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Abstract

A novel approach is proposed for analyzing clustered and highly correlated multivariate data

where a one-dimensional latent structure, parametrized by a single random effect, is used to

approximate the data. The estimation methodology makes use of a nonparametric maximum

likelihood-type approach, where the random effect distribution is approximated by a discrete

mixture, hence allowing for the use of the ECM algorithm for the estimation of all model

parameters. We derive the estimators required for the subsequent ECM algorithm under var-

ious error variance parameterizations that may depend on the random effect. We extend the

proposed model by including covariates, enabling regression of multivariate responses on these

covariates, introducing another perspective for analyzing multivariate data whereas typically

only one variable is taken as the response variable with the remaining variables constituting

a multivariate space of predictors. Accounting for the multivariate response character has

several inferential benefits including potentially reduced standard errors and increased powers

especially for situations where the main concern is the effect of several correlated response

variables on a set of predictors. We further extend this methodology to a two-level version to

accommodate repeated measurements. Simulation studies are conducted to assess the accuracy

of parameter estimators, the significance of choosing the correct mixture components, and the

use of AIC and BIC as model selection criteria. Additionally, the impact of the random effect

distribution is examined. Furthermore, several important inferential problems, including clus-

tering using different techniques, projection, ranking, regression on covariates, and regression

of an external response on the predicted latent variable, are considered and illustrated with

real data examples.
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Chapter 1

Introduction

1.1 Background

Multivariate data is ubiquitous across all fields, and they are rarely distributed homogeneously

in space. In practice, one will often observe that the data reside on a latent linear subspace

of a smaller dimension than itself, or that the data are concentrated into a certain number

of clusters. From a statistical modelling point of view, these two concepts are usually dealt

with in isolation or in succession, but not simultaneously. That is, often one will account

for the lower ‘intrinsic’ dimensionality through methods such as principal component analysis,

partial least squares, factor analysis (see, e.g., Krzanowski, 2000), etc., and then account for

clustering in the resulting lower-dimensional space (for instance, by fitting a mixture model

to the projections onto that space), or, less commonly, firstly partition the data into clusters

and then apply separate compressions onto linear subspaces within each of them. In some

situations (e.g. the price indexes for several goods, educational attainment scores on various

abilities, or multiple psychological mental health indicators), such a set of variables are so

strongly correlated that they can be considered as intrinsically one-dimensional, meaning that

they can be considered to be generated by some latent one-dimensional linear subspace plus

noise.

We propose a new approach which is firmly rooted in basic principles of statistical

modelling, and hence allows versatile access to routine statistical tasks such as clustering or

regression. The basic idea is to consider the approximating lower-dimensional subspace as a

latent variable in a multivariate statistical model and to model this latent variable by a random

effect. We will develop and implement this very general idea in a more specific framework, where

we assume the low-dimensional structure to be a one-dimensional space, i.e. a straight line. We

implement this idea through the mixture-based approach for the estimation of random effect
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models, hence conveniently enabling clustering of observations along the latent linear subspace,

and derive the estimators required for the ensuing ECM algorithm under several error variance

parameterizations.

Another perspective of analyzing multivariate data is to single out one variable as the

‘response’ of interest, with the remaining variables constituting a multivariate space of predic-

tors. This then gives rise to ‘multivariate’ regression methods including regularization tech-

niques such as the Least Absolute Shrinkage and Selection Operator (LASSO; Hastie et al.,

2015). However, there are many situations in which the space of responses should be consid-

ered multivariate by itself, for instance when considering the effect of some event (such as,

a government intervention on the energy market) on a set of consumer price indexes, or the

effect of an educational intervention on a set of outcome measures (such as reading, writing and

numeracy). The use of multivariate response models is, however, not very widespread in sta-

tistical practice. This may be related to the circumstance that ready-to-use implementations

are either only accessible via specialized software (such as SAS or Stata), or are equivalent

to fitting separate univariate response models (such as R function lm). Accounting for the

multivariate response character has several inferential benefits including potentially reduced

standard errors and increased powers. This holds especially for the case when the data at hand

possesses a repeated measures structure, such as pupils nested within schools. Accounting for

the ensuing correlations of lower-level units (here pupils) is crucial in order to obtain correct

standard errors of parameter estimates. Random effect models are an effective tool of achieving

this, where all upper-level units share a common random effect, hence inducing the required

correlations.

A natural way of achieving the multivariate response analysis mentioned above is to

extend the model by including covariates. In this scenario, the multivariate data become

a multivariate set of response variables, with the included covariates serving as predictors.

Addressing the issue of repeated measures mentioned above requires a two-level extension of

the model. This extension involves using a single random effect to account for correlations

between observations at the same level, thereby ensuring that the estimated effects for several

response dimensions remain interconnected.

As mentioned at the beginning of our introduction, our initial model approximates mul-
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tivariate data through a one-dimensional space, akin to the basic idea of principal component

analysis using only one principal component. Up to this point, the latent structure of the

data has been assumed to be linear. However, for multivariate data with a non-linear latent

structure, there exist non-linear extensions of principal components such as principal curves.

These curves are defined as smooth curves parameterized by a one-dimensional variable, passing

through the middle of multivariate data. As an extension of our one-level model, we propose a

parametric non-linear model which can approximate multivariate data with non-linear latent

structure based on the latent variable technique developed earlier for data with latent linear

structures.

1.2 Data Sets

In this section, we will introduce some motivating case studies that inspired the models in-

troduced in this dissertation, and demonstrate the type of data we are working with. The

analysis of these datasets can be found in later sections. There are two types of multivariate

data that we use: one-level data and two-level data. One-level data refers to data with no

hierarchical structure, while two-level data refers to data with a two-level structure, such as

repeated measures data or longitudinal data.

1.2.1 Faithful Data (One-level Data)

Let us begin with a simple one-level data set first, the faithful data in R package MASS. It

is a two-dimensional data set with 272 observations and two variables: eruption time and the

waiting time between two eruptions. The scatter plot is shown in Figure 1.1. We observe that

there are two clusters and a positive correlation between these two variables. We will return to

this example in Section 2.10.1 and illustrate there in detail how exactly this image translates

into projections (dimension reduction) and clustering.

1.2.2 Soils Data (One-level Data)

The second dataset we consider is the Soils dataset in the R package carData (Fox et al.,

2020). It consists of soil chemical characteristics. This data set contains 14 variables with 48
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Figure 1.1: Faithful Data

observations. We focus on the 6 chemical element variables. We construct a data frame with

n = 48 and six variables: Nitrogen, Phosphorous, Calcium, Magnesium, Potassium and Sodium

(which are highly correlated, but do not all use the same units). Figure 1.2 shows the correlation

between the six variables. The main application of this data set is dimension reduction, and in

particular fitting regression models with the model-based scores as predictors and additional

variables as response (the variable ‘Density’ (bulk density in gm/cm3) is considered and used

as the response). Detailed application can be found in Section 2.10.2.

1.2.3 Literacy Survey Data (One-level Data)

The third data set we consider is the IALS data available in R packagemult.latent.reg (Zhang

& Einbeck, 2024b). The data is obtained from the International Adult Literacy Survey (IALS),

collected in 13 countries on Prose, Document, and Quantitative scales between 1994 and 1995.

The data are reported as the percentage of individuals who could not reach a basic level of

literacy in each country. For each country, there are two values for Prose, Document, and

Quantitative: one for females and another for males. There is a two-level structure in the data,

requiring a two-level model to fit it. However, in the analysis, we choose to focus only on the

Prose data. We consider the prose attainment of males and females as a bivariate response

for each of the 13 countries. Figure 1.3 shows the relationship of these two variables. Later

in Section 2.10.3 we will use this data set to illustrate how our methodology can be effectively
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Figure 1.2: Soils data.

used in clustering and ranking. Furthermore, in Section 3.7.4, we consider all three outcome

variables as multivariate responses and the gender variable as the covariate; this will require a

two-level model.

1.2.4 Foetal Movement Data (One-level Data)

For the fourth data set, we consider a set of foetal movements data collected before and

during the Covid-19 pandemic. The study, which was executed by researchers of the Neonatal

Research Lab at Durham University, aims to analyse the effects of Covid on fetal development

(Reissland et al., 2024). The data were recorded via 4D ultrasound scans from a total of

40 mothers (20 before Covid and 20 during Covid) at 32 weeks gestation, and consist of the

number of movements each fetus carries out in relation to the recordable scan length. The ratio

of these counts to scan length then form the response variables of interest, with the following

five specific movements recorded during the 4D ultrasound scans: upper face movements, head

movements, mouth movements, touch movements and eye blink. We are interested in the

relationship of these five movements to the variable ‘status’, which indicates the period during

which the data was collected (‘pre-Covid’ or ‘during Covid’). This data set is available in R

package mult.latent.reg. Figure 1.4 shows the correlation of these 5 variables. These five

movements will be considered as a 5-variate response variable, and the status (‘pre-Covid’ or
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Figure 1.3: IALS data.

‘during Covid’) will be included as a binary covariate. We use this data to illustrate how our

one-level model with covariate can be applied in estimating covariate coefficients, and we will

also use a bootstrapped algorithm to obtain the standard errors, which can be found in Section

2.10.4.

1.2.5 Foetal twins’ touch movements (Two-level Data)

In our third case study for the two-level model, we consider a data set collected for research on

the effects of maternal mental health on prenatal movements in twins and singletons (Reissland

et al., 2021). We here work with with slightly reduced data where the singletons are omitted.

In the remaining twins’ data, from 14 mothers who were pregnant with twins, 11 mothers were

available for one scan and 3 were available for two scans, i.e. in total there are 34 observations.

There are two touch movement types of the fetus recorded during the scans: self touch and other

touch (this is the reason why we omit singletons from the data set: singletons can’t touch the

‘other’ twin). Additionally, the mothers’ mental health status was collected on three variables:

depression, perceived stress scale and anxiety. The objective is to fit a bivariate response

two-level model for self-touch and other touch, taking the correlation of the measurements of

fetuses belonging to the same mother into account. Figure 1.5 shows the scatter plot of the two

response variables symbolized by values of the upper-level variable ‘mother’. We will return

to this application in Section 3.7.1 where we compare the estimates of the coefficients and
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Figure 1.4: IALS data.

standard errors to the ones obtained through fitting separate linear models using the lmer()

function.

Figure 1.5: Feotal twins’ touch movements data, colored by mothers.

1.2.6 Import and Export Data (Two-level Data)

In our first case study for the two-level model, we consider a data set concerning trade in

goods and services, or more specifically the transactions in goods and services between residents

and non-residents, measured in million USD. The data is extracted from the OECD website

(Organisation for Economic Co-operation and Development, 2023b). The variables are given
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as the country-wise percentages of imports and exports in relation to the overall GDP in each

country. The dataset comprises data from 44 countries, and for our analysis we selected the

time period between 2018 and 2022, during which a varying number of observations is available

for different countries. Specifically, Australia, Japan, Korea, Mexico, New Zealand, Turkey,

United States, China, and Colombia have four observations each, while India, Russia, and Brazil

have three observations each. The remaining countries have five observations each. Figure 1.6

visualizes the data where the observations from same country has the same color. This could

be considered as a multivariate repeated measures scenario, with unbalanced measurement

occasions, and without covariates. We are particularly interested in clustering the countries

with respect to their overall export/import activity relative to GDP size, taking within-country

correlations across the repeated measurements into account. The detailed analysis of this data

set can be found in Section 3.7.2.

Figure 1.6: Import and export data, coloured by countries.

1.2.7 PIAAC survey of adult skills (Two-level Data)

In our second case study for the two-level model, we consider data from the Programme for

the International Assessment of Adult Competencies (PIAAC) survey of adult skills, carried

out in 2011 and 2012 by the OECD. The PIAAC survey was designed to assess the profi-

ciency of adults in the key information-processing skills of literacy, numeracy and problem

solving (in technology-rich environments). A definition of the three skill types is provided by

Organisation for Economic Co-operation and Development (2023a): Literacy is the ability to

12



understand and use information from written texts in a variety of contexts to achieve goals

and develop knowledge and potential, Numeracy is the ability to use, apply, interpret, and

communicate mathematical information and ideas, and Problem solving in technology-rich en-

vironments refers to the ability to use technology to solve problems and accomplish complex

tasks. The survey was designed to be valid cross-nationally and hence to allow comparisons of

the adult skill levels between countries, enabling policy makers to identify target areas for im-

provement in terms of the the skill base of workers. The data used in the analysis is extracted

from the PIAAC explorer (https://piaacdataexplorer.oecd.org/ide/idepiaac/) where one can

specify to extract different combinations of up to three covariates. There are 28 countries and

17 sub-national regions on the data explorer. For our analysis, we use all three criteria with

two covariates: gender and current work status (employee or self employed) for 28 countries

and two sub-national entities: Australia, Austria, Canada, Chile, Czech Republic, Denmark,

England (UK), Estonia, Finland, Flanders (Belgium), France, Germany, Greece, Hungary, Ire-

land, Israel, Italy, Japan, Mexico, Netherlands, New Zealand, Norway, Poland, Republic of

Korea, Slovak Republic, Slovenia, Spain, Turkey, Sweden, United States. We consider these as

30 ‘countries’ henceforth. More details about this survey can be found on the OECD website

(Organisation for Economic Co-operation and Development, 2023a). Figure 1.7 shows the cor-

relation between the three response variables, each plotted against the others and colored by

the upper levels (countries). As in the previous example, we are interested in the clustering of

countries in the presence of country-level correlations, with the focus shifting here towards the

creation of league tables of countries from the posterior random effects. A secondary interest

here is in the study of the effect of the covariates on the outcomes. The detailed application

of this example can be found in Section 3.7.3.

1.2.8 Mussels Data (One-level Data with non-linear latent struc-

ture)

For the multivariate data with non-linear latent structure example, let us first consider the

Mussels’ muscles data (available in R package dr). This is a five-dimensional data set with 82

observations. The five variables are Shell height (denoted as H), Shell length (denoted as L),

Shell mass (denoted as S) and Shell width (denoted as W) and Muscle mass (denoted as M).
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Figure 1.7: PIAAC data, coloured by countries.

The variable Muscle mass is collected as a response variable. Figure 1.8 shows the scatter plot

of the four variables H, L, S and W. We will return to this data set in Section 4.1 and Section

4.6, where we focus on describing the data using a latent structure.

1.2.9 Traffic Data (One-level Data with non-linear latent structure)

In our last case study, we consider a data set (with non-linear latent structure) of the speed

and flow recorded on Line 5 of a Californian Freeway. The data is available in R package

LPCM (Einbeck & Evers, 2024). This data set consists of 444 observations on 4 variables; we

consider two variables: Lane5Flow and Lane5Speed, Figure 1.9 shows the scatterplot of these

two variables. To represent such a data set will require a nonlinear model, at least a quadratic

model to capture the shape of the data. We will return to this example in Section 4.7 where we

compare our quadratic model, in terms of fitting curves and projections, to principal curves.

1.3 Relationship with Published Papers

The content relating to the one-level model, including the model, simulation, and applications,

overlaps with both the journal paper ‘A Versatile Model for Clustered and Highly Correlated

Multivariate Data’ (Zhang & Einbeck, 2024d) and the conference paper ‘Simultaneous Linear

Dimension Reduction and Clustering with Flexible Variance Matrices’ (Zhang & Einbeck, 2022)
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Figure 1.8: Mussels data

Figure 1.9: Graph showing the scatterplot of the speed-flow data.
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in the proceedings of IWSM2022, Trieste. The content of the two-level model, including the

model, simulation, and applications, is excerpted from ‘A Two-level Multivariate Response

Model for Data with Latent Structures’ (submitted) (Zhang et al., 2024), the conference paper

‘A Multilevel Multivariate Response Model for Data with Latent Structures’ (Zhang et al.,

2023) in the proceedings of IWSM2023, Dortmund, and a presentation titled ‘A Multivariate

Response Model for Data with Correlation Structures’ at CMStatistics 2023. The section

regarding the R packagemult.latent.reg (Zhang & Einbeck, 2024b) is similar to the conference

paper ‘R packagemult.latent.reg for Multivariate Response Scenarios with Latent Structures’

(Zhang & Einbeck, 2024c) in the proceedings of IWSM2024, Durham, and the R package

help files. The content regarding the non-linear model is similar to ‘Directed clustering of

multivariate data based on linear or quadratic latent variable models’ (Zhang & Einbeck,

2024a).

1.4 Outline of the Dissertation

In Chapter 2, we give details of the one-level model in Section 2.1, 2.2 and 2.3, focusing

on the the nonparametric maximum likelihood procedure to estimate the parameters of the

model, yielding an ECM algorithm which also automatically estimates masses, mass points, and

posterior probabilities of data points being associated with those. In the following Section 2.4,

we give detailed derivations of estimators for the parameters used in the ECM algorithm. We

solve the identifiability problem in Section 2.5 and in Section 2.6 we give the choice of starting

values for the ECM algorithm that has been used in the following simulations and applications.

In Section 2.7, we consider extension of the proposed framework allowing for covariates along

with a bootstrap approach for the computation of standard errors; In Section 2.8, we conduct

simulations that illustrate the accuracy of the proposed estimation methodology. In Section

2.9, we will lay down the clustering and projection operations explicitly. Applications to several

real data scenarios are given in Section 2.10, which we also use to illustrate the main application

pillars of clustering, dimension reduction, ranking, and regression, explicitly. In Section 2.11

we will discuss two existing methodologies that are somewhat related to our proposed models.

In Chapter 3 we focus on the two-level model. In Section 3.1, 3.2 and 3.3, we introduce

the proposed two-level model for multivariate response data, we present an ECM algorithm for
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the proposed model, resembling the nonparametric maximum likelihood method for variance

component models. The derivations of the estimators for the parameters can be found in

Appendix B. Section 3.4 presents the calculation of the intraclass correlation. Section 3.5 shows

simulation results that demonstrate the performance and accuracy of the implementation of our

proposed model and the robustness of our approach when considering different distributions

of the random effect. Section 3.6 gives additional inferential aspects for the two-level model.

Section 3.7 provides real data examples that illustrate the main applications of our model,

including the fitting of a multivariate response model resulting in reduced standard errors, the

construction of league tables, and the clustering of upper-level units based on the fitted model.

In Section 3.8, we provide an additional application of both the one-level model and the two

level-model in level reduction.

We move on to the non-linear model in Chapter 4. We begin with the general form of a

non-linear model in Section 4.1, which is parameterized by a set of basis functions. Then, we

consider a simple quadratic form to investigate this model. In Section 4.2, we provide details of

the ECM algorithm for the quadratic model, and in Section 4.3, we offer the derivations of the

estimators. A simulation study to assess the accuracy of the parameter estimators is presented

in Section 4.5. Applications and comparisons with principal curves are given in Section 4.7,

where both simulated and real data are used.

In Chapter 5 we will introduce the R package multiple.latent.reg that implements

methodology for the estimation of multivariate response models with random effects on one or

two levels.
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Chapter 2

One-level Models

2.1 One-level Model (without covariates)

Let us consider a scenario where the multivariate data xi ∈ Rm are noisy observations scattered

along the one-dimensional space α+βz, where α, β ∈ Rm, and z ∈ R is an unobserved instance

of a (latent) variable Z. Then the observed data xi = (xi1, . . . , xim)
T , i = 1, . . . , n, are assumed

to be generated from the following random effect model,

xi = α + βzi + εi, (2.1)

where εi ∼ N(0,Σi) is m-variate Gaussian noise with a positive definite variance matrix Σi ≡

Σ(zi) ∈ Rm×m. It is clear that a model with observation specific m ×m variance matrices is

heavily overparametrized, and we will never contemplate fitting this model in full generality.

We still provide this general notation in Equation (2.1) as it contains all practically relevant

special cases that will be naturally arising, including, of course, the homoscedastic case Σi = Σ,

i = 1, . . . , n.

For the estimation of the random effect distribution along this line we use the nonpara-

metric maximum likelihood approach, which amounts to representing this distribution by a set

of discrete mass points (mixture centres) with some corresponding masses (mixture probabil-

ities). While this may look like a restrictive assumption, it is actually more flexible than the

application of a Gaussian random effect, as it allows for multi-modalities in the distributions

of the latent variable. Indeed, the mixture character of this approach allows for clustering of

observations based on the fitted model.

In consequence, this arrives at a modelling approach with an enormous versatility.

Firstly, as just expressed, observations can be clustered based on maximum a posteriori (MAP)

probabilities of class membership (Murphy 2012, chapter 11). Secondly, projecting the original
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Figure 2.1: Graph showing the estimated one-dimensional space with cluster centres in red and
origin of this latent one-dimensional space in green.

data points onto the estimated lower-dimensional space, the dimension of the original mul-

tivariate data is reduced (to 1, in the simple framework as discussed in this work), and the

compressed data can be used as summary statistic (such as an overall price index across several

goods) or for further inferential purposes. Thirdly, the relative order of the posterior random

effects (observations ‘projected’ onto the latent linear subspace) can be used for ranking ob-

servations in multivariate data sets. Finally, we will show that it is not difficult to include

additional covariates into model (2.1) so that one has de facto a novel tool for multivariate

response situations, yielding reduced parameter standard errors as compared to the separate

univariate response models. We will give each of these important applications some prominence

later in this chapters.

To enable some intuition for how the one-level model operates, let us use the faithful

data introduced in Section 1.2.1. The straight line in Figure 2.1 is the one-dimensional latent

space

α1

α2

+

β1
β2

 z that is parameterized by the latent variable. The red triangles positioned

along the straight line are the estimated mixture (cluster) centres. To give some metaphor,

one could consider the mixture centres as ‘washing pegs’ spanning a ‘washing rope’ holding the

clusters.
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2.2 Likelihood

The marginal probability density function f(xi|α, β) for observations generated from model

(2.1) can be written as

f(xi|α, β) =
∫
f(xi, zi|α, β)dzi =

∫
f(xi|zi, α, β)ϕ(zi)dzi, (2.2)

where f(xi, zi|α, β) is the joint probability distribution of observed data xi and unobserved

random effects zi, and ϕ(·) is the density function of the random effect distribution Z. This

model is not fully specified since it lacks specific parametrizations of the (unknown) Σi =

Σ(zi) = Var(xi|zi, α, β) and ϕ, but let us consider any (additional) parameters involved into

these initially as nuisance parameters, and construct appropriate parametrizations for these as

we go along.

The initial goal is to find maximum-likelihood estimates for the parameters α and β

in model (2.1). Building on the marginal density (2.2), the likelihood of model (2.1) is the

following,

L(α, β) =
n∏

i=1

∫
f(xi|zi, α, β)ϕ(zi)dzi

with corresponding log-likelihood,

l(α, β) =
n∑

i=1

log

{∫
f(xi|zi, α, β)ϕ(zi)dzi

}
. (2.3)

At this stage a decision needs to be made on how to deal with the integral figuring in

Equation (2.3). In principle, one could do this based on a Gaussianity assumption on ϕ(·), as

common in the mixed model context, in this case leading us back to a factor analysis framework.

However, for reasons expressed in Section 2.1, we have decided here differently, and employ

instead Aitkin’s Nonparametric Maximum Likelihood approach (Aitkin, 1996b). Here, the

random effect distribution Z is approximated by a discrete mixture distribution, say Z̃, which

is supported on a finite number of mass points z1, . . . , zK with masses P (Z̃ = zk) = πk, k =

1, . . . , K. This discrete mixture facilitates a simple approximation of the marginal likelihood
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which just involves sums rather integrals, i.e.

l(α, β) ≈
n∑

i=1

log

{
K∑
k=1

f(xi|zk, α, β)πk

}
. (2.4)

Laird (1978) showed that the marginal likelihood (2.3) can be approximated arbitrarily well by

(2.4) with a finite set of mass points. We see that this has now become a mixture-type problem,

with each mixture component k representing a latent ‘class’ within the domain of Z (we will use

the terms class and component interchangeably henceforth). The EM algorithm (Dempster et

al., 1977) is one of the most widely used algorithms for the estimation of parameters in mixture

models.

Denote by fik = P (xi|Z̃ = zk) = f(xi|zk, α, β) the probability density of xi conditional

on class k. Then we know that

P (xi, Z̃ = zk) = P (xi|Z̃ = zk)P (Z̃ = zk) = fikπk.

Since it is in practice unknown which component each observations belongs to, this is an

incomplete data scenario. We describe the missing information on the component membership

by an indicator variable

Gik =


1, if observation i belongs to component k

0, otherwise.

This defines complete data (xi, Gi1, ..., GiK), i = 1, ..., n, with probability

P (xi, Gi1, ..., GiK) =
K∏
k=1

(fikπk)
Gik

and resulting complete data likelihood
∏n

i=1

∏K
k=1(fikπk)

Gik . Then we can obtain the expected
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complete log-likelihood

lc =
n∑

i=1

E

[
log

(
K∏
k=1

(πkfik)
Gik

)
|xi

]

=
n∑

i=1

K∑
k=1

E [Gik|xi] log (πkfik)

=
n∑

i=1

K∑
k=1

wik log πk +
n∑

i=1

K∑
k=1

wik log fik

(2.5)

where wik = E [Gik|xi] = P (Gik = 1|xi) = P (Z̃ = zk|xi), which is the probability of each

observation i belonging to component k. For the component-specific densities fik, we specify,

conditional on the mixture centres zk, a multivariate Gaussian model

fik =
1

(2π)m/2

1

|Σk|1/2
exp

(
−1

2
(xi − α− βzk)TΣ−1

k (xi − α− βzk)
)

(2.6)

where we allow the variance matrices Σk = Σ(zk) to depend on the cluster k but not on

observation i, hence reducing the complexity of the original, fully heteroscedastic, variance

specification considerably. The terms α+ βzk can be interpreted as the mixture centers in the

original data space, spanned along the line α + βz. Note that the right hand side of (2.4) is

then the log-likelihood corresponding to the ‘approximative’ model

xi|zk, α, β ∼ N(α + βzk,Σk) with probability πk, (2.7)

where we treat the mass points zk, k = 1, . . . , K, and their associated masses πk as unknown

parameters to be estimated in the EM algorithm alongside with the model parameters α and

β. This model can be seen as a Gaussian mixture model with structured mean function

and component-specific variances, or as a multivariate response version of the ‘nonparametric

maximum likelihood’ (NPML) approach for the estimation of mixture masses and mass points

in random effect models (Aitkin 1996b, Aitkin et al. 2009, chapter 8).

Several reduced, parsimonious, parameterizations of the variance matrices Σk are possi-

ble in order to describe the shape of the clusters around the mixture centres. The simplest case

(i) would be a constant and diagonal matrix Σk ≡ Σ = diag(σ2
j ){1≤j≤m} ∈ Rm×m, which gives

the same variance specification to all K components of the mixture. Second (ii), we consider
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using different diagonal variance matrices for different components, Σk = diag(σ2
jk){1≤j≤m} ∈

Rm×m, which yields an improvement for estimating data that has clusters of different sizes.

Third (iii), we consider using the same full (unrestricted) variance matrix, Σk ≡ Σ ∈ Rm×m, to

capture the correlation of variables. Finally (iv), different full (unrestricted) variance matrices,

Σk ∈ Rm×m give better estimations when dealing with clusters that differ by shape and size. In

line with (2.6) and (2.7), our notation in what follows will be tailored to this most general case

(iv); with the results for the reduced parameterizations naturally deriving from this. Note that

after applying the NPML approach, the Σ(zi) becomes Σ(zk), and the assumption of random-

effect specific errors feeds into the Σk. If we do not actually have Σ’s which depend on k, then

we also have implicitly Σ(zi) = Σ. The Σ(zi) are only ‘enabled’ by variance parametrization

(ii) and (iv).

2.3 ECM Algorithm and Computational Considerations

Now we can set up the EM algorithm for estimating model (2.7). It is noted that the develop-

ments in this subsection are for a fixed number of components, K. The question of choosing

K is considered as a model selection problem and will be addressed through the use of model

selection criteria as illustrated in later sections.

E-step

Using the Bayes’ theorem, we obtain the posterior probability of observation i belonging to

component k (Aitkin et al., 2009),

wik = P (Z̃ = zk|xi) =
P (Z̃ = zk)P (xi|Z̃ = zk)∑
l P (Z̃ = zl)P (xi|Z̃ = zl)

=
πkfik∑
l πlfil

. (2.8)

M-step

Using expression (2.6) for the component-wise densities fik, the expected complete data log-
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likelihood becomes

lc =
n∑

i=1

K∑
k=1

wik log(πk) +
n∑

i=1

K∑
k=1

−1

2
wik log(|Σk|) +

n∑
i=1

K∑
k=1

−m
2
log(2π)wik

+
n∑

i=1

K∑
k=1

−1

2
wik(xi − α− βzk)TΣ−1

k (xi − α− βzk).

(2.9)

Taking partial derivatives of lc with respect to each parameter gives the score equations. We

then obtain the following estimators for the parameters α, β, zk and πk by setting these score

equations to zeros and solving them. (The derivations of the estimators of these parameters

can be found in the next section.)

ẑk =

∑n
i=1wikβ̂

T Σ̂−1
k (xi − α̂)∑n

i=1wikβ̂T Σ̂−1
k β̂

. (2.10)

β̂ =

(
n∑

i=1

K∑
k=1

wikΣ̂
−1
k ẑ2k

)−1( n∑
i=1

K∑
k=1

wikΣ̂
−1
k (xi − α̂)ẑk

)
(2.11)

α̂ =

(
n∑

i=1

K∑
k=1

wikΣ̂
−1
k

)−1( n∑
i=1

K∑
k=1

wikΣ̂
−1
k (xi − β̂ẑk)

)
(2.12)

For the mixture probabilities, since
∑K

k=1 πk = 1, we need to apply a Lagrange multiplier

by letting ∂
(
l − λ(

∑K
k=1 πk − 1)

)
/∂πk = 0 , yielding (Aitkin et al., 2009),

π̂k =
1

n

n∑
i=1

wik. (2.13)

Estimators for the flexible variance specifications are again obtained by equating the

corresponding partial derivatives to zero, giving results as follows:

(i) Σ = diag(σ2
j ){1≤j≤m} ∈ Rm×m, k = 1, ..., K,

σ̂2
j =

1

n

n∑
i=1

K∑
k=1

wik(xij − α̂j − β̂j ẑk)2; (2.14)
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(ii) Σk = diag(σ2
jk){1≤j≤m} ∈ Rm×m, k = 1, ..., K,

σ̂2
jk =

∑n
i=1wik(xij − α̂j − β̂j ẑk)2∑n

i=1wik

; (2.15)

(iii) Σ = Σ1 = ... = Σk ∈ Rm×m, k = 1, ..., K,

Σ̂ =
1

n

n∑
i=1

K∑
k=1

wik(xi − α̂− β̂ẑk)(xi − α̂− β̂ẑk)T ; (2.16)

(iv) Σk ∈ Rm×m, k = 1, ..., K,

Σ̂k =

∑n
i=1wik(xi − α̂− β̂ẑk)(xi − α̂− β̂ẑk)T∑n

i=1wik

. (2.17)

It is evident that all of these estimators depend on the weights wik, hence requiring the

use of the EM algorithm which iterates between finding the above estimates and updating the

weights given the estimates.

It is noted from Equations (2.10), (2.11) and (2.12) that these involve many inversions of

the estimated variance matrices Σ̂k. This can make the EM algorithm computationally unstable

especiallly under the component-specific variance parameterizations (ii) and (iv). Therefore,

in our implementation of the above EM algorithm, we disentangle the M-step updates of Σ̂k

from those of α̂, β̂ and ẑk. Specifically, the updates (2.10), (2.11) and (2.12) are executed in a

simplified form where Σ̂k ≡ diag(σ2), for some constant σ2 which does not need to be specified

since it cancels out from the resulting simplified update equations, yielding

ẑk =
β̂T
∑n

i=1wik(xi − α̂)
β̂T β̂

∑n
i=1wik

. (2.18)

β̂ =

∑n
i=1

∑K
k=1wikẑkxi − 1

n
(
∑n

i=1 xi)(
∑n

i=1

∑K
k=1wikẑk)∑n

i=1

∑K
k=1wikẑ2k − 1

n
(
∑n

i=1

∑K
k=1wikẑk)2

; (2.19)
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α̂ =
1

n

(
n∑

i=1

xi − β̂
n∑

i=1

K∑
k=1

wikẑk

)
; (2.20)

That is, in our implementation, within each M-step, we cycle a small number times

(five will be sufficient) between (2.18), (2.19), and (2.20), note that α̂ and β̂ from the previous

iteration of the M-step are used in the first cycle of the iteration within the M-step in Equation

(2.18), then we update π̂k via (2.13), followed by the respective update of the variance matrices

according to any of (2.14), (2.15), (2.16), or (2.17) depending on the variance parameterization.

The resulting updated parameters are then used in the upcoming E-step (2.8). The simulation

studies in Section 2.8 will confirm that this approach yields accurate parameter estimates. It

is noted that in spirit, this algorithm is more of an ECM algorithm (Meng & Rubin, 1993)

than a general EM algorithm. If we compare the estimators from our methodology to the first

motivating example in Meng and Rubin (1993), then, conceptually, the entire cycle involving

zk, β, and α corresponds to Equation (2.2) in Meng and Rubin (1993), while the estimator for

the variance corresponds to Equation (2.3) in Meng and Rubin (1993). Thus, for the remainder

of the thesis, we will refer to this procedure as an ECM algorithm. A detailed procedure for

the ECM algorithm is given in Algorithm 1 below. Note that these expressions resemble the

equations for weighted linear regression. Similar observations were drawn by Aitkin et al.

(2009) for univariate response models under the GLM framework.

2.4 Derivations

In this section, we are going to show the derivations of the estimators for the parameters used

in the ECM algorithm described in Section 2.3. Let us write the expected complete data

log-likelihood again,

lc =
n∑

i=1

K∑
k=1

wik log(πk) +
n∑

i=1

K∑
k=1

−1

2
wik log(|Σk|) +

n∑
i=1

K∑
k=1

−m
2
log(2π)wik

+
n∑

i=1

K∑
k=1

−1

2
wik(xi − α− βzk)TΣ−1

k (xi − α− βzk).

(2.21)
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Algorithm 1 ECM Algorithm

1. Initialization:

(i) Choose the number of mixture components, K, where K is a positive integer.

(ii) Select a variance parameterization; four options are available.

(iii) Choose starting values for the parameters: πk, α, β, zk, Σk; four options are available.

(iv) Select the number of iterations, s; 20 iterations is suggested.

2. Iterations:

E-step

For each k, compute the posterior probability of observation i belonging to component k,
according to Equation (2.8).

M-step

steps← 0
while steps ≤ s do

counter ← 0 ▷ Reset counter for each step
while counter ≤ 5 do

Update α, β and zk, cycle between Equations (2.20), (2.19), and (2.18).
counter ← counter + 1

end while
Update πk via Equation (2.13)
Update Σk according to Equation (2.14), (2.15), (2.16), or (2.17), depending on the

selected variance parameterization.
steps← steps+ 1

end while

3. Output: Return the estimated parameters.
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Derivation for π̂k

We are under the constraint
∑K

k=1 πk = 1, and this can be addressed by applying a Lagrange

multiplier. Define,

L(πk) = lc − λ(
K∑
k=1

πk − 1),

then by taking the partial derivative of L(πk) with respect to πk and letting it to be zero, we

obtain,
n∑

i=1

wik
1

πk
− λ = 0,

then,

πk =

∑n
i=1wik

λ
,

take the summation over k on both sides, we obtain,

K∑
k=1

πk =

∑K
k=1

∑n
i=1wik

λ
= 1,

since
∑K

k=1

∑n
i=1wik = n, so,

λ = n,

then we obtain,

π̂k =

∑n
i=1wik

n
. (2.22)

Derivation for α̂

Using the result (derived by Petersen and Pedersen (2012)) of the derivatives of matrices,

vectors, and scalars, where W is symmetric,

∂

∂s
(x− s)TW (x− s) = −2W (x− s).

We obtain the following by taking the partial derivative of the log-likelihood with respect to

α,

∂lc
∂α

=
n∑

i=1

K∑
k=1

−1

2
wik(−2)(Σk)

−1(xi − α− βzk),
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then letting it to be zero and solving it,

n∑
i=1

K∑
k=1

wikΣ
−1
k (xi − α− βzk) = 0, (2.23)

n∑
i=1

K∑
k=1

wikΣ
−1
k (xi − βzk) = α

n∑
i=1

K∑
k=1

wikΣ
−1
k ,

we obtain the estimator for α,

α̂ =

(
n∑

i=1

K∑
k=1

wikΣ̂
−1
k

)−1( n∑
i=1

K∑
k=1

wikΣ̂
−1
k (xi − β̂ẑk)

)
, (2.24)

which corresponds to Equation (2.12) in Section 2.3.

In our implementation of the ECM algorithm, we assume (only temporarily within each

M-step, before actually updating the Σ̂k) that Σ̂k ≡ diag(σ2), for some constant σ2 which does

not need to be specified since it cancels out from the resulting simplified update equations,

then Equation (2.23) becomes:

Σ−1

n∑
i=1

K∑
k=1

wik(xi − α− βzk) = 0,

and then multiply Σ on both sides, we obtain,

n∑
i=1

K∑
k=1

wik(xi − α− βzk) = 0,

then,

α̂ =
1

n

(
n∑

i=1

xi − β̂
n∑

i=1

K∑
k=1

wikẑk

)
. (2.25)

This is the estimator of α used in the M-step in implementing the ECM algorithm, which

corresponds to Equation (2.20) in Section 2.3.

Derivation for β̂

For the derivation of β, we use the result of the following, which is derived by Petersen and

Pedersen (2012),

∂

∂A
(x− As)TW (x− As) = −2W (x− As)sT .
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By taking partial derivative of the lc with respect to β, we obtain,

∂lc
∂β

=
r∑

i=1

nr∑
j=1

K∑
k=1

−1

2
wik(−2)Σ−1

k (xij − α− βzk)zTk .

Since zk is a scalar, zk = zTk , and by letting the above equation to be zero and solving it,

r∑
i=1

nr∑
j=1

K∑
k=1

wikΣ
−1
k (xij − α)zk −

r∑
i=1

nr∑
j=1

K∑
k=1

wikΣ
−1
k βz2k = 0, (2.26)

then,

β̂ =

(
r∑

i=1

nr∑
j=1

K∑
k=1

wikΣ̂
−1
k ẑ2k

)−1( r∑
i=1

nr∑
j=1

K∑
k=1

wikΣ̂
−1
k (xij − α̂)ẑk

)
(2.27)

which corresponds to Equation (2.11) in Section 2.3.

Again, we assume Σ̂k ≡ diag(σ2) in implementation, then Equation (2.26) can be rewrit-

ten as,

Σ−1

r∑
i=1

nr∑
j=1

K∑
k=1

wik(xij − α)zk − Σ−1

r∑
i=1

nr∑
j=1

K∑
k=1

wikβz
2
k = 0,

multiply Σ on both sides, we could obtain,

β̂ =

∑n
i=1

∑K
k=1wikẑkxi − 1

n
(
∑n

i=1 xi)(
∑n

i=1

∑K
k=1wikẑk)∑n

i=1

∑K
k=1wikẑ2k − 1

n
(
∑n

i=1

∑K
k=1wikẑk)2

, (2.28)

which corresponds to Equation (2.19) in Section 2.3 and is being used in the R implementation.

Derivation for ẑk

For the derivation of zk, we use the result of the following, which is derived by Petersen and

Pedersen (2012),

∂

∂s
(x− As)TW (x− As) = −2ATW (x− As).

By taking partial derivative of the lc with respect to zk, we obtain,

∂lc
∂zk

=
n∑

i=1

−1

2
wik(−2)βTΣ−1

k (xi − α− βzk),
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then,
n∑

i=1

wikβ
TΣ−1

k (xi − α− βzk) = 0, (2.29)

we obtain,

ẑk =

∑n
i=1wikβ̂

T Σ̂−1
k (xi − α̂)∑n

i=1wikβ̂T Σ̂−1
k β̂

, (2.30)

which corresponds to Equation (2.10) in Section 2.3.

With the assumption of Σ̂k ≡ diag(σ2) in implementation, the Equation (2.29) becomes,

n∑
i=1

wikβ
T (σ2Im)(xi − α− βzk) = 0,

then,

σ2

n∑
i=1

wikβ
T Im(xi − α− βzk) = 0,

where the σ2 can be canceled out, and we will have,

n∑
i=1

wikβ
T (xi − α− βzk) = 0,

The estimator of zk used in the implementation is the following,

ẑk =
β̂T
∑n

i=1wik(xi − α̂)
β̂T β̂

∑n
i=1wik

, (2.31)

which corresponds to Equation (2.18) in Section 2.3, and it is being used in the R implemen-

tation.

Derivation for Σ̂k

For the derivation of Σ, we use the results of the derivatives of vectors and matrices (Petersen

& Pedersen, 2012),

∂

∂W
(x− s)TW (x− s) = (x− s)(x− s)T , (2.32)

and

∂

∂W
log(|W |) = (W−1)T . (2.33)
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Rewrite (2.21) to be

l̃c =
n∑

i=1

K∑
k=1

wik log(πk) +
n∑

i=1

K∑
k=1

1

2
wik log(|Σk|−1) +

n∑
i=1

K∑
k=1

−m
2
log(2π)wik

+
n∑

i=1

K∑
k=1

−1

2
wik(xi − α− βzk)TΣ−1

k (xi − α− βzk).

(2.34)

By taking partial derivative of the l̃c with respect to Σ−1
k and by letting it to be zero, we obtain,

n∑
i=1

1

2
wik

(
(Σ−1

k )−1
)T

+
n∑

i=1

−1

2
wik(xi − α− βzk)(xi − α− βzk)T = 0,

since Σk is symmetric, then ΣT
k = Σk,

n∑
i=1

wikΣk =
n∑

i=1

wik(xi − α− βzk)(xi − α− βzk)T ,

we obtain (variance parameterization(iv)),

Σ̂k =

∑n
i=1wik(xi − α̂− β̂ẑk)(xi − α̂− β̂ẑk)T∑n

i=1wik

, (2.35)

which corresponds to Equation (2.17) in Section 2.3.

Derivation for σ̂2
jk

When Σk ∈ Rm is diagonal, that is Σk = diag(σ2
jk){1≤j≤m}, where k = 1, . . . , K,

Σk =



σ2
1k 0 · · · 0

0 σ2
2k · · · 0

...
...

. . .
...

0 0 · · · σ2
jk


, (2.36)
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and |Σk| =
∏m

j=1 σ
2
jk, since |Σk|−1 = |Σ−1

k |,

|Σ−1
k |=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
σ2
1k

0 · · · 0

0 1
σ2
2k
· · · 0

...
...

. . .
...

0 0 · · · 1
σ2
jk

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

m∏
j=1

1

σ2
jk

, (2.37)

The log-likelihood function from the previous section is the following,

l̃c =
n∑

i=1

K∑
k=1

wik log(πk) +
n∑

i=1

K∑
k=1

1

2
wiklog(|Σk|−1) +

n∑
i=1

K∑
k=1

−m
2
log(2π)wik

+
n∑

i=1

K∑
k=1

−1

2
wik(xi − α− βzk)TΣ−1

k (xi − α− βzk),

and the log(|Σk|−1) will become,

log(|Σk|−1) = log(|Σ−1
k |) = log(

1

σ2
1k

.
1

σ2
2k

. . .
1

σ2
mk

) = −2
m∑
j=1

log σjk,

then the log-likelihood function l̃c will become,

l̃new = constant+
n∑

i=1

−1

2
wik(−2)

m∑
j=1

log σjk +
n∑

i=1

m∑
j=1

−1

2
wik

(xij − αj − βjzk)2

σ2
jk

,

by taking partial derivative of the l̃new with respect to σjk and by letting it to be zero, we

obtain,
n∑

i=1

−wik
1

σjk
+

n∑
i=1

wik(xij − αj − βjzk)2σ−3
jk = 0,

then,
n∑

i=1

wik
1

σjk
=

1

σ3
jk

n∑
i=1

wik(xij − αj − βjzk)2,

we then obtain variance parameterization (ii),

σ̂2
jk =

∑n
i=1wik(xij − α̂j − β̂j ẑk)2∑n

i=1wik

, (2.38)

which corresponds to Equation (2.15) in Section 2.3.
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Derivation for Σ̂

For the derivation of parameter Σ, again, we use Equations 2.32 and 2.33. When Σk ≡ Σ, the

log-likelihood function (2.21) can be rewrite as,

l̃c =
n∑

i=1

K∑
k=1

wik log(πk) +
n∑

i=1

K∑
k=1

1

2
wik log(|Σ|−1) +

n∑
i=1

K∑
k=1

−m
2
log(2π)wik

+
n∑

i=1

K∑
k=1

−1

2
wik(xi − α− βzk)TΣ−1(xi − α− βzk).

(2.39)

By taking partial derivative of the l̃c with respect to Σ−1 and by letting it to be zero, we obtain,

n∑
i=1

K∑
k=1

1

2
wik

(
(Σ−1)−1

)T
+

n∑
i=1

K∑
k=1

−1

2
wik(xi − α− βzk)(xi − α− βzk)T = 0,

since Σk is symmetric, and
∑n

i=1

∑K
k=1wik = n then we obtain variance parameterization (iii),

Σ̂ =
1

n

n∑
i=1

K∑
k=1

wik(xi − α̂− β̂ẑk)(xi − α̂− β̂ẑk)T , (2.40)

which corresponds to Equation (2.16) in Section 2.3.

Derivation for σ̂j

When Σm×m is diagonal, that is Σ = diag(σ2
j ){1≤j≤m},

Σ =



σ2
1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 0 · · · σ2
j


, (2.41)
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and |Σ| =
∏m

j=1 σ
2
j , since |Σ|−1 = |Σ−1|,

|Σ−1|=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
σ2
1

0 · · · 0

0 1
σ2
2
· · · 0

...
...

. . .
...

0 0 · · · 1
σ2
j

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

m∏
j=1

1

σ2
j

, (2.42)

The log-likelihood function from the previous section is the following,

l̃c =
n∑

i=1

K∑
k=1

wik log(πk) +
n∑

i=1

K∑
k=1

1

2
wiklog(|Σ|−1) +

n∑
i=1

K∑
k=1

−m
2
log(2π)wik

+
n∑

i=1

K∑
k=1

−1

2
wik(xi − α− βzk)TΣ−1(xi − α− βzk),

and log(|Σ|−1) in the above log-likelihood function will become,

log(|Σ|−1) = log(|Σ−1|) = log(
1

σ2
1

.
1

σ2
2

. . .
1

σ2
m

) = −2
m∑
j=1

log σj,

then the log-likelihood function l̃c will become,

l̃new = constant+
n∑

i=1

K∑
k=1

−1

2
wik(−2)

m∑
j=1

log σj +
n∑

i=1

K∑
k=1

m∑
j=1

−1

2
wik

(xij − αj − βjzk)2

σ2
j

,

by taking partial derivative of the l̃new with respect to σj and by letting it to be zero, we obtain,

n∑
i=1

K∑
k=1

−wik
1

σj
+

n∑
i=1

K∑
k=1

wik(xij − αj − βjzk)2σ−3
j = 0,

since
∑n

i=1

∑K
k=1−wik = n,

n

σj
=

1

σ3
j

n∑
i=1

K∑
k=1

wik(xij − αj − βjzk)2,

we then obtain variance parameterization (i),

σ̂j
2 =

∑n
i=1

∑K
k=1wik(xij − α̂j − β̂j ẑk)2

n
, (2.43)
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which corresponds to Equation (2.14) in Section 2.3.

2.5 Identifiability

Consider again the model for the multivariate data xi implied by Equation (2.7), i.e.

xi = α + βzk + εi.

The product term βzk makes the parameters β = (β1, . . . , βm)
T and zk unidentifiable. The

vector α is also unidentifiable as, when moving along the estimated straight line, the same model

could be attained by translating all zk’s along the line. Therefore, the model is identifiable

only under certain restrictions, and in order to fix the problem, we standardize zk by letting

E(Z̃) =
K∑
k=1

πkzk = 0 (2.44)

and

Var(Z̃) =
K∑
k=1

πkz
2
k − (πkzk)

2 = 1, (2.45)

where Var[zk] =
∑K

k=1 πkz
2
k − (πkzk)

2 (Marques da Silva Júnior et al., 2018). Equation (2.44)

solves the problem for α by fixing the position of zk’s along the estimated lower-dimensional

subspace, and Equation (2.45) solves the scale problem for β.

However, there is still an identifiability problem in terms of the signs of β̂ and ẑk.

For example, by applying the methodology on the International Adult Literacy Survey data

available in R packagemult.latent.reg (Zhang & Einbeck, 2024b) (this application is discussed

in more detail in later sections), we obtain two sets of β̂ and ẑk, where one is β̂ = (-7.696774,

-9.007150, -7.647289 ), ẑ = (-0.1165172, 1.1067183, -2.9250900), and another is β̂ = (7.696774,

9.007150, 7.647289 ), ẑ = (0.1165172, -1.1067183, 2.9250900). With α̂ being the origin on the

one-dimensional line, these two sets of ẑk’s are symmetric with respect to the origin. Usually,

for principal component analysis, the direction of sign of the first principal component scores

is not important, but for our methodology, it does affect the interpretation of the ranking in a

league table.

Correlation between variables can be positive, negative or even no correlation at all.
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For simplicity, we now consider a 2-dimensional data set, xi ∈ R2. For model (2.7),

xi1
xi2

 =

α1

α2

+

β1
β2

 zk +

ϵi1
ϵi2

 , (2.46)

where i = 1, ..., n and k = 1, ..., K,

β1
β2

 zk is estimated from the ECM algorithm. In most

applications, the components of β̂ will behave according to the following two scenarios, (i)

β̂1 > 0 and β̂2 > 0, (ii) β̂1 < 0 and β̂2 < 0. An example is shown in Figure 2.1, in which the

direction of the latent variable is the same with the first variable.

For instance, if the response variables are educational attainment metrics, with β̂ being

scenario (i), large zk’s mean large achievement, while with β̂ being scenario (ii), large zk’s mean

small achievement. It is possible that not all β̂ have the same sign. But the thing that matters

is that the methodology can guarantee reproducible and unique solutions. Hence, to identify

the direction of the latent variable, we enforce β1 ≥ 0 (but any other component of β could

equally be chosen for this).

(We attempted to tackle the identifiability problem by incorporating the constraints 2.44

and 2.45 into the likelihood function. While this approach yielded some reasonable equations,

it also complicates a problem that could otherwise be easily solved, as we mentioned above.)

2.6 Starting Values for the ECM Algorithm

Starting values can heavily influence the ability of the ECM algorithm to locate the maximum

of the likelihood (see e.g. Panić et al. (2020)). In the R implementation of the ECM algorithm

of our methodology, the following are the default starting values for parameters πk, zk, α, β,

and Σk:

π
(0)
k =

1

K
,

where K is the number of components. We use random numbers from a standard normal

distribution as the starting values for the mass points,

z
(0)
k ∼ N(0, 1),
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which are then re-scaled according to (2.44) and (2.45). As default starting values for the line

parameters we use

α(0) =
1

n

n∑
i=1

xi

β(0) = xr − α(0),

where xr ∈ Rm is a randomly selected observation. For all four variance parameterizations, we

use a diagonal matrix Σ(0) ∈ Rm×m, not depending on k, as the ‘starting variance matrix’. Let

sj =

√√√√ 1

n− 1

n∑
i=1

(xij − x̄j)2,

where j = 1, 2, ...,m and x̄j is the sample mean of the j-th variable. Then, for each diagonal

element (σ
(0)
j )2 of the diagonal matrix Σ(0), one has the starting value

σ
(0)
j =

sj
K
, j = 1, . . . ,m.

Note that the starting values for the parameters described above are the default settings used

for the simulations and applications. Additionally, we developed three other choices of starting

values in the R package mult.latent.reg (Zhang & Einbeck, 2024b). Details of this R package

can be found in Section 5.

2.7 Inclusion of Covariates

As briefly introduced in the introduction section, we explore extending the one-level model (2.1)

to incorporate covariates, providing another perspective for analyzing multivariate data. Where

multivariate response data appear in statistical applications, the most common inferential

approach is to define separate regression models for each of the individual variables constituting

the multivariate response vector. For instance, while the linear model function lm in the

statistical programming language R does allow for a multivariate response, the resulting fitted

models correspond exactly to the individual one-dimensional response models. This approach,

however, is ignoring the correlation of the different response variables, which, when taken into

account, could lead to reduced parameter standard errors, and hence increased power.
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In the original model (2.1), xi ∈ Rm can be explained by a one-dimensional coordinate

system. Under the mixture representation of the model (2.7), certain latent groups along the

one-dimensional line are driving the data generating process. However, these models do not

yet allow for the presence of covariates in the data-generating process of the xi. To avoid

confounding of the latent variable with such covariates (if they are known), the following is an

extended model which includes a vector of p covariates related to the response variables,

xi = α + βzi + Γvi + εi, (2.47)

where xi ∈ Rm, i = 1, 2, ..., n, α ∈ Rm, β ∈ Rm, vi ∈ Rp is the vector of the covariates, and

Γm×p is a matrix of the coefficients of the covariates. Similarly, the ‘approximative’ model can

be written as

xi|zk, α, β,Γ ∼ N(α + βzk + Γvi,Σk) with probability πk. (2.48)

When we have only one covariate in model (2.47), vi ∈ R and we denote Γ = γ ∈ Rm.

The ECM algorithm takes similar shapes as before, with E-step given by wik =
πkfik∑
l πlfil

.

The log-likelihood for model (2.48) is just a simple adaptation of Equation (2.9) with an

inclusion of a Γvi term. By taking partial derivatives of the log-likelihood with respect to each

parameter we obtain the score functions, and by equaling these score function to zero and

solving them, and again applying the computational simplification as in Section 2.3, we obtain

the following estimators, the derivations of these estimators can be found in Appendix A.

α̂ =
1

n

(
n∑

i=1

xi − β̂
n∑

i=1

K∑
k=1

wikẑk −
n∑

i=1

Γ̂vi

)
,

β̂ =

∑n
i=1

∑K
k=1wikẑkxi − 1

n
(
∑n

i=1 xi)(
∑n

i=1

∑K
k=1wikẑk)−

∑n
i=1 Γ̂vi

∑K
k=1wikẑk∑n

i=1

∑K
k=1wikẑ2k − 1

n
(
∑n

i=1

∑K
k=1wikẑk)2

+
1
n
(
∑n

i=1

∑K
k=1wikẑk)(

∑n
i=1 Γ̂vi)∑n

i=1

∑K
k=1wikẑ2k − 1

n
(
∑n

i=1

∑K
k=1wikẑk)2
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ẑk =
β̂T
∑n

i=1wik(xi − α̂− Γ̂vi)

β̂T β̂
∑n

i=1wik

,

Γ̂ =

∑n
i=1 xiv

T
i − α̂

∑n
i=1 v

T
i − β̂

∑n
i=1 v

T
i

∑K
k=1wikẑk∑n

i=1 viv
T
i

.

π̂k =
1

n

n∑
i=1

wik.

We let ψi = (ψi1, . . . , ψim)
T = Γvi ∈ Rm. Estimators for the flexible variance parameterizations

are given as the following,

(i) Σ = diag(σ2
j ){1≤j≤m} ∈ Rm×m, k = 1, ..., K,

σ̂2
j =

1

n

n∑
i=1

K∑
k=1

wik(xij − α̂j − β̂j ẑk − ψij)
2

(ii) Σk = diag(σ2
jk){1≤j≤m} ∈ Rm×m, k = 1, ..., K,

σ̂2
jk =

∑n
i=1wik(xij − α̂j − β̂j ẑk − ψij)

2∑n
i=1wik

(iii) Σ = Σ1 = ... = Σk ∈ Rm×m, k = 1, ..., K,

Σ̂ =
1

n

n∑
i=1

K∑
k=1

wik(xi − α̂− β̂ẑk − Γ̂vi)(xi − α̂− β̂ẑk − Γ̂vi)
T
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(iv) Σk ∈ Rm×m, k = 1, ..., K,

Σ̂k =

∑n
i=1wik(xi − α̂− β̂ẑk − Γ̂vi)(xi − α̂− β̂ẑk − Γ̂vi)

T∑n
i=1wik

Notably, under model (2.47) with xi ∈ Rm, the ‘models’ for each of the m response

variables would be linked through the random effect zi, hence inducing correlation between

units similar as for a multilevel model. An example for the use of this modelling technique is

provided in Section 2.10.4.

2.8 Simulations

In this section, we will conduct simulations to assess the accuracy of parameter estimation

for a one-level model without covariates, evaluate model selection accuracy, test parameter

estimation accuracy for a one-level model with covariates, and use a simple bootstrapped way

to obtain standard errors.

2.8.1 Parameter estimation accuracy

The ECM algorithm derived in the previous section, with all four variance parameterizations,

is implemented in R. Some simulations are set up to test the accuracy of the R implementation

under different settings.

Under the variance parameterization (i), i.e. the same diagonal matrix for all compo-

nents, we use 2-dimensional data with three individual sample sizes n = 100, n = 300, and

n = 500, and generate 1000 data sets from model (2.7) for each sample size. The true parameter

values used for the simulations can be read from the first column of Table 2.1.

The methodology from subsection 2.3 is then applied on each generated data set (with

random starting values according to Section 2.6 to initialize the ECM algorithm), and the 1000

estimates for each model parameter (see Table 2.4) are collected. Comparing the average of

the estimated values to the true values of the parameters used to generate these data, some

key results are shown in Table 2.1, Figure 2.2, Figure 2.3 and Figure 2.4. In Table 2.1, the
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Table 2.1: Simulation results under variance parameterization (i). Note that the true values
listed for zk are standardized. The true values before standardization were z1 = −0.1, z2 = 13
and z3 = 25.

Average estimates
True n = 100 n = 300 n = 500

π1 0.0500 0.0463 0.0507 0.0498
π2 0.2500 0.2518 0.2504 0.2512
π3 0.7000 0.7019 0.6988 0.6990
z1 -0.6171 -0.6186 -0.6193 -0.6191
z2 1.1675 1.2262 1.1693 1.1708
z3 2.8023 2.8457 2.8130 2.8119
α1 -1.000 -0.9936 -0.9985 -0.9985
α2 1.000 1.0235 1.0036 0.9982
β1 1.000 0.9915 0.9986 0.9966
β2 3.000 2.9974 2.9982 2.9899
σ1 0.5000 0.5043 0.4966 0.4985
σ2 2.0000 1.9866 1.9892 1.9912

averaged estimates of the parameters are close to their true values across all parameters and

sample sizes, with the bias in the estimates reducing for larger sample sizes. In Figure 2.2,

the medians of the estimates β̂1 and β̂2 in the three box plots are similar, but with the ranges

of the boxes getting smaller when increasing n from 100 via 300 to 500. The effect is clearer

visible for the β̂2’s than the β̂1’s since the larger magnitude of the true value of β2 also comes

with larger variability.

Figure 2.2: Estimations of parameter β = (β1, β2)
T with different sample sizes under the

variance parameterization (i).
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Figure 2.3: Estimations of parameter zk with different sample sizes under the variance param-
eterization (i).

Figure 2.4: Estimations of parameter σ with different sample sizes, where σ1 and σ2 are the
diagonal components of the variance matrix, under the variance parameterization (i).

Similar simulations were conducted to test the accuracy under variance parameterization

(ii), again using 1000 replicates of 2-dimensional data from model (2.7) under each of three

sample sizes of n = 100, n = 300, and n = 500. We report the numerical results in Table
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Table 2.2: Simulation results under variance parameterization (ii), where σ11 and σ21 are the
diagonal elements of Σ1, σ12 and σ22 are the diagonal elements of Σ2. Note that the true values
listed for zk are standardized. The true values before standardization were z1 = 5 and z2 = 25.

Average estimates
True n = 100 n = 300 n = 500

π1 0.2000 0.2004 0.2001 0.2002
π2 0.8000 0.7996 0.7999 0.7998
z1 -0.5000 -0.5263 -0.5168 -0.4999
z2 2.0000 2.0293 2.0182 2.0248
α1 2.0000 2.0119 2.0024 2.0016
α2 10.0000 10.0045 9.9998 9.9995
β1 1.000 0.9929 0.9948 0.9955
β2 3.000 2.9771 2.9871 2.9926
σ11 0.2000 0.1972 0.1993 0.1998
σ21 0.4000 0.3949 0.3971 0.3991
σ12 1.0000 0.9614 0.9856 0.9948
σ22 2.0000 1.9465 1.9880 1.9862

2.2 and display the estimated variance structures under this model in Figure 2.5. We omit

the boxplots for the other parameters as they are similar to those under parameterization (i).

For variance parameterization (iii), We generate 2-dimensional data from model (2.7) under

three sample sizes of n = 100, n = 300, and n = 500, with 200 replicates. The results and

boxplots under parameterization (iii) are shown at the end of this subsection, the main results

are summarized in Table 2.3, Figures 2.6, 2.7, and 2.8.

Overall, we can tell from the tables and figures that the estimators give sensible estimates

of the parameters, the averaged estimates of the parameters are accurate compared to their

true values, there appear to be no systematic biases, and the variability of the estimates reduces

with increased sample size. The boxplots illustrate the consistency of estimators, where the

boxes are squeezing to the true value (red horizontal line) as the sample size gets larger.

2.8.2 Model selection accuracy (AIC and BIC)

Next, we set up another set of simulations to address the importance of using the correct

variance parameterization when fitting a model. For each model with each variance parame-

terization, we generate 200 replicates, each with sample size of 100, from the model. Then for

the data generated from the model with variance parameterization (i), we fit the data to four

different models, each with a different variance parameterization. For the remaining data sets

generated from the model with variance parameterization (ii), (iii), and (iv), we do the same.
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Figure 2.5: Under variance parameterization (ii), estimations of variance parameters with
different sample sizes, where σ11 and σ21 are the diagonal components of the variance matrix
for mass point k = 1, σ12 and σ22 are the diagonal components of the variance matrix for mass
point k = 2.

We consider to use the AIC and BIC (Schwarz, 1978) as the model selection criteria, and we

use the approximated likelihood (2.4) as the likelihood in AIC and BIC. For reference, the

number of estimated parameters used in the calculation of AIC and BIC are shown in Table

2.4, where m is the dimension of data and K is the number of mass points.

Figure 2.9 shows some key results: for the datasets generated from the model with

variance parameterization (i), 73.5% of the fitted models with variance parameterization (i)

lead to the smallest AIC values, and 95% of the fitted models with variance parameterization

Table 2.3: Simulation results under variance parameterization (iii). Note that the true values
listed for zk are standardized. The true values before standardization were z1 = 5 and z2 = 25.

Average estimates
True n = 100 n = 300 n = 500

π1 0.4000 0.4007 0.3983 0.3971
π2 0.6000 0.5993 0.6017 0.6028
z1 -0.8165 -0.8215 -0.8145 -0.8121
z2 1.2247 1.2296 1.2320 1.2340
α1 20.0000 20.0001 19.9965 19.9891
α2 7.0000 7.0174 6.9780 6.9828
β1 1.000 1.0065 0.9967 0.9980
β2 3.000 2.9749 2.9864 2.9901
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Figure 2.6: Under variance parameterization (iii), estimations of parameter β with different
sample sizes.

Figure 2.7: Under variance parameterization (iii), estimations of parameter πk with different
sample sizes.

(i) lead to the smallest BIC values. For the datasets generated from the model with variance

parameterization (ii), 88% of the fitted models with variance parameterization (ii) lead to the

smallest AIC values, and 98% of the fitted models with variance parameterization (ii) lead to the

smallest BIC values. For the datasets generated from the model with variance parameterization
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Figure 2.8: Under variance parameterization (iii), estimations of parameter Σ with different
sample sizes, where Σ11, Σ22 are the diagonal elements and Σ12, Σ21 are the off diagonal elements
of the variance matrix. The true values are: Σ11 = 1.0, Σ22 = 1.5, Σ12 = Σ21 = 0.1.

Table 2.4: The number of estimated parameters used for AIC and BIC.

Parameters Variance (i) Variance (ii) Variance (iii) Variance (iv)

πk K − 1 K − 1 K − 1 K − 1
zk K K K K
α m m m m
β m m m m

Σk m mK m(m+1)
2

m(m+1)K
2

(iii), 87% of the minimum AIC values and 99% of the minimum BIC values are obtained from

a fitted model with the variance parameterization (iii). For datasets generated from the model

with variance parameterization (iv), fitting the model with variance parameterization (iv),

we obtain 99% of the minimum AIC values and 91.5% of the minimum BIC values. The

results indicate that choosing a correct variance parameterization is significant for fitted model

selection.

Aitkin et al. (2009) noted that, due to failing the large-sample normality assumption

for the likelihood function, the use of AIC or BIC in the context of mixture models may be

considered questionable (despite being commonly used). Almohaimeed and Einbeck (2022) dis-

cussed further the use of AIC and BIC for model selection under NPML estimation. Although
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the BIC might lead to a different choice than AIC, Leroux (1992) showed that using BIC for

selecting the number of mixture components for finite mixture models is consistent. We use

AIC and BIC as model selection criteria in our methodology.

Figure 2.9: Barplots showing the number of minimum AIC, BIC values obtained from fitted
models with different variance parameterizations.

2.8.3 Parameter Estimation Accuracy for One-level model with Co-

variates

For the one-level model with covariates, we conducted a simulation to test the accuracy of

parameter estimation using the ECM algorithm implemented in R. Due to the main application

of this model being to fit a multivariate response model, the key focus would be on the accuracy

of the estimates of parameter Γ, which can be considered as the coefficient matrix. We simulate

4-dimensional data from model (2.48) with two covariates generated from a uniform distribution

with a lower limit of 0 and an upper limit of 1, and with K = 2 mixture components, under

variance parameterization (i). We generate 300 replicates for each of the three sample sizes:

n = 100, n = 300 and n = 500, Figure 2.10 shows the structure of data that we are using.

Table 2.5 shows the averaged estimates for parameter Γ, the true values used can be found
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Figure 2.10: A simulated data set with sample size of n = 100.

in the first column. Figure 2.11 and 2.12 shows the histograms for each elements in the Γ

matrix for all sample sizes each with 300 replicates, we observe that they are all normally

distributed and the averaged estimates are very close to their true values across all parameters

and sample sizes. However, for parameter β, as seen in Figure 2.13, the estimates are non-

symmetrically bimodally distributed. This indicates that the ECM algorithm found a different

set of solutions where the parameter is poorly estimated, and this situation corresponds to

poor starting points. The reason for this is that the model from which the data points are

simulated is a complicated model (4-variate, 2-dimensional, and with 2 covariates). One way

to improve the estimation results (specifically for parameters that are not our main concern)

is to run each replicate several times (let’s say 10 times) and select the results out of the 10

with the smallest AIC values. Due to the computational expense of this simulation, we will

illustrate this idea, later in this dissertation, using a small number of replicates. Details can

be found in section 5.2 when we introduce the functionalities of the associated R package.

2.8.4 Bootstrapped Standard Error for One-level Model

We conducted a simple simulation following the bootstrapped standard error algorithm which

will be introduced in details in Section 2.9.4 with a two-dimensional data set to compare the

estimates and the standard errors with fitting separate linear models using lm() function. We

49



Table 2.5: Simulation results for parameter Γ under variance parameterization (i).

Average estimates
True n = 100 n = 300 n = 500

Γ11 -0.5200 -0.5043 -0.5723 -0.5105
Γ12 0.0500 0.0448 0.0496 0.0587
Γ13 -0.0400 -0.0383 -0.0402 -0.0397
Γ14 0.7200 0.7184 0.7163 0.7213
Γ21 -4.7900 -4.8399 -4.7966 -4.7844
Γ22 2.1900 2.1846 2.1770 2.2029
Γ23 -0.1400 -0.1451 -0.1417 -0.1394
Γ24 0.8700 0.8385 0.8664 0.8727

Figure 2.11: A histogram illustrating the overall estimates of 300 replicates for all three sample
sizes is shown for the first column of the Γ matrix. The vertical red line is the true value and
the blue line is the mean.
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Figure 2.12: A histogram illustrating the overall estimates of 300 replicates for all three sample
sizes is shown for the second column of the Γ matrix. The vertical red line is the true value
and the blue line is the mean.
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Figure 2.13: A histogram illustrating the overall estimates of 300 replicates for all three sample
sizes is shown for β. The vertical red line is the true value and the blue line is the mean.

52



generated a two-dimensional data set xi ∈ R2 with π = (0.3, 0.7), z = (1.5,−0.6), α = (10, 2),

β = (1, 3), γ = (0.5, 3). Then we compared the estimates and standard errors obtained from

the use of R function lm (when used as a multivariate response model), with those obtained

from the procedures outlined in the previous and current subsection with B = 300. The results

are shown in Table 2.6; overall, our model leads to considerably smaller standard errors for the

estimated coefficient parameter γ.

Table 2.6: Estimations (Standard errors) of γ obtained using different methods.

γ̂1 (SE) γ̂2 (SE)

lm(.) 0.5025 (0.2139) 2.8763 (0.4871)
model (2.47) with bootstrap 0.4649 (0.1709) 2.7710 (0.3201)

2.9 Additional Inferential Aspects

In the previous sections, for the proposed one-level models (both with and without covariates),

the focus was on estimating the parameters from multivariate data xi ∈ Rm, and demonstrating

that these estimators are (in an empirical sense) consistent, and the variance parameterizations

are identifiable. In practice, these steps will rarely form an end in itself, but will be building

blocks on the way to a more concrete statistical question. We now refer back to the four

application pillars already mentioned in the introduction (Section 2.1), and explain these one

by one. Additionally, we will address the important question of how bootstrapped standard

errors of covariate parameter estimates are obtained, and how these fare in comparison to

univariate response models.

2.9.1 Clustering via MAP estimation

We have already observed in Section 2.3 that the weights wik correspond to the posterior

probability of observation i belonging to component k. The term ‘posterior’ is here be to be

understood as the updated probability of class membership, having knowledge on the value of

the observation xi, as opposed to the ‘prior’ probability πk, which does not make use of this

information.
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Given the availability of wik from the last iteration of the ECM algorithm, observation

xi is then classified to the cluster k̂(xi) to which it belongs with highest posterior probability,

k̂(xi) = arg maxkwik.

This cluster allocation rule is commonly known as Maximum a posterior (MAP) rule. It is

noted in this context that, after convergence of the ECM algorithm, typically most wik are

close to 0 or 1 (with obviously only one of them being close to 1), so that this allocation is in

most cases very clear-cut. We will see examples for the application of the MAP rule in Sections

2.10.1 and 2.10.3.

2.9.2 Dimension reduction through predicted latent scores

One application of our methodology is the compression ofm-dimensional data to one-dimensional,

model-based scores, which can be considered as the summary information of the original data.

This is achieved through the use of the ‘projection’

z∗i =
K∑
k=1

wikẑk, (2.49)

where z∗i ∈ R (Aitkin, 1996a). Given the fitted model (2.1), z∗i would be the best prediction of

the position for the latent variable zi that generates the original data xi. Then the following

equation maps the one-dimensional scores back onto the higher dimensional original data space,

x∗i = α + βz∗i ,

where x∗i are the compressed counterparts to the original data. It is clear that, unlike in

e.g. principal component analysis, the projections xi − x∗i are not orthogonal to the linear

subspace. However, they still can be meaningful: Under the given approach, all differences

between observations to their cluster centres are treated as actual errors. The result of this

is an increased robustness to such errors, as only clear deviations from a cluster lead to a

projection beyond its centre. An example illustrating this behavior is provided in Figure 2.16

in Section 2.10.1.
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The one-dimensional scores, z∗i , can then be used for subsequent inferential procedures,

such as a predictor variable in a regression problem involving an external response variable yi.

This approach is illustrated by way of example in Section 2.10.2.

2.9.3 Ranking

The projected z∗i provide a ‘summary score’ of all involved variables in the direction spanned by

the latent line. Along this line, the positioning of the z∗i is informative for the degree of which

the variables jointly point into the direction of the latent variable. That is, high values of z∗i

would indicate overall high values of the contributing variables, and good agreement of what

constitutes ‘high’. For instance, if each of three variables constitute price indexes for certain

goods, then the higher these constituent indices are, the higher the overall price index will be.

Hence, the order statstic of the z∗i , denoted by z∗[i], can be used to rank the cases i, namely

by [i], i = 1, . . . , n. Many of these order statistics will be undistinguishable as the projections

will be on (or close) to the same cluster centre. This makes sense from a clustering point of

view: If observations cannot be distinguished statistically (i.e., if they are just distinguished by

noise), their rank cannot be distinguished. De facto, in many cases, the z[i] will take as many

distinguishable values as there are mass points. This concept will be explained in more detail

by means of an example in Section 2.10.3.

2.9.4 Bootstrapped standard errors and p-values

In statistical practice, not only the estimation of Γ but also an assessment of its accuracy (or in

other words, a quantification of its uncertainty) are of interest. Since the direct calculation of

standard errors is generally difficult in the context of ECM estimation, we propose a bootstrap

procedure for their computation.

The bootstrap process is carried out with the following steps:

(i) We are given a data set xi ∈ Rm and a covariate vector vi ∈ Rp, i = 1, . . . , n.

(ii) Fit the data xi, vi to model (2.48) to obtain the estimates of the parameters.

(iii) Sampling B data sets from model (2.48) with the estimated parameters obtained from

(ii). (Note that in model 2.48, the random effect zi is replaced by K mass points zk,
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which are randomly chosen with probability πk.)

(iv) Fit these B data sets to our model and we would obtain B sets of γ̂. Then calculate the

standard deviations across all B replicates of each of the m× p components of Γ̂.

The bootstrap process to obtain the p-values is carried out with the following steps:

The null hypothesis and the alternative hypothesis for Γ̂ are the following:

Ho : Γ̂ = 0m×p vs H1 : Γ̂ ̸= 0m×p

(i) We are given a data set xi ∈ Rm and a covariate vector vi ∈ Rp, i = 1, . . . , n.

(ii) Fit the data xi, vi to model (2.48) to obtain the estimates of the parameters.

(iii) Sampling B data sets from model (2.48) with the estimated parameters obtained from

(ii) and with Γ = 0m×p.

(iv) Fit these B data sets to model (2.48) and we would obtain B sets of Γ̂. Then the p-value

for each γ ∈ Γ would be the proportion of γ̂ smaller and larger than ±γ̂est. obtained in

step (ii).

A simulation study to obtain the bootstrapped standard errors and compare them to the ones

obtained from individual linear regression models (using the lm() function) can be found in

Section 2.8.4. Examples of bootstrapped standard errors and bootstrapped p-values can be

found in Section 2.10.4.

2.10 Applications

2.10.1 Faithful Data: Model Selection and Projection

In Section (2.2), we introduced four different variance parameterizations; here we use again the

faithful data set to illustrate the effect of using these different variance specifications on model

fitting. Figure 2.14 shows the density contour plots for fitting the model with flexible variance

parameterizations (i) to (iv). As can be seen from Table 2.7, the AIC and BIC values decrease
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Table 2.7: AIC, BIC values for the faithful data under different variance parameterizations.

Variance (i) Variance (ii) Variance (iii) Variance (iv)

AIC 2333.36 2317.61 2300.37 2286.53
BIC 2365.81 2357.28 2336.43 2333.40

when increasing the complexity of the variance parameterization, even though of course this

does not need to be the case generally.

The following are the parameter estimates from a fitted model with the selected pa-

rameterization (iv), i.e. different full variance-covariance matrices for each component: π̂ =

(0.36, 0.64), α̂ = (3.49, 70.90), β̂ = (1.08, 12.20), ẑ = (−1.35, 0.74), and

Σ̂1 =

0.07 0.44

0.44 33.70

 , Σ̂2 =

0.17 0.94

0.94 36.05

 .
Figure 2.15 shows the clustering resulting from these estimates, according to the cluster allo-

cation process that is described in Section 2.9.1.

Figure 2.14: Density contour plots with different variance parameterizations; top left (i); top
right (ii); bottom left (iii); bottom right (iv).

We can obtain the scores (coordinates of the projected data along the one-dimensional

subspace spanned by the latent variable) through the use of Equation (2.49). We use the fol-
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lowing images to illustrate the process of projecting the original data points onto the estimated

low-dimensional space. In Figure 2.1, the straight line is the one-dimensional latent space, and

the red triangles positioned along the straight line are the estimated mixture centres α̂+ β̂ẑk.

Figure 2.15 illustrates how the original data is assigned to different clusters following the MAP

rule. The green points in Figure 2.16 on the straight line are the compressed data, x∗i , after

projection onto that line. The most distinctive character between our methodology and the

principal component analysis is that the projections are not orthogonal, which can be seen in

Figure 2.17.

Figure 2.15: For the faithful data, graph showing the original data points being assigned to
different clusters according to the Maximum a posterior (MAP) rule.

2.10.2 Soils data: Dimension reduction

In this example, we consider using the model based scores as the explanatory variable to fit

a regression model with an additional new variable as the response variable. The data set we

used for this analysis is the Soils data set in R package carData (Fox et al., 2020), which we

have introduced in Section 1.2.2. Some recap of the variables from this dataset that we will

use in this application: we construct a data frame with n = 48 and six variables: Nitrogen,

Phosphorous, Calcium, Magnesium, Potassium and Sodium (which are highly correlated, but

do not all use the same units), and use an additional variable ‘Density’ (bulk density in gm/cm3)

as the response.
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Figure 2.16: For the faithful data, graph showing the projected data points x∗i in green.

Figure 2.17: For the faithful data, graph showing the projections of the original data points
onto the estimated straight latent line.

We apply the methodology laid out in Section 2.3 on the six-dimensional space of

variables and use AIC and BIC to inform the choice of parameterizations and number of mass

points. Details of the obtained AIC and BIC values using different number of mass points and

variance parameterizations can be seen in Table 2.8 and Table 2.9. The AIC and BIC values

given in these tables are the minimum values obtained over 20-50 runs with starting values

chosen according to Section 2.6; the problem of finding the best solution gets harder when

increasing K or the complexity of the error structure. We find that AIC and BIC suggest to

use variance parameterization (ii) with 4 mass points or 3 mass points, respectively, to fit the
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Table 2.8: AIC values for the Soils data under different variance parameterizations and different
number of mass points.

Variance parameterization K = 2 K = 3 K = 4 K = 5 K = 6

(i) 941.07 877.40 881.40 885.35 889.36
(ii) 888.38 827.99 818.13 823.82 849.45
(iii) 898.33 879.41 896.68 922.73 903.31
(iv) 842.40 940.30 876.08 826.69 NA

Table 2.9: BIC values for the Soils data under different variance parameterizations and different
number of mass points.

Variance parameterization K = 2 K = 3 K = 4 K = 5 K = 6

(i) 980.37 934.84 928.18 935.87 943.62
(ii) 938.91 893.49 898.59 919.25 959.85
(iii) 965.70 950.51 971.53 1001.32 985.64
(iv) 949.06 1090.00 1068.81 1062.47 NA

model.

Next we fit a regression model with the scores z∗i being the predictor and the variable

Density as response. We compare our approach to principal component regression which is

a commonly used technique for computing regressions when the explanatory variables are

highly correlated. For a fair comparison, we construct the first principal component scores by

projecting all data points onto the 1-dimensional space and use these scores as the predictor.

The fitted lines resulting from using two regression models are shown in Figure 2.18. We

see that the data are represented quite differently for our methodology. Table 2.10 shows

the statistical measures that evaluate the performance of principal component regression in

comparison to our approach (where we have considered both the AIC and BIC solution). We

find that our latent variable approach has a better performance for the non-scaled data. It is

not unduly affected by scales or units and is robust concerning scaling.

2.10.3 Literacy survey data: Clustering and ranking

League tables are produced for the comparison of different institutions. Aitkin et al. (1981)

compared student performance under different teaching techniques using variance component

models. Aitkin and Longford (1986) investigated several modelling approaches for the com-

parison of school effectiveness studies. Sofroniou et al. (2008) used the International Adult
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Figure 2.18: Graph showing fitted lines using two regression models. In our methodology,
the regression used model based scores (model with K = 4) as the explanatory variable and
another variable in the Soils data set called ‘Density’ as the response variable. The points
in black correspond to Density values at the model based scores, and points in red are the
Density values predicted at the mass points. For the principal component regression, the fitted
regression line in blue used the first principal component (the blue points) as the explanatory
variable and the variable Density as the response variable.

Table 2.10: Statistical measures of fit for the two regression models.

Regression Model Non-scaled Data Scaled Data

Latent variable model (K = 3) R2 : 0.7430 R2 : 0.7231
RMSE : 0.1105 RMSE : 0.1137

Latent variable model (K = 4) R2 : 0.7534 R2 : 0.7457
RMSE : 0.1084 RMSE : 0.1088

Principal Component Regression R2 : 0.6226 R2 : 0.7435
RMSE : 0.1375 RMSE : 0.1097

Literacy Survey (IALS) data to construct league tables under the NPML estimation approach.

In this section we reconsider this data set for analysis. As introduced in Section 1.2.3, the

International Adult Literacy Survey (IALS) was collected in 13 countries (or country-type en-

tities) on Prose, Document, and Quantitative scales between 1994 and 1995. The data are

reported as the percentage of individuals who could not reach a basic level of literacy (being

the worst) in each country, the data can be found in Table 2.12.

As in Sofroniou et al. (2008), we only use the prose scale for the analysis. However, we

take the separation of the reported prose results into male and female attainment differently
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into account than in that publication. We consider, for each of the 13 countries, male and

female prose attainment as a bivariate response, allowing us to employ model (2.1) to describe

the data, and so model (2.7) for parameter estimation. Since the gender variable is now being

taken into account naturally in the response, no covariates at all are required in the model.

Furthermore, since under this modelling approach both female and male prose attainment for

a given country are associated with the same random effect, it also eliminates the need to fit a

two-level model as in Sofroniou et al. (2008) which is otherwise needed to correlate the female

and male observations within each country. So, effectively, by using a gender-defined bivariate

response we are ‘taking one level out’ of the problem.

We fit the model with K = 3 mass points and with variance parametrization (ii) which

leads to a minimum AIC value of 158.3963 and the smallest BIC value of 166.8705. The scores

z∗i are obtained as the posterior intercept and can be considered as the summary information

of the original data. The task is here to rank the observations using the summary information.

With the posterior probability matrix W = (wik) obtained at the convergence of the ECM

algorithm, upper-level units (countries) can then be classified into different clusters according

to their largest posterior probabilities.

Table 2.11 shows the joint ranking of the countries, with the countries being classified

into different clusters. In the table, the 3 mass points are ordered from left to right, from the

cluster in which the country has the smallest percentage of adults being illiterate to the cluster

in which the country has the largest percentage of adults being illiterate. The table shows that

Sweden is assigned to mass point 1 which has the smallest number of people being illiterate.

Poland is the only country that is assigned to the high illiteracy mass point 3. Netherlands

and Germany have posterior probabilities that spread across two mass points but are assigned

to mass points 1 and 2 according to their highest posterior probabilities. We also fit the model

with K = 5 in order to compare to the results obtained by Sofroniou et al. (2008), the results

and analysis can be found in Table 2.13 and Table 2.14.

2.10.4 Foetal Movement Data: Covariates and Standard Errors

The foetal movements data we use here has been introduced in Section 1.2.4. For our analysis,

the five specific movements recorded during the 4D ultrasound scans: upper face movements,
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Table 2.11: Posterior intercepts and ‘weight matrix’ of posterior probabilities for the IALS
data, with implied ranking (‘league table’), for K = 3. Omitted entries correspond to 0.000.

Mass points
0.154 0.769 0.077

Country posterior intercept -1.325 -0.043 3.078

Sweden -1.325 1.000
Netherlands -1.323 0.999 0.001
Germany -0.044 0.001 0.999
Canada -0.043 1.000
Australia -0.043 1.000
Switzerland (French) -0.043 1.000
New Zealand -0.043 1.000
Belgium (Flanders) -0.043 1.000
Ireland -0.043 1.000
United States -0.043 1.000
Switzerland (German) -0.043 1.000
United Kingdom -0.043 1.000
Poland 3.078 1.000

Table 2.12: Proportion of adults not achieving prose level 2 in the IALS data set.

Country Male Female

Ireland 24.21 20.93
United States 23.00 18.76
Switzerland (French) 17.46 19.44
Switzerland (German) 18.30 20.66
Canada 18.76 14.44
Belgium (Flanders) 15.55 21.61
Germany 14.31 13.31
United Kingdom 21.38 21.60
Netherlands 10.39 10.49
Poland 43.72 41.74
Sweden 7.31 7.18
Australia 18.33 15.69
New Zealand 19.94 16.52
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Table 2.13: Posterior intercepts, weight matrix and implied ranking for the IALS data using
model (2.47) with K = 5. Omitted entries correspond to 0.00.

Mass points
0.15 0.08 0.32 0.37 0.08

Country posterior intercept -1.29 -0.66 -0.17 0.19 2.99

Sweden -1.29 1.00
Netherlands -1.29 1.00
Germany -0.66 1.00
Canada -0.17 1.00
Australia -0.17 1.00
New Zealand -0.15 0.95 0.05
Switzerland (French) -0.03 0.61 0.39
Switzerland (German) 0.04 0.42 0.58
Belgium (Flanders) 0.15 0.12 0.88
United Kingdom 0.19 1.00
United States 0.19 1.00
Ireland 0.19 1.00
Poland 2.99 1.00

Table 2.14: Classification and ranking for the IALS data in the paper by Sofroniou et al.
(2008).

Mass points
0.077 0.093 0.434 0.319 0.077

Country posterior intercept -2.602 -2.156 -1.599 -1.379 -0.330

Sweden -2.60 1.00
Netherlands -2.16 1.00
Germany -1.72 0.21 0.79
Australia -1.60 1.00
Canada -1.59 0.97 0.03
New Zealand -1.58 0.92 0.08
Belgium (Flanders) -1.58 0.89 0.11
Switzerland (French) -1.54 0.72 0.28
Switzerland (German) -1.45 0.34 0.66
United States -1.38 0.01 0.99
Ireland -1.38 1.00
United Kingdom -1.38 1.00
Poland -0.33 1.00

head movements, mouth movements, touch movements and eye blink will be considered as a

five-variate response, xi ∈ R5 whereas status (‘pre-Covid’ or ‘during Covid’) is the predictor,

vi ∈ R.

We fit the data to model (2.47) with K = 3 and variance parametrization (ii) which

leads to the smallest AIC (554.3622) value and BIC (613.473) value among all parametrizations

and mass points. In principle, one could fit five separate linear regression models, each taking

one of the movements score as the response and status as the predictor. We compare the
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estimates of the parameters and the parameter standard errors using this ‘näıve’ method to

our proposed approach, using model (2.47), where the five equations are linked through a

common random effect, the results are shown in Table 2.15 and Table 2.16. Our methodology,

involving a multivariate response model with random effect, gives parameter estimates which

are consistent with the ones obtained from separate linear models, however enjoying reduced

standard errors of the coefficients. The bottom row of Table 2.15 and Table 2.16 also gives the

p-values of the estimated γ̂’s. We observe that the p-values also tend to be reduced, leading to

a potentially different decision on the significance of a predictor variable if a decision threshold

is crossed.

Table 2.15: For the Covid data, estimations of γ obtained using individual linear models for
upper face movements, head movements, mouth movements, touch movements and eye blink.

indiv. linear models
upper face head movements mouth movements touch movements eye blink

estimate (γ̂) 0.472 0.217 2.600 0.317 0.367
standard error 0.251 0.274 1.135 0.357 0.435
p-value 0.068 0.432 0.028 0.380 0.405

Table 2.16: For the Covid data, estimations of γ obtained using the proposed multivariate
response model with random effect. Standard errors and p-values are obtained via the boot-
strap.

multivariate model
upper face head movements mouth movements touch movements eye blink

estimate (γ̂) 0.460 0.203 2.549 0.297 0.346
standard error 0.193 0.208 0.878 0.250 0.361
p-value 0.051 0.381 0.048 0.224 0.323

2.11 Relationship with existing methodologies

2.11.1 Factor analysis

Some methodologically related techniques have been previously suggested in the literature,

partly very long ago. In the homoscedastic case, the one-level model (2.1) can be seen as a

one-dimensional factor analysis model (see Murphy 2012, chapter 12), with the difference that

we will apply a discrete mixture approximation of the latent variable zi.
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The marginal probability density function f(xi|α, β) for observations generated from

model (2.1) can be written as

f(xi|α, β) =
∫
f(xi, zi|α, β)dzi =

∫
f(xi|zi, α, β)ϕ(zi)dzi, (2.50)

where f(xi, zi|α, β) is the joint probability distribution of observed data xi and unobserved

random effects zi, and ϕ(·) is the density function of the random effect distribution Z. Previ-

ously, we do not make any explicit assumption regarding the distribution of the random effect

and applied Aitkin’s nonparametric maximum likelihood approach to deal with the integral

in (2.50). But in the framework of factor analysis, one could do this based on a Gaussianity

assumption on ϕ(·). Then the marginal distribution can be written as

f(xi|α, β) =
∫
N (xi|βzi + α,Σxi

)N (zi|µzi ,Σzi)dzi

= N (xi|βµzi + α,Σxi
+ ββT ),

(2.51)

where Σxi
is a diagonal matrix. Note that the error variance in our model (2.1) is allowed

to depend on the random effect, while in factor analysis, it is explicitly stated that the error

variance and the random effect are independent of each other.

Then following the derivation by Ghahramani and Hinton (1996), we could obtain,

E(z|x) = ηx,

where η = (Σxi
+ ββT )−1 = Σ−1

xi
− Σ−1

xi
β(I + βTΣ−1

xi
β)−1βTΣ−1

xi
, and,

E(zzT |x) = V ar(z|x) + E(z|x)E(z|x)T = I − ηβ + ηxxTηT .

In the E-step, E(z|x) and E(zzT |x) will be computed.

In the M-step, we compute,

β̂ =

(
n∑

i=1

xiE(z|xi)T
)(

n∑
l=1

E(zzT |xl)

)−1

,
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and,

Σ̂xi
=

1

n
diag

{
n∑

i=1

xixi
T − β̂E(z|xi)xiT

}
.

The random effect zi is estimated through the least square estimates and the derivation can

be found in (Krzanowski 2000, chapter 16),

ẑi = (β̂T Σ̂−1
xi
β̂)−1β̂T Σ̂xi

(xi − x̄).

By comparison, the ẑi and β̂ derived under the framework of factor analysis is similar in the

structure to the ẑk and β̂ with the computations based on an ECM algorithm in the spirit

of the Nonparametric Maximum Likelihood approach for the estimation of mixture models in

our one-level model. However, the intercept in our model α is omitted in factor analysis, and

the implementation of the factor analysis is not designed for small dimensional data, e.g. the

function factanal() in R package stats requires at least three variables. And the estimation

of the parameters under the framework of factor analysis still requires EM algorithm, and the

computation is not getting easier compared to our approach.

To perform clustering as done in Section 2.10 (e.g. Figure 2.15) based on factor analysis,

a two-stage process would be required: first, compute the one-dimensional factor scores, and

then perform K-means on these factor scores. In contrast, our methodology allows this to be

done in a single step. Additionally, we propose four types of parameterizations of the variance

matrices (see Figure 2.14), while the factor analysis model assumes the error variance matrix

to be diagonal and unique, which is related to the independence assumption between the error

variance and the random effect. With the factor scores, we could perform regression using the

factor scores as predictors and an additional variable as the response, as we did in Section

2.10.2, where we compared the fitting of principal component regression and our method. In

Section 2.10.4, we applied the proposed model with the inclusion of covariates in regression,

which, by accounting for the correlation of the response variables, leads to reduced standard

errors for the coefficient estimates. However, factor analysis in its standard form cannot deal

with covariates in a straightforward way. There have been methodologies (e.g. Fan et al. 2016;

Li and Jung 2017) which use factor analysis in conjunction with covariates but these methods

attempt to directly model the factors as a function of covariates, rather than adjusting the
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overall model for the effect of the covariates as what has been done in our methodology.

Finally, we consider to use a real data set to show the similarities of our one-level model

and the factor analysis method when only one factor is used. The data used here is again

the Soils data (used in Section 2.10.2) available in the R package carData. We consider the

six chemical elements variables: nitrogen, phosphorous, calcium, magnesium, potassium, and

sodium. The results are shown in Table 2.17. The similar results indicate that β serves the same

purpose in our one-level model as the loadings Γ in factor analysis. However, the conceptual

mathematics behind these two methods and the methods of estimating the parameters are

different as we have discussed above.

nitrogen phosphorous calcium magnesium potassium sodium

β̂ 0.90 0.80 0.87 -0.54 0.74 -0.87
Loadings 0.95 0.85 0.88 -0.55 0.73 -0.88

Table 2.17: The estimated β̂ and the loadings Γ from factor analysis using one factor.

2.11.2 GTM

There is also some overlap with the Generative Topographic Mapping (GTM, Bishop et al.

1998), which allows for non-linear manifolds. In GTM, the function y(t;W ), where t is a latent

variable and W is the parameter matrix, is defined as a continuous and differentiable mapping,

rather than just a latent straight line. Pena et al. (2008) revisited the GTM and provided

the following equations to explain the mathematical details of this approach. The marginal

probability density function for the GTM can be written as

f(x|W,σ) =
∫
f(x|t,W, σ)ϕ(t)dt, (2.52)

where x is the original data point, σ2 is the variance, and ϕ(t) is the probability distribution

of the latent variable t. In our proposed model, we encounter a situation similar to the one

where a decision must be made regarding how to handle the integral over the latent variable.

In the GTM the latent variables are parameterized by a fixed and equidistant grid,

ϕ(t) =
1

K

K∑
k=1

f(x|tk,W, σ), (2.53)
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where ϕ(t) is a set of K equally weighted delta function, which makes the integral to become

a summation,

f(x|W,σ) = 1

K

K∑
k=1

f(x|tk,W, σ). (2.54)

Comparing Equation (2.53) to our methodology, we observe that we make no assumptions

regarding the distribution of the latent variable, and we used estimable masses and mass

points to deal with the integral as compared to Equation (2.54). The way of dealing with the

integral in GTM renders the approach less suitable for clustering-type applications. Another

difference is that rather than using different variance matrices for different clusters, all mixture

components in GTM share the same variance. Under the GTM approach, there is no immediate

possibility to include covariates and hence they do not serve as a multivariate response model.
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Chapter 3

Two-level Model

In Section 2.7, we proposed a one-level random effect model, in which multivariate observations

xi ∈ Rm, i = 1, . . . , n, are described by a fixed effect covariate term plus a random effect term

based on a one-dimensional latent variable parameterizing a straight line cutting through the

multivariate space as follows

xi = Γvi + α + βzi + εi, (3.1)

where vi ∈ Rp is a vector of the covariates, Γm×p is a matrix of the coefficients of the covariates,

α ∈ Rm and β ∈ Rm are m- variate parameter vectors, zi is a one-dimensional random effect,

and εi ∈ Rm independent Gaussian errors possibly depending on zi.

Without the covariate term Γvi, model (3.1) performs dimension reduction by approxi-

mating the original higher dimensional observations by α+βzi, which is a straight line through

m-variate space, parameterized by the one-dimensional latent variable zi ∈ R.

With the covariate term Γvi, this model can be seen as a multiple regression model

for multivariate responses, where the random effect term is ensuring that correlations among

the different response measurements are taken into account, potentially resulting in reduced

standard errors of parameter estimates. When seen as a clustering technique, this model spec-

ification ensures that clusters are adjusted for the specificed covariates, avoiding the potential

impact of these covariates on the clustering outcome.

In summary, this approach can lead to quite powerful inferences, despite the seemingly

restrictive assumption of a one-dimensional latent linear subspace However, as a limitation,

model (3.1) could not yet deal with repeated measures, which would require a two-level ex-

tension of the model. We will see that the model formulation (3.1) can be expanded so that

a single random effect zi can be used to account for correlations between observations sharing

the same level, thereby ensuring that the estimated models for several response dimensions

remain linked. This section aims to provide this extension, giving equal importance to the
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applications of clustering (of upper-level units) and multivariate regression for two-level data.

The development will begin with the latter, with the former arising as a by-product.

Some related model classes have been developed in the wider context of item response

theory, most notably latent class models (Goodman, 1974). These models are commonly used

method for the clustering of observed multivariate categorical data (such as questionnaire out-

comes on Likert scales) into latent classes. An obvious difference to our methodology is that in

latent class models the response variables are categorical rather than continuous. A multilevel

version of latent class models was developed by Vermunt (2003). A model selection procedure

for deciding the number of latent classes at both levels is proposed by Lukočienė et al. (2010).

Gnaldi et al. (2016) introduced a multilevel version latent class-item response theory model

applied for educational data in which the collected response variables are dependent of each

other. The latent class analysis also allows the inclusion of covariates; Di Mari et al. (2023)

proposed a two-step estimator for the multilevel latent class model in which two categorical

random effects are used to account for both the upper and lower levels, allowing for clustering

of the latent classes on both levels. It remains the case that due to the restriction on categorical

outcomes, latent class models cannot be applied or compared with the situations dealt with in

this work. However, it should not be left unstated that continuous-outcome versions of multi-

level latent class models have also been developed, and are available in specialized commercial

software such as Latent GOLD (Vermunt, 2008).

3.1 A Two-level Model for Multivariate Response Data

We consider a scenario where multivariate data xij ∈ Rm has a two-level structure, with the

upper level indexed by i = 1, 2, ..., r and the lower level by j = 1, 2, ..., ni. The proposed

two-level model takes the form

xij = α + βzi + Γvij + εij, (3.2)

where α, β ∈ Rm, zi ∈ R, vij ∈ Rp is the vector of covariates (which may include upper-level

variates not depending on j), Γ ∈ Rm×p is a matrix of the covariate coefficients, and εij ∼
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N(0,Σ(zi)) are independent Gaussian errors. Under such a model, equivalently represented as

xij|zi, α, β,Γ ∼ N(α + βzi + Γvij,Σ(zi)) (3.3)

the data grouping process is carried out on the upper level, while the lower level units within

the same upper level unit share a common random effect term zi. Thus, the random effect

induces a line cutting across the multivariate space of responses, along which the latent values

zi are positioned. Again equivalently, and for later reference, we can write the conditional

probability density function of the xij as

f(xij|zi, α, β,Γ) = (3.4)

= (2π)−m/2|Σ(zi)|−1/2 exp

{
−1

2
(xij − α− βzi − Γvij)

TΣ−1(zi)(xij − α− βzi − Γvij)

}
.

For the distribution of random effects zi, denoted here by Z, several choices are possible,

including a Gaussian distribution. In this work, we consider to use Aitkin’s Nonparametric

Maximum Likelihood approach (Aitkin, 1999), in which their distribution is approximated

by a discrete mixture. However, as will be detailed in the following section, this is not so

much a distributional ‘assumption’, but rather a technical device to approximate the marginal

likelihood, allowing for estimation of the model parameters. De facto this approach leads to the

estimation of a constrained multivariate mixture model, with mixtures centres spanned a along

a straight line through the space of responses. This makes this approach particularly suitable

for data which are correlated and clustered at the same time. Bouveyron and Brunet-Saumard

(2014) provided a comprehensive review of model-based clustering of high-dimensional data,

encompassing constrained and parsimonious models. Celeux and Govaert (1995) explored

various clustering situations through the eigenvalue decomposition of the variance matrices

of the mixture components. Banfield and Raftery (1993) enabled the variation of all cluster

features by a reparameterization of the covariance matrix for Gaussian clustering.

When there is only one covariate vij ∈ R, we write Γ = γ ∈ Rm. Figure 3.1 illustrates a

data scenario corresponding to this concept. The data used here is simulated from model (3.2)

in the case that the latent variable obeys a three-point mixture distribution; i.e. the zi take one

of three pre-specified values of zk with probabilities πk, k = 1, . . . , K. The grey straight line
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represents the one-dimensional latent space α + βz, and the black triangles positioned along

the straight line the mixture centres of each component. The coloured thinner lines are for

illustration only and show the trend of lower-level units within each each upper level (which is

to some extent a result of the random error and to some part driven by the covariate). The

orange triangles are the fitted values: x∗ij = α̂ + β̂z∗i + γ̂vij, where z
∗
i =

∑K
k=1wikẑk ∈ R are

obtained as the posterior random effects using posterior probabilities of component membership

wik, calculated according to Bayes’ theorem (Aitkin, 1996a). There is an angle between the

fitted values and the one-dimensional latent space (represented by the gray straight line). The

fitted values are tilted from the straight line by the effect of the covariate coefficient matrix Γ.

Figure 3.1: Simulated data with 40 upper level units, each with 5 lower level units, with αT =
(20, 10), βT = (1, 3), πT

k = (0.2, 0.3, 0.5), zTk = (1.73, 0.29,−0.87), γ = (0.5, 1). Observations
are generated with component-specific diagonal variance matrices Σk = Σ(zk).

3.2 Likelihood and Estimators

Let xi = (xi1, . . . , xini
)T ∈ Rni×m denote the collection of them-variate lower-level observations

relating to the i-th upper level unit. Since these lower-level units are conditionally independent

given zi, we have

f(xi|zi, α, β,Γ) =
ni∏
j=1

f(xij|zi, α, β, γ).
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According to model (3.2), the marginal distribution of xi, which is required for the construction

of the likelihood function, can be obtained by integrating over the distribution of zi, as follows

f(xi|α, β,Γ) =
∫ [ ni∏

j=1

f(xij|zi, α, β,Γ)

]
g(zi)dzi, (3.5)

where g(zi) is the density function for the unobserved random effects zi. Given that we don’t

make any explicit assumptions regarding the distribution Z of the zi, g(zi) can be non-Gaussian,

making it infeasible to compute the integration using an analytical approach. Under the

Nonparametric Maximum Likelihood approach (Aitkin, 1999), we replace the integral over zi by

a finite sum over K mass points z1, . . . , zk with associated masses π1, . . . , πk, for k = 1, . . . , K.

Here we treat the mass points and masses as unknown parameters to be estimated. The value

of K will be treated as known in the parameter estimation process and the best choice of K

in a fitted model will be selected through the use of model selection criteria, specifically based

on the AIC criterion.

The marginal distribution can then be approximated as

f(xi|α, β,Γ) ≈
K∑
k=1

[
ni∏
j=1

f(xij|zk, α, β,Γ)

]
πk, (3.6)

in which, by virtue of (3.3),

xij|zk, α, β,Γ ∼ N(α + βzk + Γvij,Σ(zk)), (3.7)

with the component-specific densities f(xij|zk, α, β,Γ) as in Equation (3.4), but with zi replaced

by zk.

Now, the α + βzk can be interpreted as the locations, in m–dimensional space, of the

mixture centers spanned along the one-dimensional latent space, with cluster-wise variances

Σk ≡ Σ(zk) replacing the previous observation-specific variances Σ(zi). The number of param-

eters to be estimated is effectively reduced by constraining to K distinct variance matrices.

Building on Equation (3.6), the approximated marginal log-likelihood can be obtained

as

l(α, β,Γ, z1, . . . , zK |x1, . . . xr) ≈
r∑

i=1

log

{
K∑
k=1

[
ni∏
j=1

f(xij|zk, α, β,Γ)

]
πk

}
. (3.8)
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In preparation of the EM algorithm (Dempster et al., 1977) to be used for the parameter

estimation (similar to the one-level model, what we are effectively using is an ECM algorithm

rather than a general EM algorithm), we define by Gik an indicator variable taking the value

1 if the upper-level unit i belongs to component k, and 0 otherwise (which is, of course,

unknown – this is the ‘missing information’ for the EM machinery). We also denote by Gi =

(Gi1, . . . , GiK)
T the set of indicators for that unit. This yields ‘complete data’ {xi, Gi}, with

probability

P (xi, Gi) =
K∏
k=1

(fikπk)
Gik ,

where for simplicity of notation we here used fik ≡
∏ni

j=1 f(xij|zk, α, β,Γ). The complete

likelihood can now be written as follows

Lc =
r∏

i=1

K∏
k=1

(πkfik)
Gik . (3.9)

Hence we obtain the complete log-likelihood,

lc = logLc =
r∑

i=1

K∑
k=1

Gik log(πkfik). (3.10)

The expectation wik = E[Gik|xi] = P (Gik = 1|xi) = πkfik/
∑

ℓ πℓfiℓ is just the ‘posterior’

probability of each upper-level unit i belonging to component k. Therefore, the expected

complete log-likelihood is written as

l∗c =
r∑

i=1

K∑
k=1

E [Gik|xi] log (πkfik)

=
r∑

i=1

K∑
k=1

wik log πk +
r∑

i=1

ni∑
j=1

K∑
k=1

wik log f(xij|zk, α, β,Γ).
(3.11)

Plugging the expression for f(xij|zk, α, β,Γ) into Equation (3.11), we obtain the expected

complete log-likelihood as follows

lc
∗ =

r∑
i=1

K∑
k=1

wik log(πk)−
1

2

r∑
i=1

ni∑
j=1

K∑
k=1

wik log(|Σk|)−
m

2
log(2π)

r∑
i=1

ni

−1

2

r∑
i=1

ni∑
j=1

K∑
k=1

wik(xij − α− βzk − Γvij)
TΣ−1

k (xij − α− βzk − Γvij).

(3.12)
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By taking partial derivatives of l∗c with respect to each parameter and letting the score equations

to be 0 and solving them, we find that

ẑk =

∑r
i=1wik

∑ni

j=1 β̂
T Σ̂−1

k (xij − α̂− Γ̂vij)∑r
i=1 niwikβ̂T Σ̂−1

k β̂
, k = 1, . . . , K. (3.13)

β̂ =

(
r∑

i=1

ni∑
j=1

K∑
k=1

wikΣ̂
−1
k ẑ2k

)−1( r∑
i=1

ni∑
j=1

K∑
k=1

wikΣ̂
−1
k (xi − α̂− Γ̂vij)ẑk

)
, (3.14)

α̂ =

(
r∑

i=1

ni∑
j=1

K∑
k=1

wikΣ̂
−1
k

)−1( r∑
i=1

ni∑
j=1

K∑
k=1

wikΣ̂
−1
k (xi − β̂ẑk − Γ̂vij)

)
, (3.15)

The solution for Γ̂ can only be given implicitly in the form of estimating equation

r∑
i=1

ni∑
j=1

K∑
k=1

wikΣ̂
−1
k (xij − α̂− β̂zk)vijT =

r∑
i=1

ni∑
j=1

K∑
k=1

wikΣ̂
−1
k Γ̂vijvij

T . (3.16)

We furthermore find the general solution for Σk as

Σ̂k =

∑r
i=1

∑ni

j=1wik(xij − α̂− β̂ẑk − Γ̂vij)(xij − α̂− β̂ẑk − Γ̂vij)
T∑r

i=1 niwik

, (3.17)

for k = 1, . . . , K. Finally, since for the mixture probabilities
∑K

k=1 πk = 1, we apply a Lagrange

multiplier by letting ∂
(
l∗c − λ(

∑K
k=1 πk − 1)

)
/∂πk = 0. Hence, we find (Aitkin et al., 2009),

π̂k =

∑r
i=1wik

r
. (3.18)

We note that this set of Equations (3.13) to (3.18) is rather impractical to use directly,

because the equations depend on each other in a complex manner, they involve multiple in-

versions of the estimated matrix Σ̂k, and the solution for Γ does not have an explicit form.

However, it is also not necessary to apply these equations in full generality. An immediate sim-

plification is suggested by considering the matrices Σk. While these variance matrices, under

a full unconstrained parameterization, could deal with clusters that differ by shape and size,

we found little evidence that such complex variance parameterizations are helpful or necessary

in the context of two-level models. This is in line with similar results for one-level models by

Zhang and Einbeck (2024d) and what is written in subsection 2.1. Hence, we will restrict this
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to diagonal variance matrices

Σk = diag(σ2
lk){1≤l≤m}, k = 1, ..., K.

To avoid potential identifiability issues, certain restrictions are imposed on the model. First

we enforce β1 ≥ 0 to identify the direction of the latent variable. Then we standardize zk by∑K
k=1 πkzk = 0, and

∑K
k=1 πkz

2
k − (πkzk)

2 = 1, where Var[zk] =
∑K

k=1 πkz
2
k − (πkzk)

2 (Marques

da Silva Júnior et al., 2018).

The resulting ECM algorithm, which makes some further simplifications which are how-

ever of computational rather than model-related character, is presented in the next subsection.

3.3 ECM Algorithm

We have the following Expectation (E) and Maximization (M) steps resulting from the previous

considerations.

E-step

The E-step is obtained from straightforaward application of Bayes’ theorem as illustrated in

the previous subsection (Aitkin et al., 2009),

wik =
πkfik∑
l πlfil

. (3.19)

M-step

In order to implement the M-step computationally, we adopt the strategy employed in Zhang

and Einbeck (2024d) (also written in subsection 2.3). For this, we detach the updates of α̂, β̂,

ẑk and Γ̂ from those of Σ̂k, by invoking, only for the use within expressions (3.13) to (3.16),

a further simplification where the variance matrices are assumed to be constant and diagonal,

i.e. σ2
lk ≡ σ2 for all l and k. This leads to simpler equations for (3.13) to (3.16) as follows

ẑk =

∑r
i=1wik

∑ni

j=1 β̂
T (xij − α̂− Γ̂vij)∑r

i=1 niwikβ̂T β̂
, (3.20)
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β̂ =

∑r
i=1

∑ni

j=1

∑K
k=1wikẑkxij − 1

n
(
∑r

i=1

∑ni

j=1 xij)(
∑r

i=1 ni

∑K
k=1wikẑk)∑r

i=1 ni

∑K
k=1wikẑ2k − 1

n
(
∑r

i=1 ni

∑K
k=1wikẑk)2

−
Γ̂
∑r

i=1

∑ni

j=1

∑K
k=1wikẑkvij − 1

n
(
∑r

i=1 ni

∑K
k=1wikẑk)(Γ̂

∑r
i=1

∑ni

j=1 vij)∑r
i=1 ni

∑K
k=1wikẑ2k − 1

n
(
∑r

i=1 ni

∑K
k=1wikẑk)2

, (3.21)

α̂ =
1

n

(
r∑

i=1

ni∑
j=1

xij − β̂
r∑

i=1

ni

K∑
k=1

wikẑk − Γ̂
r∑

i=1

ni∑
j=1

vij

)
, (3.22)

with the estimator for Γ now being available in explicit form,

Γ̂ =

(
r∑

i=1

ni∑
j=1

vijv
T
ij

)−1( r∑
i=1

ni∑
j=1

K∑
k=1

wik(xij − α̂− β̂ẑk)vTij

)
. (3.23)

These four equations are then iterated for a small number of times between each other,

where the ẑk, k = 1, . . . , K, are immediately re-standardized to mean 0 and variance 1 after the

execution of (3.20) . This routine is then followed by the estimation of the πk via (3.18), and the

update of the variance matrices via Σ̂k = diag(σ̂2
lk){1≤l≤m}, k = 1, ..., K. Write ϕij = Γvij ∈ Rm

and let ϕijℓ be its ℓ-th component, ℓ = 1, . . . ,m. Then,

σ̂2
lk =

∑r
i=1

∑ni

j=1wik(xijl − α̂l − β̂lẑk − ϕijl)
2∑r

i=1 niwik

. (3.24)

This completes the M-step, and the procedure continues with the E-step (3.19). The derivations

of the parameter estimators used in the ECM algorithm can be found in Appendix B. A detailed

procedure for the ECM algorithm is given in Algorithm 2 below.

3.4 Intraclass Correlation

In order to understand how the correlation of the lower-level units within each upper-level unit

is accounted for, we use the intraclass correlation. We developed a formula to calculate the

ICC for the proposed two-level model as follows. We do not assume a specific distribution of

the random effect but we can generally write that zi ∼ (µz, σz
2), where µz is the mean of zi
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Algorithm 2 ECM Algorithm

1. Initialization:

(i) Choose the number of mixture components, K, where K is a positive integer.

(ii) Choose starting values for the parameters: πk, α, β, zk, Γ, Σk; four options are available.

(iii) Select the number of iterations, s; 20 iterations is suggested.

2. Iterations:

E-step

For each k, compute the posterior probability of observation i belonging to component k,
according to Equation (3.19).

M-step

steps← 0
while steps ≤ s do

counter ← 0 ▷ Reset counter for each step
while counter ≤ 5 do

Update zk, β, α and Γ, cycle between Equations (3.20), (3.21), (3.22), and (3.23).
counter ← counter + 1

end while
Update πk via Equation (3.18)
Update Σk according to Equation (3.24)
steps← steps+ 1

end while

3. Output: Return the estimated parameters.
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and σz
2 is the variance of zi. We denote Σ to be the diagonal variance matrix for the Gaussian

noise εij. The expectation for the multilevel multivariate data xij is

E [xij] = α + βµz + Γvij,

the variance of xij can be obtained as,

Var(xij) = ββTσz
2 + Σ = σz

2



β1
2 β1β2 . . . β1βm

β2β1 β2
2 . . . β2βm

...
...

. . .
...

βmβ1 βmβ2 . . . βm
2


+



σ1
2 0 . . . 0

0 σ2
2 . . . 0

...
...

. . .
...

0 0 . . . σm
2


The covariance of two lower-level units xij and xih (j ̸= h) can be obtained as,

Cov(xij, xih) = E
[
(xij − E(xij))(xih − E(xih))T

]
= E

[
(β(zi − µz) + εij)(β(zi − µz) + εih)

T
]

= ββTE
[
(zi − µz)

2
]
+ βE [(zi − µz)]E(εihT ) + E(εij)E [(zi − µz)] β

T + E(εij)E(εihT )

= ββTE
[
(zi − µz)

2
]
,

note that Var[(zi − µz)] = E [(zi − µz)
2] − (E [(zi − µz)])

2 = E [(zi − µz)
2]. By identifiability

(details can be found at the end of Section 3.2), we have zi ∼ (0, 1), that is µz = 0 and σz = 1.

So the covariance for two different lower-level units within the same upper-level unit

and from the same variable column can be written as,

Cov(xijl, xihl) = σz
2βl

2 = βl
2,

and the variance can be written as,

Var(xijl) = σz
2βl

2 + σl
2 = βl

2 + σl
2,
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so the ICC can be written as,

Corr(xijl, xihl) =
βl

2

βl
2 + σl2

, (3.25)

where l = 1, 2, . . . ,m. For a simple random effect model yij = µ+ zi + εij, where yij ∈ R, the

variance of the random effect zi is σz
2, and the variance of εij is σε

2, the intraclass correlation

is written as σz
2

σz
2+σε

2 . Equation 3.25 is an extension. This has the same shape as the usual

expression, just considering σz = 1 and including the squared lth diagonal element βl
2 as the

‘coefficient’ of σz in our setup. It describes the correlation between two observations from the

upper-level unit of the same outcome measurement.

The covariance of two different lower-level units within the same upper-level unit and

from different variable column can be written as

Cov(xijl, xihl′) = σz
2βlβl′ = βlβl′ ,

and the variance can be written as,

Var(xijl) = σz
2βl

2 + σl
2 = βl

2 + σl
2,

Var(xihl′) = σz
2βl′

2 + σl′
2 = βl′

2 + σl′
2,

so the ICC can be written as,

Corr(xijl, xihl′) =
βlβl′√

(βl
2 + σl2)(βl′

2 + σl′2)
, (3.26)

where l ̸= l′. By looking at the expression of Equation (3.26), we observe that Equation

(3.25) is just a special case of the generalized form of ICC for the proposed multivariate two-

level model. It describes the correlation of the two observations within the same upper-level

units of different outcome measurements. When considering the same outcome measurements,

Equation (3.26) can be written as Equation (3.25).
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3.5 Simulations

In this section, we conduct simulations to evaluate the accuracy of parameter estimation.

Additionally, we investigate whether an increase in the number of upper- or lower-level units

will effectively reduce the variance of the parameter estimates. We also test the importance

of choosing the number of mixture components, denoted as K. Finally, we run simulations to

examine whether the random effect distribution impacts the estimation of parameter Γ.

3.5.1 Evaluate the Accuracy of Parameter Estimation

We first conduct a simulation study to examine the accuracy of our parameter estimation

using the ECM algorithm. Another objective of this simulation is to investigate whether an

increase in the number of upper- or lower-level units will effectively reduce the variance of the

parameter estimates. We here simulate data from bivariate two-level scenarios with a single

covariate, where the number of mixture components is K = 2. We first consider a scenario

with r = 50 upper level units and ni = 5 lower level units, for i = 1, 2, . . . , r. This will be the

baseline experiment. Then we keep r = 50 unchanged and increase the number of lower-level

units to be ni = 10, for i = 1, 2, . . . , r. We consider another sample size with lower-level units

ni = 5 for i = 1, 2, . . . , r unchanged but increase the upper-level units to be r = 100. We

also further increase the upper level units to be r = 200 and keep the lower level units ni = 5

for i = 1, 2, . . . , r. We generate 200 replicated data sets (each with two mixture components,

π1 = 0.4, π2 = 0.6 and true values of zk’s as shown in the first column of Table 3.1) from the

model (3.7). In all four scenarios a lower level covariate is generated from a normal distribution

with mean 0.3 and standard deviation 0.2, and with true γ = (1, 3)T . The simulation results,

which are presented in Table 3.1, Table 3.2 and Figure 3.2, indicate that the true parameters

are well estimated, and when we increase the number of upper-level units, the parameters’

RMSE decreases stronger than when increasing the number of lower-level units.

We also compare the γ estimates from our model to those obtained by fitting individual

two-level models. Each of these models uses one of the simulated two-dimensional variables

as response variable and treats the covariate as predictor. We used the lmer() function in R

package lme4 and the allvc() function from the npmlreg package for this comparison. The
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results, displayed in Table 3.3 and Table 3.4, show that our method produces sensible results

when compared to those obtained with allvc() and even superior estimates when compared

to those obtained with lmer().

Table 3.1: Estimates of key parameters γ, zk and α with different numbers of upper-level and
lower-level units.

Average estimates
True r = 50, ni = 5 r = 50, ni = 10 r = 100, ni = 5 r = 200, ni = 5

γ1 1.000 1.033 0.981 0.990 0.997
γ2 3.000 3.031 3.034 2.993 3.004
z1 -0.816 -0.804 -0.815 -0.818 -0.814
z2 1.225 1.279 1.256 1.236 1.235
α1 2.000 1.986 2.041 2.022 1.990
α2 10.000 9.995 10.021 10.007 10.001

Table 3.2: RMSE for key parameters γ, zk and α with different numbers of upper-level and
lower-level units.

RMSE
r = 50, ni = 5 r = 50, ni = 10 r = 100, ni = 5 r = 200, ni = 5

γ1 0.278 0.157 0.166 0.111
γ2 0.441 0.284 0.263 0.201
z1 0.130 0.125 0.082 0.057
z2 0.233 0.200 0.129 0.087
α1 0.455 0.429 0.310 0.213
α2 0.179 0.157 0.116 0.077

Figure 3.2: Estimates of key parameter γ with different number of upper-level and lower-level
units.
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Table 3.3: Averaged estimates of γ obtained by fitting individual models.

Average estimates
True r = 50, ni = 5 r = 50, ni = 10 r = 100, ni = 5 r = 200, ni = 5

lmer()

γ1 1.000 0.999 0.987 0.989 0.996
γ2 3.000 2.972 3.037 3.002 2.999

allvc()

γ1 1.000 0.993 0.992 0.989 0.995
γ2 3.000 2.998 3.037 3.005 2.995

Table 3.4: RMSE for γ obtained by fitting individual models.

RMSE
r = 50, ni = 5 r = 50, ni = 10 r = 100, ni = 5 r = 200, ni = 5

lmer()

γ1 0.286 0.182 0.175 0.123
γ2 0.470 0.325 0.278 0.209

allvc()

γ1 0.259 0.167 0.166 0.115
γ2 0.396 0.284 0.263 0.191

3.5.2 Impact of the Number of Mixture Components

The number of mass points used in a fitted model can be decided through the model selection

process. In practice, one can select the value of K that yields the smallest AIC value. However,

it is important to note that the choice of K could have an impact on the posterior probabil-

ities and estimations of other parameters. On the other hand, it is important to understand

whether the estimation of the γ parameter remains consistent and unaffected by the number of

components. To investigate this problem, we set up the following simulation scenario. We gen-

erate 200 replicates from model (3.7), employing two mixture components, i.e. Ktrue = 2 and

allowing one covariate. The covariate was randomly simulated from a normal distribution with

mean 0.3 and standard deviation 0.2. Each simulated data set is bivariate with 50 upper-level

units and 5 lower-level units within each upper-level unit. Subsequently, we fit the simulated

data using three different models: K = 2, K = 3, and K = 4. The results are shown in Table

3.5 and Figure 3.3. It can be seen that the estimation of γ in our method is quite robust to

the choice of K.
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Table 3.5: Estimates of parameter γ = (γ1, γ2)
T with different K.

Average estimates
True K = 2 K = 3 K = 4

γ1 0.500 0.519 0.517 0.519
γ2 2.000 2.082 2.074 2.078

Figure 3.3: Boxplots for the estimated parameter γ with different K.

3.5.3 Impact of the Random Effect Distribution

We conduct another simulation study to investigate whether the random effect distribution

impacts the estimation of parameters Γ (here Γ = γ). In our methodology we have explained

that there is no explicit assumption on the distribution of Z, since the mixture approximation

of Z plays merely the operational role of facilitating the approximation of an integral. However,

one may argue that de facto (3.6) then becomes the model, and hence the discrete mixture

property of the random effects an implicit assumption. So we wish to check the robustness of

different distributional choices for the random effect in comparison with the discrete mixture

we used to fit the models. In addition to generating the random effect zi from a discrete

distribution with finite mass points and weights (we use π1 = 0.4, π2 = 0.6, z1 = 1.225

and z2 = −0.816), we consider several distributions for the random variable Z generating

the zi: Poisson distribution, Gamma distribution, Normal distribution and three versions of

a Gaussian mixture distribution. We generate the random variable Z from each of the above

distributions, and for each scenario, we generate 200 replicated data sets from model (2.1)

with one covariate (the covariate generated from a normal distribution with a mean of 0.3
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and a standard deviation of 0.2), with r = 50 upper-level units and ni = 5 lower-level units.

The random effect generated from these four distributions has lower-level units within each

upper-level unit that share the same zi value.

Table 3.6 and Table 3.7 report the averaged estimates of the covariate coefficient γ̂.

Figure 3.4 and Figure 3.5 show the boxplots of the estimated γ̂’s with Z from different dis-

tributions. One can see that the distribution of the random effect only slightly effects the

estimation of the γ’s. This is in line with the literature as the estimates of fixed effect parame-

ters are generally robust to the random effect distribution (Drikvandi et al., 2017), (Drikvandi,

2020). Intuitively, an advantage of our methodology with a mixture discrete distribution for

random effects is when there is a clustering structure along the latent space in the data, as

it allows the random effects to capture such variability, which subsequently helps reduce the

standard errors of estimates.

Table 3.6: Average estimated γ̄ from simulated data with different distributions of Z.

γtrue
0.500 2.000

Distribution of Z γ̂1 γ̂2
Discrete mixture (K = 2) 0.519 2.082
Poisson (λ = 0.2) 0.440 1.810
Gamma (α = 2, β = 1.5) 0.575 2.265
Normal (µ = 0, σ = 1) 0.494 2.021

Figure 3.4: Boxplots (corresponding to Table 3.6) for the estimated parameter γ̂ from simulated
data in which Z is from different distributions.
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Table 3.7: Average estimated γ̄ from simulated data with Z generated from mixtures of
Gaussians with µ = (1.225,−0.816) and π = (0.4, 0.6), each mixture with a different set of σ’s.

γtrue
0.500 2.000

Distribution of Z γ̂1 γ̂2
Mixture of Gaussians (σ = (1, 1.5)) 0.459 1.843
Mixture of Gaussians (σ = (0.2, 0.5)) 0.409 1.700
Mixture of Gaussians (σ = (0.1, 0.2)) 0.451 1.823
Discrete mixture (K = 2) 0.519 2.082

Figure 3.5: Boxplots (corresponding to Table 3.7) for the estimated parameter γ̂ from simulated
data in which Z is from different mixtures of Gaussians.

3.6 Additional Inferential Aspects for the Two-level Model

3.6.1 Clustering

For two-level models, the clustering always operates on the upper-level units. The MAP rule for

the two-level model is similar to the MAP rule for the one-level model. Given the availability of

wik from the last iteration of the ECM algorithm, which correspond to the posterior probability

of upper-level unit i belonging to component k, upper-level unit xi, i = 1, 2, . . . , r, is then

classified to the cluster k̂(xi) to which it belongs with highest posterior probability,

k̂(xi) = arg maxkwik.

Based on the MAP rule, we have come up with another way of classifying the observa-

87



tions. We call it the robust clustering rule (at the 95% confidence level), where the significance

can take on various values.

k̂(i) =


arg maxkwik, if arg maxkwik > 0.95

uncertain group, otherwise

Examples for clustering using both of these clustering techniques can be found in Section 3.7.2

and Section 3.7.3.

3.6.2 Ranking

As we have described in detail when we were talking about the one-level model, and as we

mentioned in the illustration plot (Figure 3.1) of the two-level model, we use model-based

scores z∗i for ranking purposes in constructing the league tables,

z∗i =
K∑
k=1

wikẑk,

where the z∗i is a common random effect shared by the lower-level units within the same upper-

level unit. For example, in the import and export data introduced in Section 1.2.6, z∗i is a

country-specific random effect.

3.6.3 Bootstrapped Standard Error

When using the proposed multivariate response models (for both the one-level model and the

two-level model), no analytic calculation of the standard errors is possible. Therefore, we

propose the following bootstrapped algorithm to obtain the standard errors for the covariate

coefficients. (This bootstrapped standard error algorithm for the two-level model is similar to

the one used in the previous section for the one-level model.) The bootstrap process to obtain

the standard error is carried out with the following steps:

(i) We are given a data set xij ∈ Rm and a covariate vector vij ∈ Rp, i = 1, . . . , r, j =

1, . . . , ni. (Note that for multilevel data, there are two types of covariate: the lower-level

covariate which is the covariate collected on the lower levels, and the upper-level covariate

which is the covariate collected on the upper levels.)
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(ii) Fit the data xij, vij to model (3.7) to obtain the estimates of the parameters.

(iii) Sampling B data sets from model (3.7) with the estimated parameters obtained from (ii).

(Note that in model 3.7, all the common random effect zi, shared by the lower-level units

within the same upper-level unit, is replaced by K mass points zk, which are randomly

chosen with probability πk. The only part related to different levels is the covariate term

Γvij, indicating that the simulated data, in fact, originates from the lower-level.)

(iv) Fit these B data sets to our model and we would obtain B sets of γ̂. Then calculate the

standard deviations across all B replicates of each of the m× p components of Γ̂.

Examples of bootstrapped standard errors can be found in Section 3.7.1.

3.7 Applications

In this section, we analyze the real datasets from the case studies introduced in Section 1.2.

We focus on regression in the first case study and on classification in the second case study,

while in the third case study both regression and classification are of interest.

3.7.1 Twins Data

For our analysis of the twins data set, we consider the two types of touches, self touch and

other touch, as a bivariate response variable, and include the three mental health variables

as covariates into model (3.2). Under this model, the observations within upper-levels (we

consider each mother as a upper-level unit) share a common, mother-specific, random effect zi,

which accounts for correlated touch behaviour of fetuses from the same mother. Notably there

is only one such random effect variable, which applies to both response variables.

An examination of the AIC values across different values of K yields that the minimum

AIC is attained for K = 2, with AIC value 428.6266, and hence we use this choice of K for

our analysis. The traditional method of dealing with such a structured data would be fitting

separate two-level models, each using one of the touch movements as the response variable

and the three mental health measurements as covariates. Table 3.8 shows the estimates of

the coefficients and their standard errors obtained through using the lmer() function in R
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package lme4 (Bates et al., 2015), and Table 3.9 shows the estimates from our model and

the bootstrapped standard errors. (Note that the bootstrap applied here is a straightforward

extension of the bootstrap technique developed by Zhang and Einbeck (2024d), adjusted to

the context of the two-level models, ensuring that all units on the upper level get associated

with the same random effect; the bootstrap process is written in detail in Section 3.6.3.) Our

approach gives estimates similar to the linear model but with the main advantage of reduced

standard errors of parameter estimates.

Table 3.8: For the twins data, estimations of γ obtained using individual two-level models
(lmer()) for self touch and other touch as response and depression, perceived stress scale (PSS)
and anxiety as predictors, with standard errors given in brackets.

indiv. two-level models
depression stress anxiety

self touch -27.34 (39.18) 11.31 (13.81) -11.46 (24.89)
other touch -92.70 (49.86) 55.62 (25.55) -60.30 (38.76)

Table 3.9: For the twins data, estimations of γ obtained using the proposed multivariate
response model with random effect. Standard errors (in the first brackets) are obtained via
the bootstrap. Note that the model is fitted once using a bivariate response variable and three
covariates simultaneously with a mother-specific random effect.

multivariate response model
depression stress anxiety

self touch -26.82 (37.97) 12.10 (13.30) -7.12 (23.48)
other touch -83.43 (49.25) 46.82 (15.70) -73.72 (27.79)

3.7.2 Import and Export Data

We consider a data set concerning trade in goods and services, or more specifically the trans-

actions in goods and services between residents and non-residents, measured in million USD.

The data is extracted from the OECD website (Organisation for Economic Co-operation and

Development, 2023b). The variables are given as the percentage of imports and exports in re-

lation to the overall GDP. The dataset comprises data from 44 countries, and for our analysis,

we specifically selected the time period between 2018 and 2022, during which a varying number

of observations is available for different countries. Specifically, Australia, Japan, Korea, Mex-

ico, New Zealand, Turkey, United States, China, and Colombia have four observations each,
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while India, Russia, and Brazil have three observations each. The remaining countries have

five observations each. We are interested in clustering the data with respect to their overall

export/import activity relative to GDP size.

In our analysis of this data, the logs of imports and exports constitute a bivarate response

variable, with r = 44 countries defining the upper level, and ni ∈ {3, 4, 5}, i = 1, . . . , r. This

is a two-level scenario with 44 countries on the upper level, and with three to five repeated

measurements each.

Fitting a bivariate response model of type (3.2) with a country-specific random effect,

but without covariate, with K = 4 mass points leads to an AIC value of 117.8696, which

is the smallest AIC value one can get across all K ≥ 1. For each country, we obtain the

posterior probabilities wik according to (3.19), an excerpt of the full matrix (wik)1≤i≤r,1≤k≤K

is given in Table 3.10. The countries are ordered in this table by their posterior intercepts

z∗i =
∑K

k=1wikẑk, with smaller values corresponding to smaller import/export volume relative

to GDP. We can think of this column as representing predicted values of a latent variable

which we could describe as ‘international trade volume per GDP’. So, according to this sort

of linearized view on the problem, Luxembourg shows the largest trade volume per GDP, and

the US the smallest.

A sensible way of clustering the observations is to follow the MAP rule, i.e. each

upper-level unit (country) i is assigned to the cluster k to which it belongs with the largest

probability wik. We can see from Table 3.10 that, according to this rule, Luxembourg is the only

country assigned to its high-volume mass point. The second-largest mass point encompasses a

wide range of countries ranging from Germany and Sweden to Ireland, followed by the second

smallest mass point featuring countries from Israel to Iceland. The mass point corresponding

to the smallest trading volume per GDP comprises of 10 countries, most of which very large

countries including Australia and all BRIC countries. Figure 3.6 top left provides a graphical

representation of this clustering approach, with observations colored by MAP classifications.

Note that three to five observations correspond to each country.

The second mass point has smaller variance compared to the first and third mass points

(see Table 3.11), and all countries allocated to this cluster according to the MAP rule share

some probability mass with the third cluster (but not all countries in the third cluster share
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probability mass with the second). There is no obvious characteristic distinguishing these

clusters, even though countries in the third cluster tend to be smaller in size, especially those

that have no or little probability mass shared with the second cluster.

We note that neither the ranking (by posterior intercepts) nor the clustering (by the

MAP rule) gives a clear evidence on how well two countries, or two clusters, can actually be

distinguished. However, the available posterior probabilities help us to provide a principled

way of doing so. If the largest posterior probability of the observation exceeds a certain level

of confidence, say 0.95, it is clustered into that specific cluster with 95% confidence. That

is, it can be robustly distinguished from observations (countries) that are allocated to other

mass points with the same level confidence. So, according to this criterion, we can produce

a ‘robust’ clustering of countries, which is illustrated in Figure 3.6 top right. For example,

Luxembourg is classified as part of the highest mass point 4 with a probability of 1, and it can

be reliably distinguished from countries in mass point 3, such as Austria, Poland, . . . , Ireland.

Conversely, all countries for which the largest posterior probability of an observation is less

than 0.95 are considered an uncertain observation that does not belong to any specific mass

point, colored as gray points in Figure 3.6 top right. This specifically concerns the countries

of United Kingdom, Turkey and France with their largest probabilities being below 0.95. At

this level of confidence, the second mass point is eradicated entirely. However, changing the

confidence level to 90% allows a robust clustering of United Kingdom, Turkey and France to

that mass point, as shown in Figure 3.6 bottom. We can see that the robust clustering of

observations into ‘confidence-adaptive’ clusters would depend on the level of confidence. It

should be pointed out that, beyond the conclusions immediately drawn from this cluster-based

approach, some more conclusions could be drawn with careful reasoning: for instance, even

under a 95% level of confidence, all countries between the United Kingdom and Greece can in

fact be robustly distinguished from both mass points 1 and 4, as they feature > 95% probability

mass between them. They just cannot be robustly distinguished between mass points 2 and 3,

at that level.

As an alternative approach to robustly distinguish cluster-level units based on the pos-

terior information derived from the EM algorithm, Einbeck et al. (2017) suggested a method

for measuring the uncertainty of posterior intercepts and probabilities based on an analytical
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approach and an NPML-bootstrap process.

Table 3.11: Estimated σlk, where l = 1, 2 and k = 1, . . . , 4 for the fitted model in Section 3.7.3.

Mass points

k 1 2 3 4

σ̂1k 0.204 0.177 0.329 0.039

σ̂2k 0.285 0.172 0.347 0.036

Figure 3.6: Clustering of the imports and exports data; top left using the Maximum a posterior
(MAP) rule; top right with 95% confidence; bottom with 90% confidence.
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3.7.3 PIAAC Data

The data considered in this section is from the Programme for the International Assessment

of Adult Competencies (PIAAC) survey of adult skills, carried out in 2011 and 2012 by the

OECD.

We now analyse the PIAAC data set, where Literacy, Numeracy, and Problem solving

constitute a three-variate response (all three skill types are provided on a continuous scale

ranging from 0 to 500), and gender and employment status serve as two covariates. Again this

is a two-level model, with 28 countries and two sub-national regions defining the upper levels.

The lower levels are defined through the different combinations of the covariate factor levels

within each country; i.e. there are four lower-level ‘observations’ for each country corresponding

to the average score for this combination of covariates.

We fit model (3.2) with K = 4 mass points, which leads to a minimum AIC value

of 711.702. Posterior intercepts can again be obtained through the use of z∗i =
∑K

k=1wikẑk,

with posterior probabilities wik according to (3.19). These posterior intercepts can be seen

as the summary information for each country, providing the residual performance after the

covariates have been taken into account. The role of the covariates is to ‘take out’ the effects

of such variables in the clustering process. The estimates of the covariate coefficients and the

bootstrapped standard errors are shown in Table 3.12. Coverage properties of 95% confidence

intervals arising from these standard errors are also reported in Table 3.12. The results show

how gender (male = 1, female = 0) and employment status (employee = 1, self-employed

= 0) relate to literacy, numeracy, and problem-solving skills. For example, it indicates that

employees have expected problem-solving scores that are 6.056 higher than for self-employed.

Providing the z∗i in rank order results in a league table, shown in Table 3.13. The posterior

probabilities obtained at the convergence of the ECM algorithm are also given in this table,

and can be used for classification of countries according to their skill levels.

We can distinguish two countries in terms of their cluster membership if they fall with

95% confidence into two different mass points. In Table 3.13, Chile, Mexico and Turkey are as-

signed to the worst performance mass point 1 with probabilities exceeding 0.95. Consequently,

they can be robustly distinguished from all countries starting from Greece (allocated to mass

point 2) up to New Zealand (in the best ‘performance’ mass point 3) with 95% confidence.
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Slovenia is the only country that is allocated to mass point 3 with 95% confidence, it can be

robustly concluded to have performed better than Greece which is allocated to mass point

2 with 95% confidence. The largest two component probabilities of England(UK) and Israel

spread across two mass points, so that the membership of these countries in either mass point

2 or mass point 3 cannot be definitively determined. All what we can say is that there is at

least 80% confidence that Ireland and England(UK) do belong to mass point 3, thus they could

at this (low) confidence level be distinguished from countries in mass point 2. Note that it is

not possible to determine a comparative ranking among countries belonging to the same mass

point, for example, we cannot say that Mexico has performed better than Chile. We cannot

even robustly conclude that the England(UK) has performed better than United States, since

with more than 80% confidence the two countries belong to the same mass point.

A somewhat similar analysis (using Stata) was carried out by Grilli et al. (2016) using

data from the TIMSS&PIRLS database. Their multivariate approach jointly considers educa-

tional achievement in Reading, Mathematics and Science, where the coefficients for each re-

sponse were estimated separately and combined using multiple imputation formulas. However,

they did not consider the ranking problem, and their approach cannot be used for clustering

purposes.

3.7.4 IALS Data

We again consider the Literacy Survey Data introduced in the beginning in Section 1.2.3 and

used in Section 2.10.3 as an example to illustrate how the proposed one-level model can be

applied in dealing with the joint ranking of multiple continuous variables (via the posterior

random effect) with a view to constructing league tables. Previously, only the prose measure-

ment was used and split to form a bivariate variable. Now, we analyze the data considering the

3-variate response Prose, Document, and Quantitative, additionally including the lower-level

covariate gender in the model; i.e. m = 3, p = 1 and Γ = γ ∈ R3. The country-specific

random effect zi accounts for the correlation among the observations within upper-level units

and the correlation among the three response dimensions of the model. We fit the model with

K = 4 mass points and component-specific diagonal variances Σk, leading to an AIC value

of 235.5 which does not drop significantly when increasing K further or with other variance
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Figure 3.7: IALS Data with 3 variables

parametrizations. Figure 3.7 shows the scatterplot of these 3 variables with the mixture centers

labeled with a red star. Table 3.14 presents the joint ranking via the posterior random effect

and classification of the countries. The table shows that Sweden, Germany, and the Nether-

lands are assigned to mass point 1 with the smallest number of people being illiterate. Poland

is the only country that is assigned to the high illiteracy mass point 4. The US and Ireland

have posterior probabilities that spread across two mass points but are assigned to different

components. Using all three measurements as a multivariate response, the component alloca-

tion of each country is more decisive compared to the results (Table 2.13) using just Prose.

3.8 Level reduction

The one-level model can be considered as a particular type of multi-level (i.e. here, two-

level) model, with the upper level corresponding to observations xi and the lower level to

‘measurements’ xij on the ‘repeated responses’. As demonstrated in the example in Section

2.10.3, the shared random effect on the ‘upper level’ is directly obtained from the inferential

framework without resorting to two-level (‘variance component’) modelling in a traditional

sense. Spinning this thought further, the present methodology (both the one-level model and

the two-level model) allows for a reduction of the number of levels in a genuine multilevel
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scenario. For instance, assume one has repeated measures of some quantity taken on the left

and right ear of some individuals over time (a detailed analysis of this data can be found below).

Then, rather than fitting a three-level model, the two ears could define the axes of a bivariate

response model, reducing the problem to a two-level model. By employing a multivariate

response model, one can effectively ‘take one level out’.

We have two examples from public health research and one education data to illustrate

such situations.

The first example is the Visual impairment data from the Baltimore Eye Survey (Tielsch

et al., 1989). The data described by Fahrmeir et al. (1994) and Liang et al. (1992) was collected

to research on the effect of race and age on visual impairment. The repeated examinations were

conducted on over 5000 people aged above 40. The left eye and the right eye from the same

individuals are recorded as a binary variable (whether or not an eye was visually impaired)

forming the response variables. The traditional way of dealing with such a data will require a

two-level model, with the individuals as the upper level, and perhaps ‘left eye’ or ‘right eye’ as

a binary covariate. But with our model, we would have a bivariate response for the left and

the right eye, and our single random effect will take care of correlating the individuals, that is

each 2-dimensional observation will always relate a single predicted random effect on the latent

axis. So, we have effectively reduced a two-level to a one-level model. Further covariates can

then of course be added.

The example 2 we consider the Hearing data, which is the from an ongoing multi-

disciplinary observation study (Shock, 1984), the Baltimore Longitudinal Study of Aging

(BLSA). The study collects the hearing threshold sound pressure level at 11 different fre-

quencies on both ears from the same individuals. The analysis in Verbeke et al. (1997) only

uses two levels as they fit each ‘ear’ separately, see Figure (3.8). In principle the analysis of

this data requires three levels: Individuals, time, and ear (left and right). With our proposed

two-level model, we could fit both ears simultaneously with a two-level model, not requiring

three levels.

Unfortunately, we were unable to access the above two data sets. Nevertheless, this

example demonstrates how our model could reduce the level when fitting a model.

In the third example, we consider again the The International Adult Literacy Survey
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Figure 3.8: Figure from Verbeke et al. (1997)

(IALS) data introduced in the introduction and previous application of clustering and ranking

Section (2.10.3). The data was collected on Prose, Document and Quantitative scales, and we

only considered the Prose measurement and take the separation of the reported prose results

into male and female attainment differently into account than in that publication (Sofroniou

et al., 2008), which include the gender variable as a covariate in a two-level model. By doing

this, we are essentially taking one level out and fit a one-level model to the data.

98



Table 3.10: Classification and ranking for the trade and service data with K = 4.
Posterior probabilities: 0.10 < p < 0.90, 0.90 ≤ p < 0.95, 0.95 ≤ p < 1.

Country posterior intercept Mass points MAP
k 1 2 3 4
π̂k 0.236 0.310 0.431 0.023

z∗i ẑk -1.402 -0.321 0.846 2.933

United States -1.402 1.000 0.000 0.000 0.000 1

Brazil -1.401 1.000 0.000 0.000 0.000 1

Japan -1.401 0.999 0.001 0.000 0.000 1

China -1.401 0.999 0.001 0.000 0.000 1

India -1.401 0.999 0.001 0.000 0.000 1

Colombia -1.399 0.999 0.001 0.000 0.000 1

Indonesia -1.378 0.979 0.021 0.000 0.000 1

Australia -1.378 0.979 0.021 0.000 0.000 1

Russia -1.373 0.974 0.025 0.001 0.000 1

New Zealand -1.321 0.928 0.070 0.002 0.000 1

Israel -0.574 0.260 0.715 0.025 0.000 2

South Africa -0.383 0.099 0.862 0.039 0.000 2

Canada -0.325 0.056 0.896 0.048 0.000 2

United Kingdom -0.292 0.035 0.907 0.058 0.000 2

Turkey -0.272 0.025 0.909 0.066 0.000 2

France -0.251 0.018 0.906 0.076 0.000 2

Chile -0.218 0.010 0.893 0.097 0.000 2

Italy -0.211 0.009 0.889 0.102 0.000 2

Costa Rica -0.156 0.004 0.850 0.146 0.000 2

Republic of Korea -0.149 0.004 0.844 0.152 0.000 2

Spain -0.127 0.003 0.828 0.169 0.000 2

Mexico -0.080 0.002 0.790 0.208 0.000 2

Norway -0.040 0.021 0.719 0.260 0.000 2

Finland 0.156 0.000 0.591 0.409 0.000 2

Iceland 0.180 0.000 0.570 0.430 0.000 2

Germany 0.357 0.000 0.418 0.582 0.000 3

Sweden 0.490 0.000 0.304 0.696 0.000 3

Portugal 0.492 0.000 0.303 0.697 0.000 3

Greece 0.614 0.000 0.198 0.802 0.000 3

Austria 0.790 0.000 0.047 0.953 0.000 3

Poland 0.806 0.000 0.034 0.966 0.000 3

Denmark 0.824 0.000 0.018 0.982 0.000 3

Switzerland 0.839 0.000 0.005 0.995 0.000 3

Latvia 0.843 0.000 0.002 0.998 0.000 3

Czech Republic 0.844 0.000 0.001 0.999 0.000 3

Estonia 0.845 0.000 0.000 1.000 0.000 3

Netherlands 0.845 0.000 0.000 1.000 0.000 3
...

...
...

...
...

...
...

Slovak Republic 0.846 0.000 0.000 1.000 0.000 3

Ireland 0.846 0.000 0.000 1.000 0.000 3

Luxembourg 2.933 0.000 0.000 0.000 1.000 4

99



Table 3.12: Estimates of covariate coefficients (matrix Γ) for the PIAAC data. Standard errors
(in brackets) are obtained via the bootstrap. Coverage of 95% confidence intervals are reported
in the squared brackets.

Gender Employment status

Literacy -0.417 (1.336) [0.947] 2.683 (1.336) [0.949]
Numeracy 8.817 (1.458) [0.943] -0.517 (1.427) [0.956]
Problem solving 1.833 (1.163) [0.947] 6.056 (1.218) [0.950]

Table 3.13: Classification and ranking for the PIAAC data using model xij = α+βzi+Γvij+εij
with K = 4. Posterior probabilities: 0.05 < p < 0.10, 0.10 < p < 0.90, 0.90 ≤ p < 0.95,

0.95 ≤ p < 1.

Mass points
0.100 0.115 0.275 0.510

Country posterior intercept -2.650 -0.634 -0.069 0.700

Chile -2.650 1.000 0.000 0.000 0.000

Mexico -2.650 1.000 0.000 0.000 0.000

Turkey -2.650 1.000 0.000 0.000 0.000

Greece -0.632 0.000 0.997 0.003 0.000

Spain -0.603 0.000 0.945 0.055 0.000

Republic of Korea -0.592 0.000 0.926 0.074 0.000

Italy -0.296 0.000 0.403 0.597 0.000

United States -0.100 0.000 0.066 0.927 0.007

Poland -0.092 0.000 0.058 0.930 0.012

Slovenia -0.065 0.000 0.018 0.963 0.019

Ireland -0.010 0.000 0.013 0.902 0.085

France -0.006 0.000 0.007 0.905 0.088

Israel 0.012 0.000 0.005 0.885 0.110

England(UK) 0.023 0.000 0.022 0.843 0.135

Denmark 0.398 0.000 0.000 0.392 0.608

Germany 0.451 0.000 0.000 0.323 0.667

Flanders(Belgium) 0.567 0.000 0.000 0.173 0.827

Norway 0.654 0.000 0.000 0.006 0.940

Czech Republic 0.659 0.000 0.000 0.054 0.946

Hungary 0.667 0.000 0.000 0.043 0.957

Austria 0.676 0.000 0.000 0.031 0.969

Australia 0.683 0.000 0.000 0.021 0.979

Estonia 0.686 0.000 0.000 0.018 0.982

Finland 0.689 0.000 0.000 0.014 0.986

Canada 0.692 0.000 0.000 0.010 0.990

Japan 0.696 0.000 0.000 0.005 0.995

Slovak Republic 0.696 0.000 0.000 0.005 0.995

Netherlands 0.699 0.000 0.000 0.002 0.998

Sweden 0.699 0.000 0.000 0.001 0.999

New Zealand 0.700 0.000 0.000 0.000 1.000
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Table 3.14: Posterior probabilities and intercepts for the IALS data. In the column ‘mass
points’, the first two rows give estimated π̂k and ẑk.

Table 3.15: Posterior probabilities for the IALS data

Mass points
0.2308 0.5391 0.1532 0.0769

Country posterior intercept -1.1576 -0.0819 0.5904 2.8703

Sweden -1.15760 1.0000 0.0000 0.0000 0.0000
Germany -1.15756 1.0000 0.0000 0.0000 0.0000
Netherlands -1.15754 0.9999 0.0001 0.0000 0.0000
Canada -0.08188 0.0000 1.0000 0.0000 0.0000
Australia -0.08188 0.0000 1.0000 0.0000 0.0000
Switzerland(French) -0.08188 0.0000 1.0000 0.0000 0.0000
New Zealand -0.08173 0.0000 0.9998 0.0002 0.0000
Belgium(Flanders) -0.08163 0.0000 0.9996 0.0004 0.0000
Switzerland(German) -0.08114 0.0000 0.9989 0.0011 0.0000
United States -0.08036 0.0000 0.9977 0.0023 0.0000
Ireland 0.58386 0.0000 0.0098 0.9902 0.0000
United Kingdom 0.58912 0.0000 0.0019 0.9981 0.0000
Poland 2.87028 0.0000 0.0000 0.0000 1.0000
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Chapter 4

One-level Quadratic Model

4.1 Model and Estimations

In Section 2.1 we proposed a linear random effect model. To motivate the developments in

this chapter, here again we apply model (2.1) on a real data set, namely the Mussels’ muscles

data (available in R package dr) introduced in Section 1.2.8. We focus on describing the data

structure rather than analyzing the effects of predictors on the response variables through

some regression models. Therefore, we only consider four variables: Shell height (denoted

as H), Shell length (denoted as L), Shell mass (denoted as S) and Shell width (denoted as

W) for our application. The projections of the fitted model onto 2-dimensional pairs plot are

shown in Figure 4.1. We observe that this model captured the overall trend of the data. For

the combinations involving shell height, shell width, and shell length, the relationships among

them are linear. However, for the plots on the second row and the bottom right, it is obvious

that the relationship between the two variables is non-linear. The model (2.1) proposed in

Section 2.1 is limited by its linear nature, particularly in handling multivariate data structures

with curvature. Given the existence of a non-linear latent structure in the example data, it

becomes apparent that a non-linear model is needed to capture its curvature effectively. In

this chapter we further extend our linear model to a non-linear model to allow approximating

multivariate data with non-linear latent structures through the use of a smooth curve. (Note

that the results of the mussels data fitted with the non-linear model can be found in Section

4.6.)

We describe the non-linear model first in a general framework. This can be written as,

xi =

p∑
j=0

αjBj(zi) + εi, (4.1)
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Figure 4.1: Mussels data with fitted model. Note that shell height is denoted as H, shell length
is denoted as L, shell mass is denoted as S, and shell width is denoted as W.
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where Bj(zi) can be regarded as any real-valued basis functions, such as B-splines, or poly-

nomials, xi ∈ Rm, zi ∈ R is a one-dimensional random effect and αj is m-variate parameter

vectors.

To examine the feasibility of this approach, we consider, in this exploratory chapter, a

simple scenario involving a quadratic curve. The model can be written as the following,

xi = α + βzi + ηzi
2 + εi, (4.2)

where Bj(zi) = zji is a polynomial, xi ∈ Rm, α, β and η are m-variate parameter vectors, zi is

a one-dimensional random effect, with zi ∈ R, and εi ∼ N(0,Σ(zi)) are independent Gaussian

errors. If we compare model (4.2) to the full curve model (4.1), then it will be: α = α1, β = α2,

η = α3, B0(zi) = 1, B1(zi) = zi, and B2(zi) = z2i . Similar to what we have developed in the

one-level model, we could include covariates for multivariate response situations. Furthermore,

we could have a two-level extension of the model so that we can deal with repeated measures.

But here we will not develop such components further, and will instead only focus on the

implementation of model (4.2).

The model (4.2) can be equivalently written as,

xi|zi, α, β, η ∼ N(α + βzi + ηzi
2,Σ(zi)),

Again equivalently, and for later reference, we can write the conditional probability density

function of the xi as,

f(xi|zi, α, β, η) = (2π)−m/2|Σ(zi)|−1/2 exp

{
−1

2
(xi − α− βzi − ηzi2)TΣ−1(zi)(xij − α− βzi − ηzi2)

}
.

The marginal probability density function f(xi|zi, α, β, η) for observations generated from

model (4.2) can be written as,

f(xi|α, β, η) =
∫
f(xi, zi|α, β, η)dzi =

∫
f(xi|zi, α, β, η)ϕ(zi)dzi,

where f(xi, zi|α, β, η) is the joint probability distribution of observed data xi and unobserved

random effects zi, ϕ(·) is the density function of the random effect distribution Z. Here the
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distribution can be Gaussian or non-Gaussian, we don’t make any explicit assumptions regard-

ing the distribution Z of the zi. If it is non-Gaussian, then it is difficult to find an analytical

form for the marginal density function. So, again, we consider to use Nonparametric Maximum

Likelihood approach, where the integral over zi is replaced by a finite summation over K mass

points z1, z2, · · · , zk with their responding masses π1, π2, · · · , πk, where k = 1, 2, · · · , K. Then

model (4.2) can be rewritten as,

xi|zk, α, β, η ∼ N(α + βzk + ηzk
2,Σ(zk)), (4.3)

with probability πk, and the marginal distribution can be approximated as,

f(xi|α, β, η) =
K∑
k=1

πkf(xi|zk, α, β, η),

To find the maximum likelihood estimates for the parameters, building on the marginal density,

the likelihood of model (4.2) is the following,

l =
n∑

i=1

log
K∑
k=1

πkf(xi|zk, α, β, η),

and the expected complete log-likelihood of model (4.2) is the following,

lc =
n∑

i=1

K∑
k=1

wik log(πk) +
n∑

i=1

K∑
k=1

−1

2
wik log(|Σk|) +

n∑
i=1

K∑
k=1

−m
2
log(2π)wik

+
n∑

i=1

K∑
k=1

−1

2
wik(xi − α− βzk − ηzk2)TΣ−1

k (xi − α− βzk − ηzk2).

(4.4)

4.2 ECM Algorithm

We will use the ECM algorithm for parameter estimation, and the number of mixture compo-

nents, denoted by K, will be selected based on the AIC and BIC criteria.

E-step

We update the posterior probability of observation i belonging to component k obtained using
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Bayes’ theorem.

wik =
πkfik∑
l πlfil

. (4.5)

M-step

The parameters πk, α, β, η, and σj are updated in the M-step. The derivations for these

parameter estimators are provided below, together with the corresponding estimators used in

the M-step. Note that the derivation for parameters πk, α, β, σj, and even η is similar to

what we have done for the one-level and two-level models with covariates. In the calculations,

the term ηzk
2 is just an additive term, like the covariate term, i.e. model (2.48) and (3.7)

respectively. However, from a modelling point of view, the key difference here is that ηzk
2 is a

random effect term, whereas Γvi in the one-level model or Γvij in the two-level model is fixed

effect term. The primary difference in the derivation process concerns zk: in the quadratic

model, we do not have an analytical form for the estimator of zk. Instead, we estimate zk by

solving the cubic equation for zk within the M-step. Details can be found below. A detailed

procedure for the ECM algorithm is given in Algorithm 3 below.

4.3 Derivation for Parameter Estimators

Derivation for π̂k

The derivation of

π̂k =

∑n
i=1wik

n
(4.6)

for the quadratic model is the same as that for π̂k of the one-level model. Details can be found

in Section 2.4.

Derivation for ẑk

For the derivation of zk, let us first write the log-likelihood (4.4) in an indexed form,

lindex = constant+
n∑

i=1

K∑
k=1

m∑
j=1

−1

2
wik

(xij − αj − βjzk − ηjzk2)2

σjk2
,
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then by taking partial derivative of the above log-likelihood lindex with respect to the parameter

zk, we obtain the following,

∂lindex
∂zk

=
n∑

i=1

m∑
j=1

−1

2
wik.2.

(xij − αj − βjzk − ηjzk2)
σjk2

(−βj − 2ηjzk).

Again, we assume Σ̂k ≡ diag(σ2) in implementation, and letting the partial derivative equal to

zero, then equation above can be rewritten as,

n∑
i=1

m∑
j=1

wik(xij − αj − βjzk − ηjzk2)(βj + 2ηjzk) = 0,

now let us expend the above equation, and then we will obtain the following,

n∑
i=1

m∑
j=1

(wikxijβj + 2 · wikxijηjzk − wikαjβj − 2 · wikαjηjzk − wikβj
2zk

−2 · wikβjηjzk
2 − wikηjβjzk

2 − 2 · wikηj
2zk

3) = 0,

(4.7)

then we organize it into the general cubic equation form,

(
n∑

i=1

m∑
j=1

2 · wikη̂
2
j )zk

3 + 3 · (
n∑

i=1

m∑
j=1

wikβ̂j η̂j)zk
2

−(
n∑

i=1

m∑
j=1

2 · wikxij η̂j −
n∑

i=1

m∑
j=1

2 · wikα̂j η̂j −
n∑

i=1

m∑
j=1

wikβ̂
2
j )zk

−(
n∑

i=1

m∑
j=1

wikxijβ̂j −
n∑

i=1

m∑
j=1

wikα̂jβ̂j) = 0,

(4.8)

Unfortunately, obtaining an analytical form of zk as we did in previous models is not possible

in here. However, (in the M-step) we can still estimate zk by solving the cubic equation (4.8)

since each part of the coefficients is known in each iteration. It’s important to note that the

roots of a cubic equation fall into two scenarios: (i) one real root and two complex roots, in

which case we consider the real root as the estimate of zk, and (ii) three real roots, where we

always choose the smallest absolute root in the implementation. In the R implementation, we

use polyroot() function (available in base R package) to solve this cubic equation.
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Derivation for β̂

For the derivation of β, we use the result of the following, which is which is derived by Petersen

and Pedersen (2012)

∂

∂A
(x− As)TW (x− As) = −2W (x− As)sT

By taking partial derivative of the lc with respect to β, we obtain,

∂lc
∂β

=
n∑

i=1

K∑
k=1

−1

2
wik(−2)Σ−1

k (xi − α− βzk − ηzk2)zTk ,

Since zk is a scalar, zk = zTk , and by letting the above equation to be zero and solving it,

n∑
i=1

K∑
k=1

wikΣ
−1
k (xi − α− ηzk2)zk −

n∑
i=1

K∑
k=1

wikΣ
−1
k βz2k = 0, (4.9)

then,

β̂ =

(
n∑

i=1

K∑
k=1

wikΣ̂
−1
k ẑ2k

)−1( n∑
i=1

K∑
k=1

wikΣ̂
−1
k (xi − α̂− η̂ẑ2k)ẑk

)
, (4.10)

Again, we assume Σ̂k ≡ diag(σ2) in implementation, then Equation (4.9) can be rewritten as,

Σ−1

n∑
i=1

K∑
k=1

wik(xi − α− ηzk2)zk − Σ−1

n∑
i=1

K∑
k=1

wikβz
2
k = 0,

multiply Σ on both sides, we could obtain,

β̂ =

∑n
i=1

∑K
k=1wik(xi − α̂− η̂ẑ2k)ẑk∑n
i=1

∑K
k=1wikẑ2k

, (4.11)

which is being used in the R code.

Derivation for α̂

Using the result (derived by Petersen and Pedersen (2012))of the derivatives of matrices, vec-

tors, and scalars, where W is symmetric,

∂

∂s
(x− s)TW (x− s) = −2W (x− s)
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We obtain the following by taking the partial derivative of the log-likelihood with respect to

α,

∂lc
∂α

=
n∑

i=1

K∑
k=1

−1

2
wik(−2)(Σk)

−1(xi − α− βzk − ηzk2),

then letting it to be zero and solving it,

n∑
i=1

K∑
k=1

wikΣ
−1
k (xi − α− βzk − ηzk2) = 0, (4.12)

n∑
i=1

K∑
k=1

wikΣ
−1
k (xi − βzk − ηzk2) = α

n∑
i=1

K∑
k=1

wikΣ
−1
k ,

we obtain the estimator for α,

α̂ =

(
n∑

i=1

K∑
k=1

wikΣ̂
−1
k

)−1( n∑
i=1

K∑
k=1

wikΣ̂
−1
k (xi − β̂ẑk − η̂ẑ2k)

)
. (4.13)

In our implementation of the ECM algorithm, we assume that Σ̂k ≡ diag(σ2), for some constant

σ2 which does not need to be specified since it cancels out from the resulting simplified update

equations, then Equation (4.12) becomes:

Σ−1

n∑
i=1

K∑
k=1

wik(xi − α− βzk − ηzk2) = 0,

and then multiply Σ on both sides, we obtain,

n∑
i=1

K∑
k=1

wik(xi − α− βzk − ηzk2) = 0,

then,

α̂ =
1

n

(
n∑

i=1

xi − β̂
n∑

i=1

K∑
k=1

wikẑk − η
n∑

i=1

K∑
k=1

wikzk
2

)
. (4.14)

This is the estimator of α used in the M-step in implementing the ECM algorithm.
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Derivation for η̂

For the derivation of η, we use the result of the following, which is derived by Petersen and

Pedersen (2012),

∂

∂A
(x− As)TW (x− As) = −2W (x− As)sT ,

By taking partial derivative of the lc with respect to η, we obtain,

∂lc
∂η

=
n∑

i=1

K∑
k=1

−1

2
wik(−2)Σ−1

k (xi − α− βzk − ηzk2)(zk2)T , (4.15)

Letting the above equation to be 0 and solving it,

η̂ =

(
n∑

i=1

K∑
k=1

wikΣ̂
−1
k (xi − α̂− β̂ẑk)(zk2)T

)(
n∑

i=1

K∑
k=1

wikΣ̂
−1
k zk

4

)−1

, (4.16)

In our implementation, we have the assumption that Σ̂k ≡ diag(σ2), then the partial derivative

(4.15) becomes,

Σ−1

n∑
i=1

K∑
k=1

−1

2
wik(−2)(xi − α− βzk − ηzk2)(zk2)T = 0,

then we multiply Σ on both sides and we obtain,

η̂ =

∑n
i=1

∑K
k=1wikxiẑ

2
k − α̂

∑n
i=1

∑K
k=1wikẑ

2
k − β̂

∑n
i=1

∑K
k=1wikẑ

3
k∑n

i=1

∑K
k=1wikẑ4k

. (4.17)

Derivation for Σ̂k

For the derivation of Σ, again, we use Equations 2.32 and 2.33. Rewrite (4.4) to be

l̃c =
n∑

i=1

K∑
k=1

wik log(πk) +
n∑

i=1

K∑
k=1

1

2
wik log(|Σk|−1) +

n∑
i=1

K∑
k=1

−m
2
log(2π)wik

+
n∑

i=1

K∑
k=1

−1

2
wik(xi − α− βzk − ηzk2)TΣ−1

k (xi − α− βzk − ηzk2).

(4.18)
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By taking partial derivative of the l̃c with respect to Σ−1
k and by letting it to be zero, we obtain,

n∑
i=1

1

2
wik

(
(Σ−1

k )−1
)T

+
n∑

i=1

−1

2
wik(xi − α− βzk − ηzk2)(xi − α− βzk − ηzk2)T = 0,

since Σk is symmetric, then ΣT
k = Σk,

n∑
i=1

wikΣk =
n∑

i=1

wik(xi − α− βzk − ηzk2)(xi − α− βzk − ηzk2)T ,

we obtain (variance parameterization(iv)),

Σ̂k =

∑n
i=1wik(xi − α̂− β̂ẑk − η̂ẑ2k)(xi − α̂− β̂ẑk − η̂ẑ2k)T∑n

i=1wik

. (4.19)

Derivation for σ̂2
jk

When Σk ∈ Rm is diagonal, that is Σk = diag(σ2
jk){1≤j≤m}, where k = 1, . . . , K,

Σk =



σ2
1k 0 · · · 0

0 σ2
2k · · · 0

...
...

. . .
...

0 0 · · · σ2
jk


, (4.20)

and |Σk| =
∏m

j=1 σ
2
jk, since |Σk|−1 = |Σ−1

k |,

|Σ−1
k |=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
σ2
1k

0 · · · 0

0 1
σ2
2k
· · · 0

...
...

. . .
...

0 0 · · · 1
σ2
jk

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

m∏
j=1

1

σ2
jk

, (4.21)

The log-likelihood function from the previous section is the following,

l̃c =
n∑

i=1

K∑
k=1

wik log(πk) +
n∑

i=1

K∑
k=1

1

2
wiklog(|Σk|−1) +

n∑
i=1

K∑
k=1

−m
2
log(2π)wik

+
n∑

i=1

K∑
k=1

−1

2
wik(xi − α− βzk − ηzk2)TΣ−1

k (xi − α− βzk − ηzk2),
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and log(|Σk|−1) in the log-likelihood function above will become,

log(|Σk|−1) = log(|Σ−1
k |) = log(

1

σ2
1k

.
1

σ2
2k

. . .
1

σ2
mk

) = −2
m∑
j=1

log σjk,

then the log-likelihood function l̃c will become,

l̃new = constant+
n∑

i=1

−1

2
wik(−2)

m∑
j=1

log σjk +
n∑

i=1

m∑
j=1

−1

2
wik

(xij − αj − βjzk − ηzk2)
σ2
jk

,

by taking partial derivative of the l̃new with respect to σjk and by letting it to be zero, we

obtain,
n∑

i=1

−wik
1

σjk
+

n∑
i=1

wik(xij − αj − βjzk − ηzk2)2σ−3
jk = 0,

then,
n∑

i=1

wik
1

σjk
=

1

σ3
jk

n∑
i=1

wik(xij − αj − βjzk − ηzk2)2,

we then obtain variance parameterization (ii),

σ̂2
jk =

∑n
i=1wik(xij − α̂j − β̂j ẑk − η̂ẑ2k)2∑n

i=1wik

. (4.22)

Derivation for Σ̂

For the derivation of parameter Σ, again, we use Equations 2.32 and 2.33. When Σk ≡ Σ, the

log-likelihood function (4.4) can be rewrite as,

l̃c =
n∑

i=1

K∑
k=1

wik log(πk) +
n∑

i=1

K∑
k=1

1

2
wik log(|Σ|−1) +

n∑
i=1

K∑
k=1

−m
2
log(2π)wik

+
n∑

i=1

K∑
k=1

−1

2
wik(xi − α− βzk − ηzk2)TΣ−1(xi − α− βzk − ηzk2).

(4.23)

By taking partial derivative of the l̃c with respect to Σ−1 and by letting it to be zero, we obtain,

n∑
i=1

K∑
k=1

1

2
wik

(
(Σ−1)−1

)T
+

n∑
i=1

K∑
k=1

−1

2
wik(xi − α− βzk − ηzk2)(xi − α− βzk − ηzk2)T = 0,
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since Σk is symmetric, and
∑n

i=1

∑K
k=1wik = n then we obtain variance parameterization (iii),

Σ̂ =
1

n

n∑
i=1

K∑
k=1

wik(xi − α̂− β̂ẑk − η̂ẑ2k)(xi − α̂− β̂ẑk − η̂ẑ2k)T . (4.24)

Derivation for σ̂j

When Σm×m is diagonal, that is Σ = diag(σ2
j ){1≤j≤m},

Σ =



σ2
1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 0 · · · σ2
j


, (4.25)

and |Σ| =
∏m

j=1 σ
2
j , since |Σ|−1 = |Σ−1|,

|Σ−1|=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
σ2
1

0 · · · 0

0 1
σ2
2
· · · 0

...
...

. . .
...

0 0 · · · 1
σ2
j

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

m∏
j=1

1

σ2
j

, (4.26)

The log-likelihood function from the previous section is the following,

l̃c =
n∑

i=1

K∑
k=1

wik log(πk) +
n∑

i=1

K∑
k=1

1

2
wiklog(|Σ|−1) +

n∑
i=1

K∑
k=1

−m
2
log(2π)wik

+
n∑

i=1

K∑
k=1

−1

2
wik(xi − α− βzk − ηzk2)TΣ−1(xi − α− βzk − ηzk2),

and log(|Σ|−1) will become,

log(|Σ|−1) = log(|Σ−1|) = log(
1

σ2
1

.
1

σ2
2

. . .
1

σ2
m

) = −2
m∑
j=1

log σj,

then the log-likelihood function l̃c will become,

l̃new = constant+
n∑

i=1

K∑
k=1

−1

2
wik(−2)

m∑
j=1

log σj +
n∑

i=1

K∑
k=1

m∑
j=1

−1

2
wik

(xij − αj − βjzk − ηzk2)2

σ2
j

,
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by taking partial derivative of the l̃new with respect to σj and by letting it to be zero, we obtain,

n∑
i=1

K∑
k=1

−wik
1

σj
+

n∑
i=1

K∑
k=1

wik(xij − αj − βjzk − ηzk2)2σ−3
j = 0,

since
∑n

i=1

∑K
k=1−wik = n,

n

σj
=

1

σ3
j

n∑
i=1

K∑
k=1

wik(xij − αj − βjzk − ηzk2)2,

we then obtain variance parameterization (i),

σ̂2
j =

∑n
i=1

∑K
k=1wik(xij − α̂j − β̂j ẑk − η̂ẑ2k)2

n
(4.27)

Note that in the R implementation and simulation for the quadratic model, we only used vari-

ance parameterization (i), i.e. Equation (4.27).

4.4 Identifiability

We implement the ECM algorithm with the same diagonal variance matrices for all com-

ponents in R. Subsequently, we use simulated data to test the accuracy. Initially, we use

two-dimensional data with a sample size of 500 and set the true mixture components to be

K = 4. We then observed very large estimation values and some very small values, indicating

potential issues with identifiability. To further confirm whether another set of values exists

which will lead to the same curve, we assume the following reparameterization for zk,

zk = a+ dz̃k,

where a and d are real-valued scalars. By substituting the reparameterization of zk into model

(4.3), we can obtain reparameterizations for all other parameters,

α = α̃− d

a
β̃ +

d2

a2
η̃,
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Algorithm 3 ECM Algorithm

1. Initialization:

(i) Choose the number of mixture components, K, where K is a positive integer.

(ii) Choose starting values for the parameters: πk, α, β, zk, η, σj.

(iii) Select the number of iterations, s; 20 iterations is suggested.

2. Iterations:

E-step

For each k, compute the posterior probability of observation i belonging to component k,
according to Equation (4.5).

M-step

steps← 0
while steps ≤ s do

counter ← 0 ▷ Reset counter for each step
while counter ≤ 5 do

Update zk, β, α and η, cycle between Equations (4.8), (4.11), (4.14), and (4.17).
counter ← counter + 1

end while
Update πk via Equation (4.6)
Update σj according to Equation (4.27)
steps← steps+ 1

end while

3. Output: Return the estimated parameters.
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Figure 4.2: Simulated data generated with true values: πT
k = (0.35, 0.15, 0.30, 0.20), αT =

(15, 5), βT = (−5, 15) and ηT = (10, 5).

β =
β̃ − 2d

a
η̃

a
,

η =
η̃

a2
,

where α, β, η and zk are the estimated parameters, while α̃, β̃, η̃ and z̃k represent the trans-

formed parameters. Now it is clear that there is an identifiability problem, which we can resolve

by simply standardizing zk (subtracting the mean of zk and then dividing by its standard de-

viation). Additionally, to identify the direction of the latent variable, we enforce β1 ≥ 0 (but

any other component of β could equally be chosen for this).

After addressing the identifiability problem, we use this simulated data set to illustrate

how the model approximates the non-linear data using a curve that is parameterized by a

single random effect. In Figure 4.2, the data points represent simulated two-dimensional data

with 4 mixture components. The curve in gray that is passing through the mixture centers

(α+βzk+ηz
2
k, marked with red triangles) is the fitted quadratic curve. Figure 4.2 also suggests

that this methodology could be used as another approach to estimate principal curves and we

return to this idea in Section 4.7.
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Table 4.1: Simulation results under variance parameterization (i).

Average estimates
True n = 100 n = 300 n = 500

π1 0.1500 0.1269 0.1269 0.1355
π2 0.2000 0.1949 0.1954 0.1946
π3 0.3000 0.2916 0.2963 0.2971
π4 0.3500 0.3866 0.3814 0.3727
z1 1.2696 1.2834 1.2847 1.2769
z2 0.2402 0.2091 0.2021 0.2179
z3 -0.4461 -0.4635 -0.4579 -0.4497
z4 -1.0637 -1.0289 -1.0288 -1.0451
α1 5.0000 5.4230 5.3237 5.3444
α2 15.0000 14.9822 15.0769 15.0253
β1 -5.0000 -6.6284 -6.5173 -6.0477
β2 15.0000 14.1142 14.3244 14.3750
η1 5.0000 4.8833 4.8010 4.9135
η2 10.0000 10.4077 10.3825 10.2027
σ1 1.0000 1.1239 1.1701 1.1103
σ2 2.0000 2.2411 2.3176 2.2107

4.5 One-level Quadratic Model Simulation

We conduct a simulation with 2-dimensional data with four mixture component to test the

accuracy of the implementation. The structure of the simulated data is shown in Figure 4.2

in Section 4.4. For sample sizes n = 100, n = 300 and n = 500, we generate 300 replicates

respectively from model (4.3). One thing to notice here is that for each of the replicates, we

ran the ECM algorithm 20 times to select the best estimates with the smallest AIC value; this

process is selecting a good starting value for the ECM algorithm. The averaged estimates for

each parameter can be found in Table 4.1, and the true values are shown in the first column.

We can observe that the averaged estimates of the parameters are generally close to their true

values, and overall, the bias is reduced with the increase of the sample size. Boxplots for

parameters α, β, zk, η, πk, and σ are shown is Figure 4.3, Figure 4.4, Figure 4.5, Figure 4.6,

Figure 4.7 and Figure 4.8. They also show that these parameter estimators give sensible and

consistent estimates.
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Figure 4.3: Estimations of parameter α = (α1, α2)
T with different sample sizes under the

variance parameterization (i)

Figure 4.4: Estimations of parameter β = (β1, β2)
T with different sample sizes under the

variance parameterization (i)
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Figure 4.5: Estimations of parameter zk with different sample sizes under the variance param-
eterization (i)

Figure 4.6: Estimations of parameter η = (η1, η2)
T with different sample sizes under the

variance parameterization (i)
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Figure 4.7: Estimations of parameter πk with different sample sizes under the variance param-
eterization (i)

Figure 4.8: Estimations of parameter σ with different sample sizes under the variance param-
eterization (i)
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4.6 Mussels data

As discussed in the beginning of this chapter, a curve may provide a better fit to the mussels

data. Now we fit the mussels data to the quadratic model with mixture component K = 3,

the projections of the fitted curve onto 2-dimension plot are shown in Figure 4.9. We can also

compare the AIC and BIC values from the linear and non-linear models, see Table 4.2. It is

evident that a quadratic model have a better performance in fitting the mussels data.

Figure 4.9: Mussels data with 2-dimensional projections of fitted curve.

Table 4.2: The AIC and BIC values for the fitted linear model and the fitted curve.

Linear model Quadratic model

AIC 2836.840 2813.742
BIC 2877.754 2864.283
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4.7 Comparison with Principal Curves

The quadratic model we have proposed is a way of using a random effect model to estimate

principal curves. Both methodologies aim to approximate multivariate datasets with smooth

one-dimensional curves. The generalization of the non-linear model can be written as follows,

xi = g(λi) + εi, (4.28)

where Hastie and Stuetzle (1989) attempted to use this model for the principal curve. However,

as illustrated by Tibshirani (1992) when using (4.28) as the data generating function, then g

is not the principal curve for the data. In our proposed model, g(λi) = g(zi) =
∑p

j=0 αjBj(zi),

which is the generative model. HS defined the principal curve to be a curve that satisfies the

self-consistent property: the curve g is called self-consistent, if E(X|λr(X) = λ) = g(λ) for a.e.

λ, where X is a random vector in Rp and λr is defined as the projection index.

The most distinctive difference in these two approaches is the projection. The principal

curves are determined by finding the shortest orthogonal projections of the original data points

onto the curve. HS defined the projection index as: λr(x) = sup
λ
{λ : ||x − g(λ)||= inf

λ
||x −

g(µ)||}. Our method obtains projections through model-based scores, denoted as z∗i , z
∗
i =∑K

k=1wikẑk which are not orthogonal.

Then, we will use both simulated and real data to illustrate the principal curves method

and the quadratic model proposed in the previous section, facilitating a meaningful comparison.

The first data set x = (x1, x2) we use is generated from a circle with the sample size of

n = 100, where x1 = 5 sinu+ ε1, x2 = 5 cosu+ ε2, u ∼ U [0, 3
2
π), ε1 ∼ N(0, 1) and ε2 ∼ N(0, 1)

are Gaussian noise. The second data set xnew = (x1new, x2new) is generated again from a circle

with the sample size of n = 300, where x1 = 5 sinu + ε1, x2 = 5 cosu + ε2, u ∼ U [1
2
π, 2π),

ε1 ∼ N(0, 1) and ε2 ∼ N(0, 1) are Gaussian noise.

We fit both the quadratic model and the HS principal curves through the use of

principal_curve() function available in the R package princurve (Cannoodt, 2018) to these

two data sets, and the results are shown in Figure 4.10. By comparing these two pairs of plots,

we observe that our model successfully captured the circular shape of the data and accurately

identified the mixture centers within the clustered data groups. However, due to the limitation

122



of our curve to a quadratic shape, the principal curve appears smoother in illustrating the data.

The same observation occurs when using a real dataset, which has been introduced in

Section 1.2.9: the speed-flow data from California available in R package LPCM (Einbeck &

Evers, 2024), which consist of speed and flow recorded on Line 5 of the California freeway. For

this dataset, we focused on two variables: the vehicle flow in vehicles per 5 minutes (Lane5Flow)

and the vector of vehicle speed in miles per hour (Lane5Speed). We fit the data again with a HS

principal curve, additionally, we apply a local principal curve (Einbeck et al., 2005) which has

better performance with complex data structures. This approach is implemented in the lpc()

function within the LPCM R package. The results are shown in Figure 4.11. We observe

that the fitted HS principal curve fails to capture the curvature of the graph. In contrast, the

quadratic curve performs better in this regard but is constrained by its quadratic nature. In

comparison, the fitted local principal curve can accurately connect to the closing point which

has been ignored by both the quadratic curve and the HS principal curve. We also attempt to

compare the projections of these two methods, see Figure 4.12. The main difference is that the

projection of the principal curve is orthogonal, whereas the quadratic model is not. Apart from

comparing the fitted curves, it is not fair to use any quantitative assessment, such as goodness

of fit, to compare them, given the different characteristics of the projections from these two

methods.
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Figure 4.10: The top left figure shows the application of the quadratic model with K = 5 used
to fit the model. The bottom left figure shows the application of the quadratic model with
K = 4 used to fit the model. The red triangles represent the mixture centers, and the blue
curve, passing through the triangles, illustrates the fitted model. Meanwhile, the right figures
(both top and bottom) display the application of the principal curves, with the fitted curve
represented in black.

Figure 4.11: The top left figure is illustrated by the quadratic model, the top right figure is
the HS principal curve and the bottom figure is the local principal curve.
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Figure 4.12: The top left figure is the projection of the quadratic model, the top right figure
is the projection of HS principal curves. the bottom figure is the projection of local principal
curves.
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Chapter 5

R Package

We developed an R package mult.latent.reg (Zhang & Einbeck, 2024b), now available on

CRAN, that implements the fitting methodologies for the 1- and 2-level models introduced in

Chapter 2 and Chapter 3 for clustered and highly correlated multivariate data. The computa-

tions are based on an ECM algorithm in the spirit of the Nonparametric Maximum Likelihood

(NPML) approach for the estimation of mixture models. The implementation also features al-

ternative choices of the starting values for the ECM algorithm, which we discuss in the following

sections. There are five functions in this package: mult.em 1level(), mult.reg 1level(),

mult.em 2level(), mult.reg 2level() and start_em().

5.1 Functions: mult.em 1level() and mult.em 2level()

The main functions for the 1-level model is mult.em 1level(). The function mult.em 1level()

is used to obtain the Maximum Likelihood Estimates (MLE) using the ECM algorithm for

one-level multivariate data. The estimates enable users to conduct clustering, ranking, and

simultaneous dimension reduction on the multivariate dataset. Furthermore, when covariates

are included, the function supports the fitting of multivariate response models, expanding its

utility for regression analysis. It will run ECM once with (by default) 20 iterations, producing

output including parameter estimates, log-likelihood, disparity, AIC, BIC values and starting

points. We support four types of parameterizations for Σ: the same diagonal variance matrix

for all mixture components, different diagonal variance matrices for different mixture compo-

nents, the same full variance matrix for all components, and different full variance matrices for

different components.

Here, we present an example of the 1-level model function applied to the faithful data

(no covariates). We use option = 1 for the starting value (to be explained in Section 5.3) and

adopt the first variance parameterization.
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> data(faithful)

> res <- mult.em_1level(faithful,K=2,steps = 10,var_fun = 1,option = 1)

Then we obtain the estimates, where p and z are estimated mixture parameters, alpha

corresponds to the α parameter from the 1-level model, beta corresponds to the β parameter

from the 1-level model, and W is the matrix of responsibilities.

> res$p

[1] 0.3590048 0.6409952

> res$z

[1] -1.336218 0.748381

> res$alpha

eruptions waiting

3.487783 70.897059

> res$beta

eruptions waiting

1.079359 12.207625

> res$W

[,1] [,2]

[1,] 8.161794e-08 9.999999e-01

[2,] 1.000000e+00 9.721718e-15

[3,] 2.805878e-04 9.997194e-01

[4,] 1.000000e+00 1.138163e-08

[5,] 1.460737e-16 1.000000e+00

[6,] 9.999982e-01 1.837069e-06

[7,] 9.834199e-19 1.000000e+00

...

[266,] 1.000000e+00 1.528210e-09

[267,] 5.204837e-15 1.000000e+00

[268,] 3.031372e-12 1.000000e+00
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[269,] 1.000000e+00 1.104280e-14

[270,] 2.778375e-17 1.000000e+00

[271,] 1.000000e+00 3.935776e-17

[272,] 1.292981e-12 1.000000e+00

The main functions for the 2-level model is mult.em 2level(). The function mult.em 2level()

extends the one-level version mult.em 1level, and it is designed to obtain Maximum Likeli-

hood Estimates (MLE) using the ECM algorithm for nested (structured) multivariate data,

e.g. multivariate test scores (such as on numeracy, literacy) of students nested in different

classes or schools. The resulting estimates can be applied for clustering or constructing league

tables (ranking of observations). With the inclusion of covariates, the model allows fitting a

multivariate response model for further regression analysis. The outputs for mult.em 2level()

is the same as the ones obtained from the functions for the 1-level model except we only AIC

for model selection. The 2-level model offers only two choices for variance parameterization

due to practical reasons: using the same diagonal variance matrix for all components of the

mixture or using different diagonal variance matrices for different components.

Here, we present an example of the 2-level model function applied to the twins data

(with covariates), which is analyzed in detail in Section 3.7.1, the two touch movement types

of the fetus recorded: self-touch and twin-to-twin touch are used as multivariate response

variable, and the mothers’ mental health status: depression, perceived stress scale and stress

are included as covariates . We use option = 1 for the starting value (to be explained in

Section 5.3) and adopt the second variance parameterization.

> set.seed(1)

> twins_res <- mult.em_2level(twins_data[,c(1,2,3)],v=twins_data[,c(4,5,6)],

K=2, steps = 20, var_fun = 2, option = 1)

Then we obtain the estimates, where gamma corresponds to the covariate coefficients

matrix Γ in the 2-level model, the rest estimates are the same as the ones described in the

example above.

> twins_res$p

[1] 0.1035222 0.8964778
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> twins_res$alpha

SelfTouchCodable OtherTouchCodable

[1,] 383.9243 611.4512

> twins_res$z

[1] 2.9427478 -0.3398185

> twins_res$beta

66.42663 -115.61472

> twins_res$gamma

[,1] [,2] [,3]

SelfTouchCodable -26.82411 12.10541 -7.123442

OtherTouchCodable -83.43059 46.82262 -73.719373

> twins_res$W

[,1] [,2]

[1,] 8.468702e-80 1.00000000

[2,] 1.391375e-194 1.00000000

[3,] 1.951464e-01 0.80485357

[4,] 0.000000e+00 1.00000000

[5,] 2.179658e-02 0.97820342

[6,] 9.772846e-01 0.02271544

[7,] 4.758332e-02 0.95241668

[8,] 1.444755e-287 1.00000000

[9,] 1.994514e-15 1.00000000

[10,] 5.717532e-116 1.00000000

[11,] 1.209422e-41 1.00000000

[12,] 2.028218e-37 1.00000000

[13,] 2.074998e-01 0.79250022

[14,] 3.318023e-48 1.00000000
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Table 5.1: Estimates for parameter β from 30 replicates under variance parameterization (i).

Average estimates
True n = 100 n = 300 n = 500

β1 0.5000 0.5077 0.5051 0.5102
β2 0.3000 0.2815 0.2925 0.2960
β3 0.0600 0.0603 0.0612 0.0606
β4 0.9000 0.8911 0.9107 0.8862

5.2 Functions: mult.reg 1level() and mult.reg 2level()

The main functions for the 1-level model is mult.reg 1level(). Function mult.reg 1level()

can execute the ECM multiple times (by default 10 runs) and outputs the result with the

smallest AIC value (also giving the starting points that generate that result). The main

functions for the 2-level model is mult.reg 2level(). Similar to the 1-level model functions,

mult.reg 2level() can execute the ECM multiple times (by default 10 runs) and outputs the

result with the smallest AIC value (also giving the starting points that generate that result).

The outputs for mult.reg 2level() is the same as the ones obtained from the functions for

the 1-level model except we only AIC for model selection.

In order to motivate the need for these functions, we carry out another small simulation.

For complex models, it sometimes requires multiple runs of the ECM function and selection

of the results with the smallest AIC values to obtain the best results. An example illustrating

this is a simulation study conducted (to test the accuracy of one-level model with covariates) in

Section 2.8.3, where we fit 4-variate data to a one-level model with two covariates. Previously,

in the simulation, each of the 300 replicates was run only once. In Figure 2.13, the bimodally

distributed histograms for parameter β indicate that the ECM algorithm produced another

set of poorly estimated results. Here, we rerun this simulation. We now run each of the

replicates multiple times and choose the best results based on AIC values. Figure 5.1 displays

the histograms and Table 5.1 shows the averaged estimates (with true values in the first column)

of 30 replicates for parameter β, each selected out of 10 runs with the smallest AIC values. We

observe that the averaged estimates of the parameter β are now close to their true values across

all parameters and sample sizes, with the bias in the estimates reducing for larger sample sizes.

Due to the computational expense, we used only 30 replicates; however, this still suffices to

illustrate our point.
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Figure 5.1: A histogram illustrating the overall estimates of 30 replicates for all three sample
sizes is shown for parameter β. The vertical red line is the true value and the blue line is the
mean.
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5.3 Starting Values Options

Using appropriate starting values for the parameters is beneficial for the ECM to find the maxi-

mum likelihood parameter estimates. In R package mult.latent.reg, the function start em()

provides starting values for parameters used in the four ECM functions introduced in the

previous section; we provide four options of data-dependent starting values for the ECM ini-

tialization, with the first option introduced in Section 2.6 and the other ones novel:

(i) option=1: For the mixture weights, we use π
(0)
k = 1

K
, where K is the number of

components. We draw random numbers from a standard normal distribution as the starting

values for the mass points z
(0)
k . We use column means for the line parameters α(0), and β(0) =

xr − α(0), where xr ∈ Rm is a randomly selected observation. For parameter Γ, we first fit

separate linear models, each using one of the columns of xi as response variable and vi as

predictor variables, then we use the coefficient estimates as the starting values, Γ(0). For all

four variance parameterizations, we use a diagonal matrix Σ(0) ∈ Rm×m, not depending on k,

as the ‘starting variance matrix’: Denote sj for j = 1, 2, ...,m the sample standard deviation

of the j-th variable. Then, for each diagonal element (σ
(0)
j )2 of Σ(0), one has the starting value

σ
(0)
j =

sj
K
, j = 1, . . . ,m.

(ii) option=2: We use a short run (5 iterations) of the ECM process which uses option

(i) with var fun=1 as the starting values, and then use the estimates as the starting values for

a relatively larger number of iterations. This approach is motivated by Biernacki et al. (2003),

where a short run of the EM is applied before running CEM runs.

(iii) option=3: The parameter β in our model plays a similar role to the rotation matrix

in principal component analysis, specifically aligned with the first principal component. This

observation motivated our choice of using the first principal component of the rotation matrix

as the initial values for β, while keeping the starting values for the remaining parameters

consistent with those described in (i).

(iv) option=4: In the application of clustering, a small number of observations in a

dataset intended to form a distinct group may occasionally be assigned to a neighboring cluster.

This inspired the idea that it would be better to use a more precise starting value for the mass

points zk. What we do is that first, take the scores of the first principal component of the

132



data and perform K-means on these. Then the starting values for the parameter πk are the

proportions of the clustering assignments, and the starting values for zk are the values of the

K-means centers. The starting values for the rest of the parameters are the same as described

in (i).

We use the trading data as example to illustrate the start_em() function (the detailed

application of this data can be found in Section 3.7.2). We first use option = 1 with the first

variance parameterization:

> start <- start_em(trading_data[,c(1,2)], option = 1, var_fun = 1)

then we obtain,

> start$p

[1] 0.5 0.5

> start$alpha

import export

3.722413 3.761973

> start$beta

[1] 0.5486318 0.5464599

> start$z

[1] -1.714035 -1.191245

> start$sigma

[[1]]

[1] 0.2802152 0.2989228

[[2]]

[1] 0.2802152 0.2989228

Then we use option = 2 with the third variance parameterization:

> start <- start_em(faithful, option = 2, var_fun = 3)

we obtain,

> start$p

[1] 0.3932469 0.6067531

133



> start$alpha

import export

3.722413 3.761973

> start$beta

0.4531160 0.4756917

> start$z

[1] 1.2421479 -0.8050571

> start$sigma

[,1] [,2]

[1,] 0.327469 0.0000000

[2,] 0.000000 0.3597126

The performance of these options is illustrated in Figure 5.2 for two data sets, namely

the trading data (also known as the import and export data) introduced in subsection 3.7.2,

and a 1-level data set where five fetal movement types serve as multivariate outcomes, and

a variable indicating pre/post-Covid status as covariate introduced in 2.10.4. The left plot

shows that, in terms of AIC values obtained from 50 applications of each starting value option,

option=3 tends to perform better than the other three options, with option=2 showing the

worst performance. Meanwhile, for the fetal data, option=2 tends to perform best, emphasizing

that different starting point choices may be successful for different data sets.
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Figure 5.2: Distributions of AIC values from 50 runs for each starting value option, for the
trading data (left) and the fetal data (right).
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Chapter 6

Concluding Remarks

We have proposed a versatile statistical model based on a latent variable representation that

simultaneously approaches dimension reduction and clustering, which are usually handled ei-

ther separately or sequentially. This model provides solutions to a wide range of inferential

problems, including multivariate regression where the original data space may serve as either

the predictors or the responses.

Building on the proposed model, we have provided a novel methodological approach for

the inclusion of a random effect into multivariate response models, based on the NPML method

for mixture models. The proposed approach enables us to accurately estimate covariate effects

under the presence of correlations between response variables. Crucially, such correlations

impact the standard errors of parameter estimates, our application studies indicate that the

standard errors tend to decrease when correlations between responses are taken into account.

We also observed this behavior in our data applications. It should however be noted that when

using this simultaneous approach no analytic calculation of the standard errors is possible,

hence requiring us to resort to bootstrap techniques.

Another advantage of the proposed methodology is in providing the matrix of posterior

probabilities produced alongside the estimation process, as well as in calculating posterior

random effects, similar to principal component scores, based on the fitted model. We have

demonstrated how these can be used for model-based clustering along the direction of the latent

subspace and conditional on covariate values. The clustering can be performed eiher directly

based on the Maximium a posteriori (MAP) rule, or can be driven by a user-specified degree

of confidence in the cluster allocation, allowing for fine-grained insights into the separability of

upper-level units on the scale of their posterior random effect.

Computationally, the proposed two-level model can be regarded as the multivariate

extension of the allvc() function available in R package npmlreg (Einbeck et al., 2018).
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We here focused on the Gaussian errors assumption for the response model and used the

nonparametric maximum likelihood approach to handle the marginal density of xij. In contrast,

the allvc() function is based on the glm framework, hence allowing any arbitrary exponential

family distribution for the response.

We close our discussion with the extension to the multivariate data with a non-linear la-

tent structure, where we approximate principal curves using a quadratic polynomial parametrized

by a single random effect. The quadratic model is an exploratory investigation of the gener-

alized non-linear model. Due to its quadratic nature, a quadratic curve cannot accurately

describe shapes with curvatures of more than half-circles. But still, it remains an interesting

starting point for the latent variable model for more complex data shapes. Furthermore, we

have published a paper within the framework of the quadratic model (Zhang & Einbeck, 2024a)

in which we consider the clustering of multivariate data with a non-linear latent structure. This

aims to establish an ordering of the clusters with respect to an underlying latent variable. As

our motivating example for a situation where such a technique is desirable, we consider scat-

terplots of traffic flow and speed, where a pattern of consecutive clusters can be thought to

be linked by a latent variable which is interpretable as traffic density. Some further directions

include: similar to the linear one-level model, we could extend the current quadratic model

to a two-level version. Additionally, one could consider extending this framework towards any

real-valued basis function, such as a polynomial of multiple (more than 2) degrees. Then the

shape of the curve can be smoother, capturing the shape of the data more accurately.
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Appendix A

Derivations of one-level model with co-

variates

The derivations of the parameter estimators for the one-level model with covariates,

xi = α + βzk + Γvi + εi, (A.1)

The expected complete log-likelihood of model (A.1) is the following,

lc =
n∑

i=1

K∑
k=1

wik log(πk) +
n∑

i=1

K∑
k=1

−1

2
wik log(|Σk|) +

n∑
i=1

K∑
k=1

−m
2
log(2π)wik

+
n∑

i=1

K∑
k=1

−1

2
wik(xi − α− βzk − Γvi)

TΣ−1
k (xi − α− βzk − Γvi).

(A.2)

A.1 Derivation for π̂k

We are under the constraint
∑K

k=1 πk = 1, and this can be addressed by applying a Lagrange

multiplier. Define,

l(πk) = lc − λ(
K∑
k=1

πk − 1),

then by taking the partial derivative of l(πk) with respect to πk and letting it to be zero, we

obtain,
n∑

i=1

wik
1

πk
− λ = 0,

then,

πk =

∑n
i=1wik

λ
,
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take the summation over k on both sides, we obtain,

K∑
k=1

πk =

∑K
k=1

∑n
i=1wik

λ
= 1,

since
∑K

k=1

∑n
i=1wik = n, so,

λ = n,

then we obtain,

π̂k =

∑n
i=1wik

n
. (A.3)

A.2 Derivation for α̂

We use the result for the derivatives of matrices, vectors, and scalars, where W is symmetric,

which is derived by Petersen and Pedersen (2012),

∂

∂s
(x− s)TW (x− s) = −2W (x− s).

We obtain the following by taking the partial derivative of the log-likelihood with respect to

α,

∂lc
∂α

=
n∑

i=1

K∑
k=1

−1

2
wik(−2)(Σk)

−1(xi − α− βzk − Γvi),

then letting it to be zero and solving it,

n∑
i=1

K∑
k=1

wikΣ
−1
k (xi − α− βzk − Γvi) = 0, (A.4)

n∑
i=1

K∑
k=1

wikΣ
−1
k (xi − βzk − Γvi) = α

n∑
i=1

K∑
k=1

wikΣ
−1
k ,

we obtain the estimator for α,

α̂ =

(
n∑

i=1

K∑
k=1

wikΣ̂
−1
k

)−1( n∑
i=1

K∑
k=1

wikΣ̂
−1
k (xi − β̂ẑk − Γ̂vi)

)
. (A.5)

In our implementation of the ECM algorithm, we assume (only temporarily within each M-step

before actually updating Σ̂k) that Σ̂k ≡ diag(σ2), for some constant σ2 which does not need to
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be specified since it cancels out from the resulting simplified update equations, then Equation

(A.4) becomes:

Σ−1

n∑
i=1

K∑
k=1

wik(xi − α− βzk − Γvi) = 0,

and then multiply Σ on both sides, we obtain,

n∑
i=1

K∑
k=1

wik(xi − α− βzk − Γvi) = 0,

then,

α̂ =
1

n

(
n∑

i=1

xi − β̂
n∑

i=1

K∑
k=1

wikẑk −
n∑

i=1

Γ̂vi

)
. (A.6)

This is the estimator of α used in the M-step in implementing the ECM algorithm.

A.3 Derivation for β̂

For the derivation of β, we use the following result, which is derived by Petersen and Pedersen

(2012),

∂

∂A
(x− As)TW (x− As) = −2W (x− As)sT .

By taking partial derivative of the lc with respect to β, we obtain,

∂lc
∂β

=
n∑

i=1

K∑
k=1

−1

2
wik(−2)Σ−1

k (xi − α− βzk − Γvi)z
T
k .

Since zk is a scalar, zk = zTk , and by letting the above equation to be zero and solving it,

n∑
i=1

K∑
k=1

wikΣ
−1
k (xi − α− Γvi)zk −

n∑
i=1

K∑
k=1

wikΣ
−1
k βz2k = 0, (A.7)

then,

β̂ =

(
n∑

i=1

K∑
k=1

wikΣ̂
−1
k ẑ2k

)−1( n∑
i=1

K∑
k=1

wikΣ̂
−1
k (xi − α̂− Γ̂vi)ẑk

)
, (A.8)

Again, we assume Σ̂k ≡ diag(σ2) in implementation, then Equation (A.7) can be rewritten as,

Σ−1

n∑
i=1

K∑
k=1

wik(xi − α− Γvi)zk − Σ−1

n∑
i=1

K∑
k=1

wikβz
2
k = 0,
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multiply Σ on both sides, we could obtain,

β̂ =

∑n
i=1

∑K
k=1wikẑkxi − 1

n
(
∑n

i=1 xi)(
∑n

i=1

∑K
k=1wikẑk)−

∑n
i=1 Γ̂vi

∑K
k=1wikẑk∑n

i=1

∑K
k=1wikẑ2k − 1

n
(
∑n

i=1

∑K
k=1wikẑk)2

+
1
n
(
∑n

i=1

∑K
k=1wikẑk)(

∑n
i=1 Γ̂vi)∑n

i=1

∑K
k=1wikẑ2k − 1

n
(
∑n

i=1

∑K
k=1wikẑk)2,

which is being used in the R code.

A.4 Derivation for ẑk

For the derivation of zk, we use the result of the following, which is derived by Petersen and

Pedersen (2012),

∂

∂s
(x− As)TW (x− As) = −2ATW (x− As).

By taking partial derivative of the lc with respect to zk, we obtain,

∂lc
∂zk

=
n∑

i=1

−1

2
wik(−2)βTΣ−1

k (xi − α− βzk − Γvi),

then,
n∑

i=1

wikβ
TΣ−1

k (xi − α− βzk − Γvi) = 0, (A.9)

we obtain,

ẑk =

∑n
i=1wikβ̂

T Σ̂−1
k (xi − α̂− Γ̂vi)∑n

i=1wikβ̂T Σ̂−1
k β̂

. (A.10)

With the assumption of Σ̂k ≡ diag(σ2) in implementation, the Equation (A.9) becomes,

n∑
i=1

wikβ
T (σ2Im)(xi − α− βzk − Γvi) = 0,

then,

σ2

n∑
i=1

wikβ
T Im(xi − α− βzk − Γvi) = 0,

where the σ2 can be canceled out, and we will have,

n∑
i=1

wikβ
T (xi − α− βzk − Γvi) = 0,
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The estimator of zk used in the implementation is the following,

ẑk =
β̂T
∑n

i=1wik(xi − α̂− Γ̂vi)

β̂T β̂
∑n

i=1wik

, (A.11)

A.5 Derivation for Γ̂

For the derivation of Γ, we use the result of the following, which is derived by Petersen and

Pedersen (2012),

∂

∂A
(x− As)TW (x− As) = −2W (x− As)sT ,

By taking partial derivative of the lc with respect to Γ, we obtain,

∂lc
∂Γ

=
n∑

i=1

K∑
k=1

−1

2
wik(−2)Σ−1

k (xi − α− βzk − Γvi)v
T
i ,

Letting the above equation to be 0,

n∑
i=1

K∑
k=1

wikΣ
−1
k (xi − α− βzk)vTi =

n∑
i=1

K∑
k=1

wikΣ
−1
k Γviv

T
i , (A.12)

On the right-hand side of Equation (A.12), Σ−1
k is a m×m matrix, Γ is a m× p matrix, vi is

a p× 1 vector; we cannot take Γ out of the double summation and multiply the inverse of the

double summation on both sides to get an analytical estimator for Γ. In our implementation,

we have the assumption that Σ̂k ≡ diag(σ2), then Equation (A.12) becomes,

Σ−1

n∑
i=1

K∑
k=1

wik(xi − α− βzk)vTi = Σ−1

n∑
i=1

K∑
k=1

wikΓviv
T
i ,

then we multiply Σ on both sides and take Γ out of the double summation,

n∑
i=1

K∑
k=1

wik(xi − α− βzk)vTi = Γ
n∑

i=1

K∑
k=1

wikviv
T
i ,

we obtain,

Γ̂ =

(
n∑

i=1

xiv
T
i − α̂

n∑
i=1

vTi − β̂
n∑

i=1

vTi

K∑
k=1

wikẑk

)(
n∑

i=1

viv
T
i

)−1

. (A.13)
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A.6 Derivation for Σ̂k

For the derivation of Σ, we use the result of the following, which is derived by Petersen and

Pedersen (2012),

∂

∂W
(x− s)TW (x− s) = (x− s)(x− s)T ,

and

∂

∂W
log(|W |) = (W−1)T ,

Rewrite (A.2) to be

l̃c =
n∑

i=1

K∑
k=1

wik log(πk) +
n∑

i=1

K∑
k=1

1

2
wik log(|Σk|−1) +

n∑
i=1

K∑
k=1

−m
2
log(2π)wik

+
n∑

i=1

K∑
k=1

−1

2
wik(xi − α− βzk − Γvi)

TΣ−1
k (xi − α− βzk − Γvi).

(A.14)

By taking partial derivative of the l̃c with respect to Σ−1
k and by letting it to be zero, we obtain,

n∑
i=1

1

2
wik

(
(Σ−1

k )−1
)T

+
n∑

i=1

−1

2
wik(xi − α− βzk − Γvi)(xi − α− βzk − Γvi)

T = 0,

since Σk is symmetric, then ΣT
k = Σk,

n∑
i=1

wikΣk =
n∑

i=1

wik(xi − α− βzk − Γvi)(xi − α− βzk − Γvi)
T ,

we obtain (variance parameterization(iv)),

Σ̂k =

∑n
i=1wik(xi − α̂− β̂ẑk − Γ̂vi)(xi − α̂− β̂ẑk − Γ̂vi)

T∑n
i=1wik

. (A.15)
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A.7 Derivation for σ̂2jk

When Σk ∈ Rm is diagonal, that is Σk = diag(σ2
jk){1≤j≤m}, where k = 1, . . . , K,

Σk =



σ2
1k 0 · · · 0

0 σ2
2k · · · 0

...
...

. . .
...

0 0 · · · σ2
jk


, (A.16)

and |Σk| =
∏m

j=1 σ
2
jk, since |Σk|−1 = |Σ−1

k |,

|Σ−1
k |=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
σ2
1k

0 · · · 0

0 1
σ2
2k
· · · 0

...
...

. . .
...

0 0 · · · 1
σ2
jk

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

m∏
j=1

1

σ2
jk

, (A.17)

The log-likelihood function from the previous section is the following,

l̃c =
n∑

i=1

K∑
k=1

wik log(πk) +
n∑

i=1

K∑
k=1

1

2
wiklog(|Σk|−1) +

n∑
i=1

K∑
k=1

−m
2
log(2π)wik

+
n∑

i=1

K∑
k=1

−1

2
wik(xi − α− βzk − Γvi)

TΣ−1
k (xi − α− βzk − Γvi),

and log(|Σk|−1) will become ,

log(|Σk|−1) = log(|Σ−1
k |) = log(

1

σ2
1k

.
1

σ2
2k

. . .
1

σ2
mk

) = −2
m∑
j=1

log σjk,

let φi = Γvi, where φi ∈ Rm, then the log-likelihood function l̃c will become,

l̃new = constant+
n∑

i=1

−1

2
wik(−2)

m∑
j=1

log σjk +
n∑

i=1

m∑
j=1

−1

2
wik

(xij − αj − βjzk − φij)
2

σ2
jk

,
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by taking partial derivative of the l̃new with respect to σjk and by letting it to be zero, we

obtain,
n∑

i=1

−wik
1

σjk
+

n∑
i=1

wik(xij − αj − βjzk − φij)
2σ−3

jk = 0,

then,
n∑

i=1

wik
1

σjk
=

1

σ3
jk

n∑
i=1

wik(xij − αj − βjzk − φij)
2,

we then obtain variance parameterization (ii),

σ̂2
jk =

∑n
i=1wik(xij − α̂j − β̂j ẑk − φ̂ij)

2∑n
i=1wik

. (A.18)

A.8 Derivation for Σ̂

For the derivation of parameter Σ, again, we use the following results, which is derived by

Petersen and Pedersen (2012),

∂

∂W
(x− s)TW (x− s) = (x− s)(x− s)T ,

and

∂

∂W
log(|W |) = (W−1)T .

When Σk ≡ Σ, the log-likelihood function (A.2) can be rewrite as,

l̃c =
n∑

i=1

K∑
k=1

wik log(πk) +
n∑

i=1

K∑
k=1

1

2
wik log(|Σ|−1) +

n∑
i=1

K∑
k=1

−m
2
log(2π)wik

+
n∑

i=1

K∑
k=1

−1

2
wik(xi − α− βzk − Γvi)

TΣ−1(xi − α− βzk − Γvi).

(A.19)

By taking partial derivative of the l̃c with respect to Σ−1 and by letting it to be zero, we obtain,

n∑
i=1

K∑
k=1

1

2
wik

(
(Σ−1)−1

)T
+

n∑
i=1

K∑
k=1

−1

2
wik(xi − α− βzk − Γvi)(xi − α− βzk − Γvi)

T = 0,
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since Σk is symmetric, and
∑n

i=1

∑K
k=1wik = n then we obtain variance parameterization (iii),

Σ̂ =
1

n

n∑
i=1

K∑
k=1

wik(xi − α̂− β̂ẑk − Γ̂vi)(xi − α̂− β̂ẑk − Γ̂vi)
T . (A.20)

A.9 Derivation for σ̂j

When Σm×m is diagonal, that is Σ = diag(σ2
j ){1≤j≤m},

Σ =



σ2
1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 0 · · · σ2
j


, (A.21)

and |Σ| =
∏m

j=1 σ
2
j , since |Σ|−1 = |Σ−1|,

|Σ−1|=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
σ2
1

0 · · · 0

0 1
σ2
2
· · · 0

...
...

. . .
...

0 0 · · · 1
σ2
j

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

m∏
j=1

1

σ2
j

, (A.22)

The log-likelihood function from the previous section is the following,

l̃c =
n∑

i=1

K∑
k=1

wik log(πk) +
n∑

i=1

K∑
k=1

1

2
wiklog(|Σ|−1) +

n∑
i=1

K∑
k=1

−m
2
log(2π)wik

+
n∑

i=1

K∑
k=1

−1

2
wik(xi − α− βzk − Γvi)

TΣ−1(xi − α− βzk − Γvi),

and log(|Σ|−1) will become,

log(|Σ|−1) = log(|Σ−1|) = log(
1

σ2
1

.
1

σ2
2

. . .
1

σ2
m

) = −2
m∑
j=1

log σj,
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let φi = Γvi, where φi ∈ Rm, then the log-likelihood function l̃c will become,

l̃new = constant+
n∑

i=1

K∑
k=1

−1

2
wik(−2)

m∑
j=1

log σj +
n∑

i=1

K∑
k=1

m∑
j=1

−1

2
wik

(xij − αj − βjzk − φij)
2

σ2
j

,

by taking partial derivative of the l̃new with respect to σj and by letting it to be zero, we obtain,

n∑
i=1

K∑
k=1

−wik
1

σj
+

n∑
i=1

K∑
k=1

wik(xij − αj − βjzk − φij)
2σ−3

j = 0,

since
∑n

i=1

∑K
k=1−wik = n,

n

σj
=

1

σ3
j

n∑
i=1

K∑
k=1

wik(xij − αj − βjzk − φij)
2,

we then obtain variance parameterization (i),

σ̂2
j =

∑n
i=1

∑K
k=1wik(xij − α̂j − β̂j ẑk − φ̂ij)

2

n
(A.23)
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Appendix B

Derivations of two-level model with co-

variates

The derivations of the parameter estimators for the two-level model with covariates,

xij = α + βzi + Γvij + εij, (B.1)

where xij ∈ Rm, the upper-level unit is indexed by i = 1, . . . , r, and the lower-level unit is

indexed by j = 1, . . . , nr, and εij ∼ N(0,Σ(zi)) are independent Gaussian errors..

The the expected complete log-likelihood of model (B.1) is the following,

lc =
r∑

i=1

K∑
k=1

wik log(πk) +
r∑

i=1

ni∑
j=1

K∑
k=1

−1

2
wik log(|Σk|) +

r∑
i=1

ni∑
j=1

K∑
k=1

−m
2
log(2π)wik

+
r∑

i=1

ni∑
j=1

K∑
k=1

−1

2
wik(xij − α− βzk − Γvij)

TΣ−1
k (xij − α− βzk − Γvij).

(B.2)

B.1 Derivation for π̂k

We are under the constraint
∑K

k=1 πk = 1, and this can be addressed by applying a Lagrange

multiplier. Define,

L(πk) = lc − λ(
K∑
k=1

πk − 1),

then by taking the partial derivative of L(πk) with respect to πk and letting it to be zero, we

obtain,
r∑

i=1

wik
1

πk
− λ = 0,

then,

πk =

∑r
i=1wik

λ
,
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take the summation over k on both sides, we obtain,

K∑
k=1

πk =

∑K
k=1

∑r
i=1wik

λ
= 1,

since
∑K

k=1

∑n
i=1wik = r, so,

λ = r,

then we obtain,

π̂k =

∑r
i=1wik

r
. (B.3)

B.2 Derivation for α̂

Using the result of the derivatives of matrices, vectors, and scalars, where W is symmetric,

which is derived by Petersen and Pedersen (2012),

∂

∂s
(x− s)TW (x− s) = −2W (x− s).

We obtain the following by taking the partial derivative of the log-likelihood with respect to

α,

∂lc
∂α

=
r∑

i=1

nr∑
j=1

K∑
k=1

−1

2
wik(−2)(Σk)

−1(xij − α− βzk − Γvij),

then letting it to be zero and solving it,

r∑
i=1

nr∑
j=1

K∑
k=1

wikΣ
−1
k (xij − α− βzk − Γvij) = 0, (B.4)

r∑
i=1

nr∑
j=1

K∑
k=1

wikΣ
−1
k (xij − βzk − Γvij) = α

r∑
i=1

nr∑
j=1

K∑
k=1

wikΣ
−1
k ,

we obtain the estimator for α,

α̂ =

(
r∑

i=1

nr∑
j=1

K∑
k=1

wikΣ̂
−1
k

)−1( r∑
i=1

nr∑
j=1

K∑
k=1

wikΣ̂
−1
k (xij − β̂ẑk − Γ̂vij)

)
. (B.5)
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In our implementation of the ECM algorithm, we (just for the use within these equations)

assume that Σ̂k ≡ diag(σ2), for some constant σ2 which does not need to be specified since it

cancels out from the resulting simplified update equations, then Equation (B.4) becomes:

Σ−1

r∑
i=1

nr∑
j=1

K∑
k=1

wik(xij − α− βzk − Γvij) = 0,

and then multiply Σ on both sides, we obtain,

r∑
i=1

nr∑
j=1

K∑
k=1

wik(xij − α− βzk − Γvij) = 0,

then,

α̂ =
1

n

(
r∑

i=1

nr∑
j=1

xij − β̂
r∑

i=1

ni

K∑
k=1

wikẑk − Γ̂
r∑

i=1

nr∑
j=1

vij

)
. (B.6)

This is the estimator of α used in the M-step in implementing the ECM algorithm.

B.3 Derivation for β̂

For the derivation of β, we use the result of the following, which is derived by Petersen and

Pedersen (2012),

∂

∂A
(x− As)TW (x− As) = −2W (x− As)sT

By taking partial derivative of the lc with respect to β, we obtain,

∂lc
∂β

=
r∑

i=1

nr∑
j=1

K∑
k=1

−1

2
wik(−2)Σ−1

k (xij − α− βzk − Γvij)z
T
k ,

Since zk is a scalar, zk = zTk , and by letting the above equation to be zero and solving it,

r∑
i=1

nr∑
j=1

K∑
k=1

wikΣ
−1
k (xij − α− Γvij)zk −

r∑
i=1

nr∑
j=1

K∑
k=1

wikΣ
−1
k βz2k = 0, (B.7)

then,

β̂ =

(
r∑

i=1

nr∑
j=1

K∑
k=1

wikΣ̂
−1
k ẑ2k

)−1( r∑
i=1

nr∑
j=1

K∑
k=1

wikΣ̂
−1
k (xij − α̂− Γ̂vij)ẑk

)
, (B.8)
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Again, we assume Σ̂k ≡ diag(σ2) in implementation, then Equation (B.7) can be rewritten as,

Σ−1

r∑
i=1

nr∑
j=1

K∑
k=1

wik(xij − α− Γvi)zk − Σ−1

r∑
i=1

nr∑
j=1

K∑
k=1

wikβz
2
k = 0,

multiply Σ on both sides, we could obtain,

β̂ =

∑r
i=1

∑ni

j=1

∑K
k=1wikẑkxij − 1

n
(
∑r

i=1

∑ni

j=1 xij)(
∑r

i=1 ni

∑K
k=1wikẑk)∑r

i=1 ni

∑K
k=1wikẑ2k − 1

n
(
∑r

i=1 ni

∑K
k=1wikẑk)2

−
Γ̂
∑r

i=1

∑ni

j=1

∑K
k=1wikẑkvij − 1

n
(
∑r

i=1 ni

∑K
k=1wikẑk)(Γ̂

∑r
i=1

∑ni

j=1 vij)∑r
i=1 ni

∑K
k=1wikẑ2k − 1

n
(
∑r

i=1 ni

∑K
k=1wikẑk)2

, (B.9)

which is being used in the R code.

B.4 Derivation for ẑk

For the derivation of zk, we use the result of the following, which is derived by Petersen and

Pedersen (2012),

∂

∂s
(x− As)TW (x− As) = −2ATW (x− As),

By taking partial derivative of the lc with respect to zk, we obtain,

∂lc
∂zk

=
r∑

i=1

nr∑
j=1

−1

2
wik(−2)βTΣ−1

k (xij − α− βzk − Γvij),

then,
r∑

i=1

nr∑
j=1

wikβ
TΣ−1

k (xij − α− βzk − Γvij) = 0, (B.10)

we obtain,

ẑk =

∑r
i=1

∑nr

j=1wikβ̂
T Σ̂−1

k (xij − α̂− Γ̂vij)∑r
i=1

∑nr

j=1wikβ̂T Σ̂−1
k β̂

. (B.11)

With the assumption of Σ̂k ≡ diag(σ2) in implementation, the Equation (B.10) becomes,

r∑
i=1

nr∑
j=1

wikβ
T (σ2Im)(xij − α− βzk − Γvij) = 0,
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then,

σ2

r∑
i=1

nr∑
j=1

wikβ
T Im(xij − α− βzk − Γvij) = 0,

where the σ2 can be canceled out, and we will have,

r∑
i=1

nr∑
j=1

wikβ
T (xij − α− βzk − Γvij) = 0,

The estimator of zk used in the implementation is the following,

ẑk =
β̂T
∑r

i=1

∑nr

j=1wik(xij − α̂− Γ̂vij)

β̂T β̂
∑r

i=1 niwik

, (B.12)

B.5 Derivation for Γ̂

For the derivation of Γ, we use the result of the following, which is derived by Petersen and

Pedersen (2012),

∂

∂A
(x− As)TW (x− As) = −2W (x− As)sT ,

By taking partial derivative of the lc with respect to Γ, we obtain,

∂lc
∂Γ

=
r∑

i=1

nr∑
j=1

K∑
k=1

−1

2
wik(−2)Σ−1

k (xij − α− βzk − Γvij)v
T
ij,

Letting the above equation to be 0,

r∑
i=1

nr∑
j=1

K∑
k=1

wikΣ
−1
k (xij − α− βzk)vTij =

r∑
i=1

nr∑
j=1

K∑
k=1

wikΣ
−1
k Γvijv

T
ij, (B.13)

On the right-hand side of Equation (B.13), Σ−1
k is a m×m matrix, Γ is a m× p matrix, vi is

a p× 1 vector; we cannot take Γ out of the double summation and multiply the inverse of the

double summation on both sides to get an analytical estimator for Γ. In our implementation,

we have the assumption that Σ̂k ≡ diag(σ2), then Equation (B.13) becomes,

Σ−1

r∑
i=1

nr∑
j=1

K∑
k=1

wik(xij − α− βzk)vTij = Σ−1

r∑
i=1

nr∑
j=1

K∑
k=1

wikΓvijv
T
ij,
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then we multiply Σ on both sides and take Γ out of the double summation,

r∑
i=1

nr∑
j=1

K∑
k=1

wik(xij − α− βzk)vTij = Γ
r∑

i=1

nr∑
j=1

K∑
k=1

wikvijv
T
ij,

we obtain,

Γ̂ =

(
r∑

i=1

ni∑
j=1

K∑
k=1

wik(xij − α̂− β̂ẑk)vTij

)(
r∑

i=1

ni∑
j=1

vijv
T
ij

)−1

. (B.14)

B.6 Derivation for Σ̂k

For the derivation of Σ, we use the result of the following, which is derived by Petersen and

Pedersen (2012),

∂

∂W
(x− s)TW (x− s) = (x− s)(x− s)T ,

and

∂

∂W
log(|W |) = (W−1)T ,

Rewrite (B.2) to be

l̃c =
r∑

i=1

K∑
k=1

wik log(πk) +
r∑

i=1

nr∑
j=1

K∑
k=1

1

2
wik log(|Σk|−1) +

r∑
i=1

nr∑
j=1

K∑
k=1

−m
2
log(2π)wik

+
r∑

i=1

nr∑
j=1

K∑
k=1

−1

2
wik(xij − α− βzk − Γvij)

TΣ−1
k (xij − α− βzk − Γvij).

(B.15)

By taking partial derivative of the l̃c with respect to Σ−1
k and by letting it to be zero, we obtain,

r∑
i=1

nr∑
j=1

1

2
wik

(
(Σ−1

k )−1
)T

+
r∑

i=1

nr∑
j=1

−1

2
wik(xij − α− βzk − Γvij)(xij − α− βzk − Γvij)

T = 0,

since Σk is symmetric, then ΣT
k = Σk,

r∑
i=1

nr∑
j=1

wikΣk =
r∑

i=1

nr∑
j=1

wik(xij − α− βzk − Γvij)(xij − α− βzk − Γvij)
T ,
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we obtain (variance parameterization(iv)),

Σ̂k =

∑r
i=1

∑ni

j=1wik(xij − α̂− β̂ẑk − Γ̂vij)(xij − α̂− β̂ẑk − Γ̂vij)
T∑r

i=1 niwik

. (B.16)

B.7 Derivation for σ̂2lk

When Σk ∈ Rm is diagonal, that is Σk = diag(σ2
lk){1≤l≤m}, where k = 1, . . . , K,

Σk =



σ2
1k 0 · · · 0

0 σ2
2k · · · 0

...
...

. . .
...

0 0 · · · σ2
lk


, (B.17)

and |Σk| =
∏m

l=1 σ
2
lk, since |Σk|−1 = |Σ−1

k |,

|Σ−1
k |=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
σ2
1k

0 · · · 0

0 1
σ2
2k
· · · 0

...
...

. . .
...

0 0 · · · 1
σ2
lk

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

m∏
l=1

1

σ2
lk

, (B.18)

The log-likelihood function from the previous section is the following,

l̃c =
r∑

i=1

K∑
k=1

wik log(πk) +
r∑

i=1

nr∑
j=1

K∑
k=1

1

2
wiklog(|Σk|−1) +

r∑
i=1

nr∑
j=1

K∑
k=1

−m
2
log(2π)wik

+
r∑

i=1

nr∑
j=1

K∑
k=1

−1

2
wik(xij − α− βzk − Γvij)

TΣ−1
k (xij − α− βzk − Γvij),

and log(|Σk|−1) will become,

log(|Σk|−1) = log(|Σ−1
k |) = log(

1

σ2
1k

.
1

σ2
2k

. . .
1

σ2
lk

) = −2
m∑
l=1

log σlk,
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let φij = Γvij, where φij ∈ Rm, then the log-likelihood function l̃c will become,

l̃new = constant+
r∑

i=1

nr∑
j=1

−1

2
wik(−2)

m∑
l=1

log σlk +
r∑

i=1

nr∑
j=1

m∑
l=1

−1

2
wik

(xijl − αl − βlzk − φijl)
2

σ2
jk

,

by taking partial derivative of the l̃new with respect to σlk and by letting it to be zero, we

obtain,
r∑

i=1

nr∑
j=1

−wik
1

σlk
+

r∑
i=1

nr∑
j=1

wik(xijl − αl − βlzk − φijl)
2σ−3

lk = 0,

then,
r∑

i=1

nr∑
j=1

wik
1

σlk
=

1

σ3
lk

r∑
i=1

nr∑
j=1

wik(xijl − αl − βlzk − φijl)
2,

we then obtain varince parameterization (ii),

σ̂2
lk =

∑r
i=1

∑ni

j=1wik(xijl − α̂l − β̂lẑk − ϕ̂ijl)
2∑r

i=1 niwik

. (B.19)

B.8 Derivation for Σ̂

For the derivation of parameter Σ, again, we use the following results, which is derived by

Petersen and Pedersen (2012),

∂

∂W
(x− s)TW (x− s) = (x− s)(x− s)T ,

and

∂

∂W
log(|W |) = (W−1)T .

When Σk ≡ Σ, the log-likelihood function (B.15) can be rewrite as,

l̃c =
r∑

i=1

K∑
k=1

wik log(πk) +
r∑

i=1

nr∑
j=1

K∑
k=1

1

2
wik log(|Σ|−1) +
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nr∑
j=1
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k=1

−m
2
log(2π)wik

+
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i=1

nr∑
j=1

K∑
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2
wik(xij − α− βzk − Γvij)

TΣ−1(xij − α− βzk − Γvij).

(B.20)
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By taking partial derivative of the l̃c with respect to Σ−1 and by letting it to be zero, we obtain,

r∑
i=1

nr∑
j=1

K∑
k=1

1

2
wik

(
(Σ−1)−1

)T
+

r∑
i=1

nr∑
j=1

K∑
k=1

−1

2
wik(xij−α−βzk−Γvij)(xij−α−βzk−Γvij)T = 0,

since Σk is symmetric, and
∑r

i=1

∑nr

j=1

∑K
k=1wik = n then we obtain variance parameterization

(iii),

Σ̂ =
1

n

r∑
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K∑
k=1

wik(xij − α̂− β̂ẑk − Γ̂vij)(xij − α̂− β̂ẑk − Γ̂vij)
T . (B.21)

B.9 Derivation for σ̂l

When Σm×m is diagonal, that is Σ = diag(σ2
l ){1≤l≤m},

Σ =



σ2
1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 0 · · · σ2
l


, (B.22)

and |Σ| =
∏m

l=1 σ
2
l , since |Σ|−1 = |Σ−1|,

|Σ−1|=
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0 1
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, (B.23)

The log-likelihood function from the previous section is the following,

l̃c =
r∑

i=1

K∑
k=1

wik log(πk) +
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nr∑
j=1
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k=1
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TΣ−1(xij − α− βzk − Γvij),
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and log(|Σ|−1) will be,

log(|Σ|−1) = log(|Σ−1|) = log(
1

σ2
1

.
1

σ2
2

. . .
1

σ2
l

) = −2
m∑
l=1

log σl,

let φij = Γvij, where φij ∈ Rm, then the log-likelihood function l̃c will become,

l̃new = constant+
r∑

i=1

nr∑
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K∑
k=1
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2
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K∑
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2
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,

by taking partial derivative of the l̃new with respect to σl and by letting it to be zero, we obtain,

r∑
i=1

nr∑
j=1

K∑
k=1

−wik
1

σl
+
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i=1

nr∑
j=1

K∑
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since
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2,

we then obtain variance parameterization (i),

σ̂l
2 =

∑r
i=1

∑nr

j=1

∑K
k=1wik(xijl − α̂l − β̂lẑk − φ̂ijl)

2

n
(B.24)

Note that we only used variance parameterization (i) and (ii) in the implementation of the

ECM algorithm for practical reasons.
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