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Abstract

In this thesis, we present the DESI Y1 Bright Galaxy Survey (BGS) Luminosity
Functions (LFs) in the r, g, z and w1-bands from 0.002 < z < 0.6. To do this,
we describe a method for finding k-corrections based on the FastSpecFit (FSF) k-
corrections; an evolutionary model for finding e-corrections; and a series of weights to
account for target and redshift incompleteness of the BGS Y1 survey. We construct
LFs that are extremely faint, reaching magnitudes of Mr − 5 log h ∼ −10 in the r-
band. Moreover, we observe the existence of an upturn in the LFs at Mr − 5 log h >
−15. These LFs are in agreement with those presented in the literature. We further
validate our results by using a range of methodologies (1/Vmax, 1/Vdc, max, SWML)
to construct the LFs, which broadly agree with each other. We note some areas
where further investigation is needed. This includes a disparity between the North
and South LFs at the bright end, a potential need for a more complex evolutionary
model, and the issue of imaging systematics at the faint end of the LF. Nevertheless,
the small jackknife errorbars on our global LFs demonstrate that our results are well-
constrained, and these errors will only become smaller with the release of the Y3
and Y5 BGS datasets. Moreover, we confirm that our methodology of dealing with
the differing photometry in North and South is broadly successful.

We extend this analysis by using the luminosity function to investigate the en-
vironmental dependencies of galaxies. In particular, we investigate how luminosity
and colour depend on local density, and present our results here. These results
agree well with prior results in the literature from GAMA, indicating that we have
developed a successful methodology for dealing with boundary corrections and holes
in the survey. Although the effective volume of the BGS survey is similar to the
GAMA results due to boundary corrections, this will yield promising results on the
Y3 and Y5 results which will be more complete and will have a much larger effective
volume.

Finally, we then use our methodology to generate 1/Vmax Stellar Mass Functions
(SMFs). With these SMFs, we help to test and validate a new methodology called
Photometric Objects Around Cosmic Webs (PAC). PAC was developed to estimate
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the excess projected density distribution of a spectroscopic catalogue by utilising the
signal in the cross-correlation of faint galaxies from the Legacy photometric surveys
with the brighter DESI BGS galaxies with known spectroscopic redshift. In doing
so, PAC can estimate the SMF in a novel way, and yields results that agree with
our 1/Vmax SMF above 109M⊙ but currently differs at the low-mass end. Both our
LF and SMF results serve as useful results that can act to better constrain and
distinguish between different galaxy formation models.
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CHAPTER 1

Introduction

The nature of galaxy formation and evolution has been a significant question in

the history of astrophysics. In Chapter 1, we outline the background of galaxy

formation and evolution, highlighting the question of interest in this thesis: how

does the environment affect galaxy evolution?

1.1 Introduction to Cosmology

In order to understand galaxy formation, it is important to outline some of the fun-

damental principles of cosmology which are important in this process. The universe

is observed to be expanding (Bahcall, 2015; Hubble, 1929) with recent observations

finding that this rate of expansion is accelerating (e.g: as demonstrated by Type

Ia Supernovae observations in Riess et al., 1998). In addition, the universe is con-

sidered to be homogeneous and isotropic on sufficiently large scales, typically at

length scales of > 150h−1Mpc. This is known as the Cosmological Principle (Bar-

row, 1989; Marinoni et al., 2012). The assumption that the Cosmological Principle

holds is a major underpinning of cosmology, allowing for the use of the Friedmann-

Lemâıtre-Robinson-Walker (FLRW) metric and the later derivation of a number of

1



fundamental equations in cosmology (Melia, 2022). In order for homogeneity and

isotropy to be preserved over time, the universe must expand by some scale factor

a(t) that is the same throughout the universe, such that

Dp(t) = a(t)Dp(t0), (1.1)

where Dp(t) is the proper distance at time t, and t0 represents the present day.

The proper distance is the length between two objects defined along a space-like

path (Wald, 1984). By definition, a(t0) = 1. The scale factor allows for a useful

conversion between proper and co-moving coordinates: r(t) = a(t)x, where x is the

co-moving coordinate and r(t) is the proper coordinate. From this definition of the

scale factor, the relationship between velocity and proper distance may be derived

as

v =
dDp

dt
=

d

dt
(aDp,0) = ȧDp,0 =

ȧ

a
Dp = H(t)Dp, (1.2)

where we define H(t) = ȧ/a. The velocity of objects caused solely by the expansion

of the universe is known as the Hubble flow. Note that H(t0) = H0 is the Hubble

constant, the present-day rate of expansion that is a constant in space, but not time.

There is significant debate as to the exact value of the Hubble constant, with low red-

shift observations giving notably different results from high redshift CMB observa-

tions. For example, Planck CMB observations give H0 = 67.66±0.42 km s−1Mpc−1

(Planck Collaboration et al., 2020), while more local observations such as SH0ES

find H0 = 73.04± 1.04 km s−1Mpc−1 (Riess et al., 2022). This disparity, known as

‘Hubble tension’, is an unsolved problem in cosmology to date and likely illustrates

that we have an incomplete picture of cosmology (see Freedman, 2021, for a compre-

hensive summary with discussion of potential solutions). As we shall subsequently

show in this section, many cosmological quantities such as distances are dependent

on the value of H0. Many papers define H0 ≡ 100h km s−1Mpc−1, where h is a

dimensionless constant used in distance units (e.g. h−1Mpc) so that the numerical

values of distances do not depend on the uncertainty in the Hubble constant.

The expansion of the universe results in photons being redshifted, where the

2



wavelength λ ∝ a. A source can also be redshifted due to peculiar velocities, due

to velocities relative to the Hubble flow causing a Doppler effect, or due to photons

leaving gravitational potentials leading to gravitational redshifting (Weinberg, 2008).

However, on sufficiently large scales, cosmological redshift dominates. The redshift,

z, of an object may be defined as

z =
λobs − λemit

λemit

, (1.3)

where λobs is the wavelength of the photon measured by an observer, and λemit is

the emitted wavelength of the photon at its source. Using the fact that λ ∝ a, it

follows that

a(z) =
1

1 + z
. (1.4)

The expansion of the universe may be characterised by the Friedmann Equations,

which are derived from the Einstein Field Equations (Weinberg, 2008). The first

and second Friedmann Equations are

H2(t) ≡
(
ȧ

a

)2

=
8πGρ(t)

3
− Kc2

a(t)2
+

Λc2

3
, (1.5)

and

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λc2

3
, (1.6)

where ρ(t) is the density of the universe at time t. K is a constant that corresponds

to the curvature of the universe. For a flat universe, K = 0. For a positively

curved universe, K > 0, and for a negatively curved universe, K < 0. Empirical

observations suggest that the universe is flat (Efstathiou & Gratton, 2020). Λ is the

cosmological constant, which drives the acceleration of the expansion of the universe

(see the discussion of dark energy below). p is the pressure. For a flat universe with

Λ = 0, H2 = 8πGρ/3. From this, we define

ρcrit =
3H2

0

8πG
(1.7)

3



as the critical density of the universe (the mean density in a flat universe with no

cosmological constant). This is then used as a normalisation factor to define density

parameters for different components of the universe,

Ωi =
ρi
ρcrit

. (1.8)

By modelling the universe as a perfect fluid, we can use the equation of state

relating ρ and p

p = wρc2, (1.9)

where w is a constant. By combining this with the second Friedmann equation,

ρ̇

ρ
= −3(1 + w)

ȧ

a
(1.10)

which has the solution

ρ(t) ∝ a(t)−3(1+w). (1.11)

In other words, the density of the universe is dependent on a(t) and w. There

exist several different components of the universe, which in turn have different values

of w. This indicates that different components of the universe have a differing

density evolution. The components of particular interest are matter (baryonic and

dark) (Ωm), radiation (Ωr), vacuum energy (ΩΛ ≡ Λc2/(3H2
0 )), and curvature (ΩK ≡

−Kc2/a2H2
0 ).

Specifically, we denote matter to refer to material with a non-relativistic thermal

velocity, including baryonic matter. From this non-relativistic condition, pm ≪ ρmc
2,

which implies that w = 0. From this, Ωm ∝ (1 + z)3. Radiation refers to particles

that are relativistic. This includes photons as well as other high-velocity particles.

Radiation follows pr = (1/3) ρrc
2 with w = 1/3, resulting in Ωr ∝ (1 + z)4.

In addition to matter and radiation, we require a negative pressure to account

for the observed acceleration of the expansion of the universe. In order for ä > 0,

4



one requires ρ+3p/c2 < 0, which means p < (−1/3) ρc2. In other words, there exists

a component with w < −1/3. The vacuum energy is a Lorentz invariant non-zero

energy that is postulated to exist due to the quantum field of the vacuum. Due

to this invariance across frames, the pressure is constant such that pΛ = −ρΛc
2.

The vacuum energy is equivalent to the cosmological constant with Λ = 8πGρΛ/c
2,

where a value of Λ > 0 results in acceleration. Additional components may be seen

in the literature, such as neutrinos (Ων), but are not used in this thesis. We note

that Ω =
∑

iΩi = 1 for a flat (K = 0) universe, which follows from Eqn. 1.5. From

the above, we can write

(
H

H0

)2

= Ωm(1 + z)3 + ΩΛ + Ωr(1 + z)4. (1.12)

Given that these densities have different time dependencies, the dominant com-

ponent of the universe has changed over time. In the early universe, the universe was

radiation dominated. Later on, the universe became matter dominated. Today, the

universe is dominated by the (dark) energy density associated with the cosmological

constant.

The current prevailing consensus amongst cosmologists is that the universe is

best described by the ΛCDM model (Blanchard et al., 2024). In this model, there

exists non-relativistic (‘cold’) dark matter which is unobservable except through

gravitational interactions. Dark matter existence has been inferred through galaxy

rotation curves (Rubin et al., 1980), and through weak lensing studies (Huterer,

2010). The identification of DM remains an ongoing mystery for observers and

theorists alike, with major contenders for DM including axions (Adams et al., 2023)

and WIMPS (Roszkowski et al., 2018). In addition, there exists dark energy (in

the form of the cosmological constant Λ), which acts as a negative pressure driving

the accelerated expansion of the universe. The ΛCDM model is not perfect, and

a number of problems have emerged over the last few decades (Perivolaropoulos &

Skara, 2022). However, the ΛCDM model remains the most widely supported model

in cosmology at the present time (Blanchard et al., 2024).

There are various distance definitions that are used in cosmology. One useful
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definition is the comoving distance (dc, sometimes denoted χ in the literature). We

define a comoving coordinate system which moves with the Hubble flow - that is,

comoving coordinates expand with the universe. From this, the comoving distance

relates to the proper distance in a flat universe as

dc =
Dp(t)

a(t)
= Dp(t)(1 + z). (1.13)

We note that D(t0) = Dp(t)/a(t), confirming the time-independence of the co-

moving distance. Moreover, we can define the luminosity distance, dL, in a flat

universe as

dL = c(1 + z)

∫ z

0

dz′

H(z)
, (1.14)

which is in turn related to the comoving distance as

dL =
dc
a(t)

= dc(1 + z). (1.15)

We emphasise that these equations are for a flat universe, see e.g: Section 3.4 of

Peacock (1999) for the more general case.

1.2 Introduction to Galaxy Formation

Very shortly after the Big Bang, the universe underwent a period of rapid expansion

known as cosmic inflation (Guth, 1981). During inflation, quantum fluctuations

in the scalar field are stretched, resulting in the initial density perturbations from

which structure grows (Linde, 1982). These density perturbations, otherwise known

as overdensities, are observed to be scale-invariant (as is predicted in the inflationary

model). Over time, this leads to hierarchical structure formation - whereby these

density perturbations led to the formation of Large Scale Structure (LSS). Density

perturbations are formally defined as

δ(x, t) =
ρ(x, t)− ρ̄(x, t)

ρ̄(x, t)
, (1.16)
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where ρ(x, t) is the density of the point and ρ̄(x, t) is the mean density of the

universe. For an overdensity, ρ(x, t) > ρ̄(x, t). Initially, overdensities undergo linear

growth when |δ| = | δρ
ρ̄
| << 1. In this linear regime, the perturbations can be

calculated exactly using perturbation theory (Peebles, 1980). Assuming a ΛCDM

universe, the linear perturbation equation is

∂2δ

∂t2
+ 2H(t)

∂δ

∂t
− ∇2

xδp

a2ρ̄
− 4πGρ̄(t)δ = 0. (1.17)

This equation assumes that the fluid is Newtonian. In the relativistic case, the final

term is modified to (32πG/3)ρ̄(t)δ (Lima et al., 1997). For the case of cold dark

matter, which can be treated as a fluid with p = 0, the above equation may be

solved using separation of variables, δ(x, t) = A(x)D(t), to yield

δ(x, t) = A(x)D+(t) +B(x)D−(t), (1.18)

where D+(t) and D−(t) are the growing and decaying modes respectively. Typically

the decaying mode is neglected as the ratio of the growing modes between two time

periods t1 and t2 will be much greater than the comparable decaying mode ratio for

t2 >> t1. In other words, any decaying mode will decay to a negligible amplitude

in the long-run. In the linear regime, all modes evolve as δ ∝ D+(a) where D+(a) is

called the growth factor. The differential equation that characterises linear growth

is evidently dependent on the cosmology of the universe. It can be shown that

D+(a) ∝


a2, if a < aeq

a, if aeq < a < aDE

constant, a > aDE,

(1.19)

where aeq represents the scale factor at matter-radiation equality, and aDE repre-

sents the scale factor at matter-dark energy equality. Eventually, as the overdensity

becomes larger over time, it can no longer be modelled by linear theory as it moves

into the non-linear growth regime. Whilst structures in the linear regime expand

with the Hubble flow of the universe, non-linear structures will separate from the
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Hubble flow and start to collapse. It is not possible to analytically solve for clus-

tering in the non-linear regime. As a result, various N-body simulation techniques

have been developed to follow perturbations into the non-linear regime, pioneered

by Efstathiou & Eastwood (1981) and Aarseth et al. (1979). This results in the for-

mation of gravitationally bound structures. In particular, dark matter (DM) haloes

are formed in this process, which can then act as gravitational potential wells for fur-

ther structure formation. These haloes may undergo two major methods that lead

to mass growth: the accretion of dark matter onto the halo, and DM halo mergers.

This follows a ‘bottom-up’ approach of hierarchical structure formation where small

structures form first and subsequently merge to create larger ones (White & Frenk,

1991).

Baryonic gas may form an inflow into the DM halo, resulting in regions of high

density gas. This gas is typically heated by shocks during accretion. Various pro-

cesses result in the cooling of the gas. For example, the dominant form of cooling

on galactic scales are recombination lines. Another less prominent mechanism for

cooling is Bremsstrahlung for high temperature gas (T ∼ 107K). Additionally, in-

verse Compton scattering is important in the early universe. This cooling leads to a

reduction in the gas pressure that acts against gravity, leading to collapse into discs

that are supported by angular momentum. Eventually, once the surface density

is high enough, star formation will begin to occur, resulting in a galaxy (Rees &

Ostriker, 1977).

Galaxies are typically classified as a given morphology based on the Hubble

tuning fork which divides galaxies into ellipticals and spirals, as well as irregulars

(Longair, 2008). This system is useful as a classification system for most luminous

galaxies, with only a small proportion of irregular galaxies. The origin of the abun-

dances of these different morphologies remains a somewhat open question. In the

paradigm of hierarchical structure formation, the inflow of baryonic gas forms spiral

galaxies. However, later galactic mergers and tidal forces are proposed as a dom-

inant mechanism for the production of elliptical galaxies (Gott, 1975; Kormendy

et al., 2009). In addition, the proportion of ellipticals and S0 galaxies increases with

local density, while the proportion of spiral galaxies decreases (Dressler, 1980). This
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indicates an important role for the environment in influencing the morphological

evolution of galaxies.

Whilst the fundamental details of galaxy formation are outlined above, this is

by no means a solved area of astrophysics. In particular, the picture becomes more

complicated when baryonic matter must be considered. Various models have sought

to simulate galaxy formation with different parameters - including semi-analytic

models and hydrodynamic simulations to better understand the role of various pro-

cesses in galaxy formation (Bower et al., 2006; Cole et al., 2000; Crain et al., 2015;

Kauffmann et al., 1993).

Hydrodynamic simulations can directly follow the shock heating and cooling gas

dynamics but require sub-grid analytic models for other processes. This includes

star formation and the corresponding feedback into the ISM from supernovae and

stellar wind, AGN accretion and feedback, and black hole dynamics. Examples of

hydrodynamic simulations include EAGLE (Crain et al., 2015) and FLAMINGO

(Schaye et al., 2023). Parameters in all of these models are calibrated based on

empirical observations. For example, this typically includes selecting star forma-

tion parameters based on the Kennicutt-Schmidt law (Kennicutt, 1998). Generally,

simulations are calibrated based on the local Stellar Mass Function (SMF) and the

galaxy LF which can constrain a combination of the halo mass function feedback

parameters.

Semi-analytic models (SAM) use approximate, analytical methods to investigate

galaxy formation processes. SAMs make use of DM merger trees which are typi-

cally found using N-body simulations with specific cosmological parameters. Alter-

natively, they may use analytic approximations such as extended Press-Schechter

formalism (Bond et al., 1991; Bower, 1991; Press & Schechter, 1974). For SAMs,

it is necessary to consider the processes that lead to observable galaxy properties

from the DM haloes. This includes gas cooling, star formation, feedback systems,

galaxy mergers, chemical/metallicity evolution, and many more factors. Despite sig-

nificant progress over the past few decades, many of these processes remain poorly

understood. As a result, these processes are not directly simulated in SAMs, but

rather these are modelled by general scaling/power laws. Prominent examples of
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semi-analytic models include models from the Durham group such as GALFORM

(Cole et al., 2000), models from the Munich group such as SAGE (Croton et al.,

2006; Croton et al., 2016), and models from the Santa Cruz group (Somerville et al.,

2008).

There are various reasons why one approach may be favoured over the other.

For example, SAMs tend to be less computationally expensive to run compared to

hydrodynamic simulations due to their treatment of sub-grid physics. This allows

for a much larger number of galaxies to be used. It should be noted that comparisons

of the two approaches generally show good agreement in specific cases - for example,

in a ‘stripped-down’ version of GALFORM that only incorporates shock heating and

radiative cooling of gas, there is strong agreement between the predictions of the

two models for the galaxy mass distribution and the two-point correlation functions.

(Helly et al., 2003). However, there are many observed differences between the

predictions of many of these models. A comparison of EAGLE and GALFORM

finds that there are some substantial differences in their predictions. For example,

Guo et al. (2016) finds that GALFORM leads to different metallicity distributions

as a function of stellar mass and broadly a low evolution in the star formation rate.

Mitchell et al. (2017) extends this analysis by galaxy matching, showing that there

exists divergence in the stellar mass distribution at high redshift (and hence different

stellar evolution) between the two models. Moreover, GALFORM overestimates the

stellar specific angular momentum. In short, there remain significant differences

between various hydrodynamic and semi-analytic models. Generally, these various

models also still differ from empirical observations, suggesting that there remains

physics to be understood (Naab & Ostriker, 2017).

Importantly, in both hydrodynamic simulations and semi-analytic models, there

are freedoms as they are not able to directly simulate a number of the processes.

These free parameters have to set by comparison to observations, of which the

galaxy LF is one of the most fundamental. In particular, the LF has been essential

in constraining the SN and AGN feedback parameters. Specifically, SN feedback aids

the process of reducing galaxy formation in low mass haloes, resulting in a reduction

in the faint-end of the LF (Kim et al., 2012) and AGN feedback is important in
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reducing galaxy formation in high mass haloes (Bower et al., 2006). Moreover,

different choices of these free parameters will alter such things as the balance between

AGN and SN feedback and the haloes and environments in which they occur. This

will inevitably give rise to differing environmental dependencies of galaxy properties

for different parameter choices. As a result of this, accurate measurements of how

galaxy properties depend on environment can distinguish between galaxy formation

models.

1.3 The Role of Environment

The role of the environment in influencing the properties of a galaxy in its formation

and evolution is a topic of significant interest. In the past, several studies have

sought to investigate these environmental dependencies, including the dependence

of luminosity and colour on local density (McNaught-Roberts et al., 2014) and cosmic

web classification (Kraljic et al., 2017).

These studies have been facilitated by large redshift surveys which have surveyed

a large area of the sky to sufficiently high redshifts to high completeness. This has

allowed for data analysis on a large catalogue of galaxies to produce statistically

significant results. In particular, the galaxy luminosity function (LF) is a method of

choice for investigating these environmental dependencies. The LF, sometimes split

by colour or morphology, has been used to investigate how the distribution of lumi-

nosity depends on environmental measures such as local density (McNaught-Roberts

et al., 2014), void/filament/cluster classification (Kraljic et al., 2017; Moorman et al.,

2015), group multiplicity (Robotham et al., 2010), virial mass, and other factors.

For example, McNaught-Roberts et al. (2014) uses GAMA DR2 data (Driver

et al., 2011) to confirm a significant impact of environment on colour, finding that

red galaxies dominate in overdense environments while blue galaxies dominate in

underdense environments. Tempel, E. et al. (2011) finds using SDSS DR7 data

that the impact of environment is highly dependent on morphology. In particular,

the LF of elliptical galaxies is highly dependent on environment, whereas the LF

of spiral galaxies is independent of environment. Moreover, density is found to be
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more important for influencing the red elliptical LF than the blue elliptical LF.

In addition, the impact of environment on the faint-end of the LF has been

investigated in various papers (Barrena, R. et al., 2012; Liu et al., 2008; Trentham

& Tully, 2002). For example, Liu et al. (2008) finds that in the COSMOS field,

the faint-end slopes of the LF differ for different SED categories, and additionally

become less steep as a function of redshift. This has been attributed to either

evolution of the LF, or the existence of low surface brightness dwarf galaxies that

are undetected at high redshifts. The analysis of Trentham & Tully (2002) presents

the LF as faint as Mr − 5 log h ∼ 10 for different galaxy densities and morphologies,

finding the faint end of the LFs to be lower than predicted.

An empirical measurement of the LF is important to better assess and con-

strain theoretical models of galaxy formation; theoretical models must agree with

the measured LF. Given the large amount of data that DESI will be recording, it will

significantly improve LF measurements from its large sample size. Statistical errors

in the LF will be small - instead, it will be more important than ever to carefully

consider the systematics. The LF has been a useful method for validating various

galaxy formation models. In particular, models can investigate the processes that

impact the faint-end of the LF. For example, Mathis & White (2002) use simulations

of the local universe to investigate voids, and predict that in underdense regions, the

slope of the LF will be higher than in overdense regions. McNaught-Roberts et al.

(2014) finds empirically that the faint end of the LF steepens with overdensity only

in overdense regions for a given galaxy population.

A number of papers have found the faint-end of the LF to be less steep than

predicted by numerical simulations (Hoyle et al., 2005; Moretti, A. et al., 2015)

suggesting that there is further scope to improve galaxy simulations. A major aim

of this thesis is to use the DESI survey to make more accurate measures of the

environmental dependence of the galaxy luminosity function.
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1.4 Introduction to DESI

The Dark Energy Spectroscopic Instrument (DESI) is a next-generation Stage IV

survey1 based at Kitt Peak, Arizona as part of the 4-m Mayall Telescope. The pri-

mary goal of DESI is to measure various aspects of the LSS in order to constrain

a range of cosmological parameters to sub-percent precision. This includes Baryon

Acoustic Oscillations (BAOs) across a range of redshift ranges, in addition to Red-

shift Space Distortions (RSDs). In order to accomplish this, DESI will observe

galaxies over an approximate area of 14,000 deg2.

The DESI focal plane consists of 5000 robotically controlled fibre positioners

which each hold a unique fibre for object targeting. There exist fibres which are

used for other purposes, such as sky brightness observations. This focal plane is

divided into 10 separate regions called ‘petals’, each consisting of 500 fibres (Silber

et al., 2022). Each fibre from each petal is in turn connected a three-arm spectro-

graph containing three spectroscopic cameras with wavelength ranges 3600–5800 Å,

5760–7620 Å and 7520–9824 Å (DESI Collaboration et al., 2024c).

As part of the DESI project, there are five main target classes: Emission Line

Galaxies (ELGs), Luminous Red Galaxies (LRGs), quasars (QSOs), the Milky Way

Survey (MWS) and the Bright Galaxy Survey (BGS) (DESI Collaboration et al.,

2016). There are additional secondary classes not discussed here. This thesis will

focus on BGS, further detailed in Section 2.1.

DESI operations began in 2019 and have continued to the present, with some

minor disruptions. As a brief outline to DESI operations, the major data releases are

SV1, SV3 and Y1. SV1 was a data commissioning release that ran from 2020-dec-14

to 2021-april-02 and was used for initial testing of target selection (Myers et al.,

2023). This dataset was spatially highly incomplete with varied target selection

cuts (with the aim of investigating the most efficient selection cuts) but had longer

1Stage IV is a designation of the Dark Energy Task Force (DETF) commissioned by NSF,
NASA and DOE to designate larger, long-term projects that can better constrain dark energy
measurements. In particular, Stage IV projects aim in combination to minimise the area of the
95% confidence limit in the w0 − wa plane by a factor of 10 from prior dark energy studies, such
as SDSS-II, PanSTARRS-1, ACT, etc. Other examples of Stage IV projects include LSST/Rubin
andSKA. (Albrecht, 2006)
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exposures resulting in higher S/N spectra. SV3 (otherwise called the One-Percent

Survey) ran from 2021-apr-05 to 2021-jun-10 and was designed to be a highly com-

plete sample with high fibre assignment completeness (∼ 95% complete), covering

an area of 180 deg2 (comparable to the total size of the GAMA equatorial fields,

G9, G12 and G15 (Driver et al., 2011)). As such, this is a useful reference dataset

for verifying incompleteness corrections. Moreover, it was designed to be highly

overlapping with other surveys, making it a useful dataset for verification of other

measurements. The Early Data Release (EDR) is a release of spectra taken from the

Survey Validation datasets. In other words, it is a combination of the SV1, SV2 and

SV3 datasets (among others) (DESI Collaboration et al., 2024c). This has been fol-

lowed by the DESI DR1 data, otherwise known as the Year One (Y1) data. The Y1

dataset was taken up to 14-jun-2022 and encompasses the EDR data (DESI Collab-

oration, prep). Further information on the Y1 BGS data is presented in Chapter 2.

Initial work for this thesis was conducted on the SV3 and EDR datasets, however,

this thesis primarily presents results from the Y1 dataset.

1.5 Thesis Roadmap

With the background of galaxy formation outlined, we proceed to investigate LFs

with the DESI BGS Y1 dataset. In Chapter 2 of this thesis, we outline the selection

criteria for DESI BGS Bright and other notable details. In Section 2.4, we describe

our methodology for calculating polynomial-derived k-corrections for each of the

BGS galaxies. In Section 2.5, we outline incompleteness weights, including a new

redshift incompleteness weight that we calculate. In Chapter 3, we outline different

LF methodologies in Section 3.1, including an outline of error estimation. We also

derive an evolutionary correction factor (e-corrections) for the absolute magnitudes,

outlined in Section 3.2. We present the global LFs in the g, r, z and w1 bands

in Section 3.3. We additionally present the colour-dependent LFs in Section 3.5.

Additional analysis of the LFs, including potential imaging issues are discussed in

Section 3.6. In Chapter 4, we outline a method for calculating the local density of

a galaxy, and present density-dependent LFs in Section 4.3. In Chapter 5, we apply
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our LF methodology to present Stellar Mass Functions (SMFs). Final conclusions

on this thesis are presented in Chapter 6.

15



CHAPTER 2

DESI BGS

In this Chapter, we outline the DESI Bright Galaxy Survey (BGS). We present a

method of estimating for all galaxies absolute magnitudes in the same rest-frame

waveband. Additionally, we present a method of calculating redshift incompleteness

corrections for the survey, which we use to calculate new incompleteness weights for

the LF.

2.1 Introduction to BGS

BGS is the division of DESI that focuses on the mapping of more than 10 million

galaxies from 0 < z < 0.6. BGS is divided into two categories: BGS Bright and

BGS Faint. BGS Bright is a r ≲ 19.5 magnitude limited sample. There is an

additional faint fibre magnitude (rfibre) limit included that is far away from the

locus of galaxies (Hahn et al., 2023). The purpose of this selection cut is to remove

spurious objects (Ruiz-Macias et al., 2021). The selection criteria of BGS Bright

are shown in Fig. 2.11. BGS Faint covers the fainter range 19.5 < r < 20.175

1A straight-line locus of objects with a best fit photometric profile in the Legacy Survey of a
PSF can be seen in the left-hand panel of Fig. 2.1. These objects are included in the selection as
they are classified as galaxies by the BGS star-galaxy separator that makes use of higher resolution
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Figure 2.1: Targets for the BGS Bright sample are chosen based on the selection
cuts described in Section 3.1 of Hahn et al. (2023) and an r < 19.5 magnitude cut.
In the left panel, we show these cuts (based on fibre magnitude) and the r < 19.5
cut (black dashed) on the distribution of r vs. rfibre magnitude for LS objects that
pass our star–galaxy selection (grey). The contours mark the 11.7, 39.3, 67.5, and
86.4 percentiles of the distribution (dotted). We also include the r and rfibre cuts for
the BGS Faint sample (dotted–dashed). We impose selection cuts on BGS targets
in order to minimise the number of spurious objects and mitigate any systematic
effects that can affect galaxy clustering analyses. In the right panel, we present the
target density of the BGS Bright targets (colour map). In total, we have 864 targets
deg–2 for the BGS Bright sample. Taken from Hahn et al. (2023).

Figure 2.2: Sky plot of DESI Y1 BGS data. Blue shows the North photometry
region while Red shows the South. The green region is the comparable GAMA
equatorial fields (G9, G12, G15). The solid red line shows the galactic plane while
the dotted red line shows the ecliptic plane. The black box shows the RA and DEC
of the cone plot in Fig. 2.5.
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Figure 2.3: Sky plot of DESI Y1 BGS data showing the density of galaxies with
good redshifts per degree squared. The differing density is due to certain areas of
the sky receiving more passes, making them more complete.

Figure 2.4: Sky plot of DESI Y1 BGS data categorised by NTILE - the number
of times a galaxy could be targeted by a fibre. Large areas of Y1 BGS have only
received one pass, indicating that there are regions of high incompleteness. Solid
and dashed lines are the same as in Fig. 2.2.
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but additionally has a colour-dependent fibre-magnitude limit with the purpose of

removing objects for which the redshift success rate would be low (Hahn et al., 2023).

DESI targets, including those in BGS, are selected based on applying photometric

criteria to the photometric data taken with the DESI Legacy Surveys, BASS/MzLS

in the North and DECaLS in the South (Dey et al., 2019). The target selection

for BGS was developed in Ruiz-Macias et al. (2020, 2021), and the final target

selection procedure is outlined in Hahn et al. (2023); Myers et al. (2023). As a

result of the differing photometry in North and South, the DESI BGS Bright survey

is magnitude-limited to r < 19.54 in the North and r < 19.5 in the South. These

are extinction-corrected apparent magnitudes which are based on the SFD dust map

(Schlegel et al., 1998). Both of these limits were chosen to produce the same surface

density of targets, N ≈ 800 deg−2 in North and South. BGS Bright - which will be

the focus of this paper - is similar to the depth of the Galaxy And Mass Assembly

(GAMA) survey (Driver et al., 2011) and two magnitudes fainter than the SDSS

Main Galaxy Survey (Strauss et al., 2002), but covers a much larger area of the sky

at 14,000 deg2. Moreover, BGS Bright has a median redshift of z ≈ 0.2, double that

of SDSS.

In this thesis, we make use of DESI DR1 data (otherwise known as Year One

(Y1) data). This is the main DESI survey recorded after approximately one year of

operations (as outlined in Section 1.4), with key DESI results released in 2024 (DESI

Collaboration et al., 2024a,b). Our catalogue contains a total of 4,108,130 galaxies,

shown in Fig. 2.2. Fig. 2.2 shows the large area covered by the North (in blue)

and the South (in red). For comparision, the three equatorial fields in GAMA DR4

(G9, G12, G15) are plotted in green. As is typical for most surveys, BGS avoids the

galactic plane due to stellar crowding. Fig. 2.3 and Fig. 2.4 show the same footprint

with the sky density and NTILE values respectively, where NTILE is defined as the

number of times that a target galaxy has been reachable by a fibre. For example,

NTILE=2 means that the target has been within the patrol radius of a fibre in two

separate passes. These plots indicate that there is a wide amount of variation in

GAIA data. Their number density is low as shown in the right hand panel of Fig. 2.1.
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Figure 2.5: Top: Cone plots showing a slice of BGS Y1 for 0 < z < 0.6 for the data
catalogue (left) and the randoms catalogue (right). Bottom: Similar cone plots
showing a zoomed-in slice of BGS Y1 for 0 < z < 0.2, illustrating the LSS seen in
DESI BGS. For all plots, the range is 130 < RA < 220 and −2 < DEC < 4 (as
shown in Fig. 2.2).
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Figure 2.6: The redshift distribution of North and South Y1 BGS objects normalised
by survey area. The weighted distributions make use of the weights defined in
Eqn. 2.4.
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the targeting, with some regions repeatedly targeted by multiple passes, and some

regions targeted just once.

The Large Scale Structure apparent in BGS Bright is shown in Fig. 2.5, which

plots a cone from 130 < RA < 220 degrees, −4 < DEC < 2 degrees. The top-left

plot displays the BGS survey over the entire redshift range considered in this thesis

(from 0 < z < 0.6), while the bottom-left plot zooms in (from 0 < z < 0.2). From

these plots, one can see a great deal of structure, with a large number of observable

filaments and walls. The right-hand plots show a single realisation of the random

catalogues, which covers the entire footprint (see Section 2.3 for further discussion

of the randoms). In addition, we observe in Fig. 2.6 that North and South have

similar dN(z)/dz distributions as expected, although we observe the presence of

some structure as expected.

In addition, the DESI Y1 catalogue also contains data from the Wide-Field

Infrared Survey Explorer (WISE). WISE is a space-based infrared survey which

mapped the whole sky with multiple passes (Wright et al., 2010). This was continued

with the unWISE survey, which obtained deeper imaging through coadds (Schlafly

et al., 2019). In particular, we use magnitudes from the w1 band centred at 3.4µm

with an angular resolution of 6.1”, in order to later present a w1-band LF. The

observer-frame colours for different bands (including the w1 band) are presented in

Fig. 2.7 for both North and South.

2.2 Redshifts

In order to determine the redshifts of galaxies, DESI makes use of Redrock (Bailey

et al., prep), a template-based classifier which classifies spectra as GALAXY, STAR

or QSO and assigns a redshift to each spectrum based on χ2 minimisation of a linear

combination of Principal Component Analysis (PCA) basis spectral templates. This

method also rules out unphysical PCA combinations in its fitting, such as negative

spectra combinations. Redrock templates are constructed using SDSS spectra. Re-

drock additionally generates a ∆χ2 value which is the difference in χ2 between the

best and second-highest likelihood peaks with different redshifts, which acts as a
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Figure 2.7: Observer-frame colour distributions for Y1 BGS Bright. Graphs on
the left represent the North, while graphs on the right represent the South. The
dashed vertical line shows the faint r-band limit of the survey (r = 19.54 for North,
r = 19.5 for South). The red line plots the cumulative distribution function. The
blue contours represent the 25-75th and 5-95th percentile ranges.

23



metric of confidence. Examples of these spectra and their Redrock fits are shown

for BGS Bright and BGS Faint objects in Fig. 2.8.

A large number of spectra were evaluated by visual inspectors to assess the

validity of the Redrock algorithm, as detailed in Lan et al. (2023). For the Main

Survey (Y1), BGS Bright had an assessed Visual Inspection Quality > 2.52 for 99.6%

of galaxies based on 1037 sources, indicating that Redrock returns robust redshifts

for the vast majority of objects. Moreover, Lan et al. (2023) investigates the use

of ∆χ2 as a metric for assessing the reliability of the Redrock redshifts. For BGS

Bright, the authors find a good redshift purity of 100% for ∆χ2 > 40 in the VI

sample of 2718 BGS target galaxies, indicating that this is a useful threshold for

ensuring that sources have the correct redshifts. 97.2% of the VI BGS spectra have

∆χ2 > 40.

2.3 Randoms

To define the selection function of the survey, a catalogue of randomly positioned

points is generated over the DESI sky footprint with a number density of 2500 objects

per square degree per set of randoms. Then, only the randoms that are reachable by

a good fibre of an observed tile are kept in the catalogue. These randoms therefore

completely map out the observed region of the survey. In particular, this footprint

excludes the regions within the observed fields that were never reachable due to

various factors - including but not limited to the gaps between the petals and broken

fibre positioners. These randoms are additionally assigned redshifts and other galaxy

properties, with the assignment done randomly from the selected galaxy sample.

This means that for any subset of the randoms with the same selection as the

data (e.g: with the same apparent or absolute magnitude cuts), the corresponding

data will have the same dN(z)/dz distribution. It should be noted that North

2The Visual Inspection Quality is the average score assigned by human assessers of the BGS
spectra. The scoring criteria is defined as follows: Q=4: Confident classification with two or
more secure features. Q=3: Probable classification with at least one secure spectral feature and
continuum or many weak spectral features. Q=2: Possible classification with one strong (but
unknown) spectral feature. Q=1: Unlikely classification with some signal but features unidentified.
Q=0: No signal. Further details are found in Lan et al. (2023).
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Figure 2.8: BGS galaxy spectra from the One-Percent Survey (grey). We present
spectra of a blue and a red galaxy from the BGS Bright sample and a blue and a red
galaxy from the BGS Faint samples (top to bottom panels). In each panel, we also
plot the spectrum rebinned to a coarser wavelength grid (black) and the measured
uncertainties (orange), and we include the best-fit Redrock template used to measure
the redshift (blue). The redshift measurement, uncertainty, and ∆χ2 from Redrock
are included in the upper right corner, along with the r-band magnitude and fibre
magnitude of the galaxy. Taken from Hahn et al. (2023)

.
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and South property assignment is done separately from each other to allow for the

difference in selection functions. As described in Section 2.1, DESI assigns fibres to

obtain the spectra of galaxies. This means that a single pass will suffer from target

incompleteness as there will be ‘holes’ in the survey, due to the gaps between petals,

holes from where the Guiding, Focusing and Alignment (GFA) cameras are, and

malfunctioning fibres. The distribution of the randoms fully takes this into account,

as shown in Fig 2.5. We use the total number of randoms to quantify the total

area of the sky observed, but also their distribution to map this incompleteness (see

Fig 2.5, in addition to figures 2 and 3 in Ross et al. (prep)) so that we can make

unbiased estimates of the local density when analysing the dependence of the LF on

density.

2.4 k-corrections

Typically, absolute magnitudes are corrected by k-corrections to account for band-

shifting effects, as the observed passband maps to different rest-frame passbands for

galaxies at different redshifts (see Hogg et al., 2002, for a comprehensive overview

of k-corrections). Specifically, in order to compare the photometric properties of

galaxies at different redshifts, we need to transform their photometry to that of a

fixed combination of reference frame and filter curve. For ease of comparison, we

have chosen the SDSS r-band (and g-band) filter curves with a reference redshift of

zref = 0.1 as adopted by Zehavi et al. (2005) and Loveday et al. (2012).

To compute absolute magnitudes and k-corrections, FastSpecFit (FSF) was de-

veloped to perform fast spectral synthesis and emission-line fitting of DESI spectra

and broadband photometry (Moustakas et al., 2023). In particular, FSF works by

simultaneously fitting model SEDs to a combination of the broadband photometry

and the aperture-corrected DESI spectral photometry (Moustakas et al., 2023). This

is shown in Fig. 2.9, which shows an FSF fit for an example BGS object from the

SV3 survey. From these model SEDs, FSF absolute magnitudes and k-corrections

have been calculated. However, these are not convenient for our purposes. Instead,

we require full redshift-dependent k-correction functions so that we can calculate
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Vmax
3 as defined in Eqn. 3.3. As a result, we use the FSF k-correction catalogue as

a basis to which we fit k-correction polynomials as described below.

With the BGS catalogues we provide 0.1Mr, the absolute magnitude in the SDSS

r-band with reference redshift zref = 0.1, defined by

0.1M r − 5 log10 h = mrLS
− 5 log10

(
dL(z)

h−1Mpc

)
− 25

− 0.1krLS→r(z,
0.1(g − r)). (2.1)

Here, the subscript r represents the SDSS r-band, rLS represents the Legacy

Survey band (BASS for the North; DECaLS for the South), 0.1krLS→r(z,
0.1(g − r))

represents the derived polynomial k-correction of the galaxy from the Legacy Survey

observer frame rLS-band to the rest frame SDSS r-band with reference redshift

zref = 0.1. dL(z) is the luminosity distance to the redshift z, determined using the

same cosmology defined in the previous subsection. Optionally and in addition, an

e-correction may be applied in order to account for the intrinsic luminosity evolution

of a galaxy over time (not included in Eqn. 2.1; this is discussed in Section 3.2). Our

methodology is flexible and can provide results for different reference-frame redshifts.

For the sake of simplicity, for subsequent results and plots we use zref = 0.1.

First, we create a rest-frame colour lookup table, where we generate a 2D his-

togram of observer-frame g − r colour against redshift and compute the median

rest-frame FSF colour in each pixel (Fig. 2.10). Using this table, and Cloud-In-Cell

interpolation (Hockney & Eastwood, 1988), each galaxy in the Y1 DESI catalogue

is assigned the median rest-frame colour corresponding with its observed colour and

redshift. This assigned colour is then used to bin the galaxies into 7 rest-frame

colour bins each containing an equal number of objects.

Each colour bin is split into a range of 50 redshift-bins and the median FSF

k-correction is found in each bin. A least-squares polynomial fit is then performed

3Vmax is the volume in which the galaxy can be re-positioned and still satisfy all the selection
criteria to be included in the sample that is being analysed. For instance, there is a maximum
redshift to which the galaxy could be relocated before its apparent magnitude is too faint for it to
be included include in the sample.
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Figure 2.9: An example of the FastSpecFit (FSF) spectral fitting. Left: the de-
rived SED model (grey) against the actual spectra (blue, green, red) where the open
squares represent the predicted photometry in the various bandpasses and the circles
show the actual measurements. Right: the BGS galaxy with apertures shown and
quantities presented which have been derived from the FSF model. The spectrum
captures only the light from the inner aperture shown in the top right panel defined
by the fibre. This is then rescaled by the flux ratio between the outer and inner
apertures. Various quantities are then extracted from this model fit, including the
absolute magnitudes and k-corrections. Adapted with permission from John Mous-
takas.

28



on these median k-corrections to find a 7th-order polynomial for each colour bin.

The choice to fit a 7th-order polynomial was motivated by a number of reasons. We

desired a polynomial fit that would fit well to the data over the entire redshift range.

Moreover, we required that the polynomials did not cross over at any point to avoid

having non-unique k-corrections. Previous studies (McNaught-Roberts et al., 2014)

had conducted the fitting using a 4th-order polynomial, however, we determined

that this did not adequately fit low-redshift objects and led to a slight disparity

between North and South objects. We additionally investigated the use of splines to

neatly fit to the median bins separately for low-redshift and high-redshift regions;

however, this proved to be too flexible, often causing the polynomials to cross at

high-redshift. We settled on the 7th-order polynomial as this fits our data well

including at low-redshift, but does not seem to be prone to over-fitting.

We confirm that the median values match very closely to the fitted polynomials

across all redshifts. This is seen for the South k-correction polynomials in Fig. 2.11.

The North and South are modelled separately, with the polynomial fits compared

in Fig. 2.12. From this plot, we see that the North and South curves are slightly

different reflecting the differences in the North/South photometry. Furthermore, we

note that there is a pinch point at about z = 0.14 which corresponds to the redshift

at which the central wavelength of the DESI r-band filter best matches with that

of the SDSS r-band filter at a reference redshift zref = 0.1. This corresponds to the

3.73% shift in the effective wavelength between the SDSS r-band filter (6205.83Å)

and the BASS r-band filter (6437.79Å), where we note that (1+0.141) / (1+0.1) =

3.73%.

We conducted additional tests to ensure that these k-correction polynomials

remain largely invariant to choices in colour and redshift bin size. For example,

choosing a larger number of colour-bins has a small but negligible impact on the

k-correction polynomials at the colour extremes.

Furthermore, we derive the reference-frame g−r colour and thus also the g-band

k-correction using Eqn. 2.2,
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0.1
kgLS→g(z,

0.1(g − r)) =
0.1
krLS→r(z,

0.1(g − r))

+ 0.1(g − r) −
(
0.1Mg − 0.1Mr

)
(2.2)

Here, we note that Mg − Mr (the rest/reference frame colour) comes from the

lookup table and is therefore a function of g − r and z. This is shown in Fig. 2.12.

For these polynomials, we then utilise a cubic interpolation scheme between these

colour-bin polynomials when assigning k-corrections.

As validation of our k-correction fitting, we confirm that there is a negligible

difference between the Mr given by FSF, and the Mr that we calculate in Eqn. 2.1

using our k-correction polynomials. This is shown in Fig. 2.13, where the median

difference is < 0.01 magnitudes for the two colour bins plotted. Moreover, this

difference remains well-bounded across the entire redshift range, suggesting that

our results should be unaffected by the choice to use polynomial fits rather than the

direct FSF k-corrections.

Fig. 2.14 presents the 0.1(g − r) rest-frame colour distribution and the r-band

absolute magnitude distribution. We observe that there exists a slight offset in the

North and South colour distributions. We attribute this to a possible small error

(0.01 magnitudes) in the calibration of the filter curves.

In addition, we note that we can calculate k-corrections for zref = 0.0 from

zref = 0.1. We present additional results for k-correction transformations in Ap-

pendix A, including the derivation of the relationship between k-corrections of dif-

ferent reference redshifts.

We additionally note that we conducted a similar method of polynomial fitting

for k-corrections for EDR, that we outline in Section 4.2.3 of DESI Collaboration

et al. (2023). We emphasise that this EDR methodology of polynomial fitting is

different to the final version used here for the Y1 data. In particular, those EDR

k-correction polynomials are 4th-order polynomial fits to GAMA DR4 data. Whilst

this was valuable at the time (prior to the release of FSF k-correction data), this

assumes that there is no difference in photometry - i.e: North and South objects with
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Figure 2.10: The rest-frame lookup table for South as a function of redshift and
observer-frame g − r colour. Each pixel value is the median rest-frame colour,
0.1(g−r)med for the galaxies in that pixel bin, based on the FSF rest-frame 0.1(g−r)
colours. For pixels with no galaxies, that pixel is assigned the value of the closest
pixel at that redshift range. A separate lookup table is generated and used for the
North.

the same z and g − r values receive the same k-correction. Here, we have updated

the methodology to make use of a colour lookup table and to directly use DESI BGS

galaxies in order to take account of the DESI photometry and its differences in the

North and South regions.

2.5 Incompleteness Corrections

To construct galaxy luminosity functions, it is important to correct for incomplete-

ness within the DR1 dataset, including systematic effects in the input catalogue,

target incompleteness and redshift incompleteness.
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Figure 2.11: Top: Polynomial fits to the medians in each rest-frame colour bin for
the South. The legend indicates the median rest-frame colour in that rest-frame
colour bin. Bottom: the residual plot, showing that these polynomials are good fits
to the medians. Here, 0.1kr,med is shorthand for the 0.1krLS→r(z,

0.1 (g − r)) value for
each bin, while 0.1kr,curve is the value derived from the polynomial fit.

32



0.4

0.2

0.0

0.2

0.4

0.6

0.8
0.

1 k
r L

S
r(z

,0.
1 (

g
r))

0.1(g r)=0.399
0.1(g r)=0.534
0.1(g r)=0.653
0.1(g r)=0.767
0.1(g r)=0.864
0.1(g r)=0.931
0.1(g r)=0.983

0.0 0.1 0.2 0.3 0.4 0.5 0.6
z

0.5

0.0

0.5

1.0

1.5

0.
1 k

g L
S

g(
z,

0.
1 (

g
r))

Figure 2.12: Top: k-correction polynomials to the SDSS r-band with zref = 0.1
to the DECaLS r-band (South, solid line) and the BASS/MzLS r-band (North,
dashed line). Bottom: The r-band polynomials transformed to g-band k-correction
polynomials using Eqn. 2.2.
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Figure 2.13: The difference of the direct FSF r-band absolute magnitude and our
derived r-band absolute magnitude as a function of redshift using our k-correction
model for the South. The solid blue line plots the median in different redshift bins,
while the dashed blue line is the overall median across all redshifts. The dashed
black line is a reference line at zero. Similar plots exist for the North.
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Figure 2.14: Rest-frame colour vs. absolute magnitude distributions in North and
South. Contours are plotted representing number density, with each successive
contour a factor of 2 larger in number density (starting at 160 objects per bin). The
top histogram shows the 0.1(g − r) colour distribution for North and South. The
right histogram shows the r-band absolute magnitude distribution. Both histograms
have been normalised by sky-area to adjust for the fact that South is approximately
double the size of North.
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2.5.1 Systematic Weights

Typically, a systematic weight (wsys, denoted WEIGHT SYS in DESI catalogues) is

used to account for target density fluctuations due to imaging conditions and fore-

grounds. Specifically, this weight corrects for unphysical correlations of the target

density with dust extinction, stellar density, photometric depth and HI maps (DESI

Collaboration, private correspondence). In clustering analyses, these weights are

important as they account for variation across the sky which impacts the cluster-

ing. However, the LF will only be sensitive to the mean value of the systematic

weights. We observe that these weights are close to unity (with a mean weight

close to unity) and make a negligible difference to our results (shown later on in

Section 3.3, Fig. 3.10). Moreover, these weights have only been calculated for spe-

cific sections used in the LSS analysis, and not as a function of apparent magnitude

(which would be necessary if we were to use them). As such, we have chosen to

ignore this systematic weight in this paper.

2.5.2 Target Completeness Weights

An additional source of incompleteness is target incompleteness, which in this case

is a correction factor to account for targets that were not observed. In tiles for which

there has only been a single pass, there will be target incompleteness as only one

object can be targeted within the unique patrol region of each fibre. This means that

not all targets will be assigned to fibres in regions of high target density. Further-

more, fibres cannot be placed arbitrarily close to each other due to the physical and

mechanical constraints of the fibres. This limit can also lead to observable targets

not being assigned a fibre. The footprint of the survey is determined by the area of

sky that is the union of sky reachable by good fibres on observed fields. DESI con-

ducts multiple passes to reduce target incompleteness. However, in regions covered

by multiple tiles, the target incompleteness is reduced but is rarely completely re-

moved. The target completeness weight (wcomp, denoted WEIGHT COMP in DESI

catalogues) is defined in DR1 as the inverse of fTLID, i.e: the inverse of the number

of targets sharing the same same tile location ID (TILELOCID) (Ross et al., prep).
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wcomp is therefore a weight that compensates for the observable targets that were

not assigned a fibre by gathering their weights and applying them to a neighbouring

object that was assigned a (working) fibre.

2.5.3 Redshift Weights

In addition, not all targeted galaxies may receive redshifts (e.g: due to a failure

of Redrock to fit a model spectra with confidence). Whilst the DESI LSS cata-

logues do calculate a redshift completeness weight (WEIGHT ZFAIL), this weight

is designed to correct to a uniform sample (with uniform incompleteness) rather

than to a complete sample. As such, this weight is adequate for clustering but less

useful for LFs. We choose instead to make our own direct estimate of the redshift

completeness weights (wz,new). For comparison, we denote the old redshift weight

(WEIGHT ZFAIL) as wz,old.

To do this, we take the full LSS catalogue and define a ‘zgood’ subset that is

subject to the following selection cuts:

1. DELTACHI2 (∆χ2) > 40.

2. ZWARN = 0

3. 0.002 < z < 0.6

These selection cuts ensure that the redshift is reliable and excludes the redshift

range contaminated by stars.

The overall redshift completeness of the survey is simply the number of objects

in ‘zgood’ over the number of objects in the full observed catalogue. We calculate

the incompleteness in bins based on the r-fibre magnitude and the template signal to

noise squared for BGS (TSNR2BGS, defined in Guy et al., 2023). TSNR is defined

by

TSNR2 =
∑
i

T 2
i

σ2
i

⟨(δF )2⟩. (2.3)

Here, δF is defined as the difference between a template spectrum and the median

filtered version of that same spectrum. The function of ⟨(δF )2⟩ is shown in figure 43
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of Guy et al. (2023). Ti represents a calibration coefficient, and σi is the flux mea-

surement uncertainty. TSNR2 is defined for all DESI galaxy types; TSNR2BGS

specifically uses BGS templates. Importantly, TSNR2BGS is proportional to the

effective exposure time, and does not depend on the photometric properties of a

specific target but simply depends on the target class template. As such, we se-

lect rfibre and TSNR2BGS as variables for this calculation as we expect redshift

completeness to decrease for fainter rfibre and smaller TSNR2BGS.

This acts as a lookup table so that galaxies may be assigned a redshift complete-

ness weight. The weight is given by the inverse of the completeness value given by

the lookup table, where we make use of Cloud-In-Cell interpolation to smooth over

the pixels (Hockney & Eastwood, 1988). This result is shown in Fig. 2.15.

The total weight calculated for each galaxy is given in Eqn. 2.4. We confirm that

our total weights are higher on average than the total weight (‘WEIGHT’) provided

in the DESI catalogue.

wi = wcomp,i · wz, new,i (2.4)

In particular, we notice that the redshift weight (wz,new) that we derive is signif-

icantly higher for certain galaxies than the old redshift weight, as seen in Fig. 2.16.

We find that w̄z,old = 1.0010, while w̄z,new = 1.0112. However, Fig. 2.16 shows that

there are a number of objects that have significantly altered total weights as a result

of using this new redshift weight.
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Figure 2.15: The empirical redshift completeness as a function of the fibre magni-
tude, rfibre, and the expected spectral target signal-to-noise ratio for a fiducial BGS
source, TSNR2BGS. The North (top) and South (bottom) completeness is plotted
with the galaxies for that region plotted as red points. The majority fall where
the redshift completeness is very high. We note the difference in the distribution of
the galaxies between North and South. To define a weight, wz, new, to correct for
this incompleteness we interpolate the binned incompletness using the Cloud-In-Cell
technique and take its inverse.
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Figure 2.16: Top: The value of DESI WEIGHT ZFAIL (wz,old) vs. the newly calcu-
lated wz,new, demonstrating that there exists a significant number of galaxies that
have a much higher redshift completeness correction. Bottom: The distribution of
the old and new total weights (wold and wnew), where wold incorporates wz,old and
wnew incorporates wz,new.
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CHAPTER 3

Luminosity Functions

In this Chapter, we introduce the methodology for finding the global luminosity

function (LF) from DESI BGS. A method of calculating evolutionary corrections (e-

corrections) for each galaxy calibrated using the V/Vmax distribution is presented.

We present a number of bivariate and univariate LFs in the g, r, z and w1 bands, and

include a thorough analysis of Poisson and jackknife errors, in addition to various

LF fits, such as the Schechter function. Whilst we typically make use of the 1/Vmax

LF method in this Chapter, we additionally validate that our results are invariant

with respect to method employed by also constructing density-corrected 1/Vmax LFs

(Vdc,max) and Stepwise Maximum Likelihood (SWML) LFs. This is an important

validation step as we desire our LF results to be largely invariant of the LF estimator

used. Furthermore, we present colour-dependent LFs to better understand the global

LFs. We investigate potential causes of a difference in the bright-end of the LF for

North and South. We also conduct further investigations to better understand an

upturn in the LF at faint magnitudes, including an assessment of the DESI imaging.
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3.1 Global LF Methods

3.1.1 1/Vmax estimator

In this thesis, we primarily make use of the Vmax estimator as outlined in Schmidt

(1968). In the Vmax method the LF estimator is

ϕ(L)dL =
N∑
i=1

wiW (L− Li)

Vmax(Li)
(3.1)

where Vmax(Li) is defined as the maximum volume over which the galaxy can be

seen in the survey, wi represents other included weights. The W (L−Li) represents

a binning function that is defined as

W (L− Li) = Θ(Li − L+ dL/2)−Θ(L+ dL/2− Li) (3.2)

where Θ is the Heaviside step function.

Formally, Vmax may be defined as

Vmax,i =
4

3
πfsky[d(zmax,i)

3 − d(zmin,i)
3] (3.3)

where d(z) represents the comoving distance of a galaxy at redshift z, and zmin and

zmax represent respectively the minimum and maximum redshift at which a galaxy

could be observed given its r-band apparent magnitude and the redshift limits of

the sample being considered. fsky is the fraction of the sky that has been surveyed

by DESI. This is computed using the number of objects in the matched random

catalogue, given the known surface density of the randoms.

By down-weighting each object by its maximum detection volume, this method

corrects for the issue that intrinsically faint objects are only detected in a small

volume, leading to the preferential detection of intrinsically bright objects. Addi-

tionally, the 1/Vmax estimator has the advantages of not assuming a functional form

for the LF and automatically having the correct normalisation. The disadvantage

of this estimator is that it assumes all sources follow a uniform spatial distribution.

This can result in distortion in the case of overdense or underdense regions (Efs-
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tathiou et al., 1988). We note that for deep wide-area surveys such as DESI, higher

redshift slices fairly sample both overdense and underdense regions. As such, this

distortion is only a potential problem for very faint luminosities as such galaxies can

only be detected at very low redshift, where the volume is very small.

3.1.2 SWML estimator

In addition, to the Vmax estimator, we make use of the Stepwise Maximum Like-

lihood (SWML) estimator. Broadly, likelihood methods consider the probabilities

of observing a galaxy at redshift zi and magnitude Mi (or luminosity Li) within a

magnitude-limited survey. This can be used to construct a likelihood function as

L =
∏
i

pi, (3.4)

where

pi =
Φ(Li)∫ Lmax(di)

Lmin(di)
Φ(L)dL

. (3.5)

Parametric estimators will typically assume a functional form of ϕ(M) (such as a

Schechter function) with some set parameters, and then will maximise the likelihood

with respect to those parameters. This is the basis for the STY method (Sandage

et al., 1979). We instead choose to make use of the non-parametric method set out

in Efstathiou et al. (1988), otherwise known as the Stepwise Maximum Likelihood

(SWML) method. This method does not require the assumption of a functional

form of the LF. Moreover, the SWML estimator is unbiased by density fluctuations

if one assumes that the shape of the LF is independent of the density (unlike the

Vmax method, which can be biased by density fluctuations). In the past, the SWML

estimator has been preferred for datasets with smaller sample sizes as it acts to

smooth the effect of density perturbations on the LF.

Φ(M) is specified by the values of a uniformly spaced histogram across the mag-

nitude interval, with the histogram values being determined by maximising the
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likelihood in equation (3.4). This yields

Φ(M) =

∑N
i=1W (Mi −Mk)∑N

i=1
H(Mi−Mk)∆M∑Np

j=1 ϕjH(Mj−Mmin)∆M

(3.6)

where

W (x) =

1, if −∆M
2

≤ x ≤ ∆M
2
.

0, else.

(3.7)

is the binning function and

H(x) =


0, if x ≤ −∆M

2
.

x
∆M

+ 1
2
, if −∆M

2
≤ x ≤ ∆M

2
.

1, if x ≥ ∆M
2
.

(3.8)

is related to its integral by H(x) =
∫ x

0
W (x′)dx′/∆M .

3.1.3 Vdc,max estimator

Finally, we make use of a density-corrected Vmax method (hereafter called Vdc,max),

based on a method from Cole (2011). In this method, the effective volume of a

galaxy may be calculated with Eq. 3.9

Vdc,max,i =

∫ zmax,i

zmin,i

∆(z)
dV

dz
dz =

∑
j

∆V∆jG(Vj) (3.9)

where the sum is over volume shells, the overdensity parameter in each shell ∆j = 1

in the first iteration, and G is a binning function that corresponds to:
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G(Vj) =


0, if Vj −∆V/2 > Vmax,j.

1, if
min(Vj+∆V/2,Vmax,j)−max(Vj−∆V/2,Vmin,j)

∆V
.

0, if Vj +∆V/2 < Vmin,j.

(3.10)

where we use the volume V =
∫
(dV/dz)dz rather than redshift as the radial coor-

dinate. For subsequent iterations, we calculate

∆j =
Nj

Nexp,j

(3.11)

where

Nexp,j =
∑
i

G(Vmin,i < Vj < Vmax,i)∆V

∆jVmax,i

. (3.12)

Here, Nexp,j is the expectation value for the number of galaxies that we would

expect in each volume element if they were uniformly distributed in space given

their individual Vmin,i and Vmax,i.

From this, the LF for each iteration may be calculated as:

ϕ =
1

∆M

∑
i

wi

Vdc,max

Θ(Mi; ∆M) (3.13)

If ∆ = 1, this equation reduces to Eqn. 3.1. We additionally enforce for each

iteration the constraint that the volume averaged overdensity ⟨∆j⟩ = 1.

3.1.4 Error Estimation

We calculate the Poisson errors on the 1/Vmax LF using

∆ϕ(L)

ϕ(L)
=

√∑
i(w

2
i )W (L− Li)

(
∑

iwi)2
. (3.14)

Here we note that if all weights are unity, then this expression reduces to the standard

1/
√
N fractional error.
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Figure 3.1: Left: Plot showing the jackknife regions for BGS North. These regions
are all equal area regions as determined by the random catalogue. Right: The LFs
for each jackknife sample. We confirm that the mean of the jackknife sample LFs is
identical to the global LF for the entire region.

We additionally calculate jackknife errors for the 1/Vmax estimator. To begin,

we define jackknife areas. To do this, we use the random catalogues and divide the

North and South separately into equal object bins which provides us a footprint of

equal area regions. To begin, we choose to subdivide the North into 9 areas (3 by

3), and the South into 20 areas (4 by 5), such that each region is approximately

the same size for both North and South (North: 265.94 deg2; South: 267.91 deg2,

see Fig. 3.1). For the North and South separately, we then iteratively remove a

jackknife area, calculate the value of ϕ using the remaining areas, and then restore

that area, moving on to the next area. The jackknife error is calculated as

Var(x) =
N − 1

N

N∑
i=1

(xi − x̄)2, (3.15)

where xi = ϕ(L)i, and N is the number of jackknife regions. The pre-factor accounts

for the fact that jackknife samples are not independent (Norberg et al., 2009).

We verify that the mean of the jackknife LFs is identical to the global LF, as

expected. We conduct a number of additional tests to ensure that the jackknife

errors are robust and well-understood. First of all, we ‘shift’ the jackknife regions

such that the regions are defined in different locations in RA. We find that the errors

are similar, including in faint magnitude bins.

Second, we test whether the larger errors in the North are quantitatively consis-
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Figure 3.2: Jackknife errors presented for North and South. Before scaling, the
North errorbars are larger than the South due to the difference in volume between
the North and South area. After scaling the South errorbar by the square root
of the ratio of the areas, the errors between North and South broadly agree at all
magnitudes.
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tent with how much smaller the North survey area is compared to the that of the

South. To do this, we scale the South jackknife areas by the square root of the ratio

of the areas. Fig. 3.2 shows the jackknife errors for North and South (for the choice

3 by 3 in the North and 5 by 4 in the South). We additionally show the result of

scaling the South jackknife errors. We see this brings them into good agreement

across almost the entire magnitude range indicating that the jackknife errors scale

with survey area in the manner expected.

Finally, it is important to consider the interpretation of jackknife errors at the

very faintest absolute magnitudes. We carefully note that objects at the faintest ab-

solute magnitudes are at very low redshifts - as such they occupy a very small volume

in the survey. In particular, the faint absolute magnitudes are prone to the issue of

super-sample variance - where the full volume of the sample is small compared to

the scale of large scale structure. As a result, the jackknife method will underesti-

mate the true error. Moreover, there are very few objects in the faintest absolute

magnitude bins - as such, the jackknife regions start to fail to be representative of

the full variation across the universe. From a visual inspection of the distribution

of points in different magnitude bins, we observe that certain regions start to ap-

pear visibly underpopulated around Mr − 5 log10 h > −14. As a consequence of

this, we notice that the estimate of the error becomes noisy and quantised at faint

magnitudes due to the small number of data points. In particular, we observe that

there were occasions when shifting the jackknife regions did not change the error

calculated for some of the faintest absolute magnitude bins. A visual analysis of

data points showed that because there are few data points at the faintest absolute

magnitudes (of order N ∼ 10), then there is a reasonable probability that a shift

in the jackknife regions will not change the distribution of points across jackknife

regions. As such, the error calculated would be the same.

3.2 e-corrections

In order to correct for the evolution of a galaxy with redshift, some authors im-

plement an additional e-correction in their calculation of absolute magnitude. This
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changes the absolute magnitude equation from Eqn. 2.1 to the following:

0.1M r−5 log10 h = mrLS
−5 log10

(
dL(z)

h−1Mpc

)
−25−0.1krLS→r(z,

0.1(g − r))−E(z).

(3.1)

For the rest of this thesis, all results will incorporate an e-correction, E(z). We

follow the convention of McNaught-Roberts et al. (2014) which uses the functional

form

E(z) = −Q(z − zref). (3.2)

It should be noted that this functional form is determined solely by Q, the

evolution of the galaxy luminosity. Other analyses (e.g. Loveday et al., 2012) may

also incorporate evolution of the galaxy number density with redshift by introducing

a second parameter, P . Loveday et al. (2012) and Loveday et al. (2015) find that

for all bands and colour samples, P and Q are strongly anticorrelated due to the

estimation of P being dependent on Q. In other words, this means that there is

redundancy in P and Q such that different values can yield the same LF. Based on

this, we choose to fix P = 0 (no number density evolution) and solely estimate Q.

One advantage of doing this is that it allows for a more direct comparison to the

results in McNaught-Roberts et al. (2014) who also fixed P = 0. This was useful

the initial stages of our research when validating our methodology on GAMA DR4

data.

We calculate the ratio of V/Vmax for each galaxy - where V is the survey volume

below the redshift at which the galaxy is observed and Vmax is the maximum volume

over which the galaxy could be observed, given the absolute magnitude of the galaxy

and the apparent magnitude limits of the survey. If the chosen value of Q correctly

models the evolution then in the absence of large scale structure the V/Vmax dis-

tribution should be uniform. In practice, there will be some small variation due to

the presence of large-scale structure. In order to determine Q, we assume that the

V/Vmax ratio is uniform. Using this, we vary Q such that χ2 is minimised between
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Figure 3.3: The V/Vmax distribution for Q = 0.78 (the found optimal value) and a
number of nearby values of Q. The reduced χ2 value is presented for each Q-value.

the ideal V/Vmax distribution and the actual V/Vmax distribution (see Fig. 3.3 and

Fig. 3.4). This is conducted over the full apparent magnitude-limited sample from

0.002 < z < 0.6. From this, we find a global Q = 0.78±0.2, which is compatible with

Q = 0.97± 0.15 in McNaught-Roberts et al. (2014). In our case, we have derived a

jackknife errorbar on Q. We confirm that we generate the same Q-value for the North

and the South separately. It is important to note that our e-correction methodology

differs from that described in McNaught-Roberts et al. (2014), which calculates the

Q-value that preserves the LF in three different redshift bins (0.01 < z < 0.21,

0.21 < z < 0.31, 0.31 < z < 0.51). If this involved a 1/Vmax LF, we note that our

methodology of optimising for a flat V/Vmax distribution is equivalent. However,

McNaught-Roberts et al. (2014) instead made use of an SWML estimator.
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Figure 3.4: The ∆χ2 value of the fit to the V/Vmax distributions to a uniform
distribution for different Q-values when using the BGS Y1 data. This fitting is
done over the full apparent magnitude-limited sample from 0.002 < z < 0.6. Blue
represents the North while red represents the South. The dashed lines shows the
optimal parabola fits over a narrow range of ∆Q = 0.5 (e.g: 0.6-1.1). From this, we
find that Q = 0.78 is the optimal value in both the North and South. We separately
determine the error from jackknife sampling.
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3.3 Global LF Results and Discussion

We generate bivariate LFs as a useful means to visualise and understand where the

overall LFs become incomplete. These are presented in Fig. 3.5. For simplicity,

the following explanation focuses on the g − r bivariate LF, but the discussion is

applicable to the z − r and w1 − r bivariate LFs as well. The g − r bivariate LF is

estimated from objects distributed in bins in the Mg −Mr plane and weighted by

1/Vmax. Bins which contain only one object are indicated by red dots. In addition,

the subplots show the projected LFs for the g and r band. The shaded regions in

these plots represent the Poisson errors on the LFs.

BGS Bright is an r-band magnitude-limited survey. Whilst there is no explicit

limit on the g, z or w1 bands, this r-band limit will result in a colour-dependent

completeness limit in the other bands. In order to better understand our other

LFs, we seek to estimate this completeness limit. The black curve represents the

completeness limit in the Mg − Mr plane - and is calculated from Eqn. 3.1 using

the r-band and redshift limits. Specifically, the limits are z = 0.002, and r = 19.54

in the North, r = 19.5 in the South. We present results with a less strict redshift

limit in Appendix B.1.

We use this bivariate plot to estimate the completeness limit of the g-band. To do

this, we calculate the 5th and 95th percentiles of the g-band magnitude distribution

for each r-band magnitude bin. Then, we conduct an OLS linear regression on these

percentiles, weighting for the number of objects in each bin. These linear regressions

are shown as dashed pink lines on the bivariate plot. Although not shown here,

we note that the linear regression lines are generally good representations of the

percentile curves for the g − r and z − r bivariate LFs, however, they trail off at

faint magnitudes for the w1 − r bivariate LF. The intersection of the 5th percentile

regression line and the completeness locus allows for a rough approximation of the

completeness limit in the g-band, and this is plotted in red on the univariate g-band

LF.

We emphasise that this method is an upper-bound on the completeness limit.

This is exemplified by the the w1−r bivariate LF. As mentioned above, it is unlikely

that the methodology discussed above accurately yields a completeness limit for the
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w1-band LF. This can be visually seen in the locus of the bivariate LF – it looks

more likely that incompleteness starts to be a factor at aroundMw1−5 log10 h = −12

to −14.

More importantly, we note that there are observable ‘spikes’ in the w1-band

LF that correspond to a surge in both the value of ϕ(Mw1) and its Poisson error.

Moreover, these spikes represent an increase in ϕ(Mw1) by a factor of 10 or more.

Subsequent analysis shows that these spikes are caused by single objects in each bin

with a high 1/Vmax weight and a high total weight w. This combination allows these

objects to disproportionately contribute to the LF. Our bivariate LF plot shows that

these spikes correspond to single-bin objects that exist far from the locus, and have

unrealistic r−w1 rest-frame colours (e.g: the first spike aroundMw1−5 log10 h = −18

is caused by an object with 0.1(r − w1) = 6).

As such, our solution is to impose an additional 0.1(r−w1) rest-frame colour cut.

We select a conservative colour cut of 0.1(r−w1) < 2.25 as this value is the minimum

value required to remove the spurious peaks brighter thanMr−5 log10 h < −14. This

is shown in the w1 − r bivariate LF plot (Fig. 3.5) as the diagonal red dashed line.

Many of the objects that are far from the r − w1 locus (and removed by the colour

cut) appear to be single bin objects that appear to be too bright in the w1 band,

assuming that the r-band DESI magnitude is reasonably accurate. We manually

observe the SDSS and WISE images of some of these objects to further investigate

what is happening. We observe that many of the objects removed by the colour cut

appear to be spurious objects - with a number corresponding to mergers, overlapping

significantly with closer objects, or being highly fragmented. This supports the idea

that these objects have an unrealistically bright w1-band magnitude, and justifies

the use of the 0.1(r − w1) rest-frame colour cut. We conduct further investigations

on the faint-end imaging as it pertains to the r-band LF in Section 3.6.

We present the global LFs, after applying the colour cuts, in Fig. 3.6 for the g, r,

z, and w1 bands. We observe that there is broadly good agreement between North

and South at both the ‘knee’ of the LFs and the faint-end of the LFs. There is a

breakdown in this agreement at bright magnitudes. This will be discussed further

in Section 3.4.
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Figure 3.5: Bivariate LFs for North (left column) and South (right column) in the
g, z and w1 bands. The black curves represent the limit of the survey. The dashed
red lines give completeness limits for the r-band and g-band luminosity functions
based on the intersection of the completeness curves and the 95th percentile contour
of the bivariate LF. The r − w1 bivariate LFs have an additional red-dashed line
showing a selection cut that is later incorporated to remove spurious objects. The
orange dashed lines show the Schechter fits from Loveday et al. (2012).54
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We observe that the corresponding Loveday Schechter fits are not a good fit to

our global LFs from 0.002 < z < 0.6. We determine that the Loveday Schechter fits

are better fits when the upper redshift limit of the sample is z < 0.2. This includes

the sample 0.002 < z < 0.1, which is equivalent to the GAMA sample for which the

Loveday Schechter functions were fitted (Fig. 3.7). This is clearer when considering

the errorbars of the LFs (Fig. B.2). The fact that we get different results for different

redshift ranges implies that our evolution model does not fully capture the evolution

that occurs in the galaxy sample. In order to resolve this, we investigate different

e-correction models to deal with this disparity. One such model is to use different

Q-values for red and blue galaxies. We define a red galaxy as 0.1(g− r) > 0.75 and a

blue galaxy as 0.1(g− r) < 0.75 (see Section 3.5 for evidence for this choice of colour

split). We then determine Q-values for each population using the same methodology

as described in Section 3.2, labelled Qred and Qblue. We find that Qred = 0.23± 0.3

and Qblue = 1.59 ± 0.2 (Fig. 3.8). Using these values, we find that the r-band LF

from 0.002 < z < 0.6 is far closer to the Loveday Schechter fit. However, there is

still a visible discrepancy at the knee of the LF, suggesting that this is not a perfect

fix and that a more complex evolutionary model may be required.

With the global LFs found, we attempt to parameterise them. We make use

of a Schechter function to do this. We also investigated other variations, including

the double Schechter function. The choice to fit these functions has two major

benefits. First, it allows for a closer comparison to the known literature, and we can

assess whether a Schechter function is a reasonable approximation of the global LF.

Second, even if the Schecher function is a poor fit, it is a useful reference against

which we can quantify the significance of the upturn observed in the faint-end of

our LFs. The functional form of the Schechter function is given as

Φ(L)dL = Φ∗
(

L

L∗

)α

exp

(
− L

L∗

)
dL

L∗
(3.1)

where, noting that

M −M∗ = −2.5 log10

(
L

L∗

)
(3.2)
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Figure 3.8: Left: The ∆χ2 value of the fit to the V/Vmax distributions to a uniform
distribution for different Q-values when using the BGS Y1 data, split into red and
blue samples. This fitting is done over the full apparent magnitude-limited sample
from 0.002 < z < 0.6. Blue represents galaxies with 0.1(g − r) < 0.75 while red
represents galaxies with 0.1(g − r) > 0.75. From this, we find that Qred = 0.23 and
Qblue = 1.59. We separately determine the error from jackknife samples. Right:
The 1/Vmax LF using Qred for red galaxies and Qblue for blue galaxies. In this graph,
the blue LF (and corresponding residual line) is the North while the red LF is the
South.

and

Φ(M)

Φ(L)
= − dL

dM
(3.3)

we can define the Schechter function more conveniently in terms of magnitudes as

Φ(M) =
ln 10

2.5
Φ∗100.4(1+α)(M−M∗) exp[−100.4(M−M∗)] (3.4)

Here, M∗ parameterises the position of the ‘knee’ of the Schechter function, α pa-

rameterises the faint end slope, and ϕ∗ represents a normalisation constant.

It has been observed in prior papers (Loveday et al., 2012) that the Schechter

function may not always be the best functional form of the LF (a result that we verify

below). As such, there have been various suggested modifications to the Schechter

function that add additional parameters to find a better fit. One such example is the

double Schechter function, which combines two separate Schechter functions to give

a five-parameter model (where there is only one normalisation constant required).

The functional form of the double Schechter function (in magnitudes) is given below.
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Table 3.1: Schechter parameters for the 0.002 < z < 0.6 LFs. Here, Mmin and Mmax

refer to the range of Mx − 5 log h over which the Schechter function was fitted. All other
parameters are defined by Eqn. 3.4.

Mmin Mmax log10Φ
∗ M∗ − 5 log h α

All (North)
g -24 -10 -2.38 -20.68 -1.56
r -24 -10 -2.08 -20.97 -1.32
z -24 -10 -2.14 -21.81 -1.26
w1 -24 -10 -2.20 -21.84 -1.27

All (South)
g -24 -10 -2.69 -21.13 -1.76
r -24 -10 -2.15 -21.12 -1.36
z -24 -10 -2.16 -21.91 -1.28
w1 -24 -10 -2.16 -21.81 -1.23

Red (North)
g -24 -12 -2.47 -20.55 -1.33
r -24 -12 -2.15 -20.82 -0.85
z -24 -12 -2.07 -21.44 -0.66
w1 -24 -12 -2.08 -21.39 -0.65

Red (South)
g -24 -12 -2.58 -20.76 -1.42
r -24 -12 -2.20 -20.98 -0.93
z -24 -12 -2.10 -21.57 -0.73
w1 -24 -12 -2.10 -21.47 -0.71

Blue (North)
g -24 -12 -2.70 -20.54 -1.71
r -24 -12 -2.40 -20.64 -1.52
z -24 -12 -2.41 -21.26 -1.43
w1 -24 -12 -2.63 -21.51 -1.49

Blue (South)
g -24 -12 -2.79 -20.63 -1.78
r -24 -12 -2.45 -20.70 -1.56
z -24 -12 -2.45 -21.34 -1.47
w1 -24 -12 -2.65 -21.56 -1.49

Φ(M) = Φ∗(100.4(M
∗
1−M)(1+α) + 100.4(M

∗
2−M)(1+β)) exp[−100.4(M

∗
1−M)] (3.5)

We make use of Markov Chain Monte Carlo (MCMC) methods to fit the various

functions to the LFs and calculate appropriate errors on each parameter. In order
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Figure 3.9: Schechter fits to the 1/Vmax South r-band LF. The parameters for each
Schechter fit is found in Table 3.1 and 3.2.

to ensure that the estimated parameters are reasonable, we introduce a number of

checks - most notably:

1. We make use of a large number of walkers (> 512) to sample a large proportion

of the parameter space. We check that the parameters remain largely invariant

to increasing the number of walkers further.

2. We initially make use of burn-ins to ensure that the results are not adversely

affected if the initial position of the walkers is too far from the ‘true’ result.

3. We re-run the MCMC fitting, setting the initial parameters to be the returned

parameter results of the previous run. We ensure that the results are the same.

This double-checks that the initial conditions of the walkers is not affecting

the results.
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Table 3.2: Double Schechter parameters for the 0.002 < z < 0.6 LFs. Here, Mmin and
Mmax refer to the range of Mx − 5 log10 h over which the Double Schechter function was
fitted. All other parameters are defined by Eqn. 3.5.

Mmin Mmax log10Φ
∗ M∗

1 − 5 log10 h M∗
2 − 5 log10 h α β

All (North)
g -24 -10 -2.24 -20.12 -22.24 -0.89 4.79
r -24 -10 -2.10 -20.95 -14.39 -1.30 -2.50
z -24 -10 -2.09 -21.66 -16.53 -1.12 -1.79
w1 -24 -10 -2.06 -21.52 -16.94 -0.98 -1.85

All (South)
g -24 -10 -2.73 -21.13 -9.25 -1.76 -1.76
r -24 -10 -2.27 -21.12 -16.48 -1.36 -1.36
z -24 -10 -2.15 -21.82 -16.64 -1.19 -1.77
w1 -24 -10 -2.09 -21.61 -17.12 -1.01 -1.77

Red (North)
g -24 -12 -2.24 -20.12 -22.24 -0.89 4.79
r -24 -12 -2.08 -20.57 -22.57 -0.64 4.36
z -24 -12 -2.47 -21.44 -20.56 -0.66 -0.66
w1 -24 -12 -2.09 -21.29 -23.12 -0.61 3.54

Red (South)
g -24 -12 -2.31 -20.28 -22.36 -0.99 4.89
r -24 -12 -2.74 -20.70 -20.28 -1.56 -1.56
z -24 -12 -2.78 -21.34 -21.23 -1.47 -1.47
w1 -24 -12 -2.10 -21.37 -23.22 -0.66 3.78

Blue (North)
g -24 -12 -2.55 -20.29 -22.47 -1.62 2.50
r -24 -12 -2.33 -20.47 -22.71 -1.46 2.50
z -24 -12 -2.60 -21.26 -19.12 -1.43 -1.43
w1 -24 -12 -2.61 -21.41 -23.36 -1.47 2.50

Blue (South)
g -24 -12 -3.56 -20.63 -22.71 -1.78 -1.78
r -24 -12 -2.49 -20.70 -12.56 -1.56 -1.56
z -24 -12 -2.51 -21.34 -14.86 -1.47 -1.47
w1 -24 -12 -2.62 -21.43 -23.29 -1.47 2.50

The results for the Schechter fits are shown in Table 3.1. The results for the

double Schechter fits are shown in Table 3.2. In addition, characteristic graphs are

shown in Fig. 3.9. From Fig. 3.9, it is visually clear that the standard Schechter

function is not a good fit for any of the LFs over the full range of magnitudes. We

find that the errors are incredibly small on each Schechter parameter. However,
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this is compensated by a very high χ2 value, and so we do not cite these errors

here. However, for each LF, the fit seems reasonable at Mg − 5 log10 h < −16,

Mr−5 log10 h < −16.5, Mz−5 log10 h < −17.5, Mw1−5 log10 h < −18.25. Moreover,

we can more carefully quantify the effect of the upturn using the Schechter function.

For example, in the r-band LF at Mr − 5 log10 h = −12, we can see that the our

Schechter fit is off by 0.7 dex. The double Schechter function appears to be a better

fit, as the additional flexibility from additional parameters allows for the faint end to

be better modelled. However, we note that there is still some difficulty in modelling

the faint end of the LFs. In particular we warn that some of these double Schechter

fits remain poor (especially for the colour-split LFs in the g-band). We find better

fits to the faint-end when fitting in the range −22 < Mg < −12, but this is at the

expense of the bright-end. As such, we recommend that all comparisons are made

to the LFs directly. Finally, we note that one alternative to the Schechter fits is

to instead fit high-order polynomials to the LFs. We manage to do this with much

better success for all bands, although this is prone to overfitting and can be highly

variable to the order of the polynomial in modelling the faint end. Because of this,

we do not present these polynomial fits here.

In addition to the 1/Vmax LFs, we also present the r-band SWML and 1/Vdc,max

estimates. We find that there is good agreement between the different LF methods

across all magnitudes (Fig. 3.10). In particular, we observe that for most magni-

tudes, the 1/Vmax and SWML LFs agree strongly with each other in both North and

South. There is some discrepancy at the faintest magnitudes as expected due to

the impact of density fluctuations on the small volume over which faint magnitude

objects can be observed. We find that the 1/Vdc,max method (which corrects for

these fluctuations) agrees more closely with the 1/Vmax LF. There is a slight sys-

tematic offset between the 1/Vdc,max LF and the SWML LF across all magnitudes.

Nonetheless, this difference is small and does not alter our conclusion that the LF

methods broadly agree with each other except at the faintest magnitudes where

there is a large degree of variance. As such, we can be confident that our results are

independent of the choice of luminosity function estimator.

Finally, now that we have outlined our LF methodology, we confirm (as discussed
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in Section 2.5.1) that using the systematic weights has a negligible impact on our

LFs. In particular, Fig. 3.11 shows a series of r-band LF for North and South with

and without the use of wsys. We observe that the residual remains incredibly small

across the knee of the LF. This further justifies our decision to not make use of the

systematic weights.

3.4 Bright-end Analysis

In our analysis, we note that there is an offset between North and South at the bright

end of the r-band LF. We sought to better quantify the cause of this difference by

investigating the FSF k-corrections - noting that these should correct for the differing

photometry. In particular, we seek to investigate whether this offset is caused by a

problem in our k-correction polynomial pipeline, whether this is an inherent issue

caused by the original FSF k-corrections, or whether this is a real observational

difference (noting that this is highly unlikely given the large footprint of both DESI

North and South).

We attempt to verify whether it is the colour offset that is affecting the LF.

This colour offset between North and South is seen in Fig. 2.14. We take the South

0.1(g−r) rest-frame colour distribution to be the ‘true’ distribution, and reassign the

North colours according to that distribution. This results in both North and South

regions having an identical rest-frame colour distribution. From this, we recompute

k-corrections using these new magnitudes. Although this succeeds in getting good

agreement between the resulting colour distributions as expected, this does not seem

to resolve the offset in the LFs. This suggests that the problem is not corrected for

by changing the colour distribution. This result is unsurprising as the colour offset

that we observe is on the order of 0.01 magnitudes while the bright-end shift in the

LF is closer to the order of 0.1 magnitudes.

We conduct additional tests to try and determine the cause of the North/South

discrepancy. There exists an overlap region where objects exist in both BASS and

DECaLS, which we match up and then compare their absolute magnitudes. The

idea is that this can help reveal if there are differences in the initial photometry
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Figure 3.10: A comparison of the different LF estimators (1/Vmax, 1/Vdc,max, SWML)
in the North and South. Bottom: The ratio plots of the three LFs against the global
r-band Schechter function from McNaught-Roberts et al. (2014).
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Figure 3.11: Comparison of the 1/Vmax LF when using the standard weight de-
fined in Eqn. 2.4 against LFs using weights that additionally incorporate wsys

(WEIGHT SYS) as an additional multiplicative factor to Eqn. 2.4.
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that could account for the difference in the LFs. First, we perturb the LF by the

offset in the BASS/DECaLS magnitude function, noting that as the offset between

the two magnitudes diverge as a function of the r-band absolute magnitude, then

this could explain an offset at brighter magnitudes. This methodology and the

corresponding results are outlined in Appendix C. We find that adjusting for the

magnitude residual between BASS and DECaLS yields North and South LFs that

are far closer to each other at bright magnitudes. As such, the different photometries

may play a role in explaining this discrepancy in the LFs. We note that the bright-

end of the LF is in general highly dependent on photometry (see, e.g: fig. 3 from

Bernardi et al., 2013) so this is a reasonable hypothesis. One working hypothesis is

that BASS and DECaLS may deal with the extended light profiles of the galaxies

differently. However, it should be noted that offsetting the LFs does not perfectly

fix the issue, so there may be other factors at play.

3.5 Colour-split LF Results and Discussion

Here, we present the LFs as split by colour. For clarity, we refer to LF split by

colour as the ‘red’ or ‘blue’ LFs. This is not to be confused with an ‘r-band’ LF,

which references the magnitude used.

In order to find colour-dependent LFs, we first split our population into red

and blue populations. To define the appropriate colour-cut, we make use of the

bimodal nature of the 0.1(g− r) rest-frame colour histogram, which has two distinct

populations that can each be characterised by a Gaussian curve. By fitting Gaussians

to each curve with an Expectation-Maximisation (EM) algorithm, we can split the

populations based on the intersection of those two fitted Gaussians. This yields a

threshold of 0.1(g − r) = 0.75. Alternatively, we can visually identify a difference in

the two populations by splitting the 0.1(g − r) histogram into different Mr absolute

magnitude bins as there is a region where the trough of the combined histogram

tends to be very similar (Fig. 3.12). This method is consistent with the result found

with the EM method. The results of the red and blue Vmax LFs are presented for

each band (Fig. 3.13). We note that the red and blue populations are consistently

66



0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.1(g r)

0

10000

20000

30000

40000

50000
N

0.00 < z < 0.10
0.10 < z < 0.20
0.20 < z < 0.30
0.30 < z < 0.60

Figure 3.12: The rest-frame 0.1(g− r) distributions for different redshift bins. These
show a clear bimodal distribution. The dashed vertical line at 0.1(g − r) = 0.75
is where our Expectation-Maximisation algorithm splits the population into two
separate Gaussians. As such, we denote 0.1(g− r) ≤ 0.75 to be blue and 0.1(g− r) ≥
0.75 to be red.

defined by 0.1(g − r) = 0.75, even when examining the z and w1 bands.

The colour LF plots are particularly useful in characterising the upturn observed

in the global LFs. In particular, we note that the upturn seems to be driven pre-

dominately by the red LF. Moreover, this is observed across the r, g and z bands

in both the North and South. We present Schechter and double Schechter fits in

Table 3.1 and 3.2. Similarly to the global LFs, the Schechter fits help to quantify

the extent of the observed upturn at faint magnitudes. showing it to be significant

in the red LF in comparison to the jackknife errors.
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Figure 3.13: The global Vmax LF for Y1 data for North and South in the r, g, z and
w1 bands split by colour. The red LFs represent galaxies with 0.1(g−r) > 0.75, while
the blue LFs are galaxies with 0.1(g − r) < 0.75. The width of each LF represents
the Jackknife error. The dashed lines represent the completeness limits derived from
the corresponding bivariate LFs.
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3.6 Imaging

We observe that our LFs reach extremely faint magnitudes across all bands. Whilst

we have outlined a method for estimating the completeness of the g, z, and w1

bands, we note carefully that this comes with problems. Notably, it is a theoretical

completeness limit that does not consider other factors that may introduce error in

the faint-end of the LF (including for the r-band LF). In order to better understand

the completeness of our data, we conduct a number of visual inspections of the DESI

Y1 galaxies using the Legacy Survey Sky Browser. In particular, we are interested

as to whether the galaxies at very faint r-band absolute magnitudes are real galaxies

with accurate fluxes. Additionally, we are interested in further justifying our r−w1

colour cut, to ensure that we are removing bad galaxies.

The Legacy Survey Sky Browser is a viewing tool that allows us to visually

inspect the imaging from various surveys across the whole sky. This viewer usefully

contains the Legacy Survey DR9 images in the ugriz bands as well as the unWISE

W1/W2 NEO7 images, allowing for quick visual comparisons of different galaxies.

In addition, these images can be overlayed with DESI information, including the

DESI Bright-time targets and the DESI footprint and fibres. We write a simple

code to extract images from the Sky Browser, allowing for easier comparisons of

objects. An example image is shown below in Fig. 3.14 for a galaxy found to be

bright in the w1-band but faint in the r-band. Close inspection shows this specific

object to be a non-typical object - possibly a galaxy merger. Moreover, viewing

the DESI targets suggests that this object may be fragmented, leading to a fainter

r-band magnitude than expected.

We created code to conduct quality assurance. This code takes 20 random objects

within a magnitude bin and extracts their Sky Browser DR9 image. Details such

as the RA, DEC, z, and TARGETID are added to the image. From this, visual

inspection may quickly be conducted for each magnitude bin. The categories are

delineated as follows:

1. Good: the galaxy is clearly visible and is the dominant object targeted by the

fibre. It is unlikely that other features in the image will affect flux extraction.
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Figure 3.14: An example of a rogue galaxy on the r − w1 bivariate luminosity plot.
Further investigation using the Legacy Survey Sky Browser andWISE imaging shows
this specific galaxy to be spurious - possibly the result of a galaxy merger or otherwise
poor imaging effects. From top left going clockwise: 1) The r − w1 bivariate LF
with the target object circled. 2) the grz composite image of the galaxy from Legacy
Survey Sky Browser. 3) A zoom out of the grz composite image, with target BGS
Bright objects shown as white circles (here multiple circles on the galaxy suggest
possible fragmentation). 4) The direct WISE w1-band image. 5) The w1-band image
presented on Legacy Survey Sky Browser.

2. Possible: the galaxy is visible. There may be other similar objects or features

in the image that could conceivably affect the flux extraction. However, we

are confident that the object targeted is a galaxy.

3. Problem: it is unlikely that this is a galaxy, or it is a galaxy that is obviously

incorrectly imaged.

An example of each type of galaxy is shown in Fig. 3.15. Moreover, we present

examples of the 20 galaxies in Appendix D.1 for different absolute magnitude bins.

We observe all 41 galaxies with Mr − 5 log10 h > −10. Of these, we find 9

of them to be ‘good’ - that is, are likely to be galaxies (even if the magnitude

could be wrong), 29 to be ‘problems’, and 3 to be ‘possible’. In particular, the

vast majority of problematic galaxies appear to exist within another more dominant

galaxy or dust cloud. As such, we raise the concern that many of the objects at the

faintest magnitudes may be artificial and erroneous. For example, there is the issue

of fragmentation, where a single extended source is targeted multiple times. As a
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Figure 3.15: Examples of our VI classification metric. The left galaxy is a ‘good’
object, the middle galaxy is a possible’ object, and the right galaxy is a ‘bad’ object.

result of this, there may exist multiple targets for a single large galaxy where each

target gets a lower flux than expected.

We continue with the series of 20 random samples taken from different magnitude

bins. The table of our results is shown below (Table 3.3). We present examples of

the imaging for different r-band magnitude bins in Appendix D.1. From this work,

we suggest that the validity of our r-band LF only extends up to Mr − 5 log10 h ≈

−14. At fainter magnitudes, there exist a large number of bins that are dominated

by problematic objects. We carefully note that this leads to the possibility that

the upturn in the global LF is a consequence of the imaging analysis artefacts.

Specifically, fragmentation leads to a larger number of objects being counted in the

fainter magnitude bins. We present further investigations of this in Appendix D.2,

where we attempt to use a Neural Network to classify galaxies based on the criteria

above. We note that these results do not fully eliminate the upturn in the r-band

LF, meaning that it is still possible that the upturn is real, but further investigation

is required to better confirm this.

3.7 Conclusions

In summary, in this Chapter we have developed and used a methodology for defining

k-corrections for each galaxy in the BGS Y1 dataset. This has the advantage over

the FSF k-corrections as our polynomial method allows for Vmax to be calculated for

each galaxy, in addition to consistent rest-frame absolute magnitudes.
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Table 3.3: Table showing the VI classification for random samples in several magnitude
bins. M faint

r and Mbright
r define the Mr − 5 log h range. Nsample is the number of objects

that we inspect in that magnitude bin, while Ntotal is the total number of objects in that
bin.

imaging categorisation (r-band)
M faint

r Mbright
r Nsample Ntotal Nsample/Ntotal Good Possible Problem

-10.0 41 41 1.0 9 3 29
-10.00 -10.25 20 28 0.714 3 9 8
-10.25 -10.5 20 28 0.714 3 4 13
-10.5 -10.75 20 40 0.5 2 6 12
-10.75 -11.0 20 64 0.313 5 7 13
-11.0 -11.25 20 102 0.196 4 9 7
-11.25 -11.5 20 124 0.161 7 8 5
-11.5 -11.75 20 143 0.140 4 5 11
-11.75 -12.0 20 176 0.114 12 3 5
-12.0 -12.25 20 189 0.106 8 2 10
-12.25 -12.5 20 228 0.088 10 3 7
-12.5 -12.75 20 282 0.071 13 5 2
-12.75 -13.0 20 333 0.060 9 3 8
-13 -13.25 20 385 0.052 10 2 8
-13.25 -13.5 20 471 0.04246 15 0 5
-13.5 -13.75 20 585 0.03419 13 1 6
-13.75 -14.0 20 776 0.02577 15 0 5
-14.0 -14.25 20 1054 0.01898 11 1 8
-14.25 -14.5 20 1368 0.01462 15 1 4
-14.5 -14.75 20 1723 0.01161 15 0 5
-14.75 -15.0 20 2454 0.00815 13 1 6
-15.0 -15.25 20 3212 0.00623 14 3 3
-15.25 -15.5 20 4427 0.00452 13 1 6
-15.5 -15.75 20 5910 0.00338 17 1 2
-15.75 -16.0 20 7401 0.00270 17 1 2
-16.0 -16.25 20 9246 0.00216 17 1 2
-16.25 -16.5 20 11655 0.00172 20 0 0
-16.5 -16.75 20 14894 0.00134 19 0 1
-16.75 -17.0 20 18891 0.00106 20 0 0
-17.0 -17.25 20 23853 0.00084 19 1 0
-17.25 -17.5 20 31112 0.00064 20 0 0
-17.5 -17.75 20 40719 0.00049 19 0 1
-17.75 -18.0 20 50444 0.00040 20 0 0
-18.0 -18.25 20 62566 0.00032 19 0 1
-18.25 -18.5 20 79371 0.00025 20 0 0
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With this, we present 1/Vmax LFs in the g, r, z and w1 bands with jackknife

errorbars. These LFs are well-determined with small statistical errors over the range

0.002 < z < 0.6 and −24 < Mr − 5 log10 h < −10. Moreover, when considering the

1/Vmax LFs from 0.002 < z < 0.2, we find good agreement with the GAMA results

presented by Loveday et al. (2012). This result is robust to how galaxy evolution

is treated, in part due to our choice of reference redshift zref = 0.1. In addition,

we make use of two different LF methodolgies: SWML and Vdc,max. Both of these

methods broadly agree with our 1/Vmax estimator, showing that our results are

robust to the estimation method.

Although the North and South LFs for BGS Y1 agree very well over a large

magnitude range, we observe an offset between the North and South LFs at the

brightest absolute magnitudes. This is a highly significant systematic difference.

We determine that this is unlikely to be a consequence of our k-correction model. A

preliminary investigation of the overlap regions between North and South suggests

that the difference is due to the same galaxies being given different magnitudes in

the two surveys - in other words, it is an issue in the initial photometry. Moreover,

this difference is restricted to the bright red galaxies. Our working hypothesis is

that this may be due to a combination of factors. In particular, this may be caused

by TRACTOR fitting more complicated photometric models to higher S/N data,

which is different in North and South due to the different depths of the two surveys.

In order to find our LFs, we have developed a single parameter e-correction model

that estimates Q from the V/Vmax distribution. We find that Q = 0.78 for both the

North and the South datasets. However, this model does not yield LFs that are

consistent with each other from samples over different redshift ranges. This also

leads to an inconsistency between our 0.002 < z < 0.6 r-band LF and the GAMA

LF from Loveday et al. (2012). This means that the single-parameter model does

not fully capture the evolution of the LF. We improve the evolutionary model by

splitting the galaxies into red and blue samples and finding Qred and Qblue using the

same method as before, and this results in a series of LFs that are more consistent

between samples over different redshift ranges. However, this is still not perfect

and is not consistent to within the small statistical precision provided by the DESI
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dataset.

We are able to find the LF up to very faint magnitudes, e.g: the r-band LF

extends to Mr − 5 log h = −10. We observe an upturn in the LF at around Mr −

5 log h > −14 which is mainly observed in the red LF. Although this upturn has

been observed in some prior studies and is statistically robust given our errorbars,

it nonetheless remains unclear in our analysis how much of this upturn may be due

to imaging issues. In particular, we visually observe a non-negligible proportion of

fragments above Mr−5 log h < −15, with the proportion of bad objects dominating

at the faintest magnitudes. This is seen in Table 3.3. This suggests that this upturn

may be artificial, at least in part.

We attempt to correct for the imaging issues using two different methods. The

first is to weight the LF in each magnitude bin by the proportion of problem galaxies

that we observe in our visual inspection. The second is to utilise a Neural Network

to classify a larger subset of objects and remove the problem galaxies before recom-

puting the LF. This is detailed further in Appendix D. In both cases, we still observe

an upturn in the LF, albeit reduced. Given that there remain limitations with these

two methods, further work should be conducted to better quantify this issue.
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CHAPTER 4

Density-Dependent Luminosity Functions

In this Chapter, we introduce a method for determining the local density around a

given galaxy, including corrections for boundaries and ‘holes’ in the survey. From

this, we present density-dependent luminosity functions for BGS. The motivation

behind this Chapter is to empirically measure how galaxies are influenced by their

environment. By doing so, we can distinguish between different galaxy formation

models which make different predictions.

4.1 DDP Definition

In order to estimate the local density of galaxies, we require a tracer population that

we describe as a Density Defining Population (DDP). This is a volume-limited sam-

ple defined within a range of redshifts and absolute magnitudes. From the selected

absolute magnitude limits, we calculate the corresponding redshift limits based on

the bright and faint apparent magnitude limits of the survey. This additionally

makes use of a conservative global k-correction, in this case making use of a very red

value of 0.1(g − r) = 0.9 to calculate the k-correction, resulting in a stricter redshift

range. We assume an e-correction of Q = 0.78 when determining the redshift limit.
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Figure 4.1: Absolute magnitude against redshift for all DESI BGS South galaxies.
DDP samples are coloured. The cyan lines correspond to the bright and faint ap-
parent magnitude limits of r = 12 and r = 19.5 making use of a conservative global
k-correction, with 0.1(g − r) = 0.9 for all redshifts. The North DDPs are defined
similarly, with r = 19.54 as the faint limit. The absolute magnitude and redshift
limits for each DDP sample are given in Table 4.1.

We define all galaxies within these redshift and absolute magnitude limits as DDP

galaxies.

We define three different DDP regions based on different absolute magnitude

ranges to test that the tracer population is a robust way of defining local density.

These can be seen in Fig. 4.1, with the limits and properties of these DDP regions

shown in Table 4.1. We mostly focus on using DDP1, as this covers a large volume

over which we can calculate local density. Notably, there is some overlap in the

galaxies in different DDP regions. As a result, DDP2 and DDP3 are used for vali-

dation, as we desire our local density estimates to be largely invariant of our choice

of DDP.
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Table 4.1: Properties of the three DDP samples, including r-band absolute magnitude
and redshift limits. Also shown are the effective comoving volume of the DDP sample,
the number density of DDP galaxies and the number of galaxies that fall within the DDP
redshift limits. Note that Mmin and Mmax corresponding to the minimum and maximum
values of Mr−5 log h for the DDP. The units of VDDP are h−3Mpc3, and the units of ρDDP

are h3Mpc−3.

DDP Region Mmin Mmax zmin zmax VDDP/10
6 ρDDP/10

−3 NGAL/10
3

1 N -21.8 -20.1 0.0213 0.2424 77.69 3.52 762.92
1 S -21.8 -20.1 0.0215 0.2401 169.36 3.85 1 795.93
2 N -20.6 -19.3 0.0124 0.1804 33.65 5.97 494.78
2 S -20.6 -19.3 0.0125 0.1787 73.25 6.41 1 170.97
3 N -19.6 -17.8 0.0079 0.0994 5.99 12.71 162.93
3 S -19.6 -17.8 0.0080 0.0979 12.80 15.19 413.75

4.2 Local Density

The DDP galaxies as defined above are then used to determine the local density.

We define N8,j as follows.

N8,j =

Nddp∑
i; rij<r8

wi (4.1)

In other words, N8,j is the weighted sum of DDP galaxies around the jth galaxy

in a sphere of radius r8 = 8 Mpc/h. Here, rij is the distance between DDP galaxy i

and galaxy j, and Nddp is the number of DDP galaxies. The choice of an 8 Mpc/h

sphere follows from analysis in McNaught-Roberts et al. (2014) who found this value

to be a good balance between probing dense environments well and minimising the

impact of redshift-space distortions.

Peculiar motions will have some impact on the density estimates through the

finger-of-god effect, as peculiar velocities may elongate the galaxy distribution along

the line-of-sight. In a non-uniform density field, this may have the effect of reducing

the local density estimate within the sphere. Alternative density estimation methods

include kernel density estimation (KDE) and various adaptations of this (see Ferdosi

et al. (2011)), although we do not made use of them in this thesis.

We then define N̄8 as the expected number of DDP galaxies in an given r8 = 8
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Mpc/h sphere given the volume and number density of the DDP sample

N̄8 =
4

3
πr38 ·

1

Vddp

Nddp∑
i

wi. (4.2)

Here, Vddp is the volume for the DDP region, defined as:

Vddp =
4π

3
A · [dc(zddpmax)

3 − dc(z
ddp
min)

3] (4.3)

where A, determined from the number of random galaxies in our matched random

catalogue, is the fraction of the total sky covered by the sample. zddpmin and zddpmax

are the minimum and maximum redshift values for the DDP sample (see 4.1). We

emphasise that the volumes and number densities are different between North and

South. This yields a standard measure for the overdensity:

δ8,j =
N8,j

N̄8 · fj
− 1 (4.4)

where fj represents the fill factor of each galaxy, defined as the ratio of randoms in

the r8 = 8 Mpc/h sphere centred on galaxy j to the expected number in a complete

sphere

fj =
Nrand,8,j

N̄rand,8

. (4.5)

Here, Nrand,8,j is defined similarly to N8,j: it is the number of DDP randoms around

galaxy j in an r8 = 8 Mpc/h sphere, while N̄rand,8 is the expected number of DDP

randoms in a complete r8 = 8 Mpc/h sphere. The value of the expected local

density must be corrected to account for survey holes and boundaries. The fill

factor is incorporated to account for the fact that if a galaxy lies on the edge of

the survey, then N8 will be an underestimate as DDP galaxies outside the survey

volume will not be detected. For example, if a galaxy lies right on the boundary

of the survey, then about 50% of the sphere is within the survey volume, and so

has a fill factor of fj = 0.5. We discount all galaxies with a fill factor fj < 0.8 in

our analysis in order to avoid introducing large errors on local density estimates for

78



boundary galaxies.

We present the spatial distribution of the fill factors in Fig. 4.2. This plot shows

a slab in the South that has a thickness of 10 Mpc/h with galaxies colour-coded by

their fill factors. From this, we can observe two clear features. First, there are visible

regions where the fill factor is low at the boundaries of the survey. This includes all of

the edges of the survey as expected, including at the zmin and zmax that are set by the

bright and faint apparent magnitude limit. Second, there appear to be radial shells

where the fill factor is visibly different from the surrounding area. We ascribe this

to the fact that the distribution of randoms follows the dN(z)/dz distribution of the

BGS catalogue. As a result, the fill factors will also be correlated with fluctuations

in these distributions. Currently, this means that these radial variations in the

density of randoms will modulate the assigned value of delta. For example, a radial

region of higher dN(z)/dz will have a higher fill factor distribution, which would

decrease the estimates of delta in that region. This could be improved by fitting a

smooth curve to the random dN(z)/dz distribution and applying additional redshift

dependent weights to force the weighted random dN(z)/dz to agree with the smooth

fit. However, because the modulation amplitude is small we do not expect this to

affect the trends we find with density.

It is important to carefully consider the definition that we use to define local

density. In particular, we desire that our DDP tracer population is not biased

in any way to skew our overdensity estimates. For example, it is possible that a

DDP sample predominately consisting of luminous galaxies may be biased towards

overdense regions. As a result, we test that our measurement of overdensity is robust

to the choice of DDP used. To do this, we calculate overdensities using DDP2 and

DDP3, both of which extend to fainter magnitudes than DDP1 (see Fig. 4.1 and

Table 4.1). We then compare the overdensities of galaxies that we can measure

using two different DDPs (noting that galaxies outside the redshift range of either

of the DDPs cannot be compared). These results are shown for DDP2 and DDP3

(Fig. 4.3). We find that there no significant difference between the overdensities

using different DDPs.
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Figure 4.2: The fill factor distribution in space of the Y1 BGS galaxies for a 10
Mpc/h thick slab. This plot includes boundary galaxies with f < 0.8, which visibly
lie at the edges of the survey.
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Figure 4.3: Comparisons of the overdensities for different DDP populations. Here,
we present the comparison for North objects for DDP2 and DDP3. We only compare
objects that can be assigned an overdensity from both DDPs due to an overlap in
the redshift range. The red lines present the median, 25th and 75th percentile
values of the DDP3 overdensity distribution for each DDP2 overdensity bin. The
black dashed line shows the one-to-one correspondence line. Similar plots exist for
DDP1/DDP2 and the South.
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Figure 4.4: The overdensity (δ8) against absolute magnitude for the South BGS
objects. The overdensity is calculated using DDP1. The colours represent the over-
density tier (given in Table 4.2). The vertical lines represent the absolute magnitude
limits for the North DDP1 population. It should be noted that because DDPs are
self-counting, δ8 ̸= −1 within the DDP1 absolute magnitude range, causing a visible
gap.
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Figure 4.5: Cone plots showing the galaxies for the δ8 tiers. Top: d1 (left), d4
(right). Bottom: d6 (left), d9 (right).
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4.3 DDP Luminosity Function

With the local density defined for each galaxy (as detailed in Section 4.2), we can

also find density-dependent LFs based on the local density calculated in an 8 Mpc/h

sphere, hereafter denoted as δ8 LFs.

To begin with, we categorise all galaxies into a “δ8 tier”, that is, a category

based on its δ8 value. Again, for ease of comparison, we use the same δ8 tiers

as McNaught-Roberts et al. (2014). This is shown in Table 4.2 and Fig. 4.4. In

addition, we present cone plots of the data split into four δ8 tiers (d1, d4, d6, d9).

This is shown in Fig. 4.5. We observe from these cone plots that higher δ8 tier

galaxies tend to be less uniform over the entire space, instead existing as clumpy

structures. Moreover, there are few high δ8 tier galaxies at very low redshift. This

is a result of the volumes being extremely small at low redshift.

We present the overdensity values, δ8, by tier against absolute magnitude for

DDP1 (Fig. 4.4). From this graph, there are a number of noticeable features that

are useful for understanding our methodology. First, there is an absence of objects at

δ8 = −1 within the DDP1 absolute magnitude range. This is because DDP galaxies

are self-counting, and all galaxies within that absolute magnitude range (and redshift

limits of the DDP population) are DDP galaxies by definition. Second, there is

some visible quantisation of points, where zooming in on this plot reveals visible

striations in δ8 where points are more likely to lie. To understand this, consider the

case where all galaxies are assigned a total completeness weight of unity. Then, N8,j

is an integer value. As such, the impact of increasing N8,j by 1 is to increase δ8,j

by 1/(N8,j · fj). Given that fj is close to unity for most galaxies, this is effectively

a discrete step with some small amount of scatter. Introducing the total weight

then has two effects on this δ8 distribution. The target completeness weight is an

integer value and so can simply shift galaxies from one striation to a higher one. The

redshift completeness weight is then a non-integer value, and so introduces further

scatter to each striation. However, as shown in our analysis in Section 2.5.3, the

mean of these redshift completeness weights is close to unity and so has a marginal

effect.

For the DDP range, we define a new value, V ddp
max,i to account for the fact that the
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Table 4.2: Table of DDP1 overdensity bins. Listed are overdensity limits, δmin and δmax,
the number of galaxies in a given δ8 tier, Nδ,DDP1, and the mean δ8 value in each tier, ⟨δ8⟩.

Tier Region δmin δmax Nδ,DDP1/10
3 ⟨δ8⟩

d1 N -1.00 -0.75 59.280 -0.884
d1 S -1.00 -0.75 124.439 -0.880
d2 N -0.75 -0.55 57.123 -0.647
d2 S -0.75 -0.55 130.097 -0.646
d3 N -0.55 -0.40 46.888 -0.474
d3 S -0.55 -0.40 105.138 -0.474
d4 N -0.40 0.00 121.904 -0.203
d4 S -0.40 0.00 288.934 -0.202
d5 N 0.00 0.70 176.008 0.328
d5 S 0.00 0.70 422.432 0.331
d6 N 0.70 1.60 140.168 1.108
d6 S 0.70 1.60 340.776 1.106
d7 N 1.60 2.90 98.296 2.151
d7 S 1.60 2.90 232.92 2.149
d8 N 2.90 4.00 36.381 3.369
d8 S 2.90 4.00 80.907 3.381
d9 N 4.00 29.49 26.877 5.353
d9 S 4.00 26.36 70.283 5.492

volume over which a galaxy may be observed is now limited by a stricter redshift

range.

V ddp
max,i =

4π

3
A[d3(zddpmax,i)− d3(zddpmin,i)] (4.6)

where

zddpmax,i = min(zmax,i, z
ddp
max) (4.7)

and

zddpmin,i = max(zmin,i, z
ddp
min) (4.8)

In other words, zddpmin,i and zddpmax,i refer to the minimum and maximum redshifts
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at which the ith galaxy could be observed within the DDP. The maximum possible

value of zddpmax,i is the upper redshift of the DDP itself, for example, zddpmax = 0.242 in

DDP1 in the North. A similar constraint exists for zddpmin,i. We note that by definition,

V ddp
max,i ≤ Vmax,i.

When using the 1/Vmax estimator on different δ8 tiers, it is important to correct

for the fact that each δ8 tier will occupy a different volume within the total DDP

volume. This can be quantified using the random catalogue. We define the fractional

volume in Eqn. 4.9 where Nδ(< z) is the cumulative number of randoms found in δ8

tier δ at redshift z and Nall(< z) is the cumulative number of total randoms found

across all δ8 tiers found at redshift z. From this, we define a corrective volume

fraction for each galaxy.

fδ,i =
Nδ(< zddpmax,i)−Nδ(< zddpmin,i)

Nall(< zddpmax,i)−Nall(< zddpmin,i)
(4.9)

From this, the Vmax quantity used in our estimator for each δ8 tier is

V δ
max,i = Vmax,i × fδ,i (4.10)

Using V δ
max,i defined above, we present the LFs for four different δ8 tiers (d1, d4,

d6 and d9) in Fig. 4.6. Here we show the zeropoint LFs where DDPs are not self-

counting, and thus values of δ8 = −1 are possible within the DDP range. Although

this is different from the overdensities presented in Fig. 4.4 and additionally leads to

a discontinuity in the density field (at the centres of the DDP galaxies), this has the

advantage of being more directly comparable to McNaught-Roberts et al. (2014).

We observe that there is good agreement between the North and South LFs for all

tiers except for d9, the highest δ8 tier, which differ at faint magnitudes. This is

explainable by the fact that faint magnitude objects are only observable in a very

small volume close to the observer. As such, the sample variance is very large as

the result depends on whether or not there is a large overdense region in that small

volume.
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Figure 4.6: The density-dependent 1/Vmax LFs for North and South. North is rep-
resented by the solid line, while South is represented by the dashed line. Each LF
represents a different δ8 tier, as outlined in Table 4.2. Note that here we are pre-
senting the zeropoint LFs (where the DDPs are not self-counting). The dotted line
shows the equivalent density-dependent LFs for GAMA as presented in McNaught-
Roberts et al. (2014). The vertical dashed lines indicate the absolute magnitude
limits of DDP1.
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Figure 4.7: The density-dependent 1/Vmax LFs for North and South. Here, we
present the jackknife errors for each LF. For clarity, we use darker colour shades
to represent the Norths LFs and lighter colour shades to represent the South LFs.
Note that here we are presenting the zeropoint LFs (where the DDPs are not self-
counting). The vertical dashed lines indicate the absolute magnitude limits of DDP1.
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Figure 4.8: The 1/Vmax LFs split by both overdensity and colour. Red galaxies are
defined as 0.1(g−r) > 0.75, while blue galaxies are defined as 0.1(g−r) < 0.75. Here,
North LFs are presented in darker colour shades while South LFs are presented in
lighter colour shades.

Our results are in broad agreement with the density-dependent LFs for GAMA

DR2 as presented by McNaught-Roberts et al. (2014). We observe that the d4 and

d6 δ8 tier LFs have a very similar shape and normalisation to the GAMA LFs. There

is some difference at d1, where we notice that the faint-end slope of the GAMA LF

is steeper than that of our BGS Y1 results. In addition, the highest δ8 tier seems

to have a similar shape and faint-end slope, but is systmatically higher across all

magnitudes.

We emphasise that we do not expect perfectly comparable results due to various

differences between the datasets and methodology. For example, we observe different

galaxies in different regions of the sky. In addition, we note that our methodology

differs from the analysis in McNaught-Roberts et al. (2014) who instead used a

fractional volume weighting on initial density-dependent SWML LFs to normalise

the GAMA LFs.

We also present jackknife errors for our BGS Y1 density-dependent LFs (Fig. 4.7).

We observe that the errors for both North and South LFs are generally very small,

with the exception of the highest δ8 tier (which contains fewer objects than the other
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δ8 tiers). Our errors are comparable to those presented for the GAMA results in

McNaught-Roberts et al. (2014). We attribute this to the fact that both the GAMA

and Y1 BGS samples have a similar number of galaxies once we have applied our

fill factor cut.

We present further results of our density-dependent LFs. Fig. 4.8 presents the

density-dependent LFs additionally split by colour, using a colour-split of 0.1(g−r) =

0.75. We continue to see good agreement between North and South LFs across all

of our density tiers, with the sole exception again being the faint-end of the highest

δ8 tier. The jackknife errors remain small for these LFs.

4.4 Conclusions

In conclusion, we have developed a robust methodology for finding density-dependent

LFs, which involves defining a Density Defining Population (DDP) of galaxies. This

method adjusts the 1/Vmax estimator to account for the fact that different δ8 tiers

occupy different volumes within the DDP volume. Moreover, this methodology in-

corporates fill factors to account for the issue of boundary galaxies - where galaxies

near the edge of the survey may receive lower local density estimates.

The results agree between the North and South galaxies for the BGS Y1 data,

except at the highest δ8 tier - which is expected due to the large sample variance

at faint magnitudes for the highest overdensities. These results also generally agree

well with prior results from GAMA presented in McNaught-Roberts et al. (2014).

In particular, we observe that the middle δ8 tiers, d4 and d6, are of an extremely

similar shape and normalisation to that of GAMA. The major point of difference

is the lowest δ8 tier, d1, where the GAMA result has a different shape to our BGS

Y1 result. We broadly observe that M∗ decreases as a function of density, while α

remains the same. These trends are also observed in GAMA by McNaught-Roberts

et al. (2014).

In addition, we find small jackknife errors on most of the density-dependent LFs

for both North and South. Although this shows that our LFs are well-constrained,

these errors are comparable to those of GAMA. This is because currently our results
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are limited by the small effective volume of galaxies that we have. This is a direct

result of the Y1 BGS catalogue being highly incomplete which in turn causes there

to be a large number of boundary galaxies (with f < 0.8) that are ignored in

our density-dependent LFs. Although this is a major limitation for the results as

presented here, we emphasise that we have developed a robust methodology which

will yield more promising results in the future Y3 and Y5 catalogues, which will be

far more complete.
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CHAPTER 5

Stellar Mass Function

In this Chapter, we present the Stellar Mass Function (SMF) of the BGS Y1 dataset.

We compare this result to various SMF estimates, including the novel Photomet-

ric objects Around Cosmic webs (PAC) model of Xu et al. (2022a), outlined in

Section 5.3.

5.1 Motivation

The Stellar Mass Function (SMF) quantifies the number density of galaxies as a

function of stellar mass. The SMF is a useful tool for understanding the growth of the

stellar population of galaxies. Most importantly, the SMF can act as a fundamental

constraint on galaxy formation models. However, one must be cautious as the SMF

is typically more model dependent than the luminosity function (LF) as a result

of various assumptions that are made in order to estimate the stellar masses of a

galaxy from observed quantities.

The SMF has been a point of investigation for many decades, but initial studies

came with very large uncertainties. In recent years, a number of studies have made

very precise measurements of the SMF at low redshifts (Baldry et al., 2012; Cole
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et al., 2001; Wright et al., 2017). In addition, there have been major extensions to the

accuracy of SMFs with larger sample sizes at higher redshifts (Weaver et al., 2023).

For example, McLeod et al. (2021) present a number of ground-based estimates of

the SMF, in addition to a combined HST and ground-based SMF up to the redshift

bin 2.75 < z < 3.75.

The SMF has become extremely important for both the calibration and valida-

tion of a number of galaxy simulations. For example, EAGLE (Crain et al., 2015;

Schaye et al., 2015), one of the first cosmological hydrodynamic simulations to pro-

duce a realistic galaxy population, assumes the Planck 2013 cosmological parameters

(Planck Collaboration et al., 2014) and then is calibrated to reproduce the observed

SMF at z = 0.1. It is additionally calibrated to reproduce the galaxy mass-BH re-

lation. (Crain et al., 2015). EAGLE has then been able to generate SMFs at higher

redshifts, which acts as a validation test of the simulation. This is similarly true

of a successor to EAGLE, the FLAMINGO simulation, which calibrates its subgrid

modelling with the present SMF (Schaye et al., 2023). Due to the importance of

the SMF in the calibration of these galaxy formation models, it is very important

to have accurate estimates.

In addition, the SMF is a highly useful tool to understand galaxy formation

processes. In particular, the difference between the SMF and the halo mass function

offers an insight into physical processes such as SN and AGN feedback. The direct

link between DM halo mass and stellar mass remains an open question, but various

studies have sought to quantify the role of feedback in shaping the SMF. For example,

Bower et al. (2012) finds that implementing a low wind speed expulsion model

combined with AGN feedback in GALFORM yields a model SMF that agrees closely

with the empirical SMF at high masses.

An additional motivation for investigating the SMF is to better characterise the

nature of dark matter. As discussed in Chapter 1, the nature of dark matter is an

unresolved problem in astrophysics. However, the nature of dark matter is extremely

important in structure formation, with different models having been proposed, in-

cluding warm dark matter (WDM). Due to the increased kinetic energy of WDM,

WDM notably suppresses structure formation at low-mass scales when compared to
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CDM. In particular, WDM would predict a decrease in the number density at the

low-mass end of the SMF when compared to CDM. This has been quantified by a

number of simulation that have investigated the evolution of the WDM and CDM

SMFs over time (Dayal & Giri, 2024). As a result, measuring the SMF can act as

an important constraint on WDM models.

5.2 SMF Methods

In order to calculate the SMF, it is first necessary to calculate the stellar mass of

a galaxy from its photometry. Typically, this will make use of a Stellar Population

Synthesis (SPS) model, e.g: Bruzual & Charlot (2003), to determine the SED pro-

duced by a given stellar population (defined by its age and metallicity) and then

these can be fit to an observed galaxy SED to determine the stellar mass of the

galaxy (and its age and metallicty). However, the results of this SED generation is

highly model dependent, relying on a number of non-unique choices. SPS modelling

typically operates as follows: To begin, an SPS model seeks to track the trajectory

of a (main sequence) star as it evolves on the Hertzsprung-Russell diagram. In par-

ticular, these stellar tracks are sampled in both mass and time in order to generate

stellar isochrones for given ages and metallicities. With some choice of isochrones

selected, the SPS model will use a spectral library to convert stellar evolution calcu-

lations (e.g: effective temperatures) into SEDs, where the choice of spectral library

may be empirical or theoretical.

Another consequential aspect is the choice of the Initial Mass Function (IMF)

which empirically describes the mass distribution of a population of stars at for-

mation. Popular examples of IMFs include Salpeter (1955), Kroupa (2002) and

Chabrier (2003) which each differ significantly at the low-mass end of the distribu-

tion. The choice of IMF can make a significant difference in the normalisation of the

mass-to-light ratio (Bernardi et al., 2017) and hence in the inferred stellar masses.

Finally, dust modelling has an important effect on the SED as ISM dust causes

attenuation in the optical and UV ranges, but is a contributor to emission in the

far-IR range. As such, different dust models will also result in different SEDs and
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different inferred stellar masses.

In calculating the stellar masses, Xu et al. (2022b) makes use of the CIGALE

SED code using the grz-band measurements. In addition, Xu et al. (2022b) uses

the Bruzual & Charlot (2003) stellar population synthesis models, the initial mass

function from Chabrier (2003), a delayed star formation history model, and the

Calzetti et al. (2000) extinction law for dust reddening.

For illustration, we present in Fig. 5.1 the stellar masses calculated by Xu et al.

(2022b) against those calculated by FSF (Moustakas et al., 2023). We see that

although the majority of the galaxies have very similar stellar masses, there is a

significant amount of scatter. Moreover, we observe visually different results in the

SMF between the two models at the high-mass end (Fig. 5.2), demonstrating the

impact of these assumptions. We observe that the 1/Vmax SMFs seems to fall off

around 107M⊙. We attribute this to the completeness limit of the survey, whereby

fainter objects are more likely to have low galactic stellar mass.

5.3 Photometric Objects Around Cosmic Webs

In this Subsection, we outline the PAC method that was developed in Xu et al.

(2022a) to calculate the SMF from the stellar masses.

To begin, we consider the quantification of galaxy clustering. Due to the hi-

erarchical structure formation described in Chapter 1, galaxies are not randomly

distributed in the universe with a Poisson distribution, but rather form clusters.

This is most notably demonstrated with the visual presence of filaments and voids

in the universe. In order to quantify this clustering, we define the spatial two-point

correlation function as the excess probability that a galaxy is separated from another

galaxy at some distance r. More formally, we write this as

dP = n[1 + ξ(r)]dV, (5.1)

where n is the mean number density of the galaxy sample and dV is the volume

element. In practice, this spatial two-point correlation function is found by using
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Figure 5.1: Comparison of the Xu et al. (2022b) stellar masses and FSF stellar
masses. The solid black line represents the one-to-one line between the two quantites.
The dashed red lines represent the 10th and 90th percentiles.
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Figure 5.2: A comparison of the 1/Vmax SMF using the stellar masses detailed in
Xu et al. (2022b) and the 1/Vmax SMF using the FSF stellar masses.
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the estimator from Landy & Szalay (1993)

ξ(r) =
DD − 2DR +RR

RR
, (5.2)

where DD is the pairwise count (of pairs of separation r) from the data catalogue,

RR is the pairwise count from the random catalogue, and DR is the pairwise count

from the data catalogue with the random catalogue. Similarly, we can define the

angular two-point correlation function, ω(θ), as the excess probability of finding one

galaxy within a given angular separation of another galaxy. This is defined in the

same manner as Eqn. 5.2, except the pairwise counts occur within a given on-sky

angular separation. More broadly, one can also find cross-correlations between two

different populations. In this case, the correlation function of one population is

defined with respect to another population.

Photometric Objects around Cosmic Webs (PAC) is a method developed by

Xu et al. (2022a) that estimates the projected density distribution of photometric

objects around spectroscopic objects. The motivation for this is that estimating

the SMF at high redshifts has proved difficult due to a lack of spectroscopic data.

Furthermore, photometric redshifts may have large uncertainties at high redshifts.

This difficulty particularly affects the low-mass end of the SMF, resulting in high

uncertainties on the SMF. As such, a method that could better estimate the number

density of photometric objects would be particularly useful.

Let us consider two catalogues of galaxies - one is a set of galaxies with spectro-

scopic redshifts, and one is a set of galaxies with photometric redshifts (in Xu et al.

(2022a), these are called pop1 and pop2 respectively).

PAC works by estimating the excess projected density distribution, n̄2ωp(rp), of

the spectroscopic catalogue as

n̄2ωp(rp) =
S̄2

r21
w12,weight(θ) (5.3)

where S̄2 is the mean angular surface density of the photometric survey, r1 is the

comoving distance to pop1 and w12,weight is the weighted angular cross-correlation

function between the photometric and spectroscopic population. For clarification,

98



n̄2 is the mean number density of the photometric population, and wp(rp) is the

projected cross-correlation function of the spectroscopic and photometric catalogues

with rp = r1θ.

The methodology of PAC is as follows: First, the spectroscopic catalogue is

divided into narrow redshift bins (which effectively form a continuum of values).

Then, each galaxy in the photometric catalogue is assumed to have the same redshift

as the mean redshift in each bin. From this, the stellar mass (and other physical

properties) can be calculated using the SED and assuming that mean redshift. Then,

in each redshift bin, one can use Eqn. 5.3 to calculate n2wp(rp) for a given stellar

mass. The power of this technique is that only photometric galaxies at the same

redshift as the spectroscopic galaxies they are being correlated with contribute to the

cross-correlation. Thus photometric galaxies that were assigned the wrong stellar

mass because they were assigned the wrong redshift do not systematically bias the

measurement of n2wp(rp) .

Armed with the measurement of n2wp(rp), there are a number of ways of esti-

mating n2. One such method is to divide through by wp(rp), where this makes the

assumption that wp(rp) estimated from the spectroscopic sample only depends on

stellar mass. Alternatively, one can use a catalogue of subhalos in a cosmological

N-body simulation with an assumed set of cosmological parameters (e.g. the Planck

cosmology) and use the subhalo abundance matching (SHAM) technique (Vale &

Ostriker, 2004) to yield a secondary joint constraint between n2 and wp(rp) and solve

for n2. In summary, PAC utilises the photometric catalogue to get very low stellar

masses under a number of assumptions.

5.4 SMF Comparisons

The PAC method is very powerful as it enables the full depth of the parent pho-

tometric Legacy Survey catalogue to be used to infer stellar masses and not just

the brighter subset that is in the spectroscopic BGS catalogue. However, it makes

additional assumptions including either that wp(rp) only depends on stellar mass or

assumes both a particular cosmological model and the SHAM ansatz. It is therefore
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useful to test these assumptions using a more direct estimate of the SMF. Hence we

make use of stellar masses defined by Xu et al. (2022b) together with the 1/Vmax

method described in Subsection 3.1.1 to find the SMF. We then compare this to the

PAC estimates (both with the SHAM ansatz and the asssumption of wp(rp) only

depending on stellar mass). In addition we compare to the Driver et al. (2022) es-

timate from GAMA (modified as in Xu et al. (2022b) to account for the systematic

difference in the inferred stellar masses due to the different choice of SPS model).

These comparisons are shown in Fig 5.3.

The agreement between our direct 1/Vmax estimate and the published estimate

from GAMA (Driver et al., 2022) is in good agreement down to 107M⊙. Below

this the BGS estimate becomes incomplete, while the smaller area of the GAMA

estimate makes it susceptible to fluctuations due to cosmic variance. We can see

that above 109M⊙ there is excellent agreement between the two PAC estimates and

our direct 1/Vmax estimate. This lends strong support to the PAC method and its

ability to infer the SMF by cross-correlation techniques. However below 109M⊙

we see the two PAC estimates diverge with our 1/Vmax estimate. The SHAM-based

estimate stays consistent with our direct estimate down to 109M⊙, but the one based

on assuming wp(rp) only depends on stellar mass becomes slightly less steep. The

reason for this needs more investigation. It could be a cosmic variance issue as at

this stellar mass the estimate of wp(rp) from the spectroscopic sample is limited to

a very small volume. Alternatively, it could be a systematic error induced by wp(rp)

depending on both stellar mass and galaxy colour combined with the completeness

of the BGS sample at fixed stellar mass depending on colour. These issues will have

to be understood and modelled before the PAC method can live up to its promise

of enabling the SMF to be estimated well below 108M⊙.

5.5 Conclusions

In this Chapter, we have compared the galaxy stellar masses for the BGS Y1 cat-

alogue as estimated by Xu et al. (2022b) and Moustakas et al. (2023). Here, we

highlight that there is a general level of agreement between the two estimates, with
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Figure 5.3: The 1/Vmax SMF compared to the PAC model assuming wp(rp) only
depends on stellar mass and the PAC model using the SHAM ansatz. A modified
empirical SMF from Driver et al. (2022) is presented, where the SMF has been
shifted by the median offset between the individual stellar masses in Driver et al.
(2022) and Xu et al. (2022b) for the galaxies they have in common. The dashed line
at 108M⊙ represents the current limit on the validity of the PAC model determined
by where the choice of assumptions leads to diverging estimates.
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the median residual being close to zero and the interquartile range remaining small

over most magnitudes. Nevertheless, we highlight that there are a number of out-

liers in addition to the existence of non-negligible scatter, especially at the low-mass

end.

We proceed to investigate the novel PAC method developed by Xu et al. (2022a).

PAC is a powerful method which is able to exploit the signal in the cross-correlation

of faint galaxies from the Legacy photometric surveys with the brighter DESI BGS

galaxies with known spectroscopic redshift. In doing so, the PAC method is able to

estimate the galaxy SMF to very low stellar masses.

As a test of the PAC methodology, we compare the PAC SMF to a direct 1/Vmax

estimate, using the same methodology as detailed in Chapter 3. We find broadly

good agreement at the high-mass end. However, below 109M⊙ we find that there

is significant divergence between the PAC estimate and our 1/Vmax estimate. As a

result, we suggest that there are still some potential issues with PAC at low masses,

and more careful modelling of the auto-correlation function of stellar mass selected

samples is required. If PAC is able to do this and estimate stellar mass functions to

as low as 106M⊙ then it will be a useful constraint on DM models.
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CHAPTER 6

Conclusions

6.1 Overview

6.1.1 Global LFs

In this thesis, we have developed a methodology to determine the global 1/Vmax

LF for the DESI BGS Y1 data in the r, g, z and w1 bands. In particular, we

have developed a polynomial-based method for defining k-corrections based on the

FastSpecFit (FSF) k-corrections that allows for the calculation of Vmax for all BGS

galaxies. We have also developed a single-parameter e-correction derived from the

V/Vmax distribution of the galaxies. From this, we have found LFs that have small

jackknife errorbars across a wide range of magnitudes. We confirm that we get

good agreement with prior literature - in particular, we get comparable results to

the complete GAMA data when assuming the same redshift limits and evolution.

This means that we successfully account for the target and redshift incompleteness

in the Y1 data. With this successful result, we can move on in the future to find

the Y3 and Y5 LFs which will be more complete, and thus can yield even stronger

constraints on the global LF.
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6.1.2 Density-dependent LFs

We additionally present density-dependent LFs for DESI BGS Y1 in the r-band. The

value of these LFs is that different galaxy formation models give different predictions

as to the impact of environment on galaxy formation. As such, accurate measures

of LFs split by environmental measures can act as a stringent test on those models.

We find that the North and South LFs agree very well across all density tiers,

with the exception of the most dense tier, which disagrees at faint magnitudes.

Given the small volume over which the faint magnitude objects can be detected,

it is reasonable to expect that there may be a large discrepancy in finding dense

regions between North and South. In addition, we show relatively good agreement

between our DESI BGS Y1 LFs and the equivalent LFs from GAMA DR2, which

is indicative of the fact that we have developed a robust pipeline which successfully

takes into account the impact of boundaries and holes on the calculations of local

density. There remains some difference in the shape of the lowest δ8 tier between

BGS Y1 and GAMA DR2. We note that due to the incompleteness of the BGS

Y1 data, a large percentage of the data is removed from the analysis due to our

condition on removing boundary galaxies. With the removal of boundary galaxies,

the effective volume of the BGS survey is close to that of GAMA, meaning that

the jackknife errorbars we derive are also comparable with GAMA. Nevertheless,

we demonstrate a clear methodology for density-dependent LFs. The Y3 and Y5

results will be far more promising as they will have a far higher completeness, and

as a result, a far higher effective volume. We therefore hope to better constrain the

density-dependent LF errorbars in the future.

6.1.3 SMFs

In addition, we also present 1/Vmax Stellar Mass Functions (SMFs) on the BGS Y1

dataset. In doing so, we have used galaxy stellar masses from Xu et al. (2022b) in

order to make a direct comparison to PAC, a powerful method of estimating the

SMF to low masses that exploits the signal in the cross-correlation of faint galaxies

from the Legacy photometric surveys with brighter galaxies with redshift in DESI
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BGS.

We find reasonably good agreement at high stellar masses, but there is significant

divergence at M⋆ < 109M⊙. This suggests that whilst PAC is a promising model for

constraining DM models, further work will need to be done to improve its low-mass

estimate of the SMF, such as through more careful modelling of the auto-correlation

function of stellar mass selected samples.

6.2 Future Directions

6.2.1 Evolutionary Modelling

There are nevertheless some points of interest that need further investigation. We

note from our investigation of the LFs that the evolution is non-trivial. Relative to

GAMA, the use of a single Q-value from 0.002 < z < 0.2 gives consistent results.

However, we find that a single value of Q is inadequate to fully capture the entire

evolution over the redshift range of 0.002 < z < 0.6, where we start to observe

disagreement with the GAMA Schechter function (as well as disagreement with DESI

LFs at different redshift ranges). This suggests that a more developed evolution

model is required. Prior literature has divided galaxy samples into red and blue

populations. We confirm that the DESI Y1 data appears to have two distinct

Gaussian populations broadly separable by colour. Dividing the galaxy population

into these two distinct colour classes and using two distinct Q-values (Qred, Qblue)

yields more consistent results with the LFs diverging from each other to a lesser

extent over larger redshift ranges. Nevertheless, there remains some divergence from

the Loveday Schechter fit. It must also be considered that this introduces additional

assumptions into our model. In particular, the two-parameter model assumes that

the shapes of the red and blue LFs stay the same over time, which is not necessarily

true. This suggests that while using two separate Q-values seems to improve our

LF measurements, there is still ample room for improvement. We consider that

calculating Q as a function of luminosity (Q = Q(L)) may be a better description

of the evolution. The has the added advantage of removing the assumption that the

shapes of the red and blue colour LFs stay the same with time. This is currently a
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point of ongoing investigation.

6.2.2 Photometry

In addition to this, we find that the agreement between the North and South LFs

is largely robust, especially around the knee of the LF. This suggests that we have

successfully accounted for the photometry difference in North and South through

the use of our k-correction model. However, we do note that there is a North/South

discrepancy at the brightest end of the LF. Our preliminary investigations find that

this is not a result of any rest-frame colour discrepancy between the North and South

populations, as assigning the South rest-frame colour-distribution to the North does

not remove the discrepancy. As such, we can discount the possibility of our k-

correction model causing this problem. Nevertheless, this problem remains unsolved,

but is likely a problem in the initial photometry. One suggestion is that this may

be due to BASS and DECaLS assigning different light profiles to galaxies, resulting

in galaxies receiving a higher r-band flux measurement in one region compared to

the other. To investigate this, we hope to compare the Sersić indices of the overlap

galaxies from BASS and DECaLS once this data becomes available to us to see if

there is any notable difference.

6.2.3 Imaging

One of the advantages of our LFs is that we manage to extend our LFs to very

faint magnitudes, with reasonable jackknife errorbars. Moreover, we observe an

upturn in the LF at these faint magnitudes which is predominately caused by the

red galaxies. We sought to better probe the accuracy of our LFs by conducting

visual inspections of galaxies at these faint magnitudes. Our investigations into

the imaging systematics suggest that many of the objects at Mr − 5 log h < −14

suffer from fragmentation and other imaging problems, which we have sought to

better quantify. For example, we find in our samples that a majority of objects

at Mr − 5 log h < −10 suffer from being problem galaxies. We attempt to adjust

our LF using both a crude correction from our visual inspection statistics as well
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as a neural network classification scheme. Both of these methods fail to completely

remove the upturn suggesting that it is a real trend in the data. However, both of

these methodologies have limitations and can be developed and tested further. As

such, more work is needed to better assess the veracity of the faint-end of the LF.

Further work will need to be conducted to investigate what other properties correlate

with imaging problems. In doing so, this can hopefully lead to the development of

a selection cut to remove these spurious objects.

6.2.4 DESI Comparison Work

At the moment, a major limitation of the above results is the incompleteness of the

Y1 catalogue. Although this will affect the global LF errorbars, the most notable

impact is on our density-dependent LFs. This is because we implement a fill factor

cut of fj < 0.8 which removes galaxies around the boundaries and holes of the

survey. This means that while the DESI survey is highly extensive in terms of

its target coverage, the current effective volume is comparable to that of GAMA,

meaning that our density-dependent LF errorbars are also comparable. In the future,

we hope to conduct this analysis on the Y3 and Y5 catalogues which will be far more

complete and therefore will have a much larger effective volume.

We also note the challenge of making direct comparisons between LFs from dif-

ferent surveys as a result of the differing definition in magnitudes. For example,

SDSS used Petrosian magnitudes, whereas DESI took the approach of calculating

total magnitudes. There are different advantages and disadvantages of each method,

such as the fact that total magnitudes are dependent on the S/N of the data. Regard-

less, this adds a further challenge that our DESI LFs may not be directly comparable

with LFs from other surveys like SDSS. To investigate this, one future direction may

be to calculate Petrosian magnitudes for DESI and observe how this affects the LF.

There is also the possibility of comparing the magnitudes of different surveys

with DESI magnitudes. For example, EUCLID is deep enough to compare BGS

galaxies. The utility of this is that we can further verify whether our LFs agree

across different surveys. This includes probing some of the features in our LFs,

such as the bright-end disparity between North and South. For example, if the
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LFs end up agreeing with each other in a different survey with different magnitude

definitions, then it constrains the problem to the DESI photometry.

6.2.5 Further Environmental Measures

In addition, there are other measures of environment which can be investigated. For

this thesis, we focused on using δ8 as a measurement for local density due to its

comparability to prior GAMA results as well as the fact that δ8 can be sensibly esti-

mated from the incomplete Y1 dataset. Nevertheless, there are also other estimators

that may be more physical. One such example would be a cosmic web classification

scheme where galaxies could be classified as residing in filaments, sheets, clusters

and voids. From this, LFs could be found for each classification and compared to

prior results in the literature. We did not pursue this method as there is substan-

tial difficulty in accurately classifying galaxies this way in the highly incomplete Y1

catalogue. However, as the Y3 and Y5 catalogues will be more complete, such an

analysis will be possible in the future.

6.2.6 Simulations

As part of the impact of this thesis, we hope that the DESI LFs can be used to

better constrain galaxy formation models. As detailed in Chapter 1, there are still

a number of open questions in galaxy formation - including but not limited to

the role of feedback. In order to further our analysis, a direct comparison of the

density-dependent LFs to simulations such as FLAMINGO should be conducted.

FLAMINGO has conducted hundreds of different simulations with varying parame-

ters, including differing feedback parameters that account for different AGN and SN

models. By comparing our LF results against the LFs from the set of FLAMINGO

simulations, we may be able to place better constraints on different feedback pa-

rameters and rule out certain AGN models. Furthermore, even if these simulation

runs are comparatively small in box size, they can nonetheless flag areas on interest

so that future simulation runs can be larger with specific feedback parameters.
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Blanchard A., Héloret J.-Y., Ilić S., Lamine B., Tutusaus I., 2024, The Open
Journal of Astrophysics, 7 1.1

Bond J. R., Cole S., Efstathiou G., Kaiser N., 1991, The Astrophysical Journal,
379, 440 1.2

109

http://dx.doi.org/10.1086/156892
https://ui.adsabs.harvard.edu/abs/1979ApJ...228..664A
https://ui.adsabs.harvard.edu/abs/1979ApJ...228..664A
http://arxiv.org/abs/2203.14923
https://arxiv.org/abs/2203.14923
https://arxiv.org/abs/2203.14923
http://dx.doi.org/10.1073/pnas.1424299112
http://dx.doi.org/10.1111/j.1365-2966.2012.20340.x
http://dx.doi.org/10.1051/0004-6361/201118586
https://ui.adsabs.harvard.edu/abs/1989QJRAS..30..163B
http://dx.doi.org/10.1093/mnras/stt1607
http://dx.doi.org/10.1093/mnras/stx3171
http://dx.doi.org/10.33232/001c.117170
http://dx.doi.org/10.33232/001c.117170
http://dx.doi.org/10.1086/170520
https://ui.adsabs.harvard.edu/abs/1991ApJ...379..440B


Bower R. G., 1991, Monthly Notices of the Royal Astronomical Society, 248, 332
1.2

Bower R. G., Benson A. J., Malbon R., Helly J. C., Frenk C. S., Baugh C. M.,
Cole S., Lacey C. G., 2006, Monthly Notices of the Royal Astronomical Society,
370, 645 1.2

Bower R. G., Benson A. J., Crain R. A., 2012, Monthly Notices of the Royal
Astronomical Society, 422, 2816 5.1

Bruzual G., Charlot S., 2003, Monthly Notices of the Royal Astronomical Society,
344, 1000 5.2

Calzetti D., Armus L., Bohlin R. C., Kinney A. L., Koornneef J., Storchi-Bergmann
T., 2000, The Astrophysical Journal, 533, 682 5.2

Chabrier G., 2003, Publications of the Astronomical Society of the Pacific, 115,
763 5.2

Cole S., 2011, Monthly Notices of the Royal Astronomical Society, 416, 739 3.1.3

Cole S., Lacey C. G., Baugh C. M., Frenk C. S., 2000, Monthly Notices of the
Royal Astronomical Society, 319, 168 1.2

Cole S., et al., 2001, Monthly Notices of the Royal Astronomical Society, 326, 255
5.1

Crain R. A., et al., 2015, Monthly Notices of the Royal Astronomical Society, 450,
1937 1.2, 5.1

Croton D. J., et al., 2006, Monthly Notices of the Royal Astronomical Society, 365,
11 1.2

Croton D. J., et al., 2016, The Astrophysical Journal Supplement Series, 222, 22
1.2

DESI Collaboration in prep., DESI 2024 I: Data Release 1 of the Dark Energy
Spectroscopic Instrument 1.4

DESI Collaboration et al., 2016, The DESI Experiment Part I: Science,Targeting,
and Survey Design (arXiv:1611.00036) 1.4

DESI Collaboration et al., 2023, arXiv e-prints, p. arXiv:2306.06308 2.4

DESI Collaboration et al., 2024a, arXiv e-prints, p. arXiv:2404.03000 2.1

DESI Collaboration et al., 2024b, arXiv e-prints, p. arXiv:2404.03002 2.1

DESI Collaboration et al., 2024c, The Astronomical Journal, 168, 58 1.4

Dayal P., Giri S. K., 2024, Monthly Notices of the Royal Astronomical Society,
528, 2784 5.1

110

http://dx.doi.org/10.1093/mnras/248.2.332
http://dx.doi.org/10.1111/j.1365-2966.2006.10519.x
http://dx.doi.org/10.1111/j.1365-2966.2012.20516.x
http://dx.doi.org/10.1111/j.1365-2966.2012.20516.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.422.2816B
http://dx.doi.org/10.1046/j.1365-8711.2003.06897.x
https://ui.adsabs.harvard.edu/abs/2003MNRAS.344.1000B
http://dx.doi.org/10.1086/308692
https://ui.adsabs.harvard.edu/abs/2000ApJ...533..682C
http://dx.doi.org/10.1086/376392
https://ui.adsabs.harvard.edu/abs/2003PASP..115..763C
https://ui.adsabs.harvard.edu/abs/2003PASP..115..763C
http://dx.doi.org/10.1111/j.1365-2966.2011.19093.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.416..739C
http://dx.doi.org/10.1046/j.1365-8711.2000.03879.x
http://dx.doi.org/10.1046/j.1365-8711.2000.03879.x
https://ui.adsabs.harvard.edu/abs/2000MNRAS.319..168C
http://dx.doi.org/10.1046/j.1365-8711.2001.04591.x
https://ui.adsabs.harvard.edu/abs/2001MNRAS.326..255C
http://dx.doi.org/10.1093/mnras/stv725
https://ui.adsabs.harvard.edu/abs/2015MNRAS.450.1937C
https://ui.adsabs.harvard.edu/abs/2015MNRAS.450.1937C
http://dx.doi.org/10.1111/j.1365-2966.2005.09675.x
https://ui.adsabs.harvard.edu/abs/2006MNRAS.365...11C
https://ui.adsabs.harvard.edu/abs/2006MNRAS.365...11C
http://dx.doi.org/10.3847/0067-0049/222/2/22
http://arxiv.org/abs/1611.00036
http://dx.doi.org/10.48550/arXiv.2306.06308
https://ui.adsabs.harvard.edu/abs/2023arXiv230606308D
http://dx.doi.org/10.48550/arXiv.2404.03000
https://ui.adsabs.harvard.edu/abs/2024arXiv240403000D
http://dx.doi.org/10.48550/arXiv.2404.03002
https://ui.adsabs.harvard.edu/abs/2024arXiv240403002D
http://dx.doi.org/10.3847/1538-3881/ad3217
https://ui.adsabs.harvard.edu/abs/2024AJ....168...58D
http://dx.doi.org/10.1093/mnras/stae176


Dey A., et al., 2019, The Astronomical Journal, 157, 168 2.1

Dressler A., 1980, The Astrophysical Journal, 236, 351 1.2

Driver S. P., et al., 2011, Monthly Notices of the Royal Astronomical Society, 413,
971 1.3, 1.4, 2.1

Driver S. P., et al., 2022, Monthly Notices of the Royal Astronomical Society, 513,
439 5.4, 5.3

Efstathiou G., Eastwood J. W., 1981, Monthly Notices of the Royal Astronomical
Society, 194, 503 1.2

Efstathiou G., Gratton S., 2020, Monthly Notices of the Royal Astronomical Soci-
ety: Letters, 496, L91 1.1

Efstathiou G., Ellis R. S., Peterson B. A., 1988, Monthly Notices of the Royal
Astronomical Society, 232, 431 3.1.1, 3.1.2

Ferdosi B. J., Buddelmeijer H., Trager S. C., Wilkinson M. H. F., Roerdink J. B.
T. M., 2011, AA, 531, A114 4.2

Freedman W. L., 2021, The Astrophysical Journal, 919, 16 1.1

Gott J. Richard I., 1975, The Astrophysical Journal, 201, 296 1.2

Guo Q., et al., 2016, Monthly Notices of the Royal Astronomical Society, 461, 3457
1.2

Guth A. H., 1981, Phys. Rev. D, 23, 347 1.2

Guy J., et al., 2023, The Astronomical Journal, 165, 144 2.5.3, 2.5.3

Hahn C., et al., 2023, The Astronomical Journal, 165, 253 (document), 2.1, 2.1,
2.8

Helly J. C., Cole S., Frenk C. S., Baugh C. M., Benson A., Lacey C., Pearce F. R.,
2003, Monthly Notices of the Royal Astronomical Society, 338, 913 1.2

Hockney R. W., Eastwood J. W., 1988, Computer simulation using particles 2.4,
2.5.3

Hogg D. W., Baldry I. K., Blanton M. R., Eisenstein D. J., 2002, The K correction
(arXiv:astro-ph/0210394) 2.4, A.1.1, A.1.2

Hoyle F., Rojas R. R., Vogeley M. S., Brinkmann J., 2005, The Astrophysical
Journal, 620, 618 1.3

Hubble E., 1929, Proceedings of the National Academy of Science, 15, 168 1.1

Huterer D., 2010, General Relativity and Gravitation, 42, 2177–2195 1.1

111

http://dx.doi.org/10.3847/1538-3881/ab089d
http://dx.doi.org/10.1086/157753
https://ui.adsabs.harvard.edu/abs/1980ApJ...236..351D
http://dx.doi.org/10.1111/j.1365-2966.2010.18188.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.413..971D
https://ui.adsabs.harvard.edu/abs/2011MNRAS.413..971D
http://dx.doi.org/10.1093/mnras/stac472
https://ui.adsabs.harvard.edu/abs/2022MNRAS.513..439D
https://ui.adsabs.harvard.edu/abs/2022MNRAS.513..439D
http://dx.doi.org/10.1093/mnras/194.3.503
http://dx.doi.org/10.1093/mnras/194.3.503
http://dx.doi.org/10.1093/mnrasl/slaa093
http://dx.doi.org/10.1093/mnrasl/slaa093
http://dx.doi.org/10.1093/mnras/232.2.431
http://dx.doi.org/10.1093/mnras/232.2.431
https://ui.adsabs.harvard.edu/abs/1988MNRAS.232..431E
http://dx.doi.org/10.1051/0004-6361/201116878
http://dx.doi.org/10.3847/1538-4357/ac0e95
http://dx.doi.org/10.1086/153887
https://ui.adsabs.harvard.edu/abs/1975ApJ...201..296G
http://dx.doi.org/10.1093/mnras/stw1525
https://ui.adsabs.harvard.edu/abs/2016MNRAS.461.3457G
http://dx.doi.org/10.1103/PhysRevD.23.347
http://dx.doi.org/10.3847/1538-3881/acb212
http://dx.doi.org/10.3847/1538-3881/accff8
http://dx.doi.org/10.1046/j.1365-8711.2003.06152.x
https://ui.adsabs.harvard.edu/abs/2003MNRAS.338..913H
http://arxiv.org/abs/astro-ph/0210394
http://dx.doi.org/10.1086/427176
http://dx.doi.org/10.1086/427176
http://dx.doi.org/10.1073/pnas.15.3.168
https://ui.adsabs.harvard.edu/abs/1929PNAS...15..168H
http://dx.doi.org/10.1007/s10714-010-1051-z


Kauffmann G., White S. D. M., Guiderdoni B., 1993, Monthly Notices of the Royal
Astronomical Society, 264, 201 1.2

Kennicutt Robert C. J., 1998, The Astrophysical Journal, 498, 541 1.2

Kim H.-S., Power C., Baugh C. M., Wyithe J. S. B., Lacey C. G., Lagos C. D. P.,
Frenk C. S., 2012, Monthly Notices of the Royal Astronomical Society, 428, 3366
1.2

Kormendy J., Fisher D. B., Cornell M. E., Bender R., 2009, The Astrophysical
Journal Supplement Series, 182, 216 1.2

Kraljic K., et al., 2017, Monthly Notices of the Royal Astronomical Society, 474,
547 1.3

Kroupa P., 2002, Science, 295, 82 5.2

Lan T.-W., et al., 2023, The Astrophysical Journal, 943, 68 2.2, 2

Landy S. D., Szalay A. S., 1993, The Astrophysical Journal, 412, 64 5.3

Lima J. A. S., Zanchin V., Brandenberger R., 1997, Monthly Notices of the Royal
Astronomical Society, 291, L1 1.2

Linde A., 1982, Physics Letters B, 116, 335 1.2

Liu C. T., Capak P., Mobasher B., Paglione T. A. D., Rich R. M., Scoville N. Z.,
Tribiano S. M., Tyson N. D., 2008, The Astrophysical Journal, 672, 198 1.3

Longair M., 2008, Galaxy Formation. Astronomy and astrophysics library,
Springer, https://books.google.co.uk/books?id=fRqMmwEACAAJ 1.2

Loveday J., et al., 2012, Monthly Notices of the Royal Astronomical Society, 420,
1239 2.4, 3.2, 3.5, 3.6, 3.7, 3.3, 3.7, B.2, B.2

Loveday J., et al., 2015, Monthly Notices of the Royal Astronomical Society, 451,
1540 3.2

Marinoni C., Bel J., Buzzi A., 2012, Journal of Cosmology and Astroparticle
Physics, 2012, 036 1.1

Mathis H., White S. D. M., 2002, Monthly Notices of the Royal Astronomical
Society, 337, 1193 1.3

McLeod D. J., McLure R. J., Dunlop J. S., Cullen F., Carnall A. C., Duncan K.,
2021, Monthly Notices of the Royal Astronomical Society, 503, 4413 5.1

McNaught-Roberts T., et al., 2014, Monthly Notices of the Royal Astronomical
Society, 445, 2125 1.3, 2.4, 3.2, 3.2, 3.10, 4.2, 4.3, 4.3, 4.6, 4.4

Melia F., 2022, Modern Physics Letters A, 37, 2250016 1.1

112

http://dx.doi.org/10.1093/mnras/264.1.201
http://dx.doi.org/10.1093/mnras/264.1.201
http://dx.doi.org/10.1086/305588
https://ui.adsabs.harvard.edu/abs/1998ApJ...498..541K
http://dx.doi.org/10.1093/mnras/sts279
http://dx.doi.org/10.1088/0067-0049/182/1/216
http://dx.doi.org/10.1088/0067-0049/182/1/216
http://dx.doi.org/10.1093/mnras/stx2638
http://dx.doi.org/10.1126/science.1067524
https://ui.adsabs.harvard.edu/abs/2002Sci...295...82K
http://dx.doi.org/10.3847/1538-4357/aca5fa
http://dx.doi.org/10.1086/172900
https://ui.adsabs.harvard.edu/abs/1993ApJ...412...64L
http://dx.doi.org/10.1093/mnras/291.1.L1
http://dx.doi.org/10.1093/mnras/291.1.L1
http://dx.doi.org/https://doi.org/10.1016/0370-2693(82)90293-3
http://dx.doi.org/10.1086/522361
https://books.google.co.uk/books?id=fRqMmwEACAAJ
http://dx.doi.org/https://doi.org/10.1111/j.1365-2966.2011.20111.x
http://dx.doi.org/10.1093/mnras/stv1013
https://ui.adsabs.harvard.edu/abs/2015MNRAS.451.1540L
https://ui.adsabs.harvard.edu/abs/2015MNRAS.451.1540L
http://dx.doi.org/10.1088/1475-7516/2012/10/036
http://dx.doi.org/10.1088/1475-7516/2012/10/036
http://dx.doi.org/10.1046/j.1365-8711.2002.06010.x
http://dx.doi.org/10.1046/j.1365-8711.2002.06010.x
http://dx.doi.org/10.1093/mnras/stab731
http://dx.doi.org/10.1093/mnras/stu1886
http://dx.doi.org/10.1093/mnras/stu1886
http://dx.doi.org/10.1142/S021773232250016X
https://ui.adsabs.harvard.edu/abs/2022MPLA...3750016M


Mitchell P. D., et al., 2017, Monthly Notices of the Royal Astronomical Society,
474, 492 1.2

Moorman C. M., Vogeley M. S., Hoyle F., Pan D. C., Haynes M. P., Giovanelli R.,
2015, The Astrophysical Journal, 810, 108 1.3

Moretti, A. et al., 2015, A&A, 581, A11 1.3

Moustakas J., Scholte D., Dey B., Khederlarian A., 2023, FastSpecFit: Fast spec-
tral synthesis and emission-line fitting of DESI spectra, Astrophysics Source Code
Library, record ascl:2308.005 (ascl:2308.005) (document), 2.4, 5.2, 5.5

Myers A. D., et al., 2023, The Astronomical Journal, 165, 50 1.4, 2.1

Naab T., Ostriker J. P., 2017, Annual Review of Astronomy and Astrophysics, 55,
59 1.2
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APPENDIX A

k-corrections

A.1 k-corrections

In this appendix, we derive some of the general equations for k-corrections. In

particular, we present the result for reference-redshift transformations which allow

us to transform 0.1kr to
0.0kr if required.

A.1.1 Reference Redshift

Formally, we note that the definition of a k-correction may be defined following from

Hogg et al. (2002) as

zrefk(z) = −2.5 log10

[
(1 + z)

∫
fν(ν/(1 + zref))R(ν) dν/ν∫
fν(ν/(1 + z))R(ν) dν/ν

]
, (A.1.1)

where fν(ν) is the SED of the object and R(ν) is the filter bandpass. For ease,

we can rewrite this equation for a reference redshift zref as
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zrefk(z) = −2.5 log10(1 + z) + A(zref)− A(z) (A.1.2)

where we define

A(z) = −2.5 log10

∫
fν(

ν

1 + z
)R(ν)

dν

ν
(A.1.3)

We can then define the following:

z2k(z)− zrefk(z) + zrefk(z2) = A(z2)− A(zref)− 2.5 log10(1 + z2)− A(z2) + A(zref)

= −2.5 log10(1 + z2),

(A.1.4)

and rearrange to get

z2k(z) = zrefk(z)− zrefk(z2)− 2.5 log10(1 + z2). (A.1.5)

A.1.2 Band-shifting

Furthermore, we can use Equation 8 of Hogg et al. (2002) for the case of converting

from observed (Legacy) filter L(ν) for an object at redshift z to reference (Sloan)

filter S(ν) at reference redshift zref . The k-correction is given by

zrefkSL(z) = −2.5 log10

[
(1 + z)

∫
fν(ν/(1 + zref))S(ν) dν/ν∫
fν(ν/(1 + z))L(ν) dν/ν

]
, (A.1.6)

where fν(ν) is the object’s SED. Here, we have made the assumption that both

filters are normalised such that
∫
L(ν)dν/ν =

∫
S(ν)dν/ν = 1.

Now let us specialise to the case where the two filters are identical apart from

an offset in log ν, i.e. S(ν) = L(βν). From this

zrefkSL(z) = −2.5 log10

[
(1 + z)

∫
fν(ν

′/(1 + zref))L(βν
′) dν ′/ν ′∫

fν(ν/(1 + z))L(ν) dν/ν

]
(A.1.7)
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By making the substitution that ν = βν ′, this becomes

zrefkSL(z) = −2.5 log10

[
(1 + z)

∫
fν(ν/[β(1 + zref)])L(ν) dν/ν∫

fν(ν/(1 + z))L(ν) dν/ν

]
. (A.1.8)

By comparing to equation A.1.1 (in which we substitute R → L)

zrefkLL(z) = −2.5 log10

[
(1 + z)

∫
fν(ν/(1 + zref))L(ν) dν/ν∫
fν(ν/(1 + z))L(ν) dν/ν

]
, (A.1.9)

zrefkSL(z) =
z′ref kLL(z), where 1 + z′ref = β(1 + zref). (A.1.10)

But the k-corrections we have actually tabulated from GAMA are

zrefkSS(z) = −2.5 log10

[
(1 + z)

∫
fν(ν/(1 + zref))S(ν) dν/ν∫
fν(ν/(1 + z))S(ν) dν/ν

]
, (A.1.11)

with zref = 0.1. Substituting using S(ν) = L(βν) we have

zrefkSS(z) = −2.5 log10

[
(1 + z)

∫
fν(ν

′/(1 + zref))L(βν
′) dν ′/ν ′∫

fν(ν ′/(1 + z))L(βν ′) dν ′/ν ′

]
, (A.1.12)

Substituting ν = βν ′ this becomes

zrefkSS(z) = −2.5 log10

[
β(1 + z)

∫
fν(ν/[β(1 + zref)])L(ν) dν/ν∫
fν(ν/[β(1 + z)])L(ν) dν/ν

]
+ 2.5 log10(β),

(A.1.13)

By comparing to Eqn. A.1.9, we can write this as

zrefkSS(z) =
z′ref kLL(z

′) + 2.5 log10(β) (A.1.14)

where 1 + z′ref = β(1 + zref) and 1 + z′ = β(1 + z). This is equivalent to

zrefkLL(z) =
z′′ref kSS(z

′′)− 2.5 log10(β) (A.1.15)

where 1 + z′′ref = (1 + zref)/β and 1 + z′′ = (1 + z)/β.
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Hence, using Eqn. A.1.10 we have

zrefkSL(z) =
zref kSS(z

′′′)− 2.5 log10(β) where 1+z′′′ = (1+z)/β. (A.1.16)
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APPENDIX B

Further Luminosity Functions

B.1 0.02 < z < 0.6

In this section, we present LFs in the redshift range 0.02 < z < 0.6 (as compared

to 0.002 < z < 0.6 in Fig. 3.5 and Fig. 3.6). This is because at very low redshifts,

there may be a multitude of factors that affect the completeness of the sample. At a

slightly higher limit of z > 0.02, the completeness limits that we present are better

established. These new LFs are presented in Fig. B.1.

B.2 Q = 0.78 LFs

In this section, we present a set of r-band LFs using Q = 0.78 for our e-correction

model. We observe good agreement between the GAMA r-band Schechter fit from

Loveday et al. (2012) for 0.002 < z < 0.1, however, there is some divergence around

the knee of the LF as we extend to higher redshifts. These LFs are presented in

Fig. B.2.

120



25 20 15 1026

24

22

20

18

16

14

12

10

8

M
G

5l
og

h

DESI (Y1 BGS), 0.02<z<0.6
rlim = 10.0, zlim = 0.600, Eall = True
rlim = 19.54, zlim = 0.020, Eall = True
N=1 bins

50
26

24

22

20

18

16

14

12

10

8

25 20 15 10
MR 5log h

5

0

lo
g 1

0
[

(M
R)

h
3 M

pc
3 M

ag
]

8 6 4 2

log10[ (M)]

25 20 15 1026

24

22

20

18

16

14

12

10

8

M
G

5l
og

h

DESI (Y1 BGS), 0.02<z<0.6
rlim = 10.0, zlim = 0.600, Eall = True
rlim = 19.5, zlim = 0.020, Eall = True
N=1 bins

50
26

24

22

20

18

16

14

12

10

8

25 20 15 10
MR 5log h

5

0

lo
g 1

0
[

(M
R)

h
3 M

pc
3 M

ag
]

8 6 4 2

log10[ (M)]

25 20 15 1026

24

22

20

18

16

14

12

10

8

M
Z

5l
og

h

DESI (Y1 BGS), 0.02<z<0.6
rlim = 10.0, zlim = 0.600, Eall = True
rlim = 19.54, zlim = 0.020, Eall = True
N=1 bins

50
26

24

22

20

18

16

14

12

10

8

25 20 15 10
MR 5log h

5

0

lo
g 1

0
[

(M
R)

h
3 M

pc
3 M

ag
]

8 6 4 2

log10[ (M)]

25 20 15 1026

24

22

20

18

16

14

12

10

8

M
Z

5l
og

h

DESI (Y1 BGS), 0.02<z<0.6
rlim = 10.0, zlim = 0.600, Eall = True
rlim = 19.5, zlim = 0.020, Eall = True
N=1 bins

50
26

24

22

20

18

16

14

12

10

8

25 20 15 10
MR 5log h

5

0

lo
g 1

0
[

(M
R)

h
3 M

pc
3 M

ag
]

8 6 4 2

log10[ (M)]

25 20 15 1026

24

22

20

18

16

14

12

10

8

M
W

1
5l

og
h

DESI
rlim = 10.0, zlim = 0.600, Eall = True
rlim = 19.54, zlim = 0.020, Eall = True
N=1 bins

50
26

24

22

20

18

16

14

12

10

8

25 20 15 10
MR 5log h

5

0

lo
g 1

0
[

(M
R)

h
3 M

pc
3 M

ag
]

8 6 4 2

log10[ (M)]

25 20 15 1026

24

22

20

18

16

14

12

10

8

M
W

1
5l

og
h

DESI (Y1 BGS), 0.02<z<0.6
rlim = 10.0, zlim = 0.600, Eall = True
rlim = 19.5, zlim = 0.020, Eall = True
N=1 bins

50
26

24

22

20

18

16

14

12

10

8

25 20 15 10
MR 5log h

5

0

lo
g 1

0
[

(M
R)

h
3 M

pc
3 M

ag
]

8 6 4 2

log10[ (M)]

Figure B.1: Bivariate LFs for North (left column) and South (right column) in the
g, z and w1 bands. Here, the redshift limits are 0.02 < z < 0.6. The black curves
represent the limit of the survey. The dashed red lines give completeness limits
for the r-band and g-band luminosity functions based on the intersection of the
completeness curves and the 95th percentile contour of the bivariate LF. The r−w1

bivariate LFs have an additional red-dashed line showing a selection cut that is later
incorporated to remove spurious objects.
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Figure B.2: 1/Vmax r-band LFs for the South presented across different redshift
ranges. Here, we use Q = 0.78 as our e-correction model. The total LF is presented
in grey. We additionally present the red and blue LFs, as well as the r-band GAMA
Schechter fit from Loveday et al. (2012).
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APPENDIX C

Bright-end LF Analysis

C.1 FSF Plots

An additional concern with our LFs is that there is a discrepancy between the

North and South r-band LFs at the bright end. We present our investigation on the

potential cause of this difference.

First, we consider the possibly that there may be an inherent discrepancy in the

FSF k-correction fits. To do this, we make use of the overlap region in the DESI

survey - that is, the region where there exists both North and South photometry

data for the same objects. This region is shown in Figure C.1.

First, we compare the apparent magnitudes (g and r) in BASS and DECaLS.

(Fig. C.2). We note that there is a strong correlation between the g-band apparent

magnitudes for BASS and DECaLS using Tractor, with a median residual of -0.0585.

The same is true for the r-band apparent magnitudes, with a median residual of -

0.0229. There does appear to be a systematic difference between BASS r-band

apparent magnitudes and DECaLS r-band apparent magnitudes (and likewise for

the g-band), but this is expected given the different filter functions.

We investigate whether there are differences in BASS and DECaLS for the r-
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Figure C.1: A plot showing the North and South regions of the DESI survey. The
green region represents an overlap region - the area where objects received both
North and South photometry fluxes (based on BASS/MzLS and DECaLS).

Figure C.2: A comparison of BASS and DECaLS apparent magnitudes, showing
the corresponding residual plot. Left: The BASS/DECaLS comparison for the g-
band apparent magnitudes. Right: The BASS/DECaLS comparison for the r-band
apparent magnitudes.
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Figure C.3: Left: The r-band absolute magnitudes for BASS vs the fastphot model.
Right: The r-band absolute magnitudes for DECaLS vs the fastphot model.

band and g-band apparent magnitudes when using Tractor compared to using the

fastphot model. The fastphot model differs from the fastspec model as the fastphot

model only fits the broadband photometry. This is in contrast to the fastspec model

which also fits the spectrophotometry with an aperture correction.

Moreover, there is also a strong correlation between the Tractor magnitudes and

the fastphot magnitudes (for both BASS and DECaLS in both the r and g-band),

indicating that the fastphot model has good concurrent validity (Fig. C.3, C.4). In

particular, the fastphot model agrees with the Tractor model for both the g and r

bands to within 0.01 mag for both BASS and DECaLS. This shows that fastphot is

a very good fit to the data.

We then proceed to investigate the absolute magnitudes found using BASS and

DECaLS. Although the magnitudes broadly agree at fainter magnitudes, we observe

a difference at bright magnitudes in the r-band. Further investigation shows that

this difference predominately occurs for red objects of 0.1(g − r) > 0.75, where we

are careful to note that there exist an adequate number of blue galaxies at bright

magnitudes to demonstrate that these does not hold for blue galaxies (Fig. C.5).

We investigate the effect that this magnitude difference has on the LF by ‘per-

turbing’ all of the galaxies in each magnitude bin by its BASS/DECaLS residual.
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Figure C.4: Left: The g-band absolute magnitudes for BASS vs the fastphot model.
Right: The g-band absolute magnitudes for DECaLS vs the fastphot model.

Figure C.5: Left: A scatter plot showing the r-band absolute magnitudes for BASS
vs DECaLS for the red galaxies, with a corresponding residual plot. Right: The
equivalent plot but for blue galaxies.
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Figure C.6: Left: a plot of the North and South r-band LFs for red galaxies. Here.
each galaxy in the South has its Mr changed by an offset according to the residual
of the BASS/DECaLS Mr for that magnitude bin. This yields the South LF ‘with
residual’ offset. Right: The same LFs but for the blue galaxies.

That is:

Mr,i = Mr,i +Mr,BASS,j −Mr,DECaLS,j (C.1.1)

where i corresponds to each galaxy and j corresponds to each luminosity bin.

As shown in Figure C.5, this adjustment makes a notable difference to the LF at

bright magnitudes, bringing the North LF far closer to the South LF.
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APPENDIX D

Imaging Results

D.1 Imaging

As discussed in Section 3.6, we investigated the imaging of some of the faint absolute

magnitude galaxies in order to better understand the limitations of our data. In

particular, we were interested in better quantifying the completeness of the LF at

faint absolute magnitudes. Presented here are additional figures showing comparison

plots that were generated to assess the imaging in different magnitude bins (Fig. D.1,

D.2, D.3).

D.2 Neural Network Classification

In order to further investigate this problem, we attempt to use a neural network to

evaluate a larger proportion of the objects. In doing so, we can further quantify the

impact of poor imaging on the bright end of the LF and can gain a better idea of

how many galaxies might be affected. In addition, by classifying all of the galaxies

of magnitude Mr − 5 log10 h < −15, we can better determine whether there truly

exists an upturn in the faint-end of the LF.
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Figure D.1: Plot showing a random sample of 20 galaxies in the range −11 <
Mr − 5 log10 h < −10.75.
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Figure D.2: Plot showing a random sample of 20 galaxies in the range −13 <
Mr − 5 log10 h < −12.75.
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Figure D.3: Plot showing a random sample of 20 galaxies in the range −18 <
Mr − 5 log10 h < −17.75.
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A neural network is a layered model inspired by the brain that makes use of a

large number of interconnected nodes (often termed ‘neurons’) to learn and classify

data. These nodes are organised into layers - the input layer, the output layer, and

the hidden layer(s). In this case, the input layer consists of the pixels of the image.

The output layer is a 1x3 array of probabilities - specifically the probability that a

galaxy is ‘good’, ‘possible’ or ‘problem’ (as defined by our visual inspection criteria

in Section 3.6). The hidden layers consist of a range of nodes that process the

input data, where each node applies a weight to the input and utilises an activation

function to generate the output. These weights may be assigned and calibrated on a

training set by a number of methods, such as backpropagation. There is no obvious

interpretation for each hidden layer, although it is noted that adding more hidden

layers is a method for classifying more complex structures. (Aggarwal, 2018)

We test a range of neural networks and select a particular network that performed

well on both the training set and the test set (Fig. D.4). Fig. D.5 shows examples

of the classification of the neural network on the training set. This shows that

the neural network is reasonably good at classifying problem galaxies correctly.

However, we observe that the model can be overly conservative - often classifying

‘good’ galaxies as ‘possible’ galaxies. As such, we choose to remove galaxies classified

as ‘bad’ but keep galaxies classified as ‘possible’. We do not classify every galaxy in

DR1 BGS for timing reasons, as it takes a non-negligible amount of time to download

the image of each galaxy. However, we do classify a large number of galaxies across

all magnitude bins in order to assess the validity of the neural network. In particular,

we confirm that the network remains accurate for faint galaxies (and so has not been

overtrained on bright galaxies). We find that this neural network yields similar

results to Table 3.3, as expected.

We present an r-band LF in the South where each magnitude bin is weighted

by the number of good and possible galaxies over the total number of galaxies in

that sample, using the samples described in Table 3.3. We find that this correction

results in an LF with a reduced upturn at the faint-end. However, there is still a

visible upturn in the LF. A similar result holds for the North r-band LF. In addition,

removing problem objects with our Neural Network yields a similar result to that
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Figure D.4: An example of one of the neural networks that we tested.

Figure D.5: An example of the neural network classification on the training set for
one of our models. An image is shown and the Neural Network assigns a probability
that the galaxy is a problem (‘0’), possible (‘1’) or good (‘2’). The galaxy is then
assigned the class with the highest probability.

of the table-corrected LF, although it is highly variable to the model used and

rather variable as we have not classified every galaxy. However, we caution that for

the reasons outlined above that we do not classify galaxies across all magnitudes.

Moreover, different choices in the neural network (such as the number of hidden

layers) can cause significant differences in the corrected LF. As such, although our

results seem to show that the upturn is a real feature (albeit not as prominent), we

recognise that more work is needed to confirm this.
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Figure D.6: The South 1/Vmax r-band LF. Here, we present the full LF with all
objects (including potentially spurious objects), identical to that in Fig. 3.6. We
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based on the proportion of problem objects found in our visual inspection for that
bin.
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Glossary

ACT Atacama Cosmology Telescope. 13

AGN Active Galactic Nuclei. 9, 10, 11, 93, 108

BAO Baryon Acoustic Oscillation. 13

BASS Beijing-Arizona Sky Survey. 27, 29, 33, 63, 66, 106, 123, 124

BGS Bright Galaxy Survey. ii, 13

BH Black Hole. 93

CDM Cold Dark Matter. 94

CMB Cosmic Microwave Background. 2

DDP Density Defining Population. 75, 76

DECaLS Dark Energy Camera Legacy Survey. 27, 33, 63, 66, 106, 123, 124

DM Dark Matter. 5, 8, 9, 93, 105

DOE Department of Energy. 13

EDR Early Data Release. 14, 30

135



ELG Emission Line Galaxies. 13

EM Expectation-Maximisation. 66

FLRW Friedmann-Lemâıtre-Robinson-Walker. 1

FSF FastSpecFit. ii, ix, 26, 30, 31, 63, 97, 103

GAMA Galaxy and Mass Assembly. ii, 11, 14, 17, 19, 30, 49, 56, 57, 73, 89, 103,

105

GFA Guiding, Focusing and Alignment. 26

IMF Initial Mass Function. 94

ISM Interstellar Medium. 9, 94

LF Luminosity Function. ii

LRG Luminous Red Galaxies. 13

LSS Large Scale Structure. 6, 37

LSST Large Synoptic Survey Telescope (renamed to the Vera C. Rubin Observa-

tory). 13

MCMC Markov Chain Monte Carlo. 59, 60

MWS Milky Way Survey. 13

MzLS Mayall z-band Legacy Survey. 33, 124

NASA National Aeronautics and Space Administration. 13

NSF National Science Foundation. 13

OLS Ordinary Least Squares. 52

PAC Photometric Objects around Cosmic Webs. 92, 95
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PCA Principal Component Analysis. 22

QSO Quasar. 13, 22

RSD Redshift Space Distortion. 13

SAM Semi-Analytic Model. 9, 10

SDSS Sloane Digital Sky Survey. 11, 19, 22, 26, 27, 29, 33, 53

SED Spectral Energy Distribution. 12, 26, 94

SFD Schlegel, Finkbeiner & Davis (1998). 19

SHAM Subhalo Abundance Matching. 99

SKA Square Kilometre Array. 13

SMF Stellar Mass Function. ii, 9, 15, 92, 104

SN Supernova. 10, 11, 93, 108

SPS Stellar Population Synthesis. 94

STY Sandage, Tammann & Yahil (commonly used to name a LF method.). 43

SWML Stepwise Maximum Likelihood. ii, 41, 43, 73, 89

TSNR Target Signal-to-Noise. 37

TSNR2 Target Signal-to-Noise Squared. 38

WDM Warm Dark Matter. 93

WIMPS Weakly Interacting Massive Particles. 5

WISE Wide-Field Infrared Survey Explorer. 22, 53
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