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Abstract

The 2×2 contingency table is an important data structure in statistical analysis

used to examine and compare the association between two binary variables. This

table arranges data into four cells, which can be analysed using various statisti-

cal methods such as chi-square test, likelihood ratio test, Fisher’s exact test, and

McNemar test.

Nonparametric Predictive Inference (NPI) is a frequentist statistics method,

which provides lower and upper probabilities for events involving one or more future

observations. This thesis introduces NPI for 2× 2 tables data and illustrates its use

for several inference problems.

In statistics, hypothesis testing is a method of statistical inference used to draw

conclusions, with the outcome being either rejecting or not rejecting the null hy-

pothesis. Statistical reproducibility is the probability that, repeating a test under

identical conditions and with the same sample size will lead to the same outcome.

The reproducibility of an experiment’s conclusion is a critical concept in every field

of research. NPI and NPI-bootstrap methods have been used to study statistical

reproducibility. In this thesis, we employ these methods to assess the reproducibility

of statistical hypothesis tests based on a single 2 × 2 table and on multiple 2 × 2

tables.

Furthermore, this thesis explores the reproducibility of hypothesis tests using

Bayesian inference to predict future observations through the posterior predictive

distribution. By introducing NPI for 2 × 2 tables and employing Bayesian ap-
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proaches, this thesis advances the study of statistical reproducibility for hypothesis

tests. Reproducibility is low for both the NPI and Bayesian inference methods when

the test statistic is near the threshold between rejecting and not rejecting the null

hypothesis. On the other hand, reproducibility increases as the test statistic moves

away from this threshold.
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Chapter 1

Introduction

1.1 Motivation

In statistics, contingency tables are an efficient analytical tool for exploring rela-

tionships between categorical variables. It displays the association between two

categorical variables, where the categories of one variable represent the rows and

the categories of the other variable represent the columns [51]. The most basic

version is the 2 × 2 table, which concerns two binary variables with two outcomes.

These tables are commonly used in medical research, particularly in studying asso-

ciations between binary outcomes such as the presence or absence of a disease [2].

For instance, in medical studies, 2 × 2 contingency tables facilitate the analysis of

relationships between categorical exposure variables like smoking status and medical

outcomes such as lung cancer diagnoses.

There are several common tests for analysing 2×2 contingency tables, including

the chi-square test of independence, likelihood ratio test of independence, Fisher’s

exact test, and McNemar test. The chi-square test of independence is an impor-

tant statistical tool for hypothesis testing. It compares the observed and expected

frequencies within cells of categorical variables to determine whether two nominal

variables are associated [1, 48]. The likelihood ratio test is similar to the chi-square

test but uses the Likelihood ratio as the test statistic. Fisher’s exact test is useful

for small sample sizes or situations where the chi-square test is not appropriate.

This test calculates the exact probabilities of observing the data under the null hy-

1
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pothesis [1, 48]. These tests help researchers and statisticians determine if there

is a significant relationship between categorical variables or if their occurrences are

independent of each other. The McNemar test is a well-known non-parametric test

used to determine whether the proportions of paired nominal variables are equal.

[57].

However, the choice of statistical test can influence the reproducibility of research

findings. Reproducibility is a critical concept in every field of research, including

the sciences and social sciences, as it is important for ensuring the accuracy and

reliability of experimental findings and conclusions [6]. Recently, the reproducibility

of statistical hypothesis tests has gained attention among researchers. It aasks

whether different statistical tests under identical test conditions will lead to the

same conclusion when repeated with respect to rejection or non-rejection of the

null- hypothesis. In this thesis, we will explore the reproducibility in various tests,

such as those used for 2 × 2 contingency tables. In recent years, reproducibility

has been studied for various tests using nonparametric predictive inference (NPI).

A detailed discussion on reproducibility is presented in Section 2.3.

Nonparametric predictive inference (NPI) is a frequentest statistics approach

based on only few assumptions, enabled by the use of lower and upper probabilities

to quantify uncertainty in the absence of prior knowledge. NPI, which is based on

Hill’s assumption A(n) [41, 43], has been developed to address a variety of statis-

tical problems and data types. These include Bernoulli data [19, 20], real-valued

data [20, 26], right-censored observations [22], circular data [20], multinomial data

[22], and applications employing NPI-based bootstrap [23]. NPI offers an attractive

framework for decision support across a wide range of problems where the focus is

naturally on one or more future observations. Further details on NPI are discussed

in Section 2.4

Unlike NPI, Bayesian inference provides a different approach to handling uncer-

tainty by incorporating prior information. Bayesian inference is a method of sta-

tistical inference that uses prior probability distributions to represent and quantify

uncertainty in all forms [36]. These capture initial beliefs about parameters before

observing any data, which are then updated with observed data using Bayes’ theo-
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rem to generate posterior distributions [36, 37, 44]. Additionally, Bayesian inference

allows for predictive modeling through the posterior predictive distribution, which

combines uncertainty from parameter estimation and future observation variability.

This thesis introduces an NPI method for 2× 2 table data, which derives upper

and lower probabilities for events involving single and multiple future observations

based on 2 × 2 table data. The reliability of statistical hypothesis test results de-

pends on their reproducibility, thus making reproducibility an important factor in

hypothesis testing and examining statistical inferences. NPI-based methods have

been used to study reproducibility, utilising its predictive nature to formulate infer-

ences on reproducibility probability. This thesis uses the NPI and Bayesian inference

methods to study the reproducibility of statistical hypothesis tests based on a single

2 × 2 table and on multiple 2 × 2 tables. Apart from reproducibility, the Bayesian

method allows future observations to be predicted through the posterior predictive

distribution.

1.2 Outline of thesis

This thesis is organized as follows: Chapter 2 introduces preliminary materials from

the literature relevant to this thesis: 2×2 contingency tables and statistical hypoth-

esis tests based on 2× 2 tables are presented first, followed by a brief introduction

to the topic of reproducibility. Then, a concise introduction to NPI is provided,

focusing on NPI for circular data, NPI Bootstrap, NPI sampling of orderings and

NPI for the reproducibility probability.

Chapter 3 presents a method for 2×2 tables using NPI for circular data. The NPI

derive lower and upper probabilities for event involving single and multiple future

observations based on 2 × 2 table data. We present NPI-bootstrap for circular

data as a computational method for 2 × 2 table data. Part of this chapter was

presented at the International Conference of the ERCIM WG on Computational

and Methodological Statistics in London, UK, in December 2022.

Chapter 4 introduces the NPI sampling of orderings and NPI Bootstrap methods

for reproducibility of tests such as the chi-square test of independence, likelihood
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ratio test of independence, McNemar’s test, and Fisher’s exact test . Through sim-

ulation studies, we evaluate different methods for reproducibility probability (RP)

across different tests to gain insights into their performance. The results in this

chapter were presented at a seminar at Durham University.

Chapter 5 provides an review of literature materials to the background of Bayesian

inference, specifically for 2 × 2 contingency tables. The chapter further introduces

Bayesian inference method for assessing the reproducibility of tests, such as the chi-

square test of independence, the likelihood ratio test of independence, McNemar’s

test, and Fisher’s exact test. Additionally, the chapter compares the performance

of Bayesian inference method NPI-B method for test reproducibility. Simulation

studies are conducted to understand how Bayesian inference and NPI-B compare in

terms of test reproducibility. The part of this chapter was presented at a seminar

at Durham University.

Chapter 6 provides a overview of multiple 2×2 tables tests, including the Mantel-

Haenszel test, the Breslow-Day test, and the Woolf test. Additionally, the chapter

introduces a comparison between Bayesian inference and the NPI-B methods for

assessing reproducibility of these tests. The simulation studies within the chapter

aim to evaluate the performance of various methods in terms of reproducibility for

different tests.

In Chapter 7, we draw conclusions and discuss related research challenges. Through-

out this thesis, calculations were performed using the statistical software program

R.



Chapter 2

Preliminaries

The aim of this chapter is to review some of the preliminary concepts relevant to

this thesis. First, we introduce 2 × 2 contingency tables and statistical hypothesis

tests based on 2 × 2 tables. After that, discuss a general review of reproducibility

in statistics. Finally, we provide an overview of the methodology of nonparametric

predictive inference (NPI), including NPI for circular data, NPI Bootstrap, NPI

sampling of orderings and NPI for the reproducibility probability.

2.1 2× 2 Contingency tables

Contingency tables, also known as cross-tabulations, are matrices that display the

frequency distribution of two or more categorical variables. They are used to sum-

marise relationships between two or more discrete variables and determine whether

events are dependent or independent to measure the degree of association [35]. Karl

Pearson [1] introduced a two-way contingency table in 1904, which represents the

frequency of events in two dimensions, with rows representing different levels of the

first variable and columns representing different levels of the second variable. The

applications of contingency tables are widespread and can be found in various fields,

including surveys, business analytics, medical, psychological, educational, and social

sciences [49].

Howard [46] describes four types of 2× 2 contingency tables: double dichotomy,

where individuals in one population are classified in two ways; two binomials, which

5
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compares successes across two independent populations; comparative trials, where

a single population is split into treatment groups; and tea tasting, which tests clas-

sification accuracy when treatment proportions are known. Howard [46] emphasizes

that the ”double dichotomy” structure is particularly distinct, as it involves cate-

gorizing individuals within a single population in two distinct ways. Different types

of 2× 2 tables include tables with fixed totals for rows or columns and tables with

paired data, like in before-and-after studies.

Consider two categorical variables, X and Y , with r ≥ 2 and c ≥ 2 levels,

respectively. That is the rows correspond to the categories of variable X, and the

columns correspond to the categories of variable Y . Here, a contingency table with

r rows and c columns is referred to as an r × c table. For instance, in the case of

r = 2 and c = 2, this gives a 2× 2 table, which is the focus of this thesis.

In social sciences and biomedical applications, 2× 2 contingency tables are very

popular for comparing two binary variables with two outcomes [48]. Table 2.1

displays general notation for the 2×2 contingency table. The cell frequency, denoted

by nij where i, j = 1, 2, is observed counts of the number of cases with combination

(X, Y ) = (i, j). The row margins are denoted by ni+ and n+j for the column margins

where the subscript “+” is the sum over the index it replaces. The marginal row

total of the ith row, i = 1, 2 is ni+ = ni1 + ni2, while the marginal total of the jth

column is n+j = n1j+n2j, j = 1, 2, and the total number of observations of the data

set is n = n1+ + n2+ = n+1 + n+2.

Table 2.2 shows the notation for the joint probabilities for the 2× 2 contingency

table. Let πij denote the joint probability that (X,Y) falls in the cell in row i and

column j where i, j = 1, 2. The probability πi+ is the row marginal distribution,

and the probability π+j is the column marginal distribution, for i, j = 1, 2. The

associated sampling proportions are denoted by pij =
nij

n
. The marginal proportions

by pi+ for row i is pi+ = ni+

n
for i = 1, 2 and the marginal proportions by p+j for

column j is p+j =
n+j

n
for j = 1, 2.

For 2 × 2 tables, multinomial sampling is crucial because it allows accurate

modeling and statistical testing of relationships between two categorical variables,

especially in evaluating associations and independence. Multinomial sampling is
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c

r 1 2 Total

1 n11 n12 n1+

2 n21 n22 n2+

Total n+1 n+2 n

Table 2.1: 2× 2 contingency table

c

r 1 2 Total

1 π11 π12 π1+

2 π21 π22 π2+

Total π+1 π+2 1

Table 2.2: The probabilities corresponding to 2× 2 contingency table.

a statistical sampling technique used to select elements from a population with

multiple categories. In multinomial sampling, each component of the population is

distributed to one of the various categories. Multinomial sampling is widely used in

different research fields, such as medical research, market research, quality control,

etc[2].

Multinomial sampling is used when the total sample size n is fixed, but the

row and column totals are not [1]. We have n trials, and each trial has more

than two possible outcomes. When trials are independent and each category’s

probability remains constant across trials, the distribution of counts across these

categories follows a multinomial distribution [1, 2]. Let the probabilities be de-

noted by{π11, π12, π21, π22}, where
∑

ij πij = 1. For a 2 × 2 contingency table, the

probability mass function for the counts n11, n12, n21, n22, under the constraint that∑
ij nij = n according to the multinomial distribution, is given by:

P (n11, n12, n21, n22) =
n!

n11!n12!n21!n22!
πn11
11 πn12

12 πn21
21 πn22

22 . (2.1.1)

The odds ratio is a measure of association used to quantify the relationship
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between two categorical variables in a 2× 2 table. It is commonly used to indicate

the strength and direction of an association [1]. The odds ratio compares the odds

of a particular event occurring in one category of a variable to the odds of the same

event occurring in another category. The ”odds” refer to the ratio of the probability

of success to the probability of failure for a particular category and are defined as:

Ω =
π

1− π
,

where π is the probability of success, and 1− π is the probability of failure [2].

In a 2×2 table, the odds of success are typically compared between two categories.

Let π1 represent the probability of success in category one (row one), and π2 represent

the probability of success in category two (row two). The odds of success for category

one, Ω1, are
π1

1−π1
, and the odds for category two, Ω2, are

π2

1−π2
. The odds ratio, θ,

compares these two odds:

θ =
π1

1−π1

π2

1−π2

.

The odds ratio θ measures the relative odds of success in one category compared

to another. If θ > 1, success is more likely in the first category. If θ = 1, the odds

of success are the same in both categories, indicating no association between the

variables, which implies independence. If θ < 1, success is less likely in the first

category [48]. The odds ratio is not only a numerical calculation but a measure of

the strength of association between two categories.

For a 2 × 2 table, the odds ratio can also be derived by considering the joint

probabilities of success and failure in both categories [48]. The odds ratio in this

context is:

θ =
π11π22

π12π21

.

The odds ratio is often estimated using the observed frequencies in a contin-

gency table. Let n11, n12, n21, and n22 represent the observed frequencies in the

corresponding cells of the 2 × 2 table [48]. The sample odds ratio, θ̂, is calculated

as:
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θ̂ =
n11n22

n12n21

.

This estimate assumes that the observed cell counts nij reflect the underlying

probabilities. The estimated odds ratio θ̂ provides a measure of the strength of

association between the two categories based on the sample size [48].

2.2 Hypothesis tests based on 2× 2 tables

In this section, we provide an overview of 2 × 2 contingency table tests. The chi-

square test of independence, likelihood ratio test of independence, Fisher’s exact

test, and McNemar test are some common methods for analyzing 2 × 2 tables, as

described in Table 2.3. In statistical inference, hypothesis tests are used to evaluate

the plausibility of a hypothesis about a population using sample data. The null

hypothesis H0 asserts that there is no effect, no difference, or no relationship among

the variables. In contrast, the alternative hypothesis H1 proposes that there is an

effect, a difference, or a relationship. In terms of rejection or nonrejection of the null

hypothesis, the p-value is a different approach from the critical value, but they both

yield the same result about whether or not the null hypothesis is rejected. The null

hypothesis must be rejected if the p-value is less than a predetermined significance

level [74].

The significance level α has a predetermined value in the hypothesis testing

procedure. A type I error is the probability of rejecting a true null hypothesis, and

a type II error is the probability of not rejecting a false null hypothesis. The error

probabilities are indicated by the symbols α and β, respectively. The Type I and

Type II errors have an inverse relationship, meaning that when one increases, the

other decreases. The power is defined as the probability of rejecting the false null

hypothesis when an alternative hypothesis is true. In other words, the power is the

probability of making the correct decision regarding the false null hypothesis, this

probability is 1−β. The power of the test increases with the α level associated with

the hypothesis testing procedure and with the sample size of the experiment [74].
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2.2.1 Tests of independence

A test of independence assesses whether there is an association between two cate-

gorical variables X and Y [1]. It evaluates whether the distribution of one variable is

independent of the other variable. Under the assumption of independence, the joint

probability πij of observing category i for X and category j for Y can be expressed

as the product of their marginal probabilities, πi+ and π+j. When two categorical

variables, X and Y , are statistically independent, it implies that the probability

distribution of Y remains identical regardless of the category of X.

The null hypothesis H0 states that there is no association between the categorical

variables X and Y in 2 × 2 tables. The null hypothesis of statistical independence

is [1]:

H0 : πij = πi+π+j, for i, j ∈ {1, 2}

The alternative hypothesis H1 asserts that there is an association between cat-

egorical variables X and Y . The alternative hypothesis of statistical dependence is

expressed as follows:

H1 : πij ̸= πi+π+j, for i, j ∈ {1, 2}

To test the null hypothesis H0, the values eij = nπij = n(πi+π+j) is the expected

frequency. Under the null hypothesis of independence, the expected cell counts

are derived by multiplying the marginal totals for each row and column and then

dividing by the total sample size n. This results in estimated expected cell counts

calculated as êij =
ni+×n+j

n
[1].

Chi-squared test of Independence

The Chi-squared independence test is essential for assessing hypotheses in 2×2 tables

and is also known as a large sample independence test. It examines the independence

between row and column variables by comparing the distinction between observed

and expected frequencies of categorical variables [1, 48]. The test statistic for the

null hypothesis H0 is given by:
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χ2 =
∑
i

∑
j

(nij − êij)
2

êij
i, j ∈ {1, 2}

χ2 follows an asymptotic chi-squared distribution with degrees of freedom (r− 1)×

(c− 1).

Here, r and c are the numbers of rows and columns in the contingency table,

respectively [1]. The degrees of freedom of a 2 × 2 table is 1. The test statistic χ2

is zero if observed and expected frequencies are equal, which is the ideal scenario

under the null hypothesis of independence. The larger differences between these

values result in a larger test statistic, providing evidence against the null hypothesis

H0. In order to approximate the chi-square distribution, each cell should have a

sufficiently large expected frequency at least 5. The chi-square independence test

is a powerful tool for assessing the independence of categorical variables in 2 × 2

tables, with the test statistic provides information on the degree of association.

Statistical power refers to the probability that a false null hypothesis will be

rejected by the test. The power depends on the effect size, sample size, and signif-

icance level. For chi-square tests, the effect size for a 2 × 2 table is calculated as

[18]:

w =

√√√√ 2∑
i=1

2∑
j=1

(p0i − p1i)2

p0i

where p0i is the proportion in cell i given by the null hypothesis and p1i is the

proportion in cell i according to the alternative hypothesis. The effect size w, related

to the usual chi-square statistic, is given by w =
√

χ2

n
. Cohen [18] suggests using

effect sizes of w = 0.1 for small effects, w = 0.3 for medium effects, and w = 0.5 for

large effects. The noncentrality parameter λ, which is used to calculate the power

of the chi-square test, is λ = n × w2 [18]. The power of the test is calculated by

the probability that the test statistic exceeds the critical value of the chi-square

distribution with the specified degrees of freedom, accounting for the non-centrality

parameter as:

P
(
χ2
1,λ > χ2

α,1

)
where χ2

1,λ is the non-central chi-square distribution with 1 degree of freedom and
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the non-centrality parameter λ, and χ2
α,1 is the critical value from the chi-square

distribution with 1 degree of freedom at the significance level α [2, 18].

Likelihood ratio test of independence

The likelihood ratio test assesses the independence between two categorical variables

based on maximum likelihood estimation [1]. Let ℓ0 denote the maximized value of

the likelihood function under the null hypothesis, and let ℓ1 denote the maximized

value under the alternative hypothesis. The likelihood-ratio test statistic is given

by:

−2 log

(
ℓ0
ℓ1

)
.

When the null hypothesis H0 is not true, the maximized likelihood under the

null hypothesis ℓ0 is smaller than the maximized likelihood under the alternative

hypothesis ℓ1. This means that the ratio ℓ0
ℓ1

is less than one. Taking the logarithm

of a number less than one yields a negative value: log
(

ℓ0
ℓ1

)
< 0. Multiplying this

negative value by −2 results in a positive test statistic [1]. As the sample size

increases, the difference between ℓ0 and ℓ1 becomes more pronounced, leading to a

higher positive value for the test statistic. Therefore, when H0 is not true, the test

statistic value is typically a large positive number, providing strong evidence against

the null hypothesis [1].

The likelihood ratio test makes use of the fact that, under the null hypothesis of

independence, the likelihood ratio statistic follows an asymptotic chi-square distri-

bution [1]. The likelihood ratio statistic for a 2×2 contingency table can be written

as:

G2 = 2
∑
i,j

nij log

(
nij

êij

)
, i, j ∈ {1, 2}.

This statistic is called the likelihood ratio chi-squared statistic. The G2 takes its

minimum value of 0 when all observed counts nij are equal to the expected counts êij,

and larger values provide stronger evidence againstH0 [48]. If the sample size is small

and this condition is not met, the test might not be reliable. In such cases, other
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tests like Fisher’s Exact Test can be used to accurately determine independence.

2.2.2 Fisher’s exact test

Fisher’s exact test is used to determine if there is a significant association between

two categorical variables. When the sample size is small, large sample tests such

as χ2 and G2 are inconvenient due to their reliance on asymptotic properties and

approximations, making exact tests more suitable. Formally, Fisher’s exact test

considers the hypotheses [1]:

H0 : θ = 1 vs. H1 : θ > 1

By conditioning on both sets of marginal totals (row and column totals) in the

2 × 2 table, we fix these totals and consider the distribution of cell counts given

these margins. This conditioning is done because, under the null hypothesis of

independence, the cell counts then follow a hypergeometric distribution, simplifying

the calculation of exact probabilities [1]:

p(t) = P (N11 = t) =

(
n1+

t

)(
n2+

n+1−t

)(
n

n+1

) (2.2.1)

For a given set of marginal totals, larger values ofN11 correspond to larger sample

odds ratios, indicating stronger evidence in favor of H1. Therefore, the p-value is

determined by the probability of observing N11 ≥ to11, where to11 represents the

observed value of N11 [48]. Similarly, for H1 : θ < 1, the p-value is calculated by

summing all tables where N11 is less than or equal to to11.

For the null hypothesis H0 of independence, the p-value is calculated as the sum

of hypergeometric probabilities for all possible contingency tables with the same

marginal totals that are as or more favorable to the alternative hypothesis H1 than

the observed table. Specifically, for the case of H1 : θ > 1, where θ represents the

odds ratio, tables with larger values of N11 (given fixed marginal totals) provide

stronger evidence to support H1. The p-value is determined as the hypergeometric

probability of the right tail, evaluating whetherN11 is at least as large as the observed

value [2].
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2.2.3 McNemar’s Test

McNemar’s test is a widely used nonparametric test to analyze paired nominal data

to detect changes [57]. In a 2 × 2 table, pairing means having two related obser-

vations, such as measurements from the same person before and after a treatment

or responses from matched subjects in a study. It assumes marginal homogeneity

under the null hypothesis, which means equal marginal frequencies for rows and

columns. The McNemar test is generally applied to a 2 × 2 table when two cells

in the diagonal arrangement are considered to be two concordant responses and the

other two cells are considered as discordant responses. This pairing is important

because it ensures that each discordant pair (n12 and n21) compares two related

conditions or time points for the same subject. The null and alternative hypotheses

are H0 : π12 = π21 and H1 : π12 ̸= π21, respectively. The test statistic follows a

chi-square distribution with 1 degree of freedom. Recalling the cells n12 and n21

from Table 2.1, which represent discordant pairs, the McNemar test statistic is:

X2 =
(n12 − n21)

2

n12 + n21

(2.2.2)

An alternative way to calculate McNemar’s test statistic is using a normal ap-

proximation:

TMN =
n12 − n21√
n12 + n21

(2.2.3)

The TMN is asymptotically distributed as a standard normal random variable under

the null hypothesis H0 [16]. The power of McNemar’s test can be approximated by:

Φ

(√
n(π12 − π21)− zα/2 ·

√
π12 + π21√

π12 + π21 − (π12 − π21)2

)
(2.2.4)

where Φ represents the cumulative distribution function of the standard normal

distribution, and π12 − π21 is the mean difference of the discordant pairs, with

variance π12+π21− (π12−π21)
2 [16]. The zα/2 is the critical value from the standard

normal distribution.
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Table 2.3: Summary of Hypothesis Tests based on 2× 2 Tables

Test Hypothesis Test Statistic Assumptions Properties

Chi-squared of

Independence

H0 : πij = πi+π+j ,

H1 : πij ̸= πi+π+j

χ2 =∑
i,j

(nij−êij)
2

êij

Large sample size;

expected cell

counts êij > 5.

Compares observed

and expected

frequencies; follows

chi-squared dist.

with 1 df for 2x2

tables.

Likelihood-Ratio

of Independence

H0 : πij = πi+π+j ,

H1 : πij ̸= πi+π+j

G2 =

2
∑

i,j nij log
(

nij

êij

) The test assumes a

sufficient sample

size, and expected

frequencies of at

least 5.

Evaluating

independence using

the likelihood of

data under null vs.

alternative

hypotheses.

Fisher’s Exact

Test

H0 : θ = 1, H1 :

θ > 1 (or θ < 1)

p(t) = P (N11 =

t) =

(
n1+

t

)(
n2+

n+1−t

)
(

n
n+1

)
Small sample sizes

with fixed

marginals.

Exact test;

Provides exact

p-values and

reliable for small

sample sizes.

McNemar’s Test H0 : π12 = π21,

H1 : π12 ̸= π21

χ2 =
(n12−n21)

2

n12+n21
,

TMN = n12−n21√
n12+n21

Paired nominal

data with marginal

homogeneity.

Nonparametric test

for paired nominal

data; chi-squared

or normal

approximation;

focuses on

discordant pairs.

2.3 Reproducibility

The reproducibility of a study refers to the capacity of the result and conclusion

obtained from an experiment to be reproduced when the analysis is conducted again.

Understanding reproducibility is essential for scientific research. It ensures that

research findings are reliable, trustworthy and can be verified by other researchers [6].

Lack of reproducibility can lead to loss of trust in research and can affect decision-

making [61]. Reproducibility is important in every field of study, whether social

science, pure science, applied science, medicines, psychology or arts [12, 47, 62]. In

clinical trials or drug testing studies, for instance, lack of reproducibility can be very

challenging, especially if crucial decisions are to be made [47].

Begley and Ellis [9] mentioned the challenges of reproducing test results in pre-
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clinical cancer research. They analysed various factors affecting reproducibility of

studies and offered recommendations for improving reproducibility. In addition, they

addressed the influence of publication processes, which tend to prefer the publica-

tion of positive results, leading to bias. However, Begley and Ellis [9] only discussed

general reproducibility and did not consider the statistical aspects and methodolo-

gies employed in medical testing. According to Stodden [70], statistical methods

and analysis should be considered because they can affect reproducibility [70].

Statistical reproducibility is concerned with statistical concepts and methodolo-

gies, such as hypothesis testing, confidence intervals, effect of sample sizes, and

p-values. Goodman [40] was the first who studied statistical reproducibility. He

indicated that there was a misunderstanding about the meaning of a statistical p-

value. A statistical p-value is the probability of getting the same or a more extreme

value for the test statistic, under the assumption that the null hypothesis is true.

Goodman, however, challenged this claim and argued that p-value overstates evi-

dence against the null hypothesis. He mentioned that the probability that the test

for an event will produce the same result if repeated under identical condition with

the same sample size may be small and referred to this as replication probability

[40].

Boos [64] shared the same view with Goodman and mentioned the importance

of adjusting the use of p-values to account for replication in future experiments.

Stahel [68] also mentioned possible misuse of p-value in expressing the results of

statistical data analyses and how this can affect reproducibility [68]. Senn [65] also

agreed with Goodman that reproducibility is an important aspect of test results,

but disagreed with the claim that p-value overstates the evidence against the null

hypothesis. Senn [65] showed a real-life scenario of reproducibility probability tests

under various conditions and emphasised the significance of test reproducibility,

where repeated tests may occur under slightly different conditions and involve other

teams of analysts.

In addition, Miller [58] mentioned that it is necessary to differentiate between

two scenarios when repeating a test: a general repetition carried out by different

researchers, where conditions may vary compared to the original experiment and
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test, and an individual repetition conducted by the same researcher under identi-

cal conditions as the original experiment and test. However, Miller [58] expressed

doubt regarding the possibility of drawing valuable inferences from a single initial

investigation, mainly due to the unknown actual effect sizes and, consequently, the

unknown power of the test.

Study design, statistical methods, and tests used for a study are important to

consider when discussing reproducibility. This is because different methods for dif-

ferent studies can introduce variability, which can affect how reproducibility is mea-

sured. According to Stanley et al [69], one of the statistical factors that can affect

reproducibility is low statistical power. They explained that original studies with

low power could lead to biased effect size estimates, which could underestimate the

sample size for replications.

Recently, there were concerns about the reproducibility of COVID-19-related

research studies [60, 72]. This was because important decisions during the COVID-

19 pandemic depend on the conclusions of scientific studies. Therefore, the results

of experiments, such as the effectiveness of a vaccine or the impact of a public

health intervention, must be reproducible when repeated using the same methods

and data. However, the speed of COVID-19 research and publications and the

urgency of the pandemic may affect experimental design, statistical analysis, and

interpretation, making reproducibility a challenge [32]. To ensure that decisions are

based on reproducible evidence, it is therefore crucial to identify reliable methods

and tools to measure reproducibility.

Reproducibility measurement is challenging. According to Goodman [64], the

challenge in measuring reproducibility is due to the different factors associated with

the concept of reproducibility. Goodman [64] stated that statisticians play an impor-

tant role in identifying common problems and solutions in various research fields.

Their expertise can help to develop methods to measure and enhance the under-

standing of reproducibility.

Shao and Chow [66] introduced three methods for assessing reproducibility in

study designs in clinical trials. These methods are the estimated power approach,

also mentioned by Stanley et al. [69], the lower confidence bound of power estimate,
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and the Bayesian approach. According to Shao and Chow [66], a single clinical trial

is enough if a statistical result from the first clinical trial is strongly reproducible.

They examined the general use of clinical results from one patient population to

another and changed the sample size for the second trial. De Martini [31] regarded

the test’s power and the lower confidence bound of the power as two definitions of the

reproducibility probability for statistically significant outcomes. De Capitani and De

Martini [28, 29, 30] examined different estimators of the reproducibility probability

for the Wilcoxon rank sum test and explored various nonparametric tests, including

the sign and Wilcoxon signed-rank tests.

In recent years, the Bayesian approach to statistical analysis has gained popu-

larity as an effective method in addressing reproducibility [34]. One of the main

challenges in statistical reproducibility is how conclusions and inferences are derived

after analysing experimental data. This challenge is closely linked to the issue of

p-values discussed by Goodman [40]. Statisticians employ two main approaches,

namely frequentist and Bayesian methods. The frequentist approach relies on the

available data or evidence to estimate parameters. It focuses on hypothesis testing,

confidence intervals, and p-values. The Bayesian approach considers model parame-

ters as random variables with associated probability distributions. It involves using

prior distributions with observed data to update posterior distributions, which form

the basis of Bayesian inference. Several studies have used Bayesian methods and

can also be applied in machine learning, data science, and scientific modeling [52].

Höpfl and et al [45] also showed the strength and implications of Bayesian methods

in examining reproducibility.

Reproducibility is naturally viewed as a problem of predictive inference. Bin-

Himd and Coolen [11] considered reproducibility as a predictive problem and used

nonparametric predictive inference (NPI), a frequentist approach, to evaluate it. In

this thesis, the reproducibility probability (RP) of a hypothesis test is defined as the

probability that repeating the experiment and performing the same hypothesis test

yields the same conclusion, whether rejecting or not rejecting the null hypothesis

[11]. The NPI approach is used to calculate the lower and upper reproducibility

probabilities. To illustrate, we use the sign test, a basic non-parametric test. Con-
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sider n ordered observationsX1, X2, . . . , Xn. The test statisticW counts the number

of positive observations and is given by:

W =
n∑

j=1

1{Xj > 0},

where 1(·) is an indicator function equal to 1 if the event occurs and 0 otherwise

[11]. The null hypothesis H0 is rejected at a significance level α if W ≥ wα, where

wα represents the upper α percentile of the binomial distribution with a sample size

of n and a success probability of 1/2. The NPI approach introduced in Section 2.4

can be used to make inferences about the m future observations among the n data

observations. There are
(
n+m
n

)
possible orderings of m future observations among

the n data observations, with all orderings equally likely, where i = 1, 2, . . . ,
(
n+m
n

)
[11]. The reproducibility probability of a statistical test refers to the probability

that the same test results would be obtained in a repeated test. We focus on the

case where the number of future observations m is equal to the number of data

observations n. The goal is to determine the minimum and maximum values of the

test statistic W for each possible ordering Oi, which are denoted by W i and W i,

respectively [11].

If the original test conclusion is the rejection of H0, then the NPI lower re-

producibility probability is derived by counting the number of orderings for which

W i ≥ wα [11]. The corresponding NPI upper reproducibility probability is derived

by counting the number of orders for which Wi ≥ wα. Thus, the NPI lower and

upper reproducibility probabilities are given by:

RP =
1(
2n
n

)∑
i=1

1{W i ≥ wα}, RP =
1(
2n
n

)∑
i=1

1{Wi ≥ wα}.

where i = 1, 2, . . . ,
(
n+m
n

)
. Similarly, if the original test conclusion is non-

rejection of H0, such that W < wα, the lower reproducibility probability of the

NPI is derived by counting the number of orders for which W i < wα, and the cor-

responding upper reproducibility probability is derived by counting the number of

orders for which Wi < wα [11]. The NPI lower and upper reproducibility probabili-

ties are:
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RP =
1(
2n
n

)∑
i=1

1{W i < wα}, RP =
1(
2n
n

)∑
i=1

1{Wi < wα}.

When using observations of n data from the first test, the NPI-RP approach

calculates the lower and upper probabilities for the test statistic that rejects or

rejects the null hypothesis. These probabilities are based on all possible orderings

of n future observations combined with the n data observations.

2.4 Nonparametric Predictive Inference (NPI)

Nonparametric predictive inference (NPI) is a frequentist statistical method pro-

posed to make an inference for one future observation based on past data. NPI

method uses only a few assumptions to learn from the data without prior knowl-

edge. NPI is a statistical methodology based on Hill’s A(n) assumption [41, 42]. Hill

introduced the assumption A(n) for predicting a single future observation Xn+1 in

the absence of prior knowledge of the underlying distribution. Let X1, . . . , Xn be

exchangeable continuous random quantities and let x1, . . . , xn be the corresponding

observations. According to Hill’s assumptions, random quantities are exchangeable,

which allows learning from observed data without imposing specific dependencies

or constraints. The ordered observations are denoted by x(1) < x(2) < . . . < x(n),

and let x(0) = −∞ and x(n+1) = ∞ for notation. For a future observation Xn+1, the

assumption A(n) is [41, 42]

P (Xn+1 ∈ (x(j−1), x(j))) =
1

n+ 1
for j = 1, 2, . . . , n+ 1 (2.4.1)

Where (x(j−1), x(j)) can be referred to by Ij.

NPI is suitable to provide imprecise probability for an event A. Imprecise prob-

ability is a generalization of a classical probability in the meaning that it can be

used to describe uncertainty about events via intervals, instead of a single probabil-

ity. The lower and upper probabilities, which are considered in interval probability

theory [73], can be obtained based on NPI, where NPI leads to a strong consistency

property in the frequentist statistical theory [25, 73]. In NPI, the lower probability is

the maximum lower bound and the upper probability is the minimum upper bound
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for A. The precise probability for A, P (A), is a special case of imprecise probability

when the lower and upper probabilities are equal. For event A, the lower probability

is denoted by P (A) and the upper probability by P (A), with 0 ≤ P (A) ≤ P (A) ≤ 1

and the difference ∆(A) = P (A) − P (A) is called the imprecision [25]. Augustin

and Coolen [7, 8] introduced the NPI lower and upper probabilities for the event

Xn+1 ∈ B, where B ⊆ R, as follows :

P (Xn+1 ∈ B) =

∑n
j=0 1(Ij ⊆ B)

n+ 1
(2.4.2)

P (Xn+1 ∈ B) =

∑n
j=0 1(Ij ∩B ̸= ∅)

n+ 1
(2.4.3)

where 1(·) is the indicator function. The lower probability is equal to the summation

of the probabilities assigned to intervals Ij that are completely within the set B. For

the upper probability, we sum up all probabilities assigned to intervals that intersect

with the set B; so all Ij such that Ij ∩B ̸= ∅.

While the assumption A(n) inherently offers a predictive probability for only a

single future observation, its applicability can be expanded tom future observations,

denoted as random variables Xn+1, . . . , Xn+m. The data and future observations

are linked by Hill’s assumption A(n), or more precisely by applying consecutively

A(n), A(n+1), . . . , A(n+m−1) [21], which together can be called the A(·) assumptions.

Then the assumptions are a post-data version of a finite exchangeability assumption

for n+m random variables. Based onA(·) assumptions, all possible orderings of the

n data observations and the m future observations are equally likely, in which the n

data observations and m future observations are not distinguished from each other

[21]. In the NPI framework, exchangeability means that all possible orderings of

real-valued data are equally likely before any values are observed. Let Sji represent

the number of the m future observations that fall within the interval Ij = (xj−1, xj),

so that Sj = #{Xn+i ∈ Ij, i = 1, . . . ,m}, then assuming A(·), we have [21]

P (
n+1⋂
j=1

{Sj = sj}) =
(
n+m

m

)−1

(2.4.4)

where sj, for j = 1, . . . , n + 1, are any non-negative integers with
∑n+1

j=1 sj = m.

Equation (2.4.4) implies that all
(
n+m
m

)
orderings of m future observations among
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the n observations are equally likely. For example, when n = 3 and m = 5, there

are
(
3+5
5

)
= 56 possible different orderings of the m future observations among the

n real data observations.

2.5 NPI for circular data

Circular data refers to information measured on a circular scale, signifying that the

values follow a cyclical pattern [27]. In contrast to linear data, which is quantified on

a real line with defined endpoints, circular data forms a loop with no clear starting

or ending point. Common examples of circular data include compass directions and

time. Circular data is prevalent across various research fields, including medical

sciences, personality measurement, political science, sociology, and education [27].

In the case of circular data, A(n) in its standard form is not suitable, as the data

is not represented on a real line. Due to this limitation, and linking back to the

exchangeability of n + 1 observations, the assumption is called circular A(n) and is

denoted by A
(n)

[20]. Consider ordered circular data x1 < x2 < . . . < xn with

n intervals called Cj = (xj, xj+1) for j = 1, · · · , n − 1 and Cn = (xn, x1). The

assumption A
(n)

for future random quantity Xn+1 is [20]:

P (Xn+1 ∈ Cj) =
1

n
for j = 1, 2, . . . , n. (2.5.1)

The A
(n)

is a post-data assumption related to the exchangeability assumption for

circular data. The lower and upper probabilities for single future observations with

circular data A
(n)

are presented by Coolen [20]. The probabilities for Xn+1 as

defined by A
(n)

directly correspond to lower and upper probabilities for events of

the form Xn+1 ∈ B, where B is a segment of the circle [7]. The lower probability

P (Xn+1 ∈ B) is obtained by adding the probability masses related to intervals Cj

within B. The upper probability P (Xn+1 ∈ B) is obtained by adding the probability

masses related to all intervals Cj which have a non-empty intersection with B [20].

From assumption of A
(n)

given as the predictive probability for single future

values based on Coolen [20], this can be extended for m future observations. The ex-

tension to m future observations, denoted as random quantities Xn+1, . . . , Xn+m, in-
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volves the simultaneous assumptions A
(n)

, A
(n+1)

, . . . , A
(n+m−1)

, which together

are denoted by A
(•). The A

(•) assumptions imply that all possible orderings of m

future observations among n data observations are equally likely. Let Sj denote the

number of observations into category Cj. Then the A
(•) assumption lead to [20]

P (
n⋂

j=1

{Sj = sj}) =
(
n+m− 1

m

)−1

(2.5.2)

where sj, for j = 1, . . . , n, are any non-negative integers with
∑n

j=1 sj = m. Equa-

tion (2.5.2) implies that all
(
n+m−1

m

)
possible orderings of m future observations

among the n observations are an equally likely. Generally, in NPI, as discussed in

Section 2.4, the NPI lower probability is derived by counting all the orderings for

which the event of interest must hold, while the NPI upper probability is derived by

counting all the orderings for which the event of interest can hold [7, 20]. In chapter

3, NPI is generalised for a 2× 2 table data based on the A
(n)

assumption.

2.6 NPI bootstrap

Coolen and Binhimd [11, 23] introduced nonparametric predictive inference boot-

strap method, referred to as NPI-B. The NPI bootstrap method is used for pre-

dictions, unlike regular bootstrap methods, which are used for estimations. NPI-B

involves creating n + 1 intervals between n ordered observations of the original

data, and selecting one of these intervals at random. From the chosen interval, one

observation is drawn and added to the original data, leading to a total of n + 1

observations. The new data are n + 1 observations, so n + 2 intervals are created

and then the method is repeated to have the new n + 2 data. This process is re-

peated until one bootstrap sample of size m is obtained. The NPI-B algorithm for

one-dimensional real-valued data on a finite (bounded) interval is as follows [11, 23]:

1. Take the data set of n real-valued observations.

2. Create n+ 1 intervals based on the n original data set.

3. Choose randomly one of these intervals with equal probability.
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4. Sample one future value from this selected interval.

5. Add that value to the data: increase n to n+ 1.

6. Repeat Steps 2-4, now with n+ 1 data, to get a further future value.

7. Do thism times to get a NPI bootstrap sample of sizem, only the new sampled

data are considered as the bootstrap sample.

8. Repeat all these steps B times to get a total of B NPI bootstrap samples of

size m, where B is any chosen integer value.

The NPI-B algorithm can be adapted for circular data, allowing its use in the

NPI method with 2 × 2 table data for inference. A detailed discussion on this

is presented in Section 3.5. The NPI bootstrap method is used in this thesis for

predictions with a focus on reproducibility, unlike regular bootstrap methods, which

are used for estimations.

2.7 NPI sampling of orderings method

A sampling methodology based on sampling future orderings is proposed by Coolen

and Marques [24] to overcome the computational limitations associated with large

sample sizes. This technique satisfies the conditions of simple random sampling

(SRS), ensuring each selection has an equal probability of being chosen and each

selection is independent of the others. For simplicity, orderings are sampled with

replacement, as a high number of orderings effectively eliminates discrepancies be-

tween sampling with and without replacement.

In this study, we utilize the sampling of orderings approach for circular data.

A latent variable is used to represent observations on circular data. Denote the(
n+m−1

m

)
different orderings of m future observations among the n data observations

on the circle by Oj for j = 1, . . . ,
(
n+m−1

m

)
. The ordering of Oj can be represented by

(s1, . . . , sn), where si is the number of future observations that fall into the intervals

C1, . . . , Cn, according to the ordering of Oj with
∑n

i=1 si = m. The orderings of

future observations refer to the different possible ways future data points can be
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distributed among the existing n data points on the circle. For example, with

n = 3 existing observations and m = 2 future observations, the number of possible

orderings is
(
3+2−1

2

)
=
(
4
2

)
= 6, and one possible ordering could be (s1 = 1, s2 =

0, s3 = 1).

For the orderings, the sampling technique meets the SRS requirements. Each

selection must have the same probability of being chosen, and each selection must be

independent. By sampling with replacement, we simplify the process and maintain

accuracy. Sampling orderings is done by selecting a vector of integers {r2, . . . , rn},

where ri represents the rank of the jth ordered observation in the combined data

and future observations. Let sji = ri+1 − ri − 1 for i = 1, . . . , n, with r1 = 1 and

rn+1 = n+m+ 1. This process produces the jth sampled future ordering, ensuring

that every possible ordering has an equal chance of being selected and is independent

of other selections. The sampling of orderings approach for circular data will be used

in chapters 3 and 4.

Confidence intervals for a single population proportion p are fundamental con-

cepts in statistics. The Normal approximation assumes that the distribution of the

sample proportion p̂ is approximately Normal when the sample size n is large. When

the sample size is large enough and p̂is not close to 0, the Normal approximation

method can be used [15]:

p̂± zα
2

√
p̂(1− p̂)

n
(2.7.3)

where zα
2
is the 1 − α

2
quantile of the standard Normal distribution. In Chapter

4, we used confidence intervals based on the standard normal distribution for the

approximate lower and upper probabilities for test reproducibility.

For small sample sizes and when p is close to 0, the Clopper–Pearson interval,

also known as the ’exact’ method, is preferred. The Clopper-Pearson interval, often

referred to as the ’exact’ method, does not rely on large-sample approximations and

instead uses the exact binomial distribution to determine confidence bounds [63]. It

is based on the cumulative probabilities of the binomial distribution, providing an

exact distribution for a single population proportion p rather than an approximation.

The Clopper-Pearson interval is computed under the assumption that the data follow

a binomial distribution with the null hypothesis H0 : p = p0. This assumes that



2.8. NPI for reproducibility probability of statistical tests 26

each trial is independent and that the probability of success p remains constant. The

Clopper-Pearson confidence interval for p is derived by inverting two single-tailed

binomial tests H0 : p = p0. The endpoints of the interval are solutions in p0 to the

equations [3, 63]:

n∑
k=x

(
n

k

)
pk0(1− p0)

n−k =
α

2

x∑
k=0

(
n

k

)
pk0(1− p0)

n−k =
α

2

where x is the number of observed successes in a sample of size n. Note that the

lower bound is 0 when x = 0 and the upper bound is 1 when x = n [3, 63]. The

confidence interval is [3, 63]:

[
1 +

n− x+ 1

xF
(
2x, 2(n− x+ 1), 1− α

2

)]−1

< p <

[
1 +

n− x

(x+ 1)F
(
2(x+ 1), 2(n− x), α

2

)]−1

(2.7.4)

Here, F (a, b, c) represents the 1 − c quantile of the F-distribution with a and b

degrees of freedom. The Clopper-Pearson interval is computed under the assump-

tion that the data follow a binomial distribution, aiming to provide exact coverage

probabilities regardless of the true proportion p. The formula calculates the exact

confidence interval for p by inverting the binomial cumulative distribution function,

ensuring accurate coverage even with small sample sizes or extreme proportions.

Alternatively, the lower endpoint can be described as the α
2
quantile of a Beta dis-

tribution with parameters x and n − x + 1, and the upper endpoint as the 1 − α
2

quantile of a Beta distribution with parameters x + 1 and n − x [3]. In Chap-

ter 3, we used the Clopper-Pearson interval for the approximate lower and upper

probabilities.

2.8 NPI for reproducibility probability of statis-

tical tests

The reproducibility of test outcomes is an important characteristic of practical statis-

tics. The explicitly predictive nature of NPI provides a natural formulation for in-
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ference on reproducibility of tests. The reproducibility probability (RP) plays an

important role in determining the reliability of statistical tests. Recently there has

been substantial interest within the reproducibility probability (RP), where not only

its estimation but also it is the particular definition and interpretation do not seem

to be uniquely determined within the classical frequentist statistics framework as

discussed in Section 2.3.

Coolen and Bin Himd [11, 23] introduced NPI for RP, denoted by NPI-RP, by

considering some basic nonparametric tests such as the sign test, Wilcoxon’s signed-

rank test and the two-sample rank-sum test. For these inferences, NPI for Bernoulli

quantities and for real-valued observations were used [7]. The NPI lower and upper

reproducibility probabilities of the test are denoted by RP and RP , respectively. As

a measure of reproducibility, the test result is calculated for a predicted future sample

that has the same size as the original sample (m = n). In the NPI-RP approach, the

fundamental concept considers the
(
2n
n

)
different orderings of n future real-valued

observations among n data observations, where these orderings all have the same

probability to occur. Let Oj for j = 1, . . . ,
(
2n
n

)
represent the different orderings of

the n future observations among the n data observations. Each ordering Oj can

be represented by (sj1, · · · , s
j
n+1) for i = 1, 2, ..., n + 1, where sji is the number of

future observations in Ij = (x(i−1), x(i)) for i = 1, . . . , n+ 1 with respect to ordering

Oj such that
∑n

i=1 s
j
i = n [11, 23]. In NPI-RP, all possible orderings of n future

observations among n data observations are considered, given the observed data

from the original test. On the future data sets the same test is conducted as it was

on the original data, and the proportion of these that lead to the same conclusion is

determined. Coolen and Alqifari [21] presented NPI-RP for two basic nonparametric

tests based on order statistics. Marques et al. [56] investigated the reproducibility

of the likelihood ratio test using NPI.

Coolen and Binhimd [11] used the NPI-bootstrap method to study reproducibil-

ity. They demonstrated how the NPI-bootstrap method avoids complicated calcula-

tions encountered with the NPI-RP method. A limitation of the NPI-RP method is

that large sample sizes make computations impractical. Simkus et al. [67] employed

the NPI-bootstrap method to assess the reproducibility of the t-test. Simulations
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were conducted to determine the reproducibility under both null and alternative

hypotheses.

For larger samples, it becomes computationally challenging to consider all order-

ings to calculate NPI-RP. To avoid this difficulty, two NPI methods are used: NPI

bootstrap and NPI sampling of orderings. The NPI bootstrap method gives a point

estimate of reproducibility probabilities, while the sampling of orderings method es-

timates the lower and upper reproducibility probabilities. A sampling methodology

based on sampling orders is proposed by Coolen and Marques [24] for overcoming

the computational limitations associated with large sample sizes.



Chapter 3

NPI Circular Data Method for

2× 2 Contingency Tables

3.1 Introduction

Nonparametric predictive inference (NPI) has been used in a variety of statistical

applications, providing imprecise probabilities for both single and multiple future

observations. In this chapter, NPI is generalized for inferences from 2×2 table data

based on the assumption A
(n)

. The motivation behind this work is to extend the

applicability of NPI to 2× 2 table data, which is a common format in many fields.

The reason for using the assumption A
(n)

is that the categories are adjacent to

each other. For more explanation, see Section 3.2.

This chapter is organized as follows: Section 3.2 introduces NPI for circular data

as a method for inferences based on 2×2 table data. Sections 3.3 and 3.4 present the

NPI lower and upper probabilities for events involving multiple future observations.

Section 3.5 presents NPI-bootstrap for circular data as a computational method for

2× 2 table data. The chapter concludes with final remarks in Section 3.6.

3.2 NPI for circular data as method for 2×2 tables

In this section, we introduce a new method for inference from 2× 2 tables based on

NPI for circular data. The foundation of method is based on the A
(n)

assumption,

29
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C11
C12

C22
C21

n11 n12

n21 n22

Figure 3.1: Circular data representation for 2× 2 table data

a variant of Hill’s assumption A(n), discussed in Section 2.5. For simplicity, we

use the A
(n)

assumption for 2 × 2 tables to make each cell ij, referred to by Cij,

corresponding to category ij for i, j ∈ 1, 2. The A
(n)

assumption is used because

the categories are adjacent to each other. For 2 × 2 tables , we employ a latent

variable in a circular representation to represent the categories. This assumption

helps to compute the lower and upper probabilities for Xn+1; this will be discussed

later in this section.

It should be noted that each category Cij is divided into nij equal-sized segments.

Each observation is represented by a single segment of the probability wheel, where a

segment is the area between two lines from the center to its circumference. According

to the circular A
(n)

assumption given in Equation (2.5.1), the probability of the

next future observation falling into any given segment is 1
n
. Inferences about the

next observation are based on a latent variable representation using a probability

wheel.

For 2×2 table data, we can calculate NPI lower and upper probabilities without

adding any further additional assumptions. Let nij represent the numbers of obser-

vations in Cij, such that
∑

i,j nij = n for i, j ∈ {1, 2} (see Figure 3.1). Based on the

A
(n)

assumption, the NPI lower and upper probabilities for the event Xn+1 ∈ Cij,

referred to by P ij and P ij, are computed by Equations (3.2.1) and (3.2.2), respec-

tively. Hence, the lower probability P (Xn+1 ∈ Cij) is derived by summing only the

probability masses assigned to segments entirely within Cij, excluding any neigh-

boring segments. Conversely, the upper probability P (Xn+1 ∈ Cij) is obtained by

summing all probability masses assigned to segments within Cij, along with the
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probability mass for the neighboring segment of the category Cij. The lower and

upper probabilities for the event Xn+1 ∈ Cij for i, j ∈ {1, 2} can be derived using

NPI for circular data as :

P ij = P (Xn+1 ∈ Cij) =
nij − 1

n
for i, j ∈ {1, 2} (3.2.1)

where nij > 0 for i, j ∈ {1, 2}

P ij = P (Xn+1 ∈ Cij) =
nij + 1

n
for i, j ∈ {1, 2} (3.2.2)

NPI Lower Probabilities (P ij) calculated considering only segments completely within

the category Cij, excluding any adjacent segments. NPI Upper Probabilities (P ij)

calculated by including all segments within category Cij, plus one adjacent segment.

This accounts for the possibility that the next observation could fall into an adjacent

category due to the circular nature of the data.

Example 3.2.1. Consider the data in Table 3.1 with n = 7 observations, and

m = 1. Visualizing these data on a circular probability wheel, the wheel is divided

into 7 equal segments, each representing an observation with a probability of 1
7
.

Applying the A
(n)

assumption, we calculate the NPI lower and upper probabilities

for the event that the next observation for each category as follows. For C11 with

2 observations, the lower probability is P 11 = 2−1
7

= 1
7
, accounting for segments

entirely within C11, while the upper probability is P 11 = 2+1
7

= 3
7
, which includes

one adjacent segment. For C12 with 1 observation, the lower probability is P 12 =

1−1
7

= 0, indicating no segments entirely within C12, and the upper probability is

P 12 = 1+1
7

= 2
7
, including one adjacent segment. Similarly, for C21 and C22, each

with 2 observations, the lower probabilities are P 21 = P 22 = 2−1
7

= 1
7
, and the

upper probabilities are P 21 = P 22 =
2+1
7

= 3
7
. This example demonstrates how the

lower probability of each category accounts only for the segments entirely within

it, while the upper probability also includes one adjacent segment, reflecting the

circular nature of the data and the A
(n)

assumption.

Example 3.2.2. Responses for two independent samples of treatments at low and

high doses are shown in Table 3.2 [48]. This data helps evaluate the effectiveness
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Treatment 1 Treatment 2 Total

Group 1 2 1 3

Group 2 2 2 4

Total 4 3 7

Table 3.1: Comparison of the effectiveness of two treatments

Response
Total

Success Failure

Variables
High 41 9 50

Low 37 13 50

Total 78 22 100

Table 3.2: Response frequencies for low and high dose treatments.

of the treatment at different doses. The aim of this example is to show how to

compute the NPI lower and upper probabilities for X101. The NPI lower and upper

probabilities in Table 3.2, with n = 100 and m = 1, can be computed based on

Equations (3.2.1) and (3.2.2). The lower P 11 and upper P 11 probabilities for the

event of interest (X101 ∈ C11) are calculated as follows:

P 11 = P (X101 ∈ C11) =
41− 1

100
= 0.40

P 11 = P (X101 ∈ C11) =
41 + 1

100
= 0.42

Thus, the lower and upper probabilities for the event (X101 ∈ C11) are 0.40 and

0.42, respectively. This indicates the range within which we predict the probability

of success for the high dose treatment in the next trial. Table 3.3 shows the results

for the lower and upper probabilities for different cells.
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P ij P ij P ij P ij

0.40 0.08 0.42 0.10

0.36 0.12 0.38 0.14

Table 3.3: NPI lower and upper probabilities for the 2× 2 contingency table.

.
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C22C21

Figure 3.2: Illustration of segments between the two categories.

3.3 NPI lower probability for multiple future ob-

servations

In Section 2.5, inferences were presented for events involving multiple future obser-

vations based on A
(•). In this section, we present the NPI lower probabilities for

events involving multiple future observations based on A
(•) for 2×2 tables. For 2×2

table data, the NPI method employs an assumed underlying latent variable model

in which the categories are represented as intervals on a circular . This representa-

tion preserves the known ordering of the categories and facilitates the application of

assumption A
(•). The NPI lower probability for the future observation Xij = xij

for i, j ∈ {1, 2} is derived by counting all orderings where this event must hold. For

m ≥ 2 future observations, we use the notation Xij to denote the number of these m

future observations that fall into category Cij for i, j ∈ {1, 2}, such that Xij = xij.

Therefore,
∑

i,j Xij = m, representing the total number of future observations.

The total number of different arrangements of the original observations is equal

to
(
n+m−1

m

)
, representing the different orderings of m future observations among
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Control Treatment Total

Male 3 2 5

Female 4 3 7

Total 7 5 12

Table 3.4: Distribution of participants in control and treatment groups based on

gender.

the n data observations [20]. For the NPI lower probability, we only consider the

segments that are completely contained within the category Cij. Each category

includes only nij − 2 segments because two segments are associated with adjacent

categories, as shown in Figure 3.2, where the relevant segments are shaded. The

number of different arrangements of xij future observations within this segment is

equal to

(
xij + nij − 2

xij

)
(3.3.3)

The NPI lower probability for the event of interest, based on m future observa-

tions, is given by:

P ij

(⋂
i,j

{Xij = xij}

)
=

1(
n+m−1

m

) ∏
ij

(
xij + nij − 2

xij

)
(3.3.4)

where xij, for j = 1, 2, are non-negative integers with
∑

ij xij = m. Equation

3.3.4 defines the NPI lower probability for observing a specific distribution of m

future observations across all categories in a 2× 2 table. It is calculated by taking

the product of the binomial coefficients for each category Cij, which represent the

possible arrangements of observations within those categories, and then dividing by

the total number of possible arrangements of the m future observations among the

existing n data .

Example 3.3.1. To illustrate, we consider the simulated data in Table 3.4 with

n = 12 and m = 2 future observations such that X11 = 1, X12 = 1, X21 = 0, X22 = 0.

For the this event, NPI lower probability by using Equation (3.3.4), is
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P (X11 = 1, X12 = 1, X21 = 0, X22 = 0) =

(
3+1−2

1

)(
2+1−2

1

)(
4+0−2

0

)(
0+0−2

0

)(
12+2−1

2

) = 0.026

Table 3.5 presents the lower probabilities for different events with different num-

bers of future observations. As the number of future observations increases, NPI

lower probabilities decrease. From Table 3.5, it could be happened that all future

observations m = 5 falls into one category, with a probability of 0.001373 for the

event {5, 0, 0, 0}. Conversely, the event {0, 0, 2, 3}, where observations are spread

across categories, has a higher probability of 0.005494, making it more likely. The

probability is low because as the number of future observations increases, there are

more ways they can be distributed, making specific distributions less likely. For

example, having all future observations in one category is unlikely because they will

likely be spread across multiple categories. Also, the initial data distribution affects

these probabilities; categories that have very few observations in the current data

are less likely to receive many future observations. Table 3.6 presents the NPI lower

probabilities from Example 3.2.2 for n = 100 with different numbers of future ob-

servations. Similar to the results in Table 3.5, as the number of future observations

increases, the NPI lower probabilities decrease.

3.4 NPI upper probability for multiple future ob-

servations

The NPI upper probability for the event Xij = xij is determined by considering

all orderings where this event can hold. The upper probabilities for multiple future

observations are discussed in Section 2.5 . This section discusses the general case

of m future observations, where Xij represents the number of future observations in

Cij, and
∑

ij Xij = m for i, j ∈ {1, 2}. The event of interest is X11 = x11, X12 = x12,

X21 = x21, and X22 = x22. Based on A
(•), the number of different arrangements of

future m observations among n data observations is equal to
(
n+m−1

m

)
. Deriving an

exact equation for the NPI upper probability is difficult because future observations

can be placed in different segments between categories. Each way of arranging
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m = 2 m = 5

{x11, x12, x21, x22} P {x11, x12, x21, x22} P

{2,0,0,0} 0.0384 {5,0,0,0} 0.001373

{0,2,0,0} 0.0128 {0,5,0,0} 0.000228

{0,0,2,0} 0.0769 {0,0,5,0} 0.004807

{0,0,0,2} 0.0384 {0,0,0,5} 0.001373

{1,1,0,0} 0.0256 {2,2,1,0} 0.002060

{1,0,1,0} 0.0769 {1,1,0,3} 0.001831

{1,0,0,1} 0.0512 {0,0,2,3} 0.005494

{0,1,1,0} 0.0384 {1,1,3,0} 0.004578

{0,1,0,1} 0.0257 {2,1,1,1} 0.004120

{0,0,1,1} 0.0769 {3,0,0,2} 0.002747

Table 3.5: NPI lower probabilities for multiple future observations, Example 3.3.1

these observations affects which category they belong to. We need to consider all

possible orderings where the event of interest can occur. This requirement makes

it difficult to formulate an exact equation for the NPI upper probability. Instead,

an approximation can be derived using sampling of orderings. The approximation

procedure involves two main steps: first, we use the sampling of orderings approach

for circular data as discussed in Section 2.7. Then, for a given ordering of m future

observations among the n data observations, we aim to verify whether the event of

interest can occur or not.

Given n data observations with m future observations, the
(
n+m−1

m

)
different

orderings of all these observations are equally likely on the circle, where each ordering

Oj for j = 1, . . . ,
(
n+m−1

m

)
can be represented by (s1, . . . , sn), and si is the number

of future observations that fall into Cij for i, j ∈ {1, 2} such that
∑n

i=1 si = m.

Consider the data with nij observations in Cij categories for i, j ∈ {1, 2}, such that

nij in Cij for i, j ∈ {1, 2}, so
∑

i,j nij = n for i, j ∈ {1, 2}. Let Xij be the number out

of these m future observations that fall into Cij for i, j ∈ {1, 2}, such that Xij = xij

for i, j ∈ {1, 2}.
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m = 5 m = 10

{x11, x12, x21, x22} P {x11, x12, x21, x22} P

{5,0,0,0} 0.011800 {10,0,0,0} 0.000192

{0,5,0,0} 0.000008 {2,1,6,1} 0.008302

{0,0,5,0} 0.007155 {1,1,1,7} 0.000008

{0,0,0,5} 0.000047 {1,1,5,3} 0.001797

{2,1,2,0} 0.047508 {2,2,4,2} 0.004442

{1,1,3,0} 0.029354 {2,5,2,1} 0.000121

{3,0,1,1} 0.053928 {3,2,2,3} 0.002349

{0,2,3,0} 0.003302 {5,2,2,1} 0.007328

{2,1,1,1} 0.030816 {6,1,2,1} 0.012214

{2,1,0,2} 0.005564 {4,1,1,4} 0.001137

Table 3.6: NPI lower probabilities for multiple future observations, Example 3.2.2

Given a vector (s1, . . . , sn) with
∑n

j=1 sj = m, the m future observations can fall

entirely within specific categories or across neighboring segments. We define sij as

the number of segments completely within category Cij for i, j ∈ {1, 2}, as shown in

Figure 3.3. Specifically, for category C11, the segments are given by s11 =
∑na−1

i=1 si,

while for C12, they are given by s12 =
∑nb−1

i=na+1 si. Similarly, for C22, the segments are

given by s22 =
∑nc−1

i=nb+1 si, and for C21, the segments are given by s21 =
∑nd−1

i=nc+1 si.

Here, the indices a, b, c, and d are defined as na = n11, nb = n1+, nc = n11+n12+n22,

and nd = n. For example, with n11 = 3, n12 = 2, n22 = 2, and n21 = 3, the segments

are s11 = s1 + s2, s12 = s4, s22 = s6, and s21 = s8 + s9. This means that category

C11 includes the first two segments, C12 includes the fourth segment, C22 includes

the sixth segment, and C21 includes the eighth and ninth segments. Additionally,

the segments s3, s5, s7, and s10 are neighboring segments in the circle.

We can represent the segments of the circle between two neighboring observations

in neighboring categories such that sa represents the segment between the categories

C11 and C12, sb corresponds to the segment between categories C12 and C22, sc

denotes the segment between categories C22 and C21, and finally, sd represents the
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Figure 3.3: Illustration of sij, where sij is the number of segments that are com-

pletely in category Cij, and the shaded areas sa, sb, sc and sd are the segments

between any two categories.

segment between categories C21 and C11. The values sa , sb , sc , and sd can be any

non-negative integers. Let s∗ be the neighboring segment between any two categories

and sij∗ be the number of future observations that are located in the segment ∗ from

category Cij. We can represent the segments as follows:

sa = s11a + s12a , for s11a , s12a ∈ {0, . . . , sa}

sb = s12b + s22b , for s12b , s22b ,∈ {0, . . . , sb}

sc = s22c + s21a , for s22c , s21c ∈ {0, . . . , sc}

sd = s11d + s21d , for s11d , s21d ∈ {0, . . . , sd}

In the segments of categories Cij for i, j ∈ {1, 2}, we investigate how the future

observations are assigned based on the sampled of ordering for i, j ∈ {1, 2}. For

category C11, there are x11 future observations distributing between the segments,

which may be inside the category or in the neighboring segments. This means

that x11 = s11 + s11a + s11d . In the categories C12, C22, and C21, it is clear that

x12 = s12+s12a +s12b , x22 = s22+s22b +s22c , and x21 = s21+s21d +s21c , respectively. It is

possible to have some future observations in the neighboring segments, but we have

no information for which categories they belong to. To overcome this complexity,

Algorithm 1 will be used. Algorithm 1 checks whether the event Xij = xij can occur

based on sampled of orderings. The inputs include sij, xij, sa, sb, sc, and sd. The
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outputs of the Algorithm 1 indicates whether the event Xij = xij can occur or not.

The Algorithm 1 checks whether the event Xij = xij occurs for a given ordering

of future observations among the data observations. At first, it checks if sij > xij for

any i, j ∈ {1, 2}; if so, the event is deemed negligible and cannot hold. If sij = xij,

the event must hold, and all segments between categories are set to zero. When

Xij = xij can potentially hold, the algorithm investigates each category individually:

for C11, if s
11 < x11, it distributes the remaining x11 − s11 observations between s11d

and s11a ; similarly, for C12, C22, and C21, it allocates the excess observations to their

respective neighboring segments s12a and s12b for C12, s
22
b and s22c for C22, and s21d

and s21c for C21. After evaluating these conditions, the algorithm categorizes each

ordering: if Step1 is satisfied, the event cannot occur; if Step2 is satisfied, the event

must occur and increments the count for the NPI lower probability; if Step3 is

satisfied, it increments the count for the NPI upper probability. By performing this

procedure n∗ times, the algorithm approximates the NPI lower probability by Count

the total number of times the event must hold and divide by n∗ , and approximates

the NPI upper probability by count the total number of times the event can hold

and divide by n∗.

To measure the effectiveness of the algorithm in providing an approximation

for P ij, this algorithm will be used to approximate the NPI lower probability and

compared to the exact value according to Equation (3.3.4). In Example 3.4.1, ap-

proximation are provided for both NPI lower and upper probabilities based on the

Algorithm 1, along with the exact results for the NPI lower probability, which are

based on Equation (3.3.4). The comparison gives insights on how Algorithm 1 is

good to present approximations for the NPI lower probabilities; therefore, Algorithm

1 can be used to approximate the NPI upper probability. This defines the NPI lower

probability P{x11, x12, x21, x22} and upper probability P{x11, x12, x21, x22}, corre-

sponding to the event where X11 = x11, X12 = x12, X21 = x21, and X22 = x22.

Example 3.4.1. Consider the data in Table 3.7 with n = 40 observations, and

m = 15 future observations such that X11 = 3, X12 = 4, X21 = 3, X22 = 5. In this

example, we approximate NPI lower and upper probabilities based on the Algorithm

1.
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Algorithm 1 Checking the occurrence of the event Xij = xij

and approximate NPI lower and upper probabilities .

1: If sij > xij for i, j ∈ {1, 2}, then this situation will be neglectable.

2: If sij = xij for i, j ∈ {1, 2}, then the segment between any two categories will

be equal to 0.

3: If Xij = xij can be true and hold, the following situations should be investigated.

(i) If s11 < x11, then x11 − s11 = s11d + s11a , where s11d ∈ {0, . . . , sd} and

s11a ∈ {0, . . . , sa}.

(ii) If s12 < x12, then x12 − s12 = s12a + s12b , where s12a = sa − s11a for s12a ∈

{0, . . . , sa} and s12b = x12 − s12 − s12a for s12b ∈ {0, . . . , sb}.

(iii) If s22 < x22, then x22 − s22 = s22b + s22c , where s22b = sb − s12b for s22b ∈

{0, . . . , sb} and s22c = x22 − s22 − s22b for s22c ∈ {0, . . . , sc}.

(iv) If s21 < x21, then x21 − s21 = s21d + s21c , where s21d = sd − s11d for s21d ∈

{0, . . . , sd} and s21c = sc − s22c for s21c ∈ {0, . . . , sc}.

1. If Step 1 is satisfied, then the event of interest cannot be true.

2. If Step 2 is satisfied, then the event of interest must be true. Count the

total number of times the event must hold and divide by n∗; this gives the

approximate NPI lower probability P .

3. If Step 3 is satisfied, then the event of interest can be true. Count the

total number of times the event can hold and divide by n∗; this gives the

approximate NPI upper probability P .
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Treatment 1 Treatment 2 Total

Group 1 11 9 20

Group 2 10 10 20

Total 21 19 40

Table 3.7: Comparison of the effectiveness of two treatments

Table 3.8 presents the approximations of the NPI lower P{3,4,3,5} and upper

P{3,4,3,5} probabilities for the event X11 = 3, X12 = 4 ,X21 = 3, X22 = 5 with

sampling of orderings of size n∗. When n∗ = 100, NPI lower probability for the

event X11 = 3, X12 = 4 ,X21 = 3, X22 = 5 is equal to 0, then as n∗ increases

to 500 and 1000, it becomes 0.0020 and 0.0010, respectively. From n∗ = 2000 to

n∗ = 200, 000, the approximate NPI lower probabilities are nearly identical to the

exact lower probability, which is equal to 0.0018 and calculated by Equation (3.3.4).

When n∗ = 100, the NPI upper probability is equal to 0.0200, then as n∗ increases

to 500 and 1000, it becomes 0.0280 and 0.0240, respectively. From n∗ = 2000 to

n∗ = 200, 000, the NPI upper probabilities are nearly identical. This note leads

to choose n∗ = 2000 because of having stability in the approximations. For the

approximations of the NPI lower and upper probabilities, 95% confidence intervals

are provided using the Clopper–Pearson interval in Equation (2.7.4), and it is clear

and sensible that the confidence intervals become narrower as n∗ increases. Here,

our focus is only on computing the values for the lower and upper bounds, while

simply noting that the confidence interval can be applied. When the NPI lower

and upper probability approximations are small, the Clopper–Pearson interval pro-

vides accurate and reliable confidence bounds, effectively addressing the challenges

of extreme probabilities. From the presentation of Table 3.8, the algorithm with

using sampling of orderings presents nearly identical results to the exact NPI lower

probability when n∗ ≥ 2000. This gives insights that the algorithm can give good

results for the NPI upper probability as n∗ ≥ 2000

It is worth to see the repetition of using the algorithm with sampling of orderings

to approximate the NPI lower and upper probabilities for the event X11 = 3, X12 =

4, X21 = 3, X22 = 5. Figures 3.4 and 3.5 presents histograms for 100 approximations
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of NPI lower and upper probabilities for the event X11 = 3, X12 = 4, X21 = 3,

X22 = 5 with sampling orders n∗ = 10, 000 and 100, 000, respectively. Those figures

show that the NPI lower probability approximations are mostly near to 0.0018. For

the NPI upper probability, most approximations are between 0.024 and 0.028. The

ranges of approximations become smaller as the sampling of orderings n∗ increases

to 100,000. This leads to more evidence that the NPI lower and upper probabilities

are approximately equal to 0.0018 and 0.026, respectively.

Table 3.9 presents the approximations of NPI lower and upper probabilities based

on Example 3.4.1 with event X11 = 5, X12 = 3, X21 = 2, and X22 = 5 using

sampling orderings of size n∗. When n∗ = 100, the NPI lower probability for the

eventX11 = 5,X12= = 3, X21 = 2, and X22 = 5 is equal to 0, then as n∗ increases

to 500 and 1000, it becomes 0.0014 and 0.0012, respectively. From n∗ = 2000 to

n∗ = 200, 000, the approximate NPI lower probabilities are nearly identical with the

exact lower probability, =0.0017, which is calculated by Equation (3.3.4). When

n∗ = 100, the NPI upper probability is equal to 0.0190, then as n∗ increases to

500 and 1000, it becomes 0.0180 and 0.0320, respectively. From n∗ = 2000 to

n∗ = 200, 000, the approximate NPI upper probabilities are nearly identical. For

the approximations of NPI lower and upper probabilities, 95% confidence intervals,

and it is clear that the confidence intervals become narrower as n∗ increases.
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n∗ P{3,4,3,5} 95% CI P{3,4,3,5} 95% CI

100 0 (0, 0.0362) 0.0200 (0.0024, 0.0703)

500 0.0020 (0.0001, 0.0110) 0.0280 (0.0153, 0.0465)

1000 0.0010 (0.0002, 0.0055) 0.0240 (0.0154, 0.0355)

2000 0.0016 (0.0003, 0.0045) 0.0265 (0.0199, 0.0345)

5000 0.0018 (0.0008, 0.0034) 0.0264 (0.0221, 0.0312)

10,000 0.0016 (0.0009, 0.0025) 0.0254 (0.0224, 0.0286)

20,000 0.0020 (0.0009, 0.0026) 0.0242 (0.0221, 0.0264)

100,000 0.0017 (0.0014, 0.0019) 0.0254 (0.0244, 0.0263)

200,000 0.0018 (0.0016, 0.0019) 0.0262 (0.0255, 0.0269)

Table 3.8: Approximations of NPI lower and upper probabilities for the event X11 =

3, X12 = 4 , X21 = 3, X22 = 5, Example 3.4.1
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Figure 3.4: The approximations of NPI lower(left) and upper (right)probabilities for

for the eventX11 = 3, X12 = 4, X21 = 3, X22 = 5 with n∗ = 10, 000 and repetition

for 100 times.
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n∗ P{5,3,2,5} 95% CI P{5,3,2,5} 95% CI

100 0 (0, 0.0385) 0.0190 (0.0021, 0.0688)

500 0.0014 (0.0003, 0.0100) 0.0180 (0.0082, 0.0338)

1000 0.0012 (0.0002, 0.0059) 0.0320 (0.0219, 0.0448)

2000 0.0015 (0.0006, 0.0043) 0.0240 (0.0177, 0.0316)

5000 0.0016 (0.0008, 0.0031) 0.0210 (0.0172, 0.0253)

10,000 0.0014 (0.0007, 0.0023) 0.0210 (0.0182, .02400)

20,000 0.0013 (0.0008, 0.0019) 0.0200 (0.0181, 0.0220)

100,000 0.0016 (0.0014, 0.0018) 0.0210 (0.0201, 0.0219)

200,000 0.0017 (0.0015, 0.0018) 0.0220 (0.0213, 0.0226)

Table 3.9: Approximations of NPI lower and upper probabilities for for the

eventX11 = 5, X12 = 3, X21 = 2, X22 = 5, Example 3.4.1
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Figure 3.5: The approximations of NPI lower(left) and upper (right)probabilities for

for the eventX11 = 3, X12 = 4, X21 = 3, X22 = 5 with n∗ = 100, 000 and repetition

for 100 times.
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3.5 NPI-bootstrap for 2× 2 tables

To enable computation in some NPI scenarios, Coolen and Binhimd [11, 23] intro-

duced the NPI-bootstrap method, indicated by NPI-B, and discussed in Section 2.6.

The NPI-B algorithm can be adapted for circular data, making it applicable for

inferences in our NPI method for 2× 2 table data. NPI-B is based on A
(•), which

was discussed in Section 2.5, and it is consistent with the idea that all orderings of

future observations are equally likely. The algorithm of NPI bootstrap depends on

the n segments created by the original data. For the NPI-B method, one segment is

uniformly sampled, and the sampled segment is added to the original n segments.

This leads to n + 1 segments. From the n + 1 segments, one segment is sampled

uniformly and added, leading to n + 2 segments. This process is repeated m times

to generate one NPI bootstrap sample of size m. The NPI-B for 2 × 2 tables as

circular representation algorithm is as follows:

Algorithm 2 The NPI-B for 2× 2 tables

1. The circle is divided into n segments based on the original observations.

Each segment corresponds to a specific category and the segments between

neighboring categories are considered.

2. One segment is sampled uniformly from the n segments and added to the

original segments, leading to n+ 1 segments.

3. Repeat step 2, now with n+ 1 segments, to get n+ 2 segments.

4. Repeat this process m times to get an NPI bootstrap sample of size m.

5. Count how many generated segments belong to each category and use these

counts to form a new 2× 2 table.

6. Repeat all steps B times to obtain B NPI bootstrap samples, each of size

m, where B is any chosen integer value.

In this NPI-B algorithm, special attention be given to Step 2. When selecting

one neighboring segment, which is between any two categories, the segment will be

assigned to one category with a probability based on the number of observations in

those categories in the original data. Each segment between categories is randomly



3.6. Concluding remarks 46

assigned to one of the two categories based on a predefined probability. Segment

sa can be assigned to either C11 or C12 with probabilities n11

n1+
and n12

n1+
, respectively.

Segment sb can be assigned to either C12 or C22 with probabilities n12

n+2
and n22

n+2
,

respectively. Segment sc can be assigned to either C21 or C22 with probabilities n21

n2+

and n22

n2+
, respectively. Finally, segment sd can be assigned to either C21 or C11 with

probabilities n21

n+1
and n11

n+1
, respectively. These methods will be used in Chapters 4,

5, and 6.

3.6 Concluding remarks

In this chapter, NPI has been presented for circular data as a method for inference

based on 2× 2 table data. The NPI lower and upper probabilities are computed for

one future observation based on A
(n)

and for multiple future observations based

on A
(•). For one and multiple future observations, the NPI lower probabilities

can be derived by exact formulas. In case of one future observation, it is simple

to compute the NPI upper probability by an exact formula, but for multiple future

observations, an exact formula for the NPI upper probability has not been derived,

so an algorithm has been proposed to find an approximation.

For multiple future observations, the NPI lower probabilities are approximated

by the algorithm and compared to the results computed by the exact formula. It

is found that the approximations are nearly identical to the exact results as the

sampling of orderings n∗ is equal to 2000 or greater. This comparison is conducted

to show how good the algorithm with sampling of ordering is to approximate the

NPI lower probabilities, and due to the good results, the algorithm can be used to

approximate the NPI upper probabilities. The NPI-B is a computational version of

the NPI adapted for circular data, which used for inferences with 2× 2 table data,

and will be used in the following chapter.



Chapter 4

NPI Reproducibility of Tests

based on 2× 2 Contingency Tables

4.1 Introduction

The test reproducibility probability results is an important aspect of practical statis-

tics. Test reproducibility probability is the probability that the hypothesis test out-

come will be the same if an experiment is repeated in the same way as the original

experiment. The definition of reproducibility and various methods were discussed

in Section 2.3.

This chapter presents an investigation into the reproducibility of statistical hy-

pothesis tests based on 2 × 2 tables. The tests covered are tests of independence,

Fisher’s exact test, and McNemar’s test. Given its predictive nature, NPI is well-

suited for inferences about reproducibility. The NPI approach provides a natural

solution to the test reproducibility problem because it is fundamentally predictive.

Test reproducibility is naturally considered a predictive inference problem because

it involves estimating the probability that the test outcome will remain the same in

future applications [11]. The NPI lower and upper RPs for hypothesis tests based

on 2× 2 tables are computed using sampling of orderings for circular data. Further-

more, the NPI-bootstrap (NPI-B) is employed to evaluate RP values for hypothesis

tests based on 2× 2 table.

The main aim is to use NPI sampling of orderings and NPI-B to assess the

47
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reproducibility of statistical hypothesis tests based on 2 × 2 tables. The explicitly

predictive nature of NPI and NPI-B provides an appropriate formulation for inferring

reproducibility. When the n data observations from the first test are used, the NPI-

RP approach calculates a lower and upper probability that the test statistic will

reject or not reject the null hypothesis, based on all possible order of n future

observations and n data observations. Instead of considering all possible order,

Coolen and Marques [24] proposed sampling future orders to approximate NPI-RP

for larger sample sizes. We investigate the sampling of the orderings of future data

among the observed data for circular data to approximate the lower and upper

reproducibility probabilities for statistical hypothesis tests based on 2× 2 tables.

The structure of this chapter is as follows: Section 4.2 introduces the NPI sam-

pling of orderings and NPI bootstrap methods for reproducibility of the chi-square

test and likelihood ratio “tests of independence. Section 4.3 explores reproducibility

for McNemar’s test using the same methods. Section 4.4 covers these approaches for

the Fisher exact test. The chapter concludes with final remarks in the last section.

4.2 Reproducibility of tests of independence

This section introduces the use of NPI sampling of orderings and NPI-B for re-

producibility of the chi-square test and likelihood ratio test of independence. It is

common to use chi-square and likelihood ratio statistical tests to analyse 2×2 tables

to assess to the two variables independence. In NPI-RP, reproducibility of tests is

viewed from the perspective of prediction rather than estimation. This approach

focuses explicitly on future observations and relies on few assumptions, which causes

imprecision that can be quantified through lower and upper probabilities. Section

4.2.1 introduces approximations of NPI-RP for chi-square and likelihood ratio tests

of independence, while Section 4.2.2 introduces the NPI-B approach to RP for these

tests.
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4.2.1 NPI-RP for tests of independence

We study the reproducibility of tests of independence using NPI sampling of or-

derings in this section. A fundamental concept of the NPI-RP approach is that

it considers all possible orderings of n future observations among n existing data

observations, each occurring with equal probability. The same test is applied to

the future data sets as it was on the original data, and the proportion of these that

reach the same conclusion as the original test is investigated. Deriving the NPI lower

and upper reproducibility for a test is not analytically straightforward. Calculating

NPI-RP for large datasets is computationally difficult because the number of possi-

ble orderings of future observations increases, leading to longer computation times.

When the sample size is large, it is difficult to consider all the orderings required

to calculate NPI-RP. Consequently, calculating NPI-RP for such large samples be-

comes complicated. As an alternative to considering all possible ordering, Coolen

and Marques [24] propose sampling future of ordering instead of considering all

possible ordering to approximate NPI-RP for larger sample sizes. In this work, we

use sampling of orderings for circular data for chi-square and likelihood ratio tests.

The aim of this section is to present approximating NPI-RP lower and upper repro-

ducibility probability for the tests of independence. In this thesis, we approximate

the NPI-RP lower and upper reproducibility probabilities through the sampling of

orderings, rather than calculating the exact NPI-RP lower and upper reproducibility

probabilities. For simplicity, this sampling method will be referred to as NPI-RP.

Considering m = n, the
(
2n−1
n

)
represent different orderings of n future obser-

vations among the n data observations on the circle and denoting the number of

orders, Oj for j = 1, . . . ,
(
2n−1
n

)
. Each ordering Oj can be represented by (s1, . . . , sn)

for i = 1, 2, ..., n, where si is the number of future observations in Cij for i, j ∈ {1, 2}

with respect to ordering Oj such that
∑n

i=1 si = m. Given vector (s1, . . . , sn) with∑n
i=1 si = m, where the m future observations could be completely inside the cat-

egories or in the neighboring segments. Let sij is the number of segments that are

completely in category Cij for i, j ∈ {1, 2}. The segments between neighboring ob-

servations in different categories are denoted as sa, sb, sc, and sd(as explained in

Section 3.4 ). Each segment can contain any number of observations from 0 to m.
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Deriving a formula to generate the minimum and maximum values of the test

test statistic for n future observations with a given ordering Oj is challenging. The

difficulty lies in determining which category to assign a segment to which falls be-

tween any two categories in order to generate the minimum and maximum values for

the tests. The segments of the circle between two neighboring observations among

the categories are sa, sb, sc, and sd. Specifically, sa represents the segment between

categories C11 and C12, sb corresponds to the segment between C12 and C22, sc de-

notes the segment between C22 and C21, and sd uses the segment between C21 and

C11. Therefore, to obtain the maximum and minimum values for independence test

statistics, we need to assign the segment values between two categories in a way that

minimises and maximises the resulting test statistics. All future observations within

one segment can be entirely assigned to one of the two categories at a time, or they

can be shared between two categories. For example, if the segment sa between C11

and C12 has a value of 3, the possible combinations are (3,0), (0,3), (1,2), and (2,1).

Similar considerations apply to sb, sc, and sd. We then apply the independence test

on the combinations of segments and select the minimum and maximum values of

the test statistics. However, determining the minimum and maximum values for

some tests of independence such as the chi-square test is challenging. Therefore, an

algorithm is needed to generate all combinations, calculate the minimum and max-

imum values, and perform the computation of the lower and upper RP. Algorithm

3 calculates NPI-RP approximations for tests of independence.

Algorithm 3 provides a systematic approach to approximate the NPI lower and

upper reproducibility probabilities for tests of independence by sampling orderings

of future observations among the data observations. This method is particularly

useful when dealing with large datasets where considering all possible orderings is

computationally infeasible. The algorithm begins by applying the test of indepen-

dence, such as the chi-square or likelihood ratio test, to the original sample to make

a decision about the null hypothesis H0. The outcome of this test is recorded as C∗,

where C∗ = 1 if H0 is rejected and C∗ = 0 if it is not rejected.

In the next step, a specific ordering of the n future observations among the cor-

responding n data observations is sampled, denoted by the vector (s1, s2, . . . , sn).
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Algorithm 3 NPI-RP approximations for test of independence

1: Apply the test of independence on the original sample, and make a decision

about H0, then record the test outcome: C∗ = 1 if H0 is rejected and C∗ = 0 if

H0 is not rejected.

2: Sample a specific ordering of the n future observations among the corresponding

n data observations (s1, s2, . . . , sn).

3: For this ordering in Steps 2, calculate possible combinations of segments between

two categories using t1, t2, t3, t4:

n11 = s11 + t1 + t2, t1 ∈ {0, 1, . . . , sa},

n12 = s12 + (sa − t1) + t3, t2 ∈ {0, 1, . . . , sd},

n21 = s21 + (sd − t2) + t4, t3 ∈ {0, 1, . . . , sb},

n22 = s22 + (sb − t3) + (sc − t4), t4 ∈ {0, 1, . . . , sc},

4: Compute the χ2 or G2 test statistics and corresponding p-value for all combina-

tions from Steps 3 to find the minimum and maximum of the χ2 or G2.

5: Perform Steps 2-4 n∗ times to obtain n∗ values of the minimum and maximum

χ2 or G2, and each time record the test outcome : C∗
Minj

= 1 , C∗
Maxj

= 1, if H0

is rejected, and C∗
Minj

= 0, C∗
Maxj

= 0 if H0 is not rejected.

6: Approximate the NPI lower and upper probabilities for test reproducibility of

the n∗ sampled ordering, for the case that H0 was rejected for the original test

data:

RP =
1

n∗

n∗∑
j=1

1(C∗
Minj

= 1)

RP =
1

n∗

n∗∑
j=1

1(C∗
Maxj

= 1)

7: Approximate the NPI lower and upper probabilities for test reproducibility of

the n∗ sampled ordering, for the case that H0 was not rejected for the original

test data:

RP =
1

n∗

n∗∑
j=1

1(C∗
Minj

= 0)

RP =
1

n∗

n∗∑
j=1

1(C∗
Maxj

= 0)
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For this sampled ordering, we calculate all possible combinations of future observa-

tions allocated to the segments between neighboring categories on the circle. This

involves using variables t1, t2, t3, and t4, where each tk ranges from 0 to the to-

tal number of future observations in the corresponding segment. These variables

represent the number of future observations assigned to each segment between the

categories. We then compute the counts for the contingency table based on these

allocations. By exploring all possible values of tk, we generate all combinations of

future observations in these segments.

After calculating the counts for each combination, we compute the test statis-

tics (either χ2 or G2) and the corresponding p-values. This allows us to identify the

minimum and maximum values of the test statistics for the sampled ordering. We re-

peat this process n∗ times, each time sampling a new ordering of future observations

and calculating the associated minimum and maximum test statistics. We record

whether the null hypothesis H0 would be rejected at the minimum and maximum

test statistics, denoted as C∗
Minj

and C∗
Maxj

, respectively. Specifically, C∗
Minj

= 1 if

H0 is rejected at the minimum test statistic and C∗
Minj

= 0 otherwise; similarly for

C∗
Maxj

.

Finally, we approximate the NPI lower and upper reproducibility probabilities

based on these outcomes. If the original test rejectedH0, the NPI lower reproducibil-

ity probability is approximated by the proportion of sampled orderings where H0 is

also rejected at the minimum test statistic. The NPI upper reproducibility proba-

bility is approximated by the proportion where H0 is rejected at the maximum test

statistic. Conversely, if the original test did not reject H0, we calculate the lower

and upper reproducibility probabilities based on the proportion of times H0 is not

rejected in the sampled orderings.

4.2.2 NPI-B-RP for tests of independence

In the previous section, NPI sampling of orderings was introduced to study the

NPI-RP for chi-square test of independence and the likelihood ratio test of inde-

pendence. However, NPI sampling of orderings may not always be feasible because

deriving the exact NPI lower and upper reproducibility probabilities can be chal-



4.2. Reproducibility of tests of independence 53

lenging for some test statistics. In this section, we introduce the NPI-B-RP method

to approximate the reproducibility probability for chi-square test of independence

and the likelihood ratio test of independence. The NPI-B-RP method uses a single

point estimate to represent the NPI reproducibility probability rather than providing

lower and upper reproducibility probabilities. We use NPI-Bootstrap, as described

in Section 3.5, to study the reproducibility of the chi-square and likelihood ratio

tests of independence.

The NPI-B-RP for the test of independence operates as follows. First, the test

of independence is applied to the original sample, and the outcome is recorded as

C∗ = 1 if the null hypothesis H0 is rejected, and C∗ = 0 if H0 is not rejected.

Next, an NPI-B sample is drawn based on the original sample, and the test of

independence is applied to this sample to obtain a test result. This step is repeated

B times, where each repetition is indexed by j = 1, . . . , B. For each test result, the

decision is recorded as C∗
j = 1 if H0 is rejected, and C∗

j = 0 if H0 is not rejected.

Following this, the relative proportion rp is calculated as rp =
∑B

j=1 1(C
∗ = C∗

j )/B,

where 1 is an indicator function. Finally, steps 2 through 4 are repeated a total of

h times, resulting in a set of rp values denoted by rp1, rp2, . . . , rph. Algorithm 4

applies the NPI-B approach to approximate the reproducibility probability for the

chi-square and likelihood ratio tests of independence. To achieve reliable results,

it is required to use larger values of B, such as 1000 or 2000 replications [33]. In

Algorithm 4, the number of runs h = 100 and the number of bootstrapped samples

per run B = 1000.

4.2.3 Examples

This section studies the reproducibility probability using chi-square and likelihood

ratio tests of independence. In Example 4.2.1, simulated data is used to investi-

gate reproducibility probability with the NPI-RP and NPI-B-RPapproaches, and

the results are then compared. In Example 4.2.2, data sets from the literature are

analysed to investigate reproducibility probability using the NPI-RP and NPI-B-RP

approaches. The results are compared to evaluate the effectiveness of these methods
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Algorithm 4 NPI-B-RP for the test of independence

1: Apply the test of independence on the original sample, then record the test

outcome: C∗ = 1 if H0 is rejected and C∗ = 0 if H0 is not rejected.

2: Draw a NPI-B sample based on the original sample and apply the test of inde-

pendence and obtain the results.

3: Repeat step 2 B times for j = 1, . . . , B and each time record the test decision:

C∗
j = 1 if H0 is rejected and C∗

j = 0 if H0 is not rejected..

4: Calculate rp, where rp =
∑B

j=1 1(C
∗ = C∗

j )/B.

5: Perform Steps 2-4 in total h times, leading to rp by rp1, rp2, · · · , rph.

Control Treatment Total

Male 14 5 19

Female 6 15 27

Total 20 20 40

Table 4.1: Distribution of participants in control and treatment groups based on

gender.

on a large dataset.

Example 4.2.1.

We explore NPI-RP for both the chi-square test and the likelihood ratio test

of independence for the dataset in Table 4.1. The chi-square test statistic is χ2 =

8.1203, with a corresponding p-value of 0.0044. The critical value is 3.84 at a

significance level of 0.05 with one degree of freedom, so we reject the null hypothesis

(H0). This outcome indicates a statistically significant relationship between gender

and treatment.

Table 4.2 presents the approximated NPI lower and upper reproducibility proba-

bilities and the corresponding 95% confidence intervals for various numbers of sam-

pled orderings n∗ for the chi-square test of independence. These confidence inter-

vals are calculated using the standard normal approximation outlined in Equation

(2.7.3).
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The likelihood ratio test statistic is G2 = 8.4238, and with a significance level

of 5% and one degree of freedom, the null hypothesis (H0) is again rejected. Table

4.3 presents the approximated NPI lower and upper reproducibility probabilities

and the corresponding 95% confidence intervals for different values of n∗ for the

likelihood ratio test of independence.

In this example, the likelihood ratio test and chi-square test of independence

produce similar results in assessing reproducibility. As shown in Tables 4.2 and 4.3,

reasonably accurate approximations of the RP and RP can be achieved when the

number of sampled orderings is equal to or greater than 2,000. According to Coolen

and Marques [24], sampling 2,000 orderings typically provides a reliable impression

of reproducibility for most practical applications. This quantity is relatively small

compared to the total number of possible orderings. When sampling is increased

to 100,000 orderings, it enables highly accurate approximations of the NPI lower

and upper reproducibility probabilities, though calculations with this number of

orderings require more computational time. NPI sampling of orderings offers a com-

putationally efficient method for approximating the lower and upper reproducibility

probabilities.

Using Algorithm 4 for Example 4.2.1, we obtained summary statistics including

the minimum, mean, and maximum values from rp1, rp2, . . . , rp100. The mean of

NPI-B-RP values for the chi-square and likelihood ratio tests of independence are

0.832 and 0.838, respectively. The mean of the NPI-B-RP values lies between the

approximations of the RP and RP reproducibility probabilities of the chi-square

and likelihood ratio tests of independence for n∗ = 100 to n∗ = 100,000.

Example 4.2.2. We explore NPI-RP for both the chi-square test and likelihood

ratio test of independence, with a sample size of n = 156, as shown in Table 4.4.

The data in Table 4.4 refer to the distance walked by 156 patients with degenerative

lumbar stenosis with neurogenic intermittent claudication before and after surgery

[4].

The chi-square test statistic is χ2 = 12.18399 and the corresponding p-value is

0.00048, The critical value is 3.84 at a significance level of 0.05 and one degree of

freedom so the null hypothesis H0 is rejected. By rejecting H0, we conclude that
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n∗ RP 95% CI RP 95% CI

20 0.5000 (0.3319, 0.7680) 0.8000 (0.6246, 0.9753)

100 0.5800 (0.4832, 0.6767) 0.8700 (0.8040, 0.9359)

500 0.5860 (0.5420, 0.6290) 0.9140 (0.8894, 0.9385)

1000 0.5880 (0.5574, 0.6185) 0.8900 (0.8706, 0.9093)

2000 0.5820 (0.5603, 0.6036) 0.9005 (0.8873, 0.9136)

5000 0.5854 (0.5717, 0.5990) 0.9036 (0.8954, 0.9117)

10,000 0.5881 (0.5784, 0.5977) 0.8935 (0.8874, 0.8995)

20,000 0.5930 (0.5861, 0.5998) 0.8969 (0.8927, 0.9011)

50,000 0.5896 (0.5852, 0.5939) 0.8960 (0.8933, 0.8987)

100,000 0.5898 (0.5867, 0.5928) 0.8959 (0.8940, 0.8978)

Table 4.2: RP and RP for an observed sample of Example 4.2.1 and for χ2 test for

different values of n∗.

there is a statistically significant association between the walking distance before

surgery and walking distance after surgery. Table 4.5 presents the approximated NPI

lower and upper reproducibility probabilities and the corresponding 95% confidence

intervals with different numbers of orderings sampled n∗ for the chi-square test of

independence. The likelihood ratio test statistic is G2 = 12.40068 and p-value is

0.00042, the H0 is reject as sign level 5%. Table 4.6 presents the approximated NPI

lower and upper reproducibility probabilities and the corresponding 95% confidence

intervals with different numbers of orderings sampled n∗ for likelihood ratio test

of independence. A comparison of the reproducibility of likelihood ratio test of

independence and chi-square test of independence indicated that their results were

closely similar. As n increases, the difference between RP and RP becomes smaller,

reflecting the large amount of information. Additionally, as we increase the number

of sampled orderings, we observe that the confidence interval for the lower and upper

reproducibility values becomes narrower

Additionally, we applied Algorithm 4 to Example 4.2.2. The mean of NPI-B-

RP values for the chi-square and likelihood ratio tests of independence are 0.906

and 0.904, respectively. Similarly, the mean of NPI-B-RP value falls between the
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n∗ RP 95% CI RP CI(0.95

20 0.6000 (0.3853, 0.8147) 0.8000 (0.6935, 1.0000)

100 0.6200 (0.5249, 0.7151) 0.9200 (0.8668, 0.9732)

500 0.5960 (0.5529, 0.6390) 0.8960 (0.8692, 0.9227)

1000 0.6070 (0.5767, 0.6373) 0.9050 (0.8868, 0.9232)

2000 0.5745 (0.5528, 0.5962) 0.9010 (0.8879, 0.9141)

5000 0.5880 (0.5744, 0.6016) 0.8880 (0.8793, 0.8967)

10,000 0.5954 (0.5858, 0.6050) 0.8984 (0.8925, 0.9043)

20,000 0.6005 (0.5937, 0.6073) 0.9011 (0.8970, 0.9052)

50,000 0.5953 (0.5910, 0.5996) 0.8973 (0.8947, 0.9000)

100,000 0.5929 (0.5899, 0.5959) 0.8998 (0.8979, 0.9017)

Table 4.3: RP and RP for an observed sample of for the data set in Example 4.2.1

and for G2 test for different values of n∗.

approximations of the RP and RP reproducibility probabilities of the chi-square

and likelihood ratio tests of independence for n∗ = 100 to n∗ = 100, 000.

4.2.4 Simulation studies

In this study, we investigate NPI-B-RP and approximate NPI-RP for the chi-square

test of independence and the likelihood ratio test of independence. We generate

data from a multinomial distribution with probabilities (0.25, 0.25, 0.25, 0.25) under

the null hypothesis and with probabilities (0.1, 0.5, 0.2, 0.2) under the alternative

hypothesis. The simulations were conducted by sampling under the alternative

hypothesis, as it resulted in more test statistics being close to the test threshold.

This simulation study uses the following inputs: n = 35, 70, and N = 50 simulations.

We examine the effect of increasing sample size on the patterns of RP values using

simulations. The critical value is 3.84 at a significance level of 0.05 and one degree

of freedom. For a sample size of n = 35, the power of the test with a medium

effect size w = 0.3 is approximately 0.426, and with a large effect size w = 0.5, the

power is approximately 0.84. For a sample size of n = 70, the power of the test
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After Surgery
Total

≤ 500m > 500m

Before Surgery
≤ 500m 56 37 93

> 500m 20 43 63

Total 76 80 156

Table 4.4: Walking distance before and after surgery in 156 patients with lumbar

stenosis.

n∗ RP 95% CI RP 95% CI

100 0.8700 (0.8040,0.9359) 0.9500 (0.9072, 0.9927)

500 0.8260 (0.7927,0.8592) 0.9140 (0.8894, 0.9385)

1000 0.8250 (0.8014, 0.8485) 0.9070 ( 0.8889, 0.9250)

2000 0.8160 (0.7990, 0.8329) 0.9150 (0.9027, 0.9272)

5000 0.8158 (0.8050, 0.8265) 0.9164 (0.9087, 0.9240)

10,000 0.8109 (0.8032, 0.8185) 0.9160 (0.9105, 0.9214)

20,000 0.8147 ( 0.8093, 0.8201) 0.9157 (0.9119, 0.9195)

50,000 0.8123 (0.8088, 0.8157) 0.9159 (0.9134, 0.9183)

100,000 0.8155 (0.8130, 0.8178) 0.9167 (0.9149, 0.9183)

Table 4.5: RP and RP for an observed sample for the data set in Example 4.2.2

and and for χ2 test for different values of n∗.

with a medium effect size w = 0.3 is approximately 0.70, and with a large effect

size w = 0.5, the power is approximately 0.98. The NPI-B method was used to

determine all RP values using B = 1000 bootstrap samples and h = 100. A sample

of size n is generated for each run from each of these multinomial distributions,

the chi-square test of independence is performed, and the corresponding p-value is

calculated. The NPI-B-RP and RP and RP are approximated for the chi-square

test of independence. The RP value is calculated using the NPI-B-RP and NPI-RP

methods, as outlined in Algorithms 3 and 4. Plots of these metrics for two different

sample sizes are presented in Figures 4.1 and 4.2, where simulations are conducted

under H0 and H1.
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n∗ RP 95% CI RP 95% CI

100 0.8000 (0.7216, 0.8783) 0.9300 (0.8799, 0.9800)

500 0.8180 (0.7841, 0.8518) 0.9340 (0.9122, 0.9557)

1000 0.8140 (0.7898, 0.8381) 0.9100 (0.8922, 0.9277)

2000 0.8155 (0.7985, 0.8324) 0.9135 (0.9011, 0.9258)

5000 0.8152 (0.8044, 0.8259) 0.9178 (0.9101, 0.9254)

10,000 0.8133 (0.8056, 0.8209) 0.9175 (0.9121, 0.9228)

20,000 0.8163 (0.8109, 0.8216) 0.9152 (0.9113, 0.9190)

50,000 0.8124 (0.8089, 0.8158) 0.9140 (0.9115, 0.9164)

100,000 0.8136 (0.8112, 0.8160) 0.9172 (0.9154, 0.9188)

Table 4.6: RP and RP for an observed sample for the data set in Example 4.2.2

and for G2 test for different values of n∗.

In this simulations, we examine the relationship between NPI-B-RP with the

p-value for the chi-square test of independence. The minimum, mean and maximum

are taken from rp1, rp2, · · · , rp100 from the Algorithm 4. Figure 4.1 shows RP values

using the NPI-Bootstrap method under H0 and H1 for samples of size 35 and 70.

In general, the RP increases when the p-value moves away from the threshold of

0.05. Based on the figures, it is evident that reproducibility is lowest around when

the observed p-value is close to the threshold 0.05. When the original test statistic

is close to the test threshold, NPI-B-RP is approximately 0.5. As long as further

information is not available, a repeat experiment would result in a second test statis-

tic that is equally likely to be larger or smaller than the original test statistic, and

therefore would result in a probability of 0.5 for the same conclusion. Repeating an

experiment with a test statistic that is far from the test threshold will likely pro-

duce a second test statistic that is far from the test threshold as well. Consequently,

when the test statistic moves away from the test thresholds, the RP values tend to

increase. When the p-value is 0.25, the NPI-B-RP is 0.75 or higher in non-rejection

cases. There are similar patterns observed in applications of NPI reproducibility for

different test scenarios [11, 67].
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(a) NPI-B-RP with n = 35, under H0 (b) NPI-B-RP with n = 35, under H1

(c) NPI-B-RP with n = 70, under H0 (d) NPI-B-RP with n = 70, under H1

Figure 4.1: Simulations under H0 and H1: NPI-B-RP values for chi-square test of

independence.

As the sample size increases, both rejection and non-rejection approaches 0.5

when p-values are close to the threshold 0.05, as well as RP values become less

variable. This occurs because increased sample size leads to an increase in the

power of tests. The patterns of RP change when simulations are conducted under

alternative hypothesis due to the change in p-value with respect to the the threshold

0.05. For the simulations underH1, increasing the sample size leads to more rejection

cases because the test becomes more powerful with a larger sample size.

In these simulations, the reproducibility is examined for the chi-square of inde-

pendence using the NPI sampling of orderings method. The effect of the number of

sampled orderings on the lower and upper RP values is examined using n∗ = 2000

and n∗ = 5000. We approximate NPI-RP by sampling of orderings rather than

considering all possible orders. Figures 4.2 show RP values using NPI sampling of

orderings method under H0 and H1 for samples of size 35 and 70. Figures 4.2 indi-

cate that there are no substantial differences on the patterns for different values of
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n∗. The number of orderings sampled can be increased in order to obtain more ac-

curate approximations of the RP and RP . When the sample size is small, the lower

reproducibility probabilities tend to approach 0.25 when the observed test statistics

are near the 0.05 threshold. In both sample sizes, the RP and RP tend to be less

than 0.75 when p-values are close to the threshold 0.05. When n increases from 35 to

70, the RP value tends to increase when the observed p-value of the chi-square test

approaches the threshold 0.05 and the difference between the lower and upper RPs

becomes narrower. There is a positive relationship between the power of the test

and the sample size, which means that a larger sample size gives a greater power.

Figure 4.2 focuses on approximated upper and lower probabilities, which rep-

resent imprecise probabilities. In contrast, Figure 4.1 illustrates the Bootstrap-RP

method, providing a point estimate of the reproducibility probability (RP) instead

of the interval defined by the lower and upper NPI-RP values. The Bootstrap-RP

method is repeated 100 times, generating values rp1, rp2, · · · , rp100 . From these val-

ues, the minimum and maximum are identified to determine the range for Bootstrap-

RP. Throughout the thesis, red circles indicate RP values for cases where the null

hypothesis is rejected, while blue circles represent RP values for cases where the null

hypothesis is not rejected.

The NPI-B-RP and NPI-RP are compared for the chi-square test with NPI-B-

RP and NPI for the likelihood ratio test. Note that the simulated data are the same

for chi-square test of independence and the likelihood ratio test of independence.

Figures 4.3 and 4.4 show RP values for the likelihood ratio test of independence

with two different sample sizes. The likelihood ratio test of independence produces

similar results as the chi-square test of independence. There were very similar results

when comparing the reproducibility of these two tests with simulated data under

H0 and H1. The likelihood ratio test and chi-square test are closely related in many

applications, particularly in large sample settings. As a result, it is expected that

both tests would yield similar RP values. Additional simulation results for NPI-

B-RP and NPI-RP of the chi-square test and the likelihood ratio test are provided

in Appendix A. We tested various values of n and observed a similar impact each

time, so we limited it to two values. This indicates that the RP values exhibit less



4.3. Reproducibility of McNemar’s test 62

fluctuation as the sample size increases, as clearly shown in the figures presenting

the simulation results.

4.3 Reproducibility of McNemar’s test

In this section, the reproducibility of McNemar’s test is investigated using the NPI

sampling of orderings and NPI-B methods. The null hypothesis is H0 : π12 = π21

and the alternative hypothesis is H1 : π12 ̸= π21, the level of significance is 0.05.

In this simulation study, the following inputs are used: n = 35, 70, and N = 50

simulations per run. Simulations are conducted to evaluate the NPI and NPI-B

methods for the RP of McNemar test of RP in accordance with the same steps as

for the test of independence described in Section 4.2. The simulations are performed

both under H0 and H1. Under H0, data are generated from the a multinomial

distribution with probabilities (0.25, 0.25, 0.25, 0.25). Under H1 data are generated

from a multinomial distribution with probabilities (0.1, 0.5, 0.2, 0.2). The power

of McNemar’s test with cell probabilities (0.1, 0.5, 0.2, 0.2) under the alternative

hypothesis is approximately 0.566 for a sample size of n = 35 and approximately

0.851 for a sample size of n = 70. The NPI-B-RP, RP , and RP are provided for the

McNemar’s test, and plots of these metrics for two different sample sizes under H0

and H1 are presented in Figures 4.5 and 4.6.

We examine the relationship between NPI-B-RP with the p-value for the Mc-

Nemar’s test. The minimum, mean and maximum of rp by rp1, rp2, · · · , rp100 are

computed. Figure 4.5 displays RP values using the NPI-Bootstrap method under

H0 and H1 for samples of size 35 and 70. The RP tends to increase when the p-

value is moved away from the the threshold 0.05. As can be seen from the figures,

reproducibility is at its lowest around the threshold of the test. When the p-value

is 0.75 the NPI-B-RP is higher than 0.85 in non-rejection cases (blue cases). In the

figures, NPI-B-RP tends to be lower when the null hypothesis is rejected (red cases)

than when it is not rejected (blue cases). When sample sizes increase, both rejec-

tion and non-rejection RP approach 0.5 when p-values are close to the the threshold

0.05, and RP values become less variable. This occurs because increased sample
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(a) n∗ = 2000 and n = 35, under H0 (b) n∗ = 2000 and n = 35, under H1

(c) n∗ = 5000 and n = 35, under H0 (d) n∗ = 5000 and n = 35, under H1

(e) n∗ = 2000 and n = 70, under H0 (f) n∗ = 2000 and n = 70, under H1

(g) n∗ = 5000 and n = 70, under H0 (h) n∗ = 5000 and n = 70, under H1

Figure 4.2: Approximation values of the upper (blue) and lower (black) RPs for 50

replications, for chi-square testing of independence.
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(a) NPI-B-RP with n = 35, under H0 (b) NPI-B-RP with n = 35, under H1

(c) NPI-B-RP with n = 70, under H0 (d) NPI-B-RP with n = 70, under H1

Figure 4.3: Simulations under H0 and H1: NPI-B-RP values for likelihood ratio test

of independence.

size leads to an increase in the power of the test. The patterns of NPI-B-RP change

when simulations are conducted under alternative hypotheses due to the change in

p-value with respect to the threshold 0.05. In the simulations under H1, increasing

the sample size results in more rejection cases since a larger sample size makes the

test more powerful.

The reproducibility of McNemar’s test is examined using the NPI sampling of

orderings method. Figure 4.6 shows RP values using the NPI sampling of orderings

method under H0 and H1 for samples of size 35 and 70. The p-value of McNemar’s

test, RP , and RP were determined for each simulated sample. The effect of the

sample size on RP and RP is examined using the number of orderings sampled,

n∗ = 2000 and n∗ = 5000. In both sample sizes, the values of RP and RP tend to

be less than 0.75 when the p-values are close to the threshold 0.05. Additionally, as

the sample size increases, the RP value approaches 0.4, and the observed p-value of

McNemar’s test approaches the threshold 0.05. Both RP and RP tend to increase

when the p-value moves away from the threshold 0.05. Furthermore, as the sample
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(a) n∗ = 2000 and n = 35, under H0 (b) n∗ = 2000 and n = 35, under H1

(c) n∗ = 5000 and n = 35, under H0 (d) n∗ = 5000 and n = 35, under H1

(e) n∗ = 2000 and n = 70, under H0 (f) n∗ = 2000 and n = 70, under H1

(g) n∗ = 5000 and n = 70, under H0 (h) n∗ = 5000 and n = 70, under H1

Figure 4.4: Approximation values of the upper (blue) and lower (black) RPs for 50

replications, for likelihood ratio testing of independence.
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(a) NPI-B-RP with n = 35, under H0 (b) NPI-B-RP with n = 35, under H1

(c) NPI-B-RP with n = 70, under H0 (d) NPI-B-RP with n = 70, under H1

Figure 4.5: Simulations under H0 and H1: NPI-B-RP for values McNemar’s test.

size increases, the difference between the lower and upper RPs becomes smaller,

reflecting the large amount of information. The power of the test is positively related

to sample size, meaning that a larger sample size gives greater power. Additional

simulation results for NPI-B-RP and NPI-RP of the McNemar’s test are provided

in Appendix A.

We compared the reproducibility of the chi-square test of independence, the

likelihood ratio test of independence, and McNemar’s test using the sampling of

orderings and NPI-B methods. Note that all simulated data sets are the same

for all the tests. McNemar’s test produces similar results as the chi-square test of

independence and the likelihood ratio test of independence for reproducibility for

both sampling of orderings and NPI-B methods.

4.4 Reproducibility of Fisher’s exact test

In this section, the reproducibility for the Fisher’s exact test of independence is

studied using the NPI sampling of orderings and NPI-B methods. The Fisher’s exact

test is a powerful statistical method commonly used when there are relatively small
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(a) n∗ = 2000 and n = 35, under H0 (b) n∗ = 2000 and n = 35, under H1

(c) n∗ = 5000 and n = 35, under H0 (d) n∗ = 5000 and n = 35, under H1

(e) n∗ = 2000 and n = 70, under H0 (f) n∗ = 2000 and n = 70, under H1

(g) n∗ = 5000 and n = 70, under H0 (h) n∗ = 5000 and n = 70, under H1

Figure 4.6: Approximation values of the upper (blue) and lower (black) RPs for 50

replications, for McNemar’s test.
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sample sizes. The data are generated under H0 from a multinomial distribution

with probabilities (0.25, 0.25, 0.25, 0.25), whereas under the under H1 the data

are generated from the multinomial distribution with probabilities (0.6, 0.1, 0.2,

0.2). In this simulation study, the following inputs are used: n = 12, and N = 50

simulations per run. Using the same steps as for the tests of independence in Section

4.2, simulated experiments are performed to evaluate the NPI sampling of orderings

and NPI-B methods for the Fisher’s exact test of RP. Plots of these metrics for

sample size are displayed in Figure 4.7 under H0 and H1.

Based on the simulations, we investigate the performance of NPI-B-RP for

Fisher’s Exact test. Using rp1, rp2, · · · , rp100, the minimal, mean, and maximal

values are calculated. Generally, the RP increases as the p-value moves away from

the test threshold. Reproducibility appears to be lowest around the threshold 0.05,

as shown in the figures. When the p-value is 0.25, the NPI-B-RP is higher then

0.75 in cases where the null hypothesis is not rejected (blue cases).It is clear that, as

expected, the simulations indicate that RP values based on NPI-B show variability

due to the small sample size. Similar findings with small sample sizes have been

observed in previous NPI studies of test reproducibility [11, 67].

In this study, a Fisher’s exact test is conducted on the reproducibility using the

NPI sampling of orderings method. Each simulated sample was given a p-value

of Fisher’s exact test, and the RP and RP were calculated. The RP tends to

approach 0.80 when p-values are close to thethreshold 0.05. As the observed p-value

of a Fisher’s exact test approaches the threshold 0.05, the RP value approaches 0.3.

When the p-value moves away from the threshold 0.05, both RP and RP tend to

increase.

4.5 Concluding remarks

Test reproducibility is well aligned with the explicit predictive nature of NPI. Test

reproducibility is the probability that the same test outcome would be obtained if

a test were repeated under identical circumstances with the same sample size. In

this chapter, we explored the estimation of reproducibility for tests of independence,
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(a) NPI-B-RP, under H0 (b) NPI-B-RP, under H1

(c) NPI-RP, n∗ = 2000, under H0 (d) NPI-RP, n∗ = 2000, under H1

(e) NPI-RP, n∗ = 5000, under H0 (f) NPI-RP, n∗ = 5000, under H1

Figure 4.7: Simulations under H0 and H1: values of NPI-RP and NPI-B-RP for

Fisher’s exact test, where n = 12.
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Fisher’s exact test, and McNemar’s test using NPI bootstrap and NPI sampling of

orderings. Through simulation studies, the reproducibility of tests has been studied

using the NPI ampling of orderings and NPI-B methods. By increasing sample size,

NPI-B-RP become close to 0.5 in both rejection and non-rejection cases when the

observed p-values approach the threshold 0.05. The variability in the RP values

decreases when the sample size is increased which results in a more powerful test.

The bootstrap approach to predicting RP avoids the difficulty of determining the

lower and upper boundaries in NPI-RP. In NPI-B-RP, we present the RP as a point

estimate rather than the lower and upper values. Reproducibility of chi-square test

of independence, the likelihood ratio test of independence and McNemar’s test were

also compared in the simulations and similar results were obtained.



Chapter 5

Bayesian Inference for

Reproducibility of Tests Based on

2× 2 Tables

5.1 Introduction

Chapter 4 introduced the NPI for the reproducibility probability in hypothesis tests

based on the 2× 2 table. In this chapter, we use Bayesian inference to evaluate the

reproducibility of hypothesis tests involving 2×2 contingency tables. Specifically, we

apply a Bayesian approach to analyze the observed data by defining prior distribu-

tions and likelihood functions, employing a Dirichlet prior alongside a multinomial

likelihood to derive the posterior distributions of the cell probabilities.

It is important to emphasize that while Bayesian inference is used to derive the

posterior distributions of the cell probabilities, the hypothesis testing itself is not a

Bayesian procedure. The focus of this chapter is on using predictive inference within

the Bayesian framework to measure reproducibility. This involves assessing how well

the posterior predictive distribution predicts future observations, providing insights

into the reproducibility of statistical tests.

Billheimer [10] discusses predictive inference within the Bayesian framework.

Billheimer [10] argues that statistical modeling should predict observable quantities

and events rather than make inferences through hypothesis testing or parameter

71
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estimation. Billheimer’s view is that rather than concentrating on unobservable

parameters, attention should be directed towards observable events.

Billheimer [10] suggests that while Bayesian statistics allow for predictive infer-

ence, the focus should be on predicting future observations rather than inferring

parameters. Bayesian statistics are not explicitly designed to be predictive like NPI.

Bayesian methods integrate prior information with observed data to update beliefs

about parameters, while NPI only uses a few modeling assumptions to make predic-

tions directly from data without prior knowledge. In this chapter, we will use the

same Algorithm 4 as discussed in Chapter 4. However, instead of sampling from

the NPI-B, we will sample from the posterior predictive distribution, as described

in Algorithm 5.

This chapter start with some background of Bayesian inference for 2× 2 contin-

gency tables in Section 5.2. Section 5.3 presents the Bayesian reproducibility using

chi-square test of independence, likelihood ratio test of independence, McNemars

test and, Fisher’s exact test. Finally, Section 5.4 provides some concluding remarks.

5.2 Bayesian inference for 2× 2 contingency table

Bayesian inference combines prior information with data based on Bayes’ rule [13,

71]. In this framework, the likelihood function is fundamental for updating the

prior distribution via Bayes’ theorem. The posterior distribution, considered the

updated probability distribution for the unknown parameters of a statistical model,

is obtained by combining both the prior distribution and the observed data. The

Bayesian framework using the Bayes rule can be expressed as:

p(π|n) = p(n|π).p(π)
π(n)

=
p(n|π).p(π)∫

π
p(n|π).p(π)dπ (5.2.1)

where p(π) is the prior distribution, p(n|π) is the likelihood function, and p(π|n) is

the posterior distribution and n is the observed data. Bayesian inference for 2 × 2

table uses a prior distribution on the parameters and expresses the results in the

form of a posterior distribution.

Bayesian inference is very useful for analysing contingency tables. Early studies

by Good [38, 39] and Lindley [54] showed the application of Bayesian methods
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to such data, utilising Dirichlet priors with multinomial distributions for efficient

calculations. Good [39] used this framework to estimate multinomial probabilities,

while Hoadley [43] showed that the method effectively generates posterior samples

that accurately represent the multinomial distribution.

Later, researchers like Albert and Gupta [5], Lecoutre and Camilo [53] and Kateri

and Agresti [50] also used Bayesian methods with Dirichlet priors to analyse tables,

especially 2×2 tables. They found this approach helpful for making predictions and

understanding the data.

Consider a 2× 2 table with observed data represented as n = (n11, n12, n21, n22)

with cell probabilities π = (π11, π12, π21, π22). The likelihood function is given by:

p(n|π) =

(
n!∏
i,j nij!

)∏
i,j

π
nij

ij (5.2.2)

This likelihood function is used for a 2× 2 table because it calculates the prob-

ability of seeing the specific counts based on the cell probabilities. It assumes that

the data follows a multinomial distribution, where each cell count is independently

determined based on the corresponding cell probability [2].

Dirichlet distributions are conjugate priors for multinomial distributions [59].

The Dirichlet distribution, denoted by Dir(α1, . . . , αk), has parameters αi > 0 for

i = 1, . . . , k. These parameters are associated with the probabilities π1, . . . , πk and

determine their expected values, where each πi ≥ 0 and
∑k

i=1 πi = 1. The probability

density function is given by:

p(π) =
Γ(B)∏k
i=1 Γ(αi)

k∏
i=1

παi−1
i (5.2.3)

where

B =
k∑

i=1

αi

The joint distribution for a 2 × 2 table can be represented using the Dirich-

let distribution with parameters α11, α12, α21, α22. The conjugacy of the Dirichlet

prior to the multinomial likelihood ensures that the posterior distribution remains

within the Dirichlet family, making Bayesian updating straightforward [59]. Con-

jugacy refers to the property that the prior and posterior distributions are in the
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same family when combined with the likelihood function. We use conjugate priors

like the Dirichlet distribution to maintain analytical simplicity and make compu-

tations easier. While non-conjugate priors can provide more flexibility or include

additional prior information, they often require numerical methods such as Markov

Chain Monte Carlo (MCMC) for posterior inference, which can be computationally

intensive [13, 71].

The posterior distribution for the Dirichlet distribution with a multinomial like-

lihood function is given by:

p(π|n) = p(n|π) p(π)
p(n)

∝ p(n|π)× p(π)

=

(
n!∏
i,j nij!

∏
i,j

π
nij

ij

)
×

(
Γ(B)∏
i,j Γ(αij)

∏
i,j

π
αij−1
ij

)

∝

(∏
i,j

π
nij

ij

)
×

(∏
i,j

π
αij−1
ij

)

=
∏
i,j

π
nij+αij−1
ij

= Dir

(
π

∣∣∣∣n11 + α11, n12 + α12, n21 + α21, n22 + α22

)
To compute the posterior predictive distribution for a single multinomial trial,

we start by integrating the likelihood of a new observation over the posterior dis-

tribution of the parameters. In the case of a single trial, the likelihood p(n̂ij | π)

simplifies to the probability πij of observing an outcome in cell (i, j). This means

the integral becomes
∫
πij p(π | n) dπ. Using the properties of the Dirichlet dis-

tribution, this expected value is calculated as
αij + nij

α0 + n
, where α0 =

∑
i,j αij is the

sum of the prior parameters and n =
∑

i,j nij is the total count of observed data

[59]. For a single multinomial trial, the posterior predictive distribution is:
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p(n̂ij|n) =
∫

p(n̂ij|π) p(π|n) dπ

=

∫
πij p(πij|n) dπij

= E(πij|n)

=
αij + nij∑
i,j(αij + nij)

=
αij + nij

α0 + n

Another way to sample from the posterior predictive distribution involves con-

sidering each probability vector π∗ from the posterior distribution and sampling a

new dataset n∗ from a multinomial likelihood function. The steps are:

1. Sample π∗ ∼ p(π|n), where π∗ are the probability vectors from the posterior

distribution.

2. Sample n∗ ∼ Multinomial(n,π∗).

3. The posterior predictive distribution is given by (n∗|n).

This posterior predictive sampling method originates from Bayesian statistics,

where predictions about new data are made by integrating over the posterior dis-

tribution of the parameters [59]. The notation p(n∗|n) represents the posterior

predictive distribution of new data n∗ given the observed data n.

5.3 Bayesian inference for test reproducibility

The reproducibility of a test is an important factor in determining the practical rele-

vance of test results. Recently, there has been a lot of interest in the reproducibility

probability (RP), which is not only estimated but also defined and interpreted dif-

ferently in the classical frequentist statistics framework. Reproducibility provides an

inference method for the probability for the event that, if repeated under identical

circumstances and with the same sample size, the test outcome will be the same.

Using Bayesian inference as detailed in Section 5.2, posterior predictive samples are

drawn to evaluate reproducibility. Section 5.2 outlines the Bayesian framework for
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Algorithm 5 Calculating Bayes-RP for tests of independence

1: Apply the tests of independence on the original sample, record the test outcome:

C∗ = 1 if H0 is rejected and C∗ = 0 if H0 is not rejected.

2: Draw a posterior predictive sample based on the original sample and apply a

test of independence.

3: Perform Step (2) q times for j = 1, . . . , q and each time record the test decision:

C∗
j = 1 if H0 is rejected and C∗

j = 0 if H0 is not rejected.

4: Calculate rp, where rp =
∑q

j=1 1(C
∗ = C∗

j )/q.

a 2×2 contingency table, including the use of Dirichlet priors and multinomial like-

lihoods. In this section, we use the Bayesian inference to study the reproducibility

of the chi-square test, likelihood ratio test, McNemar’s test and Fisher’s exact test,

the same tests considered in Chapter 4 but from NPI perspective.

5.3.1 Bayesian inference for reproducibility of tests of inde-

pendence

This section studies Bayesian inference for reproducibility of tests of independence.

Algorithm 5 uses Bayesian inference to evaluate the reproducibility probability for

test of independence, indicated by Bayes-RP. Goodman [40] employs a Bayesian ap-

proach using a non-informative prior to objectively assess statistical evidence with-

out introducing subjective biases. In this study, we use a non-informative Dirichlet

prior with parameters set to Dir(1,1,1,1). In Algorithm 5, the input is an original

sample, and the number of posterior predictive samples q = 1000 per run.

In this study, the reproducibility probability for the chi-square test and the like-

lihood ratio test of independence are investigated using the Bayesian approach and

the NPI bootstrap approach. Data are generated using a multinomial distribution

with probabilities (0.18, 0.12, 0.42, 0.28) under H0. The data are also generated us-

ing a multinomial distribution with two probability scenarios (0.4, 0.2, 0.1, 0.3) and

(0.6, 0.1, 0.1, 0.2) under H1. We conducted simulations under an alternative hy-

pothesis to investigate whether two alternative distributions could lead to differing

reproducibility results. In our case, we found no significant impact on reproducibil-
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ity. The level of significance is 0.05. The simulation is considered with the sample

sizes n = 40, 80. For a sample size of n = 40, the power of the test with a medium

effect size w = 0.3 is approximately 0.47 , and with a large effect size w = 0.5, the

power is approximately 0.88. For a sample size of n = 80, the power of the test with

a medium effect size w = 0.3 is approximately 0.76 , and with a large effect size

w = 0.5, the power is approximately 0.99. The Bayes-RP and the NPI-B-RP ap-

proach are applied using Algorithm 5 and Algorithm 4, respectively. The observed

p-value and RP for both methods were determined for each of N = 100 samples.

For the chi-square and likelihood ratio tests of independence, RP values are calcu-

lated using B = 1000 bootstrap samples and q = 1000 posterior predictive samples.

Based on the bootstrap samples and the posterior predictive sample, RP values of

the chi-square and likelihood ratio tests of independence are computed using the

same original samples.

The relationship between reproducibility probability (RP) and the p-value for

the chi-square and likelihood ratio tests is illustrated in Figures 5.1 and 5.2. These

figures display RP values calculated using the NPI bootstrap and Bayesian methods

under the null hypothesis (H0) for sample sizes of 40 and 80. Boxplots of the

RP values are presented for both NPI-B-RP and Bayes-RP, categorizing cases into

rejection and non-rejection. In both methods, RP increases as the p-value moves

away from the threshold of 0.05. Chapter 4 provides a detailed discussion on why

reproducibility is lowest when the observed p-value is near this threshold. Simulation

studies found that RP values based on NPI-B exhibit less variability compared to

Bayesian methods, particularly with smaller sample sizes. This is because Bayesian

methods are more influenced by the prior, leading to higher variability. Additionally,

when sampling from the NPI-B, the categories are neighboring each other and have

segment between each two categories. As the sample size n increases, the influence

of the prior diminishes, resulting in similar RP outcomes between the Bayesian and

NPI bootstrap methods for larger samples. When p-values range between 0.5 and

0.75, NPI-B-RP tends to be higher in non-rejection cases compared to Bayes-RP.

Specifically, NPI-B-RP reaches values of 0.85 or higher within this p-value range,

whereas Bayes-RP approaches approximately 0.85.
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Under the alternative hypothesis H1, two scenarios are investigated to examine

the effect of various probabilities in cells on RP values for both methods. Figures

5.2, 5.3, 5.5, and 5.6 show RP values using bootstrap and Bayesian methods under

H1 for samples of sizes 40 and 80. The results show that as p-values get closer to

0.05, the behavior of RP values for NPI-B and Bayesian methods changes but stays

similar between two scenarios. The power of the test is positively correlated with the

sample size, which means that a larger sample size gives greater power. Increasing

the sample size generally results in more cases where we reject the null hypothesis

because the test becomes more powerful with larger samples. As shown in Figure 5.2,

with n = 40, when the p-value is near 0.05, NPI-B-RP tends to be higher in rejection

cases (shown in red) compared to non-rejection cases (blue). On the other hand,

Bayes-RP is typically lower in rejection cases compared to nonrejection cases for

p values close to 0.05. This behavior may be due to the influence of the prior in

a Bayesian method and the sampling method from the NPI-B, where neighboring

categories are adjacent and have segments between each pair of categories. As the

sample size increases, we expect to observe more rejection cases, as illustrated in

subfigures b and d of Figure 5.2. This is because the power of the test improves with

larger sample sizes, leading to a higher probability of rejecting the null hypothesis

when it is false. As the sample size increases to n = 80, both rejection and non-

rejection cases with both methods approach 0.5 when p-values are close to the

threshold of 0.05. Additionally, RP values become less variable. When the p-value

is 0.01 and n = 80, NPI-B-RP is higher than Bayes-RP in rejection cases, with NPI-

B-RP reaching around 0.75 and Bayes-RP around 0.65. However, the difference

between the two remains small.

5.3.2 Bayesian inference for reproducibility of McNemar’s

test

In this section, the reproducibility of McNemar’s test is studied using Bayesian and

NPI-B methods. The null hypothesis isH0 : π12 = π21 and the alternative hypothesis

is H1 : π12 ̸= π21, the level of significance is 0.05. By following the same steps as

for the tests of independence in Section 5.3.1, simulation studies are conducted to
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(a) Bayes-RP, n = 40 (b) Bayes-RP, n = 80

(c) NPI-B-RP, n = 40 (d) NPI-B-RP, n = 80

(e) RP, n = 40 (f) RP, n = 80

Figure 5.1: Simulations under H0: Bayes-RP and NPI-B-RP values for chi-square

test of independence.
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(a) Bayes-RP, n = 40 (b) Bayes-RP, n = 80

(c) NPI-B-RP, n = 40 (d) NPI-B-RP, n = 80

(e) RP, n = 40 (f) RP, n = 80

Figure 5.2: Simulations under H1 with probabilities (0.4, 0.2, 0.1, 0.3): Bayes-RP

and NPI-B-RP values for chi-square test of independence.
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(a) Bayes-RP, n = 40 (b) Bayes-RP, n = 80

(c) NPI-B-RP, n = 40 (d) NPI-B-RP, n = 80

(e) RP, n = 40 (f) RP, n = 80

Figure 5.3: Simulations under H1 with probabilities (0.6, 0.1, 0.1, 0.2): Bayes-RP

and NPI-B-RP values for chi-square test of independence.
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(a) Bayes-RP, n = 40 (b) Bayes-RP, n = 80

(c) NPI-B-RP, n = 40 (d) NPI-B-RP, n = 80

(e) RP, n = 40 (f) RP, n = 80

Figure 5.4: Simulations under H0: Bayes-RP and NPI-B-RP values for likelihood

ratio test of independence.
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(a) Bayes-RP, n = 40 (b) Bayes-RP, n = 80

(c) NPI-B-RP, n = 40 (d) NPI-B-RP, n = 80

(e) RP, n = 40 (f) RP, n = 80

Figure 5.5: Simulations under H1 with probabilities (0.4, 0.2, 0.1, 0.3): Bayes-RP

and NPI-B-RP values for likelihood ratio test of independence.
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(a) Bayes-RP, n = 40 (b) Bayes-RP, n = 80

(c) NPI-B-RP, n = 40 (d) NPI-B-RP, n = 80

(e) RP, n = 40 (f) RP, n = 80

Figure 5.6: Simulations under H1 with probabilities (0.6, 0.1, 0.1, 0.2): Bayes-RP

and NPI-Bayes-RP values for likelihood ratio test of independence.
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evaluate the Bayesian and NPI-B methods for RP of the McNemar test. The data

are generated from the multinomial distributions with probabilities (0.2, 0.3, 0.3,

0.2) under H0. The data are generated under H1 from a multinomial distribution

with probabilities (0.1, 0.2, 0.4, 0.3) and (0.1, 0.6, 0.1, 0.2). We simulate N = 100

samples of sizes n = 40, 80. McNemar’s test RP value is computed using B = 1000

bootstrapping samples and q = 1000 posterior predictive samples.

In the simulations, the RP for the McNemar’s test is examined using NPI boot-

strap and Bayesian methods. Figure 5.7 shows RP values using the bootstrap and

Bayesian methods under H0 for samples of size 40 and 80. The Bayes-RP and NPI-

B-RP values tend to increase when the p-value is moved away from the threshold

0.05. As can be seen from the figures, reproducibility is at its lowest when the ob-

served p-value is close to the threshold 0.05. Similar findings have been observed in

previous studies of test reproducibility [11, 67], as well as in Chapter 4. There is a

tendency for the Bayes-RP and NPI-B-RP to be lower in rejection cases (red cases)

compared to non-rejection cases (blue cases) when the p-value is very close to the

threshold 0.05. From a practical perspective, low values of RP are concerning, es-

pecially when H0 is rejected with a p-value just below the level of significance, since

many experiments explicitly aim to find evidence to support H1. When sample sizes

increase, both rejection and non-rejection RP values approach 0.5 when p-values are

close to the threshold 0.05, as well as RP values become less variable. This occurs

because increased sample size leads to an increase in the power of the test. The

patterns of Bayes-RP and NPI-B-RP change when simulations are conducted under

alternative hypotheses due to the change in p-value with respect to the threshold

0.05. When the p-value is 0.25, the NPI-B-RP pattern is higher in non-rejection

cases compared to Bayes-RP. Specifically, NPI-B-RP is higher than 0.75 When the

p-value is 0,25 , while Bayes-RP approaches 0.75.

Under the alternative hypothesis H1, two scenarios are considered to study the

impact of probabilities π12 and π21 on RP values for both methods. The power

of test with cell probabilities (0.1, 0.2, 0.4, 0.3) under the alternative hypothesis is

approximately 0.372 for a sample size of n = 40 and approximately 0.637 for a

sample size of n = 80. The power of test with cell probabilities (0.1, 0.6, 0.1, 0.2)
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under the alternative hypothesis is approximately 0.966 for a sample size of n = 40

and approximately 0.987 for a sample size of n = 80. Figures 5.8 and 5.9 show RP

values using the bootstrap and Bayesian methods under H1 for samples of size 40

and 80. The number of rejection cases increases when the difference between π12

and π21 increases, which is simply the result of the test becoming more powerful

as the difference between π12 and π21 increases. Simulations under the alternative

hypothesis result in a change in the pattern of RP values based on NPI-B and

Bayesian methods, which reflect changes in the observed p-values with respect to

the threshold 0.05. In both Bayesian and NPI bootstrap methods, similar results

are observed for RP.

We compared the reproducibility of the chi-square test and McNemar’s test us-

ing Bayesian and NPI-B methods. The data are generated from the multinomial

distributions with probabilities (0.25, 0.25, 0.25, 0.25). The data are generated H1

from a multinomial distribution with probabilities (0.1, 0.5, 0.2, 0.2). We simulate

N = 100 samples of sizes n = 40, 80. The simulation results for the NPI-B-RP and

Bayes-RP of the chi-square test and the McNemar’s are provided in Appendix A.

The McNemar’s test produces similar results as the chi-square test of independence

for reproducibility for both Bayesian and NPI-B methods. As n increases, the effect

of the prior decreases, resulting in similar RP values for both methods. This con-

vergence occurs because, with a larger sample size, the observed data has a greater

influence on both methods, leading to similar outcomes.

5.3.3 Bayesian inference for reproducibility of Fisher’s exact

test

To evaluate reproducibility, Bayes-RP and NPI-B-RP for Fisher’s exact test are

studied using the same steps as for the tests of independence described in Section

5.3.1. The data are generated under H0 from a multinomial distribution with proba-

bilities (0.25, 0.25, 0.25, 0.25), whereas under the alternative hypothesis the data are

generated from the multinomial distribution with probabilities (0.6, 0.1, 0.1, 0.2).

For this simulation study, we use a small sample size of n = 15, 40 and N = 50 sim-

ulations per run. For each run, samples are generated from each of the multinomial
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(a) Bayes-RP, n = 40 (b) Bayes-RP, n = 80

(c) NPI-B-RP, n = 40 (d) NPI-B-RP, n = 80

(e) RP, n = 40 (f) RP, n = 80

Figure 5.7: Simulations under H0: Bayes-RP and NPI-B-RP values for McNemar’s

test.
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(a) Bayes-RP, n = 40 (b) Bayes-RP, n = 80

(c) NPI-B-RP, n = 40 (d) NPI-B-RP, n = 80

(e) RP, n = 40 (f) RP, n = 80

Figure 5.8: Simulations under H1 with probabilities (0.1, 0.2, 0.4, 0.3): Bayes-RP

and NPI-B-RP values for McNemar’s test.
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(a) Bayes-RP, n = 40 (b) Bayes-RP, n = 80

(c) NPI-B-RP, n = 40 (d) NPI-B-RP, n = 80

(e) RP, n = 40 (f) RP, n = 80

Figure 5.9: Simulations under H1 with probabilities (0.2, 0.6, 0.2, 0.2): Bayes-RP

and NPI-B-RP values for McNemar’s test.
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distributions, the Fisher’s exact test of independence is conducted on the sample

and the p-value is calculated. All values of RP were determined using B = 1000

bootstrap samples and q = 1000 posterior predictive samples.

The RP for the Fisher’s exact test is examined based on Bayesian and NPI-B

methods. Figures 5.10 and 5.11 display plots of these methods for simulations under

H0 and for simulations under H1. Generally, the RP increases as the p-value moves

away from the threshold 0.05. Reproducibility appears to be lowest around the

threshold of the test as shown in the figures. Simulations indicate that RP values

based on Bayesian and NPI-B have variability as a result of a small sample size.

Simulations conducted under alternative hypotheses change the patterns of Bayes-

RP and NPI-B-RP because the p-value changes in relation to the threshold 0.05.

This occurs because increased sample size leads to an increase in the power test. In

the simulations under H1, increasing the sample size results in more rejection cases

since a larger sample size makes the test more powerful.

A high NPI-B-RP value is observed in rejection cases (red cases in the figures)

compared with non-rejection cases (blue cases) when the p-value is close to the

threshold 0.05. Conversely, Bayes-RP value tends to be lower in cases of rejection

than in non-rejection when the p-value is close to the threshold 0.05. When the

sample size is small, the prior has a stronger effect on the results, causing increased

variability. The RP for both methods tends to approach 0.5 when the observed

p-value is close to the threshold 0.05 in both cases of rejection and non-rejection

as the sample size increases. Additionally, an increase in sample size reduces the

fluctuations in NPI-B-RP and Bayes-RP values.

5.4 Concluding remarks

This chapter presents the Bayesian method for evaluating reproducibility of statis-

tical hypothesis tests based on 2 × 2 contingency tables. The Dirichlet prior was

used in conjunction with a multinomial likelihood to drive the posterior predictive

distribution, which is used to evaluate reproducibility of tests. In this chapter,

the estimation of reproducibility is explored for tests of independence, Fisher’s ex-
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(a) Bayes-RP, n = 15 (b) Bayes-RP, n = 40

(c) NPI-B-RP, n = 15 (d) NPI-B-RP, n = 40

(e) RP, n = 15 (f) RP, n = 40

Figure 5.10: Simulations under H0: Bayes-RP and NPI-B-RP values for Fisher’s

exact test.
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(a) Bayes-RP, n = 15 (b) Bayes-RP, n = 40

(c) NPI-B-RP, n = 15 (d) NPI-B-RP, n = 40

(e) RP, n = 15 (f) RP, n = 40

Figure 5.11: Simulations under H1: Bayes-RP and NPI-B-RP values for Fisher’s

exact test.
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act test, and McNemar’s test using Bayesian and NPI bootstrap methods. The

Bayesian Inference and NPI-B are compared for the reproducibility of a variety of

tests through the simulation studies. The test reproducibility is more naturally

considered as a prediction problem than as an estimation problem. The NPI-B-RP

is higher in rejection cases when the p-value is close to the threshold 0.05 than in

non-rejection cases. In contrast, the Bayes-RP is generally lower in rejection cases

than in non-rejection cases when the p-value is close to the threshold. As sample

size increases, NPI-B-RP and Bayes-RP values become less fluctuation. A test’s

power generally increases with the size of the sample, so a larger sample size will

increase power.

The reproducibility results for the tests of interest showed consistent results

under various conditions, such as different sample sizes. However, other studies on

test reproducibility outside of this thesis have reported different results, including

cases where increasing the sample size does not affect the reproducibility patterns.

To address this, we analyze each test using at least two sample sizes to investigate the

impact of sample size on reproducibility. In our findings, we have not encountered

unexpected reproducibility results for the tests of interest. RP tends to increase as

the p-value increases.

As Senn [65] discussed, the circumstances in the real world may differ among

different tests. It is possible to extend the bootstrap and Baysian methods for

reproducibility of tests by using future sample sizes that differ from those in the data

sample size or by using varying levels of statistical significance. From a theoretical

perspective of reproducibility, it makes sense to utilize sample sizes and significance

levels that are the same as those used in the actual test, particularly within a

frequentist statistical framework.



Chapter 6

Reproducibility of Tests for

Multiple 2× 2 Tables

6.1 Introduction

NPI bootstrap and Bayesian methods for reproducibility probability for hypothesis

tests based on the 2×2 tables are discussed in chapters 4 and 5. In this chapter, we

explore the application of NPI bootstrap and Bayesian methods to assess the repro-

ducibility of hypothesis tests based on multiple 2×2 tables. This chapter contributes

to the development of NPI bootstrap and Bayesian methods for reproducibility by

considering tests for the Mantel-Haenszel test, Breslow-Day test, and Woolf test.

The structure of the chapter is outlined as follows: Section 6.2 provides an

overview of tests based on multiple 2×2 tables. Section 6.3 introduces the Bayesian

and NPI bootstrap for reproducibility of the Cochran-Mantel-Haenszel test. Sec-

tion 6.4 explores reproducibility for the Breslow-Day test using the NPI bootstrap

and Bayesian methods. Section 6.5 introduces the Bayesian and NPI bootstrap for

reproducibility of the Woolf test. The chapter ends with some concluding remarks

in Section 6.6.

94
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6.2 Tests based on multiple 2× 2 tables

The presence of more than two cross-classification variables often results in mul-

tiple 2 × 2 tables in practice [48]. When exploring data in epidemiologic or clin-

ical research, it is common to analyze multiple 2 × 2 contingency tables to as-

sess the association between variables across different strata or subgroups [48].

For example, researchers may want to analyze the relationship between exposure

(exposed/unexposed) and outcome (case/control) across different age groups, geo-

graphic regions, or other demographic factors.

In 2 × 2 × K tables, we have two binary characteristics X and Y , and an ex-

planatory variable Z with K levels [48]. Table 6.1 displays the general notation for

multiple 2 × 2 tables stratified by a third variable with K levels. For the partial

frequency table nijk where i, j = 1, 2 and k = 1, . . . , K, ni+k represents the marginal

total for row i at level k, n+jk represents the marginal total for column j at level k,

and nk represents the total count of observations at level k. A partial table shows

the cross-classification of two variables while keeping the third variable constant

[48]. This means there are three possible sets of partial tables, depending on which

variable is fixed at a specific level. The odds ratio for the corresponding marginal

probabilities table can be defined as follows:

θXY
k =

π11kπ22k

π12kπ21k

, k = 1, . . . , K

The estimated sample odds ratio is:

θ̂XY
k =

n11kn22k

n12kn21k

, k = 1, . . . , K

The variables X and Y might not be independent given Z, but the association

between X and Y could be consistent across different levels of the conditioning

variable. The null hypothesis is:

H0 : θ
XY
1 = θXY

2 = · · · = θXY
K = θ (6.2.1)

Under the null hypothesis H0, all the odds ratios θXY
k across the K strata are

equal to a common value θ. Conditional independence of X and Y given Z implies

that there is no association between X and Y within each stratum of Z. Therefore,
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Y

X 1 2 Total

1 n11k n12k n1+k

2 n21k n22k n2+k

Total n+1k n+2k nk

Table 6.1: Representation of multiple conditional 2× 2 contingency tables for each

level K = k of the third variable Z.

setting θ = 1 in the null hypothesis H0 signifies that X and Y are conditionally

independent given Z. Mathematically, if X and Y are conditionally independent

given Z, then for each k = 1, . . . , K:

θXY
k =

π11kπ22k

π12kπ21k

= 1

Thus, H0 : θXY
1 = θXY

2 = · · · = θXY
K = 1 corresponds to the conditional indepen-

dence of X and Y given Z. Mantel and Haenszel (1959) suggested an estimate for

this common θ is [48] :

θ̂MH =

∑
k

n11kn22k

nk∑
k

n11kn21k

nk

Various tests are commonly used to assess the relationship between variables

across multiple 2 × 2 tables, including the Mantel-Haenszel test, the Breslow-Day

test, and the Woolf test as described in Table 6.2. These methods allow researchers

to determine if the association between two variables is consistent or differs signifi-

cantly across levels in the data.
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Table 6.2: Summary of Hypothesis Tests based on 2× 2 Tables

Test Hypothesis Assumptions Properties

Mantel-Haenszel Test H0 : θXY
k = 1, H1 :

θXY
k ̸= 1, k = 1, . . . ,K

Stratified into K

subgroups;

hypergeometric cell

counts in each stratum.

Tests conditional

independence; provides a

common odds ratio

across strata; chi-squared

with 1 df.

Breslow-Day Test H0 : θXY
1 = θXY

2 = · · · =

θXY
K , H1 :

At least one θXY
k differs

Homogeneity of odds

ratios under H0;

independent cell counts

across strata.

Tests homogeneity of

odds ratios across strata;

chi-squared with K − 1

df.

Woolf Test H0 : θXY
1 = θXY

2 = · · · =

θXY
K , H1 :

At least one θXY
k differs

Logarithmic

transformation stabilizes

variance; accounts for

small expected

frequencies.

Uses weighted log odds

ratios; chi-squared with

K − 1 df.

6.2.1 Mantel-Haenszel Test

Cochran [17] investigated whether the success probability for two treatments for each

of K contingency tables is the same. Mantel and Haenszel (MH) [55] introduced

a test to examine the null hypothesis of conditional independence in 2 × 2 × K

tables. The method they used was identical to Cochran’s except for the correction

factor associated with the finite population [76]. The Mantel-Haenszel statistic is

an inference procedure to measure the association between two matched variables

while controlling for a third variable. The MH test extends the usual χ2 test while

allowing stratification by a third variable.

Stratification refers to dividing the data into K homogeneous subgroups based

on a third variable, to control for its potential confounding effect on the association

between the two primary variables [2]. The MH test extends the usual chi-squared

test by incorporating these strata, calculating the association within each stratum,

and then combining the results to obtain an overall test statistic [55]. The hypotheses

for the MH test are:

H0 : θ
XY
k = 1 vs H1 : θ

XY
k ̸= 1, k = 1, . . . , K

In K stratified 2 × 2 tables, consider the row and column marginals of each of
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the K partial tables. In partial table k, the row totals are {n1+k, n2+k}, and the

column totals are {n+1k, n+2k}. Given these totals, under H0, the expected mean

and variance of n11k are derived from the hypergeometric distribution because, with

fixed marginal totals, the cell counts follow a hypergeometric distribution in each

stratum [17]. The hypergeometric mean and variance of n11k are [2]:

µ11k =
n1+k n+1k

nk

σ2
11k =

n1+k n2+k n+1k n+2k

n2
k(nk − 1)

respectively. The cell counts from the different partial tables are independent of

each other. We calculate the test statistic by adding up the differences between the

observed and expected cell counts in all strata, adjusting each difference according to

how much the data varies in that stratum (its variance) [55]. The Mantel-Haenszel

test statistic is defined as:

MH =
[
∑

k (n11k − µ11k)]
2∑

k σ
2
11k

The MH statistic follows a chi-squared distribution with 1 degree of freedom

underH0 because it tests a single parameter, the common odds ratio across all strata,

against the null hypothesis that it equals one [2]. By allowing for stratification, the

MH test provides a more accurate assessment of association by controlling for the

stratifying variable, which might confound the relationship between the primary

variables [76].

6.2.2 Breslow-Day Test

The Breslow-Day (BD) test is commonly employed to assess the homogeneity of

odds ratios across multiple 2 × 2 contingency tables. This test examines whether

the relationship between variables X and Y differs across various levels of the vari-

able Z [14]. In other words, it tests whether the association between X and Y is

consistent across different strata defined by Z, or if there is significant variation
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in the odds ratios between strata. The test statistic asymptotically follows a chi-

squared distribution under the null hypothesis of homogeneity. The hypotheses for

the Breslow-Day test are as follows:

H0 : θ
XY
1 = θXY

2 = · · · = θXY
K

H1 : At least one of θXY
k is different from the others

Here, θXY
k represents the odds ratio between X and Y in stratum k. Under the null

hypothesisH0, all strata share a common odds ratio, implying that the effect ofX on

Y is homogeneous across all levels of Z. Based on the conditional distribution of n11k

under H0 given nc = (n1+k, n+1k, nk), which follows a noncentral hypergeometric

distribution when θ ̸= 1, and considering the independence of n11k across different

strata [48]. Consider the mean µ11k(θ) = E(n11k|nc, θ) and variance σ2
11k(θ) =

Var(n11k|nc, θ) of n11k. The µ11k(θ) is the estimated solution of the equation [48]:

µ̂11k(n2+k − n+1k + µ̂11k)

(n+1k − µ̂11k)(n1+k − µ̂11k)
= θ (6.2.2)

σ̂2
11k(θ) =

[
1

µ̂11k

+
1

n2+k − n+1k + µ̂11k

+
1

n+1k − µ̂11k

+
1

n1+k − µ̂11k

]−1

(6.2.3)

The BD test statistic follows a χ2 distribution with K − 1 degrees of freedom:

χ2
BD =

K∑
k=1

(n11k − µ̂11k(θ̂MH))
2

σ̂2
11k(θ̂MH)

(6.2.4)

This statistic sums the squared differences between the observed and expected

cell counts in each stratum, standardized by their variances. It measures the devi-

ation of each stratum’s odds ratio from the common odds ratio estimated by the

Mantel-Haenszel estimator θ̂MH . Here, µ̂11k(θ̂MH) and σ̂2
11k(θ̂MH) are the expected

value and variance evaluated by equations (6.2.2) and (6.2.3), respectively, replacing

θ with the Mantel–Haenszel estimator θ̂MH .

6.2.3 Woolf Test

The Woolf test assesses the homogeneity of odds ratios across multiple 2 × 2 con-

tingency tables by applying a logarithmic transformation to the odds ratios before
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calculating the test statistic. Woolf [75] accounted for small expected cell frequen-

cies to improve the validity of the usual χ2 test. The Woolf test uses logarithms of

the odds ratios to stabilize the variance and make the test statistic more normally

distributed, which is helpful when sample sizes are small or events are rare [75].

To test the homogeneity of odds ratios using the Woolf test, consider the following

hypotheses:

H0 : θ
XY
1 = θXY

2 = · · · = θXY
K

H1 : At least one of θXY
k is different from the others

In these hypotheses, θXY
k represents the odds ratio between X and Y in group

k. Testing if they are all equal checks whether the effect of X on Y is the same in

every group [48]. We calculate θ̂k and weights wk as follows:

θ̂k =
n11kn22k

n12kn21k

, k = 1, . . . , K

wk =

(
1

n11k

+
1

n12k

+
1

n21k

+
1

n22k

)−1

, k = 1, . . . , K

The weights wk are calculated so that groups with larger sample sizes and more

precise estimates have more influence [48]. Next, we calculate the weighted average

of log θ̂k as follows:

θ̂W = exp

(∑K
k=1wk log θ̂k∑K

k=1wk

)
The combined estimate θ̂W is a weighted average that represents the common

odds ratio if all groups have the same effect [48]. The Woolf test statistic is defined

as:

W =
K∑
k=1

wk

(
log θ̂k − log θ̂W

)2
(6.2.5)

Which follows the χ2 distribution with K − 1 degrees of freedom [48]. If the

Woolf test statistic is large, it means the odds ratios are different across groups,

indicating that the effect of X on Y changes with the stratifying variable Z [48].
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Algorithm 6 Reproducibility for the MH test

1: Apply the MH test on K table, and make decision about H0, then record the

test outcome: C∗ = 1 if H0 is rejected and C∗ = 0 if H0 is not rejected.

2: Draw NPI-B sample and posterior predictive sample from each K table based

on the original sample of K table and apply a MH test and obtain the results.

3: Repeat Step 2 B times for j = 1, . . . , B and q times for j = 1, . . . , q, and each

time record the test decision: C∗
j = 1 if H0 is rejected, and C∗

j = 0 if H0 is not

rejected.

4: Calculate the rp, where rp =
∑q

j=1 1(C
∗ = C∗

j )/q and rp =
∑B

j=1 1(C
∗ =

C∗
j )/B.

6.3 Reproducibility for Mantel-Haenszel test

In this section, we compare two approaches: NPI-B and Bayesian methods for in-

vestigating the relative performance (RP) of Mantel-Haenszel test using Algorithm

6. The reproducibility of tests is naturally viewed as a prediction problem instead

of an estimation problem, which is aligned well with these approaches. The explicit

predictive properties of both NPI-B and Bayesian inference methods provide suit-

able frameworks for deducing the reproducibility of the MH test. To enable this

comparison, we conduct simulation studies to assess the performance of NPI-B and

Bayesian in evaluating the RP of the MH test under different scenarios.

The algorithm for reproducibility of the MH test begins by applying the MH

test on K tables and making a decision about the null hypothesis H0. The outcome

is recorded as C∗ = 1 if H0 is rejected, or C∗ = 0 if H0 is not rejected. Next,

an NPI-B sample and a posterior predictive sample are drawn from each K table

independently and the MH test is applied again to obtain the results. This process

is repeated B times for each iteration j = 1, . . . , B, and q times for each iteration

j = 1, . . . , q, with the decision recorded each time. The recorded decisions are C∗
j = 1

if H0 is rejected, and C∗
j = 0 if H0 is not rejected. Finally, the reproducibility is

calculated by computing the ratio of matching decisions across all test outcomes.

This is expressed as rp =
∑q

j=1 1(C
∗ = C∗

j )/q , and rp =
∑B

j=1 1(C
∗ = C∗

j )/B. The

algorithm is as follows:
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The purpose of this study is to examine the RP for the MH test using the NPI-

B and the Bayesian methods. RP values are calculated using bootstrap samples

B = 1000 and posterior predictive samples q = 1000. The same prior in chapter 5

was used. This study will focus on K = 3, where K represents the number of tables.

Simulations were conducted under both the null hypothesis H0 and the alternative

hypothesis H1, with N = 50 runs per simulation. Data were generated using a

multinomial distribution based on specified odds ratios. Under H0, the odds ratios

θXY
k were set to 1 for all k. Under H1, the odds ratios were set to different values,

with θXY
1 = 2, θXY

2 = 2, and θXY
3 = 3. In all figures in this chapter, red circles

represent rejection cases of H0, while blue circles represent non-rejection cases.

In K = 3, we consider three different scenarios depending on the sample size: the

first scenario considers small size in each K tables, the second Scenario considers

large size in each K tables, and the third scenario considers small or large size in

each K tables. Three scenarios with different sample sizes. In scenario 1, with

sample sizes n1 = 60, n2 = 50, and n3 = 40, Figure 6.1 displays the RP values using

NPI bootstrap and Bayesian methods under both H0 and H1. Boxplots illustrate

the cases of rejection and non-rejection for both methods. Scenario 2, with sample

sizes n1 = 160, n2 = 140, and n3 = 120, is depicted in Figure 6.2, showing the

RP values and boxplots for both RP methods under H0 and H1. Finally, Scenario

3, with sample sizes n1 = 160, n2 = 120, and n3 = 60, is illustrated in Figure

6.3, presenting the RP values and boxplots for both RP methods under H0 and

H1. In all scenarios, the RP values are obtained using NPI bootstrap and Bayesian

methods under the null and alternative hypotheses. The boxplots compare the RP

values based on the NPI-B-RP and Bayes-RP methods when the null hypothesis is

rejected versus not rejected.

The difference appears clearly in scenario 2, since we consider that each K table

is large, which is reflected in the low fluctuation in RP values in both methods. For

both methods, the scenario 1 has the greatest variability in RP values, followed by

scenario 3. According to the two methods, RP values tend to increase when the test

statistic moves away from the test threshold. As expected, reproducibility is low

near the test threshold, so if the p-value is close to 0.05, reproducibility is low. In
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these cases, it is uncertain whether the null hypothesis should be rejected because

the evidence is not strong. As sample size increases, both rejection and non-rejection

probabilities tend to converge towards 0.5 when p-values are close to the threshold

0.05, while the variability of RP values diminishes, mainly due to the increased the

power test associated with larger sample sizes. By sampling under the alternative

hypothesis, larger samples increase the power of the test, so more cases reject H0.

When the p-value is 0.5 in all scenarios, the NPI-B-RP pattern is higher in non-

rejection cases than Bayes-RP. Specifically, NPI-B-RP consistently achieves values

greater than or equal to 0.85 within this p-value range, while the Bayes-RP ap-

proaches do not consistently reach 0.85. This difference arises because the prior

information influences the Bayesian results more significantly than the data itself,

resulting in a less consistent performance in non-rejection cases for Bayes-RP. The

same pattern is observed in rejection cases, where NPI-B-RP also performs better

than Bayes-RP. The results observed with K = 5 are similar to those observed with

K = 3 and are provided in Appendix A.

This study investigated the impact of increasing the sample size on the behav-

ior of reproducibility. The reproducibility results for the tests of interest showed

consistent results under various conditions, such as different sample sizes. However,

other studies on test reproducibility outside our work have reported different results,

including cases where increasing the sample size does not affect the reproducibility

patterns.

6.4 Reproducibility for Breslow-Day test

This section examines the RP of the Breslow-Day test using NPI-B and Bayesian

methods. Simulation studies are conducted to evaluate the Bayesian and NPI-B

methods for RP of the Breslow-Day test using the same steps as for the MH test de-

scribed in Section 6.3. The RP values are calculated by using bootstrap samples B =

1000 and posterior predictive samples q = 1000. In this study, we will focus on two

cases where K = 3 and K = 5 to examine the impact of increasing the number of K

tables on the RP. We run simulations under both H0 and H1, with N = 50 runs per
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(a) Bayes-RP, under H0 (b) Bayes-RP, under H1

(c) NPI-B-RP, under H0 (d) NPI-B-RP, under H1

(e) RP, under H0 (f) RP, under H1

Figure 6.1: Simulations under H0 and H1: Bayes-RP and NPI-B-RP values for

Mantel-Haenszel test, Scenario 1 for K = 3.
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(a) Bayes-RP, under H0 (b) Bayes-RP, under H1

(c) NPI-B-RP, under H0 (d) NPI-B-RP, under H1

(e) RP, under H0 (f) RP, under H1

Figure 6.2: Simulations under H0 and H1: Bayes-RP and NPI-B-RP values for

Mantel-Haenszel test, Scenario 2 for K = 3.
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(a) Bayes-RP, under H0 (b) Bayes-RP, under H1

(c) NPI-B-RP, under H0 (d) NPI-B-RP, under H1

(e) RP, under H0 (f) RP, under H1

Figure 6.3: Simulations under H0 and H1: Bayes-RP and NPI-B-RP values for

Mantel-Haenszel test, Scenario 3 for K = 3.
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simulation. The data are generated using odds ratios H0 : θ
XY
1 = θXY

2 = · · · = θXY
K

under the null hypothesis, and H1 : At least one of θXY
k is different from the others

under the alternative hypothesis.

We consider three different scenarios for the case with K = 3, based on sample

sizes: small sizes, large sizes, and a mix of small and large sizes. Data were generated

using a multinomial distribution based on specified odds ratios: under H0, θ
XY
1 =

θXY
2 = θXY

3 = 1, and under H1, at least one of θXY
k is different from the others,

with θXY
1 = 6, θXY

2 = 1, and θXY
3 = 2. In scenario 1, the sample sizes are n1 = 60,

n2 = 50, and n3 = 40. Figure 6.4 shows the RP values using NPI-B-RP and

Bayes-RP methods with bootstrapping and posterior predictive samples under both

hypotheses, including boxplots for rejections and non-rejections. In scenario 2, with

sample sizes n1 = 150, n2 = 180, and n3 = 160, Figure 6.5 displays the RP values

and boxplots for both methods. For scenario 3, where the sample sizes are n1 = 150,

n2 = 120, and n3 = 50, Figure 6.6 presents the RP values and boxplots for both

hypotheses, showing both rejection and non-rejection scenarios. At a significance

level of 0.05 and with 2 degrees of freedom, a critical value of 5.99 is calculated. In

both methods, RP tends to increase when the test statistic moves away from the

threshold 0.05. The reproducibility is the lowest close to the the threshold 0.05, as

expected. By increasing the sample size, the variability of both methods decreases

and the power of the test increases. In both methods, the RP tends to be higher in

cases of rejection (red cases in the figures) than in cases of non-rejection (blue cases)

when the p-value is close to the threshold 0.05. As a result of sampling under the

alternative hypothesis, larger samples are more likely to reject H0, due to increasing

the power of the test. When the p-value is 0.2 in all scenarios, NPI-B-RP shows a

higher in non-rejection cases compared to Bayes-RP. Specifically, NPI-B-RP reaches

values of 0.65 or higher, while Bayes-RP approach 0.65.

In the second case with K = 5, three scenarios are identified based on the data

generated. At a 0.05 significance level and 4 degrees of freedom, the critical value

is 9.488. Under H0, the odds ratios were θXY
1 = θXY

2 = θXY
3 = θXY

4 = θXY
5 = 1.

Under H1, at least one of the odds ratios differs, specifically θXY
1 = 6, θXY

2 = 0.67,

θXY
3 = 2, θXY

4 = 1, and θXY
5 = 1. Scenario 1 has sample sizes n1 = 40, n2 = 50,
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n3 = 55, n4 = 60, and n5 = 70. Figure 6.7 shows the RP values using NPI-B-

RP and Bayes-RP methods with bootstrapping and posterior predictive samples,

including boxplots for both rejections and non-rejections. Scenario 2, with sample

sizes n1 = 180, n2 = 170, n3 = 165, n4 = 160, and n5 = 150, is illustrated in

Figure 6.8, displaying RP values and boxplots for both hypotheses. In scenario 3,

the sample sizes are n1 = 160, n2 = 150, n3 = 130, n4 = 60, and n5 = 40. Figure 6.9

presents the RP values and boxplots under both hypotheses, showing rejection and

non-rejection cases. When the p-value is 0.75 with K = 5 in all scenarios, NPI-B-RP

shows a higher in non-rejection cases compared to Bayes-RP. Specifically, NPI-B-RP

reaches values of 0.75 or higher, while Bayes-RP approaches 0.75. In comparison,

with K = 3 in all scenarios with the same p-value, NPI-B-RP consistently achieves

values greater than or equal to 0.85. At the same time, Bayes-RP approaches does

not consistently reach 0.85.

The patterns of RP values appear to be affected by the increase in the number of

K tables. As the number of K tables increases, both methods tend to show higher

RP values in rejection cases (red cases) compared to non-rejection cases (blue cases)

when the test statistic is close to the threshold.

The test statistic for the Breslow-Day test is computed using Equation (6.2.4).

In multiple tables, the Breslow-Day test examines the homogeneity of odds ratios

across all K tables. The overall test statistic is the sum of the individual Breslow-

Day test statistics from each of the K tables. As the number of tables increases, the

combined test statistic is more likely to exceed the critical value, thereby increasing

the chances of rejecting the null hypothesis H0. Consequently, the RP values of both

methods tend to be lower in non-rejection cases and higher in rejection cases.

6.5 Reproducibility for Woolf test

The purpose of this section is to examine the RP of the Woolf test using NPI-B and

Bayesian methods. By following the same steps as for the Mantel-Haenszel test in

Section 6.3, simulation studies are conducted to evaluate the Bayesian and NPI-B

methods for RP of the Woolf test. We calculate the RP values using bootstrap
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(a) Bayes-RP, under H0 (b) Bayes-RP, under H1

(c) NPI-B-RP, under H0 (d) NPI-B-RP, under H1

(e) RP, under H0 (f) RP, under H1

Figure 6.4: Simulations under H0 and H1: Bayes-RP and NPI-B-RP values for

Breslow-Day test, Scenario 1 for K = 3.
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(a) Bayes-RP, under H0 (b) Bayes-RP, under H1

(c) NPI-B-RP, under H0 (d) NPI-B-RP, under H1

(e) RP, under H0 (f) RP, under H1

Figure 6.5: Simulations under H0 and H1: Bayes-RP and NPI-B-RP values for

Breslow-Day test, Scenario 2 for K = 3.
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(a) Bayes-RP, under H0 (b) Bayes-RP, under H1

(c) NPI-B-RP, under H0 (d) NPI-B-RP, under H1

(e) RP, under H0 (f) RP, under H1

Figure 6.6: Simulations under H0 and H1: Bayes-RP and NPI-B-RP values for

Breslow-Day test, Scenario 3 for K = 3.
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(a) Bayes-RP, under H0 (b) Bayes-RP, under H1

(c) NPI-B-RP, under H0 (d) NPI-B-RP, under H1

(e) RP, under H0 (f) RP, under H1

Figure 6.7: Simulations under H0 and H1: Bayes-RP and NPI-B-RP values for

Breslow-Day test, Scenario 1 for K = 5.
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(a) Bayes-RP, under H0 (b) Bayes-RP, under H1

(c) NPI-B-RP, under H0 (d) NPI-B-RP, under H1

(e) RP, under H0 (f) RP, under H1

Figure 6.8: Simulations under H0 and H1: Bayes-RP and NPI-B-RP values for

Breslow-Day test, Scenario 2 for K = 5.
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(a) Bayes-RP, under H0 (b) Bayes-RP, under H1

(c) NPI-B-RP, under H0 (d) NPI-B-RP, under H1

(e) RP, under H0 (f) RP, under H1

Figure 6.9: Simulations under H0 and H1: Bayes-RP and NPI-B-RP values for

Breslow-Day test, Scenario 3 for K = 5.
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samples B = 1000 and posterior predictive samples pp = 1000. Our study will focus

on cases where K = 3 and K = 5. As a result, the null hypothesis is generated

using odds ratios H0 : θXY
1 = θXY

2 = · · · = θXY
k , and the alternative hypothesis is

generated using odds ratios H1 : At least one of θXY
k is different from the others.

In the first case with K = 3, there are three suggested scenarios. Note that all

simulated data sets are the same as the Breslow-Day test presented in Section 6.3.

For scenario 1, Figure 6.10shows the RP values using NPI-B and Bayesian methods

for RP, with boxplots representing rejections and non-rejections. Similarly, Figure

6.11 displays the RP values and boxplots for Scenario 2, and Figure 6.12 shows the

same for Scenario 3. At a significance level of 0.05 and a degree of freedom of 2,

the critical value is 5.99. We observe similar results as for the Woolf test with the

Breslow-Day test.When the test statistic moves away from the threshold, RP tends

to increase in both methods. As the sample size increases, the variability of both

methods decreases, and the power of the test increases. When the p-value is 0.5 in

all scenarios, NPI-B-RP is higher in non-rejection cases than Bayes-RP. Specifically,

NPI-B-RP reaches values of 0.75 or higher, while Bayes-RP only approaches 0.75.

The second case withK = 5 suggests three scenarios. A critical value of 9.488 can

be calculated when the significance level is 0.05 and the degrees of freedom are 4. For

Scenario 1, Figure 6.13 shows the RP values calculated using NPI-B and Bayesian

methods for RP, with boxplots representing rejections and non-rejections. Similarly,

Figure 6.14 and Figure 6.15 display the RP values and boxplots for Scenarios 2 and 3,

respectively. When the p-value is 0.75 with K = 5 in all scenarios, NPI-B-RP shows

a higher in non-rejection cases compared to Bayes-RP. In particular, NPI-B-RP is

higher than 0.75, while Bayes-RP approaches 0.75. In comparison, with K = 3 in

all scenarios with the exact p-value, NPI-B-RP consistently achieves values greater

than 0.85. At the same time, Bayes-RP approaches 0.85.

We observed that increasing the number of K tables impacts the patterns of

RP values. With more K tables, both methods tend to show higher RP values in

rejection cases (red cases) than in non-rejection cases (blue cases) when the test

statistic is close to the threshold. The test statistic for the Woolf test is computed

using Equation (6.2.5). In multiple tables, the Woolf test examines the consistency



6.6. Concluding remarks 116

of odds ratios across all K tables. The overall test statistic is calculated by summing

the individual test statistics from each of the K tables. As the number of tables in-

creases, these combined test statistics result in a larger overall test statistic, making

it more likely to exceed the critical value and reject the null hypothesis H0.

As a result, the RP values of both methods tend to be lower in non-rejection

cases and higher in rejection cases. This pattern occurs because the larger combined

test statistics make it more likely for the overall test statistic to exceed the critical

value, thus increasing the probability of rejecting H0.

In this section, we compared the reproducibility of the Breslow-Day and Woolf

tests using NPI-B and Bayesian methods. The hypothesis for the Breslow-Day test

is different from that of the MH test. H0 and H1 are kept consistent in both the

Woolf and Breslow-Day tests, and the results are compared between them. Note

that all simulated data sets are the same for all tests. The Breslow-Day test produces

similar reproducibility results to the Woolf test. This pattern is observed in both

rejection and non-rejection cases, where NPI-B-RP performs better than Bayes-RP.

6.6 Concluding remarks

In this chapter, NPI-B and Bayesian methods are used to estimate RP for statistical

hypothesis tests based on multiple 2×2 tables. Through simulation studies, we also

compare a Bayesian method with the NPI-B for testing reproducibility. Bayesian

and NPI-B are considered for reproducibility of the Mantel-Haenszel, Breslow-Day

and Woolf tests. In the Mantel-Haenszel test with different K tables, as sample sizes

increase, both rejection and non-rejection RP values tend to converge towards or

exceed 0.5 when p-values are close to the threshold of 0.05. This occurs because the

test becomes more powerful with larger samples, leading to decreased variability in

RP values. The reproducibility of the Breslow-Day and Woolf tests decreases as the

number of K tables increases, impacting the patterns of RP values. With more K

tables, both methods show higher RP values in rejection cases (red cases) compared

to non-rejection cases (blue cases) when the test statistic is close to the threshold

of 0.05. In addition, RP values tend to increase as the p-value moves away from a
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(a) Bayes-RP, under H0 (b) Bayes-RP, under H1

(c) NPI-B-RP, under H0 (d) NPI-B-RP, under H1

(e) RP, under H0 (f) RP, under H1

Figure 6.10: Simulations under H0 and H1: Bayes-RP and NPI-B-RP values for

Woolf Test, Scenario 1 for K = 3.
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(a) Bayes-RP, under H0 (b) Bayes-RP, under H1

(c) NPI-B-RP, under H0 (d) NPI-B-RP, under H1

(e) RP, under H0 (f) RP, under H1

Figure 6.11: Simulations under H0 and H1: Bayes-RP and NPI-B-RP values for

Woolf Test, Scenario 2 for K = 3.
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(a) Bayes-RP, under H0 (b) Bayes-RP, under H1

(c) NPI-B-RP, under H0 (d) NPI-B-RP, under H1

(e) RP, under H0 (f) RP, under H1

Figure 6.12: Simulations under H0 and H1: Bayes-RP and NPI-B-RP values for

Woolf Test, Scenario 3 for K = 3.
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(a) Bayes-RP, under H0 (b) Bayes-RP, under H1

(c) NPI-B-RP, under H0 (d) NPI-B-RP, under H1

(e) RP, under H0 (f) RP, under H1

Figure 6.13: Simulations under H0 and H1: Bayes-RP and NPI-B-RP values for

Woolf Test, Scenario 1 for K = 5.
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(a) Bayes-RP, under H0 (b) Bayes-RP, under H1

(c) NPI-B-RP, under H0 (d) NPI-B-RP, under H1

(e) RP, under H0 (f) RP, under H1

Figure 6.14: Simulations under H0 and H1: Bayes-RP and NPI-B-RP values for

Woolf Test, Scenario 2 for K = 5.
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(a) Bayes-RP, under H0 (b) Bayes-RP, under H1

(c) NPI-B-RP, under H0 (d) NPI-B-RP, under H1

(e) RP, under H0 (f) RP, under H1

Figure 6.15: Simulations under H0 and H1: Bayes-RP and NPI-B-RP values for

Woolf Test, Scenario 3 for K = 5.
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significance level of 0.05.



Chapter 7

Conclusions

In this chapter, we present a summary of the main results of this thesis and conclude

with some recommendations for future research. In this thesis, we introduce the

generalisation of NPI for the 2× 2 table and the reproducibility of hypotheses tests

based on the 2× 2 table and multiple 2× 2 tables.

In Chapter 3, NPI was introduced for circular data as a method for inference

based on 2 × 2 table data. The NPI lower and upper probabilities are computed

for one future observation based on the assumption A
(n)

and for multiple future

observations based on the assumption A
(•). For single and multiple future observa-

tions, the NPI lower probabilities can be derived results in exact formulas. On the

other hand while it is trivial to derive the upper probability for one future observa-

tion and it is not easy to derive the upper probability considering multiple future

observations, so we are proposing some approximations. Therefore, an algorithm

has been proposed to find approximations using sampling of ordering method for

estimating upper. For multiple future observations, the NPI lower probabilities are

approximated and compared to the results computed by the exact formula. Addi-

tionally, the NPI-B was introduced as a computational version for the circular data.

It is used for inferences in our NPI method with 2× 2 table data.

In Chapter 4, we approximated the reproducibility for tests of independence,

Fisher’s exact test, and McNemar’s test using two methods NPI bootstrap and NPI

sampling of orderings. Test reproducibility aligns well with the explicit predictive

nature of NPI and NPI-B. It is the probability that the same test outcome would be

124



Chapter 7. Conclusions 125

obtained if a test were repeated under identical circumstances with the same sample

size. In recent years, interest in reproducibility (RP) has grown significantly due to

its critical role in assessing the practical relevance of test results. The RP serves as

a measure of the reliability of statistical hypothesis test outcomes, making it a fun-

damental concept in scientific methodology. It provides researchers with confidence

and clarity about the robustness and validity of their findings. Through simulation

studies, we have studied the reproducibility of tests using the NPI sampling of or-

derings and NPI-B methods. When the sample size is increased, the variability in

the RP values decreases, due to the power of the test. The bootstrap approach to

predicting RP avoids the difficulty of determining the lower and upper boundaries

in NPI-RP. In NPI-B-RP, we present the RP as a point estimate rather than the

lower and upper values. We also compared the reproducibility of the chi-square test

of independence, the likelihood ratio test of independence, and McNemar’s test in

the simulations, and found that the results for these tests were similar.

Chapter 5 covered the Bayesian method for evaluating the reproducibility of

statistical hypotheses based on 2 × 2 table. We used both the Bayesian method

and NPI bootstrap to estimate reproducibility for tests of independence, Fisher’s

exact test, and McNemar’s test. We conducted simulations for Bayesian Inference

and NPI-B, comparing both methods for the reproducibility of a variety of tests.

Test reproducibility is more of a prediction issue than an estimation issue, aligning

well with the explicit predictive nature of both Bayesian and NPI-B methods, which

consider future observations. As sample sizes increase, the RP values based on

Bayesian and NPI-bootstrap methods tend to converge towards 0.5 for both rejection

and non-rejection when p-values are close to the significance level of 0.05. This

convergence is primarily due to the more powerful test that results from a larger

sample size, leading to decreased variability in RP values.

Finally, Chapter 6 presented RP estimation for statistical hypothesis tests based

on multiple 2 × 2 tables, utilising both NPI-B and Bayesian methods. We con-

ducted simulation studies and compared the reproducibility of both method for

Mantel-Haenszel, Breslow-Day, and Woolf tests. The reproducibility of The Mantel-

Haenszel test values for both methods show less variability with larger sample sizes
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due to the increased power of the test. With an increase in K tables for the Breslow-

Day and Woolf tests, both methods tend to yield higher values in rejection cases

than in non-rejection cases when the test statistic is close to the threshold 0.05. Ad-

ditionally, RP values tend to increase as the p-value moves away from the threshold.

In this thesis, we have studied the NPI method for 2 × 2 tables. This work

opens up new opportunities for future research, including the potential application

of NPI to r × c tables. We have also presented both NPI and Bayesian methods to

determine reproducibility of hypothesis tests based on 2×2 tables. This work could

be extended for reproducibility of hypothesis tests based on r× c tables. To extend

this work to r× c tables, we could adapt the NPI method to handle more rows and

columns, considering the relationships between them. The main challenges would

be the increased complexity of calculations and understanding how the larger table

structure affects reproducibility. Future researchers could focus on finding simpler

methods and studying these effects.

In addition, we quantified reproducibility within the Bayesian framework and

inferred future observations through the posterior predictive distribution. Previous

studies have explored RP based on NPI for various tests such one sample sign

test, one sample signed rank test, two sample rank sum test, and the two-sample

Kolmogorov-Smirnov test [11]. It would be interesting to consider RP for these tests

under the Bayesian framework. We also recommend further research to compare the

NPI-RP and Bayesian reproducibility for these tests.



Appendix A

Basic Results

A.1 NPI and NPI-B-RP for test of independence

In this study, we investigate NPI-RP and NPI-B-RP for the chi-square test of in-

dependence and the likelihood ratio test of independence. We generate data from

the a multinomial distribution with probabilities (0.25,0.25,0.25,0.25) under the null

hypothesis and with probabilities (0.6,0.1,0.1,0.2) under the alternative hypothesis.

This simulation study uses the following inputs: n = 30, 60 and N = 100 simula-

tions.

A.2 NPI and NPI-B-RP for McNemar test

In this simulation study, the following inputs are used: n = 30, 60, and N = 100

simulations per run. Simulations are conducted to evaluate the NPI and NPI-

B methods for the RP of McNemar test of RP in accordance. The simulations

are performed both under H0 and H1. Under H0, data are generated from the a

multinomial distribution with probabilities (0.2, 0.3, 0.3, 0.2). Under H1 data are

generated from a multinomial distribution with probabilities (0.3, 0.2, 0.4, 0.1).

127



A.2. NPI and NPI-B-RP for McNemar test 128

(a) NPI-B-RP, under H0 (b) NPI-B-RP, under H1

(c) NPI-RP, n∗ = 2000, under H0 (d) NPI-RP, n∗ = 2000, under H1

(e) NPI-RP, n∗ = 5000, under H0 (f) NPI-RP, n∗ = 5000, under H1

Figure A.1: Simulations under H0 and H1: NPI-RP and NPI-B-RP values for chi-

square testing of independence, where n = 30.
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(a) NPI-B-RP, under H0 (b) NPI-B-RP, under H1

(c) NPI-RP, n∗ = 2000, under H0 (d) NPI-RP, n∗ = 2000, under H1

(e) NPI-RP, n∗ = 5000, under H0 (f) NPI-RP, n∗ = 5000, under H1

Figure A.2: Simulations under H0 and H1:NPI-RP and NPI-B-RP values for chi-

square testing of independence, where n = 60.
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(a) NPI-B-RP, under H0 (b) NPI-B-RP, under H1

(c) NPI-RP, n∗ = 2000, under H0 (d) NPI-RP, n∗ = 2000, under H1

(e) NPI-RP, n∗ = 5000, under H0 (f) NPI-RP, n∗ = 5000, under H1

Figure A.3: Simulations under H0 and H1: NPI-RP and NPI-B-RP values for like-

lihood ratio testing of independence, where n = 30.
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(a) NPI-B-RP, under H0 (b) NPI-B-RP, under H1

(c) NPI-RP, n∗ = 2000, under H0 (d) NPI-RP, n∗ = 2000, under H1

(e) NPI-RP, n∗ = 5000, under H0 (f) NPI-RP, n∗ = 5000, under H1

Figure A.4: Simulations under H0 and H1:NPI-RP and NPI-B-RP values for likeli-

hood ratio testing of independence, where n = 60.
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(a) NPI-B-RP, under H0 (b) NPI-B-RP, under H1

(c) NPI-RP, n∗ = 2000, under H0 (d) NPI-RP, n∗ = 2000, under H1

(e) NPI-RP, n∗ = 5000, under H0 (f) NPI-RP, n∗ = 5000, under H1

Figure A.5: Simulations under H0 and H1: NPI-RP and NPI-B-RP values for Mc-

Nemar’s test, where n = 30.



A.2. NPI and NPI-B-RP for McNemar test 133

(a) NPI-B-RP, under H0 (b) NPI-B-RP, under H1

(c) NPI-RP, n∗ = 2000, under H0 (d) NPI-RP, n∗ = 2000, under H1

(e) NPI-RP, n∗ = 5000, under H0 (f) NPI-RP, n∗ = 5000, under H1

Figure A.6: Simulations under H0 and H1: NPI-RP and NPI-B-RP values for Mc-

Nemar’s test, where n = 60.
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(a) Bayes-RP, n = 40 (b) Bayes-RP, n = 80

(c) NPI-B-RP, n = 40 (d) NPI-B-RP, n = 80

Figure A.7: Simulations under H0 : Bayes-RP and NPI-B-RP values for chi-square

test of independence.

A.3 Bayes-RP and NPI-B-RP for chi-square test

of independence and McNemar’s Test

The data are generated from the multinomial distributions with probabilities (0.25,

0.25, 0.25, 0.25). The data are generated H1 from a multinomial distribution with

probabilities (0.1, 0.5, 0.2, 0.2). We simulate N = 100 samples of sizes n = 40, 80.
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(a) Bayes-RP, n = 40 (b) Bayes-RP, n = 80

(c) NPI-B-RP, n = 40 (d) NPI-B-RP, n = 80

Figure A.8: Simulations under H1 with probabilities (0.1, 0.5, 0.2, 0.2): Bayes-RP

and NPI-B-RP values for chi-square test of independence.
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(a) Bayes-RP, n = 40 (b) Bayes-RP, n = 80

(c) NPI-B-RP, n = 40 (d) NPI-B-RP, n = 80

Figure A.9: Simulations under H0 : Bayes-RP and NPI-B-RP values for McNemar’s

Test.
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(a) Bayes-RP, n = 40 (b) Bayes-RP, n = 80

(c) NPI-B-RP, n = 40 (d) NPI-B-RP, n = 80

Figure A.10: Simulations under H1 with probabilities (0.1, 0.5, 0.2, 0.2): Bayes-RP

and NPI-B-RP values for McNemar’s test.
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A.4 Reproducibility for Mantel-Haenszel test

Based on the data generated for the second case with K = 5, three scenarios can

be identified. According to scenario 1, the sample sizes are n1 = 60, n2 = 55, n3 =

50, n4 = 40, and n5 = 45. As shown in Figure A.11, RP values are obtained using

bootstrap and posterior predictive methods under H0 and H1 for the NPI-B-RP

and Bayes-RP methods. A boxplot is presented for both cases of rejection and non-

rejection. Sample sizes for scenario 2 are n1 = 200, n2 = 180, n3 = 160, n4 = 140,

and n5 = 150. Figure A.12 similarly illustrates the RP value and boxplots for both

methods under H0 and H1. In scenario 3, n1 = 140, n2 = 130, n3 = 120, n4 = 40,

and n5 = 60 are the sample sizes. Figure A.13 shows the RP value and boxplots

for both hypotheses under H0 and H1. In both cases of rejection and non-rejection,

a boxplot is presented. The RP increases when the p-value is moved away from

the test threshold. Clearly, reproducibility is lowest around the threshold of the

test. It has been shown that Bayes-RP and NPI-B-RP become closer to 0.5 with

increasing sample size when the observed p-value is near to the test threshold in

both rejection and non-rejection cases. Increasing the sample size leads to these

results since the variability of both mothed samples decreases and the power of the

test increases when the sample size is increased. In general, as sample sizes increase,

both rejection and non-rejection probabilities tend to converge towards 0.5 when p-

values fall close to test threshold, and variability in RP values decreases, primarily

due to the more powerful test that results from a larger sample.
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(a) Bayes-RP, under H0 (b) Bayes-RP, under H1

(c) NPI-B-RP, under H0 (d) NPI-B-RP, under H1

(e) RP, under H0 (f) RP, under H1

Figure A.11: Simulations under H0 and H1: Bayes-RP and NPI-B-RP values for

Mantel-Haenszel test , Scenario 1 for k = 5.
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(a) Bayes-RP, under H0 (b) Bayes-RP, under H1

(c) NPI-B-RP, under H0 (d) NPI-B-RP, under H1

(e) RP, under H0 (f) RP, under H1

Figure A.12: Simulations under H0 and H1: Bayes-RP and NPI-B-RP values for

Mantel-Haenszel test , Scenario 2 for k = 5.
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(a) Bayes-RP, under H0 (b) Bayes-RP, under H1

(c) NPI-B-RP, under H0 (d) NPI-B-RP, under H1

(e) RP, under H0 (f) RP, under H1

Figure A.13: Simulations under H0 and H1: Bayes-RP and NPI-B-RP valuesfor

Mantel-Haenszel test , Scenario 3 for k = 5.
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