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Abstract

The reproducibility of research findings is of main interest in many disciplines. Reproducibil-

ity of a statistical test means that, if the experiment were repeated under the same conditions, it

would lead to the same conclusion with regard to rejection of the null hypothesis. The probabil-

ity that the test conclusion for the repeated test would be the same as the original test is called

reproducibility probability (RP). The concept of test reproducibility is inherently a predictive

inference problem. This thesis investigates the reproducibility of statistical hypothesis tests

for One-Way Layout tests using Nonparametric Predictive Inference (NPI). NPI is a predictive

approach based on few modelling assumptions that considers multiple future observations that

are exchangeable with the data observations which makes it suitable for inference about repro-

ducibility. The uncertainty can be quantified in NPI reproducibility through lower and upper

reproducibility probabilities.

This thesis considers reproducibility of general alternatives tests, including the Kruskal

Wallis test and the one-way ANOVA test, as well as the Jonckheere-Terpstra test for the ordered

alternative hypothesis. This thesis also considers reproducibility probabilities for the umbrella

alternatives tests, specifically the Mack-Wolfe test and the Esra-Fikri test, as well as for slippage

tests, namely, the Mosteller test. Deriving the exact NPI lower and upper reproducibility

probabilities is not trivial for some tests and computationally challenging for large sample

sizes. To address these difficulties, two NPI-based approaches are implemented, namely, the

NPI sampling of orderings and the NPI-bootstrap techniques. The NPI reproducibility is low

when the test statistic is close to the threshold between rejecting and not rejecting the null

hypothesis. If the test statistic is close to the rejection threshold for tests with directional

alternatives, reproducibility tends to be lower for rejection of the null hypothesis than for non-

rejection. This may be problematic, in particular as rejection of the null hypothesis is often the

main goal of statistical experiments.
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Notations

NPI Nonparametric Predictive Inference

A(n) Hill’s assumption

RP Reproducibility Probability

NPI-RP NPI Reproducibility Probability

NPI-RP-E NPI reproducibility probability using the exact approach

RP NPI lower reproducibility probability

RP NPI upper reproducibility probability

NPI-B NPI Bootstrap

B The number of bootstrap replications

NPI-RP-B NPI reproducibility probability using NPI Bootstrap

NPI-RP-SO NPI reproducibility probability using Sampling of Orderings approach

r∗ The number of orderings sampled in the NPI-RP-SO

R̂P NPI lower reproducibility probability using sampling of orderings

R̂P NPI upper reproducibility probability using sampling of orderings

k The number of independent groups

n The sample size for a particular group

N The total number of observations in the k groups

KW The Kruskal-Wallis test statistic

F The one-way Analysis of Variance (ANOVA) test statistic

η2 The effect size for the one-way Analysis of Variance test

ε2 The effect size for the Kruskal-Wallis test

J The Jonckheere-Terpstra test statistic

Ap The Mack-Wolfe test statistic

Ãp The Esra-Fikri test statistic
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Chapter 1

Introduction

1.1 Motivation

Hypothesis testing is a commonly used methodology for comparing two or more groups in sta-

tistical inference. Hypothesis tests are generally categorized into parametric and nonparametric

tests. Parametric tests such as the t-test and the Analysis of Variance (ANOVA) test require

some assumptions about the underlying population distribution and homogeneity of variances.

When the assumptions are violated, there are equivalent rank-based nonparametric tests which

can be used, such as the Wilcoxon-Mann-Whitney test and the Kruskal-Wallis test. Other

nonparametric tests for comparing more than two groups that consider different alternative

hypotheses are the Jonckheere-Terpstra test, the Mack-Wolfe test and the Mosteller test.

There has been an increase in interest in reproducibility of results in many scientific fields.

A survey conducted by nature indicates that there is a reproducibility crises as high percentages

of the researchers in the survey have failed to reproduce another scientist’s experiments results,

and to reproduce their own experiments [8]. The reproducibility of statistical test conclusions

is of main interests in statistics. If the test is repeated under identical circumstances would

the same conclusion as the original test be reached with regard to rejection or non-rejection of

the null hypothesis? The probability that the test conclusion for the repeated test would be

the same as the original test is called reproducibility probability (RP) [18]. The reproducibility

probability of statistical hypothesis tests is crucial for the reliability of tests outcomes. Goodman

[51] started the discussion about the concept of reproducibility of a statistical test conclusion,

and indicated that the failure of an experiment to repeat the statistical significance achieved

by previous studies often causes concern in the medical literature due to a misunderstanding

of the p-value. While this thesis focuses on the reproducibility of statistical hypothesis tests,

reproducibility in a wider context is an important topic including the detailed recording of

1
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practical software reproducibility using the same software tools, code, data, and environment as

originally used, etc. There is a large number of publications consider the reproducibility issue

in various scientific fields, in psychology [68, 87, 100, 110], chemistry [14, 49], computer sciences

and machine learning [54, 89]. Such issue have been discussed in detail in the recent thesis by

Simkus [97].

In this thesis, the aim is to study the reproducibility probability of statistical hypothesis

tests, using Nonparametric Predictive Inference (NPI). NPI is a statistical framework based on

the assumption A(n) proposed by Hill for prediction of a future observation [57, 58]. In the

NPI approach, uncertainty is quantified via lower and upper probabilities for events of interest.

NPI has been introduced for many applications in statistics, reliability, finance, as it is easy to

implement and relies on few assumptions [26, 30, 31, 34, 35, 44]. The existing researches have

shown that NPI has good statistical properties and gives reliable predictive results.

The reproducibility probability is naturally considered as a predictive problem which aligns

with NPI approach. Hence, the NPI approach is suitable for studying reproducibility of a

test. First application of NPI to reproducibility probability for statistical hypothesis tests

was introduced by Coolen and BinHimd [32], who investigated NPI reproducibility for some

basic nonparametric tests: the one-sample sign test, the one-sample Wilcoxon signed rank

test, the two-sample rank sum test also known as Wilcoxon-Mann-Whitney test and the two-

sample Kolmogorov-Smirnov test. Coolen and Alqifari [29] developed NPI-RP for two classical

statistical tests based on order statistics, namely a one-sample quantile test and a precedence

test. Marques et al. [75] studied NPI-RP for the likelihood ratio test.

This thesis contributes to the development of NPI reproducibility probability of statistical

tests by considering some one-way layout tests, namely, the Analysis of Variance (ANOVA)

test, the Kruskal-Wallis (KW) test, the Jonckheere-Terpstra (JT) test, the Mack-Wolfe (MW)

test, the Esra-Fikri (EF) test and the Mosteller test.

The outline of this introductory chapter is as follows. Section 1.2 introduces some back-

ground information about the one-way layout tests. Section 1.3 presents a brief introduction

to the topic of the reproducibility in the literature. In Section 1.4, an overview of the main

concept of Nonparametric Predictive Inference (NPI) is introduced. The application of the NPI

approach in developing methods to estimate the reproducibility probability for a statistical test,

is discussed in Section 1.5. Finally, a detailed outline of this thesis is given in Section 1.6.
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1.2 One-way layout tests

There are several statistical tests in the literature to compare multiple groups, e.g. to test if

there is a significant difference in the location parameters such as the means or the medians

of the groups, these tests are called One-way layout tests. There are different alternative

hypotheses. One of the commonly used statistical tests for general alternatives is the Analysis

of Variance (ANOVA) test which is used to compare the location parameters for multiple groups

to determine if there are any significant differences between them [67]. The application of the

ANOVA test requires certain assumptions that must be satisfied. These assumptions are the

independence of observations, normality of probability distributions and equality of variances

[66]. When the ANOVA test assumptions are not met the Kruskal-Wallis (KW) test which is the

nonparametric equivalent to the ANOVA test can be used [59, 93]. The KW test does not make

assumptions about normality and homogeneity of variances. There are other nonparametric

tests introduced in the literature for comparing the location parameters for multiple groups. The

Jonckheere-Terpstra (JT) test is nonparametric statistical test, where the alternative hypothesis

that the location parameters are ordered in a specific way (stating the direction of the order

to be increasing or decreasing) [61, 101]. Other statistical tests are the umbrella alternatives

tests used for the umbrella alternative hypothesis that the location parameters have a peak

at population p [16, 45, 71, 76]. Slippage tests are used to determine whether one or more

groups have slipped either to the left or to the right, meaning that an unspecified number of

observations in one or more groups is smaller or larger than all the remaining observations in

the other groups, respectively [19, 25, 79, 80].

1.3 Reproducibility Probability (RP)

Reproducibility is the ability to reproduce research results when the same methods, data, and

analysis as the original study are used. The literature demonstrates that there has been a

significant amount of research conducted on statistical reproducibility. Reproducibility and

statistical reproducibility has become an increasingly important issue in scientific research, as

it is crucial for the scientific community to maintain confidence in research findings and to

continue advancing knowledge in various fields, such as biomedical research, psychology, and

social sciences. Recently, much attention has been paid to the reproducibility of statistical

hypothesis tests [6]. Statistical reproducibility addresses the question: If a statistical test were

repeated, under the same circumstances, would it lead to the same conclusion with regard to

rejection or non-rejection of the null hypothesis? The probability that the test conclusion for



1.3. Reproducibility Probability (RP) 4

the repeated test would be the same as the original test is called reproducibility probability

(RP) [18, 98].

Initial analysis and discussion on the reproducibility were first presented by Goodman [51],

who indicated that the failure of an experiment to repeat the statistical significance achieved

by previous studies often causes concern in the medical literature due to a misunderstanding

of the p-value. Goodman argues that the probability of replicating a statistically significant

result is lower than expected; moreover, the p-value may lead to over optimistic interpreta-

tions. In a discussion of Goodman’s paper, Senn [94] agreed with Goodman that the nature

of reproducibility probability (RP) and p-value are distinct, and emphasized the importance of

reproducibility of test conclusions. Nevertheless, he disagreed with Goodman’s statement that

the p-value overstates the evidence against the null hypothesis and he stated two reasons for

this. The first reason depends of the frequentist interpretations of the p-value, if the p-value

accepted to be the probability of observing a result as extreme or more extreme than the result

observed under the null hypothesis or it is the most stringent possible type I error rate that one

could achieve and still reject the null hypothesis. The second reason depends on granting the

Bayesian claim that p-values are interpreted by everybody as if they were Bayesian posterior

probabilities. Thus, it is not necessarily true that p-value overstates the evidence against the

null hypothesis.

Goodman [51] and Senn [94] presented a straightforward argument related to the estimation

of RP. They argued that, if the distribution of the test statistic under the null hypothesis is

about symmetric, a worst-case scenario could result in an RP of about 0.5. This argument

is based on the possibility that the original test statistic value could be equal to the test’s

critical value. In the absence of additional information, one could anticipate that repeating the

experiment would produce a second test statistic value with an equal chance of being larger

or smaller than the original value. Consequently, the same conclusion would be reached with

probability 0.5. Goodman [51] provides evidence for this claim using a Bayesian approach with

a non-informative prior.

Shao and Chow [95] discussed reproducibility probability in the context of clinical trials,

where it is a common research concern to assess whether clinical trials that have yielded signifi-

cant clinical results provide sufficient evidence to guarantee that the findings can be reproduced

in a future clinical trial under the same study conditions. Shao and Chow [95] explore the

application of three approaches to assess the reproducibility probability for two-sample t-tests:

a common power approach where they define the reproducibility probability as the estimated

power of the future trial using the data from the previous trial(s); a confidence bounds approach
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where RP is defined as a lower confidence bound of the estimated power of the second trial; and

a Bayesian approach through the use of the posterior predictive distribution.

De Martini [40] discussed the reproducibility probability estimation of a statistically sig-

nificant result for parametric tests with one-sided and two-sided alternatives. Specifically, he

considered the estimated power of the test and the lower confidence bound of the power as

methods for estimating the reproducibility probability, and defined statistical tests based on

the reproducibility probability estimation. De Capitani and De Martini [38] considered several

estimators for the reproducibility probability for the Wilcoxon Rank Sum test. A comparison

between the use of RP and p-value is discussed by De Capitani [37], who comes to the conclusion

that the RP defines a decision rule as the p-value. The threshold for defining statistical tests

based on the point estimator of the RP turned out to be 0.5, that is, not reject the null hypoth-

esis if the RP estimate is lower than, or equal to 0.5, and reject the null hypothesis otherwise.

De Capitani and De Martini [39] provide further discussion on reproducibility probability for

the Sign test, the Binomial test, the Kendall test and the Wilcoxon Signed Rank test.

Boos and Stefanski [21] study the variability of p-values in order to gain a deeper understand-

ing of its significance and possible impacts in relation to reproducibility. They use of bootstrap

studies, which showed that p-values exhibit surprisingly larger variability than anticipated in

typical data situations. Boos and Stefanski [21] extended Shao and Chow’s [95] discussion

about reproducibility probability using the estimated power approach for t-test to the one-way

ANOVA test and found that all R̂P estimates are relatively close when the p-value equal 0.

Boos and Stefanski [21] showed that ANOVA with p-value = 0.001 corresponds to R̂P = 0.9,

which means that probability of getting p-value < 0.05 and near to 0.001 in a replication of the

original experiments is 90%.

Miller [77] emphasized the importance to distinguish between two scenarios for the replica-

tion probability; a scenario in which the researchers will obtain significant effects in the repeated

experiments where conditions may vary with regard to the original experiments, and the other

form of repetition would be obtained by an individual researcher under the same conditions as

the original experiments. The inference regarding RP outlined in this thesis aligns entirely with

Miller’s concept of the ’individual form of repetition’. Killeen [62] considered both of the two

scenarios but he did not emphasized the distinction between them.

Killeen [62] emphasized the explicit prediction of reproducibility probability and links it to

the effect size. Killeen [62] defined the probability of replication of an experiment results as the

probability of finding an effect of the same sign in a replication of an experiment as that found

in the original experiment. Although there is some confusion about reproducibility probability
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concept in Killeen’s paper, the general idea concerning RP exhibits a close alignment with those

presented in this thesis, namely a predictive nature of reproducibility probability.

Lecoutre et al. [69] discuss Killeen’s [62] approach for probability of replication of experiment

result, and consider it to be a ”fiducial Bayesian predictive approach” based on noninformative

priors. Lecoutre et al. [69] investigated statistical prediction scenarios, for instance, given a

significant result in the original experiment estimate, they consider the probability that the

result of a replication of the experiment would be significant. Lecoutre et al. [69] found that

there remains some confusion in computing the probability of replication, and emphasized the

role of predictive procedures in statistical methodology. As stated by Lecoutre et al. [69],

predictive probabilities are an unavoidable part of the statistical thinking to help researchers

ask and answer experiment-related questions such as “what would happen if additional subjects

were to be included into the experiment?”, “what would be the conclusion for the data of these

future subjects?”, or “what would happen if this experiment were to be repeated?”.

Billheimer [17] points out that most statistical analyses use hypothesis tests or parameters

estimation to form inferential conclusions. However, predictive inference which focuses on pre-

dicting future observations given the current data and other related information, can provides

multiple advantages for researchers to predict what is likely to happen in future experiments

[17].

A comprehensive collection of articles that explore the concept of reproducibility in scientific

research are included in the volume edited by Maasen and Atmanspacher [70]. The edited

volume covers various topics and principles related to reproducibility, including the definition of

reproducibility, reproducibility of experiments or observations that are supported by statistical

significance tests, the challenges and problems associated with achieving reproducibility, and the

potential benefits of reproducibility for scientific studies. The chapters of this edited volume

also discusses different approaches and practices that researchers can adopt to improve the

reproducibility of their research. In addition, it includes examples from different scientific fields

such as physical sciences, life sciences and social sciences, to demonstrate the importance of

reproducibility in advancing scientific research.

The reproducibility is naturally considered as predictive inference problem. Coolen and

BinHimd [32] introduced reproducibility probability (RP) as a prediction problem, using Non-

parametric Predictive Inference (NPI), and denoted by NPI-RP. This thesis contributes to the

statistical reproducibility by considering the NPI-RP for One-way layout tests. An overview

of NPI is provided in the following section. NPI methods for test reproducibility which are

considered in this thesis will be discussed in details in Section 1.5.
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1.4 Nonparametric Predictive Inference (NPI)

Nonparametric Predictive Inference (NPI) is a statistical framework based on A(n) assumption

proposed by Hill [57, 58], which provides direct probabilities for future observations given n ob-

servations of related random quantities. Inferences based on the assumption A(n) are predictive

and nonparametric, and seem suitable if there is hardly any knowledge about the random quan-

tities of interest, other than the n observations, or if one does not want to use such information.

Inferences based on such restricted assumptions have also known as ‘low structure inferences’

[48].

Suppose that X1, X2, . . . , Xn are continuous and exchangeable random quantities. Let the

ordered of the observations of X1, X2, . . . , Xn be denoted by x1 < x2 < . . . < xn, and let

x0 = −∞ and xn+1 = ∞ for ease of notation. These n observations partition the real-line into

n + 1 intervals Ij = (xj−1, xj), for j = 1, ..., n + 1. Given the n observations, the assumption

A(n) for the future observation Xn+1 is:

P (Xn+1 ∈ (xj−1, xj)) =
1

n+ 1
for j = 1, ..., n+ 1 (1.1)

Note that under A(n) it is assumed that ties do not occur. In the NPI framework, tied

observations can be dealt with by assuming that such observations differ by a very small amount

[58]. In this thesis, the jitter function in R is used when relevant.

A(n) does not assume anything else, and can be considered to be a post-data assumption

related to exchangeability [47]. A(n) is not sufficient to derive precise probabilities for many

events of interest, but optimal bounds based on A(n) can be derived for all events of interest

involving Xn+1. These bounds are lower and upper probabilities in the theories of imprecise

probability [107] and interval probability [109]. Imprecise probability generalizes classical prob-

ability in the sense that it can be used for describing uncertainty about events via intervals,

instead of a single number. For event A the lower probability is denoted by P (A) and the upper

probability by P (A), with 0 ≤ P (A) ≤ P (A) ≤ 1, and △(A) = P (A) − P (A) is called the

imprecision [27]. Augustin and Coolen [7] introduced the NPI lower and upper probabilities for

the event Xn+1 ∈ B ⊂ R, based on the assumption A(n), as follows:

P (Xn+1 ∈ B) =
1

n+ 1

n+1∑
j=1

1 {Ij ⊆ B}P (Xn+1 ∈ Ij) (1.2)

P (Xn+1 ∈ B) =
1

n+ 1

n+1∑
j=1

1 {Ij ∩B ̸= ∅}P (Xn+1 ∈ Ij) (1.3)

where 1 {A} is an indicator function which is equal to 1 if event A occurs and 0 else. The

lower probability P (Xn+1 ∈ B) can be obtained by counting the probability masses assigned
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to interval Ij that are completely within B. The upper probability P (Xn+1 ∈ B) is the total

probability masses that could possibly be within B. The NPI approach has been developed

for many applications in statistics, reliability, finance and operational research, as it is easy to

implement and relies on few assumptions. NPI has been presented for a range of data types,

such as Bernoulli data [26], lifetime data [34, 35], ordinal data [44], bivariate data [81] and

multinominal data [30, 31].

The NPI approach can be generalized for m ≥ 1 future observations, Xn+i for i = 1, ...,m,

based on data consisting of n observations. The data and the future observations are linked via

Hill’s assumption A(n), A(n+1), ..., A(n+m−1), which can be considered as a post-data version of

a finite exchangeability assumption for n+m random quantities. [57]. Each future observation

is equally likely to fall in any interval Ij between two consecutive observations xj−1 and xj , and

all possible orderings of the m future observations among the n data observations are equally

likely. There are
(
n+m
n

)
possible orderings Oi where i = 1, ...,

(
n+m
n

)
, so the probability of any

specific ordering of the m future observations among the n data observations is
(
n+m
n

)−1
. Let Sj

denote the number of the future observations in the interval Ij = (xj−1, xj) for j = 1, ..., n+ 1

[26, 28], then inferences about these m future observations can be based on the probabilities

P
( n+1⋂
j=1

{Sj = sj}
)
=

(
n+m

n

)−1

(1.4)

for any (S1, ..., Sn+1) with Sj non-negative integers with
∑n+1

j=1 Sj = m [28].

In the NPI approach, the lower probability for an event of interest is derived by counting

all orderings for which it must hold, whereas the corresponding upper probability is derived by

counting all orderings for which it can hold [9]. NPI for multiple future observations has been

used for many applications [1, 29].

NPI for m real-valued future observations has been used to study the reproducibility of

statistical tests in [4, 18, 74, 98], more details will be given in Section 1.5. In the NPI frame-

work, test reproducibility is viewed as a prediction problem. NPI is a good approach to study

statistical test reproducibility since it is based on predicting future observations. In this thesis,

NPI for m future observations will be used to derive the NPI lower and upper reproducibility

probabilities for the Mack-Wolfe test and the Mosteller test.

1.5 NPI for Reproducibility Probability (NPI-RP)

Recently, the reproducibility of statistical test outcomes has received increasing attention. In

particular, the concept of reproducibility probability (RP), where several studies in the liter-

ature have suggested different approaches for estimating the reproducibility probability based



1.5. NPI for Reproducibility Probability (NPI-RP) 9

on various scenarios. The reproducibility probability (RP) is the probability that the same

test result would be reached if the test is repeated under similar conditions [18, 97]. In the

NPI approach, the reproducibility probability is considered as a prediction problem. NPI is

a frequentist statistics framework that considers m future observations that are exchangeable

with given n data observations. Thus, NPI has a predictive nature which makes it suited for

studying the reproducibility of a statistical test. In the NPI approach, the attention is restricted

to the case where the number of future observations is equal to the number of data observations

(m = n) which is considered a logical assumption in order to study reproducibility.

NPI for reproducibility probability is introduced by Coolen and BinHimd [32], denoted by

NPI-RP. NPI enables inference on test reproducibility by deriving lower and upper probabilities

for the event that a repeated test under similar conditions as the original test leads to the same

conclusion as the original test, in terms of rejection or non rejection of the null hypothesis [18].

The NPI lower and upper reproducibility probabilities are denoted by RP and RP , respectively.

Using the NPI approach, BinHimd [18] investigated the reproducibility probability for some

basic nonparametric tests: the one-sample sign test, the one-sample Wilcoxon signed rank test,

the two-sample rank sum test also known as Wilcoxon-Mann-Whitney test and the two-sample

Kolmogorov-Smirnov test. BinHimd [18] was able to derive the exact NPI lower and upper

reproducibility probabilities for some of these tests, then they have been compared to NPI-RP

estimates using NPI-Bootstrap (NPI-B). The application of the NPI-B method to study NPI

reproducibility probability will denoted with NPI-RP-B, which will be introduced in Section

1.5.3. However, BinHimd [18] found that it is computationally challenging to derive the exact

NPI-RP for the Kolmogorov-Smirnov test, and NPI-RP-B is applied to get approximation

results for the NPI-RP.

Coolen and Alqifari [29] developed NPI-RP for two classical statistical tests based on order

statistics, namely a one-sample quantile test and a precedence test which is used to compare

two groups of lifetime data, where one wishes to reach a conclusion before all units on test have

failed. This involves considering the NPI approach for future order statistics [4], to derive the

NPI lower and upper reproducibility probabilities for the quantile and precedence tests .

Simkus et al. [98] provided an NPI algorithms to study NPI-RP for the t-test as part of phar-

maceutical research experiment, using the NPI-RP-B method which provides a point estimate

of reproducibility probabilities. Simkus et al. [98] studied the reproducibility probability for an

approach that involves multiple pairwise comparisons of groups whose members are given an

increasing concentration of a drug. The aim of the experiment is to decide what concentration

of the drug is most effective.
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Marques et al. [75] studied the NPI reproducibility of the likelihood ratio test using NPI for

multiple future observations, which was presented in Section 1.4. Marques et al. [75] proposed

a method to derive the exact NPI lower and upper reproducibility of likelihood ratio tests,

considering all the possible orderings of the future observations among the data observations.

In this methodology, the computation of the exact NPI lower and upper reproducibility proba-

bilities is time consuming when large samples are considered, due to the increase in the number

of orderings. To overcome this problem, Marques and Coolen [74] introduced the sampling of

orderings technique, where only a random sample of the orderings is considered to estimate the

NPI lower and upper reproducibility probabilities.

Alghamdi [3] investigated the reproducibility of statistical hypothesis tests based on ran-

domised response data using the one-sided and the two-sided test, to address the question that

for a future test of qualitative randomised response data will the test lead to the same con-

clusion as the original test?. Alghamdi [3] also considered the reproducibility for estimates in

terms of the difference between actual estimates and estimates based on a future data set and

developed a measure of reproducibility probability to compare different randomised response

methods that can be based on either the NPI lower or upper reproducibility probability.

Aldawsari [2] proposed a new bootstrap method, the parametric predictive bootstrap (PP-

B). This method is completely based on parametric models and it is mainly designed for infer-

ences aimed at prediction. Aldawsari [2] applied the PP-B method to study the reproducibility

of four parametric tests: one-sample t-test, two sample t-test, Welch’s t-test and F-test, as well

as comparing its performance with the NPI-RP-B. Aldawsari [2] found that for small sample

sizes with the test statistic tending to lie in the rejection region, the RP estimates using PP-B

tends to be lower in the case of non-rejection compared to NPI-RP-B, and tends to be higher in

the case of rejection than NPI-RP-B. However, increasing the sample size tends to reduce the

differences in the RP estimates between PP-B and NPI-RP-B.

In this thesis, the NPI approach for test reproducibility is developed for One-way layout tests.

In the following sections, three approaches will be considered: the exact NPI-RP approach, the

NPI bootstrap and the sampling of orderings approaches, to compute NPI-based reproducibility

probability. The exact NPI-RP analytically provides the NPI lower and upper reproducibility

probabilities. Nevertheless, it is computationally challenging to derive the exact NPI lower and

upper reproducibility probabilities for large sample sizes and for some statistical tests. The

NPI bootstrap and the sampling of orderings methods are both approximation methods for the

NPI-RP when it is not possible to compute the NPI-RP exactly. In the NPI-RP-B method,

reproducibility probabilities are given as a point estimate, while in the sampling of orderings
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method, reproducibility probabilities are given as lower and upper estimates.

1.5.1 Exact NPI-RP (NPI-RP-E)

NPI uses imprecise probability theory that quantify uncertainty by representing probabilities as

intervals rather than single point estimates. This section presents the NPI approach for deriving

the lower and upper reproducibility probabilities. To demonstrate the method, we utilize the

sign test setting, which is the most basic nonparametric test. Let the order of one-sample

observations X1, . . . , Xn, from a distribution with median θ0, be denoted by x1 < x2 < . . . < xn.

For the one sided upper tail test, the hypothesis of interests are H0 : θ = θ0 against H1 : θ > θ0.

The test statistic W is the number of observations Xj that are positive,

W =
n∑

j=1

I{Xj > 0} (1.5)

where 1{A} is an indicator function which is equal to 1 if the event A occurs and 0 otherwise.

The null hypothesis is rejected at the level of significance α, if W ≥ wα, where wα denotes

the upper α percentile for the Binomial distribution with sample size n and probability of

success 1/2. NPI approach introduced in Section 1.4 can be applied to make inference about

the m future observations among the n data observations. There are
(
n+m
n

)
possible orderings

Oi of the m future observations among the n data observations, and all equally likely, where

i = 1, ...,
(
n+m
n

)
. The reproducibility probability for a statistical test is the probability that

for a repeated test the same test outcome would be reached. Hence, in this thesis we restrict

attention to the situation with the number of future observations m is equal to the number of

data observations n which is considered a logical assumption in order to study reproducibility

to maintain consistency and comparability of results, however, the NPI approach can be used

for any m. The aim is to find the minimum and maximum for the test statistic W for each

ordering Oi, which are denoted by Wi and Wi, respectively.

If the original test conclusion is rejection of H0, then the NPI lower reproducibility proba-

bility is derived by counting the number of orderings for which Wi ≥ wα. The corresponding

NPI upper reproducibility probability is derived by counting the number of orderings for which

Wi ≥ wα. Thus, the NPI lower and upper reproducibility probabilities are

RP =
1(
2n
n

)∑
i

1{Wi ≥ wα} (1.6)

RP =
1(
2n
n

)∑
i

1{Wi ≥ wα} (1.7)

where i = 1, 2, ...,
(
2n
n

)
. Similarly, if the original test conclusion is non-rejection of H0 such

that W < wα, the NPI lower reproducibility probability is derived by counting the number
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of orderings for which Wi < wα. The corresponding NPI upper reproducibility probability is

derived by counting the number of orderings for which Wi < wα. The NPI lower and upper

reproducibility probabilities are

RP =
1(
2n
n

)∑
i

1{Wi < wα} (1.8)

RP =
1(
2n
n

)∑
i

1{Wi < wα} (1.9)

This method to derive the lower and upper reproducibility probabilities for statistical tests is

suitable for small sample sizes and requires that deriving Wi and Wi is relatively easy, hereafter

we refer to as the NPI-RP-E. The minimum and the maximum can be derived easily for some

test statistics such as the Sign test while it is challenging to derive for other test statistics such

as the t-test and the ANOVA test because it is difficult to minimize and maximize the mean

and the variance simultaneously, as the variance depends on the mean [18, 97].

1.5.2 NPI-RP using Sampling of Orderings (NPI-RP-SO)

The calculation of the exact NPI lower and upper reproducibility probabilities is computa-

tionally expensive for large samples due to the increase in the number of orderings of future

observations. One way of implementing NPI-RP for large samples is the sampling of orderings

denoted by NPI-RP-SO, which is introduced by Marques and Coolen [74], to get approxima-

tions of the NPI lower and upper reproducibility probabilities. In this method, the estimation

of RP and RP following the standard theory of estimation where the sampling procedure of

the orderings satisfies the simple random sampling conditions, as there is an equal chance of

each ordering to be selected and included in the sample, and the selection of an ordering is

independent of the other selections. It should be noted that, when n is not too small, the total

number of orderings is large which leads to ignore any possible differences between sampling

with and without replacement. The standard theory of estimation of proportions enables us to

determine a suitable size for the sample of orderings, depending on a required accuracy of the

estimates. The coverage probabilities of the (1 − α)100% confidence intervals for proportions,

p, using Normal approximation confidence intervals:

p̂± zα/2
√
p̂(1− p̂)/r∗ (1.10)

where p̂ is the estimate of the lower or the upper reproducibility probability, r∗ is the number

of orderings sampled, and zα/2 is the 1 − α/2 quantile of the standard Normal distribution.

When computing the Normal approximation confidence interval, for some cases where p̂ is close

to 0 or 1, the lower bound can be less than 0 or the upper bound greater than 1. Thus, the
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exact (1− α)100% confidence interval for p̂ is used and the interval bounds are defined by the

following [78], the lower bound :

PL =
s

s+ (n− s+ 1)Fα/2(2(n− s+ 1), 2s)
(1.11)

where s is the number of successes in the n Bernoulli trials and Fα/2(2(n−s+1), 2s) is the upper

α/2 th percentile for the F distribution with 2(n− s+ 1) degrees of freedom in the numerator

and 2s degrees of freedom in the denominator. The upper bound:

PU =
(s+ 1)Fα/2(2(s+ 1), 2(n− s))

n− s+ (s+ 1)Fα/2(2(s+ 1), 2(n− s))
(1.12)

where Fα/2(2(s+1), 2(n−s)) is the upper α/2 th percentile for the F distribution with 2(s+1)

degrees of freedom in the numerator and 2(n− s) degrees of freedom in the denominator [78].

1.5.3 NPI-RP using NPI-Bootstrap (NPI-RP-B)

Bootstrap methods were introduced in statistics to provide an alternative approach to tradi-

tional inference methods, which mainly rely on assumptions about the population distribution.

In general, bootstrap methods are relatively easy to implement and can be applied to various

statistical problems, including parameter estimation, hypothesis testing and constructing confi-

dence intervals. Some of the known bootstrap methods in statistics are Efron’s bootstrap [43],

Bank’s bootstrap [10] and parametric predictive bootstrap [2].

Efron [43] proposed the standard bootstrap technique, and has since become a widely used

for the estimation problems in a variety of applications. Efron bootstrap provides a simple

and intuitive way to estimate the sampling distribution of an estimator by resampling from

the original data, in situations where the distribution of the estimator is unknown. Banks [10]

proposed smoothed version of bootstrap where the empirical cumulative distribution function of

the original sample smoothed by linear interpolation, histospline smoothing, between the jump

points. Aldawsari [2] proposed a new bootstrap method, the parametric predictive bootstrap,

which is completely based on parametric models and it is mainly designed for inferences aimed

at prediction.

Nonparametric predictive inference bootstrap (NPI-B) is one of the bootstrap methods which

is based on repeated application of Hill’s assumption A(n). Coolen and BinHimd [32] developed

the NPI-B method for predictive inference, and it does not relies on an assumed parametric

model. The performance of the NPI-B method compared with classic bootstrap methods was

initially evaluated by Coolen and BinHimd [32, 33], by calculating the variance of statistics,

bias, absolute error and mean square error. BinHimd [18] found that the NPI-B method has

higher variation than other bootstrap, because the variance of statistics in the NPI-B is closer
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to the variance of the original sample than the other bootstrap methods. This is because NPI-B

sample observations from both the original sample and the intervals between them. The NPI-B

method did not perform well in estimation of confidence intervals [18]. However, it worked well

when used for prediction intervals, as it has the best coverage probability [18, 33].

In the NPI-B method, one interval is randomly selected from the n+ 1 intervals created by

the n original data observations, and from this interval one future value is drawn uniformly.

The first drawn observation is added to the original data set, leading to n+1 observations. This

create a partition consisting of n + 2 intervals, from which the second observation is sampled.

This process continues until m observations have been drawn, and these m observations form

one NPI-B sample. All possible orderings of the m future values among the n original data

observations are equally likely to appear in NPI-B [18, 32, 33].

Assume that the ordered observations of X1, . . . , Xn are denoted by x1 < x2 < . . . < xn,

and x0 and xn+1 are the end points of the possible data range. The NPI-B method for one-

dimensional real-valued data is as follows [18]:

Algorithm 1 NPI-B algorithm

1: The original n observations create n+ 1 intervals Ij = (xj−1, xj), for j = 1, ..., n+ 1.

2: Sample one of these intervals Ij , where each Ij has probability 1
n+1 .

3: Sample one future value uniformly from this selected interval, and add it to the data set;

increase n to n+ 1.

4: Repeat Steps 2 and 3 in total m times to form an NPI-B sample of size m.

5: Repeat Steps 2-4 to create in total B NPI-B samples .

In this NPI-B algorithm, particular attention should be given to Step 3. If the chosen interval

in Step 2, I1 = (x0, x1) or In+1 = (xn, xn+1), is a bounded interval, then sample one future

value from this interval in a similar way as the other intervals Ij = (xj−1, xj), j = 2, . . . , n. On

the other hand, if the chosen interval is I1 or In+1 with x0 = −∞ or xn+1 = ∞ , we sample one

future value with probability 1
n+1 from the interval (x0, x1) or (xn, xn+1) by assuming Normal

distribution tail with mean µ = x1+xn
2 and standard deviations σ = xn−µ

Φ−1( n
n+1

)
, where Φ−1 is the

inverse of the normal cumulative distribution function. For the case with x0 = 0 and xn+1 = ∞,

if the chosen interval is I1, one future value is uniformly sampled as presented in Step 3. If the

chosen interval is In+1, we sample one future value by assuming an Exponential distribution

tail with λ = ln(n+1)
xn

[18, 32].

A limitation of the exact NPI-RP method is that the computation of NPI-RP is complicated

for large samples due to the increase in the number of orderings of future observations among the
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data observations. For some tests deriving the NPI lower and upper reproducibility probabilities

is computationally challenging, particularly for parametric tests. This complexity arises because

such tests typically involve estimating two parameters, the mean and the variance. To overcome

these difficulties, NPI-B can be applied as an alternative method to approximate the NPI

reproducibility probability. The NPI-B provides a point estimate for the NPI-RP rather than

lower and upper reproducibility probabilities.

In order to derive approximation of the NPI reproducibility probability for statistical tests

with k ≥ 2 groups, the NPI-B method is used to obtain B NPI-B samples per group. Then

for run i (i = 1, 2, . . . , T ) obtain the proportion of times in which the original data set and

the B NPI-B samples lead to the same conclusion, i.e. whether H0 is rejected or not. Let us

denote this proportion as RPi, i = 1, 2, . . . , T . Then the mean of these RPi values is the NPI-

RP-B estimate for the reproducibility probability (RP) [18, 33]. Other summary statistics (e.g.

minimum, median and maximum) based on these RPi values can also be calculated and used

for other inferences.

Algorithm 2 presents NPI-B based approach for estimating the reproducibility probability

for statistical hypothesis tests. Since the NPI-B approach is flexible, it will be utilized to

estimate the NPI reproducibility probabilities for statistical tests, where it is computationally

challenging to derive the exact NPI lower and upper reproducibility probabilities [18].

Algorithm 2 NPI-RP-B algorithm for reproducibility probability for statistical tests

1: Apply the statistical test to the original k independent groups data set, and record the test

outcome, that is whether H0 is rejected or not.

2: Based on the original k-group data set, draw an NPI-B sample from each group with n = m,

then apply the statistical test on these NPI-B samples.

3: Perform Step 2 B times and each time record the test outcome, whether H0 is rejected or

not.

4: Calculate the proportion of times in which the original k-group data set and the B NPI-B

samples lead to the same conclusion, denote that as RP .

5: Perform Steps 2 to 4 in total T times to get RPi, i = 1, 2, . . . , T . The mean of these values

is the NPI-RP-B estimate for the reproducibility probability.

The literature provides suggestions and guidance regarding the question how large the num-

ber of bootstrap replications B should be? In the context of estimating a standard error,

Tibshirani and Efron [103] suggested that the number of bootstrap replications B is usually be-

tween 25 and 200. Even a relatively small number of bootstrap replications, such as B = 25 is
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usually informative. Tibshirani and Efron [103] discussion indicate that B = 50 is often enough

to give a good estimate of a standard error. However, it is very seldom that more than B = 200

replications are needed for estimating a standard error. To construct confidence intervals and

hypothesis tests B = 100 or B = 200 bootstrap replications is not adequate. Larger values of

B, such as B = 1000 or B = 2000 bootstrap replications are required for obtaining reliable

results [103]. The choice of the number of replications B is influenced by many factors, such as

the computation time on the computer and the level of precision. In this thesis, B = 1000 is

considered, which is a common rule of thump in practice and a suitable choice for our objectives.

1.6 Outline of thesis

In this thesis, NPI for reproducibility probability will be investigated for One-way layout tests,

using the exact NPI-RP method, the NPI bootstrap and the sampling of orderings methods.

This thesis is structured as follows. Chapter 2 introduces NPI reproducibility for the general

alternatives tests, namely the Kruskal Wallis (KW) test and the One-way analysis of vari-

ance (ANOVA) test. NPI reproducibility for the Jonckheere–Terpstra (JT) test for ordered

alternatives is investigated in Chapter 3. Chapter 4 presents NPI reproducibility for umbrella

alternatives tests, including the Mack-Wolfe (MW) test and the Esra-Fikri test. In Chapter

5, NPI reproducibility for the Mosteller test for slippage problem is explored. Chapter 6 pro-

vides some concluding remarks. Calculations have been done using R [91], and the R codes are

available from the author upon request.

Some parts of this thesis was presented in several conferences. The results in Chapters 2

and 3 were presented at the 16th UNCG Regional Mathematics and Statistics Conference in

November 2020. Chapters 3 and 4 were presented at the International Conference on Advances

in Interdisciplinary Statistics and Combinatorics in October 2021. A comprehensive overview

of the main parts of this thesis was presented at the Royal Statistical Society International

Conference in September 2022.



Chapter 2

Reproducibility of General

Alternatives Tests

2.1 Introduction

Section 1.5 introduced the concept of NPI reproducibility probability. The NPI reproducibility

probability is the probability that the same test conclusion would be reached if the test is

repeated under similar conditions. This chapter contributes to statistical test reproducibility

by considering NPI reproducibility probability for two general alternatives tests, these tests are

the parametric One-way analysis of variance (ANOVA) test and the Kruskal-Wallis (KW) test

which is the nonparametric analogue of the ANOVA test. The ANOVA test and KW test are

statistical hypothesis tests commonly used to determine if there is a difference in the location

parameters for three or more independent groups.

As explained in Section 1.5, NPI approach for reproducibility probability involves deriving

the exact lower and upper reproducibility probabilities. However, computational issues pre-

vent computing the minimum and maximum values of the ANOVA test statistic and KW test

statistic. BinHimd [18] encountered the same computational challenges while exploring the

NPI reproducibility probability for the Kolmogorov Smirnov test. She addressed the issue by

applying the NPI bootstrap method, introduced in Section 1.5.3, to compute an approximate

NPI reproducibility probability. Hence, this chapter focuses on calculating estimates for NPI

reproducibility probabilities using NPI bootstrap, which uses the point estimate for the NPI

reproducibility probability instead of lower and upper reproducibility probabilities.

In Section 2.2, an overview of the general alternative tests, namely, the ANOVA test and

the KW test is provided. In Section 2.3, the NPI-RP-B approach is introduced to study the

reproducibility for the ANOVA test and the KW test. Section 2.4 presents application examples

17



2.2. General alternative tests 18

with data sets from the literature, where the NPI-RP-B approach is considered. In Section 2.5,

the reproducibility of the ANOVA test and the KW test is investigated using the NPI-RP-B

approach, via simulations under both the null and the alternative hypothesis. We conclude the

content of this chapter in Section 2.6.

2.2 General alternative tests

Hypothesis testing in practice often involves comparing groups of observations and testing

general rather than specific differences among groups means. For example, an investigator

might be interested in the sources of variation in patients’ blood cholesterol level when using

three different drug formulations. General alternative tests is a core technique for analysing

such information. General alternatives tests are statistical hypothesis tests used to determine

if there are statistically significant differences between the location parameters of k ≥ 3 groups,

that is at least one location parameter is different. The null and alternative hypotheses are as

follows:

H0 : µ1 = µ2 = ... = µk (2.1)

H1 : at least one µi is different. (2.2)

where µi is the location parameter of the ith group. In this chapter, we consider the repro-

ducibility of the ANOVA test and the KW test.

2.2.1 Assumptions for general alternatives tests

Most statistical tests are generally based on a number of assumptions. It is important to assess

the assumptions before proceeding with any relevant statistical procedure for reliable conclu-

sions. In this section, we review the assumptions underlying the ANOVA test and the KW

test. The ANOVA test is based on three assumptions: the assumption of normality where

it is required that the observations are drawn from normally distributed populations, the ho-

mogeneity of variance assumption in which the variances of all populations are equal and the

independence of observations. The dependence between observations can be avoided by select-

ing the appropriate sampling methods in collecting data. The assumption of normality can

be tested statistically using Shapiro–Wilk test, or checked graphically using plots such as his-

tograms, quantile-quantile plots. The Shapiro-Wilk test is one of the most common normality

test procedures available in statistics. The test was proposed by Shapiro and Wilk [96], to detect

departures from normality. There are other tests to asses normality, such as the Kolmogorov-

Smirnov test, Anderson-Darling test, but the Shapiro-Wilk test provides better power than the
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other tests [102]. The homogeneity of variance assumption can be tested by Bartlett’s test or

by visualization, such as box plots for each group and by plotting the residuals to find out

whether they have a similar spread [46]. However, Razali and Wah [92] argue that graphical

methods can be subjective and may not provide conclusive evidence that the assumptions hold.

Therefore, to support the graphical methods, formal tests can be performed.

There are situations in which the ANOVA test assumptions are violated. Such violations

can seriously affect the validity of the statistical conclusions. Nonparametric tests such as the

Kruskal-Wallis test should be considered. The assumptions of the Kruskal-Wallis test include

independence of observations within and among groups, the variable of interest being continuous

and data measured on an ordinal scale. The Kruskal–Wallis test does not make assumptions

about normality and have been commonly used to test hypothesis about the location parameters.

[15, 55].

2.2.2 One-way Analysis of Variance (ANOVA) test

One-way analysis of variance (ANOVA) is a statistical technique used to compare the means of

more than two independent groups. Let us first introduce some notations. The data consist of

N =
∑k

i=1 ni observations, with ni observations for the ith group where i = 1, 2, ...., k. Let xij

represents the jth observation in the ith group [67]. The mean for the ith group is given by:

xi. =
1

ni

ni∑
j=1

xij

The dot indicates the aggregation over the j index. The total of all observations is denoted by

x.. :

x.. =
k∑

i=1

ni∑
j=1

xij

where the dots indicate the aggregation over the i and j indexes. The overall mean for all

observations is represented by x.. :

x.. =
1

N

k∑
i=1

ni∑
j=1

xij

The total sum of squares of the observations about the overall mean can be partitioned as

follows: ∑
i

∑
j

(xij − x̄..)
2 =

∑
i

∑
j

(xij − x̄i.)
2 +

∑
i

ni(x̄i. − x̄..)
2 (2.3)

Thus, Equation (2.3) can be expressed symbolically as

SST = SSE + SSR (2.4)
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where SSE is the sum of squares due to error within groups, and SSR is the sum of squares

between groups. ANOVA uses the F-test for testing the equality of groups means [63], as follows

F =
SSR
k−1
SSE
N−k

(2.5)

The null hypothesis is rejected if F > F (1− α; k − 1, N − k). The effect size estimate, η2, can

be computed as follows

η2 =
SSR

SST
(2.6)

where the index η2 assumes values from 0 to 1, and measures the proportion of total variance

that can be explained by the differences between groups [23, 60, 104]. For the interpretation

of the effect size strength, Cohen [24] recommends the rule of thumb: 0.10 ≤ η2 <0.25: small

effect, 0.25 ≤ η2 < 0.40: medium effect, 0.40 ≤ η2: large effect.

2.2.3 Kruskal–Wallis (KW) test

Nonparametric tests are statistical procedures that do not rely on the assumption that the data

are drawn from a parametric family of probability distributions. The nonparametric equivalent

to the ANOVA test is the Kruskal–Wallis (KW) test. The Kruskal–Wallis test is used for testing

the equality of the probability distributions for more than two independent groups when the

assumptions of the parametric ANOVA test are not met.

To compute the Kruskal–Wallis test statistic, KW , we first combine all N observations

from the k groups and rank them from smallest to largest values (giving each observation in a

group of ties the mean of the ranks tied). Let rij denote the rank of xij in this joint ranking,

i = 1, . . . , k and j = 1, 2, . . . , ni. Let Ri =

ni∑
j=1

rij be the sum of ranks of observations from the

ith group and let R̄i =
Ri
ni
. Thus, for example, R1 is the sum of the joint ranks received by the

first group observations and R̄1 is the average rank for the first group observations [59]. The

Kruskal–Wallis test statistic, KW , is defined as:

KW =
12

N(N + 1)

k∑
i=1

ni

(
R̄i −

N + 1

2

)2
where

∑k
i=1

∑ni
j=1

rij
N = N+1

2 is the mean rank assigned in the joint ranking, and E(Ri) =
N+1
2

under H0 [59]. The null hypothesis is rejected, at level of significant α, if and only if

KW ≥ hα (2.7)

with critical value hα which can be found from tables in [50, 59]. Under the null hypothesis,

the statistic KW has, as ni → ∞, an asymptotic Chi-square distribution with k − 1 degrees of
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freedom [66]. For the chi-square approximation, H0 is rejected if and only if

KW ≥ χ2
k−1,α (2.8)

where χ2
k−1,α is the upper 100(1− α) percentile of a Chi-square distribution with k − 1 degree

of freedom. The effect size for the Kruskal-Wallis test, ε2, can be calculated as follows [64],

ε2 =
KW

(N2 − 1)/(N + 1)
(2.9)

Using the R command Kruskal.test one can get the value of the test statistic and the p-value.

The exact and asymptotic critical values can be obtained using the commands cKW (α, c(n1, ..., ni),

”Exact”) and cKW (α, c(n1, . . . , ni),"Asymptotic") in the R package NSM3 with R version

4.2.2.

2.3 NPI-RP-B for the general alternatives tests

This section investigates the reproducibility probability for the KW test and the ANOVA test,

using the NPI-RP-B method from Section 1.5.3, with the implementation of Algorithm 2. This

Algorithm uses NPI bootstrap to derive reproducibility probability for a statistical test. The

inputs into Algorithm 2 are the k original samples, their corresponding sample sizes, the number

of runs T and the number of bootstrapped samples per run B. Summary statistics: (e.g.,

minimum, mean, median and maximum) of RP1, RP2, . . . , RPT were calculated, where the mean

of RP1, RP2, . . . , RPT is the reproducibility probability estimate, and is referred to as NPI-RP-

B value. In Section 2.4, the selection of values of T and B is explored. The NPI-RP-B approach

is considered in this thesis with finite and infinite intervals, labeled as Approach I and Approach

II, respectively. Let the order of the observations X1, . . . , Xn be denoted by x1 < x2 < . . . < xn.

The n ordered observations creates n+1 intervals: ((x0, x1), (x1, x2), . . . , (xn−1, xn), (xn, xn+1)),

where x0 and xn+1 are the end points of the possible data range.

(I) x0 = x1 −max(xj − xj−1) and xn+1 = xn +max(xj − xj−1), where j = 1, . . . , n.

(II) For the case with data on the real line (−∞,∞): x0 = −∞ and xn+1 = ∞. If the chosen

interval (−∞, x1) or (xn,∞), Normal distribution tails are assumed with mean µ = x1+xn
2

and standard deviations σ = xn−µ
Φ−1( n

n+1
)
, where Φ−1 is the inverse of the normal cumulative

distribution function. For the case with date on [0,∞): x0 = 0 and xn+1 = ∞. If the

chosen interval is (xn,∞), one future value is sampled from this interval by assuming an

Exponential distribution tail with λ = ln(n+1)
xn

.
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Manufacturing 18.79 20.22 20.25 22.46 24.74 27.97 28.19

28.66 29.18 29.52 31.64 31.99

Marketing 23.01 27.63 29.361 29.92 31.06 31.22 33.18

33.41 35.22 35.33 36.50 37.03 37.81 37.89

Research 25.44 25.70 26.28 26.54 26.64 27.12 28.90

31.90 32.05 33.42 35.78

Table 2.1: The employees satisfaction scores, for Example 2.1

Throughout this thesis, the results in the tables were rounded to three decimal digits and

precise value 1 is presented without additional decimals, so the values 1.000 are less than 1

but rounded up. Furthermore, the test outcome is either to reject (R) or to not reject (NR)

the null hypothesis. In Section 2.4, data sets from the literature will be used to investigate

reproducibility for the KW test and the ANOVA test. In Section 2.5, the results of simulation

studies for different scenarios are presented, such as simulation under H0 and under H1, with

varying sample sizes and number of groups. Section 2.5 also studies the relationship between

the p-value and the NPI reproducibility probability, and between the effect size and the NPI

reproducibility probability for both tests. Reproducibility of the KW test and the ANOVA test

is also briefly compared.

2.4 Examples

This section investigates the reproducibility probability for the KW test and the ANOVA test,

using data sets from the literature. In Example 2.1, we will examine how the choice of T and

B affects the computational time and the accuracy of the reproducibility probability estimates.

In Example 2.2, we will compare the reproducibility probability results of the finite and infinite

intervals.

Example 2.1. The data set, in Table 2.1, originates from a study conducted by a company

to assess employees reactions to a newly implemented salary and fringe benefits plan. Random

samples of 15 employees were taken from each of three divisions: manufacturing, marketing,

and research. The personnel staff asked each employee sampled to respond to a series of ques-

tions. Several employees refused to cooperate, as reflected in the unequal sample sizes. The

average responses from the employees are provided, with larger scores reflecting a higher de-

gree of satisfaction with management [85]. The satisfaction scores from the three divisions:

manufacturing, marketing, and research, are labeled as X, Y , and Z, respectively. Figure 2.1
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X

Y

Z

20 25 30 35

Figure 2.1: Visualization of the employees satisfaction scores data, for Example 2.1

provides visualization of the data. The size of the groups are nx = 12, ny = 14, nz = 11. For

groups Y and Z, the observation 33.41 is a tied observation; we break this tied observation by

adding a small amount to make it 33.42 in group Z, as explained in Section 1.4. To test the

hypothesis H0 : µx = µy = µz against H1 : at least one µi is different, the level of significance

is set at α = 0.05.

Before applying the ANOVA test, assessments were carried out to check its underlying

assumptions. The Shapiro-Wilk test suggests that the normally assumption is satisfied for the

groups X, Y and Z, yielding p-values of 0.153, 0.356 and 0.068, respectively. Furthermore, the

Bartlett test of homogeneity of variances yields a non-significant p-value of 0.713, indicating no

significant evidence of unequal variances. Since the assumptions are met, the ANOVA test is

applied to the data and the original test outcome is obtained. The p-values for the KW test

and the ANOVA test are 0.005 and 0.001, respectively. So, the null hypothesis is rejected for

both tests at the significance level α = 0.05. This indicates that there is evidence of significant

differences in the mean satisfaction scores for the three company divisions.

In Table 2.2, Algorithm 2 is implemented using different values for the number of runs T

and the number of bootstrapped samples per run B, with infinite support (Approach II). The

reproducibility probability is considered with B = 1000, 10000 and T = 100, 200, 500. The

results in Table 2.2 show that increasing T from 100 to 200 or to 500 slightly expand the range

between the minimum and maximum of RP1, RP2, . . . , RPT . However, the change is minor with

the mean value differing only in the third decimal place. Increasing B from 1,000 to 10,000,

the mean and the median differed only in the third decimal. Increasing B and T leads to larger

computational time by about the same amount, without any notable increase in the accuracy

of the RP estimates. Therefore, in this thesis, the choice of B will be set at 1000 and the

choice of T with be set at 100. This selection of B and T achieves a practical balance between

the accuracy of the RP estimates and the computational time. Moreover, the RP estimates in

Table 2.2 are typically large due to p-values not close to the threshold 0.05. The comparison of

the reproducibility results for the KW test and the ANOVA test indicates that they are quite
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Replications KW ANOVA

B T Min Mean Median Max Min Mean Median Max

1000 100 0.751 0.788 0.789 0.825 0.772 0.803 0.806 0.837

1000 200 0.749 0.788 0.789 0.825 0.771 0.803 0.804 0.837

1000 500 0.749 0.788 0.788 0.825 0.771 0.802 0.802 0.847

10,000 100 0.777 0.788 0.788 0.797 0.792 0.803 0.803 0.812

10,000 200 0.774 0.788 0.788 0.797 0.792 0.803 0.803 0.812

10,000 500 0.774 0.788 0.788 0.799 0.792 0.802 0.803 0.812

Table 2.2: RP for the KW test and the ANOVA test, for Example 2.1

X 38.7 41.5 43.8 44.8 45.5

Y 39.2 39.3 39.7 41.4 41.8

Z 34.0 35.0 39.0 40.0 43.0

V 34.1 34.8 34.9 35.4 37.2

Table 2.3: Smoothness of papers data, for Example 2.2

similar.

Example 2.2. This example is introduced to study the NPI-RP for the KW test and the

ANOVA test using the data given in Table 2.3, and visualized in Figure 2.2 [50], where there

are four sets X, Y , Z and V of five measurements of the smoothness of a certain type of papers,

each set is obtained from different laboratory. The aim is to test if the smoothness is the same

for all laboratories.

Algorithm 2 has been applied with finite range (Approach I) and infinite range (Approach

II), to investigate the impact of range on the NPI-RP for the KW test and ANOVA test. To

test the hypothesis H0: µ1 = µ2 = . . . = µk against H1: at least one µi is different, the level

of significance is set at α = 0.05. In Table 2.4, Case 1 refers to the case where three groups of

smoothness of papers X, Y , Z are considered to study NPI-RP, with n = 5. Case 2 refers to

the case where all four groups of smoothness of a paper X, Y , Z, V are considered, with n = 5.

In order to apply the ANOVA test, tests were performed to check the assumptions for both

cases. The Shapiro-Wilk test for groups X, Y , Z and V results in p-values 0.520, 0.136, 0.687

and 0.354, respectively, indicating that the normally assumption is met. The Bartlett test

of homogeneity of variances yields p-values of 0.157 and 0.085 for Case 1 and 2, respectively.

Therefore, there is no significant evidence of unequal variances. For Case 1, the KW test and
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Figure 2.2: Visualization of the smoothness of papers data, for Example 2.2

Cases NPI-B
KW ANOVA

Min Mean Median Max Min Mean Median Max

Case 1
Approach(I) 0.534 0.570 0.570 0.619 0.482 0.524 0.525 0.575

Approach(II) 0.537 0.575 0.578 0.608 0.502 0.536 0.537 0.565

Case 2
Approach(I) 0.863 0.890 0.889 0.910 0.868 0.898 0.898 0.916

Approach(II) 0.839 0.856 0.856 0.879 0.829 0.860 0.859 0.885

Table 2.4: RP for the KW test and ANOVA test, for Example 2.2

the ANOVA test p-values are 0.137 and 0.061, respectively. Thus, the null hypothesis is not

rejected for both tests in Case 1. For Case 2, the KW test and the ANOVA test p-values are

0.014 and 0.001. So, considering group V in Case 2 leads to the null hypothesis being rejected

for both tests.

Based on the NPI-RP estimates in Table 2.4, for Case 1, we have less trust in the decision

that we are going to get the same conclusion in the future tests. As can be seen in Table 2.4,

the reproducibility does not change notably when using different ranges for bootstrapping in

Algorithm 2. For Case 2, the reproducibility is relatively large due to the p-values not close to

the threshold α = 0.05. It can be inferred from the comparison of the reproducibility results

for the KW test and the ANOVA test that the reproducibility for both tests are quite similar.

2.5 Simulation study

This section studies reproducibility probability for the KW test and the ANOVA test via sim-

ulations, where reproducibility is calculated using Algorithm 2. The NPI-RP-B approach in

Section 2.3 is considered using Approach II, which involves using the tail of a Normal distribu-

tion for real-valued data, and the tail of an Exponential distribution for non-negative real-valued

data. The null hypothesis is H0 : µ1 = µ2 = . . . = µk against H1 : at least oneµi is different, the

level of significance is α = 0.05. Data were simulated under H0 and H1, as presented in Table
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Case k Simulation

1 3 N(0, 1)

2 3 Gamma(2, 1)

3 3 X ∼ N(0, 1), Y ∼ N(0, 1), Z ∼ N(1.5, 1)

4 5 N(0, 1)

Table 2.5: Simulation cases for the KW test and the ANOVA test

2.5. To study the impact of the number of groups and the sample size on the reproducibility

probability, the simulation is considered with the number of groups k = 3, 5 and the sample

size n = 6, 10, 20. Under H0, the original data were generated from the Normal distribution

with mean 0 and standard deviation 1 for k = 3 and k = 5 groups. Under H0 and with k = 3

groups, the original data were generated from the Gamma distribution with shape parameter

2 and scale parameter 1. Under H1 and with k = 3 groups, data were generated from Normal

distribution with different means µx = µy = 0 and µz = 1.5 and the standard deviation 1.

Further simulations were performed for data generated under H1 for k = 5 and with sample

sizes n = 6, 10, 20, the results are presented in the Appendix A.

The inputs for the simulation study in Tables 2.6 through 2.17 are as follows: Algorithm 2

is applied with B = 1000 and T = 100. For each run, one sample of size n is generated from

each of the distributions given in Table 2.5, the KW test and the ANOVA test are performed

both on these samples, and the tests outcomes are obtained and the RP estimates for the KW

test and the ANOVA test are calculated using Algorithm 2. In each Table, the reproducibility

probability estimates have been reported for 10 simulated original data sets. Effect size, intro-

duced in Sections 2.2.2 and 2.2.3, has also been calculated for the tests. Note that the threshold

values, introduced in Sections 2.2.2 and 2.2.3, are provided in the caption of each table for both

tests. As expected, the worst reproducibility probability occurs when the p-value is close to the

threshold 0.05, regardless of the decision about H0. The reproducibility probability starts to

increase when moving away from the threshold leading to high estimates of the reproducibility

probability. Similar patterns have been observed in previous applications of NPI studies inves-

tigating tests reproducibility [29, 32, 33, 75, 98]. For the same p-value or the same effect size

value, reproducibility probability estimates differs from one data set to another. These small

variations in the RP estimates are due to variations in the original samples and in the NPI-B

samples.

The relationship between NPI-RP-B and the p-value for the KW test and the ANOVA test

is examined in the simulations. The minimum and maximum of the RP values are also added



2.5. Simulation study 27

to the plots. We use the p-value for better visualization of figures rather than the critical

value because each simulation scenario has a different critical value, given the variations in the

sample sizes and the number of groups considered. Although the p-values and critical values are

two different approaches, they ultimately yield the same conclusion regarding whether the null

hypothesis is rejected or not. For simulations under H0 in Figures 2.3, 2.4 and 2.6, there are

few cases where the null hypothesis is wrongly rejected which aligns with where the test is set

up. Note that the level of significance α = 0.05 is represented on the figures by a vertical line.

For simulations under H1 in Figure 2.5, since we sample from a case which is in line with the

alternative hypothesis, there are more cases where the null hypothesis is rejected. Increasing

the size of samples leads to increasing the power of the test and more cases rejecting the null

hypothesis, as for sample sizes n = 10 and n = 20 in Figure 2.5. Consequently, there is a

tendency for RP estimates to be higher in cases of rejection than in non-rejection, as shown

in Figure 2.6 compared to Figure 2.3. The reason is that in the case of rejection we obtain

more cases of the same decision of an original sample that does reject H0. The values of

RP tend to increase with increasing distance between the observed p-value and the threshold

α = 0.05, regardless of the decision about H0. In this section, we consider increasing n up to

20, however, considering larger n will lead to relatively lower reproducibility in non-rejection

cases compared to small n. One noteworthy observation becomes apparent: as n increases,

specifically to n = 20, the reproducibility probability curve becomes progressively smoother.

Figure 2.4 represents Case 2, where we generated data from a scenario in which the normality

assumption of ANOVA test is violated, hence there is some variability in the RP results for

ANOVA test, and the variability remains relatively constant as n increases compared to KW

test where the variability decreases as n increases. The reason is that the ANOVA test assumes

that the data are normally distributed and violations of this assumption impact the RP results.

However, when the data were generated from Case 1, 3 and 4 where the ANOVA assumptions

are met, as shown in Figures 2.3, 2.5 and 2.6, there is low variability in the reproducibility

probability results for the ANOVA test compared to the KW test.

The relationship between NPI-RP-B and the effect size for the KW test and the ANOVA

test is studied. Figures 2.7 and 2.8 show the results of simulations under H0 and under H1,

where Case 1 and Case 3, introduced in Table 2.5 are considered, respectively. In Figures 2.7

and 2.8, there is a V-shape pattern and the NPI-RP-B estimates tend to increase as the effect

size moves away from the area where the V-shape has the lowest point. It is also observed that,

as the sample size n increases, the location of the lowest point shifts to the left and the range

of effect size in the figures tends to be smaller. There is a tendency for NPI-RP-B estimates to
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KW test ANOVA test

KW p-value H0 ε2 Min Mean Median Max F p-value H0 η2 Min Mean Median Max

8.187 0.017 R 0.482 0.588 0.623 0.622 0.655 5.525 0.016 R 0.420 0.617 0.645 0.645 0.679

6.035 0.049 R 0.355 0.538 0.567 0.568 0.603 4.689 0.026 R 0.380 0.583 0.620 0.617 0.661

5.415 0.067 NR 0.319 0.511 0.550 0.552 0.582 2.103 0.157 NR 0.220 0.555 0.598 0.599 0.631

5.099 0.078 NR 0.300 0.522 0.559 0.560 0.593 3.213 0.069 NR 0.300 0.487 0.535 0.534 0.574

5.099 0.078 NR 0.300 0.502 0.538 0.536 0.584 3.062 0.077 NR 0.290 0.489 0.529 0.528 0.578

4.538 0.103 NR 0.267 0.502 0.542 0.540 0.584 3.379 0.061 NR 0.311 0.439 0.490 0.487 0.534

3.135 0.209 NR 0.184 0.637 0.669 0.667 0.703 1.821 0.196 NR 0.195 0.612 0.644 0.646 0.677

2.608 0.271 NR 0.153 0.678 0.711 0.711 0.739 0.902 0.427 NR 0.107 0.688 0.722 0.721 0.757

1.731 0.421 NR 0.102 0.702 0.735 0.736 0.770 0.879 0.436 NR 0.105 0.685 0.718 0.719 0.753

0.035 0.983 NR 0.002 0.779 0.817 0.819 0.848 0.078 0.926 NR 0.010 0.769 0.796 0.796 0.822

Table 2.6: RP under H0, with Case 1, n = 6, χ2
2,0.05 = 5.99, F (0.05, 2, 15) = 3.682

KW test ANOVA test

KW p-value H0 ε2 Min Mean Median Max F p-value H0 η2 Min Mean Median Max

11.848 0.003 R 0.409 0.795 0.824 0.824 0.854 8.707 0.001 R 0.392 0.814 0.842 0.843 0.871

6.521 0.038 R 0.225 0.558 0.595 0.596 0.636 3.097 0.062 NR 0.187 0.433 0.465 0.465 0.496

5.515 0.063 NR 0.190 0.441 0.479 0.478 0.513 3.251 0.054 NR 0.194 0.419 0.463 0.462 0.509

4.978 0.083 NR 0.172 0.444 0.484 0.485 0.516 2.912 0.072 NR 0.177 0.436 0.484 0.483 0.518

3.440 0.179 NR 0.119 0.541 0.585 0.586 0.628 1.947 0.162 NR 0.126 0.526 0.574 0.577 0.611

3.223 0.200 NR 0.111 0.567 0.612 0.615 0.647 1.130 0.338 NR 0.077 0.630 0.664 0.665 0.692

2.728 0.256 NR 0.094 0.567 0.619 0.617 0.655 1.870 0.174 NR 0.122 0.548 0.594 0.592 0.630

2.728 0.256 NR 0.094 0.622 0.655 0.655 0.687 1.223 0.310 NR 0.083 0.626 0.663 0.664 0.694

1.030 0.598 NR 0.036 0.709 0.749 0.750 0.787 0.335 0.718 NR 0.024 0.731 0.762 0.761 0.795

0.034 0.983 NR 0.001 0.758 0.801 0.801 0.835 0.102 0.903 NR 0.007 0.746 0.787 0.788 0.819

Table 2.7: RP under H0, with Case 1, n = 10, χ2
2,0.05 = 5.99, F (0.05, 2, 27) = 3.354

be higher in cases of rejection than in non-rejection. Further, for the non-rejection cases, there

is a linear relationship between the effect size and the NPI-RP-B estimates.

To sum up, the comparison of the reproducibility for the KW test and the ANOVA test

shows similar patterns in the reproducibility probability results across the different distribution

parameters and sample sizes. Specifically, the NPI-RP estimates for both tests generally tend

to increase as the test statistic moves away from the test thresholds, regardless of the decision

about H0.

The time taken to run the R code for each simulated data set using Algorithm 2, varied

with the number of groups and sample sizes. For three groups with a sample size of 6, the time

is 1 minute and 39 seconds. Increasing the sample size to 10 extended the runtime to 1 minute

and 59 seconds. With a further increase in the sample size to 20, the runtime is 3 minutes. For

five groups with a sample size of 6, the runtime is approximately 2 minutes and 22 seconds.
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KW test ANOVA test

KW p-value H0 ε2 Min Mean Median Max F p-value H0 η2 Min Mean Median Max

9.031 0.011 R 0.153 0.682 0.726 0.727 0.764 6.172 0.004 R 0.178 0.738 0.778 0.777 0.812

5.996 0.050 R 0.102 0.535 0.592 0.591 0.637 2.774 0.071 NR 0.089 0.438 0.469 0.469 0.517

5.673 0.059 NR 0.096 0.391 0.430 0.429 0.476 3.144 0.051 NR 0.099 0.374 0.411 0.411 0.464

5.170 0.075 NR 0.088 0.409 0.448 0.448 0.496 3.198 0.048 R 0.101 0.538 0.576 0.575 0.616

4.738 0.094 NR 0.080 0.450 0.503 0.506 0.540 1.494 0.233 NR 0.050 0.567 0.613 0.613 0.653

3.845 0.146 NR 0.065 0.502 0.540 0.541 0.585 1.375 0.261 NR 0.046 0.587 0.623 0.623 0.660

2.047 0.359 NR 0.035 0.593 0.641 0.643 0.674 1.235 0.299 NR 0.042 0.600 0.633 0.634 0.672

1.432 0.489 NR 0.024 0.645 0.687 0.687 0.719 0.711 0.495 NR 0.024 0.664 0.695 0.695 0.726

1.001 0.606 NR 0.017 0.662 0.712 0.714 0.746 1.041 0.360 NR 0.035 0.610 0.655 0.653 0.688

0.042 0.979 NR 0.001 0.738 0.774 0.776 0.813 0.006 0.994 NR 2.019× 10−4 0.758 0.788 0.789 0.828

Table 2.8: RP under H0, with Case 1, n = 20, χ2
2,0.05 = 5.99, F (0.05, 2, 57) = 3.159

KW test ANOVA test

KW p-value H0 ε2 Min Mean Median Max F p-value H0 η2 Min Mean Median Max

5.626 0.060 NR 0.331 0.443 0.492 0.491 0.530 4.135 0.037 R 0.355 0.483 0.524 0.523 0.554

5.135 0.077 NR 0.302 0.522 0.557 0.558 0.599 4.060 0.039 R 0.350 0.434 0.467 0.463 0.504

3.895 0.143 NR 0.229 0.586 0.635 0.635 0.668 2.584 0.109 NR 0.260 0.605 0.641 0.642 0.685

3.696 0.158 NR 0.217 0.582 0.614 0.614 0.646 1.442 0.267 NR 0.161 0.660 0.703 0.704 0.734

2.889 0.236 NR 0.170 0.622 0.666 0.667 0.704 1.720 0.213 NR 0.187 0.641 0.679 0.681 0.708

2.351 0.309 NR 0.138 0.678 0.711 0.711 0.751 1.988 0.172 NR 0.210 0.629 0.669 0.670 0.702

1.977 0.372 NR 0.116 0.689 0.719 0.718 0.763 0.992 0.394 NR 0.117 0.693 0.731 0.731 0.770

1.205 0.548 NR 0.071 0.763 0.793 0.795 0.828 0.134 0.875 NR 0.020 0.756 0.800 0.801 0.834

0.784 0.676 NR 0.046 0.759 0.789 0.789 0.829 0.150 0.862 NR 0.020 0.795 0.829 0.830 0.857

0.082 0.960 NR 0.005 0.785 0.818 0.817 0.852 0.250 0.782 NR 0.030 0.773 0.815 0.815 0.845

Table 2.9: RP under H0, with Case 2, n = 6, χ2
2,0.05 = 5.99, F (0.05, 2, 15) = 3.682

When the sample size is increased to 10, the runtime is 3 minutes. Finally, for five groups with

a sample size of 20, the runtime reached 4 minutes and 48 seconds.
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KW test ANOVA test

KW p-value H0 ε2 Min Mean Median Max F p-value H0 η2 Min Mean Median Max

5.853 0.054 NR 0.202 0.436 0.471 0.471 0.510 2.958 0.069 NR 0.180 0.503 0.537 0.535 0.579

5.267 0.072 NR 0.182 0.445 0.489 0.490 0.528 3.276 0.0532 NR 0.195 0.448 0.479 0.479 0.508

4.222 0.121 NR 0.146 0.506 0.553 0.554 0.596 3.927 0.0319 NR 0.230 0.466 0.505 0.505 0.545

3.177 0.204 NR 0.110 0.572 0.620 0.622 0.660 1.811 0.183 NR 0.118 0.608 0.641 0.642 0.673

2.996 0.224 NR 0.103 0.593 0.632 0.633 0.684 1.407 0.262 NR 0.090 0.638 0.674 0.676 0.708

2.712 0.258 NR 0.094 0.597 0.631 0.631 0.686 1.577 0.225 NR 0.105 0.623 0.668 0.668 0.695

2.023 0.364 NR 0.070 0.641 0.679 0.679 0.709 1.231 0.308 NR 0.080 0.633 0.674 0.674 0.709

1.435 0.488 NR 0.049 0.649 0.690 0.691 0.728 0.978 0.389 NR 0.068 0.662 0.701 0.700 0.732

1.056 0.590 NR 0.036 0.693 0.725 0.725 0.766 1.045 0.365 NR 0.070 0.672 0.706 0.706 0.737

0.436 0.804 NR 0.015 0.753 0.782 0.782 0.812 0.066 0.936 NR 0.005 0.775 0.804 0.805 0.831

Table 2.10: RP under H0, with Case 2, n = 10, χ2
2,0.05 = 5.99, F (0.05, 2, 27) = 3.354

KW test ANOVA test

KW p-value H0 ε2 Min Mean Median Max F p-value H0 η2 Min Mean Median Max

5.912 0.052 NR 0.100 0.403 0.443 0.443 0.478 1.643 0.202 NR 0.055 0.578 0.613 0.613 0.646

4.432 0.109 NR 0.075 0.479 0.517 0.516 0.559 2.254 0.114 NR 0.073 0.507 0.549 0.549 0.589

3.848 0.146 NR 0.065 0.495 0.537 0.540 0.585 3.049 0.0552 NR 0.097 0.414 0.456 0.460 0.491

3.779 0.151 NR 0.064 0.504 0.549 0.548 0.582 1.272 0.288 NR 0.040 0.611 0.650 0.651 0.695

3.032 0.220 NR 0.051 0.560 0.591 0.590 0.630 2.243 0.115 NR 0.073 0.529 0.559 0.558 0.603

2.816 0.245 NR 0.048 0.557 0.593 0.593 0.625 1.556 0.22 NR 0.052 0.567 0.605 0.605 0.652

2.492 0.288 NR 0.042 0.557 0.613 0.615 0.645 0.559 0.575 NR 0.019 0.675 0.715 0.717 0.743

1.570 0.456 NR 0.027 0.634 0.672 0.674 0.710 1.199 0.309 NR 0.040 0.633 0.667 0.666 0.720

1.092 0.579 NR 0.019 0.674 0.711 0.710 0.745 0.404 0.670 NR 0.014 0.708 0.742 0.743 0.785

0.439 0.803 NR 0.007 0.706 0.756 0.757 0.786 0.025 0.976 NR 0.001 0.764 0.795 0.796 0.834

Table 2.11: RP under H0, with Case 2, n = 20, χ2
2,0.05 = 5.99, F (0.05, 2, 57) = 3.159

KW test ANOVA test

KW p-value H0 ε2 Min Mean Median Max F p-value H0 η2 Min Mean Median Max

12.737 0.002 R 0.749 0.945 0.961 0.961 0.973 22.960 2.722× 10−5 R 0.754 0.960 0.972 0.972 0.983

9.977 0.007 R 0.587 0.794 0.831 0.831 0.864 9.245 0.002 R 0.552 0.809 0.842 0.842 0.869

7.614 0.022 R 0.448 0.739 0.773 0.773 0.801 6.024 0.012 R 0.445 0.723 0.766 0.766 0.794

6.351 0.042 R 0.374 0.485 0.515 0.517 0.563 4.393 0.032 R 0.369 0.525 0.555 0.556 0.597

6.351 0.042 R 0.374 0.539 0.565 0.564 0.597 4.670 0.027 R 0.384 0.543 0.584 0.583 0.623

5.661 0.059 NR 0.333 0.460 0.509 0.509 0.540 4.016 0.040 R 0.349 0.491 0.524 0.525 0.574

4.924 0.085 NR 0.290 0.531 0.574 0.574 0.610 3.247 0.067 NR 0.302 0.497 0.544 0.544 0.582

3.790 0.150 NR 0.223 0.599 0.643 0.643 0.673 2.266 0.138 NR 0.232 0.573 0.609 0.610 0.644

1.825 0.402 NR 0.107 0.693 0.728 0.728 0.756 1.069 0.368 NR 0.125 0.655 0.695 0.695 0.738

0.327 0.849 NR 0.019 0.770 0.799 0.798 0.829 0.205 0.817 NR 0.027 0.752 0.786 0.788 0.827

Table 2.12: RP under H1, with Case 3, n = 6, χ2
2,0.05 = 5.99, F (0.05, 2, 15) = 3.682
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Figure 2.3: NPI-RP-B under H0, with Case 1, α = 0.05
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Figure 2.4: NPI-RP-B under H0, with Case 2, α = 0.05
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KW test ANOVA test

KW p-value H0 ε2 Min Mean Median Max F p-value H0 η2 Min Mean Median Max

17.360 1.700× 10−4 R 0.599 0.939 0.961 0.961 0.975 18.978 7.130× 10−6 R 0.584 0.952 0.964 0.964 0.978

15.246 4.890× 10−4 R 0.526 0.945 0.959 0.959 0.970 14.606 5.019× 10−5 R 0.520 0.937 0.958 0.958 0.969

12.266 0.002 R 0.423 0.833 0.85 0.855 0.879 11.348 2.649× 10−4 R 0.457 0.871 0.892 0.892 0.915

10.692 0.005 R 0.369 0.761 0.788 0.790 0.817 8.052 0.002 R 0.374 0.779 0.806 0.807 0.838

9.092 0.011 R 0.314 0.716 0.750 0.750 0.780 6.620 0.005 R 0.329 0.728 0.758 0.758 0.791

8.519 0.014 R 0.294 0.622 0.654 0.655 0.681 5.223 0.012 R 0.279 0.626 0.655 0.653 0.691

6.947 0.031 R 0.240 0.558 0.593 0.594 0.623 4.321 0.024 R 0.242 0.551 0.582 0.581 0.617

5.907 0.052 NR 0.204 0.415 0.448 0.449 0.484 3.252 0.054 NR 0.194 0.432 0.467 0.469 0.501

4.338 0.114 NR 0.150 0.485 0.529 0.529 0.564 3.528 0.044 R 0.207 0.505 0.541 0.539 0.591

2.841 0.242 NR 0.098 0.598 0.624 0.623 0.661 2.044 0.149 NR 0.131 0.563 0.592 0.591 0.622

Table 2.13: RP under H1, with Case 3, n = 10, χ2
2,0.05 = 5.99, F (0.05, 2, 27) = 3.354

KW test ANOVA test

KW p-value H0 ε2 Min Mean Median Max F p-value H0 η2 Min Mean Median Max

36.701 1.073× 10−8 R 0.622 0.999 1.000 1 1 42.850 4.379× 10−12 R 0.601 0.999 1.000 1 1

34.055 4.027× 10−8 R 0.577 0.998 1.000 1 1 43.432 3.474× 10−12 R 0.604 0.998 1.000 1 1

27.378 1.135× 10−6 R 0.464 0.989 0.996 0.996 1 21.535 1.081× 10−7 R 0.430 0.993 0.997 0.997 1

21.727 1.915× 10−5 R 0.368 0.940 0.959 0.959 0.975 16.922 1.702× 10−5 R 0.373 0.947 0.961 0.961 0.975

19.478 5.895× 10−5 R 0.330 0.933 0.948 0.949 0.964 14.280 9.366× 10−5 R 0.334 0.929 0.947 0.947 0.968

16.974 2.061× 10−4 R 0.288 0.917 0.934 0.934 0.955 14.841 6.479× 10−6 R 0.342 0.944 0.959 0.959 0.975

15.419 4.485× 10−4 R 0.261 0.887 0.905 0.906 0.924 10.958 9.400× 10−5 R 0.278 0.911 0.926 0.926 0.949

13.941 9.393× 10−4 R 0.236 0.870 0.896 0.896 0.917 8.499 5.886× 10−4 R 0.230 0.872 0.893 0.893 0.918

12.880 0.002 R 0.218 0.825 0.857 0.857 0.890 7.777 1.032× 10−3 R 0.214 0.791 0.819 0.818 0.852

10.771 0.005 R 0.183 0.778 0.805 0.805 0.841 7.565 1.220× 10−3 R 0.210 0.806 0.843 0.842 0.880

Table 2.14: RP under H1, with Case 3, n = 20, χ2
2,0.05 = 5.99, F (0.05, 2, 57) = 3.159

KW test ANOVA test

KW p-value H0 ε2 Min Mean Median Max F p-value H0 η2 Min Mean Median Max

10.034 0.040 R 0.346 0.656 0.689 0.690 0.724 2.583 0.062 NR 0.292 0.327 0.366 0.368 0.397

9.084 0.059 NR 0.313 0.333 0.365 0.365 0.403 2.800 0.048 R 0.309 0.599 0.646 0.647 0.677

8.856 0.065 NR 0.305 0.389 0.429 0.431 0.462 2.318 0.085 NR 0.271 0.374 0.412 0.414 0.454

7.088 0.131 NR 0.244 0.375 0.412 0.413 0.456 2.435 0.074 NR 0.280 0.330 0.363 0.362 0.395

6.748 0.150 NR 0.233 0.445 0.502 0.503 0.548 1.823 0.156 NR 0.226 0.443 0.497 0.499 0.548

5.647 0.227 NR 0.195 0.509 0.552 0.553 0.591 1.671 0.188 NR 0.211 0.465 0.510 0.511 0.548

4.912 0.297 NR 0.169 0.518 0.558 0.560 0.607 1.816 0.157 NR 0.225 0.453 0.494 0.495 0.529

3.161 0.531 NR 0.109 0.598 0.648 0.647 0.677 0.717 0.588 NR 0.103 0.590 0.633 0.633 0.678

1.166 0.884 NR 0.040 0.685 0.723 0.723 0.762 0.261 0.900 NR 0.040 0.663 0.698 0.699 0.735

0.142 0.998 NR 0.005 0.719 0.754 0.754 0.790 0.178 0.948 NR 0.028 0.684 0.709 0.708 0.736

Table 2.15: RP under H0, with Case 4, n = 6, χ2
4,0.05 = 9.49, F (0.05, 4, 25) = 2.759
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Figure 2.5: NPI-RP-B under H1, with Case 3, α = 0.05
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KW test ANOVA test

KW p-value H0 ε2 Min Mean Median Max F p-value H0 η2 Min Mean Median Max

11.290 0.023 R 0.230 0.768 0.805 0.806 0.836 3.218 0.021 R 0.222 0.720 0.757 0.756 0.790

9.019 0.061 NR 0.184 0.290 0.330 0.330 0.362 2.208 0.083 NR 0.164 0.362 0.398 0.400 0.424

7.997 0.092 NR 0.163 0.367 0.402 0.401 0.440 1.870 0.132 NR 0.143 0.396 0.438 0.437 0.473

6.949 0.139 NR 0.142 0.411 0.440 0.440 0.476 1.742 0.157 NR 0.134 0.408 0.446 0.447 0.477

5.711 0.222 NR 0.117 0.448 0.478 0.476 0.509 1.783 0.149 NR 0.137 0.410 0.446 0.446 0.478

4.703 0.319 NR 0.096 0.457 0.503 0.503 0.542 1.742 0.158 NR 0.134 0.410 0.450 0.451 0.481

3.811 0.432 NR 0.078 0.509 0.556 0.557 0.601 0.587 0.674 NR 0.050 0.569 0.614 0.614 0.649

2.812 0.590 NR 0.057 0.573 0.603 0.604 0.637 0.788 0.539 NR 0.065 0.556 0.590 0.590 0.630

1.113 0.892 NR 0.023 0.633 0.676 0.676 0.714 0.313 0.867 NR 0.027 0.634 0.668 0.670 0.703

0.024 1.000 NR 4.802× 10−4 0.704 0.738 0.738 0.777 0.073 0.990 NR 0.006 0.685 0.715 0.715 0.751

Table 2.16: RP under H0, with Case 4, n = 10, χ2
4,0.05 = 9.49, F (0.05, 4, 45) = 2.579

KW test ANOVA test

KW p-value H0 ε2 Min Mean Median Max F p-value H0 η2 Min Mean Median Max

13.298 0.010 R 0.134 0.792 0.827 0.828 0.856 3.816 0.006 R 0.138 0.793 0.822 0.822 0.852

9.527 0.049 R 0.096 0.677 0.712 0.712 0.739 2.477 0.049 R 0.094 0.643 0.681 0.681 0.708

9.410 0.052 NR 0.095 0.227 0.268 0.269 0.299 2.407 0.055 NR 0.092 0.281 0.317 0.318 0.349

8.094 0.088 NR 0.082 0.313 0.343 0.342 0.382 2.674 0.037 NR 0.101 0.663 0.701 0.701 0.734

6.743 0.150 NR 0.068 0.330 0.374 0.373 0.410 1.628 0.174 NR 0.064 0.359 0.396 0.395 0.430

5.043 0.283 NR 0.051 0.412 0.453 0.453 0.481 1.292 0.279 NR 0.052 0.429 0.472 0.472 0.511

3.808 0.433 NR 0.038 0.474 0.509 0.509 0.542 0.950 0.439 NR 0.038 0.479 0.531 0.532 0.564

2.851 0.583 NR 0.029 0.534 0.561 0.563 0.593 0.532 0.712 NR 0.022 0.567 0.601 0.601 0.636

1.522 0.823 NR 0.015 0.585 0.621 0.621 0.654 0.805 0.525 NR 0.033 0.528 0.558 0.556 0.598

0.089 0.999 NR 8.953× 10−4 0.661 0.701 0.701 0.749 0.106 0.980 NR 0.004 0.640 0.683 0.683 0.726

Table 2.17: RP under H0, with Case 4, n = 20, χ2
4,0.05 = 9.49, F (0.05, 4, 95) = 2.467



2.5. Simulation study 36

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
p−value

N
P

I−
R

P
−

B
Hypothesis Not−rejected Rejected

(a) KW, n = 6

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
p−value

N
P

I−
R

P
−

B

Hypothesis Not−rejected Rejected

(b) ANOVA, n = 6

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
p−value

N
P

I−
R

P
−

B

Hypothesis Not−rejected Rejected

(c) KW, n = 10

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
p−value

N
P

I−
R

P
−

B
Hypothesis Not−rejected Rejected

(d) ANOVA, n = 10

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
p−value

N
P

I−
R

P
−

B

Hypothesis Not−rejected Rejected

(e) KW, n = 20

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
p−value

N
P

I−
R

P
−

B

Hypothesis Not−rejected Rejected

(f) ANOVA, n = 20

Figure 2.6: NPI-RP-B under H0, with Case 4, α = 0.05
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(f) ANOVA, n = 20

Figure 2.7: Simulations under H0: NPI-RP-B vs effect size
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Figure 2.8: Simulations under H1: NPI-RP-B vs effect size
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2.6 Concluding remarks

This chapter explored the reproducibility probability for the KW test and the ANOVA test

using NPI-RP-B. We provided a comparison of the NPI-RP for the KW test and the ANOVA

test through simulation studies and data sets from the literature. The reproducibility prob-

ability of the tests is explored with samples of the same size and significance level as in the

actual test, because this approach seems logical and natural from the perspective of theoretical

reproducibility within a frequentist statistical framework.

In this chapter, the NPI-RP estimates for both the KW test and the ANOVA test are

quite similar. The estimates of the NPI reproducibility probability for both tests tend to

increase as the p-value moves away from the test threshold, regardless of the decision on H0.

The results presented for the estimates of the NPI reproducibility probability show consistency

with previous NPI studies of test reproducibility [2, 32, 33, 75, 98]. In terms of estimating

reproducibility probability, there is a straightforward argument that if the distribution under

the null hypothesis of the test statistic is (about) symmetric, then a worst case scenario would

provide reproducibility probability of (about) 0.5 [51, 94].

The use of NPI-RP-B approach to estimate reproducibility probability avoids the hard

calculations of the lower and upper reproducibility probabilities, and it is a suitable approach

for large sample sizes. In this chapter, the NPI-RP-B is considered to approximate the RP, as

deriving explicit analytical formulas for the exact lower and upper ANOVA test is not trivial.

Further exploration of the exact approach of NPI-RP for the KW test and the one-way ANOVA

test is interesting topic for future research. NPI-RP for the KW test and the one-way ANOVA

test can be explored by applying the Paramtric Predictive Bootsrap method introduced in [2].

Another idea for future research is to explore the NPI reproducibility of the two-way ANOVA

test, and its nonparametric analogue the Friedman test [108].



Chapter 3

Reproducibility of Ordered

Alternatives Tests

3.1 Introduction

In statistical hypothesis testing, the alternative hypothesis can be either directional or nondi-

rectional, depending on the research question that needs to be addressed and the context of the

research. Chapter 2 introduced the NPI reproducibility probability for two general alternatives

tests, namely, the KW test and the ANOVA test. The general alternatives tests are used for

nondirectional alternatives, specifically to determine whether there are statistically significant

differences between the means for three or more independent groups. In some applications it

is of interest to test for specific patterns or trends of the differences between the means. The

ordered alternatives is sometimes more meaningful than the nondirectional alternatives, and it

can help researchers make more informed conclusions about the differences in the groups means.

This chapter contributes to statistical test reproducibility by considering NPI reproducibil-

ity probability for ordered alternatives, namly, for the Jonckheere-Terpstra (JT) test. The

Jonckheere-Terpstra (JT) test is a nonparametric test that can be used to test an ordered al-

ternative hypothesis for three or more independent groups. NPI approach for reproducibility

probability involves deriving the exact lower and upper reproducibility probabilities, as in Sec-

tion 1.5. However, deriving the exact lower and upper RP is not trivial for the JT test. BinHimd

[18] and Simkus [97] encountered the same challenge while exploring the NPI reproducibility

probability for the Kolmogorov Smirnov test and the t-test. They addressed this issue by ap-

plying the NPI bootstrap method, introduced in Section 1.5.3, to compute an approximate NPI

reproducibility probability. This chapter is mainly focused on calculating estimates for NPI

reproducibility probabilities using NPI bootstrap which provides a point estimate for the NPI

40
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reproducibility probability rather than lower and upper reproducibility probabilities.

Section 3.2 provides a brief review of the ordered alternatives tests. The Jonckheere-Terpstra

test for ordered alternatives is presented in Section 3.3. In Section 3.4, the NPI-B method is

introduced to investigate the reproducibility probability for the Jonckheere-Terpstra test. In

Section 3.5, simulation studies were carried out to get an insight into how different distributions

and sample sizes impact the reproducibility probability for the JT test. Section 3.6 presents

some concluding remarks for this chapter.

3.2 Ordered alternatives tests

A common problem in statistical analysis is to decide whether several groups should be regarded

as coming from the same population. The most general form of the alternative is

H1 : at least one µi is different. (3.1)

where µi is the location parameter of the ith group. However, in some applications, it possible

to be more precise in the specification of the alternatives. Therefore, instead of the unrestricted

alternative mentioned above, the ordered alternative can be considered. The term ordered alter-

native refers to a monotonic trend, either increasing or decreasing, in the alternative hypothesis.

Jonckheere [61] provided an example of an application, to analyze an experiment performed

to determine the effect of different degrees of stress on the performance of some task of manual

dexterity, where the data were obtained from groups of subjects working under high, medium,

low and minimal stress. The null hypothesis being that stress has no effect on performance,

and the alternative hypothesis is that increasing stress produces an increasing effect. Other ap-

plications of this nature occur in social sciences experiments where participants can be grouped

according to social class, degree of satisfaction, etc. Such variables can be ranked based on their

expected effect.

Several nonparametric tests are available in the literature to test the equality of locations

against the ordered alternatives. The Jonckheere-Terpstra test is the most common test for

ordered alternatives when the data conform to the format for one-way analysis of variance,

and was proposed by Jonckheere [61] and Terpstra [101]. Tryon and Hettmansperger [106]

proposed the modified Jonckeere-Terpstra test, where the test statistic is computed based on

the Mann-Whitney statistic [73]. Cuzick [36] developed an extension of the Wilcoxon rank-sum

test to handle the situation in which test for trend for three or more groups is desired. Page [86]

proposed another ranked based nonparametric test for ordered alternatives that is appropriate

in two-way analysis of variance situations.
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Some attention has also been given to explicitly ordered alternative hypothesis in parametric

analysis. Bartholomew [11, 12] explored the problem of assigning weights to classes and using

likelihood ratio tests. Other related work and approaches constructing test statistics for ordered

alternatives were also presented by [5, 84, 90], but they will not be addressed in this chapter.

This chapter will focus on investigating the reproducibility of the Jonckheere-Terpstra test.

3.3 Jonckheere-Terpstra (JT) test

The Jonckheere-Terpstra test is a nonparametric test which was proposed independently by

Jonckheere [61] and Terpstra [101] to test an ordered alternative hypothesis. The alternative

hypothesis asserts that there is a specific increasing (or decreasing) order of three or more

population location parameters with at least one mean is different [59, 99]. The null and

alternative hypotheses can be expressed in terms of the k population means as follows

H0 :µ1 = µ2 = ... = µk (3.2)

H1 :µ1 ≤ µ2 ≤ ... ≤ µk (3.3)

The samples must be labeled prior to data collection in such a way that the experimenter expects

any deviation from H0 to be in the particular direction associated with H1. We emphasize,

however, that the labeling of the samples must correspond completely to samples implicit in the

nature of the experimental design and not the observed sample observations [59]. To compute

the Jonckheere–Terpstra test statistic, J , we need to calculate the k(k-1)/2 Mann–Whitney

counts Uuv. So, Uuv is the number of observations from sample u which are smaller than the

observations from sample v [59]. Formally, the Uuv is given by

Uuv =

nu∑
i=1

nv∑
j=1

1(Xiu < Xjv), for all 1 ≤ u < v ≤ k, (3.4)

where the values of sample u are denoted by Xiu and the values of sample v are denoted by

Xjv, and 1(Xiu < Xjv) is an indicator function that equals 1 if Xiu < Xjv and 0 otherwise.

The test statistic, J , is the sum of these k(k-1)/2 Mann–Whitney counts,

J =

v−1∑
u=1

k∑
v=2

Uuv (3.5)

Then the null hypothesis is rejected against the alternative, at level of significance α, if J ≥ Jα,

where Jα is the α−upper quantile of the null distribution of J [59].

For large sample sizes, and under the null hypothesis, the statistic J is asymptotically
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Normally distributed with the following mean and variance:

E(J) =
N2 −

∑k
i=1 n

2
i

4
(3.6)

σ2(J) =
N2(2N + 3)−

∑k
i=1 n

2
i (2ni + 3)

72
(3.7)

where N is the total number of observations and ni is the number of data observations in group

i [59]. The standardized version of J is given by

J∗ =
J − E(J)

σ(J)
(3.8)

The null hypothesis is then rejected, at level of significant α, if J∗ ≥ Zα. The power of the

test is approximated by:

Power = 1− Φ([µ(0) − µ(A)]/σ(0) + Zα) (3.9)

where Zα is the α-upper quantile of the standard Normal distribution. Under both the null and

alternative hypothesis, µ(0) and µ(A) are the expectations of J , respectively, as follows,

µ(0) =
∑
i<j

1

2
ninj ; for all i ̸= j (3.10)

µ(A) =
∑
i<j

Φ(δ/
√
2)ninj (3.11)

with δ represents the amount by which a location parameter for the population from which the

sample exceeds that of the other sample [65]. The null variance of J is

σ2
(0) =

1

27
[N(N + 1)(2N + 1)−

k∑
i=1

ni(ni + 1)(2ni + 1)] (3.12)

The power can be computed using the function terpstrapower from the R package MultNonParam

[65].

3.4 NPI-RP-B for the JT test

This section investigates the reproducibility probability for the Jonckheere-Terpstra (JT) test,

which was briefly reviewed in Section 3.3. As mentioned earlier in this chapter, deriving exact

lower and upper reproducibility probability for the JT test is not trivial. This can be resolved

by using the NPI-RP-B method which was introduced in Section 1.5.3. BinHimd [18] proposed

the use of the NPI-B method as a heuristic method to approximate the NPI reproducibility

probability, as it avoids the complex calculations required by the exact NPI reproducibility
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probability approach. The explicitly predictive nature of NPI-B provides a natural formulation

of inferences on reproducibility of statistical tests. It is important to emphasize that we focus

on the conclusion of the future test with regard to the null hypothesis, given the actual data of

the original test. It is worth noting that the NPI framework for statistical tests reproducibility

does not require that the sample sizes in the initial and the future tests to be equal. However,

it is a natural assumption to make for the sake of reflecting reproducibility. In this thesis, we

will restrict our attention to the case where the number of future observations are equal to the

number of the original data observations.

Algorithm 2 introduced in Section 1.5.3 is applied. The inputs into Algorithm 2 are the k

original samples, their corresponding sample sizes, the number of runs T and the number of

bootstrapped samples per run B. Summary statistics including the minimum, mean, median

and maximum, of RP1, RP2, ..., RPT were calculated. In this chapter, Algorithm 2, will be

implemented with both finite and infinite intervals, using Approach I and II, introduced in

Section 2.3. In this thesis, the mean of RP1, RP2, ..., RPT is the reproducibility probability

estimate, and is referred to as NPI-RP-B value.

Throughout this thesis, the results in the tables were rounded to three decimal digits and

precise value 1 is presented without additional decimals, so the values 1.000 are less than 1 but

rounded up. Furthermore, the test outcome is either to reject (R) or to not reject (NR) the null

hypothesis. Section 3.5 presents the results of simulation studies for different scenarios, under

H0 and under H1, with varying sample sizes and number of groups. Further, in this chapter, we

consider an increasing ordered alternative with H1 : µ1 ≤ µ2 ≤ ... ≤ µk. We do not illustrate

cases with H1 : µ1 ≥ µ2 ≥ . . . ≥ µk, as these follow by symmetry and therefore have similar

behavior.

A common observed pattern from the previous NPI-RP studies of test reproducibility is ex-

pected: that the original test statistic close to the threshold between rejection and non-rejection

of the null hypothesis is linked to low reproducibility probability. This pattern is also observed

in Chapter 2. In practice researchers often focus on the rejection of the null hypothesis when

studying the reproducibility of statistical tests, as it is a major concern, particularly when sig-

nificant results cannot be replicated in subsequent studies. This tends to be the most important

scenario in medical research, particularly in relation to the introduction of new medications.

Nevertheless, for a comprehensive understanding, we believe that the reproducibility of sta-

tistical tests that did not yield significant results is also important. Therefore, we consider

reproducibility probability for both cases of rejection and non-rejection of the null-hypothesis.

Example 3.1. This example is introduced to study the NPI reproducibility probability for



3.4. NPI-RP-B for the JT test 45

X Y Z J p-value H0 Min Mean Median Max

1,2,3 4,5,6 7,8,9 27 0.001 R 0.982 0.991 0.991 0.998

1,2,3 4,5,8 6,7,9 25 0.005 R 0.692 0.731 0.731 0.771

1,2,3 4,6,8 5,7,9 24 0.011 R 0.627 0.667 0.667 0.705

1,2,6 3,4,7 5,8,9 23 0.021 R 0.363 0.401 0.401 0.445

1,3,7 2,4,5 6,8,9 22 0.037 R 0.367 0.400 0.401 0.438

1,3,6 2,4,8 5,7,9 21 0.061 NR 0.710 0.739 0.740 0.765

1,2,4 5,6,9 3,7,8 21 0.061 NR 0.637 0.675 0.676 0.709

1,2,5 4,7,8 3,6,9 20 0.095 NR 0.686 0.719 0.721 0.748

1,3,7 2,4,8 5,6,9 20 0.095 NR 0.760 0.786 0.785 0.817

1,5,7 2,3,6 4,8,9 19 0.139 NR 0.756 0.787 0.787 0.820

1,2,5 6,8,9 3,4,7 17 0.260 NR 0.877 0.898 0.898 0.918

2,4,6 1,8,9 3,5,7 15 0.416 NR 0.957 0.972 0.972 0.985

1,6,9 4,5,8 2,3,7 10 0.806 NR 0.930 0.947 0.947 0.961

5,8,9 2,6,7 1,3,4 4 0.989 NR 0.997 1.000 1 1

7,8,9 5,6,7 1,2,3 0 0.999 NR 1 1 1 1

Table 3.1: RP for the JT test with H1 : µx ≤ µy ≤ µz, n = 3, α = 0.05, J0.0369 = 22

the JT test. We consider artificial data sets of ranks for k = 3 groups of sizes n = 3, 4, 5, to

illustrate how the original samples ranks impact the NPI-RP values. To test the hypothesis

H0 : µx = µy = µz against an increasing ordered alternative hypothesis H1: µx ≤ µy ≤ µz, the

level of significance is set at α = 0.05. Notice that for the case with n = 3 in Table 3.1, with

α = 0.05, due to the discrete nature of the test statistics the nominal level is 0.0369 which leads

to the critical value J0.0369 = 22. Thus, the null hypothesis is rejected if J ≥ 22. For the case

with n = 4 in Table 3.2, the nominal level is 0.0463 and the test decision rule is to reject the

null hypothesis if J ≥ 36. For the case with n = 5 in Table 3.3, the nominal level is 0.0456,

which leads to the null hypothesis being rejected if J ≥ 54.

The NPI-RP-B approach introduced in Section 1.5.3 is considered for the ranks given in

Tables 3.1, 3.2 and 3.3. Algorithm 1 has been applied using Approach I, introduced in Section

2.3, with B = 1000 and T = 100. In Approach I, the lower limit is taken to be smallest value of

the group minus the maximal distance between consecutive points, and the upper limit is taken

to be equal to largest value of the group plus the maximal distance between consecutive points.

For the estimates of RP for the ranks in the first row in Tables 3.1, 3.2 and 3.3, theoretically

when the data are perfectly ordered the upper reproducibility probability will be equal to 1,
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X Y Z J p-value H0 Min Mean Median Max

1,2,3,4 5,6,7,8 9,10,11,12 48 2.886× 10−5 R 0.999 1.000 1 1

1,2,3,5 4,6,7,10 8,9,11,12 45 0.001 R 0.919 0.941 0.940 0.958

1,2,3,8 4,6,9,10 5,7,11,12 39 0.015 R 0.450 0.483 0.483 0.530

1,2,3,9 4,6,8,10 5,7,11,12 38 0.023 R 0.440 0.470 0.470 0.515

1,2,3,12 4,5,7,9 6,8,10,11 37 0.033 R 0.390 0.428 0.427 0.472

1,2,3,12 4,6,7,9 5,8,10,11 36 0.046 R 0.358 0.398 0.397 0.441

1,2,5,8 4,6,9,10 3,7,11,12 36 0.046 R 0.365 0.402 0.402 0.442

1,2,5,9 4,6,7,11 3,8,10,12 35 0.063 NR 0.619 0.657 0.658 0.691

1,3,5,8 4,6,7,12 2,9,10,11 34 0.084 NR 0.631 0.669 0.671 0.708

1,3,5,9 4,6,7,11 2,8,10,12 34 0.084 NR 0.642 0.688 0.691 0.717

1,3,5,10 4,6,7,12 2,8,9,11 32 0.140 NR 0.700 0.754 0.754 0.788

1,3,9,10 4,6,7,12 2,5,8,11 26 0.416 NR 0.825 0.866 0.866 0.890

1,9,10,11 4,6,7,12 2,3,5,8 15 0.916 NR 0.963 0.976 0.977 0.987

9,10,11,12 5,6,7,8 1,2,3,4 0 1 NR 1 1 1 1

Table 3.2: RP for the JT test with H1 : µx ≤ µy ≤ µz, n = 4, α = 0.05, J0.0463 = 36

but since an approximation method is applied, the estimates of NPI reproducibility probability

are close to 1 [18]. In most cases where different ranks per sample yield the same value of the

test statistic J , the estimates of RP differ, that is because they depend on the actual ranks

per sample and not just on the value of the test statistic, as for the ranks with J = 20 and

J = 36 in Tables 3.1 and 3.2, respectively. It is clear that, as expected, the reproducibility

probability is small when J is close to the threshold, substantially smaller than 0.5. In such

cases, reproducibility tends to be lower in the case of rejection than for non-rejection. Further,

the reproducibility tends to be larger the further away the original test statistic J is from the

threshold.
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X Y Z J p-value H0 Min Mean Median Max

1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 75 1.321× 10−6 R 0.999 1.000 1 1

1,2,3,6,7 4,5,8,9,11 10,12,13,14,15 70 9.779× 10−5 R 0.969 0.981 0.982 0.991

1,2,3,6,7 4,5,8,11,12 9,10,13,14,15 67 0.001 R 0.914 0.932 0.933 0.952

1,2,6,7,8 3,4,5,11,12 9,10,13,14,15 62 0.004 R 0.732 0.765 0.766 0.793

1,2,6,7,8 3,4,11,12,13 5,9,10,14,15 57 0.021 R 0.456 0.497 0.499 0.538

1,2,6,7,12 3,4,8,11,13 5,9,10,14,15 55 0.036 R 0.368 0.409 0.411 0.439

1,2,6,7,13 3,4,8,11,12 5,9,10,14,15 54 0.046 R 0.356 0.394 0.395 0.423

1,2,6,7,14 3,4,8,11,12 5,9,10,13,15 53 0.057 NR 0.610 0.636 0.635 0.674

1,2,6,7,15 3,4,8,11,12 5,9,10,14,13 52 0.071 NR 0.629 0.657 0.655 0.697

1,2,6,9,15 3,4,8,11,12 5,7,10,14,13 49 0.126 NR 0.672 0.710 0.709 0.751

1,3,11,14,15 2,4,8,12,13 5,6,7,9,10 33 0.698 NR 0.920 0.935 0.935 0.959

1,11,12,14,15 2,4,8,10,13 3,5,6,7,9 22 0.954 NR 0.971 0.982 0.983 0.990

7,10,11,12,13 4,5,8,14,15 1,2,3,6,9 17 0.988 NR 0.998 1.000 1 1

11,12,13,14,15 4,7,8,9.10 1,2,3,5,6 2 1 NR 1 1 1 1

11,12,13,14,15 6,7,8,9,10 1,2,3,4,5 0 1 NR 1 1 1 1

Table 3.3: RP for the JT test with H1 : µx ≤ µy ≤ µz, n = 5, α = 0.05, J0.0456 = 54

Case k Simulation

1 3 N(0, 1)

2 3 X ∼ N(0, 1), Y ∼ N(1, 1), Z ∼ N(2, 1)

3 3 X ∼ N(0.1, 1), Y ∼ N(0.1, 1), Z ∼ N(0.2, 1)

4 3 X ∼ N(0.1, 1), Y ∼ N(0.2, 1), Z ∼ N(0.3, 1)

5 3 Gamma(2, 1)

6 5 N(0, 1)

7 5 X ∼ N(0, 1), Y ∼ N(0.1, 1), Z ∼ N(0.2, 1), V ∼ N(0.3, 1), W ∼ N(0.4, 1)

Table 3.4: Simulation cases for the JT test

3.5 Simulation study

This section studies the reproducibility probability for the JT test via simulations, where repro-

ducibility is calculated using Algorithm 2. The NPI-RP-B method is preformed using Approach

II. Data were simulated under H0 and under H1, from symmetric and skewed distributions, as

listed in Table 3.4. To study the impact of the number of groups and the sample size on the

reproducibility probability, the simulation is considered with the number of groups k = 3, 5 and

the sample size n = 6, 20. The null hypothesis is H0 : µ1 = µ2 = ... = µk and the alternative
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Figure 3.1: RPi for i = 1, ..., T for selected J from Table 3.5, T = 100

J p-value H0 Min Mean Median Max J p-value H0 Min Mean Median Max

77 0.034 R 0.378 0.414 0.415 0.454 58 0.391 NR 0.814 0.839 0.839 0.867

75 0.049 R 0.300 0.335 0.335 0.373 50 0.640 NR 0.915 0.941 0.942 0.965

74 0.058 NR 0.574 0.611 0.611 0.651 41 0.860 NR 0.968 0.981 0.981 0.989

74 0.058 NR 0.617 0.653 0.651 0.698 39 0.893 NR 0.961 0.974 0.974 0.985

73 0.068 NR 0.592 0.631 0.632 0.667 34 0.951 NR 0.965 0.978 0.978 0.990

72 0.080 NR 0.591 0.627 0.628 0.657 32 0.966 NR 0.977 0.986 0.986 0.996

71 0.093 NR 0.593 0.624 0.623 0.664 29 0.981 NR 0.986 0.994 0.994 1

68 0.140 NR 0.752 0.784 0.784 0.827 24 0.994 NR 0.996 0.999 0.999 1

63 0.250 NR 0.748 0.783 0.782 0.814 20 0.998 NR 0.997 0.999 1 1

61 0.303 NR 0.821 0.848 0.848 0.876 13 1.000 NR 0.996 0.999 0.999 1

Table 3.5: RP for the JT test under H0, with Case 1, n = 6, J0.0490 = 75

hypothesis is H1: µ1 ≤ µ2 ≤ ... ≤ µk. The level of significance is set at α = 0.05.

The inputs for the simulation study are as follows: Algorithm 2 is applied with B = 1000

and T = 100. For each run, one sample for each group k is generated from each of the cases

given in Table 3.4, the JT test is performed on the these samples, and the test outcomes are

obtained and the RP estimates for the JT test are calculated using Algorithm 1. These results

can be illustrated by the case in Table 3.5, where J=63 in the original test. The JT test is

performed on the three original samples which are drawn from N(0, 1), and the resulting test

statistic is J=63. In this instance, the null hypothesis is not rejected when compared to the

threshold value 75. The second step is to draw an NPI-B sample from each of the three original

samples and apply the JT test on these NPI-B samples to get the value of the test statistic J ,

and this step is repeated with B = 1000. Then, the estimate of NPI reproducibility probability

is computed which is equal to the proportion of times H0 is not rejected in the 1000 NPI-B
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samples. Finally, we repeat the second step T = 100 times and obtain RP1, RP2, ..., RP100,

shown in Figure 3.1 where each RP value is the proportion of times H0 is not rejected in 1000

NPI-B samples. The minimum, mean, median and maximum of these RPi for i = 1, 2, ..., 100,

are 0.748, 0.783, 0.782 and 0.814, respectively. The RPi estimates for data sets with J = 34

and J = 75 presented in Table 3.5 are also visualized in Figure 3.1. In Tables 3.5 - 3.18, the

reproducibility probability estimates have been reported for 20 simulated data sets for each

scenario.

The relationship between NPI-RP-B and the p-value for the JT test is examined in the

simulations. We use the p-value for better visualization of figures rather than the critical

value because each simulation scenario has a different critical value, given the variations in the

sample sizes and the number of groups considered. Although the p-values and critical values

are two different approaches, they ultimately yield the same conclusion regarding whether the

null hypothesis is rejected or not. Note that the level of significance α = 0.05 is represented on

the figures by a vertical line. For simulations under H1 in Figures 3.3, 3.4, 3.5 and 3.8, with

n = 6, the power of the JT test for each scenario is 0.864, 0.069, 0.094 and 0.182, respectively.

Increasing the size of samples to n = 20 leads to increasing the power of the test to 1.000, 0.090,

0.151 and 0.390, respectively. This leads to more cases where the null hypothesis is rejected, as

for higher power the test is more likely to correctly reject the null hypothesis when the alternative

hypothesis is true. It is clear that, as expected, the reproducibility probability is small when

the observed p-value is close to the threshold 0.05. There is a tendency for RP estimates to

be lower in cases of rejection than in non-rejection, substantially smaller than 0.5. The reason

for that is the presence of direction in the alternatives. The RP estimates tend to increase

with increasing distance between the observed p-value and the threshold α = 0.05, regardless

of the decision about H0. Moreover, RP for non-rejection cases for larger n becomes relatively

lower compared to non-rejection cases for small n. Conversely, for the cases of rejection the

reproducibility with larger n becomes relatively higher than for small n. Similar results have

been observed in previous NPI-RP studies [2, 97].

It is noticed that the variability of NPI-RP-B for the JT test is reduced with increasing

the size of samples. The median and the mean of RPi are very close, that is some indication

of reasonably symmetric distributions of the RPi values for each simulated data set, where

i = 1, ..., 100. Further simulations were performed for data generated under H0 and H1 for

k = 3 and unequal sample sizes, the results are presented in the Appendix B.
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Figure 3.2: NPI-RP-B for the JT test under H0, with Case 1, α = 0.05

J p-value H0 Min Mean Median Max J p-value H0 Min Mean Median Max

729 0.041 R 0.459 0.499 0.500 0.534 594 0.535 NR 0.874 0.896 0.897 0.916

722 0.050 R 0.410 0.467 0.467 0.507 586 0.578 NR 0.895 0.914 0.914 0.936

713 0.064 NR 0.522 0.568 0.569 0.602 552 0.744 NR 0.914 0.936 0.936 0.959

698 0.093 NR 0.579 0.617 0.617 0.669 552 0.744 NR 0.941 0.957 0.956 0.977

692 0.108 NR 0.635 0.663 0.662 0.700 530 0.830 NR 0.941 0.959 0.959 0.974

666 0.188 NR 0.667 0.711 0.711 0.750 508 0.895 NR 0.967 0.978 0.977 0.993

647 0.265 NR 0.744 0.781 0.781 0.813 489 0.935 NR 0.978 0.986 0.987 0.994

627 0.360 NR 0.816 0.841 0.841 0.869 456 0.975 NR 0.977 0.989 0.990 0.995

600 0.503 NR 0.858 0.882 0.882 0.904 422 0.993 NR 0.997 0.999 1 1

600 0.503 NR 0.866 0.891 0.891 0.913 416 0.994 NR 0.993 0.998 0.998 1

Table 3.6: RP for the JT test under H0, with Case 1, n = 20, J0.0497 = 722
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J p-value H0 Min Mean Median Max J p-value H0 Min Mean Median Max

105 1.049× 10−6 R 0.982 0.990 0.991 0.996 79 0.023 R 0.501 0.545 0.545 0.589

102 8.103× 10−6 R 0.986 0.993 0.993 0.997 78 0.028 R 0.475 0.516 0.517 0.562

94 3.486× 10−4 R 0.932 0.951 0.951 0.966 77 0.034 R 0.406 0.453 0.455 0.488

94 3.486× 10−4 R 0.887 0.919 0.920 0.939 77 0.034 R 0.386 0.427 0.429 0.461

90 0.001 R 0.930 0.951 0.952 0.966 76 0.041 R 0.417 0.447 0.449 0.483

89 0.002 R 0.825 0.867 0.868 0.892 75 0.049 R 0.367 0.418 0.417 0.447

87 0.003 R 0.679 0.714 0.714 0.749 74 0.058 NR 0.594 0.624 0.623 0.672

85 0.006 R 0.615 0.648 0.651 0.679 72 0.080 NR 0.636 0.663 0.662 0.702

83 0.010 R 0.586 0.620 0.620 0.653 68 0.140 NR 0.677 0.709 0.709 0.748

80 0.019 R 0.564 0.594 0.595 0.628 56 0.453 NR 0.885 0.904 0.904 0.925

Table 3.7: RP for the JT test under H1, with Case 2, n = 6, J0.0490 = 75
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Figure 3.3: NPI-RP-B for the JT test under H1, with Case 2, α = 0.05

J p-value H0 Min Mean Median Max J p-value H0 Min Mean Median Max

1097 2.187× 10−14 R 0.999 1.000 1 1 983 2.157× 10−8 R 0.995 0.999 0.999 1

1085 1.388× 10−13 R 0.999 1.000 1 1 983 2.157× 10−8 R 0.994 0.997 0.997 1

1062 3.482× 10−12 R 0.999 1.000 1 1 963 1.275× 10−7 R 0.985 0.992 0.993 0.997

1057 6.682× 10−12 R 0.998 1.000 1 1 951 3.462× 10−7 R 0.983 0.991 0.991 0.996

1030 1.744× 10−10 R 0.995 0.999 0.999 1 942 7.095× 10−7 R 0.986 0.992 0.993 0.998

1027 2.445× 10−10 R 0.997 0.999 1 1 918 4.251× 10−6 R 0.962 0.976 0.976 0.986

1013 1.116× 10−9 R 0.992 0.998 0.998 1 900 1.458× 10−5 R 0.959 0.971 0.971 0.983

1000 4.219× 10−9 R 0.996 0.999 0.999 1 899 1.557× 10−5 R 0.935 0.952 0.953 0.967

1000 4.219× 10−9 R 0.997 0.999 1 1 879 5.502× 10−5 R 0.933 0.947 0.948 0.962

998 5.144× 10−9 R 0.991 0.996 0.997 1 873 7.875× 10−5 R 0.924 0.943 0.943 0.959

Table 3.8: RP for the JT test under H1, with Case 2, n = 20, J0.0497 = 722
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J p-value H0 Min Mean Median Max J p-value H0 Min Mean Median Max

79 0.023 R 0.412 0.460 0.460 0.490 59 0.361 NR 0.812 0.839 0.838 0.873

75 0.049 R 0.345 0.396 0.395 0.436 57 0.421 NR 0.824 0.850 0.851 0.878

74 0.058 NR 0.595 0.631 0.630 0.671 51 0.609 NR 0.852 0.880 0.881 0.907

72 0.080 NR 0.597 0.636 0.636 0.677 50 0.640 NR 0.949 0.961 0.962 0.974

70 0.107 NR 0.655 0.683 0.682 0.714 49 0.669 NR 0.939 0.955 0.955 0.968

67 0.159 NR 0.713 0.749 0.749 0.781 47 0.725 NR 0.950 0.966 0.967 0.978

66 0.180 NR 0.728 0.760 0.760 0.791 47 0.725 NR 0.927 0.944 0.944 0.957

62 0.276 NR 0.786 0.826 0.825 0.857 44 0.799 NR 0.894 0.919 0.919 0.938

60 0.331 NR 0.778 0.810 0.810 0.841 39 0.893 NR 0.951 0.966 0.965 0.982

60 0.331 NR 0.816 0.839 0.838 0.872 34 0.951 NR 0.971 0.983 0.983 0.992

Table 3.9: RP for the JT test under H1, with Case 3, n = 6, J0.0490 = 75

J p-value H0 Min Mean Median Max J p-value H0 Min Mean Median Max

771 0.010 R 0.583 0.632 0.632 0.665 609 0.454 NR 0.826 0.853 0.854 0.876

733 0.036 R 0.450 0.504 0.504 0.545 609 0.454 NR 0.844 0.868 0.868 0.890

724 0.047 R 0.419 0.469 0.469 0.515 593 0.540 NR 0.869 0.890 0.890 0.912

710 0.069 NR 0.537 0.574 0.576 0.622 589 0.562 NR 0.881 0.898 0.898 0.915

708 0.073 NR 0.550 0.581 0.581 0.626 574 0.640 NR 0.904 0.925 0.925 0.946

666 0.188 NR 0.686 0.717 0.717 0.751 551 0.748 NR 0.946 0.959 0.959 0.978

651 0.248 NR 0.770 0.797 0.799 0.827 540 0.793 NR 0.916 0.932 0.931 0.954

644 0.279 NR 0.768 0.800 0.802 0.826 525 0.846 NR 0.949 0.966 0.967 0.982

638 0.306 NR 0.835 0.856 0.858 0.880 509 0.892 NR 0.965 0.977 0.977 0.990

613 0.433 NR 0.829 0.848 0.848 0.875 405 0.996 NR 0.995 0.998 0.998 1

Table 3.10: RP for the JT test under H1, with Case 3, n = 20, J0.0497 = 722

J p-value H0 Min Mean Median Max J p-value H0 Min Mean Median Max

80 0.019 R 0.457 0.492 0.493 0.528 55 0.484 NR 0.870 0.897 0.896 0.918

77 0.034 R 0.371 0.418 0.418 0.461 52 0.579 NR 0.880 0.898 0.897 0.923

74 0.058 NR 0.592 0.631 0.632 0.664 50 0.640 NR 0.940 0.952 0.951 0.966

73 0.068 NR 0.569 0.609 0.609 0.655 49 0.669 NR 0.942 0.958 0.958 0.969

72 0.080 NR 0.608 0.637 0.636 0.674 47 0.725 NR 0.946 0.962 0.962 0.977

69 0.123 NR 0.682 0.712 0.712 0.751 47 0.725 NR 0.919 0.936 0.937 0.953

65 0.202 NR 0.716 0.749 0.750 0.779 43 0.820 NR 0.976 0.985 0.986 0.993

65 0.202 NR 0.703 0.739 0.738 0.770 40 0.877 NR 0.941 0.958 0.957 0.973

61 0.303 NR 0.794 0.823 0.822 0.852 38 0.907 NR 0.967 0.978 0.978 0.988

57 0.421 NR 0.825 0.848 0.847 0.877 38 0.907 NR 0.975 0.984 0.984 0.994

Table 3.11: RP for the JT test under H1, with Case 4, n = 6, J0.0490 = 75
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Figure 3.4: NPI-RP-B for the JT test under H1, with Case 3, α = 0.05

J p-value H0 Min Mean Median Max J p-value H0 Min Mean Median Max

797 0.004 R 0.662 0.709 0.711 0.749 660 0.211 NR 0.673 0.708 0.708 0.742

762 0.014 R 0.555 0.607 0.608 0.644 652 0.243 NR 0.757 0.787 0.789 0.819

746 0.024 R 0.494 0.551 0.552 0.582 648 0.261 NR 0.739 0.774 0.775 0.799

734 0.035 R 0.456 0.514 0.514 0.549 621 0.391 NR 0.814 0.836 0.835 0.859

732 0.037 R 0.471 0.516 0.515 0.545 619 0.402 NR 0.841 0.868 0.868 0.890

715 0.060 NR 0.534 0.569 0.570 0.620 599 0.508 NR 0.848 0.870 0.870 0.899

700 0.089 NR 0.567 0.609 0.609 0.651 571 0.655 NR 0.898 0.920 0.919 0.939

688 0.118 NR 0.598 0.637 0.637 0.680 548 0.761 NR 0.932 0.949 0.949 0.969

669 0.177 NR 0.713 0.746 0.746 0.788 473 0.958 NR 0.990 0.996 0.996 0.999

669 0.177 NR 0.713 0.746 0.746 0.788 423 0.992 NR 0.992 0.997 0.997 1

Table 3.12: RP for the JT test under H1, with Case 4, n = 20, J0.0497 = 722
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Figure 3.5: NPI-RP-B for the JT test under H1, with Case 4, α = 0.05

J p-value H0 Min Mean Median Max J p-value H0 Min Mean Median Max

76 0.041 R 0.354 0.401 0.402 0.441 47 0.725 NR 0.930 0.953 0.953 0.968

75 0.049 R 0.346 0.381 0.380 0.433 42 0.841 NR 0.948 0.965 0.965 0.978

74 0.058 NR 0.559 0.592 0.593 0.634 40 0.877 NR 0.953 0.964 0.964 0.979

73 0.068 NR 0.583 0.624 0.624 0.654 37 0.920 NR 0.977 0.987 0.987 0.995

71 0.093 NR 0.595 0.639 0.639 0.677 32 0.966 NR 0.976 0.985 0.985 0.993

65 0.202 NR 0.734 0.768 0.768 0.803 30 0.977 NR 0.980 0.989 0.990 0.995

64 0.225 NR 0.745 0.783 0.783 0.826 27 0.015 NR 0.980 0.988 0.987 0.995

60 0.331 NR 0.841 0.866 0.866 0.905 23 0.996 NR 0.988 0.994 0.994 0.998

55 0.484 NR 0.842 0.867 0.867 0.900 21 0.997 NR 0.993 0.997 0.998 1

50 0.640 NR 0.885 0.915 0.915 0.935 16 1.000 NR 0.997 1.000 1 1

Table 3.13: RP for the JT test, with Case 5, n = 6, J0.0490 = 75
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J p-value H0 Min Mean Median Max J p-value H0 Min Mean Median Max

772 0.010 R 0.607 0.650 0.649 0.679 599 0.508 NR 0.863 0.884 0.883 0.905

741 0.028 R 0.506 0.543 0.543 0.575 580 0.609 NR 0.885 0.910 0.909 0.928

711 0.067 NR 0.547 0.583 0.580 0.621 559 0.712 NR 0.920 0.941 0.940 0.956

703 0.083 NR 0.577 0.611 0.613 0.646 522 0.856 NR 0.945 0.965 0.965 0.979

696 0.098 NR 0.570 0.609 0.609 0.662 511 0.887 NR 0.955 0.969 0.970 0.982

663 0.199 NR 0.701 0.735 0.735 0.775 511 0.887 NR 0.962 0.981 0.981 0.991

656 0.227 NR 0.702 0.735 0.734 0.778 505 0.902 NR 0.958 0.976 0.976 0.988

621 0.391 NR 0.809 0.840 0.841 0.865 490 0.933 NR 0.964 0.980 0.981 0.989

608 0.460 NR 0.810 0.841 0.840 0.866 469 0.963 NR 0.986 0.993 0.993 0.999

608 0.460 NR 0.865 0.890 0.891 0.913 449 0.980 NR 0.987 0.994 0.994 0.998

Table 3.14: RP for the JT test under H0, with Case 5, n = 20, J0.0497 = 722
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Figure 3.6: NPI-RP-B for the JT test under H1, with Case 5, α = 0.05
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J p-value H0 Min Mean Median Max J p-value H0 Min Mean Median Max

227 0.045 R 0.360 0.405 0.407 0.447 165 0.713 NR 0.922 0.940 0.941 0.958

224 0.056 NR 0.611 0.647 0.649 0.683 160 0.771 NR 0.933 0.952 0.952 0.967

219 0.081 NR 0.630 0.662 0.662 0.702 156 0.813 NR 0.943 0.960 0.960 0.976

210 0.142 NR 0.667 0.701 0.702 0.743 150 0.866 NR 0.977 0.988 0.988 0.996

203 0.208 NR 0.733 0.766 0.766 0.807 150 0.866 NR 0.952 0.967 0.966 0.980

195 0.300 NR 0.773 0.803 0.804 0.831 147 0.888 NR 0.953 0.969 0.968 0.982

188 0.393 NR 0.842 0.866 0.866 0.896 147 0.888 NR 0.942 0.962 0.962 0.976

181 0.493 NR 0.838 0.866 0.865 0.895 131 0.965 NR 0.987 0.993 0.993 0.999

174 0.593 NR 0.933 0.955 0.955 0.972 128 0.973 NR 0.991 0.996 0.996 1

174 0.593 NR 0.922 0.939 0.938 0.957 119 0.988 NR 0.994 0.998 0.998 1

Table 3.15: RP for the JT test under H0, with Case 6, n = 6, J0.0484 = 226
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Figure 3.7: NPI-RP-B for the JT test under H1, with Case 6, α = 0.05
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J p-value H0 Min Mean Median Max J p-value H0 Min Mean Median Max

2278 0.046 R 0.428 0.470 0.471 0.505 1935 0.655 NR 0.893 0.916 0.917 0.934

2261 0.057 NR 0.515 0.547 0.548 0.577 1902 0.725 NR 0.925 0.942 0.942 0.955

2228 0.083 NR 0.560 0.608 0.610 0.645 1892 0.745 NR 0.943 0.959 0.959 0.973

2195 0.119 NR 0.643 0.667 0.666 0.695 1850 0.820 NR 0.930 0.951 0.951 0.965

2157 0.171 NR 0.701 0.731 0.732 0.761 1814 0.871 NR 0.966 0.978 0.978 0.987

2148 0.185 NR 0.692 0.727 0.726 0.753 1736 0.946 NR 0.977 0.987 0.987 0.996

2114 0.245 NR 0.743 0.775 0.776 0.799 1660 0.981 NR 0.989 0.995 0.996 1

2093 0.287 NR 0.766 0.806 0.808 0.835 1609 0.992 NR 0.992 0.998 0.998 1

2071 0.334 NR 0.790 0.829 0.829 0.858 1556 0.997 NR 0.995 0.999 0.999 1

1988 0.530 NR 0.873 0.896 0.896 0.914 1397 1.000 NR 0.997 1.000 1 1

Table 3.16: RP for the JT test under H0, with Case 6, n = 20, J0.0499 = 2271

J p-value H0 Min Mean Median Max J p-value H0 Min Mean Median Max

269 4.479× 10−4 R 0.834 0.858 0.859 0.877 218 0.086 NR 0.627 0.671 0.672 0.707

267 5.970× 10−4 R 0.851 0.882 0.881 0.907 214 0.112 NR 0.678 0.712 0.712 0.741

255 0.003 R 0.654 0.684 0.685 0.720 214 0.112 NR 0.651 0.686 0.684 0.728

248 0.006 R 0.528 0.574 0.575 0.612 209 0.151 NR 0.691 0.716 0.715 0.747

236 0.021 R 0.437 0.500 0.499 0.550 201 0.229 NR 0.799 0.831 0.832 0.857

233 0.027 R 0.389 0.430 0.431 0.478 191 0.352 NR 0.849 0.881 0.881 0.904

229 0.038 R 0.424 0.470 0.471 0.513 184 0.450 NR 0.837 0.867 0.868 0.900

225 0.052 NR 0.551 0.586 0.586 0.632 175 0.579 NR 0.883 0.908 0.908 0.931

225 0.052 NR 0.528 0.579 0.580 0.620 155 0.822 NR 0.976 0.986 0.986 0.994

222 0.065 NR 0.566 0600 0.602 0.633 147 0.888 NR 0.976 0.985 0.985 0.993

Table 3.17: RP for the JT test under H1, with Case 7, n = 6, J0.0484 = 226

J p-value H0 Min Mean Median Max J p-value H0 Min Mean Median Max

2518 7.584× 10−4 R 0.815 0.837 0.837 0.862 2206 0.106 NR 0.623 0.659 0.659 0.692

2469 0.002 R 0.755 0.780 0.780 0.810 2190 0.125 NR 0.628 0.652 0.653 0.683

2457 0.003 R 0.711 0.737 0.737 0.768 2151 0.180 NR 0.682 0.715 0.716 0.747

2427 0.005 R 0.673 0.706 0.707 0.736 2072 0.332 NR 0.764 0.798 0.798 0.828

2375 0.011 R 0.596 0.633 0.632 0.666 2029 0.431 NR 0.814 0.854 0.854 0.877

2330 0.022 R 0.533 0.567 0.570 0.605 2003 0.494 NR 0.886 0.912 0.912 0.932

2308 0.031 R 0.501 0.538 0.540 0.570 1964 0.588 NR 0.896 0.914 0.915 0.933

2286 0.041 R 0.462 0.496 0.497 0.528 1923 0.681 NR 0.917 0.932 0.932 0.948

2280 0.044 R 0.438 0.483 0.484 0.515 1842 0.832 NR 0.953 0.968 0.968 0.980

2242 0.071 NR 0.535 0.581 0.581 0.615 1789 0.901 NR 0.969 0.981 0.981 0.990

Table 3.18: RP for the JT test under H1, with Case 7, n = 20, J0.0499 = 2271
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Figure 3.8: NPI-RP-B for the JT test under H1, with Case 7, α = 0.05

3.6 Concluding remarks

This chapter contributed to the development of NPI reproducibility by exploring the repro-

ducibility probability for the Jonckheere-Terpstra test via the implementations of NPI-B. The

test reproducibility is more naturally considered as a prediction problem than as an estimation

problem. The NPI-B is explicitly predictive approach which considers future observations and

is aligned well with the nature of test reproducibility. The use of the NPI-B to study RP avoids

the complex calculations of the lower and upper NPI-RP, as well as it is a flexible approach to

use when considering large sample sizes.

The NPI-RP-B method has been applied to a variety of scenarios via simulation studies. To

sum up, the investigation in this chapter implies that when the the test statistics values are close

to the test threshold the NPI-RP do not provide strong evidence in favour of the reproducibility

of the test results, particularly, when H0 is rejected more than when H0 is not rejected. The

reason for that is the presence of some sort of direction in the alternatives. Moving away from

the threshold leads to large reproducibility probability estimates to about 90% in some cases

which means that if the test is repeated in the future, there are 90% probability that the same

conclusion would be reached.

There are many research challenges for the further development of NPI for reproducibility

probability. For example, the reproducibility of the JT test in this chapter was investigated

using the NPI-RP-B approach. However, deriving the JT test’s exact lower and upper repro-

ducibility probabilities is of interest for future work which may require developing some methods.
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Further work entails exploring the calculation of NPI-RP estimates for the JT test via the the

application of parametric predictive bootstrap methodology, introduced by Aldawsari [2]. The

reproducibility for other ordered alternatives tests such as the Modified Jonckheere-Terpstra

test [106] and the Page test [86] can be explored.



Chapter 4

Reproducibility of Umbrella

Alternatives Tests

4.1 Introduction

In the one-way layout setting, the researchers are often concerned with detecting deviations from

the null hypothesis that the location parameters are equal, indicating no group effect. Particular

deviations of interest have included the general alternative (i.e., there is a group effect), the

ordered alternative (i.e., there is monotone group effect), and the umbrella alternative (i.e., there

is a monotone alternative that is subject to change in direction after reaching a peak). This

chapter focuses on nonparametric tests for umbrella alternatives. Practical scenarios in which

one would be concerned with detecting umbrella alternatives include experiments measuring

responses to increasing drug dosage levels where an initial increasing effect culminating with a

peak point (corresponding to the optimal dosage) and a decreasing effect afterwards.

Chapters 2 and 3, introduced the NPI for reproducibility probability for the general al-

ternative tests and the ordered alternative test, respectively. This chapter contributes to the

development of NPI for reproducibility by considering tests for the umbrella alternatives, namely

the Mack-Wolfe (MW) test and the Esra-Fikri (EF) test. Utilising Sections 1.4 and 1.5, NPI ap-

proach to derive exact lower and upper reproducibility probabilities for the MW test and the EF

test is introduced. However, exact NPI lower and upper reproducibility probabilities can only be

computed for relatively small sample size. Calculating exact lower and upper probabilities for

datasets with a large sample size is computationally challenging due to the increasing number of

possible orderings of future observations, resulting in longer computational time. Marques et al.

[75] encountered the same challenge while exploring the NPI reproducibility probability for re-

producibility of likelihood ratio tests. To overcome this computational limitations, Marques and

60
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Coolen [74] proposed the NPI sampling of orderings methodology (NPI-RP-SO). The NPI-RP-

SO method provides approximation of the NPI lower and upper reproducibility probabilities.

Another approach to address reproducibility probability for scenarios with large sample sizes is

NPI bootstrap, which provides a point estimate for NPI reproducibility probabilities [18].

This chapter is organised as follows: Section 4.2 gives an overview of the classical tests

for umbrella alternatives. In Section 4.3, the NPI approach is used to derive the exact lower

and upper reproducibility probabilities for the MW test and the EF test for three groups.

However, for more than three groups, computational difficulties prevent deriving the minimum

and maximum values of the MW and the EF test statistics. Section 4.4 presents the NPI-

RP using sampling of orderings method (NPI-RP-SO), to obtain approximations of the NPI

lower and upper reproducibility probabilities for the MW test and the EF test for three groups.

Section 4.5 introduces the methodology of the NPI bootstrap (NPI-RP-B), to estimate the

reproducibility probability for the MW test and the EF test. In Section 4.6, illustrative examples

are provided. NPI reproducibility probability for the MW test and the EF test is investigated via

simulation in Section 4.7, considering the NPI-RP-SO and the NPI-RP-B approaches. Section

4.8 presents concluding remarks for this chapter.

4.2 Umbrella alternatives tests

The comparison of k ≥ 3 groups in a one-way ANOVA setting include the situation that is the

response variable may increase with the group level up to a certain point and then decrease [59].

This situation is common in many real problems, such as the effect of age on some variables

that measure the physical capability such as muscle strength. Another example is the reaction

to the increase of a drug dosage, which is increasing up to a certain point and then it decreases.

This ‘up-then-down’ behavior is known in the literature as umbrella ordering [59]. The label

umbrella was given to these alternatives by Mack and Wolfe in 1981 [71]. Let µi denote the

location parameter for the ith population, i = 1, 2, . . . , k. Several k-sample rank tests are

introduced to test the following hypothesis,

H0 : µ1 = µ2 = . . . = µk (4.1)

against the umbrella alternatives

H1 : µ1 ≤ µ2 ≤ . . . ≤ µp−1 ≤ µp and µp ≥ µp+1 ≥ . . . ≥ µk (4.2)

for some p ∈ {1, 2, ..., k}, with at least one strict inequality. The umbrella alternative is said

to have a peak at population p, where p can be either known or unknown [59]. Many of
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these k-sample rank tests for testing umbrella alternatives are based on the Mann-Whitney

test statistic [73], which has been the framework for many tests involving ordered alternatives

[16, 45, 71, 76]. Moreover, umbrella alternatives test statistics are defined by combining the

sums of Mann-Whitney statistics to the left and to the right of the peak group only and they

do not include comparisons across the peak. Hettmansperger and Norton [56] proposed tests

for testing the umbrella alternatives for both known peak and unknown peak and have pointed

out that the absence of comparisons across peaks can cause some loss of efficiency. Other

related methodologies and approaches constructing test statistics for umbrella alternatives were

also presented in the literature, see e.g. [13, 22, 56, 72]. In this chapter, we consider the

reproducibility probability for the Mack-Wolfe (MW) test [71] and the Esra-Fikri (EF) test

[45].

4.2.1 Mack-Wolfe (MW) test

Mack and Wolfe [71] considered the umbrella alternatives with both known and unknown peak.

The Mack-Wolfe statistic Ap for known peak p, uses the p(p − 1)/2 Mann–Whitney counts,

Uuv, for every pair of groups with 1 ≤ u < v ≤ p, where Uuv is the number of observations

from sample u that are smaller than the observations from sample v. The statistic Ap uses

the (k − p + 1)(k − p)/2 reverse Mann–Whitney counts Uvu for every pair of groups with

p ≤ u < v ≤ k. Thus, the Mack–Wolfe peak-known statistic Ap is the sum of the Mann–Whitney

counts to the left of the peak and the reverse Mann–Whitney counts to the right of the peak,

as follows

Ap =
v−1∑
u=1

p∑
v=2

Uuv +

v−1∑
u=p

k∑
v=p+1

Uvu (4.3)

The null hypothesis is rejected, at level of significance α, if and only if

Ap ≥ Ap,α

where Ap,α is the α-upper percentile for the null distribution of Ap, which can be computed

using the function cUmbrPK(α, n, p) from the R package NSM3 [53] and also can be found from

tables in [20, 71].

For large sample sizes, and under the null hypothesis, the statistic Ap is asymptotically

Normally distributed with the following mean and variance [59]:
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E(Ap) =
N2

1 +N2
2 −

∑k
i=1 n

2
i − n2

p

4
(4.4)

σ2(Ap) =
1

72

{
2(N3

1 +N3
2 ) + 3(N2

1 +N2
2 )−

k∑
i=1

n2
i (2ni + 3)

−n2
p(2np + 3) + 12npN1N2 − 12n2

pN

}
(4.5)

where ni is the size of sample i, N1 =
∑p

i=1 ni and N2 =
∑k

i=p ni. The observations in the peak

group p are counted in both N1 and N2, thus N = N1 +N2 − np. The standardized version of

Ap is

A′
p =

Ap − E(Ap)

σ(Ap)

The Mack–Wolfe statistic for unknown peak p uses the sample data to estimate p, that is,

we use the sample data to estimate which of the groups is most likely to correspond to the peak

of the umbrella by calculating k combined samples Mann–Whitney statistics as follows:

U·q =
∑
i ̸=q

Uiq, for q = 1, ..., k (4.6)

where Uiq is the number of observations from the ith sample that are smaller than the ob-

servations from the qth sample. Then, under the null hypothesis, each U·q is standardize as

follows

E(U·q) =
nq(N − nq)

2
(4.7)

σ2(U·q) =
nq(N − nq)(N + 1)

12
(4.8)

Thus, the standardized version of U·q is given by

U ′
·q =

U·q − E(U·q)

σ(U·q)
, q = 1, ..., k (4.9)

Notice that, when the sample sizes of all groups are equal, the group with the largest U.q

value will also be the one with the largest U ′
·q value. Let s be the number of groups that are

tied for having the maximum U ′
·q value and let D be the subset of {1, 2, ..., k} that corresponds

to the s groups tied for the maximum U ′
·q value. The Mack–Wolfe peak unknown statistic is

then given by

A′
p̂ =

1

s

∑
j∈D

Aj − E(Aj)

σ(Aj)
(4.10)



4.2.2. Esra-Fikri (EF) test 64

where Aj is the peak-known statistic with peak at the jth group, as given in Equation (4.3),

and E(Aj) and σ(Aj) are given by Equations (4.4) and (4.5), respectively. The null hypothesis

is rejected, at level of significance α, if and only if

A′
p̂ ≥ A∗

p̂,α (4.11)

In most cases, s = 1 and A′
p̂ is equal to the single standardized peak-known statistic A′

p.

A∗
p̂,α is the upper α percentile for the null distribution of A′

p̂ which can be computed using the

function cUmbrPU(α, n) from the R package NSM3 [53] and also found in tables [20, 71]

4.2.2 Esra-Fikri (EF) test

Esra and Fikri [45] proposed a modified version of the Mack-Wolfe test for umbrella alternatives,

considering both known and unknown peak. For the case when the peak is known, the modified

Mack-Wolfe statistic Ãp is the weighted sum of the Mann-Whitney counts to the left of the

peak, (v − u)Uuv, and the reverse Mann-Whitney counts to the right of the peak, (v − u)Uvu.

This modified test statistic gives weight 1 to Mann-Whitney statistics between adjacent groups

[45]. The EF test statistic is given by

Ãp =

p−1∑
u=1

p∑
v=u+1

(v − u)Uuv +

k−1∑
u=p

k∑
v=u+1

(v − u)Uvu (4.12)

For balanced data, i.e. n1 = . . . = nk = n, and under H0, the EF statistic Ãp in Equation

(4.12), is asymptotically Normally distributed with the following mean and variance:

E(Ãp) =
n2

2

[(
p+ 1

3

)
+

(
k − p+ 2

3

)]
(4.13)

σ2(Ãp) =
n2p2(p2 − 1)(np+ 1)

144

+
n2(k − p+ 1)2[(k − p+ 1)2 − 1][n(k − p+ 1) + 1]

144

+
n3p(p− 1)(k − p)(k − p+ 1)

24
(4.14)

The null hypothesis H0 is rejected, at level of significance α, if and only if

Ã∗
p =

Ãp − E(Ãp)

σ(Ãp)
≥ Zα (4.15)

where Zα is the α−upper quantile of the standard Normal distribution.

For the case when the peak is unknown, the idea introduced in Section 4.2.1 for the Mack-

Wolf test with unknown peak is used, such that the estimated peak p̂ is the maximum of

(U ′
.1, U

′
.2, . . . , U

′
.k) where U

′
.q is given in Equation (4.9) with q = 1, 2, ..., k. The standardized test
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statistic for the unknown peak can be written as

Ã∗
p̂ =

Ãp̂ − E(Ãp̂)

σ(Ãp̂)
(4.16)

The null hypothesis is rejected, at level of significance α, if and only if

Ã∗
p̂ ≥ Zα (4.17)

4.3 NPI-RP-E for the Mack–Wolfe test

In this section, NPI-RP for the Mack-Wolfe test is introduced in term of the lower and upper

reproducibility, denoted by RP and RP , respectively. We consider the case of three independent

groups X, Y and Z, with nx observations from group X, ny observations from group Y and

nz observations from group Z. Let x1 < ... < xnx be the ordered observed values of group X,

these observations partition the real-line into nx + 1 intervals Ixj = (xj−1, xj), j = 1, ..., nx + 1.

Let y1 < ... < yny be the ordered observed values of group Y , these observations partition

the real-line into ny + 1 intervals Iyi = (yi−1, yi), i = 1, ..., ny + 1. Let z1 < ... < znz be the

ordered observed values of group Z, these observations partition the real-line into nz+1 intervals

Izk = (zk−1, zk), k = 1, ..., nz + 1, and x0 = y0 = z0 = −∞ and xnx+1 = yny+1 = znz+1 = ∞ for

ease of notation. We also assume here that there are no tied observations. If tied observations

occur, then these can be dealt with by a common method to break ties [58].

Let the number of future observations from groups X, Y , and Z be denoted by mx, my and

mz, respectively. Here, we restrict attention to the case where the number of future observations

is equal to the number of data observations (mx = nx, my = ny and mz = nz) which is

considered a logical assumption in order to study reproducibility. There are
(
2nx

nx

)
possible

orderings of nx future observations among the nx data observations, where all possible orderings

are equally likely. Similarly, there are
(
2ny

ny

)
possible orderings of ny future observations among

the ny data observations and there are
(
2nz

nz

)
possible orderings of nz future observations based on

nz data observations and all possible orderings are equally likely. We consider all
(
2nx

nx

)(
2ny

ny

)(
2nz

nz

)
combinations of these possible orderings, denoted by Oℓ for ℓ = 1, 2, ...,

(
2nx

nx

)(
2ny

ny

)(
2nz

nz

)
.

For each combination of orderings Oℓ, the corresponding Mack-Wolfe test statistic, given

in Equation (4.3), denoted by Apℓ. As the future observations are not precise, but only their

number in each of the intervals of the partition created by the original data observations for

their groups are known for a given ordering, we cannot calculate a precise value of Apℓ related

to a specific combination of orderings, but we can derive the minimum and maximum possible

values; these are denoted by Ap
ℓ
and Apℓ, respectively.
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Let a specific ordering of nx future observations among the nx data observations be denoted

by (SX
1 , ..., SX

nx+1), with SX
j non-negative integers with

∑nx+1
j=1 SX

j = nx, as introduced in Section

1.4. Let a specific ordering of ny future observations among the ny data observations be denoted

by (SY
1 , ..., SY

ny+1), with SY
i non-negative integers with

∑ny+1
i=1 SY

i = ny. Let a specific ordering

of nz future observations among the nz data observations be denoted by (SZ
1 , ..., S

Z
nz+1), with

SZ
k non-negative integers with

∑nz+1
k=1 SZ

k = nz. In addition, let j(i) = max{j : x(j) < y(i)} for

i = 1, ..., ny+1 and j = 0, 1, ..., nx, so x(j(i)) < y(i) < x(j(i)+1) and the rank of y(i) in the combined

ordered data from both groups X and Y is i + j(i). Likewise, let k(i) = max{k : z(k) < y(i)}

for i = 1, ..., ny + 1 and k = 0, 1, ..., nz, so z(k(i)) < y(i) < z(k(i)+1) and the rank of y(i) in the

combined ordered data from both groups Z and Y is i+k(i). The minimum and the maximum

values of Apℓ, are as follows

Ap
ℓ
=

ny+1∑
i=1

SY
i

[
i−1∑
b=1

SY
b −

ny+1∑
b=i+1

SY
b +

j(i−1)−1∑
a=1

SX
a +

k(i−1)−1∑
c=1

SZ
c

]
(4.18)

Apℓ =

ny+1∑
i=1

SY
i

[
i−1∑
b=1

SY
b −

ny+1∑
b=i+1

SY
b +

j(i)−1∑
a=1

SX
a +

k(i)−1∑
c=1

SZ
c

]
(4.19)

Note, the ℓ is omitted from the right hand side for simplicity of notation. The detailed justifi-

cation for these results can be found in Appendix C.

The NPI lower (upper) reproducibility probability if the original test conclusion is rejection

of H0, is derived by counting the combinations for which Ap
ℓ
≥ Ap,α (Apℓ ≥ Ap,α). Thus, the

NPI lower and upper reproducibility probabilities are

RP =
1

h

h∑
ℓ=1

1{Ap
ℓ
≥ Ap,α} (4.20)

RP =
1

h

h∑
ℓ=1

1{Apℓ ≥ Ap,α} (4.21)

where h =
(
2nx

nx

)(
2ny

ny

)(
2nz

nz

)
and 1{A} is an indicator function which is equal to 1 if the event A

occurs and 0 otherwise. Similarly, if the conclusion of the original test is non-rejection of H0

then the NPI lower (upper) reproducibility probability is derived by counting the combinations

for which Apℓ < Ap,α (Ap
ℓ
< Ap,α). Thus, the NPI lower and upper reproducibility probabilities

are

RP =
1

h

h∑
ℓ=1

1{Apℓ < Ap,α} (4.22)

RP =
1

h

h∑
ℓ=1

1{Ap
ℓ
< Ap,α} (4.23)
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The exact NPI lower and upper reproducibility probabilities for the EF test for three groups

with p = 2 which refers to the second group Y , are identical to the exact NPI-RP for the Mack-

Wolfe (MW) test. This is because the EF test statistic for three groups X, Y and Z is the sum

of two Mann-Whitney statistics between X and Y and between Z and Y , with a weight of one

assigned to both of them, which is equal to the MW test statistic for three groups. Therefore,

the NPI-RP-E method introduced in this section applies to both the EF test and the MW

test. However, for large sample sizes, going through all possible orderings is computationally

expensive. In this case, we can apply the method of sampling of orderings (NPI-RP-SO) and

NPI bootstrap (NPI-RP-B) to derive approximations for the lower and upper reproducibility

probabilities. The methodology of this section will be investigated using an artificial data sets

of ranks.

4.4 NPI-RP-SO for the Mack-Wolfe test

The exact method to derive the NPI lower and upper reproducibility probabilities for the Mack-

Wolfe test which was introduced in Section 4.3, is only computationally feasible for small sam-

ple sizes, as it considers all the orderings. For large sample sizes, the NPI-RP sampling of

orderings (NPI-RP-SO) method is applied to obtain approximations for the lower and upper

reproducibility probabilities. In the NPI-RP-SO approach, we randomly sample r∗ orderings

from all possible orderings of the future observations among the data observations per group

[74, 75]. Then, apply Equations (4.18) and (4.19) on these sampled orderings to obtain the

minimum and the maximum of the Mack-Wolfe test statistic, Ap. Here, all orderings sampled

combinations will not be considered, instead consider each ordering sampled from one group

with the corresponding ordering sampled from the other groups.

If the conclusion of the original test is rejection of H0, so Ap ≥ Ap,α, then the NPI lower

reproducibility probability using the NPI-RP-SO is obtained by counting the number of or-

derings for which Ap
ℓ
≥ Ap,α and divided by the number of orderings sampled, r∗. The NPI

upper reproducibility probability is obtained by counting the number of orderings for which

Apℓ ≥ Ap,α, and divided it by, r∗:

R̂P =
1

r∗

r∗∑
ℓ=1

1{Ap
ℓ
≥ Ap,α} (4.24)

R̂P =
1

r∗

r∗∑
ℓ=1

1{Apℓ ≥ Ap,α} (4.25)

Similarly, if the original test conclusion is non-rejection of H0, so Ap < Ap,α, then the NPI lower
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and upper reproducibility probabilities are given by

R̂P =
1

r∗

r∗∑
ℓ=1

1{Apℓ < Ap,α} (4.26)

R̂P =
1

r∗

r∗∑
ℓ=1

1{Ap
ℓ
< Ap,α} (4.27)

The NPI-RP-SO method will be illustrated via simulations and examples with data sets from

the literature to investigate the NPI-RP for the MW test and EF test for three groups.

4.5 NPI-RP-B for the MW test and the EF test

In the previous section, the NPI-RP-SO is introduced to study the NPI-RP for the MW test

and the EF test for large sample sizes. However, the NPI-RP-SO may not always be possible

to use, as the application of NPI-RP-SO requires deriving the exact NPI lower and upper

reproducibility probabilities, which could be challenging for some some test statistics. The

NPI-RP-B method, introduced in 1.5.3, can be apply as an alternative method to approximate

the reproducibility probability for the Mack-Wolfe (MW) test and the Esra and Fikri (EF) test.

NPI-RP-B uses the point estimate to present the NPI reproducibility probability instead of

lower and upper reproducibility probabilities. As mentioned earlier in this chapter, with large

sample sizes, computational issues prevent the exact NPI reproducibility probability approach,

introduced in Section 4.3. Moreover, computational difficulties prevent deriving the minimum

and maximum for the MW and the EF test statistics for more than three groups. This can be

resolved by using the NPI-RP-B method, as it avoids the complex calculations required by the

exact NPI reproducibility probability approach.

Algorithm 2 introduced in Section 1.5.3, is applied. The inputs into Algorithm 1 are the

k original samples, their corresponding sample sizes, the number of runs T and the number

of bootstrapped samples per run B. Summary statistics including the minimum, mean, me-

dian, maximum, of RP1, RP2, ..., RPT were calculated. The mean value of the outcomes is the

reproducibility probability estimate, and is referred to as NPI-RP-B value. In this chapter,

Algorithm 2, will be implemented with both finite and infinite intervals, using Approaches I

and II, introduced in Section 2.3. In Approach I, the lower limit is taken to be smallest value

of the group minus the maximal distance between consecutive points, and the upper limit is

taken to be equal to largest value of the group plus the maximal distance between consecutive

points. Approach II involves assuming the tail of a Normal distribution for real-valued data

and the tail of an Exponential distribution for non-negative real-valued data. It is important



4.6. Examples 69

to emphasize that the bootstrap samples have the same size as the original sample. Section 4.7

presents the results of simulation studies for different scenarios, such as simulation under H0

and under H1, with varying sample sizes and number of groups.

4.6 Examples

This section studies the reproducibility probability for the MW test and the EF test for three

groups. In example 4.1, artificial data sets of ranks are used to investigate reproducibility

probability using the NPI-RP-E, NPI-RP-SO and NPI-RP-B approaches and the results are

compared. In example 4.2, the NPI-RP-SO approach is considered for large data set from the

literature with equal sample sizes. The NPI-RP-SO approach is applied for large data set with

unequal sample sizes in Example 4.3.

Example 4.1. This example investigates the reproducibility probability for the MW test and

the EF test for k = 3 groups X, Y and Z by applying the NPI-RP-E approach, introduced in

Section 4.3. Then, a comparison of the three methods, NPI-RP-E, NPI-RP-SO and NPI-RP-B

is carried out investigate whether or not the NPI-RP-B method tends to provide a value within

the lower and upper NPI-RP-E and NPI-RP-SO. Artificial data sets of ranks with equal samples

sizes nx = ny = nz = 3, and nx = ny = nz = 5 are considered. The hypothesis of interest is

H0 : µx = µy = µz against H1 : µx ≤ µy ≥ µz, that is p = 2 which refers to the second group

Y , at the level of significance α = 0.05.

For the MW test with nx = ny = nz = 3 and nx = ny = nz = 5, in Tables 4.1 and 4.2, due

to the discrete nature of the test statistic the nominal levels are 0.0476 and 0.0496, respectively.

Accordingly, the test decision rule for the MW test is to reject the null hypothesis if the test

statistic Ap is greater than or equal to A2,0.0476 = 16 and A2,0.0496 = 39, respectively. For the

EF test, the test decision rule is to reject the null hypothesis if the test statistic Ã∗
p is greater

than or equal to Z0.05 = 1.645. Throughout this thesis, the original test conclusion is denoted

by R when the null hypothesis is rejected and NR when the null hypothesis is not rejected, and

the values in the tables are rounded to three decimal digits while precise value 1 is presented

without additional decimals, so the values 1.000 are actually less than 1 but rounded up. The

NPI-RP results presented in Tables 4.1 and 4.2 are identical for both the MW test and the EF

test because we have three groups and p = 2. Therefore, the following discussion applies to

both tests.

In order to calculate the exact lower and upper NPI-RP for the MW test and EF test

for three groups with nx = ny = nz = 3, there are
(
6
3

)
=20 possible orderings of 3 future



4.6. Examples 70

Ranks Test conclusion NPI-RP-E NPI-RP-B NPI-RP-SO

X Y Z Ap Ã∗
p p-value H0 RP RP Min Mean Median Max R̂P R̂P

1,2,3 7,8,9 4,5,6 18 2.324 0.010 R 0.125 1 0.955 0.971 0.971 0.983 0.114 1

2,3,4 7,8,9 1,5,6 18 2.324 0.010 R 0.125 1 0.760 0.789 0.790 0.822 0.123 1

1,2,3 6,8,9 4,5,7 17 2.066 0.019 R 0.106 0.930 0.645 0.676 0.676 0.720 0.107 0.934

1,2,3 5,8,9 4,6,7 16 1.807 0.035 R 0.081 0.825 0.441 0.478 0.476 0.516 0.089 0.830

1,2,7 5,8,9 3,4,6 16 1.807 0.035 R 0.086 0.832 0.369 0.398 0.397 0.429 0.089 0.824

1,2,3 6,7,9 4,5,8 16 1.807 0.035 R 0.081 0.825 0.459 0.494 0.495 0.536 0.078 0.829

1,2,3 4,8,9 5,6,7 15 1.549 0.061 NR 0.318 0.950 0.591 0.639 0.640 0.676 0.314 0.953

2,3,4 5,7,9 1,6,8 15 1.549 0.061 NR 0.273 0.939 0.603 0.645 0.646 0.684 0.275 0.930

4,6,7 3,8,9 1,2,5 14 1.291 0.098 NR 0.386 0.950 0.656 0.690 0.691 0.722 0.414 0.953

4,5,6 1,8,9 2,3,7 12 0.775 0.219 NR 0.476 0.950 0.713 0.753 0.754 0.784 0.473 0.952

1,4,8 3,5,9 2,6,7 11 0.516 0.303 NR 0.578 0.977 0.826 0.865 0.866 0.888 0.566 0.977

1,2,3 4,5,6 7,8,9 9 0.000 0.500 NR 0.790 1 0.997 0.999 1 1 0.790 1

1,2,8 4,5,6 3,7,9 9 0.000 0.500 NR 0.720 0.995 0.944 0.958 0.958 0.973 0.715 0.997

1,3,4 2,5,6 7,8,9 7 -0.516 0.697 NR 0.833 1 0.986 0.993 0.993 1 0.824 1

1,2,6 3,4,5 7,8,9 6 -0.775 0.781 NR 0.855 1 1 1 1 1 0.846 1

1,2,9 3,4,5 6,7,8 6 -0.775 0.781 NR 0.855 1 0.998 1.000 1 1 0.848 1

5,3,9 1,2,8 7,4,6 5 -1.033 0.849 NR 0.814 0.995 0.926 0.948 0.947 0.966 0.818 0.995

1,4,5 2,3,6 7,8,9 5 -1.033 0.849 NR 0.870 1 0.987 0.993 0.993 1 0.872 1

1,4,7 2,3,5 6,8,9 4 -1.291 0.902 NR 0.889 1 0.996 0.999 0.999 1 0.892 1

4,5,6 1,2,3 7,8,9 0 -2.324 0.990 NR 0.933 1 1 1 1 1 0.932 1

Table 4.1: RP for the MW test and the EF test, with H1 : µx ≤ µy ≥ µz, p = 2, nx = ny =

nz = 3, A2,0.0476 = 16, Z0.05 = 1.645

observations among 3 data observations per group, so each RP and RP value is based on(
6
3

)(
6
3

)(
6
3

)
= 8000 orderings combinations. In the NPI approach, with nx = ny = nz = 5, there

are
(
10
5

)
possible orderings of 5 future observations among 5 data observations per group, and

all
(
10
5

)(
10
5

)(
10
5

)
= 1.600× 1017 orderings combinations are considered.

The NPI-RP results in Tables 4.1 and 4.2 show that RP is substantially less than 0.5 for

several cases, and the RP value is low close to the test threshold and it is lower for the cases

when the null hypothesis is rejected than for those not. This is because there exists some sort

of direction in the alternative hypothesis. This implies that data, typically with test statistic

is close to the threshold value and H0 is rejected, do not provide strong evidence in favour of

reproducibility of the test results.

For the exact lower reproducibility probability, H0 is only rejected for the future samples if

all the future Y ranks not in the first interval for Y i.e (greater than the smallest observed Y

rank), and all future X ranks not in the last interval for X (smaller than the largest observed
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Ranks Test conclusion NPI-RP-E NPI-RP-B NPI-RP-SO

X Y Z Ap Ã∗
p p-value H0 RP RP Min Mean Median Max R̂P R̂P

1,2,3,4,5 11,12,13,14,15 6,7,8,9,10 50 3.062 0.001 R 0.441 1 0.997 0.999 0.999 1 0.443 1

1,2,6,7,8 11,12,13,14,15 3,4,5,9,10 50 3.062 0.001 R 0.441 1 0.974 0.985 0.985 0.997 0.443 1

1,2,3,4,5 10,12,13,14,15 6,7,8,9,11 49 2.939 0.002 R 0.402 0.997 0.966 0.977 0.977 0.987 0.406 0.999

1,2,3,4,5 9,12,13,14,15 6,7,8,10,11 48 2.817 0.002 R 0.367 0.988 0.916 0.939 0.939 0.957 0.367 0.991

1,2,3,4,5 10,11,12,13,14 6,7,8,9,15 45 2.450 0.007 R 0.300 0.932 0.805 0.832 0.832 0.860 0.300 0.927

1,2,3,4,5 9,10,11,13,15 6,7,8,12,14 43 2.205 0.014 R 0.224 0.884 0.695 0.730 0.730 0.767 0.223 0.878

1,2,3,4,5 8,9,10,14,15 6,7,11,12,13 41 1.960 0.025 R 0.172 0.807 0.536 0.586 0.586 0.627 0.174 0.812

1,2,3,4,6 5,11,12,13,14 7,8,9,10,15 40 1.837 0.033 R 0.178 0.775 0.434 0.474 0.474 0.509 0.174 0.784

1,2,3,4,15 5,10,12,13,14 6,7,8,9,11 39 1.715 0.043 R 0.161 0.754 0.393 0.434 0.433 0.469 0.157 0.764

1,3,5,6,14 7,10,11,12,13 2,4,8,9,15 38 1.592 0.056 NR 0.284 0.858 0.571 0.602 0.600 0.648 0.278 0.853

1,3,5,7,14 6,10,11,12,13 2,4,8,9,15 37 1.470 0.071 NR 0.322 0.872 0.617 0.653 0.653 0.698 0.322 0.865

1,2,3,7,11 6,8,9,12,15 4,5,10,13,14 35 1.225 0.110 NR 0.401 0.915 0.663 0.699 0.701 0.735 0.401 0.917

1,2,3,4,5 7,8,9,10,14 6,11,12,13,15 33 0.980 0.164 NR 0.521 0.957 0.732 0.763 0.763 0.794 0.498 0.954

1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 25 0.000 0.500 NR 0.821 1 0.998 1.000 1 1 0.799 1

1,2,3,6,7 4,5,8,9,10 11,12,13,14,15 21 -0.490 0.688 NR 0.866 1 0.993 0.998 0.998 1 0.850 1

1,2,10,14,15 3,4,5,9,12 6,7,8,11,13 18 -0.857 0.804 NR 0.853 0.996 0.956 0.969 0.969 0.982 0.843 0.994

1,12,13,14,15 2,3,4,5,11 6,7,8,9,10 10 -1.837 0.967 NR 0.933 1.000 0.981 0.989 0.989 0.997 0.930 1

1,6,7,11,12 2,3,4,5,9 8,10,13,14,15 8 -2.082 0.981 NR 0.950 1.000 0.995 0.999 0.999 1 0.946 1

4,7,8,9,10 1,2,3,5,6 11,12,13,14,15 2 -2.817 0.998 NR 0.969 1 1 1 1 1 0.969 1

6,7,8,9,10 1,2,3,4,5 11,12,13,14,15 0 -3.062 0.999 NR 0.972 1 1 1 1 1 0.973 1

Table 4.2: RP for the MW test and the EF test, with H1 : µx ≤ µy ≥ µz, p = 2, nx = ny =

nz = 5, α = 0.05, A2,0.0496 = 39, Z0.05 = 1.645

X rank), and all future Z ranks not in the last interval for Z (smaller than the largest observed

Z rank). Thus, for the case in the first row in Table 4.1 with RP = 0.125, the future Y

ranks all greater than 7 and the future X ranks all less than 3, and the future Z ranks all

less than 6. These individual events happen with probability 0.5 in the NPI framework, with

the independence between the three groups leading to the lower reproducibility probability

0.5× 0.5× 0.5 = 0.125. So, there are
(
5
3

)
orderings for the future X ranks. Likewise, there are(

5
3

)
orderings for the future Y ranks and

(
5
3

)
orderings for the future Z ranks, which is in total(

5
3

)(
5
3

)(
5
3

)
= 1000 orderings combinations out of the 8000 orderings combinations.

If one of the future X ranks is larger than the largest observed X rank and one of the future

Y ranks is smaller than the smallest observed Y rank, or one of the future Z ranks is larger

than the largest observed Z rank, then for all cases will not reject H0 because those intervals are

unbounded and a future X rank could be larger than a future Y rank or a future Z rank could

be larger than Y . Thus, for the extreme case in the last row in Table 4.1 with RP = 0.933, all

the future Y ranks greater than 3, and all the future X ranks smaller than 4, and all the future

Z ranks smaller than 7.

Tables 4.1 and 4.2 also show that in most cases where different ranks per sample lead to the
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same value of the test statistic, the values of NPI-RP are differ for each case, so they depend

on the actual ranks per sample and not just on the value of the test statistic (the reported two

cases with Ap = 6 in Table 4.1 are an exception, which is just due to the same numbers of

combinations for which the test result happens to be repeated, it is not a general property).

In Table 4.1, the NPI lower and upper reproducibility probabilities are very imprecise due

to the small number of data observations per group, that is there are big differences between

the corresponding NPI lower and upper reproducibility probabilities. With larger sample sizes,

as in Table 4.2, imprecision tends to be smaller, reflecting the large amount of information.

On the other hand, for reproducibility close to 1, the imprecision is close to 0, whereas for low

reproducibility, the imprecision is larger than for high reproducibility. The NPI-RP approach

is strongly based on the data, and as such imprecision tends to be less with larger sample size.

For larger sample sizes, going through all combinations becomes quickly computationally

infeasible. For example, for nx = ny = nz = 7 the NPI-RP-E approach requires going through(
14
7

)3
= (3432)3 = 4.024 × 1010 orderings combinations of the future observations among

the data observations to derive the values of RP and RP . Thus, the application of other

computational methods within NPI framework is required. These methods are NPI-RP-SO and

NPI-RP-B which give approximate values for the NPI reproducibility probability.

The NPI-RP-SO is considered with r∗ = 2000 orderings sampled. The NPI-RP-B method

is applied using Algorithm 2 with Approach I, and B = 1000 and T = 100. Summary statistics

including the minimum, mean, median, maximum, of RPi, i = 1, 2, . . . , T , are computed. Then,

we examine whether the NPI-RP-B estimates are between the corresponding lower and upper

NPI-RP-E and NPI-RP-SO. Based on the results presented in Tables 4.1 and 4.2, it can be

inferred that, 100% of NPI-RP-B estimates are included in the bounds derived by the NPI-RP-

E and the NPI-RP-SO methods. This is a logical finding that would always be expected due to

the construction of the NPI lower and upper probabilities with no assumptions of probability

masses assigned to intervals between two consecutive observations. This result may not hold in

some rare cases, due to the randomness of the bootstrap inferences. These results give a good

impression of NPI-RP-B because they show that these values are consistent with the bounds

of NPI-RP-E and NPI-RP-SO. Similar results are observed by BinHimd [18] in her study of

reproducibility probability for the one sample signed rank test and the Wilcoxon-Mann-Whitney

test, where 100% of NPI-RP-B are located within the bound of NPI-RP-E. In his investigation

of reproducibility probability for the likelihood ratio test, Aldawsari [2] found that 88% of NPI-

RP-B values are included in the bounds of NPI-RP-SO, and this ratio can be considered good

because it represents the most values.
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Data Mean Std. dev

Sales 343 495 602 666 796 813 894 920 960 1499 798.8 315.637

Production 126 156 216 291 345 488 516 542 546 1362 458.8 355.422

Research and Development 391 450 472 496 609 645 705 763 910 1309 675 273.985

Table 4.3: Telephone communications data, for Example 4.2

Cases X Y Z Ap Ã∗
p H0

Case 1 Production Sales Research and Development 148 2.112 R

Case 2 Sales Research and Development Production 110 0.440 NR

Case 3 Sales Production Research and Development 42 -2.552 NR

Table 4.4: Telephone communications data, three cases, for Example 4.2

Example 4.2. This example considers the NPI-RP-SO method, introduced in Section 4.4, for

the MW test and the EF test, using the Telephone Communications data set given in Table 4.3

[67], where a firm aims to improve the cost effectiveness of its communications. Ten home office

executives were randomly selected from the Sales, Production and Research and Development

departments to take part in the study.

We test the null hypothesis H0 : µx = µy = µz against H1 : µx ≤ µy ≥ µz, that is p = 2

which refers to the second group Y . This test is performed with the level of significance α = 0.05,

this leads to the threshold A2,0.0498 = 138, so the null hypothesis is rejected if Ap ≥ 138. For

the EF test, the null hypothesis is rejected if Ã∗
p ≥ 1.645. Three different cases are considered

in this example, these are summarised in Table 4.4. As we have three groups with equal sample

sizes, the NPI-RP results are identical for the EF test and the MW test. Thus, in this example,

the NPI-RP results for the EF test will be omitted except the original test conclusion as in

Table 4.4.

For the first case, the Mack-Wolfe test is applied to the data with Production as group

X, sales as group Y , and Research and Development as group Z. This leads to the original

test value Ap = 148 which is greater than 138, so, the test conclusion is rejection of the null

hypothesis. For the second case, Sales is considered as group X, Research and Development as

group Y , and Production as group Z. This leads to Ap = 110 < 138, so the null hypothesis is

not rejected. For the third case, Sales is group X, Production is group Y , and Research and

Development is group Z. This leads to Ap = 42 < 138, so the null hypothesis is not rejected.

To obtain the exact lower and upper reproducibility probabilities, there are
(
20
10

)(
20
10

)(
20
10

)
=

6.307×1015 orderings combinations to be considered, which is too large for the exact lower and

upper reproducibility probabilities to be computed. Hence, the sampling of orderings method is
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Case 1: Sales is the peak(Y )

r∗ R̂P CI(95%) R̂P CI(95%)

100 0.350 (0.257, 0.443) 0.830 (0.756, 0.904)

500 0.284 (0.244, 0.324) 0.794 (0.759, 0.829)

1,000 0.364 (0.334, 0.394) 0.800 (0.775, 0.825)

5,000 0.331 (0.318, 0.344) 0.807 (0.796, 0.818)

10,000 0.327 (0.318, 0.336) 0.801 (0.793, 0.809)

50,000 0.320 (0.316, 0.324) 0.805 (0.802, 0.808)

100,000 0.322 (0.319, 0.325) 0.803 (0.801, 0.805)

150,000 0.320 (0.318, 0.322) 0.807 (0.805, 0.809)

Case 2: Research and development is the peak(Y )

r∗ R̂P CI(95%) R̂P CI(95%)

100 0.650 (0.557, 0.743) 0.950 (0.907, 0.993)

500 0.680 (0.639, 0.721) 0.958 (0.940, 0.976)

1,000 0.622 (0.592, 0.652) 0.945 (0.931, 0.959)

5,000 0.656 (0.643, 0.669) 0.950 (0.944, 0.956)

10,000 0.658 (0.649, 0.667) 0.954 (0.950, 0.958)

50,000 0.661 (0.657, 0.665) 0.953 (0.951, 0.955)

100,000 0.663 (0.660, 0.666) 0.954 (0.953, 0.955)

150,000 0.664 (0.662, 0.666) 0.955 (0.954, 0.956)

Case 3: Production is the peak(Y )

r∗ R̂P CI(95%) R̂P CI(95%)

100 0.970 (0.915, 0.994) 1 (0.964, 1)

500 0.978 (0.965, 0.991) 1 (0.993, 1)

1,000 0.976 (0.967, 0.985) 1 (0.996, 1)

5,000 0.976 (0.972, 0.980) 0.999 (0.999, 1)

10,000 0.980 (0.977, 0.983) 0.999 (1.000, 1)

50,000 0.979 (0.978, 0.980) 0.999 (1.000, 1)

100,000 0.979 (0.978, 0.980) 0.999 (1.000, 1)

150,000 0.978 (0.977, 0.979) 0.999 (1.000, 1)

Table 4.5: NPI-RP-SO for the MW test and the EF test with H1 : µx ≤ µy ≥ µz, p = 2,

α = 0.05, A2,0.0498 = 138, Z0.05 = 1.645, for Example 4.2
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applied using a random sample of orderings r∗ from each group. Then, we use these randomly

selected orderings of future data observations to compute the minimum and maximum for the

Mack-Wolfe test statistic in Equations (4.18) and (4.19), to find approximate values of the

NPI lower and upper reproducibility probabilities. The corresponding 95% confidence intervals

(CI) is computed for R̂P and R̂P . The confidence intervals are calculated using the standard

result based on the Normal approximation in Equation (1.10). When computing the Normal

approximation confidence interval, for some cases where R̂P is close to 0 or R̂P is close to 1,

the lower bound of the CI can be less than 0 or the upper bound greater than 1. Thus, the

exact (1 − α)100% confidence interval in Equations (1.11) and (1.12) is used, as explained in

details in Section 1.5.2.

For Case 1 in Table 4.5, the NPI lower reproducibility probability is low because the test

statistic value Ap = 148 is close to the threshold value 138 and the null hypothesis is rejected

in the original test. For Case 3, the R̂P value is large because the test statistic Ap = 42 is

away from the threshold 138. From this Table, it can be inferred that the difference between

NPI-RP estimates with increasing r∗ is in the second decimal place, which is not very notable.

Therefore, it can be concluded that reasonable approximations of the NPI lower and upper

reproducibility probabilities for the MW test and EF test, can be obtained by considering the

number orderings sampled equal or greater than 10,000 which is a quite small number when

compared with the number of all possible orderings. The first application of NPI-RP-SO for test

reproducibility, carried out by Marques et al. [75] for the likelihood ratio test, suggests that the

number of orderings sampled should be at least 2000 to achieve reasonable results. NPI-RP-SO

provides a computationally efficient way to obtain the values of lower and upper reproducibility

probabilities.

Example 4.3. This example illustrates the NPI-RP-SO method for the MW test with large

sample size data using the "LengthWeightData" in the R package StatCharrms. The data

set, as given in Table 4.6, contains records of fish that were exposed to different levels of

chemical concentration. In this example, we consider the weight variable with three levels of

concentrations, C0, C6 and C13, with sample sizes of 28, 29 and 30, respectively, to obtain

approximations for the NPI lower and upper reproducibility probabilities for the MW test.

There are a few repeated observations in the data set, so we added a small amount to make

these observations distinct. The NPI-RP for the EF test is not provided in this example because

the EF test is proposed for data sets with equal sample sizes.

We test the hypothesis H0 : µx = µy = µz against H1 : µx ≤ µy ≥ µz, that is p = 2

which refers to the second group Y , at level of significance α = 0.05. Three different cases are
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Concentrations Weight Mean Std. dev

C0 45 50 56 60 62 65 71 74 76 81 140.790 148.038

84 86 89 89 89 91 94 95 101 102

110 117 141 208 307 377 381 741

C6 57 65 72 79 80 81 86 86 94 95 149.037 112.160

96 98 103 110 112 113 114 114 118 119

122 131 136 205 268 277 371 393 527

C13 52 59 65 76 83 84 98 101 104 104 169.168 127.979

104 108 111 112 117 119 121 124 130 133

137 144 162 166 341 372 373 428 432 515

Table 4.6: LenghtWeightData, for Example 4.3

Cases X Y Z Ap H0

Case 1 C0 C13 C6 1071 R

Case 2 C0 C6 C13 892 NR

Case 3 C13 C0 C6 559 NR

Table 4.7: LenghtWeightData, three cases, for Example 4.3

considered in this example, these are presented in Table 4.7. Applying the NPI approach for

real-valued observations, there there are
(
28+28
28

)
orderings of 28 future observations among 28

data observations from C0, there are
(
29+29
29

)
orderings of 29 future observations among 29 data

observations from C6, and there there are
(
30+30
30

)
orderings of 30 future observations among

30 data observations from C13. It is unfeasible to go through the combinations of these large

numbers of orderings. We sampled different numbers of orderings to explore the performance

of the NPI-RP-SO for the Mack-Wolfe test, as shown in Tables 4.8.

For Case 1, the Mack-Wolfe test is applied to the data with C0 is X group, C13 is Y and the

peak group, and C6 is Z group. This leads to Ap = 1071, so, the original data lead to rejection

of H0 since the test statistic value Ap = 1071 is greater than threshold A2,0.0498 = 1040. For

Case 2, the Mack-Wolfe test is performed with C0 is X group, C6 is group Y and the peak

group, and C13 is group Z. This leads to Ap = 892 which is less than the test threshold

A2,0.0493 = 1025. So, the null hypothesis is not rejected. For Case 3, we apply the Mack-Wolfe

test with C13 is X group, C0 is group Y and the peak group, and C6 is group Z. This leads

Ap = 559 which is less than the test threshold A2,0.0497 = 1008. Thus, the null hypothesis is

not rejected. Typically with test statistic values not close to the threshold, the data provide a
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Case 1

r∗ R̂P CI(95%) R̂P CI(95%)

100 0.350 (0.257, 0.443) 0.720 (0.632, 0.808)

500 0.406 (0.363, 0.449) 0.704 (0.664, 0.744)

1,000 0.417 (0.386, 0.448) 0.726 (0.698, 0.754)

5,000 0.405 (0.391, 0.419) 0.713 (0.700, 0.726)

10,000 0.409 (0.399, 0.419) 0.707 (0.698, 0.716)

50,000 0.412 (0.408, 0.416) 0.697 (0.693, 0.701)

100,000 0.410 (0.407, 0.413) 0.700 (0.697, 0.703)

150,000 0.409 (0.407, 0.411) 0.699 (0.697, 0.701)

Case 2

r∗ R̂P CI(95%) R̂P CI(95%)

100 0.620 (0.525, 0.715) 0.920 (0.867, 0.973)

500 0.724 (0.685, 0.763) 0.916 (0.892, 0.940)

1,000 0.689 (0.660, 0.718) 0.903 (0.885, 0.921)

5,000 0.707 (0.694, 0.720) 0.904 (0.896, 0.912)

10,000 0.703 (0.694, 0.712) 0.905 (0.899, 0.911)

50,000 0.709 (0.705, 0.713) 0.901 (0.898, 0.904)

100,000 0.707 (0.704, 0.710) 0.903 (0.901, 0.905)

150,000 0.706 (0.704, 0.708) 0.902 (0.900, 0.904)

Case 3

r∗ R̂P CI(95%) R̂P CI(95%)

100 0.980 (0.930, 0.998) 1 (0.964, 1)

500 0.986 (0.976, 0.996) 0.998 (0.989, 1.000)

1,000 0.978 (0.969, 0.987) 0.995 (0.991, 0.999)

5,000 0.976 (0.972, 0.980) 0.993 (0.991, 0.995)

10,000 0.978 (0.975, 0.981) 0.995 (0.994, 0.996)

50,000 0.977 (0.976, 0.978) 0.995 (0.994, 0.996)

100,000 0.978 (0.977, 0.979) 0.995 (0.995, 0.995)

150,000 0.978 (0.977, 0.979) 0.995 (0.995, 0.995)

Table 4.8: NPI-RP-SO for the MW test with H1 : µx ≤ µy ≥ µz, p = 2, for Example 4.3

strong evidence in favour of the reproducibility of the original test result, hence, the results in

Table 4.8 show high NPI reproducibility probabilities for Case 2 and Case 3. It can be concluded

that reasonable approximations of the NPI lower and upper reproducibility probabilities can be

obtained when the number of orderings sampled greater than or equal to 10,000.
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4.7 Simulation studies

In this section, the reproducibility probability for the MW test and the EF test is explored

via simulation. In Section 4.7.1, the reproducibility probability is investigated using the NPI-

RP-SO approach. Section 4.7.2, considers the NPI-RP-B approach to study the reproducibility

probability for the MW test and the EF test with known peak. In Section 4.7.3, the NPI-RP is

investigated using NPI-RP-B for the MW test with unknown peak.

4.7.1 NPI-RP-SO simulation

This section investigates the reproducibility probability for the MW test and the EF test with

k = 3 groups via simulation. The reproducibility is calculated using the NPI-RP-SO method-

ology, introduced in Section 4.4. The hypothesis of interests is H0 : µx = µy = µz against

H1 : µx ≤ µy ≥ µz, that is p = 2 which refers to the second group Y , the level of significance

is α = 0.05. The data were generated under H0 and H1. Under H0, original data were gen-

erated from the Normal distribution with mean 0 and standard deviation 1. Under H1, data

were generated from Normal distribution with different means µx = 0, µy = 1.5 and µz = 1,

and standard deviation 1. To study the impact of the sample size on the lower and upper

reproducibility probabilities, 50 replications of samples of sizes n = 10, 25, 50 were considered.

Increasing the size of samples leads to increasing the power of the test, so we obtain more cases

rejecting H0 when simulations are performed by sampling under H1. In Figures 4.1 and 4.2,

the computation of the lower and upper reproducibility probabilities was achieved by sampling

orderings of sizes r∗ = 1000, 10000, 50000, to study the patterns of the NPI lower and upper

reproducibility probabilities for different values of r∗. The vertical line indicates the test thresh-

old value at α = 0.05. Figures 4.1 and 4.2 show that there are no substantial differences on the

patterns for different values of r∗. It is interesting to note that, when the sample size is small,

the lower reproducibility probabilities seem to tend to 0.25 when the observed test statistics

are close to the rejection region. Imprecision of reproducibility probabilities is equal to R̂P

minus R̂P . Figures 4.1 and 4.2 show that when the sample sizes increases the imprecision of

reproducibility probabilities decreases.
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(c) n = 10, r∗ = 50000
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(d) n = 25, r∗ = 1000
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(e) n = 25, r∗ = 10000
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(f) n = 25, r∗ = 50000
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(g) n = 50, r∗ = 1000
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(h) n = 50, r∗ = 10000
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(i) n = 50, r∗ = 50000

Figure 4.1: NPI-RP-SO under H0, for simulated values of the upper (blue) and lower (red) RPs,

for 50 replications, with k = 3 and the original samples from N(0, 1), α = 0.05
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(b) n = 10, r∗ = 10000

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
p − value

N
P

I−
R

P
−

S
O

(c) n = 10, r∗ = 50000
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(d) n = 25, r∗ = 1000
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(e) n = 25, r∗ = 10000
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(f) n = 25, r∗ = 50000

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
p − value

N
P

I−
R

P
−

S
O

(g) n = 50, r∗ = 1000
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(h) n = 50, r∗ = 10000
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Figure 4.2: NPI-RP-SO under H1, for simulated values of the upper (blue) and lower (red) RPs,

for 50 replications, with k = 3 and X ∼ N(0, 1), Y ∼ N(1.5, 1), Z ∼ N(1, 1), α = 0.05

4.7.2 NPI-RP-B simulation with known peak

This section studies the reproducibility probability for the MW test and the EF test with

known peak via simulations, where reproducibility is calculated using Algorithm 2. The NPI-

RP-B method is preformed with infinite support (Approach II). The null hypothesis is H0 :

µ1 = µ2 = ... = µk and the alternative hypothesis is H1 : µ1 ≤ µ2 ≤ ... ≤ µp−1 ≤ µp ≥ µp+1 ≥
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Case k Simulation

1 3 N(0, 1)

2 3 X ∼ N(0.6, 1), Y ∼ N(1, 1), Z ∼ N(0.5, 1)

3 3 X ∼ N(0.6, 1), Y ∼ N(1.5, 1), Z ∼ N(0.5, 1)

4 3 X ∼ N(0.6, 1), Y ∼ N(2, 1), Z ∼ N(0.5, 1)

5 3 Gamma(2, 1)

6 5 N(0, 1)

7 5 X ∼ N(0.1, 1), Y ∼ N(0.2, 1), Z ∼ N(0.5, 1), V ∼ N(0.2, 1), W ∼ N(0.1, 1)

Table 4.9: Simulation cases for the MW test and the EF test

... ≥ µk−1 ≥ µk. The level of significance is α = 0.05. Data were simulated under H0 and under

H1, as presented in Table 4.9. To study the impact of the number of groups and the sample

size on the reproducibility probability, the simulation is considered with the number of groups

k = 3, 5 and the sample sizes n = 10, 25. Each case introduced in Table 4.9 is considered with

the sample sizes n = 10, 25. For k = 3 groups, p = 2 which refers to the second group. For

k = 5 groups, p = 3 which refers to the third group. The reproducibility probability estimates

are identical for both the MW test and the EF test with k = 3 groups and p = 2. However, with

k = 5, the MW test statistic and the EF test statistic are differ because the Mann-Whitney

sums used in the EF test statistic calculation are not uniformly weighted with a value of 1,

as they are with k = 3. This variation in the test statistics results in varying reproducibility

probability values for the two tests.

The inputs for the simulation study in Tables 4.10 through Table 4.23 are as follows: Algo-

rithm 2 is applied with B = 1000 and T = 100. For each run, one sample of size n is generated

from each of the distributions given in the Table 4.9, the MW test and the EF test are per-

formed both on the these samples, and the tests outcomes are obtained and the RP estimates

for the MW test and the EF test are calculated. The reproducibility probability estimates have

been reported for 10 simulated original samples in each table. Note that the threshold values,

introduced in Sections 4.2.1 and 4.2.2, are provided in the caption of each table for both tests.

For the same test statistic, reproducibility probability estimates differs from one data set to an-

other data set. These small variations in the RP estimates are due to variations in the original

samples and in the NPI-B samples.

The relationship between NPI-RP-B and the p-value for the MW test and the EF test is

examined in the simulations. We use the p-value for better visualization of figures rather than

the critical value because each simulation scenario has a different critical value. This due to
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Ap Ã∗
p p-value H0 Min Mean Median Max

141 1.804 0.036 R 0.480 0.512 0.512 0.548

135 1.540 0.062 NR 0.596 0.626 0.626 0.663

131 1.364 0.086 NR 0.597 0.627 0.629 0.660

125 1.100 0.136 NR 0.677 0.713 0.715 0.743

117 0.748 0.227 NR 0.733 0.763 0.763 0.795

108 0.352 0.362 NR 0.799 0.836 0.837 0.864

108 0.352 0.362 NR 0.804 0.833 0.833 0.858

91 -0.396 0.654 NR 0.903 0.920 0.920 0.939

77 -1.012 0.844 NR 0.960 0.972 0.972 0.985

59 -1.804 0.964 NR 0.985 0.992 0.992 0.999

Table 4.10: RP for the MW test and the EF test, with Case 1, n = 10, α = 0.05, A2,0.0498 = 138,

Z0.05 = 1.645

the variations in the sample sizes and the number of groups considered. Note that, the level of

significance α = 0.05 is represented on the figures by a vertical line. The observed p-value and

the NPI-RP-B estimates for 100 data sets are displayed in Figures 4.3 through 4.9. From these

figures, the NPI-RP-B estimates are low when the p-value is close to the threshold α = 0.05

and it tend to be lower when the null hypothesis is rejected more than when it is not rejected.

The reason for that is the presence of some sort of direction in the alternatives. Typically

with p-value not close to the threshold, the data provide a strong evidence in favour of the

reproducibility of the original test result. Similar findings have been observed in the previous

NPI studies of test reproducibility [2, 18, 74, 97], and in Chapters 2 and 3. For the cases in

Figures 4.4, 4.5 and 4.6, increasing the means for the peak group Y from µy = 1, µy = 1.5 to

µy = 2, leads to increase the power of the test and increase the number cases where the null

hypothesis is rejected. Moreover, under H1, increasing the size of samples from 10 to 25 leads

to increasing the power of the test and more rejections of the null hypothesis.

Simulation studies show that there is an influence of sample size on the variability of NPI-

RP estimates, meaning that NPI-RP-B values based on large samples sizes have less variability

than NPI-RP estimates based on small sample sizes. Thus, with n = 25 the reproducibility

probability curve becomes progressively smoother.

4.7.3 NPI-RP-B simulation with unknown peak

This section studies the NPI reproducibility probability for the MW test with unknown peak

using the NPI-RP-B method with infinite support, as introduced in Section 4.5. In this section
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Ap Ã∗
p p-value H0 Min Mean Median Max

773 1.663 0.048 R 0.425 0.478 0.478 0.521

744 1.337 0.091 NR 0.563 0.604 0.602 0.641

717 1.034 0.151 NR 0.632 0.673 0.673 0.712

693 0.764 0.222 NR 0.698 0.735 0.736 0.778

637 0.135 0.446 NR 0.823 0.861 0.861 0.888

609 -0.180 0.571 NR 0.884 0.909 0.909 0.935

609 -0.180 0.571 NR 0.852 0.880 0.879 0.909

555 -0.787 0.784 NR 0.946 0.959 0.959 0.972

473 -1.708 0.956 NR 0.979 0.989 0.988 0.998

395 -2.585 0.995 NR 0.987 0.996 0.997 1

Table 4.11: RP for the MW test and the EF test, with Case 1, n = 25, α = 0.05, A2,0.0499 = 772,

Z0.05 = 1.645

Algorithm 2 is applied with B = 1000 and T = 1. The NPI reproducibility probability is

considered for k = 3 groups, X, Y and Z with n = 10. We test the hypothesis H0 : µ1 = µ2 =

... = µk against H1 : µ1 ≤ µ2 ≤ ... ≤ µp−1 ≤ µp ≥ µp+1 ≥ ... ≥ µk, and when p is unknown.

The level of significance is set at α = 0.05, and it leads to the critical value A0.0498 = 2.112,

which can be found in [20]. For the MW test with unknown peak and with large sample sizes

the Monte Carlo Approximation (with 10000 iterations) is used to obtain the critical value

A0.0498 = 2.112. The null hypothesis is rejected if A′
p̂ ≥ 2.112.

In Table 4.24, the original data were generated from Normal distributions with different

means µx = 0, µy = 1.5 and µz = 1, and standard deviation 1. In Table 4.25, the original

data were generated from Normal distributions with different means µx = 0.6, µy = 1.5 and

µz = 0.5, and the standard deviation 1. In Table 4.26, the original data were generated form

Gamma distributions with different shape parameters θx = 1.5, θy = 3 and θz = 2, and the scale

parameter 1. Tables 4.24, 4.25 and 4.26 present the NPI-RP estimates for 10 original samples,

for each sample we compute the probability of obtaining the same conclusion as the original

test out of the B = 1000 and how each peak contributes to this probability value, denoted by

(NPI-RP-B).

For the original samples 1, in Table 4.24, the original sample peak is estimated to be the

second group, p̂ = 2, and the original test conclusion is the rejection of the null hypothesis,

and the probability of rejection of the future tests in the 1000 bootstrapped samples is 0.992,

and in this case the future samples with the peak is the second group contribute the most in

this NPI-RP-B estimate, with value of 0.984, the future samples with the peak is the third
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Figure 4.3: NPI-RP-B for the MW test and the EF test, with Case 1, α = 0.05

group contribute with a value of 0.008, while there is no future samples with peak p̂ = 1. In

addition, for the original samples 9, in Table 4.26, the original sample peak is estimated to be

the second group p̂ = 2, the original test conclusion is non-rejection of the null hypothesis, and

the probability of non-rejection of the future tests in the 1000 bootstrapped samples is 0.550,

and in this case the future samples with the peak is the second group contributes the most in the

estimate of NPI-RP-B with probability of non-rejection in the future tests of 0.253, while for the

future samples with the peak estimated to be the first group out of the 1000 bootstrap samples

contributes with probability of non-rejection value of 0.072, and the probability of non-rejection

of the future samples with the peak estimated to be the third group is 0.225.

To sum up, the estimated peak group in the original sample, always contributes the most

in the probability of obtaining the same conclusion as the original test in the future bootstrap

samples. Again, the NPI reproducibility estimates are low when the when the test statistics

are close to the threshold, and lower in cases of rejection than in non-rejection. The NPI-RP-B

estimates are large when the original test statistics are away from the threshold.
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Ap Ã∗
p p-value H0 Min Mean Median Max

152 2.288 0.011 R 0.577 0.615 0.615 0.669

145 1.980 0.024 R 0.514 0.549 0.549 0.589

139 1.716 0.043 R 0.385 0.417 0.415 0.450

136 1.584 0.057 NR 0.548 0.588 0.590 0.614

131 1.364 0.086 NR 0.582 0.619 0.619 0.650

129 1.276 0.101 NR 0.642 0.671 0.672 0.703

123 1.012 0.156 NR 0.707 0.737 0.737 0.772

119 0.836 0.202 NR 0.718 0.754 0.752 0.785

103 0.132 0.448 NR 0.857 0.886 0.887 0.915

88 -0.528 0.701 NR 0.921 0.942 0.943 0.964

Table 4.12: RP for the MW test and the EF test, with Case 2, n = 10, α = 0.05, A2,0.0498 = 138,

Z0.05 = 1.645

Ap Ã∗
p p-value H0 Min Mean Median Max

907 3.169 0.001 R 0.806 0.841 0.842 0.872

846 2.484 0.006 R 0.642 0.692 0.693 0.719

808 2.057 0.020 R 0.558 0.598 0.598 0.643

786 1.810 0.035 R 0.484 0.523 0.525 0.560

768 1.607 0.054 NR 0.501 0.543 0.542 0.582

740 1.293 0.098 NR 0.570 0.614 0.614 0.662

736 1.248 0.106 NR 0.595 0.627 0.628 0.663

725 1.124 0.131 NR 0.614 0.663 0.664 0.702

667 0.472 0.318 NR 0.768 0.812 0.813 0.841

634 0.101 0.460 NR 0.829 0.861 0.859 0.890

Table 4.13: RP for the MW test and the EF test, with Case 2, n = 25, α = 0.05, A2,0.0498 = 138,

Z0.05 = 1.645
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Figure 4.4: NPI-RP-B for the MW test and the EF test, with Case 2, α = 0.05

Ap Ã∗
p p-value H0 Min Mean Median Max

197 4.267 9.887× 10−6 R 0.988 0.995 0.995 0.999

185 3.740 9.219× 10−5 R 0.960 0.974 0.974 0.985

169 3.036 0.001 R 0.754 0.784 0.785 0.823

154 2.376 0.009 R 0.617 0.656 0.656 0.689

147 2.068 0.019 R 0.556 0.585 0.585 0.622

138 1.672 0.047 R 0.452 0.483 0.481 0.525

130 1.320 0.093 NR 0.604 0.638 0.635 0.672

130 1.320 0.093 NR 0.602 0.651 0.651 0.697

128 1.232 0.109 NR 0.667 0.698 0.698 0.731

112 0.528 0.299 NR 0.790 0.820 0.819 0.853

Table 4.14: RP for the MW test and the EF test, with Case 3, n = 10, α = 0.05, A2,0.0498 = 138,

Z0.05 = 1.645
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Ap Ã∗
p p-value H0 Min Mean Median Max

1057 4.855 6.011× 10−7 R 0.986 0.993 0.994 1

1032 4.574 2.389× 10−6 R 0.972 0.982 0.983 0.993

985 4.046 2.604× 10−5 R 0.940 0.957 0.958 0.969

940 3.540 1.998× 10−4 R 0.886 0.915 0.916 0.934

932 3.450 2.799× 10−4 R 0.874 0.899 0.899 0.915

902 3.113 9.253× 10−4 R 0.815 0.851 0.851 0.873

893 3.012 0.001 R 0.792 0.829 0.828 0.862

883 2.900 0.002 R 0.771 0.806 0.807 0.840

855 2.585 0.005 R 0.682 0.725 0.726 0.753

817 2.158 0.015 R 0.581 0.624 0.627 0.663

Table 4.15: RP for the MW test and the EF test, with Case 3, n = 25, α = 0.05, A2,0.0499 = 772,

Z0.05 = 1.645
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Figure 4.5: NPI-RP-B for the MW test and the EF test, with Case 3, α = 0.05
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Ap Ã∗
p p-value H0 Min Mean Median Max

200 4.399 5.427× 10−6 R 0.995 0.999 0.999 1

180 3.520 2.162× 10−4 R 0.859 0.886 0.887 0.912

180 3.520 2.162× 10−4 R 0.916 0.941 0.941 0.956

174 3.256 5.658× 10−4 R 0.894 0.923 0.923 0.943

168 2.992 0.001 R 0.843 0.877 0.879 0.906

161 2.684 0.004 R 0.689 0.718 0.719 0.751

159 2.596 0.005 R 0.674 0.711 0.710 0.746

152 2.288 0.011 R 0.599 0.637 0.638 0.670

148 2.112 0.017 R 0.541 0.574 0.574 0.611

143 1.892 0.029 R 0.463 0.501 0.501 0.540

Table 4.16: RP for the MW test and the EF test, with Case 4, n = 10, α = 0.05, A2,0.0498 = 138,

Z0.05 = 1.645

Ap Ã∗
p p-value H0 Min Mean Median Max

1145 5.844 2.544× 10−9 R 0.996 0.999 0.999 1

1125 5.620 9.575× 10−9 R 0.995 0.999 0.999 1

1102 5.361 4.138× 10−8 R 0.995 0.998 0.998 1

1087 5.192 1.038× 10−7 R 0.993 0.997 0.997 1

1071 5.013 2.685× 10−7 R 0.991 0.996 0.997 1

1045 4.720 1.177× 10−6 R 0.981 0.990 0.990 0.996

1020 4.439 4.510× 10−6 R 0.979 0.989 0.989 0.996

992 4.125 1.856× 10−5 R 0.954 0.967 0.968 0.979

971 3.889 5.039× 10−5 R 0.921 0.943 0.944 0.960

951 3.664 1.242× 10−4 R 0.901 0.926 0.927 0.944

Table 4.17: RP for the MW test and the EF test, with Case 4, n = 25, α = 0.05, A2,0.0499 = 772,

Z0.05 = 1.645
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Figure 4.6: NPI-RP-B for the MW test and the EF test, with Case 4, α = 0.05

Ap Ã∗
p p-value H0 Min Mean Median Max

137 -1.056 0.855 NR 0.518 0.561 0.562 0.590

125 1.100 0.136 NR 0.690 0.722 0.722 0.753

121 0.924 0.178 NR 0.698 0.735 0.738 0.764

115 0.660 0.255 NR 0.749 0.783 0.786 0.813

103 0.132 0.448 NR 0.842 0.875 0.875 0.902

98 -0.088 0.535 NR 0.842 0.876 0.877 0.902

90 -0.440 0.670 NR 0.916 0.935 0.937 0.953

84 -0.704 0.759 NR 0.930 0.948 0.949 0.962

76 -1.056 0.855 NR 0.955 0.968 0.969 0.983

62 -1.672 0.953 NR 0.984 0.993 0.993 0.998

Table 4.18: RP for the MW test and the EF test, with Case 5, n = 10, α = 0.05, A2,0.0498 = 138,

Z0.05 = 1.645
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Ap Ã∗
p p-value H0 Min Mean Median Max

735 1.236 0.108 NR 0.609 0.647 0.644 0.689

729 1.169 0.121 NR 0.621 0.658 0.657 0.699

710 0.955 0.170 NR 0.673 0.706 0.707 0.741

692 0.753 0.226 NR 0.701 0.738 0.741 0.774

664 0.438 0.331 NR 0.797 0.824 0.824 0.849

632 0.079 0.469 NR 0.840 0.862 0.863 0.890

597 -0.315 0.624 NR 0.877 0.900 0.899 0.920

555 -0.787 0.784 NR 0.924 0.948 0.949 0.962

504 -1.360 0.913 NR 0.965 0.984 0.985 0.993

467 -1.776 0.962 NR 0.986 0.994 0.994 0.999

Table 4.19: RP for the MW test and the EF test, with Case 5, n = 25, α = 0.05, A2,0.0499 = 772,

Z0.05 = 1.645
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Figure 4.7: NPI-RP-B for the MW test and the EF test, with Case 5, α = 0.05
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Ap p-value H0 Min Mean Median Max Ã∗
p p-value H0 Min Mean Median Max

377 0.045 R 0.400 0.436 0.435 0.476 1.666 0.048 R 0.404 0.438 0.437 0.483

364 0.079 NR 0.580 0.616 0.617 0.650 1.283 0.100 NR 0.601 0.635 0.635 0.674

352 0.125 NR 0.670 0.711 0.714 0.743 1.180 0.119 NR 0.648 0.692 0.694 0.725

339 0.195 NR 0.728 0.769 0.770 0.804 0.826 0.204 NR 0.740 0.772 0.773 0.803

327 0.276 NR 0.755 0.785 0.787 0.808 0.590 0.278 NR 0.750 0.780 0.781 0.811

294 0.553 NR 0.868 0.889 0.889 0.913 -0.088 0.535 NR 0.864 0.887 0.887 0.911

294 0.553 NR 0.875 0.900 0.901 0.925 -0.206 0.582 NR 0.879 0.906 0.906 0.927

261 0.806 NR 0.943 0.955 0.956 0.974 -0.885 0.812 NR 0.946 0.957 0.958 0.976

207 0.980 NR 0.988 0.995 0.995 0.999 -2.049 0.980 NR 0.988 0.995 0.995 0.999

195 0.990 NR 0.992 0.998 0.998 1 -2.359 0.991 NR 0.992 0.998 0.998 1

Table 4.20: RP for the MW test and the EF test, with Case 6, n = 10, α = 0.05, A2,0.0478 = 376,

Z0.05 = 1.645

Ap p-value H0 Min Mean Median Max Ã∗
p p-value H0 Min Mean Median Max

2177 0.045 R 0.450 0.490 0.490 0.525 1.742 0.041 R 0.455 0.500 0.502 0.546

2139 0.069 NR 0.537 0.572 0.572 0.613 1.502 0.067 NR 0.538 0.569 0.569 0.615

2126 0.079 NR 0.561 0.589 0.589 0.623 1.430 0.076 NR 0.554 0.586 0.587 0.621

2106 0.097 NR 0.597 0.630 0.631 0.661 1.284 0.100 NR 0.601 0.631 0.632 0.664

2096 0.107 NR 0.591 0.627 0.628 0.659 1.224 0.110 NR 0.600 0.630 0.630 0.664

2056 0.154 NR 0.671 0.705 0.706 0.742 1.029 0.152 NR 0.668 0.702 0.703 0.737

1936 0.366 NR 0.813 0.839 0.840 0.860 0.349 0.363 NR 0.800 0.834 0.835 0.855

1821 0.619 NR 0.872 0.894 0.894 0.915 -0.282 0.611 NR 0.873 0.894 0.895 0.916

1603 0.937 NR 0.980 0.988 0.989 0.996 -1.513 0.935 NR 0.979 0.987 0.987 0.995

1484 0.986 NR 0.993 0.998 0.998 1 -2.151 0.984 NR 0.992 0.997 0.997 1

Table 4.21: RP for the MW test and the EF test, with Case 6, n = 25, α = 0.05, A2,0.0499 = 2168,

Z0.05 = 1.645

Ap p-value H0 Min Mean Median Max Ã∗
p p-value H0 Min Mean Median Max

448 0.001 R 0.814 0.842 0.841 0.868 3.199 0.001 R 0.814 0.844 0.844 0.872

409 0.008 R 0.597 0.625 0.625 0.673 2.330 0.010 R 0.582 0.619 0.620 0.668

380 0.039 R 0.467 0.497 0.495 0.532 1.784 0.037 R 0.486 0.516 0.516 0.555

376 0.047 R 0.446 0.485 0.486 0.522 1.651 0.049 R 0.449 0.484 0.483 0.518

370 0.061 NR 0.538 0.585 0.587 0.614 1.578 0.057 NR 0.536 0.576 0.577 0.603

361 0.089 NR 0.614 0.652 0.653 0.690 1.312 0.095 NR 0.608 0.650 0.651 0.687

347 0.150 NR 0.663 0.695 0.696 0.730 1.076 0.141 NR 0.655 0.689 0.689 0.724

334 0.226 NR 0.747 0.774 0.775 0.807 0.752 0.226 NR 0.740 0.765 0.765 0.799

306 0.447 NR 0.829 0.862 0.863 0.891 0.074 0.471 NR 0.830 0.865 0.865 0.896

260 0.812 NR 0.926 0.949 0.950 0.965 -0.840 0.800 NR 0.922 0.947 0.948 0.965

Table 4.22: RP for the MW test and EF test, with Case 7, n = 10, α = 0.05, A2,0.0478 = 376,

Z0.05 = 1.645
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Figure 4.8: NPI-RP-B under H0, with Case 6, α = 0.05

Ap p-value H0 Min Mean Median Max Ã∗
p p-value H0 Min Mean Median Max

2483 3.105× 10−4 R 0.842 0.871 0.873 0.892 3.334 4.279× 10−4 R 0.834 0.862 0.864 0.884

2382 0.002 R 0.740 0.765 0.764 0.800 2.808 0.002 R 0.735 0.761 0.760 0.793

2341 0.004 R 0.702 0.733 0.733 0.755 2.681 0.004 R 0.722 0.744 0.744 0.771

2313 0.007 R 0.683 0.707 0.705 0.735 2.478 0.007 R 0.687 0.712 0.712 0.738

2250 0.017 R 0.555 0.595 0.594 0.632 2.099 0.018 R 0.553 0.594 0.592 0.634

2196 0.035 R 0.466 0.520 0.520 0.558 1.851 0.032 R 0.481 0.532 0.533 0.570

2118 0.086 NR 0.547 0.583 0.583 0.619 1.382 0.084 NR 0.546 0.579 0.580 0.616

2020 0.207 NR 0.718 0.756 0.758 0.781 0.788 0.215 NR 0.723 0.754 0.756 0.781

1838 0.583 NR 0.896 0.917 0.917 0.936 -0.203 0.580 NR 0.892 0.911 0.910 0.931

1790 0.684 NR 0.927 0.945 0.946 0.960 -0.454 0.675 NR 0.925 0.942 0.942 0.960

Table 4.23: RP for the MW test and the EF test, with Case 7, n = 25, α = 0.05, A2,0.0499 = 2168,

Z0.05 = 1.645
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Figure 4.9: NPI-RP-B under H1, with Case 7, α = 0.05
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Test conclusion Rejection Non-rejection

Samples p̂ A′
p̂ H0 NPI-RP-B p̂ = 1 p̂ = 2 p̂ = 3 NPI-RP-B p̂ = 1 p̂ = 2 p̂ = 3

1 2 4.267 R 0.992 0.000 0.984 0.008 0.008 0.000 0.006 0.002

2 3 3.384 R 0.812 0.000 0.041 0.771 0.188 0.007 0.021 0.160

3 3 3.004 R 0.867 0.000 0.257 0.610 0.133 0.008 0.053 0.072

4 2 2.948 R 0.746 0.001 0.618 0.127 0.254 0.012 0.133 0.109

5 2 2.772 R 0.855 0.002 0.587 0.266 0.145 0.008 0.092 0.045

6 2 2.640 R 0.782 0.004 0.561 0.217 0.218 0.013 0.152 0.053

7 2 2.552 R 0.888 0.001 0.436 0.451 0.112 0.002 0.051 0.059

8 2 2.376 R 0.560 0.013 0.477 0.070 0.440 0.059 0.261 0.120

9 3 2.281 R 0.587 0.001 0.113 0.473 0.413 0.023 0.098 0.292

10 2 1.628 NR 0.369 0.017 0.278 0.074 0.631 0.124 0.306 0.201

Table 4.24: NPI-RP-B for the MW test with unknown peak, k = 3, X ∼ N(0, 1), Y ∼ N(1.5, 1),

Z ∼ N(1, 1), n = 10, α = 0.05, A0.0498 = 2.112, B = 1000, T = 1

Test conclusion Rejection Non-rejection

Samples p̂ A′
p̂ H0 NPI-RP-B p̂ = 1 p̂ = 2 p̂ = 3 NPI-RP-B p̂ = 1 p̂ = 2 p̂ = 3

1 2 3.696 R 0.966 0.074 0.890 0.002 0.034 0.009 0.025 0.000

2 2 3.564 R 0.894 0.017 0.856 0.021 0.106 0.014 0.079 0.013

3 2 3.256 R 0.817 0.046 0.763 0.008 0.183 0.024 0.142 0.017

4 2 2.904 R 0.741 0.056 0.666 0.019 0.259 0.050 0.183 0.026

5 2 2.860 R 0.691 0.023 0.646 0.022 0.309 0.050 0.210 0.049

6 2 2.464 R 0.630 0.182 0.440 0.008 0.370 0.113 0.232 0.025

7 2 2.464 R 0.625 0.086 0.525 0.014 0.375 0.098 0.243 0.034

8 2 2.244 R 0.506 0.050 0.442 0.014 0.494 0.135 0.292 0.067

9 2 2.200 R 0.486 0.031 0.427 0.028 0.514 0.104 0.313 0.097

10 2 1.672 NR 0.397 0.033 0.291 0.073 0.603 0.128 0.308 0.167

Table 4.25: NPI-RP-B for the MW test with unknown peak, k = 3, X ∼ N(0.6, 1), Y ∼

N(1.5, 1), Z ∼ N(0.5, 1), n = 10, α = 0.05, A0.0498 = 2.112, B = 1000, T = 1
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Test conclusion Rejection Non-rejection

Samples p̂ A′
p̂ H0 NPI-RP-B p̂ = 1 p̂ = 2 p̂ = 3 NPI-RP-B p̂ = 1 p̂ = 2 p̂ = 3

1 2 4.004 R 0.910 0.005 0.885 0.020 0.090 0.008 0.065 0.017

2 2 3.476 R 0.858 0.001 0.754 0.103 0.142 0.003 0.099 0.040

3 2 3.476 R 0.837 0.001 0.739 0.097 0.163 0.012 0.110 0.041

4 2 3.036 R 0.694 0.011 0.639 0.044 0.306 0.032 0.215 0.059

5 2 2.948 R 0.699 0.024 0.641 0.034 0.301 0.047 0.206 0.048

6 2 2.508 R 0.611 0.014 0.494 0.103 0.389 0.038 0.241 0.110

7 2 2.376 R 0.594 0.007 0.483 0.104 0.406 0.038 0.239 0.129

8 2 2.244 R 0.533 0.088 0.424 0.021 0.467 0.122 0.286 0.059

9 2 1.672 NR 0.450 0.008 0.284 0.158 0.550 0.072 0.253 0.225

10 2 1.452 NR 0.371 0.013 0.241 0.117 0.629 0.093 0.270 0.266

Table 4.26: NPI-RP-B for the MW test with unknown peak, k = 3, X ∼ Gamma(1.5, 1), Y ∼

Gamma(3, 1), Z ∼ Gamma(2, 1), n = 10, α = 0.05, A0.0498 = 2.112, B = 1000, T = 1

4.8 Concluding remarks

This chapter explored the NPI reproducibility for the Mack-Wolfe (MW) test and the Esra-Fikri

(EF) test. The exact NPI lower and upper reproducibility probabilities for the MW test are

derived for three groups; however, for more than three groups and large samples, going through

all possible orderings is computationally expensive. To this end, two NPI-based approaches are

implemented, namely, the sampling of orderings (NPI-RP-SO) and the NPI-bootstrap (NPI-

RP-B).

The NPI-RP-SO and NPI-RP-B methods has been applied to a variety of scenarios via

simulation studies. The investigation in this chapter implies that the NPI reproducibility is

quite poor, if the test statistic is close to the threshold, particularly, when H0 is rejected more

than when H0 is not rejected. The reason for that is the presence of some sort of direction in the

alternatives. This pattern was observed in our investigation of NPI-RP for ordered alternatives,

as detailed in Chapter 3.

Further, the NPI-RP results for the MW test and EF test with three groups are identical

using the NPI-RP-E, NPI-RP-SO and NPI-RP-B methods, as the EF test statistic with three

groups is the sum of two Mann-Whitney statistics, each with weight 1.

This chapter contributes to the development of NPI reproducibility which was introduced

by Coolen and BinHimd [32], and the findings of the NPI reproducibility probability for the

MW test and the EF test are consistent with previous NPI studies of test reproducibility
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[2, 18, 33, 97], where the reproducibility is low close the the boundaries of the rejection region.

There are many research challenges for the further development of NPI for reproducibility

of tests. For example, in this chapter the reproducibility of the MW test for more than three

groups was investigated using the NPI-B approach. However, generalizing the MW test’s exact

lower and upper reproducibility probabilities for more than three groups is of interest for future

work which may require developing some methods. The reproducibility for other umbrella

alternatives tests such as the Chen and Wolfe [22] test and Hettmansperger and Norton [56]

test, can also be studied. The parametric predictive bootstrap method, introduced by Aldawsari

[2], can also be used to study the reproducibility and possibly compared to the results in this

chapter.



Chapter 5

Reproducibility of Slippage Tests

5.1 Introduction

In the previous chapters, we introduced NPI reproducibility for several settings including the

general alternatives tests, ordered alternatives tests and umbrella alternatives tests. This chap-

ter contributes to the development of NPI reproducibility for statistical hypothesis tests by

considering the reproducibility of one of the slippage tests, namely, the Mosteller test. Slippage

tests are designed to diagnose whether one or more groups are slipped either to the right or to

the left relative to the remaining groups. Mosteller test is used to test the null hypothesis that

all groups are identical against the alternative hypothesis that one of the groups has slipped to

the right or to the left of the rest.

Section 5.2 presents an overview of the slippage tests. Section 5.3 provides a review of the

Mosteller test. Section 5.4 introduces the concept of strong reproducibility for the Mosteller

test. In Section 5.5, strong reproducibility is considered using the NPI approach to derive the

exact NPI lower and upper reproducibility probabilities for the Mosteller test. This is achieved

by considering all orderings of future observations among the data observations from each

group, which are equally likely. However, it is computationally challenging to derive such lower

and upper probabilities for data sets with large sample size and number of groups, due to the

increase in the number of orderings of future observations among the data observations, resulting

in an increase in the computational time. Section 5.6 presents the NPI sampling of orderings

approach to investigate strong reproducibility for the Mosteller test. Section 5.7 provides the

NPI reproducibility probability for the Mosteller test using the NPI-RP-B approach. In section

5.8, application examples are provided. The NPI reproducibility probability for the Mosteller

test is investigated via simulation in section 5.9. We conclude the content of this chapter in

Section 5.10.

97



5.2. Slippage tests 98

5.2 Slippage tests

Slippage tests are designed to test the null hypothesis that the means are the same against

the alternative hypothesis that one or more means are slipped from the others, either to the

right or to the left. The term ’slipped to the right’ is used when the observations of one or

multiple groups tend to be larger than the observations in the other groups. The term ’slipped

to the left’ is used when the observations of one or multiple groups tend to be smaller than the

observations in the other groups. The term ’a general test for slippage’ is used to describe a test

where an unspecified subset of groups have slipped. A more general problem would be when

the direction of the slippage is not specified [52]. A ’specific test for slippage’ is one where only

a number of the groups have slipped.

Mosteller [79] proposed a specific slippage test for the case of k groups of equal size n,

to determine whether one of k groups has slipped to the right or to the left of the rest, and

this test has become known in the literature as Mosteller’s k-sample slippage test. Under the

null hypothesis, all groups are continuous and identical [79]. Bofinger [19] investigated some

properties of the Mosteller test and introduced a generalization of this test to the problem of

whether a subset of the k groups has slipped. If slippage to the left is of interest, the test

procedure is to count the number of observations in the subset groups possessing the smallest

minimum which are smaller than all observations in the remaining groups. Mosteller and Tukey

[80] proposed a method to calculate the slippage test when the samples are of unequal size.

Another test of this type has been suggested by Granger and Neave [52] for the k-sample

slippage problem with one group had slipped. This test does not require special tables and have

satisfactory power. Neave [82, 83] presented four simple tests for slippage in k-sample situations,

with clear distinctions being made between different forms of the alternative hypothesis. Those

tests were designed for the alternative hypothesis that precisely one group had slipped. The

four alternative hypotheses are: slippage of a specified group in a specified direction, slippage of

a specified group in either direction, slippage of any group in a specified direction and slippage

of any group in either direction.

Doornbos and Prins [42] discussed slippage tests for a variety of distributions, such as the

Normal, the Poisson, the Binomial and the Negative Binomial, as well as a distribution free k-

sample Slippage test. A similar problem dealing with the means of several Normal distributions

has been investigated by Paulson [88].

Slippage problems have been considered in the literature for the variances of k groups. Traux

[105] introduced optimum procedure which is subject to certain restrictions to decide whether

all groups variances are equal, and if not, which has the largest or smallest variance. This
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procedure maximises the probability of making the correct decision. Doornbos and Prins [41]

introduced slippage tests for a set of estimated normal variances. Further, Doornbos and Prins

[41] considered the power function of these tests with respect to the alternative hypothesis that

one of the variances has slipped to the right or to the left.

In this chapter, we consider the reproducibility probability for the Slippage test for the

location problem, proposed by Mosteller [79], as it is the most well-known test for the slippage

problem. Mosteller [79] considers the specific alternative that one group has slipped. We will

focus on the case when the sample sizes are equal. However, the reproducibility probability for

the Mosteller test with unequal sample sizes is also consider for some scenarios.

5.3 Mosteller test

Mosteller [79] proposed a slippage test which is designed to test the null hypothesis that all k

groups are identical against the alternative that one group has slipped either to the right or to

the left. The term slipped to the right is used when a given group has the largest observations

than the other groups. The term slipped to the left is used when a given group has the smallest

observations than the other groups. In this chapter, we will focus of the alternative hypothesis

that one group has slipped to the left.

If we are interested in detecting a slippage to the left of any one group, the testing process

involves sorting all the observations in the groups from smallest to largest. Then, select the

group with the smallest observation and count the number of observations, r, in this group that

are smaller than all the observations in the remaining k−1 groups. Let R be a random variable

representing the number of observations from a group (the group that provides the smallest

observations among k groups) that are smaller than all observations from the remaining k − 1

groups [19, 79]. When the samples are of equal size , P (R ≥ r), is given by

P(r) = P (R ≥ r) =
k(n!)(kn− r)!

(kn)!(n− r)!
(5.1)

For very large n

P(r) ≈
1

k1−r
(5.2)

The null hypothesis is rejected at level of significance α, if

P(r) ≤ α

The Mosteller test has the advantage of being easy to implement, however, it requires
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samples of equal sizes [79]. When the samples are of unequal size [80], then

P(r) =

∑
i n

(r)
i

N (r)
(5.3)

where ni is the number of observations in sample i, i = 1, ..., k, and N =
∑k

i=1 ni. Consider the

r smallest values, n
(r)
i = ni(ni − 1) . . . (ni − r + 1) and N (r) = N(N − 1) . . . (N − r + 1) [80].

There is symmetry between slippage to the right and slippage to the left. Thus, if we are

interested in detecting a slippage to the right of any one group, the same methods in Equations

(5.1) and (5.3) can be used to find the probability that the group with the largest observation

has r or more observations which preceded all observations in the other k−1 groups. The testing

process involves sorting all the observations in the groups from largest to smallest. Then, select

the group with the largest observation and count the number of observations, r, in this group

that are larger than all the observations in the remaining k − 1 groups.

In classical tests there are two types of errors that are not sufficient to illustrate the situation

with the Mosteller test, these errors are: rejecting the null hypothesis when it is true and

accepting the null hypothesis when it is false. There is a third type of error because the Mosteller

test depends on the idea of making the correct decision about which group has slipped to the

right or to the left [79]. We may make the error of correctly rejecting the null hypothesis based

on the wrong reason. This means it is possible for the null hypothesis to be false. It is also

possible to reject the null hypothesis when a group has too many observations that are smaller

or greater than all observations in the other groups, but the group from which another group is

drawn is in fact left or right most group. In this situation, the third type of error is committed

[79].

5.4 Strong reproducibility probability

The reproducibility probability is the probability of the event that, if a statistical test were re-

peated, under the same circumstances, the same conclusion as the original test would reached,

with regard to rejection or non-rejection of the null hypothesis. The concept of strong repro-

ducibility is considered within the context of the Mosteller test, particularly when the null

hypothesis is rejected, suggesting that one group has slipped. Strong reproducibility means

reproducing the rejection of the null hypothesis with the same group that slipped in the original

data is also slipped for the future data. In Sections 5.5, 5.6 and 5.9, strong reproducibility will

be considered using the NPI-RP-E, NPI-RP-SO and NPI-RP-B approaches.
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5.5 NPI-RP-E for the Mosteller test

In this section, NPI reproducibility probability for the Mosteller test is introduced in term of the

lower and upper reproducibility, denoted by RP and RP , respectively. Suppose there are k ≥

2 independent groups, and the Mosteller test is performed. We assume that the null hypothesis

is rejected in the original test with P(r) ≤ α, that is, group l∗ has slipped to the left, so r is the

number of observations from group l∗ that are smaller than the smallest observation from all

other groups l, where l ̸= l∗. We will consider strong reproducibility, that the null hypothesis

is rejected in the future test with the the same group has slipped to the left.

Let xl1 < xl2 < . . . < xlnl
be the ordered observed values of group l, l = 1, 2, ..., k where l ̸= l∗.

These observations partition the real-line into nnl
+1 intervals, I lil= (xlil−1, x

l
il
), il = 1, 2, . . . , nl+

1. Let xl
∗
1 < xl

∗
2 < . . . < xl

∗
nl∗

be the ordered observed values of group l∗, these observations

partition the real-line into nnl∗ +1 intervals, I l
∗
il∗
= (xl

∗
il∗−1, x

l∗
il∗
), il∗ = 1, 2, . . . , nl∗ +1. For ease

of notation, let xl0 = xl
∗
0 = −∞ and xlnl+1 = xl

∗
nl∗+1 = ∞.

We are interested in m ≥ 1 future observations from each group. Here, we restrict attention

to the case where the number of future observations is equal to the number of data observations.

There are
(
2nl
nl

)
orderings of the nl future observations among the nl data observations per group,

and all possible orderings are equally likely. There are
(
2nl∗
nl∗

)
orderings of the nl∗ future observa-

tions among the nl∗ data observations, and all possible orderings are equally likely. We consider

all combinations of these possible orderings, denoted by Oℓ for ℓ = 1, 2, ...,
(
2nl∗
nl∗

)∏
l ̸=l∗

(
2nl
nl

)
.

For each combination of orderings, Oℓ, the corresponding Mosteller test statistic is denoted

by rℓ. As the future observations are not precise, but only their number in each of the intervals

of the partition created by the original data observations for their groups are known for a given

ordering, we cannot calculate a precise value of rℓ related to a specific combination of orderings,

but we can derive the minimum and maximum possible values; these are denoted by rℓ and rℓ,

respectively.

Let a specific ordering Oℓ of nl future observations among the nl data observations be

denoted by (Sl
1, ..., S

l
nl+1), with Sl

il
non-negative integers with

∑nl+1
il=1 Sl

il
= nl. Let a specific or-

dering of nl∗ future observations among the nl∗ data observations be denoted by (Sl∗
1 , ..., Sl∗

nl∗+1
),

with Sl∗
il∗

non-negative integers with
∑nl∗+1

il∗=1 Sl∗
il∗

= nl∗ .

Now, let al = min{il : Sl
il
̸= 0, l ̸= l∗} be the index of the first interval from group l (l ̸= l∗)

that has at least one future observation, for il = 1, 2, . . . , nl + 1. Let, for il∗ = 1, 2, . . . , nl∗ + 1,

κ1 = max{il∗ : xl
∗
il∗

< min
l ̸=l∗

xlal−1} and κ2 = max{il∗ : xl
∗
il∗−1 < min

l ̸=l∗
xlal}

To derive the minimum value r for a particular ordering combination Oℓ, denoted by rℓ, all
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Sl∗
il∗

future observations in the interval (xl
∗
il∗−1, x

l∗
il∗
), il∗ = 1, 2, . . . , nl∗ + 1 are put at xl

∗
il∗
, all

Sl
il
future observations in the interval (xlil−1, x

l
il
), il = 1, 2, . . . , nl + 1, are put at xlil−1, where

l ̸= l∗, then

rℓ =

κ1∑
t=1

Sl∗
t (5.4)

To derive the maximum value of r for a particular ordering Oℓ, denoted by rℓ, all S
l∗
il∗

future

observations in the interval (xl
∗
il∗−1, x

l∗
il∗
), il∗ = 1, 2, . . . , nl∗ + 1 are put at xl

∗
il∗−1, all S

l
il
future

observations in the interval (xlil−1, x
l
il
), il = 1, 2, . . . , nl + 1, are put at xlil , where l ̸= l∗, then

rℓ =

κ2∑
t=1

Sl∗
t (5.5)

Note, the ℓ is omitted from the right hand side for simplicity of notation. So, the probability

P(r) in Equation (5.1), for equal sample sizes can be written in term of rℓ and rℓ, as follows

P(rℓ)
=

k(n!)(kn− rℓ)!

(kn)!(n− rℓ)!
(5.6)

P(rℓ) =
k(n!)(kn− rℓ)!

(kn)!(n− rℓ)!
(5.7)

The probability in Equation (5.3), when samples are of unequal size, can be written in term of

rℓ and rℓ as follows,

P(rℓ)
=

∑
i n

(rℓ)
i

N (rℓ)
(5.8)

P(rℓ) =

∑
i n

(rℓ)
i

N (rℓ)
(5.9)

The NPI lower reproducibility probability if the original test conclusion is rejection of H0, is

derived by counting the combinations, for which the same group as the original test has slipped

to the left and P (rℓ) ≤ α. The corresponding NPI upper reproducibility probability is derived

by counting the combinations for which the same group as the original test has slipped to the

left and P (rℓ) ≤ α. Thus, the NPI lower and upper reproducibility probabilities are

RP =
1

h

h∑
ℓ=1

1{P(rℓ)
≤ α} (5.10)

RP =
1

h

h∑
ℓ=1

1{P(rℓ) ≤ α} (5.11)

where h =
(
2nl∗
nl∗

)∏
l ̸=l∗

(
2nl
nl

)
and ℓ = 1, 2, ..., h. 1{A} is an indicator function which is equal

to 1 if the event A occurs and 0 otherwise. This method to derive the NPI lower and upper

reproducibility probabilities for the Mosteller test is suitable for small sample sizes and a limited

number of groups due to computational limitations. In the case of large sample sizes and more
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groups, we can apply the sampling of orderings and NPI bootstrap to derive approximations

for the lower and upper reproducibility probabilities, which were introduced in Sections 1.5.2

and 1.5.3.

The exact NPI lower and upper reproducibility probabilities for the k groups Mosteller test

can only be applied when the null hypothesis is rejected, that is one group has slipped to the

left. Computational difficulties prevent deriving exact theoretical results for reproducibility

probability for the Mosteller test when the null hypothesis is not rejected. However, deriving

the exact lower and upper RP for the case of non-rejection of the null hypothesis is of interest

as a topic of future research. In this chapter, the reproducibility for the Mosteller test for both

cases rejection and non-rejection of the null hypothesis regardless of the group that has slipped

in the future test will be consider through the NPI-RP-B method to approximate the NPI-RP.

The methodology of this section will be applied in Section 5.8.

5.6 NPI-RP-SO for the Mosteller test

The NPI-RP-E approach, introduced in Section 5.5, for reproducibility of the Mosteller test can

be implemented relatively for small sample sizes. For large sample sizes, the NPI reproducibility

sampling of orderings (NPI-RP-SO) can be applied to estimat the NPI lower and upper repro-

ducibility probabilities. The concept of the NPI-RP-SO has been introduced in Section 1.5.2,

where we randomly sample r∗ orderings from
(
2n
n

)
possible orderings of the future observations

among the data observations from each group [74, 75]. On the r∗ orderings sampled, Equations

(5.4) and (5.5) are applied to calculate the minimum and the maximum for the Mosteller test

statistic. Suppose that H0 is rejected in the original test, then the NPI lower reproducibility

probability using the NPI-RP-SO is computed by counting the number of orderings for which

P (rℓ) ≤ α and the same group as the original test has slipped, divided by the number of or-

derings sampled, r∗. The NPI upper reproducibility probability is obtained by counting the

number of orderings for which P (rℓ) ≤ α and the same group as the original test has slipped,

divided by r∗:

R̂P =
1

r∗

r∗∑
ℓ=1

1{P(rℓ)
≤ α} (5.12)

R̂P =
1

r∗

r∗∑
ℓ=1

1{P(rℓ) ≤ α} (5.13)

The NPI-RP-SO method will be illustrated via examples in Section 5.8, to investigate the

NPI strong reproducibility probability for the Mosteller test.
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5.7 NPI-RP-B for the Mosteller test

This section introduces the reproducibility probability for the Mosteller test, using the NPI-RP-

B method introduced in Section 1.5.3. As mentioned earlier, when dealing with large sample

sizes and an increasing number of groups, the number of orderings of the future observations

among the data observations increases significantly. This leads to computational challenges

that prevent the NPI-RP-E approach. BinHimd [18] proposed the use of the NPI-RP-B method

as a heuristic method to approximate the reproducibility probability, as it avoids the complex

calculations required by the NPI-RP-E approach. NPI-RP-B uses the point estimate for the

NPI reproducibility probability instead of lower and upper reproducibility probabilities.

The application of Algorithm 2, which was introduced in Section 1.5.3 is adopted. The inputs

into Algorithm 2 are the k original samples, their corresponding sample sizes, the number of

runs T and the number of bootstrapped samples per run B. Summary statistics including the

minimum, mean, median, maximum, of RP1, RP2, ..., RPT were calculated. Algorithm 2, will be

implemented with both finite and infinite intervals, using the ranges introduced in Section 2.3.

Approach I will be applied for finite interval, where the lower limit is taken to be the smallest

value of the group minus the maximal distance between consecutive points, and the upper

limit is taken to be equal to the largest value of the group plus the maximal distance between

consecutive points. For infinite interval, Approach II will be used, which involves assuming the

tail of a Normal distribution for data on the real line (−∞,∞) and the tail of an Exponential

distribution for data on [0,∞).

Section 5.9 presents the results of simulation studies using the NPI-RP-B approach for

different scenarios, such as simulation underH0 andH1, with varying sample sizes and number of

groups. In Section 5.9, the NPI-RP-B is used to study reproducibility and strong reproducibility

for the Mosteller test. In the following section, the NPI-RP-B approach is also considered, to

investigate whether or not the NPI-RP-B approach tends to provide values within the lower

and upper NPI-RP-E and NPI-RP-SO.

5.8 Examples

This section studies the strong reproducibility probability for the Mosteller test. In Example

5.1, artificial data sets of ranks are used to study RP for the Mosteller test using the NPI-RP-E,

NPI-RP-SO and NPI-RP-B approaches, as explained in Sections 5.5, 5.6 and 5.7. The NPI-RP-

SO is considered for data sets from the literature in Examples 5.2, 5.3 and 5.4. The results of

additional example to investigate the NPI-RP for the Mosteller test using the NPI-RP-SO are
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n
Ranks Test conclusion NPI-RP-E NPI-RP-B NPI-RP-SO

X Y r P(r) l∗ H0 RP RP Min Mean Median Max R̂P R̂P

5
1,2,3,4,5 6,7,8,9,10 5 0.008 X R 0.389 1 0.926 0.944 0.945 0.960 0.391 1

1,2,3,4,8 5,6,7,9,10 4 0.048 X R 0.257 0.796 0.504 0.542 0.542 0.579 0.245 0.797

6
1,2,3,4,5,6 7,8,9,10,11,12 6 0.002 X R 0.386 1 0.925 0.942 0.942 0.957 0.386 1

1,2,3,4,5,8 6,7,9,10,11,12 5 0.015 X R 0.275 0.824 0.536 0.575 0.574 0.613 0.276 0.821

Table 5.1: RP for the Mosteller test with k = 2, α = 0.05

presented in the Appendix D.1.

Example 5.1. In this example a comparison of the three methods, NPI-RP-E, NPI-RP-SO and

NPI-RP-B is carried out to study the strong reproducibility probability for the Mosteller test.

In Tables 5.1 and 5.2, artificial data sets of ranks with equal samples sizes for k = 2, 3 groups

are considered. The null hypothesis is that all groups are equal and the alternative hypothesis is

that one group has slipped to the left. The original test conclusion is obtained and the smallest

group has been identified. The null hypothesis is rejected if P(r) ≤ α, where α = 0.05.

The NPI-RP-E approach introduced in Section 5.5 is applied. For the ranks in Table 5.1,

with nx = ny = 5, there are
(
10
5

)
= 252 possible orderings of 5 future observations among 5 data

observations per group. So, there are
(
10
5

)2
= 63504 orderings combinations to consider in the

calculation of RP and RP . With nx = ny = 6, there are
(
12
6

)2
= 853776 orderings combinations

each RP and RP value is based on.

The NPI-RP results in Tables 5.1 and 5.2 are introduced for the cases when the null hypoth-

esis is rejected, as the NPI-RP-E approach introduced in Section 5.5 requires known the group

that has slipped to the left. The results in Tables 5.1 and 5.2 show that the RP is low and below

0.5 for all cases. In Table 5.2, with n = 3, for the ranks in the first line, the lower is 0.125, the

reason for that is the maximum future X ranks is less than 3 with probability 0.5, the minimum

future Y ranks is greater than 4 with probability 0.5 and the minimum future Z ranks is greater

than 7 with probability 0.5. Similarly, when n = 4 and the data are perfectly ordered for the

ranks in the third line, the lower RP is 0.125, this is because the maximum future X ranks is

less than 4 with probability 0.5, the minimum future Y ranks is greater than 5 with probability

0.5 and the minimum future Z ranks is greater than 9 with probability 0.5. As these individual

events happen with probability 0.5 in the NPI framework, with the independence between the

three groups leads to the lower reproducibility probability 0.5× 0.5× 0.5 = 0.125.

Here, we also investigate whether or not the NPI-RP-B method tends to provide values

within the lower and upper NPI-RP-E and NPI-RP- SO. The NPI-RP-SO approach is considered

with the number of orderings sampled r∗ = 2000. The NPI-RP-B method uses Algorithm 2.
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n
Ranks Test conclusion NPI-RP-E NPI-RP-B NPI-RP-SO

X Y Z r P(r) l∗ H0 RP RP Min Mean Median Max R̂P R̂P

3
1,2,3 4,5,6 7,8,9 3 0.036 X R 0.125 1 0.815 0.848 0.850 0.872 0.122 1

6,7,9 4,5,8 1,2,3 3 0.036 Z R 0.125 1 0.640 0.672 0.673 0.698 0.126 1

4
1,2,3,4 5,6,7,8 9,10,11,12 4 0.006 X R 0.125 1 0.813 0.845 0.845 0.870 0.122 1

1,2,3,4 5,6,7,10 8,9,11,12 4 0.006 X R 0.125 1 0.642 0.674 0.675 0.716 0.125 1

Table 5.2: RP for the Mosteller test with k = 3, α = 0.05

Algorithm 2 is performed on finite intervals using Approach I, with B = 1000 and T = 100.

The minimum, mean, median and maximum of RP1, . . . RP100, were calculated. The mean of

RP1, . . . RP100 is the NPI-RP-B value. It can be inferred that the NPI-RP-B estimates are

all within the NPI lower and upper reproducibility probabilities derived by the NPI-RP-E and

the NPI-RP-SO methods. This agrees with the results of the umbrella alternatives tests in

Chapter 4, and other NPI studies of test reproducibility [2, 18, 97]. The minimum and the

maximum values of the RP using the NPI-RP-B are very close, while the lower and upper RP

using the NPI-RP-E and NPI-RP-SO methods are very different. For example, for ranks in

the first line in Table 5.1, the different between the minimum and the maximum is equal to

0.034, while between RP and RP is 0.611. The reason is that for the lower and upper RP, we

move the probability masses to the extremes, while, in the NPI-RP-B method we sample future

observations between the intervals. Assigning the probability masses to the extremes also leads

to very small lower RP because we make it very pessimistic for the event to occur again.

Example 5.2. In this example, we are examining the NPI strong reproducibility for the

Mosteller test using the NPI-RP-E and NPI-RP-SO approaches. We are using the data set

from Table 5.3, which shows the extent of coffee berry disease. This data set includes the per-

centage of infections in test berries for farms that were not sprayed (X) and those that were

sprayed (at least 14 months prior to sampling) with a fungicide (Y ) [108]. Each group consists

of 7 observations. We address tied observations by adding a small amount, as detailed in Section

1.4. The data is visualized in Figure 5.1.

The null hypothesis is that both groups are identical and the alternative hypothesis is that

one group has slipped to the left. The level of significant is α = 0.05. Applying the Mosteller

test, group X is the group that has slipped to the left, with r = 5. The probability of obtaining

5 observations from group X that are less than all observations from group Y , using Equation

(5.1), is P(r) = 0.023 which is less than 0.05. So, the null hypothesis is rejected.

Applying the NPI-RP-E approach introduced in Section 5.5, there are
(
14
7

)(
14
7

)
= 11778624

orderings combinations to consider in the calculation of the NPI lower and upper reproducibility
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Unsprayed (X) 0.75 1.76 2.48 4.88 5.10 6.01 7.13

Sprayed (Y ) 5.68 5.69 11.63 16.30 21.46 33.30 44.20

Table 5.3: Percentage infections in test berries, for Example 5.2

X

Y

0 10 20 30 40

Figure 5.1: Visualization of the percentage infections in test berries data, for Example 5.2

probabilities. We obtain the exact values RP = 0.289 and RP = 0.785. The NPI lower

reproducibility probability is low because the P(r) value is close to the level of significant α =

0.05. To apply the NPI-RP-SO method, we sampled different number of orderings r∗ to calculate

approximations for the NPI lower and upper reproducibility probabilities. The 95% confidence

interval was computed for both lower and upper reproducibility probabilities, as introduced in

Section 1.5.2. Based on the NPI-RP-SO results in Table 5.4, an accurate approximations of the

NPI lower and upper reproducibility probabilities can be obtained by considering the number

orderings sampled equal or greater than 2,000.

Example 5.3. This example considers the NPI strong reproducibility for the Mosteller test

with k = 2 and unequal sample sizes, using the NPI-RP-SO approach. The data set given in

Table 5.5, for the average delay times for subjects with Parkinsonism disease (X) and normal

subjects (Y ), in performing fast tasks is used [108]. Figure 5.2 displays visualization of the

data.

The null hypothesis is that both groups are identical and the alternative hypothesis is that

one group has slipped to the left. The level of significant is α = 0.05. Applying the Mosteller

test with nx = 10 and ny = 8, group X is the group that has slipped to the left, with r = 8. The

probability of obtaining 8 observations from group X that are less than all observations from

group Y , using Equation (5.1), is P(r) = 0.001 which is less than 0.05. So, the null hypothesis

is rejected.

In the NPI-RP-E approach introduced in Section 5.5, for nx = 10, there are
(
20
10

)
= 184756

possible orderings and for ny = 8, there are
(
16
8

)
= 12870 possible orderings. So, there are(

20
10

)(
16
8

)
= 2377809720 orderings combinations to be considered in the calculation of the NPI
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r∗ R̂P CI(95%) R̂P CI(95%)

100 0.300 (0.210, 0.390) 0.750 (0.665, 0.835)

500 0.272 (0.233, 0.311) 0.740 (0.702, 0.778)

1,000 0.271 (0.243, 0.299) 0.770 (0.744, 0.796)

2,000 0.287 (0.267, 0.307) 0.771 (0.753, 0.789)

5,000 0.281 (0.269, 0.294) 0.787 (0.775, 0.798)

10,000 0.289 (0.280, 0.298) 0.784 (0.776, 0.792)

50,000 0.290 (0.286, 0.294) 0.785 (0.781, 0.789)

100,000 0.291 (0.288, 0.294) 0.787 (0.784, 0.790)

150,000 0.290 (0.288, 0.292) 0.785 (0.783, 0.787)

Table 5.4: NPI-RP-SO for the Mosteller test with k = 2 and n = 7, for Example 5.2

Normal (X) 206 211 213 229 258 267 281 281 317 321

Disease (Y ) 290 290 360 400 403 420 460 660

Table 5.5: The average time delay of tasks, for Example 5.3

lower and upper reproducibility probabilities using the NPI-RP-E approach. This number

of combinations is slightly large, however, the NPI-RP-E results can be obtained using high

performance computer. The NPI-RP-SO approach is applied, as introduced in Section 5.6. We

sampled different number of orderings r∗ to calculate approximations for RP and RP . The 95%

confidence interval was computed for both R̂P and R̂P . From the NPI-RP results presented

in Table 5.6, it can be concluded that reasonable approximations of the NPI lower and upper

reproducibility probabilities for the Mosteller test, can be obtained by considering the number

orderings sampled equal or greater than 2,000 which is a quite small number when compared

with the number of all possible orderings.

Example 5.4. This example investigates NPI strong reproducibility for the Mosteller test via

the NPI-RP-SO approach for k = 4 groups, using the data given in Table 5.7. This data consists

of verbal IQ scores for four groups of first grade children, each group containing 23 children,

residing in four different types of communities [99]. Figure 5.3 displays visualization of the data.

The jitter function in R is used to break ties in the data. Applying the Mosteller test, the

very isolated group is the group that has slipped to the left, with r = 13. The probability of

obtaining 13 observations in this group that are less than all observations in the other groups,

using Equation (5.1), is P(r) = 2.050 × 10−9, which is less than α = 0.05, indicating evidence
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X

Y

200 300 400 500 600

Figure 5.2: Visualization of the average time delay of tasks data, for Example 5.3

r∗ R̂P CI(95%) R̂P CI(95%)

100 0.450 (0.352, 0.548) 0.980 (0.930, 0.998)

500 0.464 (0.420, 0.508) 0.978 (0.965, 0.991)

1,000 0.462 (0.431, 0.493) 0.980 ( 0.971, 0.989)

2,000 0.468 (0.446, 0.490) 0.976 (0.969, 0.983)

5,000 0.461 (0.448, 0.475) 0.976 (0.972, 0.981)

10,000 0.460 (0.450, 0.469) 0.980 (0.977, 0.983)

50,000 0.464 (0.460, 0.468) 0.977 (0.460, 0.468)

100,000 0.468 (0.465, 0.471) 0.978 (0.977, 0.979)

150,000 0.466 (0.463, 0.469) 0.979 (0.978, 0.980)

Table 5.6: NPI-RP-SO for the Mosteller test with k = 2, nx = 10 and ny = 8, for Example 5.3

against H0.

In the NPI approach, there are
(
46
23

)(
46
23

)(
46
23

)(
46
23

)
= 4.595 × 1051 orderings combinations to

consider in the calculation of the NPI lower and upper reproducibility probabilities using the

NPI-RP-E approach, and it is unfeasible to go through this large number of orderings. Thus, in

Table 5.8, the NPI-RP-SO method is applied with different number of orderings sampled r∗, to

calculate approximation values of NPI lower and upper reproducibility probabilities. The 95%

confidence intervals for R̂P and R̂P are also obtained as in Table 5.8. It can be concluded that

good approximations of the NPI lower and upper reproducibility probabilities for the Mosteller

test can be achieved when the number of sampled orderings, r∗, is 10,000 or more.
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Very isolated (X) 20 20 21 21 21 22 22 22 22 23 23 23

23 25 25 26 27 28 28 30 30 37 44

Moderately isolated (Y ) 26 26 26 27 28 29 29 29 32 33 33 33

33 34 34 34 34 35 36 40 42 44 45

Rural nonisolated (Z) 26 27 30 30 30 33 33 33 35 35 35 35

36 36 36 37 37 39 39 39 40 41 42

Urban ghetto (V ) 24 25 25 28 32 34 36 36 37 37 38 40

40 41 41 42 42 42 43 43 44 45 45

Table 5.7: Verbal IQ scores data, for Example 5.4

X

Y

Z

V

20 25 30 35 40 45

Figure 5.3: Visualization of the IQ scores data, for Example 5.4

r∗ R̂P CI(95%) R̂P CI(95%)

100 0.120 (0.056, 0.184) 1 ( 0.964, 1)

500 0.150 ( 0.119, 0.181) 1 (0.993, 1)

1,000 0.127 (0.106, 0.148) 1 (0.996, 1)

5,000 0.124 (0.115, 0.133) 0.999 (0.998, 1.000)

10,000 0.123 (0.117, 0.129) 0.999 (0.999, 1.000)

50,000 0.126 (0.123, 0.129) 0.999 (0.999, 1.000)

100,000 0.126 (0.124, 0.128) 1.000 (0.999, 1.000)

150,000 0.126 (0.124, 0.128) 0.999 (0.999, 1.000)

Table 5.8: NPI-RP-SO for the Mosteller test with k = 4 and n = 23, for Example 5.4
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Case k Simulation

1 3 N(0, 1)

2 3 X ∼ N(0, 1), Y ∼ N(1.5, 1), Z ∼ N(2, 1)

3 5 N(0, 1)

4 5 X ∼ N(0, 1), Y ∼ N(1, 1), Z ∼ N(1.5, 1), V ∼ N(2, 1), W ∼ N(2.5, 1)

Table 5.9: Simulation cases for the Mosteller test

5.9 Simulation study

This section studies reproducibility and strong reproducibility probability for the Mosteller

test, via simulations using Algorithm 2. The NPI-RP-B method is preformed with infinite

support using Approach II, introduced in Section 5.7, which involves assuming the tail of a

Normal distribution when considering real-valued data sets. We test the null hypothesis that

all groups are equal against the alternative hypothesis that one group has slipped to the left.

The level of significance is α = 0.05. The decision rule for this test is to reject H0, if P(r)

obtained from Equation (5.1) is less than α = 0.05. Data were simulated under H0 and H1, as

presented in Table 5.9. To study the impact of the number of groups and the sample size on

the reproducibility probability, the simulation is considered with the number of groups k = 3,

5 and each case introduced in Table 5.9 is considered with the sample sizes n = 6, 10, 20.

The inputs for the simulation study in Tables 5.10 through Table 5.21 are as follows: Algo-

rithm 2 is applied with B = 1000 and T = 100. For each run, one sample of size n is generated

from each of the distributions given in the Table 5.9, the Mosteller test is performed on the these

samples, and the tests outcomes are obtained and the reproducibility estimates for the Mosteller

test are calculated. In each table, the reproducibility probability estimates have been reported

for 10 simulated data sets. For the same value P(r) , the reproducibility probability estimates

differs from one data set to another data set. These small variations in the RP estimates are

due to variations in the original samples and in the NPI-B samples.

The relationship between NPI-RP-B and P(r) for the Mosteller test is examined in the

simulations. The observed P(r) and the NPI-RP-B estimates for 100 data sets are displayed in

Figures 5.4, 5.5, 5.6 and 5.7. Note that, the level of significance α = 0.05 is represented on the

figures by a vertical line. Based on these figures, it is clear that the NPI-RP-B estimates are

low when P(r) is close to the threshold 0.05, which is as expected. The NPI-RP-B estimates

also tend to be lower in the case of rejection than for non-rejection. A similar pattern has

been observed in the previous chapters in the investigation of the NPI reproducibility for the
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Samples r P(r) H0 Min Mean Median Max

1 1 1 NR 0.893 0.913 0.914 0.934

2 1 1 NR 0.812 0.841 0.842 0.871

3 1 1 NR 0.851 0.872 0.871 0.905

4 1 1 NR 0.870 0.895 0.896 0.920

5 2 0.294 NR 0.810 0.831 0.829 0.859

6 2 0.294 NR 0.794 0.825 0.826 0.847

7 2 0.294 NR 0.805 0.833 0.833 0.860

8 3 0.074 NR 0.679 0.717 0.719 0.746

9 3 0.074 NR 0.701 0.737 0.735 0.773

10 4 0.015 R 0.463 0.499 0.498 0.537

Table 5.10: RP for the Mosteller test, with Case 1, n = 6, α = 0.05
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Figure 5.4: NPI-RP-B for the Mosteller test under H0, with Case 1, α = 0.05

Jonckheere-Terpstra test in Chapter 3 and the umbrella alternatives tests in Chapter 4, and with

other NPI-RP applications for other tests [2, 18, 97]. Further simulations were performed for

data generated under H0 and H1 for k = 3 and unequal sample sizes, the results are presented

in the Appendix D.2.

In Tables 5.22, 5.23 and 5.24, the NPI strong reproducibility probability for the Mosteller

test is also explored. Data were generated under H0 and H1 with k = 3, 4 groups and the sample

size n = 10. For k = 3 and under H0, Case 1 in Table 5.9 is considered. Under H1, original data

were generated from Normal distribution with different means µx = 0, µy = 0.5 and µz = 1.5,

and standard deviation 1. For k = 4, original data were generated from Normal distribution

with different means µx = 0, µy = 0.5, µz = 1.5 and µv = 2, with standard deviation 1.

Algorithm 2 is implemented with B = 10000 and T = 1. From the results in Tables 5.22,
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Samples r P(r) H0 Min Mean Median Max

1 1 1 NR 0.831 0.867 0.866 0.897

2 1 1 NR 0.833 0.875 0.877 0.906

3 1 1 NR 0.790 0.823 0.824 0.859

4 1 1 NR 0.840 0.869 0.869 0.892

5 2 0.310 NR 0.804 0.838 0.839 0.866

6 2 0.310 NR 0.741 0.768 0.767 0.803

7 2 0.310 NR 0.767 0.798 0.798 0.824

8 3 0.089 NR 0.679 0.708 0.708 0.742

9 3 0.089 NR 0.651 0.690 0.689 0.736

10 4 0.023 R 0.265 0.311 0.310 0.350

Table 5.11: RP for the Mosteller test, with Case 1, n = 10, α = 0.05
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Figure 5.5: NPI-RP-B for the Mosteller test under H1, with Case 2, α = 0.05

5.23 and 5.24, it can be concluded that for the rejection cases with one group has slipped to

the left, the rejection is reproduced in the future bootstrapped samples with the same group

contributes the most in the NPI-RP. As shown for the original samples 6-10 in Table 5.23 and

3-10 in Table 5.24, the original test conclusion is the rejection of the null hypothesis with group

X has slipped. Here, the rejection is reproduced largely with the same group X has slipped in

the future samples.
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Samples r P(r) H0 Min Mean Median Max

1 1 1 NR 0.829 0.854 0.853 0.880

2 1 1 NR 0.821 0.847 0.847 0.879

3 1 1 NR 0.804 0.837 0.839 0.869

4 1 1 NR 0.779 0.812 0.812 0.835

5 2 0.322 NR 0.779 0.817 0.818 0.846

6 2 0.322 NR 0.795 0.831 0.832 0.857

7 2 0.322 NR 0.746 0.784 0.784 0.817

8 2 0.322 NR 0.709 0.747 0.747 0.781

9 3 0.100 NR 0.712 0.749 0.750 0.781

10 3 0.100 NR 0.572 0.614 0.612 0.648

Table 5.12: RP for the Mosteller test, with Case 1, n = 20, α = 0.05
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Figure 5.6: NPI-RP-B for the Mosteller test under H0, with Case 3, α = 0.05
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Figure 5.7: NPI-RP-B for the Mosteller test under H1, with Case 4, α = 0.05
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Samples r P(r) H0 Min Mean Median Max

1 1 1 NR 0.787 0.812 0.812 0.844

2 1 1 NR 0.761 0.786 0.787 0.815

3 2 0.294 NR 0.772 0.802 0.801 0.832

4 2 0.294 NR 0.758 0.796 0.796 0.828

5 2 0.294 NR 0.688 0.748 0.748 0.775

6 3 0.074 NR 0.724 0.760 0.759 0.794

7 3 0.074 NR 0.732 0.768 0.769 0.795

8 4 0.015 R 0.307 0.341 0.340 0.374

9 5 0.002 R 0.458 0.494 0.496 0.534

10 6 1.616× 10−4 R 0.693 0.727 0.727 0.756

Table 5.13: RP for the Mosteller test, with Case 2, n = 6, α = 0.05

Samples r P(r) H0 Min Mean Median Max

1 1 1 NR 0.766 0.795 0.794 0.829

2 1 1 NR 0.700 0.741 0.740 0.780

3 2 0.310 NR 0.553 0.600 0.599 0.659

4 3 0.089 NR 0.674 0.710 0.708 0.749

5 3 0.089 NR 0.536 0.564 0.564 0.613

6 4 0.023 R 0.364 0.417 0.419 0.447

7 4 0.023 R 0.480 0.517 0.518 0.563

8 5 0.005 R 0.515 0.554 0.554 0.600

9 6 0.001 R 0.679 0.714 0.716 0.746

10 8 2.307× 10−5 R 0.804 0.827 0.827 0.853

Table 5.14: RP for the Mosteller test, with Case 2, n = 10, α = 0.05
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Samples r P(r) H0 Min Mean Median Max

1 1 1 NR 0.584 0.638 0.637 0.673

2 3 0.100 NR 0.569 0.605 0.606 0.636

3 4 0.030 R 0.390 0.434 0.433 0.484

4 5 0.009 R 0.530 0.564 0.565 0.604

5 6 0.002 R 0.624 0.662 0.662 0.700

6 7 6.022× 10−4 R 0.644 0.689 0.690 0.731

7 8 1.477× 10−4 R 0.742 0.769 0.768 0.806

8 9 3.408× 10−5 R 0.808 0.842 0.841 0.868

9 11 1.470× 10−6 R 0.894 0.927 0.928 0.954

10 15 8.744× 10−10 R 0.947 0.963 0.963 0.977

Table 5.15: RP for the Mosteller test, with Case 2, n = 20, α = 0.05

Samples r P(r) H0 Min Mean Median Max

1 1 1 NR 0.807 0.839 0.839 0.868

2 1 1 NR 0.805 0.835 0.836 0.860

3 1 1 NR 0.778 0.825 0.826 0.868

4 1 1 NR 0.771 0.798 0.797 0.835

5 2 0.172 NR 0.756 0.789 0.788 0.828

6 2 0.172 NR 0.725 0.765 0.766 0.793

7 2 0.172 NR 0.707 0.745 0.744 0.772

8 2 0.172 NR 0.736 0.763 0.763 0.794

9 3 0.025 R 0.321 0.352 0.352 0.398

10 3 0.025 R 0.338 0.376 0.376 0.412

Table 5.16: RP for the Mosteller test, with Case 3, n = 6, α = 0.05
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Samples r P(r) H0 Min Mean Median Max

1 1 1 NR 0.804 0.832 0.832 0.857

2 1 1 NR 0.784 0.809 0.810 0.835

3 1 1 NR 0.748 0.774 0.773 0.810

4 1 1 NR 0.716 0.760 0.760 0.798

5 1 1 NR 0.769 0.800 0.802 0.829

6 2 0.184 NR 0.665 0.711 0.712 0.740

7 2 0.184 NR 0.699 0.744 0.746 0.777

8 2 0.184 NR 0.668 0.714 0.715 0.743

9 2 0.184 NR 0.691 0.724 0.722 0.755

10 3 0.031 R 0.221 0.259 0.259 0.290

Table 5.17: RP for the Mosteller test, with Case 3, n = 10, α = 0.05

Samples r P(r) H0 Min Mean Median Max

1 1 1 NR 0.751 0.784 0.784 0.812

2 1 1 NR 0.769 0.796 0.795 0.825

3 1 1 NR 0.744 0.775 0.775 0.802

4 1 1 NR 0.750 0.780 0.780 0.812

5 1 1 NR 0.761 0.795 0.796 0.822

6 2 0.192 NR 0.731 0.770 0.770 0.799

7 2 0.192 NR 0.699 0.756 0.756 0.788

8 2 0.192 NR 0.747 0.778 0.778 0.813

9 2 0.192 NR 0.668 0.707 0.708 0.737

10 4 0.006 R 0.307 0.356 0.356 0.389

Table 5.18: RP for the Mosteller test, with Case 3, n = 20, α = 0.05
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Samples r P(r) H0 Min Mean Median Max

1 1 1 NR 0.709 0.744 0.745 0.778

2 1 1 NR 0.660 0.693 0.691 0.732

3 2 0.172 NR 0.629 0.668 0.670 0.697

4 2 0.172 NR 0.565 0.604 0.603 0.644

5 3 0.025 R 0.293 0.321 0.319 0.358

6 3 0.025 R 0.424 0.462 0.462 0.503

7 4 0.003 R 0.387 0.424 0.424 0.456

8 4 0.003 R 0.472 0.513 0.512 0.552

9 4 0.003 R 0.507 0.539 0.540 0.580

10 5 2.105× 10−4 R 0.507 0.542 0.541 0.575

Table 5.19: RP for the Mosteller test, with Case 4, n = 6, α = 0.05

Samples r P(r) H0 Min Mean Median Max

1 1 1 NR 0.678 0.709 0.711 0.753

2 1 1 NR 0.657 0.705 0.705 0.753

3 2 0.184 NR 0.636 0.678 0.680 0.710

4 3 0.031 R 0.349 0.384 0.383 0.432

5 3 0.031 R 0.396 0.432 0.431 0.469

6 4 0.005 R 0.503 0.551 0.552 0.592

7 5 5.947× 10−4 R 0.570 0.608 0.609 0.645

8 6 6.608× 10−5 R 0.564 0.604 0.604 0.653

9 6 6.608× 10−5 R 0.667 0.704 0.704 0.738

10 7 6.007× 10−6 R 0.707 0.738 0.739 0.786

Table 5.20: RP for the Mosteller test, with Case 4, n = 10, α = 0.05
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Samples r P(r) H0 Min Mean Median Max

1 1 1 NR 0.709 0.750 0.749 0.788

2 2 0.192 NR 0.566 0.606 0.605 0.655

3 3 0.035 R 0.306 0.355 0.356 0.394

4 4 0.006 R 0.507 0.548 0.550 0.582

5 4 0.006 R 0.529 0.580 0.582 0.608

6 5 0.001 R 0.593 0.633 0.636 0.661

7 6 1.626× 10−4 R 0.646 0.682 0.682 0.716

8 7 2.421× 10−5 R 0.766 0.798 0.799 0.825

9 7 2.421× 10−5 R 0.847 0.874 0.874 0.897

10 10 5.337× 10−8 R 0.851 0.878 0.878 0.912

Table 5.21: RP for the Mosteller test, with Case 4, n = 20, α = 0.05

Future l∗

Samples r P(r) l∗ H0 NPI-RP-B X Y Z

1 1 1 X NR 0.866 0.351 0.270 0.245

2 1 1 Z NR 0.748 0.086 0.141 0.522

3 1 1 Z NR 0.794 0.341 0.022 0.431

4 2 0.318 X NR 0.770 0.561 0.172 0.037

5 2 0.310 X NR 0.775 0.558 0.154 0.063

6 2 0.318 Z NR 0.768 0.177 0.057 0.534

7 3 0.089 Z NR 0.748 0.086 0.141 0.522

8 3 0.096 X NR 0.711 0.487 0.049 0.175

9 4 0.023 Z R 0.390 0.003 0.008 0.380

10 4 0.023 Z R 0.496 0.003 0.002 0.491

Table 5.22: RP for the Mosteller test, with k = 3 and the original samples from N(0, 1), n = 10,

α = 0.05
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Future l∗

Samples r P(r) l∗ H0 NPI-RP-B X Y Z

1 1 1 X NR 0.878 0.345 0.163 0.369

2 1 1 X NR 0.846 0.382 0.290 0.175

3 2 0.310 X NR 0.723 0.514 0.204 0.005

4 2 0.310 X NR 0.625 0.375 0.209 0.041

5 3 0.089 X NR 0.643 0.519 0.062 0.062

6 4 0.023 X R 0.433 0.425 0.002 0.007

7 4 0.023 X R 0.408 0.397 0.003 0.008

8 4 0.023 X R 0.506 0.494 0.011 0.000

9 5 0.005 X R 0.541 0.536 0.003 0.002

10 5 0.005 X R 0.593 0.590 0.003 0.000

Table 5.23: RP for the Mosteller test, with k = 3 and X ∼ N(0, 1), Y ∼ N(0.5, 1) and Z ∼

N(1.5, 1), n = 10, α = 0.05, B = 10000, T = 1.

Future l∗

Samples r P(r) l∗ H0 NPI-RP-B X Y Z V

1 1 1 X NR 0.676 0.231 0.378 0.059 0.007

2 2 0.231 X NR 0.595 0.438 0.124 0.003 0.031

3 3 0.049 X R 0.469 0.400 0.067 0.002 0.000

4 3 0.049 X R 0.426 0.289 0.040 0.093 0.003

5 3 0.049 X R 0.421 0.373 0.028 0.006 0.014

6 4 0.009 X R 0.495 0.458 0.022 0.014 0.000

7 4 0.009 X R 0.468 0.432 0.021 0.008 0.007

8 4 0.009 X R 0.494 0.455 0.019 0.020 0.000

9 5 0.002 X R 0.503 0.471 0.015 0.003 0.015

10 5 0.002 X R 0.679 0.669 0.006 0.005 0.000

Table 5.24: RP for the Mosteller test, with k = 4 and X ∼ N(0, 1), Y ∼ N(0.5, 1), Z ∼ N(1.5, 1)

and V ∼ N(2, 1), n = 10, α = 0.05, B = 10000, T = 1.
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5.10 Concluding remarks

This chapter explored the NPI reproducibility probability for the Mosteller test, for the alter-

native that one group has slipped to the left of the other groups. The exact NPI lower and

upper reproducibility probabilities for the Mosteller test are derived for the scenario of rejection

of the null hypothesis. As the sample size and the number of groups increase, the number of

possible orderings of the future observations among the data observations increases significantly,

leading to computational challenges using the exact NPI reproducibility probability (NPI-RP-

E) approach. To this end, two NPI-based approaches are implemented, namely, the sampling

of orderings (NPI-RP-SO) and the NPI-bootstrap (NPI-RP-B). The employment of the NPI-

RP-SO and NPI-RP-B approaches have the advantage of avoiding the complexities involved in

computations of the exact lower and upper bounds.

The NPI-RP-SO and NPI-RP-B methods has been applied to a variety of scenarios via

simulation studies. The findings of the NPI reproducibility probability for the Mosteller test

are consistent with previous NPI studies of test reproducibility [2, 18, 33, 97]. Notably, these

studies show that the reproducibility is low close the the boundaries of the rejection region.

The findings also show consistency with the results in Chapters 3 and 4 which show that the

reproducibility is low when the p-values are close to the test threshold, and it is lower when

the null hypothesis is rejected more than when it is not rejected. The reason for that is the

presence of some sort of direction in the alternative.

For future research it is of interest to consider the reproducibility probability for other slip-

page tests, such as the slippage test proposed by Granger and Neave [52], for the alternative

that one group has slipped from the other groups. The reproducibility for the slippage tests

involving more than one group being slipped is a topic for future research. It is of interest

to derive NPI-RP-E approach for Mosteller test that considers both cases when the null hy-

pothesis is rejected and not rejected which may require developing some methods. Studying

reproducibility probability for scale problem is also of interest for future research.



Chapter 6

Conclusions

This chapter summarises the main results of this thesis and concludes with some future research

topics. In this thesis, the reproducibility probability was explored for statistical hypothesis

tests using the NPI approach. It has been noted that there is no standardised definition of

the reproducibility probability within the classical frequentist statistics framework. In the

NPI setting, the reproducibility probability is considered from a prediction perspective. The

main question that this thesis addresses is: if a statistical test were repeated, under the same

circumstances, would it lead to the same conclusion with regard to rejection or non-rejection of

the null hypothesis?

In Chapter 2, the NPI reproducibility probability was introduced for general alternatives

tests, including the Kruskal Wallis test and the Analysis of Variance (ANOVA) test. The NPI

bootstrap method was performed for different scenarios. The findings suggest that the repro-

ducibility is low (close to 0.5) when the observed test statistic value is close to the test threshold.

Reproducibility tends to increase when the test statistic moves away from the threshold. In

principle for the general alternatives tests, if there are multiple groups, the reproducibility close

to the rejection region is lower in the case of non-rejection than for rejection of the null hy-

pothesis substantially less than 0.5. All different scenarios provide similar results for both the

nonparametric Kruskal-Wallis test and the parametric ANOVA test. As a result it can be con-

cluded that when the test has been performed and it satisfies the criteria of the power and the

level of significance, the RP could also be quit low. It would be interesting for future research

to derive closed formula for the lower and upper reproducibility probability for these tests using

the NPI-RP-E approach.

In Chapter 3, the NPI reproducibility probability was explored for the Jonckheere-Terpstra

(JT) test. The JT test is used for the alternative hypothesis that the location parameters are

ordered in a specific way, such as an increasing or decreasing trend. The NPI-RP-B method was
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adopted to investigate the reproducibility probability for the JT test for different scenarios. The

findings in Chapter 3 indicate that when the test statistic value is close to the test threshold

the NPI reproducibility do not provide strong evidence in favour of the reproducibility of the

test results, particularly, in case of rejection than for non-rejection of the null hypothesis. The

reason for that is the presence of direction or trend in the alternatives. Deriving the exact lower

and upper reproducibility probabilities for the JT test is of interest for future work.

Chapter 4 investigates the NPI reproducibility for the umbrella alternatives tests, namely

the Mack-Wolf (MW) test and Esra-Fikri (EF) test. The exact lower and upper reproducibility

probabilities for the MW test are derived for three groups; however, for more than three groups

and large samples the application of the exact method becomes computationally challenging.

In this case, two NPI-based approaches are implemented, namely, the sampling of orderings

and the NPI-bootstrap technique. The results of this chapter indicate that the reproducibility

is low when the test statistic value is close to the rejection threshold, and tends to be lower in

the case of rejection than for non-rejection. Finding the exact lower and upper reproducibility

probabilities for the MW test for more than three groups is of interest for future research. The

reproducibility for other umbrella alternatives tests can also be studied.

In Chapter 5, the NPI reproducibility probability is investigated for the Mosteller test.

Mosteller test is used to determine whether one group has slipped to the right or slipped to

the left. The NPI bootstrap approach was implemented and it was observed that the results

in this chapter are consistent with the results in Chapters 3 and 4, as these tests are used for

directional alternatives. It would be interesting to study NPI reproducibility for other slippage

tests, such as for the alternatives that two or more groups have slipped either to the right or to

the left.

The time saved and the results obtained by the employment of the NPI-RP-B and NPI-RP-

SO approaches demonstrate that these approaches are sufficient to overcome the calculation

challenges associated with the NPI-RP-E approach. In this thesis, using the NPI-RP-B and

NPI-RP-SO approaches the maximum runtime for the R code was approximately 6 minutes,

which occurred with k = 5 groups and a sample size of 20 and when the number of orderings

sampled is 150000 and the sample size is 30.

This research has thrown up some interesting questions that need further investigation.

For example, if the reproducibility of obtaining the same result as the original experiment is

low, what actions should be taken? Future analysis should be carried out, such as repeating

the experiment or considering other measures if the research results continue to reveal poor

reproducibility.
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In practical situations, statistical tests are used to make decisions. Thus, when the RP is

low, it is important to raise awareness that the results cannot necessarily be trusted as the

actual evidence from the data was not very strong. One suggestion that also can be considered

is to investigate the RP for sequential tests to gain a better understanding of how the actual

data sample size and the future data sample size affects the reproducibility. This can be done

by conducting the original test with a starting sample size and then sequentially adding obser-

vations to the actual data set. In this approach, the future data sample size will be the same

as the original sample size and will consider increasing the initial data set.

In this thesis, we consider RP for different statistical tests using the NPI framework. Other

perspectives can be considered as future work such as studying the RP for these tests from a

Bayesian predictive perspective, which was introduced by [17]. There are also other ways to

consider the RP including investigating the relationship between the RP estimates and the true

RP. This could be done by simulations, drawing repeated samples from the same model and

applying the test to each sample, to estimate the proportion of times when the same outcome

is obtained in the test.
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We introduce additional tables and figures to Section 2.5. The NPI approach to study re-

producibility for the Kruskal-Wallis test and the ANOVA test, introduced in Section 2.3, is

considered for different scenarios as presented in Section 2.5. In this section, data were gener-

ated under H1 for k = 5 groups and sample sizes n = 6, 10, 20, from Normal distribution with

different means µx = µy = µz = µv = 0, µw = 1.5, and standard deviation 1. The null hypoth-

esis is H0 : µx = µy = µz = µv = µw against H1 : at least one µi is different, i ∈ {x, y, z, v, w}.

The level of significance is α = 0.05. In Tables A.1, A.2 and A.3, the reproducibility probability

estimates have been reported for 10 simulated data sets. Algorithm 2 is applied with B = 1000

and T = 100. The relationship between NPI-RP-B and the p-value for the KW test and the

ANOVA test is examined, as displayed in Figure A.1. Increasing the size of samples from n = 6

to n = 20 leads to increasing the power of the test and more cases rejecting the null hypothesis.

Increasing the number of groups and the sample size leads to a tendency for RP estimates to

be higher in cases of rejection than in non-rejection, whereas RP estimates seem to be lower in

cases of non-rejection than rejection, as shown in Figure A.1. The values of RP tend to increase

with increasing distance between the observed p-value and the test threshold 0.05, regardless of

the decision about H0.
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KW test ANOVA test

KW p-value H0 ε2 Min Mean Median Max F p-value H0 η2 Min Mean Median Max

14.598 0.006 R 0.503 0.785 0.825 0.826 0.850 5.602 0.002 R 0.473 0.819 0.847 0.847 0.874

13.944 0.007 R 0.481 0.881 0.909 0.910 0.927 7.430 4.355× 10−4 R 0.543 0.906 0.926 0.926 0.951

10.753 0.029 R 0.371 0.733 0.780 0.782 0.809 4.974 0.004 R 0.443 0.780 0.817 0.819 0.848

9.682 0.046 R 9.682 0.612 0.656 0.657 0.691 3.443 0.023 R 0.355 0.651 0.690 0.690 0.733

9.398 0.052 NR 0.324 0.348 0.390 0.389 0.428 3.763 0.016 R 0.376 0.639 0.682 0.683 0.724

8.254 0.083 NR 0.285 0.400 0.432 0.431 0.470 2.291 0.088 NR 0.268 0.391 0.427 0.426 0.464

7.686 0.104 NR 0.265 0.391 0.432 0.432 0.465 2.418 0.075 NR 0.279 0.355 0.410 0.411 0.440

6.761 0.149 NR 0.233 0.508 0.540 0.539 0.575 1.763 0.168 NR 0.220 0.479 0.518 0.518 0.556

5.656 0.226 NR 0.195 0.511 0.543 0.544 0.580 2.130 0.107 NR 0.254 0.430 0.468 0.467 0.501

4.693 0.320 NR 0.162 0.533 0.567 0.567 0.600 1.206 0.333 NR 0.162 0.525 0.556 0.557 0.589

Table A.1: RP under H1, with k = 5 and X ∼ N(0, 1), Y ∼ N(0, 1), Z ∼ N(0, 1), V ∼ N(0, 1),

W ∼ N(1.5, 1), n = 6, χ2
4,0.05 = 9.49, F (0.05, 4, 25) = 2.759

KW test ANOVA test

KW p-value H0 ε2 Min Mean Median Max F p-value H0 η2 Min Mean Median Max

21.946 2.054× 10−4 R 0.448 0.990 0.995 0.996 0.999 6.722 2.490 ×10−4 R 0.374 0.945 0.964 0.965 0.983

19.433 0.001 R 0.397 0.964 0.977 0.977 0.990 6.736 2.450× 10−4 R 0.375 0.947 0.963 0.963 0.979

17.339 0.002 R 0.354 0.877 0.907 0.908 0.933 7.863 6.794× 10−5 R 0.411 0.917 0.933 0.933 0.949

15.149 0.004 R 0.309 0.813 0.843 0.844 0.872 6.945 1.921× 10−4 R 0.382 0.826 0.868 0.870 0.895

13.784 0.008 R 0.281 0.869 0.889 0.889 0.916 5.429 0.001 R 0.326 0.892 0.910 0.910 0.931

11.826 0.019 R 0.241 0.749 0.790 0.790 0.822 4.218 0.006 R 0.273 0.776 0.811 0.811 0.836

11.607 0.021 R 0.237 0.777 0.806 0.807 0.833 3.413 0.016 R 0.233 0.741 0.770 0.770 0.796

10.416 0.034 R 0.213 0.702 0.729 0.728 0.769 3.153 0.023 R 0.219 0.679 0.722 0.722 0.749

9.563 0.048 R 0.195 0.748 0.781 0.781 0.831 2.501 0.056 NR 0.182 0.239 0.272 0.273 0.303

8.042 0.090 NR 0.164 0.329 0.378 0.379 0.420 3.055 0.026 R 0.214 0.625 0.660 0.661 0.701

Table A.2: RP under H1, with k = 5 and X ∼ N(0, 1), Y ∼ N(0, 1), Z ∼ N(0, 1), V ∼ N(0, 1),

W ∼ N(1.5, 1), n = 10, χ2
4,0.05 = 9.49, F (0.05, 4, 45) = 2.579

KW test ANOVA test

KW p-value H0 ε2 Min Mean Median Max F p-value H0 η2 Min Mean Median Max

34.329 6.379× 10−7 R 0.347 0.997 0.999 1 1 14.997 1.549× 10−9 R 0.387 0.997 1.000 1 1

32.590 1.449× 10−6 R 0.329 0.991 0.996 0.997 1 12.779 2.316× 10−8 R 0.350 0.990 0.996 0.996 0.999

29.032 7.700× 10−6 R 0.293 0.964 0.978 0.978 0.987 10.601 3.816× 10−6 R 0.309 0.962 0.974 0.975 0.988

28.461 1.006× 10−5 R 0.287 0.981 0.989 0.990 0.997 11.084 2.023× 10−7 R 0.318 0.984 0.992 0.992 0.998

26.035 3.113× 10−5 R 0.263 0.985 0.991 0.991 0.999 10.565 4.001× 10−7 R 0.308 0.986 0.992 0.993 0.998

24.317 6.901× 10−5 R 0.246 0.974 0.983 0.983 0.992 7.808 1.745× 10−5 R 0.247 0.964 0.975 0.974 0.988

21.984 2.019× 10−4 R 0.222 0.954 0.966 0.965 0.977 7.445 2.925× 10−5 R 0.239 0.954 0.964 0.964 0.977

19.970 5.061× 10−4 R 0.202 0.922 0.940 0.939 0.959 7.311 3.544× 10−5 R 0.235 0.947 0.959 0.959 0.974

15.458 0.004 R 0.156 0.868 0.886 0.886 0.910 7.445 2.925× 10−5 R 0.239 0.954 0.964 0.964 0.977

12.698 0.013 R 0.128 0.815 0.843 0.842 0.874 4.458 0.002 R 0.158 0.840 0.869 0.869 0.896

Table A.3: RP under H1, with k = 5 and X ∼ N(0, 1), Y ∼ N(0, 1), Z ∼ N(0, 1), V ∼ N(0, 1),

W ∼ N(1.5, 1), n = 20, χ2
4,0.05 = 9.49, F (0.05, 4, 95) = 2.467
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Figure A.1: NPI-RP-B under H1, with k = 5 and X ∼ N(0, 1), Y ∼ N(0, 1), Z ∼ N(0, 1),

V ∼ N(0, 1) and W ∼ N(1.5, 1), α = 0.05
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Additional tables and figures to Section 3.5 are provided here. The NPI approach to study

reproducibility for the JT test, introduced in Section 3.4, is considered for different scenarios

as presented in Section 3.5. The null hypothesis is H0 : µx = µy = µz and the alternative

hypothesis is H1: µx ≤ µy ≤ µz, the level of significance is α = 0.05. Simulations were

performed under H0 and H1 for k = 3 groups and unequal sample sizes, with nx = 4, ny = 8

and nz = 10.

Under H0, original data were generated from the standard Normal distribution. Under H1,

original data were generated from the Normal distribution with different means µx = 0, µy = 1

and µz = 2, and standard deviation 1. Algorithm 2 is applied with B = 1000 and T = 100.

The reproducibility probability estimates have been reported for 20 simulated data sets for each

scenario, in Tables B.1 and B.2. The relationship between NPI-RP-B and the p-value for the

JT test is examined for 100 simulated data sets, as in Figure B.1. Under H1, we expect to

observe a noticeable number of cases where the JT test rejects the null hypothesis based on the

setup described earlier, and the power of the JT test is 0.882. The reproducibility probability

becomes close to 0.5 in both cases of rejection and non-rejection when the observed p-value is

very close to the threshold α = 0.05, substantially below 0.5 in cases of rejection more than

non-rejection. Reproducibility tends to increase when the p-value moves away from α = 0.05,

which means that the test is reproducible.
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J p-value H0 Min Mean Median Max J p-value H0 Min Mean Median Max

105 0.040 R 0.425 0.464 0.466 0.507 79 0.440 NR 0.828 0.864 0.865 0.888

102 0.059 NR 0.571 0.603 0.602 0.648 73 0.584 NR 0.896 0.919 0.919 0.939

101 0.067 NR 0.617 0.650 0.648 0.690 65 0.757 NR 0.937 0.959 0.959 0.970

99 0.085 NR 0.596 0.629 0.631 0.664 60 0.842 NR 0.924 0.948 0.948 0.966

98 0.095 NR 0.618 0.658 0.656 0.697 54 0.915 NR 0.974 0.988 0.988 0.995

95 0.130 NR 0.709 0.737 0.738 0.773 54 0.915 NR 0.978 0.988 0.988 0.995

91 0.189 NR 0.767 0.799 0.799 0.827 50 0.948 NR 0.974 0.986 0.986 0.996

91 0.189 NR 0.724 0.771 0.771 0.810 47 0.965 NR 0.985 0.993 0.993 0.999

88 0.243 NR 0.745 0.782 0.783 0.815 44 0.978 NR 0.977 0.990 0.991 0.998

85 0.303 NR 0.811 0.854 0.853 0.884 39 0.990 NR 0.993 0.997 0.998 1

Table B.1: RP for the JT test under H0, with k = 3 and the original samples from N(0, 1),

nx = 4, ny = 8, nz = 10, J0.0456 = 104

J p-value H0 Min Mean Median Max J p-value H0 Min Mean Median Max

141 5.230× 10−6 R 0.971 0.981 0.981 0.990 120 0.003 R 0.656 0.695 0.695 0.723

141 5.230× 10−6 R 0.952 0.967 0.968 0.980 117 0.006 R 0.587 0.619 0.618 0.662

139 1.209× 10−5 R 0.960 0.972 0.973 0.985 115 0.008 R 0.540 0.575 0.575 0.608

138 1.791× 10−5 R 0.918 0.934 0.933 0.955 113 0.012 R 0.509 0.544 0.544 0.575

132 1.401× 10−4 R 0.887 0.915 0.915 0.931 110 0.019 R 0.422 0.456 0.456 0.488

129 3.367× 10−4 R 0.820 0.844 0.845 0.871 108 0.026 R 0.488 0.529 0.530 0.557

127 5.774× 10−4 R 0.753 0.788 0.789 0.816 107 0.030 R 0.453 0.495 0.495 0.537

124 0.001 R 0.801 0.829 0.830 0.862 106 0.035 R 0.426 0.463 0.463 0.499

124 0.001 R 0.745 0.773 0.775 0.795 99 0.085 NR 0.609 0.643 0.642 0.682

121 0.002 R 0.691 0.729 0.729 0.761 90 0.206 NR 0.719 0.751 0.750 0.794

Table B.2: RP for the JT test under H1, with k = 3 and X ∼ N(0, 1), Y ∼ N(1, 1) and

Z ∼ N(2, 1), nx = 4, ny = 8, nz = 10, J0.0456 = 104
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Figure B.1: NPI-RP-B for the JT test, with k = 3, nx = 4, ny = 8 and nz = 10, α = 0.05
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Here, we provide the proof of Equations 4.18 and 4.19, introduced in Section 4.3. The detailed

justification for these equations is as follows. To test the null hypothesis H0 = µx = µy = µz

against the alternative H1 : µx ≤ µy ≥ µz, that is p = 2 where this refers to the second group

Y . In this case, the Mack-Wolfe test for three groups X, Y and Z is the sum of Mann-Whitney

counts UXY and UZY

Ap = UXY + UZY =

[
RXY − ny(ny + 1)

2

]
+

[
RZY − ny(ny + 1)

2

]

where RXY is the sum of the ranks of group Y when X and Y are combined, and RZY is the

sum of the ranks of group Y when Y and Z are combined.

For each combination of orderings Oℓ, the corresponding Mack-Wolfe test statistic, given

in Equation 4.3, denoted by Apℓ. In the NPI approach, there is no assumptions about the

exact location of the future observations within the groups intervals (xj−1, xj), (yi−1, yi) and

(zk−1, zk). However, we do have knowledge only about the number of observations within each

interval. Thus, we cannot calculate a precise value of Apℓ related to a specific combination of

orderings, but we can derive the minimum and maximum possible values; these are denoted by

Ap
ℓ
and Apℓ, respectively. For a particular combination of orderings, the ℓ is omitted from the

right hand side for simplicity of notation.

To derive the minimum value of Apℓ for a particular ordering, denoted by Ap
ℓ
, all SX

j

future X observations in the interval (xj−1, xj), j = 1, ..., nx + 1 are put at xj , all S
Y
i future

Y observations in the interval (yi−1, yi), i = 1, ..., ny + 1 are put at yi−1, and all SZ
k future Z

observations in the interval (zk−1, zk), k = 1, ..., nz + 1 are put at zk, as illustrated in Figure

C.1. The ranks of the SY
i future Y observations at yi−1, i = 1, ..., ny + 1, when X and Y are
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Y •• • •• •
↙ ↙↙ ↘ ↘ ↘↘ ↘↙ ↙

...y2y1−∞ yny−1 yny ∞

X ••• • ••
↘ ↘ ↘↘ ↘↙ ↙↙ ↙ ↙

...x2x1−∞ xnx−1 xnx ∞

Z ••• • ••
↘ ↘ ↘↘ ↘↙ ↙↙ ↙ ↙

...z2z1−∞ znz−1 znz ∞

Figure C.1: The probability masses assignments for the NPI lower and upper probabilities for

the events X < Y and Z < Y

combined, are

i−1∑
b=1

SY
b +

j(i−1)−1∑
a=1

SX
a + 1, ...,

i−1∑
b=1

SY
b +

j(i−1)−1∑
a=1

SX
a + SY

i (C.1)

and ranks of the SY
i future Y observations at yi−1, i = 1, ..., ny+1, when Z and Y are combined,

are

i−1∑
b=1

SY
b +

k(i−1)−1∑
c=1

SZ
c + 1, ...,

i−1∑
b=1

SY
b +

k(i−1)−1∑
c=1

SZ
c + SY

i (C.2)

then (C.1) and (C.2) sum up to

Ap
ℓ
=

[(
SY
i

[ i−1∑
b=1

SY
b +

j(i−1)−1∑
a=1

SX
a

]
+

SY
i (SY

i + 1)

2

)
− ny(ny + 1)

2

]
+

[(
SY
i

[ i−1∑
b=1

SY
b +

k(i−1)−1∑
c=1

SZ
c

]
+

SY
i (SY

i + 1)

2

)
− ny(ny + 1)

2

]
(C.3)

Summing for all i = 1..., ny + 1 and using the fact that
∑ny+1

i=1 SY
i = ny leads to

Ap
ℓ
=

ny+1∑
i=1

SY
i

[
i−1∑
b=1

SY
b −

ny+1∑
b=i+1

SY
b +

j(i−1)−1∑
a=1

SX
a +

k(i−1)−1∑
c=1

SZ
c

]
(C.4)

To derive the maximum value of Apℓ for a particular ordering Oℓ, denoted by Apℓ, all S
X
j

future X observations in the interval (xj−1, xj), j = 1, ..., nx + 1 are put at xj−1, all S
Y
i future

Y observations in the interval (yi−1, yi), i = 1, ..., ny + 1 are put at yi, and all SZ
k future Z

observations in the interval (zk−1, zk), k = 1, ..., nz + 1 are put at zk−1, as illustrated in Figure

C.1. The ranks of the SY
i future Y observations at yi, i = 1, ..., ny + 1, when X and Y are

combined, are

i−1∑
b=1

SY
b +

j(i)−1∑
a=1

SX
a + 1, ...,

i−1∑
b=1

SY
b +

j(i)−1∑
a=1

SX
a + SY

i (C.5)
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and the ranks of the SY
i future Y observations at yi, i = 1, ..., ny + 1, when Z and Y are

combined, is
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then (C.5) and (C.6) sum up to
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Summing for all i = 1..., ny + 1 and using the fact that
∑ny+1

i=1 SY
i = ny leads to
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D.1 NPI-RP-SO for the Mosteller test

In this section, additional example is considered to study the NPI reproducibility for the

Mosteller test using the NPI-RP-SO approach, introduced in Section 5.6. The NPI-RP-B

method is also applied, and the results are compared to those of the NPI-RP-SO method.

Data set from the literature is used for this application example, which are given in Table D.1

[99]. The null hypothesis that all groups are identical is tested against the alternative hypothesis

that one group has slipped to the left, at α = 0.05.

In Table D.2, NPI reproducibility is explored for k = 3 groups, using the data in Table D.1,

for the average liver weights per bird for chicks given three levels of growth promoter (none,

low, high), each group of size 8 [99]. For the data given in Table D.1, we break tied observations

by adding a small amount [57]. Applying the Mosteller test, the group that did not receive

a growth promoter is the group that has slipped to the left, with r = 5. The probability of

obtaining 5 observations in this group which are less than all observations in the other groups,

using Equation (5.1), is P(r) = 0.004, which is less than α = 0.05. So, the null hypothesis is

rejected. In the NPI approach, there are
(
16
8

)(
16
8

)(
16
8

)
= 2.132× 1012 orderings combinations to

consider in the application of the NPI-RP-E. Therefore, the calculation of RP and RP becomes

computationally expensive.

The NPI-RP-SO method is applied with for different number of orderings sampled r∗, and

the approximation values of NPI-RP along with their confidence intervals, are presented in Ta-

bles D.2. The NPI-RP-B method has been applied using Approach I, to find the reproducibility

of rejection in the future samples with the same group has slipped as the original test. Algorithm

2 is implemented with B = 1000 and T = 100. The minimum, mean, median, maximum, of

RP1, RP2, . . . , RP100 are 0.415, 0.457, 0.456, 0.511, respectively. It can be concluded that accu-
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None (X) 3.75 3.78 3.84 3.84 3.88 3.93 3.93 3.98

Low dose (Y ) 3.92 3.96 3.96 3.99 4.02 4.03 4.06 4.10

High dose (Z) 3.94 3.94 4.02 4.06 4.08 4.09 4.12 4.17

Table D.1: Liver weights for chicks

X

Y

Z

3.8 3.9 4.0 4.1

Figure D.1: Visualization of the lever weight for chicks data

rate approximations for the NPI lower and upper reproducibility probabilities for the Mosteller

test can be obtained when the number of orderings sampled r∗ is equal or greater than 10,000.

The NPI-RP-B estimate is between the lower and upper reproducibility probabilities derived

using the NPI-RP-SO method.

r∗ R̂P CI(95%) R̂P CI(95%)

100 0.150 (0.080, 0.220) 0.900 (0.841, 0.959)

500 0.194 (0.159, 0.229) 0.926 (0.903, 0.949)

1,000 0.191 (0.167, 0.215) 0.903 (0.219, 0.272)

5,000 0.192 (0.181, 0.203) 0.899 (0.229, 0.252)

10,000 0.195 (0.187, 0.203) 0.899 (0.893, 0.905)

50,000 0.191 (0.188, 0.194) 0.896 (0.894, 0.899)

100,000 0.193 (0.191, 0.195) 0.896 (0.894, 0.898)

150,000 0.191 (0.189, 0.193) 0.896 (0.895, 0.898)

Table D.2: NPI-RP-SO for the Mosteller test with k = 3 and n = 8

D.2 NPI-RP-B for the Mosteller test

This section provides additional tables and figures to Section 5.9. The NPI approach to study

reproducibility for the Mosteller test, introduced in Section 5.7, is considered for different sce-

narios as presented in Section 5.9. The null hypothesis is that all groups are equal and the

alternative hypothesis is that one group has slipped to the left. The level of significance is



D.2. NPI-RP-B for the Mosteller test 136

Samples r P(r) H0 Min Mean Median Max

1 1 1 NR 0.868 0.890 0.890 0.912

2 1 1 NR 0.856 0.882 0.882 0.912

3 1 1 NR 0.838 0.871 0.872 0.902

4 1 1 NR 0.818 0.853 0.853 0.883

5 1 1 NR 0.811 0.851 0.851 0.880

6 2 0.313 NR 0.795 0.833 0.835 0.864

7 2 0.313 NR 0.747 0.783 0.783 0.814

8 2 0.313 NR 0.750 0.782 0.782 0.817

9 3 0.092 NR 0.601 0.634 0.633 0.684

10 3 0.092 NR 0.585 0.625 0.622 0.668

Table D.3: RP for the Mosteller test under H0, the original samples from N(0, 1), nx = 7,

ny = 8 and nz = 10, α = 0.05

α = 0.05. Data were generated under H0 and H1 for k = 3 groups. Under H0, original data

were generated from the standard Normal distribution. Under H1, data were generated from

Normal distribution with different means µx = 0, µy = 1.5 and µz = 2, and standard deviation

1. In Tables D.3 and D.4, date with unequal sample sizes is considered under H0 and H1, with

nx = 7, ny = 8 and nz = 10. Tables D.5 and D.6, consider data with equal sample sizes n = 25

under both H0 and H1. The reproducibility probability estimates have been reported for 10

simulated data sets. Algorithm 2 is applied using Approach II, with B = 1000 and T = 100.

The relationship between NPI-RP-B and the probability P(r) for the Mosteller test is exam-

ined for 100 simulated data sets, as displayed in Figures D.2 and D.3. The level of significance

α = 0.05 is represented on the figures by a vertical line. The reproducibility tend to increase

with increasing distance between the observed P(r) and the threshold 0.05, regardless of the

decision about H0. It is clear that, as expected, the reproducibility probability is small when

P(r) is close to the threshold. In such cases, reproducibility tends to be lower in the case of

rejection than for non-rejection.
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Samples r P(r) H0 Min Mean Median Max

1 1 1 NR 0.797 0.830 0.831 0.853

2 2 0.313 NR 0.695 0.733 0.732 0.762

3 3 0.092 NR 0.653 0.688 0.689 0.723

4 3 0.092 NR 0.594 0.643 0.644 0.687

5 4 0.025 R 0.344 0.385 0.385 0.421

6 4 0.025 R 0.358 0.388 0.388 0.424

7 5 0.006 R 0.421 0.456 0.455 0.490

8 5 0.006 R 0.503 0.544 0.545 0.585

9 6 0.001 R 0.634 0.679 0.678 0.717

10 7 2.684× 10−4 R 0.610 0.654 0.653 0.693

Table D.4: RP for the Mosteller test under H1, X ∼ N(0, 1), Y ∼ N(1.5, 1) and Z ∼ N(2, 1),

nx = 7, ny = 8 and nz = 10, α = 0.05
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Figure D.2: NPI-RP-B for the Mosteller test, nx = 7, ny = 8 and nz = 10, α = 0.05
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Samples r P(r) H0 Min Mean Median Max

1 1 1 NR 0.815 0.844 0.843 0.873

2 1 1 NR 0.812 0.839 0.839 0.870

3 1 1 NR 0.807 0.832 0.832 0.865

4 2 0.324 NR 0.755 0.802 0.802 0.834

5 2 0.324 NR 0.796 0.822 0.824 0.845

6 2 0.324 NR 0.722 0.757 0.757 0.790

7 3 0.102 NR 0.697 0.727 0.725 0.755

8 3 0.102 NR 0.676 0.709 0.710 0.751

9 3 0.102 NR 0.574 0.615 0.617 0.651

10 3 0.102 NR 0.621 0.659 0.660 0.688

Table D.5: RP for the Mosteller test under H0, the original samples from N(0, 1), n = 25,

α = 0.05

Samples r P(r) H0 Min Mean Median Max

1 1 1 NR 0.748 0.776 0.775 0.807

2 3 0.102 NR 0.556 0.595 0.598 0.640

3 4 0.031 R 0.481 0.529 0.531 0.567

4 7 0.001 R 0.611 0.658 0.657 0.697

5 8 1.923× 10−4 R 0.573 0.625 0.624 0.660

6 8 1.923× 10−4 R 0.638 0.685 0.685 0.722

7 10 1.183× 10−5 R 0.791 0.816 0.815 0.843

8 11 2.730× 10−6 R 0.808 0.835 0.834 0.859

9 13 1.232× 10−7 R 0.884 0.901 0.901 0.926

10 15 4.301× 10−9 R 0.876 0.905 0.905 0.923

Table D.6: RP for the Mosteller test under H1, X ∼ N(0, 1), Y ∼ N(1.5, 1) and Z ∼ N(2, 1),

n = 25, α = 0.05
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Figure D.3: NPI-RP-B for the Mosteller test, n = 25, α = 0.05
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