
Durham E-Theses

Agent-Based Simulation, Machine Learning, and

Gami�cation: An Integrated Framework for

Addressing Disruptive Behaviour and Enhancing

Student and Teacher Performance in Educational

Settings

ALHARBI, KHULOOD,OBAID

How to cite:

ALHARBI, KHULOOD,OBAID (2025) Agent-Based Simulation, Machine Learning, and Gami�cation:

An Integrated Framework for Addressing Disruptive Behaviour and Enhancing Student and Teacher

Performance in Educational Settings, Durham theses, Durham University. Available at Durham
E-Theses Online: http://etheses.dur.ac.uk/15928/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/15928/
 http://etheses.dur.ac.uk/15928/ 
http://etheses.dur.ac.uk/policies/


Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://etheses.dur.ac.uk


 
 

Agent-Based Simulation, Machine Learning, and 

Gamification: An Integrated Framework for Addressing 

Disruptive Behaviour and Enhancing Student and Teacher 

Performance in Educational Settings 

 

Khulood Obaid Alharbi 

Supervisors: 

Professor Alexandra I. Cristea 

Professor Sue Black 

A Thesis Presented for the Degree Of 

Doctor of Philosophy in Computer Science 

School of Engineering and Computing Sciences 

Department of Computer Science 

Durham University 

DH1 3LE 

United Kingdom 

2025 

 

 



II 
 

Abstract 
 
The classroom environment is a major contributor to the learning process in 

schools. Young students are affected by different factors in their academic progress, 

be it their own characteristics, their teacher’s, or their peers’. Disruptive behaviour, in 

particular, is one of the main factors that create challenges in the classroom 

environment, by hindering learning and effective classroom management. To 

overcome these challenges, it is important to understand what causes disruptive 

behaviour, and how to predict and prevent it. While Machine Learning (ML) is already 

used in education to predict disruption-related outcomes, there is less focus on 

understanding the processes leading to the effect of disruptive behaviour on learning. 

Thus, in this thesis, I propose using Agent-Based Modelling (ABM) for the simulation 

of disruptive behaviour in the classroom, to provide teachers with a tool that helps 

them not only predict, but also understand how classroom interactions lead to 

disruptions. Reducing negative factors in the learning environment, like disruptive 

behaviour, is further supported by increasing positive factors, such as motivation and 

engagement. Therefore, the use of gamification is then introduced as a strategy to 

promote motivation and improve engagement by making not only the learning 

environment more rewarding, but also the ABM teacher simulation more appealing. 

This thesis focuses on these issues by designing and implementing for the first 

time an integrated approach that combines ABM and ML with gamification to 

simulate classroom interactions and predict disruptive behaviour. The ABM models 

the complex interactions between students, teachers, and peers, providing a means to 

study the processes leading to behavioural issues. Meanwhile, ML algorithms help 
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predict learning outcomes with behaviours such as inattentiveness, hyperactivity, and 

impulsiveness. 

The simulation has revealed insights, such as the impact of peer influence on 

student behaviour and the varying effects of different types of disruptive behaviour, 

such as inattentiveness, hyperactivity and impulsiveness, on academic performance. 

The improved performance of the hybrid ML-ABM is shown by measuring results of 

simulation with ML integration using metrics like MAE, RMSE and Pearson 

correlation. Moreover, the inclusion of gamification elements was shown to improve 

engagement by increased login frequency and course completion rates in a MOOC 

setting, as well as be effective and appealing for teachers using the ML-ABM. 

In conclusion, this thesis presents the first comprehensive model that 

integrates ABM, ML, and gamification elements to explore educational outcomes in 

a disruptive classroom; it develops the first hybrid ML-ABM approach for predicting 

and managing classroom disruptive behaviour; it provides empirical evidence of the 

effectiveness of gamification in boosting student and teacher engagement; and it 

offers practical insights for educators and policymakers seeking to adopt innovative, 

technology-driven strategies for improving teaching and learning. The research lays a 

foundation for future studies, aiming to further explore and expand the capabilities of 

these technologies in an educational context.  
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CHAPTER 1  

1 Introduction  

1.1. Disruptive Behaviour in Educational Settings 

Teachers are responsible for creating an environment conducive to learning by 

designing curriculum instructions that enhance the achievement of learning outcomes. 

Besides giving suitable and effective curriculum instructions, teachers are responsible 

for controlling the learning processes to ensure that learners of different capabilities 

can achieve their zone of proximal development without affecting their peers’ learning 

process. Their efforts are mostly constrained by learners’ disruptive behaviours [127]. 

Mupa & Chinooneka [143] argued that teachers who conduct learning monotonously 

or without appropriate or engaging course materials result in ineffective teaching, and 

eventually boredom among learners. Bored learners are more likely to talk, seek the 

attention of their neighbours, and generally engage in activities likely to discursive 

other learners and the teacher.  

 In a classroom, learners’ disruptive behaviours are generally identified as 

inappropriate behaviour that challenges smooth teaching and learning. Disruptive 

behaviour affects teachers’ class management efforts and instructional delivery, thus, 

many students hardly meet a lesson’s expected learning outcome. Therefore, learners’ 

disruptive behaviour could be described as behaviour exhibited by learners that school 

guidelines and teachers consider unethical, unacceptable, and capable of harming the 

academic activities of the disruptive students, their peers, and the school or 

constraining expected academic achievement [73]. Likewise, disruptive behaviour 

could be understood as a situation where students’ patterns of actions oppose the 
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learning institutions’ rules, regulations, or conduct. In this case, disruptive behaviours 

range from breaking the school’s stipulated and defined moral and ethical laws or 

resorting to behaviours that endanger self and/or others and affect effective curriculum 

instructional delivery.  

 Within a classroom setup, learners’ disruptive behaviours manifest as learners' 

uncooperativeness and preventing themselves and others from completing given 

learning exercises or assignments. Besides, learners might ignore or disrespect 

classroom rules such as raising arms when seeking permission to inquire or contribute 

to class discussion, walking around the classroom during a lesson, fighting or 

whispering to peers, fidgeting, speaking out of tune, or moving furniture around during 

class [59]. A teacher is expected to exhibit certain characteristics and abilities in class, 

including maintaining learner discipline, besides teaching and guiding students to 

achieve expected learning outcomes.    

   

1.2. Peers and Disruptive Behaviours  

Peers play a pivotal role in the social and emotional development of children 

and adolescents, fostering essential social bonds through early childhood interactions 

such as play and make-believe activities [210]. However, while peer groups are 

important for developmental growth, they can also affect individual behaviour. The 

influence of peers begins in the formative years of childhood and intensifies during 

adolescence, a period with an estimated one to six students displaying disruptive 

behaviour [31]. Peer influence can manifest in various forms of disruptive behaviour 

that can damage the learning environment. Such behaviours may include encouraging 

each other to engage in truancy, substance abuse, or minor acts of theft. Subtler forms 
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of influence can lead to talking out of turn in class, spreading rumours, or engaging in 

cyberbullying by spreading inappropriate content online about other students. Also, 

pupils believe that going against school norms increase popularity among peers; thus, 

the need for peer approval may lead them to disruptive behaviour [30]. The worry 

about their peers’ perception of their actions or inaction drives them into inappropriate 

behaviour [174], which eventually disrupts learning. 

 

1.3. Agent-Based Model (ABM) for Classroom Management  

Classroom simulations are increasingly used for classroom management 

training by allowing educators to model and practice pedagogical strategies in a 

controlled, low-risk environment. A simulation environment can offer insights into 

student-teacher interactions and enable teachers to apply management techniques, 

especially with disruptive behaviour without the immediate pressures of a real 

classroom [98]. 

Simulated experiences are considered by teachers to be important training tools 

because they replicate the complexities of real-life teaching. Enabling teachers to 

recreate classroom scenarios allows them to transfer the skills and insights gained from 

their training into their future teaching experience. They effectively answer the 

question, "What will happen if I take this specific action?" by offering a space to 

experiment and observe the consequences in a realistic yet controlled setting [148]. In 

addition, research shows several practical strategies that can be modelled in classroom 

simulations. Such as setting clear expectations at the start of the term, which has been 

proven to significantly reduce classroom disruptions [153]. Moreover, simulations can 
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include games like the Good Behaviour Game, which rewards positive behaviour and 

cooperation among students, promoting an overall positive classroom dynamic [153]. 

Promoting and developing classroom simulations provides teachers with a safe 

space to practice effective techniques for managing classrooms, ultimately leading to 

calmer and more productive learning environments. 

 

1.4. Using Gamification to Mitigate Disruptive Behaviours  

 The increasing popularity and adoption of educational technology in teaching 

and learning offer teacher opportunities to enhance learning through gamification 

[183]. Besides improving learning by leveraging the practical representation of 

concepts, teachers use gamification mechanics and elements, including points, 

rankings, progressions, rewards, challenges, immediate feedback, rules, and time to 

control interactions and mitigate disruptive behaviours [171]. These elements promote 

players' engagement and motivation in a game setup, making them ideal for promoting 

student engagement and motivation. Practically, gamification offers a suitable 

environment for motivating players. Players see their progress after successfully 

completing game levels and are eligible for rewards, keeping them interested and 

motivated to complete the next levels. In a learning environment, gamification 

provides teachers and students with a more interactive, engaging, and effective 

learning experience.  

 Teachers can devise gamification strategies to focus on individual disruptive 

students or groups [183]. Based on game dynamics, the teacher creates a scenario 

where a disruptive student works alone and leverages his or her effort to accomplish 

assigned tasks according to given instructions and the expected outcome of the 
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activity. This approach helps disruptive students be conscious of the learning process 

and expected learning outcomes. On the other hand, teachers can devise gamification 

strategies to support collaborative learning. By assigning collaborative work to 

disruptive learners, learners work in a team, each pulling their weight because the 

outcome affects each team member. The game mechanism helps improve interaction 

and engagement besides helping in promoting an individual and collaborative 

responsibility.  

 Students often express higher levels of task orientation when teachers use 

gamified learning than when they are subjected to a traditional learning approach 

[183]. As a result, they express less disruptive behaviour because they are oriented 

towards intrinsic motivation, for instance, the feeling of being part of the process, 

unlike in extrinsic motivation where learners would expect an external reward or they 

tend to disengage in the process to avoid failure [183]. 

 Alternatively, teachers themselves need support when using digital systems, 

and gamification is a promising means to provide this, as will be elaborated in this 

thesis. 

1.5. Research Goals 

The growing challenge of managing disruptive behaviour in educational 

settings affects learning outcomes and poses difficulties for educators in maintaining 

an effective classroom environment. Traditional disciplinary methods often fail to 

address the nuanced nature of disruptive behaviour, prompting the need for more 

innovative and comprehensive solutions. Thus, the aim of this research is to explore 

how a combination of advanced technological tools—Agent-Based Modelling 

(ABM), Machine Learning (ML), and gamification—can effectively address and 
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mitigate disruptive classroom behaviour while simultaneously enhancing student 

engagement and teacher performance. 

Agent-Based Modelling (ABM) allows for the simulation of complex 

classroom interactions, offering insights into individual and group behaviours in 

educational settings [67]. By modelling these interactions, ABM enables educators to 

test various intervention strategies in a controlled virtual environment. However, 

ABM alone may lack the predictive capabilities needed for accurate results. Therefore, 

Machine Learning (ML) has been integrated into the model to provide predictive 

analytics, which can forecast disruptive behaviour based on key variables such as 

student attention levels, peer dynamics, and socio-economic factors [74]. 

In addition to the technical capabilities of ABM and ML, this thesis 

incorporates gamification elements to improve engagement for both students and 

teachers. Gamification, which includes features like badges, leaderboards, and 

rewards, has been shown to enhance motivation and participation in educational 

settings [50]. By introducing these elements into the simulated classroom 

environment, this research aims to create a more interactive and engaging space, 

ultimately improving behavioural management and learning outcomes. 

In conclusion, this study addresses the need for more effective, technologically 

enhanced approaches to manage disruptive behaviour in classrooms. By developing a 

hybrid ABM-ML approach enhanced with gamification, this research aims to provide 

a robust, data-driven solution that offers meaningful insights for educators.  
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1.6. Research Questions 

The formulation of research questions (RQs) is an essential step in guiding the 

direction of this thesis. Each question is designed to contribute to the development of 

an integrated framework combining ABM, ML, and gamification for enhancing 

educational outcomes. The rationale behind these questions is grounded in the need to 

explore and validate the efficacy of these technologies within educational settings, 

particularly in managing disruptive behaviours and improving engagement and 

performance. The following research questions were defined:  

• RQ1: How can Agent-Based Models be utilised to explore the influence of 

disruptive students on their peers and the roles of teaching quality, teacher 

control in a disruptive classroom?  

Disruptive behaviours, such as inattentiveness and hyperactivity and impulsiveness 

can significantly hinder the learning environment. The first RQ aims to simulate 

disruptive behaviour to explore the extent to which these behaviours affect other 

students' performance and classroom dynamics, considering the role of teacher control 

and classroom disengagement. By identifying the impacts of different types of 

disruptive behaviours using simulation, this research can inform targeted interventions 

to mitigate their negative effects. 

• RQ2: How can we predict and explore students' learning outcomes based on 

disruption-related features (Inattentiveness, Hyperactivity, Impulsiveness), 

using ML models and Explainable Artificial Intelligence (XAI)? 

The second RQ aims to develop predictive models for students' learning outcomes 

based on disruptiveness-related features. Inattentiveness, hyperactivity, and 

impulsiveness are common behavioural issues that can impede learning. By using 
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these features in predictive models, this research seeks to identify students at risk 

of poor academic performance early for educators to provide the needed 

interventions. Additionally, this question addresses the need for transparency in 

predictive models through XAI. Understanding the relationship between learning 

outcomes and disruptive behaviours is crucial for researchers in education 

policymaking. XAI provides insights into how these features influence 

predictions, making the models more interpretable and trustworthy. This research 

aims to use XAI to elucidate the connections between disruptiveness and academic 

performance, to inform researchers in educational decision-making. 

• RQ3: How can Machine Learning (ML) be integrated into an agent-based 

model (ABM) to improve the simulation of classroom disruptive behaviour, 

and what parameters of ML prediction yield realistic results in this hybrid ML-

ABM approach? 

Having explored the impact of disruptive behaviour features with ML, the third 

RQ focuses on enhancing ABM simulations with ML techniques. ABM allows for 

the modelling of complex interactions within a classroom but integrating ML can 

improve the accuracy and predictive capabilities of these models. This RQ also 

identifies the key parameters that influence the accuracy of ML predictions within 

the hybrid ML-ABM model. Determining these parameters is essential for 

ensuring that the model produces realistic and reliable results.  

• RQ4: How can gamification strategies be implemented to increase 

engagement in an educational setting, and which gamification elements have 

the most significant impact on engagement, both in student-oriented systems 

and teacher-oriented systems? 
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To address disengagement caused by disruptive behaviour in learning 

environments, the fourth RQ seeks to investigate the effectiveness of gamification. 

Gamification has been widely adopted in various educational contexts to enhance 

motivation and engagement. Therefore, this research provides further evidence on 

its impact within MOOCs for the reason that it is a learning environment suitable 

for application of predictive models. This question aims to identify which 

gamification elements are most effective in increasing engagement and how these 

effects can be monitored in real-time. Understanding the real-time impact of 

gamification elements will enable educators to adapt their strategies to maximise 

student engagement. Moreover, this RQ explores the potential of gamification to 

enhance engagement within ABM systems. By integrating gamification elements 

into ML-ABM model, this research aims to determine whether these elements can 

increase user engagement and, if so, identify which elements are most effective. 

Understanding the role of gamification in ML-ABM model can provide valuable 

insights for developing more engaging and interactive educational simulations. 

 

1.7. Research Contribution 

As highlighted above, teachers are ultimately responsible for students’ disruptive 

behaviour. Irrespective of the learning institution’s robust, clear, and concise 

instructions and regulations, teachers must devise suitable and effective strategies to 

ensure that learners avoid inappropriate behaviour. Understanding students’ 

characteristics and motives, and adopting suitable class management might not only 

be cumbersome but also subjective because implemented strategies will be based on 

the teachers’ perception of these factors. 



10 
 

 This study proposes, for the first time, a simulation model to aid teachers in 

class management and mitigation of disruptive behaviour. The simulation is based on 

Agent-Based Modelling, thus, making students agents in a model that mimics a 

classroom environment where the agent interacts and simulates interactions in a 

classroom, including disruptive behaviours and potential suitable mitigation 

strategies. Using a simulation model gives teachers an opportunity to run different 

scenarios of disruptive behaviours and possible solutions before they can actually use 

them in their classroom. This approach minimises teachers’ use of trial-and-error 

strategies to try and control and manage their classroom, which eventually might waste 

time or make them feel disempowered in case of frequent strategy failures.  

 As machine learning models is known for its predictive capabilities, it is then 

integrated into the ABM to enhance its performance through combining the strength 

of ABM in simulating disruptive behaviour and student interactions and predicting 

learning outcomes with ML. This represents a novel approach in using machine 

learning with ABM to create a simulated environment for exploring the impact of 

disruptive behaviour on learning outcomes. 

 To effectively capture teachers’ requirements, the study used a semi-structured 

interview to understand the teachers’ preference of gamification elements. Teachers’ 

responses of gamification elements were collected and analysed to improve the 

simulation model. To the best of my knowledge, this is the first time such an ML-

ABM approach has been developed and presented to collect teachers’ feedback on 

gamification elements used and those that could be added to the model to improve 

teachers’ engagement. 
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1.8. Thesis Outline 

This thesis is structured into nine chapters. The remaining chapters are organised as 

follows: 

 In Chapter 2: I present an overview of related work to gamification and Agent- 

Based Modelling in education as well as Explainable AI and the integration between 

Agent-Based Modelling and Machine Learning.  

 In Chapter 3: I present the methodology followed in answering the research 

questions, including a description of the datasets used in this thesis, preparation steps 

and the evaluation metrics applied.  

 In Chapter 4: The first version of simulation model is presented, with the 

technical details of its development and the initial results found.  

 In Chapter 5: The answer to RQ2 is presented via the use of ML models in 

investigating the impact of disruptive behaviour in a physical classroom. Explainable 

AI was also used to provide an understanding of ML results. 

 In Chapter 6: An improved version of the ABM approach is proposed, as an 

answer to RQ3 through the integration of ML. The hybrid ABM-ML model is 

presented, and its results are described and discussed. 

 In Chapter 7: The answer to RQ4 is presented via the use of ML models in 

investigating the impact of gamification elements in an online platform. 

 In Chapter 8: I introduce an exploration of the efficacy of integrating 

gamification strategies within ABM system for teachers. Their feedback and 

evaluation are presented and discussed.  

 In Chapter 9: A detailed and comprehensive discussion of the findings of this 

thesis is presented. An explanation of the importance of the contributions of this thesis 
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is provided as well as an identification of the limitations for all findings. Finally, 

suggestions of future research areas are also included.  

 In Chapter 10: In this chapter, the thesis is concluded by outlining key 

contributions and findings.  
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CHAPTER 2  

2 Background and Literature Review 

 

In classrooms and other learning environments, students are subject to multiple 

elements that contribute to or hinder their achievement. One of the main elements is 

disruptiveness, either their own or that of others, which has a different effect on groups 

of students, creating variations in their performance. The interactions that take place 

in the classroom and how they affect school children's achievement have received 

much attention by literature over the years [34, 39, 180]. Disruptive behaviour, such 

as inattentiveness, hyperactivity or impulsiveness, profoundly affects the learning 

environment [57].  

Inattentiveness indicates moving between tasks, leaving one unfinished before losing 

interest; hyperactivity implies excessive movements in a situation where calmness is 

expected, while impulsiveness is a tendency towards quick reactions, without proper 

thinking, disregarding negative consequences of these reactions [205]. These types are 

symptoms of the attention-deficit hyperactivity disorder (ADHD) that has a clear 

negative impact on children’s long-term academic performance [135]. DuPaul et al. 

[54] observed that inattentiveness involves a lack of focus, daydreaming, or simply 

not following instructions. The study acknowledged that inattentive students are 

susceptible to struggling with classroom activities, appearing distracted or 

disinterested [54].  
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 On the other hand, Barkley [18] asserted that hyperactivity is characterised by 

excessive energy or movement. The study highlighted that hyperactivity in students 

often manifests as an inability to remain seated, excessive talking, or impulsive 

actions, which often disrupt lesson flow besides distracting other students. By 

modelling these disruptive behaviours, educators and researchers can devise strategies 

to mitigate their impact, thereby enhancing the educational experience for all students 

[38].  

 Agent-Based Modelling (ABM) is defined as a framework for modelling 

simulations between autonomous units, known as agents, within a particular 

environment with defined behaviours that influence their interactions [67, 123]. In 

other words, ABM creates agents to represent entities within a given environment and 

setting [203]. Research indicates that the ABM is used in education to enhance 

educational processes [186], support learning activity [158], and promote student 

engagement by simulating the emotional states of learners and teachers [185]. [67] 

noted that simulating an educational setting helps analyse emerging behaviours and 

patterns, which are critical in understanding classroom dynamics, instructional 

strategies, and student learning processes. Ingram and Brooks [89] carried out an 

attempt in simulating a classroom environment built in the NetLogo platform, to 

visually reproduce classroom activities through creating "playbacks" of specific 

lessons. The primary challenges they identified include developing rules to capture 

real behaviours accurately and validating the model’s predictive ability. Thus, ABM 

presents itself as an excellent tool for modelling the type of behaviours targeted in this 

thesis. 
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 On the other hand, Machine Learning (ML), a branch of machine learning, has 

enhanced data analysis and predictive modelling [94]. Machine learning algorithms 

are adept in analysing extensive student learning and pedagogy-related datasets to 

identify trends and patterns in students’ performance, behaviour, and learning 

preferences [14, 70, 172]. These insights are crucial in tailoring learning experiences 

to individual needs. Machine Learning’s predictive capability is essential in 

forecasting students’ expected learning outcomes, identifying at-risk students, and 

recommending appropriate interventions. Also, Jordan and Mitchell [94] noted that 

machine learning algorithms are versatile and well-suited for various educational 

settings, including both physical and online platforms. Overall, ML adaptability and 

predictive power make it a valuable tool for enhancing educational outcomes and 

fostering a more personalized learning experience for students across diverse learning 

environments. ML has been identified in this thesis as being about to formulate 

targeted interventions by analysing disruption-related characteristics such as 

inattentiveness, hyperactivity, and impulsiveness. 

 Gamification in education involves integrating game-design elements into 

non-game contexts to bolster user engagement, motivation, and learning outcomes 

[51]. It introduces aspects such as point scoring and competition into educational 

activities. Research indicates that gamification can significantly enhance student 

engagement and motivation [8, 163, 179], especially in online learning environments 

like Massive Open Online Courses (MOOCs). [97] observed that infusing educational 

activities into gamification might make learning more interactive and enjoyable, 

potentially improving student retention and achievement [97]. 



16 
 

 Although ABM, ML, and gamification have each proven effective individually 

in enhancing educational processes, they have not yet been integrated into a model for 

addressing classroom disruptive behaviour. Baker and Inventado [12] and Kapp [97] 

noted that ML's ability to simulate educational environments, combined with its 

capability to analyse and predict educational outcomes, alongside gamification's 

ability to enhance engagement, promises substantial benefits. This thesis integrates 

these techniques to create a more efficient and engaging model by harnessing the 

unique strengths of each approach. 

 Based on the above, the current thesis explores how these elements can be 

brought together, to specifically target disruptive behaviour, which has not been done 

before.  

Also, this chapter discusses prior research in these areas in more details, identifying 

gaps, and starting with the main target and motivation: disruptive behaviour in 

classrooms. It then explores modelling and simulation in education, machine learning 

in education and their explainability, existing research overlapping e.g. ABM and ML, 

and finally, gamification in education. The epilogue explains how this thesis brings all 

these strands together. 

2.1 Disruptive behaviour in classrooms 

2.1.1 Disruptive Behaviour and ADHD in educational settings 

Research indicates that disruptive behaviours such as inattentiveness, hyperactivity 

and impulsiveness among learners have a complex and multifaceted impact on the 

learning process [55, 167]. A large body of research draws parallels between ADHD-

related symptoms and disruptive behaviour, both leading to poor academic 

performance that needs addressing [14][62]. As defined in the American Psychiatric 
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Association's Diagnostic and Statistical Manual of Mental Disorders (American 

Psychiatric Association, 1994), ADHD is a behavioural condition that makes focusing 

on everyday requests and routines challenging. This disorder affects a person’s life on 

several aspects, from a young age as well as later in life. For the education aspect, 

several works have been carried out to understand the effect of ADHD symptoms over 

student performance [81][86]. These showed that ADHD-related behaviour is an 

important factor in the student learning environment. In this paper, the focus is on 

disruptive behaviour in general, which may, but does not have to, encompass ADHD. 

 Research shows that the consequences of these disruptive behaviours extend 

beyond the individual students, resulting in distractions, loss of instructional time, and 

a general decline in classroom morale [57]. An early study [167] supports this claim, 

noting that peer characteristics influenced student behaviour and achievement. Baker 

[11] found that peers can shape students’ attitudes and behaviours, either mitigating or 

exacerbating disruptive tendencies. Later, Chang and colleagues [38] delved deeper 

into this relationship, suggesting that learners’ disruptive behaviours presented effects 

among their peers, including potential anxiety, decreased motivation, and lower 

academic performance.  

 Addressing students’ disruptive behaviours and potential mitigation strategies, 

Emmer and Stough [56] explored the significance of educators in class management. 

They identified educators’ quality of teaching and classroom management skills as 

essential in addressing learners’ disruptive behaviours. They argued that clear 

behavioural expectations and consistent rule enforcement can create a structured 

learning environment that deters disruptive behaviour.  
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 Also, Marzano [128] emphasised that effective instructional strategies and a 

strong teacher-student rapport can significantly reduce the frequency and impact of 

disruptive behaviours. By engaging students through interactive and tailored teaching 

methods, educators can minimise opportunities for off-task behaviour. Marzano also 

pointed out that a positive teacher-student relationship acts as a buffer, reducing the 

likelihood of escalation of disruptive behaviour and enhancing the overall classroom 

climate. Supporting this approach, Simonsen et al. [26] found that proactive 

management strategies, such as modifying tasks to suit diverse learner needs and 

maintaining an engaging pace, can pre-emptively address potential disruptions. 

Concluding, whilst many works have accomplished predicting student learning 

outcome, based on features related to ADHD [149] [207] [95] [45] [195]. However, 

disruptive behaviour has been less explored, specifically with respect to the three 

disruptiveness-features I select here in this thesis: inattentiveness, hyperactivity and 

impulsiveness, although they have been found to be strongly related to ADHD 

[137][41]. In the data used for this thesis, 'Inattentiveness', 'Hyperactivity' and 

'Impulsiveness' behaviours are scored with a scale following the diagnostic criteria for 

ADHD by the American Psychiatric Association's Diagnostic and Statistical Manual 

of Mental Disorders (American Psychiatric Association, 1994) [135][136], due to the 

parallels that can be drawn between ADHD and disruptive behaviour. 

2.1.2 Impact on Peer Learning and Classroom Environment 

Examining the effect of disruptive behaviours from a teacher’s perspective, Houghton 

et al. [86] noted that the frequency, rather than the intensity of disruptive behaviour, 

was more troublesome in a classroom setting. In classrooms, we usually find a number 

of pupils, up to a quarter of a class, who display some form of disruptive behaviour 
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[6]. These disruptive children can have a negative impact on the learning environment 

and peer dynamics [11][18][36][138][188]. Particularly, Sullivan [188] found that 

disruptive behaviours mostly divert learners’ attention away from educational content, 

leading to reduced learning opportunities for all students in the classroom. 

 Similarly, Merrell and Gimpel [138] addressed the effects of disruptive 

behaviours in a classroom, not their capacity to strain peer relationships and social 

dynamics. They noted that some students might resent and avoid disruptive 

behaviours, which could impact the social harmony and the collaborative potential of 

the class. On the other hand, Carrell, Hoekstra, and Kuka [36] noted that disruptive 

behaviours waste teacher’s time and resources. Consequently, teachers often need to 

devote extra time and resources to manage disruptive behaviours, potentially 

detracting them from their ability to provide equal attention to all students [146]. 

Thus, in this thesis, the effect of peer learning is modelled, as part of the ABM model 

proposed (see Chapter 4).  

2.1.3 Consequences on Educational Outcomes and Classroom Dynamics 

Research has shown that classrooms with high levels of disruptive behaviour are 

susceptible to declining overall academic performance. For instance,found that 

constant disruptions could lead to lower test scores and grades among disruptive 

students and the entire class. Moreover, Breslau et al. [29] argued that persistent 

disruptive behaviour can have long-term effects on students' educational trajectories, 

including higher dropout rates and lower college enrolment. Also, the effects of 

inattentiveness and hyperactivity, for instance, extend beyond disruptive students and 

their peers to include teachers and the overall learning environment [115, 147], thus 

necessitating adequate mitigation. The consequences of such behaviours have far-
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reaching implications for the educational environment and student's academic and 

social development. For instance, Carrell, Hoekstra, and Kuka [36] noted that 

disruptive behaviours, like excessive talking or inability to stay seated, can interrupt 

the flow of lessons, making it difficult for other students to maintain focus and absorb 

material.  

 On the other hand, Blank and Shavit [22] argued that students’ disruptive 

behaviours in an education setting affect classroom climate and morale. Particularly, 

persistent disruptive behaviour can lead to a negative classroom climate, where 

students feel stressed or anxious, potentially affecting their motivation and 

engagement [187].  

 A study by [29] reported that disruptive behaviours led to lower academic 

achievement among disruptive students and their peers. They stated that continuous 

disruptions can decrease academic performance for disruptive students and their peers, 

as consistent distractions hinder learning processes. Also, Sullivan et al. [188] noted 

that disruptive behaviours reduced student engagement and participation. They stated 

that students in a disruptive classroom may become less inclined to participate in 

discussions or activities, affecting their learning and academic confidence. 

 Also, [146] noted that disruptive behaviours create an inequitable learning 

environment because some students receive less attention and support due to the 

disproportionate focus on managing disruptive behaviours.  

 Thus, in this thesis, educational outcomes and classroom dynamics are 

simulated to allow teachers to experiment with different settings and evaluate if the 

outcomes change (see Chapters 4, 6, 8).  

2.1.4 Influence of Teaching Quality and Teacher Control 
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Teacher-student interaction has a significant impact over student achievement 

[9]. Interactions can be positive, like social and pedagogical interactions [3], or 

negative, like disruption [11] – such as talking out of turn, aggression or leaving seat 

[14][7]. Therefore, teaching quality and teacher control significantly influence the 

management of disruptive classroom behaviours and enhance the learning 

environment. A study by Marzano [129] explored the contribution of instructional 

strategies towards mitigating disruptive behaviours. The study noted that high-quality 

teaching, including using interactive teaching methods, differentiated instructions, and 

active learning techniques, would enhance student engagement and minimise 

opportunities for disruptive behaviours. Moreover, Marzano [129] attested that active 

learning techniques, which shift the focus from passive reception to active 

participation, have been proven to foster a more dynamic and attentive classroom 

environment.  

 On the other hand, Hattie [82] examined the impact of teacher-student 

relationships in mitigating disruptive behaviours. Hattie [82] found that positive 

behaviours, including teachers showing respect, empathy, and genuine interest in their 

students' well-being, significantly reduced disruptive behaviours by allowing teachers 

more and better classroom control. Students feel valued and understood, which 

enhances their self-esteem and motivation. Hattie [82] noted that mutual respect and 

understanding fostered through these relationships encourage students to engage more 

positively with their learning and peers, creating a harmonious and productive 

classroom setting. 

 Also, Maag [120] noted that teachers mitigate disruptive classroom behaviours 

through positive reinforcement of students’ behaviour. Maag [120] observed that 
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acknowledging and rewarding appropriate behaviour effectively promoted desired 

behaviours. Behaviour modification techniques can also be applied to reduce 

disruptive actions gradually.  

 Hence, in this thesis, Teacher Quality and Teacher Control become crucial 

variables, which can be set in the simulation by the teacher, to better understand how 

they influence the outcomes of the classroom learning process (see Chapter 4). 

 

2.2 Modelling and Simulation in Education 

Modelling in education is used to serve different purposes. An early study by Winne 

and Hadwin [204] introduces a model for self-regulated learning (SRL) that focuses 

on student management of their learning process. The model suggests that learning 

involves different phases. It starts with planning then executing strategies followed by 

monitoring progress and ends with evaluating outcomes. Vosniadou [202] also 

introduces a model that tracks how students’ preconceptions can support or hinder 

their learning. Gobert and Buckley [71] emphasize that models are not just 

representations but also tools for thinking and reasoning. They suggested model-based 

learning where students can actively create and revise models to better understand 

scientific phenomena. 

Gredler [75] argues that simulations are effective because they allow students 

to engage with complex, real-world problems in a controlled environment. They build 

experience that helps in developing their decision-making and critical-thinking skills. 

[184] investigate the effect of augmented reality games on students’ scientific 

argumentation skills. In their experiment, students participated in a location-based 

simulation game where they investigated real-world scenarios. Their findings showed 
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potential for simulation game in improving students’ hypothesis formation, evidence 

gathering, and argumentation. Simulations can also be used as a substitute of physical 

experiments. Finkelstein [61] investigated whether virtual simulations could replace 

physical lab equipment in physics education. Their findings showed that, in many 

cases, students learned more effectively through computer-based simulations than 

with traditional lab setups, due to the immediate feedback and the ability to conduct 

multiple experiments quickly. In the field of medical and surgical training, the study 

by Kneebone [103] suggests that simulations allow trainees to practice surgical 

techniques in a risk-free environment, which enhances skill acquisition and confidence 

before working with real patients. Girvan and Savage [69] examined the use of virtual 

worlds as educational simulations to teach 21st century skills such as problem-solving, 

collaboration, and digital literacy. The study shows that interactive simulations that 

replicate real-world scenarios help students develop these skills more effectively. 

Modelling and simulation advances have impacted various areas of education from 

classrooms in primary learning to pilot and surgical training in professional learning. 

These studies emphasise the importance of utilising models to provide a safe 

environment for students to practice new skills and deepen their understanding of 

educational content as well as support various educational goals. The use of ABM and 

ML methodologies in simulating and predicting disruptive behaviour impact on 

learning outcomes discussed in Chapters 4, 5 and 6 underscores the value of modelling 

and simulation in education, as these tools enable a practical, interactive approach to 

addressing disruptive behaviours and tailoring interventions for improved classroom 

management. 
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2.2.1 Agent Based Modelling 

Agent-based modelling (ABM) is a framework for modelling the simulation of 

interactions between agents in a defined environment with a set of behaviours that 

influences those interactions [15]. Agents interact with other agents and with the 

environment based on a set of behaviours driven from personal characteristics and 

preferences. An agent can represent an individual or a group whereas their relationship 

in a simulation represents social relations. 

          Agent-based modelling has been adopted in the field of education to serve 

different purposes. Some utilized it as a support of the learning activity by modelling 

games for younger students such as the case with Ponticorvo et al[159] where they 

introduced an ABM framework for developing digital games for children. In another 

study [46], ABM was used to simulate the evacuation process from a classroom during 

an emergency. They studied the simulation of a collaborated classroom and modelled 

the evacuation with ABM using 5 different possible configurations of a collaborative 

classroom and proposed the best match of classroom collaborative design and the 

location and type of exit doors. Other research considered using this tool to improve 

the educational process by observing the effect of students and lecturers' negative 

emotions over student engagement [72]. Their findings suggest that pupils' negative 

emotions are influenced by the teacher’s characteristics, such as poor communication 

skills and poor teaching. Another model of student behaviour by [154] that focuses on 

cheating in assignments. Their model showed a strong connection between cheating 

and participating in extracurricular activities which called for their next step, using the 

model to find the balance between outside activities and student knowledge level. [10] 

proposed a proof-of-concept model of teacher’s and pupils’ interactions with 
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educational content in a classroom. The model aimed to help educational researchers 

and stakeholders to improve prediction of pupils' learning outcomes and choice of 

interventions. However, this model did not account for important factors, such as 

students’ social interactions or disruptive behaviour, which can significantly impact 

learning outcomes. Disruptive behaviour is a critical element in classroom dynamics 

that, if unaddressed, can hinder both individual and group learning. Therefore, ABM 

in this thesis, as outlined in Chapters 4 and 6, utilises disruptive behaviour for 

simulating classroom settings in the aim of capturing nuanced interactions that inform 

effective teaching strategies and improve behavioural management. 

2.3.2 Predictive Modelling in Education  

Predictive models can provide educators with insights into the factors that most 

significantly impact student learning, guiding intervention strategies [84]. 

In their study of ML trends and their transformative potential in data analysis, Baker 

and Inventado [12] studied educational data mining and learning analytics, 

underscoring the significance of data-driven strategies in effectively addressing 

diverse learning needs and improving overall educational outcomes. They found that 

ML helps develop actionable insights, enabling educators to tailor their approaches to 

individual student needs. For instance, they illustrated the use of ML in predicting at-

risk students based on behavioural and academic indicators, prompting timely and 

targeted interventions. 

2.3 Role of Machine Learning in Educational Contexts 

Machine Learning, a subset of artificial intelligence, involves algorithms that learn 

from data and make predictions or decisions. Baker and Inventado [12] noted that ML 

has transformative potential in reshaping educational strategies and emphasising its 
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role in enhancing both teaching efficiency and student learning outcomes. It can 

analyse various types of data, including student engagement metrics, performance 

data, and interaction patterns [12]. The analysis facilitates a deeper understanding of 

student behaviours and learning processes. For instance, by scrutinising engagement 

metrics, ML algorithms can identify patterns that predict student success or flag 

potential areas of concern, such as disengagement or the likelihood of dropout [9]. 

Furthermore, Metz and colleagues noted that when these algorithms are applied to 

performance data, they can forecast academic outcomes, thereby assisting educators 

in tailoring their instruction to meet individual student needs more effectively. 

Additionally, ML's ability to analyse interaction patterns offers invaluable insights 

into the dynamics of learning environments, enabling the creation of more 

collaborative and supportive educational experiences.  

2.3.1 Applications of Machine Learning in Education 

The application of Machine Learning (ML) techniques in educational contexts, 

particularly for predicting student performance, underscores significant 

advancements. Jordan and Mitchell [94] highlighted the efficacy of various ML 

algorithms in dissecting complex educational data. They noted that regression analysis 

can quantitatively assess the impact of specific attributes on academic achievements. 

Also, they asserted that classification models are instrumental in categorising students 

based on the likelihood of experiencing academic difficulties. Moreover, they 

observed that neural networks can leverage their sophisticated pattern recognition 

capabilities to analyse non-linear and intricate relationships between a myriad of 

student behavioural attributes and their learning outcomes, thus offering critical 

insights to academic performance. [206] explores the integration of ML for analysing 
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student performance data, creating personalized learning experiences, and predicting 

academic outcomes. Their findings emphasise the role of algorithms like neural 

networks, decision trees, and support vector machines in enhancing learning processes 

and optimizing student engagement. Another review by [142] covered six main themes 

of ML in online education, including adaptive learning, dropout prediction, intelligent 

tutoring, and performance analytics. They also review algorithms commonly used in 

these areas, like decision trees, random forests, and support vector machines. Some 

ML models are commonly used in research for their performance. Kotsiantis [104] 

proposed predicting student performance by a decision support system using students’ 

e-system log data and student academic data. Five ML models were used in their study, 

namely: Support Vector Machine (SVM), Model Tree (MT), NN, Linear Regression 

(LR), and Locally Weighted Linear Regression. Also, Hu et al. [88] proposed a 

warning system for predicting student at risk in an online learning environment using 

time-dependant variables. They applied three classifiers; Regression Tree (CART), 

Logistic Regression (LGR), and Adaptive Boosting but CART outperformed the other 

two classifiers with 95% accuracy. Reddy and Rohith [24] used ML to identify the 

explainable characteristics that could show the potential for student poor performance 

using SVM, Random Forest (RF), Gradient Boosting, and Decision Trees (DT). 

Similarly, prediction of student dropout was investigated by Sara et al. [170] through 

a dataset consisting of 72,598 instances and 17 attributes. The classifiers used in this 

study were RF, CART, SVM, and Naïve Bayes (NB). In Chapter 5 of this thesis, ML 

was used to predict student performance using the classifiers: XGBoost, Gradient 

Boosting, Ada Boost, Random Forest, Extra Trees, Logistic Regression, KNN, and 

MLP for their common use in student performance prediction [14][152][89][39].  
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2.3.2 Predicting Outcomes Using Disruption-Related Features 

There is growing interest among educational psychologists and data analysts in student 

learning outcomes, particularly in relation to disruption-related features’, especially 

inattentiveness, hyperactivity, and impulsiveness [42, 201]. Understanding how these 

behavioural traits influence academic performance is crucial for educators and 

policymakers in devising effective interventions [125]. Kim et al. [100] examined the 

use of wearable technology to gather data on children’s sleep and activity patterns for 

ADHD detection. Researchers found significant accuracy with ML models, suggesting 

potential early interventions through behavioural monitoring. [126] focused on 

classifying ADHD in children based on behavioural data. Researchers used a dataset 

of 45,779 children aged 3-17 from the 2018–2019 National Survey of Children’s 

Health. Within this population, 11.4% were diagnosed with ADHD. They applied 

logistic regression to identify key risk factors, such as demographic and behavioural 

indicators. Another study using behavioural attributes, [116] employed sequential 

engagement patterns in learning management systems to monitor student behaviour 

and predict academic success. By analysing features like response time, attendance, 

and interaction frequency, the study provides insights into students’ learning habits. 

Ter-Minassian et al. [190] examined machine learning models in predicting ADHD in 

primary school students by linking educational records with healthcare data. Their 

findings suggest that fair, accurate ML models could support early ADHD 

identification, especially in diverse student populations. These studies collectively 

show the value of integrating behavioural data into ML models for a more accurate 

prediction of targeted outcomes. Thus, ML capabilities are used to explore and predict 



29 
 

student outcome using behavioural features, specifically for the first time, three 

disruptive behaviour features as shown in Chapter 5.  

2.3.3 Enhancing Agent-Based Models with ML  

Research indicates that integrating ML and ABM in an educational setting would 

present a cutting-edge approach to analysing educational dynamics and accurately 

predicting learning process outcomes [67, 94]. Gilbert [67] highlighted the versatility 

of ABM in representing diverse educational scenarios, from classroom interactions to 

institutional policy impacts.   

  Emerging research on adopting ML-enhanced ABM in class behaviour 

management has recorded positive outcomes in predicting the outcome of various 

behavioural interventions based on students’ backgrounds and teacher responses 

[156]. Furthermore, integrating ML algorithms with ABM facilitated the identification 

of key parameters, such as student engagement levels and interaction frequencies that 

significantly influenced the model's outcomes. By accurately simulating these 

complex variables, the hybrid ML-AB models could generate more reliable 

predictions about the effectiveness of educational strategies, thereby informing better 

decision-making in educational settings. These findings underscore the potential of 

combining ABM and ML in creating robust, adaptable models that can significantly 

contribute to our understanding and improvement of educational systems. 

This thesis aims to leverage ML techniques to predict and manage disruptive 

behaviours in real-time, as covered in Chapter 5. Traditional methods of behaviour 

management often rely on static interventions and retrospective analyses, which do 

not adequately address the dynamic nature of classroom interactions. By employing 

advanced ML algorithms, this research aims to develop predictive models that can 

identify patterns and trends in student behaviour, enabling educators to implement 
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timely and effective interventions. These predictive models will be based on historical 

data and real-time inputs, offering a proactive approach to managing classroom 

disruptions. The thesis also aims to utilise ABM, as illustrated in Chapters 4 and 6, to 

simulate complex classroom environments and interactions.  

2.3.4 Integration of Machine Learning in Gamification Analysis 

The integration of Machine Learning (ML) in analysing the effects of 

gamification in learning and student engagement represents a significant 

advancement in educational technology. Jordan and Mitchell [94] noted that 

ML algorithms are versatile in managing large, intricate datasets; thereby, they 

are ideal for dissecting the multifaceted nature of gamified environments. 

Machine Learning algorithms can identify nuanced patterns and relationships 

within educational data, offering insights far beyond traditional analytical 

methods [23, 63]. Therefore, ML algorithms can be adopted to evaluate the 

complex interactions and outcomes associated with gamified learning 

environments.  

 Using ML to analyse the effects of gamification has transformed the 

understanding of educational dynamics. On the one hand, ML techniques help discern 

the specific gamification elements that most effectively boost student engagement and 

learning outcomes [106]. Machine learning techniques analyse the effectiveness of 

points and badges in motivating students and evaluate the role of leaderboards in 

fostering a competitive yet collaborative learning atmosphere [83]. By leveraging 

ML's powerful analytics, educators and technologists can fine-tune gamified elements, 

ensuring they align closely with educational objectives and student preferences.  
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 In summary, the application of predictive models in education, particularly in 

managing disruptive behaviours, extends beyond identifying at-risk students. It 

empowers educators and policymakers to make informed, data-driven decisions in 

crafting interventions, allocating resources, and developing policies that directly 

address the needs and challenges identified through these models. Additionally, in this 

thesis, ML in educational contexts is used in Chapters 5, 7. In Chapter 7, ML was used 

to understand the effect of gamification elements in an online gamified learning 

environment on students’ engagement [4]. In Chapter 5, ML was applied to investigate 

the impact of different disruptive behaviour on academic performance in a physical 

classroom environment [6][7]. 

 

2.4 Explainability of Predictive Models (XAI) 

Modelling disruptive behaviour with ABM simulation and ML predictions, 

involves identifying patterns and predicting outcomes. However, if these models 

operate as "black boxes" without clear reasoning for their predictions, it can be 

difficult for educators and stakeholders to trust or understand the results. XAI 

techniques, such as SHAP (SHapley Additive exPlanations) and LIME (Local 

Interpretable Model-Agnostic Explanations), would enable the thesis to present 

predictions in a transparent way. Explainable Artificial Intelligence (XAI) refers to 

methods and techniques in AI that help human experts understand the results of the 

solution [19]. It contrasts with the "black box" nature of many AI models, particularly 

in complex machine learning [172]. Within educational settings, XAI plays a crucial 

role in elucidating the relationship between learning outcomes and disruptive 

behaviours, like inattentiveness, hyperactivity, and impulsiveness [208]. In a recent 
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study to examine the adoption of hybrid human-AI to predict student performance 

based on whether they will fail or pass, Xu, Moon, and Van Der Schaar [207] 

suggested a change in student disruptiveness to influence students’ grades of 

assignments.  

 Gunning and Aha [78] stated that explainable AI is essential in enhancing the 

understanding of model decisions. It helps educators and stakeholders understand why 

AI models make certain predictions or decisions. This understanding is crucial for 

justifying and implementing interventions based on model predictions. Moreover, 

Gunning and Aha [78] noted that explainability helps build trust. They noted that 

decisions in an educational setting significantly affect students. Therefore, the ability 

to explain AI decisions builds trust among educators, students, and parents. 

Explainable AI techniques used in an educational setting include Local Interpretable 

Model-agnostic Explanations (LIME) [25], SHapley Additive exPlanations (SHAP) 

[90], and visualizations [99]. Local Interpretable Model-agnostic Explanations 

(LIME) explains AI model predictions by approximating them locally with an 

interpretable model. On the other hand, SHAP measures the impact of each feature on 

the prediction, providing insight into how different behavioural aspects contribute to 

learning outcomes. Lastly, visualisations encompass graphical representations of data 

and model decisions to simplify complex relationships and make them accessible and 

understandable to non-experts.  

This thesis leverages machine learning models in utilising features of 

disruptiveness (Inattentiveness, Hyperactivity, and Impulsiveness) to predict student 

learning outcomes and followed these predictions with the use of XAI to elucidate 

these predictions. This research applies XAI to uncover the connection between 
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features of disruptive behaviour and student performance to dig deep into this 

connection and provide a new understanding of this relationship. Chapter 5 details the 

performance of ML prediction with disruptive features (Inattentiveness, 

Hyperactivity, Impulsiveness), as well as the contribution of each feature to the 

prediction of student performance. 

 

2.5 Enhancing Agent-Based Models with Machine Learning 

The integration of Machine Learning (ML) into Agent-Based Models (ABMs) 

represents a significant advancement in simulating and understanding complex 

systems, especially in educational settings [176]. This integration allows for more 

sophisticated and nuanced models to better predict and adapt to dynamic educational 

environments. 

2.5.1 Understanding the Synergy between ML and ABM 

The collaboration between ML and ABM can be explained through four 

perspectives. First, they could be understood from their complementary strengths, 

including ABMs and emergent phenomena, the use of ML in pattern recognition and 

prediction, and Synergy in Predictive Modelling. Epstein [57] noted that Agent-Based 

Models (ABMs) are adept at simulating complex systems by modelling the 

interactions of individual agents. They are particularly effective in capturing emergent 

phenomena that arise from these interactions. For instance, ABMs can simulate 

classroom dynamics by modelling individual student behaviours and interactions. On 

the other hand, Jordan and Mitchell (2015) noted ML utilises its strength in 

recognising patterns and making predictions from large datasets to complement 

ABMs. They observed that ML algorithms can analyse historical data to identify 
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trends and patterns that are not immediately apparent. For example, ML can predict 

student performance based on historical academic data and behavioural 

patterns. Sankaranarayanan & Portman [169] addressed the synergy between ML and 

ABM, noting that the integration of ABM and ML creates a powerful tool for 

predictive modelling. They observed that while ABMs provide a structural framework 

for simulating complex systems, ML contributes to its predictive analytics capability, 

enhancing the overall adaptability and accuracy of the simulations. 

 Second, collaboration between ML and ABM could be understood through 

data-driven behaviours in ABMs. This approach involves examining the incorporation 

of ML into ABMs, the realism and dynamics in simulations, and case study 

applications. Rosés, Kadar, & Malleson [166] observed that by integrating ML 

algorithms into ABMs, the agents' behaviours can be informed by data-driven 

predictions. This integration leads to simulations based on predefined rules and 

adaptations according to evolving data patterns. Also, research has established that the 

combination of ML and ABMs can produce more realistic and dynamic models, [94].  

 Third, the collaboration between ML and ABMs could be explained through 

their enhanced predictive power and adaptability. Epstein [57] explained the ML and 

ABMs synergy from the point of adaptability and simulations, asserting that the 

adaptability of ABM simulations is significantly increased by incorporating ML. The 

study highlighted that as real-world data is continuously fed into the model, the 

simulated agents can adapt and evolve, leading to more accurate and timely 

predictions. 

 Incorporating ML into ABMs offers a powerful approach to understanding and 

addressing the complexities of educational environments. Through data-driven 
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simulations, educators and policymakers can gain invaluable insights into student 

behaviours, learning processes, and the impact of various educational strategies. As 

these methodologies continue to evolve, they hold the potential to enhance educational 

planning, policy-making, and classroom management significantly. In Chapter 6, this 

thesis provides - for the first time - a data-driven simulation utilising ABM’s capability 

to simulate agent interactions and ML’s proficiency in pattern recognition and 

prediction for classroom dynamics focusing on disruptive behaviour. 

2.5.2 Methodologies for ML and ABMs Integration 

One method for integrating ML with ABMs is the use of data-driven models to 

inform agent behaviours.  Rosés, Kadar, & Malleson [166] observed that machine 

learning and ABMs can be integrated by training ML models with ABMs or using 

ABMs to generate data for ML. The former involves embedding ML models within 

individual agents or the environment to inform decision-making processes. This 

approach might be useful when real-world data is limited or difficult to obtain. 

Another method for ABM and ML integration is using ABM to generate synthetic 

data, which can then be analysed using ML algorithms. Platas‐López et al.[161] 

explored the uses of ML to overcome challenges of ABM. Another approach for ML 

and ABM is feedback loops, where ML models provide predictions that influence 

agent behaviours in ABM, and the outcomes of these behaviours feed back into the 

ML model to provide a refined outcome. Sankaranarayanan & Portman [169] discuss 

how feedback loops enhance ABM by adjusting agent behaviours based on ML 

predictions. As agents interact and the system evolves, ML algorithms continually 

update predictions based on the emergent behaviours within the ABM, leading to 

increasingly accurate simulations. 
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In conclusion, the integration of ML into ABMs has been successful across 

various domains, demonstrating the potential of this approach in educational settings 

which is yet to be explored. It has been used in adaptive learning environments, policy 

simulation and decision-making, class management and behavioural interventions, 

and predicting and addressing dropout rates. Traditional ABM has been effective in 

simulating the complex interactions within classrooms, allowing researchers to 

observe the emergent behaviours resulting from individual actions and environmental 

factors. However, the predictive accuracy of ABMs can be limited by their inability to 

incorporate historical data and adapt dynamically to new information. By integrating 

ML algorithms, which can analyse vast datasets and generate predictive insights, the 

model's ability to simulate real-world scenarios with higher accuracy is significantly 

improved. In Chapter 6, this thesis presents a hybrid ML and ABM approach that 

leverages the strengths of both approaches, aiming to create a more robust tool for 

educational researchers and policymakers. 

2.5.3 Parameters for Realistic Hybrid ML-AB Models 

The integration of Machine Learning (ML) and Agent-Based (AB) models in 

educational research necessitates a comprehensive understanding of the parameters 

contributing to these hybrid models' realism and effectiveness. Identifying and 

optimising key parameters is crucial in ensuring that the models accurately reflect real-

world educational dynamics and can provide actionable insights. 

2.5.4 Identification of Key Parameters in Hybrid ML-AB Models 

Key parameters in hybrid ML-AB models include agent characteristics, 

learning environment dynamics, behavioural factors, and data-driven parameters 

[209]. In ABM models, agents represent entities such as students, teachers, or 

educational resources. Key parameters include agent attributes (e.g., learning styles, 
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behaviour patterns), decision-making rules, and interaction protocols. These 

parameters must accurately reflect the diversity and complexity of real-world 

educational settings. 

 Parameters related to the learning environment include classroom size, 

teaching methods, and curriculum content [3]. These elements impact how agents 

(students and teachers) interact within the model. On the other hand, behavioural 

factors incorporate parameters representing disruption-related behaviours, such as 

inattentiveness, hyperactivity, and impulsiveness. Accurately modelling these 

behaviours is essential for studying their impact on learning outcomes. 

 ML components in hybrid models utilise parameters derived from real-world 

educational data. These might include historical academic performance, demographic 

information, and behavioural assessments [1]. The selection of these parameters is 

guided by their predictive power and relevance to the research questions. This thesis 

aims to develop predictive models for students' learning outcomes with parameters 

including disruptiveness-related features (see Chapter 5). Inattentiveness, 

Hyperactivity, and Impulsiveness are common behavioural issues that can impede 

learning. By using these features in my predictive models, this research seeks to utilise 

ML's power to make accurate predictions for the integration with ABM as shown in 

the development of hybrid ML-ABM approach in this thesis ( see Chapter 6). 

2.5.5 Validation and Testing of Hybrid Models 

The process involves validation against real-world data, cross-validation, 

scenario testing, and iterative testing [92]. Validation against real-world data 

encompasses comparing model outputs with actual educational data to assess 

accuracy. This involves validating the model's predictions on key metrics like student 
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performance, engagement levels, and behavioural incidents. Also, the validation and 

testing process uses cross-validation techniques to test the model's reliability and 

generalizability across different datasets and educational contexts. Another step, 

scenario testing, involves conducting scenario-based tests where hypothetical 

educational interventions are applied within the model [200]. Analysing the outcomes 

of these scenarios helps understand the potential impact of different educational 

strategies. Finally, iterative refinement entails continuously refining the model based 

on validation outcomes [176]. This iterative process involves adjusting parameters, 

updating data inputs, and re-evaluating model performance. 

This research in this thesis aims to identify the key parameters that influence 

the accuracy of ML predictions within the hybrid ML-ABM approach. Determining 

these parameters is essential for ensuring that the model produces realistic and reliable 

results. In Chapters 4 and 6, this research explores various parameters and their 

impacts, optimising the model for better performance prediction. It also presents 

empirical validation of the results of ML-ABM approach detailed in section 8.2. 

 

2.6  Gamification in Education  

Gamification is a method that is usually applied for the aim of increasing 

motivation and ultimately decreasing disengagement. In education, gamification 

impacts motivation by providing incentives in the form of clear goals, immediate 

feedback, or a sense of progression. This is essential in educational environments, 

whether in online learning like MOOCs, where students often feel disconnected, or in 

physical classrooms, where they may lose interest without immediate 

acknowledgment or get distracted by disruptions in the classroom. 
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2.6.1 Impact of Gamification on Student Engagement 

Gamification in education refers to incorporating game elements into the 

learning process to enhance student engagement and motivation. This innovative 

approach aims to transform the learning experience from a traditional, often passive 

absorption of information into an interactive, rewarding journey [51, 97]. 

 An early research study by Deterding et al. [51] into gamification established 

gamification’s capacity to enhance motivation and user experience. The study noted 

that game mechanics, including points, badges, and leaderboards, can be incorporated 

into learning platforms to create a more engaging and interactive educational 

environment. They observed that the interactive environment fostered a heightened 

sense of achievement and progress among learners, thus significantly boosting their 

motivation and engagement. 

 Later, Kapp [97] empirically supported the effectiveness of gamification in 

learning. He found that well-implemented gamification strategies and game mechanics 

in educational content captivated students’ attention and encouraged their continued 

participation and interaction with the course material. His findings suggest that when 

students find the learning process enjoyable and challenging, their intrinsic motivation 

is significantly enhanced, which potentially promotes learning outcomes.  

 Similarly, [38] addressed the real-time aspects of gamification in an education 

setting, including the dynamic nature of learner engagement. The authors found that a 

gamified learning environment supports real-time feedback mechanisms and adaptive 

learning, significantly enhancing students’ responsiveness to curriculum content and 

instructions, thus, catering to individual students' needs and preferences. This study 
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asserted that integrating gamification into MOOCs enhances student engagement and 

catalyses creation of more personalised and effective online learning experiences. 

 Likewise, Kapp [97] emphasises the role of gamification in creating an 

engaging learning environment. Kapp’s research demonstrates that incorporating 

these game mechanics in educational content captivates students' attention and 

encourages continued participation and interaction with the course material. His 

findings suggest that their intrinsic motivation is significantly enhanced when students 

find the learning process enjoyable and challenging, akin to a game. This motivation 

is crucial in MOOCs, where self-driven learning is pivotal. Both sets of authors 

contribute to the understanding that gamification, when effectively integrated into 

MOOCs, can transform a conventional educational model into an engaging and 

interactive learning journey, leading to improved student engagement and motivation. 

 Gamification has been widely adopted in various educational contexts to 

enhance motivation and engagement as stated. However, empirical evidence on its 

specific impact within MOOCs was limited at the time this part of the research was 

conducted. Therefore, in my work on gamification in education for MOOCs, I tackle 

engagement in a gamified online learning, in Chapter 5. As the design of gamified 

learning systems is usually theory-driven, there is a lack of runtime feedback, non-

gamified scaffolding, and under-exploitation of interaction data. Whilst the theoretical 

basis is very important in designing purpose-fit gamified systems, in the context of 

large-scale online learning like MOOCs, it is not feasible to propose a one-size-fits-

all design of gamification. For this reason, it is very important to take into account the 

data generated from the system in order to better understand the users’ interactions, 

and refine the offering. Moreover, gamification in MOOCs was explored in a first 



41 
 

instance (Chapter 7, [4]), to better understand gamification as a vehicle for motivation 

in the ABM approach, as implemented later on (Chapter 8).  

2.6.2 Teachers and Gamification  

The available related research explored the integration of gamification across 

various educational disciplines. Wells and Fotaris [64] examine the perceptions of 

trainee teachers towards gamified methods in London schools, revealing enthusiasm 

for new pedagogical strategies. Heras et al. [33] advance gamification in chemical 

engineering with simulators designed to support digital transformation. Baldeón et al. 

[15, 16] and Dermeval et al. [49] demonstrate how gamification can be embedded in 

complex systems theory and intelligent tutoring systems respectively, enhancing both 

student and teacher engagement and fostering a dynamic learning environment. Each 

study presents gamification as a potent tool for enhancing educational outcomes 

through active participation and innovative teaching methodologies. 

 The research by Wells and Fotaris [64] investigates the integration of gamified 

learning methods in educational settings through the lens of trainee teacher 

perceptions. This research delves into the potential of game-based learning to enhance 

student engagement and teaching effectiveness in East London schools. Trainee 

teachers expressed enthusiasm for adopting new pedagogical strategies and becoming 

agents of change, despite encountering obstacles like traditional teaching mindsets and 

structural limitations within schools. The study underscores the need for substantial 

support and training for teachers to effectively implement gamified learning, which 

could transform educational environments by making them more aligned with 

contemporary student experiences and expectations. The findings suggest a promising 

avenue for fostering greater engagement and motivation among students, thereby 
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enhancing learning outcomes and teacher success in utilising innovative educational 

tools. 

 The work by Heras et al. [33] focuses on enhancing the educational landscape 

in chemical engineering. The paper presents a detailed framework for developing 

pedagogical simulators that integrate gamification elements to make learning more 

engaging and effective. The framework, termed P2Si, is designed to support the digital 

transformation in education necessitated by the fourth industrial revolution, 

emphasising the importance of process models in chemical and biochemical 

engineering education. The study highlights how these simulators can be used as 

educational tools to improve student engagement, facilitate a deeper understanding of 

complex processes, and enhance teaching effectiveness. By incorporating elements 

such as explanatory models, tailored learning designs, and participatory design 

involving students as co-designers, the framework aims to make educational 

simulators more interactive and responsive to the needs of learners.   

 In conclusion, while the available related scholarly works have explored the 

integration of gamification across various educational disciplines, there has been a 

noticeable gap in research specifically focusing on gamification for teachers. 

Compared to the research in this thesis, which examines how gamification can be 

utilised to enhance teacher engagement and effectiveness, most studies primarily focus 

on student outcomes. In Chapter 8, this research addresses this gap by providing an 

in-depth analysis of the impact of gamification on teachers within the context of the 

ABM approach proposed, demonstrating how elements like real-time statistics and 

leaderboards can significantly improve teaching practices and teacher motivation. This 

focus on teachers is essential, as their engagement is crucial for the successful 
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implementation of gamified learning environments and it aligns with the broader aim 

of enhancing educational outcomes through innovative strategies. 

 

2.7 Epilogue 

Based on the evidence explored from the existing literature presented in this 

chapter, the integration of ABM, ML, and gamification offers a comprehensive 

approach to enhancing teaching and learning processes within the realm of educational 

technologies. Each methodology contributes unique strengths to educational 

environments, addressing a variety of challenges, from enhancing engagement, to 

managing behaviour and advancing predictive analytics. This synthesis leverages the 

distinct capabilities of each method to tackle issues such as engagement, behavioural 

management, and the development of predictive analytics. 

ABM is particularly noted for its dynamic simulation of complex systems, 

which is highly relevant in educational settings, where interactions between students 

and teachers can be complex and varied. By utilising ABM, educators can develop 

virtual models of classroom environments to simulate interactions between agents. 

This method allows for an exploratory approach to understanding the impact of 

various pedagogical strategies on student engagement and learning outcomes. The 

insights gained from these simulations are invaluable, as they reveal the impact from 

the interactions of individual agents, providing a deeper understanding of classroom 

dynamics and the potential effects of different instructional strategies [87, 121, 203]. 

While ABM has shown its potential in the education field, whether in the learning 

content or the learning process, little attention has been given to its application to 

classroom interactions—specifically, the impact of disruptive behaviour on the 
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learning environment. Most existing models either focus on individual behaviours or 

specific outcomes, without accounting for the disruptions in the classroom. Similarly, 

while predictive models using ML can identify patterns in student performance and 

behaviour, they lack the ability to simulate the interactions that occur in a classroom. 

ML complements ABM by adding a layer of data analysis and predictive modelling 

capabilities. The predictive power of ML is crucial in forecasting learning outcomes 

and identifying at-risk students, thereby enabling the implementation of timely and 

effective educational interventions [14, 94]. Thus, this thesis aims to develop an ABM-

ML approach that utilises both techniques and incorporate disruptive behaviours and 

their effects on classroom dynamics. This model could provide educators and 

researchers with insights to help them in mitigating these behaviours and optimise 

learning outcomes. 

During this analysis, a notable gap in research in the application of hybrid 

ABM-ML techniques to predict and manage disruptive behaviours in classrooms has 

been found. Traditional methods often rely on analyses and static intervention 

strategies, which may not account for the dynamic nature of classroom interactions. 

This thesis leverages ML algorithms (see Chapter 5) to predict learning outcomes 

based on disruptive behaviours, providing educators with helpful insights to mitigate 

disruptions. Furthermore, it utilises ABM to simulate complex classroom 

environments and interactions as ABM offers a powerful tool to model these 

interactions, allowing for the exploration of various scenarios and the identification of 

effective strategies for managing classroom behaviour and enhancing student 

performance. By identifying the specific impacts of different types of disruptive 

behaviours using ML techniques combined with ABM simulation (see Chapter 6), this 

research can inform educators to mitigate their negative effects. 
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 Lastly, gamification enhances educational settings by incorporating game-

design elements such as points, badges, and leaderboards to boost engagement and 

motivation. This strategy creates an interactive experience that not only increases 

involvement but also promotes persistence, significantly enhancing retention and 

performance, particularly in online platforms like MOOCs [8, 51, 163]. Gamification 

can help combat effects of disruptiveness, but also is considered in this thesis as a 

general motivational element, not just for students, but also for teachers. 

 The synergy from integrating ABM, ML, and gamification elements has the 

promise to create a more cohesive and adaptive learning environment. ML can 

enhance ABM simulations by providing data-driven insights of agent behaviour, 

thereby increasing the accuracy of the simulation. Simultaneously, gamification 

benefits from ML algorithms in evaluating the effectiveness of game elements and 

increasing engagement with the model.  

 The next step of this thesis is to explain the methodology employed to address 

the RQs in Chapter 3, to address the gaps as described in this chapter. Thus, this thesis 

presents and investigates the impact of disruptive behaviour, peers and teacher 

characteristics on academic performance by simulating classroom interactions in 

Chapter 4. In Chapter 5, further investigation of disruptive behaviour impact in 

physical classroom is performed using ML and XAI. Chapter 6 presents an improved 

version of classroom ABM, with the incorporation of ML. Lastly, Chapters 7 and 8 

employ quantitative and qualitative methods to explore the impact of gamification in 

educational settings. 
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CHAPTER 3 

3 Methodology 

3.1 Prologue 

After highlighting the thesis research questions in Chapter 1, and discussing 

relevant literature in Chapter 2, this chapter provides an explanation of the research 

methodologies used to address the research questions. This includes a high-level 

description of the data sources and approaches used in the process of answering the 

research questions provided in section 1.6. More detailed descriptions follow in the 

individual research chapters, which address specific research questions, and are 

referenced in this chapter where necessary. 

3.2 Research Design and Strategy 

 A research design represents a researcher's plan to collect and analyse data to 

answer a particular research question [151]. Therefore, a research design is a roadmap 

followed during research to achieve the research purpose. A research design specifies 

the types of methods and procedures that a researcher would use to collect and analyse 

information. On the other hand, a research strategy outlines how research is conducted, 

including elements of data collection and synthesis [124]. Pandey and Pandey [151] 

noted that researchers can choose from exploratory, case studies, grounded theory, and 

experiments, among other strategies, as general ways of conducting a study. This 

thesis utilises a data-driven simulation approach to address disruptive behaviour in 

educational settings through the integration of Agent Based Modelling (ABM) and 

Machine Learning (ML). The research is conducted in multiple stages, with research 
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questions tailored for every stage’s objective. The high-level structure of the research 

design for answering these research questions is presented in the following: 

RQ1: How can Agent-Based Models be utilised to explore the influence of disruptive 

students on their peers and the roles of teaching quality, teacher control in a disruptive 

classroom? (Chapter 4)  

To understand the effect of teachers and peers using a simulation model. 

• PIPS data (see section 4.2) was used to design a simulation model and create 

and visualise a simulated classroom with students’ disruptive behaviour 

represented with features from PIPS. 

• The designed model is run with different scenarios in relation to teacher and 

peers’ characteristics to illustrate their effect, by comparing Pearson 

correlation coefficient between simulated and PIPS data, in Sections 0 and 4.5. 

RQ2: How can we predict and explore students' learning outcomes based on 

disruption-related features (Inattentiveness, Hyperactivity, Impulsiveness), using ML 

models and Explainable Artificial Intelligence (XAI)? (Chapter 5) 

To explore the effect of disruptive behaviour and other factors in classroom 

environment. 

• Prediction output is defined as two classes representing student performance 

that is followed by grouping of the data to improve classifier performance 

(Section 5.4).  

• Interpretation of ML predictions using SHAP values to explain the relationship 

between student performance and disruptive behaviour features (section 5.5). 

RQ3: How can Machine Learning (ML) be integrated into an agent-based model 

(ABM) to improve the simulation of classroom disruptive behaviour, and what 
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parameters of ML prediction yield realistic results in this hybrid ML-ABM approach? 

(Chapter 6) 

Machine learning is integrated into Agent-Based Model to better illustrate the effect 

of disruptive behaviour in classroom using ML. 

• A hybrid ML-ABM approach is developed by combining ABM simulation of 

classroom disruptive behaviour and Machine Learning predictions as 

demonstrated in Section 6.2. 

• The performance of ML-ABM approach is measured using Pearson 

correlation, MAE and RMSE as shown in Section 6.3.10. 

RQ4: How can gamification strategies be implemented to increase engagement in an 

educational setting, and which gamification elements have the most significant impact 

on engagement, both in student-oriented systems and teacher-oriented systems? 

(Chapter 7, Chapter 8) 

To explore the effect of gamification on student engagement in MOOCs, different 

classifiers were applied. 

• Gamification elements were extracted and analysed from data (CameleOn 

3.4.1) as well as the definition of student engagement (Section 7.2.7). 

• ML Classifiers predict that a student is engaged (1) or not engaged (0), based 

on the identified gamification elements, as shown in Section 7.3. 

To understand the effect of adding gamification elements to the ABM simulation for 

use by teachers, these steps were followed: 

• ABM was presented to teachers to collect their feedback on the use of the 

system using Toda’s taxonomy (Section 8.2).  
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• Teachers’ views on the existing gamification elements as well as their 

preference of gamification elements were collected via semi-structured 

interviews. 

 Following, the main techniques used in the research are described. A specific 

research methodology is further detailed in the following chapters when it relates to a 

specific research question.  

3.3 Research Methodology Types and Research Stages 

  Research methodology represents a theory of how a study is conducted [151]. 

It considers assumptions, principles, and procedures of a specific approach used in the 

research study. The research methodology restates the research problem and helps 

researchers to identify, choose, or develop suitable techniques for collecting data. A 

research methodology can either be quantitative or qualitative. A quantitative 

methodology is used in studies designed to test theories and facts or examine the 

relationship between variables and expected study outcomes [124, 140]. In a 

quantitative research study, a researcher uses sampling methods to select study 

participants and standardised tools like questions to collect data. The study relies on 

statistical tools to analyse collected data and test predetermined hypotheses about the 

relationship between study variables [140]. Quantitative research is independent of the 

researcher because it leverages standardised methods and techniques to collect, 

analyse, and interpret relationships between variables. 

  On the other hand, a qualitative approach is adopted in studies focusing on 

explaining a phenomenon or understanding a specific research question or developing 

theories to improve understanding of a specific topic or concept [32]. A qualitative 

study leverages interpretive and naturalistic approaches in explaining the topic or 
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phenomenon in question in their natural context to make sense according to people’s 

meanings [44]. Therefore, a researcher is key to the outcome of a qualitative study, 

especially in collecting and interpreting data. Qualitative studies utilise unstructured 

interviews, semi-structured interviews, open-ended interviews, document analysis, 

observation, and participant observation data collection methods to enhance 

understanding. 

This thesis employs a qualitative strategy to explore the adoption of 

gamification elements in the agent-based model (ABM) through interviews (in 

Chapter 8 ) and a quantitative approach using machine learning predictions and 

simulation of classroom interactions (in Chapters 4, 5, 7 [4, 6]).  

  The qualitative methodology allowed for the use of observation and semi-

structured interviews to collect teachers’ views on the potential adoption of 

gamification elements in the simulation model that is designed to help them mitigate 

disruptive behaviours in the classroom. On the other hand, quantitative methods 

enabled the measurement of simulation’s efficacy by analysing results from the 

simulation model. Statistical analyses quantified the impact of disruptive behaviour to 

assess the model’s outcome. Thus, this research follows both quantitative and 

qualitative strategies in meeting the objectives of every stage designed to conduct the 

research. Figure 1 illustrates the overall stages undertaken in this research, with each 

stage detailed as follows: 

1. Development of the Agent Based Model (ABM): 

Simulation of the interactions between students, teachers, and peers to explore the 

effects of disruptive behaviour and teacher interventions. ABM is utilized for the 

simulation as it allows for the exploration of complex social dynamics and testing of 

interventions in a controlled, risk-free environment. 
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2. Machine Learning Predictions: 

In this stage, ML was used to predict academic performance based on disruptive 

behaviour features (e.g., inattentiveness, hyperactivity, impulsiveness). ML 

complements ABM by enhancing the model's predictive capabilities; therefore, it was 

introduced to enhance the performance of the ABM. 

3. Explainability (XAI): 

XAI can offer insights to the ML performance. Thus, SHAP (SHapley Additive 

exPlanations) values is used to make ML models interpretable. XAI may not be 

interpretable by teachers; however, the added explanations can provide transparency 

to ML models to enrich the findings contributing to the body of research.  

4. Hybrid ML-ABM Approach 

ML is integrated with an ABM model to improve the performance of the model. 

This approach utilises the predictive power of ML in predicting learning outcomes 

with disruptive behaviour and employs ABM for simulating classroom interactions.  

5. Integration of Gamification  

Gamification has been shown to increase motivation and behaviour engagement. 

Therefore, gamification elements were explored in an online educational system 

named CameleOn. Gamification was then introduced to the simulation model for 

increased behaviour engagement. Teachers' feedback was collected about 

gamification to improve the model, aiming to make it more engaging and useful for 

classroom management.  
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Figure 1 Overall research stages. 

 

3.4 Data 

The research in this thesis incorporates two datasets, PIPS and CameleOn, each 

serving unique purposes for this study: 

1. PIPS Dataset: The PIPS (Performance Indicators in Primary Schools) dataset 

provides valuable data for simulating classroom interactions and disruptive 

student behaviours within the ABM. This dataset includes both academic and 

behavioural metrics, such as inattentiveness, hyperactivity, and impulsiveness. 

By using this data, the ABM can evaluate the effects of different levels of 

disruptive behaviour on academic performance. 

2. CameleOn Dataset: The CameleOn dataset provides data on student 

engagement in a digital environment through gamification elements like 

badges, levels, and achievement tracking. Although ABM is not intended for 

student use, gamification features are incorporated into the ABM to increase 
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motivation and engagement for teachers who will interact with and benefit 

from the model. This dataset helps examine how gamification could enhance 

teacher engagement with the ABM, potentially making it a more engaging tool 

for exploring and managing disruptive behaviour. 

Together, these datasets contribute to this research: the PIPS data enables an 

understanding of the impact of disruptive behaviours on performance, while the 

CameleOn data facilitates an exploration of gamification as a method to increase 

engagement for the integration with the ML-ABM approach. The following sections 

offer a detailed description of each dataset. 

3.4.1 CamaleOn Dataset 

The CamaleOn dataset was used for answering research question RQ 4. The 

work with this dataset is further depicted in Chapter 7 and published in [4]. CamaleOn1 

is a Brazilian Gamified Intelligent Tutoring System. Officially launched in 2012, its 

aim is to increase the accessibility of educational resources to Brazilian students to 

increase their chances of passing the Vestibular Exam. Students must compete with 

others from different schools in Brazil by scoring higher in this exam. It is held in 

three consecutive days where students with the highest scores are the ones who go 

through to the next day. In the last day of exam, the students would get accepted into 

the university if they had a higher score than the rest. 

 The Vestibular Exam consists of multiple-choice questions that are based on 

high school curricula in different topics such as mathematics, physics and Portuguese 

Literature. CameleOn allows students to choose a subject where they would like to 

improve and start learning by viewing the material and answering questions. 

 
1https://plataformacamaleon.com.br/ 

 

https://plataformacamaleon.com.br/
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Every subject has a multi-level map where students can move from one level 

to the next with higher difficulty. At each level, there are optional helping materials 

that student can view to provide extra help and understanding of the level’s topic. 

  Data that I used for the research within this thesis (Chapter 7 [4]), collected 

from CamaleOn represents 8270 students, a sample size much above the required 

statistically applicable one for the student population of Brazil (for confidence level 

95%, confidence interval ±5%, sample size calculator from Surveysystem.com, for the 

population of Brazil at 211 million people a minimum of 384 people is needed). 

Students solved 307814 problems, watched 1131 videos, received 236345 badges, and 

logged in 67752 times. Data was collected on their behaviour (Logs) to build a Student 

Model [168]. Behaviour reflects interaction data between the students and the various 

elements of their online learning environment, such as problems, resources, etc.  

3.4.2 PIPS Dataset 

The PIPS Dataset was used for the ABM simulation and training in Chapters 

4, 5, 6 . This dataset came from schools that participated in the Performance Indicators 

in Primary Schools (PIPS) monitoring system [197] [198]2, in which young students 

were assessed at the start of their first year in elementary school and again at the end 

of that year. PIPS was developed by researchers at the Centre for Evaluation and 

Monitoring (CEM) in Durham University, the UK, during the time this data was 

collected. CEM is one of the largest providers for children assessment and a part of 

the Cambridge family. Consent for data collected by CEM is detailed in the official 

website (www.cem.dur.ac.uk). Local authorities and schools participating in PIPS pay 

to use it. It provides assessments that are administered on pupils then returned to CEM 

 
2RR344_-_Performance_Indicators_in_Primary_Schools.pdf (publishing.service.gov.uk) 

http://www.cem.dur.ac.uk/
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/318052/RR344_-_Performance_Indicators_in_Primary_Schools.pdf
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to be analysed for the purpose of monitoring the progress of pupils. Feedback that 

contains detailed information about pupils’ academic achievement is then returned to 

schools. As a large number of schools participate in PIPS, the data it processes is of 

different variations that allow for research to be conducted on some of it. The research 

in this thesis is using data collected by PIPS in the academic year 2007/2008 as well 

as the following year 2008/2009 that was approved to be used for the purpose of the 

research for this thesis by the data provider (usage as described in Chapters 4, 5, 6 and 

[6, 7]. PIPS also recorded students’ non-academic attributes that represent 

demographic variables, such as gender, eligibility for Free School Meals (FSM) as 

well as the IDACI score (Income Deprivation Affecting Children Index)3. FSM is a 

binary variable with a value of 1, which means that the student is eligible for a school 

meal and 0 otherwise. IDACI rank takes a range of 1 to 32462, and is defined by the 

Ministry of Housing as “a subset of the Income Deprivation Domain which measures 

the proportion of the population in an area experiencing deprivation relating to low 

income”4. This is a vast dataset, comprehensive is collected from 3,315 classes from 

2,040 schools from all over the UK, with an average of 26 students per class. Another 

PIPS dataset from year 2008 collected in Australia and Scotland has over 11,000 

records that will be later referred to as PIPS2008. In this chapter, the UK PIPS2007 

will be used as it is larger. The PIPS2007 contains a total of 73,372 students' records 

33,269 of which are male and 31,4434 are female while 8,669 of the remaining records 

are not specified. A total of 7,831 receives a school meal and 44,088 does not. Figure 

1 shows the general growth in math and reading for all students.  

 
3 https://www.gov.uk/government/statistics/english-indices-of-deprivation-2019 
4 https://opendatacommunities.org/def/concept/general-concepts/imd/idaci 
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 Trimming outlier with standards deviation threshold = 3 [112], the resulted 

records are over 39,000 of students that include, beside the above variables, scores on 

the Initial and End-of-year assessments of Math and Reading, as well as the processed 

data:  

• Start Math score is the initial math score of the student from the baseline 

assessment (0-63 range); 

• Start read(ing) score is the initial reading score of the student from the baseline 

assessment (0-169 range); 

• End Math score is the final score in math from end year assessment (0-69 

range); 

• End Read (ing) score is the final score in reading from end-year assessment 

(0-178 range). 

• Gender: Boolean value 0 for male and 1 for female. 

• Student ID: a unique number that distinguishes each student in the dataset. 

• Growth: a value calculated from Start and End Math scores. A demonstration 

is shown in Figure 2. 

•  

 

 

 

 

 

 

Figure 2 Growth of Read (left) and Math (Right) 

 

The growth in math and reading is calculated as follows: 
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   (3. 1)  

 For disruptiveness scores (calculated as shown in section 3.4.3), the 

median is used to indicate the level of disruptiveness if the score is larger than 

the mean, the student is considered highly disruptive and if the score equals 

the median, the student is moderately disruptive; otherwise is considered less 

disruptive.  

Figure 3 shows the disruptive level of the students in the dataset for all 

disruptive features: Inattentiveness, Hyperactivity, Impulsiveness. 

 

 

 

 

 

Figure 3 Disruptive level of all features: Inattentiveness, Hyperactivity, Impulsiveness 

 

Figure 4 and Figure 5 show the level of disruptive features based on the 

percentage for male and female students respectively. 

  

 

 

 

 

 

Figure 4 Level of disruptive features of male student percentage 
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Figure 5 Level of disruptive features of female student percentage 

 

 We see from the last two figures that female students show lower 

disruptive behaviour in all features with 68% attentive females compared to 

53% attentive males and 82% low hyperactivity score of female students 

compared to 69% for male students. Lastly, female students have 86% of low 

impulsiveness score while male students have 76%. Male students have a 

higher percentage of a highly disruptive score in hyperactivity, impulsiveness 

and inattentiveness with 11%, 11%, and 7% respectively.  

 Among disruptive behaviour features, students with low disruptive 

feature also have a lower score in the other two as shown for Inattentiveness 

in the figure where records of Hyperactivity and Impulsiveness show a lower 

score of Inattentiveness.  

 

Figure 6 Hyperactivity and Impulsiveness frequency for students with Low 

hyperactivity 

 According to Figure 6, the majority of records fall in the low 

Hyperactivity and low Impulsiveness class with 44,455 and 42,008 records, 

respectively. 
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3.4.3 Evaluation Metrics 

After explaining the datasets used for answering the research questions of this 

thesis, the next step is to present the methods and evaluation metrics applied on the 

findings of this thesis.  

 Disruptive Behaviour and Academic Performance Metrics: Disruptive 

behaviours (inattentiveness, hyperactivity, impulsiveness) were measured using 

teacher-reported scales. This is part of the PIPS data used in this thesis, and has been 

collected and processed prior to the work in this thesis. The assessment provided by 

PIPS focuses on Mathematics and Reading. In this assessment, students are shown 

pictures of people performing some actions and then the students are asked to identify 

these actions then move to identifying letters then reading commonly used words. 

Maths is assessed by identifying numbers first, followed by counting. Also, sums are 

assessed and questions become harder as the students answer each question. Once the 

student starts having hard time answering, the assessment is stopped. Each student is 

assessed individually with their teacher, with each assessment taking about 20 

minutes. This assessment is repeated at the end of the year with an extended number 

of questions. The assessment’s reliability and validity were tested by administrating 

the assessment by a researcher at CEM following the teacher’s, with a random sample 

of students. The correlation between re-assessment and original assessment reached 

0.9 which shows that it is reliable. At the end of the school year, another random 

sample is taken for reassessment but using Word Recognition and Phonic Skills 

(WRAPS), a commercially available reading test, and Basic Number Diagnostic Test 

for math. The correlation between original assessment and commercially available 

tests was also found high  
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 The assessment process also provided a score, given by the teacher, for 

symptoms of disruptive behaviour, using an 18-steps behaviour rating scale with every 

item representing a specific behaviour (i.e., inattentiveness items from 0 to 9, 

hyperactivity from 10 to 15 and impulsiveness from 16 to 18) [136] for each student at 

the end of the school year. The higher the number a student scores on the scale of 

Inattentiveness, for example, the higher the potential for students to be Inattentive. The 

items on these scales follow the diagnostic criteria for ADHD by the American 

Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders 

(American Psychiatric Association, 1994) [135][136]. The use of teacher-assessed 

scores for disruptive behaviour is important for this research because teachers interact 

with students on a daily basis and can provide a more accurate and consistent 

observation of behaviour over time. This method allows for an assessment that may 

be more sensitive to the conditions of classroom behaviour and provide valuable 

insights that standardized tests may overlook [165]. Therefore, teacher-assessed 

measurement may provide a more relevant measure of disruptive behaviour in the 

educational environment. 

 ML Evaluation Metrics: ML algorithms both shallow or deep were applied in 

different chapters of this thesis, especially in Chapter 5 and Chapter 07. The data 

explained in the previous sections are labelled data used for training ML models. A 

proportion of the data is used for training and another different portion is used for 

testing the model performance. The process of dividing the available data into training 

and testing set used in this thesis is by K-fold cross validation. This method provides 

different pairs of indices for train and test sets. Using this process, the model is trained 

using data that is split into K number of folds for K number of times. On every training 
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iteration, one-fold or part is left out and the model is tested using that part. All models 

used in this thesis are trained and validated with k-fold cross validation with K= 10. 

The full description of ML models is presented in Chapter 5 and Chapter 7.  

 The models are then evaluated using performance evaluation metrics. 

Typically, classification models are evaluated using F1-score, overall accuracy while 

regression models are evaluated using Mean Absolute Error (MAE) and Root Mean 

Squared Error (RMSE). Other performance evaluation metrics are also used, like 

Precision and Recall. The mathematical equations of the evaluation metrics are 

explained as follows:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
    (3. 1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (3. 2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (3. 3) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
    (3. 4) 

Where  represents True Negatives and  is True Positives  is False Negatives and  is 

True Positives.  

3.5 Educational Contexts 

This research draws on three distinct educational contexts in the design of a data-

driven ML-ABM simulation. Each context has unique characteristics that could make 

the findings more comprehensive and applicable across different educational 

landscapes. Thus, one reason for using different contexts is that of generalisation. The 

other reason for using a different context is that the area of the exploration in this 

thesis, that of disruptive learning, affects not just one set of stakeholders, but several 

(such as learners, teachers, etc.). Finally, the reason for using these specific contexts 
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is also related to convenience sampling: teachers are notoriously busy and have 

difficulty to work with researchers beside their regular work; working with students 

and student data is also adding various challenges, some of them of ethical nature, 

which will be explored in the next section. The contexts thus targeted in this thesis are 

briefly presented below. 

1. Primary Schools in the UK (Chapters 4,56) 

This refers to traditional in-person teaching in UK primary schools, 

specifically focusing on math and reading classes. This context involves structured 

classroom environments with young learners and direct teacher-student interactions. 

The UK primary school setting provides insights into classroom interactions, 

especially how disruptive behaviours such as inattentiveness or hyperactivity or 

impulsiveness affect learning outcomes in a formal, traditional setting. Therefore, it 

offers a baseline for understanding disruptions in a typical face-to-face educational 

environment which was used in answering RQ1, RQ2 and RQ3. 

2. Secondary Schools/ MOOCs in Brazil (Chapter 7) 

  A Brazilian online learning platform offering Massive Open Online Courses 

(MOOCs) to secondary school students. This context was used to answer RQ4.It 

focuses on behaviour engagement in a large-scale, learning environment. MOOCs 

provide valuable data on how gamification elements can influence behaviour 

engagement in a traceable digital behaviour of learning environment, which can be 

utilised to explore the effect of gamification elements for incorporation into the ML-

ABM simulation system. 
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3. Teachers in Saudi Arabia (Chapter 8) 

Saudi Arabian primary school teachers provide insights into the use of an 

educational system, the hybrid ML-ABM, tailored for teachers. To answer RQ4, 

teachers provided insights regarding the integration of gamification elements into ML-

ABM simulation system, providing detailed feedback on which features best enhance 

motivation and engagement.  

3.6 Ethical Considerations  

The data used in this research project is intended for research purposes only and the 

necessary usage permits required for this thesis were all obtained. This included 

permission to use CameleOn and PIPS data5. The interviews carried out in this 

research with the aim of testing and validating the ABM model follow the ethics policy 

and procedures of computer science research6 that states the following:  

“Experiments that do not affect or use any personal data from participants and that 

do not raise any other ethical issues (for example testing and validating a piece of 

software) do not require approval.” 

3.7 Epilogue  

The preliminary objective of this thesis is to help teachers understand the effect 

of disruptive behaviours on individual and classroom academic performance through 

the development of a data-driven hybrid ML-ABM approach of classroom 

interactions. This chapter explains the datasets PIPS and CameleOn that were used in 

answering the research questions. It covered the simulation ABM prototype designed 

 
5 CameleOn dataset was received and approved to be used for research from Dr. Armando M 

Toda. PIPS dataset was received and approved for research from Prof. Peter Tymms.  
6 Ethics Policy and Procedures 

https://durhamuniversity.sharepoint.com/:u:/r/teams/ComputerScienceResearch/SitePages/Ethics-Policy-and-Procedures.aspx?csf=1&web=1&e=9lMD59
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for understanding peers and teachers’ effect in simulated classroom. The study 

highlights the incorporation of ML learning outcomes prediction of disruptive 

behaviour for the integration with ABM in a hybrid approach, along with SHAP values 

to provide explainable insights into model outputs.  

The upcoming chapters address each research question in detail through the 

design, implementation, and results phases. Chapter 4 focuses on understanding the 

effects of teacher and peer characteristics on student performance, utilising the ABM 

simulation model to investigate these dynamics. Chapter 5 explores the impact of 

disruptive behaviour on academic outcomes, applying ML predictions to explain these 

relationships in the classroom context. Chapter 6 describes the development of the 

hybrid ML-ABM model, which is designed to improve the simulation's ability to 

predict and simulate classroom interactions. Chapter 7 investigates the role of 

gamification in promoting engagement in an online system, using ML to analyse its 

influence on user's performance: the student in this case-. Chapter 8 then explores the 

perspectives of teachers on gamification elements, with insights gathered from 

interviews to refine the ML-ABM system’s usability. The next chapter starts with 

answers to the research question RQ1.  
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CHAPTER 4  

4 Implementation of Simulation Prototype 

4.1 Prologue  

Classroom interactions and their impact on student achievement have been a 

focus in educational research for many years [33, 40, 167]. But the exploring role of 

disruptive behaviour in these interactions through simulation remains under explored 

(see section 2.2 Chapter 2). This chapter applies simulation to deal with disruptive 

behaviours, particularly inattentiveness and hyperactivity and impulsiveness, which 

are known to weaken students’ academic achievements. 

The comprehensive research problem of this thesis is exploring how student 

disruptive behaviours affect both individual and peers’ academic outcomes in a 

classroom setting via simulation. This chapter is grounded on using an Agent- Based 

Modelling (ABM) perspective. ABM formulated the preliminary methodology by 

simulating classroom environments, and focusing on the role of disruptive behaviour. 

Different sources of influence, like peer disruptiveness, teacher quality, and the level 

of teacher control, are explored through this simulation. In this chapter, I seek to 

answer the following research question:  

 RQ1: How can Agent-Based Models be utilised to explore the influence of 

disruptive students on their peers and the roles of teaching quality, teacher control in 

a disruptive classroom?  

4.2 Approach 

I used Agent-Based Modelling (ABM) to create a simulation of the learning 

process interactions. This is because the target stakeholders for our research question 

are human stakeholders in education, such as educational researchers, teaching 
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administrators, teachers and, ultimately, students. We need to move beyond 

prediction in education with data mining and machine learning algorithms 

where I use available variables to predict outcomes [193] and be able to 

simulate how changing variables (e.g. the way of teaching a class) would 

change the outcomes, as well as note the different effects at different points in 

time (e.g. during a class, at the end of a class, at the end of a given number of 

classes, etc.).  

 From a technical point of view, the model was built using Mesa, which is an 

ABM framework in Python licensed by Apache2 [130]. Mesa provides a browser-

based interface to visualise the model, which allows the use of interactive tools while 

running the model. This is especially useful during this COVID-affected time, when 

most interaction has moved online. Moreover, as it is coded in Python, it also has 

access to Python’s large analysis tool library, such as SciPy for scientific computing, 

Pandas for data analysis and Matplotlib for visualisation.  

 From a visualisation point of view, this particular implementation is simulating 

a classroom. Here, a classroom is presented as a 5 x 6 grid to satisfy the limit of class 

size being 30 students per class in the UK [47]. Shown as coloured circles, students 

start the class session in a random state of either learning, passive, or disruptive. The 

state becomes a learning state (in green) when the student has a low disruptive 

behaviour score. It turns into a disruptive state (in red) if the student has a high 

disruptive behaviour score or the student’s Disruptive Tendency score exceeds the 

threshold (Disruptive Tendency and Disruptive threshold are defined in Section 4.2.1), 

where 1 tick in the model represents 1 minute. When a student is being disruptive, he 

or she may affect the state of their neighbours, depending on the neighbours’ 
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disruptive score and the level of Teacher Control and Teaching Quality. As previously 

stated, every student has two disruptive behaviour scores: Inattentiveness and 

Hyperactivity, ranging from 0 to 9 and 0 to 6, respectively (using the ranges defined 

by PIPS). These values could in the future be set at the start of a class; for now, our 

model initialises each randomly. Students also have other attributes that will be 

explained in section 4.2.1.  

 A math lesson lasts for 45 minutes (as recommended by the Department for 

Education and Skills, 2002), where a student will be moving between the three states: 

passive, learning and disruptive (as defined based on the PIPS data). Figure 7 shows a 

flow chart of the model I have created to illustrate the change of the student state. 

 

Figure 7 Agent Based Model flow chart 

 

4.2.1 Definition of Variables  

The model offers first switch variables that can be manually altered for each 

run, as described below. These are partially informed by variables recommended by 

PIPS researchers, and partially self-derived. I discuss implications of choices in 

section 4.2.2 
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Inattentiveness and Hyperactivity switch: This variable switch can be tuned to indicate 

a high or low level of Inattentiveness/Hyperactivity behaviour in a class.  

Teaching Quality/Teacher Control switch: This switch varies the quality/control of 

teaching, ranging from 1 (weak) to 5 (excellent); this scale is arbitrarily defined for 

this model and has not been taken from PIPS for the purpose of understanding the 

effect of this variable as a part of the learning environment factors.  

 Attention Span switch: This variable represents the length of simulation time 

(ticks) where the student maintains their learning state.  

 The model also computes a number of derived variables during the simulation 

runs, defined as follows below. 

 Initial Disruptive Tendency: Students will be allocated this value based on their 

Inattentiveness. I propose to compute it using the following formula: 

𝐷𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑠, 𝑐) =  
𝐼(𝑠)−𝜇(𝑠,𝑐)

𝜎(𝑠,𝑐)
     (4. 1) 

 Where 𝐼(𝑠) is the Inattentiveness score of student s; 𝜇 and 𝜎 are the mean and 

standard deviation values of Inattentiveness’ scores for class c of student s.  

 Disruptive Tendency: This variable will change over time - students who are 

disrupted frequently will be affected and their disruptive tendency will increase. The 

length of time a student will be in a disruptive or a learning state will be affected by a 

student’s own characteristics, as well as that of the teacher’s and peers’: 

𝐷𝑇(𝑠, 𝑐, 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡) = (
𝐷(𝑠,𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡
− 

𝐿(𝑠,𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡
) + 𝐷𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑠, 𝑐)  (4. 2) 

 Where 𝐷(𝑠, 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡) represents the number of ticks (minutes) when the 

student s was in a disruptive state since 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡, while 𝐿(𝑠, 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡) represents their 

learning state’s ticks. The higher the disruptive tendency becomes, the higher the 
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chance that the student will change to a disruptive state; 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 represents the number 

of ticks passed since the beginning of the school year. 

 Math attainment level: This variable accounts for individual differences 

between students; it is derived from their initial score in Math as follows [189]: 

𝐴(𝑠, 𝑐) =  
𝑆𝑚𝑎𝑡ℎ(𝑠,𝑐)−𝜇𝑠𝑚𝑎𝑡ℎ

𝜎𝑠𝑚𝑎𝑡ℎ
    (4. 3) 

 Similar as for the disruptive tendency, I use the z-score of student s’s initial 

assessment in the Math subject, Start Math, 𝑆𝑚𝑎𝑡ℎ(𝑠), defined below, because I wish 

to obtain information on varying from an average value, as opposed to absolute values. 

𝜇 and 𝜎 are the mean and standard deviation values of Start Math scores for class c of 

student s that is computed before the simulation is initialised either from PIPS data or 

model generated random data for Start Math variable. 

 Start Math: This variable can be taken from PIPS or produced randomly by 

the model for each student. Its range (0-69) corresponds to the PIPS data range. Here, 

I took the values from PIPS to simulate a realistic environment. 

 Start Math scaled: As number of ticks the students learn indicate here their 

final score in Math, I have rescaled the Start Math score to represent minutes of 

learning: 

𝑆𝑚𝑎𝑡ℎ𝑠𝑐𝑎𝑙𝑒𝑑(𝑠) =  (𝑒𝑆𝑚𝑎𝑡ℎ(𝑠))
1

𝑛   (4. 4) 

𝑆𝑚𝑎𝑡ℎ(𝑠) is the Start Math score of student s. I use n in the exponent to fit the 

logarithmic function to map the ‘learning Minutes’ into ‘Score’ in a similar manner as 

the work of [131], who used the logarithmic function to map ‘Teacher feedback’ into 

‘Score’. To fit the logarithmic function, I use the total number of minutes the students 

would possibly have in a school year, which equals to end-time =8550. Since 

𝑙𝑜𝑔 8550𝑛= 69, I calculate n to be  7.621204857.  



70 
 

 End Math: The simulated End Math score is shown in the Equation 4.5 where 

𝐿(𝑠, 𝑇𝑒𝑛𝑑−𝑡𝑖𝑚𝑒) represents the total learning time student s had throughout the 

simulated year: 

𝐸𝑚𝑎𝑡ℎ(𝑠) = 𝑙𝑜𝑔(𝐿(𝑠, 𝑇𝑒𝑛𝑑−𝑡𝑖𝑚𝑒) +  𝑆𝑚𝑎𝑡ℎ𝑠𝑐𝑎𝑙𝑒𝑑(𝑆))𝑛  (4. 5) 

 Disruptive threshold: represents one standard deviation above the mean 

disruptive tendency of the class [20, 62]. 

4.2.2 Functionality  

ABMs often simulate a multi-agent environment where interactions are 

complex. In my attempt to simulate a realistic classroom environment, the 

designed functions of the model were chosen based on resources and arbitrarily 

defined thresholds. As Railsback & Grimm [161] note, arbitrary thresholds are 

introduced to manage the complexity of ABMs and simplify agent behaviours 

in ways that are still meaningful, but more manageable, computationally. 

Moreover, such thresholds support the exploratory and flexible nature of 

ABMs, where different scenarios can be explored, and rules are further refined 

based on observed results.  

In my simulation model, some scales were arbitral (e.g., a scale of 1 to 

5 for Teaching Quality and Teacher Control). The upper bound of 5 was chosen 

to represent an excellent teacher, while 1 represented a teacher with poor 

control or engagement. These values were defined for the purpose of 

understanding their influence [122]. 

As per Figure 7, students are to be in a learning state if one of the following occurs: 

• Disruptive Tendency is lower than the Disruptive Threshold of class. This 

threshold was introduced to ensure that minor disruptions do not immediately 
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pull a student out of learning, which mirrors real-life classrooms where small 

disruptions can be tolerated without severely impacting a student’s ability to 

focus [79]. 

• Disruptive Behaviour is low, and Teaching Quality or Teacher Control is high 

[199]. 

• Current state is passive, and more than half of the neighbours are in a learning 

state. This creates a positive peer influence that can pull the passive student 

into the learning state [101, 102]. 

Students are to be in a passive or disruptive state if one of the following situations 

occurs: 

• Disruptive Tendency is higher than the Disruptive Threshold, passive if 

Teacher Control or Teaching Quality is high and disruptive if low. This reflects 

the critical role that effective teaching plays in managing classroom 

disruptions[56]. 

• Current state is disruptive, but Teacher Control is high; passive state and 

disruptive if Teacher Control is low. This rule reflects the teacher’s ability to 

mitigate disruptions by re-engaging students through intervention, classroom 

management, or instructional methods [110] [199]. 

• Disruptive Behaviour is low, and Teaching Quality is low.  

• Two neighbours are disruptive; passive state, more than two neighbours are 

disruptive; disruptive state. This illustrate the effect of disruptive peers, where 

their existence creates a negative environment that makes learning difficult for 

the surrounding students[108].  
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• Ticks of learning state exceed the attention span value. This reflects cognitive 

limits, where students can only focus for a certain amount of time before their 

attention decreases[160].  

• Disruptive Behaviour is high, and previous state is passive; disruptive state. 

 The agent (defined in Section 2.2.1) in my model represents a student who will 

remember his/her previous state and choose the next state based on earlier states. For 

example, if a student falls in a disruptive state for long, they can change to either 

passive or learning, based on characteristics or statuses of the teacher and neighbours.  

 The model’s simulation visualisation (Figure 8) will display the changes in 

student states during a minute (tick) in a lesson, with a line graph (below) that updates 

as the model runs. The graph follows the total number of disruptive students and 

learning students in every tick of the model. The black line represents the average End 

Math score of the class, while the red line represents the number of disruptive students. 

Figure 8 shows a screenshot of running the model with the variable Inattentiveness 

switched to zero. The grid contains cycles that represent the different states of the 

students during the simulation.  
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Figure 8 Running the SimClass model 

 

 

4.2.3 Data Analysis 

To answer the first research question, RQ1, and understand the effect of 

disruptive students on other students (here, the whole class), I explore the relationship 

between disruptive behaviour and End Math scores from PIPS dataset (here, 

representing general attainment – see Section 3.4.2). Specifically, I compute this End 

Math average score in classes with a high number of disruptive students and then 

compare this with classes with a lower number of disruptive students. I define the (set 

of) disruptive students as DS⊆S: 

𝐷𝑆 =  {𝑠 ∈ 𝑆, 𝑤ℎ𝑒𝑟𝑒 𝑑𝑠(𝑠) ≥ 𝑀}    (4. 6) 

𝑀 = {𝑚𝑒𝑑𝑖𝑎𝑛(𝑑𝑠(𝑠))| 𝑠 ∈ 𝑆}    (4. 7) 

 Where S is the set of all students, s is an individual student, ds(x) is the 

disruptive score function, and M is the median. The median, rather than mean, was 
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chosen to define the threshold, because the data, according to Shapiro’s test, is not 

normally distributed [2]. According to the data from PIPS, Inattentiveness has a 

median of 5, while Hyperactivity has a median of 3. 

 Out of 3,315 classes in the dataset, there were 2,337 classes with students 

categorised as disruptive. To have a deeper look into the data, I calculated the 

percentage of disruptive students per class and the average of the End Math score for 

that class and compared the two.  

Table 1 shows the correlation test results, where it can be seen that the percentage of 

disruptive students has a higher negative correlation (of -0.16) with the average of End 

Math, as opposed to -0.04 and -0.06 of their start and end scores, respectively. This 

suggests an effect of the number of disruptive students in a class over the general 

attainment - represented by End Math scores - in that class. 

  

Table 1 Correlation test between disruptive behaviour and Math scores 

 Start Math End Math 
Average End 

Math 

Inattentiveness -0.27 -0.33 -0.07 

Hyperactivity -0.14 -0.18 -0.06 

Percentage of disruptive 

students 
-0.04 -0.06 -0.16 

 

4.3 Results 

Running the simulation model for 8,553 ticks represents a 45-minute math 

lesson a day for 190 days in a year [117]. I here present 3 runs with different parameter 
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inputs to observe their effect on student End Math scores. Each run was repeated 50 

times to ensure stability and consistency of the model [162]. To demonstrate the 

realism of the ABM, I evaluate how accurately the model represents real-classroom 

outcomes by adjusting parameters across three distinct scenarios and comparing the 

simulation results to actual classroom performance metrics. This ensures that the 

model outputs align with realistic data. Additionally, the fundamental functions and 

design of the model rules are grounded in findings from the literature, providing a 

robust theoretical foundation for the simulation as presented in section 4.2.2. Results 

are shown in Table 2. 

 Run 1: In the first simulation run, I set all parameters with the maximum value 

for each (Teaching Quality and Teacher Control = 5, Inattentiveness/Hyperactivity = 

1 and Attention span = 5). I chose this setting to be the baseline to allow me to explore 

the different impact of each parameter in other runs. 

 Run 2: In this run of the model, I switched off Inattentiveness and kept the rest 

of the parameters at maximum value in order to understand the effect of 

Inattentiveness variable over the results when compared with the baseline.  

 Run 3: Here, I aimed to observe the impact of Teaching Quality; therefore, all 

parameters had the maximum possible values of their ranges, except Teaching Quality, 

which was given the lowest possible value from its range, i.e., 1 out of 5. 

Table 2 Results of End Math and Disruptive Tendency variables of three runs 

 Math Disruptive Tendency 

 First tick (Start 

Math) 

Last tick (End 

Math) 

First 

tick 

Last tick 

Run 1 27.43 43.08 1.16 0.12 
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Run 2 27.43 66.16 0.73 -0.53 

Run 3 27.43 36.45 1.05 -0.07 

 

4.4 Discussion 

Three different parameter inputs into the simulation model provided different 

results. Therefore, I computed Cohen’s d to present the effect size between the three 

runs (see Table 3). An effect size of.2 is considered small,.5 medium and.8 large [40]. 

It can be seen that the effect size is large between the runs. I used t-test and found the 

difference between End Math scores of the three runs to be statistically significant. 

 

Table 3 Cohen’s d and t test between End Math scores of all runs 

 End math (Run 1) End math (Run 2) End math (Run 3) 

End math (Run 1) - 1.43 (p = 4.13e-42) 7.81 (p= 6.41e-07) 

End math (Run 2) - - 9.12 (p = 3.09e-37) 

End math (Run 3) - - - 

  

 In the case of the third simulation, when Teaching Quality was reduced, the 

End Math results produced by the model were the lowest, with an average of 36.45, 

indicating that students made the least progress in maths of all runs. This means that 

Teaching Quality as a characteristic of the teacher influenced the attainment of the 

class by the end of the year. Additionally, it can be seen that students had also the 

highest disruptive tendency in this run. Please note that I have used the term “Teaching 

Quality”, to represent the level of teacher's ability to maintain student focus and 

minimise disruptive behaviour during a lesson [111]. Teachers who employ interactive 
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and inclusive strategies enhance students’ motivation and involvement in the learning 

process [52], which strongly connect it to class engagement [145]. In contrast, the 

highest average of End Math scores was seen in the second run, when the 

Inattentiveness switch was off, resulting in 66.16 for the average End Math score, 

which presents an answer to Run 2 showing a negative effect of disruptive students in 

a class over their attainment. An average of 43.08 falls in between the previous two in 

the baseline run, when all variables used in the model had the maximum value 

allocated for each range.  

 To compare with the real-world PIPS data7, I ran a Pearson correlation test for 

the three different simulation runs and the results are presented in Table 4. 

 

Table 4 Correlation test between simulation runs results and model variables (8,553 ticks) 

 End Math  

(Run 1) 

End Math  

(Run 2) 

End Math  

(Run 3) 

End Math 

(PIPS) 

Start Math 0.71 0.74 0.66 0.70 

Inattentiveness -0.31 -0.09 -0.38 -0.34 

Hyperactivity -0.13 -0.11 -0.12 -0.18 

  

 It can be seen from Table 4 that the correlation results of the three runs are 

close to End and Start Math of PIPS data, which was (computed separately to be) 0.70. 

The nearest correlation score to PIPS data can be seen in the first run, with 0.71, where 

all parameters had the maximum values possible. These results can be used for finding 

 
7 Please note however that PIPS data is only available for Start Math and End Math, thus 

only the start and end of the simulation process. (incomplete meaning) 
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the best adjustment of the model such as adding random elements of learning, 

changing ticks' representation and adjusting neighbours’ affect. 

 Next, I consider my various parameters used in more details. I have used here 

inattentiveness as a disruptive feature, for instance to reflect a state where the mind is 

wandering, but that is not necessarily always the case. Inattentiveness can be passive 

if it refers to daydreaming. Mind wandering is an unintentional shift of attention from 

a task to unrelated thoughts, while daydreaming is a deliberate shift in attention from 

the external environment, to internal thoughts [178]. Unlike daydreaming, mind 

wandering is less goal-directed and more likely to involve random, task-irrelevant 

thoughts [134, 178]. Mind wandering can be disruptive if it occurs during tasks 

requiring concentration, such as learning or problem-solving [177]. Research indicates 

that mind wandering is common during learning, and can negatively affect 

comprehension and retention [139]. 

However, I do not have a direct measure of disruption, thus anything in the 

model is a proxy. Follow-up work might also look into the relation between disruptive 

tendency as a starting point on the road to impacting on personality.  

 I have here simulated, analysed and compared results at classroom level and 

compared averages. I showed the link between pupil disruption and math attainment 

for pupils and for classes, i.e. at two levels. This naturally leads to multi-level models 

for future simulations.  

 Beside the 3 runs presented here, I have run the simulation with various other 

parameters. More structured experiments are planned to run many models with slight 

variations from one to another, gradually moving toward each of the extremes 

represented here as Run 1, Run 2, Run 3, and graph the results.  
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 A related issue, which would be addressed by multiple runs, is the stability of 

the models: how much variation is there when the parameters hardly change? Start 

Math scaled, introduced here, is currently rather deterministic – if we know how much 

time has been devoted to maths, we will know the score in maths. Yet, children’s 

maths scores rise and flatten and rise again and stagnate in unexpected ways. Future 

work could contain an element of randomness to note if results change significantly. 

Next, I explore the effect of teacher and peers on student performance in different runs. 

4.5 Observing Teacher and Peers' Effect 

In this section, I take into consideration the level of teacher control as an added 

influence on pupil state transitions. Specifically, I aim to answer Teacher Control and 

peers-related part of the first research question: 

RQ1: How can Agent-Based Models be utilised to explore the influence of 

disruptive students on their peers and the roles of teaching quality, teacher 

control in a disruptive classroom?  

 In the previous section, I have presented how I have created a simulation of 

the learning process interactions using Agent Based Modelling (ABM). In this 

simulation, I present a classroom with 30 pupils where a pupil will change between 

three different states: learning, passive or disruptive. Functionality of this model and 

technical details follow the ones in the previous section 4.2.2. The model offers first 

switch variables, disruptive behaviour and teacher characteristics - switches that 

indicate a high or low level of pupils’ disruptiveness and teacher characteristics [7]. 

Another switch was added for this work to explore the effect of disruptive pupils in 

close proximity [27], Neighbours’ Effect Threshold switch as it reflects to which 

degree a pupil affects his neighbours, with a range of 1 (high) to 4 (low). The effect is 
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high if one pupil is enough to change a neighbour’s state and low if it takes 4 pupils 

to trigger an effect. Other variables are math attainment level , which accounts for 

student learning differences, Start Math , which can be taken from PIPS data or 

assigned randomly by the model. I use a logarithmic function to map the ‘learning 

Minutes’ into ‘Score’ [131] to compute the End Math variable, Emath(s,c), computed 

as follows: 

𝐸𝑚𝑎𝑡ℎ(𝑠, 𝑐) = 𝑙𝑜𝑔(𝐿(𝑠, 𝑐, 𝑇𝑒𝑛𝑑−𝑡𝑖𝑚𝑒) + 𝑆𝑚𝑎𝑡ℎ𝑠𝑐𝑎𝑙𝑒𝑑(𝑠, 𝑐))𝑛 + 𝐴(𝑠, 𝑐) (4.8) 

 Where  𝐿(𝑠, 𝑐, 𝑇𝑒𝑛𝑑−𝑡𝑖𝑚𝑒) represents the total learning time until the last tick 

𝑇𝑒𝑛𝑑−𝑡𝑖𝑚𝑒 that student s from class c had during the simulated year. I present here 3 

runs with different parameter inputs, to observe their different effect on the pupil End 

Math scores. In the previous section 4.2, I presented the results of three parameters: 

all maximum values, low Inattentiveness and low Teacher Quality. In this section, 

instead, I have examined the following parameters: 

 Neighbours’ Effect Run: In the first simulation run, I am exploring the effect 

of another pupil's characteristic: Neighbours’ Effect. I set this variable to one (out of 

its range 1 to 4) to understand the impact of very high neighbour’s effect[107], when 

compared with other runs.  

 Hyperactivity Run: Here, I switched off Hyperactivity and kept the rest of the 

parameters at maximum value to understand the no-Hyperactivity Effect.  

Teacher Control Run: Here, all parameters had the maximum possible values of their 

ranges, except Teacher Control, which was given the lowest possible value of its 

range, i.e., 1 out of 5: to explore no-Teacher Control Effect. 

Results and Discussion 
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As an initial step to answer  the Teacher Control and peer’s- related part of 

RQ1, I explored the relationship between disruptive behaviour and End Math scores 

to understand the effect of disruptive pupils on other pupils and found a negative 

correlation between the percentage of disruptive students and average End Math score 

of the class [7]. This suggested an effect of the number of disruptive pupils in a class 

over the general attainment. I computed Cohen’s d for the three runs and found the 

effect size to be is large or medium [40]. Table 5 shows the results of the average End 

Math score for the runs. 

Table 5 Results of average End Math of three runs 

Run First tick (Start Math) Last tick (End Math) 

Neighbour’s Effect 27.43 28.71 

Hyperactivity  27.43 64.32 

Teacher Control 27.43 30.60 

 

 Thus, when the Neighbours’ Effect increased, the End Math results produced 

by the model were the lowest, with an average of 28.71, indicating that pupils made 

the least progress in maths of all runs which shows peers’ disruptiveness over pupils’ 

attainment. In contrast, the highest result was seen when the Hyperactivity switch was 

off, resulting in 64.32 for the average End Math score, and an average of 30.60 in the 

low Teacher Control run which provides an answer to RQ1 by showing a positive 

effect of low disruptive pupils in a class and a negative effect of low Teacher Control 

over their attainment. To compare with the real-world PIPS data8, I ran a Pearson 

correlation test for the three simulation runs (see Table 6).  

 
8 Please note however that PIPS data is only available for Start Math and End Math, thus 

only the start and end of the simulation process. 
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Table 6 Correlation test between simulation runs results and model variables 

 End Math 

 (Neighbour’s 

Effect Run) 

End Math 

(Hyperactivity 

Run) 

End Math 

(Teacher 

Control Run) 

End 

Math 

(PIPS) 

Start Math 0.98 0.40 0.69 0.70 

Inattentiveness -0.14 -0.17 -0.06 -0.34 

Hyperactivity -0.16 -0.19 -0.17 -0.18 

  

 The nearest correlation score to PIPS data can be seen in the third run, with 

0.69. A high correlation is seen in the first run with the highest degree of Neighbour 

Effect, due to low progress resulting in little difference of pupils between End Math 

and Math score. These results can serve for further improving the use of the model by 

providing the simulation of several factors in the learning environment.  

4.6 Epilogue 

This chapter has presented an ABM model design to understand the effect of 

disruptive young students in a classroom environment using the PIPS data. The model 

simulates the interactions for one school year. The results show an increase in average 

End Math scores when the Inattentiveness variable is reduced, which confirms the 

effect of disruptiveness in a class over attainment, conforming to the PIPS data. In 

contrast, a decrease in the average End Math scores was seen when the Teaching 

Quality and Teacher Control was reduced, showing the effect of teacher characteristics 

over students’ attainment in an answer to RQ1 of this thesis. The model was created 

using a user-friendly front, which allows users to adjust the model easily to find the 

best way of applying pedagogical strategies. I also presented how I improved the 

design of the ABM model to reflect the effect of disruptive young pupils in a classroom 
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environment over their neighbours, supported via an experimentation with these 

parameters. The findings presented provide a positive causality relationship between 

decreased disruptiveness and increased performance, while high levels of disruption 

and low teacher control contribute to the low achievement. However, a limitation of 

this model is that socio-emotional variables that also define students in class and 

source of disruption are not factored in the model. The model can be helpful for 

analyse the interactions occurring within classroom. Future developments of the 

current model may include addressing the different facets of the students’ 

characteristics, as well as improving model accuracy to increase the usability of the 

model. In the next chapter, I provide a response to RQ2, via the application of ML to 

extend the analysis of disruptive behaviour on classroom performance. Also, the use 

of XAI explains the ML predictions’ outcomes. 
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CHAPTER 5 

5 Exploring the Impact of Disruptive Behaviour 

on Student Performance 

5.1 Prologue 

Disruptive behaviour, such as Inattention, Hyperactivity, and Impulsivity, can 

significantly impact student achievement in education. Not only does it affect the 

disruptive student, but it can also undermine the performance of the other classmates, 

and lead to varied educational outcomes among the different groups. While significant 

in importance, education literature on the predictive aspects of different disruptive 

behaviours (inattentiveness, hyperactivity, impulsiveness) was scarce at the time of 

this research (see Chapter 2; section 2.3), particularly, interpretable models that 

provide educational stakeholders with opportunities to identify and mitigate their 

effects.  

This chapter further develops the analysis built on top of the ABM framework 

from the previous chapter (Chapter 4). The previous chapter simulated classroom 

interactions in a school year. This chapter takes a crucial first step in improving the 

current ABM by examining the predictive capacity of ML in predicting the impact of 

disruptive behaviours on student performance. The primary goals of this chapter are 

twofold: (1) I aim to create a predictive ML model that predicts how different 

behaviours (inattentiveness, hyperactivity, impulsiveness) impact learning outcomes, 

and (2) build a transparent interpretative framework, using SHAP. This chapter uses 

robust algorithms, such as XGBoost, Gradient Boosting, AdaBoost, Random Forest, 

MLP etc., to achieve high predictive classification accuracy. Also, the interpretability 
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of SHAP gives us insights into the contribution of each disruptive feature to the 

academic performance, so that the educators can take some action. Consequently, this 

ML exploration is a foundational step, exploring ML capabilities in order to establish 

an improved ABM that incorporates the predictive power of ML into its framework. 

Through this predictive model, this chapter addresses RQ2, regarding how disruptive 

traits relate to learning outcomes and how XAI reveals those relations. This study 

provides a basis for using interpretable model predictions, with both the 

interpretability of XAI providing the explanatory power of disruptiveness in 

classroom, and enabling educators and stakeholders to profile and support students in 

the management of their disruptiveness. 

This chapter is a critical step in the methodology of the thesis, moving from 

simulation to predictive modelling. This chapter is based on my paper [4]. Its main 

aim is to find the features of disruptive behaviour that can predict student performance, 

exploring, for the first time, the effect of three features, Inattentiveness, Hyperactivity 

and Impulsiveness, over student performance. The research question that will be fully 

answered in this chapter is: 

 RQ2: How can we predict and explore students' learning outcomes based on 

disruption-related features (Inattentiveness, Hyperactivity, Impulsiveness), using ML 

models and Explainable Artificial Intelligence (XAI)?  

5.2 Approach 

To answer the second research question, RQ2, in predicting student 

performance from disruptiveness-related features, I first simplify the prediction 

problem from continuous values into a classification problem, and then find the best 

prediction algorithm. To accomplish this, I use the Jenks' natural breaks method [93] 



86 
 

a well-known method used in similar research [141, 152]. This method is based on 

‘natural breaks’ that classify data, based on breaks that naturally exist in the data. I use 

this method because it maximises variance between groups and minimise it within the 

group. It requires a prior setting of the number of breaks n (setting explained in section 

5.4). The breaks are used to label the data for classification followed by data grouping 

by the same method to improve classification consequently, as shown in Figure 9. To 

address the issue of class imbalance between the two classification classes, I opt to use 

an under-sampling method called Tomek Links [194], since I have a higher number of 

records in one class compared to the other. To answer the research question RQ2, I 

focus on students’ learning outcome, by examining their improvement, not simply 

their final achievement score. I propose to calculate the improvement variable  as 

follows: 

𝑆𝑖𝑚𝑝 =  𝑆𝑒_𝑚𝑎𝑡ℎ − 𝑆𝑠_𝑚𝑎𝑡ℎ    (5. 1) 

 Where 𝑆𝑠_𝑚𝑎𝑡ℎ, 𝑆𝑒_𝑚𝑎𝑡ℎ represents students’ Start- and End Math scores, 

respectively. As student improvement is affected by the environment, including the 

school they attend and their teacher, I introduce this variable to use it for student 

grouping in the data with the Jenkspy method to split the feature space along the 

available data features (disruptive behaviour, performance) to optimise the 

information gain of the classifier models and thus their resulting performance.  

 I then experiment with state-of-the-art classifiers: XGBoost classifier, 

Gradient Boosting, Ada Boost, Random Forest, Extra Trees, Logistic Regression, 

KNN, and MLP for their excellence in student performance prediction, as mentioned 

in section 2.3.1, Chapter 2. Another reason is that these classifiers still outperform 

NNs for tabular data [77], as used in this thesis. The Kruskal test is then computed 
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between the prediction of the best performing classifier and the others, for establishing 

the statistical significance of the difference between their F1-scores. 

 Then, to answer the second part of RQ2, I explain the classification outcomes, 

using SHAP. SHAP stands for SHapley Additive exPlanations and is a method 

proposed by Lundberg and Lee [118], to explain the prediction results of supervised 

machine learning models using feature importance values called SHAP values. 

According to Lundberg and Lee, a SHAP explanation has a stronger agreement with 

human intuition than other explanation methods, such as LIME (Local Interpretable 

Model-agnostic Explanations) [164] and DeepLIFT (Deep Learning Important 

FeaTures) [175]. I select SHAP as it provides the local explanation that LIME 

provides, as well as a global explanation, i.e., the explanation for the entire model 

[119]. I am, for the first time, applying SHAP to observe improvement and understand 

the relationship between each disruptiveness feature and student performance as well 

as other features in the prediction model for different categories of students for deeper 

explanation. To do so, I use the SHAP instance-level interpretation as building blocks 

for group interpretation. Figure 9 shows an overview of the process used in answering 

RQ2. 

 

Figure 9 Overview of prediction and explanation methodology steps 
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5.3 Data 

The source of data used for the work in this section of the chapter is found in 

Chapter 3, section 3.4.2. Utilising feature engineering- a technique for improving 

machine learning (ML) model performance [53]- additional proposed processed 

features derived from the PIPS dataset are described as follows: 

• countFSM: calculated variable that represents the number of students who 

receive a Free School Meal in the classroom. 

• percentageFSM: calculated variable that represents the percentage of students 

who receive a Free School Meal in the classroom that I compute from existing 

features by finding the percentage of students who receives a free school meal 

in each class c in our defined formula as follows: 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝐹𝑆𝑀𝑐 =
∑ 𝐹𝑆𝑀𝑠𝑠∈𝐶

∑ 1𝑠∈𝐶
   (5. 2) 

Where 𝐹𝑆𝑀𝑠 is a Boolean determining if student s receives a free school meal 

and ∑ 1𝑠∈𝑐  is the total number of students in class C.  This variable was introduced to 

observe the effect of class level variables as well as student level variables.  

In total, 10 variables are used as input features for classification task: Start Math, Start 

Read, Inattentiveness, Hyperactivity, Impulsiveness, countFMS, percentageFMS, as 

well as individual characteristics: gender, FSM, IDACI, which are defined in Chapter 

3. 

5.4 Results 

Using the Elbow method [191], the optimal number for breaking the data is 

found to fall between n=2 and n=3. Applying the Jenks natural breaks method, I tested 

first with n=3 for the number of breaks, but as this resulted in a low performance of 

the classifiers, was reduced, in a first instance, the number of breaks to n=2. When 
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analysing these groups, I found them to have distinct features and differences in 

performance, as well as being of a similar size. This led to a natural division into the 

high performance (HP) and low performance (LP) groups. HP has a higher mean for 

both Start Math and End Math, while LP has the opposite. LP, however, has a higher 

mean of inattentiveness, hyperactivity, and impulsiveness. Statistical difference 

between the resulting two classification groups was tested using the Kruskal test [133]. 

as the groups were not normally distributed – according to the Shapiro test, I found 

them to be statistically different (p<<0.05) between all features. To solve the issue of 

performing multiple comparisons, I used the Bonferroni correction for the 8 

comparisons [173]; nevertheless, the p-value remained <0.05 after the correction. 

 Table 7 displays the full statistical description of the two groups normalised 

with the z-score method (by scaling the features to have a mean of 0 and standard 

deviation of 1). 

 

Table 7. PIPS variables and values for high (HP) performers versus low performers (LP) (z-

scores). 
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 Low performing (LP) High performing (HP) 

 Min Max Min Max 

Count 16681 22109 

Start Math -2.12 3.03 -3.04 3.07 

End Math -3.14 1.24 -1.48 4.45 

Start read -2.56 3.33 -2.59 3.02 

End Read -2.60 3.13 -2.97 2.29 

Inattentiveness -0.84 2.73 -0.50 3.84 

Hyperactivity -055 3.90 -0.40 3.56 

Impulsiveness -049 2.95 -0.35 4.45 

FSM -0.49 2.03 -0.30 3.28 

IDACI -1.46 2.06 -1.85 1.66 

  

 Looking at the statistics of both groups, it can be said that group HP displays 

lower disruptive behaviour and better learning outcomes than group LP. The 

distributions of disruptive behaviour features between Group HP and LP are further 

analysed in Figure 10. 
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Figure 10. Inattentiveness, Hyperactivity, Impulsiveness score (x-axis) and frequency (y-axis) 

of HP and LP groups. 

 

 Figure 10 shows that students in group HP had a higher frequency of scores 

larger than zero in both Hyperactivity and Inattentiveness, which indicates that 

students in that group had higher scores in those two features. Impulsiveness has the 

lowest values in both groups, close to zero; and Hyperactivity comes second; while 

Inattentiveness has the highest values for both HP and LP groups.  

 The next step is to use a machine learning algorithm to classify the students 

into these groups, based on their learning outcome variable, End Math. First, I 

attempted to improve the prediction accuracy by adding more features as input 

variables [96]. I propose here to use the defined poverty variable  which correlates 

negatively with the classification variable (-0.17; which is higher than the correlation 

coefficient of FSM and IDACI separately, for which the correlation is 0.15). Table 8 

shows the results of classification algorithms.  

 

 

Table 8 Performance of disruptiveness-related classification models (10 features) 
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Classifier Acc Precision Recall F1-score P-value 

XGBoost 0.79 0.79 0.75 0.77  - 

Gradient 

Boosting 

0.79 0.79 0.75 0.77 0.69 

Ada Boost 0.79 0.79 0.75 0.77 0.85 

Random Forest 0.77 0.74 0.77 0.76 0.93 

Extra Trees 0.77 0.74 0.77 0.76 0.79 

Logistic 

Regression 

0.77 0.78 0.71 0.74 0.14 

KNNeighbors 0.76 0.76 0.72 0.74 0.41 

MLP 0.71 0.66 0.74 0.69 0.42 

  

 It can be observed from Table 8 a similar performance of XGBoost, Gradient 

Boosting and Ada Boost. The p-value shown in Table 8 shows no statistically 

significant difference between any of the F1-scores and the best in class.  

Generally, ML models performed significantly better than NNs models. The higher 

F1-score model MLP was included and excluded CNN, which achieved an F1-score 

below 0.60. 

 To further to improve the performance, for its positive impact on later model 

interpretation (where an accurate model allows for a better interpretation) [114], I used 

hyperparameter tuning with grid search (GridSearchCV from Scikit learn [155]). The 

algorithm which performed best after tuning the parameters of all classifiers was 

XGBoost, as its result showed an increase in F1-score that reached 86% and Gradient 

Boosting as second best with an F1-score of 0.85%. 
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 Thus, analysing this data, I chose to continue with XGBoost for the following 

SHAP explanation, as it had the advantage of performing well. I then used natural 

breaks once more, this time, based on the calculated variable , resulting in at n=3. The 

resulted break characteristics in terms of specific improvement, based on our proposed 

variable, s_imp, are shown as a box plot in Figure 11 and the PIPS variables and values 

(Z-scores) of the resulting groups are listed in Table 9,10, 11 

 

 

Figure 11. Improvement box plots for the three groups 

 

Table 9 PIPS variables and Values of Group 1 
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 Min Max 

Count 10902 

Start Math -2.34 3.00 

End Math  -3.03 3.03 

Start read -2.02 3.17 

End Read  -1.99 3.01 

Impulsiveness -0.76 2.81 

Hyperactivity -0.52 4.02 

Impulsiveness -0.47 3.07 

FSM -0.44 2.24 

IDACI -1.50 1.92 

 

Table 10 PIPS variables and Values of Group 2 

 Min Max 

Count 18608 

Start Math -2.60 2.96 

End Math  -3.00 3.25 

Start read -2.19 3.11 

End Read  -2.62 2.51 

Inattentiveness -0.46 3.66 

Hyperactivity -0.46 4.83 

Impulsiveness -0.44 3.25 

FSM -0.38 2.59 

IDACI -1.68 1.79 
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Table 11 PIPS variables and Values of Group 3 

 Min Max 

Count 9927 

Start Math -2.48 2.96 

End Math  -3.00 2.84 

Start read -2.24 3.06 

End Read  -2.69 2.19 

Impulsiveness -0.57 4.21 

Hyperactivity -0.44 5.14 

Impulsiveness -0.43 3.31 

FSM -0.37 2.68 

IDACI -1.71 1.78 

 

 It can be seen from Table 9, 10, 11 that each group has different 

characteristics, with Group 1 exceeding (slightly, but statistically differently 

p<<0.05) in Start math compared to Group 2 and 3; but having the lowest mean 

End Math and End Read, thus being the least improved group. Group 3 has the 

lowest start scores in math and read but highest mean End Math score, which 

makes it the most improved group. As for Group 2, its values fall in between 

the first and third group, therefore it becomes the medium improvement group. 

I followed the analysis with classification of HP and LP for each improvement 

group – Group 1, Group 2 and Group 3 – separately to improve the classifiers 

performance, by creating groups with similar features and increasing the 

information that each feature provides about the predicted classes. The 

resulting predictions, according to the Shapiro test, are not normally 

distributed. Therefore, the Kruskal test was conducted, to test the statistical 
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difference between the models’ predictions and the XGBoost prediction for the 

three groups, with results shown in Table 12. 

Table 12 Statistical difference in model prediction for three groups 

 Group 1 Group 2 Group 3 

Classifier F1-Score P-value F1-Score P-value F1-Score P-value 

XGBoost 0.91 1.00 0.92 1.00 0.91 1.00 

Gradient 

Boosting 

0.91 0.79 0.92 0.73 0.91 0.33 

Ada Boost 0.91 0.81 0.92 0.39 0.91 0.90 

Random Forest 0.90 0.001 0.91 0.00 0.90 0.04 

Extra Trees 0.90 0.00 0.90 0.00 0.90 0.84 

Logistic 

Regression 

0.86 0.00 0.88 0.00 0.89 0.00 

KNNeighbors 0.72 0.00 0.61 0.00 0.82 0.00 

MLP 0.76 0.00 0.73 0.001 0.87 0.00 

 

 In general, it can be seen that the classifiers that have highest performance are 

the boosting algorithms: Gradient Boosting Extreme Gradient Boosting (XGBoost) 

and Adaptive Boosting (Ada Boost) that are known to reduce variance [65], followed 

by the tree-based algorithms. KNNeighbours uses similarity between neighbours, 

which might not be performing well due to the nonlinearity of the data. As previously 

mentioned, for deep learning models, like MLP, the nature of the data might be 

affecting their performance. [77]’s findings uncover the reason for lower performance 

of NNs compared to shallow ML to be “irregular patterns in the target function, 

uninformative features, and non-rotationally-invariant data where linear combinations 

of features misrepresent the information”. These results provide an answer to RQ2, as 
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the XGBoost classifier performed well in predicting the learning outcome, using 

disruptiveness-related features. 10 features were used that contain the academic and 

financial factors in addition to disruptive behaviour factors, which have not been used 

for prediction of student academic performance before. Hyperparameter tuning with 

GridSearchCV was used to improve the performance of the classification models 

using grid search algorithm, as well as tenfold cross-validation, to train the models. I 

used the grid search algorithm provided by Scikit learn library to find the optimal 

parameters of XGBoost for our case (base_score=0.5, booster=’gbtree’, 

colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1, gamma=0, 

learning_rate=0.03, max_delta_step=0, max_depth=6, min_child_weight=1, 

missing=None, n_estimators=1000, n_jobs=1, nthread=None, 

objective=’binary:logistic’, random_state=0, reg_alpha=0, reg_lambda=1, 

scale_pos_weight=1, seed=None, silent=None, subsample=0.9, verbosity=1). My 

findings fall in line with [13], in predicting performance with SHAP interpretations 

using features including ADHD-related one (see Chapter 2, Section 2.1.1, for a 

discussion on disruptive behaviour and its relation to ADHD); however, their F1-score 

achieved 87% for predicting Arithmetic skill using five algorithms. In the current 

work, I outperformed their work, by exploring eight algorithms, with F-Measure 

reaching 92% predicting End Math, using disruptive, financial, and academic related 

features. Hence, this study is broader, in terms of algorithms used, data size and 

providing better performance for the predicted classes. I provide a relation between 

three different features of disruptive behaviour and student improvement, and an 

explanation of that prediction for a deeper understanding of this relation.  
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5.5 Interpretation  

As stated, the results of the classification model are further interpreted using 

the SHAP framework. Figure 12 shows a plot of the SHAP values for all features, 

where we can see the highest to be the Start Maths feature and the lowest, the 

hyperactivity feature. The rest of the features have a varying degree of influence, 

according to their SHAP values, but we can see that Inattentiveness has the highest 

value among features that represent disruptive behaviour and Start Math has the 

highest importance, followed by Start Read. We can also see that the number of 

students receiving a school meal (countFSM) has a higher value than gender. This 

interpretation method allows us to compare the effect of student level features as well 

as class level features, such as percentage of disruptive students, which is unique to 

this work. 

 

 

Figure 12. Feature importance as the mean absolute SHAP value 

 

Figure 13 illustrates the summary plot that shows feature effects and feature 

value as dots. The position of the dots on the right and left of the x-axis represents the 
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positive and negative relationship between the feature and the predicted value: if the 

dot lies on the right side, it has a positive SHAP value, and if it falls on the left side, it 

has a negative SHAP value. It shows the direction of the relationship between the 

feature and predicted value. Positive SHAP values indicate higher performance while 

negative SHAP values indicate lower performance. The colours represent the instance 

value from high (red) to low (blue). For example, an instance of a high Start Math 

score would be represented as a dot in red and on the right side of the plot, because 

Start Math has a positive SHAP value in our predictive model. We notice that the high 

scores of Start Math feature have positive SHAP values and the low scores of Start 

Math have negative SHAP values, while high inattentiveness scores having negative 

SHAP values. This works towards answering the second part of RQ2. We can also see 

the same effect, albeit lower, from the number of free school meals students receive 

in the class (countFSM). This implies that the effect of financial status on classroom 

level can have a higher effect on students’ learning outcome; this is called the 

compositional effect where students achievement is affected more by the 

socioeconomic status of the classroom than their own [80]. 
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Figure 13. SHAP summary plot of features instances 

 

 Next, I examine the feature dependence, by plotting the features that are most 

frequently associated with each other, and the classified values are shown in Figure 

13, 14, 15. Figure 14 shows a frequent association between gender and inattentiveness 

behaviour, with zero representing male and one representing female. We see a clear 

link of higher inattentiveness among male students than female students. I notice a 

negative relationship between the male gender and our prediction value, and we can 

see that the negative association with prediction also increases with inattentive scores 

of female students, which indicates that the higher the female students’ inattentiveness 

scores, the lower their predicted learning outcome. The case is surprisingly different 

with male students, as their relationship with learning outcome value falls on the 

positive side, and inattentiveness scores do not show a particular association with the 

increase or decrease of the learning outcome, suggesting that male students’ learning 

outcome is not affected by their inattentiveness score as much as female students. 

Although some studies suggest no differences between students with attention 

problems and their achievement based on gender [182], one explanation for this might 

be that females generally display lower calculation fluency than males as well as no 

noticeable growth in math skills over time when displaying symptoms of 

Inattentiveness [35]. 
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Figure 14. Dependence plot of gender and Inattentiveness 

 

 Figure 15 also shows some interesting outcomes, where Start Math associates 

with inattentiveness. We can see that a noticeably large number of students have low 

initial knowledge in math and a high inattentiveness score, showing that this disruptive 

behaviour may affect students’ further performance as both low Start Math and 

inattentiveness are associated with lower learning outcomes (Figure 13). 

 

 

Figure 15. Dependence plot of Start Math and inattentiveness feature 
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 Another interesting observation comes from Figure 16 where IDACI is 

associated with start read scores. We can see mostly a positive relationship between 

these values and the predicted learning outcome, but we can also see a clear negative 

SHAP value for students with a high start read score, but lower IDACI, which suggests 

that the impact of having a lower IDACI is higher than the initial knowledge, for this 

group of students. To elaborate, the data seems to point to the situation where students 

who have high initial knowledge (Start read) would naturally have high end 

knowledge (End Read) but some students with low IDACI would not improve well, 

showing low learning outcomes, despite their high initial knowledge, possibly due to 

poverty. 

 

 

Figure 16. Dependence plot of IDACI and Start read 

SHAP provided a ranked list of the most influential features in the model's predictions. 

For example, it highlighted that Start_Math had the strongest positive impact on the 

prediction of End_Math scores, while Inattentiveness and Hyperactivity had negative 

influences. This ranking helped in understanding which factors were most critical in 

predicting student performance. It also allowed for both global (for the entire dataset) 
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and local (for individual predictions) explanations. This made it possible to see the 

overall patterns, as well as specific instances where disruptive behaviour significantly 

impacted individual student outcomes. The summary plots, dependence plots, and 

feature importance diagrams made it easier to visualise and interpret the effects of 

disruptive features. This was useful for model understanding, as it provided a clearer 

picture of how different characteristics interacted, to produce the model’s predictions. 

 

5.6 Epilogue 

In this chapter, I leveraged ML techniques to explore three disruptive 

behaviours, specifically, Inattentiveness, Hyperactivity and Impulsiveness, since these 

behaviours were known to impact student learning outcomes in the classroom 

[11][18][36][138][188] (see Chapter 2; section 2.1). This study generated new 

knowledge by revealing variations of how these behaviours impact academic 

performance, as well as powerful trends, including the way Intensiveness impacted 

male and female students distinctively. I was able to show an effect of certain 

socioeconomic factors, like the IDACI on classroom level academic outcomes, above 

and beyond the individual level measures such as initial knowledge. Moreover, I tuned 

an XGBoost model and applied natural breaks in the data, resulting in a high 

performing predictive model of the involved nature of disruptive behaviour with 

academic attainment. 

The use of SHAP has made the ML findings more transparent, which is a great help 

in educational AI research. It enables researchers and decision-makers to make clear, 

informed choices about where interventions are needed. By showing how disruptive 

behaviours affect students differently based on gender and socio-economic factors, 
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this chapter establishes the groundwork for targeted, data-driven approaches to 

support students dealing with these challenges. 

This chapter addresses RQ2 by demonstrating how interpretable ML can shed light on 

complex behaviours that influence learning. In the following chapter, I’ll build on 

these results by blending ML capabilities with ABM to tackle RQ3. Through this 

combined ML-ABM approach, Chapter 6 shows how machine learning can improve 

ABM’s ability to predict and explore disruptive behaviour, creating a fuller, more 

effective way to understand classroom dynamics. 
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CHAPTER 6 

6 Improved version of the ABM with ML 

6.1 Prologue 

Building on the exploration of factors affecting student performance through 

ML techniques in the previous chapter (Chapter 5), this chapter advances the thesis, 

by integrating ML into an ABM. Chapter 5 reveals key insights into the predictive role 

of disruptive behaviours, specifically as defined via three parameters, inattentiveness, 

hyperactivity, and impulsiveness, on student learning outcomes, using XAI 

techniques. These findings provided a foundation for assessing student performance 

and highlighted the broader potential of ML in understanding educational dynamics in 

term of disruptive behaviour. Chapter 4 discusses the challenges of simulating realistic 

classroom environments and it underscored the limitations of traditional ABM in 

accurately predicting performance outcomes (see section 4.6). Thus, in the current 

chapter, I attempt to answer the following research question: 

RQ3: How can Machine Learning (ML) be integrated into an agent-based model 

(ABM) to improve the simulation of classroom disruptive behaviour, and what 

parameters of ML prediction yield realistic results in this hybrid ML-ABM approach? 

In this chapter, I refine the initial design of the ABM, by introducing ML to address 

two parts of the research question. First, I investigate how ML can enhance the ABM's 

ability to simulate disruptive classroom behaviours and interactions. Second, I assess 

which ML parameters yield realistic results when predicting student performance 

within this hybrid ML-ABM model. This hybrid model addresses realism challenges 

identified in Chapter 4 and leverages ML insights gained in Chapter 5. Moreover, this 

approach not only strengthens the model’s predictive accuracy, but also aligns with 
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the overall research objective of this thesis to develop a data-driven hybrid model that 

aids in educational decision-making. This chapter’s contribution lies in its 

demonstration of how ML and ABM can offer a richer and more dynamic 

representation of classroom behaviours and outcomes when combined.  

Thus, here I extend my work on a classroom ABM from Chapter 4, by developing an 

ABM & ML hybrid model that simulates classroom disruptive interactions during a 

school year, and outputs predicted learning outcomes. This chapter is based on my 

paper [5]. 

6.2 Approach 

In this work, a hybrid ABM and machine learning model is designed that 

simulates pupils’ interactions during classroom lessons for one academic UK school 

year. As this model is based on data from UK primary schools, it has a potential of 

reproducibility for primary school system that is similar that of UK schools - with 

similar 3-terms structure, similar 45-minute lesson structure and similarly teaching 

mathematics (abbreviated to ‘Math’ below) every day. ABM outputs disruptive state 

minutes that are mapped onto the range of End Math score, as previously introduced 

in Chapter 4; and ML outputs predicted End Math score from data; then, both models’ 

output is combined to represent the final End Math score, as shown in Figure 17. 
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Figure 17 ABM-ML output process flowchart 

6.2.1 Data 

The main source of data was obtained from the Performance Indicators in Primary 

Schools (PIPS) monitoring system [197]9 mentioned in section 3.4.2. The full list of 

variables used in the model from the dataset is explained in this section: 

• Start Math score: is the initial math score of the student from the baseline 

assessment (0-63 range); 

• Start read(ing) score: is the initial reading score of the student from the 

baseline assessment (0-169 range); 

• End Math score: is the final score in math from end year assessment (0-69 

range); 

• End Read (ing) score: ix the final score in reading from end-year assessment 

(0-178 range). 

• Start Vocabulary: The total number of initial words the student knows. 

• Gender: Boolean value 0 for male and 1 for female. 

• Student ID: a unique number that distinguishes each student in the dataset. 

 
9RR344_-_Performance_Indicators_in_Primary_Schools.pdf (publishing.service.gov.uk) 

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/318052/RR344_-_Performance_Indicators_in_Primary_Schools.pdf
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6.2.2 Simulation Overview and Scheduling 

Here I summarise the model design: the model runs in time steps called ticks 

that represent 1 minute of classroom time. The run stops when it reaches the end of an 

UK school year, i.e. 19010 teaching days in total, with delivery of one Math represented 

by 45 ticks per lesson per day. The simulation has 8,550 ticks in total, which accounts 

for the whole duration of all math classes that occur during the entire school year. 

More details on the design can be found in Chapter 4. The updated model presented 

in this chapter introduces several new sub-models that were not part of the ABM 

model in Chapter 4, along with the integration of machine learning (ML) predictions. 

The following sections provide a comprehensive explanation of the updated model, 

detailing the new components and improvements. Where relevant, references are made 

to the original ABM model in Chapter 4, to highlight the similarities between the two 

models. 

6.2.3 Design Concepts 

Basic Principles: I base my model calculations on two sub-models: the agent state 

model and the prediction model. The agent simulates a pupil in a classroom, similar to 

the work in Chapter 4, and the prediction model extends the agent state model, and 

predicts the learning outcomes (End_Math score) of a pupil at the end of the year. I 

use the sigmoid function to create the probability distribution used to determine the 

agent’s next state serving as a thresholding function similar to the work of [66]. Based 

on this probability, a pupil is in one of the states {learning, passive, disruptive}. 

Similar to the ABM in Chapter 4, the decision is updated with every time step, unless 

manually modified by the education stakeholder (e.g. teacher) (see Equation 6.1). 

 
10 NASUWT | Working Days (England) 

https://www.nasuwt.org.uk/advice/conditions-of-service/teachers-working-hours/directed-time-england/working-days.html
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 Emergence: In alignment with the ABM framework presented in Chapter 4, 

the emerging result from the model is the pupil’s End_Math score at the end of the 

simulated school year, considering their characteristics and those of their neighbours 

and of the whole classroom. Emerging patterns can be seen in the performance of a 

class and the level of disruptive pupils within that class. Another output is the state of 

the agents on every step of the model. 

 Adaptation: Agents (simulating the pupils) are given some predefined rules, 

and they adapt their behaviour accordingly—much like the ABM model described in 

Chapter 4. For example, if a pupil with a moderate disruptive level sits next to low 

disruptive neighbours, they are more likely to be in a learning state than other states. 

Further explanations about the agent rules can be found in Chapter 4. 

 Interaction: Similar to the agent-based model discussed in Chapter 4, the 

model assumes that interactions occur between neighbours. If two agents are placed 

on the grid next to one another, the level of disruptiveness of both will either increase 

or decrease the chances of being disruptive on their next state. 

Stochasticity: The movement of agents within the classroom follows a random pattern. 

Each day, pupils are assigned new seating positions with different neighbours, unlike 

the ABM in Chapter 4, where students remained in fixed positions. This approach 

allows for an exploration of how changing neighbours influence learning outcomes 

after initially examining the effects of a fixed seating arrangement [10]. This will be 

further explained in the Seating_Update  

 Seating_Update sub-model.  

 Observation: Data is collected with every run of the model at every time step 

and includes all variables explained in section 6.2.7 for visualisation and analysis of 
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the model output. Additionally, the average score of Math of all agents is displayed in 

real-time during the simulation run. 

6.2.4 Simulating Classroom Dynamics: Agent-Based Model with Spatial Units 

and Environmental Variables 

 Agents/Pupils: The agent in the model represents first grade pupils; they are 

represented via characteristics like age, gender, academic performance scores and 

more [7]. The full list of agent attributes and their description of is found in Table 13 

with a newly added variable “Space Seat”. 

Spatial Units: Each grid cell in the model represents a seating or non-seating area in a 

classroom.  

 Environment: The simulated world has a two-dimensional space made up of 

grid cells. Each cell represents a seating area of a classroom. Agents’ adjacent cells 

are called neighbours. The effect of agents on each other are affected by their position 

on the cells. Only neighbours can have an effect. The location of agents changes every 

45 ticks to indicate another day of school. If two agents with high disruptive scores 

become neighbours, there is a high possibility that they will both become disruptive 

and increase the effect of disrupting their neighbours (see Equation 6.1). 

 Environmental variables within the model include Grid size, Number of 

Minutes, Number of Days, and average math scores of all agents. Each time step in 

the model represents one minute in a lesson of math. Every forty-five minutes is 

considered one school day [7]. The number of days is tracked to stop the model at 190 

days (as this represents the number of school days in one academic year according to 

gov.uk). 

6.2.5 Initialisation of Agent Attributes  
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The initial values of agent attributes (Start_Math, Start_Read, Inattentiveness, 

Hyperactivity, Impulsiveness, Age, Gender) is loaded from a sample taken from the 

PIPS dataset.  

6.2.6 Creating the world: Agent Initialisation and Seating Arrangements 

As I do not have real-world data on how the model initiates, I initiate agents 

with random states in random seating positions. For the agent’s attributes, the model 

either loads pre-existing data or can create a random population. For the purpose of 

testing and validation for this thesis, I am using pre-existing data, as stated in the 

previous section. Agents are then placed on the ‘Seating’ grids. ‘Seating’ grids are 

specified to have at most two neighbours for each group of ‘Seating’ grids. This will 

reflect both regular seating in classrooms in columns and rows as well as in a groups, 

as both seating arrangements have their advantages [76], to improve the design in 

Chapter 4. Therefore, the maximum number of neighbours for all agents is two and 

the lowest is one. A screenshot of the front page of the model is shown in Figure 18. 

 

Figure 18 Screenshot of ML-ABM approach interface 
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6.2.7 Configuring Simulation Parameters 

There are several parameters that need to be set before the start of the 

simulation. These parameters are either predefined and built into the model or can be 

altered by the educational stakeholder (teacher) to explore their effect on the 

simulation run results.  

Table 13 Description of Hybrid ML-ABM components 

Variable Description 

ID 
Is a unique integer assigned by the model to identify 

each agent 

Pos 
The coordinates of the agent in the simulation 

environment 

Gender 0 for male 1 for female 

Start_Math Integer between 1 and 70 for initial score in math 

Start_Read Integer between 1 and 160 for initial score in reading 

Inattentiveness Score between 0 and 9 for level of inattentiveness  

Hyperactivity  Score between 0 and 6 for level of Hyperactivity  

Impulsiveness Score between 0 and 3 for level of Impulsiveness  

Age Age of agent at the beginning of the simulation run 

State 
The state of agent 1 for learning 0 for passive -1 for 

disruptive 

Data 
The records that will be used as an input to the model’s 

agents, as explained in section 6.2.5 

Space Seat 
A set of patches or grid cells that represent the gap 

between seats in the simulated classroom 

Minutes The minutes of the lesson 1-45. 

Days The number of school day 1-190 

Average End_Math 
The average of End_Math score over all agents each 

minute  
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6.2.8 Simulation Framework for Classroom Dynamics 

Input Data: The model uses input data from a sample of PIPS data (defined in section 

3.4.2) that feed into the model a total of 30 pupils (representing the maximum size of 

an UK classroom), with their general characteristics (gender: Gender, age: Age, initial 

reading: Start_Read, and math Start_Math) as well as disruptive behaviour attributes 

(Inattentiveness, Hyperactivity, and Impulsiveness). Each pupil is assigned an ID by 

the model for tracing as well as a state and an initial position. For multiple classrooms, 

the model first groups the input data records file based on School and Class as index, 

to define unique classrooms within the data. The model then extracts each 

group/classroom and uses it as input into the simulation model, using the batch runner 

to be able to compare the results of classrooms under the same parameters. 

 Sub-models: The following sub-models are used to simulate the disruptiveness 

and learning outcome simulation. Some models are used in every step, and some are 

used when certain conditions are met. For example, the clock model is used when a 

full day passed, according to simulation time. 

 Time: the time model is called to keep track of time during the simulation. It 

contains a minute counter that increases by one for each tick of the model and once it 

reaches 45 minutes, the day counter is updated, to indicate a new day (as the model 

simulates a lesson of math every day). The minute counter is then reset to start a new 

count.  

 Seating_Update: The seating update sub-model updates the location of agents, 

for every day of the simulation time. With every update, it removes the agents from 

their designated current position first, before relocating all of them. As the initiation 

is simultaneous for all agents, they are placed back on specific seating locations in the 

simulated classroom, randomly, at the same time. Before placing agents in a location, 
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it checks whether it is not already allocated to a classroom seating. If it is a seating 

location the agent is placed there, If the location on the simulated classroom space is 

set to be a space area, the sub-model searches for the next empty location, until a 

seating location is found. 

 Data_Extraction: this sub-model takes multiple classroom data within a file 

and splits it, so that each classroom is input into the model as a separate run/iteration. 

It uses integers that represent keys to each grouped records that represents a classroom. 

 State_Determination: When an agent spends a tick in one of the defined agent 

types, it changes the type on the next tick based on the result of the State Determination 

Test. This uses the sigmoid function to provide a range that defines the next state of 

the agent, based on their own characteristics and those of their neighbours. For 

example, if the agent is suitable to disruption (high disruptive behaviour values) and 

surrounded by a high proportion of agents in a disruptive state, the agent will be 

disrupted, and their state will change to disruptive (red).  

 State_Counter: A counter that keeps track of the agent’s state. Two counters 

are included in the model; learning and disrupt counters. If a student is in a learning 

state, the learning counter will increase in every step the agent remains in that state. 

Similarly, the disrupt counter increases with agent’s disruptive state. The counter 

resents once the agent switches to a different state.  

6.2.9 Mathematical Learning Model 

In the simulation model, each pupil is to be in a state 𝑆. Every state is represented by 

a number; learning is 1, passive is 0 and disruptive is -1. The pupil’s learning though 

the school year is influenced by the pupil 𝑖’s total disruptive score 𝐷𝑖 and neighbour’s 

state 𝑁(𝑡,𝑖) adjacent to pupil 𝑖. The current state 𝑆(𝑡,𝑖)= f(P(X)) with X given by: 



115 
 

7. 𝑋 =  ∑ (𝐷(𝑡−1,𝑗) ∗  𝑁(𝑡−1,𝑖,𝑗) + 𝐷(𝑡−1,𝑖) ∗  𝑆(𝑡−1,𝑖)
𝑗
𝑗=1 )  (6. 1) 

Where 𝐷(𝑡−1,𝑗) is the disruptive score of pupil j at time 𝑡 − 1 and 𝑁(𝑡−1,𝑖,𝑗) is the 

state of neighbour j adjacent to pupil i at time 𝑡 − 1. 𝐷(𝑡−1,𝑖) is the pupil's own 

disruptive score at time 𝑡 − 1 and 𝑆(𝑡−1,𝑖) is the pupil's own state at time 𝑡 − 1. 

The probability of changing to a disruptive state is calculated using the sigmoid 

function: 

8. 𝑃(𝑋) =  
1

1+ 𝑒−𝑋
    (6. 2) 

The higher the resulted value, the higher the probability that the pupil will be in a 

disruptive state. The general look of the model can be seen in Figure 21, showing the 

two phases used to update the agent state and compute the agent’s End_Math score. X 

is then tested by The function f determines the new state based on P(X) and an arbitrary 

threshold value n: 

if X < n then the pupil will be in a learning state; 

elseif the pupil == impulsive, they will be in a disruptive state;  

else they will be in a passive state  

The value of n was determined experimentally. The output L of the model is then 

calculated using the formula: 

𝐿(𝑖,𝑒𝑛𝑑−𝑡𝑖𝑚𝑒) = 𝑃(𝑖,𝑒𝑛𝑑−𝑡𝑖𝑚𝑒) −  ∑ 𝐷𝑆(𝑡,𝑖)
𝑡(𝑒𝑛𝑑−𝑡𝑖𝑚𝑒)
𝑡=1   (6. 3) 

Where 𝑃(𝑖,𝑒𝑛𝑑−𝑡𝑖𝑚𝑒) is the prediction of the ML model and 𝐷𝑆(𝑡,𝑖) is the disruptive 

state of student i at time t after mapping disruptive state minutes into score [6] and 

𝐿(𝑖,𝑒𝑛𝑑−𝑡𝑖𝑚𝑒) is the final learning score, which adjusts P by subtracting the cumulative 

disruption score 𝐷𝑆(𝑡,𝑖). The results of running the model with different values of n 

examining the density of End_Math scores between PIPS and simulated End_Math 
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for each run showed that the closest results of Pearson correlation between End_Math 

and other features to PIPS is with n=9, therefore this value of n was chosen for the 

design of the model. 

6.2.10 Prediction with Machine Learning 

The role of machine learning is to be trained on the original data to predict the initial 

student learning score; then the best performing algorithm is chosen for incorporation 

into the ABM model. First, I removed all missing values in PIPS from all features that 

are used in the prediction process. Out of 65,385 records, the resulted records after 

missing values removal are: 36,844, of which 18754 are male; and 18275 are female, 

creating a balance in numbers between genders. The majority of the pupils do not 

receive a free school meal FSM, with 32242 compared to 5033 who receive a free 

school meal FSM. The distribution of the predicted value, End_Math score, is shown 

in Figure 19, to provide a visual guide to the data.  

 

Figure 19 Distribution of End_Math scores 

 It can be seen from the figure that the majority of pupils’ End_Math scores in 

all classes from the PIPS dataset fall between 30 to 55 from the range 0 to 69, with the 

highest number of pupils between 45 and 50. Next, I analyse the Pearson correlation 

of features with the predicted value (End_Math score), as shown in Table 14. 

Table 14 Features correlation with End_Math 
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Feature Correlation 

coefficient  

Start_Math  0.70 

Start_Reading 0.56 

Start vocabulary  0.47 

Inattentiveness  -0.36 

End Age 0.25 

Hyperactivity  -0.19 

Start Age 0.18 

Impulsiveness  -0.07 

 

 The highest correlated feature is Start_Math, followed by Start Reading. While 

the highest correlated feature among the disruptive features is Inattentiveness with -

0.36, the negative correlation is to be expected in this case. The listed features in Table 

14 are used for predictions of End_Math scores. For the measurement of our results, I 

apply the most widely used metrics for evaluating the performance of regression 

models, MAE and RMSE, as well as the Pearson correlation coefficient [157] while 

classification models were applied in Chapter 5 where evaluated using Accuracy, F-

score [181]. We see from Figure 20 that the best performing algorithm for prediction 

of continuous values for the End_Math scores is Linear Regression, with a score of 

5.41 of MAE. The highest score is to be expected, considering the nature of the dataset 

and limitation of the features. Based on these results, Linear Regression is chosen to 

be incorporated within the ABM model, for its higher performance among other 

models.  
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Figure 20 Machine Learning model performance 

6.2.11 ML-ABM Hybrid Model Integration 

The aim of a hybrid model is to improve the original model, by using both 

machine- and agent-based models, and benefitting from their synergetic effect. Thus, 

the model uses ML to predict outcomes such as students’ End_Math scores, based on 

historical data. Moreover, the introduction of ML allows the model to handle complex 

and non-linear relationships between input variables. Thus, the hybrid approach is 

expected to allow the model to align more closely with real-world data, ultimately 

providing a more accurate prediction of outcomes. This is to replace the previous 

ABM model in Chapter 4, which primarily simulates classroom interactions and 

outcomes (End_Math) of the simulation based on predefined rules and student 

behaviour during the simulation. The simulator was run by testing the data of 30 

pupils, 12 of whom were disruptive. Figure 21 depicts the flowchart of the ML-ABM 

approach that involves setting variables through both the simulation environment and 

the PIPS data shown in Table 13, deploying agents to the environment through the 

grid, and starting the model. Finally, the agents will be updated using the state 
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determination model (State_Determination submodel see section 6.3.8), moving states 

from the initial state to a new one. If the state of the pupil is disruptive, the disrupt 

counter will be updated to reflect their state (State_Counter submodel see section 

6.3.8). If the state of the pupil is disruptive, the disrupt counter will be updated; 

otherwise, the learning counter is updated. Next, the model checks if the lesson is over 

(Time submodel see section 6.3.8); if not, it calls the state determination model for 

agent states. If the last school day is reached, the pre-trained ML model is activated, 

and final results are calculated, before the model stops. Table 15 highlights the key 

differences between the ABMs in Chapters 4 and Chapter 6, emphasising the impact 

of incorporating ML in Chapter 6. 

 

 

Figure 21 Flowchart of ML-ABM approach 
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Table 15 Comparison of Agent-Based Models (ABMs) between Chapters 4 and 6 

Feature Chapter 4 ABM 
Chapter 6 ABM 

(with ML) 
 

Improvement 

Model Basis 
 

Pure ABM. 
Hybrid ABM with 

ML. 

ML was added to 

enhance prediction 

accuracy of learning 

outcomes. 

Data Source 

PIPS data for initial 

conditions and 

variable ranges. 

PIPS data with 

additional ML 

training data. 

Expanded data source 

supports realistic 

outcome predictions. 

State Changes 
Based on predefined 

rules. 

Enhanced with state 

change probabilities. 

Refines state transitions 

to introduces 

stochasticity, mirroring 

real-life variabilities. 

Sub-models 

Limited to agent 

behaviour and 

classroom 

interactions. 

Additional sub-

models, including 

seating updates, state 

tracking, and time 

management. 

Added to simulate more 

complex, realistic 

classroom dynamics. 

Outcome 

Predictions 

Determined by 

ABM rules and 

simulation time. 

Determined by both 

ABM interactions and 

ML-predicted scores. 

ML integrates non-

linear relationships, 

increasing predictive 

realism. 

 

 

6.3 Results and Discussions 

The model is run in a scenario based on the parameter: Seating. The model runs with 

the Seating parameter set to 1 for a changed seating every new simulation day. The 

average End_Math scores are 32.63 while the average End_Math Scores of real data 

are 33.21. Figure 22 shows the density plot of the resulted simulated End Math scores 

and the PIPS End Math scores.  
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Figure 22 Density plot of End Math scores by changed seating condition 

 

 To establish the consistency of the model results, the model was run for 100 

runs. Figure 23 shows the resulted mean End_Math score of all runs. We can see that 

the model runs yielded a mean of End_Math scores that falls mostly between 35 and 

32, with only one run that yielded a mean around 30. The results of the multiple runs 

indicate that the model is consistent.  

 

 

Figure 23 Mean of End_Math scores for 100 simulation runs 

 

 For the validation of our results, I use Pearson correlation coefficient that 

describes how well two variables tend to move in the same direction. All values are 

listed in Table 16. 
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Table 16 Pearson correlation between features and observed End_Math and simulated 

End_Math 

Feature End Math Simulated End Math 

Start Math 0.61 0.68 

Start Reading 0.69 0.45 

Inattentiveness -0.41 -0.59 

Hyperactivity -0.30 -0.63 

Impulsiveness -0.26 -0.49 

Start Vocabulary 0.31 0.36 

 

 We can see that the correlation coefficient between Start_Math and End_Math 

is 61.48 and with Simulated End_Math 71.32; both are an indication of a strong 

correlation between the two values.  

6.3 Epilogue 

In this chapter, I developed and tested a hybrid ML-ABM model to improve 

the accuracy of simulating classroom interaction, especially the prediction of students’ 

academic performance influenced by peer interaction over a school year. The study 

was able to capture the impact of students’ characteristics, as well as their dynamic 

interactions on final academic outcome, by integrating ML into the ABM framework. 

Results from this simulation were verified by actual End_Math scores (of real-life 

students), demonstrating that the model captures the observed learning patterns in a 

classroom. This work has shown that the hybrid model can be a practical tool for 

educational decision makers. This provides insight into students’ interactions, 

informing targeted interventions and policy changes. In addition, the model offers a 

platform for researchers interested in educational interventions to evaluate and 
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improve their strategies in a controlled, but realistic, simulated environment. Since 

this model is designed using data from UK primary schools (three-term structure and 

a 45-minute lesson duration), comparable data from the target educational context 

would be required to apply it in a different educational context. This includes data on 

student behaviours, initial and final performance scores, and contextual factors like 

classroom size and academic schedule. 

The next chapter (Chapter 7) then explores further potential enhancements to 

this model from a usability point of view, by incorporating gamification strategies. 

The gamification strategies are to be explored first in a classical context, to gauge 

student engagement in intelligent learning system. Specifically, the next chapter 

analyses how gamified elements can be included and evaluated within educational 

systems to improve motivation and support engagement. Then, Chapter 8 explores 

how these gamification strategies can be used in the context of a teacher-facing tool.  
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CHAPTER 7 

7 Enhancing Educational Dynamics: Evaluating 

Gamification within Intelligent Learning 

Systems 

7.1 Prologue 

In this chapter, which was published as my paper [4], I investigate the gamification in 

large-scale online learning systems by examining the CamaleOn platform, a Brazilian 

MOOC that aims to increase the chances of students from disadvantaged backgrounds 

to get into university. Building on insights from the previous chapter (Chapter 6), 

where a hybrid ML-ABM was developed to simulate classroom behaviours and 

improve predictive accuracy, this chapter expands the scope by analysing student 

engagement patterns in a real-world educational context. Study in this chapter uses 

CamaleOn data to investigate how gamification can sustain engagement on a broad 

scale, thereby supporting effective learning environments. 

In this way, the focus now turns to a data-first approach, moving away from theoretical 

assumptions about gamification and towards practical analysis from grassroots data. 

The objective of this approach is to determine which gamification elements (such as 

badges, points, medals) enhance engagement and to evaluate how such elements might 

be further optimised, in order to encourage sustained user interaction and performance.  

 In this chapter, I partially answer the following research question: 

 RQ4: How can gamification strategies be implemented to increase 

engagement in an educational setting, and which gamification elements have the most 

significant impact on engagement, both in student-oriented systems and teacher-

oriented systems? 



125 
 

To answer the student-related part of the question, I explore a large, gamified learning 

environment’s log data for students with various optional game elements. Here, I use 

machine learning classifiers to predict their effect over engagement. Overall, this 

chapter is important for the thesis, since it is an analysis for the thesis’s larger goal of 

building engaging educational systems, as well as a first step towards building 

engaging teacher-facing tools, such as the ML-ABM. Thus, this work is an important 

initial step to understand how gamification insights can be applied to ML-ABM 

models to enhance the productivity of learning environments, by increasing 

engagement through data-informed educational tools. 

7.2 Approach 

To understand how to improve gamification based on existing or expanding theories, 

I have analysed user behaviour in a given system of e-learning, and based my 

improvement suggestions on the existing user behaviour. In my case, this system is 

CamaleOn (see 1 section). This is a realistic approach, as many educational online 

systems are available and in use, and it is costly and often problematic to change them 

completely. Instead, a more gradual approach to this change is proposed, based 

initially on available data, and subsequently informed by gamification theories. 

7.2.1 Data 

The data used in this chapter is based in CameleOn that was introduced in 

Chapter 3. In this chapter, I provide further details about this dataset. There is a 

particular focus on providing students from public schools the resources needed to 

attend a Brazilian university. To motivate the user to continue with the website, 

CamaleOn uses different aspects of gamification (e.g., elements such as experience 

points (XP), badges, etc.) as methods for motivation explained as follows: 
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 Level: Students start at level 1 and move up to higher levels through gaining 

XP points. These points can be gained through answering questions correctly and 

interacting with the system in different ways.  

 Badges: Students can earn from a range of 13 badges available in the system. 

These badges have a different avatar and can be earned when the student performs the 

action related to the said badge such as: learning a subject in 3 days, staying one hour 

in the system or getting a silver medal for the first time.  

 Figure 24 presents the design of CamaleOn’s webpage, where points (XP) are 

displayed on the top of the screen at all times to provide a visualisation of the student’s 

advancement via a gamified progress bar. Trophies are greyed out until earned; each 

holding a label explaining how it can be earned. Additionally, a progress map at the 

bottom of the screenshot visualises the student progress through the subjects of the 

curriculum.  

 

Figure 24 CameleOn's user dashboard 
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7.2.2 Defining the Effect of Gamification Elements on Student Engagement in 

CameleOn dataset 

Students receive points by advancing in the subject level which means point gain 

cannot be linked directly to the effect of gamification. Badges, however, require 

specific actions performed by the student that are not generally gained by simply using 

the system and solving questions. Therefore, I choose them as an indicator for student 

gamification element engagement. Trophies and badges as well as peer emotion 

feedback were among the most engaging gamification mechanics in MOOCs as 

suggested by the findings of [38]. 

 To have a general understanding of the data, I will calculate the number of 

badges for each student then perform a correlation test between the number of badges 

for a student and student’s interaction with course material.  

 Provided that the correlation test shows a positive correlation between the 

number of badges and the number of student activity, I will use both features as 

predictors for student advancement in subject levels using machine learning 

algorithms. 

 Based on these observations, Engagement was defined as:  

 Engagement: is students’ system interactions as well as course material 

interactions as students can advance through the system without accessing all 

resources but accessing such resources will win the student a reward. 

7.2.3 CameleOn Dataset pre-processing 

This section introduces the description of the CameleOn dataset used for this 

chapter as well as the steps I followed to prepare it. One of the of the objectives of our 

research is to find the effect of gamification elements and social interactions on 
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students learning in an online environment. Several steps were taken for preparing and 

extracting the dataset that is explained as follows: 

 The dataset was received as a large dump file which required extraction of the 

data. To open the dump file, a local server was installed using Apache and XMAAP. 

Then, a database was created to load the dump file into. However, due to the large size 

of the file, the process of importing to the database faced multiple failures. Therefore, 

Durham University’s MySQL service was used to create an online database and the 

dump file was then successfully imported into the database. The database, however, 

suffered from inconsistencies where some tables had a large number of records 

(180,104 record) and several tables had significantly smaller number of records 

(800~22 rows) while a large proportion of the overall existing tables had zero records. 

Every dataset requires a document that comprehensively explains the purpose of every 

table and the relationship between different tables in the database as well a detailed 

description of the system the data was collected from. Unfortunately, none of which 

was available in this dataset; therefore, a primarily step was to create a documentation 

which included the mentioned information in order to use as a reference while 

analysing and processing the data.  

7.2.4 Processed CameleOn Dataset 

I include the description of features provided in the CameleOn dataset in Table 17 and 

dataset statistics in Table 18. 

Table 17 CamaleOn dataset features description 

Feature Explanation 

Activity Loops 
The description of the activity 

archived 

type The type of reward gained by 

Domain 
The domain of the subject accessed by 

student 
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Curriculum The levels in each subject domain 

Topic 
Files provided as resources in each 

level 

Resource type 
The type of used resource i.e. video or 

pdf 

Interaction Time Time stamp of the interaction 

View Time 
Length of time for resource interaction 

measured in milli seconds 

Current Points 
Number of total points archived 

through system interaction 

Current Level The highest gamification level reached 

Type Avatar Type of avatar based on level 

User_ID 
Unique number for identifying users in 

the system 

Login Time Time stamp of login to the system 

 

Table 18 Statistics of CamaleOn dataset 

Category Type Number 

Material Video interactions 827 

 Pdf interactions 304 

 Mean view Time 136818.76ms 

Questions Correct Answers 177235 

 Wrong Answers 130579 

Activity Total students’ activities 236346 

 

Type of reward for 

activities 
3 

Highest reward points 

Highest Domain 

accessed 
History 

Users Total number of users 5809 
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7.2.5 Data Preparation 

To prepare CameleOn dataset for analysis, the following steps were applied:  

 Step 1: I checked for the existence of abnormal values in feature instances. 

These abnormalities can form due to wrong inputs or character encoding errors. Based 

on the relevance to the problem, I try to answer, I either remove the whole record that 

contains the irregular value or replace the value with the mean of this feature values.  

 Step 2: A check was carried out for null observations in selected features for 

analysis as they may cause errors in the programming code or affect results. Null 

observations can be the cause of combining two tables that hold different log data for 

example: gamification interactions and material interactions where a student might 

have advanced in the system without accessing any material which resulted in a 

number of empty values when these two kinds of interaction were combined for 

analysis.  

 Step 3: Large float numbers such as percentages of wrong and correct answer 

to questions, were rounded to two decimal points to reduce run time. 

7.2.6 Matching Data to Research Questions  

The first step in the data-driven approach is to extract refined research 

questions from the data, based, on the overall aims of the research. In Table 19, the 

bold words in the “Data Subset” column indicate which dataset the subset of data 

originated from. The list of attributes, following the dataset, are the attributes which 

were selected from that subset. Analysing the attributes and data available from 

CamaleOn, I need to first extract the gamification elements used; here, they are 

badges, points, medals. For student engagement, frequency of interaction can be used 

(e.g., number of logins) and lack of dropout (thus involvement in the higher levels of 

the course).  
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Table 19. Matching data sets to research questions. 

Data subset Research items 

Students: Number of Points, Number of Badges, 

Number of Medals, Number of Problems Solved, 

Number of Mistakes and Number of Correct 

Answers 

Logs: Log Type (equal to “Problem Solving”), 

Problem Correctly Done 

Investigate performance of students  

versus engagement 

 

 The purpose is to find out if existent gamification features are useful, and if 

more gamification features need to be introduced, to address engagement. It is 

important to note here that further analysis is possible, and that this work only 

illustrates how existent data may be used to improve the design of an extant system. 

7.2.7 Definitions and Measures 

For my research question, I chose to define engagement by both the number of 

logins and the total number of question attempts (following research such as [43]). 

This is due to the fact that students’ academic performance is not a necessary 

indication of engagement[132]. Here, I set the threshold for the highly engaged group 

of students as consisting of students uSt from the student cohort, where: 

GHE={uSt | #loginu ≥ avg(#loginu;uSt) AND #questionsu ≥ avg(#questionsu; uSt)}

     (7. 1)  

 Where GHE represents the set of highly engaged students and uSt refers to 

individual students in the student cohort St. #loginu is the number of times a student u 

has logged into the system and #questionsu is the total number of question attempts by 

student u. #loginu;uSt is the average number of logins across all students in St while 

#questionsu; uSt is the average number of question attempts across all students in St. 
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#x refers to the number of x and avg(y) computes the average value of y. This 

corresponds, for our data, to students who have logged into the system more than 8 

times and attempted to answer at least 304 questions, which are the mean values for 

number of logins and question attempts, respectively. This resulted in 1058 highly 

engaged students, and 7212 less engaged students. The gamification elements in the 

system are: 

 Points: points are earned by answering low level questions.  

 Medals: medals are earned by showing high skills in questions answering, such 

as answering all questions in a topic correctly or solving side assignments. 

 Badges: They are earned by interacting with the system in a specific way such 

as: spending one hour in the system or learning a sub-assignment 3 days in a row. 

 I defined a measure for the gamification elements introduce into in the system by the 

variable “Reward Count” 𝑅𝐶𝑢, as the sum of Points 𝑝𝑞𝑢, Badges 𝑏𝑞𝑢, Medals 

𝑚𝑞𝑢earned by a student u: 

𝑅𝐶𝑢 = ∑ 𝑝𝑞𝑢
#𝑛𝑜_𝑞𝑢𝑒

𝑞=0
+ ∑ 𝑚𝑞𝑢

#𝑛𝑜_𝑞𝑢𝑒

𝑞=0
+ ∑ 𝑏𝑞𝑢

#𝑛𝑜_𝑖𝑛𝑡

𝑖=0
  (7. 2) 

 Where 𝑅𝐶𝑢 is the total reward count for a student u and 𝑝𝑞𝑢is the total points 

earned by student u, from answering question q; and #𝑛𝑜_𝑞𝑢𝑒 are all the questions. 

Similarly, 𝑚𝑞𝑢 is the number of medals earned by student u for high performance in a 

given question or assignment q, while 𝑏𝑞𝑢 is the number of badges earned by student 

u for specific interaction q, for instance, a badge for a certain amount of time spent on 

the platform; #no_int are all possible interactions. I first answered the research 

question using correlation analysis, based on the Pearson coefficient. Next, I use both 

shallow and deep learning methods to further answer the questions in more depth. For 

shallow methods, I use and compare a number of ML models for classification: Linear 
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Regression (LR), Linear Discriminant Analysis (LDA), K-Nearest Neighbours 

(KNN), Classification and Regression Trees (CART) and Naive Bayes (NB). Then, I 

apply two deep learning algorithms to compare the performances of Machine Learning 

(ML) against Deep Learning (DL) models for numerical data with a low number of 

predictors, namely Multilayer Perceptron (MLP) and Convolutional Neural Network 

(CNN), which are recommended for numerical, non-sequential data. Figure 25 provide 

a general view to our methodology. 

 

 

Figure 25 General view of methodology followed in answering the research question 

7.3 Results 

7.3.1 Normality Test 

For the normality test of high and low engagement for students, I applied the 

Kolmogorov–Smirnov test, rather than Shapiro Wilk, due to the large data size that 

exceeded 5000 instances. Results indicate a non-normal distribution for each group (p 

≤.00).  

7.3.2 Data Visualisation: Higher/Lower Engagement versus Gamification Use 

I next visualise the two groups to analyse visual differences in gamification 

elements’ use via the total number of earned rewards for each group (see Figure 26).  
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Figure 26 Box plot of higher and lower engagement groups versus gamification 

7.3.3 Data Correlation: Engagement versus Gamification 

Table 20 shows the correlation between engagement and gamification. For instance, 

it indicates a strong positive association between students’ number of logins and the 

number of rewards they earn. The highest correlation value is noticed between badges 

and engagement status. The lowest value is seen between the number of earned medals 

and that of logins, possibly due to fact that medals are questions and curricula related. 

However, the engagement variable “Is Engaged” shows a positive association with all 

of the gamification elements represented by Reward Count, .  

Table 20 Correlation test results between engagement indicators and gamification elements. 

 Reward 

Count 
Points Medals Badges 

High login  0.531 0.482 0.373 0.631 

High question 

attempts 
0.660 0.656 0.604 0.671 

Is Engaged  0.660 0.656 0.604 0.682 

 

7.3.4 Engagement Prediction based on Gamification 

Following the correlation test results, I used the gamification elements and the 

additional aggregate parameter “Reward Count”, and their combination, as inputs of 
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different dimensions, to classify high and low engagement with various classification 

models. The output of the classifier would either be the learner is engaged (1) or not 

engaged (0). These results show that the CamaleOn gamification elements are a strong 

predictor for students’ engagement, with all accuracies > 0.924. I.e., the number of 

rewards students earn is strongly linked to the number of logins and general 

advancement through the system. The accuracy of CNN and MLP exceed the 

traditional ML models, suggesting that ML and DL classifiers perform slightly better 

- but similarly, for problems with a small number of features, such as this. MLP was 

the clear overall winner in terms of prediction model comparison. The highest score 

is observed (mostly) with the combination of all elements. What is interesting is the 

similarity of individual elements’ score, despite the differences between them in 

functionality and purposes. I.e., Medals reward curricula advancement, while Badges 

reward defined system actions.  

Table 21 Classifiers’ results for engagement level based on gamification elements. 

L
R

 

Inputs Acc 

Low-engagement (0) High-engagement (1) 

P R F1 P R F1 

Reward Count .951 .97 .98 .98 .87 .78 .82 

Points .950 .97  .98 .98 .87 .77 .82 

Medals .937 .95 .98 .97 .85 .65 .74 

Badges .938 .96 .97 .97 .80 .72 .76 

All Elements .954 .97 .98 .98 .88 .80 .84 

L
D

A
 

 

Reward Count .924 .93 .99 .96 .98 .46 .63 

Points .950 .93 .98 .96 .98 .45 .62 

Medals .937 .92 .98 .96 .96 .42 .59 

Badges .938 .92 .97 .97 .80 .72 .76 

All Elements .954 .96 .99 .97 .91 .72 .80 

K
N

N
 

 

Reward Count .947 .97 .97 .97 .81 .82 .81 

Points .950 .97  .98 .97 .83 .78 .81 
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Medals .937 .96 .97 .96 .76 .75 .75 

Badges .938 .96 .95 .96 .71 .75 .73 

All Elements .954 .98 .98 .98 .84 .84 .84 

C
A

R
T

 

 

Reward Count .944 .96 .98 .97 .81 .73 .77 

Points .950 .96  .98 .97 .83 .69 .76 

Medals .937 .95 .98 .97 .82 .67 .74 

Badges .938 .96 .97 .97 .80 .72 .76 

All Elements .954 .97 .97 .97 .81 .81 .81 

N
B

 

 

Reward Count .954 .98 .97 .98 .83 .84 .83 

Points .950 .98  .97 .98 .83 .69 .76 

Medals .937 .96 .97 .97 .78 .74 .76 

Badges .938 .96 .97 .97 .80 .72 .76 

All Elements .954 .98 .96 .97 .78 .86 .82 

M
L

P
 

 

Reward Count .958 .98 .97 .98 .83 .84 .84 

Points .957 .98  .97 .98 .83 .86 .83 

Medals .942 .96 .98 .97 .82 .71 .76 

Badges .941 .96 .97 .97 .80 .72 .76 

All Elements .964 .98 .98 .98 .87 .86 .86 

C
N

N
 

 

Reward Count .957 .97 .98 .98 .85 .81 .83 

Points .956 .98  .97 .98 .81 .87 .84 

Medals .941 .96 .98 .97 .82 .69 .75 

Badges .931 .93 .99 .96 .92 .51 .66 

 

The models’ performance in this chapter differs from those in Chapter 5 due 

to multiple reasons. First, the data type and structure are different as data from PIPS 

is collected through structured assessments and teacher observations, capturing direct 

academic performance and specific disruptive behaviours. This structured format 

leads to data that is relatively clean and targeted, with a focus on academic metrics 

that can be well-suited to traditional machine learning models due to their ability to 

handle discrete, non-sequential inputs and low-dimensional spaces [28, 113]. 
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CameleOn's data, on the other hand, is less structured, as it records real-time digital 

interactions across various gamification elements. It includes frequent, repeated 

measures of engagement-related behaviours like frequency of logins and badges 

earned, making it larger, richer, and more complex but also noisier than PIPS. This 

requires models that can handle time-series or sequential data, which are more 

dynamic than the static assessment data in PIPS[105]. Secondly, the size of the data is 

another elemet where PIPS is vast but has a more controlled data scope, focusing on 

academic achievement and a limited set of behavioural metrics. The uniformity of 

PIPS data supports models that rely on structured inputs, such as tree-based models 

and simpler ML techniques. CameleOn’s dataset, while extensive, is more variable, 

with 8270 students and millions of interactions across different gamification activities. 

This variation provides a wider feature range but also requires complex model tuning 

to account for the various engagement activities. Deep learning models, such as 

Convolutional Neural Networks (CNN) and Multilayer Perceptions (MLP), which 

handle high-dimensional data effectively, might thus outperform simpler models in 

this chapter [109].  

7.4 Epilogue 

In this chapter, I presented a data-driven approach to understanding how 

gamification affects student engagement and performance on a Brazilian MOOC 

aimed at high school students preparing for higher education. The study analysed how 

some gamification elements, including badges, points and medals, led to increased 

student engagement and interaction on the system. This aligns with findings in broader 

literature, which confirm the effectiveness of gamification in promoting engagement 

and motivation across varied educational settings (see section 2.6, Chapter 2). The 
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application of gamification in educational settings, such as MOOCs, is illustrated 

through this research, showing its potential to support educational outcomes in large-

scale data rich environments. The adaptability of gamification strategies can extend 

beyond specific platforms or cultural contexts. By relying on general principles, such 

as rewards and recognition, gamification can be tailored to address the needs of 

different educational levels and disciplines. Although the model is oriented towards a 

Brazilian context, the insights it provides for gamification strategies could be applied 

to a variety of different age groups and educational levels. By using data-driven 

techniques and machine learning, the study provides a robust framework to study and 

predict how gamification affects student engagement. However, the data collected 

using these techniques may reflect inherent biases, whether from demographic factors, 

user behaviour patterns, or sampling methods. These biases can limit the 

generalisability of the findings, making them more relevant to certain user groups than 

others. 

In the next chapter (Chapter 8), these findings can be extended, by including 

gamification elements in an ML-ABM framework for teachers. In this next stage, we 

apply insights from student engagement to the teaching context, to investigate how 

gamification can improve teacher engagement and interaction in intelligent learning 

systems in general, and our specific ML-ABM in particular. This integration not only 

strengthens the study’s overarching aim of developing dynamic, data-driven 

educational tools, but brings together experiences of both students and educators in a 

gamified framework. 
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CHAPTER 8 

8 Enhancing Educational Dynamics: Integrating 

and Evaluating Gamification within the ABM 

System 

8.1 Prologue 

 This chapter extends the work initiated in Chapter 7, where the impact of gamification 

elements on student engagement was explored through the Brazilian CamaleOn 

platform. Chapter 7 covered how gamification features like badges, points, medals, 

played a role in potential user interaction, and supports thus in general the inclusion 

of gamification features within learning systems, including potentially in our ABM for 

teachers. This chapter thus explores to what extent the implementation of gamification 

can enhance teachers’ interaction, pedagogical efficacy and classroom management, 

especially in dealing with disruptive student behaviours. This thesis aims to develop a 

data driven hybrid ML-ABM model that can incorporate student and teacher dynamics 

to improve educational outcomes. The aim of this chapter is to contribute to this goal 

by analysing how the validated gamification strategies, as presented in Chapter 7, can 

be utilised for a teacher-focused ABM. 

Parallel to empirical studies like Chapter 7, this chapter draws on theoretical 

frameworks, such as Toda’s Elements for Educational Environments (TGEEE )[192], 

which offers a structured approach to applying gamification in educational contexts. 

By combining these theoretical insights with the data-driven findings from Chapter 7, 

this chapter seeks to validate how gamification can be effectively integrated into the 

hybrid ML-ABM supporting teacher engagement. Additionally, this chapter seeks to 
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further explore and validate the answer to research question RQ3 of elements affecting 

student performance and the teacher-related part of RQ4. Thus, this chapter aims to 

answer the following research questions:  

RQ3: How can Machine Learning (ML) be integrated into an agent-based model 

(ABM) to improve the simulation of classroom disruptive behaviour, and what 

parameters of ML prediction yield realistic results in this hybrid ML-ABM approach? 

RQ4: How can gamification strategies be implemented to increase engagement in an 

educational setting, and which gamification elements have the most significant impact 

on engagement, both in student-oriented systems and teacher-oriented systems? 

This synergy between the empirical research presented in Chapter 7 and the theoretical 

framework outlined in this chapter facilitates a holistic approach to designing a 

gamified environment that is aimed to be both engaging and effective. This means 

enabling the synergy between theory and data-driven practice, where the empirical 

findings from student engagement are enriched by the structured, theoretical 

understanding of gamification principles.  

Frequently, findings from one educational context cannot be directly transferred to 

another without relevant attention given to the unique needs of the new context. In this 

thesis, the CamaleOn study provided valuable insights into student engagement, but 

its applicability to teacher engagement is to be used with much care. The challenge 

thus addressed by this chapter combining empirical findings with theoretical principles 

that facilitate the systematic integration of gamification elements into the hybrid ML-

ABM. The empirical findings from CamaleOn highlight which gamification elements 

- including badges, points and medals -  enhance engagement, while theoretical 

frameworks like TGEEE offer a structured understanding of how these elements can 

be applied in educational contexts. It is not just to increase teacher engagement, but, 
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ultimately and more importantly, to reduce disruptive behaviours and offer a practical, 

data-driven teacher classroom management approach. 

 

 

 

Figure 27 Toda’s TGEEE Wheel: Taxonomy of Gamification Elements for Education 

Contexts [192] 

8.2 Methodology 

8.3.1  Initial Analysis and Application Framework  

The initial phase involved a detailed examination of the CamaleOn system using 

advanced machine learning techniques to ascertain the impact of specific gamification 

elements such as badges, points, and leaderboards on student engagement levels. This 

empirical investigation utilized a blend of correlation analysis alongside both shallow 

and deep learning methodologies to pinpoint elements that significantly boosted 

student interaction and sustained engagement. 
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Subsequently, these validated elements are to be adapted and integrated into a hybrid 

ML-ABM approach designed for teachers. This integration is informed by Toda’s 

TGEEE, which provided a structured taxonomy of gamification strategies tailored 

specifically for educational settings. This taxonomy facilitated the strategic 

incorporation of elements like 'Statistics', 'Time', and 'Progression', ensuring that the 

gamification enhancements were both educationally relevant and empirically 

supported. 

Toda’s TGEE Wheel [192] illustrated in Figure 27 introduces a structured way to 

classify gamification elements in education. It divides these elements into five key 

dimensions, each focusing on a different aspect of the learning experience. The 

Performance / Measurement dimension includes points, levels, progression, stats, and 

acknowledgement. These elements provide feedback to learners, helping them track 

their achievements. Without them, learners may feel lost or unmotivated. The 

Ecological dimension relates to the properties of the learning environment. It includes 

chance, imposed choice, economy, rarity, and time pressure. These elements shape 

interactions and ensure engagement. Without them, the environment may feel dull and 

uninspiring.  

The Social dimension focuses on learner interactions through competition, 

cooperation, reputation, and social pressure. These elements encourage collaboration 

or rivalry, making the learning experience more dynamic. Without them, learners may 

feel isolated. The Personal dimension considers the learner’s experience and includes 

sensation, objectives, puzzles, novelty, and renovation. These elements ensure 

engagement and keep the learning process meaningful. Without them, learners may 

lose interest. Lastly, the Fictional dimension connects the learner to the learning 

environment through narrative and storytelling. These elements add context and 
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immersion, making learning more engaging. Without them, the system may feel 

unmotivating and disconnected from the learner’s experience. Toda’s TGEE Wheel 

provides a structured approach to designing and evaluating gamified educational 

systems, ensuring a more effective and engaging learning environment. 

8.2.1 Participants  

To thoroughly validate and explore the potential expansion of gamification strategies 

for teachers within the ML-ABM approach, an extensive mixed-method study was 

designed and conducted with teachers teaching in schools directly. This study involved 

the structured interviewing of twelve teachers, carefully selected to represent a diverse 

range of teaching experiences and pedagogical backgrounds from various public 

schools in Riyadh, Kingdom of Saudi Arabia (KSA). Of these twelve participants, 

58.3% (seven teachers) were teaching mathematics, while 41.7% (five teachers) were 

teaching regular reading. The study was conducted in public schools, which more 

readily provided permission for research, in contrast to private schools that are fewer 

in number. Given the restrictions and challenges posed by the COVID-19 pandemic, 

a smaller, convenient sample of twelve participants was chosen to ensure the safety 

and feasibility of the research. The pandemic necessitated limiting face-to-face 

interactions and minimising group sizes, which influenced the decision to use a smaller 

sample size. This is consistent with experiments with experts, in prior research; and 

here, teachers can be considered to be teaching experts, albeit with different amount 

of expertise, as follows. The selection of participants was strategically made to 

maintain diversity in teaching experiences while adhering to safety protocols. Among 

the participants, 33.3% (four teachers) were male, and the remaining 66.7% (eight 

teachers) were female. This gender distribution reflects an effort to include a balanced 

perspective on teaching practices and experiences in the study.  
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The research was structured to gather both qualitative insights and quantitative data, 

thereby providing a holistic view of the teachers' perceptions and the effectiveness of 

various gamification elements in the ABM system as well as the results of its improved 

version.  

8.2.2 Procedure 

The procedure was structured to ensure that participants interacted meaningfully with 

the ML-ABM approach and gamification elements, while providing feedback based 

on their experience. Each participant was first given a detailed introduction to the ML-

ABM, followed by a brief tutorial on how to navigate the platform. Participants 

received an introduction to the ML-ABM system before starting the task. The session 

began with an overview of the ML-ABM’s purpose, highlighting its purpose to 

support teachers in classroom management. Key system elements, including its 

functions and gamification features, were also presented. The task was designed to last 

approximately 40 minutes, during which participants were asked to engage with the 

simulation, using the gamified features, as they explored a virtual classroom scenario. 

The participants’ main task was to explore the gamified ML-ABM in managing 

classroom interactions, including helping them in addressing disruptive student 

behaviours. Participants explored the system, by running approximately 2-3 

simulations involving different classroom management decisions. The system 

generated outcomes based on their choices. After completing the task, participants 

were interviewed using a structured interview procedure with both close- and open-

ended questions, to assess their perceptions of the system's effectiveness, the usability 

of the gamification features, and their overall engagement with the model. The 

interview took approximately 20 minutes to complete (see section 8.2.3.2 below). 
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8.2.3 Materials 

The study utilised a combination of digital tools and materials, which are described in 

the following sub-sections. 

8.2.3.1 The ML-ABM Simulation  

This was the central material of the study, designed to simulate classroom management 

scenarios integrated with gamified features. The hybrid ML-ABM (see Chapter 6) 

allowed teachers to interact with gamification elements such as ‘Statistics’, ‘Time’, 

and ‘Progression’, integrated into the system. Moreover, participants were asked to 

show their perceptions on the potential of integrating three more gamification 

elements, including ‘Badges’, ‘Points’, and ‘Medals’ into the system in the future. 

Participants were able to see the results of their decisions in real-time, with outcomes 

displayed. 

8.2.3.2 Interviews 

 As mentioned above, participants were interviewed at the end of their interaction 

with the hybrid ML-ABM. The interview included both closed and open-ended 

questions listed in the Table 23, aimed at capturing participants' perceptions of the 

effectiveness of the gamification elements, and the perceived impact on teacher 

engagement.  

 

Table 22 List of questions used in teacher interviews 

# Interview Question Answers/Options Type 
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Q1 

From your perspective as a teacher, which of 

the following features has the highest effect 

over student performance? 

• Initial Knowledge ( 

Start Math Start Read 

)  

• Disruptive behaviour 

score: Inattentiveness 

Hyperactivity and 

Impulsiveness. 

• Financial status (Free 

School Meal).  

Multiple 

Choice 

Question 

Q2 

“Do you find these results to be consistent with 

your expectations, and could you please explain 

whether you agree or disagree with the findings, 

and why?” 

 Open Ended 

Q3 

Do you believe that incorporating various 

gamification elements into the ABS system 

could enhance your motivation to utilize it 

effectively in your teaching practice? 

Yes/No/May Be 

Multiple 

Choice 

Question 

Q4 

Reflecting on the gamification elements 

currently embedded in the system, which 

specific gamification element do you find most 

engaging or valuable for your instructional 

objectives? 

Statistics. 

Time. 

Progression. 

 

Multiple 

Choice 

Question 

Q5 

Among the following suggested gamification 

elements proposed for inclusion in the system, 

which one do you believe would be the most 

engaging and beneficial for enhancing your 

teaching experience and student participation? 

Leader Boards. 

Points. 

Badges. 
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Q6 

Based on your experience and understanding of 

gamification, which additional gamification 

elements would you recommend incorporating 

into the system to further enhance its 

effectiveness and engagement for you? 

 Open Ended 

 

Through this comprehensive approach, the study aimed to critically assess the current 

gamification implementations and identify opportunities for enhancing the system to 

better meet the needs of teachers. The following section presents the six steps involved 

in this study  

8.2.4 Study Steps 

Step 1: Feature Impact Assessment 

To understand their take on the underlying principles of the ML-ABM approach and 

answer RQ3, teachers were initially presented with a multiple-choice questionnaire 

that probed which student-related features they perceived as most influential on 

educational outcomes. The choices included variables such as 'Initial Knowledge' 

(Start Math, Start Read), 'Disruptive Behaviour Score', 'Financial Status' (Free School 

Meal), and 'Age'. 

 Step 2: Predictive Outcomes Evaluation 

Following their selections, teachers were shown the predictive impacts on student 

performance both with and without the selected feature. To deepen the insight, the 

influence of these features was also demonstrated at doubled values for each of the 

above feature, facilitating an understanding of their scalability and effect magnitude. 

Teachers subsequently voted on the most engaging features based on the presented 

outcomes. 
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 Upon examining the student performance predictions with and without the 

incorporation of the top two features identified by the teachers as most influential and 

observing the effects of doubling the values of these features, a structured inquiry was 

directed towards the teachers. They were asked to reflect on whether the resultant data 

aligned with their initial expectations. Specifically, the teachers were requested to 

articulate their agreement or disagreement with the findings, providing detailed 

justifications for their perspectives. This approach was designed to elicit insights into 

the perceived accuracy and relevance of the predictive models in relation to actual 

educational outcomes. 

 Step 3: Gamification Element Motivation Inquiry 

At this step, teachers were asked whether different gamification elements employed 

in this study could improve their motivation and effectiveness while using the ML-

ABM approach. The study explored whether gamification elements could promote 

higher engagement with teaching tools, inspire active classroom management, and 

contribute to better pedagogic results. It was critical to understand what teachers 

thought of gamification, in order to see if these elements might be practical enough to 

actually help teachers feel more successful, or if they would just make teaching more 

interactive and more rewarding. This inquiry aimed to determine how far gamification 

could be utilised as a significant intervention within contemporary educational 

settings. 

 

 Step 4: Engagement with Existing Gamification Elements 

Teachers evaluated the existing gamification elements embedded within the system 

specifically 'Stat', 'Time', and 'Progression'. They identified which of these elements 

they found most engaging and valuable for achieving their instructional goals. 
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 Step 5: Proposal of New Gamification Elements 

The further exploration involved teachers selecting from the proposed new 

gamification elements including 'Leaderboards', 'Points', 'Badges'. They were asked to 

choose which they believed would most significantly enhance their teaching 

experience and engagement. 

 Step 6: Open-ended Feedback on Additional Elements 

Finally, teachers provided descriptive feedback on any other gamification elements 

they would recommend incorporating into the system to boost its overall effectiveness 

and engagement, explicitly excluding any previously used or suggested elements. 

8.3.2 Analytical Approach and Data Synthesis 

The collected data were analysed using a mixed-method strategy with a combination 

of qualitative and quantitative methods. This dual approach ensured a comprehensive 

analysis of the feedback, allowing for detailed insights into how various gamification 

elements influence teacher perceptions. Through this methodology, the research aims 

to deliver a robust, evidence-based enhancement of the ABM system, ensuring that 

gamification strategies are effectively tailored to meet educational needs and improve 

teaching practices. 
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Figure 28 Flow chart of mixed method study steps 

 

8.3 Result Analysis 

8.3.1 Feature Impact Assessment  

To evaluate the impact of various student-related features on educational outcomes, 

teachers were asked to identify which feature they believed most significantly 

influenced student performance. The features presented for selection were 'Initial 

Knowledge', 'Disruptive Behaviour Score', 'Financial Status', and 'Age'. The teachers 

were particularly asked the following question during the interview- 

 “From your perspective as a teacher, which of the following features has the highest 

effect over student performance?” 

 Based on the responses from the participating teachers, Figure 29 illustrates the 

findings. Despite being a foundational aspect of learning, only 2 out of 12 teachers 

identified initial knowledge in mathematics and reading as the most crucial factor 

Step 1: Feature Impact Assessment

Step 2: Predictive Outcomes Evaluation

Step 3: Gamification Element Motivation Inquiry

Step 4: Engagement with Existing Gamification Elements

Step 5: Proposal of New Gamification Elements

Step 6: Open-ended Feedback on Additional Elements
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affecting student performance. This response may indicate a perception that while 

foundational knowledge is important, other factors play a more significant role in the 

day-to-day educational achievements and challenges faced by students. It suggests that 

teachers might see the potential for students to overcome initial shortcomings through 

effective teaching strategies and support. 

 A substantial majority, 9 out of 12 teachers, pointed to disruptive behaviour, 

encompassing inattentiveness, hyperactivity, and impulsiveness, as the most 

influential factor on student performance. This overwhelming consensus highlights a 

critical concern within classroom management, suggesting that disruptive behaviours 

might significantly hinder student engagement and learning potential. The teachers' 

responses underscore the importance of behavioural management strategies and 

interventions in educational settings, reflecting a need to address these behaviours 

proactively to enhance student academic outcomes. 

 Interestingly, no teachers chose financial status, represented by eligibility for Free 

School Meals, as the most influential factor. This lack of selection could imply that, 

within this group of teachers, economic factors are not perceived as directly impactful 

on student performance as behavioural and cognitive factors. Yet, such a finding must 

be embedded in the KSA cultural setting because financial aid to students might look 

different from the UK. Considering the systemic difference in resource distribution 

and social status in different counties. It might also reflect a belief that while financial 

status may affect resources available to students, its direct impact on daily academic 

performance is less significant compared to behavioural issues. 

 Only one teacher selected age as the predominant factor influencing student 

performance, which accounts for 8.33% of the responses. This suggests that age, while 

being a factor in cognitive and emotional development, it is considered less decisive 
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in influencing academic performance compared to behavioural and foundational 

knowledge factors. The teacher who chose this might have observed age-related 

maturity impacting learning outcomes in their educational environment. 

 

Figure 29 Teacher Perceptions of Factors Affecting Student Performance 

 

8.3.2 Teacher Responses to Student Performance Predictions 

 Having reviewed the student performance predictions both with and without the top 

two features the teachers deemed most influential, and the outcomes when the value 

of these features is doubled (Table 23), teachers were asked:  

“Do you find these results to be consistent with your expectations, and could you 

please explain whether you agree or disagree with the findings, and why?” 

 

 

Table 23 The variations in End Math average scores with alterations in feature values 

(Doubled) 

Feature 
End Math Average Score 
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No Initial Knowledge 
21.6 

Double Initial Knowledge (Start Math 

Start Read) 

53.63 

No Disruptive Behaviour 
42.23 

Double Disruptive Behaviour 
33.51 

 

 Out of 11 teachers surveyed, 7 agreed that the results were consistent with their 

expectations, while 4 disagreed. Responses from the participating teachers are 

presented in Table 24 and Table 25. Based on a thematic-analysis of qualitative 

feedback, the following 3 common themes were identified for each category of 

agreement and disagreement. 

 

Table 24 Feedback of teachers who agreed that the results of the study aligned with 

their expectations. The comments highlight key observations such as the significance 

of initial knowledge, the impact of disruptive behaviours, and the role of data-driven 

approach 

Teacher 

No. 
Feedback 

1 

“The dramatic improvement in scores when initial knowledge is doubled 

clearly shows how crucial early learning foundations are. It is evident that 

robust early education can set the stage for future academic success.” 

3 

“Seeing the decline in performance with increased disruptive behaviour 

resonates with my experience. Managing such behaviours is vital; without 

addressing them, even the brightest students struggle.” 

4 
“These results validate what many of us have observed: solid initial knowledge 

and a stable learning environment significantly boost student outcomes.” 

5 
“The findings make perfect sense. Students who start strong tend to stay 

strong. We need to focus more on building a firm foundation from the start.” 
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6 

“The negative impact of doubling disruptive behaviour on performance is not 

surprising. It underlines the need for effective behavioural management 

strategies in our schools.” 

8 

“I agree with the results because they align with the data-driven approach we 

aim for in education today. Understanding these relationships helps us tailor 

our teaching methods more effectively.” 

10 
“These predictive outcomes offer a clear rationale for prioritizing initial 

academic readiness and creating supportive, focused learning environments.” 

 

Table 25 Feedback of teachers who disagreed with the study’s results. The responses 

reflect concerns about the overemphasis on initial knowledge, the perceived 

oversimplification of disruptive behaviours, and the methodology used in scaling 

features. 

Teacher 

No. 
Feedback 

2 

“While initial knowledge is important, this overemphasis might lead us to 

neglect the holistic development of the child, which is equally crucial for 

learning.” 

7 

“Doubling the numbers does not necessarily reflect real-world scenarios. 

Education is not just about mathematics; it is about understanding each 

student's unique context and needs.” 

9 

“The model simplifies disruptive behaviour too much. We need to look deeper 

into why students behave disruptively rather than just how it affects their 

scores.” 

11 

“I'm sceptical of the methodology used to double the features. Real 

educational change does not happen through such straightforward scaling but 

through nuanced, gradual improvements.” 

Common Reasons for Agreement 

• Increased Performance with Enhanced Initial Knowledge: The significant 

rise in scores from 21.6 to 53.63 when initial knowledge was doubled 

underscored the foundational importance of initial literacy and numeracy 

skills in mathematical achievement. Teachers who agreed felt this affirmed 
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the critical role of early education fundamentals in subsequent academic 

success. 

• Decreased Performance with Increased Disruptive Behaviour: The 

reduction in scores from 42.23 to 33.51 with a doubling of disruptive 

behaviour validated the teachers' observations that behavioural issues 

significantly hinder learning processes. This was seen as a confirmation 

that managing student behaviour is crucial for educational attainment. 

• Empirical Support for Pedagogical Interventions: Teachers who agreed 

with the findings viewed them as empirical support for targeted 

interventions focusing on reinforcing initial knowledge and managing 

disruptive behaviours. They believed that these strategies could be 

effectively used to enhance educational outcomes. 

Common Reasons for Disagreement 

• Overemphasis on Initial Knowledge: Some teachers felt that while initial 

knowledge is important, the doubling effect depicted an unrealistic and 

overly deterministic view of its impact on learning outcomes. They argued 

that student engagement, teaching quality, and other socio-emotional 

factors also play significant roles. 

• Concerns Over Simplistic Interpretation of Disruptive Behaviour: 

Disagreeing teachers were concerned that the study might oversimplify the 

complex nature of disruptive behaviour by directly linking it to poorer 

academic performance without considering underlying causes such as 

socio-economic factors, learning disabilities, or home environment. 
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• Methodological Scepticism: A few teachers questioned the methodology 

of doubling feature values, suggesting that such a mechanical increase 

might not accurately represent real-life scenarios where incremental 

changes and nuanced interventions are more common. 

8.3.3 Incorporation of Gamification Elements 

In a decisive response to the query regarding the potential benefits of incorporating 

gamification elements into the ABM system, all twelve participating teachers 

expressed a positive outlook for the following question- 

“Do you believe that incorporating various gamification elements into the ABM 

system could enhance your motivation to utilise it effectively in your teaching 

practice?” 

 The unanimous response indicates a broad acknowledgment of the potential benefits 

that gamification can bring to educational environments. These benefits likely include 

increased engagement, improved motivation, and a more interactive learning 

experience for both teachers and students. Teachers appear to be aware that 

gamification can transform traditional teaching methods, making learning processes 

more enjoyable and dynamic. The fact that all respondents see value in gamification 

also suggests a widespread perception that current educational tools and methods 

could be significantly enhanced.  

8.3.4 Teacher Preferences for Gamification Elements 

To further understand the effectiveness and appeal of specific gamification elements 

within my ABM system, twelve teachers were asked the following question: 

“Reflecting on the gamification elements currently embedded in the system, which 

specific gamification element do you find most engaging?” 
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 This question was asked to reflect on the current gamification elements embedded in 

the system and identify which they found most engaging or valuable for achieving 

their instructional objectives. Their choices included 'Statistics', 'Time', and 

'Progression'. Teachers’ preferences regarding the most engaging element from the 

three existing gamification elements are illustrated in Figure 30 while Figure 31 shows 

the gamification elements in the system encompassing 'Statistics', 'Time', and 

'Progression'. 

 The overwhelming majority of teachers (10 out of 12 teachers) identified 'Statistics' 

as the most engaging gamification element. This preference suggests that teachers 

value the ability to access real-time data and feedback on student performance and 

learning patterns. Statistics likely help teachers track student progress more 

effectively, adjust teaching strategies based on empirical data, and potentially predict 

student outcomes. However, this might point to cultural and contextual variations. For 

example, as seen in the earlier study described in Chapter 7, preferences among 

gamification elements leaned towards elements that encourage direct student 

engagement, like badges or points. In this study conducted in KSA, we observe a 

teaching culture that emphasises measurable outcomes and data in performance 

assessment. That contrast highlights the role of cultural factors and local pedagogical 

practises in determining which gamification features are most useful. The high vote 

count for this feature underscores its perceived utility in enhancing instructional 

efficacy and facilitating a data-driven teaching approach. 

 

 Interestingly, none of the teachers favoured the 'Time' element, which often 

introduces time pressure into teaching activities. This unanimous disfavour indicates 

a possible concern that time constraints could induce stress among teachers, detracting 
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from the productivity rather than enhancing it. Teachers might believe that 

productivity should be self-paced to accommodate individual differences in working 

speeds. This response could reflect a preference for fostering a more relaxed and 

thoughtful working environment over one that prioritises speed. 

 However, a smaller segment of the group (2 out of 12 teachers) found 'Progression' to 

be a valuable gamification element. This feature, which often involves visualising 

advancement through content via levels or milestones, was seen as beneficial by those 

who perhaps value a structured working path. Progression can motivate teachers by 

clearly marking their achievements and providing explicit goals to work towards. 

However, the relatively low number of votes suggests that while seen as beneficial, it 

may not be as crucial or universally appealing as real-time statistics. 

 

 

Figure 30 preferences for most engaging existing gamification elements among teachers 
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Figure 31 Gamification elements in the system 'Statistics', 'Time', and 'Progression' 

 

8.3.5 Teacher Preferences for Proposed New Gamification Elements 

In response to the question,  

“Among the following suggested gamification elements proposed for inclusion in the 

system, which one do you believe would be the most engaging and beneficial for 

enhancing your experience?”,  

 Twelve teachers were asked to ascertain their preferences: Leaderboards, 'Points', and 

'Badges'. This analysis aims to unpack the implications of their choices and understand 

the perceived value of these gamification elements for teachers. Findings from the 

teachers’ feedback are visualised in Figure 32. 

 The majority of teachers (7 out of 12 teachers) selected ' leaderboards the most 

engaging gamification element to be included in the ABM system. This preference 

indicates a significant recognition of the competitive aspect that leaderboards bring to 

the working environment. Teachers likely perceive that such an element could drive 

motivation and engagement among them by publicly acknowledging their 

achievements, thereby fostering a competitive spirit that encourages teachers to excel. 

Leaderboards could also facilitate a transparent metric for teachers to track 

performance progress over time. 
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 In addition, 'Points' received a substantial number of votes (4 out of 12), suggesting 

that teachers appreciate the incremental and immediate feedback that points offer. This 

gamification element allows teachers to receive instant recognition for their efforts, 

potentially increasing their engagement and persistence in working activities.  

 Moreover, the low preference (only 1 vote) for 'Badges' might indicate that teachers 

feel this element provides less immediate or clear value compared to the other options. 

While badges are a form of recognition and achievement, they may be perceived as 

less influential in motivating performance or might be seen as too sporadic or arbitrary 

to effectively drive consistent engagement. 

 

 

Figure 32 Teacher preferences for new gamification elements 

 

8.3.6 Open-ended Feedback on Additional Gamification Elements 

 To gain a deeper understanding of the participating teachers' perceptions and 

recommendations for the inclusion of more gamification elements, teachers were 

asked to provide their responses to the following open-ended question: 
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“Based on your experience and understanding of gamification, which additional 

gamification elements would you recommend incorporating into the system to further 

enhance its effectiveness and engagement for you?” 

 Twelve teachers provided their feedback, which is documented in Table 26. 

 This analysis delves into the qualitative responses from twelve teachers who were 

asked to recommend additional gamification elements for enhancing the effectiveness 

and engagement of the ABM system. Their suggestions reflect a deep understanding 

of gamification and its potential to foster a more dynamic and supportive teaching 

environment. This thematic analysis identifies and discusses the five key themes 

(gamification elements) emerging from the responses: ‘Social Competition’, ‘Social 

Cooperation’, ‘Social Reputation’, ‘Performance Acknowledgement’, and 

‘Performance Points’. 

 The recommendations provided by the teachers suggest a strong belief in the power 

of gamification to transform teaching environments. The themes of Social 

Competition, Social Cooperation, Social Reputation, Performance Acknowledgement, 

and Performance Points capture a comprehensive view of how these elements can be 

strategically integrated to enhance both teaching effectiveness and engagement. This 

analysis underscores the need for educational systems to adopt a more nuanced and 

teacher-centric approach to gamification, ensuring that these elements align with the 

overarching goals of education and foster an environment conducive to teaching and 

learning and professional development. 

8.3.6.1 Social Competition 

Two teachers highlighted the benefits of integrating social competition elements into 

the teaching environment. The theme revolves around the idea of using competitive 

frameworks to stimulate teacher engagement and professional growth. Teacher 5 
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emphasised the motivational aspect of social competition, suggesting that competition 

could enhance creativity and instructional quality. The notion is that a competitive 

environment encourages continual improvement and the adoption of innovative 

teaching methods. Teacher 9 advocated for a leaderboard system to recognise and 

share best practices. This approach not only fosters professional growth but also 

promotes a culture of excellence and collaboration, where teachers can benchmark 

their methods against peers, enhancing overall educational standards. 

8.3.6.2 Social Cooperation 

Another recurring theme involved the endorsement of social cooperation mechanisms 

by two participants, highlighting the potential of collaborative efforts in teaching 

settings. One teacher proposed enhancing collaborative projects across departments, 

which would help in building a supportive teaching community and enrich the 

collective educational experience. Another teacher focused on the practical benefits of 

joint lesson planning and collaborative grading frameworks, especially in managing 

disruptive behaviours. This cooperative approach allows for pooling insights and 

strategies, thus optimising the learning environment and behaviour management. 

8.3.6.3 Social Reputation 

Three teachers expressed a preference for implementing a social reputation system to 

acknowledge and motivate innovative teaching methods. A teacher saw value in a 

system that rewards creativity and pedagogical innovation, suggesting that such 

recognition would boost teacher confidence and inspire continued pedagogical 

experimentation. Two teachers both highlighted the motivational impact of publicly 

acknowledging teaching strengths, suggesting that a reputation framework could 

enhance knowledge sharing and collaborative engagement across disciplines. 

8.3.6.4 Performance Acknowledgement 
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The theme of performance acknowledgement was underscored by two teachers who 

appreciated regular and personalised feedback on their teaching effectiveness. Some 

teachers advocated for a feedback loop that recognises lesson delivery and student 

engagement, which could foster a reflective teaching culture cantered around growth 

and improvement. Others emphasised the importance of acknowledging incremental 

achievements, which helps teachers assess their progress and encourages continuous 

innovation. 

8.3.6.5 Performance Points 

Three teachers recommended incorporating a performance points system that rewards 

various professional development activities. These teachers supported the idea of a 

points system that acknowledges and rewards efforts in professional development, 

mentorship, and innovative teaching activities. Such a system would not only motivate 

teachers but also facilitate their professional growth and engagement by providing 

tangible rewards for their contributions to the educational community. 

 

Table 26 Various gamification elements recommended by teachers 

Gamification 

Element 
Teacher No. Feedback 

Social Competition 5 

“Incorporating social competition would create a lively 

environment that motivates me to achieve my teaching objectives 

more efficiently. Competing with fellow teachers will stimulate 

creativity and allow me to learn new techniques. This sense of 

healthy competition pushes us to continuously improve and 

enhances overall instructional quality.” 
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9 

“A leaderboard system, where teachers earn recognition for best 

practices, will encourage a culture of sharing and continuous 

development. The opportunity to benchmark my own teaching 

methods against others will foster professional growth and 

highlight areas where I can refine my strategies.” 

Social Cooperation 

1 

“Collaborative projects across departments could be enhanced 

through social cooperation elements. Working together with 

colleagues on interdisciplinary projects would foster a supportive 

teaching community and enable me to gain valuable insights from 

peers. This cooperation helps us build a united learning 

environment, benefiting not only teachers but also the entire 

school culture.” 

4 

“Incorporating joint lesson planning or collaborative grading 

frameworks would be immensely beneficial, particularly for 

addressing and managing disruptive student behaviours. This 

allows me to consult and brainstorm with colleagues, making the 

teaching process a collective effort rather than an isolated one. By 

sharing strategies and insights, we leverage our collective 

expertise to develop more effective approaches to behaviour 

management, thereby building a stronger, more supportive 

teaching environment.” 

Social Reputation 

3 

“A social reputation system that recognises innovative teaching 

methods would be motivating. Being acknowledged for developing 

creative lesson plans or adopting new technologies would bolster 

my confidence. This recognition reinforces the idea that thoughtful 

pedagogy matters and inspires me to continue experimenting with 

new approaches.” 

6 

“Highlighting teachers' strengths through a public reputation 

framework can be a strong motivator. If my accomplishments are 

highlighted, it would inspire me to continue working diligently 

while providing a template for others to follow.” 

11 

“A reputation board that showcases expertise across different 

subjects would encourage us to collaborate more effectively. If I 

know my specific strengths are recognised, I'm more likely to 
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8.4 Discussion 

The current findings resonate significantly with those presented in Chapter 7 of this 

thesis, where the efficacy of various gamification elements like badges, points, and 

engage in knowledge sharing and learn from other colleagues who 

excel in complementary skills.” 

Performance 

Acknowledgement 

2 

“Regular recognition of lesson delivery and student engagement 

metrics would be highly motivating. This feedback loop 

acknowledges our efforts and allows me to identify what's working 

and where I can improve. The acknowledgment fosters a culture 

of reflective teaching that prioritises growth.” 

7 

“A personalised acknowledgment system that celebrates 

incremental achievements would be beneficial. Receiving specific 

feedback on new initiatives helps me gauge my progress and 

solidifies the value of continuous innovation.” 

Performance 

Points 

8 

“A performance points system that rewards participation in 

professional development activities would be invaluable. It 

encourages me to stay updated on the latest teaching strategies 

and curriculum trends. Accumulating points could translate into 

bonuses or classroom resources, which would further motivate me 

to excel.” 

10 

“A structured points system that acknowledges participation in 

mentorship or peer coaching programs can be highly engaging. If 

my efforts to support new teachers are recognised with points that 

contribute to professional development opportunities, I would be 

inclined to actively participate and grow alongside my 

colleagues.” 

12 

“A points-based system that encourages lesson innovation and 

extra-curricular involvement would be ideal. It ensures my 

creative efforts are recognised, giving me tangible rewards while 

reinforcing my commitment to holistic teaching.” 
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medals was explored within the context of the CamaleOn system for students. Both 

studies underscore the potent impact of gamification on enhancing user engagement 

and educational outcomes. However, a deeper comparison reveals similarities and 

differences arising from the contrasting educational and cultural contexts of the 

studies. Chapter 7 concentrates on gamification in a Brazilian online secondary 

educational environment (CamaleOn), where badges, points, and medals were 

particularly useful to promote student engagement. However, unlike the Brazilian 

study, the current study takes place in Saudi Arabia and is focused on gamification in 

a primary (face to face) educational setting, where the teachers are the users. Educators 

here preferred data-driven strategies and competitive frameworks, and so elements 

like 'Statistics' and 'Leader Boards' emerged as popular. This divergence in preferences 

points to the importance of cultural and contextual factors. In the Brazilian context, 

the emphasis on student-oriented gamification elements is consistent with a learning 

culture that values individualised learning and motivational rewards for students. On 

the contrary, the strong preference for 'Statistics' in Saudi Arabia implies a teaching 

culture that favours measurable outcomes and structured pedagogical strategies. Both 

'Leader Boards' in both contexts reflect its wide appeal as a motivational tool, but used 

in different ways: in Brazil, to encourage student competition, and in Saudi Arabia, to 

lift the engagement of teachers through display of comparative performance metrics. 

 

 The application of Toda’s TGEEE has proven instrumental in structuring the 

gamification strategies within the ABM system. The taxonomy's emphasis on 

dynamics, mechanics, and aesthetics allows for a nuanced integration of gamification 

elements that cater specifically to educational needs. User feedback and engagement 

metrics from the current study indicate that elements categorised under mechanics, 
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such as 'Statistics' and 'Progression', are particularly effective. These elements not only 

align with the pedagogical goals but also enhance the educational interface, making 

learning and teaching both engaging and efficient. The introduction of new 

gamification elements such as 'Leaderboards, 'Points', and 'Badges' was received 

positively, as evidenced by the enthusiastic teacher responses. The adoption of 

'Leaderboards, which gained the highest approval, marks a notable success, reflecting 

a significant increase in both teacher engagement in this study and student 

participation in the prior study (see section 7.3). This success can be attributed to the 

competitive yet motivational environment fostered by leaderboards.  

 Integrating the results from various stages of the study, it is evident that certain 

gamification elements have a more pronounced influence on engagement than others 

for teachers. 'Statistics' and 'Leaderboards' stand out as particularly impactful, which 

can be theoretically backed by their classification within the TGEEE Wheel under 

mechanics and dynamics respectively. These elements enhance the learning and 

teaching experience by providing clear goals, immediate feedback, and a sense of 

achievement, which are crucial for maintaining high engagement levels. While the 

study provides valuable insights, it is not without limitations. One of the primary 

constraints was the relatively small sample size of teachers, which may not fully 

capture the diverse range of perspectives and experiences within the educational 

sector. However, qualitative data was also collected to better support the findings. 

Additionally, the reliance on self-reported data can introduce biases that might affect 

the accuracy of the findings. Further research involving a larger cohort and perhaps a 

more varied array of gamification elements could help in validating and expanding 

upon these results. 
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8.5 Epilogue 

This chapter demonstrates the integration of gamification into a hybrid ML-ABM 

approach tailored for teachers, building on the findings from Chapter 7. By 

incorporating gamified elements, such as ‘Statistics’, ‘Time’, and ‘Progression’, the 

study explored how these tools can enhance teacher engagement, improve classroom 

management, to address disruptive behaviours. The feedback from educators 

highlighted the potential of gamification to motivate teachers, and consequently 

supporting data-driven decision-making in educational settings. A key contribution of 

this chapter is its demonstration of how gamification strategies can transition from 

focusing on student engagement, as seen in Chapter 7, to empowering teachers in 

managing classroom dynamics. This chapter also showcases the importance of 

aligning gamification elements with pedagogical objectives, guided by Toda’s TGEEE 

framework. By bridging theoretical principles with empirical findings, the study 

created a systematic approach to designing effective gamified tools. These findings 

contribute to the methodology in this thesis, by establishing a framework for 

integrating gamification into the hybrid ML-ABM. The limitation of these findings 

include the relatively small sample size of 12 teachers, which may not fully capture 

the diversity of perspectives and teaching practices within broader educational 

contexts. Additionally, the study was conducted in Saudi Arabia, and the cultural and 

educational practices unique to this setting may limit the generalisability of the 

findings to other regions. Finally, the reliance on self-reported data could introduce 

bias, as participants’ responses may not fully reflect their actual experiences or 

behaviors when using gamification elements. Future work should explore further 

validation across varied educational environments and cultures, refining the model to 
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ensure its sustainability and effectiveness. This chapter sets the stage for the final 

synthesis of the research findings, positioning gamification as a transformative 

element in both teaching and learning. Building on the findings presented in the 

previous chapters, Chapter 9 critically examines their implications, situates them 

within the broader literature, and explores their significance for research field. 
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CHAPTER 9 

9 Discussion 

9.1 Prologue 

In this thesis, a simulation model is proposed and investigated, to aid teachers 

in the management and mitigation of disruptive student behaviour within classroom 

and online learning environments. The simulation is based on ABM, designating 

teachers and students as agents within a model that emulates a classroom environment. 

Agents interact and simulate various classroom characteristics, encompassing 

disruptive behaviours and potential mitigation strategies. The simulation enables 

teachers to trial scenarios of disruptive behaviours and solutions before 

implementation, minimising the need for trial-and-error approaches. To understand 

teachers' requirements for managing disruptive behaviour, semi-structured interviews 

were conducted, exploring their strategies and classroom management techniques. 

Teachers' responses and observations were analysed and integrated into the simulation 

model through co-design, ensuring it effectively mimicked a classroom setting. 

 The ABM was combined with ML models to bolster the effectiveness of the 

strategies. ML was utilised in three stages: pre-processing, agent behaviour and 

decision-making, and post-simulation output processing. During pre-processing, ML 

algorithms trained datasets to model the anticipated student and teacher behaviour 

under varying circumstances. The trained models forecasted changes in student 

behaviour and their impact on the learning process. ML contributed by modelling the 
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expected behaviour based on circumstances and enabled teachers to benefit from their 

own or their colleagues' experiences. Moreover, it facilitated the incorporation of 

gamification in controlling disruptive behaviour. Throughout the agent behaviour and 

decision-making process, ML algorithms determined suitable strategies based on the 

simulated situation. This thesis presents a novel integration of Agent Based Modelling 

(ABM), Machine Learning (ML), and gamification to explore and mitigate disruptive 

student behaviour in educational environments. Unlike previous studies that separately 

examined these techniques, this research uniquely combines them into a 

comprehensive framework, providing a data-driven approach to classroom 

management. 

 By addressing the eight formulated RQs, this thesis advances the 

understanding of how ABM is utilised, to explore disruptive behaviours’ impact on 

learning, how ML can enhance classroom simulations, and how gamification 

strategies optimise engagement. This chapter synthesises the findings, highlighting 

their theoretical and practical implications as well as limitations.  

 Initially, this chapter provides an overview of fundamental aspects pertinent to 

this thesis. It includes a demonstration of the significance and impact of disruptive 

behaviour in both conventional classroom-based and online learning environments, 

discusses issues concerning peers and disruptive behaviours, and explores the 

utilisation of gamification to mitigate such behaviours. Subsequently, it examines the 

summary of findings presented in the literature review and related works. This 

comprises an overview of the thesis's outcomes, together with its overarching 

conclusions and contributions. Additionally, it considers the limitations associated 

with ABM and ML in education, as well as their exploration into student performance 
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in relation to disruptive behaviour and gamification tactics. Finally, potential avenues 

for future research are identified, with broader research implications. 

9.2 General Overview 

9.2.1 Disruptive Behaviour and Student Performance in Educational Settings 

Disruptive behaviour in educational settings represents a significant barrier to 

effective teaching and learning. This discussion explores the interplay between student 

disruptive behaviour and academic performance, emphasising the role of teachers in 

managing these challenges. Teachers are pivotal in either mitigating or exacerbating 

student disruptions. Teaching strategies that engage students and relate content to their 

lives can significantly reduce disruptive behaviour [56]. Conversely, monotonous and 

irrelevant teaching methods can increase boredom and disruptive behaviour, leading 

to a decline in academic performance [143]. 

 Disruptive behaviour stems from both internal desires, such as the need for 

attention, and external pressures like peer influence and societal expectations [127]. 

These factors often interact, making it challenging for educators to address the root 

causes of disruption. Educational interventions must therefore be multifaceted, 

addressing both the psychological needs of students and the environmental factors 

influencing their behaviour. Disruptive behaviours have far-reaching consequences, 

affecting not only the psychological well-being of students and teachers but also 

academic outcomes. Research indicates a direct negative correlation between 

disruptive behaviour and academic performance, particularly in subjects like 

mathematics [6]. This underscores the importance of addressing disruptive behaviour 

to enhance educational outcomes. 
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 To combat disruptive behaviour, an integrative approach involving both 

educational and psychological strategies is essential. Strengthening the perceived 

cognitive ability and the importance of schoolwork can result in enhanced student 

involvement and fewer disruptions [58, 196]. Furthermore, establishing a positive 

teacher-student rapport and implementing proactive management strategies can 

significantly mitigate disruptive behaviours [129]. Overall, the intersection of 

disruptive behaviour and student performance in educational settings is complex, 

influenced by psychological, pedagogical, and social factors. Effective management 

of disruptive behaviour in schools requires a holistic approach that considers the 

cognitive and emotional needs of students, as well as the pedagogical approaches 

employed by educators. By fostering an engaging, relevant, and supportive learning 

environment, educators can significantly improve both student behaviour and 

academic performance. 

9.2.2 Predictive Modelling with Machine Learning for Disruptive Behaviour 

Management in Classroom Settings 

In the realm of educational technology, the use of predictive modelling and ML to 

manage disruptive behaviours in classroom settings has emerged as a transformative 

approach. This methodology not only facilitates the identification of at-risk students 

but also enhances the development of tailored interventions that can significantly 

improve both academic outcomes and classroom dynamics. 

 ML models are adept at processing vast and varied data sets, including student 

behavioural patterns and academic records [94]. These models, which employ 

techniques ranging from decision trees and random forests to neural networks, allow 

for a nuanced analysis of how specific disruptive behaviours such as inattentiveness, 
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hyperactivity, and impulsiveness correlate with academic achievements [12]. The 

predictive power of these models lies in their ability to uncover non-linear 

relationships and intricate patterns that traditional statistical methods might overlook. 

 For instance, regression analysis can quantitatively assess the impact of 

disruptive behaviours on students’ academic performance, providing educators with 

clear metrics on which behaviours most strongly predict negative educational 

outcomes [17]. This insight is invaluable for developing targeted strategies that 

address these specific behaviours. One of the most significant advantages of 

employing ML in educational settings is the capability to develop customised 

intervention strategies. By analysing patterns in student behaviour and academic 

performance, ML models can predict which students are likely to encounter academic 

difficulties due to their disruptive behaviours. This early identification allows for 

timely and specific interventions, such as one-on-one tutoring or behavioural 

therapies, which are tailored to the individual needs of each student [12]. 

 Moreover, these predictive models are instrumental in optimising resource 

allocation within educational institutions. By identifying classes or grade levels with 

a higher prevalence of disruptive behaviours, schools can strategically allocate 

resources like additional counsellors or special education services, ensuring that 

support is provided where it is most needed [12]. Predictive modelling also plays a 

critical role in shaping educational policies. Insights derived from these models can 

inform more effective strategies for managing disruptive behaviours in schools. For 

example, data-driven policies might include mandatory training for teachers in 

behavioural management techniques, thus fostering a more conducive learning 

environment for all students [12]. However, the use of predictive models and ML in 
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education raises several ethical considerations, including concerns over the protection 

of data privacy and the possibility of biases in algorithmic recommendations. It is 

imperative that these technologies are implemented in a transparent and ethically 

responsible manner to maintain trust among all stakeholders including students, 

parents, educators, and policymakers. 

 In addition to typical ML models, XAI plays a crucial role in the application 

of predictive modelling within educational settings, particularly in managing 

disruptive behaviours and monitoring student performance. XAI techniques [144], 

such as LIME and SHAP, make the outcomes of ML models transparent and 

comprehensible to human users. This explainability is essential for educators and 

stakeholders to trust and effectively utilise AI predictions. For instance, by 

understanding the specific contributions of behavioural factors like inattentiveness or 

hyperactivity to predicted academic outcomes, educators can tailor interventions that 

address these issues with precision. Furthermore, the clarity provided by XAI fosters 

a deeper understanding of how various disruptive behaviours influence learning 

outcomes, thereby enabling more targeted and effective educational strategies. This 

approach not only enhances the efficacy of interventions but also builds trust among 

educators, students, and parents, ensuring that the decisions based on AI are both 

justified and beneficial to the educational process. 

 In summary, integrating ML and predictive modelling into educational 

practices offers a robust tool for managing disruptive behaviours in classroom settings. 

By enabling a deep understanding of the relationships between student behaviours and 

learning outcomes, these technologies facilitate the creation of a more personalised, 

supportive, and effective educational environment. As these models continue to 

evolve, their potential to transform educational strategies grows, promising significant 
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advancements in the way educational institutions address the challenges of disruptive 

behaviour. 

9.2.3 ABM and Machine Learning Combination for Disruptive 

Behaviour Management in Classroom Settings 

The integration of ML with ABM represents a forward-thinking approach in 

addressing disruptive behaviour in educational settings. This synergy harnesses the 

strengths of both disciplines to create dynamic, adaptive models that provide deep 

insights into student interactions and the effectiveness of classroom management 

strategies. ML excels in identifying patterns and making predictions from large 

datasets, thus enhancing the capability of ABMs to simulate complex systems such as 

classrooms. These simulations can include varying student behaviours, interaction 

dynamics, and the effect of different educational strategies [94]. For instance, ABMs 

can detail the emergent phenomena that occur from student interactions, while ML 

can predict the outcomes of these phenomena on learning processes and behaviour 

management [87]. 

 Incorporating ML algorithms within ABMs allows the models to not just 

operate under predefined rules but to adapt based on ongoing data analysis. This aspect 

is particularly crucial in educational settings where student behaviour and learning 

outcomes can fluctuate significantly due to various factors including teaching 

methods, peer interactions, and individual psychological states [94]. Such models can 

simulate how changes in classroom strategies might improve engagement and reduce 

disruptive behaviours, offering a potent tool for educational research and policy-

making. The combined use of ABM and ML not only increases the predictive accuracy 

of educational models but also enhances their adaptability. This is critical for 
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developing interventions that are responsive to the evolving dynamics within a 

classroom. Models can forecast how students might respond to different teaching 

styles or classroom configurations, helping educators and administrators to make 

informed decisions that promote a conducive learning environment [94]. Integrating 

ML techniques such as reinforcement learning within ABMs can help simulate how 

agents (students and teachers) learn and adapt over time, reflecting more accurately 

the real-world learning processes. Predictive analytics further aid in forecasting and 

planning, ensuring that educational strategies are both effective and timely [121]. 

However, there is a notable gap in research in the application of ML techniques to 

predict and manage disruptive behaviours in classrooms. Traditional methods often 

rely on retrospective analyses and static intervention strategies, which may not account 

for the dynamic nature of classroom interactions. Current research frequently 

overlooks the potential of real-time data analytics to identify patterns and trends in 

disruptive student behaviour, which could inform more timely and effective 

interventions. This thesis leverages ML algorithms (see Chapter 0) to predict 

disruptive behaviours based on historical and real-time data, providing educators with 

actionable insights to mitigate disruptions before they escalate. Furthermore, another 

notable gap in the utilisation of ABM to simulate complex classroom environments 

and interactions. Existing studies have predominantly focused on linear models and 

static analyses, which fail to capture the nuanced and emergent behaviours that arise 

from the interactions between students, teachers, and their environment. ABM offers 

a powerful tool to model these interactions dynamically, allowing for the exploration 

of various scenarios and the identification of effective strategies for managing 

classroom behaviour and enhancing student performance. This thesis focuses on the 

influence of disruptive students, teacher, and peer characteristics on learning 
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outcomes. Disruptive behaviours, such as inattentiveness and hyperactivity, can 

significantly hinder the learning environment. In a novel approach towards mitigating 

disruptive behaviour, the research in this thesis aims to quantify the extent to which 

these behaviours affect other students' performance and classroom dynamics. By 

identifying the specific impacts of different types of disruptive behaviours using ML 

techniques combined with ABM simulation (see Chapter 0), this research can inform 

targeted interventions to mitigate their negative effects. 

9.2.4 Gamification and Predictive Modelling Combination for 

Disruptive Behaviour Mitigation in Educational Settings 

Combining gamification, predictive analytics, and predictive modelling offers a 

compelling strategy for addressing disruptive behaviour in educational environments. 

This multi-faceted strategy leverages the motivational allure of gamification, the 

predictive power of analytics, and the foresight of modelling to create an engaging and 

harmonious learning environment. Gamification involves introducing game elements 

such as points, badges, and leaderboards into educational contexts to increase student 

engagement and motivation. Early research by Deterding et al. [51] and further studies 

by Kapp [97] underline the potential of gamification to transform learning from a 

passive activity into an interactive, rewarding experience. These elements, when well-

implemented, do not merely captivate students' attention; they enhance intrinsic 

motivation, making the learning process both enjoyable and challenging. For instance, 

Kapp [97] empirically demonstrated that such strategies could significantly boost 

student participation and sustain interaction with course materials, suggesting a direct 

correlation between gamification and enhanced learning outcomes. 
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 Despite the expansive reach of MOOCs, they often struggle with high dropout 

rates and low student engagement. Gamification has been identified as a solution to 

these issues, providing a more dynamic and interactive educational experience that 

can help sustain student interest and participation over time. For example, Carrera and 

Ramı́rez-Hernández [37] highlighted that the impersonal scale of MOOCs often 

dilutes student motivation, an issue that gamification can address by fostering a sense 

of community and achievement through interactive and competitive elements. 

Predictive analytics and modelling further extend the capabilities of gamification by 

allowing educators to anticipate student behaviours and tailor interventions 

accordingly. Predictive models use historical data and real-time interactions to 

forecast outcomes and inform the design of gamification elements that best meet 

students' needs. Jordan and Mitchell [94] noted the efficacy of such models in 

educational settings. 

 Recently conducted systematic literature reviews, such as those conducted by 

Freitas and Silva [91], provide empirical evidence supporting the effectiveness of 

gamification in reducing dropout rates and enhancing student satisfaction in MOOCs. 

These studies often reveal that gamified courses see higher completion rates and more 

positive feedback compared to non-gamified counterparts, underscoring the practical 

benefits of integrating game mechanics into educational platforms. While gamification 

can significantly improve engagement, it is crucial that it does not overshadow the 

educational content. Kapp [97] emphasised the importance of balancing gamification 

elements with the curriculum to ensure that learning objectives are met without 

compromising the integrity of the educational material. This balance is vital for 
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ensuring that the educational benefits of gamification translate into genuine learning 

outcomes and not just higher engagement metrics. 

 Addressing the diverse needs of learners is another critical aspect of effectively 

implementing gamification. Personalised gamification strategies that cater to different 

learning preferences and cultural backgrounds can maximise inclusivity and 

effectiveness. Yujia et. al. [85] suggested, based on a systematic literature review, that 

customising gamification elements to suit varied learner profiles could enhance the 

inclusivity and effectiveness of educational interventions, making them more 

engaging and educationally valuable for a global audience. Beyond immediate 

engagement, predictive models can be used to maintain interest and participation 

throughout the course duration. These models analyse patterns of engagement and 

performance to adjust gamification strategies dynamically, ensuring they remain 

effective and relevant as student needs and behaviours evolve. In summary, 

gamification has been widely adopted in various educational contexts, to enhance 

motivation and engagement, as stated. However, empirical evidence on its specific 

impact within online learning, such as MOOCs, was limited at the time this research 

was conducted. In my work on gamification in education for MOOCs, I tackle 

engagement in a gamified online learning, in Chapter 0. As the design of gamified 

learning systems is usually theory-driven, there is a lack of runtime feedback, non-

gamified scaffolding, and under-exploitation of interaction data. Whilst the theoretical 

basis is very important in designing purpose-fit gamified systems, in the context of 

large-scale online learning like MOOCs, it is not feasible to propose a one-size-fits-

all design of gamification. For this reason, it is very important to take into account the 

data generated from the system, in order to better understand the users’ interactions, 

and refine the offering. This thesis employs ML to investigate which gamification 
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elements are most effective in increasing engagement and how these effects can be 

monitored in real-time, as understanding the real-time impact of gamification elements 

can enable educators to dynamically adapt their strategies to maximise student 

engagement (see Chapter 0 , [4]).  

 Additionally, while the available related scholarly works have explored the 

integration of gamification across various educational disciplines, there has been a 

noticeable gap in research specifically focusing on gamification for teachers. 

Compared to the research in this thesis, which examines how gamification can be 

utilised to enhance teacher engagement and effectiveness, most studies primarily focus 

on student outcomes. In Chapter 0, this research addresses this gap, by providing an 

in-depth analysis of the impact of gamification on teachers, in the context of the ABM 

model proposed, demonstrating how elements like real-time statistics and 

leaderboards can significantly improve teaching practices and teacher motivation. This 

focus on teachers is essential, as their engagement is crucial for the successful 

implementation of gamified learning environments, and it aligns with the broader aim 

of enhancing educational outcomes through innovative strategies. 

9.3 Findings from the Thesis 

9.3.1 RQ1: How can Agent-Based Models be utilised to explore the influence of 

disruptive students on their peers and the roles of teaching quality, teacher 

control in a disruptive classroom?  

This research investigates the role of ABM in understanding and mitigating disruptive 

behaviour by simulating classroom interactions integrating real-world behavioural 

data and predictive analytics to simulate and analyse the impact of disruptive students 

on their peers and the learning environment. In exploring the impact of disruptive 

students on learning environments, particularly inattentive or hyperactive students, 
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and the roles of teaching quality and peer dynamics, research available in this thesis 

employs ABM to simulate classroom interactions and scrutinise these effects over 

time. This detailed analysis serves to address the critical research questions outlined, 

drawing on the simulated classroom dynamics to gauge the impact of disruption and 

the effectiveness of instructional control.  

 The simulation results in Chapter 4 reveal that the presence of disruptive 

students, especially those exhibiting inattentiveness or hyperactivity, has a significant 

and generally negative impact on the learning outcomes of their peers. This is 

evidenced by the correlation between higher rates of disruptive behaviour and lower 

average End Math scores in simulated classroom scenarios. Disruptive behaviour 

tends to interrupt the flow of lessons and can lead to a reduction in effective 

instructional time, thereby compromising the learning achievements of all students in 

the environment. This result aligns with traditional educational theories which posit 

that classroom disruptions diminish the overall educational climate, making it difficult 

for students to maintain focus and absorb instructional content effectively. 

 The ABM results shown in section 4.3 indicate that classrooms characterised 

by higher instances of disruptive behaviours, particularly inattentiveness and 

hyperactivity, see a significant downturn in academic performance. For instance, the 

simulation reveals that classes with elevated levels of disruption recorded lower End 

Math scores, with a notable negative correlation of -0.16 between the percentage of 

disruptive students and average End Math scores. This suggests that disruption has a 

tangible, detrimental effect on the learning environment, impeding the academic 

progress of not only the disruptive students but their peers as well. The detrimental 

impact of hyperactivity and inattentiveness is further underscored by correlations of -
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0.18 and -0.33, respectively, with End Math scores, highlighting the extensive reach 

of such behaviours on classroom achievement. 

 Teaching quality and teacher control emerge as significant factors in mitigating 

the effects of disruptive behaviour. High-quality teaching, characterised by engaging 

instructional methods and strong classroom management skills, tends to buffer the 

negative impacts of disruptive behaviours. The results shown in section 4.5 suggest 

that strong teacher control can significantly mitigate the disruptive tendencies of 

students, leading to improved academic outcomes. Furthermore, peer characteristics 

also play a crucial role; supportive peer interactions and positive classroom dynamics 

contribute to an environment where students can achieve better despite the presence 

of disruptive behaviours. This finding supports the idea that both teacher efficacy and 

peer support are pivotal in shaping the learning outcomes in environments challenged 

by disruptive behaviours. 

 Teaching quality and teacher control are pivotal in mitigating the adverse 

effects posed by disruptive behaviours. Findings in section 4.5 illustrate that higher 

teacher control and better teaching quality can significantly improve academic 

outcomes, even in challenging environments. For example, the simulation run with 

maximum values for teacher control and teaching quality resulted in substantially 

better End Math scores (average score increase from initial 27.43 to 48.56), 

demonstrating the effectiveness of strong educational leadership in overcoming 

disruptions. This suggests that proactive teaching strategies and firm classroom 

management are crucial in cultivating an environment conducive to learning, 

particularly in settings prone to disruptions. 

 Teacher control, when effectively combined with positive peer characteristics, 

significantly enhances the resilience of the classroom environment against disruptive 



184 
 

influences. Classrooms where teachers maintain high levels of control and where peers 

exhibit supportive behaviours demonstrate higher academic performance and less 

overall disruption. This dual approach not only directly counters the effects of 

disruptive behaviour but also fosters a supportive learning atmosphere that can buffer 

the potential academic risks associated with such behaviours. 

The combination of teacher control and positive peer characteristics plays a 

significant role in student achievement. Where teacher control was high, the model 

showed an improvement in the learning states of students, thereby enhancing overall 

academic performance. This effect was amplified in environments where peer 

interactions were also positive, highlighting the symbiotic relationship between 

teacher-led interventions and peer dynamics. For instance, in simulations where 

teacher control was paired with constructive peer influence, there was a notable 

improvement in both behaviour and academic outcomes, illustrating the dual 

importance of strong leadership and a supportive peer environment in educational 

success. This research question was thus answered by providing quantitative 

validation of relationships between disruptive students, teacher control and teaching 

quality and lower classroom performance using ABM. 

9.3.2 RQ2: How can we predict and explore students' learning outcomes based on 

disruption-related features (Inattentiveness, Hyperactivity, Impulsiveness), 

using ML models and Explainable Artificial Intelligence (XAI)? 

This research explores the potential of ML models in predicting student performance 

and the application of XAI techniques (SHAP values) to explain the predictions. The 

discoveries of this thesis (in Chapter 5) identified the ability to predict students' 

learning outcomes based on features related to disruptive behaviour, such as 

inattentiveness, hyperactivity, and impulsiveness. Additionally, the use of XAI to 
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explain these relationships offers valuable insights for educational interventions 

targeting disruptive behaviours. The results are obtained through a methodical 

approach that combines statistical approaches and ML models to clearly discuss the 

RQ2. 

 The methodology employed involves the Jenks' natural breaks method to 

categorise the intensity of disruptive behaviours and learning outcomes. This 

classification facilitated the application of various predictive models, with the 

XGBoost classifier emerging as the most effective, demonstrating superior handling 

of complex datasets and resistance to overfitting. The study reports that using the 

XGBoost, Gradient Boosting and AdaBoost algorithms, the average F1-score of 0.91 

across the three groups. F1-score presents the harmonic mean of precision and recall 

and it was notably high in these three algorithms, indicating a robust model 

performance. 

 The predictive model incorporated features such as inattentiveness, 

hyperactivity, and impulsiveness, each weighted according to their influence on 

learning outcomes. The analysis revealed that inattentiveness was the most significant 

predictor of lower learning outcomes, followed by impulsiveness and hyperactivity. 

 This result was quantified using improvement scores calculated from the 

differences between students' Start Math and End Math scores, effectively 

demonstrating how each type of disruptive behaviour influenced academic 

improvement over time. Quantitatively, the study showcases how each disruptive 

behaviour feature contributes to the predictive accuracy of the learning outcomes. 

Using under-sampling to address class imbalances, the analysis moves forward by 

quantifying the improvement in students' scores from the beginning to the end of the 

school year. This quantification, denoted as an improvement score, is a pivotal part of 
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the analysis, highlighting the practical impact of the educational interventions on 

students' performance. 

 Next, to elucidate the relationship between disruptive behaviours and learning 

outcomes, the study applied SHAP values to the best-performing model, XGBoost. 

SHAP values provided a detailed decomposition of each feature's contribution to the 

predictive outcome, offering insights into the magnitude and direction of each 

behaviour's impact. The application of SHAP values in explaining the predictions 

made by ML models offers a profound insight into the significance of each feature in 

the learning outcomes. XAI allows for a granular understanding of how features such 

as inattentiveness, hyperactivity, and impulsiveness impact the model's predictions, 

providing educators and researchers with a powerful tool to interpret complex model 

behaviours. 

 For instance, the SHAP values indicated that inattentiveness had the most 

significant negative impact on learning outcomes, followed by impulsiveness and 

hyperactivity. This finding is crucial as it not only validates the predictive models but 

also offers a nuanced view into the specific aspects of disruptive behaviour that most 

strongly affect student learning. By pinpointing the exact nature of these impacts, 

educational strategies can be better tailored to address specific disruptive behaviours, 

potentially leading to more effective interventions. Similarly, impulsiveness 

contributed negatively, though to a lesser extent than inattentiveness, while 

hyperactivity had the least impact among the three studied behaviours. Thus, the 

findings in this thesis, as summarised in this section largely answered the research 

question, by providing a validated framework for using ML in education, ensuring 

interpretability and actionable insights for educators. 

 



187 
 

9.3.3 RQ3: How can Machine Learning (ML) be integrated into an agent-based 

model (ABM) to improve the simulation of classroom disruptive behaviour, 

and what parameters of ML prediction yield realistic results in this hybrid 

ML-ABM approach? 

This research investigates how ML can refine and improve the results of ABM 

simulation of classroom disruptive behaviour. The integration of ML into the ABM 

framework is designed to enhance the model's predictive capabilities regarding the 

impact of disruptive behaviours on learning outcomes. The methodology involves 

using ML to analyse historical data from the PIPS system to predict the End Math 

scores of students based on their initial assessments and behavioural characteristics. 

These ML predictions are then fed into the ABM, which simulates daily classroom 

interactions and adjusts the learning outcomes based on simulated behaviours and 

interactions. 

 This incorporation allows the ABM to not only simulate the direct effects of 

observed behaviours but also to adjust predictions based on the complex, dynamic 

interactions typical of classroom environments. For instance, ML outputs are used to 

set initial conditions within the ABM, providing a baseline against which the impact 

of simulated interventions and interactions is measured. The final End Math scores are 

a combination of the ML predictions and the outcomes of the ABM simulations, thus 

offering a nuanced view of how disruptions influence academic performance. 

 In the hybrid ML-ABM approach described in this thesis, ML plays a crucial 

role not only in setting initial conditions for the ABM but also in continuously feeding 

into it to refine and enhance its accuracy and adaptability. This integration showcases 

a strategic deployment of ML to compensate for the limitations in available features 

within the PIPS dataset, particularly when either simulation or prediction alone might 
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not suffice due to these limitations. The ML component's utility begins with data pre-

processing, where it analyses the available features such as 'Start Math' and 'Start 

Reading' scores alongside behavioural indicators like 'Inattentiveness', 'Hyperactivity', 

and 'Impulsiveness'. Through robust data analysis, ML algorithms discover patterns 

and relationships that might not be immediately apparent but are crucial for setting 

accurate initial conditions in the simulation. For example, understanding how initial 

assessments correlate with end academic performance enables the model to simulate 

more realistic outcomes. 

 Moreover, ML significantly contributes to predictive modelling within this 

hybrid framework. By predicting which students are likely to exhibit disruptive 

behaviours based on historical data and current classroom dynamics, ML sets the stage 

for more targeted and effective interventions within the ABM. This predictive 

capability is pivotal in managing classroom dynamics proactively rather than 

reactively. A unique concept of the employed approach is the establishment of a 

feedback loop between ABM and ML. As the ABM simulates classroom interactions 

and academic outcomes, it generates new data that feeds back into the ML model. This 

data is then used to refine future predictions and adjustments in the simulation. This 

iterative process enhances the model's accuracy over time, allowing it to adapt to new 

information and changing classroom dynamics. It essentially creates a dynamic system 

where both components (ABM and ML) benefit from ongoing interaction, leading to 

continuous improvement in both the realism of the simulation and the effectiveness of 

the predictive models. This sophisticated use of ML to support ABM not only 

addresses the lack of sufficient features in the initial dataset but also leverages the 

strengths of both approaches to produce results that are as close as possible to real-

world scenarios. By integrating ML and ABM in this manner, this thesis research 
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provides a compelling example of how complex educational dynamics can be 

effectively modelled and understood, leading to more informed and effective 

educational strategies. 

Next, to ensure that the ML component of the hybrid model yields realistic 

predictions, various parameters were analysed. The primary data included variables 

such as Start Math and 'Start Reading' scores, as well as behavioural indicators like 

'Inattentiveness', 'Hyperactivity', and 'Impulsiveness'. The ML algorithms particularly 

focused on how these initial assessments and behaviours correlated with the End Math 

scores. LR was identified as the most effective algorithm for this purpose due to its 

ability to handle linear relationships between variables effectively. The model's 

performance was evaluated using MAE and the Pearson correlation coefficient, with 

results indicating strong predictive accuracy. For instance, the correlation between the 

predicted End Math scores and the actual scores from the PIPS dataset (for academic 

year 2007/2008 as well as the following year 2008/2009) was notably high, suggesting 

that the ML model could reliably predict academic outcomes based on early-year 

assessments and observed behaviours. 

 ML’s role in data pre-processing primarily centres on the identification of 

patterns and correlations that are not immediately obvious. The available data features 

such as baseline academic scores, behavioural indicators including inattentiveness and 

hyperactivity and demographic factors provide a rich dataset from which meaningful 

insights can be derived. For example, understanding how early academic performance 

might correlate with behaviours such as hyperactivity could help in tailoring 

interventions that are both timely and effective. The use of various ML algorithms in 

this exploratory phase allows for the examination of linear and non-linear relationships 

between features. Techniques such as LR can highlight direct correlations between 
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variables, such as Start Math scores and End Math scores. However, more complex 

relationships, particularly those involving behavioural data, often require sophisticated 

ML approaches like decision trees or ensemble methods that can handle the multi-

dimensional nature of educational data [60, 150]. 

 The hybrid ML-ABM approach was tested by simulating an academic year 

with various configurations of student behaviours and classroom interventions. The 

simulations revealed that changing seating arrangements and implementing targeted 

behavioural interventions could significantly affect students' academic outcomes. The 

average End Math scores from the simulations closely matched the actual data, with 

Pearson correlation coefficients ranging from 0.61 for Start Math to -0.59 for 

'Inattentiveness', indicating that both academic and behavioural variables were 

accurately reflected in the simulation outcomes. Moreover, the model's ability to adapt 

to different classroom settings and its robustness in handling various behavioural 

dynamics were affirmed through multiple runs, which consistently produced realistic 

End Math scores. This consistency underscores the model's utility in exploring the 

effects of educational strategies and classroom management techniques on student 

performance. 

 However, traditional ABMs are often static and do not adapt to changing 

conditions without manual intervention. With ML integration, ABMs can dynamically 

adapt to changing behaviours and conditions by updating the agent states based on 

real-time data analysis. This makes the simulations more responsive to future additions 

of interventions or changes in the classroom environment. Besides the parameters, by 

understanding individual student behaviours and their impacts on the classroom 

environment, educators can tailor interventions more effectively. ML-driven insights 

can help identify which students need support and what type of interventions are most 
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likely to be effective, enabling more personalised and effective educational strategies. 

This research in this thesis, as summarised in this section, answers the research 

question, by demonstrating that ML enhances ABM’s adaptability and predictive 

power, providing a data-driven approach to classroom behaviour modelling.  

9.3.4 RQ4: How can gamification strategies be implemented to increase 

engagement in an educational setting, and which gamification elements 

have the most significant impact on engagement, both in student-oriented 

systems and teacher-oriented systems?)  

This section assesses the role of gamification in student and teacher engagement, using 

ML and real-world student data. The detailed analysis of the data in this thesis 

(Chapter 7) explores the efficacy of gamification elements in increasing engagement 

within MOOCs, specifically using a Brazilian gamified intelligent learning software 

known as CamaleOn. The study primarily focuses on real-time detection of which 

specific gamification elements most significantly impact student engagement. Key 

findings from the study indicate a strong positive correlation between the gamification 

rewards earned by students and their engagement levels, measured in terms of login 

frequency and interaction intensity. This positive association suggests that 

gamification significantly enhances student engagement, highlighting the 

effectiveness of elements like badges, which showed the highest correlation with 

engagement metrics. To elaborate, the thesis presents in section 7.3 a piece of evidence 

that gamification elements such as XPs, badges, and medals significantly enhance 

student engagement in MOOC environments. The quantitative data collected from 

CamaleOn includes interactions from 8,270 students, showcasing a robust dataset 

well-suited for statistical analysis. For example, during the period studied, students 

solved 307,814 problems, watched 1,131 videos, received 236,345 badges, and logged 
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in 67,752 times, demonstrating a substantial interaction with the platform’s gamified 

elements. 

 A crucial aspect of the analysis involves correlating the number of logins and 

various gamification rewards with student engagement levels. The results from the 

correlation tests indicated a strong positive relationship between the number of 

rewards (badges, points, medals) a student earned and their engagement metrics, such 

as login frequency and interaction with course content. For instance, the Pearson 

correlation coefficients showed particularly high values between the number of badges 

earned and login frequency (0.631), and between total reward count and question 

attempts (0.660). 

 To determine in real-time which gamification elements most impact student 

engagement, the study employed both traditional ML models and advanced deep 

learning (DL) methods to analyse the data. ML techniques like LR, KNN, and more 

complex algorithms like MLP and CNN were used. These models classified students 

into high and low engagement categories based on the gamification rewards they 

interacted with. Interestingly, the MLP model emerged as the most effective, 

suggesting that DL techniques might be particularly adept at interpreting the complex 

patterns associated with gamified learning environments. This insight is critical for the 

real-time analysis as it suggests that deploying models like MLP in live educational 

platforms could help in dynamically adjusting gamification strategies to enhance 

student engagement continuously. 

 The teacher-related part of the RQ4 provides a rich exploration of the efficacy 

of integrating gamification strategies within an ABM system tailored for teachers. 

Building upon the foundational work of the CamaleOn study and guided by Toda’s 

TGEEE, this RQ delves into the practical application and iterative refinement of 
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gamification elements to enhance teacher interaction with ABM system. A key finding 

from Chapter 07 for the student-related part of RQ4 is the significant correlation 

between specific gamification components including badges, points, and medals and 

increased student interaction metrics, such as frequency of logins and completion 

rates. This correlation underscores the practical impact of gamification in fostering 

student engagement and retention in educational settings. Moreover, the chapter 

highlights the role of data-driven approaches in facilitating the adaptive integration of 

gamification elements, ensuring their alignment with teacher needs. The synergy 

between Toda’s theoretical frameworks and the empirical data from Chapter 7 

crystallises into a comprehensive understanding of how gamification can be optimised 

within educational systems for teachers. The chapter illustrates how theoretical 

constructs cannot only underpin practical implementations but also guide the strategic 

enhancement of educational technologies, thereby ensuring that gamification remains 

a dynamic and effective tool in educational settings. Therefore, the research in this 

thesis, as summarised here,  fully answers the research question, by providing 

empirical validation of gamification elements and offering insights for integrating 

gamification in diverse educational settings. 

9.4 Limitations  

Despite its promise, the integration of ABM, ML, and gamification faces 

numerous challenges. These include ensuring the privacy and ethical use of student 

data, addressing the technical complexities associated with integrating sophisticated 

models, and catering to the diverse needs of a global student population. Additionally, 

the effectiveness of these methodologies can vary significantly depending on several 

contextual factors, such as classroom size, available resources, and the specific needs 

of students and educators. 
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9.4.1 Limitations on the impact of disruptive behaviours in classrooms and how 

teacher control, teaching quality, and peer characteristics influence 

academic achievement (RQ1) 

The ABM approach applied in the doctoral thesis offers invaluable insights 

into the dynamics of classroom behaviour and its impact on learning outcomes. 

However, the application of ABM in this context is not without limitations and 

challenges. First, the model relies on generalised behavioural categories 

(inattentiveness, hyperactivity, impulsiveness) to represent disruptive behaviours. 

While these categories capture a broad spectrum of disruptive activities, they do not 

encompass all possible forms of classroom disruptions. For instance, emotional 

disturbances or external environmental factors that might influence student behaviour 

are not accounted for in the simulation. This simplification might lead to an 

underestimation of the complexity of student interactions and the variety of 

disruptions that can occur in a real classroom setting.  

 Moreover, the simulation presumes a consistent effect of disruptive behaviours 

across different demographic and psychological profiles of students, which may not 

hold true universally. The diversity in student resilience and susceptibility to 

disruption based on personal or socio-economic backgrounds is not considered in the 

current model. This lack of granularity could affect the applicability of the findings to 

diverse educational settings, potentially limiting the generalisability of the 

intervention strategies proposed by the study. 

 Another challenge is the model's static nature regarding the teaching quality 

and teacher control parameters. In reality, these factors are dynamic and can change 

over time based on numerous variables, including teacher training, experience, and the 

specific classroom context. The ABM does not account for the evolution of teaching 
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strategies in response to real-time classroom dynamics, which could lead to 

discrepancies between the simulated outcomes and actual classroom scenarios. The 

simulation's outcomes are impacted by this disparity because it is limited to the input 

data. In the real world, several factors are actually affected such as the performance of 

students. The spatial component of the model, while innovative, presents another 

limitation. The impact of disruptive students on their immediate neighbours is 

considered, but the broader classroom environment and the possible diffusions of 

disruption are not fully explored. This might overlook the subtler influences that a 

disruptive student could have on the entire class, beyond their immediate neighbours. 

 In addition, the ABM's scalability and adaptability to different educational 

contexts pose a challenge. Transferring the findings from this controlled simulation to 

real-world educational settings requires a careful consideration of contextual factors 

that were not simulated. Moreover, the computational demands of scaling the ABM to 

larger educational settings or more complex student interactions could limit its 

practical applicability.  

The exploration of how teacher control, teaching quality, and peer characteristics 

influence academic achievement in classrooms with disruptive behaviours presents a 

complex array of challenges and limitations. Understanding these factors within such 

a dynamic environment requires meticulous consideration of the interplay between 

various educational elements and student behaviours. One significant limitation is the 

inherent complexity of isolating the effects of teacher control, teaching quality, and 

peer interactions. These factors are deeply intertwined and influenced by a multitude 

of external and internal classroom dynamics. For instance, the effectiveness of teacher 

control may not solely depend on the teacher's ability or strategy but also on the nature 

of the disruptive behaviours and the specific needs and backgrounds of the students 



196 
 

involved. Additionally, teaching quality is a multifaceted attribute that includes not 

only the delivery and content expertise of the teacher but also their ability to engage 

students and manage the classroom effectively under varying conditions. 

 Another challenge is the subjective nature of measuring teaching quality and 

teacher control. These concepts can be highly subjective and vary widely among 

educators and observers. What constitutes effective teaching or adequate control in 

one classroom or cultural context may not translate directly to another. This variability 

makes it difficult to standardise measures of teaching quality and control for the 

purposes of broad research or application. Peer characteristics also present a complex 

variable to quantify. The influence of peers can be both positive and negative, and the 

impact of these interactions on individual students can vary greatly depending on 

personal characteristics such as resilience, susceptibility to peer pressure, and pre-

existing academic abilities. Additionally, the shifting dynamics within a group of 

students over a school year can alter the influence of peer characteristics on academic 

achievement, making it a moving target for educational researchers and practitioners. 

 Moreover, the data collection methods used to assess the impact of these 

factors are often limited by practical constraints such as time, access, and the 

willingness of schools to participate in such studies. Observational studies, while rich 

in detail, can be time-consuming and may not always capture the full range of 

behaviours and interactions within a classroom. Surveys and self-reports, on the other 

hand, can introduce biases that skew the data, particularly when respondents are asked 

to evaluate subjective aspects such as teaching quality or peer influence. 

9.4.1 Limitations on the use of disruptiveness features in machine learning models 

to predict student outcomes, and XAI's interpretation of these predictions (RQ2) 
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The thesis study provides a comprehensive examination of how disruptive behaviours, 

such as inattention, hyperactivity, and impulsivity, can be quantified using ML models 

to forecast students' academic performance, with subsequent interpretations facilitated 

by XAI. This novel method of prediction and interpretation gives useful information, 

but it also has certain drawbacks and limits. 

 One primary limitation in using disruptiveness features to predict educational 

outcomes is the risk of oversimplification. Disruptive behaviours are complex and 

multi-faceted, often influenced by a range of environmental, psychological, and 

physiological factors that may not be fully captured by the three features used. This 

simplification can lead to models that do not account for the nuanced realities of 

individual student experiences, potentially resulting in predictions that are not 

universally applicable or that misrepresent the underlying dynamics. Additionally, the 

reliance on quantitative measures from structured datasets to predict outcomes 

introduces potential biases. These biases can stem from the way data is collected, the 

representativeness of the sample, and the inherent assumptions made during the 

modelling process. For instance, if the data primarily originates from a specific 

population or a particular type of educational institution, the predictive model's 

applicability to other groups or environments may be limited. 

 On the other hand, the use of XAI to interpret these predictions also presents 

several challenges. While XAI provides a means to understand the contribution of 

each feature to the model’s predictions, it relies heavily on the accuracy and reliability 

of the underlying ML model. If the model is biased or based on incomplete data, the 

explanations generated by XAI will be correspondingly flawed. Moreover, XAI 

interpretations can sometimes be complex and require a high level of expertise to 

understand, which may not be accessible to all educational stakeholders. Furthermore, 
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the application of SHAP values and other XAI techniques often assumes that the 

model's feature-importance rankings are stable across different instances and 

scenarios. However, in practice, these importance rankings can vary, leading to 

different interpretations under different circumstances. This variability can confuse 

stakeholders or lead to inconsistent educational interventions. 

9.4.2 Limitations for enhancing machine learning-based agent simulations of 

disruptive behaviour in the classroom in ABM, as well as the parameters 

needed to make reliable predictions in this hybrid model (RQ3) 

One of the primary limitations in enhancing ML-based simulations within an ABM 

framework is the dependency on high-quality, comprehensive data. The effectiveness 

of ML algorithms relies heavily on the availability of large, diverse, and accurate 

datasets that represent a wide range of student behaviours and outcomes. In many 

educational settings, collecting such detailed and extensive data can be challenging 

due to privacy concerns, logistical issues, and the variability in data collection methods 

across schools. Moreover, the data may not capture all the nuanced factors that 

influence disruptive behaviour, such as psychological conditions, home environment, 

and other socio-economic factors, leading to incomplete or biased models. As the 

complexity of a hybrid ML-ABM approach increases, so does the difficulty in 

interpreting the results. While ML can provide detailed predictions and ABM can 

simulate complex interactions, the integration of these two approaches can result in a 

model that is hard to understand and analyse. This complexity can hinder the ability 

of educators and policymakers to derive actionable insights from the simulations. 

Furthermore, complex models require extensive computational resources, which can 

limit their accessibility for many educational institutions. 
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 Another significant challenge is the generalisability of the hybrid model across 

different educational contexts. Disruptive behaviour and its impacts can vary greatly 

depending on cultural, regional, and institutional factors. A model trained on data from 

one specific educational system or demographic may not perform well when applied 

to another, limiting its utility across diverse settings. Additionally, scaling the model 

to accommodate larger or more diverse student populations without losing accuracy 

or increasing computational costs remains a daunting task. While ML models excel at 

making predictions based on historical data, their ability to adapt to real-time changes 

in the classroom is still limited. In dynamic classroom environments, where student 

interactions and behaviours can change rapidly, the model might not respond swiftly 

enough to be effectively used as a real-time management tool. This lag can diminish 

the usefulness of the model in providing immediate support or interventions. 

 Integrating ML into educational simulations raises ethical questions, 

particularly regarding student privacy and the potential consequences of predictive 

modelling. There is a risk of stigmatising students based on predicted behaviours, 

which could influence teacher perceptions and treatment of students. Ensuring that the 

use of such models adheres to ethical standards and respects student confidentiality is 

paramount. 

9.4.3 Limitations on the methods in which gamification elements improve MOOC 

engagement and the real-time metrics measuring these elements' effects on 

student engagement (RQ4) 

The thesis on the impact of gamification on MOOC engagement, particularly on the 

CamaleOn platform, provides valuable insights, but it also has several limitations and 

challenges that require further discussion. One significant limitation is the 

generalizability of the findings. While CamaleOn provides a robust dataset from a 
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Brazilian context, extending these results to other cultural or educational environments 

may not be straightforward. Different student populations may interact with 

gamification elements in diverse ways, influenced by varying educational 

backgrounds, learning preferences, and cultural factors. 

 Additionally, the reliance on engagement metrics such as login frequency and 

interaction data to measure the efficacy of gamification might not fully capture the 

depth of student engagement or learning outcomes. Engagement is a multi-

dimensional construct that includes emotional, cognitive, and behavioural aspects. The 

current metrics predominantly address the behavioural dimension, potentially 

overlooking deeper cognitive and emotional engagements that contribute significantly 

to effective learning. 

 Another challenge is the evolution of technology and gamification elements 

themselves. As digital learning environments rapidly evolve, so too do the 

technologies and methodologies used to implement gamification. The study's findings 

are based on data-driven approaches that may need continual updates to remain 

relevant, involving ongoing adaptation of the models to incorporate new gamification 

trends and technologies that could affect student engagement. The data-driven 

approach, while innovative, also implies dependence on the availability and quality of 

the data collected. Any biases in data collection or the specific gamification elements 

tracked could skew the results. Furthermore, the analysis heavily depends on ML 

models, which require careful calibration and validation to avoid overfitting or 

underestimating the complexity of real-world behaviours. 

 Moreover, the practical implementation of real-time adjustments based on 

gamification feedback loops is technically challenging. It requires sophisticated 

systems capable of processing large datasets swiftly and accurately, which can be 
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resource-intensive. Ensuring privacy and ethical handling of student data while 

implementing such systems is another critical concern that must be addressed to 

maintain trust and integrity in educational settings. 

9.4.4 Limitations for engagement of Toda’s gamification elements in the ABM 

system (RQ8) 

Despite the insightful findings based on RQ8, several limitations merit consideration. 

Firstly, the study relies heavily on quantitative metrics to gauge the effectiveness of 

gamification elements, which may not fully capture the qualitative aspects of student 

engagement and learning experiences. This reliance on quantitative data could 

overlook nuanced behavioural changes and emotional responses that are crucial for a 

holistic understanding of gamification’s impact. Another significant limitation is the 

sample size and diversity of the teacher participants involved in the study. With only 

twelve teachers, the findings may not be generalizable across broader educational 

contexts or diverse student populations. Furthermore, the teachers’ perceptions and 

experiences might reflect a biased view towards innovative educational technologies, 

thereby skewing the results towards more positive outcomes. 

 The study also assumes a uniform application of gamification elements across 

different subjects and educational levels, which may not be effective given the varied 

nature of subject matter and student demographics. This lack of differentiation could 

lead to suboptimal engagement strategies in subjects that require different pedagogical 

approaches. Lastly, the research methodology employed in the study, while robust, 

does not account for long-term impacts of gamification on educational outcomes. The 

short-term nature of the study limits the ability to assess the sustainability and 

evolution of gamification strategies over time, which is critical for validating the 

enduring benefits of these interventions. 
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 The research model designed for this study, initially based on data from UK 

schools, faced significant challenges due to the COVID-19 pandemic. This required 

unforeseen adaptations, including conducting crucial demonstrations and interviews 

predominantly in Saudi Arabia. This geographical shift introduces a range of 

limitations affecting the study's applicability and generalizability. Key challenges 

stem from inherent differences in educational cultures, practices, and technological 

infrastructures between the UK and Saudi Arabia. These variances may alter the 

implementation and outcomes of gamification strategies, causing potential data 

skewness when applied in non-UK contexts. Furthermore, educational objectives, 

curriculum standards, and engagement metrics in Saudi schools differ significantly 

from those in the UK, potentially diminishing the effectiveness and impact of the 

gamification elements originally tailored for the UK. This could lead to research 

findings that are not universally applicable, thereby constraining the ability to draw 

broad conclusions about the model’s efficacy across diverse educational systems. 

 Additionally, logistical and communicational hurdles associated with 

international research during a pandemic add further complexity to conducting and 

validating the study effectively. These challenges include but are not limited to, time 

zone differences, language barriers, and the varying degrees of pandemic impact, all 

of which could affect the quality and consistency of data collection. 

9.5 Domain-Specific vs. Generic Applicability of Research Insights 

This thesis contributes to understanding student disruptive behaviour, gamification in 

education, and hybrid ML-ABM systems in a variety of educational contexts. While 

some findings and methodologies are domain-specific, tailored to the unique 

characteristics of the datasets and contexts used, others have broader implications and 

can inform educational strategies in diverse settings. 
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9.5.1 Domain-specific Insights 

Several findings from this research are tightly coupled with the specific contexts of 

UK primary schools, Brazilian MOOCs, and Saudi Arabian teacher experiences. For 

instance, the PIPS dataset provided unique behavioural and academic performance 

metrics that shaped the ABM and ML models, making these tools particularly 

relevant to traditional classroom settings. Similarly, the use of the CamaleOn dataset 

highlighted gamification's impact on secondary students in an online context, where 

cultural and technological factors played a significant role. 

These domain-specific insights underline the importance of tailoring interventions to 

the unique characteristics of each educational environment. For example, cultural 

attitudes toward classroom management in Saudi Arabia influenced teachers' feedback 

on gamification elements, demonstrating the need for sensitivity to local norms when 

deploying such systems. 

9.5.2 Generic and Broadly Applicable Findings 

Despite the contextual specificity of some results, the research also reveals principles 

that surpass individual domains. The foundational concept of integrating ML and 

ABM to simulate and predict educational outcomes can be adapted across various 

settings. Likewise, the efficacy of gamification in enhancing engagement, supported 

by clear metrics and predictive modelling, provides a framework applicable to diverse 

educational platforms. 

The use of XAI techniques, such as SHAP values, to interpret the impact of 

behavioural factors on learning outcomes also offers a universally relevant approach. 

Educators and policymakers in different contexts can leverage these methodologies to 

gain deeper insights into student behaviours and optimise interventions. 

9.5.3 Balancing Context and Generality 
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A key challenge in this research has been striking a balance between leveraging 

domain-specific data and extracting insights that can inform broader applications. The 

hybrid ML-ABM approach exemplifies this balance, combining the granularity of 

context-specific simulations with the flexibility of machine learning predictions. 

While the immediate applications of this work align closely with the studied contexts, 

the underlying methodologies and conceptual frameworks provide a blueprint for 

adaptation to other educational systems. 

9.5.4 Future Directions 

To expand the broader applicability of these findings, future research should focus on 

testing and validating these models in varied educational environments. This includes 

exploring how socio-economic, technological, and cultural differences influence the 

generalisability of interventions. Cross-contextual studies could provide valuable 

insights into the universal and context-specific elements of disruptive behaviour 

management and engagement strategies. 

 

9.6 Epilogue 

This thesis has ventured deep into the complex interplay of educational practices, 

student behaviour, and technological advancements. The research has underscored the 

pivotal role of ABM in simulating and managing classroom dynamics, particularly in 

addressing disruptive student behaviours. By integrating these technologies with 

pedagogical strategies and psychological insights, this research has endeavoured to 

craft a more nuanced understanding of classroom interactions and to develop 

interventions that are both effective and empathetic. Throughout this research, the 

significance of high-quality, comprehensive data has been continually emphasised. It 

is the lifeblood that fuels the efficacy of the employed ML models. As these advances, 
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there is a pressing need to enhance the data collection methodologies to ensure broader 

coverage and deeper insights. This will not only refine the predictive accuracy of the 

ML models but also enable them to adapt dynamically to the nuanced needs of diverse 

educational environments. 

 Moreover, the generalisability of the findings across different cultural and 

institutional contexts presents a formidable challenge, necessitating rigorous cross-

validation studies to ensure that the models are robust and universally applicable. This 

endeavour will involve a concerted effort to test and adapt these models across various 

educational settings, thus paving the way for their widespread adoption and 

implementation. The ethical dimensions of employing ML in education, particularly 

concerning student privacy and the risk of stigmatisation, call for a thoughtful 

examination. Future research must strive to propose and build stringent frameworks 

and guidelines with ethics that govern the development and utilization of these 

technologies, ensuring that they enhance rather than compromise the educational 

experience. 

 The promise of interdisciplinary research has never been more evident. The 

fruitful integration of insights from psychology, education, and computer science has 

unveiled new horizons in understanding and improving student engagement and 

behaviour. This collaborative approach not only enriches the models but also ensures 

that they resonate more profoundly with the real-world complexities of educational 

environments. As we look to the future, the potential of real-time ML applications in 

dynamically shaping educational interventions offers a thrilling prospect. The 

development of streaming ML algorithms and the adoption of edge computing can 

revolutionise the way educational interventions are crafted and delivered, ensuring 

they are as timely as they are effective.  
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CHAPTER 10 

10 Conclusion  

This thesis has rigorously explored the integration of ABM, ML, and gamification 

within educational settings. Aimed at addressing and mitigating disruptive behaviours 

while enhancing both student and teacher performance, this research utilises advanced 

technological methodologies to revolutionise educational practices, offering 

substantial improvements in engagement and behavioural management. 

 The initial chapter sets the stage for this investigation by outlining the 

prevalent issues of disruptive behaviours in educational settings and the potential of 

technological interventions to address these challenges. Disruptive behaviours, which 

significantly impede learning processes, necessitate innovative solutions beyond 

conventional disciplinary actions. The research questions were established to explore 

how ABM and ML, enhanced with gamification techniques, could be utilised to 

simulate educational environments and manage classroom dynamics effectively. This 

foundational chapter emphasised the need for a multidisciplinary approach to 

understand and improve the interactions within classrooms, setting a clear trajectory 

for the research. 

 Chapter 2 delves into the existing literature surrounding ABM, ML, and 

gamification in education, providing a robust theoretical framework for the study. This 

comprehensive review highlighted previous studies that demonstrated the efficacy of 

these technologies in various educational contexts. By examining these precedents, 

the chapter underscores the gaps in current research, particularly in integrating these 

three technologies to create a cohesive system that addresses both student and teacher 
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needs. This background established the academic justification for the thesis, linking 

established theories with the proposed innovative approaches. 

 The methodology described in Chapter 3 provides details about the technical 

execution of integrating ABM and ML to create predictive models and simulations of 

classroom behaviour and learning outcomes. This chapter is crucial in outlining the 

sophisticated tools and techniques employed, such as the development of specific 

algorithms for behaviour prediction and the construction of simulation environments 

for testing different intervention strategies. The methodological rigour ensures that the 

research was grounded in reliable, scientifically valid techniques, providing a clear 

pathway from theoretical models to practical applications. These interviews were 

crucial in refining the models based on first-hand insights, ensuring that the 

simulations were not only technically robust but also resonated authentically with the 

practical realities of classroom environments. The qualitative interviews also served 

as a platform for demonstrating the simulation models to the teachers, a process that 

was key to validating the models' effectiveness and relevance. Teachers’ feedback 

from these demonstrations was invaluable, providing critical insights that guided 

further refinement of the simulation models to better meet the needs of schools.  

 In Chapter 4, the focus shifts to the implementation of the initial simulation 

models and the preliminary findings. This chapter presents the first iteration of the 

ABM framework, detailing the setup, and the initial results from the simulations. The 

findings highlighted how different variables, such as teacher characteristics and 

student backgrounds, affected the dynamics within the simulated classroom. These 

initial results were critical in identifying the strengths and limitations of the early 

models, providing a foundation for subsequent refinements. One significant insight 

from the model is the impact of peer influences on student behaviour. The simulations 
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revealed that students surrounded by highly disruptive peers tend to exhibit lower 

academic performance. This finding suggests that interventions should not only focus 

on individual students but also consider the broader classroom environment. The 

model also demonstrated that hyperactivity, while a disruptive behaviour, has a less 

pronounced effect on academic performance compared to inattentiveness. This 

distinction is important for developing targeted interventions that address the specific 

types of disruptive behaviours most detrimental to learning. 

 Chapter 5 has identified the varying effects of three disruptiveness-related 

features, namely inattentiveness, hyperactivity and impulsiveness on students’ 

learning outcomes through prediction explanations. In this chapter, it was 

demonstrated how disruptive behaviour can influence both initial and future 

knowledge, with financial features of students showing a higher impact at the 

classroom level than at the individual level. Notably, the study revealed that the 

Students' IDACI has a generally higher effect on learning outcomes, sometimes even 

surpassing the effect of initial knowledge, contrasting with existing research that 

typically emphasises initial knowledge as the primary determinant of learning success. 

Using advanced ML techniques, including hyperparameter tuning and the Jenks' 

natural breaks method, the performance of predictive models like XGBoost was 

significantly enhanced. These models, even with a limited number of features, 

provided transparent predictions through XAI, offering visual explanations for 

teachers on the predicted learning outcomes using disruptiveness-related features. 

 Further advancements to ABM simulations were detailed in Chapter 6, where 

the design and implementation of a hybrid ML-ABM approach were thoroughly 

examined to enhance the simulation of classroom interactions and disruptive 

behaviours. The research in this chapter aims to integrate the predictive power of ML 
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with the dynamic capabilities of ABM by creating a robust framework for 

understanding and improving educational outcomes. This chapter is pivotal in 

demonstrating the practical applicability and effectiveness of the integrated system, 

showcasing significant improvements in managing disruptive behaviours and 

enhancing teaching methodologies. The empirical trials also provided valuable 

feedback from teachers, which was instrumental in fine-tuning the system to better 

meet the actual needs of schools. By leveraging advanced computational techniques, 

this research contributes to the development of more effective and data-driven 

educational strategies. 

 Moreover, Chapter 7 presents a grassroots approach to understanding the 

gamification needs of students and analysing how gamification elements impact 

student engagement and performance. Specifically, this research investigates how 

gamification can be linked to student engagement within CamaleOn, a Brazilian 

MOOC for high school students preparing for higher education. The study revealed 

that integrating gamification elements such as badges, points, and medals significantly 

enhances student engagement metrics, including frequency of logins and course 

completion rates. The results highlighted that the existing gamification features in 

CamaleOn, such as points, badges, and medals, have a strong positive correlation with 

student engagement. The data analysis demonstrated that badges, in particular, showed 

the highest correlation with engagement, indicating that students responded well to the 

recognition and rewards associated with their activities. The study also showed that 

these gamification elements could effectively predict student engagement levels, with 

machine learning models achieving high accuracy rates in their predictions. 

 In Chapter 8, the integration of gamification elements within the ABM for 

educational settings is systematically evaluated, drawing on empirical insights and 
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theoretical frameworks. Building on the foundational findings from previous chapters, 

particularly the efficacy of various gamification elements explored within the 

CamaleOn system, this chapter aims to validate and enhance the gamification 

strategies to improve teacher engagement and pedagogical effectiveness. Empirical 

validation through teacher feedback and engagement metrics indicated that 

gamification elements categorised under mechanics, like 'Statistics' and 'Progression', 

had a pronounced impact on engagement. These elements not only aligned with 

pedagogical goals but also enhanced the educational interface, making learning and 

teaching more interactive and effective. These interviews were crucial in refining the 

models based on first-hand insights, ensuring that the simulations were not only 

technically robust but also resonated authentically with the practical realities of 

classroom environments. The qualitative interviews also served as a platform for 

demonstrating the simulation models to the teachers, a process that was key to 

validating the models' effectiveness and relevance. Teachers’ feedback from these 

demonstrations was invaluable, providing critical insights that guided further 

refinement of the simulation models to better meet the needs of schools.  

 In Chapter 9, the discussion expands on the implications of the findings, 

considering the impact on educational theory and practice. The chapter acknowledges 

the limitations encountered during the research, such as the variability in educational 

settings and potential biases in data collection. It also proposes future research 

directions, emphasising the need for ongoing development and adaptation of the 

models to encompass a wider range of behavioural dynamics and educational 

scenarios. 

 In conclusion, this thesis presents a compelling case for the integration of 

gamification, ML, and ABM in education. It lays a solid foundation for future research 
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and development in educational technologies, aiming to enhance the learning 

experience and address challenges within educational settings effectively. The synergy 

between theoretical frameworks and empirical data observed in this study not only 

validates the effectiveness of the proposed models but also enriches the academic 

discourse surrounding educational innovation. The potential for this integrated 

approach to transform educational practices is immense, promising a future where 

education is more engaging, adaptive, and effective. 

Summarising, the major contributions of this research are as follows:  

• For the first time, a comprehensive model was proposed that 

seamlessly integrates ABM, ML, and gamification techniques within 

educational settings. This integration is designed to effectively mitigate 

disruptive behaviours while simultaneously enhancing both student 

and teacher performance. 

• To the best of my knowledge, this is the first study to develop a hybrid 

ML-ABM approach specifically tailored to simulate classroom 

interactions and predict disruptive behaviours. This model leverages 

the predictive power of ML and the dynamic capabilities of ABM to 

create a robust model for understanding and improving educational 

outcomes.( Chapter 6) 

• A novel method was developed to quantify and analyse the impact of 

gamification elements on student engagement and performance within 

a Brazilian MOOC (CamaleOn) for high school students preparing for 

higher education. The research revealed that integrating gamification 

elements significantly enhances student engagement metrics, including 

frequency of logins and course completion rates. (Chapter 7) 
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• An original model was introduced for systematically evaluating the 

integration of gamification elements within an ABM for educational 

settings. I proposed a new method for empirical validation through 

teacher feedback and engagement metrics, indicating that gamification 

elements categorised under mechanics, like 'Statistics' and 

'Progression', have had a pronounced impact on engagement. (Chapter 

8) 

 
 
The following could be addressed in future research and applications in the field of 

education. First, future research should explore more sophisticated gamification 

strategies that align closely with educational objectives and cater to a diverse range 

of learners. Investigating the long-term effects of gamification on learning outcomes 

and student retention in MOOCs can provide deeper insights into gamification in 

enhancing education outcomes [97]. 

 Second, future research should consider more comprehensive behavioural 

interventions. There is a need for more comprehensive studies on the effectiveness of 

various behavioural interventions in managing disruptive classroom behaviours. 

Research should also focus on the scalability and sustainability of these interventions 

in different educational settings [54]. 

 Third, future research should enhance predictive models with AI. Integrating 

artificial intelligence and advanced machine learning techniques in predictive 

modelling offers vast potential. Future research should develop more accurate, 

reliable, and ethical predictive models, considering the complexities of student 

behaviours and educational contexts [94]. Furthermore, to enhance the generalisability 
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of ML models, future research should focus on cross-validation studies that apply 

these models to different educational settings. This involves testing the models across 

various schools, regions, and cultures to assess their efficacy and adaptability. 

Diversifying the range of input data can help improve the model's generalisability.  

 Fourth, further studies are required to understand the complex dynamics of 

peer influence on academic achievement. Research should focus on how educational 

policies and classroom practices can harness positive peer interactions while 

mitigating negative influences [68]. 

 Fifth, future research should consider cross-disciplinary approaches: The 

research should adopt a cross-disciplinary approach, integrating insights from 

psychology, education, data science, and behavioural economics. This approach can 

lead to more holistic and effective educational strategies and interventions. 

 Sixth, future research could focus on developing more sophisticated data 

collection methods that ensure broader coverage and deeper insights into student 

behaviour. This might include longitudinal studies that track student behaviour over 

several years or the incorporation of qualitative data that can offer richer contextual 

understanding. Enhancing data collection techniques will aid in training more robust 

ML models that can accurately predict and adapt to a range of disruptive behaviours. 

 Therefore, while significant strides have been made in understanding and 

enhancing educational processes and outcomes, continuous research and innovation 

are essential. By addressing these recommendations, future research can contribute to 

more effective, engaging, and inclusive educational practices and policies. 
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