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Electrical Control Of Magnetism From Group Theoretical And
Quantum Mechanical Calculations

Cameron Scott

Abstract

Volatile memory devices, with their constant power requirement, are a source of energy inef-

ficiency in today’s digitised world. Using ferroically ordered materials, which retain a ferroic

state in the absence of any applied field, is one route towards alleviating this issue. For ex-

ample, ferroelectric materials are those with spontaneous and switchable macroscopic polar-

isations. One direction of polarisation could represent a "1" and the other a "0". Alternatively,

ferromagnetic materials have a switchable macroscopic magnetisation. It is typically cheap

to switch the polarisation in ferroelectrics but the read operation is destructive and requires

a rewrite stage. In contrast, reversing the magnetisation in a ferromagnet is energetically

costly because of the large external fields needed, but reading is cheap as non-destructive

magnetoresistive effects can be used. Allowing for both of these ferroic order parameters

in a single-phase material might allow for cross couplings permitting writing with electric

fields but reading using magnetoresistive effects. In order for this to be true, the information

written in the polarisation must be transmitted to the magnetic degrees of freedom.

This thesis approaches this problem from a theoretical point of view. I analysed the sym-

metry of multiferroic materials and constructed Landau expansions to determine how order

parameters are coupled. Through this process, I determined whether the reversal of the

polarisation necessitates the reversal of magnetisation. After the symmetry was analysed, I

investigated candidate materials in more detail through the application of quantum mech-

anical simulation. I find that certain perovskite materials do show the necessary couplings

to enable electric field control of magnetism. Single perovskites under mild epitaxial strains

are shown to possess a universal polar instability which, when coupled to an external electric

field, induces a transition from an antiferromagnetic state to a ferromagnetic one. Addition-

ally, the symmetry analysis identifies that improper ferroelectrics are most likely to host the

desired couplings and that cation ordering, such as in CeBaMn2O6, is the easiest route to

achieve them. Future work would focus on stabilising the important cation orderings and

investigating the detailed switching dynamics of candidate materials.
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Perovskite Distortions

Distortion Γ X M R

Strain Γ+
3 ;Γ+

5
Cation Order (A Sites) X+

1 M+
1 R+

1
Cation Order (B Sites) X−

3 M+
4 R−

2
Anion Order (X Sites) X+

1 M+
4 ;M−

5 R+
5

(Anti-) Polar (A Sites) Γ−
4 X−

3 M−
3 ;M−

5 R−
4

(Anti-) Polar (B Sites) Γ−
4 X+

1 M−
2 ;M−

5 R+
5

Jahn-Teller Modes Γ+
3 X−

3 M+
3 R−

3
Octahedral Tilt Modes M+

2 R−
5

Magnetic Order (A Sites) mΓ+
4 mX+

3 ;mX+
5 mM+

3 ;mM+
5 mR+

4
Magnetic Order (B Sites) mΓ+

4 mX−
1 ;mX−

5 mM+
2 ;mM+

5 mR−
5

Table 1: The main distortions and their corresponding irreducible representations in perovskite
materials. The irreducible representation labels are given assuming a Pm3̄m parent cell with
the A site at [0, 0, 0].
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Chapter 1

Introduction - The Need For

Magnetoelectric Multiferroics

1.1 The Energy Requirements Of The 21st Century

Quantum mechanics, one of the most extraordinary advances of 20th century physics, is near-

ing its 100th birthday. The complementary development of matrix mechanics (1925) and wave

mechanics (1926) revealed an entirely new way to understand the properties and dynamics

of microscopic objects. Of particular importance was how quantum mechanics enabled better

comprehension of the behaviour of electrons in materials - the so called electronic structure of a

material. With this enormous shift in understanding, solid state theorists and experimentalists

were now able to design bespoke, functional materials to address particular needs. Conductors,

semiconductors and insulators are some prominent examples of materials whose electronic struc-

tures are well understood and whose properties are routinely tuned to fit a particular function.

As the eminent scientists responsible for developing the central tenets of the theory were dotting

their is and crossing their ℏs, they could not have possibly foreseen the enormous impact their

work would have over the next century.

Perhaps the most consequential innovation enabled by the quantum mechanical understand-

ing of semiconductors was the creation of the transistor. First created by John Bardeen and

1



1.1. The Energy Requirements Of The 21st Century

Walter Brattain in 1948 [1] from a crystal of germanium∗, it forms the central component of all

modern electronics. Its ability to amplify and switch electric currents makes it the ideal device

to implement logic and memory circuits and the vacuum tube, the bulkier analogue counterpart

to the transistor, was quickly supplanted. Continued research and development in the semicon-

ductor industry resulted in silicon-based field effect transistors (FETs) and also in decreasing

size and costs. Along with resistors, capacitors, and other electrical devices, transistors were

incorporated into the new integrated circuits of the 1960s. The microprocessors and memory

devices that are so central to contemporary computing are constructed from these integrated

circuits, which themselves include a huge number of transistors. As the size of an individual

transistor was reduced, the number of transistors on an integrated circuit of a given dimension

has also increased, leading to a steady increase in computer complexity and speed. This seem-

ingly unstoppable march of progress is perhaps best typified by an observation by Gordon Moore

of IBM that the density of transistors on an integrated circuit should double roughly every two

years. "Moore’s Law" has remained remarkably robust for the last sixty [3] years although it

is now showing signs of slowing because quantum mechanics, the physical law whose discovery

kickstarted the whole process, becomes important once again. Transistors are becoming so small

that they are reaching atomic dimensions - a fundamental limit - and scaling becomes much more

complicated.

Semiconductor applications are obviously not restricted to transistors. Optical devices such

as light emitting diodes and lasers are also created by fine-tuning semiconductor material proper-

ties, as are photovoltaic solar cells and other sensors designed to respond to mechanical, thermal,

magnetic or chemical stimuli [4].

The increasing versatility of semiconductor devices has substantially increased consumer

demand so that semiconductors can now be found in almost every aspect of modern life. Here

lies the problem - all these devices need power. How to source this power is a problem of

tantamount scientific importance in the 21st century. It is also a question with important

societal, political and ecological ramifications as continuing to choose the high energy density

but non-renewable, polluting sources such as fossil fuels will hasten climatic breakdown and
∗A field effect transistor was first patented by Julius Edgar Lilienfeld in 1927 [2] but was never created.

2



1.1. The Energy Requirements Of The 21st Century

produce irrevocable changes to our biosphere.

In the above, I focused on transistors, as it is these that form the backbone of the logic

and memory circuits that are so essential to any form of computer technology. Recent studies

[5, 6, 7] have estimated that the global electricity demand was about 20,000 TWh in 2010 and

seems to be growing at an annual rate of about 3%. Of this electricity usage, about 20% is

expected to be taken up by computer technology. Subdividing this further, electricity usage

from personal devices is expected to fall due to increasing efficiency whereas that from data

centres facilitating the transfer of information will grow - potentially consuming almost half of

all electricity demanded for computer technology in the worst case scenarios. In these centres,

about half of the energy goes to processing and storage functions whilst most of the rest is

responsible for cooling. Combining all of these rough approximations, it is plausible that the

energy requirements of computing in data centres alone could reach about 5% of global energy

usage. Indeed, data centres in 2012 were estimated to use about 1.35% of global electricity [8],

and with a predicted yearly rise of 4.4%, it’s clear that data centres will take an increasingly

large share of electricity usage in the future, especially if these centres are used to train and

implement modern artificial intelligence programs.

With the energy usage of computing increasing, energy efficiency becomes more important.

Wastage occurs at every single stage of the life-cycle of a computing device and each of these must

be addressed if we are to reduce our gluttonous energy requirements. Interestingly, quantum

ideas will be (and already are) important in designing new materials that can help us escape

the energy dependency that quantum ideas helped to cause in the first place! For example,

Joule heating is the energy loss to heat as an electrical current flows through a conductor. It

is caused by the scattering of electrons off atoms in the conducting material and the energy of

collision is radiated away as heat. The quantum idea of superconductivity alleviates this issue

[9]. When temperature is low enough in some materials, electrons do not scatter randomly

from atoms. Instead, the coordinated motion of the atoms and electrons result in electrons

pairing up, requiring an inaccessibly high energy to break them apart again. When the electrons

are paired, they do not scatter but instead flow interrupted and Joule heating is completely

eliminated. Using quantum mechanical ideas to construct a room-temperature, ambient pressure

3



1.2. The Ultimate Memory Device

superconductor is therefore an incredibly important field of research which, if successful, would

be truly revolutionary.

This is just one aspect in which quantum mechanics can be used to design the energy-efficient

materials of tomorrow. Others include the construction of new energy storage materials like

batteries and supercapacitors [10] which are essential in the transition toward electric vehicles.

The coupling of electrons to photons of light is also an incredibly important idea already in use

in the photovoltaic industry but a greater understanding of how to maximise this effect in any

given material will help to develop the next generation of solar panels and reduce the reliance

on non-renewable fossil fuels.

More prosaically, but still equally important, is to try to reduce the energy usage of the

electrical components that are hidden away within data centers and inside our smart devices.

For example, any memory device must continually retain its data in the form of 1s and 0s.

Traditionally, this is done by maintaining a high and a low voltage state to represent a 1 and

a 0 respectively. However, this can only be achieved if the device is constantly supplied with

power. This is not only desirable because of the extra energy required but also because of the

evolving preference towards portable, ultra-low power devices [11]. In addition, current CPUs

are developing at a faster rate than memory devices so that the memory becomes a bottleneck.

This problem has been called the "memory wall" [12]. We therefore arrive at the central question

to be addressed in this thesis: "Can quantum mechanics be used to understand, design and realise

novel materials for more energy efficient memory devices?"

1.2 The Ultimate Memory Device

In principle, anything that can be programmed into two stable states can be used as memory

for binary computation. In practice, it is almost always stable states in semiconductor devices

that are used for the obvious reasons of microscopic scale and sub-microsecond read and write

speeds. However, this still allows for a wide variety of possible implementations. Here I review

some of these possibilities, assessing their advantages and disadvantages, and culminating in the

exposition of multiferroic memories. These are often touted as the "ultimate memory device"

4



1.2.1. Volatile Memories

permitting previously impossible functionalities. The identification and theoretical understand-

ing of novel materials that can enable this revolutionary technology forms the central theme of

this thesis.

1.2.1 Volatile Memories

Volatile memory is only capable of data retention if the device is also provided with a source of

power. Once that power is removed, data is lost. To achieve this on an integrated circuit, there

are two main approaches.

Static random access memory (SRAM) [13] has one of the highest frequency read/write

cycles of all memory devices but to accomplish this, considerably more transistors must be

used. A typical SRAM circuit element involves six transistors, four of which are paired off into

inverters. These take a high voltage input and produce a low voltage output and vice versa.

Importantly, the inverters are coupled so that an output from either acts as input to the other

and consequently, there are two stable states - shown in Figure 1.1.

The basic design of the SRAM circuits highlights an important issue with the technology -

it requires multiple transistors to store a single bit of information. This results in significantly

higher costs and reduced data density which offset the attractive high read/write speeds. Typic-

ally, it is used in the cache memory of a CPU where it is speed and not volume which is critical.

As the technology has progressed, new issues have arisen. The requirement of a constant supply

of power leads to non-negligible leakage currents with this effect strengthening with decreasing

circuit size.

Dynamic random access memory (DRAM) [4] greatly reduces the size of a memory circuit.

It does this by using a single transistor to control the charge stored on a connected capacitor

(Figure 1.2). A charged and discharged capacitor maps onto the logical 1 and 0 state necessary

for computation. These two states are therefore incredibly simple. However, the reliance of

a capacitor (which will always have some leakage of charge) requires the continual pulsing of

voltage, usually at a frequency of around 100Hz, to continue to retain data. Nevertheless, DRAM

5



1.2.2. Non-Volatile Memories

Figure 1.1: The "butterfly plot" obtained by operating an SRAM circuit. The two stable voltage
states constitute the two necessary configurations for a memory device. Vdd is the voltage of
the attached power supply. Taken from Reference [13].

remains the cheapest and most ubiquitous memory device whose small circuit design leads to

much greater data density than SRAM.

Despite the cheapness of DRAM and the speed of SRAM, both are energy inefficient. Future

memory technologies must find a way around the requirement for a constant supply of energy.

In future, memory devices must be non-volatile.

1.2.2 Non-Volatile Memories

Non-volatile memory, in contrast to volatile memory, does not require any external power source

to retain data and subsequently, has become an enormously attractive avenue in the design of

novel energy efficient memory devices.

The most commercially successful, approach to non-volatile memory is Flash memory [13, 14].
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Figure 1.2: DRAM circuit diagram showing the controlling p-type transistor - the "access device"
and the connected capacitor. Taken from [4]

Here the injection of additional charge into the floating gate of a transistor alters the threshold

voltage. Once the charge has been injected it can be retained for many years within the gate

without the need for any periodic refreshing or external power supply. A floating gate transistor

with injected charge and a transistor without the charge become the two stable states. The

whole array of transistors can then be erased with a "flash" of ultraviolet radiation, hence the

name. Due to the high energy barriers that must be overcome to inject charge, Flash memory

is typically used in a read-only storage role and forms the basis of the solid state drive (SSDs)

found in most modern computers.

Flash is not the only way to implement a non-volatile memory. As all that is necessary is a

material that can be switched between two stable and distinguishable states, materials science

plays an important role towards finding and understanding these states. Just as H2O transform

between a liquid and solid states via the application or removal of heat, every other material can

exist in a huge variety of state or phases. The study of the phase transitions [15] of materials is

an incredibly rich discipline of materials science and well suited to looking for stable states that

are accessible enough to be suitable representations of the 1s and 0s of computer logic.

The scientific literature is replete with exotic material phases that have been proposed for

this exact purpose. The skyrmion, meron, hopfion, hedgehog, bubble and vortex phases found in

magnetic and dielectric materials are just some of the jargon routinely attached to the study of
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memory materials [16] and new ideas are always emerging, including using the thermal properties

of different phases of materials for computation [17].

My research has focused on ferroic phase transitions. This is a transition that takes a

material from an initial phase to one of at least two equivalent phases. Importantly, for the

ferroic classification to apply, it must be possible to switch between the two phases. To illustrate

this point, imagine a rod holding up a heavy weight [18]. As the weight increases, the rod must

eventually buckle either to the left or to the right (in a 2D world). Is this a ferroic transition? If

you are strong enough to bend a rod deformed to the left into a rod deformed to the right, then

yes, this is a ferroic transition. If you are not strong enough to do this, and cannot find anyone

or anything who can, then it is not a ferroic transition. Maybe the rod could be deformed with

an applied force slightly greater than the maximum you could provide, but until that transition

to the reversed state is observed, it is not a ferroic transition. This highlights the point that

the classification is more empirical than fundamental. However, the hypothetical existence of

both states is not up for dispute. If the rod could bend to the left, the initial symmetry of the

situation ensures that it could also bend to the right. I shall show later that symmetry provides

an essential tool in the physics of phase transitions, and will prove invaluable. If the transition

does prove to be ferroic, then "left" and "right" become faithful representations of "1" and "0"

in some strange analog computer: both states are clearly distinguishable from each other and,

being a ferroic transition, it is switchable. In order for this kind of phase transition to be useful

as non-volatile ∗memory device, it must be a ferroic phase transition.

Enough with the academic allegories! In the three sections below, I explore various examples

of real ferroic phase transitions that may result in the next generation of memory devices. In

these sections, I introduce the concepts of ferroelectricity, magnetism, and multiferroicism.

1.2.2.1 Ferroelectricity and Ferroelectric Memories

Dielectric materials are the class of insulating materials which have the property that, on the

application of an electric field, the positive and negative charges in the material separate, result-
∗The rod analogy would certainly be non-volatile as removing the weight does not cause the rod to become

straight again
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ing in net electrical polarisation [19, 20]. It is critically important that the material is insulating

because without this proviso, free charges redistribute themselves within the material and create

an opposite, depolarising field that cancels that created by the external field.

Only a subset of dielectrics can have their polarisation changed with external strains, as well

as with electric fields. These are termed piezoelectric materials.

A subset of piezoelectrics, and thus an even smaller of all dielectrics have a net polarisation

even in the absence of any field or strain. These are known as polar materials and polarisation

arises because the anions and cations that make up the crystal structure are positioned in such

a way that there is a surplus of positive charge in one direction and a deficit in another. As

I describe in Chap 3, this is a consequence of the symmetry of the crystal structure - polar

materials lack centrosymmetry. An increase in temperature begins to randomise the positions of

the ions in these materials, lowering the strong spatial correlations between them and reducing

the polarisation, and consequently polar materials are also known as pyroelectric∗.

Upon the application of an electric field to a pyroelectric, it is sometimes possible to reverse

the polarisation from P to −P . If this is the case, the material is denoted as ferroelectric.

This emphasises the point that the "ferroelectric" classification is not fundamental but can only

be applied by doing some experiments. The reversal of polarisation must be observed for a

material to be properly described as a ferroelectric. Nevertheless, many polar materials are

frequently described as ferroelectric materials without this observation. The subdivision of

dielectric materials into piezoelectric, pyroelectric and ferroelectric is schematically illustrated

in Figure 1.3.

First discovered at the end of the 19th century in a class of materials known as Rochelle salts

[21], ferroelectricity can be determined by observing a hysteresis loop in the P − E plot. This

can be explained by imagining the ferroelectric material as a mosaic of domains, each with a

randomly oriented polarisation. Applying a field in the direction of one of these polarisations

causes that domain to grow whilst others shrink. Continued increase of the electric field results

in a single, monodomain sample with a saturated polarisation PS . Reducing the field, to zero
∗Temperature would also effect the positions of ions in non-polar crystals but the effect of temperature is

always random and so no net polarisation is created because of changes in temperature.
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D
ielectrics

Piezoelectrics

Pyroelectrics

Ferroelectrics

Figure 1.3: Schematic illustration of the hierarchy of dielectric materials.

will now leave a net polarisation because the interactions between dipoles is strong enough

to persist without this external influence. The remaining polarisation in zero electric field

is the remanent polarisation. Reversing the field makes the originally polarisation direction

unfavourable and the polarisation is completely destroyed at the coercive field, −EC . Continuing

to increase the field in the opposite direction reaches the opposite saturation polarisation −PS
∗.

Observing ferroelectricity is occasionally difficult because the coercive field is larger than the

breakdown field (the field when it ceases to be insulating) of the material and so the reversal of

the polarisation is an impossibility - metallicity destroys ferroelectricity†.

A transition to a ferroelectric phase happens below a ferroelectric Curie temperature TC

from a high temperature paraelectric phase - a phase without a polarisation. Right at TC , an

infinitesimally small electric field can trigger the transition to a phase with a finite, non-zero

polarisation. Therefore, the electric susceptibility χ diverges at TC .

Perovskites - materials with a ABO3 chemical formula and formed of a three-dimensional
∗Another class of materials with distinctive P -E plots are antiferroelectrics. This is a poorly defined concept

but is best described as any material displaying a double hysteresis loop. This would be a material in which a
small E field changes the polarisation linearly as the material is initially non-polar. With increasing field, the
system transitions to a ferroelectric phase with a miniature hysteresis loop at end of the linear portion of the
P -E plot. There is another small hysteresis plot for the reversed field, hence the "double hysteresis" descriptor.
If a polar material transitions to a different polar phase with field, the linear portion would be replaced with a
regular hysteresis loop and you would observe a triple hysteresis loop!

†It does seem possible to have polar crystal structures that are metals but it is not possible to switch these.
The external fields are screened.
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network of corner sharing BO6 octahedra - possess a great deal of chemical and structural

flexibility. It is in this class of materials that ferroelectricity is perhaps best understood and

a ferroelectric transition is typically ascribed to either "condensation of a zone-centred soft

phonon" (Chapter 2) or a "coupling between symmetry adapted distortions" (Chapter 3).

Whatever the origin of ferroelectricity, the (at least) two polar states map nicely onto "1"

and "0" states needed for ferroelectric RAM (FeRAM) [22, 23, 24]. FeRAMS have read and

write cycles faster than alternative nonvolatile memories like FLASH and also have faster access

times. The huge downside to FeRAM is that the read operation is destructive because in order

to find out the polarisation state of a ferroelectric, the polarisation must be switched and the

resulting current measured. This requires an additional application of a field to rewrite the data,

which leads to a slightly higher energy cost and undercutting the energy-saving promise that

FeRAMs bring.

1.2.2.2 Magnetism and Magnetic Memories

Magnetism is a uniquely quantum phenomenon with no classical description [18]. The magnetic

dipoles present on atoms and ions are caused by spin and orbital degrees of freedom of the

electrons. The sizeable magnetic dipole on an Fe 3+ ion is caused by five such electron spins

each organised into different orbitals so that the spins do not pair up and compensate each other.

Bringing a number of magnetic ions together and lowering the temperature can lead to a

magnetic phase transition below a critical temperature TC . Above this transition, the material

is said to be paramagnetic. Below the transition, the combined spin on each ion could align with

the spins on its neighbours - this is a ferromagnet. Alternatively, the spin could align oppositely

with its neighbours to produce an antiferromagnet.

As could be guessed from the similarity between the terms ferroelectric and ferromagnet, the

phenomenology of ferromagnetism and ferroelectricity is similar despite the very different origins

of the effects [24]. Ferromagnets show hysteresis loops with associated remanent and saturation

magnetisations as well as coercive magnetic fields. The magnetic susceptibility also diverges at

TC . The similarity between the two suggest that they are both different manifestations of the
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same overarching concept. This is indeed the case: both are examples of phase transitions with

the magnetisation or polarisation being just two examples of order parameters. The theory of

phase transitions is summarised in Chapter 3.

The origin of the magnetic phase transitions is different depending on whether the material

is insulating or metallic. Metallic materials usually become magnetic due to the Stoner criterion

(There are other mechanisms - see [18, 25]). This states that, after the magnetic interaction

between neighbouring dipoles becomes strong enough, it becomes energetically favourable to

populate the quantum states of the electrons in a spin-polarized manner. One spin channel

becomes favoured over another and the metal becomes a ferromagnetic.

Magnetic insulators adopt magnetic states because it is possible to lower the energy of the

material if the electrons are allowed to jump between different atomic sites [20], in the same way

that the energy of an electron in a well is reduced if the well is made wider. These exchange

interactions are allowed only if the spins on the neighboring atoms are oriented oppositely to each

other. This is a consequence of the Pauli Exclusion Principle - the jumping of electrons would

not be permissible if they both had the same spin, as this would doubly occupy the same state

with two electrons with the same quantum number. This rough heuristic means that insulators

tend to be antiferromagnets [26]. However, as will be discussed later, these antiferromagnetically

coupled spins can still cant in a cooperative manner so that a ferromagnetic moment can appear

perpendicular to the magnetisation of any particular spin.

Anticipating my need to combine ferromagnetism with ferroelectricity, which requires insu-

lating materials, I ignore the first mechanism of magnetism and instead focus on the second. The

chemical flexibility of ABO3 perovskite materials allows either the A or B site to be a magnetic

ion [27]. Chapter 2 explores the magnetic properties of perovskite materials and includes a more

detailed description of the exchange mechanism producing the magnetic structures.

As I will explore in Chapter 3, from the point of view of symmetry, it is immaterial whether

the material is ferromagnetic or antiferromagnetic with a canted ferromagnetic moment. This

is because a ferromagnet and a canted moment both transform in the same way, and therefore

couple in the same way to other modes in the system. For the purposes of creating a purely
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magnetic memory device, it is also not particularly important that the material is insulating∗.

All that is necessary is a net magnetisation M , which can be switched to the reversed state −M

with a magnetic field H. This allows ferromagnets to map themselves onto "1" and "0".

One realization of magnetic materials in memory devices are magnetoresistive RAMs (MRAM)

which operate on a wholly different principle to FeRAMs. MRAMS consist of two ferromagnets

separated by a spacer forming a magnetic tunnel junction (MTJ). One of these ferromagnets has

its direction of magnetisation fixed and the other is free to reorient with an applied magnetic

field. If the two ferromagnets have aligned magnetisations, the resistance of the MTJ is sub-

stantially reduced due to tunneling magnetoresistance. This effect describes how the resistance

of electrons flowing through stacked ferromagnets changes depending on the relative spin of the

electron and the ferromagnetic layer. This low resistance state can be considered to be the

"1" of a memory device. Applying a current to produce a magnetic field can reverse the free

ferromagnetic and increases the resistance of the MTJ. This state becomes the "0".

The great advantage of MRAMS over FeRAMs is that the read operation is not destructive.

In fact, the state of the MTJ can be determined by passing current through the MTJ and

recording the current out. A large current would indicate a 1 and a small current would be a 0.

However, the difference in the energy scales of magnetic and electric fields is the main

disadvantage of magnetic memories [28]. If a MTJ needs a field of 0.1 T to reverse the direction

of the free ferromagnetic layer (as appears to be the case in MTJs constructed from CoFeB [29]),

and this field is produced at the edge of a 1µm wire then the require current through this wire

would be

I = 2πrB
µ0

= 1.6A, (1.1)

and such a high current through such a thin wire would produce Joule heating that both en-

dangers the structure of the wire and also becomes a significant drain on energy, especially if

used in a portable device.
∗There are some magnetic memory devices which actually require metallic behaviour.
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In contrast, the coercive field required to switch the polarisation in BaTiO3 ranges from

between 10-100 kV/cm [30] which, for a thin film 100nm in thickness, can be achieved with

the application of 0.01-0.1V. In fact, as the film size gets smaller, the necessary voltage also

decreases for the same field. These voltages are routinely achieved in semiconductor physics and

would pose no technical challenge.

Therefore, MRAMS have an advantageous non-destructive read operation but are hindered

by large Joule heating whereas FeRAMs can be operated using cheap electric fields but require

a rewrite after every read due to the destructive nature of the read operation. Wouldn’t it be

nice to combine the beneficial features of both and ditch the downsides?

1.2.2.3 Multiferroics and Multiferroic Memories

Multiferroics [31, 32] are materials combining two or more of these ferroic phase transitions.

There are four categories of primary ferroic materials [33]; ferroelectrics which couple to electric

fields and break inversion symmetry, ferromagnets which couple to magnetic fields and break

time reversal symmetry, ferroelastics which couple to strain fields and do not break time or

inversion symmetry and finally ferrotoroidics which couple to the vector product of electric and

magnetic fields E × H and break both inversion and time reversal symmetry.

A multiferroic is therefore any material which has two or more of these ferroic properties.

In this thesis, I am concerned with the magnetoelectric properties of ferromagnetic-ferroelectric

multiferroics. This describes materials that possess both a magnetisation that is switchable by

coupling to an external magnetic field and also a polarisation that is switchable by coupling to

an external electric field. For this reason, I use the term multiferroic to mean a ferromagnetic-

ferroelectric multiferroic material.

Having established what is meant by "multiferroic materials", the category can be further

subdivided by a classification introduced by Daniel Khomskii [34]. It could be the case that the

ferromagnetic and ferroelectric transitions occur at different temperatures, resulting in a Type

I multiferroic material. Alternatively, the two transitions could occur simultaneously giving a
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Type II multiferroic∗.

With the introduction of two ferroic phase transitions, we have the potential for a four-

state logic system with (+P,+M), (+P,−M), (−P,+M) and (−P,−M) which, if achieved could

greatly increase the data density of memory devices.

However, polarisation and magnetisation are coupled by magnetoelectricity [37] . This is the

change in magnetisation with an electric field or the change in polarisation by a magnetic field.

For a multiferroic, this is most easily described by employing the free energy expansion

F(E,H) =F0 − PS
i Ei −MS

i Hi − 1
2ϵ0ϵijEiEj − 1

2µ0µijHiHj

− αijEiHj − 1
2βijkEiHjHk − 1

2γijkHiEjEk − ...

(1.2)

so that the polarisation and magnetisation can be obtained by finding the minimum of the

free energy ie. by differentation so that

Pi(E,H) = − ∂F
∂Ei

= PS
i + ϵ0ϵijEj + αijHj + 1

2βijkHiHk + 1
2γijkHiEj − ... (1.3)

and

Mi(E,H) = − ∂F
∂Hi

= MS
i + µ0µijHj + αijEj + 1

2βijkEiHj + 1
2γijkEjEk − ... (1.4)

where in these equations Ei and Hi are the components of the E and H respectively. PS
i

and MS
i are the components of the spontaneous polarisations and magnetisations found in

multiferroics. Repeated indices in a term are summed over. The interpretation of the coefficients

αij , βijk and γijk is obtained from Equations 1.3 and 1.4. αij describes the change in polarisation

(magnetisation) from the first power of magnetic (electric) field. Therefore, it quantifies the
∗There has recently been discussion in the literature of Type III multiferroics [35, 36]. These are materials in

which an ordering of ions in the materials breaks the symmetry and produces ferroelectricity. Therefore, there is
no non-polar to polar transition. However, I believe that this is really just a Type I multiferroic as the cations
have to order at some temperature even if this is quite high. In the language of Chapter 3, I would call this an
improper ferroelectric driven by the cation ordering.
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linear magnetoelectric effect. The remaining coefficients describe higher-order magnetoelectric

effects. If we wish to access all the states of a four-state memory - for example, changing from the

state (+P,+M) to (+P,−M) with an electric field - we would require a material with extremely

large magnetoelectric coefficients. To illustrate this, imagine applying a sizeable electric field to

the state (+Px,+Mx) in the hope of switching M to −M . I assume that both the polarisations

and the magnetisatons are along the x direction only for simplicity and that second order effects

are negligible. An electric field in the opposite direction to the the polarisation would change

this state to (PS
x −ϵ0ϵxxEx,M

S
x −αxxEx). The magnetisation could only be reversed completely

if αxx = 2MS
x

Ex
which is unrealistically large for reasonable electric fields, especially for the large

saturation magnetisations found in Fe compounds. It could potentially be achieved with large

electric fields, but then this would also reverse the polarisation and make a four-state memory

unattainable.

Instead, consider a multiferroic where the spontaneous polarisation and magnetisation were

strongly coupled together so that reversing one necessarily reverses the other. We can now

only access two states∗ (+PS
i ,+MS

i ) and (−PS
i ,−MS

i ) but would describe a type of strong

magnetoelectricity not easily obtained from Equations 1.3 and 1.4.

Such two-state memory devices would have significant advantages over ferroelectric or ferro-

magnetic memories. Firstly, the data storage would come from the spontaneous polarisation or

magnetisation which would retain data without external power and is accordingly non-volatile.

Secondly, information could be written with an electric field and read with a magnetic field. Fig-

ure 1.4 shows that this combines the best features of ferroelectric and ferromagnetic memories

while discarding the worst. We have seen that writing with electric fields is fast and cheap but

attempting to read the polarisation state is a necessarily destructive operation. On the other

hand, writing with a magnetic field is expensive but reading through the magnetoresistive effect

does not destroy the information and require a rewriting phase. The two-state memory with

strongly coupled polarisations and magnetisation would circumvent this; the information would

be written into the polarisation, instantly transferred to the magnetisation and then is able to

be read by a magnetic field.
∗Alternatively,(+PS

i , −MS
i ) and (−PS

i , +MS
i )
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Figure 1.4: Comparison of the properties of magnetic RAM (MRAM) and ferroelectric RAM
(FeRAM). Magnetoelectric multiferroics combine the best properties of both.

Although the coupling of magnetisation and polarisation in a multiferroic was first observed

in boracites [38], the majority of research has focused on perovskite-related materials. This is due

to the deep understanding of ferroelectricity in this structure, the ability to incorporate a wide

range of magnetic cations, and also the huge number of distortions available to the perovskites

that may play the role of the intermediary transferring information from the polarisation to the

magnetisation.

BiFeO3 is the perovskite that has received the most attention [39, 40]. It has room temper-

ature polarisation and magnetisation, and, when grown in a film, can have a magnetic structure

that is simple and has a weak ferromagnetic component. The reversal of the magnetisation with

electric field has been observed in this material [41] but, by using symmetry arguments similar

to those in Chapter 4, the direct reversal of magnetisation after the reversal of polarisation is

impossible and instead, switching takes place through a complicated "two-step" process which

requires large electric fields. Furthermore, it was not possible to carry out more than a couple

of complete switching cycles before device breakdown. Despite the appealing room-temperature

polarisation and magnetisation, single crystals of BiFeO3 are also difficult to synthesise, often

show large leakage currents and are not easily compatible with existing CMOS technologies [42].
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Some degree of electric field control of magnetism has also been observed or predicted in other

multiferroic perovskites [43] but the reversal appears to be difficult to achieve. There is still a lot

to discover about BiFeO3, but a range of possible perovskite materials is vast and alternatives

may be out there. The goal of this thesis is to find these alternatives and to identify those in

which it is possible to switch the magnetisation directly with reversing polarisation.

Multiferroic materials are in principle easy to achieve. The stacking of a magnetic material

on top of a ferroelectric material would be one. However, getting strong interactions between

the magnetic and ferroelectric dipoles, and observing the electric field reversal of magnetisation

in particular, is much more difficult. Obtaining this effect in a single phase material, above room

temperature and ambient pressure, so that an effective multiferroic memory could be created,

would be a much lauded feat in condensed matter.

1.3 Outline and Aims

I can now refine the question I posed at the end of the first section of this chapter: "Can quantum

mechanics be used to understand, design and realise novel perovskite-based multiferroics in which

the electric field control of magnetism is possible?". Materials in which this is possible would

surely find applications in future memory devices and possibly form the basis of "the ultimate

memory device". It is therefore the purpose of this thesis to describe my efforts in identifying

perovskite based materials in which the electric field reversal is possible and then to explore

promising candidates with further quantum-mechanical simulation.

In order to achieve this, some preliminary understanding of the perovskite structure is ne-

cessary. This is presented in Chapter 2. The basics of ferroelectrics, magnets and multiferroics

were briefly explored above, but in Chapter 2, the details of these phenomena in perovskites

specifically are explored. Despite its seemingly simple chemistry, the perovskite structure can

become incredibly complex, and some method of systematizing the many possibilities is required.

This is provided by group theory and crystallography which is explored in detail in Chapter 3.

Group theory becomes an invaluable predictive tool when combined with the Landau Theory of

phase transitions. Chapter 3, examines the power of this theory to predict new phases of mater-
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ials that could host the necessary simultaneous ordering of electric and magnetic dipoles. The

chapter also identifies how these dipoles must be coupled in order to achieve electric field control

of the magnetic dipoles. Group theory is incredibly powerful, and Chapter 4 takes these ideas

and applies them, predicting new perovskite materials in which the desired coupling between

electric and magnetic dipoles is present.

Identification of promising candidate materials is not the end of the story. Group theory

can only get one so far. It can tell you whether a particular structure allows for a polarisation

but it can say nothing about what the magnitude of the polarisation will be or even if the

structure is stable. To have any understanding of the size of physical properties and the stability

of matter, group theory must be supplemented with a tool that is capable of calculating the

energetics of the structure. As the fundamental building block is of roughly atomic dimensions,

it should come as no surprise that this tool is quantum mechanics! Chapter 5 details density

functional theory (DFT), an exact reformulation of quantum mechanics that allows for the fully

quantum mechanical treatment of crystal structures. With this tool, I can calculate the energy

levels of electrons in a crystal, the forces on atoms, and the stable crystal structures. Also

explored in this chapter are other quantum mechanical concepts that allow for the computation

of important physical properties: the modern theory of polarisation for calculating polarisation,

band structures to determine insulating or conducting behaviour, and the Hubbard Model to

incorporate the correlation of electrons occupying the same atomic site.

Chapters 6 and 7 combines the group theoretical analysis with quantum mechanical cal-

culation in a series of perovskite materials with increasing complexity. We support the group

theoretical identification of materials in which electric field control of magnetism is possible with

calculations of their energetics. If the desired structural phase does not appear to be thermo-

dynamically stable (ie. the most stable) but is instead metastable (ie. stable with respect to

small perturbations only)∗, we explore how external stimuli like strain can change the energy

landscape and lead to novel multiferroic phases.

Electric field control of magnetism in which the reversal of the electric dipole necessarily re-

verses the magnetic dipole, is the central principle behind the next generation of memory devices
∗These terms will be more rigorously defined later.
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and the quest to identify materials in which it is possible has been a deeply gratifying journey.

The physics is simple enough to be easily understandable, rare enough to be exciting when found

and general enough to send me flying all over the Periodic Table in my quest for coupled dipoles.

More than anything, this project has irrevocably cemented my belief that science works best

as an interconnected discipline and as my research into multiferroics sits squarely at the inter-

section between physics, chemistry, engineering, material science and computing, I have been

exposed to ideas, and been able to meet people, that I would never have expected to encounter

when I began my undergraduate degree in theoretical physics almost eight years ago. Just as

electric dipoles are indirectly connected to magnetic dipoles, condensed matter physics provides

the glue that connects people from disparate fields. I hope that my enthusiasm for the subject

remains evident in the ensuing pages.
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Chapter 2

Multiferroicism In Perovskite Based

Materials

Having identified perovskite-based materials as candidates for accomodating the necessary ferro-

electric and magnetic distortions which could enable the electric field control of magnetism, this

chapter reviews the essential physics and chemistry of this structure type. I aim to define terms

that will frequently appear in the remainder of the thesis, explore the origins of ferroelectricity

and magnetism in perovskites, and the difficulty in getting both to appear in the same phase.

This chapter ends by discussing some methods to overcome this difficulty.

2.1 The Perovskite Structure

The perovskite structure ABO3 [44, 45, 26] has a simplistic chemical formula that disguises

an enormous amount of complexity. The unit cell of the highest symmetry phase† contains

five atoms; the A-site in the corners of the unit cell, the B-site in the center and the three

O atoms in the face centers. This cubic structure, when expanded using the translational

symmetry of crystals, can be thought of as describing a three-dimensional network of corner-

sharing, rigid octahedra with A-site ions inserted in the middle of the cubo-octahedral gaps left

by the octahedral network.
†The symmetry of perovskite materials will be discussed in some detail in subsequent chapters
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2.1.1. Octahedral Tilts

The ABO3 formula suggests substantial compositional flexibility, but there are, of course,

certain restrictive conditions. Obviously, the overall charge in an unit cell must be neutral, so

that perovskites typically have A/B elements with I/V, II/IV or III/III oxidation states. The

second condition is that the A-site must fit in the cubo-octahedral gap. If it is to do this and

maintain a perfect cubic structure then, by Pythagoras’ theorem, the edge distance 2(rB + rO)

must be equal the face diagonal distance 2(rA + rO) divided by
√

2. This can be used to define

a quantity

t = (rA + rO)√
2(rB + rO)

(2.1)

which is known as the Goldschmidt Tolerance Factor and rA, rB and rO are the radii of the

A-, B- and O-sites respectively. If t ≈ 1, then this gives confidence that the cubic structure is

stable. If t < 1, this suggests that the A-site is too small for its site and conversely if t > 1, the

A-site is too big. The opposite conclusions apply for B-sites.

How does the perovskite deal with non-ideal tolerance factors? The structure allows for vari-

ous distortions that may reduce the high electrostatic forces that develop from having cations

that are too large or too small to fit into their sites. Alternatively, there may be other sources

of structural instability, not related to cation size, which are also accommodated by distortions.

The wide range of distortions available to perovskite materials gives them a great deal of struc-

tural flexibility which enables their chemical flexibility. This is why perovskites are such useful

materials to work with and exhibit such a wide range of material properties [44]. I enumerate

these distortions in the following subsections and all of them are displayed schematically in Fig

2.1.

2.1.1 Octahedral Tilts

The most important distortion available to perovskites are the rigid motions of the BO6 oc-

tahedra that maintain the bond distances between the B and O sites. The octahedra can tilt

and rotate to change the size of the cubo-octahedral gap inhabited by the A-site and reduce the

electrostatic penalty of cation size mismatches. As the BO6 octahedra are connected by the O
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2.1.1. Octahedral Tilts

a)

b)

c)

d)

e)

f)

Figure 2.1: Various distortions available to the perovskite to resolve size mismatches, electronic
effects or high Coulomb interactions a) The undistorted perovskite b) In-phase octahedral rota-
tions about one axis (a+a0a0). c) Anti-phase octahedral tilts about one axis (a−a0a0) d) Polar
distortion e) Cooperative Jahn-Teller distortion f) Nearest-neighour cation ordering.

anions at the vertices, the tilt or rotation of one cation necessarily affects the entire network.

For a single layer of corner-connected octahedra, a rotation about an axis perpendicular to the

layer and through one octahedra rotates all the neigbouring octahedra in the opposite direction.

There is an addition degree of freedom describing the pattern of rotations in the layers above

and below. Either these layers can rotate in the same direction as the one in the middle (an

in-phase pattern), or they can rotate in the opposite sense (an anti-phase pattern). Being a

three-dimensional network, it is possible to rotate around any of the axes of the octahedra. The

complete rotation pattern is thus a combination of in-phase and anti-phase rotations about each

axis. A convenient notation to describe this was invented by Glazer [46, 47] in which the relative

magnitudes and tilts are described using three symbols.

A tilt pattern in which there are equal magnitude, in-phase tilts about all three axes is

described by the symbol a+a+a+. If the magnitude is different along the third axis, the symbol

becomes a+a+c+. The change from a to c denotes a change in relative magnitude, but provides

no information at all on the absolute magnitude; you cannot tell if the tilts around the third axis
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2.1.2. Ferrodistortive and Antiferrodistortive Displacements

are larger or smaller than the tilts around the other axes. Glazer’s approach was an attempt to

describe the different symmetries of perovskites and so the absolute magnitude did not matter.

If the tilts around the third axis are instead anti-phase, the symbol becomes a+a+c−. Different

magnitudes about all axes would have the symbol a+b+c−. There are 22 possible tilt patterns

that can be enumerated in this manner, although only 15 are actually symmetry inequivalent -

see Chapter 4 and Reference [48]∗.

2.1.2 Ferrodistortive and Antiferrodistortive Displacements

Rigid octahedral distortions are an example of antiferrodistortive displacements of anions. Con-

sidering each ion I to be a point charge of charge ZI , then a distortion that moves each cation

by an amount uI would produce a net polarisation of

∆P = e

V

∑
I

ZIuI (2.2)

where V is the volume of the cell containing all I ions. If the result of all ionic distortions

is a state with P = 0, then that set of distortions is antiferrodistortive. Octahedral rotations

are one example. A motion where a cation moves in one direction and neighbouring cations

move oppositely would also be an antiferrodistortive displacement and is occasionally called an

antipolar distortion.

If instead the sum of distortions leads to P ̸= 0, then that motion is ferrodistortive or polar.

The collective off-centering of cations is the most important example and leads to the breaking

of the centre-of-symmetry and the formation of a net polarisation in ferroelectric perovskites

such as BaTiO3. A net polarisation in an insulating material leads to a build up of charge

at the surface and the subsequent formation of a depolarising field directed oppositely to the

polarisation [49]. This provides a force that suppresses polar distortions in thin film materials,

unless the surface charge is screened through contact with conducting electrodes [50]. However,

no screening is perfect and as a result, there tends to be a critical thickness for perovskites
∗These are the simple tilt patterns that can be formed. There are also tilt patterns that are formed by

superpositions of in-phase and anti-phase rotations about the same axis. These are rare and I don’t mention them
further.
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2.1.2. Ferrodistortive and Antiferrodistortive Displacements

below which the remaining depolarising field is large enough to suppress the ferrodistortive

displacement [51].

In order to be ferroelectric, this distortion should be able to be switched by an external

field. Clearly this is not possible in a metal because free charges screen all electric fields from

the inside of a conductor. However, there is nothing in principle stopping a material from

containing ferrodistortive displacements and being a metal. These materials are termed polar

metals [52, 53] which are extremely interesting in their own right but I will not discuss them

further because they are impossible to switch through the traditional method of applying electric

fields.

Equation 2.2 can be generalized into an integral for more realistic continuous charge densities

ρ(r). There is however, a serious flaw in this approach to calculating the polarisation in using

Equation 2.2 or its continuous generalisation. The problem arises from ambiguity in choosing

the unit cell, different choices lead to different values of the polarisation. The solution is to

recognize that the polarisation is not a uniquely defined quantity in bulk materials. The formal

mathematics behind this discovery is relegated to Chapter 5, but one immediate consequence of

the Modern Theory of Polarisation [54, 55, 56] that is useful here is the concept of effective charge.

As electronic charge is a continuous quantity, the motion of the positively charge nucleus disturbs

this charge field. The negative charge due to electrons may move independently of the nuclei,

especially if the electrons are involved in covalent bonds. More specifically, the distribution of

electrons associated with the orbitals of each ions are centered at the Wannier centre. When

the nuclei of the ion is displaced, the Wannier centre may displace in the opposite direction,

creating a larger dipole than would be obtained if the centres of negative charge were assumed

to be fixed.

This introduces the concept of the Born effective charge

Z∗
ij = V

e

∂Pi

∂uj
(2.3)

which measures the change in polarisation with changing ionic displacement uj . This can be

reworked into
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2.1.3. Jahn-Teller Distortions

∆Pi = e

V

∑
j

Z∗
ijuj (2.4)

which is equivalent to Equation 2.2 if Z is replaced with the effective charge Z∗. This replacement

of charge with effective charge reminds us that the polarisation can be affected by the electronic

degrees of freedom (as in the lone-pair mechanism discussed below) as well as ionic displacements.

2.1.3 Jahn-Teller Distortions

Another important class of antiferrodistortive displacements are Jahn-Teller distortions [57,

44]. These are caused by degeneracies in the electronic structure of cations in certain anion

environments. In perovskites, the BO6 octahedra are the important anion structure. The

crystal field produced by the octahedra splits the five-fold degeneracy of d orbitals into two

levels [58]; the lower energy, three-fold degenerate t2g orbitals and the higher energy, two-fold

degenerate eg orbitals.

Depending on the occupancy of the d levels, the energy can be further lowered. For example,

if the B-site has a d4 electronic structure, then the three t2g levels are singly occupied and,

because of a Hund’s coupling favouring parallel spins, the final electron must go into the higher

eg orbitals with the same spin orientation. Due to the two-fold degeneracy, the electron can go

into either eg orbital with each choice giving the same energy. The eg orbitals dz2 and dx2−y2 are

directed along the B-O bonds; a displacement of anions that extends the bond parallel to dz2

would lower this orbital’s energy with respect to dx2−y2 . The two other bonds can expand so that

the average of the t2g energies stays constant. However, the single eg electron can now occupy

the lower dz2 orbital and so the total free energy of the system has been reduced. This distortion

- the Jahn-Teller distortion - is therefore favourable when such an electronic degeneracy exists.

The process is illustrated in Figure 2.2

The splitting in the eg orbitals would be proportional to the distortion u away from the

undistorted octahedra, so that ∆E = ±gu + 1
2ku

2 where the second term is the elastic cost of

the distortion and g is a coupling constant. The linear term always ensures that a distortion
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2.1.4. Ion Ordering
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octahedral environment
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Free ion with 𝑑4 occupancy
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Figure 2.2: Lowering of total energy with a Jahn-Teller distortion that extends the B-O bond
parallel to the z axis. The free ion with d4 occupancy has fully degenerate d orbitals, the
octahedral environment splits these into eg and t2g orbitals. The Jahn-Teller distortion further
splits the eg and t2g

is preferred and so for high-spin d4 and d9 occupancies, the Jahn-Teller distorions are aways

important∗.

2.1.4 Ion Ordering

The final distortion worth mentioning is ion ordering. For perovskites containing multiple ions

that could occupy any particular site, they may take up an ordered arrangement to minimise

the electrostatic repulsion of different ordered ions. For example, a perovskite with disordered

B-sites A(B3+, B′5+)O3 may order the B-sites below a certain temperature to minimise the elec-

trostatic repulsion of the B3+ and B′5+ cations. The most common arrangement is one in which

every neighbouring cation is of the opposite kind, the rocksalt arrangement [59]. Alternatively,

the cations can be ordered in layers along a certain direction or in columns, although these are

much rarer for B sites.
∗Jahn-Teller distortions are also important for other occupancies but these involve degeneracies in the t2g

levels - a weaker effect.
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2.1.4. Ion Ordering

The same cation orderings could potentially be achieved by the A-site although experi-

mentally it is only the layered arrangement that is typically observed [60]. This is due to the

fundamentally different environment of the A-sites compared the B-sites and the breaking of

symmetry permitted by each kind of ordering. It is also possible to order both the A and the B

sites simultaneously [61, 62].

The above cation orderings produce double perovskites because the chemical formula becomes

AA′BB′O6 - one formula unit contains ten atoms rather than the five atoms of ABO3∗. This can

be extended to include cation orderings in larger perovskite cells. There are triple perovskites

[64, 65] with 15 atoms in the formula unit and also quadruple perovskites [66, 67, 68] with 20

atoms. Contained within the quadruple perovskite umbrella are separate subfamilies. There are

the AA′
3B4O12 perovskites as well as the A2A′A′′B4O12 perovskites with columnar order of the

A-sites [69]. Each cation ordering changes the symmetry of the structure, with consequences for

the allowed physical properties. Chapter 4 investigates the symmetry of some of these orderings

to see whether any of them create the conditions necessary to allow for the electric field control

of magnetism.

Finally, ordering on the anion sites is also a powerful tool to break symmetries and is a field

which is still in its infancy. The O2− site can also be occupied by halide (F3−,Cl3−), chalcogenide

(O2−,S2−) and pnictide (N1−) anions [70, 71, 72, 73, 74, 75, 76]. It appears that it is extremely

difficult to control anion ordering, but it could open up a wide range of perovskite phases, some

of which would be polar [74].

Importantly, the inclusion of multiple cations or anions in the perovskite structure also

changes the tolerance factor so that now the average radii must be used and so

t = (< rA > + < rX >)√
2(< rB > + < rX >)

. (2.5)

This increases the chemical flexibility for a particular tolerance factor. In addition, the

change in the anion oxidation state through anion order (or through complete replacement like
∗Some authors describe AA′BB′O6 with ordered A and B sites as a "double-double" perovskite [63]. I avoid

this term because I think it can be easily mixed up with "quadruple" perovskites.
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2.2. Soft Mode Theory

in fluoride perovskite) changes the charge balance and would allow for new cations to take up

the A and B site that were not permissible in purely oxide perovskites.

2.2 Soft Mode Theory

There are clearly many distortions available to the perovskite structure yet they can all conveni-

ently be described within the context of soft mode theory. If the force on each atom is known in

the high-symmetry phase (Chapter 5 describes how these can be calculated) then the dynamics

of each atom can be determined by solving a set of coupling differential equations. This can be

done using methods from linear algebra [77] and involves the diagonalisation of the force con-

stant matrix. The resulting eigenvalues and eigenvectors are the vibrational frequencies ω2 and

normal modes respectively. Each of these vibrations has an energy proportional to its frequency

and so, when quantised, can be interpreted as energy levels occupied by a certain number of

particles - phonons. Each phonon has a frequency and a crystal momentum.

The central idea of soft-mode theory [19, 78] is to associate each distortion in a material

to a normal mode (phonon). For example, the ferrodistortive displacement u, which involves

the displacement of some atoms against others, is clearly an optical phonon [79] of a certain

frequency ω obeying the equation

ü = −ω2u (2.6)

with a dot denoting differentiation with respect to time. This simple harmonic oscillator equation

is solved by u ∝ eiωt suggesting that the ferrodistortive displacement oscillates between positive

and negative amplitudes with time.

Sometimes diagonalising the force constant matrix results in an eigenvalue ω2 < 0, or altern-

atively, an imaginary frequency. This is the case when the force constant matrix of BaTiO3 in the

cubic symmetry is diagonalised. It that case, the phonon associated with the ferrodistortive vi-

brational mode has an imaginary frequency. The consequences of this are easy to ascertain. The

exponential dependence changes to u ∝ e−ωt which no longer describes an oscillating phonon.

A phonon with an imaginary frequency becomes fixed in time so that the corresponding distor-
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2.3. Ferroelectricity In Perovskites

tion is fixed or frozen. In BaTiO3, the frozen phonon results in a permanent distortion and a

macroscopic polarisation.

The phase transition happens at a particular temperature TC and therefore a temperature

dependence of ω2 ∝ (T − TC) would successfully model the transition to the polar phase as

a function of temperature. The reduction of ω2 with temperature (or other fields) is known

as phonon mode softening. It can be used to describe all of the above distortions (except ion

ordering). It should be remembered that phonon softening is a useful description once the forces

are known, but the forces themselves always have a microscopic mechanism such as the electronic

instability for Jahn-Teller distortions.

In perovskites with non-ideal tolerance factors, it is usually the tilt modes which appear first

when lowering temperature. In the context of soft-mode theory, we can say that with decreasing

temperature, the tilts are the first modes to obtain an imaginary frequency.

2.3 Ferroelectricity In Perovskites

There are several microscopic mechanisms for producing a macroscopic polarisation in per-

ovskites and here I briefly review the most important ones below.

2.3.1 Lone Pair Stereochemistry

Cations such as Bi3+ and Pb2+ contain outer s electrons that do not participate in the formation

of bonds. For example, the 6s2 electrons in Pb2+ actually occupy an orbital formed through

the hybridisation of the 6s and 6p orbitals, leaving them chemically inert and unavailable for

bonding [80]. However, these lone pairs can take a range of orientations and such a directed

charge clearly forms an electric dipole moment. Below a ferroelectric transition temperature,

these disordered dipoles can align cooperatively, leading to a net polarisation. The transition

from disordered dipoles to ordered dipoles is, quite naturally, called an order-disorder transition.

The prototypical examples of perovskite ferroelectrics, antiferroelectrics and multiferroics,

PbTiO3, PbZrO3 and BiFeO3 respectively, all have their ferroelectric origin in this lone-pair
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2.3.2. Second Order Jahn-Teller Effect

E

∆

dB d− p pO

Figure 2.3: Simplified molecular orbital diagram of a covalent bond between the B cation and
one of the surrounding O anions in a perovskite.

mechanism. In multiferroic BiFeO3, the lone-pair dipoles align along the body diagonal of the

5-atom perovskite cell.

2.3.2 Second Order Jahn-Teller Effect

The image of polarisation being due to a ferrodistortive displacement of cations is realized in

BaTiO3; a cooperative displacement of all Ti4+ cations towards one of the O2− anions to which

it is covalently bonded. What causes a motion of this kind? A somewhat loose, but extremely

intuitive description, is due to Khomskii [26].

To begin, picture the molecular orbital diagram for a covalent bond between the d orbitals

on a B cation and the fully occupied p orbital on the neighbouring O2− ion. This is shown

in Figure 2.3. The bonding and antibonding orbitals are caused by the occurence of non-zero

matrix elements t = ⟨p|H|d⟩ between the p and d orbitals where H is the Hamiltonian operator

to be defined in Chapter 5 [81]. The greater the overlap of p and d orbitals, the larger this

matrix element becomes.

Its possible to model the hybridisation between p and d as a jumping of electrons from the

filled p into the empty d and back again. This delocalises the electrons, lowering their energy

in a manner akin to an electron in a box with increasing dimensions. The probability to hop

between p and d is proportional to t, so that the probability to hop back to the starting place

is proportional to t2. However, the electrons must also increase their energy by ∆ (the energy
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2.3.2. Second Order Jahn-Teller Effect

difference between the anion p and cation d orbitals) to complete the first hop which reduces the

total energy savings obtained through delocalisation. Finally, the total energy is proportional

to − t2

∆ .

Now suppose that the B site moves a distance u towards the O on the right, then the hopping

probability is changed by an amount δt = γu where γ is just a constant of proportionality. The

new probability to hop to the right is (t+ δt) and the probability to hop to the left is (t− δt).

The energy of the whole system is therefore

Eright + Eleft ∝ −(t+ δt)2

∆ − (t− δt)2

∆ = 2t2
∆ − 2δt2

∆ = 2t2
∆ − 2γ2u2

∆ (2.7)

where the first term in the final expression is just the energy that the system would have

without this additional B site distortion. It appears that a polar displacement of the B site

will therefore always further lower the energy by an amount −2γ2u2

∆ , so why are most oxides not

polar? It is because this distortion has to also contend against quadratic restoring forces of the

form ∆E = +1
2ku

2. Only when the lowering due to a displacement is greater than this restoring

force, is this particular mechanism effective at producing polar crystal structures.

The same analysis can be performed much more rigourously [82, 83, 84] by expanding the

Hamiltonian in a power series of the displacement u and then by using standard quantum

mechanical perturbation theory. This calculation reveals that the first order term of the form gu

is the familiar Jahn-Teller mode that I have already described. This new effect based on increased

electron delocalisation is quadratic in the displacement u, and is therefore termed the second-

order Jahn-Teller effect (SOJT). For illustrative reasons, I prefer Khomskii’s presentation.

If the SOJT effect leads to a cooperative displacement of all B-sites in the same direction,

that leads to a polar crystal structure. On the other hand, if different B-sites displace in different

directions, this is an antipolar distortion and results in zero net polarisation. If it were the case

that lowering temperature causes a transition from the non-distorted crystal structure to the

distorted one, this is a displacive transition, and if instead the lowering of temperature leads

from a phase in which the SOJT distortions are present but uncorrelated to one where they are

all correlated, this is an order-disorder transition.
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2.3.3. Geometric Ferroelectricity

2.3.3 Geometric Ferroelectricity

Occasionally, a combination of antiferrodistortive modes can combine to give a net ferrodistortive

displacement. The prototypical example of this geometric ferroelectricity is YMnO3 (which is not

strictly a perovskite because it formed from layers of trigonal bipyramids instead of octahedra)

where an antipolar motion of Y cations and tilts of the bipyramids, both effects are caused by

soft phonons, leads to a net polarisation [85, 86].

Similar behaviour occurs in the a−a−c+ tilt pattern in perovskites wherein local dipoles form

as the tilts bring O anions close to A-sites. Unfortunately, there are an equal number of dipoles

directed opppositely and so no net polarisation develops [34]. Methods to stop these anti-polar

motions from cancelling exactly is an effective method to engineer large polarisations, and is the

method adopted in Chapter 7.

As the polarisation appears from the symmetry of the structure, rather than due to any kind

of electronic instability, the Born effective charges remain nominal in a geometric transition.

2.3.4 Cooperative Interactions

LiNbO3 and ZnSnO3 are examples of low-tolerance factor perovskite materials with a−a−a− tilt

patterns. Due to the non-ideal tolerance factor, the magnitude of these tilts is extremely large.

Previous work, such as Reference [87], has shown that almost all distortions act to suppress the

polar distortion. These are known as competitive interactions.

This tilt pattern by itself does not break inversion symmetry and so there is no reason to

suppose the LiNbO3 should be polar. However, in this situation, the tilts are so large that

they are actually destabilizing the material and producing large forces on the cations. Only

through a secondary distortion, in this case it is a polar distortion, can the forces be reduced.

When one distortion favours another, this is a cooperative interaction. Very low tolerance

factor perovskites often become polar in this manner. Without the possibility of cooperative

interaction, these materials would be centrosymmetric∗. In Chapter 6, I explore another way to
∗There is another reason while the polar mode is favoured in the a−a−a−. This particular tilt pattern does
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2.3.5. Ferroelectricity Due To Ion Or Charge Ordering

circumvent competitive effects by controlling the strength of cooperative interactions.

2.3.5 Ferroelectricity Due To Ion Or Charge Ordering

Similar to geometric ferroelectricity, charge ordering or ion ordering can break the centre of

inversion of a crystal and therefore enforce a polarisation. Thin films of magnetite (Fe3O4) are

known to show ferroelectricity below its charge ordering temperature (the Verwey transition)

because the centrosymmetry is broken [88].

In perovskites, a charge or ion ordering, in combination with various antiferrodistortive

modes could be enough to produce polar distortions. This appears to be the case in the doped

manganite material Pr0.6Ca0.4MnO3 [89].

Whether any particular order allows for a polarisation is a question that is best tackled

through a thorough analysis of the symmetry of materials. This is the goal of Chapters 3 and

and 4.

2.3.6 Strain

Epitaxial strain strongly couples to and softens the zone-centered optical phonons that cause

polar distortions in perovskites. Tensile strain increases the length of the unit vectors parallel to

the epitaxial substrate and decreases the vectors perpendicular to the surface. This preferentially

softens the zone-centered phonons corresponding to polar phonons directed along the in-plane

direction. Conversely, compressive strain decreases the lattice vectors in the plane and increases

the vector perpendicular to the surface. This softens the out-of-plane polar phonons. This

effect has frequently been used to predict polar transitions in a variety of perovskite materials

[90, 91, 92, 93].

not allow for any secondary modes to appear, each of which would be another source of competitive interaction
with the polar mode. Therefore, the cooperative interaction favouring polarisation due to large tilts has fewer
competitive interactions to contend with.
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2.4. Magnetism In Perovskites

2.4 Magnetism In Perovskites

Having described various mechanisms for how perovskites gain their ferroelectric properties, we

now discuss the other necessary component for a multiferroic and explore how perovskites can

become magnetic. As mentioned in Chapter 1, it is ferromagnetic-ferroelectric multiferroics

that are the ultimate goal of this project because of their intrinsic utility to memory devices.

This requires the material to be insulating so that a macroscopic polarisation can arise. As a

result, I will not mention mechanisms responsible for magnetism in metals (such as the Stoner

criterion mentioned in the introduction or the RKKY interaction [18]) but instead focus wholly

on mechanisms that are relevant to insulators.

2.4.1 Exchange Interactions

Any ion with unpaired spins possesses a magnetic moment µ. From basic magnetostatics [49],

two magnetic moments, seperated by r can interact with each other through a dipolar interaction

E = µ0
4πr3

[
µ1 · µ2 − 3

r2 (µ1 · r)(µ2 · r)
]

(2.8)

but plugging in representative values for the magnetic moments (≈ 1µB) and separations (≈ 1Å)

leads to an interaction energy equivalent to about 1K. If this was the only mechanism to create

long-range magnetic order, the magnetic structure would be destroyed by thermal fluctations

for anything above 1K. We cannot describe the high temperature magnetism of a perovskite like

BiFeO3 using this mechanism.

Instead, the concept of exchange becomes essential. This arises from the fermionic statistics

of the electron and dictates that the quantum mechanical state must be antisymmetric with

respect to exchange of any two electrons. This fundamental tenet of quantum mechanics leads to

the Pauli Exclusion Principle but, more appositely, to mechanisms enabling long-range magnetic

order at high temperatures.

The central idea behind direct exchange can be understood from a model of two electrons

distributed over two atoms. The combined electronic state can be decomposed into a product
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2.4.1. Exchange Interactions

of spatial and a spin states. The spatial part can either be symmetric or antisymmetric, and

then to ensure the antisymmetry of the full state, the spin symmetry must be of the opposite

symmetry. Therefore, for a symmetric spatial wavefunction, we obtain the antisymmetric spin

state (the singlet) whereas for the antisymmetric spatial wavefunction we get the symmetric

spin state (the triplet). Even without considering any kind of dipolar interactions, there is a

dependence of the energy on the spin state, because a particular spin state is inextricably linked

to a spatial state. The triplet and singlet states arise from the standard quantum mechanical

rules for combining angular momenta. The combination of two electrons with S = 1/2 results

in a state with either S = 0 or S = 1. Alternatively, we can relate the total spin to the product

of the spins on each individual electron because

Stotal = S1 + S2 (2.9)

so that

S1 · S2 = 1
2

[
S2

total − S2
1 − S2

2
]
. (2.10)

As the eigenvalue of the square of a spin operator S2 is S(S + 1), then S1 · S2 = 1
4 for triplet

states and S1 · S2 = −3
4 for singlet states. We can therefore parameterize the energy of the

system via this scalar product as

E = −JexS1 · S2 (2.11)

where Jex, known as the exchange integral. The model can be extended to the Heisenberg

Model

H = −1
2

∑
ij

JijSi · Sj (2.12)

describing the magnetism of larger systems by considering similar interactions between all

pairs of spins. The factor of 1
2 accounts for the double counting of each spin pair.

This model effectively describes all magnetic interactions in solids but is not just a simple

extension of the direct exchange mechanism described above. This is because Jij can describe
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2.4.1. Exchange Interactions

much more general interactions [27]. In direct exchange, Jex describes the difference in the

Coulomb energies of the symmetric and antisymmetric states

Jex =
∫
ψ∗

1(r)ψ∗
2(r′) e2

4πϵ0|r − r′|
ψ1(r′)ψ2(r)d3rd3r′ (2.13)

which is is only sizeable if there is considerable overlap between the two electron states. Because

of this restriction, direct exchange is also too small to account for the magnetic properties of

magnetic insulators.

Instead, we turn to superexchange interactions which describe how the hopping of electrons

between sites can favour one kind of magnetic structure over another. In a simple model of a

one-dimensional∗ chain of antiferromagnetically aligned atoms, an excited state E1 would be

attained through an electron hopping from one site and doubly occupying the next site. The

difference in energy between the ground state and this excited state is U = E1 −E0 and comes

from the Coulomb repulsion of having two electrons on the same atom. Using second-order

quantum mechanical perturbation theory, the change in energy is

∆E = | ⟨0|H ′|1⟩ |2

E1 − E0
= − t2

U
(2.14)

where I have defined t = ⟨0|H ′|1⟩ to be hopping element. Physically, the energy is reduced by
t2

U because the electron can now hop between sites, increasing its kinetic energy in the same way

that the energy of an electron in a box is reduced if the box is made wider. The process is known

as virtual hopping because it involves hopping to a neighbouring site and then back, which is

equivalent to doing nothing at all. This is related to the mathematical fact that a second order

perturbation always results in a lowering of the energy.

However, this hopping is not permissible for a ferromagnetically aligned spin chain because

a single hopping would doubly occupy a site with parallel spins, violating the Pauli exclusion

principle. For a ferromagnetic chain, t = 0. Therefore, superexchange results in energies that are

dependent on the magnetic structure and so can be incorporated into the Heisenberg model by
∗This model is just for illustrative purposes. Magnetic order cannot exist in 1D systems as codified in the

Mermin-Wagner theorem.
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2.4.1. Exchange Interactions

setting J = + t2

U . The positive sign is important because then the antiferromagnetic configuration

becomes favourable.

In many magnetic oxides, such as the antiferromagnetic MnO or the perovskites BiFeO3,

LaFeO3 or LaMnO3, each magnetic cation is seperated from its neighbour by O anions. The

superexchange mechanism still applies here and is in fact the primary mechanism for long-range

magnetic order in the magnetic insulators. Instead of hopping directly to the neigbouring cation,

an electron (virtually) hops from the filled oxygen p orbitals to either of the half filled magnetic

d orbitals on neighbouring cations. With an antiferromagnetic configuration of spins, a greater

number of excited states can be mixed in with the ground state without falling foul of the Pauli

exclusion principle∗.

In real materials, we need to contend with all three dimensions. Magnetic cations in a

BO6 octahedral environment have many d-orbitals and it may be the case that the orbital that

overlaps with the intermediate oxygen is actually empty whilst the other d orbital in the B-O-B

chain is either half-filled or filled. One can work though the number of allowed excited states

in this case and find that it is actually the ferromagnetic state that is stabilised so that J < 0.

However, this ferromagnetic interaction is weaker than the antiferromagnetic coupling due to

two half-filled orbitals.

Which magnetic interaction exists is neatly summarised by the Goodenough-Kanamori-

Anderson (GKA) rules [94, 95, 96, 97] which can be succinctly stated that, for 180◦ B-O-B

chains, "superexchange interactions are antiferromagnetic where the virtual electron transfer

is between overlapping orbitals that are each half-filled, but they are ferromagnetic where the

virtual electron transfer is from a half-filled to an empty orbital or from a filled to a half-filled

orbital" [94]. If instead the bond is closer to 90◦, the conclusions are reversed.

Usually the GKA rules can give some quantitative idea about the magnetic structure but in

perovskites, the various distortions do make things quite difficult; the tilts distort the bonds away
∗Some authors, most notably Goodenough[94], use the term semi-covalent exchange to describe a interaction

involving an intermediate anion and restricts the use of the term superexchange to hopping mechanisms that do
not involve an intermediate anion. On the other hand, Blundell [18] uses the term superexchange to describe the
anion-mediated mechanism. The term kinetic exchange is often used [26], which I believe is a better term because
it encapsulates the mechanism in which energy is lowered. However, the literature appears to have settled on
"superexchange" to describe the virtual hopping mechanism irrespective of whether there is an anion present, and
so I use this term.
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2.4.2. Non-Collinear Magnetism

from simple 180◦ or 90◦ angles making it hard to decide what the strength of each interaction

should be. Nevertheless, it is possible to calculate exchange constants numerically [98], and they

often agree well with what you would expect from a naive application of GKA. I use the GKA

rules to predict a magnetic structure in Chapter 7 and find that it agrees well with calculations.

Allowing for antiferromagnetic and ferromagnetic couplings in perovskites, there are four

main collinear magnetic structures. In the smallest 5-atom cell, the only allowed magnetic

structure is ferromagnetic. In the larger cell containing a a−a−c+ tilt pattern, there are three

other structures. A-type magnetism is formed by ferromagnetic couplings within layers that

are perpendicular to the in-phase tilt and antiferromagnetic couplings between layers. C-type

describes a structure with antiferromagnetic spins within layers and ferromagnetic interactions

between. Finally, G-type magnetism involves antiferromagnetic interactions between all nearest

neighbours. These are shown in Figure 2.4. There are more complicated magnetic structures

available in larger cells, such as the E and CE-types found in doped manganite perovskites

[99, 100].

2.4.2 Non-Collinear Magnetism

We have seen how superexchange controls the coupling between neighbouring spins in real ma-

terials but this mechanism alone is still not capable of describing real magnetic structures in

perovskite materials. Real perovskites have a certain amount of non-collinearity in their mag-

netic structure.

The small deviation from perfect collinearity is captured by Bertault’s notation - a concept

best described through an illustrative example. The full magnetic structure of LaFeO3 is GxAyFz

- the bold Gx denotes that the main magnetic structure is collinear G-type with each moment

directed either parallel or antiparallel to the x-axis. The next terms AyFz state that there is

also a small amount of canting included in the structure too. Ay suggests that there is A-type

canting where layers perpendicular [010] direction alternate their canting towards [010]. Fz

means that all spins also cant along the [001] direction. This canting is coordinated so that the

material ends up with a small net magnetisation along this same direction - this is called weak

39



2.4.2. Non-Collinear Magnetism

Figure 2.4: Magnetic structures in perovskites. a) Ferromagnetic b)A-type AFM c) C-type
AFM, d) G-type AFM e) E-type AFM found in doped manganite perovskites f) g) and h)
illustrations of Bertaut’s notation and the accompanying non-collinear structure. Taken from
Reference [27].

ferromagnetism.

The concept of weak ferromagnetism in antiferromagnetic perovskites is absolutely central to

this thesis. As we shall see, the small ferromagnetic canting is often linked to other distortions

in the material so that a reversal of these distortions can lead to the reversal of this weak

ferromagnetic moment.

The Bertault notation raises two important questions. The first is "Why does LaFeO3 want

to have G-type spins along the x-axis rather than, say, the y-axis?" and the second is "What

mechanism causes the non-collinearity in the first place?". The first question is answered through

the concept of magnetic anisotropy. The Heisenberg Hamiltonian in Equation 2.12 needs to be

adapted with another term that describes how the electric field produced by the ions in the

vicinity of the magnetic charge, change the atomic orbitals and then, through the relativistic

spin-orbit coupling that naturally emerges from the Dirac equation, alters the direction of the

spin. This sounds complicated but can neatly be incorporated with an additional term of the

form

H = −
∑

i

Ki(Si · n̂)2. (2.15)
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2.4.2. Non-Collinear Magnetism

This equation lowers the energy if the spin is aligned either parallel or antiparallel to the easy

axis n̂. In LaFeO3, the easy axis is the x-axis. The constant K measures the strength of this

anisotropy and could in principle be deduced from the Dirac equation, or extracted from a first-

principles calculation with spin-orbit coupling enabled.

That resolves the first question. The additional antiferromagnetic and ferromagnetic cant-

ings also find their origins through relativistic quantum mechanics. They are produced by the

Dzyaloshinski-Moriya interaction [18, 27, 101, 102] which takes the form

H = D · (S1 × S2). (2.16)

This energy encourages the two neighbouring spins to be perpendicular (maximising S1×S2) and

also mutually perpendicular to the Dzyaloshinsky-Moriya vector D (to minimise the energy). D

controls the strength of this interaction. The superexchange constant J aligns spins in a parallel

manner whereas D encourages a perpendicular alignment - the result is a canted structure. The

ratio of the two constants determines the magnitude of the the canting.

As D is so central to this interaction, Moriya devised a set of rules, imposed by the symmetry

of the material, to determine various properties of D [101]. The most important is that D = 0 if

the centre of the line joining the two magnetic cations is also a centre of inversion of the material.

This may occur for lots of non-polar materials but it is not true that non-polar materials cannot

have a significant canting. Perovskites like LaFeO3 are proof of this.

If there aren’t any centres of inversion, then there is the additional possibility of spiral

magnetism in which the spins rotate continuously with position with an associated wave vector.

This is the case in BiFeO3 (although a small amount of strain changes the magnetic structure

to largely collinear) and the rare-earth manganite materials. I will not discuss this further in

my thesis, mostly because they are almost impossible to simulate with the ab-initio methods I

am using (see Chapter 5).
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2.5 The Contraindication Of Magnetism And Ferroelecticity

Although there are clearly several mechanisms for creating ferroelectric perovskites and also

multiple ways to produce ferromagnetism, observing both in the same material is challenging.

As a result, controlling the magnetism through interacting with the electric dipole of the material

seems out of reach, as both of these must be present by definition.

There are several reasons why ferromagnetism and ferroelectricity are contraindicated in

perovskites and all find their origin in the mechanisms discussed above.

Firstly, 3d, 4d and 5d transition metal cations needed for unpaired spins and magnetic

dipoles typically only occupy the B-sites of the perovskite, and they are slightly too large for

this position. This lowers the tolerance factor and encourages the appearance of octahedral tilts

and antipolar motions which we have seen have a strong competitive nature with ferrodistortive

displacements. In short, steric effects caused by inserting magnetic cations causes additional

distortions unfavourable to polar modes [87].

Secondly, the second order Jahn-Teller effect is known to drive ferrodistortive displacements

but a closer look at Figure 2.3 reveals that it may be much more difficult if the d orbital is

occupied. In this simplified model of just one d level and one p level, the electron in the d

orbital will need to sit in the antibonding orbital, eliminating some of the energy savings from

the bonding orbital. The higher level of theory [84], also discusses the importance of hopping

integrals that are zero by symmetry. Many oxide materials with d occupancy have their highest

energy states and their lowest energy unoccupied states formed mainly by d-orbitals. When

second-order perturbation theory is applied to polar distortions in these materials, the distortion

is more favourable if integrals like ⟨Ψ1|H ′|Ψ0⟩ are non-zero where Ψ1 and Ψ0 are the ground

state and excited states, and H ′ is the perturbation to the Hamiltonian caused by the polar

distortion. If both the ground and excited states have similar d symmetry, this integral is zero.

Finally, strong ferromagnetism typically arises through the unequal occupancy of the spin-

up and spin-down bands. This is this content of the Stoner theory of ferromagnetism. This

mechanism only works in metals, which we have seen do not permit a macroscopic polarisation.
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Without this mechanism, we are left trying to engineer ferromagnetism through direct or su-

perexchange mechanism, which typically result in antiferromagnetic structures, or by searching

for magnetic structures that allow for ferromagnetic canting of an antiferromagnetically ordered

structure.

2.6 Multiferroic Perovskites

Despite the difficulty in combining ferroelectricity and magnetism, various perovskite materials

do show both properties.

Most prominently is BiFeO3 [42] which shows a large polarisation and is also antiferro-

magnetically ordered with a non-collinear spin spiral. The polarisation is caused through the

lone-pair mechanism and occurs at a different (higher) temperature than the magnetic ordering

and so, following Khomskii [34], this is a Type-I multiferroic. Applying a small amount of strain

changes the magnetic structure to a collinear one that allows for a small weak ferromagnetic

canting. Other magnetic materials are also polar∗ through this same lone pair mechanism,

namely BiMnO3 [103] and PbVO3 [104].

For magnetic materials that do not make use of Bi or Pb, strain is often useful. CaMnO3

and SrMnO3 have been predicted [105, 91] to be ferroelectric and thus multiferroic under tensile

strain. These predictions were later confirmed with experiments [106, 107]. Similarly, the fluoride

perovskites like NaMnF3 have also been shown to become polar with tensile strain [108, 109].

TbMnO3 [110, 111] is the classic example of a Type-II multiferroic in which it is the magnetic

structure itself that breaks the symmetry and leads to a polarisation. TbMnO3 has two magnetic

phase transition, the first at 41K and the second at 23K where a spin cycloid forms which removes

the centre of inversion.

It is also possible that collinear spin structures can break the centre of symmetry. For

example, the rare-earth nickelate materials RNiO3 first undergo a rocksalt charge ordering of

Ni2+ and Ni4+ and then obtains a collinear magnetic structure in which planes of spins along the
∗I hesitate to use the term ferroelectric here as not all of them have been switched
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body diagonal are ordered in an up-up-down-down fashion. The combination of the charge-order

and the magnetic structure removes the centre-of-symmetry and produces a polarisation [89].

This common feature of all of these multiferroics is the crucial role of symmetry. The

inversion symmetry is broken in some way, either through crystallographic distortions, magnetic

distortions or combinations of both.

2.7 Summary

Perovskite materials clearly present an enormous amount of flexibility. It is a simple task to use

symmetry to hypothesise combinations of distortions, orderings and magnetic structures that

allow for both ferroelectricity and magnetism. It is a much harder task to identify combinations

of realistic distortions and magnetic structures that permit the electric field control of magnetism

wherein the reversal of the polarisation necessitates the reversal of the ferromagnetic structure.

This is the goal of Chapter 4.

Instead of trying every possible combination of distortions, Chapter 4 will take the common

distortions in perovskites in the hope that the resulting structures will be synthesisable. For

example, the a−a−c+ tilt pattern is the most common structure and so introducing ferroelectric

distortions to this is a promising avenue. There are also only certain cation orders that have

actually been observed and so those are the ones that garner special attention for now.

It is often said that type-II multiferroics are more promising for the electric field control

of magnetism because the ferroelectricity and magnetism are coupled together by definition.

However, the mechanism that I explore at the end of Chapter 3 and seek in Chapter 4, results

in a situation where the reversal of the polarisation must reverse the magnetisation - this is an

incredibly strong kind of coupling. We shall see that the mechanism does not depend at all on

whether we are dealing with a Type-I or a Type-II multiferroic. In some sense, whether the

multiferroic ends up being a Type-I or Type-II is completely immaterial. All that matters is

that there are large enough transition temperatures, the correct couplings between polarisation

and magnetisation, and large enough coercive fields to prevent dielectric breakdown.
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Chapter 3

Symmetry, Phase Transitions And

Landau Theory

The previous chapter demonstrated that perovskite based materials can take a multitude of

forms each with differing physical properties. Some have octahedral tilts and some have polar

distortions. Some undergo octahedral Jahn-Teller distortions and orbital orderings. The cations

in some perovskites possess unpaired electrons leading to magnetic dipoles and these dipoles

can subsequently order into a myriad of magnetic structures. The simplicity of the perovskite

structure imbues it with a flexibility that leads to a confusing complexity. How do we classify

a distorted perovskite? How does one type of distortion affect the others? What kind of

interactions are possible between distortions?

These are the questions that will be answered in the present chapter. I will describe how

it is the symmetry of a material that leads to a convenient classification scheme. It is also

symmetry that enables us to determine which distortions are present and how those distortions

couple. Analysing the symmetry of a material is not only a powerful descriptive tool but also

functions as a surprisingly effective predictive tool. I shall demonstrate how understanding the

symmetry of a material allows the determination of the possible phase transitions in a material

and therefore, we can use symmetry to predict new phases of materials with technologically

useful properties - the electric field control of magnetism being the specific property that I focus

on here.
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Unfortunately, a symmetry analysis is not a panacea capable of curing all the woes of ma-

terials physics. It is not possible for a symmetry analysis to give a quantitative description of a

material. It cannot give an answer to the question "What is the polarisation of BaTiO3?" but

it can answer the question "Does BaTiO3 have a polarisation?". To obtain the details necessary

to answer the former question, we need experiment or computational simulation. As a theorist,

I do not know very much about experiments and so when I wish to answer the former question,

I turn to simulation. How this has been done for my thesis is described in Chapter 5.

For now, I ignore the precise details and focus on the qualitative picture. To do this, I use this

chapter to formulate the ideas necessary to describe the symmetry of a material - crystallography

and group theory - and build up until it is possible to predict whether a particular material∗ is

capable of displaying the electric field control of magnetism.

3.1 Crystallographic And Group Theoretical Ideas

3.1.1 The Space Group

It’s necessary to introduce some mathematical concepts to describe crystallographic symmetries.

A Bravais lattice [20, 79, 58] is defined as a set of identical points in which any point R can be

reached by a combination of translations of lattice vectors a, b and c such as

R = naa + nbb + ncc (3.1)

where na, nb and nc are integers. The environment of every lattice point must be the same

as every other lattice point. The volume enclosed by a, b and c form one possible choice of

the unit cell which, when translated by lattice vectors, can tesselate all space. There is no

unambiguous way to define the unit cell. However, there is a smallest possible volume for the

unit cell - termed the primitive unit cell. One possible choice of the primitive cell is to form the

parallelopiped of the three lattice vectors which has volume
∗It does not necessarily have to be a perovskite but will be for most of this thesis.
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3.1.1. The Space Group

Vprim = a · (b × c) (3.2)

and any other choice of cell with the same volume is also a primitive cell. The primitive cell

can only contain a single lattice point.

The lattice vectors a, b and c do not have to be of equal length nor do the angles α (between

b and c), β (between a and c) and γ (between a and b) need to be right angles. This leads to

considerable flexibility and results in seven qualitatively different crystal systems:

1. Triclinic (a) : a ̸= b ̸= c, α ̸= β ̸= γ

2. Monoclinic (m) : a ̸= b ̸= c, α = γ = 90◦ ̸= β

3. Orthorhombic (o) : a ̸= b ̸= c, α = β = γ = 90◦

4. Tetragonal (t) : a = b ̸= c, α = β = γ = 90◦

5. Hexagonal (h) :

a) Rhombohedral : a = b = c, α = β = γ

b) Hexagonal : a = b ̸= c, α = β = 90◦, γ = 120◦

6. Cubic (c) : a = b = c, α = β = γ = 90◦

The sequence from cubic → tetragonal → orthorhombic → monoclinic → triclinic can be seen as

progressively distorting a perfect cube, relaxing one constraint at each step. The rhombohedral

phase can be thought of as distorting a cube along the body diagonal whereas the hexagonal

lattice stands alone.

It is often advantageous to describe crystal systems with respect to conventional, rather than

primitive cells. For example, the face-centered and body-centered cubic lattices are obviously

within the cubic class, but the shape of the primitive cell does not make this fact evident. Instead,

these lattices are often described using non-primitive cubic cells in which either the faces or the

intersection of body diagonals are populated with additional lattice points. The ability to add

lattice points to a conventional cell to create new Bravais lattices is called centering.
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Enumerating the crystal systems with the possible centerings leads to 14 different Bravais

lattices. These are the only ways to tile space in three dimensions with lattice vectors obeying

Equation 3.1.

It is not enough to know the underlying Bravais lattice to understand the symmetries of the

crystal structure. The lattice, a set of mathematical points, must be populated with a basis

of atoms. The basis could consist of identical, spherically symmetric atoms positioned at the

corner of the primitive cells. If this were the only option possible, then there would only be 14

possible crystal structures. Obviously this is not the case, and the possible choices for bases

is very large indeed. NaCl for example has the a face-centred cubic Bravais lattice but with

a basis of two ions - one at the lattice points and another of the opposite charge displaced by

[1/2, 1/2, 1/2]a, where a is the cubic lattice vector∗ [112].

The well studied antiferromagnet MnO mentioned in Chapter 2 also has a face-centered

cubic Bravais lattice and an identical basis to NaCl [113]. The two crystal structures have an

identical space group. A space group is the set of all symmetry operations that leave the entire

crystal unchanged or invariant. Note that these symmetry operations are applied to infinite

crystal structures because Equation 3.1 describes an infinite lattice. A surface of any kind in the

crystal would destroy translational symmetry and irregular surfaces may also destroy rotational

symmetry. Real crystals are not infinite in extent but have dimensions much larger than the

lattice parameter a. Therefore the infinite crystal approximation is a good one.

There are many different classes of symmetry operations [58] starting with the trivial sym-

metry operation of doing nothing at all. This is the identity operation and must be included in

the space group in order for it to form a proper mathematical group. Secondly, translation by

a vector of the Bravais lattice is equally trivial as it is built in to the definition of Equation 3.1.

The non-trivial operations begin with n-fold rotation axes. This is an axis about which a

rotation through integral multiples of 2π
n leaves the entire crystal invariant.

Reflections through a mirror plane are also important operations to crystal symmetries.
∗There are of course other choices for the basis such as having one ion at the lattice points and another

at [1/2, 0, 0]a. The original choice is conventional as it makes it clear that there is nothing special about any
particular direction in a cubic crystal
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Inversions, in which the crystal remains unchanged when passed through a point, is another

operation. If this point is the origin, then the act of inversion can be represented by the

transformation r → −r.

These operations can be combined to give new operations. Sometimes, a rotation is not

a symmetry operation but a rotation followed by an inversion is, even though both individual

operations may not be by themselves.

The symmetry elements above are all obtained via combinations of translations by vectors

in the Bravais lattice or elements in which a single lattice point is kept fixed. This latter subset

is known as the point group. Space groups that contain only these types of elements are known

as symmorphic. By considering all possible bases populating the primitive Bravais lattices,

crystallographers have enumerated 73 such space groups in three dimensions. However, there

are two new classes of symmetry of elements that can be introduced if the restriction to Bravais

lattice translations is lifted. These are screw axes, in which a crystal structure remains invariant

upon a translation through a vector not in the Bravais lattice followed by a rotation about that

vector, and the glide plane, in which the crystal structure remains invariant upon translation

by a vector not in the Bravais lattice and then a reflection a plane containing the vector. Space

groups that involve these elements are known as as nonsymmorphic space groups and in three

dimensions there are 157 of them, resulting in 230 space groups in total.

To keep track of such a large number of crystal symmetries, there are many notational

systems in use. To maintain consistency with the majority of literature on crystal structures,

ferroelectrics and multiferroics, I use the Hermann-Mauguin (HM) notation. This is often re-

ferred to as the International Notation because of its adoption by the IUCr for the International

Tables Of Crystallography [114, 115]. These tables lists the 230 space groups in order of as-

cending number of symmetry operations and assigns each material a label describing the most

prominent symmetry elements. For example, NaCl and MnO both belong to the 225th space

group with 192 space group elements and space group symbol "F 4/m 3̄ 2/m". The initial letter

F denotes the face-centering of the conventional cubic Bravais lattice. The 4/m denotes the

presence of a 4-fold rotation axis with a mirror plane perpendicular, the 3̄ signals the existence

of a three-fold rotation-inversion axis and the final 2/m indicates a 2-fold rotation-reflection
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axis perpendicular to the first. The full notation is cumbersome and so is often compacted to

Fm3̄m.

The highest symmetry perovskite structure obtained by SrTiO3 at room temperature or other

ABO3 perovskites at elevated temperature has the 221st space group, Pm3̄m [116]. This has a

primitive centering, indicated by the P , and has 48 symmetry operations. Having three distinct

elements in the chemical formula, it obviously has a basis with more that one atom: the A-site

at (0,0,0)a, the B-site at (1/2, 1/2, 1/2)a and the three O-sites at (1/2, 1/2, 0)a, (1/2, 0, 1/2)a

and (0, 1/2, 1/2)a.

3.1.2 Neumann’s Principle

In practice, the space group of a crystal structure is determined via experiment or by analysing

the result of a simulated geometry optimization (Chapter 5). Once the space group has been

determined, we can classify materials according to their symmetry. We immediately sense that

there should be something similar between SrTiO3 and BaTiO3 if they both have the Pm3̄m

space group. Indeed, the allowed material properties can be obtained directly from the symmetry

if the symmetry is known.

This follows from Neumann’s Principle [117, 118] which states that:

"The symmetry of any physical property of a crystal must include the symmetry

elements of the point group of the crystal."

As a reminder, the point group is the subset of symmetry elements in the space group in

which one point is kept fixed. For symmorphic space groups like Pm3̄m, this can be obtained

by dropping the intial letter, which describes translations, so that the point group of Pm3̄m is

m3̄m.

Given the space group (and the point group subgroup) and using this principle, we can

determine whether a particular property is permitted. For example, the high temperature crystal

structure of BaTiO3 is Pm3̄m with the m3̄m point group. Does this allow for a polarisation?

Does it allow for piezoelectricity?
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To solve, we turn to basic concepts from linear algebra [77] and define a vector V to be any

object that can be transformed into a different vector V′ via the application of a matrix (or

second rank tensor) like

V ′
i = AijVj (3.3)

where Aij is the transforming matrix. The polarisation P is a vector (also known as a first

rank tensor) with three components P1, P2 and P3 which must necessarily transform like

P ′
i = AijPj . (3.4)

What is the interpretation of the matrix A? Neumann’s Principle gives the answer. The

polarisation is a physical property of the crystal and so must transform under the symmetry

elements of the point group of the crystal. The crystal is left invariant under these operations

and so the polarisation must be invariant too. Therefore, if A is a symmetry element of the

point group, we must have

P ′
i = Pi = AijPj , (3.5)

with the simple interpretation that the polarisation remains invariant under a symmetry element

of the crystal.

The form of A for any individual symmetry element of the point group is easy to work out.

For example, a counter clockwise rotation in a Cartesian basis by an angle ϕ about the c axis

would be

Aij,rot =


cosϕ sinϕ 0

−sinϕ cosϕ 0

0 0 1

 (3.6)

and the inversion symmetry element would be
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Aij,inv =


−1 0 0

0 −1 0

0 0 −1

 . (3.7)

The matrix representation of the inversion element allows for a fundamental result to be

easily proved. If a crystal contains the inversion element, then it must be true that


P1

P2

P3

 = Aij,inv


P1

P2

P3

 =


−1 0 0

0 −1 0

0 0 −1




P1

P2

P3

 =


−P1

−P2

−P3

 , (3.8)

which can only be satisfied if P = 0 ie. crystal structures containing inversion as a symmetry

element (known as centrosymmetric structures) cannot have a polarisation. Therefore, BaTiO3

in the crystallographic phase with Pm3̄m symmetry cannot be polar because the m3̄m point

group contains the inversion element.

BaTiO3 has a phase transition to a phase with P4mm symmetry at 130◦C [119]. Applying

all the symmetry operations to the polarisation in the same way reveals that the polarisation

must exist in this structural polymorph. The point group 4mm does not contain the inversion

element and the other symmetry elements of the point group do not force the polarisation to

be zero. Importantly, Neumann’s principle does not dictate whether the the polarisation of the

crystal should be +P or −P; both are permitted. Applying an external field can switch BaTiO3

between these two so that, following the definition of Chapter 1, BaTiO3 is a ferroelectric below

130◦C.

The same process can be performed for other physical properties. Piezoelectricity - the

changing of polarisation with applied strains - can also be analysed in the same way. The analysis

is more complicated as piezoelectricity coefficients transform as a third rank tensor but thankfully

the analysis only needs to be done once for any particular point group. Crystallographers

of the past have done this and revealed that, 21 of the 32 possible point groups allow for

piezoelectricity. The presence of the inversion element in the point group also eliminates the

piezoelectric coefficients. A point group can be piezoelectric without being polar. This is the
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case in quartz which contains a 2-fold rotation axis along c and a 3-fold rotation about a. In

that case, Neumann’s principle dictates that the piezoelectric coefficients are non-zero, but the

polarisation is zero. This is a result of the rotations and not due to the presence of an inversion

element.

With these results, we can reproduce the Venn diagram presented in Chapter 1. The result

that all ferroelectrics are pyroelectrics∗ is an empirical classification but that all pyroelectrics

are piezoelectrics is nothing more than a result of symmetry.

This principle can be extended to magnetic symmetries and magnetic point groups. The

major difference between magnetic point groups and crystallographic point groups is the con-

sideration of the time reversal element. A ferromagnetic crystal does not obey time-reversal

symmetry as magnetic dipoles are reversed under this operation. The greater complexity intro-

duced by allowing time-reversal into the point group results in 90 magnetic point groups and

1651 magnetic space groups† [120, 121].

Neumann’s Principle can still be applied and can be used to describe the magnetic easy

axes of crystals, predict whether piezomagnetism is permitted or illustrate the magneto-optical

activity of a particular crystal.

The concept of a space group classifies materials into sets that have the same symmetry

elements. Neumann’s Principle allows the description of these materials and can immediately

determine, without the need of experiment or simulation, what is possible in any particular

material. It is often the case that the size of any individual effect is of secondary importance

and symmetry remains the most powerful descriptive tool available.

3.1.3 Reciprocal Space

The crystallographic lattice is mirrored by the reciprocal lattice which, in some ways, is the

more useful concept than the real space crystal lattice. Like the real space lattice, vectors in

the reciprocal lattice also obey a similar equation
∗Another term for a material with a non-switchable polarisation synonymous with "polar". Specifically, it

means that the polarisation can be changed by varying the temperature. See Chapter 1
†Sometimes called Shubnikov groups.
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G = maka +mbkb +mckc, (3.9)

where ma, mb and mc are integers and the ki are the basis vectors. These basis vectors are

obtained from the real space basis vectors through

ka = 2π b × c
a · b × c , kb = 2π c × a

a · b × c , and kc = 2π a × b
a · b × c . (3.10)

We can also define a primitive unit cell that tesselates the whole of reciprocal space. Like

the real space lattice, there is ambiguity in this choice but typically the Wigner-Seitz cell is

constructed. This is the volume of space that is closer to a particular lattice point than any

other point. It quite obviously only contains a single reciprocal lattice point. The Wigner-Seitz

cell of the reciprocal lattice is known as the first Brillioun zone; a central concept for describing

the excitation spectra in materials. Only points inside the Brillioun Zone are significant because

of the periodicity of the reciprocal lattice. Any two reciprocal points differing by a reciprocal

lattice vector are physically equivalent.

The interpretation of the reciprocal space as the dual to real space becomes easier when

we associate each point k in reciprocal space with a wave eik·r in real space; any distortion

propagating in real space in a periodic, wavelike manner can be mapped onto a single point in

reciprocal space. For example, a modulation in the density of a one dimensional crystal structure

(like a cation ordering) that oscillates with twice the period of the original, un-modulated density

would be conveniently described as a wave e 2π
2a

r. This is because it is now necessary to travel

twice as far in real space to reach an equivalent point. This is all demonstrated in Figure 3.1.

The entire wave is therefore associated with the reciprocal space point (or wavenumber)

k = π/a. It should be noted that this density modulation necessarily doubles the size of the

unit cell in real space. The denominator common to all terms in Equation 3.10 is in fact the

volume of the real space cell V = a · b × c and so doubling this volume consequently halves the

volume of the reciprocal cell.

To summarise, any wavelike distortion introduced to the original primitive cell to the real-

space crystal lattice corresponds to a point in reciprocal space. If this point is not related to
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𝑒
𝑖2𝜋𝑥
𝑎

𝑒
𝑖2𝜋𝑥
2𝑎

- No charge ordering

- Charge ordering
𝑎

2𝑎

Figure 3.1: Doubling of unit cell and halving of wavenumber for a charge ordering. The charge
order transforms as an irreducible representation at k = 2π

2a . Any distortion transforming at a
k-point not equivalent to a reciprocal lattice vector necessarily increases the size of the unit cell.

the origin by a reciprocal lattice vector, the unit cell of the real space cell increases its volume

and the Brillioun Zone decreases.

Of course, wavelike phenomena also have a time dependence so that the full wave should

properly be described as eik·r−ωt. Averaging over many time periods T averages the wave to

zero so that the total distortion has no net effect on the structure. The softening of phonon

modes discussed in Chapter 2 is a pertinent example of this and highlights the correspondence

between reciprocal space points and changing cell sizes. Phonon modes are obviously wavelike

phenomena associated with a wavevector. If ω2 > 0 the phonons are active and their average

over time is zero. If ω2 < 0, the time dependence eiωt becomes e−ωt (ω is imaginary) so that the

phonon is damped, and no longer oscillates in time. The distortion becomes fixed at a particular

reciprocal space point, and the unit cell increases.

3.1.4 Subgroups

We have classified space groups and used Neumann’s Principle in determining the properties of

any individual space group. Where symmetry becomes extremely powerful is through using it

to understand how space groups are related to each other. This leads directly to the concept
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of crystallographic (and magnetic) phase transitions. This makes symmetry a predictive instru-

ment.

To contextualise this discussion in the context of perovskites, BaTiO3 transitions from a

Pm3̄m to a P4mm symmetry at 398 K. Accompanying this transition is a breaking of symmetry

elements. We have already seen that the Pm3̄m space group contains the inversion element and

the P4mm space group does not. Inversion symmetry is broken in going from the higher to

the lower temperature phase. Many other symmetries are also broken - the m3̄m point group

contains 48 symmetry elements whereas 4mm contains only 8. Crucially, no new symmetry ele-

ments are created. The 8 elements of 4mm are also contained within the 48 of m3̄m. Therefore,

4mm is known as a subgroup of m3̄m (and so P4mm is a subgroup ofPm3̄m). There are many

other subgroups available depending on the number of symmetry elements broken. Occasion-

ally, the symmetry elements are broken sequentially leading to consecutive phase transitions.

For BaTiO3, there is another phase transition to an orthorhombic symmetry (Amm2) at 281 K

and a final phase transition to a rhombohedral symmetry (R3m) at 202K [119, 122].

3.1.5 Irreducible Representations

Irreducible representations - frequently shortened to irreps in the literature - describe how a

group can be decomposed into the smallest number of objects which transform with the sym-

metry elements of the group.

As shown previously, symmetry elements in a group can be represented as matrices. Both

the rotation matrix and inversion matrix given above were shown to be in block diagonal form.

That is, the rotation matrix could be written as

Aij,rot =


cosϕ sinϕ 0

−sinϕ cosϕ 0

0 0 1

 =

M1 0

0 M2

 (3.11)

where M1 =

 cosϕ sinϕ

−sinϕ cosϕ

 and M2 = 1, which is in block form. If it is possible, by the
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E I

f1 +1 +1
f2 +1 -1

Table 3.1: Action of symmetry elements on even functions f1 and odd functions f2.

same transformation matrices, to turn all of the matrix representations of the groups symmetry

elements into block diagonal form then the matrix representation is reducible. If it is not possible,

that representation is irreducible.

The theory of representations is vast (see Dresselhaus, Dresselhaus and Jorio [58]) but for

the purposes of this thesis, there are only a few important aspects. These can be illustrated

by a simple example involving the inversion symmetry element. Consider the set of all possible

functions f(x) defined on the x axis. They could be linear functions, quadratics, cubics, logar-

ithms, exponentials etc. Subject these functions to the symmetry operations E (the identity)

and I (the inversion element that transforms x to −x) - the two elements form a mathem-

atical group. All of these functions remain invariant when acted on by the identity so that

Ef(x) = f(x). Most functions, such as the exponential, do not have any particular symmetry

when acted on by the inversion element. However some are even with respect to the inversion

element so that If1(x) = f1(−x) = f1(x). Others are odd with respect to inversion so that

If2(x) = f2(−x) = −f2(x). Each of these two functions have different eigenvalues under inver-

sion and these eigenvalues can be used as labels. This is shown in Table 3.1. We can construct

two one-dimensional vector spaces with these functions. One is formed by all vectors of the

form f = λf1 and the other is by all vectors of the form λf2. These vector spaces are said to

be invariant with respect to {E, I} as operating on either of the spaces with these two elements

(or combinations of them) creates a vector still in the space.

The eigenvalues shown in Table 3.1 can also be interpreted as the result of representing the

symmetry element with the eigenvalue. For example, we can interpret If2 as being equal to

(−1)f2, both of which result in the same thing. Therefore, the numbers in Table 3.1 can also

be seen as representations of the group itself where each symmetry element becomes a number,

or alternatively, a zero-dimensional matrix. There is obviously no smaller subspace of functions

that are also invariant with respect to the symmetry elements and so the set {+1,+1} on the
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vector space λf1 and the set {+1,−1} on the vector space λf2 are the irreducible representations

of the group {E, I}.

In this example, the 1-dimensional vectors spaces are each invariant and irreducible with

respect to all symmetry elements of the group {E, I}. This can be readily extended to higher

dimensions. If an m-dimensional vector space, which is spanned by m basis functions, is invariant

under the applications of every symmetry element in the group G0, and if that vector space

contains no subspace that is itself invariant under all the elements of G0, then an irreducible

representation has been identified. Instead of the symmetry elements being represented by

numbers (zero-dimensional matrices), they are generally represented by matrices which can be

found by considering how each of the m basis functions transform into each other for each

symmetry element.

If a representation of the group is not irreducible (ie. there is a smaller number of basis

functions that transform only amongst each other under the symmetry operations), then it can

be made so through a decomposition into irreducible representations. This procedure is outlined

in great detail in the book by Dresselhaus, Dresselhaus and Jorio [58]. Such a decomposition is

typically used to assess the optical activity of molecules and crystals.

Importantly, it is also possible to reduce any function f(r) in terms of sets of basis functions,

each set being the basis functions for an irreducible representation of the group. Mathematically,

this can be written as

f(r) =
∑

i

ai

[∑
k

bkϕk

]
(3.12)

where ϕk are the basis functions of an irreducible representation Γk. The sum over k forms the

invariant vector space describing the irrep Γi and the sum over i sums over all irreducible rep-

resentations. I will often refer to this process as "decomposing into irreducible representations"

but technically, I am decomposing into sets of basis functions.

The above relation can be easily proved for finite groups, which is very convenient seeing as

we are looking at finite crystallographic point groups! To begin, we act on the arbitrary function

f(r) with each element gi of the space group G0. This produces a set of functions fi = gif .
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Mathematical groups are closed, meaning that the product of two elements is another element

of the group ie. gjgi = gk. Applying the the element gj to fi leads to gjfi = gjgif = gkf = fk.

Any function fi is transformed into another function fk due to the operation of any element of

G0. Therefore, the set of all fi forms the basis functions for an invariant vector space on G0 and

is therefore associated with an irrep∗ Γk.

Being an invariant vector space, it is spanned by functions that are linear combinations of

these basis functions fk so that

ϕi =
∑

k

ckfk (3.13)

which can be inverted to give

fi =
∑

k

bkϕk. (3.14)

Finally, the set fi are linearly independent because they related only by symmetry relations

and not through superpositions of each other. They are therefore complete and any function

can be expanded with respect to them so that

f =
∑

i

aifi =
∑

i

ai

[∑
k

bkϕk

]
. (3.15)

This completes the proof and demonstrates that any function can be constructed out of sets

of basis functions, with each set transforming as an irreducible representation of a group G0.

Returning one more time to the inversion example, we had two vector spaces, each carrying a

different irreducible representation. The first was symmetric with respect to inversion and the

other was antisymmetric. After summing over the two irreps in Equation 3.15, it shows that

any function can be written as a superposition of symmetric and antisymmetric parts.

If we are to reconstruct the periodic functions that describe the physical properties of periodic

crystals, then a good choice of basis functions are Bloch functions
∗Provided that it is irreducible. If it is instead reducible, it can be decomposed into irreducible representations.
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ϕik(r) = uik(r)eik·r (3.16)

where the uik are periodic with the lattice and the eik·r is a phase factor. They are obviously

complete (otherwise Fourier expansions would not work) and it is easy to see how the symmetry

operations of the space group transform the Bloch functions of Equation 3.16. Application

of translation operators does not change uik but changes the phase factor by a multiplicative

factor eik·a where a is the translation vector. Rotational elements transform the functions uik

by acting on the wavevector, resulting in a new wavevector k′. Screw axes and glide plane

symmetry elements alter both of the constituent functions because of their combinations of

translations and rotations. The added phase factors are unimportant and so producing the

irreducible representations in this basis of Bloch functions reduces to finding how the reciprocal

space vectors k transform under each of the symmetry operations. Therefore, each irreducible

representation has an associated reciprocal space vector. There are more details to this assertion

and these can be found in References [58, 123, 124].

This suggests a change of notation so that an irreducible representation is written as (m)K(±)
i

where K is the label given to a high symmetry point in the Brillioun Zone for reciprocal space

vectors obeying the symmetry operations of a spacegroup G0 (describing the atomic density

ρ0 in the previous section). These points and their labels in the highest symmetry perovskite

space group Pm3̄m are shown in Table 3.2. The irrep is either labelled + or − depending on

whether it transforms with + parity or − parity under the inversion symmetry element. The

label i cycles through the irreps associated with that particular k-point. Finally, the preceding

m label is only included if the irreducible representation describes a magnetic space group. In

this case, the m denotes an irreducible representation that is antisymmetric with respect to the

time reversal symmetry element.

3.1.6 Group-Subgroup Relations and Irrep Dimensionality

Having introduced irreducible representations, we can now define the idea of group-subgroup

relationships. In a phase transition that takes a higher-symmetry group to a lower-symmetry
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Label k-points
Γ (0,0,0)
X (1/2,0,0),(0,1/2,0),(0,0,1/2)
M (1/2,1/2,0),(1/2,0,1/2),(0,1/2,1/2)
R (1/2,1/2,1/2)

Table 3.2: High symmetry points of Pm3̄m

group, there exists a function transforming as one of the irreducible representations of the high-

symmetry phase. This function is the order parameter (about which more will be said in the

next section) and the associated irreducible representation is the active irrep.

Every symmetry element g of the high-symmetry group G0 is represented by a matrix M(g).

Applying a symmetry element to a function Q transforming as the active irrep (e.g the order

parameter) may change the order parameter so that

M(g)Q = Q′. (3.17)

If it turns out that Q′ = Q, then the symmetry element g is also a symmetry element of the

irreducible representation - this is a restatement of the definition of the irreps. However, the

collection of all g for which M(g)Q = Q forms an isotropy subgroup H of the high symmetry

group G0 under the active irrep.

This is easily demonstrated for perovskite symmetries. There are 48 symmetry operations in

the Pm3̄m space group. There are also many possible irreducible representations, each associ-

ated with a different reciprocal space vector. Considering only active irreducible representations

that do not change the volume of the cell (which means that the irrep is associated with the

Γ-point), there are 32 possible isotropy subgroups; each obtained with a separate active Γ-point

irrep. These can be enumerated using online tools like SUBGROUPGRAPH of the Bilbao Crys-

tallographic Server [125, 126]. This is done in Figure 3.2.

Not all the subgroups obtained in Figure 3.2 are actually observed in perovskite materials.

However, BaTiO3 exhibits Pm3̄m, P4mm, Amm2 and R3m in that order when temperature

is reduced. All of these symmetries are isotropy subgroups of Pm3̄m. All three symmetries

are also reached with the same active irrep, Γ−
4 . What distinguishes the three space groups is
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Figure 3.2: Isotropy subgroups of the Pm3̄m parent space group which retain the cell volume.
The retention of cell volume means that the corresponding active irreducible irreps are all as-
sociated with the Γ-point. Ratio of the parent cell size to the child cell size is encapsulated by
the k-index. The ratio of symmetry operations in the higher symmetry to the lower symmetry
is given by the t-index and the total index is the product of the two.
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that the order parameter transforming as Γ−
4 can have a selection of order parameter directions

(OPD).

The order parameter direction is related to the dimensionality of the matrices M(g) forming

the irrep. If the matrices M(g) are 3x3, as in Γ−
4 , then this can only act on a three dimensional

order parameter of the form (a, b, c). The P4mm symmetry is obtained from Pm3̄m by an

active Γ−
4 with the OPD (a, 0, 0), the Amm2 symmetry by the (a, a, 0) OPD and the R3m by

the (a, a, a) OPD.

The dimensionality of irreps can be more than three dimensional despite describing dis-

tortions in a three dimensional crystal. For example, many irreducible representations at the

X-point are formed by six-dimensional matrices. This is because the X-point is at (1/2, 0, 0) in

the Brillioun Zone. However, the reciprocal space vectors (0, 1/2, 0) and (0, 0, 1/2) are equivalent

by symmetry. The three points denote the star of the point (1/2, 0, 0). The matrices for the

X+
5 irrep are two dimensional but all points belonging to the star of the X-point must be con-

sidered and therefore, the irrep becomes six-dimensional ie. X+
5 (a, 0; 0, 0; 0, 0). The semi-colons

seperates the OPDs into the respective branches of the star.

It is not always possible to reach a desired symmetry with a single irreducible representation.

Instead, it often takes multiple active irreps. For example, the Pnma symmetry of perovskites

can only be reached with two or more active irreps. It is often the case that a sequence of phase

transitions is observed with each phase transition introducing a new active irrep.

To summarise the previous sections:

1. The space group is an essential tool for classifying crystal structures by their symmetries.

2. Given a space group, Neumann’s Principle can be used to determine whether a particular

physical property is permitted.

3. An irreducible representation is any representation of the space group with the same

symmetry properties of the smallest set of basis functions that transform only amongst

themselves under all the symmetry operations of the group. Any function can be expanded
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into basis functions with each function transforming as an irreducible representation of the

group.

4. Group-subgroup relations explore how crystallographic phases are related. The number of

symmetry elements change on a phase transition and are driven by a distortion - the order

parameter - which transforms with the symmetry of an irreducible representation of the

high symmetry phase.

These ideas will now be combined to explore Landau’s theory of phase transitions. This

allows for the prediction of phase transitions and their classification. The Landau Theory concept

will prove absolutely pivotal in our stated goal of finding materials in which the electric field

control of magnetism is possible.

3.2 Landau Theory And Phase Transitions

With these important concepts from crystallography and group theory ready at hand, the

Landau Theory of Phase Transitions [124, 127, 123] can be readily constructed.

To begin, we return to Equation 3.15 and recall that for the inversion example of the last

section, one of the irreducible representations was invariant under all the symmetry elements

of the (very small) group. This was the vector space formed by all even functions. The corres-

ponding row in Table 3.1 was all "+1". The existence of this unit representation is generic to all

decompositions into irreps. We can split this term off the sum so that

f = f0 + δf = f0 +
∑
i′

ai′

[∑
k

bkϕk

]
= f0 +

∑
i′

∑
k

ηi′kϕk (3.18)

where the prime on i′ denotes that the unit representation is no longer included. I have also

combined the coefficients so that ηi′k = ai′bk. The first part f0 is the basis function with the

symmetry of the unit representation. It is symmetric with respect to all the symmetry operations

of a group G0. The symmetry of the remaining part δf is lower than that of the G0. In fact, it

must evidently be a subgroup of G0 which I will denote G. The mathematics begin to be useful
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as a model of a phase transition between two symmetries. As we aim to describe real materials,

it should be clear that the quantities f and δf should have some physical interpretation. f and

δf should be measurably different quantities in the two phase - the density ρ is therefore a good,

intuitive choice.

If a phase transition is to happen below a particular temperature TC, then the distorted

density δρ must be δρ = 0 above this temperature. Above this temperature, the material has

symmetry G0 and density ρ0 whereas below, the symmetry is G and the density is ρ = ρ0 + δρ.

Consequently, the quantities ηi′k are zero above the transition point and non-zero below. They

effectively describe the transition whilst also encoding the symmetry properties of the crystal

on either side of the transition. A quantity with this structure is known as the order parameter.

Referring to the definition in Equation 3.18, we see that an order parameter describes "how

much" of a particular basis function (carrying a particular irreducible representation) is present

in the lower symmetry part δρ of the atomic density. Also evident from Equation 3.18 is the

fact that there could be many different order parameters.

Whether a particular material obtains the higher symmetry G0 or the lower symmetry G

is a question of thermodynamics. That is, the system displays whichever phase minimises

the free energy F = F(P, T, ηi′k) which is a function of pressure P , temperature T and the

coefficients ηi′k. Restricting ourselves to continuous phase transitions to begin with where δρ

tends continuously to zero at the phase transition, the corresponding coefficients ηi′k must also

tend to zero at the phase transition. Thus, we can expand the free energy in a power series of

these small coefficients

F = F0 +
∑
i′

Ai′
∑

k

ηi′k +
∑
i′

Bi′

[∑
k

ηi′k

]2

+ ... (3.19)

where A,B etc are functions of P and T .

The thermodynamic free energy is a scalar physical quantity and, according to Neumann’s

Principle, should obey the symmetries of the space group. Crucially, it must obey the symmetries

of the higher symmetry space group above the transition. Therefore, certain expressions in the

free energy expansion are not permissible. For example, there can not be any linear terms. If
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the space group contains the inversion element then this is obvious as acting with the inversion

operator on ηi′k will reverse its sign and the thermodynamic potential will not be invariant∗.

However, there is a more fundamental reason for the lack of a linear term. The sum over n′

does not include the unit irreducible representation and so the coefficients ηi′k, transforming as

the i′th non-unit representation must necessarily not be symmetric with respect to at least one

of the symmetry operations. Therefore, a linear term in Equation 3.19 would not obey the full

symmetry group G0.

The existence of any particular term in the free energy is thus restricted to whether the whole

term obeys all the symmetry operations of the group G0. This leads to a set of easy-to-apply

rules that make the construction of a Landau expansion a convenient and pragmatic procedure.

3.3 The Invariant Rules And Their Consequences

The previous section contained a lot of mathematics. This section aims to condense it into a

digestible set of rules which make the construction of a Landau expansion straightforward and

practical. It should be noted that this procedure is almost always carried out via the use of

computational tools such as the Bilbao Crystallographic Server [125, 126] or Isotropy Software

Suite [128, 129]. I try to place these results in the context of ferroelectricity in perovskites.

Given a distortion, say the in-phase octahedral tilt described in Chapter 2, we can determine

the corresponding k-point of the irreducible representation through a consideration of how much

the cell must be increased to accommodate the new distortion. For the in-phase tilt, the cell

must at least be doubled along two axis, but can be kept the same size parallel to the axis of

rotation. Therefore, the supercell has two axes that are double the length of the original cell.

In contrast, the reciprocal cell now has two axes that are half as long as the original reciprocal

cell. This is indicating that this distortion transforms as an irreducible representation at the

(1/2, 1/2, 0) point of the Brillioun zone; labelled the M -point. In this way, all of the main

distortions present in perovskite materials can be mapped to their corresponding irreducible
∗As the symmetry elements simply transform the basis functions of an irreducible representation amongst

themselves, the transformations can be considered to be acting on the coefficients instead of the basis functions.
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Distortion Γ X M R

Strain Γ+
3 ;Γ+

5
Cation Order (A Sites) X+

1 M+
1 R+

1
Cation Order (B Sites) X−

3 M+
4 R−

2
Anion Order (X Sites) X+

1 M+
4 ;M−

5 R+
5

(Anti-) Polar (A Sites) Γ−
4 X−

3 M−
3 ;M−

5 R−
4

(Anti-) Polar (B Sites) Γ−
4 X+

1 M−
2 ;M−

5 R+
5

Jahn-Teller Modes Γ+
3 X−

3 M+
3 R−

3
Octahedral Tilt Modes M+

2 R−
5

Magnetic Order (A Sites) mΓ+
4 mX+

3 ;mX+
5 mM+

3 ;mM+
5 mR+

4
Magnetic Order (B Sites) mΓ+

4 mX−
1 ;mX−

5 mM+
2 ;mM+

5 mR−
5

Table 3.3: Enumeration of all distortions from Chapter 2 in ABX3 perovskites and their asso-
ciated irreducible representations.

representations. This enumeration has been done and can be found in the literature [130]. The

results are reproduced in Table 3.3.

Having defined the new notation for irreducible representations, the rules for constructing

invariants are simple to state. For any term in the Landau expansion to be invariant, it must:

1. Conserve crystal momentum∗. Only translations by lattice vectors are symmetry elements

of the high symmetry groupG0. Consequently, only translation by reciprocal lattice vectors

are permitted in reciprocal space. For a term in the Landau expansion, formed as a product

of two or more order parameters each transforming as an irreducible representation of the

space group G0, the combined wave-vector of the term must be a reciprocal lattice vector.

The basis functions for any order parameter are Bloch functions, and the product of two

Bloch functions leads to an additive combination of the associated k vectors. This resulting

wavevector must be a member of the reciprocal lattice in order for the term to possess the

same translational symmetry of G0.

2. Preserve inversion symmetry. If the group G0 has the inversion element, (which the high-

symmetry perovskite phase does) then all the terms of the Landau expansion must respect

this symmetry. A term cannot be antisymmetric with respect to inversion.
∗The term "crystal momentum" is used here as the Bloch functions used as the basis are not eigenfunctions

of the quantum mechanical momentum operator −iℏ∇. Instead, momentum is only defined modulo a reciprocal
lattice vector ℏG
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3. Preserve time-reversal symmetry. If the group G0 has time-reversal as a symmetry element

(which the non-magnetic, high-symmetry perovskite phase does), then every term in the

expansion must also preserve time reversal symmetry. This is practically achieved by

ensuring that every term has either zero or an even number of magnetic order parameters

(which break time reversal symmetry).

4. Preserve all other symmetry elements of the group. This is difficult to do by hand and

so it is necessary to use a computational tool like INVARIANTS from the ISOTROPY

Software Suite [131] to check.

Failure to satisfy any of the above conditions immediately eliminates the term from the

Landau expansion.

3.3.1 Single Order Parameter

Suppose we only have a single order parameter P which transforms as the irreducible rep-

resentation Γ−
4 of the Pm3̄m space group, with the order parameter direction (a, 0, 0)∗. The

inclusion of this order parameter destroys inversion symmetry and the resulting space group is

non-centrosymmetric P4mm. This is therefore a good model for the ferroelectric transition in

BaTiO3 [123].

Without considering the invariant rules, the free energy can be constructed as a power series

expansion in P so that

F(P ) = F0 + aP 2 + bP 3 + cP 4 + ... (3.20)

where the linear term has been dropped due to the fundamental reason stated in the previous

section. The cubic term can also be dropped because P transforms antisymmetrically with

respect to inversion symmetry and so the product P 3 would not obey inversion symmetry. In

fact all odd-order terms can be dropped in this case for the same reason. I will truncate this
∗In the old notation, this might look something like η(Γ−

4 )
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series at fourth order. Near to the transition temperature, the order parameter is small and so

these additional terms do not add anything substantial to the analysis.

What remains can only describe the ferroelectric phase transition if the coefficients are per-

mitted to change with temperature. a can be easily parameterised as a function of temperature

by a(T ) = a0(T − TC). If T > TC, a > 0 and assuming that all other coefficients are positive,

the minimum of the free energy is obtained by

∂F
∂P

= 2aP + 4cP 3 = 0 → P = ±
√

−a
2c or P = 0 (3.21)

The first of these solutions is clearly not possible if a > 0 and so we are left with the result

that P = 0. If T < TC , then the first solutions do now make sense and we see two degenerate

solutions (which are minima) representing the two polarisation states of BaTiO3. P = 0 is now

a metastable maximum. The energy landscape is a function of polarisation P , and how that

landscape varies with dimensionless temperature T
TC

is plotted in Figure 3.3. The temperature

dependence of the coefficient a is related to the softening of phonon modes described in Chapter

2.

The phase transition just described is a continuous or second-order phase transition. The

term "continuous" is clear when you consider the change of the order parameter with temperature

P = ±
√

−a0(T −TC)
2c which shows that the order parameter grows from zero continuously as the

system passes through the transition temperature. This behaviour P ∝ (T − TC)1/2 is exactly

that described in Chapter 2. In the more narrow field of ferroelectric phase transitions, this

type of transition is known as a proper ferroelectric phase transition because it is the coefficient

in front of the polar mode that changes sign or, in the language of soft phonon dynamics, it is

the polar phonon that becomes imaginary and condenses.

Continuous phase transitions are also known as second order phase transitions because a

continuous phase transition introduces an anomaly (either a discontinuity, a divergence or a

cusp) in the second derivative of the free energy with respect to some quantity. For example,

a second order phase transition would show a anomaly in the heat capacity (second derivative

with respect to temperature) or the dielectric susceptiblity (second derivative with respect to
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Figure 3.3: The energy landscape described by Equation 3.20 and how it varies with temperature.
Below the transition temperature, a double well is formed with the minima located at P = ±

√
−a
2c

electric field). I can easily demonstrate the latter by adding a term that couples to the electric

field so that

F = a0(T − TC)P 2 + cP 4 − EP (3.22)

reveals that P = −∂F
∂E and

∂F
∂P

= 0 → 2a0(T − TC)P + 4cP 3 = E. (3.23)

Defining χ = ∂P
∂E = ∂2F

∂E2 and differentiating Equation 3.23 with respect to E leads to

χ = 1
(2a0(T − TC) + 12cP 2) (3.24)

For T > TC, P = 0 so

χ(T > TC) = 1
2a0(T − TC) (3.25)
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but for T < TC, P = ±
√

−a0(T −TC)
2c so that

χ(T < TC) = 1
4a0(TC − T ) (3.26)

and so there is a divergence in the susceptibility with different gradients on both sides of TC .

This was stated in Chapter 1 to be a universal characteristic of continuous phase transitions

and drops straight out of the Landau theory.

There are also ways in which the polarisation itself has a discontinuity. This would be a first-

order phase transition because P = −∂F
∂E . For an order parameter like P which breaks inversion

symmetry, this can be achieved if the coefficient of the quartic term is allowed to be negative

and a sixth order term is included. Alternatively, if the order parameter obeys the inversion

symmetry so that a cubic term is permitted, this also leads to a first order transition [127]. In

either of these cases, the lowest point on the free energy landscape as a function of temperature

ends up jumping from P = 0 above TC to a P finitely separated from 0 infinitesimally below

TC .

3.3.2 Multiple Order Parameters

Many phase transitions in perovskites involve more than one type of distortion. As a simple

illustration, we consider the ferroelectric phase transition in YMnO3 [85] which is an oxide

closely related to perovskites and has a hexagonal symmetry. At high temperature, it does not

have the cubic Pm3̄m like BaTiO3 but instead has the hexagonal P63/mmm space group. At

lower temperatures, it transitions to the non-centrosymmetric P63cm symmetry. The trans-

ition involves an active irreducible representation of the P63/mmm space group attached to the

k = (1/3, 1/3, 0) reciprocal vector. This is conventionally denoted with the letter K. Specifically,

it transforms with the irreducible representation K3 ∗. Importantly, a polar distortion (trans-
∗The lack of a parity label in this notation is indicative that this irreducible representation has more com-

plicated transformation properties when subject to the inversion symmetry element. The basis functions used
to describe this irreducible representation are necessarily two-dimensional and so lead to a 2x2 matrix of mixed

nature ie.
(

−1 0
0 1

)
. Unlike the simple example of inversion involving odd and even functions, this is clearly

neither symmetric or antisymmetric and for this reason, the label is dropped. The matrix representation of the
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3.3.2. Multiple Order Parameters

forming as the Γ−
2 irreducible representation of the P63/mmm space group) is also present, as

is permitted in polar symmetries. How do we incorporate both of these modes into the Landau

expansion?

Up to fourth order (this calculation is performed in detail in Appendix A), the expansion

looks like

F(P,K) = F0 + aPP
2 + bPP

4 + aKK
2 + bKK

4 + cP 2K2 + λPK3 (3.27)

where the first three terms should be familiar from the previous example. The terms aKK
2

and bKK
4 are the analogous terms for the K distortion. The K2 and K4 terms conserve crystal

momentum because it is possible to add and subtract two (four) copies of (1/3,1/3,0) to get

back to (0,0,0) in the K2 (K4) term. The mode can be treated as inversion-odd (see footnote)

and so there is no K3 term.

The interesting physics emerges from the last two terms. The first is clearly permissible in the

expansion as, although both P and K carry irreps that transform as odd under inversion, they

only appear with even powers. In addition, the even powers also ensure that crystal momentum

is conserved. If c > 0, then the presence of K makes it harder to introduce P as the energy is

raised if both distortions are present. If c < 0, the presence of K assists the formation of P .

The two situations are labelled as competitive and cooperative interactions respectively. This

biquadratic term could be combined with the term aPP
2 to create (aP + cK2)P 2 so that the

term cK2 effectively renormalises the coefficient of the P 2 term. As it is this coefficient which

typically carries the temperature dependence, the term cK2 acts as a fictitious temperature. If

c << 0, it is possible that the newly renormalised coefficient in front of P 2 becomes negative,

and we obtain a phase transition similar to the BaTiO3 example. This is called a triggered

mechanism. It does not occur in YMnO3 and, in fact, biquadratic interactions in perovskites

tend to be strongly competitive [87].

inversion operator states that we reverse the first component and keep the second component unchanged. The
order parameter direction of this particular irrep in YMnO3 is in the (a, 0) direction so that there is no second
component. It is therefore permissible to treat this irrep as being antisymmetric under inversion.
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The second term does play a significant role in the transition in YMnO3. This term - a

linear-cubic - has the interesting property that it can lower the energy irrespective of the sign

of the coefficient λ, assuming that λ is not a function of P or K. Imagine that the K mode∗

exists and is positive, and that the P mode is non-zero but with undetermined sign. If λ > 0,

then to lower the energy P can choose a sign opposite to that of K and the total free energy F

can be lowered. The same is true for any permutation of signs - there is always a way for this

term to lower the energy.

We can therefore minimise the free energy with respect to P to find the polarisation of

YMnO3,

∂F
∂P

= (2aP + 2cPK
2)P + 4bPP

3 + 2cPK2 + λK3 = 0. (3.28)

As a cubic equation, this is slightly more complicated to solve analytically. However, it is

not necessary to do this to realise something profound about this kind of Landau expansion.

If K ̸= 0, then this equation cannot be solved by P = 0. Stated differently, if the coefficient

aK < 0 in Eq 3.27 but aP > 0 so that, without the linear-cubic coupling term, only the K mode

would be non-zero, the coupling forces the P mode to also become non-zero. This is achieved

without the softening of the polar phonon and the flipping of the sign of aP . This mechanism

is known as improper ferroelectricity [132, 133] and the ferroelectric transition in YMnO3 is the

prototypical example. In such an improper transition, the mode with a negative coefficient, K

in this example, is known as the primary mode and the mode enforced to be non-zero is known

as the secondary mode †. The free energy landscape, with different values of K is shown in

Figure 3.4.

Examining Equation 3.27, reveals another way to interpret the improper transition. The

term λPK3 is analogous to an electric field term −EP and so we can define an effective field

Eeff = −λK3 that removes the stability of the P = 0 solution.

Improper ferroelectricity has important consequences for ferroelectric switching. Reversing

the sign of the polarisation in Equation 3.27 does not result in a free energy that is degenerate.
∗I will often use the term "mode" which is to be understood as synonymous with "order parameter"
†Occasionally described as a slave mode in the literature
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Figure 3.4: The energy landscape of an improper ferroelectric. The energy only has a minimum
with a non-zero P if the K is non-zero. To obtain a sizeable P mode, K must also be large as
the coefficient aP in the P 2 term is still positive.

F(P,K) ̸= F(−P,K) because of the coupling term in which both P and K appear with odd

powers. In order to be a ferroelectric with two energy degenerate minima, it is therefore necessary

that K must also reverse. An applied electric field couples to P and can cause a polarisation

reversal just as in an ordinary ferroelectric. But P is now coupled to K and so K must also

reverse in order to attain the lowest energy state with reversed polarisation. Therefore, YMnO3

allows for the electric field control of the K distortion.

There is no fundamental reason why we need to stop at two order parameters in the Landau

expansion. Returning to perovskite structural polymorphs that are subgroups of the cubic

Pm3̄m structure, we can explore the most common perovskite tilt pattern a−b+a− which was

referred to in Chapter 2. This pattern has the Pnma symmetry and contains five distortions.

I can assign them to the irreducible representations describing their transformation properties.

These are an a−b0a− antiphase (R−
5 ) and an a0b+a0 in-phase tilting pattern (M+

2 ) combining

to give the a−b+a− pattern. There are also other distortions including an antipolar motion of

the A sites (X−
5 ), a distinct antipolar motion of both A- and X-sites (R−

4 ), and a Jahn-Teller
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distortion (M+
3 ).

I will not write down the full Landau expansion in this example as the terms would be too

numerous but I’ll discuss a few to highlight to apposite physics. Recall from Chapter 2, that

for low tolerance factor perovskites, the rotation modes have the softest phonon modes and so

condense first. In the language of the Landau expansion, this means that the coefficients aR−
5

and aM+
2

are the first to change sign and become negative.

Now consider the term QR−
5
QM+

2
QX−

5
where Qi are the order parameters transforming as

the ith irreducible representation. This term is clearly allowed via the invariant rules discussed

earlier: the associated wave vectors can be made to sum to a reciprocal lattice vector; the

whole term is parity-even, there are zero magnetic irreps; a final check with INVARIANTS [131]

confirms that it obeys all other symmetry operations of Pm3̄m. Therefore, this term is allowed.

Like improper ferroelectricity, QX−
5

will obtain whichever sign which minimises the free energy.

The two tilt modes are thus all that is necessary to bring along the QX−
5

mode. In some ways,

this is nothing more than a simple extension of an improper transition but this mechanism

now requires two primary modes. These two can be considered to be a single hybrid mode and

consequently, this transition is labelled as a hybrid improper transition to distinguish it from

the improper involving only one primary mode [134]. The presence of a non-zero QR−
5

and QM+
2

modes now means that QX−
5

is also non-zero.

This unlocks a wider range of possibilities. The term QM+
2
QX−

5
QR−

4
is now allowed and

generates a non-zero QR−
4

. In addition, there is the term QR−
5
QX−

5
QM+

3
which produces the

distortion QM+
3

(which is symmetry-equivalent to a Jahn-Teller distortion although not caused

by an electronic degeneracy in this case). Even if the cations present in the perovskite do not

possess degenerate d orbitals, a Jahn-Teller distortion is still permitted because of the terms

present in the Landau expansion. However, the distortion is almost negligibly small as it forms as

a result of consecutive improper transitions. All the distortions present in the Pnma perovskites

are produced by the two tilt modes acting as primary modes.

If it were possible to reverse any one of these tilt modes, the other modes would switch

because of their coupled nature. For example, suppose that the QM+
2

forms an alternate domain
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Domain M+
2 R−

5 X−
5 R−

4 M+
3

1 ✓ ✓ ✗ ✓ ✓

2 ✓ ✗ ✓ ✗ ✓

Table 3.4: Energetically equivalent domains of Pnma perovskite if M+
2 can be controlled and

reversed. The second domain was discussed in text. The first domain can be obtained by
choosing to reverse R−

5 in the first trilinear term and including all possible trilinear couplings.
The tick denotes that the mode has been reversed and a cross denotes that the mode does not
need to be reversed in the particular domain.

in materials with reversed sign. Then, due to the coupling QR−
5
QM+

2
QX−

5
, either QX−

5
or QR−

5

must reverse to force these terms to lower the free energy. Now suppose that it is QX−
5

that

also reverses. This conveniently satisfies the second coupling QM+
2
QX−

5
QR−

4
as both QX−

5
and

QM+
2

have been reversed. However, it does not satisfy the third coupling QR−
5
QX−

5
QM+

3
which

now only has one reversed mode. To fix this, QR−
5

or QM+
3

must be reversed. It cannot be QR−
5

as that would now put three reversed modes in the first coupling QR−
5
QM+

2
QX−

5
so instead it

must be QM+
3

. This leaves all modes satisfied and illustrates the fact that reversing one mode

has effects that propagate throughout all the other symmetry-adapted modes.

This argument is clearly quite difficult to follow and would be further complicated if I had

included all the possible terms in the Landau expansion. Thankfully, the DOMAINS tool of

ISODISTORT [135, 136, 137, 129, 138] is designed to enumerate the set of mutually reversed

modes in a particular symmetry which would have the same energy, because all the terms in

the Landau expansion are satisfied. Using this tool, another domain can be obtained if M+
2 is

reversed. This is listed in Table 3.4. If you could control one of the modes, it would necessarily

interact with all the others.

The domain adopted by the material upon reversal of a particular mode (in this case M+
2 )

is difficult to determine. As the final domains are, by definition, energetically equivalent, the

path that a material takes is determined by the energy barriers required to switch individual

modes. Of the two domains listed in Table 3.4, it is perhaps likely that the material would opt

for Domain 2 as this doesn’t reverse R−
5 which is a primary mode. However, this could only

be determined a posteriori from the results of decades of research into the phase transitions

of perovskites. From symmetry alone, it is impossible to ascertain which modes will have the

lowest switching barrier. Nevertheless, one can often resort to common sense when group theory
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cannot give the answer and the simulations are yet to be done. If one of the domains involved

the reversal of the cation ordering, this can be almost immediately rejected; the cation mobility

is typically not high enough to allow this reversal to have a low energy barrier. The rule of

thumb used throughout this thesis is that, if it is not absolutely necessary, primary modes do

not reverse∗!

Finally, there exist hybrid improper mechanisms where it is the polarisation that is produced

as a secondary mode from two primary modes. This is the case in the perovskite related

Ruddlesden-Popper compounds Ca3Ti2O7 and Ca3Mn2O7 where the two primary modes are

rotations of the octahedra [139, 140]. Ruddlesden-Popper materials do not have the same parent

symmetry as perovskites but instead adopt an I4/mmm symmetry at high temperatures and

the non-centrosymmetric A21am symmetry at lower temperatures. The two types of octahedral

rotations transform as X+
5 and X−

5 irreps of the I4/mmm space group and the polar mode as Γ−
5 .

Therefore, a hybrid improper coupling of the form QX−
5
QX+

5
QΓ−

5
is allowed - the condensation

of the octahedral tilts leads to a polarisation. Obviously, the polarisation is a mode that can

be easily controlled with an external electric field, and so, because of the set of couplings, the

reversal of polarisation leads to a sequence of consecutive reversals of other modes until the

Landau free energy is degenerate with the original polarisation orientation.

If one can find a multiferroic in which the polarisation is caused by a hybrid improper mech-

anism, and one of the subsequent modes that must reverse once the polarisation has switched

is the ferromagnetic order parameter, then the 180◦ degree reversal of magnetic dipoles with an

electric field has been achieved.

3.4 Electric Field Control Of Magnetism By Design

Our aim is tantalisingly close! This short final section will therefore summarise the general

strategy using everything that has been discussed so far.

In short, I need to find perovskite structural polymorphs, each of which are formed by
∗With the immediate exception of the polarisation, which can be encouraged to switch by coupling to an

electric field.
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introducing combinations of symmetry-adapted distortions (transforming under the symmetry

elements of Pm3̄m as irreducible representations of Pm3̄m) so that the Landau expansion that

can be constructed using these distortions ensures that the magnetisation is reversed when the

polarisation is reversed.

Schematically, this can be achieved with two overlapping invariant terms in the Landau

expansion. One of which is a traditional hybrid improper mechanism

P ·Q1 ·Q2, (3.29)

and the second involves magnetic distortions

M ·Q1 ·QAFM. (3.30)

A second magnetic irrep QAFM must be included to preserve time-reversal symmetry in this

term. As was explored in Chapter 2, various perovskites have complicated magnetic structures

labelled by their Bertault notation. They may have a dominant antiferromagnetic structure

but, if the magnetic symmetry allows, can also have a ferromagnetic canting of spins. These two

distortions transform as different irreducible representations of the high-symmetry phase. It is

the ferromagnetic canting that takes the place of M . This mechanism of overlapping trilinear

couplings is that which was most comprehensively reviewed by Senn and Bristowe [130] and will

be expanded upon in the next chapter.

Importantly, the mode Q1 appears in both terms∗. If reversal of P with a field reverses Q1

then it must reverse in the magnetic coupling too. Now one of the other two terms must reverse

in this second coupling. As the couplings between the spins forming the magnetic structure is

presumed to be strong, it is unlikely that the entire magnetic structure reverses and instead it

seems likely that the small ferromagnetic canting reverses†. If this is the case, then the electric
∗It could have been Q2 - one of them must appear in both
†It is plausible that the overall magnetic structure could be ferromagnetic with a small antiferromagnetic

canting. This would also satisfy a term like Equation 3.30 but the switching scheme would be unlikely to work. It
would likely be the smaller antiferromagnetic canting that reverses upon reversal of P and the overall magnetisation
would remain unchanged.
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field has reversed the magnetisation - exactly what is needed for the next generation of memory

devices. Of course, there may be many other distortions present in the material which prevent

this easy scheme from working. Whether any perovskite symmetries exist in which this switching

scheme is feasible is the aim of the next chapter.
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Chapter 4

Electric Field Control Of Magnetism In

Perovskites From Symmetry

4.1 Introduction

Chapter 2, by describing the many distortions available, established the dramatis personae that

will play a role in the physics of perovskite materials. Treating each of the distortions as order

parameters, Chapter 3 revealed how symmetry can be used to construct the Landau expansion

of any particular perovskite, which determines how any given mode can interact with the others.

It is these interactions that enable the electric field control of magnetism that would be so useful

for future memory devices. In this first results chapter of my thesis, I begin to explore a variety of

perovskite phases and establish which perovskite symmetries permit this exciting functionality.

4.2 ABO3 Perovskites

The rapid increase in the number of symmetries obtained by introducing order parameters and

permuting their order parameter directions makes their enumeration a difficult task. Therefore,

I start by analyzing the symmetry of ABO3 perovskites. I consider all possible tilt structures but

allow for magnetism only on B sites. In principle, I should include A-site magnetism too but for

ABO3 materials, any magnetism on A sites is typically due to f electrons on rare earth cations
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4.2. ABO3 Perovskites

Tilt Pattern M+
2 OPD R−

5 OPD Space Group
a0a0a0 N/A N/A Pm3̄m
a0a0c+ (a; 0; 0) N/A P4/mbm
a0b+b+ (a; a; 0) N/A I4/mmm
a+a+a+ (a; a; a) N/A Im3̄
a+b+c+ (a; b; c) N/A Immm
a0a0c− N/A (a, 0, 0) I4/mcm
a0b−b− N/A (a, a, 0) Imma
a−a−a− N/A (a, a, a) R3̄c
a0b−c− N/A (a, b, 0) C2/m
a−b−b− N/A (a, a, b) C2/c
a−b−c− N/A (a, b, c) P 1̄
a0b+c− (a; 0; 0) (0, 0, b) Cmcm
a+b−b− (a; 0; 0) (0, b, b) Pnma
a+b−c− (a; 0; 0) (0, b, c) P21/m
a+a+c− (a; a; 0) (0, b, 0) P42/nmc

Table 4.1: All simple tilt patterns inABO3 perovskites. There are only 15 symmetry inequivalent
patterns.

[141]. These tend to have comparatively low magnetic ordering temperatures, which make them

impractical for the stated aim of designing a room-temperature multiferroic exhibiting electric

field control of magnetism. I relax this restriction when I investigate cation ordered perovskites,

which do allow for magnetic transition metals on the A sites.

Recapping the discussion of Chapter 2, there are 15 different simple∗, symmetry inequivalent

tilt patterns. These can be produced by introducing and combining the in-phase tilt irrep M+
2

and the anti-phase tilt irrep R−
5 with varying order parameter directions (OPD). This is shown

in Table 4.1.

For each of these, it is theoretically permissible for the polarisation to appear along practically

any axis. This is achieved by adding in the polar Γ−
4 irrep with varying OPDs. Table 4.2 lists

most of these. However, there is an extra degree of freedom available to the order parameter

which is needed to complete the enumeration. For OPDs with equal magnitudes along different

directions, it is possible to change the relative phase between the two components to break the

symmetry in another way. Therefore, (a, a, 0) ̸= (a,−a, 0) etc. The remaining symmetries are

obtained in Table 4.3.
∗By "simple", I mean tilt patterns in which there is no superposition between antiphase and inphase tilts along

the same axis. Such a tilt pattern cannot be described by Glazer notation.
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Γ−
4 Order Parameter Direction

Tilt Pattern (a, 0, 0) (0, a, 0) (0, 0, a) (a, a, 0) (a, 0, a) (0, a, a) (a, a, a) (a, b, 0) (a, 0, b) (0, a, b) (a, b, c)

a0a0a0 P 4mm P 4mm P 4mm Amm2 Amm2 Amm2 R3m P m P m P m P 1
a0a0c+ Amm2 Amm2 P 4bm P mc21 Cm Cm P c P m Cm Cm P 1
a0b+b+ I4mm Imm2 Imm2 Cm Cm F mm2 Cm Cm Cm Cm P 1
a+a+a+ Imm2 Imm2 Imm2 Cm Cm Cm R3 Cm Cm Cm P 1
a+b+c+ Imm2 Imm2 Imm2 Cm Cm Cm P 1 Cm Cm Cm P 1
a0a0c− F mm2 F mm2 I4cm Ima2 Cm Cm Cc Cm Cm Cm P 1
a0b−b− Cm Ima2 Cm P 1 Ima2 P 1 Cc P 1 Cm P 1 P 1
a−a−a− Cc Cc Cc Cc Cc Cc R3c P 1 P 1 P 1 P 1
a0b−c− Cm C2 Cm P 1 Cm P 1 P 1 P 1 Cm P 1 P 1
a−b−b− P 1 Cc P 1 P 1 Cc P 1 Cc P 1 P 1 P 1 P 1
a−b−c− P 1 P 1 P 1 P 1 P 1 P 1 P 1 P 1 P 1 P 1 P 1
a0b+c− Ama2 Amm2 Cmc21 P m Cc Cm P 1 P m Cc Cm P 1
a+b−b− P m P m P na21 P mc21 P 1 P 1 P c P m P 1 P 1 P 1
a+b−c− P m P m P 21 P m P 1 P 1 P 1 P m P 1 P 1 P 1
a+a+c− P 42mc P mn21 P mn21 P m P m Aba2 Cc P m P m P c P 1

Table 4.2: Symmetry lowering by adding the polar Γ−
4 mode with various OPDs to each tilt

pattern.

Γ−
4 Order Parameter Direction

Tilt Pattern (a, −a, 0) (a, 0, −a) (0, a, −a) (a, −a, −a) (−a, a, −a) (−a, −a, a)

a0a0a0 Amm2 Amm2 Amm2 R3m R3m R3m
a0a0c+ P mc21 Cm Cm P c P c P c
a0b+b+ Cm Cm F mm2 Cm Cm Cm
a+a+a+ Cm Cm Cm R3 R3 R3
a+b+c+ Cm Cm Cm P 1 P 1 P 1
a0a0c− Ima2 Cm Cm Cc Cc Cc

a0b−b− P 1 Imm2 P 1 Cm Cc Cm

a−a−a− C2 C2 C2 Cc Cc Cc

a0b−c− P 1 Cm P 1 P 1 P 1 P 1
a−b−b− P 1 C2 P 1 P 1 Cc P 1
a−b−c− P 1 P 1 P 1 P 1 P 1 P 1
a0b+c− P m Cc Cm P 1 P 1 P 1
a+b−b− P mn21 P 1 P 1 P c P c P c

a+b−c− P m P 1 P 1 P 1 P 1 P 1
a+a+c− P m P m Aba2 Cc Cc Cc

Table 4.3: Symmetry lowering by adding the polar Γ−
4 mode with additional OPDs to each tilt

pattern.

Some features of Tables 4.2 and 4.3 should be noted. Firstly, an identical space group does

not necessarily mean that the two crystal structures are the same. For example, the Pmc21

symmetry can be obtained from a a0a0c+ tilt pattern and a Γ−
4 mode along (a, a, 0). It can

also be obtained through an a+b−b− tilt pattern with Γ−
4 mode along (a, a, 0). The additional

polarisation does not enforce the additional tilts. Evidently, these crystal structures are not

equivalent due to the manifestly different tilt patterns yet share the same symmetry elements.

In contrast, introducing the polar mode can relax restrictions on the tilt pattern so that two tilt

patterns become equivalent - this is reflected in identical space groups. For example, the Cm

space group achieved in the a0a0c+ and a0b+b+ rows are genuinely the same crystallographic

structure; the polar mode and associated OPD allows the appearance of a second in-phase

tilt. Frustratingly then, sometimes identical space groups denote similar crystal structures, and
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4.2.1. a+b−b− Perovskites

sometimes they do not.

In addition, the P1 symmetry is the lowest symmetry space group, containing only the

identity symmetry element. I will not focus on any material with this space group because every

non-trivial symmetry element in Pm3̄m has been broken. The irreps in the space group are

too numerous to work with and a group theoretical analysis becomes distinctly less enlightening

than with higher symmetry subgroups.

Most of the crystallographic symmetries explored in Tables 4.2 and 4.3 are physically un-

attainable because of the considerations listed in Chapter 2. Introducing any magnetic cation

significantly reduces the tolerance factor of the perovskite material and introduces tilts. We can

therefore safely ignore any untilted perovskite structure (or those with a small number of tilts).

In fact, the vast majority of ABO3 perovskites take up the a+b−b− tilt pattern and so I focus on

that symmetry. A great deal of work has been conducted to engineer polar distortions in this

common tilt pattern and typically, the polar distortion is in highly symmetrical directions.

Similar rules of thumb apply to magnetism. The full range of magnetic symmetries are not

explored by perovskites. Indeed, perovskite magnetism is usually relatively simple [27], with

easy axes along pseudocubic axes.

4.2.1 a+b−b− Perovskites

Tables 4.2 and 4.3 list five distinct symmetries∗ for different polarisation directions superimposed

onto the a+b−b− tilt pattern. These were Pm : (a, 0, 0) and (0, a, 0), Pmc21 : (a, a, 0), Pmn21

: (a,−a, 0), Pna21 : (0, 0, a) and finally Pc : (a, a, a). As an example of the equivalence of

different order parameter direction, (a, 0, 0) and (0, a, 0) are subsumed into (a, b, 0) and both

result in Pm symmetry. The immediate result of this is that I only need to investigate either

the (a, 0, 0) or (0, a, 0) OPD.

For each of these symmetries, I insert a collinear magnetic structure described by one of the

magnetic irreps and then for each magnetic irrep I choose OPDs along the pseudocubic directions.

For the three dimensional irreps, this is (a, 0, 0), (0, a, 0) and (0, 0, a). For the six-dimensional
∗Not including P 1.
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4.2.1. a+b−b− Perovskites

B-site Magnetism
Γ−

4
OPD mX−

1 mX−
5 mM+

2 mM+
5 mR−

5

(a, 0, 0) (0; 0; a) (0, 0; 0, 0; a, b) (a; 0; 0) (a, b; 0, 0; 0, 0) (a, 0, 0)
(0, a, b)

(0, 0, a) (0; 0; a) (0, 0; 0, 0; a, b) N/A (a, b; 0, 0; 0, 0) (a, 0, 0)
(0, a, b)

(a, a, 0) (0; 0; a) (0, 0; 0, 0; a, b) N/A (a, b; 0, 0; 0, 0) (a, 0, 0)
(0, a, b)

(a, a, a) (0; 0; a) (0, 0; 0, 0; a, b) (a; 0; 0) (a, b; 0, 0; 0, 0) (a, b, b)
(a, b, c)

(a,−a, 0) (0; 0; a) (0, 0; 0, 0; a, b) N/A (a, b; 0, 0; 0, 0) (a, 0, 0)
(0, a, b)

Table 4.4: Magnetic structures allowing for weak ferromagnetism in polar subgroups of ABO3
perovskites with a+c−c− tilt patterns. Entries are the magnetic irrep OPDs that result on
symmetries that allow for the wFM irrep mΓ+

4

magnetic irreps∗, these are all the permutations of (a, 0; 0, 0; 0, 0). I then use ISODISTORT

to see if these magnetic structures, when superimposed on the polar structure, allow for weak

ferromagnetism which transforms as the mΓ+
4 irrep. The results of this analysis are shown in

Table 4.4.

Each entry in Table 4.4 is the OPD of the magnetic irrep allowing for wFM. Both X and M

point modes only allow for wFM in particular directions whereas mR−
5 allows for wFM with any

simple easy axis (the (0, a, 0) and (0, 0, a) OPDs are symmetry equivalent and both reduce to

(0, a, b)). Typically, the same magnetic structure creates wFM irrespective of the polar direction

but this is not true for the mM+
2 where the polar direction can kill wFM. This is because a

coupling like QmM+
2
QM+

2
QmΓ+

4
, which creates the wFM, does not satisfy all the point group

operations for certain wFM OPDs.

Weak ferromagnetism is therefore a fairly generic feature of a+c−c− tilts for almost any

polarisation direction, especially if the perovskite has a G-type antiferromagnetic structure.

The question to answer now is whether any of these polar, weakly ferromagnetic structures

allow for the electric field control of magnetism.
∗Six-dimensional order parameters can be understood to be a combination of lower dimensional order para-

meters. For example, the semi-colon in the notation (a, 0; 0, 0; 0, 0) separates the six-dimensional order parameter
into three, two dimensional order parameters, which correspond to magnetic moments that are able to rotate
within three mutually perpendicular planes.
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4.2.1. a+b−b− Perovskites

For Pm symmetry, with the polar mode along the (a, 0, 0) OPD, all collinear structures

allow for wFM. However, when I compute all of the possible domains reached by reversing the

primary modes, as is done in Tables B.1, B.2, B.3, B.4 and B.5, there always exists a domain

in which the polar mode Γ−
4 is the only primary mode that must reverse. As this reverses the

fewest number of primary modes, it is likely that such a domain would have the lowest energy

barrier.

I have also explicitly calculated the domain structure for all magnetic structures in Pna21

(Tables B.6, B.7 and B.8) and Pmc21 (Tables B.9, B.10 and B.11) and obtain the same result.

For the sake of space, the Pmn21 and Pc symmetries are not included but suffer from the same

negative conclusion.

In Table B.8, I have also included domains in which the weak ferromagnetism rotates by 90

degrees rather than reverses completely. This is allowed whenever the wFM has an OPD with

two components. I’ve belaboured this point because it has been reported in the literature that

Pna21 allows for this rotation of wFM with reversal of polarisation [142]. This is indeed true

but it seems very unlikely to be observed because there is always a favoured domain without

any magnetoelectric response at all. Any discussion of alternative domains was absent from

Reference [142].

It could be argued that the conditions I have imposed here to determine the "lowest energy

barrier" between the original state and a domain with some modes reversed is overly simplistic.

This is true - ferroelectric switching normally takes place via the nucleation of the reversed

domain at a defect, and then the motion of domain walls and the subsequent growth of domains

[143, 144]. This entire chain of events is known as the Kolmogorov-Avrami-Ishibashi process.

The domain wall motion is also strongly dependent on the domain wall pinning. Furthermore,

considerations of the dielectric breakdown of any particular material must be made. If the

field required to switch is larger than the critical field that destroys the insulating state, then

obviously no electrically induced ferroelectric switching is possible. All of these conditions make

for a far more accurate description of ferroelectric switching, but it is also necessarily much more

complicated, especially as the ferroelectric switching in any particular material is dependent on

idiosyncratic features of that same material and a proper study of any one of them would require
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4.2.1. a+b−b− Perovskites

years of work and become a PhD project by itself.

Instead, the approach taken here in reducing the complex domain wall dynamics to a more

simplified situation in which there is a homogeneous reversal of modes, and then ordering their

likelihood based on the number of reversing primary modes, acts as a zeroth-order approxim-

ation. It may be crude but as has been demonstrated in this section, it is very easily scalable

to many symmetries at once. This makes a high-throughput discussion of many perovskites

possible. Besides, these simple considerations of "lowest energy switching barrier" may not be

as rudimentary as they seem. Previous studies have actually seen this kind of homogeneous

switching [145, 146] (albeit under special conditions) and more recent work [147] has shown that

nucleation can be important even in defect free crystals. Moreover, it is not unreasonable to

assume that domain wall motion occurs via a local mode reversal. To zeroth order, this would

mimic the discussion given here.

The real advantage of our simplified method here is that we can almost immediately rule out

certain perovskite symmetries as candidates for the electric field control of magnetism, as was

possible for a−a−c+ single perovskites. This was because the polar irrep Γ−
4 was not coupled

directly to any other primary mode. In order to have large magnetoelectric couplings, we need

an improper ferroelectric.

We can create ABO3 single perovskite structures that do allow for the electric field control of

magnetism through an improper mechanism if we allow for magnetism on the A-site. Consider

a material with a+c−c− (R−
5 and M+

2 ) tilts and also A-type spins on both the A-site and the

B site (mX+
3 and mX−

1 respectively). Then a weak ferromagnetic moment can be produced

through a coupling like

QmΓ+
4
QmX−

1
QM+

2
QR−

5
(4.1)

and a polarisation can be formed through the spin-driven (Type II), improper mechanism

QΓ−
4
QmX−

1
QmX+

3
(4.2)

so that if it is preferable to switch the magnetism on the B-site over the magnetism on the

A-sites, and the weak ferromagnetism is preferred over the tilts (extraordinarily likely), then the

electric field control of magnetism would be achieved using only primary modes.
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Irrep Reversal
Domain Γ−

4 mΓ+
4 M+

2 R−
5 mX−

1 mX+
3

1 ✓ ✓ ✓ ✗ ✗ ✓

2 ✓ ✓ ✓ ✓ ✓ ✗

3 ✓ ✓ ✗ ✓ ✗ ✓

4 ✓ ✓ ✗ ✗ ✓ ✗

5 ✓ ✗ ✓ ✓ ✗ ✓

6 ✓ ✗ ✓ ✗ ✓ ✗

7 ✓ ✗ ✗ ✗ ✗ ✓

8 ✓ ✗ ✗ ✓ ✓ ✗

Table 4.5: Domain structure of hypothetical perovskite with a collinear A-type magnetic struc-
ture on both A and B sites. Electric field switching of magnetisation can be achieved if the
switching of magnetism on A-sites is engineered to be harder than switching the magnetism on
B-sites.

To confirm, adding the tilt pattern, mX−
1 and mX+

3 (both magnetic modes with OPD

(0, 0, a)) leads to a Pna21 symmetry which is both polar and allows for wFM. The domain

structure for this hypothetical material is shown in Table 4.5.

Alternatively, I can do the same thing for G-type spins on both the A and B sites because

a coupling like

QΓ−
4
QmR−

5
QmR+

4
(4.3)

would produce the ferroelectricity and then a coupling like

QmΓ+
4
QmR−

5
QR−

5
(4.4)

establishes the weak ferromagnetism. We again need a system in which it is easier to switch the

B spins than the A spins. Checking with ISODISTORT, this again results in a Pna21 symmetry

with a weak ferromagnetic moment. The domain structure in Table 4.6 would also allow for the

electric field control of magnetism.

The conclusion here is that the electric field control of magnetism is certainly a theoretical

possibility in perovskites with simple tilt patterns, but it requires unusual magnetic orderings.

If we allow for realistic ion ordering, this extra degree of freedom allows greater flexibility and

makes the electric field control of magnetism a serious possibility in real materials.
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Irrep Reversal
Domain Γ−

4 mΓ+
4 M+

2 R−
5 mR+

4 mR−
5

1 ✓ ✓ ✓ ✓ ✓ ✗

2 ✓ ✓ ✓ ✗ ✗ ✓

3 ✓ ✓ ✗ ✗ ✗ ✓

4 ✓ ✓ ✗ ✓ ✓ ✗

5 ✓ ✗ ✓ ✗ ✓ ✗

6 ✓ ✗ ✓ ✓ ✗ ✓

7 ✓ ✗ ✗ ✓ ✗ ✓

8 ✓ ✗ ✗ ✗ ✓ ✗

Table 4.6: Domain structure of hypothetical perovskite with a collinear G-type magnetic struc-
ture on both A and B sites. Electric field switching of magnetisation can be achieved if the
switching of magnetism on A-sites is engineered to be harder than switching the magnetism on
B-sites.

4.3 Ion Ordered Perovskites

The previous section investigated how symmetry breakings may permit the electric field control

of magnetism in perovskites without cation order ie. ABO3 perovskite materials. In the follow-

ing, I allow for the additional symmetry breaking associated with cation order and investigate

whether this will be more fruitful.

The previous subsection also tried to be somewhat comprehensive in the symmetry analysis.

Such an approach is certainly enlightening but in practice, there were too many degrees of

freedom to be exhaustive. With the new focus on cation-order in perovskite materials, we

restrict the symmetry analysis to structural polymorphs that could potentially be synthesized.

This effectively reduces our symmetry analysis to simple cation orderings and tilt patterns.

From Chapter 2, the simplest cation orderings include rocksalt ordering (transforming as an

R-point irrep (R−
2 )), columnar ordering (transforming as an M -point irrep M+

4 ) and layered

ordering (transforming as an X-point irrep X−
3 ) but others will also be investigated. The

primary advantage associated with introducing cation orderings is that the energy barrier to

reverse such an ordering is enormously large because of the relatively low cation mobility and

so I can ignore any domains that are reached via a reversal in cation order.
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4.3.1 A2BB′O6 Perovskites

We begin with perovskites with ordered B-sites. The standard reference for B-site ordering in

perovskites is the extensive review by Vasala and Karpinnen [59]. This reviews the literature

of A2BB′O6 perovskites, listing various physical properties of which the space group and the

B-site ordering are the most important for our present purposes.

Interestingly, there is not a single example of columnar ordered B-sites. King and Woodward

[60], explained that cation ordering is strongly dependent on the difference in oxidation states

and the strain caused by cation size-mismatch. B-site columnar ordering has only been observed

in charge-ordered Mn compounds where the additional strain from the first-order Jahn-Teller

distortion of the Mn3+ increases the propensity towards cation ordering. As the review only

focuses on materials with two distinct B-sites, these materials are omitted.

The enumeration of space groups is also useful. The review states that of the 540 materials

with rocksalt ordered B-sites, 310 of them have the a−a−c+ tilt pattern giving a P21/n space

group. This reflects the general fact that such a tilt pattern is generally favoured in perovskites

because of the additional energy lowering gained by the QX−
5
QM+

2
QR−

5
trilinear coupling. I will

focus on this tilt pattern.

There are no examples of transition metals on the A-sites when the B-sites are rocksalt

ordered, and so magnetism on these A-sites can be neglected.

Very few A2BB′O6 perovskites are polar, which presents a huge problem if we intend to use

this structure to couple the polarisation to the magnetism. A2BB′O6 with A=Pb can frequently

be made to be polar after applying an electric field because of the Pb lone-pairs but this would

describe an antiferroelectric. Only Pb2ScB′O6 with B′=Nb,Ta results in a polar space group

(R3) without any applied field [148]. Of course, Nb5+ and Ta5+ are non-magnetic. It thus

appears that obtaining a proper Type-I multiferroic from BB′ ordering is not possible. Is it

possible to obtain a Type-II multiferroic through the simultaneous appearance of a polarisation

with the magnetic structure and if so, does this allow for the electric field control of magnetism?

To answer this, I introduce the rocksalt ordering R−
2 to the a−a−c+ symmetry as well as
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mX−
1 mM+

2 R−
5

Polar? N/A N/A N/A

wFM?

(0; 0; a)
(0; a; a)

(0; a; −a)
(a; b; c)

(a; 0; 0)
(a; b; c)

(a, 0, 0)
(0, a, 0)
(0, a, 0)
(a, a, 0)
(0, a, a)
(a, b, b)
(a, b, c)

Table 4.7: Properties enabled by the introduction of different collinear structures on the BB′

sites of cation ordered A2BB′O6 perovskites with a−a−c+ tilt patterns.

X+
1 OPD

(a; 0; 0) (0; a; 0) (0; 0; a)
Space Group P21/m P21/m Pmc21

Table 4.8: Symmetries obtained by layering the cations along different directions. Only the
(0; 0; a) OPD leads to a polarisation.

various magnetic structures. The results of the symmetry analysis are included in Table 4.7.

There are many OPDs producing weak ferromagnetism but there are none that break the centre

of symmetry.

Repeating the analysis with columnar (M+
4 ) or layered (X−

3 ) cation order instead leads to

similar results. Just superposing cation order and magnetism does not break inversion symmetry

but frequently allows for wFM. The combination of magnetism and cation ordering on the B-site

is therefore not a fruitful approach in designing materials which permit the electric field control

of magnetism, at least not for the most common tilt pattern.

4.3.2 AA′B2O6 Perovskites

What about ordering the A-sites instead? As mentioned in Chapter 2 and discussed in the

review by King and Woodward [60], layered ordering is preferred on the A-site. Combining the

various magnetic structures with A-site layering (X+
1 ) with the the a−a−c+ tilt pattern (formed

by M+
2 with OPD (a, 0, 0) and R−

5 with OPD (0, a, a)) leads to several possibilities. This is

demonstrated in Table 4.8.
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Table 4.9: Magnetic irreps and their OPDs that also allow for the wFM irrep mΓ+
4 .

B-Site Magnetism
mX−

1 mX−
5 mM+

2 mM+
5 mR−

5

(0; 0; a)
(a; b; c) (0, 0; 0, 0; a, b) (a; b; c) (a, b; 0, 0; 0, 0)

(a, 0, 0)
(0, a, b)
(a, b, c)

For the OPD (0; 0; a)∗, the space group is the non-centrosymmetric Pmc21. The combina-

tions of a−a−c+ and cation layering breaks the centre of symmetry and leads to a polar crystal

structure. This is due to the appearance of a trilinear coupling

E = λQX−
5
QX+

1
QΓ−

4
(4.5)

between the cation ordering, the antipolar motions of the A sites (X−
5 ) and the polar mode

Γ−
4 . Both QX+

5
(because it is in the high symmetry structure and coupled to tilts) and QX+

1

(being a cation ordering) would have large amplitudes and QΓ−
4

would adopt a sign that reduces

the overall energy irrespective of the sign of the coefficient λ.

The next step is to check simple magnetic structures for wFM, and if this is permitted, to

check whether the polarisation and wFM are coupled in the desired way. Again, I only consider

magnetic orderings on the B-site. The OPDs of the magnetic irreps that allow for wFM are

listed in Table 4.9. There are only three simple configurations I need to consider further and

calculate their domains. These are mX−
1 (0; 0; a), mR−

5 (a, 0, 0) and mM+
5 (a, b; 0, 0; 0, 0) which

are now considered primary distortions along with X+
1 (0; 0; a),M+

2 (a; 0; 0) and R−
5 (0, a, a). The

domains for these three magnetic structures are shown in Tables 4.10, 4.11, 4.12. For all of

these magnetic structures, we see a domain in which only the polarisation and the cation order

is switched. We assume that such a domain is unfavourable because of the enormous energy

barriers to reversing a cation order. For the mX−
1 structure, the domain that reverses the second

fewest number of modes (either domain 1 or 2) is a magnetoelectric domain in which the wFM

has also reversed. It is due to the cation order that a domain of this kind is favourable. However,

this domain still requires the switching of one of the tilt modes.
∗In real space, this is a cation layering in which the normal to the layers is parallel to the in phase tilt axis.
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mX−
1 (0; 0; a) Primary Irrep Reversal

Domain Γ−
4 mΓ+

4 M+
2 R−

5 X+
1 mX−

1
1 ✓ ✓ ✗ ✓ ✗ ✗

2 ✓ ✓ ✓ ✗ ✗ ✗

3 ✓ ✓ ✗ ✗ ✓ ✓

4 ✓ ✓ ✓ ✓ ✓ ✓

5 ✓ ✗ ✗ ✓ ✗ ✓

6 ✓ ✗ ✓ ✗ ✗ ✓

7 ✓ ✗ ✗ ✗ ✓ ✗

8 ✓ ✗ ✓ ✓ ✓ ✗

Table 4.10: Domains for layered A-site perovskite with a−a−c+ tilts and a magnetic structure
transforming as the mX−

1 (0; 0; a) irrep.

mR−
5 (a, 0, 0) Primary Irrep Reversal

Domain Γ−
4 mΓ+

4 M+
2 R−

5 X+
1 mR−

5
1 ✓ ✓ ✗ ✓ ✗ ✗

2 ✓ ✓ ✓ ✗ ✗ ✓

3 ✓ ✓ ✗ ✗ ✓ ✓

4 ✓ ✓ ✓ ✓ ✓ ✗

5 ✓ ✗ ✓ ✗ ✗ ✗

6 ✓ ✗ ✗ ✓ ✗ ✓

7 ✓ ✗ ✓ ✓ ✓ ✓

8 ✓ ✗ ✗ ✗ ✓ ✗

Table 4.11: Domains for layered A-site perovskite with a−a−c+ tilts and a magnetic structure
transforming as the mR−

5 (a, 0, 0) irrep.

For the mR−
5 structure, the most favourable domain is the ferroelectric domain in which the

polarisation is switched with the in-phase tilt. For the mM+
5 structure, the situation is more

subtle. The lowest energy domain obtained after switching the polarisation would depend on

whether the combined switching of mΓ+
4 and M+

2 is favoured over switching just R−
5 .

To summarise, a layered perovskite with a−a−c+ tilts and a magnetic structure transforming

as mX−
1 would allow for the electric field control of magnetism if we assume that the cation

ordering is immutable. The properties of a candidate material with this symmetry is explored

in Chapter 7 through computer simulation. The mM+
5 and mR−

5 structures may also allow for

the effect.
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mM+
5 (a, b; 0, 0; 0, 0) Primary Irrep Reversal

Domain Γ−
4 mΓ+

4 M+
2 R−

5 X+
1 mM+

5
1 ✓ ✓ ✗ ✓ ✗ ✓

2 ✓ ✓ ✗ ✗ ✓ ✓

3 ✓ ✓ ✓ ✗ ✗ ✗

4 ✓ ✓ ✓ ✓ ✓ ✗

5 ✓ ✗ ✗ ✓ ✗ ✗

6 ✓ ✗ ✗ ✗ ✓ ✗

7 ✓ ✗ ✓ ✗ ✗ ✓

8 ✓ ✗ ✓ ✓ ✓ ✓

Table 4.12: Domains for layered A-site perovskite with a−a−c+ tilts and a magnetic structure
transforming as the mM+

5 (a, b; 0, 0; 0, 0) irrep.

4.3.3 A3BB′
2O9 Triple Perovksites

Triple perovskites with A3BB′
2O9 were first observed in the 1960s with for the Ba3SrTa2O9

composition [149]. The Sr and Ta occupy the B sites in 1:2 layers that are ordered along the

[111] direction of the pseudocubic 5-atom perovskite cell. This family of materials was quickly

extended to include many materials with a A2+
3 B2+B′5+

2 O9 [150, 151] composition when A=Ca,

Sr, Ba; B=Mg,Ca,Sr,Mn,Fe,Co,Ni,Cu,Zn; and B′= Nb,Ta. Importantly, it was noticed that

the 1:2 ordering only takes place when the difference in cation radii for the two B sites are

substantially different [150]. Therefore Ca and Nb order successfully but Fe and Nb do not. In

fact, none of the magnetic transition cations order. Nevertheless, the resulting symmetry after

cation order is still centrosymmetric and so would not permit the necessary polarisation.

It was later found that other magnetic cations could be included in the B′ site and that the

B sites would continue to order in the 1:2 state. Therefore Sr3CaRu2O9, [152, 153], Sr3CaIr2O9

[154], Sr3CaOs2O9 [155] all order successfully. The Os composition is especially interesting

due to the extremely high magnetic ordering temperature (TN = 385K). The Ru compound

also shows impressive magnetic ordering temperatures (TN = 190K) whereas the Ir compound

is paramagnetic. All of these compounds also show the familiar a−a−c+ tilt pattern which

combines with the cation order to produce a monoclinic P21/c symmetry.

This symmetry is stil centrosymmetric. How can inversion be broken? I looked for examples

of the 1:2 B site order with additional ordering on the A-site. There is a single reported
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example - (Na 1
2
La 1

2
)(Mg 1

3
Nb 2

3
)O3 [156]. This has the A-sites layered along the [001] direction

of the pseudocubic in addition to the 1:2 ordering of the B-sites∗. This material also has the

a−a−c+ tilt pattern. Combining the tilts and the two cation orders reduces the symmetry to

Pc - a polar space group. However, the original study [156], did not conduct any experiments

to test whether the material is a ferroelectric with a switchable polarisation.

The natural course of action to take would be to try and combine the high magnetic order-

ing temperature of Sr3CaOs2O9 with the polar crystal structure of (Na 1
2
La 1

2
)(Mg 1

3
Nb 2

3
)O3. We

therefore propose either (Na 1
2
La 1

2
)(Ca 1

3
Os 2

3
)O3 or (Na 1

2
La 1

2
)(Ca 1

3
Ru 2

3
)O3. The new materials

have similar tolerance factors to the originals (for example tNLMN = 0.958 and tNLCR = 0.939),

and we do not suspect that the magnetic structure of Os will be affected by the small dis-

tortions induced by the slightly different change in tolerance factor. It seems likely that

(Na 1
2
La 1

2
)(Ca 1

3
Os 2

3
)O3 would therefore be a multiferroic† with an above room temperature Neel

temperature.

Using ISODISTORT, we analyse the symmetry of this proposed triple perovskite, with the

magnetic structure of the Os compound, using the 5-atom perovskite Pm3̄m as the parent

structure. The resulting decomposition into symmetry-adapted modes is incredibly complicated,

with 32 separate irreps involves. The primary modes are the two tilt modes M+
2 and R−

5 , a

combination of mΛ2 and mΛ3 (Λ is at the k = (1
3 ,

1
3 ,

1
3) point) modes that describe the magnetic

structure, a Λ1 mode that describes the cation order of the B sites and the familiar X+
1 mode

for the cation order in the A-sites.

For secondary modes, we have an allowed polarisation mode Γ−
4 directed with an (a, b, b)

OPD. This suggests that the polarisation is predominantly along the [111] direction but also

allows for some canting because a ̸= b by symmetry. In addition, there is the crucial mΓ+
4

ferromagnetic mode describing the ferromagnetic canting with a (a, b, b) OPD. Therefore, all the

necessary ingredients are present.

As the Λ modes are at k = (1
3 ,

1
3 ,

1
3), they allow for the interesting possibility of electric field

∗Technically, this is no longer a triple perovskite but is instead now a sextuple perovskite because when the
chemical formula is expanded, it becomes Na3La3Ca2Os4O18

†In the broad sense of the word in which there is a polarisation and a long ranged magnetic structure
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control of magnetism through a single coupling in the Landau expansion rather than the two

overlapping couplings discussed at the end of Chapter 3. Checking on INVARIANTS reveals a

term of the form

QΓ−
4
Q3

mΛ1QmΓ+
4
. (4.6)

Being a fifth order term that is odd in all of the constituent modes, it acts analogously to trilinear

terms. Assuming that Q3
mΛ1

is the large magnetic structure that is unlikely to switch, then a

reversal of QΓ−
4

with an electric field results in a reversal of the ferromagnetic canting QmΓ+
4

. If

this were the only term involved, the electric field control of magnetism would be achieved.

However, there are a great many other terms that may play a role. Due to the sheer number

of secondary modes and the complexity of the structure, I change tactic when computing all

allowed invariants in the Landau expansion and the energy degenerate domains. Instead of

using the Pm3̄m cell as my parent structure, I instead use a cell with the ordered A and B sites

already present. The central assumption in the previous section when investigating AA′B2O6

perovskites is that cation order does not change in any switching process. If this is true, and

the low mobility of cations in perovskites suggest that it is, I can ignore this additional degree

of freedom. The new parent structure has a C2/m symmetry.

Decomposing the full structure with the tilts and the magnetic structure as symmetry ad-

apted modes of this C2/m parent simplifies matters. There are now only 8 irreps to deal with.

These are Γ+
1 , Γ−

2 (which describes the ferroelectric distortion), mΓ+
2 (the ferromagnetic cant-

ing), mΓ−
1 (the primary magnetic structure), Y +

2 and Y −
1 (the octahedral tilts) with mY +

1 and

mY −
2 describing symmetry allowed antiferromagnetic canting. What are these Y modes which

ISODISTORT reports as being at the (0, 1, 0) point? Isn’t this just equivalent to the Γ point?

In fact, (0, 1, 0) is not actually a point in the reciprocal lattice at all. This can be seen by recog-

nising that a C-centered lattice possesses an extra lattice point within the face perpendicular to

the c lattice. With respect to the conventional cell lattice vectors (a,b, c), the primitive lattice

vectors (a′,b′, c′) could be (the choice is not unique but the conclusions would be unchanged)

a′ = −1
2a + 1

2b,
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b′ = 1
2a + 1

2b,

and

c′ = c.

These expressions can be used to find the transformation matrix Q between the conventional,

centered cell and the primitive by constructing the matrix P with these primitive lattice vectors

as columns, and then transposing it so that

Q = PT =


−1

2
1
2 0

1
2

1
2 0

0 0 1


T

=


−1

2
1
2 0

1
2

1
2 0

0 0 1

 .

We can then apply this transformation to the conventional point (0, 1, 0) to get


−1

2
1
2 0

1
2

1
2 0

0 0 1




0

1

0

 =


1
2
1
2

0


which is clearly not a lattice point. Another nice detail of this calculation is that it can be

repeated for an arbitrary point (hkl) in the conventional cell so that


−1

2
1
2 0

1
2

1
2 0

0 0 1




h

k

l

 =


1
2(−h+ k)
1
2(h+ k)

l


and it becomes clear that a point in the reciprocal conventional cell is only a lattice point if

h + k = 2n or h − k = 2n. These are systematic absences. With respect to the primitive cell

then, Y modes are actually zone boundary modes which increase the volume of the primitive

cell∗.
∗Thank you to Branton Campbell of Brigham Young University for explaining this to me.
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Irrep Reversal
Domain Γ+

1 Γ−
2 mΓ+

2 mΓ−
1 Y +

2 Y −
1 mY +

1 mY −
2

1 ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓

2 ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗

3 ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

4 ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗

Table 4.13: Energy equivalent domains in the Pc phase of (Na 1
2
La 1

2
)(Ca 1

3
Os 2

3
)O3 specified by

which irreps must be switched to reach the domain. Irreps describe symmetry breakings from
the C2/m parent symmetry which has the cation ordering frozen in.

I used INVARIANTS to calculate all couplings between these new modes, and then the

allowed domains, which are summarised in Table 4.13. These are the only domains available

when the polarisation is reversed.

From Table 4.13, we can see immediately that the electric field reversal of magnetism will

be allowed in this material because Domains 1 and 2 are clearly favoured over Domains 3 and

4. Domains 1 and 2 do not reverse the overall magnetic structure whereas the other two do.

In all domains, reversing the polarisation must reverse at least one of the tilt modes and one

antiferromagnetic canting. With this collection of modes, it is highly likely that this material

would possess the electric field control of magnetism. In the context of the new parent cell, the

relevant term in the Landau expansion is

QΓ−
2
QmΓ−

1
QmΓ+

2
. (4.7)

The physics is the same as before, but the coupling term now takes on a much simpler form.

I note that there have been other reports of multiferroic triple perovskites [157, 158] but

these are only formed at extremely low temperatures (T ≈ 4K) and are due to the hexagonal

symmetry producing a non-collinear spin structure that breaks the symmetry. This makes the

materials Type-II multiferroics. (Na 1
2
La 1

2
)(Ca 1

3
Os 2

3
)O3 would instead be a Type-I multiferroic

with a very high magnetic transition temperature.
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4.3.4 AA′
3B4O12 Perovskites

AA′
3B4O12 are quadruple perovskites, deduced from the O12 in the chemical formula. This

structure can be obtained for a perovskite with an a+a+a+ tilt pattern when A is a large cation

and A′ is a smaller, transition metal cation. The A′ cations are far too small for their site and

so the octahedra undergo especially large tilts to accomodate this - the B-O-B angle between

neighbouring cations is about 140◦ [66]. These huge tilts result in the A′ sites having a square-

planar coordination environment, which can be contrasted with the standard 12-coordinated,

cubo-octahedral environment inhabited by the A sites in ABO3 perovskites. As such, the A-site

is usually occupied by cations that allow for strong Jahn-Teller distortions such as Cu2+ and

Mn3+ [67]. In the extreme limit of a Jahn-Teller distortion, four anions move closer to the

central cation and two move further away, forming the square.

I analysed the symmetry of these materials using a Pm3̄m parent structure. The a+a+a+

tilt pattern is described by the M+
2 irrep and the cation ordering on the A-site is the M+

1 with

the (a, a, a) OPD.

We begin the analysis by seeing whether any simple collinear magnetic structures can break

the symmetry and produce a Type II multiferroic.

I look at simple magnetic structures on the B-sites. Using ISODISTORT, I find that for

both the A-type magnetic irreps mX−
1 and mX−

5 , none of the resulting space groups are non-

centrosymmetric. This is also the case for the two C-type magnetic irreps, mM+
2 and mM+

5 .

To complete the set, the G-type magnetic irrep mR−
5 also doesn’t break inversion symmetry.

The system remains centrosymmetric for all simple magnetic structures if we also allow for the

B-site rocksalt ordering (R−
2 ) which is occasionally observed in these materials [159, 160].

I introduce a polar mode Γ−
4 , so that we model a Type-I multiferroic. I use BiMn3Cr3O12

as a model system to explore the possibilities [161]. This is known to undergo a sequence

of phase transitions, the first introducing a polar distortion along the [001] direction of the

pseudocubic cell and reducing the symmetry from Im3̄ to Imm2. This is due to the ordering of

the lone pairs on the Bi3+ cation. The second introduces G-type magnetism to the B-sites. The

third introduces an antiferromagnetic spin-structure on the A′-site, which produces a second
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Irrep Reversal
Domain Γ−

4 mΓ+
4 M+

1 M+
2 mM+

5
1 ✓ ✓ ✗ ✗ ✓

2 ✓ ✓ ✓(109◦) ✓(109◦) ✓(90◦)
3 ✓ ✓ ✓(109◦) ✓(109◦) ✓(−90◦)
4 ✓ ✓ ✓(109◦) ✓(109◦) ✗

5 ✓ ✗ ✗ ✗ ✗

6 ✓ ✗ ✓(109◦) ✓(109◦) ✓(−90◦)
7 ✓ ✗ ✓(109◦) ✓(109◦) ✓(90◦)
8 ✓ ✗ ✓(109◦) ✓(109◦) ✓

Table 4.14: Energy equivalent domains in the Imm2 phase of AA′
3B4O12 perovskites with a

polar mode introduced along the [001] direction and C-type magnetism.

polarisation along the [111] direction. This is an additional spin-driven ferroelectricity which is

also the only source of macroscopic polarisation in LaMn3Cr3O12.

I start by adding various magnetic structures to the polar phase with a polarisation along

the [001] direction. Adding the experimentally observed G-type structure, for all OPDs, doesn’t

result in a magnetic space group that allows for wFM. This is the same for the two A-type

irreps mX−
1 and mX−

5 . However, for the C-type irrep mM+
5 , weak ferromagnetism is allowed.

It is perhaps no surprise that these mM+ modes can induce weak ferromagnetism in a ma-

terial dominated by other M point irreps. For example, one of the allowed couplings here

is QM+
2
QmM+

5
QmΓ+

4
so that the combination of the in-phase tilts and the magnetic structure

produce a weak ferromagnetic moment. Does the switching of the polar mode necessitate the

switching of the weak ferromagnetism in this system? As there is a domain that can be achieved

by reversing only the polar mode, which would presumably be the domain with the lowest energy

barrier, it is unlikely that this combination of distortions will allow for the electric field control

of magnetism. These domains are enumerated in Table 4.14.

Other authors [162] contend that the polarisation after the first transition in BiMn3Cr3O12

is actually along the [11̄0] direction which produces a Cm symmetry. In this situation, weak

ferromagnetism is again only allowed for C-type magnetism. However, there is also a domain

in which only the polarisation is reversed, The same result arises for the hypothetical situ-

ation where the polar mode is along the [111] direction. Therefore, BiMn3Cr3O12 or any other

quadruple perovskite with the same symmetry, does not allow for the electric field control of
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magnetism below the first polar transition.

Before introducing A-site magnetism, I check whether a rocksalt ordered B-site analogue of

BiMn3Cr4O12 (BiMn3B2B’2O12) changes this conclusion. Rocksalt ordering the B-sites while

retaining the overall G-type magnetic structure does allow for a ferromagnetic mode. However,

this is not a weak ferromagnetic mode but is instead a ferrimagnetic mode. As the rocksalt order

splits the magnetic sites, the two become inequivalent and the spins no longer have to exactly

cancel and this causes the appearance of a ferromagnetic mode. In fact, just introducing the

rocksalt order R−
2 and the magnetic order mR−

5 to the Pm3̄m produces a ferrimagnetic moment

through this mechanism. From the perspective of Landau theory, the ferrimagnetic moment

is produced by a coupling of the form QR−
2
QmR−

5
QmΓ+

4
. As the cation order does not change,

this means that whenever we wish to reverse the ferrimagnetic moment, we have to also reverse

the dominating antiferromagnetic structure too. Any domain that doesn’t do this describes a

continuous increase of spin on one magnetic site and a decrease on the other. This is unphysical.

With this in mind, I examined the domains of BiMn3B2B’2O12 with G-type magnetism

and rocksalt order on the B sites. There still exists a single domain in which only the polar

mode needs to be switched. The additional rocksalt order does not change matters, and this is

another demonstration that in order to guarantee that the polar mode reversal will also reverse

the magnetisation, the polar mode must be caused via a coupling to other modes in the system.

To introduce A-site magnetism and model the second transition in BiMn3Cr3O12, or the

ferroelectricity of LaMn3Cr3O12, the symmetry adapted modes describing the magnetism are in

fact a superposition of three modes; the mR+
4 describing G-type magnetism on the A and A′

sites which puts erroneous spins on the non-magnetic A sites, and then a combination of mX+
3

and mX+
5 which cancel these erroneous spins. In general, a magnetic structure of a material

on sites that are split by a cation order must be a superposition of multiple magnetic order

parameters.

I will now restrict myself to magnetic structures that have actually been observed or else the

possibilities become intractably large. Decomposing the A-site magnetic structure observed in

BiMn3Cr3O12 and LaMn3Cr3O12, into symmetry adapted modes reveals that no weak ferromag-

100



4.3.4. AA′
3B4O12 Perovskites

Irrep Reversal
Domain Γ−

4 mΓ+
4 M+

1 M+
2 R−

2 mR+
4 mR−

5
1 ✓ ✓ ✗ ✓ ✓ ✓ ✗

2 ✓ ✓ ✓(71◦) ✓(109◦) ✗ ✗ ✓

3 ✓ ✓ ✓(71◦) ✓(109◦) ✗ ✗ ✓

4 ✓ ✓ ✓(71◦) ✓(109◦) ✓ ✓ ✗

5 ✓ ✓ ✓(71◦) ✓(109◦) ✗ ✗ ✓

6 ✓ ✓ ✓(71◦) ✓(109◦) ✓ ✓ ✗

7 ✓ ✓ ✓(71◦) ✓(109◦) ✓ ✓ ✗

8 ✓ ✓ ✗ ✓ ✗ ✗ ✓

9 ✓ ✗ ✓(71◦) ✗ ✓ ✗ ✓

10 ✓ ✗ ✓(71◦) ✓(71◦) ✗ ✓ ✗

11 ✓ ✗ ✓(71◦) ✓(71◦) ✗ ✓ ✗

12 ✓ ✗ ✓(71◦) ✓(71◦) ✓ ✗ ✓

13 ✓ ✗ ✓(71◦) ✓(71◦) ✗ ✓ ✗

14 ✓ ✗ ✓(71◦) ✓(71◦) ✓ ✗ ✓

15 ✓ ✗ ✓(71◦) ✓(71◦) ✓ ✗ ✓

16 ✓ ✗ ✗ ✗ ✗ ✓ ✗

Table 4.15: Domains in the R3 phase of AA′
3B2B′

2O12 perovskites with nearest neigbour mag-
netism on both the A′ and B sites, with all spins pointing along the [111] direction. Rocksalt
order is also included on the B sites.

netism is allowed. In addition, it does not make the system polar. Reinserting the B-site G-type

spins (mR−
5 ) does produce a secondary polar distortion. This is the origin of the ferroelectricity

in BiMn3Cr3O12 and LaMn3Cr3O12 below their magnetic transition temperatures - it is caused

by a spin-induced symmetry breaking but only when these spins appear on both A and B sites,

and when they are overlayed on the a+a+a+ tilt pattern and the cation order. Specifically, the

polarisation is due to a coupling of the form QmR−
5
QmR+

4
QΓ−

4
which is only allowed when all

three terms have the (a, a, a) OPD.

However, this does not allow for any ferromagnetic mode but, as we have seen, reinserting

the B-site rocksalt order brings about the ferrimagnetic mode. The resulting domain structure

is shown in Table 4.15.

To estimate which of these domains may have the lowest barrier in a switching scheme, we

can immediately eliminate any domain in which the cation orders reverse. Interestingly, this

leaves only two domains! Domain 8 is the structure we wish to obtain when we reverse the

polarisation as it also reverses the ferrimagnetic moment. Domain 16 reverses the magnetism on

the A′ sites. I have only displayed the primary irreps here but it is obvious that other secondary
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modes will also need to switch. For example, Domain 16 involves the reversal of the mR+
4

magnetic mode, but I have already stated that this is only one part of the A′ site magnetic

structure. The two mX modes must also switch to counter the unphysical A spins that would

arise from mR+
4 reversing. As a result, small X point structural irreps must also reverse. In

Domain 8, it is clear that other irreps must also reverse because Γ−
4 , mΓ+

4 and M+
2 and mR−

5 do

not form closed sets of couplings with each other without violating either preservation of parity

or crystal momentum.

I therefore conclude that quadruple perovskites with chemical formula AA′
3B2B′

2O12 could

potentially be used to engineer the electric field control of magnetism, but I have unfortunately

reached the limit of what symmetry alone can tell me. The switching mechanism would be

complicated and the energy barriers between leading to either Domain 8 or Domain 16 can only

be determined with computational methods.

The antiferromagnetic nearest neighbour interaction is one possible collinear A′-site mag-

netic structure. Another is analogous to C-type in that it has columns of magnetic moments

with parallel alignment. Neighbouring columns are antiferromagnetically aligned. This sort of

magnetic structure is found in the AMn7O12 materials [68], which is due to a charge dispropor-

tionation on the Mn site. The above analysis could be extended to this family of materials too.

4.3.5 A bottom-up approach

An interesting corollary of the work on BiMn3Cr4O12, is that the tilts or cation order are

not essential to create a polarisation. The QmR−
5
QmR+

4
QΓ−

4
coupling would also exist in a

Pm3̄m symmetry without the tilts or the cation order. If it were possible to engineer a cubic,

untilted perovskite with G-type spins on both the A and B sites, then that would be polar. I

investigated this result further, and used ISODISTORT to confirm that this is true but only

for particular OPDs for the two magnetic irreps. For example, if the spins on both sites align

along [111], this produces a polarisation in exact analogy to LaMn3Cr3O12. Unfortunately, no

weak ferromagnetism is allowed, but this is due to a lack of positive parity R+ modes that

could form a coupling like QR+QmR+
4
QmΓ+

4
or a negative parity R− mode to form a coupling
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Irrep Reversal
Domain Γ−

4 mΓ+
4 mR−

4 mR−
5 R−

5
1 ✓ ✓ ✗ ✓ ✗

2 ✓ ✓ ✓ ✗ ✓

3 ✓ ✗ ✓ ✗ ✗

4 ✓ ✗ ✗ ✓ ✓

Table 4.16: Domains in the ABO3 perovskites with G-type magnetism on both the A′ and B
sites, and a single antiphase tilt parallel to the spin-induced polarisation.

like QR−QmR−
5
QmΓ+

4
. Referring to Table 3.3, we see that R−

5 or R−
3 describe octahedral tilts

and Jahn-Teller distortions respectively and these two modes could be used to create the weak

ferromagnetism.

The simplest hypothetical structure I can find which permits this involves a collinear mag-

netic structure in which G-type exist on both the A and the B sites with an easy axis along

the [110] direction of the pseudocubic cell. This produces a polarisation perpendicular to this

easy axis. Adding a single antiphase tilt along about this polarisation axis would allow for weak

ferromagnetism. Furthermore, this weak ferromagnetism is potentially switchable by reversing

the polarisation. This is made clear from looking at the four domains in Table 4.16 that can be

reached from switching the polarisation. It is not at all obvious which of these domains would

possess the lowest switching barrier. If we could engineer a system in which it is extremely hard

to reverse the single antiphase tilt and the A-site magnetism, then a domain allowing for the

electric field control of magnetism would be favoured. Of course, this is all very hypothetical, I

am not able to find any perovskites with this combination of modes in any structural database

or in the literature. In fact, it would be extremely difficult to engineer because the magnetic

cations needed for magnetism on both cation sites would drastically change the tolerance factor

and result in a much more complex tilt pattern.

It is clear that I’ve essentially reached the same conclusion as I did when I added A-type spins

to a+c−c− tilts. However, I see that initial discussion as being part of a "top down" approach in

which I already knew which kind of tilt patterns are likely in perovskites and then investigated

which distortions could be added to create the desired effects. The current discussion is more of

a "bottom up" strategy in which I looked for the minimum number of irreducible representations

that result in the electric field control of magnetism.
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I’ve taken this philosophical digression because the "bottom up" and "top down" approaches

are the two different strategies I could have taken to complete this project. The "bottom up"

approach is advantageous because extra complexity is added progressively, but it is not clear

whether each added distortion is physically realistic. You would need to check every distortion

against the literature or through simulation to make sure it makes sense. In contrast, the "top

down" approach starts with a complicated structure, decomposes that into its symmetry adapted

modes and then asks "What is missing to allow for electric field control of magnetism?". It takes

a material as complex as BiMn3Cr4O12 to make use of the simple observation that we need

spins on both sublattices, as well as an additional R-point mode (cation ordering in the case of

quadruple perovskites) to have any hope of electric-field control of magnetism. Typically, I’ve

preferred the "top-down" approach because it is inherently grounded in the existing literature.

Taking the triple perovskite cation ordering as an example, I would have very likely discarded

the 1:2 layering of cations as a serious possibility if I was building up, but because I had found

this structure in the literature, it immediately seems like a useful avenue to explore.

4.4 Summary

This chapter has attempted to explore the symmetries of common perovskite polymorphs in a

systematic manner. For perovskites without cation order and with the ubiquitous a−a−c+ tilt

pattern, few structures allow for the electric field control of magnetism, because there are relat-

ively few mechanisms to create improper ferroelectricity. Nevertheless, Chapter 6 will identify

a slightly different kind of electric field control of magnetism in these materials, which has not

previously been described in the literature.

Including cation order increases the flexibility of perovskite materials. It is much easier to

create a polarisation through an improper mechanism with these additional degrees of freedom.

I have shown that layered A-site cations are one route to create the electric field control of

magnetism. This will be investigated in more detail for a candidate material in Chapter 7.

Furthermore, I have suggested that both triple and quadruple perovskites may be amenable to

hosting the same effect but for different reasons. In the triple perovskite, the ferroelectricity
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is again due to a layering of cations whereas in the quadruple perovskite, it is due to a spin

ordering.
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Chapter 5

Density Functional Theory And

Quantum Mechanical Simulation

The previous chapter outlined how we can predict various material properties from a symmetry

analysis alone. This proved to be a very powerful methodology but it is not complete. As I

stated, a symmetry analysis can be decisive in determining what type of physics is possible but

is unable to estimate the magnitudes of the symmetry-allowed effects.

The magnitudes of these effects are encoded within the Schrödinger Equation which determ-

ines the energy and time-evolution of the multidimensional (3N dimensions for N particles)

wave function Ψ. The wavefunction completely describes any non-relativistic quantum system.

Famously, Paul Dirac stated that "The underlying physical laws necessary for the mathematical

theory of a large part of physics and the whole of chemistry are thus completely known, and the

difficulty is only that the exact application of these laws leads to equations much too complicated

to be soluble" [163].

This chapter describes a methodology that reformulates the Schrodinger Equation into a form

that is tractable using computational methods. The trick involves converting the Schrodinger

equation, which depends on the wavefunction, into an equation that depends only on the density

of electrons. Density functional theory (DFT), in the formulation by Kohn and Sham (KS), is

an exact reformulation of the ground-state interacting many-body Schrodinger Equation into a

system of equations describing fictitious non-interacting particles. The electronic ground state
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density assumes centre stage in DFT because the energy is computed as a functional of the

density. Being a 3-dimensional quantity, the density takes up substantially less memory than

the wavefunction, and is therefore easier to work with and store. How the Schrodinger Equation

is transformed into a density functional is explored in this chapter.

DFT may be exact in principle but sadly, that exact formulation is still beyond the reach

of theorists. In applications, the exact ground state functional must instead be approximated.

The number of approximations are vast and so I focus only on those which I have used during

the work described in this thesis.

In addition to the fundamental approximations that must be made in constructing the density

functional, various other approximations are routinely made to make the calculation of the

energy tractable. Furthermore, there exists extensions to the original formulation of DFT so

that it becomes more useful to slightly more non-trivial quantum systems - spin-DFT and

strongly correlated corrections being the two that I use extensively in my work.

DFT is fundamentally a theory for the ground state of a quantum system. Therefore, it’s

applicability at any temperature above 0K should be called into question. Nevertheless, DFT

is often very good at describing real materials at non-zero temperatures. This is because the

relevant energy scales in materials are typically far higher than the temperatures encountered

in everyday life. As an illustrative example, the band gap for excitation in Si is 1.12 eV.

This corresponds to temperatures of approximately 13000K, well above any normal operating

conditions. Therefore, the conclusions drawn from DFT are typically representative of materials

but the restriction to 0K must always be kept in mind.

5.1 From Schrodinger To Kohn-Sham

To obtain the wavefunction and energies of a quantum system made of nuclei and electrons, it

is necessary to solve the time independent Schrodinger equation [164, 165]

ĤΨ(r1, r2, ..., rN ) = EΨ(r1, r2, ..., rN ). (5.1)
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5.1. From Schrodinger To Kohn-Sham

This is an eigenvalue equation with the energy E and wavefunction Ψ playing the roles of

eigenvalue and eigenfunction, respectively. The Hamiltonian Ĥ acts upon the wavefunction and

returns the energy. For a system of nuclei and electrons, the Hamiltonian takes the form

Ĥ = −
N∑
i

ℏ2

2me
∇2

i −
M∑
I

ℏ2

2MI
∇2

I + 1
2

∑
i ̸=j

e2

4πϵ0
1

|ri − rj |

+ 1
2

∑
I ̸=J

e2

4πϵ0
ZIZJ

|RI − RJ |
−

∑
i,I

e2

4πϵ0
ZI

|ri − RI |
,

(5.2)

where uppercase indices run over nuclear degrees of freedom, lowercase indices run over

electronic degrees of freedom, me and MI are the electronic and nuclear masses respectively and
e2

4πϵ0
is the usual constant found in Coulomb interactions. The complexity of this Hamiltonian is

the primary cause of difficulty in quantum mechanical simulations (as pithily stated by Dirac)

but it is simple to understand by treating each term individually:

• The first term is the kinetic energy of the electrons, expressed in standard operator form.

• The second term is the kinetic energy of the nuclei.

• The third is the repulsive Coulomb interaction of the electrons. This term causes the

greatest difficulty in the solution of this eigenvalue equation because the wavefunction

cannot be split into individual electron wave functions.

• This fourth term is the Coulomb repulsion between the nuclei.

• This final term is the electrical attraction of the negatively charged electrons to the pos-

itively charged nuclei.

This Hamiltonian can be immediately simplified by invoking the clamped nuclei approxim-

ation which is valid because me ≪ MI - the nuclear kinetic term is considerably smaller than

the electronic kinetic and can be safely dropped. Physically, this can be interpreted as the elec-

tronic and nuclear dynamics occuring on two different timescales. The change in the electronic

wavefunction is faster than the changing nuclear wavefunction and so, for any electronic motion,
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the nuclei are essentially fixed. A more sophisticated and mathematically rigourous approach is

the adiabatic or Born-Oppenheimer approximation.

Due to the clamped nuclei approximation, the nuclear repulsion can also be dropped because

this simply adds an arbitrary constant to the energy. The nuclei are thus reduced to providing

a positively charged potential to the electrons so that the electronic Hamiltonian becomes

Ĥ = −1
2

N∑
i

∇2
i −

∑
i,I

ZI

|ri − RI |
+ 1

2
∑
i ̸=j

1
|ri − rj |

. (5.3)

Use has been made of atomic or Hartree units in which distances are measured in Bohr radii a0,

energies are measured in hartrees (Ha) and masses in units of me.

This Hamiltonian remains far too complex to solve. The electronic repulsion term prevents

a separable solution and so the wavefunction must remain a function of 3N variables. Instead,

further approximations must be made to remove the electronic repulsion term and deal with

independent electrons.

If the electronic interactions were a small perturbation, the electronic repulsion term could

simply be dropped as a first approximation. This would result in the wavefunction assuming a

product form of non-interacting particles so that

Ψ(r1, r2, ..., rN ) = ϕ1(r1)ϕ2(r2)ϕ3(r3)...ϕN (rN ), (5.4)

with each wave function ϕi satisfying independent particle Hamiltonians[
−1

2∇2
i −

∑
I

ZI

|ri − RI |

]
ϕi(ri) = ϵiϕi(ri) (5.5)

and the energies becomes a sum of independent particle energies

E = ϵ1 + ϵ2 + ϵ3 + ...+ ϵN . (5.6)

Unfortunately, the electronic repulsion is not a small perturbation and so this is an extremely

crude and inaccurate approximation. Any serious attempt at approximating the Hamiltonian

must retain some form of interaction. In addition, the above approximation ignores the fermionic

nature of electrons which requires that the total wavefunction must be antisymmetric with

109



5.1. From Schrodinger To Kohn-Sham

respect to particle exchange. The easiest way to reintroduce particle statistics is to write the

wavefunction in the form of a Slater determinant

Ψ(r1, r2, ..., rN ) = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(r1) ϕ1(r2) ... ϕ1(rN )

ϕ2(r1) ϕ2(r2) ... ϕ2(rN )

... ... ... ...

ϕN (r1) ϕN (r2) ... ϕN (rN )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(5.7)

which enforces the correct exchange symmetry due to the rules of determinants [77]. The

spin of the electrons has been omitted in this expression. It should be clear that the exchange

symmetry would affect the energy of the state. Two fermions are prohibited from occupying the

same state and there is an energy cost from this criterion whenever two electrons come close

together. For now, this effect will be added as a local function Vx(r) to the Hamiltonian and a

discussion reserved until later in this section. Therefore we have[
−1

2∇2
i −

∑
I

ZI

|ri − RI |
+ Vx(ri)

]
ϕi(ri) = ϵiϕi(ri). (5.8)

In addition, eigenfunctions of an Hermitian operator such as the Hamiltonian are orthogonal

and satisfy: ∫ ∞

∞
drϕ∗

i (r)ϕj(r) = δij . (5.9)

This fact proves useful when defining the density of electrons as

n(r) = N

∫
|Ψ(r, r2, ..., rN )|2dr2dr3...drN , (5.10)

which reduces to

n(r) =
∑

i

|ϕi(r)|2 (5.11)

when (5.9) is used.

This density is crucial to reintroducing interactions. Instead of treating each electron as

experiencing a point particle repulsion from every other electron, it is possible to treat each

electron as experiencing an effective field from a background made up of the other particles.

From electrostatic theory, a charge density n(r) produces a electrical potential through Poisson’s

equation [49]:

∇2VH(r) = −4πn(r). (5.12)
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This has the solution

VH(r) =
∫
dr′ n(r′)

|r − r′|
(5.13)

and is known as the Hartree potential.

With this step, we have reintroduced interactions to the independent electron approximation

and each electron wavefunction now satisfies[
−1

2∇2
i −

∑
I

ZI

|ri − RI |
+ VH(r) + Vx(r)

]
ϕi(ri) = ϵiϕi(ri), (5.14)

VH(r) =
∫
dr′ n(r′)

|r − r′|
, (5.15)

n(r) =
∑

i

|ϕi(r)|2. (5.16)

This very nearly completes the construction of the mean-field, independent electron Hamiltonian.

This has reduced the original Hamiltonian operating on a wavefunction with 3N variables to

one which acts on N three dimensional functions. However, the three above equations are now

coupled. To solve for the wavefunctions, knowledge of the density is needed, which requires

knowledge of the wavefunctions. This circular situation can only be solved via a self consistent

solution to the equations so that an initial guess of the density is made, the wavefunctions are

calculated and the density recomputed. If the new density is equal to the original density (to

within a reasonable tolerance), self consistency has been reached.

As the final step in the construction, some addition must be made to go beyond the mean-

field approach. This is accomplished in an ad hoc manner by adding a correlation potential Vc

which catches any deviations from the mean-field Hartree interactions resulting from electron

interactions that are also not the result of exchange symmetry. Like the exchange potential Vx,

its determination is left for later.

So finally, the independent electron Hamiltonian is[
−1

2∇2
i + VN(r) + VH(r) + Vx(r) + Vc(r)

]
ϕi(ri) = ϵiϕi(ri) (5.17)

where VN is the nuclear attraction from above. The problem is considered solved if the orbitals

and energies are determined.
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For periodic potentials, we can use translational symmetry to derive Bloch’s theorem so that

ϕjk(rj) = ujke
ik·r (5.18)

and every solution can be decomposed into a function uik obeying translational symmetry and

a modulating wave eik·r. Every solution is associated with a wavevector k within the Brillioun

zone. Periodic boundary conditions mean that there are a finite number of k but for a large

enough system, with a large enough number of cells, the spacing between k tends to zero.

The energies also pick up this new k index so that they are written ϵik. For a given i, the

k produce a continuum of energies. This is an energy band. Therefore the index i is known as

the band index. This is analogous to the energy levels in isolated atoms.

If electrons occupy the bands so that a band is left partly occupied, this defines a metal.

Alternatively, if electrons occupy lower bands completely and are seperated from empty bands

by a gap, this defines an insulator∗.

5.2 The Hohenberg-Kohn Theorems And The Kohn-Sham

Scheme

The most widely used approach to tackling Equation (5.17) is density functional theory (DFT).

To introduce this method, we rewrite the many body Hamiltonian present in the Schrödinger

equation as

Ĥ = T̂ +
∑

i

VN (ri) + Ŵ , (5.19)

with T̂ and Ŵ as the first and third terms of (5.3) respectively, covering the kinetic energy

and mutual repulsion of electrons. The energy of this hamiltonian is thus

E = ⟨Ψ|Ĥ|Ψ⟩ = ⟨Ψ|
∑

i

VN (ri)|Ψ⟩ + ⟨Ψ|T̂ + Ŵ |Ψ⟩ (5.20)

∗The energy eigenvalues in the Kohn-Sham scheme do not accurately describe the gap because the band gap
is actually an excited state property and DFT only describes the ground state - this is mathematically captured
by the concept of the derivative discontinuity. Nevertheless, the Kohn-Sham scheme is frequently used to describe
the gaps in insulators but this proviso must be kept in mind. I do not have space to discuss this in detail. [166]
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The first term can be written as

⟨Ψ|
∑

i

VN (ri)|Ψ⟩ =
∑

i

∫
VN (ri)|Ψ|2dr1dr2dr3...drN =

∫
VN (r)n(r)dr, (5.21)

where the final step has been made as every element of the sum is the same and so the definition

of the density can be employed. This form of the energy allows two very useful theorems to be

proved [167]:

1st Theorem Of Hohenberg and Kohn: The external potential (and hence the total energy),

is a unique functional of the electron density.

Proof : This is a proof by contradiction. Suppose that there are two external potentials V1 and

V2 that produce the same ground state density n. Then we assume that the two corresponding

Hamiltonians H1 and H2 have two different ground states Ψ1 and Ψ2. Ψ2 is not the ground

state of H1 so that

⟨Ψ1|H1|Ψ1⟩ < ⟨Ψ2|H1|Ψ2⟩ = ⟨Ψ2|H2|Ψ2⟩ + ⟨Ψ2|H1 −H2|Ψ2⟩ (5.22)

or

E1 < E2 +
∫
dr [V1(r) − V2(r)]n(r), (5.23)

but the argument could have worked the other way round so that

E2 < E1 +
∫
dr [V2(r) − V1(r)]n(r), (5.24)

and adding them both together gets the contradictory results that 0 < 0. So there cannot be

two external potentials that produce the same density.

The corollary of this theorem is that, since the Hamiltonian is fully described by a given

density, then the entire wavefunction is also described by this density which from we can make

the final assertion that all ground state properties are completely described by the density.

I mentioned that "we assume that the two corresponding Hamiltonians H1 and H2 have two

different ground states Ψ1 and Ψ2". This assumption sounds straight forward but is in fact

difficult to justify. In fact, when spins are included, this assumption is much more tricky to

make [168]. Nevertheless, spin-DFT has been shown to have sound theoretical foundation [169].
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2nd Theorem Of Hohenberg and Kohn: A universal functional for the energy F [n] in terms

of the density n(r) can be defined, valid for any external potential V (r). For any particular

external potential V (r), the exact ground-state energy of the system is the global minimum

value of the functional

E[n] =
∫
VN (r)n(r) + F [n], (5.25)

and the density n(r) that minimizes the functional is the exact ground-state density n(r).

This statement does not need such a formal proof (although one is available in [164]) as it is

almost self evident. Via the first theorem, knowledge of the density determines the potential and

the Hamiltonian. Knowledge of the potential allows for the determination of the wavefunction,

and the wavefunction and Hamiltonian are all that are required to know the energy via the

functional in Equation (5.20). Thus the ground state energy should be completely specified by

a functional of the density.

The difficulty is now to construct this energy functional. It can quite easily be written as

E[n] =
∫
VN (r)n(r) + F [n] =

∫
VN (r)n(r) + ⟨Ψ[n]|T̂ + Ŵ |Ψ[n]⟩ , (5.26)

where the dependence on the density is explicit in the first term but implicit through the

wavefunctions, via the Hohenberg-Kohn theorems, in the other terms. If this dependence were

known exactly, then every ground state property could be determined exactly. This is sadly not

the case and approximations must be made to develop the functional. As was seen above in

(5.17), the simplest procedure is often to recast the problem in terms of independent electrons

and this is exactly the approach taken by Kohn and Sham [170]. They crafted a functional of

the density, including the kinetic energy and Coulomb repulsion terms, that would reproduce

the independent electron Hamiltonian (5.17). Their functional takes the form

E[n] =
∫
VN (r)n(r) − 1

2
∑

i

∫
drϕ∗

i (r)∇2ϕi(r) + 1
2

∫ ∫
drdr′n(r)n(r′)

|r − r′|
+ Exc[n], (5.27)

where the first term is the energy due to the attraction between the electronic density and the

fixed nuclei, the second term is the kinetic energy of independent electrons, the third term is

the mean field Hartree repulsion between electrons and the final term is a yet to be determined

functional of the density that captures the effects of fermionic exchange properties and electron
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correlations beyond the Hartree approximation. This final term is called the exchange-correlation

energy functional and combines these two contributions in a single functional rather than separ-

ating them. This energy functional is explicitly constructed to reproduce single particle dynamics

which can be seen by taking a functional derivative

δE

δn
= 0. (5.28)

The density n(r) that satisfies this condition completely describes the ground state functional

and all ground state properties can be calculated from it. The functional derivative leads to the

following familiar equation of motion for the independent electron wavefunctions ϕi:[
−1

2∇2
i + VN (r) + VH(r) + Vxc(r)

]
ϕi(ri) = ϵiϕi(ri), (5.29)

where

VN (r) = −
∑

I

ZI

|ri − RI |
, (5.30)

VH(r) =
∫
dr′ n(r′)

|r − r′|
, (5.31)

n(r) =
∑

i

|ϕi(r)|2, (5.32)

Vxc(r) = δExc[n]
δn

. (5.33)

These are the Kohn-Sham equations and provide the method for determining an approximation

to the energy of a system, given the elements, positions and valencies of the nuclei. As these are

the only parameters, Kohn-Sham DFT is unquestionably an ab initio (first principles) method

and requires no empirical data to make useful predictions. Unfortunately, the Kohn-Sham

scheme still makes explicit reference to the Kohn-Sham orbitals. The Hohenberg-Kohn theorems

state that it is theoretically possible to construct the energy functional as an explicit function of

the density only, doing away with the orbital dependence entirely. An orbital free DFT of this

kind is much vaunted because of its superior scaling properties [171], and is currently attracting

much attention from the world’s pre-eminent solid state theorists [172].
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As with Hartree-Fock, the Kohn-Sham equations must be solved self consistently but cru-

cially, the inclusion of the exchange-correlation energy as a local function Exc(r) makes this self

consistent calculation significantly quicker. The downside is clearly that the accuracy of the

energy is now dependent on the suitability of the choice of Exc.

In order to keep the simulation free from empirical parameters, the standard choice of free

energy functional is to use the local density approximation (LDA) in determining the Vxc func-

tional. For a system of interacting electrons, immersed in a constant positive charge density, it

is possible to construct the exchange and correlation energies analytically [173], with both being

explicit functions of the density. LDA then simply maps the exchange-correlation energies for

this homogeneous electron gas to that of the real system based on the density of electrons at

any point. This approach is useful as no parameters are needed but obviously, a homogeneous

electron gas cannot be expected to be a perfectly accurate description of real crystal.

Therefore, we have completed the first step in the simulation of materials; we can calculate

the energy of a system using the Kohn-Sham formulation of DFT under the LDA. The next

step requires a procedure to move the nuclei into their lowest energy configuration and then

analysing this state for the relevant irreps.

5.3 Density Functional Theory In Practice

The above section is rather abstract. What kind of computational methodologies are included

in a software package like the Vienna Ab-Initio Software Package (VASP) that can be used to

calculate energies?

5.3.1 Exchange-Correlation Potentials

LDA is a rudimentary approximation to real systems and to accurately model systems, more

sophisticated methods must be utilised. Within LDA, the exchange and correlation energies are

calculated only from the density n itself. Considerably more accurate results can be obtained if

the gradient of the density is included as well. This forms the basis of the generalised gradient
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Figure 5.1: Jacob’s Ladder Of exchange-correlation calculations in DFT. Each rung adds in-
creased complexity and computational cost whilst producing more accurate predictions of ma-
terial properties. Taken from [176].

approximation (GGA). Unlike LDA, GGA is not unique and there are thus many methods which

incorporate density gradients in their exchange-correlation functionals and each are adapted to

perform better in particular systems. A suitable choice of a GGA can produce more accurate

results than LDA and so they are widely used. One such popular option was produced by

Perdew, Burke and Ermenzhof (PBE) and revised for solids in an extension named PBEsol

[174, 175].

There are further extensions to exchange-correlation functionals which are of note [176]. In

meta-GGA functionals, the second derivative of the density is taken into account (in a kinetic

energy term). This is more computationally taxing than GGA methods but can be suitable

in some situations. In hybrid functionals, the exchange portion of the exchange-correlation

functional is split between a contribution coming from GGA methods and another contribution

in which exchange is explicitly calculated using non-local Hartree-Fock. This adds complexity

to any calculation but is useful in producing more accurate bandstructures. Each step up a

rung in Figure 5.1 adds additional computational cost but seeks to get closer to the holy grail

of "chemical accuracy". Sensible choices of exchange correlation should thus be made to match

the system being investigated.
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5.3.2 Plane Wave Expansions and Monkhorst-Pack Grids

The electronic wavefunction in the periodic potential of crystal lattice is the key quantity in

Kohn-Sham DFT. Solving the Kohn-Sham equations permits the determination of the electronic

wavefunction and the electronic density can be trivially calculated from this. Eigenfunctions of

Hamiltonians (such as Equation (5.17) if the nuclear attraction represents a periodic crystal) in

periodic potentials are represented in terms of Bloch functions [79]:

ϕk(r) = eik·ruk(r). (5.34)

This describes the eigenfunction as being the product of a plane wave and a function uk(r)

with the periodicity of the potential. The wavefunction is now parameterised by the crystal

momentum k of the electron. Various properties require a summation over all electrons in a

crystal and this condition is now easily converted into a summation over all values of k. Any

function f̄ which is calculated via averaging over electron states can now be written as

f̄ = 1
Nk

∑
k
f(k) = V

(2π)3

∫
BZ
f(k)dk (5.35)

where the second equality is obtained by converting the sum over discrete k points into an

integral over infinitesimally close k points. The conversion of a sum to an integral is permissible

if the size of the crystal under study is much larger than the dimensions of a single unit cell.

In this regime, the k-points within the Brillioun Zone which must be integrated over form a

continuum.

For real calculations, this is not practicable. To calculate a quantity such as Eq 5.35 on

a computer requires a finite number of k points which provide a representative sample of the

Brillioun Zone. This is most readily achieved via the application of a Monkhorst-Pack grid

[164, 177] defined in three dimensions as

k =
3∑
i

2ni −Ni − 1
2Ni

bi, (5.36)

where the bi are reciprocal lattice vectors, ni ranges from 0 to Ni and the Ni is number of points

that are selected along each reciprocal lattice vector to sample the Brillioun Zone. In fact, the
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method can be made more efficient by not sampling the whole Brillioun Zone but instead only

sampling the symmetry inequivalent points - the irreducible Brillioun zone. The rest of the zone

can be reconstructed via the symmetry operations of the cell.

What about the function uk(r)? As this object is periodic with the crystal lattice, it can be

expanded as a complete set of its Fourier components [77] so that

uk(r) =
∑
G
ck,Ge

iG·r. (5.37)

In order to have a completely accurate representation of the wavefunction, an infinite number of

G vectors must be included but again, this is impracticable. Instead, the expansion is truncated.

Rapidly fluctuating functions contain a greater number of Fourier modes and require a larger

basis set to accurately model. Usually, the number of G vectors is parameterised by stating a

cutoff energy, defined as ℏ2G2

2me
, with only vectors with a corresponding energy below this being

admitted into the expansion.

The choice of Monkhorst-Pack k-grid and G-vector basis set is thus up to the choice of

the DFT user but rigourous testing should be done. The properties of a system may not be

accurately modelled with a small Monkhorst-Pack grid or basis set and so convergence testing

is critical to produce accurate results. A range of grids and basis sets should be tested and

the properties of the simulated material recorded. If the properties do not change considerably

when the k grid or basis set is adapted, then a good combination of k points and basis set have

been chosen.

5.3.3 Pseudopotentials

The wavefunction of an electron bounded to an atom is analogous to that of an electron in a

box. The wavefunction has an oscillatory behaviour which can have many nodes. This kind

of rapidly oscillating function contains many harmonics and, following the discussion of the

previous subsection, must be represented by a large plane wave basis set.

In contrast, the wavefunction in the free space between ions is quite well described by a small

number of Bloch plane waves as they are distant from the potential of the ions. This leads quite

naturally to the separation of electronic wavefunctions into two regimes :
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ψk(r) =

 eik·r for |r| > R0.

Atomic Orbital for |r| < R0,
(5.38)

where R0 is the measure of the atomic radius. This is the augmented plane wave method [79]

and separates the complicated behaviour of an electron near an ion from the more placid and

calm plane waves that lie in between.

The wavefunction for the atomic orbital region still requires a large basis set to model

accurately but this difficulty is relieved via the use of pseudopotentials [164, 178]. These alter

the form of the ionic potential to take a less pathological form. This is often achieved by placing

electrons of lower quantum number n into the core, screening the ionic potential and refocusing

the dynamics on high n electrons. This is often justified for tightly bound electrons but care

must be taken as higher orbitals are considered.

5.3.4 Hellman-Feynman Forces and Phonons

Now that we have the energy of a system with a particular arrangement of ions, it is necessary

to see how changes in the positions of ions effect the energy of the system as a whole. When

this is done, it should be possible to find the state of the system which minimises the energy.

This is easily done by finding the forces on ions. Any force on a ion will cause it to move

to a state of lower energy (just like a ball rolling down the hill) and so a minimum is reached

whenever all ionic forces are zero. The calculation of forces is simple. Force is defined as the

negative gradient of the energy so that

FI = − ∂E

∂RI
= − ∂

∂RI
⟨Ψ|Ĥ|Ψ⟩

= − ⟨ ∂Ψ
∂RI

|Ĥ|Ψ⟩ − ⟨Ψ| ∂Ĥ
∂RI

|Ψ⟩ − ⟨Ψ|Ĥ| ∂Ψ
∂RI

⟩

= − ⟨Ψ| ∂Ĥ
∂RI

|Ψ⟩ − E ⟨ ∂Ψ
∂RI

|Ψ⟩ − E ⟨Ψ| ∂Ψ
∂RI

⟩

= − ⟨Ψ| ∂Ĥ
∂RI

|Ψ⟩ − E
∂

∂RI
⟨Ψ|Ψ⟩

= − ⟨Ψ| ∂Ĥ
∂RI

|Ψ⟩ .

(5.39)
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This result is the Hellman-Feynman theorem [179] and could be considered as an example of

Ehrenfest’s theorem [180] - that operator expectation values obey classical laws. If the Hamilto-

nian (5.19) includes the rewriting of the electron-nuclei term as (5.21) and reinserts the nuclear-

nuclear Coulomb repulsion, then the only terms that depends explicitly on the atomic positions

RI are those that include VN and the reinstated nuclear repulsion term so that

FI = ZI

∫
drn(r) r − RI

|r − RI |3
−

∑
J ̸=I

ZJ
RJ − RI

|RJ − RI |3

 . (5.40)

Miraculously, the term in square brackets is simply the classical electrostatic field produced by

the electron density and all other nuclear charges.

Therefore, after the Kohn-Sham equations have been solved self-consistently for a particular

configuration of atoms, that calculated density can then be used immediately to calculate the

forces on all the ions. The system can then be evolved under influence of these forces until it

reaches a situation in which all the atomic forces vanish. There are multiple methods for doing

this with varying efficiencies but, however the system is evolved, all methods find a minimum

[164]. Each minimisation algorithm aims to find the global minimum.

Notice that the above equation is only valid as it was assumed that the Kohn-Sham wave-

functions do not depend on the atomic positions. This is true whenever plane waves are being

used to represent the wavefunctions. If instead, the wavefunctions were constructed via a linear

combination of atomic orbitals, the wavefunctions would have a dependence on the nuclear pos-

itions and there would be an additional contribution to the forces, known as Pulay forces [165],

which makes the calculation of forces slightly more involved.

It is usually useful to restrict relaxations to retain the symmetry of the material under

investigation. In that situation, the algorithm only allows for displacements that do not break

any space group symmetries.

This is the basis of structural relaxation in atomistic simulations using DFT. The energies

of a particular configuration are calculated via a self-consistent solution to the Kohn-Sham

equations and the electron density is calculated. The density permits a calculation of the force

on all ions which can then be evolved to a new position, the Kohn-Sham equations solved again
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and the new density used to calculated the new forces. This procedure is continued until all

forces and stresses vanish.

Occasionally, it is necessary to relax a system in such a way that stresses along certain direc-

tions are not changed. This results in certain lattice vectors retaining their lengths throughout.

This situation is very useful for simulating a material constrained to grow on an epitaxial sub-

strate of fixed lattice constant. Relaxations of this type are used in Chapter 6.

Once the Hellmann-Feynman forces on all the ions are determined, it is possible to obtain

the force constant matrix. Finding the eigenvalues and eigenvectors of this matrix leads to the

allowed phonon frequencies and modes. As stated in Chapter 2, imaginary phonon frequencies

denote soft modes and suggest structural instabilities.

5.3.5 Spin DFT And Non-Collinear Magnetism

Introducing collinear magnetism is straightforward in any DFT code. The density is simply split

into spin-dependent parts so that

nσ(r) =
N∑
i

|ϕσi(r)|2 (5.41)

I’ve shown in Chapter 2 that magnetic interactions find their origin in exchange interactions

so that the exchange-correlation energy also picks up a spin dependence ∗.

V xc
σ (r) = δExc[n↑, n↓]

δnσ
(5.42)

and so the non-interacting equations take the form

[
−1

2∇2
i + VN(r) + VH(r) + V xc

↑ (r)
]
ϕ↑i(ri) = ϵiϕ↑i(ri), (5.43)

[
−1

2∇2
i + VN(r) + VH(r) + V xc

↓ (r)
]
ϕ↓i(ri) = ϵiϕ↓i(ri), (5.44)

∗Obviously the kinetic energy, attraction due to nuclei, repulsion from other electrons depends only on the
mass and charge of the electron and not the spin.
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The introduction of spins is almost as if there are two different species of electrons in the sys-

tem. However, they do interact indirectly because of the dependence of the exchange-correlation

energy on the density of both.

To allow for non-collinear interactions, Kohn-Sham DFT is extended to incorporate the full

spinor nature of the electron. The density becomes a matrix

nσ′σ =
N∑
i

ϕσ′i(r)ϕσi(r), (5.45)

as does the potential

V eff
σ′σ = V ext

σ′σ (r) + δσ′σVH(r) + V xc
σ′σ(r) (5.46)

The term VN has been generalised to allow for external fields too. This could represent the

the interaction between the electrons spin and the field produced as it orbit around the atom -

the spin-orbit coupling. The final Kohn-Sham equations become

∑
σ

[
−1

2δσ′σ∇2
i + V eff

σ′σ

]
ϕσi = ϵσ′iϕσ′i. (5.47)

The equations are now coupled because of off-diagonal elements in potential. This and the

fact that everything must be manipulated as matrices, makes non-collinear equations much more

costly to solve.

5.3.6 Correlation Effects, Hubbard Model and DFT+U

The magnetism present in multiferroic materials arises from unpaired electrons in strongly loc-

alised d or f orbitals. It is often the case with these materials that a naive application of band

theory, which does not properly take electron interactions into account, would predict these ma-

terials to be metals whereas the strong Coulomb repulsion between electrons in these strongly

correlated orbitals prevents them from becomes delocalised - a necessity for metallicity. These

materials are termed Mott insulators [26, 181] and the strongly correlated electrons are said

to be experiencing Mott localisation. Often, LDA approximations would not pick up on this
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subtlety∗. Extensions such as meta-GGAs or hybrid functionals would fare better but they are

computationally expensive. A much cheaper, though less rigourous, method would be to add

this Coulomb repulsion as an additional contribution to the energy and this is exactly what is

done in DFT+U methods [184, 185].

DFT+U is based upon the Hubbard model of field theory, in which there is an energy cost

U to doubly occupy electrons on the same site. In the DFT+U formulation, this energy penalty

is incorporated through

EDFT+U = EDFT+1
2

∑
i,m,m′,σ

U(nimσ − n0)(nim′−σ − n0)

+ 1
2

∑
i,m ̸=m′,σ

(U − J)(nimσ − n0)(nim′σ − n0).
(5.48)

This equation is easy to interpret. It simply states that there is an energy cost to have two

electrons on the same site i. The occupancy of an electron at site i, with angular momentum

m and spin σ is nimσ and the average occupancy of that orbital is n0. If the occupancy of

the orbital varies at all from n0, this Hubbard term penalizes that state. The first correction

deals with electrons with opposite spins and the second involves those with parallel spins (which

is why m ̸= m′ in the sum or Pauli’s exclusion principle would be violated). The parallel

spin term has a weaker correction U − J because Hund’s rules prefer aligned spins - a result

of exchange symmetry. These terms penalise fractional occupancy and so are therefore also

effectively penalising the metallic state. This leads to the opening of band gaps.

Importantly, the expression relies on the occupancy of localised orbitals. This can be com-

puted from the delocalised Kohn-Sham orbitals ϕkvσ with wavevector k and band index v, by

projection onto a localised orbital Φim on site i and with orbital momentum m, so that

nimσ =
∑
k,v

fkvσ ⟨ϕkvσ|Φim⟩ ⟨Φim|ϕkvσ⟩ (5.49)

∗There is debate in the literature into the role of symmetry in opening up band-gaps. Allowing for more
symmetry breaking by simulating a larger cell may open up band gaps and turn a material that is predicted to
be a metal in a small cell into an insulator [182]. Nevertheless, this cannot be the whole truth as it is a fact that
higher levels of theory also provide gapping mechanisms without symmetry breaking.[183]
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where f is the Fermi-Dirac function. These localised orbitals could be either atomic orbitals

or Wannier functions. A localised orbital description is also essential in the proper formulation

of the theory of polarisation, which I discuss next.

5.3.7 The Modern Theory Of Polarisation

If we are to study the polarisation of ferroelectrics, we need some manner in which to calculate

that polarisation. The simplistic model of polarisation as a sum of dipoles within a unit cell

seems fundamentally flawed because the value for the polarisation depends on that specific

choice of unit cell. Taking various sized cells [54] leads to different values of the polarisation but

interestingly, the different values are always separated by integer multiples of the polarisation

quantum

P 0
i = e

V
ai (5.50)

for a calculation of the polarisation along the ith direction. ai is the length of the ith lattice

vector. There are other methods to calculate the polarisation [56] such as using a charge current

J(λ) with some parameter λ, to add charge to a region and changing the polarisation by

∆P =
∫ tf

ti

J(λ)dλ. (5.51)

This would suggest that a cyclic process would result in ∆P =
∮

J(λ)dλ = 0. However,

when this calculation is done by changing the parameter λ adiabatically, the cycle results in

a change in polarisation by a quantum. Stated simply, polarisation is only defined in a bulk

material modulo a quantum. An easy extension to this idea is the concept of a polarisation

lattice which are all the values of polarisation that can be connected to any other via adding or

subtracting integer multiples of a quantum.

This leads to interesting results when trying to calculate the polarisation of perovskite ma-

terials. For the five-atom cubic phase of perovskites, the polarisation along any direction can
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be calculated by summing up charges. Take K1+Nb5+O2−
3 and calculate the polarisation along

any direction (I use z), when the A-site is at the origin via

Pz = e

V

∑
i

Ziz = e

V

[
(+1)(0) + (+5)(a2) + (−2)(a2) + (−2)(a2) + (−2)(0)

]
= e

V

a

2 (5.52)

which should really be written as ea
V (1

2 + n) where n denotes any number of polarisation

quanta. This centrosymmetric perovskite has infinitely many values of polarisation, and none of

them are zero! If we had studied Ba2+Ti4+O2−
3 instead, I would have got a polarisation lattice

centered on 0.

Importantly, the polarisation lattice in either case is symmetric about 0. This is generic for

all centrosymmetric materials and highlights the fact that the polarisation in a bulk material is

only defined up to a quantum.

What is well defined are changes in polarisation, provided that we focus on the same point

in the polarisation lattice. Adding a ferrodistortive mode to BaTiO3 would shift all points of the

polarisation lattice away from their original position, so that the lattice is no longer symmetric

about the origin and tracking the change of any one point from its original position leads to

a well defined value for the change in polarisation. Remaining on the correct branch of the

polarisation lattice is vital, and care was taken to do this in Chapters 6 and 7.

How do we calculate polarisation of the density in an ab-initio, quantum mechanical simula-

tion? As polarisation is described as the motion of localised charges, it is helpful to move away

from the delocalised Bloch function description of electrons ϕik(ri) = uike
ik·r and transform to

localised Wannier functions

wi(r − R) = V

(2π)3

∫
BZ

d3keik·(r−R)uik (5.53)

which is localised about R. We can then work out the average position of electrons described

by a Wannier function

r̄i =
∫
w∗

i rwid
3r (5.54)
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which, by substituting the definition of the Wannier functions and remembering that the

position operator can be written as a momentum derivative r = −i ∂
∂k

r̄i = i
V

(2π)3

∫
BZ

d3ke−ik·R ⟨uik|∂uik

∂k
⟩ . (5.55)

The electronic contribution to the polarisation is then given by

P elec = 1
V

occ∑
i

qir̄i = − 2ie
(2π)3

∫
BZ

d3ke−ik·R ⟨uik|∂uik

∂k
⟩ . (5.56)

because each filled level holds two electrons of charge −2e. This description of electronic polar-

isation in this manner is an example of a Berry (or geometric) phase - these occur whenever a

quantum system is moved in a closed loop through in phase space. The Aharanov-Bohm effect,

where an electron can be affected by electromagnetic field even if the electron is in a region where

the field is zero, is another prominent phenomena described by Berry Phases. Berry phases are

described in more detail in Reference [56]. One point worth mentioning is the non-uniqueness

of Wannier functions. Bloch functions can always be multiplied by a k-dependent phase factor

e−iβ(k). Obviously this gauge freedom will be reflected in the Wannier functions that are con-

structed from the Bloch functions but importantly, Equation 5.56 is gauge invariant∗ - the value

of polarisation does not depend on the choice of gauge.

To actually perform the calculation in a density functional theory code, the electronic struc-

ture is solved to obtain the Bloch functions. Equation 5.56 can then be used. The integral over

the Brillioun zone is performed by sampling the zone using a Monkhorst-Pack grid. The Berry

phase expression (Equation 5.56) contains gradients, and these are obtained by calculating the

⟨uik|∂uik
∂k ⟩ along strings of k points, obtaining more points in the strings by moving the sampling

slice up and down until the full zone is reasonably covered with points. This would calculate

the polarisation along the direction of the strings.

∗A nice proof is given in Reference [56]
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Chapter 6

Single Perovskites

6.1 Introduction

Chapter 4 revealed that the common symmetries of single perovskites with an ABO3 chemical

formula are not good candidates to explore the particular kind of magnetoelectricity that enables

the electric field controlled reversal of magnetisation. This was because there were too few

degrees of freedom to play with and there was not an easy way to introduce ferroelectric distortion

that were strongly coupled to other primary modes in the material.

All is not lost as the current chapter reveals an alternative, and highly unexpected, form of

magnetoelectricity in which certain highly distorted forms of ABO3 perovskites with a−a−c+

tilts can undergo electric-field induced phase transitions to convert a paraelectric antiferromag-

netic into a ferroelectric ferromagnet.

I shall explain how this highly non-linear form of magnetoelectricity is a direct result of the

couplings between distortions, but to fully understand the physics, it is necessary to consider

even-order terms rather than the odd order terms I have been focusing on until now.

6.2 Computational Details

All simulations in this chapter are performed using density functional theory (DFT) as imple-

mented in the Vienna Ab-Initio Software Package (VASP) Version 6.3.2 [186, 187, 188, 189].
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I use the Perdew-Burke-Ernzerhof exchange correlation functional for solids (PBESol)[175]. I

used a high plane wave cutoff energy of 800 eV to ensure convergence for all systems studied

as well as a 7x5x7 Monkhorst-Pack k-grid for the
√

2×2×
√

2 20-atom supercell. Self consistent

field calculations were continued until differences in energies were within a tolerance of 10−8 eV.

Geometry relaxations were continued until the smallest Hellman-Feynman force was less than

10−3 eV/Å. I used projector augmented wave pseudopotentials in all our calculations. To better

approximate the effect of electron localization and correlation, we use the rotationally invariant

formulation of the onsite Hubbard-U parameter [190]. I used a consistent value of U = 4 eV for

all materials with unpaired d electrons and U = 0 eV for those without. This is also the meth-

odology employed in previous computational screening studies [191]. As will be demonstrated

later, the results are not qualitatively affected by the choice of U .

6.3 Pna21 Symmetry Through Strain

I explored the dynamical stability of ScCrO3 which is observed to have, when synthesised under

high pressure, a Pnma symmetry with a C-type magnetic structure [192, 193]. C-type mag-

netism is unusual in perovskites [194, 195] but, as established in Chapter 4, does not allow for

the electric field control of magnetism for any direction of polar distortion. Motivated largely

by academic curiosity over potential applicability to multiferroic memories, I explored whether

an applied strain would be able to induce a polar distortion and result in a multiferroic with

C-type magnetism.

As discussed in Chapter 2, epitaxial strain strongly couples to the zone-centered optical

phonons, softening them and eventually causing transitions to polar structures. A tensile epi-

taxial strain preferentially softens the in-plane polar phonon while compressive strain softens

the out-of-plane polar phonon. Typically, the polar distortion emerges in the direction that is

increased by strain.

This viewpoint is widespread in the literature [90] and so, when simulating the application of

tensile epitaxial strain to C-type Pnma ScCrO3, I expected to see the softening (and hopefully

freezing) of a phonon producing an in-plane polarisation and resulting in a Pmc21 or Pmn21
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space group. To begin, I fully relaxed a Pnma symmetry ScCrO3 and averaged the two short

lattice vectors to produce the in-plane lattice vectors ā = a+b
2 . The epitaxial strain η is then

defined as

η = aIP − ā

ā
, (6.1)

so that I am simulating the growth on a cubic substrate with a variable lattice parameter

aIP . This calculation is performed using VASP with the IOPTCELL [196] patch installed to

constrain the in-plane lattice vectors during relaxation.

As shown in Figure 6.1, we observe the condensation of a phonon with a B2u
∗ irrep. Including

this frozen phonon in the structure results in a Pna21 symmetry which has a polarisation out-

of-plane. Somehow, a tensile epitaxial strain appears to lead to a out-of-plane polarisation. This

is in sharp distinction to the existing literature.

Figure 6.1 also contains further mysteries. Firstly, the C-type phonon frequency softens with

increasing tensile strain but then, beyond about 4%, suddenly reversing direction and begins

hardening again. To the best of my knowledge, this kind of behaviour has never been observed in

the literature. Furthermore, switching the magnetic structure to ferromagnetic, approximately

doubles the softening of the polar phonon and hints towards very strong spin-phonon coupling

present in the material.

To verify this effect, we performed further first-principles calculations using VASP in which

we relaxed both the Pnma and Pna21 symmetries for each strain and plotted the resulting final

energies. The result for this computational experiment is presented in Figure 6.2. We also see

a prominent dip the Pna21 energy so that this phase becomes favoured in the same range of

tensile strains that the polar phonons are frozen. The two sets of calculations both point to the

same conclusion - tensile strain seems to favour an out-of-plane polarisation but strangely only

within a small strain window.
∗This is an alternative way to label irreps which is preferred in the Raman spectroscopy community. The

software package used to perform this phonon frequency calculation - phonopy - adopts it. It simply describes a
zone-centered phonon with odd parity - the subscript u is short for the German ungerade meaning odd or uneven.
It is equivalent to Γ−

4 with an (0, 0, a) OPD.
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Figure 6.1: Γ point phonon frequencies of the Pnma phase as a function of tensile strain. A
negative frequency is actually denoting an imaginary, soft phonon mode. The B2u phonon is
polar. Changing the experimentally observed C-type magnetic structure to FM softens this
phonon further.

6.4 The Origins Of The Pna21 Symmetry

Captivated by this completely unexpected and exciting result, I began to think about what

could be causing this physics. It seemed reasonable to assume that the unusually low tolerance

factor t = 0.754 (which was the reason why high pressures had to be used to synthesise the

material[192, 193]) could be the cause and so we repeated the energy calculation∗ for a range of

materials with similar tolerance factors. The resulting energy plots are shown in Figure 6.3.

Some of these materials have been synthesised in the Pnma symmetry [192, 197, 198] and

others are purely hypothetical. I selected the materials in Figure 6.3 because they effectively span

a large range of the periodic table and include different combinations of p, d and f block elements.

Many choices possess magnetic cations which are known to prohibit the second order Jahn-
∗We only performed the energy calculation because it much cheaper computationally. As seen from the

ScCrO3 example, it is expected that the phonon plots would corroborate the findings.
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Figure 6.2: Energies of the Pna21 phase (dashed orange) and the Pnma structure (solid blue) of
ScCrO3 when subject to epitaxial strain. The Pna21 symmetry with an out-of-plane polarisation
is lower in energy between 2% and 6% - a rare prediction of out-of-plane polarisation with tensile
strain.
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Figure 6.3: Energies of the Pnma,Pna21 and R3c symmetries of various ABO3 materials. In
all cases, I observe that Pna21 is always stabilised over Pnma, at least for some strain range.
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Teller mechanism. Others contain magnetic rare-earth elements. Irrespective of the chemical

composition, we always observe that the Pna21 phase (orange plot) is favoured in a range of

strains; in the top row and the rare-earths, the difference between Pna21 and Pnma is maximised

and some particular strain whereas for Mg and Zn materials the energy difference continues to

increase.

Importantly, Fujita et al [198] demonstrated that InFeO3 can also be stabilized in a rhombo-

hedral R3c symmetry. This symmetry was also included in the energy plots of Figure 6.3 and are

represented by green dashed-dotted lines. We see that for most of these materials, it is actually

the R3c phase which is thermodynamically stable for most strains∗. There are some notable

exceptions to this. InCrO3 and InFeO3, which have been observed in Pnma and R3c symmetries

respectively have a region of strain where Pna21 might be observable. Similarly, MgMnO3 also

has a region but in the compressive regime. These materials seem the most promising because

of their common chemical compositions and potentially high magnetic transition temperatures

due to presence of 3d elements.

Figure 6.3 poses three essential questions. Firstly, what is driving the condensation of the

out-of-plane polarisation? Secondly, why is it that for some materials there is a maximum energy

difference between Pnma and Pna21 and why not for other materials? Finally, what are the

consequences of this polar instability and does it have any technological applications?

I begin by addressing the second question : why is it that for some materials that there is a

maximum energy difference between Pnma and Pna21? To begin to address this, I compared

the relative sizes of the distortions present in Pnma InCrO3 and investigated how they are

changed with epitaxial strain. This was done using ISODISTORT [128] and the results are

compiled in the top panel of Figure 6.4.

Understandably, the two tilt distortions forming the a−a−c+ tilt pattern R−
5 and M+

2 are

the largest. These modes change in opposite fashion with increasing tensile strain, so that

the product of the two stays approximately constant. X−
5 is also large because of the hybrid

∗Although I stated that the InFeO3 is observed to have R3c symmetry, Figure 6.3 shows that at 0% strain,
it is the P na21 phase which is lowest in energy. This is because the strains are being defined with respect to
the P nma lattice vectors. If instead, the strain was defined with respect to the larger R3c lattice vectors, all the
x-axes would be shifted to the right.
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a)

b)

Figure 6.4: Variation of modes with strain in InCrO3. a) Variation of all averaged Pnma modes
with epitaxial strain. The averaging is performed by taking the root-mean-square displacement
of all atoms moved by each order parameter The R−

4 mode shows a prominent minimum. b) the
R−

4 mode minimum is due to the decomposition of the mode into a component that affects only
the A-site and one that affects only the O site. These behave oppositely under strain, resulting
in a minimum.
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improper mechanism QX−
5
QM+

2
QR−

5
coupling this mode to the two tilts. The symmetry allowed

Jahn-Teller mode M+
3 is negligibly small. The remaining R−

4 mode, is an antipolar motion

affecting both the A-site and the O-site, shows a distinctive dip in amplitude at around 4%,

which is the same strain at which the energy also has its minimum. Why should the R−
4 mode

have a minima? The lower panel of Figure 6.4 reveals that the two components of this distortion

behave oppositely under applied tensile strain and each pass through zero. When combining

the two modes into a total amplitude, this results in a minimum. I have overlayed the energy

of the Pna21 phase in blue on top of the R−
4 mode amplitude to show the alignment of the two

minima.

This alignment of minima is too tantalising to be cheaply dismissed as a coincidence, so I

investigated further by studying the strain effects on the modes of the other materials included

in Figure 6.3. This is presented in Figure 6.5.

This fascinating result is plainly indicating that the strain-induced decrease of the R−
4 mode

is central to the stabilisation of the Pna21 phase. The minimum of the Pna21 energies in

ScCrO3, ScFeO3, ScGaO3, InCrO3, InCrO3,InGaO3, LuMoO3 and YbMoO3 overlap well with

the minima of the R−
4 distortion which lends credence to the idea that the R−

4 mode is controlling

the energy of the Pna21 phase. However, this hypothesis does not explain the behaviour of

MgMnO3, MgGeO3, ZnMnO3 and ZnGeO3. In these materials, R−
4 still possesses a minimum

but the energy appears to be smoothly decreasing with tensile strain. Inspecting Figure 6.5

offers some clues which address this discrepancy. The highest R−
4 amplitude reached for the

Zn and Mg series is approximately 0.2 Å whereas the other materials obtain values of 0.3 Å or

higher. The size of the R−
4 reflects the relative tolerance factors of these materials. LuMoO3

has the smallest with t = 0.766 and, as a t far from 1 indicates a propensity for distortion, has a

correspondingly large R−
4 amplitude whereas ZnGeO3 has the largest tolerance factor t = 0.786

and the smallest R−
4 mode amplitude.

A large R−
4 mode therefore clearly suppresses an out-of-plane polarisation and the gradual

decrease in R−
4 with strain lessens this effect so that the polar phase can break through. In

the Mg and Zn series, the suppressing influence of smaller R−
4 is never large enough so that the

Pna21 phase is always preferred over the centrosymmetric Pnma.
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Figure 6.5: First and third rows: Energies of the Pnma,Pna21 and R3c symmetries of various
ABO3 materials. In all cases, I observe that Pna21 is always stabilised over Pnma, at least for
some strain range. Second and fourth rows: amplitude of the antipolar motions on the A and
O site described by the R−

4 irrep. The minima in R−
4 typically aligns withe the Pna21 energy

minima.

The suppression of polarisation by R−
4 has in fact already been noted in the literature.

Referred to in Chapter 2, "Why are there so few ferroelectric perovskites" by Benedek and Fennie

[87] explored the suppressive effect that the tilts M+
2 and R−

5 have on the polar distortion. Large

tilts in Pnma lead to hard polar phonon frequencies. Similarly, they found that the antipolar

motion of the A-site (X−
5 ) also hardened the polar phonon. They suggested searching for

ferroelectricity in perovskites with a tilt pattern that does not allow for this secondary motion

of cations brought about by a hybrid improper mechanism. In fact, they suggested that R3c

materials with an a−a−a− tilt pattern would be one such symmetry. This is one reason why the

non-centrosymmetric R3c is one of the only polar space groups available to low tolerance factor

perovskites - it is only the tilts that are suppressing the polarisation and not the A-site motion.

Benedek and Fennie also mentioned that the R−
4 also strongly hardens any polar phonons
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but, because the mode tends to be small, is perhaps less significant when compared to the tilts

and the A-site motions. What my work has demonstrated is that the R−
4 mode is indeed very

important because it behaves so uniquely under strain. In effect, my work has extended Benedek

and Fennie’s to lower tolerance factor perovskites where the R−
4 mode is larger in amplitude.

The suppression of one mode by another is best captured by including biquadratic terms like

those in Chapter 2 in the Landau expansion

∆Ebiquadratic =
∑

i

ai,Γ−
4
Q2

iQ
2
Γ−

4
, (6.2)

which changes the energy of the system by ∆Ebiquadratic and the index i cycles over all

the Pnma modes (R−
5 , M+

2 , X−
5 , R−

4 , M+
3 ). Benedek and Fennie showed that the coefficients

ai,Γ−
4

coupling each of these modes to the polar mode are strongly positive. This means that

the energy of the system can be lowered if the polarisation is reduced to zero. The sum of

all these terms are in competition with other terms which favour a non-zero polarisation and

the balance of power in that competition can be adjusted by applying strain to weaken R−
4 -

the polarisation-favouring terms begin to dominate and a Pna21 phase results. Clearly these

low-tolerance factor, orthorhombic perovskites are extremely finely balanced between polar and

non-polar symmetries.

What are these other terms that favour a non-zero polarisation and compete with the

polarisation-suppressing biquadratics? One possibility is that they result from higher order

even terms. In R3c materials, which have extremely large tilts in a a−a−a− pattern, it is not

possible to neglect the higher order terms in the Landau expansion because the order parameters

are not necessarily small. If these higher terms are included, one comes across a term of the

form

∆E = bQ4
R−

5
Q2

Γ−
4
. (6.3)

The a−a−a− tilt pattern is constructed exclusively by antiphase tilts and can therefore be

described by a single irrep R−
5 with the (a, a, a) OPD. If the coefficient b > 0, then this term
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Figure 6.6: Demonstration of a competitive interaction between large tilts and polar modes in
1% strained InFeO3. The colour denotes the amplitude of polarisation that minimizes the free
energy. For very large tilts, the energy is minimised for zero polarisation. This is in contrast to
the cooperative interaction in R3c materials found in Reference [199].

behaves identically to a competitive biquadratic term and suppresses ferroelectricity. However,

if b < 0, then this term actually favours ferroelectricity. This is exactly what happens in R3c

materials [199] like ZnSnO3 so that for extremely large tilts, polarisation can actually become

favoured. This is another reason why R3c is favoured at low tolerance factors. It is the best

example of a triggered mechanism mentioned in Chapter 2.

This sixth order mechanism is therefore the first thing we checked in the Pna21 phase. This

is slightly more complicated than the R3c system as the a−a−c+ tilt pattern is formed of both

antiphase and in-phase tilts and so the energy landscape has a greater dimension. We scaled

the tilts λQM+
2

and λQR−
5

using a scaling parameter λ. For each combination of in-phase and

antiphase tilts, we computed the energy associated with a polar distortion by scaling the out-

of-plane polar mode and locating the value of the polarisation that minimises the energy. The

results for InFeO3 are shown as a polarisation landscape in Figure 6.6. No other distortions are

included in the numerical experiment apart from the two tilts and the polarisation.
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Figure 6.7: Energy wells formed by introducing the polar mode Γ−
4 , the antipolar B-site motions

(X+
5 ), and then both modes together to the Pnma symmetry. Energy is only gained when both

modes are introduced together.

The colour bar indicates the value of the polarisation that minimises the energy. We see

that only non-zero values of polarisation are obtained for small tilts. This indicates that the

mechanisms driving the transition to Pna21 is wholly distinct from that in R3c materials and

that the coefficient in the sixth order term is indeed positive.

We gained some additional insight into the possible mechanism by adding each of the modes

that appear once the symmetry is broken to Pna21. This obviously includes the Γ−
4 polar

distortion with the (0, 0, a) OPD but the allowed antipolar motion of the B-sites described by

an X+
5 irrep is also important. There is also a R+

5 antipolar mode but, like the M+
3 Jahn-Teller

mode, is too small to contribute much. We took the two mode amplitudes obtained from a

Pna21 geometry relaxation as fixed constants QΓ−
4 ,0 and QX+

5 ,0 and then introduced them to

the Pnma structures by scaling their value with a scaling parameter λ so that QΓ−
4

= λQΓ−
4 ,0

and QX+
5

= λQX+
5 ,0. We also introduced them simultaneously so that the combined mode was

Q = λ(QΓ−
4 ,0 +QX+

5 ,0). The changes to the energy of the structure are presented in Figure 6.7.
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This intriguing result suggests that neither Γ−
4 or X+

5 are unstable by themselves. In the

language of phonons, the frozen phonon is of hybrid character and mixes the zone centre dis-

tortion with the zone-boundary∗ Only when both of the modes are present does the energy

decrease†. Any theory constructed to explain this phase transition must be able to describe this

simultaneous condensation of order parameters.

The first candidate Landau theory that could have some potential returns to the familiar

biquadratic terms in a triggered ferroelectric mechanism. As a reminder from Chapter 4, this

occurs when the coefficient in front of the biquadratic is negative so that a term like

∆E = cQ2
X+

5
Q2

Γ−
4

(6.4)

with c < 0 would decrease the energy of the system and prefer the existence of X+
5 if Γ−

4

appears. While a tempting solution, it is clearly insufficient. The triggering mechanism relies on

at least one of the order parameters to be non-zero but Figure 6.7 patently shows that neither

X+
5 or Γ−

4 can spontaneously appear. Furthermore, explicit calculation by adding only the X+
5

and Γ−
4 modes to the highest symmetry Pm3̄m in InCrO3 shows that adding the polar mode

with a non-zero X+
5 mode reduces the energy gain that would have been obtained if just Γ−

4 were

introduced by itself. Therefore, the coefficient c is strongly positive and rules out the triggered

mechanism. Of course, this newly determined competitive biquadratic interaction only adds to

the barrier that the actual mechanism needs to fight through.

Before discussing what terms could be driving the simultaneous appearance of the polar-

isation and the antipolar X+
5 mode, I note that I repeated the calculation of Figure 6.7 on all

materials studied in Figure 6.3. This is shown in Figure 6.9. Identical behaviour is observed in

each and so the mechanism must have universal applicability.

While the terms of even powers in the Landau expansion are acting to suppress the po-

larisation, it is the odd powers that are driving the polarisation. Specifically, we can form

combinations of order parameters
∗This is not entirely surprising. After condensing in the tilts from P m3̄m to get P nma, the original X-point

in the P m3̄m Brillioun zone has been folded onto the zone centre of the P nma Brillioun zone.
†The minimum of the combined mode is not at λ = 1. This is because Γ−

4 and X+
5 are being introduced to

the P nma structure which has slightly different mode amplitudes to the fully relaxed P na21 structure.
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studied.
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∆Eodd = c1QX+
5
QX−

5
QΓ−

4
+c2QX+

5
QR−

5
QM+

2
QΓ−

4
+c3QX+

5
QR−

4
QM+

2
QΓ−

4
+c4QX+

5
QR−

5
QM+

3
QΓ−

4
,

(6.5)

which couple the order parameters X+
5 and Γ−

4 to modes that already exist in the Pnma

structure. These terms were constructed using the rules established in Chapter 3 and checked

with INVARIANTS [131]. Taking these terms one at a time, the first term c1QX+
5
QX−

5
QΓ−

4

extends the concept of hybrid improper couplings. This is because in a hybrid improper mech-

anism, two frozen modes form a hybrid mode that induces the appearance of the third - think

of the two frozen tilts inducing the X−
5 antipolar motion in Pnma perovskites. c1QX+

5
QX−

5
QΓ−

4

implies something very different. Only QX−
5

is a frozen mode that already exists in the struc-

ture. This term encourages both X+
5 and Γ−

4 to condense if X−
5 is already present; the new

order parameters will adopt signs so that this term reduces the overall energy of the system. In

this term, one mode induces two others.

The next term c2QX+
5
QR−

5
QM+

2
QΓ−

4
couples the polar mode and X+

5 to the enormous tilt

modes. The larger the tilts, the larger the push to introduce the two new modes. The product

of tilts does not vary much with strain in these materials and so we can expect this term to

be a constant pressure towards polarisation at all strains. In Figure 6.10, we see this constant

product.

The next term couples the two new terms to R−
4 and M+

2 . From Figure 6.4, we see that

M+
2 increases with strain while R−

4 has that characteristic dip. In Figure 6.10, we see that the

change in R−
4 , dominates the product so it also has that same characteristic dip. I conclude that

this term has its maximum effect at either very low or very high strains.

Finally, we have a coupling to the tiny Jahn-Teller mode which is negligibly small. This

whole term is therefore largely unimportant. The huge fluctations in this term shown in Figure

6.10 is largely due to tiny changes M+
3 , potentially due to noise, having a outsized effect on the

product.

So it appears that the first two terms are the most important in driving the polarisation and

the third term, already small due to the smaller R−
4 mode, becomes less important as the strain
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Figure 6.10: Products of mode amplitudes that play a role in the odd-order coupling terms
of Equation 6.5. We see that the role of the tilts and antipolar A-sites remain constant for
the entire strain range. However, the other modes, which were already small, have changing
significance with increasing strain.

is increased, at least up to a point.

These terms are immediately reminiscent of the avalanche transitions studied in Aurivillius

compounds [200, 201, 202]. The idea here is that the specific couplings in these materials could

potentially allow for two modes to appear simultaneously and therefore skip a phase in which only

one mode is present. This classification is non-specific and so could be caused by either triggered

mechanism or the extended hybrid improper mechanisms that seem to be at play in these Pna21

materials. Although the condensation of the X+
5 and Γ−

4 are certainly simultaneous, it is not

clear whether this should be called a avalanche transition as it’s not obvious if any intermediate

symmetry is skipped. For example, the first two terms suggest that large tilts would also bring

X+
5 and Γ−

4 , but would these two secondary modes appear simultaneously with the tilts or

develop only after the material has cooled and the tilt magnitudes have strengthened?

The couplings above also explain why it is only the Pna21 phase which can be obtained in

this way. The alternative strain-induced polar phases Pmc21 and Pmn21 do not allow for this
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Symmetry Adapted Modes Pnma Pna21 Pmn21 Pmc21 R3c
R−

5 (a,a,0) (a,0,a) (0,a,-a) (0,a,a) (a,a,a)
M+

2 (0;a;0) (0;0;a) (a;0;0) (a;0,0) N/A
X−

5 (a,a;0,0;a,a) (0,0;a;a,0,0) (0,0;0,0;a,-a) (0,0;0,0;a,a) N/A
R−

4 (a,-a,0) (a,0,-a) (0,a,a) (0,a,-a) N/A
M+

3 (0;a;0) (0;0;a) (a;0;0) (a;0,0) N/A
Γ−

4 N/A (a,0,0) (a,a,0) (a,a,0) (a,a,a)
X+

5 N/A (0,0;a,-a;0,0) N/A N/A N/A
R+

5 N/A (a,0,-a) (a,0,0) N/A N/A
X+

2 N/A N/A (0;0;a) N/A N/A
Γ−

5 N/A N/A (0,a,-a) (0,a,-a) N/A
M−

5 N/A N/A (a,-a;0,0;0,0) (a,-a;0,0;0,0) N/A
X+

1 N/A N/A N/A (0;0;a) N/A

Table 6.1: Symmetry adapted modes of space groups studied. Entries denote the order para-
meter direction of the individual modes. Order parameter directions should not be confused
with real space directions of a distortion. For example, the polar mode Γ−

4 of Pna21 is along the
same real space direction as the M+

2 rotation axis. In Pmc21, the polar mode is perpendicular to
this tilt axis and in Pmn21, the polar mode is along the third mutually perpendicular direction.
Pnma,Pmc21, Pmn21 and Pna21 have the octahedral tilt pattern a−c+a− (or equivalent in the
different standard settings) whereas R3c has the a−a−a− pattern. All modes can be visualised
using ISODISTORT.

additional X+
5 motion of the B-sites and so the above couplings would not exist. An enumeration

of the modes present in each of the symmetries considered is presented in Table 6.1.

The couplings also have profound consequences for the switching of the polar mode. The

odd order terms in the Landau expansion mean that Γ−
4 is not able to reverse unless X+

5 also

reverses simultaneously. This is demonstrated explicitly in Figure 6.11 which is actually just an

extension of Figure 6.7. Here, the energy degenerate state can only be obtained if the both the

polarisation and the antipolar B-sites are reversed together.

Finally, we discuss whether any alternative orientations may be preferred in this epitaxial

strain geometry. There are two ways to position a Pnma perovskite on top of a cubic substrate.

The first, and the one that I have been considering exclusively up until now, is to position the

short axes parallel to the substrate and have the long axis perpendicular. The second involves

the long axis being in the plane. We restricted ourselves to the first orientation because previous

research demonstrated that tensile strain favours this orientation [93] for materials like CaTiO3.

However, we cannot assume this is still the case for the materials studied here with extremely

low tolerance factors. We fully relaxed all of the materials without constraining any lattice
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Figure 6.11: Energy wells demonstrating the coupled switching in InCrO3. The degenerate
minima can only be obtained by switching both the polar mode and the antipolar motion of
B-sites.

vectors and then in Table 6.2, we computed the areas of the face in contact with the substrate

for the geometry in which the long axis is perpendicular to the substrate and also when the

long axis is parallel to the surface. Applying tensile strain should favour the orientation with

the larger surface area. We see that for CaTiO3, the perpendicular orientation has the larger

area which supports previous work. However for all the remaining materials except LuMoO3,

the parallel orientation maximises the area. This suggests it is this alternative orientation that

would be preferred with increasing tensile strain.

This is confirmed in Figure 6.12 for InFeO3. The bold black line shows that the alternative

orientation for Pnma quickly becomes stable with tensile strain. Interestingly, there is also

an alternative orientation to the Pna21 phase which is also lower in energy so that the polar

instability persists even with this new orientation. However, for small strains around 0%, the

polar instability on top of the Pnma symmetry oriented with the long axis out of the plane is

still the lowest energy structure and so we would still expect to see an out of plane polarisation

for low enough strains. In fact, we would not expect to see the alternative orientation at all as
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Material a b c A⊥ A∥
ScCrO3 5.370 7.421 5.033 27.030 27.311
ScFeO3 5.364 7.516 5.018 26.915 27.603
ScGaO3 5.338 7.497 5.011 26.745 27.444
InCrO3 5.387 7.599 5.194 27.977 28.431
InFeO3 5.392 7.692 5.168 27.867 28.726
InGaO3 5.355 7.681 5.152 27.585 28.537
MgMnO3 5.169 7.211 4.940 25.537 25.781
MgGeO3 5.143 7.253 4.963 25.526 25.920
ZnMnO3 5.111 7.295 5.007 25.593 26.100
ZnGeO3 5.078 7.349 5.014 25.464 26.223
YbMoO3 5.721 7.825 5.342 30.565 30.626
LuMoO3 5.719 7.718 5.335 30.510 30.181
CaTiO3 5.442 7.639 5.377 29.266 29.221

Table 6.2: Fully relaxed Pnma materials and their corresponding lattice constants. A⊥ and
A∥ are the areas of face in contact with the surface and are obtained by A⊥ = ac and A∥ =
b
2
√
a2 + c2.

it is the R3c phase which actually becomes stable with increasing strain.

6.5 Applications Of The Pna21 Symmetry

The stabilisation of Pna21 symmetry over Pnma and R3c has immediate technological con-

sequences. The out-of-plane polarisation is tempting for device physics because, to construct

a device, the ferroelectric must be sandwiched between two metallic electrodes. If the ferro-

electric has an out-of-plane polarisation, this would interact very strongly with the electric field

emanating from the electrodes and realise low voltage ferroelectric switching∗. The well studied

ferroelectric BiFeO3 has a polarisation of around 90 µC/cm2 but this is along the [111] direction.

The component along the out-of-plane direction would therefore be approximately 60 µC/cm2

- this value forms the benchmark of what a competitive out-of-plane polarisation is.

We begin by calculating the polarisation of the InFeO3 Pna21 symmetry. We see from Figure

6.3 that the Pna21 symmetry is stabilised over both the Pnma and R3c symmetry at 0% strain

and so it is at this strain that we calculate all material properties. The polarisation is calculated
∗The larger out-of-plane polarisation would also create a larger surface charge and hence a larger depolarizing

field the suppresses the polar distortion. We can negate this effect by assuming that the electrodes are sufficiently
metallic to screen the surface charge and that the epitaxial film is thick enough that any residual surface charge
does not produce such a large depolarizing field.
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Figure 6.12: Energies of all studied crystallographic phases with G-type AFM. I have included
the two possible growth orientations that have been observed in Pnma perovskites. We see
that the perpendicular arrangement, which will have an out-of-plane polarisation, is favoured
for small strains. Interestingly, the same polar instability occurs for both growth orientations.

using the Modern Theory Of polarisation and so, being a quantity that is defined only modulo

a quantum of polarisation, there are multiple polarisation branches to contend with. This is

shown in Figure 6.13. One of these branches includes the point P = 0 when the amplitude of the

polar distortion is zero. Following this branch upwards with increasing polar distortion leads to

a fully relaxed polarisation of P = 22.42 µC/cm2. This is smaller than BiFeO3 but still of the

same order of magnitude.

Another quantity related to the polarisation is the Born effective charges tensor. As discussed

in Chapter 2, this quantity measures the disparity between the nominal valence state of the ions

in a purely ionic description of the material to the actual change in polarisation obtained when

charges are moved. In effect, it describes how much of the electronic charge density are also

dragged along with the ion as it is displaced. A huge disparity in the nominal and Born effective

charges indicate that the polarisation is being driven by electronic effects such as the second

order Jahn-Teller distortion. In InFeO3, all Born effective charges are roughly equal to the
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Figure 6.13: Multiple polarisation branches of Pna21 InFeO3 and how they are changed as I
alter the amplitude of the Γ−

4 mode as a percentage. The centrosymmetric structure should
be centered on zero through classical arguments. The quoted polarisation is obtained as the
difference between a 100% distortion and a 0% distortion while remaining on the same branch.
The red dashed lines indicate polarisation quanta.

nominal ionic values. For example, the Born effective charge for the Fe3+ ion is about +3.7. In

contrast, for a material like BaTiO3 where the second order Jahn-Teller effect is known to play

a dominant role in driving the polarisation, the Born effective charge for the nominally Ti4+

ion is about +7 - a huge contrast. The similarity between the Born effective charges and the

nominal charges in InFeO3 is not surprising, we have shown that in the previous section that

the polarisation emerges from a symmetry dictated coupling between crystallographic modes.

A ferroelectric with nominal Born effective charges is known as geometric.

Moving on to the magnetic properties of InFeO3, we include the four most common magnetic

structures of ABO3 perovskites: A, C, G and FM and investigate how these change with strain.

This is done in Figure 6.14. The bold lines denote the Pnma structure, the dashed lines the

Pna21 and the dashed-dotted line the R3c. Experimentally, InFeO3 is a G-type antiferromagnet

[198] and so it is reassuring that this magnetic structure is always substantially lower in energy
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Figure 6.14: Energies of crystallographic and magnetic structures in InCrO3 as a function of
epitaxial strain. I observe a region between -2% and 1% strain for which a G-type AFM Pna21
phase is thermodynamically stable. Solid, dashed and dashed-dotted lines are the energies of
Pnma, Pna21 and R3c symmetries respectively.

than the others in Figure 6.14. Furthermore, the G-type structure permits a weak ferromagnetic

moment, which I calculated through a non-collinear spin calculation, to have a value of 0.021µB.

This is comparable to the weak ferromagnetic moment in other ferrite perovskites [27]. The

magnetic easy axis is within the plane and perpendicular to the polarisation.

It is important to contrast the energy difference between the Pnma and Pna21 symmetries,

and the R3c and R3̄c (not shown on Figure 6.14) symmetries. This is because the centrosymmet-

ric symmetries Pnma and R3̄c would presumably form a good model for the paraelectric phase

and so the energy between the orthorhombic phases ∆EO = EP nma − EP na21 or rhombohedral

phases ∆ER = ER3̄c − ER3c can be used as a rudimentary proxy for switching barriers. For

InFeO3, ∆EO = 28.30 meV/f.u and ∆ER = 252.96 meV/f.u. This suggests that the ferroelectric

switching is potentially easier in the orthorhombic materials and therefore circumvents the high

switching barriers present in R3c materials [203, 204].

The electronic structure of InFeO3 is explored in Figure 6.15. We see that the material is
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Figure 6.15: Density of states for the G-type AFM Pna21 phase of InFeO3 at 0% strain, demon-
strating the insulating character.

clearly insulating with a band gap of 1.81 eV. The gap persists with all choices of Hubbard-U .

Figure 6.16 explores how the choice of Hubbard-U affects the magnetic structure and the

polar instability at 0%. We see that for all values of U , the polar instability persists but the

energy differences between Pna21 and Pnma decreases with increasing U .

Turning to InCrO3 at 1% strain, the polarisation is also sizeable at 11.15 µC/cm2 and

like InFeO3, the Born effective charges are nominal. In addition ∆EO = 29.70 meV/f.u and

∆ER = 317.40 meV/f.u. The relative energies of the various magnetic structures in Figure

6.17 show some interesting features. The experimentally observed C-type magnetic structure

is the lowest for the Pnma symmetry but once the polar instability forms, the ferromagnetic

magnetic structure becomes the lowest energy Pna21 structure. In fact, the ferromagnetic Pna21

structure is the lowest energy structure overall between 0 and 2% epitaxial strain. The cause of

this change can be seen from Figure 6.17: the polar instability happens at a lower strain (around

-1%) for the FM and A-type magnetic structures than for the G- or C-types. This earlier onset

of polarisation means that, in the region where Pna21 is stable, it is these magnetic structures
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Figure 6.16: Energies of crystallographic and magnetic structures in InFeO3 at 0% strain, as a
function of the Hubbard-U parameter. The ground state is always G-type but could be either
Pna21 or R3c symmetry depending on U . However, the value of U leading to an R3c symmetry
is unrealistically small. Solid, dashed and dashed-dotted lines are the energies of Pnma, Pna21
and R3c symmetries respectively.

that are lower in energy.

For FM and A-type spins, the intralayer interactions are ferromagnetic. For G and C,

the intralayer interactions are antiferromagnetic. We saw in the previous section that the polar

instability is driven by a coupling to the antipolar motion to the magnetic B-sites. This antipolar

motion is also directed within the planes and so it is clear that ferromagnetic alignment of

intralayer spins increases this distortion and leads to a stronger coupling between Γ−
4 and X+

5 .

Antiferromagnetic spins have a weaker coupling. This explains the strange strengthening of the

polar phonon when the magnetic structure was switched to FM in ScCrO3 in Figure 6.1. The

introduction of the antipolar X+
5 mode is not only crucial for controlling the polar distortion

but it is also clearly very important for determining the magnetic structure.

This unexpected result leads to two exciting possibilities. Applying an electric field to

InCrO3 strained at just below 0% would lower the energies of the non-centrosymmetric structures
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Figure 6.17: Energies of crystallographic and magnetic structures in InCrO3 as a function of
epitaxial strain. I observe a region between 0% and 2% strain for which a Pna21 phase is
thermodynamically stable. For most of this region, I also observe a rare ferromagnetic structure.
Solid, dashed and dashed-dotted lines are the energies of Pnma, Pna21 and R3c symmetries
respectively.

by roughly equal amounts. This could make the FM Pna21 symmetry the thermodynamic

ground state and thus achieve the electric field control of magnetism, albeit not quite in the

same form discussed in Chapter 4. The application of the electric field could turn a C-type

antiferromagnetic into a polar ferromagnet. The presence or vanishing of a net magnetisation

could be the two states needed for a memory device ∗.

Alternatively, applying a magnetic field at the same strain would lower only the ferromagnetic

energies. A large enough field would result in the ferromagnetic polar structure being the lowest

energy overall. If such an effect were possible, this would be a kind of magnetic field control of

polarisation.

Given the exciting possibilities enabled by a ferroelectric ferromagnet, it is important to
∗Once in the polar ferromagnet phase, it is not yet clear to me whether the reversal of polarisation also results

in the reversal of the magnetisation due to the necessary reversal of the X+
5 which clearly has an effect on the

magnetism. If the magnetisation does not need to reverse, then this material could actually be the basis of a
4-state memory.

152



6.5. Applications Of The Pna21 Symmetry

−3 −2 −1 0 1 2 3 4
E− EF (eV)

−6

−4

−2

0

2

4

6

De
ns

ity
 O

f S
ta

te
s (

Å
−3

)

s
p
d

Figure 6.18: Density of states for the FM Pna21 phase of InCrO3 at 1% strain, demonstrating
the insulating character.

check if the material is insulating. Figure 6.18 confirms this and reveals a band gap of 1.84

eV. Figure 6.19 also reveals that for higher values of U , we can expect to see a FM ground

state whereas for lower U we obtain a C-type Pna21 phase. However the huge energy difference

between Pnma and Pna21 A-type and FM magnetic structures persists so that the potential

for physical applications remains robust to the choice of U .

Finally, MgMnO3 at 0% strain has a polarisation of P = 15.49µC/cm2 and nominal Born

effective charges with ∆EO = 13.95 meV/f.u and ∆ER = 331.01 meV/f.u. Due to the identical

d3 filling in both, the behaviour of the magnetic structure is analogous to InCrO3. We again

see the early onset of polarisation for A-type and FM magnetic structures in Figure 6.20 and

see insulating behaviour (although with a reduced band gap of 0.85 eV) in Figure 6.21 and the

material exhibits a similar dependence on Hubbard-U . A summary of all material properties is

given in Table 6.3.
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Figure 6.19: Energies of crystallographic and magnetic structures in InCrO3 at 1% strain, as a
function of the Hubbard-U parameter. The ground state is either ferromagnetic and of Pna21
symmetry or C-type and also of Pna21 symmetry. Solid, dashed and dashed-dotted lines are
the energies of Pnma, Pna21 and R3c symmetries respectively.

Material Strain
(%)

polarisation
(µC/cm2)

Magnetic
Structure

Easy
Axis

Band
Gap
(eV)

∆E0
(meV/f.u)

∆ER

(meV/f.u)

InCrO3 1 11.15 FM [100] 1.84 29.70 317.40
InFeO3 0 22.42 G-AFM* [010] 1.81 28.30 252.96

MgMnO3 0 15.49 FM [010] 0.85 13.95 331.01

Table 6.3: Properties of candidate materials at specified strains. InFeO3 is a G-type antiferro-
magnetic - the asterisk denotes a magnetic point group allowing for a wFM moment. This has
a calculated magnitude of 0.021µB. ∆EO and ∆ER are the difference in energies between the
two orthorhombic structures (Pnma and Pna21) and the two rhombohedral structures (R3̄c
and R3c) respectively. We use these values as a proxy for ferroelectric switching barrier height.
Note that the ilmenite phase is not considered in the current study. Calculations on this phase
in InFeO3 reveal the ilmenite structure to be 502 meV/f.u higher in energy than the Pnma
phase.
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Figure 6.20: Energies of crystallographic and magnetic structures in MgMnO3 as a function of
epitaxial strain. I observe a small region ≈ 0% strain for which a ferromagnetic Pna21 phase
is thermodynamically stable. Solid, dashed and dashed-dotted lines are the energies of Pnma,
Pna21 and R3c symmetries respectively.

6.6 Contextualising the Pna21 Symmetry

To position our work in the context of the existing literature, the Pna21 phase is relatively rare

in perovskite oxides and there is currently much debate into the causes. The phase has been

observed in lone-pair systems like BiInO3 [205], PbRuO3 [206] and predicted in PbCoO3 [142]

(which also identified one of the terms in the odd power Landau expansion). It has similarly

been identified in various d0 materials like CdTiO3 [207, 208, 209]. In fact, Reference [209],

predicted that strain could be used to enable phase control between R3c, Pna21 and Pnma in

ZnSnO3, although this was not known to me when I first created Figure 6.1. We have repeated

the work of Reference [209] and found that it is always the R3c phase which is energetically

favourable. Our repeated calculations are shown in Figure 6.23 which should be compared to

Figure 9 of their paper.

Pna21 symmetry has also been observed in rare earth orthoferrites and orthochromates
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Figure 6.21: Density of states for the FM Pna21 phase of MgMnO3 at 0 strain, demonstrating
the insulating character.

[210, 191] but is usually ascribed to a spin-driven symmetry breaking, although conflicting

reports of the Pna21 symmetry appearing at a much higher temperature than the rare earth

TN also exist [211]. While lone-pair, d0 and spin-driven effects might be important in certain

cases, I argue that the mechanism presented in the present study must also be important and

is universal to all low-t systems since it depends solely on the symmetry of the parent phase.

6.7 Summary

This chapter has explored novel polar instabilities in highly orthorhombic perovskite materials.

I demonstrated that the construction of a Landau Theory was essential to explain their unusual

properties. The polarisation is suppressed by the strong biquadratic coupling to the R−
4 antipolar

distortions. With increasing strain, this coupling is lessened so that the polar distortion, which

is driven by extended hybrid improper terms in the energy expansion, can appear. This polar

transition is avalanche-like in that the polar distortion can only appear simultaneously with the
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Figure 6.22: Energies of crystallographic and magnetic structures in MgMnO3 at 0% strain, as
a function of the Hubbard-U parameter. The ground state is either ferromagnetic and polar or
C-type and non-polar.Solid, dashed and dashed-dotted lines are the energies of Pnma, Pna21
and R3c symmetries respectively.

X+
5 mode.

This X+
5 is pivotal to the magnetic properties because the magnitude of this mode is altered

by the type of magnetic interaction. The changing strength of the coupling between the polar

mode and the X+
5 mode with magnetic structure results in polar, ferromagnetic insulators

becoming the thermodynamic ground states. In these materials, exciting effects such as the

electric field control of magnetism can be theoretically achieved although not in the form that

was the basis of the discussion in Chapter 4.

To extend this project, it would be interesting to explore just how universal this effect is. I

already have some preliminary results suggesting that materials of the form AScO3 would also

show these instabilities. Alternatively, it would also be interesting to zoom in on a particular

material such as InCrO3 and determine the coefficients in the Landau expansion to work out

which effects are truly dominant here.

It is not clear whether this mechanism would be useful in the original goal of memory devices.
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Figure 6.23: Energy of three competing polymorphs of ZnSnO3 as a function of epitaxial strain.
In contrast to [209], we observe that the R3c is always the ground state.

It is true that the application of an electric field, in a region of strain, would convert a paraelectric

antiferromagnet to a ferroelectric ferromagnet and so a material like InCrO3 would show a degree

of electric field control of magnetisation. The write operation could be performed with an electric

field and the change from an AFM to a FM could be read in the read operation. However, once

the electric field is released, the material would return to its paraelectric state. As a result,

this mechanism would only be useful for a volatile memory device. Its interesting to note that

the mechanism identified in this chapter makes use of a fully ferromagnetic state and not just a

wFM canting. It would be considerably easier to interact with this larger magnetisation.

This work of this chapter were published in The Journal Of The American Chemical Society

as "Universal Polar Instability In Highly Orthorhombic Perovskites" [212].
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Chapter 7

Double Perovskites

Chapter 4 revealed that a A-site layered double perovskite with a a−a−c+ tilt pattern and a

magnetic structure described by an mX−
1 irreducible representation permits the electric field

control of magnetism provided that both the normal to the layered cation planes and the anti-

ferromagnetic easy axis is parallel to the in-phase tilt axis.

This chapter uses density functional theory (DFT) to simulate a candidate material possess-

ing this exact symmetry - CeBaMn2O6.

Portions of this chapter form the basis of the computational half of ’Symmetry-informed

design of magnetoelectric coupling in the manganite perovskite CeBaMn2O6’ published in The

Journal Of Materials Chemistry C [213].

7.1 CeBaMn2O6

Why should CeBaMn2O6 form the double perovskite with a−a−c+ tilts and an X-point magnetic

structure†? Furthermore, would CeBaMn2O6 have the insulating electronic structure required

to allow ferroelectric switching?

Before starting to use any DFT at all, we can be fairly confident that CeBaMn2O6 will satisfy

this criteria. To begin with, we hope that CeBaMn2O6 is simply a cation ordered variant of

LaMnO3. This material is well studied [214, 215, 216, 26, 217, 218]. It has the required a−a−c+

†Also known as an A-type magnetic structure. I use the two terms synonymously.
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7.1. CeBaMn2O6

tilt pattern and a X-point magnetic structure with the easy axis parallel to the in-phase tilt

axis.

The valence states are La(3+)Mn(3+)O(2−)
3 and, from this we can work out the tolerance

factor of LaMnO3 through

tLaMnO3 = 1√
2
RLa3+ +RO2−

RMn3+ +RO2−
= 0.961 (7.1)

where the values of RLa3+ , RMn3+ , and RO2− are taken from Shannon’s compilation of ionic

radii [219]. Assuming that the A-sites become ordered with Ce4+ and Ba2+ - an assumption

that will be verified later - then the tolerance factor of CeBaMn2O6 is

tCeBaMn2O6 = 1√
2

1
2(RCe4+ +RBa2+) +RO2−

RMn3+ +RO2−
= 0.966 (7.2)

and these two tolerance factors are relatively close. It is the tolerance factor that controls the

tilt pattern and the similarity of the two suggests that CeBaMn2O6 will have the same a−a−c+

tilt pattern as LaMnO3.

In fact, the similarity in tolerance factors is the primary reason why Ce and Ba were selected

to form the double perovksite. In addition, the 2 + /4+ charge states and the differing cation

radii are also supposed to favour cation ordering [60].

The magnetism and electronic structure of LaMnO3 are determined by the Jahn-Teller active

Mn3+ cation. The d4 filling of the d orbitals within the crystal field splitting of the octahedral

anion environment (Chapter 2), leads to a degeneracy in the eg states. This degeneracy is

lifted through a Jahn-Teller (JT) distortion compressing two of the Mn-O bonds and extending

the third. Now a particular eg orbital is occupied, breaking the octahedral symmetry of the

degenerate eg states and causing the single eg electron to occupy the orbital of lower energy.

This is an orbital directed along the octahedral axis. This causes a local strain to which all other

orbitals must collectively order to reduce this strain. Kugel and Khomskii [220] describe the

process as a close packing of these cigar-shaped eg orbitals and determine the resulting orbital

ordering of eg in LaMnO3 is presented in Figure 7.1.
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7.1. CeBaMn2O6

Figure 7.1: Orbital ordering of eg orbitals in LaMnO3 caused by a cooperative Jahn-Teller
distortion of the MnO6 octahedra (not shown). Taken from [26]

.

In the language of irreps, such a distortion is clearly described by an M -point irrep because

the two basal axes in Figure 7.1 must be doubled to accomodate it. In fact, this is the M+
3 irrep

and is already permitted as a secondary order parameter in the Pnma symmetry. It is caused

by the trilinear coupling

QR−
5
QX−

5
QM+

3
(7.3)

involving antiphase tilts QR−
5

and the secondary antipolar La motions QX−
5

. Being caused by

a coupling to an already small secondary mode, the JT distortion is usually negligible in this

symmetry (see Chapter 6) but obtains a sizeable magnitude without breaking the symmetry

further for JT active Mn3+.

Having established the orbital ordering, the magnetic structure can also be guessed at without

recourse to simulation. The occupied eg orbitals alternate in orientation within the xz plane ∗

and the empty eg orbitals on each site are orthogonal. This leads to a situation in which half-

filled eg orbitals on one site are overlapping with empty eg orbitals on the next site. From the

Goodenough-Kanamori-Anderson rules for superexchange interactions, this results in ferromag-

netically ordering xy planes of Mn3+ cations. This should be weighed against the overlapping

half-filled t2g orbitals on every site which would favour antiferromagnetic arrangements between
∗The P nma setting has ŷ parallel to the long axis.
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all neighbouring cations. Within the xz planes, the ferromagnetic interaction wins because the

overlap between eg orbitals (in a σ bond) is greater than that between t2g (in a π bond). Along

the y direction, there is practically no overlap between eg orbitals and so AFM interactions

dominate. The resulting structure is one with ferromagnetic interactions within each layer with

antiferromagnetic interactions between layers - the exact X-point magnetic distortion (mX−
1 )

required for the electric field reversal of magnetism to work.

We have seen that, replacing the A-site with ordered Ce/Ba would not substantially change

the tilts. Even if it did, previous work [221] has demonstrated that altering the tilts do not sub-

stantially change the magnetic properties. Similarly, the intralayer orbital overlaps will hardly

be affected as the A-sites are not within these layers. The interlayer overlap may be altered

with the A-site layering but, as the π bond overlap remains the only serious superexchange

mechanism, there is no reason to suppose that the magnetic structure will change once Ce/Ba

layers are introduced.

7.1.1 Computational Details

We performed all subsequent computational simulation using density functional theory (DFT) as

implemented in the Vienna Ab-Initio Software Package (VASP) [187, 188, 189, 186]. To compute

the electronic structure and the Hellman-Feynman forces required to relax the geometry, we used

projected augmented wave (PAW) pseudopotentials in which the following electrons are treated

as valence: Ce - 5s25p64f15d16s2, Ba - 5s25p26s2, Mn - 3p63d54s2, O - 2s22p4. All the other

electrons were frozen to the atomic cores. For my exchange-correlation functional, I opt for

a generalised gradient approximation using the Perdew-Burke-Enzerhof parameterization for

solids (PBESol)[174].

As mentioned in Chapter 5, the d and f electrons have a small spatial extent but cannot be

treated as core electrons because their energies are similar to the O p states. The small spatial

extent increases the intrasite repulsion between these localised electrons; an effect which is not

easily captured within standard DFT. This necessitates correction terms U and J modelling the

repulsion and exchange respectively, of two d (or f) electrons occupying the same site.
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Previous computational work has found that U = 5eV and J = 1.5eV are appropriate values

to use for the Mn3+ ion in LaMnO3 [222, 223]. We also use values U = 10eV and J = 0eV for

the strongly localised Ce f states.

Energies and Hellman-Feynman forces were converged to less than 0.1 meV and 0.5 meVÅ−1

respectively, requiring a 1000 eV plane wave energy cutoff and a 4x3x4 Monkhorst-Pack k-point

integration mesh.

7.1.2 Ground State Crystallographic, Electronic and Magnetic Structure

We begin by performing a geometry optimization on both CeBaMn2O6 and LaMnO3 to compare

the two resulting crystallographic structures. After the geometry relaxation is completed, we

decompose the structures into their symmetry adapted distortions, each of which transforms as a

seperate irreducible representation of the Pm3̄m parent symmetry. In addition, we decomposed

an experimental, low-temperature LaMnO3 structure refinement [218] to provide a benchmark

for our computational relaxation. Importantly, we normalise the amplitude of these symmetry

adapted modes to the volume of the 5-atom Pm3̄m cell so that we can directly compare between

LaMnO3 and CeBaMn2O6∗. This analysis was carried out using ISODISTORT [128, 129] and

the results tabuled in Table 7.1.

Two conclusions can be drawn from this table. The first is that our simulations faithfully

reproduce the LaMnO3 structure as the lattice constants and irrep magnitudes are quite sim-

ilar in both the data obtained through x-ray diffraction and our simulated structure. Secondly,

the cation layering does not substantially alter the amplitude of the modes in the structure.

Of course, the additional layering of cations does not leave the structure entirely unchanged.

The long b axis is noticeably lengthened after cation ordering, and the antiphase tilts R−
5 are

weakened. Due to the a−b+a− tilt patterns, the antiphase tilts are about axes that are perpen-

dicular to the direction of cation layering. This means that the apical oxygens translated by

these tilts move within the A-O layers and a changing A-site environment, such as through the
∗Such a normalisation is not strictly necessary in this case because the distorted cells of P nma and P mc21

symmetry obtained from P m3̄m are of the same size - the additional cation layering does not require a further
increase in cell size.
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Property Experimental
LaMnO3 (Å)

Simulated
LaMnO3 (Å)

Simulated
CeBaMn2O6 (Å)

a 5.746 5.799 5.818
b 7.664 7.610 7.738
c 5.533 5.505 5.523

QΓ−
4

N/A N/A 0.517
QR−

4
0.112 0.117 0.081

QR−
5

1.274 1.314 0.975
QX+

1
N/A N/A 0.697

QX−
5

0.605 0.683 0.592
QM+

2
0.971 1.106 1.010

QM+
3

0.353 0.377 0.358
QM−

5
N/A N/A 0.338

Table 7.1: Comparison of irrep amplitudes between experimentally determined LaMnO3 [218]
structural modes, a relaxed LaMnO3 cell obtained in the present investigation and the A-site
layered CeBaMn2O6 structure. The irrep amplitudes (Q) have been normalised with respect to
the parent Pm3̄m structure (parameter Ap in ISODISTORT)

cation ordering, will clearly have an effect. In contrast, the in-phase modes rotate oxygens in

between these A-O layers and so the effect of cation ordering is negligible. This can also be seen

from Table 7.1. Unlike the ABO3 systems studied in Chapter 6, CeBaMn2O6 has Mn3+ which

is Jahn-Teller active. This results in a non-negligible M+
3 mode.

Therefore, we are relatively safe in our assumption that the crystal structure of CeBaMn2O6

is similar to LaMnO3. This was necessary in our hypothesis that CeBaMn2O6 may exhibit the

same magnetic structure as LaMnO3 which was controlled by a particular Jahn-Teller induced

orbital ordering, leading to ferromagnetic superexchange interactions within each BO2 plane and

an antiferromagnetic interaction perpendicular to the plane. The resulting magnetic structure

is A-type (transforming as a mX−
1 irrep.) We confirm that this magnetic structure is indeed the

ground state for a wide range of Ueff = U−J in Figure 7.2. We find that for a 3eV < Ueff < 6eV

on the Mn d orbitals, the A-type magnetic structure is stable. In all future calculations, we use

Ueff = 3.5 eV which is known to be appropriate for LaMnO3. With this choice of Ueff , we

calculate the magnetic moment on each Mn ion to be 3.71µB. This value, along with the

sizeable Jahn-Teller mode, lends credence to the assignment of a Mn4+ state and therefore a

Ce4+ oxidation state. Thus, the necessary magnetic structure for the electric field control of
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Figure 7.2: Variation of magnetic energies with Hubbard-U . a) Variation of magnetic energies
when varying the effective U on the Mn ions. Variation of the magnetic structure when varying
on the Ce site.

magnetism in CeBaMn2O6 is obtained.

Given this magnetic structure, we also require a magnetic easy axis that allow for a weak

ferromagnetic moment. Table 7.2 details the results of our relativistic non-collinear calcula-

tions including spin-orbit coupling to determine the magnetocrystalline anisotropy of A-type

CeBaMn2O6. We see that that the energy is lowest when the spins are directed parallel and

antiparallel to the the [100] direction - along the a axis of the CeBaMn2O6 Pnma cell. This is

exactly the same direction that has been experimentally determined for LaMnO3 and so we can

conclude that the magnetic structure is not changed at all after cation ordering. Like LaMnO3,

CeBaMn2O6 also posessess a weak ferromagnetic moment which we calculate to be 0.029µB per

Mn along the b direction. This is a similar value to other magnetic perovskite oxides [27].
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7.1.2. Ground State Crystallographic, Electronic and Magnetic Structure

Quantisation
Axis Energy (meV/f.u) Magnetic Moment

(µB/Mn)
[001] 1.4 (0.000,0.000,0.000)
[100] 0.0 (0.000,0.029,0.000)
[010] 1.9 (0.001,0.000,0.000)
[101] 0.7 (0.000,0.000,0.004)
[011] 1.5 (0.001,0.000,0.001)
[010] 1.0 (0.000,0.000,0.003)
[111] 1.4 (0.000,0.000,0.000)

Table 7.2: Magnetocrystalline anisotropy energy and magnetic moments of various easy axes in
A-type A-site layered CeBaMn2O6. Obtained non-self-consistently by freezing the charge density
of the collinear self-consistent calculation and then rotating the easy axis. The quantisation axes
and magnetic moments are listed with respect to the Pnma setting of the LaMnO3 structure.

A a−b+a− tilt pattern, an A-site layering, a magnetic structure transforming as an mX−
1

irrep with an OPD allowing for wFM is all that is necessary by symmetry for the 180◦ reversal

of wFM with reversal of polarisation to work. However, the material must still be insulating

in order to have a macroscopic polarisation. We confirm this in Figure 7.3 by calculating the

bandstructure and density-of-states of CeBaMn2O6.

We obtain an indirect band gap of about 0.98 eV - smaller than the 1.7 eV measured in

LaMnO3 [224]. Figure 7.3 also shows that the lowest energy excitations are between hybridised

O-p and Mn-d levels and importantly, we see that the Ce-f states are empty. This provides

further validation of the Ce4+ oxidation state.

From this data, we can also confirm that CeBaMn2O6 has the same orbital ordering as

LaMnO3. Figure 7.4 plots the square of Kohn-Sham orbital of the highest occupied band at

k = (0, 0, 0), Γ-point, in real space and we can clearly see that the ordering of charge density

near the Mn ions is akin to that in Figure 7.1. We see approximately orthogonal charge density

on neighbouring cations and then significant charge density on the O anions which reflects the

dp hybridisation of this highest occupied band.

Finally as we have confirmed an insulating electronic structure, we compute the polarisation

of the CeBaMn2O6 using the Modern Theory Of Polarisation. In Figure 7.5, we only show one

branch of the polarisation ladder as the hybrid mode is varied. The hybrid mode is all of the

modes that must be switched in order to obtain the reversed domain. In this case, the main
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7.1.3. Alternative Ground States

Figure 7.3: Band structure and density of states for CeBaMn2O6. I observe an band gap of 0.98
eV, traversed by excitations from the hybridised d− p valence to the empty d conduction states.

modes to switch are the polarisation Γ−
4 , the inphase tilt M+

2 and the antiphase tilts X−
5 (see

Chapter 4). All of these modes are scaled linearly and the polarisation calculated at every point.

The polarisation at the end points denote the macroscopic polarisation - a value of ±9.9µC/cm2.

This is similar in magnitude to other improper ferroelectrics like YMnO3 (±6.5µC/cm2) [86].

7.1.3 Alternative Ground States

As the precise cation order is so central in determining whether the electric field control of

magnetism is permissible, we compute the energies of several other candidate cation orderings

and compare them with the energy of the required cation ordering. To do this, we create a

supercell of the a−b+a− tilt pattern (so that the cell is now a 2x2x2 supercell of the Pm3̄m
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7.1.3. Alternative Ground States

Figure 7.4: Charge density ϕ∗ϕ of the highest occupied band at the Γ-point. This is the density
for up-spin bands and which only has significant density on a single BO2 layer. The layer below
has an identical orbital ordering which accounts for the A-type antiferromagnetic structure
through the rules of superexchange. The plot is produced for a different crystallographic setting
where the long axis is now c.

structure), and order the cations in various ways. For each ordering, we perform a geometry

relaxation and calculate the final energy. The results of this calculation are presented in Tables

7.3 and 7.4.

Surprisingly, we do not find the expected cation order, with alternating Ce/Ba layers along

the long axis of the cell, to be the ground state. Instead a cation ordering in which the layering

is perpendicular to the long axis is the ground state. The next lowest in energy are columnar

ordered A-site which, in some sense, can almost be considered to be in-between the two lowest

energy layered configurations; a 45◦ rotation of the cation layers in the lowest energy ordered

structures results in the columnar structure. These new lower energy layerings do not result in

the same symmetry as the intended layering. The two other layerings are symmetry equivalent

and have P21/m symmetry. This was noted in the symmetry analysis of Chapter 4. It is not

generally true that identical symmetries result in identical energies, but it is clear why these two

materials have similar energies; the normals to the cation layers in both of the P21/m structures

are orthogonal to the in-phase tilt axis and it is the a−a−c+ tilt pattern that introduces most

of the anisotropy to this crystal structure.

The similar energies to layered configurations with cation layers perpendicular to the anti-
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Figure 7.5: Single polarisation branch in CeBaMn2O6 as the total mode necessary to switch
is reversed. This hybrid mode, from 4, involves antipolar A-site motions and at least one tilt
mode.

phase tilt axis suggests strong competition between the two. In any attempts to sythesise these

materials, it will thus be difficult to observe the required cation ordering.

7.2 Summary

Chapter 4 identified AA′B2O6 perovskites with an a−b+a− tilt pattern, A-type magnetism and

layered A-sites as a material which would demonstrate the electric field control of magnetism.

This chapter has confirmed that replacing the La layers in LaMnO3 with alternating layers of

Ce and Ba creates a materials with just the required properties.

However, the existence of alternative cation layerings demonstrates that the required cation
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7.2. Summary

Ordering Space Group Energy (meV/f.u) Irrep

[010] Layered

Pmc21 119.7 X+
1 (0; a; 0)

[100] Layered

P21/m 0.0 X+
1 (0; a; b)

[001] Layered

P21/m 0.0 X+
1 (a; b; 0)

Rocksalt

Pm 314.0 R+
1 (a)

Table 7.3: Alternative cation schemes. Each cation layered was added to the relaxed Ce-
BaMn2O6 structure and then allowed to relax further. The resulting space groups are listed
along with the irrep for the particular cation order.

layering will be difficult to synthesise, as was demonstrated through an experimental collabora-

tion based on the theoretical predictions of this chapter [213].

Future work will focus on how to stabilize the required layering with epitaxial strain or
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7.2. Summary

Ordering Space Group Energy (meV/f.u) Irrep

Columnar

P21/m 77.4 M+
1 (0; a; 0)

Alternative Columnar

Pm 219.7
M+

1 (a; b; c)
R+

1 (a)
X+

1 (a; b; c)

Single substitution

Pm 277.4
M+

1 (a; b; c)
R+

1 (a)
X+

1 (a; b; c)

Double Substitution

Pm 107.0 R+
1 (a)

X+
1 (a; b; c)

Table 7.4: Additional alternative cation order schemes. Each cation layered was added to the
relaxed CeBaMn2O6 structure and then allowed to relax further. Energies are given with respect
to the lowest energy orderings. The resulting space groups are listed along with the irrep for
the particular cation order.

pressure being the obvious mechanisms to do this. As a preliminary example of such an in-

vestigation, I modelled the three layered structures as epitaxial films, with the inphase tilt axis

perpendicular to the surface. These simulations are analogous to those performed in Chapter
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Figure 7.6: Energy of the three layered cation orderings as a function of epitaxial strain. A mild
compressive strain makes the desired layering more favourable.

6. I observe that mild compressive strains do make the desired layering more favourable, but

not by enough to make it the thermodynamically stable ground state. It would be interesting

to see how external fields can control cation order, because we have seen that cation ordering is

an efficient way to control the symmetry of materials.
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Chapter 8

Conclusion

As stated in the Introduction, the primary goal of this thesis has been to explore whether the

180◦ reversal of the magnetisation via a coupling to the electric field induced 180◦ reversal of

polarisation is possible in perovskite materials. In Chapter 4, I have shown that such a switch-

ing is a definite theoretical possibility in virtually all perovskite materials, and have identified

domains with reversed polarisations that, as a consequence of maintaining energetic degeneracy,

must also have a reversed weak ferromagnetic canting (and other reversed secondary modes in

addition). Due to the high-symmetry parent phase of perovskites, such domains are ubiquitous.

The incredible flexibility attributed to the high-symmetry of perovskites is also a curse.

Other combinations of modes lead to energetically equivalent, but structurally distinct ferro-

electric domains in which it is not a necessity for the weak ferromagnetic canting to reverse. As

demonstrated numerous times in Chapter 4, this leads to a wide number of competing domains.

The only way to ascertain which is likely to be found in a ferroelectric switching experiment

is to estimate the switching barrier in some way between the positve polarisation and negative

dipole domains. Using computational quantum mechanical calculations like DFT would have

been one way to do this but the calculations would have been frustratingly tedious.

Instead, Chapter 4 leaned heavily on the group theoretical results and, after sprinkling in

some of the physical intuition obtained from Chapter 2, I was able to determine structures in

which the only domain that can be obtained from a ferroelectric switching experiment was one

with the weak ferromagnetic canting also reversed. This was done by identifying the importance
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8. Conclusion

of improper ferroelectrics - the polarisation only arises from a coupling to other structural modes

in the perovskite. With this idea in mind, we can immediately see that a hypothetical, cubic

perovskite with spins on both the A and B sites would allow for the electric field control of

magnetism because it is an improper ferroelectric driven by the collinear magnetic structure∗.

In a more realistic context, we showed that various forms of ion-ordering is also sufficient to

break symmetries and create a material in which the magnetic moment can be controlled via

a reversal of the polarisation. CeBaMn2O6, identified in Chapter 4 and studied in detail in

Chapter 7, was one example of this idea. The A3BB′
2O9 perovskites with 1:2 cation order on

the B sites were another.

Something omitted from Chapter 4 was any consideration of incommensurate magnetic or

crystallographic structures. In principle, there is nothing stopping me from extending the ideas

of reversable domains to incommensurate structures; the necessary irreps would just be at

irrational k-points. This might make it difficult to find couplings in the Landau theory that

preserve translation symmetry but other than that, there is no reason why these could not have

been explored from a group theoretical perspective. The major challenge with incommensurate

structures are in their quantum mechanical simulation. To be mathematically precise, they

would require infinite sized cells. To get a decent approximation, the cell would have to be

enormous. This was well beyond the scope of the project but it is possible that recent advances

in machine-learned force fields would make the accurate simulation of these large cells a definite

possibility in the near future.

The majority of Chapter 4 focused on using the Pm3̄m structure as the high-symmetry

parent. This allowed a simple decomposition of a complicated perovskite structure into a col-

lection of physically intuitive symmetry-adapted modes. However, the resulting symmetry was

often so low that there were an intractable number of modes to contend with. In my analysis

of A3BB′
2O9 perovskites, I circumvented this issue by choosing to work with a lower symmetry

structure, namely, the perovskite with the A and B site cation ordering already included. This

reduced the number of modes necessary to work with but also made the problem more phys-
∗Again, some would say a Type-II multiferroic which is really just a more precise term for an improper

ferroelectric in which the polarisation is couplied to magnetic, and not structural, modes.
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8. Conclusion

ically meaningful. Since I was working on the assumption that long-range cation order (as a

large amplitude primary mode) cannot be reversed, it makes sense to freeze out this degree of

freedom. As I showed in Chapter 4, this made the symmetry analysis easier and demonstrated

that the reversal of the magnetisation is feasible. As the parent cell is the same size as the

distorted cell, this transforms all symmetry modes onto the Γ-point of the Brillouin zone and

consequently, I refer to this procedure as "constructing a Γ-point scheme".

Γ-point schemes are therefore a useful trick for calculational purposes. However, they are

also essential if we are to extend the methodology presented in this thesis to materials beyond

perovskites where it is not clear what structure to use as the high-symmetry aristotype. This

has been done previously for layered oxides with chemical formula A4B3O9 [225]. The ideas of

this thesis can be quite readily extended beyond perovskites in this manner.

Although the central question of this thesis was whether the possibility of electric field control

of magnetism can be ascertained through group-theoretical methods, I am perhaps most proud

of the work presented in Chapter 6 in which I demonstrate that although the terms in the Landau

Expansion do not allow for the desired magnetoelectric consequences, considering the effect that

each of the terms have on the energy of the system leads to exciting and related effects. In

fact, I showed in Chapter 4, that it is very unlikely that the reversal of polarisation would lead

to a reversal of magnetisation in Pna21 perovskites, but in Chapter 6, I show that you can

easily convert an AFM Pna21 perovskite to a FM Pna21 perovskite under the application of

an electric field; this is a different kind of magnetoelectricity but potentially useful nonetheless.

This effect would not have been possible to predict from the symmetry alone, but on the other

hand, the understanding of this magnetoelectric effect would have been impossible without first

constructing the Landau expansion from a consideration of the symmetry adapted modes. This

project synthesised both approaches, revealing new insights that would have been obscured if

either the symmetry or the energetics were treated in isolation. I believe that this project was a

powerful demonstration of the capabilities of the Landau expansion, clearly showing its utility

in explaining the nature of unusual phase transitions.

To conclude, I believe that the prospect of using perovskites to observe the electric field

control of magnetism rests on a solid foundation of existing literature, to which I have tried to
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8. Conclusion

contribute something. In this thesis, I have restricted myself to perovskite materials which seem

likely to be synthesisable through current methods. This clearly does not exhaust all theoretical

possibilities. For example, I only seriously considered a−a−c+ tilt patterns which may be the

most likely tilt pattern for low tolerance magnetic perovskites but are certainly not the only

tilt pattern. In addition, the diversity of structures that could be obtained through tuning the

cation-ordering degree of freedom (which includes vacancy ordering) is theoretically infinite, and

I have shown that any material in which an ordering of this kind breaks centrosymmetry would

be a strong candidate for the electric-field reversal of magnetisation, so that the question becomes

"Which kinds of unusual long-range order are actually possible to create?". In addition, if we

also consider how the symmetry adapted modes affect the energies of the simplest perovskite

structures, unusual physics can still be found - as Chapter 6 demonstrated. There is plenty of

room at the bottom of perovskite physics and I hope that this thesis has demonstrated that

considerations of symmetry and the Landau theory of phase transitions provide the tools to

exploring it.
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Appendix A

Construction Of Invariants

In this short appendix, I review how to construct the allowed invariants between two modes,

one transforming as Γ−
2 and the other as a K3 mode. This allows the construction of a Landau-

like free energy for a material with distortions transforming as these two irreducible represent-

ation ie. the P63/mmc to P63cm transition in YMnO3.

However, this method is much more general and forms the basis of how a software tool like

INVARIANTS in the ISOTROPY Software Suite actually operates.

In Chapter 3, I constructed a Landau expression for Γ−
2 (one-dimensional irrep at k = (0, 0, 0))

and K3 (two-dimensional irrep at k = (1
3 ,

1
3 , 0)) modes with the specific OPDs for the trans-

ition in YMnO3. However, I could have maintained full generality and kept all possible de-

grees of freedom. Therefore, P = (P1) and K = (K1,K2). The fully general Landau expan-

sion, up to fourth order would then be

F (P1,K1,K2) =P1 +K1 +K2 + P 2
1 +K2

1 +K2
2 + P1K1 + P1K2 +K1K2

P 3
1 +K3

1 +K3
2 + P 2

1K1 + P 2
1K2 + P1K

2
1 + P1K

2
2 + P1K1K2

K2
1K1 +K1K

2
2 + P 4

1 +K4
1 +K4

2 + P 3
1K1 + P 3

1K2 + P 2
1K

2
1

P 2
1K

2
2 + P 2

1K1K2 + P1K
3
1 + P1K

3
2 + P1K

2
1K2 + P1K1K

2
2

K3
1K2 +K2

1K
2
2 +K1K

3
2 .

(A.1)

Coefficients have been dropped for simplicity. We first look at translation symmetry and check
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whether the various products of P1,K1 and K2 sum to a reciprocal lattice vector. This is easy

to do because we can always add a Γ point mode to any product and K modes can only sur-

vive products containing even powers of K (because it is always possible to do (1
3 ,

1
3 , 0)) −

(1
3 ,

1
3 , 0)) to get to a reciprocal lattice vector) or products containing a multiple 3n K modes.

This kills many of the terms in the Landau expansion so that

F (P1,K1,K2) =P1 + P 2
1 +K2

1 +K2
2 +K1K2 + P 3

1 +K3
1 +K3

2 + P1K
2
1 + P1K

2
2 + P1K1K2+

K2
1K1 +K1K

2
2 + P 4

1 +K4
1 +K4

2 + P 2
1K

2
1 + P 2

1K
2
2 + P 2

1K1K2 + P1K
3
1+

P1K
3
2 + P1K

2
1K2 + P1K1K

2
2 +K3

1K2 +K2
1K

2
2 +K1K

3
2 .

(A.2)

This is now simpler but can be reduced further by looking at point symmetries. It is always

simplest to begin with inversion and the matrix representation of this operation in the Γ−
2 and

K3 irreducible representation of the P63/mmc space group are
[
−1

]
and

−1 0

0 1

 respect-

ively. Under inversion, P1 → −P1, K1 → −K1 and K2 → K2. Therefore, we can eliminate

term containing odd multiples of P1 and K1, reducing it to

F (P1,K1,K2) =P 2
1 +K2

1 +K2
2 +K3

2 + P1K1K2 + P 4
1 +K4

1 +K4
2+

P 2
1K

2
1 + P 2

1K
2
2 + P1K

3
1 + P1K1K

2
2 +K2

1K
2
2 .

(A.3)

This can be repeated for all other point group operations. For example, there is the two fold

rotation axis along the [001] direction; this has matrices
[
1
]

and

1 0

0 −1

 and so we can elim-

inate any terms that have odd-order powers of K2. This finally reduces the expansion to

F (P1,K1,K2) =P 2
1 +K2

1 +K2
2 + P 4

1 +K4
1 +K4

2+

P 2
1K

2
1 + P 2

1K
2
2 + P1K

3
1 + P1K1K

2
2 +K2

1K
2
2 .

(A.4)

No other symmetry operation reduces this expansion any further. The experimentally ob-

served order parameter directions are P = (P1) and K = (K1, 0) and so we can remove any
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terms that contain K2. This reproduces the expression given in Chapter 3. However, the term

P1K1K2
2 would provide a further mechanism to further lower the energy. The fact that K2 is

not observed in experiment is an indication that the competitive interactions between all three

modes are large enough to prevent any K2 mode appearing.
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Appendix B

Domain Structures

Irrep Reversal
Domain Γ−

4 mΓ+
4 M+

2 R−
5 mX−

1
1 ✓ ✓ ✗ ✓ ✗

2 ✓ ✓ ✗ ✗ ✓

3 ✓ ✓ ✓ ✗ ✗

4 ✓ ✓ ✓ ✓ ✓

5 ✓ ✗ ✗ ✓ ✓

6 ✓ ✗ ✗ ✗ ✗

7 ✓ ✗ ✓ ✗ ✓

8 ✓ ✗ ✓ ✓ ✗

Table B.1: Domain structure of Pm perovskites with a magnetic structure described by the
mX−

1 irrep. Domain 6 has no magnetoelectric effects.
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B. Domain Structures

Irrep Reversal
Domain Γ−

4 mΓ+
4 M+

5 R−
5 mX−

5
1 ✓ ✓ ✗ ✓ ✗

2 ✓ ✓ ✗ ✗ ✓

3 ✓ ✓ ✓ ✗ ✗

4 ✓ ✓ ✓ ✓ ✓

5 ✓ ✗ ✗ ✓ ✓

6 ✓ ✗ ✗ ✗ ✗

7 ✓ ✗ ✓ ✗ ✓

8 ✓ ✗ ✓ ✓ ✗

Table B.2: Domain structure of Pm perovskites with a magnetic structure described by the
mX−

5 irrep. Domain 6 has no magnetoelectric effects.

Irrep Reversal
Domain Γ−

4 mΓ+
4 M+

2 R−
5 mM+

2
1 ✓ ✓ ✗ ✓ ✓

2 ✓ ✓ ✗ ✗ ✓

3 ✓ ✓ ✓ ✗ ✗

4 ✓ ✓ ✓ ✓ ✗

5 ✓ ✗ ✗ ✓ ✗

6 ✓ ✗ ✗ ✗ ✗

7 ✓ ✗ ✓ ✗ ✓

8 ✓ ✗ ✓ ✓ ✓

Table B.3: Domain structure of Pm perovskites with a magnetic structure described by the
mM+

2 irrep. Domain 6 has no magnetoelectric effects.

Irrep Reversal
Domain Γ−

4 mΓ+
4 M+

2 R−
5 mM+

2
1 ✓ ✓ ✗ ✓ ✓

2 ✓ ✓ ✗ ✗ ✓

3 ✓ ✓ ✓ ✗ ✗

4 ✓ ✓ ✓ ✓ ✗

5 ✓ ✗ ✗ ✓ ✗

6 ✓ ✗ ✗ ✗ ✗

7 ✓ ✗ ✓ ✗ ✓

8 ✓ ✗ ✓ ✓ ✓

Table B.4: Domain structure of Pm perovskites with a magnetic structure described by the
mM+

5 irrep. Domain 6 has no magnetoelectric effects.
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B. Domain Structures

Irrep Reversal
Domain Γ−

4 mΓ+
4 M+

2 R−
5 mR−

5
1 ✓ ✓ ✗ ✓ ✗

2 ✓ ✓ ✗ ✗ ✓

3 ✓ ✓ ✓ ✗ ✓

4 ✓ ✓ ✓ ✓ ✗

5 ✓ ✗ ✗ ✓ ✓

6 ✓ ✗ ✗ ✗ ✗

7 ✓ ✗ ✓ ✗ ✗

8 ✓ ✗ ✓ ✓ ✓

Table B.5: Domain structure of Pm perovskites with a magnetic structure described by the
mR−

5 irrep for both the (a, 0, 0) and (0, a, b) OPD. Domain 6 has no magnetoelectric effects.

Irrep Reversal
Domain Γ−

4 mΓ+
4 M+

2 R−
5 mX−

1 ✓ ✓ ✗ ✓ ✗

2 ✓ ✓ ✗ ✗ ✓

3 ✓ ✓ ✓ ✗ ✗

4 ✓ ✓ ✓ ✓ ✓

5 ✓ ✗ ✗ ✓ ✓

6 ✓ ✗ ✗ ✗ ✗

7 ✓ ✗ ✓ ✗ ✓

8 ✓ ✗ ✓ ✓ ✗

Table B.6: Domain structure of Pna21 perovskites with a magnetic structure described by either
the mX−

1 or mX−
5 irrep. Domain 6 has no magnetoelectric effects.

Irrep Reversal
Domain Γ−

4 mΓ+
4 M+

2 R−
5 mM+

5
1 ✓ ✓ ✗ ✗ ✓

2 ✓ ✓ ✗ ✓ ✓

3 ✓ ✓ ✓ ✓ ✗

4 ✓ ✓ ✓ ✗ ✗

5 ✓ ✗ ✗ ✓ ✗

6 ✓ ✗ ✗ ✗ ✗

7 ✓ ✗ ✓ ✗ ✓

8 ✓ ✗ ✓ ✓ ✓

Table B.7: Domain structure of Pna21 perovskites with a magnetic structure described by the
mM+

5 irrep. Domain 6 has no magnetoelectric effects.
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B. Domain Structures

Irrep Reversal
Domain Γ−

4 mΓ+
4 M+

2 R−
5 mR−

5
1 ✓ ✓ ✓ ✓ ✗

2 ✓ ✓ ✓ ✗ ✓

3 ✓ ✓ ✗ ✗ ✓

4 ✓ ✓ ✗ ✓ ✗

5 ✓ ✗ ✓ ✗ ✗

6 ✓ ✗ ✓ ✓ ✓

7 ✓ ✗ ✗ ✓ ✓

8 ✓ ✗ ✗ ✗ ✗

9 ✓ ✓(90◦) ✗ ✓(90◦) ✓

10 ✓ ✓(90◦) ✗ ✓(−90◦) ✗

11 ✓ ✓(90◦) ✓ ✓(−90◦) ✗

12 ✓ ✓(90◦) ✓ ✓(90◦) ✓

13 ✓ ✓(−90◦) ✗ ✓(−90◦) ✓

14 ✓ ✓(−90◦) ✗ ✓(90◦) ✗

15 ✓ ✓(−90◦) ✓ ✓(90◦) ✗

16 ✓ ✓(−90◦) ✓ ✓(−90◦) ✓

Table B.8: Domain structure of Pna21 perovskites with a magnetic structure described by the
mR−

5 irrep for both the (a, 0, 0) and (0, a, b) OPD. Domain 8 has no magnetoelectric effects.

Irrep Reversal
Domain Γ−

4 mΓ+
4 M+

2 R−
5 mX−

1
1 ✓ ✓ ✗ ✓ ✗

2 ✓ ✓ ✓ ✗ ✗

3 ✓ ✓ ✗ ✗ ✓

4 ✓ ✓ ✓ ✓ ✓

5 ✓ ✗ ✗ ✓ ✓

6 ✓ ✗ ✓ ✗ ✓

7 ✓ ✗ ✗ ✗ ✗

8 ✓ ✗ ✓ ✓ ✗

Table B.9: Domain structure of Pmc21 perovskites with a magnetic structure described by the
mX− irreps. Domain 7 has no magnetoelectric effects.

Irrep Reversal
Domain Γ−

4 mΓ+
4 M+

2 R−
5 mM+

5
1 ✓ ✓ ✗ ✓ ✓

2 ✓ ✓ ✗ ✗ ✓

3 ✓ ✓ ✓ ✗ ✗

4 ✓ ✓ ✓ ✓ ✗

5 ✓ ✗ ✗ ✓ ✗

6 ✓ ✗ ✗ ✗ ✗

7 ✓ ✗ ✓ ✗ ✓

8 ✓ ✗ ✓ ✓ ✗

Table B.10: Domain structure of Pmc21 perovskites with a magnetic structure described by the
mM+

5 irrep. Domain 7 has no magnetoelectric effects.
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B. Domain Structures

Irrep Reversal
Domain Γ−

4 mΓ+
4 M+

2 R−
5 mR−

5
1 ✓ ✓ ✗ ✓ ✗

2 ✓ ✓ ✓ ✗ ✓

3 ✓ ✓ ✗ ✗ ✓

4 ✓ ✓ ✓ ✓ ✗

5 ✓ ✗ ✓ ✗ ✗

6 ✓ ✗ ✗ ✓ ✓

7 ✓ ✗ ✓ ✓ ✓

8 ✓ ✗ ✗ ✗ ✗

Table B.11: Domain structure of Pmc21 perovskites with a magnetic structure described by
both OPDs of the mR−

5 irrep. Domain 8 has no magnetoelectric effects.
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