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Generalized Symmetries in the Strong Coupling Limit
Samson YL Chan

Abstract

This thesis examines applications of generalized symmetries to strongly coupled
Yang-Mills theories in four dimensions. We begin by providing a brief overview
of recent developments in generalized symmetries, namely higher-form sym-
metries, non-invertible symmetries, higher-group symmetries, and generalized
’t Hooft anomalies. We then proceed to study several examples of their ap-
plications in understanding the infrared (IR) behaviour of Yang-Mills theories
as they become strongly coupled. Firstly, we study a family of 2-index chiral
gauge theories, which exhibit generalized anomalies arising from the presence
of fractionally charged backgrounds, known as ’t Hooft fluxes (or twists). We
leverage the ’t Hooft anomalies to constrain their IR phases. In some cases,
the generalized anomalies allow us to eliminate the possibility of composite
fermions, which was not previously possible with ordinary ’t Hooft anomalies.
After studying higher-form symmetries, we then proceed to analyze the non-
invertible symmetry in Yang-Mills theories arising from ’t Hooft twists, and we
provide an explicit method to construct such symmetries in the Hamiltonian
formalism. Finally, we turn to axion physics and argue that a three-form gauge
theory is a good effective field theory description for axion-Yang-Mills in the
IR, incorporating both higher-form symmetries and higher-group symmetries.

Supervisors: Mohamed Anber
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Chapter 1
Introduction

Since the advent of quantum field theory, our best explanations of particle inter-
actions can be formulated using gauge theories. Yet many questions still remain
unanswered, especially in the case of Yang-Mills theory, where the gauge group
is non-abelian. One of the biggest mysteries is confinement - despite observing
quarks combining to form hadrons, we are still missing an analytic explanation of
how quantum chromodynamics (QCD) predicts confinement.

One reason why studying Yang-Mills theory is so difficult is the lack of analytic
methods to study the theory at relevant energies. Famously, the Yang-Mills action
is given by:

SYM [acµ] = 1
2g2

∫
dx4 trf cµνf c,µν (1.1)

where g is the Yang-Mills coupling constant, and f cµν = ∂µa
c
ν − ∂νa

c
µ + i[aµ, aν ]

is the non-abelian field strength, given in terms of the gauge field acµ. The path
integral in Lorentzian signature is given by

Z =
∫

DacµeiSYM [acµ] (1.2)

If the coupling g2 is small, the path integral is well-approximated by the stationary
phase approximation, given by the minimum of the action. In this case we can study
fluctuations about the classical equations of motion, which gives us a good foothold
to understand the physics. These are perturbative approaches to understanding
gauge theories. But when the coupling is large, also known as strong coupling, the
weight of field configurations away from the minimum become significant. In this
regime we can no longer use perturbative methods to understand the physics - we
must find other methods to understand the physical behaviour of these systems.

One might hope that the coupling constant of Yang-Mills theory is a small constant,
and we are able to extract many physical predictions by studying the perturbative
aspects of quantum field theory. Unfortunately, developments in the twentieth
century on the renormalization group flow of quantum field theories tells us that
life is not so simple. The value of the coupling constant depends on the energy
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1.1. Outline of Thesis

scale we are considering. In particular, the Yang-Mills coupling is governed by the
beta function:

µ
dg

dµ
= β0g

3, (1.3)

where µ is the energy scale and β0 is a negative constant depending on group
theoretic factors of the gauge group. From this equation we can deduce that the
theory is asymptotically free - the coupling is large at low energies and small at
high energies.

The upshot is that we can no longer apply perturbative techniques to understand
non-abelian gauge theories at longer length scales. We must therefore turn to other
methods to try and probe for infra-red (IR) phenomena. One handle we have on the
low energy behaviour of gauge theories is the theory’s global symmetries and their
anomalies. The presence of symmetry in quantum field theory can therefore give
us new insight into the IR behaviour of theories. New symmetries could perhaps
lead to new insights. In the past decade, there has been rapid developments in
the study of symmetries in quantum field theory, falling under the umbrella of
generalized symmetries [4]. This has led to new insights to the IR behaviour of
non-abelian gauge theories. This thesis will focus on applications of generalized
symmetries to study strongly coupled gauge theories.

1.1 Outline of Thesis

Chapter two will be an introduction to generalized symmetries. We begin by in-
troducing anomalies and deriving the ABJ anomaly via the Fujikawa method. We
also discuss ’t Hooft anomaly matching. We then turn to higher-form symmet-
ries and discuss how to explicitly construct 1-form symmetry backgrounds on the
four-torus. We will also introduce non-invertible symmetries and higher-group
symmetries, providing examples that will be relevant for the later chapters.

Chapter three, four and five are based on my publications [1], [2], and [3] respect-
ively. The thesis will be arranged as follows:

In chapter three, we will investigate a family of 4-dimensional SU(N) chiral gauge
theories and investigate their faithful global symmetries and dynamics. Despite
their prevalence, chiral gauge theories are still poorly understood, partly due to
our inability to simulate them on the lattice thanks to the Nielsen-Ninomiya the-
orem [5, 6]. We will study a finite set of theories with fermions in the 2-index
symmetric and anti-symmetric representations, with no fundamentals, and they do
not admit a large-N limit. We employ a combination of perturbative and nonper-
turbative methods, enabling us to constrain their infrared (IR) phases. Specifically,
we leverage the ’t Hooft anomalies associated with continuous and discrete groups
to eliminate a few scenarios. In some cases, the 1-form anomalies arising from turn-
ing on ’t Hooft fluxes allow us to rule out the possibility of fermion composites. In
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1.1. Outline of Thesis

other cases, the interplay between the continuous and discrete anomalies leads to
multiple higher-order condensates, which inevitably form to match the anomalies.
Further, we pinpoint the most probable symmetry-breaking patterns by search-
ing for condensates that match the full set of anomalies resulting in the smallest
number of IR degrees of freedom. Higher-loop β-function analysis suggests that a
few theories may flow to a conformal fixed point. We hope that by studying this
family of theories we can uncover general lessons to better understand quantum
field theories.

In chapter four, we will turn to non-invertible symmetries. Non-invertible symmet-
ries have cropped up in the past few years, and it is desirable to study their implic-
ations for non-abelian gauge theories. We devise a general method for obtaining
0-form noninvertible discrete chiral symmetries in 4-dimensional SU(N)/Zp and
SU(N) × U(1)/Zp gauge theories with matter in arbitrary representations, where
Zp is a subgroup of the electric 1-form center symmetry. Our approach involves
placing the theory on a three-torus and utilizing the Hamiltonian formalism to con-
struct noninvertible operators by introducing twists compatible with the gauging of
Zp. These theories exhibit electric 1-form and magnetic 1-form global symmetries,
and their generators play a crucial role in constructing the corresponding Hilbert
space. The noninvertible operators are demonstrated to project onto specific Hil-
bert space sectors characterized by particular magnetic fluxes. Furthermore, when
subjected to twists by the electric 1-form global symmetry, these surviving sectors
reveal an anomaly between the noninvertible and the 1-form symmetries. We argue
that an anomaly implies that certain sectors, characterized by the eigenvalues of
the electric symmetry generators, exhibit multi-fold degeneracies. When we couple
these theories to axions, infrared axionic noninvertible operators inherit the ultra-
violet structure of the theory, including the projective nature of the operators and
their anomalies. We discuss various examples of vector and chiral gauge theories
that showcase the versatility of our approach.

The axion is a popular candidate for dark matter [7], and is also an appealing solu-
tion to the Strong CP problem. Simultaneously, with the introduction of higher-
form symmetries, we can also describe axion physics in terms of higher-form gauge
theories. In chapter five, we study the proposition that axion-Yang-Mills systems
are characterized by a 3-form gauge theory in the deep infrared regime. This
hypothesis is rigorously examined by initially developing a systematic framework
for analyzing 3-form gauge theory coupled to an axion, specifically focusing on
its global properties. The theory consists of a BF term deformed by marginal
and irrelevant operators and describes a network of vacua separated by domain
walls converging at the junction of an axion string. It encompasses 0- and 3-form
spontaneously broken global symmetries. Utilizing this framework, in conjunction
with effective field theory techniques and ’t Hooft anomaly-matching conditions,
we argue that the 3-form gauge theory faithfully captures the infrared physics of
the axion-Yang-Mills system. The ultraviolet theory is an SU(N) Yang-Mills the-

3



1.2. Notation

ory endowed with a massless Dirac fermion coupled to a complex scalar and is
characterized by chiral and genuine Z(1)

m 1-form center symmetries, with a mixed
anomaly between them. It features two scales: the vev of the complex scalar, v, and
the strong-coupling scale, Λ, with Λ ≪ v. Below v, the fermion decouples and a
U(1)(2) 2-form winding symmetry emerge, while the 1-form symmetry is enhanced
to Z(1)

N . As we flow below Λ, matching the mixed anomaly necessitates introdu-
cing a dynamical 3-form gauge field of U(1)(2), which appears as the incarnation
of a long-range tail of the color field. The infrared theory possesses spontaneously
broken chiral and emergent 3-form global symmetries. It passes several checks,
among which: it displays the expected restructuring in the hadronic sector upon
transition between the vacua, and it is consistent under the gauging of the genuine
Z(1)
m ⊂ Z(1)

N symmetry.

1.2 Notation

A brief word on the notation used throughout this thesis: When discussing differ-
ential forms, the subscript denotes the degree. For example, j1 denotes that j is a
1-form. A gauge field is written in lower case letters, e.g. a1, is a dynamical gauge
field. A gauge field written in capital letters, e.g. B2, is a background gauge field.
We will also use ∼ above groups and operators to denote non-invertible symmetries,
for example U denotes an invertible symmetry, and Ũ represents a non-invertible
symmetry.

4



Chapter 2
Introduction to anomalies and

generalized symmetries

In rudimentary quantum field theory in 3+1 spacetime dimensions, we learn that
global continuous abelian symmetries in quantum field theory come with a Noether
current j1 and Noether charge Q =

∫
dx4 j0. For a local field ψ transforming under

this symmetry ψ+α∆ψ, where α is an infinitesimal parameter, the transformation
is generated by the charge:

∆ψ = i[Q,ψ]. (2.1)

The Noether current satisfies the Ward identity:

∂µj
µ(x)ψ(y) = δ4(x− y)∆ψ(x), (2.2)

where the above expression is understood to hold inside correlation functions [6,
8].

We can reframe a continuous, global symmetry in terms of topological operators.
Consider the operator (using differential form notation) defined on the closed 3-
dimensional sub-manifold M3 [4, 9, 10]:

Uα(M3) = e
iα
∫

M3
⋆j1
. (2.3)

The operator is labelled by the transformation parameter α. For example, if we
have a U(1) symmetry, we have α ∈ [0, 2π). This operator is topological - under
deformations of the manifold M3 → M′

3:

Uα(M3)U−1
α (M′

3) = e
iα
∫

M3−M′
3
⋆j1 = e

iα
∫

M′
4
d⋆j1 = 1, (2.4)

where ∂M′
4 = M3 − M′

3 and we obtain the last equality via the Ward identity. If
we have a local operator ϕ(x) charged under the symmetry with charge q, when
deforming Uα(M3) past the point x we obtain a phase:

Uα(M3)ϕ(x) = eiqαϕ(x)Uα(M′
3). (2.5)

5



2.1. Higher-Form Symmetries

For grouplike symmetries, the operators also obey a fusion rule when we deform
the support of one symmetry operator onto another. For example, for an abelian
symmetry the topological operators obey:

lim
M′

3→M3
Uα(M3)Uβ(M′

3) = Uα+β(M3). (2.6)

Before moving to generalized symmetries, we note that we can describe symn-
metries in terms of topological operators without needing to refer to a conserved
current. One advantage of describing symmetries this way is that they allow us to
describe discrete symmetries, which do not have a conserved current, on an equal
footing as continuous symmetries.

There are several ways to generalize this construction. We could change the di-
mensions of the topological operators, letting them act on operators of higher
dimensions. These are known as higher form symmetries. We could also modify
the fusion rules satisfied by the operators. Instead of a group like structure, where
every transformation has a corresponding inverse, we could consider operators that
do not have inverses - these are labelled as noninvertible symmetries. There could
also be non-trivial interactions between symmetries of different dimensions - the
structure of the symmetry generalizes to a higher group. In the rest of this chapter
we will introduce these new symmetries and highlight possible implications they
have for IR physics.

Much has been said about generalized symmetries; see [4, 9, 10, 11, 12, 13] for
reviews on the topic. We will not attempt to cover as much as possible - instead we
will focus on the aspects that will allow us to understand the subsequent chapters.

2.1 Higher-Form Symmetries

A higher-form symmetry is a symmetry acting on higher-dimensional operators.
A symmetry acting on a p-form operator in d + 1 spacetime dimensions can be
described by topological operators defined on submanifolds of co-dimension d− p.
For example, symmetry operators in 3+1 dimensions acting on 0-form, or local,
operators has co-dimension three, as described previously.

We could also consider symmetries acting on line operators, which are topological
operators with co-dimension p+1 - under a topological deformation Md−p → M′

d−p

U (p)(Md−p) = U (p)(M′
d−p). (2.7)

Here we use the superscript (p) to denote that U (p)(Md−p) is p-form symmetry
operator. For simplicity all symmetries discussed in this section are assumed to
be invertible - for every symmetry operator U (p)(Md−p) there is a corresponding
operator U−1(p)(Md−p) such that

lim
M′

d−p→Md−p
U (p)(Md−p)U−1(p)(M′

d−p) = 1, (2.8)
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2.1. Higher-Form Symmetries

where 1 denotes the identity operator.

In the presence of a p-form operator O(p)(Σp) charged under this symmetry, when
deforming Md−p past Σp to M′

d−p, the operator picks up a phase:

U (p)(Md−p)O(p)(Σp) = eiθO(p)(Σp)U (p)(Md−p). (2.9)

For operators with dimension less than p, we can deform the symmetry past the
operator without any intersection. In general, p-form symmetries can only act
on operators of dimension greater than or equal to p [9]. We also observe that
two topological operators with co-dimension greater than one can be topologically
deformed past each other without crossing. The symmetry group for a higher-form
symmetry must therefore be abelian. They satisfy the fusion rule

lim
M′

3→M3
U (p)
α (M3)U (p)

β (M′
3) = Uα+β(M3), (2.10)

where α, β are transformation parameters for an abelian symmetry.

Continuous higher-form symmetries are also equipped with conserved currents. A
continuous p-form symmetry has a p + 1-form current jp+1, which satisfies the
conservation law

d ⋆ jp+1 = 0. (2.11)

We can construct the corresponding symmetry operators in a similar manner to
0-form symmetries. We can integrate the hodge dual of the current over a co-
dimension p+ 1 manifold:

U (p+1)
α (Md−p) = e

iα
∫

Md−p
⋆jp+1

. (2.12)

Let us consider some concrete examples of higher-form symmetries - the following
examples are all in 3+1 spacetime dimensions:

In pure Maxwell theory, the Lagrangian is

LMaxwell = − 1
2e2 f2 ∧ ⋆f2, (2.13)

where f2 is the 2-form U(1) field strength and e is the Maxwell coupling. The
equation of motion is

d ⋆ f2 = 0. (2.14)

The field strength also satisfies the Bianchi identity

df2 = 0. (2.15)

⋆f2 and f2 satisfy current conservation equations - we can interpret them as con-
served currents, with the corresponding symmetry operators

U (1)
e,α(M2) = e

iα
∫

M2
⋆f2
, (2.16)

U
(1)
m,β(M2) = e

iβ
∫

M2
f2
, (2.17)
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2.1. Higher-Form Symmetries

where α, β ∈ [0, 2π). These are U(1)(1)
e electric and U(1)(1)

m magnetic symmetries,
acting on Wilson lines and ’t Hooft lines respectively. Given a Wilson line Wq[C]
, which we can interpret as a probe particle of infinite mass with electric charge q,
the electric 1-form symmetry operator U (1)

e,α(M2) defined on a manifold M2 acts
on the Wilson line via:

U (1)
e,α(M2)Wq[C] = eiqαLink(M2,C)Wq[C]U (1)

e,α(M′
2), (2.18)

where Link(M2, C) is the linking number of M2 and C, and M′
2 is a manifold with

no non-trivial linking with the curve C. U(1)(1)
m acts similarly on ’t Hooft lines.

If we couple the theory to an electrically charged particle ϕ with charge k, a Wilson
line with charge k can terminate on ϕ as a gauge-invariant configuration. The action
of the symmetry operator must be invariant under any topological deformation, so
the action of the 1-form symmetry U

(1)
α on the Wilson line must be trivial (see

figure 2.1).

Figure 2.1: The action of the symmetry operator acting on the line must be the
same as the action of the symmetry operator acting on the trivial line as it must
be invariant under topological deformations.

In particular, the phase obtained by the Wilson line under the action of the 1-form
symmetry U (1)

e,α must be trivial:

e2πikα = 1. (2.19)

This restricts α ∈ 1
kZ. We see that in the presence of electrically charged matter,

the electric 1-form symmetry breaks from U(1)(1)
e to Z(1)

k .
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2.1.1. 1-form symmetry and Confinement

Pure Yang-Mills theory with gauge group SU(N) has a Z(1)
N electric symmetry.

Given a Wilson line characterized by the irreducible representation R of SU(N),

WR[C] = tr RPe2πi
∫
C
ac , (2.20)

the Z(1)
N symmetry operator U (1)

k=1(M2) acts on WR[C] via

U
(1)
k=1(M2)WR[C] = e

2πi
N
nRLink(M2,C)WR[C]U (1)

k=1(M′
2), (2.21)

where nR is the n-ality of the representation R, given by the number of boxes in
the Young tableau representation of R.

If the SU(N) gauge theory is coupled to matter ψ transforming in the representa-
tion R′, Wilson lines in the appropriate representation can end on ψ. Similar to the
case of U(1) gauge theory, the action of the 1-form symmetry U (1)

k on the Wilson
line attached to ψ must be trivial as we can topologically deform the operator past
the Wilson line without crossing. In other words, the phase obtained by the Wilson
line must be trivial:

e2πinR′k/N = 1. (2.22)

This restricts k to be a multiple of N/ gcd(N,nR′). Therefore the 1-form symmetry
is broken to Z(1)

gcd(N,nR′ ).

2.1.1 1-form symmetry and Confinement

Given a symmetry, we would like to apply the Landau prescription to classify
phases of a gauge theory. In gauge theories, the order parameter for confinement
is the large loop limit of the Wilson loop expectation value limC→∞ < W [C] > ∗

If the Wilson loop obeys area law, i.e.

lim
C→∞

< W [C] >∼ e−µA[C], (2.23)

for some constant µ, the theory confines. Otherwise the theory deconfines. If the
theory has a one-form electric symmetry, the charged operator would be the Wilson
line. The perimeter law, in other words deconfinement, indicates spontaneously
broken one-form symmetry.

For example, pure Maxwell theory is understood to be in the Coulomb phase. Static
electric probe charges with separation R obey the Coulomb law, with potential
V (r) ∼ 1

R . The theory is therefore deconfining, as it is energetically favourable to
increase the separation of the charges. To reframe this in the language of 1-form
symmetries, consider the rectangular Wilson loop for two static charges evolving
in time. It has expectation value:

< W [C] >∼ e−V (R)T = e−T
R . (2.24)

∗The notation C → ∞ denotes taking the perimeter of the loop to infinity.
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2.1.2. Coupling Gauge Backgrounds for Higher-Form Symmetries

As we take R, T → ∞, < W [C] > tends to a non-zero constant, so the 1-form
U(1)(1)

e symmetry is spontaneously broken. As the spontaneously broken symmetry
is continuous, the IR spectrum has a Goldstone mode: the photon [4].

2.1.2 Coupling Gauge Backgrounds for Higher-Form Symmetries

As mentioned in the introduction, one way global symmetries can help determine
the IR spectrum of a theory is requiring any ’t Hooft anomalies to be matched.
We will discuss this in a later section. First we must introduce background gauge
fields for higher-form symmetries. For a continuous p-form symmetry (which must
have symmetry group U(1) - recall that higher-form symmetries must be abelian),
we can introduce a U(1)-valued p + 1-form gauge field Bp+1 with field strength
Fp+2 = dBp+1 by coupling it to the p+ 1-form current in the action:

⋆Jp+1 ∧Bp+1. (2.25)

This term is invariant under a background gauge transformation

Bp+1 → Bp+1 + dΛp, (2.26)

as the current is conserved. We can gauge the p-form symmetry by summing over
all such gauge configurations in the path integral. In chapter 5, we will consider
an example of a 3-form U(1) gauge theory.

Turning on a background gauge field is less straightforward for a discrete p-form
symmetry. Let us focus on the case of the Z(1)

N 1-form symmetry in SU(N) gauge
theory [14, 15, 16, 17]. In order to implement discrete background gauge trans-
formations, we will first promote the SU(N) gauge theory to a U(N) gauge theory.
We can do this by adding a 1-form U(1) background gauge field B1 to the SU(N)
gauge field ac1:

âc1 = ac1 + 1
N
B1, (2.27)

with field strength
f̂ c2 = dâc1 + âc1 ∧ âc1. (2.28)

We now have an extra background gauge transformation - the field strength is
not invariant under a U(1) 1-form valued-transformation B1 → B1 + NΛ1. It
transforms as f̂ c2 → f̂ c2 + dΛ1. To remedy this, we introduce an extra U(1) 2-form
background gauge field B2 which is constrained by the relation dB1 = NB2, killing
the extra degree of freedom. Then the combination f c2 − B2 is invariant under
U(1) background gauge transformations. We thus obtain an SU(N) gauge theory
coupled to Z(1)

N background gauge fields:

SSU(N)/ZN =
∫

tr (f c2 −B2) ∧ ⋆(f c2 −B2) + θQ, (2.29)
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2.1.3. Z(1)
N 1-form background on T4: ’t Hooft Fluxes

where B2 is the gauge field for the Z(1)
N symmetry, and we included the theta term

with the topological charge Q, given by

Q = 1
8π2

∫
tr (f̂ c2 −B2) ∧ (f̂ c2 −B2) = 1

8π2

∫
tr f̂ c2 ∧ f̂ c2 + N

8π2

∫
B2 ∧B2. (2.30)

The relation dB1 = NB2 tells us that the Z(1)
N background gauge field is flat:

dB2 = 0, (2.31)

When integrating over a closed manifold M2, we also have the quantisation con-
dition ∫

M2
B2 ∈ 2π

N
Z. (2.32)

It follows that the topological charge of SU(N)/ZN background are also fractional,
i.e. Q ∈ 2π

N Z. Coupling a Z(1)
N gauge background leads to the interpretation that we

are coupling to a gauge background with fractional topological charge. Gauging the
Z(1)
N symmetry amounts to summing over these fractionally charged backgrounds

in the path integral.

2.1.3 Z(1)
N 1-form background on T4: ’t Hooft Fluxes

In the absence of matter, in order to define an SU(N) gauge background on a
manifold M4 divided into patches Ui, the transition functions gij on the intersection
Ui ∩ Uj must satisfy the cocycle condition

gijgjkgki = 1. (2.33)

A gauge background for SU(N)/ZN must satisfy relaxed cocycle conditions

gijgjkgki = e
2πi
N
k, k ∈ Z. (2.34)

In other words, in order to construct 1-form symmetry backgrounds we must con-
struct gauge backgrounds that satisfy the relaxed cocycle conditions.

We are able to construct these backgrounds explicitly on the 4-torus T4. For
simplicity, suppose all cycles on the torus have length L. One cycle of the torus, xi,
can be covered by one coordinate patch [0, L], and the transition function at xi = L

is equivalent to defining a boundary condition. When the boundary condition is
twisted, i.e. the transition function is valued in ZN , we obtain background gauge
configurations for 1-form symmetries, known as ’t Hooft fluxes [18, 19, 20].

In general, the SU(N) gauge fields acµ are taken to obey the boundary conditions

acν(x+ Lµêµ) = Ωµ ◦ acν(x) ≡ Ωµ(x)acν(x)Ω−1
µ (x) − iΩµ(x)∂νΩ−1

µ (x) , (2.35)

upon traversing T4 in each direction. The transition functions Ωµ are N × N

unitary matrices in the defining representation of SU(N), and êν are unit vectors
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2.1.3. Z(1)
N 1-form background on T4: ’t Hooft Fluxes

in the xν direction. The subscript µ in Ωµ means that the function Ωµ does not
depend on the coordinate xµ. Then, the compatibility of (2.35) at the corners of
the xµ − xν plane of T4 gives the cocycle condition

Ωµ(x+ êνLν) Ων(x) = ei
2πnµν
N Ων(x+ êµLµ) Ωµ(x) . (2.36)

The exponent ei
2πnµν
N , with anti-symmetric integers nµν = −nνµ, is the ZN center

of SU(N). The freedom to twist by elements of the center stems from the fact that
both the transition function and its inverse appear in (2.35). This is also equivalent
to the fact that the Wilson lines in pure SU(N) gauge theory are charged under the
electric Z(1)

N 1-form center symmetry. The fundamental (defining representation)
Wilson lines wind around the 4 cycles and are given by

Wµ = tr□
[
Pe

i
∫ xµ=Lµ
xµ=0 acµΩµ

]
, (2.37)

where □ denotes the defining representation of SU(N) and the insertion of the
transition function Ωµ ensures the gauge invariance of the lines.

It will be useful for the rest of this thesis to have an explicit construction of ’t
Hooft fluxes. Consider a particular gauge configuration

ac1 = 2πm1
L2 Hc · νcx2, ac2 = 0, ac3 = 2πm2

L2 Hc · νcx4, ac4 = 0, (2.38)

where m1,m2 ∈ ZN , νc is a weight of the fundamental representation ∗ of SU(N),
and Hc = (H1, . . . ,HN−1) are the generators of its Cartan subalgebra. Note that
the gauge fields as written are not single-valued on the torus. However ac1(x2 = L)
and ac1(x2 = 0) are related by gauge transformations Ωµ

†:

ac1(x2 = L) = ac1(x2 = 0)+ 2πm1
L

Hc ·νc = Ω†
1(x1)(ac1(x2 = 0)+ i∂1)Ω1(x1), (2.39)

where we use the transition functions

Ω1(x1) = e
2πim1
L

Hc·νcx1 . (2.40)

Ω1(x1) is not periodic in x1. At x1 = L, the gauge transformation transforms as ‡

Ω1(L) = e2πim1Hc·νcΩ1(0) = e−2πim1
1
N Ω1(0), (2.41)

where we use the normalization νc,A · νc,B = δAB − 1
N . The transition function at

x1 = L is given by e−2πim1
1
N . Similarly the transition function at x3 = L is also

given by e−2πim1
1
N . It is clear that they satisfy the relaxed cocycle conditions 2.34.

∗Also referred to as the defining representation in this thesis.
†We use the notation Ωµ instead of gij for gauge transformations on the torus T4.
‡See Appendix A for further details and explicit computations for the gauge group SU(2) and

SU(3).
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2.2. Introduction to Anomalies

The field strength of the ’t Hooft flux is:

f c12 = −f c21 = −2πm1
L2 Hc · νc, f c34 = −f c43 = −2πm2

L2 Hc · νc, (2.42)

The topological charge is therefore given by:

Q = 1
8π2

∫
T4

tr f c ∧ f c = m1m2

(
1 − 1

N

)
. (2.43)

We see that the ’t Hooft flux does indeed have fractional topological charge.

In chapter three we will study ’t Hooft anomalies in the presence of generalized ’t
Hooft fluxes, arising from the presence of a discrete quotient in the global symmetry
group. In chapter four we will study a non-invertible symmetry in SU(N)/ZN
gauge theory by implementing ’t Hooft twists in the Hamiltonian formalism.

2.2 Introduction to Anomalies

An anomaly occurs when a symmetry of the classical action fails to be a symmetry
in the quantum theory. We say such a symmetry is anomalous. How does an
anomaly arise in quantum field theory? When quantizing the classical action we
place it inside the path integral:

Z =
∫

Dψ eS[ψ]. (2.44)

Under a classical symmetry ψ → ψ′, the path integral transforms as:

Z =
∫

Dψ eS[ψ] →
∫

Dψ′ eS[ψ′] =
∫

Dψ′ eS[ψ]. (2.45)

So the obstruction for the transformation to be a symmetry in the quantum theory
must arise from the measure of our matter fields. In fact, as we will see later, for
a transformation ψ′ = eiϵ(x)tψ, eiϵ(x)t ∈ G, where t is the symmetry generator with
parameter ϵ(x), the anomaly arises as a phase in the path integral:

Dψ′ = Dψei
∫
d4xϵ(x)Aα(x). (2.46)

where Aα(x) is the anomaly. Let us compute the anomaly explicitly for the chiral
symmetry of the Dirac fermion coupled to a U(1) gauge theory, known as the ABJ
(Adler-Bell-Jackiw) anomaly. We will follow the derivation in [21].

2.2.1 The ABJ anomaly

An anomaly arises from the matter measure. To define the matter measure, we
need to first define the Lagrangian for our matter fields. For the Dirac fermion ψ,
i.e.

Lmatter
[
ψ,ψ,Dµψ,Dµψ

]
= ψ

(
/D +m

)
ψ. (2.47)
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2.2.1. The ABJ anomaly

Let ψn be a basis of eigenfunctions of the operator /D +m, i.e.(
/D +m

)
ψn = λnψn. (2.48)

We can expand any field ϕ in this basis of eigenfunctions:

ψ =
∑
n

cnψn. (2.49)

The matter measure is then defined as:

Dψ =
∏
n

cn. (2.50)

We want to see how the matter measure transforms under the chiral symmetry.
Under a general local transformation

ψ → ψ̃ = U(x)ψ, (2.51)

the Dirac conjugate transforms as:

ψ = ψ†iγ0 → (U(x)ψ)† iγ0 = ψ†iγ0
(
iγ0U(x)†iγ0

)
= ψ U(x) = ψ̃. (2.52)

We can write the local transformation as

ψ̃(x) =
∫
d4y U(x, y)ψ(y), (2.53)

ψ̃(x) =
∫
d4y U(x, y)ψ(y), (2.54)

where the operators U and U are given by:

U(x, y) = ⟨x| U |y⟩ = U(x)δ(4)(x− y), (2.55)

U(x, y) = ⟨x| U |y⟩ = U(x)δ(4)(x− y). (2.56)

Dirac fermions anticommute, so the fermion measure transforms as:

Dψ̃ = (Det U)−1 Dψ, Dψ̃ =
(
Det U

)−1
Dψ, (2.57)

=⇒ DψDψ → Dψ̃Dψ̃ =
(
Det U Det U

)−1
DψDψ (2.58)

For a symmetry transformation to be non-anomalous, we require Det UDet U =
|Det U| = 1, or in other words we require the transformation to be unitary.

The chiral transformation acts on the fermion as ∗:

U(x) = eiϵ(x)tγ5 , [t, γµ] = 0, (2.59)
∗We pick the convention γ5 = iγ0γ1γ2γ3
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2.2.2. The Fujikawa Method

where t is the generator for the U(1) symmetry. Note that the requirement [t, γµ] =
0 tells us that the transformation is a symmetry of the matter Lagrangian. Under
a chiral transformation, the Dirac conjugate matrix U transforms as:

U(x) = iγ0U †(x)iγ0 = iγ0e−iϵ(x)tγ5iγ0 = eiϵ(x)tγ5 = U(x), (2.60)

where we used (∑n (γ5)n) iγ0 = iγ0∑
n (−γ5)n. Therefore U = U and:

Det U Det U = e2
∫
d4xtr (iϵ(x)tγ5)Λ4

̸= 1, (2.61)

where the trace is taken over Dirac indices. So a chiral transformation leads to a
non-trivial transformation of the fermion measure.

2.2.2 The Fujikawa Method

Given that the fermion measure transforms non-trivially under a chiral transform-
ation, we can write(

Det U Det U
)−1

= (Det U)−2 = ei
∫
d4xϵ(x)A(x), (2.62)

where A(x) = −2Λ4tr (tγ5) is the anomaly. However we need to be careful, as the
Dirac trace of γ5 is zero, and taking the limit of Λ → ∞ gives

A(x) = −2(0 × ∞). (2.63)

To obtained a well-defined expression for the anomaly, we will have to regularize
it. What follows is a calculation for the abelian anomaly from the transformation
of the path integral, known as the Fujikawa method.

Let us introduce a cutoff function, g, satisfying the properties g(0) = 1, g(∞) =
0, sg′(s) = 0 at s = 0,∞ ∗. The regulated exponent is:

Tr log U
∣∣∣
reg

= iTr

g
( i /D

Λ

)2
 ϵ(x)tγ5


= i

∫
d4xtr ⟨x| g

( i /D
Λ

)2
 ϵ(x̂)tγ5 |x⟩

= i

∫
d4x ϵ(x)

∫
d4p ⟨x|p⟩ ⟨p| tr g

( i /D
Λ

)2
 tγ5 |x⟩

= i

∫
d4x ϵ(x)

∫
d4p

eip·x

(2π)2 tr g

( i /D
Λ

)2
 tγ5

e−ip·x

(2π)2 ,

∗An example of such a cutoff function would be g(s) = e−s.
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2.2.2. The Fujikawa Method

where we used ⟨x|p⟩ = eip·x

(2π)2 . To proceed, it is helpful to compute:

(
i /D
)2 = −γµγνDµDν = −

(1
2 {γµ, γν} + 1

2 [γµ, γν ]
)
DµDν

= −1
22ηµνDµDν − γµνDµDν γµν = 1

2 [γµ, γν ]

= −DµDν + i

2γ
µνfµν ,

where f is the U(1) field strength. We therefore have:

=⇒ g

( i /D
Λ

)2
 e−ip·x = e−ip·xg

(
−(Dµ − ipµ)(Dµ − ipµ) + i

2γ
µνfµν

Λ2

)
. (2.64)

We thus have:

Tr log U
∣∣∣
reg

= i

∫
d4x ϵ(x)

∫
d4p

(2π)4 tr g
(

−(Dµ − ipµ)(Dµ − ipµ) + i
2γ

µνfµν

Λ2

)
tγ5

= i

∫
d4x ϵ(x)

∫
d4q

(2π)4 Λ4tr g
(

−(Dµ − iΛqµ)(Dµ − iΛqµ) + i
2γ

µνfµν

Λ2

)
tγ5

= i

∫
d4x ϵ(x)

∫
d4q

(2π)4 Λ4tr g
(
q2 + 2iq ·D

Λ2 − D2

Λ2 + i

2Λ2γ
µνfµν

)
tγ5,

where to go from the first line to the second line we substituted pµ = Λqµ. We wish
to take the limit Λ → ∞, so we Taylor expand about q2. Taking the Dirac trace
of gamma matrices, we discover that only quadratic or higher powers of i

2Λ2γ
µνfµν

are non-vanishing, as we have the gamma matrix identity

tr γµ1 . . . γµnγ5 ̸= 0 iff n ≥ 4. (2.65)

On the other hand, only the quadratic term is non-vanishing when we take the
limit Λ → ∞ as there is a factor of Λ4 in the integrand. Therefore as we take
Λ → ∞, we extract only the quadratic term and obtain:

Tr log U
∣∣∣
reg

= i

∫
d4x ϵ(x)

∫
d4q

(2π)4
1
2g

′′
(
q2
)

tr
(
i

2γ
µνfµν

)
tγ5, (2.66)

tr
(
i

2γ
µνfµν

)2
tγ5 = −1

4(fµνfρσt)tr (γµνγρσγ5)

= −1
4(fµνfρσt)tr

(1
4 [γµ, γν ] [γρ, γσ] γ5

)
= −1

4(fµνfρσt)4iϵµνρσ

= −iϵµνρσfµνfρσt,
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2.2.3. The Anomalous Ward Identity

where we used tr γµγνγργσγ5 = 4iϵµνρσ. We also have:∫
d4q

(2π)4
1
2g

′′
(
q2
)

= i

(2π)4

∫
d4qE

1
2g

′′
(
q2
E

)
by Wick rotation

= i

16π4

∫
dqE q

3
E vol

(
S3
) 1

2g
′′
(
q2
E

)
= i

16π2

∫
dqE q

3
E g

′′
(
q2
E

)
as vol

(
S3
)

= 2π2

= i

16π2

∫
du

1
2ug

′′(u) u = q2
E

= i

32π2

([
ug′(u)

]∞
0 −

∫ ∞

0
g′(u)du

)
= i

32π2 ,

where in the first line we Wick rotated to Euclidean coordinates in order to use
spherical coordinates in R4, and we computed the final integral using the properties
sg′(s) = 0 at s = 0,∞, and g(0) = 1, g(∞) = 0. Combining both expressions, we
obtain:

Tr log U
∣∣∣
reg

= i

∫
d4x ϵ(x) 1

32π2 ϵ
µνρσtr fµν(x)fρσ(x)t. (2.67)

Comparing with out previous expressions,

ei
∫
d4xϵ(x)A(x) = (Det U)−2 = e−2Tr log U . (2.68)

The ABJ, or axial, anomaly is therefore given by:

A(x) = − 1
16π2 ϵ

µνρσfµν(x)fρσ(x)t. (2.69)

If the fermion transforms with charge q under the chiral symmetry, the anomaly
obtains the coefficient q.

The Fujikawa method readily generalizes to non-abelian gauge theories, and we
omit the derivation for brevity. For Nf Dirac fermions transforming in the repres-
entation R under SU(N) gauge transformation, the ABJ anomaly is given by a
similar expression:

A(x) = −NfTR
16π2 ϵ

µνρσtr f cµν(x)f cρσ(x)t, (2.70)

where now the trace is taken over Lie algebra indices. In differential form notation,
we have

A = −NfTR
8π2 f c2 ∧ f c2 . (2.71)

2.2.3 The Anomalous Ward Identity

Classically, Noether’s theorem tells us that a global symmetry gives rise to a con-
served Noether current jµ, i.e. ∂µjµ = 0 if the equations of motion are satisfied.
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2.2.4. ’t Hooft Anomalies

If the symmetry is non-anomalous, we would also have Ward identities, where the
current conservation equation is understood to hold inside correlation functions:

⟨∂µjµ⟩ = 0. (2.72)

In the presence of an anomaly, the Ward identity does not hold and the non-
conservation of the current is given by the anomaly itself. The global axial sym-
metry of the massless fermion gives rise to a Noether current

jµA = iψγµγ5ψ, (2.73)

which is conserved on the classical level. But the presence of the abelian anomaly
means that the Ward identities are no longer trivially true. Let us try to compute
⟨∂µjµA⟩:∫

DψDψeiSmatter[ψ,ψ,A] =
∫

Dψ′Dψ′
eiSmatter[ψ′,ψ

′
,A]

=
∫

DψDei
∫
ϵ(x)a(x)d4xeiSmatter[ψ,ψ,A]+

∫
∂µj

µ
A(x)ϵ(x)d4x

≈
∫

DψDψeiSmatter

(
1 + i

∫
d4x ϵ(x) (A(x) + ∂µj

µ
A(x))

)
.

So instead of the usual Ward identity, we have:

∂µ ⟨jµA⟩ = −A(x), (2.74)

where the correlation function is understood to be taken with a fixed background
gauge field.

2.2.4 ’t Hooft Anomalies

From our previous discussion, we can interpret anomalies as arising from trans-
formations in the presence of gauge backgrounds. Given a non-anomalous global
symmetry Gglobal, it is possible that coupling backgrounds for Gglobal can give rise
to new anomalies. This is known as a ’t Hooft anomaly. The presence of a ’t Hooft
anomaly can give us some information about the IR phase of the theory via ’t Hooft
anomaly matching.

’t Hooft’s original argument is as follows. Suppose we have a theory equipped
with a global symmetry Gglobal in the UV, which would have a gauge anomaly if
we attempt to gauge it. This is known as a ’t Hooft anomaly. If we attempt to
gauge the global symmetry, the theory will be inconsistent due to the anomaly.
To remedy this we can introduce "spectator" massless Weyl fermions that couple
only to the gauge field of Gglobal such that net ’t Hooft anomaly vanishes. We
can choose to have the confining scale of the Gglobal gauge field to be smaller than
every other energy scale of the original theory such that the original IR spectrum
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2.3. Non-Invertible Symmetries

will not be affected by introducing the Gglobal gauge field. Since anomalies are
invariant under renormalization group (RG) flow, the net Gglobal anomaly in the
IR remains zero, but the spectator fermions still contribute a non-vanishing ’t Hooft
anomaly. Therefore the spectrum of the original theory must contain states that
cancel the anomaly arising from the spectator fermions. For example, Gglobal could
be spontaneously broken leading to massless Goldstone bosons. Or the theory could
confine, preserving Gglobal and containing massless composite fermions in the IR.
In essence, a theory with a ’t Hooft anomaly cannot be trivially gapped in the IR.

In our discussion of higher-form symmetries, we have constructed ’t Hooft fluxes
for 1-form symmetries on the 4-torus. As there are new gauge backgrounds thanks
to the presence of higher-form symmetries, we might obtain new anomalies. As
an example, consider an SU(N) gauge theory with a single Dirac fermion ψ trans-
forming in the representation R of the gauge group. Thanks to the ABJ anomaly,
the path integral transforms by a phase under an axial U(1)A rotation:

Z[ψ] −→ Z[ψ] exp
(2TR

8π2

∫
f c2 ∧ f c2

)
. (2.75)

For the path integral to remain invariant, the axial U(1)A symmetry is broken to
Z2TR , where TR is the Dynkin index of the representation R, normalized such that
in the fundamental representation, trT aT b = 1. As explained in the discussion
around equation 2.22, in the presence of the fermion ψ the 1-form symmetry is
Zp, p = gcd(N,nR). When we gauge this 1-form symmetry, the theory permits
gauge backgrounds with topological charge Q ∈ 1

pZ. Since the ABJ anomaly
depends on the quantization of the topological charge of gauge configurations,
there is a mixed anomaly between the chiral symmetry and the 1-form symmetry.
In chapter four we will leverage this mixed anomaly to define a non-invertible
symmetry.

2.3 Non-Invertible Symmetries

It is possible that given a symmetry U (p)(Md−p), there is no symmetry operator
U−1(p)(Md−p) which satisfies

U (p)(Md−p)U−1(p)(Md−p) = 1. (2.76)

We say that U (p)(Md−p) is a non-invertible symmetry.

A relevant example for our this thesis is the non-invertible U(1)A axial symmetry
in QED [22, 23, 24]. For concreteness, consider QED with a single Dirac fermion
in Euclidean spacetime. The ABJ anomaly in this case is given by:

d ⋆ jA = 2
8π2 f2 ∧ f2. (2.77)
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2.3. Non-Invertible Symmetries

Thanks to the anomaly, the naive symmetry operator for the axial symmetry

Uα(M3) = exp
(
iα

∫
M3

⋆jA

)
(2.78)

is not topological as the current is not conserved. However we can define the new
current

ĵA = jA − 1
4π2a ∧ da, (2.79)

which is conserved thanks to the ABJ anomaly. One might therefore be tempted
to write the topological operator

exp
(
iα

∫
M3

⋆jA − 2
8π2a ∧ da

)
. (2.80)

For manifolds with non-trivial H2(M3,Z), this operator is not invariant under
large gauge transformations for arbitrary α ∈ [0, π) ∗ as the Chern-Simons current,
a ∧ da, is improperly quantized. On a spin manifold, one would require the level
of the Chern-Simons current to be an integer, i.e. α ∈ 2πZ. There would be no
non-trivial symmetries as a consequence.

If we take α = π
N , we would nonetheless obtain an interesting symmetry operator.

The non-gauge invariant term is

− i

4πN

∫
M3

a ∧ da. (2.81)

There is a gauge invariant version of this term - it is the action for the fractional
quantum hall state in 2+1D with filling fraction 1

N [25, 22, 23, 10]∫
M3

iN

4π b ∧ db+ i

2πb ∧ da, (2.82)

where b is an auxiliary dynamical U(1) gauge field living on M3. We could try
to integrate out b to obtain the term 2.81, but the field b = −a/N would be an
improperly quantized U(1) gauge field. Using this action we can write down a
gauge-invariant, topological operator:

Ũα= π
N

(M3) =
∫

[Db] exp
(
i

∫
M3

π

N
⋆ jA + N

4πb ∧ db+ 1
2πb ∧ da

)
. (2.83)

In general we can define a symmetry operator for any α = pπ/N, gcd(p,N) = 1:

Ũα= pπ
N

(M3) =
∫

[Db] exp
(
ip

∫
M3

π

N
⋆ jA + N

4πb ∧ db+ 1
2πb ∧ da

)
. (2.84)

This operator acts on local operators via a chiral rotation - the fermion Ψ(x) located
inside a contractible M3 picks up a phase when we deform the symmetry operator
to a point:

Ũα= pπ
N

(M3)Ψ(x) = eiαγ5Ψ(x). (2.85)
∗In this normalization a ∈ [0, π) as α = π acts as the fermion number transformation, Ψ →

(−1)Ψ, which is redundant with the U(1) gauge symmetry.
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2.4. Higher Group Symmetries

To see its non-invertible nature, we can look at its action on ’t Hooft lines. When
acting on a ’t Hooft line, the ’t Hooft line becomes attached to a topological surface
operator exp

(
ip
N

∫
F
)

stretching from the ’t Hooft line to the symmetry operator.
We can also consider the condition arising from integrating out b on the manifold
M3, b = −a/N . b is only a properly quantized U(1) gauge field if a has flux N . In
other words, Ũα= pπ

N
(M3) projects out all gauge configurations in the path integral

except for those with topological charge NZ.

In chapter four, we will study an analogous non-invertible symmetry in non-abelian
gauge theories. We will see that the chiral symmetry in SU(N) gauge theory
becomes non-invertible after gauging a Zq subgroup of the ZN center, and has
a similar effect of projecting out certain ’t Hooft flux backgrounds in the path
integral. We will investigate the associated anomalies for this symmetry and argue
that the ground state spectrum have multi-fold degeneracies.

2.4 Higher Group Symmetries

Consider a theory with a p-form and q-form symmetry, p > q, coupled to back-
ground gauge fields with Ap+1 and Aq+1 respectively. If the background field Ap+1
transforms non-trivially under a background gauge transformation for the q-form
symmetry, we say the theory has a p+ 1-group symmetry.

The higher group structure of an emergent symmetry contains information about
the order in which the associated symmetries emerge along RG flows [26, 27, 10].
Suppose a p-form symmetry emerges at the energy scale Ep, and the q-form sym-
metry emerges at the scale Eq. In the scenario where the symmetries combine to
form a p + 1-group symmetry (p > q), if we couple Aq+1, Ap+1 must be present
in order for the theory to remain invariant under background q-form symmetry
transformations. Therefore the energy scales of emergence obey the inequality

Ep ≥ Eq. (2.86)

In chapter five, we will leverage higher group symmetries in Axion Yang-Mills sys-
tems to study the IR behaviour of the theory. One of the higher-group symmetries
we discuss was first introduced in [27]. Consider an axion a coupled to an SU(N)
gauge theory, with Lagrangian

L = v2

2 da ∧ ⋆da− 1
2g2 tr f c2 ∧ ⋆f c2 − K

8π2atr f c2 ∧ f c2 (2.87)

for some integer K determined by the UV completion of the theory. The two
symmetries involved in a 3-group structure is the 1-form Z(1)

N symmetry and the
2-form winding symmetry has the three-form current

j3 = ⋆da. (2.88)
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2.4. Higher Group Symmetries

The charged object of the 2-form symmetry is the axion string, which we assume
to transform with charge 1.

If we simultaneously couple the background field for the winding symmetry, C3, and
the background field for the Z(1)

N form symmetry, B(N)
2 , the Lagrangian becomes:

L = v2

2 da ∧ ⋆da− 1
2g2 tr (f c2 −B

(N)
2 ) ∧ ⋆(f c2 −B

(N)
2 )

− K

8π2atr (f c2 −B
(N)
2 ) ∧ (f c2 −B

(N)
2 ) − 1

2πda ∧ C3. (2.89)

The axion couples to the background fields in the following manner:

1
2πaG4 = 1

2πa
(
dC3 − KN

4π B
(N)
2 ∧B

(N)
2

)
. (2.90)

The field strength G4 combines both background fields. It is invariant under a Z(1)
N

background gauge transformation, B(N)
2 → B

(N)
2 +dλ(N)

1 , only if C3 also transforms
as:

C3 → C3 + KN

2π λ
(N)
1 ∧B

(N)
2 + KN

4π λ
(N)
1 ∧ dλ

(N)
1 . (2.91)

We see that the U(1)(2) and Z(1)
N symmetries combine to form a 3-group structure.
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Chapter 3
2 Index chiral gauge theories

3.1 Introduction

We begin by studying the generalized symmetries and anomalies in chiral gauge
theories. Chiral gauge theories form the fundamental framework of the Standard
Model (SM) of particle physics. Within the SM, the electroweak sector undergoes
Higgsing at weak coupling, allowing us to apply perturbative techniques. However,
without a Higgs field, gauge theories generally flow towards a strongly-coupled
regime, rendering their study considerably more challenging. A non-comprehensive
list of some of the recent papers that studied chiral gauge theories is [28, 29, 30,
31, 32, 33, 34, 35, 36, 37].

This chapter focuses on a class of SU(N) chiral gauge theories that accommodate
fermions in the 2-index symmetric and anti-symmetric representations. These the-
ories, referred to as 2-index chiral gauge theories, can be characterized by the pair
(N, k), where N represents the color and k serves as a common divisor of N + 4
and N − 4. Moreover, k is directly associated with the number of flavors in the
2-index symmetric and anti-symmetric representations. What makes these theories
particularly intriguing is the absence of a requirement to introduce fundamental
fermions to cancel the gauge anomaly. Additionally, they are non-renormalizable
for N > 44. This class encompasses a collection of 14 distinct theories, occupying
a distinct region within asymptotically-free chiral gauge theories. Consequently, a
systematic approach to studying this class is justified. It is divided into two sub-
classes: bosonic and fermion theories. The latter can accommodate gauge-invariant
massless fermions. In comparison, the gauge-invariant operators in bosonic theories
cannot have a spinor index, as the fermion number is gauged.

This study was first initiated in [35], utilizing ’t Hooft anomalies to constrain
the infrared dynamics of two theories. Namely, these are (N = 8, k = 4) and
(N = 8, k = 2) theories. One important development was the identification of the
faithful global symmetry acting on fermions. This led to turning on the most gen-
eral discrete fluxes, the color-flavor-U(1) (CFU) fluxes compatible with the theory
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3.1. Introduction

and, thus, utilize the full power of ’t Hooft anomaly matching conditions. These
anomalies are dubbed CFU anomalies. A theory with ’t Hooft anomalies cannot
be trivially gapped; the infrared (IR) spectrum must contain massless particles or
multi-vacua. In the case (N = 8, k = 4), it was found that the condensation of two
operators can saturate the anomalies.

Continuing the explorations within this comprehensive framework, our investiga-
tion exhausts all the 14 theories and introduces a few novel aspects.

1. We incorporate anomalies stemming from discrete symmetries, thereby im-
posing additional constraints on the infrared spectra. In the context of the
2-index chiral gauge theories we are examining, in addition to continuous non-
abelian flavor symmetries, an axial U(1)A symmetry comes into play. When
a bosonic operator condenses, it generally breaks the U(1)A symmetry down
to a discrete subgroup, which typically is anomalous. Consequently, we face
the challenge of identifying a set of condensates that not only matches the
anomalies associated with non-abelian symmetries but also avoids the pres-
ence of any anomalous unbroken discrete subgroups. For example, the two
candidate condensates we previously considered in the case (N = 8, k = 4),
[35], fail to match the anomaly of an unbroken discrete group. We revise
the situation in light of the new understanding and propose that the set of
anomalies can be matched by other condensates.

Interestingly, in a few cases, matching the full set of anomalies, particularly
anomalies of discrete symmetries, can be achieved only via the condensation
of multiple higher-order operators. Given the strong dynamics, such forma-
tion is not a surprise. However, anomalies explain the kinematical reasons
why such condensates have to form. ∗

2. Another significant aspect of this analysis lies in our pursuit of the minimal
scenario that satisfies the entire set of anomalies and yields the smallest
number of massless particles in the infrared spectrum. Such a scenario holds
particular appeal as it minimizes the free energy associated with the theory.

3. We adhered to a systematic algorithm during our quest to identify composite
massless fermions capable of satisfying the anomalies within the fermionic
class. Regrettably, we were unable to find such composites. Notably, in the
case of (N = 6, k = 2), we demonstrate that these composites cannot solely
match the CFU anomaly. Consequently, we are left with two plausible ex-
planations: either these composites do not exist altogether, or the formation
of condensates alongside the composites is necessary to match the anomaly.
However, the latter scenario is rather contrived in that it requires the form-
ation of special condensates (that do not alter the anomalies matched by

∗The CFU anomalies also allow us to eliminate the possibility of anomalous gapped sectors.
We discuss this possibility briefly in section 3.3.
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3.2. Theory: symmetry structure and anomalies

the composites) in addition to the composite fermions, prompting us to lean
toward the likelihood that composites cannot form in this case.

4. To complete our study, we also examined the possibility that a theory flows
to a conformal fixed point in the IR. Generally speaking, a theory can form a
strongly-coupled IR fixed point, which is beyond the scope of any perturbative
analysis. Such a fixed point automatically satisfies the full set of anomalies,
albeit it remains an open question how this can be seen. Nevertheless, by
scrutinizing the higher-order β-function, we successfully identified several in-
stances where the analysis of the β-function offers indications suggestive of a
perturbative nature inherent to a fixed point.

This chapter is organized as follows. In Section 3.2, we review the global symmet-
ries and anomalies of the 2-index chiral theories. This includes the anomalies of
continuous symmetries, the CFU anomalies, as well as anomalies of discrete sym-
metries. In Section 3.3, we revise the matching of the CFU anomalies in the IR
and introduce the novelty of matching the discrete subgroups of the axial U(1)A
that can be left unbroken by a condensate. Sections 3.4 and 3.5 are devoted to
applying these ideas to both the fermionic and bosonic field theories, respectively.
We summarize our findings in Section 3.6, and in particular, the reader is referred
to Table 3.10, which, for all theories, it gives the global symmetries, the proposed
IR condensates that yield the smallest number of Goldstones, and the fate of the
symmetries in the IR.

3.2 Theory: symmetry structure and anomalies

We consider SU(N) gauge theory with nψ flavors of left-handed Weyl fermions
ψ transforming in the 2-index symmetric representation along with nχ flavors of
left-handed Weyl fermions χ transforming in the complex conjugate 2-index anti-
symmetric representation:

L = − 1
2g2 tr[f c ∧ ⋆f c] − iψ̄σ̄µDµψ − iχ̄σ̄µDµχ , (3.1)

where Dµ ≡ ∂µ − iacµ is the covariant derivative, ac is the color gauge field, and f c
is its field strength. In this work, we use the lower-case letters, ac and f c = dac,
to denote the dynamical (color) 1-form gauge field and its field strength, while we
use upper-case letters, A and F = dA, for background fields. To keep track of
the color indices, we choose ψ(a1a2) to carry two down indices, while χ[a1a2...aN−2]
carries N − 2 down indices. A round (square) bracket indicates symmetrizing
(anti-symmetrizing) over the indices. The cubic anomaly coefficients of the 2-index
symmetric and the conjugate of the 2-index anti-symmetric representations are
Aψ = N + 4, Aχ = −(N − 4), respectively. Cancellation of the gauge anomaly
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3.2.1. Symmetries

N 5 6 8 10 12 16 20 28 36 44
k 1 1, 2 2, 4 2 4, 8 4 4, 8 8 8 8 .

Table 3.1: A list of the 2-index chiral gauge theories.

demands that nψ and nχ are fixed as

nψ = N − 4
k

, nχ = N + 4
k

, (3.2)

where k is a common divisor of N −4 and N +4. The theory is asymptotically free
provided that 11N − 2(N2−8)

k > 0. This leaves us with the finite set of theories in
Table 3.1. These theories do not possess a large-N limit, as they become infrared-
free for N > 44. Also, except for N = 5, 6, 10, the other allowed colors are multiples
of 4. These are bosonic theories because all their gauge invariant operators cannot
carry a spinor index. In other words, the (−1)F fermion number in bosonic theories
is gauged, and thus, they cannot have gauge-singlet fermionic operators.

One important aspect of this work is to systematically analyze these theories,
paying particular attention to the faithful global symmetries, and exhausting the
class of generalized ’t Hooft anomalies that enable us to constrain the infrared
phases.

3.2.1 Symmetries

The theory enjoys two global flavor groups SU(nψ) = SU((N−4)/k) and SU(nχ) =
SU((N + 4)/k) acting on ψ and χ, respectively. In addition, the theory is endowed
with two U(1) global classical symmetries, U(1)1 × U(1)2. Their action on ψ and
χ is chosen as

U(1)1 : ψ −→ eiα1ψ , χ −→ eiβ1χ ,

U(1)2 : ψ −→ eiα2ψ , χ −→ eiβ2χ . (3.3)

The two transformations U(1)1 and U(1)2 come naturally with two parameters.
Here, however, we introduce the 4 parameters α1,2 and β1,2 to account for the
fermions charges, in addition to the transformation parameters. The gauge sector
instantons break most of the classical U(1) symmetries. The effective action in the
instanton background acquires the terms

∆S = i (nψα1Tψ + nχβ1Tχ)
∫

M4
λu1

0
tr [f c ∧ f c]

8π2

+ i (nψα2Tψ + nχβ2Tχ)
∫

M4
λu2

0
tr [f c ∧ f c]

8π2 (3.4)

upon performing simultaneous transformations of U(1)1 × U(1)2, where

Tψ = N + 2 , Tχ = N − 2 (3.5)
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3.2.1. Symmetries

are the Dynkin indices of the representations. Here, f c is the 2-form field strength
of the color group, while λu1 and λu2 are the gauge parameters of U(1)1 and
U(2)2, respectively, i.e., Au1,2 −→ Au1,2 + dλu1,2 . We can find a combination of
the parameters α1 and β1 that kills the first term in ∆S, leaving behind a genuine
symmetry. We call this symmetry the axial U(1)A. It acts on ψ and χ with
transformation parameter α:

U(1)A : ψ −→ ei2παqψψ , χ −→ ei2παqχχ , (3.6)

and we have defined the U(1)A charges of ψ and χ as

qψ ≡ −Nχ

r
, qχ ≡ Nψ

r
, (3.7)

where r = gcd(nχTχ, nψTψ), and

Nχ ≡ nχTχ , Nψ ≡ nψTψ . (3.8)

Yet, we can find values of α2 and β2 that leave the discrete subgroup ZpψNψ+pχNχ ⊂
U(1)2 invariant in the color background, where pψ and pχ are arbitrary integers.
In Appendix B, we show that most of the ZpψNψ+pχNχ elements belong to U(1)A
and that only a subgroup Zr ⊂ ZpψNψ+pχNχ , which is pχ and pψ-independent, can
potentially act as a genuine symmetry on the fermions. Also, we can always choose
Zr to act solely on χ:

Zr : (ψ, χ) −→
(
ψ, ei

2πℓ
r χ

)
, ℓ = 0, 1, 2, ..., r − 1 . (3.9)

Yet, one must check that Zr or a subgroup of it cannot be absorbed in the centers
of the color or flavor groups, which leaves a proper subgroup of Zr as the genuine
discrete symmetry. This will be checked on a case-by-case basis. In the following,
we will use Zdχp ⊆ Zr to denote the genuine discrete chiral symmetry. For com-
pleteness, we remind the reader that the fermion number symmetry ZF2 = (−1)F
operates on ψ and χ as (ψ, χ) −→ −(ψ, χ).

Finally, we also note that when N is even, the theory is endowed with a Z(1)
2 1-form

center symmetry acting on the fundamental Wilson loops. In summary, the good
global symmetry of the theory is

Gglobal ∼ SU(nψ) × SU(nχ) × U(1)A × Zdχp × Z(1)
gcd(N,2) , (3.10)

where the tilde indicates that this is the correct group modulo a discrete group
needed to fix the faithful global symmetry. Thus, the faithful global symmetry is
a quotient group.

To determine the correct quotient group, we follow [20, 35]. Here, we keep our
treatment short as the details can be found in [35]. We put the theory on a general
compact 4-D spin manifold M4, define a principal bundle of the continuous part of
the global symmetry Gglobal on M4, and take the transition functions of Gglobal to
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act on fibers by left multiplication. Spinors are sections of the bundle, and we use
the notations ψi and χi for their values on a local patch Ui ⊂ M4. We denote the
transition functions of the color SU(N), (non-abelian) flavor, and U(1)A group as
g, f , and u, respectively, along with the proper superscript to distinguish those of
ψ and χ. On the overlap Ui ∩ Uj we have

ψi = (gψ, fψ, uψ)ij ψj , χi = (gχ, fχ, uχ)ij χj . (3.11)

The fermions are well defined on M4 provided they satisfy the cocycle condition (a
necessary consistency condition) on the triple overlap Ui ∩ Uj ∩ Uk. Now, we turn
on background gauge fields for centers of the gauge, flavor, and U(1)A groups and
determine the most general combination compatible with the cocycle condition ∗,
which reads(

gψ, fψ, uψ
)
ij

◦
(
gψ, fψ, uψ

)
jk

◦
(
gψ, fψ, uψ

)
ki

= (zc, zf , zu)

with zczfzu = 1 (3.12)

where z’s refer to the center elements: zc ∈ ZN/ gcd(N,2), zf ∈ Znψ , and zu ∈ U(1)A.
The condition zczfzu = 1 is required for the equivalence relation

(zc, zf , zu) ∼ (1, 1, 1) , (3.13)

which is needed to obtain the correct compatibility condition. Similar expressions
hold for the cocycle condition of χ. The following two equations give the consistency
(compatibility) conditions

ψ : ei2π
2m
N︸ ︷︷ ︸

zc

ei2π
pk
N−4︸ ︷︷ ︸
zψ

e−i2πs (N+4)(N−2)
kr︸ ︷︷ ︸

zu

= 1 ,

χ : e−i2π 2m
N︸ ︷︷ ︸

zc

e−i2π p′k
N+4︸ ︷︷ ︸

zχ

ei2πs
(N−4)(N+2)

kr︸ ︷︷ ︸
zu

= 1 . (3.14)

Here, m ∈ ZN/gcd(N,2), p ∈ Znψ , p′ ∈ Znχ and s is a U(1)A parameter. The factor of
2 that appears in zc accounts for the N -ality of ψ and χ, and the negative sign that
appears in the zc factor in the second line accounts for the fact that χ transforms in
the complex conjugate of the 2-index anti-symmetric representation. We also take
ψ to transform in the fundamental representation of SU(nψ) and χ to transform
in the anti-fundamental representation of SU(nχ). Following [35], we shall dub the
discrete color-flavor-U(1)A fluxes as the CFU fluxes. The full set of solutions of
(3.14) determines the quotient group in (3.10). These solutions will be found on a
case-by-case basis. In general, we divide (3.10) by ZN/gcd(N,2)×Z(N−4)/k×Z(N+4)/k
or a subgroup of it.

Once a non-trivial solution of (3.14) is found, we can calculate the topological
charges associated with the center fluxes, which are fractional charges in general.

∗See [38, 39, 17, 40] for applications of the anomalies resulting from turning on these fluxes.
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3.2.1. Symmetries

Let M4 admit two independent 2-cycles and let two integers, e.g., m1 and m2,
account for the number of quanta piercing through them. For example, we can
take M4 = T4, a 4-torus with a period length L, and turn on the gauge fields that
are compatible with the cocycle condition:

ac1 = 2πm1
L2 Hc · νc , ac2 = 0 , ac3 = 2πm2

L2 Hc · νc , ac4 = 0 ,

Aψ1 = 2πp1
L2 Hψ · νψ , Aψ2 = 0 , Aψ3 = 2πp2

L2 Hψ · νψ , Aψ4 = 0 ,

Aχ1 = 2πp′
1

L2 Hχ · νχ , Aχ2 = 0 , Aχ3 = 2πp′
2

L2 Hχ · νχ , Aχ4 = 0 ,

Au1 = 2πs1
L2 , Au2 = 0 , Au3 = 2πs2

L2 , Au4 = 0 . (3.15)

acµ, Aψµ , Aχµ, and Auµ are the background gauge fields of the center of the color,
SU(nψ) flavor, SU(nχ), flavor, and U(1)A, respectively. The bold-face letters H ≡
(H1, ...,HN−1) are the Cartan generators of SU(N) group, while ν ≡ (ν1, ..., νN−1)
is a weight in the defining representation of the group. Notice that the integers
m1,2, p1,2, p′

1,2, s1,2 are the same integers that solve the consistency conditions (3.14).
Given the set of the background fields (3.15), one immediately obtains the topolo-
gical charges defined as

Qc =
∫
T4

tr [f c ∧ f c]
8π2 , Qψ =

∫
T4

tr
[
Fψ ∧ Fψ

]
8π2 ,

Qχ =
∫
T4

tr [Fχ ∧ Fχ]
8π2 , Qu =

∫
T4

F u ∧ F u

8π2 (3.16)

and f c, Fψ,χ,u are the field strengths of the corresponding background. Substituting
(3.15) into (3.16), we obtain

Qc = kc − m1m2
N

, Qψ = kψ − p1p2k

N − 4 ,

Qχ = kχ − p′
1p

′
2k

N + 4 , Qu = (s1 − k1)(s2 − k2) , (3.17)

and kc, kψ, kχ, k1, k2 ∈ Z are arbitrary integers that are always allowed. These
fluxes will support fermion zero modes, and the Dirac indices give their number:

Iψ = nψTψQc + dimψQψ + dimψnψq
2
ψQu ,

Iχ = nχTχQc + dimχQχ + dimχnχq
2
χQu , (3.18)

and dimψ = N(N+1)
2 , dimχ = N(N−1)

2 are the dimensions of the representations.
Dirac indices count the number of the Weyl zero modes in the background of center
fluxes. The integrality of the indices can work as a check on the consistency of the
fluxes on M4.

One may also turn on the CFU fluxes on nonspin M4. A nonspin manifold does not
admit fermions in the sense that there is an obstruction in lifting the SO(4) rotation
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3.2.2. Anomalies

group bundle to a Spin(4) bundle on M4. A diagnosis of a non-spin manifold is
that the Dirac index of a Weyl fermion, I = 1

196π2
∫

M4 trR ∧ R, where R is the
curvature 2-form, is non-integer. An example of a nonspin manifold is CP2, which
has 1

196π2
∫
CP2 trR ∧R = −1

8 . To put a Weyl fermion on CP2, we need to excite a
U(1) flux F through its 2-cycle CP1 ⊂ CP2 and demand that

∫
CP1 F ∈ π(2Z + 1),

which implies 1
8π2

∫
CP2 F ∧ F ∈ Z

8 . Now, one can easily check the integrality of the
Dirac index 1

196π2
∫
CP2 trR ∧ R + 1

8π2
∫
CP2 F ∧ F ∈ Z, and thus, the fermions are

well-defined on CP2 in the presence of such U(1) fluxes. Here, although one cannot
define a Spin(4) bundle on pure CP2, in the sense that the corresponding cocycle
condition fails on a triple overlap, nonetheless, we can define the Spinc(4) structure
Spin(4) × U(1)/Z2 in the presence of the U(1) background.

This idea can be generalized in the presence of the CFU fluxes; see [41] for details.
One just needs to replace the consistency conditions (3.14) with

ψ : ei2π
2m
N︸ ︷︷ ︸

zc

ei2π
pk
N−4︸ ︷︷ ︸
zψ

e−i2πs (N+4)(N−2)
kr︸ ︷︷ ︸

zu

= −1 ,

χ : e−i2π 2m
N︸ ︷︷ ︸

zc

e−i2π p′k
N+4︸ ︷︷ ︸

zχ

ei2πs
(N−4)(N+2)

kr︸ ︷︷ ︸
zu

= −1 . (3.19)

The minus sign on the right-hand side compensates for the minus sign arising from
parallel transporting the spinor fields around appropriate closed paths in CP2; see
the detailed discussion in [41]. Given that a solution, m ∈ ZN/gcd(N,2), p ∈ Znψ ,
p′ ∈ Znχ and s, to (3.19) can be found, the topological charges corresponding to
the CFU fluxes and gravity are given by (see [41])

Qc = m2

2

(
1 − 1

N

)
, Qψ = p2

2

(
1 − k

N−4

)
,

Qχ = p′2

2

(
1 − k

N+4

)
, Qu = 1

2s
2 , Qg = −1

8 . (3.20)

The Dirac-indices of ψ and χ are

ICP2
ψ = nψTψQc + dimψQψ + dimψnψ

(
q2
ψQu +Qg

)
,

ICP2
χ = nχTχQc + dimχQχ + dimχnχ

(
q2
χQu +Qg

)
, (3.21)

which are always integers. Except for (N = 6, k = 2) and (N = 10, k = 2) in Table
3.1, we can always find solutions to (3.19), and thus, we can put these theories on
CP2.

3.2.2 Anomalies

The theory has a set of ’t Hooft anomalies that can help constrain the possible IR
phases. In the following, we list the ’t Hooft anomalies we shall encounter in our
study.
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3.2.2. Anomalies

(I) [SU(nψ)]3 and [SU(nχ)]3 anomalies

These are perturbative (triangle) anomalies and their inflow from 5-D to 4-D is
captured via 5-D Chern-Simons theories:

[SU(nψ)]3 : exp
[
i dimψ

∫
M5

ω5(Aψ)
]
,

[SU(nχ)]3 : exp
[
i dimχ

∫
M5

ω5(Aχ)
]
, (3.22)

where Aψ and Aχ are the SU(nψ) and SU(nχ) 1-form background gauge fields,
extended from 4-D to 5-D, and ω5(A) is the 5-D Chern-Simons form defined via
the descent equation:

dω5(A) = 1
3!(2π)2 tr□F 3 , (3.23)

and F is the 2-form field strength of A. We review how to obtain the anomaly
from the anomaly descent mechanism in appendix C.

(II) U(1)A- and Zdχp -gravitational anomalies

These anomalies are captured via the 5-D anomaly inflow actions:

U(1)A[grav] : exp
[
i (qψnψdimψ + qχnχdimχ)

∫
M5

Au ∧ p1(M5)
24

]
,

Zdχp [grav] : exp
[
i (nχdimχ)

∫
M5

Adχ ∧ p1(M5)
24

]
. (3.24)

The 1-form gauge fields Au and Adχ are the backgrounds of U(1)A and Zdχp , re-
spectively. p1(M5) = − 1

8π2R ∧ R is the first Pontryagin number and R is the
curvature 2-form. On a spin manifold, we have

∫
M4 p1(M4) ∈ 48Z, and thus,

there are 2 zero modes per Weyl fermion in a gravitational background. Under
U(1)A and Zdχp transformations we have Au −→ Au + dλu with

∮
dλu = 2πZ and

Adχ −→ Adχ + dλdχ, with
∮
dλdχ = 2πZ

p , and the anomaly inflow actions produce
the 4-D anomalies.

The result (3.24) is “perturbative” as it can be seen from a triangle diagram with
two vertices that couple the fermions to a gravitational background via the energy-
momentum tensor, while the third vertex couples the fermions to an external U(1)A
or Zdχp sources.

(III) CFU anomalies

These anomalies were identified in [20]; however, see [42, 43] for earlier encounters.
They are anomalies of U(1)A and Zdχp symmetries in the background of the CFU
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3.2.2. Anomalies

fluxes that are supported on a general spin manifold. As was shown in [35], 5-D
anomaly inflow actions can also capture them. However, we find it more convenient
to express such anomalies in terms of the non-trivial phases that are acquired by
the partition function Z under the action of U(1)A and Zdχp symmetries in the
background of the CFU fluxes:

U(1)A[CFU] : Z −→ ei2πα(qψIψ+qχIχ)Z ,

Zdχp [CFU] : Z −→ e
i 2π
p

IχZ , (3.25)

and the Dirac indices Iψ and Iχ are given in (3.18). The contribution from the color
topological charge Qc drops out in the computation of the U(1)A[CFU] anomaly,
as can be easily checked, since U(1)A is a good symmetry in the background of the
color flux. This is not the case with Zdχp [CFU] anomaly, where Qc contributes to
the anomaly. As we shall discuss, this observation has important consequences for
anomaly matching in the IR.

It is also important to notice that the perturbative anomalies U(1)A[SU(nψ)]2,
U(1)A[SU(nχ)]2, Zdχp [SU(nχ)]2, and [U(1)A]3 are a subset of the CFU anomalies,
obtained by turning off the center fluxes and keeping only the integer topological
charges in (3.17). Again, one can express them using anomaly inflow actions as

U(1)A[SU(nψ)]2 : exp

iqψnψdimψ

∫
M5

Au ∧
tr
[
Fψ ∧ Fψ

]
8π2


U(1)A[SU(nχ)]2 : exp

[
iqχnχdimχ

∫
M5

Au ∧ tr [Fχ ∧ Fχ]
8π2

]
Zdχp [SU(nχ)]2 : exp

[
inχdimχ

∫
M5

Adχ ∧ tr [Fχ ∧ Fχ]
8π2

]
[U(1)A]3 : exp

[
i
(
q3
ψnψdimψ + q3

χnχdimχ

) ∫
M5

Au ∧ F u ∧ F u

24π2

]
(3.26)

In addition, for N even, the CFU anomalies encompass the U(1)A 0-form/ Z[1]
2

1-form as well as the Zdχr 0-form/ Z[1]
2 1-form mixed anomalies. These can be easily

found by turning off the flavor and the U(1)A fluxes. In practice, one uses (3.25),
(3.17), and (3.18), after setting p1,2 = p′

1,2 = s1,2 = 0 and m1 = m2 = N/2. This
choice enforces the consistency conditions (3.14) and gives Qψ = Qχ = Qu = 0 and
Qc = N

4 .

One may also use the CFU fluxes on CP2 to calculate the U(1)A [CFU] and Zp [CFU]
anomalies, which sometimes are more restrictive than the corresponding anomalies
on a spin manifold. We use the Dirac indices on CP2, as given by (3.21), to find

U(1)A [CFU]CP2 : Z −→ e
i2πα

[
qψICP2

ψ +qχICP2
χ

]
Z ,

Zdχp [CFU]CP2 : Z −→ e
i 2π
p

ICP2
χ Z . (3.27)
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3.2.2. Anomalies

From here on, we shall write all anomalies in terms of their phases to reduce clutter.
For example, instead of (3.25), we write:

U(1)A[CFU] : qψIψ + qχIχ , Zdχp [CFU] : Iχ . (3.28)

(IV) Anomalies of discrete groups

Here, we consider anomalies of a discrete symmetry Zn, where n is a general positive
integer. An example of the discrete symmetry is the Zdχp chiral symmetry or a
discrete subgroup of U(1)A left unbroken in the IR. The proper way to detect
anomalies of discrete symmetries is to use the Dai-Freed prescription [44, 45]. The
idea stems from the fact that a chiral massless fermion defined on M4 can be
realized as the chiral zero mode residing on the boundary M4 of a 5-dimensional
manifold M5 that is endowed with massive fermions, with Zn turned on in the
5-dimensional manifold. One can also consider a different 5-dimensional manifold
M′5 with the same boundary M4. If the partition functions defined on M5 and
M′5 have the same phase, then the theory on M4 is uniquely defined and anomaly-
free; otherwise, it is anomalous. Applying the Dai-Freed prescription to study the
IR phases of strongly-coupled theories is innovative. However, see [46, 39] for
previous applications∗.

If M4 is a spin manifold, the geometrical obstruction of uniquely extending a 4-D
theory to a 5-D bulk can be inferred by computing the bordism group ΩSpin

5 (BZn),
where BZn is the classifying space of Zn†. If ΩSpin

5 (BZn) is non-trivial, the theory
might have a nonperturbative anomaly. To find the anomaly, one computes the
η-invariant, a resolvent of the spectral asymmetry of the Dirac operator, on specific
closed 5-dimensional spin manifolds that can detect the anomaly. For example, one
puts the theory on Lens spaces to gauge Zn and discover whether the theory exhibits
a nonperturbative anomaly. For n even, n = 2m, one can take M4 to be nonspin by
employing the twisted symmetry group SpinZ2m(4) = (Spin(4) × Z2m)/Z2 instead
of Spin(4). Here, one needs to compute the η-invariant that detects the bordism
group ΩSpinZ2m

5 .

The computations of the relevant η-invariants were carried out in [49] (see also [50]
for an alternative perspective). For a theory of a left-handed Weyl fermion with a
charge s under Zn defined on a spin manifold, the anomaly is given by the pair of
phases: {

(n2 + 3n+ 2)s3 mod 6n , 2smodn
}
. (3.29)

∗Also, see [47, 48] for applications of Dai-Freed anomalies in particle physics.
†A classifying space of symmetry G is an infinite dimensional space with the property that

any principal G-bundle on a manifold M is the pullback via some map f : M −→ BG. Then, the
set of topologically distinct principal G-bundles over M is equivalent to the set of the homotopy
classes of maps from M to BG.
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3.2.2. Anomalies

This pair can be thought of as contributions from [Zn]3 and mixed Zn [grav] an-
omalies. Indeed, the second entry in (3.29) is precisely the anomaly we computed
in the second line of (3.24). The first entry can be obtained from pure [U(1)]3 an-
omaly by restricting U(1) to a Zn discrete group; this is the Ibanez-Ross anomaly
we comment on below. Also, a Weyl fermion defined on a twisted background and
carrying a charge s under Z2m has an anomaly given by the pair∗{(

(2m2 +m+ 1)s3 − (m+ 3)s
)

mod 48m,
(
ms3 + s

)
mod 2m

}
. (3.30)

The charge s is assumed to be odd such that the fermion transforms under the Z2
subgroup of Z2m. Generally, the anomaly (3.30) is more restrictive than (3.29).
We shall use both (3.30) and (3.29) to constrain our theories. It is important
to note that Z2 symmetry is anomaly-free, as can be easily seen from (3.29) and
(3.30). This observation will play an essential role in the IR anomaly matching by
condensates, as many of them break the global symmetries to Z2, as we discuss
below.

We also comment on the Ibanez-Ross anomaly-matching conditions [51]. These
are obtained from [U(1)]3 and U(1)[grav] anomalies by restricting U(1) to a Zn
subgroup. The Ibanez-Ross anomaly-cancellation conditions read:

s3 = p′n+ r′n3

8 , s = p′′n+ r′′n , (3.31)

where p′, r′, p′′, r′′ ∈ Z, p′ ∈ 3Z if n ∈ 3Z, and r′, r′′ = 0 if n is odd. It can be
shown that (3.31) and (3.29) are equivalent [49]. Hence, in what follows, we use
either (3.29) or (3.30) to calculate discrete anomalies.

Finally, we also may have a discrete anomaly of the form Zm[Zn]2. Such an anomaly
can descend from U(1)A[CFU] anomaly after a given condensate breaks U(1)A down
to a discrete subgroup. Let s and s′ be the charges of a left-handed Weyl fermion
under Zn and Zm, respectively. Then, the anomaly cancelation condition, which
follows from the Ibanez-Ross conditions, is given by [52]

s2s′ = p′ gcd(m,n) + p′′

8 mn
2 , (3.32)

where p′, p′′ ∈ Z and p′′ can be non-vanishing only if n and m are even. Notice
that this anomaly is trivial when Zm = Z2.

∗More generally, the bordism group ΩSpinZ2m

5
∼= Za × Zb, where a, b, and the associated

anomalies are given by Eqs. (2.11)- (2.13) in [39]. In the present work, Eq. (3.30) suffices to
tackle the theories at hand.
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3.3. Anomaly matching and the IR phase

3.3 Anomaly matching and the IR phase

3.3.1 IR anomaly matching

’t Hooft anomalies preclude a trivially gapped IR phase: a theory with ’t Hooft
anomaly must have gapless excitations, degenerate vacua, or symmetry-preserving
topological quantum field theory (TQFT). In this work, we will assume that the
gauge group does not break spontaneously under its strong dynamics. The breaking
of a gauge group is under control in the presence of scalars at weak coupling, an
ingredient absent from our theory from the get-go∗. This leaves us with three
possible IR scenarios.

(I) Conformal fixed point

In the first scenario, the theory flows to a conformal field theory (CFT). When the
CFT is weakly coupled, the renormalization group flow from the UV to the IR is
very slow. The UV matter content (fermions) can be considered the IR gapless
excitations, and the anomalies are automatically matched. Anomaly matching by
strongly interacting CFT is still an open problem; we have nothing to say here.
The existence of a well-controlled Banks-Zaks fixed point implies a strictly weakly
coupled CFT. However, such a reliable fixed point can only be obtained in the
large-N limit. The 3-loop β-function reads

β(g) = −β0
g3

(4π)2 − β1
g5

(4π)4 − β2
g7

(4π)6 . (3.33)

If β0 > 0 and β1 < 0, the theory flows to an IR fixed point, g2
∗ = − (4π)2β0

β1
,

up to corrections from β2. In the large-N limit and close to the boundary of
the asymptotic-freedom region, the contribution from the third term is suppressed
compared to the second term, and thus, this term and higher-order terms can be
safely neglected. Our theories, however, do not admit large-N analysis. Yet, as
we shall discuss, in a few cases, the numerical value of the third term is extremely
small compared to the first two terms, so one can conclude that such a weakly-
coupled CFT exists. In Appendix D, we work out the fixed points using the 2
and 3-loop β-functions. We consider values of g2

∗
4π < 0.1, using both the 2-loop

and 3-loop calculations, small enough to conclude that the theory has an IR fixed
point. Also, the perturbative nature of the β-function calculations will be trusted
when the third term in (3.33) is small compared to the first two terms. More
stringent coupling constant values at the fixed point could also be assumed. This,
however, will only mean doing more work to find out the fate of the IR phases of
such theories.

∗Tumbling, [53], is a mechanism by which the breakdown of a gauge group occurs without the
aid of fundamental scalar fields. We do not discuss tumbling in this work.
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3.3.1. IR anomaly matching

(II) Composite massless fermions

In the second scenario, the theory becomes strongly coupled; it confines (for N
even), preserves the global symmetries, and flows to a phase of composite massless
fermions. This can happen in the non-bosonic theories N = 5, 6, 10. We sketch
how one can systematically search for such composites. Let Fi be a gauge-invariant
fermionic operator (a composite that transforms as a left-handed Weyl fermion
under the Lorentz group) built of ψ and χ:

Fi = ψκiχρi , (3.34)

where κi, ρi ∈ {0} ∪ Z+, and we suppressed the color and spinor indices to reduce
notational clutter. Insertion of gluon fields can be used whenever fermi statistics
cause Fi to vanish. Using the convention that ψ and χ carry 2 and N − 2 indices,
respectively, and demanding that Fi be a gauge invariant fermion yields the two
conditions:

2κi + (N − 2)ρi ∈ NZ+ , κi + ρi ∈ (2Z+ − 1) . (3.35)

The U(1)A charge of Fi is

qFi = −κiNχ + ρiNψ

r
. (3.36)

Generally, the composites Fi transform in higher representations of SU(nψ) and
SU(nχ), making the process of matching anomalies containing flavor groups a
daunting task. Thus, it is more convenient to start with matching [U(1)A]3,
U(1)A[grav], and nonperturbative Zdχp anomalies. For generality, we assume there
are Ni copies of composites Fi. Then, matching these anomalies gives the condi-
tions ∑

i

Niq
3
Fi = q3

ψnψdimψ + q3
χnχdimχ∑

i

NiqFi = qψnψdimψ + qχnχdimχ

2
∑
i

Ni = 2nχdimχ (mod p)

(p2 + 3p+ 2)
∑
i

Ni = (p2 + 3p+ 2)nχdimχ (mod 6p) (3.37)

The number of the IR fermionic species N = ∑
i Ni is bounded from above by the

a-theorem:

2(N2 − 1)︸ ︷︷ ︸
gluons

+7
4 (nψdimψ + nχdimχ)

︸ ︷︷ ︸
UV degrees of freedom

≥ 7N
4︸︷︷︸

IR degrees of freedom

. (3.38)
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3.3.1. IR anomaly matching

In principle, one could systematically search for copies of composites {N1,N2, ...}
that satisfy (3.37). However, this would require finding the partitions of N (all
integers that their sums give N ), a number that grows exponentially with

√
N .

The composites that satisfy (3.37) must also match the rest of the anomalies that
involve the flavor groups. In all non-bosonic theories, N = 5, 6, 10, we could not
find a set of composites that matched the full set of anomalies using the systematic
approach sketched above. Simply, the algorithm takes an extremely long time,
which makes such a systematic search impractical.

In fact, we can utilize the Zdχp [CFU] anomaly to show that in some cases, such
candidates, if they exist, cannot solely match this anomaly. This approach was
used in [20] in the case of vector-like theories, and we repeat it here for chiral
theories. To this end, we assume that there exists a set of gauge-invariant composite
fermions that match [SU(nψ)]3, [SU(nχ)]3, [U(1)A]3, Zdχp [U(1)A]2, Zdχp [SU(nψ)]2,
Zdχp [SU(nχ)]2, U(1)A[grav], and Zdχp [grav] anomalies. Then, we turn the CFU
fluxes on M4 and perform a Zdχp rotation. We denote the UV coefficients that
multiply Qc, Qχ, and Qu in (3.25, 3.18) by DUV

c ≡ nχTχ, DUV
χ ≡ dimχ, and

DUV
u ≡ q2

χnχdimχ. Under a discrete chiral rotation, the UV partition function
transforms as

ZUV −→ e
i 2π
p

(
DUV
c Qc+DUV

χ Qχ+DUV
u Qu

)
ZUV , (3.39)

while the IR partition function transforms as∗

ZIR −→ e
i 2π
p

(
DIR
χ Qχ+DIR

u Qu
)
ZIR , (3.40)

where DIR
χ , D

IR
u ∈ Z are group-theoretical coefficients that are chosen to match

Zdχp [U(1)A]2 and Zdχp [SU(nχ)]2 anomalies. Since the UV-IR anomaly matching is
mod p, we must have†

DUV
c = pℓc , DUV

χ −DIR
χ = pℓχ , DUV

u −DIR
u = pℓu , (3.41)

for some ℓc,χ,u ∈ Z. Thus, the ratio between the UV and IR partition functions
reads

ZUV
ZIR

= ei2π(ℓcQc+ℓχQχ+ℓuQu) , (3.42)

and the matching of the Zdχp [CFU] anomaly requires

ℓcQc + ℓψQχ + ℓuQu ∈ Z , (3.43)

for all allowed topological charges. Suppose no integers ℓc,χ,u exist that satisfy
this condition for a given allowed fractional topological charges. In that case, the
composites cannot solely match the Zdχp [CFU] anomaly.

∗Qc does not contribute to the IR phase since the composites are color singlets.
†Zdχp is a good symmetry in the color background, and thus we must have DUV

c = pℓc.
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3.3.1. IR anomaly matching

A minimal way out would be breaking Zdχp −→ Zq<p via condensate formation
provided that the anomaly Zq[CFU] vanishes. Usually, a condensate would or-
dinarily break SU(nψ), SU(nχ), and U(1)A. Thus, one must postulate that all
gauge-invariant condensates charged under these symmetries have zero vacuum ex-
pectation values. Otherwise, the condensation of such operators would oversaturate
these anomalies, which are assumed to be matched by composites. In addition, one
needs to build a neutral operator under the continuous symmetries, charged under
Zdχp , and has a non-zero vacuum expectation value. If it exists, such an operator
would have a scaling dimension larger than the vanishing lower-order condensates.
Although this scenario cannot be ruled out, we find it contrived in the examples of
the 2-index chiral theories we discuss here.

This leaves us with the possibility that if condition (3.43) is violated, the Zdχp [CFU]
anomaly can be matched by a symmetry-preserving topological quantum field the-
ory (TQFT). In [54, 55], it was shown that the matching of Zdχp -gravitational
anomalies by a unitary and symmetry-preserving TQFT is obstructed on a spin
manifold. This obstruction can also be shown to hold in the case of Zdχp [CFU]
anomaly [35].

We conclude that if condition (3.43) is violated, the theory probably cannot flow
to a phase with massless composites.

(III) Spontaneous symmetry-breaking

In this scenario, the theory becomes strongly coupled; it confines (for N even) and
breaks its global symmetries spontaneously. We say that the theory flows to a
spontaneous symmetry-breaking (SSB) phase. An important aspect of this work
involves identifying the minimal set of condensates that break global symmetries
while matching the anomalies. These condensates break Gg down to H ⊂ Gg, with
the requirement that H remains anomaly-free. Without satisfying this condition,
the symmetry breaking alone would not sufficiently match the UV anomaly. It is
possible for composite fermions to match a non-vanishing anomaly in H, but it is
crucial that these fermions do not undermine the matching of the Gg anomalies
achieved by the condensates. Our focus did not involve searching for composites
that could match the anomalous unbroken subgroups.

Generally, H can be expressed as H = Hc × Zq1 × Zq2 , where Hc represents the
continuous part of H, Zq1 “collectively" denotes the unbroken discrete subgroups of
SU(nψ)×SU(nχ)×U(1)A, and Zq2 represents the unbroken subgroup of Zdχp . If the
condensates leave a discrete subgroup unbroken, we must examine its anomalies.
In addition, if the theory possesses a 1-form/0-form mixed anomaly, there can be
fractionalization classes, and hence, an ambiguity in calculating the cubic discrete
anomalies [56]. One must ensure the condensates do not leave any discrete anom-
aly in any fractionalization class. In a few examples, we observe that lower-order
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condensates (such as the 2-fermion condensates) lead to anomalous unbroken dis-
crete subgroups. Consequently, the formation of other (higher-order) condensates
becomes necessary to break the symmetries into non-anomalous subgroups.

In strongly-coupled theories, it is generally believed that higher-order bosonic op-
erators undergo condensation. In this work, through anomaly matching conditions,
we provide kinematical reasons behind this condensation.

Now we turn our attention to the matching of CFU anomalies. Given the bet-
ter understanding of the nature of the unbroken discrete subgroups of U(1)A and
their anomalies, here, we provide a more in-depth discussion of the CFU anomalies
than the earlier work [35]. As mentioned above, we encounter two types of such
anomalies: U(1)A[CFU] and Zdχp [CFU] anomalies. In all the examples we have
examined, we consistently observe the trivialization of Zdχp [CFU] by the condens-
ates, which break the U(1)A symmetry. On the other hand, the matching of the
U(1)A[CFU] anomaly through condensates is a more intricate process that required
closer examination.

As emphasized earlier, the color topological charge does not play a role in this
particular anomaly. Consequently, we can view it as an anomaly of U(1)A in the
presence of the flavor center and U(1)A fluxes. In the examples we have studied, the
condensates break the flavor center, rendering this anomaly irrelevant. In simpler
terms, the full breaking of the flavor center automatically matches the U(1)A[CFU]
anomaly. This can be understood through the following principle: if a triangle
(anomaly) diagram involves three abelian symmetries, namely G1, G2, and G3 (in
this case, G1 through G3 are the abelian discrete groups corresponding to turning
on the CFU fluxes), the complete breaking of at least one of these symmetry groups
will resolve the anomaly.

To extract more valuable insights from this anomaly, we can focus our attention
solely on the color-U(1)A fluxes by deactivating the flavor background. In doing
so, the U(1)A[CU] anomaly becomes a mixed anomaly of U(1)A in the presence of
fractional U(1)A flux (keeping in mind that the U(1)A flux still needs to combine
with the color flux to satisfy the cocycle conditions. Yet, the color topological
charge remains uninvolved in the anomaly). Superficially, one might consider this
to be equivalent to the [U(1)A]3 anomaly. However, this is not the case since the
latter anomaly only encompasses integer fluxes of U(1)A, whereas the U(1)A[CU]
anomaly incorporates the minimal flux of U(1)A. Consequently, the latter is more
restrictive in nature compared to the [U(1)A]3 anomaly. Let the discrete flux of
U(1)A be a Zn flux, and let a particular condensate break U(1)A to Zm ⊇ Zn.
Then the U(1)[CU] anomaly can be thought of as a Zm[Zn]2 anomaly, which can
be checked via (3.32). If Zm ⊂ Zn and the anomaly [Zm]3 vanishes, the breaking
of U(1)A to Zm automatically matches the U(1)[CU] anomaly as the symmetry
corresponding to the discrete flux of U(1)A is broken.

Next, we discuss the condensates that cause the symmetries to break. A gauge-
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invariant condensate is a bosonic operator

C = ψαψχαχ , (3.44)

and αψ and αχ satisfy the conditions

2αψ + (N − 2)αχ ∈ NZ+ , αψ + αχ ∈ 2Z+ . (3.45)

One needs as many condensates as necessary to break Gg to an anomaly-free sub-
group. Distinct condensates will break Gg down to H1 ⊂ Gg, H2 ⊂ Gg, etc. If the
subgroups {H1, H2, ..} do not share common generators, Gg will break to unity.
Finding the breaking patterns of a group Gg because of the condensation of single
or many operators transforming in the defining or higher-dimensional represent-
ations of Gg is, in general, a complicated problem. Only a few cases have been
discussed in the literature; see, e.g., [57, 58, 59, 60, 61] and references therein. The
question then is, how many condensates does the theory develop in the IR? There
is no known answer to this question. However, there must be at least as many
condensates as needed to match all anomalies.

3.3.2 Minimizing the IR degrees of freedom

Beyond ’t Hooft anomalies, are there additional sources of information that can
be harnessed to make conjectures about the infrared (IR) phase of a strongly
coupled theory? In [62, 63, 64], a constraint on the structure of strongly coupled
asymptotically-free field theories was proposed. The constraint is an inequality
favoring an IR phase with fewer degrees of freedom (DOF). It was also proposed
to use the free energy to characterize DOF. The effective degrees of freedom A of
free nB massless real scalars and free nf massless Weyl fermions are given in terms
of the free energy density F as (T is an infinitesmal temperature)

A ≡ 90F
π2T 4 = nB + 7

4nf . (3.46)

First, we may use (3.46) to favor between a phase of composite fermions or a
phase with spontaneous symmetry breaking (SSB). As we pointed out above, we
could not find composite fermions that matched the anomalies. Yet, one may be
tempted to use (3.46) to predict whether the theory flows to an IR CFT. In a
weakly-coupled CFT, the IR DOF are the same UV DOF. On the other hand,
the DOF in a spontaneously broken phase, assuming the global symmetry SU(Nf )
entirely breaks, are N2

f −1 Goldstones∗. Let us define ∆A as the difference between
the DOF in the two scenarios. Then, we have

∆A = n2
ψ + n2

χ − 2︸ ︷︷ ︸
Goldstones

−

 2(N2 − 1)︸ ︷︷ ︸
gluons DOF

+7
4 (nψdimψ + nχdimχ)

 . (3.47)

∗Notice that a theory that fully breaks its global symmetries will match its ’t Hooft anomalies
in the IR. We assume that enough condensates form to obey the matching conditions.
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According to the conjecture, a theory with ∆A > 0 disfavors an SSB phase. It
can be easily checked that all the theories in Table 3.1 yield ∆A < 0, favoring
a phase with broken symmetries. This is to be expected since nψ, nχ ∼ N and
dimψ,dimχ ∼ N2. Thus, while the SSB phase has ∼ N2 DOF, a phase with
CFT has ∼ N3 DOF. Then, one may naively conclude that all theories in Table
3.1 will break their symmetries and flow to a Goldstone phase. This conclusion,
however, totally ignores the dynamics of the theory on the way from UV to IR.
A theory must enter a strongly-coupled regime to form condensates and break its
continuous symmetries, i.e., breaking the symmetries has to happen dynamically
since no elementary scalars exist. As we argued above, some of our theories have
robust IR fixed points at weak coupling, indicating that it is most unlikely they can
form condensates. Consequently, in the subsequent analysis, we avoid employing
the aforementioned hypothesis to favor between an SSB or CFT phase. Instead,
we use the β-function analysis to check whether a theory flows to an IR CFT∗.

However, assuming the existence of multiple sets of condensates, each capable of
accounting for all observed anomalies via SSB, we can employ the aforementioned
line of reasoning to make a prediction. Presumably, the set of condensates that
causes the flavor group to break into the largest subgroup will be preferred due to
its associated reduction in the number of infrared degrees of freedom.

The following sections are devoted to systematically applying the above ideas to
the concrete theories in Table 3.1. We start our discussion by working out all
the details. As we progress through the list of theories, we build on the previous
experience and shorten our discussion.

3.4 Fermionic theories

This section systematically studies theories that admit fermionic operators in their
spectrum. These are (N = 5, k = 1), (N = 6, k = 2), (N = 6, k = 1), and
(N = 10, k = 2). Our analysis indicates that the first two theories form condensates
and break their global symmetries, while the last two flow to a CFT.

3.4.1 SU(5), k = 1

This theory admits a single Weyl fermion ψ and nχ = 9 flavors of χ Weyl fermions.
In addition, we have r = gcd(nψTψ, nχTχ) = gcd(7, 27) = 1, indicating that the
theory does not possess a discrete chiral symmetry. The solutions to the cocycle

∗This method was used in [39] to predict the IR phase of a theory with a single adjoint and
Nf fundamental flavors of Weyl fermions. It was found that the ∆A calculations are consistent
with the prediction of perturbative β-function. The fact that this analysis does not hold for the
2-index chiral theories is attributed to the large number of degrees of freedom of a CFT, which
always exceeds the number of degrees of freedom of an SSB phase.
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3.4.1. SU(5), k = 1

conditions (3.14) give Z5 × Z9 as the discrete division group. Thus, the faithful
global symmetry is

Gglobal = SU(9)χ × U(1)A
Z5 × Z9

, (3.48)

and the U(1)A charges of ψ and χ are

qψ = −27 , qχ = 7 . (3.49)

Since both qψ and qχ are odd, (−1)F ≡ ZF2 fermion-number symmetry, which acts
on (ψ, χ) as (ψ, χ) −→ −(ψ, χ), is a subgroup of U(1)A.

The topological charges of the CFU fluxes are given by:

Qc = 4m2

5 ,m ∈ Z5 , Qχ = 8p′2

9 , p′ ∈ Z9 , Qu = s2 , s ∈ Z45 , (3.50)

and (m, p′, s) are chosen to satisfy (3.14). The theory admits a set of anomalies
listed in Table 3.2 (from here on, we give the phase of the corresponding anomaly).

Anomaly Equation Value
[U(1)A]3 κ3

u = nψq
3
ψ dimψ + nχq

3
χ dimχ −264375

U(1)A[SU(9)χ]2 qχ dimχ 70
[SU(9)χ]3 dimχ 10
U(1)A[grav] 2(nψqψ dimψ + nχqχ dimχ) 450
U(1)A[CFU] qχ dimχQχ + κu3Qu

560
9 p′2 − 264375s2

Table 3.2: Anomalies of SU(5), k = 1.

Notice that, as pointed out above, the U(1)A[CFU] anomaly does not depend on
the color topological charge. We can also put the theory on CP2 by employing
fluxes in the centers of SU(5) and SU(9)χ accompanied by a U(1)A flux, as can be
easily checked from (3.19).

The 2-loop and 3-loop β-function analysis show that the theory has an IR fixed
point at somewhat large coupling-constant: g2

∗
4π ≈ 0.64 and g2

∗
4π ≈ 0.34, respectively.

Therefore, such a fixed point is not robust. We conclude that either the theory
forms composite fermions or flows to an SSB phase.

Matching by composites

We used the systematic approach discussed in Section 3.3 to search for a set of
composite fermions. We found a pair of operators

F1 = ψχ6 , F2 = ψ7χ22 , (3.51)
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3.4.1. SU(5), k = 1

with N1 = 36 and N2 = 9 copies that matched the [U(1)A]3 and U(1)A[grav]
anomalies. Yet, this pair failed to match the U(1)A [SU(9)ψ]2 anomaly. The upper
bound on the number of the IR fermion species is N ∼ 132. The large number of
partitions of N is O(107), which hindered the abilities of our search algorithm. We
failed to find a set of composites that matches the full set of anomalies.

Matching by condensates

We now turn to the formation of condensates. The lowest-order condensate is

Ci1 = ϵa1a2a3a4a5ϵα1α2ψ
α1
(a1a2)χ

α2, i
[a3a4a5] , (3.52)

where a1, .., a5 are color, α1, α2 are spinor, and i is a SU(9)χ flavor indices. This
condensate vanishes identically owing to the symmetrizing over a1, a2. Yet, one
can evade this problem by inserting gauge-covariant gluonic fields (f cµν)

aj
aiσ

µν :

Ci1 −→ C̃i1 = ϵa1a2a3a4a5ϵα1α2(f cµν)a6
a2σ

µνψα1
(a1a6)χ

α2, i
[a3a4a5] . (3.53)

This trick will always be followed whenever the statistics of indices cause some
operator to vanish. Ci1 transforms in the defining representation of SU(9)χ, and
thus, it breaks it down to SU(8). However, the condensation of Ci1 leaves a U(1)
generator of SU(9)×U(1)A unbroken. To see that, we go to a basis where Ci1 ∝ δi,9.
In this basis, the unbroken SU(8) group acts on the 8 × 8 upper block matrices of
the original 9 × 9 unitary matrices of SU(9). Now, it is easy to see that the SU(9)
Cartan generator H8 = diag (1, 1, ...,−8) combines with the U(1)A generator to
leave the vacuum δi,9 invariant:

ei2π(−20β)

 ei2πα 0... 0
... ... ...

0 ... ei2π(−8α)


 0
...

1

 =

 0
...

1

 , (3.54)

where α and β are the Cartan and U(1)A phases, respectively. The direction
2α = −5β is the unbroken U(1) direction. The unbroken SU(8) has a non-
vanishing cubic anomaly. In addition, the unbroken U(1) symmetry inherits the
U(1)A[grav] anomaly, signaling that such breaking is incomplete or inconsistent
with the anomaly-matching conditions.

Another condensate is (we suppress color and spinor indices to reduce clutter)

C(ij)
2 = ψ2χ(iχj) , (3.55)

which transforms in the 2-index symmetric representation of the flavor group∗. The
general form of the “Higgs" potential of the condensate is

V (C2) = −1
2µ

2C(ij)
2 C2(ij) + 1

4λ1(C(ij)
2 C2(ij))2 + 1

4λ2(C2(ij)C
(jk)
2 C2(kl)C

(li)
2 ) , (3.56)

∗We also insert gluons if the statistics cause the condensate to vanish.
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3.4.1. SU(5), k = 1

for some real parameters µ2 > 0, λ1, and λ2. In the case λ2 > 0, the condensate has
a non-zero vacuum expectation value and we can pick the form of the condensate
to be C2 ∝ I9 [57]. This breaks SU(9) to the anomaly-free subgroup SO(9).

Is there a combination of SU(9)χ × U(1)A that breaks to a remaining U(1) sym-
metry? As U(1)A is abelian, we need to consider the subgroup generated by the
Cartan subalgebra of SU(9). The “unnormalized" generators of the Cartan subal-
gebra of SU(9) are:

[Hm]ij =
m∑
k=1

δikδjk −mδi,m+1δj,m+1 , m = 1, 2, ..., 8 . (3.57)

A general SU(9) element generated by the Cartan subalgebra has the form
exp(2πiαmHm), m = 1, 2, .., 8 and αm ∈ [0, 1). A combined SU(9) × U(1)A trans-
formation acts on Cij via:

C′(ij)
2 = e2πi(−40β)

(
e2πiαmHm

)ik (
e2πiαmHm

)jl
C2(kl) , (3.58)

and should leave the vacuum expectation value invariant. Thus, we need

e2πi(−40β)
(
e2πiαmHm

)ik (
e2πiαmHm

)jl
I9 = I9 . (3.59)

It can be easily checked that there are no nontrivial solutions to the above equation,
indicating that no U(1) direction is left unbroken.

Under the action of U(1)A, the condensate transforms as C(ij)
2 = ψ2χ(iχj) −→

C′(ij)
2 = ei2π(−40β)ψ2χ(iχj) , where β ∈ [0, 1) is the U(1)A parameter. So it appears

that the condensate is invariant under a discrete Z40 subgroup of U(1)A. But recall
that the global symmetry group includes a division by the Z5 center of the color
group. Z5 is not a subgroup of SU(9), therefore it can only quotient U(1)A, so
the parameter β is in fact a U(1)A/Z5 parameter and β ∈ [0, 1/5). Therefore the
condensate only exhibits an unbroken Z8 symmetry.

The discrete symmetry Z8 has non-perturbative anomalies, as can easily be checked
using (3.29) and (3.30), meaning that the condensation of C(ij)

2 is insufficient to
match the full set of anomalies. Notice that since both ψ and χ have odd charges
under U(1)A, any unbroken discrete subgroup of U(1)A necessarily contains (−1)F ,
and thus, we can use the twisted group SpinZ2m to detect the nonperturbative
anomaly as given from (3.30). Moreover, since the theory does not possess a 1-
form symmetry, there is no ambiguity in calculating the discrete-symmetry anomaly
[56].

In searching for a condensate that does not leave behind a non-anomalous U(1) or
discrete subgroup, we consider the most general bosonic operator:

C = ψαψχαχ , 2αψ + 3αχ ∈ 5Z+ , αψ + αχ ∈ 2Z+ . (3.60)
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3.4.1. SU(5), k = 1

This condensate carries a charge of −27αψ + 7αχ under U(1)A, and thus, breaks
U(1)A down to Z(−27αψ+7αχ)/5. We used both (3.29) and (3.30) to check the non-
perturbative anomalies of Z(−27αψ+7αχ)/5 and found that both untwisted and twis-
ted backgrounds yield the same results. The lowest-dimensional condensate that
breaks U(1)A to a non-anomalous subgroup has αψ = 1 and αχ = 11. In this case,
Z10 is the anomaly-free subgroup.

The condensate

C3 = ψχ11 (3.61)

transforms in a higher representation of SU(9)χ. One can contract 9 out of the 11
flavor indices of C3 with the Levi-Civita tensor, leaving 2 free indices. Then, we can
rearrange the free indices (possibly with insertions of gluons in case the statistics
cause the condensate to vanish) such that C3 transforms in the 2-index symmetric
representation of SU(9):

C(ij)
3 = ψχ9χ(iχj) . (3.62)

The condensing of C(ij)
3 breaks SU(9)χ×U(1)A

Z5×Z9
down to the anomaly-free subgroup

SO(9) × Z10.

Alternatively, one can search for a companion condensate to C(ij)
2 that breaks U(1)A

to a discrete subgroup Zq, such that gcd(q, 8) = 2. This ensures that the formation
of these two condensates breaks U(1)A down to the anomaly-free subgroup ZF2 ,
which is the fermion number. The companion condensate with the lowest dimension
is C4 = χ10, which, superficially, breaks U(1)A down to Zq = Z14. This, however,
is an immature conclusion. One can contract 9 flavor indices of C4 with a Levi-
Civita tensor leaving one free index. Then, C4 transforms in the fundamental
representation of SU(9), and according to the discussion preceding (3.54), it breaks
it down to SU(8)×U(1). Because of the unbroken U(1) generator, the condensation
of C2 along with C4 break SU(9)χ×U(1)A

Z5×Z9
down to a subgroup that contains the

anomalous Z8. More than this is needed to match the full set of anomalies.

We might continue searching for suitable condensates that break Gg to an anomaly-
free subgroup. However, the lesson from the above discussion is that it is generically
a complex exercise.

Since SO(9) is the largest anomaly-free subgroup of SU(9), the condensation of
C(ij)

3 leads to the smallest number of the IR Goldstones, and hence, we predict
that the theory will flow to a phase with the global symmetry broken down to
the anomaly-free SO(9) × Z10. This is the minimal scenario. However, because of
strong dynamics, nothing forbids the theory from forming all kinds of condensates,
breaking Gg down to the anomaly-free ZF2 fermion number symmetry.

In an equally alternative scenario, SU(9) could be broken down to the anomaly-free
Sp(8) by a condensate transforming in the 2-index anti-symmetric representation.
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3.4.2. SU(6), k = 2

However, since the dimensions of Sp(8) and SO(9) are identical, anomalies and the
argument of the number of Godstones cannot distinguish between the two possible
symmetry-breaking scenarios. In general, a condensate transforming in the 2-index
symmetric representation of SU(2N + 1) breaks this group down to SO(2N + 1),
while a condensate in the 2-index anti-symmetric representation breaks it down to
Sp(2N). Both SO(2N + 1) and Sp(2N) have dimension N(2N + 1).

Interestingly, the operator C(ij)
3 has a scaling dimension of at least 15 (it could have a

higher dimension if gluon fields are needed to avoid the vanishing of the condensate
because of fermi-statistics). That such condensate with a large-scaling dimension
must condense in the IR to match the complete set of anomalies is remarkable.
Generally, it is natural to expect that a strongly coupled theory forms higher-order
condensates. In this example, however, this formation is not a question about the
dynamics; rather, it is a necessary condition for the theory to obey the kinematical
constraints imposed by anomalies.

Does our proposed condensate C(ij)
3 match the U(1)A[CFU] anomaly? The answer

is affirmative. C(ij)
3 breaks SU(9)χ flavor group down to SO(9). The latter does not

have a center symmetry, while the former group has a Z9 center. Thus, we conclude
that the condensate breaks Z9 maximally, matching the U(1)A[CFU] anomaly.
Next, we may turn off the flavor background, restricting ourselves to the color
center and U(1)A (CU) fluxes. In this case, we have (m, p′, s) = (1, 0, 1

5), and
keeping in mind that the CU anomaly does not depend on the color topological
charge, we find that this is an anomaly of the axial current in the background of
a Z5 flux. The condensation of C3 breaks U(1)A to Z10. Thus, the U(1)A[CU]
anomaly becomes the Z10[Z5]2 anomaly discussed around Eq. (3.32). However,
from the last line in Table 3.2, the anomaly coefficient becomes, −264375

52 = −10575,
which is 0 modulo 5. Therefore, in this case, the anomaly becomes trivial, and the
U(1)A[CU] anomaly is automatically matched.

3.4.2 SU(6), k = 2

This theory has a single ψ Weyl fermion along with 5 flavors of χ fermions. Thus,
the continuous global symmetry is SU(5)χ×U(1)A. The charges of ψ and χ under
U(1)A are

qψ = −5 , qχ = 2 . (3.63)

Owing to the fact r = gcd(nψTψ, nχTχ) = gcd(8, 20) = 4, the theory is also endowed
with a Zdχ4 chiral symmetry, which is taken to act on χ with a unit charge. It can
be checked that this is a genuine symmetry since neither Z4 nor a subgroup of it
can be absorbed in rotations in the centers of SU(6) × SU(5)χ. To show that, we
try to absorb the elements ei 2πℓ

4 , ℓ = 1, 2, 3, in the centers of SU(6) × SU(5)χ:

Z4 : ψ −→ e2πi 2m
6 ψ = ψ , χ −→ e−2πi 2m

6 e−2πi p
′

5 χ = e2πi l4χ . (3.64)
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3.4.2. SU(6), k = 2

No values of m and p′ satisfy these equations for ℓ = 1, 2, 3, and therefore, Zdχ4 is a
genuine symmetry. An identical procedure is employed in the rest of the theories
to ascertain the genuity of discrete chiral symmetries.

To determine the faithful global symmetry, we must find the quotient group by
solving the consistency conditions (3.14). This gives Z3 × Z5 as the group we
divide by. Putting everything together and remembering that the theory possesses
a Z[1]

2 1-form center symmetry, we write the faithful global group:

Gglobal = SU(5)χ × U(1)A
Z3 × Z5

× Zdχ4 × Z(1)
2 . (3.65)

The ZF2 fermion number symmetry is contained in the generators of the product
group U(1)A × Zdχ4 (notice that the U(1)A charges of ψ and χ are odd and even,
respectively)

ZF2 ⊂ U(1)A : ψ −→ −ψ , χ −→ χ ,

ZF2 ⊂ Zdχ4 : ψ −→ ψ , χ −→ −χ . (3.66)

The topological charges of the CFU fluxes are given by:

Qc = 5m2

6 ,m ∈ Z3 , Qχ = 4p′2

5 , p′ ∈ Z5 , Qu = s2 , s ∈ Z15 , (3.67)

and (m, p′, s) are chosen to satisfy (3.14). The anomalies of the theory are listed in
Table 3.3. It is worth noting that both Zdχ4 [grav] and Zdχ4 [CFU] anomalies give at

Anomaly Equation Value
[U(1)A]3 κu3 = nψq

3
ψ dimψ + nχq

3
χ dimχ −2025

U(1)A[SU(5)χ]2 qχ dimχ 30
[SU(5)χ]3 dimχ 15
Zdχ4 [U(1)A]2 κzu2 = nχq

2
χ dimχ 300 mod 4

Zdχ4 [SU(5)χ]2 dimχ 15 mod 4
U(1)A[grav] 2(nψqψ dimψ + nχqχ dimχ) 90
Zdχ4 [grav] 2nχ dimχ 150 mod 8
[Zdχ4 ]3 (3.29) 2250 mod 24
U(1)A[CFU] qχ dimχQχ + κu3Qu 24p′2 − 2025s2

Zdχ4 [CFU] nχTχQc + dimχQχ + κzu2Qu2
50
3 m

2 + 12p′2 + 300s2

Table 3.3: Anomalies of SU(6), k = 2.

most a Z2 phase. Also, this theory cannot be put on CP2, as there are no solutions
to the conditions (3.19).

We first comment on the possibility that the theory flows to a Banks-Zaks fixed
point in the IR. The 2-loop beta function of this theory gives g2

∗
4π ≈ 8.5 ≫ 1. This

value of the coupling constant is too large for perturbation theory to hold. At
3-loops, we obtain g2

∗
4π ≈ 0.73 . Also, this coupling-constant value is large, so we

cannot conclude that our theory flows to a conformal fixed point in the IR. In the
following, we examine the possibilities of fermion composites and SSB.
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3.4.2. SU(6), k = 2

Matching by composites

Here, we follow the argument in Section 3.3 to show that composite fermions cannot
solely match all the UV anomalies. The UV Zdχ4 [CFU] anomaly of this theory is
(unlike the U(1)A[CFU] anomaly, it is important to notice that the color flux
contributes to the Zdχ4 [CFU] anomaly)

nχTχQc + dimχQχ + κzu2Qu2 = 50
3 m

2 + 12p′2 + 300s2 . (3.68)

In the IR, a set of gauge invariant composite fermions would generate the corres-
ponding Zdχ4 [CFU] anomaly:

DIR
χ Qχ +DIR

u Qu (3.69)

for integers DIR
χ and DIR

u . The integers DIR
χ and DIR

u are group-theoretical coef-
ficients that are assumed to be found by matching all anomalies of continuous
symmetries. In the presence of a CFU background flux, the ratio between the UV
and IR partition functions after undergoing a Zdχ4 transformation is given by:

ZUV

ZIR = e
i2π

4 ( 50
3 m

2+(12−DIR
χ )p2+(300−DIR

u )s2) = e
i2π

4 ( 50
3 m

2+dχp′2+dus2) , (3.70)

where dχ = 12 − DIR
χ ∈ Z and du = 300 − DIR

u ∈ Z. If there exists a particular
solution (m, p′, s) of the consistency conditions (3.14) such that no integers dχ, du
exists such that

50
3 m

2 + dχp
2 + dus

2 ∈ 4Z, (3.71)

then we conclude that composite fermions cannot match the Zdχ4 [CFU] anomaly.

Consider (m, p, s) = (1, 0, 2/3). This is a solution to the consistency conditions and
therefore corresponds to a CFU flux. In the presence of this CFU background, the
LHS of (3.71) becomes

50
3 + du

4
9 = 150 + 4du

9 . (3.72)

However, 150 + 4du ≡ 2 mod 4 for any du ∈ Z. Therefore we can conclude that
for this theory, composite fermions cannot solely match the Zdχ4 [CFU] anomaly in
the IR.

Matching by a condensate

Without composites, the anomalies are matched by spontaneous symmetry break-
ing via condensates. First, the 2-fermion condensate cannot match the anomalies,
as it breaks SU(5)χ×U(1)A down to the anomalous subgroup SU(4)×U(1). Next,
consider the operator

C(ij) = ψ2χ(iχj) , (3.73)
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3.4.3. SU(6), k = 1

where i, j are SU(5)χ flavor indices, and in particular, this condensate is in the
two-index symmetric irrep of SU(5)χ. Thus, the condensation of this operator
breaks SU(5) to the anomaly-free subgroup SO(5).

Under the action of U(1)A, the condensate transforms as Cij = ψ2χ(iχj) −→ C′ij =
e2π(6β)ψ2χ(iχj) where β ∈ [0, 1) is the U(1)A parameter. So it appears that the
condensate is invariant under a discrete Z6 subgroup of U(1)A. But recall that the
global symmetry group includes a division by the Z3 center of the color group. Z3
is not a subgroup of SU(5), therefore it can only quotient U(1)A, so the parameter
β is in fact a U(1)A/Z3 parameter and β ∈ [0, 1/3). Therefore the condensate only
exhibits an unbroken Z2 symmetry, which has no global anomaly, and the U(1)A
breaks to a non-anomalous subgroup.

The condensate also breaks Zdχ4 down to Z2, leading to 2 vacua connected via
a domain wall. Recalling that the Zdχ4 [grav] anomaly is only a Z2 phase, the
unbroken subgroup Z2 ⊂ Zdχ4 is anomaly free (remember that Z2 is also free from
nonperturbative anomalies). In addition, the Zdχ4 [CFU] anomaly is valued in Z2,
meaning that the same condensate saturates it. The breaking of Zdχ4 down to Z2
will also automatically match the [Zdχ4 ]3 anomaly, since Z2 is anomaly free.

Let us examine the fate of the U(1)A[CFU] anomaly. First, when we turn on the
flavor center flux, the breaking of SU(5) into SO(5) matches the anomaly, as the
breaking causes the center of SU(5) to break. Next, we solely turn on the color
and U(1)A fluxes. In this case, s ∈ Z3, and the breaking of U(1)A down to Z2
implies that we are after Z2[Z3]2 anomaly. The anomaly coefficient can be read
from Table 3.3, and according to (3.32), the anomaly is automatically matched
since gcd(3, 2) = 1.

We conclude that the global symmetryGg breaks down to SO(5)× (Z2⊂U(1)A)×(Z2⊂Zdχ4 )
Z2

.
The first Z2 symmetry acts only on ψ, while the second Z2 acts only on χ. Then,
from (3.66), we see that the combination of these symmetries acts like the fermion
number, which is left intact in the IR. The extra modding by Z2 is employed to
avoid overcounting.

Since SO(5) is the largest anomaly-free subgroup of SU(5), this breaking pattern
minimizes the number of Goldstones and is the most favorable scenario.

3.4.3 SU(6), k = 1

This theory has 2 flavors of ψ and 10 flavors of χ, and thus, the flavor symmetry
is SU(2)ψ × SU(10)χ. The U(1)A charges are

qψ = −5 , qχ = 2 . (3.74)

Because r = gcd(nχTχ, nψTψ) = gcd(40, 16) = 8, we may be tempted to conclude
the theory has a Z8 chiral symmetry. However, one can show that a Z2 subgroup
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3.4.4. SU(10), k = 2

of the Z10 center of SU(10)χ can be used to identify elements of Z8:

χ : e−2πi p
′

10 e2πi l8 = e2πi l
′

8 , (3.75)

for l, l′ = 1, 2, ..., 7. For example, setting p′ = −5 identifies ℓ = 1 and ℓ = 5, etc. In
addition, the solutions to the consistency conditions (3.14) yield the division group
Z3 × Z2 × Z5. Thus, the faithful global symmetry is

Gg = SU(2)ψ × SU(10)χ × U(1)A
Z3 × Z2 × Z5

× Zdχ4 × Z(1)
2 . (3.76)

The β-function indicates that the theory flows to an IR fixed point. At 2 loops, the
coupling constant at the fixed point is g2

∗
4π ≈ 0.094. At 3 loops, we obtain g2

∗
4π ≈ 0.075.

Both values are much smaller than our threshold value of 0.1, and the 2- and 3-loop
analysis is only 10% apart. Also, the 3-loop to the 2-loop ratio in (3.33) is ≈ 0.2.
Thus, the fixed point is reliable. As we pointed out above, the lowest-order bosonic
operator in this theory, Fµνσµνχψ, necessitates the introduction of a color field to
prevent its vanishing due to statistics. This is a dimension-5 operator, and due to
the smallness of the coupling constant, we do not expect this operator to condense.
Not to mention that this operator by itself is not enough to match the full set of
anomalies, and higher-order condensates must also form to match them. We, thus,
conclude that the most probable scenario is that the theory flows to a CFT.

3.4.4 SU(10), k = 2

The theory admits 3 flavors of ψ and 7 flavors of χ. The charges of the fermions
under U(1)A are

qψ = −14 , qχ = 9 . (3.77)

We also have r = gcd(Nψ, Nχ) = 4, so that the theory is endowed with a Zdχ4 chiral
symmetry, which cannot be absorbed in a combination of the centers of the color
or flavor groups. After solving the consistency equations, we obtain the faithful
global symmetry group

Gglobal = SU(3)ψ × SU(7)χ × U(1)A
Z5 × Z3 × Z7

× Zdχ4 × Z(1)
2 . (3.78)

The theory develops a Bank-Zaks fixed point. The 2 and 3-loop values of the
coupling constant at the fixed point are g2

∗
4π2 ≈ 0.059 and g2

∗
4π2 ≈ 0.046, respectively.

Also, the 3-loop to the 2-loop ratio in (3.33) is ≈ 0.2. Thus, like SU(6), k = 1, this
theory is expected to flow to a CFT.

3.5 Bosonic theories

All gauge-invariant operators in this class of theories are bosonic. In the following,
we provide a systematic study of this class.
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3.5.1. Conformal theories

Theory nψ nχ Zdχp Γ (qψ, qχ) 2-loop 3-loop α∗β2
4πβ1

SU(16), k = 4 3 5 2 Z8 × Z3 × Z5 (−35, 27) 0.09 0.064 0.62
SU(20), k = 4 4 6 2 Z10 × Z4 × Z3 (−27, 22) 0.017 0.015 0.11
SU(28), k = 8 3 4 1 Z7 × Z3 × Z4 (−52, 45) 0.086 0.051 1.12
SU(36), k = 8 4 5 1 Z18 × Z4 × Z5 (−85, 76) 0.019 0.016 0.25
SU(44), k = 8 5 6 1 Z11 × Z5 × Z6 (−126, 115) 0.0002 0.0002 0.003

Table 3.4: A list of conformal bosonic theories.

3.5.1 Conformal theories

We start by listing theories that flow to a conformal fixed point. These theories
are displayed in Table 3.4. In each case, the global symmetry is given by

G = SU(nψ) × SU(nχ) × U(1)A
Γ × Zdχp × Z(1)

2 . (3.79)

We also display the coupling constant g2
∗

4π2 at the 2- and 3-loop fixed points. The
smallness of the coupling constant and its consistency between the 2- and 3-loop
calculations is an indicator of the robustness of the fixed point. To quantify this
robustness, we may truncate the β-function to the second term in (3.33) and find
the fixed point is given by α∗ = −4πβ0

β1
. The existence of such a fixed point implies

that the first and second terms possess comparable magnitudes. Consequently, the
ratio between the third and second (or first) term α∗β2

4πβ1
represents the error incurred

by neglecting the third term. A low ratio indicates the perturbative nature of the
fixed point.

The two theories (N = 20, k = 4) and (N = 44, k = 8) have the most reliable fixed
points. While the theory (N = 28, k = 8) has α∗β2

4πβ1
= 1.12, and its fixed point is

under question.

3.5.2 Confining theories

3.5.2.1 SU(8), k = 4

This theory was studied in [35]. Here, we revisit it in light of the discrete anomalies
not discussed in [35]. The theory admits nψ = 1 and nχ = 3 flavors of fermions.
The fermion charges under U(1)A are

qψ = −9 , qχ = 5 . (3.80)

Also, the theory admits a Zdχ2 discrete chiral symmetry. Solving the consistency
conditions (3.14) yield the faithful global symmetry

Gg = SU(3)χ × U(1)A
Z4 × Z3

× Zdχ2 × Z(1)
2 . (3.81)
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3.5.2.1. SU(8), k = 4

Anomaly Equation Value
[SU(3)χ]3 dimχ 28
U(1)A [SU(3)χ]2 qχdimχ 140
Zdχ2 [SU(3)χ]2 dimχ 28
Zdχ2 [U(1)A]2 κzu2 = q2

χdimχnχ 2100
U(1)A[grav] 2(qψdimψ + qχdimχnχ) 192
[U(1)A]3 κu3 = q3

χdimχnχ + q3
ψdimψ -15744

Zdχ2 [grav] 2dimχnχ 168 (trivial)
U(1)A[CFU] qχ dimχQχ + κu3Qu

280p′2

3 − 15744s2, p′ ∈ Z3 , s ∈ Z12
Zdχ2 [CFU] nχTχQc + dimχQχ + κzu2Qu

27m2

2 + 56p′2

3 + 2100s2 ,m ∈ Z4

Table 3.5: Anomalies of SU(8), k = 4.

The theory admits many anomalies in Table 3.5. In addition, the theory admits
a Zdχ2 [CFU] anomaly, which yields a phase of π upon turning on a flux with, e.g.,
(m, p′, s) = (1, 0, 1

4), i.e., this is a Z4 ⊂ U(1)A flux. We also find that there is an
anomaly of Zdχ2 on a nonspin manifold, as the partition function acquires a phase
of π by turning on a pure Z(1)

2 flux on CP2.

In [35], it was argued that all the anomalies could be matched by condensing two
operators:

Ci1 = ψχi , Ci42 = ϵi1i2i3χ
i1χi2χi3χi4 . (3.82)

Let us review the anomaly matching using these two operators and comment on
why they cannot match the discrete anomalies.

Both operators Ci1 and Ci2 transform in the defining representation of SU(3) and
break it down to the anomaly-free SU(2) (it has no Witten anomalies because the
dimensions of the representations are even). Yet, the condensation of Ci1 or Ci2
leaves behind an unbroken SU(3) generator. We take Ci1 ∝ δi,1 and Ci2 ∝ δi,1 and
parametrize the SU(3) matrix that corresponds to the unbroken Cartan generator
of SU(3) as diag

(
ei4πα, e−i2πα, e−i2πα). Then, under SU(3)χ × U(1)A × Zdχ2 , the

operators transform as

Ci1 −→ ei4πα−i8πβ+inπCi1 , Ci2 −→ ei40πβ+i4παCi2 , (3.83)

where β corresponds to the U(1)A transformation, whereas n = 1 corresponds to
the Zdχ2 transformation. Taking α = − 5

24 , β = 1
48 , and n = 1 leaves Ci1 and Ci2

invariant under the combined transformations of SU(3)χ × U(1)A × Zdχ2 . This
superficially hints at an unbroken Z24 symmetry. However, owing to the modding
by Z4 in (3.81), the genuine unbroken subgroup is Z6. This unbroken symmetry
can be written as Z6 = Z2 ×Z3, where Z3 is a genuine subgroup of U(1)A. This can
be seen by setting n = 0, then we find that Ci1 and Ci2 are left invariant by taking
α = − 5

12 and β = 1
24 . Remembering the modding by Z4 in (3.81), we conclude

that there is a Z3 unbroken subgroup of U(1)A.
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3.5.2.2. SU(8), k = 2

It is straightforward to calculate the Z3 anomaly using (3.29) to find that it is
non-vanishing, meaning that the condensation of Ci1 and Ci2 is not enough to match
the complete set of anomalies. The way out is to consider the condensation of the
operator

C(ij)
3 = ψ2χ(iχj) , (3.84)

which transforms in the 2-index symmetric representation of SU(3)χ and breaks
it down to SO(3). U(1)A is broken to Z2, after taking into account the modding
by Z4 in (3.81). The Zdχ2 [CFU] anomaly is automatically matched as U(1)A is
broken down to Z2 (remember, however, that this Z2 is the fermion number since
both fermions carry odd charges under U(1)A, and the fermion number is gauged).
Recalling that we had to turn on a Z4 ⊂ U(1)A flux in the first place to see this
anomaly (a π phase), the breaking of U(1)A to a smaller subgroup than Z4 (in this
case Z2 ⊂ Z4) trivializes the anomaly. Thus, at this level, one does not need to
break Zdχ2 . This differs from the findings in [35], where it was argued that the CFU
anomaly is not trivial. Here, we arrive at a different IR condensate by scrutinizing
the discrete subgroups of U(1)A.

What about matching the anomaly of Zdχ2 on CP2? Since this anomaly is valued
in Z2, it can be matched by a TQFT on a nonspin manifold, as was argued in
[54]. Yet, another scenario is to form the condensate Ci1, which breaks Zdχ2 to unity
(remember that the Z(1)

2 1-form symmetry is unbroken assuming confinement).
Thus, the condensation of both Ci1 and C(ij)

3 match all anomalies and break the
global group down to SO(3), resulting in 2 vacua (because of the breaking of Zdχ2 )
connected via domain walls.

3.5.2.2 SU(8), k = 2

This case was also considered briefly in [35]. The theory admits 2 flavors of ψ
fermions and 6 flavors of χ fermions. The U(1)A charges of the fermions are

qψ = −9 , qχ = 5 . (3.85)

Since gcd(Nψ, Nχ) = 4, one may naively conclude that the discrete symmetry is
Z4. Yet, two elements of Z4 are identified with elements in Z2 ⊂ Z6, where Z6 is
the center of SU(6)χ. This leaves us with Zdχ2 as the genuine discrete group, which
we take to act solely on χ. The faithful global symmetry is

Gg = SU(2)ψ × SU(6)χ × U(1)A
Z4 × Z6

× Zdχ2 × Z(1)
2 . (3.86)

The UV theory has the ‘t Hooft anomalies in Table 3.6. The Zdχ2 [CFU] anomaly
does not provide new information. However, there is a non-trivial Zdχ2 [CFU]CP2

anomaly (a π phase) in the background of a CFU configuration with all fluxes
turned on, e.g., (m, p, p′, s) = (1, 1, 1,−5/12).
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3.5.2.3. SU(12), k = 4

Anomaly Equation Value
[SU(6)χ]3 dimχ 28
U(1)A[grav] 2(qψdimψ + qχdimχnχ) 384
Zdχ2 [grav] dimχnχ 336 (trivial)
U(1)A[SU(6)χ]2 qχdimχ 140
U(1)A[SU(2)ψ]2 qψdimψ −324
[U(1)A]3 q3

ψdimψ + q3
χdimχnχ −31488

Zdχ2 [SU(6)χ]2 dimχ 28 (trivial)
Zdχ2 [U(1)A]2 q2

ψdimψnψ + q2
χdimχnχ 4200 (trivial)

Table 3.6: Anomalies of SU(8), k = 2.

The condensation of the operator

Ci1 j = ψjχ
i (3.87)

break SU(2)ψ×SU(6)χ down to SU(2)×SU(4). The unbroken SU(4) is anomalous.

Another operator is

C[i1i2]
2 = ψ2χ[i1χi2] , (3.88)

which is neutral under SU(2)ψ ×Zdχ2 but transforms in the 2-index anti-symmetric
representation of SU(6) and breaks it down to the anomaly-free Sp(6)∗. In addi-
tion, the condensation of C[i1i2]

2 breaks U(1)A to the anomaly-free Z2, after taking
into account the modding by Z4 in (3.86). What about the Zdχ2 [CFU]CP2 anomaly?
Remember that one needs to turn on a configuration with U(1)A fux in Z12. Since
U(1)A breaks down to Z2, the anomaly trivilizes. Recall that this Z2 is the fermion
number since both fermions have odd charges under U(1)A, and that the fermion
number is gauged. Thus, the condensation of C[i1i2]

2 leaves behind the unbroken
SU(2)ψ×Sp(6)

Z2
× Zdχ2 subgroup and matches all anomalies†.

3.5.2.3 SU(12), k = 4

The number of flavors in this case is nψ = 2 and nχ = 4, and the U(1)A charges
are:

qψ = −10 , qχ = 7 . (3.89)

Since gcd(nχTχ, nψTψ) = gcd(40, 28) = 4, one may conclude that the theory is
endowed with a Z4 chiral symmetry that acts on χ. However, this Z4 is the center

∗Alternatively, one could propose the formation of a condensate transforming in the 2-index
symmetric representation of SU(6). This condensate, however, would break SU(6) down to SO(6),
resulting in a larger number of Goldstones.

†The symplectic group Sp(2N) has a Z2 center symmetry, see, e.g., [65]. This is why we
needed to mod by Z2 that is common between Sp(6) and SU(2)ψ.
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3.5.2.3. SU(12), k = 4

of the SU(4)χ flavor symmetry. Therefore, the theory does not possess a discrete
chiral symmetry. Solving the consistency conditions (3.14), we find that the faithful
global symmetry group is:

Gglobal = SU(2)ψ × SU(4)χ × U(1)A
Z3 × Z2 × Z2

× Z(1)
2 . (3.90)

This theory is endowed with the anomalies in Table 3.7. The theory does not
possess a Witten anomaly of SU(2)ψ since dimψ = 66 is an even number.

Anomaly Equation Value
[U(1)A]3 q3

χdimχnχ + q3
ψnψdimψ -65448

U(1)A[SU(2)ψ]2 qψdimψ -780
U(1)A[SU(4)χ]2 qχdimχ 462
[SU(4)χ]3 dimχ 66
U(1)A[grav] κu3 = qχdimχnχ + qψnψdimψ 576
U(1)A[CFU] qψ dimψ Qψ + qχ dimχ Qχ + κu3Qu 390p2 + 693

2 p′2 − 65448s2, p, p′ ∈ Z2

Table 3.7: Anomalies of SU(12), k = 4.

The 2-loop and the 3-loop β-functions predict fixed points at g2
∗

4π = 0.514 and 0.202,
respectively. Both values are large for the fixed points to be robust.

In searching for candidates that break the symmetries spontaneously, let us study
the bilinear condensate:

Cij = ϵa1...a12
(
f cµν

)a13

a2
σµνϵα1α2ψ

α1
j, (a1a13)χ

α2, i
[a3..a12] , j = 1, 2 , i = 1, 2, 3, 4, (3.91)

where, as usual, a1, a2, .. are color indices, α1, α2 are spinor indices, while j and i are
respectively SU(2)ψ and SU(4)χ indices. The transformation of Cij is noteworthy
as it occurs in the fundamental representation of SU(2)ψ and the anti-fundamental
representation of SU(4)χ. Consequently, upon condensation, it has the potential
to break down SU(2)ψ × SU(4)χ to SU(2)V × SU(2). This symmetry-breaking
pattern can be explained as follows [57].

To create an invariant potential for the 4 × 2 matrix Cij , we define the 4 × 4 matrix
Φi,i′ ≡

∑2
j=1 CijCi

′
j . By considering the effective potential as a trace over quadratic

and quartic terms of Φi,i′ , we might initially assume that we can transform to a basis
where Φi,i′ becomes a non-degenerate diagonal matrix. However, this assumption
leads to a contradiction because the 4×1 column vectors in Φi,i′ are dependent due
to the construction of Φi,i′ from a 4 × 2 matrix. In other words, Φi,i′ possesses two
zero eigenvalues. Hence, we conclude that we can only transform to a basis that
diagonalizes SU(2)ψ × (SU(2) ⊂ SU(4)χ). This results in the diagonal (vector-
like) matrix SU(2)V , while SU(4−2) = SU(2) ⊂ SU(4)χ remains unbroken. Both
SU(2)V and SU(2) ⊂ SU(4)χ are subgroups devoid of anomalies. The potential
anomaly, namely the Witten anomaly, does not afflict any of these subgroups.
The UV particle content ensures that the number of fermions transforming under
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3.5.2.4. SU(12), k = 8

SU(2)ψ and SU(2) ⊂ SU(4)χ is dimψ = 78 and dimχ = 66, respectively, both
of which are even numbers. Therefore, none of these groups can exhibit Witten
anomalies.

Moreover, due to the Z3 modding in (3.90), the axial symmetry U(1)A/Z3 identifies
a transformation phase α with α+ 2π

3 . The charge of the condensate Cij under U(1)A
is −3, leading to the breaking of U(1)A to unity. Hence, we conclude that the 2-
fermion condensate Cij successfully saturates all the anomalies and breaks the global
symmetry down to SU(2)V ×(SU(2)⊂SU(4)χ)

Z2
, where we mod by the Z2 common center

of both groups.

3.5.2.4 SU(12), k = 8

The number of flavors in this case is nψ = 1 and nχ = 2 and the U(1)A charges
are:

qψ = −10 , qχ = 7 . (3.92)

Given that r = gcd(nψTψ, nχTχ) = gcd(14, 20) = 2, we may conclude that the
theory has a Z2 discrete chiral symmetry. Yet, one can absorb this Z2 in the
center of SU(2)χ, leaving behind no genuine discrete symmetry. After solving the
consistency conditions, we find that the faithful global symmetry group is:

Gg = SU(2)χ × U(1)A
Z3 × Z2

× Z(1)
2 . (3.93)

The theory possesses the anomalies in Table 3.8. The potential Witten anomaly of

Anomaly Equation Value
[U(1)A]3 κu3 = q3

χdimχnχ + q3
ψdimψ −32724

U(1)A[SU(2)χ]2 qχdimχ 462
U(1)A[grav] qχdimχnχ + qψdimψ 288
U(1)A[CFU] qχ dimχ Qχ + κu3Qu 231p′2 − 32724s2, p′ ∈ Z2

Table 3.8: Anomalies of SU(12), k = 8.

SU(2)χ is absent because dimχ = 66 is an even number.

The 2-loop and 3-loop β-functions do not predict fixed points, and the theory needs
to break its symmetries spontaneously by forming condensates. The operator

Ci1 = ψχi , (3.94)

where the index i is the SU(2)χ flavor, breaks the global symmetry down to U(1).
To see that, let us fix the vacuum to be [1 0]T . Then, if a U(1) generator is left
unbroken by the vacuum, one should find a nontrivial solution to

exp
[
i2πβ

[
1 0
0 −1

]]
e−i6παI2×2

[
1
0

]
=
[

1
0

]
. (3.95)

56



3.5.2.5. SU(20), k = 8

It is easy to check that the solution β = 3α satisfies the above equation, which
is the unbroken U(1) direction. The unbroken U(1) symmetry inherits the UV
mixed U(1)A[grav] anomaly, and thus, condensing Ci1 is not enough to match the
anomalies.

Another operator that can condense is

C2 = ϵijψψχ
iχj , (3.96)

with possible insertions of gluon fields. The operator C2 is singlet under SU(2),
but it has a charge −6 under U(1)A. Because of the modding by Z3 in (3.93),
the condensation of C2 breaks U(1)A down to Z2, an anomaly-free subgroup. We
conclude that the condensation of C2 is enough to match the anomalies, a scenario
with the minimum number of Goldstones.

3.5.2.5 SU(20), k = 8

The number of flavors is nψ = 2 and nχ = 3, while the U(1)A charges are:

qψ = −27 , qχ = 22 . (3.97)

Since r = gcd(nψTψ, nχTχ) = (36, 66) = 2, we might conclude that the theory
possesse a Z2 chiral symmetry. However, this symmetry can be rotated way in
the following way. First, according to our choice, the would-be chiral symmetry
acts only on χ. Thus, (ψ, χ) −→ (ψ,−χ) under this Z2. Next, we apply a trans-
formation by (−1)F , which sends (ψ,−χ) −→ (−ψ, χ). Finally, we apply another
transformation by the center of SU(2)ψ, which sends (−ψ, χ) −→ (ψ, χ). This
shows that the theory does not possess a discrete chiral symmetry. Finding the
solutions to the consistency conditions, the faithful global symmetry group is:

Gglobal = SU(2)ψ × SU(3)χ × U(1)A
Z5 × Z2 × Z3

× Z(1)
2 . (3.98)

The anomalies of this theory are given in Table 3.9.

Anomaly Equation Value
[U(1)A]3 κu3 = q3

χdimχnχ + q3
ψdimψ −2197500

U(1)A [SU(2)ψ]2 qψnψdimψ −5670
U(1)A [SU(3)χ]2 qχnχdimχ 4180
[SU(3)χ]3 dimχ 190
U(1)A [grav] 2(qχdimχnχ + qψdimψ) 2400
U(1)A[CFU] qψ dimψ Qψ + qχ dimχ Qχ + κu3Qu −2835p2 + 8360

3 p′2 − 2197500s2

Table 3.9: Anomalies of SU(20), k = 8.

Since SU(2)ψ is an anomaly-free group, it does not need to break. The scenario
that gives the lowest number of Goldstones amounts to breaking SU(3)χ× U(1)A
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to an anomaly-free subgroup. This can be achieved by condensing

C(ij) = ψ2χ(iχj) , (3.99)

which is singlet under SU(2)ψ and transforms in the 2-index symmetric repres-
entation of SU(3) breaking it to SO(3). As before, this condensate also breaks
U(1)A to the anomaly-free subgroup Z2. Thus, the IR unbroken 0-form symmetry
is SU(2)ψ×(Z2⊂U(1)A)

Z2
× SO(3).

3.6 Summary

Theory Global Symmetries Condensate(s) IR Symmetries

SU(5), k = 1 SU(9)χ×U(1)A
Z5×Z9

ψχ9χ(iχj) SO(9) × (Z10 ⊂ U(1)A)

SU(6), k = 1 SU(2)ψ×SU(10)χ×U(1)A
Z3×Z2×Z5

× Zdχ4 — CFT

SU(6), k = 2 SU(5)χ×U(1)A
Z3×Z5

× Zdχ4 ψ2χ(iχj) SO(5) × (Z2⊂U(1)A)×(Z2⊂Zdχ4 )
Z2

SU(10), k = 2 SU(3)ψ×SU(7)χ×U(1)A
Z5×Z3×Z7

× Zdχ4 — CFT

SU(8), k = 2 SU(2)ψ×SU(6)χ×U(1)A
Z4×Z6

× Zdχ2 ψ2χ[iχj]
SU(2)ψ×Sp(6)

Z2
× Zdχ2

SU(8), k = 4 SU(3)χ×U(1)A
Z4×Z3

× Zdχ2 ψχi, ψ2χ(iχj) SO(3)

SU(12), k = 4 SU(2)ψ×SU(4)χ×U(1)A
Z6×Z2×Z2

ψiχ
j SU(2)V ×(SU(2)⊂SU(4)χ)

Z2

SU(12), k = 8 SU(2)χ×U(1)A
Z3×Z2

ϵijψ
2χiχj SU(2)χ×(Z2⊂U(1)A)

Z2

SU(16), k = 4 SU(3)ψ×SU(5)χ×U(1)A
Z8×Z3×Z5

× Zdχ2 — CFT

SU(20), k = 8 SU(2)ψ×SU(3)χ×U(1)A
Z5×Z2×Z3

ψ2χ(iχj)
SU(2)ψ×(Z2⊂U(1)A)

Z2
× SO(3)

SU(20), k = 4 SU(4)ψ×SU(6)χ×U(1)A
Z10×Z4×Z3

× Zdχ2 — CFT

SU(28), k = 8 SU(3)ψ×SU(4)χ×U(1)A
Z7×Z3×Z4

— CFT

SU(36), k = 8 SU(4)ψ×SU(5)χ×U(1)A
Z18

— CFT

SU(44), k = 8 SU(5)ψ×SU(6)χ×U(1)A
Z11×Z5×Z6

— CFT

Table 3.10: A summary of the 2-index chiral theories, their global symmetries, and
their IR realizations. Theories with N even also enjoy a Z(1)

2 1-form symmetry
acting on the Wilson lines. This symmetry is assumed to be unbroken in theories
that confine.

In this chapter, we exhaustively scrutinized the 2-index chiral gauge theories. By
studying the 2-loop and 3-loop β-functions, we could pinpoint a few theories that
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3.6. Summary

may flow to an IR CFT. Theories that do not admit a fixed point break its global
symmetries. We considered scenarios that give the minimal number of IR Gold-
stones, as this lowers the free energy of the theory. We paid particular attention
to the anomaly-matching conditions and ensured that the condensates match any
discrete subgroup of U(1)A. Our theories, their global symmetries, the proposed
IR phase condensates, and the unbroken IR symmetries are shown in Table 3.10.
The first 4 theories are fermionic, while the rest are bosonic.

This investigation included a closer examination of the CFU anomalies one of the
authors studied in the previous work [35], giving a better interpretation of this class
of anomalies in the light of the discrete-anomaly matching conditions. The general
finding is that matching the full set of anomalies and, in particular, the anomalies
of the discrete subgroups of the axial U(1)A symmetry necessitates the formation
of multiple higher-order condensates. One expects such higher-order condensates
to form in strongly-coupled theories. Here, their formation is explained via the
constraints of the anomaly-matching conditions. We also employed a systematic
approach to search for massless composite fermions that could match the anomalies
in the case of fermionic theories. We were not able to find such composites. In
one case, we used the CFU anomaly to show that a set of composites cannot solely
match this anomaly, hinting at a deeper reason why the composites could not be
found.

This chapter provides a systematic approach that can be applied to study other
classes of strongly-coupled phenomena, including different chiral gauge theories.
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Chapter 4
Noninvertible symmetries and

anomalies from gauging 1-form
electric centers

4.1 Introduction

In the previous chapter, we studied anomalies arising from generalized gauge back-
grounds and their restrictions on the IR physics. The presence of fractionalized
backgrounds, however, has further implications. In particular they imply the pres-
ence of non-invertible symmetries. Over the last couple of years, symmetries have
expanded their domain to encompass operators that defy the conventional notion of
inversion. These are known as noninvertible symmetries. While noninvertible sym-
metries initially found their roots and applications in the realm of 2-dimensional
QFT, see, e.g., [66, 67], their significance in the context of 4-dimensional QFT
sparked a deluge of research endeavors in this area (a non-comprehensive list is
[68, 69, 70, 71, 72, 73, 74, 22, 23, 75, 76, 77, 78, 79, 24, 80, 81, 82, 83, 84, 85, 86,
87, 88, 89, 90, 91, 92, 93, 94, 95]. Also, see [96, 11] for reviews.)

It is well known that quantum electrodynamics has a classical U(1)χ axial symmetry
that breaks down because of the Adler–Bell–Jackiw (ABJ) anomaly. However, it
was realized in [22, 23] that the axial symmetry does not completely disappear.
Instead, it resurfaces as a noninvertible symmetry for each fractional element of
the classical U(1)χ. This profound reinterpretation of symmetries prompted a com-
pelling quest to unearth analogous structures in QFT. [97] established a technique
for unveiling noninvertible 0-form symmetries within SU(N) × U(1) gauge theor-
ies in the presence of matter in representation R. This approach employed the
Hamiltonian formalism, where the theory was put on a three-dimensional torus
T3, subjecting it to ZN magnetic twists along all three spatial directions. Taking
the matter to be a single Dirac fermion, this theory is endowed with invertible
Zχ2gcd(TR,dR) 0-form chiral symmetry, where TR and dR are the Dynkin index and
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4.1. Introduction

dimension of R, respectively. Yet, it was shown that the theory also possesses a
noninvertible Z̃χ2TR

0-form chiral symmetry. Such symmetry acts on the Hilbert
space projectively by selecting special sectors characterized by certain magnetic
numbers. New noninvertible symmetries were also revealed in [98] in theories with
mixed anomalies between Z(1)

2 1-form and 0-form discrete chiral symmetries.

The topological essence of symmetries, encompassing the noninvertible variants,
underscores their sensitivity to the global structure of the gauge group. Con-
sequently, the inquiry arises: how do we identify these noninvertible symmetries
within a general gauge group, characterized as either SU(N)/Zp or SU(N) ×
U(1)/Zp where Zp is a subgroup of the center symmetry? In this chapter, we
answer this question by devising a general method that applies to any theory with
a direct multiplication of abelian and semi-simple nonabelian gauge groups quo-
tiented by a discrete center, whether the theory is vector-like or chiral. This is
achieved by putting the theory on T3 and turning on magnetic fluxes in a refined
subgroup of ZN , depending on the matter content as well as the global structure
of the gauge group.

In the context of SU(N) gauge theory, the introduction of matter characterized
by an N -ality n has the effect of breaking the ZN center of the group down to a
subgroup Zq, where q is the greatest common divisor (gcd) of N and n. Our focus
is on understanding the noninvertible 0-form symmetries present in the SU(N)/Zp
gauge theories, where Zp is a subgroup of the remaining center Zq. These the-
ories exhibit both electric Z(1)

q/p and magnetic Z(1)
p 1-form global symmetries∗. To

identify the noninvertible symmetries, we initiate the process starting from SU(N)
theory endowed with a single Dirac fermion in representation R, which possesses
an invertible Zχ2TR

chiral symmetry. We then subject this theory to electric and
magnetic twists characterized by elements of Zp. If the theory exhibits a mixed
anomaly between its chiral and electric Z(1)

p 1-form symmetries, the act of gauging
Zp effectively reveals the chiral symmetry as noninvertible. The construction of
a gauge-invariant operator corresponding to the noninvertible symmetry Z̃χ2TR

in-
volves several steps. First, we create a topological operator by integrating the
anomalous current conservation law over T3. The resulting operator is not in-
variant under Zp gauge transformations. Yet, we can restore gauge invariance by
summing over all possible Zp gauge-transformed operators. This process results
in a noninvertible chiral symmetry operator that projects onto specific sectors in
the Hilbert space, each characterized by certain ’t Hooft lines charged under the
magnetic Z(1)

p 1-form symmetry. Z̃χ2TR
can exhibit further anomalies when subjec-

ted to twists by the electric Z(1)
q/p 1-form symmetry, implying that states within the

Hilbert space of the SU(N)/Zp gauge theory will display multiple degeneracies.

We employ a similar approach to identify noninvertible symmetries in SU(N) ×
∗There are p distinct theories (SU(N)/Zp)n, where n = 0, 1, .., p − 1 are the discrete θ-like

parameters [99]. These theories differ by the set of compatible line operators (Wilson, ’t Hooft,
and dyonic operator). Here, we restrict our analysis to n = 0.

61



4.1. Introduction

U(1)/Zp gauge theories, where Zp is a subgroup of the electric Z(1)
N 1-form center

symmetry. Unlike in SU(N) theories, the introduction of matter does not reduce
the ZN center. This is due to the presence of an abelian U(1) sector, which ensures
that all matter representations adhere to the cocycle condition. In addition to
the 1-form electric center symmetry, this theory is also endowed with a magnetic
U

(1)
m (1) 1-form symmetry. SU(N) gauge theory with matter exhibits an anom-

aly between its chiral and U(1) baryon-number symmetries. Gauging the latter
transforms the theory into an SU(N) × U(1) gauge theory and reveals the chiral
symmetry Z̃χ2TR

as noninvertible. Placing the theory on T3 enables us to construct
the corresponding noninvertible chiral operator by summing over large U(1) gauge
transformations with distinct winding numbers. Furthermore, since the theory
exhibits a 1-form electric center symmetry, we can decorate the noninvertible op-
erator with ZN magnetic twists. If we choose to further gauge a Z(1)

p subgroup
of the electric Z(1)

N symmetry, thereby resulting in the SU(N) × U(1)/Zp theory,
we must ensure that the noninvertible operator remains invariant under Zp gauge
transformation. This is accomplished by summing over all Zp gauge-transformed
chiral operators. Once again, we discover that the resultant operator projects onto
specific sectors within the Hilbert space, distinguished by the presence of ’t Hooft
lines charged under U (1)

m (1). The noninvertible symmetry also exhibits a mixed
anomaly with the remaining electric Z(1)

N/p global symmetry. The anomaly implies
that certain sectors of the theory, designated by certain Z(1)

N/p electric fluxes, exhibit
multi-fold degeneracy.

Placing the theory on T3 offers a distinct advantage: it presents a systematic
approach for computing the ’t Hooft anomalies inherent to a given theory. Sim-
ultaneously, it provides a means to construct the Hilbert space explicitly. In this
chapter, we put a significant emphasis on this Hilbert space construction, shedding
light on the intricate relationship between Wilson lines, ’t Hooft lines, and the non-
invertible operator. Specifically, through several illustrative examples, we showcase
how the noninvertible chiral operator, within the framework of the Hilbert space
and Hamiltonian formalism, acts to annihilate the minimal ’t Hooft lines.

We also introduce couplings of gauge theories to axions. The underlying renormal-
ization group invariance of the noninvertible symmetries, along with their associ-
ated anomalies, guarantees that the infrared (IR) axion physics faithfully inherits
all the characteristics of the theory at the ultraviolet (UV) level. We substanti-
ate this by explicitly constructing noninvertible chiral operators, commencing from
the IR anomalous axion current conservation law. In our exploration, we offer con-
crete illustrations of various UV theories and their corresponding IR axion physics
manifestations.

This chapter is organized as follows. In Section 4.2, we provide a concise overview
of the essential elements required for the development of noninvertible symmet-
ries. This section encompasses the introduction of our notation, a review of the
path-integral formalism on the 4-torus (T4), ’t Hooft twists, and the Hamiltonian
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formalism on T3. Moving on to Section 4.3, we proceed to construct noninvertible
symmetries within the context of SU(N)/Zp theories while also identifying their
associated anomalies. This section concludes with the presentation of specific ex-
amples of noninvertible symmetries in both vector and chiral gauge theories. In
Section 4.4, we replicate the same analysis, this time focusing on SU(N)×U(1)/Zp.
Two examples are discussed, including the Standard Model (SM), and we demon-
strate that the SM lacks noninvertible symmetries within its non-gravitational sec-
tor. Finally, this chapter culminates in Section 4.5, where we explore the coupling
of gauge theories to axions. We show that noninvertible symmetry operators can
also be constructed using the axion anomalous current.

4.2 Preliminaries

In this section, we review the path integral and the Hamiltonian formalisms of gauge
theories put on a compact manifold with possible ’t Hooft twists, both in space
and time directions. Additionally, we examine the global symmetries and anomalies
in both formalisms, providing an exploration of these key aspects. We base our
formalism and notation on [18, 100, 19, 97], and set the stage for constructing the
noninvertible operators we carry out in the subsequent sections. While some results
in this section are new, many are a mere review of previous results. Moreover,
some details are avoided, referring the reader to the literature for an in-depth
discussion. Yet, the information encapsulated here is necessary to make this chapter
self-contained.

4.2.1 Twisting in the Path integral

Pure SU(N) theory

We will consider SU(N) pure Yang-Mills (YM) theory on T4, where T4 is a 4-
torus with periods of length Lµ, µ = 1, 2, 3, 4, with ’t Hooft twists labelled by nµν
(see section 2.1.3). It will be useful to break nµν into spatial (magnetic) mi and
temporal (electric) ki twists:

ki ≡ ni4 , nij ≡ ϵijkmk , (4.1)

and i, j = 1, 2, 3 or x, y, z. We also use bold-face letters, e.g., k ≡ (k1, k2, k3), to
denote 3-dimensional vectors. When applied to the gauge fields on T4, the twists
induce a background with fractional topological charge [18]:

Q = 1
8π2

∫
T4

tr[f c ∧ f c] = − 1
8N ϵµναβnµνnαβ + Z = k · m

N
+ Z , (4.2)

where f c is the field strength of ac. Notice that the twists (m,k) ∈ (ZModN)6.
Adding multiples of N to m or k leaves the cocycle condition intact. However, this
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4.2.1. Twisting in the Path integral

has the effect of changing the topological charges by integers. Hence, from here
on, we shall take the twists mi, ki ∈ Z, not ModN . The partition function of the
SU(N) gauge theory with given twists (m,k) is

Z[m,k]SU(N) =
∑
ν∈Z

∫ [
Dacµ

]
(m,k)

e−SYM−i( k·m
N

+ν)θ . (4.3)

Here, SYM is the YM action, and the subscript (m,k) indicates that the path
integral is to be performed with a given set of twisted boundary conditions. Sum-
mation over the integer-valued topological sectors, ν ∈ Z, is necessary so that the
theory satisfies locality (cluster decomposition). ∗

SU(N) theory with matter

Next, we add matter fields in a representation R under SU(N). The matter repres-
entation has N -ality n. Then, the full ZN center breaks down to Zq, q = gcd(N,n),
i.e., the Wilson lines are charged under Z(1)

q 1-from center symmetry†. Putting the
matter, which, from now on, will be assumed to be fermions, on T4 modifies the
cocycle conditions. Let ψ be a left-handed Weyl fermion transforming under R of
SU(N). Then, the fermion obeys the boundary conditions

ψ(x+ êµLµ) = R(Ωµ(x))ψ(x) . (4.4)

The matrix R(Ωµ(x)) is built from Ωµ, transforming in the defining representation
of SU(N), with suitable symmetrization or anti-symmetrization over n indices (the
N -ality of the representation) according to the specific representation R. Thus,
schematically (ignoring symmetrization over indices)

R(Ωµ) ∼ Ωµ...Ωµ︸ ︷︷ ︸
n

. (4.5)

R(Ωµ) must satisfy the cocycle condition

R(Ωµ(x+ êνLν)) R(Ων(x)) = R(Ων(x+ êµLµ)) R(Ωµ(x)) , (4.6)

which, via Eq. (2.36), reveals that the allowed values of the twists m and k are
N
q ,

2N
q , .... Twisting by the center subgroup Zq induces a background field with

fractional topological charge

Q = m · k

N
+ Z , m,k ∈ N

q
Z , (4.7)

∗We can also preserve locality if we sum over topological sectors that are fixed multiples of
some integer k, i.e. ν ∈ kZ, see [101, 102] for details. In the rest of this chapter we will take ν ∈ Z
for simplicity.

†For example, SU(2M) gauge theory with matter in the 2-index (anti)symmetric representa-
tion has a Z(1)

2 center symmetry that acts on Wilson lines.

64



4.2.1. Twisting in the Path integral

and the partition function in the presence of matter reads

Z[m,k]SU(N)+matter =
∑
ν∈Z

∫
{
[
Dacµ

]
[Dmatter]}(m,k)e

−SYM−Smatter−i( k·m
N

+ν)θ ,

mi, ki ∈ N

q
Z , i = 1, 2, 3 . (4.8)

In the presence of matter, the theory is endowed with classical nonabelian and
abelian flavor symmetries. The U(1) baryon-number symmetry survives the quantum
corrections. In contrast, the chiral part of the abelian symmetry, denoted by U(1)χ,
will generally break down to a discrete symmetry because of the Adler–Bell–Jackiw
(ABJ) anomaly of U(1)χ in the background of color instantons (which have integer
topological charges). To fix ideas, we consider a single flavor of a Dirac fermion
with classical U(1) baryon number and U(1)χ chiral symmetries. We take the U(1)
baryon charge of the Dirac fermion to be +1. The ABJ anomaly breaks U(1)χ
down to invertible Zχ2TR

chiral symmetry, where TR is the Dynkin index of the
representation. Generalizing the theory to include many flavors is straightforward,
and we shall work out examples of this sort later in the chapter. In the presence
of the twists (m,k), there can be an anomaly of Zχ2TR

in the background of Z(1)
q .

The anomaly is a non-trivial phase acquired by Z[m,k]SU(N)+matter as we apply a
transformation by an element of Z2TR :

Z[m,k]SU(N)+matter|ki,mi∈NZ/q −→ ei2πℓ
m·k
N Z[m,k]SU(N)+matter , (4.9)

and ℓ = 0, 1, 2, .., TR − 1 are the elements of Zχ2TR
. For the smallest twists mj =

kj = N
q in the j-th direction, we obtain [103]

Z[m,k]SU(N)+matter|m3=k3=N
q

−→ e
i2πℓ N

q2 Z[m,k]SU(N)+matter . (4.10)

Bearing in mind that N/q ∈ Z, we can generally absorb the integral part of N/q2

by adding an integer topological charge, which cannot change the anomaly. Never-
theless, we will retain the phase as indicated in Eq. (4.10). The phase is nontrivial,
and hence there is an anomaly, if and only if ℓN

q2 ̸∈ Z. In the next section, we show
how to obtain the same anomaly using the Hamiltonian formalism.

We can do more regarding turning on fractional fluxes in SU(N) with matter.
Instead of limiting ourselves to Zq twists, we can twist with the full ZN center
symmetry or any subgroup of it provided we also turn on backgrounds of U(1)
baryon number symmetry [20, 103]. Let ωµ denote the U(1) transition functions
such that for the U(1) gauge field aµ, we have aν(x + êµ) = ωµ ◦ aν(x) ≡ aν(x) −
iω−1
µ ∂νωµ. Then, Ωµ and ωµ obey the cocycle conditions:

Ωµ(x+ êνLν) Ων(x) = ei
2πnµν
N Ων(x+ êµLµ) Ωµ(x) ,

ωµ(x+ êνLν) ων(x) = e−i 2πnnµν
N ων(x+ êµLµ) ωµ(x) , (4.11)
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where the N -ality of the matter representation is incorporated in the abelian trans-
ition functions. The topological charges of both the nonabelian center and abelian
backgrounds read∗

QSU(N) = m · k

N
+ Z , Qu =

(
n

N
m + A

)
·
(
n

N
k + B

)
, m,k,A,B ∈ Z3 .

(4.12)

Here, A,B are arbitrary integral magnetic and electric quantum numbers that we
can always turn on since they leave the cocycle condition intact.

SU(N) × U(1) theory with matter

We may also choose to make U(1) dynamical, which entails summing over small
and large gauge transformations of U(1), with the latter implementing integer
winding. This results in SU(N) × U(1) gauge theory with a Dirac fermion in
representation R, with N -ality N and baryon-charge +1. In this case, the U(1)
instantons reduce Zχ2TR

down to the genuine (invertible) symmetry Zχ2gcd(TR,dR),
and dR is the dimension of R. The easiest way to see that is by recalling the
partition function under a U(1)χ transformation acquires a phase:

exp
[
i2αTR

∫
T4

tr (f c ∧ f c)
8π2 + i2αdR

∫
T4

f ∧ f

8π2

]
, (4.13)

where f is the field strength of the U(1) field. Recalling that for the dynamical
SU(N) and U(1) fields we have

∫
T4

tr(fc∧fc)
8π2 ∈ Z,

∫
T4

f∧f
8π2 ∈ Z, we conclude that

only Zχ2gcd(TR,dR) survises the chiral transformation. The theory admits Wilson
lines:

Wµ ,SU(N) = tr□
[
Pe

i
∫ xµ=Lµ
xµ=0 acµΩµ

]
, Wµ ,U(1) = e

−i
∫ xµ=Lµ
xµ=0 aµ

ωµ , (4.14)

which are charged under an electric Z(1)
N 1-form center symmetry. In addition, the

theory is endowed with a magnetic U (1)
m (1) 1-form symmetry because of the absence

of magnetic monopoles. For the sake of completeness, we also give the partition
function of SU(N) × U(1) theory with matter in the background of given (m,k)
fluxes:

Z[m,k]SU(N)×U(1)+matter

=
∑

ν,νU(1)∈Z

∫
{
[
Dacµ

]
[Daµ] [Dmatter]}(m,k)e

−SYM−SU(1)−Smatter

mi, ki ∈ Z , i = 1, 2, 3 (4.15)
∗Here, we use the construction described in 2.1.3 along with abelian field strengths f12 =

2π
L1L2

( n
N
m3 +A3) and f34 = 2π

L3L4
( n
N
k3 +B3) in the 1-2 and 3-4 planes, and similar expressions in

the rest of the planes. Substituting into Qu =
∫
T4

f∧f
8π2 , we obtain the fractional U(1) topological

charge.
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and in addition to the SU(N) integer topological charges ν, we included a sum
over integer topological charges νU(1) of the U(1) sector.

4.2.2 Twisting in the Hamiltonian formalism

Pure SU(N) theory

Let us repeat the above discussion using the Hamiltonian formalism, starting with
pure SU(N) YM theory (we use a hat to distinguish an operator in this section.)
To this end, we put the gauge theory on a spatial 3-torus T3 and apply the magnetic
m twists along the 3-spatial directions. The transition functions in the defining
representation along the spatial directions, denoted by Γi, can be chosen to be
constant N ×N matrices obeying the cocycle condition

Γi Γj = ei
2πϵijkmk

N Γj Γi . (4.16)

Then, one can construct the states of the physical Hilbert space using the temporal
gauge condition ac0 = 0. The states can be written using the “position" eigenstates
of the gauge fields acj , j = 1, 2, 3 (or i = x, y, z) as follows:

|ψ⟩m ≡ |ac1, ac2, ac3⟩m , âcj |ac1, ac2, ac3⟩m = acj |ac1, ac2, ac3⟩m , (4.17)

and the subscript m emphasizes that the Hilbert space is constructed in the back-
ground of the magnetic twists. In writing Eq. (4.17), we have put many details
under the rug, and the reader is referred to [18, 100, 19] for details. For example,
notice that the gauge fields Ai need to respect the twisted boundary conditions
(4.16), i.e., they transform according to (2.35) as we traverse any spatial direction
on T3. The theory admits 3 fundamental Wilson lines wrapping the three cycles of
T3; these are given by (2.37) by restricting µ to the spatial directions. The Wilson
lines are charged under the Z(1)

N 1-form symmetry generated by three symmetry
generators T̂j , the Gukov-Witten operators, supported on co-dimension 2 surfaces.
Thus, we have

T̂jŴj = ei
2π
N Ŵj T̂j , (4.18)

and there are Ŵ ej
j distinct Wilson lines with N distinct N -alities ej = 0, 1, .., N−1.

The center-symmetry generators T̂i are hard to construct explicitly. However, their
explicit form is not important to us. What is important is that they commute with
the YM Hamiltonian Ĥ, and thus, Ĥ and T̂i can be simultaneously diagonalized.
The physical states of the theory |ψ⟩phy ,m are designated by the eigenvalues of T̂i.
It can be shown that the action of T̂i on |ψ⟩phy ,m is given by

T̂j |ψ⟩phy ,m = ei
2π
N
ej−iθ

mj
N |ψ⟩phy ,m , (4.19)

where ej ,mj ∈ ZN and the θ term ensures that T̂Ni |ψ⟩phy ,m = e−iθmj |ψ⟩phy ,m, and
hence, T̂Ni works as a large gauge transformation. The combination ej − θ

2πmj is
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4.2.2. Twisting in the Hamiltonian formalism

the ZN electric flux in the j-th direction. This is justified as follows. Consider the
state Ŵj |ψ⟩phy ,m, obtained from |ψ⟩phy ,m by the action of Ŵj . Using Eqs. (4.18,
4.19), we find T̂jŴj |ψ⟩phy ,m = ei

2π
N

(ej+1)−iθ
mj
N Ŵj |ψ⟩phy ,m. Therefore, acting with

Ŵj on the state |ψ⟩phy ,m increases ej by one unit in the j-th direction. Since Ŵj

inserts an electric flux tube winding in the j-th direction, the interpretation of ej
as electric flux follows. Notice also that because T̂j and Ĥ can be simultaneously
diagonalized, we may label the states by the energy and the electric flux:

|ψ⟩phy ,m ≡ |E, e⟩m , e ∈ Z3
N . (4.20)

It is worth spending some time to explain our notation in Eq. (4.20), as we shall
use this notation extensively in this chapter. The physical state is labeled by the
eigenvalues of a set of commuting operators, here the energy and the electric flux.
The SU(N) theory does not admit a 1-form magnetic symmetry, and thus, we
cannot label the states by magnetic fluxes. Yet, we can turn on a background
magnetic flux m, indicated as a subscript; all physical quantities are calculated in
this magnetic background. Also, we use the letter m to denote the set of magnetic
fluxes we can consistently turn on. Here, we have m ∈ Z3.

How can we make sense of the fractional topological charge (4.7) on T3? We
consider the product of T3 and the time interval [0, L4] and consider the boundary
conditions âci (t = L4) = C[k] ◦ âci (t = 0), where C[k] is an “improper gauge"
transformation implementing a twist k ∈ Z3 on the gauge fields by an element of
the center∗. In the presence of the magnetic twists m, it can be shown that an
application of C[k] results in the topological charge (Pontryagin square) [18, 100,
19]:

Q[C[k]] =
∫
T3
K(C ◦ âc) −K(âc) = 1

24π2

∫
T3

tr
[
CdC−1

]3
= m · k

N
+ Z , (4.21)

where K(âc) is the topological current density operator
K(âc) = 1

8π2 tr
[
âc ∧ f̂ c − i

3 â
c ∧ âc ∧ âc

]
, or in terms of the components: K̂µ(ac) =

1
16π2 ϵ

µνλσ
(
âc,mν ∂λâ

c,m
σ − 1

3f
mpqâc,mν âc,pλ âc,qσ

)
.

SU(N) theory with matter

Adding fermions of N -ality n changes the center from ZN to Zq, q = gcd(N,n),
and the twists (m,k) are now in (NZ/q)6. Otherwise, all the steps used to put the
theory on T3 and construct the Hilbert space carry over. In particular, T̂i now are
the generators of the Z(1)

q 1-form symmetry, and their action on the physical states
in the Hilbert space is given by† (now we turn off the θ angle as we can rotate it

∗In fact, C should be designated by both k and the integral instanton number ν; see [18].
However, ν does not play a role in this section.

†It is conceivable to introduce an additional label to signify the distinct symmetries generated
by different operators T̂j . For instance, we could designate T̂N,j as the generator of Z(1)

N and
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4.2.2. Twisting in the Hamiltonian formalism

away via a chiral transformation acting on the fermion)

T̂j |ψ⟩phy ,m = e
i 2π
q
ej |ψ⟩phy ,m , (4.22)

and the theory has ej = 0, 1, 2, .., q − 1 electric flux sectors in each direction
j = 1, 2, 3. The operators T̂j act on the spatial Wilson lines in the defining repres-
entation of SU(N) as T̂jŴj = e

i 2π
q Ŵj T̂j , and there are q distinct Wilson lines W ej

j .
The physical states |ψ⟩phy ,m are simultaneous eigenstates of the Hamiltonian and
T̂j since both operators commute. Thus, we can write the physical states in the
magnetic flux background m ∈ (NZ/q)3 as

|ψ⟩phy ,m = |E, eN/q⟩m , e = (e1, e2, e3) ∈ Z3
q , (4.23)

and Nej/q is the amount of electric flux carried by the state in direction j. We
may also say that ej is the number of electric fluxes in units of N/q. For matter
with N -ality n = 0, e.g., in the adjoint representation, q = N and we recover what
we have said about pure SU(N) gauge theory.

The partition function (4.8) can be written in the Hamiltonian formalism as a trace
over states in Hilbert space:

Z[m,k]SU(N)+matter = trm

[
e−L4Ĥ(T̂x)kx(T̂y)ky(T̂z)kz

]
=

∑
e∈{0,1,..,q−1}3

e
i 2πe·k

q m⟨E, eN/q|e−L4Ĥ |E, eN/q⟩m ,(4.24)

where the subscript m in the trace means that we are considering the states in the
background of the magnetic flux m ∈ (NZ/q)3. We also used Eqs. (4.22, 4.23),
the fact that the states are eigenstates of both the energy and the 1-form center
operators.

To detect the anomaly between Zχ2TR
and Z(1)

q in the Hamiltonian formalism, we
first define the operator that implements the discrete chiral symmetry. To this end,
we recall that under a chiral U(1)A rotation, the presence of the ABJ anomaly
indicates non-conservation of the corresponding symmetry rotation:

∂µĵ
µ
A = 2TR∂µK̂

µ(ac) . (4.25)

Yet, we can define a conserved current:

ĵµ5 ≡ ĵµA − 2TRK̂
µ , (4.26)

and correspondingly a conserved charge:

Q̂5 =
∫
T3
Ĵ0

5 . (4.27)

T̂q,j as the generator of Z(1)
q . Nonetheless, this approach may lead to increased complexity in

our expressions, and we opt not to pursue it. Instead, we will explicitly specify the symmetry in
question when discussing these distinct operators.
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4.2.2. Twisting in the Hamiltonian formalism

Therefore, it is natural to define the operator

ÛZ2TR ,ℓ ≡ exp
[
i

2πℓ
2TR

Q̂5

]
= exp

[
i

2πℓ
2TR

∫
T3

(ĵ0
A − 2TRK̂

0(âc))
]
, (4.28)

for ℓ = 0, 1, .., TR − 1, which implements the action of the Zχ2TR
chiral symmetry.

ÛZ2TR
is invariant under both small and large SU(N) gauge transformations (with

integer winding). To find the mixed anomaly between Zχ2TR
and Z(1)

q , we compute
the commutation between T̂j , which implements the action of the electric center
symmetry in the j-th direction, and ÛZ2TR

:

T̂jÛZ2TR ,ℓT̂
−1
j , (4.29)

remembering that the theory is in the background of a magnetic twist mj ∈ NZ
q

in the j-th direction∗. First, T̂j commutes with the current j0
A since the latter is

a color singlet operator. However, K̂0 fails to commute with T̂j ; the commutation
between the two operators is found by recalling that the action of T̂j is implemented
on the gauge fields âcj as âcj = C[kj ] ◦ âcj . Thus, we find, after making use of (4.21),

T̂j exp
[
i2πℓ

∫
T3
K̂0(âc)

]
T̂−1
j

= exp
[
i2πℓ

∫
T3
K̂0 (C[kj ] ◦ âc) − K̂0(âc)

]
exp

[
i2πℓ

∫
T3
K̂0(âc)

]
= exp

[
i2πℓmjkj

N

]
mj ,kj∈

(
NZ
q

)2
exp

[
i2πℓ

∫
T3
K̂0(âc)

]
, (4.30)

noting the restriction mj , kj ∈
(
NZ
q

)2
due to the presence of matter; otherwise,

we would not satisfy the cocycle condition. Collecting everything and using the
minimal twists mj = kj = N

q we conclude

T̂jÛZ2TR ,ℓT̂
−1
j = e

i2πℓ N
q2 ÛZ2TR ,ℓ , (4.31)

which is exactly the mixed anomaly between the Zχ2TR
chiral and the Z(1)

q 1-form
center symmetries found in (4.10) from the path integral formalism. The anomaly
along with the commutation relations (remember that both Z(1)

q and Zχ2TR
are good

symmetries of the theory, and hence, the corresponding operators commute with
the Hamiltonian)

[Ĥ, T̂j ] = 0 , [Ĥ, ÛZ2TR
] = 0 , (4.32)

furnishes a finite-dimensional space with a minimum dimension of q2/gcd(q2, N).
This means that sectors in Hilbert space exhibit a q2/gcd(q2, N)-fold degeneracy.

∗Similar to the Footnote †, we could use a label that denotes the specific magnetic flux back-
ground when we are dealing with the operator ÛZ2TR ,ℓ. This background can be taken in sets
such as NZ

q
or NZ

p
, among others. However, adopting this approach may introduce unnecessary

complexity to our notation. As a result, we have chosen to adopt a more transparent approach:
we will explicitly mention the magnetic flux background whenever we discuss this operator.
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SU(N) × U(1) theory with matter

Next, we discuss the Hamiltonian quantization of SU(N)×U(1) gauge theory with
matter fields on T3 in the background of twists. In this case, we may twist with the
full ZN center symmetry provided we also turn on a background of U(1). Thus,
we replace the cocycle conditions (4.16) with

Γi Γj = ei
2πϵijkmk

N Γj Γi ,

ωi(x+ êjLj) ωj(x) = e−i
2πnϵijkmk

N ωj(x+ êiLi) ωi(x) , (4.33)

and we included the N -ality of the matter representation n in the cocycle condi-
tion of the abelian field. This guarantees that the combined transition functions
satisfy the correct cocycle conditions in the presence of matter. Here, we can
allow background center fluxes with (m,k) ∈ Z6 for all matter representations,
thanks to the U(1) gauge group. We also introduce the operators T̂j for SU(N)
and t̂j for U(1), j = 1, 2, 3. The combinations T̂j t̂j are the generators of the elec-
tric Z(1)

N 1-form global symmetry and act on the spatial Wilson lines in (4.14) as:
T̂jWj,SU(N) = ei

2π
N Wj,SU(N)T̂j and t̂jWj,U(1) = e−i 2π

N Wj,U(1))t̂j . The action of t̂j is
implemented on the gauge fields, as usual, by improper gauge transformations of
âj as âj = c[kj ] ◦ âj , and amounts to applying nkj (Mod N) electric twists (notice
the appearance of the N -ality). Unlike T̂j , the explicit form of t̂j is simple:

t̂j ≡ eiλj(x) , λj(x) = −2πn
N

xjkj
Lj

. (4.34)

Since Z(1)
N is a good global symmetry, we can choose the states in Hilbert space to

be eigenstates of the Z(1)
N generators T̂j t̂j :

T̂j t̂j |ψ⟩phy ,m = ei
2πej
N |ψ⟩phy ,m , (4.35)

where ej = 0, 1, ..., N −1. Notice that the states are constructed in the “fractional"
background magnetic flux m ∈ Z3 (remember that in principle mi ∈ Z Mod N ,
and thus, it implements the fractional magnetic twist. However, we can always
add multiples of N to mi without affecting the cocycle conditions, and hence, we
drop the Mod N restriction.) In addition, the theory has a magnetic U(1)(1)

m 1-
form global symmetry, which can be used to characterize the physical states by
an “integer" value of the magnetic flux. Therefore, a state in the physical Hilbert
space can be labeled as

|ψ⟩phy ,m = |E, e,N⟩m , e ∈ Z3
N , (4.36)

and N = (Nx, Ny, Nz) ∈ Z3 (not Mod N) label the integral magnetic fluxes of the
U(1) gauge group. The partition function (4.15) can be written as a trace over
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4.2.2. Twisting in the Hamiltonian formalism

states in Hilbert space in (m,k) backgrounds as follows:

Z[m,k]SU(N)×U(1)+matter = trm

[
e−L4Ĥ(T̂xt̂x)kx(T̂y t̂y)ky(T̂z t̂z)kz

]
=

∑
e∈{0,1,..,N−1}3,N∈Z3

ei
2πe·k
N m⟨E, e,N |e−L4Ĥ |E, e,N⟩m .

(4.37)

We also build the operator that corresponds to the chiral transformation. This
construction was detailed in [97], and we do not repeat it here. Instead, we only
give a synopsis of the derivation, which is needed in this study. The anomaly
equation of the chiral current is

∂µĵ
µ
A − 2TR∂µK̂

µ(âc) − 2dR
8π2 ϵµνλσ∂

µâν∂λâσ = 0 . (4.38)

Then, the chiral symmetry operator in the background of the mj magnetic flux is
given by

ÛZ2TR ,ℓ = exp
[
i

2πℓ
2TR

Q̂5

]
, (4.39)

where the conserved charge Q̂5 is given by

Q̂5 =
∫
T3
d3x

[
ĵ0
χ − 2TRK

0(âc) − 2 dR
8π2 ϵ

ijkâi∂j âk

]

+dR
4π (Nz + n

N
nz)

 Ly∫
0

dy

Ly

Lz∫
0

dzâz(x = 0, y, z) +
Lx∫
0

dx

Lx

Lz∫
0

dzâz(x, y = 0, z)


+
∑

cyclic
(x → y → z → x) . (4.40)

The last term comes from carefully treating the boundary term implied from the
transition functions ωj(x), since, unlike Γj , they depend explicitly on xj , see [97]
for details. In addition to the background flux nj , which introduces the fractional
winding number, we also allow integer magnetic winding Nj . Under a transforma-
tion with t̂j , the integral of the abelian Chern-Simons term K̂0(â) = ϵijkâi∂j âk in
the background of the integral Mj and fractional mj magnetic fluxes transforms as
(recall (4.34))

t̂j exp
[
i

∫
T3
K̂0(â)

]
t−1
j = exp

[
i

∫
T3
K̂0(c ◦ â) − i

∫
T3
K̂0(â)

]
exp

[
i

∫
T3
K̂0(â)

]
=
(
Nj + nnj

N

)(
nkj
N

)
exp

[
i

∫
T3
K̂0(â)

]
. (4.41)

The reader will notice that we switched from the letter m, which we use to signify
the set of fractional fluxes we can activate, e.g., here we have m ∈ Z3, to the letter
n, which is the actual number of fractional magnetic fluxes we turn on. We shall
use the same labeling throughout the chapter.

72



4.3. SU(N)/Zp, Zp ⊆ Zq theories, noninvertible symmetries, and their anomalies

In the next sections, we use these constructions to argue that SU(N)/Zp, Zp ⊆ Zq
as well as SU(N)×U(1)/Zp, Zp ⊆ ZN enjoy a noninvertible 0-form chiral symmetry,
with a possible mixed anomaly with the 1-form center symmetry.

4.3 SU(N)/Zp, Zp ⊆ Zq theories, noninvertible
symmetries, and their anomalies

In this section, we direct our attention to YM theories featuring matter fields resid-
ing in a particular representation R and characterized by an N -ality n. Building
upon the discussion in the preceding section, it is established that SU(N) gauge
theories, when coupled to matter, exhibit an electric Z(1)

q 1-form center symmetry
(recall q = gcd(N,n)). A notable maneuver within this framework involves the
gauging of Z(1)

q or a subgroup of it, leading to SU(N)/Zp theory, Zp ⊆ Zq, whose
partition function is obtained by summing over integer and fractional topological
charge sectors. Thus, gauge transformations with fractional winding numbers are
part of the gauge structure, and well-defined operators should be invariant un-
der such gauge transformations. Here, we would like to emphasize that there are
p distinct theories: (SU(N)/Zp)n, n = 0, 1, ..., p, which differ by the admissible
genuine (electric, magnetic, or dyonic) line operators. In this chapter, we limit
our treatment to (SU(N)/Zp)n=0, and whenever we mention SU(N)/Zp, we par-
ticularly mean (SU(N)/Zp)0. What happens to the invertible Zχ2TR

discrete chiral
symmetry of this theory? As we shall discuss, this symmetry can stay invertible
or become noninvertible, depending on whether it exhibits a mixed anomaly with
Z(1)
p symmetry in the original SU(N) theory.

4.3.1 SU(N)/Zq

We start by discussing noninvertible 0-form chiral symmetries in SU(N)/Zq the-
ories, i.e., theories obtained by gauging the full electric Z(1)

q 1-form center sym-
metry. Such theories do not possess global electric 1-form symmetry; hence, there
are no genuine Wilson lines. This can be understood as follows. We start with
pure SU(N) gauge theory, which has an electric Z(1)

N 1-form symmetry and admits
the full spectrum of Wilson lines, i.e., it admits Wilson lines with all N -alities
n = 0, 1, 2, .., N − 1. Gauging a Zq subgroup of ZN , we obtain SU(N)/Zq gauge
theory. Now, the spectrum of allowed Wilson lines must be invariant under Zq,
forcing us to remove those lines with N -alities that are not multiples of q. The
remaining lines in pure SU(N)/Zq theory are charged under an electric Z(1)

N/q 1-
form symmetry; these are W qej

j , with ej = 0, 1, .., N/q− 1 and Wj is Wilson line in
the defining representation of SU(N). Finally, introducing matter with N -ality q

means that those remaining lines can end on the matter and must also be removed
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from the spectrum. This deprives SU(N)/Zq gauge theory with matter from all
genuine Wilson lines.

Despite that SU(N)/Zq theory with matter does not possess an electric 1-form
symmetry, it is endowed with a magnetic Zm(1)

q 1-form global symmetry. This can
be understood, again, starting from the pure SU(N)/Zq theory. As we discussed
above, the pure theory has an electric Z(1)

N/q 1-form symmetry. The magnetic dual
of SU(N)/Zq is SU(N)/ZN/q, which admits a magnetic Zm(1)

q 1-form symmetry.
The pure SU(N)/Zq theory has q distinct magnetic fluxes (’t Hooft lines) in its
spectrum. Let Tj be the ’t Hooft line winding around direction j in the defining
representation of SU(N), i.e., it has N -ality 1. Then, the pure SU(N)/Zq theory
possesses the following set of ’t Hooft lines T njN/q

j , nj = 0, 1, .., q− 1 for j = 1, 2, 3,
which are mutually local with the set of Wilson lines W qej

j , ej = 0, 1, .., N/q − 1∗.
Introducing electric matter removes all Wilson lines (as stated above) but does
not alter the magnetic symmetry. Thus, we conclude that SU(N)/Zq theory with
matter possesses a magnetic Zm(1)

q 1-form global symmetry acting on a set of ’t
Hooft lines T njN/q

j , nj = 0, 1, .., q − 1 for j = 1, 2, 3.

We can label the states in the physical Hilbert space of SU(N)/Zq theory with
matter by both energy and magnetic fluxes since the Hamiltonian commutes with
the generators of the magnetic Zm(1)

q 1-form symmetry†:

|ψ⟩phy = |E,nN/q⟩ , n = (nx, ny, nz) ∈ (Zq)3 . (4.42)

The partition function of these theories involves summing over sectors with frac-
tional topological charges NZ/q2 (use Eq.(4.7) and set ki = mi = N/q), which can
be written in the path-integral formalism as (we set the vacuum angle θ = 0) ‡

ZSU(N)/Zq+matter =
∑

ν∈Z,(m,k)∈(NZ/q)6

∫
{
[
Dacµ

]
D [matter]}(m,k)e

−SYM−Smatter ,

(4.43)

or in the Hamiltonian formalism as

ZSU(N)/Zq+matter = tr
[
e−L4Ĥ

]
=

∑
physical states

phy⟨ψ|e−L4Ĥ |ψ⟩phy . (4.44)

Our main task is to build a gauge invariant operator that implements the Zχ2TR

chiral transformation in SU(N)/Zq theory with matter. To this end, we use the
Hamiltonian formalism of Section 4.2.2, dropping the hats from all operators to
reduce clutter. We also use x, y, z to label the three spatial directions. For ℓ ∈ Zχ2TR

,
the chiral symmetry operator is given by:

UZ2TR ,ℓ = e
2πi ℓ

2TR

∫
T3(j0

A−2TRK
0(ac))

. (4.45)
∗This can be easily seen since T njN/q

j and W
qej

j satisfy the Dirac quantization condition.
†Recall that the allowed magnetic twists in the SU(N) theory with matter are m ∈ (NZ/q)3.
‡We can write this in a Lorentz invariant manner by using nµν instead of (m,k), see 4.1.
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This operator is invariant under large gauge transformations with integer winding
numbers. We will now gauge the Z(1)

q one-form symmetry. In SU(N)/Zq gauge
theory with matter, we sum over arbitrary Zq twists with fractional topological
charges NZ/q2. We consider the operator UZ2TR ,ℓ in the presence of magnetic
fluxes m ∈ (NZ/q)3 (these are the magnetic fluxes that label the physical states
in Eq. (4.42).) Let Tx be the generator of an electric Zq center twist along the
x direction (i.e., a Zq gauge transformation), and we take it to have the minimal
twist of N/q. It acts on UZ2TR ,ℓ via (recall the discussion around Eq. (4.30))

TxUZ2TR ,ℓT
−1
x = e−2πiℓQUZ2TR ,ℓ = e

−2πiℓnxN
q2 UZ2TR ,ℓ , nx ∈ Z . (4.46)

nx counts the magnetic fluxes inserted in the y-z plane in units of N/q. Identical
relations to (4.46) hold in the y and z directions. As we saw in the previous
section, if ℓN

q2 ̸∈ Z, there is a mixed ’t Hooft anomaly between the electric Z(1)
q

1-form center and the discrete chiral symmetries of SU(N) theory with matter.
Eq. (4.46) implies that the operator UZ2TR ,ℓ is not gauge invariant under a Zq
gauge transformation as we attempt to gauge Z(1)

q . We can remedy this problem
and reconstruct a gauge-invariant operator, denoted by ŨZ2TR

, by summing over
all Zq gauge transformations generated by Tx, Ty and Tz:

ŨZ2TR ,ℓ ≡
∑

px,py ,pz∈Z
(Tx)px(Ty)py(Tz)pzUZ2TR

(Tx)−px(Ty)−py(Tz)−pz

= UZ2TR ,ℓ

∑
px,py ,pz∈Z

e
−2πi ℓN

q2 (pxnx+pyny+pznz) ≡ UZ2TR ,ℓ

∑
p∈Z3

e
−2πi ℓN

q2 p·n

= UZ2TR ,ℓ

∑
lx∈Z

δ

(
nxℓN

q2 − lx

) ∑
ly∈Z

δ

(
nyℓN

q2 − ly

) ∑
lz∈Z

δ

(
nzℓN

q2 − lz

)
.

(4.47)

In the first line, we included a sum over arbitrary powers of Tx, Ty, Tz to enforce
the gauge invariance. Then, we used Eq. (4.46) in going from the first to the
second line and the Poisson resummation formula in going from the second to
the third line. Even though ŨZ2TR ,ℓ is gauge invariant, it has no inverse; it is, in
general, a noninvertible operator that implements the action of Z̃χ2TR

, and we use
a tilde to denote the noninvertible nature of symmetries and their operators. The
noninvertibility stems from the fact that ŨZ2TR

works as a projector: the insertion
of this operator in the path integral of SU(N)/Zq theory with matter projects onto
specific topological charge sectors of SU(N)/Zq, depending on ℓ. This can be seen
from the second line in (4.47), which is a sum over Fourier modes that projects in
and out sectors, depending on their topological charge, upon acting on them. One
can see the projective nature of ŨZ2TR ,ℓ by inserting it into the partition function
(4.44):

⟨ŨZ2TR ,ℓ⟩ =
∑

physical states
phy⟨ψ|e−L4ĤŨZ2TR ,ℓ|ψ⟩phy , (4.48)
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and then using the physical states defined in Eq. (4.42). We find that ŨZ2TR ,ℓ

annihilates sectors with nxℓN
q2 /∈ Z, etc. We remind that nxN

q2 is the topological
charge (see Eq. (4.7)), which we can write as

nxN

q2 = nxN

q︸ ︷︷ ︸
mx

N

q︸︷︷︸
kx

1
N
, (4.49)

and, as we mentioned earlier and emphasize now, nx is the number of magnetic
fluxes in units of N/q. The same applies to the magnetic sectors in the y and z

directions. We conclude that ŨZ2TR ,ℓ selects sectors in Hilbert space with certain
magnetic fluxes.

We can make the following observations about ŨZ2TR ,ℓ:

1. If ℓ ∈ qZ, ŨZ2TR ,ℓ is invertible since in this case nx,y,zℓN
q2 ∈ Z for all values of

nx, ny, nz ∈ Z. The invertible subgroup of Z̃χ2TR
is Zχ2TR/q

.

2. If gcd(ℓN/q, q) = 1, then we must have nx, ny, nz ∈ qZ. In other words,
ŨZ2TR ,ℓ projects onto untwisted flux sectors. In particular, in the sector
given by nx, ny, nz ∈ qZ, the symmetry operator ŨZ2TR ,ℓ act invertibly for all
elements of the chiral symmetry ℓ = 1, 2, .., TR.

3. If gcd(ℓN/q, q) = a ̸= 1 and ℓ < q, then let q = aq′, and we must have
nx,y,z ∈ q′Z. ŨZ2TR ,ℓ projects onto background fluxes with topological charge
Q ∈ Z/q′, i.e. sectors that have Zq′ twists.

4. The noninvertibility of ŨZ2TR ,ℓ can be seen by multiplying the operator by
its “potential inverse" ŨZ2TR ,ℓ to find

ŨZ2TR ,ℓ × ŨZ2TR ,ℓ ∼
∑

p∈Z3

e
−2πi ℓN

q2 p·n ≡ C . (4.50)

C is known as the condensation operator, which can be thought of as a sum
over topological surface operators exp[−i

∮
T2⊂T3 B(2)] = exp[−i2πZ/q] wrap-

ping the three 2-cycles of T3, and B(2) is the 2-form field of the Z(1)
q 1-form

symmetry.

We use the fact that SU(N)/Zq theory possesses a magnetic Zm(1)
q 1-form global

symmetry to make one more observation. Let Tj be ’t Hooft line of N -ality 1 in
direction j. Then, the minimal ’t Hooft line in SU(N)/Zq theory is T N/q

j , i.e., it has
N -ality N/q. The minimal line acts on a physical state by increasing its magnetic
flux by one in units of N/q∗. Now, let us take a theory with gcd(N/q, q) = 1 so

∗Similar to the discussion we had after Eq. (4.19), we can also consider the generators of the
magnetic 1-form symmetry and argue that T N/q

j inserts a magnetic flux N/q, as measured by the
action of the magnetic 1-form symmetry on the state T N/q

j |ψ⟩phy.
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4.3.2. SU(N)/Zp

that ŨZ2TR ,ℓ=1 acts projectively on certain states. Then, |E, (nx = q, ny = q, nz =
q)N/q⟩ is one of the physical states that survive under the action of ŨZ2TR ,ℓ=1. We
have T N/q

x |E, (q, q, q)N/q⟩ = |E, (q + 1, q, q)N/q⟩. Thus, we immediately see from
Eq. (4.47) that

ŨZ2TR ,ℓ=1T N/q
x |E, (q, q, q)N/q⟩ = ŨZ2TR ,ℓ=1|E, (q + 1, q, q)N/q⟩⟩ = 0 . (4.51)

We write this result as

ŨZ2TR ,ℓ=1T N/q
j = 0 , j = x, y, z . (4.52)

In other words, the operator ŨZ2TR ,ℓ=1 annihilates the minimal ’t Hooft lines in
this theory. It also annihilates all ’t Hooft lines T njN/q

j , nj ̸= 0 Mod q. This is an
alternative way to see the projective nature of this operator.

4.3.2 SU(N)/Zp

Next, we discuss SU(N)/Zp theory with matter with N -ality n, and Zp ⊆ Zq =
Zgcd(N,n). The partition function of this theory is given by the path integral in
Eq. (4.43), now restricting the sum over the electric and magnetic twists (m,k) ∈
(NZ/p)6. The theory possess an electric Z(1)

q/p 1-form global symmetry. As before,
Tx is taken to be the generator of the electric Z(1)

q symmetry. Then, the electric
Z(1)
q/p 1-form global symmetry is generated by T px (as well as T py and T pz ). The theory

has q/p distinct Wilson lines W ejp
j , with ej = 0, 1, 2, .., q/p − 1. These lines are

invariant under Zp, as they should be since Zp is gauged. The minimal admissible
Wilson line W p

j carries one electric flux in units of pN/q. In the limiting case p = q,
the line W p=q

j coincides with the matter content and must be removed from the
spectrum of line operators. Therefore, in this case, the theory does not possess a
1-form electric symmetry, as discussed in the previous section.

In addition, the theory has a magnetic Zm(1)
p 1-form symmetry. If Tj is the ’t

Hooft line with N -ality 1, then the minimal admissible ’t Hooft line in the theory
is T N/p

j , which carries one magnetic flux in units of N/p. There are p distinct ’t
Hooft lines in the theory T njN/p

j , nj = 0, 1, .., p− 1, which are mutually local with
Wilson lines W ejp

j . The Hamiltonian, Wilson lines generators, and the ’t Hooft
lines generators of this theory can be simultaneously diagonalized. Therefore, the
energies and eigenvalues of the set of Wilson and ’t Hooft operators can be used to
label the physical states of Hilbert space:

|ψ⟩phy = |E, epN/q,nN/p⟩ , e ∈ (Zq/p)3 ,n ∈ (Zp)3 . (4.53)

Next, we need to build a gauge invariant chiral symmetry operator. Our starting
point, as usual, is the operator

UZ2TR ,ℓ = e
2πi ℓ

2TR

∫
T3(j0

A−2TRK
0(ac)) (4.54)
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4.3.2. SU(N)/Zp

taken in the presence of the fractional magnetic fluxes m ∈ (NZ/p)3, which label
the Hilbert space in Eq. (4.53). The operator T q/px generates the electric Z(1)

p 1-
form symmetry, which is gauged. In other words, T q/px implements the twists k ∈
(NZ/p)3. In analogy with SU(N)/Zq theories, we need to build gauge invariants
of the chiral symmetry operator using the building block T

q/p
x UZ2TR ,ℓT

−q/p
x . To

compute this block, we use the discussion around Eq. (4.30), taking the minimal
twist N/p generated by T q/px , to obtain

T q/px UZ2TR ,ℓT
−q/p
x = e

−2πiℓnxN
p2 UZ2TR ,ℓ , nx ∈ Z , (4.55)

and nx counts the magnetic fluxes in units of N/p. If ℓN
p2 ̸∈ Z, there is a mixed

anomaly between Zχ2TR and the electric Z(1)
p symmetries in SU(N) theory with

matter, and we expect the chiral symmetry becomes noninvertible upon gauging
Z(1)
p . The corresponding gauge invariant operator of the Z̃χ2TR

symmetry is then
given by the summations

ŨZ2TR ,ℓ =
∑

px,py ,pz∈Z
(Tx)qpx/p(Ty)qpy/p(Tz)qpz/pUZ2TR ,ℓ(Tx)−qpx/p(Ty)−qpy/p(Tz)−qpz/p

= UZ2TR ,ℓ

∑
px,py ,pz∈Z

e
−2πi ℓN

p2 (pxnx+pyny+pznz)

= UZ2TR ,ℓ

∑
lx∈Z

δ

(
nxℓN

p2 − lx

) ∑
ly∈Z

δ

(
nyℓN

p2 − ly

) ∑
lz∈Z

δ

(
nzℓN

p2 − lz

)
.

(4.56)

This noninvertible operator generalizes (4.47) to any Zp ⊆ Zq, and it projects onto
sectors with finer topological charges than the sectors admissible by (4.47). This
means there exist sectors where ŨZ2TR ,ℓ act invertibly for all ℓ = 1, 2, .., TR if and
only if

lx = nxN

p2 ∈ Z , (4.57)

with similar conditions in the y and z directions. As special cases, we may first set
p = q to readily cover (4.47). Also, setting p = 1, the operator ŨZ2TR ,ℓ becomes
invertible, as can be easily seen from the second line in (4.56). Notice that ŨZ2TR ,ℓ

does not act on Wilson lines in this theory, as the noninvertible operator is built
from (Tj)qpj/p and its inverse; thus, one can push a Wilson line through ŨZ2TR ,ℓ

without being affected∗. We can write this observation as

ŨZ2TR ,ℓW
ejp
j = W

ejp
j ŨZ2TR ,ℓ , ej = 0, 1, 2, .., q/p− 1 , j = x, y, z . (4.58)

∗Although we do not give the explicit form of Tj , it can be thought of as an exponential of
an integral of the chromoelectric field over a 2-dimensional submanifold; see [104]. A Wilson line
would acquire a phase as we push it past T q/pj (we use [ac,aj (x, t), Ebk(y, t)] = iδjkδ(x−y)δab, where
a, b are the color indices, along with the Baker-Campbell-Hausdorff formula). It also acquires the
negative of the same phase as it is pushed past T−q/p

j . Therefore, the phases cancel out, and
hence, the result in Eq. (4.58).
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4.3.2. SU(N)/Zp

This is very different from the action of ŨZ2TR ,ℓ on ’t Hooft lines, as we discussed
before.

The procedure employed to construct the noninvertible operator ŨZ2TR ,ℓ contains
an additional layer of underlying physics. It is essential to keep in mind that this
operator is constructed in SU(N)/Zp theory, where its creation involved a sum
over magnetic m ∈ (NZ/p)3 and electric k ∈ (NZ/p)3 twists. These twists do not
encompass the entire range of permissible twists that can be applied. Recall that
the theory encompasses a global Z(1)

q/p symmetry, which affords us the opportunity
to introduce the electric twists k ∈ (pNZ/q)3. Moreover, we can turn on magnetic
twists m ∈ (pNZ/q)3, compatible with the cocycle condition∗. This broader scope
of twists provides a richer set of possibilities within the theory. We recall that T px is
the generator of Z(1)

q/p symmetry that implements the twists kx ∈ pNZ/q. Then, one
can write the partition function of SU(N)/Zp theory in these background twists
as

ZSU(N)/Zp+matter[m,k] = trm∈(pNZ/q)3

[
e−L4HT kxpx T kypy T kzpz

]
=

∑
e∈(Zq/p)3

e
−i2π pk·e

q phy⟨ψ|e−L4H |ψ⟩phy|m∈(pNZ/q)3 ,(4.59)

and we used Eq. (4.53) along with T kjpj |ψ⟩phy = e
−i2π

pkjej
q |ψ⟩phy; see the discussion

around Eqs. (4.62, 4.63) below.

Next, consider the commutation relation between T px and ŨZ2TR ,ℓ, the latter oper-
ator is being in the background of the magnetic twist m ∈ (pNZ/q)3. Using the
discussion and procedure around Eq. (4.30), we obtain

T px ŨZ2TR ,ℓT
−p
x = e

−2πiℓnx p
2N
q2 ŨZ2TR ,ℓ . (4.60)

The failure of the commutation between T px and ŨZ2TR ,ℓ by the phase e−2πiℓnx p
2N
q2 ,

assuming ℓnx p
2N
q2 /∈ Z , signals a mixed anomaly between the noninvertible Z̃χ2TR

chiral symmetry and the electric Z(1)
q/p 1-form global symmetry. This anomaly means

that certain sectors in Hilbert space exhibit degeneracy. Let us analyze this situ-
ation more closely. We assume there exists a sector with nx, ny, nz that satisfies
Eq. (4.57), and thus, in this sector, the symmetry operator ŨZ2TR ,ℓ acts invertibly
for all elements ℓ = 1, 2, .., TR. Now, ŨZ2TR ,ℓ, being a global symmetry operator,
commutes with the Hamiltonian:

[ŨZ2TR ,ℓ, H] = 0 . (4.61)

Likewise, since Z(1)
q/p is a global symmetry, its generators T pj commute with the

Hamiltonian:

[T pj , H] = 0 . (4.62)
∗Recall that twists in NZ/q are compatible with the cocycle conditions. Therefore, twists

in pNZ/q are a subset of the allowed twists. Notice that the twists m ∈ (pNZ/q)3 provide
background magnetic fluxes and do not label the physical states in Hilbert space, Eq. (4.53).

79
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This commutation relation, along with Eq. (4.22), implies that T pj acts on physical
states in Hilbert space as (the label l = (lx, ly, lz) emphasizes that such states
satisfy condition (4.57), such that ŨZ2TR ,ℓ acts invertibly on such states. Also, we
suppressed the detailed dependence on the different quantum numbers to reduce
clutter)

T pj |E, ej⟩l = e
i 2πp
q
ej |E, ej⟩l , (4.63)

and that the states are labeled by their energies as well as ej = 1, 2, ..., q/p distinct
labels; these are the eigenvalues (fluxes) of the Z(1)

q/p symmetry operator. The al-
gebra defined by the commutation relations Eqs. (4.61, 4.62), along with the mixed
anomaly represented as Eq. (4.60), under the assumption of a nontrivial phase, fur-
nishes a finite-dimensional space with a minimum dimension of q2/gcd(nxp2N, q2)
(we take nx = ny = nz). The Hilbert space of physical states, which are labeled
by q/p distinct fluxes, sit in q2/gcd(nxp2N, q2) orbits, and a rotation by ŨZ2TR ,ℓ=1
links a state with a flux ej to a state with a flux ej+gcd(njp2N,q2)/(qp) as:

ŨZ2TR ,ℓ=1|E, ej⟩l = |E, ej + gcd(njp2N, q2)/(qp)⟩l . (4.64)

Using the commutation relation (4.61), one immediately sees that the states |E, ej⟩l

and |E, ej + gcd(njp2N, q2)/(qp)⟩l have the same energy∗.

In the following subsections, we apply our formalism to examples of theories with
fermions in specific representations.

4.3.3 Examples

4.3.3.1 SU(4n+ 2)/Z2 and SU(4n)/Z2 with a Dirac fermion in the
2-index anti-symmetric representation

The SU(4n+2)/Z2 gauge theory with a 2-index anti-symmetric Dirac fermion (N -
ality 2) has a Zχ8n chiral symmetry. The SU(4n + 2) theory possesses an electric
Z(1)

2 one-form symmetry. In [98], the authors argued that upon gauging Z(1)
2 , the

odd rotations of Zχ8n become non-invertible. We can show this is the case on T3

using our construction. Setting N = 4n+ 2 in (4.47), we obtain

ŨZ8n,ℓ = UZ8n,ℓ

∑
lx∈Z

δ

(
nxℓ

2 − lx

) ∑
ly∈Z

δ

(
nyℓ

2 − ly

) ∑
lz∈Z

δ

(
nzℓ

2 − lz

)
. (4.65)

For ℓ odd, ŨZ8n,ℓ projects onto untwisted gauge sectors and becomes non-invertible.
∗It is helpful to give a numerical example. Take N = 1000, q = 500, and p = 20. Such

numbers are contrived and do not necessarily correspond to any realistic theory. Condition (4.57)
is satisfied if we take nx = 2. Then, the phase in the anomaly Eq. (4.60) is e−i2π/5, implying
a 5-fold degeneracy. The theory has an electric Z(1)

25 1-form symmetry, and thus, 25 distinct flux
states. These states set in 5 different orbits such that the states labeled with e1, e6, e11, e16, e21
have the same energy, and the states e2,e7,...,e22, have the same energy, etc.
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4.3.3.2. SU(6)/Z3 with a Dirac fermion in the 3-index anti-symmetric representation

The SU(4n)/Z2 theory with a 2-index anti-symmetric Dirac fermion has a Zχ8n−4
chiral symmetry. The cocycle conditions, say in the x-direction, must satisfy (see
Eq. (4.6))

e2πi 2nyz
4n = 1 . (4.66)

Therefore we must have nyz ∈ 2nZ. There is no mixed anomaly between Zχ8n−4
and the electric Z(1)

2 symmetries in the SU(4n) theory since the anomaly phase
nyz

2 ∈ nZ is trivial. Thus, the full chiral symmetry Zχ8n−4 is invertible. This is also
in agreement with [98].

4.3.3.2 SU(6)/Z3 with a Dirac fermion in the 3-index anti-symmetric
representation

This theory has a Zχ6 chiral symmetry. What is special about this theory is that its
bilinear fermion operator vanishes identically because of Fermi statistics. Moreover,
the SU(6) theory exhibits a mixed anomaly between its electric Z(1)

3 1-form center
and chiral symmetries [105, 106]. Assuming confinement, then the chiral symmetry
must be broken in the infrared. Yet, this breaking has to be accomplished via
higher-order condensate. Using (4.47), we find that the operator corresponding to
a chiral transformation in SU(6)/Z3 theory is

ŨZ6,ℓ = UZ6,ℓ

∑
lx∈Z

δ

(2nxℓ
3 − lx

) ∑
ly∈Z

δ

(2nyℓ
3 − ly

) ∑
lz∈Z

δ

(2nzℓ
3 − lz

)
. (4.67)

Hence, for ℓ ∈ {1, 2, 4, 5}, the operator ŨZ6,ℓ projects onto untwisted gauge sectors,
and the chiral symmetry operator becomes noninvertible.

4.3.3.3 2-index SU(6) chiral gauge theory

Our next example is a chiral gauge theory. This is SU(6) YM theory with a
single left-handed Weyl fermion ψ in the 2-index symmetric representation and
5 flavors of left-handed Weyl fermions χ in the complex conjugate 2-index anti-
symmetric representation. The fermion budget ensures the theory is free from gauge
anomalies. The theory encompasses continuous global symmetry SU(5)χ ×U(1)A,
where SU(5)χ acts on χ. The charges of ψ and χ under U(1)A are qψ = −5 , qχ = 2.
The theory is also endowed with a Zχ4 chiral symmetry, which is taken to act on
χ with a unit charge. It can be checked that this is a genuine symmetry since
neither Z4 nor a subgroup of it can be absorbed in rotations in the centers of
SU(6) × SU(5)χ. It turns out, see [1] for details (also see [35]), that we must
divide the global symmetry by Z3 ×Z5 to remove redundancies. Putting everything
together and remembering that the theory possesses an electric Z(1)

2 1-form center
symmetry (since all fermions have N -ality n = 2), we write the faithful global
group as:

Gg = SU(5)χ × U(1)A
Z3 × Z5

× Zχ4 × Z(1)
2 . (4.68)
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4.4. SU(N) × U(1)/Zp, Zp ⊆ ZN theories, noninvertible symmetries, and their
anomalies

This theory has an anomaly between its Z(1)
2 center symmetry and Zχ4 chiral sym-

metry. To see the anomaly, we recall that we can turn on the magnetic and electric
twists (m,k) ∈ (3Z)6. This gives the topological charge Q ∈ Z/2. Thus, under a
chiral transformation, the partition function acquires a phase

Z[m,k] −→ exp
[
i
2πℓNχTχQ

4

]
Z[m,k] = exp [i2πℓ/2] Z[m,k] , (4.69)

where Nχ = 5 is the number of the χ flavors and Tχ = 4 is the Dynkin index of χ.
Therefore, we expect that Zχ4 becomes noninvertible in the SU(6)/Z2 chiral theory.
Using (4.47), the noninvertible operator corresponding to a chiral transformation
in SU(6)/Z2 theory is

ŨZ4,ℓ = UZ4,ℓ

∑
lx∈Z

δ

(
nxℓ

2 − lx

) ∑
ly∈Z

δ

(
nyℓ

2 − ly

) ∑
lz∈Z

δ

(
nzℓ

2 − lz

)
. (4.70)

Hence, for ℓ ∈ {1, 3}, the operator ŨZ4,ℓ projects onto untwisted gauge sectors, and
the chiral symmetry operator becomes noninvertible.

4.4 SU(N) × U(1)/Zp, Zp ⊆ ZN theories, noninvertible
symmetries, and their anomalies

In this section, we also gauge the U(1) baryon number symmetry. Thus, we are
discussing SU(N) × U(1) gauge theory with a Dirac fermion in a representation
R, N -ality n, and U(1) charge +1. This theory, as we discussed in Section 4.2, is
endowed with an invertible Zχ2gcd(TR,dR) chiral symmetry as well as an electric Z(1)

N

center symmetry acting on its Wilson lines; see Eqs. (4.14). However, in [97], it was
shown that SU(N) × U(1) theories also have noninvertible Z̃χ2TR

chiral symmetry.
In the following, we first review the construction of the noninvertible Z̃χ2TR

operator
in SU(N)×U(1) theories, and next, we discuss this operator in SU(N)×U(1)/Zp,
Zp ⊆ ZN , theories.

4.4.1 SU(N) × U(1)

Our starting point is the SU(N) × U(1) theory and its Zχ2TR
operator UZ2TR ,ℓ =

e
i 2πℓ

2TR
Q5 , where Q5 is the conserved chiral charge defined in Eq. (4.40) in the

background of the fractional nx,y,z and integer Nx,y,z magnetic fluxes in the x, y, z
directions. We remind that we can turn on fractional fluxes in ZN irrespective of the
N -ality of the matter content since we use U(1) transition functions to impose the
cocycle condition; see Eq. (4.33). No nontrivial electric twists are applied at this
stage, i.e., we take k ∈ (NZ)3, since our nonabelian gauge group is SU(N) rather
than SU(N)/Zp. The operator UZ2TR ,ℓ is invariant under SU(N). To see that,
we apply a large SU(N) gauge transformation, recalling Eq. (4.21) and setting
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4.4.1. SU(N) × U(1)

k ∈ (NZ)3, which immediately gives the change in the nonabelian winding number
by Q ∈ Z. In addition, UZ2TR ,ℓ must be invariant under U(1) gauge symmetry. The
photon gauge field ai transforms under U(1) gauge symmetry as aj(x + êkLk) =
aj − ∂kξ(x), and ξ(x) is a periodic gauge function: ξ(x + êkLk) = ξ(x) + 2πp,
p ∈ Z. Applying a large U(1) gauge transformation to Q5, we find (see [97] for the
derivation)

UZ2TR ,ℓ −→ UZ2TR ,ℓe
−2πiℓ

(
px

dR
TR

(Nx+nnx
N )+py dR

TR
(Ny+nny

N )+pz dR
TR

(Nz+nnz
N )
)
, (4.71)

where px,y,z are arbitrary integers corresponding to the U(1) gauge transforma-
tion. Eq. (4.71) shows that the operator UZ2TR ,ℓ fails to be gauge invariant under
U(1) gauge symmetry. To remedy this problem, we follow the procedure of the
previous section and define a new operator ŨZ2TR ,ℓ by summing over all gauge-
transformations of UZ2TR ,ℓ:

ŨZ2TR ,ℓ = UZ2TR ,ℓ

∑
px,py ,pz∈Z

e
−2πiℓ

(
px

dR
TR

(Nx+nnx
N )+py dR

TR
(Ny+nny

N )+pz dR
TR

(Nz+nnz
N )
)

= UZ2TR ,ℓ

∑
lx∈Z

δ

(
ℓ
dR
TR

(
Nx + nnx

N

)
− lx

)∑
ly∈Z

...

∑
lz∈Z

...

 . (4.72)

The operator ŨZ2TR ,ℓ implements the chiral transformation of the now-noninvertible
Z̃χ2TR

symmetry, as it acts projectively by selecting certain nonvanishing sectors in
Hilbert space labeled by the integers lx,y,z, such that for ℓ = 1 we must have

lx = dR
TR

(
Nx + nnx

N

)
∈ Z , (4.73)

with identical expressions for ly and lz. Condition (4.73) ensures that all the
symmetry elements ℓ = 1, 2, .., TR act invertibly on the same admissible sector. To
explicitly see the projective nature of ŨZ2TR ,ℓ on states in Hilbert space, we use
the partition function of the SU(N) ×U(1) theory given by Eq. (4.37) (we set the
electric flux background k=0 and, as usual, we use n to label a specific fractional
magnetic flux background: n = (nx, ny, nz)) to compute ⟨ŨZ2TR ,ℓ⟩:∗

⟨ŨZ2TR ,ℓ⟩ =
∑

e∈Z3
N ,N∈Z3

n⟨E, e,N |e−L4ĤŨZ2TR ,ℓ|E, e,N⟩n . (4.74)

We immediately see from the Kronecker deltas in Eq. (4.72) that only those sectors
with N satisfying Eq. (4.73) are selected.

Turning off the fractional magnetic flux background (i.e., setting n = 0), the op-
erator ŨZ2TR ,ℓ becomes invertible for ℓ ∈ TRZ/gcd(TR, dR). We recognize that

∗Recall from our earlier analysis that the theory is endowed with electric Z(1)
N and magnetic

U
(1)
m (1) symmetries, and the states of the theory are labeled by the eigenstates of these symmetries,

e and N , respectively.
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4.4.2. SU(N) × U(1)/Zp, Zp ⊆ ZN

we have just recovered the invertible Zχ2gcd(TR,dR) subgroup of Z̃χ2TR
. Furthermore,

setting n = 0, the operator ŨZ2TR ,ℓ=1 annihilates all Hilbert space sectors charac-
terized with integral magnetic fluxes N /∈ TRZ3/gcd(TR, dR). This noninvertible
nature of the chiral operator should have been anticipated. When we start with
the SU(N) theory with matter, we find an ’t Hooft anomaly between its invert-
ible Zχ2TR

chiral symmetry and U(1) baryon symmetry. This anomaly is valued in
ZTR/gcd(TR,dR). Upon gauging U(1), this anomaly becomes of the ABJ type, and
the chiral symmetry becomes noninvertible. Now, If we take the Euclidean version
of our theory in the infinite volume limit and apply a π/2 rotation to ŨZ2TR ,ℓ=1,
the operator becomes a defect. Alternatively, we may also use the half-gauging
procedure to construct this defect, which was done in [97]. Inserting this defect at
some position will generally create a domain wall (since it enforces a chiral trans-
formation) dressed with a TQFT that accounts for the noninvertible nature of the
defect. It will be interesting to analyze what happens to the domain walls when
we turn on an external magnetic field with flux N /∈ TRZ3/gcd(TR, dR).

SU(N) × U(1) gauge theory has an electric Z(1)
N 1-form global center symmetry,

and the immediate exercise would be checking whether there is a mixed anomaly
between the center and the noninvertible chiral symmetries. To this end, we turn on
both electric and magnetic twists∗ (m,k) ∈ Z6, giving rise to nonabelian fractional
topological charge QSU(N) ∈ Z/N as well as abelian topological charge Qu =

(
n
N

)2;
see Eq. (4.12). Using Eqs. (4.21, 4.41), setting k = (1, 0, 0), we find

TxtxŨZ2TR ,ℓ(Txtx)−1 = ŨZ2TR ,ℓe
−2πiℓ

(
nx
N

− n
N

dR
TR

(Nx+nnx
N )
)

= ŨZ2TR ,ℓe
−i2πℓ(nx−nlx

N ) , (4.75)

and we used Condition (4.73) to go from the first to the second line. If the phase
is nontrivial, then there is a mixed anomaly between the electric Z(1)

N 1-form center
and the 0-form noninvertible Z̃χ2TR

symmetries, leading to spectral degeneracy of
states (those that already selected by the operator ŨZ2TR ,ℓ). The algebra defined
by the commutation relations [H,Tjtj ] = [H, ŨZ2TR ,ℓ] = 0 along with the mixed
anomaly (4.75), under the assumption of a nontrivial phase, furnishes a finite-
dimensional space with dimension N/gcd(N,nx − nlx) (we take nx = ny = nz).
The Hilbert space of physical states, which are labeled by N different electric fluxes
e, sit in N/gcd(N,nx−nlx) orbits, and a rotation by ŨZ2TR ,ℓ=1 links a state with a
flux ej to a state with a flux ej + gcd(N,nj − nlj), i.e., they have the same energy.

4.4.2 SU(N) × U(1)/Zp, Zp ⊆ ZN

Next, we study the noninvertible operators in SU(N) × U(1)/Zp gauge theory,
where Zp is a subgroup of the ZN center symmetry. This theory has an electric

∗Notice that these electric twists k ∈ Z3 are e that label the physical states in Hilbert space:
|E, e,N⟩n . In principle, kj should be in Z Mod N , but, as usual, we drop the modding as this
does not affect the cocycle conditions.
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Z(1)
N/p 1-form global symmetry acting on the p-th power of the spatial components

of the abelian and nonabelian Wilson lines defined in Eq. (4.14):

W
ejp
j, SU(N) ,W

ejp
j, U(1) , ej = 1, 2, .., N/p, j = 1, 2, 3 . (4.76)

These Wilson lines are invariant under Zp, as they should be, as this symmetry is
gauged. Notice that the allowed abelian probe charges q need to satisfy q = ze,
where ze = ejp is the N -ality of the nonabelian line. Thus, we can represent
the lines in Eq. (4.76) by the pair (ze, q = ze). The theory also possesses a
magnetic U (1)

m (1) 1-form symmetry acting on ’t Hooft lines. Let zm = 0, 1, .., p− 1,
and g be the N -ality of the nonabelian ’t Hooft line and the abelian magnetic
charge, respectively. Then, the pairs (ze, q = ze) and (zm, g) must satisfy the Dirac
quantization condition ei2π(−qg+zezm/p) = 1 or zezm − pqg ∈ pZ, which gives a
constraint on the magnetic charges: g = zm

p +Z, i.e., the abelian magnetic charges
can be fractional [107]. Another way of putting it is that the presence of the
Abelian Wilson lines W ejp

j, U(1) demand that the Abelian ’t Hooft lines are T Nj+nj/p
j, U(1) ,

nj ∈ Zp, Nj ∈ Z, such that the electric and magnetic lines are mutually local.
The physical states in Hilbert space are taken to be eigenstates of the commuting
set of the Hamiltonian, the generators of electric symmetry, and the generators of
magnetic symmetry:

|ψ⟩phy ,m = |E, pe,n/p+ N⟩m , ej = 0, 1, .., N/p− 1 , Nj ∈ Z nj = 0, 1, .., p− 1 ,
j = 1, 2, 3 , (4.77)

and m ∈ Z3 is the fractional magnetic flux background (or background magnetic
twist). Remember that, in principle, m ∈ (ZModN)3; however, we drop the
modding by N since this cannot affect the cocycle condition. Notice that we can
always activate a ZN magnetic twist since, as emphasized several times, we use a
combination of nonabelian and abelian transition functions. Also, in the special
case p = N , we should remove the subscript m since, in this case, the Hilbert space
is spanned by eigenstates of the full magnetic ZN fluxes, i.e., nj = 0, 1, ..., N − 1.

The operator ŨZ2TR ,ℓ defined in Eq. (4.72) is invariant under both SU(N) and U(1)
gauge transformations. However, because we are now gauging Zp, the operator
must also be invariant under Zp gauge transformations. Let us recall that Tjtj is
the generator of the electric Z(1)

N symmetry, and therefore, (Tjtj)N/p generates the
Zp symmetry, which must be gauged. The action of (Tjtj)N/p on ŨZ2TR ,ℓ can be
read from the first line in Eq. (4.75) by applying the operation N/p times:

(Tjtj)N/p ŨZ2TR ,ℓ (Tjtj)−N/p = ŨZ2TR ,ℓe
−2πiℓ

(
nx
p

−n
p

dR
TR

(Nx+nnx
N )
)
. (4.78)

This relation shows that for a general ℓ, ŨZ2TR ,ℓ fails to be gauge invariant under a
Zp gauge transformation∗. Being acquainted with the remedy of this problem, we

∗In the special case p = 1, the phase becomes e2πiℓn dR
TR

(Nx+ nnx
N ), and using Condition (4.73),

the phase trivializes. This shows that this operator is gauge invariant in SU(N) ×U(1) theory, as
expected.
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use (Tjtj)N/p ŨZ2TR ,ℓ (Tjtj)−N/p as a building block of a gauge invariant operator
by summing over gauge transformations of the block. The noninvertible operator
is then given by

ŨZ2TR ,ℓ (4.79)

=
∑

p∈Z3

(Txtx)
Npx
p (Tyty)

Npy
p (Tztz)

Npz
p UZ2TR ,ℓ(Txtx)−Npx

p (Tyty)−Npy
p (Tztz)−Npz

p

= UZ2TR ,ℓ

∑
px,py ,pz∈Z

e
−2πiℓ

(
nx
p

−n
p

dR
TR

(Nx+nnx
N )
)

+(x→y)+(x→z)

= UZ2TR ,ℓ

∑
lx∈Z

δ

(
ℓnx
p

− ℓn

p

dR
TR

(
Nx + nnx

N

)
− lx

)∑
ly∈Z

...

∑
lz∈Z

...

 . (4.80)

The operator ŨZ2TR ,ℓ acts invertibly on sectors in Hilbert space that, for ℓ = 1,
satisy the condition

lx = nx
p

− n

p

dR
TR

(
Nx + nnx

N

)
∈ Z , (4.81)

with identical expressions in the y and z directions. The operator ŨZ2TR ,ℓ, as
introduced in Eq. (4.80), within the context of SU(N) ×U(1)/Zp gauge theory, is
a generalization of the operator defined in Eq. (4.72) for the conventional SU(N)×
U(1) theory. Furthermore, Condition (4.81) represents a broader generalization of
Condition (4.73). In the specific scenario where p = N holds, corresponding to
the SU(N) × U(1)/ZN theory, Condition (4.81) precisely mirrors the criterion for
the absence of a mixed anomaly between the electric Z(1)

N 1-form global symmetry
and the noninvertible chiral symmetry inherent to the SU(N) ×U(1) theory. This
correspondence is clear from the first line of Eq. (4.75).

The SU(N) ×U(1)/Zp theory exhibits an electric Z(1)
N/p one-form global symmetry,

which is generated by the operators (Tjtj)p. When introducing a background for
this symmetry, we uncover a mixed anomaly between the noninvertible chiral sym-
metry and the Z(1)

N/p symmetry. Sandwiching ŨZ2TR ,ℓ, defined in Eq. (4.80), between
(Txtx)p and (Txtx)−p and using Eqs. (4.21, 4.41), we find

(Txtx)pŨZ2TR ,ℓ(Txtx)−p = ŨZ2TR ,ℓe
−2πiℓ

(
pnx
N

− pn
N

dR
TR

(Nx+nnx
N )
)

= ŨZ2TR ,ℓe
−i2πlxℓ p

2
N , (4.82)

where we used lx defined in Eq. (4.81) in going from the first to the second line.
When the phase e−i2πlxℓ p

2
N is nontrivial, it signifies the presence of a degeneracy

within the spectrum. Notice that the anomaly phase coincides with the phase in
Eq. (4.60) if we set q = N in the latter. This should not surprise us since, in
this section, we employ the full ZN center symmetry, thanks to gauging U(1). The
anomaly in (4.82) is valued in ZN/gcd(N,p2lx) (we take nx = ny = nz) indicating

86



4.4.3. Examples

a N/gcd(N, p2lx)-fold degeneracy. The Hilbert space of physical states, which
are labeled by N/p distinct electric fluxes, sit in N/gcd(N, p2lx) orbits, and a
rotation by ŨZ2TR ,ℓ=1 maps a state with an electric flux pej to a state with a flux
p(ej + gcd(N, p2lj)/p), i.e., they have the same energy.

4.4.3 Examples

4.4.3.1 SU(4k + 2) × U(1)/Zp with 2-index antisymmetric fermions

SU(4k+ 2) ×U(1) theory with a single 2-index anti-symmetric Dirac fermion was
considered in [97]. Here, we study this theory when we gauge a Zp ⊆ ZN subgroup
of the center. Numerical scans reveal that condition (4.81) is always satisfied for
specific values of nx and Nx. Also, the anomaly (4.82) is trivial unless both p and
lx are odd; then, the anomaly is valued in Z2. The Hilbert space is spanned by the
physical states

|ψ⟩phy ,m = |E, pe,n/p+ N⟩m

ej = 0, 1, .., (4k + 2)/p− 1 , Nj ∈ Z , nj = 0, 1, .., p− 1 , j = 1, 2, 3

and the anomaly means that the states live in two orbits such that |E, pe,n/p +
N⟩m, |E, p(e + gcd(N, p2l)/p),n/p+ N⟩m, |E, p(e + 2gcd(N, p2l)/p),n/p+ N⟩m,
etc. have the same energy (we take nx = ny = nz).

4.4.3.2 The Standard Model

The methods presented in this chapter provide a systematic means to find nonin-
vertible symmetries in any given gauge theory. As an important application, we
employ our approach to search for noninvertible symmetries in the nongravitational
sector of the Standard Model (SM). SM is based on su(3) × su(2) × u(1) Lie al-
gebra. Yet, the faithful gauge group, i.e., the global structure of the group, is to be
uncovered. The matter content and charges under the gauge and global symmet-
ries are displayed in Table 4.1, and all fermions are taken to be left-handed Weyls.
The anomalies associated with the U(1)B and U(1)L symmetries are given by:
U(1)B × [SU(2)]2 = U(1)L× [SU(2)]2 = 1, U(1)B × [SU(3)]2 = U(1)L× [SU(3)]2 =
0, U(1)B×[U(1)]2 = U(1)L×[U(1)]2 = −18 . Thus, we see that U(1)B−L symmetry
is anomaly-free symmetry (we neglect gravity in this context). Under a U(1)B+L
rotation, the path integral picks up an ABJ phase

exp (iα ·Nf (2c2(F ) − 36c2(f))) , (4.83)

where Nf is the number of families, c2(F ) is the second Chern class for SU(2) and
c2(f) is the second Chern class for U(1). The ABJ anomaly breaks the U(1)B+L
down to a ZB+L

gcd(2,36)Nf = ZB+L
2Nf symmetry. Notice that SU(3) does not play a role

in the ABJ anomaly.
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field SU(3) SU(2) U(1) U(1)B U(1)L
qL □ □ 1 1

3 0
lL 1 □ −3 0 1
ẽR 1 1 6 0 −1
ũR □ 1 −4 −1

3 0
d̃R □ 1 2 −1

3 0
h 1 □ 3 0 0

Table 4.1: Matter content and charges of SM: qL and lL are the quark and lepton
doublets, ẽR, ũR, d̃R are the electron and up and down quarks singlets, while h is
the Higgs doublet. Notice that we take the hyper U(1) charges to be integers, while
the matter content has the standard charges under the baryon number U(1)B and
lepton number U(1)L symmetries.

The matter content is consistent with the existence of an electric Z(1)
6 1-form global

symmetry [107, 108]. The cocycle conditions satisfied by SM on T4 with a gauged
Z(1)

6 are given by [108]:

Ω(3)µ(xν = Lν)Ω(3)ν(xµ = 0) = e2πi
n

(3)
µν
3 Ω(3)ν(xµ = Lµ)Ω(3)µ(xν = 0) ,

Ω(2)µ(xν = Lν)Ω(2)ν(xµ = 0) = e2πi
n

(2)
µν
2 Ω(2)ν(xµ = Lµ)Ω(2)µ(xν = 0) , (4.84)

ω(1)µ(xν = Lν)ω(1)ν(xµ = 0) = e−2πi(
n

(3)
µν
3 +

n
(2)
µν
2 )ω(1)ν(xµ = Lµ)ω(1)µ(xν = 0) .

Ω(i), i = 2, 3, and ω(1) are the transition functions of the gauge bundles, n(i)
µν are

the ’t Hooft twists, and the superscript/subscript (i) = (3), (2), (1) denote the
condition for the SU(3), SU(2), U(1) gauge groups respectively. The electric Z(1)

6
symmetry is generated by a combinations of the SU(3) center, T (3)

j , the SU(2)
center, T (2)

j , and the U(1) center tj , such that the full Z(1)
6 symmetry generator is

given by T (3)
j T

(2)
j tj , j = x, y, z.

The anomalous U(1)B+L current conservation law is given by

∂µj
µ
B+L − 2Nf∂µK

µ
SU(2)(a

c) + 36Nf

8π2 ϵµνλσ∂
µaν∂λaσ = 0 , (4.85)

where Kµ
SU(2) is the SU(2) topological current. The corresponding unbroken ZB+L

2Nf
symmetry operator on T3 is given by:

UZ2Nf ,ℓ
= exp

[
i

2πℓ
2Nf

Q5

]
, (4.86)
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where the conserved charge Q5 is given by (here we turn on a Z6 magnetic twist)

Q5 =
∫
T3
d3x

[
j0
B+L − 2NfK

0
SU(2)(ac) + 36Nf

8π2 ϵijkai∂jak

]

−18Nf

4π (Nz + 1
6nz)

 Ly∫
0

dy

Ly

Lz∫
0

dzaz(x = 0, y, z) +
Lx∫
0

dx

Lx

Lz∫
0

dzaz(x, y = 0, z)


+
∑

cyclic
(x → y → z → x) . (4.87)

Under a U(1) gauge transformation, UZ2Nf ,ℓ
transforms as

UZ2Nf ,ℓ
−→ UZ2Nf ,ℓ

e
−i2π

(
18ℓNf
Nf

(Nx+nx
6 )
)

+(x→y)+(x→z)
= UZ2Nf ,ℓ

. (4.88)

Therefore, UZ2Nf ,ℓ
is U(1) gauge invariant, as required. Further, we examine UZ2Nf ,ℓ

after gauging the electric Z(1)
6 1-form center by sandwiching UZ2Nf ,ℓ

between its
generators (this is a generalization of Eq. (4.75)):

T (3)
x T (2)

x txUZ2Nf ,ℓ

(
T (3)
x T (2)

x tx
)−1

= e
−i

2πℓ(2Nf )
2Nf

n
(2)
x
2︸ ︷︷ ︸

fromK0
SU(2)(ac)

e
i2πℓ

36Nf
2Nf

( 1
6 )
(
Nx+n

(2)
x
2 +n

(3)
x
3

)
︸ ︷︷ ︸

from ϵijkai∂jak

UZ2Nf ,ℓ

= UZ2Nf ,ℓ
. (4.89)

We used Eq. (4.30), setting kx = mx = 1, to find the first exponent. The second
exponent is found by applying Eq. (4.41) and using n = 1, N = 6. Here, n(2)

x , n(3)
x ,

and Nx are the SU(2) and SU(3) fractional twists and U(1) integral magnetic
flux, respectively. This analysis shows that SM does not possess noninvertible
symmetries in its nongravitational sectors. Our findings are consistent with [93].

4.5 Coupling gauge theories to axions and
noninvertible symmetries

In this section, we introduce axions into the game, taking T4 to be larger than any
scale in the theory. To be specific, we take SU(N)/Zp or SU(N) ×U(1)/Zp gauge
theories of the previous sections and follow the setup of [17] by adding a complex
scalar Φ that is neutral under the gauge groups but couples to the fermions. Thus,
we add the following terms to the Lagrangian:

L ⊃ |∂µΦ|2 + V (Φ) + yΦψ̃ψ + h.c. , (4.90)

where ψ, ψ̃ are two left-handed Weyl fermions in representations R and its complex
conjugate R̄, respectively, and y is a Yukawa coupling. The potential of the complex
field is V (Φ) = λ(|Φ|2 − v2)2, where λ is O(1) dimensionless parameter. We take
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4.5. Coupling gauge theories to axions and noninvertible symmetries

the scalar field v.e.v. v ≫ Λ, where Λ the strong scale of the gauge sector. We
shall pretend that we did not know about the noninvertible symmetries or how to
construct them, and let us see if we can reproduce them in the IR.

Let us first consider the SU(N) gauge theory before gauging U(1) and the electric
Z(1)
p symmetry. Under Zχ2TR

and U(1) baryon number, the different fields transform
as

Zχ2TR
: Φ −→ e

i−2π
TR Φ , ψ −→ e

i 2π
2TR ψ , ψ̃ −→ e

i 2π
2TR ψ̃ ,

U(1) : Φ −→ Φ , ψ −→ eiαψ , ψ̃ −→ e−iαψ̃ , α ∈ [0, 2π) . (4.91)

If we write Φ as Φ = ρeia, where a is the axion ∗, then a transforms under Zχ2TR
as

a −→ a− 2π
TR

(4.92)

and notice that the axion is inert under the ZF2 fermion number subgroup of Zχ2TR

.

Next, we consider SU(N)/Zp or SU(N) × U(1)/Zp gauge theories with axions.
Flowing to an energy scale below v, the radial degree of freedom ρ freezes in, i.e.,
we set ρ = v, and the fermions acquire a mass ∼ yv and decouple. What remains
is the light degree of freedom, the axion a. However, the axion should reproduce
all the UV anomalies. Thus, we can write the following IR effective Lagrangian of
a:

La = v2 (∂µa)2 + TRa
tr(f c ∧ f c)

8π2 + dRa
f ∧ f

8π2 . (4.93)

Variation of La w.r.t a produces the anomalous current conservation law:

∂µj
µ
(a) − TR∂µK

µ(ac) − dR
8π2 ϵµνλσ∂

µaν∂λaσ = 0 , (4.94)

where jµ(a) = v2∂µa. This is exactly the anomalous current conservation law we
had previously, now written down for the axion current. Therefore, everything we
said in the previous sections applies here. In particular, we can define an operator
of the Zχ2TR

symmetry as:

UZ2TR ,ℓ = exp
[
i
2πℓ
TR

∫
T3

(j0
(a) − TRK

0(ac)) + ...

]
, (4.95)

where the dots denote the contribution from the U(1) gauge field (see Eq. (4.40)).
We used a calligraphic letter for the operator to emphasize that it is constructed
in the IR. Yet, all the anomalies and failure of invariance under gauge symmetries
that lead to the noninvertibility of the UV operators apply here as well. Thus,
similar to what we did before, we can construct the noninvertible operator ŨZ2TR ,ℓ,

∗a without any indices represents the axion, while aµ with an index represents the U(1) gauge
field. Apologies for the confusing notation.
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which implements the noninvertible symmetry Z̃χ2TR
in the IR. Such operators shall

project onto magnetic sectors and also exhibit mixed anomalies with the global 1-
form electric center symmetry, exactly as we discussed previously.

It was pointed out in [109] that SU(N)/Zp theories with axions have noninvertible
symmetries. However, our construction shows that such a conclusion is not gen-
eral and depends on the UV completion. Consider two theories SU(4k)/Z2 and
SU(4k + 2)/Z2 with a Dirac fermion in the 2-index antisymmetric representation
and coupled to a complex scalar field Φ as above. As we flow to the IR, we can
construct the operators corresponding to the chiral symmetries. We discussed in
Section 4.3.3.1 that SU(4k)/Z2 theory does not exhibit an anomaly between its
chiral symmetry and the 1-form symmetry of the corresponding SU(4k) theory,
and hence, the chiral symmetry operator is invertible. Therefore, an axion domain
wall (DW), implemented by the action of ŨZ8k−4 ,ℓ, will not be dressed with TQFT
degrees of freedom. On the contrary, SU(4k+ 2)/Z2 exhibits an anomaly between
its chiral symmetry and the 1-form center of the corresponding SU(4k+ 2) theory,
and thus, the minimal chiral symmetry operator ŨZ8k ,ℓ=1 is noninvertible. The
axion DW implemented by ŨZ8k ,ℓ=1 must be dressed with a fractional quantum
Hall TQFT.

We may also consider axions in SU(N)×U(1)/Zp theory of Section 4.4. Everything
we said there is transcendent to the IR axion domain walls. In particular, for
p = 1, the operator ŨZ2TR ,ℓ=1 annihilates the Hilbert space sectors characterized
by vanishing fractional n = 0 and integral magnetic fluxes N /∈ TRZ3/gcd(TR, dR).
It will be interesting to examine what happens to the axion domain walls of this
theory as we place them in such an external magnetic field.
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Chapter 5
Global aspects of 3-form gauge

theory: implications for
axion-Yang-Mills systems

5.1 Introduction

As we have seen in the last chapter, axion theories come with interesting generalized
symmetries. They are an elegant solution to the Strong CP problem and a popular
dark matter candidate. It would be desirable to further understand axions and
their properties. The natural question to ask is: what can generalized symmetries
tell us about axions? In this chapter, we will study the relationship between axions
and higher-form gauge theories, in particular a three-form gauge theory.

Three-form gauge theory is a fascinating topic that attracted attention since Lüscher’s
seminal work [110]. There, it was argued that the non-trivial topology of the 4-D
Yang-Mills theory shows up in the infrared as an abelian long-range 3-form gauge
field c3. It does not correspond to a physical massless particle, i.e., a propagating
degree of freedom. Nevertheless, it contributes to the theory’s vacuum energy, i.e.,
cosmological constant. In this formulation, the CP-violating θ term can be written
as

θ

∫
M4

dc3 , (5.1)

where c3 is given in terms of the nonabelian Chern-Simons current density: c3 =
tr
[

1
3 (ac1)3 + ac1 ∧ dac1

]
/(8π2), ac1 is the color field, and M4 is the 4-D manifold. The

correlator of the derivatives of two Chern-Simons current densities is the topological
susceptibility χ of Yang-Mills theory, which develops a pole as the momentum
vanishes, the Kogut-Susskind pole [111], corresponding to a pole of the c3 correlator.
This is also known as the Veneziano ghost [112] because the pole appears with
the opposite sign compared to those of conventional particles, and it provides an
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alternative means (to Yang-Mills instantons) to solve the axial U(1) problem. One
can write down an effective action that reproduces these findings [113]:

SIR = 1
2χ

∫
M4

|dc3|2 + θ

∫
M4

dc3 , (5.2)

where a kinetic-energy term of c3 is added to give the correct long-range interaction
form of the c3 correlator. The effective action (5.2) yields the vacuum energy [114]:

E0(θ) = χ

2 mink (θ + 2πk)2 , k ∈ Z . (5.3)

This multi-branch function is periodic in θ and develops cusps at θ = π, 3π, ...,
a result derived by Witten in the large-N limit [115]. While this renowned result
lends support to the validity of (5.2), it is important to emphasize that the effective
description (5.2) is strictly derived in the large-N limit. See [114] for a review and
[116, 117, 118, 119, 120, 121] for further works on 3-form gauge theory, including
supersymmetric versions.

When massless quarks are introduced, the θ term can be rotated away, and the the-
ory restores its CP invariance, thus solving the strong CP problem. A similar effect
can be achieved by introducing an axion a through the Peccei–Quinn mechanism
[122]. This approach employs an anomalous global U(1) symmetry along with a
complex scalar field whose phase corresponds to the axion. The complex scalar
undergoes spontaneous symmetry breaking at a scale v, which is much higher than
the strong-coupling scale Λ. Below Λ, Yang-Mills instantons generate an effect-
ive potential for a + θ, which is minimized at a point in the field space restoring
the CP symmetry. The same conclusion can be reached using the 3-form gauge
theory, as demonstrated by Dvali in [123, 124]. In this framework, c3 undergoes
Higgsing when it absorbs the axion, resulting in c3 becoming a short-range field.
This mechanism can be elegantly seen in the Kalb-Ramond frame, where the axion
is dualized to a 2-form gauge theory. This process effectively eliminates the second
term in (5.2) and restores the CP invariance.

Since c3 does not carry a physical degree of freedom, it is reasonable to question
whether the 3-form gauge theory is essential for formulating Yang-Mills theory in
the deep IR (without or with axions) or if it is merely a redundant description lack-
ing true physical significance. This study offers a new perspective on the validity
of the 3-form gauge theory beyond the large-N limit. Under certain conditions, we
argue that the 3-form gauge theory is a faithful IR effective description in axion-
Yang-Mills systems. This is achieved by examining the global symmetries of such
systems as well as certain types of ’t Hooft anomaly-matching conditions.

Our understanding of symmetries has undergone a conceptual paradigm shift over
the past decade [4]; see [10] for a review and [125, 27, 81, 126, 127] for examples of
works that discussed the 3-form symmetries from a modern perspective. In the con-
temporary paradigm, a p-form global symmetry in 4-D acts on a p-dimensional ob-
ject and is generated by operators (symmetry defects) living on (3−p)-dimensional
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topological manifolds. Gauging a global symmetry is performed by introducing a
background field of the symmetry and including an arbitrary sum over inequival-
ent classes of this background in the path integral. Moreover, it has been realized
recently that the concept of symmetry can be extended to include operations that
lack inversions; see, e.g., [128, 23, 22, 83, 76, 97] and the reviews [11, 96]. Our
primary goal is to conduct a systematic study of the 3-form gauge theory and ap-
ply it to Yang-Mills theory coupled to matter fields and axions, with a focus on
its global aspects. By utilizing newly developed mathematical tools, we can thor-
oughly examine the 3-form effective field theory of axion-Yang-Mills systems. This
effective description successfully passes several consistency checks.

This chapter is divided into two main parts. The first part discusses the symmetry
aspects of a general low-energy 3-form gauge theory coupled to axion, including
the multi-field case. Starting from a low-energy Lagrangian exhibiting a U(1)(2)

2-form along with U(1)(0) 0-form global symmetries, we construct a 3-form gauge
theory by gauging the former symmetry. The resulting theory is a topological
quantum field theory (TQFT) of the BF type, modified by marginal and irrelevant
operators, and describes a set of q domain walls (q is a free parameter) separating
q distinct vacua and forming a junction at the locus of an axion string. Generally,
the gauge theory exhibits Z(0)

q 0-form and Z(3)
q 3-form global symmetries, with a

mixed anomaly between them valued in Zq. This anomaly is matched by breaking
the two participating symmetries, leading to q distinct vacua separated by domain
walls. Furthermore, we point out that the theory encompasses a gauged U(1)(−1)

(−1)-form symmetry, which undergoes spontaneous breaking (Higgsing), signifying
that the vacuum energy has no contribution coming from c3. We also construct the
symmetry defects associated with these symmetries in two dual frames: the axion
and the Kalb-Ramond frames. We demonstrate the action of such symmetries
within an example of a domain-wall system. When the discrete 3-form global
symmetry or a subgroup thereof, Z(3)

p ⊆ Z(3)
q , is gauged, we are left with only q/p

distinct vacua.

In the second part of this chapter, we apply this formalism to SU(N) Yang-Mills
theory endowed with a single massless Dirac fermion in a representation R coupled
to a neutral complex scalar field. In the UV, this theory exhibits both a Zχ(0)

2TR
0-form

chiral and Z(1)
m 1-form center symmetries, with a possible mixed anomaly between

the two symmetries. Here, TR is the Dynkin index of R and m = gcd(N,n), where
n is the N -ality of R. When matched below the strong-coupling scale, this non-
vanishing mixed anomaly necessitates introducing a dynamical c3. We summarize
the idea here, with details provided in the main body of the chapter.

Let v and Λ be the complex scalar vev and the Yang-Mills strong-coupling scales,
respectively, and we take Λ ≪ v. To see the Zχ(0)

2TR
− Z(1)

m mixed anomaly, we
turn on a 2-form background field of Z(1)

m . This is achieved, as in [14, 15, 16, 17],
by first introducing a pair of 1-form and 2-form U(1) gauge fields (Bc

1, B
c
2) along

with the constraint mBc
2 = dBc

1. The field strength of the 1-form field satisfies
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the quantization condition
∫

M2
dBc

1 ∈ 2πZ. Then the constraint implies that Bc
2

has a vanishing field strength dBc
2 = 0, while its holonomy is fractional

∫
M2

Bc
2 ∈

2πZ
m . To couple the background field to fermions, in the second step, we enlarge
SU(N) to U(N) and embed the Z(1)

m background field into the U(1)(1) 1-form
symmetry of U(N) gauge theory. However, we must ensure that the enlargement
from SU(N) to U(N) does not introduce new degrees of freedom, which can be
done by postulating that the theory is invariant under an auxiliary 1-form gauge
symmetry that acts simultaneously on the U(N) and (Bc

1, B
c
2) fields. As we flow

to energy scales Λ ≪ E ≪ v, the magnitude of the complex scalar field freezes at
v, while the winding of its phase (the axion) leads to the emergence of a U(1)(2)

2-form symmetry that couples to the axion strings. Below Λ, the strong dynamics
set in, leading to the confinement of the color field. Here, one is faced with a puzzle:
the confinement of the color field means that one should no longer incorporate the
nonabelian field in the calculations. If true, the low-energy theory is no longer
invariant under the postulated auxiliary 1-form gauge symmetry, indicating that
something is missing. The way out is to introduce the dynamical 3-form gauge
field c3 of U(1)(2). The latter transforms non-trivially under the auxiliary gauge
symmetry, ensuring the full low-energy effective field theory (in the background of
the Z(1)

m flux) is invariant under this auxiliary symmetry. Moreover, the IR theory
reproduces the mixed anomaly, which is an important check on the analysis since
anomalies are all-scale phenomena. In this regard, c3 can be thought of as the long-
range tail of the nonabelian dynamics. Even though it does not carry a physical
degree of freedom, its presence is essential for the consistency of the theory deep
in the IR.

Below the scale, v, the fermions become massive, with a mass of order v, and
decouple, leading to the enhancement of Z(1)

m to Z(1)
N 1-form symmetry. The groups

U(1)(2) and Z(1)
N constitute a higher-group structure, where the former is the parent

and the latter is the daughter symmetries. One may gauge the parent without
gauging the daughter, but not conversely. As we flow below Λ, we may freely
gauge U(1)(2) and introduce the dynamical c3 without worrying about Z(1)

N . The
latter stays an enhanced symmetry below Λ.

One of our main results is the IR effective field theory at energy scale E ≪ Λ given
by Eq. (5.114), which we display here for convenience:

LE≪Λ = v2

2 da ∧ ⋆da+ TRa

2π

(
dc3 − N

4πB
c
2 ∧Bc

2

)
+ Λ4K

(
dc3 − N

4πB
c
2 ∧Bc

2
Λ4

)
,

(5.4)

where K is the kinetic energy term of c3, and the background of Z(1)
m is activated.

This theory exhibits Z(0)
TR

× Z(3)
TR

global symmetries. Dynamically, the IR theory
forms axion domain walls, separating TR distinct minima and breaking Z(0)

TR
and

Z(3)
TR

maximally. The enhanced Z(1)
N symmetry is explicitly broken by higher-order

operators down to the genuine Z(1)
m symmetry, which remains intact.
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The field strength of the 3-form gauge field satisfies the quantization condition∫
M4

dc3 = 2πm, where m is an integer equivalent to the topological charge of the
Yang-Mills instantons. The full partition function of the IR theory (at energy scale
E ≪ Λ) includes a sum over all integers m. We may integrate out c3, and using
the Poisson resummation formula, we obtain the Euclidean partition function:

Z[a] ∼
∑
k∈Z

exp
[
−ikN4π

∫
M4

Bc
2 ∧Bc

2

]
exp

[
−
∫

M4

v2

2 da ∧ ⋆da+ Λ4

8π2 (TRa+ 2πk)2
]
.

(5.5)

This partition function reproduces the chiral-center anomaly upon shifting a →
a+ 2π

TR
. It also displays an infinite number of vacua, with the true vacuum energy

given by

V (a) ∼ Λ4mink (TRa+ 2πk)2 . (5.6)

The potential V (a) has TR minima at 2πℓ/TR, ℓ = 0, 1, ..., TR − 1, as well as cusps
at a = π(2ℓ+ 1)/TR, reflecting two facts. First, the cusps indicate that additional
degrees of freedom, not accounted for by V (a), are sandwiched between the true
minima of the theory. These are the hadronic walls, which are very thin compared
to the thickness of the axion domain walls [129, 130]. Second, a restructuring in
the hadronic sector occurs as one goes between one minimum and the other. These
results are consistent with the large-N limit (5.3).

There exists a higher group structure between Z(3)
TR

and the enhanced Z(1)
N sym-

metries. However, this structure trivialises for the genuine Z(1)
m ⊂ Z(1)

N symmetry.
This means we can gauge Z(1)

m without worrying about Z(3)
TR

. Gauging the former
gives SU(N)/Zm theory. This theory still exhibits a spontaneously broken IR Z(3)

TR

symmetry due to the formation of domain walls. However, the chiral symmetry
Z(0)
TR

becomes noninvertible. This results in dressing the domain walls with an IR
TQFT. This intricate structure works as a consistency check on the adequacy of
using the 3-form gauge theory to describe the axion-Yang-Mills systems’ IR physics.

This chapter is organized as follows. In Section 5.2, we set the stage by considering
the field theory of a compact scalar, which possesses two global symmetries: shift
and winding symmetries. The theory encounters a mixed ’t Hooft anomaly, and
thus, the shift symmetry breaks into a discrete group upon gauging the winding
symmetry. Next, we couple the gauge field of the winding symmetry, the 3-form
gauge field, to the compact scalar and analyze the resulting theory in great detail:
we identify the global symmetries, their mixed anomalies, and the noninvertible
symmetries within this theory. Section 5.3 is devoted to studying the compact
scalar in the dual frame, the Kalb-Ramond gauge theory, while Section 5.4 gener-
alizes these findings to two or more 3-form gauge fields. In Section 5.5, we use the
machinery built in the previous sections to examine our proposal that the deep IR
regime of the axion-Yang-Mills systems is described by a 3-form gauge theory and
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5.2. The Axion theory

apply various checks to this proposal. Finally, we conclude in Section 5.6 with a
brief discussion.

5.2 The Axion theory

We consider the 4-D theory of a 2π-periodic scalar field a, the axion, i.e., we identify
a(P) ≡ a(P) + 2πZ at the spacetime point P. The basic Lagrangian is

L = v2

2 da ∧ ⋆da , (5.7)

where v is a constant of mass dimension 1. When coupling the axion to a Yang-
Mills theory via the Peccei-Quinn mechanism, v is the axion’s symmetry-breaking
scale. The Lagrangian (5.7) has a global U(1)(0) 0-form shift symmetry acting on
the axion as a → a+α, where α is a constant. The corresponding Noether’s 1-form
current is

j1 = v2da , (5.8)

which is conserved thanks to the equation of motion:

d ⋆ j
(0)
1 = v2d ⋆ da = 0 . (5.9)

The topological symmetry generator (symmetry defect) enacting this transforma-
tion is defined on a closed co-dimension-1 manifold M3:

U (0)
α (M3) = e

iα
∫

M3
v2⋆da

. (5.10)

The superscript emphasizes that the operator implements the action of a 0-form
symmetry. We can take U (0)

α (M3) to surround the local operator

V (M0 = P) = eia(P) , (5.11)

and then topologically deforming U (0)
α (M3) past V to find

U (0)
α (M3)V (M0) = eiαV (M0) . (5.12)

The axion theory is also endowed with a U(1)(2) 2-form global symmetry with a
corresponding 3-form current

j3 = ⋆da , (5.13)

which is conserved because of the Bianchi identity:

d ⋆ j3 = d2a = 0 . (5.14)

We can also define the symmetry defect of the U(1)(2) 2-form symmetry by integ-
rating the Hodge-dual of j3 on a co-dimension-3 manifold M1 as:

U
(2)
β (M1) = e

iβ
∫

M1
da
. (5.15)
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5.2.1. Gauging the U(1)(2) 2-form symmetry: 3-form gauge theory and domain walls

This symmetry defect acts on the 2-dimensional axion-string worldsheet M2 [27].
Let V (M2) be the axion-string Wilson surface, which has no local description∗ in
terms of the axion field a. Deforming the symmetry defect U (2)

β (M1) past V (M2)
transforms the latter by a phase:

U
(2)
β (M1)V (M2) = eiβLink(M1,M2)V (M2) , (5.16)

where Link(M1,M2) is the linking number between the two manifolds.

There is a mixed ’t Hooft anomaly between U(1)(0) and U(1)(2) symmetries. To see
it, we examine the commutation relation between the symmetry defects U (0)

α (M3)
and U

(2)
β (M1). One way to perform the calculations is by foliating M4 into con-

stant time slices and orienting both M3 and M1 to be time-like surfaces:

U (0)
α (M3(t)) = e

iαv2
∫

M3(t) d
3x∂0a(x,t)

, U
(2)
β (M1(t)) = e

iβ
∫

M1(t) ∂iadx
i

, (5.17)

where i ∈ {1, 2, 3}. Then, using the equal-time commutation relation [a(x, t),Πa(y, t)] =
iδ(3)(x − y), where Πa = v2∂0a, and employing the Baker-Campbell-Hausdorff for-
mula, we find

U (0)
α (M3(t))U (2)

β (M1(t)) = e−iαβU
(2)
β (M1(t))U (0)

α (M3(t)) . (5.18)

The phase manifests the mixed anomaly: one cannot move the symmetry defects
freely without encountering non-trivial phases. The anomaly implies that gauging
one symmetry breaks the other into, at most, a discrete subgroup. †

5.2.1 Gauging the U(1)(2) 2-form symmetry: 3-form gauge theory
and domain walls

Now, we gauge the U(1)(2) symmetry, meaning that we introduce the 3-form gauge
field c3 of the 2-form symmetry and perform the path integral over c3. We couple
c3 to its current j3 by adding the BF term

q

2π ⋆ j3 ∧ c3 = q

2πda ∧ c3 (5.20)

to the Lagrangian (5.7). We introduced the positive integer q ∈ N as a free para-
meter of the theory, and its physical significance will be apparent below. The gauge

∗It is, however, possible to define an operator e
i
∫

Σ3
v2⋆da

on an open surface Σ3, with the
string positioned at Σ2 = ∂Σ3, the boundary of Σ3. This approach mirrors the implicit definition
of ’t Hooft lines in earlier formulations. A direct definition of the Wilson surface operator as an
integral over a closed 2-dimensional surface will be given in Section 5.3 using the dual Kalb-Ramd
field.

†The anomaly inflow action is given by

Sinflow = i

2π

∫
X

dA1 ∧ C3, (5.19)

where X is a five-dimensional manifold with the physical spacetime as the boundary, and A1, C3
are the background gauge fields for the U(1)(0) and U(1)(2) symmetries respectively [27].
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5.2.1. Gauging the U(1)(2) 2-form symmetry: 3-form gauge theory and domain walls

field c3 transforms as c3 → c3 + dλ2 under the U(1)(2) gauge transformation, and
via integration by parts, we see that the new term (5.20) is invariant under this
transformation. The field strength of c3 is f4 = dc3, and it satisfies the quantization
condition: ∫

M4
f4 ∈ 2πZ (5.21)

on a closed M4. The consistency of the theory under U(1)(2) large gauge trans-
formations implies that dλ2 satisfies the condition∫

M3
dλ2 ∈ 2πZ . (5.22)

In addition, since c3 is a dynamical field∗, we can include a kinetic energy term K
for c3. The total Lagrangian is†:

L = v2

2 da ∧ ⋆da− q

2πda ∧ c3 + Λ4K
(
dc3
Λ4

)
, (5.23)

and we introduced the new scale Λ. More on K will be discussed momentarily.
The presence of the c3 field reduces the U(1)(0) symmetry to a Z(0)

q ⊂ U(1)(0)

symmetry; the Lagrangian (5.23) is only invariant under the shift a → a + 2π/q.
This demonstrates the earlier assertion that the mixed anomaly between the U(1)(2)

and U(1)(0) symmetries leads to the latter being broken into a discrete subgroup
when the former is gauged‡. The current conservation law (5.9) of the 0-form
symmetry is modified to:

v2d ⋆ da− q

2πdc3 = 0 . (5.24)

The corresponding Z(0)
q symmetry defect is topological only when we include this

combination of fields - (5.10) is modified to

U (0)
α (M3) = e

iα
∫

M3
(v2⋆da− q

2π c3)
. (5.25)

Using the quantization condition on dλ2, i.e.,
∫

M3
dλ2 ∈ 2πZ, we readily see that

U
(0)
α (M3) is gauge-invariant under a U(1)(2) gauge transformation if and only if

α = 2πℓ/q, ℓ ∈ Z. This seconds the above assertion that introducing the term
(5.20) reduces the U(1)(0) symmetry down to a Z(0)

q subgroup.

Next, we focus on K, the kinetic energy term of the 3-form gauge field. In the
following, it will be helpful to write and analyze the Lagrangian (5.23) in index

∗The 3-form gauge field has mass dimension 3.
†In a manifold with boundary, we also need to consider a boundary term so that the variation

of the kinetic term at the boundary vanishes; see, e.g., [120] and references therein. We do not
run into this subtlety in this analysis.

‡As we shall see, this mixed anomaly is the IR incarnation of the axial-color ABJ anomaly in
an axion-Yang-Mills UV complete theory.
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notation∗:

L = v2

2 ∂µa ∂
µa− q

2π
1
3!ϵ

µνρσ(∂µa) cνρσ + Λ4K , (5.26)

where ϵµναβ is the Levi-Civita tensor and the Greek indices run over 0, 1, 2, 3. The
canonical (quadratic) form of the kinetic energy term is:

Kcan = − 1
2 · 4!Λ8 f

µναβfµναβ , (5.27)

where fµναβ = ∂µcναβ − ∂νcµαβ + ∂αcµνβ − ∂βcµνα. Since fµναβ is totally anti-
symmetric in the 4 indices, we can always write it as

fµναβ = −ϵµναβf(x) , (5.28)

for some scalar function f(x). Therfore, Kcan takes the simple form†

Kcan = f2(x)
2Λ8 . (5.29)

The mathematical statement (5.28) is equivalent to saying that the free 3-form field
c3 does not carry propagating degrees of freedom. To see that, use the canonical
kinetic term of c3, ignore the axion in (5.26), and vary the Lagrangian with respect
to cµνα to find

∂µf
µναβ = 0 , (5.30)

which admits the general solution fµναβ = −ϵµναβf , where f , in this case, is a
constant. The constant field strength of a 3-form gauge field carries no propagating
degrees of freedom, much like free electrodynamics in 2-D. In the absence of a, the
4-form field f4 is a cosmological constant, which is easily seen by substituting
fµναβ = −ϵµναβf into the Lagrangian‡.

From the perspective of effective field theory, the kinetic energy term can take a
more generalized form, with K represented as a polynomial in f :

K
(
f

Λ4

)
= θ

f

Λ4 + f2

2Λ8 + c′ f
4

Λ16 + ... , (5.31)

where θ and c′ are some real parameters.The first term is topological, and since∫
M4 f4 =

∫
M4

d4xf ∈ 2πZ, the theory is invariant under the shift θ → θ + 2π,
∗Translating from the d-forms to the index notation, it helps to remember that we are working

in Minkowski space, with metric ηµν = diag(+1,−1,−1,−1), such that ⋆⋆ = −1 for even forms
and ⋆⋆ = +1 for odd forms.

†We used ϵµναβϵ
µναβ = −4!. We can also express f in terms of fµναβ as f = 1

4! ϵ
µναβfµναβ .

‡However, a subtle issue arises because the cosmological constant obtained in this manner does
not align with the correct value derived by varying (5.26) with respect to the metric tensor [121].
This discrepancy can be resolved by including boundary terms in (5.26). Nonetheless, to obtain
the correct form of the energy-momentum tensor and, consequently, the cosmological constant, we
will rely on the variation of the action with respect to the metric tensor, disregarding boundary
terms.
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and thus, θ is 2π-periodic. This term breaks the CP invariance unless θ = {0, π}.
However, θ can be rotated away by combining θ f

Λ4 with the second term in (5.26),
after integrating by parts and shifting qa → qa − θ. Other possible higher-order
kinetic energy terms may involve higher derivatives of f4. Yet, these terms may be
plagued with ghosts [121], and thus, we ignore such terms in our construction.

By rescaling the fields a and f as a → av and f → Λf , we observe that the Lag-
rangian (5.26) manifests as a BF theory deformed by marginal terms (the canonical
kinetic terms of a and f) and by irrelevant operators (the higher-order terms of
f). The full quantum theory guarantees that the system has q degenerate ground
states To see that, we may want to find an effective axion potential Veff(a) by in-
tegrating out f4 and imposing the constraint (5.21). To streamline the analysis, we
proceed by disregarding the axion kinetic energy term in (5.23), which is a good
approximation assuming Λ ≪ v. Then, the Euclidean partition function reads:

Z[a] =
∫

[Dc3]
∑
m∈Z

δ

(
2πm−

∫
M4

f4

)
e−SE , (5.32)

and

SE = −
∫

M4
Λ4K

(
if4/Λ4

)
+ i

q

2πa ∧ f4 . (5.33)

We can further simplify our analysis by recalling that f4 does not carry propagating
degrees of freedom and can be expressed by Eq. (5.28). We take M4 to be a closed
manifold, and therefore, we have

∫
M4

f4 =
∫
dVM4f(x) = f0VM4 , where f0 is the

zero mode of f(x) and VM4 is the 4-volume of M4, and we assume Λ4VM4 ≫ 1.
Focusing only on the zero modes of f and a, we find

Z[a] ∼

∑
m≥0

eΛ4VM4 K(2πim) cos(mqa0)

× higher modes of a , (5.34)

where a0 is the zero mode of a. The higher modes of a are suppressed by inverse
powers of Λ4VM4 and can be neglected deep in the IR. The effective potential is
defined via Veff(a) = −V −1

M4
logZ[a], and thus, Veff(a0) ∼ Λ4F(qa0), where F is a

periodic function with period 2π/q. We conclude that integrating out f4 yields a
periodic potential for the axion that respects the Z(0)

q shift symmetry, as it should
be. Minimizing Veff(a0) yields q-degenerate ground states connected via domian
walls.

An alternative way to perform the path integral in (5.32) is to use the Poisson
resummation formula ∑m∈Z δ

(
2πm−

∫
M4

f4
)

= ∑
k∈Z e

−ik
∫

M4
f4 . Taking K in

the canonical form Kcan = f2
4 /(2Λ2), focusing on the zero modes, and performing

the Gaussian integral, we obtain

Z[a] ∼
∑
k∈Z

e−
Λ4VM4

8π2 (qa+2πk)2
, (5.35)
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which, again, is a periodic function that respects the Z(0)
q shift symmetry. The

result (5.35) is remarkable. This partition function displays an infinite number of
vacua, most of which are false. The true vacuum energy is given by

V (a) ∼ Λ4mink (qa+ 2πk)2 . (5.36)

This potential has q distinct minima, with cusps at a = π/q, 3π/q, etc. These cusps
appear only upon including the infinite sum over m in (5.34) and performing the
Poisson resummation formula. In other words, the cusps are a feature of the full
quantum theory. This observation will have far-reaching consequences in axion-
Yang-Mills systems.

Let us return to the Lagrangian (5.26) and study its classical aspects. Varying it
with respect to cνρσ, assuming the general form of K, yields the equation of motion
of the 3-form field:

q

2π∂µa = −Λ4∂µK′
(
f

Λ4

)
, (5.37)

where the prime denotes the derivative with respect to the argument of K. Equation
(5.37) is pivotal to our subsequent analysis. Integrating once, we obtain

q

2π (a− ã0) = −Λ4K′
(
f

Λ4

)
, (5.38)

for some integration constant ã0. Assuming K′ is invertible, we can rearrange the
equation of f :

f = Λ4(K′)−1
(

q

2πΛ4 (ã0 − a)
)
. (5.39)

From (5.26), the equation of motion for the axion a is

v2∂µ∂
µa− q

2πf = 0 . (5.40)

Here, f acts as the derivative of a classical effective potential for the axion field: in
the presence of a classical effective potential for the axion, the equation of motion
is v2∂µ∂µa + ∂Vcl-eff(a)

∂a = 0. This means we can set q
2πf = −∂Vcl-eff(a)

∂a , and using
(5.39), we conclude

∂Vcl-eff(a)
∂a

= − q

2πf = − q

2πΛ4(K′)−1
(

q

2πΛ4 (ã0 − a)
)
. (5.41)

Then, one can integrate (5.41) to obtain an expression of Vcl-eff(a). Unlike the
effective potential obtained from the full partition function, the classical effective
potential does not need to yield q degenerate ground states. The form of the
classical effective potential depends on the kinetic energy term for c3. To elucidate
this point, we consider two examples of the resulting Vcl-eff(a): the quadratic and
the cosine potentials. The corresponding kinetic energy functions are [123]:

V quadratic
cl-eff (a) = Λ4

2 (a− ã0)2 ⇐⇒ Kcan

(
f

Λ4

)
= q2f2

2Λ8 , (5.42)
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and

V cos
cl-eff(a) = Λ4(1 − cos (n(a− ã0)) ⇐⇒

Kcos

(
f

Λ4

)
= −1 +

√
1 −

(
qf

2πnΛ4

)2
+ qf

2πnΛ4 arcsin
(

qf

2πnΛ4

)
. (5.43)

The integration constant in K is chosen such that K
(
f

Λ4 = 0
)
=0.

The kinetic energy term (5.43) is designed to produce V cos
cl-eff(a), and when n ∈

qN, it exhibits multiple-of-q minima. These minima are located at values of a
satisfying ∂V cos

cl-eff(a)
∂a = 0, and from Eq.(5.41) we see that f vanishes there; the 3-

form gauge field c3 is gapped at these minima. Expanding Kcos
(
f

Λ4

)
to the leading

order in f about one of the minima results, up to a proportionality constant, in
the canonical kinetic energy term (5.42). This, however, does not imply that the
canonical kinetic energy term fails to produce q-degenerate ground states. As
previously discussed, regardless of the form of K, the full partition function of
the Lagrangian (5.23), incorporating the quantization condition (5.21), will always
lead to q-fold degeneracy in the deep IR regime. Nonetheless, Kcos

(
f

Λ4

)
proves

invaluable as it facilitates connections with textbook examples of axion domain
walls. One can think of it as a UV completion of the canonical kinetic energy.

Domain walls. In the following, we proceed to discuss the classical domain wall
solutions in the U(1)(2) gauge theory. We shall use the effective cosine potential in
(5.43) to carry out our analysis. However, this section’s conclusions also hold for
arbitrary potential, i.e., for arbitrary forms of K.

The cosine potential yields n vacua aℓ = 2πℓ
n , where ℓ = 0, 1, , ..., n−1. There are n

domain walls separating the adjacent vacua with a kink-like profile given by (here,
we may set ã0 = 0):

a(z) = 2πℓ
n

+ 4
n

arctan (enmaz) , −∞ < z < ∞ , (5.44)

and ma = Λ2

v is related to the axion mass (the actual mass of the axion is obtained
after using the canonical kinetic term, which yields the mass nΛ2

v ). We assumed the
walls are space-filling in the x and y directions with a profile along the z-direction,
taking M4 = R4 for simplicity. We also assumed that the walls are separated by
distances much larger than their width ∼ m−1

a . In the following, the statement
z → ±∞ means that |z| ≫ m−1

a but still away from the adjacent walls. We observe
that the reality of the kinetic energy term K, see (5.43), implies the inequality
|f | ≤ 2πnΛ4/q. The value of K attains its minimum value, K = 1, at f = 0, while
it is maximized at |f | = 2πnΛ4/q. In addition, the first equality in (5.41) yields:

f(z) = −2πn
q

Λ4 sin (na(z)) = −2πn
q

Λ4 sin [4arctan (enmaz)] . (5.45)

The theory has a Z(0)
q 0-form symmetry that acts as a → a + 2π

q . The invariance
of the cosine potential under the 0-form symmetry demands that

n

q
∈ N , (5.46)
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and thus n ≥ q. Later, we shall discuss that a stack of n domain walls intersects at
the locus of an axion string carrying a charge q under c3. It is more energetically
favorable for the charge-q string to support only n = q domain walls. Nevertheless,
we maintain the generality of n and q in our subsequent discussion∗.

In the following, the derivatives of K will prove useful for our study:

K′ = q

2πnΛ4 arcsin
(

qf

2πnΛ4

)
, K′′ = q2

(2πnΛ4)2
√

1 −
(

qf
2πnΛ4

)2
. (5.47)

Also, two important limiting behaviours of f(z) are worth noticing:

f(z → 0) = 4πn2

q
zΛ4 ,

f(z → ±∞) = 8πn
q

Λ4e−nma|z|sign(z) . (5.48)

At the wall core, z = 0, we find that f attains its mimimum value f(0) = 0, where
K is also minimized, while in the vacum z → ±∞, we similarly have f(±∞) = 0,
where again K is minimized. However, there exists a distance inside the wall, ±|zm|,
at which |f(zm)| = 2πn

q Λ4, i.e., it is maximized:

ma|zm| = 1
n

log tan
(
π

8

)
. (5.49)

At |zm|, the kinetic energy K is also maximized. Thus, |f(z)| monotonically in-
creases from the core of the domain wall until it reaches zm, after which it starts
decreasing exponentially; see Figure 5.1. The exponential decay observed in f(z)
is a defining trait of a gapped system. In this scenario, the 4-form field f4 eats the
axion, resulting in its acquisition of mass. This is also evident from∫

R4
f4 = 0 , (5.50)

a result consistent with the quantization condition (5.21). In contrast, in a gapless
system, |f(z)| would remain at the constant value of 2πn

q Λ4 from ±zm to infinity.
Below, we shall show that q

2π (a(∞) − a(−∞)) = q/n is the domain wall charge
under a Z(3)

q 3-form global symmetry. Thus, the stack of n domain walls carries a
total charge of q under the 3-form symmetry.

5.2.2 The 3- and (−1)-form symmetries, and their anomalies

In this section, we show that the pure U(1)(2) gauge theory possesses a U(1)(3)

3-form global symmetry, which undergoes a breakdown into a Z(3)
q symmetry in

∗For example, we could have a kinetic energy term K that corresponds to a more general form
of the effective potential Vcl-eff(a) =

∑
m≥1 Λ4

m (1 − cos(mqa)).
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Figure 5.1: The profiles of f (solid line) and Kcos (dashed line) as functions of the
coordinate z (not to scale). We take q = n = 2 and set Λ = 1.

the presence of charge-q matter. In addition, the theory is endowed with a gauged
(−1)-form symmetry that can be used to diagnose the existence of a cosmological
constant. We further demonstrate that there is a mixed ’t Hooft anomaly between
Z(3)
q and Z(0)

q symmetries. Gauging the former gives rise to a U(1)(2)/Zq gauge
theory.

3-form global symmetry. To begin, we rewrite Eq. (5.37), the equation of
motion of c3, in vacuum, i.e., setting the left-hand-side to 0, as

K′′
(
f

Λ2

)
∂µf

µναβ = 0 , (5.51)

which implies either K′′ = 0 or ∂µfµναβ = 0. The first equation holds only when K
is extremized, and thus, we concentrate solely on the latter equation that can be
rewritten in the d-form language as

d ⋆ dc3 = 0 . (5.52)

This takes the form of the conservation law of the Hodge dual of a 4-form current:

d ⋆ j4 = 0 , ⋆j4 = ⋆dc3
Λ4 = ⋆f4

Λ4 , (5.53)

implying that gauging the U(1)(2) 2-form symmetry in vacuum gives rise to an
emergent U(1)(3) 3-form global symmetry. The 3-form symmetry couples to 3-
surfaces M3, such that the Wilson surface operator is given by

V (M3) = e
ip
∫

M3
c3
, p ∈ Z . (5.54)

The value p = 1 gives the fundamental Wilson surface, while values of p > 1 are
higher representations. The conserved charge of this symmetry Q(3) is given by
integrating ⋆j4 over a 0-dimensional manifold, or in other words, it is the local
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operator ⋆j4(P) = ⋆f4(P)/Λ4 at the spacetime point P. Using ⋆f4 = 1
4!ϵ

µναβfµναβ
along with fµναβ = −ϵµναβf and ϵµναβϵµναβ = −4!, we find

Q(3) = ⋆j4(P) = f(P)
Λ4 , (5.55)

and, thus, the generator of the symmetry (symmetry defect) is

U (3)
γ (M0 = P) = eiγ⋆j4 = eiγf/Λ4

, (5.56)

where γ ∈ [0, 2π). The symmetry defect measures the amount of flux carried by a
Wilson surface. Upon pushing U (3)

γ (M0) past V (M3), we obtain the algebra:

U (3)
γ (M0)V (M3) = eipγLink(M0,M3)V (M3) . (5.57)

Let us repeat the analysis in the presence of matter. We shall use two approaches.
First, we will investigate the 3-form symmetry in the vicinity of the wall but far
enough from its core. Next, we shall redo the analysis, this time without making
any approximations or assumptions about the nature of the wall. We start with the
approximate method, analyzing the situation near the domain walls of the cosine
potential we studied above. We assume that we are far from the domain wall core,
i.e., we are considering distances |z| > zm, where zm is given by (5.49), which is the
distance at which f and K are maximized. At zm, K′′ is ill-defined, invalidating
our analysis; this is why we need to perform the calculations far from the core.
Keeping this constraint in mind, we start by rewriting Eq. (5.37) in the d-form
language as:

Λ4K′′(f)d ⋆ dc3 = − q

2πda . (5.58)

Far from the core, we can safely set f ∼= 0, as f(z) decays exponentially fast at
distances z > zm. We have∗ K′′(f ∼= 0) = q2/(4π2n2Λ8). Using this information,
we can rearrange (5.58) as a conservation law:

d ⋆ j4 = 0 , Q(3) = ⋆j4(P) = q2

(2πn)2Λ2 ⋆ f4(P) + q

2πa(P)

= q2

(2πn)2Λ2 f(P) + q

2πa(P) . (5.59)

The symmetry defect is

U (3)
γ (M0 = P) = eiγ⋆j4 = e

iγ

(
q2f(P)

(2πn)2Λ4 + qa(P)
2π

)
. (5.60)

∗Consider if we had employed the quadratic potential, as represented by Eq. (5.42). In such a
scenario, we would obtain K′′ = q2/Λ8. The disparity of (2πn)2 between these two cases becomes
evident when we recognize that the function f reaches its zero precisely at the local minimum
of K in the case of the cosine potential, where we may approximate K by a quadratic function
K ∼= 1 + q2f2

2(2πn)2Λ8 .
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Since a(P) and a(P) + 2π are identified, U (3)
γ (M0 = P) is meaningful only when

γ ∈ 2πZ/qZ ≡ 2πZq. The charged object under the global symmetry is still the 3-
dimensional Wilson surface V (M3) given by (5.54). Now, the algebra of U (3)

ℓ (M0),
ℓ ∈ Zq, and V (M3) is given by:

U
(3)
ℓ (M0)V (M3) = e

i 2πpℓ
q

Link(M0,M3)
V (M3) . (5.61)

As we emphasized above, expression (5.60) is valid only far from the domain wall
core, i.e., (5.60) is consistent with setting f ∼= 0. However, inspired by the pre-
ceding analysis, we can repeat the treatment without making any approximations
or assumptions about the nature of the walls. Our central equation, as usual, is
(5.37), which we will write as a conservation law∗:

∂µQ
(3) = 0 , Q(3)(P) = q

2πa(P) + Λ4K′
(
f(P)
Λ4

)
, (5.62)

with corresponding symmetry defect

U
(3)
ℓ (M0) = e

i 2πℓ
q

(
q

2π a(P)+Λ4K′
(
f(P)
Λ4
))
, ℓ = 1, 2, .., q . (5.63)

This is the generator of a Z(3)
q symmetry for a generic form of the kinetic energy

K. It is easy to check that (5.62) reproduces the approximate expression (5.60) of
the cosine potential near f ∼= 0. The charge Q(3)(P) is a constant of motion unless
one encounters a domain wall: crossing an elementary wall changes Q(3) by

∆Q(3) = q

2π (a(∞) − a(−∞)) = q

n
(5.64)

units. In other words, ∆Q(3) is the domain wall charge under the Z(3)
q global

symmetry. Interestingly, when n = q, the most natural scenario, ∆Q(3) coincides
with the concept of topological charge in the theory of solitons. As we shall discuss
in Section 5.3, the domain walls intersect in a line; this is the locus of a string.
From the flux conservation, this string carries a charge q, evenly distributed among
the n intersecting domain walls. We conclude that there are n dynamical walls
attached to a string, carrying a total charge Q(3) = q under Z(3)

q .

The 3-form symmetry Z(3)
q acts on q distinct Wilson surfaces V (M3) = e

ip
∫

M3
c3 ,

p = 1, 2, .., q. When p ̸= 0 Mod q, the flux carried by these Wilson surfaces cannot
be absorbed by the dynamical domain walls since the latter always comes in a stack
of a total charge q.

It remains to discuss the fate of the 3-form global symmetry. We start with the
U(1)(3) symmetry in the absence of matter, i.e., taking v → ∞. In this case, as
we discussed before, the equation of motion of the 3-form gauge field c3 yields a

∗In the cosine potential example, the derivative of Q(3) is ill-defined at the core. Nevertheless,
Q(3) is well-defined everywhere.
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constant solution: fµναβ = −ϵµναβf , where f is a constant. Two walls experience a
constant force, meaning that the U(1)(3) is unbroken and the Wilson surface V (M3)
exhibits the “area" law ⟨V (M3)⟩ = 0. Introducing the axion field and the coupling
− q

2πda ∧ c3 breaks U(1)(3) down to Z(3)
q and endows the theory with a Z(0)

q 0-form
global symmetry. Now, the 4-form field f4 is gapped, and the Wilson surfaces
exhibit the “perimeter" law ⟨V (M3)⟩ ≠ 0, meaning that Z(3)

q is spontaneously
broken. Moreover, if the theory forms domain walls, Z(0)

q also breaks spontaneously.

The (−1)-form symmetry, its gauging, and the cosmological constant. In
addition, the theory possess a U(1)(−1) (−1)-form symmetry. The Bianchi identity
d2c3 = 0 can be written as the conservation law of the Hodge-dual of a “magnetic"
current ⋆jm4 = dc3 = f4. The corresponding symmetry defect is

U (−1)
γ (M4) = e

iγ
∫

M4
f4
, noting that

∫
M4

f4 ∈ 2πZ . (5.65)

The operator U (−1)
γ (M4) does not act on any physical objects directly. How-

ever, the two-point correlator ⟨c3(x)c3(0)⟩ can be used to determine whether the
(−1)-form symmetry is preserved or spontaneously broken. A massless pole in the
correlator signifies symmetry breaking; if absent, the symmetry remains unbroken
[131].

In the absence of axions, the (−1)-form symmetry functions as a global symmetry.
The gauge field c3 is massless, leading to a pole in its two-point correlator, which
indicates that the (−1)-form symmetry is spontaneously broken. In this context,
c3 can be viewed as the Nambu-Goldstone field associated with this breaking.

When we couple c3 to the axion through the term q
2πa∧ f4, the axion can be inter-

preted as the background gauge field for the (−1)-form symmetry. By introducing
a kinetic term for a, we effectively sum over this background gauge field in the path
integral, meaning we are gauging the (−1)-form symmetry. As previously discussed,
this leads to the axion acquiring mass, which can be understood as a absorbing
the would-be Goldstone field c3 and becoming massive. Consequently, the gauged
(−1)-form symmetry is spontaneously broken, and the correlator ⟨c3(x)c3(0)⟩ no
longer exhibits a massless pole.

From our discussion, we find that the (−1)-form symmetry is intricately linked
to the presence/absence of a cosmological constant sourced by c3. The energy-
momentum tensor of c3 can be derived directly from (5.23) by varying with respect
to the metric tensor∗:

Tµν = ηµνΛ4
[
K
(
f

Λ4

)
− f

Λ4 K′
(
f

Λ4

)]
, (5.66)

which takes the form of a cosmological constant. Without axions, the global (−1)-
form symmetry is spontaneously broken and f = constant, meaning that the va-
cuum energy gets a contribution from the long-range field c3. Coupling to axions,

∗Remember that we use the boundary condition K(f = 0) = 0.
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the (−1)-form symmetry is gauged and Higgsed. Now, the system is gapped, i.e.,
f = 0 (this is true far from the domain wall core); thus, the vacuum energy does
not receive contribution from c3, and we have Tµν = 0.

The mixed ’t Hooft anomaly between Z(3)
q and Z(0)

q symmetries. An im-
portant question is whether there is a mixed anomaly between the two global
symmetries Z(3)

q and Z(0)
q . To answer this question, we examine the commutation

relation between U (3)
ℓ (M0) and U (0)

ℓ′ (M3) given by (5.63) and (5.25), respectively.
The calculations can be performed, as before, by foliating M4 into constant time
slices and orienting M3 to be a time-like surface:

U
(0)
ℓ′ (M3(t)) = e

i 2πℓ′
q

∫
M3(t)

(
v2∂0a− q

2π
cijkϵ

ijk

3!

)
. (5.67)

Then, using the equal-time commutation relation [a(x, t),Πa(y, t)] = iδ(3)(x − y),
where Πa = v2∂0a− q

2π
cijkϵ

ijk

3! , we obtain

U
(0)
ℓ′ (M3(t))U (3)

ℓ (M0(t)) = e
i 2πℓℓ′

q U
(3)
ℓ (M0(t))U (0)

ℓ′ (M3(t)) . (5.68)

Thus, a Zq-valued mixed anomaly exists between the two symmetries. The anomaly
implies one or both symmetries are broken. Our previous discussion reveals that
both symmetries are broken in a theory that forms domain walls in the IR.

We further explore the consequences of the mixed anomaly (5.68), now working in
a Hamiltonian formalism. Let H be the Hamiltonian of the U(1)(2) gauge theory
under study. Since the theory has a Z(3)

q 3-form global symmetry, its generators
commute with the Hamiltonian:

[
H,U

(3)
ℓ

]
= 0, and we can take the physical states

in Hilbert space to be simultaneous eigenstates of these two operators. Thus, we
have

|ψ⟩phy = |E(e), e⟩ , e = 0, 1, .., q − 1 . (5.69)

Here, E(e) labels the energy and e labels the “flux" of the state (under the 3-form
symmetry) such that

H|E(e), e⟩ = E(e)|E(e), e⟩ , U
(3)
ℓ |E(e), e⟩ = e

i 2πℓe
q |E(e), e⟩ . (5.70)

Notice that the state’s energy E(e) can also depend on the value of the flux carried
by the state.

To show that e labels the flux carried by the state |E(e), e⟩, let us insert a Wilson
surface V (M3) = e

ip
∫

M3
c3 in the state |E(e), e⟩ and then measure the new flux;

the measurement is performed by acting with U
(3)
ℓ=1 on the new state. Since this

Wison surface carries a flux p, we expect inserting it increases the state flux by p
unit. To confirm this, we perform the operation

U
(3)
ℓ=1V (M3)|E(e), e⟩ = e

i
2π(e+p)

q V (M3)|E(e), e⟩ , (5.71)
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where we used (5.61) and (5.70). The relation (5.71) shows that the state
V (M3)|E(e), e⟩ carries a flux e + p, and thus, indeed, e in (5.69) labels the flux
carried by a state as anticipated.

Next, we act with both sides of the anomaly (5.68) on the state |E(e), e⟩ to find
that U (0)

ℓ′=1|E(e), e⟩ is an eigenstate of U (3)
ℓ=1 with eigenvalue e − 1. Since Z(0)

q is a
symmetry of the theory, we have [H,U (0)

ℓ′ ] = 0, and thus, the state U (0)
ℓ′=1|E(e), e⟩

has the same energy as |E(e), e⟩. Repeating the statement q times, we conclude
that there are q degenerate eigenstates of the same energy, labeled by the q different
values of e, as in (5.69). This q-fold degeneracy is a direct consequence of the mixed
anomaly (5.68), which is true for both the ground and excited states of the system.
In the thermodynamic limit, i.e., as we take the manifold M4 to be very large, we
become interested mainly in the ground states, which stay q-fold degenerate.

Gauging Z(3)
q . Next, we consider the U(1)(2)/Zp gauge theory resulting from

gauging a subgroup Z(3)
p ⊆ Z(3)

q . Gauging the discrete symmetry Z(3)
p means in-

troducing a background gauge field of the symmetry and including a sum over
arbitrary insertions of this background in the path integral. We can introduce
the Z(3)

p background F4 into the path integral by replacing every f4 in (5.23) by
f4 → f4 +F4, where F4 can be expressed as pF4 = dF3 and dF3 satisfies the quant-
ization condition

∫
M4

dF3 ∈ 2πZ. In turn, this implies the quantization of F4 in
units of 1/p, i.e.,

∫
M4

F4 ∈ 2π
p Z, such that dF4=0.

Now consider the second term in (5.23) in the presence of the Z(3)
q background.

Its Euclidean form is i q2πa ∧ (f4 + F4). Since,
∫

M4
F4 ∈ 2π

p Z, only the shift a →
a+ 2πp

q , i.e., Z(0)
q/p, survives as a genuine discrete symmetry. Actually, gauging Z(3)

p

renders the symmetry operator of Z(0)
q a projective operator. To see this, consider

the commutation relation between the Z(0)
q symmetry defect U (0)

ℓ (M3) and the
generator of the Z(3)

p symmetry
[
U

(3)
1 (M0)

]q/p
in the original U(1)(2) gauge theory.

From (5.68) we have[
U

(3)
1 (M0)

]−q/p
U

(0)
ℓ (M3)

[
U

(3)
1 (M0)

]q/p
= e

i 2πℓ
p U

(0)
ℓ (M3) . (5.72)

This relation shows that U (0)
ℓ (M3) fails to be a gauge-invariant operator in the

U(1)(2)/Zp gauge theory. To remedy the problem, we sum over an arbitrary number
of gauge transformations under the operator

[
U

(3)
1 (M0)

]q/p
by defining the new

U(1)(2)/Zp gauge-invariant symmetry defect:

U (0)
ℓ (M3) ≡

∑
r∈Z

[
U

(3)
1 (M0)

]−rq/p
U

(0)
ℓ (M3)

[
U

(3)
1 (M0)

]rq/p
= U

(0)
ℓ (M3)

∑
r∈Z

e
i 2πℓr
p

= U
(0)
ℓ (M3)δℓ∈pZ . (5.73)
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Thus, U (0)
ℓ (M3) is a projective operator. Recalling ℓ = 0, 1, .., q, we conclude that

the subgroup Z(0)
q/p survives as a genuine symmetry.

The U(1)(2)/Zp gauge theory has a remaining Z(3)
q/p global symmetry with symmetry

defect given by[
U

(3)
ℓ (M0)

]p
= e

i 2πℓp
q

(
q

2π a(P)+Λ4K′
(
f(P)
Λ4
))
, ℓ = 1, 2, .., q/p. (5.74)

The Z(3)
q/p symmetry acts on the U(1)(2)/Zp gauge-invariant Wilson surfaces V (M3) =

e
imp

∫
M3

c3 , m ∈ Zq/p. The action of Z(0)
q/p takes us between the q/p vacua of the

theory.

Let us discuss the consequences of gauging Z(3)
p in the Hamiltonian formalism.

When U (0)
ℓ (M3) acts on the state |E(e), e⟩, with e = 0, 1, .., q − 1, it annihilates it

unless ℓ is a multiple of p:

U (0)
ℓ (M3)|E(e), e⟩ = δℓ∈pZU

(0)
ℓ (M3)|E(e), e⟩ , (5.75)

i.e., only q/p states are not annihilated by U (0)
ℓ (M3) . When we fully gauge Z(3)

q ,
i.e., in U(1)(2)/Zq gauge theory, we have neither genuine 0-form nor 3-form global
symmetries.

What has just happened, especially concerning a generic kinetic energy term K,
that leads to the formation of dynamical domain walls? We analyze the situation
by considering the cosine potential (5.43), setting n = q for simplicity. We shall
also gauge the full Z(3)

q symmetry. In this case, what we are operationally doing
is that we are declaring the equivalence between all the q vacua: a ≡ a + 2πℓ

q ,
ℓ = 1, 2, .., q. Therefore, it is more meaningful to define φ ≡ qa and replace Veff(a) =
Λ4 (1 − cos(qa)) with Veff(φ) = Λ4 (1 − cosφ). The latter potential supports a
single domain wall interpolating between φ = 0 and φ = 2π. However, such a wall
is unstable quantum mechanically as it decays by instanton effects. We end up
with a theory with a unique vacuum, supporting only strings but no domain walls.

5.3 The dual description: the Kalb-Ramond frame

While the axion framework provided valuable insights into the global symmetries
within our system, the notion of strings remained implicit. To address this, we
transition to the Kalb-Ramond frame [132], where the presence and properties of
strings become more evident and accessible.

To dualize the axion Lagrangian (5.7) to a theory of a 2-form Kalb-Ramond field,
we add to the Lagrangian (5.7) an extra term [123]:

L = v2

2 da ∧ ⋆da− 1
2πb2 ∧ d2a . (5.76)

Here, b2 is a Lagrange multiplier used to impose the Bianchi identity∗- integrating
∗The form of the extra term implies that b2 has mass dimension 2.
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out b2 gives d2a = 0. We can also integrate out a via its equation of motion:

2πv2 ⋆ da = db2 . (5.77)

Substituting back into (5.76) gives the dual Kalb-Ramond theory:

Ldual = 1
2(2π)2v2db2 ∧ ⋆db2 . (5.78)

The Kalb-Ramond field b2 couples to the 2-dimensional axion-string worldsheet
M2. Thus, the Wilson-like operator of an axion-string is:

V (M2) = e
i
∫

M2
b2
. (5.79)

Unlike V (M2), the operator V (M0), which in the original theory was given by
eia, has no local description in terms of b2. Therefore, in the Kalb-Ramond frame,
V (M2) and V (M0) behave respectively like Wilson and ’t Hooft operators in
electrodynamics. This picture is reversed in the axion frame.

In the dual description, the 0-form and 2-form global symmetry currents are:

j1 = 1
2π ⋆ db2, j3 = 2πv2db2 . (5.80)

These currents satisfy the conservation laws:

d ⋆ j1 = 0 , d ⋆ j3 = 0 , (5.81)

which are the results of the Bianchi identity d2b2 = 0 and the equation of motion
d ⋆ db2 = 0, respectively. The corresponding U(1)(0) and U(1)(2) symmetry defects
are given by

U (0)
α (M3) = e

iα
∫

M3
1

2π db2
, U

(2)
β (M1) = e

iβ
∫

M1
2πv2⋆db2

. (5.82)

With this dual formulation, we can see the action of U(1)(2) global symmetry- it
shifts b2 by a constant 2-form Λ2:

b2 → b2 + Λ2 . (5.83)

This transforms the axion string by a U(1) phase:

U
(2)
β (M2)V (M2) = eiβLink(M1,M2)V (M2) . (5.84)

5.3.1 Gauging the U(1)(2) 2-form symmetry

Here, we derive the Lagrangian of the dual Kalb-Ramond gauge theory, which
results by gauging the U(1)(2) symmetry. Our starting point is the Lagrangian
(5.23) after adding the term −b2 ∧d2a/(2π) to enforce the Bianchi identity d2a = 0:

L = v2

2 da ∧ ⋆da− q

2πda ∧ c3 − 1
2πb2 ∧ d2a+ Λ4K

(
dc3
Λ4

)
. (5.85)
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The equation of motion of a is:

d ⋆ da− 1
2πd

2b2 − q

2πdc3 = 0 , (5.86)

and integrating once we find

⋆da = 1
2πv2 (db2 + qc3) . (5.87)

Substituting (5.87) into (5.85), we obtain the dual Lagrangian

Ldual = 1
2(2π)2v2 (db2 + qc3) ∧ ⋆(db2 + qc3) + Λ4K

(
dc3
Λ4

)
. (5.88)

In this formulation, the U(1)(2) symmetry is gauged by introducing the 3-form
gauge field c3, which couples minimally to the Kalb-Ramond field b2. The minimal
coupling db2 + qc3 means that b2 carries a charge q under c3. This is also manifest
in the fact that the dual Lagrangian is invariant under the U(1)(2) local gauge
transformation c3 → c3 +dλ2, b2 → b2 −qλ2. We may think of b2 as the Stuckelberg
field of c3; as c3 eats up the b2 field, it aquires a mass ∼ Λ2

v . In the limit v → ∞,
the Kalb-Ramond field decouples, leaving us with a pure U(1)(2) gauge theory.

The effect of gauging the U(1)(2) symmetry is that the spectrum of extended op-
erator changes. The Wlison surface operator (5.79) is no longer gauge-invariant
under the 2-form gauge symmetry. In the Kalb-Ramond frame, a gauge-invariant
operator is

e
i
∫

M3
db2+qc3 = e

i
∫

M2=∂M3
b2
e
iq
∫

M3
c3
, (5.89)

which can be interpreted as a string attached to a stack of domain walls with a
cumulative charge of q (the charge under the c3 field). An elementary axion that
winds around this configuration cannot detect a nontrivial phase. This can be
envisaged by computing the commutator[

eia, e
i
∫

M3
db2+qc3

]
= 0 , (5.90)

where we used (5.87) along with [a(x, t),Πa(y, t)] = iδ(3)(x − y) and Πa = v2∂0a−
q

2π
cijkϵ

ijk

3! .

We end this section by discussing the global symmetries in the Kalb-Ramond frame.
First, the generator of the Z(0)

q 0-form symmetry is given by U
(0)
α (M3) in (5.82).

This generator, however, must be invariant under a U(1)(2) gauge transformation
b2 → b2 −qλ2. Using

∫
M3

dλ2 ∈ 2πZ, we find α = 2πℓ
q , ℓ = 1, 2, .., q, as expected for

the Z(0)
q symmetry. Second, we also have a Z(3)

q 3-form global symmetry. However,
the generator of this symmetry has no local description in the Kalb-Ramond frame.
It is crucial to highlight that transitioning between the axion and Kalb-Ramond
frames does not eliminate global symmetries. Rather, certain symmetries may not
be manifest in a local description.
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5.4. Multi 3-form gauge theory

5.4 Multi 3-form gauge theory

Consider an axion a coupled to 2 distinct 3-form gauge fields c3 and c̃3. The
Lagrangian reads

L = v2

2 |da|2 − q1
2πda ∧ c3 − q2

2πda ∧ c̃3 + Λ4K
(
f4
Λ4

)
+ Λ4K̃

(
f̃4
Λ4

)
, (5.91)

where f4 = dc3 and f̃4 = dc̃3 are the field strengths of c3 and c̃3, respectively, and
we assumed that the scale Λ is the same for all the 3-form fields. Notice that we did
not include a kinetic-mixing term to avoid complications. The 3-form gauge fields
c3 and c̃3 are invariant under U(1)(2) ×U(1)(2) gauge transformations c3 → c3 +dλ2
and c̃3 → c̃3 + dλ̃2, where

∫
M3

dλ2,
∫

M3
dλ̃2 ∈ 2πZ, while the field strengths satisfy

the quantization conditions∫
M4

f4 ,
∫

M4
f̃4 ∈ 2πZ . (5.92)

The equations of motion of a, c3, and c̃3 read

v2d ⋆ da−
(
q1
2πdc3 + q2

2πdc̃3

)
= 0 , q1

2π∂µa = −Λ4∂µK′
(
f

Λ4

)
,

q2
2π∂µa = −Λ4∂µK̃′

(
f̃

Λ4

)
. (5.93)

Trading f and f̃ for a classical axion effective potential yields

∂Vcl-eff(a)
∂a

= − 1
2π
(
q1f + q2f̃

)
. (5.94)

This relationship asserts that the combination of fields q1f + q2f̃ vanishes at the
extrema of Vcl-eff(a). This implies that this particular combination of the 3-form
fields is gapped at the theory’s vacua. Conversely, the independent combination
q2f − q1f̃ remains ungapped [123].

The system (5.91) enjoys a multitude of global symmetries. First, the theory is
invariant under a Z(0)

q symmetry that acts on a as a → a+ 2π
q and q = gcd(q1, q2).

The generator of Z(0)
q is

U
(0)
ℓ (M3) = e

i 2πℓ
q

∫
M3

(
v2⋆da− q1c3+q2c̃3

2π

)
, ℓ = 1, 2, ..., q , (5.95)

which acts on the local operator eia(P).

In addition, the system exhibits two independent 3-form global symmetries. To find
them, we use two methods. We start with the first method, which was not discussed
previously but works as an alternative view on the global 3-form symmetry. In this
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method, we shift c3 and c̃3 by two independent closed but not exact 3-forms Λ3
and Λ̃3:

c3 → c3 + Λ3 , c̃3 → c̃3 + Λ̃3 , (5.96)

under which the action gets shifted by

S → S + q1
2π

∫
M4

da ∧ Λ3 + q2
2π

∫
M4

da ∧ Λ̃3 = S + q1kα+ q2kβ , (5.97)

where we defined
∫

M3
Λ3 = α,

∫
M3

Λ̃3 = β, and we recalled that
∫

M1
da = 2πk, k ∈

Z since a is a compact scalar. Under the Λ3 and Λ̃3 shifts, the path integral picks
up a phase:

Z → eiq1kα+iq2kβZ . (5.98)

It is easily seen that there are two combinations of α and β that lead to two
independent 3-form global symmetries that leave the action invariant: a U(1)(3)

symmetry is obtained by setting q1α = −q2β and a Z(3)
q symmetry is obtained

upon taking α, β ∈ 2π
q Z, where q = gcd(q1, q2). These are linearly independent

transformations, so there are no redundancies, and the faithful 3-form symmetry
group is

Z(3)
q × U(1)(3) . (5.99)

Another way to obtain the same result is by combining the equations of motion of
c3 and c̃3 in the form of two independent conservation laws. Using (5.93) we find

∂µ

(
q1a+ q2a

2π + Λ4K′
(
f

Λ

)
+ Λ4K̃′

(
f̃

Λ

))
= 0 ,

∂µ

(
−q2Λ4K′

(
f

Λ

)
+ q1Λ4K̃′

(
f̃

Λ

))
= 0 , (5.100)

from which we define the two symmetry defects:

U (3)
α1 (M0) = e

iα1

(
q1a+q2a

2π +Λ4K′( fΛ )+Λ4K̃′
(
f̃
Λ

))
U (3)
α2 (M0) = e

iα2

(
−q2Λ4K′( fΛ )+q1Λ4K̃′

(
f̃
Λ

))
(5.101)

While the phase α2 is an arbitrary U(1) phase, implying that U (3)
α2 is the symmetry

defec of a U(1)(3) 3-form global symmetry, the single-valuedness of U (3)
α1 as a ∼

a + 2π implies that α1 = 2πZ
q , reducing the second symmetry group from U(1)(3)

down to Z(3)
q , in accordance with our earlier finding.

The theory also possesses two distinct U(1)(−1) (−1)-form symmetries associated
with the Bianchi’s identities: d2c3 = d2c̃3 = 0. As we mentioned above, only the
field combination q1c3 + q2c̃3 is gapped while the other combination −q2c3 + q1c̃3
remains gappless. This implies that only one of the two (−1)-form symmetries
is gauged and spontaneously broken (Higgsed), resulting in the axion acquiring a
mass. The other (−1)-form symmetry is a global symmetry, which also exhibits
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spontaneous breaking, resulting in a massless 3-form gauge field that sources a
cosmological constant in the deep IR.

This treatment is easily generalized to any K distinct 3-form fields to find that the
full faithful symmetry group is

Z(0)
q × Z(3)

q ×
K−1∏
i=1

U(1)(i)(3) (5.102)

where q = gcd(q1, . . . , qK).

5.5 UV completion: axion-Yang-Mills theory

In this section, we argue that the 3-form gauge theory in either the axion or the
Kalb-Ramond frame emerges in the IR from a UV-complete axion-Yang-Mills sys-
tem∗. This conclusion is reached by using effective field theory methods empowered
by new ’t Hooft anomaly matching conditions. We put the IR effective field theory
under scrutiny by testing its adequacy under various checks.

To this end, consider an SU(N) gauge theory endowed with a massless Dirac
fermion in a representation R under SU(N). In addition, consider a complex
scalar Φ that is inert under SU(N) but otherwise couples to the Dirac fermion.
The Lagrangian of the system reads [17]:

L = − 1
2g2 tr (f c2 ∧ ⋆f c2) + ψ̄σ̄µDµψ + ¯̃ψσ̄µDµψ̃

+ |dΦ|2 − V (Φ) + yΦψ̃ψ + h.c. (5.103)

f c2 = dac1 − iac1 ∧ ac1 is the field strength of the SU(N) color field ac1. ψ and
ψ̃ are two left-handed Weyl fermions in representations R and R under SU(N),
respectively, constituting together a single Dirac fermion. The covariant derivative
is Dµ = ∂µ − iacµ and y is the Yukawa coupling. The potential of the complex
scalar field is V (Φ) = λ

(
|Φ|2 − v2/2

)
, where λ is O(1) parameter. We take v ≫ Λ,

where Λ is the strong scale of the gauge sector. The Lagrangian (5.103) is invariant
under two classical 0-form symmetries U(1)(0)

B × U(1)(0)
χ , the baryon-number and

axial symmetries. The ABJ anomaly in the color background breaks U(1)(0)
χ down

to Zχ(0)
2TR

, and we find that the full good global symmetry of the SU(N) axion-YM
theory is [20, 41]

Gglobal =
U(1)(0)

B × Zχ(0)
2TR

ZN/m × ZF2
× Z(1)

m . (5.104)

∗The reader might object referring to the system we study in this section as UV complete
since we use a scalar field that exhibits a Landau pole. Here, by a UV-complete, we just mean a
model that couples the axion to Yang-Mills theory and gives the desired symmetries and natural
hierarchy of scales.
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The 1-form global symmetry Z(1)
m acts on Wilson’s lines of ac1, where m = gcd(N,n)

and n is the N -ality of the representation R, i.e., the boxes in the Young tableaux
modulo N . The baryon-number U(1)(0)

B and the chiral Zχ(0)
2TR

symmetries act on the
local fields as

U(1)(0)
B : ψ → eiαψ , ψ̃ → e−iαψ̃ , Φ → Φ ,

Zχ(0)
2TR

: ψ → e
i 2πℓ

2TR ψ , ψ̃ → e
i 2πℓ

2TR ψ̃ , Φ → e
−i 4πℓ

2TR Φ , (5.105)

and ℓ = 1, 2, .., 2TR and TR is the Dynkin index of R (in our normalization, T□ = 1,
where □ is the fundamental representation). The modding by ZN/m×ZF2 in (5.104)
is important to remove redundancies. Here, ZF2 is the (−1)F fermion number
subgroup of the Lorentz group∗. The complex scalar field can be written as Φ =
|Φ|eia, where a is the axion. At energy scales ≪ v, we can set |Φ| = v/

√
2, and

thus, one may only work with the axion as the lightest degree of freedom.

5.5.1 The mixed ’t Hooft anomaly and IR Lagrangian

Energy scale E ≫ v

Among the anomalies of the axion-YM theory, the mixed anomaly between the Z(1)
m

1-form center and Zχ(0)
2TR

chiral symmetries is essential in connection with the 3-form
gauge theory. To see the link, we first review this anomaly from the UV point of
view [14, 15, 17, 103]. We shall be general and examine the anomaly between a
subgroup of the full center Z(1)

m and chiral symmetries. We shall also work in the
Euclidean space.

To this end, we turn on a background of Z(1)
p ⊆ Z(1)

m . This can be implemented by
introducing the pair of U(1) fields (Bc

1, B
c
2) and the constraint pBc

2 = dBc
1. Demand-

ing the quantization condition
∫

M2
dBc

1 ∈ 2πZ implies the fractional quantization
of Bc

2 flux:
∫

M2
Bc

2 ∈ 2πZ
p . We couple Bc

2 to fermions as follows. First, we enlarge
the gauge group from SU(N) to U(N); we introduce the âc1 gauge field of U(N)
such that âc1 ≡ ac1 + Bc1

p with field strength f̂ c2 = dâc1 + âc1 ∧ âc1. This, in turn, implies
the relation tr(f̂ c2) = NBc

2. Enlarging the group form SU(N) to U(N) introduces
an extra degree of freedom, which can be eliminated by postulating the invariance
of the theory under the action of an additional U(1)(1) 1-form gauge symmetry:
âc1 → âc1 − λc1. This implies that f̂ c2 , Bc

1, and Bc
2 transform as f̂ c2 → f̂ c2 − dλc1,

Bc
1 → Bc

1 − pλc1, and Bc
2 → Bc

2 − dλc1, such that the condition dBc
1 = pBc

2 remains
invariant.

The mixed anomaly between the Z(1)
p center and Zχ(0)

2TR
chiral symmetries is envis-

aged by examining the partition function in the background of the U(N) and Z(1)
p

∗Notice that the gauge group that faithfully acts on the fermions is SU(N)/Zm. Thus, the
fermions are charged under ZN/m subgroup of the center of SU(N) gauge group. When N/m is
even, the fermion number is a subgroup of ZN/m, i.e., the fermion number is gauged. In this case,
all gauge-invariant operators are bosons.
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fluxes. In such backgrounds, the topological charge is determined by replacing f c2
with the combination f̂ c2 −Bc

2 in the expression for the topological charge. Import-
antly, this expression remains invariant under gauge transformations by λc1. Thus,
the topological charge is

Qc = 1
8π2

∫
M4

tr□
[(
f̂ c2 −Bc

2
)

∧
(
f̂ c2 −Bc

2
)]

= 1
8π2

∫
M4

tr□
[
f̂ c2 ∧ f̂ c2

]
− N

8π2

∫
M4

Bc
2 ∧Bc

2 , (5.106)

and is fractional. Recalling that
∫

M4
tr□

[
f̂ c2 ∧ f̂ c2

]
∈ 8π2Z, the partition function

transforms by the phase − N
8π2

∫
M4

Bc
2 ∧ Bc

2 = − N
8π2p2

∫
M4

dBc
1 ∧ dBc

1 ∈ NZ
p2 . This

is the mixed anomaly between the Z(1)
p 1-form center and Z(0)

2TR
discrete chiral

symmetries. The anomaly is nontrivial, provided that p2 is not a divisor of N . It
is important to highlight the group-theoretical result

Zm/gcd(m,m′) ⊆ ZTR , (5.107)

where we have expressed N = mm′. This result can be verified numerically; we
shall use it in our analysis below.

Energy scale Λ ≪ E ≪ v

At energy scale Λ ≪ E ≪ v, the magnitude of Φ freezes and we may set Φ ∼=
v√
2e
ia. Also, the fermions acquire a mass ∼ yv and decouple. Then, the effective

Lagrangian is:

LΛ≪E≪v = − 1
2g2 tr (f c2 ∧ ⋆f c2) + v2

2 da ∧ ⋆da+ TRaq
c , (5.108)

where qc the topological charge density: Qc =
∫

M4
qc, and Qc is given by the

expression (5.106). Thus, we have

qc = 1
8π2

[
tr□

(
f̂ c2 ∧ f̂ c2

)
−NBc

2 ∧Bc
2
]
. (5.109)

In particular, one can easily see that the Euclidean version of (5.108) reproduces
the anomaly e−i 2πN

p2 under the transformation a → a+ 2π
TR

.

In the absence of the center background, the Lagrangian (5.108) is invariant under
the global symmetry group∗

Gglobal = Z(0)
TR

×
(
Z(1)
N ×̃U(1)(2)

)
. (5.110)

The 2-form symmetry U(1)(2) is an emergent winding-number symmetry that acts
on axion strings, while Z(1)

N is an enhanced 1-form symmetry (remember that the
UV genuine 1-form symmetry is Z(1)

m ) resulting from the decoupling of fermions.
∗In fact, U(1)(2) is only approximate global symmetry. See our discussion after Eq. (5.117).
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Notice that there can be a higher group structure between Z(1)
N and U(1)(2) sym-

metries, and we used the symbol ×̃ to denote this structure. To see it, we activate a
background for Z(1)

N by introducing the pair (B(N)
1 , B

(N)
2 ) such that NB(N)

2 = dB
(N)
1

and demanding
∫
M2

dB
(N)
1 ∈ 2πZ. This, in turn, implies the flux of B(N)

2 is frac-
tional:

∫
M2

B
(N)
2 ∈ 2πZ

N . The pair of fields (B(N)
1 , B

(N)
2 ) transforms under a U(1)(1)

gauge transformation as B(N)
1 → B

(N)
1 +Nλ

(N)
1 and B

(N)
2 → B

(N)
2 + dλ

(N)
1 , which

leaves the relation NB
(N)
2 = dB

(N)
1 invariant. We also introduce C3, the back-

ground gauge field of the global U(1)(2) symmetry.

Inspection of (5.108, 5.109) reveals that the backgrounds of Z(1)
N and U(1)(2) couple

to the axion via the term [95]

L ⊃ 1
2πaG4 , (5.111)

where G4 is the field strength of the combined backgrounds. It is given by

G4 = dC3 − TRN

4π B
(N)
2 ∧B

(N)
2 . (5.112)

G4 is invariant under a gauge transformation by λ(N)
1 provided that C3 transforms

as

C3 → C3 + dλ2 + TRN

2π λ
(N)
1 ∧B

(N)
2 + TRN

4π λ
(N)
1 ∧ dλ

(N)
1 . (5.113)

The interplay among C3, B(N)
2 , and λ(N)

1 indicates a higher-group structure, where
Z(1)
N represents the daughter symmetry and U(1)(2) the parent symmetry. Notably,

the former cannot exist independently of the latter [26], imposing constraints on the
emergent (enhanced) symmetry scales: EZ(1)

N

≲ EU(1)(2) . This condition aligns well
with effective field theory expectations: EZ(1)

N

∼=
√
λv, EZ(1)

N

∼= yv, and λ ≪ y2 ≪ 1;
see [27] for details.

In a higher-group structure, one cannot gauge the daughter symmetry without
gauging the parent. But the reverse is possible. This observation shall play an
important role below. Notice that the higher-group symmetry becomes split (trivi-
alized) if one can write G4 as a total derivative [95]. For example, there is no
higher-group structure between the genuine Z(1)

m symmetry of the UV theory and
U(1)(2). To see that, we replace B(N)

2 ∧B(N)
2 in Eq. (5.112) by Bc

2∧Bc
2, where we use

the pair (Bc
1, B

c
2) (which satisfies the constraint mBc

2 = dBc
1) to activate the back-

ground of Z(1)
m . Thus, G4 = dC3 − TRN

4πm2dB
c
1 ∧ dBc

1. Since Zm/gcd(m,m′) ⊆ ZTR

(remember that N = mm′), we can write TRN
m2 = m′′, m′′ ∈ N, and hence,

G4 = dC ′
3 ≡ d

(
C3 − m′′

4π B
c
1 ∧ dBc

1
)
, trivializing the higher-group. This observa-

tion is important for our subsequent analysis.

Energy scale E ≪ Λ

Next, we flow to the deep IR at energy scale ≪ Λ, where we assume the theory
confines, and hence, the color gauge field is gapped. We must write down an
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effective Lagrangian that captures the UV center-chiral anomaly. This can be
achieved by (i) gauging the U(1)(2) symmetry and introducing the dynamical 3-
form gauge field c3 and (ii) replacing tr□

(
f̂ c2 ∧ f̂ c2

)
/4π in Eqs. (5.108, 5.109) by

dc3:

LE≪Λ = v2

2 da ∧ ⋆da+ TRa

2π

(
dc3 − N

4πB
c
2 ∧Bc

2

)
+ Λ4K

(
dc3 − N

4πB
c
2 ∧Bc

2
Λ4

)
,

(5.114)

and we added a kinetic energy term for c3. The field strength of c3 satisfies the
quantization condition

∫
M4

dc3 ∈ 2πZ, which is simply the infrared manifestation
of the quantization of topological charges in Yang-Mills theory. The reader will
notice that the coupling between a and dc3 has an extra factor of TR compared to
the coupling in Eq. (5.111). This is because c3 in Eq. (5.114) is a dynamical rather
than a background field, and as the dynamical field absorbs the axion, it should
describe the formation of TR domain walls. As we shall discuss later, at an energy
scale below Λ, the theory has enhanced Z(1)

N 1-form symmetry. As noted above, we
are allowed to gauge U(1)(2) without gauging the daughter symmetry Z(1)

N . This
is important; otherwise, we would have changed the theory’s global structure and
run into trouble since Z(1)

N is not a genuine symmetry of the theory.

The Lagrangian (5.114) must pass several checks. First, it must be invariant under
the Zχ(0)

2TR
chiral symmetry in the absence of the center background, which is evid-

ent from the transformation a → a+ 2π
TR

along with the condition
∫

M4
dc3 ∈ 2πZ.

Second, the Lagrangian must be invariant under the same auxiliary U(1)(1) gauge
transformation, by λc1, of the UV theory. This is the case provided that c3 trans-
forms as

c3 → c3 + dλ2 + p′

2πB
c
1 ∧ dλc1 + pp′

4π λ
c
1 ∧ dλc1 , (5.115)

and we wrote N = pp′. Also, the Lagrangian (5.114) must reproduce the mixed
Zχ(0)

2TR
-Z(1)
p anomaly of the UV theory. This can be easily verified by observing that

the partition function acquires the phase e−i 2πN
p2 when a is shifted by a → a+ 2π

TR
in the presence of the center background. In the absence of a center background,
the Lagrangian (5.114) exactly matches (5.23) in Section 5.2.1, and everything we
said there applies here.

Another check on the validity of (5.114) is to integrate out c3 along the lines of our
discussion that led from Eq. (5.32) to Eq. (5.35). Thus, we sum over arbitrary
values of the integers

∫
M4

f4 ∈ 2πZ and use the Poisson resummation formula∑
m∈Z δ

(
2πm−

∫
M4

f4
)

= ∑
k∈Z e

−ik
∫

M4
f4 . We also use the change of variables

f̂4 = f4 − N
4πB

c
2 ∧ Bc

2. Specifying to the canonical kinetic term Kcan, performing
the Gaussian integral over f̂4, and focusing only on the zero modes, we obtain the
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5.5.1. The mixed ’t Hooft anomaly and IR Lagrangian

Euclidean partition function

Z[a] ∼
∑
k∈Z

e
−i kN4π

∫
M4

Bc2∧Bc2e−
Λ4VM4

8π2 (TRa+2πk)2
. (5.116)

This effective partition function picks up the anomaly e
i N4π

∫
M4

Bc2∧Bc2 = e
−i 2πN

p2

upon shifting a → a+ 2π
TR

. It also displays the expected structure of the Yang-Mills
theory: it has an infinite number of vacua, with the true vacuum energy density
given by

V (a) = Λ4

8π2 mink (TRa+ 2πk)2 . (5.117)

The potential V (a) has TR minima with cusps at a = π/TR, 3π/TR, etc.. The cusps
indicate that the potential V (a) is missing degrees of freedom at these locations.
These are the hadronic walls sandwiched between the axion domain walls. An axion
wall has width ∼ v/Λ2, while a hadronic wall is much thinner with width ∼ Λ−1.
Including the infinite sum over all the integers

∫
M4

f4 ∈ 2πm, m ∈ Z was crucial to
see these cusps. As emphasized above, the integer m is the IR manifestation of the
Yang-Mills instantons’ topological charge. Below Λ, the theory is strongly coupled,
and the vacuum receives contributions from all the topological charge sectors.

Let us examine the theory’s behavior at energy scales Λ ≪ E ≪ v, such as at
a corresponding temperature. In this case, it suffices to include the contribution
from minimal charges

∫
M4

f4 = m = ±1 in the partition function. Translating this
into the language of Yang-Mills instantons, the dilute instanton-gas approximation
is reliable at this temperature because it serves as an infrared cut-off on the in-
stanton’s scale modulus [133]. Thus, summing over the smallest instantons, which
possess topological charges of ±1, is adequate. Limiting the sum over m to the
lowest charge sector means that one can no longer perform the Poisson resumma-
tion that leads to (5.116), and thus, one can no longer make sense of (5.117) or the
cusps. This is consistent with the expectation that the hadronic walls melt away
at a temperature ∼ Λ. Nevertheless, at temperatures in the range Λ ≪ T ≪ v,
the classical theory (5.114) still possesses TR vacua with axion domain walls in-
terpolating between them. Notice that in this energy range, c3 does not strongly
fluctuate (since

∫
M4

f4 = ±1), and we can consider the U(1)(2) 3-form gauge field c3
as a background rather than a dynamical field. Thus, one may still regard U(1)(2)

as an approximate global symmetry. Eventually, the axion domain walls melt at
temperature T ≳ v.

As noted in [110, 114, 123] and discussed in the Introduction, it was recognized
that the IR behavior of both pure YM theory in the large-N limit and the axion-
YM theory can be effectively described using the 3-form gauge field c3. Here,
incorporating c3 in our discussion has been essential for aligning with the infrared
constraints of the ’t Hooft anomaly. Our method provides a systematic approach
to argue for a consistent infrared effective field theory of the axion-YM system.
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5.5.2. SU(N)/Zp and noninvertible chiral symmetry

At energy scales below Λ, the theory acquires the global symmetry

Gglobal = Z(0)
TR

×
(
Z(1)
N ×̃Z(3)

TR

)
. (5.118)

In general, a higher-group structure may exist between Z(1)
N and Z(3)

TR
, which be-

comes apparent when both symmetries’ backgrounds are activated. The back-
ground of Z(1)

N was discussed earlier, while that of Z(3)
TR

can be activated by in-
troducing the pair (F3, F4), satisfying the constraint dF3 = TRF4, along with the
quantization condition

∫
M4 dF3 ∈ 2πZ [102]. The axion coupled to these back-

grounds is represented by

L ⊃ a

2π

(
TRdc3 + dF3 − TRN

4π B
(N)
2 ∧B

(N)
2

)
. (5.119)

Maintaining invariance under a gauge transformation by λ(N)
1 requires F3 to trans-

form as

F3 → F3 + dλ2 + TRN

2π dλ
(N)
1 ∧B

(N)
2 + TRN

4π dλ
(N)
1 ∧ dλ

(N)
1 . (5.120)

The interplay among F3, B(N)
2 , and λ(N)

1 indicates a higher-group symmetry Z(1)
N ×̃Z(3)

TR
.

However, this higher-group structure becomes trivial if dF3 − NTR
4πN2dB

(N)
1 ∧ dB

(N)
1

can be expressed as a total derivative. This holds particularly true for the Z(1)
m

symmetry, as demonstrated above in a similar case involving U(1)(2) and Z(1)
m . Un-

derstanding this aspect is pivotal when gauging the genuine center, as this operation
should be executed without gauging Z(3)

TR
.

In the IR, the symmetries Z(0)
TR

and Z(3)
TR

undergo spontaneous breaking. The en-
hanced symmetry Z(1)

N remains unbroken until length scales ∼ yv/Λ2, at which
point it also undergoes explicit breaking due to the heavy fermions that pop up
from vacuum as we take the Wilson lines to be larger than ∼ yv/Λ2. This leaves
Z(1)
m as the sole surviving unbroken symmetry.

5.5.2 SU(N)/Zp and noninvertible chiral symmetry

Let us investigate whether our construction yields the desired results when we
gauge the genuine center or any of its subgroups, aligning with the well-established
findings in the literature [128, 98, 2]. We shall see that the answer is affirmative,
lending support to the picture that the deep IR regime of the system is genuinely
described by the 3-form gauge theory.

We consider the same axion-YM theory with matter, but now let us gauge a sub-
group of the center Z(1)

p ⊆ Z(1)
m , i.e., we consider SU(N)/Zp axion-YM theory with

matter∗. This theory is constructed by promoting (Bc
1, B

c
2) to dynamical fields

∗In principle, there are p distinct theories: (SU(N)/Zp)k, k = 0, 1, .., p − 1 differing by the
admissible genuine (electric, magnetic, or dyonic) line operators [99]. In this chapter, we limit
our treatment to (SU(N)/Zp)k=0. The Hilbert space and the noninvertible chiral symmetry in
(SU(N)/Zp)k=0 theory were considered in [2].
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5.6. Discussion

(bc1, bc2) and performing the sum over the fractional instantons in the path integral.
Let us define the new 3-form gauge field ĉ3:

ĉ3 ≡ c3 − N

4πp2 b
c
1 ∧ dbc1 , (5.121)

keeping in mind the quantization condition
∫

M4
dc3 ∈ 2πZ. The Lagrangian of this

theory at energy scale E ≪ Λ reads

LE≪Λ[(bc1, bc2)] = v2

2 da ∧ ⋆da+ TR
2π a ∧ dĉ3 + Λ4K

(
dĉ3
Λ4

)
, (5.122)

and the partition function is

Z =
∑

(bc1,bc2)

∫
[Dc3][Da]ei

∫
M4

LE≪Λ[(bc1,bc2)]
. (5.123)

In the Kalb-Ramond frame, we replace q → TR and c3 → ĉ3 in (5.88). It is
important to repeat what we stated above: we can gauge the genuine Z(1)

m center
symmetry or a subgroup thereof without spoiling Z(3)

TR
since the pair does not

constitute a higher-group. On the contrary, gauging the enhanced Z(1)
N is disastrous:

it entails that we also gauge Z(3)
TR

, which destroys the domain walls.

The chiral symmetry defect is given by (5.25) after replacing c3 with ĉ3 and sum-
ming over (bc1, bc2):

Ũ
(0)
ℓ (M3) ∼

∑
(bc1,bc2)

e
i 2πℓ
TR

∫
M3

v2⋆da−iℓ
∫

M3

(
c3− N

4πp2 b
c
1∧dbc1

)
, ℓ = 1, 2, .., TR . (5.124)

The new defect Ũ (0)
ℓ (M3) defines a noninvertible chiral symmetry Z̃(0)

TR
. To simplify

the form of Ũ (0)
ℓ (M3), we write N as N = pp′ and assume that p′ = 1 Mod p. Then,

N
4πp2 b

c
1 ∧dbc1 ∼ 1

4πpb
c
1 ∧dbc1, i.e., this is an improperly quantized quantum Hall term.

We may rewrite it in terms of an auxiliary 1-form gauge field φ1 that lives on M3:

Ũ
(0)
ℓ (M3) ∼

∑
(bc1,bc2)

e
i 2πℓ
TR

∫
M3

v2⋆da−iℓ
∫

M3
c3
∫

[Dφ1]e−iℓ
∫

M3
( p

4πφ1∧dφ1+ 1
2πφ1∧dbc1) .(5.125)

The last term is the minimal abelian TQFT Ap,1 discussed in [134]. When ℓ is a
multiple of p, the TQFT is trivialized, giving us an invertible symmetry.

5.6 Discussion

In this chapter, we critically evaluated the hypothesis that the 3-form gauge theory
offers more than an alternative framework for the deep IR regime of axion-Yang-
Mills systems. We commenced by rigorously investigating the 3-form gauge theory
coupled to axions, as encapsulated by the Lagrangian (5.23). Our analysis revealed
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5.6. Discussion

that this theory represents a network of domain walls terminating on an axion
string, with particular emphasis placed on its global structure. A dual formulation,
the Kalb-Ramond Lagrangian (5.88), was also considered, which describes the same
physical phenomenon. Notably, while some symmetry defects are explicit in one
formulation, others are evident in the alternative frame. Crucially, in the absence of
gravitational effects∗, both formulations are equivalent, possessing identical global
symmetries.

Subsequently, we examined the SU(N) Yang-Mills theory with a Dirac fermion
coupled to an SU(N)-neutral complex scalar, highlighting the necessity of an emer-
gent 3-form gauge field for IR matching of the theory’s mixed center-chiral anomaly.
Consider varying the complex scalar vev such that we go to the limit v ≪ Λ. In
this case, the strong dynamics set in well before the axions are amenable to the
weak-coupling treatment. In this opposite limit, the theory still forms domain walls
leading to TR distinct vacua, and thus, we do not expect a bulk phase transition
to take place as we vary v below or above Λ. We may not rigorously justify the
introduction of the 3-form gauge field in this scenario. However, by continuity, we
expect that the 3-form gauge theory remains a valid description in the deep IR.
This reasoning, combined with the large-N limit analysis discussed in the intro-
duction, supports the notion that the vacuum of Yang-Mills theory should likely
be described by a 3-form gauge theory.

Incorporating gravity offers further insights into the significance of the 3-form de-
scription, as the cosmological constant in this context can be interpreted as arising
from a gauge principle. Theoretically, one can distinguish between a pure cos-
mological constant and a 3-form gauge theory, as the latter yields a non-vanishing
contribution to the trace anomaly proportional to the Gauss-Bonnet invariant [117,
135]. Irrespective of this subtle effect, Brown and Teitelboim realized that the ac-
tion (5.2) taken as a starting point with no reference to its UV completion leads to
the quantum creation of closed membranes localized on the boundary of M4 [136,
137]. As the membranes are produced, the vacuum energy density associated with
c3 decreases, reducing the effective value of the cosmological constant. This idea,
when refined, may lead to a solution to the cosmological constant problem [138,
139]. Also, connections between the QCD vacuum and the cosmological constant
problem were discussed in [140, 141].

As discussed in this chapter, introducing the 3-form gauge field c3 was necessary
to match the chiral-center anomaly in an axion-Yang-Mills system. Eventually,
c3 eats the axion, becoming a short-range field, and the cosmological constant
vanishes. Yet, one can think of an alternative scenario with an axion, two distinct
Yang-Mills fields, and a chiral-center anomaly. In this case, two 3-form gauge
fields are anticipated. One combination of these fields eats the axion, while an
orthogonal combination remains gapless. The latter can source a cosmological
constant. Intriguingly, in this scenario, the infrared cosmological constant can be

∗Inclusion of gravity may differentiate between the axion and Kalb-Ramond frames, see [117].
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5.6. Discussion

considered a by-product of the ’t Hooft anomaly-matching condition. However,
in such a scenario, global symmetries should only be considered approximate since
exact global symmetries are forbidden in quantum gravity, see, e.g., [142, 143, 144].

The method presented in this chapter can be extended in various ways. One imme-
diate application is to address the problem of multi-flavor quarks by incorporating
the 3-form gauge theory description in the chiral Lagrangian. Another venue is
applying our formalism to the Standard Model (SM) and its variants, potentially
through coupling with axions. It is well-established that the SM exhibits a Z(1)

6
1-form symmetry, and the true gauge group might be modded by Z6 or a subgroup
thereof (see, e.g., [107, 108, 145, 146, 147, 148, 149]). Exploring whether and how
a 3-form gauge theory may emerge deep in the IR of the SM and its extensions and
whether the modded discrete group could play a significant role in this formalism
will be an exciting avenue of research. Additionally, linking the emergent 3-form to
the observed cosmological constant presents another intriguing possibility. These
investigations are worthy of future exploration.
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Appendix A
’t Hooft Fluxes for SU(2) and

SU(3)

For the gauge group SU(N), the weights of the defining representation νc,A (labelled
by the superscript A = 1, . . . , N are normalized such that

νc,A · νc,B = δAB − 1
N

(A.1)

We can express the generators of the Cartan subalgebra in terms of the weights of
the defining representation:

Ha
c,AB = δAB(νc,A)a (A.2)

where a = 1, . . . , N − 1 indicates the a-th component of (νc,A)a. We can write
Hc as a vector of matrices. Then a given element of the ZN center of SU(N) is
generated by

e2πim1Hc·νc = e−2πim1
1
N 1N (A.3)

For SU(2), the normalized Cartan generator is given by

Hc =

 1√
2 0

0 − 1√
2

 (A.4)

with weights νc,1 = 1√
2 , νc,2 = 1√

2 . A.3 is indeed satisfied by either choice of weight.

For SU(3), the normalized Cartan generators are given by

H1 =


1√
2 0 0

0 − 1√
2 0

0 0 0

 H2 =


1√
6 0 0

0 1√
6 0

0 0 − 2√
6

 (A.5)

The weights of the defining representation are:

νc,1 =

 1√
2

1√
6

 νc,2 =

− 1√
2

1√
6

 νc,3 =
(

0
− 2√

6

)
(A.6)

A quick calculation shows that all three weights satisfy A.3.
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Appendix B
Obtaining the discrete chiral

symmetry

In this appendix, we show that there is a discrete symmetry Zr, where r =
gcd(Nψ, Nχ), that acts on χ. To this end, we conisder the groups ZNψpψ+Nχpχ
and U(1)A we discussed in the text. Under U(1)A × ZNψpψ+Nχpχ , ψ transforms as

ψ −→ e2πiaqψαe
2πipψ l

Nψpψ+Nχpχ ψ , (B.1)

where l ∈ ZNψpψ+Nχpχ , a is a charge factor, and α ∈ [0, 1). This transformation
leaves ψ invariant if

aqψα+ pψ
l

Nψpψ +Nχpχ
= k1 ∈ Z =⇒ α = k1

aqψ
− pψl

aqψ(Nψpψ +Nχpχ) . (B.2)

Note that k1 can be freely chosen. Then, χ transforms under U(1)A ×ZNψpψ+Nχpχ
as:

χ −→ e2πiaqχαe
2πipχ l

Nψpψ+Nχpχ χ = e
2πi
(
aqχ

(
k1
aqψ

−
pψl

aqψ(Nψpψ+Nχpχ)

)
+pχ l

Nψpψ+Nχpχ

)
χ

= e
2πi
(
qχ
qψ
k1+ l

Nψpψ+Nχpχ

(
pχ−pψ

qχ
qψ

))
χ = e

2πi
(
qχ
qψ
k1+ l

(Nψpψ+Nχpχ)qψ

(
−pχ

Nχ
r

−pψ
Nψ
r

))
χ ,

= e
2πi
(
qχ
qψ
k1− l

rqψ

)
χ , (B.3)

where r = gcd(Nψ, Nχ) and we used qψ = −Nχ
r and qχ = Nψ

r . We can rewrite
l = m1+m2r, where m1 = 0, 1, . . . , r−1 and m2 ∈ Z. Bezout’s theorem also tells us
that since r = gcd(Nψ, Nχ), there are integers k1, k2 such that m2r = k1Nψ+k2Nχ.
Applying this to the transformation of χ gives us:

χ −→ e
2πi
(
qχ
qψ
k1− l

rqψ

)
χ = e

2πi
(
qχ
qψ
k1−m1+m2r

rqψ

)
χ = e

2πi
(
m1+m2r

Nχ
−
Nψ
Nχ

k1

)
χ

= e
2πim1

Nχ e
2πi

m2r−Nψk1
Nχ χ = e

2πim1
Nχ e2πik2χ = e

2πim1
Nχ χ . (B.4)

Since m1 = 0, 1, . . . , r − 1, there are only r distinct transformations generated
by U(1)A × ZNψpψ+Nχpχ , and the symmetry group that acts on χ is Zr. For our
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B. Obtaining the discrete chiral symmetry

purposes, we will assume that under Zr, χ transforms with charge 1 (in principle,
we could fix any charge). Finally, one needs to check whether this Zr is a genuine
symmetry in the sense that it cannot be absorbed in the center of color or flavor
groups. This will be done on a case-by-case basis.
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Appendix C
Anomaly Descent

It turns out that all the information from anomalies is captured by a five dimen-
sional inflow action. To see this, first note that we can interpret the anomaly as a
gauge variation in the effective action:

δϵW̃ [A] =
∫
d4x ϵα(x)Aα(x) (C.1)

We can also write this as

Aα(x) = −
(
Dµ

δ

δAµ(x)

)
α

W̃ [A] (C.2)

Since the anomaly can be expressed as a derivative, its form is constrained (similar
to how ∇ · ∇f = 0 for a scalar function f). This constraint is known as the
Wess-Zumino consistency condition.

One way to derive the Wess-Zumino condition is by considering the BRST trans-
formations on the effective action. Recall that the BRST operator, s, anti-commutes
with gauge fields and acts on the gauge field Aµ via

sAµ = Dµw (C.3)

where wα is a ghost field, i.e. a gauge transformation with the ghost field as a
parameter. It follows that the field strength transforms as

sF = [F,w] (C.4)

s acts on the ghost field via

swα = −1
2Cαβγw

βwγ (C.5)
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C. Anomaly Descent

Then when acting on the effective action,

sW̃ [A] =
∫
d4x (Dµw(x))α δ

δAαµ(x)W̃ [A]

=
∫
d4xwα(x)

(
−Dµ

δ

δAµ(x)

)
α

W̃ [A]

=
∫
d4xwα(x)GαW̃ [A]

=
∫
d4xwα(x)Aα(x)

≡ A[w,A]

where we introduced a dependence on A to remind ourselves that the anomaly
depends on the gauge field. In general the above derivation holds for any functional
F of the gauge fields:

sF [A] =
∫
d4xwα(x)GαF [A] (C.6)

Since s2 = 0, we have

0 = sA[w,A] =
∫
d4x s(wα(x)Aα(x)

=
∫
d4x

(
(swα(x))Aα(x))Aα(x) − wα(x)(sAα(x))

)
=
∫
d4x

(
−1

2Cαβγw
β(x)wγ(x)Aα(x)

− wα(x)
∫
d4y wβ(y)Gβ(y)Aα(x)

)
=
∫
d4x d4y

(
−1

2w
α(x)wβ(y)

)(
Cαβγδ

(4)(x− y)Aγ(x)

+ Gβ(y)A(x) − Gα(x)Aβ(y)
)

where we used the last line via anti-commutation of the ghost fields. This is the
Wess-Zumino consistency condition:

sA[w,A] = 0 (C.7)

Therefore the anomaly A[w,A] is a BRST-closed functional of ghost number one.
If the anomaly is BRST-closed but not exact, we say the anomaly is relevant - it
cannot be cancelled out by a local counterterm. If the anomaly is BRST-exact,
then it is irrelevant [21].

It turns out that the Wess-Zumino condition is sufficient in determining the full
form of the anomaly up to an overall constant. We include a calculation in section
C.0.1. In other words, solutions to the Wess-Zumino condition give us the anomaly.
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C.0.1. Computing the anomaly from the Wess-Zumino condition

There is a way to generate solutions to the Wess-Zumino condition via a process
known as anomaly descent. The 6-dimensional characteristic polynomial is given
by

P3 = trF 3 = dω5 (C.8)

It can be expressed as the derivative of the five-dimensional Chern-Simons action:

ω5(A) = tr
(
iA ∧ dA ∧ dA+ 3

2A
3 ∧ dA− 3i

5 A
5
)

(C.9)

The characteristic polynomial is gauge invariant, so the gauge variation of the
Chern-Simons form satisfies:

0 = δP3 = δ(dω5) = d(δω5) (C.10)

We see that δω5 is locally exact - we can express it as the derivative of a 4-form on
local coordinate patches:

δω5 = dQ4 (C.11)

where Q4 = Q4(v,A) is linear in the gauge parameter. Let us assume that the
manifold is compact, so Q4 is defined globally. We can also choose the topology
such that every closed form is exact [21].

Recall that the BRST transformation is a gauge transformation with the ghost field
w as a parameter - therefore we have

sω5 = dQ4(w,A) (C.12)

Using the property s2 = 0 and ds = −sd

0 = s(sω5) = s(dQ4) = −d(sQ4) (C.13)

Therefore sQ4 = dq3 is exact. As the manifold is compact, we have

s

∫
M
Q4 =

∫
M
dq3 = 0 (C.14)

So we see that
∫

MQ4 satisfies the Wess-Zumino condition. Note that the anomaly
is defined up to BRST-exact terms - this corresponds to the fact that the anomaly
is defined up to adding local counterterms to the action [21].

C.0.1 Computing the anomaly from the Wess-Zumino condition

We can compute the full expression of the anomaly using the Wess-Zumino consist-
ency condition. For ease of calculation, let us redefine the fields in our calculation
to absorb the factors of i:

A = −iA, F = −iF = dA + A2, D = d+ A v = −iω (C.15)
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C.0.1. Computing the anomaly from the Wess-Zumino condition

Here we used the shorthand A2 = A ∧ A. Using A[ω,A] = −1
24π2

∫
tr RωdAdA +

O(A3), the anomaly can be written as:

A[ω,A] = i

24π2

∫
tr RvdAdA +O(A3) (C.16)

Since the ghost fields ωα anticommute amongst themselves, and so do the dxµ, we
will make the choice that dxµ anticommute with the ghost fields as well:

vdxµ = −dxµ v (C.17)

Then the BRST transformation of the one-form A is given by:

sA = sAµdx
µ = (∂µv + [Aµ, v])dxµ = −dv − Av − vA = −dv − {A, v} (C.18)

The rescaled field strength and ghost field transform as:

sF = [F, v] sv = −vv (C.19)

where we used the shorthand vv = [v, v] for two ghost fields.

As the anomaly comes from a variation of the effective action, it must be of the
form

∫
tr v(. . .). The ghost field v and gauge field A both have scaling dimension 1,

so the term tr vdAdA has scaling dimension 5. The BRST operator increases the
scaling dimension by 1, so str vdAdA has scaling dimension 6. In order to satisfy
the consistency condition sA[v,A] = 0, tr vdAdA has to be cancelled by terms
higher order in the gauge field with scaling dimension 5. We also know that the
anomaly is proportional to the anti-symmetric tensor ϵµνρσ, so we can express these
terms as 4-forms. Therefore up to adding a BRST exact form, the most general
form of the anomaly is:

A[v,A] = i

24π2

∫
tr v(dAdA + b1A2dA + b2AdAA + b3dAA2 + cA4) (C.20)

Requiring the anomaly to be BRST closed, sA[v,A] = 0, will fix the coefficients in
the anomaly.

Before computing the sA[v,A], it will be helpful to first compute:

sA = −dv − {A, v} (C.21)

sA2 = (sA)A − A(sA)
= (−dv − {A, v})A − A(−dv − {A, v})
= −AvA − vA2 + A2v + AvA − dvA + Adv
= [A, dv] + [A2, v]
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sA3 = (sA2)A + A2(sA)
= ([A, dv] + [A2, v])A + A2(−dv − {A, v})
= AdvA − dvA2 − A2vA − vA3 − A2dv − A3v − A2vA

= −dvA2 + AdvA − A2dv −
{

A2, v
}

sA4 = (sA3)A − A3(sA)

= (−dvA2 + AdvA − A2dv −
{

A2, v
}

)A − A3(−dv − {A, v})

= −dvA3 + AdvA2 − A2dvA − A3vA − vA4 + A3dv + A4v + A3vA
= −dvA3 + AdvA2 − A2dvA + A3dv + [A4, v]

s(dA) = s(F − A2) = sF − sA2

= [F, v] − ([A, dv] + [A2, v])
= [dA, v] − [A, dv]

Now let us compute the consistency condition sA[v,A] = 0. First let us consider:

str vA4 = tr (sv)A4 − tr v(sA4)
= −tr v2A4 − tr v[A4, v] + . . .

= −tr v2A4 − tr vA4v + tr v2A4 + . . .

= tr v2A4 + . . .

where the . . . are the terms containing both v and dv, and we the last term has a
positive sign because

tr vA4v = tr vµ1(A4)µ2µ3µ4µ5wµ6dx
µ1 . . . dxµ6

= tr vµ6vµ1(A4)µ2µ3µ4µ5dx
µ1 . . . dxµ6 by cyclicity of trace

= (−1)5tr vµ6vµ1(A4)µ2µ3µ4µ5dx
µ6dxµ1 . . . dxµ5

= −tr v2A4

There can be no other term ∝ tr v2A4 in sA[v,A] since every other term involves
at least one derivative. Therefore we have c = 0.

Computing the other terms in sA[v,A] yields:

str vA2dA = tr
(
(sv)A2dA − v(sA2)dA − vA2s(dA)

)
= tr

(
−v2A2dA − v([A, dv] + [A2, v])dA − vA2([dA, v] − [A, dv])

)
= tr (−v2A2dA − vAdvdA + vdvAdA − vA2vdA + v2A2dA

− vA2dAv + vA2vdA + vA3dv − vA2dvA)
= tr (v2A2dAv − vA2dvA + vA3dv) + tr (vdvAdA − vAdvdA)
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str vAdAA = tr
(
−v2AdAA − v(sA)dAA + vA(sdA)A + vAdA(sA)

)
= −v2AdAA − v(−dv − {A, v})dAA

+ vA([dA, v] − [A, dv])A + vAdA(−dv − {A, v})
= −v2AdAA + vdvdAA + vAvdAA + v2AdAA

+ vAdAvA − vAvdAA − vA2dvA + vAdvA2

− vAdAdv − vAdAAv − vAdAvA
= tr (v2AdAA − vA2dvA + vAdvA2) + tr (vdvAA + vAdAdv)

str vdAA2 = tr
(
−v2AdAA2 − v(sdA)A2 − vdA(sA2)

)
= tr

(
−v2dAA2 − v([A, dv] + [A2, v])A2 − vdA([A, dv] + [A2, v])

)
= tr (−v2dAA2 − vdAvA2 + v2dAA2 + vAdvA2 − vdvA3

− vdAAdv + vdAdvA − vdAA2v + vdAvA2)
= tr (v2dAA2 + vAdvA2 − vdvA3) + tr (vdAdvA − vdAAdv)

Here we divided the terms into those containing only one derivative and those con-
taining two derivatives. str vdAdA can only give terms involving two derivatives,
the terms with one derivative must cancel each other or add up to an exact form.
If we set

b ≡ b1 = −b2 = b3 (C.22)

then combining the three terms in the anomaly gives:

str (vdA3) = str (vA2dA − vAdAA + vdAA2)
= tr (v2A2dAv − vA2dvA + vA3dv) + tr (vdvAdA − vAdvdA)

− tr (v2AdAA − vA2dvA + vAdvA2) + tr (vdvdAA + vAdAdv)
+ tr (v2dAA2 + vAdvA2 − vdvA3) + tr (vdAdvA − vdAAdv)

= dtr v2A3 + tr (−vdvdA2 − dvvdA2 − vAdvdA)

= dtr v2A3 + tr
(
−2dvdvA2 + dvAdvA + 2d(vdvA2) − d(vAdvA)

)
The exact forms integrate to zero, and we also have

tr dvAdvA = −tr dvAdvA = 0 (C.23)

since dvAis an anti-commuting 2-form. So the consistency condition becomes:

sA[v,A] = i

24π2

∫ (
str vdAdA − 2btr dvdvA2

)
(C.24)
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Finally we can compute str vdAdA to determine b:

str vdAdA = tr
(
−v2dAdA − v(sdA)dA − vdA(sdA)

)
= tr

(
−v2dAdA − v([dA, v] − [A, dv])dA − vdA([dA, v] − [A, dv])

)
= tr (−v2dAdA − vdAvdA + v2dAdA + vAdvdA − vdvAdA

− vdAdAv + vdAvdA + vdAAdv − vdAdvA)
= tr (v2dAdA + dvvdAA − vdvAdA + vAdvdA − vdAdvA)

= tr
(
d(v2dAA) + vdvdAA − vdvAdA + d(vAdvA) − dvAdvA

)
= tr

(
vdvdA2 + d(. . .)

)
= tr

(
dvdvA2 − d(vdvA2) + d(. . .)

)
where to go from the fifth line to the sixth line we used the fact that tr dvAdvA = 0.
Inserting this expression back into the consistency condition, we have:

0 = sA[v,A] = i

24π2

∫
tr
(
dvdvA2 − 2bdvdvA2

)
(C.25)

=⇒ b = 1
2 (C.26)

Therefore the full form of the anomaly is

A[v,A] = i

24π2

∫
tr v

(
dAdA + 1

2dA
3
)

= i

24π2

∫
tr v d

(
AdA + 1

2A
3
)

(C.27)

Replacing the ghost field ω with the transformation parameter ϵ and in terms of
the original gauge field A, the anomaly is given by:

A[ϵ, A] = − 1
24π2

∫
tr ϵd

(
AdA− i

2A
3
)

(C.28)

Aα(x) = − 1
24π2 ϵ

µνρσ∂µ

(
Aβν∂ρA

γ
σ − i

4A
β
ν [Aρ, Aσ]γ

)
DR
αβγ (C.29)
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Appendix D
The 3-loop β-function and the IR

fixed points

The 3-loop β function is given by (see [150, 151, 152])

β(g) = − β0
g3

(4π)2 − β1
g5

(4π)4 − β2
g7

(4π)6 ,

β0 =11
6 C2(G) −

∑
R

1
3TRnR ,

β1 =34
12C

2
2 (G) −

∑
R

{5
6nRC2(G)TR + nR

2 C2(R)TR

}
,

β2 =2857
432 C

3
2 (G) −

∑
R

nRTR
4

[
−C2

2 (R)
2 + 205C2(G)C2(R)

36 + 1415C2
2 (G)

108

]

+
∑

R,R′

nRn
′
RTRTR′

16

[44C2(R)
18 + 158C2(G)

54

]
.

(D.1)

Here, G denotes the adjoint representation, and nR is the number of the Weyl
flavors in representation R. Also, C2(R) is the quadratic Casimir operator of
representation R, defined as

taRt
a
R = C2(R)1R . (D.2)

We reserve C2(G) for the quadratic Casimir of the adjoint representation. TR is
the Dynkin index of R, which is defined by

tr
[
taRt

b
R

]
= TRδ

ab . (D.3)

From Eqs. (D.2) and (D.3), we easily obtain the useful relation

TRdimG = C2(R)dimR , (D.4)

where dimR is the dimension of R.
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In particular, we have C2(G) = 2N , dimG = N2 − 1, Tψ = N + 2, dimψ = N(N+1)
2 ,

C2(ψ) = 2(N+2)(N−1)
N , Tχ = N − 2, dimχ = N(N−1)

2 , C2(χ) = 2(N−2)(N+1)
N . Then,

the values of β0 to β2 are

β0 = 1
3

[
11N − 2

k
(N2 − 8)

]
,

β1 = 2
(
−48 + 76N2 + 17kN3 − 8N4)

3kN ,

β2 = 1
54k2N2

[
2857k2N5 +N(−8448 + 12448N2 − 2584N4 + 145N6)

− 2k(864 + 3948N2 − 8945N4 + 988N6)
]
.

(D.5)

Assuming that β0 > 0 and β1 < 0, the theory develops an IR fixed point to 2-loops.
The value of the coupling constant at the fixed point is

α∗ ≡ g2
∗

4π = −4πβ0
β1

= 2πN
(
16 + 11kN − 2N2)

48 − 76N2 − 17kN3 + 8N4 . (D.6)

To assess the stability of this fixed point, we can examine the roots of the β-function
when the 3-loop term is taken into account.
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