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Theories of Molecule Formation

Robert Chadwick Bird

The formation of ultracold molecules is the overarching focus of this thesis. We

undertake a number of calculations to explore a variety of systems and the different

techniques that can be used to produce them at ultracold temperatures.

Magnetoassociation is routinely used to associate pairs of alkali-metal atoms to-

gether to produce alkali-metal dimers. Magnetoassociation exploits the zero-energy

magnetically tuneable Feshbach resonances that exist in ultracold atomic and molec-

ular collisions. We study the near-threshold bound states that cause Feshbach res-

onances in ultracold 39K + 133Cs collisions. In order to generate an accurate model

of the interatomic 39K133Cs potential we undertake an interactive non-linear least-

squares fit to a number of experimental measurements.

Using Feshbach resonances to control the interactions between atoms and molecules

at ultracold temperatures is an important avenue of research. Coupled-channel cal-

culations are used to investigate resonances in Rb+CaF collisions. The quantity,

and characteristics, of these resonances are determined by the atom-molecule in-

teraction potential, which is yet to be modeled accurately. We utilize a number of

representative potentials to explore what the spectrum of Feshbach resonances may

look like.

Mergoassociation is a new way of making molecules at ultracold temperatures.

We develop a theory for pairs of nonidentical nonspherical traps and a coupled-

channel approach for the relative motion of the two atoms. We study mergoassoci-

ation for pairs of cylindrically symmetrical traps as a function of their anisotropy.

We also develop a basis-set method for the relative and center-of-mass motions of

the two atoms. We consider the example of RbCs and then extend the treatment

to other systems where mergoassociation may be effective, namely RbSr, RbYb and

CsYb.
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Chapter 1 2

1.1 Ultracold Atomic Gasses

During the 20th century experimental and theoretical physicists worked to resolve

the structure of atoms and simple molecules. The development of atomic, molec-

ular, and optical (AMO) physics was intimately related with the development of

quantum theory. Progress made in these research fields marked a huge step forward

in humanity’s fundamental understanding of matter. One vein of contemporary

AMO physics, ultracold physics, stemmed from attempts to study atomic gasses

at increasingly low temperatures. At ultracold temperatures, typically accepted as

those beneath 1 mK, quantum mechanics plays a dominant role in determining the

behavior of matter [1–3]. Physicists’ mission to reach increasingly low temperatures

was partly motivated by the potential discovery of novel physics far removed from

our classical world. At these temperatures physicists are also afforded exquisite

control over the motions of and interactions between atoms and molecules. The

experimental realization of Bose-Einstein condensation in ultracold atomic gasses

of Na and Rb, at 2 µK and 170 nK, in 1995 was a landmark in the development

of ultracold AMO physics [4, 5]. This seminal achievement was recognised with

the 2001 Nobel Prize in Physics, which spoke to the many exciting, and potentially

revolutionary, possibilities of experiments performed with atomic gasses at ultracold

temperatures [6, 7].

A Bose-Einstein condensate is an exotic state of matter in which an ensemble of

bosons have entered the same quantum state. The first Bose-Einstein condensates,

that were produced in ultracold atomic gasses, offered model systems with which to

explore more elusive quantum phenomena and effects [6, 8]. Some of the many excit-

ing discoveries made with these condensates are reviewed here in order to illustrate

the excitement around ultracold physics at the turn of the 21st century. The Na

condensate was used to study the quantum interference of matter waves and vortex

lattices, the manifestation of quantized rotational motion in macroscopic quantum

systems. These studies were key to further understanding phenomena such as su-

perfluidity and superconductivity. The Na condensate also played a central role
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in early studies of the zero-energy magnetically tuneable Feshbach resonances that

exist in the collisions between ultracold atoms [9]. The Rb condensate was used to

study excitations of Bose-Einstein condensates and the dynamics of two-component

condensates [7]. These resonances occur when the energy of two colliding atoms is

equal to the energy of a bound state supported by the atom-atom interaction poten-

tial [10]. These resonances play an important and enduring role in ultracold AMO

physics as they allow physicists to control the interactions between atoms with a

magnetic field.

A variety of applications beyond Bose-Einstein condensation have been found

for ultracold atomic gasses. Cold and ultracold atomic gasses have been used as

platforms for precision measurement. Transitions between atomic states are used

as absolute reference frequencies in atom clocks and cold atoms have been used to

measure magnetic and optical fields as well as forces such as gravity [11]. Many dis-

coveries were made with ultracold gasses of fermionic atoms. The first experimental

evidence of a Fermi gas was observed at 300 nK [12]. The pairing of fermions and the

BCS-BEC crossover have been studied with these gasses [13]. Gasses of ultracold

dipolar atoms, such as Cr, Dy, and Er, have allowed the study of quantum fluids

and offered a model system for exploring quantum chaos in ultracold collisions [14].

Before we discuss the production of ultracold atomic gasses we take the oppor-

tunity to explore the important role theoretical physicists have played in ultracold

AMO physics. At the turn of the century theoretical physicists were contributing to

ultracold AMO physics in two different ways. Condensed matter physicists focused

on elucidating the properties of macroscopic quantum systems and the many-body

physics that could be investigated with ultracold atomic gasses such as Superfluid-

Mott insulator transitions and the BCS-BEC crossover [15]. Molecular physicists

were less concerned with the macroscopic sample itself and instead focused on the

microscopic interactions between the constituent particles of an ultracold gas. Ad-

vanced theoretical methods were developed to explain the scattering dynamics of

ultracold atoms that were inspired by earlier theories of atomic and molecular scat-
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tering [16–19]. Numerous properties of ultracold atomic gasses were consequently

resolved, for example why certain BECs were stable and others were not [20]. By

understanding how the interaction of particles in an ultracold gas could be controlled

new physics could be studied, such as the controlled collapse of a BEC [21]. Con-

trolling atomic interactions in an ultracold atomic gas relied on tuning a magnetic

field across the zero-energy Feshbach resonances mentioned previously. A general

introduction to the theory of quantum scattering is given in Section 2 of this thesis.

A detailed discussion of Feshbach resonances is given in Section 2.3.

Thus far we have considered the physics studied with ultracold atomic gasses.

In the next section we shall begin to explore ultracold molecules, the formation of

which is the central topic of this thesis. Before moving ahead, however, we shall

address the production of ultracold atomic gasses. Laser light is used to cool atoms

and confine them in space [22–24]. The development of these cooling and trapping

techniques were awarded the 1997 Nobel Prize in Physics and many of them are still

used in experiments today.

Laser cooling encompasses a number of techniques that exploit the various forces

electromagnetic radiation exerts on particles. Doppler cooling, the most simple laser

cooling technique, and Zeeman slowing, a cooling technique that remains widely pop-

ular, are discussed here. Both techniques have been used in ultracold experiments to

cool particles in an atomic beam prior to trapping and further cooling. In Doppler

cooling, atoms are irradiated with counter-propagating photons. These photons are

red-detuned from an electronic transition within the atom. Due to the Doppler

effect only atoms whose momenta oppose the momenta of the photons can absorb

a photon. An atom’s velocity is reduced when it absorbs a counter propagating

photon. When many photons have been absorbed and re-emitted the velocity of the

atom is on average lower. The efficiency of Doppler cooling is limited because the

atom’s excited electronic state can decay to different hyperfine states in the ground

electronic state. Furthermore, as atoms are cooled their velocities reduce and the

frequency of the cooling light becomes off-resonant with the atomic transition due to



Chapter 1 5

the Doppler effect. Zeeman slowing uses a magnetic field to impose more stringent

selection rules on the atom-photon interaction, by conserving the projection of the

system’s total angular momentum, thereby reducing the states the excited state can

decay to, and to tune the energies of the atomic states such that the photons used

for cooling do not become off-resonant with the relevant atomic transition.

The force exerted on atoms by laser light is also the basis of many traps. Optical

molasses use six counter propagating laser beams to generate an overall force on

atoms that opposes their motion, thereby trapping them. The magneto-optical trap

(MOT) is a key feature of most ultracold experiments and uses a magnetic field in

addition to counter-propagating laser beams in order to trap and cool atoms simul-

taneously [25]. Certain traps relied on the dipole force generated by electromagnetic

radiation rather than the scattering force [26]. The induced dipole moment of an

atom in a light field is subject to a potential energy well in 3D space. The minimum

of this potential exists where the intensity of light is greatest. The dipole force is

proportional to the derivative of this potential; as the particle moves away from the

center of the trap the force exerted on the particle increases and opposes its velocity.

This physics underpinned some of the first traps for cold atoms, which were made

with a single focused laser beam, and the more recent tweezer traps that are an

important topic in this thesis. Many of the techniques outlined here were used in

the first BEC experiments and still constitute the basic features of most ultracold

experiments developed today [27].

1.2 Formation of Ultracold Molecules

The field of ultracold molecules has grown rapidly over the past two decades [28].

The rich physics of diatomic molecules has underpinned significant scientific and

technological innovation at ultracold temperatures. The field is explored in the

remainder of Section 1. We begin by discussing the various methods used to generate

ultracold molecules.

Substantial progress has been made with respect to making molecules at ultra-
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cold temperatures. The methods employed are categorized as direct or indirect.

Direct methods cool ’hot’ molecules to ultracold temperatures. Indirect methods

make molecules at ultracold temperatures from ultracold atoms. Magnetoassocia-

tion is an indirect method used to make ultracold molecules. A magnetic field is

tuned across a Feshbach resonance sufficiently slowly such that two colliding atoms

are converted into a loosely-bound molecule. Magnetoassociation produces molecu-

lar gasses with high phase space densities at ultracold temperatures and is therefore

the preferred indirect method for making ultracold molecules. Magnetoassociation,

and other indirect approaches, are typically followed by Stimulated Raman Adia-

batic Passage (STIRAP) which transfers the vibrationally excited molecule to the

absolute ground state [29]. The first ultracold gas of molecules produced with mag-

netoassociation and STIRAP was 40K87Rb in 2008 [30]. Since then a large number of

bi-alkali molecules have been made with similar methods including 87Rb133Cs [31],

23Na39K [32], 23Na40K [8], 23Na133Cs [33], 23Na6Li [34], 23Na87Rb [35], Rb2 [36],

and Cs2 [37]. Theoretical molecular physicists were intimately involved with the

development of magnetoassociation as a standard technique for the formation of

ultracold molecules [38, 39]. There is the potential for more exotic molecules con-

taining alkaline-earth metal atoms [40], d-block elements [41], and highly magnetic

atoms [42] to be magnetoassociated. At present no such molecules have been pro-

duced in their absolute ground states, however.

An alternative method of making molecules is direct laser cooling. The same

mechanisms which were relied upon to cool atoms (Section 1.1.1) to ultracold tem-

peratures are employed with molecules. Laser cooling is very effective for molecules

with diagonal Frank Condon factors. Examples of such molecules include the alka-

line earth monoflourides and oxides such as YbF [43], SrF [44], CaF [45, 46], and

YO [47]. At present experiments with CaF have achieved temperatures of 5 µK.

Some success has been achieved with polyatomic molecules as well, for example lin-

ear triatomics such as SrOH, although this is still an emerging area of research [48].
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1.3 Applications of Ultracold Molecules

The production of a variety of molecules at cold and ultracold temperatures has

enabled researchers to make important discoveries in a number of fields. In this

section we review some of the applications of ultracold molecules and try to capture

their variety.

New insights into fundamental chemical processes have been gained with ul-

tracold molecules. The molecular beam techniques used in reaction dynamics ex-

periments are often unable to reach temperatures where the translational motion

of the reaction partners is quantised [49]. Bimolecular KRb collisions have been

studied at 500 nK [50, 51]. Theories of statistical quantum mechanics for chemical

reactions were tested by analysing the rotational state distribution of the collision

products. Molecule-molecule collisions in ultracold molecular gasses pose a number

of challenges for researchers. These are discussed in depth in Section 1.4. Interrogat-

ing collisional processes at these temperatures is an important avenue of research.

Chemical reactions can occur at cold temperatures in nature. For example, the in-

terstellar medium has temperatures of a few K. Cold and ultracold molecules allow

chemical processes to be studied at these temperatures [52, 53].

Laser-cooled molecules at ultracold temperatures are bridging the gap to seem-

ingly unrelated fields such as nuclear physics, particle physics, and cosmology due

to their possible use in testing theories of fundamental physics [54]. The Standard

Model is unable to explain a number of observations made about the universe. It

cannot account for the matter-antimatter asymmetry in the universe, explain why

the expansion of the universe is accelerating, or how gravity fits in relation to other

fundamental forces [55]. Fundamental physics is typically investigated with excep-

tionally expensive high-energy particle colliders. Ultracold molecules offer a platform

for cheaper table-top experiments that are able to probe some of the pressing ques-

tions in fundamental physics relating to our theories of nature and the universe.

Ultracold molecules may be used to investigate the violation of time-reversal sym-

metry with measurements of the electron’s electric dipole moment. Molecules would
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be a particularly good platform for these studies because they can be strongly po-

larized with low, and easily controllable, electric fields. These measurements would

be used to assess various theories that go beyond the Standard Model [56].

Ultracold molecules are increasingly discussed in the context of more technolog-

ical and applied areas of research such as quantum simulation and quantum com-

putation [57]. Quantum simulation has been a long-sought goal, imagined alongside

the quantum computer, as a method to probe the quantum nature of many-body

systems [58]. Ultracold polar molecules are useful for simulating key phenomena in

condensed matter physics for a number of reasons. Polar molecules interact with

one another via long-range dipole-dipole interactions, which can be tuned with ex-

ternal fields [59]. These interactions are stronger than the dipole-dipole interactions

that exist between magnetic atoms and are weaker than those that exist between

Rydberg atoms. Rydberg atoms, however, are usually short lived. Ground-state

molecules in optical lattices and tweezer arrays at ultracold temperatures have long

lifetimes and a large number of states that can be easily populated and controlled by

physicists with external fields. There have been proposals for using polar molecules

as the hardware in quantum simulators studying Hubbard models [60], quantum-

phase transitions [61], topological order [62], and quantum magnetism [63]. Quan-

tum simulation is an important avenue of research due the importance of various

topics in many-body physics. For example, Hubbard models are used to describe

the behavior of low-energy bosons or fermions in periodic potentials, as such they

offer insight into phenomena such as the high-temperature superconductivity of

cuprates [64]. Implementing a Hubbard model with ultracold molecules in a lattice

and then taking measurements of various observables allows comparison with the

’real’ system. This procedure allows theories and models to be ruled out, confirmed,

and/or adapted [65].

Quantum computation is an approach to information processing that is fun-

damentally different from classical computation. It exploits the basic principles

of quantum mechanics to improve the speed and efficiency of calculations. Quan-
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tum computers will be able to undertake tasks that are impossible for conventional

computers. There are many different areas of research that underpin the creation

of quantum computers such as the development of quantum algorithms, propos-

ing systems to use as qubits (quantum bits) and qudits (computational unit with

more than two dimensions), and finally engineering and building the computers [66].

Molecular physicists and materials scientists are primarily concerned with identify-

ing systems to use as qubits and qudits. Several different physical systems are being

explored, one of which is ultracold molecules. Several proposals have been pub-

lished studying the energy-level structure of different ultracold molecules, such as

CaF and RbCs, with a view to identifying what manifolds of states would make ef-

fective qubits. Qudits could feasibly be implemented with ultracold molecules [67].

Designing methods to entangle states and perform operations on states, so called

quantum-logic gates, is a key objective that needs to be achieved if molecules are

to be a possible architecture for quantum computers. One such example would be

using dipolar-exchange interactions between molecules in different rotational states

to mix different hyperfine states [68].

1.4 Research Frontiers

Thus far this section has explored the development of, and achievements in, the field

of ultracold molecules. Substantial challenges remain, however, and our attention

now turns to sketching the landscape of research with ultracold molecules in the

present day.

Ultracold molecular gasses are subject to high levels of loss, which places se-

rious limits on the density and lifetimes achieved in state-of-the-art experiments.

Researchers’ understanding of the processes underpinning the losses in different ex-

periments is still incomplete. There are two dominant routes by which molecules are

lost; direct collisions and sticky collisions. Intermolecular complexes do not form

during direct collisions. The collision products are ejected from whatever trap is

used in the experiment if they gain sufficient kinetic energy during an inelastic or
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reactive process [69]. The challenge lies in understanding this particular loss mech-

anism. At present theoretical calculations simply cannot manage the basis-set size

needed to describe a bimolecular collision at ultracold temperatures. Sticky collisions

are typically associated with the non-reactive collisions between bi-alkali molecules

occupying their ground rovibrational and hyperfine states [70]. The term sticky

collision is derived from some of the first theories exploring the loss of molecules

from ultracold molecular gasses. These theories suggested that when two molecules

get close enough such that their dynamics are governed by the short-range region

of the interaction potential the molecules form a long-lived complex, subject to the

statistical RRKM theory [71, 72]. The existence of these complexes has been verified

experimentally [73]. Their role in the loss of molecules from experiments is, however,

clouded by a series of conflicting theoretical and experimental results. There also

remains some ambiguity as to whether sticky collisions and direct collisions both

contribute to the loss, or if one dominates over the other [74]

At present there are a large number of different ultracold molecule experiments

in operation around the world. As would be expected these experiments are all

at different stages and therefore face different challenges. Experiments that are

yet to produce ultracold molecules in their absolute ground state require expertise

and research in atom-atom scattering. Molecule formation via indirect methods

for certain systems are just now being investigated, therefore questions pertinent

to magnetoassociation and STIRAP remain relevant. On the other hand, many

experiments are starting to utilize new experimental techniques and address the

issue of loss we just introduced. The remainder of Section 1.4 explores some of these

new experimental techniques.

One particularly exciting technology, which a large portion of this thesis is re-

lated to, is optical tweezer traps which were briefly mentioned in Section 1.1. Optical

tweezer traps, which use focused laser beams to trap particles in space, allow the

positions of atoms and molecules to be controlled and arrays of particles to be con-

structed. Making molecules in optical tweezers and investigating their applications
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has progressed very quickly in the last 5-10 years. Some highlights include the pho-

toassociation of NaCs in a tweezer [75], the formation of a loosely bound molecule

in a tweezer with magnetoassociation [33], transferring the loosely-bound molecule

to the rovibronic ground state [76], and current work constructing optical tweezer

arrays [77].

A series of new experimental techniques, so-called shielding techniques, are being

developed to address the challenge of loss in experiments. Shielding relies on external

fields to engineer long-range barriers in the interaction potentials of two molecules,

therefore preventing molecules from interacting via short-range processes that in-

duce loss. Current proposals for molecule-molecule shielding use optical fields [78],

microwave fields [79], and electric fields [80].

Another avenue of research being pursued in a number of experiments is how to

address the challenge of dephasing. Experiments in the area of quantum simulation

and quantum computation use molecules prepared in specific quantum states. When

these state-selected molecules interact with their environment they can dephase and

the state that was needed for the application is lost. New proposals are being

developed to reduce this dephasing such as numerous magic trapping techniques [81,

82].

A recent and exceptionally important landmark in the field of ultracold physics

was the observation of Bose-Einstein condensation in an ultracold molecular gas [83].

NaCs molecules were cooled to temperatures of 6 nK after microwave shielding

was used to reduce loss. The NaCs molecule has a dipole moment that can be

tuned between the weak and strong dipolar regimes. This versatility cannot be

achieved with other dipolar particles, such as dipolar atoms or Rydberg atoms,

thereby illustrating ultracold molecules’ emerging appeal to physicists and their

bright future.

In the preceding discussion we have traced the field of ultracold molecules from

its inception, out of the seminal work on ultracold atomic gasses, to the challenges

the field faces in the present day. Part of this discussion reviewed the exciting appli-
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cations that ultracold molecules have found in the fields of chemistry, fundamental

particle physics, condensed matter physics, and information processing.

1.5 Outline

This thesis is the result of many different collaborations and research projects. These

projects, and by extension this thesis, are connected by the theme of molecule for-

mation in contemporary ultracold AMO experiments. The methods used to make

molecules that are addressed here include magnetoassociation and mergoassociation

with optical tweezer traps. From Section 1.2 it is clear that magnetoassociation

is a well-established technique for making molecules. We explore the physics be-

hind magnetoassociation in the context of 39K + 133Cs collisions. We then explore

the possibility of controlling atom-molecule collisions with magnetic fields and the

prospect of magnetoassociating triatomic molecules. The latter half of this thesis

is devoted to mergoassociation. Mergoassociation is a novel approach to molecule

formation that has been observed in the previous two years.

Many of the chapters in this thesis are adapted from previously published scien-

tific papers. References to these papers are given below, in the outline to this thesis,

and at the start of the relevant chapter.

The thesis is structured as follows. Chapter 2 is a guide to the theory of atomic

and molecular scattering. Single-channel, multichannel, and near-threshold scatter-

ing are introduced. The numerical propagation techniques we use in the BOUND

and MOLSCAT program packages to solve the coupled-channel Schrödinger equation

are discussed [84, 85]. Chapter 3 details our efforts to improve our understanding

of the near-threshold bound states of 39K133Cs. These results were used to help

our collaborators in the Nägerl Group (University of Innsbruck) undertake a series

of measurements that would allow us to refine the 39K + 133Cs interaction poten-

tial. We were able to refine the interaction potential. Details of our refitting and

the new potential are included here. Chapter 4 considers the magnetically tunable

Feshbach resonances that may exist in ultracold mixtures of CaF molecules and
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Rb atoms. The existence of these resonance will be crucial for forming RbCaF

molecules by magnetoassociation. Chapter 4 is a reproduction of [86]. Chapter 5

develops coupled-channel and basis set approaches for solving the relative motion

Schrödinger equation for two atoms contained in two separate optical tweezer traps.

We study the effects of trap strength and trap anisotropy. Chapter 5 is a reproduc-

tion of [87]. Chapter 6 includes our extension to the work presented in Chapter 5.

We develop a theoretical method that accounts for the coupling between the relative

motion and center-of-mass motion for two atoms contained in two separate traps

and consider its consequences for mergoassociation. Chapter 6 is a reproduction of

a paper currently under review [88]. Chapter 7 presents the conclusions drawn from

this thesis.



Chapter 2

Quantum Scattering Theory and

Bound States

14
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Collisions occur in the ultracold atomic and molecular gasses discussed in the

Introduction. Atomic and molecular scattering theory, which we introduce in this

chapter, is needed to describe and understand these collisions. In Section 2.1 key

concepts in the theory of molecular scattering are illustrated with the model problem

of two structureless particles interacting via a central potential. The description

offered in this section is based on Hutson [89], Friedrich [90], and Child [91]. The

scattering of structured particles is considered in Section 2.2. The work of Child [91],

Hutson [89], and Quéméner [92] proved useful in the development of this section. In

this thesis the notation and conventions selected by Le Sueur and Hutson will be

used [84, 85].

Before proceeding we introduce the differential and integral cross sections. The

differential cross section is defined as

d

dΩ
σij = Iij(Θ,Φ). (2.1)

The subscripts i and j label the internal states of the collision partners before and

after the collision, Θ and Φ are the deflection angles, Iij(Θ,Φ) is the flux of particles

in state j after the collision normalized by the flux of the incident particles in state

i before the collision, and dΩ is an element of solid angle. The integral cross section,

σij =

∫ 2π

0

∫ π

0

Iij(Θ,Φ) sin ΘdΘdΦ, (2.2)

is independent of angle and quantifies the probability of the collision driving a

transition between states i and j. The total cross section is the sum of the cross

sections for all possible final states.
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2.1 Structureless Particles

The Hamiltonian that describes the relative motion of two interacting and struc-

tureless quantum particles,

− ℏ2

2µ
∇2 + V (R), (2.3)

is derived from the canonical quantization of the classical two-body Hamiltonian.

∇2 is the Laplacian and V (R) is the potential energy function that governs the

interaction of the particles. In the case of a central potential the interaction potential

is isotropic. The angular terms in the Laplacian are equal to the square of the

collision pair’s orbital angular momentum, L̂2, which we refer to as the end-over-

end angular momentum. The Hamiltonian is written more explicitly as

− ℏ2

2µ

1

R

(
∂2

∂R2

)
R +

ℏ2

2µR2
L̂2 + V (R). (2.4)

By convention the dissociation limit of the potential is zero. This Hamiltonian

is applicable in studies of bound states with discrete energies, En < 0, and the

continuum of scattering states with E > 0. We explore the scattering states before

discussing bound states.

In the asymptotic limit the wavefunction is comprised of an incoming plane

wave along Z and an outgoing spherical wave, the magnitude of which varies with

deflection angle Θ. This is expressed as

Ψ(R,Θ)
R→∞∼ eikz + f(Θ)

eikR

R
, (2.5)

where f(Θ) is the scattering amplitude. Equation 2.5 constitutes an important

ansatz for, and boundary condition of, the wavefunction describing the scattering of

two quantum particles.

It is possible to expand the total wavefunction in a basis of radial functions,
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ψL(R), and Legendre polynomials, PL(cos Θ), as

Ψ(R,Θ) =
1

R

∑

L

ψL(R)PL(cos Θ). (2.6)

The R−1 term has been introduced to simplify the radial kinetic energy operator in

Equation 2.4. The Legendre polynomials are eigenfunctions of L̂2. The end-over-

end angular momentum, L, is a good quantum number i.e. the Hamiltonian contains

no terms that can couple states of different L and the matrix representation of the

Hamiltonian is therefore diagonal in L. This simplifies any attempt to develop a

more detailed description of the wavefunction as each angular momentum state can

be considered independently to one another. This rational forms the foundations of

the partial wave analysis. Restricting L to a single value and substituting the wave-

function, Equation 2.6, into the Schrödinger equation, along with the Hamiltonian,

Equation 2.4, gives the radial equation,

(
− ℏ2

2µ

d2

dR2
+

ℏ2

2µR2
L (L+ 1) + V (R) − E

)
ψL(R) = 0. (2.7)

The solutions of Equation 2.7 depend on the potential V (R). For realistic interaction

potentials, and simple models such as Lennard-Jones potentials, one cannot derive

analytic expressions for ψL(R) or key scattering observables, such as the differential

cross section. Numerical methods are intimately related with quantum scattering

theory and are introduced later in this Section.

To gain insight into ψL(R) we consider Equation 2.7 in the regions of R where

the centrifugal term dominates over V (R). As V (R) → 0 the form of Equation 2.7

is that of a Riccati-Bessel differential equation, and

ψL(R) = ALkRjL(kR) +BLkRnL(kR), (2.8)

where AL and BL are constants, k2 = 2µE/ℏ2, jL is the spherical Bessel function of

the first kind, and nL is the spherical Bessel function of the second kind [93]. In the
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limit of R → ∞, Equation 2.8 reduces to

ψL(R)
R→∞∼ sin(kR− Lπ

2
+ δL), (2.9)

where δL is the phase shift which quantifies the effect of the potential on the scatter-

ing wavefunction in the infinite limit. The phase shift is related to the coefficients

AL and BL in Equation 2.8 by δL = tan−1(BL/AL). Euler’s formula can be applied

to Equation 2.9 to get an expression for ψL(R) that lends itself to the concept of

incoming and outgoing waves. Equation 2.9, in tandem with Equation 2.6, allows us

to understand that the states of the time-independent scattering Schrödinger Equa-

tion are a potentially infinite sum of spherical waves, each of which supports an

incoming and outgoing radial component. The outgoing component in each partial

wave is shifted in phase to a different extent by the potential.

A detailed expression for the scattering amplitude, featuring the phase shift, can

be derived. If the scattering amplitude in Equation 2.5 is expanded as
∑

L fLPL(cos Θ),

and the plane wave is expanded using Rayleigh’s formula, then in the limit of

R → ∞, Equation 2.5 matches Equation 2.6 when the expression for ψL(R) in

Equation 2.8 has been substituted. Consequently, expressions for AL and BL can

be found, that contain the term fL, and the scattering amplitude is expressed as

f(Θ) =
∑

L

(2L+ 1)

k
eiδL sin (δL)PL cos Θ. (2.10)

The square of the modulus of the scattering amplitude, |f(Θ)|2, if generalized to be

a function of Θ and Φ, is equal to Ii,j(Θ,Φ) in the differential cross section, Equation

2.1.

To obtain a value of δL, for a given potential, Equation 2.7 must be solved using

numerical methods. We typically elect to use numerical propagation [17, 89]. The

principles of these methods are closely related to more simple numerical methods

for ordinary differential equations such as the Numerov method [94]. Single-channel

scattering is a perfect example with which to introduce some features of numerical
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propagation. Regions of R for which V (R) > E are termed classically forbidden re-

gions. Regions of R for which V (R) < E are classically allowed regions. Numerical

propagation uses a grid of points between Rmin, placed in the classically forbidden

region, and Rmax, placed well into the classically allowed region. Various different

propagation methods exist that rely on propagating different mathematical func-

tions. Perhaps most simply the wavefunction can be propagated although this is

disadvantageous so far as propagating the wavefunction is numerically unstable in

classically forbidden regions. Johnson developed more complex propagation proce-

dures such as the renormalized Numerov and log-derivative methods [95]. The latter

propagates the log derivative of the wavefunction,

Y (R) =
1

ψL(R)
ψL(R)′, (2.11)

where ψL(R)′ denotes the derivative of ψL(R) with respect to R. We use the ex-

ample of ψL(R) to define Y (R) to be consistent with Equation 2.6 and our present

discussion. Having obtained the wavefunction, the phase shift is obtained by com-

paring the value and derivative of the numerical solution to the analytic expression

for the asymptotic behavior of the free particle, sin(kR− Lπ/2).

Bound states supported by V (R) are subject to two boundary conditions; ψ(0) =

0 and ψ(∞) = 0. The bound states of V (R) exist at discrete energies, En.

Numerical propagation is also used for the calculation of bound-state eigenvalues

and eigenfunctions. Compared to the scattering problem there are two classically

forbidden regions and a single classically allowed region. Propagation into a classi-

cally forbidden region is typically unstable and best avoided, so the simple procedure

of propagation from Rmin to Rmax is not appropriate. Two propagations are under-

taken, one out from Rmin and one in from Rmax to a matching point in the classically

allowed region, Rmatch. An accurate eigenvalue will correspond to an eigenfunction

that is continuous and has a continuous derivative. A matching function can be
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defined with the log-derivative of the wavefunction,

Y +(Rmatch) − Y −(Rmatch) = 0, (2.12)

which will be zero when the eigenvalue is found. Y + constitutes the outwards prop-

agation and Y − constitutes the inwards propagation. The algorithms used to find

eigenvalues are usually made of two steps. Firstly, bisection is used with a specified

trial energy to obtain a small energy range the state is known to exist in. The node

count of the state being investigated is used in this bisection procedure [17, 96].

Once a region of energy has been found that is sufficiently precise then propagation

is used to obtain a value of the matching function. The eigenvalue is then found by

iterating towards a zero of the matching function.

2.2 Multichannel Problem

In Section 2.1 key concepts in atomic and molecular scattering theory, such as partial

waves, phase shifts, bound states, and numerical propagation, were introduced with

the simple example of structureless particles. Section 2.2 discusses the theoretical

treatment of structured particles.

The channels that govern the collision dynamics of structured particles are the

asymptotic states of the collision pair. We use a general subscript, j, in the following

discussion to label each scattering channel. If the energy of a given channel, Ej,

exceeds the collision energy, E, the channel is closed. If the energy of a given

channel, Ej, lies beneath the collision energy, E, the channel is open. If there is a

single open channel only elastic collisions are possible. If there are multiple open

channels inelastic and reactive processes are possible and the collision may populate

any of the open channels.

The relative motion Hamiltonian for the collision of two structured particles is

Ĥ = − ℏ2

2µ

(
R−1 d

2

dR2
R

)
+

ℏ2

2µR2
L̂2 + Ĥintl(ξ) + V̂ (R, ξ) (2.13)
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where ξ encompasses all dimensions excluding the coordinate R, Ĥintl(ξ) is composed

of the internal Hamiltonians of the collision partners, and V̂ (R, ξ) is the potential

energy operator that is a function of the internal coordinates of the particles. For the

example of two alkali-metal atoms colliding in a magnetic field ξ encompasses the

electron spin and nuclear spin of each atom and the end-over-end angular momentum

of the complex. A basis encompassing all possible states of the collision pair is needed

to span the space of the Hamiltonian in Equation 2.13. An obvious route forward

is to expand the wavefunction in a basis that is the direct product of functions that

span the space of Ĥintl(ξ) and L̂2 and therefore describes the scattering channels at

R → ∞,

Ψ(R, ξ) =
1

R

∑

j

ψj(R)|j(ξ)⟩. (2.14)

The wavefunction expansion includes radial channel functions, ψj(R), which can

be thought of, at a given value of R, as the expansion coefficients describing how

much a given channel contributes to the wavefunction describing the collision pair.

By substituting Equations 2.13 and 2.14 into the Schrödinger Equation, taking the

braket product with ⟨j′(ξ)|, and rearranging the result, we arrive at a series of

coupled differential equations, expressed in matrix notation as,

(
− ℏ2

2µ

d2

dR2
− E

)
ψ + W̄ψ = 0. (2.15)

ψ is a wavefunction vector, the elements of which are the radial channel functions,

and W̄ is the coupling matrix which quantifies the coupling between each channel

and every other channel. The elements of W̄ , Wj′j, are equal to

⟨j′|
(

ℏ2

2µR2
L̂2 + Ĥintl(ξ) + V (R, ξ)

)
|j⟩. (2.16)

The above constitutes a diabatic formulation of a multichannel scattering prob-

lem. An alternative adiabatic formulation is possible. Before proceeding we discuss

these different formalisms. Whereas in the diabatic formulation the wavefunction
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is expanded in a set of orthonormal functions that span the space of Ĥintl(ξ) and

L̂2 the adiabatic formulation relies on the expansion of the wavefunction in a ba-

sis that diagonalizes Ĥintl(ξ), L̂
2, and V̂ (R, ξ) [97]. In the adiabatic formulation

the wavefunction is expanded in functions that depend parametrically on the in-

ternuclear separation and diagonalize V̂ (R, ξ) at every value of the internuclear

separation. The result of this difference is where the couplings between scattering

channels emerge. In the adiabatic formulation the radial kinetic energy operator

is non-diagonal and therefore couples different channels to one another. In the di-

abatic formulation the couplings between channels can be found in the potential

energy matrix. The work throughout this thesis uses a diabatic formulation. Con-

cepts from adiabatic formulations are occasionally used in order to interpret and

discuss various results.

Our attention now turns to solving the coupled-channel scattering problem pre-

sented in Equation 2.15 and describing how we obtain the scattering S matrix. We

elect to use numerical propagation and the MOLSCAT program package [85]. Basis

sets can be used for the internuclear coordinate, although this approach is more

computationally expensive than propagation [98]. We propagate the log-derivative

of the wavefunction matrix from short range to the asymptotic region at long range.

It is uncommon to propagate a wavefunction vector, ψ, or some function of ψ,

because the N radial channel functions in the expansion of Ψ(R, ξ) gives rise to

N linearly independent solutions of the Schrödinger Equation, all of which meet

the boundary condition ψj(R) → 0 at short range. The wavefunction matrix, Ψ,

is constructed by stacking the N linearly independent solution vectors ψ side-by-

side. In the asymptotic region, where V̂ (R, ξ) → 0, the wavefunction matrix can be

matched to J(R) +N (R)K, the solution of Equation 2.13 when V̂ (R, ξ) = 0. For

open channels J(R) andN (R) contain Ricatti-Bessel functions. For closed channels

J(R) andN (R) contain modified spherical Bessel functions [85, 93]. The open-open
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submatrix of K, Koo, is used to obtain the scattering matrix,

S = (I + iKoo)
−1(I − iKoo). (2.17)

The scattering matrix is an exceptionally important construct in the theory of scat-

tering as it contains information about the probability of inelastic transitions be-

tween channels and is related to the scattering observables that are frequently mea-

sured in experiments.

Our attention now turns to the calculation of bound-state eigenvalues in the

multichannel problem [17, 84, 89]. In analogy with Equation 2.14 the wavefunction

of the nth bound state is expanded as

Ψn(R, ξ) =
1

R

∑

j

ψn
j (R)|j(ξ)⟩. (2.18)

The desired solution of the bound-state Schrödinger Equation that contains the

Hamiltonian in Equation 2.13 is a column vector ψ. ψ is continuous, has a contin-

uous derivative, meets the boundary conditions that ψ(0) = 0 and ψ(∞) = 0, and

exists at a discrete energy. Similarly to the single-channel case an inwards propaga-

tion, from Rmax in the outer classically forbidden region, and outwards propagation,

from Rmin in the inner classically forbidden region, are undertaken to a matching

point, Rmatch, in the classically allowed region. For bound-state problems propaga-

tors in BOUND and FIELD exclusively use the log-derivative of the wavefunction.

For an energy that is an eigenvalue of the problem, En, the condition that

Ȳ
+

(Rmatch)ψ+(Rmatch) = Ȳ
−

(Rmatch)ψ−(Rmatch) (2.19)

will be fulfilled. This condition codifies the requirement that the wavefunction and

its derivative are continuous at Rmatch. From the matching condition, and the def-

inition of a log-derivative matching matrix ∆̄Y = Ȳ
+

(Rmatch) − Ȳ −
(Rmatch), it is

clear that the wavefunction vector of the nth bound state is also an eigenfunction of
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the log-derivative matching matrix with a zero eigenvalue. To find En BOUND uses

bisection and the multichannel node count [96] to identify ranges of energy that

contain one state. In each energy range bisection and the VWDB algorithm [99]

are used to find the energy at which ∆Y has a zero eigenvalue. The bound-state

wavefunction, Ψn(R, ξ), can then be found with the method of Thornley and Hut-

son [100].

2.3 Low-Temperature Scattering

In Sections 2.1 and 2.2 we introduced single-channel and multichannel scattering

theory. In the current section we focus on scattering in the ultracold temperature

regime.

Collisions at ultracold temperatures are dominated by the L = 0 partial wave.

In the limit of E → 0 and R → ∞ the L = 0 radial equation reduces to

d2

dR2
ψ0(R) = 0, (2.20)

and the scattering wavefunction is linear with R. At short range the wavefunction

will rapidly oscillate. Extrapolating the linear region of the wavefunction to ψ0(R) =

0 returns the zero-energy scattering length, a(0). The scattering length is an energy-

dependent quantity and is related to the L = 0 phase shift;

a(k) = −1

k
tan δ0. (2.21)

As k → 0 a(k) becomes constant and is equal to a(0). Correction terms to a(0) are

given by the effective range theory [101],

a(k) = a(0) +
1

2
k2reffa(0)2 + ..., (2.22)

where reff is the effective range.

In the remainder of this thesis we use a to refer to the zero-energy s-wave scat-
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tering length. The scattering length is an imaginary quantity, a = α − iβ, when

inelastic processes are possible. In the absence of inelastic processes β = 0 and the

scattering length is a real quantity. The scattering length can be used to obtain

expressions for the s-wave contribution to the elastic scattering cross section,

σii(k) =
4π|a|2

1 + k2|a|2 + 2kβ
, (2.23)

and the s-wave contribution to the total inelastic scattering cross section

σtot
inel(k) =

4πβ

k(1 + k2|a|2 + 2kβ)
. (2.24)

Note that Eq. 2.23 can be modified by setting β = 0 in order to obtain an expression

for the scattering cross section in the absence of any inelastic processes.

Gribakin and Flambaum used the semi-classical approximation and a model

interatomic potential to study the s-wave scattering length [102]. At long range the

potential is proportional to a leading term and a coefficient,

V (r) ≈ −Cn

rn
. (2.25)

For two alkali-metal atoms n = 6 and at long range V (R) depends on the C6

parameter. Gribakin and Flambaum defined a mean scattering length,

ā = cos

(
π

n− 2

)(
γ

n− 2

) 2
n−2 Γ

(
n−2
n−2

)

Γ
(
n−1
n−2

) , (2.26)

where γ2 = 2µCn/ℏ2, and found that

a = ā

(
1 − tan

(
π

n− 2

)
tan

(
Φ − π

2(n− 2)

))
. (2.27)

Φ is the phase shift calculated with semiclassical approximation. The phase of the

potential is significant because it determines the number of bound states supported

by the potential. As Φ changes the position and number of the bound states changes.
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When

Φ − π

2(n− 2)
= Nπ +

π

2
, (2.28)

where N is an integer, the least-bound state has zero energy and the scattering

length has infinite value.

Ultracold atomic scattering is universal in the sense that several key constants

of a given system determine the collision properties of that system. Gao’s analytical

solutions to R−6 potentials allow us to make, to a good approximation, further

quantitative predictions of the energies of the near-threshold bound states of a given

potential [103–106]. We regularly deploy the concept of energy bins to explain

patterns of near-threshold bound states and derive labels for the different states we

see in bound-state spectra. Bins are well-defined energy ranges that a bound state

must exist in. For example, the least-bound state lies within 36Ē of the threshold

where Ē = ℏ2/2µā2. Each subsequent bound state lies within its own bin.

Feshbach resonances occur when a bound state is coupled to, and becomes reso-

nant with, a scattering state. Any field can, in principle, be used to tune the energy

of the bound state into resonance. In ultracold scattering the Feshbach resonances

we refer to are zero-energy magnetic Feshbach resonances. Feshbach resonances oc-

cur in both elastic and inelastic scattering, although the behavior is markedly more

simple when there is no inelasticity.

A simple elastic Feshbach resonance displays a pole in the scattering length and

follows

a(B) = abg

(
1 − ∆B

B −Bres

)
, (2.29)

where Bres is the field at which the energy of the bound state is equal to the threshold

energy and ∆B is the resonance width. The scattering length changes because

the phase in the wavefunction of the scattering state increases by π as it is tuned

from beneath the resonance to above the resonance. The phase shift contains a

background and resonant component.

The scattering length is an imaginary quantity in inelastic scattering. The mag-
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nitude of β is indicative of how strongly coupled the open channel is to lower channels

that it can decay to. The scattering length behaves as

a(B) = abg +
ares

2(B −Bres)(Γinel
B )−1 + i

, (2.30)

where abg = αbg − iβbg and ares = αres − iβres. To characterize the resonances in

this thesis we use the algorithms of Frye and Hutson [107]. Frye and Hutson treated

elastic resonances, resonances with weak background inelasticity, and resonances

with strong background inelasticity. Resonances with weak background inelasticity

show an oscillation in α and a sharp symmetric peak in β. The maximum in the

oscillation of α is ares/2 above abg and the maximum in β is at ares. βbg = 0 and βres

= 0 when there is weak background inelasticity. Resonances with strong background

inelasticity also show an oscillation in α but the background inelasticity is high and

the peak in β is asymmetric. βbg and βres are non zero.
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3.1 Introduction

This chapter details recent advancements in our understanding of ultracold 39K

+ 133Cs collisions. We have explored the near-threshold bound states that can

cause Feshbach resonances at the lowest collision thresholds. We have developed a

more accurate model of the KCs interaction potential using an interactive non-linear

least-squares analysis and the results from a series of experiments undertaken by the

Nägerl Group (University of Innsbruck). Details of our new potential (B2024) are

included in this chapter. The results and analysis presented here will support future

theoretical and experimental studies of 39K133Cs.

Bialkali molecules have a rich history in the field of ultracold physics. Their

production via magnetoassociation and their many applications in quantum science

and technology have been reviewed in the Introduction. The specific history of ul-

tracold 39K133Cs is detailed here. Ultracold 39K133Cs molecules have, at present, not

been produced in their rovibrational ground state. The Nägerl Group has succeeded

in producing an ultracold mixture of 39K and 133Cs and has characterized several

zero-energy magnetic Feshbach resonances that exist in the collisions between these

atoms. Three key papers were published in 2013, 2014 and 2017. Ferber et al. used

Fourier-transform spectroscopy to study the near-dissociation vibrational levels of

KCs in the ground-electronic state [108]. Ferber et al. used their results to develop

models of the X1Σ+ and a3Σ+ potentials (F2013). Patel et al. used the F2013 po-

tential in coupled-channel calculations to assess the prospect of producing loosely

bound states of 39K133Cs, 40K133Cs, and 41K133Cs with magnetoassociation [109].

Several years later Gröbner et al. presented the results of a joint experimental and

theoretical study of the Feshbach resonances in 39K + 133Cs collisions [110]. They

found that the F2013 potential gave an error of ≈ 20 G in Patel et al.’s calculations

of Feshbach resonance positions and a systematic overestimation of the resonances’

widths. Consequently, Gröbner et al. developed a new interaction potential (G2017).

They were able to develop a new model of the triplet curve but did not attempt to

develop a model of the singlet curve. We discuss the F2013 and G2017 potentials
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in more detail in Section 3.2.3.

The aim of experimentalists working on the ultracold 39K+133Cs gas is to produce

39K133Cs molecules in the absolute-ground state. Magnetoassociation and Stimu-

lated Raman Adiabatic Passage (STIRAP) will be used to achieve this [111]. For

STIRAP and the production of ground-state 39K133Cs molecules to be efficient, an

intermediate state that has a strong transition between the loosely bound state and

the rovibrational-ground state must be identified [29]. Theory is invaluable when

assessing different STIRAP schemes, and accurate models of the potential that sup-

port the Feshbach molecule are vital. It is possible that the most efficient scheme

will not involve the state populated during magnetoassociation. It is important to

have an accurate picture of the loosely bound states that can be populated by ex-

ploiting the avoided crossings between different states. The energies of bound states

and their variation with magnetic field are determined by the interaction potential.

This chapter is structured as follows. Section 3.2.1 discusses the hyperfine struc-

ture of 39K and 133Cs, and the structure and properties of the 39K+133Cs pair

states. Section 3.2.2 gives details of our calculations using BOUND, FIELD, and

MOLSCAT. In Section 3.2.3 a discussion of the mathematical functions used in

models of alkali+alkali interaction potentials is given. We discuss the F2013 and

G2017 potentials in more depth. The relation between the parameters in these mod-

els and various scattering observables in analyzed in Section 3.2.4. In Section 3.2.5

the theory of non-linear least-squares analysis is summarized. In Section 3.3.1 we

analyze the near-threshold bound states that can cross the lowest thresholds and

cause Feshbach resonances. We also characterize the resonances that would be most

advantageous to measure for refitting the potential. Section 3.3.2 discusses our fit to

obtain the B2024 potential, its uncertainty, and the predictions we can make from

it.
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3.2 Theoretical Background and Methods

3.2.1 Monomer States and Pair States

The Hamiltonian of an alkali-metal atom in its 2S state is

ĥA = ζAîA · ŝA +
(
gs,AŝA,z + gi,AîA,z

)
µBB, (3.1)

where îA and ŝA are vector operators for the nuclear and electron spins, and their

components along the z-axis defined by the magnetic field, B, are îA,z and ŝA,z. ζA

is the hyperfine coupling constant, which gives rise to a hyperfine splitting Ahfs =

ζA(iA + 1/2), and gs,A and gi,A are the gfactors for the electron and nuclear spins.

ζ39K ≈ 0.2309 GHz, gs,K = 2.002, and gi,K = −1.419 × 10−4 [112]. ζ133Cs ≈ 2.298

GHz, gs,Cs = 2.003, and gi,Cs = −3.989 × 10−4 [113].

At B = 0 G the total angular momentum, fK, is either 1 or 2 as iK = 3/2 and

sK = 1/2. For B > 0 G the degeneracies of the different mf states are lifted and

states of different fK interact with one another. The left panel of Figure 3.1 shows

that for B < 200 G the hyperfine states of 39K are well described by the labels (fK,

mf,K). For B > 200 G the projection of the electron and nuclear spins, ms and mi,

are more appropriate labels and the electron and nuclear spins are more strongly

coupled to the external field than they are to one another. The lower (and upper)

groups of states correspond to ms = −1/2 (and ms = 1/2). Within each group the

states are distinguished by their value of mi, which for 39K can be −3/2, −1/2, 1/2,

or 3/2, and is equal to mi = mf −ms. sCs = 1/2 and iCs = 7/2 such that fCs = 3 or

4. For Caesium the total angular momentum and its projection along the magnetic

field axis remain appropriate labels for all B < 600 G. This is evident in the right

panel of Figure 3.1 and is due to Caesium’s large hyperfine coupling constant which

keeps the electron and nuclear spins strongly coupled to one another.

The different possible combinations of the atomic hyperfine states give rise to the

39K + 133Cs pair states. These pair states label the collision thresholds at long range.

In the presence of a magnetic field the thresholds are separable in the projection of
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Figure 3.1: Energies of the 39K (left-hand panel) and 133Cs (right-hand panel) hy-
perfine states as a function of magnetic field. Energies are shown relative to the
hyperfine ground state at B = 0 G. Values of |mf | are color-coded as shown in the
legend. Solid (and dashed) lines are used for positive (and negative) values of mf .
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the total angular momentum, mF = mf,K + mf,Cs, that can take all integer values

between −6 and 6. The pair states can be labelled by their constituent atomic states.

At low fields, when 39K has not reached the high-field limit, appropriate labels are

(fK, mf,K, fCs, mf,Cs). The fields of interest in this work are typically > 200 G so

the labels (ms,K, mi,K, fCs, mf,Cs) are used throughout this chapter. Irrespective of

the appropriate representation the labels can be shortened substantially by labelling

the different hyperfine states for each atom according to a, b, c, ... in increasing

order of energy. These labels are included in Figure 3.1 for the lowest manifolds of

states. If, for example, we were discussing the lowest threshold with mF = 4, which

is (ms,K = −1/2, mi,K = 3/2, fCs = 3, mf,Cs = 3), we would use the label a + a.

It is advantageous to build an understanding of the singlet fractions of the 39K

+ 133Cs pair states. We have extensively studied the singlet/triplet fractions of the

near-threshold bound states and use the approximation that a near-threshold bound

state is supported by a single collision threshold to interpret our results. If a bound

state runs approximately parallel to a threshold it is likely to have the character

of that threshold. We have calculated the singlet fraction of a pair of alkali-metal

atoms’ singlet fraction as a function of magnetic field. Consider a single alkali-metal

atom in a non-spin-stretched state. Two hyperfine states will have the mf value of

that state. Their interaction with one another is determined by Equation 3.1. Each

state is expanded in a basis of two functions, |s,±1/2⟩|i,mf ∓ 1/2⟩, such that

ψ1 = cos θ|1/2, 1/2⟩|i,mf − 1/2⟩ + sin θ|1/2,−1/2⟩|i,mf + 1/2⟩ (3.2)

and

ψ2 = − sin θ|1/2, 1/2⟩|i,mf − 1/2⟩ + cos θ|1/2,−1/2⟩|i,mf + 1/2⟩, (3.3)

where θ is

θ =
1

2
tan−1


ζ

(
(i+ 1/2)2 −m2

f

)1/2

ζmf + gµBB


 . (3.4)
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When θ has been obtained for each atom it is possible to calculate the singlet

amplitude of the pair,

As =
1√
2

(cos θ1 sin θ2 ∓ sin θ1 cos θ2) , (3.5)

of a given pair state. Equation 3.5 can be derived by expanding ψ1ψ2, coupling

|s1,±1/2⟩ and |s2,±1/2⟩ to give a resultant |S,MS⟩, and summing the coefficients

of the singlet states. The singlet fraction, Fs = A2
s , is obtained from the singlet

amplitude.

Figure 3.2 shows the pair states, and L = 0 thresholds, with mF = 4, 3, and 2. A

color map, included as an inset in the bottom left corner of Figure 3.2, has been used

to encode the singlet fractions of these pair states. For each mF the various pair

states have a singlet fraction that varies from 0 to 0.5. Most pair states with high

singlet fractions have small values of dE/dB. The singlet fractions of pair states

with MF = 1, 0,−1,−2,−3, and −4 are included in Figures 3.2.1 and 3.2.1. It is

clear from these figures that as MF reduces the variety of states’ singlet fractions

reduces.
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Table 3.1: Available basis sets for alkali-metal atom + alkali-metal atom calculations
in BOUND, FIELD, and MOLSCAT.

Uncoupled basis |sA,ms,A⟩|iA,mi,A⟩|sB,ms,B⟩|iB,mi,B⟩|L,ML⟩
Partially coupled basis |(sA, iA)fA,mf,A⟩|(sB, iB)fB,mf,B⟩|L,ML⟩
Fully coupled basis |(fA, fB)F,MF ⟩|L,ML⟩
SIF basis |(sA, sB)S,MS⟩|(iA, iB)I,MI⟩|L,ML⟩

3.2.2 Calculations of Bound States and Scattering

To obtain bound-state eigenvalues and values of the scattering length from the

multichannel Schrödinger Equation we use the BOUND, FIELD and MOLSCAT

programs [84, 85]. Chapter 2 contains a detailed discussion of coupled-channel

theory and numerical propagation. In this section we summarize the basis sets

available for alkali-metal atom + alkali-metal atom calculations and briefly give

details of the calculations undertaken in this chapter.

A variety of basis sets are implemented in the BOUND, FIELD, and MOLSCAT

program packages for alkali-metal atom + alkali-metal atom calculations. These

basis sets are direct products of functions that span the space of Ĥintl and L̂2 in

Equation 2.13. They are used to expand the multichannel wavefunction (Equa-

tion 2.14) and to construct the coupling matrix (Equation 2.16) for coupled-channel

calculations. These basis sets are tabulated in Table 3.1. The derivation of the

coupling-matrix elements in the uncoupled representation is standard and given

elsewhere [38]. The derivation of the coupling-matrix elements in the partially cou-

pled, fully coupled, and SIF basis sets can be obtained with angular momentum

theory [114, 115]. The work presented in this chapter used a variety of these basis

sets. We included all electron and nuclear spins. The value of the end-over-end

angular momentum is specified where appropriate. The majority of the calculations

undertaken here used L = 0.

For the scattering calculations undertaken in MOLSCAT, Manolopoulos’ LDMD

propagator [116] was used to propagate the log-derivative matrix from Rmin = 5.6 a0

to Rmid = 20.0 a0 with a step size of 0.001 a0. The variable-step size Airy propa-
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gator [117, 118] was used from Rmid to Rmax = 3000 a0. The collision energy was

around 1 pK. For the bound-state calculations undertaken in BOUND, Manolopou-

los’ LDMD propagator was used from Rmin = 5.6 a0 to Rmid = 15.0 a0 with a

step size of 0.001 a0. The variable-step size Airy propagator was used from Rmid to

Rmax = 5000 a0.

The FIELD program is very closely related to the BOUND program [84]. Whereas

BOUND calculated a bound-state energy for a given value of magnetic field, FIELD

calculates the magnetic field at which a state with specified energy exists. Our

FIELD calculations used the same propagation parameters as our BOUND calcula-

tions.

We have calculated the singlet/triplet fractions of each the near-threshold bound

states. BOUND is able to calculate the expectation value of an operator for a state

with a finite-difference approach [119]. Having located a bound state with energy,

E
(0)
n , a modified energy, En(a), is obtained by applying a small perturbation, a, to the

Hamiltonian such that En(a) = E
(0)
n +a⟨Â⟩n +O(a2), where ⟨Â⟩n is the expectation

value of operator A. The finite-difference approximation to the expectation value is

⟨Â⟩n =
E(0) − En(a)

a
. (3.6)

We use this capability to obtain values of the singlet and triplet fraction i.e. the

expectation value of the singlet and triplet terms in the interaction potential for a

particular bound state. The singlet fraction of a bound state varies as a function of

energy and field. When we have calculated singlet fractions we have used values of

energy and field at which the gradients of the states are constant. These calculations

used the same propagation parameters as other BOUND calculations, which are

given in this section.



Chapter 3 40

3.2.3 39K133Cs Interaction Potential

The collision dynamics of alkali-metal atoms at ultracold temperatures are governed

by the ground singlet and triplet electronic states, X1Σ+ and a3Σ+. These arise from

the interplay of electron-electron repulsion at short range and attractive dispersion

interactions at long range. The potential-energy operator is

V̂ (R) = V̂0P̂(0) + V̂1P̂(1) + V̂ d(R), (3.7)

where V0(R) and V1(R) are the potential-energy curves for X1Σ+ and a3Σ+, and

P̂(0) and P̂(1) are projection operators [19]. There also exist small anisotropic terms

that arise from second-order spin-orbit coupling and the anisotropic dipole-dipole

interaction of the electron spins on the separate atoms. These appear in the V̂ d term.

In this section we take the opportunity to introduce the mathematical functions that

can be used to model the singlet and triplet curves. We also give details of the F2013

and G2017 potentials.

The models typically employed for the isotropic singlet and triplet surfaces in

theories of the collisions of alkali-metal atoms at ultracold temperatures contain

three segments. These segments are divided by RSR,S and RLR,S where S = 0 and

1 for the respective singlet and triplet curves [39, 110, 120]. Ferber et al. used

RSR,0 = 3.22 Å, RSR,1 = 5.23 Å, RLR,0 = 12.00 Å, and RSR,1 = 12.01 Å [108]. These

values were not modified by Gröbner et al. in 2017. The short-range segment can

be represented with an inverse-power term,

VSR,S(R) = ASR,S +
BSR,S

RNS
, (3.8)

the potential between RSR,S and RLR,S is constructed with a finite-power series in a

dimensionless radial variable,

Vmid,S(R) =

nS∑

i=0

ai,S

(
R−Rm,S

R + bSRm,S

)i

, (3.9)
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and the long-range region of the potential is

VLR,S(R) = −C6/R
6 − C8/R

8 − C10/R
10 − (−1)SVex(R). (3.10)

The dispersion coefficients used in the model of the long-range segment of the po-

tential model are the same for both the singlet and triplet potentials. The F2013 and

G2017 potential used values of the C6, C8, and C10 coefficients calculated with rel-

ativistic ab initio calculations augmented with experimental data [121, 122]. These

values have not been altered during any of the efforts to refine the KCs interaction

potential. The exchange term is equal to AexR
γ exp (−βR) [123]. Aex, γ, and β were

obtained in 2013 by Ferber et al. and were not refined in 2017 by Gröbner et al.

In the middle segment of the potential the parameter ai,S is varied to ensure

Vmid,S(R) = VLR,S(R) at RLR,S. Rm,S is chosen to be close to the equilibrium dis-

tance. These values were first obtained by Ferber et al. and have not been modified

in any efforts to refit the potential since.

The short-range function contains two terms ASR,S and BSR,S that are selected

to ensure that Vmid,S(R) = VSR,S(R) at RSR,S and that VS(R) has a continuous

derivative. Ferber et al. found values of ASR,S and BSR,S that ensured their potential

met these two conditions for a preliminary fit. Then they kept BSR,S fixed as they

further refinedASR,S. As such the F2013 potential displays a derivative discontinuity.

Gröbner et al. repeated the determination of ASR,S and BSR,S for every iteration of

their potential, so that their final triplet potential has no derivative discontinuity at

RSR,1. NS was first obtained in 2013 during Ferber et. al.’s fit to experimental data.

Gröbner et al. varied all three parameters for the triplet potential in 2017 when

attempting to correct deficiencies in the F2013 potential [110]. N1 was changed

from 10.25168 to 6.9(1) and ASR,S and BSR,S were varied in turn to ensure that the

function remained continuous. Gröbner et al. did not modify the singlet potential

and used Ferber et al.’s value of N0 = 6.84881.

The anisotropic term in the interaction potential, V̂ d, is responsible for spin-

relaxation processes, whereby states with different end-over-end angular momentum
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are weakly coupled to one another, and Feshbach resonances caused by L = 2 bound

states. This term contains a contribution from the dipole-dipole-like interaction of

the two electron spins, that goes as 1/(R/a0)
3, and the second-order spin-orbit

coupling that has the same angular dependence as the electron-electron interaction,

but a more complex radial dependence [19]. Ferber et al. were unable to ascertain

any information regarding V̂ d and did not attempt to generate a model of it. Patel

et al. needed to include V̂ d and generated an approximation of it based on the same

functions used in 87Rb133Cs calculations [31]. Gröbner et al. did not refine Patel et

al.’s approximation of V̂ d.

There exist other functions that can be employed in models of interaction po-

tentials [124–126]. We take this opportunity to introduce an alternative functional

form for VSR,S(R) developed by the Hutson group1. Ihm et al. proposed a model of

the short-range repulsion in van der Waals-type systems inspired by the overlap of

two separate charge distributions [127]. Hutson et al. used this result to develop

VSR(R) = ASR +BSRe
−αR. (3.11)

Ihm et al. had found α ≈ 0.85β, where β is the average of
√

8EI for the two atoms and

EI is the ionization energy in atomic units. This functional form offers an intuition

and approximation of αS. The Hutson Group found that Equation 3.11 gives a good

representation of short-range potentials for pairs of alkali-metal atoms. ASR,S and

BSR,S are varied to match VSR,S with Vmid,S and to ensure that the derivative of

VS(R) remains continuous.

3.2.4 Scattering Observables and the Interaction Potential

The parameters in the various functions introduced in Section 3.2.3 influence calcu-

lations of observables from bound states and scattering in different ways. We review

these relationships here. Brookes and Hutson refined the interaction potential for

NaCs in 2022 and published a detailed discussion of the sensitivity of different ob-

1This unpublished work was undertaken by Z. Chrome, M. D. Frye, and J. M. Hutson in 2021.
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servables for ultracold scattering and spectroscopy to different parameters in models

of the interaction potential [39]. They had access to a variety of measurements that

included bound-state energies and Feshbach resonance positions. Their analysis

proved useful in the development of the thoughts and analysis presented here.

It is difficult to overstate the importance of the singlet and triplet scatter-

ing lengths in describing and understanding the collisions of ultracold alkali-metal

atoms. These scattering lengths are determined by the singlet and triplet inter-

action potentials. When fitting V1(R) to experimental measurements of Feshbach

resonance positions Gröbner et al. found they needed to reduce the triplet scattering

length, at, from 82.24 a0 to 74.88(9) a0. This was achieved by changing N1 in VSR,1

from 10.25168 to 6.9(1), while holding the mid-range and long-range regions of the

potential constant.

The combination of the singlet and triplet scattering lengths determines the

overall scattering length and therefore the energies of near-threshold bound states.

Measurements of bound-state energies are therefore very useful when calibrating

models of interaction potentials. The energy of a bound state and its variation with

magnetic field determine the position of any Feshbach resonances that state causes.

Therefore measurements of Feshbach resonance positions are useful for refining the

singlet and triplet scattering lengths.

It is important to understand the sensitivity of bound-state energies and reso-

nance properties to the singlet and triplet interaction potentials. To optimize the

singlet and triplet curves at short range, in an effort to obtain accurate singlet

and triplet scattering lengths, a minimum of two Feshbach resonance positions are

needed. These Feshbach resonances must be caused by states with different sen-

sitivities to the singlet and triplet potential curves. The six Feshbach resonance

positions measured by Gröbner et al. in 2017 and used in their fit to obtain the

interaction potential are included in Table 3.2. We calculated the singlet fractions

of the states that caused these resonances and it is clear that they were caused by

states with similar values of Fs.
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Table 3.2: Feshbach resonance positions used by Gröbner et al. in 2017 to refine
the KCs interaction potential. The threshold at which the resonance occurred, the
position of the resonance as measured in experiment, and the singlet fraction of the
state that causes the resonance are given.

Threshold Bexp
res (G) Fs

a+a 361.1 0.378
a+a 442.59 0.482
b+a 419.3 0.360
b+a 513.12 0.478
c+a 491.5 0.394
c+a 559.32 0.479

We have stated that bound-state energies and Feshbach resonance positions are

determined by as, at, and the overall scattering length. The difference between as

and at also determines the variation of a state’s energy with magnetic field near-

threshold. Bound states curve away from the thresholds they cross. The extent

of this curvature determines the widths of Feshbach resonances. Measurements

of Feshbach resonance positions do not offer any information on the width of the

resonance or the curvature of the bound state beneath it. Measurements of bound-

state energy are able to capture this effect and therefore offer information on the

difference between the singlet and triplet scattering lengths.

A variety of different states can cross the lowest threshold and cause a Feshbach

resonance. Measuring the positions of resonances caused by near-threshold states

with different vibrational quanta is advantageous when refitting the C6 coefficient.

The C6 coefficient determines the outer turning point of the potential well near

threshold. In our work we use the quantum number n to label vibrational states;

n = −1 is reserved for the least-bound state and n decreases for successively deeper

states.

Thus far we have implicitly been discussing observables that are related to L = 0

states. Any attempts at refining V̂ d will require measurements of observables related

to L = 2 states. The V̂ d term determines the strength of interactions between

states with different end-over-end angular momentum. Measurements of bound-

state energies around avoided crossings between L = 0 and L = 2 states are useful
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for determining the strength of the interaction between those states and allowing

the parameters in V̂ d to be refined [128].

We have discussed a number of experimental observables and how they are useful

in fitting models of interaction potentials. This analysis helped us as we analyzed the

near-threshold bound states of KCs and attempted to identify measurements that

would allow us to refine our model of the potential. This discussion is presented in

Section 3.3.1.

3.2.5 Least-Squares Fitting

When optimizing a theoretical model the goal is to obtain a set of accurate model

parameters. The degree to which a model is accurate can be gauged partly from that

model’s ability to return accurate predictions of measured quantities. In the context

of interaction potentials those measured quantities are experimental observables such

as the binding energy of a state or the position of a Feshbach resonance. In order

to optimize our model of the KCs interaction potential we undertook an interactive

non-linear least-squares analysis with the I-NoLLS program [129].

The least-squares problem is defined as minimizing the sum of squares,

χ2 =
n∑

i=1

(
1

σi

(
yobsi − ycalci (p1...pm)

))2

. (3.12)

The sum of squares is a sum over n measured data points where the inverse of

the uncertainty associated with measurement i, σi, is multiplied by the difference

between the observed, yobsi , and calculated values, ycalci (p1...pm). The calculated

value is a function of the m parameters that are to be fitted in the model. We have

used the notation of Law and Hutson, and their discussion of non-linear least-squares

analysis, throughout this section [129].

There are a number of different algorithms that can be used in the minimiza-

tion of χ2, and the optimization of the model, which have been implemented in

the I-NoLLS program. These include the Gauss-Newton and Levenberg-Marquardt
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algorithms, both of which require the calculation of the Jacobian matrix. This

n × m matrix contains the first-order partial derivatives of the calculated values

with respect to the model parameters;

Jij =
∂ycalci

∂pj
. (3.13)

A key feature of the I-NoLLS program is that it calculates a super-Jacobian and a

sub-Jacobian matrix. The super-Jacobian matrix contains all the calculated values

that may be included in the fit and their variation with all parameters in the model

that are being fit. The sub-Jacobian matrix contains a subset of these values and

parameters. This distinction affords a greater degree of control when undertaking

the fit. That the user of the program can include and exclude different datum

and parameters for specific iterations of the fit is one element of the interactive

fitting I-NoLLS empowers. The program also allows researchers to employ and test

different algorithms in order to minimize χ2 while leading the fit. Interactive fitting

is important when the parameters in a model are correlated to one another and is

advantageous when the calculations needed to generate ycalci are expensive.

The Jacobian matrix appears in the Taylor series expansion of the vector ycalc,

with i elements, in parameter space,

ycalc(p+ x) = ycalc(p) + Jx+ ... , (3.14)

where the vector x is a small variation of the parameters. When undertaking a

least-squares analysis we are attempting to find a value of x, i.e. a step in parameter

space, that will return the optimum set of parameters. It is typical to assume that

ycalc(p) is linear in p such that higher-order terms in the Taylor series expansions

can be neglected. By defining a diagonal matrix with elements Gii = 1/σi and

inserting the first two terms in the Taylor series expansion into Equation 3.12, the
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least-squares problem can be reexpressed as minimizing

||Ax− b||22. (3.15)

The notation ||...||2 indicates the square root of the sum of squares of a vector’s

elements. A = GJ and b = Gd where d is a vector containing the differences

between the measured and calculated values of the observables, yobs − ycalc. It

should be noted that this formulation of the problem assumes a linear variation of

the calculated values with the parameters.

The Gauss-Newton and Levenberg-Marquardt algorithms are best expressed in

terms of the singular-value decomposition (SVD) of the matrix A. The SVD is a

generalization of the eigenvalue decomposition of a square matrix. The matrix A

is expressed as UKV T where U and V T are n × n and m × m orthogonal matri-

ces. K is a matrix that contains the singular values of the decomposition. Each

singular value corresponds to a direction in parameter space; each singular direction

is uncorrelated from one another. Large singular values correspond to well defined

singular directions and small singular values correspond to poorly defined singular

directions. The SVD of A can be inserted into 3.15. Multiplication of this expression

by UT yields a problem that has a solution vector q with elements qj = gj/sj, where

the elements gj are from the matrix g = UTb and sj are the singular values, such

that the ideal step through parameter space is x = V q. This is the Gauss-Newton

algorithm.

The Levenberg-Marquardt algorithm affords greater control than the Gauss-

Newton algorithm with respect to the step taken in parameter space to minimize χ2

and refine the model. Equation 3.15 is reformulated such that it is equal to

∣∣∣∣∣

∣∣∣∣∣




A

λIm


x−



b

λ0



∣∣∣∣∣

∣∣∣∣∣

2

2

, (3.16)

where Im is the identity matrix and λ is a scalar quantity. The Levenberg-Marquardt
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algorithm is called, alternatively, damped least-squares and works by introducing the

current parameters of the model into the Jacobian matrix as data points. By doing

this the parameter step taken during the fitting can be varied by altering λm. If λm

is small the step along the direction associated with the smallest singular value is

damped.

We have discussed the complications that arise from parameter correlation in

the context of finding a minimum in χ2. Parameter correlation also complicates the

interpretation of the uncertainties associated with refined model parameters and the-

oretical calculations of the measured observables used in the least-squares analysis.

We have used correlated uncertainties when analyzing our fit of the B2024 poten-

tial in Section 3.3.2. We believe it is important to report correlated uncertainties

because the correlation between parameters determines the uncertainties associated

with the parameters.

3.3 Results and Discussion

Section 3.2 describes the background of 39K+133Cs collisions. Our attention now

turns to describing the work undertaken in collaboration with the Nägerl Group.

We present an analysis of the near-threshold bound states and the Feshbach res-

onances that occur in ultracold 39K + 133Cs collisions. Our analysis of scattering

observables and our understanding of the bound states allowed us to suggest a num-

ber of measurements for our collaborators to undertake. These results allowed us to

refine the interaction potential. We discuss the B2024 potential and then use it to

characterize a number of Feshbach resonances that exist in collisions of 39K + 133Cs.
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3.3.1 Part I: Near-threshold Bound States and Scattering

Resonances

Bound States

We study the L = 0 bound states that are likely to cause broad Feshbach resonances

at the lowest collision thresholds. We used the G2017 potential for these calculations.

The a+a threshold (MF = 4) is the lowest threshold. Figure 3.5 shows that

a single bound state runs approximately parallel to the a+a threshold and under-

goes avoided crossings with two bound states that come up from lower energy as a

function of B. The shallower of these two states has a singlet fraction of 0.378 and

the other state has a singlet fraction of 0.482. These values of the singlet fraction

were obtained with BOUND. The calculations were undertaken for values of field

and binding energy where the states’ gradients were constant and are indicated in

Figure 3.5 by the position of the labels of the singlet fractions. The multichannel

wavefunctions of these states, in an (S, I, F ) basis, are shown in Figure 3.6 and

confirm that the deeper of the two is more sensitive to the singlet potential.

The two deeper bound states in Figure 3.5 approach threshold as a function

of the magnetic field. Prior to crossing threshold, these states avoided cross with

the least-bound state beneath the a+a threshold. The state that crosses threshold

may be a mixture of the two states, but the position of the Feshbach resonance

is ultimately determined by the deeper state and the variation of its energy as

a function of magnetic field. We often use the concept of a ’bare’ bound state

when building an understanding of the near-threshold bound states. These bare

states are hypothetical states and would exist if the interactions between states were

switched off. The true bound states and the bare bound states are the same away

from the threshold and any avoided crossings between states. Feshbach resonance

positions are ultimately determined by these bare bound states, the energy of which

is determined by the scattering length. From the bound-state spectra in Figure 3.5

it is clear that there are two Feshbach resonances caused by L = 0 states at the a+a
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threshold.

The state that runs parallel to the a+a threshold, in Figure 3.5, will most likely

have the character, and properties, of that threshold. We elect to label the thresholds

and bound states with the quantum numbers that are appropriate at higher fields.

The state running parallel to threshold is labeled by (−1(−1
2
, 3
2
)(3, 3)s) where we

have used the notation (n(ms,K,mi,K)(fCs,mf,Cs)L). For KCs the bin boundaries

are 0, 0.398, 2.754, 8.800, 20.239 GHz. The least-bound state is approximately 70

MHz beneath its threshold. As the first bin ends at 398 MHz this bound state

lies comfortably in the first bin and is labeled n = −1. A similar analysis allows

(−2(1
2
, 3
2
)(3, 2)s) and (−2(1

2
, 1
2
)(3, 3)s) to be assigned to the states, which at B =

0 G, are bound by approximately 900 MHz and 1150 MHz. These two deeper

states are supported by the h+b and g+a thresholds displayed in Figure 3.2. It is

clear from Figure 3.2 that the h+b and g+a thresholds have moderate and large

singlet fractions, respectively, which agree with the singlet fractions calculated using

BOUND.

Our attention now turns to the bound states beneath the L = 0 thresholds with

MF = 3. For B > 267 G the lowest threshold is the b+a threshold. For B < 267

G the lowest threshold is the a+b threshold. It is evident from Figure 3.7 that five

L = 0 bound states with MF = 3 exist in the ranges of energy and magnetic field

we have studied. Two of these states are n = −1 states that run parallel to the two

lowest thresholds. At B ≈ 0 G the shallower of the two is (−1(−1
2
, 1
2
)(3, 3)s). The

other is (−1(−1
2
, 3
2
)(3, 2)s). From Figure 3.2 it is clear that we do not expect either

of these states to have high singlet fractions. The remaining three states, that at

zero field are bound by approximately 830, 900, and 1090 MHz, approach the lowest

two thresholds as a function of the magnetic field. These five states are responsible

for four Feshbach resonances in the b+a channel, beneath 600 G. The positions of

the first three resonances are determined by the deeply bound states. These states

are found to have singlet fractions of 0.290, 0.360, and 0.478 respectively. Due to

the gradients of the states, their depth, and their singlet fractions, it is clear these
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are states with n = −2 supported by the f+a, g+b, and h+c thresholds. The fourth

resonance is caused by a shallow state i.e. the least-bound state of the a+b threshold

crossing the b+a threshold.

The lowest panel in Figure 3.8 shows the bound states and scattering at thresh-

olds with mF = 2. There are several more bound states compared to Figures 3.5

and 3.7. The three lowest thresholds with mF = 2 each support a bound state with

n = −1. Two of these three shallow states cause Feshbach resonances in the c+a

threshold at ≈ 460 G and ≈ 610 G. There are four deeply bound states, the first

of which causes a Feshbach resonance at the the b+b threshold. The remaining

three deeply bound states cause Feshbach resonances at the c+a threshold. The

four deeper bound states have singlet fractions, calculated with BOUND, equal to

0.190, 0.299, 0.394, and 0.479.

Studying the singlet fractions reported in Figures 3.5, 3.7, and 3.8 confirm a

number of the expectations we built from studying the singlet fractions of the atom-

pair states. Bound states, and by extension the L = 0 thresholds, that have the

highest singlet fractions exhibit a low variation of their energy with magnetic field.

In 2017, when the last attempt was made at fitting the interaction potential, Gröbner

et al. measured the position of the two resonances in the a+a, the resonances at 419.3

G and 513.12 G at the b+a threshold, and the resonances at 491.5 G and 559.32

G at the c+a threshold. These were all caused by states with n = −2 approaching

threshold. The singlet fraction of these states ranged from 0.360 to 0.482. The

measurements used in 2017 did not have the range of sensitivity needed to refine

both potentials. The bound states or Feshbach resonance positions that would be

useful in our attempts to refine the potential would be those that occur at lower

fields. These are caused by states with higher values of dE/dB and lower singlet

fractions.

The bound states with MF = 1 and MF = 0 display similarities to those with

MF = 2. There exist a number of states that run approximately parallel to the

lowest thresholds. From Figure 3.2.1 we expect these shallow states to have low
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singlet fractions similarly to the shallow states in Figures 3.5, 3.7, and 3.8. It is

evident from Figures 3.9 and 3.10 that a threshold with excited fK = 2 approaches

and crosses the lower thresholds over a range of magnetic field. These are the

respective d+a and d+b thresholds. These support a shallow bound state with

n = −1 that can be seen to ’enter’ the bound-state spectrum at just over 300 G.

Five deeper states exist with MF = 1 and MF = 0. Four of these approach threshold

as a function of magnetic field. The deepest of the five states in Figures 3.9 and

3.10 have negative gradients.

It is also evident from Figures 3.9 and 3.10 that the bound states with lower mF

values have smaller singlet fractions. This observation is confirmed by Figures 3.2

and 3.2.1 and can be explained by the higher gradients of the energies of the states

in Figures 3.9 and 3.10 with magnetic field. Bound states that do not vary much

with magnetic field, i.e. have small gradients, display the highest singlet fractions.

Gaining a deeper understanding of the bound states at lower energies is key. Figure

3.11 displays the bound states with different values of mF which we included in the

preceding figures. It is evident that, as B → 0 G, bound states with different values

of mF coalesce to discrete energies. These are the bound-state energies with different

values of the total angular momentum, F , which is the conserved quantity at B = 0

G. These zero-field states were studied and assigned by Gröbner et al [110]. The

three states at approximately −100 MHz are states with total angular momentum

F = 4, 3, 2 which arise as the resultant of fK = 1 and fCs = 3. The states at −700

MHz to −1100 MHz have F = 1, 2, 3, 4, 5 which arise as the resultants of fK = 2

and fCs = 3.
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Figure 3.5: Energies of bound states with mF = 4 (lower panel) and the scattering
length (upper panel) for the a+a threshold. Singlet fractions of deeply bound states
are printed in the lower panel.
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scattering length for the a+b and b+a thresholds (middle panel), and the imaginary
part of the scattering length with the loss coefficient at limitingly low energy (upper
panel). Singlet fractions of deeply bound states are printed in lower panel.
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Table 3.3: Bres (B), ∆ (G), and abg (a0) for the s-wave Feshbach resonances caused
by states with low singlet fractions. The thresholds these resonances occur at are
given.

Threshold Bres (G) ∆ (G) abg (a0) Fs

b+b 319.341 0.0466 73.39 0.190
b+c 304.623 0.0549 71.05 0.135
b+d 290.267 0.0484 67.24 0.088

Scattering Resonances

With the analysis detailed in the previous section we suggested a number of Feshbach

resonance positions for the Nägerl Group to measure. Here we characterize and

discuss the resonances suggested using a series of MOLSCAT calculations and the

G2017 potential.

In order to refine both the singlet and triplet scattering lengths the positions

of several Feshbach resonances are needed. These resonances need to be caused by

states with a range of singlet fractions that is wider than 0.360 to 0.482. In order

to obtain this range a number of additional resonances need to be measured. These

are tabulated in Table 3.3 and have been characterized with L = 0 calculations.

These resonances have moderate widths, are at relatively low fields, and should

be easy to measure. Characterizing these resonances as elastic resonances is valid

so far as they occur at the lowest threshold, for their respective values of MF , and

cannot be decayed via spin-exchange processes. We undertook a series of L = 2

calculations in order to confirm that spin-relaxation processes did not decay the

resonance substantially. These calculations confirmed that all three resonances were

inelastic resonances with weak background inelasticity. For example, the resonance

at the b+b threshold had low background inelasticity, as demonstrated by βbg =

7.45 × 10−4 a0 and a symmetric peak in β with its maximum at ares = 885.12 a0.

This resonance had Γinel
B = −7.73 × 10−3 G. The resonance width was not modified

by spin-relaxation processes. The resonance at the b+c threshold was very similar.

The resonance had βbg = 1.08 × 10−3 a0, ares = 935.86 a0, and Γinel
B = −8.35 × 10−3

G. The resonance width was not modified by spin-relaxation processes.
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Table 3.4: Bres (B), ∆ (G), and abg (a0) for s-wave Feshbach resonances caused by
states with n = −1. The thresholds at which these resonances occur are given.

Threshold Bres (G) ∆ (G) abg (a0)
b+a 563.74 0.0742 69.797
c+a 467.67 0.0061 82.560
d+a 478.85 0.0114 74.366
d+b 466.01 0.0266 73.000

In the preceding section a number of bound states with n = −1 that cause

Feshbach resonances were highlighted. These would be useful, in combination with

the positions of Feshbach resonances caused by states with n = −2, in refining the

C6 parameter. These resonances are characterized with L = 0 calculations in Table

3.4. These resonances are not decayed via spin-exchange processes.

3.3.2 Part II: Fitting the Interaction Potential

Experimental Data

When adjusting the interaction potential we had a number of experimental measure-

ments available to us; our collaborators in the Nägerl Group measured a number

of the resonances we suggested in the previous section. We collate them here and

discuss the various advantages they have in the context of our refitting.

We utilized the measurements, reproduced in Table 3.2, undertaken by Gröbner

et al in 2017. These measurements do not posses the variety of singlet fractions

needed to refine both the singlet and triplet potentials.

The Nägerl Group attempted to locate the positions of several other resonances

with Feshbach spectroscopy. We briefly summarize the procedure outlined by Gröbner

et al. [110]. In the vicinity of a Feshbach resonance between 39K and 133Cs the loss

of 39K from the trap increases due to three-body processes. The magnetic field is

ramped from 0 G to a value in the vicinity of a Feshbach resonance. The magnetic

field is held constant for a period of time. The magnetic field is then ramped back

to approximately 0 G. Absorption imaging is used to detect the remaining fraction

of 39K atoms. Repeating this process for a series of magnetic field values across
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the range of field a Feshbach resonance is expected to exist in, allows plots of the

remaining fraction of 39K atoms to be plotted as a function of field. It is typical

to fit the loss feature with a Lorentzian. The minimum of the Lorentzian, and the

fraction 39K atoms remaining, is taken to be the position of the resonance, Bexp
res .

The Nägerl group identified two loss features with Feshbach spectroscopy that

we believe to be caused by states with low singlet fractions. The first loss feature

was at 315.57 G at the b+b threshold and the second loss feature was at 299.58 G at

the b+c threshold. We believed these loss features were caused by resonances which

were caused by states with respective singlet fractions of 0.190 and 0.135. These two

measurements, in addition to those measured in 2017, provide a set of observables

that are sensitive to both the singlet and triplet potentials.

The uncertainties associated with the resonance positions obtained from Fesh-

bach spectroscopy are not obvious. The Lorentzian functions used to fit the peaks

obtained in 2024 had uncertainties of the order 10−3 G and 10−4 G. The same

method for determining resonance positions was used by Gröbner et al. in 2017,

though larger uncertainties of the order 10−3 G and 10−2 G were reported. In their

least squares fit Gröbner et al. used uncertainties of 0.3 G and 0.4 G. We used these

uncertainties in our least-squares analysis and potential refitting. For the recently

measured resonance positions we used uncertainties of 0.2 G.

Several other Feshbach resonance positions were obtained from Feshbach spec-

troscopy. Minima in the fraction of 39K atoms were caused by states with n = −1

crossing threshold, and were therefore useful in any attempts to refit the C6 coeffi-

cient. Loss minima were measured at 466.266 G, 478.051 G, and 464.595 G. These

resonances were measured at the c+a, d+a, and d+b thresholds, respectively. An

additional loss feature was found at 463.273 G at the c+a threshold. Our L = 0

calculations had not predicted another resonance here. We found that an L = 2

state crosses threshold 5 G beneath the additional loss feature. This resonance is

discussed in detail in the following section.

We had access to measurements of the binding energy of the state that causes
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a resonance at 361.1 G at the a+a threshold. These measurements range from

−1300 kHz to −10 kHz in depth. These measurements are more accurate than

resonance positions determined with Feshbach spectroscopy. Although we had a

series of measurements (shown in Figure 3.12 as blue crosses) of the bound-state

energy we used only two in our fit. The first of these measurements was Eb = 10.66

kHz, where Eb is the binding energy, at 361.4995 G and the second was Eb = 1.28

MHz at 359.566 G. We assigned these measurements uncertainties of 0.003 G and

0.002 G, respectively, in our fit. These two measurements were selected such that

we had one near-threshold and another far away from threshold. These two points

captured the energy of the unperturbed state, the deeper measurement, and the state

near-threshold where its gradient has altered. The change in the state’s gradient is

exceptionally sensitive to the difference between the singlet and triplet scattering

lengths. This was discussed in more detail in Section 3.2.4.

Fitting Potential Parameters

We refined the KCs interaction potential with a least-squares analysis and the I-

NoLLS program. We found that the difference between the singlet and triplet scat-

tering lengths was larger than previous models of the potential predicted. The

model of the potential we developed gives as = −29.2 ± 1.6 a0 and at = 77.70 ± 0.4

a0. The uncertainties reported here are the correlated uncertainties (2σ) calculated

within the I-NoLLS program. The G2017 potential predicted as = −18.37 a0 and

at = 74.88 ± 0.09 a0. We elected to use Equation 3.10 in our model of the short-

range regions of the singlet and triplet curves and varied αS=0 and αS=1 in order to

change as and at. We used Equation 3.10 for our model of the short-range potential

because it matches our physical intuition of the short-range repulsion that exists

between atoms and may be more accurate in studies of higher-energy collisions. In

Section 3.5 we stated that the accuracy of a model can be partly gauged from its

ability to return accurate predictions of measured quantities. It is also important,

however, that a model meets qualitative expectations built on elementary physical
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principles.

Our model of the potential used C6 = 5129 Eha
6
0. This value of C6 was calculated

by Derevianko et al. and was used in the F2013 and G2017 potentials. We obtained

estimates of αS=0 and αS=1 using the ionization energies of K and Cs [130, 131],

as detailed in Section 3.2.3. as and at are functions of αS=0, αS=1, R
0
SR, and R1

SR.

We selected values of R0
SR = 3.5 Å and R1

SR = 5.25 Å. These values of R0
SR and

R1
SR ensured that small changes in αS=0 and αS=1 could vary the singlet and triplet

scattering lengths across an appropriate range of values.

We scaled the parameters in our fit by their units and undertook two iterations of

the Gauss-Newton algorithm to identify αS=0 = 1.70342 ± 0.00235 Å−1 and αS=1 =

1.726 ± 0.015 Å−1.

The observable quantities we included in our fit were two measurements of the

bound-state energy beneath the 361.10 G resonance at the a+a threshold, the Fes-

hbach resonance positions measured in 2017, and the Feshbach resonance positions

measured in the last year. The Feshbach resonance positions measured with Fesh-

bach spectroscopy and used in our fit are given in Table 3.5. Before discussing the

Feshbach spectroscopy measurements we discuss the bound-state energy measure-

ments. In our fit we gave the measurements of the bound-state energies the smallest

uncertainty. This reflects the accuracy of the measurements, their experimental

uncertainty was orders of magnitude lower than the measurements obtained with

Feshbach spectroscopy, and the weight we wanted to give to these measurements in

our fit. We have discussed how the variation of a state’s gradient as it approaches

threshold is sensitive to the difference between the singlet and triplet scattering

lengths. At 361.500 ± 0.002 G the bound state had Eb = 10.66 kHz. Our potential

found the bound state to have this energy at 361.5 ± 0.1 G. At 359.566 ± 0.003 G

the bound state had Eb = 1.28 MHz. Our potential found the bound state to have

this energy at 359.57±0.09 G. Figure 3.12 shows our model of the potential (B2024)

is able to accurately calculate the energy of the bound state (red line) beneath the

361.65 G resonance at the a+a threshold across a large range of energy (not just for
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the two representative values included in our fit). We also included the calculation

of this bound state with the G2017 potential (black line). It is clear that the previ-

ous potential was unable to predict the bound-state energy or Feshbach resonance

position accurately. The F2013 and G2017 potentials had an inaccurate value of

as which gave an inaccurate difference between the singlet and triplet scattering

lengths. The B2024 potential has a larger singlet and triplet difference and is there-

fore able to predict the energy of the bound state and its curvature near-threshold

accurately.

The Feshbach spectroscopy undertaken by the Nägerl Group suggested that this

resonance occurred at 361.10 G. Our potential, which is clearly able to calculate the

energy of the underlying state, predicts the position of the resonance to be 361.7±0.1

G. This prediction lies outside the assigned uncertainty of 0.4 G and suggests that

the error associated with Feshbach resonance positions determined from atom loss

are greater than we believed.

Table 3.5 contains the measured Feshbach resonance positions used in our fit, the

uncertainties of these measurements, and the resonance positions calculated from the

B2024 potential. We report the correlated uncertainties calculated with I-NoLLS for

our predictions of the resonance positions. There is a range of agreement between

experiment and theory. This agreement is ultimately sufficient given the accuracy

of the bound-state energy calculations. The only resonance that is indicative of a

limitation of our model of the potential is the resonance at 599.32 G at the c+a

threshold. Our potential predicts this resonance to occur at 597.78 G. Predicting

the position of this resonance has the potential to be quite complex. There are two

L = 0 resonances in close proximity to one another at around 600 G. The first is

caused by a state with n = −2 and the second, which has since been measured

at 610.1 G, is caused by a state with n = −1. These states undergo an avoided

crossing before crossing threshold. The energies of the bare bound states, their

variation with magnetic field, and the strength of the avoided crossing will all play

a role in determining the position of the resonances.
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Figure 3.12: Bound-state energy measurements (blue crosses) in the vicinity of the
Feshbach resonance at the a+a threshold. The bound-state energies calculated with
the G2017 (black line) and B2024 (red line) potential are shown.
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Table 3.5: Agreement between measured Feshbach resonance positions and those
predicted with the B2024 potential. The thresholds these resonances occur at are
given. The uncertainty of the measurement included in our fit and the 2σ value
calculated from our fit are included.

Threshold Bexp
res (G) Uncertainty (G) Bcalc

res (G) 2σ (G)
b+c 299.57 0.2 299.87 0.74
c+a 466.24 0.2 465.61 0.35
b+b 315.57 0.2 315.77 0.59
d+a 478.05 0.2 478.07 0.19
d+b 464.60 0.2 464.62 0.26
c+a 599.32 0.3 597.78 0.29
c+a 491.50 0.4 492.24 0.13
b+a 513.12 0.3 513.77 0.15
b+a 419.30 0.3 420.24 0.09
a+a 442.59 0.4 443.45 0.11

We attempted a fit of the potential that included C6, in addition to αS=0 and

αS=1. The aim of this fit was to see if changing C6 could improve the discrepancy

between our prediction and the measurement of the resonance at 599.32 G at the

c+a threshold. The singular-value decomposition in this 3-parameter space yielded

two well-defined singular values and a single poorly defined singular value. We scaled

the parameters by their uncertainties and use the Levenberg-Marquardt algorithm

to damp the step along the third poorly defined singular value. Similar agreement

between the calculated values and the experimental measurements was obtained

from a fit that found αS=0 = 1.7531 ± 0.0311 Å−1, αS=1 = 2.19 ± 0.19 Å−1, and

C6 = 5189 ± 18 Eha
6
0 and the B2024 potential.

There were a number of limitations with the model of the potential we obtained

when varying C6 in our non-linear least-square fit. Firstly, changing C6 was unable

to correct for the error in the calculation of the resonance at the c+a threshold at

599.32 G. Secondly, the value of αS=1 was concerning; this value lay substantially

outside the 95% limits we predicted in the fit of the B2024 potential. In addition,

the difference between αS=0 and αS=1 did not meet our expectation that these values

would be similar. Finally, our value of C6 fell outside Derevianko et al.’s reported

uncertainty. Derevianko et al. reported that the uncertainty (1σ) for their value of
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Table 3.6: Broad resonances at lowest scattering thresholds characterized with L = 0
scattering calculations.

Threshold Bres (G) ∆ (G) abg (a0)
a+a 361.66 5.23 74.65
a+a 443.45 0.41 70.08
b+a 332.23 0.03 77.60
b+a 420.24 4.80 74.74
b+a 513.77 0.58 71.29
b+a 553.58 0.09 71.47
b+b 315.77 0.07 76.60
c+a 396.36 0.03 77.05
c+a 465.61 7×10−3 86.46
c+a 492.24 4.23 74.89
c+a 597.78 0.46 72.85
c+a 609.04 0.10 69.63
b+c 299.87 0.08 74.12
c+b 380.67 0.07 75.89
d+a 478.07 0.02 77.38
d+a 538.91 2 × 10−3 81.87
d+a 578.88 3.66 75.23
b+d 284.43 0.07 69.90
c+c 364.58 0.09 73.41
d+b 464.63 0.04 76.12
d+b 534.03 2 × 10−3 87.24
d+b 571.11 8.17 71.90

C6 was ±30 Eha
6
0. As such our value and the value of Derevianko et al. lay within

their mutual 95% confidence limits. The correlated uncertainty in our value of C6

was smaller than the value calculated by Derevianko et al. The values of as and at

we found when varying αS=0, αS=1, and C6 were, respectively, −31.72 ± 3.1 a0 and

77.60 ± 0.45 a0.

Predictions with the B2024 Potential

With our new potential we undertook a series of calculations in order to aid re-

searchers working on 39K + 133Cs collisions in the future.

We began by characterizing a number of Feshbach resonances at the lowest

39K+133Cs collision thresholds caused by bound states with L = 0. We charac-

terized these resonances with Bres (G), ∆ (G), and abg; our previous calculations

confirmed these resonances are only weakly decayed via spin-relaxation processes.
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We used L = 0 calculations. The thresholds and resonance parameters are given in

Table 3.6.

At present the Nägerl Group have formed loosely-bound molecules with magne-

toassociation and the Feshbach resonances at 361.65 G at the a+a threshold. They

have begun to explore the bound states with L = 0 and L = 2 in the vicinity of

this resonance. Their next aim is to identify a STIRAP scheme that will allow the

efficient conversion of a loosely-bound state to the rovibrational-ground state. The

most efficient scheme may not involve the state populated during magnetoassocia-

tion. As such we have calculated the L = 0 and L = 2 states in the vicinity of the

Feshbach resonance at 361.65 G. These states are shown in Figure 3.13. It is clear

that several L = 2 states avoided cross with the L = 0 bound state (labeled in red in

Figure 3.13) that causes the broad L = 0 Feshbach resonance at the a+a threshold.

It is possible to transfer the L = 0 state to one of these L = 2 states by approaching

the crossing and varying the magnetic field over the crossing sufficiently slowly such

that adiabatic passage occurs. In order to aid future experiments we have included

the positions of the crossings and the strengths of these crossings in Figure 3.13. The

strengths of the crossings, 2Ω, are obtained from a fit of the bound-state energies at

the crossing position to the eigenvalues of a 2× 2 matrix. Ω is the effective coupling

matrix element and 2Ω is the gap between the levels at the crossing position.

Recent Insights

The Nägerl group measured a loss feature in the fraction of 39K atoms at 463.27 G at

the c+a threshold. With the G2017 potential we predicted that a bound state with

L = 2 would cross the c+a threshold approximately 5 G to the left of the observed

loss feature. Neither of our fits improved this discrepancy. The B2024 potential

predicted this L = 2 resonance to occur at 459.13±0.29 G and our fit that included

C6 predicted the resonance to occur at 459.10 ± 0.18 G. One limitation of our fit of

the KCs interaction potential is that we have not included any observables which are

sensitive to the energies of L = 2 states and their interaction with the L = 0 states.
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Figure 3.13: L = 0 and L = 2 bound states calculated in the vicinity of the resonance
at the a+a threshold. The positions of avoided crossings between different states
are included on the figure as are the strengths of these avoided crossings.



Chapter 3 71

Recently we have had a series of new results from the Nägerl Group who have begun

to explore the bound-state spectrum beneath the 361.65 G resonance. These bound

states were discussed in the previous section and are shown in Figure 3.13. In Figure

3.13 it is clear that a L = 2 state crosses the L = 0 state at 329.04 G. The Nägerl

Group have measured this crossing at 329.22 G. This suggests the B2024 potential

will underestimate the positions of L = 2 resonances by approximately 0.2 G. This

deficiency may be corrected by reducing the energies of the L = 2 bound states

by approximately 0.3 MHz. We expect the B2024 potential to be consistent with

respect to the error in calculations of the energies of the L = 2 states. As such it is

unlikely that the observed loss feature at 463.27 G at the c+a threshold is caused

by the L = 2 bound state we expect to cause a resonance at 459.13 ± 0.29 G. It is

possible that this loss feature is caused by some element of the experiment and is not

due to a Feshbach resonance. Cho et al. found that heating of an ultracold mixture of

87Rb and 133Cs occured due to two-photon Raman transitions and depended on the

polarization of the lasers used to construct the dipole trap relative to the magnetic

field [132].

3.4 Conclusions

Ultracold 39K + 133Cs collisions have been studied for several years now with a

variety of techniques including Fourier-transform spectroscopy [108], Feshbach spec-

troscopy [133], and theoretical coupled-channel calculations [109, 133]. This work

has been motivated by the goal of producing ultracold 39K133Cs molecules in the

rovibrational-ground state, and the need to understand these collisions and the

underlying interatomic potential. Our work makes a large contribution to achiev-

ing these goals as we have been able to develop a more accurate model (B2024)

of the KCs potential. With an interactive non-linear least-squares fit to a se-

ries of experimental measurements we have determined as = −29.71 ± 1.6 a0 and

at = 77.70 ± 0.4 a0. Our results show that the difference between the singlet and

triplet scattering lengths is larger than previously believed. This will improve theo-
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retical predictions of resonance positions and widths and help calculate bound-state

energies accurately.

We used coupled-channel calculations and the G2017 potential to study the sin-

glet fractions of the near-threshold bound states that cause broad L = 0 Feshbach

resonances at the lowest collision thresholds. We found that the states with lower

singlet fractions caused resonances at lower values of magnetic field and that these

resonances had widths ranging from approximately 6 × 10−3 G to 7 × 10−2 G. The

Nägerl Group carried out a series of Feshbach spectroscopy experiments to deter-

mine the positions of these resonances. The Nägerl Group also performed a series

of measurements on the bound state beneath the resonance at the a+a threshold.

Measurements of bound-state energies are more accurate than measurements of Fes-

hbach resonance positions, and are sensitive to the difference between as and at.

The B2024 potential was developed by varying the short-range regions of the

singlet and triplet curves. We used an exponential model of the short-range repulsion

between the atoms that was previously investigated by the Hutson Group. We fit

αS=0 and αS=1 to the measurements recently obtained by the Nägerl Group and

the resonances measured in 2017 by Gröbner et al. We also attempted a fit of

αS=0, αS=1, and C6 although this potential was unable to resolve any of the issues

we identified in the B2024 potential and had several issues. These issues included a

value of αS=1 that was surprisingly different to αS=0, and a C6 value that lay outside

the uncertainty reported by Derevianko et al.

We used the B2024 potential in coupled-channel calculations of the L = 0 and

L = 2 bound states in the vicinity of the a+a threshold. This has enabled the

Nägerl Group to explore the bound states in the vicinity of the a+a threshold and

assess various STIRAP schemes to produce ultracold 39K133Cs molecules in the

rovibrational-ground state.



Chapter 4

Resonances in collisions of Rb and

CaF

73



Chapter 4 74

This chapter is a reproduction of the following publication: R. C. Bird, M. R.

Tarbutt and J. M. Hutson, Physical Review Research, 2023, 5, 023184. J. M. Hutson

supervised the theoretical work and M. R. Tarbutt contributed insights into potential

experiments.

4.1 Introduction

Ultracold molecules have many applications that are now emerging, ranging from

quantum simulation [134, 135], quantum computing [136–138] and the study of novel

quantum phases [139, 140] to tests of fundamental physics [141–143]. Key to most

of these applications are polar molecules, which can have long-range anisotropic

interactions resulting from their permanent dipoles. Many such molecules have

been produced at microkelvin temperatures by association of pairs of alkali-metal

atoms, followed by laser transfer to the vibrational ground state [30–32, 144–150].

Another class of molecules, exemplified by CaF and SrF, have been cooled directly

by magneto-optical trapping followed by sub-Doppler laser cooling [151–156].

Elastic and inelastic collisions are at the heart of ultracold physics. For ultracold

atoms, it is often possible to control ultracold collisions by adjusting an applied

magnetic field close to a zero-energy Feshbach resonance [21]. Such a resonance

occurs whenever a molecular bound state can be tuned across a scattering threshold

as a function of applied field. The s-wave scattering length then passes through a

pole as a function of field, allowing the effective interaction strength to be tuned to

any desired value. This control has been applied in many areas of ultracold physics,

including condensate collapse [157], soliton creation [158], Efimov physics [159] and

investigations of the BCS-BEC crossover in degenerate Fermi gases [8]. Feshbach

resonances are also used for magnetoassociation, in which pairs of ultracold atoms

are converted to weakly bound diatomic molecules by sweeping a magnetic field

across the resonance [160, 161].

Much new physics will become accessible when atom-molecule collisions can be

controlled with tunable Feshbach resonances. Control of the s-wave scattering length
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may allow sympathetic cooling of molecules to quantum degeneracy, and the forma-

tion of atom-molecule mixtures with novel properties. It may also be possible to form

polyatomic molecules by magnetoassociation. Feshbach resonances have now been

observed in collisions between ultracold 40K atoms and 23Na40K molecules in singlet

states [150, 162–165] and between 23Na atoms and 6Li23Na molecules in triplet states

[166]. These systems have also been investigated theoretically [162, 166–168]. Reso-

nances have not yet been observed in collisions of laser-cooled molecules such as CaF

and SrF, with 2Σ ground states, but we have recently succeeded in making ultracold

mixtures of CaF molecules and Rb atoms, and studied their inelastic collisions in

both magnetic traps [169] and magneto-optical traps [170]. Several laser-coolable

molecules have been cooled to 5 µK [154, 155] and confined in optical traps [153]

and optical tweezers [171], opening the way to experiments in controlled magnetic

fields.

The purpose of the present paper is to investigate the resonances that are ex-

pected in collisions between molecules in 2Σ states and alkali-metal atoms. These

systems have strong similarities to pairs of alkali-metal atoms, particularly for the

long-range states that are most likely to cause magnetically tunable Feshbach reso-

nances. We show that there is a high probability that tunable Feshbach resonances

will exist at magnetic fields below 1000 G, and that they will be broad enough to

control collisions and form triatomic molecules by magnetoassociation. There are

additional complications and additional resonances that arise from the rotational

structure of the molecule and the anisotropy of the interaction potential, but we

find that these are unlikely to affect the general features of the scattering. We focus

on 87Rb+40Ca19F as a prototype system, but many of the features are transferable

to other molecules such as SrF and other alkali-metal atoms. In the following we

mostly omit isotopic masses and write Rb+CaF for 87Rb+40Ca19F.

The structure of this chapter is as follows. Section 4.2 describes the underlying

theory, including monomer Hamiltonians, interaction potentials, and computational

methods. Section 4.3.1 describes the near-threshold levels that can exist for Rb+CaF
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and the Feshbach resonances they can cause, using a simple model that omits ro-

tational degrees of freedom. Section 4.4 considers the effects of CaF rotation and

potential anisotropy. Section 4.5 considers the possible effects of quantum chaos at

short range. Section 4.6 presents conclusions and offers perspectives for future work

to take advantage of the resonances.

4.2 Theory

4.2.1 Monomer Hamiltonians and Levels

The Hamiltonian of an alkali-metal atom A in its ground 2S state is

ĥA = ζAîA · ŝA +
(
gs,AŝA,z + giîA,z

)
µBB, (4.1)

where ŝA and îA are vector operators for the electron and nuclear spin, ŝA,z and

îA,z are their components along the z axis defined by the magnetic field B, ζA is

the hyperfine coupling constant, and gs,A and gi,A are the g-factors for the electron

and nuclear spins 1. The nuclear spins vary from 1 for 6Li to 9/2 for 40K, and the

hyperfine splittings Ahfs = ζA(iA + 1
2
)/h vary from 228 MHz for 6Li to 9.19 GHz for

133Cs. We focus here on 87Rb, i = 3/2 and Ahfs ≈ 6.83 GHz. At zero field the levels

are labeled by total angular momentum fRb = 1 and 2. When a field is applied,

each level splits into 2fRb + 1 sublevels, color-coded in Fig. 4.1 according to the

projection mf,Rb. At sufficiently high field, pairs of levels with fRb = 1 and 2 but

the same value of mf,Rb mix sufficiently that the levels are better described by ms,Rb

and mi,Rb than by fRb. For 87Rb this transition is still incomplete at 2000 G, but

it occurs at much lower fields for alkali-metal atoms with small hyperfine splittings,

such as Li and Na.

The CaF or SrF molecule may be treated at different levels of complexity. The

1In writing basis sets for pairs of atoms, it is necessary to distinguish between quantum numbers
for the individual atoms and those for the pair. We adopt the widely used convention of using
lower-case letters for the individual atoms and upper-case letters for the pair.
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Figure 4.1: Energies as a function of magnetic field for (a) 87Rb atom in ground 2S
state; (b) Lowest two rotational levels of CaF, with expanded views of n = 0 and 1
in (c) and (d), respectively; (e) Scattering thresholds of 87Rb+CaF, with expanded
views of (fRb, n) = (1, 0), (2,0), (1,1) and (2,1) in (f) and (g), (h) and (i), respectively.
All level energies are shown relative to the ground state at zero field and are color-
coded as shown in the legend according to mf,Rb, mf,CaF or MF = mf,Rb + mf,CaF,
as appropriate; negative values are indicated by dashed lines.
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stable isotopes 40Ca, 88Sr, 86Sr and 84Sr all have zero nuclear spin, while 87Sr has

i = 9/2; only the spin-zero isotopes will be considered here. The simplest useful

approximation is to neglect the molecular rotation, and in this case the molecular

Hamiltonian ĥn=0
CaF is the same as Eq. 4.1, with iF = 1/2 for 19F in CaF. How-

ever, when rotation is included, several extra rotation-fine-hyperfine (rfhf) terms

are needed. The ones important here are

ĥrfhfCaF = b0n̂
2 + γŝCaF · n̂+ t

√
6T 2(C) · T 2(îF, ŝCaF), (4.2)

where n̂ is the vector operator for the molecular rotation. The first term represents

the rotational energy of a molecule in its vibrational ground state, treated as a rigid

rotor. The second term represents the electron spin-rotation interaction, and the

third accounts for the anisotropic interaction between electron and nuclear spins:

T 2(î, ŝ) is the rank-2 spherical tensor formed from î and ŝ, and T 2(C) is a spherical

tensor whose components are the Racah-normalized spherical harmonics C2
q (θ, ϕ)

involving the orientation of the molecular axis. Values of b0/h ≈ 10.3 GHz, γ/h ≈

40 MHz, ζF/h ≈ 120 MHz and t/h ≈ 14 MHz are taken from ref. [172] 2. A more

complete version of Eq. 4.2, including additional contributions of the order of kHz

that are unimportant here, has been given in ref. [174].

The full Hamiltonian for CaF is ĥCaF = ĥn=0
CaF + ĥrfhfCaF. The resulting level diagram

is shown as a function of magnetic field in Fig. 4.1(b), with expanded views for

n = 0 and 1 in Figs. 4.1(c) and (d). There are only very small matrix elements

that are off-diagonal in n, so the levels for n = 0 are very similar to those of an

alkali-metal atom with iF = 1/2. The hyperfine splitting is small, so iF and sCaF are

mostly decoupled by 50 G. At higher field, the states are well described by ms,CaF

and mi,F.

In a rotating molecule at low field, iF and sCaF = 1/2 couple to give a resultant

g = 0 or 1, and g couples to the rotational angular momentum n to produce the

2Ref. [172] uses the notation of Frosch and Foley [173], where our b0, γ, ζF and t are B, γ,
b+ c/3 and c/3, respectively.
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total molecular angular momentum fCaF. For n = 1, there are zero-field levels

with fCaF = 0, 1, 1, 2, as labeled on Fig. 4.1(d). The lower level with f = 1

is predominantly g = 0 and the remaining three are predominantly g = 1. In a

magnetic field, however, iF, sCaF and n are again mostly decoupled by 50 G; at higher

fields, the states are better described by ms,CaF, mi,F and mn than by g and fCaF.

States of different ms,CaF are well separated; within the group for a particular value

of ms,CaF, there are 2 subgroups with mi,F = ±1
2
, with splitting about ζ/2 = 60 MHz,

and each subgroup is further divided into states with different mn, with adjacent

states separated by about γ/2 = 20 MHz. The projection quantum numbers are

not fully conserved, but these qualitative arguments help to understand the general

patterns at high field.

4.2.2 Calculations of Bound States and Scattering

The Hamiltonian for an alkali-metal atom interacting with a CaF molecule is

Ĥ =
ℏ2

2µ

(
−R−1 d

2

dR2
R +

L̂
2

R2

)
+ ĥA + ĥCaF + V̂int, (4.3)

where R is the intermolecular distance, µ is the reduced mass, L̂
2

is the operator for

relative rotation of the pair and V̂int is the interaction operator described below. We

carry out calculations of both bound states and scattering using coupled-channel

methods [19, 21, 175]. The total wavefunction is expanded as

Ψ(R, ξ) = R−1
∑

j

Φj(ξ)ψj(R). (4.4)

Here {Φj(ξ)} is a set of basis functions that span all coordinates except R, including

the relative rotation; these coordinates are collectively designated ξ. In the coupled-

channel calculations described in Sec. 4.3.1, ξ includes only electron and nuclear

spins. However, in more complete treatments, it may also include basis functions

for overall rotation of the collision complex and rotation and vibration of CaF.
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Substituting the expansion (4.4) into the total Schrödinger equation produces a

set of coupled differential equations that are solved by propagation with respect to

the internuclear distance R. The coupled equations are identical for bound states

and scattering, but the boundary conditions are different.

Scattering calculations are performed with the molscat package [85, 176]. Such

calculations produce the scattering matrix S, for a single value of the collision energy

and magnetic field each time. The complex s-wave scattering length a(k0) is obtained

from the diagonal element of S in the incoming channel, S00,

a(k0) =
1

ik0

(
1 − S00(k0)

1 + S00(k0)

)
, (4.5)

where k0 is the incoming wavenumber, related to the collision energy Ecoll by Ecoll =

ℏ2k20/(2µ). The scattering length a(k0) becomes constant at sufficiently low Ecoll,

with limiting value a. In the present work, s-wave scattering lengths are calculated

at Ecoll/kB = 10 nK, which is low enough to neglect the dependence on k0.

A zero-energy Feshbach resonance occurs where a bound state of the atom-

molecule pair (triatomic molecule) crosses a scattering threshold as a function of

applied field. At the lowest threshold, or in the absence of inelastic processes, the

scattering length is real. Near a resonance, a(B) passes through a pole, and is

approximately

a(B) = abg

(
1 − ∆

B −Bres

)
, (4.6)

where Bres is the position of the resonance, ∆ is its width, and abg is a slowly

varying background scattering length. In the presence of inelastic processes, a(B) is

complex and the pole is replaced by an oscillation [177]. molscat can converge on

Feshbach resonances automatically and characterize them to obtain Bres, ∆ and abg

(and the additional parameters needed in the presence of inelasticity) as described

in ref. [107].

Coupled-channel bound-state calculations are performed using the packages bound

and field [84, 178], which converge upon bound-state energies at fixed field, or
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bound-state fields at fixed energy, respectively. The methods used are described in

ref. [17].

In the present work, the coupled equations for both scattering and bound-state

calculations are solved using the fixed-step symplectic log-derivative propagator of

Manolopoulos and Gray [179] from Rmin = 3 a0 to Rmid = 15 a0, with an interval size

of 0.001 a0, and the variable-step Airy propagator of Alexander and Manolopoulos

[118] between Rmid and Rmax, where Rmax = 300 a0 for bound and field and

3, 000 a0 for molscat.

4.2.3 The Interaction Operator

Rb(2S) and CaF(2Σ) interact to give two electronic surfaces of 1A′ and 3A′ symmetry.

These are to some extent analogous to the singlet and triplet curves of alkali-metal

dimers: the singlet surface is expected to be deep, and the triplet surface much shal-

lower. The surfaces have not been characterized in any detail, either experimentally

or theoretically, but both of them are expected to be strongly anisotropic at short

range. We designate them V S(R, θ), with S = 0 for the singlet and S = 1 for the

triplet. Here θ is the angle between the CaF bond and the intermolecular axis in

Jacobi coordinates. The interaction operator is

V̂int = V 0(R, θ)P̂0 + V 1(R, θ)P̂1 + V̂ d, (4.7)

where P̂0 and P̂1 are projection operators onto the singlet and triplet spin spaces,

respectively, and V̂ d is a small electron spin-spin term described below.

The Feshbach resonances of interest here depend mostly on the properties of

near-threshold states. These are bound by amounts comparable to the hyperfine and

Zeeman splittings of Rb and CaF and (to a lesser extent) the low-lying rotational

states of CaF. The most important states are those with binding energies less than

about 30 GHz below their respective thresholds; this is considerably less than 0.1% of

the expected singlet well depth. The binding energies of these states are dependent
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mostly on long-range dispersion and induction forces, which are the same for the

singlet and triplet surfaces. The leading term is of the form

V S(R, θ) =
[
−C(0)

6 − C
(2)
6 P2(cos θ)

]
R−6, (4.8)

with C
(0)
6 ≈ 3084 Eha

6
0 [180]. For C

(2)
6 there is substantial cancelation between

the dispersion and induction contributions; we estimate C
(2)
6 ≈ 100(20) Eha

6
0. For

Rb+CaF, the outer turning point at a binding energy of 30 GHz is near 30 a0.

Potential terms that are the same for the singlet and triplet surfaces cannot

cause couplings between orthogonal spin states. They are therefore unlikely to

cause magnetically tunable Feshbach resonances. The most important interactions

that mix different spin states are spin-exchange interactions, due to the difference

between the singlet and triplet surfaces. Julienne et al. [20] have shown that, for a

pair of atoms, spin-exchange interactions can cause nonadiabatic transitions between

coupled channels at distances RX where the interaction approximately matches the

asymptotic energy difference between the channels concerned. For 87Rb this occurs

around 22 a0 [20]. The strength of the interaction is modulated by overall phases

due to the short-range parts of the potentials for the channels concerned, and (if the

long-range potentials are identical from RX to ∞) is smallest when the two channels

have the same scattering length.

There is also a spin-spin term V̂ d in the interaction operator that results from

magnetic dipole-dipole interactions between the electron spins on Rb and CaF, sup-

plemented at short range by second-order spin-orbit terms that have the same over-

all dependence on spin coordinates. This term is important for heavy alkali-metal

atoms such as Cs [181], and may cause additional weak resonances in Rb+CaF as

discussed below, but its effect is not considered in detail in the present work.
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4.2.4 Thresholds

Figure 4.1(e) shows the scattering thresholds for 87Rb+CaF, which are simply sums

of energies of Rb and CaF. Figures (f) to (i) show expanded views of each group.

The thresholds are color-coded according to MF = mf,Rb + mf,CaF, because this

quantity is conserved in collisions if anisotropic terms in Vint are neglected.

The importance of the thresholds lies in the fact that near-threshold levels lie

approximately parallel to them, within well-defined energy intervals known as bins.

These bins were introduced in Section 2. This concept will be used extensively in

discussing the patterns of near-threshold levels and the resulting resonances in the

following sections.

4.2.5 Near-threshold Levels

Each scattering threshold j supports a series of levels of the collision complex that

have binding energies Eb
jη(B) below the threshold concerned. Here η is a vibra-

tional quantum number, defined so that the least-bound rotationless state below

each threshold is labelled η = −1 and successively deeper levels are labeled −2, −3,

etc. To a first approximation, the near-threshold levels retain the character of the

threshold that supports them. Because of this, each level lies approximately parallel

to the threshold that supports it and may be described in a single-channel approx-

imation. There are nevertheless interactions between levels supported by different

channels j, which cause B-dependent shifts and avoided crossings between levels.

These interactions, and the strengths of the resulting avoided crossings, generally

become larger as |η| increases; these will be discussed below.

For a single-channel system with an asymptotic potential −C6R
−6, the least-

bound s-wave state (with L = 0 and η = −1) lies within ∼ 36Ē of threshold, where

Ē = ℏ2/(2µā2) and ā is the mean scattering length of Gribakin and Flambaum [102],

ā = (2µC6/ℏ2)1/4 × 0.4779888 . . . . We refer to this energy interval as the top bin.

The position of the bound state within this bin depends on the background scattering

length abg for the channel concerned, neglecting resonances (which themselves arise
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from couplings between channels). Each subsequent level (η = −2, −3, etc.) lies

within its own bin, with successive bins becoming wider and bin boundaries at

energies roughly proportional to (|η| + 1
8
)3 [103, 182]. For Rb+CaF, ā = 67.3 a0,

Ē/h = 11.4 MHz, and the first 5 bin boundaries are at about 410, 2900, 9100, 21000

and 40000 MHz. These values may be shifted by the influence of terms beyond

−C6R
−6. In general, the levels lie near the top of their bins when abg ≫ ā and

towards the bottom of the bins for abg ≪ ā.

4.3 Bound States and Resonances in the Absence

of Anisotropy

4.3.1 Bound States Below the Lowest Threshold

The coupling between CaF rotational levels is fairly small at long range. It is driven

mostly by the anisotropic part of the long-range interaction potential, characterized

by C
(2)
6 . The effects of the anisotropy will be considered in Section 4.4. In this section

we will consider a simpler model, with the anisotropy neglected. This is expected

to be a reasonably good approximation for collisions involving CaF (n = 0), though

it will neglect some additional resonances considered later.

If anisotropy is neglected, the scattering is largely controlled by the isotropic

dispersion coefficient C
(0)
6 and by scattering lengths as and at that characterize

overall phases due to the short-range parts of the singlet and triplet potentials.

These scattering lengths are completely unknown for Rb+CaF, so we explore the

pattern of near-threshold bound states, and the resulting Feshbach resonances, for

a representative sample of values of them.

Scattering lengths take values from −∞ to +∞, but some values are more likely

than others [102]. The most likely value is the mean scattering length ā defined

above, and for a randomly chosen potential curve that decays as −C6R
−6 at long

range there is a 50% probability of a scattering length between 0 and 2ā. To a
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Figure 4.2: Near-threshold levels of Rb+CaF with MF = 1, neglecting anisotropy,
shown relative to the energy of the lowest threshold, for four representative com-
binations of the singlet and triplet scattering lengths. Solid black lines show re-
sults from coupled-channel calculations. Dashed (dot-dashed) lines show uncoupled
states parallel to thresholds with fRb = 1 (2). Values of ms,CaF are encoded with
red (blue) for 1

2
(−1

2
), with darker (lighter) colors for mi,F = 1

2
(−1

2
). mf,Rb is given

by MF − ms,CaF − mi,F. Above each plot of energies is the corresponding plot of
scattering length, with Feshbach resonances where states cross threshold.
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good approximation, different interaction potentials that produce the same as and

at, and have the same value of C6, have the same low-energy scattering properties

and near-threshold bound states.

We use singlet and triplet potential curves based on those for Cs [181], but with

the value of C6 replaced with C
(0)
6 for Rb+CaF. These potentials are then adjusted

at short range to give the desired scattering length as described in ref. [181]. As

an initial sample, we pick 3 values as = −79, 71 and 242 a0 and at = −47, 86

and 297 a0. These are purposely not exact multiples of ā, because such values can

produce shape resonances at atypically low energy, and are slightly different for as

and at, because as = at is a special case that produces unusually weak interchannel

couplings [20]. We consider all 9 combinations of these values of as and at.

The solid lines in Figure 4.2 shows the near-threshold energy levels for 4 combi-

nations of as and at, obtained from coupled-channel calculations using the package

bound. In this case we use a basis set of fully uncoupled functions [98], includ-

ing only rotationless functions, n = 0 and L = 0. All energies are shown with re-

spect to the (field-dependent) energy of the lowest threshold, which has approximate

quantum numbers (fRb,mf,Rb,ms,CaF,mi,F) = (1, 1,−1
2
, 1
2
) at fields above 50 G. All

states shown have MF = 1, which is the same as the lowest threshold, because spin-

exchange interactions cannot change MF . Also shown are dashed and dot-dashed

lines, parallel to thresholds but offset from them: these represent hypothetical states

that would exist in the absence of interchannel couplings; the real states may be in-

terpreted in terms of these, but with shifts and avoided crossings of various strengths

due to the couplings.

The simplest case is that in Fig. 4.2 for which as = 71 a0 and at = 86 a0.

Here the real states lie close to the uncoupled ones, with only small shifts and weak

avoided crossings. as and at are close to one another, so the interchannel coupling

is weak, and they are comparable to ā, so each state lies fairly high in its bin.

The near-horizontal states are those supported by the lowest threshold in the first

and second bins. There is also a pair of states that originate near −1.0 GHz at
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zero field; the thresholds that support these have approximate quantum numbers

(1, 0, 1
2
, 1
2
) (upper) and (1, 1, 1

2
,−1

2
) (lower). In first order the spin-exchange coupling

can change fRb, mf,Rb and ms,CaF by ±1 while conserving mf,Rb + ms,CaF, but

cannot change mi,F. There is therefore a much wider avoided crossing between the

near-threshold horizontal state and the upper state of the sloping pair, which is

predominantly mi,F = 1
2
, than with the lower one, which is predominantly mi,F =

−1
2
.

A case with somewhat stronger coupling is shown in Fig. 4.2(b), for as = −79 a0

and at = −47 a0. Here as and at are negative, so the states lie much deeper in their

bins than in (a). The real states still lie close to the uncoupled ones, but there is a

strong avoided crossing between the states shown as red dashed and blue dot-dashed

lines. States approximately parallel to the thresholds with fRb = 1 can again be

identified, with the states in the second bin now originating from around −2.3 GHz

at zero field. These are echoed by similar states in the top bin. However, there are

two further pairs of states; these are supported by thresholds with fRb = 2, and lie

in the third bin beneath their thresholds. The pair originating near −1.6 GHz have

approximate quantum numbers (2, 1,−1
2
, 1
2
) (lower, involving ground-state CaF but

excited Rb) and (2, 2,−1
2
,−1

2
) (upper), while the pair originating near −1.2 GHz

have (2, 0, 1
2
, 1
2
) (lower) and (2, 1, 1

2
,−1

2
) (upper). Once again the strong avoided

crossings are those between states with the same values of mi,F.

Figs. 4.2(c) and (d) show further examples for cases with much stronger coupling,

with as and at substantially different. For these cases the identification of the dashed

and dotted lines is less certain, because real states are substantially shifted from the

uncoupled states by interchannel couplings. Plausible assignments are shown with

the same coding as in (a) and (b).

Additional bound states exist with MF ̸= 1. These are not connected to the

lowest incoming threshold by spin-exchange coupling. However, there are additional

small couplings due to the spin-spin interaction V̂ d. This has matrix elements off-

diagonal in fRb, mf,Rb and ms,CaF by ±1, but can change mf,Rb+ms,CaF by up to ±2,
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with ML changing by up to ∓2 to conserve Mtot = MF +ML. Rotationally excited

states with L = 2 and MF from −1 to 3 can therefore cause additional resonances

at the lowest threshold. These are expected to be narrow, and are not included in

the present calculations because there is no information available on the strength

of second-order spin-orbit coupling for Rb+CaF. States with other values of L and

MF might in principle cause resonances, but with higher-order coupling via V̂ d, so

the resonances will be even narrower.

4.3.2 Resonances

Each bound state with MF = 1 causes a magnetically tunable Feshbach resonance

where it crosses threshold as a function of B. For all the cases considered, several

such resonances exist at fields below 1000 G. However, their widths vary greatly.

Figure 4.2 includes a panel above each energy-level plot that shows the variation

of scattering length with magnetic field. In addition, we have characterized the

resonances to extract Bres, ∆ and abg for all resonances below 1000 G for all 9 of

our representative combinations of as and at, using the method of ref. [107], and the

results are given in Table 4.1.

The resonance widths may be rationalized using the same arguments about in-

terchannel couplings used to interpret the strength of avoided crossings in Section

4.3.1. First, the resonances are generally broadest in cases where as and at are

substantially different, providing strong spin-exchange coupling. Secondly, for any

given combination of as and at, the strongest resonances are those where the bound

state causing the resonance has a substantial component with the same value of mi,F

as the incoming channel, which for the lowest threshold is dominated by mi,F = 1
2

at fields above 50 G. The specific uncoupled states that cause the widest resonances

are (1, 0, 1
2
, 1
2
) (2, 1,−1

2
, 1
2
) and (2, 0, 1

2
, 1
2
), though in some cases their character is

spread across more than one real state.

It is noteworthy that, even when as ≈ at and spin-exchange coupling is weak,

there are resonances that are wide enough to use to control collisions or form tri-
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atomic molecules by magnetoassociation.

4.4 The Role of CaF Rotation

There can also be resonances due to states supported by rotationally excited thresh-

olds. This section will consider the structure of such states and the likelihood that

they produce resonances at experimentally accessible fields.

The thresholds for CaF (n = 1) are from 20 to 30 GHz above the lowest threshold,

so states that can cause Feshbach resonances must be bound by about this amount.

The outer turning point at this depth is at around R = 30 a0. The potential

anisotropy at this distance, due to dispersion and induction, is around 1 GHz. This

is substantially less than the CaF rotational spacing, so will cause only weak mixing

between different CaF rotational states at this distance. However, it is substantially

larger than the rotational constant of the triatomic complex, B = ℏ2/(2µR2), which

is about 60 MHz at this distance. It is also larger than the spin-rotation coupling

constant, γ ≈ 40 MHz. The long-range anisotropy is thus sufficient to quantize n

along the intermolecular axis, with projection K, instead of along the axis of the

field. This is exactly analogous to the situation for Van der Waals complexes in

coupling case 2 [183].

For each CaF rotational level (n,K) there will be a set of spin states, labeled

at fields above 50 G by (fRb,mf,Rb,ms,CaF,mi,F). Each such set (n,K) will sample

the short-range singlet and triplet potentials over a different range of Jacobi angles

θ, so each group will be characterized by different singlet and triplet scattering

lengths as(n,K) and at(n,K). These will probably be unrelated to the corresponding

quantities for the channels with n = 0, as(0, 0) and at(0, 0) (designated simply as

and at in Sec. 4.3.1). For a particular interaction potential, the sets of spin states

for n > 0 may therefore lie at quite different depths within their bins from those

for n = 0. The patterns of levels will nevertheless be characterized by as(n,K)

and at(n,K) and by quantum numbers (fRb,mf,Rb,ms,CaF,mi,F), in a similar way

to those for the states with n = 0 described above.
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Table 4.1: Feshbach resonance positions, widths and background scattering lengths
for different combinations of as and at. The approximate quantum numbers of the
uncoupled state that causes the resonance are given in each case. Asterisks indicate
cases where this uncoupled state is substantially mixed with the least-bound state
in the incoming channel where it crosses threshold.

as (a0) at (a0) Bres (G) ∆ (G) abg (a0) fRb mf,Rb ms,CaF mi,F η
−79 −47 50 −6.8 × 10−4 −47 1 0 1

2
1
2

−1
81 −2.3 × 10−4 −47 1 1 1

2
−1

2
−1

319 −8.2 × 10−3 −46 2 1 1
2

−1
2

−3
375 −4.8 × 10−1 −46 2 0 1

2
1
2

−3
658 −1.7 × 10−2 −46 1 0 1

2
1
2

−2
692 −1.0 × 10−2 −46 2 2 −1

2
−1

2
−3

843 −8.6 × 10−4 −45 1 1 1
2

−1
2

−2
914 −1.1 −46 2 1 −1

2
1
2

−3

−79 86 164 16 112 1 0 1
2

1
2

−2 *
188 3.3 27 1 1 1

2
−1

2
−2

688 49 87 1 0 1
2

1
2

−3 *
806 3.0 × 10−2 51 1 1 1

2
−1

2
−3

−79 297 124 1.8 273 1 1 1
2

−1
2

−1
599 88 383 1 0 1

2
1
2

−2 *
725 5.7 × 10−2 117 1 1 1

2
−1

2
−2

934 9.5 × 10−2 294 2 1 1
2

−1
2

−3
953 3.8 × 10−1 292 2 0 1

2
1
2

−3

71 −47 99 −32 −83 1 0 1
2

1
2

−1
134 −2.4 × 10−1 −144 1 1 1

2
−1

2
−1

343 −1.9 × 10−1 −49 2 1 1
2

−1
2

−2
455 −27 −51 2 0 1

2
1
2

−2
689 −3.2 −50 1 0 1

2
1
2

−2
776 −3.9 × 10−2 −49 1 1 1

2
−1

2
−2

71 86 312 1.1 × 10−1 85 1 0 1
2

1
2

−2
413 9.4 × 10−4 85 1 1 1

2
−1

2
−2

71 297 172 18 202 1 0 1
2

1
2

−2 *
285 9.5 × 10−2 185 1 1 1

2
−1

2
−2

860 2.9 × 10−2 279 2 1 1
2

−1
2

−3
952 3.2 × 10−1 294 2 0 1

2
1
2

−3

242 −47 61 −2.8 −65 1 0 1
2

1
2

−1
99 −1.8 × 10−1 −67 1 1 1

2
−1

2
−1

331 −9.6 × 10−2 −50 2 1 1
2

−1
2

−3
413 −10 −54 2 0 1

2
1
2

−3
678 −1.4 −50 1 0 1

2
1
2

−2
766 −4.4 × 10−2 −48 1 1 1

2
−1

2
−2

242 86 248 4.0 93 1 0 1
2

1
2

−2 *
302 1.4 × 10−1 86 1 1 1

2
−1

2
−2

242 297 134 3.3 × 10−3 300 1 0 1
2

1
2

−2
187 1.9 × 10−4 300 1 1 1

2
−1

2
−2

838 7.8 × 10−4 302 2 1 1
2

−1
2

−3
951 1.3 × 10−1 301 2 0 1

2
1
2

−3
990 1.8 × 10−4 300 1 0 1

2
1
2

−3
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For Rb+CaF, the spin-exchange interaction may be characterized in terms of

an anisotropic surface V −(R, θ) that is half the difference between the singlet and

triplet surfaces,

V −(R, θ) = 1
2

[V 0(R, θ) − V 1(R, θ)] . (4.9)

This may be expanded in Legendre polynomials,

V −(R, θ) =
∑

λ

V −
λ (R)Pλ(cos θ). (4.10)

Such a potential is diagonal in K, but each term in the expansion can couple

(n,K) = (0, 0) to (λ, 0). The term V −
1 (R) can thus couple an incoming state at

the lowest threshold to states with (n,K) = (1, 0). The spin selection rules are the

same as for n = 0, so the strongest resonances will be those due to states dominated

by mi,F = 1
2
. As for n = 0, there are 3 such uncoupled states, with quantum num-

bers (fRb,mf,Rb,ms,CaF,mi,F) = (1, 0, 1
2
, 1
2
) (2, 1,−1

2
, 1
2
) and (2, 0, 1

2
, 1
2
). V −(R, θ)

is strongly anisotropic at short range, so there will always be some intermolecu-

lar distance R where it matches the separation between the incoming and resonant

thresholds, where nonadiabatic couplings can occur by extension of the theory of

ref. [20].

For a potential with long-range form −C6R
−6, the binding energy of a state

that lies below the top bin is approximately proportional to (|η| + 1
8
)3 [102, 182].

Here η is a noninteger vibrational quantum number, with integer values at the bin

boundaries. For an unknown potential of sufficient depth, the fractional part of η

may be regarded as a uniform random variable. Since there is one state in each bin,

this allows calculation of the probability that there is a state within any particular

range of energies.

As seen in Sec. 4.3.1, the states that can cause strong resonances traverse about

3 GHz of binding energy between zero field and 1000 G. Since the thresholds with

(n, fRb) = (1, 1) lie about 20 GHz above (0, 1), the zero-field binding energy of a

state must be between 20 and 23 GHz if it is to cause a Feshbach resonance below
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1000 G. For an unknown potential, there is only about a 19% probability that there

is a state with a binding energy in this range. The corresponding probability for

n = 2 is about 9%, and the probabilities decrease for successively higher n, because

the bins are correspondingly wider at the required binding energy.

The overall conclusion of this section is that there may be resonances due to

states involving rotationally excited CaF, but that they will occur at fields below

1000 G for a fairly small subset of possible interaction potentials. In any case, the

mixing between rotational states of CaF due to long-range anisotropy is weak enough

that it will not affect the likelihood of resonances due to the ground rotational state.

4.5 Potential Effects of Chaos

The interaction potentials for Rb+CaF are very strongly anisotropic at short range,

and provide strong coupling between CaF rotational and vibrational states. It is

quite likely that Rb+CaF will possess short-range states that exhibit quantum chaos,

in the same way as alkali-metal 3-atom [167, 184] and 4-atom systems [185, 186].

The onset of chaos has also been studied in Li+CaH and Li+CaF [187].

For Rb+CaF, the density of short-range singlet vibrational states at the energy

of the lowest threshold has been estimated as 4 K−1 [169], corresponding to a mean

spacing of 5 GHz. If these states are fully chaotic, it is likely to produce structure in

the singlet scattering length on this energy scale. However, the hyperfine couplings

in singlet states will be small, probably dominated by nuclear electric quadrupole

couplings of no more that a few MHz, which is tiny compared to the state sepa-

rations. Furthermore, Zeeman shifts are very small for singlet states, though they

do differ from those for the incoming threshold. At most, the presence of chaos at

short range might make the singlet scattering length different for collisions involving

Rb(f = 1) and Rb(f = 2). This would affect the details of the level structure, but

not the probabilities of observing Feshbach resonances.

The density of short-range triplet states at threshold is likely to be much smaller,

perhaps by an order of magnitude. This corresponds to a mean spacing of order
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50 GHz. The difference arises because the density of states for an atom-diatom

system scales approximately with D3/2 [167], where D is the well depth, and the

triplet surface of Rb+CaF is expected to be substantially shallower than the singlet

surface, as for the alkali-metal dimers. The hyperfine couplings for triplet states

will be comparable to those for the separated atom and molecule (6.8 GHz for Rb,

120 MHz for CaF) but these are still substantially smaller than the likely spacings

between short-range triplet states. Zeeman effects are also much larger for triplet

states than for singlet states, but are still only a few GHz at fields below 1000 G, so

will not cause substantial mixings between short-range triplet states.

It thus appears that the qualitative arguments in this paper about the patterns

of energy levels and likelihood of Feshbach resonances will remain valid even if the

short-range levels of Rb+CaF exhibit quantum chaos.

4.6 Conclusions

We have investigated magnetically tunable Feshbach resonances that may be ex-

pected in collisions between molecules in 2Σ states and alkali-metal atoms, focussing

on the prototype system Rb+CaF. The details of the short-range interaction poten-

tial are unknown, but expected to have minor influence, except to determine singlet

and triplet scattering lengths as and at. We have carried out coupled-channel cal-

culations of the near-threshold bound states and scattering properties for a variety

of values of these scattering lengths. We find that the large majority of plausible

interaction potentials produce multiple resonances at magnetic field below 1000 G,

which are likely to be experimentally accessible. In each case, at least some of these

resonances are wide enough to be experimentally useful for tuning scattering lengths

or for forming triatomic molecules by magnetoassociation.

The patterns of bound states may be understood in terms of underlying uncou-

pled states that lie parallel to atom-molecule thresholds as a function of magnetic

field. There are varying degrees of coupling between these states, which depend on

the values of as and at. The coupling is weakest when as and at are similar. The
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widths of the resonances may be explained in terms of the nature of the states that

cross threshold, together with effects due to the scattering lengths.

We have considered the effect of potential anisotropy, which causes coupling

between CaF rotational states. This coupling is very strong at short range. Even

at long range, it is sufficient to quantize the CaF rotation along the intermolecular

axis instead of along the magnetic field. It is likely that each rotational state of CaF

will be characterized by different values of the singlet and triplet scattering lengths.

We have found that there is a small but significant probability of additional wide

resonances due to states supported by rotationally excited thresholds. We have

also considered the potential influence of chaotic behavior for short-range states of

Rb+CaF. We expect that, even if present, it will have limited effects on the long-

range states that are principally responsible for the resonances and will not change

the qualitative conclusions.

This work indicates that atom-molecule systems such as Rb+CaF will have a rich

spectrum of magnetically tunable Feshbach resonances at experimentally accessible

magnetic fields. The resonances can be used to form a more detailed understanding

of the atom-diatom potential energy surfaces. Much new physics will be accessible

when these resonances are located. For example, a resonance can be used to tune

the s-wave scattering length for interspecies collisions. In this way we can expect

to find favorable conditions for sympathetic cooling, which can greatly increase the

phase-space density of the molecular gas. The resonances may also be used to form

polyatomic molecules by magnetoassociation. Many applications have already been

identified for such molecules. They have unique advantages for probing interactions

beyond the Standard Model that violate time-reversal symmetry [188, 189] and

for testing theories of ultralight dark matter [190]. Their usefulness for quantum

information processing has been highlighted [191, 192], and the very large number

of stable, accessible internal states make them interesting as qudits [193]. They can

also be used to explore a rich diversity of many-body phenomena such as quantum

magnetism [194].
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4.7 Recent Perspectives

The results presented in this chapter were published in June 2023 and several rel-

evant studies have been reported since. Thus far this chapter has been a direct

reproduction of our paper. However, the opportunity is now taken to review these

recent advances and assess the extent to which they support our insights.

Park et al. and Karman et al., two papers comprising a joint experimental

and theoretical study, addressed the magnetically tunable Feshbach resonances in

23Na(2S) + 23Na6Li(3Σ) collisions, were published in August 2023 [195, 196]. This

work constituted an important step forward in studies of the collisions of alkali-

metal atoms with alkali-metal dimers. Previously, systems such as 40K + 23Na40K

had been studied, where it was possible to assign various Feshbach resonances to

long-range states whose nature was not complicated by the highly anisotropic na-

ture of the interaction potential at short range [162]. Park et al. and Karman et al.

addressed Feshbach resonances governed by the anisotropy of the interaction poten-

tial. The upper and lower spin stretched states of 23Na (2S) + 23Na6Li (3Σ) were

prepared by Park et al. in their experiment. Collisions at both thresholds occur pri-

marily on the quartet potential, which does not allow chemical reactions. There also

exists a reactive doublet potential. At the upper threshold 8 Feshbach resonances

were observed beneath 1400 G. At the lower threshold 17 Feshbach resonances were

observed beneath 1400 G. Theoretical analysis suggested that more Feshbach res-

onances exist at the upper threshold, but they are sufficiently decayed such that

they couldn’t be found in the experiment. These resonances decayed to either the

lower spin-stretched threshold or the doublet potential. It was found that the reso-

nance states, for both thresholds, were supported by the quartet potential and had

excited mechanical angular momentum. The anisotropic spin-spin interaction and,

to a notably lesser extent, the spin-rotation coupling in the 23Na6Li molecule were

responsible, in combination with the anisotropy of the potential, for coupling the

resonant states to the incoming channel. It was found that the theoretical predi-

cation of the resonance positions depended very strongly on the anisotropy of the
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interaction potential. It should be noted that the coupling mechanism observed and

studied by Park et al. and Karman et al. is specific to 3Σ molecules on account of

the intramolecular spin-spin interaction and the role it plays in the atom-molecule

collision dynamics.

Morita et al. studied Rb(2S) + SrF(2Σ) collisions using numerically exact cou-

pled channel calculations that accounted for the hyperfine structure of the colliding

species and the rotational structure of the molecule [197]. They employed anisotropic

potential energy surfaces for the singlet and triplet electronic states that were cal-

culated with ab initio electronic structure methods. Due to uncertainties in the

calculated potential energy surface Morita et al. did not expect to predict the posi-

tions of Feshbach resonances accurately, although they expected to be able to predict

the pattern and density of resonances. This work is a very useful lens in which to

consider our results for Rb + CaF as the underlying mechanisms that can couple

bound states to the continuum are the same. Morita et al. adopted a different phi-

losophy, compared to us, with which to approach the problem. Whereas we made

a series of judgments in order to boil down the problem to its most essential and

simple features Morita et al. included all possible detail. This difference arises due

to differing motivations. Our aim was to assess if there would be enough broad

Feshbach resonances at the lowest threshold, caused by a single coupling mecha-

nism (spin-exchange interactions between states with no excited rotational motion),

in order to motivate an experiment. Morita et al. worked to include all possible

complexity using various recently developed capabilities [198].

Morita et al. calculated elastic and inelastic cross sections at excited scattering

thresholds. An average of five Feshbach resonances per 1000 G were reported. A

number of these resonances were found to be caused by low-lying excited rotational

states. In Section 4.4 we argued that states bound by the long-range portion of

the interaction potential would cause such resonances. Morita et al. believed these

to be caused by short-range states. Several resonances appeared to be caused by

spin-exchange interactions between states with no excited rotational motion. These
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are the resonances we studied quantitatively with a variety of model potentials in

Section 4.3.2. By scaling the short-range interaction potential Morita et. al. demon-

strated that the density and positions of resonances caused by states with excited

molecular rotation were sensitive to the anisotropy of the potential, as expected. It

was apparent, however, that the positions of several resonances were insensitive to

the short-range region of the potential. The results published by Morita et al. were

mostly in line with our expectations. It should be reiterated that the singlet and

triplet scattering lengths are exceptionally important quantities that offer insight

into the collision physics of ultracold species. Morita et al. did not provide any

information regarding the scattering lengths returned by their potentials. As such,

it is unclear which of the nine potentials we explored is closest to their potential.

Furthermore, it should be noted that Morita et al. made no mention of how they

assessed the number of Feshbach resonances. Plotting cross sections to find Fesh-

bach resonances is likely to prove erroneous as narrow resonances could easily not be

identified depending on the selected grid size. Anisotropic dipole-dipole interactions

arising from the two electric spins on the different collision partners were found to

have little effect on the number of Feshbach resonances. These resonances, however,

are often exceptionally narrow and are likely not to be visible on large grids.

Since the publication of our paper, a number of important discoveries and obser-

vations have been made regarding the Feshbach resonances in atom+molecule colli-

sions that depend on the short-range anisotropic region of the interaction potential.

Morita et al. studied the collisions of a 2S atom and a 2Σ molecule, similarly to

us. They employed a radically different approach. The results published by Morita

et al. are unable to discredit our predictions of spin-exchange interactions between

rotationless states or our expectations regarding the role of CaF rotation. It is ex-

ceptionally hard to compare results as it is not clear what the properties, pertaining

to the near-threshold physics, of their interaction potential are.
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This chapter is a reproduction of the following publication: R. C. Bird, C. R. Le

Sueur and J. M. Hutson, Physical Review Research, 2023, 5, 043086. J. M. Hutson

supervised the project. C. R. Le Sueur performed the algebra needed to separate

the relative and center-of-mass motions, and derived the radial coefficients for the

expansion of the trap potential in spherical polar coordinates.

Bird et al., and the work presented in this chapter, followed our collaboration

and publication with the Cornish Group (Durham University): D. K. Ruttley, A.

Guttridge, S. Spence, R. C. Bird, C. R. Le Sueur, J. M. Hutson and S. L. Cornish,

Physical Review Letters, 2023, 130, 223401. Ruttley et al. observed and studied a

novel method for producing ultracold molecules, mergoassociation. C. R. Le Sueur,

J. M. Hutson, and I contributed to Ruttley et al. by developing a coupled-channel

method for calculating the energy levels of the relative motion for two atoms in

two separate spherical traps. We studied the effect of trap strength on the avoided

crossing responsible for mergoassociation. These results are briefly discussed in

this chapter. The coupled-channel method developed here extended the method

developed in Ruttley et al. by including trap anisotorpy.

5.1 Introduction

Ultracold molecules have recently been formed in optical tweezers by mergoassocia-

tion [199]. The process begins with two atoms in separate tweezer traps, which are

then merged. The atom pair is converted into a molecule by the merging process,

with no further action required.

The energy levels involved in mergoassociation are shown schematically in Figure

5.1. As a function of trap separation, there is an avoided crossing between the lowest

motional state of the atom pair and a weakly bound molecular state. If the merging

is carried out slowly enough to follow the crossing adiabatically, the atom pair is

converted into a weakly bound molecule. A major advantage of this approach is

that it can work even for unstructured atoms, and does not require a magnetically

tunable Feshbach resonance. It thus opens the way to creating ultracold molecules
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from atom pairs without Feshbach resonances at experimentally accessible magnetic

fields. It also offers possibilities for constructing two-qubit gates for quantum logic

operations [200].

Trap separation

E
n
er

gy

weakly bound molecule

atom pair

Figure 5.1: Schematic representation of the energy levels involved in mergoasso-

ciation, as a function of trap separation z0. The molecular level (approximately

quadratic as a function of z0) has avoided crossings with motional states of the

atom pair (approximately horizontal at large z0). Mergoassociation occurs when an

atom pair in the lowest motional state is transferred into the molecular state by

adiabatic passage over the lowest avoided crossing.
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Avoided crossings between atomic and molecular states as a function of trap

separation were first studied by Stock et al. [201, 202], who considered the case of two

atoms initially in identical spherical traps. Other authors have investigated similar

situations for ions and molecules in spherical or quasi-1d traps [203, 204]. However,

optical tweezers for ultracold atoms are usually formed in the high-intensity region

at the waist of a focused laser beam [205]. Such tweezers are strongly anisotropic,

usually with much weaker confinement along the laser beam than perpendicular

to it. In ref. [199], the ratio of the corresponding harmonic frequencies was about

1:6. The spherical model we developed to model the mergoassociation process in this

experiment, the results of which are presented in this chapter, performed suprisingly

well.

Following the development and utilization of the aforementioned spherical model

we developed the theory of merging nonidentical nonspherical traps. In Section

5.2 we derive the separation between the relative and center-of-mass motions for

separated traps, including the coupling term between them. In Section 5.3, we

develop a numerically exact coupled-channel approach to handle the relative motion

of two atoms in nonspherical traps, including the case of traps that are not coaligned.

In Section 5.4, we solve the coupled equations and present energy-level diagrams for

merging of two cylindrically symmetric tweezers as a function of their aspect ratios.

We focus on the strength of the lowest avoided crossing, which is the key quantity

for mergoassociation, and show that it depends strongly on aspect ratio. In this

section we also present the results of our spherical calculation which were used in

[199]. We are able to explain the success of the spherical approximation in ref. [199].

In Section 5.5 we develop an approximate method based on a basis-set approach,

which qualitatively reproduces the coupled-channel results and gives insight into the

dependence of avoided-crossing strength on aspect ratio. Finally, in Section 5.6 we

present conclusions and perspectives for future work.
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5.2 Separation of Relative and Center-of-Mass Mo-

tion

We consider two atoms independently confined in adjacent optical traps. Atom i

has mass mi and position Ri and is confined in a trap centered at R0
i . The motion

may be factorized approximately into terms involving the relative and center-of-mass

coordinates of the pair, R and R respectively. The 2-atom kinetic energy operator

is exactly separable,

− ℏ2

2m1

∇2
1 −

ℏ2

2m2

∇2
2 = − ℏ2

2M∇2
R − ℏ2

2µ
∇2

R

= T̂com + T̂rel, (5.1)

where

R = (m1R1 +m2R2) /M; (5.2)

R = R2 −R1; (5.3)

M = m1 +m2; (5.4)

µ = m1m2/M. (5.5)

5.2.1 Spherical Traps

If each trap is harmonic and spherical, the total potential energy due to the traps is

V trap = 1
2
m1ω

2
1|R1 −R0

1|2 + 1
2
m2ω

2
2|R2 −R0

2|2, (5.6)

where ωi is the harmonic frequency for atom i. This may be written

1
2
µω2

rel|R−R0|2+1
2
Mω2

com|R−R0|2

+µ∆ω2(R−R0) · (R−R0), (5.7)
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where

R0 = R0
2 −R0

1; (5.8)

ω2
rel =

(
m2ω

2
1 +m1ω

2
2

) /
M; (5.9)

R0 =
(
m1R

0
1 +m2R

0
2

)
/M; (5.10)

ω2
com =

(
m1ω

2
1 +m2ω

2
2

)
/M; (5.11)

∆ω2 = ω2
2 − ω2

1. (5.12)

This is a generalization of the result of Stock et al. [201], who dealt with the case

m1 = m2 and ω1 = ω2, so that the coupling term vanished. The separation is similar

to that for two nonidentical atoms in a single trap [206], except that the coupling

term here involves (R−R0) · (R−R0) instead of R ·R. The relative and center-of-

mass motions are uncoupled if the trap frequencies for the two atoms are the same.

The coupling is generally not important if both atoms are in the motional ground

state, but can be significant when trap states that are excited in the relative and

center-of-mass motions are nearly degenerate.

5.2.2 Nonspherical Traps

If the individual traps are harmonic but non-spherical, each trap has three principal

axes perpendicular to one another. Eq. 5.7 generalizes to

V trap = 1
2
µ[R−R0]

Tω2
rel[R−R0]

+ 1
2
M[R−R0]

Tω2
com[R−R0]

+ µ[R−R0]
T∆ω2[R−R0], (5.13)
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where ω2
rel, ω

2
com and ∆ω2 are second-rank tensors. We choose Cartesian axes along

the principal axes of ω2
rel, so that it may be represented as a diagonal matrix,

ω2
rel =




ω2
rel,x 0 0

0 ω2
rel,y 0

0 0 ω2
rel,z



. (5.14)

If the two traps are coaligned, meaning that they share the same set of principal

axes, ω2
com and ∆ω2 are also diagonal matrices, defined similarly; if not, they are

nondiagonal symmetric matrices. R, R0, R and R0 are column vectors,

R =




x

y

z




= R




sin θ cosϕ

sin θ sinϕ

cos θ




(5.15)

and similarly for R0, R and R0. The components of R and R are denoted x, y, z

and X, Y , Z, respectively, and similarly forR0 and R0. If the traps are anharmonic,

the potentials for motion inR and R are also anharmonic. The coupling term is then

more complicated, but is still zero if either R = R0 or R = R0. In the remainder

of this chapter, we neglect the coupling term and focus on the relative motion. In

Chapter 6 we include the coupling term. We restrict the discussion in Chapters 5

and 6 to the case where the two traps are coaligned, so that the tensors ω2
1, ω

2
2, ω

2
rel,

ω2
com and ∆ω2 all have the same principal axes and ∆ω2 = (ω1 + ω2)(ω2 − ω1).

5.3 Coupled-Channel Formulation for Relative Mo-

tion

5.3.1 The Trap Potential

Even if the two traps are not coaligned, the potential for relative motion is harmonic.

It has three principal axes perpendicular to one another, which are used to define
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Figure 5.2: (a) Coordinate system for relative motion. The ellipsoid is a schematic
representation of the shape of the trap potential for relative motion, and the Carte-
sian axes are aligned along its principal axes. (b) A cut through the potential for
relative motion for y = 0, showing the contours of the harmonic trap centered at
R0 (green) and a shorter-range atom-atom potential centered at the origin (blue).
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Cartesian axes as above. The resulting coordinate system is shown in Fig. 5.2(a).

The potential for relative motion may be written

V trap
rel (R) = 1

2
µ[R−R0]

Tω2
rel[R−R0], (5.16)

with a minimum at the trap separation R = R0. A cut through this is shown in

green in Fig. 5.2(b).

For calculations in spherical polar coordinates, it is convenient to expand the

potential for relative motion as

V trap
rel (R) =

∑

λκ

Vλκ(R)Cλκ(θ, ϕ), (5.17)

where Cλκ(θ, ϕ) = [4π/(2λ+1)]1/2Yλκ(θ, ϕ) are Racah-normalized spherical harmon-

ics. For the potential (5.16), the only non-zero terms in the expansion are

V00(R) = 1
2
µω̄2

relR
2 + 1

2
µRT

0ω
2
relR0; (5.18)

V10(R) = −µω2
rel,zz0R; (5.19)

V1±1 = ∓ 1√
2
µ(ω2

rel,xx0 − iω2
rel,yy0)R; (5.20)

V20(R) = 1
6
µ(2ω2

rel,z − ω2
rel,x − ω2

rel,y)R
2; (5.21)

V2±2(R) = 1
2
√
6
µ(ω2

rel,x − ω2
rel,y)R

2, (5.22)

where

ω̄2
rel = 1

3

(
ω2
rel,x + ω2

rel,y + ω2
rel,z

)
. (5.23)

The constant term in V00(R) involving RT
0ω

2
relR0 is chosen to place the minimum of

the combined trap at zero energy. It is often convenient to express the trap potential

in terms of harmonic lengths for relative motion. βrel,α = [ℏ/(µωrel,α)]1/2.

There are two special cases of the expansion that are of particular interest. If

the traps are cylindrically symmetrical around the intertrap vector R0, z may be

chosen to lie along R0. Terms with κ ̸= 0 are then zero and the expansion may be
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replaced by a simpler one in terms of Legendre polynomials Pλ(cos θ),

V trap
rel (R) =

∑

λ

Vλ0(R)Pλ(cos θ). (5.24)

If the individual traps are spherical, the term V20(R) is also zero. This is the case

handled by Stock et al. [201] and Ruttley et al. [199].

The expansion (5.17) remains valid for anharmonic potentials, but in this case the

expansion does not terminate and the coefficients Vλκ(R) must usually be evaluated

by numerical quadrature.

5.3.2 The Interaction Potential

The interaction potential Vint(R) between the two atoms may be represented at

various levels of complexity. For unstructured atoms, it is isotropic, Vint(R). When

all the harmonic lengths βrel,α are large compared to the range of the potential, it

may be sufficient to represent Vint(R) as a point contact potential [207],

Vint(R) =
2πℏ2a(E)

µ
δ(R)

∂

∂R
R, (5.25)

where the scattering length a(E) may depend on energy if required. Such a con-

tact potential may be implemented in coupled-channel calculations as a boundary

condition on the log-derivative of the s-wave component of the wavefunction,

dψ00

dR
[ψ00(R)]−1 = −1/a(E) (5.26)

at R = 0. A contact potential affects only states with non-zero density at R = 0,

which here occurs only for states with a component in M = 0.

More complicated treatments might include atoms or molecules with additional

coordinates ξ for internal structure, such as alkali-metal atoms including electron

and nuclear spin and Zeeman effects. The interaction potential then depends on ξ

as well as R and Vint(R, ξ) may itself be anisotropic. The total wavefunction would
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then be expanded in a basis set that includes functions for ξ, as for calculations on

untrapped atom pairs [98].

5.3.3 Coupled-channel Equations

The Schrödinger equation for relative motion is

[
ℏ2

2µ

(
−R−1 d

2

dR2
R +

L̂2

R2

)
+ V (R) − E

]
Ψ(R, θ, ϕ) = 0, (5.27)

where L̂2 is the angular momentum operator for relative motion of the atoms and

E is the total energy. The total potential energy is V (R) = V trap
rel (R) + Vint(R). To

solve Eq. 5.27, we expand the wavefunction as

Ψ(R, θ, ϕ) = R−1
∑

LM

ψLM(R)YLM(θ, ϕ), (5.28)

where YLM(θ, ϕ) are spherical harmonics normalized to unity. Substituting the ex-

pansion (5.28) into Eq. 5.27 gives a set of coupled equations for the channel functions

ψLM(R),

d2ψLM

dR2
=
∑

L′M ′

[WLM,L′M ′(R) − EδLL′δMM ′ ]ψL′M ′(R), (5.29)

where δij is the Kronecker delta, E = 2µE/ℏ2 and

WLM,L′M ′(R) =
L(L+ 1)

R2
δLL′δMM ′

+
2µ

ℏ2

∫ 2π

0

∫ π

0

Y ∗
LM(θ, ϕ)V (R, θ, ϕ)YL′M ′(θ, ϕ) sin θ dθ dϕ. (5.30)

The contribution of V trap
rel (R) to WLM,L′M ′(R) is

2µ

ℏ2
∑

λκ

Vλκ(R)(−1)M [(2L+ 1)(2L′ + 1)]1/2

×




L λ L′

−M κ M ′






L λ L′

0 0 0


 . (5.31)
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If R0 lies along one of the principal axes of the traps, chosen as Z, the potential

(5.17) is symmetric with respect to a proper rotation C2(Z), so the quantity (−1)M

is conserved and separate calculations may be performed for even and odd M . In

addition, basis functions for M ̸= 0 are symmetrized,

ΦLM(θ, ϕ) = 1√
2

[
YLM(θ, ϕ) ± (−1)MYL−M(θ, ϕ)

]
(5.32)

and separate calculations are carried out for + and − symmetry. Only the functions

of + symmetry for M ̸= 0 are coupled to those for M = 0. Parity is not conserved,

so functions for both even and odd L must be included. If in addition V trap
rel (R) is

cylindrically symmetric about the z axis, the sum over κ is limited to κ = 0. The

coupled equations are then diagonal in M .

5.3.4 Solution of Coupled Equations

We solve the coupled equations to find bound states using the package bound

[84, 178]. This propagates solutions of the coupled-channel equations for a trial

energy from short range and from long range to a matching point Rmatch in the

classically allowed intermediate region. It then converges upon energies at which

the wavefunction and its derivative are continuous at Rmatch, using the methods

described in ref. [17] and Chapter 2. The coupled equations are propagated from

R = 0 to Rmatch ≈ R0 using the fixed-step symplectic log-derivative propagator of

Manolopoulos and Gray [179] with a step size of 25 Å and from Rmax to Rmatch using

the variable-step Airy propagator of Alexander and Manolopoulos [118]. The outer

limit of integration is chosen as

Rmax =

[ ∑

α=x,y,z

(α0 + ρβrel,α)2

]1/2
, (5.33)

where ρ is typically 4.

The present coupled-channel approach differs from the treatment of Stock et

al. [201] in that it does not need basis sets for the interatomic distance R, which
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is handled efficiently by the propagation. The R-dependent coupling matrices in

our formulation are much smaller than the Hamiltonian matrix in a basis set that

includes functions for R.

The size of the spherical-harmonic basis set required depends on R0 and the trap

geometry, and is discussed below.

It would be straightforward to apply the coupled-channel method with a realistic

atom-atom potential Vint(R) in place of the contact potential. This would require a

much smaller step size for the short-range part of the propagation, but the method

would be otherwise unchanged.
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5.4 Coupled-Channel Results

In this section we present coupled-channel results for a pair of cylindrically symmet-

ric traps that approach one another along an axis perpendicular to their symmetry

axis. This is close to the configuration that has been used experimentally to achieve

mergoassociation of Rb and Cs atoms to form a weakly bound RbCs molecule [199].

It differs from the case considered in ref. [208], where the traps approach along their

symmetry axis. We choose the axis Z along the direction of approach and X as the

symmetry axis of the traps, with ωrel,y = ωrel,z. The separation of the traps is thus z0,

with x0 = y0 = 0. We represent the atom-atom interaction with a contact potential

of the form (5.25), with a scattering length a = 645 a0 [128] appropriate for RbCs.

This contact potential gives a binding energy Eb = 83 kHz for the least-bound state

of RbCs; this somewhat underestimates the true value Eb = 100 ± 20 kHz [128],

because the universal binding-energy formula Eb = ℏ2/(2µa2) starts to break down

at this depth [209]. Since a contact potential affects only states with a component

of M = 0, we carry out calculations only for even M and + symmetry.

We define aspect ratios Ax = βrel,x/βrel,z = (ωrel,z/ωrel,x)1/2 and

Ay = βrel,y/βrel,z = (ωrel,z/ωrel,y)
1/2. For the coupled-channel calculations in this

section, with cylindrically symmetric traps, Ay = 1.

The size of the basis set required depends on the trap geometry and also increases

with R0. For the majority of the calculations described here, including functions up

to Lmax = 24 gives convergence of the energies to 6 significant figures for the largest

R0 considered here. Calculations for Ax ≪ 1 required Lmax = 40.

Figure 5.3 shows the energy levels for relative motion of two atoms in adjacent

traps, as a function of trap separation, for various values of the aspect ratio Ax. In

all cases, ωrel,z = 150 kHz. The dotted lines show the corresponding levels for a pair

of spherical traps. At large separation, the energy levels of the trap states are those
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of a 3-dimensional harmonic oscillator in the relative motion. These are

Enxnynz =

ℏ[(nx + 1
2
)ωrel,x + (ny + 1

2
)ωrel,y + (nz + 1

2
)ωrel,z]. (5.34)

The energies shown are those for states that feel the influence of the contact po-

tential, which are those with non-zero density at R = 0; for the trap states, this

corresponds to limiting nx and ny to even values. The quantum numbers are shown

for Ax = 2.6 in Fig. 5.3; this corresponds to ωrel,z = 6.76ωrel,x, so trap levels with

(nx, ny, nz) = (2, 0, 0), (4,0,0) and (6,0,0) all lie below (0,0,1) at large z0. For small

separation (z0 ≲ βrel,z), the trap states have substantial amplitude at R = 0, so

they are significantly shifted by Vint(R). In the limit z0 = 0, they correspond to the

levels for two atoms in a cylindrically symmetric trap [210, 211].

Cutting through the trap states is a molecular level that is shifted quadratically

by the trap potential at R = 0, which here is 1
2
µω2

rel,zz
2
0 . There is an additional

shift due to the curvature of the trap potential, as described in Sec. 5.5 below; this

exists even at z0 = 0. There are avoided crossings wherever the shifted molecular

level would cross one of the trap levels. It is the lowest of these avoided crossings

that allows mergoassociation to form a weakly bound molecule from a pair of atoms;

this occurs when traps containing atoms in their relative motional ground state are

merged slowly enough to traverse the avoided crossing adiabatically.

The lowest crossing occurs at z0 = zX0 , where the shifted molecular level has the

same energy as the lowest level of the trap. When the atom-atom interaction is

represented as a contact potential, this is approximately

zX0 ≈ βrel,z
(
1 + A−2

x + A−2
y + A−2

a

)1/2
, (5.35)

where Aa = a/βrel,z. We locate this crossing numerically using the state energies

from coupled-channel calculations and then determine its precise position and effec-

tive coupling matrix element Ωeff by a local fit of the energies near z0 = zX0 to the
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eigenvalues of a 2 × 2 matrix



EX + dmol(z0 − zX0 ) Ωeff

Ωeff EX + dat(z0 − zX0 )


 , (5.36)

where EX is the central energy of the avoided crossing and dat and dmol are the

gradients of the atom-pair and molecular states near zX0 . To a first approximation,

dat = 0 and

dmol = µω2
rel,zz

X
0 =

ℏ2zX0
µβ4

rel,z

. (5.37)

This procedure accurately determines the point of closest approach between the two

states, and interprets their separation at that point as 2Ωeff; however, it neglects

effects due to other nearby states, so the resulting value of Ωeff can be an underesti-

mate of the true matrix element between the two states when other avoided crossings

overlap the lowest one, as seen for Ax = 2.6 in Fig. 5.3.

Figure 5.4 shows the resulting values of Ωeff as a function of aspect ratio Ax for

various values βrel,z. The general form of Ωeff for any value of βrel,z is that it reaches

a maximum at a value of Ax near 1.3, corresponding to ωrel,z/ωrel,x ≈ 2. There is

a sharp dropoff in Ωeff at smaller values of Ax, and Ωeff → 0 as Ax → 0. There is

a much gentler dropoff at larger values of Ax. The origins of this behavior will be

discussed in Section 5.5.

The semiclassical probability of traversing the avoided crossing adiabatically

and thus forming a molecule may be calculated by numerical solution of the time-

dependent Schrödinger equation. In a full treatment, this requires a derivative cou-

pling matrix that may be obtained from the eigenstates as a function of z0, which are

available from the present calculation. A simple approximation to this is provided

in the 2-state case by the Landau-Zener formula,

PLZ = exp

( −2πΩ2
eff

ℏ |(dmol − dat) dz0/dt|

)
, (5.38)

where dz0/dt is the speed of relative motion of the traps at zX0 . In initial experimental
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Figure 5.4: Effective matrix element Ωeff for the lowest avoided crossing, from
coupled-channel calculations, as a function of aspect ratio Ax for Ay = 1 and various
values of βrel,z.
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work, Ruttley et al. [199] measured the probability of mergoassociation over the

range 600 a0 ≲ βrel,z ≲ 1500 a0. They used tweezers with Ax ≈ 2.6, but nevertheless

found that the probabilities were well reproduced using theoretical crossing strengths

calculated for spherical traps (Ax = 1). Figure 5.4 explains this result: the strength

of the avoided crossing dies off only slowly for Ax > 1.3, and aspect ratios 1.5 <

Ax < 2.6 give crossing strengths qualitatively similar to those for Ax = 1.

5.5 Approximate Model

In this section we develop an approximate model that reproduces the main features

of the coupled-channel results. This method can include both the relative and center-

of-mass motions. Details of the entire method can be found in the Appendix. Our

discussion of the center-of-mass levels is given in Chapter 6.

The Hamiltonian for relative motion may be written

Ĥrel = T̂rel + V trap
rel (R) + Vint(R)

= Ĥtrap
rel + Vint(R) = Ĥint + V trap

rel (R), (5.39)

where T̂rel is the kinetic energy operator, Ĥtrap
rel is the Hamiltonian for the nonspher-

ical harmonic trap and Ĥint is the Hamiltonian for the untrapped atom pair. If

Vint(R) is represented as a contact potential as in Eq. 5.25, and a > 0, Ĥint has a

single molecular bound state, with eigenfunction

ψa = (2πa)−1/2R−1 exp(−R/a), (5.40)

and eigenvalue

Ea = −ℏ2/(2µa2). (5.41)

The eigenfunctions of Ĥtrap
rel are products of harmonic-oscillator functions in x, y and

z,

ψnxnynz(x, y, z) = ψnx(x− x0)ψny(y − y0)ψnz(z − z0), (5.42)
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where

ψn(α) = (2nn!βrel,α)−1/2π−1/4Hn(α/βrel,α)

× exp(−1
2
(α/βrel,α)2) (5.43)

and Hn(q) is a Hermite polynomial. The corresponding eigenvalues are given by Eq.

5.34.

We consider a nonorthogonal basis set formed by the functions (5.40) and (5.42)

and construct Hamiltonian and overlap matrices. The functions are normalized,

so the diagonal elements of the overlap matrix S are all 1. The only non-zero

off-diagonal elements are those between the bound-state function (5.40) and the

harmonic-oscillator functions (5.42),

Sa,nxnynz = ⟨a|nxnynz⟩

=

∫ 2π

0

∫ π

0

∫ ∞

0

ψaψnxnynzr
2dr sin θdθ dϕ. (5.44)

These are evaluated by 3-dimensional numerical quadrature, using Gauss-Laguerre

quadrature for r, Gauss-Legendre quadrature for θ and equally spaced and weighted

points for ϕ.

The diagonal elements of the Hamiltonian matrix for the harmonic-oscillator

functions are

Hnxnynz ,nxnynz = Enxnynz + ⟨nxnynz|Vint(R)|nxnynz⟩, (5.45)

where for a contact potential

⟨nxnynz|Vint(R)|nxnynz⟩ =

(2πℏ2a/µ)|ψnx(x0)ψny(y0)ψnz(z0)|2. (5.46)
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For the molecular function,

Haa = Ea + ⟨a|V trap
rel (R)|a⟩, (5.47)

where

⟨a|V trap
rel (R)|a⟩ = V trap

rel (R0) +
A2

a

12
ℏωrel,z(1 + A−4

x + A−4
y ). (5.48)

The second term accounts for the curvature of the trap potential. It is usually

relatively small for Aa ≲ 1, but is independent of R0, and is responsible for the shift

of the molecular state at z0 = 0 seen in Fig. 5.3, particularly at Ax = 0.6.

The off-diagonal elements of the Hamiltonian between harmonic-oscillator func-

tions are

Hn′
xn

′
yn

′
z ,nxnynz = (2πℏ2a/µ)ψnx(x0)ψny(y0)ψnz(z0)

×ψn′
x
(x0)ψn′

y
(y0)ψn′

z
(z0), (5.49)

while those between the harmonic-oscillator functions and the molecular function

are

Ha,nxnynz = EnxnynzSa,nxnynz

− (ℏ2/µ)(2π/a)1/2ψnx(x0)ψny(y0)ψnz(z0). (5.50)

The equations above may be used in two ways. First, they may be used to

produce complete energy-level diagrams as a function of R0 or other parameters.

For this, matrices H and S are evaluated using a substantial number of harmonic-

oscillator basis functions, and then used to solve a generalized matrix eigenvalue

problem HC = SCE to produce eigenvectors C and a diagonal matrix of eigenvalues

E. We illustrate this with the case investigated in Section 5.4, with two cylindrically

symmetric traps and the intertrap vector perpendicular to the symmetry axis of the
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Figure 5.5: Energies of two atoms in separate tweezers as a function of trap sepa-
ration for Ax = 2.1. Black lines show the results of coupled-channel calculations,
while orange and blue dashed lines show basis-set calculations with nx, ny, nz ≤ 2
and 10, respectively. Other parameters are as in Fig. 5.3.
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traps. Figure 5.5 shows the levels for Ax = 2.1, using harmonic-oscillator basis sets

with nx, ny, nz ≤ 2 and 10, compared with the results of coupled-channel calcula-

tions. It may be seen that the basis-set approach gives qualitatively correct results

even for a small basis set. However, it is not fully converged for small z0 even for a

large basis set. This arises because the true wavefunctions have cusps at R = 0, due

to the contact potential, and these cusps are poorly represented by an expansion in

harmonic functions. They can be handled in spherical coordinates using parabolic

cylinder functions in place of harmonic-oscillator functions [201], but such functions

are inefficient for well-separated traps.

A much simpler application of the basis-set approach is to the strengths of

avoided crossings that predominantly involve only the molecular state and a single

harmonic-oscillator function. As in Sec. 5.4, we focus on the crossing between the

molecular state and the lowest harmonic-oscillator state. Under these circumstances,

the off-diagonal matrix element of the Hamiltonian between the two functions is

Ha,000 = E000Sa,000 + ⟨a|Vint(R)|000⟩, (5.51)

where

⟨a|Vint(R)|000⟩ = −ℏ2

µ

(
2 exp[−1

2
(zX0 /βrel,z)

2]√
πaβrel,xβrel,yβrel,z

)1/2

. (5.52)

If zX0 is taken from Eq. 5.35, this may be written

−ℏωrel,z

(
2 exp[−1

2
(1 + A−2

x + A−2
y + A−2

a )]√
πAxAyAa

)1/2

. (5.53)

If the overlap integral Sa,000 is neglected, Eq. 5.53 provides an analytic first ap-

proximation to the effective matrix element Ωeff, as shown by the dotted lines in

Fig. 5.6. It also shows that the sharp dropoff in Ωeff at small values of Ax occurs

because zX0 increases sharply as Ax decreases, due to the term involving A−2
x in

Eq. 5.35. Conversely, the much slower dropoff at large Ax occurs because of the
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Figure 5.6: Effective matrix element for the lowest avoided crossing as a function
of aspect ratio Ax for Ay = 1 and two values of βrel,z; results shown are Ωeff from
coupled-channel calculations (black), |⟨a|Vint(R)|000⟩| from Eq. 5.53 (dotted), and
|Ω2×2

eff | from Eq. 5.55 (dashed).
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harmonic-oscillator normalization factor involving β
−1/2
rel,x in Eq. 5.52.

Equations 5.52 and 5.53 are derived here for a contact potential. More generally,

however, the wavefunction for a molecular state with binding energy Eb is asymp-

totically of the form R−1 exp(−kR), where k = (2µEb/ℏ2)1/2 and k−1 plays the

role of an effective scattering length. This is valid even when Eb is too large to be

represented by Eq. 5.41 with the true scattering length a. For fixed Ax and Ay, the

quantity Ω2
eff that appears in the Landau-Zener formula (5.38) is thus approximately

proportional to

ω2
rel,zẼ

1/2
b exp(−Ẽb), (5.54)

where Ẽb = Eb/(ℏωrel,z). The strength of the avoided crossing decreases sharply

for Ẽb ≫ 1, and the binding energies of the molecules that can be formed by

mergoassociation are likely to be limited by the trap frequencies that can be achieved.

It may be noted that, for the case Ay = 1 and neglecting overlap, Eq. 5.53

predicts that the maximum value of Ωeff appears at Ax =
√

2 for all values of

βrel,z. This agrees remarkably well with the coupled-channel results in Fig. 5.4. The

analytic expression shows a maximum for Ax =
√

2, qualitatively explaining the

maximum near Ax = 1.3 found from coupled-channel calculations.

If the effects of wavefunction overlap are included, the half-separation between

the eigenvalues of the 2 × 2 generalized eigenvalue problem at the point of closest

approach is

Ω2×2
eff =

⟨a|Vint(R)|000⟩ − ⟨000|Vint(R)|000⟩Sa,000

1 − S2
a,000

. (5.55)

This is nonanalytic, because the overlap integral Sa,000 must be evaluated by numer-

ical quadrature. Nevertheless, the evaluation is straightforward. The values of Ω2×2
eff

from Eq. 5.55 are shown by the dashed lines in Fig. 5.6.

Figure 5.6 shows that Eq. 5.53 provides a qualitatively reasonable approximation

to Ωeff at large βrel,z, but that the approximation breaks down for smaller βrel,z,

particularly for large Ax. Eq. 5.55 improves the agreement when the overlap is

moderate. However, both equations underestimate Ωeff for Ax < 1. This is due
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mainly to approximating zX0 by Eq. 5.35, which neglects the second term in Eq.

A.8 and thus overestimates zX0 . There are also remaining discrepancies at high Ax,

particularly for smaller βrel,z. These arise because, for z0 ≲ 2βrel,z and Aa ≳ 1, the

trap states are strongly shifted and mixed by Vint(R). For A−2
x +A−2

a ≲ 1, zX0 from

Eq. 5.35 is small enough that this mixing is important and the lowest crossing is

not well characterized by Ha,000 and Sa,000 alone. Under these circumstances it is

necessary to use a larger basis set, rather than the 2 × 2 approximation implicit in

Eqs. 5.52 and 5.55.

An important point to note is that, for a contact potential, the results may be

expressed in dimensionless form, with all lengths (including a) expressed with re-

spect to a single length scale (βrel,z here) and all energies expressed with respect to

a corresponding energy scale ℏωrel,z. The results from both coupled-channel calcu-

lations and the basis-set approach are “universal” for given values of Ax, Ay and Aa

when expressed in these units. Results for values of a that differ from a = 645 a0

used here may thus be obtained by appropriate scalings of the harmonic lengths and

energies, without additional calculations.

The coupled-channel approach of Sec. 5.3 can be applied for any interaction po-

tential Vint(R). However, the basis-set approach cannot be applied for interaction

potentials that are non-integrable near R = 0, as is the case for most realistic atom-

atom potentials. It also cannot be applied for contact potentials corresponding to

a < 0, because the molecular function (5.40) then cannot be normalized. Further-

more, it requires very large basis sets of harmonic-oscillator functions when Aa ≫ 1

and R0 ≲ βrel,z.

5.5.1 Errors in Approximations to Ωeff

This section constitutes a detailed discussion of all the various approximations to,

and errors in our calculation of, Ωeff . With an appropriately sized basis set, and

converged propagation parameters, the results of the coupled-channel calculations

are exact. Our procedure for obtaining Ωeff from these converged coupled-channel
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calculations, the results presented in Figure 5.4, assumes that the avoided crossing

between the least bound state and the lowest trap state is isolated from excited trap

states. As explained in Section 5.4, a local fit to the 2×2 matrix in Equation 5.36 is

used to extract Ωeff . We expect this procedure to break down for Ax ≫ 1 when the

energy separation between the states of the trap is small. More advanced N × N

fits could improve this limitation. This particular procedure doesn’t rely on any

approximation to zX0 .

The basis-set method, by contrast, is not numerically exact. The non-orthogonal

basis set is particularly poor for z0 → 0. Furthermore, for z0 ≫ 0 the Hamiltonian

matrix we calculate has large off-diagonal matrix elements, and the excited trap

states are strongly coupled to the loosley bound molecular state and lowest trap

state. We have already showed, in Figure 5.5, that restricting the basis set in

our method leads to unconverged results. We don’t expect the basis set method’s

inaccuracy at z0 ≈ 0 to impact any approximation made to Ωeff , which is almost

always calculated at many hundreds of bohr. However, it is likely that using the

basis-set method as well as a 2 × 2 approximation will, in certain limits, introduce

quite large errors into approximations of Ωeff .

Using the basis set method we obtain the 2 × 2 matrix representation of the

relative-motion Hamiltonian,




Eb + ⟨a|V̂harm|a⟩ EnxnynzSa,nxnynz + ⟨nxnynz|V̂int|a⟩

EnxnynzSa,nxnynz + ⟨nxnynz|V̂int|a⟩ Eharm + ⟨nxnynz|V̂int|nxnynz⟩


 . (5.56)

When using Equation 5.56 to approximate Ωeff we are no longer converging on a

value of zX0 , it is approximated with Equation 5.35. A simple equality is used in the

derivation of Equation 5.35; at some value of z0, z
X
0 , the energies of the molecular

state must equal the energy of the first trap state. The energy of the trap state

is the ground state of the harmonic trap. The energy of the molecular state is

approximated as Eb +µω2
rel,zz

2
0/2. The approximations made to the effective-matrix

element in the previous section, Figure 5.6, using Equation 5.56 are either the full
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2 × 2 eigenvalues or ⟨nxnynz|V̂int|a⟩.

Consider an artificial system with a scattering length of 250 a0 and the same

reduced mass as RbCs. In this model scenario two traps with βrel,z = 500 a0 are

being mergoassociated.

Figure 5.7 shows that our approximation to zX0 (vertical dashed line) is reason-

ably accurate for Aa ≈ 0.5 and Ax ≥ 1. It is clear that in case of Ax = 0.4 our

approximation of zX0 is an overestimation. As such any approximation made to Ωeff

with Equation 5.56 will be an overestimation because the gap between the molecu-

lar state and the trap state is inflated. The 2 × 2 approximation also overestimates

the binding energy of the molecular state at z = 0 for Ax = 0.4. Consequently, in

the 2 × 2 case the avoided crossing appears at larger values. The top right panel

in Figure 5.7 shows a substantial shift in binding energy at z0 = 0 due to the first

order ⟨a|V̂harm|a⟩ term. Such a large correction does not occur for Ax > 1. This

term is evaluated numerically in our implementation of the basis set method but is

equal to

µω2
z

12

(
1 + A−4

x + A−4
y

)
a2, (5.57)

at z0 = 0. The black dot on the RHS panels of Figure 5.7 is the shift in Eb we

expect from ⟨a|V̂harm|a⟩, obtained with the converged calculations. The first-order

correction to this shift is clearly an overestimation. This suggests that there are

higher order corrections to Eb that mitigate the first order effects. We previously

commented on the large off-diagonal elements between excited trap states in light

of the qualitative conclusions concerning basis set size drawn from Figure 5.5. We

hypothesised that it may be advantageous to include the analytical expression for

⟨a|V̂harm|a⟩ in our approximation of zX0 , in the hope that we would gain a more

accurate estimation of the crossing position. It should be noted that such a step

would only be valuable if it were to accurately reproduce the binding energy of

the molecular state for Ax < 1, this particular problem is not relevant to Ax ≥

1. However, in light of the effect of neglecting the higher order terms, including

⟨a|V̂harm|a⟩ will not be sufficient. This correction will simply just over correct the
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Figure 5.7: LHS: bound state spectra for a = 250.0 a0, βrel,z = 500 a0, and a
series of different aspect ratios. Eigenvalues from 2×2 (black) and 397 × 397 (grey)
calculation are shown. RHS: terms featuring in 5.56. The blue solid (dashed) line is
Eb (⟨a|V̂harm|a⟩). Black dot is the ’actual’ shift of molecular state due to the trap.
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current estimate and therefore give us a similar, if not worse prediction of z0.

Mergoassociation is most effective when the scattering length is large compared

to the length of the trap. Understanding the poor performance of our approxima-

tions to Ωeff in this scenario is therefore important. Consider the RbCs system with

a scattering length of 645 a0, being mergoassociated in traps with βrel,z = 500 a0.

This example is identical to parameters given for the results presented in the top

panel of Figure 5.6. The following discussion explains errors in our approximations

to Ωeff when a ≥ βrel,z.

Figure 5.8 shows that the approximations made in our basis-set method break

down much more dramatically for the case where a > βrel,z. This is to be expected

as the length scale of the interaction, the scattering length, exceeds the magnitude

of our trap potential. The harmonic oscillator functions in our basis do not meet the

boundary condition required by the contact potential operator. For each aspect ratio

the position of the lowest avoided crossing is poorly approximated by 5.35. This

is because the zero-order binding energy is substantially shifted by the harmonic

oscillator trap potential.

It is immediately clear from Figure 5.8 that the 2×2 Hamiltonian matrix (black

lines) does a poor job at capturing the features of the converged bound state spec-

trum (grey lines) for all aspect ratios when a > βrel,z. This is markedly different to

Figure 5.7 where there are only, relatively small, errors for the Ax = 0.4 case. It

is also evident from Figure 5.8 that our estimate of zX0 is poorer when a > βrel,z.

In practice this results in any evaluation of Equation 5.56, in order to approximate

Ωeff , will be inflated as eigenvalues to the right of the avoided crossing will have

been used. With a larger scattering length more serious errors are introduced to

⟨a|V̂harm|a⟩. As show by comparing the black dot on the RHS of Figure 5.8 to the

blue dashed line the neglect of higher-order terms leads to a serious overestimation

of the shift in the binding energy of the loosley bound molecular state due to the

expectation value of its wavefunction over the trap potential.

We have also taken the chance to reanalyse our findings using reduced units.



Chapter 5 128

0 1000 2000 3000
z0

0

500

1000

1500

2000

E
(k

H
z×
h

)

Ax = 2.5

0 1000 2000 3000

0

500

1000

1500

2000

E
(k

H
z×
h

)

Ax = 1.0

0 1000 2000 3000

−200

0

200

400

0 1000 2000 3000

0

2000

4000

6000
E

(k
H

z×
h

)

Ax = 0.4

0 1000 2000 3000
−500

0

500

1000

1500

2000

0 1000 2000 3000
z0

−200

0

200

400

Figure 5.8: LHS: bound state spectra for a = 645.0 a0, βrel,z = 500 a0, and a
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The previous two examples were designed to offer a more practical analysis that can

easily be mapped onto certain system. The following is designed to help disentangle

the break down of our various approximations with Aa and Ax, reframe the previous

discussion with respect to reduced units, and conclude the analysis presented in this

section.

The calculations presented in Figure 5.9 used βz = 500 a0 (ωz ≈ 277 kHz).

Several values of Aa = 0.5, 1.0, 1.5 were used in an attempt to cover various scenarios

where the ratio of the scattering length to the trap length are small to large. Two

values of Ax = 0.5 and Ax = 2.5 are used for each value of Aa, so we are in the

limits of very small aspect ratio and very large aspect ratio. Dimensionless units are

used throughout, as such these results are applicable to all systems. From Figure

5.9 we see that our approximation of zX0 is bad for Ax ≪ 1. As such using the

2 × 2 Hamiltonian to approximate Ωeff will result in an overestimation for all Aa,

and scattering lengths. Our estimation of zX0 is good for Ax ≫ 1. At the values of z0

of interest, i.e. zX0 , the 2× 2 Hamiltonian captures the eigenvalues of the molecular

and lowest trap state to varying levels of accuracy, that depends on the interplay

between Aa and Ax. For large Aa the eigenvalues are erroneous, the magnitude of

this error is more sever at Ax ≫ 1, although it is also poor for Ax ≪ 1.
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5.6 Conclusions

We have developed the theory of pairs of atoms in adjacent nonspherical traps.

This is important for understanding mergoassociation [199], in which weakly bound

molecules are formed during the merging of two optical tweezers or cells of an optical

lattice. For harmonic traps, we find that the separation of relative and center-of-

mass motion is similar to that for two atoms in a single trap [206], but with a

different coupling term between the motions.

We have developed a coupled-channel approach that can be used for the relative

motion of atom pairs in harmonic traps with arbitrary anisotropy and arbitrary

relative orientation. We have solved the coupled equations for pairs of coaligned

nonspherical traps, as a function of trap separation. We approximate the atom-atom

interaction here by a contact potential, but the method can be readily extended to

handle other interaction potentials. If the molecule formed from the two atoms has a

weakly bound state, it undergoes avoided crossings, as a function of trap separation,

with the states of the trapped atom pair. Merging two traps that each contain an

atom in its lowest motional state can thus form a molecule by adiabatic passage

across the lowest-energy avoided crossing. This is mergoassociation.

We focus on the case important for mergoassociation with optical tweezers, where

two traps that are individually cylindrical are merged along an axis Z perpendicular

to their symmetry axis X. The confinement along these axes is characterized by

harmonic lengths βrel,z and βrel,x, respectively, with aspect ratio Ax = βrel,x/βrel,z.

The strength of the avoided crossing depends strongly on the aspect ratio: for

fixed βrel,z, it has a maximum near Ax = 1.3. In initial experimental work on

mergoassociation [199], it was found that experiments with Ax ≈ 2.6 were well

reproduced by theory based on spherical traps (Ax = 1). This is coincidental:

Ax = 1 and 2.6 give similar crossing strengths simply because they lie on opposite

sides of the maximum.

We have developed an approximate model of the energy levels for separated traps.

This uses a nonorthogonal basis set that combines a single molecular function with
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a set of Cartesian harmonic-oscillator functions for the trap states. The model

gives reasonably accurate energy levels near the avoided crossing that is important

for mergoassociation, though the harmonic-oscillator basis set converges slowly for

small trap separations. In its simplest form, with only a single harmonic-oscillator

function, the model gives an analytic expression for the crossing strength if overlap

between the molecular and harmonic-oscillator functions is neglected. The analytic

expression shows a maximum for Ax =
√

2, qualitatively explaining the maximum

near Ax = 1.3 found from coupled-channel calculations.

The methods developed in this paper will help understand and predict the ef-

ficiency of mergoassociation, both with optical tweezers and with transport in an

optical lattice. This will allow efficient conversion of atom pairs into molecules

for systems with weakly bound states, even if they do not possess resonances suit-

able for magnetoassociation. It may also be possible to extend mergoassociation to

more complex systems, involving molecules or Rydberg atoms. The avoided crossing

characterized here also offers opportunities for high-fidelity two-qubit quantum logic

operations with atom pairs [200–202].
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This chapter is a reproduction of the following publication: R. C. Bird and J. M.

Hutson, Making molecules by mergoassociation: the role of center-of-mass motion,

2024. The above is a preprint available from arXiv:2411.13393, and is currently

being reviewed for publication. J. M. Hutson supervised theoretical work.

6.1 Introduction

Recent experiments [199] have shown that two ultracold atoms, confined in separate

optical traps or tweezers, may combine to form a weakly bound molecule when the

traps are merged. The process occurs because the energies of high-lying molecular

states cross the energy of the atom pair as a function of trap separation. Coupling

between the atom-pair and molecular states generates an avoided crossing between

the states. Atom pairs can thus be converted into molecules by adiabatic passage

as the traps are merged. The process is known as mergoassociation and has great

potential for creating ultracold molecules that are inaccessible with other methods.

The levels involved are discussed in the previous chapter.

The levels produced when two traps merge were first studied by Stock et al.

[201, 202]. They considered two atoms that are identically trapped. Under these

circumstances, with harmonic traps, there is an exact separation of the motions in

the relative and center-of-mass coordinates. Their calculations dealt entirely with

the relative motion and with spherical traps. Following the experimental work [199],

which was carried out with Rb and Cs atoms in nonidentical optical tweezers with

large anisotropy, we extended the formal theory to handle nonidentical, anisotropic

traps. However, the numerical calculations presented in the previous chapter were

still limited to the relative motion, neglecting coupling to the motion of the center

of mass.

The purpose of the present paper is to investigate the influence of center-of-

mass motion on the energy levels involved in mergoassociation and to consider their

implications for experiments. Idziaszek et al. [203] briefly considered the coupling

between the relative and center-of-mass motions for atom-ion interactions in one
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dimension and commented that certain avoided crossings were weaker. However,

the problem has not been considered in 3 dimensions and the dependence of the

level patterns on the coupling strength has not been explored. The influence of

coupling between the relative and center-of-mass motions on the levels that arise

for two interacting particles in a single trap has been studied more extensively [206,

212–216].

The structure of this paper is as follows. Section 6.2 introduces the problem and

describes the methods we use, including an important modification of the molec-

ular basis functions that dramatically improves convergence. Section 6.3 uses the

example of RbCs to explore the effects of the coupling between relative and center-

of-mass motions for both weak and strong coupling (Sections 6.3.1 and 6.3.2). We

consider the consequences of the coupling for mergoassociation starting from atoms

either in their motional ground states or in motionally excited states. This section

also explores mergoassociation for other systems, considering the examples of RbSr,

RbYb and CsYb (Section 6.3.3), the effect of the strong anisotropy of the tweezer

traps used in current experiments (Section 6.3.4), and the potential use of moveable

traps to construct quantum logic gates (Section 6.3.5). Finally, Section 6.4 presents

our conclusions.

6.2 Theoretical Methods

In the previous chapter we developed a theory of mergoassociation for pairs of non-

identical nonspherical traps and a basis-set approach that gives accurate results for

the energy levels of relative motion for separated traps. This uses a nonorthog-

onal basis set made up of 3-dimensional harmonic-oscillator functions centered at

R = R0, supplemented with a single function ψa for the molecular state. The



Chapter 6 136

Hamiltonian for relative motion may be written

Ĥrel = T̂rel + V trap
rel (R) + Vint(R)

= Ĥtrap
rel + Vint(R) = Ĥint + V trap

rel (R), (6.1)

where Ĥtrap
rel is the Hamiltonian for the nonspherical harmonic trap and Ĥint is the

Hamiltonian for the untrapped atom pair. If Vint(R) is represented as a contact

potential at the origin [207] that corresponds to scattering length a > 0, Ĥint has

a single molecular bound state, with eigenfunction ψa = (2πa)−1/2R−1 exp(−R/a),

and eigenvalue Ea = −ℏ2/(2µa2). The elements of the Hamiltonian and overlap

matrices for relative motion are summarized in the Appendix.

Here we extend this approach to take account of motion in the center-of-mass

coordinate R. The full Hamiltonian is

Ĥ = Ĥrel + Ĥtrap
com (R) + V trap

cpl (R,R), (6.2)

where Ĥtrap
com (R) = T̂com + V trap

com (R).

6.2.1 Direct-Product Approach

The simplest approach is to multiply each function in the basis set for relative

motion with a set of 3-dimensional harmonic-oscillator functions in the center-of-

mass coordinate. The harmonic functions are all eigenfunctions of Ĥtrap
com (R), which

are centered at R = R0. The resulting direct-product functions are represented

by Dirac kets |nxnynzNXNYNZ⟩ or |aNXNYNZ⟩, and the resulting matrix elements

are given in the Appendix. For spherical traps or traps displaced along z, the basis

set may be factorized into 4 symmetry blocks with nx +Nx and ny +NY either even

(E) or odd (O), and calculations are carried out for each block separately.

Figure 6.1 shows an example of energy levels for Rb and Cs in separated spherical

traps as a function of z0. These are calculated with a scattering length a = 554 a0;

this corresponds to a bound-state energy Ea/h ≈ −112 kHz, suitable for RbCs at
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Figure 6.1: Levels of Rb and Cs atoms in separated spherical traps as a function
of separation z0, with ωRb = 100 kHz and ωCs = 60 kHz. Solid green lines show
the levels for pure relative motion, while dashed green lines show levels excited in
the center-of-mass coordinate but neglecting coupling between relative and center-
of-mass motions. Black lines show the results of the full coupled calculation using a
direct-product basis set (444)(444). Only levels with EE symmetry are shown.
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the magnetic field used for mergoassociation in ref. [199]. The black lines are ob-

tained with a large direct-product basis set with (nmax
x nmax

y nmax
z )(Nmax

X Nmax
Y Nmax

Z ) =

(444)(444). This basis set contains 4270 functions for EE symmetry. The near-

horizontal levels are those of pairs of trapped atoms that at large separation are in

separate traps; they show single-atom trap excitations of frequency 60 and 100 kHz.

They are labeled by the principal quantum numbers {nRb, nCs} of the individual 3d

harmonic traps. Their wavefunctions are not simply expressed in terms of relative

and center-of-mass motions. The levels that vary quadratically with z0 are molec-

ular states and are labeled (a, ncom), where ncom is the principal quantum number

for center-of-mass motion. These two sets of levels undergo avoided crossings with

one another.

Figure 6.1 compares these results with an approximation (green lines) that ne-

glects the coupling V trap
cpl (R,R) between relative and center-of-mass motions. The

uncoupled levels for the ground state of center-of-mass motion are shown as solid

green lines, with levels excited in center-of-mass motion parallel to them and shown

as dashed green lines. In this approximation, the atom-pair levels have incorrect

energies governed by ωrel and ωcom. In addition, the coupled molecular levels are

shifted upwards from the uncoupled ones by an amount that varies with z0.

6.2.2 Shifted-Molecule Approach

The direct-product basis set has the disadvantage that there are non-zero matrix

elements of the form

⟨aN ′
XN

′
YN

′
Z |V trap

cpl (R,R)|aNXNYNZ⟩. (6.3)

These matrix elements are diagonal in a but off-diagonal in NX , NY or NZ by 1

when the trap separation R0 has components along X, Y or Z, respectively. They

are due to the term µ[R − R0]
⊺∆ω2R0 in Eq. 5.13, which shifts the minimum in

the potential for center-of-mass motion away from R0 for molecular states. As a
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result, convergence with respect to the basis set for center-of-mass motion is poor

when ∆ω2R0 is substantial.

To circumvent this issue, we use a modified basis set where the functions for

motion in R are shifted for the molecular state. They are still harmonic-oscillator

functions with the same frequency, but are centered at R̃0 = R0 − ∆R, where

∆R =
µ

M [ω2
com]−1∆ω2R0. (6.4)

The resulting shifted-molecule functions are represented by Dirac kets |aÑXÑY ÑZ⟩.

The kets |nxnynzNXNYNZ⟩ are retained unmodified, centered on R0. The matrix

elements in the shifted-molecule basis set are given in the Appendix.

The most important effect of the shifted-molecule basis set is that the diagonal

matrix elements for all molecular functions are shifted in energy by

∆Ea = −µ
2
R⊺

0∆ω
2∆R = − µ2

2MR⊺
0[ω

2
com]−1[∆ω2]2R0. (6.5)

This explains the shift of the molecular states seen in Fig. 6.1. It shows that the shift

is quadratic in the trap separation z0 and is the same for all molecular states. When

coupling to center-of-mass motion is included, the quadratic term in the energies of

the molecular states is 1
2
µR⊺

0ω
2
molR0, where

ω2
mol = [ω2

com]−1ω2
1ω

2
2. (6.6)

This compares with 1
2
µR⊺

0ω
2
relR0 when coupling to center-of-mass motion is ne-

glected.

Figure 6.2 compares results using small direct-product and shifted-molecule basis

sets (with (nmax
x nmax

y nmax
z )(Nmax

X Nmax
Y Nmax

Z ) = (444)(222)) with those using a much

larger shifted-molecule basis set (444)(444); the latter gives nearly converged results.

The small shifted-molecule basis set gives very accurate results for all the molecular

states and for the singly excited atom-pair states; its only visible deficiency in Fig.
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Figure 6.2: Levels of Rb and Cs atoms in separated spherical traps, as in Fig. 6.1, us-
ing different approaches. Black lines show results using a large shifted-molecule basis
set (444)(444). Blue (or red) lines show results with smaller basis sets (444)(222)
using the direct-product (or shifted-molecule) approach.
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6.2 is for the atom-pair states with (nRb, nCs) = (0, 2), which are unconverged with

the smaller basis set of center-of-mass functions. The avoided crossings involving

the ground and first-excited atom-pair states are all very accurately reproduced.

The small direct-product basis set, by contrast, is substantially in error for several

of the molecular states and their avoided crossings.

Comparison of Figs. 6.1 and 6.2 demonstrates that even the (444)(444) basis set

is significantly unconverged for the direct-product approach, producing unphysical

non-degeneracies for both molecular and atom-pair states with larger values of NX

and/or NY . The shifted-molecule approach performs much better in this respect; the

(444)(222) basis set is adequate for most purposes, and contains only 972 functions,

so that diagonalization is computationally cheaper by about a factor of 80. This

basis set is used in the remainder of the paper, except where otherwise stated.

6.3 Effects of Coupling Between Relative and Center-

of-Mass Motion

Figure 6.3 shows the levels of different symmetries for Rb and Cs atoms in separated

spherical traps with frequencies ωRb = 110 kHz and ωCs = 90 kHz. The levels of EE

symmetry show complicated patterns of avoided crossings, which will be discussed

further below. However, the levels of other symmetries are relatively simple. For

spherical traps, the complete system has cylindrical symmetry, so levels of EO and

OE symmetry are degenerate.

For spherical traps, the levels singly excited in either ωRb or ωCs, with nRb = 1

or nCs = 1, are triply degenerate at large trap separations. Those with excitation

along x and y have OE and EO symmetry, respectively. These two singly excited

states show a 3 × 3 avoided crossing with a molecular state near 1800 a0 and a

narrower one near 1500 a0. When the traps are merged adiabatically an atom pair

with single excitation in ω
x(y)
Cs (or more generally in the lower of ω

x(y)
1 and ω

x(y)
2 )

will undergo mergoassociation to form a motionally excited molecule with n
x(y)
com = 1.
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Figure 6.3: Levels of Rb and Cs atoms in separated spherical traps as a function
of separation z0, with ωRb = 110 kHz and ωCs = 90 kHz. Levels of EE, EO, OE,
and OO symmetry are shown, but those of EO and OE symmetry are degenerate
for spherical traps.
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However, a pair with single excitation in ω
x(y)
Rb (i.e. in the higher of ω

x(y)
1 and ω

x(y)
2 )

will be transferred to n
x(y)
Cs = 1 at the two crossings near 1800 a0; the pair may then

pass either diabatically or adiabatically over the inner crossing; the former leaves

the excitation in nCs, while the latter forms a molecule with n
x(y)
com = 1 and nz

com = 1.

The lowest atom-pair state with OO symmetry has nx
Cs = 1 and ny

Cs = 1. An

atom pair in this state can again undergo mergoassociation to form a motionally

excited molecule, now with nx
com = 1 and ny

com = 1. However, replacing one or both

excitations with ω
x(y)
Rb results in more complicated outcomes.

In the following, we focus on levels of EE symmetry, which are the most impor-

tant for mergoassociation with well-cooled atoms.
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6.3.1 Weak Coupling

When ω1 = ω2, the relative and center-of-mass motions are completely uncoupled.

The levels and avoided crossings for EE symmetry are then as in Fig. 6.4(a). The

lowest atom-pair state shows an avoided crossing with the molecular state with no

center-of-mass motion, but there is an unavoided crossing with the molecular state

that is motionally excited. There are 2 atom-pair states with 1 unit of motional

excitation. One of them may be viewed as excited in the relative coordinate but

not the center-of-mass coordinate, so shows an avoided crossing with the molecular

state with no center-of-mass motion but an unavoided crossing with the one that

is motionally excited. The other may be viewed as excited in the center-of-mass

coordinate, so shows an avoided crossing with the molecular state that is motionally

excited but does not interact with the lowest molecular state.

Only a small difference between ω1 and ω2 is needed to change this picture.

Figure 6.4(c) shows a crossing diagram with approximately 10% difference between

ω1 and ω2. Here the atom-pair states with 1 unit of motional excitation should

be viewed at large separation as single-atom excitations for atom 1 and atom 2,

respectively. This identification persists through the avoided crossings with both

the ground and motionally excited molecular states. The molecular states, by con-

trast, remain best described as products of functions for relative and center-of-mass

motion. Since the atom-pair states with excitation for a single atom are linear combi-

nations of those with excitation in the relative and center-of-mass motions, there are

strong avoided crossings between both atom-pair states and both molecular states.

Figure 6.4(b) shows an intermediate case with a 2% difference between ω1 and

ω2. Here the atom-pair states with 1 unit of motional excitation again correspond

to single-atom excitations at very large z0, but these states mix as the two traps ap-

proach one another. At the values of z0 where the atom-pair states cross molecular

states, zX0 , this mixing is nearly complete and the levels are well described by quan-

tum numbers for relative and center-of-mass motion. The diagram thus resembles

Fig. 6.4(a): the lower singly-excited atom-pair state shows a strong avoided crossing
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with the molecular state with no center-of-mass motion, but a weak avoided crossing

with the molecular state that is motionally excited. The situation is reversed for the

upper singly-excited atom-pair state, which is mostly excited in the center-of-mass

coordinate.

6.3.2 Intermediate and Strong Coupling

Figure 6.5 shows level crossing diagrams for larger values of ωRb−ωCs. In this regime,

the avoided crossings between atom-pair and molecular states are well isolated from

one another and can each be characterized in terms of 2 interacting states.

Mergoassociation with atoms in Motional Ground States

For mergoassociation from atoms in their motional ground states, the most impor-

tant quantity is the strength Ωeff of the lowest avoided crossing, near z0 = 2000 a0

in Figs. 6.4 and 6.5. The strength of this crossing for RbCs is shown in Fig. 6.6(a)

as a function of ωRb−ωCs. Here ωRb +ωCs is held constant at 200 kHz, which keeps

the energy of the lowest atom-pair state the same. However, the curvature of the

molecular state is approximately proportional to ωmol, given by Eq. 6.6. This gen-

erally decreases as |ωRb − ωCs| increases (with ωRb + ωCs held constant), though its

maximum is slightly shifted from ωRb = ωCs when m1 ̸= m2. The crossing distance

zX0 thus increases with |ωRb − ωCs|. As shown in the previous chapter, the crossing

strength depends principally on exp(−1
2
zX0 /βrel), so it decreases fast as zX0 increases;

here βrel = (ℏ/µωrel)
1
2 . The dashed blue line on Fig. 6.6(a) shows the result of the

approximation from Eq. 55 in the previous chapter. The agreement is quite good,

implying that the variation in Ωeff with ωRb − ωCs is dominated by the variation in

ωmol and hence in zX0 , rather than by the coupling between relative and center of

mass motions, characterized by ∆ω2.
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Mergoassociation with Motionally Excited Atoms

It is important to understand what happens when traps containing motionally ex-

cited atoms are merged. Under these circumstances, there are several avoided cross-

ings that can be involved, labeled A to F in Fig. 6.5(a). The probability of traversing

an avoided crossing adiabatically is quantified by the Landau-Zener formula, with a

sufficiently slow merge producing adiabatic passage. The critical merging speed is

proportional to Ω−2
eff , as is shown in the previous chapter.

There is interesting dependence of the strengths of the avoided crossings on

ωRb−ωCs. As seen in section 6.3.2, the strength of crossing A peaks near ωCs = ωRb.

Conversely, the strength of crossing B, shown in Fig. 6.6(b), is proportional to

|ωCs − ωRb| for small frequency differences; this arises because the relevant matrix

element (Eq. A.18) includes a factor from the coupling between relative and center-

of-mass motions. For larger frequency differences, the strength decreases for the

same reasons as crossing A.

Crossings C, D, E, and F are more complicated. When |ωCs−ωRb| is small, they

involve the interaction of 3 states and do not lend themselves to simple characteri-

zation. This is again true when ωRb ≈ 2ωCs or 2ωRb ≈ ωCs, when the doubly excited

state for one atom is close to the singly excited state for the other. Between these

complicated regions, however, the crossing strengths may be characterized from a

2×2 model and are shown by the solid lines in Fig. 6.6. The grey dashed lines show

interpolations through the regions where a 2 × 2 treatment breaks down; these are

obtained by including a point at ωRb = ωCs, where the uncoupled problem can again

be represented by a 2 × 2 matrix. The interpolations differ slightly from the solid

curves in regions where a third state contributes significantly.

The separated atom-pair states involved in crossings C, D, E and F are charac-

terized by quantum numbers {n1, n2} = {0, 1} and {1,0}, and may be approximately

represented as linear combinations of (nrel, ncom) = (1, 0) and (0,1). As a result, the

matrix elements that govern their crossing strengths contain two terms, one propor-

tional to ωCs − ωRb and the other not. Because of this, the strengths of crossings D
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Figure 6.6: The strength of avoided crossings A to D as a function of ωCs−ωRb, with
ωRb+ωCs held constant at 200 kHz. The black lines show the crossing strengths from
the shifted-molecule approach. The grey dashed lines show interpolations through
regions where a 2×2 treatment breaks down, obtained as described in the text. The
blue dashed line in (a) shows the result from Eq. 55 of ref. of the previous chapter.



Chapter 6 150

and E have minima due to destructive interference as a function of ωCs − ωRb; the

minima are not actual zeroes, because {0,1} and {1,0} contain some contributions

from states other than (1,0) and (0,1).

If the atom with the lower trap frequency is motionally excited, it is possible

to enter the state (a, 0) at avoided crossing C. From this point there are several

possibilities. First, it may be possible to traverse crossing A diabatically with a fast

merge, producing a molecule in state (a, 0) at small z0. Alternatively, if crossing

A is traversed adiabatically, the system will reach crossing B. For large frequency

differences, crossing B can be traversed adiabatically, producing a motionally excited

molecule in state (a, 1). For small differences, however, crossing B is very weak and is

likely to be traversed diabatically, producing a ground-state atom pair. Yet another

possibility is to pause the merging around z0 ≈ 2100 a0 (for RbCs), which might

allow optical transfer to a deeper state of the molecule.

If the atom with the higher trap frequency is motionally excited, it is possible

to enter the state (a, 0) at avoided crossing E. From this point there are many

possible pathways based on different choices of adiabatic and diabatic traversals,

controlled by merging speeds and trap frequencies. With a good understanding of

the patterns of avoided crossings, it may be possible to devise sequences of merging

and optical transfer that achieve efficient molecule formation even with motionally

excited atoms.

6.3.3 Mergoassociation for Other Systems

Mergoassociation is potentially useful for many systems. As shown in the previous

chapter, it is generally effective when the harmonic lengths of the traps or tweezers

are comparable to (no more than a few times larger than) the scattering length.

Otherwise, the lowest crossing occurs at large values of zX0 /βrel and is too narrow

to be useful. Mergoassociation is particularly promising for systems that lack Fes-

hbach resonances, or where the Feshbach resonances are very narrow. Examples

of this are systems of alkali-metal atoms with alkaline-earth atoms, where narrow
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resonances have been predicted [217–221] and observed [222, 223] but not yet used

for magnetoassociation. RbSr, RbYb and CsYb all have isotopic combinations with

large positive scattering lengths: 87Rb87Sr with a = 1421(98) a0 [224], 87Rb174Yb

with a = 880(120) a0 [225] and 133Cs176Yb with a = 798 a0 [226].
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In the absence of coupling between relative and center-of-mass motions, the

mergoassociation problem scales conveniently with lengths expressed in terms of the

relative harmonic length for relative motion, βrel. This is the scaling we used in

the previous chapter. However, in this representation, different scattering lengths a

produce a lowest avoided crossing for mergoassociation at different crossing distances

zX0 /βrel. To compare systems with different a, it is more transparent to scale lengths

according to a and energies according to |Ea| = ℏ2/(2µa2). In order to produce

level crossing diagrams with molecular and atom-pair levels at approximately the

same energies for different systems, we choose trapping frequencies that are the same

multiple of |Ea| for each system. This gives diagrams that are independent of a and

the mean atomic mass, but depend on the mass ratio m2/m1, which is close to 1 for

RbSr, 1.3 for CsYb (compared to 1.53 for RbCs) and 2 for RbYb.

Figure 6.7 shows level crossing diagrams for 87Rb87Sr, 133Cs176Yb and 87Rb174Yb

with ℏω1 = 2.5|Ea| and ℏω2 = 1.5|Ea|. It may be seen that the crossing diagrams

differ in detail, but show fairly similar patterns of avoided crossings in all the cases

shown, with only weak dependence on the mass ratio. The one difference of any

significance is that crossing D, near z0/a = 2 and E/|Ea| = 8, is substantially

stronger for RbSr than for the other systems, because the position of the minimum in

Fig. 6.6(d) depends on m2/m1. All three systems show substantial avoided crossings

for pairs of atoms in a variety of motional states, so that mergoassociation is a

promising method of molecule formation in all these systems.

6.3.4 Trap Anisotropy

Optical tweezers are often strongly anisotropic, with much weaker confinement along

the laser propagation axis than perpendicular to it. The mergoassociation ex-

periments of Ruttley et al. [199] were carried out on RbCs, using tweezers with

frequency ratios ωz/ωx ≈ 1 and ωz/ωy ≈ 6 for both atoms. Figure 6.8 shows

the energy levels that result for a representative set of parameters, including both

anisotropy and coupling between the relative and center-of-mass motions. All four
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Figure 6.8: Levels of Rb and Cs atoms in separated anisotropic traps as a
function of separation z0, with {ωRb,x, ωRb,y, ωRb,z} = {144, 24, 144} kHz and
{ωCs,x, ωCs,y, ωCs,z} = {96, 16, 96} kHz. Levels with EE, EO, OE, and OO sym-
metry are shown. The atom-pair states are labeled with quantum numbers
{nRb,x, nRb,y, nRb,z, nCs,x, nCs,y, nCs,z}.



Chapter 6 155

symmetries are shown. The calculations used a shifted-molecule basis set with

(nmax
x nmax

y nmax
z )(Nmax

X Nmax
Y Nmax

Z ) = (444)(242). The details of the levels are com-

plicated, and too specific to the individual case to justify detailed analysis here,

but some important points are evident. First, the lowest crossing, involving atoms

in their ground motional states, has a strength Ωeff = 11.15 kHz. This is similar

to the strength obtained for spherical traps with frequencies chosen as ωz, which

is Ωeff = 11.84 kHz. This justifies the spherical approximation used in ref. [199]

to interpret the measured probabilities of diabatic and adiabatic crossing. If mo-

tional coupling is neglected, however, the crossing strength is 14.48 (15.61) kHz with

anisotropy included (neglected). This demonstrates that the effects of motional cou-

pling are significantly larger than those of anisotropy.

The avoided crossing involving the first-excited atom-pair state, with nCs,y = 1,

is only slightly weaker than the lowest crossing. Atom pairs in this state may also

be converted to molecules when the traps are merged. However, most other avoided

crossings are substantially weaker. As noted above, the critical merging speed for

adiabatic passage is proportional to Ω−2
eff ; at the merging speeds used in ref. [199],

it is likely that these crossings would be traversed diabatically and fail to produce

molecules.

6.3.5 Logic Gates

Merging traps may also have applications in quantum information processing [201].

The interactions that control the energy levels depend on the hyperfine state of the

atoms involved, so they may be used to accumulate phase differences between pairs

of atoms in different states. This allows the production of controlled entanglement

and the construction of 2-particle quantum-logic gates.

An important general insight from the present work is that, for a particular

mass ratio m2/m1, the patterns of levels are “universal” when lengths are expressed

in terms of the scattering length and energies (and frequencies) are expressed in

terms of the energy of the least-bound molecular state. Thus the key requirement
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for achieving differential phase shifts is that the scattering lengths are significantly

different for the different pairs of atomic states involved. This is satisfied for most

alkali-metal pairs, but not for all; modeling it requires a good understanding of the

interaction potentials and detailed coupled-channel calculations using them [39, 128,

133, 227].

The presence of coupling between relative and center-of-mass motions is a com-

plicating factor for applications to logic gates. At the simplest level, such coupling

modifies the trap separation at which the principal avoided crossing occurs, as de-

scribed by Eq. 6.5. It is important to take this into account. Nevertheless, for

interactions involving pairs of atoms in their motional ground states, this is simply

a quantitative correction.

Another issue is the feasibility (or fidelity) of quantum logic operations at finite

temperature, when not all atoms are in their motional ground states. In this context,

it would be desirable if the potential curves for motionally excited atoms were parallel

to those for ground-state atoms. This occurs when the trapping frequencies for the

two atoms are exactly equal, but not when the difference between them is significant.

One possible advantage arises in cases where the difference is very small: then, as

seen in Fig. 6.4(b), the potential curve for an atom excited in the higher motional

frequency is very similar to that for the absolute ground state, while that for an

atom excited in the lower frequency is not. Thus, if one atom is less well cooled

that the other, it may be helpful to ensure that its trapping frequency is slightly

(but as little as possible) higher than that of its companion.

6.4 Conclusions

We have developed theoretical methods to calculate the energies of pairs of atoms

in separated optical traps, taking account of both trap anisotropy and the coupling

between relative and center-of-mass motions. The resulting levels are important

both for molecule formation by mergoassociation and for potential applications in

quantum information processing. We use basis sets based on Cartesian harmonic-
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oscillator functions for both relative and center-of-mass motion. The functions for

relative motion are supplemented with a single molecular function. The effective trap

potential for center-of-mass motion that is felt by the molecular function is shifted

from the minimum of the combined trap; taking account of this shift complicates

the algebra, but produces a substantial reduction in the size of the basis set needed

for convergence.

Both mergoassociation and applications to quantum-logic gates rely on adiabatic

passage over avoided crossings between atom-pair states and molecular states as a

function of trap separation. The strengths of these avoided crossings are thus partic-

ularly important. We have used the example of RbCs to explore the dependence of

the level patterns and the crossing strengths on the frequency difference between the

traps for the two atoms. The lowest crossing, which is crucial for both applications,

shifts to larger trap separations and becomes significantly weaker when center-of-

mass motion is accounted for. Other crossings, which are important when merging

traps containing motionally excited atoms, show more complicated behavior.

We have extended our treatment to other systems. Mergoassociation is generally

feasible for atom pairs with positive scattering lengths that are comparable to or

larger than the harmonic lengths of the traps. This corresponds to binding energies

(for the least-bound state) that are not more than a few times the trap frequencies.

We have considered RbSr, RbYb and CsYb, which are resistant to magnetoasso-

ciation because their Feshbach resonances are so narrow and so sparse. All three

systems have isotopic combinations with large positive scattering lengths. We have

shown that, in units scaled by scattering lengths and binding energies, the level

crossing diagrams are very similar for all three systems when the scaled trap freqen-

cies are the same; they differ only because the ratio of atomic masses differs between

systems. For all three systems, mergoassociation can form Feshbach molecules in

the least-bound state with experimentally accessible trap frequencies.

Optical tweezer traps are usually strongly anisotropic, with much stronger con-

finement across the laser beam waist than along the beam. We have considered
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the combined effects of anisotropy and coupling between relative and center-of-mass

motions for RbCs, using trap frequencies typical of current experiments. We have

found that the effect of anisotropy is weaker than that of motional coupling under

these conditions. We have also explored the effect of motional coupling on the levels

that might be used for quantum-logic gates. We have found that coupling between

relative and center-of-mass motions can have substantial effects on the energy levels

of separated traps. When merging traps containing atoms that are both in their

motional ground states, the coupling leaves the general picture unchanged, but has

significant effects that should be taken into account in quantitative work. However,

when one or both atoms is in a motionally excited state, the coupling causes quali-

tative changes in the patterns of energy levels, which have important consequences

for experimental outcomes.



Chapter 7

Conclusions
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In this thesis we have explored molecule formation at ultracold temperatures. We

studied two different approaches to ultracold molecule formation; magnetoassocia-

tion and mergoassociation. A variety of systems, including 39K133Cs, 87Rb40Ca19F,

87Rb133Cs, 87Rb87Sr, 133Cs176Yb, and 87Rb174Yb, were considered. As such we have

been able to capture some of the exciting variety in the field of ultracold molecular

physics.

In Chapter 3 we explored the near-threshold bound states and Feshbach res-

onances that exist in ultracold 39K + 133Cs collisions. We used coupled-channel

calculations to study the singlet fractions of the near-threshold bound states with

L = 0 and found that the states that cross threshold at lower values of B had

lower singlet fractions. A number of the states that cross threshold were assigned as

n = −1 states. We used L = 0 coupled-channel scattering calculations to find the

positions and widths of the Feshbach resonances these states caused. The resonance

widths ranged from approximately 6×10−3 G to 7×10−2 G. L = 2 coupled-channel

calculations were used to confirm that these resonances were not strongly decayed

via spin-relaxation processes. We found that spin-relaxation processes did not al-

ter the widths found with our L = 0 calculations. The Nägerl Group carried out

further experiments to determine resonance positions and bound-state properties,

allowing us to undertake an interactive non-linear least-squares analysis of the KCs

interaction potential. We found that the difference between the singlet and triplet

scattering lengths to be larger than previously thought with as = −29.71 ± 1.6 a0

and at = 77.70 ± 0.4 a0. The most important measurements in our fit were the

measurements of the bound state beneath the resonance at the a+a threshold. The

variation of the gradient of a bound state as it approaches the threshold is intimately

related with the difference between as and at. We found that resonance positions

measured with atom-loss spectroscopy were less accurate than previously thought.

We used our new potential to study and characterize the resonances at the lowest

thresholds beneath 600 G.

One set of the Feshbach resonances that will exist in the collisions between
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alkali-metal atoms and 2Σ molecules is analogous to the Feshbach resonances that

exist between alkali-metal atoms. In Chapter 4 we used Rb+CaF as a prototype

system and studied these resonances. We found that the density and widths of

these resonances depend strongly on the singlet and triplet scattering lengths as

and at. These scattering lengths are currently unknown for Rb+CaF collisions. We

undertook coupled-channel calculations with a variety of different potentials, that

produced different values of as and at, and found that it is likely multiple resonances

will exist beneath 1000 G. We found that a number of these resonances will be suffi-

ciently broad such that the s-wave scattering length may be tuned with a magnetic

field in experiments and that triatomic molecules may be formed via magnetoasso-

ciation. Additional Feshbach resonances may be caused by states with excited CaF

rotation. We discussed the nature and the likelihood of these resonances.

Chapters 3 and 4 are related to one another by the physics that underpins mag-

netoassociation; zero-energy magnetically tuneable Feshbach resonances. By con-

sidering these resonances in more simple atomic collisions and more complex atom-

molecule collisions we have captured one of the current challenges for ultracold AMO

physics; how to control the interactions between larger and more complex species

and how to produce larger molecules with novel properties at ultracold temperatures.

Chapters 5 and 6 constitute an investigation into mergoassociation, a novel

method used to produce ultracold molecules. Mergoassociation was first observed in

an experiment in 2023 [199]. In mergoassociation two atoms are held in two separate

traps, and the separation between the atoms is reduced. Molecule formation occurs

at an avoided crossing between a molecular state and the lowest motional state of

the atom pair. We developed coupled-channel methods to study the energy levels

of the relative motion of two atoms confined in two separate harmonic traps. We

quantified the effects of trap strength and trap anisotropy on the energy levels of

mergoassociation and the avoided crossing responsible for molecule formation. To

further our understanding of the mergoassociation process we developed a basis-set

method. This method was computationally efficient and allowed us to derive a series
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of approximations to the strength of the lowest avoided crossing and elucidate its

dependence on trap strength and anisotropy.

Unlike our coupled-channel approach, the basis-set method was able to account

for the relative and center-of-mass motions of two atoms confined in two separate

traps. These motions are coupled when the traps have different frequencies. We used

our basis-set method to explore the levels with excited center-of-mass motion, and

the consequences of the coupling between the relative and center-of-mass motions

in Chapter 6. We found that patterns of levels and the avoided crossings between

levels showed a wide variety of behavior which was determined by the strength

of the coupling. We discussed the consequences of mergoassociating motionally

excited atoms and found that it is possible to design sequences of merging that

will achieve efficient molecule formation. Our work primarily addressed RbCs, but

we also explored mergoassociation for species that do not have broad Feshbach

resonances that can be used to produce molecules with magnetoassociation. These

molecules included 87Rb87Sr, 133Cs176Yb, and 87Rb174Yb. Optical tweezer traps

are typically anisotropic and we discussed the interplay of trap anisotropy and the

coupling between the relative and center-of-mass motions.

By considering both magnetoassociation and mergoassociation we have explored

two different approaches to molecule formation. The former is a well-established

technique in ultracold AMO physics. The latter is novel and may prove useful in

the future for generating molecules at ultracold temperatures. Mergoassociation

will be particularly advantageous for generating species that do not exhibit broad

Feshbach resonances in the collisions of their constituent particles.

The excitement around, and the importance of the physics that can be explored

with, ultracold molecules shows no sign of fading. As more research is undertaken

and more molecular systems are needed at ultracold temperatures having a variety

of techniques to form molecules will be advantageous.
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The Hamiltonian used in the basis set method for the mergoassociation problem,

addressed in Chapters 5 and 6, is

Ĥ = T̂rel(R) + V trap
rel (R) + Vint(R) + Ĥtrap

com (R) + V trap
cpl (R,R). (A.1)

The basis functions used here are products of functions in the relative coordinate R

and functions in the center-of-mass coordinate R.

A.1 Relative motion

For the relative coordinate, we use a nonorthogonal basis set formed from 3-dimensional

harmonic-oscillator functions |nxnynz⟩ = |nx⟩|ny⟩|nz⟩, supplemented by a single

molecular function |a⟩. The harmonic-oscillator functions are

ψn(α) = = (2nn!βrel,α)−1/2π−1/4Hn((α− α0)/βrel,α) exp(−1
2
((α− α0)/βrel,α)2),

(A.2)

where α = x, y or z, βrel,α = [ℏ/(µωrel,α)]1/2 and Hn(q) is a Hermite polynomial.

The corresponding eigenvalues are

Enxnynz = ℏωrel,x(nx + 1
2
) + ℏωrel,y(ny + 1

2
) + ℏωrel,z(nz + 1

2
). (A.3)

For a contact potential, the molecular function ψa = ⟨R|a⟩ is given by Eq. 5.40 and

its eigenvalue by Eq. 5.41.

The matrix elements for relative motion are as in the previous chapter. The

functions are normalized, so the diagonal elements of the overlap matrix S are all

1. The only non-zero off-diagonal elements of S are those between the molecular

function and the harmonic-oscillator functions,

Sa,nxnynz = ⟨a|nxnynz⟩ =

∫ 2π

0

∫ π

0

∫ ∞

0

ψaψnxnynzR
2dR sin θdθ dϕ. (A.4)
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These are evaluated by 3-dimensional numerical quadrature, using Gauss-Laguerre

quadrature for R, Gauss-Legendre quadrature for θ and equally spaced and weighted

points for ϕ.

The elements of the Hamiltonian matrix for the harmonic-oscillator functions

are

⟨n′
xn

′
yn

′
z|T̂rel(R) + V trap

rel (R)|nxnynz⟩ = Enxnynzδn′
xnxδn′

ynyδn′
znz , (A.5)

⟨n′
xn

′
yn

′
z|Vint(R)|nxnynz⟩ = (2πℏ2a/µ)ψn′

x
(x0)ψnx(x0)ψn′

y
(y0)ψny(y0)ψn′

z
(z0)ψnz(z0).

(A.6)

For the molecular function,

⟨a|T̂rel(R) + Vint(R)|a⟩ = Ea; (A.7)

⟨a|V trap
rel (R)|a⟩ = V trap

rel (R0) +

(
µa2

12

)
(ω2

rel,x + ω2
rel,y + ω2

rel,z). (A.8)

For a pure contact potential, Ea = −ℏ2/(2µa2), but for real potentials this is accu-

rate only for very large positive a [209]; when this approximation breaks down, it is

best to choose a to reproduce Ea, rather than vice versa.

The off-diagonal elements between the harmonic-oscillator functions and the

molecular function are

⟨a|T̂rel(R) + V trap
rel (R)|nxnynz⟩ = EnxnynzSa,nxnynz ;

⟨a|Vint(R)|nxnynz⟩ = −(ℏ2/µ)(2π/a)1/2ψnx(x0)ψny(y0)ψnz(z0). (A.9)

A.2 Center-of-mass motion

To include coupling to center-of-mass motion, we multiply each function in the basis

set for relative motion with a set of 3-dimensional harmonic-oscillator functions in

the center-of-mass coordinates, |NXNYNZ⟩ = |NX⟩|NY ⟩|NZ⟩, with functions Ψα(α)

defined by analogy with Eq. A.2. The matrix elements of T̂rel(R), V trap
rel (R), Vint(R)
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and the overlap matrix are simply multiplied by overlaps between center-of-mass

functions. In the direct-product approach, these are

⟨N ′
XN

′
YN

′
Z |NXNYNZ⟩ = δN ′

XNX
δN ′

Y NY
δN ′

ZNZ
. (A.10)

The matrix elements of Ĥtrap
com are thus

⟨n′
xn

′
yn

′
zN

′
XN

′
YN

′
Z |Ĥtrap

com (R)|nxnynzNXNYNZ⟩ = ENXNY NZ
δn′

xnxδn′
ynyδn′

znzδN ′
XNX

δN ′
Y NY

δN ′
ZNZ

;

(A.11)

⟨aN ′
XN

′
YN

′
Z |Ĥtrap

com (R)|aNXNYNZ⟩ = ENXNY NZ
δN ′

XNX
δN ′

Y NY
δN ′

ZNZ
;

(A.12)

⟨aN ′
XN

′
YN

′
Z |Ĥtrap

com (R)|nxnynzNXNYNZ⟩ = ENXNY NZ
Sa,nxnynzδN ′

XNX
δN ′

Y NY
δN ′

ZNZ
,

(A.13)

where

ENXNY NZ
= ℏωcom,X(NX + 1

2
) + ℏωcom,Y (NY + 1

2
) + ℏωcom,Z(NZ + 1

2
). (A.14)
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A.3 Coupling between relative and center-of-mass

motions

The matrix elements of V trap
cpl (R,R) may be factorized

⟨n′
xn

′
yn

′
zN

′
XN

′
YN

′
Z |V trap

cpl (R,R)|nxnynzNXNYNZ⟩

= µ⟨n′
xn

′
yn

′
z|(R−R0)

⊺|nxnynz⟩∆ω2⟨N ′
XN

′
YN

′
Z |R−R0|NXNYNZ⟩, (A.15)

⟨aN ′
XN

′
YN

′
Z |V trap

cpl (R,R)|aNXNYNZ⟩

= µ⟨a|(R−R0)
⊺|a⟩∆ω2⟨N ′

XN
′
YN

′
Z |R−R0|NXNYNZ⟩, (A.16)

⟨aN ′
XN

′
YN

′
Z |V trap

cpl (R,R)|nxnynzNXNYNZ⟩

= µ⟨a|(R−R0)
⊺|nxnynz⟩∆ω2⟨N ′

XN
′
YN

′
Z |R−R0|NXNYNZ⟩. (A.17)

(A.18)

where

⟨a|R−R0|a⟩ = −R0. (A.19)

Matrix elements involving (R−R0)|nxnynz⟩ are evaluated using the identity

(z − z0)|nz⟩ = 2− 1
2βrel,z

(√
nz |nz − 1⟩ +

√
nz + 1 |nz + 1⟩

)
, (A.20)

and similarly for other components. Thus

⟨a|z − z0|nxnynz⟩ = 2− 1
2βrel,z

(√
nz Sa,nxnynz−1 +

√
nz + 1Sa,nxnynz+1

)
(A.21)

⟨n′
xn

′
yn

′
z|z − z0|nxnynz⟩ = δn′

xnxδn′
yny2− 1

2βrel,z
(
δn′

z ,nz−1

√
nz + δn′

z ,nz+1

√
nz + 1

)
,

(A.22)

with similar expressions for x− x0, y − y0. For the center-of-mass coordinates, the
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analogous expressions are

⟨N ′
XN

′
YN

′
Z |Z − Z0|NXNYNZ⟩ = δN ′

XNX
δN ′

Y NY
2− 1

2βcom,Z

(
δN ′

Z ,NZ−1

√
NZ + δN ′

Z ,NZ+1

√
NZ + 1

)
,

(A.23)

and similarly for X −X0 and Y − Y0.

A.4 Shifted-molecule basis set

For the shifted-molecule basis set, the center-of-mass functions |ÑXÑY ÑZ⟩ are

shifted in R for functions containing |a⟩ but not for those containing |nxnynz⟩.

This leaves Eqs. A.11 and A.16 unchanged, but Eqs. A.12 and A.17 are replaced by

⟨aÑ ′
XÑ

′
Y Ñ

′
Z |Ĥtrap

com (R) + V trap
cpl (R,R)|aÑXÑY ÑZ⟩

=
(
EÑXÑY ÑZ

− µ

2
R⊺

0∆ω
2∆R

)
δÑ ′

XÑX
δÑ ′

Y ÑY
δÑ ′

ZÑZ
. (A.24)

The matrix elements (A.13) and (A.18) are also modified because |NXNYNZ⟩ and

|ÑXÑY ÑZ⟩ are nonorthogonal,

⟨aÑ ′
XÑ

′
Y Ñ

′
Z |Ĥtrap

com (R)|nxnynzNXNYNZ⟩

= ENXNY NZ
Sa,nxnynz⟨Ñ ′

X |NX⟩⟨Ñ ′
Y |NY ⟩⟨Ñ ′

Z |NZ⟩; (A.25)

⟨aÑ ′
XÑ

′
Y Ñ

′
Z |V trap

cpl (R)|nxnynzNXNYNZ⟩

= µ⟨a|(R−R0)
⊺|nxnynz⟩∆ω2⟨Ñ ′

XÑ
′
Y Ñ

′
Z |R−R0|NXNYNZ⟩, (A.26)

where the overlap integrals between shifted and unshifted functions along each

Cartesian axis α are [228]

⟨m̃|n⟩ =

(
m!

2n−mn!

) 1
2

ρn−m
α Ln−m

m (ρ2α/2) exp(−ρ2α/4). (A.27)

Here ρα = ∆Rα/βcom,α, n ≥ m and Ln−m
m is an associated Laguerre polynomial.

The matrix elements of R − R0 in Eq. A.26 are expressed in terms of their
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Cartesian components,

⟨Ñ ′
XÑ

′
Y Ñ

′
Z |Z − Z0|NXNYNZ⟩ = ⟨Ñ ′

X |NX⟩⟨Ñ ′
Y |NY ⟩2− 1

2βcom,Z

×
(
⟨Ñ ′

Z |NZ − 1⟩
√
NZ + ⟨Ñ ′

Z |NZ + 1⟩
√
NZ + 1

)

(A.28)

and similarly for X −X0 and Y − Y0.

Finally, the non-zero off-diagonal elements of the overlap matrix are

⟨aÑ ′
XÑ

′
Y Ñ

′
Z |nxnynzNXNYNZ⟩ = Sa,nxnynz⟨Ñ ′

X |NX⟩⟨Ñ ′
Y |NY ⟩⟨Ñ ′

Z |NZ⟩. (A.29)
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(125) R. Coté, A. Dalgarno and M. J. Jamieson, Physical Review A., 1994, 50,

399.

(126) C. Linton, F. Martin, A. J. Ross, I. Russier, P. Crozet, A. Yiannopoulou, L.

Li and A. M. Lyyra, Journal of Molecular Spectroscopy, 1999, 196, 20–28.

(127) G. Ihm, M. W. Cole, F. Toigo and J. R. Klein, Physical Review A, 1990, 42,

5244–5252.

(128) T. Takekoshi, M. Debatin, R. Rameshan, F. Ferlaino, R. Grimm, H.-C.
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