
Durham E-Theses

Modelling High-Dimensional Data with

Likelihood-Based Generative Models

BOND-TAYLOR, SAMUEL,EDWARD

How to cite:

BOND-TAYLOR, SAMUEL,EDWARD (2024) Modelling High-Dimensional Data with Likelihood-Based

Generative Models, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/15744/

Use policy

This work is licensed under a Creative Commons Attribution 3.0 (CC BY)

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/15744/
https://creativecommons.org/licenses/by/3.0/
http://etheses.dur.ac.uk

Modelling High-Dimensional Data with

Likelihood-Based Generative Models

Sam Bond-Taylor

A Thesis presented for the degree of

Doctor of Philosophy

Department of Computer Science
Durham University
United Kingdom

March 2024

Abstract

Deep generative models are a class of techniques that use neural networks to form a
probabilistic model of training data so that new samples from the data distribution
can be generated. This type of learning method necessitates greater level of under-
standing of the underlying data than common supervised learning approaches. As
such, generative models have proven to be useful for much more than simply gener-
ation, with applications including, but far from limited to, segmentation, semantic
correspondence, classification, image translation, representation learning, solving
inverse and ill-posed problems, disentanglement, and out of distribution detection.

This thesis explores how to efficiently scale deep generative models to very high
dimensional data in order to aid application to cases where fine details are crucial
to capture, as well as data such as 3D models and video. A comprehensive review
is carried out, from fundamentals to recent state-of-the-art approaches, to under-
stand the properties of different classes of approaches, diagnose what makes scaling
difficult, and explore how techniques can be combined to trade off speed, quality,
and diversity. Following this, three new generative modelling approaches are in-
troduced, each with a different angle to enable greater scaling. The first approach
enables greater scaling by representing samples as continuous functions thereby al-
lowing arbitrary resolution data to be modelled; this is made possible by using latent
conditional neural networks to directly map coordinates to content. The second ap-
proach compresses data to a highly informative discrete space then models this space
with a powerful unconstrained discrete diffusion process, thereby improving sample
quality over the first method while allowing faster sampling and better scaling than
comparable discrete methods. The final approach extends diffusion models to in-
finite dimensional spaces, combining the advantages of the first two approaches to
allow diverse, high quality samples, at arbitrary resolutions. Based on these findings
and current research, the thesis closes by discussing the state of generative models,
future research directions, and ethical considerations of the field.

ii

Declaration

The work in this thesis is based on research carried out at the Department of Com-

puter Science, Durham University, United Kingdom. No part of this thesis has been

submitted elsewhere for any other degree or qualification and it is all my own work

unless referenced to the contrary in the text.

Copyright © 2024 by Sam Bond-Taylor.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged”.

iii

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor,
Dr. Chris Willcocks, for his invaluable guidance, support, and mentorship through-
out my PhD. His dedication, insightful discussions, and unwavering belief in me
have been instrumental in shaping this work. I am truly grateful for the freedom
he granted me to explore ideas, and for his amazing and valuable feedback that
consistently challenged me to think deeper and push the boundaries of my research.

I would also like to extend my heartfelt thanks to all of my co-authors, in par-
ticular Peter Hessey and Abril Corona-Figueroa, for their significant contributions
and collaborative efforts which have enriched this work immensely.

I am grateful to the members of my thesis committee, Dr. Amir Atapour-
Abarghouei and Professor Haiping Lu, for their valuable time examining this thesis.

My sincere appreciation goes to Dr. Robert Powell and all those who maintain
and support Durham’s NVIDIA CUDA Centre cluster, without which this research
would not have been possible.

Much of the work in this thesis was conducted during the COVID-19 pandemic,
marked by lockdowns and uncertainties. I would be remiss not to acknowledge the
solace and inspiration I found in the beautiful County Durham countryside and the
North Pennines, where many ideas for the research conducted in this thesis took
shape.

Finally, I am eternally grateful to my family and friends for their unwavering
support, and encouragement throughout this time. To my parents and grandpar-
ents, thank you for your unwavering belief in me. Last but definitely not least, to
my partner, Becky, words cannot express my gratitude for your endless support,
patience, and understanding.

iv

Contents

Abstract ii

Declaration iii

Acknowledgements iv

Contents v

List of Figures ix

List of Tables xv

List of Symbols xvii

1 Introduction 1

1.1 Motivation . 3

1.2 Contributions . 5

1.3 Publications . 6

1.4 Thesis Scope and Structure . 8

1.5 Reproducibility . 10

2 Literature Review 11

v

2.1 Energy-Based Models . 14

2.1.1 Early Energy-Based Models 14

2.1.2 Deep EBMs via Contrastive Divergence 16

2.1.3 Correcting Implicit Generative Models 17

2.1.4 Alternative Training Objectives 18

2.2 Diffusion Models . 18

2.2.1 Gaussian Diffusion Models . 20

2.2.2 Connection with Score Matching 21

2.2.3 Continuous Time Gaussian Diffusion 22

2.2.4 Diffusion in Discrete State Spaces 22

2.2.5 Speeding up Sampling . 23

2.3 Variational Autoencoders . 23

2.3.1 Beyond Simple Priors . 26

2.3.2 Regularised Autoencoders . 29

2.3.3 Data Modelling Distributions 30

2.3.4 Bridging Amortized and Stochastic Inference 30

2.4 Generative Adversarial Networks . 31

2.4.1 Stabilising Training . 32

2.4.2 Architectures . 37

2.4.3 Training Speed . 38

2.5 Autoregressive Likelihood Models . 39

2.5.1 Architectures . 40

2.5.2 Data Modelling Decisions . 43

2.6 Normalizing Flows . 44

2.6.1 Coupling and Autoregressive Layers 47

2.6.2 Convolutional Flows . 49

2.6.3 Residual Flows . 50

2.6.4 Surjective and Stochastic Layers 51

2.6.5 Discrete Flows . 52

2.6.6 Continuous Time Flows . 53

2.7 Evaluation Metrics . 55

vi

2.8 Applications . 57

2.9 Datasets . 57

2.9.1 Low Resolution Datasets . 57

2.9.2 High Resolution Datasets . 58

2.10 Conclusion . 59

3 Gradient Origin Networks 60

3.1 Empirical Bayes . 61

3.2 Method . 62

3.2.1 Gradient Origin Networks . 63

3.2.2 Autoencoding with GONs . 64

3.2.3 Variational GONs . 65

3.2.4 Implicit GONs . 67

3.2.5 GON Generalisations . 68

3.2.6 Justification . 68

3.3 Results . 69

3.3.1 Quantitative Evaluation . 69

3.3.2 Qualitative Evaluation . 73

3.4 Discussion . 78

3.5 Conclusion . 79

4 Unleashing Transformers 81

4.1 Method . 83

4.1.1 Sampling Globally Coherent Latents 84

4.1.2 Addressing Gradient Variance 85

4.1.3 Generating High-Resolution Images 87

4.1.4 Improving Code Representations 87

4.2 Evaluation . 88

4.2.1 Sample Quality . 90

4.2.2 Absorbing Diffusion . 93

4.2.3 Reconstruction Quality . 96

4.2.4 Sample Diversity . 96

vii

4.2.5 Image Editing . 97

4.2.6 Nearest Neighbours and Additional Samples 97

4.2.7 Limitations . 98

4.2.8 Quantitative Comparison with Previous Chapter 98

4.3 Discussion . 101

4.4 Conclusion . 103

5 Infinite Resolution Diffusion 104

5.1 Finite Dimensional Diffusion Models 107

5.2 Infinite Dimensional Diffusion Models 108

5.2.1 Mollification . 109

5.2.2 Infinite Dimensional Mollified Diffusion 109

5.3 Parameterising the Diffusion Process 114

5.3.1 Neural Operators . 114

5.3.2 Multi-Scale Architecture . 115

5.3.3 Efficient Sparse Operators . 116

5.4 Experiments . 117

5.5 Discussion . 128

5.6 Conclusion . 129

6 Conclusion 131

6.1 Contributions . 132

6.2 Limitations and Future Work . 134

6.2.1 Further Scaling . 134

6.2.2 Training/Sampling Times . 136

6.2.3 Mode Coverage . 136

6.2.4 Applications . 137

6.3 Ethical Considerations . 137

Bibliography 140

viii

List of Figures

1.1 Deep Generative Modelling Applications. 3

1.2 Summary of the data modalities used in this thesis. Chapter 3 uses a

functional representation of data; Chapter 4 uses a finite-dimensional

representation of data; and Chapter 5 uses an infinite-dimensional

representation of data. 6

2.1 Restricted Boltzmann machines have restricted architectures to allow

faster sampling than Boltzmann machines. 15

2.2 Diffusion models consist of a forward process (a) which gradually

maps data x0 to noise xT via a large number of transitions q(xt|xt−1

(solid lines). Typically q(xt|x0) (dashed lines) can be represented in

closed form, simplifing training. Samples can be generated by learning

the reverse of this process, mapping noise to data (b). For Gaussian

diffusion models (c), transition distributions are Gaussian. 19

2.3 Variational autoencoder with a normally distributed prior. ϵ is sam-

pled from N (0, I). 24

ix

2.4 The prior p(z) of a VAE can be defined as the aggregate posterior,

p(z) = 1
N

∑N
n=1 q(z|xn), indicated by grey contour lines. Directly

using the dataset {xn} is impractical however, due to overfitting and

computational complexity. To address this, rather than directly us-

ing the dataset, VampPrior [344] instead uses pseudo-inputs, while

Exemplar VAEs [263] use a k-nearest-neighbours approximation. . . . 27

2.5 A hierarchical VAE with bidirectional inference [192]. 28

2.6 Generative adversarial networks set two networks in a game: D de-

tects real from fake samples while G tricks D. 32

2.7 A comparison of popular losses used to train GANs. (a) Respective

losses for discriminator/generator. (b) Plots of generator losses with

respect to discriminator output. Notably, NS-GAN’s gradient disap-

pears as discriminator gets better. 34

2.8 A GAN with skip connections between the generator and discrimina-

tor to improve gradient flow. Dashed lines are 1×1 convolutions for

mapping the generator’s activations to image channels (when discrim-

inating generated images); and to inject low resolution image features

into the discriminator (when discriminating real images) [175; 181; 358]. 38

2.9 Autoregressive models decompose data points using the chain rule

and learn conditional probabilities. 40

2.10 Normalizing flows build complex distributions by mapping a simple

distribution through invertible functions. 45

2.11 Factoring out variables at different scales allows normalizing flows to

scale to high dimensional data. 47

3.1 Gradient Origin Networks (GONs; b) use gradients (dashed lines) as

encodings thus only a single network F is required, which can be an

implicit representation network (c). Unlike VAEs (a) which use two

networks, E and D, variational GONs (d) permit sampling with only

one network. 61

x

3.2 Visualisation of how GONs encode data. z0 is passed through the

model F to obtain an initial estimate of the data. Reconstruction

loss is computed against the data to be encoded. Following this, the

gradient of the reconstruction loss with respect to z0 is computed.

This gives a new vector zx which represents the compressed data.

Following this, zx is passed through the model F , providing a recon-

struction of the image. Finally, the reconstruction loss is computed

again, and is backpropagated through the entire computation process

to update the weights of F . As such, GONs learn to reconstruct data

without requiring an encoder therefore allowing application to mod-

els such as implicit representation networks where encoders make less

sense. 66

3.3 Gradient Origin Networks trained on CIFAR-10 are found to outper-

form autoencoders using exactly the same architecture without the

encoder, requiring half the number of parameters. 71

3.4 The impact of activation function and number of latent variables on

model performance for a GON trained on CIFAR-10 measured by

comparing reconstruction losses through training. 71

3.5 Experiments comparing convolutional GONs with autoencoders on

CIFAR-10, where the GON uses exactly same architecture as the

AE, without the encoder. (a) At the limit autoencoders tend towards

the identity function whereas GONs are unable to operate with no

parameters. As the number of network parameters increases (b) and

the latent size decreases (c), the performance lead of GONs over AEs

decreases due to diminishing returns/bottlenecking. 72

3.6 Training GONs on CIFAR-10 with z0 sampled from a variety of nor-

mal distributions with different standard deviations σ, z0 ∼ N (0, σ2I).

Approach (a) directly uses the negative gradients as encodings while

approach (b) performs one gradient descent style step initialised at z0. 73

3.7 Training implicit GONs with few parameters demonstrates their rep-

resentation ability. 74

xi

3.8 By training an implicit GON on 32x32 images, then sampling at

256x256, super-resolution is possible despite never observing high res-

olution data. 74

3.9 Super-sampling 28x28 MNIST test data at 256x256 coordinates using

an implicit GON. 75

3.10 Spherical linear interpolations between points in the latent space for

trained implicit GONs using different datasets (approximately 2-10

minutes training per dataset on a single GPU). 76

3.11 GONs trained with early stopping can be sampled by approximating

their latent space with a multivariate normal distribution. These

images show samples from an implicit GON trained with early stopping. 76

3.12 Random samples from a convolutional variational GON with normally

distributed latents. 76

3.13 Convergence of convolutional GONs with 74k parameters. 77

3.14 GONs are able to represent high resolution complex datasets to a

high degree of fidelity. 77

4.1 Our approach uses a discrete diffusion to quickly generate high quality

images optionally larger than the training data (right). 82

4.2 Our approach uses a discrete absorbing diffusion model to represent

Vector-Quantized images allowing fast high-resolution image gener-

ation. Specifically, after compressing images to an information-rich

discrete space, elements are randomly masked and an unconstrained

Transformer is trained to denoise the data, using global context to

ensure samples are consistent and high quality. 83

4.3 Samples from our models trained on 256x256 datasets: LSUN Churches,

FFHQ, and LSUN Bedroom. 90

4.4 Samples from our approach are diverse and high quality. 91

4.5 Our method allows unconditional images larger than those seen dur-

ing training to be generated by applying the denoising network to all

subsets of the image, aggregating probabilities to encourage global

continuity. 93

xii

4.6 FID vs number of sampling steps on LSUN Bedroom. 94

4.7 Models trained with reweighting converge faster than models trained

on ELBO. 95

4.8 Models trained with our reweighted ELBO converge faster than mod-

els trained directly on ELBO. 96

4.9 Evaluation of practical use cases of our proposed generative model. . 97

4.10 Nearest neighbours for a model trained on LSUN Churches based on

LPIPS distance. The left column contains samples from our model

and the right column contains the nearest neighbours in the training

set (increasing in distance from left to right). 99

4.11 Nearest neighbours for a model trained on FFHQ based on LPIPS

distance. The left column contains samples from our model and the

right column contains the nearest neighbours in the training set (in-

creasing in distance from left to right). 99

4.12 Nearest neighbours for a model trained on LSUN Bedroom based on

LPIPS distance. The left column contains samples from our model

and the right column contains the nearest neighbours in the training

set (increasing in distance from left to right). 100

4.13 Unconditional samples from a model trained on LSUN Bedroom larger

than images in the training dataset. 100

5.1 This chapter defines a diffusion process in an infinite dimensional

image space by randomly sampling coordinates and training a model

parameterised by neural operators to denoise at those coordinates. . . 105

5.2 Modelling data as functions allows sampling at arbitrary resolutions

using the same model with different sized noise. Left to right: 64×64,

128×128, 256×256 (original), 512×512, 1024×1024. 106

5.3 Example Diffusion Processes. Mollified diffusion smooths diffusion

states allowing the space to be more effectively modelled with con-

tinuous operators. 109

xiii

5.4 ∞-Diff uses a hierarchical architecture that operates on irregularly

sampled functions at the top level to efficiently capture fine details,

and on fixed grids at the other levels to capture global structure. This

approach allows scaling to complex high resolution data. 116

5.5 Samples from∞-Diff models trained on sets of randomly subsampled

coordinates. 119

5.6 Qualitative comparison with other infinite dimensional approaches. . 120

5.7 FIDCLIP at various steps & resolutions. 121

5.8 Super-resolution . 121

5.9 Inpainting. 122

5.10 Non-cherry picked, CelebA-HQ 256×256 samples. 123

5.11 Non-cherry picked, LSUN Church 256×256 samples. 124

5.12 Non-cherry picked, FFHQ 256×256 samples. 125

5.13 Nearest neighbours for a model trained on CelebA-HQ based on

LPIPS distance. The left column contains samples from our model

and the right column contains the nearest neighbours in the training

set (increasing in distance from left to right) 126

5.14 Nearest neighbours for a model trained on LSUN Church based on

LPIPS distance. The left column contains samples from our model

and the right column contains the nearest neighbours in the training

set (increasing in distance from left to right) 126

5.15 Nearest neighbours for a model trained on FFHQ based on LPIPS

distance. The left column contains samples from our model and the

right column contains the nearest neighbours in the training set (in-

creasing in distance from left to right) 127

xiv

List of Tables

2.1 Comparison between deep generative models. 12

2.2 Rules for the star ratings in Tab. 2.1. AR is autoregressive sampling,

and MCMC is Markov-Chain Monte-Carlo sampling. 13

2.3 Normalizing Flow Layers: ⊙ represents elementwise multiplication,

⋆l represents a cross-correlation layer 46

3.1 Validation reconstruction loss (summed squared error) over 500 epochs.

For GLO, latents are assigned to data points and jointly optimised

with the network. GONs significantly outperform other single step

methods and achieve the lowest reconstruction error on four of the

five datasets. 69

3.2 Validation ELBO in bits/dim over 1000 epochs (CelebA is trained

over 150 epochs). 70

4.1 Precision (P), Recall (R), Density (D), and Coverage (C) [202; 250;

306] for approaches trained on LSUN Churches, LSUN Bedroom, and

FFHQ. 92

4.2 FID comparison on FFHQ, LSUN Bedroom and Churches (lower is

better). 92

xv

4.3 Our approach allows sampling in much fewer steps with only minor

FID increase. 94

4.4 FID and validation latent NLL (in bpd) using the same Transformer.

*=Default VQGAN . 95

4.5 Effect of proposed VQGAN changes on FID. 96

4.6 FIDCLIP [203] evaluation against the implicit GON method proposed

in the previous chapter. 101

4.7 Approximate time to train a model on a 256×256 dataset and the

time to sample a single 256×256 image. 101

5.1 FIDCLIP [203] evaluation against finite-dimensional methods as well as

other infinite-dimensional approaches which are trained on coordinate

subsets. ∗=Inception FID. 119

5.2 Architectural component ablations in terms of FIDCLIP. 121

5.3 Impact of coordinate sparsity on quality for FFHQ 128. FIDCLIP

calculated with 10k samples. 121

5.4 FIDCLIP [203] evaluation against the methods proposed in the previ-

ous chapters. UT is designed for resolutions 256×256 and higher so

is not evaluated on CelebAHQ-64 and CelebAHQ-128. 127

5.5 Approximate time to train a model on a 256×256 dataset and the

time to sample a single 256×256 image. 128

6.1 Comparison between methods introduced in this thesis. 132

xvi

List of Symbols

BERT Bidirectional Encoder Representations from Transformers

CLIP Contrastive Language-Image Pre-Training

DDIM Denoising Diffusion Implicit Model

DDPM Denoising Diffusion Probabilistic Model

EBM Energy-Based Model

ELBO Evidence Lower Bound. Also known as the Variational
Lower Bound

ELU Exponential Linear Unit

FID Fréchet Inception Distance

FIDCLIP Fréchet Inception Distance using a CLIP feature extractor

FNO Fourier Neural Operator

GAN Generative Adversarial Network

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

GPT Generative Pre-trained Transformer

JS-Divergence Jensen-Shannon Divergence

KL-Divergence (DKL) Kullback-Leibler Divergence

LPIPS Learned Perceptual Image Patch Similarity

xvii

LSTM Long Short Term Memory

MAP Maximum a Posteriori

MLM Masked Language Model

MLP Multilayer Perception

MCMC Monte-Carlo Markov-Chain

N (µ,Σ) Normal distribution with mean µ and covariance Σ

NLL Negative Log Likelihood

ODE Ordinary Differential Equation

PDE Partial Differential Equation

PRDC Precision Recall Density Coverage

RAE Regularised Autoencoder

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

SDE Stochastic Differential Equation

SN Spectral Norm

SIREN Sinusoidal Representation Network

VAE Variational Autoencoder

VQ-GAN Vector Quantized Generative Adversarial Network

VQ-VAE Vector Quantized Variational Autoencoder

VRAM Video Random Access Memory

WGAN Wasserstein Generative Adversarial Network

xviii

CHAPTER 1

Introduction

The deep learning boom began around 2012 when a number of deep neural networks

trained with supervised learning made substantial strides; particularly of note is

AlexNet [197], a convolutional neural network which competed in a large scale image

classification challenge [303], achieving an impressive error rate 10% lower than the

runner up which used feature engineering. Key to AlexNet’s success was the depth

of the model, accelerated by a fast GPU implementation, together with the large

scale of the training dataset consisting of millions of images across thousands of

classes.

Since then, major advances have been made in this direction, accelerated by

the development of fast deep learning libraries such as PyTorch [274] which feature

automatic differentiation tools, greatly simplifying the development of deep neural

networks. Nonetheless, large quantities of labelled data are key to the success of

many these approaches and collecting such data is incredibly labour intensive. Often

this data is gathered through Amazon Mechanical Turk, a website which employs

contractors to perform such tasks; many ethical issues have been raised against this

process particularly due to the abuse of workers rights [99]. Additionally, in many

cases, such as medical imaging, manual labelling requires experts who are often

1

too busy to do this at scale. Supervised learning approaches also tend to be quite

fragile, with out-of-distribution inputs giving unexpected outputs, leading to severe

vulnerability to malicious attacks [282].

Deep generative models are a class of techniques that use deep neural networks to

form a probabilistic model of the training data so that new samples from the training

distribution can be generated. Unlike supervised learning, generative models can be

trained on unlabelled data, which is much more readily available particularly due

the large scale of content on the internet. Additionally, generative models are en-

couraged to properly understand the underlying data in order to effectively model it,

making them much less vulnerable to attack than supervised approaches. Learning

to create new data with generative models gives rise to a number of potential appli-

cations including representation learning [32], stress testing [275], disentanglement

[33], and density estimation [193].

At this point in time there are numerous signs suggesting that we are at the

start of another deep learning boom led not by large collections of manually labelled

datasets, but instead by considerably larger collections of minimally structured or

unlabelled data powered by deep generative models. Such approaches can already be

witnessed, implemented into major applications; for instance, Microsoft and Google

have added text-generation models into their search engines which allow natural

language interaction and are remarkably effective. Similarly, large image generation

models have been made created capable of synthesising incredibly realistic images

from text descriptions, disrupting major industries [289; 298]. Major advances have

also been made in the medical domain including protein generation [301] and medical

report generation [157; 246]. These models are not without flaws; however, with

them known to store training data [36] so it is important to consider the ethics of

such models, particularly the confidentiality aspects of medical research.

Further adding to the allure of generative models is that they are the basis of

some biologically plausible learning algorithms such as predictive coding networks

[243]. These learn to predict incoming sensory signals using only local information,

thereby permitting interesting properties such as loops, which are not possible in

standard backpropagation based learning.

2

Text Generation

Video Generation

Image Generation

Inpainting Molecule Generation

Image Translation

Active Learning Super-resolution Graph
Generation

Audio Generation

Figure 1.1: Deep Generative Modelling Applications.

Despite the recent success of deep generative models, all current approaches make

trade-offs in order to meet specified requirements. This thesis aims to contribute

to this growing area of research by exploring how deep generative models can be

scaled to exceptionally high-dimensional data whilst minimising the impact on other

trade-offs, or even improving them as well. A particular focus is made on image data

reflecting the predominance in literature and readily available datasets; however,

concepts are relevant across modalities. Each major chapter in this thesis introduces

a different approach for high-resolution data generation, each addressing weaknesses

associated with the previous.

1.1 Motivation

Deep generative models have been used for a large number of applications (see

Fig. 1.1), from directly modelling modalities such as text [30], images [182], videos

[137], audio [100], molecules [147], and graphs [365], as well as cross-modal gen-

eration such text-to-image [298], text-to-speech [242], image-to-image [408], super-

resolution [305], and in-painting [230], to more indirect applications such as rein-

forcement learning [212], active learning [406], expanding training data [104], and

representation learning [397].

By operating on higher resolution data, more information is available and inputs

can be brought closer to that of the real world. For example, generative models

been shown to be effective for weather forecasting where a deep neural network is

3

used to predict future weather patterns given only a short context window of the

previous weather [290]; in this situation, using high resolution radar is crucial to its

success. To effectively model audio, many approaches are applied as close to the raw

waveform as possible (48kHz and above is considered high resolution); dimension

therefore very quickly grows as the audio length increases making this a difficult

challenge. Applying generative models to medical tasks [185], it is useful work as

close to the resolution of the used scanners as possible to prevent information loss,

to for instance, prevent missing early diagnoses.

There are a variety of different types of generative models, currently each of which

make different trade offs; some of key properties the field of generative modelling

strives for include:

• Sample Quality: High sample quality, is naturally a desirable attribute;

however, some approaches sacrifice this for other properties discussed below.

Effectively quantifying quality is a difficult task.

• Mode Coverage: When some of the training distribution is not modelled, a

generative model is said to mode collapse. For a model with limited represen-

tation ability, it could make sense to trade this off, improving sample quality

at the expense of introducing mode collapse. Conversely, if mode coverage is

more important, sample quality could be reduced.

• Training/Sampling Time: Longer training and sampling times make mod-

els less energy efficient and limit usage in low latency applications. Typically,

higher sample quality requires more training and sampling time, so these can

be traded off based on time constraints.

• Training/Sampling Stability: Some generative models suffer from insta-

bility which can make them difficult to train and/or sample from.

• Useful Representations: The ability to extract useful representations from

generative models gives rise to some downstream applications that can utilise

generative models’ ability to understand the data.

Generative modelling research aims to improve each of these properties as much

as possible. Unfortunately, when working with higher dimensional data many of

these issues can be amplified. Realistic samples are much more difficult to generate

4

at high dimensions, both because distributions are more complex therefore models

need to scale accordingly, and because as humans we are more susceptible to noticing

artefacts in data closer to that witnessed in the real world. Architectural problems

affect most models, with scaling meaning slower run-times and making global infor-

mation passing more difficult. Furthermore, iterative generative models generally

have sampling times that grow with dimension, whether linear or exponential in

nature, these times can quickly grow out of hand. High dimensions can also directly

impact stability, for instance, the difference between real and generated data can be

greater at the start of training thereby leading to instability.

1.2 Contributions

The main contributions of this thesis are as follows:

• A comprehensive review of deep generative models covering the main classes:

energy and score-based, variational autoencoders, generative adversarial net-

works, autoregressive models, and normalizing flows. Comparing and con-

trasting while reviewing state-of-the-art advances. (Chapter 2)

• A latent-based generative model that utilises empirical Bayes to approximate

the posterior rather than using an explicit encoding network. This approach

is applied to decoding functions parameterised by implicit representation net-

works, allowing them to function at arbitrarily high resolutions, unlike tradi-

tional encoder/hypernetwork-based approaches. (Chapter 3)

• An approach for fast, high-quality and high-resolution data generation that

uses discrete diffusion models to model vector-quantized image representations.

In contrast to prior autoregressive approaches, using a discrete diffusion model

allows for significantly faster sampling and therefore better scaling to higher

resolutions, while also improving sample quality. The bidirectional nature of

this approach also allows high quality samples to be generated at resolutions

exceeding that of the original training data. (Chapter 4)

5

Figure 1.2: Summary of the data modalities used in this thesis. Chapter 3 uses a
functional representation of data; Chapter 4 uses a finite-dimensional representation
of data; and Chapter 5 uses an infinite-dimensional representation of data.

• A generative diffusion model defined in an infinite-dimensional Hilbert space

which theoretically allows for infinite resolution data to be efficiently modelled.

It is shown that a subset of the Neural Operators framework can be used

to parameterise the denoising function allowing samples to be generated at

arbitrary resolutions, provide speedup over finite-dimensional models, while

substantially outperforming prior functional generative models. (Chapter 5)

Fig. 1.2 visualises the different approaches of interpreting the same data taken in

each chapter.

1.3 Publications

The work contained within this thesis has been previously published in the following

peer-reviewed publications by the author, and is used in the chapters as indicated

below:

• Deep Generative Modelling: A Comparative Review of VAEs, GANs,

Normalizing Flows, Energy-Based and Autoregressive Models, S.

6

Bond-Taylor, A. Leach, Y. Long and C. G. Willcocks, IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 44, no. 11, pp. 7327-7347,

2022. (Contributing to Chapter 2).

• Gradient Origin Networks, S. Bond-Taylor and C. G. Willcocks, Interna-

tional Conference on Learning Representations, 2021. (Contributing to Chap-

ter 3).

• Unleashing Transformers: Parallel Token Prediction with Discrete

Absorbing Diffusion for Fast High-Resolution Image Generation from

Vector-Quantized Codes, S. Bond-Taylor, P. Hessey, H. Sasaki, T. P.

Breckon and C. G. Willcocks, European Conference on Computer Vision (pp.

170-188), 2022. (Contributing to Chapter 4).

• ∞-Diff: Infinite Resolution Diffusion with Subsampled Mollified

States, S. Bond-Taylor, C. G. Willcocks, International Conference on Learn-

ing Representations, 2024. (Contributing to Chapter 5).

As well as the above papers, the following works have been published during the

period of research for this thesis; however, these publications do not fit into the

narrative of this thesis and have not been included in the text.

• RadEdit: stress-testing biomedical vision models via diffusion image

editing, F. Pérez-Garcáıa, S. Bond-Taylor, P. P. Sanchez, B. van Breugel, D.

C. Castro, H. Sharma, V. Salvatelli, Maria T.A. Wetscherek, H. Richardson,

M. P. Lungren, A. Nori, J. Alvarez-Valle, O. Oktay, M. Ilse, European Con-

ference on Computer Vision, 2024. (Contributions: conducted exploratory re-

search that helped lead to this paper, conducted some experiments and heavily

involved in paper writing).

• Unaligned 2D to 3D Translation with Conditional Vector-Quantized

Code Diffusion using Transformers, A. Corona-Figueroa, S. Bond-Taylor,

N. Bhowmik, Y. Gaus, T. P. Breckon, H. P.H. Shum, C. G. Willcocks, Inter-

national Conference on Computer Vision, 2023. (Contributions: contributed

7

to conceptual discussions, developed much of the codebase, conducted initial

exploratory experiments, and contributed to paper writing).

• MedNeRF: Medical Neural Radiance Fields for Reconstructing 3D-

aware CT-Projections from a Single X-ray, A. Corona-Figueroa, J. Fraw-

ley, S. Bond-Taylor, S. Bethapudi, H. P.H. Shum and C. G. Willcocks, IEEE

Engineering in Medicine and Biology Conference, 2022. (Contributions: con-

tributed to conceptual discussions and conducted exploratory experiments).

• Shape Tracing: An Extension of Sphere Tracing for 3D Non-Convex

Collision in Protein Docking, A. Leach, L. S.P. Rudden, S. Bond-Taylor,

J. C. Brigham, M. T. Degiacomi and C. G. Willcocks, IEEE International

Conference on Bioinformatics and Bioengineering, 2020. (Contributions: con-

tributed to conceptual discussions).

1.4 Thesis Scope and Structure

Major parts of this thesis are based on the development and training of neural

networks in order to address problems with prior work. As such, this thesis is

limited by the availability of GPU hardware; all training was performed on single

GPUs (primarily the NVIDIA RTX 2080Ti). This limits the scale of models in terms

of parameters, training time, and sampling speed, in turn affecting what datasets

can reasonably be used. Much of this thesis pushes the boundaries of what has been

possible with single GPUs, training models achieving state-of-the-art quantitative

scores with a fraction of the hardware of comparable approaches.

This thesis addresses problems associated with generative modelling frameworks,

with neural networks used as general function approximators, and not on deep learn-

ing itself. As such, knowledge of neural networks and deep learning is assumed but

is not essential. There are a number of excellent reviews of deep learning such as

those written by Goodfellow et al. [102] and LeCun et al. [209].

In order to develop methods that scale to exceptionally high dimensions while

also attempting to maintain or improve other factors such as sample quality and

8

speed, a variety of types of generative model are used in this thesis. Chapter 2

thoroughly reviews these different models types. In particular, this chapter covers

energy-based models, diffusion models, variational autoencoders, generative adver-

sarial networks, autoregressive models, normalizing flows, in addition to numerous

hybrid approaches. These techniques, old and new, are compared and contrasted so

as to explain the modelling decisions behind each respective techniques.

Chapter 3 explores how implicit representation networks, which represent images

as spatially continuous entities by mapping coordinates to pixel values, can be used

to parameterise generative models while maintaining their ability to be trained with

data sampled at arbitrary coordinates. This is achieved by using an empirical Bayes

approach to approximate the posterior of a latent-based model parameterised by an

implicit representation network.

Chapter 4 addresses the problems associated with using autoregressive models for

modelling vector-quantized image representations: they are sequential therefore slow

and their unidirectional nature limits representation ability. This chapter proposes

using a discrete diffusion model, allowing tokens to be predicted in parallel for

significantly faster image generation while also improving sample quality, obtaining

state-of-the-art results on various datasets in terms of precision/recall metrics.

Chapter 5 extends diffusion models to operate in an infinite dimensional Hilbert

space, allowing arbitrary resolution data to be sampled. During training, random

subsets of coordinates are sampled, and the model learns to denoise the content at

those locations. Non-local integral operators which map between Hilbert spaces are

used to parameterise the denoising function, with a novel multi-scale architecture

proposed able to scale to very high-resolution datasets.

Chapter 6 concludes the thesis, summarising the findings of the previous chap-

ters, discussing their strengths and weaknesses, discusses potential directions for

future work, and considers ethical considerations of the field.

9

1.5 Reproducibility

Implementation details such as specific architecture details and optimiser hyper-

parameters not discussed within each chapter are are provided in the appendix.

Accompanying open source code is available for each chapter on Github:

• Chapter 3: https://github.com/cwkx/GON

• Chapter 4: https://github.com/samb-t/unleashing-transformers

• Chapter 5: https://github.com/samb-t/infty-diff

10

https://github.com/cwkx/GON
https://github.com/samb-t/unleashing-transformers
https://github.com/samb-t/infty-diff

CHAPTER 2

Literature Review

The central idea of generative modelling stems around training a generative model

whose samples x̃ ∼ pθ(x̃) come from the same distribution as the training data dis-

tribution, x ∼ pd(x). Early neural generative models, energy-based models achieved

this by defining an energy function on data points proportional to likelihood; how-

ever, these struggled to scale to complex high dimensional data such as natural

images, and require Markov Chain Monte Carlo (MCMC) sampling during both

training and inference, a slow iterative process. In recent years there has been re-

newed interest in generative models driven by the advent of large freely available

datasets as well as advances in both general deep learning architectures and gener-

ative models, breaking new ground in terms of visual fidelity and sampling speed.

In many cases, this has been achieved using latent variables z which are easy to

sample from and/or calculate the density of, instead learning p(x, z); this requires

marginalisation over the unobserved latent variables, however in general, this is in-

tractable. Generative models therefore typically make trade-offs in execution time,

architecture, or optimise proxy functions. Choosing what to optimise for has impli-

cations for sample quality, with direct likelihood optimisation often leading to worse

sample quality than alternatives.

11

Table 2.1: Comparison between deep generative models.

Method Train
Speed

Sample
Speed

Num.
Params.

Resolution
Scaling

Free-form
Jacobian

Exact
Density

FID NLL (in
BPD)

Generative Adversarial Networks
DCGAN [283] ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ✓ ✗ 37.11 -
ProGAN [178] ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ✓ ✗ 15.52 -
BigGAN [29] ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ✓ ✗ 14.73 -
StyleGAN2 + ADA [180] ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ✓ ✗ 2.42 -

Energy Based Models
IGEBM [75] ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ✓ ✗ 37.9 -
Denoising Diffusion [135] ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ✓ (✓) 3.17 ≤ 3.75
DDPM++ Continuous [329] ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ✓ (✓) 2.20 -
Flow Contrastive (EBM) [92] ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ✓ ✗ 37.30 ≈ 3.27
VAEBM [379] ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ✓ ✗ 12.19 -

Variational Autoencoders
Convolutional VAE [190] ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ✓ (✓) 106.37 ≤ 4.54
Variational Lossy AE [46] ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ✗ (✓) - ≤ 2.95
VQ-VAE [291; 362] ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ✗ (✓) - ≤ 4.67
VD-VAE [48] ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ✓ (✓) - ≤ 2.87

Autoregressive Models
PixelRNN [361] ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ✗ ✓ - 3.00
Gated PixelCNN [360] ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ✗ ✓ 65.93 3.03
PixelIQN [268] ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ✗ ✓ 49.46 -
Sparse Trans. + DistAug [49; 171] ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ✗ ✓ 14.74 2.66

Normalizing Flows
RealNVP [69] ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ✗ ✓ - 3.49
GLOW [191] ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ✗ ✓ 45.99 3.35
FFJORD [107] ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ✓ (✓) - 3.40
Residual Flow [42] ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ✓ (✓) 46.37 3.28

12

This chapter provides a comprehensive overview of generative modelling, includ-

ing advances old and new, comparing and contrasting so as to explain the modelling

decisions behind each respective technique. A specific focus on image models is

taken reflecting the topics addressed in this thesis; however, concepts are often rel-

evant across modalities. In particular, this chapter covers energy-models (Sec. 2.1),

unnormalised density models; diffusion models (Sec. 2.2), reversing a predefined pro-

cess that destroys information by adding noise; variational autoencoders (Sec. 2.3),

variational approximation of a latent-based model’s posterior; generative adversar-

ial networks (Sec. 2.4), two models set in a mini-max game; autoregressive models

(Sec. 2.5); model data decomposed as a product of conditional probabilities; and

normalizing flows (Sec. 2.6), exact likelihood models using invertible transforma-

tions. This breakdown is defined to closely match the typical divisions within re-

search; however, numerous hybrid approaches exist that blur these lines, these are

discussed in the most relevant section or both where suitable.

An overview of the differences between a collection of popular approaches is

provided in Tab. 2.1 which contrasts a diverse array of techniques. For the column

“Exact Density”, ✓ represents tractable densities, (✓) approximate densities, and

✗ intractable densities. On a number of properties assessed, a star system is used

to allow easy comparisons, with rules defined in Tab. 2.2 based on CIFAR-10.

Ranking measures such as training speed in days can be considered anecdotal since

it is dependent on the year and compute available, with GPUs regularly being

released that are more powerful and have more memory. Nevertheless, this allows a

comparison based on properties such as stability and convergence rates which cannot

be easily judged, for instance, by simply looking at number of function evaluations

per iteration.

Table 2.2: Rules for the star ratings in Tab. 2.1. AR is autoregressive sampling,
and MCMC is Markov-Chain Monte-Carlo sampling.

1 Star 2 Stars 3 Stars 4 Stars 5 Stars

Training >5 days ≤5 days ≤2 days ≤1 days ≤1
2

day
Sampling AR MCMC Middle ≤20 steps 1 step
Params >120M ≤120M ≤60M ≤30M ≤10M
Resolution <32 32 64 or 128 256 or 512 ≥1024

13

2.1 Energy-Based Models

Energy-based models (EBMs) [208] are based on the observation that any probability

density function p(x) for x ∈ RD can be expressed in terms of an energy function

E(x) : RD → R which associates realistic points with low values and unrealistic

points with high values

p(x) =
e−E(x)∫

x̃∈X e−E(x̃)
. (2.1)

Modelling data in such a way offers a number of perks, namely the simplicity and

stability associating with training a single model; utilising a shared set of features

thereby minimising required parameters; and the lack of any prior assumptions elim-

inates related bottlenecks [75]. Despite these benefits, scaling to high dimensional

data is difficult; however, recent advances have made substantial strides.

A key issue with EBMs is how to optimise them; since the denominator in

Eqn. 2.1 is intractable for most models, a popular proxy objective is contrastive

divergence where energy values of data samples are ‘pushed’ down, while samples

from the energy distribution are ‘pushed’ up. Formally, the gradient of the nega-

tive log-likelihood loss L(θ) = Ex∼pd [− ln pθ(x)] has been shown to approximately

demonstrate the following property [37; 332],

∇θL = Ex+∼pd [∇θEθ(x
+)]− Ex−∼pθ [∇θEθ(x

−)], (2.2)

where x− ∼ pθ is a sample from the EBM found through a Markov Chain Monte

Carlo (MCMC) generating procedure.

2.1.1 Early Energy-Based Models

Before moving to recent advances, we start with some of the earliest neural genera-

tive models.

Boltzmann Machines

A Boltzmann machine [131] is a fully connected undirected network of binary neu-

rons (Fig. 2.1a) that are turned on with probability determined by a weighted sum

14

v1 v2

h3

h2

h1

(a) Boltzmann machine.

v1 v2 v3 ... vn

h1 h2
... hn

(b) Restricted Boltzmann machine.

Figure 2.1: Restricted Boltzmann machines have restricted architectures to allow
faster sampling than Boltzmann machines.

of their inputs i.e. for some state si, p(si = 1) = σ(
∑

j wi,jsj). The neurons can be

divided into visible v ∈ {0, 1}D units, those which are set by inputs to the model,

and hidden h ∈ {0, 1}P units, all other neurons. The energy of the state {v,h} is

defined (without biases for succinctness) as

Eθ(v,h) = −1

2
vTLv − 1

2
hTJh− 1

2
vTWh, (2.3)

where W , L, and J are symmetrical learned weight matrices. In order to train

Boltzmann machines via contrastive divergence, equilibrium states are found via

Gibbs sampling; however, this takes an exponential amount of time in the number

of hidden units making scaling impractical.

Restricted Boltzmann Machines

Many of the issues associated with Boltzmann machines can be overcome by restrict-

ing their connectivity. One approach, known as the restricted Boltzmann machine

(RBM) [132] is to remove connections between units in the same group (Fig. 2.1b),

allowing exact calculation of hidden units. Although obtaining negative samples

still requires Gibbs sampling, it can be parallelised and in practice a single step is

sufficient if v is initially sampled from the dataset [132].

By stacking RBMs, using features from lower down as inputs for the next layer,

more powerful functions can be learned; these models are known as deep belief net-

works [133]. Training an entire model at once is intractable so instead they are

trained greedily layer by layer, composing densities thus improving the approxima-

tion of p(v).

15

2.1.2 Deep EBMs via Contrastive Divergence

To train more powerful architectures through contrastive divergence, one must be

able to efficiently sample from pθ. Specifically, we would like to model high dimen-

sional data using an energy function with a deep neural network, taking advantage

of recent advances in discriminative models [388]. MCMC methods such as random

walk and Gibbs sampling [133], when applied to high dimensional data, have long

mixing times, making them impractical. A number of recent approaches [75; 381]

have advocated the use of stochastic gradient Langevin dynamics [297; 375] which

permits sampling through the following iterative process,

x0 ∼ p0(x), xi+1 = xi −
α

2

∂Eθ(xi)

∂xi

+ ϵ, (2.4)

where ϵ ∼ N (0, αI), p0(x) is typically a uniform distribution over the input domain

and α is the step size. As the number of updates N →∞ and α→ 0, the distribution

of samples converges to pθ [375]; however, α and ϵ are often tweaked independently

to speed up training.

While Langevin MCMC is more practical than other approaches, sampling still

requires a large number of steps. One solution is to use persistent contrastive diver-

gence [75; 340] where a replay buffer stores previously generated samples that are

randomly reset to noise; this allows samples to be continually refined with a rela-

tively small number of steps while maintaining diversity. Short-run MCMC [260]

which samples using as few as 100 update steps from noise has also been used to

train deep EBMs; however, since the number of steps is so small, samples are not

truly from the correct probability density. Nevertheless, there are other advantages

such as allowing image interpolation and reconstruction (since short-run MCMC

does not mix) [259]. Other approaches include initialising MCMC chains with data

points [381] and samples from an implicit generative model [380], as well as adversar-

ially training an implicit generative model, mitigating mode collapse somewhat by

maximising its entropy [111; 187; 201]. Improved/augmented MCMC samplers with

neural networks can also improve the efficiency of sampling [110; 139; 213; 324; 341].

One application of EBMs of this form comes by using standard classifier ar-

16

chitectures, fθ : RD → RK , which map data points to logits used by a softmax

function to compute pθ(y|x). By marginalising out y, these logits can be used to

define an energy model that can be simultaneously trained as both a generative and

classification model [109],

pθ(x) =
∑
y

pθ(x, y) =

∑
y exp(fθ(x[y]))

Z(θ)
, (2.5a)

Eθ(x) = − ln
∑
y

exp(fθ(x[y])). (2.5b)

2.1.3 Correcting Implicit Generative Models

While EBMs offer powerful representation ability due to unnormalized likelihoods,

they can suffer from high variance training, long training and sampling times, and

struggle to support the entire data space. In this section, a number of hybrid

approaches are discussed which address these issues.

Exponential Tilting

To eliminate the need for an EBM to support the entire space, an EBM can in-

stead be used to correct samples from an implicit generative network, simplifying

the function to learn and allowing easier sampling. This procedure, referred to as

exponentially tilting an implicit model, is defined as

pθ,ϕ(x) =
1

Zθ,ϕ

qϕ(x)e−Eθ(x). (2.6)

By parameterising qϕ(x) as a latent variable model such as a normalizing flow [6; 262]

or VAE generator [379], MCMC sampling can be performed in the latent space rather

than the data space. Since the latent space is much simpler, and often uni-modal,

MCMC mixes much more effectively. This limits the freedom of the model, however,

leading some to jointly sample in latent and data space [6; 379].

17

Noise Contrastive Estimation

Noise contrastive estimation [83; 121] transforms EBM training into a classification

problem using a noise distribution qϕ(x) by optimising the loss function,

Epd

[
ln

pθ(x)

pθ(x) + qϕ(x)

]
+ Eqϕ

[
ln

qϕ(x)

pθ(x) + qϕ(x)

]
, (2.7)

where pθ(x) = eEθ(x)−c. This approach can be used to train a correction via exponen-

tial tilting [262], but can also be used to directly train an EBM and normalizing flow

[92]. Eqn. 2.7 is equivalent to GAN Equation 2.31; however, training formulations

differ, with noise contrastive estimation explicitly modelling likelihood ratios.

2.1.4 Alternative Training Objectives

As aforementioned, energy models trained with contrastive divergence approxi-

mately maximises the likelihood of the data; likelihood however does not correlate

directly with sample quality [339]. Training EBMs with arbitrary f-divergences is

possible, yielding improved FID scores [386].

Since score estimates have high variance, the Stein discrepancy has been proposed

as an alternative objective, requiring no sampling and more closely correlating with

likelihood [108]. A middle ground between denoising score matching and contrastive

divergence is diffusion recovery likelihood [20] which can be optimised via a sequence

of denoising EBMs conditioned on increasingly noisy samples of the data, the con-

ditional distributions being much easier to MCMC sample from than typical EBMs

[93].

2.2 Diffusion Models

While Langevin MCMC has helped EBMs to scale to high dimensional data, training

times are still slow due to the need to sample from the model distribution, addition-

ally, the finite nature of the sampling process means that samples can be arbitrarily

far away from the model’s distribution [108]. Closely related are denoising diffusion

probabilitic models (DDPM) (Fig. 2.2) [1; 20; 135; 323] for which the generative

18

x0 x1 x2 . . . xT−1 xT

q(x1|x0) q(x2|x1) q(xT |xT−1)

q(x2|x0) q(xT−1|x0)

(a) Diffusion Model Forward Process.

x0x1x2. . .xT−1xT

p(x0|x1)p(x1|x2)p(xT−1|xT)

(b) Diffusion Model Reverse Process.

(c) Example Gaussian Diffusion Process.

Figure 2.2: Diffusion models consist of a forward process (a) which gradually maps
data x0 to noise xT via a large number of transitions q(xt|xt−1 (solid lines). Typi-
cally q(xt|x0) (dashed lines) can be represented in closed form, simplifing training.
Samples can be generated by learning the reverse of this process, mapping noise to
data (b). For Gaussian diffusion models (c), transition distributions are Gaussian.

process, referred to as the reverse process, is defined as a fixed length Markov chain

over a sequence of latent variables x1, . . . ,xT ,

pθ(x0:T) = p(xT)
T∏
t=1

pθ(xt−1|xt), (2.8)

p(xT) is a fixed prior distribution that can be easily sampled from, and p(x0) is the

data distribution. From the perspective of EBMs, this process can be seen as the

explicit sampling process (Eqn. 2.4) over a fixed number of steps T . In order to

optimise this process, an approximate posterior q(x1:T |x0) is also defined, thereby

19

allowing the variational bound (ELBO) on the likelihood pθ(x0) to be calculated,

q(x1:T |x0) =
T∏
t=1

q(xt|xt−1), (2.9)

E[log pθ(x0)] ≥ Eq

[
log

pθ(x0:T)

q(x1:T |x0)

]
= Eq

log p(xT)+
∑
t≥1

log
pθ(xt−1|xt)

q(xt|xt−1)

 (2.10)

= Eq

[
DKL(q(xT |x0)∥p(xT))+

∑
t>1

DKL(q(xt−1|xt,x0)∥pθ(xt−1|xt))−log pθ(x0|x1)

]
.

(2.11)

For long Markov chains, calculating the ELBO at every training step is impractical.

However, because the ELBO consists of a sum of independent terms, it can be

approximated by Monte Carlo sampling components, Lt−1 = DKL(q(xt−1|xt,x0) ∥

pθ(xt−1|xt)). In many cases, diffusion models are defined such that q(xt|x0) can be

represented in closed form and can be easily sampled, simplifying this process.

2.2.1 Gaussian Diffusion Models

One of the most common types of DDPM are Gaussian diffusion models [135; 323],

where the transition distributions are Gaussian and the loss Lt−1 is a weighted mean

squared error.

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I), (2.12)

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (2.13)

Lt−1 = Eq

[
1

σ2
t

∥µ̃t(xt,x0)− µθ(xt, t)∥22
]

+ C. (2.14)

In other words, the reverse process is trained to gradually remove Gaussian noise,

until realistic data is formed. The variance schedule β1, . . . , βT is defined so that

each βt is small but q(xT |x0) ≈ N (xT ;0, I). q(xt|x0) can be represented in closed

form as q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) where αt = 1− βt and ᾱt =

∏t
s=1 αs.

To improve sample quality, Ho et al. [135] proposed reweighting the ELBO

Lsimple, down-weighting loss terms that correspond to low time steps encouraging the

model to focus on denoising more noisy inputs. Additionally, by reparameterising

20

transition distributions, the noise ϵ can be predicted instead of the mean µ,

Lsimple
t−1 = Ex0,ϵ

[
∥ϵ− ϵ0(

√
ᾱtx0 +

√
1− ᾱt), t∥22

]
+ C. (2.15)

2.2.2 Connection with Score Matching

A different perspective to diffusion models can be found by studying score matching

[158] which is based on the idea of minimising the difference between the derivatives

of the data and model’s log-density functions, i.e. the score function ∇x ln p(x).

If the score function is known, then it can be learned by minimising the Fisher

divergence between pd and pθ,

L =
1

2
Epd(x)[

∥∥sθ(x)−∇x ln p(x)
∥∥2
2
], (2.16)

however, the score function of data is usually not available. Various methods exist

to estimate the score function including spectral approximation [318], sliced score

matching [328], finite difference score matching [269], and notably denoising score

matching [368] which allows the score to be approximated using corrupted data

samples q(x̃|x). In particular, when q = N (x̃|x, σ2I), Eqn. 2.16 simplifies to

L =
1

2
Epd(x) Ex̃∼N (x,σ2I)

[∥∥∥∥sθ(x̃) +
x̃− x

σ2

∥∥∥∥2
2

]
. (2.17)

That is, sθ learns to estimate the noise thereby allowing it to be used as a generative

model [312; 326]. Since the Langevin update step uses ∇x ln p(x) it is possible

to sample from a score matching model using Langevin dynamics [354]. This is

only possible, however, when trained over a large variety of noise levels so that x̃

covers the whole space. It is clear that this loss is equivalent to the loss used in

Gaussian diffusion models Eqn. 2.15, similarly, with one Langevin step per noise

level, each step is similar to sampling a DDPM transition distribution Eqn. 2.12.

This connection led to the development of predictor-corrector samplers [329] where

Markov transitions can be followed by Langevin update steps to correct the marginal

distribution of the sample.

21

2.2.3 Continuous Time Gaussian Diffusion

Another way of defining a diffusion process is with a stochastic differential equation

[329]; here the diffusion process {x(t)}Tt=1 is continuous in time t. Similar to the

discrete case, at time t = 0, x(0) ∼ p0, then noise is slowly added until time t = T

where x(T) ∼ pT which contains no information about x(0),

dx = f(x, t) dt + g(t) dw, (2.18)

where w is the standard Wiener process (Brownian motion), f is a function that

defines the drift of the SDE, and g is a function that defines the diffusion coefficient.

The reverse of this SDE, which allows samples to be generated, can be represented

as another SDE in terms of the score function [4],

dx = [f(x, t)− g(t)2∇x log pt(x)] dt + g(t) dw̄, (2.19)

where w̄ is the standard Wiener process when time flows backwards. In the same

manner as the discrete case, score-matching (such as in Eqn. 2.17) can be used to

approximate the score function.

When f and g take the following forms, the continuous time generalisation of

the DDPM forward process presented in Section 2.2.1 can be represented as

dx = −1

2
β(t)x dt +

√
β(t) dw. (2.20)

with β(t) representing the continuous time analogue of βt.

2.2.4 Diffusion in Discrete State Spaces

Discrete diffusion models [9; 145] constrain the state space so that xt is a discrete

random variable falling into one of K categories. As such, the forward process can

be represented as categorical distributions q(xt|xt−1) = Cat(xt;p = xt−1Qt) for

one-hot xt−1 where Qt is a matrix denoting the probabilities of moving to each

successive state. q(xt|x0) can be expressed as q(xt|x0) = Cat(xt;p = Qt) where

22

Qt = x0Q1Q2 · · ·Qt, therefore scaling is simple if Qt can be expressed in closed

form. Transition processes include moving states with some low uniform probability

[145], moving to nearby states with some probability based on similarity or distance,

and masking inputs similar to generative MLMs.

2.2.5 Speeding up Sampling

Sampling from score-based models requires a large number of steps leading to var-

ious techniques being developed to reduce this. A simple approach is to skip steps

at inference: cosine schedules [256] spend more time where larger visual changes are

made reducing the impact of skipping; another approach is to use dynamic program-

ming to find what steps should be taken to minimise ELBO based on a computation

budget [373]. For the continuous time interpretation, more efficient numerical solvers

can be used, reducing the number of steps required [169]. Denoising diffusion im-

plicit models (DDIMs) [325] transform diffusion models into deterministic models

allowing fewer steps to yield the same quality, replacing the sampling steps with

xt−1 =
√
αt−1

(
xt −

√
1− αtϵθ(xt, t)√

αt

)
+
√

1− αt−1 · ϵθ(xt, t). (2.21)

Also of interest are different formulations of diffusion models that among other

features offer the potential for faster sampling, particularly of note are the recent

advances in Schrödinger bridges and Optimal Transport [44; 62] and Poisson Flow

[383] where the forward process instead maps to a high dimensional hemisphere.

2.3 Variational Autoencoders

One of the key problems associated with energy-based models is that sampling is not

straightforward and mixing can require a significant amount of time. To circumvent

this issue, it would be beneficial to explicitly sample from the data distribution with

a single network pass.

To this end, suppose we have a latent based model pθ(x|z) with prior pθ(z)

and posterior pθ(z|x); unfortunately optimising this model through maximum like-

23

x

µ

σ

ϵ

z x̂
E

D

µ + σ ⊙ ϵ

(a) VAE computational graph.
(b) VAEs encode data to a compressed latent space re-
sulting in imperfect reconstructions e.g. blur.

Figure 2.3: Variational autoencoder with a normally distributed prior. ϵ is sampled
from N (0, I).

lihood is intractable due to the integral in pθ(x) =
∫
z
pθ(x|z)pθ(z)dz. Instead,

variational inference allows this problem to be reframed as an optimisation prob-

lem by introducing an approximation of the true intractable posterior qϕ(z|x) =

arg minq DKL(qϕ(z|x)||pθ(z|x)) that allows a tractable bound on pθ(x) to be formed.

In particular, variational autoencoders amortize the inference process, that is, ap-

proximate qϕ(z|x) using a feedforward inference network allowing scaling to large

datasets (Fig. 2.3) [190; 294]. From the definition of KL divergence we get

DKL(qϕ(z|x)||pθ(z|x)) = Eqϕ(z|x)

[
ln

qϕ(z|x)

pθ(z|x)

]
= Eqϕ(z|x)[ln qϕ(z|x)]− Eqϕ(z|x)[ln pθ(z,x)] + ln pθ(x),

(2.22)

which can be rearranged to find an alternative definition for pθ(x) that does not

require the knowledge of pθ(z|x)

ln pθ(x) = DKL(qϕ(z|x)||pθ(z|x))− Eqϕ(z|x)[ln qϕ(z|x)] + Eqϕ(z|x)[ln pθ(z,x)]

≥ −Eqϕ(z|x)[ln qϕ(z|x)] + Eqϕ(z|x)[ln pθ(z,x)]

= −Eqϕ(z|x)[ln qϕ(z|x)] + Eqϕ(z|x)[ln pθ(z)] + Eqϕ(z|x)[ln pθ(x|z)]

= −DKL(qϕ(z|x)||pθ(z)) + Eqϕ(z|x)[ln pθ(x|z)]

≡ L(θ, ϕ;x),

(2.23)

where L is known as the evidence lower bound (ELBO) [170]. To optimise this bound

with respect to θ and ϕ, gradients must be backpropagated through the stochastic

sampling process z̃ ∼ qϕ(z|x). This is permitted by reparameterizing z̃ using a

differentiable function gϕ(ϵ,x) of a noise variable ϵ: z̃ = gϕ(ϵ,x) with ϵ ∼ p(ϵ)

24

[190; 294].

Monte Carlo gradient estimators can be used to approximate the expectations;

however, this yields very high variance making it impractical. Alternatively, if

DKL(qϕ(z|x)||pθ(z)) can be integrated analytically then the variance is manage-

able. A prior with such a property needs to be simple enough to sample from but

also sufficiently flexible to match the true posterior; a common choice is a nor-

mally distributed prior with diagonal covariance, z ∼ qϕ(z|x) = N (z;µ,σ2I) with

z̃ = µ + σ ⊙ ϵ and ϵ ∼ N (0, I). In this case, the loss simplifies to *

L̃V AE(θ, ϕ;x) ≃ 1

2

J∑
j=1

(
1+ln((σ(j))2)−(µ(j))2−(σ(j))2

)
+

1

L

L∑
l=1

ln pθ(x|z̃l). (2.24)

Despite success on small scale datasets, when applied to more complex datasets

such as natural images, samples tend to be unrealistic and blurry [74]. This blur-

riness has been attributed to the maximum likelihood objective itself and MSE

reconstruction loss; however, there is evidence that limited approximation of the

true posterior is the root cause [400]; with MSE causing highly non-Gaussian poste-

riors. As such, the Gaussian posterior implies an overly simple model which, when

unable to perfectly fit, maps multiple data points to the same encoding leading to

averaging.

There are a number of other issues associated with limited posterior approxi-

mation, namely under-estimation of the variance of the posterior, resulting in poor

predictions, and biases in the MAP estimates of model parameters [352]. Addi-

tionally, amortized inference leads to an amortization gap, the difference in ELBO

for the amortized posterior and optimal approximate posterior [58]. Increasing the

capacity of the encoder and decoder can reduce this gap by improving the posterior

approximation and better fitting the choice of approximation respectively. Other

proposed improvements include combining with adversarial training [152; 205; 236],

improving the ELBO [31], as well as using different regularisation such as Wasser-

stein distance [342].

Reweighting the ELBO by multiplying DKL with an extra hyperparameter β

allows the capacity of the latent representation to be altered. When β > 1 a more

25

disentangled representation is learned where each latent unit is responsible for a

single generative factor [130]. This approach has been generalised, allowing more

precise states in the compression-representation trade-off to be targeted [3].

2.3.1 Beyond Simple Priors

One approach to improve variational bounds and increase sample quality is to im-

prove the priors used for instance by careful selection to the task or by increasing its

complexity [140]. Complex priors can be learned by warping simple distributions and

inducing variational dependencies between the latent variables: variational Gaus-

sian processes permit this by forming an infinite ensemble of mean-field distributions

[346]; EBMs and score matching can be used to model flexible priors [269; 357]; nor-

malizing flows (see Section 2.6) transform distributions through a series of invertible

parameterised functions [21; 107; 149; 192; 293; 308].

By rewriting the VAE training objective to have two regularisation terms [236]

, one on each line,

L(θ, ϕ;x) = Ex∼q(x)[Eqϕ(z|x)[ln pθ(x|z)]]

+ Ex∼q(x)[H[qϕ(z|x)]]− Ez∼q(z)[pθ(z)],
(2.25)

the latter of which is the cross entropy between the aggregate posterior and the

prior, the prior can be defined as the aggregate posterior (Fig. 2.4), thus obtain-

ing a rich multi-modal latent representation that combats inactive latent variables.

Since the true aggregate posterior is intractable, VampPrior [344] approximates

it for a set of pseudo-inputs, tensors with the same shape as data points learned

during training. Exemplar VAEs [263] scale this approach up, using the full train-

ing set to approximate the aggregate posterior, by approximating the prior using

k-nearest-neighbours. Alternatively, the aggregate posterior can be approximated

with a learned prior; this has been achieved with a learned rejection sampling pro-

cedure that transforms a base distribution [15].

In some instances, it can be helpful to compress data to discrete latent repre-

sentations [28; 172]; however, gradients through discrete sampling procedures are

26

Figure 2.4: The prior p(z) of a VAE can be defined as the aggregate posterior, p(z) =
1
N

∑N
n=1 q(z|xn), indicated by grey contour lines. Directly using the dataset {xn} is

impractical however, due to overfitting and computational complexity. To address
this, rather than directly using the dataset, VampPrior [344] instead uses pseudo-
inputs, while Exemplar VAEs [263] use a k-nearest-neighbours approximation.

ill-defined. The Gumbel-Softmax/Concrete distribution is a differentiable continu-

ous approximation of a categorical distribution containing a temperature coefficient

that converges to a discrete distribution in the limit [163; 234].

Alternatively, it has been argued that simple Gaussian priors are not a hindrance.

When the data of dimension d lies on a sub-manifold of dimension r and r < d then

global VAE optimum exist that do no recover the data distribution; however, when

r = d, global optimums do recover the data distribution; as such, 2 stage VAEs

that first map data to latents of dimension r then use a second VAE to correct the

learned density can better capture the data [60].

27

z1

z2

z3

x̂

Decoder

· · ·

+

x̂

z1

z2

z3

Bidirectional
Inference Model

· · · · · ·

=

x̂

z1

z2

z3

Bidirectional
Inference VAE

· · · · · ·

Figure 2.5: A hierarchical VAE with bidirectional inference [192].

Hierarchical VAEs

Hierarchical VAEs build complex priors with multiple levels of latent variables, each

conditionally dependent on the last, forming dependencies depthwise though the

network,

pθ(z) = pθ(z0)pθ(z1|z0) · · · pθ(zN |z<N), (2.26a)

qϕ(z|x) = qϕ(z0|x)qϕ(z1|z0,x) · · · qϕ(zN |z<N ,x). (2.26b)

Ladder VAEs [333] achieve this conditioning structure using a bidirectional infer-

ence network where a deterministic “bottom-up” pass generates features at various

resolutions, then the latent variables are processed from top to bottom with the

features shared (Fig. 2.5). Specifically, they model latents as normal distributions

conditioned on the last latent,

pθ(zi|zi−1) = N (zi|µp,i(zi−1), σ
2
p,i(zi−1)). (2.27)

By introducing skip connections around the stochastic sampling process, latents

can be conditioned on all previously sampled latents [192; 233; 356]. Such an ar-

chitecture generalises autoregressive models; inferring latents in parallel allows for

significantly fewer steps compared to typical autoregressive models since many la-

tents are statistically independent and allows different latent levels to correspond

to global/local details depending on their depth. It has been argued that a single

level of latents is sufficient since Gibbs sampling performed on that level can recover

28

the data distribution [399]. Despite that, Gibbs sampling converges slowly, making

hierarchical representations more efficient; in support of this, deeper hierarchical

VAEs have been shown to improve likelihood, independent of capacity [48].

2.3.2 Regularised Autoencoders

Related to VAEs are regularised autoencoders (RAEs) which apply regularisation

to the latent space of a deterministic autoencoder then subsequently train a density

estimator on this space to obtain a complex prior [98]. Since the approximate

posterior is a degenerate distribution, RAEs have little connection with variational

inference.

Vector Quantized-Variational Autoencoders (VQ-VAE) [288; 362] learn a highly

compressed discrete representation taking advantage of an information rich code-

book to achieve extremely high compression rates compared to continuous repre-

sentations. A convolutional encoder downsamples images x to a smaller spatial

resolution, E(x) = {e1, e2, ..., eL} ∈ RL×D. A simple quantisation approach is to

use the argmax operation which maps continuous encodings to their closest elements

in a finite codebook of vectors [362]. Specifically, for a codebook C ∈ RK×D, where

K is the number of discrete codes in the codebook and D is the dimension of each

code, each ei is mapped via a nearest-neighbour lookup onto a discrete codebook

value, cj ∈ C:

zq = {q1, q2, ..., qL} , where qi = min
cj∈C
∥ei − cj∥. (2.28)

As this operation is non-differentiable, the straight-through gradient estimator [18]

is used to approximate gradients resulting in bias. The quantized latents are fed

through a decoder x̂ = G(zq) to reconstruct the input based on a perceptual recon-

struction loss [86; 396]; this process is trained by minimising the loss LVQ,

LVQ = Lrec +∥sg[E(x)]− zq∥22 + β∥sg[zq]− E(x)∥22. (2.29)

Typically, to allow sampling, autoregressive models (see Section 2.5) are used to learn

the compressed discrete spaces since they are powerful density estimators and the

substantially reduced input dimension means that sampling is possible in reasonable

29

times.

2.3.3 Data Modelling Distributions

Unlike energy-based models, VAEs must model an explicit density p(x|z). For effi-

cient sampling, typically this distribution is decomposed as a product of independent

simple distributions, allowing unrestricted architectures to be used to parameterise

the chosen distributions. Common instances include modelling variables as Bernoulli

[226], Gaussian [190], multinomial distributions, or as mixtures[310].

Autoregressive Decoders

To introduce dependencies between the output variables, numerous works have used

powerful autoregressive networks [119]. While these approaches allow complex dis-

tributions to be learned, they increase the runtime and often suffer from posterior

collapse since early in training the approximate posterior contains little knowledge

about x meaning that it is easy to minimise DKL which in turn reduces the gra-

dient between the encoder and decoder making it difficult to escape this minima

[28]; in fact, for a sufficiently powerful generative distribution, this can occur even

at optimum solutions [46]. Various methods to prevent posterior collapse have been

proposed: by restricting the autoregressive network’s receptive field to a small win-

dow, it is forced to use latents to capture global structure [46]; a mutual information

term can be added to the loss to encourage high correlation between x and z [401];

encouraging the posterior to be diverse by controlling its geometry to evenly cover-

ing the data space, redundancy is reduced and latents are encouraged to learn global

structure [232].

2.3.4 Bridging Amortized and Stochastic Inference

While variational approaches offer substantial speedup over MCMC sampling, there

is an inherent discrepancy between the true posterior and approximate posterior

despite improvements in this field. To this end, a number of approaches have been

proposed to find a middle ground, yielding improvements over amortized methods

30

with lower costs than MCMC. Semi-amortised VAEs [188] use an encoder network

followed by stochastic gradient descent on latents to improve the ELBO; however,

this still relies on an inference network. The inference network can be removed by as-

signing latent vectors to data points, then optimising them with Langevin dynamics

or gradient descent, during training; although this allows fast training, convergence

for unseen samples is not guaranteed and there is still a large discrepancy between

the true posterior and latent approximations due to lag in optimisation [26; 125].

Short-run MCMC has also been applied however it has poor mixing properties [261].

VAEBMs offer a different perspective, rather than performing latent MCMC

sampling based on the ELBO, they use an auxiliary energy-based model to correct

blurry VAE samples, with MCMC sampling performed in both the data space and

latent space. This setup is defined by hϕ,θ(x, z) = 1
Zϕ,θ

pθ(z)pθ(x|z)e−Eϕ(x), where

pθ(z)pθ(x|z) is the VAE, and Eϕ(x) is the energy model. This, however, requires 2

stages of training to avoid calculating the gradient of the normalising constant Zϕ,θ,

training only the VAE and fixing the VAE and training the EBM respectively.

2.4 Generative Adversarial Networks

Another approach at eliminating the Markov chains used in energy models is the

generative adversarial network (GAN) (Fig. 2.6) [101]. GANs consist of two net-

works, a discriminator D : Rn → [0, 1] which estimates the probability that a sample

comes from the data distribution x ∼ pd(x), and a generator G : Rm → Rn which

given a latent variable z ∼ pz(z), captures pd by tricking the discriminator into

thinking its samples are real. This is achieved through adversarial training of the

networks: D is trained to correctly label training samples as real and samples from

G as fake, while G is trained to minimise the probability that D classifies its samples

as fake. This can be interpreted as D and G playing a mini-max game, as with prior

work [316; 317], optimising the value function V (G,D),

min
G

max
D

V (G,D) = Ex∼pd(x)[lnD(x)] + Ez∼pz(z)[ln(1−D(G(z)))]. (2.30)

31

z x̂

x
real, fake

G
D

Figure 2.6: Generative adversarial networks set two networks in a game: D detects
real from fake samples while G tricks D.

For a fixed G, the objective for D can be reformulated as

max
D

V (G,D) = Ex∼pd [lnD(x)] + Ex∼pg [ln(1−D(x))]

= Ex∼pd

[
ln

pd(x)

pd(x) + pg(x)

]
+ Ex∼pg

[
ln

pg(x)

pd(x) + pg(x)

]
(2.31)

= DKL(pd ∥ 1
2
(pd + pg)) + DKL(pg ∥ 1

2
(pd + pg)) + C.

Therefore the loss is equivalent to the Jensen-Shannon divergence between the gen-

erative distribution pg and the data distribution pd and thus with sufficient ca-

pacity, the generator can recover the data distribution. The use of symmetric JS-

divergence is well behaved when both distributions are small unlike the asymmet-

ric KL-divergence used in maximum likelihood models. Additionally, it has been

suggested that reverse KL-divergence, DKL(pg||pd), is a better measure for train-

ing generative models than normal KL-divergence, DKL(pd||pg), since it minimises

Ex∼pg [ln pd(x)] [156]; while reverse KL-divergence is not a viable objective function,

JS-divergence is and behaves more like reverse KL-divergence than KL-divergence

alone. With that said, JS-divergence is not perfect; if 0 mass is associated with a

data sample in a maximum likelihood model, KL-divergence is driven to infinity,

whereas this can happen with no consequence in a GAN.

2.4.1 Stabilising Training

The adversarial nature of GANs makes them notoriously difficult to train [7]; Nash

equilibrium is hard to achieve [309] since non-cooperation cannot guarantee con-

vergence, thus training often results in oscillations of increasing amplitude. As the

discriminator improves, gradients passed to the generator vanish, accelerating this

problem; on the other hand, if the discriminator remains poor, the generator does

32

not receive useful gradients. Another problem is mode collapse, where one network

gets stuck in a bad local minima and only a small subset of the data distribution is

learned. The discriminator can also jump between modes resulting in catastrophic

forgetting, where previously learned knowledge is forgotten when learning something

new [337]. This section explores proposed solutions to these problems.

Loss Functions

Since the cause of many of these issues can be linked with the use of JS-divergence,

other loss functions have been proposed that minimise other statistical distances; in

general, any f -divergence can be used to train GANs [264]. One notable example

is the Wasserstein distance which intuitively indicates how much “mass” must be

moved to transform one distribution into another. Wasserstein distance is defined

formally in Eqn. 2.32a, which by the Kantorovich-Rubinstein duality is equivalent

to Eqn. 2.32b [367]:

W (pd, pg) = inf
γ∈

∏
(pd,pg)

E(x,y)∼γ[∥x− y∥], (2.32a)

W (pd, pg) = sup
∥D∥L≤1

Ex∼pd [D(x)]− Ex∼pg [D(x)], (2.32b)

where the supremum is taken over all 1-Lipschitz functions, that is, f such that for

all x1 and x2,
∥∥f(x1)− f(x2)

∥∥
2
≤∥x1 − x2∥2. Optimising Wasserstein distance, as

described in Tab. 2.7a, offers linear gradients thus eliminating the vanishing gradi-

ents problem (see Fig. 2.7b). Moreover, Wasserstein distance is also equivalent to

minimising reverse KL-divergence [248], offers improved stability, and allows train-

ing to optimality. Numerous approaches to enforce 1-Lipschitz continuity have been

proposed: weight clipping [8] invalidates gradients making optimisation difficult;

applying a gradient penalty within the loss is heavily dependent on the support of

the generative distribution and computation with finite samples makes application

to the entire space intractable [118]; spectral normalisation (discussed below) ap-

plies global regularisation by estimating the singular values of parameters. Other

popular loss functions include least squares GAN, hinge loss, energy-based GAN,

and relativistic GAN (detailed in Tab. 2.7a). These can be visualised in Fig. 2.7b;

33

Name Losses

NSGAN [101] Ld = −E[ln(σ(D(x)))]− E[ln(1− σ(D(G(z))))]
Lg = −E[ln(σ(D(G(z))))]

WGAN [8] Ld = E[D(x)]− E[D(G(z))]
Lg = E[D(G(z))]

LSGAN [237] Ld = E[(D(x)− 1)2] + E[D(G(z))2]
Lg = E[(D(G(z))− 1)2]

Hinge [215] Ld = E[min(0, D(x)−1)]−E[max(0, 1+D(G(z)))]
Lg = −E[D(G(z))]

EBGAN [398] Ld = D(x) + max(0,m−D(G(z)))
Lg = D(G(z))

RSGAN [168] Ld = E[ln(σ(D(x)−D(G(z))))]
Lg = E[ln(σ(−D(G(z))−D(x)))]

(a) GAN losses.

D(G(z))

L
G

S-GAN NS-GAN

WGAN LS-GAN

Hinge

(b) Generator loss
functions.

Figure 2.7: A comparison of popular losses used to train GANs. (a) Respective
losses for discriminator/generator. (b) Plots of generator losses with respect to
discriminator output. Notably, NS-GAN’s gradient disappears as discriminator gets
better.

notably, least squares GAN (LS-GAN) penalises samples that lie far from the deci-

sion boundary, whether they are correctly classified or not; hinge loss is based on

SVM separating hyperplanes that has the maximal margin between the two classes,

it has been found to oscillate less than other losses.

The catastrophic forgetting problem can be mitigated by conditioning the GAN

on class information, encouraging more stable representations [29; 245; 392]. Never-

theless, labelled data, if available, only covers limited abstractions. Self-supervision

achieves the same goal by training the discriminator on an auxiliary classification

task based solely on the unsupervised data. Proposed approaches are based on

randomly rotating inputs to the discriminator, which learns to identify the angle

rotated separately to the standard real/fake classification [45]. Extensions include

training the discriminator to jointly determine rotation and real/fake to provide

better feedback [349], and training the generator to trick the discriminator at both

the real/fake and classification tasks [349]. A more explicit approach is to model

the generator with a normalizing flow, avoiding collapse by jointly optimising the

GAN and likelihood objectives [115].

34

Spectral Normalisation

Spectral normalisation [248] is a technique to make a function globally 1-Lipschitz

utilising the observation that the Lipschitz constant of a linear function is its largest

singular value (spectral norm). The spectral norm of a matrix A is

SN(A) := max
h:h ̸=0

∥Ah∥2
∥h∥2

= max
∥h∥2≤1

∥Ah∥2 , (2.33)

thus a weight matrix W is normalised to be 1-Lipschitz by replacing the weights with

WSN := W
SN(W)

. Rather than using singular value decomposition to compute the

norm, the power iteration method is used; for randomly initialised vectors v ∈ Rn

and u ∈ Rm, the procedure is

ut+1 = Wvt, vt+1 = W Tut+1, SN(W) ≈ uTWv. (2.34)

Since weights change only marginally with each optimisation step, a single power

iteration step per global optimisation step is sufficient to keep v and u close to their

targets.

As aforementioned, enforcing the discriminator to be 1-Lipschitz is essential for

WGANs; however, spectral normalisation has been found to dramatically improve

sample quality and allow scaling to datasets with thousands of classes across a va-

riety of loss functions [29; 248]. Spectral collapse, has been linked to discriminator

overfitting when spectral norms of layers explode [29] as well as mode collapse when

spectral norms fall in value significantly [221]. Additionally, regularising the dis-

criminator in this manner helps balance the two networks, reducing the number of

discriminator update steps required [29; 392].

Data Augmentation

Augmenting training data to increase the quantity of training data is often common

practice; when training GANs the types of augmentations permitted are limited to

more simple augmentations such as cropping and flipping to prevent the genera-

tor from creating undesired artefacts. Several approaches independently proposed

35

applying augmentations to all discriminator inputs, allowing more substantial aug-

mentations to be used [180; 348; 402; 403]; the training procedure for a WGAN with

augmentations is

LD = Ex∼pd(x)[D(T (x))]− Ez∼p(z)[D(T (G(z)))], (2.35a)

LG = Ez∼p(z)[D(T (G(z)))], (2.35b)

where T is a random augmentation. These approaches have been shown to im-

prove sample quality on equivalent architectures and stabilise training. Each work

offers a different perspective on why augmentation is so effective: the increased

quantity of training data in conjunction with the more difficult discrimination task

prevents overfitting and in turn collapse [29], notably this applies even on very small

datasets (100 samples); the nature of GAN training leads to the generated and data

distributions having non-overlapping supports, complicating training [334], strong

augmentations may cause these distributions to overlap further. If an augmenta-

tion is differentiable and represents an invertible transformation of the data space’s

distribution, then the JS-divergence is invariant, and the generator is guaranteed to

not create augmented samples [180; 348].

Discriminator Driven Sampling

In order to improve sample quality and address overpowered discriminators, numer-

ous works have taken inspiration from the connection between GANs and energy

models [398]. Interpreting the discriminator of a Wasserstein GAN [8] as an energy-

based model means samples from the generator can be used to initialise an MCMC

sampling chain which converges to the density learned by the discriminator, cor-

recting errors learned by the generator [254; 353]. This is similar to pure EBM

approaches; however, training the two networks adversarially changes the dynamics.

The slow convergence rates of high dimensional MCMC sampling has led others to

instead sample in the latent space [40; 331].

36

GANs without Competition

Originally proposed as a proxy to measure GAN convergence [113], the duality gap

is an upper bound on the JS-divergence that can be directly optimised [114], defined

as

DG(D,G) = max
D′

V (G,D′)−min
G′

V (G′, D). (2.36)

Cooperative training simplifies the optimisation procedure, avoiding oscillations.

Each training step, however, requires optimising for D′ and G′ which slows down

training and could suffer from vanishing gradients.

2.4.2 Architectures

Careful network design is a key component for stable GAN training. Scaling any

deep neural network to high-resolution data is non-trivial due to vanishing gradients

and high memory usage, but since the discriminator can classify high-resolution data

more easily, GANs notably struggle [266].

Early approaches designed hierarchical architectures, dividing the learning pro-

cedure into more easily learnable chunks. LapGAN [64] builds a Laplacian pyramid

such that at each layer, a GAN conditioned on the previous image resolution pre-

dicts a residual adding detail. Stacked GANs [154; 390] use two GANs trained

successively: the first generates low-resolution samples, then the second upsamples

and corrects the first, thus fewer GANs need to be trained. A related approach,

progressive growing [178; 179], iteratively trains a single GAN at higher resolutions

by adding layers to both the generator and discriminator upscaling the previous

output, after the previous resolution converges. Training in this manner, however,

not only takes a long time but leads to high frequency components being learned in

the lower layers, resulting in shift artefacts [181].

Accordingly, a number of works have targeted a single GAN that can be trained

end-to-end. DCGAN [283] introduced a fully convolutional architecture with batch

normalisation [159] and ReLU/LeakyReLU activations. BigGAN [29] employ a num-

ber of tricks to scale to high resolutions including using very large mini-batches to

reduce variation, spectral normalisation to discourage spectral collapse, and using

37

Figure 2.8: A GAN with skip connections between the generator and discriminator
to improve gradient flow. Dashed lines are 1×1 convolutions for mapping the gen-
erator’s activations to image channels (when discriminating generated images); and
to inject low resolution image features into the discriminator (when discriminating
real images) [175; 181; 358].

large datasets to prevent overfitting. Despite this, training collapse still occurs

thus requiring early stopping. Another approach is to include skip connections be-

tween the generator and discriminator at each resolution, allowing gradients to flow

through shorter paths to each layer, providing extra information to the generator

(Fig. 2.8) [175; 181; 358]. By treating subsets of the generator’s parameters as

smaller generators, Anycost GANs extend this approach, allowing samples to be

generated at multiple resolutions and speeds[218]. To learn long-range dependen-

cies, GANs can be built with self-attention components [164; 364; 392]; however,

full quadratic attention does not scale well to high dimensional data.

2.4.3 Training Speed

The mini-max nature of GAN training leads to slow convergence, if achieved at all.

This problem has been exacerbated by numerous works as a byproduct of improving

stability or sample quality. One such example is that by using very large mini-

batches, reducing variance and covering more modes, sample quality can be improved

38

significantly; however, this comes at the cost of slower training [29]. Small-GAN

[320] combats this by replacing large batches with small batches that approximate

the shape of the larger batch using core set sampling [320], significantly improving

the mode coverage and sample quality of GANs trained with small batches.

While strong discriminator regularisation stabilises training, it allows the gen-

erator to make small changes and trick the discriminator, making convergence very

slow. Rob-GAN [223], include an adversarial attack step [235] that perturbs real

images to trick the discriminator without altering the content inordinately, adapting

the GAN objective into a min-max-min problem. This provides a weaker regulari-

sation, enforcing small Lipschitz values locally rather than globally. This approach

has been connected with the follow-the-ridge algorithm [372; 404], an optimisation

approach for solving mini-max problems that reduces the optimisation path and

converges to local mini-max points.

Another approach to improve training speed is to design more efficient archi-

tectures. Depthwise convolutions [50] apply separate convolutions to each channel

of a tensor reducing the number of operations and hence also the runtime, have

been found to have comparable quality to standard convolutions [255]. Lightweight

GANs [220] achieve fast training using a number of tricks including small batch

sizes, skip-layer excitation modules which provide efficient shortcut gradient flow,

as well as using a self-supervised discriminator forcing good features to be learned.

2.5 Autoregressive Likelihood Models

Autoregressive generative models (Fig. 2.9) [19] are based on the chain rule of

probability, where the probability of a variable that can be decomposed as x =

x1, . . . , xn is expressed as

p(x) = p(x1, . . . , xn) =
n∏

i=1

p(xi|x1, . . . , xi−1). (2.37)

As such, unlike GANs and energy models, it is possible to directly maximise the

likelihood of the data by training a recurrent neural network to model p(xi|x1:i−1)

39

x1 x2 x3 ... xn−1

x̂1 x̂2 x̂3
... x̂n

Figure 2.9: Autoregressive models decompose data points using the chain rule and
learn conditional probabilities.

by minimising the negative log-likelihood,

− ln p(x) = −
n∑
i

ln p(xi|x1, . . . , xi−1). (2.38)

While autoregressive models are extremely powerful density estimators, sampling

is inherently a sequential process and can be exceedingly slow on high dimensional

data. Additionally, data must be decomposed into a fixed ordering; while the choice

of ordering can be clear for some modalities (e.g. text and audio), it is not obvious

for others such as images and can affect performance depending on the network

architecture used.

2.5.1 Architectures

The majority of research is focused on improving network architectures to increase

their receptive fields and memory, ensuring the network has access to all parts of the

input to encourage consistency, as well as increasing the network capacity, allowing

more complex distributions to be modelled.

Masked Multilayer Perceptrons

One approach to build autoregressive models is to mask the weights of simple mul-

tilayer perceptron (MLP) autoencoders so as to satisfy the autoregressive property.

The neural autoregressive density estimator (NADE) [204], which can be viewed

as a mean-field approximation of a restricted Boltzmann machine, achieves this for

binary data by placing time-dependent masks on an MLP with one hidden layer.

Specifically, at time step i, weights are masked so that the entire hidden state hi

40

and output p(xi|x<i) are dependent only on x<i; formally this can be defined as

p(xi = 1|x<i) = σ(bi + (W T)i,·hi), (2.39a)

hi = σ(c + W·,<ix<i), (2.39b)

where W·,<d is the first d − 1 columns of a shared weight matrix W , and bi and

c are biases. The RNADE [355] generalises NADE to real valued data by instead

modelling p(xi|x<i) with mixture distributions parameterised by the network. An

alternative masking procedure known as MADE [96] allows for parallel density es-

timation by placing a mask fixed over time on an MLP so that no connections exist

between p(xi|x<i) and x≥i. Additionally, MADE is more readily vectorisable and

does not suffer from neuron saturation since the number of inputs to all neurons is

constant with respect to time.

Recurrent Neural Networks

A natural architecture to apply is that of standard recurrent neural networks (RNNs)

such as LSTMs [138; 338; 361] and GRUs [53; 238] which model sequential data by

tracking information in a hidden state. However, RNNs are known to forget in-

formation, limiting their receptive field thus preventing modelling of long range

relationships. This can be improved by stacking RNNs that run at different fre-

quencies allowing long data such as multiple seconds of audio to be modelled [53].

Nevertheless, their sequential nature means that training can be too slow for many

tasks.

Causal Convolutions

An alternative approach is that of causal convolutions, which apply masked or shifted

convolutions over a sequence [47; 310; 360]. When stacked, this only provides a

receptive field linear with depth; however, by dilating the convolutions to skip values

with some step the receptive field can be orders of magnitude higher.

41

Self-Attention

Neural attention is an approach which at each successive time step is able to select

where it wishes to ‘look’ at previous time steps. This concept has been used to

autoregressively ‘draw’ images onto a blank ‘canvas’ [112] in a manner similar to

human drawing. More recently self-attention (known as Transformers when used

in an encoder-decoder setup) [364] has made significant strides improving not only

autoregressive models, but also other generative models due to its parallel nature,

stable training, and ability to effectively learn long-distance dependencies. This is

achieved using an attention scheme that can reference any previous input where an

entirely independent process is used per time step so that there are no dependencies.

Specifically, inputs are encoded as key-value pairs, where the values V represent the

inputs, and the keys K act as an indexing method. At each time step a query q is

made; taking the dot product of the queries and keys, a similarity vector is formed

that describes which value vectors to access. This process can be expressed as

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V , (2.40)

where dk is the key/query dimension and is used to normalise gradient magnitudes.

Since the self-attention process contains no recurrence, positional information must

be passed into the function. A simple effective method to achieve this is to add

sinusoidal positional encodings which combine sine and cosine functions of different

frequencies to encode positional information [364]; alternatively others use trainable

positional embeddings [49].

The infinite receptive fields of attention provides a powerful tool for representing

data; however, the attention matrix QKT grows quadratically with data dimension,

making scaling difficult. Approaches include scaling across large quantities of GPUs

[30], interleaving attention between causal convolutions [47], attending over local

regions [273], and using sparse attention patterns that provide global attention when

multiple layers are stacked [49]. More recently, a number of linear transformers have

been proposed whose memory and time footprints grow linearly with data dimension

[51; 183; 371]. By approximating the softmax operation with a kernel function with

42

feature representation ϕ(x), the order of multiplications can be rearranged to

(
ϕ(Q)ϕ(K)T

)
V = ϕ(Q)

(
ϕ(K)TV

)
, (2.41)

allowing ϕ(K)TV to be cached and used for each query.

Multiscale Architectures

Even with a linear autoregressive model, O(N) for N pixels, scaling to high-resolution

images grows quadratically with resolution. One multi-scale approach reduces this

complexity to O(lnN) by successively upscaling images, making the assumption

that when upscaling, each pixel is dependent only on its adjacent area and the pre-

vious resolution image, allowing scaling to high resolutions [292]. To avoid making

independence assumptions, [241] partition images in an interleaving pattern so that

sub-images are the same size and capture global structure. Sub-images are generated

autoregressively pixel-wise and are conditioned on previously generated sub-images;

while this reduces the memory required, sampling times are still slow.

2.5.2 Data Modelling Decisions

When generating text, output variables are often modelled using a multinomial

distribution since tokens are discrete and are in general unrelated. However, this

modelling assumption can cause complications or be infeasible in other cases such

as 16-bit audio modelling, in which magnitude would not be intrinsically modelled

and 65,536 output neurons would be required. Solutions proposed include:

• Applying µ-law, a logarithmic companding algorithm which takes advantage

of human perception of sound, then quantizing to 8-bit values [359].

• First predicting the first 8-bits, then predicting the second 8-bits conditioned

on the first.

• Modelling output probabilities using a mixture of logistic distributions (MoL)

has the benefits of providing more useful gradients and allowing intensities

never seen to still be sampled [310].

43

Nevertheless, these assumptions restrict the expressiveness of the network, for in-

stance, MoLs struggle to model high frequency signals as found in raw image data; a

simple solution in this case is to add Gaussian noise, reducing the Lipschitz constant

of the data distribution [240]. This restriction can be removed at the expense of

less efficient sampling by learning an autoregressive energy model, for instance, by

approximating normalising constants [252] or through score matching [239]. Alter-

natively, quantile regression, which minimises Wasserstein distance, can be used to

learn an approximation of the inverse cumulative distribution [268].

When modelling images, many works use “raster scan” ordering [310; 360; 361]

where pixels are estimated row by row. Alternatives have been proposed such as

“zig-zag” ordering [47] which allows pixels to depend on previously sampled pixels

to the left and above, providing more relevant context. Another factor when mod-

elling images is how to factorise sub-pixels. While it is possible to treat them as

independent variables, this adds additional complexity. Alternatively, it is possible

to instead condition on whole pixels, and output joint distributions in a single step

[310].

2.6 Normalizing Flows

While training autoregressive models through maximum likelihood offers plenty of

benefits including stable training, density estimation, and a useful validation metric,

the slow sampling speed and poor scaling properties handicaps them significantly.

Normalizing flows are a technique that also allows exact likelihood calculation while

being efficiently parallelisable as well as offering a useful latent space for downstream

tasks. Consider an invertible, smooth function f : Rd → Rd; by applying this trans-

formation to a random variable x ∼ p(x), then the distribution of the resulting

random variable y = f(x) can be determined through the change of variables rule

(and application of the chain rule),

p(y) = p(x)

∣∣∣∣ det
∂f−1

∂y

∣∣∣∣ = p(x)

∣∣∣∣ det
∂f

∂x

∣∣∣∣−1

. (2.42)

44

x0 x1 xk xK

x0 ∼ p0(x0) xk ∼ pk(xk) xK ∼ pK(xK)

f1(x0) f2(x1) fk+1(xk)
= y

Figure 2.10: Normalizing flows build complex distributions by mapping a simple
distribution through invertible functions.

Consequently, arbitrarily complex densities can be constructed by composing simple

maps and applying Eqn. 2.42 [366]. This chain is known as a normalizing flow

[293] (see Fig. 2.10). The density pK(xK) obtained by successively transforming a

random variable x0 with distribution p0 through a chain of K transformations fk

can be defined as

xK = fK ◦ · · · ◦ f2 ◦ f1(x0), (2.43a)

ln pK(xK) = ln p0(x0)−
K∑
k=1

ln

∣∣∣∣ det
∂fk

∂xk−1

∣∣∣∣. (2.43b)

Each transformation therefore must be sufficiently expressive while being easily in-

vertible and have an efficient way to compute Jacobian determinant. While re-

strictive, there have been a number of works which have introduced more powerful

invertible functions (see Tab. 2.3). Nevertheless, normalizing flow models are typi-

cally less parameter efficient than other generative models.

One disadvantage of requiring transformations to be invertible is that the in-

put dimension must be equal to the output dimension which makes deep models

inefficient and difficult to train. A popular solution to this is to use a multi-scale

architecture [69; 191] (see Fig. 2.11) which divides the process into a number of

stages, at the end of each half of the remaining units are factored out and treated

immediately as outputs. This allows latent variables to sequentially represent course

to fine features and permits deeper architectures.

45

Table 2.3: Normalizing Flow Layers: ⊙ represents elementwise multiplication, ⋆l represents a cross-correlation layer

Description Function Inverse Function Log-Determinant

Low Rank

Planar [293] y = x+ uh(wTz + b)
With w ∈ RD, u ∈ RD, b ∈ R

No closed form inverse ln |1 + uTh′(wTz + b)w|

Sylvester [21; 126] y = x+Uh(W Tx+ b) No closed form inverse ln det(IM + diag(h′(W Tx+ b))WUT)

Coupling/Autoregressive

General Coupling y(1:d) = x(1:d)

y(d+1:D) = h(x(d+1:D); fθ(x
(1:d)))

x(1:d) = y(1:d)

x(d+1:D) = h−1(y(d+1:D); fθ(y
(1:d)))

ln |det∇x(d+1:D)h|

MAF [270] y(t) = h(x(t); fθ(x
(1:t−1))) x(t) = h−1(y(t); fθ(x

(1:t−1))) −
∑D

t=1 ln |
∂y(t)

∂x(t) |

IAF [192] yt = h(x(t); fθ(y
(1:t−1))) xt = h−1(y(t); fθ(y

(1:t−1)))
∑D

t=1 ln |
∂y(t)

∂x(t) |

Affine Coupling [69] h(x;θ) = x⊙ exp(θ1) + θ2 h−1(y;θ) = (y − θ2)⊙ exp(−θ1)
∑d

i=1 θ
(i)
1

Flow++ [134] h(x;θ) = exp(θ1)⊙ F (x,θ3) + θ2
where F is a monotone function.

Calculated through bisection search
∑d

i=1 θ
(i)
1 + ln ∂F (x,θ3)i

∂xi

Spline Flows [249][82][81] h(x;θ) = Spline(x;θ)
where θ are the spline’s knots.

h−1(y;θ) = Spline−1(y;θ) Computed in closed-form as a product
of quotient derivatives

B-NAF [63] y = WxT for blocked weights:
W = exp(W̃)⊙Md + W̃ ⊙Mo

where Md selects diagonal blocks
and Mo selects off-diagonal blocks.

No closed form inverse ln
∑d

i=1 exp(W̃ii)

Convolutions

1x1 Convolution [191] h×w× c tensor x & c× c tensor W
∀i, j : yi,j = Wxi,j

∀i, j : xi,j = W−1yi,j h · w · ln |detW |

Emerging
Convolutions [142]

k = w1 ⊙m1, g = w2 ⊙m2

y = k ⋆l (g ⋆l x)
zt = (yt −

∑
i=t+1 Gt,izi)/Gt,t

xt = (zt −
∑t−1

i=1 Kt,ixi)/Kt,t

∑
c ln |kc,c,my,mx

gc,c,my,mx
|

Lipshitz Residual

i-ResNet [17] y = x+ f(x)
where ∥f∥L < 1

x1 = y. xn+1 = y − f(xn)
converging at an exponential rate

tr(ln(I +∇xf)) =∑∞
k=1(−1)k+1 tr((∇xf)

k)
k

46

x1 x2 x3 x4

z1 z2 h
(1)
3 h

(1)
4

z3 h
(2)
4

z1 z2 z3 z4

Figure 2.11: Factoring out variables at different scales allows normalizing flows to
scale to high dimensional data.

2.6.1 Coupling and Autoregressive Layers

A simple way of building an expressive invertible function is the coupling flow [68],

which divide inputs into two and applies a bijection h on one half parameterised by

the other,

y(1:d) = x(1:d), (2.44a)

y(d+1:D) = h(x(d+1:D); fθ(x
(1:d))), (2.44b)

here f can be arbitrarily complex i.e. a neural network. h tends to be selected as an

elementwise function making the Jacobian triangular allowing efficient computation

of the determinant, i.e. the product of elements on the diagonal.

Affine Coupling

A simple example of this is the affine coupling layer [69],

y(d+1:D) = x(d+1:D) ⊙ exp(fσ(x(1:d))) + fµ(x(1:d)), (2.45)

which has a simple Jacobian determinant and can be trivially rearranged to obtain

a definition of x(d+1:D) in terms of y, provided that the scaling coefficients are not 0.

This simplicity, however, comes at the cost of expressivity; while stacking numerous

such flows increases their expressivity, allowing them to learn representations of

complex high dimensional data such as images [191], it is unknown whether multiple

affine flows are universal approximators [271].

47

Monotone Functions

Another method of creating invertible functions that can be applied element-wise is

to enforce monotonicity. One possibility to achieve this is to define h as an integral

over a positive but otherwise unconstrained function g [374],

h(xi;θ) =

∫ xi

0

gϕ(x;θ1)dx + θ2, (2.46)

however, this integration requires numerical approximation. Alternatively, by choos-

ing g to be a function with a known integral solution, h can be efficiently evaluated.

This has been accomplished using positive polynomials [162] and the CDF of a mix-

ture of logits [134]. Both cases, however, don’t have analytical inverses and have to

be approximated iteratively with bisection search. Another option is to represent g

as a monotonic spline: a piecewise function where each piece is easy to invert. As

such, the inverse is as fast to evaluate as the forward pass. Linear and quadratic

splines [249], cubic splines [82], and rational-quadratic splines [81] have been applied

so far.

Autoregressive Flows

For a single coupling layer, a significant proportional of inputs remain unchanged.

A more flexible generalisation of coupling layers is the autoregressive flow, or MAF

[270],

y(t) = h(x(t); fθ(x
(1:t−1))). (2.47)

Here fθ can be arbitrarily complex, allowing the use of advances in autoregressive

modelling (Section. 2.5), and h is a bijection as used for coupling layers. Some

monotonic bijectors have been created specifically for autoregressive flows, namely

Neural Autoregressive Flows (NAF) [150] and Block NAF [63]. Unlike coupling

layers, a single autoregressive flow is a universal approximator.

Alternatively, an autoregressive flow can be conditioned on y(1:t−1) rather than

x(1:t−1), this is known as an Inverse Autoregressive Flow, or IAF [192]. While cou-

pling layers can be evaluated efficiently in both directions, MAF permits parallel

density estimation but sequential sampling, and IAF permits parallel sampling but

48

sequential density estimation.

Probability Density Distillation

Inverse autoregressive flows [192] offer the ability to sample from an autoregressive

model in parallel; however, training via maximum likelihood is inherently sequential

making this infeasible for high dimensional data. Probability density distillation

[363] has been proposed as a solution to this where a second pre-trained autore-

gressive network is used as a ‘teacher’ network while an IAF network is used as a

‘student’ and mimics the teacher’s distribution by minimising the KL divergence

between the two distributions:

DKL(pS||pT) = H(pS, pT)−H(pS), (2.48)

where pS and pT are the student’s and teacher’s distributions respectively, H(pS, pT)

is the cross-entropy between pS and pT , and H(pS) is the entropy of pS. Crucially,

this never requires the student’s inverse function to be used allowing it to be com-

puted entirely in parallel.

2.6.2 Convolutional Flows

A considerable problem with coupling and autoregressive flows is the restricted tri-

angular Jacobian, meaning that all inputs cannot interact with each other. Simple

solutions involve fixed permutations on the output space such as reversing the order

[68; 69]. A more general approach is to use a 1 × 1 convolution which is equiva-

lent to a linear transformation applied across channels [191]. Numerous works have

been proposed to generalise these to larger kernel sizes. A number of these ap-

ply variations on causal convolutions [359], including emerging convolutions [142]

whose inverse is sequential, MaCow [231] which uses smaller conditional fields al-

lowing more efficient sampling, and MintNet [327] which approximates the inverse

using fixed-point iteration. Alternative approaches to causal masking involve im-

posing repeated (periodic) structure [174], however in general this is not a good

assumption for image modelling, as well as representing convolutions as exponen-

49

tial matrix-vector products, exp(M)x, approximated implicitly with a power series,

allowing otherwise unconstrained kernels [144].

2.6.3 Residual Flows

Residual networks [127] are a popular technique to build deep neural networks that

alleviate the vanishing gradients problem. By restricting fθ, invertible residual net-

works can be built by stacking blocks of the form

y = x + fθ(x). (2.49)

Matrix Determinant Lemma

If a function has a certain residual form, then its Jacobian determinant can be

computed with the matrix determinant lemma [293]. A simple example is planar

flow [293] which is equivalent to a 3 layer MLP with a single neuron bottleneck:

y = x + uh(wTx + b), (2.50)

where u,w ∈ Rd, b ∈ R, and h is a differentiable non-linearity function. Planar flows

are invertible provided some simple conditions are satisfied, however its inverse is

difficult to compute making it only practical for density estimation tasks. A higher

rank generalisation of the matrix determinant lemma has been applied to planar

flows, known as Sylvester flows, removing the severe bottleneck thus allowing greater

representation ability [21; 126].

Lipschitz Constrained

By restricting the Lipschitz constant of fθ, ∥fθ∥L < 1, then this block is invertible

[17]. The inverse, however, has no closed form definition but can be found through

fixed-point iteration which by the Banach fixed-point theorem converges to a fixed

unique solution at an exponential rate dependant on ∥fθ∥L. The authors originally

proposed a biased approximation of the log determinant of the Jacobian as a power

series where the Jacobian trace is approximated using Hutchkinson’s trace estimator

50

(see Tab. 2.3), but an unbiased approximator known as a Russian roulette estima-

tor has also been proposed [42]. Unlike coupling layers, residual flows have dense

Jacobians, allowing interaction. Enforcing Lipschitz constraints has been achieved

with convolutional networks [103; 221; 248] as well as self-attention [186].

Making strong Lipschitz assumptions severely restricts the class of functions

learned; an N layer residual flow network is at most 2N -Lipshitz. Implicit flows

[227] bypass this by solving implicit equations of the form

F (x,y) = fθ(x)− fϕ(y) + x− y = 0, (2.51)

where both fθ and fϕ both have Lipschitz constants less than 1. Both the forwards

(solve for y given x) and backwards (solve for x given y) directions require solving

a root finding problem similar to the inverse process of residual flows; indeed, an

implicit flow is equivalent to the composition of a residual flow and the inverse of a

residual flow. This allows them to model arbitrary Lipschitz transformations.

2.6.4 Surjective and Stochastic Layers

Restricting the class of functions available to those that are invertible introduces

a number of practical problems related to the topology-preserving property of dif-

feomorphisms. For example, mapping a uni-modal distribution to a multi-modal

distribution is extremely challenging, requiring a highly varying Jacobian [70]. By

composing bijections with surjective or stochastic layers these topological constraints

can be bypassed [258]. While the log-likelihood of stochastic layers can only be

bounded by their ELBO, functions surjective in the inference direction permit exact

likelihood evaluation even with altered dimensionality. Surjective transformations

have the following likelihood contributions:

Eq(y|x)

[
ln

p(x|y)

q(y|x)

]
, (2.52)

where p(x|y) is deterministic for generative surjections, and q(y|x) is deterministic

for inference surjections.

51

One approach to build a surjective layer is to augment the input space with

additional dimensions allowing smoother transformation to be learned [41; 78; 151];

the inverse process, where some dimensions are factored out, is equivalent to a multi-

scale architecture [69]. Another approach known as RAD [70] learns a partitioning

of the data space into disjoint subsets {Yi}Ki=1, and applies piece-wise bijections to

each region gi : X → Yi,∀i ∈ {1, . . . , K}. The generative direction learns a classifier

on X , i ∼ p(i|x), allowing the inverse to be calculated as y = gi(x). Similar to both

of these approaches are CIFs [56] which consider a continuous partitioning of the

data space via augmentation equivalent to an infinite mixture of normalizing flows.

Other approaches include modelling finite mixtures of flows [77].

Some powerful stochastic layers have already been discussed in this survey,

namely VAEs [190] and DDPMs [135]. Stochastic layers have been incorporated

into normalizing flows by interleaving small energy models, sampled with MCMC,

between bijectors [377].

2.6.5 Discrete Flows

The normalizing flow framework can be extended to discrete distributions, by re-

stricting transformation functions to be discrete e.g. f : X d → X d. Integer discrete

flows (IDF) achieve this using additive coupling layers, rounding translation values

to the nearest integer and approximating gradients with the straight-through esti-

mator [143]; discrete flows [347] apply affine coupling layers in modulo space while

also restricting the translation and scaling coefficients to a finite number of possible

values. In this case the change of variables rule (Eqn. 2.42) simplifies to [143; 347]

p(x) = p(f(x)). (2.53)

Unlike the continuous case, there is no Jacobian determinant term; intuitively this

term adjusts for volume changes. However, in a discrete space there is no volume.

As such, there is no requirement for f to have an efficiently computable Jacobian

determinant [347]. The absence of this term is restricting; however, discrete flows

can only permute the values of p(x), not change them i.e. a uniform base distribution

52

can only be mapped to another uniform distribution [271]. Nevertheless, this can

be avoided by embedding the data into a space with more values than the data,

making IDFs more flexible than discrete flows [22].

2.6.6 Continuous Time Flows

It is possible to consider a normalizing flow with an infinite number of steps that

is defined instead by an ordinary differential equation specified by a Lipschitz con-

tinuous neural network f with parameters θ, that describes the transformation of a

hidden state x(t) ∈ RD [43],

∂x(t)

∂t
= f(x(t), t, θ). (2.54)

Starting from input noise x(t0), an ODE solver can solve an initial value problem

for some time t1, at which data is defined, x(t1). Modelling a transformation in

this form has a number of advantages such as inherent invertibility by running the

ODE solver backwards, parameter efficiency, and adaptive computation. However,

it is not immediately clear how to train such a model through backpropagation.

While it is possible to backpropagate directly through an ODE solver, this limits

the choice of solvers to differentiable ones as well as requiring large amounts of

memory. Instead, the authors apply the adjoint sensitivity method which instead

solves a second, augmented ODE backwards in time and allows the use of a black

box ODE solver. That is, to optimise a loss dependent on an ODE solver:

L(x(t1)) = L
(
x(t0) +

∫ t1

t0

f(z(t), t, θ)dt

)
,

= L(ODESolve(x(t0), f, t0, t1, θ)),

(2.55)

the adjoint a(t) = ∂L
∂x(t)

can be used to calculate the derivative of loss with respect

to the parameters in the form of another initial value problem [278],

∂L
∂θ

=

∫ t0

t1

(∂L
∂x(t)

)T ∂f(x(t), t, θ)

∂θ
dt, (2.56)

53

which can be efficiently evaluated by automatic differentiation at a time cost similar

to evaluating f itself.

Despite the complexity of this transformation, the continuous change of variables

rule is remarkably simple:

∂ ln p(x(t))

∂t
= −tr

(
∂

∂x(t)
f(x(t), t, θ)

)
, (2.57)

and can be computed using an ODE solver as well. The resulting continuous-time

flow is known as FFJORD [107]. Since the length of the flow tends to infinity (an

infinitesimal flow), the true posterior distribution can be recovered [293].

As previously mentioned, invertible functions suffer from topological problems;

this is especially true for Neural ODEs since their continuous nature prevents tra-

jectories from crossing. Similar to augmented normalizing flows [151], this can be

solved by providing additional dimensions for the flow to traverse [78]. Specifi-

cally, a p-dimensional Euclidean space can be approximated by a Neural ODE in a

(2p + 1)-dimensional space [391].

Regularising Trajectories

ODE solvers can require large numbers of network evaluations, notably when the

ODE is stiff or the dynamics change quickly in time. By introducing regularisation,

a simpler ODE can be learned, reducing the number of evaluations required. Specif-

ically, all works here are inspired by optimal transport theory to encourage straight

trajectories. Monge-Ampère Flow [395] and Potential Flow Generators [384] param-

eterise a potential function satisfying the Monge-Ampère equation [34; 366] with a

neural network. RNODE [89] applies transport costs to FFJORD as well as regu-

larising the Frobenius norm of the Jacobian, encouraging straight trajectories. By

combining these approaches, OT-Flow [267] utilises the optimal transport derivation

to derive an exact trace definition with cost similar to stochastic estimators.

54

2.7 Evaluation Metrics

A major problem when developing generative models is how to effectively evaluate

and compare them. Qualitative comparison of random samples plays a large role in

the majority of state-of-the-art works; however, it is subjective and time-consuming

to compare many works. Calculating the log-likelihood on a separate validation set

is popular for tractable likelihood models but comparison with implicit likelihood

models is difficult and while it is a good measure of diversity, it does not correlate

well with quality [339].

One approach to quantify sample quality is Inception Score (IS) [309] which

takes a trained classifier and determines whether a sample has low label entropy,

indicating that a meaningful class is likely, and whether the distribution of classes

over a large number of samples has high entropy, indicating that a diverse range of

images can be sampled. A perfect IS can be scored by a model that creates only one

image per class [229] leading to the creation of Fréchet Inception Distance (FID)

[128] which models the activations of a particular layer of a classifier as multivariate

Gaussians for real and generated data, measuring the Fréchet distance between the

two.

Limitations of the FID Metric

While FID is a popular choice for evaluating sample quality, it has been found to

correlate well with image quality, and is efficient to calculate, it is not without flaws.

It unrealistically approximates the data distribution as Gaussian in embedding space

and is insensitive to the global structure of the data distribution [350]. Kernel Incep-

tion Distance (KID) [25] instead calculates the squared maximum mean discrepancy

in feature space; however, pretrained features may not be sufficient to detect over-

fitting. Another approach is to train a neural network to distinguish between real

and generated samples similar to the discriminator from a GAN; while this detects

overfitting, it increases the complexity and time required to evaluate a model and is

biased towards adversarial models [120]. Other approaches that address these issues

[27] include PPL [179], which assesses sample consistency through latent interpo-

55

lations; IMD [350], which uses all moments making it sensitive to global structure;

and MTD [14], which compares image manifolds.

Precision and Recall

Precision (P) and Recall (R) [306] approaches (Tab. 4.1), unlike FID, evaluate sam-

ple quality and diversity separately by quantifying the overlap between the data and

sample distributions. Precision is the expected likelihood of fake samples lying on

the data manifold and recall vice versa. These metrics are computed by approximat-

ing the data and sample manifolds as hyper-spheres around data and sample points

respectively; manifold m(X1, . . . , XN) =
⋃N

i=1 B(Xi,NNDk(Xi)), where B(x, r) is a

hypersphere around x with radius r and NNDk is kth nearest neighbour distance

[202]. While modelling manifolds as hyperspheres is a flawed assumption, it is ben-

eficial to evaluate on multiple metrics to obtain a more accurate representation of

performance. Finally, Density (D) and Coverage (C) are modifications to Precision

and Recall respectively that address manifold overestimation [250]. Formally, these

metrics can be defined as,

P=
1

M

M∑
j=1

1Yj∈m(X1,...,XN), (2.58a) D=
1

kM

M∑
j=1

N∑
i=1

1Yj∈B(Xi,NNDk(Xi)), (2.58b)

R =
1

N

N∑
i=1

1Xi∈m(Y1,...,YM), (2.58c) C =
1

N

N∑
i=1

1∃js.tYj∈B(Xi,NNDk(Xi)). (2.58d)

Challenges of evaluating speed

When developing generative models, there are two speed factors to consider: the

time required to train the model, and the time required for sampling. Sometimes

these factors can be traded-off against one another; for instance, by using more

compute to distil diffusion models, sampling times can be reduced. In theory, the

best method to compare times would be to simply time training/sampling from

start to finish. However, this is problematic as GPUs improve in performance over

time and receive more memory, this requires re-running previous models to compare

against. This is also not trivial since code can be optimised to run on specific

56

hardware, research code can become depricated with library updates, and efficient

GPU kernels such as Flash Attention [61] come into common use. As such, this

can result in considerable effort being require to replicate old methods and provide

fair comparison. For approaches which require multiple forward passes of the model

during inference such as diffusion models and it can therefore make sense to compare

inference time in terms of model calls.

2.8 Applications

In general, the definition of a generative model means that any technique can be

used on any modality/task; however, some models are more suited for certain tasks.

Standard autoregressive networks are popular for text/audio generation [30; 49;

359]; VAEs have been applied but posterior collapse is difficult to mitigate [11;

28]; GANs are more parameter efficient but struggle to model discrete data [257]

and suffer from mode collapse [199]; some normalizing flows offer parallel synthesis,

providing substantial speedup [280; 347; 411]. Video synthesis is more challenging

due its exceptionally high dimensionality, typically approaches combine a latent-

based implicit generative model to generate individual frames, with an autoregressive

network used to predict future latents [11; 200; 210] similar to how world models

are constructed in reinforcement learning [122; 123]. Modality conversion has been

achieved using GANs [408], VAE-GANs [222], and DDPMs [313].

2.9 Datasets

A variety of datasets with different properties are commonly used to train and

evaluate generation models. This section describes each dataset used within this

thesis.

2.9.1 Low Resolution Datasets

The following low resolution datasets are used in this thesis to provide a spread from

simple (MNIST) to complex (CIFAR-10).

57

MNIST [206]: a dataset of 70,000 greyscale images of handwritten digits (0-9),

each 28× 28 pixels.

Fashion MNIST [378]: similar in structure to MNIST, but instead of digits,

containing 70,000 greyscale images of 10 types of clothing items (e.g. shoes and

t-shirts), each 28× 28 pixels.

Small NORB [207]: contains 194,400 images of 50 toy figurines under various

lighting and pose conditions. It contains 50 toys across 5 categories (e.g. cars and

planes).

COIL20 [251]: the Columbia Object Image Library dataset, with 1,440 greyscale

images of 20 objects, each photographed at 72 different angles.

CelebA [225]: large-scale face attributes data with with more than 200,000 celebrity

images, each annotated with 40 attribute labels and 178× 218 pixels.

CIFAR-10 [196]: contains 60,000 32 × 32 colour images across 10 classes (e.g.

animals and vehicles).

2.9.2 High Resolution Datasets

CelebA-HQ [178]: a high-quality subset of CelebA, consisting of 30,000 images

at 1024 × 1024 resolution. Face datasets are challenging because humans are very

sensitive to inconsistencies in facial representations, potentially leading to an “un-

canny valley” effect.

FFHQ [179]: contains 70,000 high-resolution 1024 × 1024 images of human faces

sourced from Flickr. This dataset has more diversity in terms of age, ethnicity, and

image background than CelebA-HQ.

LSUN Bedroom [385]: part of the larger LSUN (Large-scale Scene Understand-

ing) dataset. This subset contains around 3 million images of bedrooms, each at

least 256× 256 pixels.

LSUN Church [385]: another subset of the LSUN dataset, this subset containing

around 126k images, each at least 256× 256 pixels.

58

2.10 Conclusion

This chapter explored the major classes of generative models; while for a while GANs

led the way in terms of sample quality, recent advances have led to other approaches,

particularly diffusion models, being brought to par or even surpassing GANs, with-

out the disadvantages such as unstable training and mode collapse associated with

adversarial approaches.

Hybrids between different types of model offer a balance between extremes at

the expense of additional complexity. The varied connections between these systems

mean that advances in one field inevitably benefit others, for instance, improved

variational bounds are beneficial for VAEs, diffusion models, and surjective flows,

and the application of data augmentation has been found to offer benefits across

numerous model classes without necessitating more powerful architectures.

When it comes to scaling models to high-dimensional data each type of gener-

ative model suffers from different issues which will be addressed in the following

chapters. There are, however, some common themes in addressing this, particularly

architecturally: attention allows long-range dependencies to be learned and recent

advances in linear attention will aid scaling to even higher resolutions.

59

CHAPTER 3

Gradient Origin Networks

Implicit representation learning [272; 335], where a network is parameterised to

represent data continuously rather than in discrete grid form, has seen a surge of

interest due to the small number of parameters, speed of convergence, ability to

model fine details, and represent irregularly sampled data. In particular, sinusoidal

representation networks (SIRENs) [322] achieve impressive results, modelling many

signals with high precision, thanks to their use of periodic activations paired with

carefully initialised MLPs. So far, however, these models have been limited to mod-

elling single data samples, or use an additional hypernetwork or meta learning [321]

to estimate the weights of a simple implicit model, adding significant complexity.

A more scalable method to allow a generative function to represent a distribution

of data points is to condition the function on a compressed latent space by encoding

data with a convolutional network in a similar manner to Variational Autoencoders

(VAEs, Figure 3.1a) [190]. When applied to implicit representation networks, how-

ever, this approach is problematic as convolutional networks assume that data lies on

a fixed size grid thereby removing the benefits of parameterising data continuously.

Variational approaches that approximate the posterior using gradient descent [219]

and short run MCMC [261] respectively have been proposed, which do not suffer

60

x

µ

σ

ϵ

z x̂
E

D

µ + σ ⊙ ϵ

(a) VAE

0
x̂F

(b) GON

0

c
x̂F

(c) Implicit GON

0µ

σ

ϵ

z x̂
F

µ + σ ⊙ ϵ

(d) Variational GON

Figure 3.1: Gradient Origin Networks (GONs; b) use gradients (dashed lines) as en-
codings thus only a single network F is required, which can be an implicit represen-
tation network (c). Unlike VAEs (a) which use two networks, E and D, variational
GONs (d) permit sampling with only one network.

from this limitation, but to obtain a latent vector for a sample they require iterative

gradient updates significantly slowing training and sampling.

This chapter introduces Gradient Origin Networks (GONs), addressing these

challenges,

• GONs are a new type of generative model (Figure 3.1b) that does not require

encoders or hypernetworks. This is achieved by initialising latent points at the

origin, then using the gradient of the log-likelihood of the data with respect to

these points as the latent space. At inference, latent vectors can be obtained

in a single step without requiring iteration.

• GONs are shown to have similar characteristics to convolutional autoencoders

(AEs) and variational autoencoders using approximately half the parameters.

• We show that GONs can be applied to implicit representation networks (such

as SIRENs) allowing a space of implicit functions to be learned with a simpler

overall architecture.

3.1 Empirical Bayes

First, some background context is introduced that will be used to derive the proposed

approach. Empirical Bayes [296; 311], for a random variable z ∼ pz and particular

observation z0 ∼ pz0 , is a method that provides an estimator of z expressed purely

in terms of p(z0) that minimises the expected squared error. This estimator can be

61

written as a conditional mean:

ẑ(z0) =

∫
zp(z|z0)dz =

∫
z
p(z, z0)

p(z0)
dz. (3.1)

Of particular relevance is the case where z0 is a noisy observation of z with covariance

Σ. In this case p(z0) can be represented by marginalising out z:

p(z0) =

∫
1

(2π)d/2| det(Σ)|1/2
exp

(
− (z0 − z)TΣ−1(z0 − z)/2

)
p(z)dz. (3.2)

Differentiating this with respect to z0 and multiplying both sides by Σ gives:

Σ∇z0p(z0) =

∫
(z− z0)p(z, z0)dz =

∫
zp(z, z0)dz− z0p(z0). (3.3)

After dividing through by p(z0) and combining with Eqn. 3.1 we obtain a closed

form estimator of z [247] written in terms of the score function ∇ log p(z0) [158]:

ẑ(z0) = z0 + Σ∇z0 log p(z0). (3.4)

This optimal procedure is achieved in what can be interpreted as a single gradient

descent step, with no knowledge of the prior p(z). By rearranging Eqn. 3.4, a defini-

tion of ∇ log p(z0) can be derived; this can be used to train models that approximate

the score function [326].

3.2 Method

Consider some dataset x ∼ pd of continuous or discrete signals x ∈ Rm, it is typi-

cal to assume that the data can be represented by low dimensional latent variables

z ∈ Rk, which can be used by a generative neural network to reconstruct the data.

These variables are often estimated through the use of a secondary encoding net-

work that is trained concurrently with the generative network. An encoding network

adds additional complexity (and parameters) to the model, it can be difficult to bal-

ance capacities of the two networks, and for complex hierarchical generative models

designing a suitable architecture can be difficult. This has led some to instead

62

approximate latent variables by performing gradient descent on the generative net-

work [26; 261]. While this addresses the aforementioned problems, it significantly

increases the run time of the inference process, introduces additional hyperparame-

ters to tune, and convergence is not guaranteed.

3.2.1 Gradient Origin Networks

We propose a generative model that consists only of a decoding network, using

empirical Bayes to approximate the posterior in a single step. That is, for some

data point x and latent variable z ∼ pz, we wish to find an approximation of p(z|x).

Given some noisy observation z0 = z + N (0,Σ) of z then empirical Bayes can be

applied to approximate z. Specifically, since we wish to approximate z conditioned

on x, we instead calculate ẑx, the least squares estimate of p(z|x).

ẑx(z0) =

∫
zp(z|z0,x)dz =

∫
z
p(z0, z|x)

p(z0|x)
dz. (3.5)

Through the definition of the probabilistic chain rule and by marginalising out z, we

can define p(z0|x) =
∫
p(z0|z,x)p(z|x)dz which can be simplified to

∫
p(z0|z)p(z|x)dz

since z0 is dependent only on z. Writing this out fully, we obtain:

p(z0|x) =

∫
1

(2π)d/2| det(Σ)|1/2
exp

(
− (z0 − z)TΣ−1(z0 − z)/2

)
p(z|x)dz. (3.6)

Differentiating with respect to z0 and multiplying both sides by Σ gives:

Σ∇z0p(z0|x) =

∫
(z− z0)p(z0|z,x)p(z|x)dz =

∫
(z− z0)p(z0, z|x)dz (3.7)

=

∫
zp(z0, z|x)dz− z0p(z0|x). (3.8)

After dividing both sides by p(z0|x) and combining with Eqn. 3.5 we get:

Σ
∇z0p(z0|x)

p(z0|x)
=

∫
z
p(z0, z|x)

p(z0|x)
dz− z0 = ẑx(z0)− z0. (3.9)

63

Finally, this can be rearranged to give the single step estimator of z:

ẑx(z0) = z0 + Σ
∇z0p(z0|x)

p(z0|x)
= z0 + Σ∇z0 log p(z0|x). (3.10)

Using Bayes’ rule, log p(z0|x) can be written as log p(z0|x) = log p(x|z0)+log p(z0)−

log p(x). Since log p(x) is a normalising constant that does not affect the gradient,

and by setting Σ = Id, we can rewrite Eqn. 3.9 in terms only of the decoding

network and p(z0):

ẑx(z0) = z0 +∇z0

(
log p(x|z0) + log p(z0)

)
. (3.11)

It still remains, however, how to construct a noisy estimate of z0 with no knowledge

of z. If we assume z follows a known distribution, then it is possible to develop

reasonable estimates. For instance, if we assume p(z) = N (z;0, Id) then we could

sample from p(z0) = N (z0;0, 2Id) however this could be far from the true distribu-

tion of p(z0|z) = N (z0; z, Id). Instead we propose initialising z0 at the origin since

this is the distribution’s mean. Initialising at a constant position decreases the input

variation and thus simplifies the optimisation procedure. Naturally, how p(x|z) is

modelled affects ẑx. While mean-field models result in ẑx that are linear functions of

x, conditional autoregressive models, for instance, result in non-linear ẑx; multiple

gradient steps also induce non-linearity; however, we show that a single step works

well on high dimensional data suggesting that linear encoders, which normally do

not scale to high dimensional data are effective in this case.

3.2.2 Autoencoding with GONs

Before exploring GONs as generative models, we discuss the case where the prior

p(z) is unknown; such a model is referred to as an autoencoder. As such, the

distribution p(z0|z) is also unknown thus it is again unclear how we can construct

a noisy estimate of z. By training a model end-to-end where z0 is chosen as the

origin however, a prior is implicitly learned over z such that it is reachable from

z0. Although p(z) is unknown, we do not wish to impose a prior on z0; the term

64

which enforces this is in Eqn. 3.11 is log p(z0), so we can safely ignore this term

and simply maximise the likelihood of the data given z0. Our estimator of z can

therefore be defined simply as ẑx(z0) = z0 +∇z0 log p(x|z0), which can otherwise be

interpreted as a single gradient descent step on the conditional log-likelihood of the

data. From this estimate, the data can be reconstructed by passing ẑx through the

decoder to parameterise p(x|ẑx). This procedure can be viewed more explicitly when

using a neural network F : Rk → Rm to output the mean of p(x|ẑx) parameterised

by a normal distribution; in this case the loss function is defined in terms of mean

squared error loss LMSE:

Gx = LMSE(x, F (−∇z0LMSE(x, F (z0)))). (3.12)

The gradient computation thereby plays a similar role to an encoder, while F can

be viewed as a decoder, with the outer loss term determining the overall recon-

struction quality. Using a single network to perform both roles has the advantage

of simplifying the overall architecture, avoiding the need to balance networks, and

avoiding bottlenecks; this is demonstrated in Figs. 3.1b and 3.2 which provides a

visualisation of the GON process.

3.2.3 Variational GONs

The variational approach can be naturally applied to GONs, allowing sampling in

a single step while only requiring the generative network, reducing the parameters

necessary. Similar to before, a feedforward neural network F parameterises p(x|z),

while the expectation of p(z|x) is calculated with empirical Bayes. A normal prior

is assumed over p(z) thus Eqn. 3.11 can be written as:

ẑx(z0) = z0 +∇z0

(
log p(x|z0) + logN (z0;0, 2Id)

)
, (3.13)

where z0 = 0 as discussed in Section 3.2.1. It would be possible to use this estimate

directly within a constant-variance VAE [98], where the approximate posterior uses

a fixed pre-defined covariance matrix. However, we opt to incorporate the repa-

65

Figure 3.2: Visualisation of how GONs encode data. z0 is passed through the model
F to obtain an initial estimate of the data. Reconstruction loss is computed against
the data to be encoded. Following this, the gradient of the reconstruction loss
with respect to z0 is computed. This gives a new vector zx which represents the
compressed data. Following this, zx is passed through the model F , providing a
reconstruction of the image. Finally, the reconstruction loss is computed again, and
is backpropagated through the entire computation process to update the weights of
F . As such, GONs learn to reconstruct data without requiring an encoder therefore
allowing application to models such as implicit representation networks where en-
coders make less sense.

rameterisation trick into the generative network as a stochastic layer, to represent

the distribution over which x could be encoded to, using empirical Bayes to esti-

mate z. This enables a better approximation of the true posterior leading to higher

sample quality. Similar to the autoencoding approach, we could ignore log p(z0),

however we find assuming a normally distributed z0 implicitly constrains z, aiding

the optimisation procedure. Specifically, the forward pass of F is implemented as

follows: ẑx (or z0) is mapped by linear transformations to µ(ẑx) and σ(ẑx) and the

reparameterisation trick is applied, subsequently the further transformations for-

merly defined as F in the GON formulation are applied, providing parameters for

for p(x|ẑx). Training is performed end-to-end, minimising the ELBO:

LVAE = −DKL(N (µ(ẑx), σ(ẑx)2)||N (0, Id)) + log p(x|ẑx). (3.14)

66

These steps are shown in Figure 3.1d, which in practice has a simple implementation.

3.2.4 Implicit GONs

In the field of implicit representation networks, the aim is to learn a neural approx-

imation of a function Φ that satisfies an implicit equation of the form:

R(c,Φ,∇Φ,∇2
Φ, . . .) = 0, Φ: c 7→ Φ(c), (3.15)

where R’s definition is problem dependent but often corresponds to a loss function.

Equations with this structure arise in a myriad of fields, namely 3D modelling, image,

video, and audio representation [322]. In these cases, data samples x = {(c,Φx(c))}

can be represented in this form in terms of coordinates c ∈ Rn and the corresponding

data at those points Φ: Rn → Rm. Due to the continuous nature of Φ, data with

large spatial dimensions can be represented much more efficiently than approaches

using convolutions, for instance. Despite these benefits, representing a distribution

of data points using implicit methods is more challenging, leading to the use of

hypernetworks which estimate the weights of an implicit network for each data point

[321]; this increases the number of parameters and adds significant complexity.

By applying the GON procedure to implicit representation networks, it is pos-

sible learn a space of implicit functions without the need for additional networks.

We assume there exist latent vectors z ∈ Rk corresponding to data samples; the

concatentation of these latent variables with the data coordinates can therefore ge-

ometrically be seen as points on a manifold that describe the full dataset in keeping

with the manifold hypothesis [87]. An implicit Gradient Origin Network can be

trained on this space to mimic Φ using a neural network F : Rn+k → Rm, thereby

learning a space of implicit functions by modifying Eqn. 3.12:

Ix =

∫
L
(

Φx(c), F
(
c⊕−∇z0

∫
L
(
Φx(c), F (c⊕ z0)

)
dc
))

dc, (3.16)

where both integrations are performed over the space of coordinates and c ⊕ z

represents a concatenation (Figure 3.1c). Similar to the non-implicit approach, the

67

computation of latent vectors can be expressed as z = −∇z0

∫
L
(
Φx(c), F (c⊕z0)

)
dc.

In particular, we parameterise F with a SIREN [322], finding that it is capable of

modelling both high and low frequency components in high dimensional spaces.

3.2.5 GON Generalisations

There are a number of interesting generalisations that make this approach appli-

cable to other tasks. In Eqns. 3.12 and 3.16 we use the same L in both the inner

term and outer term; however, as with variational GONs, it is possible to use dif-

ferent functions; through this, training a GON concurrently as a generative model

and classifier is possible, or through some minor modifications to the loss involving

the addition of the categorical cross entropy loss function LCCE to maximise the

likelihood of classification, solely as a classifier:

Cx = LCCE(f(−∇z0L(x, F (z0))),y), (3.17)

where y are the target labels and f is a single linear layer followed by softmax.

Another possibility is modality conversion for translation tasks; in this case the

inner reconstruction loss is performed on the source signal and the outer loss on the

target signal.

3.2.6 Justification

Beyond empirical Bayes, we provide some additional analysis on why a single gra-

dient step is in general sufficient as an encoder. Firstly, the gradient of the loss

inherently offers substantial information about data making it a good encoder. Sec-

ondly, a good latent space should satisfy local consistency [173; 405]. GONs satisfy

this since similar data points will have similar gradients due to the constant latent

initialisation. As such, the network needs only to find an equilibrium where its prior

is the gradient operation, allowing for significant freedom. Finally, since GONs are

trained by backpropagating through empirical Bayes, there are benefits to using an

activation function whose second derivative is non-zero.

68

3.3 Results

We evaluate Gradient Origin Networks on a variety of image datasets, from small

simple datasets: MNIST [206], Fashion-MNIST [378], Small NORB [207], COIL-

20 [251], to larger more complex datasets: CIFAR-10 [196] and CelebA [225], and

finally the high-resolution LSUN Bedroom dataset [385]. Simple models are used:

for small images, implicit GONs consist of approximately 4 hidden layers of 256 units

and convolutional GONs consist of 4 convolution layers with Batch Normalization

[159] and the ELU non-linearity [54], for larger images the same general architecture

is used, scaled up with additional layers; all training is performed with the Adam

optimiser [189]; all experiments are performed on a single NVIDIA RTX 2080 Ti

with 11GB of VRAM. Error bars in graphs represent standard deviations over three

runs.

3.3.1 Quantitative Evaluation

A quantitative evaluation of the representation ability of GONs is performed in

Tab. 3.1 against a number of baseline approaches. Because simple models are used

to demonstrate the impact of replacing an encoder with the GON approach, we

only quantitatively evaluate on low-resolution datasets. We compare against the

single step methods: standard autoencoder, an autoencoder with tied weights [95],

and a GON with gradients detached from z, as well as the multi-step methods: 10

MNIST Fashion-MNIST Small NORB COIL20 CIFAR-10
Single Step
GON (ours) 0.41±0.01 1.00±0.01 0.17±0.01 5.35±0.01 9.12±0.03
AE 1.33±0.02 1.75±0.02 0.73±0.01 6.05±0.11 12.24±0.05
Tied AE 2.16±0.03 2.45±0.02 0.93±0.03 6.68±0.13 14.12±0.34
1 Step Detach 8.17±0.15 7.76±0.21 1.84±0.01 15.72±0.70 30.17±0.29
Multiple Steps
10 Step Detach 8.13±0.50 7.22±0.92 1.78±0.02 15.48±0.60 28.68±1.16
10 Step 0.42±0.01 1.01±0.01 0.17±0.01 5.36±0.01 9.19±0.01
GLO 0.70±0.01 1.78±0.01 0.61±0.01 3.27±0.02 9.12±0.03

Table 3.1: Validation reconstruction loss (summed squared error) over 500 epochs.
For GLO, latents are assigned to data points and jointly optimised with the network.
GONs significantly outperform other single step methods and achieve the lowest
reconstruction error on four of the five datasets.

69

MNIST Fashion-MNIST Small NORB COIL20 CIFAR-10 CelebA
VGON (ours) 1.06 3.30 2.34 3.44 5.85 5.41
VAE 1.15 3.23 2.54 3.63 5.94 5.59

Table 3.2: Validation ELBO in bits/dim over 1000 epochs (CelebA is trained over
150 epochs).

gradient descent steps per data point, with and without detaching gradients, and a

Generative Latent Optimisation (GLO) model [26] which assigns a persistent latent

vector to each data point and optimises them with gradient descent, therefore taking

orders of magnitude longer to reconstruct validation data than other approaches.

For the 10-step methods, a learning rate of 0.1 is applied as used in other literature

[259]; the GLO is trained with MSE for consistency with the other approaches and

we do not project latents onto a hypersphere as proposed by the authors since in

this experiment sampling is unimportant and this would handicap the approach.

GONs achieve much lower validation loss than other single step methods and are

competitive with the multi-step approaches; in fact, GONs achieve the lowest loss

on four out of the five datasets.

Our variational GON is compared with a VAE, whose decoder is the same as the

GON, quantitatively in terms of ELBO on the test set in Tab. 3.2. We find that

the representation ability of GONs is pertinent here also, allowing the variational

GON to achieve lower ELBO on five out of the six datasets tested. Both models

were trained with the original VAE formulation for fairness; however, we note that

variations aimed at improving VAE sample quality such as β-VAEs [130] are also

applicable to variational GONs to the same effect.

A number of ablation studies are performed to evaluate GONs; for these we

choose the CIFAR-10 dataset since it is more complex than the other low-resolution

datasets. First, convolutional GONs are compared with autoencoders whose de-

coders have exactly the same architecture as the GONs (Fig. 3.3a) and where the

autoencoder decoders mirror their respective encoders. The mean reconstruction

loss over the test set is measured after each epoch for a variety of latent sizes. De-

spite having half the number of parameters and linear encodings, GONs achieve

significantly lower reconstruction loss over a wide range of architectures.

Our hypothesis that for high dimensional datasets, a single gradient step is suf-

70

10 20 30 40 50 60

0.5

1

1.5

·10−2

Training Epoch

V
al

id
at

io
n

L
os

s
AE 1x1 GON 1x1

AE 2x2 GON 2x2

AE 4x4 GON 4x4

(a) GONs achieve lower val-
idation loss than autoen-
coders.

10 20 30 40 50 60

1

2

3

·10−2

Training Epoch

V
al

id
at

io
n

L
os

s

GON† 1 Step*

2 Steps† 10 Steps*

8 Steps† 25 Steps*

(b) Multiple latent update
steps. *=grads detached,
†=not detached.

100 200 300 400 500

3

4

5

6

7
·10−3

Training Epoch

R
ec

on
st

ru
ct

io
n

L
os

s AE Train GON Train

AE Test GON Test

(c) GONs overfit less than
standard autoencoders.

Figure 3.3: Gradient Origin Networks trained on CIFAR-10 are found to outperform
autoencoders using exactly the same architecture without the encoder, requiring half
the number of parameters.

ficient when jointly optimised with the forwards pass is tested on the CIFAR-10

dataset in Fig. 3.3b. We observe negligible difference between a single step and mul-

tiple jointly optimised steps, in support of our hypothesis. Performing multiple steps

greatly increases run-time so there is seemingly no benefit in this case. Additionally,

the importance of the joint optimisation procedure is determined by detaching the

gradients from z before reconstructing (Fig. 3.3b); this results in markedly worse

performance, even when in conjunction with multiple steps. In Fig. 3.3c we assess

whether the greater performance of GONs relative to autoencoders comes at the

expense of generalisation; we find that the opposite is true, that the discrepancy be-

sin ReLU LeakyReLU tanh ELU softplus swish

5 10 15 20

0.5

1

1.5

·10−2

Training Epoch

R
ec

on
st

ru
ct

io
n

L
os

s

(a) 512 latent variables

5 10 15 20

0.5

1

1.5

·10−2

Training Epoch

R
ec

on
st

ru
ct

io
n

L
os

s

(b) 128 latent variables

5 10 15 20

1.2

1.4

1.6

1.8

·10−2

Training Epoch

R
ec

on
st

ru
ct

io
n

L
os

s

(c) 32 latent variables

Figure 3.4: The impact of activation function and number of latent variables on
model performance for a GON trained on CIFAR-10 measured by comparing recon-
struction losses through training.

71

tween reconstruction loss on the training and test sets is greater with autoencoders.

Fig. 3.4 demonstrates the effect activation functions have on convolutional GON

performance for different numbers of latent variables. Since optimising GONs re-

quires computing second order derivatives, the choice of nonlinearity requires differ-

ent characteristics to standard models. In particular, GONs prefer functions that

are not only effective activation functions, but also whose second derivatives are

non-zero, unlike ReLUs where ReLU′′(x) = 0. The ELU non-linearity is effective

with all tested architectures.

In Fig. 3.5a the depth of networks is altered by removing blocks thereby down-

scaling to various resolutions. We find that GONs outperform autoencoders until

latents have a spatial size of 8x8 (where the equivalent GON now only has only 2

convolution layers). Considering the limit where neither model has any parameters,

the latent space is the input data i.e. z = x. Substituting the definition of a GON

(Eqn. 3.12) this becomes −∇z0L = x which simplifies to 0 = x which is a con-

tradiction. This is not a concern in normal practice, as evidenced by the results

presented here.

Fig. 3.5b explores the relationship between autoencoders and GONs when chang-

ing the number of convolution filters; GONs are found to outperform autoencoders

10 20 30 40 50 60

2

4

6

·10−3

Training Epoch

R
ec

on
st

ru
ct

io
n

L
os

s AE 4x4 GON 4x4
AE 6x6 GON 6x6
AE 8x8 GON 8x8

(a) Encoding images to vari-
ous spatial dimensions.

10 20 30 40 50 60
0

1

2

·10−2

Training Epoch

R
ec

on
st

ru
ct

io
n

L
os

s AE f =16 GON f =16
AE f =64 GON f =64
AE f =128 GON f =128

(b) Varying capacities by
changing the number of con-
volution filters f .

10 20 30 40 50 60

0.5

1

1.5

·10−2

Training Epoch

R
ec

on
st

ru
ct

io
n

L
os

s AE k=512 GON k=512
AE k=128 GON k=128
AE k=32 GON k=32

(c) Encoding images to a va-
riety of latent space sizes.

Figure 3.5: Experiments comparing convolutional GONs with autoencoders on
CIFAR-10, where the GON uses exactly same architecture as the AE, without the
encoder. (a) At the limit autoencoders tend towards the identity function whereas
GONs are unable to operate with no parameters. As the number of network param-
eters increases (b) and the latent size decreases (c), the performance lead of GONs
over AEs decreases due to diminishing returns/bottlenecking.

72

σ = 0 (GON) σ = 0.01 σ = 0.1 σ = 1

10 20 30 40 50 60

0.5

1

1.5
·10−2

Training Epoch

T
ra

in
in

g
L

os
s

(a) z = −∇z0L

10 20 30 40 50 60

1

2

3

·10−2

Training Epoch

T
ra

in
in

g
L

os
s

(b) z = z0 −∇z0L

Figure 3.6: Training GONs on CIFAR-10 with z0 sampled from a variety of normal
distributions with different standard deviations σ, z0 ∼ N (0, σ2I). Approach (a)
directly uses the negative gradients as encodings while approach (b) performs one
gradient descent style step initialised at z0.

in all cases. The discrepancy between loss curves decreases as the number of filters

increases likely due to the diminishing returns of providing more capacity to the

GON when its loss is significantly closer to 0. A similar pattern is found when de-

creasing the latent space (Fig. 3.5c); in this case the latent space likely becomes the

limiting factor. With larger latent spaces GONs significantly outperform autoen-

coders; however, when the latent bottleneck becomes more pronounced this lead

lessens.

Finally, we evaluate different initialisations of z0 in Fig. 3.6 by sampling z0 ∼

N (0, σ2I) for a variety of standard deviations σ. The proposed approach (σ = 0)

achieves the lowest reconstruction loss (Fig. 3.6a); results for σ > 0 are similar,

suggesting that the latent space is adjusted so z0 simulates the origin. An alternative

parameterisation of z is to use a use a single gradient descent style step z = z0−∇z0L

(Fig. 3.6b); however, losses are higher than the proposed GON initialisation.

3.3.2 Qualitative Evaluation

The representation ability of implicit GONs is shown in Fig. 3.7 where we train

on large image datasets using a relatively small number of parameters. In particu-

lar, Fig. 3.7a shows MNIST can be well-represented with just 4,385 parameters (a

SIREN with 3 hidden layers each with 32 hidden units, and 32 latent dimensions).

An advantage of modelling data with implicit networks is that coordinates can be at

73

(a) 4,385 param-
eters

(b) 297k param-
eters

(c) 270k parame-
ters

(d) 270k param-
eters

(e) 396k parame-
ters

Figure 3.7: Training implicit GONs with few parameters demonstrates their repre-
sentation ability.

arbitrarily high resolutions. In Fig. 3.8 we train on 32x32 images then reconstruct

at 256x256. This resolution is chosen because it is substantially higher than the

original 32x32 resolution; while it is possible to reconstruct at arbitrarily high res-

olutions, far beyond 256x256 there are diminishing returns when reconstructing at

even higher resolutions. A significant amount of high frequency detail is modelled

despite only seeing low resolution images. Similar can be seen in Fig. 3.9 for 28x28

MNIST test images upsampled to 256x256. The structure of the implicit GON latent

space is shown by sampling latent codes from pairs of images, and then spherically

interpolating between them to synthesise new samples (Fig. 3.10). These samples

are shown to capture variations in shape (the shoes in Fig. 3.10b), size, and rotation

(Fig. 3.10d).

We assess the quality of samples from variational GONs using convolutional

models trained to convergence in Fig. 3.12. These are diverse and often contain fine

details. A simple alternative to variational GONs is to train with early stopping,

where we don’t train to conversion, instead stopping early; this acts as a form of

regularisation, keeping the latent space simple to sample from. Samples from an

implicit GON trained with early stopping can be found in Fig. 3.11 however this

original GON original GON

Figure 3.8: By training an implicit GON on 32x32 images, then sampling at 256x256,
super-resolution is possible despite never observing high resolution data.

74

(a) Original data 28x28 (b) Implicit GON at 28x28

Figure 3.9: Super-sampling 28x28 MNIST test data at 256x256 coordinates using
an implicit GON.

75

(a) MNIST (b) Fashion-
MNIST

(c) Small NORB (d) COIL20 (e) CIFAR-10

Figure 3.10: Spherical linear interpolations between points in the latent space for
trained implicit GONs using different datasets (approximately 2-10 minutes training
per dataset on a single GPU).

(a) 4,385 param-
eters

(b) 70k parame-
ters

(c) 270k parame-
ters

(d) 270k param-
eters

(e) 270k parame-
ters

Figure 3.11: GONs trained with early stopping can be sampled by approximating
their latent space with a multivariate normal distribution. These images show sam-
ples from an implicit GON trained with early stopping.

(a) 4,331 param-
eters

(b) 270k param-
eters

(c) 270k parame-
ters

(d) 270k param-
eters

(e) 270k parame-
ters

Figure 3.12: Random samples from a convolutional variational GON with normally
distributed latents.

76

(a) 3s 300 steps (b) 10s 1000
steps

(c) 30s 3000
steps

(d) 60s 6000
steps

(e) Ground
Truth

Figure 3.13: Convergence of convolutional GONs with 74k parameters.

approach results in fine details being lost. Training further would result in a more

complex latent space which would have to be separately modelled by a powerful

density estimator such as a diffusion model. GONs are also found to converge

quickly; we plot reconstructions at multiple time points during the first minute of

training (Fig. 3.13). After only 3 seconds of training on a single GPU, a large

amount of signal information from MNIST is modelled.

In order to evaluate how well GONs can represent high resolution natural images,

we train a convolutional GON on the LSUN Bedroom dataset scaled to 128x128

(Fig. 3.14a). As with smaller, more simple data, we find training to always be

extremely stable and consistent over a wide range of hyperparameter settings. Re-

constructions are of excellent quality given the simple network architecture. A con-

volutional variational GON is also trained on the CelebA dataset scaled to 64x64

(a) LSUN 128x128 Bedroom validation images (left) recon-
structed by a convolutional GON (right).

(b) Samples from a con-
volutional variational GON
trained on CelebA.

Figure 3.14: GONs are able to represent high resolution complex datasets to a high
degree of fidelity.

77

(Fig. 3.14b). Unconditional samples are somewhat blurry as commonly associated

with traditional VAE models on complex natural images [400] but otherwise show

wide variety.

3.4 Discussion

Despite similarities with autoencoder approaches, the absence of an encoding net-

work offers several advantages. VAEs with overpowered decoders are known to

ignore the latent variables [46] whereas GONs only have one network that equally

serves both encoding and decoding functionality. Designing inference networks for

complicated decoders is not a trivial task [356]; however, inferring latent variables

using a GON simplifies this procedure. Similar to GONs, Normalizing Flow meth-

ods are also capable of encoding and decoding with a single set of weights; however,

they achieve this by restricting the network to be invertible. This requires consid-

erable architectural restrictions that affect performance, make them less parameter

efficient, and are unable to reduce the dimension of the data [191]. Similarly, au-

toencoders with tied weights also encode and decode with a single set of weights by

using the transpose of the encoder’s weight matrices in the decoder; this however,

is only applicable to simple architectures. GONs on the other hand use gradients as

encodings which allow arbitrary functions to be used.

A number of previous works have used gradient-based computations to learn la-

tent vectors however as far as we are aware, we are the first to use a single gradient

step jointly optimised with the feedforward pass, making it fundamentally different

to these approaches. Latent encodings have been estimated for pre-trained gen-

erative models without encoders, namely Generative Adversarial Networks, using

approaches such as standard gradient descent [219; 407]. A number of approaches

have trained generative models directly with gradient-based inference [26; 125; 387];

these assign latent vectors to data points and jointly learn them with the network

parameters through standard gradient descent or Langevin dynamics. This is very

slow however, and convergence for unseen data samples is not guaranteed. Short

run MCMC has also been applied [261] however this still requires approximately

78

25 update steps. Since GONs train end-to-end, the optimiser can make use of the

second order derivatives to allow for inference in a single step. Also of relevance is

model-agnostic meta-learning [90], which trains an architecture so that a few gra-

dient descent steps are all that are necessary to new tasks. This is achieved by

backpropagating through these gradients, similar to GONs.

In the case of implicit GONs, the integration terms in Eqn. 3.16 result in compu-

tation time that scales in proportion with the data dimension. This makes training

slower for very high dimensional data, although we have not yet investigated Monte

Carlo integration. In general GONs are stable and consistent, capable of generating

quality samples with an exceptionally small number of parameters, and converge

to diverse results with few iterations. Nevertheless, there are avenues to explore so

as to improve the quality of samples and scale to larger datasets. In particular, it

would be beneficial to focus on how to better sample these models, perform formal

analysis on the gradients, and investigate whether the distance function could be

improved to better capture fine details.

3.5 Conclusion

This chapter introduced a method based on empirical Bayes which computes the

gradient of the data fitting loss with respect to the origin, and then jointly fits the

data while learning this new point of reference in the latent space. The results show

that this approach is able to represent datasets using a small number of parameters

with a simple overall architecture, which has advantages in applications such as

implicit representation networks. GONs are shown to converge faster with lower

overall reconstruction loss than autoencoders, using the exact same architecture but

without the encoder. Experiments show that the choice of non-linearity is important,

as the network derivative jointly acts as the encoding function.

While implicit GONs theoretically enable representing data at arbitrarily high

resolutions, in practice, reliance on using a single global latent vector to represent

data points results in reconstructions/samples which are blurry. The subsequent

chapters address this downside in two different ways: Chapter 4 uses spatially dis-

79

tributed information rich discrete latent vectors to represent images, while Chapter

5 introduces a diffusion model that operates at arbitrarily high resolutions, thereby

allowing more powerful stochastic reconstructions.

80

CHAPTER 4

Unleashing Transformers: Parallel Token Prediction with

Discrete Absorbing Diffusion for Fast High-Resolution Image

Generation from Vector-Quantized Codes

While the approach outlined in Chapter 3 offers the ability to sample arbitrarily

high-resolution data, these samples are blurry, a problem which is exacerbated as

the resolution increases. This chapter instead attempts to find a balance between

these extremes with the aim to efficiently generate much higher quality samples that

are of large but finite resolution.

Vector-Quantized image models (Sec. 2.3.2) such as VQ-VAEs [362] and VQ-

GANs [86] are extremely effective approaches for compressing high-resolution data,

offering impressive perceptual reconstruction quality for the very high compression

rates achieved. This is primarily due to using a highly information rich codebook,

each code from which is relatively high dimensional allowing substantial quantities

of information to be stored. The discrete nature of these encodings made autoregres-

sive models (Sec. 2.5) a natural choice to model the distribution over these encodings

due to their strong density estimation capability.

Autoregressive models in this context have a number of downsides: sampling is

81

Figure 4.1: Our approach uses a discrete diffusion to quickly generate high quality
images optionally larger than the training data (right).

slow and sequential, growing linearly with dimension making scaling to even higher

resolutions more difficult; a fixed ordering of the inputs is required which ignores

the 2D structure of images thereby restricting modelling ability.

This chapter addresses these problems by using a discrete diffusion model (Sec. 2.2.4)

to represent Vector-Quantized image representations; this is visualised in Fig. 4.2.

By removing the autoregressive constraint, allowing bidirectional context when gen-

erating samples, not only is it possible to speed up sampling, but an improved

feature representation is learned, enabling higher quality image generation. While

there are other non-autoregressive discrete generative models, each of them have a

number of downsides that make them less suitable in this context, for instance, dis-

crete implicit EBMs [110] have very long mixing times, similarly, generative masked

language models have very long sample times and are ineffective at modelling longer

sequences [105; 369]. The main contributions of this chapter are:

• A parallel token prediction approach for generating Vector-Quantized images

allowing much faster sampling than autoregressive models is proposed.

• This approach is able to generate globally consistent images at resolutions

exceeding that of the original training data by aggregating multiple context

windows, allowing for much larger context regions (see Fig. 4.1).

• State-of-the art performance on three benchmark datasets is demonstrated

in terms of Density (LSUN Bedroom: 1.51; LSUN Churches: 1.12; FFHQ:

82

Figure 4.2: Our approach uses a discrete absorbing diffusion model to represent
Vector-Quantized images allowing fast high-resolution image generation. Specifi-
cally, after compressing images to an information-rich discrete space, elements are
randomly masked and an unconstrained Transformer is trained to denoise the data,
using global context to ensure samples are consistent and high quality.

1.20) and Coverage (Bedroom: 0.83; Churches: 0.73; FFHQ: 0.80), as well as

competitive results on FID (Bedroom: 3.64; Churches: 4.07; FFHQ: 6.11).

4.1 Method

The first stage of the proposed approach is to learn compact discrete representations

using a Vector-Quantized autoencoder. Here, a convolutional encoder downsamples

images x to a smaller spatial resolution, E(x) = {e1, e2, ..., eL} ∈ RL×D. Argmax

quantisation [362] is used to discretise the continuous embeddings: for a codebook

C ∈ RK×D, where K is the number of discrete codes in the codebook and D is the

dimension of each code, each ei is mapped via a nearest-neighbour lookup onto a

discrete codebook value, cj ∈ C:

zq = {q1, q2, ..., qL} , where qi = min
cj∈C
∥ei − cj∥. (4.1)

As this operation is non-differentiable, the straight-through gradient estimator [18]

is used to approximate gradients resulting in bias. The quantized latents are fed

through a decoder x̂ = G(zq) to reconstruct the input based on a perceptual recon-

83

struction loss [86; 396]; this process is trained by minimising the loss LVQ,

LVQ = Lrec +∥sg[E(x)]− zq∥22 + β∥sg[zq]− E(x)∥22. (4.2)

4.1.1 Sampling Globally Coherent Latents

Once the training data is encoded as discrete, integer-valued latents z ∈ ZD, a

discrete diffusion model can be used to learn the distribution over this highly com-

pressed space. Specifically, we use the absorbing state diffusion [9] where in each

forward time step t, each discrete latent at coordinate i, [z]i, is independently either

kept the same or masked out entirely with probability 1
t
; the reverse process grad-

ually unveils these masks. In this formulation, the transition matrix is defined as

Qt = (1− βt)I + βt1e
T
m where em is a vector with a one on mask states m and zeros

elsewhere, and the beta schedule is βt = 1
T−t+1

. Rather than directly approximating

pθ(zt−1|zt), training stochasticity is reduced by predicting pθ(z0|zt) [135]. In this

case, the variational bound reduces to

Eq(z0)

[
T∑
t=1

1

t
Eq(zt|z0)

[∑
[zt]i=m

log pθ([z0]i|zt)
]]

. (4.3)

With pθ modelled using multinomial distributions, a temperature τ < 1 can be

applied to improve sample quality at the expense of diversity. This controls the

randomness of predictions by scaling the logits before applying the softmax func-

tion, with lower temperatures leading to more deterministic predictions, and higher

temperatures resulting in more diverse and random outputs.

Unlike, uniform diffusion, absorbing diffusion is an effective strategy for Vector-

Quantized image modelling as noisy elements are removed entirely rather than being

changed to a different value which in the discrete case may be unrelated but are

much less easy to identify. Gaussian and token distance transitions which change

states based on embedding distances are similarly ineffective as Vector-Quantized

latents are not ordinal meaning that state changes can significantly change tokens’

semantics. This effectiveness is further evidenced by the success of BERT [65] which

similarly learns to denoise randomly masked data.

84

Architecture

Esser et al. [86] demonstrated that in the autoregressive case, Transformers [364] are

better suited for modelling Vector-Quantized images than convolutional approaches

due to the importance of long-distance relationships in this compressed form. As

such, we use transformers to model the prior, but without the architectural restric-

tions imposed by autoregressive approaches. This procedure (Eqn. 4.4) encodes

inputs as key-value pairs, where values V represent embedded inputs and keys K

act as an indexing method, subsequently, a set of queries Q are used to select which

values to observe:

Attn(Q,K,V) = softmax

(
QKT

√
dk

)
V . (4.4)

This process allows interactions with strong gradients between all inputs, irrespective

of their spatial relationships.

Fast Sampling

Because the diffusion model is trained to predict p(z0|zt), it is possible to sample

skipping an arbitrary number of time steps k, pθ(zt−k|zt), allowing sampling in

significantly fewer steps than autoregressive approaches.

4.1.2 Addressing Gradient Variance

When inputs are very noisy (at time steps close to T), denoising is difficult and

the stochastic training results in gradients with high variance. As such, in practice

continuous diffusion models are trained to estimate the noise rather than directly

predict the denoised data, significantly reducing the variance. Unfortunately, no

relevant reparameterisation currently exists for discrete distributions [145]. Instead,

we address this problem by reweighting the ELBO based on the information available

at time t, T−t+1
T

[9], so that components of the loss at time steps closer to T are

weighted less than earlier steps. This effectively alters the learning rate based on

gradient variance, improving convergence. I.e. we adapt Eqn. 4.3 to,

Eq(z0)

[∑T

t=1

T − t + 1

T
Eq(zt|z0)

[∑
[zt]i=m

log pθ([z0]i|zt)
]]
. (4.5)

85

This is equivalent to the loss obtained by assuming the posterior does not have

access to zt when [zt]i = m. Since we predict z0 this assumption does not harm the

training.

This can be derived from the true ELBO defined in [9]. The loss at time step t

can be written as

Lt = DKL(q(zt−1|zt, z0) ∥ p(zt−1|zt))

=
∑
i

∑
j

q([zt−1]i,j|ztz0) log
q([zt−1]i,j|zt, z0)

p([zt−1]i,j|zt)
,

(4.6)

where the first summation sums over latent coordinates i, and the second summa-

tion sums over the probabilities of each code j. For the absorbing diffusion case

where tokens in zt are masked independently and uniformly with probability t
T

, this

posterior is defined as

q([zt−1]i = a|zt, z0) =

q([zt−1]i = a|z0), if [zt]i = m.

1, if a = [z0]i and [zt]i = [z0]i.

0, otherwise,

(4.7)

where q([zt−1]i = [z0]i|z0) = (1 − t−1
T

) and q([zt−1]i = m|z0) = t−1
T

. The reverse

process remains defined in the same way as the standard reverse process:

p([zt−1]i = a|zt) =

1
t
pθ([z0]i|zt), if a = [z0]i and [zt]i = m.

1− 1
t
, if a = m and [zt]i = m.

1, if a = [z0]i and [zt]i = [z0]i.

(4.8)

Substituting these definitions into Eqn. 4.6, the loss can be simplified to Eqn. 4.9;

by extracting the constants into a single term out of the sum, C, the loss can be

further simplified to obtain Eqn. 4.10, which is equivalent to our proposed reweighted

ELBO,

Lt =
∑
i

[
1 log

1

1
+

t− 1

T
log

t−1
T

1− 1
t

+

(
1− t− 1

T
log

1− t−1
T

1
t
pθ([z0]i|zt)

)]
, (4.9)

86

= C −
∑
i

[
T − t + 1

T
log pθ([z0]i|zt)

]
. (4.10)

4.1.3 Generating High-Resolution Images

Using convolutions to build Vector-Quantized image models encourages latents to

be highly spatially correlated with generated images. It is therefore possible to

construct essentially arbitrarily sized images by generating latents with the required

shape. We propose an approach that allows globally consistent images substantially

larger than those in the training data to be generated.

First, a large a by b array of mask tokens, z̄T = ma×b, is initialised that corre-

sponds to the size of image we wish to generate. In order to capture the maximum

context when approximating z̄0 we apply the denoising network to all subsets of z̄t

with the same spatial size as the usual inputs of the network, aggregating estimates

at each location. Specifically, using cj(z̄t) to represent local subsets, we approximate

the denoising distribution as a mixture,

p([z̄0]i|z̄t) ≈
1

Z

∑
j

p([z̄0]i|cj(z̄t)), (4.11)

where the sum is over subsets cj that contain the ith latent and Z is the normalis-

ing constant. For extremely large images, this can require a very large number of

function evaluations; however, the sum can be approximated by striding over latents

with a step > 1 or by randomly selecting positions.

4.1.4 Improving Code Representations

There are various options to obtain high-quality image representations including

using large numbers of latents and codes [288] or building a hierarchy of latent

variables [291]. We use the adversarial framework proposed by Esser et al. [86] to

achieve higher compression rates with high-quality codes using only a single GPU,

without tying our approach to the characteristics typically associated with generative

adversarial models. Additionally, we apply differentiable augmentations T , such as

translations and colour jitter, to all discriminator inputs; this has proven to be

87

effective at improving sample quality across methods [171; 402]. The overall loss

L is a linear combination of LVQ, the Vector-Quantized loss, and LG which uses a

discriminator D to assess realism based on an adaptive weight λ. On some datasets,

λ can grow to extremely large values hindering training. We find simply clamping

λ at a maximum value λmax = 1 an effective solution that stabilises training,

L= min
E,G,C

max
D

Epd

[
LVQ +λLG

]
, (4.12a) λ=min

(
∇GL

[Lrec]

∇GL
[LG] + δ

, λmax

)
, (4.12b)

LG = logD(T (x)) + log(1−D(T (x̂))). (4.12c)

The argmax quantisation approach can result in codebook collapse, where some

codes are never used; while other quantisation methods can reduce this [67; 163;

234; 288], we found argmax to yield the highest reconstruction quality.

4.2 Evaluation

We evaluate our approach on the three largest high-resolution 256x256 datasets

described in Sec. 2.9, LSUN Bedroom, LSUN Churches [385], and FFHQ [179].

Large datasets are required to prevent overfitting due to the high parameter count

of the model. Sec. 4.2.1 evaluates the quality of samples from our proposed model.

Sec. 4.2.2 demonstrates the representation abilities of absorbing diffusion models

applied to the learned discrete latent spaces, including how sampling can be sped up,

improvements over equivalent autoregressive models, and the effect of our reweighted

ELBO. Finally, Sec. 4.2.3 evaluates our Vector-Quantized image model.

In all experiments, our absorbing diffusion model parameterised with an 80M

parameter Transformer Encoder [364] is applied to 16 × 16 latents discretised to a

codebook with 1024 entries and optimised using the Adam optimiser [189]. While,

as noted by Esser et al. [86], a GPT2-medium [284] architecture (307M parameters)

fits onto a GPU with 12GB of VRAM, in practice this requires small batch sizes

and learning rates making training in reasonable times impractical.

88

We perform all experiments on a single NVIDIA RTX 2080 Ti with 11GB of

VRAM using automatic mixed precision when possible. We use the same VQGAN

architecture as used by Esser et al. [86] which for 256 × 256 images downsamples

to features of size 16× 16× 256, and quantizes using a codebook with 1024 entries.

Attention layers are applied within both the encoder and decoder on the lowest

resolutions to aggregate context across the entire image. Models are optimised using

the Adam optimiser [189] using a batch size of 4 and learning rate of 1.8 × 10−5.

For the differentiable augmentations we randomly change the brightness, saturation,

and contrast, as well as randomly translate images. The datasets we use are both

publically accessible, with FFHQ available under the Creative Commons BY 4.0

licence. LSUN models are trained for 2.2M steps and the FFHQ model for 1.4M

steps.

For the absorbing diffusion model we use a scaled down 80M parameter version

of GPT-2 [284] consisting of 24 layers, where each attention layer has 8 heads,

each 64D. The same architecture is used for experiments with the autoregressive

model. Autoregressive models’ training are stopped based on the best validation

loss. We also stop training the absorbing diffusion models based on validation ELBO;

however, on the LSUN datasets we found that it always improved or remained

consistent throughout training so each model was trained for 2M steps. Source code

is available at https://github.com/samb-t/unleashing-transformers.

Codebook Collapse

One issue with vector quantized methods is codebook collapse, where some codes

fall out of use which limits the potential expressivity of the model. We found this to

occur across all datasets with often a fraction of the codes in use. We experimented

with different quantization schemes such as gumbel softmax, different initalisation

schemes such as k-means, and ‘code recycling’, where codes out of use are reset

to an in use code. In all of these cases, we found the reconstruction quality to be

comparable or worse so stuck with the argmax quantisation scheme used by Esser

et al. [86].

89

https://github.com/samb-t/unleashing-transformers

Figure 4.3: Samples from our models trained on 256x256 datasets: LSUN Churches,
FFHQ, and LSUN Bedroom.

Precision, Recall, Density, and Coverage

To compute these measures we use the official code releases and pretrained weights in

all cases except Taming Transformers on the LSUN datasets where weights were not

available; in this case we reproduced results as close as possible with the hardware

available, training the VQGANs and autoregressive models with the same hyperpa-

rameters used for the rest of our experiments. Following Nash et al. [253] we use the

standard 2048D InceptionV3 features, which are also used to compute FID, k = 3

nearest neighbours, and 50k samples, and use the code provided by Naeem et al.

[250].

4.2.1 Sample Quality

In this section we evaluate our model quantitatively and qualitatively. In contrast to

other multi-step methods, our approach allows sampling in the fewest steps. Samples

can be found in Figs. 4.3 and 4.4 which are high quality and diverse.

Due to limited computing resources, we are unable to provide Density and Coverage

scores for DCT [253] and PRDC scores for StyleGAN2 on LSUN Bedroom since

training on a standard GPU would take more than 30 days, much more than the 10

days to train our models. On LSUN our approach achieves the highest Precision,

Density, and Coverage; indicating that the data and sample manifolds have the

most overlap (Tab. 4.1). On FFHQ our approach achieves the highest Precision

and Recall. When sampling with lower temperatures to improve FID, generative

90

(a) Non-cherry picked, τ = 0.9, 256×256 LSUN Churches samples.

(b) Non-cherry picked, τ = 0.85, 256×256 FFHQ samples.

(c) Non-cherry picked, τ = 0.9, 256×256 LSUN Bedroom samples.

Figure 4.4: Samples from our approach are diverse and high quality.

91

LSUN Churches LSUN Bedroom FFHQ
Model P ↑ R ↑ D ↑ C ↑ P ↑ R ↑ D ↑ C ↑ P ↑ R ↑ D ↑ C ↑

DCT [253] 0.60 0.48 - - 0.44 0.56 - - 0.51 0.40 - -
TT [86] 0.67 0.29 1.08 0.60 0.61 0.33 1.15 0.75 0.64 0.29 0.89 0.5
VDVAE [48] - - - - - - - - 0.59 0.20 0.80 0.50
PGGAN [178] 0.61 0.38 0.83 0.63 0.43 0.40 0.70 0.64 - - - -
StyleGAN [179] - - - - 0.55 0.48 0.96 0.80 - - - -
StyleGAN2 [181] 0.60 0.43 0.83 0.68 - - - - 0.69 0.40 1.12 0.80
ProjGAN [314] 0.56 0.53 0.65 0.64 0.55 0.46 0.90 0.79 0.66 0.46 0.98 0.77
UT (τ = 1.0) 0.70 0.42 1.12 0.73 0.64 0.38 1.27 0.81 0.69 0.48 1.06 0.77
UT (τ = 0.9) 0.71 0.45 1.07 0.74 0.67 0.38 1.51 0.83 0.73 0.48 1.20 0.80

Table 4.1: Precision (P), Recall (R), Density (D), and Coverage (C) [202; 250; 306]
for approaches trained on LSUN Churches, LSUN Bedroom, and FFHQ.

models generally trade precision and recall [181; 291]; since we also calculate FID

with τ = 0.9, we evaluate the effect on PRDC. In almost all cases this improves

scores, indicating that more samples in data regions, increasing overlap.

FID

In Tab. 4.2 we calculate the Fréchet Inception Distance (FID) of samples from our

models using torch-fidelity [265]. Using a fraction of the parameters of other Vector-

Quantized image models, our approach achieves much lower FID.

Method Params Bed Church FFHQ

DDPM [135] 114M 6.36 7.89 -
DCT [253] 448M 6.40 7.56 -
VDVAE [48] 115M - - 28.5
TT [85; 86] 600M 6.35 7.81 9.6
I-BART [85] 2.1B 5.51 7.32 9.57
PGGAN [178] 47M 8.34 6.42 -
SGAN2 [181] 60M 2.35 3.86 3.8
ADM [66] 552M 1.90 - -
ProjGAN [314] 106M 1.52 1.59 3.39
UT (τ=1.0) 145M 5.07 5.58 7.12
UT (τ=0.9) 145M 3.27 4.07 6.11

Table 4.2: FID comparison on FFHQ, LSUN Bedroom and Churches (lower is bet-
ter).

92

Figure 4.5: Our method allows unconditional images larger than those seen during
training to be generated by applying the denoising network to all subsets of the
image, aggregating probabilities to encourage global continuity.

Higher Resolution

Fig. 4.5 shows samples generated at higher resolutions (up to 768×256) than the

observed training data using the method described in Sec. 4.1.3 with τ =0.8. Even

at larger scales we observe high-quality, diverse, and consistent samples.

4.2.2 Absorbing Diffusion

In this section we analyse the usage of absorbing diffusion for high-resolution im-

age generation, determining how many sampling steps are required to obtain high-

quality samples and ablating the components of our approach.

Sampling Speed

Our approach applies a diffusion process to a highly compressed image represen-

tation, meaning it is already 54× faster to sample from than DDPM when using

Flash Attention [61] (ours: 1.3s, DDPM: 70s per image on a NVIDIA RTX 2080 Ti).

However, since the absorbing diffusion model is trained to approximate p(z0|zt) it is

possible to speed the sampling process up further by skipping arbitrary numbers of

time steps, unmasking multiple latents at once. In Tab. 4.3 we explore how sample

quality is affected using a simple step skipping scheme: evenly skipping a constant

number of steps so that the total number of steps meets some fixed computational

budget. As expected, FID increases with fewer sampling steps. However, the in-

crease in FID is minor relative to the improvement in sampling speed: our approach

achieves similar FID to the equivalent autoregressive model using half the number

93

Steps 50 100 150 200 256

Church 6.86 6.09 5.81 5.68 5.58
Church (τ =0.9) 4.90 4.40 4.22 4.19 4.07
FFHQ 9.60 7.90 7.53 7.52 7.12
FFHQ (τ =0.9) 6.87 6.24 6.16 6.14 6.11

Table 4.3: Our approach allows sampling in much fewer steps with only minor FID
increase.

25 50 100 256

5

10

15

Number of sampling steps

F
ID

Imp. DDPM [256]

Ours (τ=1.0)

Ours (τ=0.9)

Figure 4.6: FID vs number of sampling steps on LSUN Bedroom.

of steps. With 50 sampling steps, our approach is 88× faster than DDPMs, and

achieves lower FID (Fig. 4.6). Using a more sophisticated step selection scheme

such as dynamic programming [373], FID could potentially be reduced further.

Autoregressive vs Absorbing DDPM

Tab. 4.4 compares the representation ability of our absorbing diffusion model with

an autoregressive model, both utilising exactly the same Transformer architecture,

but with the Transformer unconstrained in the diffusion case. On both datasets

diffusion achieves lower FID, which is calculated in the image space. Validation

NLL is evaluated in latent space (i.e. − log p(z)) and again the diffusion model

outperforms the autoregressive model despite being trained on a harder task with the

same number of parameters, indicating that the diffusion models better approximate

the prior distribution. Following previous works, early stopping was used to prevent

autoregressive models from overfitting [85; 171]; increasing weight decay and dropout

in some cases slightly improved validation NLL but caused FID to increase.

94

Method
Churches FFHQ

FID ↓ NLL ↓ FID ↓ NLL ↓

*AR 13.23 6.67 9.47 6.65
*Absorbing 11.84 6.41 8.52 6.48
AR 5.93 6.24 8.15 6.18
Absorbing 5.58 6.01 7.12 5.96

Table 4.4: FID and validation latent NLL (in bpd) using the same Transformer.
*=Default VQGAN

Reweighted ELBO

In Sec. 4.1.2 we proposed using a reweighted ELBO when training the diffusion

model to reduce gradient variance. We evaluate this in Fig. 4.7 by comparing vali-

dation ELBO (calculated with Eqn. 4.3) during training for models trained directly

on ELBO and our reweighting. The models trained on reweighted ELBO converge

substantially faster, demonstrating that our reweighting is valid and simplifies op-

timisation. To further substantiate this and show that improvements extend to

sample quality we compare models trained directly on ELBO and our reweighting

in terms of FID in Fig. 4.8. The same trend is observed, with the models trained

on the reweighting converging faster.

1 2 3 4

·105

6.5

7

7.5

8

Training Step

V
al
id
at
io
n
E
L
B
O

ELBO

Reweighting

(a) LSUN Churches

1 2 3 4

·105

6

7

8

Training Step

V
al
id
at
io
n
E
L
B
O

ELBO

Reweighting

(b) FFHQ

Figure 4.7: Models trained with reweighting converge faster than models trained on
ELBO.

95

1 2 3 4

·105

6

8

10

12

Training Step
F
ID

ELBO
Reweighting

(a) LSUN Churches

1 2 3 4

·105

10

12

14

16

Training Step

F
ID

ELBO
Reweighting

(b) FFHQ

Figure 4.8: Models trained with our reweighted ELBO converge faster than models
trained directly on ELBO.

4.2.3 Reconstruction Quality

In Tab. 4.5 we evaluate the effect of DiffAug [402] and λ limiting on Vector-Quantized

image models. While each technique individually can lead to worse FID due to

imbalance between the generator and discriminator, we found combining techniques

offered the most stability and improved FID across all datasets.

4.2.4 Sample Diversity

To improve sample quality, many generative models are sampled using a reduced

temperature or by truncating distributions. For a multinomial distribution, the

temperature τ is applied to the logits zi to give the probability for xi as p(xi) =

exp(zi)/τ∑
j exp(zj/τ)

. This is problematic, as these methods amplify any biases in the dataset.

We visualise the impact of temperature on sampling from a model trained on FFHQ

in Fig. 4.9a. For very low temperatures the bias is obvious: samples are mostly

front-facing white men with brown hair on solid white/black backgrounds. This

is because when the temperature is small, samples come from the most common

regions of the data distribution, which in this case is white men. Exactly how the

Modifications Churches FFHQ

Default 5.25 3.37
λmax = 1 8.67 4.72
DiffAug 5.16 6.57
Both 2.70 3.12

Table 4.5: Effect of proposed VQGAN changes on FID.

96

Temperature

(a) Impact of sampling temperature on
diversity. For small temperature changes
it is unclear how bias changes.

Masked Outputs

(b) Our bidirectional approach allows lo-
cal image editing by targeting regions to
be changed (highlighted in grey).

Figure 4.9: Evaluation of practical use cases of our proposed generative model.

bias changes for more subtle temperature changes is less clear, which is problematic.

Practitioners should be aware of this effect and it emphasises the importance of

dataset balancing.

4.2.5 Image Editing

An additional advantage of using a bidirectional diffusion model to model the latent

space is that image inpainting is possible. Since autoregressive models are condi-

tioned only on the upper left region of the image, they are unable to edit internal

masked image regions in a consistent manner. Diffusion models, on the other hand,

allow masked regions to be placed at arbitrary locations. After a region has been

highlighted, we mask corresponding latents, identify the starting time step by count-

ing the number of masked latents, then continue the denoising process from that

point. Examples of this process can be found in Fig. 4.9b.

4.2.6 Nearest Neighbours and Additional Samples

When training generative models, being able to detect overfitting is key to ensure

the data distribution is well modelled. Overfitting is not detected by popular metrics

such as FID, making overfitting difficult to identify in approaches such as GANs.

With our approach we are able to approximate the ELBO on a validation set making

it simple to prevent overfitting. In this section we demonstrate that our approach

is not overfit by providing nearest neighbour images from the training dataset to

97

samples from our model, measured using LPIPS [396] (see Figs. 4.10 to 4.12).

Additionally, Fig. 4.13 contains unconditional samples with resolutions larger than

observed in the training data from a model trained on LSUN Bedroom.

4.2.7 Limitations

In our experiments we only tested our approach on 256× 256 datasets; directly

scaling to higher resolutions would require more GPU resources. However, future

work using more efficient Transformer architectures [161] may alleviate this. Our

method outperforms all approaches tested on FID except StyleGAN2 [181]; we find

that the primary bottleneck is the Vector-Quantized image model, therefore more

research is necessary to improve these discrete representations. Whilst our approach

is trained for significantly less time than other approaches such as StyleGAN2, the

stochastic training procedure means that more training steps are required compared

to autoregressive approaches. Although when generating extra-large images the

large context window made possible by the diffusion model encourages consistency,

a reduced temperature is required, reducing diversity.

4.2.8 Quantitative Comparison with Previous Chapter

By using a multi-stage training approach, where the first stage uses a multi-scale

architecture paired with a more expressive discrete latent space, the approach de-

veloped in this chapter allows for substantially higher sample quality than implicit

GONs. This can be seen in Tab. 4.6 where on complex high resolution datasets, UT

achieves significantly lower FIDCLIP than implicit GONs. Because UT is specifically

designed for modelling high resolution data, only high resolution datasets are used

for the comparison. However, this comes at the expense of the approach no longer

being resolution agnostic, requiring a specific set up for a certain training data res-

olution as well as only being able to sample at a fixed single resolution. While it

is possible to improve the quantitative score for implicit GONs by increasing the

number of parameters, the lack of a multi-scale architecture makes this challenging

due to the high GPU memory required to cache high resolution feature activations

98

Figure 4.10: Nearest neighbours for a model trained on LSUN Churches based on
LPIPS distance. The left column contains samples from our model and the right
column contains the nearest neighbours in the training set (increasing in distance
from left to right).

Figure 4.11: Nearest neighbours for a model trained on FFHQ based on LPIPS
distance. The left column contains samples from our model and the right column
contains the nearest neighbours in the training set (increasing in distance from left
to right).

99

Figure 4.12: Nearest neighbours for a model trained on LSUN Bedroom based on
LPIPS distance. The left column contains samples from our model and the right
column contains the nearest neighbours in the training set (increasing in distance
from left to right).

Figure 4.13: Unconditional samples from a model trained on LSUN Bedroom larger
than images in the training dataset.

100

for efficient backpropagation.

Method FFHQ-256 Church-256 Bed-256

I-GON (Chapter 3) 44.65 72.29 66.40

UT (Chapter 4) 3.05 5.52 4.53

Table 4.6: FIDCLIP [203] evaluation against the implicit GON method proposed in
the previous chapter.

One downside of this significant improvement in sample quality is the increase

in compute time required for training and sampling, as can be seen in Tab. 4.7. The

increase in training time is due to the increase in parameter count and increased

stochasticity of training baused by the masked training objective; the increase in

sampling time is due to the sampling process being inherently stochastic, whereas

for implicit GONs it always only requires a single model call.

NVIDIA RTX 2080Ti NVIDIA A100

Method Training Sampling (s) Training Sampling (s)

I-GON (Chapter 3) <1 day 0.25s <1 day 0.17s

UT (Chapter 4) ≈2 weeks 1.29s < 1 week 0.69s

Table 4.7: Approximate time to train a model on a 256×256 dataset and the time
to sample a single 256×256 image.

4.3 Discussion

While other classes of discrete generative model exist, they are less suitable for

Vector-Quantized image modelling than discrete diffusion models: VAEs introduce

prior assumptions about the latent space that can be limiting, in particular, continu-

ous spaces may not be appropriate when modelling discrete data [28]; GAN training

requires sampling from the generator meaning that gradients must be backprop-

agated through a discretistion procedure [257]; discrete normalising flows require

functions to be invertible, significantly restricting function space [22; 143].

101

Another approach for modelling latent spaces using diffusion models is LSGMs

[357], which model continuous latents with SDEs. However, our approach trains

more than 15× faster thanks to the efficiency discrete approaches allow. There also

exists a variety of different discrete diffusion methods [9; 146; 315]: ImageBART [85],

developed concurrently with this work, models discrete latents using multinomial

diffusion with separate autoregressive Transformers per diffusion step leading to

slower training, inference, and substantially more parameters than our method.

Concurrent with our work, a number of similar approaches independently pro-

posed using diffusion-like models to model VQGAN latents, these approaches are

complementary to ours and distinct in a number of ways. VQ-Diffusion [117] use

a combination of multinomial and absorbing diffusion to encourage the model to

focus less on mask tokens. This, however, requires the use of an additional auxil-

liary objective function to improve stability, and in practice our approach achieves

lower FID on the only shared dataset, FFHQ. MaskGIT [39] models discrete latents

by learning to unmask tokens using a similar training scheme to ours; during sam-

pling, tokens are unmasked based on the model’s confidence. This approach allows

sampling in very few steps, but the lack of theoretical justification makes it unclear

how representative samples are. Latent Diffusion [298] relaxes the discrete assump-

tion, using continuous diffusion parameterised by a convolutional U-Net to model

latents of greater spatial size, but with lower dimensional codes. Both compressing

spatially/depth-wise and discrete/continuous diffusion come with different trade-offs

such as sampling time. Also of interest are non-autoregressive discrete methods for

translation [97; 116; 302] and alignment [38; 304].

There are a number of avenues that would make for interesting future work based

upon the models proposed in this paper: methods that scale diffusion models such

as momentum [72], noise schedules [256], cascaded models [136; 305] and classi-

fier guidance [66] may yield improved performance. Or, to improve discrete image

representations, networks invariant to translation and rotation [182] or other more

powerful generative models could be used. Finally, by conditioning on both text and

discrete image representations, absorbing diffusion models could allow text-to-image

generation and image captioning to be accomplished using a single model with faster

102

run-time than independent approaches [285; 288].

4.4 Conclusion

This chapter introduced a discrete diffusion probabilistic model prior capable of

predicting Vector-Quantized image representations in parallel, overcoming the high

sampling times, unidirectional nature and overfitting challenges associated with au-

toregressive priors. This approach makes no assumptions about the inherent order-

ing of latents by utilising an unconstrained Transformer architecture. Experimental

results demonstrate the ability of the approach to generate diverse, high-quality

images, optionally at resolutions exceeding the training samples.

In contrast to the approach proposed in Chapter 3, this approach is able to gener-

ate significantly higher quality samples, particularly so at high resolutions. However,

these advantages come at the expense of longer sampling times (although faster than

comparable approaches) and the ability to train on arbitrarily high resolution data

is lost.

While these results offer notable improvements over similar approaches, there are

a number of promising research directions in this area that could improve results:

training times are long for both the autoencoder and diffusion stages, while improve-

ments in GPU hardware have already significantly reduced these, improvements in

architectures and types of discrete diffusion could further improve this; similarly,

hardware improvements have already helped scaling to higher resolutions.

Nonetheless, dropping the ability to train/sample on arbitrary resolution data is

a significant downside of such an approach. As such, Chapter 5 explores how complex

high resolution data can be modelled with resolution agnostic models. Specifically,

how the hierarchical unconstrained architectures paired with diffusion, a powerful

generation approach, that proved successful in this chapter can be applied to the

functional data domain. For this, a different approach to modelling functional data

is required; as such, Chapter 5 explores how diffusion models can be defined and

efficiently scaled for modelling functional representations.

103

CHAPTER 5

∞-Diff: Infinite Resolution Diffusion with Subsampled

Mollified States

While the previous chapters introduce new approaches for generating high resolution

data, both approaches have disadvantages. The approach proposed in Chapter 3 uses

neural fields, which naturally allows scaling to high resolutions since coordinates are

directly mapped to values, global context comes from conditioning on a single latent

vector which is quite restrictive, and therefore limits sample quality. In contrast,

the approach proposed in Chapter 4 obtains global context by using powerful spatial

transformations thereby obtaining substantially higher sample quality, particularly

on high resolution datasets. However, this comes at the expense of losing of the

ability to sample at arbitrarily high resolutions. This chapter addresses this di-

chotomy, introducing an approach that allows very high quality data to be sampled

at arbitrarily high resolutions.

In particular, this chapter builds on Gaussian diffusion models [135; 326] because

they have become a dominant choice for data generation, offering stable training and

the ability to high quality samples with excellent mode coverage. Scaling diffusion

models to higher resolutions has been the topic of various recent research, with

approaches including iteratively upsampling lower resolution images [136] and op-

104

erating in a compressed latent space [298]. In prior work, diffusion models have

achieved these properties by assuming that data can be represented with a fixed

uniform grid, allowing powerful spatial transformations to be used, similar to that

used in Chapter 4.

Together with the approach developed in Chapter 3, a number of subsequent

papers also developed methods to represent distributions of data points as continu-

ous functions. These approaches similarly extend neural fields by conditioning the

network on compressed latent vectors to describe single data points. Dupont et al.

[79] first uses meta-learning to compress the dataset into latent conditional neural

fields, then approximates the distribution of latents with a DDPM [135] or Normal-

izing Flow [293]. Zhuang et al. [409] design a diffusion model, with a small subset

of coordinates used to provide context at each step. Finally, some approaches use

hypernetworks to outputs the weight of neural fields including Dupont et al. [80]

who define the hypernetwork as a generator in an adversarial framework, and Du

et al. [76] who use manifold learning to represent the latent space of the hyper-

network. This chapter differs from these works in a number of aspects: 1. these

works only train on low-resolution datasets, whereas this chapter focuses on devel-

oping a framework which can scale to substantially higher resolution, more complex

datasets, particularly by enabling training on subsets of coordinates; 2. these works

rely on compression to a global vector, this means that sample quality quality is

substantially lower than achieved with the approach proposed in this chapter.

In this chapter, an approach is introduced that substantially improves upon

the quality and scaling of infinite dimensional generative models (Fig. 5.1), reduc-

Sample at any resolution
(trained at resolution of red box)

Neural Operators

xt(c) p(x0|xt) x0(c)

Figure 5.1: This chapter defines a diffusion process in an infinite dimensional image
space by randomly sampling coordinates and training a model parameterised by
neural operators to denoise at those coordinates.

105

Figure 5.2: Modelling data as functions allows sampling at arbitrary resolutions
using the same model with different sized noise. Left to right: 64×64, 128×128,
256×256 (original), 512×512, 1024×1024.

ing the gap to finite-dimensional methods, while retaining the benefits of infinite

dimensional models: subsampling coordinates to decouple memory/run-time from

resolution, making scaling more computationally feasible, while also allowing train-

ing and sampling at arbitrary resolutions. This is achieved by designing a Gaussian

diffusion model in an infinite dimensional state space. This chapter argues that

latent-based neural fields cannot effectively be used to parameterise such diffusion

models due to the reliance on compression, going against standard diffusion archi-

tecture design, with it also being impractical to compress states to latents at every

step. Instead, this chapter proposes using non-local integral operators to model

the denoising function, aggregating both global and local information in order to

effectively denoise the data.

Specifically, this chapter proposes ∞-Diff, addressing these issues:

• A new Gaussian diffusion model defined in an infinite-dimensional state space

is introduced that allows infinite resolution data to be generated (see Fig. 5.2).

• A powerful and scalable, function-space architecture is developed that operates

directly on raw sparsely subsampled coordinates, enabling improvements in

run-time and memory usage.

• ∞-Diff achieves state-of-the-art FID scores on multiple high-res image datasets,

trained with up to 8× subsampling, substantially outperforming prior infinite

resolution generative models.

106

5.1 Finite Dimensional Diffusion Models

Before proceeding to introduce diffusion models in infinite dimensional spaces, for

clarity we first recap finite dimensional diffusion models which assume that data lies

on a uniform grid [135; 323]. The discrete time interpretation is formed by defining

a forward process q(x1:T |x0) that gradually adds noise to the data, x0 ∼ q(x0), over

T steps, resulting in a sequence of latent variables x1, . . . ,xT such that q(xT) ≈

N (xT ;0, I). The reverse of this process can also be expressed as a Markov chain

p(x0:T). Choosing Gaussian transition densities chosen to ensure these properties

hold, the densities may be expressed as

q(x1:T |x0) =
T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (5.1)

p(x0:T) = p(xT)
T∏
t=1

p(xt−1|xt), p(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (5.2)

where 0 < β1, . . . , βT < 1 is a pre-defined variance schedule and the covariance is

typically of the form Σθ(xt, t) = σ2
t I. Aiding training efficiency, q(xt|x0) can be

expressed in closed form as q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) where ᾱt =

∏t
s=1 αs

for αs = 1− βs. Training is possible by optimising the evidence lower bound on the

negative log-likelihood which can be expressed as the KL-divergence between the

forward process posteriors and backward transitions at each step

L =
∑
t≥1

Eq

[
DKL(q(xt−1|xt,x0)∥p(xt−1|xt))

]
(5.3)

=
∑
t≥1

Eq

[
1

2σ2
t

∥µ̃t(xt,x0)− µθ(xt, t)∥22
]
. (5.4)

for q(xt−1|xt,x0) = N (xt−1; µ̃t(xt,x0), β̃tI), where µ̃t and β̃t can be derived in

closed form.

107

5.2 Infinite Dimensional Diffusion Models

In this section we extend diffusion models to infinite dimensions in order to allow

higher-resolution data to be trained on by subsampling coordinates during training

and permit training/sampling at arbitrary resolutions. We argue that application

of conditional neural fields to diffusion models is problematic due to the need to

compress to a latent vector, adding complexity and opportunity for error, instead,

the denoising function should be a non-local integral operator with no compression.

A number of parallel works also developed diffusion models in infinite dimensions,

including Kerrigan et al. [184]; Lim et al. [216]; and Franzese et al. [91]; we recom-

mend also reading these works, which go further in the theoretical treatment, while

ours focuses more on design and practical scaling.

To achieve this, we restrict the diffusion state space to a Hilbert space H, ele-

ments of which, x ∈ H, are functions, e.g. x : Rn → Rd. Hilbert spaces are equipped

with an inner product ⟨·, ·⟩ and corresponding norm ∥ · ∥H. For simplicity we con-

sider the case where H is the space of L2 functions from [0, 1]n to Rd although the

following sections can be applied to other spaces. As such, a point in H could rep-

resent an image, audio signal, video, 3D model, etc. A Gaussian measure µ can be

defined in H in terms of its characteristic function µ̂ [59],

µ̂(x) = exp
(
i⟨x,m⟩+ 1

2
⟨Cx, x⟩

)
, (5.5)

where the mean m lies in H, m ∈ H and the covariance operator (C : H → H)

is self-adjoint (denoted C = C∗), non-negative (i.e. C ≥ 0), and trace-class

(
∫
H ∥x∥Hdµ(x) = tr(C) < ∞) [198]. For a Gaussian random element x with dis-

tribution µ, x ∼ N (m,C). The Radon-Nikodym theorem states the existence of a

density for a measure v absolutely continuous with respect to a base measure µ: for

example, the density between two Gaussians is given by Minh [244]; see Kerrigan

et al. [184]; Lim et al. [216] for more detail in the context of functional diffusion

models.

108

White Noise
Diffusion

Mollified
Diffusion

Figure 5.3: Example Diffusion Processes. Mollified diffusion smooths diffusion states
allowing the space to be more effectively modelled with continuous operators.

5.2.1 Mollification

When defining diffusion in infinite dimensions, it may seem natural to use white noise

in the forwards process, where each coordinate is an independent and identically

distributed Gaussian random variable; that is, N (0, CI) where CI(z(s), z(s′)) =

δ(s− s′), using the Dirac delta function δ. However, this noise does not lie in H [59]

with it not satisfying the trace-class requirement. Instead, obtain Gaussian noise in

H by convolving white noise with a mollifier kernel k(s) > 0 corresponding to a linear

operator T , giving N (0, TT ∗), smoothing the white noise to lie inH [129]. To ensure

one-to-one correspondence between kernel and noise, k must satisfy
∫
Rd k(s)ds <∞

and
∫
Rd k

2(s)ds < ∞, making TT ∗ self-adjoint and non-negative. Considering k to

be a Gaussian kernel with smoothing parameter l > 0, h = Tx is given by

h(c) =

∫
Rn

K(c− y, l)x(y) dy, where K(y, l) =
1

(4πl)
n
2

e−
|y|2
4l . (5.6)

5.2.2 Infinite Dimensional Mollified Diffusion

To formulate a diffusion model in H, we must specify the transition distributions.

However, irregularity in data points x can impact stability, leading to the model

being unable to generalise across different subsampling rates/resolutions. This can

be mitigated by careful hyperparameter tuning or, in our case, by also mollifying x

(as with the previous noise mollification); see Fig. 5.3. While the necessity of this

depends on the nature of x, we have included it for completeness. First, we define

109

the marginals

q(xt−1|x0) = N (xt−1;
√
ᾱt−1Tx0, (1− ᾱt−1)TT

∗), (5.7)

q(xt|x0) = N (xt;
√
ᾱtTx0, (1− ᾱt)TT

∗), (5.8)

where coefficients are the same as in Sec. 2.2. From this we are able to derive a

closed form representation of the posterior,

q(xt−1|xt, x0) = N (xt−1; µ̃t(xt, x0), β̃tTT
∗), where

µ̃t(xt, x0) =

√
ᾱt−1βt

1− ᾱt

Tx0 +

√
αt(1− ᾱt−1)

1− ᾱt

xt and β̃t =
1− ᾱt−1

1− ᾱt

βt.
(5.9)

This solution can be seen by considering Bishop and Nasrabadi [24, Eqns. 2.113 to

2.117],

q(xt|x0) = N (xt;µ,Λ
−1), (5.10)

q(xt−1|x0) = N (xt−1;Aµ + b, L−1 + AΛ−1A∗), (5.11)

q(xt−1|xt, x0) = N (xt−1;Axt + b, L−1). (5.12)

From this we can immediately see that µ =
√
ᾱtTx0 and Λ−1 = (1 − ᾱt)TT

∗.

Additionally, Aµ + b = A
√
ᾱtTx0 + b =

√
ᾱt−1Tx0, therefore we can modify the

approach by Ho et al. [135], including T where relevant and set A, b and L−1 as

A =

√
αt(1− ᾱt−1)

1− ᾱt

I, b =

√
ᾱt−1βt

1− ᾱt

Tx0, L−1 =
1− ᾱt−1

1− ᾱt

βtTT
∗ (5.13)

This can be shown to be correct by passing A, b, and L−1 into equations Eqns. 5.10

to 5.12, first:

Aµ + b =

√
ᾱt
√
αt(1− ᾱt−1)

1− ᾱt

Tx0 + b (5.14)

=

√
ᾱt
√
αt(1− ᾱt−1) +

√
ᾱt−1(1− αt)

1− ᾱt

Tx0 (5.15)

=

√
ᾱt−1(αt − ᾱt + 1− αt)

1− ᾱt

Tx0 =
√
ᾱt−1Tx0, (5.16)

110

and secondly,

L−1 + AΛ−1A∗ =
(1− ᾱt−1)(1− αt)

1− ᾱt

TT ∗ +
αt(1− ᾱt−1)

2(1− ᾱt)

(1− ᾱt)2
TT ∗ (5.17)

=
1− ᾱt−1 − αt + ᾱt + αt − 2ᾱt + αtᾱ

2
t−1

1− ᾱt

= (1− ᾱt−1)TT
∗ (5.18)

=
(1− ᾱt)(1− ᾱt−1)

1− ᾱt

TT ∗ = (1− ᾱt−1)TT
∗, (5.19)

which together form q(xt−1|x0).

Defining the reverse transitions similarly as mollified Gaussian densities, pθ(xt−1|xt) =

N (xt−1;µθ(xt, t), σ
2
t TT

∗), then we can parameterise µθ : H,R→ H to directly pre-

dict x0. The loss defined in Eqn. 5.4 can be extended to infinite dimensions [277].

This can be derived by calculating the Kullback-Leibler divergence in infinite di-

mensions [277], for conciseness we ignore additive constants throughout since they

do not affect optimisation,

Lt−1 = Eq

[
1

2σ2
t

∥∥∥∥T−1(µ̃t(xt, x0)− µθ(xt, t))

∥∥∥∥2
H

]
. (5.20)

To find a good representation for µθ we expand out µ̃t as defined in Eqn. 5.9 in the

above loss giving

Lt−1 = Eq

 1

2σ2
t

∥∥∥∥∥∥T−1

(√
ᾱt−1βt

1− ᾱt

Tx0 +

√
αt(1− ᾱt−1)

1− ᾱt

xt − µθ(xt, t)

)∥∥∥∥∥∥
2

H

 . (5.21)

From this we can see that one possible parameterisation is to directly predict x0,

that is,

µθ(xt, t) =

√
ᾱt−1βt

1− ᾱt

Tfθ(xt, t) +

√
αt(1− ᾱt−1)

1− ᾱt

xt. (5.22)

This parameterisation is interesting because when sampling, we can use the output

of fθ to directly obtain an estimate of the unmollified data. Additionally, when cal-

culating the loss Lt−1, all T and T−1 terms cancel out meaning there are no concerns

with reversing the mollification during training, which can be numerically unstable.

To see this, we can further expand out Eqn. 5.21 using the parameterisation of µθ

111

defined in Eqn. 5.22,

Lt−1 = Eq

[
1

2σ2
t

∥∥∥∥T−1

(√
ᾱt−1βt

1− ᾱt

Tx0 +

√
αt(1− ᾱt−1)

1− ᾱt

xt

−
√
ᾱt−1βt

1− ᾱt

Tfθ(xt, t)−
√
αt(1− ᾱt−1)

1− ᾱt

xt

)∥∥∥∥2
H

] (5.23)

= Eq

[
1

2σ2
t

∥∥∥∥√ᾱt−1βt

1− ᾱt

x0 −
√
ᾱt−1βt

1− ᾱt

fθ(xt, t)

∥∥∥∥2
H

]
(5.24)

= Eq

[√
ᾱt−1βt

2σ2
t (1− ᾱt)

∥∥x0 − fθ(xt, t)
∥∥2
H

]
. (5.25)

Using this parameterisation, we can sample from pθ(xt−1|xt) as

xt−1 =

√
αt(1− ᾱt−1)

1− ᾱt

xt+T

√
ᾱt−1βt

1− ᾱt

fθ(xt, t)+σtξ where ξ ∼ N (0, TT ∗). (5.26)

Alternatively, we can parameterise µ̃ to predict the noise ξ rather than x0, which

was found by Ho et al. [135] to yield higher sample quality. To see this, we can

write Eqn. 5.8 as xt(x0, ξ) =
√
ᾱtTx0 +

√
1− ᾱtξ. Expanding out Eqn. 5.20 with

this gives the following loss,

Lt−1 = Eq

[
1

2σ2
t

∥∥∥∥T−1

(
µ̃(xt, x0)− µθ(xt, t)

)∥∥∥∥2
H

]
(5.27)

= Eq

[
1

2σ2
t

∥∥∥∥T−1

(
µ̃(xt(x0, ξ),

1√
ᾱt

T−1(xt(x0, ξ)−
√

1− ᾱtξ))− µθ(xt, t)

)∥∥∥∥2
H

]
(5.28)

= Eq

 1

2σ2
t

∥∥∥∥∥∥T−1

(
1
√
αt

(
xt(x0, ξ)− βt√

1− ᾱt

ξ

)
− µθ(xt, t)

)∥∥∥∥∥∥
2

H

 . (5.29)

As such, this prompts the following parameterisation of µθ, and therefore the loss

112

can be further simplified to the following,

µθ(xt, t) =
1
√
αt

[
xt −

βt√
1− ᾱt

fθ(xt, t)

]
, (5.30)

Lt−1 = Eq

 1

2σ2
t

∥∥∥∥∥ 1
√
αt

T−1

(
βt√

1− ᾱt

fθ(xt, t)−
βt√

1− ᾱt

ξ

)∥∥∥∥∥
2

H

 . (5.31)

In this case T−1 is a linear transformation that does not affect the minima. In

addition to this, we can remove the weights as suggested by Ho et al. [135], giving

the following proxy loss,

Lsimple
t−1 = Eq

[∥∥fθ(xt, t)− ξ
∥∥2
H

]
. (5.32)

An alternative parameterisation which can train more reliably is v-prediction [148;

307]; we experimented with this parameterisation but found ξ-prediction to yield

higher quality samples. The concurrent work by Kerrigan et al. [184] showed that

in the infinite-dimensional limit, the loss will be finite only for specific choices of β̃t,

while Lim et al. [216] found similar only for specific parameterisations of µθ; however,

since the loss is Monte-Carlo approximated, this is not problematic in practice.

Data Mollification By mollifying the training data x0 to ensure regularity, re-

sulting samples are similarly regular; directly predicting x0 would give an estimate

of the original data, but by predicting ξ we are only able to sample Tx0. However,

in the case of the Gaussian mollifier kernel with adequate boundary conditions, the

existence of the inverse T−1 is clear if we consider the Fourier transform of x(c),

denoted x̂(ω), then the Gaussian convolution can be defined by ĥ(ω) = e−ω2tx̂(ω).

And so Tx is one-to-one on any class of Fourier transformable functions, with Tx

being bounded ensuring uniqueness and therefore invertibility [167]. Explicitly, the

inverse is given by x̂(ω) = eω
2tĥ(ω) [155]. However, inverting is ill-conditioned, with

arbitrarily small changes (for instance by floating point error) destroying smooth-

ness [155]. In this case, the Wiener filter can for instance be used as an approximate

inverse, defined as x̃(ω) = e−ω2t

e−2(ω2t)+ϵ2
ĥ(ω), where ϵ is an estimate of the inverse SNR

[23].

113

5.3 Parameterising the Diffusion Process

In order to model the denoising function in Hilbert space, there are certain properties

that is essential for the class of learnable functions to satisfy so as to allow training

on infinite resolution data:

1. Can take as input points positioned at arbitrary coordinates.

2. Generalises to different numbers of input points than trained on, sampled on

a regular grid.

3. Able to capture both global and local information.

4. Scales to very large numbers of input points, i.e. efficient in terms of runtime

and memory.

Recent diffusion models often use a U-Net [300] consisting of a convolutional encoder

and decoder with skip-connections between resolutions allowing both global and

local information to be efficiently captured. Unfortunately, U-Nets function on a

fixed grid making them unsuitable. However, we can take inspiration to build an

architecture satisfying the desired properties.

5.3.1 Neural Operators

Neural Operators [195; 213] are a framework designed for efficiently solving partial

differential equations by learning to directly map the PDE parameters to the solution

in a single step. However, more generally they are able to learn a map between two

infinite dimensional function spaces making them suitable for parameterising an

infinite dimensional diffusion model.

Let X and S be separable Banach spaces representing the spaces of noisy and

denoised data respectfully; a neural operator is a map Fθ : X → S. Since x ∈ X

and s ∈ S are both functions, we only have access to pointwise evaluations. Let

c ∈
(
D
m

)
be an m-point discretisation of the domain and assume we have observations

x(c) ∈ Rm×d. To be discretisation invariant, the neural operator may be evaluated

at any c ∈ D, potentially c /∈ c, thereby allowing a transfer of solutions between

different discretisations i.e. satisfying properties 1 and 2. Each operator layer is

built using a non-local integral kernel operator, K(x;ϕ), parameterised by neural

114

network κϕ, aggregating information spatially,

(K(x;ϕ)vl)(c) =

∫
D

κϕ(c, b, x(c), x(b))vl(b) db, ∀c ∈ D. (5.33)

Deep networks can be built in a similar manner to conventional methods, by stacking

layers of linear operators with non-linear activation functions, v0 7→ v1 7→ · · · 7→ vL

where vl 7→ vl+1 is defined as

vl+1(c) = σ(Wvl(c) + (K(x;ϕ)vl)(c)), ∀c ∈ D, (5.34)

for pointwise linear transformation W : Rd → Rd and non-linear activation function

σ : R → R. One approach of interest is the Fourier Neural Operator (FNO) [214],

defined as

(K(x;ϕ)vl)(c) = F−1
(
Rϕ · (Fvt)

)
(c), ∀c ∈ D, (5.35)

where F is the Fourier transform, and Rϕ is learned transformation in Fourier space.

When coordinates lie on a regular grid, the fast fourier transform can be used,

making FNOs fast and scalable.

5.3.2 Multi-Scale Architecture

While neural operators which satisfy all the required properties (1-4) exist, such as

Galerkin attention [35] (a softmax-free linear attention operator) and MLP-Mixers

[343], scaling beyond small numbers of coordinates is still challenging due to the

high memory costs associated with caching activations for backpropagation. In-

stead we design a U-Net inspired multi-scale architecture (Fig. 5.4) that aggregates

information locally and globally at different points.

In a continuous setting, there are two main approaches to downsampling: (1)

selecting a subset of coordinates [370] and (2) interpolating points to a regularly

spaced grid [287]. We found that with repeated application of (1), approximating

integral operators on non-uniformly spaced grids with very few points did not per-

form nor generalise well, likely due to the high variance. On the other hand, while

working with a regular grid removes some sparsity properties, issues with variance

115

Sparse Neural Operators∫
N(c)

κ(c− y)v(y)dy,∀c∈D
v(c)

W

+ σ

k-NN
lerp

k-NN
lerp

⊕

⊕

⊕

Figure 5.4: ∞-Diff uses a hierarchical architecture that operates on irregularly sam-
pled functions at the top level to efficiently capture fine details, and on fixed grids at
the other levels to capture global structure. This approach allows scaling to complex
high resolution data.

are much lower. As such, we use a hybrid approach with sparse operators applied

on the raw irregularly sampled data to local regions; after this points are interpo-

lated to a regular grid and a grid-based architecture is applied in order to aggregate

global information; if the regular grid is of sufficiently high dimension, this combi-

nation should be sufficient. While an FNO [214; 287] architecture could be used, we

achieved better results with dense convolutions [256], with sparse operators used for

resolution changes.

5.3.3 Efficient Sparse Operators

At the sparse level we use convolution operators [195], finding them to be more

performant than Galerkin attention, with global context no longer essential due to

the multiscale architecture. In this case, the operator is defined using a translation

invariant kernel restricted to the local neighbourhood of each coordinate, N(c),

x(c) =

∫
N(c)

κ(c− y)v(y) dy, ∀c ∈ D. (5.36)

We restrict κ to be a depthwise kernel due to the greater parameter efficiency for

large kernels (particularly for continuously parameterised kernels) and finding that

116

they are more able to generalise when trained with fewer sampled coordinates; al-

though the sparsity ratio is the same for regular and depthwise convolutions, because

there are substantially more values in a regular kernel, there is more spatial corre-

lation between values. When a very large number of sampled coordinates are used,

fully continuous convolutions are extremely impractical in terms of memory usage

and run-time. In practice, however, images are obtained and stored on a discrete

grid. As such, by treating images as high dimensional, but discrete entities, we

can take advantage of efficient sparse convolution libraries [52; 55], making mem-

ory usage and run-times much more reasonable. Specifically, we use TorchSparse

[336], modified to allow depthwise convolutions. Wang and Golland [370] proposed

using low discrepancy coordinate sequences to approximate the integrals due to

their better convergence rates. However, we found uniformly sampled points to be

more effective, likely because the reduced structure results in points sampled close

together which allows high frequency details to be captured more easily.

5.4 Experiments

In this section we demonstrate that the proposed mollified diffusion process mod-

elled with neural operator based networks and trained on coordinate subsets are

able to generate high quality, high resolution samples. We explore the properties

of this approach including discretisation invariance, the impact of the number of

coordinates during training, and compare the sample quality of our approach with

other infinite dimensional generative models. We train models on 256×256 datasets,

FFHQ [179] and LSUN Church [385], as well as CelebA-HQ [178]; unless otherwise

specified models are trained on 1/4 of pixels (to fit in memory), randomly selected.

When training diffusion models, very large batch sizes are necessary due the high

variance [148], making training on high resolution data on a single GPU impractical.

To address this, we use the diffusion autoencoder framework [279] which reduces

stochasticity by dividing the generation process into two stages. To encode data

we use the first half of our proposed architecture (Fig. 5.4), which still operates

on sparsely sampled coordinates. When sampling, we use the deterministic DDIM

117

interpretation with 100 steps.

Implementation Details All 256×256 models are trained on a single NVIDIA

A100 80GB GPU using automatic mixed precision. Optimisation is performed using

the Adam optimiser [189] with a batch size of 32 and learning rate of 5×10−5;

each model being trained to optimise validation loss. Each model is trained as a

diffusion autoencoder to reduce training variance, allowing much smaller batch sizes

thereby permitting training on a single GPU. A latent size of 1024 is used and the

latent model architecture and diffusion hyperparameters are the same as used by

Preechakul et al. [279]. In image space, the diffusion model uses a cosine noise

schedule [256] with 1000 steps. Mollifying is performed with Gaussian blur with a

variance of 1.0.

For the image-space architecture, 3 sparse residual convolution operator blocks

are used on the sparse data. Each of these consist of a single depthwise sparse

convolution layer with kernel size 7 and 64 channels with the output normalised by

the total number of coordinates in each local region, followed by a three layer MLP.

Modulated layer normalisation [10; 256], which adds an extra affine transformation

with the offset and scale determined by a linear projection of the diffusion time

step embedding, is used to normalise and condition on the diffusion time step.

These blocks use larger convolution kernels than typically used in diffusion model

architectures to increase the number of coordinates present in the kernel when a

small number of coordinates are sampled. Using large kernel sizes paired with MLPs

has found success in recent classification models such as ConvNeXt [224].

As mentioned in Sec. 5.3.2, for the grid-based component of our architecture

we experimented with a variety of U-Net shaped fourier neural operator [214; 287]

architectures; although these more naturally allow resolution changes at those levels,

we found this came with a substantial drop in performance. This was even the case

when operating at different resolutions. As such, we use the architecture used by

Nichol and Dhariwal [256] fixed at a resolution of 128×128; the highest resolution

uses 128 channels which is doubled at each successive resolution up to a maximum

factor of 8; attention is applied at resolutions 16 and 8, as is dropout, as suggested by

118

Figure 5.5: Samples from ∞-Diff models trained on sets of randomly subsampled
coordinates.

Hoogeboom et al. [148]. Although this places more emphasis on the sparse operators

for changes in sampling resolution, we found this approach to yield better sample

quality across the board. As a result, the full model has 500M parameters.

Sample Quality Samples from our approach can be found in Fig. 5.5 which are

high quality, diverse, and capture fine details. In Tab. 5.1 we quantitatively compare

with other approaches that treat inputs as infinite dimensional data, as well as

more traditional approaches that assume data lies on a fixed grid. As proposed by

Kynkäänniemi et al. [203], we calculate FID [128] using CLIP features [285] which

is better correlated with human perception of image quality. Our approach scales

Method CelebAHQ-64 CelebAHQ-128 FFHQ-256 Church-256

Finite-Dimensional

CIPS [5] - - 5.29 10.80
StyleSwin [389] - 3.39 3.25 8.28
StyleGAN2 [181] - 2.20 2.35 6.21

Infinite-Dimensional

D2F [79] 40.4∗ - - -
DPF [409] 13.21∗ - - -
GEM [76] 14.65 23.73 35.62 87.57
GASP [80] 9.29 27.31 24.37 37.46
∞-Diff 4.57 3.02 3.87 10.36

Table 5.1: FIDCLIP [203] evaluation against finite-dimensional methods as well
as other infinite-dimensional approaches which are trained on coordinate subsets.
∗=Inception FID.

119

∞-Diff

GASP [80] GEM [76]

DPF [409] D2F [79]

Figure 5.6: Qualitative comparison with other infinite dimensional approaches.

to high resolutions much more effectively than the other function-based approaches

as evidenced by the substantially lower scores. Visual comparison between samples

from our approach and other function-based approaches can be found in Fig. 5.6

where samples from our approach can be seen to be higher quality and display

more details without blurring or adversarial artefacts. All of these approaches are

based on neural fields [382] where coordinates are treated independently; in contrast,

our approach uses neural operators to transform functions using spatial context

thereby allowing more details to be captured. Both GASP [80] and GEM [76]

rely on compressed latent-conditional hypernetworks which makes efficiently scaling

difficult. D2F [79] relies on a deterministic compression stage which loses detail

due to the finite vector size. DPF [409] uses small fixed sized coordinate subsets as

global context with other coordinates modelled implicitly, thereby causing blur.

Discretisation Invariance In Fig. 5.2 we demonstrate the discretisation invari-

ance properties of our approach. After training on random coordinate subsets from

256×256 images, we can sample from this model at arbitrary resolutions which we

show at resolutions from 64×64 to 1024×1024 by initialising the diffusion with

different sized noise. We experimented with (alias-free) continuously parameterised

kernels [299] but found bi-linearly interpolating kernels to be more effective. At each

resolution, even exceeding the training data, samples are consistent and diverse. In

Fig. 5.7 we analyse how the number of sampling steps affects quality at different

sampling resolutions.

Architecture Analysis In Tab. 5.2 we ablate the impact of various architecture

choices against the architecture described in Sec. 5.3.2, matching the architecture as

120

20 40 60 80 100

5

10

15

Sampling Steps

F
ID

C
L
IP

128
256
512

Figure 5.7: FIDCLIP

at various steps &
resolutions.

Architecture FID

Sparse Downsample 85.99
Nonlinear Kernel 24.49
Quasi Monte Carlo 7.63
Regular Convs 5.63
∞-Diff 4.75

Table 5.2: Architectural com-
ponent ablations in terms of
FIDCLIP.

Ratio FIDCLIP Speedup

1 3.15 1.0×
1/2 4.12 1.0×
1/4 4.75 1.3×
1/8 6.48 1.6×

Table 5.3: Impact of coordi-
nate sparsity on quality for
FFHQ 128. FIDCLIP calculated
with 10k samples.

closely as possible. In particular, sparse downsampling (performed by randomly sub-

sampling coordinates; we observed similar with equidistant subsampling, Qi et al.,

2017) fails to capture the distribution. Similarly using a spatially nonlinear kernel

(Eqn. 5.33), implemented as conv, activation, conv, does not generalise well unlike

linear kernels (we observed similar for softmax transformers, Kovachki et al., 2023).

Coordinate Sparsity One factor influencing the quality of samples is the number

of coordinates sampled during training; fewer coordinates means fewer points from

which to approximate each integral. We analyse the impact of this in Tab. 5.3,

finding that as expected, performance decreases with fewer coordinates; however,

this effect is fairly minimal. With fewer coordinates also comes substantial speedup

and memory savings; at 256×256 with 4× subsampling the speedup is 1.4×.

Figure 5.8: Super-
resolution

Super-resolution The discretisation invariance of

the proposed approach makes superresolution a natu-

ral application. We evaluate this in a simple way, pass-

ing a low resolution image through the encoder, then

sampling at a higher resolution; see Fig. 5.8 where it is

clear that more details have been added. A downside

of this specific approach is that information is lost in the encoding process; however,

this could potentially by improved by incorporating DDIM encodings [325].

121

Original ts=200 ts=350

Figure 5.9: Inpainting.

Inpainting Inpainting is possible with mollified dif-

fusion (Fig. 5.9), using reconstruction guidance [137],

xt−1 ← xt−1−λ∇xt∥m⊙ (µ̃0(xt, t)−T x̄)∥22 for inpaint-

ing mask m, learned estimate of Tx0, µ̃0, and image to

be inpainted x̄. The diffusion autoencoder framework

gives an additional level of control when inpainting

since the reverse diffusion process can be applied to encodings from a chosen time

step ts, allowing control over how different the inpainted region is from the original

image.

Additional Samples and Nearest Neighbours Here, we provide additional

samples from our models to visually assess quality (Figs. 5.10 to 5.12). Detecting

overfitting is crucial when training generative models. Scores such as FID are unable

to detect overfitting, making identifying overfitting difficult in approaches such as

GANs. Because diffusion models are trained to optimise a bound on the likelihood,

training can be stopped to minimise validation loss. As further evidence we pro-

vide nearest neighbour images from the training data to samples from our model,

measured using LPIPS [396] (Figs. 5.13 to 5.15).

Quantitative Comparison with Previous Chapters ∞-Diff addresses the

challenges associated with scaling implicit GONs, the method introduced in Chapter

3 by using stochastic rather than deterministic reconstruction from latents, as well as

using a more scalable multi-scale architecture that operates over images rather than

being coordinate-wise independent. As such, ∞-Diff achieves substantially higher

image quality than implicit GONs, as can be seen in Tab. 5.4. Here, only datasets

with resolution greater than 32×32 are used. Furthermore, ∞-Diff achieves more

comparable quantitative metrics on 256×256 datasets to UT, proposed in Chapter

4, despite being being resolution agnostic like implicit GONs. Additionally, it is

worth noting that since ∞-Diff is a diffusion model, it does not suffer from mode

collapse; in contrast, UT which uses a VQGAN results in partial mode collapse.

However, this is not captured by the FID metric.

122

Figure 5.10: Non-cherry picked, CelebA-HQ 256×256 samples.

123

Figure 5.11: Non-cherry picked, LSUN Church 256×256 samples.

124

Figure 5.12: Non-cherry picked, FFHQ 256×256 samples.

125

Figure 5.13: Nearest neighbours for a model trained on CelebA-HQ based on LPIPS
distance. The left column contains samples from our model and the right column
contains the nearest neighbours in the training set (increasing in distance from left
to right)

Figure 5.14: Nearest neighbours for a model trained on LSUN Church based on
LPIPS distance. The left column contains samples from our model and the right
column contains the nearest neighbours in the training set (increasing in distance
from left to right)

126

Figure 5.15: Nearest neighbours for a model trained on FFHQ based on LPIPS
distance. The left column contains samples from our model and the right column
contains the nearest neighbours in the training set (increasing in distance from left
to right)

Method CelebAHQ-64 CelebAHQ-128 FFHQ-256 Church-256 Bed-256

I-GON (Chapter 3) 21.41 36.72 44.65 72.29 66.40

UT (Chapter 4) - - 3.05 5.52 4.53

∞-Diff (Chapter 5) 4.57 3.02 3.87 10.36 12.41

Table 5.4: FIDCLIP [203] evaluation against the methods proposed in the previous
chapters. UT is designed for resolutions 256×256 and higher so is not evaluated on
CelebAHQ-64 and CelebAHQ-128.

A downside of the reduced mode collapse of diffusion over VQGAN meaning a

larger batch size is necessary, as well as the overhead involved with operating on a

continuous signal is the increased memory requirements. As such, it is not possible to

train ∞-Diff on the NVIDIA 2080Ti GPU used in previous chapters. Additionally,

more time is required to train ∞-Diff than UT (Tab. 5.5). It is worth noting,

however, that both approaches require substantially less compute than comparable

methods, with StyleSwin [389] for instance being trained for 2 weeks using 8× more

GPUs.

127

NVIDIA RTX 2080Ti NVIDIA A100

Method Training Sampling (s) Training Sampling (s)

I-GON (Chapter 3) <1 day 0.25s <1 day 0.17s

UT (Chapter 4) ≈2 weeks 1.29s < 1 week 0.69s

∞-Diff (Chapter 5) OOM 3.74s 1-2 weeks 2.29s

Table 5.5: Approximate time to train a model on a 256×256 dataset and the time
to sample a single 256×256 image.

5.5 Discussion

There are a number of interesting directions to improve our approach including more

powerful/efficient neural operators, more efficient sparse methods, better integral ap-

proximations, and improved UNet design [376]. Having demonstrated that diffusion

models can be trained with 8× subsampling rates, we believe there is substantial

room for further performance gains. Also of interest are recent works which speed

up diffusion sampling by iteratively upsampling throughout the backwards process,

requiring a separate model for each resolution [166; 393]; the resolution invariance

of our approach permits this with a single model.

Recent diffusion advances are also complementary to our approach, these in-

clude consistency models [330], stochastic interpolants [2], Schrödinger bridges [62],

critically-damped diffusion [71], architecture improvements [148], and faster solvers

[228]. Similar to our mollified diffusion, blurring has been used to improve diffusion

[141; 295]. Similar to GASP [80], other neural field GAN approaches exist such

as CIPS [5] and Poly-INR [319]; however, these approaches use convolutional dis-

criminators requiring all coordinates on a fixed grid, preventing scaling to infinite

resolutions. Also of relevance are Neural Processes [84; 94] which learn distributions

over functions similar to Gaussian Processes; however, these approaches address

conditional inference, whereas we construct an unconditional generative model for

substantially more complex data.

Concurrent with this work, other papers independently proposed diffusion mod-

128

els in infinite dimensions [12; 91; 124; 184; 216; 276; 409], these approaches are com-

plementary to ours and distinct in a number of ways. While our work focuses on

the practical development necessary to efficiently model complex high-dimensional

data, these papers instead focus more on theoretical foundations, typically being

only applied to simple data (e.g. Gaussian mixtures and MNIST). Of particular

interest, Kerrigan et al. [184] also develop diffusion models in Hilbert space, going

further than our work in foundational theory, including more on the requirements

to obtain well-posed models, as well as considering different function spaces; [216]

develop infinite-dimensional diffusion defined as SDEs; and Franzese et al. [91] prove

the existence of the backwards SDE. Unlike our work, these approaches make use

of conditional neural fields or operate on uniform grids of coordinates, whereas our

approach operates on raw sparse data, enabling better scaling. The closest to this

work in terms of scaling is Diffusion Probabilistic Fields [409] which denoises coor-

dinates independently using small coordinate subsets for context; this is much more

restrictive than our approach and resolutions are much smaller than ours (up to

64×64).

5.6 Conclusion

This chapter introduced a new type of denoising diffusion model defined in an

infinite-dimensional Hilbert space with transition densities represented by non-local

integral operators, able to generate high-quality samples at arbitrary resolutions.

Despite only observing subsets of pixels during training, sample quality is compet-

itive with state-of-the-art models trained on all pixels at once, with the benefit of

faster training and lower memory requirements due to the sparsity of the training

samples.

Prior infinite dimensional approaches, as well as the approach introduced in

Chapter 3 use latent conditional neural fields which is a severely limiting constraint.

In contrast, the approach introduced in this chapter operates directly on the raw

sparse data, offering significant performance advantages by not treating all coor-

dinates independently, showing that neural operators are a capable alternative to

129

neural fields.

Evaluating the approach on a variety of complex high resolution datasets, namely

CelebA-HQ [178], FFHQ [179], and LSUN Church [385] demonstrates superior sam-

ple quality over other infinite dimensional approaches, as evidenced visually in

Fig. 5.6 and quantitatively by the substantially lower FID scores.

There are a number of key directions to improve this approach. One component

is the usage of sparse convolution operators; these are crucial for the success of

the approach, without which sample quality would be much lower. Increasing the

sparsity of the training data requires using larger convolution kernels to ensure there

are sufficiently many points from which to approximate the convolution; however,

this also affects runtime particularly at test time. As such, the development of new

efficient and scalable sparse neural operators which can be approximated with few

coordinates will surely aid future scaling of this approach.

130

CHAPTER 6

Conclusion

Recent developments in deep generative modelling has led to an influx in applications

in a variety of areas from pure generative models such as text, image, video, and

text to other modality generation, to more general applications including expanding

training datasets, active learning, and representation learning. A major challenge in

this field is efficiently scaling generative models to higher dimensional data, allowing

for instance higher resolution images, longer videos, and high sample-rate audio to

be synthesised. The majority of prior work focuses on scaling through training and

architectural improvements; in many cases using a brute force approach that requires

a large number of GPUs making it impractical for smaller institutions/individuals

to effectively replicate.

This thesis began by introducing a comprehensive overview of the wide assort-

ment of generative modelling approaches, old and new, in order to provide different

perspectives into generative modelling. The assortment of properties associated

with each approach are explored, including methods to scale to high resolutions,

and how hybrids between approaches can trade off advantages/disadvantages. To

address the problems associated with scaling to very high dimensional data, this

thesis addressed the problem from a direct perspective, with each following chapter

131

Table 6.1: Comparison between methods introduced in this thesis.

Method Train
Speed

Sample
Speed

Num.
Params.

Resolution
Scaling

GONs (Chapter 3) ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆
UT (Chapter 4) ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆
∞-Diff (Chapter 5) ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆

introducing a new approach that is able to more efficiently represent very high di-

mensional data, taking a particular focus on the infinite dimensional regime. The

following section outlines the main contributions of the thesis.

6.1 Contributions

Chapter 2 reviews the extremely broad field of generative modelling, extensively

covering the various different classes of approaches. This chapter aims to bring the

reader up to date with current research, understanding the history leading up to

current innovations, and what prompts them. Specifically, energy-based models,

diffusion and score-based models, variational autoencoders, generative adversarial

networks, autoregressive models, and normalizing flows are covered. This chapter

draws connections between these classes, with each addressing problems associated

with the others, characterising disadvantages in the process. Within Chapter 2,

Tab. 2.1 compared a broad range of deep generative models. This is expanded in

Tab. 6.1, adding the approaches developed within this thesis. From this table, it

is clear to see that compared to GONs (Chapter 3), UT (Chapter 4) and ∞-Diff

(Chapter 5) trade off training speed, sampling speed, and use more parameters, in

order to scale to higher resolutions and obtain higher image quality. While GONs

practically can generate arbitrarily high resolutions, meaning it is arguable that they

should have a 5 star rating, because at these resolutions the quality is lacking, a 2

star rating has been assigned.

Chapter 3 proposes using empirical Bayes to approximate the latent posterior

of implicit generative models, rather than using an explicit encoding network as is

typical. This is achieved by initialising a latent vector with zeros, then using the

gradient of the log-likelihood of the data with respect to that vector as new latent

points. As such, this approach can be applied to neural fields, allowing a space

of functions to be learned without the need for hypernetworks, encoders, nor meta-

132

learning. The approach is evaluated by comparing against comparable autoencoders

and variational autoencoders on a variety of simple datasets including MNIST [206],

CIFAR-10 [196], and CelebA [225] where quantitative results are shown to be com-

parable or better despite the lack of an explicit encoder. Visually samples are diverse

and can represent fine details; however, similar to comparable approaches they are

blurry as a result of compressing to small latents. The impact of various components

are analysed including latent dimension, activation function, and number of gradient

steps. Since neural fields can be evaluated at arbitrary coordinates, this approach

can be used for super-resolution; despite never observing high resolution data, when

evaluated at higher resolutions, samples show considerable detail demonstrating that

the underlying data is well understood.

Addressing the blurry nature of samples produced in Chapter 3 as a result of

using coordinate-wise functions conditioned on compressed latents, Chapter 4 intro-

duces an approach for high quality and high resolution image generation through

the use of a powerful diffusion-based prior that utilises global context. Rather than

compressing to a single latent vector, images are compressed to sets of discrete codes,

where each code is a vector that contains substantial amounts of information. A

discrete diffusion model parameterised by an unconstrained Transformer is used to

represent the distribution of these discrete representations thereby achieving bet-

ter sample quality while also having a much faster runtime than prior approaches.

This approach is evaluated on much more complex and higher resolution datasets,

FFHQ [179], LSUN Church and LSUN Bedroom [385], with state-of-the-art results

demonstrated in terms of precision and recall metrics [250] as well as competitive

FID [128]. While this approach can also be used to generate samples higher than

the resolution of the training data, by generating compressed representations with

larger spatial sizes, these can be thought of as extensions of images, or out-paintings,

rather than true higher resolution samples. Additionally, in Fig. 4.9a, this chapter

explored how the temperature parameter impacts the diversity of samples. In future

work it would be interesting to explore how what biases are present and how they

can be identified by modifying such a parameter.

Chapter 5 draws together the findings of the previous chapters, proposing an ap-

133

proach that is able to represent infinite dimensional data, while using spatial trans-

formations to provide global context rather than relying on compression, thereby

producing very high quality samples. This is achieved by using a mollified-state

diffusion model which smooths states to be continuous, thereby allowing transition

densities to be represented by neural operators. In order to efficiently represent

infinte dimensional transition densities, this chapter introduces a hybrid operator

architecture that operates on raw sparse data in the infinite dimensional regime,

while discretising and operating on uniform grids to efficiently capture global con-

text. In contrast to the approach in Chapter 4, the approach in this chapter is

trained on sparsely sampled coordinates allowing better scaling; and in contrast

to the approach in Chapter 3 and prior infinite dimensional approaches, operating

directly on the raw data rather than relying on compression allows much more ex-

pressive models to be built. These advantages are corroborated by the substantially

lower FID scores achieved compared to prior approaches.

6.2 Limitations and Future Work

While each approach introduced in this thesis makes strides to allow higher dimen-

sional data to be efficiently modelled, solving challenges and allowing new problems

to be solved, no single approach offers a complete solution. This section discusses

the limitations of the approaches introduced and associated challenges, how combi-

nation with concurrent work enables some of these to be at least partially addressed,

as well as suggesting some promising avenues of future research.

6.2.1 Further Scaling

The primary topic of this thesis is efficient scaling of generative models to high-

dimensional data while providing favourable properties such as good mode coverage

and high quality sample, with Chapters 3 and 5 addressing this by enabling coor-

dinate subsampling to allow Monte-Carlo approximating the loss function thereby

enabling higher resolution data to be more efficiently modelled. Nonetheless, there is

substantial room to further improve in this regard to allow ever higher dimensional

134

data to be modelled.

∞-Diff proposes that the main limitation with neural field methods such as GONs

is the over reliance on latent compression, and as such, integral operators are a better

choice. In contrast, concurrent work by Bauer et al. [16] propose increasing the

representation capacity of latents by arranging them spatially, demonstrating that

this approach enables more complex data to be represented. This approach allows

more easily sampling at arbitrary coordinates due to the independence properties of

neural fields, with ∞-Diff relying on efficient sparse convolution libraries; however,

this comes at the expense of having to approximate latents during training in a slow

iterative optimisation procedure, necessitates a 2-stage model due to the need to also

represent the latents, and in practice for the best performing cases, the latents only

minimally compress the raw data raising questions of how this approach would scale.

Moreover, this approach cannot easily be used to parameterise diffusion models

meaning that integral operators are much more applicable in this highly important

scenario.

As such, an important area of future work is developing neural integral operators

than are able to efficiently scale to very large numbers of arbitrarily positioned sparse

coordinates. However, recent work on more efficient neural operators primarily

focuses on uniformly spaced training data [194]. For more effective sparse methods,

approaches such as RIN [160] are a promising alternative, decoupling computation

from data dimensionality by moving computation to a set of expressive latents which

can then more efficiently “read” and “write” into the raw data using cross-attention.

Such an approach would be able to operate on arbitrarily positioned coordinates,

while scaling considerably more favourably than full self-attention based approaches.

Finally, in future work it would be interesting to apply∞-Diff to other modalities

such as video and 3D. The additional dimensions provide extra regularity which

should allow for even more aggressive subsampling during training and therefore

provide even greater levels of speedup and memory reductions.

135

6.2.2 Training/Sampling Times

The three approaches introduced in this thesis offer three different degrees of sam-

pling tames, making different trade-offs in the process in terms of mode coverage

and sample quality. Both Unleashing Transformers and ∞-Diff make use of dif-

fusion models therefore use slow iterative sampling. There has been considerable

recent research improving this area. For example, Lu et al. [228] introduce an ODE

sampler for diffusion models requiring around 10 steps. However, this approach

is not applicable to discrete state space like in Unleashing Transformers and is an

important area for future research. There has also been considerable research into

distilling models to allow single or few step sampling [330]. Also of interest are re-

cent methods which regularise the mappings between distributions so that paths are

straighter and therefore easier to integrate over [345]. None of these approaches are

perfect, with the number of steps required still often scaling with data dimension.

Developing a model which has the excellent quality and mode coverage of diffusion

models, while can be sampled with a single or few steps is an important topic of

future work since it will drastically reduce energy usage for training/sampling.

6.2.3 Mode Coverage

As discussed in Chapter 1, a key property to strive for when developing generative

models is good mode coverage. Likelihood-based models such as the VAE and

diffusion methods in Chapters 3 and 5 excel in this space since directly maximising

(a bound on) the likelihood ensures that all training data points are considered

in the final trained model. In contrast, to enable efficient scaling, the approach

in Chapter 4 uses a VAE-GAN based compression scheme to aid scaling. While

the GAN component is crucial for high sample quality [86], it results in a minor

level of “local” mode collapse around data points. In many applications this is

a fairly inconsequential downside, but in some cases such as medical imaging the

corresponding minor hallucinations have the potential to be catastrophic. While

this can be reduced to a negligible level, by reducing the compression level, future

work could instead make use of stochastic compression techniques [279], but more

136

work is needed to make this approach as scalable.

6.2.4 Applications

The developments in this thesis to allow efficient scaling of deep generative models

opens up opportunities for new applications. For example, the ability to extract

useful feature representations without an encoding network, proposed in Chapter 3,

has been applied in a recent work by Karnewar et al. [176] to enable 3D generative

models to be trained on only 2D image views. Here, a GON-style encoder mod-

ule was used to extract local 3D feature representations from multiple 2D image

views which can then be used in a 3D diffusion model for generation. Furthermore,

the scalability, unconstrained nature, and additional in-built regularisation of the

approach proposed in Chapter 4 has been taken advantage of in works by Corona-

Figueroa et al. [57]; Jiang et al. [165]; and Lin et al. [217]. More generally, recent

improvements in the quality of generative models has made applications such as

generating private datasets [88], solving inverse problems [211], learning 3D models

from 2D images [177], digital art [153], semantic segmentation [13], semantic cor-

respondence [394], and image translation [351]. The ability of generative models

to better understand the underlying data than supervised models paired with the

exceptional flexibility that has allowed many of these applications opens up the po-

tential for solving many new ill-posed problems that have until now been considered

unsolvable. In particular, improvements in scalablity opens up potential for applica-

tion to difficult modalities such as high-resolution 3D and video, as well as situations

where megapixel, or even gigapixel images are necessary to capture sufficient detail.

6.3 Ethical Considerations

First and foremost, it is important to consider and keep in mind the wide assortment

of positive use cases of generative models that prompts this area of research, from

digital art to medical image computing that have been discussed throughout this

thesis, and in particular in the preceding section. Advances in theoretical generative

modelling consequently have the potential to have wide reaching impact; improving

137

properties such as sample quality, diversity, and of particular importance to this

thesis, greater scaling, opens up opportunities for new applications. Beyond this,

the improvements in scaling introduced in this thesis also result in greater levels

of efficiency that benefit smaller research groups, opening up the ability to train

high resolution generative models to a wider audience. Greater efficiency also has

the effect of reducing energy consumption during training and sampling, which is

of particular importance at the current time when climate change is having such a

major impact on the planet.

While the work in this thesis does not directly contribute to this, it would be re-

miss to not discuss the negative aspects of generative model development. In particu-

lar, there are a wide variety of malicious applications which should be considered, in-

cluding fake news, phishing attacks, and social bots for propaganda/disinformation.

Additionally, while not intentionally malicious, generative models can be used, for

instance, for artistic tasks, directly affecting livelihoods through commissions, par-

ticularly since these models can be used to mimic writing/music/artwork styles, or

even explicitly plagiarise existing works. While these abilities have the potential

to improve productivity, or even directly replace components of many jobs, it is a

political decision how to accordingly adjust society, with existing precedent in this

regard generally not a positive one [106].

At the start of this thesis it is mentioned how, unlike supervised methods, gener-

ative models can be trained on unlabelled data, thus opening up the vast amounts of

information available on the internet as training data. While strictly true, this does

not consider the substantial bias in such data which is then reflected in the trained

models. This affects capabilities in different languages, results in misinformation,

explicit racism, sexism, and all biases present on the internet. Recent models have

addressed this alignment problem through the use of reinforcement learning from

human feedback (RLHF) [410] or direct preference optimisation (DPO) [286], but

this brings back a labour intensive task and all the associated problems, particularly

for reinforcement learning, which is notably inefficient due to lack of gradients.

Major corporations’ pursuit of profit has resulted in each company separately

developing these massive models, each with private datasets with unknown biases

138

and copyright violations, requiring substantial labour, and consuming extraordinary

amounts of energy and therefore resulting in substantial CO2 emissions.

It is also important to remember that these models are only possible because of

the extremely vast amount of data put online in good faith by the general public,

together with decades of research from not-for-profit researchers; yet these models,

training which are beyond the capabilities of many states, are kept locked behind

closed doors, with access typically only provided through paid APIs and are used

as one more tool to lock users into a single ecosystem [73]. This is all to say

that for safety, the environment, workers, understanding and diagnosing problems,

assessing ability, to allow fine-tuning (rather than re-training), the availability of

high quality open source models and well thought out interoperability are crucial to

democratising the future of “AI”.

139

Bibliography

[1] Guillaume Alain, Yoshua Bengio, Li Yao, Jason Yosinski, éric Thibodeau-
Laufer, Saizheng Zhang, and Pascal Vincent. GSNs: generative stochastic
networks. Information and Inference, 5(2):210–249, 2016. ISSN 2049-8764.
doi: 10.1093/imaiai/iaw003.

[2] Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic
Interpolants: A Unifying Framework for Flows and Diffusions. arXiv preprint
arXiv:2303.08797, 2023.

[3] Alexander Alemi, Ben Poole, Ian Fischer, Joshua Dillon, Rif A Saurous, and
Kevin Murphy. Fixing a Broken ELBO. In ICML, 2018.

[4] Brian DO Anderson. Reverse-Time Diffusion Equation Models. Stochastic
Processes and their Applications, 12(3):313–326, 1982.

[5] Ivan Anokhin, Kirill Demochkin, Taras Khakhulin, Gleb Sterkin, Victor
Lempitsky, and Denis Korzhenkov. Image Generators with Conditionally-
Independent Pixel Synthesis. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 14278–14287, 2021.

[6] Michael Arbel, Liang Zhou, and Arthur Gretton. Generalized Energy Based
Models. In ICLR, 2021.

[7] Martin Arjovsky and Leon Bottou. Towards Principled Methods for Training
Generative Adversarial Networks. In ICLR, 2017.

[8] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN.
arXiv:1701.07875, 2017.

[9] Jacob Austin, Daniel Johnson, Jonathan Ho, Danny Tarlow, and Rianne
van den Berg. Structured Denoising Diffusion Models in Discrete State-Spaces.
Advances in Neural Information Processing Systems, 34:17981–17993, 2021.

[10] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer Normaliza-
tion. arXiv preprint arXiv:1607.06450, 2016.

140

[11] Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan, Roy H. Campbell,
and Sergey Levine. Stochastic Variational Video Prediction. In ICLR, 2018.

[12] Lorenzo Baldassari, Ali Siahkoohi, Josselin Garnier, Knut Solna, and
Maarten V de Hoop. Conditional Score-Based Diffusion Models for Bayesian
Inference in Infinite Dimensions. Advances in Neural Information Processing
Systems, 36, 2024.

[13] Dmitry Baranchuk, Ivan Rubachev, Andrey Voynov, Valentin Khrulkov, and
Artem Babenko. Label-Efficient Semantic Segmentation with Diffusion Mod-
els. arXiv preprint arXiv:2112.03126, 2021.

[14] Serguei Barannikov, Ilya Trofimov, Grigorii Sotnikov, Ekaterina Trimbach,
Alexander Korotin, Alexander Filippov, and Evgeny Burnaev. Manifold
Topology Divergence: a Framework for Comparing Data Manifolds. arXiv
preprint arXiv:2106.04024, 2021.

[15] Matthias Bauer and Andriy Mnih. Resampled Priors for Variational Autoen-
coders. In AISTATS, pages 66–75, 2019.

[16] Matthias Bauer, Emilien Dupont, Andy Brock, Dan Rosenbaum, Jonathan
Schwarz, and Hyunjik Kim. Spatial Functa: Scaling Functa to ImageNet
Classification and Generation. arXiv preprint arXiv:2302.03130, 2023.

[17] Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, and
Jrn-Henrik Jacobsen. Invertible Residual Networks. In ICML, 2019.

[18] Yoshua Bengio. Estimating or propagating gradients through stochastic neu-
rons, 2013.

[19] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A
Neural Probabilistic Language Model. JMLR, 3:1137–1155, 2003. ISSN ISSN
1533-7928.

[20] Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. Generalized De-
noising Auto-Encoders as Generative Models. Advances in Neural Information
Processing Systems, 26, 2013.

[21] Rianne van den Berg, Leonard Hasenclever, Jakub M. Tomczak, and Max
Welling. Sylvester Normalizing Flows for Variational Inference. In UAI, 2018.

[22] Rianne van den Berg, Alexey A Gritsenko, Mostafa Dehghani, Casper Kaae
Sønderby, and Tim Salimans. IDF++: Analyzing and Improving Integer Dis-
crete Flows for Lossless Compression. In International Conference on Learning
Representations, 2021.

[23] Jan Biemond, Reginald L Lagendijk, and Russell M Mersereau. Iterative
Methods for Image Deblurring. Proceedings of the IEEE, 78(5):856–883, 1990.

[24] Christopher M Bishop and Nasser M Nasrabadi. Pattern Recognition and
Machine Learning. Springer, 2006.

141

[25] Mikoaj Bikowski, Dougal J. Sutherland, Michael Arbel, and Arthur Gretton.
Demystifying MMD GANs. In ICLR, 2018.

[26] Piotr Bojanowski, Armand Joulin, David Lopez-Pas, and Arthur Szlam. Op-
timizing the Latent Space of Generative Networks. In Proceedings of the 35th
International Conference on Machine Learning, ICML, volume 80, pages 600–
609, 2018.

[27] Ali Borji. Pros and Cons of GAN Evaluation Measures: New Developments.
arXiv preprint arXiv:2103.09396, 2021.

[28] Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Joze-
fowicz, and Samy Bengio. Generating Sentences from a Continuous Space.
arXiv:1511.06349, 2016.

[29] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large Scale GAN Training
for High Fidelity Natural Image Synthesis. In International Conference on
Learning Representations, 2019.

[30] Tom B. Brown et al. Language Models are Few-Shot Learners.
arXiv:2005.14165, 2020.

[31] Yuri Burda, Roger B. Grosse, and Ruslan Salakhutdinov. Importance
Weighted Autoencoders. In ICLR, 2016.

[32] Ryan Burgert, Kanchana Ranasinghe, Xiang Li, and Michael S Ryoo. Peeka-
boo: Text to Image Diffusion Models are Zero-Shot Segmentors. arXiv preprint
arXiv:2211.13224, 2022.

[33] Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters,
Guillaume Desjardins, and Alexander Lerchner. Understanding Disentangling
in β-VAE. Advances in Neural Information Processing Systems, 30, 2017.

[34] Luis A. Caffarelli and Mario Milman. Monge Ampre Equation: Applications
to Geometry, Optimization. American Mathematical Soc., 1999.

[35] Shuhao Cao. Choose a Transformer: Fourier or Galerkin. Advances in Neural
Information Processing Systems, 34:24924–24940, 2021.

[36] Nicholas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag,
Florian Tramèr, Borja Balle, Daphne Ippolito, and Eric Wallace. Extracting
Training Data from Diffusion Models. In Proceedings of the 32nd USENIX
Conference on Security Symposium, pages 5253–5270, 2023.

[37] Miguel A Carreira-Perpinan and Geoffrey E Hinton. On Contrastive Diver-
gence Learning. In AISTATS, volume 10, pages 33–40, 2005.

[38] William Chan, Chitwan Saharia, Geoffrey Hinton, Mohammad Norouzi, and
Navdeep Jaitly. Imputer: Sequence Modelling via Imputation and Dynamic
Programming. In International Conference on Machine Learning, pages 1403–
1413. PMLR, 2020.

142

[39] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman.
MaskGIT: Masked Generative Image Transformer. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
11315–11325, 2022.

[40] Tong Che, Ruixiang Zhang, Jascha Sohl-Dickstein, Hugo Larochelle, Liam
Paull, Yuan Cao, and Yoshua Bengio. Your GAN is Secretly an Energy-based
Model and You Should Use Discriminator Driven Latent Sampling. Advances
in Neural Information Processing Systems, 33, 2020.

[41] Jianfei Chen, Cheng Lu, Biqi Chenli, Jun Zhu, and Tian Tian. VFlow: More
Expressive Generative Flows with Variational Data Augmentation. In ICML,
2020.

[42] Ricky T. Q. Chen, Jens Behrmann, David K. Duvenaud, and Joern-Henrik
Jacobsen. Residual Flows for Invertible Generative Modeling. Advances in
Neural Information Processing Systems, 32, 2019.

[43] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud.
Neural Ordinary Differential Equations. Advances in neural information pro-
cessing systems, 31, 2018.

[44] Tianrong Chen, Guan-Horng Liu, and Evangelos Theodorou. Likelihood train-
ing of schrödinger bridge using forward-backward sdes theory. In International
Conference on Learning Representations, 2022.

[45] Ting Chen, Xiaohua Zhai, Marvin Ritter, Mario Lucic, and Neil Houlsby.
Self-Supervised GANs via Auxiliary Rotation Loss. In IEEE CVPR, 2019.

[46] Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal,
John Schulman, Ilya Sutskever, and Pieter Abbeel. Variational Lossy Autoen-
coder. In 5th International Conference on Learning Representations, ICLR,
2017.

[47] Xi Chen, Nikhil Mishra, Mostafa Rohaninejad, and Pieter Abbeel. Pixel-
SNAIL: An Improved Autoregressive Generative Model. ICML, 2017.

[48] Rewon Child. Very Deep VAEs Generalize Autoregressive Models and Can
Outperform Them on Images. In International Conference on Learning Rep-
resentations, 2021.

[49] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating Long
Sequences with Sparse Transformers. arXiv preprint arXiv:1904.10509, 2019.

[50] Francois Chollet. Xception: Deep Learning With Depthwise Separable Con-
volutions. In IEEE CVPR, 2017.

[51] Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou
Song, Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz
Mohiuddin, Lukasz Kaiser, David Benjamin Belanger, Lucy J. Colwell, and
Adrian Weller. Rethinking Attention with Performers. In ICLR, 2021.

143

[52] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d Spatio-Temporal
ConvNets: Minkowski Convolutional Neural Networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 3075–
3084, 2019.

[53] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio.
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Mod-
eling. arXiv:1412.3555, 2014.

[54] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and
Accurate Deep Network Learning by Exponential Linear Units (ELUs). In 4th
International Conference on Learning Representations, ICLR, 2016.

[55] Spconv Contributors. Spconv: Spatially Sparse Convolution Library. https:
//github.com/traveller59/spconv, 2022.

[56] Rob Cornish, Anthony Caterini, George Deligiannidis, and Arnaud Doucet.
Relaxing Bijectivity Constraints with Continuously Indexed Normalising
Flows. In ICML, 2020.

[57] Abril Corona-Figueroa, Sam Bond-Taylor, Neelanjan Bhowmik, Yona
Falinie A Gaus, Toby P Breckon, Hubert PH Shum, and Chris G Willcocks.
Unaligned 2D to 3D Translation with Conditional Vector-Quantized Code Dif-
fusion using Transformers. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 14585–14594, 2023.

[58] Chris Cremer, Xuechen Li, and David Duvenaud. Inference Suboptimality in
Variational Autoencoders. In ICML, 2018.

[59] Giuseppe Da Prato and Jerzy Zabczyk. Stochastic Equations in Infinite Di-
mensions. Cambridge university press, 2014.

[60] Bin Dai and David Wipf. Diagnosing and Enhancing VAE Models. In Inter-
national Conference on Learning Representations, 2019.

[61] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré.
FlashAttention: Fast and memory-efficient exact attention with IO-awareness.
In Advances in Neural Information Processing Systems (NeurIPS), 2022.

[62] Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Dif-
fusion Schrödinger Bridge with Applications to Score-Based Generative Mod-
eling. Advances in Neural Information Processing Systems, 34:17695–17709,
2021.

[63] Nicola De Cao, Ivan Titov, and Wilker Aziz. Block Neural Autoregressive
Flow. In UAI, 2019.

[64] Emily L. Denton, Soumith Chintala, Arthur Szlam, and Rob Fergus. Deep
Generative Image Models using a Laplacian Pyramid of Adversarial Networks.
Advances in Neural Information Processing Systems, 28, 2015.

144

https://github.com/traveller59/spconv
https://github.com/traveller59/spconv

[65] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-Training of Deep Bidirectional Transformers for Language Understanding.
In NAACL-HLT, 2019.

[66] Prafulla Dhariwal and Alexander Nichol. Diffusion Models Beat GANs on
Image Synthesis. Advances in Neural Information Processing Systems, 34,
2021.

[67] Sander Dieleman, Aäron van den Oord, and Karen Simonyan. The Challenge
of Realistic Music Generation: Modelling Raw Audio at Scale. In Advances
in Neural Information Processing Systems, volume 31, 2018.

[68] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-Linear Inde-
pendent Components Estimation. In ICLR Workshop, 2015.

[69] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation
using Real NVP. ICLR, 2017.

[70] Laurent Dinh, Jascha Sohl-Dickstein, Razvan Pascanu, and Hugo Larochelle.
A RAD approach to deep mixture models. In ICLR Workshop, 2019.

[71] Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Score-Based Generative
Modeling with Critically-Damped Langevin Diffusion. In International Con-
ference on Learning Representations, 2022.

[72] Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Score-Based Generative
Modeling with Critically-Damped Langevin Diffusion. In International Con-
ference on Learning Representations, 2022.

[73] Cory Doctorow. The Internet Con: How to Seize the Means of Computation.
Verso Books, 2023.

[74] Alexey Dosovitskiy and Thomas Brox. Generating Images with Perceptual
Similarity Metrics based on Deep Networks. Advances in Neural Information
Processing Systems, 2016.

[75] Yilun Du and Igor Mordatch. Implicit Generation and Generalization in
Energy-Based Models. Advances in Neural Information Processing Systems,
33, 2019.

[76] Yilun Du, Katie Collins, Josh Tenenbaum, and Vincent Sitzmann. Learning
Signal-Agnostic Manifolds of Neural Fields. Advances in Neural Information
Processing Systems, 34:8320–8331, 2021.

[77] Leo L. Duan. Transport Monte Carlo. arXiv:1907.10448, 2020.

[78] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented Neural
ODEs. Advances in Neural Information Processing Systems, 32, 2019.

145

[79] Emilien Dupont, Hyunjik Kim, SM Ali Eslami, Danilo Jimenez Rezende, and
Dan Rosenbaum. From data to functa: Your data point is a function and you
can treat it like one. In International Conference on Machine Learning, pages
5694–5725. PMLR, 2022.

[80] Emilien Dupont, Yee Whye Teh, and Arnaud Doucet. Generative Models as
Distributions of Functions. In International Conference on Artificial Intelli-
gence and Statistics, pages 2989–3015. PMLR, 2022.

[81] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural
Spline Flows. Advances in Neural Information Processing Systems, 32, 2019.

[82] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Cubic-
Spline Flows. In ICML Workshop, 2019.

[83] Conor Durkan, Iain Murray, and George Papamakarios. On Contrastive Learn-
ing for Likelihood-free Inference. In ICML, 2020.

[84] Vincent Dutordoir, Alan Saul, Zoubin Ghahramani, and Fergus Simpson. Neu-
ral Diffusion Processes. In International Conference on Machine Learning,
pages 8990–9012, 2023.

[85] Patrick Esser, Robin Rombach, Andreas Blattmann, and Björn Ommer. Im-
agebart: Bidirectional Context with Multinomial Diffusion for Autoregressive
Image Synthesis. arXiv preprint arXiv:2108.08827, 2021.

[86] Patrick Esser, Robin Rombach, and Bjrn Ommer. Taming Transformers for
High-Resolution Image Synthesis. arXiv:2012.09841, 2021. URL http://

arxiv.org/abs/2012.09841.

[87] Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the
Manifold Hypothesis. Journal of the American Mathematical Society, 29(4):
983–1049, 2016.

[88] Virginia Fernandez, Pedro Sanchez, Walter Hugo Lopez Pinaya, Grzegorz Ja-
cenków, Sotirios A Tsaftaris, and Jorge Cardoso. Privacy Distillation: Re-
ducing Re-Identification Risk of Multimodal Diffusion Models. arXiv preprint
arXiv:2306.01322, 2023.

[89] Chris Finlay, Joern-Henrik Jacobsen, Levon Nurbekyan, and Adam Oberman.
How to Train Your Neural ODE: the World of Jacobian and Kinetic Regular-
ization. In ICML, 2020.

[90] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. Proceedings of the 34th
International Conference on Machine Learning, 2017.

[91] Giulio Franzese, Simone Rossi, Dario Rossi, Markus Heinonen, Maurizio Filip-
pone, and Pietro Michiardi. Continuous-Time Functional Diffusion Processes.
Advances in Neural Information Processing Systems, 36, 2024.

146

http://arxiv.org/abs/2012.09841
http://arxiv.org/abs/2012.09841

[92] Ruiqi Gao, Erik Nijkamp, Diederik P. Kingma, Zhen Xu, Andrew M. Dai,
and Ying Nian Wu. Flow Contrastive Estimation of Energy-Based Models. In
IEEE CVPR, 2020.

[93] Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, and Diederik P. Kingma.
Learning Energy-Based Models by Diffusion Recovery Likelihood. In ICLR,
2021.

[94] Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J
Rezende, SM Eslami, and Yee Whye Teh. Neural processes. ICML Workshop,
2018.

[95] TD Gedeon. Stochastic Bidirectional Training. In SMC’98 Conference Pro-
ceedings. 1998 IEEE International Conference on Systems, Man, and Cyber-
netics (Cat. No. 98CH36218), volume 2, pages 1968–1971, 1998.

[96] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE:
Masked Autoencoder for Distribution Estimation. In ICML, 2015.

[97] Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-
Predict: Parallel Decoding of Conditional Masked Language Models. In Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 6112–6121, 2019.

[98] Partha Ghosh, Mehdi S. M. Sajjadi, Antonio Vergari, Michael Black, and
Bernhard Scholkopf. From Variational to Deterministic Autoencoders. In
International Conference on Learning Representations, 2020.

[99] Ilka H Gleibs. Are all ”research fields” equal? rethinking practice for the use
of data from crowdsourcing market places. Behavior Research Methods, 49(4):
1333–1342, 2017.

[100] Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. Its Raw! Audio
Generation with State-Space Models. In International Conference on Machine
Learning, pages 7616–7633. PMLR, 2022.

[101] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adver-
sarial Nets. Advances in Neural Information Processing Systems, 27, 2014.

[102] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
press, 2016.

[103] Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J. Cree. Regulari-
sation of neural networks by enforcing Lipschitz continuity. Machine Learning,
110(2):393–416, 2021. ISSN 1573-0565. doi: 10.1007/s10994-020-05929-w.

[104] Sven Gowal, Sylvestre-Alvise Rebuffi, Olivia Wiles, Florian Stimberg, Dan An-
drei Calian, and Timothy A Mann. Improving Robustness using Generated

147

Data. Advances in Neural Information Processing Systems, 34:4218–4233,
2021.

[105] Kartik Goyal, Chris Dyer, and Taylor Berg-Kirkpatrick. Exposing the Implicit
Energy Networks behind Masked Language Models via Metropolis–Hastings.
In International Conference on Learning Representations, 2022.

[106] David Graeber. Bullshit Jobs. E mploi, page 131, 2018.

[107] Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, and
David Duvenaud. FFJORD: Free-form Continuous Dynamics for Scalable
Reversible Generative Models. In International Conference on Learning Rep-
resentations, 2019.

[108] Will Grathwohl, Kuan-Chieh Wang, Joern-Henrik Jacobsen, David Duvenaud,
and Richard Zemel. Learning the Stein Discrepancy for Training and Evalu-
ating Energy-Based Models without Sampling. In ICML, 2020.

[109] Will Grathwohl, Kuan-Chieh Wang, Jrn-Henrik Jacobsen, David Duvenaud,
Mohammad Norouzi, and Kevin Swersky. Your Classifier is Secretly an Energy
Based Model and You Should Treat it Like One. In ICLR, 2020.

[110] Will Grathwohl, Kevin Swersky, Milad Hashemi, David Duvenaud, and Chris J
Maddison. Oops I Took A Gradient: Scalable Sampling for Discrete Distribu-
tions. In International Conference on Machine Learning, 2021.

[111] Will Sussman Grathwohl, Jacob Jin Kelly, Milad Hashemi, Mohammad
Norouzi, Kevin Swersky, and David Duvenaud. No MCMC for me: Amor-
tized sampling for fast and stable training of energy-based models. In ICLR,
2021.

[112] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan
Wierstra. DRAW: A Recurrent Neural Network For Image Generation. In
ICML, 2015.

[113] Paulina Grnarova, Kfir Y Levy, Aurelien Lucchi, Nathanael Perraudin, Ian
Goodfellow, Thomas Hofmann, and Andreas Krause. A Domain Agnostic
Measure for Monitoring and Evaluating GANs. Advances in Neural Informa-
tion Processing Systems, 32, 2019.

[114] Paulina Grnarova, Yannic Kilcher, Kfir Y Levy, Aurelien Lucchi, and Thomas
Hofmann. Generative Minimization Networks: Training GANs Without Com-
petition. arXiv:2103.12685, 2021.

[115] Aditya Grover, Manik Dhar, and Stefano Ermon. Flow-GAN: Combining Max-
imum Likelihood and Adversarial Learning in Generative Models. In AAAI,
2018.

[116] Jiatao Gu, Changhan Wang, and Junbo Zhao. Levenshtein Transformer. Ad-
vances in Neural Information Processing Systems, 32, 2019.

148

[117] Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong
Chen, Lu Yuan, and Baining Guo. Vector Quantized Diffusion Model for
Text-to-Image Synthesis. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10696–10706, 2022.

[118] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron C Courville. Improved Training of Wasserstein GANs. Advances in
Neural Information Processing Systems, 30, 2017.

[119] Ishaan Gulrajani, Kundan Kumar, Faruk Ahmed, Adrien Ali Taiga, Francesco
Visin, David Vazquez, and Aaron Courville. PixelVAE: A Latent Variable
Model for Natural Images. In ICLR, 2017.

[120] Ishaan Gulrajani, Colin Raffel, and Luke Metz. Towards GAN Benchmarks
Which Require Generalization. In ICLR, 2019.

[121] Michael Gutmann and Aapo Hyvärinen. Noise-Contrastive Estimation: A
New Estimation Principle for Unnormalized Statistical Models. In AISTATS,
pages 297–304, 2010.

[122] David Ha and Jrgen Schmidhuber. World Models. arXiv:1803.10122, 2018.

[123] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi.
Dream to Control: Learning Behaviors by Latent Imagination. In ICLR,
2020.

[124] Paul Hagemann, Lars Ruthotto, Gabriele Steidl, and Nicole Tianjiao Yang.
Multilevel Diffusion: Infinite Dimensional Score-Based Diffusion Models for
Image Generation. arXiv preprint arXiv:2303.04772, 2023.

[125] Tian Han, Yang Lu, Song-Chun Zhu, and Ying Nian Wu. Alternating Back-
Propagation for Generator Network. AAAI, 31(1), 2017. ISSN 2374-3468.

[126] Leonard Hasenclever, Jakub M Tomczak, and Max Welling. Variational In-
ference with Orthogonal Normalizing Flows. In Workshop on Bayesian Deep
Learning, NIPS, 2017.

[127] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. In IEEE CVPR, 2016.

[128] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler,
and Sepp Hochreiter. GANs Trained by a Two Time-Scale Update Rule Con-
verge to a Local Nash Equilibrium. Advances in neural information processing
systems, 30, 2017.

[129] Dave Higdon. Space and Space-Time Modeling using Process Convolutions. In
Quantitative methods for current environmental issues, pages 37–56. Springer,
2002.

149

[130] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot,
Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-Vae:
Learning Basic Visual Concepts with a Constrained Variational Framework.
In ICLR, 2017.

[131] G E Hinton and T J Sejnowski. Optimal Perceptual Inference. In IEEE CVPR,
1983.

[132] Geoffrey E. Hinton. Training Products of Experts by Minimizing Contrastive
Divergence. Neural Computation, 14(8):1771–1800, 2002. ISSN 0899-7667,
1530-888X. doi: 10.1162/089976602760128018.

[133] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A Fast Learning
Algorithm for Deep Belief Nets. Neural Comput., 18(7):1527–1554, 2006. ISSN
0899-7667, 1530-888X. doi: 10.1162/neco.2006.18.7.1527.

[134] Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel.
Flow++: Improving Flow-Based Generative Models with Variational Dequan-
tization and Architecture Design. In ICML, 2019.

[135] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic
Models. Advances in Neural Information Processing Systems, 33:6840–6851,
2020.

[136] Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad
Norouzi, and Tim Salimans. Cascaded Diffusion Models for High Fidelity
Image Generation. J. Mach. Learn. Res., 23(47):1–33, 2022.

[137] Jonathan Ho, Tim Salimans, Alexey A Gritsenko, William Chan, Mohammad
Norouzi, and David J Fleet. Video Diffusion Models. Advances in Neural
Information Processing Systems, 2022.

[138] Sepp Hochreiter and Jrgen Schmidhuber. Long Short-Term Memory. Neural
Comput., 9(8):1735–1780, 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.
1735.

[139] Matthew Hoffman, Pavel Sountsov, Joshua V. Dillon, Ian Langmore, Dustin
Tran, and Srinivas Vasudevan. NeuTra-lizing Bad Geometry in Hamiltonian
Monte Carlo Using Neural Transport. arXiv:1903.03704, 2019.

[140] Matthew D Hoffman and Matthew J Johnson. ELBO surgery: yet another
way to carve up the variational evidence lower bound. In Advances in Neural
Information Processing Systems Workshop, 2016.

[141] Emiel Hoogeboom and Tim Salimans. Blurring Diffusion Models. In Interna-
tional Conference on Learning Representations, 2023.

[142] Emiel Hoogeboom, Rianne van den Berg, and Max Welling. Emerging Con-
volutions for Generative Normalizing Flows. In ICML, 2019.

150

[143] Emiel Hoogeboom, Jorn Peters, Rianne van den Berg, and Max Welling. Inte-
ger Discrete Flows and Lossless Compression. Advances in Neural Information
Processing Systems, 32, 2019.

[144] Emiel Hoogeboom, Victor Garcia Satorras, Jakub Tomczak, and Max Welling.
The Convolution Exponential and Generalized Sylvester Flows. Advances in
Neural Information Processing Systems, 33, 2020.

[145] Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and
Max Welling. Argmax Flows and Multinomial Diffusion: Towards Non-
Autoregressive Language Models. Advances in Neural Information Processing
Systems, 34:12454–12465, 2021.

[146] Emiel Hoogeboom, Alexey A. Gritsenko, Jasmijn Bastings, Ben Poole, Ri-
anne van den Berg, and Tim Salimans. Autoregressive Diffusion Models. In
International Conference on Learning Representations, 2022.

[147] Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling.
Equivariant Diffusion for Molecule Generation in 3D. In International Con-
ference on Machine Learning, pages 8867–8887. PMLR, 2022.

[148] Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. Simple Diffusion: End-
to-End Diffusion for High Resolution Images. In International Conference on
Machine Learning, pages 13213–13232. PMLR, 2023.

[149] Chin-Wei Huang, Ahmed Touati, Laurent Dinh, Michal Drozdzal, Mohammad
Havaei, Laurent Charlin, and Aaron Courville. Learnable Explicit Density for
Continuous Latent Space and Variational Inference. arXiv:1710.02248, 2017.

[150] Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville.
Neural Autoregressive Flows. In ICML, 2018.

[151] Chin-Wei Huang, Laurent Dinh, and Aaron Courville. Augmented Normaliz-
ing Flows: Bridging the Gap Between Generative Flows and Latent Variable
Models. arXiv:2002.07101, 2020.

[152] Huaibo Huang, zhihang li, Ran He, Zhenan Sun, and Tieniu Tan. Introvae:
Introspective Variational Autoencoders for Photographic Image Synthesis. Ad-
vances in Neural Information Processing Systems, 31, 2018.

[153] Nisha Huang, Fan Tang, Weiming Dong, and Changsheng Xu. Draw Your Art
Dream: Diverse Digital Art Synthesis with Multimodal Guided Diffusion. In
Proceedings of the 30th ACM International Conference on Multimedia, pages
1085–1094, 2022.

[154] Xun Huang, Yixuan Li, Omid Poursaeed, John Hopcroft, and Serge Belongie.
Stacked Generative Adversarial Networks. In IEEE CVPR, 2017.

[155] Robert A Hummel, B Kimia, and Steven W Zucker. Deblurring Gaussian
Blur. Computer Vision, Graphics, and Image Processing, 38(1):66–80, 1987.

151

[156] Ferenc Huszr. How (not) to Train your Generative Model: Scheduled Sam-
pling, Likelihood, Adversary? arXiv:1511.05101, 2015.

[157] Stephanie L Hyland, Shruthi Bannur, Kenza Bouzid, Daniel C Castro, Mercy
Ranjit, Anton Schwaighofer, Fernando Pérez-Garćıa, Valentina Salvatelli,
Shaury Srivastav, Anja Thieme, et al. Maira-1: A specialised large multimodal
model for radiology report generation. arXiv preprint arXiv:2311.13668, 2023.

[158] Aapo Hyvärinen. Estimation of Non-Normalized Statistical Models by Score
Matching. Journal of Machine Learning Research, 6(4), 2005.

[159] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. In Proceedings of
the 32nd International Conference on Machine Learning, ICML, page 448456,
2015.

[160] Allan Jabri, David Fleet, and Ting Chen. Scalable Adaptive Computation
for Iterative Generation. In International Conference on Machine Learning,
pages 14569–14589, 2023.

[161] Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch,
Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock,
Evan Shelhamer, et al. Perceiver IO: A General Architecture for Structured
Inputs & Outputs. In International Conference on Learning Representations,
2022.

[162] Priyank Jaini, Kira A. Selby, and Yaoliang Yu. Sum-of-Squares Polynomial
Flow. In ICML, 2019.

[163] Eric Jang, Shixiang Gu, and Ben Poole. Categorical Reparameterization with
Gumbel-Softmax. In International Conference on Learning Representations,
2017.

[164] Yifan Jiang, Shiyu Chang, and Zhangyang Wang. TransGAN: Two Trans-
formers Can Make One Strong GAN. arXiv:2102.07074, 2021.

[165] Yuming Jiang, Shuai Yang, Haonan Qiu, Wayne Wu, Chen Change Loy, and
Ziwei Liu. Text2Human: Text-Driven Controllable Human Image Generation.
ACM Transactions on Graphics (TOG), 41(4):1–11, 2022.

[166] Bowen Jing, Gabriele Corso, Renato Berlinghieri, and Tommi Jaakkola. Sub-
space Diffusion Generative Models. In European Conference on Computer
Vision, pages 274–289. Springer, 2022.

[167] Fritz John. Numerical Solution of the Equation of Heat Conduction for Pre-
ceding Times. Annali di Matematica pura ed Applicata, 40:129–142, 1955.

[168] Alexia Jolicoeur-Martineau. The relativistic discriminator: a key element
missing from standard GAN. ICLR, 2018.

152

[169] Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, and
Ioannis Mitliagkas. Gotta Go Fast When Generating Data with Score-Based
Models. arXiv preprint arXiv:2105.14080, 2021.

[170] Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K.
Saul. Introduction to variational methods for graphical models. Ma-
chine Learning, 37(2):183–233, 1999. ISSN 08856125. doi: 10.1023/A:
1007665907178.

[171] Heewoo Jun, Rewon Child, Mark Chen, John Schulman, Aditya Ramesh, Alec
Radford, and Ilya Sutskever. Distribution Augmentation for Generative Mod-
eling. In ICML, 2020.

[172] Lukasz Kaiser, Samy Bengio, Aurko Roy, Ashish Vaswani, Niki Parmar, Jakob
Uszkoreit, and Noam Shazeer. Fast Decoding in Sequence Models using Dis-
crete Latent Variables. In ICML, 2018.

[173] Konstantinos Kamnitsas, Daniel C Castro, Loic Le Folgoc, Ian Walker, Ryu-
taro Tanno, Daniel Rueckert, Ben Glocker, Antonio Criminisi, and Aditya
Nori. Semi-Supervised Learning via Compact Latent Space Clustering. Pro-
ceedings of the 35th International Conference on Machine Learning, 2018.

[174] Mahdi Karami, Dale Schuurmans, Jascha Sohl-Dickstein, Laurent Dinh, and
Daniel Duckworth. Invertible Convolutional Flow. Advances in Neural Infor-
mation Processing Systems, 2019.

[175] Animesh Karnewar and Oliver Wang. MSG-GAN: Multi-Scale Gradients for
Generative Adversarial Networks. In IEEE CVPR, 2020.

[176] Animesh Karnewar, Andrea Vedaldi, Niloy J Mitra, and David Novotny. Goen-
fusion: Gradient origin encodings for 3d forward diffusion models. arXiv
preprint arXiv:2312.08744, 2023.

[177] Animesh Karnewar, Andrea Vedaldi, David Novotny, and Niloy J Mitra.
HoloDiffusion: Training a 3D Diffusion Model using 2D Images. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 18423–18433, 2023.

[178] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive
Growing of GANs for Improved Quality, Stability, and Variation. In Interna-
tional Conference on Learning Representations, 2018.

[179] Tero Karras, Samuli Laine, and Timo Aila. A Style-Based Generator Architec-
ture for Generative Adversarial Networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 4401–4410,
2019.

[180] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen,
and Timo Aila. Training Generative Adversarial Networks with Limited Data.
Advances in Neural Information Processing Systems, 33, 2020.

153

[181] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen,
and Timo Aila. Analyzing and Improving the Image Quality of StyleGAN.
In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 8110–8119, 2020.

[182] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Alias-Free Generative Adversarial Networks.
Advances in Neural Information Processing Systems, 34:852–863, 2021.

[183] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret.
Transformers are RNNs: Fast Autoregressive Transformers with Linear At-
tention. In International Conference on Machine Learning, pages 5156–5165.
PMLR, 2020.

[184] Gavin Kerrigan, Justin Ley, and Padhraic Smyth. Diffusion Generative Models
in Infinite Dimensions. In International Conference on Artificial Intelligence
and Statistics, pages 9538–9563. PMLR, 2023.

[185] Firas Khader, Gustav Mueller-Franzes, Soroosh Tayebi Arasteh, Tianyu Han,
Christoph Haarburger, Maximilian Schulze-Hagen, Philipp Schad, Sandy En-
gelhardt, Bettina Baessler, Sebastian Foersch, et al. Medical Diffusion–
Denoising Diffusion Probabilistic Models for 3D Medical Image Generation.
Nature Scientific Reports, 13(1):7303, 2023.

[186] Hyunjik Kim, George Papamakarios, and Andriy Mnih. The Lipschitz Con-
stant of Self-Attention. arXiv:2006.04710, 2020.

[187] Taesup Kim and Yoshua Bengio. Deep Directed Generative Models with
Energy-Based Probability Estimation. arXiv:1606.03439, 2016.

[188] Yoon Kim, Sam Wiseman, Andrew Miller, David Sontag, and Alexander Rush.
Semi-Amortized Variational Autoencoders. In ICML, 2018.

[189] Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. In International Conference on Learning Representations, 2015.

[190] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In
International Conference on Learning Representations, 2014.

[191] Durk P Kingma and Prafulla Dhariwal. Glow: Generative Flow with Invertible
1x1 Convolutions. In Advances in Neural Information Processing Systems,
volume 31, 2018.

[192] Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever,
and Max Welling. Improved Variational Inference with Inverse Autoregressive
Flow. In Advances in Neural Information Processing Systems, volume 29,
2016.

[193] I. Kobyzev, S. Prince, and M. Brubaker. Normalizing Flows: An Introduction
and Review of Current Methods. IEEE TPAMI, pages 2008–2026, 2020.

154

[194] Jean Kossaifi, Nikola Kovachki, Kamyar Azizzadenesheli, and Anima Anand-
kumar. Multi-Grid Tensorized Fourier Neural Operator for High-Resolution
PDEs. arXiv preprint arXiv:2310.00120, 2023.

[195] Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik
Bhattacharya, Andrew Stuart, and Anima Anandkumar. Neural Operator:
Learning Maps Between Function Spaces with Applications to PDEs. Journal
of Machine Learning Research, 24(89):1–97, 2023.

[196] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images.
2009.

[197] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classifi-
cation with Deep Convolutional Neural Networks. In F. Pereira, C.J. Burges,
L. Bottou, and K.Q. Weinberger, editors, Advances in Neural Information
Processing Systems, volume 25. Curran Associates, Inc., 2012.

[198] Alexander Kukush. Gaussian Measures in Hilbert Space: Construction and
Properties. John Wiley & Sons, 2020.

[199] Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin,
Wei Zhen Teoh, Jose Sotelo, Alexandre de Brébisson, Yoshua Bengio, and
Aaron C. Courville. MelGAN: Generative Adversarial Networks for Condi-
tional Waveform Synthesis. Advances in Neural Information Processing Sys-
tems, 32, 2019.

[200] Manoj Kumar, Mohammad Babaeizadeh, Dumitru Erhan, Chelsea Finn,
Sergey Levine, Laurent Dinh, and Durk Kingma. VideoFlow: A Flow-Based
Generative Model for Video. In ICML Workshop, 2019.

[201] Rithesh Kumar, Sherjil Ozair, Anirudh Goyal, Aaron Courville, and
Yoshua Bengio. Maximum Entropy Generators for Energy-Based Models.
arXiv:1901.08508, 2019.

[202] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and
Timo Aila. Improved Precision and Recall Metric for Assessing Generative
Models. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32, 2019.

[203] Tuomas Kynkäänniemi, Tero Karras, Miika Aittala, Timo Aila, and Jaakko
Lehtinen. The Role of ImageNet Classes in Fréchet Inception Distance. In
International Conference on Learning Representations, 2023.

[204] Hugo Larochelle and Iain Murray. The Neural Autoregressive Distribution
Estimator. In AISTATS, 2011.

[205] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and
Ole Winther. Autoencoding beyond pixels using a learned similarity metric.
In ICML, 2016.

155

[206] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
Based Learning Applied to Document Recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[207] Yann LeCun, Fu Jie Huang, and Leon Bottou. Learning Methods for Generic
Object Recognition with Invariance to Pose and Lighting. In Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, CVPR, volume 2, pages II–104, 2004.

[208] Yann LeCun, Sumit Chopra, Raia Hadsell, MarcAurelio Ranzato, and Fu Jie
Huang. A Tutorial on Energy-Based Learning. A Tutorial on Energy-Based
Learning, 1(0), 2006.

[209] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep Learning. Nature,
521(7553):436–444, 2015.

[210] Alex X. Lee, Richard Zhang, Frederik Ebert, Pieter Abbeel, Chelsea Finn, and
Sergey Levine. Stochastic Adversarial Video Prediction. arXiv:1804.01523,
2018.

[211] Brett Levac, Ajil Jalal, Kannan Ramchandran, and Jonathan I Tamir. Mri
reconstruction with side information using diffusion models. In 2023 57th
Asilomar Conference on Signals, Systems, and Computers, pages 1436–1442,
2023.

[212] Gen Li, Yuting Wei, Yuejie Chi, Yuantao Gu, and Yuxin Chen. Breaking the
Sample Size Barrier in Model-Based Reinforcement Learning with a Gener-
ative Model. Advances in neural information processing systems, 33:12861–
12872, 2020.

[213] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik
Bhattacharya, Andrew Stuart, and Anima Anandkumar. Neural Operator:
Graph Kernel Network for Partial Differential Equations. arXiv preprint
arXiv:2003.03485, 2020.

[214] Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Kaushik
Bhattacharya, Andrew Stuart, Anima Anandkumar, et al. Fourier Neural
Operator for Parametric Partial Differential Equations. In International Con-
ference on Learning Representations, 2021.

[215] Jae Hyun Lim and Jong Chul Ye. Geometric GAN. arXiv:1705.02894, 2017.

[216] Jae Hyun Lim, Nikola B Kovachki, Ricardo Baptista, Christopher Beckham,
Kamyar Azizzadenesheli, Jean Kossaifi, Vikram Voleti, Jiaming Song, Karsten
Kreis, Jan Kautz, et al. Score-Based Diffusion Models in Function Space. arXiv
preprint arXiv:2302.07400, 2023.

[217] Haitao Lin, Yufei Huang, Meng Liu, Xuanjing Li, Shuiwang Ji, and Stan Z
Li. DiffBP: Generative Diffusion of 3D Molecules for Target Protein Binding.
arXiv preprint arXiv:2211.11214, 2022.

156

[218] Ji Lin, Richard Zhang, Frieder Ganz, Song Han, and Jun-Yan Zhu. Anycost
GANs for Interactive Image Synthesis and Editing. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
14986–14996, 2021.

[219] Zachary C Lipton and Subarna Tripathi. Precise Recovery of Latent Vectors
from Generative Adversarial Networks. In 5th International Conference on
Learning Representations, ICLR, 2017.

[220] Bingchen Liu, Yizhe Zhu, Kunpeng Song, and Ahmed Elgammal. Towards
Faster and Stabilized GAN Training for High-fidelity Few-shot Image Synthe-
sis. In International Conference on Learning Representations, 2021.

[221] Kanglin Liu, Guoping Qiu, Wenming Tang, and Fei Zhou. Spectral Regular-
ization for Combating Mode Collapse in GANs. In IEEE ICCV, 2019. ISBN
978-1-72814-803-8. doi: 10.1109/ICCV.2019.00648.

[222] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised Image-to-Image
Translation Networks. In Advances in Neural Information Processing Systems,
2017.

[223] Xuanqing Liu and Cho-Jui Hsieh. Rob-GAN: Generator, Discriminator, and
Adversarial Attacker. In IEEE CVPR, 2019.

[224] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor
Darrell, and Saining Xie. A ConvNet for the 2020s. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
11976–11986, 2022.

[225] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep Learning Face
Attributes in the Wild. In Proceedings of International Conference on Com-
puter Vision (ICCV), 2015.

[226] Gabriel Loaiza-Ganem and John P. Cunningham. The continuous Bernoulli:
fixing a pervasive error in variational autoencoders. Advances in Neural In-
formation Processing Systems, 32, 2019.

[227] Cheng Lu, Jianfei Chen, Chongxuan Li, Qiuhao Wang, and Jun Zhu. Implicit
Normalizing Flows. In ICLR, 2021.

[228] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu.
Dpm-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling
in Around 10 Steps. In Advances in Neural Information Processing Systems,
2022.

[229] Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bous-
quet. Are GANs Created Equal? A Large-Scale Study. Advances in Neural
Information Processing Systems, 31, 2018.

157

[230] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Tim-
ofte, and Luc Van Gool. Repaint: Inpainting using Denoising Diffusion Prob-
abilistic Models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11461–11471, 2022.

[231] Xuezhe Ma, Xiang Kong, Shanghang Zhang, and Eduard Hovy. MaCow:
Masked Convolutional Generative Flow. Advances in Neural Information Pro-
cessing Systems, 2019.

[232] Xuezhe Ma, Chunting Zhou, and Eduard Hovy. MAE: Mutual Posterior-
Divergence Regularization for Variational AutoEncoders. In ICLR, 2019.

[233] Lars Maale, Marco Fraccaro, Valentin Liévin, and Ole Winther. BIVA: A
Very Deep Hierarchy of Latent Variables for Generative Modeling. Advances
in Neural Information Processing Systems, 33, 2019.

[234] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The Concrete Distribu-
tion: A Continuous Relaxation of Discrete Random Variables. In International
Conference on Learning Representations, 2017.

[235] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
and Adrian Vladu. Towards Deep Learning Models Resistant to Adversarial
Attacks. arXiv:1706.06083, 2019.

[236] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and
Brendan Frey. Adversarial Autoencoders. arXiv:1511.05644, 2016.

[237] Xudong Mao, Qing Li, Haoran Xie, Raymond Y. K. Lau, Zhen Wang, and
Stephen Paul Smolley. Least Squares Generative Adversarial Networks. In
IEEE CVPR, 2017.

[238] Soroush Mehri, Kundan Kumar, Ishaan Gulrajani, Rithesh Kumar, Shubham
Jain, Jose Sotelo, Aaron Courville, and Yoshua Bengio. SampleRNN: An
Unconditional End-to-End Neural Audio Generation Model. In ICLR, 2017.

[239] Chenlin Meng, Lantao Yu, Yang Song, Jiaming Song, and Stefano Ermon.
Autoregressive Score Matching. Advances in Neural Information Processing
Systems, 34, 2020.

[240] Chenlin Meng, Jiaming Song, Yang Song, Shengjia Zhao, and Stefano Ermon.
Improved Autoregressive Modeling with Distribution Smoothing. In ICLR,
2021.

[241] Jacob Menick and Nal Kalchbrenner. Generating High Fidelity Images with
Subscale Pixel Networks and Multidimensional Upscaling. In International
Conference on Learning Representations, 2019.

[242] Chenfeng Miao, Shuang Liang, Minchuan Chen, Jun Ma, Shaojun Wang, and
Jing Xiao. Flow-TTS: A Non-Autoregressive Network for Text to Speech Based
on Flow. In ICASSP 2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 7209–7213. IEEE, 2020.

158

[243] Beren Millidge, Tommaso Salvatori, Yuhang Song, Rafal Bogacz, and Thomas
Lukasiewicz. Predictive Coding: Towards a Future of Deep Learning beyond
Backpropagation? arXiv preprint arXiv:2202.09467, 2022.

[244] Hà Quang Minh. Regularized Divergences Between Covariance Operators and
Gaussian Measures on Hilbert Spaces. Journal of Theoretical Probability, 34:
580–643, 2021.

[245] Mehdi Mirza and Simon Osindero. Conditional Generative Adversarial Nets.
arXiv:1411.1784, 2014.

[246] Yasuhide Miura, Yuhao Zhang, Emily Bao Tsai, Curtis P Langlotz, and Dan
Jurafsky. Improving Factual Completeness and Consistency of Image-to-Text
Radiology Report Generation. arXiv preprint arXiv:2010.10042, 2020.

[247] Koichi Miyasawa. An Empirical Bayes Estimator of the Mean of a Normal
Population. Bulletin of the International Statistical Institute, 38(4):181–188,
1961.

[248] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida.
Spectral Normalization for Generative Adversarial Networks. In International
Conference on Learning Representations, 2018.

[249] Thomas Mller, Brian Mcwilliams, Fabrice Rousselle, Markus Gross, and Jan
Novk. Neural Importance Sampling. ACM TOG, 38(5):145:1–145:19, 2019.
ISSN 0730-0301. doi: 10.1145/3341156.

[250] Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and
Jaejun Yoo. Reliable Fidelity and Diversity Metrics for Generative Models.
In International Conference on Machine Learning, pages 7176–7185, 2020.

[251] SA Nane, SK Nayar, and H Murase. Columbia Object Image Library: COIL-
20. Technical Report CUCS-005-96, Columbia University, 1996.

[252] Charlie Nash and Conor Durkan. Autoregressive Energy Machines. In ICML,
2019.

[253] Charlie Nash, Jacob Menick, Sander Dieleman, and Peter W Battaglia. Gen-
erating Images with Sparse Representations. In International Conference on
Machine Learning, pages 7958–7968. PMLR, 2021.

[254] Kirill Neklyudov, Evgenii Egorov, and Dmitry P. Vetrov. The Implicit
Metropolis-Hastings Algorithm. Advances in Neural Information Processing
Systems, 32, 2019.

[255] M. Ngxande, J. Tapamo, and M. Burke. DepthwiseGANs: Fast Train-
ing Generative Adversarial Networks for Realistic Image Synthesis. In
SAUPEC/RobMech/PRASA, pages 111–116, 2019. doi: 10.1109/RoboMech.
2019.8704766.

159

[256] Alexander Quinn Nichol and Prafulla Dhariwal. Improved Denoising Diffusion
Probabilistic Models. In International Conference on Machine Learning, pages
8162–8171. PMLR, 2021.

[257] Weili Nie, Nina Narodytska, and Ankit Patel. RelGAN: Relational Generative
Adversarial Networks for Text Generation. In International Conference on
Learning Representations, 2019.

[258] Didrik Nielsen, Priyank Jaini, Emiel Hoogeboom, Ole Winther, and Max
Welling. SurVAE Flows: Surjections to Bridge the Gap between VAEs and
Flows. Advances in Neural Information Processing Systems, 33, 2020.

[259] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, and Ying Nian Wu. Learning Non-
Convergent Non-Persistent Short-Run MCMC Toward Energy-Based Model.
In Neural Information Processing Systems (Advances in Neural Information
Processing Systems), pages 5232–5242, 2019.

[260] Erik Nijkamp, Mitch Hill, Tian Han, Song-Chun Zhu, and Ying Nian Wu.
On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-
Based Models. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pages 5272–5280, 2020.

[261] Erik Nijkamp, Bo Pang, Tian Han, Linqi Zhou, Song-Chun Zhu, and
Ying Nian Wu. Learning Multi-layer Latent Variable Model via Variational
Optimization of Short Run MCMC for Approximate Inference. In European
Conference on Computer Vision, pages 361–378. Springer, 2020.

[262] Erik Nijkamp, Ruiqi Gao, Pavel Sountsov, Srinivas Vasudevan, Bo Pang, Song-
Chun Zhu, and Ying Nian Wu. Mcmc should mix: Learning energy-based
model with neural transport latent space mcmc. In International Conference
on Learning Representations, 2022.

[263] Sajad Norouzi, David J. Fleet, and Mohammad Norouzi. Exemplar VAE:
Linking Generative Models, Nearest Neighbor Retrieval, and Data Augmen-
tation. Advances in Neural Information Processing Systems, 33, 2020.

[264] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-GAN: Training Gen-
erative Neural Samplers using Variational Divergence Minimization. Advances
in Neural Information Processing Systems, 29, 2016.

[265] Anton Obukhov, Maximilian Seitzer, Po-Wei Wu, Semen Zhydenko, Jonathan
Kyl, and Elvis Yu-Jing Lin. High-fidelity performance metrics for gen-
erative models in pytorch, 2020. URL https://github.com/toshas/

torch-fidelity. Version: 0.3.0, DOI: 10.5281/zenodo.4957738.

[266] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional Image
Synthesis with Auxiliary Classifier GANs. In ICML, 2017.

[267] Derek Onken, Samy Wu Fung, Xingjian Li, and Lars Ruthotto. OT-Flow:
Fast and Accurate Continuous Normalizing Flows via Optimal Transport. In
AAAI, 2021.

160

https://github.com/toshas/torch-fidelity
https://github.com/toshas/torch-fidelity

[268] Georg Ostrovski, Will Dabney, and Rémi Munos. Autoregressive Quantile
Networks for Generative Modeling. In International Conference on Machine
Learning, 2018.

[269] Bo Pang, Tian Han, Erik Nijkamp, Song-Chun Zhu, and Ying Nian Wu. Learn-
ing Latent Space Energy-Based Prior Model. In Advances in Neural Informa-
tion Processing Systems, volume 34, 2020.

[270] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked Autoregres-
sive Flow for Density Estimation. Advances in Neural Information Processing
Systems, 30, 2017.

[271] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mo-
hamed, and Balaji Lakshminarayanan. Normalizing Flows for Probabilistic
Modeling and Inference. JMLR, 22(57):1–64, 2021.

[272] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and
Steven Lovegrove. DeepSDF: Learning Continuous Signed Distance Functions
for Shape Representation. In IEEE CVPR, 2019.

[273] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer,
Alexander Ku, and Dustin Tran. Image Transformer. In ICML, 2018.

[274] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary De-
Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In Advances in Neural Information
Processing Systems 32, pages 8024–8035, 2019.

[275] Fernando Pérez-Garćıa, Sam Bond-Taylor, Pedro P Sanchez, Boris van
Breugel, Daniel C Castro, Harshita Sharma, Valentina Salvatelli, Maria TA
Wetscherek, Hannah Richardson, Matthew P Lungren, et al. Radedit: stress-
testing biomedical vision models via diffusion image editing. In European
Conference of Computer Vision, 2024.

[276] Jakiw Pidstrigach, Youssef Marzouk, Sebastian Reich, and Sven Wang.
Infinite-Dimensional Diffusion Models for Function Spaces. arXiv preprint
arXiv:2302.10130, 2023.

[277] Francis J Pinski, Gideon Simpson, Andrew M Stuart, and Hendrik Weber.
Kullback–Leibler Approximation for Probability Measures on Infinite Dimen-
sional Spaces. SIAM Journal on Mathematical Analysis, 47(6):4091–4122,
2015.

[278] L. S. Pontryagin. Mathematical Theory of Optimal Processes. Routledge, 2018.
ISBN 978-1-351-43306-8.

161

[279] Konpat Preechakul, Nattanat Chatthee, Suttisak Wizadwongsa, and Supasorn
Suwajanakorn. Diffusion Autoencoders: Toward a Meaningful and Decodable
Representation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10619–10629, 2022.

[280] R. Prenger, R. Valle, and B. Catanzaro. WaveGlow: A Flow-based Generative
Network for Speech Synthesis. In IEEE ICASSP, pages 3617–3621, 2019.

[281] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. PointNet++:
Deep Hierarchical Feature Learning on Point Sets in a Metric Space. Advances
in neural information processing systems, 30, 2017.

[282] Shilin Qiu, Qihe Liu, Shijie Zhou, and Chunjiang Wu. Review of Artificial
Intelligence Adversarial Attack and Defense Technologies. Applied Sciences, 9
(5):909, 2019.

[283] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Representa-
tion Learning with Deep Convolutional Generative Adversarial Networks. In
ICLR, 2016.

[284] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language Models are Unsupervised Multitask Learners. 2019.

[285] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. Learning Transferable Visual Models from Natural Language Supervi-
sion. In International Conference on Machine Learning, pages 8748–8763.
PMLR, 2021.

[286] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Ste-
fano Ermon, and Chelsea Finn. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neural Information Processing
Systems, 36, 2024.

[287] Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-NO:
U-Shaped Neural Operators. Transactions on Machine Learning Research,
2023.

[288] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec
Radford, Mark Chen, and Ilya Sutskever. Zero-Shot Text-to-Image Genera-
tion. arXiv preprint arXiv:2102.12092, 2021.

[289] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen.
Hierarchical Text-Conditional Image Generation with CLIP Latents. arXiv
preprint arXiv:2204.06125, 2022.

[290] Suman Ravuri, Karel Lenc, Matthew Willson, Dmitry Kangin, Remi Lam,
Piotr Mirowski, Megan Fitzsimons, Maria Athanassiadou, Sheleem Kashem,
Sam Madge, et al. Skilful Precipitation Nowcasting using Deep Generative
Models of Radar. Nature, 597(7878):672–677, 2021.

162

[291] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating Diverse High-
Fidelity Images with VQ-VAE-2. Advances in Neural Information Processing
Systems, 32, 2019.

[292] Scott Reed, Aäron Oord, Nal Kalchbrenner, Sergio Gmez Colmenarejo, Ziyu
Wang, Yutian Chen, Dan Belov, and Nando Freitas. Parallel Multiscale Au-
toregressive Density Estimation. In International Conference on Machine
Learning, 2017.

[293] Danilo Rezende and Shakir Mohamed. Variational Inference with Normalizing
Flows. In International Conference on Machine Learning, pages 1530–1538.
PMLR, 2015.

[294] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic
Backpropagation and Approximate Inference in Deep Generative Models. In
International Conference on Machine Learning, 2014.

[295] Severi Rissanen, Markus Heinonen, and Arno Solin. Generative Modelling
with Inverse Heat Dissipation. In International Conference on Learning Rep-
resentations, 2023.

[296] Herbert Robbins. An Empirical Bayes Approach to Statistics. In Proc. Third
Berkely Symp., volume 1, pages 157–163, 1956.

[297] Gareth O. Roberts and Richard L. Tweedie. Exponential convergence of
Langevin distributions and their discrete approximations. Bernoulli, 2(4):
341–363, 1996. ISSN 1350-7265.

[298] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and
Björn Ommer. High-Resolution Image Synthesis with Latent Diffusion Models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022.

[299] David W Romero, Robert-Jan Bruintjes, Jakub Mikolaj Tomczak, Erik J
Bekkers, Mark Hoogendoorn, and Jan van Gemert. Flexconv: Continuous
kernel convolutions with differentiable kernel sizes. In International Confer-
ence on Learning Representations, 2022.

[300] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional
Networks for Biomedical Image Segmentation. In International Conference on
Medical image computing and computer-assisted intervention, pages 234–241.
Springer, 2015.

[301] Lucas SP Rudden, Mahdi Hijazi, and Patrick Barth. Deep Learning Ap-
proaches for Conformational Flexibility and Switching Properties in Protein
Design. Frontiers in Molecular Biosciences, page 840, 2022.

[302] Laura Ruis, Mitchell Stern, Julia Proskurnia, and William Chan. Insertion-
Deletion Transformer. arXiv preprint arXiv:2001.05540, 2020.

163

[303] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recog-
nition Challenge. International Journal of Computer Vision (IJCV), 115(3):
211–252, 2015. doi: 10.1007/s11263-015-0816-y.

[304] Chitwan Saharia, William Chan, Saurabh Saxena, and Mohammad Norouzi.
Non-Autoregressive Machine Translation with Latent Alignments. arXiv
preprint arXiv:2004.07437, 2020.

[305] Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet,
and Mohammad Norouzi. Image Super-Resolution via Iterative Refinement.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

[306] Mehdi SM Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Syl-
vain Gelly. Assessing Generative Models via Precision and Recall. In Advances
in Neural Information Processing Systems, volume 31, 2018.

[307] Tim Salimans and Jonathan Ho. Progressive Distillation for Fast Sampling of
Diffusion Models. In International Conference on Learning Representations,
2022.

[308] Tim Salimans, Diederik Kingma, and Max Welling. Markov Chain Monte
Carlo and Variational Inference: Bridging the Gap. In ICML, 2015.

[309] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Rad-
ford, and Xi Chen. Improved Techniques for Training GANs. Advances in
Neural Information Processing Systems, 2016.

[310] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P. Kingma. Pixel-
CNN++: Improving the PixelCNN with Discretized Logistic Mixture Likeli-
hood and Other Modifications. ICLR, 2017.

[311] Saeed Saremi and Aapo Hyvarinen. Neural Empirical Bayes. Journal of Ma-
chine Learning Research, 20:1–23, 2019.

[312] Saeed Saremi, Arash Mehrjou, Bernhard Schlkopf, and Aapo Hyvärinen. Deep
Energy Estimator Networks. arXiv:1805.08306, 2018.

[313] Hiroshi Sasaki, Chris G Willcocks, and Toby P Breckon. UNIT-DDPM: UN-
paired Image Translation with Denoising Diffusion Probabilistic Models. arXiv
preprint arXiv:2104.05358, 2021.

[314] Axel Sauer, Kashyap Chitta, Jens Müller, and Andreas Geiger. Projected
GANs Converge Faster. Advances in Neural Information Processing Systems,
34:17480–17492, 2021.

[315] Nikolay Savinov, Junyoung Chung, Mikolaj Binkowski, Erich Elsen, and Aaron
van den Oord. Step-unrolled Denoising Autoencoders for Text Generation. In
International Conference on Learning Representations, 2022.

164

[316] Jürgen Schmidhuber. Making the World Differentiable: On Using Self-
Supervised Fully Recurrent Neural Networks for Dynamic Reinforcement
Learning and Planning in Non-Stationary Environments. 1990.

[317] Jürgen Schmidhuber. Generative Adversarial Networks are special cases of Ar-
tificial Curiosity (1990) and also closely related to Predictability Minimization
(1991). Neural Netw., 127:58–66, 2020.

[318] Jiaxin Shi, Shengyang Sun, and Jun Zhu. A Spectral Approach to Gradient
Estimation for Implicit Distributions. In ICML, 2018.

[319] Rajhans Singh, Ankita Shukla, and Pavan Turaga. Polynomial Implicit Neural
Representations For Large Diverse Datasets. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 2041–2051,
2023.

[320] Samarth Sinha, Han Zhang, Anirudh Goyal, Yoshua Bengio, Hugo Larochelle,
and Augustus Odena. Small-GAN: Speeding up GAN Training using Core-
Sets. In ICML, 2020.

[321] Vincent Sitzmann, Eric R. Chan, Richard Tucker, Noah Snavely, and Gordon
Wetzstein. MetaSDF: Meta-learning Signed Distance Functions. Advances in
Neural Information Processing Systems, 33:10136–10147, 2020.

[322] Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and
Gordon Wetzstein. Implicit Neural Representations with Periodic Activation
Functions. Advances in Neural Information Processing Systems, 33:7462–7473,
2020.

[323] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Gan-
guli. Deep Unsupervised Learning using Nonequilibrium Thermodynamics.
In International Conference on Machine Learning, pages 2256–2265. PMLR,
2015.

[324] Jiaming Song, Shengjia Zhao, and Stefano Ermon. A-NICE-MC: Adversarial
Training for MCMC. Advances in Neural Information Processing Systems, 30,
2017.

[325] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion Implicit
Models. In International Conference on Learning Representations, 2021.

[326] Yang Song and Stefano Ermon. Generative Modeling by Estimating Gradients
of the Data Distribution. Advances in Neural Information Processing Systems,
32, 2019.

[327] Yang Song, Chenlin Meng, and Stefano Ermon. MintNet: Building Invertible
Neural Networks with Masked Convolutions. Advances in Neural Information
Processing Systems, 32, 2019.

165

[328] Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced Score Match-
ing: A Scalable Approach to Density and Score Estimation. In UAI, pages
574–584, 2020.

[329] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar,
Stefano Ermon, and Ben Poole. Score-Based Generative Modeling through
Stochastic Differential Equations. In International Conference on Learning
Representations, 2021.

[330] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency
Models. In International Conference on Machine Learning, pages 32211–
32252. PMLR, 2023.

[331] Yuxuan Song, Qiwei Ye, Minkai Xu, and Tie-Yan Liu. Discriminator Con-
trastive Divergence: Semi-Amortized Generative Modeling by Exploring En-
ergy of the Discriminator. arXiv:2004.01704, 2020.

[332] Ilya Sutskever and Tijmen Tieleman. On the Convergence Properties of Con-
trastive Divergence. In AISTATS, pages 789–795, 2010.

[333] Casper Kaae Snderby, Tapani Raiko, Lars Maale, Sren Kaae Snderby, and Ole
Winther. Ladder Variational Autoencoders. Advances in Neural Information
Processing Systems, 29, 2016.

[334] Casper Kaae Snderby, Jose Caballero, Lucas Theis, Wenzhe Shi, and Ferenc
Huszr. Amortised MAP Inference for Image Super-resolution. In ICLR, 2017.

[335] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil,
Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron,
and Ren Ng. Fourier Features Let Networks Learn High Frequency Functions
in Low Dimensional Domains. Advances in neural information processing sys-
tems, 33:7537–7547, 2020.

[336] Haotian Tang, Zhijian Liu, Xiuyu Li, Yujun Lin, and Song Han. TorchSparse:
Efficient Point Cloud Inference Engine. In Conference on Machine Learning
and Systems (MLSys), 2022.

[337] H. Thanh-Tung and T. Tran. Catastrophic forgetting and mode collapse in
GANs. In IJCNN, pages 1–10, 2020. doi: 10.1109/IJCNN48605.2020.9207181.

[338] Lucas Theis and Matthias Bethge. Generative Image Modeling Using Spatial
LSTMs. In Advances in Neural Information Processing Systems, 2015.

[339] Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the
evaluation of generative models. arXiv:1511.01844, 2016.

[340] Tijmen Tieleman. Training Restricted Boltzmann Machines using Approxi-
mations to the Likelihood Gradient. In ICML, 2008.

[341] Michalis Titsias and Petros Dellaportas. Gradient-based Adaptive Markov
Chain Monte Carlo. Advances in Neural Information Processing Systems, 32,
2019.

166

[342] Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf.
Wasserstein Auto-Encoders. arXiv:1711.01558, 2019.

[343] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua
Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers,
Jakob Uszkoreit, et al. MLP-Mixer: An All-MLP Architecture for Vision.
Advances in Neural Information Processing Systems, 34:24261–24272, 2021.

[344] Jakub Tomczak and Max Welling. VAE with a VampPrior. In AISTATS,
pages 1214–1223, 2018.

[345] Alexander Tong, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid
Rector-Brooks, Kilian Fatras, Guy Wolf, and Yoshua Bengio. Conditional
Flow Matching: Simulation-Free Dynamic Optimal Transport. arXiv preprint
arXiv:2302.00482, 2023.

[346] Dustin Tran, Rajesh Ranganath, and David M. Blei. Variational Gaussian
Process. In ICLR, 2016.

[347] Dustin Tran, Keyon Vafa, Kumar Agrawal, Laurent Dinh, and Ben Poole.
Discrete Flows: Invertible Generative Models of Discrete Data. Advances in
Neural Information Processing Systems, 32, 2019.

[348] N.-T. Tran, V.-H. Tran, N.-B. Nguyen, T.-K. Nguyen, and N.-M. Cheung. On
Data Augmentation for GAN Training. IEEE TIP, 30:1882–1897, 2021. ISSN
1941-0042. doi: 10.1109/TIP.2021.3049346.

[349] Ngoc-Trung Tran, Viet-Hung Tran, Bao-Ngoc Nguyen, Linxiao Yang, and
Ngai-Man (Man) Cheung. Self-supervised GAN: Analysis and Improvement
with Multi-class Minimax Game. Advances in Neural Information Processing
Systems, 32, 2019.

[350] Anton Tsitsulin, Marina Munkhoeva, Davide Mottin, Panagiotis Karras, Alex
Bronstein, Ivan Oseledets, and Emmanuel Müller. The Shape of Data: Intrin-
sic Distance for Data Distributions. In International Conference on Learning
Representations, 2020.

[351] Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel. Plug-and-Play
Diffusion Features for Text-Driven Image-to-Image Translation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 1921–1930, 2023.

[352] Richard Eric Turner and Maneesh Sahani. Two problems with variational
expectation maximisation for time series models. In Bayesian Time Series
Models, pages 104–124, Cambridge, 2011. ISBN 978-0-511-98467-9. doi: 10.
1017/CBO9780511984679.006.

[353] Ryan Turner, Jane Hung, Eric Frank, Yunus Saatchi, and Jason Yosinski.
Metropolis-Hastings Generative Adversarial Networks. In ICML, 2019.

167

[354] Belinda Tzen and Maxim Raginsky. Theoretical guarantees for sampling and
inference in generative models with latent diffusions. In COLT, pages 3084–
3114, 2019.

[355] Benigno Uria, Iain Murray, and Hugo Larochelle. RNADE: The Real-Valued
Neural Autoregressive Density-Estimator. In Advances in Neural Information
Processing Systems, 2013.

[356] Arash Vahdat and Jan Kautz. NVAE: A Deep Hierarchical Variational Au-
toencoder. In Advances in Neural Information Processing Systems, volume 33,
2020.

[357] Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-Based Generative Mod-
eling in Latent Space. Advances in Neural Information Processing Systems,
34, 2021.

[358] Gabriele Valvano, Andrea Leo, and Sotirios A Tsaftaris. Learning to Segment
from Scribbles using Multi-scale Adversarial Attention Gates. IEEE T-MI,
2021.

[359] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,
Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Ko-
ray Kavukcuoglu. WaveNet: A Generative Model for Raw Audio.
arXiv:1609.03499, 2016.

[360] Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, koray kavukcuoglu,
Oriol Vinyals, and Alex Graves. Conditional Image Generation with PixelCNN
Decoders. In Advances in Neural Information Processing Systems, volume 29,
2016.

[361] Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel
Recurrent Neural Networks. In ICML, 2016. ISBN 978-1-5108-2900-8.

[362] Aaron van den Oord, Oriol Vinyals, and koray kavukcuoglu. Neural Discrete
Representation Learning. Advances in Neural Information Processing Systems,
30, 2017.

[363] Aaron van den Oord et al. Parallel WaveNet: Fast High-Fidelity Speech
Synthesis. In ICML, 2018.

[364] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is All You
Need. Advances in neural information processing systems, 30, 2017.

[365] Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan
Cevher, and Pascal Frossard. Digress: Discrete Denoising Diffusion for Graph
Generation. In The Eleventh International Conference on Learning Represen-
tations, 2023.

[366] Cédric Villani. Topics in Optimal Transportation. Number 58. American
Mathematical Soc., 2003. ISBN 978-0-8218-3312-4.

168

[367] Cédric Villani. Optimal Transport: Old and New, volume 338. Springer Science
& Business Media, 2008.

[368] Pascal Vincent. A Connection Between Score Matching and Denoising Au-
toencoders. Neural computation, 23(7):1661–1674, 2011.

[369] Alex Wang and Kyunghyun Cho. BERT has a Mouth, and it Must Speak:
BERT as a Markov Random Field Language Model. In NeuralGen, 2019.

[370] Clinton Wang and Polina Golland. Discretization Invariant Learning on Neural
Fields. In arXiv preprint arXiv:2206.01178, 2022.

[371] Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Lin-
former: Self-Attention with Linear Complexity. arXiv:2006.04768, 2020.

[372] Yuanhao Wang, Guodong Zhang, and Jimmy Ba. On Solving Minimax Opti-
mization Locally: A Follow-the-Ridge Approach. In ICLR, 2020.

[373] Daniel Watson, Jonathan Ho, Mohammad Norouzi, and William Chan. Learn-
ing to Efficiently Sample from Diffusion Probabilistic Models. arXiv preprint
arXiv:2106.03802, 2021.

[374] Antoine Wehenkel and Gilles Louppe. Unconstrained Monotonic Neural Net-
works. Advances in Neural Information Processing Systems, 32, 2019.

[375] Max Welling and Yee Whye Teh. Bayesian Learning via Stochastic Gradient
Langevin Dynamics. In ICML, 2011.

[376] Christopher Williams, Fabian Falck, George Deligiannidis, Chris Holmes, Ar-
naud Doucet, and Saifuddin Syed. A Unified Framework for U-Net Design
and Analysis. Advances in Neural Information Processing Systems, 36:27745–
27782, 2023.

[377] Hao Wu, Jonas Khler, and Frank Noé. Stochastic Normalizing Flows. Advances
in Neural Information Processing Systems, 2020.

[378] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Im-
age Dataset for Benchmarking Machine Learning Algorithms. arXiv preprint
arXiv:1708.07747, 2017.

[379] Zhisheng Xiao, Karsten Kreis, Jan Kautz, and Arash Vahdat. VAEBM: A
Symbiosis between Variational Autoencoders and Energy-based Models. In
International Conference on Learning Representations, 2021.

[380] J. Xie, Y. Lu, R. Gao, S. Zhu, and Y. N. Wu. Cooperative Training of De-
scriptor and Generator Networks. IEEE TPAMI, 42(1):27–45, 2020. ISSN
1939-3539. doi: 10.1109/TPAMI.2018.2879081.

[381] Jianwen Xie, Yang Lu, Song-Chun Zhu, and Ying Nian Wu. A Theory of
Generative ConvNet. In International Conference on Machine Learning, 2016.

169

[382] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Nu-
mair Khan, Federico Tombari, James Tompkin, Vincent Sitzmann, and Sri-
nath Sridhar. Neural Fields in Visual Computing and Beyond. In Computer
Graphics Forum, volume 41, pages 641–676. Wiley Online Library, 2022.

[383] Yilun Xu, Ziming Liu, Max Tegmark, and Tommi S Jaakkola. Poisson flow
generative models. In Advances in Neural Information Processing Systems,
volume 36, 2022.

[384] L. Yang and G. E. Karniadakis. Potential Flow Generator With L2 Optimal
Transport Regularity for Generative Models. IEEE TNNLS, pages 1–11, 2020.
ISSN 2162-2388. doi: 10.1109/TNNLS.2020.3028042.

[385] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. LSUN:
Construction of a Large-scale Image Dataset using Deep Learning with Hu-
mans in the Loop. arXiv preprint arXiv:1506.03365, 2015.

[386] Lantao Yu, Yang Song, Jiaming Song, and Stefano Ermon. Training Deep
Energy-Based Models with f-Divergence Minimization. In ICML, 2020.

[387] Amir Zadeh, Yao-Chong Lim, Paul Pu Liang, and Louis-Philippe Morency.
Variational Auto-Decoder. arXiv preprint arXiv:1903.00840, 2019.

[388] Sergey Zagoruyko and Nikos Komodakis. Wide Residual Networks.
arXiv:1605.07146, 2017.

[389] Bowen Zhang, Shuyang Gu, Bo Zhang, Jianmin Bao, Dong Chen, Fang Wen,
Yong Wang, and Baining Guo. StyleSwin: Transformer-Based GAN for High-
Resolution Image Generation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11304–11314, 2022.

[390] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei
Huang, and Dimitris N. Metaxas. StackGAN: Text to Photo-Realistic Image
Synthesis With Stacked Generative Adversarial Networks. In IEEE CVPR,
2017.

[391] Han Zhang, Xi Gao, Jacob Unterman, and Tom Arodz. Approximation Ca-
pabilities of Neural Ordinary Dierential Equations. arXiv:1907.12998, 2019.

[392] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-
Attention Generative Adversarial Networks. arXiv:1805.08318, 2019.

[393] Han Zhang, Ruili Feng, Zhantao Yang, Lianghua Huang, Yu Liu, Yifei Zhang,
Yujun Shen, Deli Zhao, Jingren Zhou, and Fan Cheng. Dimensionality-Varying
Diffusion Process. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 14307–14316, 2023.

[394] Junyi Zhang, Charles Herrmann, Junhwa Hur, Luisa Polania Cabrera, Varun
Jampani, Deqing Sun, and Ming-Hsuan Yang. A Tale of Two Features: Stable
Diffusion Complements DINO for Zero-Shot Semantic Correspondence. Ad-
vances in Neural Information Processing Systems, 36, 2024.

170

[395] Linfeng Zhang, Weinan E, and Lei Wang. Monge-Ampère Flow for Generative
Modeling. arXiv:1809.10188, 2018.

[396] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang.
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In
Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 586–595, 2018.

[397] Zijian Zhang, Zhou Zhao, and Zhijie Lin. Unsupervised Representation Learn-
ing from Pre-trained Diffusion Probabilistic Models. In Advances in Neural
Information Processing Systems, 2022.

[398] Junbo Zhao, Michael Mathieu, and Yann LeCun. Energy-based Generative
Adversarial Network. In ICLR, 2017.

[399] Shengjia Zhao, Jiaming Song, and Stefano Ermon. Learning Hierarchical Fea-
tures from Deep Generative Models. In ICML, 2017.

[400] Shengjia Zhao, Jiaming Song, and Stefano Ermon. Towards Deeper Under-
standing of Variational Autoencoding Models. Proceedings of the 34th Inter-
national Conference on Machine Learning, 2017.

[401] Shengjia Zhao, Jiaming Song, and Stefano Ermon. InfoVAE: Balancing Learn-
ing and Inference in Variational Autoencoders. AAAI, 33(01):5885–5892, 2019.
ISSN 2374-3468. doi: 10.1609/aaai.v33i01.33015885.

[402] Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable
Augmentation for Data-Efficient GAN Training. 33, 2020.

[403] Zhengli Zhao, Zizhao Zhang, Ting Chen, Sameer Singh, and Han Zhang. Image
Augmentations for GAN Training. arXiv:2006.02595, 2020.

[404] Jiachen Zhong, Xuanqing Liu, and Cho-Jui Hsieh. Improving the Speed and
Quality of GAN by Adversarial Training. arXiv:2008.03364, 2020.

[405] Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason Weston, and Bernhard
Schölkopf. Learning with Local and Global Consistency. Advances in neural
information processing systems, 16:321–328, 2003.

[406] Jia-Jie Zhu and José Bento. Generative Adversarial Active Learning. arXiv
preprint arXiv:1702.07956, 2017.

[407] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A Efros. Gen-
erative Visual Manipulation on the Natural Image Manifold. In European
Conference on Computer Vision, pages 597–613, 2016.

[408] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired
Image-To-Image Translation Using Cycle-Consistent Adversarial Networks. In
Proceedings of the IEEE international conference on computer vision, pages
2223–2232, 2017.

171

[409] Peiye Zhuang, Samira Abnar, Jiatao Gu, Alex Schwing, Joshua M Susskind,
and Miguel Ángel Bautista. Diffusion Probabilistic Fields. In International
Conference on Learning Representations, 2023.

[410] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford,
Dario Amodei, Paul Christiano, and Geoffrey Irving. Fine-tuning language
models from human preferences. arXiv preprint arXiv:1909.08593, 2019.

[411] Zachary Ziegler and Alexander Rush. Latent Normalizing Flows for Discrete
Sequences. In ICML, 2019.

172

	Abstract
	Declaration
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Motivation
	Contributions
	Publications
	Thesis Scope and Structure
	Reproducibility

	Literature Review
	Energy-Based Models
	Early Energy-Based Models
	Deep EBMs via Contrastive Divergence
	Correcting Implicit Generative Models
	Alternative Training Objectives

	Diffusion Models
	Gaussian Diffusion Models
	Connection with Score Matching
	Continuous Time Gaussian Diffusion
	Diffusion in Discrete State Spaces
	Speeding up Sampling

	Variational Autoencoders
	Beyond Simple Priors
	Regularised Autoencoders
	Data Modelling Distributions
	Bridging Amortized and Stochastic Inference

	Generative Adversarial Networks
	Stabilising Training
	Architectures
	Training Speed

	Autoregressive Likelihood Models
	Architectures
	Data Modelling Decisions

	Normalizing Flows
	Coupling and Autoregressive Layers
	Convolutional Flows
	Residual Flows
	Surjective and Stochastic Layers
	Discrete Flows
	Continuous Time Flows

	Evaluation Metrics
	Applications
	Datasets
	Low Resolution Datasets
	High Resolution Datasets

	Conclusion

	Gradient Origin Networks
	Empirical Bayes
	Method
	Gradient Origin Networks
	Autoencoding with GONs
	Variational GONs
	Implicit GONs
	GON Generalisations
	Justification

	Results
	Quantitative Evaluation
	Qualitative Evaluation

	Discussion
	Conclusion

	Unleashing Transformers
	Method
	Sampling Globally Coherent Latents
	Addressing Gradient Variance
	Generating High-Resolution Images
	Improving Code Representations

	Evaluation
	Sample Quality
	Absorbing Diffusion
	Reconstruction Quality
	Sample Diversity
	Image Editing
	Nearest Neighbours and Additional Samples
	Limitations
	Quantitative Comparison with Previous Chapter

	Discussion
	Conclusion

	Infinite Resolution Diffusion
	Finite Dimensional Diffusion Models
	Infinite Dimensional Diffusion Models
	Mollification
	Infinite Dimensional Mollified Diffusion

	Parameterising the Diffusion Process
	Neural Operators
	Multi-Scale Architecture
	Efficient Sparse Operators

	Experiments
	Discussion
	Conclusion

	Conclusion
	Contributions
	Limitations and Future Work
	Further Scaling
	Training/Sampling Times
	Mode Coverage
	Applications

	Ethical Considerations

	Bibliography

