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Abstract

Nonparametric predictive inference (NPI) is a statistical methodology based on the

assumption A(n) proposed by Hill for the prediction of a future observation [60]. NPI

uses lower and upper probabilities to quantify uncertainty. NPI has been developed

for various data types, and the explicitly predictive nature of NPI makes the method

particularly attractive and well-suited for a wide variety of statistical applications.

This thesis proposes novel contributions to statistical methods for ordinal data using

the NPI method with multiple future observations. The method uses a latent variable

representation of the data observations and ordered categories on the real-line.

NPI lower and upper probabilities for several events involving multiple future

ordinal observations are presented. The NPI method is applied to selection problems

involving multiple future ordinal observations. Pairwise comparison of future obser-

vations from two independent groups is presented. The accuracy of diagnostic tests

with ordinal outcomes is considered, with NPI-based methods introduced for selecting

the optimal thresholds of a diagnostic test, initially for two-group classification and

then extended to three-group classification.

To illustrate the proposed NPI methods, examples using data from the literature

are provided. Simulation studies are conducted to investigate the predictive per-

formance of the proposed methods for selecting diagnostic test thresholds and to

compare these methods with classical methods, such as the Youden index, Liu index

and maximum volume methods. The results indicate that the NPI methods tend

to outperform the classical approaches by correctly classifying more individuals in

each group. Overall, the number of future observations considered influences the

NPI lower and upper probabilities, affecting category selection, pairwise comparison,

and diagnostic threshold selection.
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Chapter 1

Introduction

In many applications involving categorical data, the categories are ordered. For

example, categories may represent different levels of disease severity [61]. In statistics,

this type of data is referred to as ordinal data. Ordinal data occur in many fields, such

as medicine, public health, marketing, education, and the social sciences [2, 3, 79].

For instance, in the social sciences, surveys often evaluate opinions and attitudes

using ordered categories like Strongly disagree, Disagree, Neither agree nor disagree,

Agree, and Strongly agree. Similarly, in medicine, patients can be categorized into

ordered pain levels such as No Pain, Mild, Moderate, Severe, and Very Severe Pain.

This thesis proposes novel contributions to statistical methods for ordinal data

using the nonparametric predictive inference (NPI) method [10, 26]. NPI is a

statistical methodology based on Hill’s assumption A(n) [60], quantifying uncertainty

through lower and upper probabilities and explicitly focusing on future observations.

The explicitly predictive nature of NPI makes it particularly attractive and well

suited for a wide variety of statistical applications and for different data types [28].

Coolen et al. [32, 33] and Elkhafifi [47] developed NPI for ordinal data, focusing on

a single future observation. They presented NPI for ordinal data using a latent vari-

able representation of the observations, with the categories ordered and represented

by intervals on the real-line. They also derived closed-form formulae for the NPI

lower and upper probabilities for events involving the next future observation and

briefly compared these inferences to NPI for multinomial data where the order of

the categories is not taken into account. This thesis extends NPI for ordinal data to

multiple future observations.

1
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This chapter provides the necessary background for the later chapters. Section

1.1 provides an overview of the NPI method. Section 1.2 summarises the NPI results

for ordinal data with a single future observation. Section 1.3 presents an overview of

NPI-based selection methods. Section 1.4 introduces the concepts of diagnostic test

accuracy and main methods used in the literature to determine diagnostic thresholds.

Finally, Section 1.5 outlines the structure of this thesis.

1.1 Nonparametric Predictive Inference (NPI)

The concept of imprecise probabilities dates back to the mid-19th century when it was

introduced by Boole in 1854 [19]. In classical probability theory, uncertainty about

an event A is quantified using a single precise probability P (A) ∈ [0, 1] that satisfies

Kolmogorov’s axioms [11]. However, if information about A is incomplete or vague,

a unique probability may be too restrictive, so using an imprecise probability is an

appropriate alternative approach. The imprecise probability concept uses an interval

probability for uncertainty quantification instead of a single precise probability

P (A) [11]. The interval probability is bounded by a lower probability P (A) and

an upper probability P (A), such that 0 ≤ P (A) ≤ P (A) ≤ 1. Therefore, lower and

upper probabilities generalise the classical theory of precise probability. When

P (A) = P (A), classical probability occurs as a special case of imprecise probability.

The case when [P (A), P (A)] = [0, 1] reflects complete lack of knowledge or absence

of information about the event A. The statistical method used in this thesis, known

as Nonparametric Predictive Inference (NPI), uses lower and upper probabilities to

quantify uncertainty [11, 28].

NPI is based on Hill’s assumption A(n) [60] which gives a direct conditional

probability for a future observable random quantity, conditional on observed values

of related random quantities [10, 27]. This assumption is introduced to predict

one or more future observations and is suitable for cases where no prior knowledge

about the underlying distribution exists, or where one does not want to use any such

knowledge or further assumptions. Introducing the assumption A(n) requires some

notation. Let X1, . . . , Xn, Xn+1 be exchangeable and continuous real-valued random
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quantities. The corresponding ordered observed values of X1, . . . , Xn are represented

by x1 < x2 < . . . < xn, with x0 = −∞ and xn+1 = ∞ defined for ease of notation.

It is assumed that no ties exist among the real-valued data for ease of presentation;

therefore, the probability of having ties is assumed to be 0. However, if there are ties

in the data, then these can be handled in NPI by assuming that tied observations

differ by small amounts that tend to zero, but this is irrelevant in this work as we

assume no ties occur in the assumed latent variable representation (as discussed in

Section 1.2). Based on n observations that divide the real-line into n+ 1 intervals,

Ii = (xi−1, xi) for i = 1, . . . , n+ 1, the assumption A(n) is that a future observation

Xn+1 will be in interval Ii with probability 1
n+1

[28], that is, for each i = 1, . . . , n+1,

P (Xn+1 ∈ Ii) =
1

n+ 1
(1.1)

The assumption A(n) is a post-data assumption related to finite exchangeability

[45]. Inferences based on A(n) are predictive and nonparametric and they can be

appropriate to be applied if there is hardly any knowledge about the random quantity

of interest, or if one does not want to use such information. For many events of

interest, the assumption A(n) is not sufficient to derive precise probabilities, however,

it yields lower and upper bounds for probabilities [45]. Based on the assumption

A(n), Augustin and Coolen [10] introduced NPI lower and upper probabilities.

The NPI method can be used for m ≥ 1 future observations via Hill’s assumptions

A(n), A(n+1), . . . , A(n+m−1). These jointly are referred to as ‘the A(·) assumptions’.

The A(·) assumptions imply that all possible orderings of n data observations and m

future observations are equally likely [35], where the m future observations are not

distinguished or ordered in any way. Let Sj denote the number of future observations

that are in Ij, so Sj = #{Xn+l ∈ Ij, l = 1, . . . ,m}. The A(·) assumptions lead to

P (
n+1⋂
j=1

{Sj = sj}) =
(
n+m

m

)−1

(1.2)

where sj, for j = 1. . . . , n+ 1, are non-negative integers with
∑n+1

j=1 sj = m.
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Equation (1.2) implies that all
(
n+m
m

)
orderings of m future observations among

the n observations are equally likely. The NPI lower probability for an event involving

the m future observations is the proportion of the orderings for which the event must

hold, and the corresponding NPI upper probability is the proportion of the orderings

for which the event can hold [10, 27].

The number
(
n+m
m

)
of possible orderings of m future observations among n data

observations is very large in many situations. Hence, it can be computationally

expensive, or even impossible, to determine the NPI lower and upper probabilities

exactly. The sampling of orderings method, originally introduced for studying test

reproducibility [34], offers a practical solution, as it allows for the estimation of the

NPI lower and upper probabilities by sampling of orderings, reducing computation

time. The sampling of orderings method is particularly attractive when closed-form

expressions for the NPI lower and upper probabilities are unavailable for specific

events of interest, but where for each ordering it is easily verified if the event of

interest must hold, can hold, or cannot hold. In this thesis, the sampling of orderings

method is utilized to estimate NPI lower and upper probabilities, as presented in

Section 3.4.

The sampling of orderings procedure is based on simple random sampling (SRS).

The process ensures that each possible ordering is equally likely to be chosen dur-

ing each selection, and that each selection of an ordering is independent of other

selections [34]. It is important to note that, as the total number of orderings is

large, any possible differences between sampling with or without replacement can be

neglected, so sampling with replacement is applied.

Implementation of the sampling of orderings method involves sampling a vector

of integers (r1, . . . , rn) such that r1 ≥ 1, rl > rl−1 for each l = 2, . . . , n, and

rn ≤ m + n. This set of integers establishes the ranks of the n data observations

in the combined ranking of the n data and m future observations. By defining

r0 = 0 and rn+1 = m+ n+ 1, and with a sampled vector (r1, . . . , rn), we compute

Sl = rl − rl−1 − 1 for l = 1, . . . , n+ 1. This creates each future observation ordering

in the SRS process, where the ordering is with respect to the combined ranking of

the n data observations and the m future observations. This process ensures that
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each possible ordering has an equal probability of being selected and is independent

of the other selections, which satisfies the requirements for SRS [34].

NPI has been introduced for a wide range of applications such as survival

analysis, reliability testing, topics in operational research and finance [24, 28, 59].

In addition, NPI has been introduced for different types of data, including

Bernoulli data [26], multinomial data [29], real-valued data [36], right-censored

data [37] and bivariate data [41]. For more details about NPI, we refer to

www.npi-statistics.com.

For example, Coolen and Augustin [29] presented the NPI method for multinomial

data in the absence of prior knowledge of the relationship between the categories.

Inferences for such data about the next future observation are based on the latent

variable representation of the data using a probability wheel, where each category on

the wheel is assumed to only be represented by one segment of the wheel. Note that

the probability wheel representation of the data is partitioned into n equally-sized

slices that are fully or partially within the segment. To reflect the knowledge of the

order of the categories, Coolen et al. [32, 33] and Elkhafifi [47] developed NPI for

ordinal data, in which the categories are ordered and represented by intervals on

the real-line. Section 1.2 briefly presents NPI results for ordinal data, considering a

single future observation.

The NPI method has also been developed to assess diagnostic test accuracy

with different data types. For example, Coolen-Maturi et al. [43] introduced NPI for

diagnostic test accuracy with binary data, while Elkhafifi and Coolen [48] presented

NPI for diagnostic tests with ordinal data, considering a single future observation.

Coolen-Maturi [38] generalised the results presented by Elkhafifi and Coolen [48] by

developing NPI for three-group receiver operating characteristic (ROC) analysis, and

this was generalised for more than three groups by Coolen-Maturi and Coolen [39].

Recently, Alabdulhadi [4] and Coolen-Maturi et al. [40] introduced the NPI approach

for selecting the optimal threshold(s) for two- and three-group classification problems

based on tests that yield real-valued results for a given number of future observations

from each group. This thesis presents new methods for selecting the optimal diagnostic

test threshold, considering multiple future ordinal individuals, in a two-group scenario

www.npi-statistics.com
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and for selecting two thresholds in a three-group scenario. While the primary focus is

on these two- and three-group problems, which are most commonly used in practice,

the proposed methods can be generalised for scenarios with more than three groups,

as will be discussed briefly in Section 5.9.

1.2 NPI for one future ordinal observation

This section summarises NPI for ordinal data considering a single future observation,

based on Coolen et al. [33] and Elkhafifi [47]. They presented NPI for ordinal data

using a latent variable representation of the observations, with the categories ordered

and represented by intervals on the real-line. They derived closed-form formulae for

the NPI lower and upper probabilities for events involving the next future observation,

and these inferences were briefly compared to NPI for multinomial data [29]. The

notation and assumed latent variable representation introduced here are also used in

Chapter 2 where the method is generalised to multiple future observations.

Consider ordinal data with K ≥ 2 categories, denoted by C1, . . . , CK , where the

ordering between them is indicated by the notation C1 < C2 < . . . < CK . Let the

number of observations in category Ck denoted by nk, for k = 1, . . . , K, and let n be

the total number of observations, so
K∑
k=1

nk = n. The observations in each category

are represented using an assumed underlying latent variable representation with the

K categories represented by intervals on the real-line.

In the latent variable representation, the category Ck is assumed to be represented

by the interval ICk for k = 1, . . . , K, where the K ordered intervals IC1, . . . , ICK

form a partition of the real-line. Let the random quantity Xn+1 represent a future

ordinal observation, and let Yn+1 denote a latent observation on the real-line that

corresponds to the future observation Xn+1, then Xn+1 ∈ Ck corresponds to the

event Yn+1 ∈ ICk. We further assume that the n observations are represented by

y1 < . . . < yn, of which nk are in interval ICk, these are also denoted by yki , for

i = 1, . . . , nk. The A(n) assumption can be applied to the latent variable Yn+1 and

then transformed for inference on the random quantity Xn+1. The ordinal data

structure is presented in Figure 1.1 [32, 47].
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y11 y1n1

C1

n1

CKCk

nk

−∞ ∞
yknk

yK1 yKnK

nK

IC1

. . . . . .

ICk

. . . . . .

ICK

. . .

. . .

. . .

yk1

. . .

. . .

. . . . . .

Figure 1.1: Ordinal data structure

The NPI lower and upper probabilities for general events of the form Xn+1 ∈ CT
have been derived with CT =

⋃
k∈T Ck and T is assumed to be a strict subset of

{1, . . . , K}, so T ⊂ {1, . . . , K} [32, 47]. Using the latent variable representation, CT
is assumed to be represented by ICT =

⋃
k∈T ICk. Note that, if T = {1, . . . , K},

then both NPI lower and upper probabilities for this event are equal to 1 and if

T = ∅ both lower and upper probabilities are 0. Using the A(n) assumption for Yn+1

in the latent variable representation, each interval Ij = (yj−1, yj), for j = 1, . . . , n+1,

has been assigned probability mass 1
n+1

. It should be emphasized that since the

values of yj only exist in the latent variable representation, their exact values are

unknown, indeed they do not even exist, but this also conveniently enables us to

assume that there are no ties between the yj values. The NPI lower probability for

the event Xn+1 ∈ CT is equal to the NPI lower probability for the corresponding

latent observation event Yn+1 ∈ ICT . The NPI lower probability is

P (Xn+1 ∈ CT ) = P (Yn+1 ∈ ICT ) =
1

n+ 1

n+1∑
j=1

1{Ij ⊂ ICT} (1.3)

where 1{E} is equal to 1 if E is true and equal to 0 otherwise [32, 47]. The precise

locations of the intervals ICk are unknown, however, the fact that how many of yi

included within each interval ICk is known leads to unique values for the NPI lower

probability. The NPI upper probability for the event Xn+1 ∈ CT is similarly defined,

P (Xn+1 ∈ CT ) = P (Yn+1 ∈ ICT ) =
1

n+ 1

n+1∑
j=1

1{Ij ∩ ICT ̸= ∅} (1.4)

While the NPI lower probability for the event of interest is derived by minimising

the total probability mass assigned to ICT , the corresponding NPI upper probability
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can be derived by maximising the total probability mass that can be in ICT . Thus,

the NPI upper probability is derived by summing all the probability masses that can

be assigned to Ij which have a non-empty intersection with ICT .

In Chapter 2, NPI for ordinal data is generalised to events involving multiple future

observations. Then, these events are applied to selection problems in Chapter 3, and

NPI-based pairwise comparisons are developed. The following section provides an

overview of the NPI-based selection methods.

1.3 Overview of NPI selection methods

The NPI methods developed for selection problems differ fundamentally from the

classical methods in the literature. These classical methods include the indifference

zone method introduced by Bechhofer [17] and Gupta’s subset selection method [56].

Both methods are non-predictive, relying solely on hypothesis testing rather than

incorporating predictive inferences for selection problems. Chapter 3 presents NPI-

based selection methods considering multiple future ordinal observations where these

methods use predictive inferences based on past observations and make use of Hill’s

assumptions A(·) [33].

Selection methods based on NPI have been applied to real-valued data, including

right-censored data, to select the group, or groups most likely to yield the largest

next observation [36, 42, 44]. Only the next observation was taken into account when

making inferences for such data. The NPI-based selection methods have also been

applied to Bernoulli data [30, 31] and to multinomial data [12] with multiple future

observations. This section presents an overview of these predictive selection methods.

The NPI selection method for real-valued data from different groups was developed

by Coolen and van der Laan [36]. By making inferences about a single future

observation from each group, the group which is most likely to provide the largest

next observation was identified. The NPI lower and upper probabilities were derived

for the event that one group’s next observation will exceed the next observation

of each other group. Additionally, a subset of groups was selected in two ways.

The first way involves determining the NPI lower and upper probabilities for a
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subset containing the group providing the largest next observation. The second way

involves determining the NPI lower and upper probabilities for the event that the

next observation from every group in a subset, exceeds the next observation from

each non-selected group.

The NPI selection method by Coolen and van der Laan [36] was generalised

by Coolen-Maturi et al. [44] for right-censored observations. The NPI lower and

upper probabilities for the event that a specific group will yield the largest next

lifetime were obtained by applying the comparison of multiple groups using the

rc-A(n) assumption, which is a generalisation of A(n) for right-censored data [37].

Using their method, experiments may be terminated early to save time and costs.

This means that, when the experiment ends, all units in all groups that have not yet

failed are right-censored [42].

The NPI selection method for Bernoulli data was developed by Coolen and

Coolen-Schrijner [30, 31] to select, from different groups, the group with the highest

number of future successes. Instead of focusing solely on a single future observation,

they made inferences based on multiple future observations and conducted a pairwise

comparison of the groups to obtain the NPI lower and upper probabilities for the

event that one group would be more likely than another to have more future successes.

Furthermore, a multiple comparison analysis was performed to determine the NPI

lower and upper probabilities for the event that one group would have more future

successes than all other groups [31]. Additionally, subsets of the groups were studied,

providing NPI lower and upper probabilities for two scenarios: one in which a specific

subset contains the group with the most future successes, and another in which all

groups within a chosen subset will have more future successes than every group which

is not in the subset [30]. For example, their method can be applied to screening

experiments in which one starts with all treatments available and wishes to continue

with only a subset which is likely to contain the best treatments. In clinical trials,

the method can also be used to select a subset of treatments that are most likely to

be effective.

For multinomial data, Baker and Coolen [12, 13] developed NPI-based methods

with multiple future observations for selecting either a single category with the largest
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lower or upper probability of occurrence or the smallest subset of categories that

meets a specified probability requirement. Chapter 3 of this thesis presents NPI

selection methods based on multiple future ordinal observations.

1.4 Diagnostic test accuracy

This section introduces the concepts of diagnostic test accuracy and main methods

used in the literature to determine a diagnostic threshold; these concepts and

methods will be used in Chapters 4 and 5. Diagnostic tests are evaluated according

to their ability to discriminate between healthy and diseased individuals in two-

group classifications. Assessing the accuracy of diagnostic tests is essential in many

application areas, particularly in medicine and healthcare [77]. The diagnostic

accuracy of a test refers to its ability to distinguish between different conditions. The

diagnostic test may produce a binary outcome, a continuous outcome, or an ordinal

outcome. This thesis focuses on diagnostic tests for ordinal data with K categories.

Assume that there is a threshold k ∈ {1, . . . , K} such that a test result in

categories {Ck+1, . . . , CK} indicates the presence of the disease, called a positive test

result, while a test result in categories {C1, . . . , Ck} indicates the absence of the

disease, called a negative test result [91, 96]. A main goal for statistical inference in

this scenario is the study of appropriate choice for the value k, referred to as the

‘optimal threshold’ k′. Let T j
i with j = 0, 1 and i = 1, . . . , nj, denote the test result

for individuals in the healthy group and the disease group, respectively. Let n0
k and

n1
k be the number of observations in the healthy and disease groups, respectively, in

category Ck, for k = 1, . . . , K. Let n0 and n1 be the total number of observations in

the healthy and disease groups, respectively, so
∑K

k=1 n
0
k = n0 and

∑K
k=1 n

1
k = n1. In

a diagnostic test, sensitivity (sens) is defined as the probability of a positive test

result for an individual who has the disease. This is also referred to as the true

positive fraction (TPF ). Specificity (spec) is the probability of the test result being

negative given the absence of disease. The term false positive fraction (FPF ) is

defined as the probability of a positive test result for an individual who does not

have the disease, so FPF = 1 - spec. Let random quantity T 1 denote the test result
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for an individual of the disease group and T 0 the test result for an individual of the

non-disease group, then for threshold k, TPF (k) = P (T 1 ∈ {Ck+1, . . . , CK}) and

FPF (k) = P (T 0 ∈ {Ck+1, . . . , CK}).

Diagnostic test accuracy is described and compared using a popular tool called

the receiver operating characteristic (ROC) curve. Diagnostic tests can be considered

perfect or ideal when they are able to completely distinguish between healthy and

diseased individuals, such that FPF (k∗) = 0 and TPF (k∗) = 1, at a specific

threshold k∗ [77]. However, if FPF (k) equals TPF (k), for all k ∈ {1, . . . , K}, the

diagnostic test cannot distinguish between healthy and diseased individuals. The

accuracy of a diagnostic test may be represented in many cases by a single numerical

value or summary [77]. A useful summary is the area under the ROC curve, AUC,

which can be used to compare two or more ROC curves. The AUC is a measure

of the diagnostic test’s overall performance and it has been widely studied in the

literature [21, 77, 96].

To define a diagnostic test completely and analyze its quality, it is essential

to determine an appropriate threshold. This ensures that the test can effectively

discriminate between individuals with and without the disease. Although the AUC is

a popular measure of the overall performance of a diagnostic test, it cannot be used to

determine the optimal threshold. Methods for selecting the optimal threshold based

on ROC analyses have been introduced in the literature. These methods include

maximizing the Youden index [51, 95] and the Liu index [64]. The Youden index

(YI) is defined as the sum of sensitivity and specificity minus one and is one of the

most widely used measures of diagnostic accuracy [51, 82, 87]. The YI is given by

YI(k) = sens(k) + spec(k)− 1 (1.5)

The optimal threshold k′, based on Youden’s index, is defined as the value of k

which maximises YI(k) [54, 82]. The empirical estimate of the Youden index (EYI)

for ordinal data is

EYI(k) =

(
1

n0

k∑
i=1

n0
i

)
+

(
1

n1

K∑
i=k+1

n1
i

)
− 1 (1.6)
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where n0
i and n1

i are the number of observations in the healthy and disease groups,

respectively, in category Ci, for i = 1, . . . , K. Additionally, n0 and n1 represent the

total number of observations in the healthy and disease groups, respectively.

This index has a number of desirable features, as indicated by Youden [95]. For

instance, the YI value ranges from 0 to 1. A value of 0 indicates a completely

ineffective test, meaning no discriminatory ability between individuals with and

without the condition, while a value of 1 indicates a perfect or ideal diagnostic test.

This index can not only be used to evaluate the accuracy of a single diagnostic test,

but also to compare one diagnostic test with another.

There are many applications of the YI in the medical sciences. For example,

Demir et al. [46] applied the YI to determine the most reliable discrimination

index for distinguishing between thalassemia trait and iron deficiency anemia.

Schisterman et al. [83] conducted an analysis of the coronary calcium score, a marker

of atherosclerosis, using the YI. Based on the YI, Aoki et al. [8] identified the optimal

threshold level of serum pepsinogens for the detection of gastric cancer. Pekkanen

and Pearce [76] computed the YI to distinguish asthma from non-asthma using

bronchial hyperresponsiveness and symptom questionnaires. Moreover, YI can be

used to make comparisons between different diagnostic testing procedures with

regard to their accuracy. For example, Yerli et al. [94] utilized YI to compare two

methods for diagnosing common parotid tumors. Similarly, Hawass [58] conducted a

comparison of diagnostic tests applying YI, assessing the sensitivities and specificities

of two diagnostic procedures within the same patient group. Additionally, YI has

been applied to ordinal data to assess disease severity. For instance, a study by

Mintoff et al. [68] evaluated the relationship between serum immunoglobulin G (IgG)

levels and the severity of Hidradenitis Suppurativa, using YI to determine optimal

threshold values for IgG levels, effectively distinguishing between mild, moderate,

and severe stages of the disease.

While the Youden index is popular in applications and useful for identifying the

optimal diagnostic threshold, it can sometimes yield a threshold with high sensitivity

or specificity, leading to unbalanced classification rates [62]. When an illness is highly

infectious or a condition is severe, sensitivity may be emphasized over specificity. For
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example, when assessing the clinical utility of prognostic biomarkers in cancer, the

focus will be on developing diagnostic tests with high sensitivity [18]. The specificity

of a test may, on the other hand, be emphasized in the event that a subsequent

diagnostic test is risky or expensive [64]. The YI aims to maximise the sum of

sensitivity and specificity, but this may not always result in a suitable threshold

selection when well-balanced sensitivity and specificity is preferred.

Liu [64] proposed the so-called maximum area method, based on the AUC, to

determine the optimal threshold that maximises the Liu index. Throughout this

thesis, this method will be referred to as the Liu index method (LI). This approach

selects the optimal threshold by considering the product of sensitivity and specificity

as the objective function for threshold selection, which may result in a more balanced

classification. Formally, the LI is defined as

LI(k) = spec(k)× sens(k) (1.7)

The optimal threshold k′, based on Liu’s index, is defined as the value of k which

maximises LI(k). The empirical estimator for the Liu index (ELI) method for ordinal

data is given by

ELI(k) =

(
1

n0

k∑
i=1

n0
i

)
×

(
1

n1

K∑
i=k+1

n1
i

)
(1.8)

where n0
i and n1

i are the number of observations in the healthy and disease groups,

respectively, in category Ci, for i = 1, . . . , K. Additionally, n0 and n1 represent the

total number of observations in the healthy and disease groups, respectively.

According to Liu [64], the proposed approach demonstrated its relevance based

on real-world data from a study of arsenic-induced skin lesions. In particular, the

method identified individuals at risk for arsenic-induced skin lesions by determining

a threshold for blood arsenic levels. His study examined a sample of individuals with

and without arsenic-induced skin lesions. By applying the proposed method to the

data, a threshold for blood arsenic levels that maximised the LI was selected. To

identify individuals at risk of arsenic-induced skin lesions, the resulting threshold

was used as a warning threshold. His study showed the value of the proposed
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method in determining an optimal threshold for blood arsenic levels, thus providing

a practical approach for identifying individuals at risk of arsenic-induced skin lesions.

In Chapter 4, the proposed NPI-based methods for two-group classification will be

compared with the EYI and ELI methods, as given by Equations (1.6) and (1.8).

There are alternative methods for selecting the optimal threshold based on the

ROC available in the literature. For instance, Unal [87] proposed a method known

as the index of union. This method begins by computing the AUC value and then

uses the coordinates of the ROC curve to find a threshold that has specificity and

sensitivity values equal to or very close to the AUC value. There is also a method

called the closest-to-(0,1) for determining the optimal threshold [78]. It is also called

in the literature the northwest corner or the closest-to-perfection method. The

objective of this method is to determine the point on the ROC curve that has the

shortest distance to the point (0,1) on the graph. A comparison of optimal thresholds

selected by the closest-to-(0,1) method and the YI method has been presented by

Perkins and Schisterman [78]. In terms of the probability of a correct classification

rate, they recommend using the YI since it provides clear clinical meaning. However,

there has been little discussion of the closest-to-(0,1) method in the statistical

literature compared to the YI method. In this thesis, we focus on the YI and LI, as

they have attracted a lot of attention from researchers over the past decade. These

methods are well-validated in the literature for threshold selection.

Threshold selection methods have been extended to three-group settings where

two thresholds are required to classify individuals. The Youden index was extended by

Nakas et al.[72] to a generalised Youden index for three groups. As an extension of the

LI method, Attwood et al. [9] proposed the maximum volume method. In Section 5.3,

these extended methods are discussed and in Section 5.8 they are compared to the

NPI methods for three-group classification.

Classical methods for selecting the optimal threshold of a diagnostic test typically

focus on the estimation of the optimal threshold rather than on prediction [4, 40].

Applying diagnostic tests on future patients is the end goal of studying their accuracy.

Therefore, a predictive inference method is of interest. Recently, Alabdulhadi [4]

and Coolen-Maturi et al. [40] introduced the NPI approach for selecting the optimal
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threshold(s) for two- and three-group classification problems based on tests that yield

real-valued results for a given number of future observations from each group. Test

results may take values within a finite number of categories which can be ordered or

not; if ordered the test outcome is ordinal. The optimal diagnostic threshold will be

selected such that the categories on one side of the threshold indicate disease, and

the categories on the other side indicate non-disease. In Chapters 4 and 5, the NPI

method for selecting the optional threshold(s) for two- and three-group classification

problems is introduced for diagnostic tests that yield ordinal results.

1.5 Outline of the thesis

This thesis is organised as follows. In Chapter 2, the NPI lower and upper probabilities

are derived for several events of interest involving multiple future ordinal observations.

The results in Chapter 2 have been presented at the 15th International Conference

of the ERCIM WG on Computational and Methodological Statistics (CMStatistics),

King’s College London, 17-19 December 2022.

The use of the derived NPI lower and upper probabilities for some inferential

problems is presented in Chapter 3 with a focus on both category selection and the

selection of subsets of categories. Pairwise comparison for the future observations

from two independent groups is also presented.

Chapter 4 presents NPI methods considering multiple future individuals to

select the optimal diagnostic test threshold for two-group classification with ordinal

outcomes. The NPI method related to the two-group Youden index is introduced.

The results in Chapter 4 have been presented at the International Conference of the

Royal Statistical Society (RSS) in Harrogate, United Kingdom, held in September

2023. This chapter has also been presented at the Durham Maths Postgraduate

Research Day in Durham, United Kingdom, held in May 2024.

Chapter 5 extends the NPI-based methods to three-group classification problems.

Chapter 6 summarises the conclusions of this thesis and discusses some related topics

for future research. The analyses and calculations in this thesis have been done

using R [80], with the ggplot2 package [92] for data visualization.



Chapter 2

NPI for ordinal data

2.1 Introduction

In many applications, categories have a natural order, such as levels of disease severity.

This type of data is referred to as ordinal data. This chapter presents NPI for ordinal

data with multiple future observations, using an assumed underlying latent variable

representation. The categories are represented by intervals on the real-line, reflecting

their natural order and allowing the application of Hill’s assumption [60].

NPI lower and upper probabilities are presented for several events involving

multiple future ordinal observations. The chapter begins by introducing the method

for two future observations, providing a foundation for extending the approach to

multiple future observations. The generalisation to multiple future observations is

then presented. The events considered in this chapter have been chosen to ensure that

the methodology can be applied to a wide range of practical scenarios in ordinal data

analysis, enabling a variety of statistical inferences, several of which are presented in

Chapters 3, 4, and 5.

The overview of NPI for ordinal data, provided in Section 1.2, was restricted to

a single future observation. This chapter extends NPI for ordinal data to m ≥ 1

future observations, denoted by Xn+l for l = 1, . . . ,m. It is important to note that

the use of indices n+ l does not imply that the Xn+l are ordered in any particular

way. The data and future observations are linked via the assumed latent variable

representation, where observations on the real-line fall into intervals representing

16
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the categories, and via Hill’s assumptions A(n), A(n+1), . . . , A(n+m−1) [60]. These are

jointly referred to as ‘the A(·) assumptions’, as outlined in Section 1.1, which imply

that all possible orderings of n data observations and m future observations are

equally likely [35], where the m future observations are not distinguished or ordered

in any way. In NPI, the lower probability for an event of interest is the proportion of

the orderings for which the event must hold, and the corresponding upper probability

is the proportion of the orderings for which the event can hold [10, 27].

This chapter is structured as follows. Section 2.2 presents the NPI lower and

upper probabilities for events involving two future ordinal observations. Section 2.3

generalises the method presented in Section 2.2 to m ≥ 2 future observations.

Section 2.4 extends the focus to more events of interest involving multiple future

ordinal observations using a path counting technique. Finally, Section 2.5 provides

some concluding remarks.

2.2 NPI for two future ordinal observations

This section presents NPI lower and upper probabilities for two different events of

interest, involving two future observations. Two future observations are considered

first to gain a clear understanding of the methodology of counting the orderings of

the future observations before it is extended to more complex scenarios with multiple

observations. Furthermore, the method presented in this section will be generalised

to m ≥ 2 future observations in Sections 2.3 and 2.4, applications of these results

are presented in later chapters of this thesis.

The first event considered is that one of the two future observations is in a specific

category, while the other observation is in any of the remaining categories. Consider

ordinal data with K ≥ 2 categories, denoted by C1, . . . , CK , where the ordering

between them is indicated by the notation C1 < C2 < . . . < CK . Let the number

of observations in category Ck be denoted by nk for k = 1, . . . , K, and let n be the

total number of the observations, so
K∑
k=1

nk = n.

Using the latent variable representation, explained in Section 1.2, the category Ck

is represented by the interval ICk, for k = 1, . . . , K, where the K ordered intervals
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IC1, . . . , ICK form a partition of the real-line. Each interval IC has neighbouring

intervals ICk−1 to its left and ICk+1 to its right on the real-line (or only one of these

neighbours if k = 1 or k = K) [32, 48]. In the latent variable representation, the n

observations are assumed to be represented by y1 < . . . < yn, of which nk are in ICk,

these are also denoted by yki for i = 1, . . . , nk. As presented in Section 1.2, there are

Ij = (yj−1, yj), for j = 1, . . . , n+ 1. Although the values yj are unknown, since they

only exist in the latent variable representation, the number of yj in each interval

ICk is known, therefore, the number of Ij that must be or can be in each ICk is also

known. Let the random quantity Mk represent the number of future observations in

category Ck, for k = 1, . . . , K, so the event considered is Mk = 1, with m = 2.

Generally in NPI, the lower probability for an event of interest involving m future

observations is derived by counting all the orderings of the m future observations

among the past observations for which the event of interest must hold, and the

corresponding NPI upper probability is derived by counting all the orderings for

which the event can hold [4]. As a first step, it is important to note that the NPI

lower and upper probabilities for the event that one of the two future observations is

in a specific category and the other observation is in any of the remaining categories

require presenting two different cases related to the value of k, one involves the first

or last categories (k = 1 or k = K), and the other involves the middle categories

(2 ≤ k ≤ K − 1). For ordinal data with nk ≥ 1 for all k, each ICk is represented by

intervals Ij on the real-line, where here the range of j is restricted to j = 1, . . . , nk+1,

corresponding to the intervals within ICk. Each ICk has an interval I1 = (yk−1
nk−1

, yk1)

to its left and an interval Ink+1 = (yknk
, yk+1

1 ) to its right, where future observations

in these intervals may or may not be assigned to ICk. Of course, only one interval

can be assigned to IC1 or ICK . Categories with nk = 0 do not have any Ij intervals

assigned. These left and right intervals are referred to as boundary intervals. The

ordinal data structure is shown in Figure 2.1, with shaded intervals representing these

boundary intervals. This highlights a distinction, as the overall count of boundary

intervals for ICk with 2 ≤ k ≤ K − 1 differs from that of IC1 and ICK , which have

only one boundary interval each. Consequently, for the event Mk = 1, it is necessary

to consider both of these cases separately, one involving M1 and MK , and the other



2.2. NPI for two future ordinal observations 19

involving Mk for 2 ≤ k ≤ K − 1.

Next, the NPI lower probability for the event Mk = 1 is introduced, first for the

cases k = 1 and k = K, followed by the case 2 ≤ k ≤ K− 1. To derive the NPI lower

probability for the event Mk = 1, the orderings of the next future observation among

nk data observations, in the latent representation, are counted, and then multiplied

by the total number of orderings for the other future observation for which the event

Mk = 1 must hold. This product then is divided by the total number of orderings,

which is
(
n+m
m

)
.

The case k = 1 or k = K

First, consider the cases k = 1 and k = K. Figure 2.1 illustrates the right

boundary interval for IC1 and the left boundary interval for ICK . The NPI lower

probability is derived by counting all the orderings of the future observations for

which the event Mk = 1 must hold. This involves counting the orderings of future

observations within the past data points of ICk excluding the data point that

generates the boundary interval for IC1 or ICK , as future observations in these

intervals cannot lead to the event Mk = 1. Therefore, if k = 1 or k = K, the number

of past data points that are involved in the ordering of future data is nk − 1, leading

to nk intervals Ij that must be assigned to ICk. Similarly, the total number of the

remaining past data points that are involved in the ordering is n− nk − 1, while the

remaining Ij intervals, excluding those assigned to ICk for k = 1 or k = K, is n−nk.

To derive the NPI lower probability, the orderings for the next future observation

within the nk − 1 past data points are first counted. This count is then multiplied by

the total number of orderings for the other future observation within the n− nk − 1

remaining past data points, for which the event Mk = 1 must hold. Thus, there are

(nk − 1 + 1)(n− nk − 1 + 1) such orderings. This product is then divided by
(
n+m
m

)
.

The case 2 ≤ k ≤ K − 1

If 2 ≤ k ≤ K − 1 and nk > 1, there are two data points that generate the two

boundary intervals on either side of ICk, the left and right intervals, as illustrated

in Figure 2.1. Therefore, for 2 ≤ k ≤ K − 1, the number of past data points

involved in the ordering of future data is nk − 2. By treating the two data points
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Figure 2.1: Data structure with the boundary intervals

on either side of ICk as a single data point, the total number of the remaining

past data points involved in the ordering is n − nk − 1. Consequently, the total

number of different orderings that must lead to the event Mk = 1, if nk > 1, is

(nk − 2 + 1) × (n− nk − 1 + 1). The NPI lower probability for the event Mk = 1

with m = 2 is

P (Mk = 1) =



(
n+ 2

2

)−1

nk(n− nk) if k = 1 or k = K

(
n+ 2

2

)−1

(nk − 1)(n− nk) if 2 ≤ k ≤ K − 1

(2.1)

In the case nk = 0 for any k, P (Mk = 1) = 0. Similarly, if nk = 1 for all

2 ≤ k ≤ K − 1, P (Mk = 1) = 0, because there is no Ij interval that can be assigned

to ICk.

The corresponding NPI upper probability for the event Mk = 1 is derived by

counting all the different orderings of the two future observations among the n data

observations, in the latent representation, that can lead to the event Mk = 1. This

involves counting the orderings where the future observations can be in the boundary

intervals of ICk.

The case 2 ≤ k ≤ K − 1

For the case where 2 ≤ k ≤ K − 1, three possible scenarios are considered. Firstly,

the next future observation could be in any of the Ij intervals of ICk, including the

boundary intervals, resulting in nk + 1 orderings. The ordering of the other future

observation must then be within the remaining past data points, treating the two

data points on either side of ICk as a single data point to exclude the boundary
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intervals, leaving n− nk − 1 data points. Thus, there are (n− nk − 1) + 1 orderings.

Consequently, the total number of orderings for this scenario is (nk + 1)(n − nk).

Secondly, both future observations could be in ICk, where one of them must be in a

boundary interval. Since there are 2 boundary intervals for the middle categories,

there are 2(nk − 2 + 1) such orderings. Thirdly, both future observations could

be in the two boundary intervals, so there are 3 such orderings, as the two future

observations could both be in the right or the left boundary intervals, or there

could be one in each. Adding all these together, the number of orderings of the two

future observations for which it is possible that precisely one is in ICk is equal to

(nk + 1)(n− nk) + 2(nk − 1) + 3.

The case k = 1 or k = K

For the case where k = 1 or k = K, the process for deriving the NPI upper probability

is similar but slightly different due to the presence of only one boundary interval.

The next future observation could be in any of the nk intervals of ICk, including

the boundary interval, resulting in nk + 1 orderings. The other future observation

must be in one of the remaining Ij intervals, leaving n− nk possible orderings. Thus,

the total number of orderings for this scenario is (nk + 1)(n − nk). Additionally,

both future observations could be in ICk, with one in the boundary interval, leading

to 1(nk − 1 + 1) = nk such orderings, since there is only one boundary interval.

Finally, there is 1 ordering where both future observations are in the only boundary

interval. Adding all these together, the total number of orderings of the two future

observations for which it is possible that precisely one future observation is in ICk is

(nk + 1)(n− nk) + nk + 1. So, the NPI upper probability for Mk = 1 is

P (Mk = 1) =



(
n+ 2

2

)−1

[(nk + 1)(n− nk) + nk + 1] if k = 1 or k = K

(
n+ 2

2

)−1

[(nk + 1)(n− nk) + 2(nk − 1) + 3] if 2 ≤ k ≤ K − 1

(2.2)

The NPI lower and upper probabilities, given in Equations (2.1) and (2.2), for

the event Mk = 1 are illustrated in the following example. Note that the examples
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presented in this chapter aim only to illustrate the application of NPI lower and

upper probabilities for each event. Inferences and more detailed scenarios involving

these events, along with examples with data from the literature, will be presented

and discussed in later chapters of the thesis.

Example 2.1. Consider four ordered categories, C1 < C2 < C3 < C4, and m = 2

future observations, and n = 10 data observations as follows, n1 = 2, n2 = 3, n3 = 1

and n4 = 4. Figure 2.2 illustrates the ordinal data representation corresponding

to the NPI lower probabilities for the events Mk = 1 for k = 1, 2, 3, 4. Figure 2.3

shows the data representation corresponding to the NPI upper probabilities for the

same events . In Figures 2.2 and 2.3, the non-shaded intervals represent the intervals

that must be assigned to ICk, while the shaded intervals in Figure 2.3 represent the

boundary intervals.

It should be noted that in the case where n3 = 1, no Ij must be assigned to IC3,

as shown in Figure 2.2, resulting in P (M3 = 1) = 0. Category C1 is considered first.

Equations (2.1) and (2.2) are applied with k = 1 to derive the NPI lower and upper

probabilities for the event M1 = 1, using the values n = 10, n1 = 2, and m = 2. For

the event where precisely one of the two future observations is in C1, the NPI lower

and upper probabilities are 0.2424 and 0.4091 respectively.

The NPI lower and upper probabilities for the other categories are presented in

Table 2.1. The results show how these NPI lower and upper probabilities vary based

on the number of observations in each category.

To further illustrate how changes in the data affect the NPI lower and upper

probabilities, consider the following additional scenarios. First, keep the total number

of observations at n = 10, but adjust the values of nk as n1 = 1, n2 = 4, n3 = 3, and

n4 = 2. Using Equations (2.1) and (2.2), the corresponding NPI lower and upper

probabilities for the events Mk = 1 for k = 1, 2, 3, 4 in this scenario are presented in

Table 2.2. Next, vary the total number of observations to n = 12 while using the

following values, n1 = 2, n2 = 4, n3 = 3, and n4 = 3. The corresponding NPI lower

and upper probabilities are given in Table 2.3.
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Figure 2.2: Ordinal data representation corresponding to the NPI lower probability
for the event Mk = 1 for k = 1, 2, 3, 4
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Figure 2.3: Ordinal data representation corresponding to the NPI upper probability
for the event Mk = 1 for k = 1, 2, 3, 4
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k 1 2 3 4

P (Mk = 1) 0.2424 0.2121 0 0.3636

P (Mk = 1) 0.4091 0.5303 0.3182 0.5303

Table 2.1: NPI lower and upper probabilities for the event Mk = 1 for k = 1, 2, 3, 4
with n = 10

k 1 2 3 4

P (Mk = 1) 0.1364 0.2727 0.2121 0.2424

P (Mk = 1) 0.3030 0.5909 0.5303 0.4091

Table 2.2: NPI lower and upper probabilities for the event Mk = 1 for k = 1, 2, 3, 4
with n = 10 and modified nk

k 1 2 3 4

P (Mk = 1) 0.2198 0.2637 0.1978 0.2967

P (Mk = 1) 0.3626 0.5385 0.4725 0.4396

Table 2.3: NPI lower and upper probabilities for the event Mk = 1 for k = 1, 2, 3, 4
with n = 12

Comparing Tables 2.1, 2.2, and 2.3 illustrates how the NPI lower and upper

probabilities change when nk values are modified while keeping n = 10, and how

they vary when n is increased. ⋄

The second event considered is that both future observations are in Ck, so the

event is Mk = 2. To begin, note that the NPI lower and upper probabilities for the

event Mk = 2 require considering the same two cases related to the value of k as for

the first event.

The case k = 1 or k = K

If k = 1 or k = K, the NPI lower probability is derived by counting all the orderings

of the future observations for which the event Mk = 2 must hold. This involves

counting the orderings of both future observations within the past data points of

ICk excluding the data point that generates the boundary interval for IC1 or ICK ,

as future observations in these intervals cannot lead to the event Mk = 2. Therefore,

if k = 1 or k = K, the number of past data points involved in the ordering of future

data is nk − 1. If nk = 0, no interval Ij is assigned to ICk. For k = 1 or k = K with
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nk ≥ 1, the total number of different orderings that must lead to the event Mk = 2 is

equal to
(
nk−1+2

2

)
. This is then divided by

(
n+m
m

)
to obtain the NPI lower probability

for the cases k = 1 and k = K.

The case 2 ≤ k ≤ K − 1

For the case 2 ≤ k ≤ K − 1 with nk > 1, the total number of different orderings of

the two future observations within each ICk which must lead to Mk = 2 is equal to(
nk−2+2

2

)
, since there are two boundary intervals that are next to ICk, as shown in

Figure 2.1. If nk ≤ 1, no interval is assigned to ICk. The NPI lower probability for

the event Mk = 2 is

P (Mk = 2) =



(
n+ 2

2

)−1(
nk + 1

2

)
if k = 1 or k = K

(
n+ 2

2

)−1(
nk

2

)
if 2 ≤ k ≤ K − 1

(2.3)

The corresponding NPI upper probability for the event Mk = 2 is derived by

counting all the different orderings of the two future observations among the n

data observations, in the latent representation, that can lead to the event Mk = 2.

This involves counting the orderings where the intervals Ij can be assigned to ICk,

including the boundary intervals presented in Figure 2.1. If k = 1 or k = K, the

number of intervals Ij that can be assigned to ICk is equal to nk. Similarly, the total

number of the Ij intervals for the case 2 ≤ k ≤ K − 1 is equal to nk. Therefore, for

1 ≤ k ≤ K, there are
(
nk+2

2

)
orderings such that both future observations are in ICk.

So, for nk ≥ 0, the NPI upper probability for the event Mk = 2 is

P (Mk = 2) =

(
n+ 2

2

)−1(
nk + 2

2

)
for 1 ≤ k ≤ K (2.4)

The NPI lower and upper probabilities for the event Mk = 2, given in Equations

(2.3) and (2.4), are illustrated in the following example.

Example 2.2. As in Example 2.1, consider four ordered categories, C1 < C2 <

C3 < C4, m = 2, and n = 10 data observations: n1 = 2, n2 = 3, n3 = 1, and n4 = 4.

The NPI lower and upper probabilities for the events Mk = 2, for k = 1, 2, 3, 4, are
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k 1 2 3 4

P (Mk = 2) 0.0455 0.0455 0 0.1515

P (Mk = 2) 0.0909 0.1515 0.0455 0.2273

Table 2.4: NPI lower and upper probabilities for the event Mk = 2 for k = 1, 2, 3, 4
with n = 10

k 1 2 3 4

P (Mk = 2) 0.0152 0.0909 0.0152 0.0909

P (Mk = 2) 0.0455 0.2273 0.0909 0.1515

Table 2.5: NPI lower and upper probabilities for the event Mk = 2 for k = 1, 2, 3, 4
with n = 10 and modified nk

k 1 2 3 4

P (Mk = 2) 0.0659 0.0110 0.0659 0.0659

P (Mk = 2) 0.1099 0.0659 0.1648 0.1099

Table 2.6: NPI lower and upper probabilities for the event Mk = 2 for k = 1, 2, 3, 4
with n = 12

presented in Table 2.4. The results show how these NPI lower and upper probabilities

vary based on the number of observations in each category. For example, although C2

has 3 data observations and C1 has 2 data observations, the NPI lower probabilities

are the same for both categories. This occurs because IC1 has only one boundary

interval, resulting in
(
n1−1+2

2

)
possible orderings for the two future observations

within IC1, while IC2 has two boundary intervals, so there are
(
n2−2+2

2

)
orderings.

Consequently, both categories yield the same total number of orderings with n1 = 2

and n2 = 3 leading to the same value for the NPI lower probability.

To further illustrate how changes in the data affect the NPI lower and upper

probabilities, consider the following additional scenarios. First, keep the total number

of observations at n = 10, but adjust the values of nk: n1 = 1, n2 = 4, n3 = 2, and

n4 = 3. Using Equations (2.3) and (2.4), the corresponding NPI lower and upper

probabilities for the events Mk = 2 for k = 1, 2, 3, 4 are presented in Table 2.5.

Next, vary the total number of observations to n = 12 while using the following

values: n1 = 3, n2 = 2, n3 = 4, and n4 = 3. The corresponding NPI lower and upper

probabilities are given in Table 2.6.
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Comparing Tables 2.4, 2.5, and 2.6 illustrates how the NPI lower and upper

probabilities change when nk values are modified while keeping n = 10, and how

they vary when n is increased. ⋄

This section presented the NPI lower and upper probabilities for two events for

m = 2. First, the event where one of the two future observations is in a specific

category and the other is in any of the remaining categories was considered. The

second event presented was that both future ordinal observations are in a specific

category. It was emphasized that there are two different cases for deriving the NPI

lower probability: k = 1 or k = K, or 2 ≤ k ≤ K− 1. This distinction arises because

of the boundary intervals, as future observations in these intervals may or may not be

assigned to ICk. The IC1 and ICK have only one boundary interval, while the other

ICk have two boundary intervals. The NPI lower probability is derived by counting

all the orderings of the future observations among the n data observations, in the

latent representation, where the event must hold, while the NPI upper probability is

derived by counting all the orderings where the event can hold. The results obtained

in this section extend to derive the NPI lower and upper probabilities for events

involving m ≥ 2 future observations. This will be presented in the next section.

2.3 NPI for multiple future ordinal observations

This section generalises NPI for ordinal data tom ≥ 2 future observations, considering

two different events of interest. For ordinal data, as introduced in Section 2.1, there

are K ordered categories, denoted by C1 < C2 < . . . < CK . Let the random

quantity Mk represent the number of the m future observations in category Ck, for

k = 1, . . . , K. The first event considered is that there is a particular number of

future observations in each one of the categories, so the event is
K⋂
k=1

{Mk = mk},

where
∑K

k=1 mk = m.

In the latent variable representation, as explained in Section 1.2, the category

Ck is assumed to be represented by the interval ICk for k = 1, . . . , K, and the n

observations are assumed to be represented by y1 < . . . < yn, of which nk are in ICk,

these are also denoted by yki for i = 1, . . . , nk. As explained in Section 2.2, there
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are Ij = (yj−1, yj), for j = 1, . . . , n+ 1, and with nk ≥ 1 for all k, each ICk has an

interval Ij to its left and an interval Ij to its right where future observations in these

intervals may or may not be assigned to ICk. Of course, only one interval is assigned

to IC1 or ICK . Categories with nk = 0 do not have any intervals assigned. First,

the NPI lower probability for the event
K⋂
k=1

{Mk = mk} is derived. Throughout this

section, the case involving k = 1 and k = K, and the case involving 2 ≤ k ≤ K − 1,

are considered separately.

In NPI, as presented in Section 2.2, the lower probability for an event of interest

involving m future observations is derived by counting all the different orderings of

the m future observations among the n data observations, in the latent representation,

for which the event of interest must hold. So, for k = 1, this involves counting

the orderings of future observations within the Ij that must be assigned to IC1,

excluding the right boundary interval, as shown in Figure 2.1. Similarly, for ICK

with the left boundary interval as illustrated in Figure 2.1. So, if k = 1 or k = K,

the total number of different orderings of mk within ICk is equal to
(
nk−1+mk

mk

)
. If

2 ≤ k ≤ K − 1, there are 2 boundary intervals for ICk, see Figure 2.1. Thus, the

total number of different orderings of mk within ICk is equal to
(
nk−2+mk

mk

)
. Let

hk =

 1 if k = 1 or k = K

0 otherwise

Then, the NPI lower probability is

P

(
K⋂
k=1

{Mk = mk}

)
=

(
n+m

m

)−1 K∏
k=1

(
nk − 2 + hk +mk

mk

)
(2.5)

The corresponding NPI upper probability for the event
K⋂
k=1

{Mk = mk} is derived

by counting all the different orderings of the m future observations among the n

data observations, in the latent representation, for which the event of interest must

hold. This involves counting the orderings where the intervals of the data can be

assigned to ICk, including the boundary intervals presented in Figure 2.1. If k = 1

or k = K, the total number of different orderings that can lead to Mk = mk is equal

to
(
nk+mk

mk

)
. If 2 ≤ k ≤ K − 1, the total number of different orderings that can lead

to Mk = mk is equal to
(
nk+mk

mk

)
as well. For k = 1, . . . , K, the NPI upper probability
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for the event
K⋂
k=1

{Mk = mk} is

P

(
K⋂
k=1

{Mk = mk}

)
=

(
n+m

m

)−1 K∏
k=1

(
nk +mk

mk

)
(2.6)

The NPI lower and upper probabilities for the event
K⋂
k=1

{Mk = mk}, given by

Equations (2.5) and (2.6), are illustrated in the following example. Note that, as

mentioned in Section 2.2, the examples presented in this chapter aim only to illustrate

how to apply the NPI lower and upper probabilities for each event. Inferences and

more detailed scenarios involving these events, along with examples with data from

the literature, will be presented and discussed in later chapters of the thesis.

Example 2.3. Suppose that there are K = 3 ordered categories C1 < C2 < C3, with

data (n1, n2, n3) = (2, 2, 3). Consider m = 3 future observations with the aim to

derive the NPI lower and upper probabilities of the event
3⋂

k=1

{Mk = 1}. Table 2.7

displays the NPI lower and upper probabilities for this event and for all different

combinations of mk where
∑3

k=1mk = 3.

The results in Table 2.7 show how these NPI lower and upper probabilities vary

based on the number of data observations and the number of mk future observations

in each category. For example, although IC1 and IC2 have the same number of

data observations, the NPI lower probabilities differ for these categories with the

same number of future observations. For example, with (m1,m2,m3) = (2, 1, 0),

the NPI lower probability for the event is 0.0250, but when (m1,m2,m3) = (1, 2, 0),

the NPI lower probability for the event is 0.0167. This occurs because IC1 has

only one boundary interval, resulting in
(
n1−1+m1

m1

)
possible orderings for the future

observations, while IC2 has two boundary intervals, so there are
(
n2−2+m2

m2

)
orderings.

Consequently, the two categories yield different numbers of orderings despite having

the same number of data observations.

The results also show how NPI lower or upper probabilities vary based on the

number of data observations in each category and how a specific category with

more data observations has larger NPI lower or upper probabilities when all future

observations are in that specific category. For example, the NPI upper probability

is larger for the event with all 3 future observations in C3, it is 0.1667, compared



2.3. NPI for multiple future ordinal observations 30

(m1,m2,m3) P

(
K⋂
k=1

{Mk = mk}
)

P

(
K⋂
k=1

{Mk = mk}
)

(2, 1, 0) 0.0250 0.1500

(2, 0, 1) 0.0750 0.2000

(0, 2, 1) 0.0250 0.2000

(0, 1, 2) 0.0500 0.2500

(1, 2, 0) 0.0167 0.1500

(1, 0, 2) 0.1000 0.2500

(3, 0, 0) 0.0333 0.0833

(0, 3, 0) 0.0083 0.0833

(0, 0, 3) 0.0833 0.1667

(1, 1, 1) 0.0500 0.3000

Table 2.7: NPI lower and upper probabilities for all combinations of future observa-
tions with K = 3 and m = 3

to the NPI upper probabilities when either all future observations are in C1 or C2.

This difference is due to the larger number of the data observations in category C3,

which results in more possible orderings for future observations and larger NPI lower

or upper probabilities.

To further explore how the lower and upper NPI probabilities change, consider

the scenario where the data is modified to (n1, n2, n3) = (4, 4, 2). In this case, the

combination (m1,m2,m3) = (2, 1, 0) yields a larger NPI lower probability equal to

0.1049 and an NPI upper probability equal to 0.2622, reflecting the impact of more

observations in the first two categories. Similarly, when all three future observations

are in the first category (3, 0, 0), the values increase to 0.0699 and 0.1224, compared

to the original scenario with (n1, n2, n3) = (2, 2, 3), where the values were 0.0333 and

0.0833, respectively. This comparison highlights how the number of the data in each

category influences the NPI lower and upper probabilities. ⋄

The second event of interest is that precisely mk of the m future observations

are in a specific category Ck, while the remaining m−mk observations are in the

remaining categories. Let the random quantity Mk represent the number of future

observations belonging to category Ck for k = 1, . . . , K, so the event is Mk = mk.

To begin, note that the NPI lower and upper probabilities for the event Mk = mk

require considering the same two cases related to the value of k as in the first event.



2.3. NPI for multiple future ordinal observations 31

For the event Mk = mk, the NPI lower probability is derived first for the cases where

k = 1 or k = K, followed by the case where 2 ≤ k ≤ K − 1.

The case k = 1 or k = K

For the cases k = 1 and k = K, the NPI lower probability is derived by counting the

orderings of the mk future observations among nk data observations, in the latent

representation, and then multiplied by the total number of orderings for the m−mk

future observation for which the event Mk = mk must hold. This product then is

divided by the total number of orderings, which is
(
n+m
m

)
. This involves, as explained

in Section 2.2, counting the orderings of the future observations within the past data

points of ICk, excluding the data point that generates the right boundary interval

for IC1 or the left boundary interval for ICK . As a result, for k = 1 or k = K,

the number of past data points involved in the ordering of future data is nk − 1.

Therefore, the number of different orderings of mk future observations within these

past data points is equal to
(
nk−1+mk

mk

)
. If nk = 0 for k = 1 or k = K, then ICk

does not have any past data points assigned to it. Similarly, the total number of

remaining past data points, excluding those assigned to that specific ICk, is equal to

n− nk − 1. Thus, the number of orderings for m−mk future observations among

the remaining past data points is
(
n−nk−1+m−mk

m−mk

)
. Using Equation (1.2), the NPI

lower probability for the event Mk = mk, where k = 1 or k = K, is

P (Mk = mk) =

(
n+m

m

)−1(
nk − 1 +mk

mk

)(
n− nk − 1 +m−mk

m−mk

)
(2.7)

The case 2 ≤ k ≤ K − 1

If 2 ≤ k ≤ K − 1 with nk > 1, the number of different orderings of the mk future

observations within the past data points of ICk, excluding the two data points that

generate the boundary intervals, is equal to
(
nk−2+mk

mk

)
. No Ij intervals must be

assigned to ICk if nk ≤ 1. By treating the two data points on either side of ICk as a

single data point, the total number of the remaining data points, excluding those

assigned to that specific ICk is equal to n− nk − 1. So, the number of orderings for

m−mk future observations is equal to
(
n−nk−1+m−mk

m−mk

)
. Using Equation (1.2), the
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NPI lower probability for the event Mk = mk, where 2 ≤ k ≤ K − 1, is

P (Mk = mk) =

(
n+m

m

)−1(
nk − 2 +mk

mk

)(
n− nk − 1 +m−mk

m−mk

)
(2.8)

The corresponding NPI upper probability is derived by counting all the different

orderings of the m future observations among the n data observations, in the latent

representation, that can lead to the event Mk = mk. This involves considering

the orderings of the future observations within the boundary intervals presented in

Figure 2.1. For the event Mk = mk, the NPI upper probability is derived first for

the case where 2 ≤ k ≤ K − 1, followed by the cases where k = 1 and k = K.

The case 2 ≤ k ≤ K − 1

For the case where 2 ≤ k ≤ K − 1, the objective is to maximise the number of

orderings for the future observations, ensuring that mk future observations can be in

ICk. As in the case of the NPI lower probability, all orderings where mk observations

must be in that specific ICk and m−mk future observations must be in the remaining

ICk are counted. It was previously shown that there are
(
nk−2+mk

mk

)(
n−nk−1+m−mk

m−mk

)
such orderings. However, the two boundary intervals (shaded intervals in Figure 2.1)

are now also considered. Any future observations that are in one of the boundary

intervals may be counted either as belonging to that specific ICk or as not belonging.

This implies that, to determine the NPI upper probability, orderings with one or

more observations in the boundary intervals need to be included. Let W represent

the total number of future observations in the boundary intervals, where W ranges

from 1 to m. For W = 1, there are two possible ways in which W can be in the

two boundary intervals, as the observation could be in either the left or the right

boundary interval. By similar reasoning, for W = 2, there are three possible ways.

Generally, there are W +1 possible ways for each value of W . Let D be an integer

representing the number of future observations in the boundary intervals that can be

counted as belonging to that specific ICk such that D ≤ mk and W −D ≤ m−mk

where W −D represents the number of future observations in the boundary intervals

that can be assigned to ICk other than that specific ICk. Then, there may be

mk − D future observations in the Ij intervals of the specific ICk, which is equal
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to nk − 2, (m −mk) − (W −D) future observations in the remaining Ij intervals,

which is equal to n− nk − 1, and W observations in the boundary intervals, where

D ranges from W −m−mk to mk. Therefore, the total number of orderings that

can lead to Mk = mk with one or more observations in the boundary intervals is

equal to
m∑

W=1

min{mk,W}∑
D=(W−(m−mk))+

(W + 1)

(
nk − 2 + (mk −D)

mk −D

)(
n− nk − 1 + (m−mk)− (W −D)

m−mk − (W −D)

)
.

The NPI upper probability for 2 ≤ k ≤ K − 1 is:

P (Mk = mk) =

(
n+m

m

)−1
[(

nk − 2 +mk

mk

)(
n− nk − 1 +m−mk

m−mk

)
+

m∑
W=1

min{mk,W}∑
D=(W−(m−mk))

+

(W + 1)

(
nk − 2 +mk −D

mk −D

)
×

(
n− nk − 1 +m−mk − (W −D)

m−mk − (W −D)

)]
(2.9)

The case k = 1 or k = K

Now, for the cases k = 1 and k = K, all orderings in which mk observations must be

in ICk and m−mk future observations must be in the remaining ICk intervals are

counted. There are
(
nk−1+mk

mk

)(
n−nk−1+m−mk

m−mk

)
such orderings, as shown in the case

of the NPI lower probability. If k = 1 or k = K, only one boundary interval needs

to be considered. However, for k = 1 or k = K, the presence of only one boundary

interval means that W represents the total number of future observations in the

single boundary interval. Since there is only one boundary interval, each observation

in W does not have W + 1 ways to consider (unlike the two boundary intervals in

the 2 ≤ k ≤ K − 1 case). Therefore, the term W + 1 is not used. The NPI upper

probability for k = 1 or k = K is

P (Mk = mk) =

(
n+m

m

)−1
[(

nk − 1 +mk

mk

)(
n− nk − 1 +m−mk

m−mk

)
+

m∑
W=1

min{mk,W}∑
D=(W−(m−mk))

+

(
nk − 1 +mk −D

mk −D

)
×

(
n− nk − 1 +m−mk − (W −D)

m−mk − (W −D)

)]
(2.10)
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The NPI lower and upper probabilities for the event Mk = mk are illustrated in

the following example.

Example 2.4. Consider K = 3 ordered categories, C1 < C2 < C3, with the data

(n1, n2, n3) = (2, 3, 4). The data representation is presented in Figure 2.4. Consider

m = 3 future observations with the aim to derive the NPI lower and upper probabili-

ties for the event M2 = 2. First, Equations (2.7) and (2.8) will be applied in order

to derive the NPI lower probability with the values n = 9, n2 = 3 and m = 3. Thus,

P (M2 = 2) =

(
9 + 3

3

)−1(
3− 2 + 2

2

)(
9− 3− 1 + 3− 2

3− 2

)
=

18

220
= 0.0818

The NPI lower probability for the event M2 = 2 is equal to 18
220

, indicating 18 different

orderings for which M2 must be 2. From Figure 2.4, it is clear that the past data

points of IC2, in which the 2 future observations must be ordered within, excluding

the two data points that generate the boundary intervals, is equal to n2 − 2 = 1

data point. There are 3 orderings for the 2 future observations that must be in

IC2. Similarly, the total number of the remaining past data points involved in the

ordering, excluding those assigned to IC2, is equal to n − n2 − 1 = 5. There are

6 orderings for the 1 future observation within these remaining past data points.

Multiplying these orderings 3 × 6 leads to a total of 18 orderings.

Equation (2.10) is applied to derive the NPI upper probability for the event

M2 = 2 with the values n = 9, n2 = 3 and m = 3, leading to

P (M2 = 2) =

(
9 + 3

3

)−1
[(

3

2

)(
6

1

)
+

1∑
D=0

(2)

(
1 + (2−D)

2−D

)(
6− (1−D)

1− (1−D)

)
+

2∑
D=1

(3)

(
1 + (2−D)

2−D

)(
6− (2−D)

1− (2−D)

)
+

2∑
D=2

(4)

(
1 + (2−D)

2−D

)(
6− (3−D)

1− (3−D)

)]
=

1

220
[18 + 30 + 24 + 4] =

76

220
= 0.3455.
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y1 y2 y3 y4 y5 y6 y7

C1

n1 = 2

C3C2

n2 = 3 n3 = 4

−∞ y8 y9 ∞

Figure 2.4: Ordinal Data structure for Example 2.4

The corresponding NPI upper probability is equal to 76
220

, indicating that there

are 76 different orderings for which the event M2 = 2 is possible. These 76 orderings

are presented in the Appendix in Figures A1 to A4, with detailed explanations

provided. The NPI lower and upper probabilities for the events M1 = 2 and M3 = 2

can be derived similarly. For M1 = 2, using Equations (2.7) and (2.8), the NPI lower

probability is 0.0955 and the NPI upper probability is 0.2182. For M3 = 2, using the

same equations, the NPI lower probability is 0.2273 and the NPI upper probability

is 0.4091.

⋄

Instead of solely focusing on the precise number of future observations belonging

to a specific category, attention is extended to a further event of interest, which is

presented in the next section. This event is that at least mk out of the m future

observations are in a specific category. To present this, a path counting technique will

be introduced, which can also be used to obtain the NPI lower and upper probabilities

for other events of interest.

2.4 NPI for multiple future ordinal observations

using path counting

In this section, the event considered is that at least mk of the m future observations

are in a specific category. This event will be used in the next chapter. Let the random

quantity Mk represent the number of future observations belonging to category Ck

for k = 1, . . . , K, so the event is Mk ≥ mk. The NPI lower and upper probabilities

will be derived using a path counting technique to avoid double counting of orderings

of future observations.
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The path counting method was introduced by Aboalkhair [1] for NPI with

Bernoulli random quantities. The method uses the A(·) assumptions for inference on

m future random quantities given n observations and a latent variable representation

with Bernoulli quantities represented by observations on the real line, with a threshold

such that successes are on one side and failures on the other side of the threshold.

Under the A(·) assumptions, the
(
n+m
n

)
different orderings of these observations,

when not distinguishing between the n observed values nor between the m future

observations, are all equally likely. For each such ordering, the success-failure

threshold can be in any of the intervals of the partition of the real line created by

the n+m values of the latent variables.

These outcomes can be visualized as paths on a rectangular lattice grid from

(0, 0) to (n,m). In this grid, a move to the right corresponds to a data observation,

while an upward move represents a future observation. Consequently, a path from

(0, 0) to (n,m) on this grid consists of n steps to the right and m steps upward. Each

path on the lattice directly corresponds to one of the possible orderings of the n data

and m future observations. For example, let n = 2 and m = 2, possible orderings

might include “Data, Data, Future, Future,” “Data, Future, Data, Future,” “Future,

Data, Data, Future,” and so on. The corresponding paths of these orderings on

the lattice are “Right, Right, Up, Up,” “Right, Up, Right, Up,” “Up, Right, Right,

Up,” etc. There are
(
n+m
n

)
such paths, which correspond directly to the number

of all possible orderings. This correspondence allows for the application of path

counting techniques to derive NPI lower and upper probabilities, focusing specifically

on counting these paths. Therefore, the
(
n+m
n

)
different orderings, which are all

equally likely, correspond to the
(
n+m
n

)
different right-upwards paths from (0, 0) to

(n,m), and hence the NPI lower and upper probabilities can also be derived by

counting paths.

Extending this approach to ordinal data involves considering the n×m lattice

for K ≥ 2 ordered categories. For ordinal data, the total number of paths from (0, 0)

to (n,m), with movements going either one to the right or one upwards, is
(
n+m
m

)
.

The A(·) assumptions lead to each path being equally likely. Figure 2.5, following

the notation in Figure 2.1, illustrates all possible paths from (0, 0) to (n,m), with
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IC1 ICk ICK
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.

(0,m) (n,m)
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Figure 2.5: Data structure with all possible paths from (0, 0) to (n,m)

movements going either one to the right or one upwards. The NPI lower probability

for the event Mk ≥ mk with k = 1 or k = K is first considered.

The case k = 1 or k = K

The derivation of the NPI lower probability involves counting all paths that pass

through the two points (nk − 1, r) and (nk, r), respectively, where r ≥ mk, but

not through any point (nk, r) where r < mk. Any path passing through (nk, r)

with r < mk would indicate that the number of future observations does not

meet the required mk, meaning the event Mk ≥ mk cannot hold. Counting the

paths in this way ensures that the event Mk ≥ mk holds. The number of these

paths equals the number of paths from (0, 0) to (n,m) through at least one of

(nk − 1, r), (nk − 1, r + 1), (nk − 1, r + 2), . . . , (nk − 1,m). Each possible value of r

is considered separately in order to avoid counting any path more than once. For a

given value of r, there are
(
nk−1+r

r

)
different paths from (0, 0) to (nk, r) that must

pass through the point (nk − 1, r). The number of paths from (nk, r) to (n,m) of

the remaining m− r future observations is equal to
(
n−nk+m−r

m−r

)
. Therefore, the NPI

lower probability is

P (Mk ≥ mk) =

(
n+m

m

)−1 m∑
r=mk

(
nk − 1 + r

r

)(
n− nk +m− r

m− r

)
(2.11)
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The case 2 ≤ k ≤ K − 1

For 2 ≤ k ≤ K − 1, the derivation of the NPI lower probability involves counting all

paths from (0, 0) to (n,m) that pass through the points (n1:k−1, v) and (nk, r), with

mk ≤ r ≤ m, 0 ≤ v ≤ m− r, and n1:k−1 =
k−1∑
i=1

ni. Initially, all paths from (0, 0) to

(n1:k−1, v) are counted, where v ranges from 0 to m− r. This corresponds to counting

all paths in IC1 to ICk−1. The number of these paths is
(
n1:k−1+v

v

)
. Next, paths

are counted from (n1:k−1, v) to (nk, r), corresponding to ICk with 2 ≤ k ≤ K − 1,

where r ranges from mk to m. Within this specific middle ICk, the paths must follow

the constraint of entering and exiting ICk horizontally. This constraint ensures no

upward movements occur on either side of ICk, ensuring the event Mk ≥ mk holds.

For a given value of r, the number of these paths is
(
nk−2+r

r

)
. Finally, all paths from

(nk, r) to (n,m) are counted, corresponding to ICk+1 to ICK . With nk+1:K =
K∑

l=k+1

nl,

the number of these paths is
(
nk+1:K+m−r−v

m−r−v

)
. This method of counting ensures that

the event Mk ≥ mk must hold. The NPI lower probability for the event Mk ≥ mk

with 2 ≤ k ≤ K − 1 is

P (Mk ≥ mk) =

(
n+m

m

)−1
[

m∑
r=mk

(
nk − 2 + r

r

)m−r∑
v=0

(
n1:k−1 + v

v

)
×

(
nk+1:K +m− r − v

m− r − v

)]
(2.12)

The corresponding NPI upper probability for 1 ≤ k ≤ K can be derived by

counting all paths that go through at least one point (nk, r) with r ≥ mk. To avoid

that any path is counted more than once, the number of these paths can be computed

by counting all paths from (0, 0) to (n,m) via (nk, r), in addition to paths from (0, 0)

to (n,m) via at least one of (nk − 1, r + 1), (nk − 1, r + 2), . . . , (nk − 1,m). This

ensures that the event Mk ≥ mk can hold. The NPI upper probability is

P (Mk ≥ mk) =

(
n+m

m

)−1

×

[(
nk + r

r

)(
n− nk +m− r

m− r

)
+

m∑
j=r+1

(
nk − 1 + j

j

)(
n− nk +m− j

m− j

)] (2.13)
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Example 2.5 illustrates the NPI lower and upper probabilities for the event

Mk ≥ mk and provides further explanation of the counting of the paths.

Example 2.5. Consider an ordinal data set with 3 ordered categories, C1 < C2 < C3,

where the data are (n1, n2, n3) = (2, 4, 2). Consider m = 3 future observations

with the aim to derive the NPI lower and upper probabilities for the event that C1

contains at least one of the three future observations, so M1 ≥ 1. Equations (2.11)

and (2.13) are applied to derive the NPI lower and upper probabilities, respectively.

The NPI lower probability for M1 ≥ 1 with the values n = 8, n1 = 2 and m = 3 is

P (M1 ≥ 1) =

(
n+m

m

)−1 m∑
r=m1

(
n1 − 1 + r

r

)(
n− n1 +m− r

m− r

)

=

(
8 + 3

3

)−1 3∑
r=1

(
2− 1 + r

r

)(
8− 2 + 3− r

3− r

)
=

(
8 + 3

3

)−1

[2× 28 + 3× 7 + 4× 1] = 0.4909.

This quantity
3∑

r=1

(
2− 1 + r

r

)(
8− 2 + 3− r

3− r

)
represents the number of paths from

(0, 0) to (n,m) that have to pass through at least one of (n1 − 1, r), (n1 − 1, r + 1) or

(n1− 1,m), visualized by the black dots in Figure 2.6. The total number of orderings

for the event M1 ≥ 1 is 2× 28 + 3× 7 + 4× 1, where the 2 × 28, 3 × 7 and 4 × 1

paths are shown in Figure 2.6(a), (b), and (c), respectively. The corresponding NPI

upper probability is derived by counting all paths that go through at least one point

(n1, r) with r ≥ m1, in addition to paths from (0, 0) to (n,m) via at least one of

(n1 − 1, r + 1) or (n1 − 1,m). The NPI upper probability for the event M1 ≥ 1 is

P (M1 ≥ 1) =

(
8 + 3

3

)−1

×

[(
2 + 1

1

)(
8− 2 + (3− 1)

3− 1

)
+

3∑
j=2

(
2− 1 + j

j

)(
8− 2 + (3− j)

m− j

)]

=

(
8 + 3

3

)−1

[3× 28 + 3× 7 + 4× 1] = 0.6606.

The total number of orderings for the event M1 ≥ 1 is equal to 109, where these
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Figure 2.6: All paths for which the event M1 ≥ 1 has to hold
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(a) r = 1
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(b) r + 1

C1 C3C2

(c) r + 2

Figure 2.7: All paths for which the event M1 ≥ 1 is possible

paths are presented in Figure 2.7. If the aim is to derive the NPI lower and

upper probabilities for the event that C2 contains at least one of the three future

observations, so M2 ≥ 1. Equations (2.12) and (2.13) are applied to derive the NPI

lower and upper probabilities, respectively. The NPI lower probability for M2 ≥ 1

with the values n = 8, n1 = 4 and m = 3 is

P (M2 ≥ 1) =

(
n+m

m

)−1
[

m∑
r=m2

(
n2 − 2 + r

r

)m−r∑
v=0

(
n1 + v

v

)(
n3 +m− r − v

m− r − v

)]

=

(
11

3

)−1
[

3∑
r=1

(
2 + r

r

) 3−r∑
v=0

(
2 + v

v

)(
2 + 3− r − v

3− r − v

)]

=

(
11

3

)−1
[
3 (1× 6 + 3× 3 + 6× 1) + 6 (1× 3 + 3× 1) + 10 (1× 1)

]

=

(
11

3

)−1

[3× 21 + 6× 6 + 10× 1] = 0.6606

The corresponding NPI upper probability is derived by counting all paths that

go through at least one point (n2, r) with r ≥ m2, in addition to paths from (0, 0) to

(n,m) via at least one of (n2 − 1, r + 1) and (n2 − 1,m). The NPI upper probability
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for the event M2 ≥ 1 is

P (M2 ≥ 1) =

(
8 + 3

3

)−1

×

[(
4 + 1

1

)(
8− 4 + (3− 1)

3− 1

)
+

3∑
j=2

(
4− 1 + j

j

)(
8− 4 + (3− j)

m− j

)]

=

(
8 + 3

3

)−1

[5× 15 + 10× 5 + 20× 1] = 0.8788.

For the event M3 ≥ 1, the NPI lower and upper probabilities are equal to those

for the event M1 ≥ 1 as the n1 = n3 = 2. The results in this example show how NPI

lower and upper probabilities vary specifically with the number of observations in

each category, as shown by the different calculations for the events M1 ≥ 1, M2 ≥ 1,

and M3 ≥ 1. Inferences using this event will be presented in the next chapter. ⋄

The event Mk ≥ mk can be extended to the case in which the future observations

are in adjoining categories instead of a specific category. This case involving adjoining

categories, which is presented next, is effectively the same as reducing the total

number of categories by considering these adjoining categories together as one

combined category. Inferences using this event are presented in Chapters 3 and 4.

Consider the event that at least a specific number out of the m future

observations are in adjoining categories. To derive the NPI lower and upper

probabilities for this event, we introduce new notation, following Coolen et al. [32]

and Elkhafifi [47]. Let CT =
⋃

k∈T Ck and T ⊂ {1, . . . , K}, where CT consists of

adjoining categories. In order to derive the NPI lower and upper probabilities, the

corresponding latent variable Yn+i ∈ ICT for i = 1, . . . ,m is considered, where

ICT =
⋃

k∈T ICk. Suppose that T = {s, . . . , t} with s, t ∈ {1, . . . , K}, s ≤ t. Let

Cs,t =
⋃t

k=s Ck, ICs,t =
⋃t

k=s ICk and ns,t =
t∑

k=s

nk. Let Ms,t represent the number

of m future observations that belong to the combined category Cs,t, so the event is

Ms,t ≥ ms,t. The case with s = 1 and t = K will be excluded, as both NPI lower

and upper probabilities for the event Ms,t ≥ ms,t are equal to 1.
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For the event Ms,t ≥ ms,t, two different situations should be considered to derive

the NPI lower and upper probabilities. These two situations are whether the category

Cs,t has one of the first or last categories, so s = 1 or t = K, or not. The NPI lower

probability for the event Ms,t ≥ ms,t for the case where s = 1 or t = K is

P (Ms,t ≥ ms,t) =

(
n+m

m

)−1 m∑
r=ms,t

(
ns,t − 1 + r

r

)(
n− ns,t − 1 +m− r

m− r

)
(2.14)

For 1 < s ≤ t < K, let n1,s−1 =
s−1∑
k=1

nk and nt+1,K =
K∑

k=t+1

nk. The NPI lower

probability for the event Ms,t ≥ ms,t for the case where 1 < s ≤ t < K is

P (Ms,t ≥ ms,t) =

(
n+m

m

)−1
[

m∑
r=ms,t

(
ns,t − 2 + r

r

)m−r∑
v=0

(
n1,s−1 + v

v

)
×

(
nt+1,K +m− r − v

m− r − v

)]
(2.15)

The corresponding NPI upper probability for the event Ms,t ≥ ms,t with

1 ≤ s ≤ t ≤ K is

P (Ms,t ≥ ms,t) =

(
n+m

m

)−1

×

[(
ns,t + r

r

)(
n− ns,t + (m− r)

m− r

)
+

m∑
j=r+1

(
ns,t − 1 + j

j

)(
n− ns,t + (m− j)

m− j

)] (2.16)

This section has presented the path counting technique for NPI with ordinal

data to obtain the NPI lower and upper probabilities for the events of interest.

This technique can similarly be applied to other events of interest, offering a useful

approach for future analyses. The derivation of NPI lower and upper probabilities has

been presented first for the event Mk ≥ mk, and then for the event Ms,t ≥ ms,t. The

total number of paths from (0, 0) to (n,m) and their implications on the derivation

of NPI lower and upper probabilities have been explained. Inferences and more

detailed scenarios involving the events presented in this section, along with examples

from the literature, will be presented throughout this thesis.
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2.5 Concluding remarks

In this chapter, NPI lower and upper probabilities for several events of interest

involving multiple future ordinal observations were presented. These results will

enable a variety of statistical inferences, several of which are presented in the following

chapter.

The initial focus was on two future observations to provide a clear understanding

of the methodology involved in counting the orderings of future observations. Two

specific events were presented: one where one of the future observations is in a

specific category while the other is in any of the remaining categories, and another

where both future observations are in a specific category. The distinction between

boundary intervals of first or last categories and middle categories was highlighted,

as it impacts the derivation of the NPI lower and upper probabilities.

The methodology was then generalised to m ≥ 2 future observations, considering

two events of interest. The first event considered is that there is a particular number

of future observations in each one of the categories. The second event of interest is

that precisely mk out of the m future observations belong to a specific category. The

results show how these NPI lower and upper probabilities vary based on the number

of data observations and the number of future observations.

Attention was then directed towards the event where at least mk out of m

future observations are in a specific category. To derive the NPI lower and upper

probabilities for this event, a path counting technique was introduced to avoid double

counting of the orderings of future observations by representing all possible orderings

as paths in an n×m lattice. The path counting technique was extended to the event

involving adjoining categories, where the corresponding union of intervals forms a

single interval on the real-line. The flexibility of the path counting method makes it

suitable for application to more complex events. For instance, the method can be

used to events where a specific number of future observations are in non-adjoining

categories. This is left as a topic for future research.



Chapter 3

Inferences involving multiple

future ordinal observations

3.1 Introduction

Many statistical applications involve identifying the optimal choice or choices from

a set of possibilities, such as determining the most effective treatment in a clinical

study. Methods specifically designed to select the best treatment or the optimal

member of some group are known as selection procedures [53]. For example, in

the context of multinomial data, the objective may be to select the category with

the largest probability of occurrence [12, 13]. Selection procedures have important

applications in a wide range of fields, including social sciences [20], medicine [25] and

marketing [65]. Moreover, comparing two or more independent groups of data, such

as those from different treatments in a clinical study, is a common problem. Pairwise

comparison can be used to determine which group performs better or is more likely to

lead to a desired outcome [7]. This chapter presents statistical methods for category

selection, subset selection of categories and pairwise comparison problems.

The structure of the chapter is as follows. Section 3.2 introduces a method for

selecting a single category based on multiple future ordinal observations. Section 3.3

presents a method for selecting a subset of categories. In Section 3.4, a pairwise com-

parison method based on multiple future observations from two groups is presented.

Finally, concluding remarks are provided in Section 3.5.

44



3.2. NPI-based category selection 45

3.2 NPI-based category selection

Generally, selection methods have important applications in a wide range of fields.

In social science research, applying tools like the Likert scale allows for the analysis

of questionnaire data, enabling the identification of key factors influencing people’s

opinions [20, 63]. The Likert scale, commonly used in social research, was developed

in 1932 by Rensis Likert to measure attitudes [20]. For example, in social sciences,

an ordinal scale may be used to analyze questionnaire data when presenting five

options to respond to a statement in a survey of opinions, such as: strongly disagree,

disagree, neutral, agree, and strongly agree. Similarly, in medical research, these

methods play a crucial role in identifying factors contributing to the development of

effective prevention and treatment strategies for diseases [25]. In market research,

these methods can assist companies in making informed decisions regarding product

development, marketing strategies, pricing, and enhancing sales management efficacy

[65]. Methods for selection problems, have been extensively studied in the statistics

literature [16, 17, 56]. Similar NPI-based methods for selection problems, with some

important variations, have been developed for real-valued data [36], proportions data

[30, 31], and lifetime data, including right-censored observations [42, 44], as discussed

in Section 1.3.

For category selection, NPI methods have been introduced for situations involving

multiple future observations, aiming to select either a single category with the largest

lower or upper probability of occurrence or the smallest subset of categories that

meets a specified probability requirement for multinomial data [12, 13]. In this

section, NPI-based method for category selection for an ordinal data set will be

presented, where the inferences involve m future observations. The method aims

to determine which category should be selected based on the NPI lower and upper

probabilities for future observations and a specified criterion.

The ordinal data, as discussed in Chapter 2, are represented on the real-line with

n data observations that partition the real-line into n+ 1 intervals. Data and future

observations are linked via this assumed underlying data representation, with latent

observations on the real-line falling into intervals which represent the categories, and

the use of the A(·) assumptions. Consider K ≥ 2 categories with the ordering between
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these categories indicated by C1 < C2 < . . . < CK . Assume that n observations are

available and that nk is the number of observations in category Ck, for k = 1, . . . , K,

so
K∑
k=1

nk = n, where nk ≥ 0. Let the random quantity Mk represent the number of

future observations that belong to category Ck, for k = 1, . . . , K.

The event that will be considered for category selection is based on the event of

interest that has been presented in Section 2.4. The event is that at least mk of the

m future observations are in a specific category Ck, denoted by Mk ≥ mk. To select a

category based on this event, the NPI lower and upper probabilities for each category

are derived. For a specified p∗, categories that satisfy either P (Mk ≥ mk) ≤ p∗ or

P (Mk ≥ mk) ≤ p∗ are identified. The criterion ≤ p∗ is used to exclude any category

that has an NPI lower or upper probability larger than p∗ and to focus on those

that meet the criterion. Among the remaining categories, the one with the largest

NPI lower or upper probability is chosen. For example, in loan risk assessment,

where categories represent levels of repayment risk, p∗ could represent the confidence

level for accepting a borrower; then, the category with the largest NPI lower or

upper probability can be selected to ensure it is the closest to p∗, making it the most

appropriate choice among those meeting the criterion. This approach ensures that,

while we are only considering categories that meet the criterion, we are still selecting

the best one from those remaining, such that the selected category has the largest

NPI lower or upper probability for the event that at least mk future observations

belong to that selected category. This method is relevant in practice when selecting

categories, especially when the goal is to ensure a specific level of confidence that

the selected category does not exceed this level, or to avoid selecting categories that

exceed the desired selection criterion. If one aims to select a category that has NPI

lower or upper probabilities greater than or equal to p∗, the criterion ≥ p∗ can be

used. In the example later in this section, a scenario is presented to show how the

category selected using ≥ p∗ differs from the one selected with ≤ p∗.

The practical importance of this event and criterion in real-life contexts can, for

example, be illustrated by a situation involving ordered categories representing the

severity level of a condition or disease. Importantly, these events are not confined

solely to medical contexts; their applicability can be extended to various fields.
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Consider a scenario in which healthcare providers are required to categorize a

disease based on severity levels, from mild to severe, using the World Health Organi-

zation (WHO) ordinal scale. The WHO ordinal scale is a useful tool to assess illness

severity in Coronavirus disease (COVID-19) patients [81]. It categorizes patients

into different stages based on their clinical status, ranging from mild illness to severe

disease and death. The scale provides a standardized framework for evaluating and

monitoring patients, aiding in treatment decisions and predicting outcomes. In the

context of COVID-19, the WHO ordinal scale has been widely used to guide clinical

management and research efforts. It helps healthcare professionals classify patients

according to their need for hospitalization, oxygen therapy, and intensive care.

Suppose that the objective here is to address the problem of determining the

severity category to which at least a certain number of future patients will belong.

NPI helps in predicting which category future observations are likely to be within,

such as whether at least mk future patients will be in mild or death category. One

can use the NPI lower probability P (Mk ≥ mk) as a minimum boundary for ensuring

at least a number of future observations are in a specific category Ck. Alternatively,

the NPI upper probability P (Mk ≥ mk) can be used as a maximum boundary for

ensuring at least a number of future observations are in a specific category Ck. By

setting a specific criterion p∗, healthcare administrators can ensure a specific level of

confidence that the selected category, meeting this criterion, will contain at least mk

future cases. The choice of m is essential in this selection process. When m is set to a

small number, it may reflect a scenario where decision-makers only focus on a limited

number of future observations, such as during a period of decreasing COVID-19

cases, or m can be set to a large value to prepare for a scenario with a larger number

of severe cases, such as during a peak in the pandemic. Whether increasing the

number of future observations, m, will affect the selection of the category depends

on how the NPI lower and upper probabilities for each category respond to changes

in m. This influence of m on NPI lower and upper probabilities will be illustrated

via an example using data from the literature.

The category selection is demonstrated in a study on the availability of personal

protective equipment (PPE) in NHS (National Health Service) hospitals during
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COVID-19, as presented by Mantelakis et al. [66]. The PPE items included eye and

face protection, surgical masks, filtering facepiece class 3 (FFP3) respirator, gloves,

and plastic aprons. This study investigates PPE availability, using social media

for survey distribution to UK healthcare professionals and a Likert scale to assess

respondents’ perceived protection against infections.

Example 3.1. The study distributed a survey via social media to various UK

COVID-19 healthcare professional groups, involving 121 participants who were

healthcare workers employed by the NHS. This distribution strategy enabled re-

searchers to collect responses from a large number of healthcare workers employed

by the NHS while they were working within the hospital. Over a period of 3 weeks,

the survey collected a total of 121 replies from 35 hospitals across England. Partici-

pants were asked the following question: “Are the aforementioned PPEs available as

needed?” Their responses were categorized using the Likert scale into five categories:

C1: always; C2: usually; C3: occasionally; and C4: almost never; and C5: never.

Table 3.1 illustrates the numbers of participants who selected each response category.

The availability of personal protective equipment (PPE) during a pandemic such as

COVID-19 can be crucial not only for healthcare workers, but also for controlling the

spread of the disease, and assessing the availability of sufficient PPE may contribute

to public health efforts. For example if the category selected is either C3: occasionally;

or C4: almost never; or C5: never, it highlights the need for immediate attention and

resource allocation to meet the demand, while if the category selected is C1: always

or C2: usually, it suggests that there is a consistent or frequent availability of PPE.

This can be encouraging as it implies that healthcare workers have the necessary

protective equipment for their safety.

Consider inferences about the next 4 healthcare workers, so m = 4 future

observations, with the objective to select the category that satisfies either

P (Mk ≥ mk) ≤ 0.75 or P (Mk ≥ mk) ≤ 0.75, which can be particularly relevant

in scenarios where decisions must be based on the responses of a small group. The

assessment of PPE availability during the COVID-19 pandemic requires a careful

consideration of the value of m as it affects both the NPI lower (P ) and upper

(P ) probabilities. One can set a high criterion that is enough to reflect a concern
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Category C1 C2 C3 C4 C5

Observations 36 49 23 10 3

Table 3.1: Self-reported PPE availability

Ck

Mk ≥ 1 Mk ≥ 2 Mk ≥ 3 Mk ≥ 4

P P P P P P P P

C1 0.7481 0.7594 0.3404 0.3547 0.0833 0.0896 0.0085 0.0094

C2 0.8604 0.8746 0.5122 0.5401 0.1754 0.1944 0.0258 0.0302

C3 0.5438 0.5787 0.1540 0.1783 0.0222 0.0281 0.0013 0.0018

C4 0.2612 0.3115 0.0319 0.0457 0.0020 0.0034 0 0.0001

C5 0.0937 0.1234 0.0045 0.0075 0.0001 0.0002 0 0

Table 3.2: NPI lower and upper probabilities for the event Mk ≥ mk where
k = 1, . . . , 5 and m = 4

for events that could impact PPE availability, ensuring that attention is directed

toward scenarios with considerable potential for such events to occur. By setting a

decision-making criterion at p∗ = 0.75, one can focus on identifying categories where

either P or P is below this criterion. The optimal category is then selected based on

the largest NPI lower or upper probability among those that meet this criterion.

The NPI lower and upper probabilities presented in Section 2.4, particularly

Equations 2.11, 2.12, and 2.13, are applied. Table 3.2 presents the NPI lower and

upper probabilities for the events Mk ≥ mk where k = 1, . . . , 5 and m = 4. Table 3.3

extends this analysis by increasing the number of future observations to m = 8,

while considering the same events presented in Table 3.2. In this example, how m

values affect the NPI lower and upper probabilities for the events Mk ≥ mk will

be discussed first. The optimal category selection is then introduced considering

the condition P (Mk ≥ mk) ≤ 0.75, followed by the selection based on the condition

P (Mk ≥ mk) ≤ 0.75. Finally, the selection is explored with different scenarios to

show how the selection of the optimal category differs depending on whether the

criterion is based on P (Mk ≥ mk) ≤ p∗ or P (Mk ≥ mk) ≤ p∗.

For the event Mk ≥ 1 with m = 4, as presented in Table 3.2, the NPI lower

probabilities for categories k = 1 through k = 5 are 0.7481, 0.8604, 0.5438, 0.2612,

and 0.0937, respectively. The corresponding NPI upper probabilities are 0.7594,

0.8746, 0.5787, 0.3115, and 0.1234. When m is increased to 8, as shown in Table 3.3,

the NPI lower probabilities the event Mk ≥ 1 for k = 1 through k = 5 become
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Ck

Mk ≥ 1 Mk ≥ 2 Mk ≥ 3 Mk ≥ 4

P P P P P P P P

C1 0.9332 0.9389 0.7263 0.7425 0.4350 0.4553 0.1918 0.2064

C2 0.9789 0.9829 0.8789 0.8962 0.6644 0.6979 0.3929 0.4300

C3 0.7862 0.8171 0.4344 0.4826 0.1673 0.2012 0.0452 0.0591

C4 0.4487 0.5201 0.1179 0.1622 0.0207 0.0337 0.0025 0.0049

C5 0.1760 0.2283 0.0191 0.0308 0.0015 0.0029 0.0001 0.0002

Table 3.3: NPI lower and upper probabilities for the event Mk ≥ mk where
k = 1, . . . , 5 and m = 8

0.9332, 0.9789, 0.7862, 0.4487, and 0.1760, and the NPI upper probabilities are

0.9389, 0.9829, 0.8171, 0.5201, and 0.2283. As the number of future observations

increases to 8, the NPI lower probabilities for all categories generally increase, and

the NPI upper probabilities also increase. For the other events, such as Mk ≥ 2,

Mk ≥ 3, and Mk ≥ 4, similar increases in both NPI lower and upper probabilities are

observed with more observations. These changes indicate that as m increases, both

the NPI lower and upper probabilities increase. Next, the optimal category selection

is introduced by first considering the condition P (Mk ≥ mk) ≤ 0.75, followed by the

selection based on the condition P (Mk ≥ mk) ≤ 0.75.

For the event Mk ≥ 1 with m = 4, the NPI lower probability for k = 1 is 0.7481,

which is just below the criterion p∗ = 0.75. For k = 2, the NPI lower probability

is 0.8604, which exceeds the criterion, while the NPI lower probability for k = 3 is

0.5438, which satisfies the criterion but is not the largest. Among the categories that

satisfy the criterion for the event Mk ≥ 1, C1 is selected as the optimal choice due to

its larger NPI lower probability. When the number of future observations is increased

to m = 8, the NPI lower probabilities for k = 1 and k = 2 increase to 0.9332 and

0.9789, respectively, both of which no longer satisfy the criterion. While the NPI

lower probability for k = 3 is 0.7862, which still does not meet the criterion, the

NPI lower probability for k = 4 is 0.4487. Therefore, C4 becomes the optimal choice

when m = 8. This demonstrates that as m increases, the optimal choice can change.

For the event Mk ≥ 2 with m = 4, the NPI lower probabilities for k = 1 and k = 2

are 0.3404 and 0.5122, respectively, both of which satisfy the criterion. Among these,

C2 is selected as the optimal choice due to its larger NPI lower probability. When

the number of future observations is increased to m = 8, the NPI lower probabilities
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for k = 1 and k = 2 change, with C2 no longer meeting the criterion at 0.8789, while

k = 1 still meets it at 0.7263, making C1 the optimal category.

For the event Mk ≥ 3 with m = 4, the NPI lower probabilities for k = 1 and

k = 2 are 0.0833 and 0.1754, respectively, both of which satisfy the criterion. C2 is

selected as the optimal choice. When the number of future observations is increased

to m = 8, the NPI lower probabilities for k = 1 and k = 2 are increased to 0.4350 and

0.6644, respectively. Both still satisfy the criterion, with C2 remaining the optimal

category due to its larger NPI lower probability.

For the eventMk ≥ 4 withm = 4, all categories have small NPI lower probabilities,

with k = 1 and k = 2 showing values of 0.0085 and 0.0258, respectively, which satisfy

the criterion p∗ = 0.75. C2 is considered optimal due to its larger NPI lower

probability. When m is increased to 8, the NPI lower probabilities for k = 1 and

k = 2 increase to 0.1918 and 0.3929, respectively, but they still remain below the

criterion, making C2 the optimal category.

When considering NPI upper probabilities for the event Mk ≥ 1 with m = 4, the

NPI upper probabilities for k = 1 and k = 2 are 0.7594 and 0.8746, respectively,

which are above the p∗ = 0.75 criterion and do not meet it. However, k = 3 satisfies

the criterion with the NPI upper probability equal to 0.5787, making C3 the optimal

choice at m = 4. When m = 8, the NPI upper probabilities for k = 1 and k = 2

increase to 0.9389 and 0.9829, respectively, both no longer meeting the criterion

p∗ = 0.75. Also, k = 3 no longer meets the criterion as the NPI upper probability is

0.8171. However, the NPI upper probability with k = 4 is 0.5201, which meets the

criterion, making C4 the optimal choice when m = 8.

For the event Mk ≥ 2 with m = 4, k = 1 and k = 2 meet the criterion with NPI

upper probabilities of 0.3547 and 0.5401, respectively, making C2 the optimal choice.

When m is increased to 8, the NPI upper probabilities for k = 1 and k = 2 change

to values that no longer meet the criterion, and C3 is selected as optimal based on

its maximum NPI upper probability among those that satisfy the criterion.

When analyzing Mk ≥ 3 with m = 4, both k = 1 and k = 2 satisfy the criterion

with NPI upper probabilities of 0.0896 and 0.1944, respectively, making C2 the

optimal choice. When m is increased to 8, the NPI upper probability for k = 2 still
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meets the criterion keeping C2 as the optimal choice based on its maximum NPI

upper probability. Similarly, for Mk ≥ 4 with m = 4, C2 is the optimal choice, and

it continues to meet the criterion as m increases to 8.

The optimal category is selected as the one with the maximum NPI lower or upper

probability among those that satisfy the criterion for the event. The category selection,

however, can differ depending on whether the criterion is based on P (Mk ≥ mk) ≤ p∗

or P (Mk ≥ mk) ≤ p∗. For example, in the event Mk ≥ 1 with m = 4 and a criterion

of 0.75, C1 is considered optimal based on P because its NPI lower probability is

0.7481, the largest value that meets the criterion, while C3 is optimal based on P .

Another example is for the event Mk ≥ 1 with m = 8 and a criterion of 0.45; here,

C4 is optimal for P because its NPI lower probability is 0.4487, which meets the

criterion, and C5 is optimal for P . Similarly, for the event Mk ≥ 3 with m = 8 and a

criterion of 0.45, C1 is optimal for P because its NPI lower probability is 0.4350, the

largest value within the criterion, while C3 is selected for P . In another scenario, one

might be interested in adjusting the NPI upper criterion and selecting the category

based on the criterion P (Mk ≥ mk) ≥ p∗. For instance, in the event Mk ≥ 1 with

m = 4, the NPI upper probabilities for categories C1 and C2 are above the criterion

p∗ = 0.75, making them suitable. Among these, C2 is the optimal category because

its NPI upper probability is larger than that of C1. This selection differs from using

the criterion P (Mk ≥ 1) ≤ p∗. As discussed earlier in this section, if one aims to

select a category that has NPI lower or upper probabilities greater than or equal

to p∗, the criterion ≥ p∗ can be used instead of ≤ p∗, depending on the specific

objectives of the analysis. This highlights the importance of carefully considering

both the chosen criterion and the condition depending on one’s analysis objectives. ⋄

Overall, the selection of the optimal category can vary with the number of future

observations considered. As m increases, the NPI lower and upper probabilities

typically become larger, which may cause categories that were optimal at a smaller

m to exceed the criterion and thus no longer qualify. This can lead to different

optimal categories being selected as m changes. Consequently, the choice between

P (Mk ≥ mk) ≤ p∗ or P (Mk ≥ mk) ≤ p∗, along with the number of future obser-

vations, can result in different selections, highlighting the importance of carefully
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considering these in decision-making. The next section presents how NPI can be used

to select subsets of categories from an ordinal dataset, moving beyond the selection

of just one category.

3.3 NPI-based selection of a subset of categories

Subset selection is a common problem in statistical analysis. Classical methods for

subset selection, such as Gupta’s subset selection method [56], focused on identifying

a subset of treatments that includes the best treatment with a certain confidence level.

These methods do not focus on selecting one or more subsets of categories most likely

to occur for a single variable, as discussed by Bechhofer et al. [16]. These methods

are non-predictive, relying solely on hypothesis testing. This section introduces a

nonparametric predictive approach, called NPI, for selecting subsets of categories

with multiple future ordinal observations. An NPI-based method has been developed

for selecting a subset of categories, particularly in scenarios where no prior knowledge

of the relationships between the categories is available [12]. This section presents

an NPI-based method where the knowledge about ordering of categories is taken

into account to select a subset of ordered categories. The inferences about these

future observations utilize the event of interest introduced in Section 2.4. For this

subset selection, making inferences about m future observations will require the

introduction of some new notation.

Recall that the combined ordered category Cs,t =
⋃t

k=sCk and ns,t =
t∑

k=s

nk. If

s = t then the m future observations are in a specific category. Let the selected subset

of categories be denoted by S, where S = {s, . . . , t} with s, t ∈ {1, . . . , K}, s ≤ t.

Let the number of future observations that are in S be represented by the random

quantity MS. The focus of this section is on the event that MS ≥ mS. Note that,

the case with s = 1 and t = K will be excluded, as both NPI lower and upper

probabilities for the event MS ≥ mS are equal to 1 for all mS ∈ {0, 1, . . . ,m}.

Instead of focusing on a specific value of MS, it may be more practical to consider

the event MS ≥ mS, which provides a clear criterion (e.g., ensuring that subset S

contains at least a certain number of future observations). Thinking about having at

least a number of future observations in S seems more practical when dealing with
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future observations. Gupta [56] introduced the p∗ condition, a probability criterion

used to ensure that a selected subset meets or exceeds a probability threshold for a

desired outcome. This criterion p∗ is chosen to achieve a specific level of confidence or

assurance that the selected subset meets a desired outcome. In this section, a similar

idea is applied to identify a subset S such that the NPI lower or upper probability of

the event MS ≥ mS meets or exceeds a specified p∗. The objective here is to identify

a subset S such that P (MS ≥ mS) ≥ p∗ or P (MS ≥ mS) ≥ p∗, while ensuring that

S is of minimal size by evaluating all possible subsets and selecting the one with the

smallest number of categories that still satisfies the criterion. If several such subsets

exist, the one with the maximum NPI lower or upper probability is selected. This

subset is then referred to as the optimal subset S. This method will be presented

using the NPI lower and upper probabilities in Section 2.4.

The selection of a minimal-sized subset consisting of adjoining categories with

a specified criterion could be of interest in various fields. For instance, healthcare

providers might need to select a subset of categories containing specific adjoining

severity levels. According to Serlin et al.[84], cancer pain is categorized into 10 severity

levels, with C1 to C4 representing mild pain, C5 and C6 representing moderate pain,

and C7 to C10 representing severe pain. In healthcare, particularly in cancer pain

management, it is crucial to identify a subset of severe pain categories such as C7 to

C10 that are likely to include at least a certain number of future patients. With limited

resources, healthcare providers need a method to focus on the most critical cases,

ensuring that those in severe pain categories receive timely and adequate treatment.

The NPI-based subset selection method can help achieve this by identifying subsets

of pain severity levels likely to contain at least a specific number of future severe pain

cases. Suppose that one aims to select a minimal-sized subset containing adjoining

categories that represent severe levels of cancer pain, ensuring that P (MS ≥ mS) ≥ p∗

or P (MS ≥ mS) ≥ p∗. This criterion p∗ can be set to achieve a specific level of

confidence that the selected subset will contain at least mS of future severe pain cases.

In healthcare, meeting such a criterion could be beneficial in directing resources

toward future cases likely to be severe, potentially enabling more effective and

targeted interventions. The NPI-based subset selection method allows healthcare
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providers to choose m based on their specific objectives; for instance, selecting a

larger m to prepare for a scenario where a larger number of severe cases is likely, or

a smaller m when the focus is only on the immediate severe cases.

NPI method of selecting subsets is illustrated with data sets from the literature, for

example, a study conducted by Wang et al.[89], which investigated the clinical severity

and outcomes of adult patients hospitalized with laboratory-confirmed seasonal

influenza A or B virus infections. The subset selection method is demonstrated using

data related to the severity of illness caused by the influenza A virus.

Example 3.2. The study was conducted by Wang et al. [89] between October 2016

and June 2018, involving adult patients aged 18 years and older diagnosed with

laboratory-confirmed seasonal influenza A or B infections. There were two types of

influenza virus infections among the patients. The research concluded that influenza

A infection demonstrated more severe clinical outcomes compared to influenza B

infection among hospitalized adults with laboratory-confirmed seasonal influenza.

The assessment of clinical improvement was based on a 7-category ordinal scale,

reflecting the patient’s condition at discharge. According to the study, the rate of

clinical improvement assessed by the ordinal scale may be a reasonable endpoint for

patients who are hospitalized with influenza infection. The study’s results highlighted

the potential utility of a 7-category ordinal scale in assessing the severity of influenza

infections and predicting clinical outcomes. This ordinal scale was used to assess the

clinical status of patients at fixed time points, categorized into seven categories, where

C1 indicated the best outcome and C7 indicated the worst outcome. On day 14, the

study reported the number of patients in each category of the 7-category ordinal scale,

with 363 identified as influenza A cases.

These categories are C1: Discharged with resumption of normal activities, C2:

Discharged without resumption of normal activities, C3: Non-ICU (intensive care

unit), not requiring oxygen, C4: Non-ICU, requiring oxygen, C5: ICU, not requiring

IMV (invasive mechanical ventilation), C6: ICU, requiring IMV, C7: Death. Table 3.4

illustrates the number of patients for each response category.

Consider inferences about four future observations with the objective of

selecting subsets of minimal size that satisfy the criterion P (MS ≥ mS) ≥ p∗ or
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Category C1 C2 C3 C4 C5 C6 C7

Observations 201 3 81 18 16 23 21

Table 3.4: Ordinal scale data at day 14 for influenza A patients

P (MS ≥ mS) ≥ p∗. We are interested in four events: having at least 1 future ob-

servation in S, at least 2, 3, and all 4 future observations in S. In this example,

an increasing sequence of subsets will be considered, starting with the individual

categories, and gradually expanding by one category at a time. The subset containing

all of the categories, {C1, . . . , C7}, will be excluded, as the NPI lower and upper

probabilities are equal to one. The NPI lower and upper probabilities for several

events MS ≥ mS are derived with S consisting of a single category or a subset of

categories by applying Equations (2.14) and (2.15) for the NPI lower probability and

Equation (2.16) for the NPI upper probability, considering mS values ranging from

1 to 4. The composition of each individual subset and these NPI lower and upper

probabilities are presented in Table 3.5.

Suppose the objective is to select subsets containing the category ‘Discharged

with resumption of normal activities’, denoted as C1, that satisfy a specified criterion

where one or more of the future observations belong to a category in that subset,

so the event is MS ≥ 1. Considering the criterion is equal to 0.7, for the NPI lower

probability, P (MS ≥ 1) ≥ 0.7, subsets are evaluate based on their respective lower

probabilities derived from Equation (2.14). First, a subset of minimal size is chosen

such that the NPI lower probability for the event that one or more of the future

observations belong to a category in that subset is at least 0.7. As a result, S = {C1}

is selected as the initial subset satisfying this criterion. Moving to the second event

of interest, aiming for at least two future observations within the subset that meet

the criterion, P (MS ≥ 2) ≥ 0.7, we select S = {C1} from Table 3.5. Similarly, the

goal remains to select a minimal-size subset where three, P (MS ≥ 3) ≥ 0.7, and

eventually all future observations, P (MS ≥ 4) ≥ 0.7, satisfy the criterion. A larger

subset needs to be selected now to achieve this minimally required probability. From

Table 3.5, the smallest subset which satisfies P (MS ≥ 3) ≥ 0.7 is S = {C1, C2, C3}.

The smallest subset which meet the required criterion based on their respective NPI

lower probabilities for P (MS ≥ 4) ≥ 0.7 is S = {C1, . . . , C6}.
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S
MS ≥ 1 MS ≥ 2 MS ≥ 3 MS ≥ 4

P P P P P P P P

{C1} 0.9590 0.9600 0.7603 0.7639 0.3953 0.3998 0.0942 0.0961

{C1, C2} 0.9619 0.9628 0.7711 0.7746 0.4089 0.4134 0.0999 0.1019

{C1, C2, C3} 0.9976 0.9978 0.9649 0.9662 0.7918 0.7961 0.3775 0.3828

{C1, . . . , C4} 0.9991 0.9992 0.9830 0.9837 0.8658 0.8696 0.4817 0.4881

{C1, . . . , C5} 0.9997 0.9998 0.9928 0.9932 0.9217 0.9248 0.5912 0.5986

{C1, . . . , C6} 0.9999 1 0.9990 0.9992 0.9791 0.9808 0.7801 0.7892

{C2} 0.0217 0.0430 0.0003 0.0009 0 0 0 0

{C2, C3} 0.6431 0.6531 0.2259 0.2349 0.0402 0.0429 0.0029 0.0031

{C2, C3, C4} 0.7258 0.7340 0.3092 0.3188 0.0687 0.0725 0.0062 0.0067

{C2, . . . , C5} 0.7863 0.7931 0.3863 0.3961 0.1020 0.1067 0.0110 0.0118

{C2, . . . , C6} 0.8551 0.8602 0.4977 0.5072 0.1632 0.1693 0.0225 0.0238

{C2, . . . , C7} 0.9039 0.9058 0.6002 0.6047 0.2361 0.2397 0.0400 0.0410

{C3} 0.6277 0.6380 0.2126 0.2215 0.0363 0.0389 0.0025 0.0027

{C3, C4} 0.7131 0.7216 0.2950 0.3045 0.0633 0.0669 0.0055 0.0059

{C3, C4, C5} 0.7758 0.7829 0.3718 0.3815 0.0952 0.0997 0.0100 0.0107

{C3, . . . , C6} 0.8472 0.8525 0.4833 0.4929 0.1543 0.1602 0.0206 0.0218

{C3, . . . , C7} 0.8981 0.9001 0.5866 0.5911 0.2254 0.2289 0.0372 0.0381

{C4} 0.1735 0.1923 0.0129 0.0159 0.0005 0.0006 0 0

{C4, C5} 0.3151 0.3314 0.0444 0.0495 0.0030 0.0035 0 0

{C4, C5, C6} 0.4858 0.4990 0.1155 0.1229 0.0134 0.0148 0.0006 0.0007

{C4, . . . , C7} 0.6172 0.6225 0.2039 0.2082 0.0338 0.0351 0.0022 0.0024

{C5} 0.1543 0.1735 0.0102 0.0129 0.0003 0.0005 0 0

{C5, C6} 0.3554 0.3710 0.0576 0.0632 0.0045 0.0052 0.0001 0.0002

{C5, C6, C7} 0.5119 0.5183 0.1304 0.1342 0.0163 0.0170 0.0008 0.0009

{C6} 0.2199 0.2379 0.0209 0.0246 0.0009 0.0012 0 0

{C6, C7} 0.4014 0.4088 0.0752 0.0783 0.0068 0.0072 0.0002 0.0003

{C7} 0.2108 0.2199 0.0192 0.0209 0.0008 0.0009 0 0

Table 3.5: NPI lower and upper probabilities for several events MS ≥ mS with m = 4
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For the NPI upper probability, a subset of minimal size is selected such that the

NPI upper probability for the event that one or more of the future observations

belong to a category in that subset is at least 0.7. The subsets meeting this criterion

for all events of interest are similar to those selected for the NPI lower probability.

If the objective is to select subsets containing C2, meeting a predefined criterion

of 0.7, subsets are chosen where there exists at least a 0.7 NPI lower or upper

probability that at least one of the future observations will belong to a category

within that subset. The first subset which meet the required criterion based on

their respective NPI lower and upper probabilities presented in the table for the

event MS ≥ 1 is S = {C2, C3, C4}. The use of Table 3.5 depends on the objective

and interest in selecting the subset. For instance, suppose the objective is to select

a minimal-sized subset containing a category of patients with a clinical status of

non-ICU, not requiring oxygen. This subset should meet the criterion that the NPI

lower or upper probability for the event, where at least half of the future observations

belong to a category within that subset, is at least 0.25. Looking at Table 3.5 for the

event MS ≥ 2, the first subset satisfying the criterion is S = {C2, C3, C4}. However,

as the goal is to select a minimal-size subset, we see that S = {C3, C4} is the subset

that meets this requirement and is therefore selected. In the event MS ≥ 4 with

the same criterion, the first minimal-size subset meeting the required criterion is

S = {C1, C2, C3}.

A further interest could be in selecting a minimal-sized subset containing adjoining

high-risk categories of patients that require oxygen or ICU but do not require IMV,

which are C4 and C5. The subset should meet the criterion that the NPI lower or

upper probability for the event, where at least one of the future observations belong

to a category within that subset, is at least 0.60. Looking at Table 3.5 for the event

MS ≥ 1, the minimal-size subset which satisfies the criterion is S = {C3, C4, C5}.

Suppose a high criterion is set for the event that all 4 future patients are in a category

in that subset, with the aim to select a subset of minimal size such that the NPI

lower probability for this event is at least 0.8. One might set a high criterion for this

event if there is an interest in indicating a critical condition that requires immediate

attention or intervention. In such a scenario, medical professionals may be able
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to concentrate on subsets that satisfy the criterion that the NPI lower or upper

probability exceeds this high threshold, indicating a potentially serious or urgent

situation. The results in Table 3.5 indicate that no strict subset has at least an

80% lower or upper probability that all of the future observations will belong to a

category within that subset.

Last but not least for m = 4, suppose there is an interest in selecting a minimal-

sized subset containing adjoining high-risk patient categories that require ICU

(C5, C6). This selection can be particularly useful for healthcare providers needing

to ensure that a certain threshold of future cases belonging to a category in the

selected subset, satisfying a specified criterion, is considered for treatment planning,

or preparing healthcare facilities. Assuming p∗ = 0.5 for the event MS ≥ 1, the first

subset that meets the required criterion is S = {C5, C6, C7}. Next, to investigate

how increasing m from 4 to 8 affects the optimal subset selection, the effect of this

change on the minimal subset required to meet the specified criterion is presented.

Table 3.6 presents the NPI lower and upper probabilities for m = 8, considering

the same events presented in Table 3.5 for m = 4. These NPI lower and upper

probabilities for MS ≥ mS are derived with S consisting of a single category or

a subset of categories by applying Equations (2.14) and (2.15) for the NPI lower

probability and Equation (2.16) for the NPI upper probability. We notice that as

m increases, both the NPI lower and upper probabilities generally increase. When

comparing the selection of minimal subsets based on NPI lower probabilities for

m = 4 and m = 8, different optimal subsets are selected as the increased number of

observations influences both the NPI lower and upper probabilities.

For the objective of selecting subsets that contain C1, the analysis with m = 4

identified {C1, C2, C3} and {C1, . . . , C6} as the optimal subsets that meet the required

criterion of 0.7 for P (MS ≥ 3) and P (MS ≥ 4), respectively. However, with m = 8,

the subset {C1} is the optimal for the same events, indicating that a smaller subset

can meet the criterion as the number of observations increases.
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S
MS ≥ 1 MS ≥ 2 MS ≥ 3 MS ≥ 4

P P P P P P P P

{C1} 0.9982 0.9983 0.9814 0.9821 0.9112 0.9138 0.7416 0.7467

{C1, C2} 0.9985 0.9985 0.9835 0.9841 0.9187 0.9211 0.7569 0.7619

{C1, C2, C3} 0.9999 1 0.9998 0.9998 0.9978 0.9980 0.9841 0.9849

{C1, . . . , C4} 1 1 0.9999 1 0.9994 0.9995 0.9948 0.9951

{C1, . . . , C5} 1 1 1 1 0.9998 0.9999 0.9986 0.9988

{C1, . . . , C6} 1 1 1 1 1 1 0.9999 1

{C2} 0.0427 0.0838 0.0012 0.0039 0 0.0001 0 0

{C2, C3} 0.8710 0.8781 0.5736 0.5882 0.2689 0.2821 0.0879 0.0945

{C2, C3, C4} 0.9235 0.9280 0.6947 0.7067 0.3910 0.4049 0.1576 0.1667

{C2, . . . , C5} 0.9534 0.9563 0.7817 0.7912 0.5014 0.5150 0.2367 0.2476

{C2, . . . , C6} 0.9784 0.9799 0.8739 0.8802 0.6496 0.6615 0.3714 0.3839

{C2 . . . C7} 0.9904 0.9908 0.9312 0.9332 0.7687 0.7734 0.5111 0.5175

{C3} 0.8597 0.8673 0.5512 0.5662 0.2496 0.2625 0.0784 0.0847

{C3, C4} 0.9164 0.9212 0.6762 0.6886 0.3703 0.3841 0.1445 0.1532

{C3, C4, C5} 0.9488 0.9519 0.7669 0.7768 0.4809 0.4946 0.2208 0.2314

{C3, . . . , C6} 0.9761 0.9777 0.8639 0.8706 0.6314 0.6436 0.3528 0.3652

{C3, . . . , C7} 0.9893 0.9897 0.9249 0.9270 0.7540 0.7589 0.4920 0.4984

{C4} 0.3154 0.3460 0.0524 0.0636 0.0054 0.0073 0.0004 0.0006

{C4, C5} 0.5289 0.5510 0.1609 0.1768 0.0310 0.0361 0.0040 0.0049

{C4, C5, C6} 0.7336 0.7469 0.3547 0.3718 0.1139 0.1236 0.0247 0.0278

{C4, . . . , C7} 0.8517 0.8558 0.5359 0.5436 0.2369 0.2432 0.0725 0.0754

{C5} 0.2835 0.3154 0.0420 0.0524 0.0039 0.0054 0.0002 0.0004

{C5, C6} 0.5824 0.6022 0.2012 0.2177 0.0444 0.0505 0.0065 0.0078

{C5, C6, C7} 0.7597 0.7660 0.3889 0.3974 0.1336 0.1387 0.0311 0.0328

{C6} 0.3897 0.4174 0.0820 0.0951 0.0108 0.0136 0.0009 0.0013

{C6, C7} 0.6395 0.6483 0.2514 0.2599 0.0639 0.0676 0.0109 0.0117

{C7} 0.3755 0.3897 0.0757 0.0820 0.0095 0.0108 0.0008 0.0009

Table 3.6: NPI lower and upper probabilities for several events MS ≥ mS with m = 8
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For the objective involving the category with the smallest data observations

(C2), the m = 4 analysis selected {C2, C3, C4} for P (MS ≥ 1) ≥ 0.7, but the m = 8

analysis selected {C2, C3} as the optimal subset. For subsets containing C3 (non-ICU,

not requiring oxygen), the subset {C3, C4} was selected for P (MS ≥ 2) ≥ 0.25 with

m = 4, but {C3} alone was selected for m = 8, demonstrating that a smaller subset

could be selected when considering more future observations.

With the objective concerning high-risk categories, which are C4 and C5, with

m = 4, no subset met the criterion p∗ = 0.8 for MS ≥ 4. However, when considering

m = 8, the subset {C1, . . . , C5} met this criterion. Finally, for the objective involving

ICU-requiring categories (C5, C6), where the criterion was P (MS ≥ 1) ≥ 0.5, the

selection of {C5, C6, C7} for MS ≥ 1 with m = 4 changed to {C5, C6} with m = 8.

This reflects that a smaller subset could still meet the required criterion of 0.5 as

the number of observations increased. This change illustrates that in some cases,

increasing m allows for a smaller subsets to be selected due to the increase in the

NPI lower and upper probabilities.

The subset selection can differ depending on whether the criterion is based on

P (MS ≥ mS) ≥ p∗ or P (MS ≥ mS) ≥ p∗. For example, if the objective of selecting

subsets containing the category that has the largest data observations is to meet

a criterion of 0.1 for P (MS ≥ 1) with m = 4, the subset {C1, C2, C3} is selected.

However, if P (MS ≥ 1) ≥ 0.1 is selected as the optimal subset, {C1, C2} meets the

criterion. In another scenario, where the objective is to select subsets containing the

category with the smallest data observations and exclude the category with the largest

data, with a requirement that at least 2 future observations belong to a selected subset

with m = 4 and p∗ = 0.5, the subset {C2, . . . , C7} is selected for P (MS ≥ 2) ≥ 0.5,

while the subset {C2, . . . , C6} is selected for P (MS ≥ 2) ≥ 0.5. Furthermore, in the

case where the objective is to select a minimal-sized subset containing adjoining

high-risk patient categories that require ICU, which are C5 and C6, with m = 8,

p∗ = 0.65 and ensuring that at least 3 future observations belong to the subset, the

selection differs again. The subset {C2, . . . , C7} is selected for P (MS ≥ 3) ≥ 0.65 as

it is the subset that meets the criterion. However, the NPI upper probability criterion

allows for different subset to be selected which is {C2, . . . , C6}. These cases illustrate
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how the choice of P (MS ≥ mS) ≥ p∗ or P (MS ≥ mS) ≥ p∗ can lead to different

subset selections, depending on the specific criterion and objectives, particularly in

cases involving high-risk patient categories and larger numbers of future observations.

⋄
Overall, the comparison highlights how the choice of m affect the selection of

subsets. This indicates the importance of clearly defining the objective when selecting

subsets, as the chosen value of m will directly influence the results and, consequently,

the decision-making process. The selection of the minimal size subset that consists

of adjoining categories with a specified criterion could be of interest in different

ways depending on one’s belief or aim, of which subset is more important to be

selected. The next section presents a different type of inference involving multiple

future ordinal observations, focusing on pairwise comparison.

3.4 Pairwise comparison

This section introduces a pairwise comparison method for two groups of ordinal data.

The goal is to compare the number of future observations within categories of the

first group to those within the same categories of the second group. This comparison

will be conducted using the sampling methodology outlined in Section 1.1.

Many statistical inference applications involve comparing two or more independent

groups of data, such as those resulting from different treatments. Classical statistical

methods typically involve testing the equality of parameters within assumed paramet-

ric models or utilizing rank-based approaches like Wilcoxon’s or Kruskal-Wallis tests

for comparing two or more independent populations [52]. These methods assume

that each population’s random quantities are independent and identically distributed.

The fundamental distinction between comparison in NPI and classical statistical

approaches lies in the formulation of the question of interest. Classical tests typically

begin with the hypothesis that both groups originate from the same distribution,

which may not always be practical. The NPI method uses a direct approach based

solely on future observations without requiring the formulation of specific hypotheses.

This enables a natural manner of comparison, particularly well-suited for making

decisions, such as determining the best treatment for future units or individuals [29].
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Suppose that there are two independent groups, A and B. In this context,

‘independent’ means that knowledge about a random quantity in one group is not

influenced by information about a random quantity in the other group. Assuming the

same K ordered categories for each group, the same setting and data notation from

Section 2.1 are followed. Let na and nb represent the number of data observations

for groups A and B, respectively, with na
k and nb

k indicating the observations within

category Ck, for k = 1, . . . , K. The analysis focuses on m future observations from

each group, as it seems logical to consider the same number of future observations for

each group when comparing future ordinal observations. The A(·)-based inferences

are applied per group to consider m future observation from each group. So, attention

is focused on the future observations from group A, represented by XA
na+l and their

corresponding latent observations Y A
na+l, for l = 1, . . . ,m. Similarly, for group

B, XB
nb+l

and Y B
nb+l

denote the future observations and the corresponding latent

observations, respectively.

Suppose the aim is to compare the number of future observations in ACk
=

k⋃
j=1

Cj

from group A, denoted as MACk
, to the number of future observations in

BCk
=

k⋃
j=1

Cj from group B, denoted as MBCk
, where k ranges from 1 to K − 1, by

considering the events MACk
> MBCk

and MACk
≥ MBCk

. By examining whether

the number of future observations in one group consistently exceeds those in another

across multiple categories, one can identify significant differences that might warrant

further investigation or inform decision-making processes. For instance, if group A

consistently shows more future observations than group B, it might indicate a higher

activity level, or effectiveness of a treatment or intervention applied to group A. The

comparison of future observations between two groups, A and B, based on their

cumulative occurrences within ordered categories, reflect a concept in statistics

known as stochastic ordering [85]. This concept can help us understand which group

is likely to have more future observations. Specifically, if the number of future

observations in ACk
is consistently greater than the number of future observations in

BCk
for all k using the NPI-based lower and upper probabilities for this event, then

we can say that group A ‘dominates’ group B in terms of future observations.
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In this section, the sampling of orderings method [34], introduced in Section 1.1,

will be applied to estimate the NPI lower and upper probabilities, along with

corresponding confidence intervals for these estimates, for the event that the number

of future observations in ACk
is greater than (or equal to) the number of future

observations in BCk
. Section 1.1 explains that calculating exact NPI lower and upper

probabilities is a computationally intensive process, requiring the evaluation of a

large number of possible orderings of future observations. The sampling of orderings

method offers a practical solution by allowing for the estimation of these NPI lower

and upper probabilities through sampling. This approach is particularly useful when

closed-form expressions are unavailable for specific events of interest, but where, for

each ordering, it is easily verified if the event of interest must hold, can hold, or

cannot hold.

The NPI pairwise comparison will be introduced using the sampling of orderings

method for both group A and group B for the event MACk
> MBCk

, for all

k = 1, . . . , K − 1. Rather than analytically determining the NPI lower and upper

probabilities by considering all possible orderings, a select number of orderings are

sampled. To calculate estimates of NPI lower and upper probabilities for the event

MACk
> MBCk

, the following notation is introduced.

Recall that na and nb represent the number of observations for groups A and

B, respectively. Using the latent variable representation, explained in Chapter 2,

let the na data observations be represented by ya1 < . . . < yana for group A. These

na observations divide the real-line into na + 1 intervals, Iaja = (yaja−1, y
a
ja) for ja =

1, . . . , na + 1. Similarly, for group B, let the nb be represented by yb1 < . . . < yb
nb and

these nb divide the real-line into nb+1 intervals, Ibjb = (ybjb−1, y
b
jb
) for jb = 1, . . . , nb+1.

Considering m and na, there are
(
na+m

m

)
different orderings of the m future

observations among the na data observations for group A. Each specific ordering

can be represented by
(
SA
1 , . . . , S

A
na+1

)
. More explicitly, SA

ja is the number of the

future observations in the interval (yaja−1, y
a
ja) for ja = 1, . . . , na + 1, where the

following conditions are satisfied: SA
ja ≥ 0 and

∑na+1
ja=1 S

A
ja = m. Similarly, for group

B, there are
(
nb+m
m

)
different orderings of the m future observations among the

nb data observations. Each specific ordering can be denoted by
(
SB
1 , . . . , S

B
nb+1

)
,
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where SB
jb

represents the number of future observations in the interval (ybjb−1, y
b
jb
) for

jb = 1, . . . , nb + 1, with the conditions SB
jb
≥ 0 and

∑nb+1
jb=1 S

B
jb
= m.

The sampling method for determining the orderings is based on simple random

sampling (SRS). The process, as explained in Section 1.1, ensures that each possible

ordering is equally likely to be chosen during each selection and that each selection

is conducted independently of others. Using this sampling method for groups A and

B, each generated ordering of the future observations for group A is characterized

by (SA
1 , . . . , S

A
na+1), while for group B, it is characterized by (SB

1 , . . . , S
B
nb+1

).

For the event MACk
> MBCk

, the focus is on K ordered categories from each

group, denoted by C1, C2, . . . , CK , and the ordering between them is indicated by

C1 < C2 < . . . < CK . For a given number of categories K, the number of future

observations in group A will be compared to the number of future observations in

group B. Specifically, the number of future observations in the first category of

group A,
(
SA
1 , . . . , S

A
na
1+1

)
, will be compared to the number of future observations

in the first category of group B,
(
SB
1 , . . . , S

B
nb
1+1

)
. Additionally, for each k from 2

up to K − 1, the number of future observations within the combined k categories

of group A, represented as
(
SA
1 , . . . , S

A
na
1:k+1

)
, will be compared to those in group

B, represented as
(
SB
1 , . . . , S

B
nb
1:k+1

)
, where na

1:k =
k∑

i=1

na
i and nb

1:k =
k∑

i=1

nb
i , thus

quantifying the cumulative number of observations across up to K − 1 categories

for both groups. The conditions for these comparisons need to be satisfied together

across the K − 1 categories, so the logical “and” denoted by
∧
, will be used later in

this section to combine all these conditions into a single expression, indicating that

all of them need to hold simultaneously.

This can be done by comparing each possible ordering of m and na observations

with each possible orderings of m and nb observations. As the sample size increases,

the number of all orderings to consider increases rapidly. To derive the NPI lower

and upper probabilities with such comparison,
(
na+m

m

)(
nb+m
m

)
orderings need to

be considered. For example, when m = 10, na = 15, and nb = 8, there are(
25
10

)
×
(
18
10

)
= 32687600× 43758 = 1.43× 1011 possible orderings. Calculating the NPI

lower and upper probabilities becomes computationally expensive, or even impossible

due to the large number of possible orderings. The sampling of orderings method



3.4. Pairwise comparison 66

offers a practical solution, as it allows for the estimation of the NPI lower and upper

probabilities by sampling of orderings, reducing computational time. Therefore,

estimates for the NPI lower and upper probabilities will be determined using the

sampling of orderings method. Define n∗ as the desired number of orderings sampled

to generate for each group (i.e., n∗
a = n∗

b = n∗).

Let the estimates of the NPI lower and upper probabilities for the event

MACk
> MBCk

be denoted by P> and P
>
, respectively, and by P≥ and P

≥
for the

event MACk
≥ MBCk

. Generally, in NPI, if one wants to compare the number of

future observations in the intervals (yaja−1, y
a
ja) for ja = 1, . . . , na + 1 in group A to

the number of future observations in the intervals (ybjb−1, y
b
jb
) for jb = 1, . . . , nb + 1

in group B, by considering the scenario where SA
ja are greater than SB

jb
, the P> is

obtained by assigning all probability masses for SA
ja corresponding to the intervals

(yaja−1, y
a
ja) to the right endpoints of these intervals, and assigning all probability

masses for SB
jb

corresponding to the intervals (ybjb−1, y
b
jb
) to the left endpoints of

these intervals to minimise the chance of SA
ja > SB

jb
[35]. Similarly, to obtain the

P
>
, the probability masses for SA

ja are assigned to the left endpoints of the intervals

(yaja−1, y
a
ja), and the probability masses for SB

jb
are assigned to the right endpoints of

the intervals (ybjb−1, y
b
jb
) to maximise the chance of SA

ja > SB
jb
.

Assigning probability masses to the left or right endpoint of an interval means

treating all future observations within an interval as occurring at the endpoint of

that interval. For example, assigning the probability mass to the right endpoint

yaja of the interval (yaja−1, y
a
ja) in group A means treating all future observations in

that interval as if they occur at yaja . Similarly, assigning the probability mass to the

left endpoint ybjb−1 of the interval (ybjb−1, y
b
jb
) in group B means treating all future

observations in that interval as if they occur at ybjb−1. This placement is performed

to calculate the lower and upper probability estimates. This can also be performed

in the case with ordered categories that partition the real-line. As there are intervals

which are already within the category and there are boundary intervals, as explained

in Section 2.2, the focus will only be on the boundary intervals.

For the NPI lower probability estimate P>, the probability mass for SA
na
1+1 in group

A, corresponding to the boundary interval (yana
1
, yana

1+1), is placed at the right endpoint



3.4. Pairwise comparison 67

CKCk

na
k

−∞ ∞

na
K

. . . . . . . . . . . .

. . .

. . .

. . .

. . .

C1

na
1

yana
1

. . .ya1 yana
1:k

yana

SA
na
1+1 SA

na
1:k

+1

nb
k

−∞ ∞

nb
K

. . . . . . . . . . . .

. . . . . .nb
1

yb
nb
1

. . .
yb1 yb

nb
1:k

yb
nb

SB
nb
1+1

SB
nb
1:k

+1

Figure 3.1: Locations of probability masses corresponding to the NPI lower and
upper probabilities for SA

ja > SB
jb
, represented by blue and red arrows respectively

of this interval. So, all SA
na
1+1 future A observations in the interval (yana

1
, yana

1+1) are

assigned to the right endpoint yana
1+1, meaning they are considered to belong to C2.

Similarly, for SB
nb
1+1

in group B, the probability mass corresponding to the interval

(yb
nb
1
, yb

nb
1+1

) is placed at the left endpoint. So, all SB
nb
1+1

future B observations in the

interval (yb
nb
1
, yb

nb
1+1

) are assigned to the left endpoint yb
nb
1
, meaning they are considered

to belong to C1. For the NPI lower probability estimate P≥, the same placement of

probability masses is applied as in the P> case.

For the NPI upper probability estimate P
>
, the locations of the probability masses

are reversed. Here, the probability mass for SA
na
1+1 is placed at the left endpoint of its

interval, while for SB
nb
1+1

is placed at the right endpoint. Similarly, for the NPI upper

probability estimate P
≥
, the placement of probability masses is done in the same

way as for P
>
. These locations of all probability masses are similarly applied to

SA
na
1:k+1 and SB

nb
1:k+1

for combined categories, with their respective boundary intervals

(yana
1:k
, yana

1:k+1) and (yb
nb
1:k
, yb

nb
1:k+1

). This is illustrated in Figure 3.1. This comparison

is performed for n∗ orderings. The cases where the event must hold are counted and

divided by n∗ to obtain P> or P≥. Similarly, the cases where the event can hold are

counted and divided by n∗ to obtain P
>
or P

≥
. Then, a 95% confidence interval

will be calculated for both P> and P
>
in each replication. Confidence intervals (CI)

come from the binomial properties; they are calculated using the standard result

based on the Normal approximation [69],

p̂± zα/2
√

p̂(1− p̂)/n∗ (3.1)
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Equation (3.1) is used to calculate confidence intervals for the estimated NPI

lower and upper probabilities, where p̂ is the estimated value of the NPI lower

and upper probabilities, zα/2 is the quantile of the standard Normal distribution

corresponding to the confidence level, and
√

p̂(1− p̂)/n∗ is the standard error of p̂.

The parameter α determines the confidence level of the interval, which directly affects

the width of the confidence interval. For example, α = 0.01 corresponds to a 99%

confidence interval, resulting in a wider interval that provides greater confidence that

the interval includes the true probability. However, using a larger value of α, such as

α = 0.10, corresponds to a 90% confidence interval, which narrows the interval but

reduces the confidence level, making it less likely that the interval includes the true

probability. The choice of α = 0.05 in this work, widely used in statistical inference,

reflects standard practice in statistical analysis [69].

The Normal approximation assumes that n∗, the number of sampled orderings, is

large enough for the binomial distribution to approximate the Normal distribution

closely and that p̂ is not near 0 or 1. However, when n∗ is small or when p̂ is close

to 0 or 1, the approximation may not provide accurate coverage. In these situations,

alternative methods such as the Wilson interval can be used to improve accuracy

[22].

Algorithm 1 describes the calculation of P> and P
>
using the sampling method for

the event MACk
> MBCk

with K ordered categories. The same steps can be applied

to the event MACk
≥ MBCk

by replacing > with ≥ in the relevant comparisons,

specifically affecting Steps 3(b) and 4(b) of Algorithm 1. This modification allows

the algorithm to handle the event and compute P≥ and P
≥
using the sampling

method with K ordered categories.
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Algorithm 1 P> and P
>
for the event MACk

> MBCk
with K categories

1. Sampling: Sample n∗ orderings for both groups A and B.

2. Boundary intervals: For each k from 1 to K − 1, identify boundary intervals:

(a) Group A:
(
yana

1:k
, yana

1:k+1

)
, with SA

na
1:k+1 representing the number of future

observations in the interval.

(b) Group B:
(
yb
nb
1:k

, yb
nb
1:k+1

)
, with SB

nb
1:k+1

representing the number of future

observations in the interval.

3. Check if the event can occur:

(a) Condition setup:

i. Set the locations of all probability masses for SA
na
1:k+1 at the left endpoint

of their boundary intervals
(
yana

1:k
, yana

1:k+1

)
.

ii. Set the locations of all probability masses for SB
nb
1:k+1

at the right endpoint

of their boundary intervals
(
yb
nb
1:k

, yb
nb
1:k+1

)
.

(b) Comparison:

i. Let the condition in which the event can occur be represented by Du where

Du =
∧K−1

k=1

(∑na
1:k+1

i=1 SA
i >

∑nb
1:k

j=1 S
B
j

)
.

ii. For each ordering, check if Du holds and count how many of the sampled
orderings satisfy this condition.

iii. Calculate the NPI upper probability estimate P
>
by dividing the total

number of sampled orderings that satisfy Du by n∗.

4. Check if the event must occur:

(a) Condition setup:

i. Set the locations of all probability masses for SA
na
1:k+1 at the right endpoint

of their boundary intervals
(
yana

1:k
, yana

1:k+1

)
.

ii. Set the locations of all probability masses for SB
nb
1:k+1

at the left endpoint

of their boundary intervals
(
yb
nb
1:k

, yb
nb
1:k+1

)
.

(b) Comparison:

i. Let the condition in which the event must occur be represented by Dl =∧K−1
k=1

(∑na
1:k

i=1 SA
i >

∑nb
1:k+1

j=1 SB
j

)
.

ii. For each ordering, check if Dl holds and count how many satisfy this
condition.

iii. Calculate the NPI lower probability estimate P> by dividing the total
number of sampled orderings that satisfy Dl by n∗.
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The events presented in this section will be illustrated using the following examples,

based on data sets from the literature.

Example 3.3. The study conducted by Campochiaro et al. [23] focused on severe

COVID-19 patients, comparing the effectiveness of Tocilizumab (TCZ) therapy

versus standard care alone. TCZ is a monoclonal antibody that targets the

interleukin-6 (IL-6) receptor, a key molecule in the body’s inflammatory response.

IL-6 is involved in the immune response and is known to play a significant role in

the severe inflammatory reactions seen in some COVID-19 patients. A total of 65

severe COVID-19 pneumonia patients were included in the study, with 32 patients

in Group A treated with TCZ according to the study protocol and 33 patients in

Group B receiving only the institutional standard of care. Clinical improvement after

28 days of treatment was assessed using a 6-category ordinal scale that evaluated

the patients’ clinical status, where C1 represents the best outcome: discharge from

hospital, and C6 the worst outcome: death.

The categories used to assess clinical improvement were as follows: C1: discharged

from hospital, C2: hospitalized, not requiring supplemental oxygen, C3: hospital-

ized, requiring supplemental low-flow oxygen, C4: hospitalized, requiring high-flow

oxygen and/or Non-Invasive Ventilation, C5: hospitalized, requiring Extracorporeal

Membrane Oxygenation and/or Invasive Mechanical Ventilation, and C6: death.

Table 3.7 illustrates the number of patients for each response category.

Using the sampling of orderings method, the estimates of the NPI lower and

upper probabilities, together with 95% confidence intervals (CIs), are presented in

Tables 3.8 and 3.9. Each table corresponds to a different value of m, representing

the number of future observations considered: m = 10 and m = 25 in Tables 3.8

and 3.9, respectively. These tables illustrate how varying m affects the events

MACk
> MBCk

and MACk
≥ MBCk

, with sampling of orderings of size n∗ =

1000, 2000, 5000, 10000, 20000, 50000, 100000.
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Treatment Group C1 C2 C3 C4 C5 C6 Total

Group A 20 2 2 3 0 5 32

Group B 16 2 2 1 1 11 33

Table 3.7: Number of patients in each clinical improvement category on day 28 for
group A (Tocilizumab) and group B (Standard Care)

n∗ P> CI(0.95) P
>

CI(0.95) P≥ CI(0.95) P
≥

CI(0.95)

1000 0.4430 (0.4122 , 0.4738) 0.5480 (0.5172 , 0.5788) 0.6170 (0.5869 , 0.6471) 0.7090 (0.6808 , 0.7372)

2000 0.4415 (0.4197 , 0.4633) 0.5495 (0.5277 , 0.5713) 0.6140 (0.5927 , 0.6353) 0.7125 (0.6927 , 0.7323)

5000 0.4534 (0.4396 , 0.4672) 0.5586 (0.5448 , 0.5724) 0.6252 (0.6118 , 0.6386) 0.7224 (0.7100 , 0.7348)

10000 0.4506 (0.4408 , 0.4604) 0.5592 (0.5495 , 0.5689) 0.6255 (0.6160 , 0.6350) 0.7218 (0.7130 , 0.7306)

20000 0.4516 (0.4447 , 0.4584) 0.5569 (0.5501 , 0.5638) 0.6234 (0.6167 , 0.6302) 0.7191 (0.7129 , 0.7254)

50000 0.4525 (0.4481 , 0.4568) 0.5578 (0.5534 , 0.5621) 0.6236 (0.6193 , 0.6278) 0.7185 (0.7146 , 0.7225)

100000 0.4517 (0.4486 , 0.4548) 0.5579 (0.5548 , 0.5610) 0.6247 (0.6217 , 0.6277) 0.7189 (0.7161 , 0.7217)

Table 3.8: Estimated NPI lower and upper probabilities for the eventsMACk
> MBCk

and MACk
≥ MBCk

, and 95% CIs with m = 10 and increasing values of n∗

When m = 10, the P> for the event MACk
> MBCk

starts at 0.4430 with a CI of

(0.4122, 0.4738) for n∗ = 1000. As n∗ increases to 20000, this value slightly increases

to 0.4516 with a CI of (0.4447, 0.4584), and then becomes 0.4517 at n∗ = 100000,

with a CI of (0.4486, 0.4548). The narrowing of the CIs as n∗ increases indicates

precision in the estimates. For P
>
, it starts at 0.5480 with a CI of (0.5172, 0.5788)

at n∗ = 1000. As n∗ increases to 20000, this value slightly increases to 0.5569 with

a CI of (0.5501, 0.5638), and then becomes 0.5579 at n∗ = 100000, with a CI of

(0.5548, 0.5610). Similarly, for the event MACk
≥ MBCk

, the P≥ starts at 0.6170

with a CI of (0.5869, 0.6471) at n∗ = 1000, slightly decreases to 0.6234 at n∗ = 20000

with a CI of (0.6167, 0.6302), and then becomes 0.6247 at n∗ = 100000 with a CI of

(0.6217, 0.6277). Finally, the P
≥
starts at 0.7090 with a CI of (0.6808, 0.7372) at

n∗ = 1000, slightly decreases to 0.7191 at n∗ = 20000 with a CI of (0.7129, 0.7254),

and then becomes 0.7189 at n∗ = 100000 with a CI of (0.7161, 0.7217).

When comparing the results for m = 10 with m = 25, increasing m leads to

increased values for P>, P
>
, P≥, and P

≥
, as well as narrower confidence intervals.

For m = 25, the P> starts at 0.5580 with a confidence interval of (0.5272, 0.5888)

at n∗ = 1000, and decreases slightly to 0.5535 with a confidence interval of (0.5504,

0.5566) at n∗ = 100000. Similarly, the P
>

starts at 0.6980 with a confidence
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n∗ P> CI(0.95) P
>

CI(0.95) P≥ CI(0.95) P
≥

CI(0.95)

1000 0.5580 (0.5272 , 0.5888) 0.6980 (0.6695 , 0.7265) 0.6700 (0.6409 , 0.6991) 0.7790 (0.7533 , 0.8047)

2000 0.5680 (0.5463 , 0.5897) 0.7065 (0.6865 , 0.7265) 0.6765 (0.6560 , 0.6970) 0.7855 (0.7675 , 0.8035)

5000 0.5628 (0.5491 , 0.5765) 0.6942 (0.6814 , 0.7070) 0.6584 (0.6453 , 0.6715) 0.7702 (0.7585 , 0.7819)

10000 0.5538 (0.5441 , 0.5635) 0.6931 (0.6841 , 0.7021) 0.6499 (0.6406 , 0.6592) 0.7735 (0.7653 , 0.7817)

20000 0.5500 (0.5431 , 0.5569) 0.6923 (0.6859 , 0.6987) 0.6452 (0.6385 , 0.6518) 0.7738 (0.7680 , 0.7795)

50000 0.5513 (0.5470 , 0.5557) 0.6908 (0.6868 , 0.6949) 0.6451 (0.6409 , 0.6493) 0.7716 (0.7680 , 0.7753)

100000 0.5535 (0.5504 , 0.5566) 0.6920 (0.6891 , 0.6949) 0.6464 (0.6435 , 0.6494) 0.7710 (0.7684 , 0.7736)

Table 3.9: Estimated NPI lower and upper probabilities for the eventsMACk
> MBCk

and MACk
≥ MBCk

, and 95% CIs with m = 25 and increasing values of n∗

interval of (0.6695, 0.7265) at n∗ = 1000 and decreases slightly to 0.6920 with a

confidence interval of (0.6891, 0.6949) at n∗ = 100000. For P≥, it starts at 0.6700

with a confidence interval of (0.6409, 0.6991) at n∗ = 1000 and decreases slightly to

0.6464 with a confidence interval of (0.6435, 0.6494) at n∗ = 100000. Finally, P
≥
at

m = 25 starts at 0.7790 with a confidence interval of (0.7533, 0.8047) at n∗ = 1000

and decreases slightly to 0.7710 with a confidence interval of (0.7684, 0.7736) at

n∗ = 100000. These results show that as m increases, the values for P>, P
>
, P≥,

and P
≥
do increase, and the corresponding confidence intervals become narrower,

indicating an increase in precision in the estimates as more orderings are sampled.

For every value of m and n∗, the P≥ and P
≥
are larger than those for the event

MACk
> MBCk

. In other words, the equality condition consistently increases the

estimates of the NPI lower and upper probabilities. The CIs narrow as n∗ increases,

reflecting an increase in precision in the estimates. For example, when comparing

the estimates of the NPI lower and upper probabilities and their CIs for n∗ values

of 2000 and 100000 at m = 25, both tend to decrease. At n∗ = 2000, for example,

the P> is 0.5680 with a CI of (0.5463, 0.5897), which decreases slightly to 0.5535

with a CI of (0.5504, 0.5566) at n∗ = 100000. Furthermore, as m increases, there is

a consistent increase in the estimates P>, P≥, P
>
and P

≥
across all n∗ values.

Overall, the increase in the estimates with larger m values suggests that consid-

ering more future observations may highlight the potential for better outcomes with

TCZ. As m increases to 25, the estimates of the NPI lower and upper probabilities

increase, further supporting the conclusion that TCZ may lead to improved clinical

outcomes compared to standard care. This analysis suggests that TCZ may be more
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effective than standard care alone for severe COVID-19 patients, as shown by the

increasing estimates of the NPI lower and upper probabilities. ⋄

To gain insight into how the dataset size influences the results, the following

example introduces a 7-category ordinal scale for assessing clinical improvement in

critically ill influenza patients, considering unbalanced sample sizes.

Example 3.4. The study conducted by Wang et al. [90] focused on critically ill

patients with influenza virus infection, comparing the effectiveness of combined

Favipiravir and Oseltamivir therapy to Oseltamivir monotherapy. A total of 168

patients were included in the study, with 40 patients receiving the combination

therapy and 128 patients receiving monotherapy. Clinical improvement after 14

days of treatment was assessed using a seven-category ordinal scale that evaluated

the patients’ respiratory function and overall recovery status. The categories used

to assess clinical improvement were as follows: C1: Not hospitalized, resumption

of normal activities, C2: Not hospitalized, unable to resume normal activities,

C3: Hospitalized, not requiring supplemental oxygen, C4: Hospitalized, requiring

supplemental oxygen, C5: Hospitalized, requiring High-Flow Nasal Cannula and/or

non-Invasive Mechanical Ventilation, C6: Hospitalized, requiring Extracorporeal

Membrane Oxygenation and/or Invasive Mechanical Ventilation, and C7: Death.

Table 3.10 illustrates the number of patients for each response category.

Using the sampling of orderings method, the estimates of the NPI lower

and upper probabilities, together with 95% confidence intervals (CIs), are pre-

sented in Tables 3.11 and 3.12. Each table corresponds to a different value

of m, representing the number of future observations considered: m = 10 and

m = 25 in Tables 3.11 and 3.12, respectively. These tables illustrate how vary-

ing m affects the events MACk
> (≥) MBCk

, with sampling of orderings of size

n∗ = 1000, 2000, 5000, 10000, 20000, 50000, 100000.

For m = 10, the P> and P≥ in this example are smaller compared to those in

Example 3.3. Specifically, P> in this example is 0.2760 with a CI of (0.2483, 0.3037)

for n∗ = 1000 and 0.2760 with a CI of (0.2733, 0.2788) for n∗ = 100000. However,

Example 3.3 shows P> values of 0.4430 with a CI of (0.4122, 0.4738) and 0.4517 with

a CI of (0.4486, 0.4548). Similarly, P
>
in this example is 0.3460 with a CI of (0.3165,
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Treatment Group C1 C2 C3 C4 C5 C6 C7 Total

Group A 11 7 7 3 1 7 4 40

Group B 11 27 13 15 17 21 24 128

Table 3.10: Number of patients in each clinical improvement category on day 14 for
group A (Favipiravir + Oseltamivir) and group B (Oseltamivir only)

n∗ P> CI(0.95) P
>

CI(0.95) P≥ CI(0.95) P
≥

CI(0.95)

1000 0.2760 (0.2483 , 0.3037) 0.3460 (0.3165 , 0.3755) 0.4990 (0.4680 , 0.5300) 0.5760 (0.5454 , 0.6066)

2000 0.2865 (0.2667 , 0.3063) 0.3535 (0.3325 , 0.3745) 0.5115 (0.4896 , 0.5334) 0.5790 (0.5574 , 0.6006)

5000 0.2806 (0.2681 , 0.2931) 0.3496 (0.3364 , 0.3628) 0.5036 (0.4897 , 0.5175) 0.5726 (0.5589 , 0.5863)

10000 0.2807 (0.2719 , 0.2895) 0.3484 (0.3391 , 0.3577) 0.5059 (0.4961 , 0.5157) 0.5805 (0.5708 , 0.5902)

20000 0.2767 (0.2705 , 0.2828) 0.3467 (0.3401 , 0.3532) 0.5054 (0.4985 , 0.5124) 0.5819 (0.5751 , 0.5887)

50000 0.2732 (0.2693 , 0.2771) 0.3412 (0.3371 , 0.3454) 0.5032 (0.4988 , 0.5076) 0.5788 (0.5745 , 0.5831)

100000 0.2760 (0.2733 , 0.2788) 0.3442 (0.3412 , 0.3471) 0.5049 (0.5018 , 0.5080) 0.5792 (0.5761 , 0.5823)

Table 3.11: Estimated NPI lower and upper probabilities for the events MACk
>

MBCk
and MACk

≥ MBCk
, and 95% CIs with m = 10 and increasing values of n∗

0.3755) and 0.3442 with a CI of (0.3412, 0.3471), while in Example 3.3, it is 0.5480

and 0.5579. The difference between the NPI upper probability estimate P
>
and the

NPI lower probability estimate P> is called imprecision, and it provides insight into

the link between these estimates and the amount of information available [31, 88]. In

general, larger sample sizes result in smaller imprecision because more information

is available. At n∗ = 1000, the imprecision in this example is 0.0700, which is

smaller than the imprecision of 0.1050 in Example 3.3. Similarly, at n∗ = 100000,

the imprecision in this example is 0.0682, which is again smaller than the imprecision

of 0.1062 in Example 3.3. This reflects the fact that large numbers of observations,

as in this example, lead to small imprecision.

For the event MACk
≥ MBCk

, a similar pattern is observed for P≥, with this

example showing values of 0.4990 with a CI of (0.4680, 0.5300) at n∗ = 1000 and

0.5049 with a CI of (0.5018, 0.5080) at n∗ = 100000, while Example 3.3 shows values

of 0.6170 with a CI of (0.5869, 0.6471) and 0.6247 with a CI of (0.6217, 0.6277).

The imprecision decreases from 0.0770 to 0.0741 in this example and increases from

0.0920 to 0.0942 in Example 3.3. For the P
≥
, this example showing values of 0.5760

with a CI of (0.5454, 0.6066) at n∗ = 1000 and 0.5792 with a CI of (0.5761, 0.5823)

at n∗ = 100000. However, Example 3.3 presents larger values, with P
≥
starting at
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n∗ P> CI(0.95) P
>

CI(0.95) P≥ CI(0.95) P
≥

CI(0.95)

1000 0.4300 (0.3993 , 0.4607) 0.5420 (0.5111 , 0.5729) 0.5530 (0.5222 , 0.5838) 0.6650 (0.6357 , 0.6943)

2000 0.4120 (0.3904 , 0.4336) 0.5210 (0.4991 , 0.5429) 0.5395 (0.5177 , 0.5613) 0.6440 (0.6230 , 0.6650)

5000 0.4108 (0.3972 , 0.4244) 0.5184 (0.5046 , 0.5322) 0.5414 (0.5276 , 0.5552) 0.6420 (0.6287 , 0.6553)

10000 0.4172 (0.4075 , 0.4269) 0.5208 (0.5110 , 0.5306) 0.5450 (0.5352 , 0.5548) 0.6483 (0.6389 , 0.6577)

20000 0.4090 (0.4022 , 0.4158) 0.5185 (0.5116 , 0.5255) 0.5416 (0.5347 , 0.5485) 0.6462 (0.6395 , 0.6528)

50000 0.4101 (0.4058 , 0.4145) 0.5187 (0.5144 , 0.5231) 0.5413 (0.5370 , 0.5457) 0.6457 (0.6415 , 0.6499)

100000 0.4106 (0.4075 , 0.4136) 0.5187 (0.5156 , 0.5218) 0.5421 (0.5391 , 0.5452) 0.6454 (0.6424 , 0.6483)

Table 3.12: Estimated NPI lower and upper probabilities for the events MACk
>

MBCk
and MACk

≥ MBCk
, and 95% CIs with m = 25 and increasing values of n∗

0.7090 with a CI of (0.6808, 0.7372) and slightly decreasing to 0.7189 with a CI of

(0.7161, 0.7217). The imprecision decreases from 0.0306 to 0.0031 in this example,

while in Example 3.3, decreasing from 0.0564 to 0.0056.

For m = 25, the P> in this example is 0.4300 with a CI of (0.3993, 0.4607) at

n∗ = 1000 and 0.4106 with a CI of (0.4075, 0.4136) at n∗ = 100000. Example 3.3

shows larger values, from 0.5580 with a CI of (0.5272, 0.5888) to 0.5535 with a CI of

(0.5504, 0.5566). The P
>
in this example is 0.5420 with a CI of (0.5111, 0.5729) and

0.5187 with a CI of (0.5156, 0.5218), while in Example 3.3, it is 0.7065 and 0.6920.

The imprecision in this example decreases from 0.1120 at n∗ = 1000 to 0.1081 at

n∗ = 100000, compared to a decrease from 0.1400 to 0.1385 in Example 3.3. The

P
≥
in this example begins at 0.6650 with a CI of (0.6357, 0.6943) at n∗ = 1000 and

slightly decreases to 0.6454 with a CI of (0.6424, 0.6483) at n∗ = 100000. In Example

3.3, the corresponding P
≥
values are consistently larger, starting at 0.7790 with a

CI of (0.7533, 0.8047) and decreasing to 0.7710 with a CI of (0.7684, 0.7736).

A similar pattern is observed for the P≥, where this example shows values of

0.5530 with a CI of (0.5222, 0.5838) at n∗ = 1000 and 0.5421 with a CI of (0.5391,

0.5452) at n∗ = 100000, while Example 3.3 has values of 0.6700 with a CI of (0.6409,

0.6991) and 0.6464 with a CI of (0.6435, 0.6494). The imprecision in this example

decreases from 0.1120 to 0.1031, and in Example 3.3 from 0.1090 to 0.1046, indicating

patterns of reduction in imprecision for larger datasets. ⋄

Overall, the comparison between the two studies shows that treatment with

TCZ for severe COVID-19 patients in Example 3.3 generally has larger estimates

compared to the combined Favipiravir and Oseltamivir therapy for influenza patients
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in Example 3.4. In both examples, as the number of future observations increases,

the estimates also increase, which may indicate better expected outcomes with larger

m. When comparing the imprecision, it is clear from the results that the effect

of increasing the sample size leads to decreasing the imprecision, because more

information is available.

3.5 Concluding remarks

This chapter presented NPI for ordinal data in selection problems involving selecting

a specific category or a subset of categories based on m future observations. Pairwise

comparison of future observations from two independent groups is also presented. The

methods were illustrated and discussed via examples with data from the literature.

One objective was to present the selection of a specific category, achieving a

specified criterion for the event that at least mk of the m future observations are in

that category. The results showed that the category fulfilling this criterion varied

depending on the number of future observations taken into account. Another aim was

to present the selection of a minimal-sized subset of adjoining categories, achieving a

specified criterion for the event that at least a certain number of future observations

within that subset meet the criterion. The results indicated that the selected

subset could change based on the number of future observations considered within

that subset. The idea of subset selection can be further developed. An example

of this would be to develop a method for selecting a subset with non-adjoining

categories. The derivation of the NPI lower and upper formulae for this method

requires consideration of whether the first and last categories are included in the

subset, as well as all pairs of neighbouring categories included in the subset. This

is left as a future research topic. The chapter also presented the NPI pairwise

comparison using the sampling of orderings method, highlighting the influence of the

data size and the number of future observations on the results.



Chapter 4

Optimal threshold selection in

two-group classification

4.1 Introduction

Measuring the accuracy of diagnostic tests is crucial in many application areas,

including medicine, machine learning, and credit scoring. In medical applications,

to completely define a diagnostic test and accurately assess its performance, it

is required to select an appropriate threshold for classifying whether a patient is

diseased or healthy based on their diagnostic test results [38, 40]. Test results may

take two values (binary tests), real values (continuous tests), or values within a finite

number of categories which can be ordered or not; if ordered the test outcome is

ordinal. Diagnostic tests that yield ordinal results are the focus of this chapter. The

optimal diagnostic test threshold will be selected such that the categories on the right

side of the threshold indicate disease, and the categories on the left side indicate

non-disease.

Diagnostic test accuracy is determined by selecting the optimal threshold that can

distinguish between diseased and healthy individuals. The specificity and sensitivity,

defined in Section 1.4, of a test have an inverse relationship [67]. This means that

adjusting the threshold to increase one will decrease the other. A test with higher

specificity generally has lower sensitivity, and vice versa. Misclassification can

occur in two ways, healthy individuals may be classified as diseased, and diseased

77
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individuals may be classified as healthy. It is ideal to choose a threshold based on the

relative importance of correctly diagnosing one group over another. In the literature,

researchers have used the utility concept when choosing the optimal threshold [57].

For example, Hand [57] discussed selecting the optimal threshold in scenarios where

misclassifying a diseased individual as healthy is considered a more significant error

than misclassifying a healthy person as diseased, or vice versa.

This chapter introduces two NPI-based methods for selecting the optimal diag-

nostic test threshold in two-group classification settings, considering inference based

on multiple future individuals. The first method is based on the product of the NPI

lower or upper probabilities of correct classification for both groups, while the second

method is based on the sum of these lower or upper probabilities. Criteria based on

each group’s target proportion of successful diagnoses are presented to reflect the

relative importance of correct classification of members of one group over members

of the other group.

This chapter is organised as follows. In Section 4.2, a brief introduction to

diagnostic tests for two groups of ordinal data is given. Section 4.3 presents NPI for

selecting the optimal threshold for two-group diagnostic tests considering a fixed

number of multiple future individuals per group and is based on maximising the

product of the NPI lower or upper probabilities of the correct classification for both

groups. In Section 4.4, an NPI method inspired by the Youden index is presented, in

the sense that the criterion maximises the sum of the NPI lower or upper probabilities

of correct classification with multiple future individuals. The practical application of

the two proposed NPI methods to a real dataset is provided in Section 4.5, followed

by an investigation of their predictive performance via simulations in Section 4.6,

alongside comparisons with the classical methods. Finally, some concluding remarks

are given in Section 4.7.

4.2 Diagnostic tests for two groups

In a two-group classification study, the objective is to assess how well a diagnostic

test can distinguish between individuals who have the disease and those who do not.
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To measure the accuracy of a diagnostic test, it is imperative to determine an

optimal threshold for identifying positive and negative results. Alabdulhadi [4] and

Coolen-Maturi et al. [40] introduced NPI to determine the optimal threshold for

two-group classification problems based on tests that yield real-valued results for a

given number of future observations from each group. Elkhafifi and Coolen [47, 48]

presented NPI for the accuracy of diagnostic tests with ordinal outcomes for a disease

group and a non-disease group based on a single future observation. In this chapter,

NPI-based methods for selecting the optimal threshold for two-group diagnostic

tests with ordinal outcomes are presented, with inferences based on multiple future

individuals.

Diagnostic tests with ordinal outcomes appear in many medical applications

and other areas [2, 14]. In this chapter, diagnostic tests with ordinal results are

considered. This means that each individual’s test outcome indicates one of K ≥ 2

ordered categories, denoted by C1 to CK , representing an increasing severity level

related to their indication of having the condition of interest [47, 48].

Suppose that ordinal data from a diagnostic test are available on individuals

categorized into two groups based on their disease status, where G0 indicates the

absence of the disease (‘healthy group’) and G1 indicates the presence of the dis-

ease (‘disease group’). Throughout this chapter, the healthy (disease) group is

indicated by superscript 0 (1), and it is assumed that these two groups are fully

independent, meaning that any information regarding one group does not provide any

information about the other group. Table 4.1 provides notation for the number of

individuals for each combination of condition status and test result. Throughout this

chapter, the definitions and notation are similar to those used by Alabdulhadi [4],

Coolen-Maturi et al. [40], and Elkhafifi and Coolen [47, 48].

Assume that there is a threshold k ∈ {1, . . . , K}, such that a test result in

categories {C1, . . . , Ck} indicates an absence of the disease, called a negative test

result, while a test result in categories {Ck+1, . . . , CK} indicates a presence of the

disease, called a positive test result [91, 96]. A main goal for statistical inference

in this scenario is the study of the best choice for the value k, referred to as the

‘optimal threshold’ k′.



4.3. Optimal threshold selection for two groups diagnostic tests 80

Condition status
Diagnostic test result

Total
C1 . . . Ck Ck+1 . . . CK

G0 n0
1 . . . n0

k n0
k+1 . . . n0

K n0

G1 n1
1 . . . n1

k n1
k+1 . . . n1

K n1

Table 4.1: Ordinal test data

As the NPI-based inferences are in terms of future observations, the optimal

threshold k′ will be selected based on the number of future observations considered

from each group. This raises the question of how to choose the value of k that

maximises the correct classification of diseased and healthy individuals. To this end,

the next section introduces the first NPI method for selecting the optimal threshold

k′ for two-group diagnostic tests.

4.3 Optimal threshold selection for two groups

diagnostic tests

Assume that ordinal data from a diagnostic test are available on individuals from

two groups, and that there are n0 observations from the healthy group G0 and n1

observations from the disease group G1. Let the number of future individuals from the

healthy group be denoted by m0, with diagnostic test results T 0
n0+q for q = 1, . . . ,m0

and let the number of future individuals from the disease group be denoted by m1,

with diagnostic test results T 1
n1+v for v = 1, . . . ,m1. The value k that yields the best

correct classification is selected based on the m0 and m1 future individuals since the

NPI-based inferences are based on future observations. To this end, the NPI results

presented in Section 2.4 will be used, but new notation needs to be introduced first.

For a specific value of a threshold k ∈ {1, . . . , K}, let W 0
k denote the number of

correctly classified future individuals from the healthy group, that is those with test

results T 0
n0+q ∈

k⋃
j=1

Cj for q = 1, . . . ,m0, and let W 1
k denote the number of correctly

classified future individuals from the disease group, that is those with test results

T 1
n1+v ∈

K⋃
j=k+1

Cj for v = 1, . . . ,m1. Assume that α and β are two values in (0, 1) that

are selected to reflect the relative importance of correct classification of members
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of one group over members of the other group. The event of interest that will be

considered here is that the number of correctly classified future individuals from the

healthy group is at least αm0 and the number of correctly classified future individuals

from the disease group is at least βm1, so W 0
k ≥ αm0 and W 1

k ≥ βm1.

Depending on one’s perspective regarding the relative importance of accurately

diagnosing the two groups, values of α and β can be varied to gain intuitive insight [4].

For example, if giving medication to diseased patients is crucial, then it might be

appropriate to assign more weight to the correct classification of the diseased group

than to the healthy group. In this scenario, the proportion of correctly diagnosed

patients as diseased is expected to increase, while the proportion of correctly classified

healthy individuals is expected to decrease. There is, of course, the option of setting

α and β to be equal if one prefers to give the same importance to both groups in

regard to correct classifications of future individuals. It should be noted that α and

β represent target proportions per group, and their values are not constrained, with

the exception of falling within the range of (0, 1).

Considering that the two groups are assumed to be independent, the joint NPI

lower and upper probabilities for the events W 0
k ≥ αm0 and W 1

k ≥ βm1 can be

derived as the products of the corresponding NPI lower and upper probabilities for

the individual events,

P
(
W 0

k ≥ αm0,W 1
k ≥ βm1

)
= P

(
W 0

k ≥ αm0
)
× P

(
W 1

k ≥ βm1
)

(4.1)

P
(
W 0

k ≥ αm0,W 1
k ≥ βm1

)
= P

(
W 0

k ≥ αm0
)
× P

(
W 1

k ≥ βm1
)

(4.2)

The NPI lower and upper probabilities for selecting the optimal diagnostic test

threshold in two-group classification settings with ordinal data, given in Equations

(4.1) and (4.2), will be denoted as NPI-2G-L and NPI-2G-U, respectively. The

method in general will be referred to as NPI-2G.

The NPI results provided in Section 2.4, particularly Equations (2.14) and (2.16),

will be used to derive the NPI-2G-L and NPI-2G-U. First, the results for the healthy

group will be presented and then those for the disease group. Let n0
1:k =

k∑
i=1

n0
i and

let ⌈αm0⌉ denote the smallest integer greater than or equal to αm0. The NPI lower
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and upper probabilities for the event W 0
k ≥ αm0 with k ∈ {1, . . . , K} are given by

P
(
W 0

k ≥ αm0
)
=

(
n0 +m0

m0

)−1 m0∑
r=⌈αm0⌉

(
n0
1:k − 1 + r

r

)(
n0 − n0

1:k +m0 − r

m0 − r

)
(4.3)

P
(
W 0

k ≥ αm0
)
=

(
n0 +m0

m0

)−1

×

[(
n0
1:k + ⌈αm0⌉
⌈αm0⌉

)(
n0 − n0

1:k +m0 − ⌈αm0⌉
m0 − ⌈αm0⌉

)
+

m0∑
s=⌈αm0⌉+1

(
n0
1:k − 1 + s

s

)(
n0 − n0

1:k +m0 − s

m0 − s

)]
(4.4)

Similarly, the NPI lower and upper probabilities are derived for the disease group,

for the event that the number of correctly classified future individuals from the

disease group is at least βm1. With n1
k+1:K =

K∑
j=k+1

n1
j and ⌈βm1⌉ the smallest

integer greater than or equal to βm1, the NPI lower and upper probabilities for the

event W 1
k ≥ βm1 with k ∈ {1, . . . , K} are given by

P
(
W 1

k ≥ βm1
)
=

(
n1 +m1

m1

)−1 m1∑
r=⌈βm1⌉

(
n1
k+1:K − 1 + r

r

)(
n1 − n1

k+1:K +m1 − r

m1 − r

)
(4.5)

P
(
W 1

k ≥ βm1
)
=

(
n1 +m1

m1

)−1

×

[(
n1
k+1:K + ⌈βm1⌉

⌈βm1⌉

)(
n1 − n1

k+1:K +m1 − ⌈βm1⌉
m1 − ⌈βm1⌉

)
+

m1∑
s=⌈βm1⌉+1

(
n1
k+1:K − 1 + s

s

)(
n1 − n1

k+1:K +m1 − s

m1 − s

)]
(4.6)

Using Equations (4.3) and (4.5), the NPI-2G-L can be derived. Similarly, Equa-

tions (4.4) and (4.6) will be applied to derive the NPI-2G-U. The optimal diagnostic

threshold k′ is selected by maximisation of Equation (4.1) for the NPI-2G-L or Equa-

tion (4.2) for the NPI-2G-U. Note that the NPI-2G-L and NPI-2G-U are different

criteria which means they may yield different optimal thresholds.

In the next section, NPI-based inference related to the two-group Youden index

considering a fixed number of multiple future individuals per group is introduced.

Unlike the methodology presented in this section, which focuses on the product of the
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NPI lower or upper probabilities of correct classification, the next section introduces

a NPI method based on the sum of the NPI lower or upper probabilities. In Section

4.5, an example is presented to illustrate the proposed NPI-based methods using

data from the literature.

4.4 Optimal threshold selection for two groups

Youden index

The NPI method for two-group classification has been developed with a focus on

continuous diagnostic tests for multiple future individuals, inspired by the sum-based

approach of the Youden index [4, 40], and for ordinal outcomes with a single future

individual [47, 48]. This section introduces an NPI-based method for two-group

classification with ordinal outcomes for multiple future individuals, also inspired by

the sum-based approach of the Youden index.

The NPI results presented in Section 4.3, in particular Equations (4.3), (4.4),

(4.5), and (4.6), are applied using the idea of maximising the sum of the probabilities

of the correct classification for the two groups, similar to the Youden index method.

While the classical Youden index method does not use target proportions or m values,

this NPI-based method maximises the sum of the lower and upper probabilities to

determine the optimal threshold for the two groups using these values. This optimal

threshold is the point at which the sum of the NPI lower or upper probabilities of

correct classification is maximised. Let the approaches that use the sum of the NPI

lower and upper probabilities for the two-group classification, inspired by the Youden

index, be denoted by NPI-2G-Y-L and NPI-2G-Y-U, respectively. The method in

general will be referred to as NPI-2G-Y. The NPI-2G-Y-L and NPI-2G-Y-U are

given by

NPI-2G-Y-L = P
(
W 0

k ≥ αm0
)
+ P

(
W 1

k ≥ βm1
)
− 1 (4.7)

NPI-2G-Y-U = P
(
W 0

k ≥ αm0
)
+ P

(
W 1

k ≥ βm1
)
− 1 (4.8)

The NPI-2G-Y-L and NPI-2G-Y-U are derived as explained in Section 4.3. To
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determine the optimal diagnostic threshold, the NPI-2G-Y-L in Equation (4.7) or the

NPI-2G-Y-U in Equation (4.8) is maximised. The NPI-2G-Y-L and NPI-2G-Y-U

can result in different optimal thresholds. The methods introduced in Sections 4.3

and 4.4, namely the NPI-2G and NPI-2G-Y, will be illustrated by an example in the

following section.

4.5 Example of optimal threshold selection

This section introduces a detailed example using a dataset from the literature to

illustrate the NPI-2G and NPI-2G-Y methods. Additionally, the example presents

the optimal thresholds obtained from the classical methods, including the Youden

index and the Liu index methods, explained in Section 1.4.

Table 4.2 presents the test results of a study with outcomes on an ordinal scale

with five categories, conducted to assess the accuracy of “Cine” MRI (magnetic

resonance imaging) for the detection of thoracic aortic dissection [96]. The study

used the following confidence scale: 1: definitely not dissection, 2: probably not

dissection, 3: possible dissection, 4: probable dissection, and 5: definite dissection.

In the literature, researchers have discussed the choice of α and β, as mentioned

in Section 4.3. Consider a scenario where a diagnostic decision needs to be made, and

the outcomes are classified on an ordinal scale. One might prefer to set equal values

of α and β and apply the NPI-2G method to balance the importance of avoiding

misdiagnosis for both healthy and diseased individuals. However, in situations where

the treatment has severe side effects for diseased individuals, but a misdiagnosis of a

healthy person as diseased only leads to moderate consequences, one might prefer to

focus on correctly classifying more diseased individuals by choosing a larger value

for β. Any weighting regarding the importance of misdiagnosis should be reflected

in the choice of the target proportions in the two methods. It is important to note

that the choices of α and β are crucial because they directly influence the NPI lower

and upper probabilities in the NPI-2G-Y method. Poor choices of α and β can lead

to very small values for the NPI lower and upper probabilities, which may cause the
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Dissection status
Diagnostic test results

Total
1 2 3 4 5

Absent (G0) 39 19 9 1 1 69

Present (G1) 7 7 3 5 23 45

Table 4.2: The test results

NPI-2G-Y-L or NPI-2G-Y-U to be less than zero. Therefore, careful consideration

must be given to selecting α and β. In this example, the NPI-based methods are

applied to select the optimal threshold k′ based on different values of α, β, and

m0 = m1 = m. We are interested in determining how the optimal threshold may

vary in relation to these values.

Table 4.3 is introduced to illustrate the derivation of the results presented in

Table 4.4 for the NPI-2G and NPI-2G-Y methods. Table 4.3 displays, for just one

case, α=β = 0.8 with m0 = m1 = m = 5, the NPI lower and upper probabilities of

correct classification for the event W 0
k ≥ αm0, presented in Equations (4.3) and (4.5)

and for the event W 1
k ≥ βm1, presented in Equations (4.4) and (4.6), along with

the results of the NPI-2G and NPI-2G-Y methods. For each possible threshold k,

Equations (4.3) and (4.5) are used to derive the NPI-2G-L and NPI-2G-Y-L, while

Equations (4.4) and (4.6) are applied to derive the NPI-2G-U and NPI-2G-Y-U.

In Table 4.3, the NPI lower probability for the event W 0
k ≥ αm0 is 0.2752,

whereas for the event W 1
k ≥ βm1, it is 0.7839. Consequently, the NPI-2G-L is 0.2157.

However, the NPI-2G-Y-L is much smaller; it is equal to 0.0590. This difference arises

because the NPI-2G-Y method, unlike the NPI-2G, is based on the sum of the NPI

lower or upper probabilities for correct classification rather than their product. The

NPI-2G-Y method can sometimes yield very small or even negative values, making

it challenging to achieve higher target proportions of correctly classified individuals.

Moreover, the NPI-2G-Y method may lead to unbalanced classification rates because

with k = 1, the P (W 1
k ≥ βm1) and P (W 1

k ≥ βm1) are large, while they are small for

the event W 0
k ≥ αm0.

Table 4.4 gives all possible thresholds and corresponding values of NPI-2G-L,

NPI-2G-U, NPI-2G-Y-L, and NPI-2G-Y-U, with m = 5. There have been different

scenarios considered for α and β. It should be noted that the optimal threshold
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k

1 2 3 4 5

P (W 0
k ≥ αm0) 0.2752 0.7905 0.9790 0.9892 1

P (W 0
k ≥ αm0) 0.2972 0.8173 0.9892 0.9963 1

P (W 1
k ≥ βm1) 0.7839 0.4815 0.3624 0.2004 0

P (W 1
k ≥ βm1) 0.8241 0.5239 0.4005 0.2286 0

NPI-2G-L= P (W 0
k ≥ αm0)× P (W 1

k ≥ βm1) 0.2157 0.3806 0.3547 0.1982 0

NPI-2G-U= P (W 0
k ≥ αm0)× P (W 1

k ≥ βm1) 0.2450 0.4282 0.3962 0.2278 0

NPI-2G-Y-L= P (W 0
k ≥ αm0) + P (W 1

k ≥ βm1)− 1 0.0590 0.2720 0.3414 0.1896 0

NPI-2G-Y-U= P (W 0
k ≥ αm0) + P (W 1

k ≥ βm1)− 1 0.1214 0.3412 0.3897 0.2249 0

Table 4.3: Corresponding value of NPI-2G-L, NPI-2G-U, NPI-2G-Y-L, and
NPI-2G-Y-U with m = 5 and α=β = 0.8

selection for the NPI-2G and NPI-2G-Y methods depends on the values of α and

β, as well as the value of m, and may vary based on the considered scenario. As

shown in Table 4.4, both NPI-based methods provide the same optimal threshold

for α = β = 0.4. Similarly, when α and β values are increased, both NPI-based

methods yield the same optimal threshold for α = β = 0.6. However, when

α and β are increased further to 0.8, the optimal thresholds for the NPI-2G and

NPI-2G-Y methods differ. The optimal threshold that maximises both NPI-2G-L and

NPI-2G-U is k′ = 2, while the optimal threshold that maximises both NPI-2G-Y-L

and NPI-2G-Y-U is k′ = 3. As a result, for the NPI-2G-Y method, the optimal

diagnostic test is such that an outcome in categories C4 and C5 indicates disease while

a result in categories C1 to C3 indicates no disease, whereas for the NPI-2G method,

the optimal diagnostic test should result in a diagnosis of disease in categories

C3 to C5 and no disease in categories C1 and C2.

The optimal threshold also changes when α and β are set at different values. For

instance, when α = 0.6 and β = 0.3, the optimal threshold is k′ = 2 for NPI-2G,

but the NPI-2G-Y method yields different optimal thresholds, with NPI-2G-Y-L at

k′ = 3 and NPI-2G-Y-U at k′ = 2. However, when α = 0.5 and β = 0.8, the optimal

thresholds decrease to k′ = 1 for NPI-2G and to k′ = 2 for NPI-2G-Y-L. It is clear

from the scenario with α = 0.5, β = 0.8 that the optimal thresholds for the NPI-2G
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NPI-2G method NPI-2G-Y method

k NPI-2G-L NPI-2G-U NPI-2G-Y-L NPI-2G-Y-U

α=β = 0.4

1 0.8621 0.8775 0.8613 0.8770

2 0.9448 0.9563 0.9446 0.9562

3 0.9084 0.9241 0.9084 0.9241

4 0.7996 0.8257 0.7996 0.8257

5 0 0 0 0

α=β = 0.6

1 0.5743 0.6066 0.5551 0.5936

2 0.7559 0.7915 0.7467 0.7852

3 0.6890 0.7247 0.6886 0.7245

4 0.4997 0.5390 0.4994 0.5389

5 0 0 0 0

α=β = 0.8

1 0.2157 0.2450 0.0590 0.1214

2 0.3806 0.4282 0.2720 0.3412

3 0.3547 0.3962 0.3414 0.3897

4 0.1982 0.2278 0.1896 0.2249

5 0 0 0 0

α = 0.6, β = 0.3

1 0.5996 0.6261 0.5971 0.6245

2 0.9081 0.9261 0.9059 0.9247

3 0.9071 0.9235 0.9070 0.9235

4 0.7991 0.8255 0.7990 0.8255

5 0 0 0 0

α = 0.5, β = 0.8

1 0.4730 0.5181 0.3873 0.4528

2 0.4604 0.5054 0.4377 0.4886

3 0.3618 0.4003 0.3609 0.3999

4 0.2003 0.2286 0.1998 0.2285

5 0 0 0 0

Table 4.4: Selecting the optimal threshold using the NPI-based methods with m = 5
and different values of α and β

and NPI-2G-Y methods decrease compared to the scenario with α = 0.6, β = 0.3,

as this scenario with α = 0.5, β = 0.8 requests to put more weight on the number

of correctly classified future individuals from the disease group over those from the

healthy group.

When the number of future observations increases to m = 10, the optimal

thresholds for the NPI-2G and NPI-2G-Y methods differ compared to when m = 5.

Table 4.5 presents all possible thresholds and the corresponding values of NPI-2G-L,

NPI-2G-U, NPI-2G-Y-L, and NPI-2G-Y-U, with m=10. The scenarios for α and β
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NPI-2G method NPI-2G-Y method

k NPI-2G-L NPI-2G-U NPI-2G-Y-L NPI-2G-Y-U

α=β = 0.4

1 0.8898 0.9059 0.8897 0.9058

2 0.9711 0.9794 0.9711 0.9793

3 0.9337 0.9492 0.9337 0.9492

4 0.8040 0.8375 0.8040 0.8375

5 0 0 0 0

α=β = 0.6

1 0.5069 0.5469 0.4925 0.5383

2 0.7619 0.8059 0.7565 0.8026

3 0.6436 0.6923 0.6436 0.6923

4 0.3886 0.4388 0.3885 0.4388

5 0 0 0 0

α = β = 0.8

1 0.0920 0.1136 -0.1326 -0.0583

2 0.2550 0.3087 0.0920 0.1815

3 0.2047 0.2454 0.1943 0.2411

4 0.0729 0.0924 0.0676 0.0910

5 0 0 0 0

α = 0.6, β = 0.3

1 0.5227 0.5577 0.5226 0.5577

2 0.9688 0.9775 0.9687 0.9774

3 0.9815 0.9868 0.9815 0.9868

4 0.9267 0.9427 0.9266 0.9427

5 0 0 0 0

α = 0.5, β = 0.8

1 0.5501 0.6136 0.4834 0.5670

2 0.3365 0.3887 0.3330 0.3864

3 0.2074 0.2468 0.2074 0.2468

4 0.0733 0.0925 0.0733 0.0925

5 0 0 0 0

Table 4.5: Selecting the optimal threshold using the NPI-based methods with m = 10
and different values of α and β

considered here are similar to those presented in Table 4.4. Based on the comparison

of Tables 4.4 and 4.5, the two NPI-based methods provide different optimal thresholds

in some cases. For example, with α = 0.6 and β = 0.3, the optimal threshold shifts

compared to m = 5. The NPI-2G method now selects k′ = 3 as the optimal threshold

compared to k′ = 2 when m = 5. The NPI-2G-Y method yields same optimal

thresholds with k′ = 3 for NPI-2G-Y-L and NPI-2G-Y-U compared to k′ = 3 and

k′ = 2 when m = 5. Also, when α = β = 0.8, the optimal threshold now is k′ = 1 for

the NPI-2G-Y compared to k′ = 2 when m = 5.
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Figure 4.1: All possible thresholds and corresponding value of NPI-2G-L, NPI-2G-U,
NPI-2G-Y-L, and NPI-2G-Y-U with m = 5 and α = 0.1, β = 0.9

It is important to note that the NPI-2G-Y method may yield values lower than

zero, as seen in Table 4.5 with α=β = 0.8, when compared to the NPI-2G method.

This is due to the very small NPI lower and upper probabilities obtained from

Equations (4.3)–(4.6) when considering large target proportions. This is in line with

what we have discussed earlier in this section regarding the NPI-2G-Y method, which,

based on the sum of the NPI lower probabilities for correct classification or the sum

of the NPI upper probabilities rather than their product, can sometimes yield very

small or even negative values.

Figure 4.1 shows thresholds and values for NPI-2G-L, NPI-2G-U, NPI-2G-Y-L,

and NPI-2G-Y-U with α = 0.1 and β = 0.9 for different values of m. The optimal

thresholds are less than those for the corresponding cases with α=β. This decrease is

due to the higher weight given to correctly classifying diseased individuals. However,

when more weight is given to the number of correctly classified future individuals

from the healthy group than from the diseased group (α = 0.9 and β = 0.1), the

optimal thresholds for the NPI-2G and NPI-2G-Y methods are greater than those for

the corresponding cases with α=β and α = 0.1 and β = 0.9, as seen in Figure 4.2.

In this scenario, with α = 0.9 and β = 0.1, it is clear that the optimal thresholds

from the NPI-based methods are high. Therefore, a higher optimal threshold in this

case can be effective if one believes that classifying healthy individuals is considered

more important than classifying diseased individuals.
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Figure 4.2: All possible thresholds and corresponding value of NPI-2G-L, NPI-2G-U,
NPI-2G-Y-L, and NPI-2G-Y-U with m = 5 and α = 0.9, β = 0.1

k

1 2 3 4 5

EYI 0.4097 0.5295 0.5932 0.4966 0

ELI 0.4773 0.5791 0.6042 0.5037 0

Table 4.6: The empirical estimate of Youden’s index and Liu’s index

Table 4.6 presents the maximum values of the empirical Youden index (EYI)

together with the empirical estimator for the Liu index (ELI), using the data shown

in Table 4.2. These are all maximal for k = 3. The maximum values of the empirical

Youden index and Liu index are equal to 0.5932 and 0.6042, respectively, and the

optimal threshold for both methods is k′ = 3. This leads to the optimal diagnostic

test being such that an outcome in categories C1 to C3 indicates non-disease while

categories C4 and C5 indicate disease.

Overall, the NPI-2G and NPI-2G-Y methods demonstrate that the optimal

threshold selection can vary depending on the values of α, β, and m. A researcher

should carefully choose whether to use the NPI-2G or NPI-2G-Y method for their

analysis. One should have a careful argument for choosing between the sum or

product versions. Any weighting regarding the importance of misdiagnosis should

be reflected in the choice of the target proportions in our methods. Therefore, one

should not just apply both methods and choose whichever seems to align better with

ideas about the importance of avoiding specific misdiagnoses.
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To provide further insight into the predictive performance of the proposed NPI

methods along with classical methods, simulation studies will be conducted in the

following section.

4.6 Predictive performance evaluation

This section presents simulation studies evaluating the performances of the proposed

NPI methods compared with classical methods in the case of two-group classification.

Two different scenarios are considered using Beta distributions, where the probability

density function (PDF) for the Beta distribution is given by [55]

f(x; a, b) =
xa−1(1− x)b−1

B(a, b)
, 0 ≤ x ≤ 1, a > 0, b > 0 (4.9)

where B(a, b) is the Beta function, and a and b are the shape parameters of the

distribution.

The two scenarios considered are constructed to represent different levels of

overlap between the G0 and G1 groups, where the groups in Scenario 1 overlap

more than in Scenario 2. The first scenario uses Beta distributions B(0.7, 2.1) and

B(3.5, 3.5) for groups G0 and G1, respectively. The second scenario is simulated using

Beta distributions B(1.2, 4.5) and B(4.5, 4.5) for groups G0 and G1, respectively.

The degree of overlap between the two groups is quantified by calculating the

overlapping area, which is found by integrating the minimum of the two PDFs over

the interval [0, 1], so that
∫ 1

0
min(fG0(x), fG1(x)) dx, where fG0(x) and fG1(x) denote

the probability density functions of the Beta distributions for groups G0 and G1,

respectively. This calculation was implemented using the R programming language.

The overlap was found to be 0.485 for Scenario 1 and 0.364 for Scenario 2, indicating

that less overlap occurs in Scenario 2. These two scenarios will also be used in

Section 5.8.

For each scenario, K=5 categories are considered. For categorizing the simulated

values from the Beta distributions, the cut-points 0.2, 0.4, 0.6 and 0.8 are used. This

is similar to the approach presented by Coolen-Maturi [38], where ordinal outcomes

were categorized based on specific cut-points. The Beta distributions are used to
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simulate n0 and n1 observations for groups G0 and G1. Using these simulated data

observations, the optimal thresholds are determined using the methods presented

in this chapter for different values of the target proportions α and β. The next

step is to simulate the m0 and m1 future observations from the same underlying

Beta distributions as the n0 and n1 simulated data observations. Then, classify the

m0 and m1 simulated future observations using the optimal thresholds, so that the

number of correctly classified future observations per group can be obtained. That

is, for the two-group scenario, the number of future observations out of m0 with the

simulated test results in {C1, . . . , Ck} and out of m1 with the simulated test results

in {Ck+1, . . . , CK} are obtained.

The predictive performances of all methods have been studied with regard to the

number of correctly classified future observations achieved using the desired criteria,

namely, when the number of correctly classified future observations from groups G0

and G1 is greater than or equal to αm0 and βm1, respectively. Using the notation

introduced by Alabdulhadi [4] and Coolen-Maturi et al. [40], denote by “+” when

the desired criterion is achieved, and “−” otherwise. In the simulation, we assume

that n0 = n1 = n and m0 = m1 = m. For unbalanced cases for the data and future

observations, further evaluation will be presented later in this section. For each

scenario and each method, the results are based on 10,000 simulations.

Simulations have been run for each scenario and each distribution, with different

α and β values selected for n = 100 and m = 5, 10. The predictive performance

of the methods presented in this chapter is compared with the classical Youden

index and Liu index methods, using the criterion that at least αm0 and βm1 of

future observations from the healthy and disease groups, respectively, are correctly

classified. Tables 4.7 and 4.8 display the results of the predictive performance for

m = 5 for Scenario 1 and Scenario 2, respectively, while Tables 4.9 and 4.10 present

the results for m = 10. To give the same importance to both groups in regard to

correct classifications of future individuals, the performances have been studied for

α=β = 0.2, 0.5, 0.7, 0.8 for the proposed NPI-based methods, NPI-2G and NPI-2G-Y,

along with empirical estimates of the Youden index and the Liu index methods,

which will be denoted by EYI-2G and ELI-2G, respectively.
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G0 G1 NPI-2G-L NPI-2G-U NPI-2G-Y-L NPI-2G-Y-U EYI-2G ELI-2G

α=β = 0.2

+ - 27 27 27 27 8 17

- + 11 11 11 11 153 66

- - 0 0 0 0 0 0

+ + 9962 9962 9962 9962 9839 9917

α=β = 0.5

+ - 1486 1486 1473 1479 546 1120

- + 872 862 918 906 3205 1733

- - 138 139 136 137 61 109

+ + 7504 7513 7473 7478 6188 7038

α=β = 0.8

+ - 2977 2990 1258 1466 1210 2366

- + 2149 2125 5449 5083 5568 3306

- - 1538 1547 708 807 678 1253

+ + 3336 3338 2585 2644 2544 3075

Table 4.7: Simulation results for Scenario 1 for m = 5

As an example, consider Table 4.7, in which “+ +” indicates that the desired

criteria have been achieved for both groups, whereas “− −” indicates that the desired

criteria have not been achieved for both groups. The desired criteria, for example,

for the NPI-based methods with α=β=0.2, have been achieved in 9962 out of 10,000

simulations. This means that at least one (αm = 0.2× 5 and βm = 0.2× 5) future

observation is correctly classified from each of the healthy and disease groups in the

simulation. The similar performance of the NPI-based methods can be related to the

fact that the proposed methods return the same optimal thresholds. On the other

hand, consider Table 4.7 for α=β=0.8, out of the 10,000 simulations, there are 1538

cases for NPI-2G-L in which both groups fail to meet the desired criteria.

It is clear from Tables 4.7–4.10 that the NPI-2G method outperforms all other

methods in achieving the desired criteria in both groups for all the settings that have

been considered. For small values of the target proportions, where α=β = 0.2, it

appears that the NPI-2G and NPI-2G-Y perform similarly, as the desired criteria are

easily met. These tables also illustrate that, for α=β = 0.2, 0.5, the performance of

the methods is better for m = 10 than for m = 5. While the NPI-2G and NPI-2G-Y

methods demonstrate similar performance when α = β = 0.2, the NPI-2G-Y method
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G0 G1 NPI-2G-L NPI-2G-U NPI-2G-Y-L NPI-2G-Y-U EYI-2G ELI-2G

α=β = 0.2

+ - 16 16 16 16 13 15

- + 4 4 4 4 35 18

- - 0 0 0 0 0 0

+ + 9980 9980 9980 9980 9952 9967

α=β = 0.5

+ - 1273 1273 1273 1273 1058 1191

- + 207 207 209 207 831 415

- - 28 28 28 28 22 26

+ + 8492 8492 8490 8492 8089 8368

α=β = 0.8

+ - 3638 3642 3408 3461 3030 1221

- + 886 876 1320 1206 2003 3458

- - 551 551 523 529 466 526

+ + 4925 4931 4749 4804 4501 4795

Table 4.8: Simulation results for Scenario 2 for m = 5

shows poorer performance for larger values of α and β. This is because, unlike

the NPI-2G method, the NPI-2G-Y method is based on the sum of the NPI lower

or upper probabilities for correct classification (Equations 4.3 to 4.6) rather than

their product, as explained in Section 4.4. When α and β are large, the values in

Equations 4.3 to 4.6 can sometimes be very small. Summing these small values and

then subtracting 1, as indicated in Equations 4.7 and 4.8, may yield very small or

even negative results. According to Youden [95], as mentioned in Section 1.4, the

Youden index ranges from zero to one, where a value of zero indicates a completely

ineffective test with no ability to discriminate between individuals with and without

the condition. Therefore, if the NPI-2G-Y-L or NPI-2G-Y-U value is zero or less, it

may not be ideal for correctly classifying individuals at higher target proportions.

Interestingly, as shown in Tables 4.7–4.10, the ELI-2G method is generally the

closest to the NPI-2G method in terms of performance. We have already discussed

that summing the NPI lower or upper probabilities of correct classification may not

be ideal when considering prediction performance, so it is not surprising that the

ELI-2G method performs better than the EYI-2G method.

In the case of large α and β value, all methods have a better performance for

m = 5 than for m = 10. For example, in Table 4.7 for NPI-2G with α=β = 0.8, the
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G0 G1 NPI-2G-L NPI-2G-U NPI-2G-Y-L NPI-2G-Y-U EYI-2G ELI-2G

α=β = 0.2

+ - 2 2 2 2 0 0

- + 0 0 0 0 41 15

- - 0 0 0 0 0 0

+ + 9998 9998 9998 9998 9959 9985

α=β = 0.5

+ - 476 476 476 476 172 365

- + 145 145 145 145 2077 902

- - 7 7 7 7 4 5

+ + 9372 9372 9372 9372 7747 8728

α=β = 0.7

+ - 2872 2878 2576 2667 1075 2177

- + 1341 1335 1976 1758 5426 2941

- - 666 666 609 622 253 509

+ + 5121 5121 4839 4953 3246 4373

α=β = 0.8

+ - 3447 3456 1343 1156 1274 2621

- + 1871 1847 7220 7129 6434 3588

- - 2683 2692 524 704 1062 2084

+ + 1999 2005 913 1011 1230 1707

Table 4.9: Simulation results for Scenario 1 for m = 10

desired criteria have been achieved for both groups in 3336 out of 10000 simulations

with m = 5, compared to 1999 out of 10000 with m = 10, as shown in Table 4.9.

This shows that the different values of the target proportions, as well as the number

of future observations may have an impact on the performance of the methods. In

general, we notice that, as the values of α and β increase, the NPI-2G-Y method starts

to perform poorly. For example, in Table 4.7 with α= β = 0.8, the NPI-2G-Y-U

prefers to reach the desired criterion for group G1 with 5083 cases. The EYI-2G

method is not close in terms of performance to the NPI-2G-Y method in some

settings. For example, in Table 4.9 with α=β = 0.7, for NPI-2G-Y-U, the desired

criterion is achieved for both groups in 4953 out of 10000 simulations, while the

EYI-2G method prefers to reach the desired criterion for group G1 with 5426 out of

10000 simulations. We notice that with α=β = 0.8, other methods tend to meet the

desired criterion for either group G0 or group G1. Based on Tables 4.7–4.10, it can

be seen that for α=β = 0.8, the NPI-2G method outperforms all the other methods.

Finally, Scenario 2 (less overlap) provides better performance for all methods due
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G0 G1 NPI-2G-L NPI-2G-U NPI-2G-Y-L NPI-2G-Y-U EYI-2G ELI-2G

α=β = 0.2

+ - 0 0 0 0 0 0

- + 0 0 0 0 7 1

- - 0 0 0 0 0 0

+ + 10000 10000 10000 10000 9993 9999

α=β = 0.5

+ - 349 349 349 349 302 336

- + 29 29 29 29 479 179

- - 0 0 0 0 0 0

+ + 9622 9622 9622 9622 9219 9485

α=β = 0.7

+ - 2803 2803 2797 2801 2266 2628

- + 286 286 317 302 1556 719

- - 109 109 109 109 85 100

+ + 6802 6802 6777 6788 6093 6553

α=β = 0.8

+ - 4727 4727 4154 4350 3849 4456

- + 681 681 1662 1330 2155 1154

- - 726 726 631 667 577 671

+ + 3866 3866 3553 3653 3419 3719

Table 4.10: Simulation results for Scenario 2 for m = 10

to the increased separation between the two groups in this scenario, compared to

Scenario 1. To gain further insight into the predictive performance of the methods

for this case with α=β = 0.8, additional predictive investigation via simulation will

be provided later in this section.

The number of correctly classified future observations in all simulations from

groups G0 and G1 has been summarized using bar plots. Let the number of correctly

classified future observations from group G0 with regard to the event W 0
k ≥ αm0 be

denoted by S0
f0 , where f 0 ∈ {0, 1, . . . ,m0}. Similarly, let the number of correctly

classified future observations from group G1 with regard to the event of interest, which

include β, be denoted by S1
f1 , where f 1 ∈ {0, 1, . . . ,m1}. Given that n0 = n1 = n

and m0 = m1 = m, therefore, f 0 = f 1 = f and f ∈ {0, 1, . . . ,m}.

Figures 4.3 and 4.4 show the distributions of the numbers of future observations,

out of m = 5 future individuals, correctly classified in all 10,000 simulations for all

methods for the case α=β = 0.8, considering the two scenarios of group overlap.
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Figure 4.3: Simulation results for Scenario 1 with m = 5 and α=β = 0.8

The predictive performance is clearly better in Scenario 2, where there is less overlap

between groups, compared to Scenario 1.

When α and β are large, the NPI-2G method performs better than the NPI-2G-Y

method. Figure 4.3 clearly illustrates how the NPI-2G-Y method tends to meet the

desired criterion for group G1 when it fails to achieve the criterion for both groups.

As shown in Figure 4.3, the NPI-2G-Y and EYI-2G methods correctly classified

group G1 more than 5000 times out of 10,000, compared with the number of correct

classifications made by the methods for group G0, while in the NPI-2G method,

correct classification appears to be balanced between the two groups.
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Figure 4.4: Simulation results for Scenario 2 with m = 5 and α=β = 0.8

Figure 4.4 shows that in both the NPI-2G and ELI-2G methods, correct

classification appears to be balanced between the two groups. In terms of the

performance of the empirical methods, the ELI-2G method is generally the closest to

the NPI-2G method. The ELI-2G performs better than the EYI-2G. These results

should not be surprising, as it was already mentioned in Section 1.4 that summing up

probabilities of correct classification rather than the product may not be ideal when

attempting to achieve a higher proportion of correctly classified individuals. This

may result in unbalanced classification rates, as discussed in Section 1.4, leading to

the correct classification of more future individuals from either group G0 or G1. In
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both scenarios considered, the NPI-2G method clearly outperforms all other methods.

The results of this section show that, all methods perform poorly as the number

of future observations increases to m = 10, except when α and β are not large. When

they are large, the NPI-2G method performs better than the other methods. In

the case that the NPI-2G-Y method has poor predictive performance, the NPI-2G

method can overcome this and provide balanced classification for the two groups.

The overall results show that the optimal thresholds for a given diagnostic test are

dependent on the values of α and β, as well as the number of future observations

considered. This highlights the importance of taking these values into account when

selecting the optimal thresholds for a given diagnostic test, as they have an impact on

predictive performance. This section has presented the evaluation of the performance

of the proposed NPI methods compared with classical empirical methods for different

values of m, α, and β. However, the poor performance of the NPI-2G-Y with

larger values of α and β raises the question of whether the number of categories

considered and the sample size impact the method’s performance. Therefore, further

investigation is presented next, specifically focusing on the case where α=β = 0.8.

It may be of interest to investigate an unbalanced scenario for n0 and n1, since

it is possible that the numbers in the groups may differ considerably in practice

[39]. For example, individuals in group G1 may present severe problems, but there

would likely be few such individuals in the study. Therefore, the question arises as to

whether or not the sample size influences the performances of the methods presented

in this chapter. A further question that needs addressing is whether the numbers of

future observations or the numbers of categories considered have an impact on the

performances of the methods. To gain insight into the predictive performance of the

proposed NPI methods compared with empirical methods, further investigation is

presented, specifically focusing on the case where α=β = 0.8.

Table 4.11 presents different cases for Scenario 1, where both the data and

future observations are simulated from the same underlying Beta distributions. To

investigate the effect of the number of categories, the first case considered is where

K = 8 with n = 100 and m = 5. When comparing this case with α = β = 0.8

presented in Table 4.7, the same performances are observed for all methods, with
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G0 G1 NPI-2G-L NPI-2G-U NPI-2G-Y-L NPI-2G-Y-U EYI-2G ELI-2G

n = 100, m = 5, K = 8

+ - 1937 1955 862 957 761 1391

- + 3186 3157 5119 4953 5257 4199

- - 1288 1297 783 819 733 1029

+ + 3589 3591 3236 3271 3249 3381

n = 100, m = 10, K = 8

+ - 2158 2181 771 681 743 1394

- + 3300 3252 7043 6820 6537 5014

- - 2240 2261 714 874 965 1580

+ + 2302 2306 1472 1625 1755 2012

n0 = 100, n1 = 35, m0 = 5, m1 = 10, K = 8

+ - 1550 1762 811 944 1201 1740

- + 4231 3913 5749 5312 4869 3930

- - 1114 1223 624 773 900 1236

+ + 3105 3102 2816 2971 3030 3094

Table 4.11: Simulation results for Scenario 1 with α=β = 0.8

the NPI-2G method outperforming all the other methods. However, the NPI-2G-Y

method performs slightly better than with K = 5 due to the increased number of the

categories. For NPI-2G-Y-L with K = 8, the desired criteria have been achieved for

both groups in 3236 out of 10,000 simulations, that is, at least 4 future observations

are correctly classified from each of the disease and non-disease groups. This compares

to 2585 out of 10,000 simulations with K = 5. Similarly, for NPI-2G-Y-U with

K = 8, the desired criteria have been achieved for both groups in 3271 out of 10,000

simulations, compared to 2644 out of 10,000 simulations with K = 5.

Next, an increase in m to 10 is implemented. When comparing this case in Table

4.11 with α=β = 0.8 presented in Table 4.9, again, all methods perform similarly

to the case presented in Table 4.9 with a slight increase in the numbers indicating

that the desired criteria have been achieved for both groups. Finally, we consider

the case with n0 = 100, n1 = 35, and m0 = 5, m1 = 10, with K = 8. It is observed

that the NPI-2G method outperforms all the other methods

Similarly, Table 4.12 presents cases for Scenario 2, where the data and future

observations are simulated from the same underlying Beta distributions. When

comparing the case with α = β = 0.8 presented in Table 4.8, we observe similar

behaviours with n = 100 and m = 5. By increasing m to 10 with more categories,
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G0 G1 NPI-2G-L NPI-2G-U NPI-2G-Y-L NPI-2G-Y-U EYI-2G ELI-2G

n = 100, m = 5, K = 8

+ - 2337 2337 1959 2029 1503 1930

- + 1713 1713 2290 2170 3062 2334

- - 510 510 443 457 373 437

+ + 5440 5440 5308 5344 5062 5299

n = 100, m = 10, K = 8

+ - 3019 3040 2424 2564 1908 2433

- + 1711 1669 2775 2533 3735 2779

- - 719 728 579 607 484 587

+ + 4551 4563 4222 4296 3873 4201

n0 = 100, n1 = 35, m0 = 5, m1 = 10, K = 8

+ - 1909 2201 1519 1788 1939 2287

- + 2991 2594 3524 3149 2990 2508

- - 444 500 363 421 424 510

+ + 4656 4705 4594 4642 4647 4695

Table 4.12: Simulation results for Scenario 2 with α=β = 0.8

K = 8, all the methods achieve the desired criterion for both groups and do not tend

to reach the desired criterion for the healthy group, as seen in the case presented

in Table 4.10. In the unbalanced scenario of n and m, all methods perform better

than in the case presented in Table 4.11. Finally, and not surprisingly, all methods

perform much better over all settings in Scenario 2 than in Scenario 1, as the groups

in Scenario 2 have less overlap.

The overall results presented in this section highlight the impact of the number of

future observations and the values of α and β on achieving the required criteria for

correctly classifying the number of future observations from groups G0 and G1. The

NPI-2G outperforms all the other methods and for all the settings that have been

considered when considering either a different number of categories or an unbalanced

scenario of n and m observations. However, we notice that in such scenarios, the

NPI-2G-Y method might perform slightly better. This raises the question of how to

choose these values in practical applications or investigate the settings where the

NPI-2G-Y method can work best. However, researchers should always make careful

consideration when selecting these values for their analysis.

While α, β and the values of m for the methods presented in this section

should be set by medical professionals, considering individual patient preferences for
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setting these values based on personal circumstances and potential consequences of

misdiagnosis could enhance the applicability of these methods. For example, if giving

medication to a healthy person by mistake could result in severe illness for a year,

but giving it to a diseased person could cure a disease that would otherwise likely be

fatal in ten years, preferences in choosing these values might vary. A young, healthy

individual may not be concerned about the risk of being misdiagnosed and taking

medication, since they will have a longer life expectancy and will have more time to

recover. In contrast, an older individual may prioritize avoiding the severe illnesses

caused by the medication if they are healthy, given their shorter life expectancy and

the effect the medication has on their quality of life. This aligns with patient-centered

approaches in medical decision-making, where individual preferences and values are

critical. According to Elwyn et al. [49], shared decision-making plays an important

role in clinical practice, emphasizing the importance of patient preferences when

making treatment decisions. Barry and Edgman-Levitan [15] also emphasize the

importance of shared decision-making in patient-centered care, which includes the

consideration of patient values and preferences. This topic is left for future research

regarding guidance on the choice of these numbers in practical situations.

4.7 Concluding remarks

This chapter has presented novel NPI methods based on considering multiple future

individuals, explicitly in the form of a predictive problem to select the optimal

diagnostic test threshold for two-group classification with ordinal outcomes. The NPI

approach is used for selecting the optimal thresholds by taking into account a given

number of future observations and criteria based on each group’s target proportion

of successful diagnoses. This chapter analyses the cases n0 = n1 and m0 = m1 with

K = 5, also considering large α and β for unbalanced n and m with K = 8. Although

in practice one would not know a specific number of future observations, the main

objective is to investigate how the optimal threshold might vary in relation to the

number of future observations. The methods presented in this chapter, however,

would be straightforward to apply if there is a scenario involving specific values for

m0 and m1.
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The proposed methods have been illustrated with an example based on data from

the literature, considering different scenarios of the target proportions α and β. Their

performances have been evaluated via simulations. The proposed methods have been

compared with classical methods, including the Youden index and the Liu index.

The results show that, the two NPI-based methods perform similarly when α and β

are not large, but when they are large, the NPI-2G method performs better than the

other methods, and the NPI-2G-Y-L method starts to perform poorly. Moreover, the

overall results indicate that the optimal threshold for a given diagnostic test depends

on the values of α, β, and m. The results indicate that changing the number of

future individuals may affect the optimal threshold selection. This highlights the

importance of taking these values into account when selecting the optimal threshold

for a given diagnostic test, as they have an impact on the predictive performances.

It would be of interest to develop a method for searching for the optimal values

of these target proportions with ordinal outcomes. Recently, NPI-based methods

have been presented for the optimal choice of α and β with real-valued data in the

context of classification tree developments using a machine learning method that

involves a two-loop process [6]. Although the implementation of these methods

typically requires substantial data sets, it could be interesting to adjust the methods

for ordinal data, which is an interesting topic for future research. The methods

for optimal threshold selection in two-group classification problems presented in

this chapter will be extended in the next chapter to include classification problems

involving three ordinal groups.



Chapter 5

Optimal thresholds selection in

three-group classification

5.1 Introduction

This chapter extends the two-group NPI methods presented in Chapter 4 to three-

group classification problems with ordinal outcomes. Diagnostic tests with ordinal

outcomes occur in many medical applications and other fields, in which the test

yields a result in one of several ordered categories [2, 14]. For instance, a diagnostic

test result with ordered categories may represent the level of severity of a disease.

Traditionally, diagnostic studies have measured the accuracy of diagnostic tests

by categorizing individuals into two binary groups: healthy or diseased. However,

many diagnostic tests in practice deal with cases involving ordinal outcomes, where

individuals are classified into multiple ordered groups based on known condition

status [38, 96]. In medicine, there are some situations in which it is necessary

to classify individuals into multiple groups, such as three groups based on the

stage of their chronic disease or three groups based on their risk of developing the

disease. Therefore, it is important to develop methods that accurately measure the

performance of diagnostic tests in cases of ordinal outcomes.

In many medical diagnostic situations, there is an intermediate or transitional

stage (group) between a non-diseased status and a diseased status for some diseases,

such as liver cancer (LC) and Alzheimer’s disease (AD) [9, 86, 93]. It is therefore

104
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common for LC and AD diseases to be classified into three groups based on disease

status: non-diseased, early diseased, and fully diseased status. Detecting the interme-

diate stage of AD progress, for example, is crucial to prevent severe disease develop-

ments in the future. When AD is detected at an intermediate stage, new medications

can be used to slow the disease’s progression. Therefore, good diagnostic tests which

can discriminate between disease status are essential. Consequently, the development

of methodologies for measuring diagnostic accuracy for such tests is needed.

For three-group classification problems, the receiver operating characteristic

(ROC) surface is a common tool for evaluating diagnostic test performance, introduced

by Mossman [70] and further developed by Nakas and Yiannoutsos [75]. In this

setting, two threshold values, k′
a and k′

b, are required, where k
′
a < k′

b. Nakas et al. [72]

extended the Youden index to three-group problems, maximising the sum of the

probabilities of correctly classifying individuals into each group. These probabilities,

also referred to as classification rates in the literature, represent the proportion

of correctly classified individuals for each group. The maximum volume (MV-3G)

method, introduced by Attwood et al. [9], uses the product of these probabilities,

aiming to balance classification rates between the groups. Balancing here means that

no group has a much larger probability of being correctly classified than the others.

By multiplying these probabilities, the method reduces the overall product if one

group has a very small probability. These methods are detailed in Section 5.3.

Coolen-Maturi [38] introduced a nonparametric predictive inference (NPI) ap-

proach for three-group classification problems with ordinal outcomes to assess a

diagnostic test’s ability to discriminate among the three ordered groups, focusing

on a single future observation. This chapter presents three NPI-based methods for

selecting optimal diagnostic test thresholds for three-group classification settings

with ordinal outcomes, where the inference is based on multiple future individuals.

This chapter is organised as follows. Section 5.2 provides a brief introduction

to ordinal diagnostic tests in three-group classification. Section 5.3 introduces an

overview of classical diagnostic test threshold methods. In Section 5.4, a pairwise

approach is presented using the NPI-2G method from Section 4.3, to independently

select the optimal thresholds k′
a and k′

b. In Section 5.5, NPI is proposed for selecting



5.2. Diagnostic tests for three groups 106

the optimal thresholds for three-group classification problems with multiple future ob-

servations, extending the two-group NPI method presented in Section 4.3. Section 5.6

presents an NPI method inspired by the Youden index, in the sense that the criterion

maximises the sum of the NPI lower or upper probabilities of correct classification

with multiple future individuals for the three groups. A detailed example is given

in Section 5.7 to illustrate and discuss the new methods. Simulation studies for

three-group settings will be conducted in Section 5.8 to provide insight into the

predictive performance of the proposed methods in comparison with the classical

methods. Finally, Section 5.9 concludes with some concluding remarks.

5.2 Diagnostic tests for three groups

This section considers diagnostic accuracy when there are three ordered groups

of diseases. Essentially, a diagnostic test with ordinal results is being considered,

meaning that each individual’s test outcome indicates one of K ≥ 2 ordered cate-

gories, representing increasing severity levels related to their indication of having the

condition of interest. These categories are denoted by C1 to CK .

Data are assumed to be available on individuals who are classified into three

groups based on their known condition status, such as minor, moderate, and major

conditions, which are denoted byG0, G1, andG2, respectively. It should be noted that,

throughout this chapter, superscript 0 indicates the first group, superscript 1 indicates

the second group, while superscript 2 indicates the third group. The definitions and

notation presented in this chapter are similar to those introduced in Chapter 4, as

well as those by Alabdulhadi [4], Coolen-Maturi [38], Coolen-Maturi et al. [40], and

Elkhafifi and Coolen [48].

In a diagnostic decision in the case of ordinal data, two ordered thresholds ka < kb

in {1, . . . , K} are required to classify individuals into one of three ordered groups

of disease status based on their diagnostic test results. For such a decision, test

results in categories {C1, . . . , Cka} are interpreted as indicating the least severity

of the condition, “minor” or mild condition, meaning the individual belongs to G0.

Test results in categories {Cka+1, . . . , Ckb} are interpreted as indicating a “moderate”
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Condition status
Diagnostic test result

Total
C1 . . . Cka . . . Ckb . . . CK

G0 n0
1 . . . n0

ka
. . . n0

kb
. . . n0

K n0

G1 n1
1 . . . n1

ka
. . . n1

kb
. . . n1

K n1

G2 n2
1 . . . n2

ka
. . . n2

kb
. . . n2

K n2

Table 5.1: Ordinal test data for three groups classification problems

condition, meaning the individual belongs to G1. Finally, test results in categories

{Ckb+1, . . . , CK} are interpreted as indicating the most “severe” level of the condition,

meaning the individual belongs to G2. The goal in this scenario is to select the optimal

values for ka and kb referred to as the ‘optimal thresholds’ k′
a and k′

b, with k′
a < k′

b.

Table 5.1 provides notation for the number of individuals for each combination of

condition status and test result.

For a pair of thresholds (ka, kb), the probability of correct classification for each

group is defined as follows [38]. Let T 0, T 1, and T 2 denote the diagnostic test

results for individuals from groups G0, G1, and G2, respectively. The probability of

correct classification for a subject from group G0 is p0(ka) = P (T 0 ∈ {C1, . . . , Cka}).

Similarly, the probability of correct classification for a subjects from group G1 is

p1(ka, kb) = P (T 1 ∈ {Cka+1, . . . , Ckb}), and the probability of correct classification

for a subject from group G2 is p2(kb) = P (T 2 ∈ {Ckb+1, . . . , CK}). The empirical

estimators of these probabilities p0(ka), p1(ka, kb) and p2(kb) are p̂0(ka) =
1
n0

∑ka
i=1 n

0
i ,

p̂1(ka, kb) = 1
n1

∑kb
i=ka+1 n

1
i and p̂2(kb) = 1

n2

∑K
i=kb+1 n

2
i , respectively [38]. Next, a

brief overview of existing methods for selecting thresholds for three groups, based on

receiver operating characteristic (ROC) surface analysis, is provided.

5.3 Methods for selecting optimal thresholds for

three groups

In many applications, including medicine, healthcare, and machine learning, measur-

ing diagnostic test accuracy is essential. The receiver operating characteristic (ROC)

surface is a widely used tool for evaluating how well a diagnostic test discriminates

between three ordered groups. Three-group ROC surfaces generalise the popular
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two-group ROC curve, as introduced in Section 1.4. To construct ROC surface,

the probabilities of correct classification (p0(ka), p1(ka, kb), p2(kb)) for all ka < kb in

{1, . . . , K} are plotted [38]. Based on these probabilities of correct classification for

three groups, Mossman [70], Nakas and Alonzo [71] and Nakas and Yiannoutsos [75]

introduced the construction of the ROC surface. For measuring the overall accuracy

of the test, they also considered the volume under the ROC and its relation to the

probability of correctly ordered observations within each of the three groups. For a

recent overview and more details about ROC surface analysis and its applications,

see Nakas et al. [73].

Making diagnosis decisions and classifying patients requires selecting optimal

thresholds to classify individuals, based on their diagnostic test results, into one of

three groups. Selecting the optimal thresholds is an important part of defining a

diagnostic test and evaluating its quality. A popular approach that considers two

thresholds is the generalisation of the Youden index, proposed by Nakas et al. [72],

which is an extension of the Youden index for two groups (continuous) diagnostic

tests. The three-group Youden index is defined as the sum of the probabilities of

correct classification for the three groups.

For three-group threshold selection, Attwood et al. [9] introduced a method called

the maximum volume (MV-3G), which is an extension of the maximum area method

discussed in Section 1.4. The optimal thresholds determined by Attwood et al. [9]

were compared with those determined by the three-group Youden index method

proposed by Nakas et al. [72]. According to Attwood et al. [9], the maximisation

problem in the three-group Youden index can be formulated as the sum of two

maximisations: one between healthy and intermediate groups, and another between

intermediate and diseased groups, essentially maximising two two-group problems,

with the constraint that the first threshold is smaller than the second. This may

result in imbalanced classification rates, favouring the identification of healthy and

diseased groups but with poor identification of the intermediate group. To overcome

this limitation, Attwood et al. [9] introduced the MV-3G approach, which maximises

the product of the probabilities for correct classification of the three groups.

In a three-group setting, Nakas et al. [74] proposed using pairwise analysis with
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the Youden index method for Parkinson’s disease patients. Through pairwise Youden

index analysis, two thresholds were derived. The first threshold was identified as

the optimal threshold for the two-group comparison between the first and second

groups (patients with dementia and patients with mild cognitive impairment). The

second threshold was selected as the optimal threshold for the two-group comparison

between the second and third groups (patients with mild cognitive impairment and

healthy individuals). Nakas et al. [74] also compared the pairwise approach with

the three-group Youden index and found that, in their specific data example, both

methods yielded the same optimal thresholds. Additionally, the value of the Youden

index for the three-group problem equaled the sum of the values of the Youden index

for the two pairwise comparisons.

For ordinal data, Coolen-Maturi [38] introduced the method for selecting the

optimal thresholds k′
a and k′

b using the Youden’s index for ordinal three-group

diagnostic tests with ordered categories, based on one future observation. The

Youden’s index defined as the sum of these probabilities of correct classification

(p0(ka), p1(ka, kb), p2(kb)). The optimal thresholds k′
a and k′

b are found by maximising

the Youden’s index, with the constraint k′
a < k′

b. The Youden index for ordinal

three-group diagnostic tests (YI-3G) is defined as

YI-3G (ka, kb) = p0(ka) + p1(ka, kb) + p2(kb) (5.1)

In order to obtain the empirical estimator for YI-3G, these probabilities of correct

classification are replaced by their corresponding empirical estimators. The empirical

estimator of the Youden index for ordinal data (EYI-3G) is

EYI-3G (ka, kb) =

(
1

n0

ka∑
i=1

n0
i

)
+

(
1

n1

kb∑
i=ka+1

n1
i

)
+

(
1

n2

K∑
i=kb+1

n2
i

)
(5.2)

According to Attwood et al. [9], the MV-3G approach is defined as the product

of the correct classification probabilities for three-group diagnostic tests. Similarly,

the MV-3G for ordinal three-group diagnostic tests can be defined as

MV-3G (ka, kb) = p0(ka)× p1(ka, kb)× p2(kb) (5.3)
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The optimal thresholds (k′
a and k′

b) are derived by maximising the MV-3G, with the

constraint k′
a < k′

b. By replacing these probabilities of correct classification with their

empirical estimators, the empirical estimator for MV-3G is obtained. The empirical

estimate of the MV-3G for ordinal data (EMV-3G) is given by

EMV-3G (ka, kb) =

(
1

n0

ka∑
i=1

n0
i

)
×

(
1

n1

kb∑
i=ka+1

n1
i

)
×

(
1

n2

K∑
i=kb+1

n2
i

)
(5.4)

This chapter compares the EYI-3G and EMV-3G methods with the proposed

methods in Section 5.8. Next, a new NPI-based method for selecting the thresholds

for three-group diagnostic tests is presented

5.4 Pairwise approach for selecting the optimal

thresholds

For the three-group classification, one approach for selecting the two thresholds k′
a

and k′
b is to base the selection on two-group settings: selecting the optimal threshold

k′
a based on G0 and G1, and the optimal threshold k′

b based on G1 and G2. The

NPI-2G method presented in Section 4.3 can be used here twice to independently

select the optimal thresholds k′
a and k′

b.

By using the methodology presented in Section 4.3, in particular Equations

(4.3)–(4.6), the optimal threshold k′
a is first determined based only on the groups

G0 and G1. The NPI lower and upper probabilities used for selecting the optimal

diagnostic test threshold k′
a are

P
(
W 0

ka ≥ αm0,W 1
ka ≥ βm1

)
= P

(
W 0

ka ≥ αm0
)
× P

(
W 1

ka ≥ βm1
)

(5.5)

P
(
W 0

ka ≥ αm0,W 1
ka ≥ βm1

)
= P

(
W 0

ka ≥ αm0
)
× P

(
W 1

ka ≥ βm1
)

(5.6)

The optimal diagnostic threshold k′
a is selected by maximising Equations (5.5) and

(5.6). In order to determine the optimal threshold k′
b, the methodology presented in

Section 4.3 can again be used, based only on groups G1 and G2, but first, further

notation is introduced.
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For group G2, in addition to the notation introduced in Section 4.3 for groups

G0 and G1, further notation is required. Let the number of future individuals from

the group G2 be denoted by m2. For the optimal threshold k′
b, let the number of

correctly classified future individuals from G2 be denoted by W 2
kb
, and let γ denote

the target proportion of correctly classified members of G2 where γ is in (0, 1).

The values of α, β, and γ will vary depending on which group is considered more

important for correct diagnosis. However, if one prefers to give equal importance to

the correct classification of all future individuals, α, β, and γ can be set to the same

value. The general event of interest here is that the number of correctly classified

future individuals from G1 is at least βm1 and the number of correctly classified

future individuals from G2 is at least γm2. The three groups are also assumed to be

independent, meaning that any information regarding one group does not provide

any information about any other group. Based on Equations (4.3)–(4.6), the optimal

diagnostic test threshold k′
b for groups G

1 and G2 is derived. Thus, the NPI lower

and upper probabilities used for selecting the optimal diagnostic test threshold k′
b are

P
(
W 1

kb
≥ βm1,W 2

kb
≥ γm2

)
= P

(
W 1

kb
≥ βm1

)
× P

(
W 2

kb
≥ γm2

)
(5.7)

P
(
W 1

kb
≥ βm1,W 2

kb
≥ γm2

)
= P

(
W 1

kb
≥ βm1

)
× P

(
W 2

kb
≥ γm2

)
(5.8)

In order to select the optimal threshold k′
b, Equations (5.7) and (5.8) are max-

imised. In this chapter, the approach that uses the NPI lower probabilities in

Equations (5.5) and (5.7) to obtain the optimal thresholds k′
a and k′

b is referred to as

NPI-PW-L, and the approach that uses the NPI upper probabilities in Equations

(5.6) and (5.8) is referred to as NPI-PW-U. The method in general will be referred

to as NPI-PW. It is important to emphasize that the optimal thresholds k′
a and k′

b

obtained by the NPI-PW method may not satisfy the condition k′
a < k′

b. This can

occur in cases of high level of overlap between the groups, due to the fact that k′
a

and k′
b are obtained independently. It is also possible for the pairwise analysis to

result in poor identification of the intermediate group, as shown later in Section 5.8.

The next section presents an alternative method for the three-group classification

setting motivated by the above mentioned problems.
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5.5 Optimal thresholds selection for three groups

diagnostic tests

In this section, the NPI threshold selection method presented in Section 4.3 is

extended to three-ordered groups with ordinal outcomes. The same notation as

in Section 5.4 is used, following the latent observation setting and data notation

presented in Table 5.1.

The values of thresholds ka and kb that provide the best classification will be

selected based on multiple future individuals. This raises the question of how one can

choose the optimal thresholds k′
a and k′

b that maximise the correct classification of

patients from the three groups. For specific values of the optimal thresholds k′
a and

k′
b, with k′

a < k′
b, let W

0
ka

denote the number of correctly classified future individuals

from G0, let W 1
(ka,kb)

denote the number of correctly classified future individuals from

group G1, and let W 2
kb

denote the number of correctly classified future individuals

from G2.

Assume that α, β, and γ are values in (0, 1) that are selected to reflect the

relative importance of correct classification of members of each group. The general

event of interest here is that the number of correctly classified future individuals

from G0 is at least αm0, the number of correctly classified future individuals from

G1 is at least βm1, and the number of correctly classified future individuals from

the group G2 is at least γm2. Considering that the three groups are assumed to be

independent, the NPI lower and upper probabilities for the joint events W 0
ka

≥ αm0,

W 1
(ka,kb)

≥ βm1, and W 2
kb

≥ γm2 can be derived as the products of the corresponding

NPI lower and upper probabilities for the individual events. The NPI lower and

upper probabilities for selecting the optimal diagnostic test threshold for three-group

classification settings are given by

P
(
W 0

ka ≥ αm0,W 1
(ka,kb)

≥ βm1,W 2
kb

≥ γm2
)
=

P
(
W 0

ka ≥ αm0
)
× P

(
W 1

(ka,kb)
≥ βm1

)
× P

(
W 2

kb
≥ αm2

) (5.9)
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P
(
W 0

ka ≥ αm0,W 1
(ka,kb)

≥ βm1,W 2
kb

≥ γm2
)
=

P
(
W 0

ka ≥ αm0
)
× P

(
W 1

(ka,kb)
≥ βm1

)
× P

(
W 2

kb
≥ αm2

) (5.10)

The approaches that use the NPI lower and upper probabilities in Equations

(5.9) and (5.10) are referred to as NPI-3G-L and NPI-3G-U, respectively, while the

method in general is referred to as NPI-3G. Note that NPI-3G-L and NPI-3G-U are

different criteria which means they may yield different optimal thresholds. The NPI

lower and upper probabilities in Equations (5.9) and (5.10) can be computed by

following the methodology explained in Section 4.3 as follows.

For group G1, the NPI lower and upper probabilities of correct classification

for the event W 1
(ka,kb)

≥ βm1 are obtained from Equations (2.14), (2.15) and (2.16)

with ka < kb in {1, . . . , K}. This involves considering two scenarios using the path

counting technique discussed in Section 2.4: either ka = 1 or kb = K, or the case

where 1 < ka < kb < K.

We propose an NPI-based method for the three-group classification problem,

inspired by the Youden index procedure discussed in Section 5.6, to compare it

with the NPI-based method introduced in this section. This is inspired by the

Youden index criterion, which maximises the sum of the probabilities of correct

classification for the three groups. NPI was introduced by Coolen-Maturi et al. [38]

for a three-group Youden index based on one future individual for each group with

ordinal data. This motivates an NPI-based method for the three-group Youden index

taking into consideration a fixed number of multiple future individuals per group;

this is presented next.

5.6 Optimal thresholds selection for three groups

Youden index

An important consideration when designing a diagnostic method for three-group

classification is the choice of decision thresholds ka and kb. This section introduces an

NPI-based method for selecting the optimal thresholds in three-group classification

setting, inspired by the sum-based approach of the Youden index, which maximises
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the sum of the probabilities of correct classification for the three groups [38]. This

approach extends the two-group method presented in Section 4.4, taking into account

a fixed number of multiple future individuals per group. By applying the NPI lower

and upper probabilities of correct classifications from Section 4.3, the NPI lower and

upper probabilities for the three-group classification can be obtained.

The approaches that use the sum of the NPI lower and upper probabilities for the

three-group classification, inspired by the Youden index, are denoted by NPI-3G-Y-L

and NPI-3G-Y-U, respectively, with NPI-3G-Y referring to the method in general.

The NPI-3G-Y-L and NPI-3G-Y-U are

NPI-3G-Y-L = P
(
W 0

ka ≥ αm0
)
+ P

(
W 1

(ka,kb)
≥ βm1

)
+ P

(
W 2

kb
≥ αm2

)
(5.11)

NPI-3G-Y-U = P
(
W 0

ka ≥ αm0
)
+ P

(
W 1

(ka,kb)
≥ βm1

)
+ P

(
W 2

kb
≥ αm2

)
(5.12)

The terms in the right side of Equations (5.11) and (5.12) are derived as explained

in Section 5.5. Optimal diagnostic thresholds can be determined by maximising

either the NPI-3G-Y-L or the NPI-3G-Y-U. It should be noted that the NPI-3G-Y-L

and NPI-3G-Y-U may result in different optimal thresholds. As an illustration of

the three NPI-based methods proposed in this chapter, an example will be provided

in Section 5.7. To provide further insight into the predictive performance of the

proposed NPI methods along with classical methods, simulation studies will be

conducted in Section 5.8.

5.7 Example of optimal thresholds selection

In this section, a detailed example is presented using a real medical dataset for

Alzheimer’s disease from the literature to illustrate the empirical Youden index

method (EYI-3G) and the maximum volume (EMV-3G) method presented in

Section 5.3, as well as the three NPI-based methods presented in Sections 5.4,

5.5, and 5.6, namely, NPI-PW, NPI-3G and NPI-3G-Y.
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C1 C2 C3 C4 Total

SCD (G0) 15 0 13 3 31

MCI (G1) 33 5 42 24 104

AD-Dementia (G2) 4 1 16 61 82

Table 5.2: CSF biomarker risk categories for Alzheimer’s progression in three clinical
groups

For patients at preclinical stages of Alzheimer’s disease (AD), cerebrospinal

fluid (CSF) biomarkers can be evaluated in order to estimate the risk of developing

dementia [50]. Filipek-Gliszczyńska et al. [50] considered participants from three

ordered clinical groups, G0 as subjective cognitive decline (SCD), G1 as mild cognitive

impairment (MCI) and G2 as Alzheimer’s disease (AD) dementia, with clinical follow-

up averaging 14.33 months. In total, 217 patients were included in the study, 31

in the SCD group, 104 in the MCI group, and 82 in the AD-Dementia group. The

cerebrospinal fluid (CSF) biomarkers of AD are ranked on an ordinal scale represented

by the categories: C1: None, C2: Improbable, C3: Possible, and C4: Probable. This

dataset is presented in Table 5.2.

The EYI-3G and EMV-3G methods

Table 5.3 presents the empirical estimators of the probabilities of correct classification

for ka < kb in {1, 2, 3, 4}, together with the EYI-3G and EMV-3G methods, derived

using Equations (5.2) and (5.4), respectively. These are all maximal for (ka, kb) =

(1, 3). The maximum values of the EYI-3G and the EMV-3G methods are equal to

1.6797 and 0.1627, respectively, and the optimal thresholds for both methods are

k′
a = 1 and k′

b = 3. This leads to the optimal diagnostic test being such that the test

result in C1 indicates individuals are assigned to the SCD (G0 group), in C2 and C3

indicates individuals are assigned to the MCI (G1 group), while observations in the

final category, C4, are assigned to the third group, the AD-Dementia (G2 group).
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(ka, kb) p̂0(ka) p̂1(ka, kb) p̂2(kb) EYI-3G EMV-3G

(1,2) 0.4839 0.0481 0.9390 1.4710 0.0218

(1,3) 0.4839 0.4519 0.7439 1.6797 0.1627

(1,4) 0.4839 0.6827 0 1.1666 0

(2,3) 0.4839 0.4038 0.7439 1.6316 0.1454

(2,4) 0.4839 0.6346 0 1.1185 0

(3,4) 0.9032 0.2308 0 1.1340 0

Table 5.3: Empirical estimators of probabilities of correct classification and optimal
thresholds for EYI-3G and EMV-3G methods

The NPI-PW method

The NPI lower and upper probabilities for the NPI-PW, as presented in Equations

(5.5) to (5.8), can be derived as the products of the corresponding NPI lower and

upper probabilities of correct classification for the individual events W 0
ka

≥ αm0 and

W 1
ka

≥ βm1 for groups G0 and G1, and W 1
kb

≥ βm1 and W 2
kb

≥ γm2 for groups G1

and G2.

Table 5.4(a) displays the NPI lower probabilities of correct classification, while

Table 5.4(b) shows the NPI upper probabilities of correct classification. These tables

are provided to illustrate how the results for NPI-PW(G0, G1) and NPI-PW(G1, G2),

presented in Table 5.5, are obtained. With m0=m1=m2=m = 5, two cases of target

proportions have been considered. If equal importance is preferred for the correct

classification of future individuals in all groups, values like α=β=γ =0.2, 0.6, 0.8 can

be chosen, representing different weights of these target proportions. Alternatively, if

more weight is given to the correct classification of individuals in group G0, less weight

in group G1, and moderate weight in group G2, one can choose α = 0.7, β = 0.3,

γ = 0.5.
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ka P
(
W 0

ka
≥ αm0

)
P
(
W 1

ka
≥ βm1

)
kb P

(
W 1

kb
≥ βm1

)
P
(
W 2

kb
≥ γm2

)
α=β=γ =0.2

1 0.9460 0.9957 1 0.8419 0.9999

2 0.9460 0.9918 2 0.8886 0.9999

3 0.9998 0.7192 3 0.9990 0.9982

4 1 0 4 1 0

α=β=γ =0.6

1 0.4448 0.7994 1 0.1873 0.9969

2 0.4448 0.7268 2 0.2580 0.9952

3 0.9757 0.0869 3 0.9038 0.8738

4 1 0 4 1 0

α=β=γ =0.8

1 0.1688 0.4826 1 0.0400 0.9636

2 0.1688 0.3922 2 0.0654 0.9502

3 0.8680 0.0130 3 0.6575 0.6018

4 1 0 4 1 0

α = 0.7, β = 0.3, γ = 0.5

1 0.1688 0.9556 1 0.4985 0.9969

2 0.1688 0.9285 2 0.5903 0.9952

3 0.8680 0.3229 3 0.9850 0.8738

4 1 0 4 1 0

(a) NPI lower probabilities of correct classification

ka P
(
W 0

ka
≥ αm0

)
P
(
W 1

ka
≥ βm1

)
kb P

(
W 1

kb
≥ βm1

)
P
(
W 2

kb
≥ γm2

)
α=β=γ =0.2

1 0.9589 0.9963 1 0.8523 1

2 0.9589 0.9927 2 0.8964 1

3 0.9999 0.7357 3 0.9992 0.9986

4 1 0 4 1 0

α=β=γ =0.6

1 0.5000 0.8127 1 0.2006 0.9982

2 0.5000 0.7420 2 0.2732 0.9969

3 0.9873 0.0962 3 0.9131 0.8871

4 1 0 4 1 0

α=β=γ =0.8

1 0.2056 0.5015 1 0.0444 0.9751

2 0.2056 0.4097 2 0.0715 0.9636

3 0.9157 0.0150 3 0.6771 0.6267

4 1 0 4 1 0

α = 0.7, β = 0.3, γ = 0.5

1 0.2056 0.9600 1 0.5174 0.9982

2 0.2056 0.9346 2 0.6078 0.9969

3 0.9157 0.3425 3 0.9870 0.8871

4 1 0 4 1 0

(b) NPI upper probabilities of correct classification

Table 5.4: NPI lower and upper probabilities of correct classification for the NPI-PW
method with m = 5 and different scenarios of α, β and γ
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ka NPI-PW-L(G0, G1) NPI-PW-U(G0, G1) kb NPI-PW-L(G1, G2) NPI-PW-U(G1, G2)

α=β=γ =0.2

1 0.9420 0.9553 1 0.8418 0.8523

2 0.9382 0.9519 2 0.8885 0.8964

3 0.7191 0.7357 3 0.9972 0.9977

4 0 0 4 0 0

α=β=γ =0.6

1 0.3556 0.4064 1 0.1867 0.2003

2 0.3233 0.3710 2 0.2568 0.2724

3 0.0848 0.0949 3 0.7897 0.8100

4 0 0 4 0 0

α=β=γ =0.8

1 0.0815 0.1031 1 0.0386 0.0433

2 0.0662 0.0842 2 0.0621 0.0689

3 0.0113 0.0138 3 0.3957 0.4243

4 0 0 4 0 0

α = 0.7, β = 0.3, γ = 0.5

1 0.1613 0.1974 1 0.4970 0.5165

2 0.1568 0.1922 2 0.5875 0.6059

3 0.2802 0.3136 3 0.8606 0.8756

4 0 0 4 0 0

Table 5.5: Optimal thresholds and the NPI lower and upper probabilities for the
NPI-PW (G0, G1) and NPI-PW (G1, G2) with m = 5 and different scenarios of α, β
and γ

Table 5.6 presents the NPI-PW results for m = 8. Different scenarios for α,

β, and γ have been considered. As shown in Tables 5.5 and 5.6, the optimal

threshold for NPI-PW-L(G0, G1) and NPI-PW-U(G0, G1) is k′
a = 1, while for

NPI-PW-L(G1, G2) and NPI-PW-U(G1, G2) is k′
b = 3 with α=β=γ. However, the

optimal thresholds change when α, β and γ are set at different values. For instance,

for α = 0.7, β = 0.3, γ = 0.5, the optimal thresholds for a decision are different

than when α, β and γ are set to be equal, as it puts more emphasis on correctly
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ka NPI-PW-L(G0, G1) NPI-PW-U(G0, G1) kb NPI-PW-L(G1, G2) NPI-PW-U(G1, G2)

α=β=γ =0.2

1 0.9255 0.9453 1 0.7618 0.7787

2 0.9219 0.9421 2 0.8381 0.8509

3 0.5698 0.5946 3 0.9985 0.9989

4 0 0 4 0 0

α=β=γ =0.6

1 0.2389 0.2918 1 0.0770 0.0861

2 0.2077 0.2554 2 0.1284 0.1409

3 0.0222 0.0263 3 0.7640 0.7902

4 0 0 4 0 0

α=β=γ =0.8

1 0.0083 0.0125 1 0.0023 0.0028

2 0.0056 0.0085 2 0.0052 0.0063

3 0.0003 0.0004 3 0.1387 0.1594

4 0 0 4 0 0

α = 0.7, β = 0.3, γ = 0.5

1 0.1310 0.1692 1 0.4820 0.5051

2 0.1284 0.1662 2 0.5944 0.6159

3 0.2493 0.2812 3 0.9538 0.9613

4 0 0 4 0 0

Table 5.6: Optimal thresholds and the NPI lower and upper probabilities for the
NPI-PW (G0, G1) and NPI-PW (G1, G2) with m = 8 and different scenarios of α, β
and γ

identifying future individuals from G0 than those from G1 and G2. In this case, the

optimal threshold k′
a = k′

b, this indicates that the group G1 has no corresponding

category (squeezing G1), as the probability of correctly assigning individuals to that

group would be zero. This aligns with the limitations and poor identification of the

middle group discussed in Section 5.4.
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It appears that the NPI-PW can perform well with small values of the target

proportions, α = β = γ = 0.2, since their NPI lower and upper probabilities are

large, as shown in Table 5.4, and the optimal thresholds for both cases, m = 5, 8,

are similar. For example, P (W 1
ka

≥ βm1) = 0.9957 and P (W 1
kb

≥ βm1) = 0.8419

reflect this. However, when the target proportions are set to be large, both the NPI

lower and upper probabilities become small, as the required criteria become more

difficult to meet than for the small target proportions scenario. For instance, with,

α=β=γ =0.8, the NPI lower probabilities decrease, such as P (W 1
kb

≥ βm1) = 0.0400.

This may result in imbalanced classification rates, particularly affecting the middle

group, which is squeezed by the NPI lower probabilities for larger target proportions,

as discussed in Section 5.4.

The NPI-3G method

Table 5.7 presents the NPI lower and upper probabilities,
[
P , P

]
, for correct classifi-

cation of the events W 0
ka

≥ αm0, W 1
(ka,kb)

≥ βm1, and W 2
kb

≥ γm2 for each group with

m = 5. The joint events W 0
ka

≥ αm0, W 1
(ka,kb)

≥ βm1, and W 2
kb

≥ γm2 are derived

from the product of these NPI lower and upper probabilities for the individual events,

as presented in Table 5.8. As before, two scenarios of the target proportions have

been considered, one with α=β=γ with values 0.2, 0.6, and 0.8, and the other with

α = 0.7, β = 0.3 γ = 0.5.

Table 5.8 shows the optimal thresholds k′
a and k′

b obtained for m = 5, 8, along

with the NPI-3G-L and NPI-3G-U. Based on the comparison of Table 5.8 to Tables

5.5 and 5.6, both NPI-based methods, NPI-3G and NPI-PW, provide the same

optimal thresholds for α = β = γ scenarios, regardless of the values of m. However,

Table 5.8 shows that the NPI-3G method provides different optimal thresholds than

the NPI-PW method for α = 0.7, β = 0.3 and γ = 0.5.
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(ka, kb)
[
P , P

](
W 0

ka
≥ αm0

) [
P , P

](
W 1

(ka,kb)
≥ βm1

) [
P , P

](
W 2

kb
≥ γm2

)
α = β = 0.2

(1,2) [0.9460, 0.9589] [0.1735, 0.2507] [0.9999, 1]

(1,3) [0.9460, 0.9589] [0.9398, 0.9491] [0.9982, 0.9986]

(1,4) [0.9460, 0.9589] [0.9957, 0.9963] [0, 0]

(2,3) [0.9460, 0.9589] [0.9108, 0.9235] [0.9982, 0.9986]

(2,4) [0.9460, 0.9589] [0.9918, 0.9927] [0, 0]

(3,4) [0.9998, 0.9999] [0.7192, 0.7357] [0, 0]

α = β = γ = 0.6

(1,2) [0.4448, 0.5000] [0.0009, 0.0025] [0.9952, 0.9969]

(1,3) [0.4448, 0.5000] [0.3871, 0.4215] [0.8738, 0.8871]

(1,4) [0.4448, 0.5000] [0.7994, 0.8127] [0, 0]

(2,3) [0.4448, 0.5000] [0.3045, 0.3369] [0.8738, 0.8871]

(2,4) [0.4448, 0.5000] [0.7268, 0.7420] [0, 0]

(3,4) [0.9757, 0.9873] [0.0869, 0.0962] [0, 0]

α = β = γ = 0.8

(1,2) [0.1688, 0.2056] [0, 0.0001] [0.9502, 0.9636]

(1,3) [0.1688, 0.2056] [0.1251, 0.1442] [0.6018, 0.6267]

(1,4) [0.1688, 0.2056] [0.4826, 0.5015] [0, 0]

(2,3) [0.1688, 0.2056] [0.0848, 0.0997] [0.6018, 0.6267]

(2,4) [0.1688, 0.2056] [0.3922, 0.4097] [0, 0]

(3,4) [0.8680, 0.9157] [0.0130, 0.0150] [0, 0]

α = 0.7, β = 0.3, γ = 0.5

(1,2) [0.1688, 0.2056] [0.0161, 0.0324] [0.9952, 0.9969]

(1,3) [0.1688, 0.2056] [0.7202, 0.7487] [0.8738, 0.8871]

(1,4) [0.1688, 0.2056] [0.9556, 0.9600] [0, 0]

(2,3) [0.1607, 0.2056] [0.6418, 0.6743] [0.8738, 0.8871]

(2,4) [0.1688, 0.2056] [0.9285, 0.9346] [0, 0]

(3,4) [0.8680, 0.9157] [0.3229, 0.3425] [0, 0]

Table 5.7: NPI lower and upper probabilities of correct classification with m = 5 and
different scenarios of α, β and γ.
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Target proportions k′
a k′

b NPI-3G-L NPI-3G-U

m = 5

α=β=γ =0.2 1 3 0.8875 0.9088

α=β=γ =0.6 1 3 0.1504 0.1870

α=β=γ =0.8 1 3 0.0127 0.0186

α = 0.7, β = 0.3, γ = 0.5 1 3 0.1062 0.1366

m = 8

α=β=γ =0.2 1 3 0.8537 0.8853

α=β=γ =0.6 1 3 0.0666 0.0927

α=β=γ =0.8 1 3 0.0002 0.0005

α = 0.7, β = 0.3, γ = 0.5 1 3 0.0961 0.1301

Table 5.8: Optimal thresholds for the NPI-3G with the different scenarios of α, β
and γ for m = 5, 8

Target proportions k′
a k′

b NPI-3G-Y-L NPI-3G-Y-U

m = 5

α=β=γ =0.2 1 3 2.8840 2.9066

α=β=γ =0.6 1 3 1.7057 1.8086

α=β=γ =0.8 1 2 1.1190 1.1693

α = 0.7, β = 0.3, γ = 0.5 1 3 1.7628 1.8414

m = 8

α=β=γ =0.2 1 3 2.8479 2.8818

α=β=γ =0.6 1 3 1.4171 1.5313

α=β=γ =0.8 1 2 0.9211 0.9653

α = 0.7, β = 0.3, γ = 0.5 1 3 1.8419 1.9200

Table 5.9: Optimal thresholds for the NPI-3G-Y with the different scenarios of α, β
and γ for m = 5, 8

The NPI-3G-Y method

Table 5.9 shows the optimal thresholds k′
a and k′

b obtained from the NPI-3G-Y

method for m = 5, 8. Two scenarios of the target proportions have been considered,

α=β=γ with values 0.2, 0.6, and 0.8, and with α = 0.7, β = 0.3 γ = 0.5. We

notice that, as the NPI-3G-Y method is based on summing the individual NPI lower

and upper probabilities of correct classification rather than taking the product, it

squeezes one of the groups in order to maximise the NPI-3G-Y-L and NPI-3G-Y-U.
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For example, for α=β=γ =0.8, using Table 5.7, we have P (W 1
(ka,kb)

≥ βm1) = 0,

and the optimal thresholds are (k′
a, k

′
b) = (1, 2) from Table 5.9. In this case, the

NPI-3G-Y method squeezes the middle group G1 in order to maximise the sum of

the probabilities of correct classification.

In this example, we notice that choosing large values for α, β and γ, as well as

large m when using the NPI-3G-Y method, may lead to squeezing the middle group.

Developing a method to guide the selection of these numbers in practical situations

might be of interest, but we leave this as a topic for future research. In the following

section, simulation studies are conducted to assess the predictive performance of the

proposed NPI methods in comparison with the classical methods.

5.8 Predictive performance evaluation

In this section, simulation studies are presented for evaluating the performances of the

proposed NPI methods compared with classical methods for three-group classification

which is an extension of the simulation studies for two-group classification presented

in Section 4.6. The third group, group G2, follows the same simulation procedure

used in Section 4.6 for groups G0 and G1.

Two scenarios are considered in which the data are simulated from Beta distribu-

tions. The two considered scenarios are constructed to represent different levels of

overlap between the three groups, where the groups in Scenario 1 overlap more than

in Scenario 2. The two scenarios are defined as follows. For the first scenario, with

considerable overlap, the Beta distributions B(0.7, 2.1), B(3.5, 3.5) and B(2.1, 0.8)

are used for groups G0, G1, and G2, respectively. For the second scenario, with

less overlap, the Beta distributions B(1.2, 4.5), B(4.5, 4.5) and B(4.5, 1.4) are used

for groups G0, G1, and G2, respectively. As in Section 4.6, the degree of overlap is

quantified by integrating the minimum of the probability density functions (PDFs)

over the interval [0, 1], with the calculation extended to three groups. The overlap

is determined using
∫ 1

0
min(fG0(x), fG1(x), fG2(x)) dx. This calculation was imple-

mented in R, following the same procedure outlined in Section 4.6. The overlap was

found to be 0.335 for Scenario 1 and 0.137 for Scenario 2.
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Similar to Section 4.6, 5 categories (K = 5) are considered for each scenario. For

categorizing the simulated values from Beta distributions into K = 5 categories, the

cut-points 0.2, 0.4, 0.6 and 0.8 are used. This is similar to the approach presented

by Coolen-Maturi [38], where ordinal outcomes were categorized based on specific

cut-points. The Beta distributions are used to simulate n0, n1 and n2 observations

from groups G0, G1 and G2, respectively. Using these simulated data observations,

the optimal thresholds are determined based on the methods presented in this chapter

for specific values of the target proportions α, β and γ.

The next step is to simulate the m0, m1 and m2 future observations from the

same Beta distributions as the n0, n1 and n2 simulated data observations in order

to evaluate how the methods perform. Then, the simulated future observations are

classified using the optimal thresholds, so that the number of correctly classified future

observations per group can be obtained. That is, for the three-group classification, the

number of future observations out of m0, m1 and m2 with the simulated test results

in {C1, . . . , Cka}, {Cka+1, . . . , Ckb} and {Ckb+1, . . . , CK}, respectively, are obtained.

So, the m0, m1 and m2 simulated future observations are compared with the optimal

thresholds to obtain the number of correctly classified observations per group. The

predictive performances of all methods have been studied in terms of the number of

correctly classified future observations that are achieved using the desired criteria,

that is when the number of correctly classified future observations from group G0,

G1 and G2 exceed αm0, βm1 and γm2, respectively. Using the notation introduced

by Alabdulhadi [4] and Coolen-Maturi et al. [40], denote by “+” when the desired

criterion is achieved, and “−” otherwise. In the simulation, it is assumed that

n0 = n1 = n2 = n and m0 = m1 = m2 = m. For unbalanced cases for the data and

future observations, further evaluation will be presented later in this section.

Simulations have been run for n = 100 and m = 5, 10, for each scenario and for

each distribution, and we have selected different α, β and γ values. It should be noted

that the NPI-PW, k′
a > k′

b may appear, since the threshold values are determined

separately; in this case, k′
b is set to the same value as k′

a, so no classifications into G1

occur. For each scenario and each method, the results in this section are based on

10,000 simulations.
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Tables 5.10 and 5.11 display the results of the predictive performance for m = 5

for Scenario 1 and Scenario 2, respectively, while Tables 5.12 and 5.13 present the

results for m = 10. We have studied the performance of the proposed NPI-based

methods, namely, the NPI-PW, NPI-3G and NPI-3G-Y, along with the EYI-3G and

EMV-3G methods. The performances have been studied in two scenarios of the target

proportions, with α=β=γ =0.2, 0.6, and 0.8, and with α = β = 0.4 and γ = 0.7.

One might prefer to set equal values of α, β, and γ to give the same importance

of the correct classification of future individuals to all three groups. However, in

situations where the treatment has severe side effects for severe cases individuals

(G2), one might prefer to give the same importance of the correct classification of

future individuals to groups G0 and G1, and give a higher importance of the correct

classification of future individuals to G2, so γ can be set to be large. Any weighting

regarding the importance of avoiding misdiagnosis should be reflected in the choice

of the target proportions in the methods.

As an example, consider Table 5.10, in which “+ + +” indicates that the desired

criteria have been achieved for all the three groups , whereas “− − −” indicates

that the desired criteria have not been achieved for all groups. The desired criteria,

for example, for the NPI-PW method with α = β = γ= 0.2, have been achieved

in 9167 simulations out of 10,000 simulations. This means that at least one future

observation is correctly classified from each of the three groups in the simulation. On

the other hand, for α = β = γ = 0.8, out of the 10,000 simulations, there are 1330

cases in which all groups fail to meet the desired criteria. The similar performance

for the NPI-PW-L and NPI-PW-U can be related to the fact that the proposed

method returns the same optimal thresholds, although this is not always the case.

Similar behaviour to the two-groups scenario, as presented in Section 4.6, is

observed in Tables 5.10–5.13. The NPI-3G method performs better than other

methods generally, however for small values of the target proportions, α=β=γ =0.2,

all methods are equally effective since the desired criteria are easily met. It should

be noted that for α=β=γ =0.2, the predictive performance of all methods is better

for m = 10 than for m = 5.
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G0 G1 G2 NPI-PW-L NPI-PW-U NPI-3G-L NPI-3G-U NPI-3G-Y-L NPI-3G-Y-U EYI-3G EMV-3G

α=β=γ =0.2

+ - - 3 3 1 1 1 1 3 3

- + - 0 0 0 0 0 0 4 1

- - + 1 1 2 2 2 2 1 2

+ + - 7 7 91 93 91 93 196 133

+ - + 810 810 72 65 72 65 174 106

- + + 12 12 210 210 210 210 177 174

- - - 0 0 0 0 0 0 0 0

+ + + 9167 9167 9624 9629 9624 9629 9445 9581

α=β=γ =0.6

+ - - 816 817 457 451 552 543 434 538

- + - 33 33 404 399 398 389 925 471

- - + 560 559 638 644 574 585 422 563

+ + - 380 378 1490 1474 1631 1618 1877 1659

+ - + 5466 5474 1188 1221 1390 1384 1509 1333

- + + 292 286 2284 2276 2006 2031 1821 2023

- - - 70 70 132 130 121 122 83 120

+ + + 2383 2383 3407 3405 3328 3328 2929 3293

α=β=γ =0.8

+ - - 2384 2394 1427 1427 1619 1662 1289 1489

- + - 201 187 1285 1269 2475 2303 2476 1402

- - + 1840 1843 1852 1865 1107 1168 1316 1747

+ + - 253 250 1029 1015 1064 1035 1139 1056

+ - + 3392 3408 817 845 1730 1708 995 879

- + + 263 250 1367 1354 594 633 1068 1258

- - - 1330 1330 1736 1736 1093 1146 1313 1696

+ + + 337 338 487 489 318 345 404 473

α = β = 0.4, γ = 0.7

+ - - 1343 1338 221 211 219 230 393 321

- + - 44 44 566 576 575 570 601 437

- - + 46 46 76 70 58 62 22 33

+ + - 2372 2353 3160 3204 3262 3211 5206 4865

+ - + 2714 2770 470 407 370 417 456 315

- + + 45 43 846 855 856 843 421 563

- - - 19 19 32 31 30 31 17 20

+ + + 3417 3387 4629 4646 4630 4636 2884 3446

Table 5.10: Prediction performance results for Scenario 1 for m = 5
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G0 G1 G2 NPI-PW-L NPI-PW-U NPI-3G-L NPI-3G-U NPI-3G-Y-L NPI-3G-Y-U EYI-3G EMV-3G

α=β=γ =0.2

+ - - 0 0 0 0 0 0 0 0

- + - 0 0 0 0 0 0 0 0

- - + 1 1 0 0 0 0 1 0

+ + - 1 1 61 64 59 65 24 55

+ - + 539 539 52 42 57 42 413 219

- + + 2 2 147 146 147 146 41 71

- - - 0 0 0 0 0 0 0 0

+ + + 9457 9457 9740 9748 9737 9747 9521 9655

α=β=γ =0.6

+ - - 223 223 198 200 219 214 228 235

- + - 3 3 90 94 75 77 36 60

- - + 116 116 463 463 415 420 198 341

+ + - 148 148 815 856 808 791 392 739

+ - + 5689 5691 1495 1412 2131 2102 4558 2825

- + + 71 71 2311 2337 1878 1923 639 1465

- - - 7 7 28 28 27 26 13 26

+ + + 3743 3741 4600 4610 4447 4447 3936 4309

α=β=γ =0.8

+ - - 1447 1447 1049 1034 1457 1447 1339 1212

- + - 49 48 535 525 54 62 204 394

- - + 937 936 1953 1940 937 948 1217 1674

+ + - 208 207 874 841 244 259 419 765

+ - + 6059 6068 1994 2110 5982 5897 4866 2956

- + + 192 186 2011 1982 209 256 714 1527

- - - 233 232 563 551 244 253 336 496

+ + + 875 876 1021 1017 873 878 905 976

α = β = 0.4, γ = 0.7

+ - - 511 511 88 84 105 94 430 277

- + - 4 4 196 200 187 192 46 102

- - + 5 5 31 31 32 32 10 21

+ + - 1404 1404 1631 1630 1623 1629 1820 2482

+ - + 2131 2131 355 390 425 386 1635 923

- + + 15 15 865 872 836 857 189 418

- - - 1 1 8 8 8 8 2 6

+ + + 5929 5929 6817 6819 6784 6802 5868 5771

Table 5.11: Prediction performance results for Scenario 2 for m = 5

For α=β=γ =0.6, as can be seen in Tables 5.10–5.13, the predictive performance

of all methods is better for m = 5 than for m = 10. The NPI-3G method can

achieve the desired criteria better than the other methods. As shown in these

tables, the EMV-3G method is generally the closest to the NPI-3G method in
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terms of performance, yet the NPI method is better considering its predictive nature.

A considerable squeeze for the middle group G1 is observed with the NPI-PW method.

For example, for NPI-PW-L in Table 5.10, the desired criterion is achieved for groups

G0 and G2 in 5466 out of 10,000, indicating a squeeze on the middle group. This

is due to the imbalanced classification rates between the three groups discussed in

Section 5.3, that is, the classification rate for the G0 and G2 groups is high, but the

classification rate for the intermediate group is poor.

In the case of large α, β and γ value (α = β = γ = 0.8), all methods have a

better performance for m = 5 than for m = 10, similar to α= β = γ =0.6. This

shows that the number of future observations has an impact on the performance

of the methods. As can be seen in Tables 5.10–5.13, there is difficulty in meeting

the criteria for all methods with α=β=γ =0.8, especially in Scenario 1 where there

is more overlap between the groups. A substantial squeeze for the middle group

G1 is observed for the NPI-3G-Y method. This due to the fact that the NPI-3G-Y

method is based on summing up the probabilities of correct classification rather

than the product, which may not be ideal when attempting to achieve a higher

proportion of accurately classified individuals from the three groups simultaneously.

In some occasions, the NPI-3G-Y tends to squeeze groups G0 and G2 and achieve the

desired criterion for just group G1. For example, in Table 5.12, for NPI-3G-Y-L, the

desired criterion has been achieved for G1 in 5092 out of 10,000 simulations, that is

at least 8 future observations have been correctly classified. In both the NPI-3G and

EMV-3G methods, classification appears to be balanced between the three groups.

In some occasions, the NPI-3G tends to squeeze groups G0 and G1 and achieve the

desired criteria for just group G2, and EMV-3G tends to squeeze the middle group

G1. A substantial squeeze for the middle group G1 is observed with the NPI-PW

and EYI-3G methods.

For α = β = 0.4 and γ = 0.7, all methods meet the desired criteria more than

those for α=β=γ =0.6. In Tables 5.10 and 5.12 (Scenario 1), the EYI-3G and EMV-

3G methods tend to squeeze the group G2 substantially with α = β = 0.4 and γ = 0.7.

Based on all the settings considered, the NPI-3G method clearly outperforms all the

other methods.
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G0 G1 G2 NPI-PW-L NPI-PW-U NPI-3G-L NPI-3G-U NPI-3G-Y-L NPI-3G-Y-U EYI-3G EMV-3G

α=β=γ =0.2

+ - - 0 0 0 0 0 0 0 0

- + - 0 0 0 0 0 0 0 0

- - + 0 0 0 0 0 0 1 0

+ + - 0 0 33 34 31 34 87 60

+ - + 473 473 15 12 20 12 88 47

- + + 0 0 68 67 68 67 45 49

- - - 0 0 0 0 0 0 0 0

+ + + 9527 9527 9884 9887 9881 9887 9779 9844

α=β=γ =0.6

+ - - 844 844 490 494 651 617 503 624

- + - 12 12 447 442 390 397 1317 525

- - + 483 484 920 922 787 801 535 800

+ + - 177 177 1591 1553 1755 1777 1983 1840

+ - + 6977 6970 950 987 1573 1383 1664 1239

- + + 123 128 2769 2775 2245 2356 1889 2355

- - - 64 64 126 126 116 121 74 113

+ + + 1320 1321 2707 2701 2483 2548 2035 2504

α=β=γ =0.8

+ - - 2955 2959 1484 1468 1642 1756 1429 1606

- + - 89 86 1251 1274 5092 4369 3048 1476

- - + 1973 1969 2098 2085 757 883 1432 1903

+ + - 52 51 524 529 564 577 528 545

+ - + 2410 2425 297 276 764 934 532 355

- + + 58 51 746 756 56 87 504 682

- - - 2429 2424 3510 3520 1109 1373 2455 3345

+ + + 34 35 90 92 16 21 72 88

α = β = 0.4, γ = 0.7

+ - - 1092 1091 85 82 101 87 260 200

- + - 6 6 378 378 371 376 502 285

- - + 8 8 27 27 27 27 12 17

+ + - 1712 1710 2377 2380 2370 2379 4918 4428

+ - + 2868 2875 247 237 299 247 532 300

- + + 15 15 956 958 940 956 386 577

- - - 4 4 10 10 9 10 4 5

+ + + 4295 4291 5920 5928 5883 5918 3386 4188

Table 5.12: Prediction performance results for Scenario 1 for m = 10
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G0 G1 G2 NPI-PW-L NPI-PW-U NPI-3G-L NPI-3G-U NPI-3G-Y-L NPI-3G-Y-U EYI-3G EMV-3G

α=β=γ =0.2

+ - - 0 0 0 0 0 0 0 0

- + - 0 0 0 0 0 0 0 0

- - + 0 0 0 0 0 0 0 0

+ + - 0 0 15 16 15 16 8 22

+ - + 302 302 6 3 12 3 220 120

- + + 0 0 30 29 30 29 5 15

- - - 0 0 0 0 0 0 0 0

+ + + 9698 9698 9949 9952 9943 9952 9767 9843

α=β=γ =0.6

+ - - 119 119 163 164 196 190 153 215

- + - 3 3 62 64 52 55 48 42

- - + 42 42 586 588 504 520 171 363

+ + - 50 50 918 950 943 942 353 850

+ - + 7367 7367 1296 1213 2104 1935 5738 3410

- + + 40 40 3047 3071 2502 2617 756 1767

- - - 4 4 10 11 8 8 5 4

+ + + 2375 2375 3918 3939 3691 3733 2776 3349

α=β=γ =0.8

+ - - 1848 1850 1267 1266 1920 1905 1685 1551

- + - 15 14 593 581 16 18 240 415

- - + 1050 1046 3118 3091 997 1005 1587 2443

+ + - 69 69 572 538 128 118 224 514

+ - + 6469 6476 1443 1561 6422 6428 5031 2857

- + + 66 64 1671 1644 37 46 506 1154

- - - 324 322 1046 1022 319 321 528 812

+ + + 159 159 290 297 161 159 199 254

α = β = 0.4, γ = 0.7

+ - - 210 210 23 21 28 23 175 109

- + - 0 0 60 60 59 60 22 31

- - + 1 1 7 8 7 8 3 4

+ + - 495 495 620 622 616 620 975 1688

+ - + 2585 2585 235 206 300 216 1969 1063

- + + 3 3 800 804 770 803 168 405

- - - 0 0 2 2 2 2 1 2

+ + + 6706 6706 8253 8277 8218 8268 6687 6698

Table 5.13: Prediction performance results for Scenario 2 for m = 10

The number of correctly classified future observations in all simulations from

groups G0, G1 and G2 has been summarized by using bar plots. As shown in

Figures 5.1–5.4, these numbers have been summarized from all methods together for

each scenario. The bar plots from all methods provide a comprehensive overview

of the performances of all methods. Let the number of correctly classified future
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observations from group G0 with regard to the event of interest, which include α, be

denoted by S0
f0 , where f 0 ∈ {0, 1, . . . ,m0}. The number of correctly classified future

observations from group G1 with regard to the event of interest, which include β,

is represented by S1
f1 , where f 1 ∈ {0, 1, . . . ,m1}. The number of correctly classified

future observations from group G2 with regard to the event of interest, which include

γ, is represented by S2
f2 , where f 2 ∈ {0, 1, . . . ,m2}. Throughout this section we

assume that n0=n1=n2=n and m0=m1=m2=m, therefore, f 0 = f 1 = f 2 = f and

f ∈ {0, 1, . . . ,m}. Figures 5.1–5.4 show the distributions of the numbers of future

observations, out of a given number of future individuals in all 10,000 simulations,

that are correctly classified for all methods together with the two scenarios of overlap

for each group.

The number of future individuals considered in these figures is m = 5. The

predictive performances for the first scenario are given in Figures 5.1 and 5.3 for

α = β = γ = 0.6 and 0.8, respectively, and in Figures 5.2 and 5.4 for the second

scenario. With less overlap between groups, all methods clearly perform much better

in Scenario 2 compared to Scenario 1. From Figures 5.1 and 5.2, for α=β=γ =0.6,

the NPI-PW method clearly squeezes the G1 group, leading to correct classification

of more future individuals from G0 and G2. This is because the optimal thresholds ka

and kb are equal or next to each other for most simulation runs due to the imbalanced

classification, which indicates that there will be no or less future observations classified

as belonging to G1. The EMV-3G performs better than EYI-3G, which should not be

surprising, since it has already mentioned that summing up probabilities of correct

classification rather than the product may not be optimal when attempting to achieve

a higher proportion of correctly classified individuals, which results in a squeeze

on the middle group. Figure 5.3 provides a clear indication that, when the target

proportions are set at large values (α=β=γ =0.8), the methods all struggle to meet

the required criteria with the first scenario where the groups have more overlap. The

behaviour of squeezing the middle group is now more obvious than for α=β=γ =0.6.

With large values of α, β and γ it appears that the NPI-3G performs better than

NPI-3G-Y method. Based on all the settings considered, the NPI-3G method clearly

outperforms all the other methods.



5.8. Predictive performance evaluation 132

0

1000

2000

3000

4000

5000

0 1 2 3 4 5
f

Sf
0

Method NPI−PW−L
NPI−PW−U

NPI−3G−L
NPI−3G−U

NPI−3G−Y−L
NPI−3G−Y−U

EYI−3G
EMV−3G

(a) Group G0

0

1000

2000

3000

4000

5000

0 1 2 3 4 5
f

Sf
1

Method NPI−PW−L
NPI−PW−U

NPI−3G−L
NPI−3G−U

NPI−3G−Y−L
NPI−3G−Y−U

EYI−3G
EMV−3G

(b) Group G1

0

1000

2000

3000

4000

5000

0 1 2 3 4 5
f

Sf
2

Method NPI−PW−L
NPI−PW−U

NPI−3G−L
NPI−3G−U

NPI−3G−Y−L
NPI−3G−Y−U

EYI−3G
EMV−3G

(c) Group G2

Figure 5.1: Prediction performance results for Scenario 1 with m = 5 and
α=β=γ =0.6
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Figure 5.2: Prediction performance results for Scenario 2 with m = 5 and α=β=
γ =0.6
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Figure 5.3: Prediction performance results for Scenario 1 with m = 5 and
α=β=γ =0.8
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Figure 5.4: Prediction performance results for Scenario 2 with m = 5 and
α=β=γ =0.8
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Figures 5.5–5.8 show the distributions of the numbers of future observations, out

of m in all 10,000 simulations, that are correctly classified for all methods together

for the two scenarios of overlap for each group. The number of future individuals

considered in these figures is m = 10. The predictive performances for the first

scenario are given in Figures 5.5 and 5.7 for α= β= γ =0.6 and 0.8, respectively,

and in Figures 5.6 and 5.8 for the second scenario. The performance for all methods

becomes better for Scenario 2 since the groups have less overlap. It is evident that

all methods begin to perform poorly as α, β and γ are set at 0.8, and the number of

future observations increases to 10, making the criteria more difficult to achieve.

For α = β = γ = 0.6, a similar behaviour as with m = 5 has been observed.

However, for α = β = γ = 0.8, as shown in Figure 5.7, the performance of the

NPI-3G-Y method becomes poor for G2, the method classifies more future individuals

correctly from group G1. The figure shows that the NPI-2G-Y squeezes group

G2 more than 5000 out of 10,000 times. This indicates that for most simulation

runs, the second optimal threshold, k′
b is equal to K (k′

b = 5). In this case, the

group G2 has no corresponding categories, as the probability of correctly assigning

individual to that group would be zero, as explained in Section 5.5. This supports

the conclusions we previously addressed, indicating that summing the probabilities

of correct classification may not be ideal when considering prediction performance,

and that using their product could be a more suitable approach.

In cases where α, β, and γ are large, the NPI-3G method performs better than

other methods. In the case that the middle group has poor predictive performance

with the NPI-3G-Y, the NPI-3G method can overcome this issue and provide a

balanced classification for the three groups. The overall results show that the optimal

thresholds for a given diagnostic test are dependent on the values of α, β and γ, as

well as the number of future observations considered. Thus, when selecting thresholds

for a diagnostic test, these values need to be taken into account, since they affect

the predictive performance.
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Figure 5.5: Prediction performance results for Scenario 1 with m = 10 and
α=β=γ =0.6



5.8. Predictive performance evaluation 138

0

1000

2000

3000

4000

5000

0 1 2 3 4 5 6 7 8 9 10
f

Sf
0

Method NPI−PW−L
NPI−PW−U

NPI−3G−L
NPI−3G−U

NPI−3G−Y−L
NPI−3G−Y−U

EYI−3G
EMV−3G

(a) Group G0

0

1000

2000

3000

4000

5000

0 1 2 3 4 5 6 7 8 9 10
f

Sf
1

Method NPI−PW−L
NPI−PW−U

NPI−3G−L
NPI−3G−U

NPI−3G−Y−L
NPI−3G−Y−U

EYI−3G
EMV−3G

(b) Group G1

0

1000

2000

3000

4000

5000

0 1 2 3 4 5 6 7 8 9 10
f

Sf
2

Method NPI−PW−L
NPI−PW−U

NPI−3G−L
NPI−3G−U

NPI−3G−Y−L
NPI−3G−Y−U

EYI−3G
EMV−3G

(c) Group G2

Figure 5.6: Prediction performance results for Scenario 2 with m = 10 and α=β=
γ =0.6
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Figure 5.7: Prediction performance results for Scenario 1 with m = 10 and
α=β=γ =0.8
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Figure 5.8: Prediction performance results for Scenario 2 with m = 10 and α=β=
γ =0.8
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The NPI-3G-Y method shows poor performance with α = β = γ = 0.8, highlight-

ing the need to explore whether the number of categories or the sample size influences

its performance. Considering the results presented in this section, it appears that

some methods face the squeezing problem of the intermediate group. In order to

further investigate whether the methods might perform better in terms of reducing

such squeezing when different scenarios are considered, a further investigation is

presented next, focusing on the case where α=β=γ =0.8.

It may be of interest to investigate an unbalanced scenario for n, as practical

considerations may result in considerable differences in group sizes [39]. For instance,

individuals in group G2 might experience severe problems, but their total number in

the study could be small. This raises the question about how the performance of the

methods presented in this chapter might be affected by the sample size. Addition-

ally, an investigation is aimed at determining whether the predictive performance

is influenced by the number of future observations or the number of categories

considered.

Table 5.14 presents different cases for Scenario 1 and Scenario 2, where both

the data and future observations are simulated from the same underlying Beta

distributions for the two scenarios. As shown in Table 5.12, when comparing the

results with those in Table 5.14 for α = β = γ = 0.8, close performances are observed

for all methods, where all methods struggle to meet the required criteria, especially

in Scenario 1 where the groups have more overlap. To investigate the effect of the

number of categories, all cases presented in Table 5.14 considered K = 8.

For Scenario 1, the first case considered is when K = 8 with n = 100 and m = 10.

The NPI-PW method in Table 5.12 tends to squeeze groups G1 and G2 and achieve

the desired criterion only for group G0, while in Table 5.14, the method mostly fails

the desired criterion for each group. This is because, in most simulation runs with

K = 5, the optimal thresholds are next to each other, such as k′
a = 2 and k′

b = 3, or

k′
a = 3 and k′

b = 4, whereas with K = 8, they are not. As explained in Section 5.2,

if, for example, the thresholds are k′
a = 3 and k′

b = 4, this implies that test results

in categories {C1, . . . , C3} are interpreted as indicating the least severe condition,

so individual belongs to G0, test results in category {C4} correspond to a moderate
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condition (G1), and results in {C5} indicate the most severe condition (G2). Thus, it

is clear that the NPI-PW method with K = 5 squeezes groups G1 and G2 and only

meets the desired criterion for group G0 compared to the case with K = 8 as there

are more categories to correctly classify future individuals into G0. The NPI-3G-Y

method in Table 5.12 tends to squeeze groups G0 and G2 and achieve the desired

criterion only for group G1, while in Table 5.14, a squeeze for the middle group G1

is observed. This is due to the fact that, in most simulation runs with K = 5, the

optimal thresholds are k′
a = 1 and k′

b = 3, or k′
a = 2 and k′

b = 5 which leads to

achieve the desired criterion only for group G1 and squeeze groups G0 and G2, while

with K = 8 the optimal thresholds are next to each other, such as k′
a = 3 and k′

b = 4,

or k′
a = 4 and k′

b = 5 which leads to squeeze the middle group G1.

The unbalanced case of the data and future observations is considered next for

Scenario 1 where n0 = 100, n1 = 60, n2 = 30 and m0 = 15, m1 = 10, m2 = 5.

Comparing this with the case where n = 100 and m = 10, similar conclusions for the

performances have been observed for the NPI-PW, NPI-3G and EMV-3G methods

with a very slight increase in achieving the desired criterion for each group as there

are a slightly more categories with K = 8 compared to K = 5. The NPI-3G-Y

method with K = 5, n = 100 and m = 10 tends to squeeze groups G0 and G2 and

achieve the desired criterion for just group G1, while with the unbalanced case, the

method tends to squeeze groups G1 and G2 and achieve the desired criterion for

just group G0. This is because, in most simulation runs with K = 5 the optimal

thresholds are k′
a = 1 and k′

b = 3, or k′
a = 2 and k′

b = 5 which leads to achieve the

desired criterion only for group G1, while with the unbalanced case and K = 8, in

most simulation runs the optimal thresholds are k′
a = 4 and k′

b = 5, or k′
a = 5 and

k′
b = 6 which leads to have more categories to correctly classify future individuals

to G0. This highlights the impact of the considered number of the data and future

observations on achieving the required criterion.

Similarly, Scenario 2 considers the two cases presented for Scenario 1. When

comparing the case where n = 100 and m = 10 in Table 5.13 for α=β=γ =0.8 to

Table 5.14, similar performances have been observed for all methods. Interestingly,

the squeezing cases for the middle group for the NPI-PW-L and NPI-PW-U methods
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G0 G1 G2 NPI-PW-L NPI-PW-U NPI-3G-L NPI-3G-U NPI-3G-Y-L NPI-3G-Y-U EYI-3G EMV-3G

Scenario 1 with n = 100, m = 10, K = 8

+ - - 2580 2602 1430 1481 2258 2277 1155 1390

- + - 399 376 1806 1679 1484 1279 3141 2224

- - + 1789 1792 1443 1492 2152 2137 1002 1271

+ + - 244 236 688 659 298 284 812 747

+ - + 1555 1564 413 435 2610 2689 383 393

- + + 190 185 607 601 31 49 601 593

- - - 3150 3152 3454 3499 1163 1277 2769 3229

+ + + 93 93 159 154 4 8 137 153

Scenario 1 with n0 = 100, n1 = 60, n2 = 30, and m0 = 15, m1 = 10, m2 = 5, K = 8

+ - - 1997 2008 1734 1823 3607 3027 845 932

- + - 708 678 1745 1605 911 1201 2518 2017

- - + 2081 2086 1296 1302 1150 1236 1948 2142

+ + - 435 431 761 772 82 116 378 388

+ - + 1433 1458 623 653 3126 2972 555 531

- + + 334 324 697 644 248 392 1161 1122

- - - 2812 2818 2893 2950 864 1033 2433 2695

+ + + 200 197 251 251 12 23 162 173

Scenario 2 with n = 100, m = 10, K = 8

+ - - 2101 2107 1468 1475 984 991 1733 1689

- + - 161 158 896 848 13 38 953 876

- - + 1350 1342 2089 2102 1439 1466 1578 1810

+ + - 300 295 912 887 14 31 774 887

+ - + 4643 4670 1478 1552 7398 7230 2637 2022

- + + 299 290 1325 1301 21 51 822 1034

- - - 649 645 1142 1139 111 152 891 1021

+ + + 497 493 690 696 20 41 612 661

Scenario 2 with n0 = 100, n1 = 60, n2 = 30, and m0 = 15, m1 = 10, m2 = 5, K = 8

+ - - 2135 2133 2300 2403 1692 1817 1390 1365

- + - 247 230 867 772 93 182 906 906

- - + 1184 1177 995 957 899 918 1837 1973

+ + - 788 781 1626 1651 247 466 715 819

+ - + 4048 4097 1629 1707 6701 5937 2630 2019

- + + 288 278 824 745 63 137 1114 1337

- - - 615 613 845 840 178 284 777 891

+ + + 695 691 914 925 127 259 631 690

Table 5.14: Predictive performance evaluation with K = 8 and α = β = γ = 0.8

decrease from 6469 cases to 4643 for NPI-PW-L, and from 6476 to 4670 cases for

the NPI-PW-U as there are more categories with the case K = 8. Similarly, the

squeezing cases for the middle group in the EYI-3G and EMV-3G methods decrease

from 5031 and 2857 cases to 2637 and 2022, respectively. A substantial squeeze for

the middle group G1 is observed again with the NPI-3G-Y method due to the fact
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that the optimal thresholds are next to each other. Finally, for the unbalanced case

in Scenario 2, similar overall performances to the case n = 100 and m = 10 have

been observed with a slight increase in achieving the desired criterion for each group.

These results demonstrate how the value of m, and the values of α, β, and γ

influence the performances of the methods. With large numbers of target proportions

and m = 10, the NPI-3G-Y method demonstrated squeezing behaviour for the middle

group. It might be of interest to study the optimal choices of these numbers in

practical situations using this method, as more attention should be paid to it due to

its potential to squeeze the middle group. This topic is left for future research.

5.9 Concluding remarks

In this chapter, the NPI-based methods presented in Chapter 4 are extended to

three-group classification problems. The proposed methods for selecting optimal

diagnostic thresholds for ordinal test outcomes are based on considering multiple

future individuals. For each NPI approach, the optimal thresholds were determined

by taking into account a given number of future observations and criteria according

to the target proportion of successful diagnoses in each group. Throughout this

chapter, both cases with equal numbers of future observations for each group and

another with different numbers of future observations for each group were considered.

The proposed methods were illustrated with an example based on data from the

literature, considering different scenarios of the target proportions α, β and γ, and

their performances were evaluated through simulations. The proposed methods were

compared with classical methods, including the EYI-3G and EMV-3G methods. The

results showed that, the middle group may have poor predictive performance in the

three-group scenario where the NPI-3G-Y method is used. It is possible to overcome

this problem by using the NPI-3G method, since the method tries to balance the

three groups. Additionally, the results showed that the optimal thresholds for a given

diagnostic test is dependent on the values of α, β and γ, as well as the value of m.

This line of work provides opportunities for future research. For example, ex-

tending the methods presented in this chapter to G > 3 groups, so that there will
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be G − 1 thresholds, k1 < k2 < . . . < kG−1 in {1, . . . , K}. For more than three

groups, Nakas et al. [74] introduced the Youden index method for G groups, which

maximises the probabilities of correctly classifying individuals into each group. As

this method involves optimizing multiple thresholds, the thresholds can end up very

close to each other, making squeezing more likely. However, the generalisation of the

NPI method may be more effective at reducing the impact of this squeezing problem.

Coolen-Maturi [39] introduced NPI with more than three ordered groups for a single

future observation and by considering the definitions and notation presented in the

paper, the NPI-3G method presented in this chapter can be generalised to more

than three ordered groups. In order to study this topic with more than three groups,

an optimization method needs to be developed first to efficiently determine the

optimal thresholds, rather than going through all possible combinations of thresholds.

This optimization is expected to enhance computational efficiency and speed up

the process of finding the optimal thresholds, especially when dealing with a large

number of groups.



Chapter 6

Conclusions

This thesis presented contributions to statistical methods for ordinal data using

the NPI method with multiple future observations. This chapter provides a brief

overview of the main results presented in this thesis and highlights potential future

research directions.

In Chapter 2, the NPI lower and upper probabilities for several events of interest

were derived. Initially, an event involving two future observations was considered,

one in a specific category and the other in the remaining categories. Next, the event

that both observations are in a specific category was considered. The methodology,

involving two future observations, was then generalised to m future observations.

The focus was then directed towards the event where at least a given number out

of m future observations are in a specific category, using a path counting method.

Finally, this was extended to include adjoining categories, forming a single interval

on the real-line. This path counting method can also be applied to derive NPI lower

and upper probabilities for other events.

In Chapter 3, applications of NPI to selection problems with ordinal data were

presented. NPI methods were introduced for selecting both a single category and

choosing a subset of categories based on multiple future observations. Selection events

of interest included selecting a specific category, achieving a specified criterion for the

event that at least a given number out of m future observations are in that category.

Another aim was to present the selection of a minimal-sized subset of adjoining

categories, achieving a specified criterion for the event that at least a certain number
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of future observations within that subset meet the criterion. We have seen that

the selection of a category or a subset of categories might change if the numbers of

future observations change. Additionally, comparison of two groups of ordinal data

using the sampling of orderings method was presented to estimate the NPI lower

and upper probabilities, as their exact calculation can be computationally infeasible

due to the large number of possible orderings of future observations. The aim was to

compare the number of future observations within categories from the first group to

the number within the same categories from the second group, with different ordering

scenarios of future observations. The results of the category selection and pairwise

comparison events vary depending on the number of future observations considered,

illustrating how this number impacts the NPI lower and upper probabilities.

In Chapter 4, NPI-based methods were presented for selecting the optimal

diagnostic test threshold for two-group classification, which were extended to a

scenario with three-group classification in Chapter 5. These methods considered m

future individuals in each group, along with criteria based on each group’s target

proportion of successful diagnoses. Results indicated that the optimal thresholds for

a diagnostic test depended on both the target success proportions and the value of m.

Decisions regarding the optimal selection of these values in real-world scenarios are

left for future investigation. Examples from the literature were used to illustrate the

methods, and their performances were assessed via simulations. In these evaluations,

it was shown how the performances of the methods can vary depending on the number

of successful diagnoses and the number of m individuals. Furthermore, when using

the classical Youden’s index approach on three-group situations, one of the groups

may have poor predictive performance, but this can be avoided by applying the

NPI-based methods presented in this chapter. A comparison of NPI-based methods

presented in Chapters 4 and 5 has been conducted with the classical Youden index,

Liu index and the maximum volume methods. It will be of interest to compare the

NPI-based methods with those discussed in Section 1.4, such as the index of union

or the close-to-(0,1) method, but this is left for future research.

There are many interesting and challenging topics based on the work presented

in this thesis. One such challenge is the development of NPI-based methods, similar
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to those in Chapter 3, for selection problems and pairwise comparisons involving

more complex events, using the path counting technique to derive NPI lower and

upper probabilities. For example, developing an event where a specific, or at least a

number, of future observations are in non-adjoining categories. The idea of subset

selection can also be extended to other events of interest. An example would be

the development of NPI-based methods using the path counting technique to select

subsets of future observations for the event that the number of future observations is

known for some categories within that subset but unknown for a particular category

within that subset.

Coolen-Maturi [38] introduced the NPI approach for three-group ROC surfaces

with ordinal outcomes, offering a novel perspective on evaluating the accuracy of

diagnostic tests. Developing a similar method using ROC curves, while considering

multiple future observations for each group will be an interesting research direction.

Comparing the accuracy of two diagnostic tests, an important aim in medical research,

traditionally involves metrics like specificity, sensitivity, or the area under the ROC

curve [5]. However, such comparisons can be challenging, as one test might show

higher specificity, while the other might demonstrate higher sensitivity, making the

comparison less straightforward. Further study could investigate the application

of NPI methods with ordinal data for comparing two diagnostic tests for two or

three groups. NPI methods have been presented for selecting optimal thresholds for

two- and three-group classification problems. These methods were shown to depend

on the target success proportions, α, β, and γ, as well as the value of m. Further

research could explore how these values can be selected in real-world applications. A

method for selecting these values while taking misclassification costs into account

would be particularly useful, as minimizing such costs is an important aspect of

classification problems. These research directions, including consideration of multiple

future observations, have the potential to provide new insights into ordinal data,

offering substantial practical value from a predictive perspective.



Appendix: Orderings of future

observations

This appendix provides detailed explanations for each ordering presented in

Example 2.4. Recall that, in the latent variable representation, as explained in

Section 2.3, the category Ck is assumed to be represented by the interval ICk for

k = 1, . . . , K, and the n observations are assumed to be represented by y1 < . . . < yn,

of which nk are in ICk, these are also denoted by yki for i = 1, . . . , nk. There are

Ij = (yj−1, yj), for j = 1, . . . , n + 1, and with nk ≥ 1 for all k, each ICk has an

interval Ij to its left and an interval Ij to its right where future observations in these

intervals may or may not be assigned to ICk. Of course, only one interval is assigned

to IC1 or ICK . Categories with nk = 0 do not have any intervals assigned.

Firstly, for the event M2 = 2 with m = 3, the total number of future observations

that are in the boundary intervals should be equal to 0. There are 3 orderings in

which the 2 future observations (m2) are in the intervals Ij that are assigned to

IC2 and 6 orderings where the 1 future observation is in the remaining Ij intervals.

Figure A1 represents the 3 orderings for the 2 future observations in IC2 (the blue

dots). These orderings are as follows: firstly, one future observation could be in

the interval (y3, y4) and one in (y4, y5); secondly, both future observations could be

in (y3, y4); and thirdly, both observations could be in (y4, y5). For each of these

orderings, there are 6 orderings for the 1 future observation among the remaining

intervals. Multiplying these orderings 3 × 6 results in a total of 18 orderings, as

shown in Figure A1.
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y1

C1
n1 = 2

C3C2
n2 = 3 n3 = 4

y2 y3 y4 y5 y6 y7 y8 y9
−∞ ∞

Figure A1: Orderings of future observations for which the event M2 = 2 is possible
when no future observations are in the boundary intervals

Secondly, recall that W represents the total number of future observations in

the boundary intervals. There are W + 1 ways in which W can be in the boundary

intervals. Also, recall that D represents the number of future observations in the

boundary intervals that can be counted as belonging to IC2. For the case with

D = 0, this indicates that the two future observations (m2) cannot be in the boundary

intervals of IC2 as D = 0. Consequently, when W = 1 and D = 0, this W in the

boundary intervals can either belong to IC1 or IC3 depending on its specific location,

whether it is on the right of IC1 or on the left of IC3. There are 6 orderings in

total that can lead to M2 = 2. These orderings are as follows: firstly, both future

observations (m2) could be in (y3, y4); secondly, both observations could be in (y4, y5);

and thirdly, one future observation could be in the interval (y3, y4) and one in (y4, y5).
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Regarding the W in the boundary intervals, there are two possible ways in which W

can be in the boundary intervals. Multiplying 3 by 2 leads to a total of 6 orderings

for the case W = 1 and D = 0, as can be seen in Figure A2(a). For the case W = 1

and D = 1, this indicates that one of the two future observation (m2) can be in the

boundary intervals as W = D = 1, resulting in two possible ways in which D can be

in the boundary intervals. For m2 −D = 1, this observation could be in the interval

(y3, y4) or could be in (y4, y5), yielding two possible orderings. Additionally, there

are 6 orderings where the m−m2 − (W −D) = 1 future observation can be in the

remaining Ij intervals. Multiplying these orderings 2× 2× 6 leads to a total of 24

orderings for the case W = 1 and D = 1 as shown in Figure A2(b). Combining the

total orderings for both cases of W when W = 1 sums up to 30 orderings.

Similarly, for W = 2 with D = 1 and D = 2, as presented in Figure A3(a) and

(b), respectively, there are a total of 6 orderings for the case with D = 1. For the

case with D = 2, there are 18 orderings in total. By summing the total orderings for

both W cases with W = 2, the total number of orderings equals 24.
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y1

C1
n1 = 2

C3C2
n2 = 3 n3 = 4

y2 y3 y4 y5 y6 y7 y8 y9
−∞ ∞

(a) W = 1 and D = 0

C1 C3C2

(b) W = 1 and D = 1

Figure A2: Orderings of future observations for which the event M2 = 2 is possible
when W = 1 and D = 0, 1
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y1

C1
n1 = 2

C3C2
n2 = 3 n3 = 4

y2 y3 y4 y5 y6 y7 y8 y9
−∞ ∞

(a) W = 2 and D = 1

C1 C3C2

(b) W = 2 and D = 2

Figure A3: Orderings of future observations for which the event M2 = 2 is possible
when W = 2 and D = 1, 2
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y1

C1
n1 = 2

C3C2
n2 = 3 n3 = 4

y2 y3 y4 y5 y6 y7 y8 y9
−∞ ∞

Figure A4: Orderings of future observations for which the event M2 = 2 is possible
when W = 3 and D = 2

Finally, for W = 3 with D = 2 as presented in Figure A4, there are 4 orderings in

total. We could have all three future observations either in the left or right boundary

interval. We could also have one future observation in the left boundary interval

and the other two in the right boundary interval. Lastly, we could have one future

observation in the right boundary interval and the other two in the left boundary

interval. Adding all these orderings together results in a total of [18+30+24+4]=76

orderings. This is in line with the results derived in Example 2.4.
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