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Abstract

The rapid evolution of communication technology and the widespread use of Internet of
Things (IoT) devices have led to an unprecedented increase in data generation. This surge of
data, from sources like smartphones, sensors, and networks, drives innovation across multiple
sectors, from healthcare to urban planning. However, this rapid growth also introduces
significant challenges, particularly in ensuring privacy as personal information is increasingly
collected and shared across digital platforms. Balancing privacy protection with effective
data utilization has become a key issue in modern machine learning applications.

This thesis addresses these challenges by exploring the potential of Federated Learning
(FL) and Zero-Shot Learning (ZSL) as solutions for privacy-preserving data use. Although
promising, these techniques still face gaps in safeguarding user privacy while maximizing data
utility. The research presented here aims to bridge this gap, developing new methodologies
that protect privacy while enabling efficient exploitation of large datasets.

To address the issue of statistical and system heterogeneity in FL, the thesis introduces
an Asynchronous Personalized Federated Learning framework (AP-FL), which incorporates
model interpolation and a data-free knowledge transfer method to enhance robustness and
efficiency. In the context of Video Summarization, it proposes a frame-based aggregation
method and a Community-Aware Clustering Federated Framework (CFed-VS), designed to
address privacy concerns and manage the complexity of video data.

Further, the research explores Privacy-Enhanced Zero-Shot Learning (PE-ZSL) and
Sentinel-Guided Zero-Shot Learning (SG-ZSL), which offer novel approaches for zero-shot
classification without direct access to real data. These frameworks protect sensitive data
while ensuring effective knowledge transfer, marking significant advancements in secure AI
learning environments.

Through these contributions, this thesis advances the state of machine learning by address-
ing key issues related to data privacy, heterogeneity, and efficiency. The findings presented
here not only improve the robustness of FL and ZSL frameworks but also pave the way for
future research into privacy-preserving AI technologies.
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Chapter 1

Introduction

1.1 Background
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Fig. 1.1 5G, IoT, and AI: Navigating Opportunities and Challenges in the Data Revolution

The advent of communication technology and the widespread adoption of the Internet of
Things (IoT) devices have precipitated an unprecedented surge in data generation from diverse
sources such as smartphones, sensors, and interconnected devices. This digital proliferation
is not just a statistic; it fuels transformations across industries as shown in Fig 1.1: from
healthcare, where wearable devices monitor patient health in real-time, to urban planning,
where IoT sensors enable smart cities to optimize traffic flow and energy consumption.
Furthermore, in the agricultural sector, data collected from IoT devices aids in precision
farming techniques, significantly increasing crop yields while conserving resources. Such
real-world applications underscore the potential of these technologies to revolutionize how
we live, work, and interact with our environment. However, alongside these opportunities,
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the burgeoning data landscape presents challenges in processing and analyzing vast volumes
of information, and notably, significant concerns regarding the safeguarding of individual
privacy within this data-driven revolution.
Data Explosion and Privacy Concerns: The anticipated exponential growth in data volume,
with projections reaching 175 zettabytes by 2025 [2], amplifies the critical urgency to
address privacy concerns. This vast amount of data, often generated from personal devices
and shared across multiple platforms, increases the risk of data breaches and unintended
exposure. For instance, data can be exposed through unsecured networks, inadequate
encryption, or through attacks targeting centralized servers where data is aggregated. The
intertwinement of personal identity with data accentuates the demand for robust privacy
protection mechanisms. Legislative measures such as the European Union’s General Data
Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA) have
established new benchmarks in data privacy, imposing rigorous protocols for data handling
and protection. These regulations highlight the primacy of individual rights over their data
and challenge researchers and developers to pioneer privacy-preserving data processing
methodologies.
The Intersection of Machine Learning and Data Privacy: The dilemma of data privacy is
intimately connected with the advancements in machine learning (ML). Conventional ML
methodologies, which often depend on the aggregation of data in centralized repositories for
model training, inherently risk user privacy and data security. This centralization of sensitive
data renders it an attractive target for malicious actors, thereby amplifying concerns regarding
data breaches and unauthorized access.

In response, McMahan et al. [3] proposed Federated Learning (FL), a powerful paradigm
for privacy-preserving machine learning. FL decentralizes the training process by allowing
each participating device (client) to train its model locally, ensuring that raw data never leaves
the device. Instead of sharing the data, clients periodically send their model updates to a
central server, which aggregates these updates to create a global model. This iterative process
continues over several rounds, enabling the global model to improve without centralizing any
sensitive data. By keeping data on the clients’ devices and only sharing model parameters,
FL significantly reduces the privacy risks associated with traditional centralized data storage,
while still enabling collaborative learning across distributed networks.

Despite the advantages of privacy enhancement, FL is confronted with challenges such
as communication overhead and statistical heterogeneity among distributed datasets, which
may compromise model performance and convergence. For example, in a typical FL setting,
the need to frequently communicate model updates between the central server and distributed
devices can result in high communication costs, particularly in environments with limited
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bandwidth. Additionally, statistical heterogeneity refers to the variation in data distribution
across different devices; for instance, in a healthcare scenario, patient data collected from
different hospitals may vary greatly due to demographic differences, which makes it difficult
for the global model to generalize effectively, potentially leading to slower convergence and
reduced model accuracy.
The Imperative of Data Utilization: The effective utilization of data is crucial for fostering
innovation and extracting actionable insights. However, the task of annotating large datasets
for supervised learning constitutes a significant bottleneck, demanding extensive human effort
and time. Within this context, Zero-Shot Learning (ZSL) [4] emerges as a promising solution,
enabling models to generalize to unseen classes without the need for exhaustive annotation.
By exploiting semantic relationships between known and unknown classes, ZSL facilitates
the categorization of new instances without requiring additional labeling. Despite its potential,
ZSL faces challenges such as domain shift and constrained generalization capabilities in
complex real-world scenarios. Importantly, ZSL approaches frequently overlook privacy
considerations, potentially exposing sensitive data during model training and deployment.

As data continues to grow at an unprecedented rate, particularly with the proliferation
of multimedia content, effectively extracting insights from such data becomes increasingly
challenging. Video content, in particular, stands out due to its sheer volume and complexity.
Videos are now a primary medium for communication and information sharing across sectors
such as entertainment, education, and surveillance, contributing to the exponential growth
of unstructured data. Unlike text or static images, video data presents additional challenges
due to its temporal dimension, high information density, and variation in format and length.
Processing and analyzing this type of data requires novel approaches that can handle its
distinct characteristics efficiently.

In this context, Video Summarization (VS) [5] emerges as a critical tool to address these
challenges by distilling lengthy videos into concise summaries that capture the core infor-
mation. By doing so, VS helps streamline information retrieval, accelerate decision-making
processes, and enhance user engagement by reducing the cognitive load of sifting through
large volumes of video content. However, despite the clear benefits, video summarization
technologies face significant obstacles, including accurately capturing the essence of com-
plex content, ensuring scalability across different video types, and addressing generalization
challenges.

Moreover, privacy concerns often take a back seat in video summarization research,
despite the sensitive nature of many video datasets. For instance, videos used in healthcare,
surveillance, or personal communications often contain identifiable personal information or
confidential content. The process of summarizing such videos could inadvertently expose
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sensitive details if privacy-preserving measures are not in place. This increases the risk of
unauthorized access, data breaches, or misuse during data processing and sharing. Therefore,
it is crucial to develop video summarization methodologies that not only effectively condense
video content but also incorporate robust privacy-preserving protocols, ensuring that sensitive
information is protected throughout the process.

1.2 Motivation

In the modern digital landscape, the vast amounts of data generated from IoT devices and
other technologies offer immense potential for machine learning applications across various
sectors. However, alongside this potential comes significant challenges, particularly in
safeguarding user privacy and efficiently utilizing these large datasets. Despite the promising
approaches offered by FL, ZSL, and VS, they still fall short in addressing both privacy
concerns and data efficiency simultaneously. This gap underscores the need for a secure and
efficient paradigm that tackles these challenges head-on. The motivation for this research is
to develop methodologies that protect user privacy while maximizing data utility, pushing
the boundaries of current ML capabilities.

1.3 Research Challenges and Objectives

Research Challenge 1: Statistical and System Heterogeneity in Federated
Learning.

Challenge Overview: Federated learning has emerged as a transformative solution for
enabling machine learning across distributed data sources while preserving user privacy.
However, the foundational assumptions of FL often clash with real-world complexities.
FL methodologies traditionally assume that data from different devices are uniform, or
independently and identically distributed (IID). In practice, however, the data across devices
is often heterogeneous due to user preferences, geographical diversity, and other socio-
economic factors, leading to statistical heterogeneity. This discrepancy creates challenges for
model training, as the aggregated global model may struggle to capture the true underlying
distribution, reducing both its accuracy and its ability to generalize across diverse data
environments.

In addition to statistical challenges, FL systems face significant system heterogeneity,
where differences in device capabilities, network connectivity, and operational conditions
create further complications. A key manifestation of system heterogeneity is the frequent oc-
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currence of client dropouts. Due to varying network conditions, device failures, or differences
in available computational resources, participant devices in an FL system may intermittently
drop out during the training process. These dropouts not only reduce the volume of data
available for training but can also result in certain data categories being underrepresented or
missing entirely in the global model. This can lead to biased models that perform subopti-
mally in scenarios requiring comprehensive coverage of all client data, thereby limiting the
generalization and fairness of the resulting models across intended applications.

Expanded Technological Innovation and Application Scenarios: Consider a global
health monitoring system where wearable devices across different geographic regions collect
health measurements. The diversity in user demographics and environmental factors results
in highly non-IID data distributions. An advanced FL mechanism could dynamically adjust
its training strategy based on localized data characteristics, significantly improving predictive
accuracy for disease outbreaks or health trends. Similarly, in a decentralized social media
analysis tool, user-generated content’s variability necessitates robust models capable of under-
standing nuanced user engagements across different cultures and regions. Addressing client
dropouts is critical in such applications to ensure comprehensive data analysis, especially
during crucial events like elections or natural disasters, where real-time, reliable insights are
indispensable.

Research Objective 1: Enhance Framework Effectiveness and Robust-
ness with Federated Learning.

Address the critical challenges posed by non-IID data distributions and frequent client
dropouts, aiming to fortify the FL framework’s robustness and operational efficiency. Inno-
vating FL with advanced mechanisms will mitigate these issues, enhance privacy preservation,
and build a more resilient and efficient federated learning model. We aim to operationalize
this objective by addressing the following Research Questions (RQ):
RQ 1.1: How can we refine federated learning architectures to manage non-IID data
distributions and improve the overall model robustness and learning efficiency?

• To address this, we will develop novel strategies and algorithms that can accurately
represent and integrate non-IID data distributions during FL model training.

• Additionally, we will adapt the model aggregation process to reduce biases caused
by imbalanced data distributions, ensuring equitable learning across diverse client
datasets.
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RQ 1.2: What innovative solutions can minimize the detrimental effects of client dropouts
on the federated learning process, ensuring continuity and completeness of learning?

• To mitigate the impact of client dropouts, we will implement mechanisms that com-
pensate for data or category loss in FL environments.

• Furthermore, we will devise strategies that allow dropped clients to rejoin and partici-
pate effectively in subsequent training rounds.

Research Challenge 2: Security and Privacy in Video Summarization

Challenge Overview: Extracting meaningful information from vast datasets is crucial for
the advancement of AI technologies. Among various types of data, video content stands out
due to its richness and complexity, making it an invaluable resource for many applications.
However, video data, with its temporal dimension and large file sizes, poses significant
challenges for efficient processing and privacy protection.

To address these challenges, video summarization offers a practical solution by distilling
lengthy videos into concise summaries that retain the essential information. This approach
not only reduces the computational burden but also facilitates faster information retrieval
and decision-making. Despite its potential, the integration of robust privacy-preserving
mechanisms in video summarization is still lacking, especially when handling sensitive video
content such as surveillance footage or personal recordings.

Expanded Technological Innovation and Application Scenarios: Imagine a scenario
where city-wide surveillance systems aim to enhance public safety while protecting individual
privacy. Advanced video summarization techniques (e.g., privacy-preserving or decentralized
VS methods) could generate concise reports of unusual activities or gatherings, ensuring
that sensitive information is processed securely and only relevant data is transmitted. This
approach not only preserves privacy but also reduces bandwidth usage significantly. Another
application is in personalized content delivery services, where platforms can offer tailored
video summaries based on user interests directly on their devices, minimizing the exposure
of viewing habits to external servers.

Research Objective 2: Addressing Privacy and Efficiency in Video Sum-
marization

This objective focuses on developing advanced methodologies for video summarization that
not only protect user privacy but also effectively handle the inherent complexity and size
of video data. We aim to address the current research gap in secure and efficient video
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processing by crafting solutions that can balance the need for privacy with the practical
requirements of managing large, information-rich video content. To achieve this objective,
the following research questions are proposed:
RQ 2.1: How can video summarization techniques be adapted to preserve data privacy
while capitalizing on the value of video content?

• To address this, we will develop novel methods that enable the local processing of
video data in FL frameworks, minimizing privacy risks while efficiently summarizing
complex video content.

• Additionally, we will design algorithms that handle the unique temporal and struc-
tural characteristics of video data, ensuring effective model performance and privacy
preservation across diverse video datasets.

RQ 2.2: How can novel Federated Learning approaches be designed to address both
privacy protection and computational efficiency in video summarization tasks, considering
the unique challenges of video data?

• To address this, we will conduct an in-depth investigation to ensure that the integration
of FL and VS adheres to the fundamental principles of FL, enabling secure and efficient
processing of video data.

• Additionally, we will leverage cluster-based FL to manage the high heterogeneity of
video data, capitalizing on the community-like structure of video datasets to improve
model accuracy and performance while preserving privacy across diverse video sources.

By addressing these questions, we aim to develop practical solutions for integrating FL
into VS, effectively tackling challenges related to data privacy and security. This work will
enhance the use of video content across various applications, contributing to advancements
in privacy-preserving machine learning technologies.

Research Challenge 3: Data Annotation, Privacy, and Copyright Protec-
tion.

Challenge Overview: In today’s era of data explosion, AI technologies rely on vast datasets
to fuel innovation. However, the manual process of data annotation remains a significant
bottleneck. ZSL provides a promising solution by allowing models to recognize unseen
classes without requiring extensive labeled datasets. While this technique reduces the need
for data annotation, it often overlooks critical security and privacy concerns. Specifically,
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ZSL relies on knowledge transfer between seen and unseen classes, which could inadvertently
expose sensitive user data or violate copyright protections. Combining ZSL with FL offers a
promising approach to addressing these concerns by enabling decentralized model training
without centralizing sensitive data. However, FL itself faces challenges such as model misuse,
potential copyright infringement, and ensuring equitable data contribution. Therefore, there
is a pressing need for a unified framework that addresses data privacy, security, and copyright
protection within AI development.

Expanded Technological Innovation and Application Scenarios: Consider the devel-
opment of an AI-driven content creation tool that automatically generates articles or videos
on emerging topics. In such a scenario, ZSL could enable the AI to understand and create
content on subjects not present in its training data, drastically reducing the need for constant
retraining and data annotation. Addressing privacy and copyright in this context, especially
when dealing with sensitive information or creative content, necessitates a framework that
allows for the secure transfer of knowledge without direct data sharing. Such a framework
would enhance the efficiency of content creation while minimizing risks related to privacy
breaches and copyright issues.

Research Objective 3: Innovate Zero-Shot Learning for Privacy and
Performance.

The goal of this research is to develop a comprehensive framework that enhances the privacy,
security, and efficiency of ZSL, while ensuring copyright protection and minimizing the
reliance on data annotation. This will involve the secure transfer of knowledge, collaborative
model training, and the integration of privacy-preserving techniques. To achieve this, we
propose the following research questions and corresponding steps to address them.
RQ 3.1: How can innovative mechanisms enhance the utility and confidentiality of data in
machine learning, facilitating the effective recognition of seen and unseen classes without
compromising data privacy?
This research question is addressed by the following steps:

• Design privacy-preserving methods: Investigate mechanisms such as differential
privacy and secure multiparty computation that allow for the protection of sensitive
data during model training, without exposing actual user data.

• Optimize knowledge transfer in ZSL: Develop techniques that enable effective
knowledge transfer between seen and unseen classes, ensuring that models can gener-
alize to new categories without sharing raw data or violating data privacy.
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• Establish a balance between privacy and performance: Explore trade-off strate-
gies that allow flexible control over privacy costs while maintaining model accuracy,
ensuring that privacy enhancements do not significantly degrade model utility.

RQ 3.2: What are the effective approaches for utilizing semantic information in zero-
shot learning for knowledge transfer, and how can the trade-off between privacy and
performance be optimized?
This research question is addressed by the following steps:

• Identify optimal semantic representations: Research which types of semantic infor-
mation (e.g., attribute-based, textual descriptions) are most effective for knowledge
transfer in ZSL, and evaluate their impact on model performance and privacy.

• Address bias in ZSL: Investigate strategies to reduce the inherent bias towards seen
classes in traditional ZSL methods, ensuring that the model can fairly recognize both
seen and unseen categories without over-relying on the seen class data.

• Integrate privacy-preserving techniques into training: Incorporate privacy-preserving
algorithms into the ZSL training process to safeguard both data privacy and intellectual
property, ensuring secure model deployment in sensitive domains.

By addressing these questions, our research aims to strike a balance between extensive
data utilization and the critical requirements of data privacy, copyright protection, and ethical
AI use. Through this work, we seek to improve the development and deployment of AI
models, ensuring that innovation is aligned with security and respect for intellectual property.

1.4 Main Contributions

This thesis presents a suite of innovative approaches to addressing contemporary challenges in
federated learning, video summarization, and zero-shot learning, areas critical to the advance-
ment of machine learning and artificial intelligence. The contributions are systematically
outlined below, reflecting the depth and breadth of the research conducted.

• Innovative Framework for Non-IID Data and Dropout Mitigation: We introduce
an Asynchronous Personalized Federated Learning Framework (AP-FL), a pioneering
solution that addresses both statistical and system heterogeneity in federated learn-
ing. To manage non-IID data distributions, AP-FL incorporates model interpolation
techniques that enhance the robustness and generalizability of models across diverse
data sources. Additionally, AP-FL tackles client dropouts by leveraging a data-free
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knowledge transfer approach inspired by ZSL, which generates synthetic samples to
compensate for missing data. This dual mechanism ensures continuous learning and
high model performance, even in the presence of significant data absenteeism and
distributional challenges.

• Frame-Based Aggregation for Video Tasks: We propose a novel frame-based FedAvg
aggregation method tailored for VS tasks. This method systematically considers
the video length in model contributions, enhancing the accuracy and relevance of
summarized content. This approach addresses the unique challenges of video data in
federated learning, ensuring that the summaries generated are both comprehensive and
contextually rich.

• Clustering Federated Framework for Heterogeneous Data: The introduction of a
Community-Aware Clustering Federated Framework (CFed-VS) marks a significant
advancement in handling data heterogeneity within video summarization. By clustering
clients based on data distribution similarity, CFed-VS efficiently manages diverse
video content, reducing computational costs and improving the global model’s training
efficiency.

• Mixture Transformer for Enhanced Model Generalization: With the Mixture
Transformer, we offer an innovative solution to improve model generalization in non-
IID settings. This development ensures that federated learning models can effectively
learn from time-series data, demonstrating superior performance on the SumMe[6]
and TVSum[7] datasets.

• Privacy-Enhanced Zero-Shot Learning (PE-ZSL) for Data Copyright and Sen-
sitivity Protection: We propose a novel PE-ZSL framework that enables zero-shot
classification without exposing real data, addressing the critical need for data copy-
right and sensitivity protection. This data-free knowledge transfer framework ensures
privacy during model training, offering robust solutions for AI applications in sensitive
domains, without sharing any real data.

• Sentinel-Guided Zero-Shot Learning (SG-ZSL) for Enhanced Privacy and Knowl-
edge Transfer: Building on PE-ZSL, SG-ZSL introduces a more refined approach
to model training and knowledge transfer by incorporating a detailed comparison
of traditional ZSL methods—transductive and inductive. This framework leverages
omniscient and quasi-omniscient teacher models, enhanced with differential privacy
techniques, ensuring secure learning without exposing sensitive data. SG-ZSL offers
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a deeper analysis of privacy-preserving learning processes while maintaining model
effectiveness, providing a flexible and secure solution for diverse AI applications.

Each of these contributions addresses challenges related to data heterogeneity, privacy,
and efficient learning, offering advancements in federated learning, video summarization,
and zero-shot learning. The methodologies proposed provide practical insights that can
be applied across various fields, from healthcare to content creation, and contribute to the
ongoing development of privacy-preserving AI technologies.

1.5 Thesis Structure

This thesis is organized into the following chapters, each contributing significantly to the
overarching goal of advancing machine learning methodologies in the context of privacy
preservation, data efficiency:

• Chapter 1 provides an overview of the research background, motivation, research
questions, and corresponding objectives. It delineates the main contributions of this
thesis and outlines its structural composition.

• Chapter 2 delves into a comprehensive review of the relevant literature in the domains
of Federated Learning, Video Summarization, Zero-Shot Learning, and Knowledge
Distillation.

• Chapter 3 details the development and evaluation of the AP-FL framework. It ad-
dresses the challenges of statistical and systems heterogeneity inherent in federated
learning environments, particularly focusing on non-IID data distributions and client
dropouts. This chapter presents a novel personalized learning approach leveraging
model interpolation and introduces a data-free knowledge transfer mechanism, cul-
minating in state-of-the-art performance on standard benchmarks like CIFAR10 [8],
CIFAR100 [8], EMNIST [9], and Fashion MNIST [10].

• Chapter 4 explores the novel domain of the CFed-VS, tackling the dual challenges of
data privacy and heterogeneity in video data. It proposes a frame-based aggregation
method of FedAvg tailored for video-related tasks, a novel clustering federated frame-
work to handle heterogeneous data efficiently, and a Mixture Transformer model to
enhance generalization in non-IID settings, demonstrating superior performance on
SumMe[6] and TVSum[7] datasets.
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• Chapter 5 introduces the concept of the PE-ZSL via a data-free knowledge transfer
framework. It addresses the critical need for privacy-preserving zero-shot learning,
proposing innovative solutions for data copyright protection and sensitivity elimination
without real data sharing. This chapter also elaborates on ‘black-box’ and ‘white-box’
scenarios for model sharing, alongside an analysis of teacher models in both omniscient
and quasi-omniscient settings, showcasing promising results in both conventional and
generalized ZSL tasks.

• Chapter 6 presents SG-ZSL, a collaborative paradigm that eschews real data exposure.
SG-ZSL represents a significant leap in zero-shot learning, addressing key concerns of
data privacy and model copyright through a novel collaborative training framework.

• Chapter 7 presents a comprehensive summary of the key findings and contributions
of the thesis. It reflects on the practical implications of the proposed methodologies
for privacy-preserving machine learning and evaluates their potential applications.
Furthermore, the chapter discusses limitations encountered in the research, such as
computational costs and real-world scalability, and suggests future research directions
to address these challenges and improve the presented frameworks.
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Background

In the digital age, the importance of data security and the efficient utilization of large
datasets is paramount in machine learning. This chapter explores key developments in
the field, with a focus on foundational work in machine learning and privacy-preserving
techniques. We review Federated Learning as a significant advancement for decentralized,
privacy-preserving model training, while also examining Video Summarization and Zero-
Shot Learning as essential methods for improving data efficiency and utility. Additionally,
Knowledge Distillation is discussed for its role in enhancing model transferability and
learning efficiency. These topics provide a comprehensive background for the challenges
and solutions addressed in later sections, highlighting the intersection of data privacy and
machine learning advancements.

2.1 Machine Learning

The evolution of machine learning (ML) from its inception to its current rapid advancement
offers a fascinating look into the broader development of artificial intelligence (AI). At its
core, ML is based on the idea that systems can learn from data, identify patterns, and make
decisions with minimal human intervention [11]. The foundational principles of ML are
drawn from multiple disciplines, including statistics, computer science, and information
theory [12], reflecting a multidisciplinary approach to solving complex problems.

Early milestones in ML were characterized by the development of basic algorithms such
as decision trees and linear regression, which provided the foundation for more advanced
models [13]. Rosenblatt’s perceptron [14], introduced in the late 1950s, was one of the
earliest neural network models and hinted at the potential for systems to ’learn’ from their
environment.
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The resurgence of neural networks, particularly in the form of deep learning, has been
a driving force behind recent advances in ML. The ability of deep learning algorithms to
learn high-level abstractions from data, combined with increasing computational power
and the availability of large datasets, has enabled breakthroughs in areas such as image
recognition, natural language processing, and autonomous systems [15]. Key innovations,
such as the backpropagation algorithm [16] and the development of convolutional neural
networks [17, 18], have played a pivotal role in pushing the field forward.

However, with these advances come challenges, particularly around model interpretabil-
ity. Traditional ML models, like decision trees or linear regression, are generally more
interpretable, offering clear relationships between inputs and outputs. In contrast, deep
learning models, such as deep neural networks, are often viewed as "black boxes" due to their
complex architectures, making it difficult to understand how they arrive at decisions. This
lack of interpretability is especially problematic in critical applications such as healthcare
and finance, where understanding a model’s decision-making process is vital for ensuring
trust and accountability [19].

Moreover, as machine learning models become increasingly integrated into societal
infrastructure, additional issues such as data privacy and the ethical implications of automated
decision-making also arise. A particularly pressing challenge is data privacy, especially with
the advent of large language models (LLMs) [20, 21], which raise concerns over their training
on potentially sensitive information. These challenges necessitate innovative solutions like
federated learning and differential privacy, which offer ways to train powerful models without
compromising individual privacy.

2.2 Data Privacy and Security in Machine Learning

Data privacy and security have become critical concerns in the field of machine learning
and artificial intelligence. As ML models grow more capable of extracting insights from
vast datasets, the need to protect sensitive information becomes increasingly important. This
is not just an academic concern; it reflects a societal demand for technologies that respect
privacy and ensure data security.

A key issue is the dual role of data: while it drives the development of ML technologies,
it also presents privacy risks if not handled properly. Traditional ML methods often rely on
centralizing data from various sources, creating a single point of vulnerability that can lead
to breaches and unauthorized access. A notable example is the 2017 Equifax data breach
[22], which exposed the personal information of over 147 million individuals, illustrating the
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risks associated with centralized data storage. Such breaches not only damage public trust
but can also lead to serious legal and financial consequences.

To address these challenges, researchers are developing techniques to ensure privacy-
preserving data use. One promising approach is Federated Learning [23, 24], which allows
for collaborative model training without requiring the sharing of raw data. By keeping data
on users’ devices and only exchanging model updates, FL reduces the risk of data exposure.
However, FL presents new challenges, such as securing model updates and protecting against
inference attacks that could reveal sensitive information from shared gradients.

Advances in cryptographic techniques, such as homomorphic encryption [25] and secure
multi-party computation [26], provide methods for processing data while keeping it confi-
dential. These techniques allow data to be analyzed without revealing its contents. Despite
their effectiveness, cryptographic methods often require significant computational resources,
which can limit their use in environments with constrained resources.

Another important concept in data privacy is differential privacy [27], which quantifies
privacy risks associated with including an individual’s data in a dataset. By adding noise
to data or model outputs, differential privacy ensures that the inclusion of a single data
point cannot be easily detected. This method has been successfully applied in real-world
systems, including those used by Google and Apple [28], showing its potential as a practical
privacy-preserving solution.

As ML continues to evolve, balancing privacy, security, and data utility remains a key
research focus. Emerging approaches like zero-shot learning [29] and knowledge distillation
[30] offer ways to reduce dependence on sensitive data. For example, zero-shot learning
generalizes to unseen categories without needing data from every class, and knowledge
distillation transfers knowledge from a more complex model to a simpler one, reducing the
risk of exposing detailed data patterns.

In summary, addressing data privacy and security in machine learning is an ongoing
challenge. As new risks emerge, so do innovative solutions. The development of privacy-
preserving techniques will be essential to ensure that AI technologies can be trusted to protect
individual privacy.

2.3 Federated Learning

The emergence of Federated Learning stems from the need to leverage the power of machine
learning while addressing the growing concerns around data privacy and security in the digital
age. FL represents a significant shift from traditional centralized ML approaches, where data
is aggregated in a central repository for model training, to a decentralized framework. In FL,
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learning occurs directly on users’ devices, allowing sensitive information to remain local and
thereby significantly enhancing privacy.
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Fig. 2.1 Illustration of the training process involved in Federated Learning.

FL was popularized by McMahan et al. [3], who coined the term to describe a process
in which a global model is collaboratively trained across many participating devices (or
"clients") that keep their data locally. The typical FL process, as shown in Fig. 2.1, consists
of the following main steps:

1. Broadcasting the Global Model: The central server broadcasts the initial global
model wt to all participating clients. Each client receives this model and uses it as the
starting point for local training.

2. Local Training on Clients: Each participating client k trains a local model on its
own dataset Dk, using the current global model wt provided by the server. The client
performs local updates using gradient descent as follows:

wt+1
k = wt

k−η∇ℓ(wt
k;Dk), (2.1)

where wt+1
k represents the updated model parameters for client k after the t +1 round,

η is the learning rate, and ∇ℓ(wt
k;Dk) is the gradient of the loss function ℓ with respect

to the local data Dk on client k at time t.

3. Sending Models to the Server: After completing local training, each client sends its
updated model parameters wt+1

k to the central server. This step ensures that no raw
data is shared—only the model updates are communicated, preserving privacy.
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4. Model Aggregation on the Server: The server aggregates the updated models from
all participating clients to form a new global model. A common aggregation method is
a weighted average based on the size of each client’s dataset:

wt+1 =
K

∑
k=1

|Dk|
∑

K
i=1 |Di|

wt+1
k , (2.2)

where K is the number of participating clients, and |Dk| is the size of client k’s dataset.

Steps 1 through 4 are repeated over several rounds until the global model converges.
One of the key advantages of FL is its privacy-preserving nature. Since raw data never

leaves the user’s device, the risks associated with data breaches and unauthorized access are
greatly reduced. This feature is especially valuable in privacy-sensitive industries such as
healthcare and finance, where data protection is critical. In addition, FL is well-suited for
environments with limited bandwidth, as it minimizes the need for extensive data transmission.
Only model updates—much smaller in size than the raw data—are transmitted, making FL
an efficient option in areas with restricted connectivity. This opens new possibilities for
ML applications in regions where network resources are constrained. FL also addresses
the challenge of fragmented data, where data is distributed across different organizations or
jurisdictions, often restricted by privacy regulations. Instead of requiring data to be pooled
into a central location, FL enables collective model training while keeping the data within its
original source, thereby respecting privacy laws and organizational policies.

Despite its advantages, FL is not without challenges. Early implementations of FL
encountered issues related to communication efficiency [3, 31], heterogeneity in client data
and device capabilities [32, 33], and maintaining model performance in decentralized settings
[34, 35]. Solutions such as structured updates and model compression techniques [31] have
been developed to mitigate these challenges, allowing FL systems to evolve and improve.

The introduction of Federated Learning marks a pivotal moment in the development of
privacy-preserving machine learning. By decentralizing data processing and keeping personal
data on the user’s device, FL not only enhances privacy but also unlocks the potential of
distributed data sources, offering a promising path forward in machine learning as data
privacy concerns continue to grow.
Personalized Federated Learning: Personalized Federated Learning (PFL) represents an
important advancement within the federated learning framework, designed to address the
challenges posed by the diverse nature of client data. While traditional FL approaches are
effective in preserving privacy and utilizing distributed data, they often assume that a single
global model can serve all clients equally. However, in real-world scenarios, this assumption
is rarely valid due to the significant variation in data distributions across different devices or
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users. This variation, known as statistical heterogeneity, can reduce the performance of a
global model when applied to local contexts.

PFL addresses this challenge by shifting the focus from developing a single shared model
to creating customized models tailored to individual clients [36] or groups of clients [24].
Specifically, each client k learns a personalized model wk based on the global model wg, but
incorporates local data Dk to adjust the model. The local training process can be formulated
as:

wt+1
k = wt

g−η∇ℓ(wt
g;Dk), (2.3)

where wt+1
k represents the updated local model for client k after the t + 1 round, η is the

learning rate, and ∇ℓ(wt
g;Dk) is the gradient of the loss function ℓ with respect to the global

model wt
g and local data Dk. This allows each client to adapt the global model based on its

own data distribution.
The key advantage of PFL lies in its ability to adapt the learning process to each client’s

unique data characteristics, enhancing model performance and relevance at the local level.
One commonly used method to personalize models is by introducing a mixture of global and
local updates, such that:

wt+1
k = λwt+1

g +(1−λ )wt
k, (2.4)

where λ controls the trade-off between the global model wt+1
g and the client-specific model

wt
k. A higher λ encourages more reliance on the global model, while a lower λ emphasizes

personalization through the local model.
By emphasizing personalization, PFL aims not only to improve user satisfaction and

engagement but also to tackle the issue of model fairness [37], ensuring that minority or
underrepresented groups are better served.

Various PFL approaches have been explored, ranging from techniques that customize
the global model based on local data [38], to more complex frameworks such as multi-task
learning [39], which allow for the development of personalized models for each client. These
methods often include mechanisms to capture and leverage relationships between clients’
data distributions, using techniques like meta-learning and transfer learning. By recognizing
and utilizing these relationships, PFL can balance the need for both personalization and
generalization, ensuring that personalized models benefit from collective learning while
retaining their local specificity.

The impact of PFL goes beyond technical improvements in accuracy or performance.
It embodies a more user-focused approach to federated learning, where the unique needs
and preferences of individual clients are considered. This aligns with the broader goals
of federated learning, which include enhancing privacy and data security while promoting
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more inclusive and fair machine learning. As federated learning continues to evolve, the
development of PFL techniques underscores the commitment to addressing the complex and
diverse needs of users, paving the way for a future where machine learning is not only more
private but also more personalized.
Clustered-Based Federated Learning: Clustered-Based Federated Learning (CFL) [40–42]
offers an innovative approach within the federated learning framework, specifically designed
to address the challenges posed by statistical heterogeneity across distributed clients. The
core idea behind CFL is to group clients into clusters based on the similarity of their data
distributions [24] or other relevant features [40–42]. By doing so, CFL acknowledges the
inherent diversity in client data and aims to improve both the efficiency and effectiveness of
federated learning by tailoring the learning process to more homogeneous subsets of clients.

In CFL, clients are clustered based on a similarity metric d(i, j), which measures the
distance or similarity between the data distributions of clients i and j. For example, this
similarity could be defined based on the distance between the empirical distributions of the
datasets Di and D j:

d(i, j) = distance(PDi,PD j), (2.5)

where PDi and PD j represent the empirical distributions of data on clients i and j, respectively.
Once the similarity is computed, clustering algorithms such as k-means or hierarchical
clustering are applied to form clusters of clients with similar data characteristics.

Once the clusters are formed, federated learning is conducted within each cluster. For
cluster c, let wc represent the model parameters for that cluster. The update rule for the model
within cluster c follows the standard federated learning approach, where local models on
clients k ∈ c are trained and their updates are aggregated:

wt+1
c = ∑

k∈c

|Dk|
∑i∈c |Di|

wt+1
k , (2.6)

here, wt+1
c is the updated model for cluster c at time step t + 1, and |Dk| is the size of

the dataset on client k. This weighted aggregation allows the cluster model to reflect the
collective information from the local models of the clients in that cluster.

The motivation for CFL is both simple and powerful: by grouping clients with similar
data characteristics, CFL enables the training of specialized models that are better suited
to the specific data profiles of each cluster. This approach allows for more precise model
optimization, reducing the negative effects of statistical heterogeneity that can impair the
performance of a single global model applied across all clients. CFL strikes a balance
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between personalized learning and the collaborative nature of federated learning, enabling
the creation of models that are locally relevant while still benefiting from global insights.

However, CFL is not without its challenges. One of the primary difficulties is the
complexity of clustering clients in a dynamic and distributed environment [43], where data
distributions may evolve over time and clients’ operational conditions can vary significantly.
Additionally, ensuring the privacy and security of client data during the clustering process is
essential, as is maintaining the scalability of the federated learning system as the number of
clients and clusters grows.

Despite these challenges, CFL presents a promising approach for federated learning,
particularly in environments where client data is highly diverse. By organizing and leveraging
this diversity, CFL enhances the potential for creating more effective and nuanced machine
learning models, pushing the field closer to its goal of developing learning systems that are
both deeply personalized and broadly collaborative.
Challenges in FL: Federated Learning faces a wide range of technical, operational, and
ethical challenges that must be addressed to unlock its full potential. As FL continues to
evolve, tackling these challenges is essential for its successful deployment across diverse
domains. This section highlights two of the most pressing challenges in FL: Statistical
Heterogeneity and System Heterogeneity, each presenting unique obstacles for FL systems.

Statistical Heterogeneity arises from the non-identically distributed nature of data across
different clients in a federated learning environment. In real-world scenarios, data collected
by various clients often reflect diverse patterns, preferences, and behaviors unique to each
client. This diversity can hinder the learning process, resulting in models that perform well
for some clients but poorly for others. The challenge lies in developing FL algorithms that
can learn from such disparate data sources without compromising overall model performance.

To address Statistical Heterogeneity, innovative approaches are required that can accom-
modate these varied data distributions while ensuring that the federated model remains gener-
alizable across all clients. Strategies such as Personalized Federated Learning [44, 34, 45–
48] and Cluster-Based Federated Learning [40–42] aim to mitigate the impact of statistical
heterogeneity. These approaches tailor the learning process to better fit the specific data
characteristics of individual clients or clusters, enhancing the relevance and performance of
the federated models.

System Heterogeneity refers to the variability in computational power, storage capac-
ity, network connectivity, and battery life among the devices participating in FL. These
differences can lead to disparities in the speed and efficiency with which clients contribute
to the learning process. For example, clients with limited resources or unstable network
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connections may lag behind more capable devices, causing delays and inefficiencies in model
training and updates.

Additionally, System Heterogeneity poses the risk of client dropouts, where clients may
become unavailable or leave the FL process due to device malfunctions, connectivity issues,
or user decisions. Such dropouts reduce the available training data and can introduce biases
into the model if departing clients represent critical or underrepresented data segments.

To address System Heterogeneity, FL algorithms and infrastructures must be designed to
accommodate a wide range of device capabilities and operating conditions. Solutions like
adaptive learning rates [49, 50], model compression [51, 52], and asynchronous communica-
tion protocols [53, 54] can mitigate the effects of system heterogeneity, ensuring that clients
with varying capacities can participate effectively in the federated learning process. Table 2.1
provides a comparison of key literature addressing the challenges of Statistical and System
Heterogeneity in Federated Learning. This comparison highlights the proposed solutions
and the trade-offs associated with each approach, aiding in the understanding of the current
state-of-the-art methods.

Table 2.1 Comparison of Literature Addressing Challenges in Federated Learning

Reference Problem Addressed Proposed Solution Advantages and Limitations
Mansour et al. [44] Statistical Heterogeneity Personalized FL High adaptability, but computationally expensive

Duan et al. [40] Statistical Heterogeneity Cluster-Based FL Better model generalization, but requires effective clustering
Wu et al. [49] System Heterogeneity Adaptive Learning Rates Improves performance for resource-limited clients, but may cause slower convergence

Shah et al. [51] System Heterogeneity Model Compression Reduces communication costs, but can degrade model accuracy
Chen et al. [53] System Heterogeneity Asynchronous Communication Allows for flexible client participation, but may introduce staleness in updates

In conclusion, overcoming Statistical Heterogeneity and System Heterogeneity is critical
for the continued development and widespread adoption of Federated Learning. By creating
more adaptable, efficient, and inclusive FL algorithms, researchers can foster robust and
equitable machine learning models capable of leveraging the diverse and distributed datasets
of the modern world.

2.4 Zero-Shot Learning

Zero-shot learning (ZSL) [4] stands as a remarkable endeavor within the broader landscape
of machine learning, particularly for its ambitious goal to bridge the gap between seen and
unseen classes without direct exposure to instances of the latter. This endeavor is driven by
the exponential growth in the variety of data, where it becomes impractical to have labeled
examples for every possible category. The journey of ZSL from its conceptual inception to
its current state reveals a trajectory of evolving methodologies and expanding applications,
underscoring the dynamic nature of this research area.
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Fig. 2.2 The illustration of the Zero-Shot Learning

The foundational idea of ZSL germinated from the recognition of the limitations inherent
in traditional supervised learning, where the performance is bounded by the scope of seen
data during training. As shown in Fig. 2.2, ZSL aims to tackle this issue by using semantic
embeddings to map the unseen classes without the need for labeled examples from those
classes. In contrast, traditional supervised learning depends on having labeled data for each
class during the training process.

Early approaches [55, 56] to ZSL focused on attribute-based methods, where classes
(both seen and unseen) were described in terms of high-level attributes. This allowed
models trained on seen classes to make inferences about unseen classes by leveraging shared
attributes. Mathematically, ZSL can be formulated as follows:

Let X ∈ Rd be the feature space, and Ys and Yu represent the set of seen and unseen class
labels, respectively. The goal of ZSL is to learn a classifier f : X → Yu for unseen classes Yu

without having any training examples for these classes. Instead, the relationship between
seen and unseen classes is defined through a semantic embedding space S, where each class
y ∈ Ys∪Yu is associated with a semantic representation φ(y) ∈ S. The objective is to transfer
knowledge from Ys to Yu by mapping visual features x ∈ X into the same semantic space S.

f (x) = argmax
y∈Yu

sim(g(x),φ(y)), (2.7)
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where g(x) is a function that maps visual features to the semantic space, and sim(·, ·) is a
similarity measure (e.g., cosine similarity) between the embedded features and the class
semantic representation.

As the field matured, the focus shifted towards improving the representations of classes
and instances. The introduction of embedding spaces, where visual features and semantic
labels are projected into a common space, marked a significant advancement. Techniques
such as Semantic Output Codes [57] and Label Embedding [58] have been pivotal, enabling
more nuanced mappings between visual features and class semantics. This period also saw
the integration of external knowledge bases like WordNet [59] to enrich the semantic space
and provide more context for the relationships between classes.

The advent of deep learning brought transformative changes to ZSL. Deep neural net-
works, particularly CNNs [60] for visual feature extraction and Graph Convolutional Net-
works [61] for exploiting structural relationships in data, have significantly enhanced the
ability to capture complex patterns. Recent studies have employed GANs [62, 63] and Varia-
tional Autoencoders [64, 65] to generate synthetic examples of unseen classes, addressing
the data scarcity issue head-on and improving the robustness of ZSL models.

While initial ZSL models [66, 67] were evaluated in a strict setting where only unseen
classes were considered during testing, the realization of the practical limitations of this
approach led to the emergence of Generalized Zero-Shot Learning (GZSL) [68–70]. In GZSL,
the classifier must handle both seen and unseen classes simultaneously. Mathematically,
GZSL can be framed as follows:

f (x) = arg max
y∈Ys∪Yu

sim(g(x),φ(y)), (2.8)

here, the challenge is to balance the performance on seen classes Ys and unseen classes Yu,
ensuring that the model does not overfit to seen classes at the expense of unseen ones.

Table 2.2 below compares the characteristics and methods of Standard ZSL, Generalized
ZSL, and Transductive ZSL, highlighting their differences in approach and real-world
applicability:

Table 2.2 Comparison of ZSL, GZSL, and Transductive ZSL Approaches

Approach Scope Key Challenge Addressed Main Methodology
Standard ZSL Unseen classes only Knowledge transfer from seen to unseen classes Attribute-based or embedding techniques

Generalized ZSL Seen and unseen classes Coexistence of seen and unseen classes Embedding techniques, external knowledge bases
Transductive ZSL Seen and unseen classes with unlabeled data Domain shift between seen and unseen Incorporation of unlabeled data, domain adaptation

Amidst the rapid developments in ZSL, one aspect that has not been sufficiently addressed
is data privacy and security. As ZSL models increasingly rely on sophisticated algorithms
and large-scale data from diverse sources, the implications for data privacy cannot be
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overstated. The generation of synthetic data for unseen classes, while innovative, introduces
potential vulnerabilities and privacy concerns. These arise from the possibility of sensitive
data being inadvertently learned or inferred during model training or the generation of
synthetic instances, potentially exposing private information through the model’s outputs.
This highlights the need for privacy-preserving ZSL frameworks, especially as ZSL models
become more integrated into applications involving personal or sensitive data. Therefore,
future research must focus on ensuring that ZSL techniques are developed with privacy in
mind, safeguarding user data while advancing the field.

In addition, ZSL faces challenges regarding its scalability and interpretability, particularly
when applied to large-scale datasets with diverse and fine-grained categories. The ability to
generalize effectively across vast and heterogeneous data sources is crucial, but it remains
difficult for many ZSL models. Furthermore, the interpretability of ZSL models is becoming
increasingly important, as stakeholders need to trust and understand the decision-making
process. Although ZSL and FL are fundamentally different in their learning paradigms—ZSL
focuses on knowledge transfer to unseen classes, while FL emphasizes decentralized model
training—both approaches share common challenges in balancing model performance with
data privacy concerns. In FL, privacy is maintained by ensuring data remains on the client
side, while in ZSL, privacy-preserving techniques are needed to ensure that knowledge
transfer does not expose sensitive information, particularly when synthetic data generation is
involved. Therefore, advances in privacy-preserving techniques and scalable models in ZSL
could offer valuable insights for FL, especially in environments where heterogeneous and
sensitive data are critical factors.

As ZSL continues to evolve and intersect with other paradigms, including few-shot
learning [71] and self-supervised learning [72], it moves towards the goal of enabling models
to learn from limited or no direct examples. The convergence of these paradigms offers
exciting possibilities for building machine learning systems that can operate in increasingly
complex and dynamic environments while respecting privacy and ensuring trustworthiness.

2.5 Data-Free Knowledge Distillation

Data-Free Knowledge Distillation (DFKD) [73] represents a pivotal advancement in machine
learning, particularly in addressing privacy concerns and optimizing model training efficiency.
As models grow more complex and data privacy becomes a key concern, DFKD emerges as
a solution that enables knowledge transfer from teacher models to student models without
requiring access to the original training data. This section outlines the evolution of DFKD,
key milestones, recent innovations, and its crucial role in enhancing data security.
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The concept of knowledge distillation [30] revolves around transferring knowledge from
a large, complex teacher model T to a smaller, more efficient student model S. Traditional
distillation relies on both teacher and student models having access to the same dataset D,
where the student model learns by matching the softened outputs (or logits) of the teacher
model. Formally, the distillation loss function LKD is defined as:

LKD = αLhard(S(x),y)+(1−α)Lsoft(S(x),T (x)), (2.9)

where Lhard is the standard cross-entropy loss between the student predictions S(x) and the
true labels y, and Lsoft is the loss between the softened outputs of the teacher T (x) and the
student model. The hyperparameter α controls the balance between these two losses.

However, when privacy concerns or data availability constraints arise, the need for the
original dataset D becomes problematic. DFKD addresses this issue by eliminating the
dependence on real data. Early approaches [74, 75] focused on generating synthetic data that
mimics the original data distribution, allowing the student model to learn from the teacher
without directly accessing the true dataset.

A significant milestone in DFKD was the introduction of techniques to generate synthetic
data directly from the teacher model. This process involves generating inputs x′ that maximize
the activation of certain neurons or layers in the teacher model, ensuring that the synthetic
data captures the decision boundaries learned by the teacher. Mathematically, this can be
formulated as an optimization problem where the synthetic input x′ is found by solving:

x′ = argmax
x ∑

i
Activation(T (x)i), (2.10)

where Activation(T (x)i) represents the activation of the i-th neuron in the teacher model
when given input x. By maximizing these activations, the generated data approximates the
input space that the teacher model was trained on, enabling the student model to learn from
the teacher effectively.

Recent advancements [76, 77] in DFKD have improved the fidelity of synthetic data
through techniques such as activation maximization and the incorporation of prior knowledge.
Activation maximization, where inputs are optimized to maximize the response of specific
neurons in the teacher model, has become a powerful tool in generating meaningful synthetic
data. In addition, regularization techniques [78] have been introduced to ensure that the
generated data does not overfit the teacher model’s idiosyncrasies.

DFKD directly addresses critical privacy concerns in machine learning by removing
the need for real data during knowledge transfer. This capability is especially important
in domains where data privacy is paramount, such as healthcare and finance. For instance,
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DFKD allows organizations to deploy student models derived from powerful teacher models
without exposing sensitive or proprietary data, ensuring that both knowledge and data remain
secure.

Despite the privacy advantages of DFKD, potential vulnerabilities still exist. Recent
studies [79, 80] have highlighted risks such as inversion attacks, where adversaries attempt to
reconstruct sensitive information from synthetic data. Addressing these challenges requires
more robust synthetic data generation methods, potentially incorporating privacy-preserving
techniques such as differential privacy, where carefully calibrated noise is added to the syn-
thetic data to prevent information leakage. The modified optimization process for synthetic
data generation can be expressed as:

x′ = argmax
x

(
∑

i
Activation(T (x)i)+N (0,σ2)

)
, (2.11)

where N (0,σ2) is Gaussian noise with variance σ2, introduced to protect privacy while
maintaining the quality of the generated data.

In addition to its privacy-preserving properties, DFKD faces challenges in generating
high-quality synthetic data that fully encapsulates the teacher model’s knowledge across
various domains. Striking the balance between data quality and computational efficiency
remains a major area of research. Furthermore, integrating DFKD with emerging paradigms
such as federated learning and encrypted computation could push the boundaries of secure,
efficient, and high-performance model training while maintaining data privacy.

In conclusion, DFKD represents a significant shift towards more privacy-conscious ma-
chine learning methodologies. As research continues, further improvements in synthetic data
generation techniques and the integration of robust security measures will solidify DFKD’s
role in facilitating secure and efficient knowledge transfer across various AI applications.

2.6 Image Classification and Video Summarization Tasks

In this thesis, two primary tasks are explored: Image Classification and Video Summarization.
These tasks were chosen due to their relevance in evaluating the proposed machine learning
methodologies, specifically within the contexts of Federated Learning (FL), and Zero-Shot
Learning (ZSL). This section introduces each task, describes the datasets used, and outlines
the key metrics employed to gauge the performance of the models.
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Image Classification

Image classification is one of the most fundamental and widely studied tasks in machine
learning. The objective is to assign a label to an image based on its visual content, a task
that is essential for various applications, including facial recognition, medical imaging, and
autonomous driving. In the context of Federated Learning, image classification provides a
straightforward yet effective benchmark to evaluate the performance of models trained across
distributed clients with non-IID data.

Datasets

For image classification, this research primarily utilizes the following datasets:

• CIFAR-10 [8]: A widely used dataset consisting of 60,000 32x32 color images across
10 classes, with 50,000 images for training and 10,000 for testing. Each class contains
6,000 images, ensuring a balanced distribution across categories.

• CIFAR-100 [8]: Similar to CIFAR-10, but with 100 classes, each containing 600
images (500 training and 100 test images per class). The 100 classes are grouped into
20 superclasses, providing a more fine-grained classification challenge compared to
CIFAR-10.

• EMNIST [9]: An extension of the MNIST dataset, EMNIST contains 814,255 hand-
written character images from 62 classes (10 digits and 52 uppercase and lowercase
letters). The dataset is divided into several subsets, allowing for the evaluation of
models on digit and character recognition tasks. EMNIST is particularly relevant in
Federated Learning experiments, as it simulates real-world data heterogeneity, making
it a robust benchmark for evaluating model performance in non-IID scenarios.

• Fashion-MNIST [10]: A more complex variant of MNIST, this dataset contains 70,000
images of fashion products, split into 60,000 training images and 10,000 test images
across 10 classes.

Evaluation Metrics

The performance of image classification models is evaluated using the following metrics:

• Accuracy: The proportion of correctly classified images out of the total number of
images.
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• Precision and Recall: Precision measures the fraction of true positive predictions
among all positive predictions, while recall quantifies the fraction of true positives
identified among all actual positives.

• F1 Score: The harmonic mean of precision and recall, providing a balanced measure
of performance.

These datasets and metrics allow for the rigorous testing of models developed under
Federated Learning and Zero-Shot Learning frameworks, particularly when training occurs
over non-IID distributed data.

Video Summarization

Video Summarization (VS) aims to distill the essential content of a video into a more concise
format, typically by selecting keyframes or segments that represent the video’s main events.
This task is crucial in environments where video content is generated in vast quantities, such
as surveillance, entertainment, and social media. Video Summarization aligns well with
machine learning tasks as it requires models to capture both spatial and temporal information,
making it a more complex and informative benchmark for evaluating Federated Learning.

As shown in Fig. 2.3, the process of video summarization involves inputting a sequence
of raw video frames into an AI model, which then selects the most representative frames
(or shots) to produce a condensed summary of the original video. This summarized output
allows for more efficient consumption of video content by retaining key moments while
discarding redundant or less relevant parts.

...

Input: Raw frames in a long video Output: Subset of selected frames (or shots)
as summary video

Video Summarization

AI Model

Fig. 2.3 The illustration of the Video Summarization
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Datasets

The following datasets were used to evaluate video summarization models in this research:

• TVSum [7]: This dataset consists of 50 videos from a wide range of genres (e.g., news,
documentaries, sports) and provides human-annotated importance scores for video
frames, facilitating both supervised and unsupervised video summarization tasks.

• SumMe [6]: Comprising 25 videos, SumMe focuses on personal and realistic videos,
offering diverse content with human-annotated summaries that serve as a benchmark
for evaluating the quality of video summaries.

Evaluation Metrics

Video summarization is evaluated using the following key metrics:

• F1-Score: The F1-Score is widely used to compare the overlap between machine-
generated summaries and human-annotated ground-truth summaries.

• Precision and Recall: Similar to image classification, these metrics evaluate the pro-
portion of selected frames or segments that are relevant (precision) and the proportion
of relevant frames or segments that are successfully selected (recall).

• Coverage: Coverage measures the percentage of the original video content that is
retained in the summary, ensuring that the generated summaries are both concise and
representative of the full content.

Relevance of Image Classification and Video Summarization to This
Research

Both image classification and video summarization serve as critical tasks for evaluating
the proposed machine-learning models. While image classification allows for the testing
of models on simpler, static datasets, video summarization provides a more dynamic and
complex task that challenges models to handle temporal dependencies and diverse content.
These tasks are complementary and highlight the versatility and robustness of the models
developed in this thesis. In particular, video summarization provides a valuable testbed for
Federated Learning due to the decentralized nature of video data sources, and Data-Free
Knowledge Distillation offers an innovative solution for maintaining privacy in such settings.





Chapter 3

Asynchronous Personalized Federated
Learning Through Global Memorization

Prologue

In the era of modern computing, the vast amount of data generated by Internet of Things
devices and communication networks brings with it an increasing need for privacy-preserving
machine learning solutions. Traditional approaches, which rely on centralized data collection
and processing, expose significant vulnerabilities in terms of user privacy and data security,
making it essential to explore new methods that can protect data without compromising
model performance.

Asynchronous Personalized Federated Learning (AP-FL) addresses these critical
concerns by focusing on two key challenges in federated learning systems: non-IID data dis-
tributions and client dropouts. These issues are common in real-world scenarios, where data
generated by different clients often vary significantly, and where clients may intermittently
leave the learning process due to connectivity issues or other limitations. AP-FL introduces a
personalized learning approach combined with model interpolation, allowing each client to
develop tailored models that reflect their unique data characteristics.

Furthermore, the framework incorporates a data-free knowledge transfer mechanism to
handle client dropouts. This ensures that even when clients leave the network temporarily,
the overall learning process remains robust, preserving model integrity and continuity. By
addressing these challenges, AP-FL not only improves the predictive accuracy of federated
models but also enhances learning efficiency, making it a practical solution for real-world
federated learning applications.
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Declaration: This chapter is a modified version of "Asynchronous Personalized Feder-
ated Learning through Global Memorization", submitted to IEEE Transactions on Image
Processing (TIP), 2024.

3.1 Introduction

The rapid proliferation of Internet of Things devices, from home automation systems and
wearable health monitors to smart city sensors, coupled with the advances in communication
technology, has led to an explosion of data generation in our daily lives. This vast expanse
of data spans intricate applications such as facial recognition systems, detailed health data
from fitness trackers, and extensive urban data from smart infrastructure, all of which harbor
the potential to significantly advance the field of artificial intelligence. However, the deeply
personal nature of such data, combined with an alarming escalation in privacy breaches,
has intensified global scrutiny over data privacy. Legislative milestones like the European
Union’s General Data Protection Regulation (GDPR) and the California Consumer Privacy
Act (CCPA) in the United States have underscored the imperative for robust data protection
measures. These developments compel the AI community and scholars to innovate a frame-
work that not only ensures rigorous protection of privacy but also enables efficient utilization
of the burgeoning data, striking a crucial balance between utility and confidentiality.

In response to the urgent need for innovative solutions that preserve privacy while lever-
aging vast datasets, Federated Learning [3] has emerged as a groundbreaking paradigm. FL
facilitates the collaborative training of a global model across multiple devices or clients
without the necessity of centralizing local data. This decentralized approach involves each
participant training models on their own devices, followed by the aggregation of these models
into a cohesive global model, which is then updated and redistributed to all participants. By
enabling data to remain securely on local devices, FL adeptly addresses the critical balance
between data privacy and utility. Its application spans diverse sectors, from enhancing privacy
in smart cities [81, 82] and improving diagnostic accuracy in healthcare [83, 84] to person-
alizing user experiences in digital services [85, 86], thereby illustrating its transformative
potential in securely and efficiently harnessing data across industries.

Federated Learning, while promising, grapples with significant challenges such as statis-
tical and systems heterogeneity. Statistical heterogeneity arises when data from diverse user
devices vary widely due to factors such as geographical distribution, differing time zones, or
unique user behaviors, leading to client drift. This phenomenon can degrade performance
and slow the convergence of the global model, as seen in [87]. Furthermore, system het-
erogeneity compounds these issues, with disparities in device capabilities—like network
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Fig. 3.1 The illustration of the impact of non-IID data distribution and dropout clients with
monopoly classes on global performance.

bandwidth or battery life—affecting timely updates and further destabilizing training [35].
These heterogeneities not only challenge model training but also heighten the risk of creating
monopolistic classes where single participants or groups disproportionately influence the
model due to their unique data contributions.

The severe implications of monopolistic class dropouts, particularly within contexts of
statistical and systems heterogeneity, are vividly illustrated in the healthcare sector. For
example, if a healthcare provider uniquely treating a rare medical condition exits a federated
network due to regulatory changes or technical failures, the global model instantly loses
critical diagnostic data. This sudden dropout not only degrades the model’s accuracy but
also exposes the inherent vulnerabilities of relying on limited data sources. As depicted in
Figure 4.1, while the model under idealized IID conditions might perform well, it encounters
significant challenges in real-world settings marked by non-IID data distributions, especially
when essential data sources vanish. This necessitates the development of innovative methods
that effectively manage such dropouts, addressing both system heterogeneity and ensuring
robust performance across diverse and realistic conditions.

Research on the impact of challenges from statistics and system heterogeneities have
been extensive yet fragmented [44, 34, 45]. Previous studies [88–92] have addressed various
dropout scenarios on the performance of global models, primarily under the assumption of
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independent and identically distributed (IID) conditions, where the impact of dropouts is
minimal [88, 89, 93]. However, the real-world applicability of these findings is limited as they
often overlook the complexities introduced by non-IID data distributions. Recent attempts
to explore these issues in more realistic settings [92, 90, 91] have revealed significant gaps
in existing methodologies, particularly in their ability to handle unpredicted dropouts and
maintain data diversity without compromising the model’s integrity.

In this research, we introduce the Asynchronous Personalized Federated Learning Frame-
work (AP-FL) as a new approach to tackle the challenges of statistical and system hetero-
geneity. AP-FL employs a data-free knowledge transfer method to train a generator on the
server side. With the aid of semantic information from Zero-Shot Learning and supervision
from the received global model, the generator can generate seen samples from non-dropout
clients and unseen samples from dropout clients to facilitate client model training. However,
synthetic samples generated by the generator heavily rely on global model performance,
which poses a risk when global model performance is suboptimal. To address this risk,
we propose a decoupled model interpolation algorithm to mitigate the negative impact of
synthetic data on Personalized model training.

The main contributions of this work are summarized as follows:

• In order to address the non-IID challenge, we propose a novel personalized federated
learning framework leveraging model interpolation.

• A novel FL framework to solve the class missing due to dropouts via data-free knowl-
edge transfer and ZSL mechanism.

3.2 Related Work

Statistic Heterogeneity presents a major challenge in Federated Learning (FL) setups.
Conventional FL approaches frequently experience client drift issues [87] in the presence
of highly heterogeneous statistics (non-IID), resulting in diminished global model perfor-
mance and suboptimal generalization across numerous clients. To address this challenge,
several existing works [44, 34, 45–48] have started to research Personalized Federated Learn-
ing (PFL) which has recently gained considerable attention for its ability to adapt the global
model to better fit each client’s local data distribution. One of the research methodologies
focuses on personalized a single global model by introducing techniques, such as Data
Augmentation[36], Client Selection[94], Regularization[35], and Meta-Learning[95].

Data augmentation, such as FAug [36], promotes statistical homogeneity by generating
new data or using proxy data for clients, enabling the satisfaction of the IID assumption and
benefiting the training of a unified global model through server-side generative adversarial
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networks trained with limited client-side samples for IID dataset generation. Client selection,
such as the adaptive reinforcement learning algorithm proposed by [94], identifies represen-
tative client subsets to capture the global data distribution, mitigating non-IID data impact
and improving the performance and communication efficiency of the trained model. Model
regularization, exemplified by Fedprox[35], introduces a regularization term in the loss
function to constrain personalized models from deviating significantly from the global model,
effectively limiting the impact of irregular client updates. Meta-learning, inspired by local
fine-tuning from the global model, was introduced into PFL, building initial meta-models
for clients to fine-tune after one model gradient descent step, as exemplified by [95], which
combines meta-learning and reinforcement learning to adaptively optimize the federated
learning process.
Systems Heterogeneity as another crucial factor beyond statistical heterogeneity that should
be considered in the federated network, since interplay exists between them in federated learn-
ing [32]. In a real-world federated training task, thousands of devices possibly participate,
with diverse system-level attributes, hardware configuration(CPU, Memory), network con-
nectivities (wired and wireless network), and battery capability [96, 32]. Such characteristics
substantially heighten the uncertainty within a federated network, giving rise to challenges
such as misleading optimization direction, straggler issues, and client dropout problems. To
tackle systems and statistical heterogeneity problems, [96] proposed an adaptive client sam-
pling algorithm that reduces convergence duration by determining the relationship between
overall learning time and sampling probabilities. In addition, [32] proposed a novel federated
optimization algorithm, widely known as FedProx. FedProx alleviates the impact of systems
and statistical heterogeneity on convergence behavior by introducing a proximal term to the
objective, thereby increasing stability. This addition offers a principled approach to handling
heterogeneity associated with partial information, allowing for convergence guarantees and
an analysis of the effects of heterogeneity. While these approaches have effectively mitigated
the impact of system and statistical heterogeneity issues broadly, their efficiency remains
limited in specific situations, such as client dropout problems. Most recently, very limited
studies have started focusing on client drop problems. Wang and Xu [97] propose the
concept of "friendship" between clients, wherein clients with similar data distributions and
local model updates are considered friends. This approach seeks to alleviate the impact of
client dropout by substituting a friend client’s local model update for the dropout client’s
update when computing the next round global model, resulting in minimal substitution error.
However, while this method mitigates the negative impact on global model performance, it
does not enhance the global model’s effectiveness on the dropped client’s local dataset.
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Asynchronous Personalized Federated Learning. Building on the advancements in Per-
sonalized Federated Learning (PFL), our proposed Asynchronous Personalized Federated
Learning (AP-FL) framework is designed to address both statistical and system heterogeneity.
In PFL, the challenge of non-IID data is tackled by allowing each client to develop a model
that is personalized to its local data distribution. In AP-FL, this personalization is achieved
by maintaining the same model architecture across clients but allowing for distinct model
weights that adapt to the specific data characteristics of each client. This approach ensures
that while all clients benefit from shared global knowledge, their individual models are
fine-tuned to address local data heterogeneity. To mitigate the effects of client dropouts,
AP-FL incorporates a novel data-free knowledge transfer mechanism, allowing the generation
of synthetic samples that aid in the continuous training of client models even when clients
are temporarily offline. This strategy effectively handles both asynchronous updates and
the challenges posed by varying client availability, leading to a more robust and efficient
federated learning process.

3.3 Methodology

This section presents the proposed AP-FL. We first describe the problem statement, followed
by AP-FL framework design. Several key modules of AP-FL are detailed at both the server
and client sides.

3.3.1 Problem Statement

Conventional federated learning approaches, such as FedAvg [3], address C-class classifi-
cation problems across K clients. For each client k ∈ {1,2, . . . ,K}, its private local dataset
Dk is drawn from the local data distribution pk(x,y), where x ∈X is the input feature, and
y ∈ Y denotes the corresponding label. The goal of FL is to enable clients to jointly train a
global model with parameters θ ∗ over the combined global dataset D =

⋃
k Dk.

The global objective is to find the optimal model parameters θ ∗ that minimize the global
loss L (θ), which can be formulated as:

θ
∗ = argmin

θ
L (θ), (3.1)

where L (θ) represents the empirical loss over the entire global dataset D . This global loss is
computed as the weighted sum of the local losses Lk(θ) from each client k, with the weights
proportional to the size of each local dataset Dk:
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L (θ) =
K

∑
k=1

|Dk|
|D |

Lk(θ), (3.2)

here, Lk(θ) denotes the local loss for client k, and |Dk|
|D | is the weighting factor based on the

proportion of data that client k contributes to the global dataset.
All clients aim to optimize the global model θ by minimizing their local expected risk:

Lk(θ) = E(x,y)∈Dk
L (θ ;(x,y)). (3.3)

The key steps involved in a complete FL training process are outlined below: (i) At
communication round t, the aggregator server randomly selects K clients available for training
and sends the global model θ ∗ to the selected clients, which they deploy as a local model,
θ t

k. (ii) Each selected client trains its local model θ t
k using its dataset Dk for E local epochs.

(iii) Once the aggregator server collects local model updates from enough participants, θ
t+1
k ,

the server aggregates all updates based on Equation 3.2. (iv) Repeat steps (i)∼(iii) until the
model reaches convergence.

Client drift issues posed a serious challenge when implementing FL in the real world.
The performance and efficacy of the vanilla FedAvg algorithm have been demonstrated in
Independent and Identically Distributed (IID) settings, where each client has similar data
distribution, and samples are identically distributed among clients. However, it fails in
Non-IID settings, where data distribution between clients can be highly skewed, and sample
distribution may differ significantly. This can lead the locally trained model to be optimized
in a direction that deviates significantly from its trained in an IID dataset.

Figure 3.2 illustrates how FedAvg performs in both IID and non-IID settings. The average
model θ t+1 is equidistant to both local optima θ ∗1 and θ ∗2 in an IID setting, which brings it
closer to the global optimum θ ∗. However, in Non-IID settings, the resulting average model
θ t+1 may not be close to the global optimum θ ∗, causing the global model not to converge to
its true global optimum. In these scenarios, the single global model is difficult to generalize
well to all clients, and the performance of the global model may not even exceed the local
model where the client does not participate in FL training[98]. This is contrary to the original
intention of the client to participate in FL.

Analogous to the straggler issue in distributed systems, client dropout is a prevalent
phenomenon in federated networks with system heterogeneity. In certain non-IID scenarios,
such as those characterized by extreme shifts in data quantity and class categories, client
dropout can amplify the adverse effects on global model optimization. An existing study [98]
indicates that, given a sufficient number of clients continuously participating in federated
learning training under IID data settings, the accuracy of the global model remains unim-
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Fig. 3.2 Illustration of client drift in FedAvg in Dirichlet non-IID settings.

paired, even if permanent dropouts among some clients. However, in non-IID scenarios,
where some clients have unique or minority classes that are not present in the datasets of
other clients, the dropout of those clients can significantly negatively impact the performance
of the global model. This is because the performance of the global model relies on contribu-
tions from all participating clients to learn a representative model. When a dropout client
has unique class category that is not represented by other clients, as the training continues,
the global model will be fitted to the optimal of the other available classes, resulting in an
extremely rapid decline in the global model’s ability to identify the missing class data.
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Fig. 3.3 Overview of the Asynchronous Personalized Federated Learning.

Our work is motivated by recent advances in PFL[50], but it goes beyond it by addressing
system heterogeneity, specifically the challenge of client dropout, in addition to the problem
of statistical heterogeneity. We aim to develop a global knowledge that can help non-dropout
and dropout clients to build a personalized model that can tackle client local drift issues,
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even when the data on dropout clients are distinct from those on all non-dropout clients. To
achieve this goal, we propose to train a personalized supervised classification model for a
group of non-dropout clients Sn and dropout clients Sd , where Sn,Sd ∈ K.

θ
p
k = arg min

θ1,...,θK
∑

k∈Sn∪Sd

|Dk|
|D |

Lk(θ
p
k ), (3.4)

where θ
p
k represents the personalized model residing on client k. Our approach is distinct

from other methods that aim to mitigate client dropout, as our focus is not only on dropout
clients but on all clients. By enabling dropout clients to benefit from global knowledge
and establish their personalized models, our method can address the challenge of statistical
heterogeneity while also tackling the issue of client dropout.

3.3.2 Proposed Framework: AP-FL

Numerous studies in recent years have focused on addressing statistic and systems hetero-
geneity by capturing global knowledge, such as GAN-based approaches [99–103]. However,
most of them require the generator access to clients’ raw data, contradicting the original prin-
ciples of federated learning. Alternatively, knowledge distillation-based methods [104–106]
rely on a proxy dataset and tackle client drift issues by leveraging disagreement between
global and client models. Nevertheless, the availability of a proxy dataset in real-world
federated learning scenarios cannot always be guaranteed.

To tackle these challenges posed by client drift and client dropout in above non-IID
scenarios, we introduce a novel federated learning framework termed AP-FL, illustrated
in Figure 3.3. AP-FL is a plugin that could cap into most widely use neural network, and
features a lightweight semantic generator, maintained by the central server, which captures
global knowledge through data-free knowledge transfer from the global model. This semantic
generator is disseminated to non-dropout clients to support the development of personalized
models tailored to their data distribution. Considering the likelihood of a single client
dominating minority classes in real applications, we adopt the Zero-Shot learning paradigm,
enabling the semantic generator to create synthetic data for minority classes present on
dropout clients. This is achieved by establishing a mapping between semantic information
and features, even without direct access to the dropout client data by the global model.
Consequently, this approach facilitates asynchronous training of personalized models by
dropout clients based on their unique data distribution, supported by the semantic generator.
Global Knowledge Memorization. As previously discussed, non-IID scenarios can result
in client drift issues, adversely affecting model performance. Therefore, it is essential to
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devise a conditional generator, denoted as G, maintained on the central server side to capture
the global perspective of data distribution. This generator aims to assist each client in
developing a personalized model θk while preserving user privacy. Specifically, the server
broadcasts G to support non-dropout (non-dropout) clients Sn in training personalized models
by generating synthetic samples that enhance the diversity of client data distribution. The
completed process of global knowledge memorization could be summarized as follows:
Firstly, the generator is initialized on the server-side as follows:

x̂ = G(z,y;ω), (3.5)

here, ω denotes the parameters of G, and z∼N (0,1) represents the standard Gaussian noise,
which is introduced to increase the diversity of the generated data and reduce overfitting. The
variable y is the label representing the desired output class, while x̂ is the synthetic sample
corresponding to the input noise z and label y.

Due to the scarcity of resources for training G, only the global model θ ∗ and the client
local models θk are accessible. Therefore, it is imperative to ensure that the synthetic samples
x̂ generated by the G are compatible with the input space of client local models θk. This can
be formulated as follows:

Lce =−
C

∑
i=1

yi log(σ (D(x̂;θk)i)) , (3.6)

here, i indexes the classes, and C represents the total number of classes. The softmax function
σ(·) outputs a probability distribution over the C classes, and D(x̂;θk) denotes the output
of the client model θk when given the synthetic sample x̂. The term yi is the ground truth
label for class i, and the cross-entropy loss Lce measures how well the model’s predicted
distribution aligns with the true labels. To well fit the synthetic samples effectively with
each client model’s data distribution, we incorporate a weighted average of the loss function,
considering the distribution of distinct categories for each user. Consequently, the weighted
average cross-entropy loss is defined as follows:

Lcls = ∑
k∈So

α
y
kL

k
ce, (3.7)

where α
y
k represents the proportion of samples in class y of the k-th non-dropout client in

the entire global training set, and L k
ce represents the cross-entropy loss produced by k-th

non-dropout client.
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Employing only the Lcls may result in the generator’s model collapse [107], causing G
to output identical data for every class. To motivate G to enhance the diversity of synthetic
samples, we incorporate a regularization term into the loss function. Specifically, we
introduce a diversity loss term, which encourages the generator to generate varied samples.
The diversity loss is defined as follows:

Ldiversity =−
1
ns

ns

∑
i=1

ns

∑
j=1, j ̸=i

∣∣x̂i− x̂ j
∣∣
2

ns−1
, (3.8)

where ns is the number of synthetic samples, and x̂i and x̂ j are two different synthetic samples
of same classes generated by the generator G. The term ns− 1 in the denominator is a
normalization factor to appropriately scale the diversity loss. This loss term encourages
the generator to produce diverse synthetic samples by minimizing the Euclidean distance
between any two different synthetic samples. The overall loss function for the generator is
then defined as follows:

LG = λLcls +(1−λ )Ldiversity, (3.9)

where λ is the hyper-parameters that control the relative importance of the two loss terms.
By minimizing this loss function, the generator G is encouraged to produce diverse synthetic
samples that better capture the underlying data distribution of the client models.

PFL via Decoupled Model Interpolation. The majority of existing studies addressing
non-IID problems concentrate on data generation-based methods, such as mixing up non-IID
real and synthetic data into a unified IID training set for each client’s local model or utilizing
fake data to capture the disagreement between global and local models for bi-level knowledge
distillation, ultimately enhancing the performance of global or local models. However, for
both approaches, the data generation capability of the generator heavily relies on the global
model’s accuracy. Consequently, the training quality of the generator cannot be guaranteed
in this manner, a limitation similar to that encountered in our solution.

To overcome this challenge, we propose a decoupled model interpolation method that
modulates the impact of synthetic samples within personalized federated learning. In this
approach, users utilize the trained generator to generate synthetic samples x̂ conforming to
their local data distribution Pk. These synthetic samples are subsequently employed to train
a classifier, referred to as the friend model. Finally, we combine the client model and friend
model to create a personalized model that more effectively adapts to the user’s local data.
The following equation illustrates the decoupled model interpolation method:

θ
p
k = βθk +(1−β )θ

f
k , (3.10)
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where θ
f

k and θ
p
k represent the model parameters of the friend model and personalized model

separately in k-client, and β represents the confidence coefficient for the friend model.
PFL for the dropouts. In addition to tackling statistic heterogeneity, AP-FL also handles
client dropout issues lead by systems heterogeneous. In real-world FL training, which may
involve thousands of clients, communication bandwidth constraints within a distributed
system necessitate the selection of only a limited number of clients to participate in each
training round. This situation can result in clients possessing all data of minority classes not
engaging in FL training from start to finish before dropping out. This implies that those data
categories are never present in any non-dropout client, and we refer to them as unseen classes
for the global model. Sending the global model to these dropouts would be unproductive, as
the global model has not seen data from these dropouts’ categories and, consequently, cannot
identify the data for these categories.

Inspired by the works in Zero-Shot Learning [108], we distinguish data from non-
dropouts and dropouts as seen data Ds and unseen data Du, respectively. The relationship
between their data categories is disjoint and can be formulated as Ys∩Yu = /0. The main
challenge lies in obtaining informative semantic information that allows the generator to
establish the mapping between features and semantic information, enabling the generator
to synthesize unseen data from dropout clients. Conventional ZSL approaches benefit from
auxiliary semantic embedding information, such as attributes annotated by experts in relevant
fields. However, traditional FL datasets lack such auxiliary information. To tackle this issue,
we employ foundation models like BERT [109] and CLIP [110], which are pre-trained on
extensive data and can predict underlying properties, such as attributes.

While large foundation models such as BERT and CLIP have been leveraged to aid the
semantic embedding process, it is important to acknowledge that these models introduce
strong priors due to their extensive pre-training on large-scale datasets. This could potentially
raise concerns about the fairness of comparison with other approaches that do not utilize
such pre-trained models. To mitigate this, we carefully ensure that the usage of BERT and
CLIP is balanced with techniques that limit their overwhelming influence on final model
performance. Additionally, their role is primarily to provide semantic structure in the absence
of labeled data, rather than directly contributing to model learning in traditional ways. By
using BERT and CLIP in a controlled manner, we aim to ensure that the comparison with
other FL systems remains as fair and unbiased as possible, focusing on the federated learning
performance rather than overreliance on pre-trained representations.

To develop the mapping between features and semantic information, we support the
Generator on the central server side, which can generate pseudo data from Ds to Du. So the
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input of Generator in Eq. (3.5) should become the following format:

x̂ = G(z,A(y);θ), (3.11)

where the A(·) represents auxiliary semantic embedding. Finally, the personalized model in
all clients can be formulated as follows:

θ
p
k =

βθk +(1−β )θ
f

k non-dropout clients;

βθ l
k +(1−β )θ

f
k dropout clients.

(3.12)

Where θ l
k represents the localized global model for the dropout in k-client, and θ

f
k and

θ
p
k denote the model parameters of the friend model and personalized model separately in

k-client.
The global knowledge model captures rare class distributions through the ZSL approach.

When dropout clients contain rare or unique class data, the generator synthesizes samples for
these classes using semantic embeddings. This approach helps maintain model performance
in non-IID settings by generating synthetic data for unseen or underrepresented classes. By
mapping semantic features to the output space, the model can generalize across diverse data
distributions, ensuring that rare classes are effectively learned. As a result, both dropout
and non-dropout clients benefit from accurate and robust personalized models, ensuring
comprehensive generalization across all classes.
Discussion. Our proposed PFL approach is essentially an implementation of the clustering-
based Federated Learning (CFL) method on the client side. CFL aims to group clients
with similar data distributions to help clients train a pair-wise group model with a friend
model. However, the training process of CFL can be affected by the dynamic grouping of
clients due to the emergence of new data samples. In contrast, our method offers a more
flexible strategy by generating synthetic data. Users can continuously generate synthetic data
based on their changing data distribution and train a personalized model using a local-side
clustering method. This personalized model is better suited to the user’s data distribution,
leading to improved generalization performance.

Moreover, our approach utilizes asynchronous aggregation to enhance the robustness of
the training process, particularly in scenarios where client dropouts or system heterogeneity
are present. Asynchronous aggregation allows the global model to be updated as soon as
updates from any client are received, thus reducing waiting time and improving training
efficiency. However, we acknowledge that asynchronous aggregation can introduce con-
sistency challenges, as updates may be based on stale or outdated models. This trade-off
contrasts with synchronous aggregation, which waits for updates from all clients, ensuring
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that the global model is consistently updated but potentially introducing delays due to slower
or offline clients. In our framework, asynchronous aggregation helps mitigate the impact
of client dropouts and system variability, while still maintaining high model performance
through careful model update mechanisms.

3.4 Experiments

In this section, we present the evaluation of the effectiveness of our proposed method, AP-
FL, and compare it with several advanced methods in different datasets and settings. The
evaluation focuses on two key aspects: (1) personalized model accuracy in non-dropout
clients, and (2) the improvement in model accuracy for dropout clients with the assistance of
global knowledge.

3.4.1 Basic Set

Dataset: This study presents experimental results on four diverse image datasets: CIFAR10
[8], CIFAR100 [8], EMNIST [9], and Fashion MNIST [10]. The CIFAR10 dataset contains
60,000 32x32 color images divided into ten classes, which has been widely used for image
classification tasks. CIFAR100 is a more challenging variant of CIFAR10, consisting of 100
classes. The EMNIST dataset is a collection of over 800,000 images of 26 handwritten letters,
while Fashion MNIST comprises 70,000 grayscale images of 28x28 pixels, representing
ten different clothing categories. To maintain consistency in image resolution, we resized
all images to 32x32 pixels. To evaluate our model, we set aside 10% of the data for testing
purposes, and we distributed the test data among the clients while ensuring that the test data
had the same label distribution as the training data on each client’s side.
Heterogeneity Settings: The performance of the proposed AP-FL framework is evaluated in
two distinct heterogeneity settings to analyze its efficacy under varying degrees of heterogene-
ity. (1) Full Participated Setting, solely accounts for statistical heterogeneity and considers
an ideal FL scenario where all clients are available and selected randomly by the server
without dropped calls. Similar to [111, 112], we adopt the Dirichlet Distribution Dir(α) to
control the degree of non-IID distribution. Specifically, we set α to three different values,
namely 0.1, 0.05, and 0.01, across three image datasets - CIFAR10, CIFAR100, and EMNIST.
Since FEMNIST already considers various kinds of imbalances, such as data heterogeneity,
data imbalance, and class imbalance, we did not apply the Dirichlet distribution to FEMNIST.
Furthermore, we varied the number of clients to five and ten to simulate different levels of
non-IID data. (2) Dropout Setting, a dropout factor is introduced to simulate more practical
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scenarios where FL training encounters both statistical and system heterogeneity. In this
setting, we adopt the Pathological non-IID [113] approach, where only certain classes of
data are assigned to each client. We simulate ten clients to jointly train a global model in
all datasets, and then we use the hyper-parameter γ to control the number of classes on
each client. As shown in Table 3.1, when γ = 2 means that there are two classes of data on
each client. We assume some rare clients with monopoly classes will drop out to verify the
effectiveness of the proposed personalized model in dropout clients.
Baselines: This study presents a comprehensive comparison of the proposed AP-FL frame-
work with several baseline algorithms in two distinct settings. In the Full Participated
Setting, we compare AP-FL against FedAvg [3], FedProx [35], SCAFFOLD [87], FedGen
[107], and FedDF [114]. In addition, we evaluate the performance of AP-FL against local
training, which involves training a local model without the use of federated learning. In the
Dropout Setting, we compare FedAvg [3] and local training as the baseline approaches.
For FedAvg, we conduct one-off fine-tuning training for the global model trained by the
non-dropout client in the dropout client with its monopoly classes and then test its global
model performance in monopoly classes. For local training, we send the initial global model
to dropout clients and train the local model without federated learning.

Table 3.1 Data Partitioning for γ = 2 Pathological Non-IID on CIFAR10 dataset, in the
Dropout Setting. The classes [8,9] denote the minority classes monopolized by rare clients.

Device No. 0 1 2 3 4 5 6 7 8 9

Classes 0, 1 2, 3 6, 7 4, 5 2, 4 2, 3 6, 7 4, 5 [8, 9] 0, 1

Implement Details: We implement all experiments of AP-FL in PyTorch, where the classifier
in all experiments is a standard CNN model, which consisting of two 5× 5 convolution
layers (the first with 32 channels, the second with 64 channels, each followed with 2×2 max
polling), two fully connected layers each with 1600, 512 units and ReLU activation. For
semantic embedding, we use 512-dimensional word embedding generated by CLIP [110].
Our generator network architecture is borrowed from [115], but we replace the input of an
original one-hot label with the semantic embedding generated from various models. All
methods were trained with a batch size of 50 and optimized using the Adam optimizer with
an initial learning rate of 0.0002, for a total of 20 local training epochs. During the generator
training stage, synthetic samples of size 600 for each class were fed into each non-dropout
client model to supervise the generator training. The hyper-parameter λ in Eq. (3.9) was
set to 0.5 for each dataset, and the server aggregated the loss from different client models
based on the proportion of samples in the classes of each client.Finally, the trained generator
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and the aggregated global model were broadcasted to each client to complete personalized
model training. The hyperparameter β in Eq. (3.12) was set to 0.01 for the CIFAR-10 and
CIFAR-100 datasets, and 0.1 for the EMNIST and Fashion MNIST datasets.

Table 3.2 Comparison with SOTA FL algorithms in Full Participation settings

Dataset
Client
Num

Heteroge.
Setting

Test Accuracy(%)

Local FedAvg FedProx SCAFFOLD FedGen FedDF AP-FL

CIFAR10

5
α =0.01 15.71±0.39 43.83±0.90 51.48±1.21 54.47±0.99 28.66±1.19 44.66±1.40 61.84±1.75
α =0.05 28.72±0.32 61.61±1.36 60.08±3.19 64.28±1.43 41.86±0.47 60.27±0.39 65.14±0.32
α =0.1 33.00±1.16 65.77±1.77 65.07±0.40 67.37±1.02 46.61±2.88 64.58±0.95 69.46±0.18

10
α =0.01 15.76±0.04 38.79±4.97 45.98±0.58 46.09±2.50 26.67±2.50 37.06±1.26 56.28±0.51
α =0.05 24.95±0.87 52.96±0.24 51.68±0.32 53.01±0.74 27.51±1.76 52.07±1.97 58.73±1.75
α =0.1 35.04±1.54 58.15±0.94 56.36±0.26 60.04±1.08 43.08±0.55 57.89±1.00 61.39±0.28

CIFAR100

5
α =0.01 13.89±0.34 30.16±0.42 29.28±0.13 33.80±1.19 30.04±2.14 30.47±1.43 35.28±4.21
α =0.05 24.53±0.44 32.19±2.13 34.58±1.05 36.74±0.41 32.17±1.21 35.34±1.32 38.47±0.42
α =0.1 25.23±0.38 34.63±0.32 34.89±0.49 37.18±1.73 34.93±1.03 36.84±2.41 39.95±1.45

10
α =0.01 14.47±1.53 28.37±1.10 28.11±1.03 30.32±1.05 28.18±0.58 28.39±2.65 31.74±1.52
α =0.05 23.40±0.28 30.01±0.56 32.16±0.50 33.49±0.73 29.55±0.41 33.12±1.74 35.86±0.47
α =0.1 24.09±1.53 32.34±0.65 32.78±0.13 34.95±0.58 31.88±0.65 33.51±1.24 36.74±0.44

EMNIST

5
α =0.01 24.36±0.23 86.56±0.95 85.43±0.61 85.30±0.37 82.41±2.34 88.06±0.37 89.07±1.26
α =0.05 33.20±0.29 89.33±0.16 87.97±0.40 89.22±0.21 86.86±0.89 89.27±0.27 91.24±0.52
α =0.1 36.86±0.26 90.85±0.31 89.36±0.55 91.88±0.46 90.12±0.63 90.32±0.26 91.60±0.16

10
α =0.01 13.38±0.26 65.98±3.95 77.09±1.49 69.23±1.47 66.74±8.45 65.72±1.33 82.48±0.43
α =0.05 19.03±0.03 82.32±0.35 83.23±0.71 84.06±1.24 81.05±1.69 83.19±1.27 85.27±0.16
α =0.1 32.22±0.02 88.69±0.47 87.68±0.47 87.88±0.81 88.45±0.49 89.12±0.16 88.94±1.20

Fashion
MNIST

5 - 49.15±0.19 88.28±0.89 87.68±0.89 88.60±1.20 87.05±2.21 88.79±0.95 89.36±0.58
10 - 41.61±0.73 85.94±1.51 85.74±0.16 85.50±0.45 85.23±2.44 83.97±3.62 87.04±0.17

3.4.2 Experimental Results

Comparison with SOTA in Full Participated Settings: Table 3.2 presents a comprehensive
evaluation of the accuracy of various algorithms on different Dirichlet non-IID distributions,
demonstrating that our proposed AP-FL framework surpasses most state-of-the-art (SOTA)
methods, particularly in highly heterogeneous scenarios, such as alpha = 0.01 or 0.05.
Furthermore, we increased the skewness of label distribution between clients by expanding
the number of clients. As Table 1 demonstrates, even in this 10-client scenario, AP-FL
maintains superior performance over other algorithms. Compared to FedGen, which directly
feeds synthetic data into the global model, our approach can effectively alleviate the impact
of spurious data on model performance through the decoupled model interpolation technique.
Additionally, Figure 4.5 shows the comparative performance of all algorithms at varying
degrees of label distribution skewness, with AP-FL demonstrating more consistent and stable
performance as data heterogeneity increases.
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(d) FashionMNIST

Fig. 3.4 Evaluation of model performance on four datasets and five clients, the α set to 0.01,
0.05, 0.1 and −, respectively, for CIFAR10, CIFAR100, EMNIST, and FashionMNIST.

Comparison with Existing Works in Dropout Settings. Table 3 presents the results of
the comparison between our proposed AP-FL framework and the Local and FedAvg-FT
baselines. Our Personalized Model trained with AP-FL on CIFAR10, EMNIST, and Fashion
MNIST datasets outperforms the Local model and FedAvg-FT in most cases, indicating the
effectiveness of our approach in assisting dropout clients to train their own Personalized
model. However, the performance of AP-FL on CIFAR100 is slightly behind FedAvg-FT. We
attribute this to the fine-grained nature of the dataset, which poses a challenge for language
models like CLIP/BERT to generate semantically distinctive information for subclasses under
certain categories, leading to poor quality of generated unseen synthetic samples. In summary,
our findings suggest that when clients with monopolistic categories drop out, AP-FL presents
a more competitive alternative to training a local model or fine-tuning a global model for
those dropout clients.
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Table 3.3 Comparison with FedAvg in Dropout settings. ‘MC’ represent the missing classes
due to dropout client with minority classes.

Dataset CIFAR10 CIFAR100 EMNIST
Fashion
MNIST

MC(%) 10% 20% 10% 20% 10% 20% 10% 20%

Local 29.47±1.69 26.74±0.49 22.61±1.52 21.97±1.10 30.15±2.14 29.73±1.19 47.51±1.06 47.63±0.98
FedAvg-FT 31.43±0.58 29.82±1.19 23.15±1.32 24.73±1.43 34.81±2.41 34.05±0.56 51.78±0.37 51.96±0.74

AP-FL 34.18±0.49 32.97±0.26 23.12±1.55 24.65±1.08 37.91±0.71 36.29±0.28 58.97±0.58 56.83±0.32

3.4.3 Ablation Study

Effect on Different Semantic Information. In our ablation study, we investigated the impact
of using different semantic embeddings in the dropout settings. Specifically, we evaluated our
model with three types of semantics, namely word2vec (W2V), BERT, and CLIP. As shown
in Table 3.4, the results with all three types of semantics are comparable, indicating the
robustness of our model to different semantic embeddings. However, we observed that our
model achieved the best performance with CLIP representation, suggesting the effectiveness
of using CLIP as the semantic embedding.

Table 3.4 Analysis of synthetic features on different types of semantic embedding in the
dropout settings, where An corresponds to the accuracy of the friend model tested on non-
dropout clients, and Ad corresponds to the accuracy of the friend model tested on dropout
clients.

Dataset CIFAR10 CIFAR100 EMINIST FashionMNIST
Domain An Ad An Ad An Ad An Ad

W2V 50.74 41.32 18.92 15.49 59.86 44.25 62.14 50.43
BERT 55.92 51.63 21.76 22.05 65.14 51.27 73.31 52.84
CLIP 58.21 49.79 25.62 26.43 70.72 54.60 74.16 58.63

Effect on the Hyper-Parameters. We performed two ablation studies on the CIFAR10 and
EMNIST datasets to investigate the impact of two hyper-parameters, namely noise dimension
and the number of synthetic samples, on the performance of the friend model in the Full
Participation Setting. The results are presented in Figure 6.5. Four different noise dimensions,
i.e., 20, 100, 400, and 512, were chosen to illustrate the relationship with the performance
of the friend model. We observed that the performance decreases with increasing noise
dimension on both datasets, indicating that high-dimensional noise may lead to significant
interference. Regarding the number of synthetic samples, we varied the number of synthetic
samples from 50 to 1000 in the experiments. As shown in Figure 6.5, the accuracy of the
friend model on both datasets remains stable once the number of samples exceeds 600. We
attribute this phenomenon to the fact that a lack of false data results in poor performance of
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the friend model due to the insufficient number of samples, whereas an excessive amount
of false data can lead to a limited diversity of false data, which can be a bottleneck for the
performance of the friend model.

(a) CIFAR100 (b) FashionMNIST

Fig. 3.5 The impact of noise dimension and the number of synthetic samples on the perfor-
mance of the friend model with α = 0.1.

3.5 Conclusion

In this work, we introduce the Asynchronous Personalized FL framework (AP-FL), which
addresses the non-IID and dropout issues in FL by training a semantic generator to capture
the global data distribution from non-dropout clients. This generator is then used to generate
synthetic samples for each non-dropout client, aiding in the establishment of a personalized
model to mitigate the client drift issue. Additionally, AP-FL leverages semantic informa-
tion and the Zero-Shot learning paradigm, allowing the generator to generate previously
unseen samples for dropout clients with monopoly classes and enhance data diversity for
training personalized models in dropout clients. Our experiments demonstrate that AP-FL
outperforms state-of-the-art methods for addressing non-IID and dropout issues in FL.

Epilogue

In addressing Research Question 1.1, our work presents a novel Personalized Federated
Learning framework grounded in model interpolation to effectively tackle the challenges
associated with non-IID data distributions. By introducing advanced strategies that leverage
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generated data, our approach mitigates the adverse effects of non-IID data, enhancing both
the robustness and learning efficiency of personalized models across heterogeneous client
datasets. This method ensures that models trained within federated environments are better
adapted to the unique data distributions of individual clients, promoting equitable learning
outcomes and reducing biases caused by skewed data distributions.

Regarding Research Question 1.2, we propose innovative solutions inspired by zero-shot
learning to address client dropout issues in federated learning. By treating the data from
dropout clients with unique categories as unseen classes, we utilize semantic embeddings
generated by models like CLIP to create a global generator. This generator compensates
for missing data caused by client dropouts by synthesizing data for both seen and unseen
classes, maintaining the integrity of the global model’s training process. Furthermore, the
global generator provides essential support for the reintegration of dropout clients, enabling
them to continue their training seamlessly when they rejoin the federated learning process.
Through these mechanisms, our approach minimizes the negative impact of client dropouts
and ensures continuity and completeness in the federated learning workflow.



Chapter 4

Community-Aware Federated Video
Summarization

Prologue

In the previous chapter, we introduced Asynchronous Personalized Federated Learning (AP-
FL), addressing key challenges such as non-IID data and client dropouts. Building on this,
we now explore its application in video summarization, a domain where data privacy and
efficiency are paramount.

The rapid growth of video content demands efficient summarization techniques for better
user engagement and information retrieval. However, the sensitive and personalized nature
of video data presents significant privacy risks, especially in distributed environments like
federated learning. This makes video summarization an ideal case to evaluate privacy-
preserving frameworks like AP-FL.

Video summarization poses unique challenges—handling large, heterogeneous datasets
while ensuring privacy—which align with the core goals of federated learning. To address
these, we introduce Community-Aware Federated Video Summarization (CFed-VS). CFed-
VS leverages community-aware clustering and frame-based aggregation to adapt to the
diverse nature of video data, preserving privacy while delivering efficient summaries.

By applying AP-FL to video summarization, CFed-VS demonstrates how federated
learning can manage sensitive and diverse data in real-world applications. This chapter
furthers our objective of developing secure, efficient, and user-focused machine learning
solutions for privacy-sensitive tasks.
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Declaration: This chapter is a modified version of "Community-Aware Federated Video
Summarization", published in IEEE International Joint Conference on Neural Networks
(IJCNN), 2023.

4.1 Introduction

With the tremendous growth of video material, automatic tools for understanding and analyz-
ing video content have become an increasingly urgent need. Recent statistics have shown that
it will take more than 82 years for a person to watch all videos uploaded to YouTube per day
[116]. A promising remedy is that automatic video summarization can enable human users
to quickly identify the key content of videos and accelerate knowledge gain and information
retrieval. Such a technology has been applied in many scenarios, such as fast indexing and on-
line video recommendation. However, to provide information-rich video summarization and
satisfy the wide variety of user needs, existing approaches rely on the large-scale collection
of video data and important score annotations to train a robust model. Increasing awareness
and concerns about privacy restrictions, e.g., the EU’s General Data Protection Regulation
(GDPR) and California Consumer Privacy Act (CCPA), have become one of the largest
challenges in this domain. Moreover, huge communication costs are incurred during data
transmission, which also impedes the development of video summarization technologies.

...

Client Data

...

Mixture
Transformer

Block

Mixture
Transformer

Block

...

Group Model Training

Important Score Prediction

Community-Aware
Client Clustering

User 2 User 3User 1 User 4 User 5 User 6 User 7 User 8 User 9

Fig. 4.1 Community-Aware Federated Video Summarization aims to deploy large-scale VS
task training when video data are distributed on edge devices. Based on the similarity of data
distribution across clients, the server will cluster clients before FL model training, and then
maintain multi-group models to address statistical heterogeneity challenges.
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As a burgeoning machine learning scheme, Federated Learning [117] aims to tackle the
problem of data islands while preserving the privacy of data. The key idea of FL is to jointly
train global models across various edge devices without collecting any private raw data
from the client, thus effectively alleviating user concerns about data privacy and reducing
the high costs associated with transmission. Along with its promising prospect, research
on FL faces key challenges from high statistic heterogeneity [34]. Concretely, Federated
learning relies on Stochastic Gradient Descent (SGD). Jointly training a global model with
the Independent and Identically Distributed (IID) statistics from various clients is equivalent
to the IID sampling of training data in a centralized training paradigm, which ensures the
stochastic gradient is an unbiased estimate of the total gradient during FL training [118].
FL has been applied in the smart city [81], recommender system [119], and healthcare [83]
fields. Despite the successful applications of FL in the above areas, introducing FL to solve
data privacy problems and high transmission costs in traditional VS tasks is not trivial. In the
real world, data distribution can easily appear in the distribution of non-IID, and video data
has an even stronger bias and diversity according to the photographer’s preference. Modeling
on the non-IID data with FL paradigm will lead to client drift issues [87], which will lead to
performance degradation and slow convergence speed of the global model.

A unique property for VS problems is the user community heterogeneity due to the diverse
user profile, preferences and behavior. To tackle problems due to statistical heterogeneity
in FL, recent attempts [40–42] aim to cluster the clients based on model parameters or
gradients and maintain a multi-group model. Nevertheless, the server may be required to
wait for extra communication rounds before receiving parameters of the client model with
significant changes to calculate the similarity for the clustering procedure, which will lead to
the deterioration of model training efficiency and an increase in communication costs. Wang
et al. [98] proposed a novel data-driven approach to calculate the similarity of client data
distribution, in which clients are grouped based on their similarity in two types of summaries
of client data distribution: label distribution, and conditional features distribution. However,
it is unrealistic to apply the proposed methods [98] directly to cluster clients in VS tasks,
since some video data lack specific categories, using the average feature is also impractical
due to the different lengths of the videos.

To our best knowledge, this is the first work to explore the feasibility of the Federated
Learning Video Summarization (FLVS) task, and we first established the baseline of FedAvg
[117] in FLVS. According to our initial observations and analysis, we proposed a technical
roadmap with three key directions for the FLVS problems: 1) In contrast to traditional FL
using sample-based aggregation, we explore the Frame-Based FedAvg in FLVS tasks so
that the length of video is taken into account when assigning weight contributions of client
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models. 2) We observe that the community factor is the key impact on the heterogeneous
data distribution. A novel Community-Aware Clustering FL framework for Federated Video
Summarization (CFed-VS) is thus proposed, which clusters clients based on the relative
distance between the data distribution of each client, as shown in Figure 4.1. It is worth
noting that our CFed-VS requires only one-off clustering operation compared to traditional
clustering-based FL training, which improves the training efficiency of global models. 3)
We then propose the Mixture Transformer for obtaining better model generalization in the
non-IID setting for learning time-series data. In summary, the key contributions of our work
are as follows:

• We propose a more effective frame-based aggregation method of FedAvg for video-
related tasks, and systematically analyze the assignment of client model contribution.

• A novel clustering federated framework is proposed to leverage the relative distance
between the data distributions of each client, to tackle the challenge of heterogeneous
data and reduce the computation cost during the clustering process.

• Mixture Transformer is proposed to enhance model generalization in the non-IID
setting, and extensive experiments demonstrate state-of-the-art performance on SumMe
and TVSum datasets.

4.2 Related Work

4.2.1 Video Summarization

Video summarization is one of the most important directions in video recognition [120–124]
to generate [125, 126] a short video clip while keeping the main content or stories of the
original video [127, 120]. Recently, several video summarization approaches have been
proposed, and they can fall into two broad categories. One of them refers to unsupervised
learning, which uses manually designed criteria to prioritize and select frames or subshots
from original videos [127, 128]. Another one is supervised learning, which utilizes human-
edited examples to learn how to summarize novel videos [129, 130]. Also, some LSTM-based
deep learning approaches have been proposed for both supervised and unsupervised video
summarization. Mahasseni et al. [131] specified a generative adversarial framework that
consists of the summarizer and discriminator for unsupervised video summarization. Wang
et al.[132] proposed a novel model named Dual Mixture Attention (DMASum) with meta-
learning, which solved the softmax bottleneck problem in video summarization.
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4.2.2 Federated with Statistic Heterogeneity

Statistic heterogeneity (also named non-IID) is one of the major challenges in federated
learning. The widespread aggregation strategy in federated learning, FedAvg [117] suffers
performance deterioration on non-IID due to client drift issues [87]. To address this problem,
a line of research focuses on learning a single global model under the non-IID setting
[32, 133, 35]. For example, FedProx [32] adds a proximal term to the local objective of
the client to effectively limit the impact of abnormal local model updating. Another line of
research overcomes this problem via personalized federated learning (PFL) [48, 134, 39],
which seeks to personalize the global model for each client. PFL has been adopted in many
approaches, including model-agnostic meta-learning [48], model regularization [134], and
multi-task learning [39]. Cluster-Based Federated Learning (CFL) [40–42] incorporates
personalization at the group level while keeping the benefits of PFL. Prior works cluster
clients based on the similarity of client model parameters or gradients. However, obtaining
a significant change in the client’s parameter or gradient, requiring the server to wait for
additional communication rounds, greatly reduces the training efficiency. To this end, we
develop a time-series similarity method to generate a summary of data distribution under the
privacy specification of FL, then the server clusters the client based on the summary before
initiating FL training.

4.2.3 Vision Transformer

Following Transformer in NLPs [135], Vision Transformer (ViT) [136–138] has made great
successes in various vision tasks, including object detection [139], semantic segmentation
[140, 141], action recognition [142], and so on. For example, Li et al.[143] propose a
hierarchical Transformer (Swin Transformer) whose representation is computed with Shifted
windows that can bring greater efficiency by limiting self-attention computation to non-
overlapping local windows while also allowing for cross-window connection. Moreover,
the great success of image Transformers has led to the investigation of Transformer-based
architectures for video understanding tasks [142]. For instance, UniFormer [144] integrates
the merits of 3D convolution and spatio-temporal self-attention in a concise transformer
format, and achieves a preferable balance between computation and accuracy.
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4.3 Methodology

4.3.1 Rethinking Federated Learning in Video Summarization

Recently, many tasks have successfully adapted federated learning (FL) paradigms, while
few studies [145] have examined FL applications on video data, especially on video summa-
rization. To explore the feasibility of federated learning on video summarization, we first
investigate the characteristics of FedAvg [117], the widely used federated learning method.
Then we provide an in-depth analysis of federated model training on video summarization
datasets.

For a learning problem, we define f (θ) =L (x,y,θ) as the loss function representing the
error in the model’s predictions on input pair (x,y), where θ represents the model parameters.
In federated learning, the goal is to train a global model collaboratively across multiple
clients, each having its own data distribution Pk. Thus, the global objective is to find the
optimal parameters θ ∗ that minimize the total loss across all clients, represented as follows:

min
θ

f (θ) =
K

∑
k=1

nk

n
Fk(θ), Fk(θ) =

1
nk

∑
i∈Pk

fi(θ) , (4.1)

where nk denotes the number of samples on client k, and Fk(θ) represents the local objective
function for client k. The global objective is to minimize the weighted sum of all local
objectives, where the weights are determined by the proportion of data on each client. This
equation defines the optimization goal for the global model in a traditional federated learning
setup. Conventional federated learning methods, like FedAvg, optimize Eq. 4.1 with the
following steps. (i) At each communication round t, the server randomly selects K clients
available for training, then sends the global model θ̂ t to the selected clients and deploys it as
θ
(t)
k (ii) Each selected client then trains its model θ

(t)
k locally with its own data distribution Pk

for Elocal epochs. (iii) The server waits until all selected devices have uploaded corresponding
parameters θ

(t+1)
k to aggregate the new global model via θ̂ t+1← ∑

K
k=1

nk
n θ

(t+1)
k . The above

process will be repeated until the model reaches convergence.
Frame-based FedAvg in Video Summarization. According to the FedAvg algorithm,
the weight contribution of the client model is based on the number of samples, i.e.nk

n .
However, we assume that directly applying this sample-based FedAvg to video summarization
is impractical, as the length of the video is also important for model training in video
understanding tasks [146]. To this end, we propose to apply video frames vk

v instead of video
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Fig. 4.2 Comparison of two weight aggregation strategies on the TVSum dataset. Experiments
are conducted in IID data distribution with the same settings.

samples nk
n as:

min
θ

f (θ) =
N

∑
k=1

vk

v
Fk(θ) , (4.2)

where vk is the total number of frames that resides in k-client, and v represents the total number
of frames across all clients. To verify our assumption, we conducted different aggregation
strategy experiments by using vsLSTM [1] on the TVSum dataset, which is shown in Figure
4.2. It can be observed that the frame-based aggregation can quickly outperform the baseline
and converge to more reliable performance. In this analysis, the frame-based aggregation
strategy is 1.2% higher than the sample-based aggregation strategy (conventional FedAvg
aggregation strategy). The proposed frame-based aggregation is particularly useful when the
length of the user video is different.

4.3.2 Non-IID Data Distribution Analysis

To analyze the data distribution on video summarization datasets by applying federated
learning, we simulate non-IID and IID settings by forcing each client to have limited classes,
as shown in Table 4.1. We follow the setting in [40] and simulate ten clients to run the global
model within 200 communication rounds. Each participating client runs the global model
with 20 local epochs. We then obtain three folds of insights as follows.
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Table 4.1 F1-score (%) of different data distribution on both TVSum and SumMe datasets,
using vsLSTM [1] baseline. “Max-Min F1-Score" represents the difference between the
best and worst results tested by the global model on all clients. “Mean F1-Score" represents
the average F1-Score across all clients. “# Round to Reach Target F1-Score" donates the
communication rounds of the global model to reach target F1-Score. The “Target F1-Score"
was chosen 48% and 30% for TVSum and SumMe datasets separately.

Dataset
Federated Centerlized

# Classes
Max-Min
F1-Score

Mean
F1-Score

# Round to Reach
Target F1-Score

F1-Score

TVSum
1 10.98 49.29 75

54.274 5.21 52.08 46
10 (IID) 2.23 53.14 17

SumMe
1 12.19 33.62 64

37.72
3 (IID) 4.87 36.48 18

• Compared to the centralized paradigm, the performance of using FedAvg (frame-based)
would not decrease too much, which also verifies the feasibility of using federated
learning in video summarization tasks.

• With the decrease of classes in each client, the performance of the global model
will decrease from 53.14% to 49.29%, and the performance of “round to reach" will
increase from 17 to 75. These results indicate that higher data heterogeneity would
affect the model performance and convergence speed.

• The value of “Max-Min F1-Score" increased with the decrease of categories in each
client, which indicates that the global model is difficult to generalize on all the clients
in non-IID settings.

Therefore, using federated learning in video summarization tasks will face high data
heterogeneity (non-IID) challenges, which affects the global model in terms of performance
and convergence speed. To address the above challenges, we propose the Community-Aware
Clustering Federated Video Summarization strategy by clustering the clients with similar
data distribution, and training corresponding group models.
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4.3.3 Community-Aware Federated Video Summarization

There has been significant research investigating high data heterogeneity challenges [147,
34, 41] due to the community diversity of users. Specially, cluster-based federated learn-
ing clusters the clients based on the similarity of the model parameters [40–42] or data
distribution [98] across different clients recently. Parameters-based clustering algorithm
requires the server to consume additional communication rounds to obtain significantly
varying gradients or parameters, thereby reducing model training efficiency and increasing
communication costs. To this end, we propose a data-driven approach via leveraging the
relative distance between the data distribution of each client, and clients with a close distance
of data distribution can be clustered as a community before FL model training.
Community Distribution Estimation. Due to the data privacy policy in federated learning,
it is not allowed to directly calculate the distance between any two private data distributions
among clients. We thus set a proxy sample from another public dataset to collect the
comparison of distances simultaneously. By calculating the distance between proxy samples
and the center of all training samples of each client, we can obtain the essential information on
the data distribution in each client, which can be regarded as the summary of data distribution
for all clients. Due to the property of video data (time-series), we adopt the widely used
Dynamic Time Warping (DTW)[148] as the distance measurement.

Concretely, the centre server first broadcast a single proxy sample xp to each available
client k. Then the client calculates the pair-wise distance D [xu,xp] between each training
sample xu and the proxy sample xp via the DTW distance function, where xu is the sample in
the local dataset Xk = {x1,x2, . . . ,xu, . . . ,xU}. Finally, we estimate the distance dk

center from
the center of data distribution of k-client to the proxy sample xp. We regard dk

center as the
summary of each client’s data distribution, and the detailed implementation can be seen in
Algorithm 1.
Clustering Procedure. Once each device sends its summary of data distribution dk

center

to the central server, the server calculates the pair-wise distance between any two clients’
summary via L1 distance, i.e. |dk

center−dq
center|, where k,q denotes the different client. We

store all pair-wise values of various clients to form the distance matrix Md . Then we adopt
the K-Means algorithm[149] to cluster the client into the m group based on the distance
matrix. An overview of the clustering procedure is also described in Algorithm 1 and an
illustration of the clustering procedure is shown in Fig 4.3. After completing the clustering
operation, we train m cluster-wise models via the proposed Frame-Based FedAvg.

Our proposed CFed-VS strategy allows for a one-off clustering of participating clients
into various groups before starting federated training. In the event that new clients join, the
server can send only the proxy sample and assign these clients to the appropriate group based
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Algorithm 1 Community-Aware Federated Video Summarization
Input: C ← Client groups;

Xk ← Dataset of k-client with U samples;
Md ← the distance matrix of the data distribution;
DTW ()← dynamic time warping function;

Output: Uploaded group model parameters θc,t

1: procedure CFED-VS
2: Server broadcasts xp to all K clients
3: for k ∈ K do
4: dk

center =
1
U ∑

U
u=1 DTW(xu,xp)

5: Client k uploads dk
center to server

6: end for
7: Md = {|dk

center−dq
center|} | k,q ∈ K,k ̸= q

8: C ←FK−means(Md,m)
9: for c ∈ C do

10: θc,0← θ0
11: for each round t = 1,2, . . . ,T do
12: θc,t+1← FedAvg(θc,t, Kc)
13: end for
14: end for
15: end procedure

16: function DTW(x1, x2)
17: l1← length of x1; l2← length of x2
18: Initialize D as a matrix of size (l1 +1, l2 +1) with ∞

19: D [0,0]← 0
20: for i = 1,2, . . . , l1 do
21: for j = 1,2, . . . , l2 do
22: cost = d(x1[i],x2[ j])
23: D [i, j] = cost +min(D [i−1, j],D [i, j−1],D [i−1, j−1])
24: end for
25: end for
26: return D [l1, l2]
27: end function



4.3 Methodology 61

𝑪𝟏 𝑪𝟐 𝑪𝒎...

...
DTW Distance0
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Fig. 4.3 The illustration of clustering client methods in CFed-VS. The blue circle denotes
the distance from the proxy sample to the data centre of various clients. The orange oval
represents different client groups and indexes by Cm.

on their feedback summary. Compared to other grouping methods based on data distribution,
our approach does not reveal the user’s data category information and only requires a certain
amount of computing resources on the client side.
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Fig. 4.4 Overview of the Community-Aware Federated Video Summarization system. The
secured cloud server firstly clusters clients into multi-groups based on the similarity of data
distribution before the FL training procedure. Then the Mixture Transformer model can be
deployed to each client to carry out training.

4.3.4 Mixture Transformer

Even though the proposed CFed-VS provides a solution to non-IID performance decline,
there is still a performance gap when using conventional video summarization models with a
non-IID data setting. We then focus on improving the model generalization in the non-IID
setting. Considering the outstanding performance of the Transformer [135] for learning
time-series data, the global receptive field of the self-attention mechanism can help the model
focus on summarizing global information of a video sequence, which is suitable for the video
summarization task. Therefore, we propose the Mixture Transformer to address the above
challenges.
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Transformer Block. In a basic Transformer block, the queries, keys, and values Q = HWq,
K = HWk, and V = HWv are linear projections of the input frame feature H with Q,K,V ∈
RN×d , where N and d denote the frame number and channel dimension. The process is
defined as:

A (K,Q,V ) = FSo f tmax(
QKT
√

Da
)V , (4.3)

H l
a = MLP(LN(A l)+A l−1)+H l−1

a , (4.4)

where A denotes the attention map, which is computed as the scaled dot-product function,
and l denotes the block number. A l−1 represents the attention map from the previous
block (block l−1), which is added to the current block’s attention map A l to incorporate
prior attention information. This operation enables the model to progressively refine the
attention weights over multiple blocks. FSo f tmax denotes the softmax function. LN and MLP
represent Layer Normalization and Muti-Layer Perception, respectively. In the context of
video summarization, the log probability matrix A becomes a high-rank matrix when the
visual contents are complex and the changes between frames are severe. Such high-rank
matrix applied softmax function will face the Softmax bottleneck, as discussed in [150]. It
reflects the circumstance that softmax function does not have the capacity to express the true
attention distribution when d is smaller than rank(A )−1. Inspired by the work of [132], we
apply the Associated Query Q̂ = tanh(W Q̂Q) to capture the second-order changes between
queries so that complex video content can be represented in a more smoothed attention
representation. Then the attention map in Eq. 4.3 is re-computed as:

ˆA = A (K,Q,V )·A (K, Q̂,V )T , (4.5)

where ˆA ∈ RT×T , namely mixture attention map. W Q̂ is the Associated Query parameter.
As ˆA is a non-linear function of the attention distribution, the rank of ˆA can be arbitrarily
higher than the standard attention map A , which can be used to alleviate the bottleneck
problem.
Overall Framework. The architecture overview is shown in Figure 4.4. Firstly, the secured
cloud server sends a proxy sample to each user. According to the received feedback, users
with similar distances will be clustered as a community. Each community trains a unique
Mixture Transformer model using the proposed Frame-Based Aggregation. New users will
be assigned to the correct community by comparing their feedback summary in the distance
between the proxy sample and the center of their data distribution.
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4.4 Experiment

4.4.1 Experimental Setup

Datasets. We evaluate our model on two public datasets: TVSum [7] and SumMe[6].
TVSum was collected from Youtube, which contains 50 videos in 10 categories. The duration
of most videos ranges from 1 to 10 minutes. SumMe includes 25 videos with various
holidays, events and sports. The video lengths vary from 1.5 to 6.5 minutes. Both datasets
contain annotations labeled for key-frames by 25 human annotators. Considering the non-IID
setting is category-based [34], we manually flag each video’s category as the absence of
detailed categories for each video on two datasets. Furthermore, the limited data provided by
TVSum and SumMe cannot meet the splitting method in non-IID setting, thus we used the
ball-and-urn technique [151] to split a single video sample into multiple fragments, increase
the number of samples in TVSum and SumMe to 150 and 100 respectively, and then we
followed Pathological non-IID setting [34] to assign client data.
Evaluation Metrics As for the evaluation metrics for the VS task, we used the key-shot-based
F-score [130] as the metric, and the converted frame-level importance scores to shot-based
summaries for all datasets. The kernel temporal segmentation (KTS) [127], where the method
can segment the video into separate intervals in time, was used to change the user annotation
from frame to key shot level in our experiment. Then we calculate the harmonic average
F-score as the evaluation metric. We also used Kendall’s τ [152] and Spearman’s ρ[153]
correlation coefficients to compare the ordinal correlation between the generated summary
and the ground truth. As the metric for FL, given numerous devices, we evaluate the
corresponding group model based on the client’s local test set for the CFL-based framework
under the same number of groups. For FedAvg and FedProx, we evaluate the global model
on the local test data of all clients.
Implement Details For CFed-VS, we set the total number of clients at ten, and the fraction
of clients participating in each round of FL is 0.8. The global communication round T is
200, the learning rate is 0.0001, and the local epoch Elocal=20. For Mixture Transformer, the
1024 dimensional visual features extracted from the pool5 layer of the GoogLeNet [154] are
used for training, to be consistent with existing methods. Since cluster structures in the real
world may be ambiguous, ignoring the knowledge learned by the group model from other
communities will reduce the performance of models trained in a single client cluster[155].
Thus, we also adopt the weight-sharing approach [155]. The proxy sample xp is selected by
selecting a random test sample in SumMe when performing experiments on TVSum, and
vice versa. Besides following previous work, frames feature H are first extracted by I3D
[156] whose dimensionality is 1024, and each video is segmented into shots by KTS [157],
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which is a widely used video temporal segmentation method in the video summarization
task.

4.4.2 Experimental Results

Comparison to FL Methods. As shown in Table 4.2, we compared our proposed CFed-VS
with four FL baseline frameworks and found that CFed-VS achieves the best performance
both in two datasets. The result shows that IFCA[155], FedGroup[40] and CFed-VS out-
perform significantly to other frameworks in most non-IID settings. We attribute this to
the CFL-based approaches, which group clients with similar data distribution into the same
community, so group models can effectively learn common properties from communities to
mitigate the challenge of data heterogeneity. As the convergency speed shown in Figure 4.5,
our proposed approach has a fast convergency speed compared with IFCA and FedGroup,
which shows the efficiency of the CFed-VS approach in FLVS tasks.

Table 4.2 Comparisons with FedAvg, FedProx, IFCA, FedGroup on TVSum and SumMe
dataset.

Dataset TVSum SumMe

# of Classes 1 2 4 1 2

FedAvg[117] 54.23±2.2 54.38±1.5 56.08±0.5 43.78±0.2 49.59±0.5
FedProx[32] 55.65±1.9 54.63±0.6 57.42±1.3 43.62±0.8 50.77±1.2
IFCA[155] 57.29±1.3 57.94±1.7 58.51±1.6 47.23±1.4 51.41±0.5

FedGroup[40] 57.41±1.7 58.39±0.4 58.74±1.9 47.72±1.7 51.59±2.1

CFed-VS 57.91±1.4 58.86±0.4 59.98±2.7 48.20±0.8 52.13±0.5

Table 4.3 F1-score (%) of DMASum with state-of-the-art approaches on both SumMe and
TVSum dataset.

Method SumMe TVSum

DPP-LSTM [1] 38.6 54.7
SUM-GAN [158] 41.7 54.3
Cycle-SUM [159] 41.9 57.6
DMASum [132] 54.3 61.4
SumGraph [160] 51.4 63.9
RSGN [161] 45.0 61.0

Mixture Transformer 55.1 63.8

Comparison to VS Methods. Our model comparison with state-of-the-art VS methods is
summarized in 4.3 and 4.4. From the result of 4.3, it can be seen that Mixture Transformer
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Fig. 4.5 Evaluation of model performance on TVSum and SumMe under 2-class non-IID
and 1-class non-IID separately.

can achieve competitive performance on both datasets, which indicates that pure Transformer
structure can obtain outstanding performance than other models. From 4.4, we can see the
correlation coefficients given by DMASum are significantly higher than other state-of-the-art
models, which verify that the mixture attention mechanism itself is capable of improving
model generalization.

4.4.3 Ablation Study

Effect on Group Number We then adopted the proposed CFed-VS approach to cluster the
ten clients into 2 to 4 and 2-3 groups in TVSum and SumMe. The performance of CFed-VS
with different group numbers m was conducted in 100 global communication rounds under
the 1-class non-IID setting. As shown in Figure 4.6, CFed-VS can efficiently converge on
both datasets and achieves the best performance with groups m = 3 and m = 2 in TVSum
and SumMe.
Effect on Client Number We finally examine the effect of device number K on CFed-VS,
in which K = 10, 15, 20, 30 under three groups and two groups in TVSum and SumMe
separately. Figure 4.7 illustrates the performance of CFed-VS for TVSum and SumMe
datasets under the 1-class non-ID setting. We observe that the number of devices does not



66 Community-Aware Federated Video Summarization

Table 4.4 Rank-order correlation coefficients computed between predicted importance scores
by different models and human-annotated scores on both SumMe and TVSum datasets using
Kendall’s τ and Spearman’s ρ correlation coefficients.

Method
SumMe TVSum

τ ρ τ ρ

Random 0.000 0.000 0.000 0.000
DPP-LSTM [1] - - 0.042 0.055
SUM-GAN [158] 0.049 0.066 0.024 0.031
SumGraph [160] - - 0.094 0.138
RSGN [161] 0.083 0.085 0.083 0.090

Mixture Transformer 0.102 0.107 0.098 0.149
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(b) SumMe

Fig. 4.6 Evaluation of model performance on TVSum and SumMe with different group
numbers.

significantly affect the model performance. Meanwhile, the low variance of the Max-Min
F1-Score, which measures the difference between the best and worst F1-Score of group
models evaluate in all clients, indicates that group models can effectively generalize to the
various clients. The results of these experiments indicate that device numbers have a stable
impact on the CFed-VS framework.
Discussion on Efficiency and Computational Cost The CFed-VS algorithm, while demon-
strating superior performance in terms of the F1 score, introduces additional computational
overhead compared to simpler methods like FedAvg. This is primarily due to the inclusion
of K-means clustering and the Mixture Transformer backbone, both of which contribute
to handling heterogeneous data more effectively but at the cost of higher computational
complexity.



4.4 Experiment 67

� 	 � � � � 	 � � � � 	 � � � � 	 � 
 �

� 
 � �
� 	 � � �

� 
 � � � 	 � � 	

� � � � � � � �
� �

� �

� �
��

��
��

��

� � � � � � � � � � �  � � � 
 	 � � � �

� 
 � 	 �  �
� 	 �  � � �

(a) F1-Score

� � � 

� � � 	

� � �
� � 
 �

� � � �
� � � �

� � 	 �

� � � �

� � � � � � � �
�

�

�

�

�

�

�
��

��

�

��
��

��
�

	

� � � � � � � � � � �  � � � 
 	 � � � �

� � � � � � �
� � � � � � �

(b) Max-Min F1-Score

Fig. 4.7 Model performance analysis on TVSum and SumMe with different numbers of
clients.

The FedAvg algorithm has a computational complexity of O(N×d), where N represents
the number of clients, and d is the dimensionality of the model. FedAvg is well-suited for
environments with limited computational resources due to its relatively low overhead.

In contrast, the proposed method involves K-means clustering for grouping clients based
on data distribution similarities. This clustering step has a complexity of O(K×N× d),
where K is the number of clusters. The additional computational cost introduced by this
step allows the algorithm to improve model generalization in non-IID settings, ensuring that
client groups are more homogeneous and thus better suited for personalized model training.

Furthermore, the Mixture Transformer Backbone in our method introduces an addi-
tional layer of complexity. Transformers generally scale quadratically with the input length,
with a computational complexity of O(L2× dmodel), where L is the sequence length, and
dmodel is the hidden dimension. While this complexity is higher than that of simpler architec-
tures, it allows the model to capture both local and global patterns in video sequences, which
is critical for federated video summarization tasks.

Though these additions increase the computational overhead, they result in significantly
improved performance, as demonstrated by the results in Fig. 4.5. In future work, optimiza-
tions such as model compression techniques or distributed computation strategies could help
reduce the computational cost without sacrificing performance.

4.4.4 Discussion on Privacy

Conventional parameter-based clustering methods, usually require training a global model in
certain communication rounds to determine the difference between client models. Based on
the similarity of parameters, the server groups the client and FL training is then performed
independently for each client cluster to produce multiple federated models. Our proposed
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approach clusters the clients before the FL training, which saves the communication rounds
for the clustering procedure. In terms of privacy, it is worth noting that the summary of the
data distribution sent by the client to the server does not reveal any specific information
regarding the video of the user. Since the client sends a single value to the server, our
approach is more private than clustering based on label distribution or feature distribution.

4.5 Conclusion

In this work, we established the first FLVS benchmark with three key technical directions.
1) For the federated learning foundation, we investigated the Frame-Based Aggregation
tailored for the VS problem with different video lengths. 2) A Community-Aware Clustering
Federated Learning (CFed-VS) framework was proposed. By completing the proxy reg-
istration before FL training, community clients with similar distances of data distribution
effectively mitigated the data heterogeneity. 3) The proposed Mixture Attention Transformer
alleviated the bottleneck problem and significantly improved the model generalization in the
non-IID setting. Our thorough evaluation on both datasets suggested favorable outcomes of
our method compared to existing established FL and VS frameworks. Future development of
the CFed-VS framework can investigate how it could be adapted or improved to handle even
larger and more diverse datasets.

Epilogue

In this chapter, we aimed to address the research questions 2.1 and 2.2, focusing on developing
advanced methodologies for video summarization within federated learning frameworks that
ensure both data privacy and computational efficiency.

For RQ 2.1, which investigates how video summarization techniques can preserve data
privacy while extracting valuable content from video data, we introduced a novel Cluster-
based Federated Learning (CFed-VS) approach. This method divides clients into distinct
clusters based on their data distribution, allowing localized training that minimizes privacy
risks while effectively summarizing the inherent complexities of video data. By leveraging
Frame-based Aggregation techniques, our model is capable of handling diverse video lengths
and structures, ensuring that video summarization is performed in a secure and effective
manner without compromising the temporal and structural characteristics of the video content.

Regarding RQ 2.2, which explores the design of federated learning approaches that
balance privacy protection and computational efficiency, we proposed an innovative clustering
method that performs data distribution estimation before the federated learning training
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begins. This pre-clustering step reduces communication costs and enhances computational
efficiency by eliminating the need for repeated clustering operations during the training
process. Furthermore, we introduced the Mixture Transformer, a model tailored to address
the complexities of video summarization in non-IID federated environments. Through the
use of Associated Queries and a mixture attention map, the Mixture Transformer provides
a more refined attention mechanism, effectively addressing the "Softmax bottleneck" and
improving generalization across heterogeneous video datasets.

In summary, the CFed-VS framework successfully meets the dual goals of privacy preser-
vation and computational efficiency in video summarization. By addressing the unique chal-
lenges posed by video data—such as its volume, complexity, and variability in length—while
ensuring robust privacy protections, CFed-VS represents a significant advancement in the
field of federated video analytics. Future work may focus on further optimizing these tech-
niques to handle even larger datasets and more complex video structures, enhancing both
privacy and performance.





Chapter 5

Privacy-Enhanced Zero-Shot Learning
via Data-Free Knowledge Transfer

Prologue

Building on the discussion of Community-Aware Federated Video Summarization (CFed-
VS) and its contributions to privacy-preserving video processing, this chapter shifts focus
to the critical intersection of data utilization and privacy in machine learning. While video
summarization emphasizes privacy, the need for privacy-preserving methodologies extends
across all data-driven tasks, particularly in the context of annotated datasets used for training
complex models.

This chapter introduces Privacy-Enhanced Zero-Shot Learning (PE-ZSL), a frame-
work designed to tackle the challenges of utilizing annotated data while maintaining strict
privacy standards. PE-ZSL enables models to classify objects in unseen categories without
accessing sensitive data, addressing the limitations of traditional data-sharing practices and
the scarcity of labeled data.

At the core of PE-ZSL is a novel data-free knowledge transfer mechanism, which
combines zero-shot learning principles with advanced techniques for secure model training.
This approach allows models to learn from abstract, non-sensitive information, striking a
balance between maximizing data utility and preserving privacy. The development of PE-ZSL
represents a significant step toward building robust machine-learning models that respect
ethical data use while maintaining strong performance.
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Declaration: This chapter is a modified version of "Privacy-Enhanced Zero-Shot
Learning via Data-Free Knowledge Transfer", published in IEEE International Conference
on Multimedia & Expo(ICME), 2023. Code Link

5.1 Introduction

The blossom of deep learning technologies embraces the development of high-performance
computing and large-scale multi-modal data. However, sharing data across different institutes
and even between different countries has become increasingly difficult and sensitive. The
increasing awareness of data copyright, expensive data annotation, and restricted access to
data in expert domains have hindered the development of interdisciplinary and intercultural
deep models. However, sharing data across different institutes and even between different
countries has become increasingly difficult and sensitive. The increasing awareness of data
copyright, expensive data annotation, and restricted access to data in expert domains have
hindered the development of interdisciplinary and intercultural deep models.

As shown in Fig.5.1, datasets may contain sensitive data, i.e., healthcare and face in-
formation, which cost data owners billions and tens of years to collect. Strict regulations,
such as the GDPR [162] in Europe have been enforced to control the risk of data leaking.
In our work, we focus on protecting data copyright and eliminating data sensitivity
from data owners when data contain confidential user information. Concretely, AI
service providers (i.e., AI companies) maintain close cooperation with the data owners (i.e.,
scientific institutions and hospitals) and they need to obtain data to provide related services
for customers. However, the healthcare dataset is expensive to collect so the hospital cannot
share the data directly with AI service providers due to copyright protection. When AI
companies need access to such sensitive data to provide AI services, the shared data is
exposed to leaking risks even though tedious confidentiality agreements have been signed.
Take another example of the situation related to surveillance data, AI service providers take
on the task, i.e., pedestrian re-identification, while it is necessary to eliminate the sensitive
user face information. Motivated by these challenges, this work explores a theoretical
case when an AI developer needs to train a new model, the data owner (from different
institutes) can provide a data-free teacher service as an API so that knowledge can be
transferred without any data sharing.

As a promising machine learning paradigm, zero-shot learning (ZSL) shows good poten-
tial to tackle data-free problems which investigates an extreme case when such deep transfer
can go beyond seen classes in the teacher dataset. Existing ZSL models are established based
on real data from either seen or unseen classes. When adapting a pre-trained model to a new

https://github.com/StefanDurhamUK/SG-ZSL
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Fig. 5.1 Traditional ZSL models require access to real images from the data owner to learn the
visual-semantic associations. PE-ZSL suggests an extra data safeguard using a teacher model
so that a PE-ZSL model can achieve GZSL without access to any real images. The training
of PE-ZSL only involves generated data and prior auxiliary information and guidance from
the teacher model.

task domain, existing ZSL models assume a large amount of labeled seen class or unlabeled
unseen class data are available to establish the visual-semantic relationship. However, sharing
data across different institutes and even different countries is often infeasible. Different from
existing ZSL settings, we focus on establishing the ZSL model without data sharing during
training. In this work, we propose a new paradigm dubbed Privacy-Enhanced Zero-Shot
Learning (PE-ZSL) to avoid sensitive data leaking while still enabling AI model can be
trained. Figure 5.1 briefly illustrates the difference between ZSL and PE-ZSL tasks. Our
PE-ZSL task suggests replacing data with a teacher model (pre-trained on real data) to guide
the ZSL model training. The teacher model can be regarded as the implicit representation of
data so the PE-ZSL model can be established through the supervision of the teacher model,
which can prevent real data from being shared.

To comprehensively explore our proposed PE-ZSL framework, we also present extensive
discussion from the perspective of privacy issues and knowledge space of the teacher model.
First, we propose two PE-ZSL scenarios in terms of framework privacy. In the ‘black-box’
scenario, the teacher only provides output classification scores but does not share weights. In
the ‘white-box’ scenario, the teacher will also share the model weights during training, which
is more informative. These two scenarios indicate different levels of communication between
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data owners and AI service providers, which will lead to different ZSL recognition perfor-
mances. In terms of teacher model privacy, we adopt differential privacy [163] in teacher
training, which protects against the adversary who has access to model information, i.e.,
parameters. Furthermore, we propose omniscient and quasi-omniscient teachers according to
the knowledge space, i.e., whether unseen classes are involved in the pre-training teacher
model. In summary, our contributions are three-fold:

• Privacy-Enhanced Zero-Shot Learning aims to achieve zero-shot classification without
access to real data. The paradigm can be applied to real-world applications for data
copyright protection and sensitivity elimination.

• We develop a novel data-free knowledge transfer framework for the PE-ZSL task. In
addition to zero data sharing setting, we propose ‘black-’ and ‘white-box’ scenarios
and discuss the pros and cons of model sharing problems. We also present an analysis
of the teacher model in both omniscient and quasi-omniscient settings according to the
knowledge space.

• We show experimental results for conventional and generalized ZSL tasks in two
scenarios. Though the PE-ZSL model is established without data sharing during
training, it achieves promising performance.

5.2 Related Work

The most widely used framework for data privacy enhancement is Federated Learning [164].
A global model is shared with clients to avoid data leaking. Knowledge distillation [165]
utilizes the domain-expert teacher model to train a compact student model and it can prevent
the teacher model from being attacked. Yet, none of these methods have explored the
potential in zero-shot learning situations. This work presents the first work exploring a
privacy-enhanced zero-shot learning paradigm via data-free knowledge transfer.

Zero-Shot learning [4] enables deep learning model[137, 125, 126, 122] to recognise
unknown/unseen classes by establishing the relationship between seen and unseen classes
via class semantic information. Some work [66] aims to build the mapping between visual
and semantic space. Other works [166] focus on unseen class data generation to alleviate
the data-missing problem. According to whether unseen data is adopted during training,
existing ZSL methods can be categorised into inductive [126] and transductive [167] settings.
As for the test phase, conventional ZSL (CZSL) methods [67] assume test data only come
from unseen classes, while generalized ZSL (GZSL) [68] is then proposed to assign both
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Fig. 5.2 Overall framework in the black-box and white-box scenarios. In the white-box
scenario, the generator has access to teacher weights during training while the teacher only
provides output guidance in the black-box scenario.

seen and unseen data into corresponding classes. There has been little research on zero-shot
learning whilst enhancing data privacy, so we propose a privacy-enhanced zero-shot learning
paradigm, which aims to accomplish zero-shot recognition without access to real data during
training.

5.3 Privacy-Enhanced Zero-Shot Learning

As shown in Fig.5.2, PE-ZSL addresses the problem when sensitive data is secured on the
Data Owner domain. The key idea is to introduce a teacher model as the data safeguard and
guide the model deployed on the AI Service Provider domain to train a classifier with zero
real data. In addition to data privacy-enhancing, we introduce white- and black-box scenarios
to discuss the teacher model sharing problem regarding the balance between performance
and security.

5.3.1 Problem Formulation

The basic PE-ZSL setting involves secured images and their extracted visual features x ∈X .
The data safeguard is provided by a pre-trained teacher model on the data owner domain. For
simplicity, we consider a supervised learning model fT : X → Y , where y ∈ Y is the label
space. The ultimate goal is to train a student model in the AI service provider’s domain using
an objective function ℓ that learns from the guidance of the teacher model:

ℓ( fPE−ZSL (x̃) , fT (x̃)) , (5.1)
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where x̃ ∈ X̃ is the generated data, ensuring that no real data is accessed. Here, fPE−ZSL(x̃)
represents the full model in the PE-ZSL framework, which is composed of two parts: the
generator and the student model. The generator is responsible for synthesizing the data x̃,
while the student model learns from this generated data. The loss function ℓ(·, ·) measures
the discrepancy between the output of the student model within fPE−ZSL and the output of
the teacher model fT . The goal is to minimize this loss, transferring knowledge from the
teacher model to the student model without ever accessing the real data.
PE-ZSL with Omniscient & Quasi-Omniscient Teacher On the data owner domain, we
further break down the PE-ZSL into omniscient and quasi-omniscient teachers according
to the label space. Seen classes are defined as S = {(xs,as,ys) | xs ∈Xs,as ∈A ,ys ∈ Ys},
where xs ∈ Rdx denotes the dx-dimensional visual feature in the set of seen class features,
as ∈Rda denotes the da-dimensional auxiliary class-level semantic embedding, and Ys stands
for the set of labels for seen classes. Unseen classes are defined as U = {(xu,au,yu) |
xu ∈Xu,au ∈ A ,yu ∈ Yu}, where xu represents the unseen class features, au denotes the
semantic embedding of unseen classes and yu denotes the unseen class labels. Seen and
unseen classes are disjoint, i.e., Ys∩Yu = /0. For PE-ZSL, both seen and unseen features,
xs and xu, are unavailable for the service provider. Available information for the service
provider can be represented as Tr = {(a,y) | a ∈A ,y ∈ Y }, which means only semantic
embedding and class labels can be accessed. The teacher model pre-trained by real data is
provided for model training guidance. In this way, the basic PE-ZSL with omniscient teacher
considers fT : X → Y because the source domain contains both seen and unseen classes. A
more challenging PE-ZSL with quasi-omniscient teacher considers fT : Xs→ Ys.
ZSL vs GZSL On AI service provider domain, PE-ZSL aims to classify test images fZSL :
Xu→ Yu for CZSL, and fGZSL : X → Y for GZSL. Training of the above classifiers using
absolutely generated data will be introduced next.

5.3.2 White-Box & Black-Box Scenarios

The objective function of PE-ZSL in Eq.(6.1) defines a data-free knowledge transfer frame-
work for PE-ZSL task, i.e., through the guidance of the teacher model, our proposed PE-ZSL
formula consists of two components: a Generator G and a Student network S. Generator
G is to synthesize features and student S aims to match the performance of the teacher
model. Figure 5.2 depicts the detailed PE-ZSL framework in both white-box and black-box
scenarios. The system consists of 1) the secured data and teacher model on the data owner;
2) the PE-ZSL model on the AI service provider; 3) and the information exchange channels.
Considering that model inversion can attack shared models, we also investigate the security
levels regarding model sharing in addition to data privacy enhancement. For the white-box
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scenario, the teacher weights are involved in computing the gradient for the generator and
student network training. In the black-box scenario, the teacher only provides the output as
pseudo labels, i.e., the teacher model is not involved in backpropagation for optimization of
the PE-ZSL framework.
White-Box Scenario. In the white-box scenario, the teacher model provides both gradient
and softmax output as the PE-ZSL training guidance as follows. 1) Uploading generated
data: the generator synthesizes features of the same classes with the supervision of a
teacher based on noise z and class-level semantic embedding a (attributes or BERT model
of class names [109] as the condition). Specifically, we aim to synthesize the features
that can be classified into corresponding classes with the constraint of the teacher network.
x̃ = G(z|a;θG) represents the generated features that are uploaded to the data owner. 2)
Gradient and softmax guidance: The teacher model receives x̃ and process the data using
the loss function:

min
θG

L (x̃,y;θG)+αR(x̃), (5.2)

where L (·) represents cross-entropy loss by teacher model for classification, R(·) refers to
the regularization term during feature generation with hyperparameter α . The regularization
term aims to minimize the distribution distance of real and generated features. Note that
regularization is also completed on the data owner side and real data will not be accessed by
the AI service provider. 3) Feedback downloading: a request is sent to the service provider
so that the gradient, the regularization of distribution divergence and softmax output can be
downloaded. 4) Label verification: Using softmax to compute pseudo labels and filter out
misclassified generated samples:

(x̃∗,y∗) ∈ {(x̃,y)|y = argmaxT (x̃;θ
∗
T ),

x̃ = G(z|a;θ
∗
G)},

(5.3)

where T represents teacher model, θ ∗T and θ ∗G are the optimised parameters of teacher and
generator, x̃∗ is the high-quality generated features, y∗ is the corresponding class labels. 5):
Training the student model:

min
θS
∥T ∗(x̃∗;θ

∗
T )−S(x̃∗;θS)∥2

2 , (5.4)

where S and θS denotes the student model and its parameters. In the white-box scenario,
the gradient is imposed directly onto generated features and can massively improve the
performance of the generator. As a trade-off, the gradient feedback is mid-risk information
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Algorithm 2 Training Procedure in Both Protocols
Require: Pre-trained Teacher network θ ∗T , class labels Ytr and their auxiliary semantic embedding A ;

the maximal number of training epochs Tg and Ts for generator and student network, respectively.
Ensure: The learned parameters θG, θS for generator G and student network S, respectively.

1: Initialize θG, θS. Set iteration epochs tg = 1, ts = 1.
2: while tg < Tg do
3: if White-Box Protocol then
4: Train generator with gradient guidance from teacher network using Eq.(5.2).
5: else if Black-Box Protocol then
6: Train generator with output guidance from teacher network using Eq.(5.5).
7: end if
8: tg← tg +1
9: end while

10: Conduct label verification using Eq.(5.3).
11: while ts < Ts do
12: Train student network with output guidance from the teacher using Eq.(5.4).
13: ts← ts +1
14: end while

(may lead to teacher model leaking) whereas the softmax and regularization feedback are
low-risk.
Black-Box Scenario. The black-box scenario only differs from the white-box scenario in the
guidance provided by the teacher model in the second step. Only low-risk regularization and
softmax output can be requested from the teacher model so as to avoid the model leaking risk.
Specifically, generated features x̃ = G(z|a;θG) are uploaded to the data owner to compute
the softmax and divergence regularization. The data owner then creates a request so that the
feedback can be downloaded. Generated data can validate whether its conditional class input
can match the teacher softmax output and misclassified samples are filtered out. Generator G
and student network S are then trained as an end-to-end model as follows:

min
θG,θS
∥T ∗(x̃;θ

∗
T )−S(x̃;θS)∥2

2 +αR(x̃), (5.5)

where θG,θS are parameters of generator and student model. The comprehensive training
procedures for both protocols are delineated in Algorithm 2.

This work mainly focuses on investigating the following research questions (RQ): 1)
What are the impacts of different teacher feedback information on the quality and diversity of
generated data? 2) different semantic information as generation condition and their impacts;
3) trade-off between performance and security in white-box and black-box; 4) can student
generate new knowledge beyond the limitation of a quasi-omniscient teacher? 5) previous
work uses real seen data and generated unseen data, which causes bias towards seen classes.
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Table 5.1 Detailed dataset statistics and data split in PE-ZSL. Notation: ‘att’ - attribute; ‘S’ -
seen class; ‘U’ - unseen class; ‘Om’ - omniscient teacher; ‘Q-Om’ - quasi-omniscient teacher.

Dataset Semantics Class
Number Image Teacher PE-ZSL Training PE-ZSL Evaluation

(Om/Q-Om) (Om/Q-Om)
S/U S U S U S U

AWA1 [4] BERT/att 40/10 30475 19832 4542/0 0 0 4958 1143/5685
AWA2 [62] BERT/att 40/10 37322 23527 6328/0 0 0 5882 1585/7913
aPY [168] BERT/att 20/12 15539 5932 6333/0 0 0 1483 1591/7924

In PE-ZSL, both seen and unseen classes are trained using generated data, which improves
consistency between seen and unseen classifiers in the GZSL problem.

5.3.3 Privacy-Enhanced Zero-Shot Classification

After the training process, the generator can synthesize features of good quality and the
student network can predict class labels of test features. With the omniscient teacher, where
seen and unseen classes are available, the generator can synthesize features of all classes.
Given the test features, we can obtain the predicted class labels as follows:

y∗ = argmax
y∈Y

p(y|x,θ ∗S ), (5.6)

where θ ∗S denotes optimised parameters of student.
With the quasi-omniscient teacher, where only seen class data is available, the problem

is more challenging. The generator is utilized to synthesize data of unseen classes. Given
the noise z and unseen class semantic embedding, the generated features can be obtained as
x̃ = G(z|a;θ ∗G). Then it is converted into a supervised learning task. The generated features
are adopted to train a classifier C and class labels of test features can be predicted through an
optimized classifier.

5.4 Experiments

Datasets and Implementation Details. We evaluate our PE-ZSL model on three benchmark
datasets: AWA1[4], AWA2 [62]) and aPY [168]. AWA1 and AWA2 consist of 30,475 and
37,322 images of 50 classes. aPY contains 15,539 images of 32 classes. As a semantic
representation, we use 768-dimensional word embedding generated by BERT [109]. Fol-
lowing [62], we adopt the 2048-dimensional ResNet101 features as image representation.
As for data split, we follow the proposed data split in [62] for quasi-omniscient teacher.
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Table 5.2 Comparison results in CZSL and GZSL tasks. ‘WB’ & ‘BB’ represent white-
& black-box scenario, ‘*’ represents TZSL method. ‘PE-ZSL+WB/BB*’ and ‘PE-
ZSL+WB/BB’ represent our model with the omniscient and quasi-omniscient teacher.

Method Zero-Shot Learning Generalized Zero-Shot Learning
AWA1 AWA2 aPY AWA1 AWA2 aPY

T1 T1 T1 u s H u s H u s H

DAP [4] 44.1 46.1 33.8 0.0 88.7 0.0 0.0 84.7 0.0 4.8 78.3 9.0
ALE [66] 59.9 62.5 39.7 16.8 76.1 27.5 14.0 81.8 23.9 4.6 73.7 8.7
DEM [60] 68.4 67.1 35.0 32.8 84.7 47.3 30.5 86.4 45.1 11.1 75.1 19.4

f-CLSWGAN [108] 68.2 - - 57.9 61.4 59.6 - - - - - -
CE-GZSL [169] 71.0 70.4 - 65.3 73.4 69.1 63.1 78.6 70.0 - - -
SDGZSL [170] - 74.3 47.0 - - - 69.6 78.2 73.7 39.1 60.7 47.5

ICCE [171] 74.2 72.7 49.5 67.4 81.2 73.6 65.3 82.3 72.8 45.2 46.3 45.7
DTN* [172] 69.0 - 41.5 54.8 88.5 67.7 - - - 37.4 87.9 52.5

GMSADE* [173] 81.3 80.7 49.9 71.2 87.7 78.6 71.3 86.1 78.0 76.1 39.3 51.8
EDE* [174] 85.3 77.5 31.3 71.4 90.1 79.7 68.4 93.2 78.9 29.8 79.4 43.3
BGT* [175] - 82.4 49.8 - - - 56.2 82.2 66.7 39.3 72.9 51.0

PE-ZSL+BB 14.1 19.9 12.3 4.1 3.7 3.9 3.5 3.7 3.6 6.8 4.0 5.1
PE-ZSL+WB 34.5 36.5 18.7 23.4 34.3 27.8 27.3 44.3 33.7 17.9 52.5 26.7
PE-ZSL+BB* 33.5 29.0 30.2 33.5 28.6 30.9 29.0 25.3 27.0 30.2 42.2 35.2
PE-ZSL+WB* 77.9 79.0 83.9 77.9 81.8 79.8 79.0 86.7 82.7 83.9 85.7 84.8

Table 5.3 Experimental results in the black-box scenario with the omniscient teacher in both
CZSL and GZSL tasks.

Method Zero-Shot Learning Generalized Zero-Shot Learning
AWA1 AWA2 aPY AWA1 AWA2 aPY

T1 T1 T1 u s H u s H u s H

Label-Conditioned 15.5 10.0 7.0 15.5 24.3 18.9 10.0 17.8 12.8 7.0 3.8 4.9
Attribute-Conditioned 10.1 23.0 8.2 10.1 11.3 10.7 23.0 17.6 20.0 8.2 5.0 6.3
w/o Label Verification 25.6 24.7 11.8 25.6 15.6 19.4 24.7 18.1 20.9 11.8 20.9 15.0

w/o Regularization 26.8 23.7 23.2 26.8 26.7 26.8 23.7 23.2 23.4 23.2 25.6 24.3

PE-ZSL+BB 33.5 29.0 30.2 33.5 28.6 30.9 29.0 25.3 27.0 30.2 42.2 35.2

The omniscient teacher is trained with all classes, so we split unseen classes randomly into
training and test sets following [172]. Student and teacher models have the same architecture,
which has two hidden layers with 1024 and 512 units. Generator contains a single hidden
layer with 4096 hidden units. The dimension of the noise vector z is set to 20 for all datasets.
The regularization term weight is set to 0.5 for AWA1 and AWA2, and 1 for aPY. The number
of generated features is 400 in average per class for all datasets. For the training epochs Tg

and Ts, we selected values that balance convergence and prevent overfitting or underfitting
for both the generator and student network. Experimentally, we found performance plateaus
in both networks beyond certain iterations, indicating an optimal stopping point for training.
Consequently, Tg = 50 and Ts = 80 were set to optimize both computational efficiency and
model effectiveness.
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Evaluation Protocol. Following [62], we adopt the per-class average top-1 accuracy (T1) for
CZSL task. We use harmonic mean H = (2×u× s)/(u+ s) for evaluation in GZSL, where
u and s denote average per-class top-1 accuracy on unseen and seen classes, respectively.

5.4.1 Main Results

Comparisons with State-of-Arts. We present experimental results in both CZSL and GZSL
tasks in Table 5.2. Considering this is the first PE-ZSL work, we provide a comparison
with traditional state-of-the-arts as a reference. To investigate RQ1, we show results under
two kinds of feedback from omniscient and quasi-omniscient teachers. PE-ZSL model with
omniscient teacher achieves promising performance in both CZSL and GZSL in white-box
scenario. We achieve the best performance in GZSL, especially on aPY, with an increase
in harmonic mean of 32.3% than DTN* method, which indicates an improved balance of
seen and unseen classes. As for the black-box scenario, the accuracy on unseen classes is
4.9% higher than seen classes on AWA1. It indicates that the PE-ZSL model is promising
to mitigate the class-level overfitting issue in the GZSL task proposed in RQ5. Compared
with inductive ZSL methods, results show that our model with the quasi-omniscient teacher
in the white-box scenario gains satisfactory performance in GZSL, especially on aPY, with
7.3% higher performance on the harmonic mean. It is very impressive that the student model
can generate new knowledge beyond the source data of the teacher model as discussed in
RQ4. For the black-box scenario, results show our PE-ZSL model outperforms random
guessing, which is around 10% on AWA1, AWA2 and 8% on aPY. The white-box achieves
better performance than the black-box, indicating that gradient guidance provides more
information.
Comparisons in Black-Box Scenario. As it is the first time to propose this setting, we
provide several baselines for comparison in Table 5.3. We provide label and attribute for
conditional feature generation to investigate RQ2. Our proposed framework with BERT
embedding achieves the best performance, i.e., with 18.0% and 23.4% increases in unseen
accuracies on AWA1. Results show that our framework gains obvious improvement in
accuracy with label verification, i.e., with 20.2% higher performance on harmonic mean on
aPY dataset. And results indicate the effectiveness to adopt regularization, i.e., it achieves
3.6% and 10.9% increases in Harmonic mean on AWA2 and aPY. The comparison with
baselines demonstrates the effectiveness of our PE-ZSL model in black-box scenario with
omniscient teacher.
Performance vs Framework Privacy. Compared to traditional ZSL methods, the perfor-
mance under the white-box scenario is very promising, since data privacy is already preserved
and our model can still achieve adequate performance. Compared with white-box scenario,



82 Privacy-Enhanced Zero-Shot Learning via Data-Free Knowledge Transfer

�� �� �� �� ��

��

��

��

��

��

��

��

	�


�

���

T�
�
�
�
�
	
�
�
�
�
�


�
�
�
�
�
�
�
�


�
�
�

�
�
�
�

T r a i n i n g  S t e p s

 T e a c h e r
 S t u d e n t ( W )
 S t u d e n t ( W  w / o  R )
 S t u d e n t ( W  w / o  V e r )
 S t u d e n t ( B )
 S t u d e n t ( B  w / o  R )
 S t u d e n t ( B  w / o  V e r )

(a) AWA1

�� �� �� �� ��
�

��

��

��

��

��

��

��

	�


�

���

To
p 1

 Pe
r-C

las
s A

cc
ura

cy
(in

 %
)

T r a i n i n g  S t e p s

 T e a c h e r
 S t u d e n t ( W )
 S t u d e n t ( W  w / o  R )
 S t u d e n t ( W  w / o  V e r )
 S t u d e n t ( B )
 S t u d e n t ( B  w / o  R )
 S t u d e n t ( B  w / o  V e r )

(b) aPY

Fig. 5.3 Epoch analysis for unseen accuracy. ‘Ver’: label verification. ‘R’: regularization
term.

black-box is more secure but sacrifices classification performance. Thus, the performance of
black-box scenario is reasonable because both data privacy and model safety are guaranteed
as proposed in RQ3.
Semantic Attribute Representation and Privacy Considerations. In our framework, we
use BERT-generated word embeddings based on class names, rather than conventional
expert-annotated attributes commonly used in zero-shot learning (ZSL). Unlike manual
annotations, which could expose sensitive information, BERT embeddings are derived from
publicly available data and capture general semantic relationships. This ensures the attributes
used are non-sensitive and do not contain personal or proprietary information. By leveraging
these public embeddings, our framework preserves privacy in both white-box and black-box
settings. The embeddings, which are broad and general, ensure that no real user data is
exposed, aligning with the privacy goals of the proposed model.

5.4.2 Analysis and Discussion

Student Performance Analysis. We present performance of teacher and student model
with increasing training steps in both scenarios on AWA1 and aPY in Figure 5.3. Student in
white-box scenario obtains results close to teacher, indicating the effectiveness of gradient
guidance. Besides, results show that model achieves better performance with regularization
term, indicating the effectiveness of feature distribution during training. And statistics also
show that framework performs better with label verification in both scenarios, which indicates
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its necessity because it can mitigate the negative influence caused by generated features of
inferior quality.

  Real Data   Generated Data
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(b) aPY

Fig. 5.4 t-SNE visualization on AWA1 and aPY

Quality of Generated Features. Figure 5.4 shows the t-SNE visualization of real and
generated unseen features in both scenarios with omniscient teacher on AWA1 and aPY.
We randomly choose a part of features for clear visualization. Generated features have
distribution close to real ones and they are more class-level clustered, indicating effectiveness
of feature generation under the supervision of teacher guidance, even though real data is
unavailable. Therefore, generated features can be viewed as a suitable replacement for real
features.

5.5 Conclusion

This work has presented a privacy-enhanced ZSL paradigm via data-free knowledge transfer.
A pre-trained teacher model was deployed on the data owner as data safeguard to provide
guidance for model training. We extensively studied the ‘black-box’ and ‘white-box’ sce-
narios and their trade-off in performance and framework privacy. Our model maintains
promising performance in CZSL and GZSL tasks despite the absence of real data during
training. Future development of PE-ZSL can focus on model design, reducing communication
costs and improving performance in the inductive setting.
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Epilogue

This chapter has focused on addressing RQ 3.1, which examines how innovative mechanisms
can enhance both the utility and confidentiality of data in machine learning, specifically in
the context of recognizing both seen and unseen classes while maintaining data privacy.

To respond to RQ 3.1, we introduced the Privacy-Preserving Zero-Shot Learning (PP-
ZSL) framework. This framework presents a novel approach by integrating data-free knowl-
edge distillation techniques to protect the privacy of data while maintaining its value. In this
approach, data owners can utilize their private datasets to train a teacher model, which can
then be used by others through an API. By doing so, privacy is preserved, as no raw data is
exposed, and data owners can also create new revenue opportunities by offering access to the
trained models.

The PP-ZSL framework further addresses the challenge of recognizing unseen classes
without sharing real data. By leveraging semantic information and guiding the training of
the generator and student model under different levels of security, the system ensures that
seen and unseen classes are effectively recognized. This process not only enhances the utility
of the data but also ensures that privacy remains intact, even in scenarios where sensitive
information could otherwise be exposed.

Additionally, the Sentinel-Guided Zero-Shot Learning (SG-ZSL) framework introduces
both black-box and white-box training scenarios, allowing for varying levels of privacy
protection. By incorporating differential privacy into the training of the teacher model,
data owners are given the flexibility to set privacy levels according to their specific needs,
balancing the trade-off between privacy and model performance. This fine-grained control
over privacy offers a practical solution to address different levels of sensitivity in data while
still maintaining robust performance in machine learning tasks.

In summary, the innovative mechanisms presented in this chapter successfully tackle the
core challenge of RQ 3.1 by providing robust privacy-preserving solutions that maximize the
utility of the data for machine learning tasks, particularly for the recognition of both seen and
unseen classes. Future research could focus on refining these approaches to further improve
model performance while maintaining strict privacy standards across an even wider range of
applications.



Chapter 6

Sentinel-Guided Zero-Shot Learning

Prologue

In the preceding chapter, we explored Privacy-Enhanced Zero-Shot Learning (PE-ZSL), a
framework designed to address the challenges of data sensitivity and copyright protection by
enabling zero-shot learning without direct exposure to real data. PE-ZSL set the stage for
privacy-preserving machine learning, focusing on data-free knowledge transfer and ensuring
that sensitive information remains protected throughout the training process.

Building on the foundation of PE-ZSL, this chapter introduces Sentinel-Guided Zero-
Shot Learning (SG-ZSL), an evolution that addresses some of the critical limitations of
PE-ZSL. SG-ZSL not only enhances the data privacy mechanisms introduced in the previous
framework but also integrates a more comprehensive comparison between SG-ZSL and
Inductive Zero-Shot Learning and Transductive Zero-Shot Learning. Through extensive
experiments conducted on the various datasets, SG-ZSL demonstrates superior performance
in both ZSL and GZSL tasks, surpassing existing methods by a significant margin. Differ-
ential privacy further strengthens the privacy guarantees during the model’s training and
deployment, ensuring minimal leakage of sensitive information while maintaining high
classification accuracy.

Moreover, the chapter presents in-depth experimental results in both white-box and
black-box protocols, highlighting the flexibility and robustness of SG-ZSL across different
privacy settings.

The objective of this chapter is to demonstrate how SG-ZSL not only builds upon but
significantly expands the privacy-preserving capabilities of PE-ZSL. By leveraging enhanced
experimental analysis and in-depth comparisons with ZSL variants, SG-ZSL stands as a more
versatile and adaptable solution in the zero-shot learning landscape.
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Declaration: This chapter is a modified version of "Sentinel-Guided Zero-Shot Learn-
ing: A Collaborative Paradigm without Real Data Exposure", published in IEEE Trans-
actions on Circuits and Systems for Video Technology(TCSVT), 2024. Code Link

6.1 Introduction

Zero-Shot Learning (ZSL) is a promising machine learning paradigm that addresses the
challenge of classifying unseen classes by leveraging semantic information. Traditional ZSL
approaches often rely on real data to establish visual-semantic associations, which raises
significant concerns regarding data privacy, security, and ownership. As machine learning
expands into sensitive domains like healthcare and finance, safeguarding data privacy during
model training has become increasingly critical.

To address these concerns, Privacy-Enhanced Zero-Shot Learning (PE-ZSL) was intro-
duced. PE-ZSL eliminates the reliance on real data during training by employing omniscient
and quasi-omniscient teacher models that guide student models using synthetic data. Ad-
ditionally, it offers two security protocols—white-box and black-box—allowing clients to
balance performance and security according to their specific needs. This flexibility not only
enhances the robustness of the PE-ZSL framework but also strengthens its privacy guarantees
(see Figure 6.1). However, as real-world applications demand even greater data security and
intellectual property protection, further advancements were necessary. Many critical issues
in PE-ZSL remain unexplored, such as the impact of different types of semantic information
on model performance, the specific roles of various loss functions employed, and whether
PE-ZSL provides sufficient protection for model intellectual property.

Building on this foundation, Sentinel-Guided Zero-Shot Learning (SG-ZSL) introduces
key improvements to address both data privacy and model security more comprehensively.
SG-ZSL retains PE-ZSL’s dual-teacher model architecture (omniscient and quasi-omniscient)
and dual training protocols, but takes privacy protection a step further by incorporating
differential privacy during the training of the teacher models. This ensures that sensitive data
remains secure throughout the training process, reducing the risk of data leaks. The addition
of differential privacy enhances the framework’s robustness in environments requiring high
confidentiality. In addition to strengthening privacy safeguards, SG-ZSL provides a more
thorough approach to protecting model ownership and intellectual property. In distributed
machine learning environments, preventing unauthorized access or misuse of the model’s
knowledge is critical. SG-ZSL addresses this through detailed ablation studies, evaluating
each module’s contribution to privacy protection and security. These studies offer insights into

https://github.com/StefanDurhamUK/SG-ZSL
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Fig. 6.1 In traditional ZSL approaches, real data is necessitated to establish the visual-
semantic association. Conversely, SG-ZSL introduces a teacher model, which acts as a data
sentinel, enabling the execution of ZSL tasks without the need for direct access to real data.

how differential privacy and sentinel models collaborate to protect both data and intellectual
property, ensuring SG-ZSL’s effectiveness in safeguarding against potential breaches.

SG-ZSL also distinguishes itself from traditional ZSL methods such as Inductive ZSL
and Transductive ZSL. As shown in Figure 6.1, SG-ZSL utilizes a sentinel model to generate
synthetic data and perform knowledge transfer using semantic embeddings, effectively
eliminating the need for direct access to real data. This ensures high performance across
both seen and unseen classes, all while maintaining strong privacy protection. The sentinel-
guided mechanism strikes a balance between data security and model utility, making it highly
suitable for privacy-sensitive environments.

Moreover, SG-ZSL includes a comprehensive ablation study exploring the impact of its
various components. These evaluations provide a clear understanding of how differential
privacy, model generation, and sentinel models work together to optimize both performance
and privacy. By advancing data security and model protection, SG-ZSL marks a significant
step forward in privacy-preserving machine learning, paving the way for its responsible
application in sensitive real-world scenarios.
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With these innovations, SG-ZSL not only enhances privacy protection but also introduces
robust mechanisms for safeguarding model intellectual property, ensuring secure, efficient,
and ethical machine learning for Zero-Shot Learning tasks.

6.2 Related Work

The realm of machine learning has recently experienced a significant shift towards prioritizing
data privacy, particularly when handling sensitive information across diverse domains. Feder-
ated Learning [176] has been recognized as a formidable framework, designed to mitigate
potential data leakage by decentralizing the training process. Recent advancements in this
domain have been characterized by the exploration of various architectures and optimization
strategies, all aimed at enhancing model performance without sacrificing data privacy. For
example, studies [177, 178, 24, 179] have been dedicated to optimizing communication
efficiency in federated learning setups, while research such as [33, 180] has delved into the
application of federated learning in edge computing, ensuring data privacy at its source.

Differential Privacy [163] has been seamlessly integrated into numerous machine learning
paradigms to bolster data privacy. Recent contributions, including [181–183], have inves-
tigated the fusion of DP with deep learning, ensuring that while models remain proficient,
the privacy of their training data remains uncompromised. For example, Guo et al.[181]
developed ‘TOP-DP’, a topology-aware differential privacy approach for decentralized image
classification systems, which innovatively utilizes decentralized communication topologies
to enhance privacy protection while achieving an improved balance between model usability
and data privacy.

Knowledge Distillation [165], on the other hand, has emerged as a pivotal strategy for
protecting intricate teacher models by training a streamlined student model, thereby thwarting
potential adversarial attacks. Recent endeavors, such as [184–187], have showcased the
versatility of knowledge distillation across domains of computer vision. For example, Zhang
et al. [187] introduced an evolutionary knowledge distillation approach, where an adaptive,
online-evolving teacher model continuously transfers intermediate knowledge to a student
network, significantly enhancing learning effectiveness, especially in low-resolution and
few-sample scenarios.

It is imperative to note, however, that both Federated Learning and Knowledge Distillation
are predominantly confined to supervised learning. This confines their utility in scenarios
necessitating the recognition and categorization of previously unseen data categories, a
domain where Zero-Shot Learning protocols excel. ZSL, with its prowess in recognizing
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unseen classes by establishing semantic relationships, transcends the limitations inherent to
the supervised nature of both Federated Learning and Knowledge Distillation.

In this work, an innovative SG-ZSL paradigm is introduced. This paradigm, distinct in
its data-free knowledge transfer, is adept at addressing unseen data categories, especially
in contexts where data sensitivity and privacy are paramount. The incorporation of DP
within the teacher model further enhances data privacy, ensuring that the traditional ZSL
generalization properties to unseen classes are preserved without additional training, all while
safeguarding data and model privacy.

Zero-Shot Learning [188–190, 29, 191] is predicated on recognizing unseen classes by
establishing connections between seen and unseen classes through semantic information,
such as attributes [192–195], word embeddings [196] and predefined similes [197, 198].
Numerous studies [199–201] have been dedicated to mapping from visual to semantic space,
while others [202, 166, 108, 203] focus on generating unseen class data to mitigate data
scarcity issues. Effective spaces for visual and semantic embedding have been investigated
in [66, 204–207]. Depending on the utilization of unseen data during training, ZSL methods
can be categorized into inductive [208, 209] and transductive settings [210, 167]. As for the
test phase, conventional ZSL methods [66, 67] operate under the assumption that test data
originates exclusively from unseen classes, while Generalized ZSL (GZSL) [68–70] aims to
classify both seen and unseen data into their respective classes.

The distinctions between SG-ZSL and traditional ZSL settings are elucidated in Table
6.1. In terms of data access during training, IZSL and Transductive ZSL (TZSL) access
labeled seen data and data from both seen and unseen classes, respectively. In contrast, the
SG-ZSL setting operates without direct data access, relying solely on a teacher model, trained
on sensitive real data, for guidance (as indicated by the red ‘X’ in Table 6.1). Concerning
model security, weight accessibility refers to the accessibility of weights trained on real data.
While ZSL models in both inductive and transductive settings possess accessible weights,
the SG-ZSL paradigm introduces a teacher model pre-trained on real data. In assessing
teacher weight privacy, we introduce the black-box and white-box protocols. In the white-box
protocol, teacher weights are accessible for guidance during SG-ZSL model training, whereas
the black-box protocol restricts weight sharing, thereby preserving the privacy of both data
and model weights.

6.3 Methodology

As depicted in Fig. 6.1, in scenarios where the Data Owner’s sensitive data is inaccessible
yet a collaboration with the AI Service Provider is sought to leverage the data’s value, the
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Table 6.1 The distinctions between SG-ZSL and traditional ZSL settings are delineated
in the table. Herein, ‘S’ and ‘U’ denote the seen and unseen classes, respectively. ‘X ’
signifies visual features, while ‘X̃ ’ pertains to generated features. The semantics of the seen
and unseen classes are represented by ‘As’ and ‘Au’, respectively. The red ‘X’ symbolizes
sensitive real data. The ZSL model is denoted by ‘θ ’, whereas ‘θT ’ corresponds to the
pre-trained teacher model specific to the SG-ZSL task. ‘θU ’ can be associated with either the
conventional ZSL model or the SG-ZSL model. It should be noted that the SG-ZSL model
is constructed under the guidance of the teacher model, effectively eliminating the need for
sharing actual data.
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proposed SG-ZSL paradigm emerges as a solution. The Data Owner employs a teacher
model, serving as a data sentinel, which guides the AI Service Provider’s models in training
classifiers without real data access. Recognizing the balance between privacy preservation
and performance optimization, two distinct training protocols with varying security levels,
namely the white-box and black-box protocols, are introduced to enhance the paradigm’s
adaptability.

6.3.1 Problem Definition

The SG-ZSL paradigm fosters collaboration between the Data Owner, housing a teacher
model, and the AI Service Provider, hosting a student model and a generator. The teacher
model, represented as FθT : X → Y , serves as a data sentinel. Central to the SG-ZSL
paradigm is the utilization of the teacher model at the Data Owner’s end to direct the training
of the student model at the AI Service Provider’s end. This objective is achieved through
synthetic data generated by the generator FθG , with the aim of enabling the student model to
match the teacher’s performance or explore domain not covered by the teacher without the
transmission of real data. The objective function is given by:

ℓ
(
F{θS,θG} (x̃) ,FθT (x̃)

)
, (6.1)

where ℓ denotes the objective function guided by the teacher, and x̃ ∈ X̃ signifies the data
generated by the generator, ensuring no real data access.
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Fig. 6.2 Differences between the Omniscient and the Quasi-omniscient teacher.

6.3.2 Data Sentinel at the Data Owner’s End

Omniscient and Quasi-omniscient Teachers

Given the potential inconsistency between the teacher’s data categories and the student
model’s objective categories, there may be unseen class data absent in the teacher’s domain
but essential for the student model. Thus, teacher models are further categorized into omni-
scient and quasi-omniscient types as shown in Fig.6.2. The omniscient model encompasses
all categories, covering both seen and unseen class data, while the quasi-omniscient model is
limited to seen class data.

Here, we define the seen class as S = {(xs,as,ys) | xs ∈Xs,as ∈ A ,ys ∈ Ys}, where
xs ∈ Rdx denotes the dx-dimensional visual feature in the set of seen class features, as ∈ Rda

denotes the da-dimensional auxiliary class-level semantic embedding, and Ys stands for
the set of labels for seen classes. Unseen classes are defined as U = {(xu,au,yu) | xu ∈
Xu,au ∈A ,yu ∈Yu}, where xu represents the unseen class features, au denotes the semantic
embedding of unseen classes and yu denotes the unseen class labels. The seen and unseen
classes are disjoint, i.e., Ys∩Yu = /0.

In the SG-ZSL paradigm, a key constraint is the inaccessibility of both seen and unseen
real features at the Data Owner’s end during the student model and generator training at
the AI Service Provider’s end. The available information for the AI service provider is
represented as Tr = {(a,y) | a ∈ A ,y ∈ Y }, indicating only semantic embeddings a and
class labels y are available during training. Additionally, a teacher model, pre-trained on real
data, is provided to guide the training of the student model and generator. Depending on the
teacher model type, different teacher objectives are considered.
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Teacher Objectives

The teacher models guide the student model in mastering various ZSL tasks. For the CZSL
task, the student model’s objective is to classify test images, represented by fZSL : Xu→ Yu.
For the GZSL task, the student model aims to recognize test images, denoted by fGZSL :
X → Y .

Incorporating DP in Teacher Model Training

To bolster the protection of sensitive data at the Data Owner’s end, differential privacy
techniques are seamlessly integrated into the teacher model’s training process. Differential
privacy stands as a preeminent mechanism for ensuring data and model security. Denote
an algorithm with the differential privacy property by M(.). The algorithm is randomized
to make it difficult to have access to the privacy information of the input data. The formal
definition of DP is provided below:
Definition 1 [163]. Given a pair of neighboring datasets D and D′, for every set of outcomes
S, a mechanism M satisfies DP if the following holds:

P(M(D) ∈ S)≤ eε ·P(M(D′) ∈ S)+δ . (6.2)

Here, M(D) and M(D’) represent the algorithm’s outputs for input datasets D and D′, respec-
tively, and P captures the algorithm’s inherent noise randomness. Both ε (privacy budget)
and δ (failure probability) influence the privacy strength: smaller values of ε and δ ensure
enhanced privacy. In the realm of deep learning, DP is typically realized by introducing the
subsampled Gaussian mechanism to safeguard the minibatch gradients during the training
process [211–213]. The distinction between deep learning with DP and conventional deep
learning hinges on the private release of the gradient. The Gaussian mechanism is defined as:
Definition 2 (Gaussian Mechanism) [212]. Let ∆ f be the sensitivity of function f , defined as
∆ f = max

D,D′
∥ f (D)− f (D′)∥2. The Gaussian Mechanism, f̂ (D) = f (D)+σ∆ f ·N (0,I ), is

deemed (ε , δ )-differentially private for specific values of ε and δ contingent on σ .
During our teacher models’ training, random noise is introduced to perturb the original

data distribution, thereby enhancing data privacy. Leveraging the post-processing property
of differential privacy, as elucidated in [212], ensures that any subsequent operation on a
differentially private output remains privacy-preserving. Thus, data generation under the
guidance of the pre-trained teacher model is deemed secure. Specifically, random Gaussian
noise is incorporated during the teacher model’s training as follows:

gT ← gT +N(0,σ2
n c2

gI). (6.3)
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Fig. 6.3 The overarching paradigm for both black-box and white-box protocols. In the
white-box protocol, the generator accesses teacher weights during training, whereas in the
black-box protocol, only output guidance from the teacher is utilized.

Here, gT represents the teacher’s gradients, σn is the noise scale, and cg signifies the gradient
function’s sensitivity. Subsequently, the teacher model’s weight parameters are updated and
truncated within the range (-c, c) to optimize the model:

w← clip(w+α ·Adam(w,gT ),−c,c). (6.4)

For practical implementation, we use Opacus [214], Facebook’s specialized library for
training PyTorch models with differential privacy.

6.3.3 Dual Training Protocols

To address varying privacy and performance needs, SG-ZSL offers two distinct training
protocols: the white-box and black-box protocols, each tailored for different levels of security
and model interaction. In the white-box protocol, the teacher model provides both gradient
and softmax outputs, allowing for direct backpropagation and a more effective generator.
Meanwhile, in the black-box protocol, only the softmax output is used, preventing the teacher
model’s parameters from being exposed or used in backpropagation, which reduces the risk
of model leakage. Both protocols employ synthetic data generation via the generator and
semantic embeddings to train a student model. The white-box protocol offers more detailed
guidance but carries a higher privacy risk, while the black-box protocol ensures stronger
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privacy protection by limiting model exposure. Together, these dual training strategies allow
SG-ZSL to cater to diverse privacy requirements while ensuring efficient learning without
direct access to real data.

6.3.4 Absolute Zero-Shot Classification

In the testing phase, the omniscient teacher, having been trained on both seen and unseen
features at the Data Owner’s end, facilitates the generator in synthesizing features for all
classes. Consequently, the student network is equipped to predict class labels for test features.
Given these test features, the predicted class labels are determined as:

y∗ = argmax
y∈Y

p(y|x,θ ∗S ), (6.5)

where θ ∗S represents the optimized parameters of the student model.
For the quasi-omniscient teacher model, the challenge confronting the student model

intensifies. This heightened challenge arises because, during the training phase, neither the
data owner nor the AI service provider possesses information regarding the unseen classes.
In the testing phase, an initial step involves synthesizing a data batch for these unseen classes
via the generator, denoted as x̃ = G(z|a;θ ∗G), with z indicating noise and a representing the
semantic embedding of the unseen class. Utilizing this synthesized data, the classifier C
undergoes training in a supervised learning task with the generated features, as formalized in
the following equation:

min
θC
−E [log(y|x̃;θC))] , (6.6)

the function calculates the softmax loss by comparing the predicted label probabilities from
synthesized features x̃ against actual labels y to minimize the negative log-likelihood of
correct class predictions, optimizing classifier C for accurate unseen class label prediction.

Subsequently, the prediction of class labels for test features is executed as follows:

y∗ = argmax
y∈Ỹ

p(y|x,θ ∗C), (6.7)

where Ỹ = Yu is designated for the conventional ZSL task, and Ỹ = Ys∪Yu for the GZSL
task.

In the context of the first SG-ZSL work, this work primarily seeks to address the ensuing
research questions:

• RQ1: How does the variation in teacher feedback influence the quality and diversity
of the synthesized data?
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• RQ2: How does the alteration in semantic information, when employed as generative
conditions, affect the student model’s performance?

• RQ3: Compare with the traditional ZSL methods, how do the SG-ZSL perform under
the black-box and white-box protocols in terms of data privacy, model security, and
classification accuracy?

• RQ4: Is the student model capable of transcending the constraints of the quasi-
omniscient teacher model to generate novel knowledge (on unseen class)?

• RQ5: Does the SG-ZSL paradigm, which trains on both seen and unseen classes using
synthesized data, enhance the congruence between seen and unseen classifiers in the
GZSL challenge? Specifically, is there an improvement over prior ZSL approaches
that employed real seen data and synthesized unseen data, potentially introducing a
bias towards seen classes?

6.4 Experiments

6.4.1 Datasets

Our SG-ZSL model is evaluated on three benchmark datasets: AWA1 [4], AWA2 [62], and
aPY [168]. Both AWA1 and AWA2 encompass 30,475 and 37,322 images, respectively,
distributed across 50 classes. The aPY dataset contains 15,539 images spanning 32 classes.
For semantic representation, embeddings generated by the BERT language model [109] are
adopted, with a consistent dimensionality of 768 across all datasets. The data splits differ
based on the type of teacher model. For quasi-omniscient teachers, we adopt the data split
proposed in [62], wherein only seen class data is accessible to the teacher. Conversely, the
omniscient teacher is trained across all classes. In alignment with prior ZSL studies [172],
unseen classes are randomly divided into training and test sets.

6.4.2 Implementation Details

For image representation, 2048-dimensional ResNet101 features [215] are utilized, consistent
with [62]. Within our proposed paradigm, all networks are constructed using Multi-Layer
Perceptrons equipped with LeakyReLU activations [216]. Both the teacher and student
models share the same architecture comprising two hidden layers with 1024 and 512 units,
respectively. The generator contains a single hidden layer with 4096 hidden units and its
output layer is ReLU. During the training process, we adopt the Adam optimizer and the
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learning rate of each network is set to 10−5. The dimension of the noise vector z is a hyper-
parameter, which is empirically set to 20 for all datasets. The weight of the regularization
term is empirically set to 0.5 for AWA1 and AWA2, and 1 for aPY. A trade-off between
accuracy and computational efficiency is taken into consideration when determining the
number of generated features. In practice, we generate 400 synthetic features on average per
class for all datasets.

6.4.3 Evaluation Protocol

We follow the evaluation metrics proposed in [62]. For conventional ZSL tasks, we use the
per-class average top-1 accuracy to evaluate classification performance to alleviate the data
imbalance of classes. For the GZSL task, we use harmonic mean H = (2×u× s)/(u+ s)
for evaluation, where u and s denote average per-class top-1 accuracy on unseen and seen
classes, respectively. It is noteworthy that existing methods aim to classify unseen data into
corresponding unseen classes in conventional ZSL tasks, while the class space at test time
involves both unseen and seen classes in SG-ZSL with the omniscient teacher. This makes
SG-ZSL with an omniscient teacher more difficult compared with existing ZSL methods.

6.4.4 Main Results

Comparisons with State-of-Arts

Table 6.2 presents results for both CZSL and GZSL tasks. Given that this is the inaugural
SG-ZSL study, a comparison with traditional state-of-the-art methods serves as a reference.
The selected methods can be categorized into inductive and transductive ZSL methods.
Methods in the upper part of Table 6.2, i.e., IAP, are inductive ZSL methods, which access
only labeled seen class data during the training process. The rest of the four methods, i.e.,
DTN, are transductive methods, which utilize both labeled seen class data and unlabeled
unseen class data for model training.

To investigate RQ1, we show results under two kinds of feedback from omniscient
and quasi-omniscient teachers. SG-ZSL student model with omniscient teacher achieves
promising performance in both CZSL and GZSL in the white-box protocol. Our method
achieve the best performance in GZSL, especially on aPY, with an increase in harmonic
mean of 32.3%, which indicates an improved balance of seen and unseen classes. As for the
black-box protocol, the accuracy on unseen classes is 4.9% higher than on seen classes on
AWA1. It indicates that the SG-ZSL student model is promising to mitigate the class-level
overfitting issue in the GZSL task proposed in RQ5. Compared with inductive ZSL methods,
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Table 6.2 Comparison results with the state-of-the-art methods in CZSL and GZSL tasks.
CZSL measures per-class average top-1 accuracy (T1) on unseen classes. GZSL measures
u = T1 on unseen classes, s = T1 on seen classes, H = harmonic mean. ‘WB’ & ‘BB’:
white- & black-box protocol; ‘Om’ - omniscient teacher, ‘Q-Om’ - quasi-omniscient teacher.
‘SG-ZSL+WB/BB*’ and ‘SG-ZSL+WB/BB’ represent our model with omniscient and quasi-
omniscient teachers, respectively. The best results are in bold.

Method Zero-Shot Learning Generalized Zero-Shot Learning
AWA1 AWA2 aPY AWA1 AWA2 aPY

T1 T1 T1 u s H u s H u s H

IAP [4] 35.9 35.9 36.6 2.1 78.2 4.1 0.9 87.6 1.8 5.7 65.6 10.4
DAP [4] 44.1 46.1 33.8 0.0 88.7 0.0 0.0 84.7 0.0 4.8 78.3 9.0
ALE [66] 59.9 62.5 39.7 16.8 76.1 27.5 14.0 81.8 23.9 4.6 73.7 8.7

DEVISE [217] 54.2 59.7 39.8 13.4 68.7 22.4 17.1 74.7 27.8 4.9 76.9 9.2
CONSE [67] 45.6 44.5 26.9 0.4 88.6 0.8 0.5 90.6 1.0 0.0 91.2 0.0
ESZSL [209] 58.2 58.6 38.3 6.6 75.6 12.1 5.9 77.8 11.0 2.4 70.1 4.6
SYNC [218] 54.0 46.6 23.9 8.9 87.3 16.2 10.0 90.5 18.0 7.4 66.3 13.3
DEM [60] 68.4 67.1 35.0 32.8 84.7 47.3 30.5 86.4 45.1 11.1 75.1 19.4

f-CLSWGAN [108] 68.2 - - 57.9 61.4 59.6 - - - - - -
CE-GZSL [169] 71.0 70.4 - 65.3 73.4 69.1 63.1 78.6 70.0 - - -
SDGZSL [170] - 74.3 47.0 - - - 69.6 78.2 73.7 39.1 60.7 47.5

ICCE [171] 74.2 72.7 49.5 67.4 81.2 73.6 65.3 82.3 72.8 45.2 46.3 45.7

DTN [172] 69.0 - 41.5 54.8 88.5 67.7 - - - 37.4 87.9 52.5
GMSADE [173] 81.3 80.7 49.9 71.2 87.7 78.6 71.3 86.1 78.0 76.1 39.3 51.8

EDE [174] 85.3 77.5 31.3 71.4 90.1 79.7 68.4 93.2 78.9 29.8 79.4 43.3
BGT [175] - 82.4 49.8 - - - 56.2 82.2 66.7 39.3 72.9 51.0

Q-Om Teacher 0.0 0.0 0.0 0.0 92.9 0.0 0.0 93.1 0.0 0.0 91.6 0.0
Om Teacher 92.1 91.7 90.8 92.1 92.5 92.3 91.7 92.2 91.9 90.8 91.4 91.1

SG-ZSL+BB 14.1 19.9 12.3 4.1 3.7 3.9 3.5 3.7 3.6 6.8 4.0 5.1
SG-ZSL+WB 34.5 36.5 18.7 23.4 34.3 27.8 27.3 44.3 33.7 17.9 52.5 26.7
SG-ZSL+BB* 33.5 29.0 30.2 33.5 28.6 30.9 29.0 25.3 27.0 30.2 42.2 35.2
SG-ZSL+WB* 77.9 79.0 83.9 77.9 81.8 79.8 79.0 86.7 82.7 83.9 85.7 84.8

results show that our model with the quasi-omniscient teacher in a white-box protocol gains
satisfactory performance in GZSL, especially on aPY, with 7.3% higher performance on the
harmonic mean compared with non-generative inductive ZSL methods. Despite the quasi-
omniscient teacher model’s inability to recognize unseen classes and the student model’s lack
of access to real seen and unseen data, our student model still secures robust accuracy across
various ZSL scenarios. For example, it achieves 34.5% accuracy in inductive ZSL settings
on AWA1 and a harmonic mean of 26.7% in GZSL on the aPY dataset. This underscores
the student model’s capacity to extrapolate and generalize from the teacher’s knowledge
without data exposure, as explored in RQ4. Additionally, when contrasted with traditional
TZSL methods, our model exhibits significant accuracy enhancements in GZSL, especially
for unseen classes (i.e.demonstrate a 6.5% and 7.8% improvement on AWA1 and aPY
datasets, respectively), and presents a reduced discrepancy between seen and unseen class
accuracies, showcasing an advanced ability to mitigate seen class bias as mentioned in RQ5.
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For the black-box protocol, results show our SG-ZSL student model outperforms random
guessing, which is around 10% on AWA1, AWA2, and 8% on aPY. The white-box protocol
demonstrates better performance than the black-box protocol for the student, indicating that
gradient guidance provides more information.

Performance vs Paradigm Privacy

Compared to traditional ZSL methods, the performance under the white-box protocol is very
promising, since data privacy is already preserved and our model can still achieve adequate
performance. Compare with the white-box protocol, the black-box protocol indeed operates
under a more constrained information flow, where only softmax outputs from the teacher
model are used as pseudo-labels for the student model, without direct gradient exchange.
This design choice inherently poses challenges to optimization efficiency compared to direct
gradient-based methods. However, this constraint is a deliberate design choice to enhance
privacy. Thus, the performance of the black-box protocol is reasonable because both data
privacy and model safety are guaranteed as proposed in RQ3.

As for model copyright reservation, traditional ZSL methods often involve sharing model
details across entities, raising potential issues related to intellectual property and copyright
infringement. Our SG-ZSL paradigm circumvents these issues by utilizing a sentinel mecha-
nism that facilitates the learning process without exposing the internal architecture of the
models involved. This is achieved by guiding the generation of synthetic data as a medium
for communication between the AI Service provider and the Data Owner, enabling both
parties without directly sharing the models themselves. This approach ensures that copyright
and intellectual property rights are respected and protected, offering a sustainable model for
collaborative AI development and usage.

6.4.5 Analysis and Discussion

Feature Generation Regularization Analysis

The key issue in our data-free knowledge transfer framework is to generate high-quality
features, which are expected to have a similar distribution to real data. To show the influence
of different constraints during the feature generation process, we provide analysis with
different regularization terms for generator training in Table 6.3. KL and MMD loss [219]
aim to minimize the distribution difference between real and generated features. Results show
that adding distribution constraints of synthesized data is beneficial for feature generation. For
example, the harmonic mean increases 2.7% and 2.9% with MMD and KL loss respectively
compared with the baseline that only contains cross-entropy loss. Besides, results indicate
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that KL and MMD loss are both effective and KL loss performs better to a small extent,
which shows the effectiveness of KL regularization.

Table 6.3 Experimental results with different
constraints for feature generation in GZSL
task in the white-box protocol. ‘CE’ repre-
sents cross-entropy loss, ‘MMD’ represents
MMD distance loss, and ‘KL’ represents KL
divergence loss.

Method AWA2 aPY
u s H u s H

CE 76.1 83.8 79.8 83.0 84.5 83.7
CE+MMD 79.9 85.1 82.5 81.5 85.5 83.5

CE+KL 79.0 86.7 82.7 83.9 85.7 84.8

Table 6.4 Experimental results with different
constraints for feature generation in GZSL
task in the black-box protocol. ‘CE’ repre-
sents cross-entropy loss, ‘MMD’ represents
MMD distance loss, and ‘KL’ represents KL
divergence loss.

Method AWA1 AWA2 aPY
u s H u s H u s H

CE 26.8 26.7 26.8 23.7 23.2 23.4 23.2 25.6 24.3
CE+MMD 31.8 25.3 28.2 33.8 20.5 25.5 26.0 36.3 30.3

CE+KL 33.5 28.6 30.9 29.0 25.3 27.0 30.2 42.2 35.2

We also provide an extensive analysis of the impact of different feature generation
regularizations in the black-box scenario in Table 6.4. Similarly, we provide MMD and KL
loss as regularization for feature synthesis in the GZSL task as the regularization term is
essential for the generalization ability of the SG-ZSL model. The experimental results show
that the SG-ZSL model with regularization term outperforms the one with only cross-entropy
loss, i.e., with 6% and 10.9% improvement on harmonic mean with MMD and KL loss
on aPY, indicating the effectiveness of the constraint for feature generation. Besides, the
SG-ZSL model with KL constraint achieves the best performance in harmonic mean, with
4.9% and 2.7% increases on aPY and AWA1 datasets respectively, which indicates that the
SG-ZSL model with KL loss can make a better balance between seen and unseen classes.

Teacher Model Privacy Evaluation

Table 6.5 displays the performance corresponding to various privacy budgets ε when DP is
incorporated into teacher training. Here, ε =∞ signifies the baseline non-private performance,
i.e., absent DP in teacher training. The results demonstrate that larger ε values correspond to
enhanced performances for both the teacher and student models, indicating that a smaller
ε yields heightened data security protection. A trade-off between performance and privacy
level is observed, allowing for an adjustment of the privacy budget to achieve a balance.

Quality of Generated Features

Fig. 6.4 displays t-SNE visualizations of synthetic unseen features under the white-box
protocol guided by the quasi-omniscient teacher model across the AWA1 and aPY datasets.
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Table 6.5 Results in the white-box protocol with an omniscient teacher under different privacy
budgets ε .

Dataset Accuracy ε = 30 ε = 50 ε = ∞

AWA1 Teacher Model 56.7 68.4 92.1
Harmonic Mean 41.7 56.4 79.8

AWA2 Teacher Model 59.1 70.5 91.7
Harmonic Mean 46.8 60.3 82.7

aPY Teacher Model 60.6 72.4 90.8
Harmonic Mean 43.6 62.2 84.8

For clarity, a subset of features is randomly selected for visualization. The unseen class
features synthesized under the guidance of the quasi-omniscient teacher, as shown in (c) and
(d), demonstrate a slight decline in quality compared to those guided by the omniscient teacher.
Specifically, the generated feature distributions are farther from the real data distributions,
indicating certain limitations of the generator in capturing unseen class characteristics
precisely. However, it’s notable that the quasi-omniscient teacher synthesizes these features
without access to unseen class information, demonstrating the model’s ability to create
plausible novel knowledge. This capability is promising for generating meaningful features
in Zero-Shot Learning (ZSL) scenarios, even under stringent privacy constraints.

Hyper-Parameter Analysis

We assess the impact of two pivotal hyper-parameters, namely, noise dimension and regu-
larization weight, on our student model. Two ablation studies are conducted on the AWA1
and aPY datasets within a white-box protocol framework, engaging an omniscient teacher,
as illustrated in Fig. 6.5. We select four disparate noise dimensions 20, 100, 400, and 768
to elucidate their relationship with the harmonic mean. The findings reveal a performance
decrement correlating with the expansion of the noise dimension across both datasets, sug-
gesting that higher-dimensional noise may engender significant interference. Concerning the
regularization weight, we designate the values of α as 0.1, 0.5, 1, and 10 for the experimental
analysis. As shown in Fig. 6.5, the harmonic mean on both datasets exhibits marginal
fluctuation with varying α values. Optimal performance is attained at α values of 0.5 and
1 for AWA1 and aPY datasets, respectively, demonstrating a nuanced interaction between
regularization weight and model performance.
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(a) AWA1 (b) aPY

Fig. 6.4 The t-SNE visualizations on AWA1 and aPY datasets under the white-box protocol.
The synthetic features in (c) and (d) are generated by the quasi-omniscient teacher-guided
generator, illustrating the model’s ability to synthesize unseen class data without direct access
to unseen information.

Impact of Semantic Information.

We further investigate the influence of various semantic embeddings on the GZSL task. The
experimental analysis encompasses three distinct semantic typologies, namely, attributes,
Word2Vec, and BERT, serving as the evaluation benchmarks. As delineated in Table 6.6,
the comparative outcomes across all three semantic modalities in the GZSL task are rela-
tively aligned, manifesting the robustness of our model with respect to semantic embedding.
Notably, the BERT embedding outperforms, signifying the superior efficacy of BERT repre-
sentation in capturing semantic nuances.

Table 6.6 Experimental results in white-box protocol with omniscient teacher using different
semantic information in GZSL task.

Semantics AWA1 AWA2
u s H u s H

Attribute 64.7 81.1 72.0 76.8 82.7 79.6
Word2vec 61.6 80.0 69.5 71.4 81.9 76.3

BERT 77.9 81.8 79.8 79.0 86.7 82.7
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(a) AWA1 (b) aPY

Fig. 6.5 Noise dimension and parameter α analysis with omniscient teacher in white-box
protocol.

Robustness of Student Network

We elucidate the robustness inherent to the student network in this section. Given that the
teacher network remains undisclosed by the Data Owner within the black-box protocol, it
becomes imperative to showcase the results across diverse student models in this black-box
scenario. As illustrated in Table 6.7, the performances across various student models are
closely aligned, denoting the stability and consistency afforded by our method.

Table 6.7 Results with different student models in black-box protocol with omniscient teacher
in GZSL task.

Student AWA1 aPY
Model u s H u s H

1 hidden layer 31.9 25.9 28.6 30.4 34.4 32.3
3 hidden layer 27.9 26.3 27.1 28.5 36.4 32.0

Ours 33.5 28.6 30.9 30.2 42.2 35.2

6.4.6 Potential Applications

As for potential applications, our SG-ZSL paradigm could carry profound implications for
industries where data privacy is paramount. In healthcare, SG-ZSL can facilitate the sharing



6.5 Conclusion 103

of medical insights without exposing patient data, thus advancing research while complying
with stringent confidentiality regulations. Similarly, in finance, SG-ZSL enables the collab-
orative development of predictive models without risking sensitive financial information.
Consequently, SG-ZSL fosters a collaborative environment where both data owners and AI
service providers can thrive, leveraging the strengths of each party without compromising on
security or copyright.

6.4.7 Limitations

Although our research raises awareness of data and model privacy in the ZSL field, balancing
privacy with performance remains challenging. The white-box protocol offers high perfor-
mance through the guidance of teacher model weights and outputs but demands a careful
balance between privacy and performance using differential privacy techniques. Meanwhile,
the inherently secure black-box protocol may lag in optimization and performance due to
its exclusive reliance on output-based supervision. Future efforts aim to bridge these gaps
by enhancing the generator’s capabilities, notably by incorporating common-sense knowl-
edge from large-scale models to establish a more robust knowledge space, thus improving
knowledge transfer from seen to unseen classes.

6.5 Conclusion

In this work, we introduced an SG-ZSL paradigm facilitating through data-free knowledge
transfer. A pre-trained teacher model was instantiated at the data owner’s end, acting as a data
sentinel to render guidance for model training. A thorough evaluation was conducted for both
‘black-box’ and ‘white-box’ protocols, elucidating the trade-off between model performance
and data privacy. Based on the proposed paradigm, the real data does not participate in the
training at the AI service provider end, our model exhibits comparable performance against
CZSL and GZSL while the data privacy is also secured. Future advancements in SG-ZSL can
explore advanced optimization strategies based on more representative common knowledge
(i.e.from Large Language Models), and investigate more robust privacy protections, ensuring
data owner interests are preserved without compromising model performance.
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Epilogue

This chapter addressed RQ 3.2, focusing on the effective use of semantic information for
knowledge transfer in zero-shot learning and the optimization of the trade-off between privacy
and performance.

To respond to RQ 3.2, we first investigated various types of semantic information,
evaluating their role in enhancing knowledge transfer. We found that BERT-generated
semantic embeddings significantly improved the recognition accuracy of unseen classes
by providing rich contextual representations, thereby facilitating more effective knowledge
transfer. These embeddings outperform traditional attribute-based semantics, offering a
superior mechanism for bridging the gap between seen and unseen classes in ZSL tasks.

In addressing the issue of bias towards seen classes in traditional ZSL methods, we
developed a data-free knowledge transfer approach that reduces the reliance on seen class
data. By leveraging Sentinel-Guided Zero-Shot Learning (SG-ZSL), particularly under the
black-box protocol, our method improves the accuracy of unseen classes while preventing
overfitting on seen class data. This mitigates the inherent bias found in conventional ZSL
models and ensures a fairer balance between seen and unseen category recognition, which is
crucial in Generalized Zero-Shot Learning (GZSL) tasks.

To tackle privacy concerns and the protection of intellectual property, we incorporated
differential privacy (DP) techniques into the training process of the ZSL framework. The
integration of DP ensures that the model’s outputs are resistant to privacy attacks, allowing
sensitive data to remain secure even when model parameters are accessed. By adding
controlled noise to the training process, differential privacy guarantees that individual data
points cannot be inferred from the model, providing a strong layer of protection for both the
data owners and the intellectual property contained within the model.

Additionally, the sentinel mechanism within SG-ZSL allows for secure, collaborative
learning by hiding internal model architectures and parameters from external access. This
combination of differential privacy and sentinel-guided security ensures that privacy is
preserved without compromising performance. It also offers data owners flexibility in
balancing the trade-off between privacy protection and model accuracy, allowing for tailored
privacy settings in different deployment scenarios.

In summary, the approaches introduced in this chapter successfully optimize the trade-off
between privacy and performance in ZSL. By identifying optimal semantic representations,
reducing bias, and integrating privacy-preserving techniques such as differential privacy,
our work establishes a foundation for secure and efficient knowledge transfer in zero-shot
learning. Future research could further refine these methods, expanding their application to
more complex and sensitive domains while maintaining robust privacy protections.



Chapter 7

Conclusion and Future Work

In this thesis, we have proposed several innovative frameworks aimed at addressing critical
challenges in machine learning, with a specific focus on enhancing data privacy, mitigating
data heterogeneity, and optimizing knowledge transfer in decentralized and privacy-sensitive
environments.

Key Contributions and Impact

The research presented in this thesis contributes significant advancements in federated
learning, zero-shot learning, and video summarization, particularly through the development
of privacy-preserving methodologies. The Asynchronous Personalized Federated Learning
(AP-FL) framework and Community-Aware Federated Video Summarization (CFed-VS)
system are pivotal examples of how federated learning can be extended to complex tasks
such as video summarization, which involve large, heterogeneous datasets. By integrating
personalized clustering techniques and frame-based aggregation, these models demonstrate
improved robustness, efficiency, and adaptability in decentralized settings.

In zero-shot learning, I introduced the Privacy-Enhanced Zero-Shot Learning (PE-ZSL)
and Sentinel-Guided Zero-Shot Learning (SG-ZSL) frameworks. These models break new
ground by ensuring privacy during knowledge transfer processes, which traditionally expose
sensitive data to risks. These innovations contribute to the broader discourse on how ma-
chine learning models can effectively generalize to unseen categories while simultaneously
preserving the privacy and integrity of the data used for training.
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Reflection and Practical Implications

The frameworks developed in this thesis are particularly relevant to domains such as health-
care, surveillance, and personalized content delivery, where both privacy and efficiency are of
utmost importance. The research shows that it is possible to achieve a balance between data
utility and privacy by leveraging advanced machine learning techniques, such as federated
learning and zero-shot learning, while safeguarding sensitive information. Furthermore,
the methodologies proposed here lay the groundwork for future applications of privacy-
preserving machine learning, potentially transforming how sensitive data is processed across
decentralized networks.

Limitations and Future Directions

Despite these advancements, the research in this thesis is not without limitations. One of
the key challenges faced was the computational cost associated with implementing certain
privacy-preserving algorithms, such as differential privacy in a federated setting. Additionally,
while this thesis provides theoretical contributions and demonstrates practical applications,
real-world deployment of the proposed frameworks, especially in highly regulated industries,
will require further exploration of scalability and security risks.

Future work can extend these frameworks by exploring their adaptability in environments
with even more stringent privacy requirements, such as those involving medical data or legal
documents. Moreover, expanding the application of these models to other machine learning
paradigms, such as reinforcement learning or unsupervised learning, could offer new insights
into privacy-preserving techniques for broader classes of problems.

Final Thoughts

In conclusion, this thesis not only addresses current challenges in machine learning but also
sets a foundation for future research in creating secure, efficient, and privacy-conscious
systems. The contributions made here demonstrate that innovation in machine learning need
not come at the cost of data privacy, and that with the right methodologies, both objectives
can be pursued in tandem.
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[164] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon, “Fed-
erated learning: Strategies for improving communication efficiency,” arXiv preprint
arXiv:1610.05492, 2016.

[165] G. Xu, Z. Liu, and C. C. Loy, “Computation-efficient knowledge distillation via
uncertainty-aware mixup,” arXiv preprint arXiv:2012.09413, 2020.



References 119

[166] R. Gao, X. Hou, J. Qin, J. Chen, L. Liu, F. Zhu, Z. Zhang, and L. Shao, “Zero-vae-gan:
Generating unseen features for generalized and transductive zero-shot learning,” IEEE
Transactions on Image Processing, 2020.

[167] Y. Fu, T. M. Hospedales, T. Xiang, and S. Gong, “Transductive multi-view zero-shot
learning,” IEEE TPAMI, vol. 37, no. 11, pp. 2332–2345, 2015.

[168] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth, “Describing objects by their at-
tributes,” in CVPR, 2009.

[169] Z. Han, Z. Fu, S. Chen, and J. Yang, “Contrastive embedding for generalized zero-shot
learning,” in CVPR, 2021.

[170] Z. Chen, Y. Luo, R. Qiu, S. Wang, Z. Huang, J. Li, and Z. Zhang, “Semantics
disentangling for generalized zero-shot learning,” in ICCV, 2021.

[171] X. Kong, Z. Gao, X. Li, M. Hong, J. Liu, C. Wang, Y. Xie, and Y. Qu, “En-compactness:
Self-distillation embedding & contrastive generation for generalized zero-shot learn-
ing,” in CVPR, 2022.

[172] H. Zhang, L. Liu, Y. Long, Z. Zhang, and L. Shao, “Deep transductive network for
generalized zero shot learning,” Pattern Recognition, vol. 105, p. 107370, 2020.

[173] O. Gune, M. Pal, P. Mukherjee, B. Banerjee, and S. Chaudhuri, “Generative model-
driven structure aligning discriminative embeddings for transductive zero-shot learn-
ing,” arXiv preprint arXiv:2005.04492, 2020.

[174] L. Zhang, P. Wang, L. Liu, C. Shen, W. Wei, Y. Zhang, and A. Van Den Hengel,
“Towards effective deep embedding for zero-shot learning,” IEEE Transactions on
Circuits and Systems for Video Technology, 2020.

[175] X. Li, D. Zhang, M. Ye, X. Li, Q. Dou, and Q. Lv, “Bidirectional generative transduc-
tive zero-shot learning,” Neural computing and applications, pp. 5313–5326, 2021.
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