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Abstract

We explore various aspects of toric quiver gauge theories, with a particular focus on their

deformations and the associated geometric and algebraic structures. We review fundamental

concepts in algebraic geometry, toric geometry, and quiver representation theory, delving

into the construction of toric varieties and quiver representations, examining their roles in

the moduli of toric quiver gauge theories, particularly through Geometric Invariant Theory

(GIT) and symplectic reduction. We study 4d N = 1 supersymmetric quiver gauge theories,

emphasizing their representation via quiver diagrams and brane tilings, and analyzing dualities

that link different quiver theories. Central to this thesis is the study of one-parameter

families of U(1)2-preserving deformations, defined by zig-zag paths in the brane tiling. These

deformations, which correspond to Hanany-Witten moves in the dual (p, q)-web, are explored

in the context of their impact on moduli spaces and RG flows between SCFTs on D3-branes

probing local toric (pseudo) del Pezzo surfaces. Finally, we extend our analysis to non-reflexive

polytopes, applying algorithms to uncover flows between toric phases of quiver gauge theories,

with particular attention to those described by toric diagrams with 2 internal points.
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Chapter 1

Introduction

1.1 Motivation

The research presented in this thesis delves into various aspects of supersymmetric gauge

theories in relation to string theory and geometry. The focus is on understanding the landscape

of 4-dimensional gauge field theories with minimal supersymmetry, and also understanding

their low-energy dynamics. In particular, we research a particular class of 4d N = 1 theories

whose gauge group and matter content is described by a quiver diagram (a directed graph),

resulting from D3-branes probing toric Calabi-Yau 3-folds (CY3) and deformations thereof.

These topics have attracted significant interest both in the high-energy physics and pure

mathematics communities. For many years, physicists have worked on geometric engineering

of 4-dimensional quantum field theories, with lower amounts of supersymmetry (N = 2 and

N = 1), with the hopes of reconciling compactified supersymmetric high-energy theories

with low-energy gauge dynamics. This is particularly important in the ongoing efforts of

constructing a model for beyond-Standard-Model physics. On the other hand, geometric

engineering is not just about building physical theories, as it utilizes advanced mathematical

concepts. In particular, the framework of quiver gauge theories presents itself as an alternative

playground to explore complex theoretical topics in quiver representations and algebraic

geometry. This intersection has led to fruitful exchanges between mathematics and theoretical

physics, providing insights and tools for both fields.

1.1.1 Strings and branes

String theory [5–10] has been an elegant framework in theoretical physics, offering a proposal

for physics beyond the Standard Model. It tackles the problem of unifying gauge and

gravitational interactions in a quantum mechanically well-defined theory. As such, it proves

to be a quantum gravity theory, successfully recovering the Einstein’s theory of gravity as a

1



2 Deformations of Toric Quiver Gauge Theories

low-energy effective theory applicable at energy levels below a characteristic threshold known

as the string length scale

ℓs =
√
α′ . (1.1)

A string is introduced as a generalization of a relativistic point particle. The simplest

generalization is to extend a point traveling in spacetime (worldline) to a 1d segment or loop

(open or closed string) tracing a 2-dimensional worldsheet Σ embedded in a target space N .

We denote this map by X : Σ −→ N . A natural action to consider is the Nambu-Goto action,

which is proportional to the area of the traced path:

SNG [X] = − 1

2πα′

∫
Σ
d2σ
√
−γ , (1.2)

where γab = (X∗η)ab = ηµν∂aX
µ∂bX

ν is the induced metric on the worldsheet by the target

space flat metric η, and the dimensionful overall constant is the string tension T = 1/(2πα′).

As the string moves in time, we have options of having closed strings (Σ homeomorphic to

R× S1) or open strings (R×D1). The bosonic closed string theory is successful in recovering

the Einstein theory as an effective theory at length scales larger than the string length ℓs,

while completing the theory in the ultraviolet (UV). In the string frame, the effective action is

S[Φ, B,G] =
1

2κ20

∫
N
ddx
√
−G e−2ΦR− 1

2κ20

∫
N
e−2Φ

(
4 dΦ ∧ ⋆dΦ− 1

2
dB2 ∧ ⋆dB2

)
(1.3)

When quantized, the bosonic string introduces a graviton multiplet (Φ, B2, G) consisting

of a dilaton, a Kalb-Ramond field and a metric field, which arise respectively as the trace,

antisymmetric and traceless symmetric components of the massless (level 1) states. The

Newton constant is determined dynamically by the vacuum expectation of the dilaton Φ,

8πGN = k20e
2⟨Φ⟩ ∼ (ℓs)

d−2g2s , while also setting the value for the string coupling gs = e⟨Φ⟩. So

the only free parameter in the theory is the string tension. In bosonic string theory, we must

set the critical dimension d = 26 in order to cancel the Weyl conformal anomaly. The mode

expansions of the theory require the regularized zero point energy −a = −(d− 2)/24, as each

massless bosonic state contributes with a −1/12 factor.

Open strings present the same classical action as in (1.2). However, we will have additional

contributions to the sigma-model on the worldsheet boundary ∂Σ, which is coupled to a gauge

connection Aµ. The dynamics depend on which boundary conditions we decide to apply at

the endpoints of the string length, parametrized by σ ∈ [0, π]. If the open string is moving

freely in spacetime (only Neumann boundary conditions), we obtain a U(1) Maxwell theory

as the tree-level effective action

S[A] = − 1

4g2YM,0

∫
N
e−ΦF ∧ ⋆F , (1.4)
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where F = dA. Note that we cannot have open string states without also closed strings,

as open strings can interact and join to form closed strings, adding contributions to the

sigma-model weighted by (gs)
δχ, δχ = −1 for open strings and δχ = −2 for open strings.

Figure 1.1: D-brane depiction as endpoints of open strings.

On the other hand, we can fix some coordinates under Dirichlet boundary conditions and

while others obey Neumann or ‘free’ boundary conditions. Specifically, at both ends of the

string, the conditions are as follows:

∂σX
a|σ=0,π = 0 for a = 0, . . . , p (Neumann)

XI |σ=0,π = cI0,π for I = p+ 1, . . . , d− 1 (Dirichlet)
(1.5)

where cI0,π are constants. These conditions anchor the string’s endpoints within a (p + 1)-

dimensional hypersurface known as a Dp-brane (where “D” stands for Dirichlet), breaking the

spacetime SO(1, d−1) Lorentz group symmetry to SO(1, p)×SO(d−p−1) in the process. The

U(1) gauge field Aa, a ∈ {0, . . . , p}, represents a spin 1 photon with oscillations longitudinal

to the Dp-brane and transforming under the SO(1, p) Lorentz group. The remaining d− p− 1

string modes constitute a set of scalar perturbations ϕI , which can be seen as transverse

fluctuations of the brane. From the space-time perspective they are interpreted as Goldstone

bosons for the translation invariance spontaneously broken by the D-brane.

These transverse fluctuations led people to realize that string theory is fundamentally about

branes, not just strings. D-branes should be regarded as dynamic objects in their own

right, extending beyond the concept of strings. For e.g., a D0-brane is equivalent to a point

particle, a D1-brane corresponds to a string, and Dp-branes could be understood as higher

dimensional generalizations of strings. Thus, we can formulate an action that describes the

classical dynamics of a D-brane, analogous to the Nambu-Goto action for strings, where we

now pullback spacetime quantities by an embedding X :W −→ N , where W represents the

worldvolume spanned by the brane. This leads to the famous Dirac-Born-Infeld action, a

generalization of the Born-Infeld action [11],

SDBI = −τp
∫
W

dξp+1e−Φ
√
−det(G+B2 + 2πα′F ) , (1.6)
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where the brane tension is given by τp = 1/(2π)pℓp+1
s gs. For a flat infinite brane, we can make

use of the reparameterization invariance to work in static gauge Xa(ξ) = ξa, a ∈ {0, . . . , p},
we can obtain the free U(1) Maxwell theory coupled to the scalars ϕI , obtained by rescaling the

transverse coordinates XI(ξ) = 2πα′ϕI(ξ), demonstrating that D-branes are indeed dynamical.

The pullback of the B-field is necessary, as only the combination B2 + 2πα′F is invariant

under a gauge transformation.

While the initial bosonic description was successful in describing gravity, the theory failed

to describe fermionic matter states. Another inconsistency is the presence of tachyon states

as the ground state (level 0). Furthermore, the high number of dimensions d = 26 required

seems to be not very convincing. Given these inherent limitations, theoretical physicists were

compelled to explore supersymmetric extensions that could incorporate fermions onto the

worldsheet theory.

Type II strings adds both left and right moving fermionic partners ψµ(t, σ) to the bosonic

counterparts Xµ(t, σ) in the worldsheet theory. The spacetime is now required to be a d = 10

dimensional spacetime due to the same zero-point energy argument as in the bosonic case.

In the Ramond-Neveu-Schwarz (RNS) quantization of superstring we have two choices of

boundary conditions on fermions: periodic and anti-periodic. This leads to the separation

of modes into the Neveu-Schwarz (NS) and Ramond (R) sectors, respectively. Requiring

the removal of the tachyonic instabilities combines the states of the two sectors into two

distinct ways, which generate two superstring theories: type IIA and type IIB. In both cases

Sector Fields SO(8)

(NS+,NS+)

dilaton Φ

8v ⊗ 8v = 1⊕ 28⊕ 35vKalb-Ramond 2-form B2

graviton G

(NS+,R−)
Majorana gravitino ψµ

L
8v ⊗ 8s = 8c ⊕ 56c

Majorana dilatino λL

(R+,NS+)
Majorana gravitino ψµ

R
8c ⊗ 8v = 8s ⊕ 56s

Majorana dilatino λR

(R+,R−)
1-form gauge field C1

8c ⊗ 8s = 8v ⊕ 56v
3-form gauge field C3

Table 1.1: Massless states in type-IIA string theory

the bosonic fields (Φ, B2, G) are present, matching the states of the NS-NS sector, being a

vector representation 8v ⊗ 8v of the Lorentz group SO(8), with the same dynamics as in

eq. (1.3). These are not the only massless bosonic excitations allowed, as we have additional

Ramond-Ramond (RR) fields arising from bispinor representations which decompose into

multiple antisymmetric p-forms Cp, with enhanced field strength

Fp+1 = dCp + Cp−3 ∧H3 (1.7)
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Sector Fields SO(8)

(NS+,NS+)

dilaton Φ

8v ⊗ 8v = 1⊕ 28⊕ 35vKalb-Ramond 2-form B2

graviton G

(NS+,R+)
Majorana-Weyl gravitino ψµ

L
8v ⊗ 8c = 8s ⊕ 56s

Majorana-Weyl dilatino λL

(R+,NS+)
Majorana-Weyl gravitino ψµ

R
8c ⊗ 8v = 8s ⊕ 56s

Majorana-Weyl dilatino λR

(R+,R+)

scalar field C0

8c ⊗ 8c = 1⊕ 28⊕ 35c2-form gauge field C2

4-form gauge field C4 (self-dual)

Table 1.2: Massless states in type-IIB string theory

where H3 = dB2. In type IIA, we have a 1-form C1 and 3-form C3 gauge fields, whereas in

type IIB, we have a scalar C0, a 2-form C2 and a 4-form C4. However, the C4 field strength

F̃5 = dC4− 1
2C2∧H3+

1
2B2∧F3 is restricted to be self-dual, F̃5 = ⋆F̃5. See tables 1.1 and 1.2.

In both Type IIA and Type IIB string theories, not all D-brane configurations are stable.

Stable Dp-branes in the type II string theories are charged under the Ramond-Ramond fields

Cp+1, with the usual minimal coupling

τp

∫
W
Cp+1 . (1.8)

If a Dp-brane couples electrically to the RR-potential Cp+1, there exists also a magnetic dual

(7 − p)-form C̃7−p, such that F̃9−p = ⋆Fp+1. From the available RR fields we can see that

type IIA contains only p-even D-branes: a D0–brane (point particle), a D2–brane and their

magnetic duals, a D6–brane and D8–brane.1 Similarly, type IIB has only p-odd D-branes: a

D1-string with magnetic dual D5-brane, a self-dual D3-brane, and there is an D(-1) instanton

with a D7–brane magnetic dual.

IIA : D0, D2, D4, D6, D8, F1, NS5

IIB : D(-1), D1, D3, D5, D7, D9, F1, NS5
(1.9)

The fundamental string (F-string) is a shared object in both string theories, with a tension

τF1 = 1/(2πα′), distinct from the D1-string from type IIB. Furthermore, instead of interacting

with a RR potential, it couples electrically with the gauge-invariant NS-NS 2-form potential

B2 + 2πα′F ,

τF1

∫
Σ
B2 +

∫
∂Σ
A1 . (1.10)

1The D9-brane and the D8-brane are exceptions. D9-brane is non-dynamical and D8-brane is equivalent to
a domain-wall solution that magnetically generates a locally constant F0.
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(The second term, required by gauge invariance, implies that endpoints in ∂Σ =W1 ⊔ (−W ′
1)

form worldlines of point particles charged +1/−1.) By spacetime Hodge duality, we can find a

NS-NS B6 form (dB6 = ⋆dB2) which naturally couples to a world-volume of a 5-brane. This

NS–NS object is the NS5–brane, which the magnetic dual of the fundamental string.

Type IIA and type IIB string theories transform into each other under T-duality [6–8, 10].

Specifically, a type IIA string theory compactified on a circle of radius R is equivalent to type

IIB on a circle of radius α′/R. Considering a closed string moving in a spacetime X9 × S1

with one dimension compactified on a circle S1 of radius R, the string will have momentum

modes with quanta pn = n/R and winding modes wm = mR/α′, where n,m ∈ Z. The mass

spectrum and level matching condition of the string are given by

M2 =
n2

R2
+
m2R2

α′2 +
2

α′ (N + Ñ − 2)

0 = N − Ñ + nm

(1.11)

which are invariant under the exchange

n↔ m , R↔ α′

R
. (1.12)

When applying T-duality to open strings, it can be shown that a Neumann boundary condition,

which allows the string endpoint to move freely along S1, transforms into a Dirichlet boundary

condition in the dual theory. Conversely, it also changes Dirichlet boundary conditions into

Neumann. In terms of D-branes, it implies that a Dp-brane maps into a D(p− 1)-brane in the

dual theory if the dualized circle lies in the original worldvolume. On the other hand, Dp-brane

turns into a D(p+ 1)-brane under a transverse T-duality. Additionally, RR gauge potentials

change from Cp+1 to p-forms and p+2 forms in a manner consistent with the D-brane mapping

under T-duality. This transformation is consistent with the stable p-even/p-odd configurations

of Dp-branes in type IIA/B.

T-duality also acts in the NS-NS sector, mixing the B2-field and the metric Gµν , while rescaling

the string coupling

gs ↔
ℓs
R
gs . (1.13)

This mixing has consequences on how T-duality impacts NS5-branes. Starting from a spacetime

with no NS5-branes, i.e., B2 = 0, if we dualize along a circle that shrinks in the spacetime

geometry, we can go from a purely geometric configuration to one with NS5-branes where

the original circle shrinks. The converse also holds. Dualizing along the worldvolume of the

NS5-brane, T-duality simply maps a type IIA NS5-brane to a IIB NS5-brane and vice versa.
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1.1.2 Quivers from D-brane stacks

Engineering gauge theories using D-branes has become a cornerstone in modern theoretical

physics [12–14]. By arranging multiple D-branes in specific configurations, researchers have

been able to generate diverse gauge field theories and interactions, with the objective of getting

insights into low-energy physics and the fundamental structure of spacetime. By placing N

parallel D-branes of the same type, open strings have now N2 options on which brane the

endpoints should attach to, giving rise to a U(N) gauge connection. This is an enhancement

from the U(1) case in the bosonic action (1.4), where the diagonal elements are U(1) gauge

bosons and the W-bosons-like off-diagonal elements carry (+1,−1) or (−1,+1) charge under

U(1)n ×U(1)m (see eq. (1.10)).

A common method to engineer gauge theories is by placing a parallel stack of D3-branes

with worldvolume spanning 4-dimensional R1,3, and transverse to a 3-complex-dimensional

Calabi-Yau (CY3) manifold Y . From this perspective, the D3-brane can be thought as a point

particle probing the geometry of the CY3. If the point being probed is locally smooth, the

worldvolume gauge theory is four-dimensional maximally supersymmetric Yang-Mills [15]. In

N = 1 supersymmetry notation, the N = 4 multiplet splits into a N = 1 vector multiplet

and three chiral multiplets {Φi}i=1,2,3 interacting via a superpotential

W = TrΦ1[Φ2,Φ3] (1.14)

where a trace on gauge indices is taken. From the N = 1 point-of-view, we can think of this

gauge theory as the simplest quiver gauge theory, where the quiver diagram is a node for the

gauge group U(N) and 3 incoming/outgoing arrows from the single node representing the 3

adjoint fields.

0 1 2 3 4 5 6 7 8 9

D3 ◦ ◦ ◦ ◦
CY3 ◦ ◦ ◦ ◦ ◦ ◦

Table 1.3: Brane configuration in 9+1 dimensions in IIB string theory. D3-branes are
transverse to and are represented by a point in the CY 3-fold.

However, historically, the original motivation for studying quiver gauge theories comes from

D3-branes configurations probing singular Calabi-Yau 3-folds. The simplest example stems

from groundbreaking work by Douglas and Moore [16, 17] on ALE (Asymptotically Locally

Euclidean) spaces, resulting in the emergence of 4-dimensional N = 2 superconformal gauge

theories as the low-energy effective field theory on the D3-branes worldvolume. The ALE

spaces locally resemble the orbifold C2/Γ, where Γ is a discrete subgroup of SU(2), which is

labelled using the ADE classification (named after the An, Dn, and En families), as they line

perfectly with the classification of semisimple simply-laced Lie algebras.
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Toric Calabi-Yau 3-fold singularities accept crepant resolutions by blowing-up a combination

of 2-cycles and/or 4-cycles [18, 19]. In the ALE case, resolving the singularity introduces

2-cycles intersecting according to the Dynkin diagram of the associated A/D/E algebra.

Wrapping D5-branes on each such 2-cycle leads to a N = 2 vector multiplet (N = 1 vector

plus N = 1 adjoint chiral), arising from open strings extending between two D5-branes in a

given stack. Open strings extending between D5-branes wrapping two distinct but intersecting

stacks of D5-branes leads to a N = 2 hypermultiplet (two conjugate N = 1 chiral multiplets)

in the bifundamental representation of the two gauge groups. The structure of vector and

hyper multiplets is encoded in the simply laced Dynkin diagram of the associated A/D/E

Lie algebra. One can also wrap an anti-D5-brane on the sum of the above 2-cycles, with

−1 unit of worldvolume gauge flux: this extends the finite A/D/E Dynkin diagram to the

corresponding affine A/D/E Dynkin diagram, which has one extra node. Nodes of the affine

Dynkin diagram encode the gauge groups (N = 2 vector multiplets), edges encode the matter

content (N = 2 hypermultiplets in the bifundamental representation). If we have N wrapped

(a)

1

2

3

4
n

(b)

Figure 1.2: Affine Dynkin diagram for the An−1 family (a) leading to the quiver for the
C2/Zn × C quiver gauge theory.

D-branes of each type, then the quiver diagram will have a U(N) gauge factor for each node

in the affine Dynkin diagram. Switching to N = 1 notation where circles denote N = 1 vector

multiplets and arrows denote N = 1 chiral multiplets in a bifundamental representation, each

circle in the affine Dynkin diagram is replaced by a circle with an arrow forming a loop, and

each edge is replaced by a pair of oppositely oriented arrows. This is the quiver diagram

encoding the gauge group and matter content of the theory, exemplified in fig. 1.2.

The same conclusion is reached by directly quantizing open strings in the singular orbifold,

with no need to resolve the geometry. In the orbifold limit, the 2-cycles shrink and the above

wrapped D5-branes are mapped to so-called fractional D3-branes [18, 20]. The world-volume

theory probing a C3/Γ orbifold, with Γ ⊂ SU(3), is determined by the action of the regular

representation of Γ acting on the D-brane stack, and by specifying the action of the finite
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subgroup on C3 as

ρ(g) : C3 −→ C3 zi 7−→ ρ(g)ijz
j . (1.15)

Furthermore, the regular representation of Γ, γ(g), acts on the bosonic adjoint fields with the

transformation law

γ(g)Aµγ(g)
−1 = A′

µ γ(g)Ziγ(g)−1 = ρ(g)ijZ
′j (1.16)

where the sums over the Chan-Paton indices are implicit. Note that the complex fields Zi

transform in the same way as C3 coordinates, since the diagonal of Zi represent transverse

perturbations of each of the D-branes along zi. The regular representation of the finite

group is reducible, with decomposition γ =
⊕|Γ|

a=1 dim(γa) γa, such that |Γ| =
∑|Γ|

a=1 dim(γa)
2.

Invariance under the action (1.16) requires the gauge field Aµ to be in a block diagonal form.

As such, we can interpret the gauge theory resulting from N D3-branes probing an orbifold

singularity as a 4d N = 4 U(|Γ|N) on C3, the |Γ|-cover of C3/Γ, where we project the gauge

symmetry down to

|Γ|∏
a=1

U(kaN) , ka = dim(γa) . (1.17)

The quiver arises from the decomposition γ ⊗ γi =
⊕|Γ|

a=1 aijγj where γi maps to the quiver

node i and Dynkin diagram, and aij is adjacency between nodes. For the orbifold C2/Γ, with

Γ ⊂ SU(2), this is the McKay quiver, and the McKay correspondence [21] is the extended

(affine) Dynkin diagram of the associated simple Lie algebra.

For example, the abelian orbifold with the Ân−1 quiver in fig. 1.2b is a particular case where

the finite subgroup Γ = Zn acts solely on the coordinates (z1, z2). In order for the orbifold to

be Calabi-Yau, we require the complex and Kähler structures to be preserved under the action

of Zn, fixing the action of C3 to ρ(g)(z1, z2, z3) = (gz1, g
−1z2, z3). The regular representation

γ(g) permutes the D3-branes cyclically with the action,

γ(g) =


0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 γ(gk) = γ(g)k (1.18)

which decomposes into 1-dimensional (character) representations γa(g) = ga. Fractional

D3-branes of a-type are states localized at the singularity that transform into an irreducible

representation γa of Zn. The invariance on the bosonic fields Zi under Zn requires most of its
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components to vanish and the fields to take the form,

Z1 =


0 0 · · · 0 ϕn,1
ϕ21 0 · · · 0 0

0 ϕ32 · · · 0 0
...

...
. . .

...
...

0 0 · · · ϕn,n−1 0

 Z2 =


0 ϕ12 0 · · · 0

0 0 ϕ23 · · · 0
...

...
...

. . .
...

0 0 0 · · · ϕn−1,n

ϕ1,n 0 0 · · · 0

 (1.19)

while the last field must be diagonal, Z3 = diag(ϕ1, ϕ2, . . . , ϕn). We can obtain the non-trivial

superpotential by expanding the 4d N = 4 superpotential in eq. (1.14) and restoring the

N = 1 supersymmetry to the fields. The superpotential for the Ân−1 quiver can be written as

W = Tr

n∑
a=1

Φa(Xa,a−1Xa−1,a −Xa,a+1Xa+1,a) (1.20)

Note that ϕab are the complex scalars in a N = 1 chiral multiplet Xab, which transform under

the bifundamental representation of U(kaN)× U(kbN). On the other hand, ϕa are the scalar

components of N = 1 U(kaN) adjoint superfields Φa.

1.1.3 Toric singularities and brane tilings

Quiver gauge theories describing the low-energy dynamics on D-branes probing singularities

have been extensively studied for more than 25 years [12–17, 22–27], particularly in the context

of the AdS/CFT correspondence [28, 29] and for model building in string theory [30, 31].

Engineering strongly coupled field theories in this way allows for the geometrization of many

of their properties, which are otherwise difficult to access directly in field theory. Conversely,

understanding the field theories from first principles can shed light on aspects of the associated

geometry.

One class of singularities that have been central to these studies are toric Calabi-Yau 3-folds.2

These are irreducible varieties containing a torus T3 as a dense open subset and a torus

automorphism action which extends naturally to the entire space. The worldvolume theory

of a stack of D3-branes probing a toric CY cone is a 4d N = 1 quiver gauge theory. In the

context of AdS/CFT, backreaction of N ≫ 1 D3-branes leads to near-horizon AdS5 × X5

geometry [24, 32–36], where X5 is a Sasaki-Einstein manifold X5 that is the base of the original

CY 3-fold cone. The geometries contain a U(1)3 isometry dual to a rank 3 global (mesonic)

symmetry in the gauge theory, with a N = 1 U(1) R-symmetry as a subgroup, generated

by the Reeb vector of the Sasaki-Einstein manifold. From the toric geometry perspective,

we can see the CY3 a “complex” cone over a 2-dimensional toric surface, where X5 can be

thought as of a S1 fibration over this space. Toric geometry provides a simple framework for

describing and constructing these surfaces, encoded in a combinatorial object called a toric

2In particular, the abelian orbifolds C3/Γ for Γ = Zn or Γ = Zn × Zm already fall in this category.
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fan. In particular, in physics, we describe the same data using a toric diagram ∆, a convex

lattice polytope in 2 dimensions.

The D3-brane stack setup on a singular toric cone preserves (at least) N = 1 supersymmetry

in four dimensions. Finding the quiver (matter content) and superpotential for a general

singularity is usually a difficult task. However, this data is related to the holomorphic (complex)

structure of the Calabi-Yau 3-fold and independent of the symplectic structure (encoded in

the Kähler potential), thus it can be computed in the resolved singularity [19, 25, 37–39].

Brane tilings [40–44], also known as dimer models in the statistical mechanics and probability

literature [45, 46], provide an alternative to encode the quiver and the superpotential of

the N = 1 quiver gauge theory that arises from D3-branes probing toric CY 3-folds. The

brane tiling is represented as a periodic bipartite graph on a two-dimensional torus T2,

where each edge maps to an arrow (bifundamental field) in the quiver and each face in the

tiling corresponds to a node/circle in the quiver (gauge group). The tiling also encodes the

superpotential, as each loop surrounding a white or black node in the tiling corresponds to a

term in the superpotential with a specific sign, determined by the orientation of the loop.

The combinatorial structure of the brane tiling provides a simpler way to obtain the geometric

data (toric diagram), via the forward algorithm [40, 41]. Conversely, obtaining quivers from a

toric diagram is known as the inverse algorithm [43, 47], which is generally more complicated

as the correspondence is one-to-many. A toric diagram may give rise to more than one quiver

gauge theory, related by toric-Seiberg duality, known as the different toric phases of the

geometry [48–52].

The brane tiling is itself a physical system composed of D5 and NS5-branes in a type-IIB

string theory background. This background is twice T-dual to the D3 stack probing the toric

CY manifold. Under the double T-duality, the D3-branes are mapped to D5-branes, and the

toric CY 3-fold geometry is mapped to an NS5-brane wrapping a holomorphic surface defined

by the zero locus of the Newton polynomial

P (z, w) =
∑

(a,b)∈∆

ca,bz
awb (1.21)

associated with the toric diagram ∆. Here, the parameters ca,b encode the symplectic structure

moduli of the original CY manifold. This configuration is summarized in the brane setup in

table 1.4. The D5-branes span the (0123) directions, while wrapping the (57)-coordinates of

the 2-torus, while the holomorphic surface Σ is embedded in a (C×)2 with complex coordinates

z = ex4+ix5 , w = ex6+ix7 .

In this configuration, the D5 stack wraps the 2-torus and the NS5 brane intersects the D5-brane

along various cycles, whose directions on the torus match the outward normals of the toric

diagram facets (see fig. 1.3). The NS5-brane can also run parallel to the N stack of D5-branes,

subdividing the torus into regions of bound states of (N, 0) and (N,±1) of D5/NS5-branes.
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0 1 2 3 4 5 6 7 8 9

D5 ◦ ◦ ◦ ◦ ◦ ◦
NS5 ◦ ◦ ◦ ◦ —– Σ —–

Table 1.4: 5-brane configuration in 9+1 dimensions in IIB string theory, equivalent to
D3-branes probing a toric Calabi-Yau singularity after T-dualizing the 2 circles on the 57-

directions. NS5-brane wraps a Riemann surface Σ.

Massless open strings extend between the (N, 0) 5-branes, giving rise to the quiver structure,

where the (N, 0) regions match the gauge groups, i.e. the faces in the tiling. The bipartite

nature of the dimer manifest itself by interpreting the (N,±1) regions as corresponding to

white and black nodes, respectively, in the tiling.

A more modern interpretation [43] of the brane tiling is as the skeleton graph of the coamoeba

projection of the spectral curve defining Σ. This projection is defined by taking the surface Σ

and mapping it onto the 2-torus via

Arg : (C×)2 −→ T2 (z, w) 7−→
(
Arg(z),Arg(w)

)
(1.22)

When varying the moduli c(a,b) ∈ C× defining the shape of Σ, the coamoeba can take different

skeleton structures, which corresponds to going to a new toric phase. On the other hand,

(a) (b) c(0,0) = 0 (c) |c(0,0)| > 3

Figure 1.3: Toric diagram (a), coamoeba (b) and amoeba (c) projections of the Σ curve for
orbifold geometry C3/Z3. Normals of the toric diagram (a) map to NS5 cycle intersection
that wrap T2, as well as defining the (p, q)-legs in (c). Brane tiling in (b) is obtained by

mapping (N,±1) regions (blue/orange) to white/black nodes.

the skeleton (or tropicalization) of the amoeba projection, where (z, w) ∈ Σ is mapped to(
Log(z),Log(w)

)
, has the physical interpretation of a web of (p, q)5-branes in type IIB string

theory [53, 54].
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1.2 Thesis outline

In this section, we summarize the structure of the thesis. The remaining chapters are organized

as follows:

In chapter 2, we review mathematical concepts and results in algebraic geometry, toric

geometry, and quiver representation theory, which arm the reader with the tools behind the

computations and algorithms presented in this work. We begin with a discussion on rings,

ideals, and varieties, explaining the structure of polynomial rings, ideals, and their geometric

interpretations as algebraic sets, specifically affine varieties. The chapter then moves to toric

varieties, describing (with examples) how they can be constructed using combinatorial data

like cones and fans. This section concludes with a discussion of toric Calabi-Yau affine cones

and their associated toric diagrams. In the second section, we provide a concise introduction

to the structure and properties of quiver representations and quiver path algebras, which

are crucial for understanding the moduli of toric quiver gauge theories. Using quiver data,

we explore the construction of moduli spaces via Geometric Invariant Theory (GIT) and

symplectic reduction, which are related by the famous Kempf-Ness theorem. Finally, we define

the stability of quiver representations using the θ-stability criterion, which is heavily used in

a later chapter.

In chapter 3, we explore quiver gauge theories from the perspective of 4dN = 1 supersymmetric

gauge theories and their representation through quiver diagrams and brane tilings. It presents

the basics of supersymmetric gauge theory and reviews how brane tilings encode the quiver

and the superpotential. We then describe the various components of the moduli space of

vacua of quiver gauge theory, as well as the fast-forward method that quickly obtains the

toric data (U(1)3 mesonic charges). Finally, we examine dualities of brane tilings, such as

toric-Seiberg and specular dualities, which relate different quiver theories and provide insights

into the moduli spaces of these theories.

In chapter 4, we delve into superpotential deformations in D3-brane worldvolume theories on

(pseudo) del Pezzo geometries. We define the zig-zag operator, uniquely defined by a zig-zag

path. This operator parametrizes a one-parameter family of deformations of the toric quiver

gauge theory, which preserve U(1)2 symmetry for generic values of the deformation parameter,

and interpolate between two toric endpoints. In particular, we focus on the study of geometries

with reflexive toric diagrams, whose deformations are summarized in fig. 1.4 and details in

appendix A. Leveraging specular duality of brane tilings (related to Mirror Symmetry), we

establish a connection between zig-zag deformations and toric-Seiberg dualities.

In chapter 5, we continue the study of zig-zag deformations, exploring the consequences of the

deformation in crepant resolutions instead of the of singular Calabi-Yau cones. We explain

how different resolutions of these singularities are in correspondence with Kähler chambers,

which are convex conical regions of the valid (stable moduli) real-valued Fayet-Iliopoulos (FI)
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G\
ne

4

5

6

7

8

3 4 5 6

A: 4

B: 5

A: 5

B: 6

A: 6

B: 7

A: 12

B: 14

C3/Z4 (1, 1, 2) dP1 C/Z2 (1, 1, 1, 1)

PdP2 dP2

C3/Z6 (1, 2, 3) SSP/Z2 (0, 1, 1, 1) PdP3b dP3

PdP4b PdP4a

C3/(Z4 × Z2) (1, 0, 3)(0, 1, 1) L1,3,1/Z2(0, 1, 1, 1) C/(Z2 × Z2) (1, 0, 0, 1)(0, 1, 1, 0)

A.1.1

A.1.2

A.1.3 A.1.4 A.1.5

A.1.6

A.1.7

A.1.8

Zig-zag flow

Double zig-zag flow

Figure 1.4: Toric-to-toric 4d N = 1 RG flows, connecting geometries with reflexive toric
diagrams via zig-zag deformations. Rows and columns are organized by the number of nodes
G in the quiver and the number of extremal points ne in the polytope, following [55]. Links

in the arrows point to details in appendix A.

parameters in that resolution. The chapter further delves into the use of dimer models and

perfect matchings to construct these resolutions, offering detailed examples for del Pezzo

surfaces. Finally, we describe how zig-zag deformations in the brane tiling are related to

Hanany-Witten moves in the corresponding (p, q)-webs.
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In chapter 6, we extend the ideas of the zig-zag deformation to other 4d N = 1 quiver gauge

theories whose mesonic moduli are described by a non-reflexive polytope. We elaborate on

the conditions on which we can still can obtain a flows to a toric dimer model. We explain the

algorithms that explicitly find the field redefinition that explicitly recovers the toric F-term

condition of the IR theory, and also find all toric phases We apply these algorithms to find

the map all 1-parameter deformations between toric phases of quiver gauge theories described

by toric diagrams with 2 internal points.

Chapter 7 includes discussion about the results and possible future directions.

1.3 Code developed

Brane tilings on abelian orbifolds have sufficient structure in the quiver to allow computations

to be performed manually. However, as we move on to toric diagrams with one or more

internal points, these computations become prohibitively complex and prone to human error.

Therefore, during this thesis, we developed a comprehensive set of modules (Mathematica [56]

packages) to assist with and greatly automate operations related to brane tilings and dimer

models:

• QuiverGaugeTheory [2]: During this work, we needed to regularly compute all sort of

properties based on the dimer model/brane tiling (Q,W ) in question. This package is a

collection of methods to extract and compute properties of dimer models. The package

contains algorithms for obtaining toric diagram, chiral rings, mesonic generators, toric

phases, full resolutions (polytope triangulations), Kähler chambers, dual cones, along

many other properties. Graphically, it contains methods that generate brane tilings and

quiver from a superpotential input and (p, q)-webs from a polytope triangulation data.

• InterfaceM2 [3]: This is a small interface with Mathematica and Macaulay2 [57],

a command line interface (CLI) program for computational algebraic geometry. The

core code evaluates commands and interprets the output from a Macaulay2 process

running in the background. On top this functionality, the package has a limited set of

specific methods that access relevant algorithms not present in Mathematica. For e.g.,

the method PrimaryDecompositionM2 allows the primary decomposition of an ideal

by generating the necessary code to be sent via the interface, in which the output is

converted back the original representation in Mathematica.

Furthermore, collaboration with my supervisor and F. Carta on the superconformal index

of del Pezzo quivers was not included in the thesis. From this collaboration a Mathematica

package with relevant applications in the theoretical physics community was developed.
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• LieACh [4]: LieART [58] is a recognized package in the Physics community designed for

Mathematica, which facilitates calculations commonly encountered within the domain

of Lie algebras and Lie algebra representation theory. It allows the decomposition

of tensor products, root systems of Lie algebras, weight systems and the branching

of irreducible representations into subalgebras. The LieACh package is built on top

of LieART to provide support for 1-dimensional representations of Lie algebras, i.e.,

character representations. Many computations in the theoretical physics and field

theory lead to large polynomial expressions that help count states and/or operators

(e.g. superconformal indices or Hilbert series). These states/operators are organized

into characters of representations of a semisimple Lie algebra, i.e., as a formal sum of

irreducible representations (irreps):

I(z1, . . . , zr) =
∑
Λ

aΛ χΛ(z1, . . . , zr)

Using known Lie algebra representation theory [59], we were able to implement a fast

method that extracts the (Λ, aΛ) pairs with the highest weight that classifies the irrep

and the associated coefficient aΛ.

We utilized the LieACh package to track dibaryon states of del Pezzo quivers. Briefly

explained,3 this counting is achieved via the superconformal index [60–64], a Witten index

traced over the Hilbert space of the radially quantized theory on Sd−1. Canceling out nonzero

energy states enables us to derive the 4d N = 1 index on S3 × S1,

I(p, q, µi) = Tr (−1)F p
R
2
+J3

1+J3
2 q

R
2
+J3

1−J3
2

∏
i

zCi
i . (1.23)

Here, R represents the generator of the U(1) superconformal R-charge, and J i
1,2 are the

generators of the su(2)1 × su(2)2 Lorentz symmetry. Additionally, Ci denotes the Cartan

generators of the global symmetries. This trace can be written in a closed form: chiral and

vector multiplets contribute to the index through infinite products, via the use of elliptic

gamma functions Γ(p, q; z). The result is then often expanded in a series of the fugacity

t = (pq)
1
2 , which captures the charges of R+ 2J3

1 . We obtained high order expansions for del

Pezzo n quivers (degree 9− n), where the baryonic symmetry enhances to the exceptional

family E3≤n≤8, where E3 = A2 ×A1, E4 = A4, and E5 = D5. For e.g., the index for the del

Pezzo 7 quiver for nodes with N = 2 is given by

3Not in the scope of the thesis.
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IN=2
dP7

= 1 +
(
10 + [0000010]z

)
t2 + [0000010]z[1]u t

3

+
(
43 + [1000000]z

+ 8[0000010]z + [0000020]z + [0000010]z[2]u

)
t4

+
(
19[1]u − [1000000]z[1]u + [0000100]z[1]u

+ 9[0000010]z[1]u + [0000020]z[1]u + [0000010]z[3]u

)
t5

+O
(
t6
)
,

where u = p/q represents the su(2)2 fugacity, and z = (z1, . . . , z7) are the fugacities of the

exceptional E7 baryonic symmetry. For instance, in the term, [0 . . . 010]z t
2N/(9−n) we observe

the dibaryons associated to (−1)-degree rational curves in the del Pezzo surface. This example

is a few thousand terms long but utilizing the aforementioned package we managed to simplify

the expression into irreducible characters of the Lie algebra E7 × A1. We note that we

reproduced representations of the exceptional symmetry group using the quiver gauge theory

with superpotential, with no need to postulate a completion of incomplete representations as

suggested in [65].





Part I

Review of concepts





Chapter 2

Mathematical preliminaries

2.1 Toric geometry

2.1.1 Rings, ideals and varieties

A commutative ring [66, 67] is a set of elements R equipped with addition + : R×R −→ R

and multiplication · : R × R −→ R, both associative operations, such that (R,+) forms an

abelian group and multiplication is commutative, i.e., a · b = b · a, for all a, b ∈ R. Contrary
to a field, non-zero elements do not need to be units (that is, have a multiplicative inverse).

Let k be an algebraically closed field, for example C. A polynomial ring k[x] is an extension

of the ring k by an element x, defined as the set of expressions1

a0 + a1x+ · · ·+ adx
d, d ∈ N (2.1)

where a0, a1, . . . , ad ∈ k, with appropriate addition and multiplication operations. Inductively,

we can define a multivariate polynomial ring k[x1, . . . , xn] = k[x1, . . . , xn−1][xn]. The

polynomial ring R = k[x1, . . . , xn] is also an associative k-algebra, meaning it has a vector

space multiplication by scalars k ×R −→ R.2

An ideal I of a ring R is a subset of elements, I ⊆ R, such that (I,+) forms a subgroup of

(R,+) and is closed under multiplication; that is, for b ∈ I, then a · b ∈ I, for all a ∈ R. It is
worth noting that every subring of R naturally contains the multiplicative identity 1 ∈ R, so
if 1 ∈ I, then the ideal is the ring itself, I = R.

Given an ideal of a polynomial ring I ⊆ R = k[x1, . . . , xn], it can be expressed as

I = ⟨f1, . . . , fm⟩ = Rf1 + · · ·+Rfm, (2.2)

1We use the convention N = 0, 1, 2, . . . to denote the semigroup of nonnegative numbers.
2We will use the terms ”ring” and ”k-algebra” loosely, assuming the underlying rings have a vector space

structure over some base/ground ring/field k.

21
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for some set of generators f1, . . . , fm ∈ R. This ideal has an intuitive interpretation in terms

of the system of polynomial equations f1 = · · · = fm = 0. We can build further relations

h1f1 + · · ·+ hmfm ∈ I, given h1, . . . , hm ∈ R, which also vanish as a consequence of the first

set of equations. Furthermore, with an ideal I = ⟨f1, . . . , fn⟩ we can define the quotient ring

R/I by defining an equivalence relation f ∼ g ⇐⇒ f − g ∈ I, for f, g ∈ R, with equivalence

classes [f ] = {f + h |h ∈ I} = f + I.

Verifying if an element of R = k[x1, . . . , xn] is in some ideal I = ⟨f1, . . . , fm⟩ can be a daunting

task, especially for a larger number of variables. Usually it starts by performing the polynomial

division algorithm such that

f = q1f1 + · · ·+ qmfm + r, (2.3)

for some quotients q1, . . . , qm ∈ R and a remainder r ∈ R. However, while the condition r = 0

is sufficient to guarantee that f ∈ I, we still might get nonzero remainders where f is an

element of the ideal, when dividing by the above set. Computationally, this ambiguity is

solved by determining a reduced Gröbner basis [66] of the ideal I, which is an ordered tuple

G = (b1, . . . , bs) that still generates the initial ideal I = ⟨G⟩ = ⟨b1, . . . , bs⟩. When f is divided

by a Gröbner basis G, the remainder is called the normal form f
G
, which is unique with

respect to G and has the property that its leading term is not divisible by the leading term of

any polynomial in the basis.3 A Gröbner basis provides a way to test membership in the ideal,

i.e., by checking f
G
= 0, but also simplifies systems of polynomial equations and performs

other computations more efficiently than using the original generators of the ideal.

By Hilbert’s basis theorem, polynomial algebras R = k[x1, . . . , xn] are noetherian, which

implies that every ideal is finitely generated, as in eq. (2.2). This constraint is equivalent

to ensuring that ideals obey the Ascending Chain Condition (ACC): for a chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ . . . , we require that

I1 ⊆ I2 ⊆ · · · ⊆ IN = IN+1 = . . . , (2.4)

meaning that for all j ≥ N in the ideal chain, Ij = IN . In other words, after a certain point,

all the ideals in the chain are the same, and the chain doesn’t keep growing indefinitely. This

implies that every ideal of a polynomial ring is contained in a maximal ideal m ⊊ R. Maximal

ideals are defined such that there is no other proper ideal J ⊊ R where m is also a proper

subset of J , i.e., m ⊊ J . The set of maximal ideals of a ring R is denoted as the maximal

spectrum SpecmR.

Given a polynomial algebra R = k[x1, . . . , xn], the set of k-algebra homomorphisms can

be identified with the affine space kn, by identifying a ∈ kn with evaluation morphisms

3The division and Gröbner basis on k[x1, . . . , xn] assume a given monomial ordering xα < xβ ⇐⇒ α < β, for

α, β ∈ Nn, in order to determine the leading terms of the form xα = xα1
1 . . . xαn

n .
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eva ∈ Homk-Alg(k[x1, . . . , xn], k), defined by eva(f) = f(a1, . . . , an). The kernel of eva is the

maximal ideal

ma = {f ∈ k[x1, . . . , xn] | f(a) = 0} = ⟨x1 − a1, . . . , xn − an⟩. (2.5)

From the isomorphism theorem follows that every maximal ideal m ⊂ k[x1, . . . , xn] with

k[x1, . . . , xn]/m = k corresponds to a unique a ∈ kn such that m = ma. Note that not

all maximal ideals are of the form described in eq. (2.5). Sometimes, the set of maximal

ideals m of any k-algebra R with R/m = k is called the k-spectrum of R and is denoted by

k-SpecR ⊆ SpecmR [67].

The requirement for k to be an algebraically closed field is crucial for the equality k-SpecR =

SpecmR. An arbitrary maximal ideal m can be easily identified by the property that the

quotient R/m must be a field (a finite field extension of k), but not necessarily the base field

k. This fails already for a R-algebra.

Example 2.1. Consider R = R[x]. The ideal ⟨x2 + 1⟩ is maximal under R[x] but not under
C[x]. Therefore, R[x]/⟨x2 + 1⟩ = R[i] = C is a field. For R[x], ⟨x − a⟩ with a ∈ R are

maximal ideals, but we have also maximal ideals ⟨x2 − (α+ ᾱ)x+ αᾱ⟩ for conjugate pairs

α, ᾱ ∈ C \ R. Thus, we can conclude that the maximal spectrum is the closure of the upper

half of the complex plane, SpecmR[x] = H = {z ∈ C | Im z ≥ 0}. In general, for n variables,

the maximal spectrum of R[x1, . . . , xn] is given by Cn by identifying points under the action

of {idCn , z 7−→ z̄} ∼= Z2. As a result,

SpecmR[x1, . . . , xn] = Rn × (Rn/{±idRn}) = Rn × CR(RPn−1) , (2.6)

where CR(RPn−1) denotes the real cone over the real projective space RPn−1, and the real

space Rn = R-SpecR[x1, . . . , xn] matches the tip of the cone.

Affine varieties [66, 68] are sets of solutions to systems of polynomial equations over a field,

typically considered within a space kn. For any set of elements S in a polynomial ring

R = k[x1, . . . , xn] over a field k, the affine variety

V(S) = {a ∈ kn | f(a) = 0, for all f ∈ S} (2.7)

is defined as the set of points in kn satisfying the vanishing of the polynomials in I. This

generalizes for subsets that are ideals. For a given element f ∈ R, then V(f) is the hypersurface
in kn defined by the zero set of the function f . Any affine variety of a finite set f1, . . . , fm ∈ R
can be seen as an intersection of hyperspaces: V(f1, . . . , fm) = V(⟨f1, . . . , fm⟩) = V(f1)∩ . . .∩
V(fm). Similarly, we can define the vanishing ideal of an affine variety X ⊆ kn,

I(X) = {f ∈ R | f(a) = 0, for all a ∈ X} , (2.8)
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which includes all polynomials in R that vanish at every point in X. For an algebraically

closed field k, the coordinate ring of a variety X is defined simply as k[X] = R/I(X), which

is the k-algebra of k-valued polynomial functions on X.

The space kn is endowed with the Zariski topology (usually denoted by An), where closed sets

are the V(I) and open sets are the complements

UI = kn \ V(I) = (kn \ V(f1)) ∪ · · · ∪ (kn \ V(fm)) = Uf1 ∪ · · · ∪ Ufm , (2.9)

of a finitely generated ideal I = ⟨f1, . . . , fm⟩, where the

Uf = {a ∈ kn | f(a) ̸= 0} (2.10)

are the basic open sets. In particular, these open sets have an algebraic connection with the

localization Rf , for Uf = Specm(Rf ). A localization [68] of an integral domain R allows us to

define quotients of R by elements of some multiplicative closed set S ⊂ R. It is defined as the

quotient S−1R = (R× S)/∼, where (p, q) ∼ (p′, q′) if and only if there exists u ∈ S such that

u(pq′ − p′q) = 0. The sum and multiplication on S−1R are defined as expected. An example

of localization is the field of rational functions k(X), which is the localization of R = k[X] by

all non-zero elements S = k[X] \ {0}. Similarly, the localization by a single element f ∈ R is

the ring Rf = {g/f ℓ ∈ k(X) | ℓ ∈ N}, where the quotient set is S = {f ℓ | ℓ ∈ N}.

The vanishing ideal I and zero set V act almost complementary. Note that I(X) constitutes

the maximal subset of appropriate functions that vanish on X, thus V(I(X)) = X. On the

other hand, composing the relation in the opposite direction, I(V(I)) ⊆ I, does not necessarily
recover the initial ideal I ⊂ R. The main reason for this is that a variety cannot distinguish

if the defining relation arises from f = 0 or fp = 0 for some p > 1. Equivalently, we have

V(I) = V(
√
I), where

√
I = {f ∈ R | fp ∈ I, p > 0} is the radical ideal of I. Hilbert’s

Nullstellensatz is a foundational theorem linking algebraic (ideals) and geometric (varieties)

structures,

I(V(I)) =
√
I , (2.11)

which captures exactly the fact that V(I) may forget some information about I.

An affine variety can be decomposed into irreducible components. That is, a variety X can be

written as a unique decomposition of irreducible affine varieties,

X = X1 ∪X2 ∪ . . . ∪Xs , (2.12)

such that Xi ̸⊂ Xj for all i ̸= j. If X is an irreducible variety, then I(X) ⊆ R must be prime.

A prime ideal p ⊆ R is defined such that if the product gh ∈ p, for some g, h ∈ R, then either

g ∈ p or h ∈ p. If I(X) were not prime, then we could pick two elements f1, f2 ̸∈ I(X) with
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X ⊆ V(f1f2) = V(f1) ∪V(f2), and we would have components X ∩V(fi) ⊊ X, thus X would

be reducible. The prime spectrum is simply denoted as SpecR. Note that every maximal ideal

is also a prime ideal, SpecmR ⊆ SpecR, but SpecR includes a much larger structure and is

in one-to-one correspondence with irreducible affine varieties of V(0) = kn (e.g., algebraic

curves).

It is possible to obtain a unique decomposition of ideals, revealing their constituent components

in a manner analogous to prime factorization. A primary ideal Q is very similar to a prime

ideal, but relaxes the defining condition of prime ideals as follows: if the product gh ∈ Q, then

either g ∈ Q or hp ∈ Q for some p ∈ N. Prime ideals have p = 1. Any ideal I of a noetherian

ring R has a minimal primary decomposition [66]

I = Q1 ∩Q2 ∩ . . . ∩Qs (2.13)

into an intersection of primary ideals Qi, such that the decomposition is irredundant, i.e.,⋂
j ̸=iQj ̸⊂ Qi. From the definition, the radicals pi =

√
Qi are prime ideals (associated primes

of I). While a minimal primary decomposition might not be unique, the radicals of the

primaries pi are all different and uniquely determined by I. Since eq. (2.13) implies

V(I) = V(p1) ∪ . . . ∪ V(ps) , (2.14)

where V(pi) are irreducible components, the primary decomposition is an extremely powerful

algebraic algorithm that allows us to identify irreducible varieties from a set of equations I.

In the affine world, we can summarize the bijections provided by algebraic geometry as follows

(k algebraic closed):

Algebra, ring R Geometry, affine space X

radical ideals, I =
√
I ⊂ R varieties V(I) ⊆ X

prime ideals, p ∈ SpecR irreducible varieties V(p) ⊆ X
maximal ideals, ma ∈ SpecmR points a ∈ X

2.1.2 Toric varieties, cones and fans

A toric variety [68] is an irreducible affine variety V containing the algebraic torus T ∼= (C×)n

as a Zariski open subset, T ⊆ V , such that the action on itself extends to all V by an algebraic

group action T × V −→ V .

The torus T inherits an algebraic group structure from (C×)n and has a latticeM of characters

χm(t) =
∏n

i=1 t
mi
i ∈ Hom(T,C×), which is a free abelian group of rank r, isomorphic to

Zn. Similarly, the dual lattice N = HomZ(M,Z), is the lattice of co-characters λu(t) =

(tu1 , . . . , tun), u ∈ N . The group isomorphism to the torus T determines a basis in M and
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dual basis in N , such that we have the natural paring

⟨– , –⟩ :M ×N −→ HomZ(Z,Z)
∼=−→ Z

(m,u) 7−→ χm ◦ λu 7−→ m · u
(2.15)

The latter lattice defines one-parameter subgroups of the toric variety torus algebraic group

T = TN , where

TN = N ⊗Z C× (2.16)

The previous equation means that the torus is just the union of all the images {λu(t) | t ∈ C×},
for all u ∈ N . The union of the Zariski closure of the one-parameter subgroups images

generate the Zariski closure of TN , i.e., the full toric variety.

We can use different combinatorial approaches to construct affine toric varieties. Let A be a

fixed subset of elements {m1, . . . ,ms} ⊆M . Then, we can define a monomial map,

ΦA : T −→ Cs t 7−→ (χm1(t), . . . , χms(t)) . (2.17)

The Zariski closure of its image is a toric variety YA = imΦA ⊆ Cs whose dense torus has the

character lattice ZA = {
∑s

i=1 aimi | ai ∈ Z} ⊆ M . The dimension of the variety is simply

dimYA = rank(ZA ).

An algebraic approach is to construct the vanishing ideal I(XA ) ⊂ C[x1, . . . , xs] defining
the coordinate ring C[XA ]. Given the monomial map ΦA we can induce4 the map Φ̂A :

Zs −→ M , ℓ 7−→
∑s

i=1 ℓimi. For α, β ∈ Ns such that α − β ∈ ker Φ̂A , then we have that

χ
∑s

i=1 αimi(t)− χ
∑s

i=1 βimi(t) = 0. We can define the toric ideal

IA = ⟨xα − xβ |α, β ∈ Ns, α− β ∈ ker(A)⟩ , xα =
s∏

i=1

(xi)
αi , (2.18)

for a general matrix A. Therefore, the vanishing ideal defining the affine toric variety is

I(XA ) = I
Φ̂A

. By assigning a generator xi = χmi to each element in mi ∈ A , the linear

relations between elements of A are captured by the multiplicative relations (binomials) in

the toric ideal.

Another approach is to use the affine semigroup S = NA generated by the set A ⊆M , for

which its ring is given by

C[S] =
⊕
m∈S

Cχm = C[χm1 , . . . , χms ] (2.19)

4We can view ΦA as a group homomorphism of tori (C×)n −→ (C×)s and noting that moving to character
lattices Hom(– ,C×) is a contravariant operation (functor).
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with the expected multiplication rule χmχm′
= χm+m′

. We can verify that C[S] indeed
matches the coordinate ring C[XA ] via the pullback5 of the monomial map

Φ∗
A : C[x1, . . . , xs] −→ C[M ] xi 7−→ χmi . (2.20)

Note that for a basis e1, . . . , en ∈ M , as a semigroup the lattice M is generated by

{±e1, . . . ,±en}, which implies C[M ] is given by Laurent polynomials in C[t±1 , . . . , t±n ]. From
the isomorphism theorem, C[x1, . . . , xs]/I(XA ) = C[x1, . . . , xs]

/
ker(Φ∗

A ) ∼= im(Φ∗
A ) = C[S].

Its maximal spectrum recovers the affine toric variety, XA = SpecmC[S].

Example 2.2. The conifold V(xy − zw) ⊂ C4 is an affine toric variety and is generated by

the elements A = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1,−1)} of a rank 3 lattice, generating the

semigroup S = NA . The semigroup algebra generates the coordinate ring

C[S] = C[t1, t2, t3, t1t2(t3)−1] = C[x, y, z, w]/⟨xy − zw⟩ . (2.21)

Note that ker(Φ̂A ) = spanZ{(1, 1,−1,−1)} describes the monomial relations in the toric ideal

(2.18) of conifold.

Affine toric varieties are closely interconnected with the discrete geometry of rational convex

polyhedral cones. A given affine semigroup Sσ is generated by a finite number of elements

and spans a region in M , which can be described by a cone σ in NR = N ⊗Z R. A cone

σ ⊆ NR ∼= Rn can be further characterized be additional properties:

• σ is strongly convex ⇐⇒ σ ∩ (−σ) = {0} ⇐⇒ dimσ∨ = n

• σ is rational ⇐⇒ elements in the finite set S belong to the lattice N (instead of NR)

A strongly convex rational cone is generated by a finite set S,

σ = Cone(S) =
{∑

u∈S
λuu

∣∣∣λu ∈ R≥0

}
⊆ NR . (2.22)

Also set Cone(∅) = {0}. Furthermore, a strongly convex rational polyhedral cone σ can be

minimally described by its rays. A ray ρ is a semi-infinite edge of the cone, and since ρ is

itself a 1-dimensional rational cone, there exists a primitive generator uρ ∈ ρ ∩N such that

ρ = Cone(uρ). The set of rays forms the minimal generators of the cone σ.

The construction of Sσ uses the dual cone of a polyhedral cone σ ⊆ NR, defined as

σ∨ = {m ∈MR | ⟨m,u⟩ ≥ 0, ∀u ∈ σ} ⊆MR . (2.23)

5Now going to HomC-Alg(– ,C).
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The dual cone is described by the intersection of half-spaces with normal vectors in σ. Since

(σ∨)∨ = σ, a similar description exists where face normals are mapped to generators of σ∨. If

{m1, . . . ,ms} are the rays generators of the dual cone σ∨, then it is easy to check that

σ = H+
m1
∩ · · · ∩H+

ms
, (2.24)

where H+
m = {u ∈ NR | ⟨m,u⟩ ≥ 0} are closed supporting half-spaces of the polyhedral cone σ.

The boundary of the half-spaces, Hm = {u ∈ NR | ⟨m,u⟩ = 0} defines a supporting hyperplane,

where m is the (inward) normal of the hyperplane. A face of the polyhedral cone σ is a

τ = Hm ∩ σ for some m ∈ σ∨, written τ ⪯ σ. We denote the set of n-dimensional faces of a

cone as σ(n) = {τ ⪯ σ | dim τ = n}. The cone σ is a face of itself, σ ⪯ σ, for element m = 0.

Faces τ ≺ σ are called proper, meaning τ ̸= σ.

We can construct an affine semigroup from a rational polyhedral cone σ ⊆ NR by

Sσ = σ∨ ∩M , (2.25)

which is finitely generated. Then, Xσ = SpecmC[Sσ] is an affine toric variety as defined

above. In general, the semigroup generators do not match the cone generators of σ∨. The

unique minimal generating set of Sσ is called the Hilbert basis H , which is composed of

non-zero irreducible elements that generate Sσ. These are elements m ∈ Sσ \ {0} such that if

m = m1 +m2, for m1,m2 ∈ Sσ, then either m1 = 0 or m2 = 0.

Let Xσ = SpecmC[Sσ], for a strongly convex rational polyhedral cone σ = Cone(S), with

{uρ | ρ ∈ σ(1)} being the primitive ray generators of σ:

• Xσ is smooth ⇐⇒ σ is smooth/regular ⇐⇒ {uρ}ρ forms part of the Z-basis of N .

• Xσ is Q-factorial, i.e. a finite quotient of a smooth affine variety (is an orbifold) ⇐⇒ σ

is simplicial ⇐⇒ {uρ}ρ are linearly independent over R.

• Xσ is Q-Gorenstein ⇐⇒ there exists m ∈MQ such that ⟨m,uρ⟩ = 1 for all uρ, ρ ∈ σ(1).
The minimal integer q > 0 such that qm ∈M is the Gorenstein degree of Xσ.

At this point, we have been discussing affine varieties generated by a single cone. However, we

can construct abstract toric varieties by gluing together affine toric pieces Xσ. A fan Σ ⊆ NR

is a finite collection of cones such that:

• All σ ∈ Σ are strongly convex rational polyhedral cones.

• Every face τ of a cone σ ∈ Σ, τ ⪯ σ, is also a cone in the fan, τ ∈ Σ.

• Any two σ1, σ2 ∈ Σ intersect at a common face τ = σ1 ∩ σ2 ∈ Σ.
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We denote by Σ(n) the collection of n-dimensional cones (note that 0 is included as the

0-dimensional cone). A normal toric variety XΣ for a given fan Σ is still toric in the same

sense as above, i.e. contains a torus TN with a toric action that extends itself to the algebraic

action TN ×XΣ −→ XΣ.

Fixing a fan Σ ⊆ NR, we can explain how it encodes the gluing data for the toric variety XΣ.

A face τ ⪯ σ of a cone σ ∈ Σ can be written as τ = σ ∩Hm for m ∈M . Firstly, any face of σ

defines an open affine subset of Uσ, given that the inclusion Sτ ←−↩ Sσ induces the open injection

of Uτ ↪−→ Uσ. Restricting to the image, we also have a bijection6 Uτ
∼=−→ (Uσ)χm for the normal

m ∈M , where the open subset (Uσ)χm is a localization defined above in eq. (2.10). Secondly,

for each pair of cones σ1, σ2 ∈ Σ with a common face τ = σ1 ∩ σ2 = σ1 ∩ Hm = σ2 ∩ Hm,

where m ∈ σ∨1 ∩ (−σ2)∨ ∩M , there exists an isomorphism

Uσ1 ⊃ (Uσ1)χm ∼= Uτ
∼= (Uσ2)χ−m ⊂ Uσ2 . (2.26)

The rational transition functions gσ2,σ1 : (Uσ1)χm (Uσ2)χ−m ,7 as well as the affine patches

{Uσ}σ∈Σ where these are defined, constitute the gluing data of XΣ.

Example 2.3. Let’s describe explicitly how the abstract theory introduced above is realized

for the P2 fan, defined in N = Z2, shown in fig. 2.1. This fan contains minimal ray generators

Figure 2.1: Fan of P2.

u0 = (1, 0), u1 = (0, 1), u2 = (−1,−1), where we take the standard basis in N to be e1 = (1, 0)

and e2 = (0, 1). The maximal cones of fan have duals:

σ∨0 = Cone
(
(1, 0), (0, 1)

)
σ∨1 = Cone

(
(−1, 0), (−1, 1)

)
σ∨2 = Cone

(
(1,−1), (0,−1)

) (2.27)

6For τ = σ ∩Hm, we have Sτ = Sσ + N(−m), which implies that C[Sτ ] = C[Sσ]χm matches the localization
of C[Sσ] by the monomial χm. The bijection follows from taking Specm(–).

7The arrow is often used for birational map, i.e., isomorphisms that are well-defined rational maps in
both directions.
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Let’s focus on the rational transition function between Uσ0 and Uσ1 . The intersection of

these affine patches is associated to the common ray τ01 = Cone
(
(0, 1)

)
, with dual cone

τ∨01 = Cone
(
±(1, 0), (0, 1)

)
. Choosing m = (1, 0) ∈ τ∨01 ∩ σ∨0 ∩ (−σ1)∨, we note that

(Uσ0)χm = Specm
(
C[χ(1,0) = t0, χ

(0,1) = s0]t0

)
= {(t0, s0) ∈ C2 | t0 ̸= 0} ,

(Uσ1)χ−m = Specm
(
C[χ(−1,0) = t1, χ

(−1,1) = s1]t1

)
= {(t1, s1) ∈ C2 | t1 ̸= 0} ,

(2.28)

where we assign distinct pairs of variables (ti, si) to the minimal generators of the affine

patches Uσi . We can derive the birational relation between the variables from the monomial

representation, for e.g., s1 = χ(−1,1) = χ(−1,0)χ(0,1) = s0t
−1
0 . The transition function is

g10 : (Uσ0)χm (Uσ1)χ−m

(t0, s0) 7−→ (t−1
0 , s0t

−1
0 )

(2.29)

which is well-defined for χm = t0 ̸= 0. We recover the standard patches of P2 in terms of

homogeneous coordinates (x0, x1, x2), by sending t0 7−→ x1/x0 and s0 7−→ x2/x0, where these

can be written as Uσi = {[x0 : x1 : x2] |xi ̸= 0} ∼= C2.

Let XΣ be a normal toric variety defined by a fan Σ ⊆ NR. There is a dictionary between

properties of a toric variety and its fan:

• XΣ is a smooth variety ⇐⇒ Σ is smooth ⇐⇒ every cone σ ∈ Σ is smooth (regular).

• XΣ is an orbifold ⇐⇒ Σ is simplicial ⇐⇒ every cone σ ∈ Σ is simplicial.

• XΣ is compact in the classical topology ⇐⇒ Σ is complete ⇐⇒ the fan is supported in

the entire NR, i.e. supp(Σ) =
⋃

σ∈Σ σ = NR.

2.1.3 Homogeneous coordinate ring of a toric variety

We introduced one of the ways we can build a toric variety from a fan Σ, by gluing multiple

affine open patches Uσ, for σ ∈ Σ. Instead, a more physical and convenient construction due

to Cox [68] is to build toric varieties as the total homogeneous coordinate space Cs minus a

base locus ZΣ, quotiented by a reductive algebraic group G. Fix n = dimXΣ = rank(N).

A concept at the heart of this quotient is the idea of divisors, which capture information

about the zeroes and poles of rational functions on a variety. A Weil divisor D is an element

which can be written as a formal sum D =
∑

i aiDi ∈ Div(X), with coefficients ai ∈ Z.
The generators of the free abelian group Div(X) are prime divisors Di, which are similar to

codimension 1 hypersurfaces in the sense that locally they can be defined as the zero locus

of a single equation.8 Furthermore, given an invertible rational function f ∈ C(X)× we can

8For an affine variety this is true globally, Di = V(pi) for some prime pi ⊂ C[X]. In general, for each prime
divisor there is a local ring OX,Di with a unique (prime) maximal ideal that describes the local behavior.
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associate to it a divisor

div(f) =
∑
i

ordDi(f)Di , (2.30)

where ordDi : C(X)× −→ Z defines the order9 of the zeros/poles in the subvarieties Di.

Elements written as in (2.30) are referred to as principal divisors, which define a closed

subgroup Div0(X) ⊆ Div(X).

In particular, for a toric variety XΣ torus-invariant prime divisors are easy to identify. The

cone-orbit correspondence tells us that there exists a bijection between cones σ ∈ Σ and

TN -invariant orbits O(σ) ⊆ XΣ. The closure of an orbit V (τ) = O(τ) =
⋃

σ⪰τ O(σ) is a toric

subvariety with torus TN(τ) = O(τ) as an open subset and with dimV (τ) = dimXΣ − dim τ .

Thus, rays of the fan ρ ∈ Σ(1) give rise to codimension 1 orbits, whose closure is a TN -invariant

prime divisor Dρ = V (ρ). These form the basis of the toric divisor group

DivTN
(XΣ) =

⊕
ρ∈Σ(1)

ZDρ
∼= ZΣ(1) (2.31)

Note that not all Weil divisors are principal. This mismatch is captured in the divisor class

group Cl(X) = Div(X)/Div0(X). The quotient is defined by an equivalence relation, such

that two divisors D,E ∈ Div(X) are equivalent if and only if there exists a rational function

f in X such that D ∼ E ⇐⇒ D − E = div(f) ∈ Div0(X).

The divisor class group is usually not easy to calculate. However, in the case of toric varieties

Cl(XΣ) pops out from the combinatorial structure of the fan Σ. Consider the ray map,

r : DivTN
(XΣ) −→ N , Dρ 7−→ uρ , (2.32)

which maps toric divisors (standard basis elements of ZΣ(1)) to the minimal generator of the

rays ρ ∈ Σ(1). Going to the dual lattice, we can obtain the exact sequence

0 M
⊕

ρ ZDρ ClTN
(XΣ) 0r∗ (2.33)

where the dual map is defined by r∗(m) = div(χm),

div(χm) =
∑

ρ∈Σ(1)

⟨m,uρ⟩Dρ . (2.34)

9For example, take the divisor D = {0} ⊂ C. Given a rational f ∈ C(x)× we can write

f(x) = xk h(x)

g(x)
g, h ∈ C[x], g(0) ̸= 0, h(0) ̸= 0 ,

where ordD(f) = k ∈ Z. The divisor D is associated to the prime ideal ⟨x⟩ ⊂ C[x].
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The sequence is exact since the monomials χm are precisely the rational functions on TN ⊂ XΣ,

invariant under the torus action. The character lattice M is one-to-one with the TN -invariant

principal divisors, which are mapped to the zero class [div(χm)] = 0 in the class group. This

is the divisor sequence that defines the quotient ClTN
(XΣ) = coker(r∗) = ZΣ(1) / im(r∗).

Acting with the contravariant Hom(– ,C×), we obtain the group sequence

1 TN (C×)Σ(1) G 1
ϕ

(2.35)

with ϕ(t) =
(∏

ρ t
⟨e∗1,uρ⟩
ρ , . . . ,

∏
ρ t

⟨e∗n,uρ⟩
ρ

)
∈ TN , where e∗1, . . . , e

∗
n are basis elements of M . In

the same way M is the character lattice of the torus group TN , we have a reductive algebraic

group G = HomZ(ClTN
(XΣ),C×) that has the divisor class group as its character group.

Then, the kernel of ϕ defines,

G =
{
t ∈ (C×)Σ(1)

∣∣∣∏
ρ
t
⟨m,uρ⟩
ρ = 1 , ∀m ∈M

}
, (2.36)

which acts on (C×)Σ(1) via coordinate multiplication. From the sequence, we see that the

torus TN is the group quotient (C×)Σ(1) /G. Since TN is itself isomorphic to a torus group,

then G ∼= (C×)ℓ × Γ, with ℓ = |Σ(1)| − rank(N), and where Γ is a finite abelian group.

A Weyl divisor D on a normal variety X is a Cartier divisor if it is locally principal. For

a Cartier divisor, D there exists a finite open cover {Uα}α∈I such that D|Uα
= div(fα)|Uα

,

for all α ∈ I. We say that {(Uα, fα)}α∈I is its local data. Similar to the class group Cl(X),

we can define the Picard group as Pic(X) = CDiv(X)/Div0(X). In general, global sections

defined on a Weyl divisor are

H0(X,OX(D)) = {f ∈ C(X)× | div(f) +D ≥ 0} ∪ {0} . (2.37)

Thanks to the locality data of the Cartier divisors we are allowed to define rational transition

functions sαβ = fα/fβ, regular in Uα ∩ Uβ, transforming sections defined on Uβ to sections

defined on Uα. Intuitively, (2.37) implies that sections f ∈ Γ(X,OX(D)) can have poles

which are, in the worst case scenario, the same order as zeros defining D. Since the transition

functions obey,

sαβsβα = 1 sαβsβγsγα = 1 , (2.38)

then OX(D) is a line bundle.10 A sum of two divisors defines a line bundle which is the tensor

product of the respective line bundles, i.e. OX(D + E) = OX(D) ⊗ OX(E). Isomorphism

between bundles OX(D) ∼= OX(E) comes from linear equivalence between divisors D ∼ E.

Thus, the Picard group is also the group of isomorphism classes of line bundles on X.

10In the language of sheaves, we say OX(D) is invertible.
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We have seen how the torus TN ⊂ XΣ arises from the larger (C×)Σ(1) ⊂ CΣ(1). Note that

at this point G and CΣ(1) only depend on the rays of the fan. To construct the full toric

variety XΣ we need an object that encodes the information of all cones in the Σ. Let the total

coordinate (Cox) ring be

R = C[xρ | ρ ∈ Σ(1)] , (2.39)

where CΣ(1) = Specm(R) and xρ is a homogeneous coordinate associated to each toric divisor

Dρ. In this picture, the toric prime divisors are codimension 1 subvarieties defined by

Dρ = VXΣ
(xρ). It is important to note that xρ ∈ R is not a rational function of XΣ. By

definition, a monomial xa =
∏

ρ(xρ)
aρ defines a principal divisor iff it has zero degree, i.e.,

deg(xa) = [
∑

ρ aρDρ] ∈ Cl(XΣ) maps to the zero class.

Then, we can define the irrelevant ideal

IrrΣ =

〈∏
ρ∈Σ(1)\σ(1)

xρ

∣∣∣∣σ ∈ Σ

〉
. (2.40)

The minimal generators of IrrΣ are obtained by only considering the monomials in (2.40) for

the maximal cones of Σ. The exceptional set is simply ZΣ = V(IrrΣ). From here, it is possible

to show that

XΣ =
(
CΣ(1) \ V(IrrΣ)

)
//G . (2.41)

This effectively constitutes an affine Geometric Invariant Theory (GIT) [68] quotient with

the projection π : CΣ(1) \ ZΣ −→ XΣ. In this construction, two points map to the same class

π(x) = π(y) if and only if the closure of their G-orbits intersect, G · x ∩ G · y ̸= ∅.11 In

practice, the stronger condition that x and y belong to the same closed G-orbit holds for

almost all points x, y ∈ CΣ(1) \ ZΣ that map to the same point in XΣ.

Example 2.4. Let N = Z2 and the fan Σ contain the rays generators u0 = (2,−1), u1 =

(−1, 2), u2 = (−1,−1), splitting NR into 3 maximal cones (see fig. 2.1). The irrelevant ideal

for this fan is simply IrrΣ = ⟨x0, x1, x2⟩, which removes the origin from the total space C3 in

the quotient construction. By representing the ray map as the linear action
[

2 −1 −1
−1 2 −1

]
, the

sequence (2.33) simplifies to

0 Z2 Z3 Z1 0

[ 2 −1
−1 2
−1 −1

]
[ 1 1 1 ]

(2.42)

The cokernel of the dual ray map tells us that there exists a C× acting on C3 \ {0}, which
wrongly points to the quotient being P2. However, XΣ does not have smooth C2 as the affine

11This condition is known as the categorical quotient condition. The geometric quotient additionally requires
all G-orbits of CΣ(1) \ ZΣ to be closed, i.e. π(x) = π(y) ⇔ x and y lie in the same closed G-orbit.
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Figure 2.2: Fan of P2 /Z3 (0, 1, 2), with lattice N = Z2.

patches like P2 (see fig. 2.1). A quick computation tells us that the Hilbert basis of σ∨0 ∩M is

H = {(2, 1), (1, 1), (1, 2)}. By the symmetry of the fan, we can use this basis to derive that

all maximal cones generate

Uσi = Specm
(
C[x, y, z]

/
⟨xz − y3⟩

)
= VC3(xz − y3) . (2.43)

These patches are orbifolds with a singular fixed point of type A2, which implies that the

group has torsion Γ ⊂ G. This torsion can be interpreted as follows. Consider the usual fan

Figure 2.3: Fan of P2 /Z3 (0, 1, 2), with lattice N ′ = {(a/3, b/3) | a+ b ≡ 0 mod 3}.

for P2 in fig. 2.1, with standard lattice N = Z2. By keeping the fan fixed but changing the

lattice to N ′ ⊃ N (see fig. 2.3), the quotient Γ = N ′ /N defines the isomorphism between the

two affine patches

C[σ∨i ∩M ′] = C[σ∨i ∩M ]Γ ⇐⇒ Uσi,N ′ = Uσi,N /Γ . (2.44)

This relation allows us to derive that Uσi,N ′ = C2 /Z3, with action ζ · (s, t) = (ζs, ζ−1t), from

the simpler patches of P2, where Uσi,N = C2. In particular, the ring of Z3-invariants under

this action simplifies to C[s, t]Z3 = C[s3, st, t3], matching the result from (2.43).
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Due to the presence of affine orbifold patches, the group G in the quotient description also

contains a finite abelian component. From eq. (2.36),

(t1)
2

t2t3
= 1 ,

(t2)
2

t1t3
= 1 =⇒

(
t2
t1

)3

= 1 =⇒ t2 = ζt1 , ζ ∈ Z3 (2.45)

which leads to G = {(t, ζt, ζ2t) | t ∈ C×, ζ ∈ Z3}. The resulting toric variety XΣ is usually

denoted as P2 /Z3 (0, 1, 2), where the latter triplet of integers is the charges under which the

homogeneous coordinates transform.12

In general, an Ak−1-type singularity [68] appears as the singular fixed point in the quotient

VC3(xz − yk) = C2 /Zk , (2.46)

with action given by ζ · (z0, z1) = (ζz0, ζ
k−1z1). Such a singularity is often associated with a

cone σ = Cone((1, 0), (1, k)). These fall in the larger class of singularities (rational double

points) lying in orbifolds C2 /Γ, where Γ ⊂ SU(2) is a finite subgroup given by the ADE

classification. The naming convention comes from the bijection with the simply laced Dynkin

diagrams of families Ak, Dk and E6, E7, E8. Finite groups of DE-type are nonabelian,

therefore such singular points do not appear in the toric context.

2.1.4 Calabi-Yau affine cones, toric diagrams and crepant resolutions

In string theory, the study of Calabi-Yau (CY) manifolds are particularly important [69, 70].

Toric geometry allows us to define and generate a large class of noncompact CY whose

geometric properties are encoded by combinatorial objects. The toric variety of a Σ is an

affine CY n-fold if and only if the primitive vectors generating the one-dimensional cones

{uρ | ρ ∈ Σ(1)} all lie in the same affine hyperplane, i.e., exists a m ∈M such that ⟨m,uρ⟩ = 1

for all ρ ∈ Σ(1). We say such a toric variety XΣ is Gorenstein, as the previous condition

implies the cones σ ∈ Σ are Q-Gorenstein of degree 1. Noncompactness is an immediate

consequence of a noncomplete fan, since the primitive generators do not span NR = Rn.

Since the generators are coplanar a convenient way to describe a toric CY 3-fold is by a toric

diagram ∆, a convex lattice polygon usually placed in the standard 2-dimensional lattice Z2.

We will denote these affine toric CY cones as Y∆. From a toric diagram we can generate a fan

with a single maximal convex polyhedron cone σ∆ by placing the vertices of the toric diagram

at height 1 and spanning the cone from the origin,

σ∆ = Cone
(
(v, 1)

∣∣ v ∈ ∆
)
⊂ NR = R3 . (2.47)

12Following notation in [55].
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Similarly, the toric diagram of a Gorenstein Xσ∆ can be obtained by projecting the cone slice

σ∆ ∩Hm = Conv
(
{uρ | ρ ∈ σ∆(1)}

)
down to the 2-dimensional lattice.

Particularly, we will focus mostly on Y∆ which are described by reflexive toric diagrams.

These polytopes possess a unique interior lattice point, which we will always assume that is

placed at the origin. Then, a relevant property of reflexive polytopes is that its polar dual

∆◦ = {m ∈ Z2 | ⟨m, v⟩ ≥ −1 , ∀v ∈ ∆} (2.48)

is itself reflexive. Note this operation is an involution, (∆◦)◦ = ∆, therefore reflexive polytopes

come in pairs (∆,∆◦). In section 3.6, we will see how the two associated geometries are

related via Mirror Symmetry in the context of quiver gauge theory [69]. Furthermore, from

the definition (2.23) it is possible to show that generators of the semigroup Sσ are in one-

to-one with the points of the polar dual. The Hilbert basis is precisely the lattice points

H = ∆◦ × {1} ⊂ Z3, which makes reflexive Gorenstein cones such as (2.47) simpler to work

with.

A 3-dimensional CY Y∆ from a reflexive toric diagram can be thought as the “complex cone”

over 2-dimensional Gorenstein Fano variety XΣ(∆), where the 2-dimensional fan is constructed

as follows:13

• A vertex v of the polytope corresponds to a ray of the fan ρv = Cone(v) ∈ Σ(∆)(1).

• A facet F of the polytope defines a maximal cone σF = Cone(u |u ∈ F) ∈ Σ(∆)(2),

taking the apex of these cones to align with the interior point of the polytope.

The fan subdivision is self-evident by comparing the affine subvarieties from the CY 3-fold Y∆
and the affine patches of XΣ(∆). Let N be a rank 3 lattice and τ = Cone((u, 1) |u ∈ F) be

the codimension 1 cone facet of the affine CY cone σ∆ ≻ τ . There exists a choice of a rank-2

lattice Nτ ⊂ N such that Nτ is the minimal saturated sublattice containing the generators

of τ ⊂ (Nτ )R. Furthermore, we can obtain the orthogonal lattice to τ as the abelian group

quotient N(τ) = N /Nτ .
14 This choice, N = Nτ ⊕N(τ), induces an algebra decomposition

C[τ∨ ∩M ] = C[τ∨ ∩Mτ ]⊗ C[M(τ)] =⇒ Uτ,N = Uτ,Nτ × C× ⊂ Y∆ , (2.49)

where M(τ) is the dual lattice to N(τ), and Uτ,N2 = UσF
is precisely the affine patch of XΣ(∆)

for the cone span of the polytope facet F ⊂ ∆. Note that M(τ) is a torsionless free abelian

group of rank 1 (∼= Z), with affine spectrum Specm(C[M(τ)]) = Specm(C[t±]) = C×.

Example 2.5. Let ∆ be the toric diagram in fig. 2.4a. Above, from the generators of the P2,

13It is important to note that the toric diagram lives in the cocharacter lattice N , so Σ(∆) is not the normal
fan of ∆.

14A lattice is the same thing as a finitely generated free abelian group.
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(a) C3
/
Z3 (1, 1, 1) (b) C3 /(Z3 × Z3) (1, 0, 2)(0, 1, 2)

Figure 2.4: Reflexive toric diagrams. Black dots are vertices, red is for the origin (internal).
Yellow dots are non-vertex points in facets revealing the presence of an An-type singularities.

we derived that the group action elements obey ti = tj = t, for all 1 ≤ i, j ≤ 3. By placing

the generators in a hyperplane at height 1, we have the additional condition,

t1t2t3 = 1 =⇒ t3 = 1 . (2.50)

This restricts C× the action of G = {(ζ, ζ, ζ) | ζ ∈ Z3} on the total space C3. Note that in the

quotient construction of the affine CY cone the origin is not removed. While P2 is a smooth

toric variety, its complex cone C3 /Z3 (1, 1, 1) is an affine variety with an orbifold singularity

at the origin. The toric ideal I(Y∆) = IA of the singular CY 3-fold is

I(Y∆) =
〈
z5z9 − z7z8, z5z6 − z29 , z4z9 − z6z8, z4z7 − z29 , z4z5 − z8z9, z3z9 − z6z7,

z3z8 − z29 , z3z5 − z7z9, z3z4 − z6z9, z2z9 − z4z8, z2z7 − z8z9, z2z6 − z24 ,

z2z5 − z28 , z2z3 − z6z8, z1z9 − z5z7, z1z8 − z25 , z1z6 − z7z9, z1z4 − z7z8,

z1z3 − z27 , z1z2 − z5z8, z0z9 − z3z6, z0z8 − z6z9, z0z7 − z23 , z0z5 − z6z7,

z0z4 − z26 , z0z2 − z4z6, z0z1 − z3z7
〉
,

(2.51)

with generators of the base ring matching the lattice points of polar dual polytope 2.4b,

A =


z0 z1 z2 z3 z4 z5 z6 z7 z8 z9

2 −1 −1 1 0 1 1 0 −1 0

−1 2 −1 0 −1 1 −1 1 0 0

1 1 1 1 1 1 1 1 1 1

 . (2.52)

With some patience, we can write down all the 27 relations above from linear relations

between the generators (columns in (2.52)). The equations define the image under the

Veronese embedding XΣ(∆) ↪−→ P9, where (z0, . . . , z9) are the homogeneous coordinates of P9.

The affine 3-fold cone Y∆ follows from an embedding in C10, obeying the same relations. A

similar story occurs starting from the toric diagram in fig. 2.4b, where it describes the CY 3-fold

Y∆ = C3 /(Z3 × Z3) (1, 0, 2)(0, 1, 2), whereas the Fano toric variety is XΣ(∆) = P2 /Z3 (0, 1, 2),

with the fan in fig. 2.2.
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A toric surface XΣ is Fano if its anticanonical divisor

−KXΣ
=
∑

ρ∈Σ(1)

Dρ (2.53)

is an ample Q-Cartier divisor, i.e. there exists an integer ℓ > 0 such that ℓKXΣ
is Cartier.

Alternatively, a simpler way to check that a divisor is ample using combinatorics of polytopes.

Following directly from (2.37), global sections of a toric divisor D =
∑

ρ aρDρ,

H0(XΣ,OXΣ
(D)) =

⊕
m∈PD∩M

Cχm , (2.54)

can be described as combinations of monomials at integral points of the divisor polyhedron

PD = {m ∈MR | ⟨m,uρ⟩+ aρ ≥ 0 , ∀ρ ∈ Σ(1)} . (2.55)

The divisor D is ample if there exists a Gorenstein index ℓ such that ℓD is very ample, i.e.

the toric variety generated by the monomial basis A = PℓD ∩M matches the original XΣ (see

eq. (2.20)). The smallest such index ℓ is called the Gorenstein index of XΣ. Toric varieties

XΣ(∆) from reflexive diagrams ∆ are precisely the case where the toric divisors of the Σ(∆)

define a very ample (ℓ = 1) anticanonical divisor whose polytope matches the polar dual of

the toric diagram, P−KΣ(∆)
∩M = ∆◦.

Listing the possible Fano toric surfaces corresponds to classifying all reflexive toric diagrams

[71, 72]. Shifting the polytope or applying a Zn lattice automorphisms does change the

resulting Fano variety. In 2 dimensions, the classification of all GL(2,Z)-inequivalent yielded a

total of 16 reflexive polytope, listed in figs. 1.4 and 2.4 [55]. There is a slight abuse of notation,

in which dPn refers simultaneously to the del Pezzo surface of degree 9 − n and the affine

Calabi–Yau from taking the complex cone over it. The del Pezzo surfaces dPn for n ≤ 8 are

blow-ups of dP0 = P2 at n generic points. For n ≤ 3, we can translate the blow-ups to fixed

points of toric action. As such, dPn surfaces for 0 ≤ n ≤ 3, together with Hirzebruch surface

F0 = P1 × P1 make up the 5 smooth toric Fano varieties. The other 11 Fano varieties XΣ(∆)

containing non-isolated A-type singularities are abelian orbifolds or so-called Pseudo del Pezzo

surfaces PdPn. Similarly, we can obtain the latter singular geometries from blow-ups on

smooth Fano varieties at specific points.

As all CY 3-folds we discussed here (and even some Fano toric surfaces defining them) are

singular, we will need to resort to the concept of smoothing of the singular locus Xsing. A

resolution of a variety X is the tuple (ϕ, X̃),

ϕ : X̃ −→ X , (2.56)
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such that the restriction of ϕ to the complement of the exceptional locus Exc(ϕ) = ϕ−1(Xsing)

defines an isomorphism X̃\ϕ−1(Xsing) ∼= X\Xsing. In the case of toric singularities, resolutions

can be determined in terms of a fan refinement Σ −→ Σ̃. This is a process of subdividing the

cones of a fan into “smaller” cones, in a way that the resulting collection still forms a fan.

If all cones in a refined Σ̃ are smooth we refer to (ϕ,XΣ̃) as a full resolution, otherwise it is

aptly named partial.

In the context of string theory,15 the resolutions ϕ : YΣ̃ −→ Y∆ of CY 3-folds must be crepant.

Resolutions may introduce toric divisors associated with new rays from Σ̃(1) ⊇ σ∆(1), thereby
generally breaking the Gorenstein condition. Given the unique normal m ∈M that defines the

Gorenstein hyperplane of σ∆, a resolution is crepant if and only if ⟨m,uρ⟩ = 1 for all ρ ∈ Σ̃(1).

Thus, to ensure the CY condition in the resolved geometry YΣ̃ the new rays ρ ∈ Σ̃(1) \ σ∆(1)
must originate from non-vertex points of the toric diagram ∆. We can refine σ∆ −→ Σ̃ by

introducing additional segments between rays, as exemplified in fig. 2.5. Furthermore, by

intersecting Σ̃ with the Gorenstein hyperplane, it becomes apparent that we can identify all

possible full resolutions with the fine triangulations T∆
16 of the toric diagram.

Figure 2.5: A full resolution σ∆ −→ Σ̃ of the cone σ∆ = Cone(∆ × {1}) describing the
singular Calabi-Yau 3-fold C3 /(Z3 × Z3) (1, 0, 2)(0, 1, 2) to a smooth fan Σ̃.

From the structure of the refined fan Σ̃ it is possible to obtain the geometry of the exceptional

locus. Under the resolution ϕ : YΣ̃ −→ Y∆ the irreducible components of the exceptional locus

are given by the orbit closures

Exc(ϕ) = V (σ̃1) ∪ · · · ∪ V (σ̃r) , (2.57)

where σ̃1, . . . , σ̃r are the irreducible/minimal cones of the refined fan Σ̃ that intersect with

the relative interior of σ∆, Relint(σ∆).

We can identify the geometry of the subvariety V (τ) as follows. For a decomposition N =

Nτ ⊕N(τ), where Nτ ⊂ N is the minimal saturated sublattice containing τ ⊂ (Nτ )R, there

15For backgrounds R1,3 × YΣ̃ without fluxes.
16In a fine triangulation T∆, all points of ∆ are involved.
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exists a projection π : NR −→ N(τ)R = (N /Nτ )R. Then, the fan [68]

Star(τ) = {π(σ) ⊆ N(τ)R |σ ∈ Σ , τ ⪯ σ} (2.58)

defines a toric variety XStar(τ) isomorphic to the orbit closure V (τ). The cone τ is collapsed

to the origin and the adjacent cones σ ⪰ τ are projected to N(τ)R. As a consequence, we

have the following equivalence for full resolutions of 3-dimensional CY3 cones:

• τ ∈ Σ̃(2) with τ ∩ Relint(σ∆) ̸= ∅ ⇐⇒ internal segment of T∆ ⇐⇒ blow-up V (τ) ∼= P1

• τ ∈ Σ̃(2) with τ ∩ Relint(σ∆) = ∅ ⇐⇒ boundary segments of T∆ ⇐⇒ V (τ) ∼= C

• ρ ∈ Σ̃(1) with ρ ∩ Relint(σ∆) = ∅ ⇐⇒ nonvertex boundary point of ∆ ⇐⇒ noncompact

toric divisor Dρ.

Furthermore, internal points in the toric diagram whose corresponding rays are in the relative

interior of σ∆ define the exceptional compact divisors Dρ, whose fan Star(ρ) matches with a

smooth refinement of a 2-dimensional Fano variety fan. For e.g., the internal ray in fig. 2.5

ρ = R≥0 · (0, 0, 1) defines the exceptional divisor Dρ, which matches the smooth geometry

with 2-dimensional fan describing the del Pezzo 3 surface (dP3 in fig. 1.4).

2.2 Quiver representation theory

A quiver Q is a multidigraph, a directed graph where multiple edges between two vertices

and loops are allowed. The data defining the quiver Q consists of a set of vertices Q0, a set of

edges Q1, and two mappings s, t : Q1 −→ Q0 defined as the “source” and “tail” of an edge.

Formally, Q is the ordered tuple (Q0,Q1, s, t).

In this section, we provide a (very) short introduction to quiver representations, with particular

focus on stability of quiver representations moduli (check [73–75] for a larger review). From

now on, we assume the quivers are finite, implying that Q0 and Q1 as sets are finite.

2.2.1 Quiver representations and path algebras

A representation V of a quiver Q is a realization of the quiver diagram in the of category of

C vector spaces. Equivalently, a representation is an assignment of a C-vector space Vi for
each vertex i ∈ Q0, and a collection of linear maps ϕe : Vt(e) −→ Vs(e) for every edge e ∈ Q1.

A finite-dimensional representation V has a dimension vector α ∈ (N)Q0 , where αi = dimVi.

Many of the notions of linear algebra can be extended to quiver representations. Given

two representations V = ({Vi}i∈Q0 , {ϕe}e∈Q1) and W = ({Wi}i∈Q0 , {ψe}e∈Q1), a morphism

between quiver representations f : S −→ R is a collection of linear maps fi : Wi −→ Vi such
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that fs(e) ψe = ϕe ft(e) for all edges e ∈ Q1. Two representations V and W are isomorphic

if f is bijective. A subrepresentation W ⊂ V of a representation of Q consists of subspaces

Wi ⊂ Vi and arrows {ψe}e∈Q1 such that ϕe|Wt(e)
= ψe. In this case, we can find an injective

morphism f between representations.

It is evident that for two representations of a quiver Q to be isomorphic, they must share the

same dimension vector. Consequently, the vector α is always assumed to be predetermined

and fixed in subsequent discussions. We denote the set of representations of Q with dimension

vector α by

Rep(Q, α) ∼=
∏
e∈Q1

Hom
(
Vt(e), Vs(e)

)
. (2.59)

The later equality is trivial, as a representation is fully specified by the linear maps ϕe. If

we are considering representations in coordinate spaces, Vi ∼= Cαi , then Rep(Q, α) has the
structure of an affine space. The group G(α) =

∏
i∈Q0

GL(Vi) produces a natural action on

Rep(Q, α), by a change of basis at each vertex:

g · V = {gt(e)ϕe g−1
s(e) | e ∈ Q1} , (2.60)

for V = (ϕe)e∈Q1 ∈ Rep(Q, α) and g = (gi)i∈Q0 ∈ G(α). Orbits of G(α) are isomorphism

classes of quiver representations.

Path algebras encapsulate the essence of quiver representations in an algebraic framework,

offering a versatile tool for probing deeper into the underlying structure of quivers. The path

algebra of Q over a field k, usually denoted as kQ, is an associative k-algebra where the basis

elements up are given by paths in the quiver Q. For the complex field, the elements of the

path algebra can be separated into elements of S = CQ0 and A = CQ1 . For each vertex i ∈ Q0,

there is a length-zero trivial path (no edge) with algebra element 1i ∈ S. Similarly, for each

e ∈ Q1 we have an element ue ∈ A, with multiplication equivalent to the concatenation of

paths,

ue1ue2 =

ue1e2 t(e1) = s(e2)

0 otherwise
. (2.61)

For 1i ∈ S, ue ∈ A, then 1iue = ue if s(e) = i and ue1i = ue if t(e) = i, otherwise vanishing.

Vertex elements are idempotent, 1i(1− 1i) = 0, with identity element 1 =
∑

i∈Q0
1i. Thus, S

is a finite dimensional commutative C-algebra, and A is a finite-dimensional S-bimodule. The

path algebra can be decomposed as [73, 74]

CQ =
∞⊕
d=0

A⊗Sd = S ⊕A⊕ (A⊗S A)⊕ (A⊗S A⊗S A)⊕ · · · (2.62)
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Note that we can further decompose the path algebra of any length d into algebras of paths

starting at vertex i and ending at j, A⊗Sd =
⊕

i,j∈Q0
1iA

⊗Sd1j , since the trivial path elements

1i act as a projection.

We can jump between representations of Q and modules (representations) over the path

algebra CQ since we can establish a bijection between the two.17 For a quiver representation

V , a path p = e1 . . . eℓ defines a linear map ϕp : Vt(eℓ) −→ Vs(e1), given by ϕp = ϕe1 ϕe2 . . . ϕeℓ .

Thus, we can trivially define a CQ-module structure on
⊕

i∈Q0
Vi, meaning

upv =

ϕp(v) v ∈ Vt(p)

0 otherwise
. (2.63)

On the other hand, if V is a CQ-module, we can define the vector subspaces Vi = 1iV .

Additionally, for each edge e ∈ Q1 we can define edge maps ϕe : Vt(e) −→ Vs(e) as ϕe(v) = uev.

Therefore, ({Vi}, {ϕe}) is a representation of Q.

Now that we have established a connection between the affine space Rep(Q, α) with modules

of the path algebra CQ, we can generalize the same ideas for a given path subalgebra, in

particular for quotient subalgebras defined by a quiver potential. A potential W is an element

of trace space Tr(CQ) = CQ/[CQ,CQ], in which elements in the path algebra CQ are

equivalent up to commutators of paths. For any open path up1p2 = up1up2 the commutator is

[up1 , up2 ] = up1p2 , since t(p2) ̸= s(p1), which implies all open paths in the trace algebra are in

the zero equivalence class. In general18, potentials will be of the form [74, 76]

W =
∑
c

αcuc , with s(c) = t(c) , (2.64)

meaning c is a cycle in the quiver and αc ∈ C. Additionally, the potential can be restricted to

have a fixed degree n in the tensor algebra (fixed cycle length), W ∈ Tr(A⊗Sn), or with fixed

degree in some other grading.

For every element u ∈ A, we can define the cyclic derivative ∂u ∈ A∗ is the continuous C-linear
map acting on cyclic paths by [74, 76]

∂u(ue1ue2 . . . ued) =
∑
p

∂u(uep)uep+1 . . . uedue1 . . . uep−1 . (2.65)

Similarly, there exists a dual basis {∂ue}e∈Q1 such that ∂ue(ue′) = δee′ . Abbreviate ∂e ≡ ∂ue .

The Jacobian ideal J(W ) = ⟨∂eW | e ∈ Q1⟩ ⊆ CQ [73, 74] is the ideal generated by the

17We say that the abelian category of finite dimensional representations of Q is the same as the category of
modules over the path algebra, CQ-Mod, i.e. the category of finite dimensional representations of CQ.

18We will only consider finite potentials. Therefore, we are avoiding discussing the complete path algebra
ĈQ =

∏∞
d=0 A

⊗Sd, and the closure of the commutator algebra, which includes infinite paths.
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relations ∂eW = 0 for all e ∈ Q1. We call the quotient [74, 76]

AQ,W = CQ/⟨∂eW | e ∈ Q1⟩ (2.66)

the Jacobian algebra of W . This algebra obeys the cancellation property, meaning that if for

every arrow e ∈ Q1 and any two path elements up, uq ∈ AQ,W , with t(e) = h(p) = h(q), then

if ueup = ueuq =⇒ up = uq.

From the categorical equivalency established above, points (representations) of a G(α)-

invariant affine space Rep(Q;α) are associated to modules of the free path algebra (zero

potential). By the same token, a module of the subalgebra AQ,W ⊆ CQ is associated to a

given representation in Rep(Q;α) such that its edge maps are compatible with the relations

provided by the Jacobian ideal. We denote this subvariety as Rep(Q,W ;α), which is obviously

is contained within Rep(Q;α) [73, 77]:

Rep(Q;α) ↔ CQ

Rep(Q,W ;α) ↔ CQ/J(W )

We will use the space Rep(Q,W ;α) to build moduli spaces, by constructing appropriate

quotients by G(α).

Given a strongly connected quiver Q and a potential W , we can enlarge the quiver by disjoint

sets of cycles Q2 = Q+
2

⊔
Q−

2 , such that the potentials follow W =
∑

c∈Q+
2
uc −

∑
c∈Q−

2
uc.

This defines a dimer model (Q,W ) [78]. Every edge e must be contained exactly once in one

cycle in Q+
2 and Q−

2 . Additionally, the incidence graph of the cycles and arrows meeting a

given vertex is connected. Thus, for every e ∈ Q1, relations are ∂eW = up+ − up− , p±e ∈ Q±
2 ,

which imply that every cycle in Q2 is equivalent in the Jacobi algebra AQ,W . Given a dimer

model characterized by (Q,W ), we can embed it in a compact orientable surface with an

Euler characteristic χQ = |Q0| − |Q1|+ |Q2|, such that the cycles in Q+
2 and Q−

2 are oriented

oppositely, with one set being clockwise.

In the realm of physics, dimer models are often discussed as a framework for understanding

certain aspects of string theory and gauge theories [41]. A brane tiling is conceptualized

starting from the dual of graph (Q,W ) as defined above, which involves embedding a bipartite

graph on a surface of Euler characteristic χQ, where the nodes correspond to Q2, the edges to

Q1, and the cycles (faces) to Q0. In physics parlance, the terms brane tiling and dimer model

(or dual of), are often used interchangeably. We will dive deeper into brane tilings, from a

more physical perspective, in a later chapter.

2.2.2 Moduli of quiver representations

Viewing quiver representations as an affine variety, we can construct moduli by taking

quotients by a group action. We will focus on two approaches to construct moduli that
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appear in supersymmetry gauge theory. The first approach involves Geometric Invariant

Theory (GIT) [79], where we consider an algebraic quotient of the complex Rep(Q,W ;α)

by the action of the complex reductive Lie group G(α). The second approach involves a

set-theoretic quotient [80, 81], which is derived as level-set of the space of representations as a

(real) symplectic manifold identified by orbits of the compact real Lie group K(α), such that

G(α) = K(α)C. These are related, since every compact connected Lie group has a reductive

algebraic complexification. Then, by the celebrated theorem of Kempf and Ness [82], as long

as the complex variety is projective the symplectic quotient is in fact homeomorphic to the

algebraic quotient, when considered as a complex analytic variety.

2.2.2.1 Proj GIT quotient

Let Z be a complex variety, G be a reductive algebraic group, and we will appropriately

take k = C to be our algebraic closed base field. The group action on Z by the group is an

algebraic map G× Z −→ Z, where we will denote the image of (g, z) by g · z. A morphism

f : Z −→ X is G-invariant if f(g · z) = f(z) for all g and z. For instance, if Z,X are affine

then we are considering invariant functions on Z, which form a subring C[Z]G ⊆ C[Z] of the
coordinate ring of Z.

In GIT, we can lift the action of the group to a linearized trivial line bundle Z × C −→ Z, by
a character χ ∈ Hom(G,C×). The action G× (Z × C) −→ Z × C is defined as

g · (z, t) 7−→ (g · z, χ(g)n t) (2.67)

In the coordinate ring of the trivial bundle, C[Z × C], the group acts as (g · f)(z, t) =

f(g−1 · z, χ(g)−n t), which can be rewritten as

g · f(z, t) = g ·
∑
n≥0

fn(z)t
n =

∑
n≥0

fn(g
−1 · z)χ(g)−n tn , (2.68)

since C[Z × C] = C[Z]⊗ C[t]. Thus, for f to be G-invariant, we must have g · fn = χ(g)n fn

for all n. We call such functions fn ∈ C[Z] as χn-semi-invariants, which defines a N-grading
on the polynomials of the fiber bundle

R = C[Z × C]G =
⊕
n∈

C[Z]χn
, (2.69)

where C[Z]χn
is a ring of semi-invariants.

The GIT quotient [79] is the quasi-projective variety corresponding to the closed points of

Z //χ G = ProjC[Z × C]G . (2.70)
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The closed points of ProjR, for a graded ring R =
⊕

n≥0Rn, are naturally in correspondence

with the homogeneous (under the induced grading) maximal ideals that do not contain the

irrelevant ideal R+ =
⊕

n>0Rn [83].

There is a way to understand the points of Z //χ G instead of looking at ideals of C[Z × C]G,
using the idea of χ-semistability. A point z ∈ Z is χ-semistable if for some n > 0 there exists

a nonvanishing semi-invariant f ∈ C[Z]χn
such that z ∈ Zf ≡ {w ∈ Z | f(w) ̸= 0}. Thus, the

set of all χ-semistable points are defined as

Zss
χ =

⋃
f∈R+

{z ∈ Z | f(z) ̸= 0} . (2.71)

If, in addition, Zf is closed under the action of G and the stabilizer Gz is finite, then we say

that z is χ-stable.

Two points in z1, z2 ∈ Zss
χ are called S-equivalent if and only if the intersection of the closure

of the G-orbits is nonempty in the set of semistable points, meaning that [84]

G · z1 ∩G · z2 ∩ Zss
χ ̸= ∅ . (2.72)

For each point in z ∈ Z, we can define a maximal ideal mz = {f ∈ R | f(z) = 0}, and in

particular if z is χ-semistable then mz is also homogeneous and does not contain the irrelevant

ideal R+. Moreover, we have that mz1 = mz2 for two S-equivalent points z1, z2. Therefore, the

GIT quotient Z //χ G is a variety whose points are in natural bijection with the S-equivalence

classes of χ-semistable points of Z [79].

Example 2.6. Consider the construction of Pn via action of G = C× on Cn+1, defined

as λ · (z0, . . . , zn) = (λz0, . . . , λzn), together with choice of character χ(λ) = λ−1. For this

choice, χn-semi-invariants are just the homogeneous polynomials of degree n. Therefore,

Rχ = C[z0, . . . , zn], with the standard N-grading, for which Pn = ProjC[z0, . . . , zn]. The

origin is the only point that is not χ-semistable, since all polynomials of degree n > 0 vanish at

0. From the construction above, m0 = {f ∈ R | f(0) = 0} contains (is exactly) the irrelevant

ideal R+, and therefore we need to exclude the origin from the semistable set. For z ̸= 0, we

can identify maximal ideals mz = mλ·z, since any homogeneous f obeys f(λ · z) = λnf(z).

The closure of orbits of C× are lines going through the origin and are in one-to-one with

S-equivalence classes of orbits as they intersect outside (Cn+1)ssχ = Cn+1 \ {(0, . . . , 0)}.

2.2.2.2 Symplectic reduction

To define the symplectic reduction one must study the action of a real compact Lie group K

on a manifold M with a closed nondegenerate 2-form ω ∈ Γ
(∧2 T ∗M

)
. A symplectic manifold

(M,ω) provides a geometric canvas for the expression of the phase space of Hamiltonian

dynamics, which can be thought as being parametrized by coordinates xi and its conjugate
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momentum pi. The form ω allows us to connect a position and momentum coordinates via

the contraction ιXω ∈ Γ(T ∗M) for some direction X ∈ Γ(TM). Locally, this relation becomes

more clear, as it has the form dpi = ι∂xiω. Moreover, a general vector field XH is called

hamiltonian if ιXH
ω = dH is an exact form, and it has an associated hamiltonian function H,

which is preserved along its flow lines [85].

A compact Lie group K with a free and proper action, defines a class of diffeomorphisms

ψ : G −→ Diff(M), g 7−→ ψg, for all g ∈ K, which we can also denote as ψg(p) = g · p. We

also require that this action respects the symplectic structure on M , which can be written as

(ψg)
∗ω = ω (ψg is symplectomorphic). A Lie algebra element ζ ∈ k induces a vector field at

some point p ∈M by the infinitesimal action

(Xζ)p =
d

dt

[
ψexp(iζt)(p)

]
|t=0

(2.73)

The compatibility of the action with the symplectic structure is equivalent to ιXζω being

closed for all ζ ∈ k (Xζ is called symplectic). This action has a moment map

µ :M −→ k∗ , (2.74)

where the ζ-component µζ :M −→ R, defined by µζ(p) = ⟨µ(p), ζ⟩, is a hamiltonian function

for the vector field Xζ ,

dµζ + ιXζω = 0 . (2.75)

Additionally, the moment map is required to be K-equivariant, more formally written as

µ(g · p) = Ad∗g µ(p) , ∀g ∈ K , (2.76)

where Ad∗ : K −→ Aut(k∗) is the coadjoint representation. Due to the latter property, orbits

of the coadjoint stabilizer Kξ = {g ∈ K |Ad∗gξ = ξ} have the same level under the moment

map.

Now we can define the symplectic reduction of a hamiltonian space (M,ω,K, µ). Let ξ ∈ k∗
be a regular value of µ. This is equivalent to requiring that K acts freely on µ−1(ξ), i.e. the

stabilizer Kp = {g ∈ K | g · p = p} is trivial for all p ∈ µ−1(ξ). Then, the symplectic reduction

at ξ is the smooth manifold (space of orbits) [80]

M //ξ K = µ−1(ξ)/Kξ (2.77)

and there is a unique symplectic form inherited from (M,ω). The level-set is quotiented by

the entire group if ξ is central, Kξ = K.19 However, we can bypass the central assumption by

19All levels ξ ∈ k∗ are central if K is abelian.
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considering the coadjoint orbit Oξ = Ad∗Kξ ⊆ k∗. We can lift the symplectic structure onto

M ×Oξ and the diagonal action of K is hamiltonian with the shifted moment map

µ̃ :M ×Oξ −→ k∗ (p, η) 7−→ µ(p)− η . (2.78)

Additionally, K acts freely on µ−1(ξ) iff K also acts freely on µ̃−1(0). In this case, M //ξ K

and (M ×Oξ)//0 K are well-defined and symplectomorphic.

While considering coajoint orbits can simplify assumptions, a more physically valid approach

is to relax the condition that K must act freely on µ−1(0). As long as Kp is discrete and

finite for p ∈ µ−1(0) and K is a torus, then the quotient µ−1(0)/K is still trackable, resulting

in a space with singularities, often with the structure of an orbifold.

Example 2.7. We can repeat the example of Pn, now via symplectic reduction on Cn+1 with

the standard symplectic structure ω = i
2

∑n
i=0 dzi ∧dz̄i. In this case, we have the compact Lie

group K = U(1), with action eiθ · (z0, . . . , zn) = (eiθz0, . . . , e
iθzn). The vector field generated

by θ ∈ u(1) is given by Xθ = iθ
∑n

i=0(zi∂i − z̄i∂̄i), and obeys

ιXθω = −θ
n∑

i=0

(zidz̄i + z̄idzi) = −dµθ = −θdµ (2.79)

with the moment map given by

µ : Cn −→ u(1)∗ = R (z0, . . . , zn) 7−→
n∑

i=0

|zi|2 . (2.80)

Then, µ−1(1) ∼= S2n+1 ⊂ Cn+1 and the symplectic quotient is S2n+1/U(1) = Pn. Note that

C× is the complexification of K = U(1), which plays an important role in relating this quotient

with section 2.2.2.1.

2.2.2.3 Kempf-Ness theorem

In this work, we will often use the previous quotient constructions to build moduli of quiver

representations. Recall that we defined the Z = Rep(Q,W ;α) as the representation space of

the quiver Q, consistent with relations ∂W . Taking Vi ∼= Cαi , this space is complex with a

natural algebraic action of the complex reductive Lie group G(α). We will see later that we

can mostly focus on representations with the unit dimension vector, so we will take α = 1.

For quiver representations with general vector dimension α, characters are given by χθ =∏
i∈Q0

det−θi , since each element in the product det−θi : GL(αi,C) −→ C× is the most

general 1-dimensional representation. For unit dimension vector, the character is simply

χθ(t) =
∏

i∈Q0
(ti)

−θi . These are completely determined by choice of integers θ ∈ ZQ0 , for
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which we can define the GIT quotient as

M(Q,W ; θ)GIT = Rep(Q,W ;α)//χθ G(α) . (2.81)

Turning now to the symplectic reduction, we can endow the complex variety Rep(Q,W ;α)

with the standard symplectic structure. Additionally, the largest compact real Lie group in

G(α) is K(α) =
∏

i∈Q0
U(1) and defines a hamiltonian action with a moment map. In this

case, the symplectic reduction defines a quotient

M(Q,W ; ξ)K = Rep(Q,W ;α)//ξ K(α) . (2.82)

These two quotients are connected through the Kempf–Ness theorem [82]

M(Q,W ; ξ)K ∼=M(Q,W ; θ)GIT , for ξ = θ ∈ ZQ0 , (2.83)

via a homeomorphism of complex analytic varieties. Note that, while the symplectic reduction

is defined for real levels of the moment map, in the GIT quotient the space of characters that

produces the N-grading in the ring of functions in the line bundle of quiver representations is

equivalent to ZQ0 .

2.2.3 θ-stability of quiver representations

Building upon the foundations laid by the GIT quotient and the Kempf-Ness theorem above,

we will explore how θ-stability serves as a way to distinguish between stable, semistable,

and unstable representations in the context of quiver representations. These notions can be

generally be understood via the study of the group action and classification of orbits, but this

can be simplified by the Hilbert-Mumford criterion [79] and a theorem by King [77].

We need to start by better understanding the characters and one-parameter subgroups of

G(α). A one-parameter subgroup λ is an element of Hom(C×, G(α)), while a character χ is

an element of Hom(G(α),C×). We can define the inner-product

⟨– , –⟩ : Hom(C×, G(α))×Hom(G(α),C×) −→ Z . (2.84)

This is possible since the composition of the two elements χ ◦ λ ∈ Hom(C×,C×), which is

group-isomorphic to Z via the map tn 7−→ n.

Let G(α) be the reductive group acting on the affine variety Z. A point z ∈ Z is χ-semistable

if and only if for any one-parameter subgroup λ such that limt−→∞ λ(t) · z exists we have

⟨λ, χ⟩ ≥ 0. If the inequality is strict for any nontrivial such λ, then z is χ-stable.
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For unframed quivers like the ones we focus on, each point of Rep(Q, α) has a nontrivial

subgroup Γ ∼= C×20 contained in its stabilizer. Therefore, we must include the condition that

χ(Γ) = 1 in the semistability condition.

As we have seen above, when α = 1, a character χ of G(α) = (C×)Q0 is fully determined

by a θ ∈ ZQ0 , which we can explicitly write as χ(t1, . . . , t|Q0|) =
∏

i∈Q0
(ti)

−θi . Similarly, a

one-parameter subgroup must be of the form λ(t) = (tβ1 , . . . , tβ|Q0|), for β ∈ ZQ0 . So the

inequality for quivers can be simply be written as

⟨λ, χ⟩ ≥ 0 ⇐⇒ θ · β ≤ 0 . (2.85)

Note that χ(Γ) = 1 requires χ to be a character of PG(α). This is equivalent to θ · α = 0.

The definition of θ-(semi)stability follows from this criterion. Given θ ∈ RQ0 , a representation

V of the quiver Q with (nonzero) dimension vector α is called θ-semistable if θ ·α = 0 and for

any subrepresentation W ⊂ V with dimension vector β we have θ · β ≤ 0. We say that V is

θ-stable if under the previous assumptions θ ·β < 0 for any nontrivial proper subrepresentation

W ⊂ V with dimension vector β.

These results can be tied together with a theorem by King [77]. Let Q be a quiver, and let

θ ∈ ZQ0 . Let α ∈ N be a dimension vector such that θ · α = 0. Then, any V ∈ Rep(Q, α) is
χθ-semistable (resp. χθ-stable) if and only if V is θ-semistable (resp. θ-stable).

20This corresponds to the complexification of the trivially acting diagonal U(1) in the quiver gauge theory.





Chapter 3

Quiver gauge theories and Brane

Tilings

3.1 4d N = 1 supersymmetric gauge theory

We aim to recap the minimal supersymmetric gauge theory in 4-dimensions, enumerating

representations of the supersymmetry algebra and how to formulate the lagrangian description

of a theory [86].

It is well-known that the Lorentz symmetry in 1+3 dimensions is parametrized by pure

rotations and boosts Mµν . From this set, we can construct two sets of su(2) generators.

However, since we started by using real parameters for the transformation (angles and

rapidity), these two sets are complex conjugates and therefore not really independent. The

trick here is to consider complex representations of the complexified algebra

so(1, 3)C = sl(2,C)⊕ sl(2,C) , (3.1)

and, to obtain regular (bosonic) representations of SO↑(1, 3), we restrict to representations

(a, b), where a+ b ∈ Z. The correct way of interpreting the latter is as representations of the

double cover Spin↑(1, 3) = SL(2,C), where these can have labels such that a+ b ∈ 1
2Z (bosonic

and fermionic). Some examples are: scalar representation (0, 0), vector representation
(
1
2 ,

1
2

)
,

symmetric traceless representation (1, 1), Dirac representation
(
1
2 , 0
)
⊕
(
0, 12
)
, Weyl spinors(

1
2 , 0
)
or
(
0, 12
)
.

The supersymmetric algebra in 4 dimensions consists of extending the Poincaré algebra

into a Z2-graded superalgebra, g = g0 ⊕ g1, which includes the generators Mµν , Pµ and

additional sets of supercharges. For N = 1 supersymmetry, we have 4 supercharges Qα

and Q̄α̇, transforming as fundamental/anti-fundamental representations
(
1
2 , 0
)
and

(
0, 12
)
,

respectively, of the complexified Lorentz algebra. It is easy to check that the Lorentz action

51
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on Qα, Q̄α̇ together with the graded Jacobi identities completely fix the algebra, up to

normalizations.

{Qα, Q̄α̇} = 2(σµ)αα̇Pµ

[Mµν , Qα] = i(σµν)α
βQβ

[Mµν , Q̄α̇] = i(σ̄µν)α̇β̇Q̄
β̇

, (3.2)

where σµ = (1,−σi) and σµν = 1
4 (σ

µσ̄ν − σν σ̄µ). For N = 1 SUSY, we may still have1 a U(1)

R-symmetry which acts as a rotation on supercharges

[R,Qα] = −Qα , [R, Q̄α̇] = Q̄α̇ . (3.3)

The charges Qα and Q̄α̇ live in the fundamental/anti-fundamental representation of the

R-symmetry, with charges ±1.

Theories involving the minimal N = 1 supersymmetry and its supermultiplets can be

constructed using the notion of superspace and superfield. This space includes the usual

spacetime coordinates together with a set of conjugate Grassmann variables θα and θ̄α̇. A

general superfield is a field on this superspace and due to the properties of the Grassmann

algebra, any superfield can be expanded as

Y (x, θ, θ̄) = ϕ(x) + θ ψ(x) + θ̄ χ̄(x) + θθM(x) + θ̄θ̄ N(x) + (θσµθ̄)Aµ(x)

+ (θθ) θ̄ λ̄(x) + (θ̄θ̄) θ ρ(x) + θθ θ̄θ̄ D(x)
, (3.4)

where θθ = εαβθ
αθβ corresponds to the usual SL(2,C) contraction (similar for θ̄). These will

be transformed under pure supertranslations generated by the superalgebra as

δϵ,ϵ̄Y (xµ, θα, θ̄
α̇) = Y (xµ + i(θσµϵ̄)− i(ϵσµθ̄), θα + ϵα, θ̄

α̇ + ϵ̄α̇) (3.5)

A general superfield corresponds to a reducible representation of SUSY, but we can impose

constraints leading to fields that are indeed irreducible. The most relevant for gauge theories

are chiral/anti-chiral superfields, which later will constitute the matter content. These are

defined as,

D̄α̇Φ = 0 , (3.6)

where the supercovariant derivative is given by Dα = ∂α + i(σµθ̄)α∂µ and D̄α̇ = (Dα)
†. The

chiral constraint reduces the degrees of freedom, and we can rewrite the superfield to be

1It can be broken by superpotential interactions.
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independent of θ̄

Φ(y, θ) = ϕ(y) +
√
2 θ ψ(y)− θθ F (y)

= ϕ(x) +
√
2 θ ψ(x)− θθ F (x) + iθσµθ̄ ∂µϕ(x)

− i√
2
θθ ∂µψ(x)σ

µθ̄ − 1

4
θθ θ̄θ̄ ∂µ∂

µϕ(x)

(3.7)

where yµ = xµ + iθσµθ̄.

With chiral fields, we can construct supersymmetric actions by incorporating two types of

terms resulting from different Berezin integrals:

• D-terms of the form
∫
d2θd2θ̄ K(Φ, Φ̄) = K(Φ, Φ̄)|θθθ̄θ̄, e.g. the Kähler (real) potential.

• F-terms of the form
∫
d2θW (Φ) =W (Φ)|θθ plus its hermitian conjugate, e.g. the chiral

superpotential, which is a holomorphic function of a chiral superfields.

Another relevant superfield representation is the real vector superfield V = V †, as this will

encode the gauge field. As in any gauge theory, each vector superfield transforms under the

adjoint representation,

e2V −→ eiΛ̄e2V e−iΛ , (3.8)

where Λ is some chiral field, element of g =
⊕

A gA. The supersymmetric gauge invariant field

strength Wα is called the gaugino superfield for the top component θ̄θ̄θαλα of V and can be

expanded as

Wα = −1

8
D̄2
(
e−2VDαe

2V
)
= −iλα + θαD + i(σµνθ)α Fµν + θθ [∇µ, (σ

µλ̄)α] , (3.9)

where again all fields are functions of y, and we used the Wess-Zumino gauge, which eliminates

the bottom components of V . In the later equality we have the gauge-covariant derivative

∇µ = ∂µ − iAµ and Fµν = [∇µ,∇ν ] is the field-strength.

Quiver gauge theories are Yang-Mills theories composed by a gauge group with several

components

G =
∏
A

GA , (3.10)

where GA is a simple Lie group. Since the gaugino superfield is chiral, each simple component

will have a Yang-Mills term resulting from an F-term. We introduce a complexified gauge

coupling

τA =
ΘA

2π
+

4πi

g2A
(3.11)



54 Deformations of Toric Quiver Gauge Theories

for each factor. Then, the general super Yang-Mill action for the vector superfields is given by

SYM = Im

(∑
A

∫
d4xd2θ

τA
8π

TrA
(
WAαWA

α

))
, (3.12)

which results both the in conventional kinectic term − 1
4g2A

Tr
(
FAµνFA

µν

)
, and the instanton

density ΘA
32π2 Tr

(
FAµνF̃A

µν

)
, for each factor GA.

On the other hand, matter content can be described by several chiral multiplets, where each

superfield can be transformed under a different representation R of the Lie algebra

Φ −→ eiΛΦ , Φ̄ −→ Φ̄e−iΛ̄ , Λ =
∑
A

dimGA∑
a=1

Λa
A T

a
A,R . (3.13)

The full action for the matter content will include a kinetic term that is consistent with

SUSY gauge transformations, together with an F-term (and its conjugate) for the chiral

superpotential W (Φ)

Sm =
∑
i

∫
d4xd2θd2θ̄ Φ̄ie

(
2
∑

A,a V a
ATa

A,Ri

)
Φi (3.14)

SW =

∫
d4xd2θW (Φ) + h. c. (3.15)

For every factor GA = U(1), the vector superfield is abelian, and it transforms as V −→
V − i

2(Λ− Λ̄). Since Λ and Λ̄ are chiral fields, we can add to the action the gauge invariant

term,

SFI =
∑

A|GA=U(1)

ξA

∫
d4xd2θd2θ̄ V , (3.16)

where the real constants ξA are the Fayet-Iliopoulos (FI) parameters.

Combining all the terms in the action we obtain the usual terms for the dynamical superpartners

and couplings between usual fields, i.e. a gauge vector Aµ, complex scalar ϕ and Weyl spinor

ψ, but also the gaugino λα. More importantly, new non-dynamical fields appear in the action,

originating from the top components of the chiral and vector multiplets, respectively. The

equations of motion for these fields are algebraic and lead to the F-term and D-term equations,

F̄i =
∂W

∂ϕi
= ∂iW , (3.17)

Da
A = −g2A

(∑
i

ϕ̄i T
a
A,Ri

ϕi − ξA

)
≡ −g2A µaA(ϕ̄, ϕ) , (3.18)

where µA(ϕ̄, ϕ) is a moment map associated with the Lie algebra of the group GA. Recall

that ξA = 0 for nonabelian factors in the gauge group. Integrating out these fields, the scalar
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potential takes the form

V (ϕ̄, ϕ) =
∑
i

F̄ iFi +
∑
A

1

2g2A
TrA(D

2
A)

=
∑
i

|∂iW (ϕ)|2 +
∑
A

g2A
2

dimGA∑
a=1

µaA(ϕ̄, ϕ)
2

. (3.19)

Note that the potential is of the form V ∼ (F-terms)2 + (D-terms)2, so the supersymmetric

vacua will be obtained by setting Fi (ϕ) = 0 and Da
A

(
ϕ̄, ϕ

)
= 0, where ϕ ∈ Cn represents

the vacuum expectation (VEV) of the scalar component of Φ. Thus, the moduli space of

supersymmetric vacua is simply given by

M =
{
(ϕ̄, ϕ)

∣∣ ∂iW (ϕ) = 0, ∂̄īW̄ (ϕ̄) = 0, µA(ϕ̄, ϕ) = 0
}
/G . (3.20)

Note that this description is the same as the Kähler quotient (symplectic reduction) previously

introduced in section 2.2.2.2, where the moduli are the preimage of a moment map at some

regular value with identification of orbits of G. From the Kempf–Ness theorem, it is well-known

to be equivalent to a holomorphic description where we instead quotient by the complexified

gauge group [87]

M = {ϕ | ∂iW (ϕ) = 0}//GC . (3.21)

From the point of view of supersymmetry, this holomorphic description follows from considering

chiral superfields and their (superfield) gauge transformations (3.13), while the symplectic

reduction follows from the component formalism. For example, for a G = U(1)r linear sigma

model with n+ 1 chiral fields, the moduli space of vacua is of the form

(
C
[
ϕ0, . . . , ϕn

]
/⟨∂1W, · · · , ∂nW ⟩

)//
(C×)r , ϕi ∼

r∏
a=1

λq
i
a
a ϕi , λa ∈ C× . (3.22)

Note that the moduli spaceM is not necessarily a set of isolated points and, in many cases,

we might have potential with flat directions, where we can continuously change the value of

the expectation value and still maintain the scalar potential V = 0. In section 2.2.2.1, we

have an example computed for a single U(1), acting with charges qi1 = 1 and no relations,

W = 0, resulting inM = Pn.

In non-supersymmetric theories, the renormalization of the potential will generally change the

form of the effective scalar potential, with RG flow both changing the values of the couplings

in the original potential and possibly generation a series of new, higher order interactions.

Normally, flat directions are lifted by these quantum corrections, so the study of the classical

vacuum moduli space is of little interest. However, in supersymmetric theories, by the

Seiberg non-renormalization theorems [88], the superpotential does not receive perturbative
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corrections. However, in N = 1 gauge theories the superpotential may be renormalized by

non-perturbative effects such as instantons. But for our purposes, we need not be concerned

about having new terms, so we can think of the supersymmetric moduli space of vacua of the

classical and quantum theories as the same.

Quiver gauge theories are Yang-Mills theories with a gauge group consisting of several factors,

generally multiple U(N) or SU(N), in which the matter content transforms as a bi-fundamental

representation of two simple factors. The term quiver corresponds to the directed graph that

specifies the matter content, the field representations and the structure of the gauge groups.

The directed edges connect two different vertices, say (a, b), which represent the different

gauge groups, for example, SU(N)a and SU(N)b. Each of the quiver graph corresponds to

a N = 1 chiral multiplet, Φab, which transforms under the bi-fundamental representation

N∼ ⊗ N̄∼ of SU(N)a × SU(N)b. In terms of the fields, this corresponds to a transformation

Φab −→ eiΛaΦab e
−iΛb . (3.23)

The usual quiver graph does hold the all the information to define superpotential W (X),

which is necessary to specify the N = 1 theory. The superpotential must be composed of

gauge-invariant operators and these can be obtained from the cycles available in the quiver,

which correspond to traces of a string of chiral multiplets.2 The terms in the superpotential

must also be invariant under any global symmetries.

In this work, we will focus on a special class of N = 1 superconformal quiver gauge theories

in 4 dimensions. These admit a mesonic U(1)3 global symmetry, one of the factors being the

SUSY R-symmetry U(1)R. The mesonic branch of the moduli space of these theories are

described as toric varieties for which the geometry data can be encoded into a convex lattice

polytope, also known as the toric diagram of the Calabi-Yau singularity. The properties of

the superpotential allow us to graphically encode the theory by embedding a bipartite graph

in a torus, called a brane tiling.

3.2 Brane tilings

A brane tiling [40–44] is a bipartite graph on a 2-torus T2 which encodes quiver and

superpotential of a so toric supersymmetric gauge theory with four supercharges (4d N = 1

and dimensional reductions thereof). This is the low energy field theory on the worldvolume

of N D-branes probing a CY3 cone Y with U(1)3 isometry. The graph consists of

0-dimensional vertices (or nodes), 1-dimensional edges connecting a pair of vertices, and

2-dimensional faces bounded by edges. The graph is bipartite, meaning that vertices are

2These are so-called mesonic operators. For SU(N) gauge factors one can also write baryonic operators built
using epsilon tensor. These operators are irrelevant for large enough N , therefore we will ignore this possibility.
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colored black or white and edges connect vertices of different colors. The coloring encodes a

counterclockwise/clockwise ordering of the edges incident to a vertex.

The data of a brane tiling and its field theory interpretation are given by:

• Faces correspond to U(N)i group factors,3 for i ∈ {1, . . . , g}, where g denotes the

number of unitary gauge group factors (sometimes F for the number of faces).

• Edges between two faces i and j represent chiral superfields Xa
ij , which transform in the

bifundamental representation of U(N)i × U(N)j . If i = j, the chiral superfield is in the

adjoint representation. The direction of the arrow in the quiver diagram is determined

by the orientation of the distinct-colored vertices that the corresponding edge connects

to in the tiling. We write E for the number of chiral superfields/edges.

• Vertices / represent toric superpotential terms. Each superpotential term is the

single trace of the product of bifundamentals chiral superfields associated to the incoming

edges of the corresponding vertex, ordered clockwise/counterclockwise and with a +/−
sign according to the white/black color of the vertex.

The bipartite nature of the graph guarantees that each bifundamental chiral superfield appears

exactly once in exactly two superpotential monomials with opposite signs. This is known as

the toric condition and leads to F-term equations of the form

∂W

∂Xij
= 0 ⇒ Xj,c1 · · ·Xcr,i = Xj,d1 · · ·Xds,i , (3.24)

for two specific connected paths (c1, . . . , cr) and (d1, . . . , ds) in the brane tiling/quiver.

The dual graph of the brane tiling is the periodic quiver diagram [41]: it consists of 0-

dimensional vertices (or nodes) representing unitary gauge groups, 1-dimensional directed

edges (or arrows) representing bifundamental chiral superfields, and 2-dimensional oriented

faces whose boundaries represent (positive or negative) superpotential terms. The usual quiver

graph refers only to the 1-skeleton structure and encodes the gauge group and matter content

of the gauge theory. The quiver data is encoded in the incidence matrix d ∈Mg×E(Z) of the
graph:

die = δi,s(e) − δi,t(e) =


+1 t(e) = i

−1 s(e) = i

0 else

(3.25)

where t(e) and s(e) denote the nodes at the tail and head of the arrow (or directed edge) e. In

the quiver gauge theory, we associate to each edge e a chiral superfield Xe in the bifundamental

3In four dimensions the low energy gauge groups are special unitary, since central U(1) factors are massive
or decoupled. Considering unitary gauge groups is nevertheless useful to study mesonic moduli space of vacua,
which we focus on in this paper. Baryonic branches can also be studied, by relating baryonic VEVs to FI
parameters (see chapter 5). See [89] and references therein for a comprehensive discussion.
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representation of U(N)t(e)×U(N)s(e). By an abuse of notation, we will interchangeably denote

a chiral superfield as Xe according to the corresponding edge in the graph or as Xa
ij according

to the nodes i = t(e) and j = s(e) it connects. The superscript a labels the Aij bifundamentals

between nodes i and j in the quiver.

Toric quiver gauge theories are generically chiral, hence there is a non-trivial condition for

cancellation of gauge anomalies. In the most general case, where the gauge group is

G =

g∏
i=1

U(Ni) , (3.26)

the four-dimensional SU(Ni) gauge anomaly cancellation4 condition reads [91]

∑
j

(aij − aji)Nj = 0 , (3.27)

where a ∈Mg×g(Z) is the adjacency matrix of the quiver, with entry aij counting the number

of arrows from node i to node j.

3.2.1 Perfect matchings

When considering brane tilings as bipartite graphs, a perfect matching pα [40, 41], or dimer

collection, is a set of edges, sometimes called “dimers”, which connect each vertex of the brane

tiling exactly once. The collection of perfect matchings is summarized in the perfect matching

matrix P ∈ME×c(Z), with entries

Peα =

1 , Xe ∈ pα

0 , Xe /∈ pα
. (3.28)

Obtaining all perfect matchings is a combinatorial problem that can be solved via the Kasteleyn

matrix [40, 41]. For brane tilings, this is just the node connectivity matrix of the bipartite

graph, with the caveat of also including the winding number information

h(Xe) =
(
hz(Xe), hw(Xe)

)
(3.29)

of the edge. To define it we need to pick a fundamental domain on the T2 we choose two

primitive winding cycles (γz, γw). This choice is GL(2,Z) invariant. By fixing the bipartite

orientation of the edges to be directed from the white to black nodes, we have that hz,w equals

+1/−1 if the edge Xe crosses the cycle γz,w in the positive/negative direction, and 0 if no

4The central U(1)i ⊂ U(Ni) generically also have (mixed) gauge anomalies, which are cancelled in string
theory by Stückelberg terms that make the corresponding gauge bosons massive [89, 90]. Anomaly-free central
U(1)i factors decouple in the infrared and become non-anomalous baryonic symmetries.
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crossing occurred. Therefore, the Kasteleyn matrix takes the form

Kij(z, w) =
∑

e∈Bi∩Wj

ae z
hz(Xe) whw(Xe) , (3.30)

where Bi ∩Wj denotes the set of tiling edges that connect to both node Bi and node Wj , and

ae is an edge weight. As a convention, we index the row and columns of the Kasteleyn matrix

as black and white nodes, respectively. If we just take all ae = 1, the resulting permanent will

list the multiplicities of the perfect matchings for each monomial zawb. Keeping the ae edge

weight general, we can keep track of which edge e belongs to a particular perfect matching.

It turns out that the combinatorics evolved in finding the perfect matchings is the same found

in determinant methods of the Kasteleyn matrix. The permanent of a Kasteleyn matrix is a

sum where each term in the expansion is associated to a unique perfect matching,

permK(z, w) =
c∑

α=1

zhz(pα) whw(pα)
∏

Xe∈pα

ae , (3.31)

with the winding number given by

h(pα) =
∑

Xe∈pα

h(Xe) . (3.32)

Similarly, we could have used a determinant and introduced the appropriate −1 factors. The

winding numbers of perfect matchings in brane tilings have a deep connection to the toric

diagram ∆ of the underlying geometry, a lattice polytope representation of a toric Calabi-Yau

threefold. Remarkably, the signed intersection numbers h(pα) correspond to the coordinates

of the toric diagram.

The number of perfect matchings can be larger, the number of coordinates of the toric diagram.

Perfect matchings are extremal when their winding number is mapped to vertices of the

convex hull of ∆. Consistency of the brane tiling requires these to have multiplicity equal

to 1 [47]. Perfect matchings along the hull boundary of ∆ are non-extremal and reveal the

presence of a non-isolated singularities in the affine toric Calabi-Yau. Perfect matchings are

internal otherwise.

3.2.2 Zig-zag paths

A zig-zag path η is a special type of closed oriented path in a brane tiling, which forms a

homology cycle on T2 [47]. By definition, it is a map η : Z −→ Q1 such that, h ◦ ηn = t ◦ ηn+1,

for each n ∈ Z. Additionally, η2n and η2n+1 are both in the boundary of the same black node

and, η2n−1 and η2n are both in the boundary of the same white node. A zig-zag path follows

the edges of the brane tiling, making a maximal left turn at each white node and a maximal
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right turn at each black node, following this rule until the path closes in T2. A convenient

way to depict a zig-zag path is to deform it slightly so that it crosses in the middle of each of

the edges that it follows, keeping the black vertex on the left and the white vertex on the

right as we do when we go from the tiling to the dual periodic quiver.

3

1

3

1

6

2 3

1

2 3

4

5 6

1

5 6

2

4

5

5

(a)

(b)

(c)

Figure 3.1: Model PdP3c Phase B [55]: (a) brane tiling decorated with zig-zag paths; (b)
toric diagram with normal vectors (p, q) associated to zig-zags; (c) quiver diagram.

From the description above, we can work out how a brane tiling edge is oriented regarding a

given zig-zag η: we define a zig to be an edge that goes from a black to white node along η,

otherwise we call it a zag. A given edge is exactly a zig and a zag of two different zig-zag

paths.

The zig-zag paths form a collection of loops on the torus, with winding numbers h(ηi) in

terms of the homology basis of the reference fundamental domain, similar to eq. (3.32). From

these we can reconstruct the data of the singular toric geometry: winding numbers of zig-zag

paths form a set of vectors in Z2, which represent the outward pointing normals of the toric

diagram (compare fig. 3.1b with fig. 3.1a).

For consistency of the dimer model, we require the Calabi-Yau condition to hold. This

statement can be restated in various different ways [78]. In terms of zig-zags, consistency

implies that if we have a brane tiling edge e where two zig-zag paths η+, η− start, then the

only time the zig-zag paths intersect on the torus is at η+0 = η−0 = Xe. In terms of the covering

space R2 ↠ R2/Z2 = T2, this condition implies that the extended paths do not self-intersect.
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3.3 Master space and other moduli

The moduli space of supersymmetric vacuaM of a 4d N = 1 low energy quiver gauge theory

on the worldvolume of regular D3-branes consists of various components (or branches).

The first go-to tool for studying the moduli of quiver gauge theories is the master space F ♭

[92–95]. The master space is a toric variety of dimension 3N + g − 1 and is defined as the

space of solutions to the F-term equations, given the chiral fields as matrices, quotiented

by SU(N)g, since only the nonabelian part of G = U(N)g couples in the IR. In particular,

for the abelian theory on the worldvolume of a single D3-brane, F ♭ is the same as the full

moduli space of the quiver theory, of dimension g+ 2. The master space F ♭ often decomposes

into multiple irreducible components: the non-trivial top component referred as the coherent

component IrrF ♭ and multiple pieces lower-dimensional pieces, usually linear affine components

(no relations).

In general, we can write the master space as

F ♭ = Specm
(
(C[Xe1 , . . . , XeE ]/⟨∂XW ⟩)

SU(N)gC
)
. (3.33)

By RSU(N)gC , we mean the algebraic invariants of the ring R under the complexified nonabelian

quiver symmetry SU(N)gC = SL(N,C)g, i.e. traces (mesons) and determinants (baryons).

These invariants form the spectrum of chiral BPS operators and their vacuum expectation

values (VEVs) parametrize two components of the moduli spaces, the mesonic branch and

the baryonic branch.

Any cycle in Q can be concatenated with itself any number of times to obtain larger cycles.

However, F ♭ is finitely generated even thought it seems that we have an infinite number of

generators. Therefore, we expected these larger composite generators must be subjected to

additional relations, i.e. via Cayley–Hamilton theorem.

3.3.1 Geometric and baryonic branches

If the Calabi-Yau 3-fold cone Y only has an isolated singularity at the tip of the cone, the two

branches are:

• Mesonic branch = Geometric branch Mmes = Mgeom[89, 93, 94, 96]: it describes

N regular D3-branes probing the Calabi-Yau 3-fold cone Y. It is an affine variety

parametrized by the VEVs of mesonic operators (henceforth often referred to simply as

mesons), i.e. traces of products of chiral superfields which are associated to cycles in

the quiver:

Mi = tr (Xe1 · · ·Xeℓ) . (3.34)
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In general, we have thatMgeom = SymN (Y) with dimension 3N . If N = 1, the moduli

Mgeom = Y reproduce the affine Calabi-Yau geometry, hence the name geometric branch.

• Baryonic branch Mbar [35, 97]: it describes N regular D3-branes probing different

(partial) resolutions Ỹξ of the singular Calabi-Yau 3-fold cone Y. It is parametrized by

VEVs of dibaryonic operators (or simply dibaryons) of the schematic type

Bj = det (Xe1 . . . Xem) , (3.35)

where (e1, . . . , em) are open paths in the quiver. Geometrically, the full moduli space of

vacua IrrF ♭ can be thought as the total space of the fibration Ỹξ over a complexified

(g − 1)-dimensiontal Kähler moduli space of Y parametrized by a vector ξ. The fiber

directions are mesonic, while the base directions are baryonic. In the gauged linear

sigma model (GLSM) that describes the toric geometry of Ỹξ, the Kähler moduli Re(ξ)

are realized by Fayet-Iliopoulos (FI) parameters.

If we gauge the central U(1)g ⊂ U(N)g, the baryonic branch disappears and the moduli space

of vacua consists of the mesonic branch only.

3.3.2 N = 2 Coulomb branches

In this work we are interested in Calabi-Yau cones Y which have lines of non-isolated

singularities, which are of A-type since we assume that Y is toric. Then there are additional

mesonic components of the moduli space of vacua on top of the geometric branch:

• N = 2 Coulomb branch MN=2: for each non-isolated singularity of Y, locally of

Ak−1 type, this extra mesonic component of the moduli space of vacua describes kN

N = 2 fractional D3-branes [98] probing the locus of the non-isolated Ak−1 singularity.

For N = 1 and for each Ak−1 singularity, this branch is parametrized by VEVs of k

independent chiral mesons, which take identical VEVs onMgeom. The intersection of a

N = 2 Coulomb branch and the geometric branch is a locus of non-isolated singularity

of the latter. A regular D3-brane on a non-isolated singularity of Y can marginally

decay into k different N = 2 fractional branes which separately probe the singular locus.

Conversely, k coincident N = 2 fractional branes of different type can recombine into a

regular D3-brane, which is free to explore the whole Calabi-Yau Y.

This naming convention arises from the fact that if Y = C2/Γ× C, with Γ ⊂ SU(2) a finite

subgroup [22], this is literally the Coulomb branch of a N = 2 theory. The physics of the

fractional branes and the geometry of this component of the moduli space of vacua is largely

determined by the local geometry of Y near the singularity, hence the name for the type of
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fractional branes and for the branch of the moduli space. The latter is a misnomer, as there

is no Coulomb branch for N = 1 gauge theories, but we stick to it for the sake of brevity.

The full mesonic moduli space of vacua is then the union of the geometric branch and the

N = 2 Coulomb branches: Mmes =Mgeom ∪MN=2. We will use f(Mi, . . . ) ≃ 0 to indicate

relations in the full chiral ring, while we will use ∼ to denote relations which only hold on the

geometric component, but not on N = 2 Coulomb branches.5

3.4 A-maximization and conformal invariance

A-maximization [99–101] is a technique used in the study of supersymmetric gauge theories

to determine the exact superconformal R-symmetry at an infrared fixed point, which is part

of the superconformal algebra. It plays a crucial role in understanding relevant and marginal

(chiral) operators and by extension the dynamics of the quiver gauge theory.

Before initiating the discussion on how to find the conformal U(1)R charge, there are certain

restrictions arising from conformal invariance, which these charges must obey. Recall that for

a 1 + 3-dimensional N = 1 supersymmetric gauge theory with gauge group SU(N) the 1-loop

beta function for the 1/g2 coupling is given by the exact NSVZ formula [102, 103]

β 1
g2

=
1

8π

3 c2[Radj]−
∑

ϕ d[Rϕ](1− γϕ)

1− g2

8π c2[Radj]
. (3.36)

The sum in eq. (3.36) is over the matter fields of the gauge theory and d [Rϕ] is the Dynkin

index of the representation Rϕ, which is defined by Tr(T a
Rϕ
T b
Rϕ

) = d [Rϕ] δ
ab.6 Similarly,

c2 [Radj] represents the Casimir factor for the adjoint. Furthermore, in superconformal field

theories the anomalous dimension γϕ of the chiral superfield ϕ is the related to the conformal

scaling dimension

∆ϕ = 1 +
1

2
γϕ =

3

2
R [ϕ] , (3.37)

and the conformal R-charge R [ϕ]. In the IR conformal fixed point, we must have β 1
g2

= 0,

which can be written as

N =
∑

ϕ
d [Rϕ] (1−R [ϕ]) (3.38)

In the context of quiver gauge theories, we can have many configurations of BPS (fractional,

or wrapped) D-branes at a toric singularity, leading to a general gauge group of the form

5Note that the presence of additional components in F♭ does not immediately imply N = 2 Coulomb
branches, since isolated singularities can still produce reducible master spaces.

6This does not uniquely define the Dynkin index. In physics, we also take the convention of d [Rϕ] = 1/2
for ϕ in the fundamental representation of SU(N).
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G =
∏g

i=1 SU(Ni). Matter fields arise from strings stretching from a D-brane of a given type

and either ending on a different or same type of D-brane (respectively), and transform in

bi-fundamental representations, Xij . For a quiver Q we can simplify the general formula

(3.36) to

Ni +
∑
e∈Q1
h(e)=i

1

2
Nt(e) (R [Xe]− 1) +

∑
e∈Q1
t(e)=i

1

2
Nh(e) (R [Xe]− 1) = 0

=⇒ N2
i +

∑
e∈Q1|i∈∂e

Nt(e)Nh(e) (R [Xe]− 1) = 0

, ∀i ∈ Q0 . (3.39)

Note that the above includes matter in the adjoint representation, since adjoints have

h(e) = t(e) = i, which receive a contribution (Nh(e) + Nt(e))/2 matching the expected

Dynkin index d [Φi] = Ni. Additionally, every term in the superpotential has total R-charge 2

−2 +
∑
e∈∂c

R [Xe] = 0 , ∀c ∈ Q2 . (3.40)

We can see this condition as conformal invariance βλc = 0 for a coupling λc for each chiral

gauge invariant operator λcTr [Xc1Xc2 . . . Xcn ] in the superpotential, where c ∈ Q2 = Q+
2 ⊔Q

−
2

is an oriented cycle in the dimer model/superpotential. But note that only some oriented

cycles in the quiver might appear in the superpotential.

These conditions are fairly weak and, in most general case, we still have a continuous family

R(s) of non-anomalous U(1)R symmetries with generator (or R-charge)

R(s) = R0 +
∑
I

sIF I (3.41)

where {F I } are conserved charges for global non-anomalous U(1) symmetries,7 and R0 is

a non-anomalous R-symmetry. It was shown by Intriligator and Wecht [99] that the true

conformal R symmetry is the one that minimizes the 4-dimensional central charge

a =
3

32

(
3TrR3 − TrR

)
(3.42)

among all trial R-charges of the form (3.41). This expression matches a triangle anomaly,

where the trace is taken over the fermions in the chiral and vector multiplets of the theory.

Bifundamental chiral fields Xe between gauge groups of ranks Nh(e) and Nt(e) contribute with

Nh(e)Nt(e) fermions (adjoints have Nh(e) = Nt(e)). Each fermion has and R-charge shifted by

−1 compared to its scalar component, R [Xe]− 1, since in the chiral multiplet Xe the fermion

appears with as ψe · θ. For each gauge group, SU(Ni) there are N2
i − 1 gauginos, which all

7As emphasized in [89, 100, 104] the baryonic symmetries decouple from the maximization procedure, so
we can restrict the parameters sI to vary over the 2-dimensional subspace of mesonic flavor symmetries in
a-maximization.
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have R-charge 1. We can greatly simplify TrR = 0 using eq. (3.39) for anomaly free quiver

gauge theories, leading to

a =
9

32

−2g

3
+
∑
i∈Q0

N2
i +

∑
e∈Q1

Nh(e)Nt(e)(R [Xe]− 1)3

 , (3.43)

where g =
∑

i∈Q0
1 is the number of simple components in G. The correct choice of

superconformal R-symmetry R(s0) corresponds to the value of the parameter s0 where a(s)

has a local maximum, restricted by eqs. (3.39) and (3.40).

3.5 Fast-forward algorithm

The toric diagram ∆ [40, 41, 54] of the CY3 cone Y = Mgeom can be obtained from the

winding numbers of differences of perfect matchings and a reference perfect matching. These

form the lattice points of a convex lattice polygon ∆ ⊂ Z2, which we consider modulo SL(2,Z)
transformations and lattice translations. Alternatively, the perfect matching technology gives

the toric diagram directly via the fast-forward algorithm [26, 51]:

• To each perfect matching pα, we associate a field in an abelian U(1)c gauged linear sigma

model (GLSM) [26, 105], which we call a perfect matching variable and also denote by

pα, with a slight abuse of notation. Expressing the bifundamentals in terms of perfect

matching variables as

Xe =
c∏

α=1

(pα)
Peα (3.44)

solves the F-term equations automatically,

F̄e =
∂W

∂Xe
= 0 , (3.45)

at the expense of introducing an abelian gauge symmetry that leaves each bifundamental

in (3.44) invariant. The charges of perfect matching variables under this gauge symmetry

are encoded in a charge matrix QF ∈M(c−g−2)×c(Z), defined as

QFP
T = 0 ⇒ QF = (kerP )T . (3.46)

We remark that we can bypass the brane tiling construction step and still obtain P

by grouping superpotential terms. While we lose the edge-winding information of the

fundamental domain (z = w = 1 in (3.31)), the same combinatorics that allows us to

obtain the perfect matchings is still present.
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• There are D-terms for each of the U(1) factors in the quiver, which take the form

Di = −g2i

(∑
e

die|Xe|2 − ξi

)
, (3.47)

where ξ ∈ Rg are Fayet-Iliopoulos (FI) parameters. The D-term charge matrix QD ∈
M(g−1)×c(Z) is obtained by solving the matrix equation,

QDP
T = d̂ , (3.48)

where we define the reduced incidence matrix d̂ ∈ M(g−1)×E(Z) by subtracting all

remaining rows of d by one of the rows, e.g. d̂ie = die − dGe , i ∈ {1, . . . , g − 1}. This
matrix encodes the charges of the bifundamentals under the faithfully acting gauge

group of the quiver U(1)g/U(1).

• We can combine QF and QD in a total charge matrix Qt ∈M(c−3)×c(Z)

Qt =

(
QF

QD

)
. (3.49)

Then, the 3× c matrix

Gt = (kerQt)
T (3.50)

gives a collection of c lattice points in Z3 representing the charges of the perfect matching

variables under the U(1)3 toric symmetries. For the model to describe D3-branes probing

a toric Calabi-Yau the lattice points must be coplanar, so that it can be projectivized

to obtain the toric diagram ∆ ⊂ Z2.

The geometric branch of the moduli spaceMgeom of the 4d N = 1 supersymmetric gauge

theory with abelian gauge group U(1)g coincides with the classical moduli space of the GLSM

introduced above. This is the Kähler quotient by the abelian gauge group with the total

charge matrix Qt

Mgeom = Cc
//

U(1)c−3
Qt

(3.51)

at level ξ = 0, which results in a toric CY3 cone Y. In general, the fast-forward algorithm

allows us to change the basis of fields in such a way that we transform the F-terms into D-term

with zero FI parameters. As a result, a resolution of the cone Y is given by the symplectic

quotient by the moment map

µ(pα)i =

c∑
α=1

(Qt)iα|pα|2 , at some level Ξ =

(
0

ξ

)
. (3.52)
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We stress that while the perfect matching technology is very useful to extract the geometric

branch, it does not provide a general solution of the F -term equations and does not capture

N = 2 Coulomb branches.

3.6 Dualities of brane tilings

3.6.1 Toric-Seiberg duality

Often, different quiver gauge theories, represented by different brane tilings, are related by a

so-called toric duality [50, 52]. This is just a form of N = 1 Seiberg duality [48] for theories

with toric moduli spaces.

A Seiberg duality on a quiver node of rank Nc defines a mutation to a new (dual) node

of rank Nf − Nc, with Nf =
∑

i ̸=cNiAic =
∑

j ̸=cAcjNj guaranteed by the gauge anomaly

cancellation.

In general, Seiberg duality relates an infinite tree of quiver gauge theories duals by allowing

the mutation of any sequence of nodes in the quiver. But in order to guarantee that the

Seiberg dual model is also toric, the ranks Ni = N of the gauge groups in the worldvolume

theory of N regular D3-branes probing a toric CY 3-fold singularity must be unchanged. The

mutated node i that obeys this condition has Nf = 2N , and it corresponds to a square in

the brane tiling. The result of Seiberg duality on square faces is graphically represented in

fig. 3.2.

←→

Figure 3.2: Toric (Seiberg) duality as an operation on the brane tiling. Colored arrows
represent chiral superfield products. Often, one must integrate out massive fields by shrinking

pairs of edges which share a bivalent vertex.

Toric duality connects brane tilings with different field content and superpotential but identical

mesonic moduli spaceMmes. The associated toric diagrams are SL(2,Z) equivalent. However,
the multiplicities of internal points are not the same and this leads to a different IrrF ♭ due

to anomalous U(1) baryonic symmetries. But these can become equivalent if we restrict to

non-anomalous charges [95]. We refer to toric dual brane tilings as toric phases of the same

geometry Y.
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3.6.2 Specular duality

Specular duality [43, 106] is an application of mirror symmetry to brane tilings. It is a

correspondence between a brane tiling on T2 and a brane tiling defined on the mirror curve Σ

of the toric 3-fold Y. A toric Y, which can specified by a convex integer polytope ∆ ⊂ Z2,

has a mirror geometry W defined by the double fibration over the Z plane,

Z = P (z, w) =
∑

(p,q)∈∆

cp,qz
pwq

Z = uv

, (3.53)

for z, w ∈ C× and u, v ∈ C. The complex coefficients cp,q parametrize the complex structure

deformations of W are mirror dual to the Kähler moduli of Y [27]. The mirror curve ΣZ is

a Riemann surface defined by the first equation P (z, w) − Z = 0 and encodes all the toric

geometry information in the Newton polynomial P (z, w) of ∆.

The fiber at the origin, P (z, w) = 0, which we denote simply by Σ, is of particular relevance as

it can be related to the brane tiling on T2 via the untwisting map [43], exemplified graphically

by fig. 3.3.

←→

Figure 3.3: Untwisting map, followed by the identification of punctures with gauge groups.

In the untwisting map, the number of edges and vertices in the tiling remain the same. A given

edge Xab crossed by a zig ηi and a zag ηj is relabeled as Xij . The map acts on the boundary of

a face (gauge group U(N)a), turning it into a zig-zag path η̃a, which has non-trivial homology

on the new tiling. On the other hand, the original zig-zag paths ηi become closed polygon

cycles that wind around punctures of γi of the Riemann surface Σ. The number of punctures

of ΣZ is given by the number of external points B of ∆, which is the same as the number of

zig-zag paths. By itself, the untwisting map leads to closed polygon cycles winding punctures

γi of Σ, usually referred to as a shiver. We need to map the punctures γi with gauge groups

U(N)i to obtain a consistent brane tiling. This is summarized in table 3.1.

Note that the specular duality exchanges B zig-zag paths with g face boundaries and vice

versa, while keeping the number of nodes and edges in the tiling. From Pick’s theorem,
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brane tiling on T2 brane tiling on Σ

zig-zag path ηi face/gauge group U(N)i

face/gauge group U(N)a zig-zag path η̃a

node/term wk, bk node/term wk, bk

edge/field Xab edge/field Xij

Table 3.1: Specular duality mapping

g = 2Area(∆) = B + 2I − 2, it is easy to show that

g(Σ) = g(T2)− B − g
2

= I , (3.54)

i.e. the new consistent tiling is embedded in a Riemann surface of genus equal to the number

of internal points I in the toric diagram ∆ of the original model. In this paper, we will

consider only models with reflexive toric diagrams, with g(T2) = g(Σ) = 1, a special case

where specular duals also have reflexive toric diagrams (see [106] for the full web of duals).





Part II

Study of del Pezzo geometries





Chapter 4

Zig-zag deformation of toric

(pseudo) del Pezzo theories

The focus of this work is to classify and study a special class of superpotential deformations

which relate worldvolume theories of D3-branes probing local toric (pseudo) del Pezzo

geometries [107], which have reflexive toric diagrams [55]. To do so, we perform a series of

operations on the brane tiling, which encodes the effect of relevant (or marginal, in one case)

superpotential deformations. The deformation violates the toric condition, breaking the U(1)3

mesonic symmetry to a U(1)2 subgroup. The extra term δW in the deformed superpotential

Wdef =W + δW (4.1)

have UV superconformal R-charge, Rsc [δW ] ≤ 2 so that the deformation is relevant or

marginal. We are mostly interested in special deformations which have an extra emergent

U(1) symmetry in the infrared, restoring the full toric U(1)3 symmetry.

We present a general framework for deformations of brane tiling models by an operator Oη

fully defined by a zig-zag path η. We call Oη a zig-zag operator and the superpotential

deformation a zig-zag deformation. Firstly, we will work through some examples of relevant

deformations of this type by manipulating the gauge theory, integrating out any fields which

become massive after the deformation and finding field redefinitions which lead to a new toric

superpotential. We will also give an interpretation of the zig-zag deformation in terms of

brane tilings, extending [108], as well as analyze it from the perspective of the chiral ring and

the moduli space of vacua. Finally, we will present the main argument, which holds for all Oη

of zig-zag paths η of length 4. This is verified for all reflexive geometries. The full details can

be found in fig. 1.4 and appendix A.

73
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4.1 Zig-zag operator

The chiral ring of mesonic operators, and the mesonic branch of the moduli space of vacua

which is obtained by replacing chiral operators by their VEVs, are important for finding

the operators that trigger deformations that lead to new toric models. We reviewed in the

previous section the notions of geometric branch of the moduli space, which is isomorphic to

the geometry Y probed by a regular brane, and of N = 2 Coulomb branches emanating from

loci of non-isolated singularities of Y, which are probed by N = 2 fractional branes.

In the brane tiling, N = 2 fractional branes are associated to strips of faces in the tiling

bounded by zig-zag paths with the same homology class [98]. If Y has a non-isolated Ak

singularity (k ≥ 1), there is a subset of zig-zags {η0, η1, . . . , ηk} in the same homology class,

which divide the brane tiling into k+ 1 strips, corresponding to k+ 1 N = 2 fractional branes

that a regular brane can split into. For each strip, we have a mesonic operator in the chiral

ring, which is a loop in the tiling with opposite winding numbers to the zig-zag paths at

the boundary of the strip. In all the tilings we consider (and presumably in general) it is

always possible to find a place along the strip where it is exactly one face wide. Taking that

face as a start and end point of a path winding along the strip, and using that homotopic

open paths are F-term equivalent [109], it follows that for each strip there is exactly one

meson generator in the chiral ring with mesonic charges equal and opposite to the winding

numbers of the boundary zig-zags. Thus, for each Ak singularity, there are k + 1 inequivalent

mesons {M0,M1, . . . ,Mk} in the chiral ring, since by the zig-zag path construction there are

no F-terms connecting them. This is exemplified in fig. 4.1.

Figure 4.1: Tiling of PdP3c phase B, focusing on the two parallel zig-zag paths and N = 2
fractional branes strips associated to the most relevant (lowest Rsc) zigzag deformation. The
red edge, X2

53, indicates the F-term equation that relates the two non-zero winding mesons of
the strip in the chiral ring, i.e. X31X15X

1
53 ≃ X34X45X

1
53.
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For each zig-zag path separating two strips, say η, there are two inequivalent mesonic generators

OL
η ̸≃ OR

η in the chiral ring which have the same charges:

OL
η = Xei1

· · ·Xeir , OR
η = Xej1

· · ·Xejs , (4.2)

where cL = ei1 · · · eir and cR = ej1 · · · ejs correspond to the 1-cycles in the tiling running

through all the edges on the immediate left and right sides of the oriented zig-zag path η.

The mesonic operators OL
ηj and OR

ηj take equal VEV in the geometric branch Mgeom (we

write OL
ηj ∼ O

R
ηj ), but different VEVs in a N = 2 Coulomb branchMN=2 (hence OL

ηj ̸≃ O
R
ηj ).

Additionally, for a set of zig-zag paths in the same homology class {η0, η1, . . . , ηk}, ordered by

adjacency in the brane tiling, we have OR
ηj ≃ O

L
ηj+1

(≃Mj+1). These two chiral mesons can

be forced to become equivalent in the chiral ring by turning on a superpotential deformation

δWη = µ
(
OL

η −OR
η

)
≡ µOη . (4.3)

We remark that the zig-zag operator Oη can be written as

Oη ≡
1∏

k=n

∂2W

∂η2k∂η2k−1
− (−1)n

1∏
k=n

∂2W

∂η2k+1∂η2k
, (4.4)

where ηi = η(i mod 2n) are the 2n chiral fields that represent the zig-zag closed path. In this

definition, we assume that η1 is an edge that goes from a black to white node along η. The

operation ∂
∂ηi

is a cyclic derivative with respect to paths in the quiver, defined as

∂

∂Xei

Tr(Xe1 . . . Xen) = Xei+1 . . . XenXe1 . . . Xei−1 ,

∂

∂Xei

Xe1 . . . Xen = Xei+1 . . . Xei−1 if i = 1, n ,

(4.5)

otherwise undefined. The (−1)n factor on eq. (4.4) takes into account that the right-side

second derivative acts on black nodes in the tiling. Note that the chiral mesons defining Oη

are oriented in the opposite direction to η.

In a theory with four supercharges, a chiral operator O which acquires a VEV in the

full supersymmetric moduli space cannot be nilpotent in the chiral ring, because VEVs

of chiral operators factorize. For a theory with a U(1)R symmetry and a superpotential

Wdef ≡W + δW ≡W + µO, where ∂
∂µW = 0, one can show that

〈
∂

∂µ
Wdef

〉
= ⟨O⟩ = 0 , (4.6)

where ⟨·⟩ is the expectation value in a supersymmetric vacuum. In the chiral ring of the

deformed theory the operator O must be nilpotent, i.e., On ≃ 0 for some nilpotency index n.
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This argument was made for SCFTs with marginal deformations in [110], but it extends to

any theory with a U(1)R preserving deformation, marginal or not.

In our case, we have that
〈
OL

η

〉
=
〈
OR

η

〉
after the deformation, some N = 2 fractional brane

moduli are lifted, and the order of non-isolated Ak singularity decreases. For the toric theories

that we study in this paper, the deformed F-terms force OL
η ≃ OR

η in the chiral ring, which

means that the nilpotency index is 1.

4.2 Mesonic moduli from chiral rings

In this section we consider the mesonic branch of the moduli space Mmes, hence we take

abelian gauge group U(1)g with vanishing FI parameters, and we focus in particular on its

geometric componentMgeom, which describes the Calabi-Yau cone Y . Since we are interested

in deformations that violate toricity, we will not use the fast-forward algorithm or plethystics

[94, 111], and instead derive the algebraic description explicitly. For this description, it

is convenient to study the parent space obtained by relaxing the D-term constraints, i.e.,

the master space F ♭ of the abelian theory [92–95]. Geometrically, this is a non-compact

CYg+2 cone, which consists of 3-dimensional resolved Calabi-Yau cones Ỹξ fibered over a

(g − 1)-dimensional base space parameterized by FI parameters ξ (with
∑g

i=1 ξi = 0). The

fiber at ξ = 0 is the singular cone Y . Algebraically, the master space is described by the zero

locus of a set of homogeneous polynomials in an ambient affine space. For N = 1, eq. (3.33)

is simply

F ♭ = Specm
(
k[Xe1 , . . . , XeE ]/⟨∂XW ⟩

)
, (4.7)

where k = C or k = C[µ±], for a deformation parameter µ.

To obtain the mesonic moduli, we still need to quotient by G = U(1)g. We will do so by

constructing the chiral ring of the abelian theory, i.e. the quotient k[Mc1 , . . . ,Mcs ]/Ichiral of

the polynomial ring of a finite set of mesonic generators {Mc}, modulo the chiral ideal Ichiral.

The ideal Ichiral captures F-term equations in the GC-invariant sector of the master space

coordinate ring k[Xe1 , . . . , XeE ]/⟨∂XW ⟩. The chiral ring can be obtained via

Ichiral = ker
(
ΦW : k[Mc1 , . . . ,Mcs ] −→ k[Xe1 , . . . , XeE ]/⟨∂XW ⟩

)
, (4.8)

where the homomorphism ΦW is trivially constructed by assigning a mesonic generator Mc

(no relations) to a cycle c = e1e2 · · · en in the quiver

ΦW (Mc) = Xe1Xe2 . . . Xen , (4.9)

IfW = 0, the image im(ΦW ) is just the ring ofGC-invariants k[Xe1 , . . . , XeE ]
GC and ker(ΦW ) =

Ichiral consists of relations due to compositions of cycles, which follow purely from gauge



4. Zig-zag deformation of toric (pseudo) del Pezzo theories 77

invariance. In the general case, ΦW is trivially defined by the inclusion k[Xe1 , . . . , XeE ]
GC ↪−→

k[Xe1 , . . . , XeE ], mapping generators to quiver cycles that descend to equivalence classes in

im(ΦW ) ⊊ k[Xe1 , . . . , XeE ]/⟨∂XW ⟩. The kernel1 of ΦW is an ideal Ichiral that contains all

the relations between cycles in the abelian quiver up to F-terms. Alternatively, this can be

computed via the elimination of chiral superfield variables {Xe} in an ideal composed of the

F-term relations and the map ΦW that encodes the complexified gauge group orbits, sitting

in the larger base ring k[Mc1 , . . . ,Mcs , Xe1 , . . . , XeE ], i.e.

Ichiral = ⟨∂XW,Mc1 − ΦW (Mc1), . . . ,Mcs − ΦW (Mcs)⟩ ∩ k[Mc1 , . . . ,Mcs ] . (4.10)

This construction is particularly useful if the toric CY3 cone Y has lines of non-isolated

Ak−1 singularities. As we reviewed, in this case the moduli space includes additional N = 2

Coulomb branches, which account for the regular D3-brane splitting into N = 2 fractional

D3-branes which separately probe the locus of non-isolated singularities. For this reason,

the variety associated to the chiral ring k[Mi]/Ichiral may be the union of several irreducible

components, including the three-foldMgeom = Y and several other varieties. These additional

components can be detected via the primary decomposition,

Ichiral = Igeom ∩ J1 ∩ · · · ∩ Jℓ , (4.11)

where the top non-trivial component Igeom is denoted as the geometric ideal. Generally,2 each

component Ji is associated to a single non-isolated Ak−1 singularity, which is freely generated

by k chiral mesons with no relations. These give rise to affine varieties Ck, which intersect Y
at 1-dimensional singular loci. We can identify the geometric branch with the quotient ring

associated to the 3-dimensional non-trivial component of the primary decomposition

Mgeom = Specm
(
k[Mc1 , . . . ,Mcs ]/Igeom

)
. (4.12)

This algorithm is a distilled version of the affine GIT quotient [87, 89, 112], adapted to quiver

gauge theories. We crucially used the fact that for a quiver with G = U(1)g the typical

unruliness of the chiral ring is kept in check by the commutativity and finiteness of the mesonic

generators.

4.3 RG flows between toric del Pezzos

The superpotential deformed by relevant terms violates the toric condition and breaks the

mesonic and R-symmetries down to a U(1)2 subgroup. We will be mostly interested in RG

1This can be easily obtained via computational algebraic geometry software, e.g. Macaulay2 [57].
2One brane tiling, PdP5 phase B [55], is found to have an additional branch, parametrized by chiral mesons

with opposite winding in the tiling. We conjecture that this is related to the fact that this tiling contains two
oppositely oriented strips, one of which contains the other.
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flows with toric endpoints, namely with an emergent U(1)3 symmetry in the IR (we will

discuss an IR endpoint which is a marginal deformation of a toric model in section 4.4). By

construction, the deformation does not change the number of non-anomalous and anomalous

baryonic symmetries (of the SU(N)g theory). If the IR endpoint of the RG flow is toric,

its toric diagram must have the same number of internal points I and external points E as

the toric diagram of the undeformed UV theory, since the rank of the anomalous baryonic

symmetry is 2I and the rank of the non-anomalous baryonic symmetry is E − 3 for toric

models [35, 36, 94, 100]. In geometric terms, the deformation does not change the degree of

the del Pezzo surface.

We first integrate out any massive bifundamentals appearing in superpotential terms of the

form µXabXba, by imposing the F-term equations

∂Wdef

∂(Xab, Xba)
= 0 , (4.13)

which modifies the superpotential as follows:

µXabXba +Xabgba(X)− fab(X)Xba + · · · 7−→
1

µ
fab(X)gba(X) + · · · (4.14)

The resulting superpotential does not usually make manifest the toric symmetry, but a

particular set of field redefinitions may restore the toric condition. For the case of gauge

theories resulting from reflexive polytopes, we were able to restore the desired form by field

redefinitions of degree up to 2,

Xk
ij =

∑
m

αm
ij X̃

m
ij +

∑
l,m,n

βknmilj X̃m
il X̃

n
lj , (4.15)

for some coefficients αm
ij , β

knm
ilj such that αk

ij ≠ 0. The coefficients in the non-trivial field

redefinitions are proportional to 1/µ, and the Jacobian of this change of variables obeys (up

to an overall sign)

det

(
∂X

∂X̃

)
= µ(Ei−Ef−Vf)/2 , (4.16)

where Ei is the number of bifundamentals of the initial model and Vf , Ef denote respectively

the number of superpotential terms and bifundamentals of the final model after integrating

out massive degrees of freedom. The resulting low-energy superpotential can be written as

Wlow(X) =
1

µ
W ′(X̃) , (4.17)

with W ′ toric. The remaining power of µ can be cancelled by a complexified U(1)R

transformation X̃e 7−→ µR[X̃e]/2 X̃e on all bifundamentals, which cancels the µ−Vf/2 factor in

the Jacobian. Note that the power of µ in the combined Jacobian is given by (Ei − Ef)/2.
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4.3.1 PdP3c to PdP3b

Take for example one of the toric phases of the Pseudo del Pezzo 3c model (phase B in [55]),

with superpotential

W
(B)
PdP3c

= X12X23X31 +X25X56X62 +X26X64X42 +X34X45X
2
53

+X15X
1
53X36X61 −X12X26X61 −X15X

2
53X31 −X23X36X62

−X45X56X64 −X25X
1
53X34X42 ,

(4.18)

and with tiling, quiver and toric diagram in fig. 3.1. It is useful to list the generators of the

mesonic branch by enumerating all the chiral mesons3 in the quiver, along with their mesonic

U(1)3 charges, and organize them by their GSLM decomposition using eq. (3.44). This leads

to table 4.1. Many chiral mesons are F-term equivalent, so we can pick one representative of

Gen. (pα) Generator (Xe) U(1)2 U(1)Rsc

p22p3gs X26X62 ∼ X31X15X
1
53 ≃ X34X45X

1
53 (0, -1) 1.577...

p23p
2
4fs X15X56X61 ∼ X23X34X42 (1, 0) 1.690...

p1p2p3p4fgs
X12X23X31 ≃ X25X56X62 ≃ X25X

1
53X34X42 ≃

X34X45X
2
53 ≃ X12X26X61 ≃ X15X

1
53X36X61 ≃

X15X
2
53X31 ≃ X23X36X62 ≃ X45X56X64 ≃ X26X64X42

(0, 0) 2

p21p
2
2fg

2s X36X64X45X
1
53 ≃ X36X62X25X

1
53 ≃ X31X12X25X

1
53 (-1, 0) 2.309...

p21p3p
2
4f

2gs
X23X36X64X42 ≃ X25X56X64X42 ≃ X25X

2
53X34X42 ≃

X15X
2
53X36X61 ≃ X12X23X36X61 ≃ X12X25X56X61

(0, 1) 2.422...

p31p2p4f
2g2s

X36X64X45X
2
53 ≃ X25X

2
53X36X62 ≃ X12X25X

2
53X31 ≃

X25X
1
53X36X64X42 ≃ X12X25X

1
53X36X61

(-1, 1) 2.732...

p41p
2
4f

3g2s X25X
2
53X36X64X42 ≃ X12X25X

2
53X36X61 (-1, 2) 3.154...

Table 4.1: Table of generators of the mesonic moduli space for PdP3c phase B, where
f =

∏2
i=1 fi, g =

∏2
i=1 gi and s =

∏7
i=1 si (perfect matchings on fig. 3.1). The superconformal

R-charge U(1)R can be obtained via a-maximization [99–101].

each equivalence class and define the map ΦW as

A1 : X26X62 B2 : X31X15X
1
53 B8 : X15X56X61

B5 : X23X34X42 B1 : X45X56X64 C1 : X36X64X45X
1
53

C4 : X25X56X64X42 C2 : X36X64X45X
2
53 D3 : X25X

2
53X36X64X42

(4.19)

The affine cone over PdP3c contains two non-isolated A1 singularities. The corresponding

zig-zag deformations are triggered by differences of relevant chiral mesons in the first two

rows of table 4.1, which can be further corroborated by the primary decomposition of the

3For N = 1, this corresponds to all indecomposable paths. For N > 1 these are single trace operators.
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chiral ideal Ichiral = Igeom ∩ J1 ∩ J2,

Igeom = ⟨B5 −B8, A1 −B2, C
2
2 − C1D3, C2C4 −B1D3, B1C2 −B2D3, C

2
4 −B8D3,

C1C4 −B2D3, B1C4 −B8C2, B8C1 −B2C4, B1C1 −B2C2, B
2
1 −B2C4⟩

J1 = ⟨D3, C2, C4, C1, B1, B5, B8⟩

J2 = ⟨D3, C2, C4, C1, B1, A1, B2⟩ .

(4.20)

As expected, the two components associated to the ideals J1 and J2 are parameterized by the

chiral mesons that define the N = 2 fractional brane strips, which intersect the geometric

branch at B5 = B8 and A1 = B2, respectively.

Figure 4.2: Lattice of the U(1)2 mesonic flavor charges of the generators of PdP3c phase B
(see table 4.1).

Of the two relevant deformations only the most relevant (smaller Rsc) leads to a new toric

model in the IR.4 A quick inspection of the tiling in fig. 4.1 or table 4.1 reveals that we have

two zig-zag deformations

Oη5 = X26X62 −X31X15X
1
53

Oη6 = X34X45X
1
53 −X26X62 ,

(4.21)

which are equivalent due to chiral relations, Oη5 +Oη6 ≃ 0. Therefore, we can just pick the

RG flow triggered by the superpotential deformation

δW = µOη5 = µ
(
X26X62 −X31X15X

1
53

)
. (4.22)

Adding this term modifies the F-term equations, forcing the relation A1 ≃ B2 in the chiral ring.

The deformation lifts the component J1 and removes the A1 singularity which is intersected

4The deformation by the next relevant zig-zag operator Oη = X15X56X61 −X23X34X42 does not lead to a
toric IR fixed point. Nevertheless, it fits into a more general picture that relates zig-zag deformations of two
toric models, see section 4.5.
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by it. The chiral ring is now given by the relations I ′chiral = I ′geom ∩ J ′
2, where

J ′
mes = ⟨B5 −B8, C2C4 −B1D3, C1C4 −B2D3, C

2
2 − C1D3, B1C2 −B2D3,

B1C1 −B2C2, B
2
1 −B2C4, C

2
4 −B8D3 + µB1C4,

B8C2 −B1C4 − µB2C4, B2C4 −B8C1 + µB1B2⟩

J ′
2 = ⟨D3, C4, C2, C1, B2, B1⟩ .

(4.23)

There is a slight abuse of notation here. While the relations hold for the choice of representatives

in eq. (4.19), there is a splitting in the F-term equivalence classes and the generators of the

chiral ring are now given by

B2 : X26X62 ≃ X1
53X34X45 ≃ X15X

1
53X31

B1 : X56X64X45 ≃ X2
53X34X45 ≃ X26X64X42 ≃ X25X56X62 ≃

≃ X15X
2
53X31 ≃ X25X

1
53X34X42

C4 : X25X56X64X42 ≃ X25X
2
53X34X42

B1 + µB2 : X23X36X62 ≃ X12X26X61 ≃ X12X23X31 ≃ X15X
1
53X36X61

C4 + µB1 : X23X36X64X42 ≃ X15X
2
53X36X61 ≃ X12X25X56X61

C4 + 2µB1 + µ2B2 : X12X23X36X61

(4.24)

and

C1 : X
1
53X36X64X45 ≃ X25X

1
53X36X62 ≃ X12X25X

1
53X31

C2 : X
2
53X36X64X45 ≃ X25X

2
53X36X62 ≃ X12X25X

2
53X31 ≃

≃ X25X
1
53X36X64X42

D3 : X25X
2
53X36X64X42

C2 + µC1 : X12X25X
1
53X36X61

D3 + µC2 : X12X25X
2
53X36X61 .

(4.25)

The generators B5 and B8 remain represented by the same quiver cycles in (4.19). Note

that, from the point of view of the PdP3c theory, the mixing of mesonic generators upon

deformation occurs in the direction of the winding number (1, 0) of the zig-zag η5. This

matches the mesonic charges of the spurionic parameter µ in the superpotential deformation

µ(A1 −B2), which determine the pattern of global symmetry breaking.5

If we integrate out the massive fields X26 and X62, by imposing their F-term equations,

X26 =
1

µ
(X23X36 −X25X56) , X62 =

1

µ
(X61X12 −X64X42) , (4.26)

5Indeed, µ has U(1)3 charges (1, 0, 0), where the first two charges are mesonic, and the last is the R-charge
under the U(1)R symmetry that assigns charge 2 to all mesonic generators. The R-charge is forgotten when
the lattice of generators is projected from Z3 to Z2 as in fig. 4.2.
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the result is not explicitly toric, but we can make it so (up to an overall 1/µ) by the field

redefinitions

X31 7−→ −
1

µ
X31 +

1

µ
X36X61 X1

53 7−→
1

µ
X1

53 −
1

µ
X2

53

X45 7−→
1

µ
X45 −

1

µ
X42X25

(4.27)

as described in (4.15). Using the methods described previously, we can identify the final result

as toric phase B of the cone over the Pseudo del Pezzo 3b [55], with superpotential

W
(B)
PdP3b

= X15X
1
53X31 +X34X45X

2
53 +X12X25X56X61 +X23X36X64X42

−X12X23X31 −X45X56X64 −X15X
2
53X36X61 −X25X

1
53X34X42 .

(4.28)

We can use the fast-forward method and zig-zag paths to read off the changes in the toric

diagram. The removal/reduction of the order of the non-isolated singularity is reflected in the

fact that the number of points in the side of the toric diagram orthogonal to the zig-zag’s

external (p, q)-leg is reduced by one. Consequently, the number of extremal points in the toric

diagram increases by one.

(a) (b)

Figure 4.3: (a) Lattice of U(1)2 mesonic flavor charges of the generators and (b) toric
diagram of PdP3b.

The top coherent primary component I ′mes does not manifest a U(1)3 toric symmetry like

in (4.20) but, similarly to above, we can find a redefinition that makes the toric symmetry

manifest. We can use (4.27) to construct the ring isomorphism,

B1 7−→
B1 − C4

µ
B2 7−→

B2 − 2B1 + C4

µ2

C2 7−→
C2 −D3

µ
C1 7−→

C1 − 2C2 +D3

µ2

(4.29)
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which is defined for µ ̸= 0. Then the relations among mesonic moduli take the toric form

I ′geom = ⟨B8 −B5, B
2
1 −B5C2, B1C4 −B5D3, B1B2 −B5C1, B2C4 −B5C2,

C1C4 −B1C2, C2C4 −B1D3, B2D3 −B1C2, B2C2 −B1C1, C
2
2 − C1D3⟩ .

(4.30)

From the superpotential (4.28), we can find the geometric component of the moduli space of

the complex cone over PdP3b, which is isomorphic to I ′geom (as ring quotients). We can assign

U(1)2 charges to each generator consistently with the toric relations in I ′geom, obtaining the

lattice diagram in fig. 4.3a. Note that for geometries described by reflexive polytopes the

lattice of generators is polar dual to the toric diagram.

Zig-zag move in the brane tiling

It is also possible to obtain the final brane tiling by a graph deformation of the initial brane

tiling. This builds on [108], where it was understood that a specific degenerate move of the

vertices and edges of the tiling along a zig-zag path described the effect of a mass deformation

of Klebanov-Witten type [22]. The definition of that move required all the vertices on the

zig-zag path associated to the deformation to be trivalent. In order to apply the same move to

the more general deformations that we consider in this paper, we need to resolve the vertices

on the zig-zag path so that they become trivalent, which makes the tiling locally similar to

that of C2/Zk × C, in a neighborhood of the zig-zag path. This is possible by integrating in

fields [113], i.e. introducing pairs of bifundamental fields with a superpotential mass term,

which upon imposing their F-term equations (or “integrating out” as in (4.14)) leads back to

the original model. In the brane tiling, this corresponds to replacing a white/black node with

a total of k + l > 3 incident edges by two white/black nodes with k + 1 and l + 1 incident

edges, connected by a 2-valent black/white node in between. We can always arrange to have

k = 2 (or l = 2) for the vertices that remain on the zig-zag path after this process, after which

the brane tiling move of [108] can be applied.

For example, in the case of PdP3c phase B in fig. 4.1 and the zig-zag path associated to the

deformation (4.22), we only need to resolve one of the nodes in the zig-zag path, which has

the following local effect on the superpotential

X15X
1
53X36X61 7−→ −X ′

13X
′
31 +X15X

1
53X

′
31 +X ′

13X36X61 , (4.31)

where primed fields X ′
13, X

′
31 have been integrated in. In the new tiling (fig. 4.4), we see that

this introduces a new meson X ′
13X31 in the “N = 2 fractional brane strip”, which is made of

massive chirals and is F-term equivalent to X31X15X
1
53 ≃ X34X45X

1
53 (see table 4.2).
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Gen. (pα) Generator (Xe) U(1)2 U(1)R

p22p3gs X26X62 ∼ X ′
13X31 ≃ X31X15X

1
53 ≃ X34X45X

1
53 (1, 0) 1.577...

Table 4.2: Partial table of generators of the mesonic moduli space for the integrated in
PdP3c phase B model.

This allows us to rewrite the deformation (4.22) as the superpotential mass deformation

δW ′ = µ
(
X26X62 −X ′

13X31

)
. (4.32)

We can follow the same procedure as before and restore the U(1)3 toric symmetry by the field

redefinitions

X45 7−→
1

µ
X45 −

1

µ
X42X25 , X1

53 7−→
1

µ
X1

53 −
1

µ
X2

53 , (4.33)

which leads to the same superpotential as (4.28), with the relabelling X ′
31 ↔ X31.

Figure 4.4: Tiling of PdP3c phase B with integrated-in node along the deformation zig-
zag (yellow), highlighting the two possible (purple/blue) zig-zag moves that realize the

deformation.

The result of the deformation and field redefinitions can be visualized in the brane tiling as

the folding of the edges involved in the deformation onto the zig-zag path η = X12X23X36X61.

To perform the move that leads to the endpoint tiling, we select alternating edges of a zig-zag

path (after integrating in if necessary to ensure that all vertices are trivalent). Then, every pair

of edges directly connected to the zig-zag edge on each side are folded onto it by identifying

nodes of the same color, and consequently edges, as indicated by the arrows in figure 4.4. We

call this operation on the brane tiling a zig-zag move.
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Figure 4.5: Tilings and toric diagrams of PdP3b phase B, obtained by applying to the tiling
of figure 4.4 the zig-zag move depicted by the purple arrows (a) and blue arrows (b), keeping

the original fundamental domain fixed.

There are two ways to do this, which lead to equivalent results which differ by a SL(2,Z)
transformation, see fig. 4.4 and fig. 4.5. The zig-zag path reverses its direction (fig. 4.5)

because all the edges that enter the mass deformation (4.32) in the brane tiling are integrated

out [108]. A key observation is the fact that the zig-zag path itself is unchanged as a cycle in

the quiver, but it reverses its winding on T2.6 Additionally, all zig-zags parallel to the one

triggering the deformation also remain unaffected.

4.3.2 Higher order non-isolated singularities

Up to this point, we established a solid example of a toric-to-toric flow triggered by a zig-zag

deformation of the form (4.3), with mesonic operators M0, M1, given by nonhomotopic paths

on the immediate sides of a single zig-zag path in the brane tiling. For geometries with

non-isolated singularities of higher order k, we can generalize to

δW = µ
∑
i∈I
Oηi s.t.

k∑
i=0

Oηi ≃ 0 . (4.34)

For A1 singularities, the two possible choices for a zig-zag deformation only differ by a sign.

The deformation removes the non-isolated singularity and lifts the associated N = 2 fractional

brane component from the moduli. For A2 singularities, we may have three orientations to

choose based on the zig-zags {η0, η1, η2}, but all choices still amount to deforming along a

single operator Oηi . However, the same is not true for k > 2.

Specifically for reflexive toric geometries, there is a single example where an A3 singularity is

present: the orbifold C3/(Z4×Z2) quotiented with action (1, 0, 3)(0, 1, 1). When a regular D3-

6This works for length 4 zig-zags and is a pattern throughout this work.
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Figure 4.6: Tiling of C3/(Z4 × Z2) (1, 0, 3)(0, 1, 1), with emphasis on the zig-zag paths
associated to the non-isolated A3 singularity.

brane is on the locus of the A3 singularity, it can split into four N = 2 fractional branes which

individually probe the non-isolated singularity. In the worldvolume theory, this fractional

brane branch is parameterized by the expectation value of four mesonic operators. By the

correspondence between zig-zag paths and superpotential deformations, we have the relevant

zig-zag operators

Oη5 = X12X21 −X34X43

Oη6 = X34X43 −X56X65

Oη7 = X56X65 −X78X87

Oη8 = X78X87 −X12X21

, (4.35)

with all conformal R-charges equal, Rsc [Oη] = 4/3. Taking any one of these operators as the

deformation δW will trigger a flow to the toric phase A of L1,3,1/Z2 (0, 1, 1, 0) (detailed in

appendix A.1.7), which is expected from effects of a single zig-zag deformation on the initial

tiling topology.

We can also trigger a double zig-zag deformation of C3/(Z4 × Z2) by reversing two parallel

zig-zag paths in the tiling simultaneously. This leads to the different toric phases of PdP5

(flows A.1.8). If we reverse two non-adjacent zig-zag paths, we obtain phase A of PdP5 [55].

There are two possible combinations that lead to the same operator, up to an overall sign,

δW = µ (Oη5 +Oη7)

= µ (X12X21 −X34X43 +X56X65 −X78X87)
(4.36)

The resulting superpotential from this deformation, after integrating out massive fields,

immediately obeys the toric conditions, up to a 1/µ factor that can be removed by a

complexified R-symmetry transformation of the fields. From the original tiling, it is possible

to perform the two zig-zag moves simultaneously as zig-zag paths (and adjacent edges) do not

overlap, as described previously in fig. 4.4. The simultaneous reflection of the zig-zag paths of
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the same homology through a double deformation splits an A3-type singularity splits into two

of A1-type with associated zig-zags of opposite homology class.
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Figure 4.7: Brane tiling of PdP5 phase A, showcasing the zig-zag paths of the parent model
in fig. 4.6 and the reversed zig-zag paths after the deformation.

On the other hand, if we reverse two adjacent parallel zig-zag paths, we obtain phase B of

PdP5. The four possible combinations result in two possible deformations:

δW = µ (Oη5 +Oη6) = µ (X12X21 −X56X65) (4.37)

δW = µ (Oη6 +Oη7) = µ (X34X43 −X78X87) (4.38)

Contrasting with the previous deformation, PdP5 phase B still contains 2-cycles in the quiver.

After integrating the massive fields in the deformed superpotential we still need to apply a

field redefinition to these vector-like pairs in order to restore the U(1)3 toric symmetry. For

the first deformation in (4.37), we apply

X34 7−→ −
1

µ
X34 +

(
1

µ
− β1

)
X31X14 + β1X36X64

X43 7−→ −
1

µ
X43 +

(
1

µ
− β1

)
X45X53 + β1X42X23

X78 7−→
1

µ
X78 +

(
− 1

µ
− β2

)
X72X28 + β2X75X58

X87 7−→
1

µ
X87 +

(
− 1

µ
− β2

)
X86X67 + β2X81X17

, (4.39)

where the parameters β1, β2 ∈ C are free, as they cancel out in the superpotential. A similar

redefinition applies for the second case (4.38). The mesonic moduli and N = 2 fractional

branes for both deformations are isomorphic to the phase A case.

We note that for double zig-zag deformations that are adjacent in the tiling we need an

addendum to our prescription for the brane tiling move: besides requiring that the nodes on
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the zig-zag are 3-valent as before, we must also ensure that adjacent edges do not overlap for

the multiple zig-zags involved in the deformation. We can do so by integrating in fields to

replace an edge in the tiling by three edges connected via bivalent nodes, as exemplified in

fig. 4.8a. After resolving the overlaps, the same zig-zag move as before can be performed. In5

6
1

2

3

4

5

6

7

8

1

2

3

4
7

8

6
1

5

6

7

8

1

2

5

7

8

2

(a)

5

6

1

3

4

5

6

7

8

1

2

3

4
7

8

2

5

6

1

5

6

7

8

1

2

7

8

2(b)

Figure 4.8: Zig-zag move to obtain PdP5 Phase B (b) from the integrated-in edges
C3/(Z4 × Z2) model (a).

particular, the result of the deformation (4.37) and the move described above results in the

tiling in fig. 4.8b.

4.4 RG flow to a nontoric geometry: from L1,3,1/Z2 to a

marginal deformation of PdP5

Another possibility for deformations is a flow triggered by a relevant zig-zag operator, which

flows not to a toric fixed point but to an exactly marginal deformation thereof. We discuss

this case since it reveals the general theory of deformations interpolating between toric quiver

gauge theories.

In the previous section, the geometry of the real cone over L1,3,1/Z2 (0, 1, 1, 0) was reached by

triggering a single zig-zag deformation of C3/(Z4 × Z2) (1, 0, 3)(0, 1, 1). This deformation lifts

one N = 2 Coulomb branch modulus, flowing to a geometry with an A2 singularity. We have

also seen that adding a pair of zig-zag operators to the orbifold superpotential the field theory

flows to PdP5, this time lifting the non-isolated A3 singularity into two A1 singularities. We

would then expect that, by turning on a relevant zig-zag operator of L1,3,1/Z2, we would be

able to flow to PdP5.

The L1,3,1/Z2 model has 3 relevant zig-zag operators associated to its A2 non-isolated

singularity, with Rsc = (10− 2
√
7)/3. In the toric phase A in fig. 4.9a, they take the form

Oη6 = X78X87 −X14X42X23X31

Oη7 = X14X42X23X31 −X56X65

Oη8 = X56X65 −X78X87

η6 = X17X72X28X81

η7 = X36X64X45X53

η8 = X58X86X67X75

. (4.40)
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Figure 4.9: Brane tilings of phase A (a) and phase B (b) of L1,3,1/Z2 (0, 1, 1, 0). The two
tilings are Seiberg dual by mutating node 4.

The obvious first choice is the deformation Oη8 , which according to our aforementioned

zig-zag move should end up in PdP5 phase A, in fig. 4.7. By integrating out the massive

fields {X56, X65, X78, X87} and redefining {X75, X86} −→ {µX75, µX86}, the resulting

superpotential is

W
(A)
PdP5

+
1

µ
O′

η8 , (4.41)

where O′
η8 = X17X72X28X81 − X36X64X45X53 is the operator generated by the reversed

zig-zag η8 (same), now obtained from the superpotential W
(A)
PdP5

. We conclude that the

deformation leads to an exactly marginal deformation of the PdP5 phase A brane tiling, since

all its zig-zag operators O′
η have Rsc = 2 and are easily seen to be exactly marginal (e.g by

computing the single trace contribution to the superconformal index [114]). Only in the limit,

µ −→∞ we reach a point in the conformal manifold describing a toric SCFT. Similarly, the

relevant deformations by operators Oη6 , Oη7 also flow to a marginal deformations O′
η6 , O

′
η7 of

PdP5 phase B. Note that {η6, η7, η8} are the same paths before and after the deformation, no

matter which zig-zag we choose to reverse.

For L1,3,1/Z2 (0, 1, 1, 0) phase B, the zig-zag operators Oη in fig. 4.9b

Oη6 = X78X87 −X12X23X31

Oη8 = X46X65X54 −X78X87

(4.42)

both trigger flows to marginal deformations of PdP5 phase C. An interesting case is the

deformation associated to the zig-zag η7

Oη7 = X12X23X31 −X46X65X54 η7 = X15X53X36X62X24X41 , (4.43)
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since we were not able to apply the previous techniques to find a way to classify the endpoint

of this flow as a toric fixed point or a marginal deformation thereof. Note that, contrary to all

other deformations in L1,3,1/Z2 (0, 1, 1, 0) phase A (and all other shown above), this zig-zag

path η7 has length 6 instead of 4 due to the toric/Seiberg duality. We will see this difference

play a crucial role in the classification of zig-zag deformations.

4.5 Zig-zag deformation under Mirror Symmetry

Now that we have considered what happens for all possible zig-zag deformations of reflexive

models, we will make a general statement to summarize the results, and we will also present

how these are connected to the mirror geometries, more specifically, to the tilings of the mirror

curve Σ obtain by specular duality [106], making connection with the work of [115].

In the previous section and in appendix A, we studied all possible deformations by zig-

zag operators Oη of toric quiver gauge theories associated to reflexive toric diagrams, with

emphasis on relevant and exactly marginal deformations. The common threads we found can

be summarized as follows:

• Whenever the zig-zag η generating a relevant Oη had length 4, we could relate the

deformation of the given toric quiver gauge theory (Q,W ) with quiver Q and

superpotential W , to another toric model (Q′,W ′) in this class (or an exactly marginal

deformation thereof).7

• The zig-zag η is reversed in the endpoint model (Q′,W ′), and is described by the same

closed path in the quiver. However, the latter is a coincidence of length 4 zig-zags. If

we consider PdP3c/Z2 by extending the tiling in fig. 4.4 along the zig-zag, the brane

tiling move still reverses the zig-zag, but leads to a different cycle η′ in Q′.

• Deforming a UV toric model (Q,W ) by a relevant zig-zag operator Oη triggers an RG

flow that approaches another toric model (Q′,W ′) in the IR from an irrelevant/marginal

direction O′
η′ . For example, in the previously discussed deformation of PdP3c phase B

for the choice of zig-zag path η5 = X12X23X36X61 = η′5, we can find field redefinitions

such that

W
PdP

(B)
3c

+ µOη5 −−−−−−−−−−−−−−−−−−−−−→
X31 7−→− 1

µ
X31+X36X61

X23 7−→µX23 , X61 7−→µX61

W
PdP

(B)
3b

+
1

µ
O′

η′5 (4.44)

We were able to find additional field redefinitions resulting in the toric fixed point in

(4.27) because the zig-zag operator O′
η′5

= X15X
2
53X31 −X25X56X64X42 ≃ 0 under the

7Recall that for the deformation (4.43) of L1,3,1/Z2 (0, 1, 1, 0) phase B, associated to a zig-zag path of length
6, we could not match the result to a zig-zag marginal deformation of a toric phase for PdP5, as expected from
phase A result, though we were able to match the deformed geometries on the two sides.
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IR F-terms. In contrast, if the reversed zig-zag path is parallel to another zig-zag path,

signalling a non-isolated singularity of the IR geometry, as in section 4.4, the deformation

O′
η′ is non-trivial in the chiral ring and cannot be absorbed by a field redefinition.

In order to relate to the mirror (or specular dual) geometry, the first key insight is that the

zig-zag path η that triggers the flow must be of length 4. Under specular duality, a zig-zag

path ηi becomes the boundary of a face in the tiling representing the gauge group U(N)i, and

vice versa. Thus, from the perspective of the specular dual, we need to consider operations

that “reverse” the cycle associated to square faces. This operation is exactly the toric-Seiberg

duality on the node U(N)i. Therefore, it is natural to expect that the specular dual of the UV

toric fixed point is toric-Seiberg dual to the specular dual to the IR toric fixed point of the

zig-zag flow. Indeed, this was first proposed in [115],8 where the quiver obtained by specular

duality was dubbed twin quiver, and mutations of (generalized) toric polytopes were related

to mutations of twin quivers. This is depicted in the bottom half of fig. 4.10. The main

contribution of this paper is to complete fig. 4.10 by adding the top half: in the special case

where the two geometries are toric (not generalized toric) and the reversed zig-zag path has

length 4, we give a systematic prescription for finding the deformations of the superpotential

that relate the two toric models (Q,W ) and (Q′,W ′). We have checked that this expectation

is correct for the brane tilings associated to reflexive polygons (and more, see [116]). We also

note that the zig-zag deformation operators Oη which play a crucial role in our story do not

map to gauge invariant mesonic (single trace) operators in the twin (or specular dual) models.

This is perhaps unsurprising, since specular duality is not a quantum field theory duality, but

rather a duality of graphs.

(Q,W )

(
Q,W + µ

∑
i∈IOηi

)

(Q̂, Ŵ )

(Q′,W ′)

(
Q′,W ′ + 1

µ

∑
i∈IO′

η′i

)

(Q̂′, Ŵ ′)

Zig-zag def.

Field redefinitions

Zig-zag def.

Specular

Toric-Seiberg on U(N)i∈I

Specular

Figure 4.10: Diagram representing the connection between length 4 zig-zag deformations
and Seiberg duality on the specular dual models.

The deformation parameter µ can be viewed as the inhomogeneous coordinate of a base P1,

which has a quiver with deformed superpotential as fibers. The two toric models correspond

8This point was also realized independently by JS.
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to the two poles. Each zig-zag deformation of a toric model describes how the fiber varies

over a patch of P1, which excludes the other pole. On the overlap of the two patches, we can

find field redefinitions relating the two deformed quivers and superpotentials: these are the

transition functions for the fiber.

In this thesis, we considered relevant zig-zag deformations of UV toric models and matched

them to trivial/irrelevant/marginal zig-zag deformations of IR toric models, so there is a clear

RG flow direction. It turns out however that fig. 4.10 describes more generally 1-parameter

families of deformations relating a pair of toric models, with no reference to an RG flow

direction. This structure and the underlying geometry will be explored in future work [117].

The relation to specular duality and (toric) Seiberg duality which was appreciated in [115]

also explains why triggering different or multiple zig-zag deformations associated to the same

non-isolated singularity may lead to different models. Take for example the reflexive model

C3/(Z4 × Z2) (1, 0, 3)(0, 1, 1), which is specular dual to model PdP5 phase D. This geometry

has a non-isolated A3 singularity, as manifested by the 4 zig-zag paths with the same winding

in its brane tiling. The specular dual of these zig-zags are represented by 4 square polygons

symmetrically placed around an octagon in PdP5 phase D, also shown in fig. 4.11b. The

PdP5 (A) PdP5 (B)

PdP5 (C)

PdP5 (D)

L131/Z2 (A)

L131/Z2 (B)
C3/(Z4 × Z2)

(a)

7

1

4

7

8

4

8

2

6 7

1

2

3

4

5

6 7

8

4

5 8

6

5

6

5(b)

Figure 4.11: (a) Graph with toric-Seiberg dualities (solid black edges) and specular dualities
(dashed red edges) of g = 8 reflexive models. (b) Brane tiling of PdP5 phase D, specular dual

to the model C3/(Z4 × Z2) (1, 0, 3)(0, 1, 1).

symmetry of PdP5 (D) tiling means that no matter the C3/(Z4 × Z2) zig-zag deformation

chosen, the model flows to L131/Z2 phase A, since PdP5 phase D is connected to phase C by

a single toric-Seiberg duality, which in turn is specular dual to L131/Z2 phase A (fig. 4.11a).

On the other hand, double deformations of C3/(Z4 × Z2) flow to either of the 2 specular

self-dual phases of PdP5, depending on the pair of zig-zag operators that trigger the flow:

the pairs {η5, η7}, {η6, η8} flow to phase A, while {η5, η6}, {η6, η7}, {η7, η8}, {η8, η5} flow to

phase B. By the argument above, the split among the possible pairs occurs because applying
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toric-Seiberg dualities on opposite squares faces in the octagon in fig. 4.11a leads to a different

tiling from the brane tiling resulting from dualizing adjacent square faces.

Additionally, the flows from L1,3,1/Z2 (0, 1, 1, 0) to marginal deformations of PdP5 can also

be understood using fig. 4.11a. Listing the possible paths from these two geometries

L1,3,1/Z2 (A)
spec.−−−−−→ PdP5 (C)

Seib.−−−−−→ PdP5 (A)
spec.−−−−−→ PdP5 (A)

L1,3,1/Z2 (A)
spec.−−−−−→ PdP5 (C)

Seib.−−−−−→ PdP5 (B)
spec.−−−−−→ PdP5 (B)

L1,3,1/Z2 (B)
spec.−−−−−→ L1,3,1/Z2 (B)

Seib.−−−−−→ L1,3,1/Z2 (A)
spec.−−−−−→ PdP5 (C)

(4.45)

we see these correspond exactly to all the possible flows in the previous section (and

appendix A.2.1).





Chapter 5

Zig-zag deformation and resolutions

In this section, we study the interplay between the zig-zag deformations discussed previously

and crepant resolutions Ỹ of singular Calabi-Yau cones Y.

5.1 Minimal GLSM

A four-dimensional N = 1 quiver gauge theory with abelian gauge group G, quiver Q and

superpotential W is the low energy worldvolume description of a regular D3-brane probing

the cone Y. Resolutions of the singular cone can be viewed as fibers Ỹ in the master space

F = {(Xe)e | ∂W = 0} . (5.1)

Algebraically, Y is fully reproduced by the moduli space of the abelian gauge theory with

G = U(1)G. Similarly, resolving the cone Ỹ corresponds to turning on Fayet-Iliopoulos terms

in the action. The FI parameters affect D-term equations, leading to non-zero levels for the

moment map µ : F −→ g∗ ∼= (C×)G

µi(X) =
∑
e

die|Xe|2 , (5.2)

where die = δi,s(e) − δi,t(e) is the incidence matrix of the quiver Q. The Kähler quotient

description of the moduli spaceM(Q,W ; ξ)K is thus given by1

F
//
ξ
G ≡ µ−1(ξ)/G . (5.3)

For toric quiver gauge theories, we can exploit dimer model technology and perfect matchings.

We can introduce a GLSM (3.44) with no superpotential, that trivializes the F-term equations

1For ξ a regular value of µ. More generally, if G is nonabelian, one has to quotient by the co-adjoint stabilizer
at the level ξ, given by Gξ = {g ∈ G |Ad∗

g(ξ) = ξ}.

95
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∂W = 0. Since this description is redundant, it comes at a cost of extra D-term equations of

a spurious U(1)c−G−2 gauge symmetry, with charges QF defined in (3.46). These additional

gauge symmetries do not have FI parameters, as they only serve as connection between the

GLSM and the toric variety. Similarly, in the basis of perfect matchings {pα}, we can obtain

the charges QD from the incidence matrix using (3.48). We can group all the D-terms as in

table 5.1. Each perfect matching pα corresponds to a point in the toric diagram ∆ of the

p1 . . . pc FI

U(1)Fi (QF )
1
i . . . (QF )

c
i 0

U(1)Dj (QD)
1
j . . . (QD)

c
j ξj

Table 5.1: Description of the D-terms for the GLSM associated to a toric model.

singular Y. Multiple perfect matchings are associated to non-extremal points in ∆. It is

possible to eliminate some pα in the D-term equations such that exactly one variable remains

per point in ∆. Because all perfect matchings appear in the D-terms as linear combinations

of |pα|2, each choice of a single p.m. per point in the toric diagram determines an open string

Kähler chamber in FI parameter space [112]. Conversely, a generic choice of FI parameters ξ

falls in the interior of a Kähler chamber, which determines a p.m. variable for each point in

the toric diagram.

px1 . . . pxℓ
FI

U(1)a Q1
a . . . Qℓ

a ζa(ξ)

Table 5.2: Minimal GLSM, with one p.m. variable per lattice point in ∆. The resolution
parameter ζa(ξ) control the Kähler volumes of a basis of holomorphic 2-cycles, which depend

linearly on the FI parameters in each open string Kähler chamber.

In order to visualize the Kähler chambers of a toric model let us look at the example of the

pseudo del Pezzo 1 (Y = C3 /Z4 (1, 1, 2)) model, with superpotential

W = X13X
1
34X

2
41 +X24X

1
41X

2
12 +X31X

1
12X

2
23 +X42X

1
23X

2
34

−X13X
2
34X

1
41 −X24X

2
41X

1
12 −X31X

2
12X

1
23 −X42X

2
23X

1
34 .

(5.4)

The perfect matchings are

p1 = {X1
12, X

1
23, X

1
34, X

1
41}

p2 = {X13, X24, X31, X42}

p3 = {X2
12, X

2
23, X

2
34, X

2
41}

f1 = {X1
12, X

2
12, X

1
34, X

2
34}

f2 = {X1
23, X

2
23, X

1
41, X

2
41}

s1 = {X1
12, X

2
12, X13, X42}

s2 = {X13, X
1
23, X

2
23, X24}

s3 = {X24, X31, X
1
34, X

2
34}

s4 = {X31, X
1
41, X

2
41, X42}

(5.5)
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and their associated perfect matching variables are shown in the toric diagram in table 5.3.

From this, we can extract the perfect matching matrix P and rewrite the bifundamentals in

terms of the GLSM fields {pα}, so that all F-term equations hold. From the perfect matching

matrix and D-terms of the toric model, we obtain (recall eqs. (3.46) and (3.48)) a GLSM with

charges and FI parameters given in table 5.3.

p1 p2 p3 f1 f2 s1 s2 s3 s4 FI

U(1)F1 −1 −1 −1 1 0 0 1 0 1 0

U(1)F2 0 −1 0 −1 0 1 0 1 0 0

U(1)F3 −1 0 −1 1 1 0 0 0 0 0

U(1)D1 −1 −1 −1 1 0 1 1 0 0 ξ1

U(1)D2 0 0 0 0 0 −1 1 0 0 ξ2

U(1)D3 0 1 0 1 0 −1 −1 0 0 ξ3

U(1)D4 1 0 1 −2 0 1 −1 0 0 ξ4

Table 5.3: Table encoding D-term equations of the GLSM and toric diagram of PdP1.

The GLSM fields associated to extremal points on the toric diagram are unique by consistency.

We can eliminate those and obtain D-terms with the remaining fields of higher multiplicity.

In the PdP1 case, we have

|s2|2 − |s1|2 = ξ2 |s3|2 − |s2|2 = ξ3 |s4|2 − |s3|2 = ξ4 (5.6)

|f2|2 − |f1|2 = ξ4 + ξ2 (5.7)

subject to the condition ξ1 + ξ2 + ξ3 + ξ4 = 0, coming from the decoupled center-of-mass U(1).

From these D-terms, we can choose p.m. variables (p(-1,0), p(0,0)) for the points (−1, 0), (0, 0)
to obtain the conditions that define the corresponding open string Kähler chamber. For

example, the choice p(-1,0) = f1 requires that ξ2 + ξ4 ≥ 0, because in that case f2 can be

solved for in terms of f1, while p(0,0) = s1 requires ξ2 ≥ 0 ∧ ξ2 + ξ3 ≥ 0 ∧ ξ2 + ξ3 + ξ4 ≥ 0.

By repeating this process for all choices of perfect matching variables, we obtain conditions

that divide the FI parameter space R3 into 8 polyhedral cones that intersect at the origin

ξ = 0. This particular example allows us to visualize open string Kähler chambers using the

stereographic projection (fig. 5.1).

Eliminating the redundant D-term equations and GLSM fields using eqs. (5.6) and (5.7) onto

the original D-terms in table 5.3 we obtain the minimal GLSM in table 5.4, by fixing the

same U(1) charges for all Kähler chambers.

The singularity C3 /Z4 (1, 1, 2) is a fairly simple example that allows visualization of the

Kähler chambers, but it misses the complication of compatibility of the Kähler chambers with

different triangulations of the toric diagram. We will describe an elegant and more systematic
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-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Figure 5.1: Region plot of open string Kähler chambers for PdP1, using stereographic
projection of (ξ1, ξ2, ξ3). Swatch legend shows the resolution parameters (ζ1, ζ2) as piecewise

linear functions of the FI parameters for each of the choices of (p(-1,0), p(0,0)).

p(-1,-1) p(1,0) p(-1,1) p(-1,0) p(0,0) FI

U(1)1 0 1 0 1 −2 ζ1(ξ)

U(1)2 1 0 1 −2 0 ζ2(ξ)

Table 5.4: Minimal GLSM for PdP1, with ζa(ξ) given in fig. 5.1.

way of obtaining these wedge regions in the FI parameter space, using the fact that Kähler

chambers stem from the quiver Q and modules of a path subalgebra of CQ.

5.2 Kähler chambers from θ-stability

The stability condition for the orbits of the complexified gauge group GC needed to construct

a given resolution divides the moduli space of resolutions into chambers as before. We

now construct the possible open string Kähler chambers from the perspective of quiver

representations of a quiver Q, with path relations encoded in the superpotential W .
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Through the Kempf–Ness theorem, the Kähler quotient (5.3) is related to the moduli space of

quiver representations computed via the GIT quotient,

M(Q,W ; ξ)K =M(Q,W ; θ)GIT , for ξ = θ ∈ ZG . (5.8)

Following results of section 2.2.3, closed points ofM(Q,W ; θ)GIT are in correspondence with

semistable representations of the quiver Q. We are interested in the representation space

Rep(Q, α) with dimension vector α = 1G = (1, . . . , 1). For a given θ ∈ RG, a representation

V of Q with nonzero dimension vector α is called θ-semistable if θ · α = 0 and for any proper

subrepresentation W ⊂ V , with dimension vector β = dimW , we have θ · β ≤ 0. We say

that V is θ-stable if under the previous assumptions θ · β < 0 for any nontrivial proper

subrepresentation W ⊂ V .

A choice of Kähler chamber K corresponds to a choice of a perfect matching for each point

x in the toric diagram ∆, denoted by Kx. We can restrict to the exceptional divisor for

this resolution by vanishing the corresponding field in the GLSM, thus setting Xe = 0 for

all Xe ∈ Kx. We define the subquiver QKx as the quiver Q with edges not in the perfect

matching Kx, {e ∈ Q1 |Xe /∈ Kx}. A representation V of QKx with dimension α is also a

subrepresentation of the quiver Q, with

Xe = 0 ∀Xe ∈ Kx . (5.9)

The intersection of the θ-semistability2 conditions for a general module in all the subquiver

representation spaces Rep(Qp, α), p ∈ K, defines the region of compatibility in the resolutions

space, ξ = θ, for the chamber K. More concretely, we can write this as

R(K) =
⋂
x∈∆
R(QKx) (5.10)

with

R(Q) =
{
ξ ∈ RG

∣∣ ξ · dimV ≤ 0, ξ · α = 0, ∀V ∈ Rep(Q, α)
}
. (5.11)

Take the example of PdP1 in section 5.1. For the choice (f(-1,0), s(0,0)) = (f1, s1), we obtain

the subquivers in fig. 5.2. Quiver subrepresentations correspond to quiver subdiagrams

which are invariant under outward flow. For example, the subquiver Qf1 has a single proper

subrepresentation with dimension β = (1, 0, 1, 0). Qs1 has proper subrepresentations with

dimensions β ∈ {(1, 0, 1, 1), (1, 0, 0, 1), (1, 0, 0, 0)}. Together with 0 = α · ξ = ξ1 + ξ2 + ξ3 + ξ4,

the semistability conditions become ξ2 + ξ4 ≥ 0 and ξ2 ≥ 0 ∧ ξ2 + ξ3 ≥ 0 ∧ ξ2 + ξ3 + ξ4 ≥ 0

respectively, matching the result obtained above.

2Note that saturating the θ-semistability lands us on the boundary between multiple open string Kähler
chambers. Thus, full resolutions are obtained by considering θ-stability.
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(a) Q{f1} (b) Q{s1}

Figure 5.2: Subquivers of PdP1 obtained by deleting edges from the perfect matching of
the chamber (f(-1,0), s(0,0)) = (f1, s1).

5.3 (p, q)-webs, 2-cycles and zig-zags

A crepant resolution of a toric Calabi-Yau singularity Y to Ỹ consists of a “blow-up” of

multiple P1. There are only a few ways to resolve the singularity consistently with the toric

structure. Each toric crepant (partial) resolution is encoded in a (p, q)-web diagram.

(p, q)-webs are a geometric representation of 5-brane configurations in type IIB string theory,

which engineer 5-dimensional field theories. In this context, we are allowed to create bound

states of D5-branes and NS5-branes, which we assign charges (1, 0) and (0, 1) respectively. If

the 5-branes worldvolumes share 4 + 1 dimensions, in order to preserve eight supercharges

the remaining worldvolume directions form segments in a 2d plane (x, y) oriented according

to the brane charges, i.e. ∆x+ i∆y ∥ p+ τq for the axio-dilaton τ = C0 + ie−Φ of type IIB

string theory. As is customary, we depict all web diagrams at τ = i, so that D5/NS5 pure

states align with the horizontal/vertical axis: the effect of changing τ is to perform a general

linear transformation in the (x, y) plane. The balance of forces requires RR-NSNS charge

conservation at each vertex: if all fivebranes are incoming,

∑
i

(pi, qi) = (0, 0) . (5.12)

The toric Calabi-Yau 3-folds studied in this paper are affine toric varieties given by a complex

cone over a compact toric surface. The mesonic toric action U(1)2 ⊂ U(1)3 acts naturally on

a torus fiber T2 over the complex plane. The (p, q)-web associated to this geometry is a given

by a set of segments and vertices, in which one or both S1 in the fibration shrink to a point,

respectively. Resolving a toric singularity corresponds to blowing up a point and replacing it

by a P1, i.e., replacing a vertex in the (p, q)-web by a segment (with S1 fiber).

Given a complete triangulation of the toric diagram of Y, we can construct a consistent

(p, q)-web of a fully resolved toric singularity. Every unit triangle in the triangulation of the
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toric diagram is dual to a 3-valent vertex in the (p, q)-web, in such a way that every connected

line is perpendicular to the triangle edges, which automatically satisfy eq. (5.12). Edges of

the boundary of the toric diagram are dual to the semi-infinite external legs of the web, and

represent non-compact holomorphic 2-cycles. Internal edges are dual to finite segments on

the web, which represent holomorphic 2-cycles with a finite volume.

The volume of holomorphic 2-cycles can be quickly computed from the GLSM. Recall that a

toric Calabi-Yau 3-fold has a collection of toric divisors Dpα , defined by setting

pα = 0 (5.13)

in the GLSM in table 5.1. Toric curves, which are P1, arise as transverse intersection of two

toric divisors. The volume of a holomorphic 2-cycle C = Dpα ·Dpβ ∈ H2(Y,Z) is

vol(C) =
∫
C
ω =

∫
Ỹ
PD(Dpα) ∧ PD(Dpβ ) ∧ ω , (5.14)

where PD(Dpα) is the Poincaré dual in H2(Ỹ,Z) to the divisor Dpα and ω is the Kähler form.

The result is a positive linear combination of the resolution parameters. By setting to zero

the variables in the GLSM associated to the intersecting divisors, pα = pβ = 0, from a linear

combination of the D-term equations of the GLSM we can obtain an equation

|pN |2 + |pS |2 = vol(C) , (5.15)

where the GLSM fields pN , pS vanish on the toric divisors that intersect C at the poles.

For any triangulation T∆ of the toric diagram, we can find the tuples (pα, pβ, pN , pS) associated

to each internal edge. Furthermore, the positivity condition∫
C
ω ≥ 0 , (5.16)

for all the holomorphic 2-cycles for a given fully resolved singularity Ỹ, gives us the

compatibility conditions for the associated triangulated toric diagram T∆, which are a set of

inequalities for the FI parameters in the GLSM. The quiver representation machinery also

allows us to quickly obtain these regions in FI parameter space. A triangulation T∆ is

compatible with an open string Kähler chamber K if the semistability condition for all

subquivers QKx,Ky and QKx , defined by

R(T∆,K) =
⋂

(x,y)∈T∆

R(QKx,Ky) ∩R(K) (5.17)

results in a region of codimension 0, where R(K) and R(Q) are defined in eq. (5.10) and

(5.11). The union of all R(T∆,K) for all open string Kähler chambers K is equivalent to the

positivity conditions (5.16) for the effective curves.
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Take, for example, the complex cone over the del Pezzo 1 surface, with toric diagram

∆ = Conv
(
{(−1, 0), (1,−1), (0, 1), (−1, 1)}

)
∩ Z2. Using p.m. variables from the brane tiling
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(b)

Figure 5.3: (a) Brane tiling of dP1, with each edge labelled with perfect matching it belongs
to. (b) Toric diagram of dP1.

in fig. 5.3a, we find a GLSM with D-term equations

|p1|2 + |p2|2 + |p3|2 − |s1|2 − |s3|2 − |s4|2 = 0

|p2|2 + |p4|2 − |s2|2 − |s3|2 = 0

|s1|2 − |s3|2 = ξ1

|s3|2 − |s4|2 = ξ2

|s2|2 − |s1|2 = ξ3

|s4|2 − |s2|2 = ξ4

(5.18)

This model has four open string Kähler chambers, corresponding to the choice of perfect

matching variable for the internal point in the toric diagram, Ki = {si}, 1 ≤ i ≤ 4.

Triangulations of the toric diagram are associated to two complete resolutions, represented

along with their dual (p, q)-webs in fig. 5.4. The triangulations can be defined by the single

internal segment where a flop transition is possible, thus we have T
(1)
∆ = {((−1, 0), (0, 1))}

and T
(2)
∆ = {((0, 0), (−1, 1))}. For definiteness, let’s choose the Kähler chamber such that

p(0,0) = s3, for which we obtain

R({s3}) = {ξ1 ≥ 0, ξ2 ≤ 0, ξ1 + ξ3 ≥ 0} . (5.19)



5. Zig-zag deformation and resolutions 103

(a) T
(1)
∆ (b) T

(2)
∆

Figure 5.4: (p, q)-webs associated to the two resolutions of the complex cone over dP1,
related by a flop transition (at ζ ′2 = −ζ2 = 0). For the choice of p(0,0) = s3, we have

ζ1 = ξ1 − ξ2 and ζ2 = −ζ ′2 = ξ2 + ξ3.

After eliminating the redundant p.m. variables, we obtain the minimal GLSM

|p4|2 + |s3|2 − |p1|2 − |p3|2 = ξ2 + ξ3 ,

|p2|2 + |p4|2 − 2|s3|2 = ξ1 + ξ3
(5.20)

that describes the geometry. In this FI parameter region, we can obtain the holomorphic

2-cycles Dpα ·Dpβ , where Dp is the toric divisor associated to the GLSM fields p, by setting

pα = pβ = 0 in the D-term equations of the GLSM. For the resolution associated with T
(1)
∆ ,

which describes a finite size P2 intersecting P1, the holomorphic 2-cycles have volumes

vol(Dp1 ·Ds3) = vol(Dp3 ·Ds3) = vol(Dp2 ·Ds3) = ξ1 − ξ2 ,

vol(Dp1 ·Dp3) = ξ2 + ξ3 .
(5.21)

On the other hand, for the resolution associated with T
(2)
∆ , which has a finite size dP1,

vol(Dp2 ·Ds3) = ξ1 − ξ2 ,

vol(Dp4 ·Ds3) = −ξ2 − ξ3 ,

vol(Dp1 ·Ds3) = vol(Dp3 ·Ds3) = ξ1 + ξ3 .

(5.22)

In the chamber R({s3}), the parameter ξ2+ξ3 can be positive/negative and its sign determines

two resolutions in fig. 5.4, related by the flop transition

Dp1 ·Dp3 ←→ Dp4 ·Ds3 . (5.23)

If ξ2+ξ3 > 0, we lie on the resolution T
(1)
∆ , otherwise for ξ2+ξ3 < 0 we land in T

(2)
∆ , consistently

with the positivity conditions of the volumes ofDp1 ·Dp3 andDp4 ·Ds3 respectively. If ξ2+ξ3 = 0
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the singularity is not fully resolved. Note that for the curve Dp1 ·Ds3 , either (pN , pS) = (p2, p3)

or (p2, p4), since |p4|2 − |p3|2 = ξ2 + ξ3 for p1 = s3 = 0. A similar result holds for Dp3 ·Ds3 .

Compatibility conditions of the resolution T
(1)
∆ with the Kähler chamber K = {s3} can be

directly obtained from the θ-stability of representation of Qp1,p3 , from which we have the

proper subrepresentation with dimension vector (0, 1, 1, 0). For the subquiver Qp4,s3 , we have

the complementary dimension vector (1, 0, 0, 1). These determine

R(T (1)
∆ , {s3}) = {ξ2 + ξ3 ≥ 0} ∩ R({s3}) ,

R(T (2)
∆ , {s3}) = {ξ2 + ξ3 ≤ 0} ∩ R({s3}) .

(5.24)

Semi-infinite legs of fivebrane webs are related to zig-zag paths in the tiling, by matching

(p, q) charges with homology classes (up to SL(2,Z)). Moreover, by taking successive pairwise

counterclockwise differences of perfect matchings pi − pi+1 along the boundary of ∆, we

can reconstruct the zig-zag using edges Xe alternating from the matchings pi and pi+1 with

opposite orientation.3 For isolated toric singularities, these ordered pairs of external matchings

are in one-to-one correspondence to the zig-zag paths [44, 118, 119]. The case of non-isolated

singularities is more interesting, since the corresponding toric diagrams have external perfect

matchings of higher multiplicity.

3

4

4

1

6

1

2

3

4

5

6

2

4

5

5

(a)

(b)

Figure 5.5: Brane tiling and toric diagram for C3 /Z6 (1, 2, 3), highlighting the three parallel
zig-zag paths associated to the A2 singularity.

For instance, the complex cone over pseudo del Pezzo 3a (Y = C3 /Z6 (1, 2, 3)) has an A2

singularity, as signalled by the length 3 side in its toric diagram, see fig. 5.5. The PdP3a

theory flows to another toric quiver gauge theory by the deformation associated to any of the

3Edges present in the both pi and pi+1 will cancel, so only Xe in the symmetric difference of the matching
sets will form the path.
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parallel zig-zag paths normal to the side:

η4 = X12X25X56X61 : {p3 − g1, g2 − f1, g3 − f2, f3 − p1}

η5 = X24X46X63X32 : {p3 − g2, g1 − f1, g3 − f3, f2 − p1}

η6 = X13X35X54X41 : {p3 − g3, g1 − f2, g2 − f3, f1 − p1}

(5.25)

We can infer the p.m. differences in (5.25) from the perfect matching submatrix (5.26) for the

relevant matchings and bifundamentals:

X12 X13 X24 X25 X32 X35 X41 X46 X54 X56 X61 X63

p3 0 1 0 1 1 0 0 1 1 0 1 0

g1 1 1 0 0 1 0 0 1 1 1 0 0

g2 0 1 1 1 0 0 0 0 1 0 1 1

g3 0 0 0 1 1 1 1 1 0 0 1 0

f1 1 1 1 0 0 0 0 0 1 1 0 1

f2 1 0 0 0 1 1 1 1 0 1 0 0

f3 0 0 1 1 0 1 1 0 0 0 1 1

p1 1 0 1 0 0 1 1 0 0 1 0 1


(5.26)

For non-isolated singularities, the multiplicity of external non-extremal perfect matchings

leads to multiple successive boundary pairs that construct the same zig-zag path. A choice of

Kähler chamber fixes the perfect matching variables for each lattice point in ∆ and selects

unique boundary pairs. However, some chambers do not have compatible resolutions. For

incompatible chambers, we may have multiple differences pi− pi+1 which give rise to the same

path or one which describes a disconnected set of paths in the brane tiling. In the example

above, zig-zag paths cannot be constructed by differences of boundary matchings when any

of the pairs (g3, f1), (g2, f2), (g1, f3) are chosen for the points (−1,−1), (−1, 0) ∈ ∆. This is

consistent with the fact that the open string Kähler chambers

{g3, f1, hi, sj} , {g2, f2, hi, sj} , {g1, f3, hi, sj} , (5.27)

for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 6, are incompatible with all five possible triangulations of fig. 5.5b.

We can visualize the region of resolution parameters in which the p.m.s of an Ak singularity

side are compatible as the total space of a fibration, with the fiber given by the perfect

matchings. In particular, for PdP3a we can represent the regions and boundaries in a plane

(see fig. 5.6).
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Figure 5.6: Regions formed by the stability of reps. of Qgi , Qfj , Qgi,fj in the PdP3a quiver.

Using the data from the GLSM and subquiver representation stability, we obtain the volumes

of 2-cycles in terms of FI parameters and associate external legs of the fivebrane web to zig-zag

paths in the brane tiling, and hence chiral operators in the gauge theory. Geometrically, we

can apply the zig-zag deformation to the quiver gauge theory with FI parameters, therefore it

should be possible to map Kähler chambers between UV and IR toric models. We analyze

this problem next.

5.4 Zig-zag deformation as a Hanany-Witten move

We have seen that for a zig-zag deformation Oη associated to a zig-zag path η of length 4,

the deformed UV toric theory flows to another toric gauge theory in the IR, which has η

reversed relative to the original brane tiling. The UV geometry has at least one non-isolated

Ak singularity, k ≥ 1, meaning that the tiling has k+1 parallel zig-zags of the same homology

(p, q). At the IR endpoint of the deformation, each reversed zig-zag has homology (−p,−q).
The other parallel zig-zag paths are unaffected in the tiling, while some other zig-zag paths

are rearranged and have different homology, as seen by comparing fig. 3.1 and fig. 4.5.

Translating the zig-zag move in the brane tiling to the (p, q)-web suggests that the deformation

is described by a Hanany-Witten move for a 7-brane on which the 5-brane associated to the

deformation zig-zag ends.4 Indeed, an external (p, q) fivebrane can terminate on a [p, q]7-brane,

which is a point in the plane of the fivebrane web [120]. By using SL(2,Z), we can assume

without loss of generality that the external legs associated to the relevant parallel zig-zags are

D5-branes with charge (−1, 0). We can now end one of the aforementioned D5-branes on a

D7-brane, which we then move along the line of the D5-brane, until it ends on the opposite

side of the (p, q) web diagram. This corresponds to reversing the orientation of the zig-zag

path.

Every time the D7 (or [1, 0]7) brane crosses a (r, s)5-brane, by the Hanany-Witten effect a

number |s| of (1, 0)5-branes are created, which are suspended between the crossed 5-brane

4We thank Michele Del Zotto for this suggestion.
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and the D7-brane. For the reflexive geometries studied in this paper, reversing the D7-brane

horizontally to the opposite side has it cross exactly two fivebranes with NSNS charge |s| = 1:

the first HW transition annihilates the original (−1, 0)5-brane, while the second HW transition

creates a new (1, 0)5-brane. We then can take the limit of the 7-brane going to infinity in the

opposite direction to recover a new toric geometry.5 We will provide precise evidence that the

resulting fivebrane web describes the fully resolved toric geometry obtained at the endpoint of

the Klebanov-Witten deformation.

The 7-brane sources a SL(2,Z) monodromy which affects the rest of the web. We can take

the monodromy cut to extend from the 7-brane to infinity along the line of the 5-brane we

attached it to. As we slide the 7-brane to the opposite end of the line, we also need to rotate

the monodromy cut by ±180 degrees to the opposite side, so that the cut disappears when

the 7-brane goes to infinity in the opposite direction. Every time the monodromy cut of

a [p, q]7-brane crosses a 5-brane, the charge of the 5-brane is acted upon by the SL(2,Z)
monodromy matrix

Mp,q =

(
1− pq p2

−q2 1 + pq

)
. (5.28)

If the branch cut is moved counterclockwise then we apply Mp,q to the affected segments,

otherwise we act with M−1
p,q moving the cut clockwise. Rotating the monodromy cut by 180

degrees clockwise or counterclockwise and sending the 7-brane to infinity, the two resulting

(p, q)-webs are equivalent up to a SL(2,Z) transformation. This matches exactly the choice

of tiling move in fig. 4.4 for the zig-zag of homology (0, 1), which results either in fig. 4.5a

(clockwise) or fig. 4.5b (anticlockwise). Similarly to the zig-zag deformation, parallel D5-branes

of the same charge as the (p, q) 7-brane are unaffected by the monodromy.

It is straightforward to see that zig-zag deformations which relate fully resolvable toric

geometries with a single exceptional divisor can be generalized to non-reflexive toric geometries

if and only if the lattice width w of the toric diagram normal to the (p, q) 5-brane being

reversed is exactly 2.6 Infinite families of these deformations have already been verified, for

example from (C2/Zn × C)/Z2 to L1,n−1,1/Z2, for all n ≥ 2 [108], and more examples will be

provided in [116].

We can show that the Hanany-Witten move is consistent with the quiver gauge theory analysis

for the regions R(T∆,K), defined in eq. (5.17), of the field theories involved in the zig-zag

deformation. In figs. 5.7 and 5.8, we have (p, q)-webs associated to the triangulated toric

diagram T∆ in which we perform a Hanany-Witten move for two different parallel 5-branes.

5It is natural to interpret the position of the 7-brane along the line of the 5-branes as a monotonic function
of |µ| which tends to ∓∞ at the two ends of the line (for example, log |µ|). We will derive this fact and
elaborate on the precise relation in [117].

6If w > 2, at the endpoint of the Hanany-Witten move the D7 brane would become attached to w − 1 > 1
coincident D5 branes, leading to a toric geometry with frozen resolutions, which is described by a generalized
toric diagram (or polytope) [121–123]. We will study those situations in a companion paper [117].
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⊗ ⊗ ⊗ ⊗

Figure 5.7: Hanany-Witten move mapping resolution T∆ of PdP3a to T
′(2)
∆ of PdP3c. 5-

branes are in black, 7-branes are in blue, and monodromy cuts in dashed red. Volumes of
holomorphic cycles ζa are superimposed.

⊗ ⊗ ⊗ ⊗

Figure 5.8: Hanany-Witten move mapping resolution T∆ of PdP3a to T
′(1)
∆ of PdP3c.

Volumes of holomorphic cycles ζa are superimposed.

The resulting (p, q)-webs are dual to the triangulated toric diagrams T
(1)
∆′ or T

(2)
∆′ of PdP3c, as

expected.

For any open string Kähler chamber, we know exactly which zig-zag path corresponds to

which semi-infinite 5-brane. We can therefore identify which 5-brane we need to reverse to

match the zig-zag deformation. The result of the Hanany-Witten move can then be compared

with resolved geometry obtained from the quiver gauge theory analysis.

In the first move represented in fig. 5.8, there exist multiple pairs of open string Kähler

chambers K
(1)
1 ,K

(1)
2 such that the chosen zig-zag η corresponds to either of the top two

parallel 5-branes. As a result,

R



⋃
R


 = R


 . (5.29)
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For example, for the reversal of η4 = X12X25X56X61 in PdP3a (µ −→ 0), see A.7, the two

regions

R (T∆, {g1, f1, h2, s2}) = {ξ3 ≤ 0, ξ1 ≤ 0, ξ2 + ξ5 ≥ 0, ξ1 + ξ3 + ξ4 ≥ 0, ξ1 + ξ3 + ξ4 + ξ5 ≤ 0}

R (T∆, {g2, f1, h2, s2}) = {ξ3 ≤ 0, ξ1 ≤ 0, ξ2 + ξ5 ≥ 0, ξ5 ≤ 0, ξ1 + ξ3 + ξ4 + ξ5 ≥ 0}
(5.30)

join into the single region

R
(
T
(1)
∆′ , {f ′2, g′1, s′2}

)
= {ξ5 ≤ 0, ξ3 ≤ 0, ξ1 ≤ 0, ξ2 + ξ5 ≥ 0, ξ1 + ξ3 + ξ4 ≥ 0} , (5.31)

for phase A of PdP3c (µ −→ ∞). In these subregions, the volumes of 2-cycles (see figs. 5.7

and 5.8) can be written as

ζ1 = −ξ1

ζ2 = ξ2 − ξ3 + ξ5

ζ3 = −ξ5 +min (0, ξ1 + ξ3 + ξ4 + ξ5)

ζ4 = |ξ1 + ξ3 + ξ4 + ξ5|
(5.32)

The intersection between the two regions in eq. (5.30) corresponds to the θ-stability conditions

for subquiver Qg1,g2 , which is when the volume ζ4(ξ) vanishes, or equivalently when the two

parallel 5-branes coincide.

In general, each resolution partitions the k parallel external legs of the nonisolated Ak−1

singularity into groups of k1, . . . , km parallel 5-branes. Moving a parallel 5-brane from a given

partition to another requires a flop transition, thus moving us to another triangulation. For a

given resolution T∆, we have

ka⋃
i=1

R
(
T∆,K

(a)
i

)
= R

(
T
(a)
∆′ ,K

′(a)
)

for a ∈ {1, . . . ,m} , (5.33)

for T
(a)
∆′ and K ′(a) triangulations and open string Kähler chambers of the µ −→∞ geometry.

The move represented in fig. 5.7 is when the zig-zag corresponds to an external leg in a ka = 1

partition, in which case

R


 = R


 . (5.34)

Using the technology of quiver representation theory, we have been able to map the various

open string Kähler chambers of any two (pseudo-)del Pezzo theories related by a zig-zag

deformation, listed in appendix A and fig. 1.4. For readers interested in the details, an

ancillary file is available upon request (appendix C). Fixing the zig-zag η and mapping regions
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R(T∆,K) and volumes ζa from both models, we have verified that the (resolution of) the final

toric geometry is precisely the one dual to the (p, q)-web obtained by reversing the external

leg associated to η.



Part III

Beyond reflexive polytopes





Chapter 6

Zig-zag deformations of geometries

from non-reflexive polytopes

6.1 Zig-zag operator generalized

As introduced before [1], for dimer models with toric geometric moduli encapsulated by a

reflexive polytope we can define a zig-zag operator Oη, for a zig-zag path η in the brane tiling.

Given such an operator we can deform the moduli space by modifying the superpotential W

of the dimer model (Q,W ), with quiver Q, by

Wdef =W + µ
∑
η∈S
Oη . (6.1)

Often these deformations are trivial in the chiral ring. However, in the presence of Ak−1-type

non-isolated singularities in the geometry, we can choose a subset of zig-zag paths η ∈ S from a

group of k parallel zig-zag paths, which yield a non-trivial deformation. As such, the geometric

branch (the top component of the mesonic moduli of the abelian theory on the worldvolume

of a regular D-brane) is deformed and the non-isolated singularity in question is partially or

fully lifted. Furthermore, the directions on the N = 2 Coulomb branch parametrized by the

mesonic operators present in
∑

η∈S Oη are also lifted by the deformation.

We recall that the zig-zag operator Oη was defined as1

Oη = OL
η −OR

η ,

OL
η =

1∏
k=n

∂2W

∂η2k∂η2k−1
, OR

η = (−1)n
1∏

k=n

∂2W

∂η2k+1∂η2k

, (6.2)

where ηi = η(i mod2n) are the 2n chiral multiplets that represent the zig-zag closed path. The

deformation breaks the U(1)3 mesonic flavor symmetry (toric condition) in the undeformed

1We assume that η1 is an edge that goes from a black to white node along η in the brane tiling representation.

113
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theory to a U(1)2 subgroup. However, it has been shown it is often possible to recover an

emergent toric U(1)3 symmetry in the infrared. In the case of reflexive polytopes, by turning

a zig-zag deformation (6.1) with zig-zag paths η ∈ S being cycles of length 4 in the quiver it

is possible to flow to a new toric quiver gauge theory in the µ −→∞ limit, described by a new

brane tiling (Q′,W ′). The model (Q′,W ′) can be obtained from the original brane tiling at

µ = 0 by a graph deformation in which nodes and edges are merged and, more importantly,

each zig-zag path η ∈ S in the deformation is reversed to zig-zags η′ ∈ S′. Here S′ is the

set of zig-zag paths at µ =∞ with opposite T2-homology from those in S (at µ = 0). Each

zig-zag path reversed matches an outward pointing normal vector to an edge of the toric

diagram also being reversed, resulting in a polytope mutation. From the point of view of the

dual (p, q)-web, the set of parallel external legs associated to the corresponding zig-zag paths

are also reversed via a Hanany-Witten move for a 7-brane that crosses the (p, q)-web in the

direction of the reversed 5-brane.

The deformation parameter µ can be thought of as the base coordinate on a P1 bundle whose

fibers are a family of deformed moduli. It has been shown that, for µ ∈ C×, it is possible to

find an isomorphism

Mmes
(
Q,W + µ

∑
η∈S
Oη

)
∼=Mmes

(
Q′,W ′ + 1

µ

∑
η′∈S′

O′
η′

)
. (6.3)

The poles of P1 are the toric geometries of the dimer models (Q,W ) and (Q′,W ′), at the

limits µ = 0 and µ =∞. The flow to another toric geometry is when the isomorphism matches

at µ =∞ and a field redefinition that fully recovers W ′ is possible. This can occur when:

• |S′| = 1, η′ ∈ S is associated to an isolated singularity of the (Q′,W ′) moduli =⇒ O′
η′ ≃ 0

• |S′| = k > 1, η′ ∈ S correspond to all the zig-zag paths associated to an Ak−1 non-

isolated singularity in the (Q′,W ′) moduli =⇒
∑

η′∈S′ O′
η′ ≃ 0

The above scenarios fail to be realized when the initial model (Q,W ) contains any zig-zag

paths with opposite T2-homology to the parallel zig-zag paths η ∈ S defining the initial

deformation. If so, we obtain a µ =∞ theory (Q′,W ′) deformed by a non-trivial operator∑
η′∈S′ O′

η′ for which we were not able to find a chiral field redefinition.

In the following sections, we intend to generalize the zig-zag deformation for dimer models of

toric geometries other than ones defined by reflexive polytopes.

6.1.1 Revisiting the conifold

The deformation of C2 /Z2 × C to the conifold C = VC4(xy − zw), as discussed in the

seminal paper by Klebanov and Witten [22], was the first known example of a toric-to-toric

deformation being studied. The quiver gauge theory on the worldvolume of D3-branes probing
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the C2 /Z2×C orbifold is a 4d N = 1 SYM theory with U(N)1×U(N)2 gauge symmetry, with

two fields Φ1, Φ2 on the adjoint representation of each factor and two chiral multiplets. See

quiver in fig. 6.1. Usually, placing a stack of D3-branes on a canonical Gorenstein singularity

Figure 6.1: Quiver of the C2 /Z2 × C theory

breaks the N = 4 supersymmetry to N = 1. However, as C × C2/Zn+1 orbifolds are the

simplest An-type abelian CY singularities, it turns out that this worldvolume theory preserves

N = 2 SUSY, where Φ1,2 are part of N = 2 vector multiplets (for each factor) and with

hypermultiplets (Xk
12, X

l
21). The superpotential defining the theory is (trace is implicit)

W = Φ1(X
1
12X

2
21 −X2

12X
1
21) + Φ2(X

1
21X

2
12 −X2

21X
1
12)

= ϵabΦ1X
a
12X

b
21 + ϵabΦ2X

a
21X

b
12 .

(6.4)

The moduli space of supersymmetric vacua of the associated 4d N = 1 quiver gauge theory

contains a mesonic moduli branchMmes, parametrized by the of mesonic operators Φ1, Φ2

and also Aab = Xa
12X

b
21, with indices labelling the doublet representation of the mesonic

flavor symmetry SU(2), along with the SU(2)R ×U(1)r R-symmetry of N = 2 SCFTs. These

operators are related in the chiral ring of the abelian theory by

A12 = A21 (A12)
2 = A11A22 Φ1Aab = AabΦ2 (6.5)

The relations define two irreducible components: the expected affine toric CY 3-fold cone

being probed by a single D3-brane, parametrized by Aab, a, b = 1, 2, and a N = 2 branch

parametrized freely by Φ1, Φ2. The latter can be lifted by deforming the superpotential with

the relevant term

µ

2

(
(Φ1)

2 − (Φ2)
2
)
, (6.6)

Simply integrating out the fields Φ1 and Φ2 we obtain the superpotential

W ′ =
1

µ

(
X1

12X
1
21X

2
12X

2
21 −X1

12X
2
21X

2
12X

1
21

)
. (6.7)

By completing the F-term µ ∂W ′

∂X1
12

with X1
12, we obtain the conifold binomial relation

xy − zw = 0 , (6.8)
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matching the determinant of (Aab) =

(
z x

y w

)
.

At this point, we did not connect this known deformation to our story of the zig-zag deformation.

Let’s examine the brane tiling of the C2 /Z2 theory (see fig. 6.2). We see this model contain 4

1

1

1

1

2

1

2

1

2

1

2

1

2

1

2

X12
1 X21

1 X21
2 X12

2 Φ1X12
1 Φ2X21

2 Φ1X12
2 Φ2X21

1

Figure 6.2: Brane tiling of the C2 /Z2 × C theory.

zig-zag paths

η1 = X1
12X

1
21 η3 = Φ1X

1
12Φ2X

2
21

η2 = X2
12X

2
21 η4 = Φ1X

2
12Φ2X

1
21

(6.9)

Given the presence of an A1-type singularity, the zig-zag paths η1 and η2 are parallel. As

such, we expect the turning the zig-zag deformation associated to one of these yield eq. (6.6).

However, contrary to the reflexive toric diagram cases studied before, these zig-zags only have

length 2 and their zig-zag operator (as defined above) is

Oη2 = Φ1 − Φ2 = −Oη1 . (6.10)

This does not match the quadratic deformation (6.6), but rather it is a linear (complex)

FI deformation, which preserves N = 2 supersymmetry. In fact, turning on a deformation

δW = µ(Φ1 − Φ2) leads to mesonic moduli

Φ1 = Φ2 A12 −A21 = µ A11A22 = A12(A12 + µ) (6.11)

where the N = 2 branch in eq. (6.5) is again lifted (by the 1st equation). Letting x = A11,

y = A22, z = A12 + µ/2 and w = Φ1, the moduli can be rewritten as

xy − z2 =
(µ
2

)2
, w ∈ C (6.12)
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We can view this as complex structure deformation of only C2/Z2, which makes the cone

smooth. As such, the D3-brane now probes a smooth point and at low energy the field theory

is simply N = 4 SYM.

The deformation that recovers the toric conifold is obtained from the operator by concatenating

the zig-zag path twice, i.e., (η2)
2 = η2η2 = X2

12X
2
21X

2
12X

2
21. In fig. 6.2 this path is still a

closed zig-zag but now winds twice vertically the brane tiling. Recall that OL
η and OR

η are

the chiral mesons given by the 1-cycles in the tiling running through all the edges on the

immediate left and right sides of the oriented zig-zag path η. As such, these 1-cycles will be

again twice as long, implying

OL
η2η2 = (OL

η2)
2 = (Φ1)

2 , OR
η2η2 = (OR

η2)
2 = (Φ2)

2 . (6.13)

The obvious generalization would be to define

Oη,r =
1

r

[(
OL

η

)r − (OR
η

)r]
, (6.14)

where again a single trace is implied, as the zig-zag operator for a zig-zag simple cycle

η concatenated r-times. In the next section, we explore the geometrical consequences of

deforming the dimer model with Oη,r.

6.1.2 Hanany-Witten move of a 7-brane “bound” state

It was observed that the zig-zag deformation between two geometries associated to triangulated

toric diagrams of the µ = 0 and µ =∞ are related to a polytope mutation. The triangulated

diagram here describes a set of resolution parameters in which the toric Calabi-Yau singularity

take a specific resolution. In a given resolution, we were able to map a zig-zag paths to specific

5-branes in the dual (p, q)-web.

The (p, q)-web [53, 121] is a web of 5-dimensional branes in Type IIB String Theory. The web

structure correspond to lines in the (56) plane, while the 5-branes span the (01234) directions

and sit at a point in the other directions. The slope of each 5-brane is determined by its

(p, q) charges, mutually coprime, which must obey charge conservation at every web junction.

External legs of the web can terminate on a [p, q]7-brane that are pointlike in the (56) plane,

while extending in the other directions. Each 7-brane comes with a SL(2,Z) monodromy

cut on the plane that are often pointed radially outwards. We can neglect the curvature

corrections from the 7-branes by taking the limit of the external legs to be semi-infinite,

making the 7-branes very separated.

The zig-zag deformations Oη studied before are equivalent to deforming the position of a [1, 0]7-

brane attached to a specific (1, 0)5-brane.2 We showed that is possible to differentiate the k

2We can apply a SL(2,Z) transformation so the parallel 5-branes we wish to reverse have charges (1, 0).
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parallel external 5-brane legs, dual to a toric diagram side that describes an Ak−1 singularity.

By turning on FI parameters in the toric quiver gauge theory (and in the associated GLSM)

and fully resolving the web, each external leg can be mapped to a zig-zag path in the dimer

model. Adding a relevant deformation Oη in the 4d N = 1 quiver gauge theory triggers maps

to RG flow to an IR effective theory equivalent to sliding the D7-brane in the plane, along

the line of the 5-brane. As the [1, 0]7-brane crosses other (a, b)5-branes, the Dirac paring∣∣∣∣∣det
(
1 a

0 b

)∣∣∣∣∣ = |s| (6.15)

tells us how many (1, 0)5-branes are created at the crossing and attached to the D7-brane,

by the Hanany-Witten (HW) effect. We showed for the reflexive geometries that reversing

the D7-brane horizontally to the opposite side has it cross exactly two 5-branes with charge

|b| = 1 for deformations initiated from zig-zags of the highest Ak nonisolated singularity

(most relevant). As a result, the first HW transition annihilates the original (1, 0)5-brane, the

second HW transition creates a new (1, 0)5-brane. By rotating ±180◦ the SL(2,Z) monodromy

cut, that extends from infinity in (1, 0)-direction to the 7-brane, we can take the limit of

the 7-brane going to infinity in the opposite direction to recover a new toric geometry. The

polytope mutation on the original diagram is a direct result of sliding the monodromy cut

across part of the (p, q)-web. If the branch cut is rotated counterclockwise, then we apply

Mp,q =

(
1− pq p2

−q2 1 + pq

)
, (6.16)

to the affected segments, otherwise we act with M−1
p,q moving the cut clockwise. The two

resulting (p, q)-webs are equivalent up to a SL(2,Z) transformation.

For the C2 /Z2×C geometry, we note that its toric diagram ∆ = Conv{(0, 0), (1, 0), (0, 2)}∩Z2

does not have internal points and any full resolution does not contain a compact 4-cycle. As

a consequence, when we couple a single [1, 0]7-brane to one of the two (1, 0)5-branes in the

dual web and move it horizontally as described above, the D7-brane only crosses a single

NS5-brane. The unique crossing annihilates the original (1, 0)5-branes, and we get a detached

7-brane. As seen in fig. 6.3, rotating the monodromy clockwise is equivalent to acting on the

(2, 1)5-brane charges by M−1
−1,0, merging with the original (1, 1)5-brane.

In fact, the geometric moduli from the deformation in eq. (6.12) is a smooth hypersurface in

VC4(xy − uv) × C, the total space of deformations of the orbifold. Taking the limit of the

7-brane going to infinity, µ −→∞, the resulting web is dual to the regular 2-simplex. In the

T 2-dual picture of the 5-brane web, this implies that the D3-brane is no longer probing a

singular CY 3-fold, which no longer decays into a bound state of N = 2 fractional branes.

When a D3-brane is placed at nonsingular point it sees a smooth C3 geometry locally, and this
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Figure 6.3: Hanany-Witten move of a single 7-brane (r = 1). As we rotate the monodromy
cut (dashed red), with direction (x, y), we observe a conical gap open due to the identification
of directions (x, y) ∼ M−1

−1,0(x, y) = (x − y, y) of the two semi-infinite lines. The 5-branes
crossing the gap/cut are also identified (dotted line).

gives rise to N = 4 Yang–Mills worldvolume theory in the IR. The Gorenstein toric variety

from this toric diagram is simply C3 = CR(S
5).

The 5-brane web resulting from the Hanany-Witten move of a single D7-brane attached to

the parallel 5-brane does not reproduce the geometry of the conifold, but rather it describes

the complex FI deformation of the N = 2 quiver gauge theory on D3-branes probing an A1

singularity. In order to reproduce the conifold, we need the Hanany-Witten move to generate

two 5-branes during the single crossing, so that the annihilation of 5-branes still leaves one

(1, 0)5-brane attached to the [1, 0]7-brane. Additionally, in order to maintain the S-rule [121]

the monodromy action must act on the (2, 1) brane to generate a (0, 1)5-brane. We note that

acting twice with M−1
−1,0 (clockwise rotation) on the external 5-brane

(M−1
−1,0)

2

(
2

1

)
=M−1

−1,0

(
1

1

)
=

(
0

1

)
(6.17)

recovers the expected charges. In order to generate the conifold geometry, we therefore need

to attach the single 5-brane (mapped to η) to a bound state of two [1, 0]7-branes, which we

then move horizontally. We contrast this Hanany-Witten move, in fig. 6.4, with the previous

move for r = 1. For zig-zag deformations from polytopes with no internal points, we expect

Figure 6.4: Hanany-Witten move of a bound state of two 7-brane (r = 2). The conical gap
represents the identification (x, y) ∼ (M−1

−1,0)
2(x, y) = (x−2y, y) associated to the monodromy

cut (dashed red).

that we need to use the operator Oη,r for r = 2, since these cases are the ones where a single

crossing occur.
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Assuming we have s number (p, q)5-branes suspended between r-bound state of [p, q]7-branes

and a (a, b)5-brane, the theory background still has preserves supersymmetry if the generalized

S-rule holds:

s ≤ r|aq − bp| . (6.18)

Increasing the number r of 7-branes in the bound state, the number s of 5-branes that can

be suspended compatibly with supersymmetry increases. We expect the generalized zig-zag

deformation by Oη,r in the dimer model to be dual to a Hanany-Witten move of r [1, 0]7-branes

attached to a single (1, 0)5-brane. However, the quiver description of the deformation is

currently not understood if s > 1, since the 5-brane web describes a deformation of a (partially)

frozen non-isolated singularity, which cannot be (fully) resolved. In fact, the field theory

description may be non-Lagrangian.

Note that we can count the number of crossings with NS5-branes when moving

(perpendicularly) a bound state of D7-brane from the toric diagram. Given a polytope, a

facet normal (p, q), associated to the zig-zag η defines a set of perpendicular lines

px + qy = h, with integer height h ∈ Z, whose intersection with the toric diagram is

∆η,h = Conv
(
{v ∈ ∆ | ⟨η, v⟩ = h}

)
∩ Z2. Furthermore, there exists a range of heights

hmin ≤ h ≤ hmax such that ∆η,h is nonempty. We denote the lattice width with respect to

the normal η by wη = hmax − hmin.

SL(2,Z)

Figure 6.5: Lattice width wη with respect to toric diagram facet normal η.

On the other hand, using the convention above, we can apply the appropriate SL(2,Z)
transformation such that η maps to a facet with normal (−1, 0). The lattice width wη with

respect to η is simply the width of the transformed polytope in the (1, 0)-direction. It is easy

to check that the number of crossings of the D7-branes in the Hanany-Witten move matches

wη. See example in fig. 6.5.

In order to recover a toric geometry from a zig-zag deformation of an initial toric quiver

gauge theory it must flow to an IR theory where the dual web contains only single 5-brane

external legs attached to a single D7-branes, sent to infinity (µ −→∞). In the aforementioned

context, we can pick η and r in two ways: either wη = 2 and we deform the superpotential by

δW = µOη,2, or we have wη = 2 and δW = µOη,1. The first case are the mass deformations
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between pairs of geometries in the subfamily Lk,n−k,k, with n ≥ 2k > 0, fully covered in [108].

We will continue to explore the second case in the following section, continuing the work in [1].

For r + wη > 3, we expect the zig-zag operator Oη,r to induce more general deformations.

When moving a single (r = 1) 7-brane across wη ≥ 3 crossings, the endpoint is described by

web with wη − 1 parallel 5-branes ending on a single 7-brane. The later geometry is often

depicted by a generalized toric polytope (GTP) [123], containing “white dots” to symbolize

that some parallel 5-branes cannot be separated as they are suspended in the same 7-brane.

We note that the GPTs in the literature correspond to r = 1, but can be generalized to higher

r as outlined above.

6.2 Polytopes with 2 internal points

In this section, we continue the exploration of zig-zag deformations of toric quiver gauge

theories. While we managed to study in depth all the zig-zag deformations between reflexive

models, we wanted to verify the proposed arguments holds when the nice properties of the

reflexivity are not present.

We will use the excellent work of Bao, J. et al. [124] as a guide, in which they apply the inverse

algorithm [43, 47] to find the 4d N = 1 toric superpotentials describing the worldvolume

theory resulting from probing CY3 cones described by the 45 polytopes with 2 internal points

enumerated in [125] (up to SL(2,Z) lattice equivalence). While the list of superpotentials

in [124] does not extensively cover all toric phases of the models (which are relevant for the

study of the zig-zag deformations), we will use the provided superpotentials to find the graph

of toric dual brane tilings.3 The toric diagrams with 2 internal divisors belong to 4 classes of

families of toric varieties (and orbifolds thereof):4

• Y p,q [33] are a well-studied family of Sasaki-Einstein manifold, whose toric vertices as

given by

{(0, 0), (1, 0), (p, p), (p− q − 1, p− q)} . (6.19)

• Xp,q [126] define a set of quiver gauge theories, which extend the toric diagram of Y p,q

to

{(0, 0), (1, 0), (p, p), (p− q, p− q + 1), (p− q − 1, p− q)} . (6.20)

The toric diagram of Xp,q can be blown down to Y p,q or Y p,q−1.

3Strongly connected graph to duals, with edges signifying a toric-Seiberg duality.
4Following the families described in [124] we found two typos relating the labelling of the toric diagram:

where it reads K4,4,2,4 it should read K4,4,2,3; where it reads L1,3,2 it should read L4,3,2.
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• La,b,c [32, 34] is a Sasaki-Einstein manifold whose real cone is an affine Gorenstein

3-fold singularity, where a, b, c are integers with 0 < a ≤ b, 0 < c < a + b, and with

gcd(a, b, c, a+ b− c) = 1 (mutually coprime). The toric diagram has vertices

{(0, 0), (1, 0), (ak, b), (−am, c)} , (6.21)

where the integers k,m ∈ Z obey the condition ck + bm = 1. Notice the Lp−q,p+q,p

spaces reduce to Y p,q.

• Ka,b,c,d [124] corresponds to the affine Gorenstein 3-fold singularity whose toric diagram

is the pentagon with vertices

{(0, 0), (1, 0), (a(k + l), b− d), (ak, b), (−am, c)} , (6.22)

obeying ck + bm = 1, dm = cl. The case with d = 0 reduces to La,b,c.

Toric diagrams simultaneously define the affine 3-dimensional cone of the CY 3-fold, by

taking the span of (∆, 1), and the 2-dimensional compact base surfaces(s). Using the Star-

projection(s) (2.58) along a compact divisor, we can generate a fan of a 2-dimensional compact

base variety. For a single internal point, we just have a single compact 4-cycle Dρ, isomorphic

to a 2-dimensional Gorenstein Fano toric surfaces. In the present of 2 internal points, we

might obtain different base toric varieties as it depends on which of the two compact divisors

ρ1, ρ2 the projection is performed. In many cases, we obtain different 2 inequivalent complete

fans Σ1(∆),Σ2(∆), however these might match due to the symmetries of the toric diagrams.

While compact surfaces XΣ1(∆), XΣ2(∆) are no longer Gorenstein, these are still Q-Gorenstein

of degree 2.5

In this section, we will present an algorithmic way to find zig-zag deformations between toric

endpoints. We will exemplify with the dimer model L5,6,1 in specific, and detail all the zig-zag

flows to multiple toric phases of quiver gauge theories, whose geometric moduli are the K2,4,1,3

and K4,3,2,2 affine CY 3-folds. Due to the increased amount of toric phases in polytope with

2 internal points, we simply present the remaining zig-zag deformations. The data collected

can be found in github.com/jose-a-sa/zig-zag-deformation-data.

6.2.1 Algorithmic approach

In lattice polytopes with two internal points, I = 2, having an increased number of number

groups factors g in the quiver and boundary points B on the toric diagram, due to Pick’s

5The anticanonical divisor −KX is not ample but −2KX is. This is equivalent to looking at height 2 in the
lattice of generators.

https://github.com/jose-a-sa/zig-zag-deformation-data
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theorem,

g − 1 = (B − 3) + 2I , (6.23)

increases the chances of having a non-isolated singularity of Ak-type with higher rank. This

implies a larger possibility in deformations and toric-Seiberg duals. While we can use the

Hanany-Witten argument or apply a polytope mutation to find the toric endpoint of a

deformation, these methods ignore the fact that we can obtain different toric phases by

triggering a zig-zag deformations of the same type.

Instead of trying out the possible combinations of zig-zag deformations, we decided to pursue

a computer-assisted route. Here, we explain how we obtain all the toric phases connected to

a single toric superpotential by toric-Seiberg dualities. Using the toric phases obtained, we

use the definition (6.2) to find all possible deformations. More importantly, we describe the

algorithm used to find the necessary find the chiral field redefinitions and how to match the

IR superpotential with the aforementioned obtained toric phases.

6.2.1.1 Generating toric phases

Seiberg duality represents an infrared equivalence between two different supersymmetric QCD

theories at UV scales. Under a renormalization group, they flow to the same IR fixed point.

Specifically, all low-energy features such as moduli space, chiral ring, global symmetries, ’t

Hooft anomalies, etc., are consistent across Seiberg dual theories.

The quintessential case of Seiberg duality is observed in the N = 1 SU(Nc) gauge theory [48],

which features Nf fundamental/anti-fundamental multiplets Qi
a, Q̃

a
ĩ
of flavors SU(Nf )L ×

SU(Nf )R and no superpotential W = 0. Note a ∈ {1, . . . , Nc} represent the electric color

indices, whereas i, ĩ ∈ {1, . . . , Nf } are the fundamental/antifundamental representation flavor

indices. These are also charged by a baryonic and a U(1)R R-charge. The magnetic dual

description in terms of a SU(Ñc) gauge theory with Nf flavors of dual quarks qiã and antiquarks

q̃ã
ĩ
, where ã ∈ {1, . . . , Ñc} represent the magnetic (or dual) color indices. Additionally, we

have a set of SU(Ñc) singlet “mesons” M i
ĩ
that transform as bifundamentals under the

flavor symmetry, which couple to the dual quarks in superpotential W = Tr(qMq̃).6 See

fig. 6.6 for a description of the duality, using quivers. The duality In the conformal window,

3Nc/2 ≤ Nf ≤ 3Nc, Seiberg demonstrated that these two UV theories flow to the same

interacting infrared fixed point, provided that

Ñc = Nf −Nc , M i
ĩ
= Qi

aQ̃
a
ĩ
. (6.24)

It can be shown that the choice above for the Seiberg “mesons” is precisely what is needed

for both chiral rings to match. This duality implies that the two seemingly different gauge

6Trace is taken to be over color indices, implicitly assuming contraction over flavor indices.
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NcNf Nf

Qi
a

Q̃a
ĩ

(a) W = 0

ÑcNf Nf

qãi q̃ĩã

M i
ĩ

(b) W = Tr(qMq̃)

Figure 6.6: Original Seiberg duality of a N = 1 SQCD SU(Nc) gauge field theory.
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Figure 6.7: Seiberg duality of a N = 1 quiver gauge theory, with G =
∏g

i=1 SU(Ni). The

mutated node has Ñk =
∑

i ̸=kNiaik −Nk =
∑

j ̸=k akjNj −Nk.

theories describe the same physics in the infrared limit, with matching moduli spaces, chiral

rings, and global symmetries and anomalies.

The Seiberg duality in the context of quiver gauge theories [26, 49, 50, 52] is generalized to

the mathematical concept of quiver mutation. Given a quiver and superpotential (Q,W )

with gauge group G =
∏g

i=1 SU(Ni), we can pick any “color” node Nc = Nk, 1 ≤ k ≤ g, and
perform a mutation in order to obtain a dual theory. By fixing a node k ∈ Q0, we will have

a set of “incoming” superfields {Xik}i∈I , and “outgoing” superfields {Xkj}j∈J , connecting
the node being mutated with the “flavor” nodes I, J ⊂ Q0. In this case, we need to sum all

contributions of the incoming/outgoing charges in

Nf =
∑
i∈I

Niaik =
∑
j∈I

akjNj , (6.25)

where aij = |{i → j ∈ Q1}| is the adjacency matrix of the quiver Q. Note that the

second equality is a consequence of gauge anomaly cancellation. Under Seiberg duality, the

mutated quiver Q′ reverses the original incoming/outgoing arrows, introducing new chiral

fields {Yki}i∈I , {Yjk}j∈J . Furthermore, for each pair of incoming and outgoing nodes we add
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a Seiberg meson to the superpotential

W ′ =W (X) +
∑

(i,j)∈I×J

Tr(YkiYijYjk) , where XikXkj = Yij ∀ (i, j) ∈ I × J . (6.26)

It is important to note that, in the mutated superpotential, composite chiral fields XikXkj

are replaced by a new chiral Yij in the magnetic dual.

In order to guarantee that we have a brane tiling description before and after the mutation,

we will require that all quiver nodes have the same rank, Ni = N , ∀ i ∈ Q0. This requires that

Ñk = Nk, which reduces to the case where we have exactly incoming/outgoing bifundamentals,∑
j ̸=k akj =

∑
i ̸=k aik = 2. After the mutation we obtain a node with rank

Ñk =
∑
i ̸=k

Niaik −Nk =
∑
j ̸=k

akjNj −Nk , (6.27)

which simplifies to Ñk = 2N −N = N in the referred case. From the perspective of brane

tilings, this node is a square face and the mutation is precisely the transformation in fig. 3.2.

To describe an algorithm to find a family to toric phases for a given geometry, we can think

of the toric-Seiberg duality as an involution acting on a dimer model. Note that applying the

transformation shown in fig. 3.2 may unlock other “square faces” – after reducing the dimer,

i.e., integrating-in mass terms in the superpotential – on which we can continue to apply this

operation. While this recursion might initially seem to lead to an infinite family of duals,

when we consider models (Q,W ) up to isomorphism7 of the dimer models, we expect the tree

of toric phases to close into a strongly connected graph. This procedure does not guarantee

that all the toric phases of a given geometry are visited. Restricting to only toric-Seiberg

duality means we are discarding mutations paths between toric phases, where at some point

the ranks of the quiver nodes are no longer equal (we set Ni = N = 1 for simplicity).

Given these assumptions, the problem of finding all toric phases is equivalent to traversing

a finite undirected graph. This type of problem is well-known and can be easily tackled by

one of the classical graph traversal algorithms: depth-first search (DFS) [127] or breadth-first

search (BFS) [128, 129]. As the names suggest, the first prioritizes depth by always selecting

the first non-visited neighbor of the current node to be visited next, while the second traverses

the graph nodes in increasing edge distance to the starting node. There are small caveats to

using each approach, but in this case it is irrelevant, so we will describe in more detail the BFS

version in algorithm 1. In this algorithm we assume that the reader has access to methods

that can perform the toric duality or check for isomorphism of models (e.g., SeibergDual

and DimerIsomorphic, respectively), as these are heavily dependent on the choice of data

representation of the dimer models.

7Dimer models (Q,W ), (Q′,W ′) are isomorphic if we can find a graph isomorphism between Q, Q′

preserving/reversing the direction of all edges, and if W , W ′ match up to an overall sign under the edge this
bijection. For e.g., we can use FindGraphIsomorphism in Mathematica for the former step.



126 Deformations of Toric Quiver Gauge Theories

Algorithm 1 ToricSeibergDualsGraph(Q,W ). Pseudocode describing the BFS
algorithm to obtain a graph of toric duals for a given seed.

Input: Seed dimer model (Q,W )
Output: Graph of toric dual phases G

G← Graph() ▷ Create a graph structure G = (G0,G1).
AddVertex(G, (Q,W ))
bfs← {} ▷ Create a queue structure.
Enqueue(bfs, (Q,W ))
while ¬Empty(bfs) do

(Qcur,W cur)← Dequeue(bfs) ▷ Current phase being visited.
for k ∈ Qcur

0 do ▷ Check all nodes for square faces.
if |{k → j ∈ Qcur

1 | j ∈ Qcur
0 }| = |{i→ k ∈ Qcur

1 | i ∈ Qcur
0 }| = 2 then

(Qmut,Wmut)← SeibergDual((Qcur,W cur), k, {Ni = 1}i≤g)
visited← False
for (Q′,W ′) ∈ G0 do

if DimerIsomorphic((Q′,W ′), (Qmut,Wmut)) then
(Qmut,Wmut)← (Q′,W ′)
visited← True
break

end if
end for
if ¬visited then

Enqueue(bfs, (Qmut,Wmut))
AddVertex(G, (Qmut,Wmut))

end if
AddEdge(G, (Qcur,W cur), (Qmut,Wmut))

end if
end for

end while
return G

The rough description of the algorithm goes as follows:

• We start with a seed model (Q,W ) and initialize a queue data-structure (first in, first

out) to store toric phases still to be visited and a some graph-like data-structure to

store the found toric phases and connecting toric dualities.

• While we still have nodes to be visited (queue not empty) we will remove the next dimer

model in the queue to be visited, (Qcur,W cur). For each “square face” in the current

dimer model being visited:

1. Apply the toric-Seiberg duality as in figs. 3.2 and 6.7 and obtain a new toric phase

(Qmut,Wmut).

2. Check this new toric phase against all previously found phases in stored for other

isomorphic phases. If an isomorphic phase is found, we will use that representative

for (Qmut,Wmut) instead. Add an edge between the current toric phase being

visited, and the toric phase obtained by the toric-Seiberg mutation.
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C3/Z6 (1, 1, 4) 1 L2,5,1 1 K2,5,1,4 7

C3/Z5 (1, 2, 2) 1 L5,6,1 1 K2,5,1,3 12

C3/Z8 (1, 3, 4) 1 L2,4,1 1 K2,5,1,2 10

C3/(Z2 × Z5) (1, 0, 1)(0, 1, 4) 1 L5,4,1 1 K2,5,1,1 4

C3/(Z2 × Z6) (1, 0, 1)(1, 0, 5) 1 L1,5,1/Z2 (1, 0, 0, 1) 2 K4,4,2,3 25

L3,3,1 1 SPP/Z3 (1, 0, 0, 2) 3 K4,4,2,2 19

L3,3,2 2 C/(Z3 × Z2) (1, 0, 0, 2)(0, 1, 1, 0) 11 K2,4,1,3 5

Y 3,0 2 L4,3,2 2 K2,4,1,2 7

SPP/(Z2 × Z2) (1, 0, 0, 1)(0, 1, 1, 0) 8 C/Z4 (0, 1, 2, 1) 4 K2,4,1,1 3

L2,3,2/Z2 (1, 0, 0, 1) 6 X3,2 3 K4,3,2,2 9

dP1/Z2 (1, 0, 0, 1) 3 X3,1 5 PdP4e (3) 13

L1,4,1/Z2 (1, 0, 0, 1) 2 PdP4c (2) 8 PdP5c (3) 40

PdP2/Z2 (1, 1, 1, 1) 3 PdP4d (2) 8 PdP6b (3) 23

L1,3,1/Z2 (1, 0, 0, 1) 2 PdP5b (2) 8 PdP4f (2) 13

L3,5,2 2 PdP6a (2) 4 PdP6c (3) 33

Table 6.1: Number of toric phases connected by toric-Seiberg dualities, for all the toric
geometries from polytope with 2 internal points.

3. If (Qmut,Wmut) dimer is yet to be visited, we added it to the queue.

• We will eventually visit all nodes and the queue will become empty. At this point we

found all the graph of toric phases connected by toric dualities.

For example, in fig. 6.8 we can see how this algorithm explores the multiple phases of the

K4,3,2,2.

The procedure outlined above provides a robust method for exploring the toric phases of

dimer models. However, it is unclear if all the toric phases are recovered, as we limited

the Seiberg duality to nodes with 2 incoming/outgoing edges, which heavily constrains the

“mutation paths” explored, keeping the graph of toric phases finite. Note that we can apply a

mutation to any node in the quiver, and we might have a chain of node mutations where we

eventually recover equal-ranks and a brane tiling description. In other words, we can have

other connected components not reachable by toric dualities alone.

However, for the purposes of this work, the toric phases found via this method were sufficient

to compare against the quiver gauge theories found via zig-zag deformations in the case of

polytopes with 2 internal points. We can see that for these polytopes, the count of phases can

be as high as 40, larger than the toric phases obtained in [124]. We present the toric phases

in a supplementary file in github.com/jose-a-sa/zig-zag-deformation-data, fixing the labelling

of the phases, as these are heavily used in the next sections.

6.2.1.2 Finding zig-zag deformations

In our examination of gauge theories derived from reflexive polytopes, after deforming the

superpotential by δW =
∑

i∈I Oηi the potential does not obey the cancellation property

https://github.com/jose-a-sa/zig-zag-deformation-data
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Figure 6.8: Steps in the BFS exploring the graph toric phases of K4,3,2,2. Undirected edges
correspond to a pair of directed edges in both directions. Highlighted nodes/phases in red

have been found in a previous step but not yet visited.

required to be described as a dimer model. To show that such a flat family of deformations

can degenerate into a toric IR fixed point (from the point of view of the 4d N = 1 theory) we

typically try to find a chiral field redefinition

Xij = αijX̃ij +

nij∑
l=1

β
(l)
ij X̃ilX̃lj , (6.28)

where αij and βilj are specific constant coefficients with the obvious condition αij ̸= 0.8

The redefinition only allows terms that maintain gauge invariance, i.e. terms made of other

paths such as XilXlj in the quiver, starting and ending in the same nodes. By choosing

the coefficients to scale inversely with the deformation parameter, αij , βilj = ± 1
µ , a valid

redefinition leads to

Wdef(X) =W (X) + µ δW (X) =
1

µ
W ′(X̃) , (6.29)

where W ′ is the IR model toric superpotential.

Given that we aim to map out the possible zig-zag deformation between theories generated

from polytopes with 2 internal points with a much larger set of toric phases than in the

reflexive case, we need to tackle this problem with computational aid. A few key insights are

needed to do so. The main working assumption is that if the chiral multiplet Xij needs to be

redefined to restore toric symmetry, then the condition

αij +

nij∑
l=1

β
(l)
ij = 0 (6.30)

must be obeyed, as it is a necessary condition to obtain ∂W ′

∂X̃ |X̃ij=0
= 0. However, the condition

(6.30) itself is not sufficient to guarantee the toric F-term condition ∂X̃W
′ = F+(X̃)−F−(X̃)

is recovered. However, it will be relevant for the speeding up of the procedure.

8We omitted the case where quiver can have higher multiplicity for simplicity.
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To understand how the process of finding the redefinition can be systematized, let’s look at a

particular example of a zig-zag deformation

δW = µ (X12X28X81 −X57X76X65) (6.31)

of the dimer model L3,5,2 in fig. 6.9 (toric phase I). Such a dimer model has quite a few
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Figure 6.9: Brane tiling of generalized conifold L3,5,2.

possible redefinitions of the form eq. (6.28), which can be read from the quiver/tiling:

X12 = α12 X̃12 + β12 X̃13X̃32

X13 = α13 X̃13 + β13 X̃17X̃73

X34 = α34 X̃34 + β34 X̃35X̃54 + γ34 X̃32X̃24

X43 = α43 X̃43 + β43 X̃47X̃73 + γ43 X̃41X̃13

X47 = α47 X̃47 + β47 X̃41X̃17

X57 = α57 X̃57 + β57 X̃54X̃47

X76 = α76 X̃76 + β76 X̃78X̃86

X81 = α81 X̃81 + β81 X̃86X̃61

(6.32)

To find the parameters αij and βilj , we note that each F-term of the rescaled µWdef must be

composed of only two monomials in the chiral superfields and each monomial is free of µ. In

the above example, we can look that the F-terms

µ
∂Wdef

∂X̃12

=
(
µ2α12β81 − µα12

)
X̃28X̃86X̃61 + µ2α12α81X̃28X̃81 + µα12X̃24X̃41

µ
∂Wdef

∂X̃57

=
(
µα57 − µ2α57β76

)
X̃78X̃86X̃65 − µ2α57α76X̃76X̃65 − µα57X̃73X̃35

µ
∂Wdef

∂X̃43

= µα43X̃35X̃54 − µα43X̃32X̃24

(6.33)

and apply a dimensional analysis argument with respect to µ. The presence of the terms

µ2α12α81, µα12, µ
2α57α76, µα57, µα43 tells us that the fields X12, X81, X57, X76, X43 must

be redefined non-trivially. In other words, we must have

αij = ζij
1

µ
, ζij = ±1 for αij ∈ {α12, α81, α57, α76, α43} , (6.34)
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in order to cancel the µ and µ2 terms, as αij cannot vanish. Then we can use the condition

(6.30) to eliminate β
(1)
ij , for example, which greatly simplifies the F-terms. On the other hand,

we can use to same argument to set β13 = β47 = 0 as the F-terms

µ
∂Wdef

∂X̃81

= (α13ζ81 − ζ12ζ81)X̃13X̃32X̃28 + ζ81β13X̃17X̃73X̃32X̃28 + ζ12ζ81X̃12X̃28 − ζ81X̃17X̃78

µ
∂Wdef

∂X̃76

= (ζ57ζ76 − α47ζ76)X̃65X̃54X̃47 − β47ζ76X̃65X̃54X̃41X̃17 + ζ76X̃61X̃17 − ζ57ζ76X̃65X̃57

(6.35)

do not depend on µ and, consequently, implies the chiral fields X13, X13 transform trivially

(α13 = α47 = 1). In this example, we are still missing if X43 transforms trivially or non-trivially,

but after the above results, the F-term

µ
∂Wdef

∂X̃34

= µα34X̃47X̃73 − µα34X̃41X̃13 (6.36)

implies that X43 redefinition is the same as in (6.34). It seems we applied a rescaling of the

coefficients αij , β
(l)
ij and that we are nowhere near finding the field redefinition. However, at

this point, we already completed the task of finding which fields Xij are non-trivially shifted.

We still have F-terms not in bi-monomial form, e.g.,

µ
∂Wdef

∂X̃12

= ζ12X̃24X̃41 + ζ81ζ12X̃28X̃81 − ζ12(ζ81 + 1)X̃28X̃61X̃86

µ
∂Wdef

∂X̃17

= ζ76X̃61X̃76 − ζ81X̃78X̃81 + (ζ81 − ζ76) X̃61X̃78X̃86

µ
∂Wdef

∂X̃76

= ζ76X̃17X̃61 − ζ57ζ76X̃57X̃65 + ζ76(ζ57 − 1)X̃47X̃54X̃65

µ
∂Wdef

∂X̃35

= ζ43X̃54X̃43 − ζ57X̃57X̃73 + [µ(β34 + β43) + ζ57] X̃54X̃47X̃73

− [µ(β34 + β43) + ζ43] X̃54X̃41X̃13

(6.37)

for which we need to solve the combinatorial problem of finding the signs ζij and possible

linear relations between the β
(l)
ij if a parametrized family of redefinitions is allowed. By looking

at the coefficients of the chiral field products, we note that some terms must vanish, since

the first 2 terms do not vanish under the assumption that ζij = ±1. For this reason, we are

required to have ζ81 = ζ76 = −1, ζ43 = ζ57 = 1, and β43 = − 1
µ − β34. Thus, we can gather

these results to write the field redefinition that re covers the cancellation property of the

deformed superpotential,

X12 =
1
µX̃12 − 1

µX̃13X̃32

X34 =
1
µX̃34 −

(
1
µ + β34

)
X̃24X̃32 + β34X̃35X̃54

X43 =
1
µX̃43 −

(
1
µ + β34

)
X̃47X̃73 + β34X̃13X̃41

X57 =
1
µX̃57 − 1

µX̃54X̃47

X76 = − 1
µX̃76 +

1
µX̃78X̃86

X81 = − 1
µX̃81 +

1
µX̃86X̃61

(6.38)
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where the parameter β34 ∈ C is free. For this deformation, the tiling describing the toric IR

endpoint is given in fig. 6.10, where we observe the expected reversal of the zig-zag path, as

described in section 4.3.
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Figure 6.10: Brane tiling of model K2,4,1,2.

We need to repeat this process multiple times for multiple toric phases, which may have more

than one possible zig-zag deformation leading to another toric phase. As seen above, the

process is fairly algorithmic and can be implemented in a couple of steps:

1. Apply the redefinition of the form (6.28) from the model quiver Q. For any field Xij ,

this involves finding all length 2 paths in Q between notes i and j. It turns out that

higher length terms are not needed.

2. Compute the F-terms of Wdef , collected in terms of unique monomials

µ
∂Wdef

∂Xij
=

∑
p=E1···En

t(E1)=j
h(En)=i

fpjiXE1 · · ·XEn . (6.39)

In this step we apply the dimensional argument with respect to µ. While there is

dependence on the coefficients αij , we repeatably separate non-trivially/trivially redefined

fields as:

• For every F-term monomial coefficient of the form |fpab| = |µ|
n
∏n

k=1|αik,jk |, we add

the fields {Xik,jk }k to the group of non-trivially redefined and set

αik,jk = ζik,jk
1

µ
, β

(1)
ik,jk

= −ζik,jk
1

µ
−

nik,jk∑
l=2

β
(l)
ik,jk

(6.40)

• For every monomial coefficient |fpab| =
∏n

k=1|xik,jk |, where x ∈ {α, β(l)}, i.e., if
fpab is a product free of µ, we add the {Xik,jk }k to the group of trivially redefined

bifundamentals. We set αik,jk = 1 and β
(l)
ik,jk

= 0 in this case.
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• Simplify the F-terms and repeat the process.

3. At this point, we have determined the redefined chirals, as well as some simplifying

many coefficients to |fpab| = 1. We use the fact that terms |fpab| ∝ |ζik,jk ± 1| must vanish

(they are never = 1) to fix signs ζik,jk .

4. If a family of field redefinitions is allowed (fpab still depends on redefinition coefficients),

we can reduce the linear dependent of β
(l)
ik,jk

by solving

∑
p=E1···En

t(E1)=j
h(En)=i

|fpji| = 2 ,
∑

p=E1···En

t(E1)=j
h(En)=i

fpji = 0 . (6.41)

These will be much simpler equations due to the previous steps.

6.2.2 Non-orbifold example: zig-zag deformations of L5,4,1

In this section, we will study use the model L5,4,1 as a starting point to a rich amount of

zig-zag deformations. The 4d N = 1 quiver gauge theory has a superpotential

WL5,4,1 = X12X23X31 +X14X42X21 +X1,10X10,11X11,1 +X2,11X11,10X10,2

+X35X57X73 +X67X79X96 +X68X87X76 +X89X9,10X10,8

+X8,11X11,9X98 +X36X65X54X43 −X12X2,11X11,1 −X14X43X31

−X1,10X10,2X21 −X36X67X73 −X57X76X65 −X68X89X96

−X79X98X87 −X8,11X11,10X10,8 −X9,10X10,11X11,9 −X23X35X54X42

(6.42)

which can more simply be encoded in the brane tiling in fig. 6.11.
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Figure 6.11: Brane tiling (a) and toric diagram (b) of the single toric phase of L5,4,1
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This geometry has an A3 non-isolated singularity and a single toric phase, which allows us

to showcase the multiple zig-zag deformations. From the toric diagram, we can obtain the

lattice of generators, from which we can find all the relations in the mesonic ideal. In the

reflexive case, the toric diagram and polar dual both sit at height 1 in a 3-dimensional lattice.

In the case of 2 internal points, we need to look at the generators of the polytope

P−2KX
= {m ∈ R2 | ⟨m,uρ⟩+ 2 ≥ 0, ρ ∈ Σ(∆)} (6.43)

to obtain the Hilbert basis of the dual cone (σ∆)
∨ = Cone

(
(v, 1)

∣∣ v ∈ ∆
)∨

. For the model

L5,4,1, the Hilbert basis is presented in fig. 6.12.

(a)

(b)

A1 : (-1, 0, 1)
B4 : (0, 0, 1)
C3 : (1, 0, 1)
D4 : (1, 1, 2)
D2 : (0, -1, 1)
E4 : (2, 1, 2)
E3 : (1, -1, 1)
H3 : (1, -2, 1)

Figure 6.12: Lattice of generators of L5,4,1, at height 1 in (a) and height 2 in (b). Some
points in (b) represent relations in the mesonic ideal. The labelled triplets represent the points
in the 3d lattice, as well as the U(1)3 consistent charges of the mesonic global symmetry.

Linear relations between the lattice generators translate to multiplicative relations between

the mesonic ideal generators. Some relations can be found at height 2, if the lattice point is a

positive linear combination of more than a pair of generators from height 1. At height 3, we

can find all necessary relations that generate the chiral ring

Imes =
〈
E2

3 − C3H3, E3D4 − E4D2, E3D2 −B4H3, C3D4 − E4B4, B4D4 − E4B1,

D2
2 −B1H3, C3D2 − E3B4, B4D2 − E3B1, B

2
4 −B1C3, E3C

2
3 − E4H3,

E3B4C3 −D4H3, C
3
3 − E3E4, B4C

2
3 − E4D2, B1C

2
3 −D2D4

〉 (6.44)

The full mesonic moduli of for the brane tiling model associated to L5,4,1 contains an extra

component describing moduli of N = 2 fractional branes probing the locus of the non-isolated

A3 singularity. This branch is parametrized by the generators,

A1 = X89X98 , A2 = X34X43 , A3 = X12X21 , B1 = X56X67X75 , (6.45)
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which intersects the geometric ideal (6.44) at the non-isolated singularity, defined by B1 =

A3 = A2 = A1. Associated to this A3 singularity are the four zig-zag paths

η4 = X19X92X28X81,

η6 = X36X64X45X53,

η5 = X68X87X79X96,

η7 = X14X42X23X31 ,
(6.46)

defining relevant zig-zag operators 6.2 with conformal R-charge Rsc

[
Oη4,5,6,7

]
= 1.3759...,

obtained via a-maximization. As we have seen before, we can trigger a RG flow either by

including a single zig-zag operator Oηi or a combination of two zig-zag operator Oηi +Oηj .

For a one-parameter deformation of L5,4,1 we do not need to include more combinations of

Oηi . Furthermore, we can use the fact that the sum

Oη4 +Oη5 +Oη6 +Oη7 ≃ 0 (= 0) (6.47)

is by default trivial in the chiral ring, allowing us to halve the combinations of operators Oηi .
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Figure 6.13: Toric phases of K2,4,1,3 obtained from deforming L5,4,1 by a single operator
Oηi

, as summarized in fig. 6.19. Dimer (III) is isomorphic to dimer (I) by mutating node 7.

Starting by analyzing the deformations of the form, δW = µOηi we can integrate out

mass terms in the deformed potential and proceed with the algorithm procedure defined in

section 6.2.1.2. In the dual (p, q)-web picture, this corresponds to reversing any one of the 4

external legs associated to the A3 facet in the toric diagram. After the polytope mutation, we

obtain the toric diagram of the affine cone K2,4,1,3. This geometry contains 5 toric phases

connected via a non-trivial graph to toric-Seiberg dualities. The deformations above can be

further divided into two subgroups, depending on which toric phase the UV model flows to:

• δW = µOη4 or µOη7 flows to K2,4,1,3 phase I,

• δW = µOη5 or µOη6 flows to K2,4,1,3 phase III.

The remaining toric phases are not accessible by such deformation, but by toric duality. On

the other hand, by reversing the 2 zig-zag paths the

• δW = µ (Oη5 +Oη6) flows to K
4,3,2,2 phase III,
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• δW = µ (Oη5 +Oη7) flows to K
4,3,2,2 phase I,

• δW = µ (Oη6 +Oη7) flows to K
4,3,2,2 phase V.

The results of regarding this model can be summarized by the graph in fig. 6.15.
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Figure 6.14: Toric phases ofK4,3,2,2 obtained from deforming L5,4,1 by an operatorOηi
+Oηj

,
as summarized in B.3.2. Dimers (III) and (V) are isomorphic by mutating node 5 or 7.
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Figure 6.15: Graph of zig-zag deformations starting from L5,4,1, as well as the graph of
toric-Seiberg dualities of the involved models, showcasing flows between different toric phases

depending on zig-zag paths triggering the deformation.

6.2.3 Summary of zig-zag deformations for 2 internal points

In this section we summarize all RG flows from toric gauge theories living in the world-volume

of D3-branes probing a toric CY cone with a polytope with 2 internal points. Most of the

cases were computed manually, with insights from the reflexive case, matching against the

algorithmic approach described above. For sake of completeness, we include the all the case

where g = 6, for completeness, while skipping the single orbifold with g = 5. These are all

one parameter deformations where 1,2 and 3 combinations of zig-zag operators are presented

in a single, double and triple arrows, respectively.
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Figure 6.18: Zig-zag deformation between polytopes with g = 8.
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Figure 6.20: Zig-zag deformation between polytopes with g = 10.
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Figure 6.21: Zig-zag deformation between polytopes with g = 11.
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Figure 6.22: Zig-zag deformation between polytopes with g = 12.





Chapter 7

Discussion

In this work, we have investigated nontoric deformations of a specific type, focusing on

the construction of one-parameter families of deformations of toric quiver gauge theories.

These gauge theories arise in the worldvolume of D3-branes probing a toric Calabi-Yau

3-fold singularity. The deformations in question preserve a U(1)2 symmetry within the U(1)3

mesonic symmetry for generic values of the deformation parameter µ ∈ C∪∞ ∼= P1, and they

interpolate between two distinct toric models at µ = 0 and µ =∞, respectively.

To induce the deformation, we define a zig-zag operator completely specified by zig-zag path η

in the brane tiling description. This path adheres to the edges of the tiling, making maximal

turns left at white nodes and right at black nodes. The zig-zag path is associated with an

outward-pointing normal vector to an edge of the toric diagram and corresponds to an external

leg in the dual (p, q)-web. The operator represents the difference between two mesonic chiral

operators, each associated with loops winding oppositely around the zig-zag path in the tiling.

This deformation is non-trivial in the chiral ring if, and only if, the chosen zig-zag path is

parallel to other zig-zag paths in the tiling, indicating a type Ak non-isolated singularity in the

geometry. In such cases, the mesonic operators involved in Oη = OL
η −OR

η parametrize N = 2

Coulomb moduli of the undeformed toric quiver gauge theory, which are subsequently lifted

by the deformation. Concurrently, the geometric branch of the abelian theory on the regular

D-brane’s worldvolume undergoes deformation, which partially or fully lifts the non-isolated

singularity.

Our study further demonstrates that the deformed geometry leads to the emergence of another

toric model as µ −→ ∞, characterized by a toric diagram that is a mutation of the original

diagram at µ = 0. Specifically, when the selected zig-zag operator has a length 4, the µ =∞
model can be described by a new brane tiling derived from the µ = 0 model via an operation

that reverses the direction of the chosen zig-zag. Furthermore, when examining all possible

deformations of this type in gauge theories spanned from toric del Pezzo theories, we find this

deformation induces a RG flow between 4d N = 1 toric SCFTs, leading to an IR model with
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fewer N = 2 Coulomb moduli than the UV model and a geometry with reduced non-isolated

singularity. This observation generalizes the findings of previous work on mass deformations.

Alternatively, the µ = ∞ brane tiling can be obtained from the µ = 0 tiling through a

sequence of operations: applying specular duality, performing a toric-Seiberg duality on the

face corresponding to the chosen zig-zag, and then applying specular duality once more. For

large but finite µ, the resulting model is also deformed by a (potentially trivial) zig-zag

deformation proportional to 1
µO

′
η′ , where η

′ represents the reversed zig-zag path. This process

aligns with recent studies that relate mutations of generalized toric polytopes (GTPs) [123] to

mutations of twin quivers [115, 130]. The results are consistent with our field theory analysis,

where we introduce the zig-zag deformation, integrate out massive fields, and redefine the

fields to recover the quiver and toric superpotential of a new toric model as µ −→∞.

For arbitrary resolution parameters, we confirm that the triangulated toric diagrams of the

µ = 0 and µ =∞ geometries are connected through a mutation of a triangulated polytope.

This mutation is dual to reversing a fivebrane in the (p, q)-web by terminating it on a 7-brane,

sliding the 7-brane along the fivebrane while accounting for Hanany-Witten transitions, and

rotating the SL(2,Z) monodromy cut until it vanishes in the limit. We have thoroughly

tested this observation against field-theoretical predictions, including the superpotential, by

matching the Kähler chambers of stable representations of the µ = 0 and µ =∞ theories.

Finally, we introduce a generalized approach for obtaining the IR dimer model a set of zig-zag

deformations and an algorithm that finds all toric(-Seiberg dual) phases given a seed brane

tiling. We argue that as long as the zig-zag η is of length 4 and the toric diagram lattice size

in the parallel direction wη is 2, the zig-zag deformation still parametrizes a flat family of

deformations to connect two toric endpoints. If these conditions hold, moving the associated

[p, q] D7-brane will precisely lead to one annihilation and one creation of the suspended 5-brane

external leg via Hanany-Witten effect, as it crosses the single 4-cycle. The final (p, q)-web

configuration is guaranteed to be dual to a toric diagram.

This observation allows us to go beyond the reflexive case. In particular, polytopes with

2 internal points contain relevant zig-zag operators of the satisfying the above conditions.

We describe and apply a methodology that finds all N = 1 field redefinition needed to be

applied in the field theory context in order to obtain show the RG flow to an IR toric model.

Furthermore, turning zig-zag deformations associated to the same A-type singularity often

lead to different toric phases of the same µ =∞ geometry. As such, in order to more easily

identify the IR model/phase, we successfully applied the BFS algorithm to explore toric phases

strongly connected to a seed model via toric-Seiberg dualities.
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Appendix A

Details of deformations for reflexive

polytopes

In this appendix we collect details of the zig-zag deformations of UV toric models and the

field redefinitions needed to obtain new toric models in the IR. We describe the deformations

δW of toric superpotentials by a (or multiple) relevant zig-zag operator Oη, which flow into

a toric model or a marginal deformation of one. We divide these into appendix A.1 and

appendix A.2. Each subsection is titled “X to Y”. Furthermore, when different toric phases

are involved these are also pointed out.

A.1 Deformations to toric models

The deformations listed here include only the relevant steps, which are fully described in

section 4.3. In each subsection, describing the deformation between 2 specific geometries, we

include the original starting superpotential W . Additionally, each deformation is in a unique

equation block with:

1. The deformation δW = µ
∑

i∈I Oηi , associated to one or more zig-zag paths ηi.

2. The non-trivial field redefinitions of the type in eq. (4.15), if any. Some redefinitions

include free parameters βi ∈ C, which do not affect the final result.

3. The toric superpotential W ′ representing the IR theory.

The redefinition in item 2 is for the superpotential W + δW , after integrating out massive

fields using the F-terms (4.13).
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A.1.1 PdP1,C3 /Z4 (1, 1, 2) to F0, C /Z2 (1, 1, 1, 1)

W = X13X
1
34X

2
41 +X24X

1
41X

2
12 +X31X

1
12X

2
23 +X42X

1
23X

2
34

−X13X
2
34X

1
41 −X24X

2
41X

1
12 −X31X

2
12X

1
23 −X42X

2
23X

1
34

(A.1)

δW = µ (X13X31 −X24X42)

W ′ = X1
12X

2
23X

2
34X

1
41 +X2

12X
1
23X

1
34X

2
41 −X1

12X
1
23X

2
34X

2
41 −X2

12X
2
23X

1
34X

1
41

= −ϵabϵcdXa
12X

b
23X

c
34X

d
41

(A.2)

A.1.2 PdP2 to dP2

W = X12X
1
25X

2
51 +X14X42X21 +X53X32X

2
25 +X13X34X45X

1
51

−X12X
2
25X

1
51 −X13X32X21 −X14X45X

2
51 −X34X42X

1
25X53

(A.3)

δW = µ (X12X21 −X34X45X53)

X45 7−→ +
1

µ
X45 −

1

µ
X42X

1
25 X53 7−→ −

1

µ
X53 +

1

µ
X1

51X13

W ′ = X34X45X53 +X13X32X
1
25X

2
51 +X14X42X

2
25X

1
51

−X14X45X
2
51 −X32X

2
25X53 −X13X34X42X

1
25X

1
51

(A.4)

A.1.3 PdP3a,C3 /Z6 (1, 2, 3) to PdP3c, SPP/Z2 (0, 1, 1, 1)

Phase A to Phase A

W = X12X26X61 +X13X35X51 +X15X54X41 +X24X43X32

+X25X56X62 +X34X46X63 −X12X25X51 −X13X34X41

−X15X56X61 −X24X46X62 −X26X63X32 −X35X54X43

(A.5)
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δW = µ (X15X51 −X34X43)

X26 7−→ −
1

µ
X26 +

(
1

µ
− β1

)
X24X46 + β1X25X56

X62 7−→ −
1

µ
X62 +

(
1

µ
− β1

)
X61X12 + β1X63X32

W ′ = X24X46X62 +X26X63X32 +X12X25X54X41 +X13X35X56X61

−X12X26X61 −X25X56X62 −X13X32X24X41 −X35X54X46X63

(A.6)

δW = µ (X26X62 −X15X51)

X34 7−→ −
1

µ
X34 +

(
1

µ
− β1

)
X32X24 + β1X35X54

X43 7−→ −
1

µ
X43 +

(
1

µ
− β1

)
X41X14 + β1X46X63

W ′ = X13X34X41 +X35X54X43 +X12X24X46X61 +X25X56X63X32

−X24X43X32 −X34X46X63 −X12X25X54X41 −X13X35X56X61

(A.7)

A.1.4 PdP3c, SPP/Z2 (0, 1, 1, 1) to PdP3b

Phase A to Phase A

W = X25X56X62 +X36X65X53 +X13X34X45X51 +X16X64X42X21

−X16X65X51 −X45X56X64 −X13X36X62X21 −X25X53X34X42

(A.8)

δW = µ (X16X62X21 −X34X45X53)

X16 7−→ −
1

µ
X16 +

1

µ
X13X36 X62 7−→

1

µ
X62 −

1

µ
X64X42

X53 7−→ −
1

µ
X53 +

1

µ
X51X13 X45 7−→

1

µ
X45 −

1

µ
X42X25

W ′ = X16X65X51 +X25X56X62 +X34X45X53 +X13X36X64X42X21

−X16X62X21 −X36X65X53 −X45X56X64 −X13X34X42X25X51

(A.9)
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Phase B to Phase B

W = X12X23X31 +X25X56X62 +X26X64X42 +X34X45X
2
53

+X15X
1
53X36X61 −X12X26X61 −X15X

2
53X31 −X23X36X62

−X45X56X64 −X25X
1
53X34X42

(A.10)

δW = µ
(
X26X62 −X15X

1
53X31

)
X31 7−→ −

1

µ
X31 +

1

µ
X36X61 X1

53 7−→
1

µ
X1

53 −
1

µ
X2

53

X45 7−→
1

µ
X45 −

1

µ
X42X25

W ′ = X15X
1
53X31 +X34X45X

2
53 +X12X25X56X61 +X23X36X64X42

−X12X23X31 −X45X56X64 −X15X
2
53X36X61 −X25X

1
53X34X42

(A.11)

A.1.5 PdP3b to dP3

Phase A to Phase A

W = X12X26X61 +X14X42X21 +X25X53X32 +X13X34X46X65X51

−X12X25X51 −X13X32X21 −X14X46X61 −X26X65X53X34X42

(A.12)

δW = µ (X12X21 −X34X46X65X53)

X53 7−→ −
1

µ
X53 +

1

µ
X51X13 X46 7−→

1

µ
X46 −

1

µ
X42X26

W ′ = X13X32X26X61 +X14X42X25X51 +X34X46X65X53

−X14X46X61 −X25X53X32 −X13X34X42X26X65X51

(A.13)

Phase B to Phase B

W = X53X32X
2
25 +X56X62X

1
25 +X13X34X45X51 +X16X64X42X21

−X13X32X21 −X45X56X64 −X16X62X
2
25X51 −X34X42X

1
25X53

(A.14)
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δW = µ (X12X21 −X34X46X65X53)

X53 7−→ −
1

µ
X53 +

1

µ
X51X13 X45 7−→

1

µ
X45 −

1

µ
X42X

1
25

X21 7−→ −
1

µ
X21 +

1

µ
X2

25X51 X62 7−→
1

µ
X62 −

1

µ
X64X42

W ′ = X13X32X21 +X34X45X53 +X56X62X
1
25 +X16X64X42X

2
25X51

−X16X62X21 −X45X56X64 −X53X32X
2
25 −X13X34X42X

1
25X51

(A.15)

Phase C to Phase C

W = X13X35X51 +X16X
2
62X21 +X24X43X

2
32 +X53X

1
32X

2
25

+X46X
1
62X

1
25X54 −X13X

1
32X21 −X24X46X

2
62 −X35X54X43

−X53X
2
32X

1
25 −X16X

1
62X

2
25X51

(A.16)

δW = µ (X12X21 −X34X46X65X53)

X21 7−→
1

µ
X21 −

1

µ
X2

25X51 X1
62 7−→ −

1

µ
X1

62 +
1

µ
X2

62

X24 7−→ −
1

µ
X24 +

1

µ
X1

25X54

W ′ = X16X
1
62X21 +X24X46X

2
62 +X13X

2
32X

1
25X51 +X43X

1
32X

2
25X54

−X13X
1
32X21 −X24X43X

2
32 −X16X

2
62X

2
25X51 −X46X

1
62X

1
25X54

(A.17)

A.1.6 PdP4b to PdP4a

W = X16X67X71 +X17X72X21 +X25X56X62 +X26X64X42

+X37X75X53 +X13X34X45X51 −X13X37X71 −X16X62X21

−X17X75X51 −X26X67X72 −X45X56X64 −X25X53X34X42

(A.18)

Phase A to Phase A

δW = µ (X17X71 −X26X62)

X45 7−→ −
1

µ
X45 +

1

µ
X42X25 X53 7−→ −

1

µ
X53 +

1

µ
X51X13

W ′ = X45X56X64 +X13X37X72X21 +X16X67X75X51 +X25X53X34X42

−X37X75X53 −X13X34X45X51 −X16X64X42X21 −X25X56X67X72

(A.19)
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Phase A to Phase B

δW = µ (X26X62 −X34X45X53)

X45 7−→
1

µ
X45 −

1

µ
X42X25 X53 7−→ −

1

µ
X53 +

1

µ
X51X13

X17 7−→ −
1

µ
X17 +

(
1

µ
− β1

)
X13X37 + β1X16X67

X71 7−→ −
1

µ
X71 +

(
1

µ
− β1

)
X72X21 + β1X75X51

W ′ = X13X37X71 +X17X75X51 +X34X45X53 +X16X64X42X21

+X25X56X67X72 −X16X67X71 −X17X72X21 −X37X75X53

−X45X56X64 −X13X34X42X25X51

(A.20)

δW = µ (X17X71 −X34X45X53)

X45 7−→
1

µ
X45 −

1

µ
X42X25 X53 7−→ −

1

µ
X53 +

1

µ
X51X13

X26 7−→
1

µ
X26 +

(
− 1

µ
− β1

)
X21X16 + β1X25X56

X62 7−→
1

µ
X62 +

(
− 1

µ
− β1

)
X64X42 + β1X67X72

W ′ = X25X56X62 +X26X64X42 +X34X45X53 +X13X37X72X21

+X16X67X75X51 −X16X62X21 −X26X67X72 −X37X75X53

−X45X56X64 −X13X34X42X25X51

(A.21)

A.1.7 C3 /(Z4 × Z2) (1, 0, 3)(0, 1, 1) to L1,3,1 /Z2 (0, 1, 1, 1)

Phase A to Phase A

W = X12X28X81 +X14X43X31 +X17X72X21 +X23X34X42

+X36X65X53 +X45X56X64 +X58X87X75 +X67X78X86

−X12X23X31 −X14X42X21 −X17X78X81 −X28X87X72

−X34X45X53 −X36X64X43 −X56X67X75 −X58X86X65

(A.22)
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δW = µ (X12X21 −X34X43)

X56 7−→
1

µ
X56 +

(
− 1

µ
− β1

)
X58X86 + β1X53X36

X65 7−→
1

µ
X65 +

(
− 1

µ
− β1

)
X64X45 + β1X67X75

X78 7−→
1

µ
X78 +

(
− 1

µ
− β2

)
X72X28 + β2X75X58

X87 7−→
1

µ
X87 +

(
− 1

µ
− β2

)
X86X67 + β2X81X17

W ′ = X36X65X53 +X45X56X64 +X58X87X75 +X67X78X86

+X14X42X28X81 +X17X72X23X31 −X17X78X81 −X28X87X72

−X56X67X75 −X58X86X65 −X14X45X53X31 −X23X36X64X42

(A.23)

δW = µ (X34X43 −X54X43)

X12 7−→
1

µ
X12 +

(
− 1

µ
− β1

)
X17X72 + β1X14X42

X21 7−→
1

µ
X21 +

(
− 1

µ
− β1

)
X23X31 + β1X28X81

X78 7−→
1

µ
X78 +

(
− 1

µ
− β2

)
X75X58 + β2X72X28

X87 7−→
1

µ
X87 +

(
− 1

µ
− β2

)
X81X17 + β2X86X67

W ′ = X12X28X81 +X17X72X21 +X58X87X75 +X67X78X86

+X14X45X53X31 +X23X36X64X42 −X12X23X31 −X14X42X21

−X17X78X81 −X28X87X72 −X36X67X75X53 −X45X58X86X64

(A.24)
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δW = µ (X56X65 −X78X87)

X12 7−→
1

µ
X12 +

(
− 1

µ
− β1

)
X14X42 + β1X17X72

X21 7−→
1

µ
X21 +

(
− 1

µ
− β1

)
X28X81 + β1X23X31

X34 7−→
1

µ
X34 +

(
− 1

µ
− β2

)
X31X14 + β2X36X64

X43 7−→
1

µ
X43 +

(
− 1

µ
− β2

)
X45X53 + β2X42X23

W ′ = X12X28X81 +X14X43X31 +X17X72X21 +X23X34X42

+X36X67X75X53 +X45X58X86X64 −X12X23X31 −X14X42X21

−X34X45X53 −X36X64X43 −X17X75X58X81 −X28X86X67X72

(A.25)

δW = µ (X78X87 −X12X21)

X34 7−→
1

µ
X34 +

(
− 1

µ
− β1

)
X36X64 + β1X31X14

X43 7−→
1

µ
X43 +

(
− 1

µ
− β1

)
X42X23 + β1X45X53

X56 7−→
1

µ
X56 +

(
− 1

µ
− β2

)
X53X36 + β2X58X86

X65 7−→
1

µ
X65 +

(
− 1

µ
− β2

)
X67X75 + β2X64X45

W ′ = X14X43X31 +X23X34X42 +X36X65X53 +X45X56X64

+X17X75X58X81 +X28X86X67X72 −X34X45X53 −X36X64X43

−X56X67X75 −X58X86X65 −X14X42X28X81 −X17X72X23X31

(A.26)

A.1.8 C3 /(Z4 × Z2) (1, 0, 3)(0, 1, 1) to PdP5, C /Z2 × Z2 (1, 0, 0, 1)(0, 1, 1, 0)

W = X12X28X81 +X14X43X31 +X17X72X21 +X23X34X42

+X36X65X53 +X45X56X64 +X58X87X75 +X67X78X86

−X12X23X31 −X14X42X21 −X17X78X81 −X28X87X72

−X34X45X53 −X36X64X43 −X56X67X75 −X58X86X65

(A.27)
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Phase A to Phase A

δW = µ (X12X21 −X34X43 +X56X65 −X78X87)

W ′ = X14X42X28X81 +X17X72X23X31 +X36X67X75X53

+X45X58X86X64 −X14X45X53X31 −X17X75X58X81

−X23X36X64X42 −X28X86X67X72

(A.28)

Phase A to Phase B

δW = µ (X12X21 −X56X65)

X34 7−→ −
1

µ
X34 +

(
1

µ
− β1

)
X31X14 + β1X36X64

X43 7−→ −
1

µ
X43 +

(
1

µ
− β1

)
X45X53 + β1X42X23

X78 7−→
1

µ
X78 +

(
− 1

µ
− β2

)
X72X28 + β2X75X58

X87 7−→
1

µ
X87 +

(
− 1

µ
− β2

)
X86X67 + β2X81X17

W ′ = X34X45X53 +X36X64X43 +X58X87X75 +X67X78X86

+X14X42X28X81 +X17X72X23X31 −X14X43X31 −X17X78X81

−X23X34X42 −X28X87X72 −X36X67X75X53 −X45X58X86X64

(A.29)

δW = µ (X34X43 −X78X87)

X12 7−→
1

µ
X12 +

(
− 1

µ
− β1

)
X14X42 + β1X17X72

X21 7−→
1

µ
X21 +

(
− 1

µ
− β1

)
X28X81 + β1X23X31

X56 7−→ −
1

µ
X56 +

(
1

µ
− β2

)
X53X36 + β2X58X86

X65 7−→ −
1

µ
X65 +

(
1

µ
− β2

)
X67X75 + β2X64X45

W ′ = X12X28X81 +X17X72X21 +X56X67X75 +X58X86X65

+X14X45X53X31 +X23X36X64X42 −X12X23X31 −X14X42X21

−X36X65X53 −X45X56X64 −X17X75X58X81 −X28X86X67X72

(A.30)
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A.2 Deformations to marginal deformations of toric models

Listed here are relevant zig-zag deformations of toric models for which the endpoint of the RG

flow is not toric. Instead, the IR models in this section are described by a toric superpotential

plus an exactly marginal zig-zag deformation. In each subsection, we present the original toric

superpotential W . Each deformation is in a unique equation block with:

1. The deformation δW = µOη, associated to a zig-zag path η.

2. The field redefinitions of the type in eq. (4.15), if any.

3. The superpotential W ′ representing the IR theory, which is of the form W ′
toric +

1
µO

′
η′ ,

where Rsc

[
O′

η′
]
= 2. The superpotential W ′

toric defines a brane tiling model, and O′
η′

corresponds to the zig-zag operator of W ′
toric for the reversed zig-zag path η′.

A.2.1 L1,3,1 /Z2 (0, 1, 1, 1) to PdP5, C /Z2 × Z2 (1, 0, 0, 1)(0, 1, 1, 0)

Phase A to Phase A

W = X17X78X81 +X18X83X31 +X27X73X32 +X37X75X53

+X14X45X56X61 +X24X48X86X62 −X14X48X81 −X17X73X31

−X18X86X61 −X37X78X83 −X24X45X53X32 −X27X75X56X62

(A.31)

δW = µ (X37X73 −X18X81)

X17 7−→ µX17

X83 7−→ µX83

W ′ = X14X45X56X61 +X17X75X53X31 +X24X48X86X62 +X27X78X83X32

−X14X48X83X31 −X17X78X86X61 −X24X45X53X32 −X27X75X56X62

+
1

µ
(X14X48X86X61 −X27X75X53X32)

(A.32)

Phase A to Phase B

W = X17X78X81 +X18X83X31 +X27X73X32 +X37X75X53

+X14X45X56X61 +X24X48X86X62 −X14X48X81 −X17X73X31

−X18X86X61 −X37X78X83 −X24X45X53X32 −X27X75X56X62

(A.33)
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δW = µ (X18X81 −X24X45X56X62)

X61 7−→ µX61

X48 7−→ µX48

W ′ = X24X46X62 +X27X73X32 +X37X75X53 +X45X56X64

+X14X48X83X31 +X17X78X86X61 −X14X46X61 −X17X73X31

−X37X78X83 −X48X86X64 −X24X45X53X32 −X27X75X56X62

+
1

µ
(X46X64 −X17X78X83X31)

(A.34)

Phase B to Phase C

W = X17X78X81 +X18X83X31 +X23X34X42 +X26X67X72 +X37X75X53

+X48X86X64 +X14X45X56X61 −X14X48X81 −X18X86X61 −X26X64X42

−X34X45X53 −X37X78X83 −X56X67X75 −X17X72X23X31

(A.35)

δW = µ (X18X81 −X45X56X64)

X14 7−→ µX14

X86 7−→ µX86

X64 7−→
1

µ
X64 +X61X14

W ′ = X23X34X42 +X26X67X72 +X37X75X53 +X45X56X64

+X14X48X83X31 +X17X78X86X61 −X34X45X53 −X37X78X83

−X48X86X64 −X56X67X75 −X14X42X26X61 −X17X72X23X31

+
1

µ
(X26X64X42 −X17X78X83X31)

(A.36)





Appendix B

Details of deformations for

polytopes with 2 internal points

In this appendix, we present the details about the zig-zag deformations between dimer models

with polytopes with 2 internal points. Due to the amount of possible flows, we present the

details in a shorter form than appendix A. Each subsection is titled “X to Y”, pointing out

the geometries where the flow occurs. Then, each flow is presented as a triplet of

(
UV toric phase , zig-zag paths set η ∈ S , IR toric phase

)
,

which triggered by a single-parameter
∑

η∈S Oη. Field redefinitions to the recover explicit

toric form of the final superpotential can be done via the algorithm in section 6.2.1.2.

Similarly, toric phases form are tabled at https://github.com/jose-a-sa/zig-zag-deformation-

datagithub.com/jose-a-sa/zig-zag-deformation-data, obtain by the algorithm in section 6.2.1.1.

B.1 Deformations between toric phases with g = 7

B.1.1 L4,3,2 to K2,4,1,1

Wi Deformation zig-zags η Wf

L4,3,2 (I) X15X54X43X31 K2,4,1,1 (I)

L4,3,2 (II) X15X54X43X31 K2,4,1,1 (II)

157
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B.2 Deformations between toric phases with g = 8

B.2.1 C3/Z8 (1, 3, 4) to L1,3,1/Z2 (1, 0, 0, 1)

Wi Deformation zig-zags η Wf

C3/Z8 (I) X13X38X82X21 L1,3,1/Z2 (I)

C3/Z8 (I) X16X68X87X71 L1,3,1/Z2 (I)

C3/Z8 (I) X25X53X34X42 L1,3,1/Z2 (I)

C3/Z8 (I) X46X65X57X74 L1,3,1/Z2 (I)

B.2.2 C3/Z8 (1, 3, 4) to C/Z4 (0, 1, 2, 1)

Wi Deformation zig-zags η Wf

C3/Z8 (I) X46X65X57X74, X13X38X82X21 C/Z4 (I)

C3/Z8 (I) X25X53X34X42, X13X38X82X21 C/Z4 (II)

C3/Z8 (I) X46X65X57X74, X25X53X34X42 C/Z4 (II)

B.2.3 dP1/Z2 (1, 0, 0, 1) to K2,5,1,1

Wi Deformation zig-zags η Wf

dP1/Z2 (I) X12X28X83X31 K2,5,1,1 (I)

dP1/Z2 (II) X14X42X23X31 K2,5,1,1 (II)

dP1/Z2 (III) X58X86X67X75 K2,5,1,1 (III)

B.2.4 L3,5,2 to K2,4,1,2

Wi Deformation zig-zags η Wf

L3,5,2 (I) X13X32X24X41 K2,4,1,2 (II)

L3,5,2 (I) X35X54X47X73 K2,4,1,2 (II)

L3,5,2 (I) X17X78X86X61 K2,4,1,2 (III)

L3,5,2 (II) X13X32X24X41 K2,4,1,2 (I)

L3,5,2 (II) X18X82X26X61 K2,4,1,2 (VI)

L3,5,2 (II) X35X54X47X73 K2,4,1,2 (VI)
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B.2.5 PdP4c (2) to PdP4e (3)

Wi Deformation zig-zags η Wf

PdP4c (I) X13X32X25X51 PdP4e (I)

PdP4c (II) X13X38X82X21 PdP4e (II)

PdP4c (III) X36X65X54X43 PdP4e (III)

PdP4c (IV) X13X32X25X51 PdP4e (VI)

PdP4c (V) X14X43X35X51 PdP4e (IV)

PdP4c (VI) X36X65X54X43 PdP4e (VIII)

PdP4c (VII) X14X43X35X51 PdP4e (X)

PdP4c (VIII) X14X43X35X51 PdP4e (IX)

B.2.6 PdP4d (2) to PdP4f (2)

Wi Deformation zig-zags η Wf

PdP4d (I) X17X72X28X81 PdP4f (I)

PdP4d (II) X17X72X28X81 PdP4f (II)

PdP4d (III) X25X53X36X62 PdP4f (III)

PdP4d (IV) X23X34X46X62 PdP4f (VI)

PdP4d (V) X25X53X36X62 PdP4f (VII)

PdP4d (VI) X35X54X46X63 PdP4f (IX)

PdP4d (VII) X14X47X72X21 PdP4f (VIII)

PdP4d (VIII) X17X72X28X81 PdP4f (X)

B.3 Deformations between toric phases with g = 9

B.3.1 L5,4,1 to K2,4,1,3

Wi Deformation zig-zags η Wf

L5,4,1 (I) X14X42X23X31 K2,4,1,3 (I)

L5,4,1 (I) X19X92X28X81 K2,4,1,3 (I)

L5,4,1 (I) X36X64X45X53 K2,4,1,3 (III)

L5,4,1 (I) X68X87X79X96 K2,4,1,3 (III)

B.3.2 L5,4,1 to K4,3,2,2

Wi Deformation zig-zags η Wf

L5,4,1 (I) X68X87X79X96, X14X42X23X31 K4,3,2,2 (I)

L5,4,1 (I) X68X87X79X96, X36X64X45X53 K4,3,2,2 (III)

L5,4,1 (I) X36X64X45X53, X14X42X23X31 K4,3,2,2 (V)
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B.3.3 SPP/Z3 (1, 0, 0, 2) to K2,5,1,2

Wi Deformation zig-zags η Wf

SPP/Z3 (I) X14X43X35X51 K2,5,1,2 (I)

SPP/Z3 (I) X19X92X28X81 K2,5,1,2 (I)

SPP/Z3 (I) X48X86X67X74 K2,5,1,2 (I)

SPP/Z3 (II) X19X93X32X21 K2,5,1,2 (II)

SPP/Z3 (II) X14X43X35X51 K2,5,1,2 (III)

SPP/Z3 (II) X48X86X67X74 K2,5,1,2 (V)

SPP/Z3 (III) X14X43X35X51 K2,5,1,2 (IV)

SPP/Z3 (III) X19X93X32X21 K2,5,1,2 (VI)

SPP/Z3 (III) X46X65X57X74 K2,5,1,2 (VI)
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B.3.4 PdP5b (2) to PdP5c (3)

Wi Deformation zig-zags η Wf

PdP5b (I) X19X92X28X81 PdP5c (I)

PdP5b (I) X13X32X24X41 PdP5c (II)

PdP5b (I) X58X86X67X75 PdP5c (IV)

PdP5b (II) X13X32X24X41 PdP5c (VIII)
1

PdP5b (II) X28X89X97X72 PdP5c (VIII)
1

PdP5b (II) X37X75X56X63 PdP5c (VIII)
1

PdP5b (III) X16X63X34X41 PdP5c (III)

PdP5b (III) X45X56X67X74 PdP5c (IX)

PdP5b (III) X19X93X32X21 PdP5c (X)

PdP5b (IV) X19X93X32X21 PdP5c (XII)

PdP5b (IV) X16X63X34X41 PdP5c (XIII)

PdP5b (IV) X58X86X67X75 PdP5c (XXIII)

PdP5b (V) X13X32X24X41 PdP5c (XV)

PdP5b (V) X19X92X28X81 PdP5c (XVI)

PdP5b (V) X57X76X69X95 PdP5c (XXVI)

PdP5b (VI) X69X97X78X86 PdP5c (XVIII)

PdP5b (VI) X19X92X28X81 PdP5c (XIX)

PdP5b (VI) X16X63X34X41 PdP5c (XXIX)

PdP5b (VII) X16X64X45X51 PdP5c (XXI)

PdP5b (VII) X58X86X67X75 PdP5c (XXII)

PdP5b (VII) X19X92X28X81 PdP5c (XXXI)

PdP5b (VIII) X19X92X28X81 PdP5c (XVII)

PdP5b (VIII) X13X32X24X41 PdP5c (XXVII)

PdP5b (VIII) X69X97X78X86 PdP5c (XXVIII)

B.4 Deformations between toric phases with g = 10

B.4.1 C3/(Z2 × Z5) (1, 0, 1)(0, 1, 4) to L1,4,1/Z2 (1, 0, 0, 1)

Wi Deformation zig-zags η Wf

C3/(Z2 × Z5) (I) X16X62X25X51 L1,4,1/Z2 (I)

C3/(Z2 × Z5) (I) X18X82X27X71 L1,4,1/Z2 (I)

C3/(Z2 × Z5) (I) X37X74X48X83 L1,4,1/Z2 (I)

C3/(Z2 × Z5) (I) X39X94X4,10X10,3 L1,4,1/Z2 (I)

C3/(Z2 × Z5) (I) X59X96X6,10X10,5 L1,4,1/Z2 (I)

1Missing to match the potential, but matched the quiver.
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B.4.2 C3/(Z2 × Z5) (1, 0, 1)(0, 1, 4) to L2,3,2/Z2 (1, 0, 0, 1)

Wi Deformation zig-zags η Wf

C3/(Z2 × Z5) (I) X18X82X27X71, X39X94X4,10X10,3 L2,3,2/Z2 (I)

C3/(Z2 × Z5) (I) X18X82X27X71, X59X96X6,10X10,5 L2,3,2/Z2 (I)

C3/(Z2 × Z5) (I) X37X74X48X83, X16X62X25X51 L2,3,2/Z2 (I)

C3/(Z2 × Z5) (I) X39X94X4,10X10,3, X16X62X25X51 L2,3,2/Z2 (I)

C3/(Z2 × Z5) (I) X59X96X6,10X10,5, X37X74X48X83 L2,3,2/Z2 (I)

C3/(Z2 × Z5) (I) X18X82X27X71, X16X62X25X51 L2,3,2/Z2 (III)

C3/(Z2 × Z5) (I) X18X82X27X71, X37X74X48X83 L2,3,2/Z2 (III)

C3/(Z2 × Z5) (I) X39X94X4,10X10,3, X37X74X48X83 L2,3,2/Z2 (III)

C3/(Z2 × Z5) (I) X39X94X4,10X10,3, X59X96X6,10X10,5 L2,3,2/Z2 (III)

C3/(Z2 × Z5) (I) X59X96X6,10X10,5, X16X62X25X51 L2,3,2/Z2 (III)

B.4.3 PdP2/Z2 (1, 1, 1, 1) to K2,5,1,3

Wi Deformation zig-zags η Wf

PdP2/Z2 (I) X14X42X23X31 K2,5,1,3 (IV)

PdP2/Z2 (I) X18X82X2,10X10,1 K2,5,1,3 (IV)

PdP2/Z2 (I) X46X65X57X74 K2,5,1,3 (IV)

PdP2/Z2 (I) X69X97X78X86 K2,5,1,3 (IV)

PdP2/Z2 (II) X46X65X57X74 K2,5,1,3 (I)

PdP2/Z2 (II) X14X43X35X51 K2,5,1,3 (II)

PdP2/Z2 (II) X69X97X78X86 K2,5,1,3 (II)

PdP2/Z2 (II) X18X82X2,10X10,1 K2,5,1,3 (VI)

PdP2/Z2 (III) X14X43X35X51 K2,5,1,3 (V)

PdP2/Z2 (III) X46X65X57X74 K2,5,1,3 (V)

PdP2/Z2 (III) X12X23X3,10X10,1 K2,5,1,3 (VII)

PdP2/Z2 (III) X69X97X78X86 K2,5,1,3 (VII)
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B.4.4 PdP2/Z2 (1, 1, 1, 1) to K4,4,2,2

Wi Deformation zig-zags η Wf

PdP2/Z2 (I) X46X65X57X74, X14X42X23X31 K4,4,2,2 (II)

PdP2/Z2 (I) X69X97X78X86, X14X42X23X31 K4,4,2,2 (III)

PdP2/Z2 (I) X69X97X78X86, X46X65X57X74 K4,4,2,2 (X)

PdP2/Z2 (II) X69X97X78X86, X14X43X35X51 K4,4,2,2 (I)

PdP2/Z2 (II) X46X65X57X74, X14X43X35X51 K4,4,2,2 (V)

PdP2/Z2 (II) X69X97X78X86, X46X65X57X74 K4,4,2,2 (V)

PdP2/Z2 (III) X69X97X78X86, X14X43X35X51 K4,4,2,2 (IV)

PdP2/Z2 (III) X46X65X57X74, X14X43X35X51 K4,4,2,2 (VII)

PdP2/Z2 (III) X69X97X78X86, X46X65X57X74 K4,4,2,2 (XI)

B.4.5 PdP6a (2) to PdP6b (3)

Wi Deformation zig-zags η Wf

PdP6a (I) X36X65X57X73 PdP6b (I)

PdP6a (I) X68X87X7,10X10,6 PdP6b (I)

PdP6a (I) X13X34X45X51 PdP6b (V)

PdP6a (I) X2,10X10,9X98X82 PdP6b (V)

PdP6a (II) X68X87X7,10X10,6 PdP6b (II)

PdP6a (II) X2,10X10,9X98X82 PdP6b (VII)

PdP6a (II) X36X65X57X73 PdP6b (IX)

PdP6a (II) X13X32X24X41 PdP6b (XV)

PdP6a (III) X13X32X24X41 PdP6b (X)

PdP6a (III) X19X92X2,10X10,1 PdP6b (X)

PdP6a (III) X36X65X57X73 PdP6b (XII)

PdP6a (III) X68X87X7,10X10,6 PdP6b (XII)

PdP6a (IV) X2,10X10,9X98X82 PdP6b (XIII)

PdP6a (IV) X68X87X7,10X10,6 PdP6b (XIII)

PdP6a (IV) X19X93X32X21 PdP6b (XVI)

PdP6a (IV) X36X65X57X73 PdP6b (XVI)
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B.4.6 PdP6a (2) to PdP6c (3)

Wi Deformation zig-zags η Wf

PdP6a (I) X68X87X7,10X10,6, X13X34X45X51 PdP6c (I)

PdP6a (I) X68X87X7,10X10,6, X36X65X57X73 PdP6c (IV)

PdP6a (I) X36X65X57X73, X13X34X45X51 PdP6c (X)

PdP6a (II) X68X87X7,10X10,6, X13X32X24X41 PdP6c (VII)

PdP6a (II) X36X65X57X73, X13X32X24X41 PdP6c (XV)

PdP6a (II) X68X87X7,10X10,6, X36X65X57X73 PdP6c (XVI)

PdP6a (III) X68X87X7,10X10,6, X19X92X2,10X10,1 PdP6c (V)

PdP6a (III) X36X65X57X73, X19X92X2,10X10,1 PdP6c (VI)

PdP6a (III) X36X65X57X73, X68X87X7,10X10,6 PdP6c (XXIII)

PdP6a (IV) X68X87X7,10X10,6, X19X93X32X21 PdP6c (VIII)

PdP6a (IV) X68X87X7,10X10,6, X2,10X10,9X98X82 PdP6c (XIX)

PdP6a (IV) X2,10X10,9X98X82, X19X93X32X21 PdP6c (XXIV)

B.5 Deformations between toric phases with g = 11

B.5.1 L5,6,1 to K2,5,1,4

Wi Deformation zig-zags η Wf

L5,6,1 (I) X8,11X11,9X9,10X10,8 K2,5,1,4 (I)

L5,6,1 (I) X1,10X10,2X2,11X11,1 K2,5,1,4 (II)

L5,6,1 (I) X68X87X79X96 K2,5,1,4 (II)

L5,6,1 (I) X14X42X23X31 K2,5,1,4 (IV)

L5,6,1 (I) X36X65X57X73 K2,5,1,4 (IV)

B.5.2 L5,6,1 to K4,4,2,3

Wi Deformation zig-zags η Wf

L5,6,1 (I) X68X87X79X96, X1,10X10,2X2,11X11,1 K4,4,2,3 (I)

L5,6,1 (I) X14X42X23X31, X8,11X11,9X9,10X10,8 K4,4,2,3 (II)

L5,6,1 (I) X36X65X57X73, X8,11X11,9X9,10X10,8 K4,4,2,3 (II)

L5,6,1 (I) X14X42X23X31, X68X87X79X96 K4,4,2,3 (III)

L5,6,1 (I) X36X65X57X73, X1,10X10,2X2,11X11,1 K4,4,2,3 (III)

L5,6,1 (I) X14X42X23X31, X36X65X57X73 K4,4,2,3 (VI)

L5,6,1 (I) X68X87X79X96, X8,11X11,9X9,10X10,8 K4,4,2,3 (VII)

L5,6,1 (I) X8,11X11,9X9,10X10,8, X1,10X10,2X2,11X11,1 K4,4,2,3 (VII)

L5,6,1 (I) X14X42X23X31, X1,10X10,2X2,11X11,1 K4,4,2,3 (XVI)

L5,6,1 (I) X36X65X57X73, X68X87X79X96 K4,4,2,3 (XVI)
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B.6 Deformations between toric phases with g = 12

B.6.1 C3/(Z2 × Z6) (1, 0, 1)(1, 0, 5) to L1,5,1/Z2 (1, 0, 0, 1)

Wi Deformation zig-zags η Wf

C3/(Z2 × Z6) (I) X16X62X25X51 L1,5,1/Z2 (I)

C3/(Z2 × Z6) (I) X19X92X2,10X10,1 L1,5,1/Z2 (I)

C3/(Z2 × Z6) (I) X37X74X48X83 L1,5,1/Z2 (I)

C3/(Z2 × Z6) (I) X39X94X4,10X10,3 L1,5,1/Z2 (I)

C3/(Z2 × Z6) (I) X5,12X12,6X6,11X11,5 L1,5,1/Z2 (I)

C3/(Z2 × Z6) (I) X7,12X12,8X8,11X11,7 L1,5,1/Z2 (I)

B.6.2 C3/(Z2 × Z6) (1, 0, 1)(1, 0, 5) to SPP/(Z2 × Z2) (1, 0, 0, 1)(0, 1, 1, 0)

Wi Deformation zig-zags η Wf

C3/(Z2 × Z6) (I) X16X62X25X51, X39X94X4,10X10,3 SPP/(Z2 × Z2) (I)

C3/(Z2 × Z6) (I) X16X62X25X51, X7,12X12,8X8,11X11,7 SPP/(Z2 × Z2) (I)

C3/(Z2 × Z6) (I) X37X74X48X83, X19X92X2,10X10,1 SPP/(Z2 × Z2) (I)

C3/(Z2 × Z6) (I) X39X94X4,10X10,3, X7,12X12,8X8,11X11,7 SPP/(Z2 × Z2) (I)

C3/(Z2 × Z6) (I) X5,12X12,6X6,11X11,5, X19X92X2,10X10,1 SPP/(Z2 × Z2) (I)

C3/(Z2 × Z6) (I) X5,12X12,6X6,11X11,5, X37X74X48X83 SPP/(Z2 × Z2) (I)

C3/(Z2 × Z6) (I) X16X62X25X51, X37X74X48X83 SPP/(Z2 × Z2) (II)

C3/(Z2 × Z6) (I) X39X94X4,10X10,3, X5,12X12,6X6,11X11,5 SPP/(Z2 × Z2) (II)

C3/(Z2 × Z6) (I) X7,12X12,8X8,11X11,7, X19X92X2,10X10,1 SPP/(Z2 × Z2) (II)

C3/(Z2 × Z6) (I) X16X62X25X51, X19X92X2,10X10,1 SPP/(Z2 × Z2) (IV)

C3/(Z2 × Z6) (I) X16X62X25X51, X5,12X12,6X6,11X11,5 SPP/(Z2 × Z2) (IV)

C3/(Z2 × Z6) (I) X39X94X4,10X10,3, X19X92X2,10X10,1 SPP/(Z2 × Z2) (IV)

C3/(Z2 × Z6) (I) X39X94X4,10X10,3, X37X74X48X83 SPP/(Z2 × Z2) (IV)

C3/(Z2 × Z6) (I) X5,12X12,6X6,11X11,5, X7,12X12,8X8,11X11,7 SPP/(Z2 × Z2) (IV)

C3/(Z2 × Z6) (I) X7,12X12,8X8,11X11,7, X37X74X48X83 SPP/(Z2 × Z2) (IV)
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B.6.3 C3/(Z2 × Z6) (1, 0, 1)(1, 0, 5) to C/(Z3 × Z2) (1, 0, 0, 2)(0, 1, 1, 0)

Wi Deformation zig-zags η Wf

C3/(Z2 × Z6) (I) X5,12X12,6X6,11X11,5, X37X74X48X83, X19X92X2,10X10,1 C/(Z3 × Z2) (I)

C3/(Z2 × Z6) (I) X39X94X4,10X10,3, X5,12X12,6X6,11X11,5, X19X92X2,10X10,1 C/(Z3 × Z2) (II)

C3/(Z2 × Z6) (I) X39X94X4,10X10,3, X5,12X12,6X6,11X11,5, X37X74X48X83 C/(Z3 × Z2) (II)

C3/(Z2 × Z6) (I) X39X94X4,10X10,3, X5,12X12,6X6,11X11,5, X7,12X12,8X8,11X11,7 C/(Z3 × Z2) (II)

C3/(Z2 × Z6) (I) X39X94X4,10X10,3, X7,12X12,8X8,11X11,7, X19X92X2,10X10,1 C/(Z3 × Z2) (II)

C3/(Z2 × Z6) (I) X5,12X12,6X6,11X11,5, X7,12X12,8X8,11X11,7, X19X92X2,10X10,1 C/(Z3 × Z2) (II)

C3/(Z2 × Z6) (I) X7,12X12,8X8,11X11,7, X37X74X48X83, X19X92X2,10X10,1 C/(Z3 × Z2) (II)

C3/(Z2 × Z6) (I) X39X94X4,10X10,3, X37X74X48X83, X19X92X2,10X10,1 C/(Z3 × Z2) (VII)

C3/(Z2 × Z6) (I) X39X94X4,10X10,3, X7,12X12,8X8,11X11,7, X37X74X48X83 C/(Z3 × Z2) (VII)

C3/(Z2 × Z6) (I) X5,12X12,6X6,11X11,5, X7,12X12,8X8,11X11,7, X37X74X48X83 C/(Z3 × Z2) (VII)



Appendix C

Kähler chamber mapping of PdP3a

to PdP3c phase A

In this appendix we present the mapping of the multiple Kähler chambers associated to the

main publication, for the zig-zag deformation between the dimer models PdP3a (µ = 0) and

PdP3c phase A (µ =∞).

For the sake of self-containedness, we include the toric superpotential W , quiver Q, toric
diagram ∆, perfect matching matrix P , zig-zag path η, and zig-zag operator Oη. Additionally,

we make reference to the Kähler chambers {Ki}i and fine triangulations {T (i)
∆ }i of a particular

toric diagram. We distinguish the data of the models by a prime in the variables: e.g. (W,Q)
and (W ′,Q′) denote the dimer models at µ = 0 and µ = ∞, respectively. We also include

the deformation δW = µOη that triggers the flow from PdP3a to PdP3c phase A, which

approaches the latter from the direction δW ′ = 1
µO

′
η′ .

PdP3a quiver, superpotential and perfect matching data

• Superpotential:

W = X12X26X61 +X13X35X51 +X15X54X41 +X24X43X32

+X25X56X62 +X34X46X63 −X12X25X51 −X13X34X41

−X15X56X61 −X24X46X62 −X26X63X32 −X35X54X43

• Zig-zag deformation (zig-zag η and corresponding operator):

η = X12X25X56X61 δW = µOη = µ (X15X51 −X26X62)
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• Perfect matching matrix (variable labelling):

P =



f1 f2 f3 g1 g2 g3 h1 h2 p1 p2 p3 s1 s2 s3 s4 s5 s6

X12 1 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0

X13 1 0 0 1 1 0 1 0 0 0 1 1 0 0 0 0 0

X15 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 0 0

X24 1 0 1 0 1 0 0 0 1 0 0 0 0 1 1 0 0

X25 0 0 1 0 1 1 1 0 0 0 1 0 0 1 0 0 0

X26 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 0

X32 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0

X34 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0

X35 0 1 1 0 0 1 0 0 1 0 0 0 1 1 0 0 0

X41 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1

X43 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 1

X46 0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 1 0

X51 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1

X54 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0

X56 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0

X61 0 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 1

X62 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 1

X63 1 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 1


• Brane tiling, quiver and toric diagram:

3

4

4

1

6

1

2

3

4

5

6

2

4

5

5

PdP3c phase A quiver, superpotential and perfect matching data

• Superpotential:

W ′ = X24X43X32 +X34X46X63 +X12X25X54X41 +X13X35X56X61

−X13X34X41 −X35X54X43 −X12X24X46X61 −X25X56X63X32
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• Zig-zag deformation (zig-zag η and corresponding operator):

η′ = X12X25X56X61 δW ′ =
1

µ
O′

η′ =
1

µ
(X24X46X63X32 −X13X35X54X51)

• Toric diagram and perfect matching matrix (variable labelling):

P ′ =



f ′1 f ′2 g′1 g′2 p′1 p′2 p′3 p′4 s′1 s′2 s′3 s′4 s′5 s′6
X12 0 0 0 0 0 0 1 0 1 1 0 0 0 0

X13 1 0 1 0 1 0 0 0 1 0 0 0 0 0

X24 0 0 1 0 0 1 0 0 0 0 1 1 0 0

X25 1 0 0 0 0 0 0 1 0 0 1 0 0 0

X32 0 1 0 1 1 0 0 0 0 1 0 0 0 0

X34 0 1 0 0 0 0 1 1 0 1 1 1 0 0

X35 0 0 0 1 0 1 0 0 0 1 1 0 0 0

X41 0 0 0 1 0 1 0 0 0 0 0 0 1 1

X43 1 0 0 0 0 0 1 1 1 0 0 0 1 1

X46 1 0 0 1 1 0 0 0 0 0 0 0 1 0

X54 0 1 1 0 1 0 0 0 0 0 0 1 0 0

X56 0 0 0 0 0 0 1 0 0 0 0 1 1 0

X61 0 1 0 0 0 0 0 1 0 0 0 0 0 1

X63 0 0 1 0 0 1 0 0 1 0 0 0 0 1


• Brane tiling and quiver:

6
3

4

1

2

3

4

5

6
1

3

2

3
5

5

Merging of Kähler chambers

Recall that a Kähler chamber compatible with the choice K of a unique perfect matching in

the toric diagram and a full resolution described by T∆ is

R(K,T∆) =
⋂

(x,y)∈T∆

R(QKx) ∩R(QKy) ∩R(QKx,Ky) ,

where Kx represents the choice of perfect matching associated to the lattice point x ∈ ∆.

We define the subquiver QKx as the quiver Q with edges not in the perfect matching Kx.
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The intersection of the θ-semistability conditions for a general module in all the sub- quiver

representation spaces Rep(Qp, 1), p ∈ K, defines the region of compatibility in the resolutions

space ξ ∈ RG, written as

R(Q) =

{
ξ ∈ RG

∣∣∣∣∣ ξ · dimV ≤ 0,
∑
i

ξi = 0, ∀V ∈ Rep(Q,1)

}
.

Below, we will represent how the Kähler chamber merge when flowing from PdP3a (µ = 0) to

PdP3c phase A (µ =∞). Each row of diagrams follows the following pattern:

• The left rectangle represents the multiple chambers {R(– , T∆)} of PdP3a, which merge

to R(– , T ′
∆) of PdP3c phase A, in the right rectangle, between pairs of (p, q)-webs dual

to triangulations (T∆, T
′
∆).

• The left (p, q)-web figures are labelled (above) by the multiple triplets {K1,K2,K3},
pairs {K1,K2}, or chamber K1, compatible with the T∆, which merge with the chambers

K ′ labelling the (p, q)-web figure on the right, following the same line-by-line ordering,

as presented.

3,2,1⋃
i=1

R (T∆,Ki) = R
(
T∆′ ,K ′)

Due to the large amount of combinations K, K ′ we decided to group the internal point

perfect matchings si, s
′
i. For example, {h1, f1, g1, s1,2,3,4,5,6} means K can be any of

{h1, f1, g1, si} for i ≤ 6.

• Each finite segment of the (p, q)-web is “dressed” with the volume of the corresponding

P1, which obeys positivity conditions for each choice region R(Ki, T∆). When merging

the regions on the left, they are consistent with the positivity constraint of the volumes

in the right region R(K ′, T ′
∆). Fundamental volumes are given by variables {a, b, c, d},

which can be thought of as piecewise linear functions of the FI parameters {ξi}i≤6

(depending on the choice of K).
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