R784 −→ R10 −→ R10 −→ [0, 1]10,

where the first two layers have ReLU, and the last one has LogSoftmax activation. The architec-
ture was chosen to be as small as possible so that the network still reliably achieves reasonable
accuracy after a small number of training steps.

Initialization Strategies. To test whether maximizing the number of linear regions is be-
neficial for the success of training, we compare our initialization with the LeCun initialization.
Recall, that the first step of our method is to use LeCun initialization and then readjust the bias
with reinitialize_relu_layer. To ease the computational strain, we randomly choose 3000

images per class from the Xtrain data set to pass to the reinitialization method. The sets of
experiments we ran differ in the scaling method that was used for variance control. In experi-
ments from Sections 4.3.1 and 4.3.2, fix_layer_deviation method was used. To see whether
potential improvements in training following our initialization are actually due to scaling, we
also include networks that are first initialized following the LeCun strategy and then scaled with
fix_layer_deviation. This is not necessary in Section 4.3.3 where reset_layer_deviation

was used instead.

Training. The networks have been trained for 24 runs and 24 epochs, with the training data
split in batches of size 100. As detailed in Section 4.1, cross entropy loss was used in either Adam
(Sections 4.3.1 and 4.3.3) or SGD (Section 4.3.2) optimization. During training, the accuracy and
loss are recorded 10 times per epoch, while the number and costs of the regions are recorded 4

times per epoch.

4.3.1 Adam Optimization and fix_layer_deviation
The results of this set of experiments are illustrated in Figure 4.1, with the plots in blue be-
longing to the networks initialized via LeCun, the ones in orange belonging to networks that are
additionally scaled with fix_layer_deviation, and, lastly, the plots in green belonging to the
networks initialized with our initialization strategy and scaled with fix_layer_deviation. All
the networks were trained with Adam optimizer. We observe the following:

Chapter 4: Initialization Strategy for Deep Neural Networks with ReLU
Activation 101

F
ig

ur
e

4.
1:

P
lo

ts
ill

us
tr

at
in

g
th

e
re

su
lt

s
of

th
e

ex
pe

ri
m

en
ts

on
ne

ur
al

ne
tw

or
ks

tr
ai

ne
d

w
it

h
A

da
m

op
ti

m
iz

er
an

d
w

it
h

fi
x_

la
ye

r_
de

vi
at

io
n

sc
al

in
g.

T
he

re
su

lt
s

of
ne

tw
or

ks
in

it
ia

liz
ed

fo
llo

w
in

g
ou

r
st

ra
te

gy
ar

e
ta

gg
ed

w
it

h
’f

ul
l’

,
th

e
on

es
w

it
h

Le
C

un
in

it
ia

liz
at

io
n

w
it

h
’s

td
’,

an
d

th
e

on
es

w
it

h
Le

C
un

in
it

ia
liz

at
io

n
an

d
ad

di
ti

on
al

sc
al

in
g

to
co

nt
ro

lt
he

va
ri

an
ce

w
it

h
’v

ar
’.

T
he

y
ar

e
sh

ow
n

in
gr

ee
n,

bl
ue

,a
nd

or
an

ge
,r

es
pe

ct
iv

el
y,

as
de

no
te

d
by

th
e

le
ge

nd
.

Chapter 4: Initialization Strategy for Deep Neural Networks with ReLU
Activation 102

• For all initialization strategies, there is an immediate drop in the number of (populated)
regions at the beginning of training. Their number then gradually, but continuously
increases throughout all subsequent stages of training.

• The networks that are first initialized via LeCun and then scaled, consistently reach
lower accuracy than the other networks. We can therefore conclude that the scaling with
fix_layer_variance does not influence the performance of our initialization strategy
in the positive. It might, in fact, hinder it. Nevertheless, based on the results of this
experiment we can argue that maximizing the number of regions does have an added
benefit when the weights are not scaled optimally at initialization.

• All strategies lead to comparable performance after many epochs. Since all networks
follow identical accuracy vs. epoch curves for the training and test data sets, we argue
that their capacity for generalization is comparable as well.

• The total costs for the training data set are much higher than the ones for the test data
set. This is due to the fact that we did not take the size of the data sets into account,
and the regions for the training data set simply contain more points. In addition, notice
that the plots for the number of regions for networks with scaling (in green and orange)
seem to differ by a constant in both training and test setting. This hints that the surplus
of regions obtained by our strategy is maintained throughout training. It is uncertain,
whether that would hold if we followed a more appropriate scaling heuristic, thus reach-
ing an even higher number of regions and potentially surpassing LeCun initialization
with regards to accuracy.

4.3.2 SGD Optimization and fix_layer_deviation
The results of this set of experiments are illustrated in Figure 4.2, with the plots in blue belonging
to the networks initialized via LeCun, the ones in orange belonging to the networks that are
additionally scaled with fix_layer_deviation, and, lastly, the plots in green belonging to the
networks initialized with our initialization strategy and scaled with fix_layer_deviation. All
the networks were trained with SGD optimizer. We observe the following:

• The drop in the number of regions in the early stages of training in Section 4.3.1 can be
observed here as well. It is more smooth and gradual, especially for the networks initial-
ized via LeCun. While an increase in the number of regions in subsequent training could
be observed when Adam was used, this is not generally true here. These discrepancies
suggest that the optimization steps have different consequences for the linear regions

Chapter 4: Initialization Strategy for Deep Neural Networks with ReLU
Activation 103

F
ig

ur
e

4.
2:

P
lo

ts
ill

us
tr

at
in

g
th

e
re

su
lt

s
of

th
e

ex
pe

ri
m

en
ts

on
ne

ur
al

ne
tw

or
ks

tr
ai

ne
d

w
it

h
SG

D
op

ti
m

iz
er

an
d

w
it

h
fi

x_
la

ye
r_

de
vi

at
io

n
sc

al
in

g.
T

he
re

su
lt

s
of

ne
tw

or
ks

in
it

ia
liz

ed
fo

llo
w

in
g

ou
r

st
ra

te
gy

ar
e

ta
gg

ed
w

it
h
’f

ul
l’

,
th

e
on

es
w

it
h

Le
C

un
in

it
ia

liz
at

io
n

w
it

h
’s

td
’,

an
d

th
e

on
es

w
it

h
Le

C
un

in
it

ia
liz

at
io

n
an

d
ad

di
ti

on
al

sc
al

in
g

to
co

nt
ro

lt
he

va
ri

an
ce

w
it

h
’v

ar
’.

T
he

y
ar

e
sh

ow
n

in
gr

ee
n,

bl
ue

,a
nd

or
an

ge
,r

es
pe

ct
iv

el
y,

as
de

no
te

d
by

th
e

le
ge

nd
.

Chapter 4: Initialization Strategy for Deep Neural Networks with ReLU
Activation 104

depending on which optimizer is used. In particular, it seems the way linear regions are
treated by SGD depends on the variance of the output at initialization, since the plots
for the networks with LeCun initialization follow different curves than the ones scaled
with fix_layer_deviation.

• In these experiments, scaling the layers with fix_layer_deviation seems to have an
initial benefit, with both sets of networks using this scaling reaching higher accuracy in
the first 5 (for only scaled networks) and 10 (for reinitialized networks) epochs than the
networks initialized via LeCun. Maximizing the number of linear regions at initialization
again leads to faster convergence and better final accuracy when compared with networks
whose parameters are only scaled. However, the networks with LeCun initialization reach
a comparable accuracy to the reinitialized networks in the later stages of the training.
This poses a question whether our initialization only fixes the damage done by choosing
a subpar scaling method.

• Since all networks follow identical accuracy vs. epoch curves for the training and test
data sets, we argue that their capacity for generalization is comparable.

• The total costs for the training data set are much higher than the ones for the test data
set, which is partially a consequence of the difference in data set sizes. However, the
curves the costs follow are significantly different for the two data sets, with the ones
for test data set decreasing consistently after the first epoch. We do not know what to
attribute this observation to.

4.3.3 Adam Optimization and reset_layer_deviation
The results of this set of experiments are illustrated in Figure 4.3, with the plots in blue belonging
to the networks initialized via LeCun and the plots in orange belonging to the networks initialized
with our initialization strategy and scaled with reset_layer_deviation. All the networks were
trained with Adam optimizer. We observe the following:

• Similar as in Section 4.3.1, there is an immediate drop in the number of linear regions
at the beginning of training for both sets of networks.

• The accuracies the networks reach during training is independent of whether we max-
imize the number of linear regions at initialization. This shows that this additional step
brings no benefit when the variance is set to a fitting value.

Chapter 4: Initialization Strategy for Deep Neural Networks with ReLU
Activation 105

F
ig

ur
e

4.
3:

P
lo

ts
ill

us
tr

at
in

g
th

e
re

su
lt

s
of

th
e

ex
pe

ri
m

en
ts

on
ne

ur
al

ne
tw

or
ks

tr
ai

ne
d

w
it

h
A

da
m

op
ti

m
iz

er
an

d
w

it
h

re
se

t_
la

ye
r_

de
vi

at
io

n
sc

al
in

g.
T

he
re

su
lt

s
of

ne
tw

or
ks

in
it

ia
liz

ed
fo

llo
w

in
g

ou
r

st
ra

te
gy

ar
e

ta
gg

ed
w

it
h
’f

ul
l’

,a
nd

th
e

on
es

fo
r

Le
C

un
in

it
ia

liz
at

io
n

w
it

h
’s

td
’.

T
he

y
ar

e
sh

ow
n

in
or

an
ge

an
d

bl
ue

,r
es

pe
ct

iv
el

y,
as

de
no

te
d

by
th

e
le

ge
nd

.

Chapter 4: Initialization Strategy for Deep Neural Networks with ReLU
Activation 106

4.4 Conclusion
The experiments we ran to determine whether maximizing the number of linear regions at ini-
tialization is beneficial, are inconclusive and depend highly on the optimization method used.
All experiments seem to agree that such an additional step at initialization does not lead to im-
provement in the final accuracy reached, at least not when the initial variance is set to a sensible
value. In fact, the effects of variance control at initialization seem to be more important for the
success of training than maximizing the number of linear regions. Additionally, our empirical
observations shine a light on three phenomenons which are not well understood and deserve
further theoretical study.

• How different optimizers “treat” linear regions throughout training is not the same. This
agrees with the observations in [107], where the study involved not only the cost and
number of linear regions, but also their more geometric properties, such as the radii
of their inspheres, directions of the decision boundaries and the angles at which they
meet. They showed that different optimization techniques introduce linear regions with
different properties even when they reach similar final accuracies. Surprisingly, our
empirical tests hint that in the case of SGD optimizer, the evolution of linear regions
additionally depends on the variance of the layers at initialization.

• The number of linear regions experiences a significant drop in the early stages of training.
While it does begin increasing later on when using Adam optimizer, it does not increase
for all networks when using SGD. This behavior has been observed for Adam before
in [2, 101] (see Figure 4.4), but the optimization aims that drive it are not yet fully
understood. The speculation of [101, 108] is that neural networks learn global patterns
first, for which fewer and larger linear regions are sufficient. In subsequent stages the
focus switches to memorization and the regions are fragmented to fit to the individual
data points. This interpretation, however, is challenged by our experiments with SGD
optimizer.

• We do not yet fully understand how adjusting the variance at initialization affects the
training. Several heuristics for variance control have been suggested with the primary
focus of avoiding exploding or vanishing gradients, which make training difficult or even
halt it. Our experiments suggest that the choice of the heuristic might not only influence
the speed of convergence, but also determine what final accuracy the network is able to
reach (this seems to be the case especially when using SGD). Further, our experiments
seem to contradict the common principle that a good initialisation should ensure the
variance of each layer’s output is 1.

Chapter 4: Initialization Strategy for Deep Neural Networks with ReLU
Activation 107

Figure 4.4: The evolution of the number of linear regions (computed along lines through input
space) during training of neural networks with fixed architecture on MNIST data set at several
noise levels [2].

108

Chapter 5

Gromov–Hausdorff Distance for
Directed Metric Spaces

The phenomena studied in certain domains are not reversible. This can be reflected in having
privileged directions in the ambient space. Perhaps the most clear examples of non-reversible
phenomena are those involving time, where any trajectory going forwards in time cannot be
reversed. When modeling such phenomena one should take directionality into account.

Directed algebraic topology [109, 19] provides a natural theoretical framework for such applic-
ations. Its conception was driven by two key motivations: considerations of non-reversibility in
homotopy theory inherently gives rise to it, while directed spaces were also recognized as the
appropriate model for the study of concurrent processes. The interest in directed structures has
risen in recent years, primarily due to the use of networks in mathematical modeling and, in
particular, machine learning. To conduct further analysis on the directed space models, it is
paramount that one is able to measure distances within them and compare them between each
other. Both tasks ask for notions of distance, either on a specific example or on the entire set of
directed spaces. While new distances sensitive to direction have been introduced in the context
of networks, we are not aware of any in the general setting of directed spaces. With the work
presented in this chapter we aim to fill this gap.

Chapter 5: Gromov–Hausdorff Distance for Directed Metric Spaces 109

Our inspiration for the definition of a distance between directed spaces is the Gromov–Hausdorff
distance. It is a metric on the isometry classes of compact metric spaces, hence it measures how
close two compact metric spaces are to being isometric. We use two of its equivalent definitions:
the original one via isometries between spaces, and an alternative one via distortion of maps. We
generalize both notions to the setting of directed spaces equipped with a metric, calling the first
the directed Gromov–Hausdorff distance, and the second the distortion distance. Note
that the original metric on the space does not necessarily take direction into account. Thus, we
define a novel notion of distance, called the zigzag distance, which is induced by the underlying
metric and the directed structure on a d-space. Our definitions of distances between d-spaces are
phrased with respect to the zigzag distance. Curiously, we show that, contrary to the undirected
analogues, these two notions are not equivalent. Directed Gromov–Hausdorff distance between
directed spaces whose metric structure is given by the zigzag distance coincides with the original
Gromov–Hausdorff distance between their underlying (undirected) topological spaces with the
same metric structure. The distortion distance, however, is stronger and better captures the
differences in directed structures.

Throughout this chapter X⃗ is a d-space where the underlying topological space is a metric space
(X, d), and the topology on X is induced by the metric. Moreover, X⃗ is always assumed to
be rectifiable. For the necessary preliminary details, see Sections 2.1 and 2.3. We begin this
chapter in Section 5.1 by defining the zigzag distance. Directed spaces on which it is a metic can
then be compared with the analogue of the classical Gromov–Hausdorff distance, the directed
Gromov–Hausdorff distance, which we define in Section 5.2, where we also explore some of its
properties. In Section 5.3, we introduce a directed analogue for an alternative formulation of
the Gromov–Hausdorff distance: the distortion distance. We continue by listing its properties as
well, and comparing it to the directed Gromov–Hausdorff distance. Lastly, Sections 5.4 and 5.5
are dedicated to some interesting examples of directed spaces: the directed flat torus and the
directed weighted graph, respectively. We define them to be the directed analogues of flat
torus and weighted directed graph, and detail how they can be equipped with a directed metric
structure via the zigzag distance.

Definition 5.0.1. A rectifiable d-space is a d-space (X, P⃗ (X)), where X is a metric space
and every d-path in P⃗ (X) is rectifiable.

Chapter 5: Gromov–Hausdorff Distance for Directed Metric Spaces 110

Recall that a path γ : I → X is rectifiable if its length by total variation,

ℓd(γ) = sup

N∑
i=1

d(γ(ti−1), γ(ti))

where the supremum ranges over all finite sequences 0 ≤ t0 < t1 < · · · < tN ≤ 1, is finite. SinceX
is a metric space, a path is rectifiable if and only if there exists a homeomorphism h : I → I

such that γh is 1-Lipschitz. Observe that all constant paths, finite concatenations of rectifiable
paths, and partial reparametrizations of rectifiable paths are rectifiable. This guarantees that a
rectifiable d-space is well-defined.

5.1 Zigzag Distance
The notion of direction in d-spaces is encoded in its set of distinguished paths. Thus, if we wish
to define a metric on a d-space that takes direction into account, it is sensible to define it via
d-paths. However, most d-spaces are not d-path connected, meaning that for some x, x′ ∈ X the
set P⃗ (x, x′) of d-paths with source x and target x′ is empty.

Definition 5.1.1. A zigzag path between x, x′ ∈ X⃗ is a sequence (γi)
m
i=1 of d-paths such

that γi ∈ P⃗ (pi−1, pi)∪ P⃗ (pi, pi−1), where p0 = x and pm = x′. Denote the set of all zigzag paths
between x and x′ as P⃗zz(x, x′), and with P⃗zz(X) the set of all zigzag paths on X⃗. A d-space X⃗
is zigzag connected if P⃗zz(x, x′) ̸= ∅, for any pair x, x′ ∈ X.

(a) A d-path. (b) A zigzag path. (c) Not a zigzag path.

Figure 5.1: Let I⃗2 be the d-space where P⃗ (I2) is given by the product order on I2. The single
green arrow (left) is a d-path from (0, 0) to (1, 1). The multiple green arrows (middle) give a
zigzag path between (1, 0) and (0, 1), whereas the red arrow (right) is not a zigzag path.

A zigzag connected d-space X⃗ is also path connected because P⃗ (Z)(X) ⊂ C([0, 1], X). To see
that the converse is in general not true, consider a path connected space with P⃗ (X) containing
only the constant paths.

Chapter 5: Gromov–Hausdorff Distance for Directed Metric Spaces 111

Since X is a metric space we can define the length of a rectifiable zigzag path, which in turn
induces a distance function on X.

Definition 5.1.2. The length of a zigzag path γ = (γi)
m
i=1 is the sum of lengths of constituent

paths, namely

ℓzz(γ) =

m∑
i=1

ℓd(γi),

where ℓd is the length by total variation induced by d on X. The zigzag distance induced by d
on X⃗ is defined as

dzz(x, x
′) = inf

γ∈P⃗zz(x,x′)
ℓzz(γ).

The following result is a analogue of (2.1) in Proposition 2.1.9 in our setting.

Lemma 5.1.3. For a d-space X⃗, the underlying space of which is a metric space (X, d), and
every x, x′ in X,

dzz(x, x
′) ≥ d(x, x′).

Proof. If there are no zigzag paths between x and x′, then dzz(x, x
′) = ∞ and the statement

holds. Assume, therefore, that P⃗zz(x, x′) ̸= ∅, and there exists a path γ = (γi)
m
i=1 ∈ P⃗zz(x, x′)

with ℓzz(γ) < d(x, x′). Then,

d(x, x′) > ℓzz(γ) =

m∑
i=1

l(γi) ≥
m∑
i=1

d(γi(0), γi(1)),

which violates the triangle inequality of the metric d. Consequently, ℓzz(γ) ≥ d(x, x′) holds for
any path γ ∈ P⃗zz(x, x′), and taking the infumum of ℓzz over all such paths gives

dzz(x, x
′) ≥ d(x, x′).

Proposition 5.1.4. The zigzag distance dzz on X⃗ is an extended metric, and it is a metric
when X⃗ is zigzag connected.

Chapter 5: Gromov–Hausdorff Distance for Directed Metric Spaces 112

Proof. We need to show dzz satisfies identity, positivity, symmetry and triangle inequality. The
first two follow from Lemma 5.1.3, since d is a metric. Now, observe that that there is a
path-preserving bijection between the sets P⃗zz(x, x′) and P⃗zz(x

′, x): for each γ ∈ P⃗zz(x, x
′),

its reverse γ⋆ is in P⃗zz(x
′, x). As a consequence, dzz(x, x′) = dzz(x

′, x), implying that dzz is
symmetric. Lastly, we note that, for every x′, P⃗zz(x, x′′) contains all the paths from x to x′′

passing through x′. Thus,

dzz(x, x
′′) = inf

γ∈P⃗zz(x,x′′)
ℓzz(γ)

≤ inf
γ1∈P⃗zz(x,x′),γ2∈P⃗zz(x′,x′′)

(ℓzz(γ1) + ℓzz(γ2))

= dzz(x, x
′) + dzz(x

′, x′′),

showing the triangle inequality for dzz.

Note that dzz(x, x′) = ∞ if and only if P⃗zz(x, x′) is empty, justifying the second part of the
statement.

Definition 5.1.5. The pair (X⃗, dzz), where X⃗ is a zigzag connected d-space, is a directed
metric space.

Example 5.1.6. The assumption that the underlying space is a metric space is necessary,
since a zigzag distance induced from a more general distance function on the space may violate
certain requirements of an extended metric. To illustrate this, let X be a topological space
and ℓ : XI → R≥0 some length function on paths in X. Further, let S ⊆ X be a closed subspace
and CA the set of all constant paths in A ⊆ X.

Given distinct points a, b ∈ S, define for each n ∈ N a directed structure P⃗ (X)(n) = ⟨CX ∪{fn}⟩
where fn : [0, 1] → X is a continuous map such that fn(0) = a, fn(1) = b, and ℓ(fn) =

1
n . For

any n, the pair (X, P⃗ (X)(n)) is a directed space with a directed subspace (S,CS).

Consider the disjoint union
⊔
n∈N(X, P⃗ (X)(n)) and define an equivalence relation ∼ on it in the

following way. Given points x ∈ (X, P⃗ (X)(n)) and x′ ∈ (X, P⃗ (X)(m)) for some m,n ∈ N, x ∼ x′

if and only if x, x′ ∈ S and x = x′. Denote the quotient d-space⊔
n∈N

(X, P⃗ (X)(n))/∼

Chapter 5: Gromov–Hausdorff Distance for Directed Metric Spaces 113

by (Y, P⃗ (Y)) and equip it with the zigzag distance dzz. Note that P⃗ (Y) = CY ∪ ⟨{fn}n∈N⟩, and

that dzz(a, b) = infn∈N
1

n
= 0, despite the assumption of a ̸= b in the construction. Therefore, dzz

is not an extended metric on (Y, P⃗ (Y)). △

Example 5.1.7 (Non-Equivalent Topology). It is perhaps not surprising that the topology
induced by the zigzag distance in general is not equivalent to the topology of the underlying metric
space. To illustrate this, take (X, d) to be the Euclidean plane. Let the set of d-paths P⃗ (X) in
d-space (X, P⃗ (X)) be generated by

{γx : I → X, γx(t) = t · x | x ∈ X}.

In the zigzag metric dzz induced by these choices, the shortest path between any two points x, x′

in X with x
||x|| ̸=

x′

||x′|| is given by following a straight line from x to the origin and continuing
out in a straight line to x′. Since it suggests that the space is centralized, it is known by many
names, including post office, French Metro, British Rail, and SNCF metric.

Fix a radius R > 0 and take x ∈ X for which d(0, x) > R. Notice that Bzz(x,R) ⊂ B(x, r) for
any r ≥ R, but there exists no r′ > 0 so that

B(x, r′) ⊆ Bzz(x,R),

where B is a ball in the Euclidean metric d, and Bzz a ball in the zigzag metric dzz. △

5.2 Directed Gromov–Hausdorff Distance
In this section we study the Gromov–Hausdorff distance on directed spaces. Unless stated oth-
erwise, directed metric spaces are endowed with the zigzag metric induced from the underlying
metric space.

Definition 5.2.1. Let (X⃗, dXzz) and (Y⃗, dYzz) be two directed metric spaces. A d-map F⃗ : X⃗ → Y⃗

is called a d-isometry if

dXzz(x, x
′) = dYzz(F⃗ (x), F⃗ (x

′))

holds for any x, x′ in X. D-spaces X⃗ and Y⃗ are d-isometric if there exists a bijective d-isometry
F⃗ : X⃗ → Y⃗ whose inverse F⃗−1 : Y → X (as a function F−1 : Y → X) is a d-map.

Chapter 5: Gromov–Hausdorff Distance for Directed Metric Spaces 114

Definition 5.2.2. Let X⃗ and Y⃗ be d-subspaces of the directed metric space (Z⃗, dzz). The
directed Hausdorff distance of X⃗ and Y⃗ in Z⃗ is defined by

d⃗H(X⃗, Y⃗) = dH((X, dXzz), (Y, d
Y
zz)).

The directed Gromov–Hausdorff distance between two directed metric spaces X⃗ and Y⃗ is
defined as

d⃗GH(X⃗, Y⃗) = inf
F⃗,G⃗

d⃗H(F⃗ (X⃗), G⃗(Y⃗)),

where F⃗ : X⃗ → Z⃗ and G⃗ : Y⃗ → Z⃗ are directed isometries into some directed metric space (Z⃗, dzz).

Interestingly, insisting on isometries between directed spaces in the definition of the Gromov–
Hausdorff distance being d-maps is not restrictive. In fact, the Gromov–Hausdorff distance
depends only on the zigzag metric structure induced by the d-structure.

Theorem 5.2.3. Let (X⃗, dXzz) and (Y⃗, dYzz) be directed metric spaces. Then

dGH((X, dXzz), (Y, d
Y
zz)) = d⃗GH((X⃗, dXzz), (Y⃗, d

Y
zz)).

Proof. Observe that each d-isometry from (X⃗, dXzz) or (Y⃗, dYzz) to (Z⃗, dZzz) is in particular an
isometry from (X, dXzz) or (Y, dYzz), respectively, to (Z, dZzz). Thus, dGH(X,Y) ≤ d⃗GH(X⃗, Y⃗).

Secondly, let us prove that dGH(X,Y) ≥ d⃗GH(X⃗, Y⃗). For every δ > 0, there is a metric
space (Zδ, dδ) and isometries F δ : X → Zδ and Gδ : Y → Zδ so that

dδH(F δ(X), Gδ(Y)) ≤ dGH(X,Y) + δ,

as illustrated in Figure 5.2. Fix an ϵ > 0 and consider [0, ϵ] with the Euclidean metric. Define
a d-space Z⃗δϵ = (Zδ × [0, ϵ], P⃗) where the set P⃗ of d-paths is generated by

{
t 7→ (F ◦ γ(t), 0) | γ ∈ P⃗ (X)

}⋃{
t 7→ (G ◦ γ(t), ϵ) | γ ∈ P⃗ (Y)

}⋃{
t 7→ (z, ϵ · t) | z ∈ Z(δ)

}
,

Chapter 5: Gromov–Hausdorff Distance for Directed Metric Spaces 115

Figure 5.2: Isometric embeddings of X and Y into a metric space Zδ in which their Hausdorff
distance is δ-close to their (undirected) Gromov–Hausdorff distance.

see Figure 5.3. If we endow Z⃗δϵ with the zigzag metric induced by the sup-metric on Zδ × [0, ϵ],
denoted by dδ,ϵzz , then embeddings ιX : X⃗ → Z⃗δϵ mapping x 7→ (F (x), 0), and ιY : Y⃗ → Z⃗δϵ

mapping y 7→ (G(y), ϵ) are d-isometries. Furthermore, notice that

dδ,ϵzz (ιX(x), ιY (Y)) = dδH(F δ(x), Gδ(Y)) + ϵ, and

dδ,ϵzz (ιX(X), ιY (y)) = dδH(F δ(X), Gδ(y)) + ϵ

for any x ∈ X, y ∈ Y . As a consequence,

d⃗δ,ϵH (ιX(X⃗), ιY (Y⃗)) = dδH(F δ(X), Gδ(Y)) + ϵ ≤ dGH(X,Y) + ϵ+ δ,

where d⃗δ,ϵH is the directed Hausdorff distance in (Zδϵ , d
δ,ϵ
zz), and dδH is the Hausdorff distance

in (Zδ, dδ). Since this holds for every ϵ > 0 and every δ > 0, d⃗GH(X⃗, Y⃗) ≤ dGH(X,Y).

Recall that the Gromov-Hausdorff distance is a metric on the set of isometry classes of compact
metric spaces. If we therefore consider directed spaces up to isometry only, Theorem 5.2.3
immediately implies the following.

Corollary 5.2.4. The directed Gromov-Hausdorff distance is a metric on the space of compact
directed metric spaces (X⃗, dXzz) up to isometry.

Corollary 5.2.5. For any zigzag connected d-space, d⃗GH(X⃗, X⃗∗) = 0.

Note that Corollary 5.2.4 does not require compactness of the underlying metric space (X, dX),

Chapter 5: Gromov–Hausdorff Distance for Directed Metric Spaces 116

Figure 5.3: Using the isometric embeddings F δ : X → Zδ and Gδ : Y → Zδ from Figure 5.2,
a new space Zδϵ = Zδ × [0, ϵ] is constructed, with X embedded into layer 0 via (F δ, 0), and Y
embedded into layer ϵ via (Gδ, ϵ). A directed structure for Zδϵ is then chosen so that these
embeddings are d-maps and Zδϵ is zigzag connected.

but of the zigzag metric space (X⃗, dXzz). This is a much stricter assumption, given that dzz, in
general, is an extended metric (see Proposition 5.1.4). Corollary 5.2.5 follows by observing that
X⃗ and X⃗∗ induce the same zigzag distance dXzz on X.

The following example illustrates that despite the result stated in Corollary 5.2.4, the directed
Gromov–Hausdorff distance is not a metric on the space of compact directed metric spaces up
to d-isometry, as it can be zero on spaces that are not d-isometric.

Example 5.2.6. Let X = [−1, 1] and define the maps γ1, γ2 : I → X as γ1(t) = t and γ2(t) = −t.
Endow X with the path space P⃗ (X) = ⟨γ1, γ2⟩ and the Euclidean metric. Denote the resulting
d-space as X⃗ and its reverse space as X⃗∗.

−1 0 1 −1 0 1
γ2 γ1 γ∗2 γ∗1

X⃗ : X⃗∗ :

By Corollary 5.2.5, d⃗GH(X⃗, X⃗∗) = 0, where both spaces are equipped with the zigzag metric.

Chapter 5: Gromov–Hausdorff Distance for Directed Metric Spaces 117

For any d-map F⃗ : X⃗ → X⃗∗, the compositions F⃗ ◦ γ1 and F⃗ ◦ γ2 must be d-paths in P⃗ (X)∗.
Further, since F⃗ ◦ γ1(0) = F⃗ (0) = F⃗ ◦ γ2(0), one of the following holds:

• F⃗ ◦ γ1(I), F⃗ ◦ γ2(I) ⊆ γ∗1(I) = [0, 1],

• F⃗ ◦ γ1(I), F⃗ ◦ γ2(I) ⊆ γ∗2(I) = [−1, 0].

As a consequence, there is no d-isometry between X⃗ and X⃗∗. △

Other consequences of Theorem 5.2.3 and Proposition 2.1.14 are the following.

Corollary 5.2.7. For compact directed metric spaces (X⃗, dXzz) and (Y⃗, dYzz)

1. ⃗dGH(X⃗, Y⃗) ≤ 1
2 max{Diam(X⃗),Diam(Y⃗)},

2. ⃗dGH(X⃗, Y⃗) = 1
2Diam(Y⃗), if X = {x0}.

Considering that the metric of the underlying metric space and the zigzag distance induced
by said metric and a specified set of d-paths are not equivalent, it comes as no surprise that
the Gromov–Hausdorff distance between (X, dX) and (X, dXzz) can be non-zero. Regardless, we
illustrate this fact with an example.

Example 5.2.8. Take X = I2 with the euclidean metric dX inherited from R2, and denote by
X⃗ = (X, P⃗ (X)) the d-space induced by the product order on I2. We show that

dGH
(
(X, dX), (X, dXzz)

)
= 1−

√
2

2
.

As stated in Corollary 2.1.13, 1
2 infφ dis(φ) ≤ dGH

(
(X, dX), (X, dXzz)

)
with the infimum running

over all maps φ : (X, dXzz)→ (X, dX). By taking the anti-diagonal points, we can further show

inf
φ

dis(φ) ≥ inf
φ
|dXzz((1, 0), (0, 1))− dX(φ(1, 0), φ(0, 1))|

= inf
φ
|2− dX(φ(1, 0), φ(0, 1))|

≥ 2−
√
2,

where we use diam(X, dX) =
√
2 in the last step. Further, distortion 2−

√
2 is attained for φ = Id.

Indeed, observe that

dis(Id) = sup
x,x′∈X

|dXzz(x, x′)− dX(x, x′)|

Chapter 5: Gromov–Hausdorff Distance for Directed Metric Spaces 118

is attained at a pair of points x, x′ that are incomparable in the product order as they are the
only ones for which dzz ̸= dX . On such points, dzz(x, x′) = |x1 − x′1|+ |x2 − x′2| and computing
the distortion corresponds to maximization of |ℓ1(x, x′) − ℓ2(x, x′)|, where ℓ1 is the Manhattan
and ℓ2 the euclidean metric. This maximum is attained by anti-diagonal points, which implies
that infφ dis(φ) = dis(Id) = 2−

√
2. Thus, we have shown that 1−

√
2
2 is a lower bound for dGH

between these d-spaces.

Following similar arguments, we can show that dis(ψ) = codis(φ,ψ) = 2 −
√
2 where both

maps (X, dXzz)
φ−→ (X, dX) and (X, dXzz)

ψ←− (X, dX) are the identity. Thus,

max
{
dis(φ),dis(ψ), codis(φ,ψ)

}
= 2−

√
2,

proving that dGH
(
(X, dX), (X, dXzz)

)
= 1−

√
2
2 . △

5.3 Distortion Distance
Theorem 2.1.12 connects the Gromov–Hausdorff distance with distortion and codistortion, two
properties of maps between spaces. It is often useful, as it provides bounds for otherwise notori-
ously difficult-to-compute Gromov–Hausdorff distance [110]. Since distortion and codistortion
are also defined for d-maps, we explore whether a similar connection exists for d-spaces.

Definition 5.3.1. The distortion distance between directed metric spaces (X⃗, dXzz) and (Y⃗, dYzz)

is defined as

ddis(X⃗, Y⃗) =
1

2
inf
F⃗,G⃗

max{dis(F⃗),dis(G⃗), codis(F⃗, G⃗)},

where F⃗ : X⃗ → Y⃗ and G⃗ : Y⃗ → X⃗ are two d-maps.

Unlike the directed Gromov–Hausdorff distance, distortion distance is in general not equal to the
classic notion of Gromov–Hausdorff distance on directed metric spaces. We illustrate this fact
by continuing Example 5.2.6. In Lemma 5.3.3 we further elaborate how the notions of distortion
distance and directed Gromov–Hausdorff distance are related.

Example 5.3.2. Consider X⃗ and X⃗∗ as in Example 5.2.6. We observed there that the image
of every d-map F⃗ : X⃗ → X⃗∗ is either included in [0, 1] or in [−1, 0]. As a consequence,

dXzz(−1, 1)− dXzz(F⃗ (−1), F⃗ (1)) ≥ 2− 1,

Chapter 5: Gromov–Hausdorff Distance for Directed Metric Spaces 119

and dis(F⃗) ≥ 1. By symmetry we also have that dis(G⃗) ≥ 1 for any d-map G⃗ : X⃗∗ → X⃗. This
means that

max{dis(F⃗),dis(G⃗), codis(F⃗, G⃗)} ≥ 1 (5.1)

for any pair of d-maps F⃗ : X⃗ → X⃗∗ and G⃗ : X⃗∗ → X⃗. This already implies that ddis(X⃗, X⃗∗) >

dGH(X⃗, X⃗∗) = 0 (see Example 5.2.6). However, for this example, we can do better and show
that ddis(X⃗, X⃗∗) = 1

2 . Let us define the d-maps F⃗ : X⃗ → X⃗∗ and G⃗ : X⃗∗ → X⃗ as follows:

F⃗ (t) =

{
−1, for t ∈ [−1, 0],

t− 1, for t ∈ [0, 1],
G⃗(t) =

{
t+ 1, for t ∈ [−1, 0],

1, for t ∈ [0, 1].

To compute the distortion of F⃗ , first notice that dXzz(x, y) − dXzz(F⃗ (x), F⃗ (y)) is at most 1

when x, y ∈ [−1, 0] and it is 0 when x, y ∈ [0, 1]. Now assume x ∈ [−1, 0] and y ∈ [0, 1].
Then,

dXzz(x, y)− dXzz(F⃗ (x), F⃗ (y)) = y − x− | − 1− (y − 1)| = −x,

which is maximized at 1 when x = −1. Thus dis(F⃗) = 1, and we can follow similar steps to
show dis(G⃗) = 1 as well. Next, let us compute the codistortion of F⃗ and G⃗. By following the
definitions of F⃗ and G⃗, we see that

|dXzz(x, G⃗(y))− dXzz(F⃗ (x), y)| =

|x|, if x, y ∈ [−1, 0],

y, if x, y ∈ [0, 1],

|x+ y|, if x ∈ [−1, 0] and y ∈ [0, 1],

0, if x ∈ [0, 1] and y ∈ [−1, 0].

Because the maximum of these values is 1, codis(F⃗, G⃗) = 1. Lastly, since (5.1) holds for any pair
of d-maps F⃗, G⃗, and we found specific pair for which the maximum equals 1,

1

2
inf
F⃗,G⃗

max{dis(F⃗),dis(G⃗), codis(F⃗, G⃗)} = 1

2
. △

Lemma 5.3.3. For any metric d-spaces X⃗ and Y⃗ with zigzag metric,

ddis(X⃗, Y⃗) ≥ dGH(X⃗, Y⃗).

Chapter 5: Gromov–Hausdorff Distance for Directed Metric Spaces 120

Proof. Recall Theorem 2.1.12. Because the family of pairs (F⃗ : X⃗ → Y⃗, G⃗ : Y⃗ → X⃗) of d-maps
is included in the set of all (not necessarily directed) maps between the two spaces, the lemma
follows.

Since the two notions are different, we cannot automatically claim that ddis is a metric on zigzag
connected directed metric spaces. In fact, it is not: whenever there is no d-map from one of the
d-spaces to the other, distortion distance equals ∞. It is clearly non-negative, and it satisfies
symmetry and identity. Below, we show it satisfies triangle inequality as well, and is thus an
extended pseudometric on the set of directed metric spaces.

Lemma 5.3.4. Let X⃗, Y⃗ , and Z⃗ be directed metric spaces. Then,

ddis(X⃗, Z⃗) ≤ ddis(X⃗, Y⃗) + ddis(Y⃗, Z⃗).

Proof. Consider the compositions X⃗ F⃗1−→ Y⃗
G⃗1−−→ Z⃗ and X⃗ F⃗2←− Y⃗ G⃗2←−− Z⃗. It is rather obvious that

dis(G⃗1 ◦ F⃗1) ≤ dis(G⃗1) + dis(F⃗1), and

dis(F⃗2 ◦ G⃗2) ≤ dis(F⃗2) + dis(G⃗2).

Similarly,

codis(G⃗1 ◦ F⃗1, F⃗2 ◦ G⃗2) ≤ codis(G⃗1, G⃗2) + codis(F⃗1, F⃗2),

which can be shown by expanding the right sight as

codis(G⃗1 ◦ F⃗1, F⃗2 ◦ G⃗2) = sup
x∈X,z∈Z

∣∣∣d(x, F⃗2 ◦ G⃗2(z)
)
− d

(
z, G⃗1 ◦ F⃗1(x)

)∣∣∣
= sup
x∈X,z∈Z

∣∣∣d(x, F⃗2 ◦ G⃗2(z)
)
− d

(
G⃗2(z), F⃗1(x)

)
+ d

(
G⃗2(z), F⃗1(x)

)
− d

(
z, G⃗1 ◦ F⃗1(x)

) ∣∣∣
≤ sup
x∈X,z∈Z

[∣∣∣d(x, F⃗2 ◦ G⃗2(z)
)
− d

(
G⃗2(z), F⃗1(x)

)∣∣∣+ ∣∣∣d(G⃗2(z), F⃗1(x)
)
− d

(
z, G⃗1 ◦ F⃗1(x)

)∣∣∣]
≤ sup
x∈X,y∈Y

∣∣∣d(x, F⃗2(y)
)
− d

(
y, F⃗1(x)

)∣∣∣+ sup
y∈Y,z∈Z

∣∣∣d(y, G⃗2(z)
)
− d

(
z, G⃗1(y)

)∣∣∣ .
As such compositions G⃗1 ◦ F⃗1 and F⃗2 ◦ G⃗2 are contained in the set of maps X⃗ → Z⃗ and Z⃗ → X⃗

Chapter 5: Gromov–Hausdorff Distance for Directed Metric Spaces 121

respectively,

ddis(X⃗, Z⃗) ≤
1

2
inf

G⃗1◦F⃗1,

F⃗2◦G⃗2

max{dis(G⃗1 ◦ F⃗1),dis(F⃗2 ◦ G⃗2), codis(G⃗1 ◦ F⃗1, F⃗2 ◦ G⃗2)},

which is, by the properties shown above, smaller or equal to

1

2
inf
F⃗1,F⃗2

max{dis(F⃗1),dis(F⃗2), codis(F⃗1, F⃗2)}+
1

2
inf
G⃗1,G⃗2

max{dis(G⃗1),dis(G⃗2), codis(G⃗1, G⃗2)}

= ddis(X⃗, Y⃗) + ddis(Y⃗, Z⃗).

Distortion distance may, however, be an extended metric on the set of directed metric spaces up
to d-isometry. We have not yet proved or disproved identity, namely that ddis(X⃗, Y⃗) = 0 if and
only if X⃗ and Y⃗ are d-isometric. We can, however, show the that spaces are d-isometric if an
only if ddis(X⃗, Y⃗) = 0 and the infimum in the distortion distance is attained.

Theorem 5.3.5. D-maps F⃗ : X⃗ → Y⃗ and G⃗ : Y⃗ → X⃗, for which dis(F⃗), dis(G⃗) and codis(F⃗, G⃗)

are all zero, exist if and only if spaces X⃗ and Y⃗ are d-isometric.

Proof. Suppose such maps exist and prove the forward implication. It is straightforward to see
that dis(F⃗) = dis(G⃗) = 0 means that F⃗ and G⃗ are directed isometries, but it also implies they
are injective. Let x, x′ ∈ X be such that F⃗ (x) = F⃗ (x′). Then

dXzz(x, x
′)− dYzz

(
F⃗ (x), F⃗ (x′)

)
= dXzz(x, x

′),

and because dis(F⃗) = 0, it must be 0. Since dXzz is a metric, x = x′. A similar argument shows G⃗
is injective.

They are also surjective, which we show for F⃗ . Suppose there is y ∈ Y such that y /∈ F⃗ (X⃗).
This means that for any x ∈ X, dXzz

(
x, G⃗(y)

)
= dYzz

(
F⃗ (x), y

)
> 0, where the equality follows

from codis(F⃗, G⃗) = 0. However, we can choose x = G⃗(y) ∈ X, which gives

dXzz
(
x, G⃗(y)

)
= dYzz

(
F⃗ (x), y

)
= 0.

By contradiction, Y = F⃗ (X). What is more, F⃗ ◦ G⃗ = IdY , since for any y ∈ Y ,

dYzz
(
F⃗ ◦ G⃗(y), y

)
= dXzz

(
G⃗(y), G⃗(y)

)
= 0.

Chapter 5: Gromov–Hausdorff Distance for Directed Metric Spaces 122

Similarly, G⃗ ◦ F⃗ = IdX , which shows F⃗ and G⃗ are inverses of each other.

The backwards implication follows easily. Let F⃗ : X⃗ → Y⃗ be a bijective d-isometry and G⃗ : Y⃗ → X⃗

its inverse. Since both maps are injective, dis(F⃗) = dis(G⃗) = 0, and because F⃗ is a d-isometry,

dX
(
x, G⃗(y)

)
= dY

(
F⃗ (x), F⃗ ◦ G⃗(y)

)
= dY

(
F⃗ (x), y

)
for all x ∈ X and y ∈ Y . Consequently, codis(F⃗, G⃗) = 0.

Note that if identity holds, Theorem 5.3.5 implies that zero distortion distance is always attained.

5.4 Directed Flat Torus
Consider the d-space R⃗2 = (R2, P⃗ (R2)) induced by the product order on R2, and a relation ∼
such that (x, y) ∼ (x+1, y) ∼ (x, y+1). Denote by T⃗ the quotient d-space R⃗2/∼, and call it the
directed flat torus.

In the zigzag metric, a ball on the directed flat torus with a small radius (Figure 5.4a) looks like
a combination of balls in the Manhattan and euclidean distance. When we increase the radius
sufficiently, the ball starts overlapping with itself, which can be seen in Figure 5.4b. Interestingly,
in this example the topology given by the zigzag metric is equivalent to the topology given by
the metric inherited from the Euclidean space via the quotient. This is because

B
(r√2

2

)
⊂ Bzz(r) ⊂ B(r)

for any r > 0, where B denotes balls in the metric inherited by R2, and Bzz denotes balls in the
zigzag metric.

Proposition 5.4.1. The diameter of the directed flat torus in the zigzag metric is
√
3− 1.

Proof. In order to find the diameter, let us compute the infimum of radii for which the ball covers
the whole torus. Notice that this is the same as computing the radius for which three of the
self-intersections of the boundary of the ball (as illustrated in Figure 5.5) coincide.

First, compute the lengths of segments in green and red from Figure 5.6a. The length of the
green segment can be computed by observing the triangle it makes with the point A lying at

Chapter 5: Gromov–Hausdorff Distance for Directed Metric Spaces 123

≫

≫

> >

(a) Ball with a small radius.

≫

≫

> >

≫

≫

> >

(b) Ball with a big radius.

Figure 5.4: Balls in the zigzag metric on a directed flat torus.

distance 1 below the center of the square, as illustrated in Figure 5.6b. It is a right triangle, with
the right angle at vertex B. The edge AC is of length R and AB is of length

√
2
2 , so the length

of BC solves the equation

|BC|2 + 1

2
= R2. (5.2)

Secondly, as already denoted in Figure 5.6c, the length of the red segment is
√
2R2

2 .

Finally, whenever the intersections coincide, these segments connect and form a line between the
center of the square and one of its corners. In other words, |BC| =

√
2
2 −

√
2R2

2 =
√
2
2 (1 − R).

By plugging it in equation (5.2) we obtain 1
2 (1 − R)2 + 1

2 = R2. This further simplifies to
equation R2 + 2R− 2 = 0, the only positive solution of which is diam(T⃗) =

√
3− 1.

5.5 Directed Weighted Graphs as D-spaces
An interesting potential application of our theory developed in previous sections is to compare
directed weighted graphs, which are used to model networks such as transportation, social, or
even increasingly popular neural networks. Here, we discuss how they can be represented as
directed metric spaces.

Chapter 5: Gromov–Hausdorff Distance for Directed Metric Spaces 124

≫

≫

> >

≫

≫

> >

≫

≫
> >

≫

≫
> >

≫

≫

> >

≫

≫

> >

(a) Self-intersections of the border of the
ball with a radius that is slightly smaller
than diam(T⃗).

≫

≫

> >

≫

≫

> >

≫

≫

> >

≫

≫

> >

(b) Triple self-intersection of the border of the
ball with radius diam(T⃗).

Figure 5.5: Close-up on self intersections of the border of the sphere at radii slightly smaller than
and equal to diam(T⃗).

First, let us recall some basic definitions and results of graph theory, as stated in [111]. A
weighted graph G = (V,E,W) consists of a finite set V of vertices, a set E ⊆ V × V of
edges, and a function W : E → R>0 assigning a weight to each edge. A walk on G is a
sequence of edges (e1, . . . , en) with ei = (vi, ui) such that ui = vi+1 for any pair of consecutive
edges. The set of vertices can be equipped with a metric d defined as

d(v, u) = inf
∑
ei

W (ei), (5.3)

where the infimum runs over all walks on G with starting vertex v1 = v and last vertex un = u.
This makes (V, d) a finite metric space. Interestingly, every finite metric space can be realized
by a weighted graph as defined here (when the weight function is positive).

Let G = (V,E,W,α, β) be a directed weighted graph, where V , E and W are as before,
and α, β : E → V are functions assigning the source, α(e), and the target β(e), to each

Chapter 5: Gromov–Hausdorff Distance for Directed Metric Spaces 125

≫

>

(a) The proof of Proposi-
tion 5.4.1 is based on comput-
ing the lengths of the segments
in red and green.

≫

>

R
√
2
2

A

B

C

(b) The green triangle is used
in computation of the length of
green segment.

≫

>R

R

√
2R 22

(c) The red triangle is used in
computation of the length of
red segment.

Figure 5.6: Sketches accompanying the proof of Proposition 5.4.1.

edge e ∈ E. The direction of edges is thus induced by the functions α and β. Notice that
the weights can be assumed to be non-negative, as a negative weight can be replaced by its
absolute value with additional reversal of direction on the edge in question.

We modify the construction of CW-complexes to endow G with both a directed and a metric
structure.

Definition 5.5.1. A graph complex of G, denoted XG, is a topological space constructed as
follows:

• X0
G = V ,

• X1
G is formed by attaching one 1-cell for each edge e ∈ E: let I⃗(e) be the directed

interval [0,W (e)] with the direction inherited from partial order ≤, and glue it onto x0G
via map φe : ∂I⃗(e)→ X0

G with φe(0) = α(e) and φe(W (e)) = β(e).

Chapter 5: Gromov–Hausdorff Distance for Directed Metric Spaces 126

Directed Structure on a Graph Complex Observe that a graph complex XG is an example
of a 1-dimensional CW-complex. Its construction via gluing maps makes it a quotient space and
the directed structure on it is inherited from its 1-cells. To aid intuition, however, we work out
the exact conditions for a path γ : I → XG to be directed.

For a path γ : I → XG, let γ−1(V) be the set of all parameters which γ maps to the vertex set.
Take one representative of each connected component of γ−1(V) and order them increasingly,
constructing a sequence 0 ≤ t0 < t1 < . . . < tn ≤ 1. Note that this is indeed a finite sequence,
but it may be empty. Further, there may be infinitely many such sequences for γ, but denote
any of them as T (γ). Define the set I

(
T (γ)

)
as

{(ti, ti+1) | i = 0, . . . , n− 1} ∪ {(0, t0) if t0 ̸= 0} ∪ {(tn, 1) if tn ̸= 1}

if the sequence is not empty, and as {(0, 1)} if it is. Then the image γ(J) of any interval J
in I
(
T (γ)

)
is contained entirely within a 1-cell (with boundary).

Definition 5.5.2. If γ is a constant path with γ(I) ⊂ X0
G, or if γ|J is weakly increasing in

the order of its corresponding 1-cell for each J ∈ I
(
T (γ)

)
, then γ is called a directed path or

d-path.

Remark 5.5.3. It is not immediately clear that Definition 5.5.2 is well-defined. However,
suppose T (γ) = {ti}ni=1 and S(γ) = {si}ni=1 are two sequences of vertex parameters for γ that
differ only at i, i.e. ti < si and sj = tj for j ̸= i. Then γ|[ti,si] ≡ γ(ti). Thus, γ is a d-path with
respect to one sequence if and only if it is a d-path with respect to any other sequence.

This new definition of a d-path is potentially confusing, but the following result justifies it.

Proposition 5.5.4. For a directed graph G = (V,E, α, β), the pair (XG, P⃗ (XG)), where XG is
the graph complex of G and P⃗ (XG) is the set of d-paths on it, is a d-space.

Proof. If P⃗ (XG), the set of d-paths, is a directed structure, it must contain all constant paths,
and it must be closed under partial reparametrizations and concatenations.

All constant paths are weakly increasing in the order of any cell they map to, and are consequently
all d-paths. If γ is a d-path and h : I → I is continuous and weakly increasing, then for each T (hγ)

Chapter 5: Gromov–Hausdorff Distance for Directed Metric Spaces 127

and each (a, b) ∈ I
(
T (hγ)

)
, its image

(
h(a), h(b)

)
with h is in I

(
T (γ)

)
, and the corresponding 1-

cell in XG is the same for both intervals, say e. Since γ|(
h(a),h(b)

) is weakly increasing with

respect to ≤e, then so is hγ|(a,b). Thus, hγ is a d-path.

Let γ ⋆ δ be a concatenation of d-paths γ and δ with respective sequences T (γ) = {ti}i=0,...,n

and T (δ) = {si}i=0,...,m. Without loss of generality, assume tn ̸= 1 and s0 ̸= 0. Then the
analogous sequence T (γ ⋆ δ) for the concatenation is

0 ≤ t0
2
< . . . <

tn
2
<
s0 + 1

2
< . . . <

sm + 1

2
≤ 1.

A similar argument as before can be used to show that γ ⋆ δ|J is weakly increasing in the
order of its corresponding cell for any J ∈ I

(
T (γ ⋆ δ)

)
, with additional justification needed only

for J = (tn2 ,
s0+1
2). However, since γ ⋆ δ is weakly increasing on a J−{ 12}, it is weakly increasing

on J as well. Thus, a concatenation of d-paths is a d-path.

Definition 5.5.5. D-space X⃗G = (XG, P⃗ (XG)), whereG is a directed graph, is called a directed
graph complex or d-graph complex of G.

Note that, since the construction of d-graph complexes is heavily inspired by CW-complexes,
there is a natural choice for the definition of a d-map on them.

Definition 5.5.6. A continuous map F : X⃗G → X⃗H between d-graph complexes is a d-map
if it is cellular, i.e. F (Xi

G) ⊆ Xi
H for i = 0, 1, and the path γ : I → X⃗H defined by γ(t) =

F ◦ φe(W (e) · t) is directed for each edge e.

Metric Structure on a Graph Complex The adopted definition also makes it possible to
give a natural notion of distance between points in XG. First, let us define a length function

ℓG : (XG)
I → [0,∞]

ℓG(γ) = inf
0=s0<s1<...<sm=1

(m∑
i=1

dei
(
γ(si−1), γ(si)

))
,

where the infimum is over all finite sequences {si} such that V ∩ γ(I) ⊆ {γ(si)}, ei is the cell
containing γ

(
(si−1, si)

)
, and dei is the metric on ei that is inherited from the euclidean metric

Chapter 5: Gromov–Hausdorff Distance for Directed Metric Spaces 128

on [0,W (ei)]. Note, that on d-paths, ℓG is simply

ℓG(γ) =
∑

(a,b)∈I(γ)

d(γ(a), γ(b))

= d(γ(0), γ(t0)) + d(γ(tn), γ(1)) +

n∑
i=1

W
((
γ(ti−1), γ(ti)

))
,

where d denotes the metric on the correct 1-cell in each case. Whenever the d-path γ connects
vertices, i.e. when γ({0, 1}) ⊆ X0

G, this further simplifies to
∑n
i=1W

((
γ(ti−1), γ(ti)

))
.

From now on, assume all paths on XG are rectifiable with respect to ℓG.

Theorem 5.5.7. The ℓG-induced distance on XG, dℓG(x, y) = inf ℓG(γ), where infimum runs
over all paths γ ∈ XI

G with γ(0) = x and γ(1) = y, is an extended metric on XG.

Proof. This is a rather easy consequence of the construction. As a sum of metrics is non-negative,
so is an infimum of such sums. Since the graph G is finite, the infimum is also always obtained,
which further gives that dℓG(x, y) = 0 if and only if x = y. It is symmetric, as the reverse of each
path in (XG)

I is also in (XG)
I . Lastly, let γ be a path between x and y in xG that minimizes ℓG,

and δ be a path between y and z in xG that minimizes ℓG. Their concatenation, γ ⋆ δ is then
a path between x and z, and its length is ℓG(γ ⋆ δ) = dℓG(x, y) + dℓG(y, z). It follows readily
that dℓG(x, z) ≤ dℓG(x, y) + dℓG(x, z).

Corollary 5.5.8. If G is connected, then so is XG and dℓG is a metric on it.

Remark 5.5.9. When restricted to the vertices, the metric dℓG agrees with the usual notion of
the weight-induced metric on a graph as defined in (5.3).

Remark 5.5.10. The graph complex XG with topology induced by dℓG is a metric graph
[112, 113], a commonly studied object in discrete geometry.

If G is connected, the zigzag distance dzz induced on it by d-paths equals dℓG because we allow
reversal of direction in zigzag paths. For simplicity sake, denote both by simply dG. This
immediately implies that (X⃗G, d

G) is a directed metric space.

129

Chapter 6

Classification of Gene Expression
Data

With the advancement of modern sequencing technologies it has become possible to study how
genetic information flows within individual cells. Although the fundamental genetic code in the
form of DNA is generally the same across all cells in an organism, cells clearly differ in function,
specializing to perform specific tasks. Properties of a cell – such as its function and overall health
– can be inferred by examining how many local RNA transcriptions of each gene are present in
it. While we now have the ability to obtain this kind of data, drawing meaningful conclusions
requires understanding the role of each gene. Some genes have been extensively studied, and
the processes they influence and the traits they contribute to are well-understood. However, for
many genes, their exact roles remain unknown. Sometimes, these functions can be uncovered by
observing other biological aspects of a cell. More often, though, we only have access to data that
shows which genes are active simultaneously. The challenge then is to learn the semantics that
allows us to translate patterns of gene expression into biological function.

Clustering is a fundamental technique in exploratory data analysis, providing a way to group
similar data points in an unsupervised manner. It is particularly important in the field of bioin-
formatics, where it is an integral part of standard pipelines for analysis of gene expression data
sets. These data sets often exhibit high variability and dimensionality, significant noise, feature

Chapter 6: Classification of Gene Expression Data 130

redundancy, and are often reused in other studies due to the high cost and duration of sequen-
cing experiments. Additionally, researchers conducting such analyses often come from diverse
backgrounds in biology and related fields rather than mathematics or computer science. Con-
sequently, they may lack the specialized knowledge required to select the appropriate clustering
method and fine-tune its parameters for the specific problem at hand. These factors complicate
the clustering process, making it crucial to identify methods that not only perform well but also
maintain robustness across different transformations, metrics, and parameter settings.

In this chapter, we explore a particularly complex gene expression data set. Along with exhibiting
the aforementioned challenges, its small size further intensifies these difficulties. Our goal is to
identify substructures present in the data set via clustering analysis. Since previous research
following standard clustering pipelines for gene expression data has not been successful on this
data set, we consider alternative approaches. Particular attention is given to a recently introduced
clustering method inspired by the study of persistent homology. We illustrate that this method,
called k-cluster [22], is especially robust and intuitive to use, and as a consequence has incredible
potential for use within the genomic research community.

The dataset under investigation is introduced in Section 6.1. We evaluate four distinct clustering
methods, each representing a different algorithmic paradigm. All methods, including the one
for determining which genes drive cluster separation, are described in Section 6.2. The results
of our analysis are detailed in Sections 6.3 and 6.4 and summarized in Section 6.5. The code
implementing custom methods for the experiments and the resulting visualizations are publicly
available [114].

6.1 Thirsty Fly Data Set and Classification Tasks
The dataset of Thirsty Flies was obtained as part of a study of the cellular changes in the brain
of Drosophila melanogaster (fruit fly) triggered by water deprivation [21]. The authors of the
study were observing water-seeking behavior and obtained gene expression data via single-cell
sequencing in four settings: when the flies were sated, when they have been deprived of water
for 6 hours, when they have been deprived of water for 12 hours, and 45 minutes after they
have been rehydrated after having been deprived of water for 12 hours. In each of the settings
they used 24 flies, 12 male and 12 female, from which they obtained gene expression information
of approximately 600, 000 brain cells. The union of these data was split into seven classes of
brain cells based on the prior knowledge of which gene codes for which type of a brain cell
(see Figure 6.1):

Chapter 6: Classification of Gene Expression Data 131

Figure 6.1: Clustering of drosophila brain cells into 7 clusters, plotted with UMAP [21]. Monoam-
inergic neurons are drawn in yellow and shown in magnified detail.

1. Cholinergic neurons. The division of neurons into subtypes is usually driven by which
molecule, called a neurotransmitter, is used to regulate passing the signals to another
cell via synapse. The main neurotransmitter of cholinergic neurons is acetylcholine.

2. Glutamatergic neurons. The neurotransmitter of these neurons is glutamate. It is
the main excitatory neurotransmitter of our nervous systems – it promotes passing
the signals along as opposed to inhibitory neurotransmitters, which prevent them from
being passed any further.

3. GABAergic neurons use gamma-aminobutyric acid (GABA) neurotransmitter, which
acts as an inhibitor and balances the excitatory function of glutamate. Thus, good co-

Chapter 6: Classification of Gene Expression Data 132

operation of glutamatergic and GABAergic neurons is vital for proper neurologic func-
tion.

4. Kenyon cellsj are neurons characterized by their location rather than their neuro-
transmitter. Together with glial cells, they comprise dense neuronal networks, called
mushroom bodies, present in the brains of arthropods. They are responsible for
learning and memory based on odor information.

5. Glia & astrocytes. Glial cells are non-neuronal cells that provide physical and chemical
support to neurons and maintain the stable conditions in their environment. They are
located in the central and peripheral nervous system. A particular subtype of glial cells
are called astrocytes.

6. Monoaminergic neurons. Monoamine is a compound that contains one amino group
connected to an aromatic ring by a two-carbon chain, and acts as a neurotransmitter in
monoaminergic neurons. In mammals, the most common monoamine neurotransmitters
are dopamine, epinephrine, norepinephrine and serotonin. In insects (such as droso-
phila), however, epinephrine and norepinephrine (known also as adrenaline and norad-
renaline) are synthesized only in trace amounts. Instead, monoamines tyramine and
octopamine are much more prevalent, and they replace epinephrine and norepinephrine
in their role as adrenergic transmittors. They have many roles including in regulating
behavior, sensory processing, locomotion and metabolism [115].

7. Cells that do not belong to any of the above listed classes, were allocated to a common
class “Other”.

(We used [116, Ch. 2 and 13] as the general source for the information about different neur-
otransmitters and neurons.) Five of the labeled classes, namely the cholinergic, glutamatergic,
GABAergic neurons, Kenyon cells and glia & astrocytes, have been clustered further. How-
ever, when trying to divide monoaminergic neurons into four subclasses, corresponding to the
four main monoamine neurotransmitters in drosophila (dopamine, serotonin, tyramine and oc-
topamine), the same clustering pipeline struggled to produce coherent clusters, likely due to the
comparatively small number of monoaminergic neurons. In this work, we focus on the class
of the monoaminergic neurons only. We wish to understand several levels of its heterogeneity,
beginning with classifying the neurons into the four mentioned subtypes.

The data set is stored as a 855× 9999 matrix M , where each row is a gene expression vector of a
monoaminergic neuron. The entry M(i, j) is an integer signifying the strength of expression of j-
th gene in i-th neuron. To avoid issues in subsequent analysis, some entries were removed from

Chapter 6: Classification of Gene Expression Data 133

the Thisrty Fly data set. Firstly, genes that are never expressed on monoaminergic neurons, i.e.
whose columns are zero, were removed. Next, groups of rows with the same expression pattern
were identified. One row per each group was chosen randomly and kept, while the others were
discarded. As a result, the matrix M was reduced to 765 rows and 9859 genes.

The genes, i.e. columns, are not ordered in any particular way, whereas the order of neurons is
as follows:

• first 153 rows (rows 1 to 153) belong to neurons of sated flies (tagged with ’sat00’),

• next 204 rows (rows 154 to 357) belong to neurons of flies that have been dehydrated
for 6 hours (tagged with ’dep06’),

• next 202 rows (rows 358 to 559) belong to neurons of flies that have been dehydrated
for 12 hours (tagged with ’dep12’),

• last 206 rows (rows 560 to 765) belong to neurons of flies that have first been dehydrated
for 12 hours and then rehydrated (tagged with ’reh00’).

A visualization of the point cloud with the points colored based on the experiment membership
is shown in Figure 6.2. It is important to note that the monoaminergic neurons were confirmed
not to be involved in the response to water-deprivation by the differential expression analysis
carried out in [21]. The experiment related variance in the data is therefore not expected to be
significant, and nothing is done to mitigate its effects. This separation of M based on the setting
in which the data were obtained is in general ignored.

The clustering analysis on Thirsty Fly data set can be split into two tasks, as follows.

1. Classification of Monoaminergic Neurons. We expect to find four subtypes of
monoaminergic neurons in our data, each consisting of neurons specialized for one of the
four most common monoaminergic neurotransmitters in drosophila: dopamine, sero-
tonin, octopamine and tyramine. Note that this data set is not labeled and so the
clustering is unsupervised. However, we are given some prior knowledge about which
genes code for which subtype. We present these relations together with the results of
several clustering methods and pipelines in Section 6.3.

2. Classification of Dopaminergic Neurons. After successful classification of monoam-
inergic neurons, we wish to identify further subtypes of dopaminergic neurons. Due to
the fact that we have an even smaller data set, no prior knowledge on which genes code

Chapter 6: Classification of Gene Expression Data 134

(a) UMAP projection of the point cloud in euc-
lidean metric.

(b) UMAP projection of the point cloud in cosine
distance.

Figure 6.2: UMAP projections of gene expression profiles of monoaminergic neurons in (a)
euclidean metric and (b) cosine distance. The colors of the points correspond to which experiment
the data was obtained from as listed in the legend.

for which subtype, and do not even know how many subtypes we should expect, this
classification is significantly more challenging. As the data set used for this task relies on
which neurons were classified as dopaminergic in the first task, we postpone its definition
and description to Section 6.4, where we also present our results.

Note that as this data set was already used in [21], pre-processing was performed before we
obtained the data set. Unless stated otherwise, we skipped the pre-processing step of the standard
pipeline and performed the later steps only.

6.2 Methods
The methods used in our exploratory analysis of the Thirsty Fly data set are presented here.
In particular, k-cluster, the relatively new, persistence homology-inspired clustering method is

Chapter 6: Classification of Gene Expression Data 135

described in Section 6.2.1, the more standard and popular clustering methods used to compare k-
cluster to are presented in Section 6.2.2, while the method for detecting genes that drive cluster
separation is detailed in Section 6.2.4.

6.2.1 Persistence-inspired Clustering Method: k-cluster
Recently, a statistical study of distance-based persistent homology [117] showed that it exhibits
universal behavior in the following sense: Take “persistence” values of noisy features in the
persistence diagrams arising from random point clouds. Their distribution, as we increase the
cardinality of underlying point clouds, is independent of the method used to generate the point
cloud. To obtain this result, the additive measure of persistence, death − birth, that is most
commonly used in TDA, must be replaced with the multiplicative value death/birth. However,
the birth times of all 0-dimensional features of distance-based persistent homology are 0, and as a
consequence their multiplicative persistence values are not well-defined. To mitigate that, a novel
filtration called k-cluster [22] has been proposed. It deviates from the standard distance-based
filtrations in the degree 0 only, and as 0-homology conveys connectivity information, k-cluster
filtration induces a novel topologically-informed clustering method, which we also call k-cluster.
We describe them both in this section, closely following the original paper [22].

k-cluster Filtration
Although k-cluster filtration can be generalized to simplicial complexes of arbitrary dimension,
all the necessary information for 0-dimensional homology is contained in its 1-skeleton or, in
other words, an undirected weighted graph. In geometric settings (such as ours), an undirected
weighted graph G = (V,E,W) consists of three parts: a set of vertices V which lie in a metric
space, a set of edges E ⊆ V ×V between the vertices, and a weight function W : E → R≥0 which
assigns a weight d(v1, v2) to each edge e = (v1, v2), where d is the metric in our metric space.

One way to obtain a filtration on an undirected weighted graph is to first define a filtration
function. That is a function τ : (V ∪ E) → R≥0 for which τ(e) ≥ max(τ(v1), τ(v2)) holds for
all e = (v1, v2) ∈ E. The choice of τ then induces a filtration {Gt}t≥0 of the graph G, where

Gt = {σ ∈ V ∪ E | τ(σ) ≤ t}.

The standard is to set τ(v) = 0 on all vertices and τ(e) = W (e) on all edges (this is the case
for both Čech and Vietoris-Rips filtered simplicial complexes). However, that choice induces a

Chapter 6: Classification of Gene Expression Data 136

filtration where all connected components are born at time 0, which means the chosen measure
of persistence, death/birth, is not well-defined on those components. This can be avoided by
choosing a different filtration function. To obtain k-cluster filtration, define Nt(v) for each
vertex v ∈ V and a value t > 0 to be the number of vertices in the connected component of Gt
that contains v, where {Gt}t≥0 is the filtration induced by the standard filtration function. For
a fixed k ≥ 1, the k-cluster filtration function can then be defined as

τk(v) = inf{t | Nt(v) ≥ k}

τk((v1, v2)) = max(τk(v1), τk(v2),W (v1, v2)).

Denote the filtration that τk induces on G by {G(k)t }t≥0 and call it the k-cluster filtration. (Note
that Gt ≡ G(1)t .)

As the name suggests, clusters of size k play a central role in k-cluster filtration. Let us illustrate
this fact with the following observations. No point is a component on its own – it is born only
once it is a part of a cluster containing at least k points. Further, each birth time b corresponds
to merging two components C1, C2 ∈ Gb−ϵ of the standard filtration that contain less than k

points each, and more than k points combined. On the other hand, each death time corresponds
to an edge that merges two components, each of which contains more than k points. The choice
of k therefore decides the scale at which meaningful substructure begins to appear.

k-cluster Clustering
Once the k-cluster filtration is computed, persistent homology can be applied to it. The resulting
persistence module is p.f.d., so it can be summarized in a persistence barcode or a persistence
diagram. The topological mode analysis tool (ToMATo) [118] can then be modified to obtain
clusters corresponding to most persistent features from the persistence diagram in 0th dimension.
The resulting clustering method is called k-cluster, and we outline its algorithm here.

k-cluster takes the following input: the point cloud X, the metric of the ambient space (given in
terms of the distance matrix for the point cloud), a parameter k ≥ 1, and a number N of desired
clusters. The values of k-cluster filtration function on the full graph are computed, followed
by persistent homology computation. A threshold α for multiplicative values is determined so
that N points in the persistence diagram have a multiplicative value higher than α. Next, an
agglomerative process is started on the point cloud, using a union-find data structure to keep
track of components. This means each point is in its own separate component at initiation, and

Chapter 6: Classification of Gene Expression Data 137

components are updated during an iteration over the edges in an increasing order given their
filtration value. Say the iteration is at an edge e = (u, v) and u and v belong to different com-
ponents Cu and Cv at this stage (as otherwise adding the edge does not affect the components).
If the fraction

τk(e)

min{τk(w) | w ∈ Cu ∪ Cv}

is smaller than the threshold α, components Cu and Cv are merged. If not, the iteration moves
on to the next edge. Once all edges have been iterated through, the resulting components are
the obtained clusters.

Note that k-cluster filtration and the resulting persistence diagram can inform the choice of the
number of clusters N . Namely, the gaps in the (decreasingly) ordered multiplicative values of
points in the persistence diagram hint at the number of clusters inherently present in the data.
If, say, the gap between nth and (n + 1)st multiplicative value is especially large, it suggests
the choice of N = n. In order to use this insight, persistence diagram associated with k-cluster
filtration needs to be computed prior to running k-cluster.

6.2.2 Clustering Methods Used for Comparison
The methods we chose for comparison with k-cluster are k-means, spectral clustering [119, 120]
and the Louvain algorithm. We chose the first two due to their popularity in the wider data
science community, while the Louvain algorithm is chosen as a representative of community
detection algorithms that are widely used for clustering analysis on gene expression data sets
specifically. In this section, we provide an overview of the functioning of these methods.

k-means. We use the implementation of k-means that is available in the Scikit-learn library
in Python [121]. We leave all parameters of the method at their default values except for the
number of expected clusters, n_clusters, and the matrix containing the coordinates of each
point in our point cloud as rows.

Let X ⊆ Rm be the point cloud we wish to cluster into n clusters. The central role in k-means
clustering is played by centroids, n points in Rm denoted by c1, . . . , cn. They can be initialized
in many ways, and different initializations might bring gains in (speed of) convergence. However,
for the purpose of this explanation we may assume they are initialized randomly. With that, an

Chapter 6: Classification of Gene Expression Data 138

iterative process begins: each point is assigned to cluster i, if its closest centroid in euclidean
metric is ci. New positions of the centroids are then assigned, with ci being set to the mean
of all points currently in cluster i. This process is repeated until the centroids converge, i.e.
until the difference in position of each centroid changes by less than a threshold ϵ between
consecutive steps. Note that ϵ is set to 0.0001 by default in the implementation we use, and it
has an additional parameter max_iter (set to 300 by default) used to stop the iterative process
if convergence is not reached.

The biggest advantage of k-means is its computing efficiency but it has many disadvantages [122].
It may struggle to converge to the global optimum, is sensitive to outliers and centroid initializ-
ation, and requires the number of clusters to be provided by the user. Additionally, it assumes
that true cluster membership can be determined using the distance of a point to the cluster
centroid, implying the cluster is roughly spherical in shape. This renders it inappropriate for use
when that is not the case.

Spectral clustering. We use the implementation of spectral clustering that is available in the
Scikit-learn library in Python [123]. Out of many parameters that can be tuned, we leave
many at their default values with the exception of four:

• n_clusters: the number of clusters the data should be grouped into.

• n_neighbors: the number of neighbors to include in the construction of affinity matrix.

• affinity: the parameter instructing how to define the affinity matrix. Our choice,
’precomputed_nearest_neighbors’ allows us to pass a distance matrix from which
the affinity matrix is constructed. As a consequence, we also pass

• matrix: distance matrix to use when constructing the affinity matrix.

The steps taken by spectral clustering are roughly the following. The geometry of the data set is
given by a distance matrix DM (passed as parameter matrix), which is used to define an affinity
matrix A. To be precise, for each point xi in our dataset, and each of its k nearest neighbors xj
(where k is passed as parameter n_neighbors) set

Aij = Aji = exp(−DM2
ij),

and set all other entries in A to zero. Let D be a diagonal matrix with Dii being the sum
of i-th row in A. The data set is then projected to the subspace of the ambient space, spanned

Chapter 6: Classification of Gene Expression Data 139

by the largest N eigenvectors of the Laplacian L = I − D− 1
2AD− 1

2 where N is the number of
clusters we wish to obtain, passed to the method as n_clusters. The resulting point cloud is
first normalized, and then clustered using a different clustering method. The default choice in
the scikit-learn implementation is k-means, which is also the method we chose.

During our analysis in Section 6.3.4, the only parameters we vary are n_clusters, n_neighbors
and matrix.

According to [122] there are many advantages of using spectral clustering. It requires only a
few basic parameters, is suitable for use on high-dimensional data sets of arbitrary shape, and is
not sensitive to outliers, while the main drawback is its time complexity and the requirement of
passing the expected number of clusters.

Louvain method. We use the implementation of Louvain community detection method that
is available in the CDlib library in Python [124]. Out of the possible parameters that can be
passed to the method, we use two:

• G: a weighted graph built on the point cloud on which the communities should be
detected.

• resolution: the parameter controlling the number and size of obtained communities.
High values result in higher number of smaller communities, lower values result in smaller
number of bigger communities. Setting the resolution value to 1 instructs the use of the
standard Louvain method.

Let us postpone addressing the way we construct a graph on the point cloud, and first list the
steps Louvain method takes to obtain communities, as described in [125]. It is agglomerative in
nature, and it merges communities by considering gains in modularity

Q =
1

2m

∑
i,j

(
Aij −

kikj
2m

)
δ(ci, cj),

where Aij is the weight of the edge between vertices i and j, ki =
∑
j Aij is the sum of the weights

of edges between i and its neighboring vertices, ci is the community to which i belongs, δ(ci, cj)
is 1 if the communities ci = cj and 0 otherwise, and m = 1

2

∑
i,j Aij . Note that the implement-

ation we use actually uses a modified version of modularity with a resolution parameter, which

Chapter 6: Classification of Gene Expression Data 140

allows the user to control the size and number of obtained communities. For more details, please
refer to [126].

At the initial stage, there is one community per vertex in the graph. The vertices of the graph are
iterated over many times, and for each vertex i all its neighbors j are considered. It is evaluated
if removing i from its community and placing it in the community of j would increase modularity.
If this gain in modularity is maximized for neighbor j of i and it is positive, i is indeed moved to
the community of j. When the communities do not change anymore, the first phase is concluded.
In the second phase, a new weighted graph is constructed on the communities obtained in the
first phase. The process is then repeated over and over until maximum of modularity is attained.

As mentioned above, a weighted graph must be constructed on the point cloud in order to use
the Louvain method. Since the weight of the graph must be higher for closer points (so that gain
in modularity is related to merging communities of closer points), one cannot set the distance
matrix between points as the weight of the edge connecting them. Thus, a transformation is
applied to the distance matrix to obtain the weight matrix. The chosen transformations vary
depending on the application, which is why we specify the chosen weight matrix whenever we
use the Louvain method. Once the weight matrix is chosen, the graph is constructed using the
from_numpy_array method from networkx library in Python [127].

The advantages of the Louvain method can at the same time be drawbacks, depending on its
application. The fact that a graph needs to be built on the data points can be a benefit, as
it provides great flexibility. Depending on the choice of the weight matrix, the method can
encompass any geometric aspect of the data set and can be steered to group points based on
user defined criteria. In addition, it does not take the number of clusters as a parameter, and
makes no assumption on the shape and distribution of clusters. However, the dependence on the
construction of a weighted graph and a rather mysterious parameter resolution that controls the
number of clusters obtained, make it difficult to apply successfully as an unskilled user. A lot of
thought needs to be put into choosing the weights, and many resolution parameters tested. As a
consequence, it is rarely utilized to its full potential and most of its implementations offer limited
tuning options (for example in libraries for genomic data analysis such as Seurat [128, 129, 64]
and Bioconductor [47, 48, 130].

6.2.3 Evaluation of Clustering Results
In supervised clustering, when the input data is labeled based on which class it belongs to, the
outcome of clustering can be assessed using various metrics based on these labels. Although

Chapter 6: Classification of Gene Expression Data 141

our classification tasks are unsupervised, prior knowledge about marker genes helps us identify
a high-confidence subset of input data for the task of classifying monoaminergic neurons (as
described in detail in Section 6.3). This subset can then be used to evaluate the performance of
chosen clustering schemes, using a metric called entropy [131, Section 16.3].

Remark 6.2.1. The main reason why we chose entropy as opposed to other, more popular
evaluation metrics (for example accuracy) is that the number of clusters obtained might not
match the number of expected classes. Even when that is the case, many metrics would require
us to manually determine the assignment to which class is “correct” for each cluster in order to
compute the metric. This, however, is not true for entropy.

Definition 6.2.2. Let S be a finite set and Ω = {ω1, ω2, . . . , ωk} its partition. Further,
let c : S → [n] be a function which classifies elements of S into n classes. The entropy of
a cluster ωj with respect to classification c is the sum

H(ωj) = −
∑
i∈[n]

P (ωj ; i) log2 P (ωj ; i),

where P (ωj ; i) is the proportion of points in ωj classified into class i, i.e.

P (ωj ; i) =
|{x ∈ ωj | c(x) = i}|

|ωj |
.

The total entropy of the partition Ω with respect to classification c is the sum

H(Ω) =

k∑
i=1

H(ωi)
|ωi|
|S|

.

When we use entropy in practice to evaluate the results of a clustering method, we set S to
be the above described high-confidence subset, c the function prescribing a class as informed
by known marker genes, and Ω the partition given by the clustering. Observe that entropy
is minimized when clusters are unanimously classified: when all of the proportions P (ωj ; i)
for ωj ∈ Ω and i ∈ [n] are either 0 or 1. Low values of entropy therefore indicate that each
cluster in the obtained clustering is homogeneous with respect to the cell subtype.

6.2.4 Marker Detection
In order to gain insight into which genes drive cluster separation of a given clustering, a plethora
of statistical measures are commonly computed for each cluster. The summaries we chose to

Chapter 6: Classification of Gene Expression Data 142

include are presented here.

Let g be the number of genes included in the analysis, and N the number of clusters obtained.
Given a vector T = {τ1, . . . , τg} of thresholds, we compute for each gene i ∈ [g] and each cluster C
the percentage of points in C whose expression of gene i is higher than the threshold τi. Denote
this percentage as MT (C, i), i.e.

MT (C, i) =
|{c ∈ C |M(c, i) ≥ τi}|

|C|
,

where M(c, i) is the expression of gene i in neuron c belonging to cluster C. Though the threshold
vector T can be completely arbitrary, here are some intuitive choices:

• the mean: τi = 1
n

∑n
j=1M(j, i),

• the median: τi = p0.5({M(j, i)}j=1,...,n),

• ℓth percentile: τi = pℓ({M(j, i)}j=1,...,n),

• all ones: τi = 1,

where n is the number of points in the data set and pℓ is the ℓth percentile of a vector (i.e. the
percent of vector entries below pℓ is ℓ).

We summarize the results of these computations within tables (see Tables 6.1 to 6.7), where
we write MT (C, i) in the row belonging to the gene i and the column belonging to cluster C.
However, not all genes provide interesting insights. We choose a lower threshold βlow and an
upper threshold βhigh, and identify the genes for which at least one of the values MT (C, i) is
smaller than βlow and at least one bigger than βhigh. This means these genes are very highly
expressed on some clusters, and almost not expressed at all on some others. We specify the
chosen threshold vector and thresholds βlow, βhigh whenever displaying a table of these values.

6.3 Classification of Monoaminergic Neurons
In this section we detail several pipelines for clustering Thirsty Fly data set into four classes, and
their results. Note, that although the expected number of classes is known, we cluster the data
set into a bigger number of clusters in most pipelines. This is due to the fact that the classes are
expected to be of different size, they might naturally consist of several subclasses, and inherent
variability in the data might lead to class fragmentation.

Chapter 6: Classification of Gene Expression Data 143

As mentioned, some genes (or rather a combination of them) are known to code for a specific
neurotransmitter [21, 132].

• High expression of genes ple and DAT suggests that the neuron in specialized for dopam-
ine.

• High expression of genes SerT and Trh suggests that the neuron in specialized for sero-
tonin.

• High expression of genes Tdc2 and Tbh suggests that the neuron in specialized for oc-
topamine.

• High expression of gene Tdc2 and low expression of gene Tbh suggests that the neuron
in specialized for tyramine.

These six listed genes together with another gene, Fer2, that identifies a large subtype of dopam-
inergic neurons, are considered to be important for the classification task at hand. They are
referred to as important genes in this chapter, and their set is

I = {ple, DAT, SerT, Trh, Tdc2, Tbh, Fer2}.

Of course, having such prior knowledge is incredibly useful. Firstly, a feature selection step may
be replaced by projection to dimensions corresponding to I. This 855 × 7 matrix is denoted
as iM , where i stands for “important”. Secondly, the results of different clustering methods
can be evaluated using information about which genes code for which subtype. To do this,
let µ = [µ1, . . . , µ7] be the vector of mean expression for each gene in I in the order they
appear in as the columns of iM . Then a list of class representatives can be comprised for
each expected class based on how a neurons expression pattern compares with µ. For example,
neurons whose expression of ple and DAT is higher than the corresponding mean while the
expression of all other genes is 0 are identified as dopaminergic class representatives. Luckily,
no neuron is identified as a representative for more than one class. The total number of class
representatives is 214, with 97 belonging to dopamine, 55 to serotonin, 31 to octopamine, and 31

to tyramine class. For a visualization of the point cloud projected onto important genes with
annotated class representatives, see Figure 6.3. Note that by choosing different criteria for the
expression patterns, different list of class representatives could be chosen. We work with the one
described above since the criteria is strict enough so that we can trust the class representatives
fully. However, as can be seen in Figure 6.3, there are large regions of the point cloud in which

Chapter 6: Classification of Gene Expression Data 144

Figure 6.3: UMAP projection of iM . The colored points belong to cells, which were identified
as class representatives, with each color corresponding to one of the four classes as denoted by
the legend.

no representatives were identified. To guide intuition, we construct a similar plot in addition to
Figure 6.3, where the points are colored based on their binary expression vectors (in which all
positive entries are replaced by 1), see Figure 6.4.

In Python, we test several popular clustering methods on iM , namely SpectralClustering [123]
and k-means [121] from Scikit-learn library, and Louvain algorithm [88, 133, 124] for com-
munity detection from CDlib library. We also test k-cluster, described in detail in Section 6.2.1,
an implementation of which was provided to us by its authors [22]. Further, each of these
methods is tested in three scenarios: when no transformation is applied to iM , once with eu-
clidean distance and once with cosine similarity as a measure of similarity, and when iM is
log-transformed. Their performance is evaluated on class representatives and the best perform-

Chapter 6: Classification of Gene Expression Data 145

Figure 6.4: UMAP projection of iM . The color of each point is decided based on the its binary
expression vector (in which all positive entries are replaced by 1). Thus, for example, cells with
positive expression of ple and DAT and zero expression of all other genes are colored in red (as
per the legend).

ing clustering pipelines are chosen for further analysis, where the entire list of genes is searched
for possible marker genes not yet included in the set I of important genes.

6.3.1 Clustering on iM with euclidean distance
The clustering results of all tested methods are visualized in Figure 6.5. Let us detail the chosen
parameters and comment on the performance of each method.

• k-cluster: First, we decide on the value of parameter k. Running k-cluster for a few
different values, it seems 8, which is approximately 10% of the database size, is a good
choice. Next, we choose N , the number of clusters the method should return. To do

Chapter 6: Classification of Gene Expression Data 146

Figure 6.5: A comparison of clustering results on (not normalized) iM with respect to euclidean
distance for four chosen methods: k-cluster, k-means, spectral clustering and Louvain algorithm
(in the order left to right, top to bottom). The different colors denote clusters given by each
method, while the added annotations denote representatives of different classes identified a priori.

Chapter 6: Classification of Gene Expression Data 147

this, we compute the persistence diagram of 8-cluster filtration on iM and order the list
of multiplicative values of its points to obtain

∞, 3.808, 2.390, 2.236, 2.041, 2.012, 1.528, 1.500, 1.430, . . .

Notice that there is a significant gap between the sixth and the seventh value, 2.012
and 1.528 respectively, which can also be noticed in Figure 6.6. Thus, 6 is chosen as
the number of clusters. Observing Figure 6.5 it seems the method performs well on the
class representatives, with only one cluster (cluster 1 according to the legend) containing
representatives of more than one class. Note that cluster 1 contains the points that are
closest to the origin (see Figure 6.14), and so this might be due to the fact that, in
euclidean distance, points with different expression patterns are much closer at smaller
scales.

Figure 6.6: Plot of the ordered list of multiplicative values associated to points in the persistence
diagram of 8-cluster filtration on iM with respect to euclidean distance. We plot each multi-
plicative value against its position in the ordered list, skipping multiplicative value ∞, which
would be first in the order. First five points (and ∞) are significantly higher than the rest,
suggesting iM has 6 inherently present components with respect to euclidean distance.

• k-means: The only parameters of the method are the matrix, iM , and the number of
clusters we wished to obtain, n = 6. Notice that k-means is not as successful as k-cluster.
It fragments the representatives of dopaminergic and serotoninergic neurons into many
classes, while not separating representatives of tyraminergic and octopaminergic (and
even some serotoninergic) neurons at all. Although n was chosen for k-cluster to perform

Chapter 6: Classification of Gene Expression Data 148

well, this choice is not the reason why k-means struggles. In fact, similar behavior can be
observed for other choices of n. The reason is most likely that the assumptions k-means
makes about the data simply do not hold for iM , namely the clusters are not of equal
sizes and densities, and the data within a cluster is not normally distributed around the
cluster center. Secondly, k-means relies on computation of cluster centroids, which is
sensitive to outliers, and there are plenty of those in gene expression data sets.

• Spectral clustering: We ran spectral clustering with the following parameters:

n_clusters = 6,

n_neighbors = 8,

matrix = DM,

where DM is the distance matrix between cells, computed based on their gene expres-
sion vectors in iM in the euclidean metric. It performs extremely well on the class
representatives, as none of the identified clusters contains representatives of multiple
classes.

• Louvain community detection: This method was perhaps the most challenging to
use. As described in Section 6.2.2, a graph with appropriate edge weights, which are
higher for shorter edges and lower for longer ones, must first be built on our point cloud.
Thus, we need to transform the distance between points into a weight, for which there
are many methods. Here, we choose to define the weight of edge (i, j) between cells i
and j as

W (i, j) = C − log10(1 + d(i, j)),

where d(i, j) is the euclidean distance between cells i and j, and C is the smallest constant
so that all weights are non-negative. Comparing the results for different methods of
weight assignment is out of scope for this text, but would be interesting to consider.
Next, we construct a graph as

G = networkx.from_numpy_array(W)

where W is the matrix of weights. We then call the algorithms.louvain method from
CDlib library on G with parameter resolution = 1.01 and visualize the results. We
see that clusters 1 and 3, similarly as for k-means, contain representatives of three and

Chapter 6: Classification of Gene Expression Data 149

Figure 6.7: The total entropy for each of the tested clustering methods, computed on the set
of representatives. As mentioned in Section 6.2.3, low values indicate the obtained clusters are
homogeneous with respect to the cell subtype.

two classes, respectively. Similar mixed clusters were observed for other values of the
resolution parameter as well (we tested 8 values in the range [0.9, 1.025]).

Our qualitative observations are confirmed by total entropy of each clustering (see Figure 6.7):

k-cluster k-means SC Louvain
total entropy 5.12 31.93 2.70 25.60

Low total entropy for spectral clustering and k-cluster suggests the clusters obtained with these
two methods are finer than the subtype classes on representatives. In contrast, the presence of
mixed clusters is reflected in higher total entropy for k-means and Louvain community detection.

6.3.2 Clustering on iM with cosine similarity
The clustering results of all tested methods are visualized in Figure 6.8. Again, we provide
implementation details and comment on the results.

• k-cluster: We follow the argument from before, and set the of parameter k to 8. The
number of clusters, N , is determined by studying the persistence diagram of 8-cluster

Chapter 6: Classification of Gene Expression Data 150

Figure 6.8: A comparison of clustering results on (not normalized) iM with respect to cosine
similarity for four chosen methods: k-cluster, k-means, spectral clustering and Louvain algorithm
(in the order left to right, top to bottom). Different colors denote clusters given by each method,
while the added annotations denote representatives of different classes identified a priori.

Chapter 6: Classification of Gene Expression Data 151

filtration on iM with respect to cosine similarity, see Figure 6.9. We again notice a
gap between 6th and 7th value, and so 6 is chosen as the number of clusters. Observing
Figure 6.8 we can again argue the method performs well on the class representatives,
with only cluster 4 containing representatives of more than one class.

Figure 6.9: Plot of the ordered list of multiplicative values associated to points in the persistence
diagram of 8-cluster filtration on iM with respect to cosine similarity. We plot the log10 of
each multiplicative value against its position in the ordered list, skipping multiplicative value∞,
which would be first in the order. First five points (and∞) are significantly higher than the rest,
suggesting iM has 6 inherently present components with respect to cosine similarity.

• k-means: The implementation of k-means in Scikit-learn does not support working
with cosine similarity, which is why we normalize each expression vector with respect
to euclidean distance and also use euclidean distance on the result as a proxy for cosine
similarity. We then run k-means on the normalized matrix iM with the parameter n,
number of clusters we wished to obtain, equal to 6. As can be observed from Figure 6.8,
this does not result in a good clustering, perhaps due to outliers that are still present in
the data after normalization.

• Spectral clustering: We ran spectral clustering with the following parameters:

n_clusters = 6,

n_neighbors = 8,

matrix = DM,

whereDM is the distance matrix between cells, computed based on their gene expression

Chapter 6: Classification of Gene Expression Data 152

vectors in iM in the cosine similarity. We see in Figure 6.8 that the obtained clustering
is not the best, however, this is due to the fact that n was chosen to fit k-cluster. By
setting parameter n_clusters to 9 instead, we obtain a clustering that fits nicely with
the one obtained with k-cluster, see Figure 6.10.

Figure 6.10: Comparison of clustering results on (not normalized) iM with respect to cosine simil-
arity for k-cluster with parameters N = 6 and k = 8, and spectral clustering with n_clusters= 9
(instead of 6) and n_neighbors= 8. Different colors denote clusters given by each method, while
the added annotations denote representatives of different classes identified a priori. Observe that
each of the clusters obtained with spectral clustering contains representatives of only one class,
and is roughly contained within a cluster obtained with k-cluster.

• Louvain community detection: We follow similar steps to define a graph on the
point cloud iM as before, with weights of edges now being computed with respect to
cosine similarity. Thus, we define the weight of edge (i, j) between cells i and j as

W (i, j) = C − log10(1 + d(i, j)),

where d(i, j) is the cosine similarity between cells i and j, and C is the smallest constant
so that all weights are non-negative. Again, we do not consider other methods of weight

Chapter 6: Classification of Gene Expression Data 153

Figure 6.11: The total entropy for each of the tested clustering methods, computed on the set
of representatives. As mentioned in Section 6.2.3, low values indicate the obtained clusters are
homogeneous with respect to the cell subtype.

assignment. We construct a graph as

G = networkx.from_numpy_array(W),

where W is the matrix of weights. We then call the algorithms.louvain method on G
with parameter resolution = 1.01 and visualize the results. We see that clusters 1

and 2 each contain representatives two classes. Note that we tested approximately 20

different resolutions values in the range of [0.9, 1.5], and the clusters that are obtained
are roughly the same with the exception of many additional tiny clusters appearing on
the border of clusters 0 and 1.

As before, our qualitative observations are confirmed by total entropy of each clustering (see
Figure 6.11):

k-cluster k-means SC Louvain
total entropy 1.60 82.17 22.41 15.50

With an even lower entropy than in the previous setting, k-cluster clearly performs best according
to this metric. Due to the observed presence of mixed clusters, the total entropy of other
clustering methods is significantly higher.

Chapter 6: Classification of Gene Expression Data 154

6.3.3 Clustering on log-transformed iM with euclidean distance
To give k-means a fighting chance, we log-transform iM by applying

iM(i, j) 7→ ln(1 + 10000
iM(i, j)∑
k iM(i, k)

)

to each entry of iM prior to clustering. Note that this is a standard transformation for gene
expression data sets, and is the default normalization method in the Seurat package [128, 64, 129].
Let us abuse the notation slightly and denote the resulting matrix by ln(iM). The results of all
tested clustering methods on ln(iM) are visualized in Figure 6.12. We list the chosen parameters
and comment on their performance here.

• k-cluster: Again, we set the parameter k to 8 and determine the number of clusters, N ,
by studying the persistence diagram of 8-cluster filtration on ln(iM) with respect to
euclidean distance, see Figure 6.13. We again choose 6 as the number of clusters. Ob-
serving Figure 6.12 we again notice a relatively good performance on other classes, but
the method struggles with the class of tyraminergic neurons, expression vectors of which
(in iM) are quite small in euclidean norm, see Figure 6.14. It is therefore not unlikely,
that the log-transformation would exacerbate initially small differences on this class.
However, as can be seen from Figure 6.12, k-means performs well on this class.

• k-means: We run k-means on ln(iM) with the parameter n, number of clusters we
wished to obtain, equal to 6. As mentioned before, it can be observed in Figure 6.12
that k-means performs better than k-cluster on ln(iM). Only cluster 1 contains repres-
entatives of more than one class.

• Spectral clustering: Similarly as before, we ran spectral clustering with parameters

n_clusters = 6,

n_neighbors = 8,

matrix = DM,

whereDM is the distance matrix between cells, computed based on their gene expression
vectors in ln(iM) in the euclidean distance. The resulting clustering seems to be good
when considered on its own, but cluster 5 contains many points that are consistently
clustered together with dopaminergic representatives by other methods. We test the
method with several other choices for parameters n_clusters and n_neighbors, but all
results contain at least one cluster we assume to be mixed.

Chapter 6: Classification of Gene Expression Data 155

Figure 6.12: Comparison of clustering results on log-transformed iM with respect to euclidean
distance for four chosen methods: k-cluster, k-means, spectral clustering and Louvain algorithm
(in the order left to right, top to bottom). Different colors denote clusters given by each method,
while the added annotations denote representatives of different classes identified a priori.

Chapter 6: Classification of Gene Expression Data 156

Figure 6.13: Plot of the ordered list of multiplicative values associated to points in the persistence
diagram of 8-cluster filtration on ln(iM) with respect to euclidean distance. We plot the log10 of
each multiplicative value against its position in the ordered list, skipping multiplicative value∞,
which would be first in the order. Many gaps can be observed, namely between points 1 and 2, 2
and 3, 5 and 6, 8 and 9, and 9 and 10. Thus, values N = 2, 3, 6, 9, 10 are all viable choices (taking
into account ∞ as well), but we choose N = 6 for consistency sake.

• Louvain community detection: Define a weighted graph G on the point cloud ln(iM)

by setting the weight of edge (i, j) between cells i and j to

W (i, j) = C − d(i, j),

where d(i, j) is the euclidean distance between cells i and j in ln(iM), and C is the
smallest constant so that all weights are non-negative. Note that due to the matrix
being log-transformed, we do not need to apply the logarithm to the distance, as we did
before. Again, we do not consider other methods of weight assignment. We construct a
graph as

G = networkx.from_numpy_array(W),

where W is the matrix of weights. We then call the algorithms.louvain method on G
with parameter resolution = 1.01. Observe in Figure 6.12 that cluster 1 contains rep-
resentatives of three different classes. We tested approximately 10 different resolutions
values in the range of [0.8, 1.03], and the obtained clusters are roughly the same, with
mixed clusters appearing for all tested resolutions.

Chapter 6: Classification of Gene Expression Data 157

Figure 6.14: Illustration of the estimated scale of points in point cloud iM . The points are
colored based on the root of their euclidean norm,

√
∥c∥ for cell c, where the darker color is used

for points with higher norm. The circled points are representatives of tyraminergic neurons.

To evaluate and compare the performance of chosen clustering methods, we again compute their
respective total entropy (see Figure 6.15):

k-cluster k-means SC Louvain
total entropy 13.07 1.60 18.68 44.67

As observed before, the performance of k-means on the set of representatives is significantly
better than that of the other methods, which is not surprising, since we chose the geometric
setting according to the assumptions made by k-means. On the other hand, k-cluster exhibits a
higher total accuracy for the first time, reflecting the observed issues with classifying tyraminergic
neurons.

Chapter 6: Classification of Gene Expression Data 158

Figure 6.15: The total entropy for each of the tested clustering methods, computed on the set
of representatives. As mentioned in Section 6.2.3, low values indicate the obtained clusters are
homogeneous with respect to the cell subtype.

6.3.4 Marker detection on good clusterings
We present the results of marker detection analysis performed on the clustering method with
smallest total entropy for each of the settings in the previous sections. In particular, the chosen
methods are

• spectral clustering with n_clusters=6 and n_neighbors=8 on iM with respect to euc-
lidean distance,

• k-cluster with N = 6 and k = 8 on iM with respect to cosine similarity,

• k-means with n = 6 and on ln(iM) with respect to euclidean distance.

First, we determine which cluster belongs to which class. For each of the methods, there is
at least one cluster that either contains representatives of more than one class or it does not
contain any class representatives. Thus, we compute the percentage of points within each cluster
in which a gene is expressed (i.e. the chosen threshold vector in our marker detection method
is the vector of ones). We base our decision on these percentages for important genes (with the
exception of ’Fer2’), which are summarized in Tables 6.1 to 6.3 for spectral clustering, k-cluster
and k-means respectively.

Chapter 6: Classification of Gene Expression Data 159

Spectral clustering, iM , euclidean

0 1 2 3 4 5

Fer2 43.6 64.4 18.8 11.4 0.0 58.0
Trh 0.0 0.3 0.0 75.2 0.0 1.0
ple 0.0 99.7 100.0 1.9 2.9 70.5

Tdc2 100.0 1.0 0.0 1.9 100.0 5.8
DAT 2.6 99.3 100.0 3.8 5.9 98.6
SerT 0.0 0.0 0.0 76.2 0.0 0.0
Tbh 5.1 5.8 12.9 14.3 100.0 1.9

Table 6.1: Percentages of points
within each cluster of spectral clus-
tering on iM with euclidean dis-
tance for which a specific gene is
expressed. Since DAT and ple are
high on clusters 1, 2 and 5, we argue
the dopaminergic class comprises of
points in these three clusters. In a
similar way, we argue seratoniner-
gic class consists only of cluster 3,
the octopaminergic of cluster 4, and
tyraminergic of cluster 0.

k-cluster, iM , cosine

0 1 2 3 4 5

Fer2 1.2 0.0 0.0 68.3 41.5 52.9
Trh 98.8 0.0 0.0 0.8 0.0 0.4
ple 1.2 0.0 3.3 37.5 0.0 99.8

Tdc2 0.0 58.3 93.3 10.0 97.6 0.6
DAT 0.0 0.0 6.7 91.7 2.4 98.8
SerT 100.0 0.0 0.0 0.0 0.0 0.0
Tbh 11.2 91.7 93.3 2.5 4.9 6.2

Table 6.2: Percentages of points within
each cluster of spectral clustering
on iM with cosine distance for which
a specific gene is expressed. Since
DAT and ple are (relatively) high on
clusters 3 and 5, we argue the dopam-
inergic class comprises of points in
these two clusters. In a similar way,
we argue seratoninergic class consists
only of cluster 0, the octopaminergic
of clusters 1 and 2, and tyraminergic
of cluster 4.

k-means, ln(iM), euclidean

0 1 2 3 4 5

Fer2 0.0 1.2 4.3 75.3 73.2 42.1
Trh 0.0 98.8 0.0 0.8 0.0 0.0
ple 98.0 1.2 2.1 96.2 0.0 0.0

Tdc2 0.7 0.0 78.7 1.0 19.6 97.4
DAT 98.0 0.0 4.3 99.2 87.5 0.0
SerT 0.0 100.0 0.0 0.0 0.0 0.0
Tbh 9.2 11.2 85.1 4.3 1.8 5.3

Table 6.3: Percentages of points within
each cluster of k-means on ln(iM) with
euclidean distance for which a specific
gene is expressed. Since DAT (and
partially ple) is high on clusters 0,
3 and 4, we argue the dopaminergic
class comprises of points in these three
clusters. In a similar way, we ar-
gue seratoninergic class consists only
of cluster 1, the octopaminergic of
cluster 2, and tyraminergic of cluster 5.

Chapter 6: Classification of Gene Expression Data 160

The clusters for which it is determined they belong to the same class are merged. For example,
for the dopaminergic neurons, we form sets (merged clusters) DSC, Dk-cluster, and Dk-means with

• DSC consisting of clusters 1, 2 and 5 of spectral clustering on iM with respect to the
euclidean metric, see Table 6.4 and Figure 6.5,

• Dk-cluster consisting of clusters 3 and 5 of k-cluster on iM with respect to cosine simil-
arity, see Table 6.5 and Figure 6.8,

• Dk-means consisting of clusters 0, 3 and 4 of k-means on ln(iM) with respect to the
euclidean metric, see Table 6.6 and Figure 6.12,

In Section 6.4, further analysis is performed on their intersection, D := DSC∩Dk-cluster∩Dk-means.

Expression profiles on the level of merged clusters (for all four classes) are analysed using our
marker detection method, with the chosen threshold of gene’s expression being the median on the
original count matrix M . The results are summarized in Tables 6.4 to 6.6 for spectral clustering,
k-cluster and k-means respectively. Based on the consistent appearance of genes dac, CG34354,
asRNA:CR44165, Ddc, Nep1, ct, and Lim1 in these summaries, we suggest them as potential not
yet known markers for monoaminergic neuron subtypes.

6.3.5 Conclusion
While k-cluster did not achieve the best performance in every setting, it consistently delivered
strong results with its total entropy never ranking worse than second best. Its ease of use, with
only two parameters to configure, is a significant advantage. This is especially true considering
that k, the parameter controlling the scale at which important sub-structures appear, can be
chosen intuitively, and the inherent number of clusters detected via studying the multiplicat-
ive values of k-cluster filtration can inform our choice of the other parameter, the number of
clusters N . Additionally, the flexibility of k-cluster to be applied across various metrics and dis-
tributional settings makes it highly adaptable. These attributes collectively make it an excellent
candidate for wider use in diverse clustering applications.

Chapter 6: Classification of Gene Expression Data 161

Spectral clustering, iM , euclidean

Dop Ser Oct Tyr

Nep2 13.9 0.0 81.8 18.4
Ms 10.6 9.7 75.8 11.8

CG34354 41.1 77.8 9.1 25.0
CG13288 9.1 6.9 81.8 11.8
TfAP-2 2.4 11.1 78.8 3.9

asRNA:CR44165 2.4 0.0 97.0 50.0
rgr 1.5 1.4 78.8 25.0

CG10527 7.9 12.5 78.8 10.5
AANAT1 5.8 75.0 6.1 9.2

SIFa 2.6 2.8 78.8 19.7
lov 7.4 23.6 78.8 47.4
sdk 24.7 37.5 78.8 7.9

Nep1 8.9 34.7 90.9 36.8
ct 8.9 19.4 84.8 47.4

CG1572 2.1 5.6 75.8 11.8
CG32532 8.6 23.6 78.8 28.9

DIP-epsilon 2.2 18.1 78.8 15.8
dac 7.9 8.3 81.8 7.9
Ddc 51.2 97.2 0.0 13.2

Table 6.4: Percentages of points within each
cluster of spectral clustering on iM with eu-
clidean distance for which a specific gene
is expressed higher than its median on the
data set. We display the subset of genes for
which there is a class with percentage smal-
ler than βlow = 10% and a class with per-
centage bigger than βhigh = 75%, excluding
important genes.

k-cluster, iM , cosine

Dop Ser Oct Tyr

trv 46.0 76.2 16.7 9.8
CG34354 41.5 72.5 14.3 9.8

asRNA:CR44165 2.3 0.0 81.0 87.8
lov 7.3 23.8 69.0 73.2

Nep1 8.6 31.2 81.0 58.5
ct 9.8 18.8 76.2 58.5

Lim1 44.0 10.0 64.3 92.7
dac 8.0 7.5 73.8 0.0
rdo 32.7 38.8 73.8 7.3
Ddc 50.0 93.8 4.8 2.4

Table 6.5: Percentages of points within
each cluster of k-cluster on iM with co-
sine similarity for which a specific gene is
expressed higher than its median on the
data set. We display the subset of genes for
which there is a class with percentage smal-
ler than βlow = 10% and a class with per-
centage bigger than βhigh = 70%, excluding
important genes.

Chapter 6: Classification of Gene Expression Data 162

k-means, ln(iM), euclidean

Dop Ser Oct Tyr

trv 46.0 76.2 21.3 5.3
CG34354 41.5 72.5 17.0 7.9

asRNA:CR44165 2.5 0.0 76.6 86.8
lov 7.3 23.8 66.0 73.7

Nep1 8.7 31.2 76.6 57.9
ct 10.0 18.8 72.3 55.3

Lim1 44.2 10.0 63.8 92.1
dac 7.7 7.5 70.2 0.0
Ddc 50.0 93.8 6.4 2.6

Table 6.6: Percentages of points within each
cluster of k-means on ln(iM) with euclidean
distance for which a specific gene is ex-
pressed higher than its median on the data
set. Note that these percentages are com-
puted based on the expression vectors in
the original matrix M , and not the log-
transformed version. We display the subset
of genes for which there is a class with per-
centage smaller than βlow = 10% and a class
with percentage bigger than βhigh = 70%,
excluding important genes.

Chapter 6: Classification of Gene Expression Data 163

6.4 Classification of Dopaminergic Neurons
Similar clustering analysis as in Section 6.3 is carried out here for the subset

D := DSC ∩Dk-cluster ∩Dk−means

of neurons, for which spectral clustering, k-cluster and k-means all agree they belong to the
dopaminergic class. This subset consisting of 587 points might not contain all dopaminergic
neurons – the subset DSC ∪Dk-cluster ∪Dk−means in comparison contains 603 points – but it is
the subset on which we have high confidence that the neurons truly belong to the dopaminergic
class. Thus, we restrict the original count matrix M to the rows belonging to neurons in D. It is
expected that their expression will be similar for the marker genes of monoaminergic neurons (and
perhaps some other genes related to properties they have in common). We remove them from
the analysis by discarding the columns belonging to genes whose expression is not sufficiently
varied on D, measured in both the number of neurons a specific gene is expressed for, and the
scale of its expression in terms of the maximum and minimum value. To be precise, we discard
genes

• whose maximum expression is smaller than 10 (hinting that they are never highly ex-
pressed),

• whose minimum expression is larger than 2 (hinting that they are always expressed),

• that are expressed on less than 10 dopaminergic neurons, and

• that are expressed on more than 587− 10 dopaminergic neurons.

(These thresholds were not chosen following extensive analysis and can be reinvestigated.) Denote
the resulting 587× 999 matrix as dM (where “d” stands for “dopaminergic”).

In comparison with classification on monoaminergic neurons, this task is completely unsuper-
vised. We do not know how many clusters are present in the data (the conjectured number is
20–30, but it is unlikely we will be able to see all those in a data set of roughly 600 points) and
we do not know, which genes play a role in the cell specialization for the expected subtypes.
Thus, the only way to argue that a clustering is good, is to have it confirmed by other clustering
results following different pipelines. Say A = {A1, . . . , An} and B = {B1, . . . , Bm} are two sets
of clusters on a point cloud. We say they agree, if each cluster in A is either partitioned by
a subset of clusters in B or is, together with some other clusters of A, part of a partition of a
cluster in B. The reverse, of course, needs to hold for clusters in B.

Chapter 6: Classification of Gene Expression Data 164

Since k-cluster proved to be the most consistently well-performing clustering method in Sec-
tion 6.3, we use it exclusively here. We obtain clustering results in many settings, where we vary
the geometry of the ambient space (cosine similarity vs. euclidean distance), the genes included
(we test several criteria for feature selection), the parameters of k-cluster, and we test different
methods for mitigating scale effects (either using none, log-transformation or applying square
root to the data set). In most settings, the obtained sets of clusters do not agree with others.
However, clustering results

1. on dM with respect to cosine similarity (Section 6.4.1),

2. on log-transformed dM with respect to euclidean distance (Section 6.4.2),

3. on a restriction of dM to genes chosen by a prior feature selection with respect to
euclidean distance (Section 6.4.3),

exhibit interesting behavior.

6.4.1 Clustering on dM with respect to cosine similarity
As we have often done in Section 6.3, we set the parameter k to 8 and determine the number
of clusters, N , by studying the persistence diagram of 8-cluster filtration on dM with respect to
cosine similarity, see Figure 6.17. We choose N = 2 and run k-cluster to obtain clusters from
Figure 6.18.

6.4.2 Clustering on log-transformed dM with respect to euclidean dis-
tance

Let us log-transform dM by applying

dM(i, j) 7→ ln(1 + 10000
dM(i, j)∑
k dM(i, k)

)

to each entry of dM prior to clustering. With slight abuse of notation we denote the resulting
matrix by ln(dM). Due to the fact that k-cluster detects very few clusters for k = 8, we set k to 6

instead. Studying the multiplicative values of the persistence diagram of 6-cluster filtration on
ln(dM) with respect to euclidean distance, see Figure 6.19, we choose N = 4 and run k-cluster
to obtain clusters from Figure 6.20.

Chapter 6: Classification of Gene Expression Data 165

6.4.3 Feature selection and subsequent clustering
Although we have already removed some genes from the analysis when constructing the mat-
rix dM , further feature selection can be done following one of the standard methods. Namely,
we plot the variance of each column (i.e. gene) of ln(dM) from Section 6.4.2 against its mean,
see Figure 6.16. A trend curve φ, which we choose to be a polynomial of degree 3, is then fit to
the plotted points. We discard genes whose variance is smaller than 0.05 + 6

5φ(µ), where µ is
the gene’s mean, resulting in a 587 × 112 matrix we denote by dMf . We further apply square
root to each entry of dMf , which helps to mitigate scale effects.

Figure 6.16: Plot of the variance against the mean for each column (i.e. gene) in ln(dM).
The trend curve is modeled as a polynomial in degree 3 and fitted using least squares method
(numpyṗolyfit). Genes associated to points in gray are discarded, as their variance is smaller
than 0.05 + 6

5φ(µ), where µ is their mean. The other 112 genes corresponding to points in blue
are kept, and the projection of dM to these genes is denoted by dMf .

As often before, we choose to run k-cluster for k = 8. The plot of multiplicative values of points
in the persistence diagram of 8-cluster filtration on

√
dMf with respect to euclidean distance

(see Figure 6.21) suggest possible choices for parameter N are 3, 5, 10 and 12. Since the numbers
of clusters obtained in Sections 6.4.1 and 6.4.2 are quite low, we choose N = 5. The obtained
clusters are visualized in Figure 6.22.

Chapter 6: Classification of Gene Expression Data 166

Figure 6.17: Plot of the ordered list
of multiplicative values associated
to points in the persistence diagram
of 8-cluster filtration on dM with re-
spect to cosine similarity. We plot
each multiplicative value against its
position in the ordered list, skipping
multiplicative value∞, which would
be first in the order.

Figure 6.18: Results of clustering with k-cluster with parameters k = 8 and N = 2 on dM with
respect to cosine similarity.

Chapter 6: Classification of Gene Expression Data 167

Figure 6.19: Plot of the ordered list
of multiplicative values associated to
points in the persistence diagram
of 6-cluster filtration on ln(dM)
with respect to euclidean distance.
We plot each multiplicative value
against its position in the ordered
list, skipping multiplicative value∞,
which would be first in the order.

Figure 6.20: Results of clustering with k-cluster with parameters k = 6 and N = 4 on ln(dM)
with respect to euclidean distance.

Chapter 6: Classification of Gene Expression Data 168

Figure 6.21: Plot of the ordered list
of multiplicative values associated to
points in the persistence diagram
of 8-cluster filtration on

√
dMf

with respect to euclidean distance.
We plot each multiplicative value
against its position in the ordered
list, skipping multiplicative value∞,
which would be first in the order.

Figure 6.22: Results of clustering with k-cluster with parameters k = 8 and N = 5 on
√
dMf

with respect to euclidean distance.

Chapter 6: Classification of Gene Expression Data 169

F
ig

ur
e

6.
23

:
U

M
A

P
pr

oj
ec

ti
on

of
√
d
M
f

w
it

h
tw

o
cl

us
te

ri
ng

re
su

lt
s

di
sp

la
ye

d
on

ea
ch

pl
ot

.
T

he
pl

ot
on

th
e

le
ft

is
co

lo
re

d
w

it
h

re
sp

ec
t

to
th

e
se

t
of

cl
us

te
rs

ob
ta

in
ed

on
√
d
M
f

in
Se

ct
io

n
6.

4.
3

an
d

an
no

ta
te

d
w

it
h

re
sp

ec
t

to
th

e
se

t
of

cl
us

te
rs

ob
ta

in
ed

on
d
M

in
Se

ct
io

n
6.

4.
1.

T
he

pl
ot

on
th

e
ri

gh
t

is
co

lo
re

d
w

it
h

re
sp

ec
t

to
th

e
se

t
of

cl
us

te
rs

ob
ta

in
ed

on
√
d
M
f

in
Se

ct
io

n
6.

4.
3

an
d

an
no

ta
te

d
w

it
h

re
sp

ec
t

to
th

e
se

t
of

cl
us

te
rs

ob
ta

in
ed

on
ln
(d
M

)
in

Se
ct

io
n

6.
4.

2.

Chapter 6: Classification of Gene Expression Data 170

6.4.4 Combining clustering results
To compare the sets of clusters obtained in Sections 6.4.1 to 6.4.3, we display pairs of them on
the same plot, see Figure 6.23. Observe that these clustering results agree. We combine them
by taking the coarsest set of clusters that is finer than all clustering results from Sections 6.4.1
to 6.4.3. Namely, define A = {A0, . . . , A5} by setting

A2 = C0(ln(dM)) ∩ C2(
√
dMf),

A5 = C3(ln(dM)) ∩ C2(
√
dMf),

Ai = Ci(
√
dMf) for i = 0, 1, 3, 4,

where Ci(m) denotes the cluster i obtained from matrix m as denoted by the legends in Fig-
ure 6.23. They are illustrated in Figure 6.24.

Figure 6.24: UMAP projection of
√
dMf with colors corresponding to clusters in A.

To argue about potential marker genes for clusters inA we again run our marker detection method
on the restriction of the original count matrixM onto the rows belonging to dopaminergic neurons

Chapter 6: Classification of Gene Expression Data 171

(not to be confused with dM , where we also restrict to a subset of columns). We choose the
vector of ones as the threshold for gene expression and summarize the results in Table 6.7, where
we only display the rows belonging to genes that are expressed in less than βlow = 5% of points
in one cluster while simultaneously being expressed for more than βhigh = 80% of points in some
other cluster. Observe that genes CG15522 and CG32532 can be used to distinguish clusters A2

and A5, which were originally identified as the same cluster by clustering on
√
dMf . The only

gene that is a potential sole marker for its cluster is Apoltp (for cluster A1). However, marker
genes can be used in combinations. For example, if a neuron’s expression of CG32532 is higher
and the expression of Lim1 is lower than 1, we can claim with great confidence that it belongs
to cluster A5. In fact, we can correctly identify 95.2% of neurons in cluster A5.

6.5 Conclusion
While small, the data set of monoaminergic neurons is big enough so that we were able to identify
the four expected classes to our satisfaction. Unfortunately, we were not as successful in the
subsequent analysis, where we attempted to divide the restriction of the data set to dopaminergic
neurons into between 20 and 30 classes. As mentioned before, it is hardly reasonable to expect a
data set with circa 600 points would support such fine fragmentation. Further, the only approach
for validation of results that is available to us is comparing them to other results, which is why
we cannot confirm the obtained clusters show true substructure in the data. However, as this is
a very difficult task, we are satisfied with the little insight the methodology used provided. We
hope to confirm that the 6 clusters we obtained in Section 6.4.4 represent true substructure in
subsequent work, where we will analyse a new, bigger data set of dopaminergic neurons that is
currently being preprocessed by our collaborators.

Chapter 6: Classification of Gene Expression Data 172

0 1 2 3 4 5

mCherry 0.0 91.9 21.4 79.2 90.2 0.0
CG12594 48.5 2.7 81.0 30.2 18.4 28.6

Fer2 0.0 86.5 16.7 55.2 65.4 0.0
beat-IIa 24.2 18.9 23.8 2.1 10.6 81.0

Lgr1 0.0 81.1 14.3 16.7 17.0 0.0
CG17193 36.4 94.6 2.4 16.7 40.2 14.3

Sar1 57.6 27.0 59.5 2.1 11.2 95.2
orb 48.5 13.5 64.3 0.0 1.4 100.0

Rox8 24.2 2.7 35.7 7.3 12.8 81.0
CG15522 42.4 0.0 11.9 0.0 0.6 90.5

emc 78.8 5.4 54.8 2.1 2.8 90.5
GluRIA 54.5 0.0 69.0 2.1 7.8 95.2
GluRIB 54.5 5.4 66.7 1.0 9.8 100.0
dpr10 51.5 2.7 66.7 1.0 4.2 81.0
cmpy 97.0 8.1 45.2 3.1 41.6 42.9

Oct-TyrR 54.5 8.1 57.1 4.2 8.9 81.0
Ten-m 84.8 13.5 71.4 4.2 15.9 81.0
scro 0.0 83.8 0.0 85.4 79.6 0.0

pdm3 21.2 86.5 4.8 3.1 38.8 14.3
sli 0.0 24.3 47.6 30.2 26.3 90.5

side-VIII 3.0 8.1 21.4 17.7 15.4 95.2
dpr1 81.8 29.7 50.0 4.2 61.7 90.5

CG34370 36.4 0.0 40.5 8.3 2.5 85.7
Lim1 100.0 97.3 19.0 81.2 53.9 0.0

alpha-Man-Ia 45.5 18.9 52.4 4.2 9.5 85.7
Imp 97.0 16.2 97.6 0.0 3.6 95.2

mamo 100.0 16.2 83.3 3.1 8.1 100.0
CG43658 84.8 18.9 76.2 4.2 12.0 33.3
CG32532 66.7 2.7 0.0 0.0 0.0 95.2

ed 51.5 2.7 88.1 0.0 8.4 100.0
Apoltp 0.0 86.5 4.8 3.1 9.8 9.5

ab 21.2 21.6 38.1 2.1 31.8 85.7
dac 97.0 2.7 0.0 0.0 0.8 23.8

beat-IIIb 24.2 21.6 47.6 3.1 10.3 81.0
CG5758 87.9 10.8 83.3 4.2 7.0 76.2

zfh2 3.0 2.7 81.0 2.1 1.4 33.3
fd102C 0.0 0.0 50.0 0.0 0.3 90.5

Table 6.7: Percentages of points within each cluster in A for which a specific gene is expressed.
We only display rows with at least one value lower than βlow = 5% and at least one value higher
than βhigh = 80%.

173

Bibliography

[1] Ž. Urbančič and J. Giansiracusa, “Ladder decomposition for morphisms of persistence mod-
ules,” Journal of Applied and Computational Topology, pp. 1–41, 2024.

[2] B. Hanin and D. Rolnick, “Deep ReLU networks have surprisingly few activation patterns,”
Advances in neural information processing systems, vol. 32, 2019.

[3] E. Miller, “Data structures for real multiparameter persistence modules,” arXiv preprint
arXiv:1709.08155, 2017.

[4] A. Adcock, D. Rubin, and G. Carlsson, “Classification of hepatic lesions using the matching
metric,” Computer vision and image understanding, vol. 121, pp. 36–42, 2014.

[5] X. Fernández and D. Mateos, “Topological biomarkers for real-time detection of epileptic
seizures,” arXiv preprint arXiv:2211.02523, 2022.

[6] N. Sale, J. Giansiracusa, and B. Lucini, “Quantitative analysis of phase transitions in two-
dimensional XY models using persistent homology,” Physical Review E, vol. 105, no. 2, p.
024121, 2022.

[7] R. J. Gardner, E. Hermansen, M. Pachitariu, Y. Burak, N. A. Baas, B. A. Dunn, M.-B.
Moser, and E. I. Moser, “Toroidal topology of population activity in grid cells,” Nature,
vol. 602, no. 7895, pp. 123–128, 2022.

[8] A. Cerri, B. D. Fabio, M. Ferri, P. Frosini, and C. Landi, “Betti numbers in multidi-
mensional persistent homology are stable functions,” Mathematical Methods in the Applied
Sciences, vol. 36, no. 12, pp. 1543–1557, 2013.

Bibliography 174

[9] M. Kerber, M. Lesnick, and S. Oudot, “Exact computation of the matching distance on
2-parameter persistence modules,” in SoCG 2019-International Symposium on Computa-
tional Geometry, 2019.

[10] U. Bauer and M. Lesnick, “Induced matchings and the algebraic stability of persistence
barcodes,” Journal of Computational Geometry, vol. 6, no. 2, pp. 162–191, 2015.

[11] E. Jacquard, V. Nanda, and U. Tillmann, “The space of barcode bases for persistence
modules,” Journal of Applied and Computational Topology, pp. 1–30, 2022.

[12] A. De Gregorio, M. Guerra, S. Scaramuccia, and F. Vaccarino, “Parallel decomposition of
persistence modules through interval bases,” arXiv preprint arXiv:2106.11884, 2021.

[13] R. González Díaz and M. Soriano Trigueros, “Basis-independent partial matchings induced
by morphisms between persistence modules,” ArXiv. org, ArXiv: 2006.11100, 2020.

[14] K. Turner, “Representing vineyard modules,” 2023.

[15] I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio, “Maxout networks,”
in International conference on machine learning. PMLR, 2013, pp. 1319–1327.

[16] Y. LeCun, C. Cortes, and C. J. Burges, “The MNIST database of handwritten digits,”
http://yann.lecun.com/exdb/mnist/.

[17] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:
//www.deeplearningbook.org.

[18] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017. [Online].
Available: https://arxiv.org/abs/1412.6980

[19] L. Fajstrup, E. Goubault, E. Haucourt, S. Mimram, and M. Raussen, Directed algebraic
topology and concurrency. Springer, 2016, vol. 138.

[20] S. Lim, F. Mémoli, and Z. Smith, “The Gromov–Hausdorff distance between spheres,”
Geometry & Topology, vol. 27, no. 9, pp. 3733–380 0, 2023.

[21] A. Park, V. Croset, N. Otto, D. Agarwal, C. D. Treiber, E. Meschi, D. Sims, and S. Waddell,
“Gliotransmission of D-serine promotes thirst-directed behaviors in Drosophila,” Current
Biology, vol. 32, no. 18, pp. 3952–3970, 2022.

[22] O. Bobrowski and P. Skraba, “Cluster persistence for weighted graphs,” Entropy, vol. 25,
no. 12, p. 1587, 2023.

http://yann.lecun.com/exdb/mnist/
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1412.6980

Bibliography 175

[23] E. Deza and M. M. Deza, Encyclopedia of distances. Springer, 2009.

[24] D. Burago, Y. Burago, S. Ivanov et al., A course in metric geometry. American Mathem-
atical Society Providence, 2001, vol. 33.

[25] J. Munkres, Topology. Pearson, 2013.

[26] A. C. Mennucci, “On asymmetric distances,” Analysis and Geometry in Metric Spaces,
vol. 1, no. 2013, pp. 200–231, 2013.

[27] N. J. Kalton and M. I. Ostrovskii, “Distances between Banach spaces,” Forum Mathem-
aticum, 1999.

[28] H. Edelsbrunner and J. L. Harer, Computational topology: an introduction. American
Mathematical Society, 2022.

[29] V. De Silva and G. E. Carlsson, “Topological estimation using witness complexes.” in PBG,
2004, pp. 157–166.

[30] M. C. McCord, “Homotopy type comparison of a space with complexes associated with
its open covers,” Proceedings of the American Mathematical Society, vol. 18, no. 4, pp.
705–708, 1967.

[31] K. Borsuk, “On the imbedding of systems of compacta in simplicial complexes,” Funda-
menta Mathematicae, vol. 35, no. 1, pp. 217–234, 1948.

[32] A. Hatcher, Algebraic Topology. Cambridge University Press, 2002.

[33] P. Niyogi, S. Smale, and S. Weinberger, “Finding the homology of submanifolds with high
confidence from random samples,” Discrete & Computational Geometry, vol. 39, pp. 419–
441, 2008.

[34] J. Kim, J. Shin, F. Chazal, A. Rinaldo, and L. Wasserman, “Homotopy reconstruction
via the Cech Complex and the Vietoris-Rips complex,” in SoCG 2020 - 36th International
Symposium on Computational Geometry, 2020.

[35] V. De Silva and R. Ghrist, “Coverage in sensor networks via persistent homology,” Algebraic
& Geometric Topology, vol. 7, no. 1, pp. 339–358, 2007.

[36] D. Attali, A. Lieutier, and D. Salinas, “Vietoris-Rips complexes also provide topologically
correct reconstructions of sampled shapes,” in Proceedings of the twenty-seventh annual
symposium on Computational geometry, 2011, pp. 491–500.

Bibliography 176

[37] A. E. Sizemore, C. Giusti, A. Kahn, J. M. Vettel, R. F. Betzel, and D. S. Bassett, “Cliques
and cavities in the human connectome,” Journal of computational neuroscience, vol. 44,
pp. 115–145, 2018.

[38] J. W. Milnor, Morse theory. Princeton university press, 1963, no. 51.

[39] E. G. Escolar and Y. Hiraoka, “Persistence modules on commutative ladders of finite type,”
Discrete & Computational Geometry, vol. 55, no. 1, pp. 100–157, 2016.

[40] G. Carlsson and V. De Silva, “Zigzag persistence,” Foundations of computational mathem-
atics, vol. 10, pp. 367–405, 2010.

[41] W. Crawley-Boevey, “Decomposition of pointwise finite-dimensional persistence modules,”
Journal of Algebra and its Applications, vol. 14, no. 05, p. 1550066, 2015.

[42] D. Cohen-Steiner, H. Edelsbrunner, J. Harer, and Y. Mileyko, “Lipschitz functions have
L p-stable persistence,” Foundations of computational mathematics, vol. 10, no. 2, pp.
127–139, 2010.

[43] U. Bauer and M. Lesnick, “Persistence diagrams as diagrams: A categorification of the
stability theorem,” in Topological Data Analysis. Springer, 2020, pp. 67–96.

[44] L. Fajstrup and J. P. Costa, “On the hierarchy of d-structures,” Order, vol. 34, no. 1, pp.
139–163, 2017.

[45] T. Nawy, “Single-cell sequencing,” Nature methods, vol. 11, no. 1, pp. 18–18, 2014.

[46] A. Haque, J. Engel, S. A. Teichmann, and T. Lönnberg, “A practical guide to single-
cell RNA-sequencing for biomedical research and clinical applications,” Genome medicine,
vol. 9, pp. 1–12, 2017.

[47] A. T. Lun, D. J. McCarthy, and J. C. Marioni, “A step-by-step workflow for low-level
analysis of single-cell RNA-seq data with Bioconductor,” F1000Research, vol. 5, 2016.

[48] R. A. Amezquita, A. T. Lun, E. Becht, V. J. Carey, L. N. Carpp, L. Geistlinger, F. Mar-
ini, K. Rue-Albrecht, D. Risso, C. Soneson et al., “Orchestrating single-cell analysis with
Bioconductor,” Nature methods, vol. 17, no. 2, pp. 137–145, 2020.

[49] Orcestrating Single-Cell Analysis with Bioconductor. Visited on 2024-29-05. [Online].
Available: https://bioconductor.org/books/3.18/OSCA/

https://bioconductor.org/books/3.18/OSCA/

Bibliography 177

[50] X. Yu, F. Abbas-Aghababazadeh, Y. A. Chen, and B. L. Fridley, “Statistical and bioinform-
atics analysis of data from bulk and single-cell RNA sequencing experiments,” Translational
Bioinformatics for Therapeutic Development, pp. 143–175, 2021.

[51] S. C. Hicks, F. W. Townes, M. Teng, and R. A. Irizarry, “Missing data and technical
variability in single-cell rna-sequencing experiments,” Biostatistics, vol. 19, no. 4, pp. 562–
578, 2018.

[52] Mapping and sequencing the human genome. National Academies Press, 1988.

[53] National Cancer Institute dictionary of cancer terms. Visited on 2024-27-05.
[Online]. Available: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/
transcription

[54] A. T. Lun, S. Riesenfeld, T. Andrews, T. P. Dao, T. Gomes, P. in the 1st Human Cell
Atlas Jamboree, and J. C. Marioni, “EmptyDrops: distinguishing cells from empty droplets
in droplet-based single-cell RNA sequencing data,” Genome biology, vol. 20, pp. 1–9, 2019.

[55] C. S. McGinnis, L. M. Murrow, and Z. J. Gartner, “DoubletFinder: doublet detection in
single-cell RNA sequencing data using artificial nearest neighbors,” Cell systems, vol. 8,
no. 4, pp. 329–337, 2019.

[56] K. Mullis, F. Faloona, S. Scharf, R. Saiki, G. Horn, and H. Erlich, “Specific enzymatic
amplification of DNA in vitro: the polymerase chain reaction,” in Cold Spring Harbor
symposia on quantitative biology, vol. 51. Cold Spring Harbor Laboratory Press, 1986,
pp. 263–273.

[57] M. Fakruddin, K. S. B. Mannan, A. Chowdhury, R. M. Mazumdar, M. N. Hossain, S. Islam,
and M. A. Chowdhury, “Nucleic acid amplification: Alternative methods of polymerase
chain reaction,” Journal of Pharmacy and Bioallied Sciences, vol. 5, no. 4, pp. 245–252,
2013.

[58] M. D. Robinson and G. K. Smyth, “Moderated statistical tests for assessing differences in
tag abundance,” Bioinformatics, vol. 23, no. 21, pp. 2881–2887, 2007.

[59] S. Anders and W. Huber, “Differential expression analysis for sequence count data,” Nature
Precedings, pp. 1–1, 2010.

[60] C. Hafemeister and R. Satija, “Normalization and variance stabilization of single-cell rna-
seq data using regularized negative binomial regression,” Genome biology, vol. 20, no. 1, p.
296, 2019.

https://www.cancer.gov/publications/dictionaries/cancer-terms/def/transcription
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/transcription

Bibliography 178

[61] S. Choudhary and R. Satija, “Comparison and evaluation of statistical error models for
scRNA-seq,” Genome biology, vol. 23, no. 1, p. 27, 2022.

[62] R. Jiang, T. Sun, D. Song, and J. J. Li, “Statistics or biology: the zero-inflation controversy
about scRNA-seq data,” Genome biology, vol. 23, no. 1, p. 31, 2022.

[63] T. H. Kim, X. Zhou, and M. Chen, “Demystifying “drop-outs” in single-cell UMI data,”
Genome biology, vol. 21, no. 1, p. 196, 2020.

[64] Y. Hao, T. Stuart, M. H. Kowalski, S. Choudhary, P. Hoffman, A. Hartman, A. Srivastava,
G. Molla, S. Madad, C. Fernandez-Granda et al., “Dictionary learning for integrative,
multimodal and scalable single-cell analysis,” Nature biotechnology, vol. 42, no. 2, pp. 293–
304, 2024.

[65] M. F. Freeman and J. W. Tukey, “Transformations related to the angular and the square
root,” The annals of mathematical statistics, pp. 607–611, 1950.

[66] P.-Y. Tung, J. D. Blischak, C. J. Hsiao, D. A. Knowles, J. E. Burnett, J. K. Pritchard,
and Y. Gilad, “Batch effects and the effective design of single-cell gene expression studies,”
Scientific reports, vol. 7, no. 1, p. 39921, 2017.

[67] L. Haghverdi, A. T. Lun, M. D. Morgan, and J. C. Marioni, “Batch effects in single-
cell RNA-sequencing data are corrected by matching mutual nearest neighbors,” Nature
biotechnology, vol. 36, no. 5, pp. 421–427, 2018.

[68] A. Butler, P. Hoffman, P. Smibert, E. Papalexi, and R. Satija, “Integrating single-cell
transcriptomic data across different conditions, technologies, and species,” Nature biotech-
nology, vol. 36, no. 5, pp. 411–420, 2018.

[69] T. Stuart, A. Butler, P. Hoffman, C. Hafemeister, E. Papalexi, W. M. Mauck, Y. Hao,
M. Stoeckius, P. Smibert, and R. Satija, “Comprehensive integration of single-cell data,”
cell, vol. 177, no. 7, pp. 1888–1902, 2019.

[70] Y. Zhang, G. Parmigiani, and W. E. Johnson, “ComBat-seq: batch effect adjustment for
RNA-seq count data,” NAR genomics and bioinformatics, vol. 2, no. 3, p. lqaa078, 2020.

[71] K. E. Witte, O. Hertel, B. A. Windmoeller, L. P. Helweg, A. L. Hoeving, C. Knabbe,
T. Busche, J. F. Greiner, J. Kalinowski, T. Noll et al., “Nanopore sequencing reveals global
transcriptome signatures of mitochondrial and ribosomal gene expressions in various human
cancer stem-like cell populations,” Cancers, vol. 13, no. 5, p. 1136, 2021.

Bibliography 179

[72] S. Márquez-Jurado, J. Díaz-Colunga, R. P. das Neves, A. Martinez-Lorente, F. Almazán,
R. Guantes, and F. J. Iborra, “Mitochondrial levels determine variability in cell death by
modulating apoptotic gene expression,” Nature communications, vol. 9, no. 1, p. 389, 2018.

[73] P. G. Ferreira, M. Muñoz-Aguirre, F. Reverter, C. P. Sa Godinho, A. Sousa, A. Amadoz,
R. Sodaei, M. R. Hidalgo, D. Pervouchine, J. Carbonell-Caballero et al., “The effects of
death and post-mortem cold ischemia on human tissue transcriptomes,” Nature commu-
nications, vol. 9, no. 1, p. 490, 2018.

[74] I. Gallego Romero, A. A. Pai, J. Tung, and Y. Gilad, “RNA-seq: impact of RNA degrad-
ation on transcript quantification,” BMC biology, vol. 12, pp. 1–13, 2014.

[75] P. Qiu, “Embracing the dropouts in single-cell RNA-seq analysis,” Nature communications,
vol. 11, no. 1, p. 1169, 2020.

[76] P. V. Kharchenko, L. Silberstein, and D. T. Scadden, “Bayesian approach to single-cell
differential expression analysis,” Nature methods, vol. 11, no. 7, pp. 740–742, 2014.

[77] W. V. Li and J. J. Li, “An accurate and robust imputation method scImpute for single-cell
RNA-seq data,” Nature communications, vol. 9, no. 1, p. 997, 2018.

[78] D. Van Dijk, R. Sharma, J. Nainys, K. Yim, P. Kathail, A. J. Carr, C. Burdziak, K. R.
Moon, C. L. Chaffer, D. Pattabiraman et al., “Recovering gene interactions from single-cell
data using data diffusion,” Cell, vol. 174, no. 3, pp. 716–729, 2018.

[79] C. Chen, C. Wu, L. Wu, X. Wang, M. Deng, and R. Xi, “scRMD: imputation for single
cell RNA-seq data via robust matrix decomposition,” Bioinformatics, vol. 36, no. 10, pp.
3156–3161, 2020.

[80] A. Mongia, D. Sengupta, and A. Majumdar, “McImpute: matrix completion based im-
putation for single cell RNA-seq data,” Frontiers in genetics, vol. 10, p. 9, 2019.

[81] T. Peng, Q. Zhu, P. Yin, and K. Tan, “SCRABBLE: single-cell RNA-seq imputation con-
strained by bulk RNA-seq data,” Genome biology, vol. 20, pp. 1–12, 2019.

[82] D. Risso, F. Perraudeau, S. Gribkova, S. Dudoit, and J.-P. Vert, “A general and flex-
ible method for signal extraction from single-cell RNA-seq data,” Nature communications,
vol. 9, no. 1, p. 284, 2018.

[83] M. Wang, J. Gan, C. Han, Y. Guo, K. Chen, Y.-z. Shi, and B.-g. Zhang, “Imputation
methods for scRNA sequencing data,” Applied Sciences, vol. 12, no. 20, p. 10684, 2022.

Bibliography 180

[84] S. Islam, U. Kjällquist, A. Moliner, P. Zajac, J.-B. Fan, P. Lönnerberg, and S. Linnarsson,
“Characterization of the single-cell transcriptional landscape by highly multiplex RNA-
seq,” Genome research, vol. 21, no. 7, pp. 1160–1167, 2011.

[85] N. C. Chung and J. D. Storey, “Statistical significance of variables driving systematic
variation in high-dimensional data,” Bioinformatics, vol. 31, no. 4, pp. 545–554, 2014.

[86] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold approximation and pro-
jection for dimension reduction,” arXiv preprint arXiv:1802.03426, 2018.

[87] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of machine
learning research, vol. 9, no. 11, 2008.

[88] P. De Meo, E. Ferrara, G. Fiumara, and A. Provetti, “Generalized Louvain method for com-
munity detection in large networks,” in 2011 11th international conference on intelligent
systems design and applications. IEEE, 2011, pp. 88–93.

[89] P. Pons and M. Latapy, “Computing communities in large networks using random walks,” in
Computer and Information Sciences-ISCIS 2005: 20th International Symposium, Istanbul,
Turkey, October 26-28, 2005. Proceedings 20. Springer, 2005, pp. 284–293.

[90] Scikit-learn user guide: Clustering. Visited on 2025-23-02. [Online]. Available:
https://scikit-learn.org/stable/modules/clustering.html

[91] C. Soneson and M. Delorenzi, “A comparison of methods for differential expression analysis
of RNA-seq data,” BMC bioinformatics, vol. 14, pp. 1–18, 2013.

[92] F. Chazal, D. Cohen-Steiner, M. Glisse, L. J. Guibas, and S. Y. Oudot, “Proximity
of persistence modules and their diagrams,” in Proceedings of the Twenty-Fifth
Annual Symposium on Computational Geometry, ser. SCG ’09. New York, NY,
USA: Association for Computing Machinery, 2009, p. 237–246. [Online]. Available:
https://doi.org/10.1145/1542362.1542407

[93] V. De Silva, E. Munch, and A. Stefanou, “Theory of interleavings on categories with a
flow,” Theory and Applications of Categories, vol. 33, no. 21, pp. 583–607, 2018.

[94] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer, “Stability of persistence diagrams,” in
Proceedings of the twenty-first annual symposium on Computational geometry, 2005, pp.
263–271.

https://scikit-learn.org/stable/modules/clustering.html
https://doi.org/10.1145/1542362.1542407

Bibliography 181

[95] M. Lesnick and M. Wright, “Interactive visualization of 2-D persistence modules,” arXiv
preprint arXiv:1512.00180, 2015.

[96] I. Steinwart, “A sober look at neural network initializations,” arXiv preprint
arXiv:1903.11482, 2019.

[97] R. Pascanu, G. Montufar, and Y. Bengio, “On the number of response regions of deep
feed forward networks with piece-wise linear activations,” in International Conference on
Learning Representations 2014, 2014.

[98] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, “On the number of linear regions of
deep neural networks,” Advances in neural information processing systems, vol. 27, 2014.

[99] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein, “On the expressive
power of deep neural networks,” in international conference on machine learning. PMLR,
2017, pp. 2847–2854.

[100] T. Serra, C. Tjandraatmadja, and S. Ramalingam, “Bounding and counting linear regions
of deep neural networks,” in International conference on machine learning. PMLR, 2018,
pp. 4558–4566.

[101] B. Hanin and D. Rolnick, “Complexity of linear regions in deep networks,” in International
Conference on Machine Learning. PMLR, 2019, pp. 2596–2604.

[102] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1026–1034.

[103] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural
networks,” in Proceedings of the thirteenth international conference on artificial intelligence
and statistics. JMLR Workshop and Conference Proceedings, 2010, pp. 249–256.

[104] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,” in Neural networks:
Tricks of the trade. Springer, 2002, pp. 9–50.

[105] G.-H. Lee, D. Alvarez-Melis, and T. S. Jaakkola, “Towards robust, locally linear deep
networks,” in International Conference on Learning Representations, 2019. [Online].
Available: https://openreview.net/forum?id=SylCrnCcFX

[106] Initialization of deep neural networks with ReLU activation. [Online]. Available:
https://github.com/ZivaUrbancic/Maxout_Initializations

https://openreview.net/forum?id=SylCrnCcFX
https://github.com/ZivaUrbancic/Maxout_Initializations

Bibliography 182

[107] X. Zhang and D. Wu, “Empirical studies on the properties of linear regions in deep neural
networks,” arXiv preprint arXiv:2001.01072, 2020.

[108] D. Arpit, S. Jastrzębski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal, T. Maharaj,
A. Fischer, A. Courville, Y. Bengio et al., “A closer look at memorization in deep networks,”
in International conference on machine learning. PMLR, 2017, pp. 233–242.

[109] M. Grandis, Directed algebraic topology: models of non-reversible worlds. Cambridge
University Press, 2009, vol. 13.

[110] F. Mémoli and G. Sapiro, “A theoretical and computational framework for isometry invari-
ant recognition of point cloud data,” Foundations of Computational Mathematics, vol. 5,
pp. 313–347, 2005.

[111] D. Jungnickel and D. Jungnickel, Graphs, networks and algorithms. Springer, 2005, vol. 3.

[112] D. Mugnolo, “What is actually a metric graph?” arXiv preprint arXiv:1912.07549, 2019.

[113] M. Aanjaneya, F. Chazal, D. Chen, M. Glisse, L. J. Guibas, and D. Morozov, “Metric graph
reconstruction from noisy data,” in Proceedings of the twenty-seventh annual symposium
on Computational geometry, 2011, pp. 37–46.

[114] Thirsty fly classification. [Online]. Available: https://github.com/ZivaUrbancic/
ThirstyFlyClustering

[115] B. Sloley and A. Juorio, “Monoamine neurotransmitters in invertebrates and vertebrates:
An examination of the diverse enzymatic pathways utilized to synthesize and inactivate
blogenic amines,” International Review of Neurobiology, vol. 38, pp. 253–303, 1995.

[116] E. R. Kandel, J. H. Schwartz, T. M. Jessell, S. Siegelbaum, A. J. Hudspeth, S. Mack et al.,
Principles of neural science. McGraw-hill New York, 2000, vol. 4.

[117] O. Bobrowski and P. Skraba, “On the universality of random persistence diagrams,” arXiv
preprint arXiv:2207.03926, 2022.

[118] F. Chazal, L. J. Guibas, S. Y. Oudot, and P. Skraba, “Persistence-based clustering in
Riemannian manifolds,” Journal of the ACM (JACM), vol. 60, no. 6, pp. 1–38, 2013.

[119] A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an algorithm,”
Advances in neural information processing systems, vol. 14, 2001.

https://github.com/ZivaUrbancic/ThirstyFlyClustering
https://github.com/ZivaUrbancic/ThirstyFlyClustering

Bibliography 183

[120] J. Shi and J. Malik, “Normalized cuts and image segmentation,” in Proceedings of IEEE
computer society conference on computer vision and pattern recognition. IEEE, 1997, pp.
731–737.

[121] Documentation for KMeans clustering within Scikit-learn library. Visited on 2024-19-
06. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.
KMeans

[122] D. Xu and Y. Tian, “A comprehensive survey of clustering algorithms,” Annals of data
science, vol. 2, pp. 165–193, 2015.

[123] Documentation for spectral clustering within Scikit-learn library. Visited on 2024-19-
06. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.
SpectralClustering.html

[124] Documentation for Louvain algorithm within CDlib library. Visited on 2024-19-06.
[Online]. Available: https://cdlib.readthedocs.io/en/0.2.0/reference/cd_algorithms/algs/
cdlib.algorithms.louvain.html

[125] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of com-
munities in large networks,” Journal of statistical mechanics: theory and experiment, vol.
2008, no. 10, p. P10008, 2008.

[126] R. Lambiotte, J.-C. Delvenne, and M. Barahona, “Laplacian dynamics and multiscale mod-
ular structure in networks,” arXiv preprint arXiv:0812.1770, 2008.

[127] Documentation of from_numpy_array method within networkx library. Visited on
2024-27-06. [Online]. Available: https://networkx.org/documentation/stable/reference/
generated/networkx.convert_matrix.from_numpy_array.html

[128] Seurat: R toolkit for single cell genomics. Visited on 2024-27-06. [Online]. Available:
https://satijalab.org/seurat/

[129] R. Satija, J. A. Farrell, D. Gennert, A. F. Schier, and A. Regev, “Spatial reconstruction of
single-cell gene expression data,” Nature biotechnology, vol. 33, no. 5, pp. 495–502, 2015.

[130] Bioconductor: Open source software for bioinformatics. Visited on 2024-27-06. [Online].
Available: https://www.bioconductor.org/

[131] H. Schütze, C. D. Manning, and P. Raghavan, Introduction to information retrieval. Cam-
bridge University Press Cambridge, 2008, vol. 39.

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html
https://cdlib.readthedocs.io/en/0.2.0/reference/cd_algorithms/algs/cdlib.algorithms.louvain.html
https://cdlib.readthedocs.io/en/0.2.0/reference/cd_algorithms/algs/cdlib.algorithms.louvain.html
https://networkx.org/documentation/stable/reference/generated/networkx.convert_matrix.from_numpy_array.html
https://networkx.org/documentation/stable/reference/generated/networkx.convert_matrix.from_numpy_array.html
https://satijalab.org/seurat/
https://www.bioconductor.org/

Bibliography 184

[132] V. Croset, C. D. Treiber, and S. Waddell, “Cellular diversity in the Drosophila midbrain
revealed by single-cell transcriptomics,” Elife, vol. 7, p. e34550, 2018.

[133] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of com-
munities in large networks,” Journal of statistical mechanics: theory and experiment, vol.
2008, no. 10, p. P10008, 2008.

	Abstract
	Declaration
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Prerequisites
	Measuring Distances
	Metric Spaces
	Paths and Length Structures
	Gromov–Hausdorff Distance

	Topological Methods in Data Science
	Shape Approximation
	Homology
	Persistent Homology
	Bottleneck and Interleaving Distance
	Barcode Basis

	Directed Spaces
	Operations on Directed Spaces
	Directed Spaces and Length Structures

	Gene Expression Data
	Cellular Processes
	Single-Cell RNA Sequencing
	Properties of Gene Expression Data
	Biological and Technical Artifacts in Gene Expression Data
	Standard pipeline for Clustering Analysis of Gene Expression Data

	Ladder Decomposition for Morphisms of Persistence Modules
	Ladder Decomposition of a Persistence Morphism
	Ladder Decompositions and Interleavings
	Interleavings and -Invertible Morphisms of Persistence Modules
	Nestedness Condition for Ladder Decomposition of a -Invertible Morphisms
	Ladder Decompositions of an Interleaving Pair

	 -Coarse Ladder Decomposition
	 -Coarse Ladder Decomposition of a -invertible Morphism
	 -Coarse Ladder Decompositions of a -Interleaving Pair

	Induced Partial Matchings
	Ladder Decomposition Induced Partial Matching
	Comparisson with the Bauer-Lesnick Induced Matchings
	Basis-Independent Partial Matchings
	 -Coarse Induced Partial Matchings

	Initialization Strategy for Deep Neural Networks with ReLU Activation
	Neural Network Preliminaries
	Network Architecture
	Pipeline
	Activation Regions

	Initialization Strategy
	Adjusting Layer Variance
	Computing Region Membership
	Complexity Analysis

	Experiments
	Adam Optimization and fix_layer_deviation
	SGD Optimization and fix_layer_deviation
	Adam Optimization and reset_layer_deviation

	Conclusion

	Gromov–Hausdorff Distance for Directed Metric Spaces
	Zigzag Distance
	Directed Gromov–Hausdorff Distance
	Distortion Distance
	Directed Flat Torus
	Directed Weighted Graphs as D-spaces

	Classification of Gene Expression Data
	Thirsty Fly Data Set and Classification Tasks
	Methods
	Persistence-inspired Clustering Method: k-cluster
	Clustering Methods Used for Comparison
	Evaluation of Clustering Results
	Marker Detection

	Classification of Monoaminergic Neurons
	Clustering on iM with euclidean distance
	Clustering on iM with cosine similarity
	Clustering on log-transformed iM with euclidean distance
	Marker detection on good clusterings
	Conclusion

	Classification of Dopaminergic Neurons
	Clustering on dM with respect to cosine similarity
	Clustering on log-transformed dM with respect to euclidean distance
	Feature selection and subsequent clustering
	Combining clustering results

	Conclusion

	Bibliography

