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Abstract

Data-driven discovery methods are gradually changing the study of dynamical sys-
tems in many fields, such as engineering, physics, economics, biology, and chemistry.
However, traditional methods of finding governing equations are based on mathem-
atical derivation and require a lot of data, expertise, and computing time. This
thesis explores automating the discovery of governing equations from data, espe-
cially using the Automatic Regression for Governing Equations (ARGOS) frame-
work, which marks an advancement in the data-driven identification of dynamical
systems. The research begins with an overview of data-centric engineering, under-
lining the essential statistical and machine learning methodologies. It then focuses
on the Sparse Identification of Nonlinear Dynamical Systems (SINDy) framework to
demonstrate the requirements of automating the identification process. Subsequent
chapters present two innovative methods for automatically calculating derivatives
and identifying partial differential equations (PDEs) from data with limited prior
knowledge. These methods are developed to expand the usage of the ARGOS frame-
work and rigorously benchmarked against other state-of-the-art algorithms using
success rates with varying signal-to-noise ratios (SNRs) and sample sizes, demon-
strating the accuracy of the proposed methods in model discovery. The application
of the ARGOS framework is demonstrated through the case study of COVID-19
data in mainland China using Bayesian ARGOS, which is a new ARGOS exten-
sion and provides interpretable and meaningful results. The thesis also tackles the
computational challenges and outlines future directions in automating the discov-
ery of dynamical systems, including stochastic differential equations. Overall, this
thesis has three contributions. First, it proposes an automatic framework to reduce
manual parameter tuning for dynamical system identification. Second, it offers
systematic testing templates, facilitating advancements across diverse scientific dis-
ciplines. Third, analysing COVID-19 data illustrates that the ARGOS framework
is a candidate method for dealing with real-world problems.
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ŷ Estimated values of y (length n) p. 7
xviii



U Matrix containing solutions of a partial differential equation, p. 8

u Vectorised U, p. 55

Θ(X) Design matrix for system identification (N × p), p. 50

θ(x)F Feature vector of symbolic functions (p× 1), p. 49

Θ The candidate library when identifying dynamical systems, p. 54

β Vector of regression coefficients (p× 1), p. 8

β̂ Vector of estimated regression coefficients (p× 1), p. 7

w Regression weights vector (px1), p. 30

log The natural logarithm, also written as ln, p. 21

λ Regularisation parameter in shrinkage regression, p. 28

vec Vectorising operation of a matrix, p. 52

µ The mean value of a variable, p. 15

V ar The variance of a random variable, p. 11

N (µ, σ2) The normal (Gaussian) distribution with mean µ and variance σ2 p. 10

P (y;ψ) The probability density function of variable y with parameter ψ, p. 13

A ⊗ B Kronecker (tensor) product of matrix A and B, p 36

Nomenclature
RSS Residual sum of squares, p. 10

TSS Total sum of squares, p. 12

OLS Ordinary least squares, p. 10

MSE Mean squared error, p. 20

RMSE Root mean squared error, p. 21

AIC Akaike information criterion, p. 21

BIC Bayesian information criterion, p. 22

MLE Maximum likelihood estimation, p. 10

SNR Signal-to-noise ratio, p. 35

MCMC Markov chain Monte Carlo, p. 15

xix



ODE Ordinary differential equation, p. 3

PDE Partial differential equation, p. 3

lasso Least absolute shrinkage and selection operator, p. 28

ARGOS Automatic regression for governing equations, p. 5

SINDy Sparse identification of nonlinear dynamics, p. 4

ARGOS-RAL Automatic regression for governing equations with recurrent adapt-
ive lasso, p. 89

xx



CHAPTER 1

Introduction

1.1 Background

The advent of data-driven methods marks a revolutionary era in modern scientific

and engineering research [1–4], which leverages the power of big data and advanced

machine learning algorithms to analyse complex problems across various domains,

such as manufacturing [5–8], materials science [9, 10], bioengineering [11], and con-

struction [12]. Traditionally, engineering solutions relied heavily on empirical and

theoretical models based on physical laws. However, with the exponential increase

in data volume, velocity, and variety, driven by advancements in sensor technology

and digital connectivity, the engineering discipline has witnessed a paradigm shift

towards data-centric approaches.

One popular research area in data-centric engineering is system identification [2,

3, 13]. This area solves an inverse problem by deriving governing equations of dy-

namical systems, particularly differential equations, from observational data [3, 4,

14–17]. Data-driven methods use datasets to model, predict, and optimise practical

problems, surpassing the limitations of traditional approaches that often require sim-

plified assumptions. These methods employ machine learning algorithms, statistical
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tools, and signal processing techniques to denoise, analyse, interpret and predict em-

pirical data from real-world systems, leading to more accurate, reliable, and efficient

models.

Machine learning plays an important role in developing data-driven discovery

frameworks by adjusting the parameters of governing equations using collected data.

This helps to identify symbolic terms of governing equations and uncover complex

dynamical systems. By incorporating statistical theory into this process, the im-

pact of randomness in machine learning algorithms is minimised, resulting in more

robust and consistent outcomes [1]. Additionally, applying signal processing tech-

niques within these frameworks helps identify dynamical systems from noisy data,

a frequent challenge in real-world scenarios.

Using these composite data-driven methods, researchers can reveal patterns and

relationships in the data that may not be apparent from first principles, studying

new insights into complex systems [9, 18]. These methods are also adept at work-

ing with noisy or incomplete data commonly encountered in real-world applications,

employing techniques from machine learning to enhance the robustness of discover-

ies [19–22]. Furthermore, by reducing the need for manual intervention and domain

expertise, data-driven methods can significantly streamline the discovery process [1].

Despite the advancements in identifying differential equations using neural net-

works methods, such as symbolic regression [15, 23–26] and deep learning [17, 27, 28],

significant challenges remain, particularly in the interpretation and setting paramet-

ers of these methods [29]. However, sparse regression has emerged as an alternative

to identifying governing equations by selecting nonzero active terms from a can-

didate library. This advancement promises to accelerate discoveries across various

scientific fields, such as smart grids [21], fluid mechanics [30], biology [11] and epi-

demiology [19]. Using these statistical-based data-driven methods, scientists and

engineers can evaluate their identified model, ensuring the assumptions and predic-

tions of employed methods align with the observed data. Moreover, these approaches

allow for the automation of the model discovery process since sparse regression only

requires a few parameters, which optimisation algorithms can fine-tune. This auto-

mation discovery enables scientists and engineers to improve the efficiency of the
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research by focusing more on systems’ insight properties rather than finding inter-

pretable systems.

This thesis will demonstrate contributions to automatically discovering ordinary

and partial differential equations (ODEs and PDEs) of dynamical systems from data

by employing signal processing, sparse regression and Bayesian methods. Different

from previous studies in this area [3, 4, 31], the methods shown in the thesis enable

engineers to effectively find various types of ODEs and PDEs without expert know-

ledge and manually parameters tuning. Furthermore, the thesis uses both numerical

and real-world datasets to explore the advantages and drawbacks of the proposed

data-driven methods for dealing with the inverse problem. Hopefully, these develop-

ments will improve the scientific methods for automatically discovering underlying

laws describing many intricate dynamics.

1.2 Motivation

Dynamical systems are integral to numerous disciplines, reflecting the broad applic-

ability and essential need for such models in science and engineering. Understand-

ing their governing equations facilitates critical functions like predicting, estimating,

controlling, and analysing structural stability and bifurcations.

In analysing engineering applications, complex systems can mathematically model

many physical phenomena. Knowing the governing equations of these systems en-

ables precise forecasting and control, which are vital for engineering applications

such as robotics, aerospace, and automotive industries, where anticipating system

behaviour under various conditions can lead to innovations in design and function-

ality. Traditional methods based on first principles are insufficient due to the intric-

acies involved or incomplete understanding of underlying mechanisms. Data-driven

methods simplify deriving these complex models, especially in finding the governing

equations of turbulent fluid flows where full-scale modelling is computationally ex-

pensive. Although current data-driven methods automate tuning system parameters

(e.g., diffusion coefficients), they still require algorithm parameters (e.g., number of

iteration times and threshold values). Consequently, using these methods presents
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a trade-off between the absence of fully automated algorithms requiring users to

engage in manual tuning and iterative usage of semi-automated algorithms. This

scenario highlights a key challenge in the field: developing automated algorithms

to identify governing equations with minimal manual intervention, streamlining the

process, and improving its applicability across diverse scientific domains.

Through these motivations, the identification of governing equations not only

aims to improve the theoretical understanding and predictive capabilities but also

strives to develop practical tools that can cope with the complexity and variability

of real-world systems. Therefore, this research is a cornerstone for technological

progress and operational efficiency across science and engineering disciplines.

1.3 Thesis Structure

This dissertation introduces the creation of advanced computational methods de-

signed to automatically discover dynamic systems from data. The structure of this

work systematically explores a series of research topics, ensuring a clear purpose and

emphasising the innovation of the proposed approaches.

• Chapter 2 (Literature Review):

This chapter reviews statistical and machine learning methods, especially re-

gression analysis, numerical derivatives, and signal processing methodologies.

All are the groundwork for the research presented herein.

• Chapter 3 (Review of Dynamical System Identification Framework):

This chapter summarises the recent developments in dynamical system iden-

tification, including sparse regression and neural network approaches. Par-

ticularly, the advantages and drawbacks of one widely-used method, Sparse

Identification of Nonlinear Dynamics (SINDy) framework [3], are analysed

from the automating perspective.

• Chapter 4 (Analysis of Other SINDy-based Methods):

This chapter is a part of the work in the published paper [1]. It reproduces

and compares three popular SINDy-based methods, employing numerical tests
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to show their drawbacks in terms of user-friendliness and computational re-

sources.

• Chapter 5 (Automatic Numerical Differentiation):

This chapter offers an automatic method to calculate the derivatives of data,

solving a fundamental problem in dynamical system identification. It demon-

strates the working processes of the new automatic method and evaluates its

performances using one-dimensional signals and two-dimensional images.

• Chapter 6 (Automating the Discovery of PDEs from Data):

Based on the automatic numerical derivative method presented in Chapter

5, this chapter proposes a sparse regression algorithm to identify PDEs from

data. This chapter also provides systematic tests to evaluate whether a new

identification method is reliable or not.

• Chapter 7 (Finding COVID-19 Transmission Dynamics):

This chapter employs an extension of the automatic regression for governing

equations (ARGOS) framework [1], Bayesian ARGOS, to analyse real-world

data, COVID-19 data in mainland China, to extract the epidemic dynamics.

The results indicate that the ARGOS framework is a potential solution in the

real world.

• Chapter 8 (Conclusion):

This chapter summarises the discussion of all previous chapters, elucidating

the future development of data-driven system identification. This research

has opened up new perspectives for exploring data in engineering and has

significantly contributed to the development of automated model discovery.

1.4 Notation

This thesis’s notation is similar to [32–34]. As such, n represents the number of

observations from the population size N , and p indicates the number of variables

for prediction, also called predictors in statistics and features in machine learning.
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Lowercase bold will always denote a column vector with length n:

a =


a1

a2
...

an

 .

Normally, lowercase normal font denotes scalars, but it sometimes denotes row vec-

tors with length m:

a =
(
a1 a2 · · · am

)
.

If there is a situation where these two notations are conflicted, more detailed ex-

planations will be provided. Bold capitals always designate matrices, e.g., A. The

random variables are designated by normal capital font, e.g., A, and will be specified

whether the object is an r × s matrix with A ∈ Rr×s [33, p.11].

The design matrix with n rows and p columns is denoted as X ∈ Rn×p, and

xij means the ith observation and the jth predictor, where i = 1, 2, . . . , n and

j = 1, 2, . . . , p. After expansion,

X =


x11 x12 · · · x1p

x21 x22 · · · x2p

... ... . . . ...

xn1 xn2 · · · xnp

 ,

where the jth predictor is a column vector with length n:

xj =


x1j

x2j

...

xnj

 , j = 1, 2, . . . , p.

Furthermore, the rows of X as x1, x2, ..., xn denote xi as a vector with length p. The
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ith observation with p predictors is referred as [33, p.10; 32,34]:

xi =
(
xi1 xi2 · · · xip

)
, i = 1, 2, . . . , n.

Hence, X can also be written as

X =
(

x1 x2 · · · xp

)
or

X =


xT

1

xT
2
...

xT
n

 .

The transpose operator T mirrors a matrix along its main diagonal.

XT =


x11 x21 · · · xn1

x12 x22 · · · xn2
... ... . . . ...

x1p x2p · · · xnp

 ,

and transforms a column vector to a row vector

xT
i =

(
xi1 xi2 · · · xip

)
.

The notation yi denotes the ith observation of the response variable, and the set

of all n observations forms a vector

y =


y1

y2
...

yn

 .

With this notation, yi pairs with xi as {(y1, x1), (y2, x2), . . . , (yn, xn)} to describe an

observed dataset. The prediction of y is denoted as ŷ, whereas β̂ represents the
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estimation of an unknown parameter β.

Following the notations in James et al. [33] for representing the linear regression,

X denotes the input or independent variable, distinguished by the subscript Xj. In

the same way, Y indicates the output or the dependent variable [33, p.15; 32,34]. The

residuals of the response variable explain errors between observations and predictions

and are denoted by ϵ = Y − Ŷ [32, p.52; 33, p.61].

In modelling spatiotemporal dynamical systems, the empirical data that re-

searchers collected is denoted as U = U(t, x) with n points on the temporal di-

mension t and m points on the spatial dimension x. In this way, U is a matrix

having n rows and m columns:

Un×m =


u(t1, x1) u(t1, x2) · · · u(t1, xm)

u(t2, x1) u(t2, x2) · · · u(t2, xm)
... ... . . . ...

u(tn, x1) u(tn, x2) · · · u(tn, xm)

 .

When the PDE has two spatial dimensions, the PDE solution extents to a three-

dimensional tensor U = U(t, x, y), where the temporal dimension t has n points,

and the two spatial dimensions x and y have m1 and m2 points, respectively.
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CHAPTER 2

Literature Review

2.1 Linear Regression

To find the relationship between the response variable Y and p independent variables

X1, X2, . . . , Xp, the following equation can be used:

Y = f(X1, X2, . . . , Xp) + ϵ, (2.1)

where f is some fixed but unknown function and ϵ is the random error term, which

typically has a zero mean and a variance of σ2, and is independent of X [35, p.12; 36,

p.16]. If f depends on some parameters, Eq. (2.1) is a parametric model; otherwise,

it is a non-parametric model [36, chpt.2.1.2], such as Savitzy-Golay (see Section 2.5).

One of the simplest assumptions: f is a linear model in X, i.e.,

f(X1, X2, . . . , Xp) = β0 + β1X1 + β2X2 + · · · + βpXp, (2.2)

Hence,

Y = f(X1, X2, . . . , Xp) + ϵ = β0 + β1X1 + β2X2 + · · · + βpXp + ϵ (2.3)
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where β0, β1, β2, . . . , βp are unknown parameters and β0 is the intercept term. The

parameters enter linearly in the model, while the predictors can be nonlinear [35,

p.12]. For instance, Y = β0 + β1X1 + β2 logX2 + β3X2X3 + ϵ is a linear model, but

Y = β0 + β1X
β2
1 + β3X3 + ϵ is not because the parameter β2 is not linear in the

model.

The matrix form of a linear model is:

y = Xβ + ϵ, (2.4)

where the design matrix X contains the intercept term 1, and β = (β0, β1, . . . , βp)T

[32, p.11].

The standard way to estimate the unknown parameters β is to minimise the

ℓ2-norm squared of the residuals ϵ, ordinary least squares (OLS) estimation, or max-

imise the likelihood function, maximum likelihood estimation (MLE). Both meth-

ods are equivalent as long as the model residuals obey a normal distribution, i.e.,

ϵ ∼ N (0, σ2). The derivation of OLS estimates and MLE and the relationship

between them are shown in the following parts.

2.1.1 Least squares estimation

First, the ith prediction of Y is denoted as ŷi = β̂0 +
∑p

i=1 β̂ixi, and ϵi = yi − ŷi

represents the ith residual, the difference between the observed value and the pre-

dicted estimate from a regression model [33, p.61]. The most common loss function,

i.e., error metric for the predictions from the regression model, is the residual sum

of squares (RSS):

RSS =
n∑

i=1

ϵ2
i = (y − Xβ)T (y − Xβ) =

n∑
i=1

(
yi − β̂0 −

p∑
j=1

xijβ̂j

)2

. (2.5)
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To estimate the unknown parameter β, the gradient of the RSS with respect to β is

derived:

dRSS
dβ

= d

dβ
(y − Xβ)T (y − Xβ) = d

dβ
(yT − βT XT )(y − Xβ)

= d

dβ

(
yT y − 2yT Xβ + βT XT Xβ

)
= −2XT y + 2XT Xβ.

(2.6)

After setting the gradient of the loss to zero,

(
XT X

)
β = XT y. (2.7)

Under the assumption that XT X is a nonsingular matrix, β has the unique solution

β̂ =
(
XT X

)−1 XT y. (2.8)

After obtaining β̂, the variance of β, V ar(β), still needs to be estimated. The

assumption in estimating V ar(β) is that each yi is uncorrelated and has a constant

variance σ2 and that each xi is not random. The variance-covariance matrix of β is

V ar(β̂) =
(
XT X

)−1 XT
((

XT X
)−1 XT

)T

V ar(y)

=
(
XT X

)−1
σ2 (2.9)

To estimate σ2, the hat matrix is needed [35, chpt.2.4]:

H = X
(
XT X

)−1 XT . (2.10)

It can be derived that the hat matrix is symmetric

HT =
(

X
(
XT X

)−1 XT
)T

= H

and idempotent

H · H = X
(
XT X

)−1 XT X
(
XT X

)−1 XT = H.
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Using H to rewrite the RSS, it can be

RSS = (y − ŷ)T (y − ŷ) = yT (1 − H)y.

Suppose the design matrix X has n observations (rows) and p predictors (columns),

the expectation of RSS can be

E(RSS) = E(yT (1 − H)y)

= σ2(n− p) + E(y)T (1 − H)E(y)

= σ2(n− p) + (Xβ)T (1 − H)(Xβ)

= σ2(n− p) + (Xβ)T Xβ − (Xβ)T HXβ

= σ2(n− p).

Therefore,

σ̂2 = RSS
n− p

(2.11)

is an unbiased estimation of σ2 [35, chpt.2.4].

Typically, the coefficient of determination is used to quantify the goodness-of-fit:

R2 = 1 − RSS
TSS = 1 −

∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2 =

∑n
i=1(ŷi − ȳ)2∑n
i=1(yi − ȳ)2 , (2.12)

where ȳ is the mean value of the response variable Y , and TSS (Total Sum of

Squares) describes the total variance of the observations Y . Hence, R2 is a propor-

tion variation in Y explained by X, ranging from zero to one – the closer to one,

the better the model performs [36, p.70; 37, p.23; 38, p.12].

The OLS is the most basic estimation method of β, other least squares methods,

such as penalised least squares, will be illustrated in Section 2.4.

2.1.2 Maximum likelihood estimation (MLE)

From the probability distribution perspective, the response variable’s probability

density function is assumed to be P (yi;ψ), so that the joint density function, also
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called likelihood function, can be derived [39, p.144]:

L(y;ψ) = P (y1, y2, . . . , yn;ψ) =
n∏

i=1

P (yi;ψ), (2.13)

where ψ represents parameter(s), including β and ϵ. Then, another two assumptions

for the linear model are required [40, p.70]:

• Equation (2.2) represents the expectation of Y , i.e.,

Y = E(Y |X1, X2, . . . , Xp) + ϵ = β0 +
p∑

j=1

Xjβj + ϵ; (2.14)

• The residual ϵ obeys a normal distribution

ϵ ∼ N (0, σ2) = 1√
2πσ2

exp
(

− ϵ2

2σ2

)
. (2.15)

Hence, yi ∼ N (xT
i β, σ

2), and the likelihood function of the observation is:

L
(
β, σ2; y

)
=
(
2πσ2)− n

2

n∏
i=1

exp
(

−(yi − xT
i β)2

2σ2

)
. (2.16)

Maximising the likelihood function, Eq. (2.16) is equivalent to maximising the cor-

responding log-likelihood function, Eq. (2.17), which is mathematically tractable.

ℓMLE

(
β, σ2; y

)
= −n

2 log(σ2) − 1
2σ2

n∑
i=1

(yi − xT
i β)2 (2.17)

∂ℓMLE

∂β
= 1

2σ2

n∑
i=1

2xT
i (yi − xT

i β) = 0 (2.18)

∂ℓMLE

∂σ2 = − n

2σ2 + 1
2σ4

n∑
i=1

(yi − xT
i β)2 = 0 (2.19)

Equation (2.18) leads to the same expression as Eq. (2.6), thus, β̂ =
(
XT X

)−1 XT y

and V ar(β̂) =
(
XT X

)−1
σ2. However, the estimation of σ2 from Eq. (2.19), σ̂2 =

RSS
n

, is biased because of omitting the uncertainty in the estimation of β [40, p.74].

To obtain an unbiased σ̂2, the Restricted Maximum Likelihood Estimation (RMLE)
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is needed:

ℓRMLE
(
σ2; y

)
= −n− p

2 log(σ2) − 1
2σ2

n∑
i=1

yi − xT
i

(
n∑

i=1

xix
T
i

)−1 n∑
i=1

xiyi

2

= −n− p

2 log(σ2) − RSS
2σ2 (2.20)

In this way,
∂ℓRMLE

∂σ2 = n− p

2σ2 + RSS
2σ4 = 0 ⇐⇒ σ̂2 = RSS

n− p
,

which derives the same as Eq. (2.11).

2.1.3 Bayesian regression

Based on the MLE, the Bayesian regression introduces Bayesian probability into

the linear regression to interpret the estimated parameters. Instead of assuming β

and σ2 are fixed values, from the Bayesian perspective, β and σ2 are all probability

distributions with a joint prior P (β, σ2) [41]. Bayesian regression aims to estimate

the posterior distributions for β and σ2, which requires the Bayes’ theorem [42]:

P (β, σ2|Y ) = P (Y |β, σ2)P (β, σ2)
P (Y ) ∝ P (Y |β, σ2)P (β, σ2). (2.21)

As β and σ are independent events, the posterior can be written as

P (β, σ2|Y ) = P (β|Y, σ2)P (σ2|Y, β) ∝ P (Y |β, σ2)P (β)P (σ2). (2.22)

Here, P (β) and P (σ2) are priors determined by users.

Although both priors can be arbitrary distributions, the analytic expression for

the probability density function of the posterior distributions may be difficult to

derive. Normally, if priors are noninformative, β and σ can be set as uniform

distributions [43, p.335]. If the mean and variance of β are known, the conjugate

prior distribution, which has the same functional form as the likelihood function,

can be used. In most cases, the conjugate prior of β is normal distribution, and σ2

follows inverse-gamma (IG) distribution [43, p.43]. With these prior distributions,
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a Bayesian regression model can be described as:

yi | (µi, σ
2,xi) ∼ N

(
µi, σ

2) , i = 1, . . . , n

µi = xT
i β

βj ∼ N
(
µβj

, σ2
βj

)
, j = 0, . . . , p

σ2 ∼ IG (a, b)

, (2.23)

where µβj
, σβ, a, b are determined by users based on prior information. In this way,

the statistical inference methods can be applied to the posterior distributions β and

σ.

As the analytical expressions of the posterior distributions are too complex to

derive, direct sampling from joint distributions is difficult. The numerical sampling

method, Markov chain Monte Carlo (MCMC), is always used to simulate posterior

distributions [43, p.275]. Gibbs sampler, one of the popular MCMC algorithms, iter-

atively samples from multivariate probability distributions when sampling from con-

ditional distributions is easier than joint distributions [43, p.276]. Another MCMC

algorithm is Metropolis-Hastings, which uses a proposal distribution to generate

candidate moves whose acceptance probability ensures the stationary distribution

of the Markov chain is the target distribution [43, p.278].

2.1.4 Inference for estimated parameters

Statistical inference is fundamental and involves drawing conclusions about a pop-

ulation based on observed data, such as predictions or hypotheses. The inference

for the estimated parameters contains hypothesis tests and building confidence in-

tervals.

Under assumptions (2.14) and (2.15), the distribution of β̂ is conclude:

β̂ ∼ N (β, (XT X)−1σ2) (2.24)

where N is a multivariate normal distribution. Also, due to the χ2 distribution’s
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definition, σ̂2 obeys a χ2 distribution with n− p degrees of freedom:

σ̂2 ∼ σ2

n− p
χ2

n−p. (2.25)

Additionally, β̂ and σ̂ are statistically independent. According to the distributional

properties of both β̂ and σ̂, the hypothesis tests and confidence intervals for each βj

can be built.

For each j = 1, 2, · · · , p, the null hypothesis is βj = 0. The Z-score, a t distri-

bution with n− p− 1 degree of freedom (t(n−p−1)), is employed to perform the test

[32, chpt.3.2]:

zj = β̂j

σ̂
√
vj

∼ t(n−p−1) (2.26)

where vj = (XT X)−1
jj is the jth diagonal element of (XT X)−1. Under the model’s

degree of freedom, a Z-score has its corresponding p-value. If the estimated p-value

is less than the significance level α (always 0.05), the null hypothesis can be rejected.

Confidence intervals (CIs) are another important statistical tool for visualising

the uncertainty of estimated parameters based on the hypothesis test. The confid-

ence interval for βj at the α level is:

(CIlow, CIup) =
(
β̂j − z(1− α

2 )SE(β̂j), β̂j + z(1− α
2 )SE(β̂j)

)
(2.27)

where z(1− α
2 ) is the percentile of the t(n−p−1) distribution, and SE(β̂j) = √

vjσ̂ is

the standard error of βj. Note that by replacing the estimated σ̂ with a known

σ, zj has a standard normal distribution. As n increases, the difference in tail

quantiles between a t(n−p−1) distribution and a standard normal distribution will

decrease. For easier computation, the t(n−p−1) distribution can be approximated by

the normal distribution [32, chpt.3.2]. For example, z(1− α
2 ) ≈ 1.96 at α = 0.05 can

be used to calculate the confidence interval. However, the null hypothesis can be

rejected if zero is not located in the confidence interval, i.e., 0 > CIup or 0 < CIlow.
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2.1.5 Multicollinearity

When analysing real-world data, a multiple regression model may have collinear-

ity or multicollinearity, which refers to linear relationships between predictors [38,

p.109]. The term multicollinearity is for three or more correlated predictors, whereas

collinearity occurs when only two correlated predictors are present.

The extreme case of collinearity is the linear combination between predictors

(e.g., x1 = 2x2), which leads to the singular matrix XT X and no unique least

squares estimate [37, p.106]. In most cases, the challenge arises when XT X tends

to be singular. As β̂ and V ar(β̂) are calculated by (XT X)−1, the estimate of β̂ will

be inaccurate, and V ar(β̂) will inflate, which also causes a wider confidence interval

and wrong decisions on t-test [38, p.110].

Multicollinearity often arises during the data collection process when observa-

tions are limited to specific physical conditions, design constraints, or sample data

from a narrow subspace of independent variables. It also emerges with the expansion

of variables’ interactions, such as adding terms like x3
1 or x1x2 to the design mat-

rix. Furthermore, an abundance of outliers can contribute to multicollinearity [38,

p.109].

Pairwise scatterplots, the variance inflation factor (VIF), and eigenvalue methods

are three important techniques to detect multicollinearity [38, chpt.7.2]. Pairwise

scatterplots visualize the relationships between all independent variables by inspect-

ing all
(

p−1
2

)
pairwise scatterplots for p − 1 independent variables. This allows for

the visual distinction of linear relationships between pairs of predictors. However,

this method is inappropriate for a dataset with a large amount of predictors. For

example, if a dataset contains 20 predictors, users need to repeat analysing similar

graphs 171 times.

The VIF assesses the severity of multicollinearity by measuring the variance of

the estimated regression coefficient that increases due to collinearity. The VIF of

the jth predictor is defined as:

VIFj = 1
1 −R2

j

, j = 1, 2, . . . , p, (2.28)
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where R2
j is the coefficient of determination, Eq. (2.12), for the regression model that

the jth predictor, Xj, is regressed against all other predictors [44, p.250]. Hence,

VIFj ∈ [1,∞]. When VIFj → ∞, the given Xj is highly related to other predictors,

while VIFj = 1 represents no collinearity. In practice, multicollinearity between

predictors always exists. Typically, VIFj = 1 means there is no multicollinear-

ity, 1 <VIFj < 5 represents predictors have some moderate multicollinearity, and

VIFj > 5 strongly supports the multicollinearity between predictors [44, p.250; 38,

p.111].

Specifically, when there are only two predictors, both predictors have the same

VIF values because of the same R2
j values. Suppose there is a regression model

Y = β0 + β1X1 + β2X2, the following two models are fitted with the same VIF

values.X1 = a+ bX2

X2 = c+ dX1

⇐⇒

 X1 = a+ bX2

X2 = −a
b

+ 1
b
X1

=⇒ R2
1 = R2

2 ⇐⇒ VIF1 = VIF2

The third popular approach employs eigenvalue methods [38, p.113]. The correl-

ation matrix for the standardised data is denoted as r ∈ Rp×p, reflecting the inclusion

of p predictors but excluding the intercept column. Subsequently, the eigenvalues

λj for r are computed and arranged in descending order, i.e., λ1 ≥ λ2 ≥ · · · ≥ λp.

The presence of multicollinearity is present if the empirical criterion
∑p

j=1 λ
−1
j > 5p.

The condition index (number) of the data correlation matrix κ is used for measuring

overall multicollinearity, extending from eigenvalue methods [44, p.252]:

κ =

√
The maximum eigenvalue of the correlation matrix
The minimum eigenvalue of the correlation matrix =

√
λ1

λp

. (2.29)

Empirical evidence suggests κ > 30 illustrates the non-negligible multicollinearity

in the regression model [44, p.252; 38, p.113].

Multicollinearity detrimentally impacts regression results, yet several remedies

exist. A straightforward method involves excluding the problematic variables from

the model. Removing variables can be implemented based on the highest VIF or a

strategic subset selection (Section 2.3) to mitigate multicollinearity. Alternatively,
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keeping collinear predictors in the regression model necessitates the usage of ridge

regression instead of variable exclusion [38, p.288][45]. Ridge regression (reviewed

in Section 2.4.1) is a classical solution to multicollinearity and adjusts coefficients

towards zero, thereby diminishing the standard errors of the regression model [45].

2.2 Model Selection and Assessment

Model selection and assessment refer to evaluating and choosing the most appropri-

ate model to find the relationships between the response and predictors among a set

of candidate models for a given dataset. Model selection involves selecting the form

of the regression equation, the variables to include, and any interaction terms or

transformations that may be necessary. Model assessment guarantees that the se-

lected model has best balanced the trade-off between goodness-of-fit and complexity,

providing accurate and robust predictions without overfitting the data.

James et al. [36] highlights three popular model selection methods: subset se-

lection, shrinkage regression, and dimension reduction. However, these selection

methods require metrics to quantify which model is the best. The following subsec-

tions discuss some metrics derived from RSS, information criteria, cross-validation,

and the bootstrap technique. Subset selection will be introduced in Section 2.3,

whereas shrinkage regression will be elaborated in Section 2.4. Dimension reduction

is pertinent when the number of variables surpasses the number of observations, i.e.,

p > n. However, this condition is not met in dynamical system identification, where

n > p implies that dimension reduction is inapplicable.

2.2.1 Model evaluation metrics

Evaluating model accuracy is essential for an objective assessment of model per-

formance in the prediction. Typically, the training set (Xtrain, Ytrain) is employed

to estimate unknown parameters (e.g., β̂ in regression models), and performance

metrics are calculated using the test set (Xtest, Ytest).

Residual sum of squares (RSS) measures the squared differences between the

observations and predictions. The definition, Eq. (2.5), indicates that RSS tends to
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zero when the model’s predictions are close to the observations. Thus, this value

should be as small as possible.

Mean Squared Error (MSE) measures the average squared difference between

the observations and predictions. It is defined as:

MSE = RSS
n

= 1
n

n∑
i=1

(yi − ŷi)2. (2.30)

The same as RSS, a lower MSE indicates a more accurate prediction. The MSE

is larger when the model poorly predicts [36, p.30]. Furthermore, MSE can be

decomposed into the bias and variance components:

MSE = E [y − ŷ]2 = E
[
y − f̂(x)

]2
= E

[(
y − f (x) + f (x) − f̂(x)

)]2

= E
[(

(y − f(x))2 + 2(y − f(x))(f(x) − f̂(x)) + (f(x) − f̂(x))2
)]

= E
[
(y − f(x))2]+ 2E

[
(y − f(x))(f(x) − f̂(x))

]
+ E

[
(f(x) − f̂(x))2

]
= V ar(ϵ) + 0 + E

[
f 2(x) − 2f(x)f̂(x) + f̂ 2(x)

]
= V ar(ϵ) + E

[
f 2(x)

]
− 2E

[
f(x)f̂(x)

]
+ E

[
f̂ 2(x)

]
= V ar(ϵ) + f 2(x) − 2f(x)E

[
f̂(x)

]
+ V ar(f̂(x)) + E

[
f̂(x)

]2

= V ar(ϵ) + V ar(f̂(x)) +
[
E
[
f̂(x)

]
− f(x)

]2

= V ar(ϵ) + V ar(f̂(x)) +Bias2
(
f̂(x)

)
= V ar(ϵ) + V ar(ŷ) +Bias2 (ŷ) .

MSE calculated by the training set provides insights into the model’s performance

on historical observations. However, the primary interest lies in the model’s effic-

acy on a new dataset, referred to as the test set in statistical learning [36, p.30].

Consequently, given an adequate number of observations in the test set, the model’s

MSE is determined by the average squared prediction error for the test dataset:

(
Ytest − Ŷtest

)2

ntest

, (2.31)

20



and the lowest MSE on test data characterises the optimal model. Furthermore,

an overfitted model always exhibits a low MSE for training data but a high MSE

for test data. This discrepancy often arises when the model excessively captures

patterns attributable to random fluctuations rather than the “true properties of the

unknown function f” [33, p.32]. To mitigate overfitting, the selection of the model

should also incorporate the MSE on test data.

When evaluating various models regressed on the same dataset, the Root Mean

Squared Error (RMSE) is preferred because its unit is consistent with that of the

response variable, facilitating direct interpretation under the same measure.

RMSE =
√

RSS
n

=

√√√√ 1
n

n∑
i=1

(yi − ŷi)2 (2.32)

The coefficient of determination, R2, is another metric that has been shown

in Eq. (2.12).

2.2.2 Information criteria

The inclusion of additional predictors in a regression model enhances its accuracy

but may lead to overfitting [36, p.210]. To mitigate overfitting, evaluating the impact

of the number of predictors is crucial. For instance, with a dataset comprising 10

predictors, the most explanatory model may require only five predictors, even though

the most predictive model is the full model. In this way, the information criteria are

necessary to achieve a balance between model accuracy and complexity.

Akaike information criterion (AIC) is an in-sample-fit technique for assessing

the quality of statistical models [46]. The optimal model should have the lowest

AIC within the candidate models. The definition of AIC is based on the maximum

likelihood and a penalty:

AIC = −2 log(L̂) + 2d, (2.33)

where L̂ is the likelihood of the estimated model, and d is the number of parameters

for the estimated model. In a linear regression model with p predictors, d = p + 1.

In shrinkage regression, d is the number of nonzero parameters for the estimated
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model [47].

The likelihood function L̂ assesses the goodness-of-fit, while the penalty 2p, an

increasing function of the number of estimated parameters, discourages overfitting

and guarantees simplicity. Therefore, adding more predictors to the model decreases

−2 log(L̂) but increases 2p. If AIC reaches its optimal value, incorporating further

predictors makes 2p dominant in the AIC calculation, thereby increasing its value.

Moreover, when assessing a linear model with Gaussian errors, the maximum

likelihood is equivalent to least squares [36, p.212; 38, p.255], transforming Eq. (2.33)

to

AIC = n log (RSS) + 2d+ C, (2.34)

where n is the number of observations, and C is a constant value.

Schwarz [48] derived Bayesian information criterion (BIC) from the Bayesian

perspective to construct a method to assess statistical models. BIC resembles AIC

but imposes a more substantial penalty on the number of estimated parameters,

favouring a more parsimonious model [36, p.212; 38, p.255]. BIC is calculated as

follows:

BIC = −2 log(L̂) + log(n)d. (2.35)

Thus, when n > 7, BIC applies a heavier penalty on the estimated parameters

compared to AIC. Similar to AIC, the selection of the optimal model using BIC is

also based on achieving the lowest BIC value. If the residuals of the model obey

normal distribution, BIC becomes

BIC = n log (RSS) + log(n)d+ C. (2.36)

AIC and BIC may select the same optimal model due to their similarity, but they

are suitable under different conditions. Given the true model is contained in the

candidate models, BIC always selects the correct one as the number of observations

n tends to infinity [32, p.235], while AIC does not fit this property. However, when

n is finite or the true model does not fall in the candidate models, AIC outperforms

BIC and serves to select the model that best approximates the true model [49–51].

The adjusted coefficient of determination (adjusted R2) is another useful
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method for evaluating models with different predictors. The R2, Eq. (2.12), rises

with the addition of predictors to the model due to the consequent reduction in the

RSS. For a linear regression model with d predictors, the adjusted R2 is proposed

to address this problem:

Adjusted R2 = 1 − RSS/(n− p− 1)
TSS/(n− 1) . (2.37)

Unlike AIC and BIC, the best model has the highest adjusted R2 value. Once the

true model is found, although adding extra predictors leads to a decrease in RSS, the

RSS/(n− p− 1) increases, and the adjusted R2 will decrease eventually. Therefore,

the model exhibiting the maximum adjusted R2 effectively only contains correct

predictors, excluding redundant variables [36, p.213].

2.2.3 Cross-validation

Cross-validation (CV) is the most common sampling technique for assessing model

performance. When a machine learning method depends on hyperparameters, it

necessitates dividing the entire dataset into a training set (T ), a validation set (V),

and a test set (S). In contrast, for methods not reliant on hyperparameters, such

as the linear regression model, dividing only the training set and the test set is

sufficient. The training set facilitates the estimation of model parameters, whereas

the validation set is instrumental in determining the optimal hyperparameters, en-

suring the model exhibits the minimum value of the loss function. Commonly, MSE

serves as the loss function, necessitating the computation of MSE(T ,V). The test

set evaluates the goodness-of-fit of the trained model with the optimised hyperpara-

meters through the calculation of MSE between Tbest and S. Figure 2.1 illustrates

the relationships of these three sets.

The division of data into training, validation, and test sets depends on the size

of the training sample and the complexity of the models being fitted to the data.

Ideally, the dataset would be sufficiently large to allocate 50% for training purposes

and 25% each for validation and testing purposes [32, p.222]. However, the scarcity

of extensive datasets in real-world applications commonly necessitates a compromise,
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Training set Validation setFind the best
hyperparameters Test set

Trained model with the
best hyperparameters

Evaluate
the model

Figure 2.1: The relationships between the training set, validation set, and test set.
Training and validation sets are used to find the best hyperparameters for the model.
The trained model with the best hyperparameters can be evaluated by the test set.

leading to a 50/50 split between only the training and validation sets.

Two significant limitations are associated with the validation set method. Firstly,

the random sampling of the validation set can lead to a high variability in the

observed test error rate, relying on the specific observations included in each dataset.

Additionally, the validation method uses fewer observations to train and test models,

leading to the validation error rate overestimating the test error rate for the fit of

the model to the whole dataset. Therefore, due to the small size of the dataset,

one may lack confidence in the accuracy of the predictive model. Furthermore,

the validation set approach may be doubtful if the distribution of test and training

data is significantly different, potentially resulting in overfitting the validation set

and poorly generalising to the unseen dataset. Consequently, alternative methods

with different validation sampling strategies are typically preferred to address these

concerns.

After sampling the test set, the k-fold cross-validation (see Fig. 2.2) divides

the rest of the data into k subsets of approximately equal size. In this process,

the first subset serves as the validation set, and the model is trained using the

remaining k− 1 subsets. Following training, the MSE1 in Fig. 2.2 for the validation

set is calculated. This procedure is iterated k times, with each subset assuming

the role of the validation set once, and a validation error is computed for each

iteration. As a result, k validation errors, denoted as MSE1,MSE2, · · · ,MSEk, are

estimated. Therefore, the error of the model in k-fold cross-validation is determined

by averaging these MSE values.

An alternative to k-fold cross-validation is leave-one-out cross-validation (LOOCV).
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Validation Training Training Training Training

Training Validation Training Training Training

Training Training Validation Training Training

Training Training Training Validation Training

Training Training Training Training Validation

λ1 λ2 · · · λg

MSE11 MSE12 · · · MSE1g

MSE21 MSE22 · · · MSE2g

MSE31 MSE32 · · · MSE3g

MSE41 MSE42 · · · MSE4g

MSE51 MSE52 · · · MSE5g

MSE1 MSE2 · · · MSEg

MSEj = 1
5

5∑
i=1

MSEij; j = 1, 2, . . . , g

Figure 2.2: The diagram of using 5-fold cross-validation to find the optimal hyper-
parameter, λ. Each validation set gives an MSEij for one λj. The optimal λ has the
minimum MSEj, min{MSE1,MSE2, · · · ,MSEg}.

Rather than creating subsets with similar sizes, it only uses a single observation

(x1, y1) as the validation set, while the remaining observations {(x2, y2), . . . , (xn, yn)}

are employed as the training set. As LOOCV fits the model to n− 1 training obser-

vations and evaluates against the excluded observation, it exhibits an approximation

to the unbiased estimate of the test error. However, relying on a single observation

renders the MSE estimate highly variable. To address this, the procedure is iter-

ated n times to compute an average MSE from n test error estimates, which makes

LOOCV more computationally expensive when data size increases [33, p.200].

2.2.4 The bootstrap

The bootstrap is a resampling technique that is widely employed to estimate distri-

butions for the unknown parameters [32, p.249; 33, p.209]. B. Efron [52] proposed

this method, Efron and Tibshirani [53], Davison and Hinkley [54] generalised it with

more applications. Suited for multivariate systems analysis, it employs random

sampling with equal probability and replacement to establish an empirical para-

meter distribution(s) [53, 55, 56]. This method involves generating new samples

from the original dataset, with “replacement” meaning the possibility of selecting
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the same observation multiple times for inclusion in a bootstrap dataset. In this

way, some data points will appear multiple times in the dataset, while some may

not be sampled. Additionally, each bootstrap sample maintains the same number of

observations as present in the original dataset. Therefore, each sampled bootstrap

dataset can fully represent the observations.

Here is a basic process for implementing bootstrap:

1. Sample data from original data with replacement;

2. Construct a model and estimate unknown parameters (e.g., coefficients in lin-

ear regression);

3. Repeat the previous steps with B times (B is the bootstrap samples);

4. Estimate statistical features, such as bootstrap means and standard deviations,

for the unknown parameters.

The bootstrap is useful for statistical inference. For example, in taking the

inference for the standard error of a linear regression model, B standard errors can

be estimated to compose the empirical distribution, enabling users to calculate the

mean values, standard deviations, and confidence intervals. However, when B < 50,

the overfitting problem may be caused by an overlap in observations between training

and test datasets, making the estimated standard error unreliable. As B increases to

larger than 200, the bootstrapped standard error can be robust [57, p.215; 53, p.52;

32, p.250]. Furthermore, when estimating the robust bootstrap confidence intervals

for model selection, B is recommended for larger than 2000 [57, p.205; 53, p.52].

2.3 Subset Selection

Subset selection involves identifying the most relevant predictors that contribute to

explaining the variation in the response variable [33, p.226]. As the selected model is

one of the sub-models, Hastie et al. [32] and James et al. [36] call this method subset

selection. From the perspective of statistical inference, these relevant predictors are

always statistically significant in the hypothesis test, i.e., βj rejects the null hypo-

thesis (βj = 0) in the t-test. On the contrary, if a predictor cannot reject its null
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hypothesis, it is statistically insignificant and can be removed from the design mat-

rix [44, p.308]. The subset selection method uses stepwise selection with statistical

indexes to measure the model accuracy, including bias and variance. Since the full

model has p predictors, the number of predictors of the selected model is less than p.

Subset selection is particularly useful in scenarios where an interpretable regression

model with a few predictors needs to be found from massive potential predictors.

This parsimonious model is always robust, avoiding overfitting and multicollinearity.

Backward stepwise selection, also called backward elimination, initiates with the

full model and then drops the most insignificant predictor, identified by the highest

p-value in the t-tests, at each step [37, p.151]. Typically, this process iterates through

all predictors, beginning with the full model and stopping with the null model. After

that, one of the criteria, such as AIC, BIC, cross-validated prediction error, or adjus-

ted R2, is employed to identify the optimal model [32, p.60]. Backward elimination

conducts the fitting of p regression models but necessitates the execution of the

t-test at each step. Algorithm 1 illustrates the procedure of backward elimination.

Algorithm 1: Backward stepwise selection
1. Denote Mp as the full model, which contains all p predictors.
2. For k = p, p− 1, . . . , 1:
(a) Do the linear regression to the Mk and calculate the p-values for all

estimated coefficients.
(b) Remove the most insignificant predictor which has the largest p-value, and

call it Mk−1.
End

3. Select the best model among M0, . . . ,Mp by cross-validated prediction error,
AIC, BIC, or adjusted R2.

Conversely, forward stepwise selection mirrors backward stepwise selection but

inverses the method of determining submodels. This approach starts with the null

model and gradually incorporates the most significant predictor at each phase until

all p predictors are included. Hybrid stepwise selection integrates both forward and

backward stepwise methods, evolving from the null model towards the full model.

It employs forward stepwise for adding predictors, simultaneously considering the
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application of backward elimination at each juncture.

2.4 Shrinkage Methods

As mentioned in Section 2.2.1, shrinkage regression is important in machine learning

and statistics that can select best-prediction models and remove multicollinearity

from the regression model. It uses the ℓq-norm to regularise or constrain coefficient

estimates, which will be shrunk towards or to zero. When q = 2, the shrinkage

regression gives ridge regression; when q = 1, it provides the least absolute shrinkage

and selection operator (lasso) solution; when q = 0, the regularisation function

counts the nonzero estimates and corresponds to the subset selection [32, p.72]. In

addition, many methods, such as cross-validation and the Pareto curve, can be used

to find the optimal regularisation parameter of the ℓq-norm [58]. Cross-validation is

widely used because it makes no theatrical assumption [32, 36].

2.4.1 Ridge regression

When the predictors of the model are multicollinear, XT X in Eq. (2.6) is a singular

(not full rank) matrix, indicating that its inverse matrix does not exist. This issue

is overcome by ridge regression [45] by minimising the ℓ2 regularised RSS:

β̂ridge = arg min
β

∥y − Xβ∥2
2 + λ

p∑
j=1

β2
j , (2.38)

where λ is a nonnegative shrinkage parameter, controlling the amount of shrinkage

applied to the coefficients of the predictors. The matrix form of the Eq. (2.38),

β̂ridge =
(
XT X + λI

)−1 XT y, (2.39)

illustrates that
(
XT X + λI

)
is always invertible when λ > 0. Thus, ridge regression

always provides a solution, even if XT X is not full rank. When λ = 0, it simplifies
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to the OLS estimate. However, ridge estimation is biased:

Bias
(
β̂ridge

)
= E

(
β̂ridge − β

)
=
(
XT X + λI

)−1 XT y − β

=
(
XT X + λI

)−1 XT Xβ − β

=
((

XT X + λI
)−1 XT X − I

)
β ̸= 0 for λ > 0.

Therefore, a trade-off between the OLS estimate and ridge regression needs to be

considered.

2.4.2 The lasso

The least absolute shrinkage and selection operator (lasso) is another shrinkage

method, which adds ℓ1 regularisation to the RSS [59], rather than ℓ2 regularisation.

The lasso solves the ℓ1-norm problem:

β̂lasso = arg min
β

∥y − Xβ∥2
2 + λ

p∑
j=0

|βj|, (2.40)

where λ is also a nonnegative shrinkage parameter, affecting the same as that in

Eq. (2.38). Both the lasso and ridge contain minimising the RSS problem. However,

the lasso uses the ℓ1-norm to penalise coefficients to be exactly equal to zero with a

sufficiently large λ, while ridge shrinks some coefficients towards zero via the ℓ2-norm

[36, p.219; 60, p.282]. Hence, instead of subset selection (Section 2.3), the lasso is

a sparse regression algorithm, yielding sparse models (submodels) by automatically

performing the variable selection with different λ [36, p.219].

Computationally, unlike ridge regression where λ ∈ (0,+∞), there is a λmax <

+∞ for the lasso that when λ > λmax, all elements in β̂lasso are penalised to zero

(the null model). It has been proven that λmax for the lasso is ∥2XTy∥∞ [61].

2.4.3 The elastic net

The elastic net is proposed to solve some limitations in the lasso [62]. For example,

when a group of predictors is highly correlated, the lasso only selects one of them

and ignores the others. The elastic net combines the lasso and ridge penalties to
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overcome such an issue:

β̂Enet = arg min
β

||y − Xβ||22 + λ1

p∑
j=1

|βj| + λ2

p∑
j=1

(βj)2

= arg min
β

||y − Xβ||22 + λ

(
α

p∑
j=1

|βj| + (1 − α)
p∑

j=1

(βj)2

)
, (2.41)

where λ is a nonnegative shrinkage parameter, and α ∈ [0, 1] adjusts the using ratio

between ℓ1 and ℓ2 regularisation. Equation (2.41) is a general form for the elastic

net [32, p.662; 38, p.291], whereas the R package glmnet [61] defines the elastic net

as:

min
(β0,β)∈Rp+1

[
1

2n

n∑
i=1

(yi − β0 − xT
i β)2 + λ

(
α

p∑
j=1

|βj| + (1 − α)1
2

p∑
j=1

(βj)2

)]
(2.42)

where β0 is the intercept, which is excluded in the regularisation. The elastic net has

a unique minimum since the included ℓ2 regularisation makes the problem a convex

optimisation problem. Moreover, the lasso and ridge are special cases of the elastic

net for α = 1 and α = 0, respectively.

2.4.4 The adaptive lasso

Fan and Li [63] found that the bias of the coefficients estimated by the lasso cannot

be ignored and conjectured that the lasso may not fit the oracle property: con-

sistency in variable selection and asymptotic normality. Zou [64] first proved this

conjecture and proposed the adaptive lasso that fits the oracle property with a proper

λ. More details of the oracle property can refer to [63, 64]. The adaptive lasso, an

advancement of the lasso method, adds adaptive weights w into the regularisation

term, leading to a regularised convex optimisation solution.

The implementation of the adaptive lasso is a two-stage process. The first step

estimates the adaptive weights w using

w = |β̂|−γ, γ > 0, (2.43)
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where β̂ is the model’s
√
n-consistent estimator, such as the OLS estimator or ridge

regression estimator, and γ is an exponent tuning the shape of the soft-thresholding

function. In the second step, the estimated coefficient vector of the adaptive lasso

β̂alasso is obtained by solving the following convex optimisation problem:

β̂alasso = arg min
β

∥y − Xβ∥2
2 + λ

p∑
j=1

wj |βj| , (2.44)

where λ is a nonnegative regularisation parameter controlling the amount of shrink-

age applied to the coefficients of the predictors. Unlike the lasso, where the weight

vector is w = 1, the adaptive lasso varies the weights in the regularisation function,

resulting in a stronger penalty on smaller coefficients, thus driving more of them to

zero and leading to a sparser model compared to the standard lasso. As this optim-

isation problem is convex, it has a global minimum that can be solved efficiently [64].

If multicollinearity is not considered for computing the adaptive weights, β̂ can be

OLS estimates.

Computationally, the adaptive lasso problem can be transformed to the lasso

problem [64]:

β̂+ = arg min
β

∥∥∥∥∥y −
p∑

j=1

Xj

wj

βj

∥∥∥∥∥
2

2

+ λ

p∑
j=1

|βj| , β̂alassoj
=
β̂+

j

wj

. (2.45)

Therefore, algorithms for solving the lasso can be used to solve the adaptive lasso.

Similar to the lasso, the adaptive lasso also has the λmax =
∥∥2X+Ty

∥∥
∞ where

X+
j = Xj/wj that for all λ > λmax the adaptive lasso will eliminate all predictors,

penalising all coefficients to zero.

The multi-step adaptive lasso (MSAL), Eq. (2.46), iterates the adaptive weights

ŵ(k) based on the estimations from the last step, selecting fewer variables than the

ℓ0-norm at each step [65].

β̂MSAL = arg min
β

∥Xβ − y∥2
2 + λ∗(k)

p∑
j=1

ŵ
(k−1)
j |βj| ,

ŵ
(k)
j = 1∣∣∣β̂(k−1)

j (λ∗(k−1))
∣∣∣ , j = 1, 2, . . . , p, k = 1, 2, . . .M.

(2.46)
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where λ∗(k) is the optimal λ at the kth iteration.

2.4.5 The adaptive elastic net

The adaptive lasso still risks poor performance when predictors are highly correlated

even if they are independent [66]. Similar to the proposing of the elastic net, Zou

and Zhang [66] proposed the adaptive elastic net by adding the ℓ2 regularisation to

solve the multicollinearity for the adaptive lasso. The adaptive elastic net combines

the adaptive lasso and ridge regression, fitting the oracle property under weak reg-

ularity conditions and performing better than other oracle-like methods in solving

multicollinearity. The formula of the adaptive elastic net is [66]:

β̂aEnet =
(

1 + λ2

n

){
arg min

β
∥y − Xβ∥2

2 + λ2 ∥β∥2
2 + λ∗

1

p∑
j=1

ŵj |βj|

}
. (2.47)

Similarly, the adaptive weights in Eq. (2.47) have the same effect as that in Eq. (2.43).

2.4.6 The Pareto curve

The Pareto curve shows the optimal trade-off curve between the model residuals

(accuracy) and the penalty (complexity) on a log-log scale [67, 68]. Although cross-

validation (Section 2.2.3) is widely used in machine learning to find the optimal

parameter, Cortiella et al. [31] have shown that it finds a λ optimised for prediction,

potentially overfitting the true underlying equation with extra features when identi-

fying dynamical systems. Figure 2.3 shows two Pareto curves for the lasso and the

adaptive lasso, respectively. The use of the Pareto curve for determining the optimal

λ was initially introduced to solve ℓ2-norm problems [67], where the Pareto curve is

also referred to as the L-curve due to its characteristic “L” shape. On the Pareto

curve, the x-axis represents the norm of the model residual, ∥Xβ − y∥2, while the

y-axis accounts for the penalty, R(β). In the lasso, R(β) is defined as ∥β∥1, and for

the adaptive lasso, R(β) is given by ∥wTβ∥1.

The purpose of using the Pareto curve is to find the optimal balance between

accuracy and complexity. The optimal point should have high curvature where slight
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Figure 2.3: Pareto curve of the adaptive lasso and the lasso for a sampled dataset
of Navier-Stokes system with SNR = 26 dB (see Section 6.2.2). The Pareto curve
balances the trade-off between sparsity and goodness-of-fit. The red points on both
curves indicate the optimal value of the regularisation parameter λ that achieves the
best balance between these two competing objectives. Increasing λ leads to sparser
solutions at the cost of a poorer fit to the data, while decreasing λ improves the fit
but yields less sparse solutions.

improvements in one goal require significant sacrifices in another [69]. This optimal

point typically offers a good compromise solution, corresponding to the knee (corner)

of the L-curve [67, 68, 70]. It should be noticed that in the adaptive ℓ1 regularization

problems, the knee of the Pareto curve might not be distinctly visible, but it still

exists [31, 68], indicated by the red point in Fig. 2.3.

The Pareto curve for the ℓ1-norm is convex, continuously differentiable and non-

increasing with λ ∈ (λmin, λmax) [31, 71]. The λmax is
∥∥2XTy

∥∥
∞ for the lasso and is∥∥2X+Ty

∥∥
∞, where X+

j = Xj/wj, j = 1, 2, . . . , p, for the adaptive lasso. When the

λmin = 0, it is no longer a regularisation problem, yielding OLS estimates. Hence,

in glmnet package [61], λmin = max (10−7, λmax/105).

In the following analysis (see Chapter 6), λ is treated as a continuous variable [67]

that identifies the optimal point as possessing the maximum curvature on the curve.

Consequently, the algorithm proposed by [70] can be employed to find the optimal

λ. This numerical algorithm determines the λ associated with the maximal positive

curvature on the Pareto curve through the usage of the Menger curvature of a

circumcircle and the golden section search method, offering an efficient solution.
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2.5 Numerical Differentiation and Data Smooth

In most cases, the mathematical formulas of collected data are unknown. Rather

than using symbolic differentiation, numerical differentiation methods are needed

to approximate the derivative of collected data. Numerical differentiation includes

finite difference [72, p.3-11; 73, p.5-18], spectral derivative [73, p.43-65], polynomial

interpolation differentiation [73, p.79-108], and Tikhonov differentiation [74].

2.5.1 Noiseless data

In the calculation of derivatives for noiseless data, the finite differences are recom-

mended [4, 75]. Typically, it uses the central approximation to calculate derivatives

up to the third-order, Eq. (2.48a) to Eq. (2.48c). Based on this, the finite differences

can derive more higher-order derivatives [72, p.9].

d

dx
f(x) = f ′(x) ≈ f(x+ h) − f(x− h)

2h (2.48a)

d2

dx2f(x) = f ′′(x) ≈ f(x+ h) − 2f(x) + f(x− h)
h2 (2.48b)

d3

dx3f(x) = f ′′′(x) ≈ f(x+ 2h) − 2f(x+ h) + 2f(x− h) − f(x− 2h)
2h3 (2.48c)

2.5.2 Noisy data smoothing

Data collection invariably results in noisy data, attributed to measurement inac-

curacies that encompass both systematic and random errors. The process of numer-

ically differentiating such noisy data presents unexpected difficulties. For example,

using the finite differences to deal with noisy data tends to result in the noise dom-

inating the outcomes of numerical differentiation [75, 76]. This noise is an unexpec-

ted signal that always has sharp fluctuations. As dynamical systems are typically

governed by well-behaved equations and evolve regularly with time, their data are

assumed to change slowly. In signal processing, this kind of data is assumed to

operate primarily at low-frequency ranges, while additive noise has high frequencies

and spreads out over a much wider range than the noiseless data in the frequency

domain. To address the noisy data, smoothing methods (also called lowpass filters
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in signal processing) are necessary to remove these unexpected high frequencies [77,

p.164-175].

Typically, the noise in the data is measured by the signal-to-noise ratio (SNR),

defined as

SNR = 20 log10

(
σx

σz

)
, (2.49)

where σx is the standard deviation of the data, and σz is the standard deviation of

the artificial noise. When creating noisy data, the standard deviation of the additive

noise is

σz = σx · 10−SNR/20, (2.50)

where a smaller SNR represents a higher noise level. When SNR closes to the infinity,

σz tends to zero.

The usage of different smoothing methods depends on the data dimensions. Com-

monly, data is stored as a one-dimension vector, two-dimension matrix, or higher-

dimension tensor. Vector-based smoothing methods can filter data regardless of

the number of dimensions. For example, when smoothing a matrix, a vector-based

method can filter row by row or column by column. These methods include moving

average, Savitzky-Golay filter [78], and total variation regularisation (TVR) [79].

Matrix-based methods, such as singular value decomposition (SVD) and principal

component analysis reconstruction (PCAR), can only smooth matrix data, which is

not suitable for a vector and leaves an unfiltered dimension for a three-dimensional

tensor. Gaussian blur, or lowpass Gaussian filter, is a kernel-based convolution

method for smoothing the data contaminated by random noise. Note that the

Gaussian function produces the Gaussian kernel. In most cases, noise is assumed to

obey a normal distribution with mean zero, making the Gaussian blur an appropri-

ate way to remove Gaussian noise [77, p.161]. Unlike SVD and PCAR, which can

only be used in two-dimensional data, Gaussian blur is not limited by dimension

and only requires that the kernel has the same dimension as the data.

The default one-dimensional (1D) Gaussian kernel in OpenCV [80] can be gen-
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erated from a normal distribution probability density function,

f(x) = 1√
2πσ2

exp
(

− x2

2σ2

)
, (2.51)

with mean zero and the standard deviation σ = 0.3 ·((size−1) ·0.5−1)+0.8. Hence,

the simplest Gaussian kernel with size = 3 is

1
4

[
1 2 1

]
, (2.52)

where all elements in the kernel are probabilities. The two-dimensional (2D) simplest

Gaussian kernel with size 3 × 3 is

1
16


1

2

1

⊗
[
1 2 1

]
= 1

16


1 2 1

2 4 2

1 2 1

 , (2.53)

and the three-dimensional (3D) version is

1
64


1

2

1

⊗
[
1 2 1

]
⊗


1

2

1

 = 1
64




1 2 1

2 4 2

1 2 1




2 4 2

4 8 4

2 4 2




1 2 1

2 4 2

1 2 1


 . (2.54)

The coefficients 1
4 , 1

16 and 1
64 ensure kernels are probability densities, and the sum

of all elements in each kernel is equal to one.

Kernel-based methods are non-parametric methods that employ convolution

between raw data and the kernel to smooth data. Hence, when the kernel is de-

cided, the results are never changed. Figure 2.4 shows how convolution works in

two-dimension data. However, parametric methods tune parameters to get different

results. For example, the regularisation parameter in TVR controls the smoothness

of the filtered data.

The lowpass filter, box filter, and Gaussian blur are two widely used filters.

Gonzalez and Woods [77] compared both filters in Example 3.13, Chapter 3.4 of

their book Digital Image Processing. They conclude that a Gaussian blur with a
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Figure 2.4: Process of Gaussian blur for data with both one and two dimensions.
The observed data are in black numbers, while grey numbers are used to calculate
boundaries. The red rectangle is the simple Gaussian kernel with a size 3 in one-
dimensional data and 3 × 3 in two-dimensional data. The window in the original
data shifts with different colours.

Gaussian kernel can produce smoother results than a box filter with the same kernel

size. The box filter is visually acceptable, while the Gaussian kernel is more suitable

for data analysis.

When analysing the power spectrum of noisy data, the spectral properties typic-

ally show a broad, irregular pattern with numerous peaks and valleys, reflecting the

presence of random frequencies superimposed on the original signal. After applying

smoothing filters, the signal spectrum becomes more streamlined and focused, with

pronounced peaks corresponding to the fundamental frequencies of the signal becom-

ing clearer. Focusing on smoothing in the frequency domain, the Fourier spectral

smoothing method, Butterworth filter, and Chebyshev filters can be considered [81].

The Fourier spectral smoothing method applies the Fast Fourier Transform (FFT)

to shift data from the time domain to the frequency domain. Hence, noise can be

cut off at specific frequencies, and the data can then be returned to the time domain

through the inverse FFT. The Butterworth filter [81, p.504-512] has a monotonic

response with a maximally flat filter (i.e., has no ripples) in the passband and rolls

slowly towards zero in the stopband. Two hyperparameters are necessary for its

operation: the order of the filter and the cutoff frequency. Chebyshev filters [81,

p.512-525] are derived from the Chebyshev polynomials and have a steeper roll-off
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than Butterworth filters. In addition to the order number and cutoff frequency, the

ripple factor is also required in Chebyshev filters. Although filter hyperparameters

can be fixed in a system, they are different when the system changes. Given the sub-

stantial expertise required to properly adjust these three methods’ hyperparameters,

their utilisation is not pursued in the following analysis.

2.5.3 Noisy data differentiation

Numerical differentiation contains the finite difference, Savitzky-Golay filter, spec-

tral method, Tikhonov regularisation, smoothing spline, and total variation regu-

larisation. Among these, finite differences and spectral methods are commonly em-

ployed but exhibit heightened sensitivity to noise, which can disproportionately in-

fluence the calculation of numerical derivatives [75, 76]. Among the rest of the meth-

ods (i.e., total variation regularisation, Tikhonov regularisation [74], and smooth

spline) are categorised as global approaches, while the Savitzky-Golay filter and the

smoother kernel are local methods. If the data sizes are large and boundary errors

can be ignored, both local and global methods perform similar results [82]. How-

ever, global methods require more computational resources than local methods [76],

which hinders the application of global methods to big datasets. Furthermore, some

methods, such as Tikhonov differentiation [74], demonstrate accuracy for first-order

derivatives but are not suitable for higher-order derivatives. On the contrary, the

Savitzky-Golay filter has been distinguished as the most effective local method in

derivative evaluations [4, 82] and is not limited by derivative orders. Therefore,

the Savitzky-Golay filter is selected for the differentiation of noisy data in the later

analysis.

The Savitzky-Golay filter applies a least squares polynomial fit over a sliding

window of data points, thereby achieving simultaneous signal smoothing and dif-

ferentiation. It can accurately maintain the signal’s original contour while signi-

ficantly diminishing noise and approximate higher-order numerical derivatives with

symbolic differentiation [78, 83], and thus, widely used in many fields such as chem-

istry [84], signal processing [85, 86], and geophysics [87, 88]. In statistics, a similar

method, locally estimated scatterplot smoothing (LOESS), focuses on accurately

38



predicting [89, 90], while it cannot calculate derivatives. The Savitzky-Golay filter

is characterised by two integer hyperparameters: the polynomial order o and the

window length l. These parameters are constrained by the conditions that o must

be at least 2, l should be an odd number, and o + 1 + mod(o) ≤ l ≤ n − 1 [83].

Although many methods can find the optimal window length of the Savitzky-Golay

filter [84–86, 88, 91, 92], users still need to determine the polynomial order to im-

plement these methods.

Equation (2.55a) to (2.55e) illustrate the processes of the Savitzky-Golay filter

at the point i. Firstly, the Savitzky-Golay filter centres data to the local middle

with the interval ∆x on each sliding window, Eq. (2.55a). Next, it applies the

least square estimates to fit the data by using the o-degree polynomials, Eq. (2.55b)

and (2.55c). Note that the number of fitted data, the window size 2l + 1, must

be greater than degree o. Finally, the data derivatives are approximated by the

symbolic differentiation of the fitted polynomial model, Eq. (2.55e). For example,

a dataset with length n needs to calculate the ith first-order derivative. The o-

degree polynomial fitting needs the nearest l points to construct a window, i −

l, · · · , i, · · · , i + l, for which the size must be odd. The first-order derivative at the

ith point (the centre point of the fitted data) is calculated symbolically by the fitted

polynomial. This method gives a reliable and local smooth derivative for noisy data.

The following smoothing and derivatives can be operated by shifting the window

and taking the convolution with the same processes. However, points close to the

data boundaries (i.e., the first l and last l points) may be biased because there are

not enough data points at the boundaries.

zi = x− xi

∆x , x = {xi−l, . . . , xi, . . . , xi+l} (2.55a)

yi = Zia = a0 + a1zi + a2z
2
i + · · · + aoz

o
i (2.55b)

â =
(
ZT

i Zi

)−1 ZT
i yi (2.55c)

ŷi = â0 + â1zi + â2z
2
i + â3z

3
i + · · · + âoz

o
i = â0 at z = 0, x = x̄ (2.55d)

dky

dxk

∣∣∣∣
y=yi

= k!
∆xk

âk at z = 0, x = x̄; k ∈ N+, k ≤ d (2.55e)
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Figure 2.5: Process of applying the Savitzky-Golay filter to a signal. The orange
points are the observations, the dark blue rhombus are the filtered data, the cyan
rhombus are the boundary points, and the green dash lines represent the local
polynomial fits for each window.

In particular, Breugel et al. [75] proposed an optimisation method, inspired

by total variation regularisation, which finds the optimal pair of hyperparamet-

ers {o∗, l∗} in PyNumDiff packages. Unlike other smoothing methods, the method

in [75] focuses on calculating the first-order derivative ˆ̇x, whereas the smoothed data

is calculated by trapezoidal integration of ˆ̇x. To calculate the second-order derivat-

ive, users need to put the first-order derivative in the same algorithm, which causes

a large bias for higher-order derivatives. Additionally, there is a regularisation para-

meter γ in their method. Although an empirical equation, Eq. (2.56), is found that

γ is related to the signal frequency (freq) and the time interval (dt), this equation

is based only on the data used in the paper and will differ from other data.

log(γ) = −1.6 log(freq) − 0.71 log(dt) − 5.1. (2.56)

Despite PyNumDiff, Python packages scipy and derivative contain the Savitzky-

Golay filter. However, both derivative and PyNumDiff packages can only compute
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the first-order derivative. In R, such as sgolayfilt in signal package and savgol

in pracma package, implement the Savitzky-Golay filter too.

2.5.4 Automatic derivative method in PyNumDiff

The automatic smoothing and derivative method shown in [75] focuses on calculating

the first-order derivative of 1D data. The first-order derivative ˆ̇y is estimated by

ˆ̇y = ˙SG(ỹ, o, l). (2.57)

where ˙SG(·, o, l) represents the first-order derivative calculated from the Savitzky-

Golay filter with polynomial order o and window length l. The optimal hyperpara-

meters set Φ∗ = {o∗, l∗} are found by

arg max
Φ

{
RMSE(ŷ(Φ), ỹ) + γ

1
n

n∑
i=2

|ˆ̇yi−1 − ˆ̇yi|

}
, (2.58)

where γ is the regularisation parameter determined by the empirical equation Eq.

(2.56) [75], and ŷ is calculated by the trapezoidal integration of ˆ̇y:

ŷ = trapz(ˆ̇y) + 1
n

n∑
i=1

(ŷ − ỹ) . (2.59)

Although Breugel et al. [75] only demonstrates this automatic method for one-

dimensional data, it can be expanded to two-dimensional data. With the same pro-

cesses in two-dimensional data, the optimal hyperparameters Φ̂∗ for two-dimensional

data is obtained by

arg max
Φ

{
RMSE(û(Φ), ũ) + γmax

j

1
n

n∑
i=2

|ûx(i− 1, j) − ûx(i, j)|
}
, (2.60)
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where û is the smoothed data calculated by

û = trapz




ûx(·, 1)

ûx(·, 2)
...

ûx(·,m)



+ 1
nm

n∑
i=1

m∑
j=1

(û(i, j) − ũ(i, j)) , (2.61)

and

ûx = ˙SG




ũ(·, 1)

ũ(·, 2)
...

ũ(·,m)

 , o, l
 . (2.62)

Therefore, after estimating the optimal {o∗, l∗}, Eq. (2.62) can calculate the optimal

first-order derivative, and Eq. (2.61) can get the optimal smoothed data.

2.6 Summary

The following points summarise the important methods used in this thesis.

• Linear regression is a statistical method used for modelling the relation-

ship between a response variable y ∈ Rn and one or more predictors

X ∈ Rn×p. The main goal is to find coefficients β of the linear equation

that best predicts the response variable based on the predictors. The

estimated formula can be written as

ŷ = Xβ̂,

• Shrinkage regression refers to a group of regression methods that modify

OLS to improve model prediction and interpretation, particularly when

dealing with datasets with many predictors or multicollinearity. The

key point is employing the regularisation function with ℓq-norm (q > 0)
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to penalise the coefficients:

β̃ = arg min
β


n∑

i=1

(
yi − β0 −

p∑
j=1

xijβj

)2

+ λ

p∑
j=1

|βj|q
 .

This penalisation reduces overfitted predictors (q = 1, the lasso) and

handles high-dimensional data (q = 2, ridge).

• The Pareto curve is used for selecting the optimal regularisation para-

meter λ in the shrinkage regression. The curve visualises the trade-off

between the complexity of the model (regularisation part) and the fit of

the model (ℓ2-norm of model residuals) on the log-log scale.

• The Savitzky-Golay filter is a generalised moving average method that

smooths noisy signals and computes derivatives. This technique starts

by using coefficients obtained from a local polynomial regression, which

smooths the data while preserving the natural trend and shape of the

signal. This method has two parameters: window length and polynomial

order. The window length is an odd number to ensure symmetry around

a central point, and the polynomial order must be less than the window

length.
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CHAPTER 3

Dynamical System Identification Framework

Data-driven methods play an important role in helping scientists discover governing

equations from data, leading to a deeper understanding of natural mechanisms. For

an unknown dynamic, the governing equation(s) may contain linear and nonlinear

terms, and their closed forms need to be found. In recent years, scientists have pro-

gressively leveraged statistical and machine-learning methods to uncover governing

equations of dynamical systems, especially ordinary and partial differential equations

(ODEs and PDEs), from observational data [3, 4, 15–17]. This chapter summar-

ises historical works for identifying dynamical systems in Section 3.1; illustrates the

application of a regression-based identification framework, Sparse Identification of

Nonlinear Dynamics (SINDy), to ODEs [3] and PDEs [4], in Sections 3.2 and 3.3,

respectively; and figures out the drawbacks of the SINDy framework in Section 3.4.

3.1 Previous Works

The data-driven discovery approach traces back to the 1980s when researchers tried

to estimate parameters and reconstruct the deterministic portion of dynamical sys-

tems [93, 94]. Later, scientists used statistical methods, such as least squares [95–
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97], mixed-effects models [98, 99], and Bayesian approaches [16, 100], to estimate

parameters in ODEs and PDEs from observational data. However, these works all

assume that the underlying dynamics are known and focus on estimating coeffi-

cients of linear and nonlinear terms. Additionally, with the widespread use of high-

performance computers, which improves computing ability, symbolic regression has

enabled the physical and engineering communities to discover governing equations

from data [2, 15, 24, 101].

SINDy framework [3, 4] represents a notable development in this arena. Using

regression-based methods to identify differential equations from datasets typically

involves a combined framework of differentiation (Section 2.5) and sparse regres-

sion (Section 2.3 and 2.4). The original SINDy [3] employs sequential threshold

least squares regression (STLSQ) to select active terms within a nonlinear, high-

dimensional candidate library and to estimate their coefficients. In recent years,

the focus has shifted towards SINDy, with research directed at developing new al-

gorithms for identifying the first-order ODEs derived from high-dimensional mod-

els. These enhancements span improvements in noise robustness and fast compu-

tation [4, 102–106], denoising [107–111], allowing coordinate transformations from

complex forms [112–114, 114], solving implicit forms [115, 116], and varying time

scales [117, 118]. The breadth of application for these methodologies extends across

multiple fields including fluid mechanics [119, 120], civil engineering [119], biological

and chemical systems [115, 121–124], epidemiology [19], stochastic processing [125–

127], hybrid and cyber-physical systems [128–131], and social science [132].

PDE functional identification of nonlinear dynamics (PDE-FIND) [4] is SINDy’s

PDE version, i.e., identify PDEs from data by solving an ℓ0-norm problem using se-

quential threshold ridge regression (STRidge). The candidate library in PDE-FIND

is built by incorporating spatial partial derivative terms. Identifying dynamics gov-

erned by PDEs is more challenging than ODEs, so fewer articles cite PDE-FIND

than SINDy (see Fig. 3.1). Inspired by PDE-FIND, researchers have investigated

and improved approaches to identifying PDEs. For example, the sparse regres-

sion algorithm was replaced by group lasso [103], reweighted ℓ1-regularised least

squares [31], and Bayesian regression methods [106, 133]. Other improvements in-
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clude reducing the PDE to a set of coupled ODEs [114] and converting the PDE

to its weak form [134, 135]. Particularly, weak SINDy [109, 136] demonstrates

higher noise tolerance than PDE-FIND in identifying PDEs. However, it has more

computational steps and introduces more hyperparameters than PDE-FIND, re-

quiring more expertise (e.g., manual tuning of the hyperparameters) to operate the

algorithm.

0

100

200

300

400

500

2016 2017 2018 2019 2020 2021 2022 2023 2024
Year

C
ou

nt
 o

f C
iti

ng
 A

rt
ic

le
s

SINDy PDE−FIND

Citations for SINDy and PDE−FIND

Figure 3.1: The number of articles citing SINDy and PDE-FIND. 715 articles have
cited SINDy, and 302 articles cited PDE-FIND. Data was from the Web of Science,
accessed on 29-04-2024.

In these SINDy-based methods, there are two groups of hyperparameters: one

calculates numerical derivatives, and the other controls the results of sparse re-

gression. As shown in Section 2.5, noise dominates numerical differentiation from

the finite differences when the data contains any noise, leading to largely biased

derivatives, especially in calculating higher-order derivatives [75, 76]. In this way,

when the measurement data has no noise, the finite difference provides accurate
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derivatives to construct the candidate library, and when there is noise, smoothing

filters, e.g., smoothed finite difference and Savitzky-Golay, can smooth the noisy

data and calculate accurate derivatives [4, 103]. After smoothing data, sparse re-

gression methods [4, 31, 103, 106, 133] should be used to find the correct terms and

compute the accurate coefficients.

However, expert knowledge is required to manually determine these hyperpara-

meters. When calculating derivatives to construct the candidate library, numerical

differentiation methods (except finite difference and the spectral method) require

parameters. Savitzky-Golay filter, a local polynomial interpolation method, needs

the polynomial order and the window length [78]. The sparse regression can only

identify the correct governing equations (i.e., no missing or extra terms but slightly

different coefficients from the true equation) when the derivatives are calculated with

the appropriate parameters. Although a nonconvex optimisation problem in [75] was

proposed to find the parameters for numerical differentiation methods, it was inac-

curate for higher-order derivatives.

In sparse regression, the STLSQ [3] and threshold sparse Bayesian regression [133]

must manually set hard threshold values to trim terms with coefficients close to zero.

Although PDE-FIND changes STLSQ to STRidge and updates the hard threshold

with their own iterating rule, users still need to decide the initial threshold value

and the regularisation parameter in ridge regression [4]. Even for the group lasso,

users should classify candidate terms into several groups to implement the sparse

regression [103]. Reweighted ℓ1-regularised least squares [31] is a modified version of

the multi-step adaptive lasso [137] to develop a sparser model that more accurately

identifies the true equations for ODEs. This is achieved by iteratively adjusting

the adaptive weights using previous estimates from the adaptive lasso. A signific-

ant advancement made by Cortiella et al. [31] is their method’s ability to maintain

finite weights in the adaptive lasso equation by ensuring that the estimated coeffi-

cients shrink to a small, nonzero value rather than dropping to zero. However, this

approximation unintentionally introduces numerical inaccuracies as a trade-off for

preventing overflow during the equation identification process. Automatic regression

for governing equations (ARGOS) [1] is proposed based on the SINDy framework
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but without manually setting parameters. It also assumes the underlying system

is unknown, automates the fine-tuning of parameters for numerical differentiation,

and leverages sparse regression with bootstrap confidence intervals to select active

terms from the candidate library. However, 2000-times bootstrap resampling makes

this algorithm computationally expensive.

Recent developments have combined neural network-based techniques and SINDy

framework, leading to innovative approaches that enhance noise tolerance in identi-

fying dynamical systems [17, 27, 28, 108, 138–142]. Neural networks can learn com-

plex nonlinear relationships and effectively filter out noise, complementing SINDy’s

ability to identify parsimonious models. For example, methods shown in [143, 144]

smooth data by solving ODEs, while physics-informed neural networks (PINNs) [17,

129, 145–147] focus on solving PDEs. Based on these neural network smoothing

methods, Chen et al. [27] employed PINNs with sparse regression (PINN-SR) to de-

noise corrupted data, following an automatic differentiation to build the candidate

library and identify active terms through STRidge. Zhang and Liu [108] applied

the neural networks to denoise data; after building the candidate library through

automatic differentiation [148, 149], they identified active terms in the frequency

domain with a fast Fourier transform.

However, both neural network and SINDy methods require specific hyperpara-

meter tuning, such as setting regularisation parameters or choosing network archi-

tectures. For example, STRidge requires setting a threshold to select active terms

from the candidate library [4, 27, 28, 150]. Additionally, SINDy-based methods typ-

ically approximate numerical derivatives from noisy data using the Savitzky-Golay

filter [3, 4]. The parameters of this filter, i.e., the polynomial degree and window

size, must be carefully tuned for the optimal performance [1, 4]. Neural network ap-

proaches require detailed decisions regarding their architecture and functioning, such

as the number of neurons, the structure of hidden layers, the types of activation and

loss functions, and the learning rate. In particular, using PINNs [17, 27, 28] requires

more prior understanding of the equation terms, as well as initial and boundary con-

ditions. Furthermore, neural network methods have other limitations, such as lack

of theoretical background [151], high computational cost [152], and poor software
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support for solving high-order derivatives [140].

Consequently, using neural networks and SINDy-based methods presents a trade-

off: the absence of fully automated algorithms requires users to engage in manual

tuning and iterative usage of semi-automated algorithms. This scenario highlights

a key challenge in the field: developing an automated algorithm to identify PDEs

with minimal manual intervention, streamlining the process, and enhancing its ap-

plicability across diverse scientific domains.

3.2 SINDy

SINDy systematically describes processes using regression methods to identify a

nonlinear dynamic system [3]. It has three steps: calculating derivatives, construct-

ing the candidate library, and implementing sparse regression. SINDy successfully

identifies the chaotic Lorenz system [3], the mean-field model for the cylinder dy-

namics, the logistic map, and the Hopf normal form. Section 2.5 has reviewed the

smoothing and numerical derivative methods. Hence, The following parts focus on

constructing the candidate library and implementing sparse regression.

3.2.1 Constructing candidate library

A dynamical system can be described by a set of ODEs following the form

d

dt
xk(t) = ẋk(t) = fk(x(t)), k = 1, . . . ,m, (3.1)

where m is the dimension of the state space, and fk(x(t)) includes all projections of

xk(t). To identify which projections are active, fk(x(t)) are approximated to be p

possible projections:

fk(x(t)) ≈
p∑

j=1

(θF(x))k,jβk,j = θT
F (x)βk, k = 1, . . . ,m, (3.2)

where βk is the coefficient vector, and θF(x) is the projection function vector. Each

element of the projection function can be a basic function, including constant, poly-
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nomial, monomial, interaction, and trigonometric terms [3; 153, pg.247]:

θT
F (x) =

(
1 x x2 · · · sin (x) cos (x) · · ·

)
. (3.3)

To implement system identification, the state vector of a given dynamical system

x(t) is expanded from measurements taken at times t1, t2, ..., tn to create a matrix

X ∈ Rn×m:

X =


xT (t1)

xT (t2)
...

xT (tn)

 =


x1(t1) x2(t1) · · · xm(t1)

x1(t2) x2(t2) · · · xm(t2)
... ... . . . ...

x1(tn) x2(tn) · · · xm(tn)

 , (3.4)

and the projection function θF(x) becomes the candidate library

Θ(X) =

1 X X[2] · · · X[d] sin (X) cos (X) · · ·

 , (3.5)

where X[d] denotes a matrix whose column vectors are all possible time-series of

[d]th degree polynomial in x(t). According to Eq. (3.1), the time derivative to X,
d
dt

X = Ẋ, is taken to obtain the response variable:

Ẋ =


ẋT (t1)

ẋT (t2)
...

ẋT (tn)

 =


ẋ1(t1) ẋ2(t1) · · · ẋm(t1)

ẋ1(t2) ẋ2(t2) · · · ẋm(t2)
... ... . . . ...

ẋ1(tn) ẋ2(tn) · · · ẋm(tn)

 . (3.6)

In practice, X is the only dataset that can be accessed. To get the Ẋ, one

must employ a differentiation method, such as finite differences [3], Savitzky-Golay

filter [4], or total variation regularisation [153, p.247]. Alternatively, if the function

x(t) is known, the exact value of Ẋ can be calculated from X.

After constructing the candidate library, the regression model can be derived:

Ẋ = Θ(X)B + E, (3.7)
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where E ∈ Rn×m is a matrix of residuals, B is a p × m matrix containing all

coefficients of the p applied functions and the m state-space dimensions [3; 153,

pg.248]. Thus,

B =
(
β1 β1 · · · βm

)
=


β1,1 β1,2 · · · β1,m

β2,1 β2,2 · · · β2,m

... ... . . . ...

βp,1 βp,2 · · · βp,m

 . (3.8)

Statistically, due to the m columns in Ẋ and B, Eq. (3.7) contains m regression

models, and the random noise is irreducible in the regression model. Therefore,

by splitting matrix B and Ẋ into vectors and adding random noise, Eq. (3.9) can

be obtained. In each equation, ẋk(t) is a n × 1 vector, and βk is a 1 × p vector,

k = 1, 2, · · · ,m. 

ẋ1(t) = Θ(X)β1 + ϵ1, ϵ1 ∼ N (0, σ2
1)

ẋ2(t) = Θ(X)β2 + ϵ2, ϵ2 ∼ N (0, σ2
2)

...

ẋm(t) = Θ(X)βm + ϵm, ϵm ∼ N (0, σ2
m)

(3.9)

3.2.2 Active terms identification

Instead of using subset selection or lasso, Brunton et al. [3] applied Sequential

Threshold Least Squares (STLSQ) to find the active terms. STLSQ starts with

the full model and attributes estimated coefficients smaller than a user-determined

threshold to zero, equivalent to giving a submodel without the corresponding pre-

dictors. Then, it repeats the cutoff process with the last submodel until the iteration

stops at the maximum iteration. STLSQ only needs a threshold given by the user

and can rapidly converge to a sparse solution within a few iterations, making it

computationally efficient [154].
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3.3 PDE-FIND

PDE functional identification of nonlinear dynamics (PDE-FIND) follows the SINDy

framework but can identify PDEs by calculating partial derivatives (against t and

x) and adding possible terms to construct a candidate library [4]. A summarised

process of PDE-FIND is shown in Fig. 3.2.

Vectorise operation: Un×m → vec(U) = unm×1 ,
Ut → vec(Ut) = ut, Ux → vec(Ux) = ux, · · ·

Partial derivatives: Ut,Ux,Uxx, · · ·

PDE solution Un×m

Polynomials: u,u2,u3, · · ·
Interactions: uux,u2uxx, · · ·

Candidate library
Θ(1,ux,uxx, · · · ,u,u2,u3, · · · ,uux,u2uxx, · · · )

Regression model ut = Θβ + ϵ

Sparse regression algorithms (STRidge)

Sparse model e.g., ut = −uux + 0.1uxx

ux,uxx, · · ·

ut

Figure 3.2: Diagram of identifying PDE systems for PDE-FIND. The illustrated
process is more detailed than that in the original PDE-FIND paper, where the vec-
torisation is skipped. The vectorisation step is important for readers to understand
how to apply regression techniques to a high-dimensional tensor.

For one-dimensional spatial PDEs, such as the Burgers equation, the finite dif-

ference can be used to calculate the derivatives of noiseless data, and the Savitzky-
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Golay filter can be used for noisy data. For higher-dimensional PDEs, such as

Navier-Stokes and reaction-diffusion, the derivative method is Savitzky-Golay with

the sampled data [4]. The sparse regression in PDE-FIND is the ℓ0 regression, which

is an np-hard problem. Hence, Sequential Threshold Ridge Regression (STRidge) is

proposed to estimate potential sparse models and select the one with the lowest ℓ0

object.

3.3.1 Candidate library construction

The general form of a homogeneous PDE is

ut + F (x, t, u, ux, uxx, · · · ) = 0 (3.10)

where F (·) governs the behaviour of the system, with u = u(t, x) denoting its state.

The notation ut, ux, uxx, · · · represents the partial derivatives of u with respect to

time and space, respectively. Equation (3.10) serves as a foundational representation

of the dynamical system, encapsulating a wide range of phenomena through its

generalised form, which can be adapted to include multiple spatial dimensions or to

model systems without explicit time dependence.

To focus on data-driven modelling of spatiotemporal dynamical systems, empir-

ical data is directly incorporated into the modelling process:

Ut = ∂U
∂t

= F (x,U,Ux,Uxx, . . . ) , (3.11)

where U ∈ Rn×m is a matrix representing the solution of the PDE as a function of

t and x, and F(·) denotes the unknown mapping inferred from the collected data,

which contains linear and nonlinear operators.

To estimate the unknown mapping F(·) with sparse regression, PDE-FIND [4]

constructs a comprehensive library of potential terms and assuming that only a few

of them are active, i.e., the estimated coefficients should be non-zero [1, 3, 4]. To

cover a broad spectrum of possible influences on the dynamics of the system, this

library includes a wide variety of functions, such as constants, monomials, interaction
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terms (products of variables), possibly trigonometric, and other functions, depending

on the dynamical system being studied [4]. In the case of Burgers equation, ut =

−uux +0.1uxx, the true dynamics involves only two terms: the nonlinear convection

term uux and the linear diffusion term uxx. When applying sparse regression to data

generated from the Burgers equation, the method should ideally select only these

two terms from the candidate library.

All features related to U(t, x) in Eq. (3.11) are matrices. Implementing this

matrix data in sparse regression leads to the creation of n distinct regression models.

Each model captures the spatial dynamics of the system at a specific time point tj,

where j = 1, 2, . . . , n. To consolidate the n regression models into a single linear

regression problem, the matrix U(t, x) and its derivative matrices are reshaped into

vectors. These vectors then serve as predictors within the candidate library Θ, which

can be represented in R(n·m)×p or C(n·m)×p. By stacking the vectorised data and

candidate terms, a single sparse coefficient vector β can be estimated to represent

the governing equation across all time points rather than estimating separate models

for each time point. Here, U ∈ Rn×m is represented in matrix form as

U(t, x) =


u(t1, x1) u(t1, x2) · · · u(t1, xm)

u(t2, x1) u(t2, x2) · · · u(t2, xm)
... ... . . . ...

u(tn, x1) u(tn, x2) · · · u(tn, xm)

 . (3.12)

Vectorising Eq. (3.12) yields:

u = vec(U)

=
(
u(t1, x1) · · · u(tn, x1) · · · u(t1, xm) · · · u(tn, xm)

)T

.
(3.13)

Similarly, ut = vec(Ut) = vec(∂U/∂t), ux = vec(Ux) = vec(∂U/∂x), uxx =

vec(Uxx) = vec(∂2U/∂x2), u2 = vec(U ⊙ U), and uux = vec(U ⊙ Ux), where
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⊙ denotes the Hadamard product. The design matrix is given by

Θ(u) =

 1 u · · · ud · · · ux uxx · · · uux · · · uduxx · · ·

 , (3.14)

where ud is a vector where all elements denote a d-th degree monomial. The inter-

action terms, such as udux, represent the element-wise product of the two vectors.

If Θ has a sufficient column space including all needed dynamics, Eq. (3.15) is a

well-represented model. For example, if the data U(t, x) is on a 200 × 100 grid

(i.e. 200 spatial measurements and 100 time-steps) and the candidate library has

30 terms, then Θ ∈ R20000×30.

After vectorisation, F(·) is estimated by transforming Eq. (3.11) to a linear

regression model

ut = Θ(u)β + ϵ, (3.15)

where β ∈ Rp is a sparse coefficient vector in which only a few values are nonzero,

and ϵ is the vector of residuals. Some dynamical systems, such as reaction-diffusion,

contain two or more equations. When identifying such a system, the following

equations are needed:

ut = Θ(u, v)βu + ϵu, ϵu ∼ N (0, σ2
u),

vt = Θ(u, v)βv + ϵv, ϵv ∼ N (0, σ2
v).

Both equations share the same candidate library Θ(u, v), but the sparse estimates β̂u

and β̂v are different. Computationally, after calculating ut, vt, and Θ(u, v), a sparse

regression method is implemented one-by-one to identify the governing equations.

3.3.2 Active terms identification

Rudy et al. [4] improved STLS to STRidge because the OLS estimation is unre-

liable when the candidate library has a high correlation, while ridge regression is

an alternative to solve multicollinearity (see Section 2.4.1). Additionally, as the

lasso fails in multicollinearity for sparsity, Rudy et al. [4] used the ℓ0 regularised
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regression’s object function as the criterion, which is equivalent to finding several

candidate models via STRidge and use Eq. (3.16) to select the best one. Instead of

using a fixed tuning parameter in STLSQ, STRidge applies a changeable threshold

to adjust penalisation when the algorithm gets a new estimation. The STRidge

optimises the following problem1:

error = ∥y − Θβ̂STR∥2 + η∥β̂STR∥0, (3.16)

where β̂STR is the coefficients estimated by STRidge. By considering highly-correlated

and ill-conditioned data, Rudy et al. [4] set an empirical tuning parameter, η =

10−3κ(Θ) where κ(Θ) is the condition number of the design matrix Θ. After the

algorithm converges, they apply the OLS to the found terms and obtain unbiased

estimations.

3.4 Limitations of SINDy framework

Based on the previous review, the SINDy framework (the original SINDy [3] and

PDE-FIND [4]) depends on users to determine the algorithm parameters. However,

if users lack prior information about the dynamical system, the parameters are dif-

ficult to determine, leading to a doubted model. Hence, an automatic framework is

required to automate setting parameters and identify the governing equations. The

limitations of the SINDy framework are grouped into two parts: constructing the

candidate library and finding active terms for PDEs. These are summarised from pa-

pers, supporting documents, and Python codes, available on https://github.com/

dynamicslab/pysindy and https://github.com/snagcliffs/PDE-FIND [3, 4].

3.4.1 Limitations on constructing candidate library

Two limitations are found in constructing the candidate library. First, in most cases,

users do not know whether the collected data is noisy or noiseless. SINDy lacks a

1There is a typo on the paper [4]. I have contacted the authors and confirmed that Eq. (3.16)
is correct.
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rule to determine whether the data is noisy, which involves using finite differences

or the Savitzky-Golay filter.
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Figure 3.3: Identifying the Burgers equation using PDE-FIND with different noise
levels and sliding window sizes on the x (ox) and t (ot) axis. Black cells mean PDE-
FIND can identify the correct PDEs, while white cells are those that fail. Here, a
correct PDE means that the identified PDE has no missing or extra terms. The
graph with the red title represents the noise level and sliding window sizes used in
PDE-FIND, and the red rectangle at each graph is PDE-FIND’s sliding window size.

Second, when constructing the candidate library for noisy data, users need prior

knowledge to decide the polynomial order and the sliding window sizes for the

Savitzky-Golay filter. The algorithm cannot identify the correct equation if the

polynomial order and sliding window sizes are inappropriate. Constructing the lib-

rary in PDE-FIND for noisy data in the spatiotemporal grid, u(t, x), is investigated

by varying noise levels and sliding window sizes along the t and x axes. In Rudy

et al. [4]’s investigation, the additive noise level is limited at 1% of the data’s stand-
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ard deviation, i.e., 0.01 · sd(u). Figure 3.3 shows the exploration using PDE-FIND

codes. The polynomial orders and sliding window sizes used in [4] are denoted by

red titles and rectangles. Black cells indicate cases where the correct PDEs (i.e.,

no missing or extra terms but slightly different coefficients from the true equation)

were identified, while white cells represent failures in identification. Tuning any of

these parameters may fail to identify the correct PDEs, indicating that researchers

need to enumerate all parameter combinations and spend a long time finding the

best one. This hinders applying the SINDy framework to identify differential equa-

tions from different datasets. Rudy et al. [4] employed settings specific to particular

cases, suggesting a need for improvement in automatically setting Savitzky-Golay

parameters.

3.4.2 Limitations on identifying active terms

Three limitations are found in identifying active terms.

1. When using STRidge in PDE-FIND, users should manually tune the penal-

ise parameter (λ) for ridge regression and the initial threshold (dtol) for the

sequential threshold process. If both tuning values are inappropriate, the al-

gorithm cannot find the correct PDEs. Both parameters can be automatically

determined by, for example, cross-validation and BIC.

2. After active terms are found, the statistical inference with OLS for the es-

timated model is not stable if the variables are collinear. Rudy et al. [4] do

not consider the multicollinearity after the active terms are found in STRidge.

Within the Python codes of STRidge, they employ the OLS estimate after

the sequential threshold iteration, which can be seen in the 612th row on

PDE_FIND.py.

3. STRidge finds redundant terms when identifying PDEs referred to the com-

plex number, such as quantum harmonic oscillator and nonlinear Schrodinger

equation. The coefficients in both equations only have the imaginary part,

while the results from STRidge contained the real part.

The Automatic regression for governing equations (ARGOS) [1] framework aims
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to automatically identify ODEs from a dynamical system by integrating machine

learning with statistical inference, but it cannot identify PDEs. The next two

chapters will address these limitations from signal processing and statistical learning

perspectives and extend the ARGOS framework to identify PDEs. The improve-

ment of smoothing data and calculating derivatives is in Section 5, and a new sparse

regression method, the recurrent adaptive lasso, will be illustrated in Section 6.

3.5 Summary

This chapter has reviewed the SINDy framework in identifying dynam-

ical systems described by ODEs d
dt
x(t) = ẋ(t) = f(x(t)) and PDEs ut +

F (x, t, u, ux, uxx, · · · ) = 0.

• The aim of the system identification methods is to find these differential

equations from data.

• SINDy provides an innovative framework that allows sparse regression

methods to identify dynamical systems.

• However, this framework can be improved based on the following parts:

– the derivatives should be calculated automatically;

– the sparse regression solving algorithms STLSQ and STRidge are

replaced with other methods that can determine the regularisation

parameters without manual tuning.
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CHAPTER 4

Analysis of Other SINDy-based Methods

After the original SINDy algorithm was presented in 2016 [3], researchers aim to

improve the algorithms for discovering governing equations under various circum-

stances, such as handling noisy and incomplete datasets, estimating noise, and meas-

uring uncertainty in the final prediction model. Hence, different SINDy versions have

been developed to address these problems [155–158]. This chapter will analyse the

other three SINDy methods: Ensemble SINDy (ESINDy) [155], Uncertainty

Quantification SINDy (UQ SINDy) [156], and Modified SINDy [157]. The

analysis is a part of the work in the published paper Automatically discovering ordin-

ary differential equations from data with sparse regression [1] on Communications

Physics. The success rate is a key measurement in the following analysis. Here,

“success” means the identified equations of the algorithm have no missing or extra

terms. After selecting the correct terms, ordinary least squares estimates coefficients

that are slightly different from the ones in the true equation.
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4.1 ESINDy

ESINDy employs ensemble learning techniques, specifically bagging and bragging,

to the SINDy framework [155]. While bagging [159] averages model coefficients from

multiple bootstrap samples (see Section 2.2.4), bragging [160] uses the median for

aggregation, thereby being more robust to outliers. These methods aim to increase

the robustness and accuracy of SINDy, particularly for noisy data.

Bagging creates an ensemble of models robust to noise by reducing the variance

of the base learning algorithm without increasing bias. This happens because the

base learning algorithms are fit to various bootstrap samples and thus de-correlated,

reducing variance when averaged. While this is highly effective for improving pre-

dictions, especially in algorithms like decision trees that often have high variance,

its utility in sparse regression for inference is limited. Sparse regression techniques

like the lasso are generally characterised by low flexibility but high interpretabil-

ity, contrasting with bagging’s high flexibility and lower interpretability [33, p.340].

This distinction is also highlighted in Fig. 4.1 (taken from Fig. 2.7 of [33, p.25]),

which shows that the lasso and bagging are fundamentally different techniques [33].

One of ESINDy’s most significant contributions is the introduction of the “in-

clusion probability”, a user-defined threshold that quantifies the frequency at which

a candidate term appears in an ensemble of q SINDy models. These models are

generated from different bootstrap samples and can feature different subsets of can-

didate terms. For instance, a term appearing in 80 out of 100 models would have

an inclusion probability of 0.8. This probability serves multiple purposes: it can

be used for automatic term thresholding, uncertainty quantification, and improving

model interpretability. Low probabilities are indicators of term irrelevance, whereas

high probabilities suggest that a term is robust and critical for model accuracy.

It is worth noting that the inclusion probability is influenced by the number

of bootstrap samples, introducing additional hyperparameters into the SINDy al-

gorithm. ESINDy recommends a default of 100 bootstrap samples, which may not

be optimal for smaller datasets like those used in [1].

61



2.1 What Is Statistical Learning? 25
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FIGURE 2.7. A representation of the tradeoff between flexibility and inter-
pretability, using different statistical learning methods. In general, as the flexibil-
ity of a method increases, its interpretability decreases.

are considerably more flexible because they can generate a much wider
range of possible shapes to estimate f .

One might reasonably ask the following question: why would we ever
choose to use a more restrictive method instead of a very flexible approach?
There are several reasons that we might prefer a more restrictive model.
If we are mainly interested in inference, then restrictive models are much
more interpretable. For instance, when inference is the goal, the linear
model may be a good choice since it will be quite easy to understand
the relationship between Y and X1, X2, . . . , Xp. In contrast, very flexible
approaches, such as the splines discussed in Chapter 7 and displayed in
Figures 2.5 and 2.6, and the boosting methods discussed in Chapter 8, can
lead to such complicated estimates of f that it is difficult to understand
how any individual predictor is associated with the response.

Figure 2.7 provides an illustration of the trade-off between flexibility and
interpretability for some of the methods that we cover in this book. Least
squares linear regression, discussed in Chapter 3, is relatively inflexible but
is quite interpretable. The lasso, discussed in Chapter 6, relies upon the

lasso
linear model (2.4) but uses an alternative fitting procedure for estimating
the coefficients β0, β1, . . . ,βp. The new procedure is more restrictive in es-
timating the coefficients, and sets a number of them to exactly zero. Hence
in this sense the lasso is a less flexible approach than linear regression.
It is also more interpretable than linear regression, because in the final
model the response variable will only be related to a small subset of the
predictors—namely, those with nonzero coefficient estimates. Generalized
additive models (GAMs), discussed in Chapter 7, instead extend the lin-

generalized

additive

model

ear model (2.4) to allow for certain non-linear relationships. Consequently,

Figure 4.1: A representation of the trade-off between flexibility and interoperability,
different statistical learning methods. In general, as the flexibility of a method
increases, its interpretability decreases (taken from Fig. 2.7 of [33, p.25]).

4.1.1 Hyperparameter tuning with ESINDy

One noteworthy challenge ESINDy introduced is the complexity of tuning hyper-

parameters, which are all human-determined. The original SINDy approach [3]

requires tuning a single threshold. However, the standard ESINDy involves four

hyperparameters, while library ESINDy requires five, which include:

• λSINDy (a SINDy threshold),

• Polynomial order oSG and window length lSG for the Savitzky-Golay filter,

• tol (the bagging tolerance, which is a threshold set manually, tol = 0.6 in

ESINDy with b(r)agging and at tol = 0.4 in library ESINDy),

• l (the number of library columns sampled in library ESINDy set at l = 0.6D,

where D is the number of candidate library functions).

These additional parameters can increase the chance of retaining irrelevant predict-

ors and compromise the sparse model representation.
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4.1.2 Results of ESINDy tests

To investigate the influence of hyperparameters on model performance, the bench-

mark tests as outlined in [1] are replicated, i.e., changing the initial conditions to the

Lorenz system in both sample size and SNR tests, and randomly sampling noise in

SNR test. Here, the time step ∆t of the simulated data is fixed at 0.001. As the data

is simulated with noise, ∆t will influence the smoothed results. A smaller ∆t will

provide a higher resolution of the simulated data, providing more system details.

After applying the Savitzky-Golay filter, the system’s trajectory can be restored.

However, with ∆t increasing, e.g., ∆t > 1, the simulated data will be scarce, i.e.,

details of the dynamics will be lost during the simulation. Due to this, the dynamics

of the smoothed data will be lost because the Savitzky-Golay filter uses neighbour

points to estimate the central point.

The findings indicate that bagging with ESINDy enhances identification per-

formance as the time series n length increases, Fig. 4.2(a). Conversely, it is also

noted that the performance of other ESINDy variants decreases with an increase

in n. This observation implies that hyperparameter tuning should consider the

variable n, which is impractical with real-world data due to the unpredictability of

n’s impact on the identification algorithm. Furthermore, when n < 1000, i.e., the

Lorenz system evolves less than a time unit, the success rates of all methods are

close to zero, indicating that a sufficient system evolution time is required in all

state-space variables. The SNR plot in Fig. 4.2(b) suggests that library ESINDy

bagging and bragging are superior methods, as they have similar performance and

begin to identify correct model when SNR > 25 dB. Although ESINDy bagging and

library ESINDy with bagging and bragging are more frequent in identifying correct

equations with SNR increasing, ESINDy bagging starts identification when SNR >

37 dB. It is worth noting that achieving this level of performance necessitates metic-

ulous tuning of the 4-5 hyperparameters, highlighted by the method’s inconsistent

performance as the number of observations increases.

The absence of specific tuning guidelines in the original ESINDy paper limits

its applicability and raises questions regarding its recommended hyperparameters,
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Figure 4.2: Success rate of the ESINDy for identifying the Lorenz system. The test
implements 100 random initial conditions and examines the success rate of Ensemble
SINDy in discovering the correct terms of the governing equations from each system
at each value of n and SNR. When the time-series length n increases, SNR is fixed
at 49 dB (left panel); when SNR increases n = 5000 (right panel). Shaded regions
represent model discovery above 80%.

potentially leading to inappropriate threshold settings when identifying different

systems. For instance, in the case of identifying the Rossler attractor, where ẋ2 =

x1 + 0.2x2, employing λSINDy = 0.2 consistently excludes the x2 predictor from

the final model because its coefficient is smaller than the threshold. This results

in inaccurate model discovery and introduces domain-specific challenges that often

require system knowledge for proper identification.

Following the heat plot in [155], Fig. 4.3 demonstrates the evaluation of the ori-

ginal SINDy, ESINDy with bagging, bragging, and library bagging. Each heat plot

in Fig 4.3 shows the success rate when noise level and data length change. Gen-

erally, the bottom left of the graph represents the higher success rate with more

data points and lower noise levels. The first row depicts results using the original

conditions outlined in the ESINDy paper. The second row shows that performance

deteriorates when the initial conditions are changed while retaining ESINDy’s ori-

ginal Savitzky-Golay parameters (oSG = 3, lSG = 5), highlighting the necessity of
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b    Initial condition [x=1, y=2, z=3], Savitzky-Golay parameters: polynomial order=3, window size=5

c    Initial condition [x=-8, y=7, z=27], Savitzky-Golay parameters: polynomial order=4, window size=11

a    Original: Initial condition [x=-8, y=7, z=27], Savitzky-Golay parameters: polynomial order=3, window size=5
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Figure 4.3: Multi-faceted evaluation of ESINDy’s performance under varied con-
ditions. Each SINDy method’s success rates are determined across varying noise
levels and time series lengths using 1000 noise realisations. For each graph, the x-
axis shows the noise level, the percentage of the data’s standard deviation, and the
y-axis is the data length shown in seconds with ∆t = 0.01. (a) Original results based
on the hyperparameters and initial conditions recommended in the ESINDy paper.
(b) Deteriorated performance when using altered initial conditions but retaining the
original Savitzky-Golay filter parameters. (c) Improved performance when original
initial conditions are paired with different Savitzky-Golay filter settings.

evaluating each method under varied initial conditions for a thorough effectiveness

assessment. The third row demonstrates improved results upon reverting to the

original initial conditions but applying different values for the Savitzky-Golay filter,

collectively emphasising ESINDy’s significant reliance on manual hyperparameter

tuning.

65



4.2 UQ-SINDy

The UQ-SINDy method integrates Bayesian inference with the SINDy to identify

dynamical systems [156]. It aims to quantify uncertainties in model parameters and

identify the most probable model from data. This framework introduces sparsity-

promoting priors – the spike-and-slab and regularised horseshoe priors – to handle

the challenges of limited and noisy data effectively, enabling the identified model to

be robust to noise.

Like ESINDy, UQ SINDy employs “inclusion probabilities” to quantify the prob-

ability that a given candidate term belongs in the final model. In the spike-and-slab

priors, Eq. (4.1), these probabilities are calculated based on the posterior mean of a

binary inclusion variable λj, which takes a value of 1 for inclusion and 0 for exclusion.

βj|λj ∼ λjN (0, c2) + (1 − λj)N (0, ϵ2) (4.1)

Here, c2 and ϵ2 are included and excluded variances of βj respectively. Shrinkage

factors serve as pseudo-probabilities when using the regularised horseshoe prior,

Eq. (4.2). These probabilities indicate the significance of each term, with values near

zero suggesting potential irrelevance and values closer to one implying importance.

βi | λ̃i, τ, c ∼ N
(
0, λ̃2

i τ
2) ,

λ̃i = cλi√
c2 + τ 2λ2

i

,

λi ∼ C+(0, 1),

c2 ∼ IG
(ν

2 ,
v

2s
2
)

τ ∼ C+ (0, τ0) ,

(4.2)

Here, C+ denotes half-Cauchy distribution with τ0 controls the scale. IG denotes

the inverse gamma distribution with two parameters, ν and s, controlling the shape

and scale of the distribution. It should be noted that UQ SINDy with both priors

relies on manual selection for specific experiments and does not specify universal

threshold values for inclusion probabilities. Hence, domain knowledge remains a
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key component throughout the model discovery process.

Another consideration in UQ SINDy is the role of Markov Chain Monte Carlo

(MCMC) sampling in estimating uncertainty. UQ SINDy uses 2000 MCMC samples

for initial model discovery. Although example cases often involve thousands of

MCMC samples, it is essential to conduct convergence diagnostics to ensure that

the sample size is sufficient for the problem.

4.2.1 Results of UQ SINDy tests

The effectiveness examination of UQ SINDy follows the tests outlined in the cor-

responding journal article [156]. A significant challenge encountered is the compu-

tational overhead resulting from the MCMC sampling process, especially in dealing

with high-dimensional posterior distributions. The computational demands increase

with the number of variables in the design matrix, challenging the method’s scalabil-

ity. The issue is depicted in Fig. 4.4, showing the rising computational burden as the

design matrix grows in dimensionality. For example, to identify the Lotka-Volterra

system (having two state variables) with a monomial order of five for a system size of

n = 100, UQ SINDy necessitates approximately seven hours. Although the Lorenz

system is initially considered in this test, the computing time is too long and ex-

ceeds 20 hours for the system size of n = 100 and monomial order of five. Hence,

Lotka-Volterra equations are an alternative used in the current test.

Figure 4.5 illustrates the method’s success rate over ten instances of the Lotka-

Volterra system as the polynomial order of the design matrix increases. Initial

tests, guided by suggestions from the original article [156], use a pseudo-probability

threshold of 1 for the regularised horseshoe prior. However, this threshold fails to

discover the underlying system. To overcome this issue, the threshold is adjusted to

0.8, resulting in an improved identification rate. For using the spike-and-slab prior,

in the absence of a specified threshold for inclusion probabilities from the original

article, a decision is made to employ an inclusion probability of 0.5, which facilitates

model discovery. The results reveal that UQ SINDy achieves optimal performance

with a design matrix incorporating terms up to a polynomial order of d = 2 with six

predictor variables. However, the success rate declines to zero for polynomial orders
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Figure 4.4: Running time of UQ SINDy. It is a function of both polynomial order and
the corresponding number of variables in the candidate library, using the regularised
horseshoe prior. Ten instances of the Lotka-Volterra system were identified with
parameters n = 100, SNR = 49, and x(t = 0) = [10, 5]. The equation accompanying
the blue line indicates the fitted mean computational time for UQ SINDy as the
number of candidate terms increases.

beyond this, underscoring an increasing unreliability with the growing complexity

of the design matrix.

These findings highlight that the method struggles with computational efficiency

and model discovery as the number of observations and predictors in the design mat-

rix increases. As a result, its practicality for real-world applications is significantly

limited, as opposed to the ARGOS framework, which is comparatively efficient as

these conditions increase.

4.3 Modified SINDy

Modified SINDy [157] incorporates neural networks within the SINDy framework

to address the noise-related challenges in identifying dynamical systems. Central to

this method is a coupled cost function, which is optimised for two core components:
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Figure 4.5: Success Rate of UQ SINDy when applied to 10 instances of the Lotka-
Volterra system with n = 100, SNR = 49, and x(t = 0) = [10, 5]. Both spike and
slab and regularised horseshoe priors were tested.

es, the error of estimated noise N̂, and ed, the error system parameters Ξ.

Ξ, N̂ = argmin
Ξ,N̂

L(Ξ, N̂),

s.t. (|Ξ| < λ) = 0.
(4.3)

L(Ξ, N̂) = es + ed = ω∥Y − N̂ − F̂(X̂)∥2
2 + ∥ ˙̂X − Θ(X̂)Ξ∥2

2 (4.4)

Yj+q − N̂j+q = X̂j+q = F̂q(X̂j) = X̂j +
∫ tj+q

tj

Θ(X̂(τ))Ξdτ (4.5)

where Y is the observed noisy data, N̂ is the denoised signal, X̂ is the estimated

signal, and λ is a threshold. Hence, this dual optimisation problem has three main

objectives: 1) denoising time-series data, 2) learning and parameterising the noise

probability distribution, and 3) discovering the underlying dynamical systems.

Modified SINDy incorporates N̂ as a set of parameters in the cost function. By

minimising the cost function es in Eq. (4.4), the algorithm derives the denoised signal

X̂ = Y − N̂. The optimised N̂ aims to capture the inherent noise in the observed
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data Y, providing empirical insights into the data’s noise behaviour. Concurrently,

the system parameters Ξ are fine-tuned within the same cost function by applying

a sparsity-promoting threshold to Ξ and yielding a sparse representation of the

underlying dynamical system.

More detailed, modified SINDy employs the Adam optimiser to minimise the

cost function, allowing it to work efficiently across different noise conditions. This

optimiser requires several hyperparameters, including two exponential decay rates

β1 and β2, a numerical stability constant ϵ, and the learning rate ηt [161]. While

modified SINDy sets default values for the Adam optimiser parameters, it introduces

three additional user-defined hyperparameters: the cut-off λ in the problem (4.3),

the iteration times Nloop for this optimisation problem, and the prediction step q in

Eq. (4.5). Appendices B to D in [157] detail the effects of these hyperparameters

on the method’s success in model selection. However, manually adjusting λ indic-

ates that the algorithm is not automated. Furthermore, Fig. 12 in [157] suggests

that the computational time increases linearly as the value of q increases. There-

fore, although the modified SINDy performs better than the original SINDy under

noisy conditions, unlike the convex optimisation method in the ARGOS framework,

the demand for additional computational resources to train parameters limits the

method’s scalability in complicated applications such as identifying high-dimensional

systems.

4.3.1 Results of modified SINDy tests

The following part will explore the modified SINDy method as delineated by Kahe-

man et al. [157]. This process involved evaluating its identification results according

to the criteria established in the paper [157]. Upon in-depth examination, several

notable limitations of the modified SINDy method are found.

First, modified SINDy strongly depends on manually tuning hyperparameters.

As previously mentioned, modified SINDy requires tuning up to seven hyperpara-

meters: four from the Adam optimiser and three additional ones defined by the

user. However, manual tuning of hyperparameters is incompatible with the auto-

mated tests, which cover a wide range of initial conditions, time series length, and
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SNRs.

Properly tuning λ is critical for the success of modified SINDy. The authors

advise starting with low values, such as 0.1, and increasing it until a good model is

identified. Figure 4.6 shows modified SINDy’s effectiveness in identifying the Lorenz

system, even with limited observations and moderate to low SNRs. Figure 4.6(a)

illustrates the success rate with changes in sample size and threshold under SNR

= 49 dB. When n ≥ 1000, modified SINDy successfully identify model with λ ∈

(0.005, 1). However, when n ≤ 500, modified SINDy struggles in the success rate.

Figure 4.6(b) shows the success rate varying with SNR and threshold when there

are 2500 observations. As SNR increases, more λ values can be used to identify the

correct equations. When SNR = 20 dB, the maximum success rate for modified

SINDy is 75% at λ = 0.75. However, when SNR ≥ 49 dB and λ ∈ [0.005, 0.75],

the success rate of modified SINDy is 100%. Both n and SNR results suggest an

intricate relationship between these factors, ensuring the success rate can rise to

100%.

Since all parameter values in the Lorenz system are larger than one, the hyper-

parameter λ can be conveniently chosen between zero and one. This highlights that

modified SINDy can only be used when prior knowledge of the underlying system

exists. However, some systems’ parameters are smaller than one, such as the two-

dimensional linear, cubic, and three-dimensional linear systems used in evaluating

ARGOS [1]. If λ starts from 0.1, the correct equation will never be found for these

systems because some coefficients are smaller than 0.1. In contrast, the ARGOS

framework offers a distinct advantage by automating tuning parameters, effectively

reducing the dependency on domain knowledge during model discovery.

The other limitation is the degree of the library. In the context of modified

SINDy, library degree d plays a pivotal role. Appendix J in [157] advises users

without expert knowledge of the system to first employ a simple second-order poly-

nomial library to assess the performance of the identified model. If the initial results

are unsatisfactory, the recommendation is to increase d incrementally. However, as

the library degree grows, two main challenges surface.

1. Modified SINDy will produce NaN when degrees d > 3. This is confirmed
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Figure 4.6: Modified-SINDy model discovery results for the Lorenz system, influ-
enced by ten instances of random noise with x(t) = [5, 5, 25]. Success rate as a
function of λ for several values of (a) n, holding SNR = 49 constant; (b) SNR, fixing
n = 2500. Terms of the monomial degree of the design matrix Θ(X) are limited
to three due to modified SINDy’s failure at handling degrees d > 3, resulting in
forward and backward simulation producing NaN costs.
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in Appendix J, which suggests that when the design matrix contains higher

polynomial orders, the forward and backward simulation may fail [157].

2. Although Fig. 17 in [157] shows results for polynomial degree d = 4, the design

matrix omits the constant term 1. However, the code running crashes when

keeping the constant in the design matrix, rendering the method ineffective.

This constraint impedes the automated tests using a library degree d = 5 in

the candidate library.

Despite the challenges that have been discovered hindering the systematical eval-

uation of modified SINDy, it is important to acknowledge this method’s advantages.

Appendix E of [157] shows it is twice as robust to noise as its original SINDy, with

an ability to handle noise levels exceeding 40%. This robustness is highlighted by

its performance in model discovery under conditions of high noise contamination.

Moreover, the method’s default hyperparameter settings have been shown to facilit-

ate successful model discovery across various examples, including complex systems

like the Lorenz and Rossler systems. This indicates Modified SINDy’s potential in

applications where noise resilience and effective model identification are paramount

despite the need for computational resources to explore a range of hyperparameters.
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4.4 Summary

In summary, all methods require a deep understanding of the system to

determine parameters in identification. Additionally, UQ-SINDy and mod-

ified SINDy are computationally expensive, while ESINDy uses 100 bootstrap

samples, costing less time than UQ-SINDy and modified SINDy.

• Ensemble SINDy (ESINDy) [155] employs bagging to average model

coefficients, selecting terms that exceed a predetermined inclusion prob-

ability. It relies on several hyperparameters without a comprehensive

guideline for establishing their optimal values, including manually set-

ting both the sparsity-promoting threshold and the inclusion probability.

• Uncertainty Quantification SINDy (UQ SINDy) [156] uses

Bayesian sparse regression to quantify uncertainty, employing inclu-

sion and pseudo probabilities for variable selection. It lacks a universal

threshold for inclusion probabilities and requires 2000 MCMC samples,

making it computationally intensive.

• Modified SINDy [157] incorporates neural networks to address noise-

related issues in system identification. Limited by the design mat-

rix’s terms and necessitates tuning of hyperparameters, especially the

sparsity-promoting threshold. High computational demand hampers its

inclusion in automated tests.
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CHAPTER 5

Automatically Finding the Optimal Parameters for

Savitzky-Golay Filter

Smoothing data is important in data analysis and signal processing, serving as a

powerful tool to reveal underlying patterns obscured by noise or fluctuations. By

applying smoothing techniques, researchers can effectively reduce noise and outliers,

revealing underlying trends and patterns that might otherwise remain obscured. The

smoothing methods improve the quality of data visualisation and serve as a founda-

tional step in predictive modelling, allowing for more accurate forecasts and insights,

and thus, support informed decision-making and contribute to the advancement of

scientific knowledge.

The derivative (gradient) is also important as it describes the data’s rate of

change, allowing researchers to analyse concavity and find the maximum or minimum

points. Generally, there are three categories of differentiation methods: symbolic,

numerical, and automatic differentiation [162]. Symbolic and automatic differenti-

ation methods require users to know the mathematical expression of the function.

When the expression of the data is unknown, numerical differentiation is more effi-

cient than the other two.

As described in Section 2.5, the Savitzky-Golay filter has been distinguished
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as the most effective local method in derivative evaluations [4, 82], and Breugel

et al. [75] proposed a semi-automatic Savitzky-Golay filter in the PyNumDiff pack-

age. This chapter will present the automatic Savitzky-Golay filter with Gaussian

blur, which fully automates the selection of hyperparameters, smooths data, and

calculates derivatives simultaneously. To explore the performance, the PyNumDiff’s

Savitzky-Golay filter (shown in Section 2.5.4) is set as the benchmark to compare

with the newly proposed method.

5.1 Savitzky-Golay filter with Gaussian blur

The notation in Table 5.1 is used to explain the differences between methods. The

expression y = f(x) represents a series of one-dimensional data that depend only

on one variable, x, whereas u = f(x, t) is for two-dimensional data that depend on

two variables, x and t. Furthermore, given that two-dimensional data are stored in

a matrix format, it is defined that each row represents the value at varying x, while

each column corresponds to different t.

Table 5.1: Notation of symbols used in this chapter. One-dimensional (1D) data
y = f(x) means the data only depends on one variable x. Two-dimensional (2D)
data u = f(x, t) means the data depends on two independent variables x and t.

1D data 2D data
y u The noiseless signal
ỹ ũ The noisy signal
ŷ û The smoothed signal
ẏ ux The true first-order derivative
ÿ uxx The true second-order derivative
ˆ̇y ûx The estimated first-order derivative
ˆ̈y ûxx The estimated second-order derivative

Although the two-dimensional Savitzky-Golay filter has been proposed [163],

when calculating the derivative ux = ∂u(t,x)
∂x

, the variable t is considered known, and

the calculation reduces to the original Savitzky-Golay filter. Therefore, when dealing

with two-dimensional data, the Savitzky-Golay filter is implemented with one pair

of {d, l} columns by columns (or rows by rows) to calculate the partial derivatives.

As the ground truth is unknown, it is difficult to find the best hyperparameters
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of the Savitzky-Golay filter. Here, the Gaussian blur with kernel κ is regarded as

the ground truth because Gaussian blur can smooth data regardless of dimensions.

The optimal hyperparameters {o∗, l∗} correspond to the lowest MSE between the

Savitzky-Golay filtered and Gaussian blurred data. For one-dimensional data, the

process is

{o∗, l∗} = arg min
o,l

{MSE (SG(ỹ, o, l),GBκ(ỹ))} , (5.1)

where

κ =
[
1 2 1

]
.

Here, the simplest Gaussian kernel is always selected in the following analysis. Al-

though the Gaussian kernel can be wider, such as [1 2 4 2 1] for one-dimensional

data, more details will be lost due to Gaussian blur’s weighted average calculation,

leading to over-smoothed data [77, p.168]. Furthermore, as discussed in Section

4.1.2, when the time step of the simulated data increases, it will contain fewer de-

tails, making it challenging for Eq. (5.1) to find the appropriate parameters.

The two-dimensional data solves the following problem:

{o∗, l∗} = arg min
o,l


MSE

SG




ũ(·, 1)

ũ(·, 2)
...

ũ(·,m)

 , o, l
 ,GBκ2(ũ)




, (5.2)

where

κ2 = κ⊗ κ =


1 2 1

2 4 2

1 2 1

 .
After finding the optimal parameters {o∗, l∗}, the smoothed data and its deriv-

atives (at most to the oth order) are calculated by

ŷ = SG(GBκ(ỹ), o, l) (5.3)
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for one-dimensional data, and

û = SG (GBκ2(ũ), o, l) , (5.4)

for two-dimensional data. Algorithm 2 shows the pseudocode for the automatic

Savitzky-Golay filter with Gaussian blur.

Algorithm 2: Automatic Savitzky-Golay Filter
Input: U ∈ Rn×m or Cn×m, dt, dx.
Output: partial derivatives Ut, Ux, Uxx, · · · .

1 UGB = Gaussian_Blur(U); // use Gaussian blurred data as the
ground truth;

2 (o∗
t , l

∗
t ) = arg min

o,l
MSE (Savitzky-Golay(Ũ(t), o, l), UGB);

3 (o∗
x, l

∗
x) = arg min

o,l
MSE (Savitzky-Golay(Ũ(x), o, l), UGB);

4 Ut = Savitzky-Golay(UGB, o
∗
t , l

∗
t , derivative=1);

5 Ux = Savitzky-Golay(UGB, o
∗
x, l

∗
x, derivative=1);

6 Uxx = Savitzky-Golay(UGB, o
∗
x, l

∗
x, derivative=2);

7
...

The Gaussian kernel in this work is generated by OpenCV’s getGaussianKernel.

For one-dimensional data, numpy’s convolve is used to take the convolution of

the whole series data to implement the Gaussian blur. For two-dimensional data,

GaussianBlur in OpenCV is applied to the entire dataset.

5.2 Results

To evaluate the performance of the automatic Savitzky-Golay filter with Gaussian

blur (ASG) and PyNumDiff’s Savitzky-Golay filter (PSG), the data sizes are fixed,

and the SNRs of the data are varied. The noisy data are created by adding Gaussian

noise z to the data x:

x̃ = x+ z, z ∼ N (0, σ2
z), (5.5)

which is the most common way to mimic naturally occurring random processes [111,

164, 165]. White noise serves as a meaningful baseline for assessing the algorithm’s

performance and robustness due to its uniformly distributed power spectral density.
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In signal processing, the Additive white Gaussian noise (AWGN) [166] is a basic

noise assumption in communication channels. Due to the Central Limit Theorem,

independent random variables added together tend to form a Gaussian distribution,

regardless of their original distributions. Gaussian distributions are tractable in

the spatial and frequency domains, simplifying analysis and theoretical derivations,

making them convenient for practical use [164]. For example, adding Gaussian noise

to the data can simulate the data collected by a sensor with background thermal

noise. Here, the noise mean is zero (µZ = 0), and the noise standard deviation

σZ only depends on the SNR because the data’s standard deviation is fixed. To

measure the uncertainty at each SNR value, 100 noisy datasets are generated, and

MSE is employed to assess the smoothing method’s performance. Section 2.5.3 has

discussed that the Savitzky-Golay filter may poorly estimate values at boundaries

(i.e., the first and last l points). The following MSE plots will display the ASG with

and without boundaries in green and blue boxes, respectively.

5.2.1 One-variable functions

One-dimensional Gaussian function

The Gaussian function is a smooth curve with continuous derivatives of all orders

without sharply changing points. The mathematical expression is

f(x) = a exp
(

−(x− b)2

2c2

)
. (5.6)

It has a symmetric “bell curve” shape, see Fig. 5.1(a), with arbitrary real constants

a, b, and a non-zero c. The parameter a determines the amplitude of the curve, b

is the centre of the curve, and c controls the altitude and width of the “bell”. Here,

the simplest example is used, a = 1, b = 0 and c2 = 0.5, i.e., f(x) = exp(−x2). The

x domain is set from -2 to 2 with ∆x = 0.01.

Figure 5.1 illustrates that a higher SNR leads to more accurate smoothed data

and first-order derivatives for both methods. Particularly, when data contain noise,

the MSE distribution for the ASG is always lower than that of the PSG. While

Fig. 5.1(b) shows similar results in terms of smoothed data for these methods, the
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Figure 5.1: Evaluation results for the one-dimensional Gaussian function. With
SNR increases, (a) shows the function curve, (b) and (c) illustrate MSE distributions
with box plots of smoothed data and the first-order derivative using 100 generated
datasets at each SNR value, respectively. The red boxes represent the PyNumDiff’s
Savitzky-Golay filter (PSG). The green and blue boxes are the results of automatic
Savitzky-Golay (ASG) with and without boundary points, respectively.

ASG outperforms PSG in calculating the first-order derivatives (see Fig. 5.1(c)).

Furthermore, when the data are noiseless, MSEs of both the ASG without bound-

ary and PSG are lower than 10−7, representing the results from both methods are

close to the ground truth. Overall, the ASG without boundary performs the best

for smoothing and calculating first-order derivatives of one-dimensional Gaussian

functions.

Linear chirp function

A chirp function is a sinusoidal waveform whose frequency increases or decreases

over time. Due to the frequency changes, the chirp function is important in signal

processing, and communication systems. For example, in radar and sonar systems,

the variation in range and velocity of targets can be described as a chirp function.
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Here, the linear chirp function is used:

f(t) = cos
(

2π
(
f0t+ f1 − f0

2t1
t2
))

, (5.7)

where f0 is the frequency at t = 0, f1 is the final frequency, and t1 is the time it

takes to sweep from f0 to f1. The time domain is from 0 to 5 with ∆t = 0.01.
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Figure 5.2: Evaluation results for the linear chirp function. With SNR increases, (a)
shows the function curve, (b) and (c) illustrate MSE distributions with box plots of
smoothed data and the first-order derivative using 100 generated datasets at each
SNR value, respectively. The red boxes represent the PyNumDiff’s Savitzky-Golay
filter (PSG). The green and blue boxes are the results of automatic Savitzky-Golay
(ASG) with and without boundary points, respectively.

The chirp function is employed to evaluate the efficacy of the smoothing method

in handling varying frequencies. As depicted in Fig. 5.2(a), the test signal fre-

quency increases over time. In the presence of noise, both Fig. 5.2(b) and (c)

demonstrate a linear decrease in MSEs for PSG and ASG without boundary. Not-

ably, the ASG without boundary consistently yields more precise estimations with

lower MSE distributions than that of the PSG. However, due to challenges associ-

ated with boundaries estimation, the MSE for ASG with boundaries is always higher

than 10−4 and 5 in Fig. 5.2(b) and (c), respectively. Although the ASG and PSG use
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the same Savitzky-Golay filter function in Python, scipy.signal.savgol_filter,

PSG applies trapezoidal integration to the first-order derivatives to estimate data,

see Section 2.5.4. Due to this, the boundaries of PSG are smoother than those in

ASG, leading to the decreasing MSE of PSG when the SNR is larger than 32 dB.

Overall, the ASG without boundary performs the best among the tested smoothing

methods for the linear chirp function.

Lorenz system

The Lorenz system is a set of three nonlinear ordinary differential equations, Eq. (5.8),

describing the behaviour of a simplified model of atmospheric convection [167].

dx1

dt = 10(x2 − x1),
dx2

dt = x1(28 − x3) − x2,

dx3

dt = x1x2 − 8
3x3,

(5.8)

It is one of the simplest chaotic systems, sensitive to its initial conditions, causing

the “butterfly effect”, i.e., slight differences in initial conditions lead to drastically

different outcomes over time. When solving the system using the Lorenz attractor

and drawing in phase space, the shape may be seen to resemble a butterfly (see Fig.

5.3(a), SNR = ∞).

In this work, the odeint in Python’s scipy is used to solve the Lorenz system.

The evolution time is from -5 to 5 with ∆t = 0.01, and the initial point is x = −8,

y = 8 and z = 27.

The MSE distribution of the ASG without boundary and PSG in both Fig. 5.3(b)

and (c) exhibits a linear decline as SNR increases. Particularly, the ASG without

boundary demonstrates the lowest MSE in the boxplots. Additionally, the ASG with

boundaries shows similar MSE distributions to the ASG without boundary when the

SNR is less than 24 dB. However, for SNR greater than 24 dB, the MSE of the ASG

with boundaries gradually decreases and stabilises at approximately 0.033 in Fig.

5.3(b) and 800 in Fig. 5.3(c), due to errors in estimating boundaries points. Overall,

the ASG without boundary proves to be the most effective method for smoothing
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Figure 5.3: Evaluation results for the Lorenz system. With SNR increases, (a)
shows the function curve, (b) and (c) illustrate MSE distributions with box plots of
smoothed data and the first-order derivative using 100 generated datasets at each
SNR value, respectively. The red boxes represent the PyNumDiff’s Savitzky-Golay
filter (PSG). The green and blue boxes are the results of automatic Savitzky-Golay
(ASG) with and without boundary points, respectively.

data and calculating first-order derivatives.

5.2.2 Two-variable functions

Two-dimensional Gaussian function

As the one-dimensional Gaussian function has been used in Section 5.2.1, the two-

dimensional Gaussian function will also be employed to evaluate the performance

of the automatic Savitzky-Golay filter with Gaussian blur. The two-dimensional

Gaussian function is defined as

f(x, y) = A exp
(

−
(

(x− x0)2

2σ2
x

+ (y − y0)2

2σ2
y

))
(5.9)

where A represents the height of the curve’s peak, x0 and y0 determine the centre

of the curve, σx and σy controls the spreads of the shape. Here, A = 1, x0 = y0 = 0,
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and σ2
x = σ2

y = 0.5.
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Figure 5.4: Evaluation results for the two-dimensional Gaussian function. With
SNR increases, (a) shows the function curve, (b) and (c) illustrate MSE distributions
with box plots of smoothed data and the first-order derivative using 100 generated
datasets at each SNR value, respectively. The red boxes represent the PyNumDiff’s
Savitzky-Golay filter (PSG). The green and blue boxes are the results of automatic
Savitzky-Golay (ASG) with and without boundary points, respectively.

Figure 5.4 illustrates that a higher SNR leads to smaller MSE in smoothed data

and first-order derivatives for both methods. Particularly, when data contain noise,

the MSE distribution for the ASG is always lower than that of the PSG. Figure 5.4(b)

and (c) illustrate that both ASG methods always have lower MSE distributions than

the PSG, indicating that the ASG methods outperform the PSG. However, when

data is noiseless, PSG has a smaller MSE than the other two.

Heat equation

The heat equation is a second-order PDE modelling a wide range of phenomena

related to heat transfer. It is defined as

ut = auxx, 0 < x < L, t > 0 (5.10)
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where a is a positive constant. The solution of the heat equation provides the heat

behaviour in the given systems, such as the diffusion of temperature in solids and

the cooling of objects in fluids. The heat equation has been widely applied. For

example, the Schrödinger equation in quantum mechanics can be regarded as the

heat equation in imaginary time. Combined with Fourier theory, the heat equation

can describe the thermal diffusivity in polymers. The heat equation is linked by the

Fokker-Planck equation and is connected with random walks and Brownian motion.
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Figure 5.5: Evaluation results for the heat equation. With SNR increases, (a)
shows the function curve, (b) and (c) illustrate MSE distributions with box plots of
smoothed data and the first-order derivative using 100 generated datasets at each
SNR value, respectively. The red boxes represent the PyNumDiff’s Savitzky-Golay
filter (PSG). The green and blue boxes are the results of automatic Savitzky-Golay
(ASG) with and without boundary points, respectively.

Here, the odeint in scipy with the spectral method is used to solve the heat

equation. The solution is shown in Fig. 5.5(a) with x ∈ [−4, 4], ∆x = 0.01 and

t ∈ [0, 5], ∆t = 0.01, and the initial function is x2. The periodic boundary condition

is applied when solving this PDE.

The box plots in Fig. 5.5(b) and (c) illustrate that all methods have a declining

trend when SNR increases. Both ASG methods have similar accuracy and out-

perform PSG when data contain noise. When data is noiseless, the ASG without
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boundary is the best for smoothing data, while the PSG performs the best at cal-

culating the first-order derivative.

Burgers equation

Burgers equation is a nonlinear PDE and can be derived from the Navier-Stokes

equation for the velocity field by dropping the pressure gradient term. Unlike the

Navier-Stokes equation, the Burgers equation does not behave with turbulence and

can transform to a linear form via the Cole-Hopf transformation [168]. It is one

of the simplest PDEs for understanding fluid flow behaviour. The equation has a

nonlinear convection term coupled with a linear diffusion term:

ut = −uux + νuxx (5.11)

where ν is the diffusion coefficient and is set to 0.1 here. Moreover, x ∈ [−8, 8] with

∆x = 0.0625, t ∈ [0, 10] with ∆t = 0.1, and the initial function is exp(−(x − 2)2).

The numerical solver is odeint in Python’s scipy with the spectral method Fourier

spectral method, and the periodic boundary condition is employed [169, p.63-69].

Figure 5.6(b) and (c) show that the MSE values for the ASG without boundary

and PSG decrease as SNR increases. The MSE of the ASG with boundaries slowly

declines when SNR > 34 dB in Fig. 5.6(b) and 24 dB in Fig. 5.6(c). Furthermore,

when data contain noise, the ASG without boundary outperforms others. However,

when data is noiseless, the PSG has the lowest MSE.
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Burgers equation
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Figure 5.6: Evaluation results for the Burgers equation. With SNR increases, (a)
shows the function curve, (b) and (c) illustrate MSE distributions with box plots of
smoothed data and the first-order derivative using 100 generated datasets at each
SNR value, respectively. The red boxes represent the PyNumDiff’s Savitzky-Golay
filter (PSG). The green and blue boxes are the results of automatic Savitzky-Golay
(ASG) with and without boundary points, respectively.
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5.3 Summary

The previous tests evaluate the estimation accuracy of the PSG and ASG

with and without boundaries. The MSE boxplots are employed to measure

the differences between estimated data (including smoothing data and the

first-order derivatives) and their ground truth at different SNRs.

• The ASG without boundary illustrates the best performance from

Fig. 5.1 to 5.6.

• Interestingly, both ASG methods have similar MSE distributions in

smoothing Gaussian functions. However, in the cases of the chirp (Fig.

5.2), Lorenz (Fig. 5.3) and Burgers (Fig. 5.6), the MSE values of the

ASG with boundaries maintain at a certain value when SNR is larger

than 28 dB. This is due to the lack of data on the Savitzky-Golay filter’s

implementation of polynomial estimates at boundary points.

• In the noiseless two-dimensional Gaussian function (Fig. 5.4), the PSG

has the lowest MSE distribution. However, the other two methods also

illustrate accurate results because the MSE values are smaller than 10−7,

which is the default floating comparing values in some numerical com-

puting packages, such as glmnet in R and numpy in Python.

• The biggest advantage of the ASG is that it can accurately and auto-

matically smooth data and calculate the derivatives. As users do not

know the ground truth, the automatic method helps them overcome the

parameter-tuning process. Although the estimation may have problems

at boundary points, the ASG without boundary can be used, when data

sizes are sufficient.

In the next chapter, this automatic method will be used to calculate the partial

derivatives of the PDE data.
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CHAPTER 6

Automating the Discovery of Partial Differential Equations

in Dynamical Systems

The review of the SINDy framework in Chapter 3 figures out a challenge in identify-

ing dynamical systems: developing an automated algorithm to identify PDEs with

minimal manual intervention, streamlining the process, and improving its applicab-

ility across diverse scientific domains. This chapter demonstrates the performance of

a novel method developed from Automatic Regression for Governing Equations (AR-

GOS) framework [1] to identify canonical PDEs. ARGOS assumes the underlying

system is unknown, automates the fine-tuning of parameters for numerical differen-

tiation (the Savitzky-Golay filter), and leverages sparse regression with bootstrap

confidence intervals to select active terms from the candidate library. To automat-

ically identify PDEs, ARGOS with the Recurrent Adaptive Lasso (ARGOS-RAL) is

proposed. This extension of the ARGOS framework employs only sparse regression

to identify equations rather than engaging in large-scale bootstrapping.

To compare the success rates and robustness of different methods, i.e., ARGOS-

RAL, Sequential Threshold Ridge Regression (STRidge) [4], and backward stepwise

selection with knowing the number of active terms (shortly “backward stepwise se-

lection”), the performances are evaluated through a series of three numerical tests,
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each designed to assess its ability to identify canonical PDEs across diverse fields,

including biology, neuroscience, fluid mechanics, and quantum mechanics. The first

test explores the algorithm’s resilience against varying noise levels by altering the

SNR in Gaussian random noise integrated into the PDE solutions, which is crucial

for understanding the robustness of these methods under realistic noisy conditions.

The second test addresses the practical challenges encountered in real-world data

collection, which often results in non-uniformly distributed data points in space

and time, by exploring the minimum percentage of data points necessary for ac-

curate identification of the underlying equation. The final evaluation assesses the

algorithm’s ability to process datasets characterised by significant noise, challenging

its limits and practical applicability in scenarios where data quality is compromised.

6.1 Method

6.1.1 Overview of the ARGOS-RAL Framework

Section 3.3.1 has interpreted details about how PDE-FIND constructs the candidate

library. ARGOS framework employs the same way to create the library for identi-

fying PDEs. Hence, the aim is to estimate the unknown mapping F(·) in Eq. (3.11)

with sparse regression by constructing a comprehensive library of potential terms

and assuming that only a few of them are active [1, 3, 4]. Figure 6.1 illustrates

the process of ARGOS-RAL, which combines automatic numerical differentiation

(Chapter 5), building candidate library (Section 3.3.1), and the new proposed re-

current adaptive lasso.

A key step in constructing the candidate library in Eq. (3.14) is the numerical

calculation of derivatives, see Fig. 6.1(a) and (b). The Savitzky-Golay filter [78]

has become a favoured solution in system identification for signal smoothing and

differentiation [4, 75]. The selection of the Savitzky-Golay filter is grounded in its

proven ability to accurately maintain the original contour of the signal while signi-

ficantly reducing noise and to approximate higher-order numerical derivatives with

symbolic differentiation [83]. Chapter 5 illustrates more details and the evaluation

performances of this automatic method.
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Figure 6.1: Process of identifying PDEs from data using ARGOS with the recurrent
adaptive lasso. The identification process consists of three main steps: (a) automatic
smoothing and calculation of derivatives, (b) construction of the candidate library,
and (c) implementation of the recurrent adaptive lasso. The data Ũ is collected
and applied to automatic Savitzky-Golay filtering with Gaussian blur to calculate
the smoothed U and its partial derivatives. Following this, the smoothed data, all
partial derivatives, and other related terms are vectorised to construct the candidate
library. The recurrent adaptive lasso is then employed to identify the active features
in the library, and the unbiased coefficients of the identified model are estimated
using ordinary least squares regression.
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6.1.2 Sparse Regression with the Recurrent Adaptive Lasso

The adaptive lasso is a two-step method [1, 64], which has been introduced in

Section 2.4.4. The first step uses the ordinary least squares (OLS) to obtain unbiased

estimates and derive the weights w = |β̂ols|−γ, where γ > 0. The second step employs

optimisation solver, such as glmnet package [61] in R, to obtain the estimated

coefficients β̂alasso by solving the problem

β̂alasso = arg min
β

∥ut − Θβ∥2
2 + λ

p∑
j=1

wj |βj| , (6.1)

where λ is a nonnegative regularisation parameter controlling the amount of shrink-

age applied to the coefficients of the predictors. The recurrent adaptive lasso applies

the adaptive lasso repeatedly until convergence, resulting in a sparse model with

fewer non-zero coefficients.

To balance the model’s complexity against its accuracy, the regularisation para-

meter λ is determined by employing the Pareto curve, which illustrates the optimal

trade-off between the regularisation penalty and the model residuals [67, 68, 70].

More details about the Pareto curve can be found in Section 2.4.6. Although cross-

validation is an alternative method, Cortiella et al. [31] have shown that it finds a

λ optimised for prediction, potentially finding extra features for the equation.

The adaptive lasso regression often detects more terms than those in the true

system. To improve parsimony, Egan et al. [1] suggested combining the adaptive

lasso with bootstrap techniques to identify ODEs. Similarly, Cortiella et al. [31] ad-

opted a modified version of the multi-step adaptive lasso [137] to develop a sparser

model that more accurately identifies the true equations. This is achieved by iter-

atively adjusting the adaptive weights using previous estimates from the adaptive

lasso. A significant advancement made by Cortiella et al. [31] is their method’s

ability to maintain finite weights in the adaptive lasso equation by ensuring that the

estimated coefficients shrink to a small, nonzero value rather than dropping to zero.

However, this approximation unintentionally introduces numerical inaccuracies as a

trade-off for preventing overflow during the equation identification process.
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Algorithm 3: The recurrent adaptive lasso with Pareto curve and AIC
Input: Θ(u) ∈ R(n·m)×p or C(n·m)×p, ut ∈ R(n·m)×1 or C(n·m)×1.
Output: β̂

1 for γ in 1:5 do
2 J (γ,0) = NULL; // initialize J ;
3 k = 1; // iteration counter;
4 J (γ,k) = {1, 2, · · · , p}; // selected columns from Θ;
5 while J (γ,k) ̸= J (γ,k−1) do
6 w(γ,k) =

(
arg minβJ (γ,k)

∥ut − Θ(u)J (γ,k)βJ (γ,k)∥2
2

)−γ

; // ols

weights;
7 β̂(γ,k) =

arg minβJ (γ,k)
∥ut − Θ(u)J (γ,k)βJ (γ,k)∥2

2 + λ∗∑p
j=1 w

(γ,k)
j |βj·J (γ,k)|;

// λ∗ is the optimal point on the Pareto curve;
8 A(γ,k) = AIC(β̂(γ,k));
9 J (γ,k) =

{
j : β̂(γ,k)

j ̸= 0
}

; // select active terms;

10 k = k + 1;
end

end
11 J ∗ = J (γ∗,k∗) where (γ∗, k∗) is the index of the minimum A;
12 β̂ = arg minβJ∗ ∥ut − Θ(u)J ∗βJ ∗∥2

2;

The recurrent adaptive lasso is an iterative algorithm that estimates an initial

sparse model using the adaptive lasso and subsequently refining it by trimming the

candidate library, see Fig. 6.1(c). At each iteration, it removes terms whose coeffi-

cients the adaptive lasso penalised to zero (see Algorithm 3 step 9). It then employs

least squares to re-estimate the coefficients of the remaining terms, which are used

to update the adaptive weights in the next adaptive lasso iteration. This focuses on

the regularisation of the terms that had small coefficients in the previous iteration.

As this process repeats, the recurrent adaptive lasso increasingly concentrates the

ℓ1-norm shrinkage on terms that are likely irrelevant, driving their coefficients to

zero [59, 64]. Meanwhile, it relaxes the regularisation on terms that consistently

have larger coefficients, allowing the model to retain them. The candidate set gets

smaller at each iteration until the algorithm converges on a sparse model containing

only the key terms. This iterative re-weighting allows the recurrent adaptive lasso

to prune irrelevant terms more aggressively than the standard adaptive lasso while
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retaining good predictive performance. The result is a parsimonious model that

identifies the true governing equation more reliably, even in the presence of many

extraneous candidate terms.

Increasing the number of iterations may cause the recurrent adaptive lasso to

underestimate the model. This can lead to the omission of active terms that should

be included in the true underlying equation. Therefore, while iterating the candidate

library Θ, all candidate models are recorded, and their AIC values are calculated to

determine the final governing equation corresponding to the lowest AIC. Given the

uncertainty that the true model falls within all candidates, the AIC serves to select

the model that best approximates the true model [49, 51]. The pseudocode of the

recurrent adaptive lasso is shown in Algorithm 3.

6.1.3 Enabling regression analysis for complex number

In the following tested PDEs, quantum harmonic oscillator and nonlinear Sch-

rodinger equations are complex-valued PDEs, which refer to real and imaginary

numbers. Most statistical analysis focuses on the real number, while the complex

number is not considered. Although the least squares estimate allows one to cal-

culate the complex number, most functions in R programming require real-number

data. When performing a sparse regression on complex numbers, the regression is

transformed from complex to real numbers. The complex-number regression can be

written as a pair of models for each observation, yi = yR
i + iyI

i , where the super-

script yR represents the real-number part of the complex number y, the superscript

yI means the imaginary part, the normal i is the imaginary number, the subscript

yi represents the ith observation. Due to this, the equation can be reformed as

yR
i + iyI

i = βR
0 + iβI

0 +
p∑

j=1

[
(βR

j + iβI
j )(xR

ij + ixI
ij)
]

+ ϵR + iϵI

= βR
0 + iβI

0 + (βR
1 + iβI

1)(xR
i1 + ixI

i1) + · · · + (βR
p + iβI

p)(xR
ip + ixI

ip) + ϵR + iϵI

= βR
0 + iβI

0 +
p∑

j=1

(xR
ijβ

R
j − xI

ijβ
I
j ) + i

p∑
j=1

(xR
ijβ

I
j + xI

ijβ
R
j ) + ϵR + iϵI .
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This equation can be divided into two equations with real and imaginary parts

yR
i = βR

0 +
p∑

j=1

xR
ijβ

R
j −

p∑
j=1

xI
ijβ

I
j + ϵR, (6.2a)

yI
i = βI

0 +
p∑

j=1

xI
ijβ

R
j +

p∑
j=1

xR
ijβ

I
j + ϵI . (6.2b)

Based on Eq. (6.2), the dataset can be organised as:

Y =



yR
1

yI
1

yR
2

yI
2
...

yR
n

yI
n


, X =



xR
11 −xI

11 xR
12 −xI

12 · · · xR
1p −xI

1p

xI
11 xR

11 xI
12 xR

1R · · · xI
1p xR

1p

xR
21 −xI

21 xR
22 −xI

22 · · · xR
21 −xI

21

xI
21 xR

21 xI
22 xR

22 · · · xI
21 xR

21
... ... ... ... . . . ... ...

xR
n1 −xI

n1 xR
n2 −xI

n2 · · · xR
n1 −xI

n1

xI
n1 xR

n1 xI
n2 xR

n2 · · · xI
n1 xR

n1


.

Finally, the recurrent adaptive lasso, STRidge, and backward stepwise selection can

be implemented on the re-posited Y and X.

6.2 Results

6.2.1 Varying Noise Levels and Sample Sizes

The following noisy and noiseless tests compare the performance of ARGOS-RAL,

STRidge [4], and backward stepwise selection in identifying canonical PDEs under

various SNRs and sample sizes (N). Figure 6.2 demonstrates the impact of intro-

ducing increasing levels of Gaussian random noise into the solution of the Burgers

equation, effectively decreasing the SNR values.

In the evaluation of noise-contaminated data, similar to the tests in Chapter 5,

σZ in SNR’s expression, Eq. (2.50), is varied to span a broad range of noise levels,

facilitating a comprehensive evaluation of the efficacy of ARGOS-RAL, STRidge,

and backward stepwise selection in identifying various PDEs under different noise
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conditions. For this purpose, datasets with SNRs set at {0, 2, · · · , 58, 60,∞} [1] are

generated, each comprising paired elements {ut,Θ(u)}. This approach can examine

the robustness of each identification method as it copes with varying noise levels.
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Figure 6.2: Influence of SNR on the Burgers equation dataset. (a) Noiseless data
points (blue) serve as a reference for evaluating the impact of sample size on PDE
identification accuracy. (c-f) Noisy datasets are generated by adding Gaussian noise
at SNR levels of 40 dB, 30 dB, 20 dB, 10 dB and 0 dB, respectively, to comprehens-
ively characterise the system’s behaviour under varying noise conditions.

In investigating sample size, N , the objective is to determine the smallest number

of samples needed to reliably identify PDEs with a success rate exceeding 80%. To

achieve this, a full dataset for each PDE is first generated by calculating partial

derivatives and assembling a candidate library as described in Eq. (3.14). The

size of this dataset, denoted as N, varies depending on the specific PDE under

consideration. Specifically, N = 104 for the advection-diffusion, Burgers, and cable

equations, N = 104.8 for the heat and Korteweg-De Vries (KdV) equations, N = 105

for the transport, Navier-Stokes, and reaction-diffusion equations, and N = 105.2 for

the Kuramoto-Sivashinsky (KS), quantum harmonic oscillator (QHO), and nonlinear

Schrodinger (NLS) equations. Next, smaller subsets of size N are randomly sampled

from the full dataset, i.e., points are randomly sampled on x and t regular grids,

where N is chosen from a log10 spaced grid: N = 102, 102.2, · · · ,N [1], see the blue
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points in Fig. 6.2(a). By applying the PDE identification methods to these subsets

and evaluating their success rates, the smallest sample size required for reliable

identification of each PDE can be determined.

6.2.2 Success Rates in Identifying Canonical PDEs

To evaluate the impact of different SNRs and data sizes on the method, the uncer-

tainty of model identification caused by random sampling is measured. To accom-

plish this, 100 unique datasets corresponding to different SNRs and N values are

created at each point on the grid. For each dataset, the identification accuracy is

quantified with the success rate, η = #correct/100, where #correct represents the

number of times the model correctly identifies all active terms, i.e., the identified

equation has no missing or extra terms. This accuracy assessment ignores small

differences between theoretical and empirical coefficients, such as a theoretical value

of 0.1 compared to an estimated value of 0.098. Figures from 6.3 to 6.16 illustrate

these results for the Burgers, Cable, Navier-Stokes, reaction-diffusion, transport,

heat, advection-diffusion, KdV, KS, QHO, and NLS equations.

ARGOS-RAL identifies Burgers, cable, Navier-Stokes, reaction-diffusion, and

advection-diffusion equations, achieving a success rate of 100% when the SNR ex-

ceeds 30 dB (see Fig. 6.3, 6.4, 6.5, 6.6 and 6.9). However, accurately detecting

specific equations requires a high SNR, particularly for the QHO, KdV, transport,

and diffusion equations. The KdV and KS equations, which involve third-order and

fourth-order partial derivatives, respectively, present challenges due to the significant

biases in numerical approximations of these derivatives [142], resulting in datasets

unsuitable for system identification with sparse regression. Sparse regression within

the real number domain for the QHO and NLS is implemented by applying the

transformation shown in Section 6.1.3. This transformation expands the candidate

library Θ from nm × p to 2nm × 2p, effectively quadrupling its size and poten-

tially leading to high correlations between the variables in Θ. The transport and

diffusion equations, containing only terms ux and uxx respectively, exhibit high cor-

relation with their correlated terms in the library, such as {ux, uux} and {uxx, uuxx},

which hinders the effectiveness of ℓ1-norm shrinkage regression in identifying correct
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terms [64].

Figures from 6.3 to 6.16 illustrate that ARGOS-RAL achieves a higher suc-

cess rate than STRidge in identifying PDEs with limited data points. ARGOS-

RAL consistently identifies a significant number of PDEs using as few as 1000 data

points, maintaining a success rate above 80%. However, some equations, such as the

reaction-diffusion and KdV equations, require larger sample sizes of approximately

104 and 103.8 data points, respectively, for reliable identification. ARGOS-RAL is

thus demonstrated as a consistent and efficient method for PDE identification with

non-uniformly sampled and noiseless datasets.

ARGOS-RAL shows a remarkable ability to identify PDEs accurately and con-

sistently across a wide range of SNRs and sample sizes. Its success rate improves as

the SNR and sample size increase, reaching 100% when both values are sufficiently

large. This trend highlights the robustness of ARGOS-RAL in handling various data

conditions and underscores its effectiveness in identifying PDEs, even when faced

with varying levels of data quality and quantity. However, in certain scenarios,

STRidge [4] with specific dtol thresholds exceeds the performance of ARGOS-RAL.

For instance, STRidge achieves higher success rates in identifying Navier-Stokes

and reaction-diffusion equations at a 30 dB SNR, using dtol settings of 2 and 10,

respectively, see Fig. 6.5(b) and 6.6(b). Moreover, STRidge with dtol = 2 is more

proficient in identifying the quantum harmonic oscillator and the transport equation

with an SNR lower than 52 dB, see Fig. 6.13(b) and 6.7(b), respectively. These

results from the SNR and N experiments reveal that using a single fixed threshold in

STRidge can lead to performance variability depending on the input data, highlight-

ing the difficulty of selecting an appropriate dtol threshold without prior knowledge

of the system. This variability underscores the sensitivity of STRidge to specific

threshold settings, which can impact its consistency across different datasets. Over-

all, STRidge surpasses ARGOS-RAL in identifying simpler PDEs, such as the trans-

port and diffusion equations, see Fig. 6.7 and 6.8.

The following parts will show each example in detail, including how to solve these

PDEs and how the success rate changes. The Fourier spectral method is employed to

solve the Burgers, Cable, reaction-diffusion, advection-diffusion, transport, diffusion,
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and Kuramoto-Sivashinsky (KS) systems; thus, their boundary conditions are the

periodic boundary conditions.

Burgers equation

Burgers equation can be derived from the Navier-Stokes equation for the velocity

field by dropping the pressure gradient term. Hence, the Burgers equation ignores

the effects of turbulence in the system and can be converted to linear form by the

Cole-Hopf transformation [168]. Here, the Fourier spectral method [169, pg.63-69]

with ode45 in MATLAB is used to solve the Burgers equation. The spatial points

x ∈ [−8, 8] with m = 256, the time-steps t ∈ [0, 10] with n = 101, and the initial

condition is a Gaussian function: exp (−(x+ 2)2). Burgers equation is:

ut = −uux + 0.1uxx. (6.3)

In analysing noisy effects, Fig. 6.3(b), backward stepwise selection illustrates the

best results when identifying the Burgers equation for each SNR value. It begins to

identify the correct equation when SNR is 2 dB, although the success rate is 3%.

As SNR increases, the backward stepwise selection is more likely to find the correct

equation and reach a 100% success rate at a 24 dB SNR. Furthermore, ARGOS-

RAL starts identifying the correct equation when SNR is larger than 10 dB, and the

success rate increases to 100% at SNR = 22 dB. However, STRidge with different

dtol has a fluctuating performance.

In sampling data analysis, Fig. 6.3(c), backward stepwise selection outperforms

others. The performance of ARGOS-RAL ranks second, which has a 73% success

rate at N = 102 and increases to 100% at N = 103.2. The success rates of STRidge

fluctuate below 25%.

Cable equation

The cable equation describes the electrical behaviour of a nerve axon or any other

cable-like structure in biological systems, especially the electrical circuit of current

flow and voltage change both within and between neurons. The equation is derived
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Figure 6.3: Success rates of ARGOS-RAL, STRidge, and the backward stepwise
selection in identifying Burgers equation. (a) shows the PDE solution with noiseless
data. (b) and (c) illustrate the success rates for different SNRs and sample sizes,
respectively. For each success rate of SNR in (b), 100 random noise sets are added
to the PDE solution (a). For each success rate of N in (b), 100 noiseless datasets are
randomly sampled from the PDE solution (a). The hyperparameter dtol in STRidge
is varied to be 0.2, 2, and 10.

from a circuit model of the membrane and its intracellular and extracellular space:

λ2∂
2V

∂x2 = τ
∂V

∂t
+ V where λ =

√
rm

re + ra

and τ = rmcm, (6.4)

where λ and τ are all set to be one in this test. It is an important PDE in biophysical

studies, understanding how electrical signals are affected in diseases and disorders.

Identifying the cable equation helps researchers diagnose these negative conditions

by checking changes in the capacitances cm, resistances rm, and axial resistance

ra, re. The cable equation is solved using odeint in Python by the Fourier spectral

method with x ∈ [−4, 4] with ∆x = 0.1, t ∈ [0, 5] with ∆t = 0.01, and the initial

condition is a Gaussian function: exp (−x2).

In SNR and N tests, Fig. 6.4(b) and (c), backward stepwise selection performs
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Figure 6.4: Success rates of ARGOS-RAL, STRidge, and the backward stepwise
selection in identifying the cable equation. (a) shows the PDE solution with noiseless
data. (b) and (c) illustrate the success rates for different SNRs and sample sizes,
respectively. For each success rate of SNR in (b), 100 random noise sets are added to
the PDE solution (a). Results with SNR smaller than 10 dB are removed because the
success rates are all zero. For each success rate of N in (b), 100 noiseless datasets are
randomly sampled from the PDE solution (a). The hyperparameter dtol in STRidge
is varied to be 0.2, 2, and 10.

the best, following ARGOS-RAL at the second. As the SNR increases, Fig. 6.4(b),

methods (except STRidge with dtol = 2) more frequently identify the correct cable

equation. Particularly, backward stepwise selection maintains a 100% success rate

when SNR is larger than 16 dB. The success rate of ARGOS-RAL exceeds 80%

when SNR is larger than 22 dB. All STRidge methods require SNR greater than

24 dB to identify the correct equation. Figure 6.4(c) shows that backward stepwise

selection and ARGOS-RAL have consistent success rates. When there are only 100

sample points, backward stepwise selection can always (100%) identify the cable

equation, and ARGOS-RAL’s success rate is 94%. The success rates of STRidge

with dtol = 2 and 10 vary dramatically, while the success rate of STRidge with

dtol = 0.2 maintains at 100% when the sample size is larger than 104.
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Navier-Stokes equation

The Navier-Stokes equations describe the two-dimensional fluid flow past a circu-

lar cylinder. The Immersed Boundary Projection Method (IBMP) is employed to

simulate the Navier-Stokes equations [170, 171]:

∂ω

∂t
+ (u · ▽)ω = 1

Re ▽2 ω, u = (u, v), Re = 100 (6.5)

ωt = 0.01ωxx + 0.01ωyy − uωx − vωy (6.6)

Here are some parameter settings: the Reynolds number is 100, x ∈ [0, 9] with 449

space points, y ∈ [0, 4] with 199 space points, and t ∈ [300, 330] with 151 time

points. Hence, the simulated data contains approximately 13.5 million points. The

boundary condition for the IBPM is the no-slip boundary condition.

Constructing the candidate library Θ poses computational challenges for this

large dataset because it costs too much RAM space and computing time (exceeding

Durham Hamilton HPC usage limits) to calculate the derivatives (∂t, ∂x and ∂y) and

find the Savitzky-Golay parameters. Thus, 300,000 points are randomly sampled,

consisting of 60 different snapshots and 5,000 spatial points in each snapshot within

the red rectangular area, see Fig. 6.5(a). Algorithm 2 is then applied to calculate

the derivatives for these sampled points. Therefore, the derivatives and candidate

library are calculated within the subset of approximately 1.67% of all data.

Figure 6.5 shows backward stepwise selection is the best identification method,

which always has the highest success rate. However, if users do not know the active

terms of the equation, ARGOS-RAL will be the best alternative because it con-

sistently identifies the correct equation with high frequencies at each SNR value,

Fig. 6.5(b), and sample size, Fig. 6.5(c). Although STRidge with dtol = 10 has

robust results and outperforms ARGOS-RAL at SNR = 20 dB, it requires more

than 104.6 data points to begin the identification. Furthermore, STRidge with other

dtol values shown in Fig. 6.5 cannot consistently or fail to find the correct equation.

Interestingly, when SNR is smaller than 16 dB, none of the shown algorithms can

identify the Navier-Stokes equation.
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Figure 6.5: Success rates of ARGOS-RAL, STRidge, and the backward stepwise
selection in identifying the Navier-Stokes equation. (a) shows the PDE solution
with noiseless data. (b) and (c) illustrate the success rates for different SNRs and
sample sizes, respectively. For each success rate of SNR in (b), 100 random noise sets
are added to the PDE solution (a), and 300,000 data points are randomly sampled
for the analysis. Results with SNR smaller than 10 dB are removed because the
success rates are all zero. For each success rate of N in (b), 100 noiseless datasets
are randomly sampled from the PDE solution (a). The hyperparameter dtol in
STRidge is varied to be 0.2, 2, and 10.

Reaction-diffusion equation

Reaction-diffusion systems describe pattern-forming systems widely used in many

natural phenomena. This dynamic model was initially applied in chemistry and

extended to biology, geology, physics, and ecology. Reaction-diffusion systems, such

as spots on the skins, zigzags, spiral waves, and rolls, drive many periodic patterns.

The following analysis considers the λ− ω systems:

ut = 0.1uxx + 0.1uyy + u− uv2 − u3 + v3 + u2v (6.7a)

vt = 0.1vxx + 0.1vyy + v − uv2 − u3 − v3 − u2v (6.7b)
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This reaction-diffusion equation produces spiral waves with periodic boundaries

in a two-dimensional space, following the simulation method in [4] to generate the

data of the reaction-diffusion equation. The space grid x, y ∈ [−10, 10] with 512 ×

512, and the time-steps t ∈ [0, 10] with 201 points. Therefore, the simulated data

have a grid with 512 × 512 × 201 = 52690944 points. To speed up the computation

time, 15000 (about 0.28%) points are randomly sampled from the whole dataset with

5000 spatial points and 30 time points for further analysis. Figure 6.6(a) illustrates

the simulated Reaction-Diffusion equation at t=0.45. The candidate library contains

derivatives terms (at most 2nd order and calculated via Algorithm 2), polynomial

terms (at most 3rd order) and all interactions. Therefore, the candidate library has

110 candidates.

When analysing the noisy effect, 100 sampled datasets are used to calculate

the probability of correct identification (success rate) at each SNR. However, using

the automated Savitzky-Golay filter to calculate partial derivatives and build one

candidate library with 150,000 points requires about 18 hours with 18 CPU cores

under parallel computing, so it is computationally expensive to build 100 candidate

libraries. Therefore, the sample sizes are enlarged to 300,000 (5000 spatial points

and 60 time points) and then subsampled 150,000 points from the parent sampled

dataset.

For the noisy data analysis, Fig. 6.6(b), backward stepwise selection tolerates the

largest noise, which can 100% identify the system when SNR ≥ 26 dB. ARGOS-RAL

starts to identify the system at SNR = 30 dB and can 100% identify the system

when SNR ≥ 34dB. Furthermore, STRidge with dtol = 2 and 10 has the same results.

They begin identifying the correct equation at SNR = 30 dB and keep it at 100%

after that SNR value. However, the success rate for STRidge with dtol = 0.2 waves

when SNR ≥ 32 dB.

For data size analysis, Fig. 6.6(c), backward stepwise selection outperforms oth-

ers. It requires only 100 points to reach a 61% success rate and keep at 100% when

data have more than 102.6 (about 400) points. ARGOS-RAL reaches and keeps a

100% success rate when sampled data sizes are larger than 10,000. STRidge with

dtol = 0.2 performs the best among other dtol values, which has an 82% success rate
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Figure 6.6: Success rates of ARGOS-RAL, STRidge, and the backward stepwise
selection in identifying the reaction-diffusion equation. (a) shows the PDE solution
with noiseless data. (b) and (c) illustrate the success rates for different SNRs and
sample sizes, respectively. For each success rate of SNR in (b), 100 random noise sets
are added to the PDE solution (a), and 150,000 data points are randomly sampled
for the analysis. Results with SNR smaller than 20 dB are removed because the
success rates are all zero. For each success rate of N in (b), 100 noiseless datasets
are randomly sampled from the PDE solution (a). The hyperparameter dtol in
STRidge is varied to be 0.2, 2, and 10.

at N = 10,000 and reaches 100% when more than 104.2 data points are sampled.

Transport equation

The transport equation, Eq. (6.8), is a fundamental PDE in science and engineering,

describing the evolution of a scalar quantity or a vector field in space and time. The

analytic solution, Eq. (6.9), is employed with c = 3 to solve the equation and get
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the data.

ut = cux, c > 0 (6.8)

u(t, x) = exp(−(x+ ct)2) (6.9)

The identification results are shown in Fig. 6.7. All methods have 100% success

rates in identifying noiseless data. In noisy data analysis, backward stepwise selec-

tion outperforms other methods. Although all STRidge methods have higher noise

tolerance than ARGOS-RAL, their success rates are inconsistent, fluctuating with

SNR increases. ARGOS-RAL has a robust success rate, but it starts identifying the

correct equation when SNR is larger than 56 dB.

Figure 6.7: Success rates of ARGOS-RAL, STRidge, and the backward stepwise
selection in identifying the transport equation. (a) shows the PDE solution with
noiseless data. (b) and (c) illustrate the success rates for different SNRs and sample
sizes, respectively. For each success rate of SNR in (b), 100 random noise sets are
added to the PDE solution (a). Results with SNR smaller than 20 dB are removed
because the success rates are zero for ARGOs-RAL and STRidge. For each success
rate of N in (b), 100 noiseless datasets are randomly sampled from the PDE solution
(a). The hyperparameter dtol in STRidge is varied to be 0.2, 2, and 10.
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Diffusion equation

The diffusion (heat) equation, Eq. (6.10), holds paramount significance in diverse

scientific and engineering domains, such as solid-state physics, materials science,

and environmental science, due to its ability to elucidate the fundamental process

of heat diffusion. The equation is given by

ut = kuxx, (6.10)

where k is a positive number. Identifying this equation enables engineers to gain

profound insights into heat conduction, thermal conductivity, and temperature-

dependent phenomena in solids and other materials. Here, the analytic solution

is used to get the data.

u (t, x) = 6 sin
(πx
L

)
e−k( π

L)2
t, k = 10 (6.11)

The success rate plots in Fig. 6.8(b) show that all methods can identify noisy

data with high SNR. Particularly, backward stepwise selection tolerates more noise

than other methods. When SNR is larger than 42 dB, backward stepwise selection

starts identifying the correct equation, while STRidge with dtol = 10 requires SNR

greater than 46 dB to identify the equation. In the sample size test, Fig. 6.8(c), only

STRidge with dtol = 0.2 performs a decreasing trend as the sample sizes increase,

while other methods have a nearly 100% success rate.

Interestingly, ARGOS-RAL archives a 100% success rate in the sample size test

of both transport and diffusion equations, while the success rate is almost zero

in the SNR tests. However, a small noise corruption, i.e., SNR > 56 dB in the

transport equation and SNR > 60 dB in the diffusion equation, makes it difficult for

the recurrent adaptive lasso in ARGOS-RAL to penalise extra terms and select the

correct ones. Furthermore, the PDE solutions (i.e., the input data) also influence

the identification results. Here, the transport and diffusion equations are solved

analytically with specific initial and boundary conditions. If these conditions are

changed or numerical solvers are used, the solutions of these equations will differ

from the ones currently used. As the input datasets change, ARGOS-RAL may
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Figure 6.8: Success rates of ARGOS-RAL, STRidge, and the backward stepwise
selection in identifying the diffusion equation. (a) shows the PDE solution with
noiseless data. (b) and (c) illustrate the success rates for different SNRs and sample
sizes, respectively. For each success rate of SNR in (b), 100 random noise sets are
added to the PDE solution (a). Results with SNR smaller than 40 dB are removed
because the success rates are all zero. For each success rate of N in (b), 100 noiseless
datasets are randomly sampled from the PDE solution (a). The hyperparameter dtol

in STRidge is varied to be 0.2, 2, and 10.

tolerate more noise in the SNR test.

Advection-diffusion equation

The advection-diffusion equation (also known as convection-diffusion) combines both

advection and diffusion terms in the system. It describes the transport and disper-

sion of quantities, such as temperature, the concentration of a substance, or fluid

velocity in science and engineering. The equation has the following form:

ct = Dcxx − ucx. (6.12)

This equation is solved by odeint in Python with the Fourier spectral method. For
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the solution, D = 1, u = 1, x ∈ [−10, 10] with ∆x = 0.1, t ∈ [0, 10] with ∆t = 0.01,

and the initial condition is a Gaussian function: exp (−(x+ 2)2).

The identification results are shown in Fig. 6.9 with backward stepwise selection

performs the best in both SNR and N tests. ARGOS-RAL has a consistent success

rate with the increase of SNR and sample size, outperforming the STRidge. In noisy

data, it starts identifying the correct equation from SNR is 14 dB and reach 100%

success at SNR = 26 dB. In the sampled data test, it has an 83% success rate when

only 100 points are sampled and can 100% identify the correct equation when there

are 102.6 points.

STRidge with dtol = 0.2 has a consistent success rate in the SNR test, while the

rates for the other two fluctuate. Although STRidge with dtol = 2 is better than

ARGOS-RAL at SNR = 24 and 26 dB, the success rate drops to zero at SNR = 34

dB. The success rate of STRidge with dtol = 10 reaches to 100% at SNR = 30 dB,

but it dramatically drops from SNR = 36 dB. In the sampled data test, all STRidge

fluctuate irregularly. Overall, backward stepwise selection and ARGOS-RAL show

robust results in identifying the advection-diffusion equation with SNR and sample

sizes varying.

Korteweg–De Vries equation

The Korteweg–De Vries (KdV) equation is a nonlinear PDE, describing the travel

of waves on shallow water surfaces:

ut = −6uux − uxxx. (6.13)

In the solution of the KdV equation, the travelling wave is linear when waves are

isolated, while they exhibit nonlinearity when interacted. However, because of the

dependence of wave velocity on wave amplitude, any solution with multiple amp-

litudes will exhibit nonlinear behaviour regardless of the interaction.
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Figure 6.9: Success rates of ARGOS-RAL, STRidge, and the backward stepwise
selection in identifying the advection-diffusion equation. (a) shows the PDE solution
with noiseless data. (b) and (c) illustrate the success rates for different SNRs and
sample sizes, respectively. For each success rate of SNR in (b), 100 random noise sets
are added to the PDE solution (a). For each success rate of N in (b), 100 noiseless
datasets are randomly sampled from the PDE solution (a). The hyperparameter
dtol in STRidge is varied to be 0.2, 2, and 10.

The noiseless data is solved through a two-soliton solution [172, pg.858]:

w(x, t) = −2 ∂2

∂x2 ln
(
1 +B1e

θ1 +B2e
θ2 + AB1B2e

θ1+θ2
)

θ1 = a1x− a3
1t, θ2 = a2x− a3

2t, A =
(
a1 − a2

a1 + a2

)2

,

(6.14)

where a1, a2, B1, and B2 are arbitrary constants, but they are set a1 = 0.5, a2 = 1,

B1 = 1, B2 = 5. The timesteps is set to 201 (n = 201) t ∈ [0, 20], and spatial points

is set 512 (m = 512), x ∈ [−30,−30]. The Dirichlet boundary condition, u(x, t) = 0

at x = ±∞, is applied.

The identification results in Fig. 6.10(b) show that ARGOS-RAL has a more

consistent success rate than STRidge. ARGOS-RAL can identify the equation when
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SNR ≥ 50 dB for noisy data or N ≥ 103.8 for noiseless data. Although STRidge

with dtol = 0.2 performs better than ARGOS-RAL at SNR = 48 dB, the success

rate drops at SNR = 54 and 56 dB. STRidge with dtol = 2 has a 100% success rate

only at SNR = 50, 52, 54 dB, whereas the success rates for dtol = 10 are zero.

Figure 6.10: Success rates of ARGOS-RAL, STRidge, and the backward stepwise
selection in identifying the KdV equation. (a) shows the PDE solution with noiseless
data. (b) and (c) illustrate the success rates for different SNRs and sample sizes,
respectively. For each success rate of SNR in (b), 100 random noise sets are added to
the PDE solution (a). Results with SNR smaller than 40 dB are removed because the
success rates are all zero. For each success rate of N in (b), 100 noiseless datasets are
randomly sampled from the PDE solution (a). The hyperparameter dtol in STRidge
is varied to be 0.2, 2, and 10.

Figure 6.10(c) illustrates that backward stepwise selection, ARGOS-RAL, and

STRidge with dtol = 0.2 can identify the noiseless data of the KdV equation. Back-

ward stepwise selection finds the correct equation when the dataset contains only

100 data points. Although ARGOS-RAL has a 10% success rate when N = 100, it

drops and suddenly jumps to 100% at N = 103.8. Furthermore, only STRidge with

dtol = 0.2 has a 100% success rate when data sizes are larger than 104.2.
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Kuramoto-Sivashinsky equation

The Kuramoto-Sivashinsky (KS) equation is used to describe the complex spatial-

temporal dynamics in extended systems driven far from equilibrium by intrinsic

instabilities [173]. It has been applied to model phenomenons, including instabilit-

ies of dissipative trapped ion modes in plasmas, instabilities in laminar flame fronts,

phase dynamics in reaction-diffusion systems, and fluctuations in fluid films on in-

clines [174].

The KS equation is a nonlinear PDE with nonlinear wave-breaking dynamics

ut + uux = 0. The second-order partial differentiate term uxx describes the long-

wavelength instabilities, whereas the fourth-order provides the stabilising regular-

isation. Equation (6.15) shows the KS equation. Within the generated data, the

space x ∈ [0, 100] with m = 1024, and the time-steps t ∈ [0, 100] with n = 251.

ut = −uux − uxx − uxxxx (6.15)

Figure 6.11 shows that backward stepwise selection has the most consistent and

accurate results. In noisy data tests, Fig. 6.11(b), only backward stepwise selection

has 100% success rates when SNR ≥ 34 dB. Although STRidge with dtol = 10 has

a 45% success rate at SNR = 34 dB, others all fail to identify the KS equation.

In identifying noiseless data, Fig. 6.11(c), backward stepwise selection has a 99%

success rate when N = 100 and keeps 100% after that value. The performances of

other methods fluctuate without consistent success rates.

Figure 6.12 shows that the adaptive lasso can find the correct model with specific

λ. Under the given case, i.e., a random sampled noisy dataset with SNR = 36 dB,

the correct λ value should be located between 26.96 (about e3.29) and 29.59 (about

e3.39). However, the current regularisation parameter’s finding methods (10-folder

cross-validation and the Pareto curve) cannot give the appropriate λ value. The λ

values from both methods are lower than the correct λ range. The best λ value from

10-folder cross-validation is 0.019 (about e−3.96), while the best λ for the Pareto

curve is 0.453 (about e−0.79). Therefore, using the adaptive lasso with 10-folder

cross-validation and the Pareto curve cannot identify the correct KS equation.
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Figure 6.11: Success rates of ARGOS-RAL, STRidge, and the backward stepwise
selection in identifying the KS equation. (a) shows the PDE solution with noiseless
data. (b) and (c) illustrate the success rates for different SNRs and sample sizes,
respectively. For each success rate of SNR in (b), 100 random noise sets are added to
the PDE solution (a). Results with SNR smaller than 20 dB are removed because the
success rates are all zero. For each success rate of N in (b), 100 noiseless datasets are
randomly sampled from the PDE solution (a). The hyperparameter dtol in STRidge
is varied to be 0.2, 2, and 10.

Quantum Harmonic Oscillator

The quantum harmonic oscillator (QHO) describes the parabolic potential of a har-

monic oscillator in quantum mechanics. This equation simulates the temporal de-

velopment of the wave function related to a particle in the parabolic potential. It

provides the distribution function of the particle’s position at any moment by tak-

ing the squared magnitude. The energy levels of a quantum harmonic oscillator are

quantised, meaning that they can only take on specific, discrete values. Addition-

ally, even if a statistical distribution is formed from several experiments, it will be

devoid of details about the intricate phase of the wave function. The equation used
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Figure 6.12: The coefficients with different regularisation parameters λ of using the
adaptive lasso to identify the KS equation. The used case is a noisy dataset with
SNR = 36 dB. By varying λ, the mean squared errors from 10-folder cross-validation
are shown in (a), and the estimated coefficients are shown in (b). The top axis shows
the number of non-zero terms.

in this work is:

ut = 1
2iuxx − iuV = 1

2iuxx − x2

2 iu. (6.16)

The operator splitting method with Fourier transform is used here to solve the QHO

equation numerically. The time domain is t ∈ [0, 10] with ∆t = 0.025, and the space

domain is x ∈ [−7.5, 7.5] with ∆x = 15
512 with a Gaussian initial condition.

Figure 6.13 shows that backward stepwise selection is the best method for finding

the QHO equation, while ARGOS-RAL succeeds in dealing with noiseless data. In

noisy data, Fig. 6.13(b), only backward stepwise selection consistently and 100%

identifies the correct equation when SNR is greater than 16 dB. However, the success

rates for STRidge with all dtol values are waving from SNR larger than 18 dB. For

noiseless data, Fig. 6.13(c), both backward stepwise selection and ARGOS-RAL have

100% success rates. STRidge with dtol = 0.2 shows a decreasing trend, dtol = 10

illustrates a fluctuation performance, and dtol = 2 has zero success rate.

Figure 6.14 shows that the correct model is contained in the searching path of
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Figure 6.13: Success rates of ARGOS-RAL, STRidge, and the backward stepwise
selection in identifying the QHO equation. (a) shows the absolute value of the PDE
solution with noiseless data. (b) and (c) illustrate the success rates for different
SNRs and sample sizes, respectively. For each success rate of SNR in (b), 100
random noise sets are added to the PDE solution (a). Results with SNR smaller
than 40 dB are removed because the success rates are zero for ARGOS-RAL and
STRidge with dtol = 0.2 and 10. For each success rate of N in (b), 100 noiseless
datasets are randomly sampled from the PDE solution (a). The hyperparameter
dtol in STRidge is varied to be 0.2, 2, and 10.

the adaptive lasso when SNR = 28 dB. The correct λ value should be taken between

2408.79 (about e7.79) and 16993.55 (about e9.74). However, 10-folder cross-validation

and the Pareto curve estimate smaller λ values than the correct range. The best λ

value from 10-folder cross-validation is 5.19 (about e1.65), while it is 589.85 (about

e6.38) for the Pareto curve. Therefore, using the adaptive lasso with 10-folder cross-

validation and the Pareto curve cannot identify the correct QHO equation.

Nonlinear Schrodinger equation

The nonlinear Schrodinger (NLS) equation appears to be one of the universal equa-

tions, describing quasi-monochromatic wave evolution with slowly varying packets.
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Figure 6.14: The coefficients with different regularisation parameters λ of using the
adaptive lasso to identify the QHO equation. The used case is a noisy dataset with
SNR = 28 dB. By varying λ, the mean squared errors from 10-folder cross-validation
are shown in (a), and the estimated coefficients are shown in (b). The top axis shows
the number of non-zero terms.

It is widely applied in many fields, such as light propagation in nonlinear optical

fibres, plasma waves, and Bose-Einstein condensates. The NLS equation is:

ut = 1
2iuxx + i|u|2u. (6.17)

In the simulation, the spatial points are set in this way: x ∈ [−5, 5],m = 512;

time-steps t ∈ [0, π], n = 501. The initial condition is the Gaussian function. Since

the function refers to complex numbers, terms depending on the magnitude of the

solution, such as |u|, are added to the candidate library, and Eq. (6.2) is used to

transform the regression in complex numbers to real numbers.

Figure 6.15 shows that backward stepwise selection performs the best, having the

highest and the most consistent success rate. For noisy data, Fig. 6.15(b), backward

stepwise selection begins identifying the correct equations with a 96% success rate at

SNR = 24 dB and keeps at 100% when SNR ≥ 28 dB. STRidge with dtol = 500 can

100% identify the NLS equation when SNR ≥ 32 dB. For noiseless data, Fig. 6.15(c),
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Figure 6.15: Success rates of ARGOS-RAL, STRidge, and the backward stepwise
selection in identifying the NLS equation. (a) shows the absolute value of the PDE
solution with noiseless data. (b) and (c) illustrate the success rates for different
SNRs and sample sizes, respectively. For each success rate of SNR in (b), 100
random noise sets are added to the PDE solution (a). Results with SNR smaller
than 20 dB are removed because the success rates are all zero. For each success rate
of N in (b), 100 noiseless datasets are randomly sampled from the PDE solution (a).
The hyperparameter dtol in STRidge is varied to be 0.2, 2, and 10.

backward stepwise selection has a 98% success rate when 100 data points are used,

and the rate keeps at 100% as data sizes increase. STRidge with dtol = 500 can

consistently identify the NLS equation when data sizes are larger than 104.8. For

ARGOS-RAL and STRidge with other dtol values, the performance is not robust,

and success rates fluctuate and are always lower than 50%.

Figure 6.16 shows that the correct model can be found by the adaptive lasso when

identifying the noisy dataset with SNR = 26 dB. The correct λ value in this case

should be from 1826.726 (about e7.51) and 11742.328 (about e9.37). However, the

current regularisation parameter’s finding methods, 10-folder cross-validation and

the Pareto curve, estimate values lower than the correct λ range, leading to non-

parsimonious models. The best λ value from 10-folder cross-validation is 17.437
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Figure 6.16: The coefficients with different regularisation parameters λ of using the
adaptive lasso to identify the NLS equation. The used case is a noisy dataset with
SNR = 26 dB. By varying λ, the mean squared errors from 10-folder cross-validation
are shown in (a), and the estimated coefficients are shown in (b). The top axis shows
the number of non-zero terms.

(about e2.86), while the best value for the Pareto curve is 531.185 (about e6.28).

Therefore, using the adaptive lasso with 10-folder cross-validation and the Pareto

curve cannot identify the correct NLS equation.

6.2.3 Computational Costs

The computing time for all examined PDEs was analysed to demonstrate the compu-

tational cost of ARGOS-RAL. All evaluations were performed on a high-performance

computing cluster, known as Hamilton in Durham, equipped with 120 standard com-

pute nodes, each featuring 128 CPU cores (2x AMD EPYC 7702) and 256 GB RAM

(246 GB available to users). The multi-core processing time was then converted to

a single-core equivalent.

Figure 6.17 illustrates the computational costs of ARGOS for the selected PDEs

as the data size (N) increases. Except for the Navier-Stokes and reaction-diffusion

equations, the solution grid size is lower than 105.2, causing some lines in the graph

to terminate. The computing times for identifying PDEs increase linearly with N ,
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Figure 6.17: Computational costs of ARGOS-RAL as sample size (N) increases for
noiseless PDE systems. We run all benchmarks using parallel processing and convert
them to total computing time on a single core. Circles and triangles are used for
PDEs with one and two spatial dimensions, and squares are for the complex-valued
quantum harmonic oscillator.

except for the quantum harmonic oscillator, a PDE containing complex-valued terms

whose candidate library is four times larger than those of real-coefficient PDEs, see

Eq. (6.2).

6.2.4 Robustness Analysis using White Gaussian Noise

To better understand the limits of identification algorithms, an extreme test on

a single spatial dimension was designed. This test effectively creates a situation

without valid data collection (σU = 0), equivalent to an SNR of negative infinity,

representing a dataset entirely composed of random noise. This scenario sets the

ultimate test stage for an algorithm: identifying dynamical systems without signal,

where success rates are expected to drop to zero. When faced with this condi-

tion, an effective algorithm should identify either a null model (with no coefficients)

or a dense model (with many terms from the candidate library). However, if the

algorithm incorrectly identifies canonical PDEs from pure white noise data, it indic-

ates that further improvements are needed to prevent such misidentifications and
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ensure the robustness of the method.

One hundred white Gaussian noise datasets are generated, each consisting of

2000 spatial (x) and 1000 temporal (t) data points, forming a matrix in R2000×1000.

To investigate the influence of noise variance on the identification process, three

Gaussian distributions with variances spanning three orders of magnitude are used:

N (0, 0.12), N (0, 1), and N (0, 102). The aim is to determine whether ARGOS-RAL

and STRidge can identify canonical PDEs under these noise conditions. Table 6.1

shows the percentages of different identified models. Based on the PDEs tested by

Rudy et al. [4] and this study, parsimonious models are defined as those having three

or fewer nonzero coefficients, suggesting they may correspond to specific physical

phenomena. In particular, three classic differential equations are highlighted: the

ODE ut = c1u
d, the transport equation ut = c2ux, and the heat equation ut = c3uxx.

In contrast, models with more than three nonzero coefficients are classified as non-

parsimonious, indicating that their coefficient vectors have a dense composition.

Table 6.1 and Fig. 6.18 demonstrate that as the standard deviation of the Gaus-

sian noise increases, both ARGOS-RAL and STRidge tend to identify more non-

parsimonious models, as indicated by the probability distributions of the number

of identified terms shifting into the shaded region of Fig. 6.18. This is the desired

behaviour when the input signal is pure white noise, as it is important to ensure that

the algorithms do not identify parsimonious models in such cases. The difference

in behaviour between the two methods is most apparent when the noise level is low

to moderate (σZ ≤ 1). In these cases, STRidge’s distributions are more spread out

and partially located in the parsimonious region, while ARGOS-RAL’s distributions

are more concentrated in the non-parsimonious region. This suggests that ARGOS-

RAL is more effective at avoiding the identification of parsimonious models when

the input signal is pure white noise with low to moderate noise levels. As the noise

level increases to σZ = 10, both ARGOS-RAL and STRidge consistently identify

non-parsimonious models, as evidenced by the concentration of their distributions

in the non-parsimonious region of Fig. 6.18. This indicates that both methods are

effective at avoiding the identification of parsimonious models when the input signal

is pure white noise with high noise levels.
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Table 6.1: Identified models from random noise by ARGOS-RAL and STRidge. The
maximums of different monomial and derivative orders in the candidate library are
from three to five. The parsimonious model is defined as the number of nonzero
coefficients that are less than or equal to three. The F-test is applied to each
identified model with the number of significant models (p-value < 0.05) shown in
the parentheses. Numbers without parentheses represent the identified models and
do not reject the null hypothesis of the F-test. The constant values c1, c2, c3 are
arbitrary numbers. The monomial order d in the ODE cell is a positive integer, of
which the maximum is the largest monomial order of the candidate library.

Candidate library
Parsimonious model (%) Non-

parsimonious
model (%)

ODE
ut = c1ud

Transport
ut = c2ux

Heat
ut = c3uxx

Others

sd = 0.1
STRidge (dtol=2)

(1, u, u2, . . . , u3uxxx) 4 (1) 3 2 (1) 82 (11) 9
(1, u, u2, . . . , u4uxxxx) 0 0 0 91 (10) 9 (2)
(1, u, u2, . . . , u5uxxxxx) 0 0 0 81 (11) 19 (1)

ARGOS-RAL
(1, u, u2, . . . , u3uxxx) 1 (1) 2 (1) 4 (2) 54 (29) 39 (23)
(1, u, u2, . . . , u4uxxxx) 0 2 (1) 3 (2) 63 (32) 32 (23)
(1, u, u2, . . . , u5uxxxxx) 0 0 0 34 (18) 66 (47)

sd = 1
STRidge (dtol=2)

(1, u, u2, . . . , u3uxxx) 4 (1) 4 4 (2) 69 (8) 19 (1)
(1, u, u2, . . . , u4uxxxx) 1 0 2 54 (7) 43 (10)
(1, u, u2, . . . , u5uxxxxx) 0 0 0 0 100 (18)

ARGOS-RAL
(1, u, u2, . . . , u3uxxx) 0 0 0 0 100 (16)
(1, u, u2, . . . , u4uxxxx) 0 0 0 0 100 (17)
(1, u, u2, . . . , u5uxxxxx) 0 0 0 0 100 (13)

sd = 10
STRidge (dtol=2)

(1, u, u2, . . . , u3uxxx) 0 0 0 0 100 (11)
(1, u, u2, . . . , u4uxxxx) 0 0 0 0 100 (4)
(1, u, u2, . . . , u5uxxxxx) 0 0 0 0 100 (12)

ARGOS-RAL
(1, u, u2, . . . , u3uxxx) 0 0 0 0 100 (12)
(1, u, u2, . . . , u4uxxxx) 0 0 0 0 100 (9)
(1, u, u2, . . . , u5uxxxxx) 0 0 0 0 100 (6)
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Figure 6.18: Number of nonzero terms identified from 100 random noise datasets
using different candidate function libraries. For each case, the number of nonzero
coefficients in the sparse regression is counted. The distribution of these counts
is displayed using dots for each of the 100 trials and summarised using box plots.
Each box plot shows the median (solid horizontal line), interquartile range (box),
and minimum and maximum values (whiskers) for the 100 trials. The optimal
algorithm should produce boxes located either at zero, indicating a null model, or
above four, representing a dense model. The box may span a wide range from four
to the maximum number of terms in the library.

6.3 Discussion

ARGOS-RAL is proposed to automatically tune algorithm hyperparameters, en-

abling the identification of closed forms of PDEs directly from data. ARGOS-RAL

offers several advantages over existing PDE identification methods. First, it auto-

mates the process of calculating partial derivatives and constructing the candid-

ate library, reducing manual intervention and streamlining the modelling process.

Second, the recurrent adaptive lasso employed by ARGOS-RAL provides a more

robust and efficient sparse regression technique compared to the STRidge used in

SINDy-based methods. This enables ARGOS-RAL to handle noisy and limited

data more effectively, as demonstrated in previous numerical experiments. Finally,
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the linearly increasing computing time indicates that ARGOS-RAL is an efficient

method, allowing users to parse large datasets.

ARGOS-RAL shares limitations with other library-based methods like SINDy [3,

4]. First, its effectiveness depends on including the correct governing terms in the

candidate library; their absence leads ARGOS-RAL to approximate the PDE with

available terms, yielding a non-sparse model. Second, ARGOS-RAL can identify

PDEs with non-linear predictors but requires prior knowledge of the function argu-

ments. For example, identifying sin(ωx) requires knowing the symbolic form ωx and

the numerical value of ω. Third, transforming the identification into a regression

problem requires knowing the response variables. ARGOS-RAL focuses on first-

order time derivatives [4, 175], but users must know if higher-order derivatives exist

in the true equation. This limitation also applies to reconstructing latent space

variables, thus limiting the application of ARGOS-RAL in this type of unknown

source problems [18]. Finally, while ARGOS-RAL provides a more computation-

ally efficient approach than ARGOS [1] by focusing on point estimates rather than

bootstrapping for confidence intervals, this comes at the cost of losing uncertainty

quantification for the estimated coefficients.

When applying ARGOS-RAL to different scientific domains, several challenges

arise. One key challenge is determining the appropriate range of candidate terms

to include in the library, which often requires domain expertise. In some fields, the

governing equations may involve complex nonlinearities or unconventional terms

that are difficult to anticipate without prior knowledge. Another challenge is the

computational cost of handling high-dimensional data, which is common in many

scientific applications. As the number of variables and the complexity of the PDE

increase, the size of the candidate library grows exponentially, leading to increased

computational demands for sparse regression.

Despite these challenges, ARGOS-RAL offers a promising framework for auto-

mating PDE identification in various scientific domains. By leveraging sparse regres-

sion techniques and automating key steps in the modelling process, ARGOS-RAL

has the potential to accelerate discovery and insight in fields ranging from physics

and engineering to biology and climate science.
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6.4 Other Shrinkage Regression Methods in Identi-

fying PDEs

The previous parts of this chapter, Section 6.2.2, have shown the success of using

the adaptive lasso in identifying PDEs from data. This part will illustrate the

failure of using lasso, elastic-net, and adaptive elastic-net (described in Section 2.4)

in identifying PDE. To simplify the illustration, the noiseless data from the Burgers

equation is used. The Burgers equation Eq. (6.3) has two active terms uux and

uxx, which should be found by the following methods: the lasso, the elastic-net, and

the adaptive elastic-net. The 10-folder cross-validation will be applied to find the

optimal regularisation parameter λ.

6.4.1 The Lasso
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Figure 6.19: The coefficients with different regularisation parameters λ of using the
lasso to identify the Burgers equation. By varying λ, the mean squared errors (MSE)
from 10-folder cross-validation are shown in (a), and the estimated coefficients are
shown in (b). The top axis shows the number of non-zero terms of the lasso estim-
ation.

Figure 6.19 shows that the correct model cannot be found by the lasso. When

λ is smaller than e−10, the lasso can find the correct active terms uux and uxx with
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the estimated coefficients to be -1 and 0.1, respectively. Meanwhile, it also finds

redundant terms, such as ux, with the estimated coefficients close to, but not equal

to, zero. Although when λ ranges between 0.0209 (about e−3.87) and 0.0505 (about

e−2.99), the lasso finds models containing only two terms: ux and uux, which are

incorrect (should be uxx and uux). Therefore, if users do not know the approximate

values of the coefficients, it is difficult to cut off the redundant terms and identify

the correct model.

6.4.2 The elastic-net

15 13 14 12 9 9 9 7 7 8 8 8 9 4 1

0.000

0.001

0.002

0.003

0.004

−16 −12 −8 −4
log(λ)

M
S

E

a

15 13 14 12 9 9 9 7 7 8 8 8 9 4 1

−1.00

−0.75

−0.50

−0.25

0.00

−16 −12 −8 −4
log(λ)

C
oe

ffi
ci

en
ts

b

Pareto Curve Cross−validation
u
ux

uxx

uxxx

u2

u2ux

u2uxx

u2uxxx

u3

u3ux

u3uxx

u3uxxx

uux

uuxx

uuxxx

Intercept

Figure 6.20: The coefficients with different regularisation parameters λ of using
the elastic-net with α = 0.5 to identify the Burgers equation. By varying λ, the
mean squared errors (MSE) from 10-folder cross-validation are shown in (a), and the
estimated coefficients are shown in (b). The top axis shows the number of non-zero
terms of the lasso estimation.

Figure 6.20 shows that the elastic-net cannot identify the correct equation. When

λ is smaller than e−12, it estimates coefficients to about -1 for uux and 0.1 for

uxx. However, the redundant terms are simultaneously found. As λ increases, most

coefficients are penalised close to, but not equal to, zero. However, the estimated

coefficients of u2ux, ux and u3ux fluctuate, and their values are -0.35, -0.13 and

-0.066 respectively, when λ ≈ e−5. Furthermore, when λ ≈ 0.033 (about e−3.41),

the correct term uxx is penalised to zero, while four extra terms, ux, u2ux, uuxxx

125



and u2uxxx, are still active in the equation. Therefore, even though users know the

approximate ranges of the correct terms, it is still difficult to apply a threshold to

manually attribute redundant terms to zero.

6.4.3 The adaptive elastic-net

Figure 6.21 shows that the adaptive elastic-net with the elastic-net mixing parameter

α = 0.5 finds the correct equation by using the Pareto curve. However, α is an

unknown parameter in real-world analysis and is tuned by cross-validation, which

always finds the optimal model with redundant terms.
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Figure 6.21: The coefficients with different regularisation parameters λ of using
the adaptive elastic-net to identify the Burgers equation. By varying λ, the mean
squared errors (MSE) from 10-folder cross-validation are shown in (a), and the
estimated coefficients are shown in (b). The top axis shows the number of non-zero
terms of the lasso estimation.

6.5 Stepwise Selection in Identifying PDEs

This section explains why backward stepwise selection with knowing the number of

active terms is used to identify PDEs. The following parts will show the results

of identifying Burgers equation from the standard forward, backward and hybrid

stepwise selection. As the success rates of forward and hybrid stepwise selection are
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zero, only the results of the noiseless dataset will be shown. Here, AIC, BIC and

adjusted R2 (see Section 2.2.2) are used to select the best model because these three

are the most popular criteria in statistics [33, pg.232].

Only backward stepwise selection (Fig. 6.22) contains the correct model in the

search path, while forward stepwise selection, Fig. 6.23 (a) and hybrid stepwise

selection, Fig. 6.23 (b) cannot find the correct model from their search path. How-
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Figure 6.22: Potential models (the top graph) and their goodness-of-fit criteria
(bottom three graphs) from the backward stepwise selection. In the top graph, red
rectangles represent the correct model, which should only contain two active terms
uux and uxx. The correct model is shown in red point, whereas the best models for
AIC, BIC and adjusted R2 are shown in brown points.

ever, the criteria graphs, including AIC, BIC, and adjusted R2, illustrate that the

best models of these three stepwise methods always contain redundant terms. The

best model of forward stepwise selection is the one with all terms, whereas the best

models of backward and hybrid stepwise selection contain 15 terms. Due to this
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problem, even though the correct model is a candidate model in the backward step-

wise selection, the correct one cannot be selected. To enable the stepwise selection

method in identifying PDEs, users need to determine how many active terms are in

the model and use backward stepwise selection to find the correct one.
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Figure 6.23: Potential models and their goodness-of-fit criteria of the (a) forward
and (b) hybrid stepwise selection. On the left graphs of panels (a) and (b), red
rectangles represent the correct model, which should only contain two active terms
uux and uxx. The best models for AIC, BIC and adjusted R2 are shown in brown
points on the right graphs.
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6.6 Summary

This chapter introduced ARGOS-RAL as an automatic framework for discov-

ering PDEs from data with limited prior knowledge.

• The method automates the calculation of partial derivatives using an

automatic Savitzky-Golay filter with Gaussian blur (Chapter 5), en-

abling the construction of the candidate library from data without manu-

ally tuning parameters. ARGOS-RAL then employs the recurrent ad-

aptive lasso, a sparse regression technique, to identify the active terms

in the PDE from the candidate library.

• ARGOS-RAL outperforms STRidge, which is used in SINDy, for most

test cases to identify canonical PDEs under varying noise levels and

sample sizes. Importantly, when given pure noise as input, ARGOS-RAL

correctly identifies either a dense model, avoiding the false discovery of

parsimonious physical PDEs, while STRidge has the same performance

when noise variation is large.

• The evaluation demonstrates ARGOS-RAL’s robustness to noisy and

non-uniformly sampled data in identifying canonical PDEs. This work

showcases the potential of combining statistics, machine learning, and

dynamical systems to accelerate scientific discovery by automatically

learning governing equations from data.
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CHAPTER 7

ARGOS Framework in Finding COVID-19 Transmission

Dynamics

In Chapter 6, ARGOS-RAL has been proposed to automatically extract canonical

PDEs from data. Although PDEs can model complex spatiotemporal dynamical

systems, ODEs are more frequently employed in practical applications, including

power systems [21], infectious disease dynamics [176], ecosystem evolution [177],

and biopharmacy [178], due to their relative simplicity and effectiveness. This pref-

erence underscores the importance of selecting appropriate mathematical tools to

tackle real-world challenges. In light of this, this chapter shifts focus to identifying

ODEs from a real-world dataset: finding the governing equations for the evolution

of the coronavirus disease 2019 (COVID-19) pandemic in the Chinese mainland.

This transition signifies that the ARGOS framework can be a candidate tool for

researchers to solve real-world problems.

Since the dawn of humanity, infectious diseases have been a constant presence,

significantly shaping the destinies of all countries in the world by evolving into local

epidemics or major pandemics. The COVID-19 pandemic, caused by the SARS-

CoV-2 (Severe Acute Respiratory Syndrome CoronaVirus 2) virus, marked the first

global pandemic in the digital age. Although the first case has yet to be found,
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Wuhan’s (Hubei, China) Municipal Health Commission reported the initial outbreak

in January 2020, identifying a cluster of pneumonia cases. To stop the spread of

the virus and protect people’s lives, Wuhan, a city with a population of ten million,

was placed under lockdown on January 23, 2020. Despite these measures, and

subsequent lockdowns in almost all Chinese cities, no one expected that this disease

would have spread globally. On 11 March 2020, the World Health Organization

(WHO) declared COVID-19 a pandemic. Following this, more countries, including

the United Kingdom and the United States, implemented their own lockdowns.

This unprecedented spread occurred despite what is arguably the most extensive

lockdown in history.

During the pandemic period, various groups worked together to overcome the im-

pacts caused by COVID-19. Doctors and nurses tried their best to rescue infected pa-

tients, biologists raced to find vaccines, and other scientists analysed the mechanics

of the spreading and provided suggestions to their country’s governments [19, 179–

181]. About three years later, humans finally overcame the pandemic. However,

ongoing research on COVID-19 is important to provide valuable references for sim-

ilar outbreaks that may occur in the future.

ARGOS-RAL focuses on identifying PDEs. However, when applied to ODE sys-

tems, such as the Lorenz and Lotka-Volterra, it penalises true terms. While the

original ARGOS is computationally expensive [182, 183], this chapter will analyse

COVID-19 data in mainland China using Bayesian ARGOS, a new ARGOS al-

gorithm with small computing costs, to identify ODEs. In Section 7.1, the identific-

ation method (Bayesian ARGOS), the COVID-19 dataset, and an initial assumption

of the dataset (the SIRD model) are all described. Section 7.2 illustrates the results

of the identified model. Section 7.3 discusses the practical significance and draw-

backs of the model and identification method. Section 7.4 summarises the whole

chapter.
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7.1 Methods and Materials

7.1.1 Bayesian ARGOS

Derivatives ẋ,
Initial candidate library Θ(0)

Θ(1)
ols

Modelols

Θ(1)
ridge

Modelridge

Derivatives ẋ
Trimmed candidate library Θ(2)

Posterior distribution of coefficients

Identified model

Adaptive lasso
with OLS weights

Adaptive lasso
with ridge weights

Adaptive lasso
with OLS weights

Adaptive lasso
with ridge weights

Minimum BIC

Bayesian regression

Bayesian inference

Figure 7.1: Process of Bayesian ARGOS. The process begins with the response
variable ẋ and the initial candidate library Θ(0). The adaptive lasso is then applied
with OLS and ridge regression weights, resulting in two candidate libraries, Θ(1)

ols and
Θ(1)

ridge. The adaptive lasso is implemented again to find Modelols and Modelridge from
the candidate terms in Θ(1)

ols and Θ(1)
ridge, respectively. The trimmed candidate library

Θ(2) is selected from these two models with the minimum Bayesian Information
Criterion (BIC). Next, Bayesian regression is performed on this trimmed candidate
library to obtain the posterior distribution of coefficients. Finally, Bayesian inference
is used to identify the final model.

Bayesian ARGOS enhances the ARGOS framework by integrating Bayesian in-

ference to replace the bootstrap resampling in the sparse regression algorithm. This

modification is depicted in Fig. 7.1, focusing specifically on the sparse regression
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component. Initially, the process applies the adaptive lasso with OLS and ridge

regression weights to identify two subsets, Θ(1)
ols and Θ(1)

ridge, from the preliminary

candidate library Θ(0). Subsequently, these subsets are refined through a second

round of the adaptive lasso, aiming to yield sparser models. This process is similar

to applying the recurrent adaptive lasso (Section 6.1) with OLS and ridge regres-

sion weights and only selecting the second model M2. As mentioned in Section 6.1,

applying the adaptive lasso more than once can significantly shrink the model di-

mensions.

The BIC is then employed to select the final candidate library Θ(2) between

models from twice adaptive lasso with ols weights (Modelols) and ridge weights

(Modelridge) based on the minimum BIC value. Instead of estimating the uncer-

tainty of coefficients by bootstrap confidence intervals, Bayesian ARGOS employs

Bayesian regression with independent Gaussian priors and Markov chain Monte

Carlo (MCMC) sampling to approximate the coefficients’ posterior distributions.

Here, all Gaussian priors use default settings in R’s rstanarm package, for which

the mean is zero and the standard deviation is 2.5. The final model determination

involves statistical inference on coefficients’ posterior distributions, for which the

95% credible intervals do not contain zero.

7.1.2 Meta Data information

All epidemic data are collected from daily notifications on the official website of

the National Health Commission of China, http://www.nhc.gov.cn/xcs/yqtb/

list_gzbd.shtml 1. The first COVID-19 notification published on the national

website was on 11 January 2020, and the last one ended on 24 December 2022.

From 11 January to 20 January 2020, all notifications only reported the epidemic in

Wuhan. After that, notifications were related to all provincial administrative regions

of mainland China. At the beginning, despite the inconsistent format, notifications

provided important details such as the cumulative number of confirmed cases, the

number of patients who have recovered and been discharged from hospitals, instances

1All notifications are in Chinese.
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of severe conditions, fatalities, close contact cases, individuals released from medical

observation, and those still under medical observation. Since 7 February 2020, the

uniform daily updates included more helpful information, such as new confirmed,

current confirmed, new suspected, current suspected, and new deaths.
To convert all notifications to analysable data, a Python script is used to extract

these numbers and create a table with 1078 observations. The first two years of
observations (see Fig. 7.2) are used to test Bayesian ARGOS’ capability to deal
with real-world data because data in this range is more stable than data from the
whole time range. The consolidated dataset contains information as follows.

• Date: the date publication;

• Daily new confirmed cases: the daily number of individuals with a positive
nucleic acid amplification test (NAAT) for SARS-CoV-2;

• Daily new suspected: the daily number of individuals with clinical symptoms
of COVID-19 infection but a negative SARS-CoV-2 NAAT;

• Daily new cured and discharged: the daily number of individuals who recover
from COVID-19, i.e., negative SARS-CoV-2 NAATs and no clinical symptoms,
after hospitalisation;

• New deaths: the daily number of individuals who die due to COVID-19;

• Current confirmed: the number of individuals who are confirmed cases but
exclude cured cases or deaths;

• Current suspected: the number of individuals who are suspected to be infected
by COVID-19, excluding confirmed cases;

• Current under medical observation: the number of individuals who are close
contacts of confirmed cases and monitored by health professionals;

• Cumulative confirmed: the total number of individuals who have tested pos-
itive for SARS-CoV-2, including cured cases or deaths;

• Cumulative cured and discharged: the total number of individuals who recover
from COVID-19;

• Cumulative deaths: the total number of deaths due to COVID-19.

Figure 7.2 shows the COVID-19 spread from 10 January 2020 to 10 January 2022.

The initial outbreak caused by the shortage of medical supplies and inappropriate
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Figure 7.2: COVID-19 spread data from 10 January 2020 to 10 January 2022. The
top panel shows daily new cases, including confirmed, suspected, cured and dis-
charged, and deaths. The middle panel presents current cases, including confirmed,
suspected, and under medical observation. The bottom panel illustrates cumulative
cases, including confirmed, cured and discharged, and deaths over the same period.

safeguards is clearly seen. After this, COVID-19 spread in the Chinese mainland

was controlled. All daily new cases were kept at a low level, and all cumulative

cases slowly increased, although the current under medical observation was waving.

Table 7.1 shows some summary statistics of COVID-19 data between 1 April 2020

and 10 January 2022. During this period, the average daily numbers of newly

confirmed, suspected and recovered cases are 33.76, 1.31 and 31.57, respectively.

Particularly, the day with the most new confirmed cases (231) was 31 December
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Table 7.1: Summary statistics of COVID-19 data from 1 April 2020 to 10 January
2022. This table summarises the minimum, the first quartile, the median, the mean,
the third quartile, and the maximum.

Min The first
quartile Median Mean The third

quartile Max

Daily
confirmed 0 11.00 21.0 33.76 39.00 231

Daily
suspected 0 0.00 1.0 1.31 2.00 49

Daily cured
and discharged 0 0 12.00 20.5 31.57 43.00 213

New deaths 0 0.00 0.0 0.049 0.00 6
Current

confirmed 55 279.00 421.5 658.89 909.00 3404

Current
suspected 0 1.00 2.0 5.54 4.00 153

Current
under medical

observation
2892 7001.50 10299.5 16774.09 23477.50 58721

Cumulative
confirmed 81589 85164.25 89827.5 89680.80 93029.50 103776

Cumulative
cured and
discharged

76408 80372.25 84753.0 84416.97 87354.25 95736

Cumulative
deaths 3318 4634.00 4636.0 4604.94 4636.00 4636

2021, and the maximum cases of daily cured and discharged from hospitals was 213

on 4 April 2020.

7.1.3 Initial assumption and data preprocessing

Based on the collected data, the SIRD model can be an approximate model to

describe the spread dynamics of COVID-19 in China. The SIRD model assumes that

under the fixed populations (i.e., N = S+I+R+D) with homogeneous mixing, the

dynamics of the disease spread are governed by a set of ODEs, describing the rate

of movement between compartments. Compared with China’s total population, the

additional births during the analysing period can be ignored, which meets the fixed

population assumption in the SIRD model. Additionally, before implementing the

lockdown and facial mask policies, the COVID-19 data fit the homogeneous mixing
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assumption, i.e., all individuals are randomly in contact with each other, and each

individual has the same chance of coming into contact with any other individual.

Furthermore, the rate of movement between compartments is assumed to be fixed.

Hence, the SIRD model, a set with four ODEs, is used to describe the disease spread.

The basic SIRD model is:

dS

dt
= Ṡ = − β

N
SI,

dI

dt
= İ = β

N
SI − γI − δI,

dR

dt
= Ṙ = γI,

dD

dt
= Ḋ = δI,

(7.1)

where β, γ, δ are coefficients of the transmission rate, recovery rate, and mortality

rate of the disease, respectively. The basic reproduction number, R0 = β/(γ + δ),

can simply represent the spread of the disease. An R0 > 1 indicates that the disease

will spread, while an R0 < 1 represents that the outbreak will eventually disappear.

Figure 7.3(a) visualises the epidemic’s evolution described by the SIRD model over

time.
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Figure 7.3: The dynamics of a disease described by the SIRD model, Eq. (7.1).
(a) The number of people evolution with β = 0.5, γ = 0.1, δ = 0.05, 999 initial
susceptible people, and one infected person. (b) The compartment diagram of the
SIRD model illustrates the transition between all four groups.

From Eq. (7.1) and Fig. 7.3(b), the SIRD model can describe diseases without
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secondary or multiple infections. However, COVID-19 is a more complicated dis-

ease in which people may be reinfected multiple times [184]. In the SIRD model,

this phenomenon represents the transition from recovered (R) to susceptible (S) and

infected (I). Furthermore, in real-world circumstances (Fig. 7.2), the trend of the

susceptible group (current suspected) first increases from zero to the peak and then

decreases, rather than starting at a high level, see Fig. 7.3 (a). This means that the

total population N is much greater than S + I +R+D in COVID-19 data. Due to

this, modified SIRD models, including model-driven [179, 180] and data-driven [19],

are more suitable than the original one to describe the epidemic dynamics in par-

ticular countries and time periods. In particular, Beira and Sebastião [179] suggest

including the protected group in the modified model. In the following analysis, the

recovered group R will be replaced with the protected group P = N − S − I − D.

Hence, the model will be called the SIPD model.
Linking with the dataset (Fig. 7.2), each component in the model can be de-

scribed as follows.

• N : the total population in mainland China;

• S: current suspected cases;

• Ṡ: daily new suspected cases;

• I: current confirmed cases;

• İ: daily new confirmed cases;

• P : the protected people, including cured and discharged from hospitals cases;

• Ṗ = Ṙ: daily new cured and discharged from hospitals cases;

• D: current (cumulative) deaths;

• Ḋ: daily new deaths;

Therefore, finding the epidemic dynamics involves identifying the relationships

between daily new cases, the left-hand side of Eq. (7.1), and current cases, the right-

hand side. To identify interpretable dynamics of COVID-19 from Bayesian ARGOS,

the candidate library should only contain polynomials, up to the second order, of

current cases, as suggested by Eq. (7.1) and recent research [19, 179, 180].

As the COVID-19 dataset does not fully fit the SIRD model’s assumptions, some

modifications are required to improve the identified model. These modifications can
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be summarised in three ways: adding extra compartments to the model [179, 185–

188], varying the rate of movement between compartments with time [189, 190], and

considering the stochastic SIRD model [191]. Here, extra compartments are added

to the model to improve the explanation of the identified model. Since these extra

compartments (variables) are not recorded in the COVID-19 dataset, each variable

will be denoted as Ci. For example, C1, C2 and C3 represent three extra variables.

7.2 Results

To analyse diverse outcomes caused by random samples in ridge regression, Bayesian

ARGOS is applied with 100 different random seeds to identify ODEs using the same

COVID-19 dataset. Based on the previous description, the maximum polynomial

order of the candidate library is set to two:

Θ =
(
S I R D SI SD · · · RD S2 I2 R2 D2

)
. (7.2)

From the identification, all identified ODEs are linear models, excluding interaction

and squared terms. Interestingly, each Ṡ, Ṗ and Ḋ equation has two different

models, while İ only has one. Therefore, Bayesian ARGOS identifies eight (i.e., 23)

potential linear ODE sets, all of which represent reasonable dynamics of COVID-19.

Equation (7.3) to (7.6) and Fig. 7.4 to 7.7 show the identified models for all

compartments and their coefficient posterior distributions. Component Ṡ has two

potential models:

Ṡ1 = β̂10 + β̂11S + β̂14D, (7.3a)

Ṡ2 = β̂10 + β̂11S + β̂12I + β̂14D. (7.3b)

Both Eq. (7.3a) and (7.3b) have similar estimated coefficient distributions for

the intercept, S and D, since their 95% credible intervals have overlapping regions.

Although the median of β̂12 in Eq. (7.3b) is -0.0026, close to zero, the estimated

coefficient is still significantly smaller than zero because the upper bound of 95%

credible interval is -0.00083.
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Figure 7.4: Posterior distributions of estimated coefficients for two Ṡ equations (a
and b). The thick line is the median, and the shaded regions are 95% credible
intervals. Particularly, β̂10 is the estimated intercept, β̂11, β̂12 and β̂14 are estimated
coefficients of compartment S, I and D, respectively.

Component İ only has one model:

İ = β̂21S + β̂22I. (7.4)

Both estimated coefficients are positive, and the medians of β̂21 and β̂22 are 0.13 and

0.02, respectively.
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⋅

Figure 7.5: Posterior distributions of estimated coefficients for equation İ. The thick
lines are the medians, and the shaded regions are 95% credible intervals. Particu-
larly, β̂21 and β̂22 are estimated coefficients of compartment S and I, respectively.
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Component Ṗ has two models:

Ṗ1 = β̂30 + β̂31S + β̂32I + β̂34D (7.5a)

Ṗ2 = β̂30 + β̂31S + β̂32I + β̂33P + β̂34D (7.5b)

In Eq. (7.5a) and (7.5b), β̂31 has similar posterior distributions because their 95%
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Figure 7.6: Posterior distributions of estimated coefficients for two Ṗ equations (a
and b). The thick line is the median, and the shaded regions are 95% credible
intervals. Particularly, β̂30 is the estimated intercept, β̂31, β̂32, β̂33 and β̂34 are
estimated coefficients of compartment S, I, P and D, respectively.

credible intervals have overlapping areas. However, the coefficient posterior distri-

butions of the β̂30, β̂32 and β̂34 display significant differences. Although β̂32’s distri-

butions in both equations are close, the upper bound of the 95% credible interval in

Eq. (7.5a) is smaller than the lower bound in Eq. (7.5b). The 95% credible interval

of the intercept in Eq.(7.5b) is between −1.02 × 107 and −3.57 × 106, much larger

than that in Eq.(7.5a) (distributed between 140.46 and 305.16). The interval for

β̂34 in Eq. (7.5a) spans from −0.063 to −0.027, contrasting sharply with the range

of −0.16 to −0.079 in Eq. (7.5b). Furthermore, β̂33 in Eq. (7.5b) is significantly

greater than zero.
141



Component Ḋ has two models:

Ḋ1 = β̂40 + β̂41S + β̂42I (7.6a)

Ḋ2 = β̂40 + β̂41S + β̂42I + β̂43P + β̂44D (7.6b)

Similar to the Component Ṗ , the coefficient posterior distributions of S and I
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Figure 7.7: Posterior distributions of estimated coefficients for two Ḋ equations (a
and b). The thick line is the median, and the shaded regions are 95% credible
intervals. Particularly, β̂40 is the estimated intercept, β̂41, β̂42, β̂43 and β̂44 are
estimated coefficients of compartment S, I, P and D, respectively.

in Eq. (7.6a) and (7.6b) exhibit similarities, as indicated by their overlapping 95%

credible intervals. Particularly, in Eq. (7.6b), β̂43 and β̂44 in both equations approach

but remain significantly different from zero. The upper bound of 95% credible

interval of β̂43 is -0.000077, whereas the lower bound for β̂44 is 0.00072. Furthermore,

the intercept in Eq. (7.6b) is significantly larger than the corresponding value in

Eq. (7.6a). The 95% credible interval of the intercept in Eq. (7.6a) ranges from

−1.89 to −0.83, while this interval in Eq. (7.6b) is between 1.10×105 and 3.54×105.

Figure 7.8 illustrates that Bayesian ARGOS is more frequent in identifying

sparser models for Ṡ, Ṗ and Ḋ equations, i.e., Ṡ1, Ṗ1 and Ḋ1. As the identific-
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ation between each component is independent, after multiplying all frequencies, see

Table 7.2, the probability of identifying the most parsimonious ODE set, combined

with Eq. (7.3a), (7.4), (7.5a) and (7.6a), stands 39.17%, the highest among all eight

models. Conversely, the probability of identifying the most complicated model,

comprised of Eq. (7.3b), (7.4), (7.5b) and (7.6b), is 1.21%, which is the lowest.
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Figure 7.8: Number of times the model is identified from Bayesian ARGOS. Each
bar illustrates one equation, and β̂ij (i = {1, 2, 3, 4} represents the equations, j =
{0, 1, 2, 3, 4} represents intercept and predictors) are the coefficients of the identified
model.

Table 7.2: Probabilities of all identified ODE sets from COVID-19 dataset.

Models Probability (%) Models Probability (%){
Ṡ1, İ , Ṗ1, Ḋ1

}
39.18

{
Ṡ2, İ , Ṗ1, Ḋ2

}
4.84{

Ṡ1, İ , Ṗ1, Ḋ2
}

24.01
{
Ṡ2, İ , Ṗ1, Ḋ2

}
2.97{

Ṡ1, İ , Ṗ2, Ḋ1
}

16.00 {Ṡ2, İ , Ṗ2, Ḋ1} 1.98{
Ṡ1, İ , Ṗ2, Ḋ2

}
9.81 {Ṡ2, İ , Ṗ2, Ḋ2} 1.21
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7.3 Discussion

7.3.1 COVID-19 dynamics description

To simplify the explanation of the epidemic dynamics, all coefficient values of the

identified model with the highest probability, Eq. (7.7), are estimated by OLS:

Ṡ = 396.65 + 0.19S − 0.087D,

İ = 0.13S + 0.020I,

Ṗ = 223.57 − 0.054S + 0.048I − 0.045D,

Ḋ = −1.35 + 0.0016S + 0.0018I.

(7.7)

In this model, positive coefficient values indicate an increase in compartment num-

bers, while negative values denote a decrease. For daily cases in compartment S,

the total increase rate is recorded at 0.19, with a mortality rate of 0.087. Within

compartment I, the daily infection rates sourced from the suspected group and the

group itself are 0.13 and 0.02, respectively. The daily fluctuations in compartment P

reveal a suspect rate of 0.054, a mortality rate of 0.045, and a recovery rate from the

infection group at 0.048. Meanwhile, in compartment D, the daily mortality rates

from the suspected and infection groups stand at 0.0016 and 0.0018, respectively.

Figure 7.9 visualises the COVID-19 dynamics enhanced by introducing three extra

compartments (C1, C2 and C3) to refine the explanation based on Eq. (7.7).

Despite the meaningful model, Eq. (7.7) shows inconsistencies in daily new cases

of S and I, and the transitions from S to D. A significant conflict arises in com-

partments S and I: the terms suggest that current cases can influence daily new

cases, which is unreasonable in real-world observations. In other words, the terms

the coefficient of S in Ṡ (β11S) and the coefficient of I in İ (β22I) are calculated as

0.19 and 0.02, respectively, but ideally, they should be zero. Another contradiction

is observed in the mortality rates between S and D. The mortality rate is estimated

as 0.087 in Ṡ but is only 0.00016 in Ḋ. These discrepancies suggest that the model

still needs further human modification, i.e., including more compartments in the

candidate library, to better capture the dynamics of the disease transmission and
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effects.
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Figure 7.9: Daily compartment evolution diagram of the SIPD model from two-
year COVID-19 data in mainland China. Rectangles with S, I, P and D represent
compartments in the SIPD model. Rectangles with C1, C2 and C3 are three unknown
compartments that are not included in the candidate library. Arrows represent the
transformation directions between different compartments. All texts on the arrows
represent the events of the transformation. All numbers on the arrows are the
transformation rate.

Figure 7.9 visualises the COVID-19 dynamics enhanced by introducing three

extra compartments, refining the explanation based on Eq. (7.7). In Eq. (7.7),

the total suspect rate should be 0.19, but only 0.054 is assigned to the transition

from the protected group. The shortfall of 0.136 in the suspect rate is caused

by an unidentified compartment, C1. Similarly, the self-increase observed in the

infection compartment might be representative of another unidentified compartment

C2, which shares statistical similarities with compartment I, and thus the effects

of C2 is credited to the compartment I. Furthermore, introducing an unrecorded

compartment C3 can used to reconcile the different mortality rates between equation

Ṡ and Ḋ. Here, the direct mortality rate from S is 0.0016, whereas the rate at which

suspected individuals first transition to C3 before decreasing stands at 0.0854. The

inclusion of these three compartments suggests that more information is required to

accurately interpret the COVID-19 dynamics.
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7.3.2 Inconsistent identified models

Tracing the reason for inconsistent results in the Bayesian ARGOS process (see

Fig. 7.1), the various ODEs are caused by the cross-validation in determining the

shrinkage parameter for ridge regression, λ(1)
ridge, during the initial adaptive lasso

phase. As outlined in Section 2.2.3, cross-validation relies on random sampling,

leading to slight variations in the estimated coefficients of the best-fit ridge regres-

sion when random seeds are not fixed. These variations are magnified during the

regularisation process as the adaptive lasso employs the inverse of the ridge coeffi-

cients as the adaptive weights, potentially altering the candidate library Θ(1)
ridge after

weighted ℓ1-norm penalisation.

As shown in Fig. 7.1, these discrepancies in the candidate library from the first

adaptive lasso with ridge weights, Θ(1)
ridge, result in different models during the second

adaptive lasso with ridge weights. As BIC selects models between the adaptive lasso

with OLS and ridge weights, this inconsistency affects the trimmed candidate library

Θ(2) and leads to varied identification outcomes. In contrast, models derived from

adaptive lasso using OLS weights avoid randomness, since the adaptive weights

from OLS are based on matrix operations and remain unaffected by random seed

variations.
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7.4 Summary

This chapter employs Bayesian ARGOS to identify meaningful COVID-19

transmission dynamics in mainland China from data between 10 January

2020 and 10 January 2022. This success enhances the method’s capability

for automated system identification of real-world data.

• The initial assumption of COVID-19 transmission dynamics is the

susceptible-infectious-recovered-deceased (SIRD) model. However, as

an individual may be reinfected multiple times, the SIRD model is mod-

ified to the SIPD model, which changes the recovery to the protected

compartment.

• Bayesian ARGOS identifies multiple possible models due to random

sampling of the cross-validation in calculating ridge weights for the ad-

aptive lasso. Running Bayesian ARGOS 100 times with different random

seeds can calculate the probabilities of each possible model. The iden-

tified models are all linear ODEs, and the sparsest models always have

the highest probabilities.

• By visualising the most likely ODE set, the epidemic dynamics require

three additional compartments to explain the transmission more reas-

onably.
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CHAPTER 8

Conclusion

8.1 Contributions

This thesis explored the automatic framework for discovering governing equations

from collected data, generalising and employing an ARGOS framework [1] and

presenting innovative contributions to identify dynamical systems using data-driven

methods.

Chapter 1 highlighted the importance of data-centric engineering in recent re-

search works, following Chapter 2 showing the fundamental techniques in statistics

and machine learning areas. Chapter 3 and 4 reviewed and evaluated the notable

development in data-driven discovering dynamical systems, especially SINDy-based

methods. The results indicate that SINDy-based methods lack the trade-off: the

absence of fully automated algorithms requires users to engage in manual tuning

and iterative usage of semi-automated algorithms.

Chapter 5 developed an automatic numerical differentiation method, ASG, which

combines the Savitzky-Golay filter and Gaussian blur and automatically tunes their

parameters using machine learning approaches. A comparison with another auto-

matic method, PSG [75], demonstrated that ASG without boundaries is superior
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to other methods with high accuracy in smoothing and differentiating data. From

a signal-processing perspective, this automatic method greatly reduces the time to

adjust the parameters when denoising data.

Chapter 6 proposed the ARGOS-RAL, based on the ARGOS framework, em-

ploying ASG and the recurrent adaptive lasso to automate the discovery of PDEs

from collected data. The ARGOS-RAL has been compared with STRidge, illus-

trating ARGOS-RAL’s efficiency and accuracy in automating model discovery. In

particular, the backward stepwise selection performs better than ARGOS-RAL and

STRidge in identifying PDEs when the number of equation terms is known. This

finding indicates that traditional statistical methods are still powerful under specific

conditions.

Chapter 7 employs another ARGOS framework method, Bayesian ARGOS [182],

to find governing dynamics from COVID-19 data. The discovered ODEs are explain-

able and show meaningful results, indicating Bayesian ARGOS’s ability to analyse

real-world datasets.

An additional contribution of this thesis is demonstrating that the three em-

ployed tests of SNR, sample size, and pure white noise with different variances

provide a systematic testing template for evaluating the uncertainty of the results

caused by the random samples in machine learning techniques. These tests enable

users to verify the acceptance rates of the algorithm’s outcomes. This approach

helps prevent the false success of an algorithm due to random chance.

8.2 Future Directions

The ARGOS framework in this thesis provides robust outcomes for identifying gov-

erning equations of dynamical systems, which is crucial for engineers to extract

valuable information by modelling collected data. However, the uncertainty quan-

tification for the identified model is based on controlled variable experiments that

repeat the running of ARGOS-RAL 100 times under the same conditions (SNR

or sample size) but change one component (random noise or samples), which is

computationally expensive. This drawback is significant in evaluating the original
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ARGOS [1], which requires about three days with 32 CPU cores and 180 GB RAM to

identify one equation of an ODE system. Although ARGOS-RAL in this thesis gets

rid of 2000-times bootstrapping for calculating confidence intervals, the building of

1200 candidate libraries (each of them has 5000 points) for the Navier-Stokes equa-

tion still costs about nine hours with 60 CPU threads. Without high-performance

computers, such an evaluation is difficult to implement. Combining uncertainty

qualification theory [192] and post-selection inference [193, 194] may be a poten-

tial solution to qualify the algorithm’s uncertainty. Integrating these methods into

the ARGOS may create a more efficient and robust framework, but the statistical

community focuses on developing secure implementation procedures, hindering the

development of the application in this instance.

Identifying stochastic differential equations is another important research dir-

ection that the ARGOS framework can be used for. As coefficients of stochastic

differential equations are mixed effects models for which the random effects are re-

lated to time, the identification methods for normal differential equations are inap-

propriate. Although some proposed methods employ SINDy [125], sparse Bayesian

inference [195–197], and neural networks [198] to identify stochastic differential equa-

tions successfully, these methods can only identify specific equations and still require

users to determine parameters with their expert knowledge. Integrating Bayesian

hierarchical modelling and Bayesian ARGOS can be a potential solution for identi-

fying a general form of stochastic differential equations. Such a hierarchical ARGOS

can identify both stochastic differential equations and equations whose coefficients

change with locations, such as using one model to describe COVID-19 dynamics

around the world.

After finding models, engineers and scientists are interested in the prediction

ability of the models. However, current differential equation solvers can only solve

specific equations, not universal solvers. Although some numerical solvers, such

as odeint in Python and ode45 in MATLAB, can solve most ODEs and some simple

PDEs, they still require users to define the equation expressions in Python or MATLAB.

If these equations can be automatically converted to programming functions, solving

the identified differential equations from the ARGOS framework will enable it to
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automatically discover and predict dynamical systems simultaneously. In this way,

engineers and scientists can easily forecast the evolution of a system.

Automating the discovery of dynamical systems can speed up data analysis across

a range of scientific disciplines, including engineering, physics, chemistry, biology

and economics. These methods enable engineers to create large models with numer-

ous variables, which would be challenging and time-consuming to develop manually.

The proposed algorithms reduce the risk of errors and inconsistencies often found

in manually developed models, thereby enhancing their accuracy and reliability.

Although physics-informed neural networks (PINNs) tolerate more noise than tradi-

tional statistical methods, as mentioned in Section 3.1, these methods currently have

a contradiction against automation: all parameters are set empirically without fun-

damental mathematical theory. This makes PINN an outstanding semi-automatic

method that requires human intervention. If mathematicians and engineers can

solve this problem in the future, research in all fields will flourish. In summary,

methods for automatically discovering dynamical systems from data are important

for advancing scientific research and accelerating technological progress.
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